hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
be321954e8763a4c51039e9d44e9a937f9446fbf
6,448
py
Python
manual/Alfred.alfredpreferences/workflows/user.workflow.4A7BFB75-AB54-42FE-B325-22358306BE4A/info.py
oscu0/orpheus
966a2dce37cef7d447e063ac5c2cd91a4388d2e0
[ "Unlicense" ]
1
2019-02-22T16:06:03.000Z
2019-02-22T16:06:03.000Z
manual/Alfred.alfredpreferences/workflows/user.workflow.4A7BFB75-AB54-42FE-B325-22358306BE4A/info.py
oscu0/orpheus
966a2dce37cef7d447e063ac5c2cd91a4388d2e0
[ "Unlicense" ]
null
null
null
manual/Alfred.alfredpreferences/workflows/user.workflow.4A7BFB75-AB54-42FE-B325-22358306BE4A/info.py
oscu0/orpheus
966a2dce37cef7d447e063ac5c2cd91a4388d2e0
[ "Unlicense" ]
null
null
null
#!/usr/bin/python # encoding: utf-8 # # Copyright (c) 2014 deanishe@deanishe.net # # MIT Licence. See http://opensource.org/licenses/MIT # # Created on 2014-12-26 # """info.py [options] [<query>] View/manage workflow settings. Usage: info.py [<query>] info.py (-h|--help) info.py --openhelp info.py --openactive info.py --openunits info.py --openapi info.py --currencies [<query>] Options: -h, --help Show this message --openhelp Open help file in default browser --openactive Open active currency file in default editor --openunits Open custom units file in default editor --openapi Open the openexchangerates.org signup page --currencies View/search supported currencies """ from __future__ import absolute_import from datetime import timedelta import subprocess import sys from docopt import docopt from workflow import ( ICON_INFO, ICON_WARNING, ICON_WEB, MATCH_ALL, MATCH_ALLCHARS, Workflow3, ) from config import ( bootstrap, ACTIVE_CURRENCIES_FILENAME, CURRENCIES, CRYPTO_CURRENCIES, CURRENCY_CACHE_NAME, CUSTOM_DEFINITIONS_FILENAME, ICON_CURRENCY, ICON_HELP, KEYWORD_SETTINGS, README_URL, ) # Signup page for free API key SIGNUP_URL = 'https://openexchangerates.org/signup/free' log = None DELIMITER = u'\u203a' # SINGLE RIGHT-POINTING ANGLE QUOTATION MARK ALFRED_AS = 'tell application "Alfred 3" to search "{}"'.format( KEYWORD_SETTINGS) def human_timedelta(td): """Return relative time (past) in human-readable format. Example: "10 minutes ago" Args: td (datetime.timedelta): Time delta to convert. Returns: unicode: Human-readable time delta. """ output = [] d = {'day': td.days} d['hour'], rem = divmod(td.seconds, 3600) d['minute'], d['second'] = divmod(rem, 60) for unit in ('day', 'hour', 'minute', 'second'): i = d[unit] if unit == 'second' and len(output): # no seconds unless last update was < 1m ago break if i == 1: output.append('1 %s' % unit) elif i > 1: output.append('%d %ss' % (i, unit)) output.append('ago') return ' '.join(output) def handle_delimited_query(query): """Process sub-commands. Args: query (str): User query """ # Currencies or decimal places if query.endswith(DELIMITER): # User deleted trailing space subprocess.call(['osascript', '-e', ALFRED_AS]) return mode, query = [s.strip() for s in query.split(DELIMITER)] if mode == 'currencies': currencies = sorted([(name, symbol) for (symbol, name) in CURRENCIES.items()] + [(name, symbol) for (symbol, name) in CRYPTO_CURRENCIES.items()]) if query: currencies = wf.filter(query, currencies, key=lambda t: ' '.join(t), match_on=MATCH_ALL ^ MATCH_ALLCHARS, min_score=30) else: # Show last update time age = wf.cached_data_age(CURRENCY_CACHE_NAME) if age > 0: # Exchange rates in cache td = timedelta(seconds=age) wf.add_item('Exchange rates updated {}'.format( human_timedelta(td)), icon=ICON_INFO) if not currencies: wf.add_item('No matching currencies', 'Try a different query', icon=ICON_WARNING) for name, symbol in currencies: wf.add_item(u'{} // {}'.format(name, symbol), u'Use `{}` in conversions'.format(symbol), copytext=symbol, valid=False, icon=ICON_CURRENCY) wf.send_feedback() def main(wf): """Run Script Filter. Args: wf (workflow.Workflow): Workflow object. """ args = docopt(__doc__, wf.args) log.debug('args : {!r}'.format(args)) query = args.get('<query>') bootstrap(wf) # Alternative actions ---------------------------------------------- if args.get('--openapi'): subprocess.call(['open', SIGNUP_URL]) return if args.get('--openhelp'): subprocess.call(['open', README_URL]) return if args.get('--openunits'): path = wf.datafile(CUSTOM_DEFINITIONS_FILENAME) subprocess.call(['open', path]) return if args.get('--openactive'): path = wf.datafile(ACTIVE_CURRENCIES_FILENAME) subprocess.call(['open', path]) return # Parse query ------------------------------------------------------ if DELIMITER in query: return handle_delimited_query(query) # Filter options --------------------------------------------------- query = query.strip() options = [ dict(title='View Help File', subtitle='Open help file in your browser', valid=True, arg='--openhelp', icon=ICON_HELP), dict(title='View All Supported Currencies', subtitle='View and search list of supported currencies', autocomplete=u'currencies {} '.format(DELIMITER), icon=ICON_CURRENCY), dict(title='Edit Active Currencies', subtitle='Edit the list of active currencies', valid=True, arg='--openactive', icon='icon.png'), dict(title='Edit Custom Units', subtitle='Add and edit your own custom units', valid=True, arg='--openunits', icon='icon.png'), dict(title='Get API key', subtitle='Sign up for free openexchangerates.org account', valid=True, arg='--openapi', icon=ICON_WEB), ] if query: options = wf.filter(query, options, key=lambda d: d['title'], min_score=30) if not options: wf.add_item('No matching options', 'Try a different query?', icon=ICON_WARNING) for d in options: wf.add_item(**d) wf.send_feedback() return if __name__ == '__main__': wf = Workflow3() log = wf.logger sys.exit(wf.run(main))
25.486166
72
0.550093
71f2858c2a22a32559492a82e92531f79e910e69
87
py
Python
py_tdlib/constructors/get_option.py
Mr-TelegramBot/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
24
2018-10-05T13:04:30.000Z
2020-05-12T08:45:34.000Z
py_tdlib/constructors/get_option.py
MrMahdi313/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
3
2019-06-26T07:20:20.000Z
2021-05-24T13:06:56.000Z
py_tdlib/constructors/get_option.py
