hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
1746c7e6fc020333e5401ccb9e02b20ad402ff65
7,313
py
Python
tests/helpers/test_sun.py
petewill/home-assistant
5859dba4344f05fb8774aa1207e47ac28f627a67
[ "Apache-2.0" ]
3
2020-05-18T10:18:16.000Z
2020-12-08T11:27:55.000Z
tests/helpers/test_sun.py
petewill/home-assistant
5859dba4344f05fb8774aa1207e47ac28f627a67
[ "Apache-2.0" ]
39
2016-12-16T12:40:34.000Z
2017-02-13T17:53:42.000Z
tests/helpers/test_sun.py
petewill/home-assistant
5859dba4344f05fb8774aa1207e47ac28f627a67
[ "Apache-2.0" ]
6
2020-04-10T06:21:11.000Z
2021-07-01T08:53:38.000Z
"""The tests for the Sun helpers.""" # pylint: disable=protected-access from unittest.mock import patch from datetime import timedelta, datetime from homeassistant.const import SUN_EVENT_SUNRISE, SUN_EVENT_SUNSET import homeassistant.util.dt as dt_util import homeassistant.helpers.sun as sun def test_next_events(hass): """Test retrieving next sun events.""" utc_now = datetime(2016, 11, 1, 8, 0, 0, tzinfo=dt_util.UTC) from astral import Astral astral = Astral() utc_today = utc_now.date() latitude = hass.config.latitude longitude = hass.config.longitude mod = -1 while True: next_dawn = astral.dawn_utc( utc_today + timedelta(days=mod), latitude, longitude ) if next_dawn > utc_now: break mod += 1 mod = -1 while True: next_dusk = astral.dusk_utc( utc_today + timedelta(days=mod), latitude, longitude ) if next_dusk > utc_now: break mod += 1 mod = -1 while True: next_midnight = astral.solar_midnight_utc( utc_today + timedelta(days=mod), longitude ) if next_midnight > utc_now: break mod += 1 mod = -1 while True: next_noon = astral.solar_noon_utc(utc_today + timedelta(days=mod), longitude) if next_noon > utc_now: break mod += 1 mod = -1 while True: next_rising = astral.sunrise_utc( utc_today + timedelta(days=mod), latitude, longitude ) if next_rising > utc_now: break mod += 1 mod = -1 while True: next_setting = astral.sunset_utc( utc_today + timedelta(days=mod), latitude, longitude ) if next_setting > utc_now: break mod += 1 with patch("homeassistant.helpers.condition.dt_util.utcnow", return_value=utc_now): assert next_dawn == sun.get_astral_event_next(hass, "dawn") assert next_dusk == sun.get_astral_event_next(hass, "dusk") assert next_midnight == sun.get_astral_event_next(hass, "solar_midnight") assert next_noon == sun.get_astral_event_next(hass, "solar_noon") assert next_rising == sun.get_astral_event_next(hass, SUN_EVENT_SUNRISE) assert next_setting == sun.get_astral_event_next(hass, SUN_EVENT_SUNSET) def test_date_events(hass): """Test retrieving next sun events.""" utc_now = datetime(2016, 11, 1, 8, 0, 0, tzinfo=dt_util.UTC) from astral import Astral astral = Astral() utc_today = utc_now.date() latitude = hass.config.latitude longitude = hass.config.longitude dawn = astral.dawn_utc(utc_today, latitude, longitude) dusk = astral.dusk_utc(utc_today, latitude, longitude) midnight = astral.solar_midnight_utc(utc_today, longitude) noon = astral.solar_noon_utc(utc_today, longitude) sunrise = astral.sunrise_utc(utc_today, latitude, longitude) sunset = astral.sunset_utc(utc_today, latitude, longitude) assert dawn == sun.get_astral_event_date(hass, "dawn", utc_today) assert dusk == sun.get_astral_event_date(hass, "dusk", utc_today) assert midnight == sun.get_astral_event_date(hass, "solar_midnight", utc_today) assert noon == sun.get_astral_event_date(hass, "solar_noon", utc_today) assert sunrise == sun.get_astral_event_date(hass, SUN_EVENT_SUNRISE, utc_today) assert sunset == sun.get_astral_event_date(hass, SUN_EVENT_SUNSET, utc_today) def test_date_events_default_date(hass): """Test retrieving next sun events.""" utc_now = datetime(2016, 11, 1, 8, 0, 0, tzinfo=dt_util.UTC) from astral import Astral astral = Astral() utc_today = utc_now.date() latitude = hass.config.latitude longitude = hass.config.longitude dawn = astral.dawn_utc(utc_today, latitude, longitude) dusk = astral.dusk_utc(utc_today, latitude, longitude) midnight = astral.solar_midnight_utc(utc_today, longitude) noon = astral.solar_noon_utc(utc_today, longitude) sunrise = astral.sunrise_utc(utc_today, latitude, longitude) sunset = astral.sunset_utc(utc_today, latitude, longitude) with patch("homeassistant.util.dt.now", return_value=utc_now): assert dawn == sun.get_astral_event_date(hass, "dawn", utc_today) assert dusk == sun.get_astral_event_date(hass, "dusk", utc_today) assert midnight == sun.get_astral_event_date(hass, "solar_midnight", utc_today) assert noon == sun.get_astral_event_date(hass, "solar_noon", utc_today) assert sunrise == sun.get_astral_event_date(hass, SUN_EVENT_SUNRISE, utc_today) assert sunset == sun.get_astral_event_date(hass, SUN_EVENT_SUNSET, utc_today) def test_date_events_accepts_datetime(hass): """Test retrieving next sun events.""" utc_now = datetime(2016, 11, 1, 8, 0, 0, tzinfo=dt_util.UTC) from astral import Astral astral = Astral() utc_today = utc_now.date() latitude = hass.config.latitude longitude = hass.config.longitude dawn = astral.dawn_utc(utc_today, latitude, longitude) dusk = astral.dusk_utc(utc_today, latitude, longitude) midnight = astral.solar_midnight_utc(utc_today, longitude) noon = astral.solar_noon_utc(utc_today, longitude) sunrise = astral.sunrise_utc(utc_today, latitude, longitude) sunset = astral.sunset_utc(utc_today, latitude, longitude) assert dawn == sun.get_astral_event_date(hass, "dawn", utc_now) assert dusk == sun.get_astral_event_date(hass, "dusk", utc_now) assert midnight == sun.get_astral_event_date(hass, "solar_midnight", utc_now) assert noon == sun.get_astral_event_date(hass, "solar_noon", utc_now) assert sunrise == sun.get_astral_event_date(hass, SUN_EVENT_SUNRISE, utc_now) assert sunset == sun.get_astral_event_date(hass, SUN_EVENT_SUNSET, utc_now) def test_is_up(hass): """Test retrieving next sun events.""" utc_now = datetime(2016, 11, 1, 12, 0, 0, tzinfo=dt_util.UTC) with patch("homeassistant.helpers.condition.dt_util.utcnow", return_value=utc_now): assert not sun.is_up(hass) utc_now = datetime(2016, 11, 1, 18, 0, 0, tzinfo=dt_util.UTC) with patch("homeassistant.helpers.condition.dt_util.utcnow", return_value=utc_now): assert sun.is_up(hass) def test_norway_in_june(hass): """Test location in Norway where the sun doesn't set in summer.""" hass.config.latitude = 69.6 hass.config.longitude = 18.8 june = datetime(2016, 6, 1, tzinfo=dt_util.UTC) print(sun.get_astral_event_date(hass, SUN_EVENT_SUNRISE, datetime(2017, 7, 25))) print(sun.get_astral_event_date(hass, SUN_EVENT_SUNSET, datetime(2017, 7, 25))) print(sun.get_astral_event_date(hass, SUN_EVENT_SUNRISE, datetime(2017, 7, 26))) print(sun.get_astral_event_date(hass, SUN_EVENT_SUNSET, datetime(2017, 7, 26))) assert sun.get_astral_event_next(hass, SUN_EVENT_SUNRISE, june) == datetime( 2016, 7, 25, 23, 23, 39, tzinfo=dt_util.UTC ) assert sun.get_astral_event_next(hass, SUN_EVENT_SUNSET, june) == datetime( 2016, 7, 26, 22, 19, 1, tzinfo=dt_util.UTC ) assert sun.get_astral_event_date(hass, SUN_EVENT_SUNRISE, june) is None assert sun.get_astral_event_date(hass, SUN_EVENT_SUNSET, june) is None
37.695876
87
0.695064
b8ba04efa5fe331b32b0cf1d3ce220c04594f5e7
969
py
Python
court_scraper/platforms/oscn/runner.py
gitter-badger/court-scraper
f89b86d07d39d99c8c123717227fbc773d4933c3
[ "0BSD" ]
null
null
null
court_scraper/platforms/oscn/runner.py
gitter-badger/court-scraper
f89b86d07d39d99c8c123717227fbc773d4933c3
[ "0BSD" ]
null
null
null
court_scraper/platforms/oscn/runner.py
gitter-badger/court-scraper
f89b86d07d39d99c8c123717227fbc773d4933c3
[ "0BSD" ]
null
null
null
import logging from court_scraper.base.runner import BaseRunner from .site import Site logger = logging.getLogger(__name__) class Runner(BaseRunner): """ Facade class to simplify invocation and usage of scrapers. Arguments: - cache_dir -- Path to cache directory for scraped file artifacts (default: {}) - config_path -- Path to location of config file - place_id -- Scraper ID made up of state and county (e.g. ga_dekalb) """ def search(self, case_numbers =[], **kwargs): """ For a given scraper, executes the search, acquisition and processing of case info. Keyword arguments: - case_numbers - List of case numbers Returns: List of dicts containing case metadata """ site = Site(self.place_id) logger.info( "Executing search for {}".format(self.place_id) ) data = site.search(case_numbers=case_numbers) return data
24.846154
83
0.646027
0d69c1381744f6485dfdefdd8339729af7f8e2ff
272
py
Python
setup.py
stevec7/gpfs
9d92f2a77bc1df2d4340db607596f0b057d6203e
[ "MIT" ]
2
2016-05-27T18:53:14.000Z
2020-07-18T16:49:45.000Z
setup.py
stevec7/gpfs
9d92f2a77bc1df2d4340db607596f0b057d6203e
[ "MIT" ]
null
null
null
setup.py
stevec7/gpfs
9d92f2a77bc1df2d4340db607596f0b057d6203e
[ "MIT" ]
1
2020-07-18T16:49:49.000Z
2020-07-18T16:49:49.000Z
try: from setuputils import setup except: from distutils.core import setup setup( name = 'gpfs', version = '0.0.1', description = 'libraries and tools for GPFS', author = 'stevec7', author_email = 'none', packages = ['gpfs'] )
12.363636
49
0.591912
b7b0421ddcfce8c15e92e9a9a8297236c6eb74a9
1,984
py
Python
tests/tests/correctness/EPLAnalytics/Detectors/Corridor/Corridor_cor_006/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
3
2019-09-02T18:21:22.000Z
2020-04-17T16:34:57.000Z
tests/tests/correctness/EPLAnalytics/Detectors/Corridor/Corridor_cor_006/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
tests/tests/correctness/EPLAnalytics/Detectors/Corridor/Corridor_cor_006/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
# $Copyright (c) 2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or Terracotta Inc., San Francisco, CA, USA, and/or Software AG (Canada) Inc., Cambridge, Ontario, Canada, and/or, Software AG (UK) Ltd., Derby, United Kingdom, and/or Software A.G. (Israel) Ltd., Or-Yehuda, Israel and/or their licensors.$ # Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG from industry.framework.AnalyticsBaseTest import AnalyticsBaseTest from pysys.constants import * class PySysTest(AnalyticsBaseTest): def execute(self): # Start the correlator correlator = self.startTest(inputLog="input.log") self.injectAnalytic(correlator) self.injectCorridor(correlator) self.ready(correlator) correlator.receive(filename='OutputRising.evt', channels=['OutputRising']) correlator.send('Config.evt') self.waitForSignal('correlator.out', expr='Analytic Corridor started for inputDataNames', condition='==1', timeout=5) correlator.send('Events.evt') self.waitForSignal('input.log', expr='"Input1",com.industry.analytics\.Data', condition='==9', timeout=5) def validate(self): self.assertGrep('OutputRising.evt', expr='com.industry.analytics.Data.*"OutputRising","a","s1",0,5,"",1,2,3,{"anomalySource":"Corridor","duration":"0","zone":"inside"}') self.assertGrep('OutputRising.evt', expr='com.industry.analytics.Data.*"OutputRising","a","s1",20,7,"",1,2,3,{"anomalySource":"Corridor","duration":"0","zone":"inside"}') self.assertGrep('OutputRising.evt', expr='com.industry.analytics.Data.*"OutputRising","a","s1",25,7,"",1,2,3,{"anomalySource":"Corridor","duration":"0","zone":"inside"}') self.assertGrep('OutputRising.evt', expr='com.industry.analytics.Data.*"OutputRising","a","s1",30,7,"",1,2,3,{"anomalySource":"Corridor","duration":"0","zone":"inside"}') self.checkSanity()
64
343
0.71119
03a2c2a4393cbe57da16597de84cee5a7d80b9c8
1,869
py
Python
ooobuild/lo/document/x_document_event_listener.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/document/x_document_event_listener.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/document/x_document_event_listener.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.document import typing from abc import abstractmethod from ..lang.x_event_listener import XEventListener as XEventListener_c7230c4a if typing.TYPE_CHECKING: from .document_event import DocumentEvent as DocumentEvent_f21b0da8 class XDocumentEventListener(XEventListener_c7230c4a): """ allows to be notified of events happening in an OfficeDocument This interface is the successor of the XEventListener interface, which should not be used anymore. **since** OOo 3.1 See Also: `API XDocumentEventListener <https://api.libreoffice.org/docs/idl/ref/interfacecom_1_1sun_1_1star_1_1document_1_1XDocumentEventListener.html>`_ """ __ooo_ns__: str = 'com.sun.star.document' __ooo_full_ns__: str = 'com.sun.star.document.XDocumentEventListener' __ooo_type_name__: str = 'interface' __pyunointerface__: str = 'com.sun.star.document.XDocumentEventListener' @abstractmethod def documentEventOccured(self, Event: 'DocumentEvent_f21b0da8') -> None: """ is called whenever a document event occurred """ __all__ = ['XDocumentEventListener']
35.264151
151
0.747994
0e045fb594eb16496d76adfb20ac5d3444194e4b
288
py
Python
Dataset/Leetcode/train/12/583.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
Dataset/Leetcode/train/12/583.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
Dataset/Leetcode/train/12/583.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
class Solution: def XXX(self, num: int) -> str: d={1000:'M',900:'CM',500:'D',400:'CD',100:'C',90:'XC',50:'L',40:'XL',10:'X',9:'IX',5:'V',4:'IV',1:'I'} a='' for i in d: while num>=i: a+=d[i] num-=i return a
26.181818
110
0.385417
39106f87bd27a11f4517bd828e5bc27a2b18fea9
4,670
py
Python
qiskit_nature/transformers/second_quantization/freeze_core_transformer.py
Durd3nT/qiskit-nature
83d9d7caf409f5519276413f754b5c8fc901d3c0
[ "Apache-2.0" ]
null
null
null
qiskit_nature/transformers/second_quantization/freeze_core_transformer.py
Durd3nT/qiskit-nature
83d9d7caf409f5519276413f754b5c8fc901d3c0
[ "Apache-2.0" ]
1
2021-11-11T06:33:41.000Z
2021-11-11T06:33:41.000Z
qiskit_nature/transformers/second_quantization/freeze_core_transformer.py
Durd3nT/qiskit-nature
83d9d7caf409f5519276413f754b5c8fc901d3c0
[ "Apache-2.0" ]
1
2021-10-05T20:58:04.000Z
2021-10-05T20:58:04.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The Freeze-Core Reduction interface.""" from typing import List, Optional from qiskit_nature.drivers.second_quantization import QMolecule from .active_space_transformer import ActiveSpaceTransformer class FreezeCoreTransformer(ActiveSpaceTransformer): """The Freeze-Core reduction.""" def __init__( self, freeze_core: bool = True, remove_orbitals: Optional[List[int]] = None, ) -> None: """Initializes a transformer which reduces a `QMolecule` by removing some molecular orbitals. The orbitals to be removed are specified in two ways: 1. When `freeze_core` is enabled (the default), the `core_orbitals` listed in the `QMolecule` are made inactive and removed in the same fashion as in the :class:`ActiveSpaceTransformer`. 2. Additionally, unoccupied molecular orbitals can be removed via a list of indices passed to `remove_orbitals`. It is the user's responsibility to ensure that these are indeed unoccupied orbitals, as no checks are performed. If you want to remove additional occupied orbitals, please use the :class:`ActiveSpaceTransformer` instead. Args: freeze_core: A boolean indicating whether to remove the molecular orbitals specified by `QMolecule.core_orbitals`. remove_orbitals: A list of indices specifying molecular orbitals which are removed. No checks are performed on the nature of these orbitals, so the user must make sure that these are _unoccupied_ orbitals, which can be removed without taking any energy shifts into account. """ self._freeze_core = freeze_core self._remove_orbitals = remove_orbitals super().__init__() def transform(self, molecule_data: QMolecule) -> QMolecule: """Reduces the given `QMolecule` by removing the core and optionally defined unoccupied molecular orbitals. Args: molecule_data: the `QMolecule` to be transformed. Returns: A new `QMolecule` instance. Raises: QiskitNatureError: If more electrons or orbitals are requested than are available, if an uneven number of inactive electrons remains, or if the number of selected active orbital indices does not match `num_molecular_orbitals`. """ molecule_data_new = super().transform(molecule_data) def rename_dict_key(energy_shift_dict): try: energy_shift_dict["FreezeCoreTransformer"] = energy_shift_dict.pop( "ActiveSpaceTransformer" ) except KeyError: pass rename_dict_key(molecule_data_new.energy_shift) rename_dict_key(molecule_data_new.x_dip_energy_shift) rename_dict_key(molecule_data_new.y_dip_energy_shift) rename_dict_key(molecule_data_new.z_dip_energy_shift) return molecule_data_new def _check_configuration(self): pass def _determine_active_space(self, molecule_data: QMolecule): nelec_total = molecule_data.num_alpha + molecule_data.num_beta inactive_orbs_idxs = molecule_data.core_orbitals if self._remove_orbitals is not None: inactive_orbs_idxs.extend(self._remove_orbitals) active_orbs_idxs = [ o for o in range(molecule_data.num_molecular_orbitals) if o not in inactive_orbs_idxs ] self._active_orbitals = active_orbs_idxs self._num_molecular_orbitals = len(active_orbs_idxs) # compute number of active electrons nelec_inactive = int(sum([self._mo_occ_total[o] for o in inactive_orbs_idxs])) nelec_active = nelec_total - nelec_inactive num_alpha = (nelec_active - (molecule_data.multiplicity - 1)) // 2 num_beta = nelec_active - num_alpha self._num_particles = (num_alpha, num_beta) return (active_orbs_idxs, inactive_orbs_idxs)
40.608696
100
0.668951
42dfb17b4a8aed3451befa8061e3090662b1ff4f
4,122
py
Python
backend/src/features/authentication/services.py
ihsaro/socioworld
d8054afe152bd841eb58d6870e781917a0f6a511
[ "Apache-2.0" ]
null
null
null
backend/src/features/authentication/services.py
ihsaro/socioworld
d8054afe152bd841eb58d6870e781917a0f6a511
[ "Apache-2.0" ]
null
null
null
backend/src/features/authentication/services.py
ihsaro/socioworld
d8054afe152bd841eb58d6870e781917a0f6a511
[ "Apache-2.0" ]
null
null
null
from datetime import datetime, timedelta from typing import Union from jose import jwt from passlib.context import CryptContext from sqlalchemy.orm.session import Session from configurations.constants.security import ( ACCESS_TOKEN_EXPIRE_MINUTES, ALGORITHM, SECRET_KEY ) from configurations.messages.error.service.authentication import AuthenticationServiceErrorMessages from configurations.messages.success.service.authentication import AuthenticationServiceSuccessMessages from configurations.types import Error, Success from features.authentication.entities import ( ApplicationUser, BlacklistedToken, Roles ) from features.authentication.mappers import ( map_application_user_to_registered_user, map_token_to_blacklist_token, map_user_registration_details_to_application_user ) from features.authentication.models import ( LoginCredentials, TokenCreated, UserRegistrationDetails, RegisteredUser ) from features.authentication import repositories as authentication_repositories pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") def __generate_jwt_token__(*, to_encode: dict): to_encode_copy = to_encode.copy() expires_in = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) to_encode_copy.update({"exp": expires_in}) return jwt.encode(to_encode_copy, SECRET_KEY, algorithm=ALGORITHM) def __get_hashed_password__(*, password: str) -> str: return pwd_context.hash(password) def __verify_password__(plain_password: str, hashed_password: str) -> bool: return pwd_context.verify(plain_password, hashed_password) def login(*, database: Session, login_credentials: LoginCredentials) -> Union[TokenCreated, Error]: application_user = authentication_repositories.get_application_user_for_login( database=database, username=login_credentials.username ) if application_user is None: return Error( code=AuthenticationServiceErrorMessages.INVALID_CREDENTIALS.name, message=AuthenticationServiceErrorMessages.INVALID_CREDENTIALS.value ) else: if __verify_password__( plain_password=login_credentials.password, hashed_password=application_user.password ): access_token = __generate_jwt_token__(to_encode={"sub": str(application_user.id)}) return TokenCreated(access_token=access_token, token_type="bearer") else: return Error( code=AuthenticationServiceErrorMessages.INVALID_CREDENTIALS.name, message=AuthenticationServiceErrorMessages.INVALID_CREDENTIALS.value ) def register(*, user_registration_details: UserRegistrationDetails, role: Roles, database: Session) -> Union[ RegisteredUser, Error ]: application_user_to_be_created = map_user_registration_details_to_application_user( user_registration_details=user_registration_details ) application_user_to_be_created.password = __get_hashed_password__(password=application_user_to_be_created.password) application_user_to_be_created.role = role application_user = authentication_repositories.create_application_user( database=database, application_user=application_user_to_be_created ) if isinstance(application_user, ApplicationUser): return map_application_user_to_registered_user(application_user=application_user) elif isinstance(application_user, Error): return application_user def blacklist_token(*, token: str, database: Session) -> Union[ Success, Error ]: blacklisted_token = authentication_repositories.add_token_to_blacklist( database=database, token=map_token_to_blacklist_token(token=token) ) if isinstance(blacklisted_token, BlacklistedToken): return Success( code=AuthenticationServiceSuccessMessages.TOKEN_BLACKLISTED.name, message=AuthenticationServiceSuccessMessages.TOKEN_BLACKLISTED.value ) elif isinstance(blacklisted_token, Error): return blacklisted_token
35.230769
119
0.767831
e12bab2e490732f0cde9c2ad10abf7b32f5d5a58
9,257
py
Python
src/pandas_profiling/model/alerts.py
Anselmoo/pandas-profiling
41ee043175eaa1c5b21fcba178110331adcad713
[ "MIT" ]
736
2016-01-14T03:36:03.000Z
2018-01-06T00:56:33.000Z
src/pandas_profiling/model/alerts.py
Anselmoo/pandas-profiling
41ee043175eaa1c5b21fcba178110331adcad713
[ "MIT" ]
72
2016-01-29T12:08:04.000Z
2018-01-06T11:18:44.000Z
src/pandas_profiling/model/alerts.py
sthagen/pandas-profiling-pandas-profiling
6fd50055126ebebf74c92c6f908f54fa7cd9c816
[ "MIT" ]
108
2016-01-14T11:48:18.000Z
2018-01-02T13:35:10.000Z
"""Logic for alerting the user on possibly problematic patterns in the data (e.g. high number of zeros , constant values, high correlations).""" from enum import Enum, auto, unique from typing import Any, Dict, List, Optional, Set import numpy as np import pandas as pd from pandas_profiling.config import Settings from pandas_profiling.model.correlations import perform_check_correlation @unique class AlertType(Enum): """Alert types""" CONSTANT = auto() """This variable has a constant value.""" ZEROS = auto() """This variable contains zeros.""" HIGH_CORRELATION = auto() """This variable is highly correlated.""" HIGH_CARDINALITY = auto() """This variable has a high cardinality.""" UNSUPPORTED = auto() """This variable is unsupported.""" DUPLICATES = auto() """This variable contains duplicates.""" SKEWED = auto() """This variable is highly skewed.""" MISSING = auto() """This variable contains missing values.""" INFINITE = auto() """This variable contains infinite values.""" TYPE_DATE = auto() """This variable is likely a datetime, but treated as categorical.""" UNIQUE = auto() """This variable has unique values.""" CONSTANT_LENGTH = auto() """This variable has a constant length""" REJECTED = auto() """Variables are rejected if we do not want to consider them for further analysis.""" UNIFORM = auto() """The variable is uniformly distributed""" EMPTY = auto() """The DataFrame is empty""" class Alert: """An alert object (type, values, column).""" _anchor_id: Optional[str] = None def __init__( self, alert_type: AlertType, values: Optional[Dict] = None, column_name: Optional[str] = None, fields: Optional[Set] = None, ): if values is None: values = {} if fields is None: fields = set() self.fields = fields self.alert_type = alert_type self.values = values self.column_name = column_name @property def anchor_id(self) -> Optional[str]: if self._anchor_id is None: self._anchor_id = str(hash(self.column_name)) return self._anchor_id def fmt(self) -> str: # TODO: render in template name = self.alert_type.name.replace("_", " ") if name == "HIGH CORRELATION": num = len(self.values["fields"]) title = ", ".join(self.values["fields"]) name = f'<abbr title="This variable has a high correlation with {num} fields: {title}">HIGH CORRELATION</abbr>' return name def __repr__(self): alert_type = self.alert_type.name column = self.column_name return f"[{alert_type}] alert on column {column}" def check_table_alerts(table: dict) -> List[Alert]: """Checks the overall dataset for alerts. Args: table: Overall dataset statistics. Returns: A list of alerts. """ alerts = [] if alert_value(table.get("n_duplicates", np.nan)): alerts.append( Alert( alert_type=AlertType.DUPLICATES, values=table, fields={"n_duplicates"}, ) ) if table["n"] == 0: alerts.append( Alert( alert_type=AlertType.EMPTY, values=table, fields={"n"}, ) ) return alerts def numeric_alerts(config: Settings, summary: dict) -> List[Alert]: alerts = [] # Skewness if skewness_alert(summary["skewness"], config.vars.num.skewness_threshold): alerts.append( Alert( alert_type=AlertType.SKEWED, fields={"skewness"}, ) ) # Infinite values if alert_value(summary["p_infinite"]): alerts.append( Alert( alert_type=AlertType.INFINITE, fields={"p_infinite", "n_infinite"}, ) ) # Zeros if alert_value(summary["p_zeros"]): alerts.append( Alert( alert_type=AlertType.ZEROS, fields={"n_zeros", "p_zeros"}, ) ) if ( "chi_squared" in summary and summary["chi_squared"]["pvalue"] > config.vars.num.chi_squared_threshold ): alerts.append(Alert(alert_type=AlertType.UNIFORM)) return alerts def categorical_alerts(config: Settings, summary: dict) -> List[Alert]: alerts = [] # High cardinality if summary.get("n_distinct", np.nan) > config.vars.cat.cardinality_threshold: alerts.append( Alert( alert_type=AlertType.HIGH_CARDINALITY, fields={"n_distinct"}, ) ) if ( "chi_squared" in summary and summary["chi_squared"]["pvalue"] > config.vars.cat.chi_squared_threshold ): alerts.append(Alert(alert_type=AlertType.UNIFORM)) if summary.get("date_warning"): alerts.append(Alert(alert_type=AlertType.TYPE_DATE)) # Constant length if "composition" in summary and summary["min_length"] == summary["max_length"]: alerts.append( Alert( alert_type=AlertType.CONSTANT_LENGTH, fields={"composition_min_length", "composition_max_length"}, ) ) return alerts def generic_alerts(summary: dict) -> List[Alert]: alerts = [] # Missing if alert_value(summary["p_missing"]): alerts.append( Alert( alert_type=AlertType.MISSING, fields={"p_missing", "n_missing"}, ) ) return alerts def supported_alerts(summary: dict) -> List[Alert]: alerts = [] if summary.get("n_distinct", np.nan) == summary["n"]: alerts.append( Alert( alert_type=AlertType.UNIQUE, fields={"n_distinct", "p_distinct", "n_unique", "p_unique"}, ) ) if summary.get("n_distinct", np.nan) == 1: summary["mode"] = summary["value_counts_without_nan"].index[0] alerts.append( Alert( alert_type=AlertType.CONSTANT, fields={"n_distinct"}, ) ) alerts.append( Alert( alert_type=AlertType.REJECTED, fields=set(), ) ) return alerts def unsupported_alerts(summary: Dict[str, Any]) -> List[Alert]: alerts = [ Alert( alert_type=AlertType.UNSUPPORTED, fields=set(), ), Alert( alert_type=AlertType.REJECTED, fields=set(), ), ] return alerts def check_variable_alerts(config: Settings, col: str, description: dict) -> List[Alert]: """Checks individual variables for alerts. Args: col: The column name that is checked. description: The series description. Returns: A list of alerts. """ alerts = [] alerts += generic_alerts(description) if description["type"] == "Unsupported": alerts += unsupported_alerts(description) else: alerts += supported_alerts(description) if description["type"] == "Categorical": alerts += categorical_alerts(config, description) if description["type"] == "Numeric": alerts += numeric_alerts(config, description) for idx in range(len(alerts)): alerts[idx].column_name = col alerts[idx].values = description return alerts def check_correlation_alerts(config: Settings, correlations: dict) -> List[Alert]: alerts = [] for corr, matrix in correlations.items(): if config.correlations[corr].warn_high_correlations: threshold = config.correlations[corr].threshold correlated_mapping = perform_check_correlation(matrix, threshold) if len(correlated_mapping) > 0: for k, v in correlated_mapping.items(): alerts.append( Alert( column_name=k, alert_type=AlertType.HIGH_CORRELATION, values={"corr": corr, "fields": v}, ) ) return alerts def get_alerts( config: Settings, table_stats: dict, series_description: dict, correlations: dict ) -> List[Alert]: alerts = check_table_alerts(table_stats) for col, description in series_description.items(): alerts += check_variable_alerts(config, col, description) alerts += check_correlation_alerts(config, correlations) alerts.sort(key=lambda alert: str(alert.alert_type)) return alerts def alert_value(value: float) -> bool: return not np.isnan(value) and value > 0.01 def skewness_alert(v: float, threshold: int) -> bool: return not np.isnan(v) and (v < (-1 * threshold) or v > threshold) def type_date_alert(series: pd.Series) -> bool: from dateutil.parser import ParserError, parse try: series.apply(parse) except ParserError: return False else: return True
27.226471
123
0.583558
b8213bca651264e962313f5bfff353d674b722e4
346
py
Python
ex017.py
felipenunes07/Python-Exercicios--Curso-em-video
97087c2fcd6dda48894954623b8b83100af3f47f
[ "MIT" ]
null
null
null
ex017.py
felipenunes07/Python-Exercicios--Curso-em-video
97087c2fcd6dda48894954623b8b83100af3f47f
[ "MIT" ]
null
null
null
ex017.py
felipenunes07/Python-Exercicios--Curso-em-video
97087c2fcd6dda48894954623b8b83100af3f47f
[ "MIT" ]
null
null
null
## Faça um programa que leia o comprimento do cateto oposto e do cateto adjacente de um triângulo retângulo. Calcule e mostre o comprimento da hipotenusa. ## import math a = float(input('Comprimento do cateto oposto: ')) b = float(input('Comprimento do cateto adjacente: ')) print('A hipotenusa vai medir {}.'.format(math.sqrt((a**2)+(b**2))))
43.25
157
0.728324
3ae12cebe3cf2b6d5b1e436637b73fb2fb8abe7a
1,495
py
Python
laia/utils/convert_old_model_checkpoint.py
basbeu/PyLaia
d14458484b56622204b1730a7d53220c5d0f1bc1
[ "MIT" ]
2
2020-09-10T13:31:17.000Z
2021-07-31T09:44:17.000Z
laia/utils/convert_old_model_checkpoint.py
basbeu/PyLaia
d14458484b56622204b1730a7d53220c5d0f1bc1
[ "MIT" ]
1
2020-12-06T18:11:52.000Z
2020-12-06T18:19:38.000Z
laia/utils/convert_old_model_checkpoint.py
basbeu/PyLaia
d14458484b56622204b1730a7d53220c5d0f1bc1
[ "MIT" ]
2
2020-04-20T13:40:56.000Z
2020-10-17T11:59:55.000Z
from __future__ import absolute_import import argparse import os import re from collections import OrderedDict import torch def convert_old_parameters(params): """Convert parameters from the old model to the new one.""" # type: OrderedDict -> OrderedDict new_params = [] for k, v in params.items(): m = re.match(r"^conv_block([0-9]+)\.([a-z_.]+)$", k) if m: if m.group(2) == "poolsize": pass else: new_params.append(("conv.{}.{}".format(m.group(1), m.group(2)), v)) elif k[0] == "_": pass else: new_params.append((k, v)) return OrderedDict(new_params) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("input_checkpoint", help="File path of the input checkpoint") parser.add_argument("output_checkpoint", help="File path of the output checkpoint") args = parser.parse_args() # Check input checkpoint assert os.path.isfile(args.input_checkpoint), "{!r} is not a file".format( args.input_checkpoint ) # Prepare directory for the output checkpoint outdir = os.path.dirname(args.output_checkpoint) if os.path.exists(outdir): assert os.path.isdir(outdir), "{!r} is not a directory".format(outdir) else: os.makedirs(outdir) params = torch.load(args.input_checkpoint) params = convert_old_parameters(params) torch.save(params, args.output_checkpoint)
31.145833
87
0.641472
90522cd8ef6460753ff4e627ee208d071fdcb1ec
432
py
Python
aula3/teste2aula3.py
otaviobizulli/python-exercices
2c61f014bf481fa463721b174ddd4238bf8d0cb3
[ "MIT" ]
null
null
null
aula3/teste2aula3.py
otaviobizulli/python-exercices
2c61f014bf481fa463721b174ddd4238bf8d0cb3
[ "MIT" ]
null
null
null
aula3/teste2aula3.py
otaviobizulli/python-exercices
2c61f014bf481fa463721b174ddd4238bf8d0cb3
[ "MIT" ]
null
null
null
placa = int(input('Insira apenas a parte numerica da placa: ')) if placa > 9999 or placa < 1000: print('Placa Inválida.') else: pn = placa % 10 if pn == 1 or pn == 2: print('Segunda-feira') elif pn == 3 or pn == 4: print ('Terça-feira.') elif pn == 5 or pn == 6: print ('Quarta-feira.') elif pn == 7 or pn == 8: print('Quinta-feira.') else: print('Sexta-feira.')
25.411765
63
0.527778
50988929c3b393861ab787ab42893eb7720d3d9c
356
py
Python
app/actions/server.py
Zhinon/fuego-de-quasar
ccb007f17215a37d34a935d7a06d49f13aed25da
[ "MIT" ]
null
null
null
app/actions/server.py
Zhinon/fuego-de-quasar
ccb007f17215a37d34a935d7a06d49f13aed25da
[ "MIT" ]
null
null
null
app/actions/server.py
Zhinon/fuego-de-quasar
ccb007f17215a37d34a935d7a06d49f13aed25da
[ "MIT" ]
null
null
null
from app.actions import ( topsecret, topsecret_split, ) ACTIONS_MAP = { # Topsecret 'post_get_coords_and_message': topsecret.GetCoordsAndMessageAction, # Topsecret_split 'get_coords_and_message_split': topsecret_split.GetCoordsAndMessageSplit, 'post_message_and_distance_split': topsecret_split.PostMessageAndDistanceSplit, }
25.428571
83
0.786517
097ac0da6408df0e8d1779126307635d40be9b8f
2,697
py
Python
smd/gametest/pruning.py
SMltd/SMCrypto
d07723a2ee6183577bb8449eaa4b2110ac653c3f
[ "MIT" ]
null
null
null
smd/gametest/pruning.py
SMltd/SMCrypto
d07723a2ee6183577bb8449eaa4b2110ac653c3f
[ "MIT" ]
null
null
null
smd/gametest/pruning.py
SMltd/SMCrypto
d07723a2ee6183577bb8449eaa4b2110ac653c3f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (C) 2018 The Xaya developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from mover import MoverTest """ Tests basic operation with pruning enabled. """ # Regexp for the log that is printed when a pruned block would be needed. FAILED_GETTING_UNDO = 'Failed to retrieve undo data' class PruningTest (MoverTest): def run (self): self.generate (101) self.expectGameState ({"players": {}}) # Test that basic forward-processing works even with no kept blocks. self.setPruning (0) self.move ("a", "k", 2) self.move ("b", "y", 1) self.generate (1) self.expectGameState ({"players": { "a": {"x": 0, "y": 1, "dir": "up", "steps": 1}, "b": {"x": -1, "y": 1}, }}) self.move ("a", "l", 2) self.generate (1) self.expectGameState ({"players": { "a": {"x": 1, "y": 1, "dir": "right", "steps": 1}, "b": {"x": -1, "y": 1}, }}) self.stopGameDaemon () assert not self.gamenode.logMatches (FAILED_GETTING_UNDO) # Enable pruning while keeping at least one block, so that we can reorg. self.setPruning (1) txid = self.move ("a", "j", 1) self.generate (1) self.expectGameState ({"players": { "a": {"x": 1, "y": 0}, "b": {"x": -1, "y": 1}, }}) blk = self.rpc.xaya.getbestblockhash () self.rpc.xaya.invalidateblock (blk) # The previous move of "a" should have been put back into the mempool. assert self.rpc.xaya.getrawmempool () == [txid] self.move ("b", "n", 1) self.generate (1) self.expectGameState ({"players": { "a": {"x": 1, "y": 0}, "b": {"x": 0, "y": 0}, }}) self.stopGameDaemon () assert not self.gamenode.logMatches (FAILED_GETTING_UNDO) # Produce a longer reorg, which leads to a resync from scratch. This still # "works" (due to the resync), but prints a log message that we can look for # to ensure things work as expected. self.setPruning (1) blk = self.rpc.xaya.getbestblockhash () self.generate (1) self.expectGameState ({"players": { "a": {"x": 1, "y": 0}, "b": {"x": 0, "y": 0}, }}) self.rpc.xaya.invalidateblock (blk) self.stopGameDaemon () assert self.gamenode.logMatches (FAILED_GETTING_UNDO) def setPruning (self, value): """ Restarts the game daemon to change the pruning setting to the given value. """ self.log.info ("Setting pruning to %d" % value) self.stopGameDaemon () self.startGameDaemon (extraArgs=["--enable_pruning=%d" % value]) if __name__ == "__main__": PruningTest ().main ()
28.389474
80
0.607712
42d276620531a23ab882c3016800fe5e26713419
151
py
Python
vien_nchl/web/apps.py
thapgan/igh
0c0e69f7925e31812fec2c4616d8304a27abb518
[ "MIT" ]
null
null
null
vien_nchl/web/apps.py
thapgan/igh
0c0e69f7925e31812fec2c4616d8304a27abb518
[ "MIT" ]
null
null
null
vien_nchl/web/apps.py
thapgan/igh
0c0e69f7925e31812fec2c4616d8304a27abb518
[ "MIT" ]
null
null
null
from django.apps import AppConfig class WebConfig(AppConfig): name = 'vien_nchl.web' verbose_name = "Web" def ready(self): pass
15.1
33
0.655629
12876ce3ae75aec449eb82ed67a8b9e7dc4aaa8f
16,142
py
Python
docs/tests.py
harunpehlivan/djangoproject.com
a74c2062316c9c571d8e8f978b21b0748a908496
[ "BSD-3-Clause" ]
null
null
null
docs/tests.py
harunpehlivan/djangoproject.com
a74c2062316c9c571d8e8f978b21b0748a908496
[ "BSD-3-Clause" ]
null
null
null
docs/tests.py
harunpehlivan/djangoproject.com
a74c2062316c9c571d8e8f978b21b0748a908496
[ "BSD-3-Clause" ]
1
2020-07-03T12:43:30.000Z
2020-07-03T12:43:30.000Z
import datetime import os from http import HTTPStatus from operator import attrgetter from pathlib import Path from django.conf import settings from django.contrib.sites.models import Site from django.template import Context, Template from django.test import TestCase from django.urls import reverse, set_urlconf from djangoproject.urls import www as www_urls from releases.models import Release from .models import Document, DocumentRelease from .search import DOCUMENT_SEARCH_VECTOR from .sitemaps import DocsSitemap from .utils import get_doc_path class ModelsTests(TestCase): def test_dev_is_supported(self): """ Document for a release without a date ("dev") is supported. """ d = DocumentRelease.objects.create() self.assertTrue(d.is_supported) self.assertTrue(d.is_dev) def test_current_is_supported(self): """ Document with a release without an EOL date is supported. """ today = datetime.date.today() day = datetime.timedelta(1) r = Release.objects.create(version='1.8', date=today - 5 * day) d = DocumentRelease.objects.create(release=r) self.assertTrue(d.is_supported) self.assertFalse(d.is_dev) def test_previous_is_supported(self): """ Document with a release with an EOL date in the future is supported. """ today = datetime.date.today() day = datetime.timedelta(1) r = Release.objects.create(version='1.8', date=today - 5 * day, eol_date=today + 5 * day) d = DocumentRelease.objects.create(release=r) self.assertTrue(d.is_supported) self.assertFalse(d.is_dev) def test_old_is_unsupported(self): """ Document with a release with an EOL date in the past is insupported. """ today = datetime.date.today() day = datetime.timedelta(1) r = Release.objects.create(version='1.8', date=today - 15 * day, eol_date=today - 5 * day) d = DocumentRelease.objects.create(release=r) self.assertFalse(d.is_supported) self.assertFalse(d.is_dev) def test_most_recent_micro_release_considered(self): """ Dates are looked up on the latest micro release in a given series. """ today = datetime.date.today() day = datetime.timedelta(1) r = Release.objects.create(version='1.8', date=today - 15 * day) d = DocumentRelease.objects.create(release=r) r2 = Release.objects.create(version='1.8.1', date=today - 5 * day) # The EOL date of the first release is set automatically. r.refresh_from_db() self.assertEqual(r.eol_date, r2.date) # Since 1.8.1 is still supported, docs show up as supported. self.assertTrue(d.is_supported) self.assertFalse(d.is_dev) class ManagerTests(TestCase): @classmethod def setUpTestData(cls): r1 = Release.objects.create(version='1.0') r2 = Release.objects.create(version='2.0') DocumentRelease.objects.bulk_create( DocumentRelease(lang=lang, release=release) for lang, release in [('en', r1), ('en', r2), ('sv', r1), ('ar', r1)] ) def test_by_version(self): doc_releases = DocumentRelease.objects.by_version('1.0') self.assertEqual( {(r.lang, r.release.version) for r in doc_releases}, {('en', '1.0'), ('sv', '1.0'), ('ar', '1.0')} ) def test_get_by_version_and_lang_exists(self): doc = DocumentRelease.objects.get_by_version_and_lang('1.0', 'en') self.assertEqual(doc.release.version, '1.0') self.assertEqual(doc.lang, 'en') def test_get_by_version_and_lang_missing(self): with self.assertRaises(DocumentRelease.DoesNotExist): DocumentRelease.objects.get_by_version_and_lang('2.0', 'sv') def test_get_available_languages_by_version(self): get = DocumentRelease.objects.get_available_languages_by_version self.assertEqual(list(get('1.0')), ['ar', 'en', 'sv']) self.assertEqual(list(get('2.0')), ['en']) self.assertEqual(list(get('3.0')), []) class RedirectsTests(TestCase): @classmethod def tearDownClass(cls): # cleanup URLconfs changed by django-hosts set_urlconf(None) super().tearDownClass() def test_team_url(self): # This URL is linked from the docs. self.assertEqual('/foundation/teams/', reverse('members:teams', urlconf=www_urls)) def test_internals_team(self): response = self.client.get( '/en/dev/internals/team/', HTTP_HOST='docs.djangoproject.dev:8000', ) self.assertRedirects( response, 'https://www.djangoproject.com/foundation/teams/', status_code=HTTPStatus.MOVED_PERMANENTLY, fetch_redirect_response=False, ) class SearchFormTestCase(TestCase): fixtures = ['doc_test_fixtures'] def setUp(self): # We need to create an extra Site because docs have SITE_ID=2 Site.objects.create(name='Django test', domain="example2.com") @classmethod def tearDownClass(cls): # cleanup URLconfs changed by django-hosts set_urlconf(None) super().tearDownClass() def test_empty_get(self): response = self.client.get('/en/dev/search/', HTTP_HOST='docs.djangoproject.dev:8000') self.assertEqual(response.status_code, 200) class TemplateTagTests(TestCase): def test_pygments_template_tag(self): template = Template(''' {% load docs %} {% pygment 'python' %} def band_listing(request): """A view of all bands.""" bands = models.Band.objects.all() return render(request, 'bands/band_listing.html', {'bands': bands}) {% endpygment %} ''') self.assertHTMLEqual( template.render(Context()), """ <div class="highlight"> <pre> <span></span> <span class="k">def</span><span class="nf">band_listing</span> <span class="p">(</span><span class="n">request</span> <span class="p">):</span> <span class="sd">&quot;&quot;&quot;A view of all bands.&quot;&quot;&quot;</span> <span class="n">bands</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span> <span class="n">Band</span><span class="o">.</span> <span class="n">objects</span><span class="o">.</span> <span class="n">all</span><span class="p">()</span> <span class="k">return</span> <span class="n">render</span> <span class="p">(</span><span class="n">request</span> <span class="p">,</span> <span class="s1">&#39;bands/band_listing.html&#39;</span> <span class="p">,</span> <span class="p">{</span> <span class="s1">&#39;bands&#39;</span><span class="p">:</span> <span class="n">bands</span><span class="p">})</span> </pre> </div> """ ) class TestUtils(TestCase): def test_get_doc_path(self): # non-existent file self.assertEqual(get_doc_path(Path('root'), 'subpath.txt'), None) # existing file path, filename = __file__.rsplit(os.path.sep, 1) self.assertEqual(get_doc_path(Path(path), filename), None) class UpdateDocTests(TestCase): @classmethod def setUpTestData(cls): cls.release = DocumentRelease.objects.create() def test_sync_to_db(self): self.release.sync_to_db([{ 'body': 'This is the body', 'title': 'This is the title', 'current_page_name': 'foo/bar', }]) self.assertQuerysetEqual(self.release.documents.all(), ['<Document: en/dev/foo/bar>']) def test_clean_path(self): self.release.sync_to_db([{ 'body': 'This is the body', 'title': 'This is the title', 'current_page_name': 'foo/bar/index', }]) self.assertQuerysetEqual(self.release.documents.all(), ['<Document: en/dev/foo/bar>']) def test_title_strip_tags(self): self.release.sync_to_db([{ 'body': 'This is the body', 'title': 'This is the <strong>title</strong>', 'current_page_name': 'foo/bar', }]) self.assertQuerysetEqual(self.release.documents.all(), ['This is the title'], transform=attrgetter('title')) def test_title_entities(self): self.release.sync_to_db([{ 'body': 'This is the body', 'title': 'Title &amp; title', 'current_page_name': 'foo/bar', }]) self.assertQuerysetEqual(self.release.documents.all(), ['Title & title'], transform=attrgetter('title')) def test_empty_documents(self): self.release.sync_to_db([ {'title': 'Empty body document', 'current_page_name': 'foo/1'}, {'body': 'Empty title document', 'current_page_name': 'foo/2'}, {'current_page_name': 'foo/3'}, ]) self.assertQuerysetEqual(self.release.documents.all(), []) def test_excluded_documents(self): """ Documents aren't created for partially translated documents excluded from robots indexing. """ # Read the first Disallow line of robots.txt. robots_path = settings.BASE_DIR.joinpath('djangoproject', 'static', 'robots.docs.txt') with open(str(robots_path), 'r') as fh: for line in fh: if line.startswith("Disallow:"): break _, lang, version, path = line.strip().split('/') release = DocumentRelease.objects.create( lang=lang, release=Release.objects.create(version=version), ) release.sync_to_db([ {'body': '', 'title': '', 'current_page_name': 'nonexcluded/bar'}, {'body': '', 'title': '', 'current_page_name': '%s/bar' % path}, ]) self.assertQuerysetEqual( release.documents.all(), ['<Document: %s/%s/nonexcluded/bar>' % (lang, version)] ) class SitemapTests(TestCase): fixtures = ['doc_test_fixtures'] @classmethod def tearDownClass(cls): # cleanup URLconfs changed by django-hosts set_urlconf(None) super().tearDownClass() def test_sitemap_index(self): response = self.client.get('/sitemap.xml', HTTP_HOST='docs.djangoproject.dev:8000') self.assertContains(response, '<sitemap>', count=2) self.assertContains(response, '<loc>http://docs.djangoproject.dev:8000/sitemap-en.xml</loc>') def test_sitemap(self): doc_release = DocumentRelease.objects.create() document = Document.objects.create(release=doc_release) sitemap = DocsSitemap('en') urls = sitemap.get_urls() self.assertEqual(len(urls), 1) url_info = urls[0] self.assertEqual(url_info['location'], document.get_absolute_url()) def test_sitemap_404(self): response = self.client.get('/sitemap-xx.xml', HTTP_HOST='docs.djangoproject.dev:8000') self.assertEqual(response.status_code, 404) self.assertEqual( response.context['exception'], "No sitemap available for section: 'xx'" ) class DocumentManagerTest(TestCase): @classmethod def setUpTestData(cls): cls.release = DocumentRelease.objects.create() documents = [ { 'metadata': { 'body': ( '<div class="section" id="s-generic-views">\n<span id="generic-views"></span>' '<h1>Generic views<a class="headerlink" href="#generic-views" title="Permalink to this headline">¶</a></h1>\n' '<p>See <a class="reference internal" href="../../../ref/class-based-views/">' '<span class="doc">Built-in class-based views API</span></a>.</p>\n</div>\n' ), 'breadcrumbs': [], 'parents': 'topics http', 'slug': 'generic-views', 'title': 'Generic views', 'toc': '<ul>\n<li><a class="reference internal" href="#">Generic views</a></li>\n</ul>\n' }, 'path': 'topics/http/generic-views', 'release': cls.release, 'title': 'Generic views', }, { 'metadata': { 'body': ( '<div class="section" id="s-django-1-2-1-release-notes">\n<span id="django-1-2-1-release-notes"></span>' '<h1>Django 1.2.1 release notes<a class="headerlink" href="#django-1-2-1-release-notes" title="Permalink to this headline">¶</a></h1>\n' '<p>Django 1.2.1 was released almost immediately after 1.2.0 to correct two small\n' 'bugs: one was in the documentation packaging script, the other was a ' '<a class="reference external" href="https://code.djangoproject.com/ticket/13560">bug</a> that\n' 'affected datetime form field widgets when localization was enabled.</p>\n</div>\n' ), 'breadcrumbs': [], 'parents': 'releases', 'slug': '1.2.1', 'title': 'Django 1.2.1 release notes', 'toc': '<ul>\n<li><a class="reference internal" href="#">Django 1.2.1 release notes</a></li>\n</ul>\n' }, 'path': 'releases/1.2.1', 'release': cls.release, 'title': 'Django 1.2.1 release notes' }, { 'metadata': { 'body': ( '<div class="section" id="s-django-1-9-4-release-notes">\n<span id="django-1-9-4-release-notes"></span>' '<h1>Django 1.9.4 release notes<a class="headerlink" href="#django-1-9-4-release-notes" title="Permalink to this headline">¶</a></h1>\n' '<p><em>March 5, 2016</em></p>\n<p>Django 1.9.4 fixes a regression on Python 2 in the 1.9.3 security release\n' 'where <code class="docutils literal"><span class="pre">utils.http.is_safe_url()</span></code> crashes on bytestring URLs ' '(<a class="reference external" href="https://code.djangoproject.com/ticket/26308">#26308</a>).</p>\n</div>\n' ), 'breadcrumbs': [], 'parents': 'releases', 'slug': '1.9.4', 'title': 'Django 1.9.4 release notes', 'toc': '<ul>\n<li><a class="reference internal" href="#">Django 1.9.4 release notes</a></li>\n</ul>\n' }, 'path': 'releases/1.9.4', 'release': cls.release, 'title': 'Django 1.9.4 release notes' } ] Document.objects.bulk_create(((Document(**doc) for doc in documents))) Document.objects.update(search=DOCUMENT_SEARCH_VECTOR) def test_search(self): query_text = 'django' document_queryset = Document.objects.search(query_text, self.release).values_list('title', 'rank') document_list = [('Django 1.2.1 release notes', 0.969828), ('Django 1.9.4 release notes', 0.949088)] self.assertSequenceEqual(list(document_queryset), document_list) def test_empty_search(self): self.assertSequenceEqual(Document.objects.search('', self.release), [])
40.154229
160
0.566411
3b02762f52803cee0cc5739197e72e8f7a8c1b16
5,891
py
Python
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/part_attendee.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/part_attendee.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/part_attendee.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class PartAttendee: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'name': 'str', 'phone': 'str', 'phone2': 'str', 'phone3': 'str', 'type': 'str' } attribute_map = { 'name': 'name', 'phone': 'phone', 'phone2': 'phone2', 'phone3': 'phone3', 'type': 'type' } def __init__(self, name=None, phone=None, phone2=None, phone3=None, type=None): """PartAttendee - a model defined in huaweicloud sdk""" self._name = None self._phone = None self._phone2 = None self._phone3 = None self._type = None self.discriminator = None if name is not None: self.name = name if phone is not None: self.phone = phone if phone2 is not None: self.phone2 = phone2 if phone3 is not None: self.phone3 = phone3 if type is not None: self.type = type @property def name(self): """Gets the name of this PartAttendee. 与会者名称或昵称。长度限制为96个字符。 :return: The name of this PartAttendee. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this PartAttendee. 与会者名称或昵称。长度限制为96个字符。 :param name: The name of this PartAttendee. :type: str """ self._name = name @property def phone(self): """Gets the phone of this PartAttendee. 电话号码(可支持SIP、TEL号码格式)。最大不超过127个字符。 当type为telepresence时,且设备为三屏智真,则该字段填写中屏号码。 :return: The phone of this PartAttendee. :rtype: str """ return self._phone @phone.setter def phone(self, phone): """Sets the phone of this PartAttendee. 电话号码(可支持SIP、TEL号码格式)。最大不超过127个字符。 当type为telepresence时,且设备为三屏智真,则该字段填写中屏号码。 :param phone: The phone of this PartAttendee. :type: str """ self._phone = phone @property def phone2(self): """Gets the phone2 of this PartAttendee. 取值类型同参数phone。(预留字段) 当type为telepresence时,且设备为三屏智真,则该字段填写左屏号码。 :return: The phone2 of this PartAttendee. :rtype: str """ return self._phone2 @phone2.setter def phone2(self, phone2): """Sets the phone2 of this PartAttendee. 取值类型同参数phone。(预留字段) 当type为telepresence时,且设备为三屏智真,则该字段填写左屏号码。 :param phone2: The phone2 of this PartAttendee. :type: str """ self._phone2 = phone2 @property def phone3(self): """Gets the phone3 of this PartAttendee. 取值类型同参数phone。(预留字段) 当type为telepresence时,且设备为三屏智真,则该字段填写右屏号码。 :return: The phone3 of this PartAttendee. :rtype: str """ return self._phone3 @phone3.setter def phone3(self, phone3): """Sets the phone3 of this PartAttendee. 取值类型同参数phone。(预留字段) 当type为telepresence时,且设备为三屏智真,则该字段填写右屏号码。 :param phone3: The phone3 of this PartAttendee. :type: str """ self._phone3 = phone3 @property def type(self): """Gets the type of this PartAttendee. 默认值由会议AS定义,号码类型枚举如下: - normal: 软终端。 - telepresence: 智真。单屏、三屏智真均属此类。(预留字段) - terminal: 会议室或硬终端。 - outside: 外部与会人。 - mobile: 用户手机号码。 - telephone: 用户固定电话。(预留字段) :return: The type of this PartAttendee. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this PartAttendee. 默认值由会议AS定义,号码类型枚举如下: - normal: 软终端。 - telepresence: 智真。单屏、三屏智真均属此类。(预留字段) - terminal: 会议室或硬终端。 - outside: 外部与会人。 - mobile: 用户手机号码。 - telephone: 用户固定电话。(预留字段) :param type: The type of this PartAttendee. :type: str """ self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PartAttendee): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.41704
165
0.556442
2dfa62a07afa7882df838ce65ca1ba9d85be1b93
2,274
py
Python
pfcon/mount_dir.py
jbernal0019/pfcon
752e3871b2e1bc3ed5227fad588e8371abc17c51
[ "MIT" ]
7
2017-10-15T23:18:34.000Z
2020-10-25T07:20:47.000Z
pfcon/mount_dir.py
jbernal0019/pfcon
752e3871b2e1bc3ed5227fad588e8371abc17c51
[ "MIT" ]
47
2017-12-06T19:07:50.000Z
2022-03-11T03:31:49.000Z
pfcon/mount_dir.py
jbernal0019/pfcon
752e3871b2e1bc3ed5227fad588e8371abc17c51
[ "MIT" ]
18
2017-11-17T17:48:29.000Z
2021-04-23T01:52:48.000Z
""" Handle MountDir file storage. """ import logging import datetime import zipfile import os import io import shutil logger = logging.getLogger(__name__) class MountDir: def __init__(self, config=None): self.config = config def store_data(self, job_id, job_incoming_dir, input_stream): """ Unpack and store the files/directories in the input zip stream at the specified incoming directory. """ with zipfile.ZipFile(input_stream, 'r', zipfile.ZIP_DEFLATED) as job_zip: filenames = job_zip.namelist() nfiles = len(filenames) logger.info(f'{nfiles} files to decompress for job {job_id}') job_zip.extractall(path=job_incoming_dir) return { 'jid': job_id, 'nfiles': nfiles, 'timestamp': f'{datetime.datetime.now()}', 'path': job_incoming_dir } def get_data(self, job_id, job_outgoing_dir): """ Create job zip file ready for transmission to a remote origin from the outgoing directory. """ memory_zip_file = io.BytesIO() nfiles = 0 with zipfile.ZipFile(memory_zip_file, 'w', zipfile.ZIP_DEFLATED) as job_zip: for root, dirs, files in os.walk(job_outgoing_dir): for filename in files: local_file_path = os.path.join(root, filename) if not os.path.islink(local_file_path): arc_file_path = os.path.relpath(local_file_path, job_outgoing_dir) try: with open(local_file_path, 'rb') as f: job_zip.writestr(arc_file_path, f.read()) except Exception as e: logger.error(f'Failed to read file {local_file_path} for ' f'job {job_id}, detail: {str(e)}') else: nfiles += 1 memory_zip_file.seek(0) logger.info(f'{nfiles} files compressed for job {job_id}') return memory_zip_file def delete_data(self, job_dir): """ Delete job data from the store. """ shutil.rmtree(job_dir)
32.956522
90
0.559807
c861d25afd13ffb77f601902e2328eaaaad939d5
44,142
py
Python
.venv/lib/python3.8/site-packages/pandas/core/arrays/interval.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
115
2020-06-18T15:00:58.000Z
2022-03-02T10:13:19.000Z
.venv/lib/python3.8/site-packages/pandas/core/arrays/interval.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
21
2021-04-13T01:17:40.000Z
2022-03-11T16:06:50.000Z
.venv/lib/python3.8/site-packages/pandas/core/arrays/interval.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
60
2020-07-22T14:53:10.000Z
2022-03-23T10:17:59.000Z
from operator import le, lt import textwrap import numpy as np from pandas._config import get_option from pandas._libs.interval import Interval, IntervalMixin, intervals_to_interval_bounds from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender from pandas.core.dtypes.cast import maybe_convert_platform from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_float_dtype, is_integer_dtype, is_interval, is_interval_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import IntervalDtype from pandas.core.dtypes.generic import ( ABCDatetimeIndex, ABCIndexClass, ABCIntervalIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core.algorithms import take, value_counts from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.arrays.categorical import Categorical import pandas.core.common as com from pandas.core.construction import array from pandas.core.indexers import check_array_indexer from pandas.core.indexes.base import ensure_index _VALID_CLOSED = {"left", "right", "both", "neither"} _interval_shared_docs = {} _shared_docs_kwargs = dict( klass="IntervalArray", qualname="arrays.IntervalArray", name="" ) _interval_shared_docs[ "class" ] = """ %(summary)s .. versionadded:: %(versionadded)s Parameters ---------- data : array-like (1-dimensional) Array-like containing Interval objects from which to build the %(klass)s. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. dtype : dtype or None, default None If None, dtype will be inferred. .. versionadded:: 0.23.0 copy : bool, default False Copy the input data. %(name)s\ verify_integrity : bool, default True Verify that the %(klass)s is valid. Attributes ---------- left right closed mid length is_empty is_non_overlapping_monotonic %(extra_attributes)s\ Methods ------- from_arrays from_tuples from_breaks contains overlaps set_closed to_tuples %(extra_methods)s\ See Also -------- Index : The base pandas Index type. Interval : A bounded slice-like interval; the elements of an %(klass)s. interval_range : Function to create a fixed frequency IntervalIndex. cut : Bin values into discrete Intervals. qcut : Bin values into equal-sized Intervals based on rank or sample quantiles. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#intervalindex>`_ for more. %(examples)s\ """ @Appender( _interval_shared_docs["class"] % dict( klass="IntervalArray", summary="Pandas array for interval data that are closed on the same side.", versionadded="0.24.0", name="", extra_attributes="", extra_methods="", examples=textwrap.dedent( """\ Examples -------- A new ``IntervalArray`` can be constructed directly from an array-like of ``Interval`` objects: >>> pd.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)]) <IntervalArray> [(0, 1], (1, 5]] Length: 2, closed: right, dtype: interval[int64] It may also be constructed using one of the constructor methods: :meth:`IntervalArray.from_arrays`, :meth:`IntervalArray.from_breaks`, and :meth:`IntervalArray.from_tuples`. """ ), ) ) class IntervalArray(IntervalMixin, ExtensionArray): ndim = 1 can_hold_na = True _na_value = _fill_value = np.nan def __new__( cls, data, closed=None, dtype=None, copy: bool = False, verify_integrity: bool = True, ): if isinstance(data, ABCSeries) and is_interval_dtype(data.dtype): data = data._values if isinstance(data, (cls, ABCIntervalIndex)): left = data.left right = data.right closed = closed or data.closed else: # don't allow scalars if is_scalar(data): msg = ( f"{cls.__name__}(...) must be called with a collection " f"of some kind, {data} was passed" ) raise TypeError(msg) # might need to convert empty or purely na data data = maybe_convert_platform_interval(data) left, right, infer_closed = intervals_to_interval_bounds( data, validate_closed=closed is None ) closed = closed or infer_closed return cls._simple_new( left, right, closed, copy=copy, dtype=dtype, verify_integrity=verify_integrity, ) @classmethod def _simple_new( cls, left, right, closed=None, copy=False, dtype=None, verify_integrity=True ): result = IntervalMixin.__new__(cls) closed = closed or "right" left = ensure_index(left, copy=copy) right = ensure_index(right, copy=copy) if dtype is not None: # GH 19262: dtype must be an IntervalDtype to override inferred dtype = pandas_dtype(dtype) if not is_interval_dtype(dtype): msg = f"dtype must be an IntervalDtype, got {dtype}" raise TypeError(msg) elif dtype.subtype is not None: left = left.astype(dtype.subtype) right = right.astype(dtype.subtype) # coerce dtypes to match if needed if is_float_dtype(left) and is_integer_dtype(right): right = right.astype(left.dtype) elif is_float_dtype(right) and is_integer_dtype(left): left = left.astype(right.dtype) if type(left) != type(right): msg = ( f"must not have differing left [{type(left).__name__}] and " f"right [{type(right).__name__}] types" ) raise ValueError(msg) elif is_categorical_dtype(left.dtype) or is_string_dtype(left.dtype): # GH 19016 msg = ( "category, object, and string subtypes are not supported " "for IntervalArray" ) raise TypeError(msg) elif isinstance(left, ABCPeriodIndex): msg = "Period dtypes are not supported, use a PeriodIndex instead" raise ValueError(msg) elif isinstance(left, ABCDatetimeIndex) and str(left.tz) != str(right.tz): msg = ( "left and right must have the same time zone, got " f"'{left.tz}' and '{right.tz}'" ) raise ValueError(msg) result._left = left result._right = right result._closed = closed if verify_integrity: result._validate() return result @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls(scalars, dtype=dtype, copy=copy) @classmethod def _from_factorized(cls, values, original): if len(values) == 0: # An empty array returns object-dtype here. We can't create # a new IA from an (empty) object-dtype array, so turn it into the # correct dtype. values = values.astype(original.dtype.subtype) return cls(values, closed=original.closed) _interval_shared_docs["from_breaks"] = textwrap.dedent( """ Construct an %(klass)s from an array of splits. Parameters ---------- breaks : array-like (1-dimensional) Left and right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. copy : bool, default False Copy the data. dtype : dtype or None, default None If None, dtype will be inferred. .. versionadded:: 0.23.0 Returns ------- %(klass)s See Also -------- interval_range : Function to create a fixed frequency IntervalIndex. %(klass)s.from_arrays : Construct from a left and right array. %(klass)s.from_tuples : Construct from a sequence of tuples. %(examples)s\ """ ) @classmethod @Appender( _interval_shared_docs["from_breaks"] % dict( klass="IntervalArray", examples=textwrap.dedent( """\ Examples -------- >>> pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3]) <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, closed: right, dtype: interval[int64] """ ), ) ) def from_breaks(cls, breaks, closed="right", copy=False, dtype=None): breaks = maybe_convert_platform_interval(breaks) return cls.from_arrays(breaks[:-1], breaks[1:], closed, copy=copy, dtype=dtype) _interval_shared_docs["from_arrays"] = textwrap.dedent( """ Construct from two arrays defining the left and right bounds. Parameters ---------- left : array-like (1-dimensional) Left bounds for each interval. right : array-like (1-dimensional) Right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. copy : bool, default False Copy the data. dtype : dtype, optional If None, dtype will be inferred. .. versionadded:: 0.23.0 Returns ------- %(klass)s Raises ------ ValueError When a value is missing in only one of `left` or `right`. When a value in `left` is greater than the corresponding value in `right`. See Also -------- interval_range : Function to create a fixed frequency IntervalIndex. %(klass)s.from_breaks : Construct an %(klass)s from an array of splits. %(klass)s.from_tuples : Construct an %(klass)s from an array-like of tuples. Notes ----- Each element of `left` must be less than or equal to the `right` element at the same position. If an element is missing, it must be missing in both `left` and `right`. A TypeError is raised when using an unsupported type for `left` or `right`. At the moment, 'category', 'object', and 'string' subtypes are not supported. %(examples)s\ """ ) @classmethod @Appender( _interval_shared_docs["from_arrays"] % dict( klass="IntervalArray", examples=textwrap.dedent( """\ >>> pd.arrays.IntervalArray.from_arrays([0, 1, 2], [1, 2, 3]) <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, closed: right, dtype: interval[int64] """ ), ) ) def from_arrays(cls, left, right, closed="right", copy=False, dtype=None): left = maybe_convert_platform_interval(left) right = maybe_convert_platform_interval(right) return cls._simple_new( left, right, closed, copy=copy, dtype=dtype, verify_integrity=True ) _interval_shared_docs["from_tuples"] = textwrap.dedent( """ Construct an %(klass)s from an array-like of tuples. Parameters ---------- data : array-like (1-dimensional) Array of tuples. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. copy : bool, default False By-default copy the data, this is compat only and ignored. dtype : dtype or None, default None If None, dtype will be inferred. .. versionadded:: 0.23.0 Returns ------- %(klass)s See Also -------- interval_range : Function to create a fixed frequency IntervalIndex. %(klass)s.from_arrays : Construct an %(klass)s from a left and right array. %(klass)s.from_breaks : Construct an %(klass)s from an array of splits. %(examples)s\ """ ) @classmethod @Appender( _interval_shared_docs["from_tuples"] % dict( klass="IntervalArray", examples=textwrap.dedent( """\ Examples -------- >>> pd.arrays.IntervalArray.from_tuples([(0, 1), (1, 2)]) <IntervalArray> [(0, 1], (1, 2]] Length: 2, closed: right, dtype: interval[int64] """ ), ) ) def from_tuples(cls, data, closed="right", copy=False, dtype=None): if len(data): left, right = [], [] else: # ensure that empty data keeps input dtype left = right = data for d in data: if isna(d): lhs = rhs = np.nan else: name = cls.__name__ try: # need list of length 2 tuples, e.g. [(0, 1), (1, 2), ...] lhs, rhs = d except ValueError as err: msg = f"{name}.from_tuples requires tuples of length 2, got {d}" raise ValueError(msg) from err except TypeError as err: msg = f"{name}.from_tuples received an invalid item, {d}" raise TypeError(msg) from err left.append(lhs) right.append(rhs) return cls.from_arrays(left, right, closed, copy=False, dtype=dtype) def _validate(self): """ Verify that the IntervalArray is valid. Checks that * closed is valid * left and right match lengths * left and right have the same missing values * left is always below right """ if self.closed not in _VALID_CLOSED: msg = f"invalid option for 'closed': {self.closed}" raise ValueError(msg) if len(self.left) != len(self.right): msg = "left and right must have the same length" raise ValueError(msg) left_mask = notna(self.left) right_mask = notna(self.right) if not (left_mask == right_mask).all(): msg = ( "missing values must be missing in the same " "location both left and right sides" ) raise ValueError(msg) if not (self.left[left_mask] <= self.right[left_mask]).all(): msg = "left side of interval must be <= right side" raise ValueError(msg) # --------- # Interface # --------- def __iter__(self): return iter(np.asarray(self)) def __len__(self) -> int: return len(self.left) def __getitem__(self, value): value = check_array_indexer(self, value) left = self.left[value] right = self.right[value] # scalar if not isinstance(left, ABCIndexClass): if is_scalar(left) and isna(left): return self._fill_value if np.ndim(left) > 1: # GH#30588 multi-dimensional indexer disallowed raise ValueError("multi-dimensional indexing not allowed") return Interval(left, right, self.closed) return self._shallow_copy(left, right) def __setitem__(self, key, value): # na value: need special casing to set directly on numpy arrays needs_float_conversion = False if is_scalar(value) and isna(value): if is_integer_dtype(self.dtype.subtype): # can't set NaN on a numpy integer array needs_float_conversion = True elif is_datetime64_any_dtype(self.dtype.subtype): # need proper NaT to set directly on the numpy array value = np.datetime64("NaT") elif is_timedelta64_dtype(self.dtype.subtype): # need proper NaT to set directly on the numpy array value = np.timedelta64("NaT") value_left, value_right = value, value # scalar interval elif is_interval_dtype(value) or isinstance(value, Interval): self._check_closed_matches(value, name="value") value_left, value_right = value.left, value.right else: # list-like of intervals try: array = IntervalArray(value) value_left, value_right = array.left, array.right except TypeError as err: # wrong type: not interval or NA msg = f"'value' should be an interval type, got {type(value)} instead." raise TypeError(msg) from err if needs_float_conversion: raise ValueError("Cannot set float NaN to integer-backed IntervalArray") key = check_array_indexer(self, key) # Need to ensure that left and right are updated atomically, so we're # forced to copy, update the copy, and swap in the new values. left = self.left.copy(deep=True) left._values[key] = value_left self._left = left right = self.right.copy(deep=True) right._values[key] = value_right self._right = right def __eq__(self, other): # ensure pandas array for list-like and eliminate non-interval scalars if is_list_like(other): if len(self) != len(other): raise ValueError("Lengths must match to compare") other = array(other) elif not isinstance(other, Interval): # non-interval scalar -> no matches return np.zeros(len(self), dtype=bool) # determine the dtype of the elements we want to compare if isinstance(other, Interval): other_dtype = pandas_dtype("interval") elif not is_categorical_dtype(other.dtype): other_dtype = other.dtype else: # for categorical defer to categories for dtype other_dtype = other.categories.dtype # extract intervals if we have interval categories with matching closed if is_interval_dtype(other_dtype): if self.closed != other.categories.closed: return np.zeros(len(self), dtype=bool) other = other.categories.take(other.codes) # interval-like -> need same closed and matching endpoints if is_interval_dtype(other_dtype): if self.closed != other.closed: return np.zeros(len(self), dtype=bool) return (self.left == other.left) & (self.right == other.right) # non-interval/non-object dtype -> no matches if not is_object_dtype(other_dtype): return np.zeros(len(self), dtype=bool) # object dtype -> iteratively check for intervals result = np.zeros(len(self), dtype=bool) for i, obj in enumerate(other): # need object to be an Interval with same closed and endpoints if ( isinstance(obj, Interval) and self.closed == obj.closed and self.left[i] == obj.left and self.right[i] == obj.right ): result[i] = True return result def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should be either Interval objects or NA/NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None (Not implemented yet for IntervalArray) Method to use for filling holes in reindexed Series limit : int, default None (Not implemented yet for IntervalArray) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : IntervalArray with NA/NaN filled """ if method is not None: raise TypeError("Filling by method is not supported for IntervalArray.") if limit is not None: raise TypeError("limit is not supported for IntervalArray.") if not isinstance(value, Interval): msg = ( "'IntervalArray.fillna' only supports filling with a " f"scalar 'pandas.Interval'. Got a '{type(value).__name__}' instead." ) raise TypeError(msg) self._check_closed_matches(value, name="value") left = self.left.fillna(value=value.left) right = self.right.fillna(value=value.right) return self._shallow_copy(left, right) @property def dtype(self): return IntervalDtype(self.left.dtype) def astype(self, dtype, copy=True): """ Cast to an ExtensionArray or NumPy array with dtype 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ExtensionArray or ndarray ExtensionArray or NumPy ndarray with 'dtype' for its dtype. """ from pandas.core.arrays.string_ import StringDtype if dtype is not None: dtype = pandas_dtype(dtype) if is_interval_dtype(dtype): if dtype == self.dtype: return self.copy() if copy else self # need to cast to different subtype try: new_left = self.left.astype(dtype.subtype) new_right = self.right.astype(dtype.subtype) except TypeError as err: msg = ( f"Cannot convert {self.dtype} to {dtype}; subtypes are incompatible" ) raise TypeError(msg) from err return self._shallow_copy(new_left, new_right) elif is_categorical_dtype(dtype): return Categorical(np.asarray(self)) elif isinstance(dtype, StringDtype): return dtype.construct_array_type()._from_sequence(self, copy=False) # TODO: This try/except will be repeated. try: return np.asarray(self).astype(dtype, copy=copy) except (TypeError, ValueError) as err: msg = f"Cannot cast {type(self).__name__} to dtype {dtype}" raise TypeError(msg) from err @classmethod def _concat_same_type(cls, to_concat): """ Concatenate multiple IntervalArray Parameters ---------- to_concat : sequence of IntervalArray Returns ------- IntervalArray """ closed = {interval.closed for interval in to_concat} if len(closed) != 1: raise ValueError("Intervals must all be closed on the same side.") closed = closed.pop() left = np.concatenate([interval.left for interval in to_concat]) right = np.concatenate([interval.right for interval in to_concat]) return cls._simple_new(left, right, closed=closed, copy=False) def _shallow_copy(self, left, right): """ Return a new IntervalArray with the replacement attributes Parameters ---------- left : Index Values to be used for the left-side of the intervals. right : Index Values to be used for the right-side of the intervals. """ return self._simple_new(left, right, closed=self.closed, verify_integrity=False) def copy(self): """ Return a copy of the array. Returns ------- IntervalArray """ left = self.left.copy(deep=True) right = self.right.copy(deep=True) closed = self.closed # TODO: Could skip verify_integrity here. return type(self).from_arrays(left, right, closed=closed) def isna(self): return isna(self.left) @property def nbytes(self) -> int: return self.left.nbytes + self.right.nbytes @property def size(self) -> int: # Avoid materializing self.values return self.left.size def shift(self, periods: int = 1, fill_value: object = None) -> "IntervalArray": if not len(self) or periods == 0: return self.copy() if isna(fill_value): fill_value = self.dtype.na_value # ExtensionArray.shift doesn't work for two reasons # 1. IntervalArray.dtype.na_value may not be correct for the dtype. # 2. IntervalArray._from_sequence only accepts NaN for missing values, # not other values like NaT empty_len = min(abs(periods), len(self)) if isna(fill_value): fill_value = self.left._na_value empty = IntervalArray.from_breaks([fill_value] * (empty_len + 1)) else: empty = self._from_sequence([fill_value] * empty_len) if periods > 0: a = empty b = self[:-periods] else: a = self[abs(periods) :] b = empty return self._concat_same_type([a, b]) def take(self, indices, allow_fill=False, fill_value=None, axis=None, **kwargs): """ Take elements from the IntervalArray. Parameters ---------- indices : sequence of integers Indices to be taken. allow_fill : bool, default False How to handle negative values in `indices`. * False: negative values in `indices` indicate positional indices from the right (the default). This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values. These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. fill_value : Interval or NA, optional Fill value to use for NA-indices when `allow_fill` is True. This may be ``None``, in which case the default NA value for the type, ``self.dtype.na_value``, is used. For many ExtensionArrays, there will be two representations of `fill_value`: a user-facing "boxed" scalar, and a low-level physical NA value. `fill_value` should be the user-facing version, and the implementation should handle translating that to the physical version for processing the take if necessary. axis : any, default None Present for compat with IntervalIndex; does nothing. Returns ------- IntervalArray Raises ------ IndexError When the indices are out of bounds for the array. ValueError When `indices` contains negative values other than ``-1`` and `allow_fill` is True. """ nv.validate_take(tuple(), kwargs) fill_left = fill_right = fill_value if allow_fill: if fill_value is None: fill_left = fill_right = self.left._na_value elif is_interval(fill_value): self._check_closed_matches(fill_value, name="fill_value") fill_left, fill_right = fill_value.left, fill_value.right elif not is_scalar(fill_value) and notna(fill_value): msg = ( "'IntervalArray.fillna' only supports filling with a " "'scalar pandas.Interval or NA'. " f"Got a '{type(fill_value).