MrMahdi313/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
5
2018-10-05T14:29:28.000Z
2020-08-11T15:04:10.000Z
from ..factory import Method class getOption(Method): name = None # type: "string"
14.5
30
0.701149
7627936785cfaabab9d56a811bca204641d76f5c
8,247
py
Python
themes/minimal/base16-gigavolt.config.py
dgmulf/base16-qutebrowser
3d71ea89adfb3ede9eee2f9764d4a59d26fe4f9b
[ "MIT" ]
null
null
null
themes/minimal/base16-gigavolt.config.py
dgmulf/base16-qutebrowser
3d71ea89adfb3ede9eee2f9764d4a59d26fe4f9b
[ "MIT" ]
null
null
null
themes/minimal/base16-gigavolt.config.py
dgmulf/base16-qutebrowser
3d71ea89adfb3ede9eee2f9764d4a59d26fe4f9b
[ "MIT" ]
null
null
null
# base16-qutebrowser (https://github.com/theova/base16-qutebrowser) # Base16 qutebrowser template by theova and Daniel Mulford # Gigavolt scheme by Aidan Swope (http://github.com/Whillikers) base00 = "#202126" base01 = "#2d303d" base02 = "#706d60" base03 = "#a1d2e6" base04 = "#cad3ff" base05 = "#e9e7e1" base06 = "#eff0f9" base07 = "#f2fbff" base08 = "#ff661a" base09 = "#19f988" base0A = "#ffdc2d" base0B = "#f2e6a9" base0C = "#fb6acb" base0D = "#40bfff" base0E = "#ae94f9" base0F = "#6187ff" # set qutebrowser colors # Text color of the completion widget. May be a single color to use for # all columns or a list of three colors, one for each column. c.colors.completion.fg = base05 # Background color of the completion widget for odd rows. c.colors.completion.odd.bg = base00 # Background color of the completion widget for even rows. c.colors.completion.even.bg = base00 # Foreground color of completion widget category headers. c.colors.completion.category.fg = base0D # Background color of the completion widget category headers. c.colors.completion.category.bg = base00 # Top border color of the completion widget category headers. c.colors.completion.category.border.top = base00 # Bottom border color of the completion widget category headers. c.colors.completion.category.border.bottom = base00 # Foreground color of the selected completion item. c.colors.completion.item.selected.fg = base00 # Background color of the selected completion item. c.colors.completion.item.selected.bg = base0D # Top border color of the completion widget category headers. c.colors.completion.item.selected.border.top = base0D # Bottom border color of the selected completion item. c.colors.completion.item.selected.border.bottom = base0D # Foreground color of the matched text in the selected completion item. c.colors.completion.item.selected.match.fg = base00 # Foreground color of the matched text in the completion. c.colors.completion.match.fg = base09 # Color of the scrollbar handle in the completion view. c.colors.completion.scrollbar.fg = base05 # Color of the scrollbar in the completion view. c.colors.completion.scrollbar.bg = base00 # Background color for the download bar. c.colors.downloads.bar.bg = base00 # Color gradient start for download text. c.colors.downloads.start.fg = base00 # Color gradient start for download backgrounds. c.colors.downloads.start.bg = base0D # Color gradient end for download text. c.colors.downloads.stop.fg = base00 # Color gradient stop for download backgrounds. c.colors.downloads.stop.bg = base0C # Foreground color for downloads with errors. c.colors.downloads.error.fg = base08 # Font color for hints. c.colors.hints.fg = base00 # Background color for hints. Note that you can use a `rgba(...)` value # for transparency. c.colors.hints.bg = base0A # Font color for the matched part of hints. c.colors.hints.match.fg = base05 # Text color for the keyhint widget. c.colors.keyhint.fg = base05 # Highlight color for keys to complete the current keychain. c.colors.keyhint.suffix.fg = base05 # Background color of the keyhint widget. c.colors.keyhint.bg = base00 # Foreground color of an error message. c.colors.messages.error.fg = base00 # Background color of an error message. c.colors.messages.error.bg = base08 # Border color of an error message. c.colors.messages.error.border = base08 # Foreground color of a warning message. c.colors.messages.warning.fg = base00 # Background color of a warning message. c.colors.messages.warning.bg = base0E # Border color of a warning message. c.colors.messages.warning.border = base0E # Foreground color of an info message. c.colors.messages.info.fg = base05 # Background color of an info message. c.colors.messages.info.bg = base00 # Border color of an info message. c.colors.messages.info.border = base00 # Foreground color for prompts. c.colors.prompts.fg = base05 # Border used around UI elements in prompts. c.colors.prompts.border = base00 # Background color for prompts. c.colors.prompts.bg = base00 # Background color for the selected item in filename prompts. c.colors.prompts.selected.bg = base0A # Foreground color of the statusbar. c.colors.statusbar.normal.fg = base05 # Background color of the statusbar. c.colors.statusbar.normal.bg = base00 # Foreground color of the statusbar in insert mode. c.colors.statusbar.insert.fg = base0C # Background color of the statusbar in insert mode. c.colors.statusbar.insert.bg = base00 # Foreground color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.fg = base0A # Background color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.bg = base00 # Foreground color of the statusbar in private browsing mode. c.colors.statusbar.private.fg = base0E # Background color of the statusbar in private browsing mode. c.colors.statusbar.private.bg = base00 # Foreground color of the statusbar in command mode. c.colors.statusbar.command.fg = base04 # Background color of the statusbar in command mode. c.colors.statusbar.command.bg = base01 # Foreground color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.fg = base0E # Background color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.bg = base01 # Foreground color of the statusbar in caret mode. c.colors.statusbar.caret.fg = base0D # Background color of the statusbar in caret mode. c.colors.statusbar.caret.bg = base00 # Foreground color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.fg = base0D # Background color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.bg = base00 # Background color of the progress bar. c.colors.statusbar.progress.bg = base0D # Default foreground color of the URL in the statusbar. c.colors.statusbar.url.fg = base05 # Foreground color of the URL in the statusbar on error. c.colors.statusbar.url.error.fg = base08 # Foreground color of the URL in the statusbar for hovered links. c.colors.statusbar.url.hover.fg = base09 # Foreground color of the URL in the statusbar on successful load # (http). c.colors.statusbar.url.success.http.fg = base0B # Foreground color of the URL in the statusbar on successful load # (https). c.colors.statusbar.url.success.https.fg = base0B # Foreground color of the URL in the statusbar when there's a warning. c.colors.statusbar.url.warn.fg = base0E # Background color of the tab bar. c.colors.tabs.bar.bg = base00 # Color gradient start for the tab indicator. c.colors.tabs.indicator.start = base0D # Color gradient end for the tab indicator. c.colors.tabs.indicator.stop = base0C # Color for the tab indicator on errors. c.colors.tabs.indicator.error = base08 # Foreground color of unselected odd tabs. c.colors.tabs.odd.fg = base05 # Background color of unselected odd tabs. c.colors.tabs.odd.bg = base00 # Foreground color of unselected even tabs. c.colors.tabs.even.fg = base05 # Background color of unselected even tabs. c.colors.tabs.even.bg = base00 # Background color of pinned unselected even tabs. c.colors.tabs.pinned.even.bg = base0B # Foreground color of pinned unselected even tabs. c.colors.tabs.pinned.even.fg = base00 # Background color of pinned unselected odd tabs. c.colors.tabs.pinned.odd.bg = base0B # Foreground color of pinned unselected odd tabs. c.colors.tabs.pinned.odd.fg = base00 # Background color of pinned selected even tabs. c.colors.tabs.pinned.selected.even.bg = base0D # Foreground color of pinned selected even tabs. c.colors.tabs.pinned.selected.even.fg = base00 # Background color of pinned selected odd tabs. c.colors.tabs.pinned.selected.odd.bg = base0D # Foreground color of pinned selected odd tabs. c.colors.tabs.pinned.selected.odd.fg = base00 # Foreground color of selected odd tabs. c.colors.tabs.selected.odd.fg = base00 # Background color of selected odd tabs. c.colors.tabs.selected.odd.bg = base0D # Foreground color of selected even tabs. c.colors.tabs.selected.even.fg = base00 # Background color of selected even tabs. c.colors.tabs.selected.even.bg = base0D # Background color for webpages if unset (or empty to use the theme's # color). c.colors.webpage.bg = base00
29.453571
71
0.771796
0fa1f7efb2de97801e7d0fd423d190cadf795d98
200
py
Python
cellsimulation/triangle.py
marcbperez/cell-simulation-python
b2f6e203a0fd46a8dcfc0b7f1fa0f5b514145489
[ "Apache-2.0" ]
1
2019-04-15T09:33:29.000Z
2019-04-15T09:33:29.000Z
cellsimulation/triangle.py
mbpez/cell-simulation-python
b2f6e203a0fd46a8dcfc0b7f1fa0f5b514145489
[ "Apache-2.0" ]
null
null
null
cellsimulation/triangle.py
mbpez/cell-simulation-python
b2f6e203a0fd46a8dcfc0b7f1fa0f5b514145489
[ "Apache-2.0" ]
null
null
null
from mesh import Mesh from OpenGL.GL import * class Triangle(Mesh): def render(self): self.render_position() glBegin(GL_TRIANGLES) self.render_vertices() glEnd()
18.181818
30
0.64
91fafa7c7fe4dd89070be0f5413dd1740352055e
2,055
py
Python
tests/tests_integration/test_api/test_data_sets.py
sakshi87/cognite-sdk-python
eb3d569fd058dfd8e3c0c29dee2a635deabad1ac
[ "Apache-2.0" ]
null
null
null
tests/tests_integration/test_api/test_data_sets.py
sakshi87/cognite-sdk-python
eb3d569fd058dfd8e3c0c29dee2a635deabad1ac
[ "Apache-2.0" ]
null
null
null
tests/tests_integration/test_api/test_data_sets.py
sakshi87/cognite-sdk-python
eb3d569fd058dfd8e3c0c29dee2a635deabad1ac
[ "Apache-2.0" ]
null
null
null
from unittest import mock import pytest from cognite.client import CogniteClient from cognite.client.data_classes import DataSet, DataSetFilter, DataSetUpdate from cognite.client.exceptions import CogniteNotFoundError from tests.utils import set_request_limit COGNITE_CLIENT = CogniteClient() DS_API = COGNITE_CLIENT.data_sets @pytest.fixture(scope="class") def new_dataset(): dataset = DS_API.create(DataSet()) yield dataset # todo: uncomment when delete is implemented # DS_API.delete(id=dataset.id) # assert DS_API.retrieve(dataset.id) is None @pytest.fixture def post_spy(): with mock.patch.object(DS_API, "_post", wraps=DS_API._post) as _: yield class TestDataSetsAPI: def test_retrieve(self, new_dataset): assert new_dataset.id == DS_API.retrieve(new_dataset.id).id def test_retrieve_multiple(self): res_listed_ids = [e.id for e in DS_API.list(limit=2)] res_lookup_ids = [e.id for e in DS_API.retrieve_multiple(res_listed_ids)] for listed_id in res_listed_ids: assert listed_id in res_lookup_ids def test_retrieve_unknown(self, new_dataset): invalid_external_id = "this does not exist" with pytest.raises(CogniteNotFoundError) as error: DS_API.retrieve_multiple(ids=[new_dataset.id], external_ids=[invalid_external_id]) assert error.value.not_found[0]["externalId"] == invalid_external_id def test_list(self, post_spy): with set_request_limit(DS_API, 1): res = DS_API.list(limit=2) assert 2 == len(res) assert 2 == COGNITE_CLIENT.data_sets._post.call_count def test_aggregate(self): res = COGNITE_CLIENT.data_sets.aggregate(filter=DataSetFilter(metadata={"1": "1"})) assert res[0].count > 0 def test_update(self, new_dataset): update_asset = DataSetUpdate(new_dataset.id).metadata.set({"1": "1"}).name.set("newname") res = DS_API.update(update_asset) assert {"1": "1"} == res.metadata assert "newname" == res.name
33.688525
97
0.705109
ee4751d8f716877ee27de29cb2792055480b3eaf
101,980
py
Python
wandb/sdk/data_types.py
theodumont/client
7402ac67ada5bc8078078a49fd3e0cb4b6172307
[ "MIT" ]
null
null
null
wandb/sdk/data_types.py
theodumont/client
7402ac67ada5bc8078078a49fd3e0cb4b6172307
[ "MIT" ]
1
2021-04-27T20:13:45.000Z
2021-04-27T20:13:45.000Z
wandb/sdk/data_types.py
theodumont/client
7402ac67ada5bc8078078a49fd3e0cb4b6172307
[ "MIT" ]
null
null
null