__name__}' instead." ) raise ValueError(msg) left_take = take( self.left, indices, allow_fill=allow_fill, fill_value=fill_left ) right_take = take( self.right, indices, allow_fill=allow_fill, fill_value=fill_right ) return self._shallow_copy(left_take, right_take) def value_counts(self, dropna=True): """ Returns a Series containing counts of each interval. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ # TODO: implement this is a non-naive way! return value_counts(np.asarray(self), dropna=dropna) # Formatting def _format_data(self): # TODO: integrate with categorical and make generic # name argument is unused here; just for compat with base / categorical n = len(self) max_seq_items = min((get_option("display.max_seq_items") or n) // 10, 10) formatter = str if n == 0: summary = "[]" elif n == 1: first = formatter(self[0]) summary = f"[{first}]" elif n == 2: first = formatter(self[0]) last = formatter(self[-1]) summary = f"[{first}, {last}]" else: if n > max_seq_items: n = min(max_seq_items // 2, 10) head = [formatter(x) for x in self[:n]] tail = [formatter(x) for x in self[-n:]] head_str = ", ".join(head) tail_str = ", ".join(tail) summary = f"[{head_str} ... {tail_str}]" else: tail = [formatter(x) for x in self] tail_str = ", ".join(tail) summary = f"[{tail_str}]" return summary def __repr__(self) -> str: # the short repr has no trailing newline, while the truncated # repr does. So we include a newline in our template, and strip # any trailing newlines from format_object_summary data = self._format_data() class_name = f"<{type(self).__name__}>\n" template = ( f"{class_name}" f"{data}\n" f"Length: {len(self)}, closed: {self.closed}, dtype: {self.dtype}" ) return template def _format_space(self): space = " " * (len(type(self).__name__) + 1) return f"\n{space}" @property def left(self): """ Return the left endpoints of each Interval in the IntervalArray as an Index. """ return self._left @property def right(self): """ Return the right endpoints of each Interval in the IntervalArray as an Index. """ return self._right @property def closed(self): """ Whether the intervals are closed on the left-side, right-side, both or neither. """ return self._closed _interval_shared_docs["set_closed"] = textwrap.dedent( """ Return an %(klass)s identical to the current one, but closed on the specified side. .. versionadded:: 0.24.0 Parameters ---------- closed : {'left', 'right', 'both', 'neither'} Whether the intervals are closed on the left-side, right-side, both or neither. Returns ------- new_index : %(klass)s %(examples)s\ """ ) @Appender( _interval_shared_docs["set_closed"] % dict( klass="IntervalArray", examples=textwrap.dedent( """\ Examples -------- >>> index = pd.arrays.IntervalArray.from_breaks(range(4)) >>> index <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, closed: right, dtype: interval[int64] >>> index.set_closed('both') <IntervalArray> [[0, 1], [1, 2], [2, 3]] Length: 3, closed: both, dtype: interval[int64] """ ), ) ) def set_closed(self, closed): if closed not in _VALID_CLOSED: msg = f"invalid option for 'closed': {closed}" raise ValueError(msg) return type(self)._simple_new( left=self.left, right=self.right, closed=closed, verify_integrity=False ) @property def length(self): """ Return an Index with entries denoting the length of each Interval in the IntervalArray. """ try: return self.right - self.left except TypeError as err: # length not defined for some types, e.g. string msg = ( "IntervalArray contains Intervals without defined length, " "e.g. Intervals with string endpoints" ) raise TypeError(msg) from err @property def mid(self): """ Return the midpoint of each Interval in the IntervalArray as an Index. """ try: return 0.5 * (self.left + self.right) except TypeError: # datetime safe version return self.left + 0.5 * self.length _interval_shared_docs[ "is_non_overlapping_monotonic" ] = """ Return True if the %(klass)s is non-overlapping (no Intervals share points) and is either monotonic increasing or monotonic decreasing, else False. """ # https://github.com/python/mypy/issues/1362 # Mypy does not support decorated properties @property # type: ignore @Appender( _interval_shared_docs["is_non_overlapping_monotonic"] % _shared_docs_kwargs ) def is_non_overlapping_monotonic(self): # must be increasing (e.g., [0, 1), [1, 2), [2, 3), ... ) # or decreasing (e.g., [-1, 0), [-2, -1), [-3, -2), ...) # we already require left <= right # strict inequality for closed == 'both'; equality implies overlapping # at a point when both sides of intervals are included if self.closed == "both": return bool( (self.right[:-1] < self.left[1:]).all() or (self.left[:-1] > self.right[1:]).all() ) # non-strict inequality when closed != 'both'; at least one side is # not included in the intervals, so equality does not imply overlapping return bool( (self.right[:-1] <= self.left[1:]).all() or (self.left[:-1] >= self.right[1:]).all() ) # Conversion def __array__(self, dtype=None) -> np.ndarray: """ Return the IntervalArray's data as a numpy array of Interval objects (with dtype='object') """ left = self.left right = self.right mask = self.isna() closed = self._closed result = np.empty(len(left), dtype=object) for i in range(len(left)): if mask[i]: result[i] = np.nan else: result[i] = Interval(left[i], right[i], closed) return result def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow from pandas.core.arrays._arrow_utils import ArrowIntervalType try: subtype = pyarrow.from_numpy_dtype(self.dtype.subtype) except TypeError as err: raise TypeError( f"Conversion to arrow with subtype '{self.dtype.subtype}' " "is not supported" ) from err interval_type = ArrowIntervalType(subtype, self.closed) storage_array = pyarrow.StructArray.from_arrays( [ pyarrow.array(self.left, type=subtype, from_pandas=True), pyarrow.array(self.right, type=subtype, from_pandas=True), ], names=["left", "right"], ) mask = self.isna() if mask.any(): # if there are missing values, set validity bitmap also on the array level null_bitmap = pyarrow.array(~mask).buffers()[1] storage_array = pyarrow.StructArray.from_buffers( storage_array.type, len(storage_array), [null_bitmap], children=[storage_array.field(0), storage_array.field(1)], ) if type is not None: if type.equals(interval_type.storage_type): return storage_array elif isinstance(type, ArrowIntervalType): # ensure we have the same subtype and closed attributes if not type.equals(interval_type): raise TypeError( "Not supported to convert IntervalArray to type with " f"different 'subtype' ({self.dtype.subtype} vs {type.subtype}) " f"and 'closed' ({self.closed} vs {type.closed}) attributes" ) else: raise TypeError( f"Not supported to convert IntervalArray to '{type}' type" ) return pyarrow.ExtensionArray.from_storage(interval_type, storage_array) _interval_shared_docs[ "to_tuples" ] = """ Return an %(return_type)s of tuples of the form (left, right). Parameters ---------- na_tuple : bool, default True Returns NA as a tuple if True, ``(nan, nan)``, or just as the NA value itself if False, ``nan``. .. versionadded:: 0.23.0 Returns ------- tuples: %(return_type)s %(examples)s\ """ @Appender( _interval_shared_docs["to_tuples"] % dict(return_type="ndarray", examples="") ) def to_tuples(self, na_tuple=True): tuples = com.asarray_tuplesafe(zip(self.left, self.right)) if not na_tuple: # GH 18756 tuples = np.where(~self.isna(), tuples, np.nan) return tuples @Appender(_extension_array_shared_docs["repeat"] % _shared_docs_kwargs) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) left_repeat = self.left.repeat(repeats) right_repeat = self.right.repeat(repeats) return self._shallow_copy(left=left_repeat, right=right_repeat) _interval_shared_docs["contains"] = textwrap.dedent( """ Check elementwise if the Intervals contain the value. Return a boolean mask whether the value is contained in the Intervals of the %(klass)s. .. versionadded:: 0.25.0 Parameters ---------- other : scalar The value to check whether it is contained in the Intervals. Returns ------- boolean array See Also -------- Interval.contains : Check whether Interval object contains value. %(klass)s.overlaps : Check if an Interval overlaps the values in the %(klass)s. Examples -------- %(examples)s >>> intervals.contains(0.5) array([ True, False, False]) """ ) @Appender( _interval_shared_docs["contains"] % dict( klass="IntervalArray", examples=textwrap.dedent( """\ >>> intervals = pd.arrays.IntervalArray.from_tuples([(0, 1), (1, 3), (2, 4)]) >>> intervals <IntervalArray> [(0, 1], (1, 3], (2, 4]] Length: 3, closed: right, dtype: interval[int64] """ ), ) ) def contains(self, other): if isinstance(other, Interval): raise NotImplementedError("contains not implemented for two intervals") return (self.left < other if self.open_left else self.left <= other) & ( other < self.right if self.open_right else other <= self.right ) _interval_shared_docs["overlaps"] = textwrap.dedent( """ Check elementwise if an Interval overlaps the values in the %(klass)s. Two intervals overlap if they share a common point, including closed endpoints. Intervals that only have an open endpoint in common do not overlap. .. versionadded:: 0.24.0 Parameters ---------- other : %(klass)s Interval to check against for an overlap. Returns ------- ndarray Boolean array positionally indicating where an overlap occurs. See Also -------- Interval.overlaps : Check whether two Interval objects overlap. Examples -------- %(examples)s >>> intervals.overlaps(pd.Interval(0.5, 1.5)) array([ True, True, False]) Intervals that share closed endpoints overlap: >>> intervals.overlaps(pd.Interval(1, 3, closed='left')) array([ True, True, True]) Intervals that only have an open endpoint in common do not overlap: >>> intervals.overlaps(pd.Interval(1, 2, closed='right')) array([False, True, False]) """ ) @Appender( _interval_shared_docs["overlaps"] % dict( klass="IntervalArray", examples=textwrap.dedent( """\ >>> data = [(0, 1), (1, 3), (2, 4)] >>> intervals = pd.arrays.IntervalArray.from_tuples(data) >>> intervals <IntervalArray> [(0, 1], (1, 3], (2, 4]] Length: 3, closed: right, dtype: interval[int64] """ ), ) ) def overlaps(self, other): if isinstance(other, (IntervalArray, ABCIntervalIndex)): raise NotImplementedError elif not isinstance(other, Interval): msg = f"`other` must be Interval-like, got {type(other).__name__}" raise TypeError(msg) # equality is okay if both endpoints are closed (overlap at a point) op1 = le if (self.closed_left and other.closed_right) else lt op2 = le if (other.closed_left and self.closed_right) else lt # overlaps is equivalent negation of two interval being disjoint: # disjoint = (A.left > B.right) or (B.left > A.right) # (simplifying the negation allows this to be done in less operations) return op1(self.left, other.right) & op2(other.left, self.right) def maybe_convert_platform_interval(values): """ Try to do platform conversion, with special casing for IntervalArray. Wrapper around maybe_convert_platform that alters the default return dtype in certain cases to be compatible with IntervalArray. For example, empty lists return with integer dtype instead of object dtype, which is prohibited for IntervalArray. Parameters ---------- values : array-like Returns ------- array """ if isinstance(values, (list, tuple)) and len(values) == 0: # GH 19016 # empty lists/tuples get object dtype by default, but this is # prohibited for IntervalArray, so coerce to integer instead return np.array([], dtype=np.int64) elif is_categorical_dtype(values): values = np.asarray(values) return maybe_convert_platform(values)
32.819331
88
0.576141
d19fda0dcdc3984b3a9d81166bf1bd436efa6890
3,900
py
Python
fold.py
gmayday1997/pytorch_CAM
c51a0c7f7701005b8f031ed9a0f9b3b9680cf560
[ "MIT" ]
23
2018-02-13T00:50:11.000Z
2021-02-04T01:49:34.000Z
fold.py
gmayday1997/pytorch-CAM
c51a0c7f7701005b8f031ed9a0f9b3b9680cf560
[ "MIT" ]
null
null
null
fold.py
gmayday1997/pytorch-CAM
c51a0c7f7701005b8f031ed9a0f9b3b9680cf560
[ "MIT" ]
5
2017-12-19T10:48:22.000Z
2021-02-04T01:49:35.000Z
import torch.utils.data as data from PIL import Image import os import os.path import numpy as np IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def find_classes(dir): classes = [int(d) for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] classes.sort() new_classes = [str(cl) for cl in classes] class_to_idx = {new_classes[i]: i for i in range(len(new_classes))} return new_classes, class_to_idx def make_dataset(dir, class_to_idx): images = [] dir = os.path.expanduser(dir) for target in sorted(os.listdir(dir)): d = os.path.join(dir, target) if not os.path.isdir(d): continue for root, _, fnames in sorted(os.walk(d)): for fname in sorted(fnames): if is_image_file(fname): path = os.path.join(root, fname) item = (path, class_to_idx[target]) images.append(item) return images def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: with Image.open(f) as img: return img.convert('RGB') def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path): from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) class ImageFolder(data.Dataset): """A generic data loader where the images are arranged in this way: :: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png Args: root (string): Root directory path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. Attributes: classes (list): List of the class names. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__(self, root, transform=None, target_transform=None, loader=default_loader): classes, class_to_idx = find_classes(root) imgs = make_dataset(root, class_to_idx) if len(imgs) == 0: raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.root = root self.imgs = imgs #self.debug_img = self.imgs[600:900] self.classes = classes self.class_to_idx = class_to_idx self.transform = transform self.target_transform = target_transform self.loader = loader def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ path, target = self.imgs[index] img = self.loader(path) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.imgs)
30
101
0.614615
bd2274350c0289c2a1f28ce9b475e28ba9958ccc
2,085
py
Python
src/candy/log.py
mongmong/python-candy
ead8b02cd8cf82314fec0c40aff7c8d32cf7c855
[ "BSD-2-Clause" ]
null
null
null
src/candy/log.py
mongmong/python-candy
ead8b02cd8cf82314fec0c40aff7c8d32cf7c855
[ "BSD-2-Clause" ]
null
null
null
src/candy/log.py
mongmong/python-candy
ead8b02cd8cf82314fec0c40aff7c8d32cf7c855
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python ''' sweety.log @author: Chris Chou <m2chrischou AT gmail.com> @description: Environment variables: SWEETY_VERBOSE - turn on verbose mode. SWEETY_LOG_FILENAME - specify the log file. ''' from datetime import datetime import logging import os import sys from sweety import logstatus, util _start_time = datetime.now() _logfile_formatter = logging.Formatter( '%(asctime)s - %(name)s | %(levelname)s: [%(filename)s:%(lineno)d] - %(message)s' ) _console_formatter = logging.Formatter( '%(asctime)s - %(message)s | %(levelname)s: [%(filename)s:%(lineno)d]' ) def get_logger(name_or_self): ''' get_logger(name_or_self) -> Logger Gets logger with specified name. @param name: the logger name or self. @return: the logger object. ''' lockname = 'sweety.log.%s.lock' % _start_time.strftime('%Y-%m-%d') lock = util.FileLock(lockname) lock.lock() if not isinstance(name_or_self, (str, unicode)): name_or_self = name_or_self.__class__.__name__ log = logging.getLogger(name_or_self) log.setLevel(logging.DEBUG) if not log.handlers: buf = logging.StreamHandler(logstatus._content) buf.setFormatter(_logfile_formatter) log.addHandler(buf) buf.setLevel(logging.INFO) console = logging.StreamHandler(sys.stderr) console.setFormatter(_console_formatter) log.addHandler(console) if os.environ.has_key('SWEETY_VERBOSE') and os.environ['SWEETY_VERBOSE']: console.setLevel(logging.INFO) else: console.setLevel(logging.WARNING) if os.environ.has_key('SWEETY_LOG_FILENAME'): fn = os.environ['SWEETY_LOG_FILENAME'] fdir = os.path.dirname(fn) fdir = os.path.join(fdir, _start_time.strftime('%Y-%m-%d')) if not os.path.exists(fdir): os.makedirs(fdir) fn = '%s/%s.%s.%d' % ( fdir, os.path.basename(fn), _start_time.strftime('%Y-%m-%d_%H:%M:%S'), os.getpid() ) logfile = logging.FileHandler(fn) logfile.setFormatter(_logfile_formatter) log.addHandler(logfile) logfile.setLevel(logging.DEBUG) return log logging.root = get_logger('root')
24.529412
90
0.701199
e1743454756530eac768df6ada9f5c6534f8269a
1,023
py
Python
scripts/openstack/manifest-tests/server-groups/test_machinesets.py
saqibali-2k/installer
170a59be823af62f760632b2611538b9022ec174
[ "Apache-2.0" ]
1,369
2018-06-08T15:15:34.000Z
2022-03-31T11:58:28.000Z
scripts/openstack/manifest-tests/server-groups/test_machinesets.py
Montana/installer
9eade28a9ce4862a6ef092bc5f5fcfb499342d4d
[ "Apache-2.0" ]
5,738
2018-06-08T19:17:30.000Z
2022-03-31T23:54:17.000Z
scripts/openstack/manifest-tests/server-groups/test_machinesets.py
Montana/installer
9eade28a9ce4862a6ef092bc5f5fcfb499342d4d
[ "Apache-2.0" ]
1,247
2018-06-08T17:05:33.000Z
2022-03-31T19:34:43.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import sys import glob import yaml ASSETS_DIR = "" class TestMachinesetsServerGroup(unittest.TestCase): def setUp(self): """Parse the MachineSets into a Python data structure.""" self.machinesets = [] for machineset_path in glob.glob( f'{ASSETS_DIR}/openshift/99_openshift-cluster-api_worker-machineset-*.yaml' ): with open(machineset_path) as f: self.machinesets.append(yaml.load(f, Loader=yaml.FullLoader)) def test_consistent_group_names(self): """Assert that server group names are unique across machinesets.""" found = [] for machineset in self.machinesets: name = machineset["spec"]["template"]["spec"]["providerSpec"][ "value"]["serverGroupName"] self.assertNotIn(name, found) found.append(name) if __name__ == '__main__': ASSETS_DIR = sys.argv.pop() unittest.main(verbosity=2)
28.416667
91
0.629521
8898292bd0c294a80cf64a46eabab27defc980b4
180
py
Python
bin/multiline.py
calcu16/canary
e2bb4444b07226ad3b092f87c73a037921b220d6
[ "BSD-2-Clause" ]
1
2018-11-11T00:48:17.000Z
2018-11-11T00:48:17.000Z
bin/multiline.py
calcu16/canary
e2bb4444b07226ad3b092f87c73a037921b220d6
[ "BSD-2-Clause" ]
null
null
null
bin/multiline.py
calcu16/canary
e2bb4444b07226ad3b092f87c73a037921b220d6
[ "BSD-2-Clause" ]
1
2018-11-11T00:48:22.000Z
2018-11-11T00:48:22.000Z
#/bin/env python3 from __future__ import print_function from sys import stdin for line in stdin: if line[-2] == '\\': print(line[:-2], end='') else: print(line, end='')
20
37
0.638889
0dca5fb9efb314d3ddec07eacb25bd1f506a1ebc
11,378
py
Python
files/myModellib.py
JessevanKempen/nutils
a10ae3ca9f71b81ac5d64179555ef2cddf6658da
[ "MIT" ]
null
null
null
files/myModellib.py
JessevanKempen/nutils
a10ae3ca9f71b81ac5d64179555ef2cddf6658da
[ "MIT" ]
null
null
null
files/myModellib.py
JessevanKempen/nutils
a10ae3ca9f71b81ac5d64179555ef2cddf6658da
[ "MIT" ]
null
null
null
from nutils import mesh, function, solver, util, export, cli, testing import numpy as np, treelog from CoolProp.CoolProp import PropsSI import scipy.special as sc from matplotlib import pyplot as plt from scipy.stats import norm from matplotlib import collections, colors import pandas as pd # import seaborn as sns import matplotlib.pyplot as plt import math #################### Reservoir model library ######################### #Analytical solutions def get_p_drawdown(H, φ, K, ct, Q, R, pref, t1): # Initialize parameters Jw = Q / H eta = K / (φ * ct) # Initialize domain # pref = domain[0] # R = domain[1] # Compute drawdown pressure ei = sc.expi(-R ** 2 / (4 * eta * t1)) dp = (Jw * ei / (4 * math.pi * K)) pexd = (pref + dp) return pexd def get_p_buildup(H, φ, K, ct, Q, R, pref, t1end, t2): # Initialize parameters Jw = Q / H eta = K / (φ * ct) # Initialize domain # pref = domain[0] # R = domain[1] # Compute buildup pressure eid = sc.expi(-R**2 / (4 * eta * t1end)) eib = sc.expi(-R**2 / (4 * eta * (t2-t1end)-t1end)) dp = (Jw * (eid - eib) / (4 * math.pi * K)) pexb = (pref + dp) return pexb def get_T_drawdown(H, φ, K, ct, Q, R, Tref, t1, cpratio, phieff=0, constantjt=2e-7): # Initialize parameters Jw = Q / H eta = K / (φ * ct) # Compute drawdown pressure aconstant = ( cpratio * Jw) / (4 * math.pi * eta) ei = sc.expi(-R ** 2 / (4 * eta * t1)) dp = (Jw * ei / (4 * math.pi * K)) # Compute drawdown temperature Tei = sc.expi(-R ** 2 / (4 * eta * t1) - aconstant) Tex = Tref + (constantjt * dp) - Jw / (4 * math.pi * K) * (phieff - constantjt ) * Tei return Tex def get_T_buildup(H, φ, K, ct, Q, R, Tref, t1end, t2, cpratio, cp, ρ, λ, phieff=0, constantjt=2e-7, latetime=60): # Initialize parameters Jw = Q / H eta = K / (φ * ct) # Import drawdown temperature Tex = get_T_drawdown(H, φ, K, ct, Q, R, Tref, t1end, cpratio, phieff=0, constantjt=2e-7) if (t2-t1end < latetime): #early-time buildup solution earlyTei = sc.expi(-R ** 2 / (4 * eta * t2-t1end)) Tex2 = Tex - earlyTei * phieff * Jw / (4 * math.pi * K) else: #late-time buildup solution lateTei = sc.expi(-R**2 * cp * ρ / (4 * λ * t2-t1end)) Tex2 = Tex - lateTei * constantjt * Jw / (4 * math.pi * K) return Tex2 def get_dp_drawdown(H, φ, K, ct, Q, R, t1): # Initialize parameters Jw = Q / H eta = K / (φ * ct) # Initialize domain # pref = domain[0] # R = domain[1] # Compute drawdown gradient pressure ei = sc.expi(-R ** 2 / (4 * eta * t1)) pgrad = (2 * Jw * ei / (4 * math.pi * K * R)) return pgrad, sd_p def get_dp_buildup(H, φ, K, ct, Q, R, pref, t1end, t2): # Initialize parameters Jw = Q / H eta = K / (φ * ct) # Initialize domain # pref = domain[0] # R = domain[1] # Compute drawdown gradient pressure ei = sc.expi(-R ** 2 / (4 * eta * t1)) pgrad = (2 * Jw * ei / (4 * math.pi * K * R)) return pgrad #Analytical solutions modified for FEA def panalyticaldrawdown(ns, t1, R): # Initialize parameters ns = ns.copy_() ns.eta = ns.K / (ns.φ * ns.ct) # Compute drawdown pressure ei = sc.expi((-R**2 / (4 * ns.eta * t1)).eval()) dp = (ns.Jw * ei / (4 * math.pi * ns.K)).eval() pexd = (ns.pref + dp).eval() return pexd def panalyticalbuildup(ns, t1end, t2, R): # Initialize parameters ns = ns.copy_() ns.eta = ns.K / (ns.φ * ns.ct) # Compute buildup pressure eid = sc.expi((-R**2 / (4 * ns.eta * t1end)).eval()) eib = sc.expi((-R**2 / (4 * ns.eta * (t2 - t1end)-t1end)).eval()) dp = (ns.Jw * (eid - eib) / (4 * math.pi * ns.K)).eval() pexb = (ns.pref + dp).eval() return pexb def dpanalyticaldrawdown(ns, t1, R): ns = ns.copy_() ns.eta = ns.K / (ns.φ * ns.ct) ei = sc.expi((-R ** 2 / (4 * ns.eta * t1)).eval()) pgrad = (2 * ns.Jw * ei / (4 * math.pi * ns.K * R)).eval() return pgrad def Tanalyticaldrawdown(ns, t1, R): ns = ns.copy_() ns.eta = ns.K / (ns.φ * ns.ct) aconstant = ( ns.cpratio * ns.Jw) / (4 * math.pi * ns.eta) ei = sc.expi((-R**2 / (4 * ns.eta * t1)).eval()) pressuredif = (-ns.Jw * ei / (4 * math.pi * ns.K)).eval() Tei = sc.expi((-R**2/(4*ns.eta*t1) - aconstant).eval()) Tex = (ns.Tref - (ns.constantjt * pressuredif) + ns.Jw / (4 * math.pi * ns.K) * (ns.phieff - ns.constantjt ) * Tei).eval() print("T drawdown FEA", Tex) return Tex def Tanalyticalbuildup(ns, endtime, t2, R): ns = ns.copy_() constantjt = ns.constantjt phieff = ns.phieff ns.eta = ns.K / (ns.φ * ns.ct) Tex = Tanalyticaldrawdown(ns, endtime, R) latetime = 60 if (t2-endtime < latetime): #early-time buildup solution earlyTei = sc.expi((-R ** 2 / (4 * ns.eta * t2-endtime)).eval()) Tex2 = Tex - (earlyTei * phieff * ns.Jw / (4 * math.pi * ns.K)).eval() else: #late-time buildup solution lateTei = sc.expi((-R**2 * ns.cp * ns.ρ / (4 * ns.λ * t2-endtime)).eval()) Tex2 = Tex - (lateTei * constantjt * ns.Jw / (4 * math.pi * ns.K)).eval() return Tex2 #Others def RefineBySDF(topo, radius, sdf, nrefine): refined_topo = topo for n in range(nrefine): elems_to_refine = [] k = 0 bez = refined_topo.sample('bezier',2) sd = bez.eval(sdf) sd = sd.reshape( [len(sd)//4, 4] ) for i in range(len(sd)): if any(sd[i,:] == radius.eval()): elems_to_refine.append(k) k = k + 1 refined_topo = refined_topo.refined_by(refined_topo.transforms[np.array(elems_to_refine)]) return refined_topo #Indirect welldata from internet def get_welldata(parameter): welldata = pd.read_excel(r'C:\Users\s141797\OneDrive - TU Eindhoven\Scriptie\nlog_welldata.xlsx') #for an earlier version of Excel use 'xls' columns = ['TBH', 'TESP', 'PBH', 'PESP', 'Q', 'CORRECTED_TIME'] df = pd.DataFrame(welldata, columns = columns) return np.array(df.loc[:, parameter]) #np.array(df['PRESSURE']), np.array(df['TEMPERATURE']) #Postprocessing nanjoin = lambda array, tri: np.insert(array.take(tri.flat, 0).astype(float), slice(tri.shape[1], tri.size, tri.shape[1]), np.nan, axis=0) def plotdrawdown_1D(ns, bezier, x, p, TT, t1): """ Exports figures to public.html for the pressure and temperature 1D radial profile along the reservoir Arguments: ns (?): Namespace bezier (?): Parametric curve x (array): Radial position p (array): Fluid pressure T (array): System (Solid + Fluid) temperature t1 (float): Time of drawdown period Returns: pressure1d (png): graph of 1D radial pressure temperature1d (png): graph of 1D radial temperature """ with export.mplfigure('pressure1d.png', dpi=800) as plt: ax = plt.subplots() ax.set(xlabel='Distance [m]', ylabel='Pressure [MPa]') ax.set_ylim([20, 23]) ax.plot(nanjoin(x[:, 0], bezier.tri)[::100], nanjoin(p, bezier.tri)[::100] / 1e6, label="FEM") ax.plot(x[:, 0][::100], np.array(panalyticaldrawdown(ns, t1, x[:, 0]))[0][0][0][::100] / 1e6, label="analytical") ax.legend(loc="center right") with export.mplfigure('temperature1d.png', dpi=800) as plt: ax = plt.subplots() ax.set(xlabel='Distance [m]', ylabel='Temperature [K]') ax.plot(nanjoin(x[:, 0], bezier.tri)[0:100000:10], nanjoin(TT, bezier.tri)[0:100000:10], label="FEM") ax.plot(nanjoin(x[:, 0], bezier.tri)[0:100000:10], np.array(Tanalyticaldrawdown(ns, t1, nanjoin(x[:, 0], bezier.tri)))[0][0][0][0:100000:10], label="analytical") ax.legend(loc="center right") def plotbuildup_1D(ns, bezier, x, p, TT, endtime, t2): """ Exports figures to public.html for the pressure and temperature 1D radial profile along the reservoir Arguments: ns (?): Namespace bezier (?): Parametric curve x (array): Radial position p (array): Fluid pressure T (array): System (Solid + Fluid) temperature endtime (float): Time that drawdown period ended t2 (float): Time of buildup period Returns: pressure1d (png): graph of 1D radial pressure temperature1d (png): graph of 1D radial temperature """ with export.mplfigure('pressure1d.png', dpi=800) as plt: ax = plt.subplots() ax.set(xlabel='Distance [m]', ylabel='Pressure [MPa]') ax.plot(nanjoin(x[:, 0], bezier.tri)[::100], nanjoin(p, bezier.tri)[::100] / 1e6, label="FEM") ax.plot(x[:, 0][::100], np.array(panalyticalbuildup(ns, endtime, t2, x[:, 0]))[0][0][0][ ::100] / 1e6, label="analytical") ax.legend(loc="center right") with export.mplfigure('temperature1d.png', dpi=800) as plt: ax = plt.subplots() ax.set(xlabel='Distance [m]', ylabel='Temperature [K]') # ax.set_ylim([362.85, 363.02]) ax.plot(nanjoin(x[:, 0], bezier.tri)[0:100000:10], nanjoin(TT, bezier.tri)[0:100000:10], label="FEM") ax.plot(nanjoin(x[:, 0], bezier.tri)[0:100000:10], np.array(Tanalyticalbuildup(ns, endtime, t2, nanjoin(x[:, 0], bezier.tri)[0:100000:10]))[0][ 0][0], label="analytical") ax.legend(loc="center right") def plotovertime(timeperiod, parraywell, parrayexact, Tarraywell, Tarrayexact, Qarray): with export.mplfigure('pressuretime.png', dpi=800) as plt: ax1 = plt.subplots() ax2 = ax1.twinx() ax1.set(xlabel='Time [s]') ax1.set_ylabel('Pressure [MPa]', color='b') ax2.set_ylabel('Volumetric flow rate [m^3/s]', color='k') ax1.plot(timeperiod, parraywell / 1e6, 'bo', label="FEM") ax1.plot(timeperiod, parrayexact / 1e6, label="analytical") # ax1.plot(timeperiod, parrayexp, label="NLOG") ax1.legend(loc="center right") ax2.plot(timeperiod, Qarray, 'k') # with export.mplfigure('pressuretimeerror.png', dpi=800) as plt: # ax1 = plt.subplots() # ax2 = ax1.twinx() # ax1.set(xlabel='Time [s]') # ax1.set(ylabel=r'$\left(\left|p_{w}-{p}_{w,exact}\right|/\left|p_{w,0}\right|\right)$', yscale="log") # ax2.set_ylabel('Volumetric flow rate [m^3/s]', color='k') # ax1.plot(timeperiod, parrayerror / 225e5, 'bo', label=r'$r_{dr} = 1000m$ refined mesh') # ax1.set_ylim(ymin=0.00005) # ax1.legend(loc="center right") # ax2.plot(timeperiod, Qarray, 'k') with export.mplfigure('temperaturetime.png', dpi=800) as plt: ax1 = plt.subplots() ax2 = ax1.twinx() # ax1.set_ylim([362.9, 363.1]) ax1.set(xlabel='Time [s]') ax1.set_ylabel('Temperature [K]', color='b') ax2.set_ylabel('Volumetric flow rate [m^3/s]', color='k') ax1.plot(timeperiod, Tarraywell, 'ro', label="FEM") ax1.plot(timeperiod, Tarrayexact, label="analytical") ax1.legend(loc="center right") ax2.plot(timeperiod, Qarray, 'k')
34.795107
144
0.569081
fe7104aacf148d6e6612a3a11368f393e31c636f
1,216
py
Python
examples/notes_server.py
MatthewScholefield/flask-resto
19630accb55919817712e08536caaa93a3a85a7d
[ "MIT" ]
2
2020-04-23T08:06:51.000Z
2020-04-23T10:14:13.000Z
examples/notes_server.py
MatthewScholefield/flask-resto
19630accb55919817712e08536caaa93a3a85a7d
[ "MIT" ]
null
null
null
examples/notes_server.py
MatthewScholefield/flask-resto
19630accb55919817712e08536caaa93a3a85a7d
[ "MIT" ]
null
null
null
from flask import Flask from uuid import uuid4 from werkzeug.exceptions import NotFound from flask_resto import Api app = Flask(__name__) api = Api(app) notes = {} # In practice, use a database class Note: def create(self): note = { 'title': api.json['title'], 'description': api.json['description'], 'uuid': str(uuid4()) } notes[note['uuid']] = note return note def delete(self, uuid): Note.get_note(uuid) del notes[uuid] def get(self, uuid): return Note.get_note(uuid) def get_all(self): return notes def update(self, uuid): note = Note.get_note(uuid) note.update(api.json) return note @staticmethod def get_note(uuid): note = notes.get(uuid) if not note: raise NotFound(uuid) return note api.resources = { '/v1': { '/note': { 'POST': Note.create, 'GET': Note.get_all, '/<uuid>': { 'GET': Note.get, 'PATCH': Note.update, 'DELETE': Note.delete } } } } if __name__ == '__main__': app.run()
19.612903
51
0.514803
ef61f63ddcd4a8e05b444ad7ff624e59849414ec
10,130
py
Python
qa/rpc-tests/listtransactions.py
uniocoin/unionew
91951af8a98fb85eefa556d52cff5c1bd52a2e33
[ "MIT" ]
null
null
null
qa/rpc-tests/listtransactions.py
uniocoin/unionew
91951af8a98fb85eefa556d52cff5c1bd52a2e33
[ "MIT" ]
null
null
null
qa/rpc-tests/listtransactions.py
uniocoin/unionew
91951af8a98fb85eefa556d52cff5c1bd52a2e33
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Exercise the listtransactions API from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.mininode import CTransaction, COIN from io import BytesIO def txFromHex(hexstring): tx = CTransaction() f = BytesIO(hex_str_to_bytes(hexstring)) tx.deserialize(f) return tx class ListTransactionsTest(BitcoinTestFramework): def setup_nodes(self): #This test requires mocktime enable_mocktime() return start_nodes(4, self.options.tmpdir) def run_test(self): # Simple send, 0 to 1: txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid":txid}, {"category":"send","account":"","amount":Decimal("-0.1"),"confirmations":0}) assert_array_result(self.nodes[1].listtransactions(), {"txid":txid}, {"category":"receive","account":"","amount":Decimal("0.1"),"confirmations":0}) # mine a block, confirmations should change: self.nodes[0].generate(1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid":txid}, {"category":"send","account":"","amount":Decimal("-0.1"),"confirmations":1}) assert_array_result(self.nodes[1].listtransactions(), {"txid":txid}, {"category":"receive","account":"","amount":Decimal("0.1"),"confirmations":1}) # send-to-self: txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) assert_array_result(self.nodes[0].listtransactions(), {"txid":txid, "category":"send"}, {"amount":Decimal("-0.2")}) assert_array_result(self.nodes[0].listtransactions(), {"txid":txid, "category":"receive"}, {"amount":Decimal("0.2")}) # sendmany from node1: twice to self, twice to node2: send_to = { self.nodes[0].getnewaddress() : 0.11, self.nodes[1].getnewaddress() : 0.22, self.nodes[0].getaccountaddress("from1") : 0.33, self.nodes[1].getaccountaddress("toself") : 0.44 } txid = self.nodes[1].sendmany("", send_to) self.sync_all() assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.11")}, {"txid":txid} ) assert_array_result(self.nodes[0].listtransactions(), {"category":"receive","amount":Decimal("0.11")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.22")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"receive","amount":Decimal("0.22")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.33")}, {"txid":txid} ) assert_array_result(self.nodes[0].listtransactions(), {"category":"receive","amount":Decimal("0.33")}, {"txid":txid, "account" : "from1"} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.44")}, {"txid":txid, "account" : ""} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"receive","amount":Decimal("0.44")}, {"txid":txid, "account" : "toself"} ) multisig = self.nodes[1].createmultisig(1, [self.nodes[1].getnewaddress()]) self.nodes[0].importaddress(multisig["redeemScript"], "watchonly", False, True) txid = self.nodes[1].sendtoaddress(multisig["address"], 0.1) self.nodes[1].generate(1) self.sync_all() assert(len(self.nodes[0].listtransactions("watchonly", 100, 0, False)) == 0) assert_array_result(self.nodes[0].listtransactions("watchonly", 100, 0, True), {"category":"receive","amount":Decimal("0.1")}, {"txid":txid, "account" : "watchonly"} ) # rbf is disabled in Unio Core # self.run_rbf_opt_in_test() # Check that the opt-in-rbf flag works properly, for sent and received # transactions. def run_rbf_opt_in_test(self): # Check whether a transaction signals opt-in RBF itself def is_opt_in(node, txid): rawtx = node.getrawtransaction(txid, 1) for x in rawtx["vin"]: if x["sequence"] < 0xfffffffe: return True return False # Find an unconfirmed output matching a certain txid def get_unconfirmed_utxo_entry(node, txid_to_match): utxo = node.listunspent(0, 0) for i in utxo: if i["txid"] == txid_to_match: return i return None # 1. Chain a few transactions that don't opt-in. txid_1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) assert(not is_opt_in(self.nodes[0], txid_1)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_1}, {"bip125-replaceable":"no"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_1}, {"bip125-replaceable":"no"}) # Tx2 will build off txid_1, still not opting in to RBF. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_1) # Create tx2 using createrawtransaction inputs = [{"txid":utxo_to_use["txid"], "vout":utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.999} tx2 = self.nodes[1].createrawtransaction(inputs, outputs) tx2_signed = self.nodes[1].signrawtransaction(tx2)["hex"] txid_2 = self.nodes[1].sendrawtransaction(tx2_signed) # ...and check the result assert(not is_opt_in(self.nodes[1], txid_2)) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_2}, {"bip125-replaceable":"no"}) sync_mempools(self.nodes) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_2}, {"bip125-replaceable":"no"}) # Tx3 will opt-in to RBF utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[0], txid_2) inputs = [{"txid": txid_2, "vout":utxo_to_use["vout"]}] outputs = {self.nodes[1].getnewaddress(): 0.998} tx3 = self.nodes[0].createrawtransaction(inputs, outputs) tx3_modified = txFromHex(tx3) tx3_modified.vin[0].nSequence = 0 tx3 = bytes_to_hex_str(tx3_modified.serialize()) tx3_signed = self.nodes[0].signrawtransaction(tx3)['hex'] txid_3 = self.nodes[0].sendrawtransaction(tx3_signed) assert(is_opt_in(self.nodes[0], txid_3)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_3}, {"bip125-replaceable":"yes"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_3}, {"bip125-replaceable":"yes"}) # Tx4 will chain off tx3. Doesn't signal itself, but depends on one # that does. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_3) inputs = [{"txid": txid_3, "vout":utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.997} tx4 = self.nodes[1].createrawtransaction(inputs, outputs) tx4_signed = self.nodes[1].signrawtransaction(tx4)["hex"] txid_4 = self.nodes[1].sendrawtransaction(tx4_signed) assert(not is_opt_in(self.nodes[1], txid_4)) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"yes"}) sync_mempools(self.nodes) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"yes"}) # Replace tx3, and check that tx4 becomes unknown tx3_b = tx3_modified tx3_b.vout[0].nValue -= int(Decimal("0.004") * COIN) # bump the fee tx3_b = bytes_to_hex_str(tx3_b.serialize()) tx3_b_signed = self.nodes[0].signrawtransaction(tx3_b)['hex'] txid_3b = self.nodes[0].sendrawtransaction(tx3_b_signed, True) assert(is_opt_in(self.nodes[0], txid_3b)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"unknown"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"unknown"}) # Check gettransaction as well: for n in self.nodes[0:2]: assert_equal(n.gettransaction(txid_1)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_2)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_3)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_3b)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_4)["bip125-replaceable"], "unknown") # After mining a transaction, it's no longer BIP125-replaceable self.nodes[0].generate(1) assert(txid_3b not in self.nodes[0].getrawmempool()) assert_equal(self.nodes[0].gettransaction(txid_3b)["bip125-replaceable"], "no") assert_equal(self.nodes[0].gettransaction(txid_4)["bip125-replaceable"], "unknown") if __name__ == '__main__': ListTransactionsTest().main()
50.148515
113
0.598421
d858a84b22a29607044f0ec49d321ea28353b2e5
1,028
py
Python
kubernetes/test/test_v1_controller_revision_list.py
iamneha/python
5b208a1a49a8d6f8bbab28bcc226b9ef793bcbd0
[ "Apache-2.0" ]
1
2019-02-17T15:28:39.000Z
2019-02-17T15:28:39.000Z
kubernetes/test/test_v1_controller_revision_list.py
iamneha/python
5b208a1a49a8d6f8bbab28bcc226b9ef793bcbd0
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1_controller_revision_list.py
iamneha/python
5b208a1a49a8d6f8bbab28bcc226b9ef793bcbd0
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.13.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_controller_revision_list import V1ControllerRevisionList class TestV1ControllerRevisionList(unittest.TestCase): """ V1ControllerRevisionList unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1ControllerRevisionList(self): """ Test V1ControllerRevisionList """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1_controller_revision_list.V1ControllerRevisionList() pass if __name__ == '__main__': unittest.main()
22.844444
105
0.727626
6b4920efe2917bcdc6238a1210371fcfe6fc91c5
34,850
py
Python
neural_tangents/tests/predict_test.py
kayhan-batmanghelich/neural-tangents
432ed919fca4a6f2c22071399b79bff9b38880c2
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
neural_tangents/tests/predict_test.py
kayhan-batmanghelich/neural-tangents
432ed919fca4a6f2c22071399b79bff9b38880c2
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
neural_tangents/tests/predict_test.py
kayhan-batmanghelich/neural-tangents
432ed919fca4a6f2c22071399b79bff9b38880c2
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `utils/predict.py`.""" import math from jax import test_util as jtu from jax.api import device_get from jax.api import grad from jax.api import jit from jax.api import vmap from jax.config import config from jax.experimental import optimizers from jax.lib import xla_bridge import jax.numpy as np import jax.random as random from neural_tangents import predict from neural_tangents import stax from neural_tangents.utils import batch from neural_tangents.utils import empirical from neural_tangents.utils import utils config.parse_flags_with_absl() MATRIX_SHAPES = [(3, 3), (4, 4)] OUTPUT_LOGITS = [1, 2, 3] GETS = ('ntk', 'nngp', ('ntk', 'nngp')) RTOL = 0.1 ATOL = 0.1 if not config.read('jax_enable_x64'): RTOL = 0.2 ATOL = 0.2 FLAT = 'FLAT' POOLING = 'POOLING' # TODO(schsam): Add a pooling test when multiple inputs are supported in # Conv + Pooling. TRAIN_SHAPES = [(4, 8), (8, 8), (6, 4, 4, 3)] TEST_SHAPES = [(6, 8), (16, 8), (2, 4, 4, 3)] NETWORK = [FLAT, FLAT, FLAT, FLAT] OUTPUT_LOGITS = [1, 2] CONVOLUTION_CHANNELS = 256 utils.update_test_tolerance() def _build_network(input_shape, network, out_logits): if len(input_shape) == 1: assert network == 'FLAT' return stax.serial( stax.Dense(4096, W_std=1.2, b_std=0.05), stax.Erf(), stax.Dense(out_logits, W_std=1.2, b_std=0.05)) elif len(input_shape) == 3: if network == 'POOLING': return stax.serial( stax.Conv(CONVOLUTION_CHANNELS, (3, 3), W_std=2.0, b_std=0.05), stax.GlobalAvgPool(), stax.Dense(out_logits, W_std=2.0, b_std=0.05)) elif network == 'FLAT': return stax.serial( stax.Conv(CONVOLUTION_CHANNELS, (3, 3), W_std=2.0, b_std=0.05), stax.Flatten(), stax.Dense(out_logits, W_std=2.0, b_std=0.05)) else: raise ValueError('Unexpected network type found: {}'.format(network)) else: raise ValueError('Expected flat or image test input.') def _empirical_kernel(key, input_shape, network, out_logits): init_fn, f, _ = _build_network(input_shape, network, out_logits) _, params = init_fn(key, (-1,) + input_shape) _kernel_fn = empirical.empirical_kernel_fn(f) kernel_fn = lambda x1, x2, get: _kernel_fn(x1, x2, params, get) return params, f, jit(kernel_fn, static_argnums=(2,)) def _theoretical_kernel(key, input_shape, network, out_logits): init_fn, f, kernel_fn = _build_network(input_shape, network, out_logits) _, params = init_fn(key, (-1,) + input_shape) return params, f, jit(kernel_fn, static_argnums=(2,)) KERNELS = { 'empirical': _empirical_kernel, 'theoretical': _theoretical_kernel, } @optimizers.optimizer def momentum(learning_rate, momentum=0.9): """A standard momentum optimizer for testing. Different from `jax.experimental.optimizers.momentum` (Nesterov). """ learning_rate = optimizers.make_schedule(learning_rate) def init_fn(x0): v0 = np.zeros_like(x0) return x0, v0 def update_fn(i, g, state): x, velocity = state velocity = momentum * velocity + g x = x - learning_rate(i) * velocity return x, velocity def get_params(state): x, _ = state return x return init_fn, update_fn, get_params class PredictTest(jtu.JaxTestCase): @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_network={}_logits={}_{}'.format( train, network, out_logits, name), 'train_shape': train, 'network': network, 'out_logits': out_logits, 'fn_and_kernel': fn, 'name': name, } for train, network in zip(TRAIN_SHAPES, NETWORK) for out_logits in OUTPUT_LOGITS for name, fn in KERNELS.items())) def testMaxLearningRate(self, train_shape, network, out_logits, fn_and_kernel, name): key = random.PRNGKey(0) key, split = random.split(key) if len(train_shape) == 2: train_shape = (train_shape[0] * 5, train_shape[1] * 10) else: train_shape = (16, 8, 8, 3) x_train = random.normal(split, train_shape) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) for lr_factor in [0.5, 3.]: params, f, ntk = fn_and_kernel(key, train_shape[1:], network, out_logits) # Regress to an MSE loss. loss = lambda params, x: \ 0.5 * np.mean((f(params, x) - y_train) ** 2) grad_loss = jit(grad(loss)) g_dd = ntk(x_train, None, 'ntk') steps = 20 if name == 'theoretical': step_size = predict.max_learning_rate( g_dd, num_outputs=out_logits) * lr_factor else: step_size = predict.max_learning_rate(g_dd, num_outputs=-1) * lr_factor opt_init, opt_update, get_params = optimizers.sgd(step_size) opt_state = opt_init(params) def get_loss(opt_state): return loss(get_params(opt_state), x_train) init_loss = get_loss(opt_state) for i in range(steps): params = get_params(opt_state) opt_state = opt_update(i, grad_loss(params, x_train), opt_state) trained_loss = get_loss(opt_state) loss_ratio = trained_loss / (init_loss + 1e-12) if lr_factor == 3.: if not math.isnan(loss_ratio): self.assertGreater(loss_ratio, 10.) else: self.assertLess(loss_ratio, 0.1) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}_{}'.format( train, test, network, out_logits, name), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, 'fn_and_kernel': fn } for train, test, network in zip(TRAIN_SHAPES, TEST_SHAPES, NETWORK) for out_logits in OUTPUT_LOGITS for name, fn in KERNELS.items())) def testNTKMSEPrediction(self, train_shape, test_shape, network, out_logits, fn_and_kernel): key = random.PRNGKey(0) key, split = random.split(key) x_train = random.normal(split, train_shape) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = random.normal(split, test_shape) params, f, ntk = fn_and_kernel(key, train_shape[1:], network, out_logits) # Regress to an MSE loss. loss = lambda params, x: \ 0.5 * np.mean((f(params, x) - y_train) ** 2) grad_loss = jit(grad(loss)) g_dd = ntk(x_train, None, 'ntk') g_td = ntk(x_test, x_train, 'ntk') predictor = predict.gradient_descent_mse(g_dd, y_train, g_td) predictor_train = predict.gradient_descent_mse(g_dd, y_train) atol = ATOL rtol = RTOL step_size = 0.1 if len(train_shape) > 2: # Hacky way to up the tolerance just for convolutions. atol = ATOL * 2 rtol = RTOL * 2 step_size = 0.1 train_time = 100.0 steps = int(train_time / step_size) opt_init, opt_update, get_params = optimizers.sgd(step_size) opt_state = opt_init(params) fx_initial_train = f(params, x_train) fx_initial_test = f(params, x_test) fx_pred_train, fx_pred_test = predictor(0.0, fx_initial_train, fx_initial_test) fx_pred_train_only = predictor_train(0.0, fx_initial_train) self.assertAllClose(fx_initial_train, fx_pred_train, True) self.assertAllClose(fx_initial_train, fx_pred_train_only, True) self.assertAllClose(fx_initial_test, fx_pred_test, True) for i in range(steps): params = get_params(opt_state) opt_state = opt_update(i, grad_loss(params, x_train), opt_state) params = get_params(opt_state) fx_train = f(params, x_train) fx_test = f(params, x_test) fx_pred_train, fx_pred_test = predictor(train_time, fx_initial_train, fx_initial_test) fx_pred_train_only = predictor_train(train_time, fx_initial_train) fx_disp_train = np.sqrt(np.mean((fx_train - fx_initial_train)**2)) fx_disp_test = np.sqrt(np.mean((fx_test - fx_initial_test)**2)) fx_error_train = (fx_train - fx_pred_train) / fx_disp_train fx_error_train_only = (fx_pred_train_only - fx_pred_train) / fx_disp_train fx_error_test = (fx_test - fx_pred_test) / fx_disp_test self.assertAllClose(fx_error_train, np.zeros_like(fx_error_train), True, rtol, atol) self.assertAllClose(fx_error_train_only, np.zeros_like(fx_error_train_only), True, rtol, atol) self.assertAllClose(fx_error_test, np.zeros_like(fx_error_test), True, rtol, atol) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}_{}'.format( train, test, network, out_logits, name), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, 'fn_and_kernel': fn } for train, test, network in zip(TRAIN_SHAPES, TEST_SHAPES, NETWORK) for out_logits in OUTPUT_LOGITS for name, fn in KERNELS.items())) def testNTKGDPrediction(self, train_shape, test_shape, network, out_logits, fn_and_kernel): key = random.PRNGKey(0) key, split = random.split(key) x_train = random.normal(split, train_shape) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = random.normal(split, test_shape) params, f, ntk = fn_and_kernel(key, train_shape[1:], network, out_logits) # Regress to an MSE loss. loss = lambda y, y_hat: 0.5 * np.mean((y - y_hat)**2) grad_loss = jit(grad(lambda params, x: loss(f(params, x), y_train))) g_dd = ntk(x_train, None, 'ntk') g_td = ntk(x_test, x_train, 'ntk') predictor = predict.gradient_descent(g_dd, y_train, loss, g_td) atol = ATOL rtol = RTOL step_size = 0.5 if len(train_shape) > 2: # Hacky way to up the tolerance just for convolutions. atol = ATOL * 2 rtol = RTOL * 2 step_size = 0.1 train_time = 100.0 steps = int(train_time / step_size) opt_init, opt_update, get_params = optimizers.sgd(step_size) opt_state = opt_init(params) fx_initial_train = f(params, x_train) fx_initial_test = f(params, x_test) fx_pred_train, fx_pred_test = predictor(0.0, fx_initial_train, fx_initial_test) self.assertAllClose(fx_initial_train, fx_pred_train, True) self.assertAllClose(fx_initial_test, fx_pred_test, True) for i in range(steps): params = get_params(opt_state) opt_state = opt_update(i, grad_loss(params, x_train), opt_state) params = get_params(opt_state) fx_train = f(params, x_train) fx_test = f(params, x_test) fx_pred_train, fx_pred_test = predictor(train_time, fx_initial_train, fx_initial_test) fx_disp_train = np.sqrt(np.mean((fx_train - fx_initial_train)**2)) fx_disp_test = np.sqrt(np.mean((fx_test - fx_initial_test)**2)) fx_error_train = (fx_train - fx_pred_train) / fx_disp_train fx_error_test = (fx_test - fx_pred_test) / fx_disp_test self.assertAllClose(fx_error_train, np.zeros_like(fx_error_train), True, rtol, atol) self.assertAllClose(fx_error_test, np.zeros_like(fx_error_test), True, rtol, atol) # TODO(schsam): Get this test passing with theoretical conv. @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}_{}'.format( train, test, network, out_logits, name), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, 'fn_and_kernel': fn } for train, test, network in zip(TRAIN_SHAPES, TEST_SHAPES, NETWORK) for out_logits in OUTPUT_LOGITS for name, fn in KERNELS.items() if len(train) == 2)) def testNTKMomentumPrediction(self, train_shape, test_shape, network, out_logits, fn_and_kernel): key = random.PRNGKey(0) key, split = random.split(key) x_train = random.normal(split, train_shape) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = random.normal(split, test_shape) params, f, ntk = fn_and_kernel(key, train_shape[1:], network, out_logits) # Regress to an MSE loss. loss = lambda y, y_hat: 0.5 * np.mean((y - y_hat)**2) grad_loss = jit(grad(lambda params, x: loss(f(params, x), y_train))) g_dd = ntk(x_train, None, 'ntk') g_td = ntk(x_test, x_train, 'ntk') atol = ATOL rtol = RTOL step_size = 0.5 if len(train_shape) > 2: # Hacky way to up the tolerance just for convolutions. atol = ATOL * 2 rtol = RTOL * 2 step_size = 0.1 train_time = 100.0 steps = int(train_time / np.sqrt(step_size)) init, predictor, get = predict.momentum(g_dd, y_train, loss, step_size, g_td) opt_init, opt_update, get_params = momentum(step_size, 0.9) opt_state = opt_init(params) fx_initial_train = f(params, x_train) fx_initial_test = f(params, x_test) lin_state = init(fx_initial_train, fx_initial_test) fx_pred_train, fx_pred_test = get(lin_state) self.assertAllClose(fx_initial_train, fx_pred_train, True) self.assertAllClose(fx_initial_test, fx_pred_test, True) for i in range(steps): params = get_params(opt_state) opt_state = opt_update(i, grad_loss(params, x_train), opt_state) params = get_params(opt_state) fx_train = f(params, x_train) fx_test = f(params, x_test) lin_state = predictor(lin_state, train_time) fx_pred_train, fx_pred_test = get(lin_state) fx_disp_train = np.sqrt(np.mean((fx_train - fx_initial_train)**2)) fx_disp_test = np.sqrt(np.mean((fx_test - fx_initial_test)**2)) fx_error_train = (fx_train - fx_pred_train) / fx_disp_train fx_error_test = (fx_test - fx_pred_test) / fx_disp_test self.assertAllClose(fx_error_train, np.zeros_like(fx_error_train), True, rtol, atol) self.assertAllClose(fx_error_test, np.zeros_like(fx_error_test), True, rtol, atol) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}'.format( train, test, network, out_logits), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS)) def testNTKMeanCovPrediction(self, train_shape, test_shape, network, out_logits): key = random.PRNGKey(0) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) _, _, kernel_fn = _build_network(train_shape[1:], network, out_logits) mean_pred, cov_pred = predict.gp_inference( kernel_fn, x_train, y_train, x_test, 'ntk', diag_reg=0., compute_cov=True) if xla_bridge.get_backend().platform == 'tpu': eigh = np.onp.linalg.eigh else: eigh = np.linalg.eigh self.assertEqual(cov_pred.shape[0], x_test.shape[0]) min_eigh = np.min(eigh(cov_pred)[0]) self.assertGreater(min_eigh + 1e-10, 0.) def mc_sampling(count=10): key = random.PRNGKey(100) init_fn, f, _ = _build_network(train_shape[1:], network, out_logits) _kernel_fn = empirical.empirical_kernel_fn(f) kernel_fn = jit(lambda x1, x2, params: _kernel_fn(x1, x2, params, 'ntk')) collect_test_predict = [] for _ in range(count): key, split = random.split(key) _, params = init_fn(split, train_shape) g_dd = kernel_fn(x_train, None, params) g_td = kernel_fn(x_test, x_train, params) predictor = predict.gradient_descent_mse(g_dd, y_train, g_td) fx_initial_train = f(params, x_train) fx_initial_test = f(params, x_test) _, fx_pred_test = predictor(1.0e8, fx_initial_train, fx_initial_test) collect_test_predict.append(fx_pred_test) collect_test_predict = np.array(collect_test_predict) mean_emp = np.mean(collect_test_predict, axis=0) mean_subtracted = collect_test_predict - mean_emp cov_emp = np.einsum( 'ijk,ilk->jl', mean_subtracted, mean_subtracted, optimize=True) / ( mean_subtracted.shape[0] * mean_subtracted.shape[-1]) return mean_emp, cov_emp atol = ATOL rtol = RTOL mean_emp, cov_emp = mc_sampling(100) self.assertAllClose(mean_pred, mean_emp, True, rtol, atol) self.assertAllClose(cov_pred, cov_emp, True, rtol, atol) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}'.format( train, test, network, out_logits), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS)) def testGPInferenceGet(self, train_shape, test_shape, network, out_logits): key = random.PRNGKey(0) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) _, _, kernel_fn = _build_network(train_shape[1:], network, out_logits) out = predict.gp_inference( kernel_fn, x_train, y_train, x_test, 'ntk', diag_reg=0., compute_cov=True) assert isinstance(out, predict.Gaussian) out = predict.gp_inference( kernel_fn, x_train, y_train, x_test, 'nngp', diag_reg=0., compute_cov=True) assert isinstance(out, predict.Gaussian) out = predict.gp_inference( kernel_fn, x_train, y_train, x_test, ('ntk',), diag_reg=0., compute_cov=True) assert len(out) == 1 and isinstance(out[0], predict.Gaussian) out = predict.gp_inference( kernel_fn, x_train, y_train, x_test, ('ntk', 'nngp'), diag_reg=0., compute_cov=True) assert (len(out) == 2 and isinstance(out[0], predict.Gaussian) and isinstance(out[1], predict.Gaussian)) out2 = predict.gp_inference( kernel_fn, x_train, y_train, x_test, ('nngp', 'ntk'), diag_reg=0., compute_cov=True) self.assertAllClose(out[0], out2[1], True) self.assertAllClose(out[1], out2[0], True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}_get={}'.format( train, test, network, out_logits, get), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, 'get': get, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS for get in GETS)) def testInfiniteTimeAgreement(self, train_shape, test_shape, network, out_logits, get): key = random.PRNGKey(0) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) _, _, kernel_fn = _build_network(train_shape[1:], network, out_logits) reg = 1e-7 prediction = predict.gradient_descent_mse_gp( kernel_fn, x_train, y_train, x_test, get, diag_reg=reg, compute_cov=True) finite_prediction = prediction(np.inf) finite_prediction_none = prediction(None) gp_inference = predict.gp_inference(kernel_fn, x_train, y_train, x_test, get, reg, True) self.assertAllClose(finite_prediction_none, finite_prediction, True) self.assertAllClose(finite_prediction_none, gp_inference, True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}'.format( train, test, network, out_logits), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS)) def testZeroTimeAgreement(self, train_shape, test_shape, network, out_logits): """Test that the NTK and NNGP agree at t=0.""" key = random.PRNGKey(0) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) _, _, ker_fun = _build_network(train_shape[1:], network, out_logits) reg = 1e-7 prediction = predict.gradient_descent_mse_gp( ker_fun, x_train, y_train, x_test, diag_reg=reg, get=('NTK', 'NNGP'), compute_cov=True) zero_prediction = prediction(0.0) self.assertAllClose(zero_prediction.ntk, zero_prediction.nngp, True) reference = (np.zeros( (test_shape[0], out_logits)), ker_fun(x_test, x_test, get='nngp')) self.assertAllClose((reference,) * 2, zero_prediction, True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}'.format( train, test, network, out_logits), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS)) def testNTK_NTKNNGPAgreement(self, train_shape, test_shape, network, out_logits): key = random.PRNGKey(0) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) _, _, ker_fun = _build_network(train_shape[1:], network, out_logits) reg = 1e-7 prediction = predict.gradient_descent_mse_gp( ker_fun, x_train, y_train, x_test, diag_reg=reg, get='NTK', compute_cov=True) ts = np.logspace(-2, 8, 10) ntk_predictions = [prediction(t).mean for t in ts] # Create a hacked kernel function that always returns the ntk kernel def always_ntk(x1, x2, get=('nngp', 'ntk')): out = ker_fun(x1, x2, get=('nngp', 'ntk')) if get == 'nngp' or get == 'ntk': return out.ntk else: return out._replace(nngp=out.ntk) ntk_nngp_prediction = predict.gradient_descent_mse_gp( always_ntk, x_train, y_train, x_test, diag_reg=reg, get='NNGP', compute_cov=True) ntk_nngp_predictions = [ntk_nngp_prediction(t).mean for t in ts] # Test if you use the nngp equations with the ntk, you get the same mean self.assertAllClose(ntk_predictions, ntk_nngp_predictions, True) # Next test that if you go through the NTK code path, but with only # the NNGP kernel, we recreate the NNGP dynamics. reg = 1e-7 nngp_prediction = predict.gradient_descent_mse_gp( ker_fun, x_train, y_train, x_test, diag_reg=reg, get='NNGP', compute_cov=True) # Create a hacked kernel function that always returns the nngp kernel def always_nngp(x1, x2, get=('nngp', 'ntk')): out = ker_fun(x1, x2, get=('nngp', 'ntk')) if get == 'nngp' or get == 'ntk': return out.nngp else: return out._replace(ntk=out.nngp) nngp_ntk_prediction = predict.gradient_descent_mse_gp( always_nngp, x_train, y_train, x_test, diag_reg=reg, get='NTK', compute_cov=True) nngp_cov_predictions = [nngp_prediction(t).covariance for t in ts] nngp_ntk_cov_predictions = [nngp_ntk_prediction(t).covariance for t in ts] # Test if you use the ntk equations with the nngp, you get the same cov # Although, due to accumulation of numerical errors, only roughly. self.assertAllClose(nngp_cov_predictions, nngp_ntk_cov_predictions, True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}'.format( train, test, network, out_logits), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS)) def testNTKPredCovPosDef(self, train_shape, test_shape, network, out_logits): key = random.PRNGKey(0) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) _, _, ker_fun = _build_network(train_shape[1:], network, out_logits) reg = 1e-7 ntk_predictions = predict.gradient_descent_mse_gp( ker_fun, x_train, y_train, x_test, diag_reg=reg, get='ntk', compute_cov=True) ts = np.logspace(-2, 8, 10) ntk_cov_predictions = [ntk_predictions(t).covariance for t in ts] if xla_bridge.get_backend().platform == 'tpu': eigh = np.onp.linalg.eigh else: eigh = np.linalg.eigh check_symmetric = np.array( [np.max(np.abs(cov - cov.T)) for cov in ntk_cov_predictions]) check_pos_evals = np.min( np.array([eigh(cov)[0] + 1e-10 for cov in ntk_cov_predictions])) self.assertAllClose(check_symmetric, np.zeros_like(check_symmetric), True) self.assertGreater(check_pos_evals, 0., True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_train={}_test={}_network={}_logits={}'.format( train, test, network, out_logits), 'train_shape': train, 'test_shape': test, 'network': network, 'out_logits': out_logits, } for train, test, network in zip( TRAIN_SHAPES[:-1], TEST_SHAPES[:-1], NETWORK[:-1]) for out_logits in OUTPUT_LOGITS)) def testTrainedEnsemblePredCov(self, train_shape, test_shape, network, out_logits): if xla_bridge.get_backend().platform == 'gpu' and config.read( 'jax_enable_x64'): raise jtu.SkipTest('Not running GPU x64 to save time.') training_steps = 5000 learning_rate = 1.0 ensemble_size = 50 init_fn, apply_fn, ker_fn = stax.serial( stax.Dense(1024, W_std=1.2, b_std=0.05), stax.Erf(), stax.Dense(out_logits, W_std=1.2, b_std=0.05)) opt_init, opt_update, get_params = optimizers.sgd(learning_rate) opt_update = jit(opt_update) key = random.PRNGKey(0) key, = random.split(key, 1) key, split = random.split(key) x_train = np.cos(random.normal(split, train_shape)) key, split = random.split(key) y_train = np.array( random.bernoulli(split, shape=(train_shape[0], out_logits)), np.float32) train = (x_train, y_train) key, split = random.split(key) x_test = np.cos(random.normal(split, test_shape)) ensemble_key = random.split(key, ensemble_size) loss = jit(lambda params, x, y: 0.5 * np.mean((apply_fn(params, x) - y)**2)) grad_loss = jit(lambda state, x, y: grad(loss)(get_params(state), x, y)) def train_network(key): _, params = init_fn(key, (-1,) + train_shape[1:]) opt_state = opt_init(params) for i in range(training_steps): opt_state = opt_update(i, grad_loss(opt_state, *train), opt_state) return get_params(opt_state) params = vmap(train_network)(ensemble_key) ensemble_fx = vmap(apply_fn, (0, None))(params, x_test) ensemble_loss = vmap(loss, (0, None, None))(params, x_train, y_train) ensemble_loss = np.mean(ensemble_loss) self.assertLess(ensemble_loss, 1e-5, True) mean_emp = np.mean(ensemble_fx, axis=0) mean_subtracted = ensemble_fx - mean_emp cov_emp = np.einsum( 'ijk,ilk->jl', mean_subtracted, mean_subtracted, optimize=True) / ( mean_subtracted.shape[0] * mean_subtracted.shape[-1]) reg = 1e-7 ntk_predictions = predict.gp_inference( ker_fn, x_train, y_train, x_test, 'ntk', reg, compute_cov=True) self.assertAllClose(mean_emp, ntk_predictions.mean, True, RTOL, ATOL) self.assertAllClose(cov_emp, ntk_predictions.covariance, True, RTOL, ATOL) def testPredictOnCPU(self): x_train = random.normal(random.PRNGKey(1), (10, 4, 5, 3)) x_test = random.normal(random.PRNGKey(1), (8, 4, 5, 3)) y_train = random.uniform(random.PRNGKey(1), (10, 7)) _, _, kernel_fn = stax.serial( stax.Conv(1, (3, 3)), stax.Relu(), stax.Flatten(), stax.Dense(1)) for store_on_device in [False, True]: for device_count in [0, 1]: for get in ['ntk', 'nngp', ('nngp', 'ntk'), ('ntk', 'nngp')]: with self.subTest( store_on_device=store_on_device, device_count=device_count, get=get): kernel_fn_batched = batch.batch(kernel_fn, 2, device_count, store_on_device) predictor = predict.gradient_descent_mse_gp(kernel_fn_batched, x_train, y_train, x_test, get, 0., True) gp_inference = predict.gp_inference(kernel_fn_batched, x_train, y_train, x_test, get, 0., True) self.assertAllClose(predictor(None), predictor(np.inf), True) self.assertAllClose(predictor(None), gp_inference, True) def testIsOnCPU(self): for dtype in [np.float32, np.float64]: with self.subTest(dtype=dtype): def x(): return random.normal(random.PRNGKey(1), (2, 3), dtype) def x_cpu(): return device_get(random.normal(random.PRNGKey(1), (2, 3), dtype)) x_jit = jit(x) x_cpu_jit = jit(x_cpu) x_cpu_jit_cpu = jit(x_cpu, backend='cpu') self.assertTrue(predict._is_on_cpu(x_cpu())) self.assertTrue(predict._is_on_cpu(x_cpu_jit())) self.assertTrue(predict._is_on_cpu(x_cpu_jit_cpu())) if xla_bridge.get_backend().platform == 'cpu': self.assertTrue(predict._is_on_cpu(x())) self.assertTrue(predict._is_on_cpu(x_jit())) else: self.assertFalse(predict._is_on_cpu(x())) self.assertFalse(predict._is_on_cpu(x_jit())) if __name__ == '__main__': jtu.absltest.main()
33.253817
80
0.609527
871e7ccd4f9e76ec93577b82ae01f51ed8069921
5,411
py
Python
crawler/post_process_jsonv2.py
saurabhvyas/dataset_creator
770477aca0611f6e1776ff6059c454d34693e18d
[ "MIT" ]
1
2019-07-01T15:26:57.000Z
2019-07-01T15:26:57.000Z
crawler/post_process_jsonv2.py
saurabhvyas/dataset_creator
770477aca0611f6e1776ff6059c454d34693e18d
[ "MIT" ]
1
2020-01-11T19:24:43.000Z
2020-01-11T19:24:43.000Z
crawler/post_process_jsonv2.py
saurabhvyas/dataset_creator
770477aca0611f6e1776ff6059c454d34693e18d
[ "MIT" ]
null
null
null
import json '''import argparse parser = argparse.ArgumentParser() parser.add_argument("-wav_file") parser.add_argument("-txt_file") args = parser.parse_args() # this code section simply takes wave file ( ) and txt file (txt_file) and gentle json(json_file) and returns starting and ending times ''' def filter_json(json_dict): last_word_index=-1 for id,word in enumerate(json_dict["words"]): if "end" in word: last_word_index=id return json_dict["words"][0:last_word_index] def get_sentence_boundary(json_file,txt_file): with open(json_file, 'r') as f: array = json.load(f) # print(array["words"]) array=filter_json(array) text = "" sentence_ended = False sentence_started = False starting_time=0 ending_time=0 sentences=[] current_longest_sentence_length=0 current_longest_sentence_id=0 for word in array: if "end" in word: sentence_ended=False ending_time=word["end"] if sentence_started == False: sentence_started = True starting_time=word["start"] #if sentence_ended == False: text = text + " " + word["alignedWord"] #elif sentence_ended == True: #text = word["alignedWord"] else : if len(text) != 0: if len(text) > current_longest_sentence_length: current_longest_sentence_length=len(text) current_longest_sentence_id=len(sentences) sentences.append([starting_time,ending_time,len(text),text]) text="" sentence_started=False starting_time=0 ending_time=0 #sentence_ended = True #print(" text : " + text ) #print(" starting time : " + str(starting_time) ) #print(" ending time : " + str(ending_time) ) # overwrite text file with longest sentence and return its starting time and ending time data=0 with open(txt_file, 'w+') as out: #data = out.read() #if len(data) == 0: #print(text) out.write(sentences[current_longest_sentence_id][3]) #if text=="" or len(data) == 0: if text=="": return [0,0] else: return [sentences[current_longest_sentence_id][0], sentences[current_longest_sentence_id][1]] ''' start of another code segment will document this later ''' def istxtfileempty(path): import os return os.stat(path).st_size == 0 def getaudiolen(path): import soundfile as sf f = sf.SoundFile(path) #print('samples = {}'.format(len(f))) #print('sample rate = {}'.format(f.samplerate)) return len(f) / f.samplerate def trim_audio(wavfilename,starting_time,ending_time): import subprocess subprocess.call(["ffmpeg", "-i",wavfilename,"-ss",starting_time,"-to",ending_time,"-y" , "-c" , "copy" , wavfilename ]) def sendgentlerequest(wavfilepath,txtfilepath,outputjsonpath): ''' this function calls gentle forced aligner docker container passes txt file, wave file it expects output json which it stores to output json path ''' import requests #payload = {'audio=@': wavfilepath, 'transcript=<': txt_file_path} #r = requests.post('http://localhost:8765/transcriptions?async=false',data=payload) #import requests with open(txtfilepath, 'r') as file: txt_data = file.read().replace('\n', '') params = ( ('async', 'false'), ) files = { 'audio': ( wavfilepath, open(wavfilepath, 'rb')), 'transcript': (None, txt_data), } r = requests.post('http://localhost:8765/transcriptions', params=params, files=files) import json print(r.json()) with open(outputjsonpath, 'w', encoding='utf-8') as f: json.dump(r.json(), f, ensure_ascii=False, indent=4) # iterate over all subdirectories in wav folder import os rootdir = 'filter_dir/wav/' import glob,os from pathlib import Path for folder in glob.iglob('./filter_dir/wav/*'): print(folder) base_folder_path=Path(folder).name for file in glob.iglob(folder + "/*.wav"): #print(file) base_file_name=Path(file).name # get audio length audio_len=getaudiolen(file) txt_file_path="./filter_dir/txt/" + base_folder_path + "/" + base_file_name.replace("wav","txt") output_json_path="./filter_dir/txt/" + base_folder_path + "/" + base_file_name.replace("wav","json") print(txt_file_path) #print(audio_len) if audio_len!=0 and istxtfileempty(txt_file_path) ==False: print("calling gentle") # call gentle sendgentlerequest(file,txt_file_path,output_json_path) # get sentence boundaries boundaries=get_sentence_boundary(output_json_path,txt_file_path) starting_time=boundaries[0] ending_time=boundaries[1] #trim audio print("starting time : ",starting_time) print("ending time : ",ending_time) trim_audio(file,str(starting_time),str(ending_time))
29.091398
123
0.595823
73113539329c5493141db243b85254062f7b8f88
2,075
py
Python
tensorflow/python/keras/_impl/keras/__init__.py
M155K4R4/Tensorflow
e5e03ef3148303b3dfed89a1492dedf92b45be25
[ "Apache-2.0" ]
24
2018-02-01T15:49:22.000Z
2021-01-11T16:31:18.000Z
tensorflow/python/keras/_impl/keras/__init__.py
M155K4R4/Tensorflow
e5e03ef3148303b3dfed89a1492dedf92b45be25
[ "Apache-2.0" ]
2
2018-09-09T07:29:07.000Z
2019-03-11T07:14:45.000Z
tensorflow/python/keras/_impl/keras/__init__.py
M155K4R4/Tensorflow
e5e03ef3148303b3dfed89a1492dedf92b45be25
[ "Apache-2.0" ]
4
2018-10-29T18:43:22.000Z
2020-09-28T07:19:52.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Keras API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.keras._impl.keras import activations from tensorflow.python.keras._impl.keras import applications from tensorflow.python.keras._impl.keras import backend from tensorflow.python.keras._impl.keras import callbacks from tensorflow.python.keras._impl.keras import constraints from tensorflow.python.keras._impl.keras import datasets from tensorflow.python.keras._impl.keras import engine from tensorflow.python.keras._impl.keras import estimator from tensorflow.python.keras._impl.keras import initializers from tensorflow.python.keras._impl.keras import layers from tensorflow.python.keras._impl.keras import losses from tensorflow.python.keras._impl.keras import metrics from tensorflow.python.keras._impl.keras import models from tensorflow.python.keras._impl.keras import optimizers from tensorflow.python.keras._impl.keras import preprocessing from tensorflow.python.keras._impl.keras import regularizers from tensorflow.python.keras._impl.keras import utils from tensorflow.python.keras._impl.keras import wrappers from tensorflow.python.keras._impl.keras.layers import Input from tensorflow.python.keras._impl.keras.models import Model from tensorflow.python.keras._impl.keras.models import Sequential __version__ = '2.1.3-tf'
47.159091
80
0.793735
d58a0fcc0ed66874ac9c2a2b63d2af320ee9ec40
5,942
py
Python
Speedo/plugins/yt.py
Hobby-Dev-0/Speedo
bf0c935aa63e782835e15ba2ffab8bbe52771201
[ "BSD-3-Clause" ]
null
null
null
Speedo/plugins/yt.py
Hobby-Dev-0/Speedo
bf0c935aa63e782835e15ba2ffab8bbe52771201
[ "BSD-3-Clause" ]
null
null
null
Speedo/plugins/yt.py
Hobby-Dev-0/Speedo
bf0c935aa63e782835e15ba2ffab8bbe52771201
[ "BSD-3-Clause" ]
3
2021-10-12T08:17:01.000Z
2021-12-21T01:17:54.000Z
import re import random import json from pathlib import Path import asyncio import math import os import time from telethon.tl.types import DocumentAttributeAudio from youtube_search import YoutubeSearch from youtube_dl import YoutubeDL from youtube_dl.utils import ( ContentTooShortError, DownloadError, ExtractorError, GeoRestrictedError, MaxDownloadsReached, PostProcessingError, UnavailableVideoError, XAttrMetadataError, ) from . import * @bot.on(admin_cmd(pattern="yt(a|v) (.*)")) @bot.on(sudo_cmd(pattern="yt(a|v) (.*)", allow_sudo=True)) async def download_video(v_url): if v_url.fwd_from: return url = v_url.pattern_match.group(2) type = v_url.pattern_match.group(1).lower() event = await eor(v_url, "`Preparing to download...`") if type == "a": opts = { "format": "bestaudio", "addmetadata": True, "key": "FFmpegMetadata", "writethumbnail": True, "prefer_ffmpeg": True, "geo_bypass": True, "nocheckcertificate": True, "postprocessors": [ { "key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "480", } ], "outtmpl": "%(id)s.mp3", "quiet": True, "logtostderr": False, } video = False song = True elif type == "v": opts = { "format": "best", "addmetadata": True, "key": "FFmpegMetadata", "prefer_ffmpeg": True, "geo_bypass": True, "nocheckcertificate": True, "postprocessors": [ {"key": "FFmpegVideoConvertor", "preferedformat": "mp4"} ], "outtmpl": "%(id)s.mp4", "logtostderr": False, "quiet": True, } song = False video = True try: await event.edit("**Fetching YT link...**") with YoutubeDL(opts) as ytdl: ytdl_data = ytdl.extract_info(url) except DownloadError as DE: await edit_or_reply(v_url, f"`{str(DE)}`") return except ContentTooShortError: await eod(event, "`The download content was too short.`") return except GeoRestrictedError: await eod(event, "`Video is not available from your geographic location due to geographic restrictions imposed by a website.`" ) return except MaxDownloadsReached: await eod(event, "`Max-downloads limit has been reached.`") return except PostProcessingError: await eod(event, "`There was an error during post processing.`") return except UnavailableVideoError: await eod(event, "`Media is not available in the requested format.`") return except XAttrMetadataError as XAME: await edit_or_reply(v_url, f"`{XAME.code}: {XAME.msg}\n{XAME.reason}`") return except ExtractorError: await eod(event, "`There was an error during info extraction.`") return except Exception as e: await eod(event, f"{str(type(e)): {str(e)}}", 10) return c_time = time.time() if song: await eor(event, f"📤 `Preparing to upload audio:`\ \n\n**{ytdl_data['title']}**\ \nby *{ytdl_data['uploader']}*" ) await v_url.client.send_file( v_url.chat_id, f"{ytdl_data['id']}.mp3", supports_streaming=True, attributes=[ DocumentAttributeAudio( duration=int(ytdl_data["duration"]), title=str(ytdl_data["title"]), performer=perf, ) ], progress_callback=lambda d, t: asyncio.get_event_loop().create_task( progress( d, t, v_url, c_time, "Uploading..", f"{ytdl_data['title']}.mp3" ) ), ) os.remove(f"{ytdl_data['id']}.mp3") await v_url.delete() elif video: await eor(event, f"`Preparing to upload video:`\ \n\n**{ytdl_data['title']}**\ \nby *{ytdl_data['uploader']}*" ) await v_url.client.send_file( v_url.chat_id, f"{ytdl_data['id']}.mp4", supports_streaming=True, caption=ytdl_data["title"], progress_callback=lambda d, t: asyncio.get_event_loop().create_task( progress( d, t, v_url, c_time, "Uploading..", f"{ytdl_data['title']}.mp4" ) ), ) os.remove(f"{ytdl_data['id']}.mp4") await v_url.delete() @bot.on(admin_cmd(pattern="ytlink ?(.*)")) @bot.on(sudo_cmd(pattern="ytlink ?(.*)", allow_sudo=True)) async def hmm(ytwala): query = ytwala.pattern_match.group(1) if not query: await eod(ytwala, "`Enter query to search on yt`") event = await eor(ytwala, "`Processing...`") try: results = json.loads(YoutubeSearch(query, max_results=7).to_json()) except KeyError: return await eod(event, "Unable to find relevant search queries...") output = f"**Search Query:**\n`{query}`\n\n**Results:**\n\n" for i in results["videos"]: output += (f"--> `{i['title']}`\nhttps://www.youtube.com{i['url_suffix']}\n\n") await event.edit(output, link_preview=False) CmdHelp("youtube").add_command( "yta", "<yt link>", "Extracts the audio from given youtube link and uploads it to telegram" ).add_command( "ytv", "<yt link>", "Extracts the video from given youtube link and uploads it to telegram" ).add_command( "ytlink", "<search keyword>", "Extracts 7 links from youtube based on the given search query" ).add_info( "Youthoob ki duniya." ).add_warning( "✅ Harmless Module." ).add()