import codecs import hashlib import json import logging import numbers import os import re import shutil import sys from typing import ( Any, cast, ClassVar, Dict, List, Optional, Sequence, Set, Tuple, Type, TYPE_CHECKING, Union, ) from pkg_resources import parse_version import six from six.moves.collections_abc import Sequence as SixSequence import wandb from wandb import util from wandb._globals import _datatypes_callback from wandb.compat import tempfile from wandb.util import has_num from .interface import _dtypes if TYPE_CHECKING: # pragma: no cover from .wandb_artifacts import Artifact as LocalArtifact from .wandb_run import Run as LocalRun from wandb.apis.public import Artifact as PublicArtifact import numpy as np # type: ignore import pandas as pd # type: ignore import matplotlib # type: ignore import plotly # type: ignore import PIL # type: ignore import torch # type: ignore from typing import TextIO TypeMappingType = Dict[str, Type["WBValue"]] NumpyHistogram = Tuple[np.ndarray, np.ndarray] ValToJsonType = Union[ dict, "WBValue", Sequence["WBValue"], "plotly.Figure", "matplotlib.artist.Artist", "pd.DataFrame", object, ] ImageDataType = Union[ "matplotlib.artist.Artist", "PIL.Image", "TorchTensorType", "np.ndarray" ] ImageDataOrPathType = Union[str, "Image", ImageDataType] TorchTensorType = Union["torch.Tensor", "torch.Variable"] _MEDIA_TMP = tempfile.TemporaryDirectory("wandb-media") _DATA_FRAMES_SUBDIR = os.path.join("media", "data_frames") def _get_max_cli_version() -> Union[str, None]: _, server_info = wandb.api.viewer_server_info() max_cli_version = server_info.get("cliVersionInfo", {}).get("max_cli_version", None) return str(max_cli_version) if max_cli_version is not None else None def _is_offline() -> bool: return ( wandb.run is not None and wandb.run._settings.mode == "offline" # type: ignore ) or str(wandb.setup().settings.mode) == "offline" def _server_accepts_client_ids() -> bool: # First, if we are offline, assume the backend server cannot # accept client IDs. Unfortunately, this is the best we can do # until we are sure that all local versions are > "0.11.0" max_cli_version. # The practical implication is that tables logged in offline mode # will not show up in the workspace (but will still show up in artifacts). This # means we never lose data, and we can still view using weave. If we decided # to use client ids in offline mode, then the manifests and artifact data # would never be resolvable and would lead to failed uploads. Our position # is to never lose data - and instead take the tradeoff in the UI. if _is_offline(): return False # If the script is online, request the max_cli_version and ensure the server # is of a high enough version. max_cli_version = _get_max_cli_version() if max_cli_version is None: return False return parse_version("0.11.0") <= parse_version(max_cli_version) class _WBValueArtifactSource(object): artifact: "PublicArtifact" name: Optional[str] def __init__(self, artifact: "PublicArtifact", name: Optional[str] = None) -> None: self.artifact = artifact self.name = name class _WBValueArtifactTarget(object): artifact: "LocalArtifact" name: Optional[str] def __init__(self, artifact: "LocalArtifact", name: Optional[str] = None) -> None: self.artifact = artifact self.name = name class WBValue(object): """ Abstract parent class for things that can be logged by `wandb.log()` and visualized by wandb. The objects will be serialized as JSON and always have a _type attribute that indicates how to interpret the other fields. """ # Class Attributes _type_mapping: ClassVar[Optional["TypeMappingType"]] = None # override _log_type to indicate the type which the subclass deserializes _log_type: ClassVar[Optional[str]] = None # Instance Attributes _artifact_source: Optional[_WBValueArtifactSource] _artifact_target: Optional[_WBValueArtifactTarget] def __init__(self) -> None: self._artifact_source = None self._artifact_target = None def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: """Serializes the object into a JSON blob, using a run or artifact to store additional data. Args: run_or_artifact (wandb.Run | wandb.Artifact): the Run or Artifact for which this object should be generating JSON for - this is useful to to store additional data if needed. Returns: dict: JSON representation """ raise NotImplementedError @classmethod def from_json( cls: Type["WBValue"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "WBValue": """Deserialize a `json_obj` into it's class representation. If additional resources were stored in the `run_or_artifact` artifact during the `to_json` call, then those resources are expected to be in the `source_artifact`. Args: json_obj (dict): A JSON dictionary to deserialize source_artifact (wandb.Artifact): An artifact which will hold any additional resources which were stored during the `to_json` function. """ raise NotImplementedError @classmethod def with_suffix(cls: Type["WBValue"], name: str, filetype: str = "json") -> str: """Helper function to return the name with suffix added if not already Args: name (str): the name of the file filetype (str, optional): the filetype to use. Defaults to "json". Returns: str: a filename which is suffixed with it's `_log_type` followed by the filetype """ if cls._log_type is not None: suffix = cls._log_type + "." + filetype else: suffix = filetype if not name.endswith(suffix): return name + "." + suffix return name @staticmethod def init_from_json( json_obj: dict, source_artifact: "PublicArtifact" ) -> "Optional[WBValue]": """Looks through all subclasses and tries to match the json obj with the class which created it. It will then call that subclass' `from_json` method. Importantly, this function will set the return object's `source_artifact` attribute to the passed in source artifact. This is critical for artifact bookkeeping. If you choose to create a wandb.Value via it's `from_json` method, make sure to properly set this `artifact_source` to avoid data duplication. Args: json_obj (dict): A JSON dictionary to deserialize. It must contain a `_type` key. The value of this key is used to lookup the correct subclass to use. source_artifact (wandb.Artifact): An artifact which will hold any additional resources which were stored during the `to_json` function. Returns: wandb.Value: a newly created instance of a subclass of wandb.Value """ class_option = WBValue.type_mapping().get(json_obj["_type"]) if class_option is not None: obj = class_option.from_json(json_obj, source_artifact) obj._set_artifact_source(source_artifact) return obj return None @staticmethod def type_mapping() -> "TypeMappingType": """Returns a map from `_log_type` to subclass. Used to lookup correct types for deserialization. Returns: dict: dictionary of str:class """ if WBValue._type_mapping is None: WBValue._type_mapping = {} frontier = [WBValue] explored = set([]) while len(frontier) > 0: class_option = frontier.pop() explored.add(class_option) if class_option._log_type is not None: WBValue._type_mapping[class_option._log_type] = class_option for subclass in class_option.__subclasses__(): if subclass not in explored: frontier.append(subclass) return WBValue._type_mapping def __eq__(self, other: object) -> bool: return id(self) == id(other) def __ne__(self, other: object) -> bool: return not self.__eq__(other) def to_data_array(self) -> List[Any]: """Converts the object to a list of primitives representing the underlying data""" raise NotImplementedError def _set_artifact_source( self, artifact: "PublicArtifact", name: Optional[str] = None ) -> None: assert ( self._artifact_source is None ), "Cannot update artifact_source. Existing source: {}/{}".format( self._artifact_source.artifact, self._artifact_source.name ) self._artifact_source = _WBValueArtifactSource(artifact, name) def _set_artifact_target( self, artifact: "LocalArtifact", name: Optional[str] = None ) -> None: assert ( self._artifact_target is None ), "Cannot update artifact_target. Existing target: {}/{}".format( self._artifact_target.artifact, self._artifact_target.name ) self._artifact_target = _WBValueArtifactTarget(artifact, name) def _get_artifact_entry_ref_url(self) -> Optional[str]: # If the object is coming from another artifact if self._artifact_source and self._artifact_source.name: ref_entry = self._artifact_source.artifact.get_path( type(self).with_suffix(self._artifact_source.name) ) return str(ref_entry.ref_url()) # Else, if the object is destined for another artifact and we support client IDs elif ( self._artifact_target and self._artifact_target.name and self._artifact_target.artifact._client_id is not None and self._artifact_target.artifact._final and _server_accepts_client_ids() ): return "wandb-client-artifact://{}/{}".format( self._artifact_target.artifact._client_id, type(self).with_suffix(self._artifact_target.name), ) # Else if we do not support client IDs, but online, then block on upload # Note: this is old behavior just to stay backwards compatible # with older server versions. This code path should be removed # once those versions are no longer supported. This path uses a .wait # which blocks the user process on artifact upload. elif ( self._artifact_target and self._artifact_target.name and self._artifact_target.artifact._logged_artifact is not None and not _is_offline() and not _server_accepts_client_ids() ): self._artifact_target.artifact.wait() ref_entry = self._artifact_target.artifact.get_path( type(self).with_suffix(self._artifact_target.name) ) return str(ref_entry.ref_url()) return None def _get_artifact_entry_latest_ref_url(self) -> Optional[str]: if ( self._artifact_target and self._artifact_target.name and self._artifact_target.artifact._client_id is not None and self._artifact_target.artifact._final and _server_accepts_client_ids() ): return "wandb-client-artifact://{}:latest/{}".format( self._artifact_target.artifact._sequence_client_id, type(self).with_suffix(self._artifact_target.name), ) # Else if we do not support client IDs, then block on upload # Note: this is old behavior just to stay backwards compatible # with older server versions. This code path should be removed # once those versions are no longer supported. This path uses a .wait # which blocks the user process on artifact upload. elif ( self._artifact_target and self._artifact_target.name and self._artifact_target.artifact._logged_artifact is not None and not _is_offline() and not _server_accepts_client_ids() ): self._artifact_target.artifact.wait() ref_entry = self._artifact_target.artifact.get_path( type(self).with_suffix(self._artifact_target.name) ) return str(ref_entry.ref_url()) return None class Histogram(WBValue): """wandb class for histograms. This object works just like numpy's histogram function https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html Examples: Generate histogram from a sequence ```python wandb.Histogram([1,2,3]) ``` Efficiently initialize from np.histogram. ```python hist = np.histogram(data) wandb.Histogram(np_histogram=hist) ``` Arguments: sequence: (array_like) input data for histogram np_histogram: (numpy histogram) alternative input of a precoomputed histogram num_bins: (int) Number of bins for the histogram. The default number of bins is 64. The maximum number of bins is 512 Attributes: bins: ([float]) edges of bins histogram: ([int]) number of elements falling in each bin """ MAX_LENGTH: int = 512 _log_type = "histogram" def __init__( self, sequence: Optional[Sequence] = None, np_histogram: Optional["NumpyHistogram"] = None, num_bins: int = 64, ) -> None: if np_histogram: if len(np_histogram) == 2: self.histogram = ( np_histogram[0].tolist() if hasattr(np_histogram[0], "tolist") else np_histogram[0] ) self.bins = ( np_histogram[1].tolist() if hasattr(np_histogram[1], "tolist") else np_histogram[1] ) else: raise ValueError( "Expected np_histogram to be a tuple of (values, bin_edges) or sequence to be specified" ) else: np = util.get_module( "numpy", required="Auto creation of histograms requires numpy" ) self.histogram, self.bins = np.histogram(sequence, bins=num_bins) self.histogram = self.histogram.tolist() self.bins = self.bins.tolist() if len(self.histogram) > self.MAX_LENGTH: raise ValueError( "The maximum length of a histogram