31.775401
121
0.561427
f719fd37c128d9a9db10d9a47902af2a5eb5d61e
3,283
py
Python
lektor/markdown/__init__.py
uk0/lektor
21bdf99aa1183b4398043f87ba8ed137fad529ce
[ "BSD-3-Clause" ]
null
null
null
lektor/markdown/__init__.py
uk0/lektor
21bdf99aa1183b4398043f87ba8ed137fad529ce
[ "BSD-3-Clause" ]
null
null
null
lektor/markdown/__init__.py
uk0/lektor
21bdf99aa1183b4398043f87ba8ed137fad529ce
[ "BSD-3-Clause" ]
null
null
null
import sys from typing import Any from typing import Dict from typing import Hashable from typing import Type from typing import TYPE_CHECKING from weakref import ref as weakref from deprecated import deprecated from markupsafe import Markup from lektor.markdown.controller import ControllerCache from lektor.markdown.controller import FieldOptions from lektor.markdown.controller import MarkdownController from lektor.markdown.controller import Meta from lektor.markdown.controller import RenderResult from lektor.sourceobj import SourceObject if sys.version_info >= (3, 8): from importlib.metadata import version else: from importlib_metadata import version if TYPE_CHECKING: # pragma: no cover from lektor.environment import Environment controller_class: Type[MarkdownController] MISTUNE_VERSION = version("mistune") if MISTUNE_VERSION.startswith("0."): from lektor.markdown.mistune0 import MarkdownController0 as controller_class elif MISTUNE_VERSION.startswith("2."): from lektor.markdown.mistune2 import MarkdownController2 as controller_class else: # pragma: no cover raise ImportError("Unsupported version of mistune") get_controller = ControllerCache(controller_class) @deprecated def make_markdown(env: "Environment") -> Any: # (Environment) -> mistune.Markdown return get_controller(env).make_parser() @deprecated def markdown_to_html( text: str, record: SourceObject, field_options: FieldOptions ) -> RenderResult: return get_controller().render(text, record, field_options) class Markdown: def __init__( self, source: str, record: SourceObject, field_options: FieldOptions ) -> None: self.source = source self.__record = weakref(record) self.__field_options = field_options self.__cache: Dict[Hashable, RenderResult] = {} def __bool__(self) -> bool: return bool(self.source) __nonzero__ = __bool__ @property def record(self) -> SourceObject: record = self.__record() if record is None: raise RuntimeError("Record has gone away") return record def __render(self) -> RenderResult: # When the markdown instance is attached to a cached object we # can end up in the situation where, e.g., the base_url has # changed from the time we were put into the cache to the time # where we got referenced by something elsewhere. Since this # affects the processing of relative links, in that case we # need to re-process our markdown. controller = get_controller() key = controller.get_cache_key() result = self.__cache.get(key) if key is not None else None if result is None: result = controller.render(self.source, self.record, self.__field_options) if key is not None: self.__cache[key] = result return result @property def meta(self) -> Meta: return self.__render().meta @property def html(self) -> Markup: return Markup(self.__render().html) def __getitem__(self, name: str) -> Any: return self.meta[name] def __str__(self) -> str: return self.__render().html def __html__(self) -> Markup: return self.html
30.682243
86
0.709108
478516ee1b7cfb538366afadda705d9f9f06b79a
214
py
Python
freight_forwarder/commercial_invoice/__init__.py
TUNE-Archive/freight_forwarder
6ea4a49f474ec04abb8bb81b175c774a16b5312f
[ "MIT" ]
null
null
null
freight_forwarder/commercial_invoice/__init__.py
TUNE-Archive/freight_forwarder
6ea4a49f474ec04abb8bb81b175c774a16b5312f
[ "MIT" ]
null
null
null
freight_forwarder/commercial_invoice/__init__.py
TUNE-Archive/freight_forwarder
6ea4a49f474ec04abb8bb81b175c774a16b5312f
[ "MIT" ]
null
null
null
# -*- coding: utf-8; -*- # flake8: noqa from __future__ import unicode_literals, absolute_import from .commercial_invoice import CommercialInvoice from .service import Service __author__ = 'alexb'
23.777778
56
0.724299
b63fdcbdcdeccf24d586e3ee71e004cf431f726e
53,839
py
Python
tests/test_edgeql_volatility.py
sobolevn/edgedb
b346b6496a203d8313d4c9adf68b0478f85122ed
[ "Apache-2.0" ]
null
null
null
tests/test_edgeql_volatility.py
sobolevn/edgedb
b346b6496a203d8313d4c9adf68b0478f85122ed
[ "Apache-2.0" ]
null
null
null
tests/test_edgeql_volatility.py
sobolevn/edgedb
b346b6496a203d8313d4c9adf68b0478f85122ed
[ "Apache-2.0" ]
null
null
null
# # This source file is part of the EdgeDB open source project. # # Copyright 2019-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import os.path import edgedb from edb.testbase import server as tb from edb.testbase import serutils from edb.tools import test class TestEdgeQLVolatility(tb.QueryTestCase): SCHEMA = os.path.join(os.path.dirname(__file__), 'schemas', 'volatility.esdl') SETUP = os.path.join(os.path.dirname(__file__), 'schemas', 'volatility_setup.edgeql') def _check_crossproduct(self, res): ns = set() pairs = set() for row in res: ns.add(row[0]) pairs.add((row[0], row[1])) self.assertEqual( pairs, {(n1, n2) for n1 in ns for n2 in ns}, ) def test_loop(self, n=None, *, one=False): async def json_query(*args, **kwargs): q = self.con.query_one_json if one else self.con.query_json res = await q(*args, **kwargs) return json.loads(res) async def native_query(*args, **kwargs): q = self.con.query_one if one else self.con.query res = await q(*args, **kwargs) return serutils.serialize(res) qs = [json_query, native_query] if n is None: n = len(qs) for i in range(n): yield qs[i % len(qs)] async def test_edgeql_volatility_function_01(self): result = await self.con.query( r""" SELECT Obj { # immutable function should only be called once, # generating the same value for all Objs x := vol_immutable() }; """ ) self.assertEqual( len(set(res.x for res in result)), 1, 'more than one value for the same vol_immutable() call' ) async def test_edgeql_volatility_function_02(self): result = await self.con.query( r""" SELECT Obj { # stable function should only be called once, # generating the same value for all Objs x := vol_stable() }; """ ) self.assertEqual( len(set(res.x for res in result)), 1, 'more than one value for the same vol_stable() call' ) async def test_edgeql_volatility_function_03a(self): result = await self.con.query( r""" SELECT Obj { # volatile function should be called once for each # Obj, generating different values x := vol_volatile() }; """ ) self.assertNotEqual( len(set(res.x for res in result)), 1, 'only one value for multiple vol_volatile() calls' ) async def test_edgeql_volatility_function_03b(self): result = await self.con.query( r""" SELECT Obj { # volatile function should be called once for each # Obj, generating different values x := (vol_volatile(),) }; """ ) self.assertNotEqual( len(set(res.x for res in result)), 1, 'only one value for multiple vol_volatile() calls' ) async def test_edgeql_volatility_function_04(self): with self.assertRaises(edgedb.DivisionByZeroError): await self.con.execute(r''' SELECT Obj { # this condition is true for all of the Objs, but # a constant immutable function call can be # factored out and called once per query x := 1 IF Obj.n > 0 ELSE err_immutable() }; ''') async def test_edgeql_volatility_function_05(self): await self.assert_query_result(r''' SELECT Obj { # this condition is true for all of the Objs and the # stable function call cannot be factored out x := 1 IF Obj.n > 0 ELSE err_stable() }; ''', [ {'x': 1}, {'x': 1}, {'x': 1}, ]) async def test_edgeql_volatility_function_06(self): await self.assert_query_result(r''' SELECT Obj { # this condition is true for all of the Objs and the # volatile function call cannot be factored out x := 1 IF Obj.n > 0 ELSE err_volatile() }; ''', [ {'x': 1}, {'x': 1}, {'x': 1}, ]) async def test_edgeql_volatility_operator_01(self): with self.assertRaises(edgedb.DivisionByZeroError): await self.con.execute(r''' SELECT Obj { # this condition is true for all of the Objs, but # a constant immutable operation can be factored out # and called once per query x := 1 IF Obj.n > 0 ELSE (1/0) }; ''') async def test_edgeql_volatility_cast_01(self): with self.assertRaises(edgedb.DivisionByZeroError): await self.con.execute(r''' SELECT Obj { # this condition is true for all of the Objs, but # a constant immutable cast can be factored out # and called once per query x := 1 IF Obj.n > 0 ELSE (<int64>(<float64>1)/0) }; ''') async def test_edgeql_volatility_cast_02(self): await self.assert_query_result(r''' SELECT Obj { # this condition is true for all of the Objs and the # stable cast (<json>) cannot be factored out x := 1 IF Obj.n > 0 ELSE (<int64>(<json>1)/0) }; ''', [ {'x': 1}, {'x': 1}, {'x': 1}, ]) async def test_edgeql_volatility_for_01(self): await self.assert_query_result( r''' SELECT count(DISTINCT (FOR x in {1,2} UNION ( uuid_generate_v1mc()))); ''', [2], ) async def test_edgeql_volatility_for_02(self): await self.assert_query_result( r''' WITH X := (FOR x in {1,2} UNION (uuid_generate_v1mc(), x)) SELECT count(DISTINCT X.0); ''', [2], ) async def test_edgeql_volatility_for_03(self): await self.assert_query_result( r''' WITH X := (FOR y in {1, 2} UNION ( FOR x in {1,2} UNION (uuid_generate_v1mc(), x))) SELECT count(DISTINCT X.0); ''', [4], ) async def test_edgeql_volatility_for_04(self): await self.assert_query_result( r''' WITH X := (FOR y in {1, 2} UNION ( (0, (FOR x in {1,2} UNION ( uuid_generate_v1mc(), x))))) SELECT count(DISTINCT X.1.0); ''', [4], ) async def test_edgeql_volatility_for_05(self): await self.assert_query_result( r''' WITH X := (FOR y in {1, 2} UNION ( (uuid_generate_v1mc(), (INSERT Obj { n := y })))) SELECT count(DISTINCT X.0); ''', [2], ) async def test_edgeql_volatility_for_06(self): await self.assert_query_result( r''' SELECT count(DISTINCT (FOR x in {1,1} UNION ( uuid_generate_v1mc()))); ''', [2], ) async def test_edgeql_volatility_for_07(self): await self.assert_query_result( r''' SELECT count(DISTINCT (FOR x in {(),()} UNION ( uuid_generate_v1mc()))); ''', [2], ) async def test_edgeql_volatility_for_08(self): await self.assert_query_result( r''' SELECT count(DISTINCT (FOR x in {({1,2}, 0).1} UNION ( uuid_generate_v1mc()))); ''', [2], ) async def test_edgeql_volatility_for_09(self): await self.assert_query_result( r''' SELECT count( DISTINCT (FOR x in {(Obj { x := random() }).x} UNION ( uuid_generate_v1mc()))); ''', [3], ) async def test_edgeql_volatility_for_10(self): res = await self.con.query( r''' WITH x := random() FOR y in {1,2,3} UNION (x); ''', ) self.assertEqual(len(set(res)), 1) async def test_edgeql_volatility_select_clause_01a(self): # Spurious failure probability: 1/100! # We need a nested SELECT because of bug #1816 # loses the ORDER BY otherwise await self.assert_query_result( r''' WITH X := enumerate((SELECT _gen_series(0,99) ORDER BY random())) SELECT all(X.0 = X.1); ''', [False], ) async def test_edgeql_volatility_select_clause_01(self): # Spurious failure probability: 1/100! # We need a nested SELECT because of bug #1816 # loses the ORDER BY otherwise await self.assert_query_result( r''' WITH X := enumerate((SELECT _gen_series(0,99) ORDER BY random())) SELECT all((FOR x in {X} UNION (x.0 = x.1))) ''', [False], ) async def test_edgeql_volatility_select_clause_02(self): # Spurious failure probability: 1/2^99 await self.assert_query_result( r''' SELECT count((SELECT _gen_series(0,99) FILTER random() > 0.5)) NOT IN {0, 100}; ''', [True], ) async def test_edgeql_volatility_select_clause_03(self): # Spurious failure probability: 1/2^100 I think # We want to test that the two SELECTs do separate FILTERs # This is written in an awful way because of a bug with WITH. await self.assert_query_result( r''' FOR X in { array_agg( (FOR x in {0, 1} UNION (SELECT _gen_series(0,100) FILTER random() > 0.5)))} UNION ( SELECT count(array_unpack(X)) != 2*count(DISTINCT array_unpack(X))); ''', [True], ) async def test_edgeql_volatility_select_clause_04(self): # Spurious failure probability: 1/2^100 I think # This is just the test above but manually... result = await self.con.query( r''' FOR x in {0, 1} UNION ( SELECT _gen_series(0,100) FILTER random() > 0.5 ) ''', ) self.assertNotEqual( 2 * len(set(result)), len(result), 'SELECT in FOR loop not doing independent filters' ) async def test_edgeql_volatility_select_clause_05(self): # Spurious failure probability: 1/2^99 await self.assert_query_result( r''' WITH X := (FOR x in {_gen_series(0,99)} UNION (())) SELECT count((SELECT X FILTER random() > 0.5)) NOT IN {0, 100}; ''', [True], ) async def test_edgeql_volatility_select_clause_06(self): # Spurious failure probability: 1/2^99 await self.assert_query_result( r''' WITH X := (_gen_series(0,99), 0).1 SELECT count((SELECT X FILTER random() > 0.5)) NOT IN {0, 100}; ''', [True], ) async def test_edgeql_volatility_with_01(self): await self.assert_query_result( r''' WITH X := random() SELECT sum(X) = sum(X); ''', [True], ) async def test_edgeql_volatility_with_02(self): await self.assert_query_result( r''' WITH X := random(), Y := X SELECT sum(Y) = sum(Y) ''', [True], ) async def test_edgeql_volatility_with_03(self): await self.assert_query_result( r''' WITH W := random(), Z := W, SELECT W = Z; ''', [True], ) async def test_edgeql_volatility_with_04(self): await self.assert_query_result( r''' WITH W := {random(), random()}, Z := W+0, SELECT _ := (W = Z) ORDER BY _; ''', [False, False, True, True], ) async def test_edgeql_volatility_with_05(self): await self.con.execute(r''' CREATE TYPE Foo { CREATE PROPERTY asdf -> tuple<float64> }; ''') await self.con.query(r''' WITH X := (random(),) SELECT X.0; ''') await self.con.query(r''' WITH X := {(random(),),(random(),)} SELECT X.0; ''') async def test_edgeql_volatility_update_clause_01(self): # Spurious failure probability: 1/2^99 await self.con.execute(r''' FOR x in {_gen_series(4,100)} UNION ( INSERT Obj { n := x }) ''') await self.assert_query_result( r''' SELECT count(Obj) ''', [100], ) await self.assert_query_result( r''' WITH X := (UPDATE Obj FILTER random() > 0.5 SET { n := -1 }) SELECT count(X) NOT IN {0, 100} ''', [True], ) await self.assert_query_result( r''' WITH X := (SELECT Obj FILTER .n < 0) SELECT count(X) != 0 AND count(X) != 100 ''', [True], ) async def test_edgeql_volatility_delete_clause_01(self): # Spurious failure probability: 1/2^99 await self.con.execute(r''' FOR x in {_gen_series(4,100)} UNION ( INSERT Obj { n := x }) ''') await self.assert_query_result( r''' WITH X := (DELETE Obj FILTER random() > 0.5) SELECT count(X) NOT IN {0, 100} ''', [True], ) await self.assert_query_result( r''' SELECT count(Obj) != 0 AND count(Obj) != 100 ''', [True], ) async def test_edgeql_volatility_select_with_objects_01(self): for query in self.test_loop(10): res = await query(""" WITH W := (SELECT Obj FILTER random() > 0.5), SELECT ((SELECT W {n}), (SELECT W {n})) """) self._check_crossproduct( [(row[0]['n'], row[1]['n']) for row in res]) async def test_edgeql_volatility_select_with_objects_02(self): for query in self.test_loop(10): res = await query(""" SELECT Obj {n, m := random()} FILTER .m > 0.3 ORDER BY .m; """) for row in res: self.assertGreater(row['m'], 0.3) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_with_objects_03(self): for query in self.test_loop(10): res = await query(""" SELECT { o := ( SELECT Obj {n, m := random()} FILTER .m > 0.3 ORDER BY .m ) }; """) res = res[0]['o'] for row in res: self.assertGreater(row['m'], 0.3) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_with_objects_04(self): for query in self.test_loop(10): res = await query(""" SELECT { o := (SELECT ( SELECT Obj {n, m := random()} FILTER .m > 0.3 ORDER BY .m )) } """) res = res[0]['o'] for row in res: self.assertGreater(row['m'], 0.3) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_with_objects_05(self): for query in self.test_loop(10): res = await query(""" SELECT { o := (SELECT ( SELECT Obj {n, m := random()} FILTER .m > 0.3 ) ORDER BY .m) } """) res = res[0]['o'] for row in res: self.assertGreater(row['m'], 0.3) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_with_objects_06(self): for query in self.test_loop(10): res = await query(""" SELECT ( SELECT Obj {n, m := random()} ) FILTER .m > 0.3 ORDER BY .m """) for row in res: self.assertGreater(row['m'], 0.3) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_with_objects_07(self): for query in self.test_loop(10): res = await query(""" SELECT ( SELECT Obj {n, m := {random(), random()}} ) ORDER BY max(.m) """) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums, key=max)) async def test_edgeql_volatility_select_with_objects_08(self): for query in self.test_loop(10): res = await query(""" SELECT ( SELECT Obj {n, m := (random(), random())} ) ORDER BY max(.m) """) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_with_objects_09(self): for query in self.test_loop(10): res = await query(""" SELECT ( SELECT Obj {n, m := [random(), random()]} ) ORDER BY max(.m) """) nums = [row['m'] for row in res] self.assertEqual(nums, sorted(nums)) async def test_edgeql_volatility_select_objects_optional_01(self): for _ in range(10): await self.assert_query_result( r''' WITH X := (SELECT Obj { m := (SELECT .n FILTER random() > 0.5) }), SELECT count(X); ''', [3], ) async def test_edgeql_volatility_select_objects_optional_02(self): for query in self.test_loop(10, one=True): res = await query(""" WITH X := (SELECT Obj { m := (SELECT .n FILTER random() > 0.5) }), SELECT { foo := (SELECT X {n, m}), baz := (SELECT X.m), }; """) foos = [x['m'] for x in res['foo'] if x['m'] is not None] self.assertEqual(set(foos), set(res['baz'])) async def test_edgeql_volatility_select_hard_objects_01a(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj {m := next()}), SELECT (O.m, O.m); """) self.assertEqual(len(res), 3) for row in res: self.assertEqual(row[0], row[1]) # Make sure it is really volatile self.assertNotEqual(res[0][0], res[1][0]) async def test_edgeql_volatility_select_hard_objects_01b(self): for query in self.test_loop(): # one side in a subquery, one not res = await query(""" WITH O := (SELECT Obj {m := next()}), SELECT ((SELECT O.m), O.m); """) self.assertEqual(len(res), 3) for row in res: self.assertEqual(row[0], row[1]) async def test_edgeql_volatility_select_hard_objects_02a(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj {m := next()}), SELECT ((SELECT O.m), (SELECT O.m)); """) self.assertEqual(len(res), 9) self._check_crossproduct(res) async def test_edgeql_volatility_select_hard_objects_02b(self): for query in self.test_loop(10): res = await query(""" WITH O := (SELECT Obj {m := random()} FILTER .m > 0.3), SELECT ((SELECT O.m), (SELECT O.m)); """) for row in res: self.assertGreater(row[0], 0.3) self._check_crossproduct(res) async def test_edgeql_volatility_select_hard_objects_03(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj {m := next()}), SELECT (O {m}, O {m}); """) self.assertEqual(len(res), 3) for row in res: self.assertEqual(row[0]['m'], row[1]['m']) async def test_edgeql_volatility_select_hard_objects_04a(self): # TODO: this, but wrapped in DISTINCT # (which breaks the serialization, ugh!) for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj {m := next()}), SELECT ((SELECT O {m}), (SELECT O {m})); """) self._check_crossproduct( [(row[0]['m'], row[1]['m']) for row in res]) async def test_edgeql_volatility_select_hard_objects_04b(self): # TODO: this, but wrapped in DISTINCT # (which breaks the serialization, ugh!) for query in self.test_loop(10): res = await query(""" WITH O := (SELECT Obj {m := random()} FILTER .m > 0.3), SELECT ((SELECT O {m}), (SELECT O {m})); """) for row in res: self.assertGreater(row[0]['m'], 0.3) self._check_crossproduct( [(row[0]['m'], row[1]['m']) for row in res]) async def test_edgeql_volatility_select_hard_objects_05(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT {m := next()} LIMIT 1), SELECT (O {m}, O {m}); """) self.assertEqual(len(res), 1) for row in res: self.assertEqual(row[0]['m'], row[1]['m']) async def test_edgeql_volatility_select_hard_objects_06(self): # now let's try it with a multi prop res = await self.con.query(""" WITH O := (SELECT Obj {m := {next(), next()} }) SELECT ((SELECT O {m}), (SELECT O {m})); """) self._check_crossproduct([(row[0].m, row[1].m) for row in res]) async def test_edgeql_volatility_select_hard_objects_07(self): # now let's try it with a multi prop for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj {m := {next(), next()} }) SELECT ((O {m}), (O {m})); """) self.assertEqual(len(res), 3) for row in res: self.assertEqual(row[0]['m'], row[1]['m']) async def test_edgeql_volatility_select_hard_objects_08a(self): for query in self.test_loop(one=True): res = await query(""" WITH O := (SELECT Obj {m := next()}), SELECT { foo := (SELECT O {n, m}), bar := (SELECT O {n, m}), }; """) self.assertEqual( {(x['n'], x['m']) for x in res['foo']}, {(x['n'], x['m']) for x in res['bar']}, ) self.assertEqual(len(res['foo']), 3) async def test_edgeql_volatility_select_hard_objects_08b(self): for query in self.test_loop(one=True): res = await query(""" WITH O := (SELECT Obj {m := next()} LIMIT 1), SELECT { foo := (SELECT O {n, m}), bar := (SELECT O {n, m}), }; """) self.assertEqual(res['foo']['n'], res['bar']['n']) self.assertEqual(res['foo']['m'], res['bar']['m']) async def test_edgeql_volatility_select_hard_objects_09(self): await self.assert_query_result(r''' WITH O := (SELECT Obj {m := next()}), SELECT { foo := (SELECT O), bar := (SELECT O), }; ''', [ { 'foo': [{"id": {}}, {"id": {}}, {"id": {}}], 'bar': [{"id": {}}, {"id": {}}, {"id": {}}], } ]) async def test_edgeql_volatility_select_nested_01a(self): for query in self.test_loop(10, one=True): res = await query(""" WITH O := (SELECT Obj { m := next(), friends := (SELECT Tgt FILTER random() > 0.4) }), SELECT { a := (SELECT O {m, friends: {n}} ORDER BY .m), b := (SELECT O {m, friends: {n}} ORDER BY .m), }; """) nums = [row['m'] for row in res['a']] self.assertEqual(nums, sorted(nums)) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(ra['m'], rb['m']) self.assertEqual( {x['n'] for x in ra['friends']}, {x['n'] for x in rb['friends']}, ) async def test_edgeql_volatility_select_nested_1b(self): # same as 1b but without a shape on friends for query in self.test_loop(10, one=True): res = await query(""" WITH O := (SELECT Obj { m := next(), friends := (SELECT Tgt FILTER random() > 0.4) }), SELECT { a := (SELECT O {m, friends} ORDER BY .m), b := (SELECT O {m, friends} ORDER BY .m), }; """) nums = [row['m'] for row in res['a']] self.assertEqual(nums, sorted(nums)) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(ra['m'], rb['m']) self.assertEqual( {x['id'] for x in ra['friends']}, {x['id'] for x in rb['friends']}, ) self.assertLessEqual(len(ra['friends']), 4) async def test_edgeql_volatility_select_nested_02(self): for query in self.test_loop(10, one=True): res = await query(""" WITH O := (SELECT Obj { m := next(), friends := (SELECT .tgt FILTER random() > 0.4) }), SELECT { a := (SELECT O {m, friends: {n}} ORDER BY .m), b := (SELECT O {m, friend_nums := .friends.n} ORDER BY .m), }; """) nums = [row['m'] for row in res['a']] self.assertEqual(nums, sorted(nums)) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(ra['m'], rb['m']) self.assertEqual( {x['n'] for x in ra['friends']}, set(rb['friend_nums']), ) async def test_edgeql_volatility_select_nested_03a(self): for query in self.test_loop(10, one=True): res = await query(""" WITH O := (SELECT Obj { m := next(), friends := (SELECT .tgt { x := random() }) }), SELECT { a := (SELECT O {m, friends: {x}} ORDER BY .m), b := (SELECT O {m, friend_nums := .friends.x} ORDER BY .m), }; """) nums = [row['m'] for row in res['a']] self.assertEqual(nums, sorted(nums)) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(ra['m'], rb['m']) self.assertEqual( {x['x'] for x in ra['friends']}, set(rb['friend_nums']), ) async def test_edgeql_volatility_select_nested_03b(self): for query in self.test_loop(10, one=True): res = await query(""" WITH O := (SELECT Obj { m := next(), friends := (SELECT (SELECT .tgt) { @x := next() }) }), SELECT { a := (SELECT O {m, friends: {@x}} ORDER BY .m), b := (SELECT O {m, friend_nums := .friends@x} ORDER BY .m), }; """) nums = [row['m'] for row in res['a']] self.assertEqual(nums, sorted(nums)) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(ra['m'], rb['m']) self.assertEqual( {x['@x'] for x in ra['friends']}, set(rb['friend_nums']), ) async def test_edgeql_volatility_select_nested_04a(self): for query in self.test_loop(one=True): res = await query(""" WITH O := (SELECT Obj { friends := (SELECT Tgt { x := next() } ) }), SELECT { a := (SELECT O {friends: {n, x}}), b := (SELECT O {friends: {n, x}}), }; """) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(len(ra['friends']), 4) self.assertEqual( sorted((x['n'], x['x']) for x in ra['friends']), sorted((x['n'], x['x']) for x in rb['friends']), ) async def test_edgeql_volatility_select_nested_04b(self): for query in self.test_loop(one=True): res = await query(""" WITH O := (SELECT Obj { tgt: { x := next() } }), SELECT { a := (SELECT O {tgt: {n, x}}), b := (SELECT O {tgt: {n, x}}), }; """) self.assertEqual(len(res['a']), 3) for ra, rb in zip(res['a'], res['b']): self.assertEqual(len(ra['tgt']), 2) self.assertEqual( sorted((x['n'], x['x']) for x in ra['tgt']), sorted((x['n'], x['x']) for x in rb['tgt']), ) async def test_edgeql_volatility_select_nested_05(self): for query in self.test_loop(10, one=True): res = await query(""" WITH O := (SELECT Obj { m := rand_int(100), friends := (SELECT Tgt { x := next() } FILTER random() > 0.4) }), SELECT { a := (SELECT O {m, n, friends: {n, x}, ha := .friends.x}), b := (SELECT O { m, friends_tuples := (.friends.n, .friends.x), friend_sums := sum(.friends.x), }), c := (O.n, O.friends {n, x}, O.friends {n, x}), }; """) cs = {x['n']: [] for x in res['a']} for rc in res['c']: self.assertEqual(rc[1]['n'], rc[2]['n']) self.assertEqual(rc[1]['x'], rc[2]['x']) cs[rc[0]].append([rc[1]['n'], rc[1]['x']]) for ra, rb in zip(res['a'], res['b']): self.assertLessEqual(len(ra['friends']), 4) self.assertEqual( sorted(x['x'] for x in ra['friends']), sorted(ra['ha']), ) self.assertEqual( sorted([x['n'], x['x']] for x in ra['friends']), sorted(rb['friends_tuples']), ) self.assertEqual( sorted(cs[ra['n']]), sorted(rb['friends_tuples']), ) self.assertEqual(sum(ra['ha']), rb['friend_sums']) async def test_edgeql_volatility_select_nested_06a(self): # here we want some deduplicating to happen for query in self.test_loop(one=True): res = await query(""" WITH O := (SELECT Obj { friends := (SELECT Tgt { x := next() }) }), SELECT { x := (O { friends: {x} }), y := O.friends.x, }; """) self.assertEqual(len(res['y']), 4) all_xs = {t['x'] for r in res['x'] for t in r['friends']} self.assertTrue(set(res['y']).issubset(all_xs)) async def test_edgeql_volatility_select_nested_06b(self): # here we want some deduplicating to happen for query in self.test_loop(one=True): res = await query(""" WITH O := (SELECT Obj { friends := (SELECT Tgt { x := next() }) }), SELECT { x := (O { friends: {n, x} }), y := O.friends {n, x}, }; """) self.assertEqual(len(res['y']), 4) all_xs = {(t['n'], t['x']) for r in res['x'] for t in r['friends']} y = {(t['n'], t['x']) for t in res['y']} self.assertTrue(y.issubset(all_xs)) async def test_edgeql_volatility_select_nested_06c(self): # here we want some deduplicating to happen for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { friends := (SELECT Tgt { x := next() }) }), SELECT ((SELECT O.friends.x), (SELECT O.friends.x)); """) self.assertEqual(len(res), 16) async def test_edgeql_volatility_select_nested_06d(self): # here we want some deduplicating to happen for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { friends := (SELECT Tgt { x := next() }) }), SELECT O.friends; """) self.assertEqual(len(res), 4) res = await query(""" WITH O := (SELECT (SELECT Obj { friends := (SELECT Tgt { x := next() }) })), SELECT O.friends; """) self.assertEqual(len(res), 4) async def test_edgeql_volatility_select_nested_07a(self): for query in self.test_loop(10): res = await query(""" SELECT Obj { n, tgt: { n, } FILTER random() < 0.5 } FILTER EXISTS (.tgt); """) for row in res: self.assertGreater(len(row['tgt']), 0) async def test_edgeql_volatility_select_nested_07b(self): for query in self.test_loop(10): res = await query(""" SELECT Obj { n, tgts := (SELECT .tgt { n, } FILTER random() < 0.5) } FILTER EXISTS (.tgts); """) for row in res: self.assertGreater(len(row['tgts']), 0) @test.xfail("Arrays containing objects are hard; TODO: fail?") async def test_edgeql_volatility_select_arrays_01(self): for query in self.test_loop(one=True): res = await query(""" WITH O := [(SELECT Obj {m := next()})], SELECT { foo := (SELECT O[0] {m}), bar := (SELECT O[0] {m}), }; """) self.assertEqual(res['foo'], res['bar']) self.assertEqual(len(res['foo']), 3) async def test_edgeql_volatility_select_tuples_01(self): for query in self.test_loop(one=True): res = await query(""" WITH O := ((SELECT Obj {m := next()}),), SELECT { foo := (SELECT O.0 {n, m}), bar := (SELECT O.0 {n, m}), }; """) self.assertEqual(res['foo'], res['bar']) self.assertEqual(len(res['foo']), 3) async def test_edgeql_volatility_select_tuples_02(self): for query in self.test_loop(one=True): res = await query(""" WITH O := (z := ((SELECT Obj {m := next()}),)), SELECT { foo := (SELECT O.z.0 {n, m}), bar := (SELECT O.z.0 {n, m}), os := O, ms := O.z.0.m, }; """) self.assertEqual(res['foo'], res['bar']) self.assertEqual(len(res['foo']), 3) self.assertEqual( {x['m'] for x in res['foo']}, set(res['ms']), ) async def test_edgeql_volatility_select_tuples_03(self): await self.assert_query_result(r''' WITH X := ((SELECT Obj { m := next() }),), Y := ((SELECT Obj { m := next() }),), SELECT count((SELECT (X, Y) FILTER X = Y)); ''', [ 3, ]) await self.assert_query_result(r''' WITH X := ((SELECT Obj { m := next() }),), Y := ((SELECT Obj { m := next() }),), SELECT count((SELECT (X, Y) FILTER X < Y)); ''', [ 3, ]) await self.assert_query_result(r''' WITH X := ((SELECT Obj { m := next() }),), Y := (Obj,), SELECT count((SELECT (X, Y) FILTER X < Y)); ''', [ 3, ]) async def test_edgeql_volatility_insert_01(self): for query in self.test_loop(one=True): res = await query(""" WITH Foo := (SELECT ( INSERT Obj {n := 10} ) { m := next() }) SELECT { foo := Foo {n, m}, bar := Foo {n, m}, }; """) self.assertEqual(res['foo']['n'], 10) self.assertEqual(res['foo']['m'], res['bar']['m']) async def test_edgeql_volatility_nested_link_01(self): # next() should get called once for each Obj/Tgt pair for query in self.test_loop(): res = await query( r""" SELECT Obj { l := (SELECT Tgt { m := next() }), }; """ ) nums = [t['m'] for o in res for t in o['l']] self.assertEqual(len(nums), len(set(nums))) async def test_edgeql_volatility_hack_01(self): await self.assert_query_result(r''' SELECT (FOR x IN {1,2} UNION (SELECT Obj { m := vol_id(x) })) { n, m } ORDER BY .m THEN .n; ''', [ {"m": 1, "n": 1}, {"m": 1, "n": 2}, {"m": 1, "n": 3}, {"m": 2, "n": 1}, {"m": 2, "n": 2}, {"m": 2, "n": 3}, ]) async def test_edgeql_volatility_hack_02(self): await self.assert_query_result(r''' WITH X := (FOR x IN {1,2} UNION (SELECT Obj { m := vol_id(x) })) SELECT X { n, m } ORDER BY .m THEN .n; ''', [ {"m": 1, "n": 1}, {"m": 1, "n": 2}, {"m": 1, "n": 3}, {"m": 2, "n": 1}, {"m": 2, "n": 2}, {"m": 2, "n": 3}, ]) async def test_edgeql_volatility_hack_03a(self): await self.assert_query_result(r''' WITH X := (WITH x := {1,2}, SELECT (x, Obj {m := vol_id(x)})).1 SELECT X { n, m } ORDER BY .m THEN .n; ''', [ {"m": 1, "n": 1}, {"m": 1, "n": 2}, {"m": 1, "n": 3}, {"m": 2, "n": 1}, {"m": 2, "n": 2}, {"m": 2, "n": 3}, ]) async def test_edgeql_volatility_hack_03b(self): await self.assert_query_result(r''' WITH X := (WITH x := {1,2}, SELECT (x, Obj {m := vol_id(x)}).1) SELECT X { n, m } ORDER BY .m THEN .n; ''', [ {"m": 1, "n": 1}, {"m": 1, "n": 2}, {"m": 1, "n": 3}, {"m": 2, "n": 1}, {"m": 2, "n": 2}, {"m": 2, "n": 3}, ]) async def test_edgeql_volatility_hack_04a(self): await self.assert_query_result(r''' SELECT (WITH x := {1,2}, SELECT (x, Obj {m := vol_id(x)})).1 { n, m } ORDER BY .m THEN .n; ''', [ {"m": 1, "n": 1}, {"m": 1, "n": 2}, {"m": 1, "n": 3}, {"m": 2, "n": 1}, {"m": 2, "n": 2}, {"m": 2, "n": 3}, ]) async def test_edgeql_volatility_hack_04b(self): await self.assert_query_result(r''' SELECT (WITH x := {1,2}, SELECT (x, Obj {m := vol_id(x)}).1) { n, m } ORDER BY .m THEN .n; ''', [ {"m": 1, "n": 1}, {"m": 1, "n": 2}, {"m": 1, "n": 3}, {"m": 2, "n": 1}, {"m": 2, "n": 2}, {"m": 2, "n": 3}, ]) @test.xfail("We generate SQL with a missing FROM-clause entry") async def test_edgeql_volatility_for_like_hard_01(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { x := next() }), Z := (O, (SELECT O { n, x, y := -.x })).1 SELECT Z { n, x, y }; """) self.assertEqual(len(res), 3) self.assertNotEqual(res[0]['x'], res[1]['x']) for obj in res: self.assertEqual(obj['x'], -obj['y']) @test.xfail("We produce too many rows") async def test_edgeql_volatility_for_like_hard_02(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { x := next() }), Z := (O, ({ o := O })).1 SELECT Z { o: {n, x} }; """) self.assertEqual(len(res), 3) self.assertNotEqual(res[0]['o']['x'], res[1]['o']['x']) @test.xfail("Fails finding a range var") async def test_edgeql_volatility_for_like_hard_03(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { x := next() }), Za := (O, ({ o := O })), Z := Za.1 SELECT Z { o: {n, x} }; """) self.assertEqual(len(res), 3) self.assertNotEqual(res[0]['o']['x'], res[1]['o']['x']) @test.xfail("We produce too many rows") async def test_edgeql_volatility_for_hard_01(self): # XXX: Z not getting materialized (but that's not all that's wrong?) for query in self.test_loop(): res = await query(""" WITH Z := (FOR O IN {( SELECT Obj { x := next() } )} UNION ( SELECT O { y := -.x } )), SELECT Z { n, x, y }; """) self.assertEqual(len(res), 3) self.assertNotEqual(res[0]['x'], res[1]['x']) for obj in res: self.assertEqual(obj['x'], -obj['y']) @test.xfail("We produce too many rows") async def test_edgeql_volatility_for_hard_02(self): for query in self.test_loop(): res = await query(""" WITH Z := (FOR O IN {( SELECT Obj { x := next() } )} UNION ( SELECT { a := O { n, x, y := -.x } } )), SELECT Z { a: { n, x, y }}; """) self.assertEqual(len(res), 3) self.assertNotEqual(res[0]['a']['x'], res[1]['a']['x']) for obj in res: self.assertEqual(obj['a']['x'], -obj['a']['y']) @test.xfail("We produce too many rows") async def test_edgeql_volatility_for_hard_03(self): for query in self.test_loop(): res = await query(""" WITH Z := (FOR O IN {( SELECT Obj { tgt: { x := next() } } )} UNION ( SELECT O {tgt: {n, x, y := -.x}} )), SELECT Z { tgt: {n, x, y} }; """) self.assertEqual(len(res), 3) for obj in res: for tgt in obj['tgt']: self.assertEqual(tgt['x'], -tgt['y']) @test.xfail("We generate SQL with a missing FROM-clause entry") async def test_edgeql_volatility_for_hard_04(self): for query in self.test_loop(): res = await query(""" WITH Z := (FOR O IN {( SELECT Obj { tgt: { x := next() } } )} UNION ( SELECT { a := (O {tgt: {n, x, y := -.x}}) } )), SELECT Z { a: {tgt: {n, x, y} } }; """) self.assertEqual(len(res), 3) for obj in res: for tgt in obj['a']['tgt']: self.assertEqual(tgt['x'], -tgt['y']) async def test_edgeql_volatility_rebind_flat_01(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { x := next() }), Z := (SELECT O {y := -.x}), SELECT Z { n, x, y }; """) self.assertEqual(len(res), 3) for obj in res: self.assertEqual(obj['x'], -obj['y']) async def test_edgeql_volatility_rebind_flat_02(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { x := next() }), Z := (SELECT O {x, y := -.x}), SELECT Z { n, x, y }; """) self.assertEqual(len(res), 3) for obj in res: self.assertEqual(obj['x'], -obj['y']) async def test_edgeql_volatility_rebind_flat_03(self): for query in self.test_loop(): res = await query(""" WITH O := (SELECT Obj { x := next() }), Z := (SELECT O {x := .x}), SELECT (Z.n, (SELECT Z.x), (SELECT Z.x)); """) self.assertEqual(len(res), 3) for _, x1, x2 in res: self.assertEqual(x1, x2) async def test_edgeql_volatility_rebind_nested_01(self): for query in self.test_loop(): res = await query(""" WITH O := ( SELECT Obj { tgt: { x := next() } } ), Z := (SELECT O {tgt: {n, x, y := -.x}}), SELECT Z { tgt: {n, x, y} }; """) self.assertEqual(len(res), 3) for obj in res: for tgt in obj['tgt']: self.assertEqual(tgt['x'], -tgt['y']) async def test_edgeql_volatility_rebind_nested_02(self): for query in self.test_loop(): res = await query(""" WITH O := ( SELECT Obj { tgt: { x := next() } } ), Z := (SELECT O {tgt: {n, y := -.x}}), SELECT Z { tgt: {n, x, y} }; """) self.assertEqual(len(res), 3) for obj in res: for tgt in obj['tgt']: self.assertEqual(tgt['x'], -tgt['y']) async def test_edgeql_volatility_rebind_nested_03(self): for query in self.test_loop(one=True): res = await query(""" WITH O := ( SELECT Obj { tgt: { x := next() } } ), Z := { o := (SELECT O {tgt: {n, y := -.x}}) }, SELECT Z { o: {tgt: {n, x, y}} }; """) for obj in res['o']: for tgt in obj['tgt']: self.assertEqual(tgt['x'], -tgt['y']) async def test_edgeql_volatility_errors_01(self): async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation", _position=36): await self.con.execute( r""" SELECT Obj.n + random() """ ) async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation", _position=36): await self.con.execute( r""" SELECT (Obj.n, random()) """ ) async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation"): await self.con.execute( r""" SELECT ({1,2}, random()) """ ) async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation", _position=28): await self.con.execute( r""" SELECT random() + Obj.n """ ) async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation", _position=36): await self.con.execute( r""" SELECT {1,2} + (FOR x in {1,2,3} UNION (x*random())) """ ) async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation", _position=36): await self.con.execute( r""" SELECT ({1,2}, (INSERT Obj { n := 100 })) """ ) async with self._run_and_rollback(): with self.assertRaisesRegex( edgedb.QueryError, "can not take cross product of volatile operation", _position=64): await self.con.execute( r""" SELECT ({1,2}, (FOR i in {1,2,3} UNION ( INSERT Obj { n := i }))) """ )
34.512179
79
0.435632
6dfaba6bfb090f2c7902a1f4aa892617d5a3b4a4
876
py
Python
src/main.py
kschwarz1116/Python-Cohort-Analysis
bbcfbfa18b179c0d7edfcc7bc052d628396122c0
[ "MIT" ]
null
null
null
src/main.py
kschwarz1116/Python-Cohort-Analysis
bbcfbfa18b179c0d7edfcc7bc052d628396122c0
[ "MIT" ]
null
null
null
src/main.py
kschwarz1116/Python-Cohort-Analysis
bbcfbfa18b179c0d7edfcc7bc052d628396122c0
[ "MIT" ]
null
null
null
""" This script holds the main functionality for the Cohort Analysis programming challenge. """ import sys from customer import CUSTOMERS import read_customer import read_orders import write_analysis as write def main() -> None: """This function accepts command line arguments and parses them into a table""" num_args: int = len(sys.argv) if (num_args < 4) or (num_args > 5): print("Got improper args") return customer_file: str = sys.argv[1] order_file: str = sys.argv[2] out_file: str = sys.argv[3] if num_args == 5: offset_hours: str = sys.argv[4] else: offset_hours = "0" customers: CUSTOMERS = read_customer.read_customers(customer_file) read_orders.read_orders(order_file, customers) write.print_cohort_analysis(write.generate_cohort_analysis(customers, offset_hours), out_file) main()
25.764706
98
0.705479
5722844dd37b6e1ca4bbf2030b58e1bf36e79a8e
2,329
py
Python
docassemble_demo/setup.py
abramsmatthew/adpllc-test
b6ae9d07ed3e98dd9f1fae5f4af8dc5b104ca8e6
[ "MIT" ]
null
null
null
docassemble_demo/setup.py
abramsmatthew/adpllc-test
b6ae9d07ed3e98dd9f1fae5f4af8dc5b104ca8e6
[ "MIT" ]
null
null
null
docassemble_demo/setup.py
abramsmatthew/adpllc-test
b6ae9d07ed3e98dd9f1fae5f4af8dc5b104ca8e6
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys from setuptools import setup, find_packages from fnmatch import fnmatchcase from distutils.util import convert_path standard_exclude = ('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*') standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info') def find_package_data(where='.', package='', exclude=standard_exclude, exclude_directories=standard_exclude_directories): out = {} stack = [(convert_path(where), '', package)] while stack: where, prefix, package = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) if os.path.isdir(fn): bad_name = False for pattern in exclude_directories: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True break if bad_name: continue if os.path.isfile(os.path.join(fn, '__init__.py')): if not package: new_package = name else: new_package = package + '.' + name stack.append((fn, '', new_package)) else: stack.append((fn, prefix + name + '/', package)) else: bad_name = False for pattern in exclude: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True break if bad_name: continue out.setdefault(package, []).append(prefix+name) return out setup(name='docassemble.demo', version='0.1', description=('A demonstration package for docassemble.'), author='Jonathan Pyle', author_email='jhpyle@gmail.com', license='MIT', url='http://docassemble.org', packages=find_packages(), namespace_packages = ['docassemble'], install_requires = ['docassemble', 'docassemble.base', 'python-dateutil'], zip_safe = False, package_data=find_package_data(where='docassemble/demo/', package='docassemble.demo'), )
38.816667
121
0.526406
34ba21b1c5319ccadf544cc6fab9d2408379a3d7
2,495
py
Python
memcache_status/templatetags/memcache_status_tags.py
davidsomnus/django-memcache-status
cca021828578c10421ccfe60c4d3ae9eba7a55cc
[ "MIT" ]
55
2015-02-04T16:24:42.000Z
2022-01-11T07:03:55.000Z
memcache_status/templatetags/memcache_status_tags.py
KonstantinKlepikov/django-memcache-status
3c6e59871a03d3c79f91a6f006c2dde367a060cc
[ "MIT" ]
14
2015-01-02T23:37:43.000Z
2021-07-19T17:47:26.000Z
memcache_status/templatetags/memcache_status_tags.py
KonstantinKlepikov/django-memcache-status
3c6e59871a03d3c79f91a6f006c2dde367a060cc
[ "MIT" ]
14
2015-03-19T13:40:01.000Z
2020-08-26T13:13:49.000Z
from __future__ import unicode_literals import logging from datetime import datetime from django import template from django.apps import apps from memcache_status.utils import get_cache_stats logger = logging.getLogger(__name__) register = template.Library() @register.simple_tag(takes_context=True) def memcache_status(context): request = context.request config = apps.get_app_config('memcache_status') if not config.show_cache_stats(request): logger.debug('Cache stats not shown because user has no permission.') return [] return get_cache_stats() class PrettyValue(object): """ Helper class that reformats the value. Looks for a method named ``format_<key>_value`` and returns that value. Returns the value as is, if no format method is found. """ def format(self, key, value): try: func = getattr(self, 'format_%s_value' % key.lower()) return func(value) except AttributeError: return value def format_limit_maxbytes_value(self, value): return "%s (%s)" % (value, self.human_bytes(value)) def format_bytes_read_value(self, value): return "%s (%s)" % (value, self.human_bytes(value)) def format_bytes_written_value(self, value): return "%s (%s)" % (value, self.human_bytes(value)) def format_uptime_value(self, value): return self.fract_timestamp(int(value)) def format_time_value(self, value): return datetime.fromtimestamp(int(value)).strftime('%x %X') def fract_timestamp(self, s): years, s = divmod(s, 31556952) min_, s = divmod(s, 60) h, min_ = divmod(min_, 60) d, h = divmod(h, 24) return '%sy, %sd, %sh, %sm, %ss' % (years, d, h, min_, s) def human_bytes(self, bytes_): bytes_ = float(bytes_) if bytes_ >= 1073741824: gigabytes_ = bytes_ / 1073741824 size = '%.2fGB' % gigabytes_ elif bytes_ >= 1048576: megabytes_ = bytes_ / 1048576 size = '%.2fMB' % megabytes_ elif bytes_ >= 1024: kilobytes_ = bytes_ / 1024 size = '%.2fKB' % kilobytes_ else: size = '%.2fB' % bytes_ return size @register.filter def memcache_status_pretty_name(name): return ' '.join([word.capitalize() for word in name.split('_')]) @register.filter def memcache_status_pretty_value(value, key): return PrettyValue().format(key, value)
28.678161
77
0.638477
820898cc0db181c1abf7263440ca33731fd7881d
14,361
py
Python
fairscale/nn/model_parallel/layers.py
aurickq/fairscale
909c84462c6c53abcc4c2841d14a9496e6a3e033
[ "Apache-2.0", "BSD-3-Clause" ]
1,662
2020-07-15T21:40:19.000Z
2022-03-31T10:45:12.000Z
fairscale/nn/model_parallel/layers.py
aurickq/fairscale
909c84462c6c53abcc4c2841d14a9496e6a3e033
[ "Apache-2.0", "BSD-3-Clause" ]
648
2020-07-21T19:00:32.000Z
2022-03-30T23:11:41.000Z
fairscale/nn/model_parallel/layers.py
aurickq/fairscale
909c84462c6c53abcc4c2841d14a9496e6a3e033
[ "Apache-2.0", "BSD-3-Clause" ]
170
2020-07-16T00:28:01.000Z
2022-03-15T19:39:21.000Z
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Parts of the code here are adapted from PyTorch # repo: https://github.com/pytorch/pytorch from typing import Callable, Optional import torch import torch.nn.functional as F import torch.nn.init as init from torch.nn.parameter import Parameter from .initialize import get_model_parallel_rank, get_model_parallel_world_size from .mappings import ( copy_to_model_parallel_region, gather_from_model_parallel_region, reduce_from_model_parallel_region, scatter_to_model_parallel_region, ) from .utils import VocabUtility, divide_and_check_no_remainder def _initialize_affine_weight( weight: torch.Tensor, out_features: int, in_features: int, per_partition_size: int, partition_dim: int, init_method: Callable[[torch.Tensor], torch.Tensor], stride: int = 1, return_master_weight: bool = False, ) -> Optional[torch.Tensor]: """Initialize affine weight for model parallel. Build the master weight on all processes and scatter the relevant chunk.""" # If we only use 1 process for model parallelism, bypass scatter. world_size = get_model_parallel_world_size() if world_size == 1: init_method(weight) if return_master_weight: return weight return None # Initialize master weight master_weight = torch.empty(out_features, in_features, dtype=weight.dtype, requires_grad=False) init_method(master_weight) # Split and copy per_partition_per_stride_size = divide_and_check_no_remainder(per_partition_size, stride) weight_list = torch.split(master_weight, per_partition_per_stride_size, dim=partition_dim) rank = get_model_parallel_rank() my_weight_list = weight_list[rank::world_size] with torch.no_grad(): torch.cat(my_weight_list, dim=partition_dim, out=weight) if return_master_weight: return master_weight return None class VocabParallelEmbedding(torch.nn.Module): """Embedding parallelized in the vocabulary dimension. This is mainly adapted from torch.nn.Embedding and all the default values are kept. Arguments: num_embeddings: vocabulary size. embedding_dim: size of hidden state. init_method: method to initialize weights. """ def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_, ) -> None: super(VocabParallelEmbedding, self).__init__() # Keep the input dimensions. self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse self._weight = None # Divide the weight matrix along the vocaburaly dimension. self.vocab_start_index, self.vocab_end_index = VocabUtility.vocab_range_from_global_vocab_size( self.num_embeddings, get_model_parallel_rank(), get_model_parallel_world_size() ) self.num_embeddings_per_partition = self.vocab_end_index - self.vocab_start_index # Allocate weights. self.weight = Parameter(torch.Tensor(self.num_embeddings_per_partition, self.embedding_dim)) # And initialize. _initialize_affine_weight( self.weight, self.num_embeddings, self.embedding_dim, self.num_embeddings_per_partition, 0, init_method ) def forward(self, input_: torch.Tensor) -> torch.Tensor: # type: ignore # Build the mask. input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index) # Mask the input. masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 # Get the embeddings. output_parallel = F.embedding( masked_input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) # Mask the output embedding. output_parallel[input_mask, :] = 0.0 # Reduce across all the model parallel GPUs. output = reduce_from_model_parallel_region(output_parallel) return output class ParallelEmbedding(torch.nn.Module): """Embedding parallelized in the embedding dimension. This is mainly adapted from torch.nn.Embedding and all the default values are kept. Arguments: num_embeddings: vocabulary size. embedding_dim: size of hidden state. init_method: method to initialize weights. """ def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_, keep_master_weight_for_test: bool = False, ) -> None: super(ParallelEmbedding, self).__init__() # Keep the input dimensions. self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = scale_grad_by_freq self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse self._weight = None # Divide the weight matrix along the embedding dimension. world_size = get_model_parallel_world_size() self.embedding_dim_per_partition = divide_and_check_no_remainder(self.embedding_dim, world_size) # Allocate weights. self.weight = Parameter(torch.Tensor(self.num_embeddings, self.embedding_dim_per_partition)) # And initialize. _initialize_affine_weight( self.weight, self.num_embeddings, self.embedding_dim, self.embedding_dim_per_partition, 1, init_method, stride=1, return_master_weight=False, ) def forward(self, input_: torch.Tensor) -> torch.Tensor: # type: ignore input_parallel = copy_to_model_parallel_region(input_) output_parallel = F.embedding( input_parallel, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) output = gather_from_model_parallel_region(output_parallel) return output class ColumnParallelLinear(torch.nn.Module): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Arguments: in_features: first dimension of matrix A. out_features: second dimension of matrix A. bias: If true, add bias gather_output: If true, call all-gether on output and make Y avaiable to all GPUs, otherwise, every GPU will have its output which is Y_i = XA_i init_method: method to initialize weights. Note that bias is always set to zero. stride: For the strided linear layers. keep_master_weight_for_test: This was added for testing and should be set to False. It returns the master weights used for initialization. """ def __init__( self, in_features: int, out_features: int, bias: bool = True, gather_output: bool = True, init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_, stride: int = 1, keep_master_weight_for_test: bool = False, ) -> None: super(ColumnParallelLinear, self).__init__() # Keep input parameters self.in_features = in_features self.out_features = out_features self.gather_output = gather_output # Divide the weight matrix along the last dimension. world_size = get_model_parallel_world_size() self.output_size_per_partition = divide_and_check_no_remainder(out_features, world_size) # Parameters. # Note: torch.nn.functional.linear performs XA^T + b and as a result # we allocate the transpose. self.weight = Parameter(torch.Tensor(self.output_size_per_partition, self.in_features)) if bias: self.bias = Parameter(torch.Tensor(self.output_size_per_partition)) # Always initialize bias to zero. with torch.no_grad(): self.bias.zero_() else: self.register_parameter("bias", None) # Initialize weight. self.master_weight = _initialize_affine_weight( self.weight, self.out_features, self.in_features, self.output_size_per_partition, 0, init_method, stride=stride, return_master_weight=keep_master_weight_for_test, ) def get_master_weight(self) -> torch.Tensor: return gather_from_model_parallel_region(self.weight.data.transpose(0, 1)).transpose_(0, 1) def forward(self, input_: torch.Tensor) -> torch.Tensor: # type: ignore # Set up backprop all-reduce. input_parallel = copy_to_model_parallel_region(input_) # Matrix multiply. output_parallel = F.linear(input_parallel, self.weight, self.bias) if self.gather_output: # All-gather across the partitions. output = gather_from_model_parallel_region(output_parallel) else: output = output_parallel return output class RowParallelLinear(torch.nn.Module): """Linear layer with row parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second dimension as: - - | A_1 | | . | A = | . | X = [X_1, ..., X_p] | . | | A_p | - - Arguments: in_features: first dimension of matrix A. out_features: second dimension of matrix A. bias: If true, add bias. Note that bias is not parallelized. input_is_parallel: If true, we assume that the input is already split across the GPUs and we do not split again. init_method: method to initialize weights. Note that bias is always set to zero. stride: For the strided linear layers. keep_master_weight_for_test: This was added for testing and should be set to False. It returns the master weights used for initialization. """ def __init__( self, in_features: int, out_features: int, bias: bool = True, input_is_parallel: bool = False, init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_, stride: int = 1, keep_master_weight_for_test: bool = False, ): super(RowParallelLinear, self).__init__() # Keep input parameters self.in_features = in_features self.out_features = out_features self.input_is_parallel = input_is_parallel # Divide the weight matrix along the last dimension. world_size = get_model_parallel_world_size() self.input_size_per_partition = divide_and_check_no_remainder(in_features, world_size) # Parameters. # Note: torch.nn.functional.linear performs XA^T + b and as a result # we allocate the transpose. self.weight = Parameter(torch.Tensor(self.out_features, self.input_size_per_partition)) if bias: self.bias = Parameter(torch.Tensor(self.out_features)) # Always initialize bias to zero. with torch.no_grad(): self.bias.zero_() else: self.register_parameter("bias", None) # Initialize weight. self.master_weight = _initialize_affine_weight( self.weight, self.out_features, self.in_features, self.input_size_per_partition, 1, init_method, stride=stride, return_master_weight=keep_master_weight_for_test, ) def get_master_weight(self) -> torch.Tensor: return gather_from_model_parallel_region(self.weight.data) def forward(self, input_: torch.Tensor) -> torch.Tensor: # type:ignore # Set up backprop all-reduce. if self.input_is_parallel: input_parallel = input_ else: input_parallel = scatter_to_model_parallel_region(input_) # Matrix multiply. output_parallel = F.linear(input_parallel, self.weight) # All-reduce across all the partitions. output_ = reduce_from_model_parallel_region(output_parallel) if self.bias is not None: output = output_ + self.bias else: output = output_ return output
37.012887
115
0.64898
65da5e742665a6ded0a0d8de4795566fbc14749b
693
py
Python
backend/aporte/migrations/0012_auto_20200430_0427.py
felipemaion/financial-management-gate-django
5f93a7d28a55852fed0a16d1830f92b0ee065948
[ "MIT" ]
2
2019-04-15T20:36:48.000Z
2020-02-09T23:20:27.000Z
backend/aporte/migrations/0012_auto_20200430_0427.py
felipemaion/financial-management-gate-django
5f93a7d28a55852fed0a16d1830f92b0ee065948
[ "MIT" ]
5
2020-02-12T00:06:06.000Z
2020-06-05T05:09:45.000Z
backend/aporte/migrations/0012_auto_20200430_0427.py
felipemaion/financial-management-gate-django
5f93a7d28a55852fed0a16d1830f92b0ee065948
[ "MIT" ]
null
null
null
# Generated by Django 3.0.3 on 2020-04-30 04:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('aporte', '0011_auto_20200429_2118'), ] operations = [ migrations.RenameField( model_name='instrument', old_name='crpNm', new_name='crpnNm', ), migrations.RemoveField( model_name='instrument', name='mctyCtgyNm', ), migrations.AddField( model_name='instrument', name='sctyCtgyNm', field=models.CharField(blank=True, max_length=20, null=True, verbose_name='SctyCtgyNm'), ), ]
24.75
100
0.574315
bbebf4b639ff48563708a358a378006c6dfdd4d2
964
py
Python
pup/sort.py
duckinator/pup-tools
6f2064450bf27fc5bfbb09aeb01cf66ba4474060
[ "MIT" ]
null
null
null
pup/sort.py
duckinator/pup-tools
6f2064450bf27fc5bfbb09aeb01cf66ba4474060
[ "MIT" ]
null
null
null
pup/sort.py
duckinator/pup-tools
6f2064450bf27fc5bfbb09aeb01cf66ba4474060
[ "MIT" ]
null
null
null
import argparse import sys def parseargs(args=None): parser = argparse.ArgumentParser(description='Sort lines fed via stdin.') parser.add_argument('--key', help='Function to use for key sorting.') parser.add_argument('--reverse', '-r', action='store_true', help='Perform a reversed sort.') parser.add_argument('--separator', '-s', help='Use the provided value instead of newlines.') return parser.parse_args(args) def main(args=None): opts = parseargs(args) key = opts.key sep = opts.separator if isinstance(key, str): key = eval(key) if sep is None: sepfn = str.splitlines else: sepfn = lambda x: x.split(sep) vals = sepfn(sys.stdin.read()) ret = sorted(vals, key=key) if opts.reverse: ret = reversed(ret) print(*ret, sep='\n') return 0 if __name__ == '__main__': sys.exit(main())
25.368421
77
0.589212
56158bcce71a8c24f1a042f5b700b65a77c621ab
21,087
py
Python
scripts/bin/base_ip.py
open-switch/opx-nas-linux
073b287c7c998b0dc16bc732fa37bbdddfd69d66
[ "CC-BY-4.0" ]
1
2017-12-28T16:57:02.000Z
2017-12-28T16:57:02.000Z
scripts/bin/base_ip.py
open-switch/opx-nas-linux
073b287c7c998b0dc16bc732fa37bbdddfd69d66
[ "CC-BY-4.0" ]
10
2017-08-07T22:43:34.000Z
2021-06-09T13:34:01.000Z
scripts/bin/base_ip.py
open-switch/opx-nas-linux
073b287c7c998b0dc16bc732fa37bbdddfd69d66
[ "CC-BY-4.0" ]
14
2017-01-05T19:18:42.000Z
2020-03-06T10:01:04.000Z
#!/usr/bin/python # Copyright (c) 2019 Dell Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT # LIMITATION ANY IMPLIED WARRANTIES OR CONDITIONS OF TITLE, FITNESS # FOR A PARTICULAR PURPOSE, MERCHANTABLITY OR NON-INFRINGEMENT. # # See the Apache Version 2.0 License for specific language governing # permissions and limitations under the License. import cps import subprocess import sys import cps_object import cps_utils import socket import binascii import ifindex_utils import dn_base_ip_tool import systemd.daemon import dn_base_ip_tbl_tool import dn_base_ipsec_utils import threading from dn_base_ip_tool import log_err, log_info iplink_cmd = '/sbin/ip' _keys = { 'base-ip/ipv4': cps.key_from_name('target', 'base-ip/ipv4'), 'base-ip/ipv6': cps.key_from_name('target', 'base-ip/ipv6'), cps.key_from_name('target', 'base-ip/ipv4'): 'base-ip/ipv4', cps.key_from_name('target', 'base-ip/ipv6'): 'base-ip/ipv6', } _ip_unreach_key = cps.key_from_name('target', 'os-icmp-cfg/ip-unreachables-config') _proxy_arp_key = cps.key_from_name('target', 'base-route/proxy-arp-config') _ip_af = { 2 : 'ipv4', 10 : 'ipv6', } _ip_neigh_flush_key = cps.key_from_name('target', 'base-neighbor/flush') _ipv6_enable_status = {} def get_next_index(d): count = 0 while True: if str(count) not in d: return count count += 1 def _get_af_from_name(name): type = 'ipv4' if name.find(type) == -1: type = 'ipv6' return type def _get_obj_name(obj): return _keys[obj.get_key()] def _get_af_from_obj(obj): return _get_af_from_name(_get_obj_name(obj)) def _get_proc_fwd_entry(dev, iptype): return ['proc', 'sys', 'net', iptype, 'conf', dev, 'forwarding'] def _get_proc_disable_ipv6_entry(dev): return ['proc', 'sys', 'net', 'ipv6', 'conf', dev, 'disable_ipv6'] def _get_proc_ipv6_autoconf_entry(dev): return ['proc', 'sys', 'net', 'ipv6', 'conf', dev, 'autoconf'] def _get_proc_ipv6_accept_dad_entry(dev): return ['proc', 'sys', 'net', 'ipv6', 'conf', dev, 'accept_dad'] def _get_proc_ipv4_arp_accept_entry(dev): return ['proc', 'sys', 'net', 'ipv4', 'conf', dev, 'arp_accept'] def _get_proc_variable(path): try: path = '/'.join(path) with open('/' + path, 'r') as f: data = f.read() return int(data) except: print "Error reading ", path return -1 def _set_proc_variable(path, value): try: path = '/'.join(path) with open('/' + path, 'w') as f: f.write(str(value)) except: print "Error writing ", path return -1 def create_obj_from_line(obj_type, ifix, ifname, vrfname): af = _get_af_from_name(obj_type) o = cps_object.CPSObject(obj_type, data={'base-ip/' + af + '/vrf-id': 0, 'base-ip/' + af + '/ifindex': ifix, 'base-ip/' + af + '/name': ifname, 'base-ip/' + af + '/vrf-name': vrfname, }) return o def _get_key_from_obj(obj): af = _get_af_from_obj(obj) str_index = 'base-ip/' + af + '/ifindex' str_name = 'base-ip/' + af + '/name' name = None try: index = obj.get_attr_data(str_index) name = ifindex_utils.if_indextoname(index) except: pass if name is None: try: name = obj.get_attr_data(str_name) except: pass return name def _ip_line_type_valid(af, ip): if af == 'ipv4' and ip[0] == 'inet': return True if af == 'ipv6' and ip[0] == 'inet6': return True return False def process_ip_line(af, d, ip): search_str = None _srch = {'ipv4': 'inet', 'ipv6': 'inet6'} _af = {'ipv4': socket.AF_INET, 'ipv6': socket.AF_INET6} if af not in _srch: return if ip[0] == _srch[af]: try: addr = ip[1] prefix = ip[2] addr = binascii.hexlify(socket.inet_pton(_af[af], addr)) prefix = int(prefix) d['base-ip/' + af + '/address/ip'] = cps_object.types.to_data( 'base-ip/' + af + '/address/ip', addr) d['base-ip/' + af + '/address/prefix-length'] = cps_object.types.to_data( 'base-ip/' + af + '/address/prefix-length', prefix) except: print "Unable to convert address ", header pass def add_ip_info(af, o, ip): if af is None: return if 'base-ip/' + af + '/address' not in o.get()['data']: o.get()['data']['base-ip/' + af + '/address'] = {} _v = o.get()['data']['base-ip/' + af + '/address'] d = {} next_index = get_next_index(_v) process_ip_line(af, d, ip) if (len(d)) > 0: _v[str(next_index)] = d def _get_ip_objs(filt, resp): af = _get_af_from_obj(filt) name = _get_key_from_obj(filt) vrf_name = None try: vrf_name = filt.get_attr_data('base-ip/' + af + '/vrf-name') except: # VRF-name is optional attribute. pass if (vrf_name is None) and (name is not None): vrf_name = 'default' lst = dn_base_ip_tool.get_if_details(vrf_name, name) for _if in lst: o = create_obj_from_line('base-ip/' + af, _if.ifix, _if.ifname, _if.vrf_name) name = o.get_attr_data('base-ip/' + af + '/name') if not filt.key_compare( {'base-ip/' + af + '/name': name, 'base-ip/' + af + '/ifindex': o.get_attr_data('base-ip/' + af + '/ifindex')}): continue fwd = _get_proc_variable( _get_proc_fwd_entry(o.get_attr_data('base-ip/' + af + '/name'), af)) if fwd == -1: fwd = 0 o.add_attr('base-ip/' + af + '/forwarding', fwd) if af == 'ipv6': enabled = _ipv6_enable_status.get(name, None) log_msg = 'IPv6 intf-name:' + name + ' enabled status in DB:' + str(enabled) log_info(log_msg) if enabled is None: enabled = 1 disable_ipv6 = _get_proc_variable(_get_proc_disable_ipv6_entry(name)) if disable_ipv6 == -1 or disable_ipv6 == 1: enabled = 0 o.add_attr('base-ip/' + af + '/enabled', enabled) autoconf = _get_proc_variable(_get_proc_ipv6_autoconf_entry(name)) if autoconf == -1 or autoconf == 0: autoconf = 0 o.add_attr('base-ip/' + af + '/autoconf', autoconf) accept_dad = _get_proc_variable(_get_proc_ipv6_accept_dad_entry(name)) if accept_dad != 1 and accept_dad != -1: o.add_attr('base-ip/' + af + '/accept-dad', accept_dad + 1) log_msg = 'IPv6 intf-name:' + name + ' fwd status:' + str(fwd) + ' ipv6 status:' \ + str(enabled) + 'auto conf:' + str(autoconf) + 'accept_dad:' + str(accept_dad) log_info(log_msg) else: log_msg = 'IPv4 intf-name:' + name + ' fwd status:' + str(fwd) log_info(log_msg) for _ip in _if.ip: add_ip_info(af, o, _ip) resp.append(o.get()) return True def get_cb(methods, params): obj = cps_object.CPSObject(obj=params['filter']) resp = params['list'] if obj.get_key() == _keys['base-ip/ipv4'] or obj.get_key() == _keys['base-ip/ipv6']: return _get_ip_objs(obj, resp) return False def trans_cb(methods, params): obj = cps_object.CPSObject(obj=params['change']) af = _get_af_from_obj(obj) name = _get_key_from_obj(obj) if name is None: print "Missing keys for request ", obj return False vrf_name = 'default' try: vrf_name = obj.get_attr_data('base-ip/' + af + '/vrf-name') except: # VRF-name is optional attribute. pass addr = "" try: if params['operation'] == 'set' and obj.get_key() == _keys['base-ip/' + af]: if af == 'ipv6': try: enabled = obj.get_attr_data('base-ip/' + af + '/enabled') if enabled == 1: disable_ipv6 = 0 else: disable_ipv6 = 1 _ipv6_enable_status[name] = enabled if vrf_name == 'default': ret_val = _set_proc_variable(_get_proc_disable_ipv6_entry(name),\ str(disable_ipv6)) else: ret_val = dn_base_ip_tool.disable_ipv6_config(name, str(disable_ipv6), vrf_name) log_msg = 'CPS set for VRF:' + vrf_name + 'intf-name:' + name + ' ipv6 status:' +\ str(enabled) + 'ret_val:' + str(ret_val) log_info(log_msg) if ret_val == -1: return False except: pass try: autoconf = obj.get_attr_data('base-ip/' + af + '/autoconf') if vrf_name == 'default': ret_val = _set_proc_variable(_get_proc_ipv6_autoconf_entry(name), str(autoconf)) else: ret_val = dn_base_ip_tool.ipv6_autoconf_config(name, autoconf, vrf_name) log_msg = 'CPS set for VRF:' + vrf_name + 'intf-name:' + name + ' ipv6 auto conf status:'\ + str(autoconf) + 'ret_val:' + str(ret_val) log_info(log_msg) if ret_val == -1: return False except: pass try: accept_dad = obj.get_attr_data('base-ip/' + af + '/accept-dad') # Check the valid enum values if accept_dad not in [1,2,3]: return False # CPS enum starts from 1 but kernel enum starts from 0 accept_dad = accept_dad - 1 if vrf_name == 'default': ret_val = _set_proc_variable(_get_proc_ipv6_accept_dad_entry(name), str(accept_dad)) else: ret_val = dn_base_ip_tool.ipv6_accept_dad_config(name, str(accept_dad), vrf_name) log_msg = 'CPS set for VRF:' + vrf_name + 'intf-name:' + name + ' ipv6 accept DAD status:'\ + str(accept_dad) + 'ret_val:' + str(ret_val) log_info(log_msg) if ret_val == -1: return False except: pass elif af == 'ipv4': try: arp_accept = obj.get_attr_data('base-ip/' + af + '/arp-accept') if arp_accept == 1: arp_accept = 0 else: arp_accept = 1 if vrf_name == 'default': ret_val = _set_proc_variable(_get_proc_ipv4_arp_accept_entry(name), str(arp_accept)) else: ret_val = dn_base_ip_tool.ipv4_arp_accept_config(name, str(arp_accept), vrf_name) log_msg = 'CPS set for VRF:' + vrf_name + 'intf-name:' + name + ' ipv4 arp accept status:'\ + str(arp_accept) + 'ret_val:' + str(ret_val) log_info(log_msg) if ret_val == -1: return False except: pass try: fwd = obj.get_attr_data('base-ip/' + af + '/forwarding') if vrf_name == 'default': ret_val = _set_proc_variable(_get_proc_fwd_entry(name, af), str(fwd)) else: ret_val = dn_base_ip_tool.ip_forwarding_config(af, name, str(fwd), vrf_name) log_msg = 'CPS set for VRF:' + vrf_name + 'intf-name:' + name + ' fwd status:' + str(fwd)\ + 'ret_val:' + str(ret_val) log_info(log_msg) if ret_val == -1: return False except: pass return True except Exception as e: log_err("Faild to commit operation exception:%s params:%s"% (e, params)) return False def ip_unreach_attr(t): return 'os-icmp-cfg/ip-unreachables-config/input/' + t def set_ip_unreach_cb(methods, params): obj = cps_object.CPSObject(obj=params['change']) if params['operation'] != 'rpc': log_err('oper is not RPC') return False operation = ip_unreach_attr('operation') enable = ip_unreach_attr('enable') af = ip_unreach_attr('af') ifname = ip_unreach_attr('ifname') vrf_name = ip_unreach_attr('vrf-name') dev = None vrf = None try: operation = obj.get_attr_data(operation) af = obj.get_attr_data(af) enable = obj.get_attr_data(enable) except ValueError as e: log_msg = 'Missing mandatory attribute ' + e.args[0] log_err(log_msg) return False try: vrf = obj.get_attr_data(vrf_name) except: pass vrf = 'default' # Operation types #BASE_CMN_OPERATION_TYPE_CREATE=1 #BASE_CMN_OPERATION_TYPE_DELETE=2 #BASE_CMN_OPERATION_TYPE_UPDATE=3 is_add = True; if operation == 3: log_msg = 'Update operation is not supported!' log_err(log_msg) return False elif operation == 2: is_add = False; if af != socket.AF_INET and af != socket.AF_INET6: log_msg = 'Invalid address family' + str(af) log_err(log_msg) return False try: dev = obj.get_attr_data(ifname) except: pass log_info('Ifname is not present in the object') if dn_base_ip_tbl_tool.ip_tables_unreach_rule(vrf, is_add, enable, af, dev): return True log_msg = 'Failed to execute IP unreachable request ' + str(is_add) + str(af) \ + 'enable' + str(enable) + 'ifname' + ifname log_err(log_msg) return False def ip_neigh_flush_attr(t): return 'base-neighbor/flush/input/' + t def _create_neigh_flush_ip_and_prefix_from_attr(ip_addr, prefix_len, af): addr = binascii.unhexlify(ip_addr) addr = socket.inet_ntop(af, addr) if prefix_len is not None: addr = addr + '/' + str(prefix_len) return addr def _nbr_flush_handle(vrf_name, af, if_name): obj = cps_object.CPSObject(module='base-route/nbr-flush') obj.add_attr("base-route/nbr-flush/input/vrf-name", str(vrf_name)) obj.add_attr("base-route/nbr-flush/input/af", af) # Incase of leaked VRF neigh flush, this 'dev' wont be present # in the leaked VRF and hence flush_ip_neigh is expected to fail. if if_name is not None: obj.add_attr("base-route/nbr-flush/input/ifname", if_name) l = [] tr_obj = {'change': obj.get(), 'operation': 'rpc'} l.append(tr_obj) return cps.transaction(l) def flush_ip_neigh_cb(methods, params): obj = cps_object.CPSObject(obj=params['change']) if params['operation'] != 'rpc': log_err('oper is not RPC') return False vrf_name = ip_neigh_flush_attr('vrf-name') af = ip_neigh_flush_attr('af') ifname = ip_neigh_flush_attr('ifname') ip_addr = ip_neigh_flush_attr('ip') prefix_len = ip_neigh_flush_attr('prefix-len') dev = None try: vrf_name = obj.get_attr_data(vrf_name) except ValueError as e: log_msg = 'Missing mandatory attribute ' + e.args[0] log_err(log_msg) return False try: af = obj.get_attr_data(af) except: pass af = socket.AF_INET log_info('Address family is not present in the object') if af != socket.AF_INET and af != socket.AF_INET6: log_msg = 'Invalid address family' + str(af) log_err(log_msg) return False try: dev = obj.get_attr_data(ifname) except: pass dev = None log_info('Ifname is not present in the object') try: ip_addr = obj.get_attr_data(ip_addr) except: pass ip_addr = None try: prefix_len = obj.get_attr_data(prefix_len) except: pass prefix_len = None addr = None if ip_addr is not None: addr = _create_neigh_flush_ip_and_prefix_from_attr(ip_addr, prefix_len, af) log_msg = 'IP neigh flush request vrf-name:' + str(vrf_name)\ + ' af:' + str(af) + ' ifname:' + str(dev)\ + ' to addr:' + str(addr) log_info(log_msg) if dev is not None: for ifname in dev: if dn_base_ip_tool.is_intf_exist_in_vrf(str(vrf_name), ifname): val = dn_base_ip_tool.flush_ip_neigh(_ip_af[af], ifname, addr, str(vrf_name)) else: val = _nbr_flush_handle(str(vrf_name), af, ifname) else: val = dn_base_ip_tool.flush_ip_neigh(_ip_af[af], dev, addr, str(vrf_name)) if val is False: log_err("IP neigh flush on VRF:%s af:%s addr:%s failed"% (str(vrf_name),\ str(af), str(addr))) val = _nbr_flush_handle(str(vrf_name), af, dev) return val def proxy_arp_attr(t): return 'base-route/proxy-arp-config/' + t def set_proxy_arp_cb(methods, params): obj = cps_object.CPSObject(obj=params['change']) vrf_name = proxy_arp_attr('vrf-name') ifname = proxy_arp_attr('ifname') vrf = None dev = None try: vrf = obj.get_attr_data(vrf_name) dev = obj.get_attr_data(ifname) except ValueError as e: log_msg = 'Missing mandatory attribute ' + e.args[0] log_err(log_msg) return False log_info("Proxy ARP configuration on VRF:%s intf:%s operation:%s"% (vrf, dev, params['operation'])) try: if params['operation'] == 'create': if dn_base_ip_tool.proxy_arp_config(dev, 1, vrf): return True if params['operation'] == 'delete': if dn_base_ip_tool.proxy_arp_config(dev, 0, vrf): return True except Exception as e: log_err("Faild to commit operation exception:%s params:%s"% (e, params)) log_err("Proxy ARP configuration failed on VRF:%s intf:%s operation:%s"% (vrf, dev, params['operation'])) return False def sigterm_hdlr(signum, frame): global shutdown shutdown = True if __name__ == '__main__': shutdown = False # Install signal handlers. import signal signal.signal(signal.SIGTERM, sigterm_hdlr) if len(sys.argv) > 1: l = [] _get_ip_objs(cps_object.CPSObject('base-ip/ipv4'), l) for i in l: cps_utils.print_obj(i) sys.exit(1) handle = cps.obj_init() d = {} d['get'] = get_cb d['transaction'] = trans_cb for i in _keys.keys(): if i.find('base-ip') == -1: continue cps.obj_register(handle, _keys[i], d) # IPSec Object registration dn_base_ipsec_utils.obj_reg() # Set IPSec Authentication and Encryption keys type as string dn_base_ipsec_utils.add_attr_type() d = {} d['transaction'] = set_ip_unreach_cb cps.obj_register(handle, _ip_unreach_key, d) log_msg = 'CPS IP unreachable registration done' log_info(log_msg) d = {} d['transaction'] = flush_ip_neigh_cb cps.obj_register(handle, _ip_neigh_flush_key, d) log_msg = 'CPS IP neighbor flush registration done' log_info(log_msg) d = {} d['transaction'] = set_proxy_arp_cb cps.obj_register(handle, _proxy_arp_key, d) log_msg = 'CPS Proxy ARP registration done' log_info(log_msg) #Start interface event handle thread to program LLA into the kernel. lla_cfg_thread = threading.Thread(target=dn_base_ip_tool.handle_interface_event_for_lla_cfg,\ name="IPv6_Intf_LLA_Cfg") lla_cfg_thread.setDaemon(True) lla_cfg_thread.start() #Start ipv6 address event handle thread to handle the DAD failures lla_cfg_thread = threading.Thread(target=dn_base_ip_tool.handle_addr_event,\ name="IPv6_Addr_Dad_Handle") lla_cfg_thread.setDaemon(True) lla_cfg_thread.start() # Notify systemd: Daemon is ready systemd.daemon.notify("READY=1") # wait until a signal is received while False == shutdown: signal.pause() systemd.daemon.notify("STOPPING=1") # cleanup code here # No need to specifically call sys.exit(0). # That's the default behavior in Python.
32.243119
111
0.570257
819a4783fe0ab411739cdc8339aff340c97c9631
6,566
py
Python
third_party/WebKit/Tools/Scripts/webkitpy/common/system/user_unittest.py
xzhan96/chromium.src
1bd0cf3997f947746c0fc5406a2466e7b5f6159e
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2020-07-15T09:50:14.000Z
2020-07-15T09:50:14.000Z
third_party/WebKit/Tools/Scripts/webkitpy/common/system/user_unittest.py
emilio/chromium.src
1bd0cf3997f947746c0fc5406a2466e7b5f6159e
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
third_party/WebKit/Tools/Scripts/webkitpy/common/system/user_unittest.py
emilio/chromium.src
1bd0cf3997f947746c0fc5406a2466e7b5f6159e
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
6
2020-09-23T08:56:12.000Z
2021-11-18T03:40:49.000Z
# Copyright (C) 2010 Research in Motion Ltd. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Research in Motion Ltd. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest from webkitpy.common.system.outputcapture import OutputCapture from webkitpy.common.system.user import User class UserTest(unittest.TestCase): example_user_response = "example user response" def test_prompt_repeat(self): self.repeatsRemaining = 2 def mock_raw_input(message): self.repeatsRemaining -= 1 if not self.repeatsRemaining: return UserTest.example_user_response return None self.assertEqual(User.prompt("input", repeat=self.repeatsRemaining, raw_input=mock_raw_input), UserTest.example_user_response) def test_prompt_when_exceeded_repeats(self): self.repeatsRemaining = 2 def mock_raw_input(message): self.repeatsRemaining -= 1 return None self.assertIsNone(User.prompt("input", repeat=self.repeatsRemaining, raw_input=mock_raw_input)) def test_prompt_with_multiple_lists(self): def run_prompt_test(inputs, expected_result, can_choose_multiple=False): def mock_raw_input(message): return inputs.pop(0) output_capture = OutputCapture() actual_result = output_capture.assert_outputs( self, User.prompt_with_multiple_lists, args=["title", ["subtitle1", "subtitle2"], [["foo", "bar"], ["foobar", "barbaz", "foobaz"]]], kwargs={"can_choose_multiple": can_choose_multiple, "raw_input": mock_raw_input}, expected_stdout="title\n\nsubtitle1\n 1. foo\n 2. bar\n\nsubtitle2\n 3. foobar\n 4. barbaz\n 5. foobaz\n") self.assertEqual(actual_result, expected_result) self.assertEqual(len(inputs), 0) run_prompt_test(["1"], "foo") run_prompt_test(["badinput", "2"], "bar") run_prompt_test(["3"], "foobar") run_prompt_test(["4"], "barbaz") run_prompt_test(["5"], "foobaz") run_prompt_test(["1,2"], ["foo", "bar"], can_choose_multiple=True) run_prompt_test(["1-3"], ["foo", "bar", "foobar"], can_choose_multiple=True) run_prompt_test(["1-2,3"], ["foo", "bar", "foobar"], can_choose_multiple=True) run_prompt_test(["2-1,3"], ["foobar"], can_choose_multiple=True) run_prompt_test([" 1, 2 "], ["foo", "bar"], can_choose_multiple=True) run_prompt_test(["all"], ["foo", "bar", 'foobar', 'barbaz', 'foobaz'], can_choose_multiple=True) run_prompt_test([""], ["foo", "bar", 'foobar', 'barbaz', 'foobaz'], can_choose_multiple=True) run_prompt_test([" "], ["foo", "bar", 'foobar', 'barbaz', 'foobaz'], can_choose_multiple=True) run_prompt_test(["badinput", "all"], ["foo", "bar", 'foobar', 'barbaz', 'foobaz'], can_choose_multiple=True) def test_prompt_with_list(self): def run_prompt_test(inputs, expected_result, can_choose_multiple=False): def mock_raw_input(message): return inputs.pop(0) output_capture = OutputCapture() actual_result = output_capture.assert_outputs( self, User.prompt_with_list, args=["title", ["foo", "bar"]], kwargs={"can_choose_multiple": can_choose_multiple, "raw_input": mock_raw_input}, expected_stdout="title\n 1. foo\n 2. bar\n") self.assertEqual(actual_result, expected_result) self.assertEqual(len(inputs), 0) run_prompt_test(["1"], "foo") run_prompt_test(["badinput", "2"], "bar") run_prompt_test(["1,2"], ["foo", "bar"], can_choose_multiple=True) run_prompt_test([" 1, 2 "], ["foo", "bar"], can_choose_multiple=True) run_prompt_test(["all"], ["foo", "bar"], can_choose_multiple=True) run_prompt_test([""], ["foo", "bar"], can_choose_multiple=True) run_prompt_test([" "], ["foo", "bar"], can_choose_multiple=True) run_prompt_test(["badinput", "all"], ["foo", "bar"], can_choose_multiple=True) def test_confirm(self): test_cases = ( (("Continue? [Y/n]: ", True), (User.DEFAULT_YES, 'y')), (("Continue? [Y/n]: ", False), (User.DEFAULT_YES, 'n')), (("Continue? [Y/n]: ", True), (User.DEFAULT_YES, '')), (("Continue? [Y/n]: ", False), (User.DEFAULT_YES, 'q')), (("Continue? [y/N]: ", True), (User.DEFAULT_NO, 'y')), (("Continue? [y/N]: ", False), (User.DEFAULT_NO, 'n')), (("Continue? [y/N]: ", False), (User.DEFAULT_NO, '')), (("Continue? [y/N]: ", False), (User.DEFAULT_NO, 'q')), ) for test_case in test_cases: expected, inputs = test_case def mock_raw_input(message): self.assertEqual(expected[0], message) return inputs[1] result = User().confirm(default=inputs[0], raw_input=mock_raw_input) self.assertEqual(expected[1], result)
49.368421
122
0.636917
f122587ac48e43ff7b7ad178cbcb2de1da883deb
3,571
py
Python
saleor/graphql/plugins/resolvers.py
csmatar/saleor
125c90cc185731b49733178e02c0b43bf5939013
[ "CC-BY-4.0" ]
1
2022-02-21T07:17:08.000Z
2022-02-21T07:17:08.000Z
saleor/graphql/plugins/resolvers.py
csmatar/saleor
125c90cc185731b49733178e02c0b43bf5939013
[ "CC-BY-4.0" ]
81
2021-10-11T04:26:07.000Z
2022-03-28T04:46:43.000Z
saleor/graphql/plugins/resolvers.py
csmatar/saleor
125c90cc185731b49733178e02c0b43bf5939013
[ "CC-BY-4.0" ]
1
2022-02-16T22:00:59.000Z
2022-02-16T22:00:59.000Z
from collections import defaultdict from typing import Dict, List, Tuple from ...plugins.base_plugin import BasePlugin, ConfigurationTypeField from .filters import ( filter_plugin_by_type, filter_plugin_search, filter_plugin_status_in_channels, ) from .sorters import sort_plugins from .types import Plugin def hide_private_configuration_fields(configuration, config_structure): if not config_structure: return for field in configuration: name = field["name"] value = field["value"] if value is None: continue field_type = config_structure.get(name, {}).get("type") if field_type == ConfigurationTypeField.PASSWORD: field["value"] = "" if value else None if field_type in [ ConfigurationTypeField.SECRET, ConfigurationTypeField.SECRET_MULTILINE, ]: if not value: field["value"] = None elif len(value) > 4: field["value"] = value[-4:] else: field["value"] = value[-1:] def aggregate_plugins_configuration( manager, ) -> Tuple[Dict[str, BasePlugin], Dict[str, List[BasePlugin]]]: plugins_per_channel: Dict[str, List[BasePlugin]] = defaultdict(list) global_plugins: Dict[str, BasePlugin] = {} for plugin in manager.all_plugins: hide_private_configuration_fields(plugin.configuration, plugin.CONFIG_STRUCTURE) if not getattr(plugin, "CONFIGURATION_PER_CHANNEL", False): global_plugins[plugin.PLUGIN_ID] = plugin else: plugins_per_channel[plugin.PLUGIN_ID].append(plugin) return global_plugins, plugins_per_channel def resolve_plugin(id, manager): global_plugins, plugins_per_channel = aggregate_plugins_configuration(manager) plugin: BasePlugin = manager.get_plugin(id) if not plugin: return None return Plugin( id=plugin.PLUGIN_ID, global_configuration=global_plugins.get(plugin.PLUGIN_ID), channel_configurations=plugins_per_channel.get(plugin.PLUGIN_ID), description=plugin.PLUGIN_DESCRIPTION, name=plugin.PLUGIN_NAME, ) def resolve_plugins(manager, sort_by=None, **kwargs): global_plugins, plugins_per_channel = aggregate_plugins_configuration(manager) plugin_filter = kwargs.get("filter", {}) search_query = plugin_filter.get("search") filter_status_in_channel = plugin_filter.get("status_in_channels") filter_plugin_type = plugin_filter.get("type") plugins = [ Plugin( id=plugin.PLUGIN_ID, global_configuration=plugin, channel_configurations=None, description=plugin.PLUGIN_DESCRIPTION, name=plugin.PLUGIN_NAME, ) for _, plugin in global_plugins.items() ] plugins.extend( [ Plugin( id=plugin_id, global_configuration=None, channel_configurations=plugins, description=plugins[0].PLUGIN_DESCRIPTION, name=plugins[0].PLUGIN_NAME, ) for plugin_id, plugins in plugins_per_channel.items() ] ) if filter_status_in_channel is not None: plugins = filter_plugin_status_in_channels(plugins, filter_status_in_channel) if filter_plugin_type is not None: plugins = filter_plugin_by_type(plugins, filter_plugin_type) plugins = filter_plugin_search(plugins, search_query) plugins = sort_plugins(plugins, sort_by) return plugins
33.064815
88
0.66816
17e87b19675035acb7788a57875791fc239f91e9
4,335
py
Python
catkin_ws/src:/opt/ros/kinetic/lib/python2.7/dist-packages:/home/bala/duckietown/catkin_ws/src:/home/bala/duckietown/catkin_ws/src/lib/python2.7/site-packages/contracts/testing/test_docstring_parsing.py
johnson880319/Software
045894227f359e0a3a3ec5b7a53f8d1ebc06acdd
[ "CC-BY-2.0" ]
13
2018-03-28T23:07:01.000Z
2022-03-12T06:01:21.000Z
catkin_ws/src:/opt/ros/kinetic/lib/python2.7/dist-packages:/home/bala/duckietown/catkin_ws/src:/home/bala/duckietown/catkin_ws/src/lib/python2.7/site-packages/contracts/testing/test_docstring_parsing.py
johnson880319/Software
045894227f359e0a3a3ec5b7a53f8d1ebc06acdd
[ "CC-BY-2.0" ]
11
2018-06-18T15:49:07.000Z
2021-11-25T01:45:33.000Z
catkin_ws/src:/opt/ros/kinetic/lib/python2.7/dist-packages:/home/bala/duckietown/catkin_ws/src:/home/bala/duckietown/catkin_ws/src/lib/python2.7/site-packages/contracts/testing/test_docstring_parsing.py
johnson880319/Software
045894227f359e0a3a3ec5b7a53f8d1ebc06acdd
[ "CC-BY-2.0" ]
5
2018-03-28T23:07:05.000Z
2021-12-09T19:02:00.000Z
import unittest from ..docstring_parsing import DocStringInfo, Arg, number_of_spaces from contracts.interface import add_prefix examples = {""" Provides a RGB representation of the values by interpolating the range [min(value),max(value)] into the colorspace [min_color, max_color]. :param value: The field to represent. :type value: HxW array :param max_value: If specified, everything *above* is clipped. :type max_value: float :param min_value: If specified, everything *below* is clipped. :type min_value: float :param min_color: Color to give to the minimum values. :return: A RGB image. :rtype: HxWx3 uint8 :return: gray """: DocStringInfo(docstring='\n Provides a RGB representation of the values by interpolating the range\n' ' [min(value),max(value)] into the colorspace [min_color, max_color].\n', params={ 'value': Arg('The field to represent.', 'HxW array'), 'max_value': Arg('If specified, everything *above* is clipped.', 'float'), 'min_value': Arg('If specified, everything *below* is clipped.', 'float'), 'min_color': Arg('Color to give to the minimum values.', None), }, returns=[Arg('A RGB image.', "HxWx3 uint8"), Arg('gray', None)] ) } class DocStringTest(unittest.TestCase): def test_parsing(self): for string in examples: parsed = DocStringInfo.parse(string) "%s" % parsed "%r" % parsed result = examples[string] self.assertEqual(result, parsed) def test_number_of_spaces(self): self.assertEqual(number_of_spaces(''), 0) self.assertEqual(number_of_spaces(' '), 1) self.assertEqual(number_of_spaces(' '), 2) self.assertEqual(number_of_spaces('11'), 0) self.assertEqual(number_of_spaces(' 223'), 1) self.assertEqual(number_of_spaces(' 4343'), 2) def test_reparsing(self): for string, result in examples.items(): #@UnusedVariable parsed = DocStringInfo.parse(string) converted = "%s" % parsed reparsed = DocStringInfo.parse(converted) msg = ('First string:\n%s\nParsed as:\n%s\n' % (add_prefix(string, '|'), add_prefix('%r' % parsed, '|'))) msg += ('Converted:\n%s\nReparsed as:\n%s\n' % (add_prefix(converted, '|'), add_prefix('%r' % reparsed, '|'))) self.assertEqual(parsed, reparsed, msg=msg) def test_inline_params(self): def test_inline_parsing(docstring, expected_type="type", expected_desc="desc"): info = DocStringInfo.parse(docstring) self.assertTrue("name" in info.params) self.assertEqual(info.params["name"].type, expected_type) self.assertEqual(info.params["name"].desc, expected_desc) # Proper syntax test_inline_parsing(":param type name: desc") test_inline_parsing(":param name: desc", None) test_inline_parsing(":param name:", None, None) # Weird syntax for people who like to break things. test_inline_parsing(" : param type name : desc ") test_inline_parsing(" : param name : desc ", None) test_inline_parsing(" : param name : ", None, None) test_inline_parsing(" : param type , > 0 name : ", "type , > 0", None) def test_inline_returns(self): def test_inline_parsing(docstring, expected_type="type", expected_desc="desc"): info = DocStringInfo.parse(docstring) self.assertTrue(len(info.returns) > 0) self.assertEqual(info.returns[0].type, expected_type) self.assertEqual(info.returns[0].desc, expected_desc) # Proper syntax test_inline_parsing(":returns type: desc") test_inline_parsing(":returns: desc", None) test_inline_parsing(":returns:", None, None) # Weird syntax for people who like to break things. test_inline_parsing(" : returns type : desc ") test_inline_parsing(" : returns : desc ", None) test_inline_parsing(" : returns : ", None, None) test_inline_parsing(" : returns type , > 0 : ", "type , > 0", None)
39.770642
117
0.610611
dc9d593d4487ed0db1bf1e904519fad7cbe322aa
16,073
py
Python
widgets/editor_widgets.py
cristian64/mkdd-track-editor
e8e735033ca11127e6686d81e7377110ad628915
[ "MIT" ]
null
null
null
widgets/editor_widgets.py
cristian64/mkdd-track-editor
e8e735033ca11127e6686d81e7377110ad628915
[ "MIT" ]
null
null
null
widgets/editor_widgets.py
cristian64/mkdd-track-editor
e8e735033ca11127e6686d81e7377110ad628915
[ "MIT" ]
2
2022-03-30T13:01:26.000Z
2022-03-31T06:25:37.000Z
import traceback from io import StringIO from itertools import chain from math import acos, pi import os import sys from PyQt5.QtGui import QMouseEvent, QWheelEvent, QPainter, QColor, QFont, QFontMetrics, QPolygon, QImage, QPixmap, QKeySequence from PyQt5.QtWidgets import (QWidget, QListWidget, QListWidgetItem, QDialog, QMenu, QLineEdit, QFileDialog, QScrollArea, QMdiSubWindow, QHBoxLayout, QVBoxLayout, QLabel, QPushButton, QTextEdit, QAction, QShortcut) import PyQt5.QtWidgets as QtWidgets import PyQt5.QtCore as QtCore from PyQt5.QtCore import QSize, pyqtSignal, QPoint, QRect from PyQt5.QtCore import Qt import PyQt5.QtGui as QtGui import lib.libbol as libbol from widgets.data_editor import choose_data_editor from lib.libbol import get_full_name def catch_exception(func): def handle(*args, **kwargs): try: return func(*args, **kwargs) except KeyboardInterrupt: QtWidgets.QApplication.quit() except: traceback.print_exc() #raise return handle def catch_exception_with_dialog(func): def handle(*args, **kwargs): try: print(args, kwargs) return func(*args, **kwargs) except Exception as e: traceback.print_exc() print("hey") open_error_dialog(str(e), None) return handle def catch_exception_with_dialog_nokw(func): def handle(*args, **kwargs): try: print(args, kwargs) return func(*args, **kwargs) except Exception as e: traceback.print_exc() open_error_dialog(str(e), None) return handle def open_error_dialog(errormsg, self): errorbox = QtWidgets.QMessageBox() errorbox.critical(self, "Error", errormsg) errorbox.setFixedSize(500, 200) class ErrorAnalyzer(QMdiSubWindow): @catch_exception def __init__(self, bol, *args, **kwargs): super().__init__(*args, **kwargs) font = QFont() font.setFamily("Consolas") font.setStyleHint(QFont.Monospace) font.setFixedPitch(True) font.setPointSize(10) self.setWindowTitle("Analysis Results") self.text_widget = QTextEdit(self) self.setWidget(self.text_widget) self.resize(900, 500) self.setMinimumSize(QSize(300, 300)) self.text_widget.setFont(font) self.text_widget.setReadOnly(True) self.analyze_bol_and_write_results(bol) @catch_exception def analyze_bol_and_write_results(self, bol): results = StringIO() def write_line(line): results.write(line) results.write("\n") # Check enemy point linkage errors links = {} for group_index, group in enumerate(bol.enemypointgroups.groups): for i, point in enumerate(group.points): if point.link == -1: continue if point.link not in links: links[point.link] = [(group_index, i, point)] else: links[point.link].append(((group_index, i, point))) for link_id, points in links.items(): if len(points) == 1: group_index, i, point = points[0] write_line("Point {0} in enemy point group {1} has link {2}; No other point has link {2}".format( i, group_index, point.link )) for group_index, group in enumerate(bol.enemypointgroups.groups): print(group.points[0].link, group.points[-1].link) if group.points[0].link == -1: write_line("Start point of enemy point group {0} has no valid link to form a loop".format(group_index)) if group.points[-1].link == -1: write_line("End point of enemy point group {0} has no valid link to form a loop".format(group_index)) # Check prev/next groups of checkpoints for i, group in enumerate(bol.checkpoints.groups): for index in chain(group.prevgroup, group.nextgroup): if index != -1: if index < -1 or index+1 > len(bol.checkpoints.groups): write_line("Checkpoint group {0} has invalid Prev or Nextgroup index {1}".format( i, index )) # Validate path id in objects for object in bol.objects.objects: if object.pathid < -1 or object.pathid + 1 > len(bol.routes): write_line("Map object {0} uses path id {1} that does not exist".format( get_full_name(object.objectid), object.pathid )) # Validate Kart start positions if len(bol.kartpoints.positions) == 0: write_line("Map contains no kart start points") else: exist = [False for x in range(8)] for i, kartstartpos in enumerate(bol.kartpoints.positions): if kartstartpos.playerid == 0xFF: if all(exist): write_line("Duplicate kart start point for all karts") exist = [True for x in range(8)] elif kartstartpos.playerid > 8: write_line("A kart start point with an invalid player id exists: {0}".format( kartstartpos.playerid )) elif exist[kartstartpos.playerid]: write_line("Duplicate kart start point for player id {0}".format( kartstartpos.playerid)) else: exist[kartstartpos.playerid] = True # Check camera indices in areas for i, area in enumerate(bol.areas.areas): if area.camera_index < -1 or area.camera_index + 1 > len(bol.cameras): write_line("Area {0} uses invalid camera index {1}".format(i, area.camera_index)) # Check cameras for i, camera in enumerate(bol.cameras): if camera.nextcam < -1 or camera.nextcam + 1 > len(bol.cameras): write_line("Camera {0} uses invalid nextcam (next camera) index {1}".format( i, camera.nextcam )) if camera.route < -1 or camera.route + 1 > len(bol.routes): write_line("Camera {0} uses invalid path id {1}".format(i, camera.route)) if len(bol.checkpoints.groups) == 0: write_line("You need at least one checkpoint group!") if len(bol.enemypointgroups.groups) == 0: write_line("You need at least one enemy point group!") self.check_checkpoints_convex(bol, write_line) text = results.getvalue() if not text: text = "No known common errors detected!" self.text_widget.setText(text) def check_checkpoints_convex(self, bol, write_line): for gindex, group in enumerate(bol.checkpoints.groups): if len(group.points) > 1: for i in range(1, len(group.points)): c1 = group.points[i-1] c2 = group.points[i] lastsign = None for p1, mid, p3 in ((c1.start, c2.start, c2.end), (c2.start, c2.end, c1.end), (c2.end, c1.end, c1.start), (c1.end, c1.start, c2.start)): side1 = p1 - mid side2 = p3 - mid prod = side1.x * side2.z - side2.x * side1.z if lastsign is None: lastsign = prod > 0 else: if not (lastsign == (prod > 0)): write_line("Quad formed by checkpoints {0} and {1} in checkpoint group {2} isn't convex.".format( i-1, i, gindex )) break class AddPikObjectWindow(QMdiSubWindow): triggered = pyqtSignal(object) closing = pyqtSignal() def closeEvent(self, event): self.closing.emit() super().closeEvent(event) @catch_exception def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if "windowtype" in kwargs: self.window_name = kwargs["windowtype"] else: self.window_name = "Add Object" self.resize(900, 500) self.setMinimumSize(QSize(300, 300)) self.centralwidget = QWidget(self) self.setWidget(self.centralwidget) self.entity = None font = QFont() font.setFamily("Consolas") font.setStyleHint(QFont.Monospace) font.setFixedPitch(True) font.setPointSize(10) self.dummywidget = QWidget(self) self.dummywidget.setMaximumSize(0,0) self.verticalLayout = QVBoxLayout(self.centralwidget) self.verticalLayout.setAlignment(Qt.AlignTop) self.verticalLayout.addWidget(self.dummywidget) self.setup_dropdown_menu() self.hbox1 = QHBoxLayout() self.hbox2 = QHBoxLayout() self.label1 = QLabel(self.centralwidget) self.label2 = QLabel(self.centralwidget) self.label3 = QLabel(self.centralwidget) self.label1.setText("Group") self.label2.setText("Position in Group") self.label3.setText("(-1 means end of Group)") self.group_edit = QLineEdit(self.centralwidget) self.position_edit = QLineEdit(self.centralwidget) self.group_edit.setValidator(QtGui.QIntValidator(0, 2**31-1)) self.position_edit.setValidator(QtGui.QIntValidator(-1, 2**31-1)) self.hbox1.setAlignment(Qt.AlignRight) self.hbox2.setAlignment(Qt.AlignRight) self.verticalLayout.addLayout(self.hbox1) self.verticalLayout.addLayout(self.hbox2) self.hbox1.addWidget(self.label1) self.hbox1.addWidget(self.group_edit) self.hbox2.addWidget(self.label2) self.hbox2.addWidget(self.position_edit) self.hbox2.addWidget(self.label3) self.group_edit.setDisabled(True) self.position_edit.setDisabled(True) self.editor_widget = None self.editor_layout = QScrollArea()#QVBoxLayout(self.centralwidget) self.verticalLayout.addWidget(self.editor_layout) #self.textbox_xml = QTextEdit(self.centralwidget) self.button_savetext = QPushButton(self.centralwidget) self.button_savetext.setText("Add Object") self.button_savetext.setToolTip("Hotkey: Ctrl+S") self.button_savetext.setMaximumWidth(400) self.button_savetext.setDisabled(True) self.verticalLayout.addWidget(self.button_savetext) self.setWindowTitle(self.window_name) self.created_object = None #QtWidgets.QShortcut(Qt.CTRL + Qt.Key_S, self).activated.connect(self.emit_add_object) def keyPressEvent(self, event: QtGui.QKeyEvent): if event.key() == Qt.CTRL + Qt.Key_S: self.emit_add_object() else: super().keyPressEvent(event) def emit_add_object(self): self.button_savetext.pressed.emit() def get_content(self): try: if not self.group_edit.text(): group = None else: group = int(self.group_edit.text()) if not self.position_edit.text(): position = None else: position = int(self.position_edit.text()) return self.created_object, group, position except Exception as e: traceback.print_exc() open_error_dialog(str(e), self) return None def setup_dropdown_menu(self): self.category_menu = QtWidgets.QComboBox(self) self.category_menu.addItem("-- select type --") self.verticalLayout.addWidget(self.category_menu) self.objecttypes = { "Enemy Point": libbol.EnemyPoint, "Checkpoint": libbol.Checkpoint, "Object Point": libbol.RoutePoint, "Object": libbol.MapObject, "Area": libbol.Area, "Camera": libbol.Camera, "Respawn Point": libbol.JugemPoint, "Kart Start Point": libbol.KartStartPoint, "Enemy Path": libbol.EnemyPointGroup, "Checkpoint Group": libbol.CheckpointGroup, "Object Path": libbol.Route, "Light Param": libbol.LightParam, "Minigame Param": libbol.MGEntry } for item, val in self.objecttypes.items(): self.category_menu.addItem(item) self.category_menu.currentIndexChanged.connect(self.change_category) def change_category(self, index): if index > 0: item = self.category_menu.currentText() self.button_savetext.setDisabled(False) objecttype = self.objecttypes[item] if self.editor_widget is not None: self.editor_widget.deleteLater() self.editor_widget = None if self.created_object is not None: del self.created_object self.created_object = objecttype.new() if isinstance(self.created_object, (libbol.Checkpoint, libbol.EnemyPoint, libbol.RoutePoint)): self.group_edit.setDisabled(False) self.position_edit.setDisabled(False) self.group_edit.setText("0") self.position_edit.setText("-1") else: self.group_edit.setDisabled(True) self.position_edit.setDisabled(True) self.group_edit.clear() self.position_edit.clear() data_editor = choose_data_editor(self.created_object) if data_editor is not None: self.editor_widget = data_editor(self, self.created_object) self.editor_layout.setWidget(self.editor_widget) self.editor_widget.update_data() else: self.editor_widget.deleteLater() self.editor_widget = None del self.created_object self.created_object = None self.button_savetext.setDisabled(True) self.position_edit.setDisabled(True) self.group_edit.setDisabled(True) class SpawnpointEditor(QMdiSubWindow): triggered = pyqtSignal(object) closing = pyqtSignal() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.centralwidget = QWidget(self) self.setWidget(self.centralwidget) self.entity = None self.resize(400, 200) font = QFont() font.setFamily("Consolas") font.setStyleHint(QFont.Monospace) font.setFixedPitch(True) font.setPointSize(10) self.verticalLayout = QVBoxLayout(self.centralwidget) self.position = QLineEdit(self.centralwidget) self.rotation = QLineEdit(self.centralwidget) self.button_savetext = QPushButton(self.centralwidget) self.button_savetext.setText("Set Data") self.button_savetext.setMaximumWidth(400) self.verticalLayout.addWidget(QLabel("startPos")) self.verticalLayout.addWidget(self.position) self.verticalLayout.addWidget(QLabel("startDir")) self.verticalLayout.addWidget(self.rotation) self.verticalLayout.addWidget(self.button_savetext) self.setWindowTitle("Edit startPos/Dir") def closeEvent(self, event): self.closing.emit() def get_pos_dir(self): pos = self.position.text().strip() direction = float(self.rotation.text().strip()) if "," in pos: pos = [float(x.strip()) for x in pos.split(",")] else: pos = [float(x.strip()) for x in pos.split(" ")] assert len(pos) == 3 return pos, direction
36.696347
129
0.590618
12bbcee588e9835228ea369f91c9ba092a06efb0
5,190
py
Python
lib/spack/spack/parse.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
9
2018-04-18T07:51:40.000Z
2021-09-10T03:56:57.000Z
lib/spack/spack/parse.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
907
2018-04-18T11:17:57.000Z
2022-03-31T13:20:25.000Z
lib/spack/spack/parse.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
29
2018-11-05T16:14:23.000Z
2022-02-03T16:07:09.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import re import shlex import sys import itertools from six import string_types import spack.error class Token(object): """Represents tokens; generated from input by lexer and fed to parse().""" def __init__(self, type, value='', start=0, end=0): self.type = type self.value = value self.start = start self.end = end def __repr__(self): return str(self) def __str__(self): return "<%d: '%s'>" % (self.type, self.value) def is_a(self, type): return self.type == type def __eq__(self, other): return (self.type == other.type) and (self.value == other.value) class Lexer(object): """Base class for Lexers that keep track of line numbers.""" def __init__(self, lexicon0, mode_switches_01=[], lexicon1=[], mode_switches_10=[]): self.scanner0 = re.Scanner(lexicon0) self.mode_switches_01 = mode_switches_01 self.scanner1 = re.Scanner(lexicon1) self.mode_switches_10 = mode_switches_10 self.mode = 0 def token(self, type, value=''): if self.mode == 0: return Token(type, value, self.scanner0.match.start(0), self.scanner0.match.end(0)) else: return Token(type, value, self.scanner1.match.start(0), self.scanner1.match.end(0)) def lex_word(self, word): scanner = self.scanner0 mode_switches = self.mode_switches_01 if self.mode == 1: scanner = self.scanner1 mode_switches = self.mode_switches_10 tokens, remainder = scanner.scan(word) remainder_used = 0 for i, t in enumerate(tokens): if t.type in mode_switches: # Combine post-switch tokens with remainder and # scan in other mode self.mode = 1 - self.mode # swap 0/1 remainder_used = 1 tokens = tokens[:i + 1] + self.lex_word( word[word.index(t.value) + len(t.value):]) break if remainder and not remainder_used: raise LexError("Invalid character", word, word.index(remainder)) return tokens def lex(self, text): lexed = [] for word in text: tokens = self.lex_word(word) lexed.extend(tokens) return lexed class Parser(object): """Base class for simple recursive descent parsers.""" def __init__(self, lexer): self.tokens = iter([]) # iterators over tokens, handled in order. self.token = Token(None) # last accepted token self.next = None # next token self.lexer = lexer self.text = None def gettok(self): """Puts the next token in the input stream into self.next.""" try: self.next = next(self.tokens) except StopIteration: self.next = None def push_tokens(self, iterable): """Adds all tokens in some iterable to the token stream.""" self.tokens = itertools.chain( iter(iterable), iter([self.next]), self.tokens) self.gettok() def accept(self, id): """Put the next symbol in self.token if accepted, then call gettok()""" if self.next and self.next.is_a(id): self.token = self.next self.gettok() return True return False def next_token_error(self, message): """Raise an error about the next token in the stream.""" raise ParseError(message, self.text, self.token.end) def last_token_error(self, message): """Raise an error about the previous token in the stream.""" raise ParseError(message, self.text, self.token.start) def unexpected_token(self): self.next_token_error("Unexpected token: '%s'" % self.next.value) def expect(self, id): """Like accept(), but fails if we don't like the next token.""" if self.accept(id): return True else: if self.next: self.unexpected_token() else: self.next_token_error("Unexpected end of input") sys.exit(1) def setup(self, text): if isinstance(text, string_types): text = shlex.split(str(text)) self.text = text self.push_tokens(self.lexer.lex(text)) def parse(self, text): self.setup(text) return self.do_parse() class ParseError(spack.error.SpackError): """Raised when we don't hit an error while parsing.""" def __init__(self, message, string, pos): super(ParseError, self).__init__(message) self.string = string self.pos = pos class LexError(ParseError): """Raised when we don't know how to lex something.""" def __init__(self, message, string, pos): super(LexError, self).__init__(message, string, pos)
30.710059
79
0.587476
14788ea83accb89ed904d08bb3dc3fff212b6b7e
68
py
Python
demo/demo_app/settings/production_debug.py
Nekmo/djangocms-bs3-theme
1155588414164d6e5d027131e9181856f8a80d5d
[ "MIT" ]
null
null
null
demo/demo_app/settings/production_debug.py
Nekmo/djangocms-bs3-theme
1155588414164d6e5d027131e9181856f8a80d5d
[ "MIT" ]
10
2018-07-30T15:09:57.000Z
2022-03-29T21:54:12.000Z
demo/demo_app/settings/production_debug.py
Nekmo/djangocms-bs3-theme
1155588414164d6e5d027131e9181856f8a80d5d
[ "MIT" ]
null
null
null
from .production import * DEBUG = True BOOTSTRAP3_FORCE_SRC = True
13.6
27
0.779412
5e62f5982af991c7a8f2f59da86f92fa09375a81
215
py
Python
yeast/core/media/sc/sc_no_ino.py
irahorecka/sga-fba
fc7e923da8e79555780359f018c85b5e5339d8d0
[ "MIT" ]
null
null
null
yeast/core/media/sc/sc_no_ino.py
irahorecka/sga-fba
fc7e923da8e79555780359f018c85b5e5339d8d0
[ "MIT" ]
null
null
null
yeast/core/media/sc/sc_no_ino.py
irahorecka/sga-fba
fc7e923da8e79555780359f018c85b5e5339d8d0
[ "MIT" ]
null
null
null
""" Defines upper bounds of SC-Ino media for FBA """ from yeast.core.media.constants import reagents from yeast.core.media.sc.base import sc ino = { reagents["myo-inositol"]: 0.0, } sc_no_ino = {**sc, **ino}
16.538462
47
0.683721
1aae5f06ddd45b14327ba65dfe9f9395c72a46b5
7,945
py
Python
docs/conf.py
kforti/variant_calling
5b6899115b1c5b1f958d8d8f33b484ccd0a8a787
[ "MIT" ]
null
null
null
docs/conf.py
kforti/variant_calling
5b6899115b1c5b1f958d8d8f33b484ccd0a8a787
[ "MIT" ]
null
null
null
docs/conf.py
kforti/variant_calling
5b6899115b1c5b1f958d8d8f33b484ccd0a8a787
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # tokyo_variant_calling documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'tokyo_variant_calling' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'tokyo_variant_callingdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'tokyo_variant_calling.tex', u'tokyo_variant_calling Documentation', u"Kevin Fortier (Pai Lab)", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'tokyo_variant_calling', u'tokyo_variant_calling Documentation', [u"Kevin Fortier (Pai Lab)"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'tokyo_variant_calling', u'tokyo_variant_calling Documentation', u"Kevin Fortier (Pai Lab)", 'tokyo_variant_calling', 'Reproducing variant calling figures from Tokyo group', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
32.428571
80
0.711517
3bc5db5029e791619f4fdd2de2bffba75d058601
1,933
py
Python
OpenCv Document Scanner/scan.py
PatrickPrakash/OpenCvProjects
c29d024a86ea8b2fc5a5aad8b8eb1f128e68b931
[ "MIT" ]
null
null
null
OpenCv Document Scanner/scan.py
PatrickPrakash/OpenCvProjects
c29d024a86ea8b2fc5a5aad8b8eb1f128e68b931
[ "MIT" ]
null
null
null
OpenCv Document Scanner/scan.py
PatrickPrakash/OpenCvProjects
c29d024a86ea8b2fc5a5aad8b8eb1f128e68b931
[ "MIT" ]
null
null
null
from pyimagesearch.transform import four_point_transform from skimage.filters import threshold_local import numpy as np import argparse import cv2 import imutils ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "Path to the image to be scanned") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) ratio = image.shape[0] / 500.0 orig = image.copy() image = imutils.resize(image, height = 500) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5,5),0) edged = cv2.Canny(gray, 75, 200) # print("STEP 1: Edge Detection") # cv2.imshow("Image",image) # cv2.imshow("Edged",edged) # cv2.waitKey(0) # cv2.destroyAllWindows() cnts = cv2.findContours(edged.copy() , cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] for c in cnts: # approximate the contour peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # if our approximated contour has four points, then we # can assume that we have found our screen if len(approx) == 4: screenCnt = approx break # show the contour (outline) of the piece of paper # print("STEP 2: Find contours of paper") # cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2) # cv2.imshow("Outline", image) # cv2.waitKey(0) # cv2.destroyAllWindows() warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio) # convert the warped image to grayscale, then threshold it # to give it that 'black and white' paper effect warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) T = threshold_local(warped, 11, offset = 10, method = "gaussian") warped = (warped > T).astype("uint8") * 255 # show the original and scanned images print("STEP 3: Apply perspective transform") cv2.imshow("Original", imutils.resize(orig, height = 650)) cv2.imshow("Scanned", imutils.resize(warped, height = 650)) cv2.waitKey(0)
33.327586
78
0.727367
8a6ad7eca5917d66fc8e3593df4811aa3731e665
15,400
py
Python
backend/src/baserow/api/groups/invitations/views.py
cjh0613/baserow
62871f5bf53c9d25446976031aacb706c0abe584
[ "MIT" ]
839
2020-07-20T13:29:34.000Z
2022-03-31T21:09:16.000Z
backend/src/baserow/api/groups/invitations/views.py
cjh0613/baserow
62871f5bf53c9d25446976031aacb706c0abe584
[ "MIT" ]
28
2020-08-07T09:23:58.000Z
2022-03-01T22:32:40.000Z
backend/src/baserow/api/groups/invitations/views.py
cjh0613/baserow
62871f5bf53c9d25446976031aacb706c0abe584
[ "MIT" ]
79
2020-08-04T01:48:01.000Z
2022-03-27T13:30:54.000Z
from django.db import transaction from django.db.models import Exists, OuterRef from django.contrib.auth import get_user_model from itsdangerous.exc import BadSignature from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated, AllowAny from drf_spectacular.utils import extend_schema from drf_spectacular.openapi import OpenApiParameter, OpenApiTypes from baserow.api.decorators import validate_body, map_exceptions from baserow.api.errors import ( ERROR_USER_NOT_IN_GROUP, ERROR_USER_INVALID_GROUP_PERMISSIONS, ERROR_GROUP_DOES_NOT_EXIST, ERROR_HOSTNAME_IS_NOT_ALLOWED, BAD_TOKEN_SIGNATURE, ) from baserow.api.schemas import get_error_schema from baserow.api.groups.serializers import GroupUserGroupSerializer from baserow.api.groups.users.errors import ERROR_GROUP_USER_ALREADY_EXISTS from baserow.api.groups.invitations.errors import ( ERROR_GROUP_INVITATION_DOES_NOT_EXIST, ERROR_GROUP_INVITATION_EMAIL_MISMATCH, ) from baserow.core.models import GroupInvitation from baserow.core.handler import CoreHandler from baserow.core.exceptions import ( UserNotInGroup, UserInvalidGroupPermissionsError, GroupDoesNotExist, GroupInvitationDoesNotExist, BaseURLHostnameNotAllowed, GroupInvitationEmailMismatch, GroupUserAlreadyExists, ) from .serializers import ( GroupInvitationSerializer, CreateGroupInvitationSerializer, UpdateGroupInvitationSerializer, UserGroupInvitationSerializer, ) User = get_user_model() class GroupInvitationsView(APIView): permission_classes = (IsAuthenticated,) @extend_schema( parameters=[ OpenApiParameter( name="group_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Returns only invitations that are in the group related " "to the provided value.", ) ], tags=["Group invitations"], operation_id="list_group_invitations", description=( "Lists all the group invitations of the group related to the provided " "`group_id` parameter if the authorized user has admin rights to that " "group." ), responses={ 200: GroupInvitationSerializer(many=True), 400: get_error_schema( ["ERROR_USER_NOT_IN_GROUP", "ERROR_USER_INVALID_GROUP_PERMISSIONS"] ), 404: get_error_schema(["ERROR_GROUP_DOES_NOT_EXIST"]), }, ) @map_exceptions( { GroupDoesNotExist: ERROR_GROUP_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, UserInvalidGroupPermissionsError: ERROR_USER_INVALID_GROUP_PERMISSIONS, } ) def get(self, request, group_id): """Lists all the invitations of the provided group id.""" group = CoreHandler().get_group(group_id) group.has_user(request.user, "ADMIN", raise_error=True) group_invitations = GroupInvitation.objects.filter(group=group) serializer = GroupInvitationSerializer(group_invitations, many=True) return Response(serializer.data) @extend_schema( parameters=[ OpenApiParameter( name="group_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Creates a group invitation to the group related to the " "provided value.", ) ], tags=["Group invitations"], operation_id="create_group_invitation", description=( "Creates a new group invitations for an email address if the authorized " "user has admin rights to the related group. An email containing a sign " "up link will be send to the user." ), request=CreateGroupInvitationSerializer, responses={ 200: GroupInvitationSerializer, 400: get_error_schema( [ "ERROR_USER_NOT_IN_GROUP", "ERROR_USER_INVALID_GROUP_PERMISSIONS", "ERROR_REQUEST_BODY_VALIDATION", ] ), 404: get_error_schema(["ERROR_GROUP_DOES_NOT_EXIST"]), }, ) @transaction.atomic @validate_body(CreateGroupInvitationSerializer) @map_exceptions( { GroupDoesNotExist: ERROR_GROUP_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, UserInvalidGroupPermissionsError: ERROR_USER_INVALID_GROUP_PERMISSIONS, GroupUserAlreadyExists: ERROR_GROUP_USER_ALREADY_EXISTS, BaseURLHostnameNotAllowed: ERROR_HOSTNAME_IS_NOT_ALLOWED, } ) def post(self, request, data, group_id): """Creates a new group invitation and sends it the provided email.""" group = CoreHandler().get_group(group_id) group_invitation = CoreHandler().create_group_invitation( request.user, group, **data ) return Response(GroupInvitationSerializer(group_invitation).data) class GroupInvitationView(APIView): permission_classes = (IsAuthenticated,) @extend_schema( parameters=[ OpenApiParameter( name="group_invitation_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Returns the group invitation related to the provided " "value.", ) ], tags=["Group invitations"], operation_id="get_group_invitation", description=( "Returns the requested group invitation if the authorized user has admin " "right to the related group" ), responses={ 200: GroupInvitationSerializer, 400: get_error_schema( ["ERROR_USER_NOT_IN_GROUP", "ERROR_USER_INVALID_GROUP_PERMISSIONS"] ), 404: get_error_schema(["ERROR_GROUP_INVITATION_DOES_NOT_EXIST"]), }, ) @map_exceptions( { GroupInvitationDoesNotExist: ERROR_GROUP_INVITATION_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, UserInvalidGroupPermissionsError: ERROR_USER_INVALID_GROUP_PERMISSIONS, } ) def get(self, request, group_invitation_id): """Selects a single group invitation and responds with a serialized version.""" group_invitation = CoreHandler().get_group_invitation(group_invitation_id) group_invitation.group.has_user(request.user, "ADMIN", raise_error=True) return Response(GroupInvitationSerializer(group_invitation).data) @extend_schema( parameters=[ OpenApiParameter( name="group_invitation_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Updates the group invitation related to the provided " "value.", ) ], tags=["Group invitations"], operation_id="update_group_invitation", description=( "Updates the existing group invitation related to the provided " "`group_invitation_id` param if the authorized user has admin rights to " "the related group." ), request=UpdateGroupInvitationSerializer, responses={ 200: GroupInvitationSerializer, 400: get_error_schema( [ "ERROR_USER_NOT_IN_GROUP", "ERROR_USER_INVALID_GROUP_PERMISSIONS", "ERROR_REQUEST_BODY_VALIDATION", ] ), 404: get_error_schema(["ERROR_GROUP_INVITATION_DOES_NOT_EXIST"]), }, ) @transaction.atomic @validate_body(UpdateGroupInvitationSerializer) @map_exceptions( { GroupInvitationDoesNotExist: ERROR_GROUP_INVITATION_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, UserInvalidGroupPermissionsError: ERROR_USER_INVALID_GROUP_PERMISSIONS, } ) def patch(self, request, data, group_invitation_id): """Updates the group invitation if the user belongs to the group.""" group_invitation = CoreHandler().get_group_invitation( group_invitation_id, base_queryset=GroupInvitation.objects.select_for_update(), ) group_invitation = CoreHandler().update_group_invitation( request.user, group_invitation, **data ) return Response(GroupInvitationSerializer(group_invitation).data) @extend_schema( parameters=[ OpenApiParameter( name="group_invitation_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Deletes the group invitation related to the provided " "value.", ) ], tags=["Group invitations"], operation_id="delete_group_invitation", description=( "Deletes a group invitation if the authorized user has admin rights to " "the related group." ), responses={ 204: None, 400: get_error_schema( ["ERROR_USER_NOT_IN_GROUP", "ERROR_USER_INVALID_GROUP_PERMISSIONS"] ), 404: get_error_schema(["ERROR_GROUP_INVITATION_DOES_NOT_EXIST"]), }, ) @transaction.atomic @map_exceptions( { GroupInvitationDoesNotExist: ERROR_GROUP_INVITATION_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, UserInvalidGroupPermissionsError: ERROR_USER_INVALID_GROUP_PERMISSIONS, } ) def delete(self, request, group_invitation_id): """Deletes an existing group_invitation if the user belongs to the group.""" group_invitation = CoreHandler().get_group_invitation( group_invitation_id, base_queryset=GroupInvitation.objects.select_for_update(), ) CoreHandler().delete_group_invitation(request.user, group_invitation) return Response(status=204) class AcceptGroupInvitationView(APIView): permission_classes = (IsAuthenticated,) @extend_schema( parameters=[ OpenApiParameter( name="group_invitation_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Accepts the group invitation related to the provided " "value.", ) ], tags=["Group invitations"], operation_id="accept_group_invitation", description=( "Accepts a group invitation with the given id if the email address of the " "user matches that of the invitation." ), request=None, responses={ 200: GroupUserGroupSerializer, 400: get_error_schema(["ERROR_GROUP_INVITATION_EMAIL_MISMATCH"]), 404: get_error_schema(["ERROR_GROUP_INVITATION_DOES_NOT_EXIST"]), }, ) @transaction.atomic @map_exceptions( { GroupInvitationEmailMismatch: ERROR_GROUP_INVITATION_EMAIL_MISMATCH, GroupInvitationDoesNotExist: ERROR_GROUP_INVITATION_DOES_NOT_EXIST, } ) def post(self, request, group_invitation_id): """Accepts a group invitation.""" try: group_invitation = GroupInvitation.objects.select_related("group").get( id=group_invitation_id ) except GroupInvitation.DoesNotExist: raise GroupInvitationDoesNotExist( f"The group invitation with id {group_invitation_id} does not exist." ) group_user = CoreHandler().accept_group_invitation( request.user, group_invitation ) return Response(GroupUserGroupSerializer(group_user).data) class RejectGroupInvitationView(APIView): permission_classes = (IsAuthenticated,) @extend_schema( parameters=[ OpenApiParameter( name="group_invitation_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Rejects the group invitation related to the provided " "value.", ) ], tags=["Group invitations"], operation_id="reject_group_invitation", description=( "Rejects a group invitation with the given id if the email address of the " "user matches that of the invitation." ), request=None, responses={ 204: None, 400: get_error_schema(["ERROR_GROUP_INVITATION_EMAIL_MISMATCH"]), 404: get_error_schema(["ERROR_GROUP_INVITATION_DOES_NOT_EXIST"]), }, ) @transaction.atomic @map_exceptions( { GroupInvitationEmailMismatch: ERROR_GROUP_INVITATION_EMAIL_MISMATCH, GroupInvitationDoesNotExist: ERROR_GROUP_INVITATION_DOES_NOT_EXIST, } ) def post(self, request, group_invitation_id): """Rejects a group invitation.""" try: group_invitation = GroupInvitation.objects.select_related("group").get( id=group_invitation_id ) except GroupInvitation.DoesNotExist: raise GroupInvitationDoesNotExist( f"The group invitation with id {group_invitation_id} does not exist." ) CoreHandler().reject_group_invitation(request.user, group_invitation) return Response(status=204) class GroupInvitationByTokenView(APIView): permission_classes = (AllowAny,) @extend_schema( parameters=[ OpenApiParameter( name="token", location=OpenApiParameter.PATH, type=OpenApiTypes.STR, description="Returns the group invitation related to the provided " "token.", ) ], tags=["Group invitations"], operation_id="get_group_invitation_by_token", description=( "Responds with the serialized group invitation if an invitation with the " "provided token is found." ), responses={ 200: UserGroupInvitationSerializer, 400: get_error_schema(["BAD_TOKEN_SIGNATURE"]), 404: get_error_schema(["ERROR_GROUP_INVITATION_DOES_NOT_EXIST"]), }, ) @map_exceptions( { BadSignature: BAD_TOKEN_SIGNATURE, GroupInvitationDoesNotExist: ERROR_GROUP_INVITATION_DOES_NOT_EXIST, } ) def get(self, request, token): """ Responds with the serialized group invitation if an invitation with the provided token is found. """ exists_queryset = User.objects.filter(username=OuterRef("email")) group_invitation = CoreHandler().get_group_invitation_by_token( token, base_queryset=GroupInvitation.objects.annotate( email_exists=Exists(exists_queryset) ), ) return Response(UserGroupInvitationSerializer(group_invitation).data)
36.065574
87
0.637792
07b92d615923dd63cf15c6084f546c4601927de3
17,896
py
Python
data/dql/script47/20210129-091207/script47.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
1
2020-06-14T13:50:28.000Z
2020-06-14T13:50:28.000Z
data/dql/script47/20210129-091207/script47.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
null
null
null
data/dql/script47/20210129-091207/script47.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
null
null
null
# Similar to script . # Uses CompleteEnvironment10dB # Centralized Learning-Distributed Execution # Simulates many times, for different number of agents, and take the averages. # There are different channels to the BS and to the devices. # Multiple episodes convergence. Everything is in dB. # One NN is trained and copied to each agent. from shutil import copyfile from sys_simulator.general import make_dir_timestamp, save_with_pickle import matplotlib.pyplot as plt from sys_simulator.plots import plot_positions_actions_pie from time import time from sys_simulator.general import db_to_power, power_to_db from sys_simulator.channels import BANChannel, UrbanMacroNLOSWinnerChannel from sys_simulator import general as gen from sys_simulator.q_learning.environments.completeEnvironment10dB \ import CompleteEnvironment10dB from sys_simulator.dqn.agents.dqnAgent import ExternalDQNAgent from sys_simulator.dqn.externalDQNFramework import ExternalDQNFramework from sys_simulator.parameters.parameters import \ EnvironmentParameters, TrainingParameters, DQNAgentParameters from sys_simulator.q_learning.rewards import dis_reward_tensor_db from copy import deepcopy import torch import numpy as np import pickle n_mues = 1 # number of mues n_d2d = 2 # number of d2d pairs n_rb = n_mues # number of RBs carrier_frequency = 2.4 # carrier frequency in GHz bs_radius = 500 # bs radius in m rb_bandwidth = 180*1e3 # rb bandwidth in Hz d2d_pair_distance = 50 # d2d pair distance in m device_height = 1.5 # mobile devices height in m bs_height = 25 # BS antenna height in m p_max = 40 # max tx power in dBm noise_power = -116 # noise power per RB in dBm bs_gain = 17 # macro bs antenna gain in dBi user_gain = 4 # user antenna gain in dBi sinr_threshold_train = 6 # mue sinr threshold in dB for training mue_margin = 200 # mue margin in dB # conversions from dBm to dB p_max = p_max - 30 noise_power = noise_power - 30 # channel parameters CHANNEL_RND = True # q-learning parameters # training NUMBER = 1 # exec params STEPS_PER_EPISODE = 5 TEST_STEPS_PER_EPISODE = 5 MAX_NUM_EPISODES = 1500 # medium training ITERATIONS_PER_NUM_AGENTS = 100 EVAL_EVERY = 80 EVAL_NUM_EPISODES = 100 EVAL_STEPS_PER_EPISODE = 5 # debug params # STEPS_PER_EPISODE = 2 # TEST_STEPS_PER_EPISODE = 2 # MAX_NUM_EPISODES = 10 # ITERATIONS_PER_NUM_AGENTS = 10 # EVAL_EVERY = 1000 # EVAL_NUM_EPISODES = 2 # EVAL_STEPS_PER_EPISODE = 2 # common EPSILON_INITIAL = 1 EPSILON_MIN = .05 # EPSILON_DECAY = .9*1e-4 # medium training EPSILON_DECAY = 1.3 / (MAX_NUM_EPISODES * STEPS_PER_EPISODE) # medium training GAMMA = 0.9 # Discount factor C = 1 # C constant for the improved reward function TARGET_UPDATE = 10 REPLAY_MEMORY_SIZE = 10000 BATCH_SIZE = 64 HIDDEN_SIZE = 128 NUM_HIDDEN_LAYERS = 1 LEARNING_RATE = 1e-2 REWARD_PENALTY = 1.5 ENVIRONMENT_MEMORY = 2 MAX_NUMBER_OF_AGENTS = 5 max_d2d = MAX_NUMBER_OF_AGENTS range_n_d2d = range(1, max_d2d + 1, 1) # more parameters # linear discretization # actions = power_to_db(np.linspace( # db_to_power(p_max-20), db_to_power(p_max-10), 10 # )) # db discretization actions = power_to_db( np.linspace( 1e-6, db_to_power(p_max-10), 10 ) ) env_params = EnvironmentParameters( rb_bandwidth, d2d_pair_distance, p_max, noise_power, bs_gain, user_gain, sinr_threshold_train, n_mues, n_d2d, n_rb, bs_radius, c_param=C, mue_margin=mue_margin ) params = TrainingParameters(MAX_NUM_EPISODES, STEPS_PER_EPISODE) agent_params = DQNAgentParameters( EPSILON_MIN, EPSILON_DECAY, EPSILON_INITIAL, REPLAY_MEMORY_SIZE, BATCH_SIZE, GAMMA ) reward_function = dis_reward_tensor_db channel_to_devices = BANChannel(rnd=CHANNEL_RND) channel_to_bs = UrbanMacroNLOSWinnerChannel( rnd=CHANNEL_RND, f_c=carrier_frequency, h_bs=bs_height, h_ms=device_height ) ref_env = CompleteEnvironment10dB( env_params, reward_function, channel_to_bs, channel_to_devices, reward_penalty=REWARD_PENALTY, memory=ENVIRONMENT_MEMORY, bs_height=bs_height ) # foo env and foo agents stuff foo_env = deepcopy(ref_env) foo_agents = [ExternalDQNAgent(agent_params, [1]) for _ in range(4)] foo_env.build_scenario(foo_agents) _, _ = foo_env.step(foo_agents) env_state_size = foo_env.get_state_size(foo_agents[0]) def train(start): global actions framework = ExternalDQNFramework( agent_params, env_state_size, len(actions), HIDDEN_SIZE, NUM_HIDDEN_LAYERS, LEARNING_RATE ) best_reward = float('-inf') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') mue_spectral_eff_bag = list() d2d_spectral_eff_bag = list() rewards_bag = list() # aux_range = range(max_d2d+1)[1:] epsilon = agent_params.start_epsilon for episode in range(MAX_NUM_EPISODES): env = deepcopy(ref_env) n_agents = np.random.choice(range_n_d2d) now = (time() - start) / 60 print( 'Training. ' + f'Number of agents: {n_agents}. ' + f'Episode: {episode}/{MAX_NUM_EPISODES-1}. ' + f'Epsilon: {epsilon}. ' f'Elapsed time: {now} minutes.' ) agents = [ExternalDQNAgent(agent_params, actions) for _ in range(n_agents)] # 1 agent per d2d tx for a in agents: a.set_epsilon(epsilon) env.build_scenario(agents) obs, _ = env.step(agents) total_reward = 0.0 i = 0 bag = list() while True: if i >= params.steps_per_episode: break else: past_actions = torch.zeros([len(agents)], device=device) for j, agent in enumerate(agents): agent.get_action(framework, obs[j].float()) past_actions[j] = agent.action_index # # debugging # if len(agents) == 2: # print('debugging') # aux1 = agents[0].action_index == 9 # aux2 = agents[1].action_index == 5 # aux = [aux1, aux2] # if np.mean(aux) == 1: # print('debugging') next_obs, rewards = env.step(agents) i += 1 for j, agent in enumerate(agents): framework.replay_memory.push( obs[j].float(), past_actions[j], next_obs[j].float(), rewards[j] ) framework.learn() total_reward = np.sum(rewards) bag.append(total_reward.item()) obs = next_obs if i % TARGET_UPDATE == 0: framework.target_net.load_state_dict( framework.policy_net.state_dict() ) if total_reward > best_reward: best_reward = total_reward epsilon = agents[0].epsilon if episode % EVAL_EVERY == 0: r, d_speff, m_speff = in_training_test(framework, device) rewards_bag.append(r) # average d2d spectral eff d2d_spectral_eff_bag.append(d_speff) # mue spectral eff mue_spectral_eff_bag.append(m_speff) # save stuff filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' torch.save(framework.policy_net.state_dict(), data_path) # Return the trained policy return framework, rewards_bag, d2d_spectral_eff_bag, mue_spectral_eff_bag, epsilon # noqa def test(n_agents, test_env, framework): framework.policy_net.eval() mue_spectral_effs = [] d2d_spectral_effs = [] rewards_bag = [] # jain_index = [list() for _ in range(max_d2d+1)] bag = list() agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx test_env.build_scenario(agents) obs, _ = test_env.step(agents) total_reward = 0.0 i = 0 while True: actions_index = list() for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) bag.append(aux[1].item()) actions_index.append(aux[1].item()) next_obs, rewards = test_env.step(agents) obs = next_obs total_reward = sum(rewards) # saving stuff rewards_bag.append(total_reward) mue_spectral_effs.append(test_env.mue_spectral_eff.item()) d2d_spectral_effs.append(test_env.d2d_spectral_eff.item()) i += 1 if i >= TEST_STEPS_PER_EPISODE: break mue_success_rate = np.mean( np.array(mue_spectral_effs) > np.log2( 1 + db_to_power(sinr_threshold_train) ) ) # jain_index_avg = list() # for i, j in enumerate(jain_index): # jain_index_avg.append(np.average(j)) # save data return mue_success_rate, mue_spectral_effs, d2d_spectral_effs, rewards def in_training_test(framework: ExternalDQNFramework, device: torch.device): mue_spectral_eff_bag = list() d2d_spectral_eff_bag = list() rewards_bag = list() for _ in range(EVAL_NUM_EPISODES): env = deepcopy(ref_env) n_agents = np.random.choice(range_n_d2d) agents = [ExternalDQNAgent(agent_params, actions) for _ in range(n_agents)] # 1 agent per d2d tx env.build_scenario(agents) obs, _ = env.step(agents) for _ in range(EVAL_STEPS_PER_EPISODE): for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) next_obs, _ = env.step(agents) obs = next_obs # mue spectral eff mue_spectral_eff_bag.append(env.mue_spectral_eff) # average d2d spectral eff d2d_spectral_eff_bag.append(env.d2d_spectral_eff) rewards_bag.append(env.reward) mean_mue_speff = np.mean(mue_spectral_eff_bag) mean_d2d_speff = np.mean(d2d_spectral_eff_bag) mean_reward = np.mean(rewards_bag) return mean_reward, mean_d2d_speff, mean_mue_speff def run(framework=None): mue_sucess_rate_total = [] mue_spectral_effs_total = [] d2d_spectral_effs_total = [] rewards_total = [] start = time() r, d_speffs, m_speffs, epsilon = 0, 0, 0, 1 if framework is None: framework, r, d_speffs, m_speffs, epsilon = train(start) for n in range(1, MAX_NUMBER_OF_AGENTS+1, 1): mue_suc_rates = [] mue_speff_rates = [] d2d_speff_rates = [] rews = [] for it in range(ITERATIONS_PER_NUM_AGENTS): now = (time() - start) / 60 print( 'Testing. ' + f'Number of agents: {n}/{MAX_NUMBER_OF_AGENTS}. ' + f'Iteration: {it}/{ITERATIONS_PER_NUM_AGENTS-1}. ' + f'Elapsed time: {now} minutes.' ) test_env = deepcopy(ref_env) mue_success_rate, mue_spectral_effs, d2d_spectral_effs, rewards = \ test(n, test_env, framework) mue_suc_rates.append(mue_success_rate) mue_speff_rates.append(mue_spectral_effs) d2d_speff_rates.append(d2d_spectral_effs) rews.append(rewards) mue_sucess_rate_total.append(mue_suc_rates) mue_spectral_effs_total.append(mue_speff_rates) d2d_spectral_effs_total.append(d2d_speff_rates) rewards_total.append(rews) # save stuff now = (time() - start) / 60 filename = gen.path_leaf(__file__) filename = filename.split('.')[0] dir_path = f'data/dql/{filename}' data_path = make_dir_timestamp(dir_path) data_file_path = f'{data_path}/log.pickle' data = { 'mue_success_rate': mue_sucess_rate_total, 'd2d_speffs': d2d_spectral_effs_total, 'mue_speffs': mue_spectral_effs_total, 'rewards': rewards_total, 'mue_sinr_threshold': sinr_threshold_train, 'elapsed_time': now, 'training_rewards': r, 'training_d2d_speffs': d_speffs, 'training_mue_speffs': m_speffs, 'eval_every': EVAL_EVERY, 'final_epsilon': epsilon, } save_with_pickle(data, data_file_path) copyfile(__file__, f'{data_path}/{filename}.py') print(f'done. Elapsed time: {now} minutes.') def run_test(): filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' framework = torch.load(data_path) run(framework) def test_exec(): # environment test_env = deepcopy(ref_env) # load framework framework = ExternalDQNFramework( agent_params, env_state_size, len(actions), HIDDEN_SIZE, NUM_HIDDEN_LAYERS, LEARNING_RATE ) filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' state_dict = torch.load(data_path) framework.policy_net.load_state_dict(state_dict) framework.policy_net.eval() # simulation stuff mue_spectral_effs = [] d2d_spectral_effs = [] rewards_bag = [] # devices positions pairs_positions = [ ((-400, 0, device_height), (-450, 0, device_height)), ((100, 0, device_height), (150, 0, device_height)), ((225, 225, device_height), (275, 225, device_height)), ((55, -55, device_height), (55, -5, device_height)), ] mue_position = (0, 200, device_height) # jain_index = [list() for _ in range(max_d2d+1)] n_agents = len(pairs_positions) bag = list() agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx test_env.set_scenario(pairs_positions, mue_position, agents) obs, _ = test_env.step(agents) total_reward = 0.0 i = 0 while True: actions_index = list() for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) bag.append(aux[1].item()) actions_index.append(aux[1].item()) next_obs, rewards = test_env.step(agents) obs = next_obs total_reward = sum(rewards) # saving stuff rewards_bag.append(total_reward) mue_spectral_effs.append(test_env.mue_spectral_eff.item()) d2d_spectral_effs.append(test_env.d2d_spectral_eff.item()) i += 1 if i >= TEST_STEPS_PER_EPISODE: break d2d_txs, d2d_rxs = zip(*test_env.d2d_pairs) # D2D interference on the MUE, in dB d2d_interferences = np.array([ d.caused_mue_interference for d in d2d_txs ]) d2d_interferences_mag = db_to_power(d2d_interferences) d2d_total_interference = np.sum(d2d_interferences_mag) percentage_interferences = d2d_interferences_mag / d2d_total_interference interferences, tx_labels, rx_labels = calculate_interferences(test_env) if d2d_total_interference != 0: plot_positions_actions_pie( test_env.bs, test_env.mue, d2d_txs, d2d_rxs, actions_index, percentage_interferences, test_env.mue.sinr > sinr_threshold_train, sinr_threshold_train, test_env.reward, interferences, tx_labels, rx_labels ) # jain_index[n_agents].append(gen.jain_index(test_env.sinr_d2ds)) mue_success_rate = np.mean( np.array(mue_spectral_effs) > np.log2( 1 + db_to_power(sinr_threshold_train) ) ) # jain_index_avg = list() # for i, j in enumerate(jain_index): # jain_index_avg.append(np.average(j)) # save data filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'data/dql/{filename}_exec.pickle' data = { 'd2d_speffs_avg_total': d2d_spectral_effs, 'mue_success_rate': mue_success_rate, 'chosen_actions': bag, 'd2d_speffs': d2d_spectral_effs, 'mue_speffs': mue_spectral_effs, 'rewards': rewards_bag, 'mue_sinr_threshold': sinr_threshold_train, } with open(data_path, 'wb') as file: pickle.dump(data, file) # plot print_stuff(actions, test_env) plt.show() def calculate_interferences(env: CompleteEnvironment10dB): bs = env.bs mue = env.mue d2d_pairs = env.d2d_pairs txs = [mue] txs += [p[0] for p in d2d_pairs] rxs = [bs] rxs += [p[1] for p in d2d_pairs] interferences = np.zeros((len(txs), len(rxs))) for i, tx in enumerate(txs): for j, (rx, interfered) in enumerate(zip(rxs, txs)): if tx == interfered: interf = tx.power_at_receiver elif tx == mue: interf = interfered.received_mue_interference elif rx == bs: interf = tx.caused_mue_interference else: interf = [ power_to_db(i[1]) for i in interfered.interferences if i[0] == tx.id ][0] interferences[i][j] = interf tx_labels = [d.id for d in txs] rx_labels = [d.id for d in rxs] return interferences, tx_labels, rx_labels def print_stuff(actions, env: CompleteEnvironment10dB): actions = [f'{i:.2f}' for i in actions] sinr_d2ds = [f'{d[0].sinr:.2f}' for d in env.d2d_pairs] print(f'MUE Tx Power [dBW]: {env.mue.tx_power:.2f}') print(f'D2D Power levels [dBW]: {actions}') print(f'D2D SINR [dB]: {sinr_d2ds}') print(f'D2D Spectral Efficiencies: {env.d2d_spectral_eff}') if __name__ == '__main__': run()
36.153535
94
0.643328
3a7b95d9a7da73e127da386180e8ef34b9968632
22
py
Python
btd6_memory_info/generated/Assets/Scripts/Data/Cosmetics/BloonDecals/BloonDecal/bloon_decal.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/Assets/Scripts/Data/Cosmetics/BloonDecals/BloonDecal/bloon_decal.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/Assets/Scripts/Data/Cosmetics/BloonDecals/BloonDecal/bloon_decal.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
class BloonDecal: pass
22
22
0.863636
e0829149dfa200e179b7ece34dc3be81e70d02fe
4,300
py
Python
cooking_assistant/settings.py
rclsilver/cooking-assistant
440f762977d5517f152b8d4b520c590e2cf0eca6
[ "Apache-2.0" ]
1
2020-12-01T16:12:28.000Z
2020-12-01T16:12:28.000Z
cooking_assistant/settings.py
rclsilver/cooking-assistant
440f762977d5517f152b8d4b520c590e2cf0eca6
[ "Apache-2.0" ]
null
null
null
cooking_assistant/settings.py
rclsilver/cooking-assistant
440f762977d5517f152b8d4b520c590e2cf0eca6
[ "Apache-2.0" ]
null
null
null
""" Django settings for cooking_assistant project. Generated by 'django-admin startproject' using Django 2.1.3. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv('DJANGO_SECRET_KEY', 'mnaty#uu5ozakfsdvcc29+07_c(pk1e(dxkjf+ni-ud1)ejjm&') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = os.getenv('DJANGO_DEBUG', 'true').lower() in ['true', '1'] ALLOWED_HOSTS = [] if os.getenv('DJANGO_ALLOWED_HOSTS', None) is not None: for allowed_host in os.getenv('DJANGO_ALLOWED_HOSTS').split(','): ALLOWED_HOSTS.append(allowed_host) # Application definition INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'health_check', 'health_check.db', 'rest_framework', ] MIDDLEWARE = [ # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'cooking_assistant.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'cooking_assistant.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = {} if os.getenv('POSTGRES_DB'): DATABASES['default'] = { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.getenv('POSTGRES_DB'), 'USER': os.getenv('POSTGRES_USER'), 'PASSWORD': os.getenv('POSTGRES_PASSWORD'), 'HOST': os.getenv('POSTGRES_HOST'), 'PORT': os.getenv('POSTGRES_PORT'), } else: DATABASES['default'] = { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = os.getenv('DJANGO_LANGUAGE_CODE', 'en-us') TIME_ZONE = os.getenv('DJANGO_TIME_ZONE', 'UTC') USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # Celery CELERY_BROKER_URL = os.getenv('CELERY_BROKER_URL', 'amqp://guest:guest@localhost:5672//')
29.054054
97
0.701163
8fef4b49ce6533109de100a0f55eeeb54e6c5885
3,822
py
Python
dicoms/forms.py
DCAN-Labs/bids-tryworks
aa52ec3d7e9a95d07fcf559ef98351529ae972c6
[ "BSD-3-Clause" ]
null
null
null
dicoms/forms.py
DCAN-Labs/bids-tryworks
aa52ec3d7e9a95d07fcf559ef98351529ae972c6
[ "BSD-3-Clause" ]
27
2020-06-26T23:04:08.000Z
2022-02-10T10:46:55.000Z
dicoms/forms.py
DCAN-Labs/bids-tryworks
aa52ec3d7e9a95d07fcf559ef98351529ae972c6
[ "BSD-3-Clause" ]
null
null
null
import json from os.path import basename, normpath from bootstrap_datepicker_plus import DatePickerInput from django import forms from django.utils.translation import ugettext_lazy as _ from drf_braces.serializers.form_serializer import FormSerializer from dicoms.models import Search, Series class SearchForm(forms.ModelForm): class Meta: model = Search fields = "__all__" labels = { 'subject_search': _('Patient ID'), 'study_search': _('Study Description'), 'date_range_alpha': _('Start date'), 'date_range_omega': _('End date') } help_texts = { 'date_range_alpha': _('Enter study start date in format YYYY-MM-DD (Not required)'), 'date_range_omega': _('Enter study end date in format YYYY-MM-DD (Not required)'), 'multi_search': _('Search for multiple subjects by uploading a .txt file with one patient ID per line') } widgets = { 'date_range_alpha': DatePickerInput(format='%Y-%m-%d'), 'date_range_omega': DatePickerInput(format='%Y-%m-%d') } class SerializedSearchForm(FormSerializer): class Meta(object): form = SearchForm def make_conversion_form(session_id): """ This is a form class generator, but I'm not sure if it's the best way to make dynamic forms. I'm going to attempt to create a dynamic form more directly below in ConversionForm2 :param session_id: :return: """ if Series.objects.filter(Session=session_id).exists(): series_from_session = Series.objects.filter(Session=session_id) # loading choices for scan types from bidspec with open("dicoms/static/jss/bids_spec.json") as infile: bidspec = json.load(infile) scan_choices = bidspec['anat'] + bidspec['func'] + bidspec['fmap'] scan_choices.sort() # creating a tuple list to pass to our form's select widget # django requires a tuple so we're making one tuple_scan_choices = [(scan, scan) for scan in scan_choices] fields = {} list_of_series = [] # cleaning up path to get last dir/series name for each in series_from_session: list_of_series.append(each.Path) cleaned_series = [basename(normpath(single_series)) for single_series in list_of_series] cleaned_series_set = set(cleaned_series) cleaned_series = list(cleaned_series_set) for series in cleaned_series: fields[series] = forms.Select(choices=tuple_scan_choices) return type("ConversionForm", (forms.BaseForm,), {'base_fields': fields}) else: return None class ConversionForm2(forms.Form): name = forms.CharField(max_length=255) def __init__(self, session): super(ConversionForm2, self).__init__(session) series_from_session = Series.objects.filter(Session=session) bidspec = json.load(open("dicoms/bids_spec.json")) scan_choices = bidspec['anat'] + bidspec['func'] + bidspec['fmap'] scan_choices.sort() # creating a tuple list to pass to our form's select widget # django requires a tuple so we're making one tuple_scan_choices = [(scan, scan) for scan in scan_choices] fields = {} list_of_series = [] # cleaning up path to get last dir/series name for each in series_from_session: list_of_series.append(each.Path) cleaned_series = [basename(normpath(single_series)) for single_series in list_of_series] cleaned_series_set = set(cleaned_series) cleaned_series = list(cleaned_series_set) # for series in cleaned_series: # fields[series] = forms.Select(tuple_scan_choices) # self.fields = fields
35.06422
115
0.658817
15ecc5c5b6e198f05b8d3db2b443339913a9950e
1,048
py
Python
actions.py
piniaplai/weather-bot
fac4b658e306973a7e6e5e9a6eeddab885bbd9e2
[ "MIT" ]
null
null
null
actions.py
piniaplai/weather-bot
fac4b658e306973a7e6e5e9a6eeddab885bbd9e2
[ "MIT" ]
null
null
null
actions.py
piniaplai/weather-bot
fac4b658e306973a7e6e5e9a6eeddab885bbd9e2
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from rasa_core.actions.action import Action # https://pypi.org/project/weather-api/ from weather import Weather, Unit class ActionGetWeather(Action): def name(self): return 'action_get_weather' def run(self, dispatcher, tracker, domain): weather = Weather(unit=Unit.CELSIUS) gpe = ('Auckland', tracker.get_slot('GPE'))[bool(tracker.get_slot('GPE'))] result = weather.lookup_by_location(gpe) if result: condition = result.condition city = result.location.city country = result.location.country dispatcher.utter_message('It\'s ' + condition.text + ' and ' + condition.temp + 'C in ' + city + ', ' + country + '.') else: dispatcher.utter_message('We did not find any weather information for ' + gpe + '. Search by a city name.') return
36.137931
119
0.645992
32c1647359d63a2c5aeed8f45a60906d4713ee17
997
py
Python
src/metropolisnonlin.py
zhang-changwei/Phase-Transition-Through-Quenching
ff47d3a0209c6121eb570b74003934358bc17482
[ "MIT" ]
null
null
null
src/metropolisnonlin.py
zhang-changwei/Phase-Transition-Through-Quenching
ff47d3a0209c6121eb570b74003934358bc17482
[ "MIT" ]
null
null
null
src/metropolisnonlin.py
zhang-changwei/Phase-Transition-Through-Quenching
ff47d3a0209c6121eb570b74003934358bc17482
[ "MIT" ]
null
null
null
import numpy as np from matplotlib import pyplot as plt import MC rng = np.random.default_rng() L = 12 TC, BETA, NU = 2/(np.log(1+np.sqrt(2))), 1/8, 1 TI = 1.5*TC R = 2 MCBIN = L**2 REPEAT = 100 # tauq = np.logspace(0, 4, num=41, base=10, endpoint=True) tauq = np.logspace(0, 3, num=31, base=10, endpoint=True) v = 0.5/tauq**R m2ave = np.array([], dtype=np.float64) m2std = np.array([], dtype=np.float64) for j in range(tauq.size): m20 = np.array([], dtype=np.float64) for i in range(REPEAT): m2 = MC.quench_metropolis2(L, TC, MCBIN, tauq[j], R) m20 = np.append(m20, m2) print (j, i, m2) m2ave = np.append(m2ave, np.average(m20)) m2std = np.append(m2std, np.std(m20)) np.save("data\\MnonlinL12_m2ave.npy", m2ave) np.save("data\\MnonlinL12_m2std.npy", m2std) np.save("data\\MnonlinL12_tauq.npy", tauq) np.save("data\\MnonlinL12_v.npy", v) plt.figure() plt.plot(1/v, m2ave*L**2, label="L=12") plt.legend() plt.xscale("log") plt.yscale("log") plt.show()
25.564103
60
0.643932
e34895e80d1cc83bfd1244e8e8571cd8adb61f10
1,012
py
Python
src/Visualization/Genre_Accuracy.py
Sunhick/music-cognita
e90d9ed8122f39bce3e239518df696b35cd6fda8
[ "MIT" ]
2
2017-10-05T15:45:23.000Z
2021-02-18T13:45:27.000Z
src/Visualization/Genre_Accuracy.py
Sunhick/music-cognita
e90d9ed8122f39bce3e239518df696b35cd6fda8
[ "MIT" ]
null
null
null
src/Visualization/Genre_Accuracy.py
Sunhick/music-cognita
e90d9ed8122f39bce3e239518df696b35cd6fda8
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt N = 6 Accuracy = (53.76,47.58,24.52,58.37,41.73,49.64) Error = (100 - 53.76,100 - 47.58,100 - 24.52,100 - 58.37,100 - 41.73,100 - 49.64) ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(ind, Accuracy, width, color='b') rects2 = ax.bar(ind + width, Error, width, color='y') # add some text for labels, title and axes ticks ax.set_ylabel('Accuracy') ax.set_title('Classifier Vs Accuracy') ax.set_xticks(ind+width) ax.set_xticklabels(('LogReg', 'DecisionTree', 'NaiveBayes', 'RandForest', 'SVM', 'SVM+Boosting')) ax.legend((rects1[0], rects2[0]), ('Accuracy', 'Error')) def autolabel(rects): # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., 1.05*height, '%d' % int(height), ha='center', va='bottom') autolabel(rects1) autolabel(rects2) plt.show()
30.666667
97
0.645257
2071fb20deb90c86df61a70d3128b08748cdb74a
5,070
py
Python
tests/test_apk_patch_size_estimator.py
isabella232/apk-patch-size-estimator
5d923c259b2fd6023cd5d2a88be4bc25fa23cdb5
[ "Apache-2.0" ]
346
2016-04-30T21:26:28.000Z
2022-03-30T21:31:59.000Z
tests/test_apk_patch_size_estimator.py
googlesamples/apk-patch-size-estimator
5d923c259b2fd6023cd5d2a88be4bc25fa23cdb5
[ "Apache-2.0" ]
4
2017-01-20T14:04:24.000Z
2020-05-21T19:56:13.000Z
tests/test_apk_patch_size_estimator.py
isabella232/apk-patch-size-estimator
5d923c259b2fd6023cd5d2a88be4bc25fa23cdb5
[ "Apache-2.0" ]
48
2016-05-01T15:08:55.000Z
2020-11-14T20:39:06.000Z
#!/usr/bin/python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import apk_patch_size_estimator from mock import patch import os import subprocess import unittest import hashlib BUF_SIZE = 1 << 16 RANDOM_FILE = 'tests/random_file' RANDOM_FILE_SIZE = 1 << 16 ZIP1 = 'tests/1.zip' ZIP2 = 'tests/2.zip' TMP = '/tmp' def sha1(filename): accumulator = hashlib.sha1() file = open(filename, "rb") data = file.read(BUF_SIZE) while data: accumulator.update(data) data = file.read(BUF_SIZE) return accumulator.hexdigest() class TestCalculates(unittest.TestCase): def setUp(self): apk_patch_size_estimator.find_bins_or_die() def test_find_binary_success(self): with patch.object(subprocess, 'check_output', return_value=''): apk_patch_size_estimator.find_binary('ls') subprocess.check_output.assert_any_call(['which', 'ls']) def test_find_binary_fail(self): with self.assertRaises(Exception) as context: apk_patch_size_estimator.find_binary('does_not_extist_command') self.assertEqual( context.exception.message, 'No "does_not_extist_command" on PATH, please install or fix PATH.') def test_bsdiff(self): bsdiff_patch_path = apk_patch_size_estimator.bsdiff( ZIP1, ZIP2, TMP) # Obtained by compute bsdiff of 1.zip and 2.zip # Strip first 32 bytes # bunzip2 the rest # attach the 32 bytes back # Compute sha1sum expected_sha1 = "bd7434d2fbdcca1d6e346cd9441ce1c7fbdc3200" self.assertTrue(os.path.exists(bsdiff_patch_path)) self.assertEqual(sha1(bsdiff_patch_path), expected_sha1) os.remove(bsdiff_patch_path) def test_filebyfile(self): filebyfile_patch_path = apk_patch_size_estimator.filebyfile( ZIP1, ZIP2, TMP) # Obtained by running # java -jar lib/file-by-file-tools.jar --generate --old tests/1.zip \ # --new tests/2.zip --patch patch && sha1sum patch && rm patch expected_sha1 = "6fd285a07a4d5256a8b46a233dbf7acb360e59c8" self.assertTrue(os.path.exists(filebyfile_patch_path)) self.assertEqual(sha1(filebyfile_patch_path), expected_sha1) os.remove(filebyfile_patch_path) def test_gzip(self): gzipped_path = apk_patch_size_estimator.gzip(RANDOM_FILE) # Obtained by running # gzip -9 < tests/random_file | sha1sum expected_sha1 = "720ade7137c1ae830272a8a3d04e90f337edce5f" self.assertTrue(os.path.exists(gzipped_path)) self.assertEqual(sha1(gzipped_path), expected_sha1) os.remove(gzipped_path) def test_brotli(self): brotlied_path = apk_patch_size_estimator.brotli(RANDOM_FILE) # Obtained by running # brotli -c tests/random_file | sha1sum expected_sha1 = "bf1f64442ca5f0c6d58874dcdccc0b4045521823" self.assertTrue(os.path.exists(brotlied_path)) self.assertEqual(sha1(brotlied_path), expected_sha1) os.remove(brotlied_path) def test_get_size(self): self.assertEqual(apk_patch_size_estimator.get_size(RANDOM_FILE), RANDOM_FILE_SIZE) def test_no_diff(self): no_diff_patch_path = apk_patch_size_estimator.no_diff(ZIP1, ZIP2, TMP) self.assertTrue(os.path.exists(no_diff_patch_path)) self.assertEqual(sha1(no_diff_patch_path), sha1(ZIP2)) self.assertNotEqual(no_diff_patch_path, ZIP2) os.remove(no_diff_patch_path) def test_no_compress(self): no_compress_path = apk_patch_size_estimator.no_compress(RANDOM_FILE) self.assertTrue(os.path.exists(no_compress_path)) self.assertEqual(sha1(no_compress_path), sha1(RANDOM_FILE)) self.assertNotEqual(no_compress_path, RANDOM_FILE) os.remove(no_compress_path) def test_human_file_size(self): self.assertEqual( apk_patch_size_estimator.human_file_size(0), '0B') self.assertEqual( apk_patch_size_estimator.human_file_size(100), '100B') self.assertEqual( apk_patch_size_estimator.human_file_size(1024), '1KB') self.assertEqual( apk_patch_size_estimator.human_file_size(1048576), '1MB') self.assertEqual( apk_patch_size_estimator.human_file_size(1073741824), '1GB') self.assertEqual( apk_patch_size_estimator.human_file_size(1099511627776), '1TB') self.assertEqual( apk_patch_size_estimator.human_file_size(1981633), '1.89MB') self.assertEqual( apk_patch_size_estimator.human_file_size(15654267), '14.9MB') self.assertEqual( apk_patch_size_estimator.human_file_size(353244297), '337MB') if __name__ == '__main__': unittest.main()
33.8
76
0.739448
fcd53feedbc3d78885b6513029eb0fcb0448a850
10,241
py
Python
venv/Lib/site-packages/um/visuals/color.py
DarkEyeBr/Python
f45239551d19f49eac35185e4f72b067d5820f3a
[ "MIT" ]
null
null
null
venv/Lib/site-packages/um/visuals/color.py
DarkEyeBr/Python
f45239551d19f49eac35185e4f72b067d5820f3a
[ "MIT" ]
1
2019-04-12T18:55:02.000Z
2019-04-12T18:55:02.000Z
venv/Lib/site-packages/um/visuals/color.py
DarkEyeBr/Python
f45239551d19f49eac35185e4f72b067d5820f3a
[ "MIT" ]
null
null
null