is %i" % self.MAX_LENGTH ) if len(self.histogram) + 1 != len(self.bins): raise ValueError("len(bins) must be len(histogram) + 1") def to_json(self, run: Union["LocalRun", "LocalArtifact"] = None) -> dict: return {"_type": self._log_type, "values": self.histogram, "bins": self.bins} def __sizeof__(self) -> int: """This returns an estimated size in bytes, currently the factor of 1.7 is used to account for the JSON encoding. We use this in tb_watcher.TBHistory """ return int((sys.getsizeof(self.histogram) + sys.getsizeof(self.bins)) * 1.7) class Media(WBValue): """A WBValue that we store as a file outside JSON and show in a media panel on the front end. If necessary, we move or copy the file into the Run's media directory so that it gets uploaded. """ _path: Optional[str] _run: Optional["LocalRun"] _caption: Optional[str] _is_tmp: Optional[bool] _extension: Optional[str] _sha256: Optional[str] _size: Optional[int] def __init__(self, caption: Optional[str] = None) -> None: super(Media, self).__init__() self._path = None # The run under which this object is bound, if any. self._run = None self._caption = caption def _set_file( self, path: str, is_tmp: bool = False, extension: Optional[str] = None ) -> None: self._path = path self._is_tmp = is_tmp self._extension = extension if extension is not None and not path.endswith(extension): raise ValueError( 'Media file extension "{}" must occur at the end of path "{}".'.format( extension, path ) ) with open(self._path, "rb") as f: self._sha256 = hashlib.sha256(f.read()).hexdigest() self._size = os.path.getsize(self._path) @classmethod def get_media_subdir(cls: Type["Media"]) -> str: raise NotImplementedError @staticmethod def captions( media_items: Sequence["Media"], ) -> Union[bool, Sequence[Optional[str]]]: if media_items[0]._caption is not None: return [m._caption for m in media_items] else: return False def is_bound(self) -> bool: return self._run is not None def file_is_set(self) -> bool: return self._path is not None and self._sha256 is not None def bind_to_run( self, run: "LocalRun", key: Union[int, str], step: Union[int, str], id_: Optional[Union[int, str]] = None, ) -> None: """Bind this object to a particular Run. Calling this function is necessary so that we have somewhere specific to put the file associated with this object, from which other Runs can refer to it. """ if not self.file_is_set(): raise AssertionError("bind_to_run called before _set_file") # The following two assertions are guaranteed to pass # by definition file_is_set, but are needed for # mypy to understand that these are strings below. assert isinstance(self._path, six.string_types) assert isinstance(self._sha256, six.string_types) if run is None: raise TypeError('Argument "run" must not be None.') self._run = run # Following assertion required for mypy assert self._run is not None if self._extension is None: _, extension = os.path.splitext(os.path.basename(self._path)) else: extension = self._extension if id_ is None: id_ = self._sha256[:20] file_path = _wb_filename(key, step, id_, extension) media_path = os.path.join(self.get_media_subdir(), file_path) new_path = os.path.join(self._run.dir, media_path) util.mkdir_exists_ok(os.path.dirname(new_path)) if self._is_tmp: shutil.move(self._path, new_path) self._path = new_path self._is_tmp = False _datatypes_callback(media_path) else: shutil.copy(self._path, new_path) self._path = new_path _datatypes_callback(media_path) def to_json(self, run: Union["LocalRun", "LocalArtifact"]) -> dict: """Serializes the object into a JSON blob, using a run or artifact to store additional data. If `run_or_artifact` is a wandb.Run then `self.bind_to_run()` must have been previously been called. Args: run_or_artifact (wandb.Run | wandb.Artifact): the Run or Artifact for which this object should be generating JSON for - this is useful to to store additional data if needed. Returns: dict: JSON representation """ # NOTE: uses of Audio in this class are a temporary hack -- when Ref support moves up # into Media itself we should get rid of them from wandb.data_types import Audio json_obj = {} if isinstance(run, wandb.wandb_sdk.wandb_run.Run): if not self.is_bound(): raise RuntimeError( "Value of type {} must be bound to a run with bind_to_run() before being serialized to JSON.".format( type(self).__name__ ) ) assert ( self._run is run ), "We don't support referring to media files across runs." # The following two assertions are guaranteed to pass # by definition is_bound, but are needed for # mypy to understand that these are strings below. assert isinstance(self._path, six.string_types) json_obj.update( { "_type": "file", # TODO(adrian): This isn't (yet) a real media type we support on the frontend. "path": util.to_forward_slash_path( os.path.relpath(self._path, self._run.dir) ), "sha256": self._sha256, "size": self._size, } ) artifact_entry_url = self._get_artifact_entry_ref_url() if artifact_entry_url is not None: json_obj["artifact_path"] = artifact_entry_url artifact_entry_latest_url = self._get_artifact_entry_latest_ref_url() if artifact_entry_latest_url is not None: json_obj["_latest_artifact_path"] = artifact_entry_latest_url elif isinstance(run, wandb.wandb_sdk.wandb_artifacts.Artifact): if self.file_is_set(): # The following two assertions are guaranteed to pass # by definition of the call above, but are needed for # mypy to understand that these are strings below. assert isinstance(self._path, six.string_types) assert isinstance(self._sha256, six.string_types) artifact = run # Checks if the concrete image has already been added to this artifact name = artifact.get_added_local_path_name(self._path) if name is None: if self._is_tmp: name = os.path.join( self.get_media_subdir(), os.path.basename(self._path) ) else: # If the files is not temporary, include the first 8 characters of the file's SHA256 to # avoid name collisions. This way, if there are two images `dir1/img.png` and `dir2/img.png` # we end up with a unique path for each. name = os.path.join( self.get_media_subdir(), self._sha256[:20], os.path.basename(self._path), ) # if