""" Module containing color utilities and color constants. Source of colors - Google Material Design https://material.io/guidelines/style/color.html#color-color-palette """ import re class Color: def __init__(self, r: int =0x0, g: int=0x0, b: int =0x0): if any(value < 0 or value > 255 for value in (r, g, b)): raise ValueError('RGB color values have to be in range 0-255') self.r = r self.g = g self.b = b def hex(self, prefix: str=''): return hex((self.r, self.g, self.b), prefix) def hex2rgb(hex_code: str) -> tuple: """ Convert color given in hex code to RGB in ints. Result is returned inside 3-element tuple. :param hex_code: :return: tuple (R, G, B) """ pattern = re.compile(r'^#?[a-fA-F0-9]{6}$') if not re.match(pattern, hex_code): raise ValueError('Hex code should have 6 characters') h = hex_code.lstrip('#') return tuple(int(h[i: i + 2], 16) for i in (0, 2, 4)) def hex(color: tuple, prefix: str='#') -> str: """ Convert RGB to HEX. :param color: 3-element tuple with color RGB values :param prefix: string prefix :return: string with color in hex """ if len(color) is not 3: raise ValueError('Color should be a 3 element tuple') if not all([0 <= v <= 255 for v in color]): raise ValueError('RGB values have to be in range from 0 to 255') return '{}{:02x}{:02x}{:02x}'.format(prefix, color[0], color[1], color[2]) BLACK = (0, 0, 0) WHITE = (255, 255, 255) # Red RED = hex2rgb('#F44336') RED50 = hex2rgb('#FFEBEE') RED100 = hex2rgb('#FFCDD2') RED200 = hex2rgb('#EF9A9A') RED300 = hex2rgb('#E57373') RED400 = hex2rgb('#EF5350') RED500 = hex2rgb('#F44336') RED600 = hex2rgb('#E53935') RED700 = hex2rgb('#D32F2F') RED800 = hex2rgb('#C62828') RED900 = hex2rgb('#B71C1C') REDA100 = hex2rgb('#FF8A80') REDA200 = hex2rgb('#FF5252') REDA400 = hex2rgb('#FF1744') REDA700 = hex2rgb('#D50000') # Pink PINK = hex2rgb('#E91E63') PINK50 = hex2rgb('#FCE4EC') PINK100 = hex2rgb('#F8BBD0') PINK200 = hex2rgb('#F48FB1') PINK300 = hex2rgb('#F06292') PINK400 = hex2rgb('#EC407A') PINK500 = hex2rgb('#E91E63') PINK600 = hex2rgb('#D81B60') PINK700 = hex2rgb('#C2185B') PINK800 = hex2rgb('#AD1457') PINK900 = hex2rgb('#880E4F') PINKA100 = hex2rgb('#FF80AB') PINKA200 = hex2rgb('#FF4081') PINKA400 = hex2rgb('#F50057') PINKA700 = hex2rgb('#C51162') # Purple PURPLE = hex2rgb('#9C27B0') PURPLE50 = hex2rgb('#F3E5F5') PURPLE100 = hex2rgb('#E1BEE7') PURPLE200 = hex2rgb('#CE93D8') PURPLE300 = hex2rgb('#BA68C8') PURPLE400 = hex2rgb('#AB47BC') PURPLE500 = hex2rgb('#9C27B0') PURPLE600 = hex2rgb('#8E24AA') PURPLE700 = hex2rgb('#7B1FA2') PURPLE800 = hex2rgb('#6A1B9A') PURPLE900 = hex2rgb('#4A148C') PURPLEA100 = hex2rgb('#EA80FC') PURPLEA200 = hex2rgb('#E040FB') PURPLEA400 = hex2rgb('#D500F9') PURPLEA700 = hex2rgb('#AA00FF') # Deep Purple DEEP_PURPLE = hex2rgb('#673AB7') DEEP_PURPLE50 = hex2rgb('#EDE7F6') DEEP_PURPLE100 = hex2rgb('#D1C4E9') DEEP_PURPLE200 = hex2rgb('#B39DDB') DEEP_PURPLE300 = hex2rgb('#9575CD') DEEP_PURPLE400 = hex2rgb('#7E57C2') DEEP_PURPLE500 = hex2rgb('#673AB7') DEEP_PURPLE600 = hex2rgb('#5E35B1') DEEP_PURPLE700 = hex2rgb('#512DA8') DEEP_PURPLE800 = hex2rgb('#4527A0') DEEP_PURPLE900 = hex2rgb('#311B92') DEEP_PURPLEA100 = hex2rgb('#B388FF') DEEP_PURPLEA200 = hex2rgb('#7C4DFF') DEEP_PURPLEA400 = hex2rgb('#651FFF') DEEP_PURPLEA700 = hex2rgb('#6200EA') # Indigo INDIGO = hex2rgb('#3F51B5') INDIGO50 = hex2rgb('#E8EAF6') INDIGO100 = hex2rgb('#C5CAE9') INDIGO200 = hex2rgb('#9FA8DA') INDIGO300 = hex2rgb('#7986CB') INDIGO400 = hex2rgb('#5C6BC0') INDIGO500 = hex2rgb('#3F51B5') INDIGO600 = hex2rgb('#3949AB') INDIGO700 = hex2rgb('#303F9F') INDIGO800 = hex2rgb('#283593') INDIGO900 = hex2rgb('#1A237E') INDIGOA100 = hex2rgb('#8C9EFF') INDIGOA200 = hex2rgb('#536DFE') INDIGOA400 = hex2rgb('#3D5AFE') INDIGOA700 = hex2rgb('#304FFE') # Blue BLUE = hex2rgb('#2196F3') BLUE50 = hex2rgb('#E3F2FD') BLUE100 = hex2rgb('#BBDEFB') BLUE200 = hex2rgb('#90CAF9') BLUE300 = hex2rgb('#64B5F6') BLUE400 = hex2rgb('#42A5F5') BLUE500 = hex2rgb('#2196F3') BLUE600 = hex2rgb('#1E88E5') BLUE700 = hex2rgb('#1976D2') BLUE800 = hex2rgb('#1565C0') BLUE900 = hex2rgb('#0D47A1') BLUEA100 = hex2rgb('#82B1FF') BLUEA200 = hex2rgb('#448AFF') BLUEA400 = hex2rgb('#2979FF') BLUEA700 = hex2rgb('#2962FF') # Light Blue LIGHT_BLUE = hex2rgb('#03A9F4') LIGHT_BLUE50 = hex2rgb('#E1F5FE') LIGHT_BLUE100 = hex2rgb('#B3E5FC') LIGHT_BLUE200 = hex2rgb('#81D4FA') LIGHT_BLUE300 = hex2rgb('#4FC3F7') LIGHT_BLUE400 = hex2rgb('#29B6F6') LIGHT_BLUE500 = hex2rgb('#03A9F4') LIGHT_BLUE600 = hex2rgb('#039BE5') LIGHT_BLUE700 = hex2rgb('#0288D1') LIGHT_BLUE800 = hex2rgb('#0277BD') LIGHT_BLUE900 = hex2rgb('#01579B') LIGHT_BLUEA100 = hex2rgb('#80D8FF') LIGHT_BLUEA200 = hex2rgb('#40C4FF') LIGHT_BLUEA400 = hex2rgb('#00B0FF') LIGHT_BLUEA700 = hex2rgb('#0091EA') # Cyan CYAN = hex2rgb('#00BCD4') CYAN50 = hex2rgb('#E0F7FA') CYAN100 = hex2rgb('#B2EBF2') CYAN200 = hex2rgb('#80DEEA') CYAN300 = hex2rgb('#4DD0E1') CYAN400 = hex2rgb('#26C6DA') CYAN500 = hex2rgb('#00BCD4') CYAN600 = hex2rgb('#00ACC1') CYAN700 = hex2rgb('#0097A7') CYAN800 = hex2rgb('#00838F') CYAN900 = hex2rgb('#006064') CYANA100 = hex2rgb('#84FFFF') CYANA200 = hex2rgb('#18FFFF') CYANA400 = hex2rgb('#00E5FF') CYANA700 = hex2rgb('#00B8D4') # Teal TEAL = hex2rgb('#009688') TEAL50 = hex2rgb('#E0F2F1') TEAL100 = hex2rgb('#B2DFDB') TEAL200 = hex2rgb('#80CBC4') TEAL300 = hex2rgb('#4DB6AC') TEAL400 = hex2rgb('#26A69A') TEAL500 = hex2rgb('#009688') TEAL600 = hex2rgb('#00897B') TEAL700 = hex2rgb('#00796B') TEAL800 = hex2rgb('#00695C') TEAL900 = hex2rgb('#004D40') TEALA100 = hex2rgb('#A7FFEB') TEALA200 = hex2rgb('#64FFDA') TEALA400 = hex2rgb('#1DE9B6') TEALA700 = hex2rgb('#00BFA5') # Green GREEN = hex2rgb('#4CAF50') GREEN50 = hex2rgb('#E8F5E9') GREEN100 = hex2rgb('#C8E6C9') GREEN200 = hex2rgb('#A5D6A7') GREEN300 = hex2rgb('#81C784') GREEN400 = hex2rgb('#66BB6A') GREEN500 = hex2rgb('#4CAF50') GREEN600 = hex2rgb('#43A047') GREEN700 = hex2rgb('#388E3C') GREEN800 = hex2rgb('#2E7D32') GREEN900 = hex2rgb('#1B5E20') GREENA100 = hex2rgb('#B9F6CA') GREENA200 = hex2rgb('#69F0AE') GREENA400 = hex2rgb('#00E676') GREENA700 = hex2rgb('#00C853') # Light Green LIGHT_GREEN = hex2rgb('#8BC34A') LIGHT_GREEN50 = hex2rgb('#F1F8E9') LIGHT_GREEN100 = hex2rgb('#DCEDC8') LIGHT_GREEN200 = hex2rgb('#C5E1A5') LIGHT_GREEN300 = hex2rgb('#AED581') LIGHT_GREEN400 = hex2rgb('#9CCC65') LIGHT_GREEN500 = hex2rgb('#8BC34A') LIGHT_GREEN600 = hex2rgb('#7CB342') LIGHT_GREEN700 = hex2rgb('#689F38') LIGHT_GREEN800 = hex2rgb('#558B2F') LIGHT_GREEN900 = hex2rgb('#33691E') LIGHT_GREENA100 = hex2rgb('#CCFF90') LIGHT_GREENA200 = hex2rgb('#B2FF59') LIGHT_GREENA400 = hex2rgb('#76FF03') LIGHT_GREENA700 = hex2rgb('#64DD17') # Lime LIME = hex2rgb('#CDDC39') LIME50 = hex2rgb('#F9FBE7') LIME100 = hex2rgb('#F0F4C3') LIME200 = hex2rgb('#E6EE9C') LIME300 = hex2rgb('#DCE775') LIME400 = hex2rgb('#D4E157') LIME500 = hex2rgb('#CDDC39') LIME600 = hex2rgb('#C0CA33') LIME700 = hex2rgb('#AFB42B') LIME800 = hex2rgb('#9E9D24') LIME900 = hex2rgb('#827717') LIMEA100 = hex2rgb('#F4FF81') LIMEA200 = hex2rgb('#EEFF41') LIMEA400 = hex2rgb('#C6FF00') LIMEA700 = hex2rgb('#AEEA00') # Yellow YELLOW = hex2rgb('#FFEB3B') YELLOW50 = hex2rgb('#FFFDE7') YELLOW100 = hex2rgb('#FFF9C4') YELLOW200 = hex2rgb('#FFF59D') YELLOW300 = hex2rgb('#FFF176') YELLOW400 = hex2rgb('#FFEE58') YELLOW500 = hex2rgb('#FFEB3B') YELLOW600 = hex2rgb('#FDD835') YELLOW700 = hex2rgb('#FBC02D') YELLOW800 = hex2rgb('#F9A825') YELLOW900 = hex2rgb('#F57F17') YELLOWA100 = hex2rgb('#FFFF8D') YELLOWA200 = hex2rgb('#FFFF00') YELLOWA400 = hex2rgb('#FFEA00') YELLOWA700 = hex2rgb('#FFD600') # Amber AMBER = hex2rgb('#FFC107') AMBER50 = hex2rgb('#FFF8E1') AMBER100 = hex2rgb('#FFECB3') AMBER200 = hex2rgb('#FFE082') AMBER300 = hex2rgb('#FFD54F') AMBER400 = hex2rgb('#FFCA28') AMBER500 = hex2rgb('#FFC107') AMBER600 = hex2rgb('#FFB300') AMBER700 = hex2rgb('#FFA000') AMBER800 = hex2rgb('#FF8F00') AMBER900 = hex2rgb('#FF6F00') AMBERA100 = hex2rgb('#FFE57F') AMBERA200 = hex2rgb('#FFD740') AMBERA400 = hex2rgb('#FFC400') AMBERA700 = hex2rgb('#FFAB00') # Orange ORANGE = hex2rgb('#FF9800') ORANGE50 = hex2rgb('#FFF3E0') ORANGE100 = hex2rgb('#FFE0B2') ORANGE200 = hex2rgb('#FFCC80') ORANGE300 = hex2rgb('#FFB74D') ORANGE400 = hex2rgb('#FFA726') ORANGE500 = hex2rgb('#FF9800') ORANGE600 = hex2rgb('#FB8C00') ORANGE700 = hex2rgb('#F57C00') ORANGE800 = hex2rgb('#EF6C00') ORANGE900 = hex2rgb('#E65100') ORANGEA100 = hex2rgb('#FFD180') ORANGEA200 = hex2rgb('#FFAB40') ORANGEA400 = hex2rgb('#FF9100') ORANGEA700 = hex2rgb('#FF6D00') # Deep Orange DEEP_ORANGE = hex2rgb('#FF5722') DEEP_ORANGE50 = hex2rgb('#FBE9E7') DEEP_ORANGE100 = hex2rgb('#FFCCBC') DEEP_ORANGE200 = hex2rgb('#FFAB91') DEEP_ORANGE300 = hex2rgb('#FF8A65') DEEP_ORANGE400 = hex2rgb('#FF7043') DEEP_ORANGE500 = hex2rgb('#FF5722') DEEP_ORANGE600 = hex2rgb('#F4511E') DEEP_ORANGE700 = hex2rgb('#E64A19') DEEP_ORANGE800 = hex2rgb('#D84315') DEEP_ORANGE900 = hex2rgb('#BF360C') DEEP_ORANGEA100 = hex2rgb('#FF9E80') DEEP_ORANGEA200 = hex2rgb('#FF6E40') DEEP_ORANGEA400 = hex2rgb('#FF3D00') DEEP_ORANGEA700 = hex2rgb('#DD2C00') # Brown BROWN = hex2rgb('#795548') BROWN50 = hex2rgb('#EFEBE9') BROWN100 = hex2rgb('#D7CCC8') BROWN200 = hex2rgb('#BCAAA4') BROWN300 = hex2rgb('#A1887F') BROWN400 = hex2rgb('#8D6E63') BROWN500 = hex2rgb('#795548') BROWN600 = hex2rgb('#6D4C41') BROWN700 = hex2rgb('#5D4037') BROWN800 = hex2rgb('#4E342E') BROWN900 = hex2rgb('#3E2723') # Grey GREY = hex2rgb('#9E9E9E') GREY50 = hex2rgb('#FAFAFA') GREY100 = hex2rgb('#F5F5F5') GREY200 = hex2rgb('#EEEEEE') GREY300 = hex2rgb('#E0E0E0') GREY400 = hex2rgb('#BDBDBD') GREY500 = hex2rgb('#9E9E9E') GREY600 = hex2rgb('#757575') GREY700 = hex2rgb('#616161') GREY800 = hex2rgb('#424242') GREY900 = hex2rgb('#212121') # Blue Grey BLUE_GREY = hex2rgb('#607D8B') BLUE_GREY50 = hex2rgb('#ECEFF1') BLUE_GREY100 = hex2rgb('#CFD8DC') BLUE_GREY200 = hex2rgb('#B0BEC5') BLUE_GREY300 = hex2rgb('#90A4AE') BLUE_GREY400 = hex2rgb('#78909C') BLUE_GREY500 = hex2rgb('#607D8B') BLUE_GREY600 = hex2rgb('#546E7A') BLUE_GREY700 = hex2rgb('#455A64') BLUE_GREY800 = hex2rgb('#37474F') BLUE_GREY900 = hex2rgb('#263238')
28.134615
94
0.693389
2a078aa1ae6053ec9d817e16c4499d3f94caf80a
13,565
py
Python
backend/uclapi/workspaces/views.py
nayanadasgupta/uclapi
54fbdf4232fe3b309332291c29233dcb6e21b2c9
[ "MIT" ]
null
null
null
backend/uclapi/workspaces/views.py
nayanadasgupta/uclapi
54fbdf4232fe3b309332291c29233dcb6e21b2c9
[ "MIT" ]
null
null
null
backend/uclapi/workspaces/views.py
nayanadasgupta/uclapi
54fbdf4232fe3b309332291c29233dcb6e21b2c9
[ "MIT" ]
null
null
null
import re from base64 import b64decode from django.utils.decorators import method_decorator from rest_framework import generics from rest_framework.decorators import api_view from rest_framework.exceptions import ParseError from common.decorators import uclapi_protected_endpoint from common.helpers import PrettyJsonResponse as JsonResponse, pretty_response from common.helpers import RateLimitHttpResponse as HttpResponse from .image_builder import ImageBuilder from .models import Sensors, Historical, Surveys from .occupeye.api import OccupEyeApi from .occupeye.constants import OccupEyeConstants from .occupeye.exceptions import BadOccupEyeRequest from .pagination import HistoricalListCursorPagination from .serializers import SensorsSerializer, HistoricalSerializer, SurveysSerializer @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_surveys(request, *args, **kwargs): api = OccupEyeApi() consts = OccupEyeConstants() survey_filter = request.GET.get("survey_filter", "student") if survey_filter not in consts.VALID_SURVEY_FILTERS: response = JsonResponse( { "ok": False, "error": "The survey filter you provided is invalid. Valid survey filters are: " + str(consts.VALID_SURVEY_FILTERS), }, custom_header_data=kwargs, ) response.status_code = 400 return response response_data = {"ok": True, "surveys": api.get_surveys(survey_filter)} return JsonResponse(response_data, custom_header_data=kwargs) @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_map_image(request, *args, **kwargs): try: image_id = request.GET["image_id"] except KeyError: response = JsonResponse({"ok": False, "error": "No Image ID provided."}, custom_header_data=kwargs) response.status_code = 400 return response api = OccupEyeApi() try: (image_b64, content_type) = api.get_image(image_id) except BadOccupEyeRequest: response = JsonResponse( { "ok": False, "error": "The image with the ID you requested does not exist.", }, custom_header_data=kwargs, ) response.status_code = 400 return response image_format = request.GET.get("image_format", "base64") if image_format == "raw": return HttpResponse( content=b64decode(image_b64), custom_header_data=kwargs, content_type=content_type, ) elif image_format == "base64": response = JsonResponse( {"ok": True, "content_type": content_type, "data": image_b64}, custom_header_data=kwargs, ) return response else: response = JsonResponse( { "ok": False, "error": "You specified a response format that was not either raw or base64.", }, custom_header_data=kwargs, ) response.status_code = 400 return response @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_survey_sensors(request, *args, **kwargs): try: survey_id = request.GET["survey_id"] except KeyError: response = JsonResponse({"ok": False, "error": "Please specify a survey_id."}) response.status_code = 400 return response api = OccupEyeApi() try: data = api.get_survey_sensors(survey_id) except BadOccupEyeRequest: response = JsonResponse({"ok": False, "error": "The survey_id you specified was not valid."}) response.status_code = 400 return response response = JsonResponse({"ok": True, **data}, custom_header_data=kwargs) return response @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_survey_max_timestamp(request, *args, **kwargs): try: survey_id = request.GET["survey_id"] except KeyError: response = JsonResponse({"ok": False, "error": "Please specify a survey_id."}) response.status_code = 400 return response api = OccupEyeApi() try: (survey_id_int, max_timestamp) = api.get_max_survey_timestamp(survey_id) except BadOccupEyeRequest: response = JsonResponse({"ok": False, "error": "The survey_id you specified was not valid."}) response.status_code = 400 return response response = JsonResponse( {"ok": True, "survey_id": survey_id_int, "last_updated": max_timestamp}, custom_header_data=kwargs, ) return response @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_survey_sensors_summary(request, *args, **kwargs): survey_ids = request.GET.get("survey_ids", None) survey_filter = request.GET.get("survey_filter", "student") consts = OccupEyeConstants() if survey_filter not in consts.VALID_SURVEY_FILTERS: response = JsonResponse( { "ok": False, "error": "The survey filter you provided is invalid. Valid survey filters are: " + str(consts.VALID_SURVEY_FILTERS), }, custom_header_data=kwargs, ) response.status_code = 400 return response api = OccupEyeApi() try: data = api.get_survey_sensors_summary(survey_ids, survey_filter) except BadOccupEyeRequest: response = JsonResponse( { "ok": False, "error": "One or more of the survey_ids you requested is not valid.", }, custom_header_data=kwargs, ) response.status_code = 400 return response response = JsonResponse({"ok": True, "surveys": data}, custom_header_data=kwargs) return response @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_averages_time(request, *args, **kwargs): api = OccupEyeApi() consts = OccupEyeConstants() survey_ids = request.GET.get("survey_ids", None) survey_filter = request.GET.get("survey_filter", "student") if survey_filter not in consts.VALID_SURVEY_FILTERS: response = JsonResponse( { "ok": False, "error": "The survey filter you provided is invalid. Valid survey filters are: " + str(consts.VALID_SURVEY_FILTERS), }, custom_header_data=kwargs, ) response.status_code = 400 return response try: day_count = request.GET["days"] except KeyError: response = JsonResponse( { "ok": False, "error": "You did not specify how many days of historical data should be returned. " "Valid options are: " + str(consts.VALID_HISTORICAL_DATA_DAYS), }, custom_header_data=kwargs, ) response.status_code = 400 return response if not day_count.isdigit(): response = JsonResponse( { "ok": False, "error": "You did not specify an integer number of days of historical days. Valid options are: " + str(consts.VALID_HISTORICAL_DATA_DAYS), }, custom_header_data=kwargs, ) response.status_code = 400 return response day_count = int(day_count) if day_count not in consts.VALID_HISTORICAL_DATA_DAYS: response = JsonResponse( { "ok": False, "error": "You did not specify a valid number of days of historical days. Valid options are: " + str(consts.VALID_HISTORICAL_DATA_DAYS), }, custom_header_data=kwargs, ) response.status_code = 400 return response try: data = api.get_time_averages(survey_ids, day_count, survey_filter) except BadOccupEyeRequest: response = JsonResponse( { "ok": False, "error": "One or more of the survey_ids you requested is not valid.", }, custom_header_data=kwargs, ) response.status_code = 400 return response response = JsonResponse({"ok": True, "surveys": data}, custom_header_data=kwargs) return response @api_view(["GET"]) @uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces") def get_live_map(request, *args, **kwargs): try: survey_id = request.GET["survey_id"] map_id = request.GET["map_id"] except KeyError: response = JsonResponse( { "ok": False, "error": "You must provide a Survey ID and a Map ID to get a live sensor status image.", }, custom_header_data=kwargs, ) response.status_code = 400 return response # Thank you Stack Overflow # https://stackoverflow.com/a/1636354/5297057 colour_pattern = re.compile("^#(?:[0-9a-fA-F]{3}){1,2}$") absent_colour = request.GET.get("absent_colour", "#ABE00C") occupied_colour = request.GET.get("occupied_colour", "#FFC90E") image_scale_str = request.GET.get("image_scale", "0.02") circle_radius_str = request.GET.get("circle_radius", "128") if not re.match(colour_pattern, absent_colour) or not re.match(colour_pattern, occupied_colour): response = JsonResponse( { "ok": False, "error": ( "The custom colours you specfied did not match " "the format of HTML hex colours. Colours must " "either be in the format #ABC or #ABCDEF." ), }, custom_header_data=kwargs, ) response.status_code = 400 return response try: image_scale = float(image_scale_str) except ValueError: response = JsonResponse( { "ok": False, "error": ( "The scale you specified is not valid. It " "must be a floating point number, such as 1 " "or 0.02." ), }, custom_header_data=kwargs, ) response.status_code = 400 return response try: circle_radius = float(circle_radius_str) except ValueError: response = JsonResponse( { "ok": False, "error": ( "The circle radiuus you specified is not valid. " "It must be a floating point number, such as 128 or " "100.5." ), }, custom_header_data=kwargs, ) response.status_code = 400 return response try: ib = ImageBuilder(survey_id, map_id) except BadOccupEyeRequest: response = JsonResponse( { "ok": False, "error": "Either the IDs you sent were not integers, or they do not exist.", }, custom_header_data=kwargs, ) response.status_code = 400 return response ib.set_colours(absent=absent_colour, occupied=occupied_colour) ib.set_circle_radius(circle_radius=circle_radius) ib.set_image_scale(image_scale=image_scale) map_svg = ib.get_live_map() response = HttpResponse(map_svg, content_type="image/svg+xml", custom_header_data=kwargs) response["Content-Length"] = len(map_svg) return response class SurveysList(generics.ListAPIView): queryset = Surveys.objects.all() serializer_class = SurveysSerializer filterset_fields = {"survey_id": ["exact"], "active": ["exact"]} @method_decorator(uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces-Historical")) def list(self, request, *args, **kwargs): return pretty_response(super().list(request, *args, **kwargs), custom_header_data=kwargs) class SensorsList(generics.ListAPIView): queryset = Sensors.objects.all() serializer_class = SensorsSerializer filterset_fields = {"survey_id": ["exact"], "sensor_id": ["exact"]} @method_decorator(uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces-Historical")) def list(self, request, *args, **kwargs): return pretty_response(super().list(request, *args, **kwargs), custom_header_data=kwargs) class HistoricalList(generics.ListAPIView): queryset = Historical.objects.all().order_by("datetime") serializer_class = HistoricalSerializer pagination_class = HistoricalListCursorPagination filterset_fields = {"survey_id": ["exact"], "sensor_id": ["exact"], "datetime": ["gte", "lte", "exact", "gt", "lt"]} @method_decorator(uclapi_protected_endpoint(personal_data=False, last_modified_redis_key="Workspaces-Historical")) def list(self, request, *args, **kwargs): if self.request.query_params.get("survey_id", None) is None: raise ParseError("survey_id is a required field") return pretty_response(super().list(request, *args, **kwargs), custom_header_data=kwargs)
34.516539
118
0.624991
6299ac230db4edb3ffd5120db31eb6d17117e1b4
1,557
py
Python
alpaca/dataloader/red_wine.py
mtereshkin/alpaca
1fe46f802dd02a90792d65a03e3e7066fa9adfcf
[ "Apache-2.0" ]
null
null
null
alpaca/dataloader/red_wine.py
mtereshkin/alpaca
1fe46f802dd02a90792d65a03e3e7066fa9adfcf
[ "Apache-2.0" ]
null
null
null
alpaca/dataloader/red_wine.py
mtereshkin/alpaca
1fe46f802dd02a90792d65a03e3e7066fa9adfcf
[ "Apache-2.0" ]
null
null
null
from os import path import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from .config import DATA_DIR from .saver import DataSaver from .downloader import download URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv' class RedWineData: """Red wine quality dataset from UCI""" def __init__(self, use_cache=False, val_split=0.2): self.use_cache = use_cache cache_dir = path.join(DATA_DIR, 'dataloader/data/red_wine') self.saver = DataSaver(cache_dir) self.val_split = val_split self._build_dataset(cache_dir) def dataset(self, label): if self.use_cache: return self.saver.load(label) data = self.data[label] x, y = data[:, :-1], data[:, -1:] self.saver.save(x, y, label) return x, y def _build_dataset(self, cache_dir): data_path = download(cache_dir, 'winequality-red.csv', URL) self.df = pd.read_csv(data_path, sep=';') table = self.df.to_numpy() if self.val_split != 0: train, val = train_test_split(table, test_size=self.val_split, shuffle=True) else: train, val = table, [] self.data = {'train': train, 'val': val} if __name__ == '__main__': dataset = RedWineData() x_train, y_train = dataset.dataset('train') x_val, y_val = dataset.dataset('val') print(dataset.df.head()) print(x_train.shape, y_train.shape, y_val.shape) print(x_train[:5], y_train[:5])
30.529412
98
0.648041
97b20117b1a92e3efdbf7d3edf603952ff864495
1,018
py
Python
rhythms.py
gexahedron/sc3_microtonal
94c3091705d1e194dab0ec600b35c968ceb79c95
[ "MIT" ]
null
null
null
rhythms.py
gexahedron/sc3_microtonal
94c3091705d1e194dab0ec600b35c968ceb79c95
[ "MIT" ]
null
null
null
rhythms.py
gexahedron/sc3_microtonal
94c3091705d1e194dab0ec600b35c968ceb79c95
[ "MIT" ]
null
null
null
# code from https://github.com/brianhouse/bjorklund/blob/master/__init__.py def euclidean(steps, pulses): steps = int(steps) pulses = int(pulses) if pulses > steps: raise ValueError pattern = [] counts = [] remainders = [] divisor = steps - pulses remainders.append(pulses) level = 0 while True: counts.append(divisor // remainders[level]) remainders.append(divisor % remainders[level]) divisor = remainders[level] level = level + 1 if remainders[level] <= 1: break counts.append(divisor) def build(level): if level == -1: pattern.append(0) elif level == -2: pattern.append(1) else: for i in range(0, counts[level]): build(level - 1) if remainders[level] != 0: build(level - 2) build(level) i = pattern.index(1) pattern = pattern[i:] + pattern[0:i] return pattern
28.277778
75
0.54224
2bf0d75bfe08b6d59f2fcc7f1386f0d5c2b338cc
17,552
py
Python
skdaccess/utilities/ode_util.py
samiriff/scikit-dataaccess-ode
dc08fd67c772d3cd83d0d34183196661b6b53778
[ "MIT" ]
null
null
null
skdaccess/utilities/ode_util.py
samiriff/scikit-dataaccess-ode
dc08fd67c772d3cd83d0d34183196661b6b53778
[ "MIT" ]
null
null
null
skdaccess/utilities/ode_util.py
samiriff/scikit-dataaccess-ode
dc08fd67c772d3cd83d0d34183196661b6b53778
[ "MIT" ]
null
null
null
# The MIT License (MIT) # Copyright (c) 2018 Massachusetts Institute of Technology # # Author: Guillaume Rongier # This software has been created in projects supported by the US National # Science Foundation and NASA (PI: Pankratius) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # 3rd party imports import numpy as np from xml.dom import minidom from six.moves.urllib.request import urlopen from osgeo import gdal # Standard library imports from collections import OrderedDict import sys import re def query_yes_no(question, default = "yes"): ''' Ask a yes/no question via raw_input() and return the answer Written by Trent Mick under the MIT license, see: https://code.activestate.com/recipes/577058-query-yesno/ @param question: A string that is presented to the user @param default: The presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user) @return The "answer", i.e., either "yes" or "no" ''' valid = {"yes":"yes", "y":"yes", "ye":"yes", "no":"no", "n":"no"} if default == None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while 1: sys.stdout.write(question + prompt) choice = input().lower() if default is not None and choice == '': return default elif choice in valid.keys(): return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' "\ "(or 'y' or 'n').\n") def get_query_url(target, mission, instrument, product_type, western_lon, eastern_lon, min_lat, max_lat, min_ob_time, max_ob_time, product_id, query_type, output, results, number_product_limit, result_offset_number): ''' Build the query URL using ODE REST interface Adapted from the Orbital Data Explorer (ODE) REST Interface Manual @param target: Aimed planetary body, i.e., Mars, Mercury, Moon, Phobos, or Venus @param mission: Aimed mission, e.g., MGS or MRO @param instrument: Aimed instrument from the mission, e.g., HIRISE or CRISM @param product_type: Type of product to look for, e.g., DTM or RDRV11 @param western_lon: Western longitude to look for the data, from 0 to 360 @param eastern_lon: Eastern longitude to look for the data, from 0 to 360 @param min_lat: Minimal latitude to look for the data, from -90 to 90 @param max_lat: Maximal latitude to look for the data, from -90 to 90 @param min_ob_time: Minimal observation time in (even partial) UTC format, e.g., '2017-03-01' @param max_ob_time: Maximal observation time in (even partial) UTC format, e.g., '2017-03-01' @param product_id: PDS Product Id to look for, with wildcards (*) allowed @param query_type: File type to look for, i.e., Product, Browse, Derived, or Referenced @param output: Return format for product queries or error messages, i.e, XML or JSON @param results: Type of files to look for, i.e., c: count of products; o: ODE Product ID; p: PDS product identifies; m: product metadata; f: product files; b: browse image; t: thumbnail image; l: complete PDS label; x: single product footprint @param number_product_limit: Maximal number of products to return (100 at most) @param result_offset_number: Offset the return products, to go beyond the limit of 100 returned products @return Query URL ''' ODE_REST_base_url = "http://oderest.rsl.wustl.edu/live2/?" target = 'target=' + target mission = '&ihid=' + mission instrument = '&iid=' + instrument product_type = '&pt=' + product_type if western_lon is not None: western_lon = '&westernlon=' + str(western_lon) else: western_lon = '' if eastern_lon is not None: eastern_lon = '&easternlon=' + str(eastern_lon) else: eastern_lon = '' if min_lat is not None: min_lat = '&minlat=' + str(min_lat) else: min_lat = '' if max_lat is not None: max_lat = '&maxlat=' + str(max_lat) else: max_lat = '' if min_ob_time != '': min_ob_time = '&mincreationtime=' + min_ob_time if max_ob_time != '': max_ob_time = '&maxcreationtime=' + max_ob_time if product_id != '': product_id = '&productid=' + product_id if query_type != '': query_type = '&query=' + query_type if results != '': results = '&results=' + results if output != '': output = '&output=' + output if number_product_limit != '': number_product_limit = '&limit=' + str(number_product_limit) if result_offset_number != '': result_offset_number = '&offset=' + str(result_offset_number) # Concatenate the REST request return ODE_REST_base_url + target + mission + instrument + product_type \ + western_lon + eastern_lon + min_lat + max_lat + min_ob_time \ + max_ob_time + query_type + results + output + number_product_limit \ + result_offset_number + product_id def get_files_urls(query_url, file_name = '*', print_info = False, limit_file_types = 'Product'): ''' Retrieve the files' URLs based on a query from ODE REST interface Adapted from the Orbital Data Explorer (ODE) REST Interface Manual @param query_url: URL resulting from the query of ODE @param file_name: File name to look for, with wildcards (*) allowed @param print_info: Print the files that will be downloaded @param limit_file_types: Type of file type to select in results (Default: Product) @return List of URLs ''' url = urlopen(query_url) query_results = url.read() xml_results = minidom.parseString(query_results) url.close() error = xml_results.getElementsByTagName('Error') if len(error) > 0: print('\nError:', error[0].firstChild.data) return None file_name = file_name.replace('*', '.') products = xml_results.getElementsByTagName('Product') file_urls = OrderedDict() for product in products: product_files = product.getElementsByTagName('Product_file') product_id = product.getElementsByTagName('pdsid')[0] if print_info == True: print('\nProduct ID:', product_id.firstChild.data) for product_file in product_files: file_type = product_file.getElementsByTagName('Type')[0] file_url = product_file.getElementsByTagName('URL')[0] file_description = product_file.getElementsByTagName('Description')[0] local_filename = file_url.firstChild.data.split('/')[-1] local_file_extension = local_filename.split('.')[-1] if limit_file_types == 'Browse': if local_file_extension.endswith('JP2') or local_file_extension.endswith('IMG'): continue if re.search(file_name, local_filename) is not None: # Restriction on the file type to download if len(limit_file_types) > 0: # If match, get the URL if file_type.firstChild.data == limit_file_types: file_urls[file_url.firstChild.data] = (product_id.firstChild.data, file_description.firstChild.data) if print_info == True: print('File name:', file_url.firstChild.data.split('/')[-1]) print('Description:', file_description.firstChild.data) # No restriction on the file type to download else: file_urls[file_url.firstChild.data] = (product_id.firstChild.data, file_description.firstChild.data) if print_info == True: print('File name:', file_url.firstChild.data.split('/')[-1]) print('Description:', file_description.firstChild.data) return file_urls def query_files_urls(target, mission, instrument, product_type, western_lon, eastern_lon, min_lat, max_lat, min_ob_time, max_ob_time, product_id, file_name, number_product_limit, result_offset_number, limit_file_types = 'Product'): ''' Retrieve the URL locations based on a query using ODE REST interface @param target: Aimed planetary body, i.e., Mars, Mercury, Moon, Phobos, or Venus @param mission: Aimed mission, e.g., MGS or MRO @param instrument: Aimed instrument from the mission, e.g., HIRISE or CRISM @param product_type: Type of product to look for, e.g., DTM or RDRV11 @param western_lon: Western longitude to look for the data, from 0 to 360 @param eastern_lon: Eastern longitude to look for the data, from 0 to 360 @param min_lat: Minimal latitude to look for the data, from -90 to 90 @param max_lat: Maximal latitude to look for the data, from -90 to 90 @param min_ob_time: Minimal observation time in (even partial) UTC format, e.g., '2017-03-01' @param max_ob_time: Maximal observation time in (even partial) UTC format, e.g., '2017-03-01' @param product_id: PDS Product Id to look for, with wildcards (*) allowed @param file_name: File name to look for, with wildcards (*) allowed @param number_product_limit: Maximal number of products to return (100 at most) @param result_offset_number: Offset the return products, to go beyond the limit of 100 returned products @param limit_file_types: Type of file type to select in results (Default: Product) @return List of URL locations ''' # Returns a list of products with selected product metadata that meet the query parameters query_type = 'product' # Controls the return format for product queries or error messages output = 'XML' # For each product found return the product files and IDS results = 'fp' query_url = get_query_url(target, mission, instrument, product_type, western_lon, eastern_lon, min_lat, max_lat, min_ob_time, max_ob_time, product_id, query_type, output, results, number_product_limit, result_offset_number) print('Query URL:', query_url) print('\nFiles that will be downloaded (if not previously downloaded):') file_urls = get_files_urls(query_url, file_name, print_info = True, limit_file_types=limit_file_types) if file_urls is None: return OrderedDict() elif len(file_urls) > 0: should_continue = query_yes_no('\nDo you want to proceed?') if should_continue == "no": return OrderedDict() else: print('\nNo file found') return file_urls def correct_CRISM_label(label_file_location): ''' Correct CRISM label file and allow GDAL to read it properly. Necessary for Targeted Reduced Data Record (TRDR) data Adapted from https://github.com/jlaura/crism/blob/master/csas.py @param label_file_location: Local address of the current label @return Local address of the new label ''' new_label_file_location = label_file_location if '_fixed' not in new_label_file_location: new_label_file_location = '.'.join(label_file_location.split('.')[:-1]) \ + '_fixed.' + label_file_location.split('.')[-1] new_label_file = open(new_label_file_location, 'w') for line in open(label_file_location, 'r'): if "OBJECT = FILE" in line: line = "/* OBJECT = FILE */\n" if "LINES" in line: lines = int(line.split("=")[1]) if "LINE_SAMPLES" in line: samples = int(line.split("=")[1]) new_label_file.write(line) new_label_file.close() return new_label_file_location def correct_file_name_case_in_label(label_file_location, other_file_locations): ''' Correct a label file if the case of the related data file(s) is incorrect and GDAL cannot read it properly @param label_file_location: Local address of the current label @param other_file_locations: Other files that were downloaded with the label file @return Local address of the new label ''' label_file_name = '_'.join('.'.join(label_file_location.split('/')[-1].split('.')[:-1]).split('_')[:-1]) insensitive_lalels = [] for file_location in other_file_locations: file_name = '.'.join(file_location.split('/')[-1].split('.')[:-1]) if (file_location != label_file_location and file_name == label_file_name): insensitive_lalel = re.compile(re.escape(file_location.split('/')[-1]), re.IGNORECASE) insensitive_lalels.append((insensitive_lalel, file_location.split('/')[-1])) with open(label_file_location, 'r') as file: label_file = file.read() for insensitive_lalel, sensitive_lalel in insensitive_lalels: label_file = insensitive_lalel.sub(sensitive_lalel, label_file) new_label_file_location = label_file_location if '_fixed' not in new_label_file_location: new_label_file_location = '.'.join(label_file_location.split('.')[:-1]) \ + '_fixed.' + label_file_location.split('.')[-1] with open(new_label_file_location, 'w') as file: file.write(label_file) return new_label_file_location def correct_label_file(label_file_location, other_file_locations = []): ''' Correct a label file if GDAL cannot open the corresponding data file @param label_file_location: Local address of the current label @param other_file_locations: Other files that were downloaded with the label file @return Local address of the new label ''' # Correction not limited to CRISM data, in case other data had similar issues new_label_file_location = correct_CRISM_label(label_file_location) return correct_file_name_case_in_label(new_label_file_location, other_file_locations) def get_raster_array(gdal_raster, remove_ndv = True): ''' Get a NumPy array from a raster opened with GDAL @param gdal_raster: A raster opened with GDAL @param remove_ndv: Replace the no-data value as mentionned in the label by np.nan @return The array ''' assert gdal_raster is not None, 'No raster available' number_of_bands = gdal_raster.RasterCount raster_array = gdal_raster.ReadAsArray().astype(np.float) for i_band in range(number_of_bands): raster_band = gdal_raster.GetRasterBand(i_band + 1) no_data_value = raster_band.GetNoDataValue() if no_data_value is not None and remove_ndv == True: if number_of_bands > 1: raster_array[i_band, :, :][raster_array[i_band, :, :] == no_data_value] = np.nan else: raster_array[raster_array == no_data_value] = np.nan scale = raster_band.GetScale() if scale is None: scale = 1. offset = raster_band.GetOffset() if offset is None: offset = 0. if number_of_bands > 1: raster_array[i_band, :, :] = raster_array[i_band, :, :]*scale + offset else: raster_array = raster_array*scale + offset return raster_array def get_raster_extent(gdal_raster): ''' Get the extent of a raster opened with GDAL @param gdal_raster: A raster opened with GDAL @return The raster extent ''' assert gdal_raster is not None, 'No raster available' raster_x_size = gdal_raster.RasterXSize raster_y_size = gdal_raster.RasterYSize geotransform = gdal_raster.GetGeoTransform() xmin = geotransform[0] ymax = geotransform[3] xmax = xmin + geotransform[1]*raster_x_size ymin = ymax + geotransform[5]*raster_y_size return (xmin, xmax, ymin, ymax)
44.100503
108
0.644599
09b498b5000bf12d1e8ee13d3533595dcc25b1b1
87,675
py
Python
sympy/utilities/runtests.py
Corwinpro/sympy
a2efa19333fa0b3b18db872efabbb46248cde63b
[ "BSD-3-Clause" ]
2
2019-10-18T12:45:34.000Z
2020-08-10T08:27:59.000Z
sympy/utilities/runtests.py
Corwinpro/sympy
a2efa19333fa0b3b18db872efabbb46248cde63b
[ "BSD-3-Clause" ]
7
2015-03-23T23:33:02.000Z
2019-02-09T00:19:41.000Z
sympy/utilities/runtests.py
Corwinpro/sympy
a2efa19333fa0b3b18db872efabbb46248cde63b
[ "BSD-3-Clause" ]
1
2019-10-18T12:39:41.000Z
2019-10-18T12:39:41.000Z
""" This is our testing framework. Goals: * it should be compatible with py.test and operate very similarly (or identically) * doesn't require any external dependencies * preferably all the functionality should be in this file only * no magic, just import the test file and execute the test functions, that's it * portable """ from __future__ import print_function, division import os import sys import platform import inspect import traceback import pdb import re import linecache import time from fnmatch import fnmatch from timeit import default_timer as clock import doctest as pdoctest # avoid clashing with our doctest() function from doctest import DocTestFinder, DocTestRunner import random import subprocess import signal import stat import tempfile from sympy.core.cache import clear_cache from sympy.core.compatibility import exec_, PY3, string_types, range, unwrap from sympy.utilities.misc import find_executable from sympy.external import import_module from sympy.utilities.exceptions import SymPyDeprecationWarning IS_WINDOWS = (os.name == 'nt') ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None) # emperically generated list of the proportion of time spent running # an even split of tests. This should periodically be regenerated. # A list of [.6, .1, .3] would mean that if the tests are evenly split # into '1/3', '2/3', '3/3', the first split would take 60% of the time, # the second 10% and the third 30%. These lists are normalized to sum # to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3]. # # This list can be generated with the code: # from time import time # import sympy # # delays, num_splits = [], 30 # for i in range(1, num_splits + 1): # tic = time() # sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests # delays.append(time() - tic) # tot = sum(delays) # print([round(x / tot, 4) for x in delays]) SPLIT_DENSITY = [0.0801, 0.0099, 0.0429, 0.0103, 0.0122, 0.0055, 0.0533, 0.0191, 0.0977, 0.0878, 0.0026, 0.0028, 0.0147, 0.0118, 0.0358, 0.0063, 0.0026, 0.0351, 0.0084, 0.0027, 0.0158, 0.0156, 0.0024, 0.0416, 0.0566, 0.0425, 0.2123, 0.0042, 0.0099, 0.0576] SPLIT_DENSITY_SLOW = [0.1525, 0.0342, 0.0092, 0.0004, 0.0005, 0.0005, 0.0379, 0.0353, 0.0637, 0.0801, 0.0005, 0.0004, 0.0133, 0.0021, 0.0098, 0.0108, 0.0005, 0.0076, 0.0005, 0.0004, 0.0056, 0.0093, 0.0005, 0.0264, 0.0051, 0.0956, 0.2983, 0.0005, 0.0005, 0.0981] class Skipped(Exception): pass class TimeOutError(Exception): pass class DependencyError(Exception): pass # add more flags ?? future_flags = division.compiler_flag def _indent(s, indent=4): """ Add the given number of space characters to the beginning of every non-blank line in ``s``, and return the result. If the string ``s`` is Unicode, it is encoded using the stdout encoding and the ``backslashreplace`` error handler. """ # After a 2to3 run the below code is bogus, so wrap it with a version check if not PY3: if isinstance(s, unicode): s = s.encode(pdoctest._encoding, 'backslashreplace') # This regexp matches the start of non-blank lines: return re.sub('(?m)^(?!$)', indent*' ', s) pdoctest._indent = _indent # override reporter to maintain windows and python3 def _report_failure(self, out, test, example, got): """ Report that the given example failed. """ s = self._checker.output_difference(example, got, self.optionflags) s = s.encode('raw_unicode_escape').decode('utf8', 'ignore') out(self._failure_header(test, example) + s) if PY3 and IS_WINDOWS: DocTestRunner.report_failure = _report_failure def convert_to_native_paths(lst): """ Converts a list of '/' separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive. """ newlst = [] for i, rv in enumerate(lst): rv = os.path.join(*rv.split("/")) # on windows the slash after the colon is dropped if sys.platform == "win32": pos = rv.find(':') if pos != -1: if rv[pos + 1] != '\\': rv = rv[:pos + 1] + '\\' + rv[pos + 1:] newlst.append(os.path.normcase(rv)) return newlst def get_sympy_dir(): """ Returns the root sympy directory and set the global value indicating whether the system is case sensitive or not. """ this_file = os.path.abspath(__file__) sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..") sympy_dir = os.path.normpath(sympy_dir) return os.path.normcase(sympy_dir) def setup_pprint(): from sympy import pprint_use_unicode, init_printing import sympy.interactive.printing as interactive_printing # force pprint to be in ascii mode in doctests use_unicode_prev = pprint_use_unicode(False) # hook our nice, hash-stable strprinter init_printing(pretty_print=False) # Prevent init_printing() in doctests from affecting other doctests interactive_printing.NO_GLOBAL = True return use_unicode_prev def run_in_subprocess_with_hash_randomization( function, function_args=(), function_kwargs=None, command=sys.executable, module='sympy.utilities.runtests', force=False): """ Run a function in a Python subprocess with hash randomization enabled. If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The function is passed to sys.exit(), so the return value of the function will be the return value. The environment variable PYTHONHASHSEED is used to seed Python's hash randomization. If it is set, this function will return False, because starting a new subprocess is unnecessary in that case. If it is not set, one is set at random, and the tests are run. Note that if this environment variable is set when Python starts, hash randomization is automatically enabled. To force a subprocess to be created even if PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a subprocess in Python versions that do not support hash randomization (see below), because those versions of Python do not support the ``-R`` flag. ``function`` should be a string name of a function that is importable from the module ``module``, like "_test". The default for ``module`` is "sympy.utilities.runtests". ``function_args`` and ``function_kwargs`` should be a repr-able tuple and dict, respectively. The default Python command is sys.executable, which is the currently running Python command. This function is necessary because the seed for hash randomization must be set by the environment variable before Python starts. Hence, in order to use a predetermined seed for tests, we must start Python in a separate subprocess. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. Examples ======== >>> from sympy.utilities.runtests import ( ... run_in_subprocess_with_hash_randomization) >>> # run the core tests in verbose mode >>> run_in_subprocess_with_hash_randomization("_test", ... function_args=("core",), ... function_kwargs={'verbose': True}) # doctest: +SKIP # Will return 0 if sys.executable supports hash randomization and tests # pass, 1 if they fail, and False if it does not support hash # randomization. """ # Note, we must return False everywhere, not None, as subprocess.call will # sometimes return None. # First check if the Python version supports hash randomization # If it doesn't have this support, it won't reconize the -R flag p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.communicate() if p.returncode != 0: return False hash_seed = os.getenv("PYTHONHASHSEED") if not hash_seed: os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32)) else: if not force: return False function_kwargs = function_kwargs or {} # Now run the command commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" % (module, function, function, repr(function_args), repr(function_kwargs))) try: p = subprocess.Popen([command, "-R", "-c", commandstring]) p.communicate() except KeyboardInterrupt: p.wait() finally: # Put the environment variable back, so that it reads correctly for # the current Python process. if hash_seed is None: del os.environ["PYTHONHASHSEED"] else: os.environ["PYTHONHASHSEED"] = hash_seed return p.returncode def run_all_tests(test_args=(), test_kwargs=None, doctest_args=(), doctest_kwargs=None, examples_args=(), examples_kwargs=None): """ Run all tests. Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), the examples (examples/all.py), and the sage tests (see sympy/external/tests/test_sage.py). This is what ``setup.py test`` uses. You can pass arguments and keyword arguments to the test functions that support them (for now, test, doctest, and the examples). See the docstrings of those functions for a description of the available options. For example, to run the solvers tests with colors turned off: >>> from sympy.utilities.runtests import run_all_tests >>> run_all_tests(test_args=("solvers",), ... test_kwargs={"colors:False"}) # doctest: +SKIP """ tests_successful = True test_kwargs = test_kwargs or {} doctest_kwargs = doctest_kwargs or {} examples_kwargs = examples_kwargs or {'quiet': True} try: # Regular tests if not test(*test_args, **test_kwargs): # some regular test fails, so set the tests_successful # flag to false and continue running the doctests tests_successful = False # Doctests print() if not doctest(*doctest_args, **doctest_kwargs): tests_successful = False # Examples print() sys.path.append("examples") from all import run_examples # examples/all.py if not run_examples(*examples_args, **examples_kwargs): tests_successful = False # Sage tests if sys.platform != "win32" and not PY3 and os.path.exists("bin/test"): # run Sage tests; Sage currently doesn't support Windows or Python 3 # Only run Sage tests if 'bin/test' is present (it is missing from # our release because everything in the 'bin' directory gets # installed). dev_null = open(os.devnull, 'w') if subprocess.call("sage -v", shell=True, stdout=dev_null, stderr=dev_null) == 0: if subprocess.call("sage -python bin/test " "sympy/external/tests/test_sage.py", shell=True, cwd=os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) != 0: tests_successful = False if tests_successful: return else: # Return nonzero exit code sys.exit(1) except KeyboardInterrupt: print() print("DO *NOT* COMMIT!") sys.exit(1) def test(*paths, **kwargs): """ Run tests in the specified test_*.py files. Tests in a particular test_*.py file are run if any of the given strings in ``paths`` matches a part of the test file's path. If ``paths=[]``, tests in all test_*.py files are run. Notes: - If sort=False, tests are run in random order (not default). - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. **Explanation of test results** ====== =============================================================== Output Meaning ====== =============================================================== . passed F failed X XPassed (expected to fail but passed) f XFAILed (expected to fail and indeed failed) s skipped w slow T timeout (e.g., when ``--timeout`` is used) K KeyboardInterrupt (when running the slow tests with ``--slow``, you can interrupt one of them without killing the test runner) ====== =============================================================== Colors have no additional meaning and are used just to facilitate interpreting the output. Examples ======== >>> import sympy Run all tests: >>> sympy.test() # doctest: +SKIP Run one file: >>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP >>> sympy.test("_basic") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.test("sympy/core/tests/test_basic.py", ... "sympy/functions") # doctest: +SKIP Run all tests in sympy/core and sympy/utilities: >>> sympy.test("/core", "/util") # doctest: +SKIP Run specific test from a file: >>> sympy.test("sympy/core/tests/test_basic.py", ... kw="test_equality") # doctest: +SKIP Run specific test from any file: >>> sympy.test(kw="subs") # doctest: +SKIP Run the tests with verbose mode on: >>> sympy.test(verbose=True) # doctest: +SKIP Don't sort the test output: >>> sympy.test(sort=False) # doctest: +SKIP Turn on post-mortem pdb: >>> sympy.test(pdb=True) # doctest: +SKIP Turn off colors: >>> sympy.test(colors=False) # doctest: +SKIP Force colors, even when the output is not to a terminal (this is useful, e.g., if you are piping to ``less -r`` and you still want colors) >>> sympy.test(force_colors=False) # doctest: +SKIP The traceback verboseness can be set to "short" or "no" (default is "short") >>> sympy.test(tb='no') # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. For instance, to run the first half of the test suite: >>> sympy.test(split='1/2') # doctest: +SKIP The ``time_balance`` option can be passed in conjunction with ``split``. If ``time_balance=True`` (the default for ``sympy.test``), sympy will attempt to split the tests such that each split takes equal time. This heuristic for balancing is based on pre-recorded test data. >>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP You can disable running the tests in a separate subprocess using ``subprocess=False``. This is done to support seeding hash randomization, which is enabled by default in the Python versions where it is supported. If subprocess=False, hash randomization is enabled/disabled according to whether it has been enabled or not in the calling Python process. However, even if it is enabled, the seed cannot be printed unless it is called from a new Python process. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. If hash randomization is not supported ``subprocess=False`` is used automatically. >>> sympy.test(subprocess=False) # doctest: +SKIP To set the hash randomization seed, set the environment variable ``PYTHONHASHSEED`` before running the tests. This can be done from within Python using >>> import os >>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP Or from the command line using $ PYTHONHASHSEED=42 ./bin/test If the seed is not set, a random seed will be chosen. Note that to reproduce the same hash values, you must use both the same seed as well as the same architecture (32-bit vs. 64-bit). """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_test", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_test(*paths, **kwargs)) if not val or i == 0: return val def _test(*paths, **kwargs): """ Internal function that actually runs the tests. All keyword arguments from ``test()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstring of ``test()`` for more information. """ verbose = kwargs.get("verbose", False) tb = kwargs.get("tb", "short") kw = kwargs.get("kw", None) or () # ensure that kw is a tuple if isinstance(kw, string_types): kw = (kw, ) post_mortem = kwargs.get("pdb", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) sort = kwargs.get("sort", True) seed = kwargs.get("seed", None) if seed is None: seed = random.randrange(100000000) timeout = kwargs.get("timeout", False) fail_on_timeout = kwargs.get("fail_on_timeout", False) if ON_TRAVIS and timeout is False: # Travis times out if no activity is seen for 10 minutes. timeout = 595 fail_on_timeout = True slow = kwargs.get("slow", False) enhance_asserts = kwargs.get("enhance_asserts", False) split = kwargs.get('split', None) time_balance = kwargs.get('time_balance', True) blacklist = kwargs.get('blacklist', ['sympy/integrals/rubi/rubi_tests/tests']) blacklist = convert_to_native_paths(blacklist) fast_threshold = kwargs.get('fast_threshold', None) slow_threshold = kwargs.get('slow_threshold', None) r = PyTestReporter(verbose=verbose, tb=tb, colors=colors, force_colors=force_colors, split=split) t = SymPyTests(r, kw, post_mortem, seed, fast_threshold=fast_threshold, slow_threshold=slow_threshold) # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') test_files = t.get_test_files('sympy') not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break density = None if time_balance: if slow: density = SPLIT_DENSITY_SLOW else: density = SPLIT_DENSITY if split: matched = split_list(matched, split, density=density) t._testfiles.extend(matched) return int(not t.test(sort=sort, timeout=timeout, slow=slow, enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout)) def doctest(*paths, **kwargs): r""" Runs doctests in all \*.py files in the sympy directory which match any of the given strings in ``paths`` or all tests if paths=[]. Notes: - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. Examples ======== >>> import sympy Run all tests: >>> sympy.doctest() # doctest: +SKIP Run one file: >>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP >>> sympy.doctest("polynomial.rst") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP Run any file having polynomial in its name, doc/src/modules/polynomial.rst, sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py: >>> sympy.doctest("polynomial") # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. Note that the regular doctests and the Sphinx doctests are split independently. For instance, to run the first half of the test suite: >>> sympy.doctest(split='1/2') # doctest: +SKIP The ``subprocess`` and ``verbose`` options are the same as with the function ``test()``. See the docstring of that function for more information. """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_doctest", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_doctest(*paths, **kwargs)) if not val or i == 0: return val def _get_doctest_blacklist(): '''Get the default blacklist for the doctests''' blacklist = [] blacklist.extend([ "doc/src/modules/plotting.rst", # generates live plots "doc/src/modules/physics/mechanics/autolev_parser.rst", "sympy/physics/gaussopt.py", # raises deprecation warning "sympy/galgebra.py", # raises ImportError "sympy/this.py", # Prints text to the terminal "sympy/matrices/densearith.py", # raises deprecation warning "sympy/matrices/densesolve.py", # raises deprecation warning "sympy/matrices/densetools.py", # raises deprecation warning "sympy/physics/unitsystems.py", # raises deprecation warning "sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code "sympy/parsing/autolev/_antlr/autolevparser.py", # generated code "sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code "sympy/parsing/latex/_antlr/latexlexer.py", # generated code "sympy/parsing/latex/_antlr/latexparser.py", # generated code "sympy/integrals/rubi/rubi.py" ]) # autolev parser tests num = 12 for i in range (1, num+1): blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py") blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"]) if import_module('numpy') is None: blacklist.extend([ "sympy/plotting/experimental_lambdify.py", "sympy/plotting/plot_implicit.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py", "examples/intermediate/sample.py", "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py", "doc/src/modules/numeric-computation.rst" ]) else: if import_module('matplotlib') is None: blacklist.extend([ "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py" ]) else: # Use a non-windowed backend, so that the tests work on Travis import matplotlib matplotlib.use('Agg') if import_module('pyglet') is None: blacklist.extend(["sympy/plotting/pygletplot"]) if import_module('theano') is None: blacklist.extend([ "sympy/printing/theanocode.py", "doc/src/modules/numeric-computation.rst", ]) if import_module('antlr4') is None: blacklist.extend([ "sympy/parsing/autolev/__init__.py", "sympy/parsing/latex/_parse_latex_antlr.py", ]) # disabled because of doctest failures in asmeurer's bot blacklist.extend([ "sympy/utilities/autowrap.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py" ]) # blacklist these modules until issue 4840 is resolved blacklist.extend([ "sympy/conftest.py", "sympy/utilities/benchmarking.py" ]) blacklist = convert_to_native_paths(blacklist) return blacklist def _doctest(*paths, **kwargs): """ Internal function that actually runs the doctests. All keyword arguments from ``doctest()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstrings of ``doctest()`` and ``test()`` for more information. """ from sympy import pprint_use_unicode normal = kwargs.get("normal", False) verbose = kwargs.get("verbose", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) blacklist = kwargs.get("blacklist", []) split = kwargs.get('split', None) blacklist.extend(_get_doctest_blacklist()) # Use a non-windowed backend, so that the tests work on Travis if import_module('matplotlib') is not None: import matplotlib matplotlib.use('Agg') # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Disable showing up of plots from sympy.plotting.plot import unset_show unset_show() # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') r = PyTestReporter(verbose, split=split, colors=colors,\ force_colors=force_colors) t = SymPyDocTests(r, normal) test_files = t.get_test_files('sympy') test_files.extend(t.get_test_files('examples', init_only=False)) not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # take only what was requested...but not blacklisted items # and allow for partial match anywhere or fnmatch of name paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) t._testfiles.extend(matched) # run the tests and record the result for this *py portion of the tests if t._testfiles: failed = not t.test() else: failed = False # N.B. # -------------------------------------------------------------------- # Here we test *.rst files at or below doc/src. Code from these must # be self supporting in terms of imports since there is no importing # of necessary modules by doctest.testfile. If you try to pass *.py # files through this they might fail because they will lack the needed # imports and smarter parsing that can be done with source code. # test_files = t.get_test_files('doc/src', '*.rst', init_only=False) test_files.sort() not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # Take only what was requested as long as it's not on the blacklist. # Paths were already made native in *py tests so don't repeat here. # There's no chance of having a *py file slip through since we # only have *rst files in test_files. matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) first_report = True for rst_file in matched: if not os.path.isfile(rst_file): continue old_displayhook = sys.displayhook try: use_unicode_prev = setup_pprint() out = sympytestfile( rst_file, module_relative=False, encoding='utf-8', optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) finally: # make sure we return to the original displayhook in case some # doctest has changed that sys.displayhook = old_displayhook # The NO_GLOBAL flag overrides the no_global flag to init_printing # if True import sympy.interactive.printing as interactive_printing interactive_printing.NO_GLOBAL = False pprint_use_unicode(use_unicode_prev) rstfailed, tested = out if tested: failed = rstfailed or failed if first_report: first_report = False msg = 'rst doctests start' if not t._testfiles: r.start(msg=msg) else: r.write_center(msg) print() # use as the id, everything past the first 'sympy' file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:] print(file_id, end=" ") # get at least the name out so it is know who is being tested wid = r.terminal_width - len(file_id) - 1 # update width test_file = '[%s]' % (tested) report = '[%s]' % (rstfailed or 'OK') print(''.join( [test_file, ' '*(wid - len(test_file) - len(report)), report]) ) # the doctests for *py will have printed this message already if there was # a failure, so now only print it if there was intervening reporting by # testing the *rst as evidenced by first_report no longer being True. if not first_report and failed: print() print("DO *NOT* COMMIT!") return int(failed) sp = re.compile(r'([0-9]+)/([1-9][0-9]*)') def split_list(l, split, density=None): """ Splits a list into part a of b split should be a string of the form 'a/b'. For instance, '1/3' would give the split one of three. If the length of the list is not divisible by the number of splits, the last split will have more items. `density` may be specified as a list. If specified, tests will be balanced so that each split has as equal-as-possible amount of mass according to `density`. >>> from sympy.utilities.runtests import split_list >>> a = list(range(10)) >>> split_list(a, '1/3') [0, 1, 2] >>> split_list(a, '2/3') [3, 4, 5] >>> split_list(a, '3/3') [6, 7, 8, 9] """ m = sp.match(split) if not m: raise ValueError("split must be a string of the form a/b where a and b are ints") i, t = map(int, m.groups()) if not density: return l[(i - 1)*len(l)//t : i*len(l)//t] # normalize density tot = sum(density) density = [x / tot for x in density] def density_inv(x): """Interpolate the inverse to the cumulative distribution function given by density""" if x <= 0: return 0 if x >= sum(density): return 1 # find the first time the cumulative sum surpasses x # and linearly interpolate cumm = 0 for i, d in enumerate(density): cumm += d if cumm >= x: break frac = (d - (cumm - x)) / d return (i + frac) / len(density) lower_frac = density_inv((i - 1) / t) higher_frac = density_inv(i / t) return l[int(lower_frac*len(l)) : int(higher_frac*len(l))] from collections import namedtuple SymPyTestResults = namedtuple('TestResults', 'failed attempted') def sympytestfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False, parser=pdoctest.DocTestParser(), encoding=None): """ Test examples in the given file. Return (#failures, #tests). Optional keyword arg ``module_relative`` specifies how filenames should be interpreted: - If ``module_relative`` is True (the default), then ``filename`` specifies a module-relative path. By default, this path is relative to the calling module's directory; but if the ``package`` argument is specified, then it is relative to that package. To ensure os-independence, ``filename`` should use "/" characters to separate path segments, and should not be an absolute path (i.e., it may not begin with "/"). - If ``module_relative`` is False, then ``filename`` specifies an os-specific path. The path may be absolute or relative (to the current working directory). Optional keyword arg ``name`` gives the name of the test; by default use the file's basename. Optional keyword argument ``package`` is a Python package or the name of a Python package whose directory should be used as the base directory for a module relative filename. If no package is specified, then the calling module's directory is used as the base directory for module relative filenames. It is an error to specify ``package`` if ``module_relative`` is False. Optional keyword arg ``globs`` gives a dict to be used as the globals when executing examples; by default, use {}. A copy of this dict is actually used for each docstring, so that each docstring's examples start with a clean slate. Optional keyword arg ``extraglobs`` gives a dictionary that should be merged into the globals that are used to execute examples. By default, no extra globals are used. Optional keyword arg ``verbose`` prints lots of stuff if true, prints only failures if false; by default, it's true iff "-v" is in sys.argv. Optional keyword arg ``report`` prints a summary at the end when true, else prints nothing at the end. In verbose mode, the summary is detailed, else very brief (in fact, empty if all tests passed). Optional keyword arg ``optionflags`` or's together module constants, and defaults to 0. Possible values (see the docs for details): - DONT_ACCEPT_TRUE_FOR_1 - DONT_ACCEPT_BLANKLINE - NORMALIZE_WHITESPACE - ELLIPSIS - SKIP - IGNORE_EXCEPTION_DETAIL - REPORT_UDIFF - REPORT_CDIFF - REPORT_NDIFF - REPORT_ONLY_FIRST_FAILURE Optional keyword arg ``raise_on_error`` raises an exception on the first unexpected exception or failure. This allows failures to be post-mortem debugged. Optional keyword arg ``parser`` specifies a DocTestParser (or subclass) that should be used to extract tests from the files. Optional keyword arg ``encoding`` specifies an encoding that should be used to convert the file to unicode. Advanced tomfoolery: testmod runs methods of a local instance of class doctest.Tester, then merges the results into (or creates) global Tester instance doctest.master. Methods of doctest.master can be called directly too, if you want to do something unusual. Passing report=0 to testmod is especially useful then, to delay displaying a summary. Invoke doctest.master.summarize(verbose) when you're done fiddling. """ if package and not module_relative: raise ValueError("Package may only be specified for module-" "relative paths.") # Relativize the path if not PY3: text, filename = pdoctest._load_testfile( filename, package, module_relative) if encoding is not None: text = text.decode(encoding) else: text, filename = pdoctest._load_testfile( filename, package, module_relative, encoding) # If no name was given, then use the file's name. if name is None: name = os.path.basename(filename) # Assemble the globals. if globs is None: globs = {} else: globs = globs.copy() if extraglobs is not None: globs.update(extraglobs) if '__name__' not in globs: globs['__name__'] = '__main__' if raise_on_error: runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags) else: runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags) runner._checker = SymPyOutputChecker() # Read the file, convert it to a test, and run it. test = parser.get_doctest(text, globs, name, filename, 0) runner.run(test, compileflags=future_flags) if report: runner.summarize() if pdoctest.master is None: pdoctest.master = runner else: pdoctest.master.merge(runner) return SymPyTestResults(runner.failures, runner.tries) class SymPyTests(object): def __init__(self, reporter, kw="", post_mortem=False, seed=None, fast_threshold=None, slow_threshold=None): self._post_mortem = post_mortem self._kw = kw self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._testfiles = [] self._seed = seed if seed is not None else random.random() # Defaults in seconds, from human / UX design limits # http://www.nngroup.com/articles/response-times-3-important-limits/ # # These defaults are *NOT* set in stone as we are measuring different # things, so others feel free to come up with a better yardstick :) if fast_threshold: self._fast_threshold = float(fast_threshold) else: self._fast_threshold = 5 if slow_threshold: self._slow_threshold = float(slow_threshold) else: self._slow_threshold = 10 def test(self, sort=False, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): """ Runs the tests returning True if all tests pass, otherwise False. If sort=False run tests in random order. """ if sort: self._testfiles.sort() elif slow: pass else: random.seed(self._seed) random.shuffle(self._testfiles) self._reporter.start(self._seed) for f in self._testfiles: try: self.test_file(f, sort, timeout, slow, enhance_asserts, fail_on_timeout) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def _enhance_asserts(self, source): from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple, Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations) ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=', "Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not', "In": 'in', "NotIn": 'not in'} class Transform(NodeTransformer): def visit_Assert(self, stmt): if isinstance(stmt.test, Compare): compare = stmt.test values = [compare.left] + compare.comparators names = [ "_%s" % i for i, _ in enumerate(values) ] names_store = [ Name(n, Store()) for n in names ] names_load = [ Name(n, Load()) for n in names ] target = Tuple(names_store, Store()) value = Tuple(values, Load()) assign = Assign([target], value) new_compare = Compare(names_load[0], compare.ops, names_load[1:]) msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s" msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load())) test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset) return [assign, test] else: return stmt tree = parse(source) new_tree = Transform().visit(tree) return fix_missing_locations(new_tree) def test_file(self, filename, sort=True, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): reporter = self._reporter funcs = [] try: gl = {'__file__': filename} try: if PY3: open_file = lambda: open(filename, encoding="utf8") else: open_file = lambda: open(filename) with open_file() as f: source = f.read() if self._kw: for l in source.splitlines(): if l.lstrip().startswith('def '): if any(l.find(k) != -1 for k in self._kw): break else: return if enhance_asserts: try: source = self._enhance_asserts(source) except ImportError: pass code = compile(source, filename, "exec", flags=0, dont_inherit=True) exec_(code, gl) except (SystemExit, KeyboardInterrupt): raise except ImportError: reporter.import_error(filename, sys.exc_info()) return except Exception: reporter.test_exception(sys.exc_info()) clear_cache() self._count += 1 random.seed(self._seed) disabled = gl.get("disabled", False) if not disabled: # we need to filter only those functions that begin with 'test_' # We have to be careful about decorated functions. As long as # the decorator uses functools.wraps, we can detect it. funcs = [] for f in gl: if (f.startswith("test_") and (inspect.isfunction(gl[f]) or inspect.ismethod(gl[f]))): func = gl[f] # Handle multiple decorators while hasattr(func, '__wrapped__'): func = func.__wrapped__ if inspect.getsourcefile(func) == filename: funcs.append(gl[f]) if slow: funcs = [f for f in funcs if getattr(f, '_slow', False)] # Sorting of XFAILed functions isn't fixed yet :-( funcs.sort(key=lambda x: inspect.getsourcelines(x)[1]) i = 0 while i < len(funcs): if inspect.isgeneratorfunction(funcs[i]): # some tests can be generators, that return the actual # test functions. We unpack it below: f = funcs.pop(i) for fg in f(): func = fg[0] args = fg[1:] fgw = lambda: func(*args) funcs.insert(i, fgw) i += 1 else: i += 1 # drop functions that are not selected with the keyword expression: funcs = [x for x in funcs if self.matches(x)] if not funcs: return except Exception: reporter.entering_filename(filename, len(funcs)) raise reporter.entering_filename(filename, len(funcs)) if not sort: random.shuffle(funcs) for f in funcs: start = time.time() reporter.entering_test(f) try: if getattr(f, '_slow', False) and not slow: raise Skipped("Slow") if timeout: self._timeout(f, timeout, fail_on_timeout) else: random.seed(self._seed) f() except KeyboardInterrupt: if getattr(f, '_slow', False): reporter.test_skip("KeyboardInterrupt") else: raise except Exception: if timeout: signal.alarm(0) # Disable the alarm. It could not be handled before. t, v, tr = sys.exc_info() if t is AssertionError: reporter.test_fail((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) elif t.__name__ == "Skipped": reporter.test_skip(v) elif t.__name__ == "XFail": reporter.test_xfail() elif t.__name__ == "XPass": reporter.test_xpass(v) else: reporter.test_exception((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) else: reporter.test_pass() taken = time.time() - start if taken > self._slow_threshold: reporter.slow_test_functions.append((f.__name__, taken)) if getattr(f, '_slow', False) and slow: if taken < self._fast_threshold: reporter.fast_test_functions.append((f.__name__, taken)) reporter.leaving_filename() def _timeout(self, function, timeout, fail_on_timeout): def callback(x, y): signal.alarm(0) if fail_on_timeout: raise TimeOutError("Timed out after %d seconds" % timeout) else: raise Skipped("Timeout") signal.signal(signal.SIGALRM, callback) signal.alarm(timeout) # Set an alarm with a given timeout function() signal.alarm(0) # Disable the alarm def matches(self, x): """ Does the keyword expression self._kw match "x"? Returns True/False. Always returns True if self._kw is "". """ if not self._kw: return True for kw in self._kw: if x.__name__.find(kw) != -1: return True return False def get_test_files(self, dir, pat='test_*.py'): """ Returns the list of test_*.py (default) files at or below directory ``dir`` relative to the sympy home directory. """ dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)]) return sorted([os.path.normcase(gi) for gi in g]) class SymPyDocTests(object): def __init__(self, reporter, normal): self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._normal = normal self._testfiles = [] def test(self): """ Runs the tests and returns True if all tests pass, otherwise False. """ self._reporter.start() for f in self._testfiles: try: self.test_file(f) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def test_file(self, filename): clear_cache() from sympy.core.compatibility import StringIO import sympy.interactive.printing as interactive_printing from sympy import pprint_use_unicode rel_name = filename[len(self._root_dir) + 1:] dirname, file = os.path.split(filename) module = rel_name.replace(os.sep, '.')[:-3] if rel_name.startswith("examples"): # Examples files do not have __init__.py files, # So we have to temporarily extend sys.path to import them sys.path.insert(0, dirname) module = file[:-3] # remove ".py" try: module = pdoctest._normalize_module(module) tests = SymPyDocTestFinder().find(module) except (SystemExit, KeyboardInterrupt): raise except ImportError: self._reporter.import_error(filename, sys.exc_info()) return finally: if rel_name.startswith("examples"): del sys.path[0] tests = [test for test in tests if len(test.examples) > 0] # By default tests are sorted by alphabetical order by function name. # We sort by line number so one can edit the file sequentially from # bottom to top. However, if there are decorated functions, their line # numbers will be too large and for now one must just search for these # by text and function name. tests.sort(key=lambda x: -x.lineno) if not tests: return self._reporter.entering_filename(filename, len(tests)) for test in tests: assert len(test.examples) != 0 if self._reporter._verbose: self._reporter.write("\n{} ".format(test.name)) # check if there are external dependencies which need to be met if '_doctest_depends_on' in test.globs: try: self._check_dependencies(**test.globs['_doctest_depends_on']) except DependencyError as e: self._reporter.test_skip(v=str(e)) continue runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) runner._checker = SymPyOutputChecker() old = sys.stdout new = StringIO() sys.stdout = new # If the testing is normal, the doctests get importing magic to # provide the global namespace. If not normal (the default) then # then must run on their own; all imports must be explicit within # a function's docstring. Once imported that import will be # available to the rest of the tests in a given function's # docstring (unless clear_globs=True below). if not self._normal: test.globs = {} # if this is uncommented then all the test would get is what # comes by default with a "from sympy import *" #exec('from sympy import *') in test.globs test.globs['print_function'] = print_function old_displayhook = sys.displayhook use_unicode_prev = setup_pprint() try: f, t = runner.run(test, compileflags=future_flags, out=new.write, clear_globs=False) except KeyboardInterrupt: raise finally: sys.stdout = old if f > 0: self._reporter.doctest_fail(test.name, new.getvalue()) else: self._reporter.test_pass() sys.displayhook = old_displayhook interactive_printing.NO_GLOBAL = False pprint_use_unicode(use_unicode_prev) self._reporter.leaving_filename() def get_test_files(self, dir, pat='*.py', init_only=True): r""" Returns the list of \*.py files (default) from which docstrings will be tested which are at or below directory ``dir``. By default, only those that have an __init__.py in their parent directory and do not start with ``test_`` will be included. """ def importable(x): """ Checks if given pathname x is an importable module by checking for __init__.py file. Returns True/False. Currently we only test if the __init__.py file exists in the directory with the file "x" (in theory we should also test all the parent dirs). """ init_py = os.path.join(os.path.dirname(x), "__init__.py") return os.path.exists(init_py) dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if not f.startswith('test_') and fnmatch(f, pat)]) if init_only: # skip files that are not importable (i.e. missing __init__.py) g = [x for x in g if importable(x)] return [os.path.normcase(gi) for gi in g] def _check_dependencies(self, executables=(), modules=(), disable_viewers=(), python_version=(2,)): """ Checks if the dependencies for the test are installed. Raises ``DependencyError`` it at least one dependency is not installed. """ for executable in executables: if not find_executable(executable): raise DependencyError("Could not find %s" % executable) for module in modules: if module == 'matplotlib': matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.0.0', catch=(RuntimeError,)) if matplotlib is None: raise DependencyError("Could not import matplotlib") else: if not import_module(module): raise DependencyError("Could not import %s" % module) if disable_viewers: tempdir = tempfile.mkdtemp() os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH']) vw = ('#!/usr/bin/env {}\n' 'import sys\n' 'if len(sys.argv) <= 1:\n' ' exit("wrong number of args")\n').format( 'python3' if PY3 else 'python') for viewer in disable_viewers: with open(os.path.join(tempdir, viewer), 'w') as fh: fh.write(vw) # make the file executable os.chmod(os.path.join(tempdir, viewer), stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR) if python_version: if sys.version_info < python_version: raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version))) if 'pyglet' in modules: # monkey-patch pyglet s.t. it does not open a window during # doctesting import pyglet class DummyWindow(object): def __init__(self, *args, **kwargs): self.has_exit = True self.width = 600 self.height = 400 def set_vsync(self, x): pass def switch_to(self): pass def push_handlers(self, x): pass def close(self): pass pyglet.window.Window = DummyWindow class SymPyDocTestFinder(DocTestFinder): """ A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following object types: modules, functions, classes, methods, staticmethods, classmethods, and properties. Modified from doctest's version to look harder for code that appears comes from a different module. For example, the @vectorize decorator makes it look like functions come from multidimensional.py even though their code exists elsewhere. """ def _find(self, tests, obj, name, module, source_lines, globs, seen): """ Find tests for the given object and any contained objects, and add them to ``tests``. """ if self._verbose: print('Finding tests in %s' % name) # If we've already processed this object, then ignore it. if id(obj) in seen: return seen[id(obj)] = 1 # Make sure we don't run doctests for classes outside of sympy, such # as in numpy or scipy. if inspect.isclass(obj): if obj.__module__.split('.')[0] != 'sympy': return # Find a test for this object, and add it to the list of tests. test = self._get_test(obj, name, module, globs, source_lines) if test is not None: tests.append(test) if not self._recurse: return # Look for tests in a module's contained objects. if inspect.ismodule(obj): for rawname, val in obj.__dict__.items(): # Recurse to functions & classes. if inspect.isfunction(val) or inspect.isclass(val): # Make sure we don't run doctests functions or classes # from different modules if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (rawname %s)" % (val, module, rawname) try: valname = '%s.%s' % (name, rawname) self._find(tests, val, valname, module, source_lines, globs, seen) except KeyboardInterrupt: raise # Look for tests in a module's __test__ dictionary. for valname, val in getattr(obj, '__test__', {}).items(): if not isinstance(valname, string_types): raise ValueError("SymPyDocTestFinder.find: __test__ keys " "must be strings: %r" % (type(valname),)) if not (inspect.isfunction(val) or inspect.isclass(val) or inspect.ismethod(val) or inspect.ismodule(val) or isinstance(val, string_types)): raise ValueError("SymPyDocTestFinder.find: __test__ values " "must be strings, functions, methods, " "classes, or modules: %r" % (type(val),)) valname = '%s.__test__.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) # Look for tests in a class's contained objects. if inspect.isclass(obj): for valname, val in obj.__dict__.items(): # Special handling for staticmethod/classmethod. if isinstance(val, staticmethod): val = getattr(obj, valname) if isinstance(val, classmethod): val = getattr(obj, valname).__func__ # Recurse to methods, properties, and nested classes. if ((inspect.isfunction(unwrap(val)) or inspect.isclass(val) or isinstance(val, property)) and self._from_module(module, val)): # Make sure we don't run doctests functions or classes # from different modules if isinstance(val, property): if hasattr(val.fget, '__module__'): if val.fget.__module__ != module.__name__: continue else: if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (valname %s)" % ( val, module, valname) valname = '%s.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) def _get_test(self, obj, name, module, globs, source_lines): """ Return a DocTest for the given object, if it defines a docstring; otherwise, return None. """ lineno = None # Extract the object's docstring. If it doesn't have one, # then return None (no test for this object). if isinstance(obj, string_types): # obj is a string in the case for objects in the polys package. # Note that source_lines is a binary string (compiled polys # modules), which can't be handled by _find_lineno so determine # the line number here. docstring = obj matches = re.findall(r"line \d+", name) assert len(matches) == 1, \ "string '%s' does not contain lineno " % name # NOTE: this is not the exact linenumber but its better than no # lineno ;) lineno = int(matches[0][5:]) else: try: if obj.__doc__ is None: docstring = '' else: docstring = obj.__doc__ if not isinstance(docstring, string_types): docstring = str(docstring) except (TypeError, AttributeError): docstring = '' # Don't bother if the docstring is empty. if self._exclude_empty and not docstring: return None # check that properties have a docstring because _find_lineno # assumes it if isinstance(obj, property): if obj.fget.__doc__ is None: return None # Find the docstring's location in the file. if lineno is None: obj = unwrap(obj) # handling of properties is not implemented in _find_lineno so do # it here if hasattr(obj, 'func_closure') and obj.func_closure is not None: tobj = obj.func_closure[0].cell_contents elif isinstance(obj, property): tobj = obj.fget else: tobj = obj lineno = self._find_lineno(tobj, source_lines) if lineno is None: return None # Return a DocTest for this object. if module is None: filename = None else: filename = getattr(module, '__file__', module.__name__) if filename[-4:] in (".pyc", ".pyo"): filename = filename[:-1] globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {}) return self._parser.get_doctest(docstring, globs, name, filename, lineno) class SymPyDocTestRunner(DocTestRunner): """ A class used to run DocTest test cases, and accumulate statistics. The ``run`` method is used to process a single DocTest case. It returns a tuple ``(f, t)``, where ``t`` is the number of test cases tried, and ``f`` is the number of test cases that failed. Modified from the doctest version to not reset the sys.displayhook (see issue 5140). See the docstring of the original DocTestRunner for more information. """ def run(self, test, compileflags=None, out=None, clear_globs=True): """ Run the examples in ``test``, and display the results using the writer function ``out``. The examples are run in the namespace ``test.globs``. If ``clear_globs`` is true (the default), then this namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace after the test completes, then use ``clear_globs=False``. ``compileflags`` gives the set of flags that should be used by the Python compiler when running the examples. If not specified, then it will default to the set of future-import flags that apply to ``globs``. The output of each example is checked using ``SymPyDocTestRunner.check_output``, and the results are formatted by the ``SymPyDocTestRunner.report_*`` methods. """ self.test = test if compileflags is None: compileflags = pdoctest._extract_future_flags(test.globs) save_stdout = sys.stdout if out is None: out = save_stdout.write sys.stdout = self._fakeout # Patch pdb.set_trace to restore sys.stdout during interactive # debugging (so it's not still redirected to self._fakeout). # Note that the interactive output will go to *our* # save_stdout, even if that's not the real sys.stdout; this # allows us to write test cases for the set_trace behavior. save_set_trace = pdb.set_trace self.debugger = pdoctest._OutputRedirectingPdb(save_stdout) self.debugger.reset() pdb.set_trace = self.debugger.set_trace # Patch linecache.getlines, so we can see the example's source # when we're inside the debugger. self.save_linecache_getlines = pdoctest.linecache.getlines linecache.getlines = self.__patched_linecache_getlines try: test.globs['print_function'] = print_function return self.__run(test, compileflags, out) finally: sys.stdout = save_stdout pdb.set_trace = save_set_trace linecache.getlines = self.save_linecache_getlines if clear_globs: test.globs.clear() # We have to override the name mangled methods. SymPyDocTestRunner._SymPyDocTestRunner__patched_linecache_getlines = \ DocTestRunner._DocTestRunner__patched_linecache_getlines SymPyDocTestRunner._SymPyDocTestRunner__run = DocTestRunner._DocTestRunner__run SymPyDocTestRunner._SymPyDocTestRunner__record_outcome = \ DocTestRunner._DocTestRunner__record_outcome class SymPyOutputChecker(pdoctest.OutputChecker): """ Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples """ def __init__(self): # NOTE OutputChecker is an old-style class with no __init__ method, # so we can't call the base class version of __init__ here got_floats = r'(\d+\.\d*|\.\d+)' # floats in the 'want' string may contain ellipses want_floats = got_floats + r'(\.{3})?' front_sep = r'\s|\+|\-|\*|,' back_sep = front_sep + r'|j|e' fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep) self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep) self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) def check_output(self, want, got, optionflags): """ Return True iff the actual output from an example (`got`) matches the expected output (`want`). These strings are always considered to match if they are identical; but depending on what option flags the test runner is using, several non-exact match types are also possible. See the documentation for `TestRunner` for more information about option flags. """ # Handle the common case first, for efficiency: # if they're string-identical, always return true. if got == want: return True # TODO parse integers as well ? # Parse floats and compare them. If some of the parsed floats contain # ellipses, skip the comparison. matches = self.num_got_rgx.finditer(got) numbers_got = [match.group(1) for match in matches] # list of strs matches = self.num_want_rgx.finditer(want) numbers_want = [match.group(1) for match in matches] # list of strs if len(numbers_got) != len(numbers_want): return False if len(numbers_got) > 0: nw_ = [] for ng, nw in zip(numbers_got, numbers_want): if '...' in nw: nw_.append(ng) continue else: nw_.append(nw) if abs(float(ng)-float(nw)) > 1e-5: return False got = self.num_got_rgx.sub(r'%s', got) got = got % tuple(nw_) # <BLANKLINE> can be used as a special sequence to signify a # blank line, unless the DONT_ACCEPT_BLANKLINE flag is used. if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE): # Replace <BLANKLINE> in want with a blank line. want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER), '', want) # If a line in got contains only spaces, then remove the # spaces. got = re.sub(r'(?m)^\s*?$', '', got) if got == want: return True # This flag causes doctest to ignore any differences in the # contents of whitespace strings. Note that this can be used # in conjunction with the ELLIPSIS flag. if optionflags & pdoctest.NORMALIZE_WHITESPACE: got = ' '.join(got.split()) want = ' '.join(want.split()) if got == want: return True # The ELLIPSIS flag says to let the sequence "..." in `want` # match any substring in `got`. if optionflags & pdoctest.ELLIPSIS: if pdoctest._ellipsis_match(want, got): return True # We didn't find any match; return false. return False class Reporter(object): """ Parent class for all reporters. """ pass class PyTestReporter(Reporter): """ Py.test like reporter. Should produce output identical to py.test. """ def __init__(self, verbose=False, tb="short", colors=True, force_colors=False, split=None): self._verbose = verbose self._tb_style = tb self._colors = colors self._force_colors = force_colors self._xfailed = 0 self._xpassed = [] self._failed = [] self._failed_doctest = [] self._passed = 0 self._skipped = 0 self._exceptions = [] self._terminal_width = None self._default_width = 80 self._split = split self._active_file = '' self._active_f = None # TODO: Should these be protected? self.slow_test_functions = [] self.fast_test_functions = [] # this tracks the x-position of the cursor (useful for positioning # things on the screen), without the need for any readline library: self._write_pos = 0 self._line_wrap = False def root_dir(self, dir): self._root_dir = dir @property def terminal_width(self): if self._terminal_width is not None: return self._terminal_width def findout_terminal_width(): if sys.platform == "win32": # Windows support is based on: # # http://code.activestate.com/recipes/ # 440694-determine-size-of-console-window-on-windows/ from ctypes import windll, create_string_buffer h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: import struct (_, _, _, _, _, left, _, right, _, _, _) = \ struct.unpack("hhhhHhhhhhh", csbi.raw) return right - left else: return self._default_width if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty(): return self._default_width # leave PIPEs alone try: process = subprocess.Popen(['stty', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = process.stdout.read() if PY3: stdout = stdout.decode("utf-8") except (OSError, IOError): pass else: # We support the following output formats from stty: # # 1) Linux -> columns 80 # 2) OS X -> 80 columns # 3) Solaris -> columns = 80 re_linux = r"columns\s+(?P<columns>\d+);" re_osx = r"(?P<columns>\d+)\s*columns;" re_solaris = r"columns\s+=\s+(?P<columns>\d+);" for regex in (re_linux, re_osx, re_solaris): match = re.search(regex, stdout) if match is not None: columns = match.group('columns') try: width = int(columns) except ValueError: pass if width != 0: return width return self._default_width width = findout_terminal_width() self._terminal_width = width return width def write(self, text, color="", align="left", width=None, force_colors=False): """ Prints a text on the screen. It uses sys.stdout.write(), so no readline library is necessary. Parameters ========== color : choose from the colors below, "" means default color align : "left"/"right", "left" is a normal print, "right" is aligned on the right-hand side of the screen, filled with spaces if necessary width : the screen width """ color_templates = ( ("Black", "0;30"), ("Red", "0;31"), ("Green", "0;32"), ("Brown", "0;33"), ("Blue", "0;34"), ("Purple", "0;35"), ("Cyan", "0;36"), ("LightGray", "0;37"), ("DarkGray", "1;30"), ("LightRed", "1;31"), ("LightGreen", "1;32"), ("Yellow", "1;33"), ("LightBlue", "1;34"), ("LightPurple", "1;35"), ("LightCyan", "1;36"), ("White", "1;37"), ) colors = {} for name, value in color_templates: colors[name] = value c_normal = '\033[0m' c_color = '\033[%sm' if width is None: width = self.terminal_width if align == "right": if self._write_pos + len(text) > width: # we don't fit on the current line, create a new line self.write("\n") self.write(" "*(width - self._write_pos - len(text))) if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \ sys.stdout.isatty(): # the stdout is not a terminal, this for example happens if the # output is piped to less, e.g. "bin/test | less". In this case, # the terminal control sequences would be printed verbatim, so # don't use any colors. color = "" elif sys.platform == "win32": # Windows consoles don't support ANSI escape sequences color = "" elif not self._colors: color = "" if self._line_wrap: if text[0] != "\n": sys.stdout.write("\n") # Avoid UnicodeEncodeError when printing out test failures if PY3 and IS_WINDOWS: text = text.encode('raw_unicode_escape').decode('utf8', 'ignore') elif PY3 and not sys.stdout.encoding.lower().startswith('utf'): text = text.encode(sys.stdout.encoding, 'backslashreplace' ).decode(sys.stdout.encoding) if color == "": sys.stdout.write(text) else: sys.stdout.write("%s%s%s" % (c_color % colors[color], text, c_normal)) sys.stdout.flush() l = text.rfind("\n") if l == -1: self._write_pos += len(text) else: self._write_pos = len(text) - l - 1 self._line_wrap = self._write_pos >= width self._write_pos %= width def write_center(self, text, delim="="): width = self.terminal_width if text != "": text = " %s " % text idx = (width - len(text)) // 2 t = delim*idx + text + delim*(width - idx - len(text)) self.write(t + "\n") def write_exception(self, e, val, tb): # remove the first item, as that is always runtests.py tb = tb.tb_next t = traceback.format_exception(e, val, tb) self.write("".join(t)) def start(self, seed=None, msg="test process starts"): self.write_center(msg) executable = sys.executable v = tuple(sys.version_info) python_version = "%s.%s.%s-%s-%s" % v implementation = platform.python_implementation() if implementation == 'PyPy': implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info self.write("executable: %s (%s) [%s]\n" % (executable, python_version, implementation)) from .misc import ARCH self.write("architecture: %s\n" % ARCH) from sympy.core.cache import USE_CACHE self.write("cache: %s\n" % USE_CACHE) from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY version = '' if GROUND_TYPES =='gmpy': if HAS_GMPY == 1: import gmpy elif HAS_GMPY == 2: import gmpy2 as gmpy version = gmpy.version() self.write("ground types: %s %s\n" % (GROUND_TYPES, version)) numpy = import_module('numpy') self.write("numpy: %s\n" % (None if not numpy else numpy.__version__)) if seed is not None: self.write("random seed: %d\n" % seed) from .misc import HASH_RANDOMIZATION self.write("hash randomization: ") hash_seed = os.getenv("PYTHONHASHSEED") or '0' if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)): self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed) else: self.write("off\n") if self._split: self.write("split: %s\n" % self._split) self.write('\n') self._t_start = clock() def finish(self): self._t_end = clock() self.write("\n") global text, linelen text = "tests finished: %d passed, " % self._passed linelen = len(text) def add_text(mytext): global text, linelen """Break new text if too long.""" if linelen + len(mytext) > self.terminal_width: text += '\n' linelen = 0 text += mytext linelen += len(mytext) if len(self._failed) > 0: add_text("%d failed, " % len(self._failed)) if len(self._failed_doctest) > 0: add_text("%d failed, " % len(self._failed_doctest)) if self._skipped > 0: add_text("%d skipped, " % self._skipped) if self._xfailed > 0: add_text("%d expected to fail, " % self._xfailed) if len(self._xpassed) > 0: add_text("%d expected to fail but passed, " % len(self._xpassed)) if len(self._exceptions) > 0: add_text("%d exceptions, " % len(self._exceptions)) add_text("in %.2f seconds" % (self._t_end - self._t_start)) if self.slow_test_functions: self.write_center('slowest tests', '_') sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1]) for slow_func_name, taken in sorted_slow: print('%s - Took %.3f seconds' % (slow_func_name, taken)) if self.fast_test_functions: self.write_center('unexpectedly fast tests', '_') sorted_fast = sorted(self.fast_test_functions, key=lambda r: r[1]) for fast_func_name, taken in sorted_fast: print('%s - Took %.3f seconds' % (fast_func_name, taken)) if len(self._xpassed) > 0: self.write_center("xpassed tests", "_") for e in self._xpassed: self.write("%s: %s\n" % (e[0], e[1])) self.write("\n") if self._tb_style != "no" and len(self._exceptions) > 0: for e in self._exceptions: filename, f, (t, val, tb) = e self.write_center("", "_") if f is None: s = "%s" % filename else: s = "%s:%s" % (filename, f.__name__) self.write_center(s, "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed) > 0: for e in self._failed: filename, f, (t, val, tb) = e self.write_center("", "_") self.write_center("%s:%s" % (filename, f.__name__), "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed_doctest) > 0: for e in self._failed_doctest: filename, msg = e self.write_center("", "_") self.write_center("%s" % filename, "_") self.write(msg) self.write("\n") self.write_center(text) ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \ len(self._failed_doctest) == 0 if not ok: self.write("DO *NOT* COMMIT!\n") return ok def entering_filename(self, filename, n): rel_name = filename[len(self._root_dir) + 1:] self._active_file = rel_name self._active_file_error = False self.write(rel_name) self.write("[%d] " % n) def leaving_filename(self): self.write(" ") if self._active_file_error: self.write("[FAIL]", "Red", align="right") else: self.write("[OK]", "Green", align="right") self.write("\n") if self._verbose: self.write("\n") def entering_test(self, f): self._active_f = f if self._verbose: self.write("\n" + f.__name__ + " ") def test_xfail(self): self._xfailed += 1 self.write("f", "Green") def test_xpass(self, v): message = str(v) self._xpassed.append((self._active_file, message)) self.write("X", "Green") def test_fail(self, exc_info): self._failed.append((self._active_file, self._active_f, exc_info)) self.write("F", "Red") self._active_file_error = True def doctest_fail(self, name, error_msg): # the first line contains "******", remove it: error_msg = "\n".join(error_msg.split("\n")[1:]) self._failed_doctest.append((name, error_msg)) self.write("F", "Red") self._active_file_error = True def test_pass(self, char="."): self._passed += 1 if self._verbose: self.write("ok", "Green") else: self.write(char, "Green") def test_skip(self, v=None): char = "s" self._skipped += 1 if v is not None: message = str(v) if message == "KeyboardInterrupt": char = "K" elif message == "Timeout": char = "T" elif message == "Slow": char = "w" if self._verbose: if v is not None: self.write(message + ' ', "Blue") else: self.write(" - ", "Blue") self.write(char, "Blue") def test_exception(self, exc_info): self._exceptions.append((self._active_file, self._active_f, exc_info)) if exc_info[0] is TimeOutError: self.write("T", "Red") else: self.write("E", "Red") self._active_file_error = True def import_error(self, filename, exc_info): self._exceptions.append((filename, None, exc_info)) rel_name = filename[len(self._root_dir) + 1:] self.write(rel_name) self.write("[?] Failed to import", "Red") self.write(" ") self.write("[FAIL]", "Red", align="right") self.write("\n") sympy_dir = get_sympy_dir()
37.308511
261
0.579093
ff498abac2208a612be5549f3d8883b9d48d6f03
1,075
py
Python
src/activities_score/migrations/0004_auto_20201223_2212.py
andhrelja/timetabled
3d2d5ca91abc0b4cace4176d3b6849969f7211b5
[ "PostgreSQL" ]
1
2021-05-07T00:20:42.000Z
2021-05-07T00:20:42.000Z
src/activities_score/migrations/0004_auto_20201223_2212.py
andhrelja/timetabled
3d2d5ca91abc0b4cace4176d3b6849969f7211b5
[ "PostgreSQL" ]
null
null
null
src/activities_score/migrations/0004_auto_20201223_2212.py
andhrelja/timetabled
3d2d5ca91abc0b4cace4176d3b6849969f7211b5
[ "PostgreSQL" ]
null
null
null
# Generated by Django 3.1.3 on 2020-12-23 21:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('activities_score', '0003_auto_20201217_1831'), ] operations = [ migrations.AlterField( model_name='globalscoreactivity', name='type', field=models.IntegerField(choices=[(0, 'Kolokvij'), (1, 'Seminar'), (2, 'Esej'), (3, 'Prezentacija'), (4, 'Domaća zadaća'), (5, 'Laboratorijske vježbe'), (6, 'Završni ispit'), (7, 'Projekt'), (8, 'Rasprava'), (9, 'Timski rad'), (10, 'Kviz'), (11, 'Ostalo')], verbose_name='Tip aktivnosti'), ), migrations.AlterField( model_name='studentscoreactivity', name='type', field=models.IntegerField(choices=[(0, 'Kolokvij'), (1, 'Seminar'), (2, 'Esej'), (3, 'Prezentacija'), (4, 'Domaća zadaća'), (5, 'Laboratorijske vježbe'), (6, 'Završni ispit'), (7, 'Projekt'), (8, 'Rasprava'), (9, 'Timski rad'), (10, 'Kviz'), (11, 'Ostalo')], verbose_name='Tip aktivnosti'), ), ]
44.791667
302
0.588837
231ee94449938de07724a35653ac4f9f5cbf2d3a
4,569
py
Python
api.py
stemid/passwordfrank
cf0b16fd00ae850d93b513c4c2e3d45d5d324cec
[ "CC0-1.0" ]
null
null
null
api.py
stemid/passwordfrank
cf0b16fd00ae850d93b513c4c2e3d45d5d324cec
[ "CC0-1.0" ]
null
null
null
api.py
stemid/passwordfrank
cf0b16fd00ae850d93b513c4c2e3d45d5d324cec
[ "CC0-1.0" ]
null
null
null
from datetime import datetime, timedelta from uuid import uuid4 import json import web import settings, model from settings import generate_password, base36encode, base36decode # Helper function for formatting datetime objects to json def dateHandler(obj): if isinstance(obj, datetime): return obj.strftime('%Y-%m-%d %H:%M') return None class password: # GET /password/foo HTTP/1.0 def GET(self, arg=None): # Get query params query = web.input( bits = 6, words = 5 ) # Change output to JSON web.header('Content-type', 'application/json') # If no pattern at the end of the url, # we will generate a random password if not arg: try: words = model.get_words(results = 2**int(query.bits)) # Convert iterator wordlist = [] for word in words: wordlist.append(word.word) except(), e: web.internalerror(str(e)) raise try: generatedPass = generate_password( int(query.words), wordlist ) except(), e: web.internalerror(str(e)) raise web.ok() return json.dumps(dict(phrase=generatedPass)) # Request for a pre-existing phrase phraseCode = base36decode(arg) try: phrase = model.get_phrase(base36decode(phraseCode)) seqID = phrase.get('id') except(model.ModelError), e: web.notfound() return json.dumps(dict(error='not found')) except(), e: web.internalerror(str(e)) raise # Update number of views try: model.update_phrase(seqID) except(), e: web.internalerror(str(e)) raise # Get results from row results = {} results['phrase'] = phrase.get('phrase', None) results['code'] = phrase.get('code') results['created'] = phrase.get('created', None) results['maxdays'] = phrase.get('maxdays', 10) results['maxviews'] = phrase.get('maxviews', 10) results['views'] = phrase.get('views', 1)+1 # Calculate if maxviews or maxdays has been reached deleteDate = results['created'] + timedelta(results['maxdays']) today = datetime.now() if today >= deleteDate or results['views'] >= results['maxviews']: try: deleted = model.delete_phrase(seqID) except(), e: web.internalerror(str(e)) raise # Return results to client web.ok() return json.dumps(results, default=dateHandler) # POST /password HTTP/1.0 def POST(self): # Receive the passphrase through query params query = web.input( password = None, maxdays = 10, maxviews = 10 ) # Change output to JSON web.header('Content-type', 'application/json') # Generate unique code for phrase uuid = uuid4() phraseCode = str(uuid).split('-')[0] try: phraseid = model.add_phrase( phrase = query.password, code = base36decode(phraseCode), maxdays = int(query.maxdays), maxviews = int(query.maxviews) ) except(model.ModelError), e: web.internalerror(str(e)) return json.dumps(dict(error=str(e))) except(), e: web.internalerror(str(e)) return json.dumps(dict(error=str(e))) web.created() return json.dumps(dict( phrase = query.password, code = phraseCode )) # DELETE /password/foo HTTP/1.0 def DELETE(self, arg): # Change output to JSON web.header('Content-type', 'application/json') if not arg: web.internalerror() return json.dumps(dict(error='must have code')) try: phrase = model.get_phrase(code=base36decode(arg)) seqID = phrase.get('id') except(), e: web.notfound() return json.dumps(dict(error='not found')) try: model.delete_phrase(seqID) except(), e: web.internalerror(str(e)) return json.dumps(dict(error=str(e))) web.ok() return json.dumps(dict(status='%s deleted' % arg))
29.668831
74
0.531188
5ce083583c2bd7a235adb862be086f7241de28f6
33,270
py
Python
pytext/config/config_adapter.py
yinghai/pytext
5457c157d7a5f39bb96e2f207560cc52d9b98c83
[ "BSD-3-Clause" ]
null
null
null
pytext/config/config_adapter.py
yinghai/pytext
5457c157d7a5f39bb96e2f207560cc52d9b98c83
[ "BSD-3-Clause" ]
null
null
null
pytext/config/config_adapter.py
yinghai/pytext
5457c157d7a5f39bb96e2f207560cc52d9b98c83
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from pytext.common.utils import eprint from .pytext_config import LATEST_VERSION, PyTextConfig ADAPTERS = {} DOWNGRADE_ADAPTERS = {} NOT_THERE = (None, None, None) def register_adapter(from_version): def decorator(fn): if from_version in ADAPTERS: raise Exception( "Duplicated adapter from_version={}: '{}' and '{}'".format( from_version, fn.__name__, ADAPTERS[from_version].__name__ ) ) else: ADAPTERS[from_version] = fn return fn return decorator def register_down_grade_adapter(from_version): def decorator(fn): if from_version in DOWNGRADE_ADAPTERS: raise Exception( "Duplicated adapter from_version={}: '{}' and '{}'".format( from_version, fn.__name__, DOWNGRADE_ADAPTERS[from_version].__name__ ) ) else: DOWNGRADE_ADAPTERS[from_version] = fn return fn return decorator def find_dicts_containing_key(json_config, key): if key in json_config: yield json_config for _, v in json_config.items(): if hasattr(v, "__contains__") and hasattr(v, "items"): yield from find_dicts_containing_key(v, key) def rename(json_config, old_name, new_name): for section in find_dicts_containing_key(json_config, old_name): value = section.pop(old_name) if new_name: section[new_name] = value def is_type_specifier(json_dict): """If a config object is a class, it might have a level which is a type specifier, with one key corresponding to the name of whichever type it is. These types should not be explicitly named in the path.""" # heuristic: one key, starting with uppercase character if len(json_dict) != 1: return False key = next(iter(json_dict)) return key[0] == key[0].upper() def find_parameter(config, path_str): # Recursively find path elements, skipping into type specifiers. # Return the value and its container so the value can be deleted. path = path_str.split(".") value = config container = None for segment in path: while is_type_specifier(value): container, value = value, next(iter(value.values())) if segment not in value: return NOT_THERE container, value = value, value[segment] return path[-1], container, value def _create_path(config, path): # Recursively find path elements, skipping into type specifiers. # If any container isn't there, create a new empty object for it. # This will only be created if the value = config for segment in path: while is_type_specifier(value): value = next(iter(value.values())) if segment not in value: value[segment] = {} value = value[segment] while is_type_specifier(value): value = next(iter(value.values())) return value def create_parameter(config, path_str, value): *path, param = path_str.split(".") new_container = _create_path(config, path) new_container[param] = value def delete_parameter(config, path_str): param_name, container, _ = find_parameter(config, path_str) if container: container.pop(param_name, None) def rename_parameter(config, old_path, new_path, transform=lambda x: x): """A powerful tool for writing config adapters, this allows you to specify a JSON-style path for an old and new config parameter. For instance rename_parameter(config, "task.data.epoch_size", "task.trainer.batches_per_epoch") will look through the config for task.data.epoch_size, including moving through explicitly specified types. If it's specified, it will delete the value and set it in task.trainer.num_batches_per_epoch instead, creating trainer as an empty dictionary if necessary.""" found = find_parameter(config, old_path) if found is not NOT_THERE: param_name, container, old_value = found # Delete old value container.pop(param_name) # Update new value create_parameter(config, new_path, transform(old_value)) return config @register_adapter(from_version=0) def v0_to_v1(json_config): # migrate optimizer and random_seed params [task] = json_config["task"].values() if ( "optimizer" not in task or "Adam" in task["optimizer"] or "SGD" in task["optimizer"] or "NAG" in task["optimizer"] ) and ("trainer" not in task or "random_seed" not in task["trainer"]): return json_config if "trainer" in task and "random_seed" in task["trainer"]: json_config["random_seed"] = task["trainer"]["random_seed"] del task["trainer"]["random_seed"] if "optimizer" in task and not any( opt in task["optimizer"] for opt in ["Adam", "SGD", "NAG"] ): op_type = task["optimizer"].get("type", "adam") if op_type == "adam": op_config = {"Adam": {}} for key in ["lr", "weight_decay"]: if key in task["optimizer"]: op_config["Adam"][key] = task["optimizer"][key] elif op_type == "sgd": op_config = {"SGD": {}} for key in ["lr", "momentum"]: if key in task["optimizer"]: op_config["SGD"][key] = task["optimizer"][key] elif op_type == "nag": op_config = {"NAG": {}} for key in ["lr", "weight_decay", "momentum"]: if key in task["optimizer"]: op_config["NAG"][key] = task["optimizer"][key] else: raise ValueError("Migration not supported for your optimizer") task["optimizer"] = op_config return json_config @register_adapter(from_version=1) def v1_to_v2(json_config): # migrate optimizer params [task] = json_config["task"].values() if ( "scheduler" not in task or task["scheduler"] is None or task["scheduler"].get("type") is None ): return json_config op_type = task["scheduler"].get("type") if op_type == "step_lr": op_config = {"StepLR": {}} for key in ["step_size", "gamma"]: if key in task["scheduler"]: op_config["StepLR"][key] = task["scheduler"][key] task["scheduler"] = op_config elif op_type == "lm_fine_tuning": op_config = {"LmFineTuning": {}} for key in [ "cut_frac", "ratio", "non_pretrained_param_groups", "lm_lr_multiplier", "lm_use_per_layer_lr", "lm_gradual_unfreezing", "last_epoch", ]: if key in task["scheduler"]: op_config["LmFineTuning"][key] = task["scheduler"][key] task["scheduler"] = op_config elif op_type == "reduce_lr_on_plateau": op_config = {"ReduceLROnPlateau": {}} for key in [ "lower_is_better", "factor", "patience", "min_lr", "threshold", "threshold_is_absolute", "cooldown", ]: if key in task["scheduler"]: op_config["ReduceLROnPlateau"][key] = task["scheduler"][key] task["scheduler"] = op_config elif op_type == "cosine_annealing_lr": op_config = {"CosineAnnealingLR": {}} for key in ["t_max", "eta_min"]: if key in task["scheduler"]: op_config["CosineAnnealingLR"][key] = task["scheduler"][key] task["scheduler"] = op_config elif op_type == "exponential_lr": op_config = {"ExponentialLR": {}} for key in ["gamma"]: if key in task["scheduler"]: op_config["ExponentialLR"][key] = task["scheduler"][key] task["scheduler"] = op_config elif op_type == "none": del task["scheduler"] else: raise ValueError("Migration for your scheduler %s not supported." % op_type) return json_config @register_adapter(from_version=2) def v2_to_v3(json_config): """Optimizer and Scheduler configs used to be part of the task config, they now live in the trainer's config. """ [task] = json_config["task"].values() for section_str in ["optimizer", "scheduler"]: if section_str in task: if "trainer" not in task: task["trainer"] = {} trainer = task["trainer"] # a hack to support an older hack: # some tasks like ensemble have a 'real_trainer' section inside trainer # that has the actual trainer config if "real_trainer" in trainer: real_trainer = trainer["real_trainer"] real_trainer[section_str] = task[section_str] else: trainer[section_str] = task[section_str] # remove from task config task.pop(section_str) return json_config @register_adapter(from_version=3) def v3_to_v4(json_config): """Key for provding the path for contextual token embedding has changed from `pretrained_model_embedding` to `contextual_token_embedding. This affects the `features` section of the config. """ [task] = json_config["task"].values() old_key = "pretrained_model_embedding" new_key = "contextual_token_embedding" for section_str in ["features", "labels"]: if section_str in task: section = task[section_str] if section and old_key in section: section[new_key] = section[old_key] section.pop(old_key) return json_config def deprecate(json_config, t): for section in find_dicts_containing_key(json_config, t): section[t + "_Deprecated"] = section.pop(t) @register_adapter(from_version=4) def doc_model_deprecated(json_config): """Rename DocModel to DocModel_Deprecated.""" deprecate(json_config, "DocModel") return json_config @register_adapter(from_version=5) def old_tasks_deprecated(json_config): """ Rename tasks with data_handler config to _Deprecated """ deprecate(json_config, "BertClassificationTask") deprecate(json_config, "BertPairClassificationTask") deprecate(json_config, "BertPairwiseClassificationTask") deprecate(json_config, "COLMClassifyTask") deprecate(json_config, "ContextSCLSTMCompositionalTask") deprecate(json_config, "DocClassificationTask") deprecate(json_config, "ElmoDocClassificationTask") deprecate(json_config, "ElmoFineTunePairwiseClassificationTask") deprecate(json_config, "EnsembleTask") deprecate(json_config, "FederatedLearningTaskBase") deprecate(json_config, "FLDocClassificationTask") deprecate(json_config, "FLQueryDocumentPairwiseRankingTask") deprecate(json_config, "KDDocClassificationTask") deprecate(json_config, "LMTask") deprecate(json_config, "QueryDocumentPairwiseRankingTask") deprecate(json_config, "SCLSTMCompositionalTask") deprecate(json_config, "SCLSTMTask") deprecate(json_config, "SemanticParsingCppTask") deprecate(json_config, "SemanticParsingTask") deprecate(json_config, "Seq2SeqTask") deprecate(json_config, "Seq2SeqCompositionalMetricReporter") deprecate(json_config, "Seq2SeqMetricReporter") deprecate(json_config, "RNNEncoderDecoder") deprecate(json_config, "SeqNNTask") deprecate(json_config, "SGNNClassificationTask") deprecate(json_config, "ShallowClassificationTask") deprecate(json_config, "ShallowTaggingTask") deprecate(json_config, "SpanClassificationTask") deprecate(json_config, "TreeParserTask") return json_config @register_adapter(from_version=6) def v6_to_v7(json_config): """ Make `LabelTensorizer` expansible. If the `labels` field should be an instance of `LabelTensorizer`, convert it to`{LabelTensorizer: labels}`. """ [(task_name, task)] = json_config["task"].items() if task_name in ( "BertPairRegressionTask", "NewDocumentRegression", "NewWordTaggingTask", ): # Task has a label tensorizer different from LabelTensorizer. return json_config model = task.get("model") if not model: return json_config model_name = None if "inputs" in model: inputs = model["inputs"] elif len(model) == 1: [(model_name, model_val)] = model.items() inputs = model_val.get("inputs") else: inputs = None if not inputs: return json_config if model_name in ( "NewBertRegressionModel", "DocRegressionModel", "NewWordTaggingModel", "ELModel", "EntitySalienceModel", "MatchaTwoTowerModel", ): # Model has a label tensorizer different from LabelTensorizer. return json_config labels = inputs.get("labels") if labels is None: return json_config inputs["labels"] = {"LabelTensorizer": labels} return json_config @register_adapter(from_version=7) def lm_model_deprecated(json_config): """ Rename LM model to _Deprecated (LMTask is already deprecated in v5) """ deprecate(json_config, "LMLSTM") return json_config @register_adapter(from_version=8) def new_tasks_rename(json_config): """ Rename tasks with new API consistently """ # Deprecated rename( json_config, "QueryDocumentPairwiseRankingModel", "QueryDocumentPairwiseRankingModel_Deprecated", ) # New rename(json_config, "NewDocModel", "DocModel") rename(json_config, "NewDocRegressionModel", "DocRegressionModel") rename(json_config, "NewDocumentClassification", "DocumentClassificationTask") rename(json_config, "NewDocumentRegression", "DocumentRegressionTask") rename( json_config, "NewQueryDocumentPairwiseRankingModel", "QueryDocPairwiseRankingModel", ) rename(json_config, "NewWordTaggingModel", "WordTaggingModel") rename(json_config, "NewWordTaggingTask", "WordTaggingTask") rename(json_config, "PairwiseClassification", "PairwiseClassificationTask") rename( json_config, "QueryDocumentPairwiseRanking", "QueryDocumentPairwiseRankingTask" ) return json_config @register_adapter(from_version=9) def move_epoch_size(json_config): return rename_parameter( json_config, "task.data.epoch_size", "task.trainer.num_batches_per_epoch" ) @register_adapter(from_version=10) def ensemble_task_deprecated(json_config): """ Rename tasks with new API consistently """ # Deprecated deprecate(json_config, "BaggingDocEnsemble") deprecate(json_config, "BaggingIntentSlotEnsemble") deprecate(json_config, "EnsembleTrainer") return json_config @register_adapter(from_version=11) def rename_bitransformer_inputs(json_config): """ In "BiTransformer" model, rename input "characters" -> "bytes" and update subfields. """ [task] = json_config["task"].values() model = task.get("model") if model and len(model) == 1 and "BiTransformer" in model: model_val = list(model.values())[0] if "inputs" not in model_val: model_val["inputs"] = {} inputs = model_val["inputs"] char_config = inputs.pop("characters", {}) if "max_char_length" in char_config: char_config["max_byte_len"] = char_config.pop("max_char_length") char_config["offset_for_non_padding"] = 1 model_val["inputs"]["bytes"] = char_config return json_config @register_adapter(from_version=12) def v12_to_v13(json_config): """remove_output_encoded_layers(json_config)""" rename(json_config, "output_encoded_layers", None) """ Make 'ClassificationMetricReporter' expansible. If the 'metric_reporter' field should be an instance of 'ClassificationMetricReporter', convert it to '{ClassificationMetricReporter: metric_reporter}'. """ [(task_name, task)] = json_config["task"].items() if task_name not in ( "EnsembleTask", "DocClassificationTask_Deprecated", "DocumentClassificationTask", "PairwiseClassificationTask", "SeqNNTask", "ShallowClassificationTask_Deprecated", "KDDocClassificationTask_Deprecated", "XLMDocumentClassification", "XLMPairClassification", "NewBertClassificationTask", "NewBertPairClassificationTask", "LaserClassificationTask", ): # Task has a metric reporter different from ClassificationMetricReporter return json_config metric_reporter = task.get("metric_reporter") if metric_reporter is None: return json_config keys = list(metric_reporter.keys()) if keys == []: return json_config set = {"output_path", "model_select_metric", "target_label", "text_column_names"} if keys[0] in set: task["metric_reporter"] = {"ClassificationMetricReporter": metric_reporter} else: return json_config return json_config @register_adapter(from_version=13) def rename_tensorizer_vocab_params(json_config): [(task_name, task)] = json_config["task"].items() # XLM and Bert models use the `vocab_file` field, but in a custom way. This # field should not be migrated to `vocab.vocab_files` as for TokenTensorizer. if "XLM" in task_name or "Bert" in task_name: return json_config def resolve_model(model_config): if len(model_config) == 1 and list(model_config)[0][0].isupper(): [(model_name, model_config)] = model_config.items() if "XLM" in model_name or "Bert" in model_name: return {} return model_config model = resolve_model(task.get("model", {})) if not model: return json_config def update_model_config(model_config): model_config = resolve_model(model_config) tokens = model_config.get("inputs", {}).get("tokens") if not tokens: return vocab = {"build_from_data": tokens.pop("build_vocab", True), "vocab_files": []} if "vocab_file" in tokens: vocab["vocab_files"].append( { "filepath": tokens.pop("vocab_file"), "size_limit": tokens.pop("vocab_file_size_limit", 0), } ) if "models" in model: # ensemble model for sub_model in model["models"]: update_model_config(sub_model) else: update_model_config(model) return json_config @register_adapter(from_version=14) def flatten_deprecated_ensemble_config(json_config): # Deprecated ensemble is removed from codebase, so this is now just a no-op return json_config def migrate_to_new_data_handler(task, columns): create_parameter(task, "data.source", {"TSVDataSource": {}}) rename_parameter(task, "data_handler.eval_path", "data.source.eval_filename") rename_parameter(task, "data_handler.test_path", "data.source.test_filename") rename_parameter(task, "data_handler.train_path", "data.source.train_filename") columns_to_read = next(find_dicts_containing_key(task, "columns_to_read"), None) if columns_to_read: rename_parameter( task, "data_handler.columns_to_read", "data.source.field_names" ) else: create_parameter(task, "data.source.field_names", columns) rename_parameter( task, "data_handler.append_bos", "model.inputs.tokens.add_bos_token" ) rename_parameter( task, "data_handler.append_eos", "model.inputs.tokens.add_eos_token" ) rename_parameter( task, "data_handler.max_seq_len", "model.inputs.tokens.max_seq_len" ) rename_parameter( task, "features.shared_module_key", "model.embedding.shared_module_key" ) rename_parameter(task, "features.word_feat.embed_dim", "model.embedding.embed_dim") rename_parameter(task, "features.dense_feat", "model.inputs.dense") create_parameter(task, "data.batcher", {"PoolingBatcher": {}}) rename_parameter( task, "data_handler.eval_batch_size", "data.batcher.eval_batch_size" ) rename_parameter( task, "data_handler.test_batch_size", "data.batcher.test_batch_size" ) rename_parameter( task, "data_handler.train_batch_size", "data.batcher.train_batch_size" ) rename_parameter( task, "features.word_feat.vocab_size", "model.inputs.tokens.vocab.size_from_data", ) rename_parameter( task, "features.word_feat.vocab_from_train_data", "model.inputs.tokens.vocab.build_from_data", ) rename_parameter( task, "features.word_feat.vocab_file", "model.inputs.tokens.vocab.vocab_files", lambda x: [{"filepath": x}], ) rename_parameter(task, "labels.label_weights", "model.output_layer.label_weights") delete_parameter(task, "data_handler") delete_parameter(task, "exporter") delete_parameter(task, "features") delete_parameter(task, "featurizer") delete_parameter(task, "labels") @register_adapter(from_version=15) def remove_lmtask_deprecated(json_config): for section in find_dicts_containing_key(json_config, "LMTask_Deprecated"): task = section.pop("LMTask_Deprecated") migrate_to_new_data_handler(task, ["text"]) section["LMTask"] = task return json_config @register_adapter(from_version=16) def remove_docclassificationtask_deprecated(json_config): for section in find_dicts_containing_key( json_config, "DocClassificationTask_Deprecated" ): task = section.pop("DocClassificationTask_Deprecated") convert = next(find_dicts_containing_key(task, "convert_to_bytes"), None) section["DocumentClassificationTask"] = task migrate_to_new_data_handler(task, ["doc_label", "text"]) create_parameter(task, "model.inputs.labels.column", "doc_label") # In DocumentClassificationTask.Config: # model: BaseModel.Config = DocModel.Config() # It will create a BaseModel if model class is implicit in json. # We make it explicit to avoid errors. for model in find_dicts_containing_key(section, "model"): if next(iter(model["model"]))[0].islower(): model["model"] = {"DocModel": model.pop("model")} if convert and convert["convert_to_bytes"]: rename(section, "DocModel", "ByteTokensDocumentModel") return json_config @register_adapter(from_version=17) def rename_fl_task(json_config): # remove 'NewDoc' from FL task names for trainer_suffix in ["SyncTrainer", "AsyncTrainer"]: old_trainer_name = f"FLNewDoc{trainer_suffix}" new_trainer_name = f"FL{trainer_suffix}" for section in find_dicts_containing_key(json_config, old_trainer_name): section[new_trainer_name] = section.pop(old_trainer_name) return json_config @register_adapter(from_version=18) def upgrade_if_xlm(json_config): """ Make `XLMModel` Union changes for encoder and tokens config. Since they are now unions, insert the old class into the config if no class name is mentioned. """ _, _, model = find_parameter(json_config, "task.model") if model and "XLMModel" in model: _, inputs, tokens = find_parameter(json_config, "task.model.inputs.tokens") if tokens and "XLMTensorizer" not in tokens: inputs["tokens"] = {} inputs["tokens"]["XLMTensorizer"] = tokens return json_config @register_adapter(from_version=19) def fix_fl_local_optimizer_and_trainer(json_config): """a) Change FL local optimizer from optimizer:{SGD:{lr=0.1, momentum=0.2}} to optimizer:{lr=0.1, momentum=0.2} b) Replace trainer:{FLSyncTrainer:{foo}} by trainer:{fl_trainer:{foo, type:SyncTrainer}} Same for FLAsyncTrainer """ # only for tasks that contain FLSyncTrainer or FLAsyncTrainer _, container, trainer = find_parameter(json_config, "task.trainer") if not trainer: return json_config if "FLSyncTrainer" in trainer: fl_trainer_name, fl_trainer_type = "FLSyncTrainer", "SyncTrainer" elif "FLAsyncTrainer" in trainer: fl_trainer_name, fl_trainer_type = "FLAsyncTrainer", "AsyncTrainer" else: return json_config trainer_section = trainer.pop(fl_trainer_name) # first, replace optimizer:{SGD:{lr=0.1, momentum=0.2}} by # optimizer:{lr=0.1, momentum=0.2} if "optimizer" in trainer_section: optimizer = trainer_section.pop("optimizer") sgd_config = optimizer.pop("SGD") trainer_section["optimizer"] = sgd_config # rename "global_optimizer" to "aggregator" if "global_optimizer" in trainer_section: aggregator = trainer_section.pop("global_optimizer") trainer_section["aggregator"] = aggregator trainer_section["type"] = fl_trainer_type trainer["fl_trainer"] = trainer_section return json_config @register_adapter(from_version=20) def upgrade_padding(json_config): """ Upgrade config option padding_control to seq_padding_control. """ json_config["seq_padding_control"] = json_config.pop("padding_control", None) return json_config @register_adapter(from_version=21) def upgrade_export_config(json_config): """ Upgrade model export related config fields to the new "export" section. """ export_config_fields = [ "export_caffe2_path", "export_onnx_path", "export_torchscript_path", "torchscript_quantize", "accelerate", "inference_interface", "seq_padding_control", "batch_padding_control", "target", ] export_config = {} for f in export_config_fields: if f in json_config: export_config[f] = json_config.pop(f, None) json_config["export"] = export_config return json_config @register_adapter(from_version=22) def v22_to_v23(json_config): """ Upgrade by adding read_chunk_size option """ if "read_chunk_size" not in json_config: json_config["read_chunk_size"] = PyTextConfig.read_chunk_size return json_config @register_adapter(from_version=23) def v23_to_v24(json_config): """ No-op since export_list is optional """ return json_config @register_adapter(from_version=24) def v24_to_v25(json_config): """ Upgrade by adding max_input_text_length option and default to None """ for v in get_json_config_iterator(json_config, "SentencePieceTokenizer"): if "max_input_text_length" not in v: v["max_input_text_length"] = None return json_config @register_down_grade_adapter(from_version=23) def v23_to_v22(json_config): """ Upgrade by removing read_chunk_size option """ if "read_chunk_size" in json_config: del json_config["read_chunk_size"] return json_config @register_down_grade_adapter(from_version=24) def v24_to_v23(json_config): """ Downgrade by removing export_list option """ if "export_list" in json_config: if len(json_config["export_list"]) > 1: raise Exception( "Current version does not support multiple exports in export_list" ) elif len(json_config["export_list"]) == 0: raise Exception("Current version does not support empty export_list") json_config["export"] = json_config["export_list"][0] del json_config["export_list"] return json_config @register_down_grade_adapter(from_version=25) def v25_to_v24(json_config): """ Downgrade by removing max_input_text_length option for SentencePieceTokenizer """ for v in get_json_config_iterator(json_config, "SentencePieceTokenizer"): if "max_input_text_length" in v: del v["max_input_text_length"] return json_config def get_json_config_iterator(json_config, lookup_key): for key, value in json_config.items(): if key == lookup_key: yield value elif isinstance(value, dict): for v in get_json_config_iterator(value, lookup_key): yield v @register_down_grade_adapter(from_version=26) def v26_to_v25(json_config): """ Downgrade by removing target option from all exports in export_list """ if "export" in json_config: if "target" in json_config["export"]: json_config["export"].pop("target") if "export_list" in json_config: export_list = json_config["export_list"] for export_cfg in export_list: if "target" in export_cfg: export_cfg.pop("target") json_config["export_list"] = export_list return json_config @register_adapter(from_version=25) def v25_to_v26(json_config): if "export" in json_config: export_cfg = json_config["export"] export_cfg["target"] = get_name_from_options(export_cfg) if "inference_interface" in export_cfg: export_cfg.pop("inference_interface") json_config["export"] = export_cfg if "export_list" in json_config: export_list = json_config["export_list"] for export_cfg in export_list: export_cfg["target"] = get_name_from_options(export_cfg) if "inference_interface" in export_cfg: export_cfg.pop("inference_interface") json_config["export_list"] = export_list return json_config @register_down_grade_adapter(from_version=27) def v27_to_v26(json_config): """ Downgrade by removing scaling option for RoBERTaEncoder """ for v in get_json_config_iterator(json_config, "RoBERTaEncoder"): if "scaling" in v: del v["scaling"] return json_config @register_adapter(from_version=26) def v26_to_v27(json_config): """ No-op since scaling is optional """ return json_config def get_name_from_options(export_config): """ Reverse engineer which model is which based on recognized export configurations. If the export configurations don't adhere to the set of recognized backends, then set target name to unknown """ if "accelerate" in export_config and len(export_config["accelerate"]) != 0: if export_config["accelerate"][0] == "cuda:half": tgt = "gpu-fp16" elif ( export_config["accelerate"][0] == "nnpi" and "seq_padding_control" in export_config and "batch_padding_control" in export_config ): tgt = "nnpi" else: pass elif "seq_padding_control" and "batch_padding_control" in export_config: tgt = "nnpi" else: tgt = "unknown" return tgt def upgrade_one_version(json_config): current_version = json_config.get("version", 0) adapter = ADAPTERS.get(current_version) if not adapter: raise Exception( f"no adapter found for version {current_version}." "Make sure current revision is after pytext pkg's revision, and rebase if necessary" ) json_config = adapter(json_config) eprint( f"WARNING - Applying old config adapter for version={current_version}. " "Please consider migrating your old configs to the latest version." ) json_config["version"] = current_version + 1 return json_config def downgrade_one_version(json_config): current_version = json_config.get("version", 0) downgrade_adapter = DOWNGRADE_ADAPTERS.get(current_version) if not downgrade_adapter: raise Exception(f"no downgrade adapter found for version {current_version}") json_config = downgrade_adapter(json_config) eprint( f"WARNING - Downgrading your current config version={current_version}. " "Please wait for next pytext pkg release to let new config take effect." ) json_config["version"] = current_version - 1 return json_config def upgrade_to_latest(json_config): current_version = json_config.get("version") or 0 if current_version > LATEST_VERSION: raise Exception( f"config version {json_config['version']} shouldn't exceed lastest \ version {LATEST_VERSION}" ) while current_version != LATEST_VERSION: print(f"Current Version: {current_version}") json_config = upgrade_one_version(json_config) current_version = json_config["version"] return json_config def update_to_version(json_config, expected_version=LATEST_VERSION): current_version = json_config.get("version") or 0 if current_version > expected_version: while current_version != expected_version: print(f"Current Version: {current_version}") json_config = downgrade_one_version(json_config) current_version = json_config["version"] while current_version != expected_version: print(f"Current Version: {current_version}") json_config = upgrade_one_version(json_config) current_version = json_config["version"] return json_config
34.440994
96
0.666607
848debb5e53b87ef7c4b4628545b4f4c48f5c57a
26,980
py
Python
cinder/service.py
helenwalsh/cinder
307fccea4cc9c6496334b0fe137206cb48499bd5
[ "Apache-2.0" ]
571
2015-01-01T17:47:26.000Z
2022-03-23T07:46:36.000Z
cinder/service.py
BelieveInFuture/cinder
fff95fa6a68a054488ee087b6e31f4f5e28209dc
[ "Apache-2.0" ]
37
2015-01-22T23:27:04.000Z
2021-02-05T16:38:48.000Z
cinder/service.py
BelieveInFuture/cinder
fff95fa6a68a054488ee087b6e31f4f5e28209dc
[ "Apache-2.0" ]
841
2015-01-04T17:17:11.000Z
2022-03-31T12:06:51.000Z
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Generic Node base class for all workers that run on hosts.""" import inspect import os import random import subprocess import sys import time from oslo_concurrency import processutils from oslo_config import cfg from oslo_db import exception as db_exc from oslo_log import log as logging import oslo_messaging as messaging from oslo_service import service from oslo_service import wsgi from oslo_utils import importutils osprofiler_initializer = importutils.try_import('osprofiler.initializer') profiler = importutils.try_import('osprofiler.profiler') profiler_opts = importutils.try_import('osprofiler.opts') from cinder.common import constants from cinder import context from cinder import coordination from cinder import exception from cinder.i18n import _ from cinder import objects from cinder.objects import base as objects_base from cinder.objects import fields from cinder import rpc from cinder import version from cinder.volume import volume_utils if os.name == 'nt': from os_win import utilsfactory as os_win_utilsfactory else: os_win_utilsfactory = None LOG = logging.getLogger(__name__) service_opts = [ cfg.IntOpt('report_interval', default=10, help='Interval, in seconds, between nodes reporting state ' 'to datastore'), cfg.IntOpt('periodic_interval', default=60, help='Interval, in seconds, between running periodic tasks'), cfg.IntOpt('periodic_fuzzy_delay', default=60, help='Range, in seconds, to randomly delay when starting the' ' periodic task scheduler to reduce stampeding.' ' (Disable by setting to 0)'), cfg.StrOpt('osapi_volume_listen', default="0.0.0.0", help='IP address on which OpenStack Volume API listens'), cfg.PortOpt('osapi_volume_listen_port', default=8776, help='Port on which OpenStack Volume API listens'), cfg.IntOpt('osapi_volume_workers', help='Number of workers for OpenStack Volume API service. ' 'The default is equal to the number of CPUs available.'), cfg.BoolOpt('osapi_volume_use_ssl', default=False, help='Wraps the socket in a SSL context if True is set. ' 'A certificate file and key file must be specified.'), ] CONF = cfg.CONF CONF.register_opts(service_opts) if profiler_opts: profiler_opts.set_defaults(CONF) def setup_profiler(binary, host): if (osprofiler_initializer is None or profiler is None or profiler_opts is None): LOG.debug('osprofiler is not present') return if CONF.profiler.enabled: osprofiler_initializer.init_from_conf( conf=CONF, context=context.get_admin_context().to_dict(), project="cinder", service=binary, host=host ) LOG.warning( "OSProfiler is enabled.\nIt means that person who knows " "any of hmac_keys that are specified in " "/etc/cinder/cinder.conf can trace his requests. \n" "In real life only operator can read this file so there " "is no security issue. Note that even if person can " "trigger profiler, only admin user can retrieve trace " "information.\n" "To disable OSProfiler set in cinder.conf:\n" "[profiler]\nenabled=false") class Service(service.Service): """Service object for binaries running on hosts. A service takes a manager and enables rpc by listening to queues based on topic. It also periodically runs tasks on the manager and reports it state to the database services table. """ # Make service_id a class attribute so it can be used for clean up service_id = None def __init__(self, host, binary, topic, manager, report_interval=None, periodic_interval=None, periodic_fuzzy_delay=None, service_name=None, coordination=False, cluster=None, *args, **kwargs): super(Service, self).__init__() if not rpc.initialized(): rpc.init(CONF) self.cluster = cluster self.host = host self.binary = binary self.topic = topic self.manager_class_name = manager self.coordination = coordination manager_class = importutils.import_class(self.manager_class_name) if CONF.profiler.enabled: manager_class = profiler.trace_cls("rpc")(manager_class) self.service = None self.manager = manager_class(host=self.host, cluster=self.cluster, service_name=service_name, *args, **kwargs) self.availability_zone = self.manager.availability_zone # NOTE(geguileo): We need to create the Service DB entry before we # create the manager, otherwise capped versions for serializer and rpc # client would use existing DB entries not including us, which could # result in us using None (if it's the first time the service is run) # or an old version (if this is a normal upgrade of a single service). ctxt = context.get_admin_context() try: service_ref = objects.Service.get_by_args(ctxt, host, binary) service_ref.rpc_current_version = manager_class.RPC_API_VERSION obj_version = objects_base.OBJ_VERSIONS.get_current() service_ref.object_current_version = obj_version # added_to_cluster attribute marks when we consider that we have # just added a host to a cluster so we can include resources into # that cluster. We consider that we have added the host when we # didn't have data in the cluster DB field and our current # configuration has a cluster value. We don't want to do anything # automatic if the cluster is changed, in those cases we'll want # to use cinder manage command and to it manually. self.added_to_cluster = (not service_ref.cluster_name and cluster) if service_ref.cluster_name != cluster: LOG.info('This service has been moved from cluster ' '%(cluster_svc)s to %(cluster_cfg)s. Resources ' 'will %(opt_no)sbe moved to the new cluster', {'cluster_svc': service_ref.cluster_name, 'cluster_cfg': cluster, 'opt_no': '' if self.added_to_cluster else 'NOT '}) if self.added_to_cluster: # We pass copy service's disable status in the cluster if we # have to create it. self._ensure_cluster_exists(ctxt, service_ref) service_ref.cluster_name = cluster service_ref.save() Service.service_id = service_ref.id self.origin_service_id = service_ref.id except exception.NotFound: self._create_service_ref(ctxt, manager_class.RPC_API_VERSION) # Service entry Entry didn't exist because it was manually removed # or it's the first time running, to be on the safe side we say we # were added if we are clustered. self.added_to_cluster = bool(cluster) self.report_interval = report_interval self.periodic_interval = periodic_interval self.periodic_fuzzy_delay = periodic_fuzzy_delay self.basic_config_check() self.saved_args, self.saved_kwargs = args, kwargs setup_profiler(binary, host) self.rpcserver = None self.backend_rpcserver = None self.cluster_rpcserver = None def start(self): version_string = version.version_string() LOG.info('Starting %(topic)s node (version %(version_string)s)', {'topic': self.topic, 'version_string': version_string}) self.model_disconnected = False if self.coordination: coordination.COORDINATOR.start() # NOTE(yikun): When re-spawning child process, we should set the class # attribute back using the origin service_id, otherwise, # the Service.service_id will be inherited from the parent process, # and will be recorded as the last started service id by mistaken. Service.service_id = self.origin_service_id self.manager.init_host(added_to_cluster=self.added_to_cluster, service_id=Service.service_id) LOG.debug("Creating RPC server for service %s", self.topic) ctxt = context.get_admin_context() endpoints = [self.manager] endpoints.extend(self.manager.additional_endpoints) obj_version_cap = objects.Service.get_minimum_obj_version(ctxt) LOG.debug("Pinning object versions for RPC server serializer to %s", obj_version_cap) serializer = objects_base.CinderObjectSerializer(obj_version_cap) target = messaging.Target(topic=self.topic, server=self.host) self.rpcserver = rpc.get_server(target, endpoints, serializer) self.rpcserver.start() # NOTE(dulek): Kids, don't do that at home. We're relying here on # oslo.messaging implementation details to keep backward compatibility # with pre-Ocata services. This will not matter once we drop # compatibility with them. if self.topic == constants.VOLUME_TOPIC: target = messaging.Target( topic='%(topic)s.%(host)s' % {'topic': self.topic, 'host': self.host}, server=volume_utils.extract_host(self.host, 'host')) self.backend_rpcserver = rpc.get_server(target, endpoints, serializer) self.backend_rpcserver.start() if self.cluster: LOG.info('Starting %(topic)s cluster %(cluster)s (version ' '%(version)s)', {'topic': self.topic, 'version': version_string, 'cluster': self.cluster}) target = messaging.Target( topic='%s.%s' % (self.topic, self.cluster), server=volume_utils.extract_host(self.cluster, 'host')) serializer = objects_base.CinderObjectSerializer(obj_version_cap) self.cluster_rpcserver = rpc.get_server(target, endpoints, serializer) self.cluster_rpcserver.start() self.manager.init_host_with_rpc() if self.report_interval: self.tg.add_timer(self.report_interval, self.report_state, initial_delay=self.report_interval) if self.periodic_interval: if self.periodic_fuzzy_delay: initial_delay = random.randint(0, self.periodic_fuzzy_delay) else: initial_delay = None self.tg.add_timer(self.periodic_interval, self.periodic_tasks, initial_delay=initial_delay) def basic_config_check(self): """Perform basic config checks before starting service.""" # Make sure report interval is less than service down time if self.report_interval: if CONF.service_down_time <= self.report_interval: new_down_time = int(self.report_interval * 2.5) LOG.warning( "Report interval must be less than service down " "time. Current config service_down_time: " "%(service_down_time)s, report_interval for this: " "service is: %(report_interval)s. Setting global " "service_down_time to: %(new_down_time)s", {'service_down_time': CONF.service_down_time, 'report_interval': self.report_interval, 'new_down_time': new_down_time}) CONF.set_override('service_down_time', new_down_time) def _ensure_cluster_exists(self, context, service): if self.cluster: try: cluster = objects.Cluster.get_by_id(context, None, name=self.cluster, binary=self.binary) # If the cluster already exists, then the service replication # fields must match those of the cluster unless the service # is in error status. error_states = (fields.ReplicationStatus.ERROR, fields.ReplicationStatus.FAILOVER_ERROR) if service.replication_status not in error_states: for attr in ('replication_status', 'active_backend_id', 'frozen'): if getattr(service, attr) != getattr(cluster, attr): setattr(service, attr, getattr(cluster, attr)) except exception.ClusterNotFound: # Since the cluster didn't exist, we copy replication fields # from the service. cluster = objects.Cluster( context=context, name=self.cluster, binary=self.binary, disabled=service.disabled, replication_status=service.replication_status, active_backend_id=service.active_backend_id, frozen=service.frozen) try: cluster.create() # Race condition occurred and another service created the # cluster, so we can continue as it already exists. except exception.ClusterExists: pass def _create_service_ref(self, context, rpc_version=None): kwargs = { 'host': self.host, 'binary': self.binary, 'topic': self.topic, 'report_count': 0, 'availability_zone': self.availability_zone, 'rpc_current_version': rpc_version or self.manager.RPC_API_VERSION, 'object_current_version': objects_base.OBJ_VERSIONS.get_current(), } kwargs['cluster_name'] = self.cluster service_ref = objects.Service(context=context, **kwargs) service_ref.create() Service.service_id = service_ref.id self.origin_service_id = service_ref.id self._ensure_cluster_exists(context, service_ref) # If we have updated the service_ref with replication data from # the cluster it will be saved. service_ref.save() def __getattr__(self, key): manager = self.__dict__.get('manager', None) return getattr(manager, key) @classmethod def create(cls, host=None, binary=None, topic=None, manager=None, report_interval=None, periodic_interval=None, periodic_fuzzy_delay=None, service_name=None, coordination=False, cluster=None, **kwargs): """Instantiates class and passes back application object. :param host: defaults to CONF.host :param binary: defaults to basename of executable :param topic: defaults to bin_name - 'cinder-' part :param manager: defaults to CONF.<topic>_manager :param report_interval: defaults to CONF.report_interval :param periodic_interval: defaults to CONF.periodic_interval :param periodic_fuzzy_delay: defaults to CONF.periodic_fuzzy_delay :param cluster: Defaults to None, as only some services will have it """ if not host: host = CONF.host if not binary: binary = os.path.basename(inspect.stack()[-1][1]) if not topic: topic = binary if not manager: subtopic = topic.rpartition('cinder-')[2] manager = CONF.get('%s_manager' % subtopic, None) if report_interval is None: report_interval = CONF.report_interval if periodic_interval is None: periodic_interval = CONF.periodic_interval if periodic_fuzzy_delay is None: periodic_fuzzy_delay = CONF.periodic_fuzzy_delay service_obj = cls(host, binary, topic, manager, report_interval=report_interval, periodic_interval=periodic_interval, periodic_fuzzy_delay=periodic_fuzzy_delay, service_name=service_name, coordination=coordination, cluster=cluster, **kwargs) return service_obj def stop(self): # Try to shut the connection down, but if we get any sort of # errors, go ahead and ignore them.. as we're shutting down anyway try: self.rpcserver.stop() if self.backend_rpcserver: self.backend_rpcserver.stop() if self.cluster_rpcserver: self.cluster_rpcserver.stop() except Exception: pass if self.coordination: try: coordination.COORDINATOR.stop() except Exception: pass super(Service, self).stop(graceful=True) def wait(self): if self.rpcserver: self.rpcserver.wait() if self.backend_rpcserver: self.backend_rpcserver.wait() if self.cluster_rpcserver: self.cluster_rpcserver.wait() super(Service, self).wait() def periodic_tasks(self, raise_on_error=False): """Tasks to be run at a periodic interval.""" ctxt = context.get_admin_context() self.manager.run_periodic_tasks(ctxt, raise_on_error=raise_on_error) def report_state(self): """Update the state of this service in the datastore.""" if not self.manager.is_working(): # NOTE(dulek): If manager reports a problem we're not sending # heartbeats - to indicate that service is actually down. LOG.error('Manager for service %(binary)s %(host)s is ' 'reporting problems, not sending heartbeat. ' 'Service will appear "down".', {'binary': self.binary, 'host': self.host}) return ctxt = context.get_admin_context() try: try: service_ref = objects.Service.get_by_id(ctxt, Service.service_id) except exception.NotFound: LOG.debug('The service database object disappeared, ' 'recreating it.') self._create_service_ref(ctxt) service_ref = objects.Service.get_by_id(ctxt, Service.service_id) service_ref.report_count += 1 if self.availability_zone != service_ref.availability_zone: service_ref.availability_zone = self.availability_zone service_ref.save() # TODO(termie): make this pattern be more elegant. if getattr(self, 'model_disconnected', False): self.model_disconnected = False LOG.error('Recovered model server connection!') except db_exc.DBConnectionError: if not getattr(self, 'model_disconnected', False): self.model_disconnected = True LOG.exception('model server went away') # NOTE(jsbryant) Other DB errors can happen in HA configurations. # such errors shouldn't kill this thread, so we handle them here. except db_exc.DBError: if not getattr(self, 'model_disconnected', False): self.model_disconnected = True LOG.exception('DBError encountered: ') except Exception: if not getattr(self, 'model_disconnected', False): self.model_disconnected = True LOG.exception('Exception encountered: ') def reset(self): self.manager.reset() super(Service, self).reset() class WSGIService(service.ServiceBase): """Provides ability to launch API from a 'paste' configuration.""" def __init__(self, name, loader=None): """Initialize, but do not start the WSGI server. :param name: The name of the WSGI server given to the loader. :param loader: Loads the WSGI application using the given name. :returns: None """ self.name = name self.manager = self._get_manager() self.loader = loader or wsgi.Loader(CONF) self.app = self.loader.load_app(name) self.host = getattr(CONF, '%s_listen' % name, "0.0.0.0") self.port = getattr(CONF, '%s_listen_port' % name, 0) self.use_ssl = getattr(CONF, '%s_use_ssl' % name, False) self.workers = (getattr(CONF, '%s_workers' % name, None) or processutils.get_worker_count()) if self.workers and self.workers < 1: worker_name = '%s_workers' % name msg = (_("%(worker_name)s value of %(workers)d is invalid, " "must be greater than 0.") % {'worker_name': worker_name, 'workers': self.workers}) raise exception.InvalidConfigurationValue(msg) setup_profiler(name, self.host) self.server = wsgi.Server(CONF, name, self.app, host=self.host, port=self.port, use_ssl=self.use_ssl) def _get_manager(self): """Initialize a Manager object appropriate for this service. Use the service name to look up a Manager subclass from the configuration and initialize an instance. If no class name is configured, just return None. :returns: a Manager instance, or None. """ fl = '%s_manager' % self.name if fl not in CONF: return None manager_class_name = CONF.get(fl, None) if not manager_class_name: return None manager_class = importutils.import_class(manager_class_name) return manager_class() def start(self): """Start serving this service using loaded configuration. Also, retrieve updated port number in case '0' was passed in, which indicates a random port should be used. :returns: None """ if self.manager: self.manager.init_host() self.server.start() self.port = self.server.port def stop(self): """Stop serving this API. :returns: None """ self.server.stop() def wait(self): """Wait for the service to stop serving this API. :returns: None """ self.server.wait() def reset(self): """Reset server greenpool size to default. :returns: None """ self.server.reset() def process_launcher(): return service.ProcessLauncher(CONF, restart_method='mutate') # NOTE(vish): the global launcher is to maintain the existing # functionality of calling service.serve + # service.wait _launcher = None def serve(server, workers=None): global _launcher if _launcher: raise RuntimeError(_('serve() can only be called once')) _launcher = service.launch(CONF, server, workers=workers, restart_method='mutate') def wait(): CONF.log_opt_values(LOG, logging.DEBUG) try: _launcher.wait() except KeyboardInterrupt: _launcher.stop() rpc.cleanup() class Launcher(object): def __init__(self): self.launch_service = serve self.wait = wait def get_launcher(): # Note(lpetrut): ProcessLauncher uses green pipes which fail on Windows # due to missing support of non-blocking I/O pipes. For this reason, the # service must be spawned differently on Windows, using the ServiceLauncher # class instead. if os.name == 'nt': return Launcher() else: return process_launcher() class WindowsProcessLauncher(object): def __init__(self): self._processutils = os_win_utilsfactory.get_processutils() self._workers = [] self._worker_job_handles = [] self._signal_handler = service.SignalHandler() self._add_signal_handlers() def add_process(self, cmd): LOG.info("Starting subprocess: %s", cmd) worker = subprocess.Popen(cmd) try: job_handle = self._processutils.kill_process_on_job_close( worker.pid) except Exception: LOG.exception("Could not associate child process " "with a job, killing it.") worker.kill() raise self._worker_job_handles.append(job_handle) self._workers.append(worker) def _add_signal_handlers(self): self._signal_handler.add_handler('SIGINT', self._terminate) self._signal_handler.add_handler('SIGTERM', self._terminate) def _terminate(self, *args): # We've already assigned win32 job objects to child processes, # requesting them to stop once all the job handles are closed. # When this process dies, so will the child processes. LOG.info("Received request to terminate.") sys.exit(1) def wait(self): pids = [worker.pid for worker in self._workers] if pids: self._processutils.wait_for_multiple_processes(pids, wait_all=True) # By sleeping here, we allow signal handlers to be executed. time.sleep(0)