not, check to see if there is a source artifact for this object if ( self._artifact_source is not None # and self._artifact_source.artifact != artifact ): default_root = self._artifact_source.artifact._default_root() # if there is, get the name of the entry (this might make sense to move to a helper off artifact) if self._path.startswith(default_root): name = self._path[len(default_root) :] name = name.lstrip(os.sep) # Add this image as a reference path = self._artifact_source.artifact.get_path(name) artifact.add_reference(path.ref_url(), name=name) elif isinstance(self, Audio) and Audio.path_is_reference( self._path ): artifact.add_reference(self._path, name=name) else: entry = artifact.add_file( self._path, name=name, is_tmp=self._is_tmp ) name = entry.path json_obj["path"] = name json_obj["sha256"] = self._sha256 json_obj["_type"] = self._log_type return json_obj @classmethod def from_json( cls: Type["Media"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "Media": """Likely will need to override for any more complicated media objects""" return cls(source_artifact.get_path(json_obj["path"]).download()) def __eq__(self, other: object) -> bool: """Likely will need to override for any more complicated media objects""" return ( isinstance(other, self.__class__) and hasattr(self, "_sha256") and hasattr(other, "_sha256") and self._sha256 == other._sha256 ) class BatchableMedia(Media): """Parent class for Media we treat specially in batches, like images and thumbnails. Apart from images, we just use these batches to help organize files by name in the media directory. """ def __init__(self) -> None: super(BatchableMedia, self).__init__() @classmethod def seq_to_json( cls: Type["BatchableMedia"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: raise NotImplementedError class Object3D(BatchableMedia): """ Wandb class for 3D point clouds. Arguments: data_or_path: (numpy array, string, io) Object3D can be initialized from a file or a numpy array. The file types supported are obj, gltf, babylon, stl. You can pass a path to a file or an io object and a file_type which must be one of `'obj', 'gltf', 'babylon', 'stl'`. The shape of the numpy array must be one of either: ```python [[x y z], ...] nx3 [x y z c], ...] nx4 where c is a category with supported range [1, 14] [x y z r g b], ...] nx4 where is rgb is color ``` """ SUPPORTED_TYPES: ClassVar[Set[str]] = set( ["obj", "gltf", "glb", "babylon", "stl", "pts.json"] ) _log_type: ClassVar[str] = "object3D-file" def __init__( self, data_or_path: Union["np.ndarray", str, "TextIO"], **kwargs: str ) -> None: super(Object3D, self).__init__() if hasattr(data_or_path, "name"): # if the file has a path, we just detect the type and copy it from there data_or_path = data_or_path.name # type: ignore if hasattr(data_or_path, "read"): if hasattr(data_or_path, "seek"): data_or_path.seek(0) # type: ignore object_3d = data_or_path.read() # type: ignore extension = kwargs.pop("file_type", None) if extension is None: raise ValueError( "Must pass file type keyword argument when using io objects." ) if extension not in Object3D.SUPPORTED_TYPES: raise ValueError( "Object 3D only supports numpy arrays or files of the type: " + ", ".join(Object3D.SUPPORTED_TYPES) ) tmp_path = os.path.join( _MEDIA_TMP.name, util.generate_id() + "." + extension ) with open(tmp_path, "w") as f: f.write(object_3d) self._set_file(tmp_path, is_tmp=True) elif isinstance(data_or_path, six.string_types): path = data_or_path extension = None for supported_type in Object3D.SUPPORTED_TYPES: if path.endswith(supported_type): extension = supported_type break if not extension: raise ValueError( "File '" + path + "' is not compatible with Object3D: supported types are: " + ", ".join(Object3D.SUPPORTED_TYPES) ) self._set_file(data_or_path, is_tmp=False) # Supported different types and scene for 3D scenes elif isinstance(data_or_path, dict) and "type" in data_or_path: if data_or_path["type"] == "lidar/beta": data = { "type": data_or_path["type"], "vectors": data_or_path["vectors"].tolist() if "vectors" in data_or_path else [], "points": data_or_path["points"].tolist() if "points" in data_or_path else [], "boxes": data_or_path["boxes"].tolist() if "boxes" in data_or_path else [], } else: raise ValueError( "Type not supported, only 'lidar/beta' is currently supported" ) tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ".pts.json") json.dump( data, codecs.open(tmp_path, "w", encoding="utf-8"), separators=(",", ":"), sort_keys=True, indent=4, ) self._set_file(tmp_path, is_tmp=True, extension=".pts.json") elif _is_numpy_array(data_or_path): np_data = data_or_path # The following assertion is required for numpy to trust that # np_data is numpy array. The reason it is behind a False # guard is to ensure that this line does not run at runtime, # which would cause a runtime error if the user's machine did # not have numpy installed. if TYPE_CHECKING: assert isinstance(np_data, np.ndarray) if len(np_data.shape) != 2 or np_data.shape[1] not in {3, 4, 6}: raise ValueError( """The shape of the numpy array must be one of either [[x y z], ...] nx3 [x y z c], ...] nx4 where c is a category with supported range [1, 14] [x y z r g b], ...] nx4 where is rgb is color""" ) list_data = np_data.tolist() tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ".pts.json") json.dump( list_data, codecs.open(tmp_path, "w", encoding="utf-8"), separators=(",", ":"), sort_keys=True, indent=4, ) self._set_file(tmp_path, is_tmp=True, extension=".pts.json") else: raise ValueError("data must be a numpy array, dict or a file object") @classmethod def get_media_subdir(cls: Type["Object3D"]) -> str: return os.path.join("media", "object3D") def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Object3D, self).to_json(run_or_artifact) json_dict["_type"] = Object3D._log_type if isinstance(run_or_artifact, wandb.wandb_sdk.wandb_artifacts.Artifact): if self._path is None or not self._path.endswith(".pts.json"): raise ValueError( "Non-point cloud 3D objects are not yet supported with Artifacts" ) return json_dict @classmethod