39.734904
79
0.606746
8ccf59ddfaba7a7b5e8f295d4b8245a153b57f88
790
py
Python
home/kwatters/harry/gestures/armsUp.py
rv8flyboy/pyrobotlab
4e04fb751614a5cb6044ea15dcfcf885db8be65a
[ "Apache-2.0" ]
63
2015-02-03T18:49:43.000Z
2022-03-29T03:52:24.000Z
home/kwatters/harry/gestures/armsUp.py
hirwaHenryChristian/pyrobotlab
2debb381fc2db4be1e7ea6e5252a50ae0de6f4a9
[ "Apache-2.0" ]
16
2016-01-26T19:13:29.000Z
2018-11-25T21:20:51.000Z
home/kwatters/harry/gestures/armsUp.py
hirwaHenryChristian/pyrobotlab
2debb381fc2db4be1e7ea6e5252a50ae0de6f4a9
[ "Apache-2.0" ]
151
2015-01-03T18:55:54.000Z
2022-03-04T07:04:23.000Z
def armsUp(): i01.setHeadSpeed(1.0,1.0) i01.moveHead(180,86) sleep(1) i01.setHandSpeed("left",0.90,0.90,0.90,0.90,0.90,1.0) i01.setHandSpeed("right",0.90,0.90,0.90,0.90,0.90,1.0) i01.moveHand("left",170,170,170,170,170,33) i01.moveHand("right",170,170,170,170,170,180) sleep(3) i01.setArmSpeed("left",1.0,1.0,1.0,1.0) i01.setArmSpeed("right",1.0,1.0,1.0,1.0) i01.setTorsoSpeed(1.0,1.0,1.0) i01.moveArm("left",90,90,170,20) i01.moveArm("right",90,90,173,20) sleep(9) i01.setHandSpeed("left",1.0,1.0,1.0,1.0,1.0,1.0) i01.setHandSpeed("right",1.0,1.0,1.0,1.0,1.0,1.0) i01.moveHead(180,86) i01.moveArm("left",5,90,170,10) i01.moveArm("right",5,90,173,10) i01.moveHand("left",2,2,2,2,2,33) i01.moveHand("right",2,2,2,2,2,180) i01.moveTorso(90,90,90)
31.6
56
0.646835
dcfb8dc8a64b1963e31eed9f15f47be0eff93bd1
418
py
Python
server/main/services/user_service.py
wiggitamoo/Angular-Flask-Docker-Skeleton
474727334d6c3618e1141b349b2dbe90828b9022
[ "MIT" ]
65
2017-12-09T17:58:14.000Z
2022-03-28T00:11:09.000Z
server/main/services/user_service.py
wiggitamoo/Angular-Flask-Docker-Skeleton
474727334d6c3618e1141b349b2dbe90828b9022
[ "MIT" ]
14
2018-02-10T11:42:59.000Z
2022-03-02T02:40:31.000Z
server/main/services/user_service.py
wiggitamoo/Angular-Flask-Docker-Skeleton
474727334d6c3618e1141b349b2dbe90828b9022
[ "MIT" ]
40
2018-04-22T20:36:50.000Z
2021-12-14T05:17:48.000Z
# -*- coding: utf-8 -*- """ UserService class - This class holds the method related to User manipulations. """ from server.main.models.user import User from server.main.services import SQLAlchemyService class UserService(SQLAlchemyService): __model__ = User def __init__(self): # Creating a parent class ref to access parent class methods. self.parentClassRef = super(UserService, self)
22
78
0.722488
29294e09f27bd34a3b995409999d0fd79abf108c
318
py
Python
src/adverts/tasks.py
alekseyr/pyjobs
9ef6dd8edaba7eb568fcc7d7ee6723ac9c5eb0ff
[ "MIT" ]
1
2015-11-21T19:21:23.000Z
2015-11-21T19:21:23.000Z
src/adverts/tasks.py
alekseyr/pyjobs
9ef6dd8edaba7eb568fcc7d7ee6723ac9c5eb0ff
[ "MIT" ]
4
2015-07-27T08:30:26.000Z
2015-07-30T07:58:39.000Z
src/adverts/tasks.py
pyshop/pyjobs
9ef6dd8edaba7eb568fcc7d7ee6723ac9c5eb0ff
[ "MIT" ]
null
null
null
from celery.task import periodic_task # декораторы теперь следует импортировать из celery.task from mailer.engine import send_all from datetime import timedelta # this will run every 60 seconds # send all emails in the mailer queue @periodic_task(run_every=timedelta(seconds=60)) def email_tasks(): send_all()
26.5
95
0.798742
b0a8ab799651fa97f02d471cdd31af72160c7cf1
1,716
py
Python
filaments/registry_persistence_detection.py
sbilly/fibratus
3d6c885a997ef98a244eddd0740b6a88297d1974
[ "Apache-2.0" ]
1
2021-04-30T05:10:13.000Z
2021-04-30T05:10:13.000Z
filaments/registry_persistence_detection.py
sbilly/fibratus
3d6c885a997ef98a244eddd0740b6a88297d1974
[ "Apache-2.0" ]
null
null
null
filaments/registry_persistence_detection.py
sbilly/fibratus
3d6c885a997ef98a244eddd0740b6a88297d1974
[ "Apache-2.0" ]
null
null
null
# Copyright 2015/2016 by Nedim Sabic (RabbitStack) # All Rights Reserved. # http://rabbitstack.github.io # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Triggers when a process creates the registry value which would enable it to execute on system startup. """ from filaments.support.alarm import SmtpAlarm smtp_alarm = SmtpAlarm('smtp.live.com', port=587) keys = ['Run', 'RunOnce', 'RunServices', 'RunServicesOnce', 'Userinit'] from_addr = 'from@domain.com' to_addrs = ['to@domain.com'] def on_init(): set_filter('RegSetValue') def on_next_kevent(kevent): if kevent.thread: process_name = kevent.thread.name key = kevent.params.key if key in keys: # compose the message message = 'The process %s has created a ' \ 'persistent registry value , ' \ 'under %s with content %s' \ % (process_name, '%s/%s' % (kevent.params.hive, key), kevent.params.value) # send the alarm via smtp transport smtp_alarm.emit('Registry persistence detected', message, from_addr=from_addr, to_addrs=to_addrs)
35.020408
76
0.652098
75b1b4a5f66f7b60520b1ee180a9c7747278d80a
380
py
Python
sso/middleware/permission_denied.py
uktrade/export-wins-data
46caa444812e89abe504bec8c15aa7f7ba1a247e
[ "MIT" ]
5
2016-09-12T12:52:45.000Z
2020-03-24T14:43:13.000Z
sso/middleware/permission_denied.py
uktrade/export-wins-data
46caa444812e89abe504bec8c15aa7f7ba1a247e
[ "MIT" ]
435
2016-10-18T12:51:39.000Z
2021-06-09T17:22:08.000Z
sso/middleware/permission_denied.py
uktrade/export-wins-data
46caa444812e89abe504bec8c15aa7f7ba1a247e
[ "MIT" ]
2
2016-12-06T10:37:21.000Z
2017-02-22T17:27:43.000Z
from django.utils.deprecation import MiddlewareMixin from rest_framework import status from django.conf import settings class Metadata403(MiddlewareMixin): def process_response(self, request, response): if getattr(response, 'status_code', None) == status.HTTP_403_FORBIDDEN: response['PreferAuthWith'] = settings.SSO_PREFER_AUTH return response
31.666667
79
0.760526
ead8825c7772e8fc261d2f1de80ea3eefc760d6d
759
py
Python
application/configs.py
Jasbeauty/mine_blog
22899be4db20a92ad40cf35f84a3123dd0ebeee6
[ "Apache-2.0" ]
null
null
null
application/configs.py
Jasbeauty/mine_blog
22899be4db20a92ad40cf35f84a3123dd0ebeee6
[ "Apache-2.0" ]
null
null
null
application/configs.py
Jasbeauty/mine_blog
22899be4db20a92ad40cf35f84a3123dd0ebeee6
[ "Apache-2.0" ]
null
null
null
from datetime import timedelta SQLALCHEMY_DATABASE_URI = "mysql+pymysql://root:root@127.0.0.1:3306/mine_blog" SQLALCHEMY_TRACK_MODIFICATIONS = True JWT_SECRET_KEY = 'jwt_secret' JWT_AUTH_URL_RULE = '/api/v1/auth' JWT_EXPIRATION_DELTA = timedelta(seconds=12000) SYS_UPLOAD_PATH = '/home/laowang/gitwarehouse/mine_blog/application/static/img/' GITHUB_OAUTH = { 'CLIENT_ID': 'f9fa118d12389497686b', 'CLIENT_SECRET': 'a67149f74ce50c1e95c2d9bdeba7bbd579eb8d45', 'AUTHORIZE_PATH': 'https://github.com/login/oauth/authorize', 'ACCESS_TOKEN_PATH': 'https://github.com/login/oauth/access_token', 'USER_MESSAGE_PATH': 'https://api.github.com/user', } TENCENT_OAUTH = { 'secret_id': '', 'secret_key': '', 'region': '', 'bucket': '' }
36.142857
80
0.73386
29116728e827a0e3ddc01db54352fb9c9ec71999
343
py
Python
site/thicc/apps/social_auth_filter/templatetags/social_auth_filter.py
aldenjenkins/ThiccGaming
4790d2568b019438d1569d0fe4e9f9aba008b737
[ "BSD-3-Clause" ]
1
2016-03-11T18:48:36.000Z
2016-03-11T18:48:36.000Z
social_auth_filter/templatetags/social_auth_filter.py
Azelphur-Servers/game.azelphur.com
d2410cb7b044c980d56151b9ce19442433fd8ac8
[ "BSD-3-Clause" ]
21
2016-01-25T22:35:28.000Z
2022-03-11T23:14:32.000Z
site/thicc/apps/social_auth_filter/templatetags/social_auth_filter.py
aldenjenkins/ThiccGaming
4790d2568b019438d1569d0fe4e9f9aba008b737
[ "BSD-3-Clause" ]
5
2016-02-12T20:13:14.000Z
2018-01-31T08:26:16.000Z
from django import template register = template.Library() DISPLAY_NAMES = { 'reddit': 'Reddit', 'github': 'Github', 'google-oauth2': 'Google', 'facebook': 'Facebook', 'twitter': 'Twitter', } @register.filter(name='social_display_name') def social_display_name(value): return DISPLAY_NAMES.get(value.lower(), value)
21.4375
50
0.6793
b26c57a7f70feab418696dcbae7d040a4b15128f
82,058
py
Python
sympy/integrals/rubi/tests/test_utility_function.py
gum3ng/sympy
e9414fafa976b26aa0b701a0217ab0f3b561989f
[ "BSD-3-Clause" ]
1
2018-11-20T11:40:30.000Z
2018-11-20T11:40:30.000Z
sympy/integrals/rubi/tests/test_utility_function.py
gum3ng/sympy
e9414fafa976b26aa0b701a0217ab0f3b561989f
[ "BSD-3-Clause" ]
14
2018-02-08T10:11:03.000Z
2019-04-16T10:32:46.000Z
sympy/integrals/rubi/tests/test_utility_function.py
gum3ng/sympy
e9414fafa976b26aa0b701a0217ab0f3b561989f
[ "BSD-3-Clause" ]
1
2020-09-09T20:41:34.000Z
2020-09-09T20:41:34.000Z
import sys from sympy.external import import_module matchpy = import_module("matchpy") if not matchpy: #bin/test will not execute any tests now disabled = True if sys.version_info[:2] < (3, 6): disabled = True from sympy.integrals.rubi.utility_function import (Set, With, Module, Scan, MapAnd, FalseQ, ZeroQ, NegativeQ, NonzeroQ, FreeQ, List, Log, PositiveQ, PositiveIntegerQ, NegativeIntegerQ, IntegerQ, IntegersQ, ComplexNumberQ, RealNumericQ, PositiveOrZeroQ, NegativeOrZeroQ, FractionOrNegativeQ, NegQ, Equal, Unequal, IntPart, FracPart, RationalQ, ProductQ, SumQ, NonsumQ, First, Rest, SqrtNumberQ, LinearQ, Sqrt, ArcCosh, Coefficient, Denominator, Hypergeometric2F1, Not, Simplify, FractionalPart, IntegerPart, AppellF1, PolynomialQuotient, ArcTan, ArcTanh, ArcSin, ArcSinh, ArcCos, ArcCsc, ArcCsch, Sinh, Coth, LessEqual, Less, Greater, GreaterEqual, FractionQ, IntLinearcQ, Expand, IndependentQ, PowerQ, IntegerPowerQ, PositiveIntegerPowerQ, FractionalPowerQ, AtomQ, ExpQ, LogQ, Head, MemberQ, TrigQ, SinQ, CosQ, TanQ, CotQ, SecQ, CscQ, HyperbolicQ, SinhQ, CoshQ, TanhQ, CothQ, SechQ, CschQ, InverseTrigQ, SinCosQ, SinhCoshQ, LeafCount, Numerator, NumberQ, NumericQ, Length, ListQ, Im, Re, InverseHyperbolicQ, InverseFunctionQ, EqQ, FractionalPowerFreeQ, ComplexFreeQ, PolynomialQ, FactorSquareFree, PowerOfLinearQ, Exponent, QuadraticQ, LinearPairQ, BinomialParts, TrinomialParts, PolyQ, EvenQ, OddQ, PerfectSquareQ, NiceSqrtAuxQ, NiceSqrtQ, Together, PosAux, PosQ, CoefficientList, ReplaceAll, ExpandLinearProduct, GCD, ContentFactor, NumericFactor, NonnumericFactors, MakeAssocList, GensymSubst, KernelSubst, ExpandExpression, Apart, SmartApart, MatchQ, PolynomialQuotientRemainder, FreeFactors, NonfreeFactors, RemoveContentAux, RemoveContent, FreeTerms, NonfreeTerms, ExpandAlgebraicFunction, CollectReciprocals, ExpandCleanup, AlgebraicFunctionQ, Coeff, LeadTerm, RemainingTerms, LeadFactor, RemainingFactors, LeadBase, LeadDegree, Numer, Denom, hypergeom, Expon, MergeMonomials, PolynomialDivide, BinomialQ, TrinomialQ, GeneralizedBinomialQ, GeneralizedTrinomialQ, FactorSquareFreeList, PerfectPowerTest, SquareFreeFactorTest, RationalFunctionQ, RationalFunctionFactors, NonrationalFunctionFactors, Reverse, RationalFunctionExponents, RationalFunctionExpand, ExpandIntegrand, SimplerQ, SimplerSqrtQ, SumSimplerQ, BinomialDegree, TrinomialDegree, CancelCommonFactors, SimplerIntegrandQ, GeneralizedBinomialDegree, GeneralizedBinomialParts, GeneralizedTrinomialDegree, GeneralizedTrinomialParts, MonomialQ, MonomialSumQ, MinimumMonomialExponent, MonomialExponent, LinearMatchQ, PowerOfLinearMatchQ, QuadraticMatchQ, CubicMatchQ, BinomialMatchQ, TrinomialMatchQ, GeneralizedBinomialMatchQ, GeneralizedTrinomialMatchQ, QuotientOfLinearsMatchQ, PolynomialTermQ, PolynomialTerms, NonpolynomialTerms, PseudoBinomialParts, NormalizePseudoBinomial, PseudoBinomialPairQ, PseudoBinomialQ, PolynomialGCD, PolyGCD, AlgebraicFunctionFactors, NonalgebraicFunctionFactors, QuotientOfLinearsP, QuotientOfLinearsParts, QuotientOfLinearsQ, Flatten, Sort, AbsurdNumberQ, AbsurdNumberFactors, NonabsurdNumberFactors, SumSimplerAuxQ, Prepend, Drop, CombineExponents, FactorInteger, FactorAbsurdNumber, SubstForInverseFunction, SubstForFractionalPower, SubstForFractionalPowerOfQuotientOfLinears, FractionalPowerOfQuotientOfLinears, SubstForFractionalPowerQ, SubstForFractionalPowerAuxQ, FractionalPowerOfSquareQ, FractionalPowerSubexpressionQ, Apply, FactorNumericGcd, MergeableFactorQ, MergeFactor, MergeFactors, TrigSimplifyQ, TrigSimplify, TrigSimplifyRecur, Order, FactorOrder, Smallest, OrderedQ, MinimumDegree, PositiveFactors, Sign, NonpositiveFactors, PolynomialInAuxQ, PolynomialInQ, ExponentInAux, ExponentIn, PolynomialInSubstAux, PolynomialInSubst, Distrib, DistributeDegree, FunctionOfPower, DivideDegreesOfFactors, MonomialFactor, FullSimplify, FunctionOfLinearSubst, FunctionOfLinear, NormalizeIntegrand, NormalizeIntegrandAux, NormalizeIntegrandFactor, NormalizeIntegrandFactorBase, NormalizeTogether, NormalizeLeadTermSigns, AbsorbMinusSign, NormalizeSumFactors, SignOfFactor, NormalizePowerOfLinear, SimplifyIntegrand, SimplifyTerm, TogetherSimplify, SmartSimplify, SubstForExpn, ExpandToSum, UnifySum, UnifyTerms, UnifyTerm, CalculusQ, FunctionOfInverseLinear, PureFunctionOfSinhQ, PureFunctionOfTanhQ, PureFunctionOfCoshQ, IntegerQuotientQ, OddQuotientQ, EvenQuotientQ, FindTrigFactor, FunctionOfSinhQ, FunctionOfCoshQ, OddHyperbolicPowerQ, FunctionOfTanhQ, FunctionOfTanhWeight, FunctionOfHyperbolicQ, SmartNumerator, SmartDenominator, ActivateTrig, ExpandTrig, TrigExpand, SubstForTrig, SubstForHyperbolic, InertTrigFreeQ, LCM, SubstForFractionalPowerOfLinear, FractionalPowerOfLinear, InverseFunctionOfLinear, InertTrigQ, InertReciprocalQ, DeactivateTrig, FixInertTrigFunction, DeactivateTrigAux, PowerOfInertTrigSumQ, PiecewiseLinearQ, KnownTrigIntegrandQ, KnownSineIntegrandQ, KnownTangentIntegrandQ, KnownCotangentIntegrandQ, KnownSecantIntegrandQ, TryPureTanSubst, TryTanhSubst, TryPureTanhSubst, AbsurdNumberGCD, AbsurdNumberGCDList, ExpandTrigExpand, ExpandTrigReduce, ExpandTrigReduceAux, NormalizeTrig, TrigToExp, ExpandTrigToExp, TrigReduce, FunctionOfTrig, AlgebraicTrigFunctionQ, FunctionOfHyperbolic, FunctionOfQ, FunctionOfExpnQ, PureFunctionOfSinQ, PureFunctionOfCosQ, PureFunctionOfTanQ, PureFunctionOfCotQ, FunctionOfCosQ, FunctionOfSinQ, OddTrigPowerQ, FunctionOfTanQ, FunctionOfTanWeight, FunctionOfTrigQ, FunctionOfDensePolynomialsQ, FunctionOfLog, PowerVariableExpn, PowerVariableDegree, PowerVariableSubst, EulerIntegrandQ, FunctionOfSquareRootOfQuadratic, SquareRootOfQuadraticSubst, Divides, EasyDQ, ProductOfLinearPowersQ, Rt, NthRoot, AtomBaseQ, SumBaseQ, NegSumBaseQ, AllNegTermQ, SomeNegTermQ, TrigSquareQ, RtAux, TrigSquare, IntSum, IntTerm, Map2, ConstantFactor, SameQ, ReplacePart, CommonFactors, MostMainFactorPosition, FunctionOfExponentialQ, FunctionOfExponential, FunctionOfExponentialFunction, FunctionOfExponentialFunctionAux, FunctionOfExponentialTest, FunctionOfExponentialTestAux, stdev, rubi_test, If, IntQuadraticQ, IntBinomialQ, RectifyTangent, RectifyCotangent, Inequality, Condition, Simp, SimpHelp, SplitProduct, SplitSum, SubstFor, SubstForAux, FresnelS, FresnelC, Erfc, Erfi, Gamma, FunctionOfTrigOfLinearQ, ElementaryFunctionQ, Complex, UnsameQ, _SimpFixFactor, DerivativeDivides, SimpFixFactor, _FixSimplify, FixSimplify, _SimplifyAntiderivativeSum, SimplifyAntiderivativeSum, PureFunctionOfCothQ, _SimplifyAntiderivative, SimplifyAntiderivative, _TrigSimplifyAux, TrigSimplifyAux, Cancel, Part, PolyLog, D, Dist, IntegralFreeQ, Sum_doit, rubi_exp, rubi_log, PolynomialRemainder, CoprimeQ, Distribute, ProductLog, Floor, PolyGamma, process_trig, replace_pow_exp, ExponentList) # TODO - Add tests for: Int, NFreeQ, PureComplexNumberQ, EllipticPi, EllipticE, # EllipticF, ArcCot, ArcCoth, Tanh, Cosh, Sech, ArcSec, ArcSech, Subst, # SqrtNumberSumQ, Sin, Cos, Tan, Cot, Sec, Csc, Csch, TrigHyperbolicFreeQ, # InverseFunctionFreeQ, RealQ, from sympy.core.add import Add from sympy.core.expr import unchanged from sympy.core.numbers import (E, I, oo, pi, zoo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (symbols, Symbol, Wild) from sympy.functions.elementary.exponential import exp, log as sym_log from sympy.functions.elementary.hyperbolic import acosh, asinh, atanh, acsch, cosh, sinh, tanh, coth, sech, csch, acoth from sympy.functions.elementary.miscellaneous import Min, sqrt from sympy.functions.elementary.trigonometric import (cos, cot, csc, sec, sin, tan, atan, acsc, asin, acot, acos, asec, atan2) from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint, li) from sympy.functions.special.gamma_functions import (gamma, loggamma, polygamma) from sympy.functions.special.hyper import hyper from sympy.functions.special.zeta_functions import (polylog, zeta) from sympy.integrals.integrals import Integral from sympy.simplify.simplify import (nsimplify, simplify) A, B, a, b, c, d, e, f, g, h, y, z, m, n, p, q, u, v, w, F = symbols('A B a b c d e f g h y z m n p q u v w F', real=True, imaginary=False) x = Symbol('x') def test_ZeroQ(): e = b*(n*p + n + 1) d = a assert ZeroQ(a*e - b*d*(n*(p + S(1)) + S(1))) assert ZeroQ(S(0)) assert not ZeroQ(S(10)) assert not ZeroQ(S(-2)) assert ZeroQ(0, 2-2) assert ZeroQ([S(2), (4), S(0), S(8)]) == [False, False, True, False] assert ZeroQ([S(2), S(4), S(8)]) == [False, False, False] def test_NonzeroQ(): assert NonzeroQ(S(1)) == True def test_FreeQ(): l = [a*b, x, a + b] assert FreeQ(l, x) == False l = [a*b, a + b] assert FreeQ(l, x) == True def test_List(): assert List(a, b, c) == [a, b, c] def test_Log(): assert Log(a) == rubi_log(a) def test_PositiveIntegerQ(): assert PositiveIntegerQ(S(1)) assert not PositiveIntegerQ(S(-3)) assert not PositiveIntegerQ(S(0)) def test_NegativeIntegerQ(): assert not NegativeIntegerQ(S(1)) assert NegativeIntegerQ(S(-3)) assert not NegativeIntegerQ(S(0)) def test_PositiveQ(): assert PositiveQ(S(1)) assert not PositiveQ(S(-3)) assert not PositiveQ(S(0)) assert not PositiveQ(zoo) assert not PositiveQ(I) assert PositiveQ(b/(b*(b*c/(-a*d + b*c)) - a*(b*d/(-a*d + b*c)))) def test_IntegerQ(): assert IntegerQ(S(1)) assert not IntegerQ(S(-1.9)) assert not IntegerQ(S(0.0)) assert IntegerQ(S(-1)) def test_IntegersQ(): assert IntegersQ([S(1), S(0)]) assert not IntegersQ([S(-1.9), S(1)]) assert not IntegersQ([S(0.0), S(0)]) assert IntegersQ([S(-1), S(0), S(2)]) def test_FracPart(): assert FracPart(S(10)) == 0 assert FracPart(S(10)+0.5) == 10.5 def test_IntPart(): assert IntPart(m*n) == 0 assert IntPart(S(10)) == 10 assert IntPart(1 + m) == 1 def test_NegQ(): assert NegQ(-S(3)) assert not NegQ(S(0)) assert not NegQ(S(0)) def test_RationalQ(): assert RationalQ(S(5)/6) assert RationalQ(S(5)/6, S(4)/5) assert not RationalQ(Sqrt(1.6)) assert not RationalQ(Sqrt(1.6), S(5)/6) assert not RationalQ(rubi_log(2)) def test_ArcCosh(): assert ArcCosh(x) == acosh(x) def test_LinearQ(): assert not LinearQ(a, x) assert LinearQ(3*x + y**2, x) assert not LinearQ(3*x + y**2, y) assert not LinearQ(S(3), x) def test_Sqrt(): assert Sqrt(x) == sqrt(x) assert Sqrt(25) == 5 def test_Util_Coefficient(): from sympy.integrals.rubi.utility_function import Util_Coefficient assert unchanged(Util_Coefficient, a + b*x + c*x**3, x, a) assert Util_Coefficient(a + b*x + c*x**3, x, 4).doit() == 0 def test_Coefficient(): assert Coefficient(7 + 2*x + 4*x**3, x, 1) == 2 assert Coefficient(a + b*x + c*x**3, x, 0) == a assert Coefficient(a + b*x + c*x**3, x, 4) == 0 assert Coefficient(b*x + c*x**3, x, 3) == c assert Coefficient(x, x, -1) == 0 def test_Denominator(): assert Denominator(-S(1)/S(2) + I/3) == 6 assert Denominator((-a/b)**3) == (b)**(3) assert Denominator(S(3)/2) == 2 assert Denominator(x/y) == y assert Denominator(S(4)/5) == 5 def test_Hypergeometric2F1(): assert Hypergeometric2F1(1, 2, 3, x) == hyper((1, 2), (3,), x) def test_ArcTan(): assert ArcTan(x) == atan(x) assert ArcTan(x, y) == atan2(x, y) def test_Not(): a = 10 assert Not(a == 2) def test_FractionalPart(): assert FractionalPart(S(3.0)) == 0.0 def test_IntegerPart(): assert IntegerPart(3.6) == 3 assert IntegerPart(-3.6) == -4 def test_AppellF1(): assert AppellF1(1,0,0.5,1,0.5,0.25).evalf() == 1.154700538379251529018298 assert unchanged(AppellF1, a, b, c, d, e, f) def test_Simplify(): assert Simplify(sin(x)**2 + cos(x)**2) == 1 assert Simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1)) == x - 1 def test_ArcTanh(): assert ArcTanh(a) == atanh(a) def test_ArcSin(): assert ArcSin(a) == asin(a) def test_ArcSinh(): assert ArcSinh(a) == asinh(a) def test_ArcCos(): assert ArcCos(a) == acos(a) def test_ArcCsc(): assert ArcCsc(a) == acsc(a) def test_ArcCsch(): assert ArcCsch(a) == acsch(a) def test_Equal(): assert Equal(a, a) assert not Equal(a, b) def test_LessEqual(): assert LessEqual(1, 2, 3) assert LessEqual(1, 1) assert not LessEqual(3, 2, 1) def test_With(): assert With(Set(x, 3), x + y) == 3 + y assert With(List(Set(x, 3), Set(y, c)), x + y) == 3 + c def test_Module(): # Same as With assert Module(Set(x, 3), x + y) == 3 + y assert Module(List(Set(x, 3), Set(y, c)), x + y) == 3 + c def test_Less(): assert Less(1, 2, 3) assert not Less(1, 1, 3) def test_Greater(): assert Greater(3, 2, 1) assert not Greater(3, 2, 2) def test_GreaterEqual(): assert GreaterEqual(3, 2, 1) assert GreaterEqual(3, 2, 2) assert not GreaterEqual(2, 3) def test_Unequal(): assert Unequal(1, 2) assert not Unequal(1, 1) def test_FractionQ(): assert not FractionQ(S('3')) assert FractionQ(S('3')/S('2')) def test_Expand(): assert Expand((1 + x)**10) == x**10 + 10*x**9 + 45*x**8 + 120*x**7 + 210*x**6 + 252*x**5 + 210*x**4 + 120*x**3 + 45*x**2 + 10*x + 1 def test_Scan(): assert list(Scan(sin, [a, b])) == [sin(a), sin(b)] def test_MapAnd(): assert MapAnd(PositiveQ, [S(1), S(2), S(3), S(0)]) == False assert MapAnd(PositiveQ, [S(1), S(2), S(3)]) == True def test_FalseQ(): assert FalseQ(True) == False assert FalseQ(False) == True def test_ComplexNumberQ(): assert ComplexNumberQ(1 + I*2, I) == True assert ComplexNumberQ(a + b, I) == False def test_Re(): assert Re(1 + I) == 1 def test_Im(): assert Im(1 + 2*I) == 2 assert Im(a*I) == a def test_PositiveOrZeroQ(): assert PositiveOrZeroQ(S(0)) == True assert PositiveOrZeroQ(S(1)) == True assert PositiveOrZeroQ(-S(1)) == False def test_RealNumericQ(): assert RealNumericQ(S(1)) == True assert RealNumericQ(-S(1)) == True def test_NegativeOrZeroQ(): assert NegativeOrZeroQ(S(0)) == True assert NegativeOrZeroQ(-S(1)) == True assert NegativeOrZeroQ(S(1)) == False def test_FractionOrNegativeQ(): assert FractionOrNegativeQ(S(1)/2) == True assert FractionOrNegativeQ(-S(1)) == True assert FractionOrNegativeQ(-S(1)/2) == True assert FractionOrNegativeQ(S(1)) == False def test_NegativeQ(): assert NegativeQ(-S(1)) == True assert NegativeQ(S(1)) == False assert NegativeQ(oo) == False def test_ProductQ(): assert ProductQ(a*b) == True assert ProductQ(a + b) == False def test_SumQ(): assert SumQ(a*b) == False assert SumQ(a + b) == True def test_NonsumQ(): assert NonsumQ(a*b) == True assert NonsumQ(a + b) == False def test_SqrtNumberQ(): assert SqrtNumberQ(sqrt(2)) == True def test_IntLinearcQ(): assert IntLinearcQ(1, 2, 3, 4, 5, 6, x) == True assert IntLinearcQ(S(1)/100, S(2)/100, S(3)/100, S(4)/100, S(5)/100, S(6)/100, x) == False def test_IndependentQ(): assert IndependentQ(a + b*x, x) == False assert IndependentQ(a + b, x) == True def test_PowerQ(): assert PowerQ(a**b) == True assert PowerQ(a + b) == False def test_IntegerPowerQ(): assert IntegerPowerQ(a**2) == True assert IntegerPowerQ(a**0.5) == False def test_PositiveIntegerPowerQ(): assert PositiveIntegerPowerQ(a**3) == True assert PositiveIntegerPowerQ(a**(-2)) == False def test_FractionalPowerQ(): assert FractionalPowerQ(a**(S(2)/S(3))) assert FractionalPowerQ(a**sqrt(2)) == False def test_AtomQ(): assert AtomQ(x) assert not AtomQ(x+1) assert not AtomQ([a, b]) def test_ExpQ(): assert ExpQ(E**2) assert not ExpQ(2**E) def test_LogQ(): assert LogQ(rubi_log(x)) assert not LogQ(sin(x) + rubi_log(x)) def test_Head(): assert Head(sin(x)) == sin assert Head(rubi_log(x**3 + 3)) in (sym_log, rubi_log) def test_MemberQ(): assert MemberQ([a, b, c], b) assert MemberQ([sin, cos, log, tan], Head(sin(x))) assert MemberQ([[sin, cos], [tan, cot]], [sin, cos]) assert not MemberQ([[sin, cos], [tan, cot]], [sin, tan]) def test_TrigQ(): assert TrigQ(sin(x)) assert TrigQ(tan(x**2 + 2)) assert not TrigQ(sin(x) + tan(x)) def test_SinQ(): assert SinQ(sin(x)) assert not SinQ(tan(x)) def test_CosQ(): assert CosQ(cos(x)) assert not CosQ(csc(x)) def test_TanQ(): assert TanQ(tan(x)) assert not TanQ(cot(x)) def test_CotQ(): assert not CotQ(tan(x)) assert CotQ(cot(x)) def test_SecQ(): assert SecQ(sec(x)) assert not SecQ(csc(x)) def test_CscQ(): assert not CscQ(sec(x)) assert CscQ(csc(x)) def test_HyperbolicQ(): assert HyperbolicQ(sinh(x)) assert HyperbolicQ(cosh(x)) assert HyperbolicQ(tanh(x)) assert not HyperbolicQ(sinh(x) + cosh(x) + tanh(x)) def test_SinhQ(): assert SinhQ(sinh(x)) assert not SinhQ(cosh(x)) def test_CoshQ(): assert not CoshQ(sinh(x)) assert CoshQ(cosh(x)) def test_TanhQ(): assert TanhQ(tanh(x)) assert not TanhQ(coth(x)) def test_CothQ(): assert not CothQ(tanh(x)) assert CothQ(coth(x)) def test_SechQ(): assert SechQ(sech(x)) assert not SechQ(csch(x)) def test_CschQ(): assert not CschQ(sech(x)) assert CschQ(csch(x)) def test_InverseTrigQ(): assert InverseTrigQ(acot(x)) assert InverseTrigQ(asec(x)) assert not InverseTrigQ(acsc(x) + asec(x)) def test_SinCosQ(): assert SinCosQ(sin(x)) assert SinCosQ(cos(x)) assert SinCosQ(sec(x)) assert not SinCosQ(acsc(x)) def test_SinhCoshQ(): assert not SinhCoshQ(sin(x)) assert SinhCoshQ(cosh(x)) assert SinhCoshQ(sech(x)) assert SinhCoshQ(csch(x)) def test_LeafCount(): assert LeafCount(1 + a + x**2) == 6 def test_Numerator(): assert Numerator(-S(1)/S(2) + I/3) == -3 + 2*I assert Numerator((-a/b)**3) == (-a)**(3) assert Numerator(S(3)/2) == 3 assert Numerator(x/y) == x def test_Length(): assert Length(a + b) == 2 assert Length(sin(a)*cos(a)) == 2 def test_ListQ(): assert ListQ([1, 2]) assert not ListQ(a) def test_InverseHyperbolicQ(): assert InverseHyperbolicQ(acosh(a)) def test_InverseFunctionQ(): assert InverseFunctionQ(rubi_log(a)) assert InverseFunctionQ(acos(a)) assert not InverseFunctionQ(a) assert InverseFunctionQ(acosh(a)) assert InverseFunctionQ(polylog(a, b)) def test_EqQ(): assert EqQ(a, a) assert not EqQ(a, b) def test_FactorSquareFree(): assert FactorSquareFree(x**5 - x**3 - x**2 + 1) == (x**3 + 2*x**2 + 2*x + 1)*(x - 1)**2 def test_FactorSquareFreeList(): assert FactorSquareFreeList(x**5-x**3-x**2 + 1) == [[1, 1], [x**3 + 2*x**2 + 2*x + 1, 1], [x - 1, 2]] assert FactorSquareFreeList(x**4 - 2*x**2 + 1) == [[1, 1], [x**2 - 1, 2]] def test_PerfectPowerTest(): assert not PerfectPowerTest(sqrt(x), x) assert not PerfectPowerTest(x**5-x**3-x**2 + 1, x) assert PerfectPowerTest(x**4 - 2*x**2 + 1, x) == (x**2 - 1)**2 def test_SquareFreeFactorTest(): assert not SquareFreeFactorTest(sqrt(x), x) assert SquareFreeFactorTest(x**5 - x**3 - x**2 + 1, x) == (x**3 + 2*x**2 + 2*x + 1)*(x - 1)**2 def test_Rest(): assert Rest([2, 3, 5, 7]) == [3, 5, 7] assert Rest(a + b + c) == b + c assert Rest(a*b*c) == b*c assert Rest(1/b) == -1 def test_First(): assert First([2, 3, 5, 7]) == 2 assert First(y**S(2)) == y assert First(a + b + c) == a assert First(a*b*c) == a def test_ComplexFreeQ(): assert ComplexFreeQ(a) assert not ComplexFreeQ(a + 2*I) def test_FractionalPowerFreeQ(): assert not FractionalPowerFreeQ(x**(S(2)/3)) assert FractionalPowerFreeQ(x) def test_Exponent(): assert Min(ExponentList(x**2 + x + 1 + 5, x)) == 0 assert ExponentList(x**2 + x + 1 + 5, x) == [0, 1, 2] assert ExponentList(x**2 + x + 1, x) == [0, 1, 2] assert ExponentList(x**2 + 2*x + 1, x) == [0, 1, 2] assert Exponent(x**3 + x + 1, x) == 3 assert Exponent(x**2 + 2*x + 1, x) == 2 assert ExponentList(x**3, x) == [3] assert Exponent(S(1), x) == 0 assert Exponent(x**(-3), x) == 0 def test_Expon(): assert Expon(x**2+2*x+1, x) == 2 def test_QuadraticQ(): assert not QuadraticQ([x**2+x+1, 5*x**2], x) assert QuadraticQ([x**2+x+1, 5*x**2+3*x+6], x) assert not QuadraticQ(x**2+1+x**3, x) assert QuadraticQ(x**2+1+x, x) assert not QuadraticQ(x**2, x) def test_BinomialQ(): assert BinomialQ(x**9, x) assert not BinomialQ((1 + x)**3, x) def test_BinomialParts(): assert BinomialParts(2 + x*(9*x), x) == [2, 9, 2] assert BinomialParts(x**9, x) == [0, 1, 9] assert BinomialParts(2*x**3, x) == [0, 2, 3] assert BinomialParts(2 + x, x) == [2, 1, 1] def test_BinomialDegree(): assert BinomialDegree(b + 2*c*x**n, x) == n assert BinomialDegree(2 + x*(9*x), x) == 2 assert BinomialDegree(x**9, x) == 9 def test_PolynomialQ(): assert not PolynomialQ(x*(-1 + x**2), (1 + x)**(S(1)/2)) assert not PolynomialQ((16*x + 1)/((x + 5)**2*(x**2 + x + 1)), 2*x) C = Symbol('C') assert not PolynomialQ(A + b*x + c*x**2, x**2) assert PolynomialQ(A + B*x + C*x**2) assert PolynomialQ(A + B*x**4 + C*x**2, x**2) assert PolynomialQ(x**3, x) assert not PolynomialQ(sqrt(x), x) def test_PolyQ(): assert PolyQ(-2*a*d**3*e**2 + x**6*(a*e**5 - b*d*e**4 + c*d**2*e**3)\ + x**4*(-2*a*d*e**4 + 2*b*d**2*e**3 - 2*c*d**3*e**2) + x**2*(2*a*d**2*e**3 - 2*b*d**3*e**2), x) assert not PolyQ(1/sqrt(a + b*x**2 - c*x**4), x**2) assert PolyQ(x, x, 1) assert PolyQ(x**2, x, 2) assert not PolyQ(x**3, x, 2) def test_EvenQ(): assert EvenQ(S(2)) assert not EvenQ(S(1)) def test_OddQ(): assert OddQ(S(1)) assert not OddQ(S(2)) def test_PerfectSquareQ(): assert PerfectSquareQ(S(4)) assert PerfectSquareQ(a**S(2)*b**S(4)) assert not PerfectSquareQ(S(1)/3) def test_NiceSqrtQ(): assert NiceSqrtQ(S(1)/3) assert not NiceSqrtQ(-S(1)) assert NiceSqrtQ(pi**2) assert NiceSqrtQ(pi**2*sin(4)**4) assert not NiceSqrtQ(pi**2*sin(4)**3) def test_Together(): assert Together(1/a + b/2) == (a*b + 2)/(2*a) def test_PosQ(): #assert not PosQ((b*e - c*d)/(c*e)) assert not PosQ(S(0)) assert PosQ(S(1)) assert PosQ(pi) assert PosQ(pi**3) assert PosQ((-pi)**4) assert PosQ(sin(1)**2*pi**4) def test_NumericQ(): assert NumericQ(sin(cos(2))) def test_NumberQ(): assert NumberQ(pi) def test_CoefficientList(): assert CoefficientList(1 + a*x, x) == [1, a] assert CoefficientList(1 + a*x**3, x) == [1, 0, 0, a] assert CoefficientList(sqrt(x), x) == [] def test_ReplaceAll(): assert ReplaceAll(x, {x: a}) == a assert ReplaceAll(a*x, {x: a + b}) == a*(a + b) assert ReplaceAll(a*x, {a: b, x: a + b}) == b*(a + b) def test_ExpandLinearProduct(): assert ExpandLinearProduct(rubi_log(x), x**2, a, b, x) == a**2*rubi_log(x)/b**2 - 2*a*(a + b*x)*rubi_log(x)/b**2 + (a + b*x)**2*rubi_log(x)/b**2 assert ExpandLinearProduct((a + b*x)**n, x**3, a, b, x) == -a**3*(a + b*x)**n/b**3 + 3*a**2*(a + b*x)**(n + 1)/b**3 - 3*a*(a + b*x)**(n + 2)/b**3 + (a + b*x)**(n + 3)/b**3 def test_PolynomialDivide(): assert PolynomialDivide((a*c - b*c*x)**2, (a + b*x)**2, x) == -4*a*b*c**2*x/(a + b*x)**2 + c**2 assert PolynomialDivide(x + x**2, x, x) == x + 1 assert PolynomialDivide((1 + x)**3, (1 + x)**2, x) == x + 1 assert PolynomialDivide((a + b*x)**3, x**3, x) == a*(a**2 + 3*a*b*x + 3*b**2*x**2)/x**3 + b**3 assert PolynomialDivide(x**3*(a + b*x), S(1), x) == b*x**4 + a*x**3 assert PolynomialDivide(x**6, (a + b*x)**2, x) == -a**5*(5*a + 6*b*x)/(b**6*(a + b*x)**2) + 5*a**4/b**6 - 4*a**3*x/b**5 + 3*a**2*x**2/b**4 - 2*a*x**3/b**3 + x**4/b**2 def test_MatchQ(): a_ = Wild('a', exclude=[x]) b_ = Wild('b', exclude=[x]) c_ = Wild('c', exclude=[x]) assert MatchQ(a*b + c, a_*b_ + c_, a_, b_, c_) == (a, b, c) def test_PolynomialQuotientRemainder(): assert PolynomialQuotientRemainder(x**2, x+a, x) == [-a + x, a**2] def test_FreeFactors(): assert FreeFactors(a, x) == a assert FreeFactors(x + a, x) == 1 assert FreeFactors(a*b*x, x) == a*b def test_NonfreeFactors(): assert NonfreeFactors(a, x) == 1 assert NonfreeFactors(x + a, x) == x + a assert NonfreeFactors(a*b*x, x) == x def test_FreeTerms(): assert FreeTerms(a, x) == a assert FreeTerms(x*a, x) == 0 assert FreeTerms(a*x + b, x) == b def test_NonfreeTerms(): assert NonfreeTerms(a, x) == 0 assert NonfreeTerms(a*x, x) == a*x assert NonfreeTerms(a*x + b, x) == a*x def test_RemoveContent(): assert RemoveContent(a + b*x, x) == a + b*x def test_ExpandAlgebraicFunction(): assert ExpandAlgebraicFunction((a + b)*x, x) == a*x + b*x assert ExpandAlgebraicFunction((a + b)**2*x, x)== a**2*x + 2*a*b*x + b**2*x assert ExpandAlgebraicFunction((a + b)**2*x**2, x) == a**2*x**2 + 2*a*b*x**2 + b**2*x**2 def test_CollectReciprocals(): assert CollectReciprocals(-1/(1 + 1*x) - 1/(1 - 1*x), x) == -2/(-x**2 + 1) assert CollectReciprocals(1/(1 + 1*x) - 1/(1 - 1*x), x) == -2*x/(-x**2 + 1) def test_ExpandCleanup(): assert ExpandCleanup(a + b, x) == a*(1 + b/a) assert ExpandCleanup(b**2/(a**2*(a + b*x)**2) + 1/(a**2*x**2) + 2*b**2/(a**3*(a + b*x)) - 2*b/(a**3*x), x) == b**2/(a**2*(a + b*x)**2) + 1/(a**2*x**2) + 2*b**2/(a**3*(a + b*x)) - 2*b/(a**3*x) def test_AlgebraicFunctionQ(): assert not AlgebraicFunctionQ(1/(a + c*x**(2*n)), x) assert AlgebraicFunctionQ(a, x) == True assert AlgebraicFunctionQ(a*b, x) == True assert AlgebraicFunctionQ(x**2, x) == True assert AlgebraicFunctionQ(x**2*a, x) == True assert AlgebraicFunctionQ(x**2 + a, x) == True assert AlgebraicFunctionQ(sin(x), x) == False assert AlgebraicFunctionQ([], x) == True assert AlgebraicFunctionQ([a, a*b], x) == True assert AlgebraicFunctionQ([sin(x)], x) == False def test_MonomialQ(): assert not MonomialQ(2*x**7 + 6, x) assert MonomialQ(2*x**7, x) assert not MonomialQ(2*x**7 + 5*x**3, x) assert not MonomialQ([2*x**7 + 6, 2*x**7], x) assert MonomialQ([2*x**7, 5*x**3], x) def test_MonomialSumQ(): assert MonomialSumQ(2*x**7 + 6, x) == True assert MonomialSumQ(x**2 + x**3 + 5*x, x) == True def test_MinimumMonomialExponent(): assert MinimumMonomialExponent(x**2 + 5*x**2 + 3*x**5, x) == 2 assert MinimumMonomialExponent(x**2 + 5*x**2 + 1, x) == 0 def test_MonomialExponent(): assert MonomialExponent(3*x**7, x) == 7 assert not MonomialExponent(3+x**3, x) def test_LinearMatchQ(): assert LinearMatchQ(2 + 3*x, x) assert LinearMatchQ(3*x, x) assert not LinearMatchQ(3*x**2, x) def test_SimplerQ(): a1, b1 = symbols('a1 b1') assert SimplerQ(a1, b1) assert SimplerQ(2*a, a + 2) assert SimplerQ(2, x) assert not SimplerQ(x**2, x) assert SimplerQ(2*x, x + 2 + 6*x**3) def test_GeneralizedTrinomialParts(): assert not GeneralizedTrinomialParts((7 + 2*x**6 + 3*x**12), x) assert GeneralizedTrinomialParts(x**2 + x**3 + x**4, x) == [1, 1, 1, 3, 2] assert not GeneralizedTrinomialParts(2*x + 3*x + 4*x, x) def test_TrinomialQ(): assert TrinomialQ((7 + 2*x**6 + 3*x**12), x) assert not TrinomialQ(x**2, x) def test_GeneralizedTrinomialDegree(): assert not GeneralizedTrinomialDegree((7 + 2*x**6 + 3*x**12), x) assert GeneralizedTrinomialDegree(x**2 + x**3 + x**4, x) == 1 def test_GeneralizedBinomialParts(): assert GeneralizedBinomialParts(3*x*(3 + x**6), x) == [9, 3, 7, 1] assert GeneralizedBinomialParts((3*x + x**7), x) == [3, 1, 7, 1] def test_GeneralizedBinomialDegree(): assert GeneralizedBinomialDegree(3*x*(3 + x**6), x) == 6 assert GeneralizedBinomialDegree((3*x + x**7), x) == 6 def test_PowerOfLinearQ(): assert PowerOfLinearQ((6*x), x) assert not PowerOfLinearQ((3 + 6*x**3), x) assert PowerOfLinearQ((3 + 6*x)**3, x) def test_LinearPairQ(): assert not LinearPairQ(6*x**2 + 4, 3*x**2 + 2, x) assert LinearPairQ(6*x + 4, 3*x + 2, x) assert not LinearPairQ(6*x, 3*x + 2, x) assert LinearPairQ(6*x, 3*x, x) def test_LeadTerm(): assert LeadTerm(a*b*c) == a*b*c assert LeadTerm(a + b + c) == a def test_RemainingTerms(): assert RemainingTerms(a*b*c) == a*b*c assert RemainingTerms(a + b + c) == b + c def test_LeadFactor(): assert LeadFactor(a*b*c) == a assert LeadFactor(a + b + c) == a + b + c assert LeadFactor(b*I) == I assert LeadFactor(c*a**b) == a**b assert LeadFactor(S(2)) == S(2) def test_RemainingFactors(): assert RemainingFactors(a*b*c) == b*c assert RemainingFactors(a + b + c) == 1 assert RemainingFactors(a*I) == a def test_LeadBase(): assert LeadBase(a**b) == a assert LeadBase(a**b*c) == a def test_LeadDegree(): assert LeadDegree(a**b) == b assert LeadDegree(a**b*c) == b def test_Numer(): assert Numer(a/b) == a assert Numer(a**(-2)) == 1 assert Numer(a**(-2)*a/b) == 1 def test_Denom(): assert Denom(a/b) == b assert Denom(a**(-2)) == a**2 assert Denom(a**(-2)*a/b) == a*b def test_Coeff(): assert Coeff(7 + 2*x + 4*x**3, x, 1) == 2 assert Coeff(a + b*x + c*x**3, x, 0) == a assert Coeff(a + b*x + c*x**3, x, 4) == 0 assert Coeff(b*x + c*x**3, x, 3) == c def test_MergeMonomials(): assert MergeMonomials(x**2*(1 + 1*x)**3*(1 + 1*x)**n, x) == x**2*(x + 1)**(n + 3) assert MergeMonomials(x**2*(1 + 1*x)**2*(1*(1 + 1*x)**1)**2, x) == x**2*(x + 1)**4 assert MergeMonomials(b**2/a**3, x) == b**2/a**3 def test_RationalFunctionQ(): assert RationalFunctionQ(a, x) assert RationalFunctionQ(x**2, x) assert RationalFunctionQ(x**3 + x**4, x) assert RationalFunctionQ(x**3*S(2), x) assert not RationalFunctionQ(x**3 + x**(0.5), x) assert not RationalFunctionQ(x**(S(2)/3)*(a + b*x)**2, x) def test_Apart(): assert Apart(1/(x**2*(a + b*x)**2), x) == b**2/(a**2*(a + b*x)**2) + 1/(a**2*x**2) + 2*b**2/(a**3*(a + b*x)) - 2*b/(a**3*x) assert Apart(x**(S(2)/3)*(a + b*x)**2, x) == x**(S(2)/3)*(a + b*x)**2 def test_RationalFunctionFactors(): assert RationalFunctionFactors(a, x) == a assert RationalFunctionFactors(sqrt(x), x) == 1 assert RationalFunctionFactors(x*x**3, x) == x*x**3 assert RationalFunctionFactors(x*sqrt(x), x) == 1 def test_NonrationalFunctionFactors(): assert NonrationalFunctionFactors(x, x) == 1 assert NonrationalFunctionFactors(sqrt(x), x) == sqrt(x) assert NonrationalFunctionFactors(sqrt(x)*rubi_log(x), x) == sqrt(x)*rubi_log(x) def test_Reverse(): assert Reverse([1, 2, 3]) == [3, 2, 1] assert Reverse(a**b) == b**a def test_RationalFunctionExponents(): assert RationalFunctionExponents(sqrt(x), x) == [0, 0] assert RationalFunctionExponents(a, x) == [0, 0] assert RationalFunctionExponents(x, x) == [1, 0] assert RationalFunctionExponents(x**(-1), x)== [0, 1] assert RationalFunctionExponents(x**(-1)*a, x) == [0, 1] assert RationalFunctionExponents(x**(-1) + a, x) == [1, 1] def test_PolynomialGCD(): assert PolynomialGCD(x**2 - 1, x**2 - 3*x + 2) == x - 1 def test_PolyGCD(): assert PolyGCD(x**2 - 1, x**2 - 3*x + 2, x) == x - 1 def test_AlgebraicFunctionFactors(): assert AlgebraicFunctionFactors(sin(x)*x, x) == x assert AlgebraicFunctionFactors(sin(x), x) == 1 assert AlgebraicFunctionFactors(x, x) == x def test_NonalgebraicFunctionFactors(): assert NonalgebraicFunctionFactors(sin(x)*x, x) == sin(x) assert NonalgebraicFunctionFactors(sin(x), x) == sin(x) assert NonalgebraicFunctionFactors(x, x) == 1 def test_QuotientOfLinearsP(): assert QuotientOfLinearsP((a + b*x)/(x), x) assert QuotientOfLinearsP(x*a, x) assert not QuotientOfLinearsP(x**2*a, x) assert not QuotientOfLinearsP(x**2 + a, x) assert QuotientOfLinearsP(x + a, x) assert QuotientOfLinearsP(x, x) assert QuotientOfLinearsP(1 + x, x) def test_QuotientOfLinearsParts(): assert QuotientOfLinearsParts((b*x)/(c), x) == [0, b/c, 1, 0] assert QuotientOfLinearsParts((b*x)/(c + x), x) == [0, b, c, 1] assert QuotientOfLinearsParts((b*x)/(c + d*x), x) == [0, b, c, d] assert QuotientOfLinearsParts((a + b*x)/(c + d*x), x) == [a, b, c, d] assert QuotientOfLinearsParts(x**2 + a, x) == [a + x**2, 0, 1, 0] assert QuotientOfLinearsParts(a/x, x) == [a, 0, 0, 1] assert QuotientOfLinearsParts(1/x, x) == [1, 0, 0, 1] assert QuotientOfLinearsParts(a*x + 1, x) == [1, a, 1, 0] assert QuotientOfLinearsParts(x, x) == [0, 1, 1, 0] assert QuotientOfLinearsParts(a, x) == [a, 0, 1, 0] def test_QuotientOfLinearsQ(): assert not QuotientOfLinearsQ((a + x), x) assert QuotientOfLinearsQ((a + x)/(x), x) assert QuotientOfLinearsQ((a + b*x)/(x), x) def test_Flatten(): assert Flatten([a, b, [c, [d, e]]]) == [a, b, c, d, e] def test_Sort(): assert Sort([b, a, c]) == [a, b, c] assert Sort([b, a, c], True) == [c, b, a] def test_AbsurdNumberQ(): assert AbsurdNumberQ(S(1)) assert not AbsurdNumberQ(a*x) assert not AbsurdNumberQ(a**(S(1)/2)) assert AbsurdNumberQ((S(1)/3)**(S(1)/3)) def test_AbsurdNumberFactors(): assert AbsurdNumberFactors(S(1)) == S(1) assert AbsurdNumberFactors((S(1)/3)**(S(1)/3)) == S(3)**(S(2)/3)/S(3) assert AbsurdNumberFactors(a) == S(1) def test_NonabsurdNumberFactors(): assert NonabsurdNumberFactors(a) == a assert NonabsurdNumberFactors(S(1)) == S(1) assert NonabsurdNumberFactors(a*S(2)) == a def test_NumericFactor(): assert NumericFactor(S(1)) == S(1) assert NumericFactor(1*I) == S(1) assert NumericFactor(S(1) + I) == S(1) assert NumericFactor(a**(S(1)/3)) == S(1) assert NumericFactor(a*S(3)) == S(3) assert NumericFactor(a + b) == S(1) def test_NonnumericFactors(): assert NonnumericFactors(S(3)) == S(1) assert NonnumericFactors(I) == I assert NonnumericFactors(S(3) + I) == S(3) + I assert NonnumericFactors((S(1)/3)**(S(1)/3)) == S(1) assert NonnumericFactors(rubi_log(a)) == rubi_log(a) def test_Prepend(): assert Prepend([1, 2, 3], [4, 5]) == [4, 5, 1, 2, 3] def test_SumSimplerQ(): assert not SumSimplerQ(S(4 + x),S(3 + x**3)) assert SumSimplerQ(S(4 + x), S(3 - x)) def test_SumSimplerAuxQ(): assert SumSimplerAuxQ(S(4 + x), S(3 - x)) assert not SumSimplerAuxQ(S(4), S(3)) def test_SimplerSqrtQ(): assert SimplerSqrtQ(S(2), S(16*x**3)) assert not SimplerSqrtQ(S(x*2), S(16)) assert not SimplerSqrtQ(S(-4), S(16)) assert SimplerSqrtQ(S(4), S(16)) assert not SimplerSqrtQ(S(4), S(0)) def test_TrinomialParts(): assert TrinomialParts((1 + 5*x**3)**2, x) == [1, 10, 25, 3] assert TrinomialParts(1 + 5*x**3 + 2*x**6, x) == [1, 5, 2, 3] assert TrinomialParts(((1 + 5*x**3)**2) + 6, x) == [7, 10, 25, 3] assert not TrinomialParts(1 + 5*x**3 + 2*x**5, x) def test_TrinomialDegree(): assert TrinomialDegree((7 + 2*x**6)**2, x) == 6 assert TrinomialDegree(1 + 5*x**3 + 2*x**6, x) == 3 assert not TrinomialDegree(1 + 5*x**3 + 2*x**5, x) def test_CubicMatchQ(): assert not CubicMatchQ(S(3 + x**6), x) assert CubicMatchQ(S(x**3), x) assert not CubicMatchQ(S(3), x) assert CubicMatchQ(S(3 + x**3), x) assert CubicMatchQ(S(3 + x**3 + 2*x), x) def test_BinomialMatchQ(): assert BinomialMatchQ(x, x) assert BinomialMatchQ(2 + 3*x**5, x) assert BinomialMatchQ(3*x**5, x) assert BinomialMatchQ(3*x, x) assert not BinomialMatchQ(x + x**2 + x**3, x) def test_TrinomialMatchQ(): assert not TrinomialMatchQ((5 + 2*x**6)**2, x) assert not TrinomialMatchQ((7 + 8*x**6), x) assert TrinomialMatchQ((7 + 2*x**6 + 3*x**3), x) assert TrinomialMatchQ(b*x**2 + c*x**4, x) def test_GeneralizedBinomialMatchQ(): assert not GeneralizedBinomialMatchQ((1 + x**4), x) assert GeneralizedBinomialMatchQ((3*x + x**7), x) def test_QuadraticMatchQ(): assert not QuadraticMatchQ((a + b*x)*(c + d*x), x) assert QuadraticMatchQ(x**2 + x, x) assert QuadraticMatchQ(x**2+1+x, x) assert QuadraticMatchQ(x**2, x) def test_PowerOfLinearMatchQ(): assert PowerOfLinearMatchQ(x, x) assert not PowerOfLinearMatchQ(S(6)**3, x) assert not PowerOfLinearMatchQ(S(6 + 3*x**2)**3, x) assert PowerOfLinearMatchQ(S(6 + 3*x)**3, x) def test_GeneralizedTrinomialMatchQ(): assert not GeneralizedTrinomialMatchQ(7 + 2*x**6 + 3*x**12, x) assert not GeneralizedTrinomialMatchQ(7 + 2*x**6 + 3*x**3, x) assert not GeneralizedTrinomialMatchQ(7 + 2*x**6 + 3*x**5, x) assert GeneralizedTrinomialMatchQ(x**2 + x**3 + x**4, x) def test_QuotientOfLinearsMatchQ(): assert QuotientOfLinearsMatchQ((1 + x)*(3 + 4*x**2)/(2 + 4*x), x) assert not QuotientOfLinearsMatchQ(x*(3 + 4*x**2)/(2 + 4*x**3), x) assert QuotientOfLinearsMatchQ(x*(3 + 4*x)/(2 + 4*x), x) assert QuotientOfLinearsMatchQ(2*(3 + 4*x)/(2 + 4*x), x) def test_PolynomialTermQ(): assert not PolynomialTermQ(S(3), x) assert PolynomialTermQ(3*x**6, x) assert not PolynomialTermQ(3*x**6+5*x, x) def test_PolynomialTerms(): assert PolynomialTerms(x + 6*x**3 + rubi_log(x), x) == 6*x**3 + x assert PolynomialTerms(x + 6*x**3 + 6*x, x) == 6*x**3 + 7*x assert PolynomialTerms(x + 6*x**3 + 6, x) == 6*x**3 + x def test_NonpolynomialTerms(): assert NonpolynomialTerms(x + 6*x**3 + rubi_log(x), x) == rubi_log(x) assert NonpolynomialTerms(x + 6*x**3 + 6*x, x) == 0 assert NonpolynomialTerms(x + 6*x**3 + 6, x) == 6 def test_PseudoBinomialQ(): assert PseudoBinomialQ(3 + 5*(x)**6, x) assert PseudoBinomialQ(3 + 5*(2 + 5*x)**6, x) def test_PseudoBinomialParts(): assert PseudoBinomialParts(3 + 7*(1 + x)**6, x) == [3, 1, 7**(S(1)/S(6)), 7**(S(1)/S(6)), 6] assert PseudoBinomialParts(3 + 7*(1 + x)**3, x) == [3, 1, 7**(S(1)/S(3)), 7**(S(1)/S(3)), 3] assert not PseudoBinomialParts(3 + 7*(1 + x)**2, x) assert PseudoBinomialParts(3 + 7*(x)**5, x) == [3, 1, 0, 7**(S(1)/S(5)), 5] def test_PseudoBinomialPairQ(): assert not PseudoBinomialPairQ(3 + 5*(x)**6,3 + (x)**6, x) assert not PseudoBinomialPairQ(3 + 5*(1 + x)**6,3 + (1 + x)**6, x) def test_NormalizePseudoBinomial(): assert NormalizePseudoBinomial(3 + 5*(1 + x)**6, x) == 3+(5**(S(1)/S(6))+5**(S(1)/S(6))*x)**S(6) assert NormalizePseudoBinomial(3 + 5*(x)**6, x) == 3+5*x**6 def test_CancelCommonFactors(): assert CancelCommonFactors(S(x*y*S(6))**S(6), S(x*y*S(6))) == [46656*x**6*y**6, 6*x*y] assert CancelCommonFactors(S(y*6)**S(6), S(x*y*S(6))) == [46656*y**6, 6*x*y] assert CancelCommonFactors(S(6), S(3)) == [6, 3] def test_SimplerIntegrandQ(): assert SimplerIntegrandQ(S(5), 4*x, x) assert not SimplerIntegrandQ(S(x + 5*x**3), S(x**2 + 3*x), x) assert SimplerIntegrandQ(S(x + 8), S(x**2 + 3*x), x) def test_Drop(): assert Drop([1, 2, 3, 4, 5, 6], [2, 4]) == [1, 5, 6] assert Drop([1, 2, 3, 4, 5, 6], -3) == [1, 2, 3] assert Drop([1, 2, 3, 4, 5, 6], 2) == [3, 4, 5, 6] assert Drop(a*b*c, 1) == b*c def test_SubstForInverseFunction(): assert SubstForInverseFunction(x, a, b, x) == b assert SubstForInverseFunction(a, a, b, x) == a assert SubstForInverseFunction(x**a, x**a, b, x) == x assert SubstForInverseFunction(a*x**a, a, b, x) == a*b**a def test_SubstForFractionalPower(): assert SubstForFractionalPower(a, b, n, c, x) == a assert SubstForFractionalPower(x, b, n, c, x) == c assert SubstForFractionalPower(a**(S(1)/2), a, n, b, x) == x**(n/2) def test_CombineExponents(): assert True def test_FractionalPowerOfSquareQ(): assert not FractionalPowerOfSquareQ(x) assert not FractionalPowerOfSquareQ((a + b)**(S(2)/S(3))) assert not FractionalPowerOfSquareQ((a + b)**(S(2)/S(3))*c) assert FractionalPowerOfSquareQ(((a + b*x)**(S(2)))**(S(1)/3)) == (a + b*x)**S(2) def test_FractionalPowerSubexpressionQ(): assert not FractionalPowerSubexpressionQ(x, a, x) assert FractionalPowerSubexpressionQ(x**(S(2)/S(3)), a, x) assert not FractionalPowerSubexpressionQ(b*a, a, x) def test_FactorNumericGcd(): assert FactorNumericGcd(5*a**2*e**4 + 2*a*b*d*e**3 + 2*a*c*d**2*e**2 + b**2*d**2*e**2 - 6*b*c*d**3*e + 21*c**2*d**4) ==\ 5*a**2*e**4 + 2*a*b*d*e**3 + 2*a*c*d**2*e**2 + b**2*d**2*e**2 - 6*b*c*d**3*e + 21*c**2*d**4 assert FactorNumericGcd(x**(S(2))) == x**S(2) assert FactorNumericGcd(rubi_log(x)) == rubi_log(x) assert FactorNumericGcd(rubi_log(x)*x) == x*rubi_log(x) assert FactorNumericGcd(rubi_log(x) + x**S(2)) == rubi_log(x) + x**S(2) def test_Apply(): assert Apply(List, [a, b, c]) == [a, b, c] def test_TrigSimplify(): assert TrigSimplify(a*sin(x)**2 + a*cos(x)**2 + v) == a + v assert TrigSimplify(a*sec(x)**2 - a*tan(x)**2 + v) == a + v assert TrigSimplify(a*csc(x)**2 - a*cot(x)**2 + v) == a + v assert TrigSimplify(S(1) - sin(x)**2) == cos(x)**2 assert TrigSimplify(1 + tan(x)**2) == sec(x)**2 assert TrigSimplify(1 + cot(x)**2) == csc(x)**2 assert TrigSimplify(-S(1) + sec(x)**2) == tan(x)**2 assert TrigSimplify(-1 + csc(x)**2) == cot(x)**2 def test_MergeFactors(): assert simplify(MergeFactors(b/(a - c)**3 , 8*c**3*(b*x + c)**(3/2)/(3*b**4) - 24*c**2*(b*x + c)**(5/2)/(5*b**4) + \ 24*c*(b*x + c)**(7/2)/(7*b**4) - 8*(b*x + c)**(9/2)/(9*b**4)) - (8*c**3*(b*x + c)**1.5/(3*b**3) - 24*c**2*(b*x + c)**2.5/(5*b**3) + \ 24*c*(b*x + c)**3.5/(7*b**3) - 8*(b*x + c)**4.5/(9*b**3))/(a - c)**3) == 0 assert MergeFactors(x, x) == x**2 assert MergeFactors(x*y, x) == x**2*y def test_FactorInteger(): assert FactorInteger(2434500) == [(2, 2), (3, 2), (5, 3), (541, 1)] def test_ContentFactor(): assert ContentFactor(a*b + a*c) == a*(b + c) def test_Order(): assert Order(a, b) == 1 assert Order(b, a) == -1 assert Order(a, a) == 0 def test_FactorOrder(): assert FactorOrder(1, 1) == 0 assert FactorOrder(1, 2) == -1 assert FactorOrder(2, 1) == 1 assert FactorOrder(a, b) == 1 def test_Smallest(): assert Smallest([2, 1, 3, 4]) == 1 assert Smallest(1, 2) == 1 assert Smallest(-1, -2) == -2 def test_MostMainFactorPosition(): assert MostMainFactorPosition([S(1), S(2), S(3)]) == 1 assert MostMainFactorPosition([S(1), S(7), S(3), S(4), S(5)]) == 2 def test_OrderedQ(): assert OrderedQ([a, b]) assert not OrderedQ([b, a]) def test_MinimumDegree(): assert MinimumDegree(S(1), S(2)) == 1 assert MinimumDegree(S(1), sqrt(2)) == 1 assert MinimumDegree(sqrt(2), S(1)) == 1 assert MinimumDegree(sqrt(3), sqrt(2)) == sqrt(2) assert MinimumDegree(sqrt(2), sqrt(2)) == sqrt(2) def test_PositiveFactors(): assert PositiveFactors(S(0)) == 1 assert PositiveFactors(-S(1)) == S(1) assert PositiveFactors(sqrt(2)) == sqrt(2) assert PositiveFactors(-rubi_log(2)) == rubi_log(2) assert PositiveFactors(sqrt(2)*S(-1)) == sqrt(2) def test_NonpositiveFactors(): assert NonpositiveFactors(S(0)) == 0 assert NonpositiveFactors(-S(1)) == -1 assert NonpositiveFactors(sqrt(2)) == 1 assert NonpositiveFactors(-rubi_log(2)) == -1 def test_Sign(): assert Sign(S(0)) == 0 assert Sign(S(1)) == 1 assert Sign(-S(1)) == -1 def test_PolynomialInQ(): v = rubi_log(x) assert PolynomialInQ(S(1), v, x) assert PolynomialInQ(v, v, x) assert PolynomialInQ(1 + v**2, v, x) assert PolynomialInQ(1 + a*v**2, v, x) assert not PolynomialInQ(sqrt(v), v, x) def test_ExponentIn(): v = rubi_log(x) assert ExponentIn(S(1), rubi_log(x), x) == 0 assert ExponentIn(S(1) + v, rubi_log(x), x) == 1 assert ExponentIn(S(1) + v + v**3, rubi_log(x), x) == 3 assert ExponentIn(S(2)*sqrt(v)*v**3, rubi_log(x), x) == 3.5 def test_PolynomialInSubst(): v = rubi_log(x) assert PolynomialInSubst(S(1) + rubi_log(x)**3, rubi_log(x), x) == 1 + x**3 assert PolynomialInSubst(S(1) + rubi_log(x), rubi_log(x), x) == x + 1 def test_Distrib(): assert Distrib(x, a) == x*a assert Distrib(x, a + b) == a*x + b*x def test_DistributeDegree(): assert DistributeDegree(x, m) == x**m assert DistributeDegree(x**a, m) == x**(a*m) assert DistributeDegree(a*b, m) == a**m * b**m def test_FunctionOfPower(): assert FunctionOfPower(a, x) == None assert FunctionOfPower(x, x) == 1 assert FunctionOfPower(x**3, x) == 3 assert FunctionOfPower(x**3*cos(x**6), x) == 3 def test_DivideDegreesOfFactors(): assert DivideDegreesOfFactors(a**b, S(3)) == a**(b/3) assert DivideDegreesOfFactors(a**b*c, S(3)) == a**(b/3)*c**(c/3) def test_MonomialFactor(): assert MonomialFactor(a, x) == [0, a] assert MonomialFactor(x, x) == [1, 1] assert MonomialFactor(x + y, x) == [0, x + y] assert MonomialFactor(rubi_log(x), x) == [0, rubi_log(x)] assert MonomialFactor(rubi_log(x)*x, x) == [1, rubi_log(x)] def test_NormalizeIntegrand(): assert NormalizeIntegrand((x**2 + 8), x) == x**2 + 8 assert NormalizeIntegrand((x**2 + 3*x)**2, x) == x**2*(x + 3)**2 assert NormalizeIntegrand(a**2*(a + b*x)**2, x) == a**2*(a + b*x)**2 assert NormalizeIntegrand(b**2/(a**2*(a + b*x)**2), x) == b**2/(a**2*(a + b*x)**2) def test_NormalizeIntegrandAux(): v = (6*A*a*c - 2*A*b**2 + B*a*b)/(a*x**2) - (6*A*a**2*c**2 - 10*A*a*b**2*c - 8*A*a*b*c**2*x + 2*A*b**4 + 2*A*b**3*c*x + 5*B*a**2*b*c + 4*B*a**2*c**2*x - B*a*b**3 - B*a*b**2*c*x)/(a**2*(a + b*x + c*x**2)) + (-2*A*b + B*a)*(4*a*c - b**2)/(a**2*x) assert NormalizeIntegrandAux(v, x) == (6*A*a*c - 2*A*b**2 + B*a*b)/(a*x**2) - (6*A*a**2*c**2 - 10*A*a*b**2*c + 2*A*b**4 + 5*B*a**2*b*c - B*a*b**3 + x*(-8*A*a*b*c**2 + 2*A*b**3*c + 4*B*a**2*c**2 - B*a*b**2*c))/(a**2*(a + b*x + c*x**2)) + (-2*A*b + B*a)*(4*a*c - b**2)/(a**2*x) assert NormalizeIntegrandAux((x**2 + 3*x)**2, x) == x**2*(x + 3)**2 assert NormalizeIntegrandAux((x**2 + 8), x) == x**2 + 8 def test_NormalizeIntegrandFactor(): assert NormalizeIntegrandFactor((3*x + x**3)**2, x) == x**2*(x**2 + 3)**2 assert NormalizeIntegrandFactor((x**2 + 8), x) == x**2 + 8 def test_NormalizeIntegrandFactorBase(): assert NormalizeIntegrandFactorBase((x**2 + 8)**3, x) == (x**2 + 8)**3 assert NormalizeIntegrandFactorBase((x**2 + 8), x) == x**2 + 8 assert NormalizeIntegrandFactorBase(a**2*(a + b*x)**2, x) == a**2*(a + b*x)**2 def test_AbsorbMinusSign(): assert AbsorbMinusSign((x + 2)**5*(x + 3)**5) == (-x - 3)**5*(x + 2)**5 assert AbsorbMinusSign((x + 2)**5*(x + 3)**2) == -(x + 2)**5*(x + 3)**2 def test_NormalizeLeadTermSigns(): assert NormalizeLeadTermSigns((-x + 3)*(x**2 + 3)) == (-x + 3)*(x**2 + 3) assert NormalizeLeadTermSigns(x + 3) == x + 3 def test_SignOfFactor(): assert SignOfFactor(S(-x + 3)) == [1, -x + 3] assert SignOfFactor(S(-x)) == [-1, x] def test_NormalizePowerOfLinear(): assert NormalizePowerOfLinear((x + 3)**5, x) == (x + 3)**5 assert NormalizePowerOfLinear(((x + 3)**2) + 3, x) == x**2 + 6*x + 12 def test_SimplifyIntegrand(): assert SimplifyIntegrand((x**2 + 3)**2, x) == (x**2 + 3)**2 assert SimplifyIntegrand(x**2 + 3 + (x**6) + 6, x) == x**6 + x**2 + 9 def test_SimplifyTerm(): assert SimplifyTerm(a**2/b**2, x) == a**2/b**2 assert SimplifyTerm(-6*x/5 + (5*x + 3)**2/25 - 9/25, x) == x**2 def test_togetherSimplify(): assert TogetherSimplify(-6*x/5 + (5*x + 3)**2/25 - 9/25) == x**2 def test_ExpandToSum(): qq = 6 Pqq = e**3 Pq = (d+e*x**2)**3 aa = 2 nn = 2 cc = 1 pp = -1/2 bb = 3 assert nsimplify(ExpandToSum(Pq - Pqq*x**qq - Pqq*(aa*x**(-2*nn + qq)*(-2*nn + qq + 1) + bb*x**(-nn + qq)*(nn*(pp - 1) + qq + 1))/(cc*(2*nn*pp + qq + 1)), x) - \ (d**3 + x**4*(3*d*e**2 - 2.4*e**3) + x**2*(3*d**2*e - 1.2*e**3))) == 0 assert ExpandToSum(x**2 + 3*x + 3, x**3 + 3, x) == x**3*(x**2 + 3*x + 3) + 3*x**2 + 9*x + 9 assert ExpandToSum(x**3 + 6, x) == x**3 + 6 assert ExpandToSum(S(x**2 + 3*x + 3)*3, x) == 3*x**2 + 9*x + 9 assert ExpandToSum((a + b*x), x) == a + b*x def test_UnifySum(): assert UnifySum((3 + x + 6*x**3 + sin(x)), x) == 6*x**3 + x + sin(x) + 3 assert UnifySum((3 + x + 6*x**3)*3, x) == 18*x**3 + 3*x + 9 def test_FunctionOfInverseLinear(): assert FunctionOfInverseLinear((x)/(a + b*x), x) == [a, b] assert FunctionOfInverseLinear((c + d*x)/(a + b*x), x) == [a, b] assert not FunctionOfInverseLinear(1/(a + b*x), x) def test_PureFunctionOfSinhQ(): v = rubi_log(x) f = sinh(v) assert PureFunctionOfSinhQ(f, v, x) assert not PureFunctionOfSinhQ(cosh(v), v, x) assert PureFunctionOfSinhQ(f**2, v, x) def test_PureFunctionOfTanhQ(): v = rubi_log(x) f = tanh(v) assert PureFunctionOfTanhQ(f, v, x) assert not PureFunctionOfTanhQ(cosh(v), v, x) assert PureFunctionOfTanhQ(f**2, v, x) def test_PureFunctionOfCoshQ(): v = rubi_log(x) f = cosh(v) assert PureFunctionOfCoshQ(f, v, x) assert not PureFunctionOfCoshQ(sinh(v), v, x) assert PureFunctionOfCoshQ(f**2, v, x) def test_IntegerQuotientQ(): u = S(2)*sin(x) v = sin(x) assert IntegerQuotientQ(u, v) assert IntegerQuotientQ(u, u) assert not IntegerQuotientQ(S(1), S(2)) def test_OddQuotientQ(): u = S(3)*sin(x) v = sin(x) assert OddQuotientQ(u, v) assert OddQuotientQ(u, u) assert not OddQuotientQ(S(1), S(2)) def test_EvenQuotientQ(): u = S(2)*sin(x) v = sin(x) assert EvenQuotientQ(u, v) assert not EvenQuotientQ(u, u) assert not EvenQuotientQ(S(1), S(2)) def test_FunctionOfSinhQ(): v = rubi_log(x) assert FunctionOfSinhQ(cos(sinh(v)), v, x) assert FunctionOfSinhQ(sinh(v), v, x) assert FunctionOfSinhQ(sinh(v)*cos(sinh(v)), v, x) def test_FunctionOfCoshQ(): v = rubi_log(x) assert FunctionOfCoshQ(cos(cosh(v)), v, x) assert FunctionOfCoshQ(cosh(v), v, x) assert FunctionOfCoshQ(cosh(v)*cos(cosh(v)), v, x) def test_FunctionOfTanhQ(): v = rubi_log(x) t = Tanh(v) c = Coth(v) assert FunctionOfTanhQ(t, v, x) assert FunctionOfTanhQ(c, v, x) assert FunctionOfTanhQ(t + c, v, x) assert FunctionOfTanhQ(t*c, v, x) assert not FunctionOfTanhQ(sin(x), v, x) def test_FunctionOfTanhWeight(): v = rubi_log(x) t = Tanh(v) c = Coth(v) assert FunctionOfTanhWeight(x, v, x) == 0 assert FunctionOfTanhWeight(sinh(v), v, x) == 0 assert FunctionOfTanhWeight(tanh(v), v, x) == 1 assert FunctionOfTanhWeight(coth(v), v, x) == -1 assert FunctionOfTanhWeight(t**2, v, x) == 1 assert FunctionOfTanhWeight(sinh(v)**2, v, x) == -1 assert FunctionOfTanhWeight(coth(v)*sinh(v)**2, v, x) == -2 def test_FunctionOfHyperbolicQ(): v = rubi_log(x) s = Sinh(v) t = Tanh(v) assert not FunctionOfHyperbolicQ(x, v, x) assert FunctionOfHyperbolicQ(s + t, v, x) assert FunctionOfHyperbolicQ(sinh(t), v, x) def test_SmartNumerator(): assert SmartNumerator(x**(-2)) == 1 assert SmartNumerator(x**(2)*a) == x**2*a def test_SmartDenominator(): assert SmartDenominator(x**(-2)) == x**2 assert SmartDenominator(x**(-2)*1/S(3)) == x**2*3 def test_SubstForAux(): v = rubi_log(x) assert SubstForAux(v, v, x) == x assert SubstForAux(v**2, v, x) == x**2 assert SubstForAux(x, v, x) == x assert SubstForAux(v**2, v**4, x) == sqrt(x) assert SubstForAux(v**2*v, v, x) == x**3 def test_SubstForTrig(): v = rubi_log(x) s, c, t = sin(v), cos(v), tan(v) assert SubstForTrig(cos(a/2 + b*x/2), x/sqrt(x**2 + 1), 1/sqrt(x**2 + 1), a/2 + b*x/2, x) == 1/sqrt(x**2 + 1) assert SubstForTrig(s, sin, cos, v, x) == sin assert SubstForTrig(t, sin(v), cos(v), v, x) == sin(rubi_log(x))/cos(rubi_log(x)) assert SubstForTrig(sin(2*v), sin(x), cos(x), v, x) == 2*sin(x)*cos(x) assert SubstForTrig(s*t, sin(x), cos(x), v, x) == sin(x)**2/cos(x) def test_SubstForHyperbolic(): v = rubi_log(x) s, c, t = sinh(v), cosh(v), tanh(v) assert SubstForHyperbolic(s, sinh(x), cosh(x), v, x) == sinh(x) assert SubstForHyperbolic(t, sinh(x), cosh(x), v, x) == sinh(x)/cosh(x) assert SubstForHyperbolic(sinh(2*v), sinh(x), cosh(x), v, x) == 2*sinh(x)*cosh(x) assert SubstForHyperbolic(s*t, sinh(x), cosh(x), v, x) == sinh(x)**2/cosh(x) def test_SubstForFractionalPowerOfLinear(): u = a + b*x assert not SubstForFractionalPowerOfLinear(u, x) assert not SubstForFractionalPowerOfLinear(u**(S(2)), x) assert SubstForFractionalPowerOfLinear(u**(S(1)/2), x) == [x**2, 2, a + b*x, 1/b] def test_InverseFunctionOfLinear(): u = a + b*x assert InverseFunctionOfLinear(rubi_log(u)*sin(x), x) == rubi_log(u) assert InverseFunctionOfLinear(rubi_log(u), x) == rubi_log(u) def test_InertTrigQ(): s = sin(x) c = cos(x) assert not InertTrigQ(sin(x), csc(x), cos(h)) assert InertTrigQ(sin(x), csc(x)) assert not InertTrigQ(s, c) assert InertTrigQ(c) def test_PowerOfInertTrigSumQ(): func = sin assert PowerOfInertTrigSumQ((1 + S(2)*(S(3)*func(x**2))**S(5))**3, func, x) assert PowerOfInertTrigSumQ((1 + 2*(S(3)*func(x**2))**3 + 4*(S(5)*func(x**2))**S(3))**2, func, x) def test_PiecewiseLinearQ(): assert PiecewiseLinearQ(a + b*x, x) assert not PiecewiseLinearQ(Log(c*sin(a)**S(3)), x) assert not PiecewiseLinearQ(x**3, x) assert PiecewiseLinearQ(atanh(tanh(a + b*x)), x) assert PiecewiseLinearQ(tanh(atanh(a + b*x)), x) assert not PiecewiseLinearQ(coth(atanh(a + b*x)), x) def test_KnownTrigIntegrandQ(): func = sin(a + b*x) assert KnownTrigIntegrandQ([sin], S(1), x) assert KnownTrigIntegrandQ([sin], (a + b*func)**m, x) assert KnownTrigIntegrandQ([sin], (a + b*func)**m*(1 + 2*func), x) assert KnownTrigIntegrandQ([sin], a + c*func**2, x) assert KnownTrigIntegrandQ([sin], a + b*func + c*func**2, x) assert KnownTrigIntegrandQ([sin], (a + b*func)**m*(c + d*func**2), x) assert KnownTrigIntegrandQ([sin], (a + b*func)**m*(c + d*func + e*func**2), x) assert not KnownTrigIntegrandQ([cos], (a + b*func)**m, x) def test_KnownSineIntegrandQ(): assert KnownSineIntegrandQ((a + b*sin(a + b*x))**m, x) def test_KnownTangentIntegrandQ(): assert KnownTangentIntegrandQ((a + b*tan(a + b*x))**m, x) def test_KnownCotangentIntegrandQ(): assert KnownCotangentIntegrandQ((a + b*cot(a + b*x))**m, x) def test_KnownSecantIntegrandQ(): assert KnownSecantIntegrandQ((a + b*sec(a + b*x))**m, x) def test_TryPureTanSubst(): assert TryPureTanSubst(atan(c*(a + b*tan(a + b*x))), x) assert TryPureTanSubst(atanh(c*(a + b*cot(a + b*x))), x) assert not TryPureTanSubst(tan(c*(a + b*cot(a + b*x))), x) def test_TryPureTanhSubst(): assert not TryPureTanhSubst(rubi_log(x), x) assert TryPureTanhSubst(sin(x), x) assert not TryPureTanhSubst(atanh(a*tanh(x)), x) assert not TryPureTanhSubst((a + b*x)**S(2), x) def test_TryTanhSubst(): assert not TryTanhSubst(rubi_log(x), x) assert not TryTanhSubst(a*(b + c)**3, x) assert not TryTanhSubst(1/(a + b*sinh(x)**S(3)), x) assert not TryTanhSubst(sinh(S(3)*x)*cosh(S(4)*x), x) assert not TryTanhSubst(a*(b*sech(x)**3)**c, x) def test_GeneralizedBinomialQ(): assert GeneralizedBinomialQ(a*x**q + b*x**n, x) assert not GeneralizedBinomialQ(a*x**q, x) def test_GeneralizedTrinomialQ(): assert not GeneralizedTrinomialQ(7 + 2*x**6 + 3*x**12, x) assert not GeneralizedTrinomialQ(a*x**q + c*x**(2*n-q), x) def test_SubstForFractionalPowerOfQuotientOfLinears(): assert SubstForFractionalPowerOfQuotientOfLinears(((a + b*x)/(c + d*x))**(S(3)/2), x) == [x**4/(b - d*x**2)**2, 2, (a + b*x)/(c + d*x), -a*d + b*c] def test_SubstForFractionalPowerQ(): assert SubstForFractionalPowerQ(x, sin(x), x) assert SubstForFractionalPowerQ(x**2, sin(x), x) assert not SubstForFractionalPowerQ(x**(S(3)/2), sin(x), x) assert SubstForFractionalPowerQ(sin(x)**(S(3)/2), sin(x), x) def test_AbsurdNumberGCD(): assert AbsurdNumberGCD(S(4)) == 4 assert AbsurdNumberGCD(S(4), S(8), S(12)) == 4 assert AbsurdNumberGCD(S(2), S(3), S(12)) == 1 def test_TrigReduce(): assert TrigReduce(cos(x)**2) == cos(2*x)/2 + 1/2 assert TrigReduce(cos(x)**2*sin(x)) == sin(x)/4 + sin(3*x)/4 assert TrigReduce(cos(x)**2+sin(x)) == sin(x) + cos(2*x)/2 + 1/2 assert TrigReduce(cos(x)**2*sin(x)**5) == 5*sin(x)/64 + sin(3*x)/64 - 3*sin(5*x)/64 + sin(7*x)/64 assert TrigReduce(2*sin(x)*cos(x) + 2*cos(x)**2) == sin(2*x) + cos(2*x) + 1 assert TrigReduce(sinh(a + b*x)**2) == cosh(2*a + 2*b*x)/2 - 1/2 assert TrigReduce(sinh(a + b*x)*cosh(a + b*x)) == sinh(2*a + 2*b*x)/2 def test_FunctionOfDensePolynomialsQ(): assert FunctionOfDensePolynomialsQ(x**2 + 3, x) assert not FunctionOfDensePolynomialsQ(x**2, x) assert not FunctionOfDensePolynomialsQ(x, x) assert FunctionOfDensePolynomialsQ(S(2), x) def test_PureFunctionOfSinQ(): v = rubi_log(x) f = sin(v) assert PureFunctionOfSinQ(f, v, x) assert not PureFunctionOfSinQ(cos(v), v, x) assert PureFunctionOfSinQ(f**2, v, x) def test_PureFunctionOfTanQ(): v = rubi_log(x) f = tan(v) assert PureFunctionOfTanQ(f, v, x) assert not PureFunctionOfTanQ(cos(v), v, x) assert PureFunctionOfTanQ(f**2, v, x) def test_PowerVariableSubst(): assert PowerVariableSubst((2*x)**3, 2, x) == 8*x**(3/2) assert PowerVariableSubst((2*x)**3, 2, x) == 8*x**(3/2) assert PowerVariableSubst((2*x), 2, x) == 2*x assert PowerVariableSubst((2*x)**3, 2, x) == 8*x**(3/2) assert PowerVariableSubst((2*x)**7, 2, x) == 128*x**(7/2) assert PowerVariableSubst((6+2*x)**7, 2, x) == (2*x + 6)**7 assert PowerVariableSubst((2*x)**7+3, 2, x) == 128*x**(7/2) + 3 def test_PowerVariableDegree(): assert PowerVariableDegree(S(2), 0, 2*x, x) == [0, 2*x] assert PowerVariableDegree((2*x)**2, 0, 2*x, x) == [2, 1] assert PowerVariableDegree(x**2, 0, 2*x, x) == [2, 1] assert PowerVariableDegree(S(4), 0, 2*x, x) == [0, 2*x] def test_PowerVariableExpn(): assert not PowerVariableExpn((x)**3, 2, x) assert not PowerVariableExpn((2*x)**3, 2, x) assert PowerVariableExpn((2*x)**2, 4, x) == [4*x**3, 2, 1] def test_FunctionOfQ(): assert FunctionOfQ(x**2, sqrt(-exp(2*x**2) + 1)*exp(x**2),x) assert not FunctionOfQ(S(x**3), x*2, x) assert FunctionOfQ(S(a), x*2, x) assert FunctionOfQ(S(3*x), x*2, x) def test_ExpandTrigExpand(): assert ExpandTrigExpand(1, cos(x), x**2, 2, 2, x) == 4*cos(x**2)**4 - 4*cos(x**2)**2 + 1 assert ExpandTrigExpand(1, cos(x) + sin(x), x**2, 2, 2, x) == 4*sin(x**2)**2*cos(x**2)**2 + 8*sin(x**2)*cos(x**2)**3 - 4*sin(x**2)*cos(x**2) + 4*cos(x**2)**4 - 4*cos(x**2)**2 + 1 def test_TrigToExp(): from sympy.integrals.rubi.utility_function import rubi_exp as exp assert TrigToExp(sin(x)) == -I*(exp(I*x) - exp(-I*x))/2 assert TrigToExp(cos(x)) == exp(I*x)/2 + exp(-I*x)/2 assert TrigToExp(cos(x)*tan(x**2)) == I*(exp(I*x)/2 + exp(-I*x)/2)*(-exp(I*x**2) + exp(-I*x**2))/(exp(I*x**2) + exp(-I*x**2)) assert TrigToExp(cos(x) + sin(x)**2) == -(exp(I*x) - exp(-I*x))**2/4 + exp(I*x)/2 + exp(-I*x)/2 assert Simplify(TrigToExp(cos(x)*tan(x**S(2))*sin(x)**S(2))-(-I*(exp(I*x)/S(2) + exp(-I*x)/S(2))*(exp(I*x) - exp(-I*x))**S(2)*(-exp(I*x**S(2)) + exp(-I*x**S(2)))/(S(4)*(exp(I*x**S(2)) + exp(-I*x**S(2)))))) == 0 def test_ExpandTrigReduce(): assert ExpandTrigReduce(2*cos(3 + x)**3, x) == 3*cos(x + 3)/2 + cos(3*x + 9)/2 assert ExpandTrigReduce(2*sin(x)**3+cos(2 + x), x) == 3*sin(x)/2 - sin(3*x)/2 + cos(x + 2) assert ExpandTrigReduce(cos(x + 3)**2, x) == cos(2*x + 6)/2 + 1/2 def test_NormalizeTrig(): assert NormalizeTrig(S(2*sin(2 + x)), x) == 2*sin(x + 2) assert NormalizeTrig(S(2*sin(2 + x)**3), x) == 2*sin(x + 2)**3 assert NormalizeTrig(S(2*sin((2 + x)**2)**3), x) == 2*sin(x**2 + 4*x + 4)**3 def test_FunctionOfTrigQ(): v = rubi_log(x) s = sin(v) t = tan(v) assert not FunctionOfTrigQ(x, v, x) assert FunctionOfTrigQ(s + t, v, x) assert FunctionOfTrigQ(sin(t), v, x) def test_RationalFunctionExpand(): assert RationalFunctionExpand(x**S(5)*(e + f*x)**n/(a + b*x**S(3)), x) == -a*x**2*(e + f*x)**n/(b*(a + b*x**3)) +\ e**2*(e + f*x)**n/(b*f**2) - 2*e*(e + f*x)**(n + 1)/(b*f**2) + (e + f*x)**(n + 2)/(b*f**2) assert RationalFunctionExpand(x**S(3)*(S(2)*x + 2)**S(2)/(2*x**2 + 1), x) == 2*x**3 + 4*x**2 + x + (- x + 2)/(2*x**2 + 1) - 2 assert RationalFunctionExpand((a + b*x + c*x**4)*rubi_log(x)**3, x) == a*rubi_log(x)**3 + b*x*rubi_log(x)**3 + c*x**4*rubi_log(x)**3 assert RationalFunctionExpand(a + b*x + c*x**4, x) == a + b*x + c*x**4 def test_SameQ(): assert SameQ(1, 1, 1) assert not SameQ(1, 1, 2) def test_Map2(): assert Map2(Add, [a, b, c], [x, y, z]) == [a + x, b + y, c + z] def test_ConstantFactor(): assert ConstantFactor(a + a*x**3, x) == [a, x**3 + 1] assert ConstantFactor(a, x) == [a, 1] assert ConstantFactor(x, x) == [1, x] assert ConstantFactor(x**S(3), x) == [1, x**3] assert ConstantFactor(x**(S(3)/2), x) == [1, x**(3/2)] assert ConstantFactor(a*x**3, x) == [a, x**3] assert ConstantFactor(a + x**3, x) == [1, a + x**3] def test_CommonFactors(): assert CommonFactors([a, a, a]) == [a, 1, 1, 1] assert CommonFactors([x*S(2), x**S(3)*S(2), sin(x)*x*S(2)]) == [2, x, x**3, x*sin(x)] assert CommonFactors([x, x**S(3), sin(x)*x]) == [1, x, x**3, x*sin(x)] assert CommonFactors([S(2), S(4), S(6)]) == [2, 1, 2, 3] def test_FunctionOfLinear(): f = sin(a + b*x) assert FunctionOfLinear(f, x) == [sin(x), a, b] assert FunctionOfLinear(a + b*x, x) == [x, a, b] assert not FunctionOfLinear(a, x) def test_FunctionOfExponentialQ(): assert FunctionOfExponentialQ(exp(x + exp(x) + exp(exp(x))), x) assert FunctionOfExponentialQ(a**(a + b*x), x) assert FunctionOfExponentialQ(a**(b*x), x) assert not FunctionOfExponentialQ(a**sin(a + b*x), x) def test_FunctionOfExponential(): assert FunctionOfExponential(a**(a + b*x), x) def test_FunctionOfExponentialFunction(): assert FunctionOfExponentialFunction(a**(a + b*x), x) == x assert FunctionOfExponentialFunction(S(2)*a**(a + b*x), x) == 2*x def test_FunctionOfTrig(): assert FunctionOfTrig(sin(x + 1), x + 1, x) == x + 1 assert FunctionOfTrig(sin(x), x) == x assert not FunctionOfTrig(cos(x**2 + 1), x) assert FunctionOfTrig(sin(a+b*x)**3, x) == a+b*x def test_AlgebraicTrigFunctionQ(): assert AlgebraicTrigFunctionQ(sin(x + 3), x) assert AlgebraicTrigFunctionQ(x, x) assert AlgebraicTrigFunctionQ(x + 1, x) assert AlgebraicTrigFunctionQ(sinh(x + 1), x) assert AlgebraicTrigFunctionQ(sinh(x + 1)**2, x) assert not AlgebraicTrigFunctionQ(sinh(x**2 + 1)**2, x) def test_FunctionOfHyperbolic(): assert FunctionOfTrig(sin(x + 1), x + 1, x) == x + 1 assert FunctionOfTrig(sin(x), x) == x assert not FunctionOfTrig(cos(x**2 + 1), x) def test_FunctionOfExpnQ(): assert FunctionOfExpnQ(x, x, x) == 1 assert FunctionOfExpnQ(x**2, x, x) == 2 assert FunctionOfExpnQ(x**2.1, x, x) == 1 assert not FunctionOfExpnQ(x, x**2, x) assert not FunctionOfExpnQ(x + 1, (x + 5)**2, x) assert not FunctionOfExpnQ(x + 1, (x + 1)**2, x) def test_PureFunctionOfCosQ(): v = rubi_log(x) f = cos(v) assert PureFunctionOfCosQ(f, v, x) assert not PureFunctionOfCosQ(sin(v), v, x) assert PureFunctionOfCosQ(f**2, v, x) def test_PureFunctionOfCotQ(): v = rubi_log(x) f = cot(v) assert PureFunctionOfCotQ(f, v, x) assert not PureFunctionOfCotQ(sin(v), v, x) assert PureFunctionOfCotQ(f**2, v, x) def test_FunctionOfSinQ(): v = rubi_log(x) assert FunctionOfSinQ(cos(sin(v)), v, x) assert FunctionOfSinQ(sin(v), v, x) assert FunctionOfSinQ(sin(v)*cos(sin(v)), v, x) def test_FunctionOfCosQ(): v = rubi_log(x) assert FunctionOfCosQ(cos(cos(v)), v, x) assert FunctionOfCosQ(cos(v), v, x) assert FunctionOfCosQ(cos(v)*cos(cos(v)), v, x) def test_FunctionOfTanQ(): v = rubi_log(x) t = tan(v) c = cot(v) assert FunctionOfTanQ(t, v, x) assert FunctionOfTanQ(c, v, x) assert FunctionOfTanQ(t + c, v, x) assert FunctionOfTanQ(t*c, v, x) assert not FunctionOfTanQ(sin(x), v, x) def test_FunctionOfTanWeight(): v = rubi_log(x) t = tan(v) c = cot(v) assert FunctionOfTanWeight(x, v, x) == 0 assert FunctionOfTanWeight(sin(v), v, x) == 0 assert FunctionOfTanWeight(tan(v), v, x) == 1 assert FunctionOfTanWeight(cot(v), v, x) == -1 assert FunctionOfTanWeight(t**2, v, x) == 1 assert FunctionOfTanWeight(sin(v)**2, v, x) == -1 assert FunctionOfTanWeight(cot(v)*sin(v)**2, v, x) == -2 def test_OddTrigPowerQ(): assert not OddTrigPowerQ(sin(x)**3, 1, x) assert OddTrigPowerQ(sin(3),1,x) assert OddTrigPowerQ(sin(3*x),x,x) assert OddTrigPowerQ(sin(3*x)**3,x,x) def test_FunctionOfLog(): assert not FunctionOfLog(x**2*(a + b*x)**3*exp(-a - b*x) ,False, False, x) assert FunctionOfLog(rubi_log(2*x**8)*2 + rubi_log(2*x**8) + 1, x) == [3*x + 1, 2*x**8, 8] assert FunctionOfLog(rubi_log(2*x)**2,x) == [x**2, 2*x, 1] assert FunctionOfLog(rubi_log(3*x**3)**2 + 1,x) == [x**2 + 1, 3*x**3, 3] assert FunctionOfLog(rubi_log(2*x**8)*2,x) == [2*x, 2*x**8, 8] assert not FunctionOfLog(2*sin(x)*2,x) def test_EulerIntegrandQ(): assert EulerIntegrandQ((2*x + 3*((x + 1)**3)**1.5)**(-3), x) assert not EulerIntegrandQ((2*x + (2*x**2)**2)**3, x) assert not EulerIntegrandQ(3*x**2 + 5*x + 1, x) def test_Divides(): assert not Divides(x, a*x**2, x) assert Divides(x, a*x, x) == a def test_EasyDQ(): assert EasyDQ(3*x**2, x) assert EasyDQ(3*x**3 - 6, x) assert EasyDQ(x**3, x) assert EasyDQ(sin(x**rubi_log(3)), x) def test_ProductOfLinearPowersQ(): assert ProductOfLinearPowersQ(S(1), x) assert ProductOfLinearPowersQ((x + 1)**3, x) assert not ProductOfLinearPowersQ((x**2 + 1)**3, x) assert ProductOfLinearPowersQ(x + 1, x) def test_Rt(): b = symbols('b') assert Rt(-b**2, 4) == (-b**2)**(S(1)/S(4)) assert Rt(x**2, 2) == x assert Rt(S(2 + 3*I), S(8)) == (2 + 3*I)**(1/8) assert Rt(x**2 + 4 + 4*x, 2) == x + 2 assert Rt(S(8), S(3)) == 2 assert Rt(S(16807), S(5)) == 7 def test_NthRoot(): assert NthRoot(S(14580), S(3)) == 9*2**(S(2)/S(3))*5**(S(1)/S(3)) assert NthRoot(9, 2) == 3.0 assert NthRoot(81, 2) == 9.0 assert NthRoot(81, 4) == 3.0 def test_AtomBaseQ(): assert not AtomBaseQ(x**2) assert AtomBaseQ(x**3) assert AtomBaseQ(x) assert AtomBaseQ(S(2)**3) assert not AtomBaseQ(sin(x)) def test_SumBaseQ(): assert not SumBaseQ((x + 1)**2) assert SumBaseQ((x + 1)**3) assert SumBaseQ(3*x+3) assert not SumBaseQ(x) def test_NegSumBaseQ(): assert not NegSumBaseQ(-x + 1) assert NegSumBaseQ(x - 1) assert not NegSumBaseQ((x - 1)**2) assert NegSumBaseQ((x - 1)**3) def test_AllNegTermQ(): x = Symbol('x', negative=True) assert AllNegTermQ(x) assert not AllNegTermQ(x + 2) assert AllNegTermQ(x - 2) assert AllNegTermQ((x - 2)**3) assert not AllNegTermQ((x - 2)**2) def test_TrigSquareQ(): assert TrigSquareQ(sin(x)**2) assert TrigSquareQ(cos(x)**2) assert not TrigSquareQ(tan(x)**2) def test_Inequality(): assert not Inequality(S('0'), Less, m, LessEqual, S('1')) assert Inequality(S('0'), Less, S('1')) assert Inequality(S('0'), Less, S('1'), LessEqual, S('5')) def test_SplitProduct(): assert SplitProduct(OddQ, S(3)*x) == [3, x] assert not SplitProduct(OddQ, S(2)*x) def test_SplitSum(): assert SplitSum(FracPart, sin(x)) == [sin(x), 0] assert SplitSum(FracPart, sin(x) + S(2)) == [sin(x), S(2)] def test_Complex(): assert Complex(a, b) == a + I*b def test_SimpFixFactor(): assert SimpFixFactor((a*c + b*c)**S(4), x) == (a*c + b*c)**4 assert SimpFixFactor((a*Complex(0, c) + b*Complex(0, d))**S(3), x) == -I*(a*c + b*d)**3 assert SimpFixFactor((a*Complex(0, d) + b*Complex(0, e) + c*Complex(0, f))**S(2), x) == -(a*d + b*e + c*f)**2 assert SimpFixFactor((a + b*x**(-1/S(2))*x**S(3))**S(3), x) == (a + b*x**(5/2))**3 assert SimpFixFactor((a*c + b*c**S(2)*x**S(2))**S(3), x) == c**3*(a + b*c*x**2)**3 assert SimpFixFactor((a*c**S(2) + b*c**S(1)*x**S(2))**S(3), x) == c**3*(a*c + b*x**2)**3 assert SimpFixFactor(a*cos(x)**2 + a*sin(x)**2 + v, x) == a*cos(x)**2 + a*sin(x)**2 + v def test_SimplifyAntiderivative(): assert SimplifyAntiderivative(acoth(coth(x)), x) == x assert SimplifyAntiderivative(a*x, x) == a*x assert SimplifyAntiderivative(atanh(cot(x)), x) == atanh(2*sin(x)*cos(x))/2 assert SimplifyAntiderivative(a*cos(x)**2 + a*sin(x)**2 + v, x) == a*cos(x)**2 + a*sin(x)**2 def test_FixSimplify(): assert FixSimplify(x*Complex(0, a)*(v*Complex(0, b) + w)**S(3)) == a*x*(b*v - I*w)**3 def test_TrigSimplifyAux(): assert TrigSimplifyAux(a*cos(x)**2 + a*sin(x)**2 + v) == a + v assert TrigSimplifyAux(x**2) == x**2 def test_SubstFor(): assert SubstFor(x**2 + 1, tanh(x), x) == tanh(x) assert SubstFor(x**2, sinh(x), x) == sinh(sqrt(x)) def test_FresnelS(): assert FresnelS(oo) == 1/2 assert FresnelS(0) == 0 def test_FresnelC(): assert FresnelC(0) == 0 assert FresnelC(oo) == 1/2 def test_Erfc(): assert Erfc(0) == 1 assert Erfc(oo) == 0 def test_Erfi(): assert Erfi(oo) is oo assert Erfi(0) == 0 def test_Gamma(): assert Gamma(u) == gamma(u) def test_ElementaryFunctionQ(): assert ElementaryFunctionQ(x + y) assert ElementaryFunctionQ(sin(x + y)) assert ElementaryFunctionQ(E**(x*a)) def test_Util_Part(): from sympy.integrals.rubi.utility_function import Util_Part assert Util_Part(1, a + b).doit() == a assert Util_Part(c, a + b).doit() == Util_Part(c, a + b) def test_Part(): assert Part([1, 2, 3], 1) == 1 assert Part(a*b, 1) == a def test_PolyLog(): assert PolyLog(a, b) == polylog(a, b) def test_PureFunctionOfCothQ(): v = rubi_log(x) assert PureFunctionOfCothQ(coth(v), v, x) assert PureFunctionOfCothQ(a + coth(v), v, x) assert not PureFunctionOfCothQ(sin(v), v, x) def test_ExpandIntegrand(): assert ExpandIntegrand(sqrt(a + b*x**S(2) + c*x**S(4)), (f*x)**(S(3)/2)*(d + e*x**S(2)), x) == \ d*(f*x)**(3/2)*sqrt(a + b*x**2 + c*x**4) + e*(f*x)**(7/2)*sqrt(a + b*x**2 + c*x**4)/f**2 assert ExpandIntegrand((6*A*a*c - 2*A*b**2 + B*a*b - 2*c*x*(A*b - 2*B*a))/(x**2*(a + b*x + c*x**2)), x) == \ (6*A*a*c - 2*A*b**2 + B*a*b)/(a*x**2) + (-6*A*a**2*c**2 + 10*A*a*b**2*c - 2*A*b**4 - 5*B*a**2*b*c + B*a*b**3 + x*(8*A*a*b*c**2 - 2*A*b**3*c - 4*B*a**2*c**2 + B*a*b**2*c))/(a**2*(a + b*x + c*x**2)) + (-2*A*b + B*a)*(4*a*c - b**2)/(a**2*x) assert ExpandIntegrand(x**2*(e + f*x)**3*F**(a + b*(c + d*x)**1), x) == F**(a + b*(c + d*x))*e**2*(e + f*x)**3/f**2 - 2*F**(a + b*(c + d*x))*e*(e + f*x)**4/f**2 + F**(a + b*(c + d*x))*(e + f*x)**5/f**2 assert ExpandIntegrand((x)*(a + b*x)**2*f**(e*(c + d*x)**n), x) == a**2*f**(e*(c + d*x)**n)*x + 2*a*b*f**(e*(c + d*x)**n)*x**2 + b**2*f**(e*(c + d*x)**n)*x**3 assert ExpandIntegrand(sin(x)**3*(a + b*(1/sin(x)))**2, x) == a**2*sin(x)**3 + 2*a*b*sin(x)**2 + b**2*sin(x) assert ExpandIntegrand(x*(a + b*ArcSin(c + d*x))**n, x) == -c*(a + b*asin(c + d*x))**n/d + (a + b*asin(c + d*x))**n*(c + d*x)/d assert ExpandIntegrand((a + b*x)**S(3)*(A + B*x)/(c + d*x), x) == B*(a + b*x)**3/d + b*(a + b*x)**2*(A*d - B*c)/d**2 + b*(a + b*x)*(A*d - B*c)*(a*d - b*c)/d**3 + b*(A*d - B*c)*(a*d - b*c)**2/d**4 + (A*d - B*c)*(a*d - b*c)**3/(d**4*(c + d*x)) assert ExpandIntegrand((x**2)*(S(3)*x)**(S(1)/2), x) ==sqrt(3)*x**(5/2) assert ExpandIntegrand((x)*(sin(x))**(S(1)/2), x) == x*sqrt(sin(x)) assert ExpandIntegrand(x*(e + f*x)**2*F**(b*(c + d*x)), x) == -F**(b*(c + d*x))*e*(e + f*x)**2/f + F**(b*(c + d*x))*(e + f*x)**3/f assert ExpandIntegrand(x**m*(e + f*x)**2*F**(b*(c + d*x)**n), x) == F**(b*(c + d*x)**n)*e**2*x**m + 2*F**(b*(c + d*x)**n)*e*f*x*x**m + F**(b*(c + d*x)**n)*f**2*x**2*x**m assert simplify(ExpandIntegrand((S(1) - S(1)*x**S(2))**(-S(3)), x) - (-S(3)/(8*(x**2 - 1)) + S(3)/(16*(x + 1)**2) + S(1)/(S(8)*(x + 1)**3) + S(3)/(S(16)*(x - 1)**2) - S(1)/(S(8)*(x - 1)**3))) == 0 assert ExpandIntegrand(-S(1), 1/((-q - x)**3*(q - x)**3), x) == 1/(8*q**3*(q + x)**3) - 1/(8*q**3*(-q + x)**3) - 3/(8*q**4*(-q**2 + x**2)) + 3/(16*q**4*(q + x)**2) + 3/(16*q**4*(-q + x)**2) assert ExpandIntegrand((1 + 1*x)**(3)/(2 + 1*x), x) == x**2 + x + 1 - 1/(x + 2) assert ExpandIntegrand((c + d*x**1 + e*x**2)/(1 - x**3), x) == (c - (-1)**(S(1)/3)*d + (-1)**(S(2)/3)*e)/(-3*(-1)**(S(2)/3)*x + 3) + (c + (-1)**(S(2)/3)*d - (-1)**(S(1)/3)*e)/(3*(-1)**(S(1)/3)*x + 3) + (c + d + e)/(-3*x + 3) assert ExpandIntegrand((c + d*x**1 + e*x**2 + f*x**3)/(1 - x**4), x) == (c + I*d - e - I*f)/(4*I*x + 4) + (c - I*d - e + I*f)/(-4*I*x + 4) + (c - d + e - f)/(4*x + 4) + (c + d + e + f)/(-4*x + 4) assert ExpandIntegrand((d + e*(f + g*x))/(2 + 3*x + 1*x**2), x) == (-2*d - 2*e*f + 4*e*g)/(2*x + 4) + (2*d + 2*e*f - 2*e*g)/(2*x + 2) assert ExpandIntegrand(x/(a*x**3 + b*Sqrt(c + d*x**6)), x) == a*x**4/(-b**2*c + x**6*(a**2 - b**2*d)) + b*x*sqrt(c + d*x**6)/(b**2*c + x**6*(-a**2 + b**2*d)) assert simplify(ExpandIntegrand(x**1*(1 - x**4)**(-2), x) - (x/(S(4)*(x**2 + 1)) + x/(S(4)*(x**2 + 1)**2) - x/(S(4)*(x**2 - 1)) + x/(S(4)*(x**2 - 1)**2))) == 0 assert simplify(ExpandIntegrand((-1 + x**S(6))**(-3), x) - (S(3)/(S(8)*(x**6 - 1)) - S(3)/(S(16)*(x**S(3) + S(1))**S(2)) - S(1)/(S(8)*(x**S(3) + S(1))**S(3)) - S(3)/(S(16)*(x**S(3) - S(1))**S(2)) + S(1)/(S(8)*(x**S(3) - S(1))**S(3)))) == 0 assert simplify(ExpandIntegrand(u**1*(a + b*u**2 + c*u**4)**(-1), x)) == simplify(1/(2*b*(u + sqrt(-(a + c*u**4)/b))) - 1/(2*b*(-u + sqrt(-(a + c*u**4)/b)))) assert simplify(ExpandIntegrand((1 + 1*u + 1*u**2)**(-2), x) - (S(1)/(S(2)*(-u - 1)*(-u**2 - u - 1)) + S(1)/(S(4)*(-u - 1)*(u + sqrt(-u - 1))**2) + S(1)/(S(4)*(-u - 1)*(u - sqrt(-u - 1))**2))) == 0 assert ExpandIntegrand(x*(a + b*Log(c*(d*(e + f*x)**p)**q))**n, x) == -e*(a + b*rubi_log(c*(d*(e + f*x)**p)**q))**n/f + (a + b*rubi_log(c*(d*(e + f*x)**p)**q))**n*(e + f*x)/f assert ExpandIntegrand(x*f**(e*(c + d*x)*S(1)), x) == f**(e*(c + d*x))*x assert simplify(ExpandIntegrand((x)*(a + b*x)**m*Log(c*(d + e*x**n)**p), x) - (-a*(a + b*x)**m*rubi_log(c*(d + e*x**n)**p)/b + (a + b*x)**(m + S(1))*rubi_log(c*(d + e*x**n)**p)/b)) == 0 assert simplify(ExpandIntegrand(u*(a + b*F**v)**S(2)*(c + d*F**v)**S(-3), x) - (b**2*u/(d**2*(F**v*d + c)) + 2*b*u*(a*d - b*c)/(d**2*(F**v*d + c)**2) + u*(a*d - b*c)**2/(d**2*(F**v*d + c)**3))) == 0 assert ExpandIntegrand((S(1) + 1*x)**S(2)*f**(e*(1 + S(1)*x)**n)/(g + h*x), x) == f**(e*(x + 1)**n)*(x + 1)/h + f**(e*(x + 1)**n)*(-g + h)/h**2 + f**(e*(x + 1)**n)*(g - h)**2/(h**2*(g + h*x)) assert ExpandIntegrand((a*c - b*c*x)**2/(a + b*x)**2, x) == 4*a**2*c**2/(a + b*x)**2 - 4*a*c**2/(a + b*x) + c**2 assert simplify(ExpandIntegrand(x**2*(1 - 1*x**2)**(-2), x) - (1/(S(2)*(x**2 - 1)) + 1/(S(4)*(x + 1)**2) + 1/(S(4)*(x - 1)**2))) == 0 assert ExpandIntegrand((a + x)**2, x) == a**2 + 2*a*x + x**2 assert ExpandIntegrand((a + b*x)**S(2)/x**3, x) == a**2/x**3 + 2*a*b/x**2 + b**2/x assert ExpandIntegrand(1/(x**2*(a + b*x)**2), x) == b**2/(a**2*(a + b*x)**2) + 1/(a**2*x**2) + 2*b**2/(a**3*(a + b*x)) - 2*b/(a**3*x) assert ExpandIntegrand((1 + x)**3/x, x) == x**2 + 3*x + 3 + 1/x assert ExpandIntegrand((1 + 2*(3 + 4*x**2))/(2 + 3*x**2 + 1*x**4), x) == 18/(2*x**2 + 4) - 2/(2*x**2 + 2) assert ExpandIntegrand((c + d*x**2 + e*x**3)/(1 - 1*x**4), x) == (c - d - I*e)/(4*I*x + 4) + (c - d + I*e)/(-4*I*x + 4) + (c + d - e)/(4*x + 4) + (c + d + e)/(-4*x + 4) assert ExpandIntegrand((a + b*x)**2/(c + d*x), x) == b*(a + b*x)/d + b*(a*d - b*c)/d**2 + (a*d - b*c)**2/(d**2*(c + d*x)) assert ExpandIntegrand(x**2*(a + b*Log(c*(d*(e + f*x)**p)**q))**n, x) == e**2*(a + b*rubi_log(c*(d*(e + f*x)**p)**q))**n/f**2 - 2*e*(a + b*rubi_log(c*(d*(e + f*x)**p)**q))**n*(e + f*x)/f**2 + (a + b*rubi_log(c*(d*(e + f*x)**p)**q))**n*(e + f*x)**2/f**2 assert ExpandIntegrand(x*(1 + 2*x)**3*rubi_log(2*(1 + 1*x**2)**1), x) == 8*x**4*rubi_log(2*x**2 + 2) + 12*x**3*rubi_log(2*x**2 + 2) + 6*x**2*rubi_log(2*x**2 + 2) + x*rubi_log(2*x**2 + 2) assert ExpandIntegrand((1 + 1*x)**S(3)*f**(e*(1 + 1*x)**n)/(g + h*x), x) == f**(e*(x + 1)**n)*(x + 1)**2/h + f**(e*(x + 1)**n)*(-g + h)*(x + 1)/h**2 + f**(e*(x + 1)**n)*(-g + h)**2/h**3 - f**(e*(x + 1)**n)*(g - h)**3/(h**3*(g + h*x)) def test_Dist(): assert Dist(x, a + b, x) == a*x + b*x assert Dist(x, Integral(a + b , x), x) == x*Integral(a + b, x) assert Dist(3*x,(a+b), x) - Dist(2*x, (a+b), x) == a*x + b*x assert Dist(3*x,(a+b), x) + Dist(2*x, (a+b), x) == 5*a*x + 5*b*x assert Dist(x, c*Integral((a + b), x), x) == c*x*Integral(a + b, x) def test_IntegralFreeQ(): assert not IntegralFreeQ(Integral(a, x)) assert IntegralFreeQ(a + b) def test_OneQ(): from sympy.integrals.rubi.utility_function import OneQ assert OneQ(S(1)) assert not OneQ(S(2)) def test_DerivativeDivides(): assert not DerivativeDivides(x, x, x) assert not DerivativeDivides(a, x + y, b) assert DerivativeDivides(a + x, a, x) == a assert DerivativeDivides(a + b, x + y, b) == x + y def test_LogIntegral(): from sympy.integrals.rubi.utility_function import LogIntegral assert LogIntegral(a) == li(a) def test_SinIntegral(): from sympy.integrals.rubi.utility_function import SinIntegral assert SinIntegral(a) == Si(a) def test_CosIntegral(): from sympy.integrals.rubi.utility_function import CosIntegral assert CosIntegral(a) == Ci(a) def test_SinhIntegral(): from sympy.integrals.rubi.utility_function import SinhIntegral assert SinhIntegral(a) == Shi(a) def test_CoshIntegral(): from sympy.integrals.rubi.utility_function import CoshIntegral assert CoshIntegral(a) == Chi(a) def test_ExpIntegralEi(): from sympy.integrals.rubi.utility_function import ExpIntegralEi assert ExpIntegralEi(a) == Ei(a) def test_ExpIntegralE(): from sympy.integrals.rubi.utility_function import ExpIntegralE assert ExpIntegralE(a, z) == expint(a, z) def test_LogGamma(): from sympy.integrals.rubi.utility_function import LogGamma assert LogGamma(a) == loggamma(a) def test_Factorial(): from sympy.integrals.rubi.utility_function import Factorial assert Factorial(S(5)) == 120 def test_Zeta(): from sympy.integrals.rubi.utility_function import Zeta assert Zeta(a, z) == zeta(a, z) def test_HypergeometricPFQ(): from sympy.integrals.rubi.utility_function import HypergeometricPFQ assert HypergeometricPFQ([a, b], [c], z) == hyper([a, b], [c], z) def test_PolyGamma(): assert PolyGamma(S(2), S(3)) == polygamma(2, 3) def test_ProductLog(): from sympy.core.evalf import N assert N(ProductLog(S(5.0)), 5) == N(1.32672466524220, 5) assert N(ProductLog(S(2), S(3.5)), 5) == N(-1.14064876353898 + 10.8912237027092*I, 5) def test_PolynomialQuotient(): assert PolynomialQuotient(rubi_log((-a*d + b*c)/(b*(c + d*x)))/(c + d*x), a + b*x, e) == rubi_log((-a*d + b*c)/(b*(c + d*x)))/((a + b*x)*(c + d*x)) assert PolynomialQuotient(x**2, x + a, x) == -a + x def test_PolynomialRemainder(): assert PolynomialRemainder(rubi_log((-a*d + b*c)/(b*(c + d*x)))/(c + d*x), a + b*x, e) == 0 assert PolynomialRemainder(x**2, x + a, x) == a**2 def test_Floor(): assert Floor(S(7.5)) == 7 assert Floor(S(15.5), S(6)) == 12 def test_Factor(): from sympy.integrals.rubi.utility_function import Factor assert Factor(a*b + a*c) == a*(b + c) def test_Rule(): from sympy.integrals.rubi.utility_function import Rule assert Rule(x, S(5)) == {x: 5} def test_Distribute(): assert Distribute((a + b)*c + (a + b)*d, Add) == c*(a + b) + d*(a + b) assert Distribute((a + b)*(c + e), Add) == a*c + a*e + b*c + b*e def test_CoprimeQ(): assert CoprimeQ(S(7), S(5)) assert not CoprimeQ(S(6), S(3)) def test_Discriminant(): from sympy.integrals.rubi.utility_function import Discriminant assert Discriminant(a*x**2 + b*x + c, x) == b**2 - 4*a*c assert unchanged(Discriminant, 1/x, x) def test_Sum_doit(): assert Sum_doit(2*x + 2, [x, 0, 1.7]) == 6 def test_DeactivateTrig(): assert DeactivateTrig(sec(a + b*x), x) == sec(a + b*x) def test_Negative(): from sympy.integrals.rubi.utility_function import Negative assert Negative(S(-2)) assert not Negative(S(0)) def test_Quotient(): from sympy.integrals.rubi.utility_function import Quotient assert Quotient(17, 5) == 3 def test_process_trig(): assert process_trig(x*cot(x)) == x/tan(x) assert process_trig(coth(x)*csc(x)) == S(1)/(tanh(x)*sin(x)) def test_replace_pow_exp(): assert replace_pow_exp(rubi_exp(S(5))) == exp(S(5)) def test_rubi_unevaluated_expr(): from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr assert rubi_unevaluated_expr(a)*rubi_unevaluated_expr(b) == rubi_unevaluated_expr(b)*rubi_unevaluated_expr(a) def test_rubi_exp(): # class name in utility_function is `exp`. To avoid confusion `rubi_exp` has been used here assert isinstance(rubi_exp(a), Pow) def test_rubi_log(): # class name in utility_function is `log`. To avoid confusion `rubi_log` has been used here assert rubi_log(rubi_exp(S(a))) == a
38.963913
279
0.60818
c8030fee76d6cbc801d010ff26f7e74778bcc02b
3,516
py
Python
test/GeneSet_Enrichment_server_test.py
kbasecollaborations/GeneSet_Enrichment
14a5e409019457bfbe985236ff103edb2e8896c7
[ "MIT" ]
null
null
null
test/GeneSet_Enrichment_server_test.py
kbasecollaborations/GeneSet_Enrichment
14a5e409019457bfbe985236ff103edb2e8896c7
[ "MIT" ]
null
null
null
test/GeneSet_Enrichment_server_test.py
kbasecollaborations/GeneSet_Enrichment
14a5e409019457bfbe985236ff103edb2e8896c7
[ "MIT" ]
1
2020-01-17T20:26:32.000Z
2020-01-17T20:26:32.000Z
# -*- coding: utf-8 -*- import os import time import re import unittest from configparser import ConfigParser from GeneSet_Enrichment.GeneSet_EnrichmentImpl import GeneSet_Enrichment from GeneSet_Enrichment.GeneSet_EnrichmentServer import MethodContext from GeneSet_Enrichment.authclient import KBaseAuth as _KBaseAuth from installed_clients.WorkspaceClient import Workspace class GeneSet_EnrichmentTest(unittest.TestCase): @classmethod def setUpClass(cls): token = os.environ.get('KB_AUTH_TOKEN', None) config_file = os.environ.get('KB_DEPLOYMENT_CONFIG', None) cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('GeneSet_Enrichment'): cls.cfg[nameval[0]] = nameval[1] # Getting username from Auth profile for token authServiceUrl = cls.cfg['auth-service-url'] auth_client = _KBaseAuth(authServiceUrl) user_id = auth_client.get_user(token) # WARNING: don't call any logging methods on the context object, # it'll result in a NoneType error cls.ctx = MethodContext(None) cls.ctx.update({'token': token, 'user_id': user_id, 'provenance': [ {'service': 'GeneSet_Enrichment', 'method': 'please_never_use_it_in_production', 'method_params': [] }], 'authenticated': 1}) cls.wsURL = cls.cfg['workspace-url'] cls.wsClient = Workspace(cls.wsURL) cls.serviceImpl = GeneSet_Enrichment(cls.cfg) cls.scratch = cls.cfg['scratch'] cls.callback_url = os.environ['SDK_CALLBACK_URL'] suffix = int(time.time() * 1000) cls.wsName = "test_ContigFilter_" + str(suffix) ret = cls.wsClient.create_workspace({'workspace': cls.wsName}) # noqa @classmethod def tearDownClass(cls): if hasattr(cls, 'wsName'): cls.wsClient.delete_workspace({'workspace': cls.wsName}) print('Test workspace was deleted') # NOTE: According to Python unittest naming rules test method names should start from 'test'. # noqa def test_your_method(self): # Prepare test objects in workspace if needed using # self.getWsClient().save_objects({'workspace': self.getWsName(), # 'objects': []}) # # Run your method by # ret = self.getImpl().your_method(self.getContext(), parameters...) # # Check returned data with # self.assertEqual(ret[...], ...) or other unittest methods params = { 'workspace_name': 'man4ish_gupta:narrative_1579638904735', 'genelist' : ['36575/30/1', '36575/10/4', '36575/209/5', '36575/214/1'] } ret = self.serviceImpl.run_GeneSet_Enrichment(self.ctx, params) def test_build_feature_set(self): input_params = { 'genome': '35540/2/1', 'genes': "AT3G14440\nAT1G20440\nAT4G27520\nAT2G23120\nAT5G58070\nAT1G20450\nAT1G01470\nAT5G52310\nAT1G76180\nAT2G02100\nAT1G73480\nAT4G15480\nAT3G29575", 'description': "sameple geneset", 'workspace_name': 'man4ish_gupta:narrative_1579638904735', 'output_feature_set': 'new_feature_set', } result = self.serviceImpl.build_Featureset(self.ctx, input_params)
38.637363
165
0.617747
f6aa035a571f20263466b83366e6ff7a2706d8d4
2,175
py
Python
msbd/preprocessamento/riempire_na.py
mnslarcher/metodi-statistici-big-data
4587b4e4104557e50d09d028259d6c42c44d2814
[ "MIT" ]
1
2019-02-17T09:28:04.000Z
2019-02-17T09:28:04.000Z
msbd/preprocessamento/riempire_na.py
mnslarcher/metodi-statistici-big-data
4587b4e4104557e50d09d028259d6c42c44d2814
[ "MIT" ]
null
null
null
msbd/preprocessamento/riempire_na.py
mnslarcher/metodi-statistici-big-data
4587b4e4104557e50d09d028259d6c42c44d2814
[ "MIT" ]
null
null
null
from sklearn.base import TransformerMixin from sklearn.utils.validation import check_is_fitted class RiempireNAMedia(TransformerMixin): """Riempie i valori mancanti utilizzando la media Attributes ---------- media_dict_ : dict Dizionario che associa ad ogni colonna il suo valore medio. """ def __init__(self): pass def fit(self, X, y=None): # DataFrame.mean() ha come default numeric_only=True self.media_dict_ = X.mean().to_dict() return self def transform(self, X): check_is_fitted(self, "media_dict_") return X.fillna(self.media_dict_) class RiempireNAItemWeight(TransformerMixin): """Riempie i valori mancanti di 'Item_Weight' Attributes ---------- weight_dict_ : dict Dizionario che associa ad ogni 'Item_Identifier' il suo 'Item_Weight' medio. """ def __init__(self): pass def fit(self, X, y=None): self.weight_dict_ = X[["Item_Identifier", "Item_Weight"]].groupby( "Item_Identifier").mean()["Item_Weight"].to_dict() return self def transform(self, X): check_is_fitted(self, "weight_dict_") value = {idx : self.weight_dict_.get(identifier) for idx, identifier in zip(X.index, X["Item_Identifier"])} X["Item_Weight"].fillna(value, inplace=True) return X class RiempireNAOutletSize(TransformerMixin): """Riempie i valori mancanti di 'Outlet_Size'""" def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X): is_null = X["Outlet_Size"].isnull() is_tier2 = X["Outlet_Location_Type"] == "Tier 2" is_grocery = X["Outlet_Type"] == "Grocery Store" is_type2 = X["Outlet_Type"] == "Supermarket Type2" is_type3 = X["Outlet_Type"] == "Supermarket Type3" X.loc[is_null & (is_tier2 | is_grocery), "Outlet_Size"] = "Small" X.loc[is_null & (is_tier2 | is_grocery), "Outlet_Size"] = "Small" X.loc[is_null & is_type2, "Outlet_Size"] = "Medium" X.loc[is_null & is_type3, "Outlet_Size"] = "Medium" return X
27.1875
79
0.625287
b5164dab19000bfe4c7cde9a7bceba449ed1bdc7
9,222
py
Python
pytorch3d/renderer/implicit/raymarching.py
shubham-goel/pytorch3d
e5e6e90af6f81b3eccb35bbdfdc7e64ec6a4df21
[ "BSD-3-Clause" ]
5
2021-01-26T11:57:26.000Z
2021-06-24T14:56:07.000Z
pytorch3d/renderer/implicit/raymarching.py
shubham-goel/pytorch3d
e5e6e90af6f81b3eccb35bbdfdc7e64ec6a4df21
[ "BSD-3-Clause" ]
null
null
null
pytorch3d/renderer/implicit/raymarching.py
shubham-goel/pytorch3d
e5e6e90af6f81b3eccb35bbdfdc7e64ec6a4df21
[ "BSD-3-Clause" ]
1
2020-04-14T18:22:32.000Z
2020-04-14T18:22:32.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import warnings from typing import Optional, Tuple, Union import torch class EmissionAbsorptionRaymarcher(torch.nn.Module): """ Raymarch using the Emission-Absorption (EA) algorithm. The algorithm independently renders each ray by analyzing density and feature values sampled at (typically uniformly) spaced 3D locations along each ray. The density values `rays_densities` are of shape `(..., n_points_per_ray)`, their values should range between [0, 1], and represent the opaqueness of each point (the higher the less transparent). The feature values `rays_features` of shape `(..., n_points_per_ray, feature_dim)` represent the content of the point that is supposed to be rendered in case the given point is opaque (i.e. its density -> 1.0). EA first utilizes `rays_densities` to compute the absorption function along each ray as follows: ``` absorption = cumprod(1 - rays_densities, dim=-1) ``` The value of absorption at position `absorption[..., k]` specifies how much light has reached `k`-th point along a ray since starting its trajectory at `k=0`-th point. Each ray is then rendered into a tensor `features` of shape `(..., feature_dim)` by taking a weighed combination of per-ray features `rays_features` as follows: ``` weights = absorption * rays_densities features = (rays_features * weights).sum(dim=-2) ``` Where `weights` denote a function that has a strong peak around the location of the first surface point that a given ray passes through. Note that for a perfectly bounded volume (with a strictly binary density), the `weights = cumprod(1 - rays_densities, dim=-1) * rays_densities` function would yield 0 everywhere. In order to prevent this, the result of the cumulative product is shifted `self.surface_thickness` elements along the ray direction. """ def __init__(self, surface_thickness: int = 1): """ Args: surface_thickness: Denotes the overlap between the absorption function and the density function. """ super().__init__() self.surface_thickness = surface_thickness def forward( self, rays_densities: torch.Tensor, rays_features: torch.Tensor, eps: float = 1e-10, **kwargs, ) -> torch.Tensor: """ Args: rays_densities: Per-ray density values represented with a tensor of shape `(..., n_points_per_ray, 1)` whose values range in [0, 1]. rays_features: Per-ray feature values represented with a tensor of shape `(..., n_points_per_ray, feature_dim)`. eps: A lower bound added to `rays_densities` before computing the absorbtion function (cumprod of `1-rays_densities` along each ray). This prevents the cumprod to yield exact 0 which would inhibit any gradient-based learning. Returns: features_opacities: A tensor of shape `(..., feature_dim+1)` that concatenates two tensors alonng the last dimension: 1) features: A tensor of per-ray renders of shape `(..., feature_dim)`. 2) opacities: A tensor of per-ray opacity values of shape `(..., 1)`. Its values range between [0, 1] and denote the total amount of light that has been absorbed for each ray. E.g. a value of 0 corresponds to the ray completely passing through a volume. Please refer to the `AbsorptionOnlyRaymarcher` documentation for the explanation of the algorithm that computes `opacities`. """ _check_raymarcher_inputs( rays_densities, rays_features, None, z_can_be_none=True, features_can_be_none=False, density_1d=True, ) _check_density_bounds(rays_densities) rays_densities = rays_densities[..., 0] absorption = _shifted_cumprod( (1.0 + eps) - rays_densities, shift=self.surface_thickness ) weights = rays_densities * absorption features = (weights[..., None] * rays_features).sum(dim=-2) opacities = 1.0 - torch.prod(1.0 - rays_densities, dim=-1, keepdim=True) return torch.cat((features, opacities), dim=-1) class AbsorptionOnlyRaymarcher(torch.nn.Module): """ Raymarch using the Absorption-Only (AO) algorithm. The algorithm independently renders each ray by analyzing density and feature values sampled at (typically uniformly) spaced 3D locations along each ray. The density values `rays_densities` are of shape `(..., n_points_per_ray, 1)`, their values should range between [0, 1], and represent the opaqueness of each point (the higher the less transparent). The algorithm only measures the total amount of light absorbed along each ray and, besides outputting per-ray `opacity` values of shape `(...,)`, does not produce any feature renderings. The algorithm simply computes `total_transmission = prod(1 - rays_densities)` of shape `(..., 1)` which, for each ray, measures the total amount of light that passed through the volume. It then returns `opacities = 1 - total_transmission`. """ def __init__(self): super().__init__() def forward( self, rays_densities: torch.Tensor, **kwargs ) -> Union[None, torch.Tensor]: """ Args: rays_densities: Per-ray density values represented with a tensor of shape `(..., n_points_per_ray)` whose values range in [0, 1]. Returns: opacities: A tensor of per-ray opacity values of shape `(..., 1)`. Its values range between [0, 1] and denote the total amount of light that has been absorbed for each ray. E.g. a value of 0 corresponds to the ray completely passing through a volume. """ _check_raymarcher_inputs( rays_densities, None, None, features_can_be_none=True, z_can_be_none=True, density_1d=True, ) rays_densities = rays_densities[..., 0] _check_density_bounds(rays_densities) total_transmission = torch.prod(1 - rays_densities, dim=-1, keepdim=True) opacities = 1.0 - total_transmission # pyre-fixme[7]: Expected `Optional[torch.Tensor]` but got `float`. return opacities def _shifted_cumprod(x, shift=1): """ Computes `torch.cumprod(x, dim=-1)` and prepends `shift` number of ones and removes `shift` trailing elements to/from the last dimension of the result. """ x_cumprod = torch.cumprod(x, dim=-1) x_cumprod_shift = torch.cat( [torch.ones_like(x_cumprod[..., :shift]), x_cumprod[..., :-shift]], dim=-1 ) return x_cumprod_shift def _check_density_bounds( rays_densities: torch.Tensor, bounds: Tuple[float, float] = (0.0, 1.0) ): """ Checks whether the elements of `rays_densities` range within `bounds`. If not issues a warning. """ # pyre-fixme[16]: `ByteTensor` has no attribute `any`. if ((rays_densities > bounds[1]) | (rays_densities < bounds[0])).any(): warnings.warn( "One or more elements of rays_densities are outside of valid" + f"range {str(bounds)}" ) def _check_raymarcher_inputs( rays_densities: torch.Tensor, rays_features: Optional[torch.Tensor], rays_z: Optional[torch.Tensor], features_can_be_none: bool = False, z_can_be_none: bool = False, density_1d: bool = True, ): """ Checks the validity of the inputs to raymarching algorithms. """ if not torch.is_tensor(rays_densities): raise ValueError("rays_densities has to be an instance of torch.Tensor.") if not z_can_be_none and not torch.is_tensor(rays_z): raise ValueError("rays_z has to be an instance of torch.Tensor.") if not features_can_be_none and not torch.is_tensor(rays_features): raise ValueError("rays_features has to be an instance of torch.Tensor.") if rays_densities.ndim < 1: raise ValueError("rays_densities have to have at least one dimension.") if density_1d and rays_densities.shape[-1] != 1: raise ValueError( "The size of the last dimension of rays_densities has to be one." ) rays_shape = rays_densities.shape[:-1] # pyre-fixme[16]: `Optional` has no attribute `shape`. if not z_can_be_none and rays_z.shape != rays_shape: raise ValueError("rays_z have to be of the same shape as rays_densities.") if not features_can_be_none and rays_features.shape[:-1] != rays_shape: raise ValueError( "The first to previous to last dimensions of rays_features" " have to be the same as all dimensions of rays_densities." )
40.625551
84
0.642919
9d522d3826952dfaa454c0e8e187eb6a57c0be2e
3,562
py
Python
weasyprint/tests/test_tools.py
szmenpro/WeasyPrint
80c5a8287133259f5deff4442adf8dc64dd4f65c
[ "BSD-3-Clause" ]
2
2019-12-06T15:40:14.000Z
2020-07-29T21:30:35.000Z
weasyprint/tests/test_tools.py
szmenpro/WeasyPrint
80c5a8287133259f5deff4442adf8dc64dd4f65c
[ "BSD-3-Clause" ]
13
2020-03-24T17:53:51.000Z
2022-02-10T20:01:14.000Z
weasyprint/tests/test_tools.py
szmenpro/WeasyPrint
80c5a8287133259f5deff4442adf8dc64dd4f65c
[ "BSD-3-Clause" ]
null
null
null
""" weasyprint.tests.test_tools --------------------------- Test WeasyPrint Web tools. :copyright: Copyright 2011-2019 Simon Sapin and contributors, see AUTHORS. :license: BSD, see LICENSE for details. """ import io from urllib.parse import urlencode import cairocffi as cairo from ..tools import navigator, renderer from ..urls import path2url from .testing_utils import assert_no_logs def wsgi_client(module, path_info, qs_args=None, method='GET'): start_response_calls = [] def start_response(status, headers): start_response_calls.append((status, headers)) environ = {'REQUEST_METHOD': method, 'PATH_INFO': path_info} qs = urlencode(qs_args or {}) if method == 'POST': environ['wsgi.input'] = io.BytesIO(qs.encode('utf-8')) environ['CONTENT_LENGTH'] = len(qs.encode('utf-8')) else: environ['QUERY_STRING'] = qs response = b''.join(module.app(environ, start_response)) assert len(start_response_calls) == 1 status, headers = start_response_calls[0] return status, dict(headers), response @assert_no_logs def test_navigator(tmpdir): status, headers, body = wsgi_client(navigator, '/lipsum') assert status == '404 Not Found' status, headers, body = wsgi_client(navigator, '/') body = body.decode('utf8') assert status == '200 OK' assert headers['Content-Type'].startswith('text/html;') assert '<title>WeasyPrint Navigator</title>' in body assert '<img' not in body assert '></a>' not in body test_file = tmpdir.join('test.html') test_file.write(b''' <h1 id=foo><a href="http://weasyprint.org">Lorem ipsum</a></h1> <h2><a href="#foo">bar</a></h2> ''') url = path2url(test_file.strpath) for status, headers, body in [ wsgi_client(navigator, '/view/' + url), wsgi_client(navigator, '/', {'url': url}), ]: body = body.decode('utf8') assert status == '200 OK' assert headers['Content-Type'].startswith('text/html;') assert '<title>WeasyPrint Navigator</title>' in body assert '<img src="data:image/png;base64,' in body assert ' name="foo"></a>' in body assert ' href="#foo"></a>' in body assert ' href="/view/http://weasyprint.org"></a>' in body status, headers, body = wsgi_client(navigator, '/pdf/' + url) assert status == '200 OK' assert headers['Content-Type'] == 'application/pdf' assert body.startswith(b'%PDF') if cairo.cairo_version() >= 11504: assert b'/URI (http://weasyprint.org)' in body assert b'/Title (Lorem ipsum)' in body @assert_no_logs def test_renderer(): status, headers, body = wsgi_client(renderer, '/lipsum') assert status == '404 Not Found' status, headers, body_1 = wsgi_client(renderer, '/') assert b'' in body_1 status, headers, body_2 = wsgi_client( renderer, '/', {'content': renderer.DEFAULT_CONTENT}, method='POST') assert body_1 == body_2 status, headers, body_3 = wsgi_client( renderer, '/', {'content': 'abc'}, method='POST') assert b'' in body_3 assert body_1 != body_3 status, headers, body_4 = wsgi_client( renderer, '/render', {'content': 'abc'}, method='POST') assert body_4.startswith(b'iVBO') assert body_4 in body_3 status, headers, body_5 = wsgi_client( renderer, '/render', {'content': 'def'}, method='POST') assert body_5.startswith(b'iVBO') assert body_5 not in body_3
32.981481
78
0.639528
a41f91146ed0db1ea94e74c388f087b5fc3940f9
3,870
py
Python
pGUID_InvCodeMatchingMulti.py
kleblanc5909/FuzzyMatchIDs
d1c5ef37ea19f08cc30193285c9d98de0ae3d5c4
[ "MIT" ]
null
null
null
pGUID_InvCodeMatchingMulti.py
kleblanc5909/FuzzyMatchIDs
d1c5ef37ea19f08cc30193285c9d98de0ae3d5c4
[ "MIT" ]
1
2019-03-28T18:14:31.000Z
2019-08-09T14:28:28.000Z
pGUID_InvCodeMatchingMulti.py
kleblanc5909/FuzzyMatchIDs
d1c5ef37ea19f08cc30193285c9d98de0ae3d5c4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Mar 26 14:02:03 2019 @author: Kim LeBlanc """ import pandas as pd from pandas import ExcelWriter from fuzzywuzzy import fuzz from fuzzywuzzy import process def match2Lists(list1,list2): """ Loops over a list and returns fuzzy matches found in a second list. Inputs: list1 - list of terms to search for in the master list list2 - master list that is searched for matches over and over """ TopMatches = [] TopScores = [] TopRowIdxs = [] for member in list1: x=process.extract(member, list2) print ((x)) TopMatches.append(i[0] for i in x) TopScores.append(i[1] for i in x) TopRowIdxs.append(i[2] for i in x) return TopMatches, TopScores, TopRowIdxs def createRUID_List(rowIdxList, headerStr): """ Loops over a series containing row indices and returns a list of RUID strings. Inputs: rowIdxList - collection of row index values headerStr - DataFrame header string value for column containing RUIDs Outputs: new list containing RUID strings """ RUID_List = [] for aRowIdx in rowIdxList: workingRUID=df[headerStr].iloc[aRowIdx] RUID_List.append(workingRUID) return RUID_List df = pd.read_excel("abcd_rucdr_master_forPython.xlsx") print ('Finished reading in input file.') #blackList=['NDAR_INV'] #for pattern in blackList: # df['pGUID_Rutgers'] = df['pGUID_Rutgers'].replace(pattern, '') #datasets Unique_DAIC_Invs = df['InvCodeDAIC_OnlyTxt'].dropna() Unique_Rutgers_Invs = df['InvCodeRUCDR_OnlyTxt'].dropna() AllRutgersInvs = df['InvCodeMinusDOTxt'].dropna() AllDAIC_Invs = df['InvCodeMinusROTxt'].dropna() print ('About to start first match2collections.') BestMatch_DtoR, BestScore_DtoR, BestRowIdx_DtoR = match2Lists(Unique_DAIC_Invs,AllRutgersInvs) print ('Just finished first match2collections.') print ('About to start second match2collections.') BestMatch_RtoD, BestScore_RtoD, BestRowIdx_RtoD = match2Lists(Unique_Rutgers_Invs, AllDAIC_Invs) print ('Just finished second match2collections.') #print ('About to start third match2collections.') #BestMatch_DtoD, BestScore_DtoD, BestRowIdx_DtoD = match2Lists(Unique_DAIC_IDs, AllDAIC_IDs) #print ('Just finished third match2collections.') #print ('About to start fourth match2collections.') #BestMatch_RtoR, BestScore_RtoR, BestRowIdx_RtoR = match2Lists(Unique_Rutgers_IDs, AllRutgersIDs) #print ('Just finished fourth match2collections.') df['BestMatchdf_DtoR']=pd.Series(BestMatch_DtoR) df['BestScoredf_DtoR']=pd.Series(BestScore_DtoR) df['BestMatchdf_RtoD']=pd.Series(BestMatch_RtoD) df['BestScoredf_RtoD']=pd.Series(BestScore_RtoD) df['BestRowIdxdf_DtoR']=pd.Series(BestRowIdx_DtoR) df['BestRowIdxdf_RtoD']=pd.Series(BestRowIdx_RtoD) #df['BestMatchdf_DtoD']=pd.Series(BestMatch_DtoD) #df['BestScoredf_DtoD']=pd.Series(BestScore_DtoD) #df['BestMatchdf_RtoR']=pd.Series(BestMatch_RtoR) #df['BestScoredf_RtoR']=pd.Series(BestScore_RtoR) #df['BestRowIdxdf_DtoD']=pd.Series(BestRowIdx_DtoD) #df['BestRowIdxdf_RtoR']=pd.Series(BestRowIdx_RtoR) pGUID_DtoR_List = createRUID_List(BestRowIdx_DtoR, 'rucdr.SUBCODE') df['pGUID_DtoR']=pd.Series(pGUID_DtoR_List) pGUID_RtoD_List = createRUID_List(BestRowIdx_RtoD, 'abcd.id_redcap') df['pGUID_RtoD']=pd.Series(pGUID_RtoD_List) #RUID_DtoD_List = createRUID_List(BestRowIdx_DtoD, 'RUID_DAIC') #df['RUID_DtoD']=pd.Series(RUID_DtoD_List) #KCode_DtoD_List = createRUID_List(BestRowIdx_DtoD, 'Kim_code') #df['KCode_DtoD']=pd.Series(KCode_DtoD_List) #RUID_RtoR_List = createRUID_List(BestRowIdx_RtoR, 'RUID_Rutgers') #df['RUID_RtoR']=pd.Series(RUID_RtoR_List) writer = pd.ExcelWriter('FuzzyMatchedInvsOne.xlsx') df.to_excel(writer,'Sheet1') writer.save()
37.572816
98
0.734625
fbb301af2890d1f10a3ef942308bc2178974740f
294
py
Python
maths/first_digit_by_str.py
examplehub/Python
cd9dd9feb6dd65c2e0d545b5154a0f684e5c1e17
[ "Apache-2.0" ]
9
2020-10-03T06:52:35.000Z
2021-09-08T03:22:59.000Z
maths/first_digit_by_str.py
Shubhanshu156/Python-1
3bd617843dfae1e9f4855a68a0f9663ea9180da5
[ "Apache-2.0" ]
8
2020-10-03T06:52:37.000Z
2021-09-25T08:11:53.000Z
maths/first_digit_by_str.py
Shubhanshu156/Python-1
3bd617843dfae1e9f4855a68a0f9663ea9180da5
[ "Apache-2.0" ]
3
2020-10-25T08:25:50.000Z
2021-09-05T11:16:17.000Z
def first_digit(number: int) -> int: """ >>> first_digit(-123) 1 >>> first_digit(0) 0 >>> first_digit(123) 1 >>> first_digit(123456789) 1 """ return int(str(abs(number))[0]) if __name__ == "__main__": from doctest import testmod testmod()
15.473684
36
0.547619
0162bf31fef1dbf742ce8746a194ca388b9cc3d3
1,746
py
Python
models/contact.py
ksemish/KseniyaRepository
80f476c12c5d5412eed31f243fe4de84982eee46
[ "Apache-2.0" ]
null
null
null
models/contact.py
ksemish/KseniyaRepository
80f476c12c5d5412eed31f243fe4de84982eee46
[ "Apache-2.0" ]
null
null
null
models/contact.py
ksemish/KseniyaRepository
80f476c12c5d5412eed31f243fe4de84982eee46
[ "Apache-2.0" ]
null
null
null
from sys import maxsize class Contacts: def __init__(self, firstname=None, middlename=None, lastname=None, nickname=None, company=None, address=None, home=None, mobile=None, work=None, fax=None, email=None, email2=None, email3=None, homeaddress=None, homephone=None, notes=None, id =None, all_phones_from_home_page=None, all_emails_from_home_page=None, group_id=None): self.firstname = firstname self.middlename = middlename self.lastname = lastname self.nickname = nickname self.company = company self.address = address self.home = home self.mobile = mobile self.work = work self.fax = fax self.email = email self.email2 = email2 self.email3 = email3 self.homeaddress = homeaddress self.homephone = homephone self.notes = notes self.id = id self.all_phones_from_home_page = all_phones_from_home_page self.all_emails_from_home_page = all_emails_from_home_page self.group_id = group_id def __repr__(self): return "%s: %s: %s %s: %s: %s: %s: %s: %s: %s: %s: %s: %s: %s: %s: %s: %s:" \ % (self.id, self.lastname, self.firstname, self.middlename, self.nickname, self.company, self.address, self.home, self.mobile, self.work, self.fax, self.email, self.email2, self.email3, self.homeaddress, self.homephone, self.notes) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.lastname == other.lastname and self.firstname == other.firstname def contact_id_or_max(self): if self.id: return int(self.id) else: return maxsize
41.571429
147
0.639175
be976da1fb29514b2f5822ca5f41cbfc4eb2d2e3
125
py
Python
setup.py
bgyori/conso
fe612ada83c0f43c56b734faa17781baed7387a6
[ "CC-BY-4.0" ]
5
2019-08-30T10:54:08.000Z
2021-09-20T17:16:12.000Z
setup.py
bgyori/conso
fe612ada83c0f43c56b734faa17781baed7387a6
[ "CC-BY-4.0" ]
26
2018-09-21T13:19:25.000Z
2019-07-31T09:30:08.000Z
setup.py
bgyori/conso
fe612ada83c0f43c56b734faa17781baed7387a6
[ "CC-BY-4.0" ]
3
2020-07-29T02:33:34.000Z
2021-03-10T20:49:56.000Z
# -*- coding: utf-8 -*- """Setup module for CONSO.""" import setuptools if __name__ == '__main__': setuptools.setup()
13.888889
29
0.624
3aba633a159adc000460c9050a4c25ae58c22dfb
345
py
Python
rspec/spec_commands/bundle.py
cwilbur/TestRSpec
e69209d5891667f90003b32c2190bda41b309663
[ "MIT" ]
null
null
null
rspec/spec_commands/bundle.py
cwilbur/TestRSpec
e69209d5891667f90003b32c2190bda41b309663
[ "MIT" ]
null
null
null
rspec/spec_commands/bundle.py
cwilbur/TestRSpec
e69209d5891667f90003b32c2190bda41b309663
[ "MIT" ]
null
null
null
import os class Bundle(object): def __init__(self, context): self.context = context def result(self): if not self.context.from_settings("check_for_bundler"): return if self.gemfile_exists(): return "bundle exec" def gemfile_exists(self): return self.context.gemfile_path()
21.5625
63
0.626087
a9727fffa20461af18c70f2a109098456ddc70d6
6,180
py
Python
tests/unit/testplan/test_plan_base.py
dobragab/testplan
407ac1dfd33d19753e41235a1f576aeb06118840
[ "Apache-2.0" ]
null
null
null
tests/unit/testplan/test_plan_base.py
dobragab/testplan
407ac1dfd33d19753e41235a1f576aeb06118840
[ "Apache-2.0" ]
64
2019-04-15T20:56:40.000Z
2021-03-23T01:00:30.000Z
tests/unit/testplan/test_plan_base.py
dobragab/testplan
407ac1dfd33d19753e41235a1f576aeb06118840
[ "Apache-2.0" ]
null
null
null
"""TODO.""" import os import uuid from testplan import Testplan, TestplanResult from testplan.common.entity import (Resource, ResourceStatus, Runnable, RunnableResult) from testplan.common.utils.exceptions import should_raise from testplan.common.utils.path import default_runpath from testplan.common.utils.testing import ( argv_overridden, log_propagation_disabled) from testplan.common.utils.logger import TESTPLAN_LOGGER from testplan.report import TestGroupReport from testplan.runnable import TestRunnerStatus, TestRunner from testplan.runners.local import LocalRunner class DummyDriver(Resource): def starting(self): self.status.change(ResourceStatus.STARTED) def stopping(self): self.status.change(ResourceStatus.STOPPED) def aborting(self): pass class DummyTestResult(RunnableResult): """TODO.""" def __init__(self): super(DummyTestResult, self). __init__() self.custom = None self.report = TestGroupReport('test') class DummyTest(Runnable): RESULT = DummyTestResult def __init__(self, name=None): super(DummyTest, self).__init__() self.name = name self.resources.add(DummyDriver(), uid=self.name) self.resources.add(DummyDriver()) def uid(self): return self.name or super(DummyTest, self).uid() def run_tests(self): self._result.custom = '{}Result[{}]'.format(self.__class__.__name__, self.name) def main_batch_steps(self): self._add_step(self.run_tests) class MyPool(LocalRunner): # Start is async def __init__(self, name=None): super(MyPool, self).__init__() self.name = name def uid(self): return self.name or super(MyPool, self).uid() def _execute(self, uid): func = self._input[uid] test = func() test.cfg.parent = func.parent_cfg test.parent = func.parent test.run() self._results[uid] = test.result assert isinstance(self._results[uid], DummyTestResult) def aborting(self): pass def test_testplan(): """TODO.""" from testplan.base import TestplanParser as MyParser plan = Testplan(name='MyPlan', port=800, parse_cmdline=False, parser=MyParser) assert plan._cfg.name == 'MyPlan' assert plan._cfg.port == 800 assert plan._cfg.runnable == TestRunner assert plan.cfg.name == 'MyPlan' assert plan._runnable.cfg.name == 'MyPlan' # Argument of manager but not of runnable. should_raise(AttributeError, getattr, args=(plan._runnable.cfg, 'port')) assert isinstance(plan.status, TestRunnerStatus) assert isinstance(plan._runnable.status, TestRunnerStatus) assert 'local_runner' in plan.resources assert isinstance(plan.add(DummyTest()), uuid.UUID) assert plan.add(DummyTest(name='alice'), uid=123) == 123 assert plan.add(DummyTest(name='bob')) == 'bob' assert 'pool' not in plan.resources plan.add_resource(MyPool(name='pool')) assert 'pool' in plan.resources def task(): return DummyTest(name='tom') assert isinstance(plan.add(task, resource='pool'), uuid.UUID) assert isinstance(plan.add(task, resource='pool'), uuid.UUID) assert len(plan.resources['local_runner']._input) == 3 for key in (123, 'bob'): assert key in plan.resources['local_runner']._input assert len(plan.resources['pool']._input) == 2 res = plan.run() assert res.run is True assert plan.resources['local_runner'].get( 'bob').custom == 'DummyTestResult[bob]' assert plan.resources['local_runner'].get( 123).custom == 'DummyTestResult[alice]' for key in plan.resources['pool']._input.keys(): assert plan.resources['pool'].get( key).custom == 'DummyTestResult[tom]' results = plan.result.test_results.values() expected = ['DummyTestResult[None]', 'DummyTestResult[alice]', 'DummyTestResult[tom]', 'DummyTestResult[tom]', 'DummyTestResult[bob]'] for res in results: should_raise(AttributeError, getattr, args=(res, 'decorated_value')) assert res.run is True assert res.custom in expected expected.remove(res.custom) assert len(expected) == 0 def test_testplan_decorator(): """TODO.""" from testplan import test_plan @test_plan(name='MyPlan', port=800, parse_cmdline=False) def main1(plan): plan.add(DummyTest(name='bob')) return 123 res = main1() # pylint: disable=no-value-for-parameter assert isinstance(res, TestplanResult) assert res.decorated_value == 123 assert res.run is True pdf_path = 'mypdf.pdf' with argv_overridden('--pdf', pdf_path): with log_propagation_disabled(TESTPLAN_LOGGER): @test_plan(name='MyPlan', port=800) def main2(plan, parser): args = parser.parse_args() assert args.verbose is False assert args.pdf_path == pdf_path assert plan.cfg.pdf_path == pdf_path plan.add(DummyTest(name='bob')) res = main2() # pylint:disable=assignment-from-no-return,no-value-for-parameter assert isinstance(res, TestplanResult) assert res.decorated_value is None assert res.run is True def test_testplan_runpath(): """TODO.""" def runpath_maker(obj): return '{sep}tmp{sep}custom'.format(sep=os.sep) plan = Testplan(name='MyPlan', port=800, parse_cmdline=False) assert plan.runpath is None plan.run() assert plan.runpath == default_runpath(plan._runnable) path = '/var/tmp/user' plan = Testplan(name='MyPlan', port=800, parse_cmdline=False, runpath=path) assert plan.runpath is None plan.run() assert plan.runpath == path plan = Testplan(name='MyPlan', port=800, parse_cmdline=False, runpath=runpath_maker) assert plan.runpath is None plan.run() assert plan.runpath == runpath_maker(plan._runnable)
31.85567
92
0.648867
e7f758ff579884a8d5d164e6ac0b7aa121c6f5ec
7,487
py
Python
kentaroy47/predict.py
jamiejamiebobamie/Faster_R-CNN
9321feae5ee2a40e579784ce23381494afdf1d61
[ "MIT" ]
null
null
null
kentaroy47/predict.py
jamiejamiebobamie/Faster_R-CNN
9321feae5ee2a40e579784ce23381494afdf1d61
[ "MIT" ]
20
2020-03-09T20:31:06.000Z
2022-02-10T01:18:12.000Z
kentaroy47/predict.py
jamiejamiebobamie/Faster_R-CNN
9321feae5ee2a40e579784ce23381494afdf1d61
[ "MIT" ]
null
null
null
from __future__ import division import os import cv2 import numpy as np import pickle import time from kentaroy47.config import Config as config from keras import backend as K from keras.layers import Input from keras.models import Model import kentaroy47.roi_helpers as roi_helpers import argparse import os import kentaroy47.resnet as nn from kentaroy47.visualize import draw_boxes_and_label_on_image_cv2 # from: https://github.com/kentaroy47/frcnn-from-scratch-with-keras def format_img_size(img, cfg): """ formats the image size based on config """ img_min_side = float(cfg.im_size) (height, width, _) = img.shape if width <= height: ratio = img_min_side / width new_height = int(ratio * height) new_width = int(img_min_side) else: ratio = img_min_side / height new_width = int(ratio * width) new_height = int(img_min_side) img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) return img, ratio def format_img_channels(img, cfg): """ formats the image channels based on config """ img = img[:, :, (2, 1, 0)] img = img.astype(np.float32) img[:, :, 0] -= cfg.img_channel_mean[0] img[:, :, 1] -= cfg.img_channel_mean[1] img[:, :, 2] -= cfg.img_channel_mean[2] img /= cfg.img_scaling_factor img = np.transpose(img, (2, 0, 1)) img = np.expand_dims(img, axis=0) return img def format_img(img, C): """ formats an image for model prediction based on config """ img, ratio = format_img_size(img, C) img = format_img_channels(img, C) return img, ratio # Method to transform the coordinates of the bounding box to its original size def get_real_coordinates(ratio, x1, y1, x2, y2): real_x1 = int(round(x1 // ratio)) real_y1 = int(round(y1 // ratio)) real_x2 = int(round(x2 // ratio)) real_y2 = int(round(y2 // ratio)) return real_x1, real_y1, real_x2, real_y2 def predict_single_image(img_path, model_rpn, model_classifier_only, cfg, class_mapping): st = time.time() img = cv2.imread(img_path) if img is None: print('reading image failed.') exit(0) X, ratio = format_img(img, cfg) if K.image_dim_ordering() == 'tf': X = np.transpose(X, (0, 2, 3, 1)) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) # this is result contains all boxes, which is [x1, y1, x2, y2] result = roi_helpers.rpn_to_roi(Y1, Y2, cfg, K.image_dim_ordering(), overlap_thresh=0.7) # convert from (x1,y1,x2,y2) to (x,y,w,h) result[:, 2] -= result[:, 0] result[:, 3] -= result[:, 1] bbox_threshold = 0.8 # apply the spatial pyramid pooling to the proposed regions boxes = dict() for jk in range(result.shape[0] // cfg.num_rois + 1): rois = np.expand_dims(result[cfg.num_rois * jk:cfg.num_rois * (jk + 1), :], axis=0) if rois.shape[1] == 0: break if jk == result.shape[0] // cfg.num_rois: # pad R curr_shape = rois.shape target_shape = (curr_shape[0], cfg.num_rois, curr_shape[2]) rois_padded = np.zeros(target_shape).astype(rois.dtype) rois_padded[:, :curr_shape[1], :] = rois rois_padded[0, curr_shape[1]:, :] = rois[0, 0, :] rois = rois_padded [p_cls, p_regr] = model_classifier_only.predict([F, rois]) for ii in range(p_cls.shape[1]): if np.max(p_cls[0, ii, :]) < bbox_threshold or np.argmax(p_cls[0, ii, :]) == (p_cls.shape[2] - 1): continue cls_num = np.argmax(p_cls[0, ii, :]) if cls_num not in boxes.keys(): boxes[cls_num] = [] (x, y, w, h) = rois[0, ii, :] try: (tx, ty, tw, th) = p_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= cfg.classifier_regr_std[0] ty /= cfg.classifier_regr_std[1] tw /= cfg.classifier_regr_std[2] th /= cfg.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th) except Exception as e: print(e) pass boxes[cls_num].append( [cfg.rpn_stride * x, cfg.rpn_stride * y, cfg.rpn_stride * (x + w), cfg.rpn_stride * (y + h), np.max(p_cls[0, ii, :])]) # add some nms to reduce many boxes for cls_num, box in boxes.items(): boxes_nms = roi_helpers.non_max_suppression_fast(box, overlap_thresh=0.5) boxes[cls_num] = boxes_nms print(class_mapping[cls_num] + ":") for b in boxes_nms: b[0], b[1], b[2], b[3] = get_real_coordinates(ratio, b[0], b[1], b[2], b[3]) print('{} prob: {}'.format(b[0: 4], b[-1])) img = draw_boxes_and_label_on_image_cv2(img, class_mapping, boxes) print('Elapsed time = {}'.format(time.time() - st)) cv2.imshow('image', img) result_path = './results_images/{}.png'.format(os.path.basename(img_path).split('.')[0]) print('result saved into ', result_path) cv2.imwrite(result_path, img) cv2.waitKey(0) def predict(args_): path = args_.path with open('config.pickle', 'rb') as f_in: cfg = pickle.load(f_in) cfg.use_horizontal_flips = False cfg.use_vertical_flips = False cfg.rot_90 = False class_mapping = cfg.class_mapping if 'bg' not in class_mapping: class_mapping['bg'] = len(class_mapping) class_mapping = {v: k for k, v in class_mapping.items()} input_shape_img = (None, None, 3) input_shape_features = (None, None, 1024) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(cfg.num_rois, 4)) feature_map_input = Input(shape=input_shape_features) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(feature_map_input, roi_input, cfg.num_rois, nb_classes=len(class_mapping), trainable=True) model_rpn = Model(img_input, rpn_layers) model_classifier_only = Model([feature_map_input, roi_input], classifier) model_classifier = Model([feature_map_input, roi_input], classifier) print('Loading weights from {}'.format(cfg.model_path)) model_rpn.load_weights(cfg.model_path, by_name=True) model_classifier.load_weights(cfg.model_path, by_name=True) model_rpn.compile(optimizer='sgd', loss='mse') model_classifier.compile(optimizer='sgd', loss='mse') if os.path.isdir(path): for idx, img_name in enumerate(sorted(os.listdir(path))): if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): continue print(img_name) predict_single_image(os.path.join(path, img_name), model_rpn, model_classifier_only, cfg, class_mapping) elif os.path.isfile(path): print('predict image from {}'.format(path)) predict_single_image(path, model_rpn, model_classifier_only, cfg, class_mapping) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--path', '-p', default='images/000010.png', help='image path') return parser.parse_args() if __name__ == '__main__': args = parse_args() predict(args)
37.064356
110
0.626419
1b51d422ea4c21832927f3baab2ce41a31ba79da
1,491
py
Python
azure-mgmt-servicebus/azure/mgmt/servicebus/models/regenerate_access_key_parameters_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-07-23T08:59:24.000Z
2018-07-23T08:59:24.000Z
azure-mgmt-servicebus/azure/mgmt/servicebus/models/regenerate_access_key_parameters_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-11-29T14:46:42.000Z
2018-11-29T14:46:42.000Z
azure-mgmt-servicebus/azure/mgmt/servicebus/models/regenerate_access_key_parameters_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class RegenerateAccessKeyParameters(Model): """Parameters supplied to the Regenerate Authorization Rule operation, specifies which key neeeds to be reset. All required parameters must be populated in order to send to Azure. :param key_type: Required. The access key to regenerate. Possible values include: 'PrimaryKey', 'SecondaryKey' :type key_type: str or ~azure.mgmt.servicebus.models.KeyType :param key: Optional, if the key value provided, is reset for KeyType value or autogenerate Key value set for keyType :type key: str """ _validation = { 'key_type': {'required': True}, } _attribute_map = { 'key_type': {'key': 'keyType', 'type': 'KeyType'}, 'key': {'key': 'key', 'type': 'str'}, } def __init__(self, *, key_type, key: str=None, **kwargs) -> None: super(RegenerateAccessKeyParameters, self).__init__(**kwargs) self.key_type = key_type self.key = key
35.5
76
0.618377
5eddcc152a5eb9123d57f37141a65193ce0d24a3
2,284
py
Python
P3-Logs-Analysis/newsreport.py
nehal96/full-stack-nd
a0721513538fbd7960e5a6408b8609816f81fc9e
[ "MIT" ]
null
null
null
P3-Logs-Analysis/newsreport.py
nehal96/full-stack-nd
a0721513538fbd7960e5a6408b8609816f81fc9e
[ "MIT" ]
null
null
null
P3-Logs-Analysis/newsreport.py
nehal96/full-stack-nd
a0721513538fbd7960e5a6408b8609816f81fc9e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import psycopg2 print("NEWS REPORT \n\n") DBNAME = "news" conn = psycopg2.connect(dbname=DBNAME) # Connect to database cur = conn.cursor() # Create cursor object # SQL statement for Question 1 cur.execute("""SELECT articles.title as "Name of article", viewcount.views as "Views" FROM articles, (SELECT path, count(*) as views FROM log GROUP BY path ORDER BY views DESC) as viewcount WHERE viewcount.path = '/article/' || articles.slug LIMIT 3;""") # Print question and answer print("Question 1: What are the three most popular articles of all time? \n") result = cur.fetchall() for i, (title, views) in enumerate(result): print("{0}. {1}: {2} views".format(i+1, title, views)) print("\n\n") # SQL statement for Question 2 cur.execute("""SELECT authors.name as "Author Name", SUM(viewcount.views) as "Total Views" FROM authors JOIN articles ON authors.id = articles.author JOIN (SELECT path, count(*) as views FROM log GROUP BY path ORDER BY views DESC) as viewcount ON viewcount.path = '/article/' || articles.slug GROUP BY authors.name ORDER BY "Total Views" DESC;""") # Print question and answer print("Question 2: Who are the most popular article authors of all time? \n") result = cur.fetchall() for i, (author, views) in enumerate(result): print("{0}. {1}: {2} views".format(i+1, author, views)) print("\n\n") # SQL statement for Question 3 # See README for the 3 views created and used in this SQL statement: # successful, failed, and percent_failed cur.execute("""SELECT to_char(date, 'FMMonth DD, YYYY'), percent FROM percent_failed WHERE percent > 1;""") # Print question and answer print("Question 3: On which days did more than 1% of the requests lead " "to errors? \n") result = cur.fetchall() for i, (date, percent) in enumerate(result): print("{0}. {1}: {2:.2f}%".format(i+1, date, percent)) print("\n\n") # Close connection to database conn.close()
31.722222
77
0.594133
c0458bc6001df3132c272d0c00791ee55fcdf150
18,151
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_02_01/operations/_express_route_circuit_connections_operations.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_02_01/operations/_express_route_circuit_connections_operations.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_02_01/operations/_express_route_circuit_connections_operations.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ExpressRouteCircuitConnectionsOperations(object): """ExpressRouteCircuitConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_02_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/connections/{connectionName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller """Deletes the specified Express Route Circuit Connection from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param connection_name: The name of the express route circuit connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, connection_name=connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/connections/{connectionName}'} # type: ignore def get( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ExpressRouteCircuitConnection" """Gets the specified Express Route Circuit Connection from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param connection_name: The name of the express route circuit connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuitConnection, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCircuitConnection"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuitConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/connections/{connectionName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str connection_name, # type: str express_route_circuit_connection_parameters, # type: "models.ExpressRouteCircuitConnection" **kwargs # type: Any ): # type: (...) -> "models.ExpressRouteCircuitConnection" cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCircuitConnection"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(express_route_circuit_connection_parameters, 'ExpressRouteCircuitConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitConnection', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRouteCircuitConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/connections/{connectionName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str connection_name, # type: str express_route_circuit_connection_parameters, # type: "models.ExpressRouteCircuitConnection" **kwargs # type: Any ): # type: (...) -> LROPoller """Creates or updates a Express Route Circuit Connection in the specified express route circuits. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param connection_name: The name of the express route circuit connection. :type connection_name: str :param express_route_circuit_connection_parameters: Parameters supplied to the create or update express route circuit connection operation. :type express_route_circuit_connection_parameters: ~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ExpressRouteCircuitConnection or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCircuitConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, connection_name=connection_name, express_route_circuit_connection_parameters=express_route_circuit_connection_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/connections/{connectionName}'} # type: ignore
49.865385
249
0.677043
7e6b155d0c6aa7629b9bc6dd68a094ffd647e56d
5,187
py
Python
tools_webrtc/autoroller/unittests/checkin_chromium_dep_test.py
lianhuaren/webrtc
096f18c11d8acb0d92820f75fdf934607f424cfc
[ "DOC", "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
tools_webrtc/autoroller/unittests/checkin_chromium_dep_test.py
lianhuaren/webrtc
096f18c11d8acb0d92820f75fdf934607f424cfc
[ "DOC", "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
tools_webrtc/autoroller/unittests/checkin_chromium_dep_test.py
lianhuaren/webrtc
096f18c11d8acb0d92820f75fdf934607f424cfc
[ "DOC", "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python # Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. import errno import json import os.path import shutil import stat import sys import tempfile import unittest import distutils.dir_util SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) PARENT_DIR = os.path.join(SCRIPT_DIR, os.pardir) sys.path.append(PARENT_DIR) from checkin_chromium_dep import Config, CheckinDependency, RunCommand, \ DependencyNotFound CHECKOUT_SRC_DIR = os.path.realpath(os.path.join(SCRIPT_DIR, os.pardir, os.pardir)) FAKE_REMOTE_TEMPLATE_ROOT = os.path.join(SCRIPT_DIR, 'testdata', 'checkin_chromium_dep', 'remote_root') FAKE_SOURCE_TEMPLATE_ROOT = os.path.join(SCRIPT_DIR, 'testdata', 'checkin_chromium_dep', 'src_root') def _HandleRemoveReadonly(func, path, exc): excvalue = exc[1] if func in (os.rmdir, os.remove) and excvalue.errno == errno.EACCES: os.chmod(path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # 0777 func(path) else: raise excvalue class TestCheckInChromiumDep(unittest.TestCase): def setUp(self): self._temp_dir = tempfile.mkdtemp(prefix='webrtc_test_') self._fake_chromium_repo = tempfile.mkdtemp(prefix='webrtc_test_') self._fake_source_repo = tempfile.mkdtemp(prefix='webrtc_test_') print("Temp dir: %s\n" "Chromium third_party fake repo: %s\n" "WebRTC source fake repo: %s" % ( self._temp_dir, self._fake_chromium_repo, self._fake_source_repo)) self._fake_chromium_revision = TestCheckInChromiumDep._InitFakeChromiumRepo( self._fake_chromium_repo) TestCheckInChromiumDep._InitFakeSourceRepo(self._fake_source_repo, self._fake_chromium_revision) @staticmethod def _InitFakeChromiumRepo(repo_dir): RunCommand(['git', 'init'], working_dir=repo_dir) distutils.dir_util.copy_tree(FAKE_REMOTE_TEMPLATE_ROOT, repo_dir) RunCommand(['git', 'add', '-A', '.'], working_dir=repo_dir) RunCommand(['git', 'commit', '-m', 'Init'], working_dir=repo_dir) stdout, _ = RunCommand(['git', 'rev-parse', 'HEAD'], working_dir=repo_dir) return stdout.strip() @staticmethod def _InitFakeSourceRepo(repo_dir, chromium_third_party_revision): RunCommand(['git', 'init'], working_dir=repo_dir) # Copy repo template distutils.dir_util.copy_tree(FAKE_SOURCE_TEMPLATE_ROOT, repo_dir) # Set right chromium third_party revision in DEPS file with open(os.path.join(repo_dir, 'DEPS'), 'rb') as f: deps_content = f.read() deps_content = deps_content % chromium_third_party_revision with open(os.path.join(repo_dir, 'DEPS'), 'wb') as f: f.write(deps_content) # Commit all repo content RunCommand(['git', 'add', '-A', '.'], working_dir=repo_dir) RunCommand(['git', 'commit', '-m', 'Init'], working_dir=repo_dir) def tearDown(self): shutil.rmtree(self._temp_dir, ignore_errors=False, onerror=_HandleRemoveReadonly) shutil.rmtree(self._fake_chromium_repo, ignore_errors=False, onerror=_HandleRemoveReadonly) shutil.rmtree(self._fake_source_repo, ignore_errors=False, onerror=_HandleRemoveReadonly) def testCheckIn(self): third_party_dir = os.path.join(self._fake_source_repo, 'third_party') CheckinDependency('dep_bar', Config( self._fake_source_repo, 'file://%s' % self._fake_chromium_repo, self._temp_dir)) third_party_deps_list_file = os.path.join(self._fake_source_repo, 'THIRD_PARTY_CHROMIUM_DEPS.json') with open(third_party_deps_list_file, 'rb') as f: deps_list = json.load(f).get('dependencies', []) # New dependency appended to deps list file self.assertIn('dep_foo', deps_list) self.assertIn('dep_bar', deps_list) # Only new dependency was appended self.assertNotIn('dep_buzz', deps_list) # New dependency was copied into source tree self.assertIn('dep_bar', os.listdir(third_party_dir)) self.assertIn( 'source_file.js', os.listdir(os.path.join(third_party_dir, 'dep_bar'))) # Only new dependency was copied into source tree self.assertNotIn('dep_buzz', os.listdir(third_party_dir)) def testCheckInNotExistingDep(self): self.assertRaises(DependencyNotFound, CheckinDependency, 'dep_missing', Config(self._fake_source_repo, 'file://%s' % self._fake_chromium_repo, self._temp_dir)) if __name__ == '__main__': unittest.main()
39.59542
80
0.665124
00fb75b7ee7776682f862894361e731926a847bc
3,733
py
Python
env/lib/python3.7/site-packages/docusign_rooms/models/api_error.py
davidgacc/docusign
e63167101656d0066d481844576ce687ea80eb91
[ "MIT" ]
null
null
null
env/lib/python3.7/site-packages/docusign_rooms/models/api_error.py
davidgacc/docusign
e63167101656d0066d481844576ce687ea80eb91
[ "MIT" ]
null
null
null
env/lib/python3.7/site-packages/docusign_rooms/models/api_error.py
davidgacc/docusign
e63167101656d0066d481844576ce687ea80eb91
[ "MIT" ]
null
null
null
# coding: utf-8 """ DocuSign Rooms API - v2 An API for an integrator to access the features of DocuSign Rooms # noqa: E501 OpenAPI spec version: v2 Contact: devcenter@docusign.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ApiError(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'error_code': 'str', 'message': 'str' } attribute_map = { 'error_code': 'errorCode', 'message': 'message' } def __init__(self, error_code=None, message=None): # noqa: E501 """ApiError - a model defined in Swagger""" # noqa: E501 self._error_code = None self._message = None self.discriminator = None if error_code is not None: self.error_code = error_code if message is not None: self.message = message @property def error_code(self): """Gets the error_code of this ApiError. # noqa: E501 :return: The error_code of this ApiError. # noqa: E501 :rtype: str """ return self._error_code @error_code.setter def error_code(self, error_code): """Sets the error_code of this ApiError. :param error_code: The error_code of this ApiError. # noqa: E501 :type: str """ self._error_code = error_code @property def message(self): """Gets the message of this ApiError. # noqa: E501 :return: The message of this ApiError. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this ApiError. :param message: The message of this ApiError. # noqa: E501 :type: str """ self._message = message def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ApiError, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApiError): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.288732
83
0.556657
9bd9e8a19e3a00b266f3826dae2bb0e8d0ff58ad
9,629
py
Python
mmaction/models/recognizers/base.py
Cogito2012/DEAR
97d0e8f191da0f20dcc9721280af48171dabef5e
[ "Apache-2.0" ]
47
2021-09-02T10:42:29.000Z
2022-03-31T01:37:49.000Z
mmaction/models/recognizers/base.py
Cogito2012/DEAR
97d0e8f191da0f20dcc9721280af48171dabef5e
[ "Apache-2.0" ]
2
2021-12-05T02:28:42.000Z
2022-01-05T06:46:10.000Z
mmaction/models/recognizers/base.py
Cogito2012/DEAR
97d0e8f191da0f20dcc9721280af48171dabef5e
[ "Apache-2.0" ]
6
2021-09-19T16:31:32.000Z
2022-03-03T06:57:34.000Z
from abc import ABCMeta, abstractmethod from collections import OrderedDict import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from mmcv.runner import auto_fp16 from .. import builder class BaseRecognizer(nn.Module, metaclass=ABCMeta): """Base class for recognizers. All recognizers should subclass it. All subclass should overwrite: - Methods:``forward_train``, supporting to forward when training. - Methods:``forward_test``, supporting to forward when testing. Args: backbone (dict): Backbone modules to extract feature. cls_head (dict): Classification head to process feature. train_cfg (dict | None): Config for training. Default: None. test_cfg (dict | None): Config for testing. Default: None. """ def __init__(self, backbone, cls_head, neck=None, debias_head=None, train_cfg=None, test_cfg=None): super().__init__() self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) self.cls_head = builder.build_head(cls_head) if debias_head is not None: self.debias_head = builder.build_head(debias_head) self.train_cfg = train_cfg self.test_cfg = test_cfg # aux_info is the list of tensor names beyond 'imgs' and 'label' which # will be used in train_step and val_step, data_batch should contain # these tensors self.aux_info = [] if train_cfg is not None and 'aux_info' in train_cfg: self.aux_info = train_cfg['aux_info'] self.init_weights() self.fp16_enabled = False def init_weights(self): """Initialize the model network weights.""" self.backbone.init_weights() self.cls_head.init_weights() if hasattr(self, 'neck'): self.neck.init_weights() if hasattr(self, 'debias_head'): self.debias_head.init_weights() @auto_fp16() def extract_feat(self, imgs): """Extract features through a backbone. Args: imgs (torch.Tensor): The input images. Returns: torch.tensor: The extracted features. """ x = self.backbone(imgs) return x def evidence_to_prob(self, output, evidence_type): if evidence_type == 'relu': from ..losses.edl_loss import relu_evidence as evidence elif evidence_type == 'exp': from ..losses.edl_loss import exp_evidence as evidence elif evidence_type == 'softplus': from ..losses.edl_loss import softplus_evidence as evidence alpha = evidence(output) + 1 S = torch.sum(alpha, dim=-1, keepdim=True) prob = alpha / S return prob def average_clip(self, cls_score, num_segs=1): """Averaging class score over multiple clips. Using different averaging types ('score' or 'prob' or None, which defined in test_cfg) to computed the final averaged class score. Only called in test mode. Args: cls_score (torch.Tensor): Class score to be averaged. num_segs (int): Number of clips for each input sample. Returns: torch.Tensor: Averaged class score. """ if 'average_clips' not in self.test_cfg.keys(): raise KeyError('"average_clips" must defined in test_cfg\'s keys') average_clips = self.test_cfg['average_clips'] if average_clips not in ['score', 'prob', 'evidence', None]: raise ValueError(f'{average_clips} is not supported. ' f'Currently supported ones are ' f'["score", "prob", "evidence", None]') if average_clips is None: return cls_score batch_size = cls_score.shape[0] cls_score = cls_score.view(batch_size // num_segs, num_segs, -1) if average_clips == 'prob': cls_score = F.softmax(cls_score, dim=2).mean(dim=1) elif average_clips == 'score': cls_score = cls_score.mean(dim=1) elif average_clips == 'evidence': assert 'evidence_type' in self.test_cfg.keys() cls_score = self.evidence_to_prob(cls_score, self.test_cfg['evidence_type']) cls_score = cls_score.mean(dim=1) return cls_score @abstractmethod def forward_train(self, imgs, labels, **kwargs): """Defines the computation performed at every call when training.""" @abstractmethod def forward_test(self, imgs): """Defines the computation performed at every call when evaluation and testing.""" @abstractmethod def forward_gradcam(self, imgs): """Defines the computation performed at every all when using gradcam utils.""" @staticmethod def _parse_losses(losses): """Parse the raw outputs (losses) of the network. Args: losses (dict): Raw output of the network, which usually contain losses and other necessary information. Returns: tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor which may be a weighted sum of all losses, log_vars contains all the variables to be sent to the logger. """ log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError( f'{loss_name} is not a tensor or list of tensors') loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for loss_name, loss_value in log_vars.items(): # reduce loss when distributed training if dist.is_available() and dist.is_initialized(): loss_value = loss_value.data.clone() dist.all_reduce(loss_value.div_(dist.get_world_size())) log_vars[loss_name] = loss_value.item() return loss, log_vars def forward(self, imgs, label=None, return_loss=True, **kwargs): """Define the computation performed at every call.""" if kwargs.get('gradcam', False): del kwargs['gradcam'] return self.forward_gradcam(imgs, **kwargs) if kwargs.get('get_feat', False): del kwargs['get_feat'] return self.get_feat(imgs, **kwargs) if return_loss: if label is None: raise ValueError('Label should not be None.') return self.forward_train(imgs, label, **kwargs) return self.forward_test(imgs, **kwargs) def train_step(self, data_batch, optimizer, **kwargs): """The iteration step during training. This method defines an iteration step during training, except for the back propagation and optimizer updating, which are done in an optimizer hook. Note that in some complicated cases or models, the whole process including back propagation and optimizer updating is also defined in this method, such as GAN. Args: data_batch (dict): The output of dataloader. optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of runner is passed to ``train_step()``. This argument is unused and reserved. Returns: dict: It should contain at least 3 keys: ``loss``, ``log_vars``, ``num_samples``. ``loss`` is a tensor for back propagation, which can be a weighted sum of multiple losses. ``log_vars`` contains all the variables to be sent to the logger. ``num_samples`` indicates the batch size (when the model is DDP, it means the batch size on each GPU), which is used for averaging the logs. """ imgs = data_batch['imgs'] label = data_batch['label'] aux_info = {} for item in self.aux_info: assert item in data_batch aux_info[item] = data_batch[item] aux_info.update(kwargs) losses = self(imgs, label, return_loss=True, **aux_info) loss, log_vars = self._parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(next(iter(data_batch.values())))) return outputs def val_step(self, data_batch, optimizer, **kwargs): """The iteration step during validation. This method shares the same signature as :func:`train_step`, but used during val epochs. Note that the evaluation after training epochs is not implemented with this method, but an evaluation hook. """ imgs = data_batch['imgs'] label = data_batch['label'] aux_info = {} for item in self.aux_info: aux_info[item] = data_batch[item] losses = self(imgs, label, return_loss=True, **aux_info) loss, log_vars = self._parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(next(iter(data_batch.values())))) return outputs
35.929104
88
0.606293
980437f7fe2dbc92b23ca890da032738e632a5da
724
py
Python
pyglet-hg/tools/inspect_font.py
sangh/LaserShow
abc95e465e3455dc220cc602dd58358c84666f29
[ "BSD-3-Clause" ]
21
2015-11-03T03:15:36.000Z
2021-03-15T22:00:47.000Z
tools/inspect_font.py
seeminglee/pyglet64
3dd167b5b0d3ad132a157e404586e53c2bb21736
[ "BSD-3-Clause" ]
3
2017-09-14T14:08:28.000Z
2019-05-20T04:38:15.000Z
tools/inspect_font.py
seeminglee/pyglet64
3dd167b5b0d3ad132a157e404586e53c2bb21736
[ "BSD-3-Clause" ]
23
2017-04-15T19:23:08.000Z
2020-09-08T11:55:29.000Z
#!/usr/bin/python # $Id:$ '''Display font information. Usage:: inspect_font.py <filename> [<filename> ...] ''' import sys from pyglet.font import ttf def inspect_font(filename): try: info = ttf.TruetypeInfo(filename) print '%s:' % filename, print info.get_name('family'), print 'bold=%r' % info.is_bold(), print 'italic=%r' % info.is_italic(), except: print '''%s could not be identified. It is probably not a TrueType or OpenType font. However, pyglet may still be able to load it on some platforms.''' % filename if __name__ == '__main__': if len(sys.argv) < 2: print __doc__ for filename in sys.argv[1:]: inspect_font(filename)
23.354839
78
0.622928
95e363e3a8301896ae4bf8548a3537243903d18e
684
py
Python
biokinepy/vel_acc.py
klevis-a/biokinepy
33b3aba0a5281e323fc6e5f743c124ba4d22f96c
[ "MIT" ]
1
2021-08-18T21:41:38.000Z
2021-08-18T21:41:38.000Z
biokinepy/vel_acc.py
klevis-a/biokinepy
33b3aba0a5281e323fc6e5f743c124ba4d22f96c
[ "MIT" ]
null
null
null
biokinepy/vel_acc.py
klevis-a/biokinepy
33b3aba0a5281e323fc6e5f743c124ba4d22f96c
[ "MIT" ]
null
null
null
import numpy as np import quaternion def ang_vel(mat_traj: np.ndarray, dt) -> np.ndarray: """Return the angular velocity of the rotation matrix trajectory (N, 3, 3).""" mats_vel = np.gradient(mat_traj, dt, axis=0) mats_t = np.swapaxes(mat_traj, -2, -1) ang_vel_tensor = mats_vel @ mats_t ang_vel_vector = np.stack((ang_vel_tensor[:, 2, 1], ang_vel_tensor[:, 0, 2], ang_vel_tensor[:, 1, 0]), -1) return ang_vel_vector def ang_vel_quat(quat_traj: np.ndarray, dt) -> np.ndarray: """Return the angular velocity of a quaternion trajectory (N, 4).""" mats = quaternion.as_rotation_matrix(quaternion.as_quat_array(quat_traj)) return ang_vel(mats, dt)
38
110
0.69883
e6340fc6efff3090dcbdf451c98f3e2580a8eb68
2,144
py
Python
viz_graph.py
ankurankan/graph_viz
ecf1237e9ae739bc06a8fafe8830d4ad21ab88a5
[ "MIT" ]
1
2017-04-10T08:08:03.000Z
2017-04-10T08:08:03.000Z
viz_graph.py
ankurankan/graph_viz
ecf1237e9ae739bc06a8fafe8830d4ad21ab88a5
[ "MIT" ]
null
null
null
viz_graph.py
ankurankan/graph_viz
ecf1237e9ae739bc06a8fafe8830d4ad21ab88a5
[ "MIT" ]
null
null
null
import networkx as nx import matplotlib.pyplot as plt import matplotlib.animation as animation class viz_graph(nx.Graph): def viz_neighbors(self, node, color='b'): """ Draw the graph using matplotlib with highlighted neighbors. Parameters ---------- node: Networkx node The node whose neighbors are to be highlighted. color: The color of neighbouring nodes. If not specified the default color is blue """ neighbor_nodes = self.neighbors(node) colors_list = [color if i in neighbor_nodes else 'r' for i in self.nodes()] nx.draw_networkx(self, nx.spring_layout(self), node_color=colors_list) def viz_bfs(self, node, color='b'): """ Animation for breadth first search Parameters ---------- node: Networkx node The node where to start the breadth first search from color: The color of the visited nodes. If color not specified the default color is blue """ def animati(i): nx.draw_circular(self, node_color=final_colors[i]) def bfs(s): animate = [] Q = [s] visited = [s] animate.append(visited[::]) while Q: node = Q.pop(0) for v in self.neighbors(node): if v not in visited: visited.append(v) Q.append(v) animate.append(visited[::]) return (animate) colors = ['r' for i in range(self.number_of_nodes())] final_colors = [] animate = bfs(node) for i in animate: temp_colors = colors[::] for j in i: temp_colors[j-1] = 'b' final_colors.append(temp_colors) print(final_colors) fig = plt.figure() animation.FuncAnimation(fig, self.animate, fargs=final_colors) def animate(self, color_list): print color_list nx.draw_circular(self, node_color=color_list[i])
31.072464
83
0.542444
6283fc8059609d25d9b9c3bde54e11001c3a9f39
3,064
py
Python
conf_testing/rules/habapp/test_habapp.py
DerOetzi/HABApp
a123fbfa9928ebb3cda9a84f6984dcba593c8236
[ "Apache-2.0" ]
44
2018-12-13T08:46:44.000Z
2022-03-07T03:23:21.000Z
conf_testing/rules/habapp/test_habapp.py
DerOetzi/HABApp
a123fbfa9928ebb3cda9a84f6984dcba593c8236
[ "Apache-2.0" ]
156
2019-03-02T20:53:31.000Z
2022-03-23T13:13:58.000Z
conf_testing/rules/habapp/test_habapp.py
DerOetzi/HABApp
a123fbfa9928ebb3cda9a84f6984dcba593c8236
[ "Apache-2.0" ]
18
2019-03-08T07:13:21.000Z
2022-03-22T19:52:31.000Z
import time import HABApp from HABApp.core.events import ItemNoUpdateEvent, ItemNoChangeEvent, ValueUpdateEvent from HABApp.core.items import Item from HABAppTests import TestBaseRule, EventWaiter, get_random_name class TestItemEvents(TestBaseRule): def __init__(self): super().__init__() self.add_test('Item const', self.item_events, changes=False, secs=2, values=['MyVal', 'MyVal', 'MyVal']) self.add_test('Item change', self.item_events, changes=True, secs=2, values=['MyVal1', 'MyVal2', 'MyVal3']) def check_event(self, event: ItemNoUpdateEvent): assert event.name == self.watch_item.name, f'Wrong name: {event.name} != {self.watch_item.name}' assert event.seconds == self.secs, f'Wrong seconds: {event.seconds} != {self.secs}' dur = time.time() - self.ts_set - self.secs assert abs(dur) < 0.05, f'Time wrong: {abs(dur):.2f}' def item_events(self, changes=False, secs=5, values=[]): item_name = get_random_name('HABApp') self.watch_item = Item.get_create_item(item_name) self.secs = secs watcher = (self.watch_item.watch_change if changes else self.watch_item.watch_update)(secs) event = ItemNoUpdateEvent if not changes else ItemNoChangeEvent listener = self.listen_event(self.watch_item, self.check_event, event) try: self._run(values, event) HABApp.core.Items.pop_item(item_name) assert not HABApp.core.Items.item_exists(item_name) time.sleep(0.5) self.watch_item = Item.get_create_item(item_name) self._run(values, event) finally: listener.cancel() watcher.cancel() return None def _run(self, values, event): self.ts_set = 0 for step, value in enumerate(values): if step: time.sleep(0.2) self.ts_set = time.time() self.watch_item.set_value(value) with EventWaiter(self.watch_item.name, event, self.secs + 2) as w: w.wait_for_event(seconds=self.secs) TestItemEvents() class TestItemListener(TestBaseRule): def __init__(self): super().__init__() self.add_test('Item.listen_event', self.trigger_event) def check_event(self, event: ValueUpdateEvent): assert event.name == self.watch_item.name, f'Wrong name: {event.name} != {self.watch_item.name}' assert event.value == 123, f'Wrong value: {event.value} != 123' def set_up(self): self.watch_item = Item.get_create_item(get_random_name('HABApp')) self.listener = self.watch_item.listen_event(self.check_event, ValueUpdateEvent) def tear_down(self): self.listener.cancel() def trigger_event(self): self.run.at( 1, HABApp.core.EventBus.post_event, self.watch_item.name, ValueUpdateEvent(self.watch_item.name, 123) ) with EventWaiter(self.watch_item.name, ValueUpdateEvent, 2) as w: w.wait_for_event(value=123) TestItemListener()
35.218391
115
0.655026
f822349f2f76c1a6990fb847019b3cbe07d92c86
728
py
Python
examples/pyfacebook_sample/urls.py
pose/pyfacebook-batch
387a1ea12e1b495a8f6c5ddaf01835d0add6c21f
[ "FSFAP" ]
2
2016-05-09T14:18:53.000Z
2019-01-20T15:50:57.000Z
examples/pyfacebook_sample/urls.py
igorgue/pyfacebook
d06978fa930bcea33262c82f6a993bbb882fab12
[ "FSFAP" ]
null
null
null
examples/pyfacebook_sample/urls.py
igorgue/pyfacebook
d06978fa930bcea33262c82f6a993bbb882fab12
[ "FSFAP" ]
null
null
null
from django.conf.urls.defaults import * # Hack to get the project name project = __name__.split('.')[0] # You'd want to change this to wherever your app lives urlpatterns = patterns(project + '.pyfacebook_sample.views', # Some functionality - users can post text to their homepage (r'^canvas/post/', 'post'), # For the mock AJAX functionality (r'^canvas/ajax/', 'ajax'), # This is the canvas callback, i.e. what will be seen # when you visit http://apps.facebook.com/<appname>. (r'^canvas/', 'canvas'), # Extra callbacks can be set in the Facebook app settings # page. For example, post_add will be called when a user # has added the application. (r'^post_add/', 'post_add'), )
30.333333
64
0.671703
d3d2a083a33e33a43ee5f6cc9265a1de2a413585
1,364
py
Python
team13/svg thing/boundary.py
PyconUK/dojo18
c737f2d1028347dfaf60d0f1da4764c5582ced91
[ "MIT" ]
3
2018-09-18T11:17:51.000Z
2018-09-21T19:31:04.000Z
team13/svg thing/boundary.py
PyconUK/dojo18
c737f2d1028347dfaf60d0f1da4764c5582ced91
[ "MIT" ]
1
2018-09-17T20:10:43.000Z
2018-09-17T20:10:43.000Z
team13/svg thing/boundary.py
PyconUK/dojo18
c737f2d1028347dfaf60d0f1da4764c5582ced91
[ "MIT" ]
13
2018-09-17T18:43:10.000Z
2018-09-17T20:21:01.000Z
points = [(568.2,200.2), (560.7,187.2), (392.3,271.1), (348.8,195.8), (348.8,195.8), (345.9,190.8), (303.3,117.1), (284.1,128.2), (312.9,184.8), (232.1,242.5), (241.1,258.1), (325.4,209.3), (367.8,292.4), (360.2,483.2), (429.8,483.2), (415.3,301.1)] sides = [] import random def get_sides(points): for i in range(len(points)): if i != len(points): point1 = points[i] point2 = points[i + 1] else: point1 = points[i] point2 = points[0] m = (point1[1] - point2[1]) / (point1[0] - point2[0]) c = point1[1] - m * point1[0] sides.append({'m': m, "c": c, 1: point1, 2: point2}) def are_intersecting(side, ray): if side[0] == ray[0]: return False x = (ray['c'] - side['c']) / (side['m'] - ray['m']) y = side['m'] * x + side['c'] if is_on_side(x, y, side): return True else return False def is_on_side(x, y, side): if side[1][0] < side[2][0]: if x not in range(side[1], side[2]): return False else if x not in range(side[2], side[2]): return False if side[1][1] < side[2][1]: if y not in range(side[1], side[2]): return False else if y not in range(side[2], side[2]): return False def get_ray(x, y): ray = {'m': 0, "c": y} return ray x = random.randint(0, 800) y = random.randint(0, 600) def check_in_shape(x, y, points):
17.947368
55
0.538123