def seq_to_json( cls: Type["Object3D"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: seq = list(seq) jsons = [obj.to_json(run) for obj in seq] for obj in jsons: expected = util.to_forward_slash_path(cls.get_media_subdir()) if not obj["path"].startswith(expected): raise ValueError( "Files in an array of Object3D's must be in the {} directory, not {}".format( expected, obj["path"] ) ) return { "_type": "object3D", "filenames": [ os.path.relpath(j["path"], cls.get_media_subdir()) for j in jsons ], "count": len(jsons), "objects": jsons, } class Molecule(BatchableMedia): """ Wandb class for Molecular data Arguments: data_or_path: (string, io) Molecule can be initialized from a file name or an io object. """ SUPPORTED_TYPES = set( ["pdb", "pqr", "mmcif", "mcif", "cif", "sdf", "sd", "gro", "mol2", "mmtf"] ) _log_type = "molecule-file" def __init__(self, data_or_path: Union[str, "TextIO"], **kwargs: str) -> None: super(Molecule, self).__init__() if hasattr(data_or_path, "name"): # if the file has a path, we just detect the type and copy it from there data_or_path = data_or_path.name # type: ignore if hasattr(data_or_path, "read"): if hasattr(data_or_path, "seek"): data_or_path.seek(0) # type: ignore molecule = data_or_path.read() # type: ignore extension = kwargs.pop("file_type", None) if extension is None: raise ValueError( "Must pass file type keyword argument when using io objects." ) if extension not in Molecule.SUPPORTED_TYPES: raise ValueError( "Molecule 3D only supports files of the type: " + ", ".join(Molecule.SUPPORTED_TYPES) ) tmp_path = os.path.join( _MEDIA_TMP.name, util.generate_id() + "." + extension ) with open(tmp_path, "w") as f: f.write(molecule) self._set_file(tmp_path, is_tmp=True) elif isinstance(data_or_path, six.string_types): extension = os.path.splitext(data_or_path)[1][1:] if extension not in Molecule.SUPPORTED_TYPES: raise ValueError( "Molecule only supports files of the type: " + ", ".join(Molecule.SUPPORTED_TYPES) ) self._set_file(data_or_path, is_tmp=False) else: raise ValueError("Data must be file name or a file object") @classmethod def get_media_subdir(cls: Type["Molecule"]) -> str: return os.path.join("media", "molecule") def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Molecule, self).to_json(run_or_artifact) json_dict["_type"] = self._log_type if self._caption: json_dict["caption"] = self._caption return json_dict @classmethod def seq_to_json( cls: Type["Molecule"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: seq = list(seq) jsons = [obj.to_json(run) for obj in seq] for obj in jsons: expected = util.to_forward_slash_path(cls.get_media_subdir()) if not obj["path"].startswith(expected): raise ValueError( "Files in an array of Molecule's must be in the {} directory, not {}".format( cls.get_media_subdir(), obj["path"] ) ) return { "_type": "molecule", "filenames": [obj["path"] for obj in jsons], "count": len(jsons), "captions": Media.captions(seq), } class Html(BatchableMedia): """ Wandb class for arbitrary html Arguments: data: (string or io object) HTML to display in wandb inject: (boolean) Add a stylesheet to the HTML object. If set to False the HTML will pass through unchanged. """ _log_type = "html-file" def __init__(self, data: Union[str, "TextIO"], inject: bool = True) -> None: super(Html, self).__init__() data_is_path = isinstance(data, six.string_types) and os.path.exists(data) data_path = "" if data_is_path: assert isinstance(data, six.string_types) data_path = data with open(data_path, "r") as file: self.html = file.read() elif isinstance(data, six.string_types): self.html = data elif hasattr(data, "read"): if hasattr(data, "seek"): data.seek(0) self.html = data.read() else: raise ValueError("data must be a string or an io object") if inject: self.inject_head() if inject or not data_is_path: tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ".html") with open(tmp_path, "w") as out: out.write(self.html) self._set_file(tmp_path, is_tmp=True) else: self._set_file(data_path, is_tmp=False) def inject_head(self) -> None: join = "" if "<head>" in self.html: parts = self.html.split("<head>", 1) parts[0] = parts[0] + "<head>" elif "<html>" in self.html: parts = self.html.split("<html>", 1) parts[0] = parts[0] + "<html><head>" parts[1] = "</head>" + parts[1] else: parts = ["", self.html] parts.insert( 1, '<base target="_blank"><link rel="stylesheet" type="text/css" href="https://app.wandb.ai/normalize.css" />', ) self.html = join.join(parts).strip() @classmethod def get_media_subdir(cls: Type["Html"]) -> str: return os.path.join("media", "html") def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Html, self).to_json(run_or_artifact) json_dict["_type"] = self._log_type return json_dict @classmethod def from_json( cls: Type["Html"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "Html": return cls(source_artifact.get_path(json_obj["path"]).download(), inject=False) @classmethod def seq_to_json( cls: Type["Html"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: base_path = os.path.join(run.dir, cls.get_media_subdir()) util.mkdir_exists_ok(base_path) meta = { "_type": "html", "count": len(seq), "html": [h.to_json(run) for h in seq], } return meta class Video(BatchableMedia): """ Wandb representation of video. Arguments: data_or_path: (numpy array, string, io) Video can be initialized with a path to a file or an io object. The format must be "gif", "mp4", "webm" or "ogg". The format must be specified with the format argument. Video can be initialized with a numpy tensor. The numpy tensor must be either 4 dimensional or 5 dimensional. Channels should be (time, channel, height, width) or (batch, time, channel, height width) caption: (string) caption associated with the video for display fps: (int) frames per second for video. Default is 4. format: (string) format of video, necessary if initializing with path or io object. """ _log_type = "video-file" EXTS = ("gif", "mp4", "webm", "ogg") _width: Optional[int] _height: Optional[int] def __init__( self, data_or_path: Union["np.ndarray", str, "TextIO"], caption: Optional[str] = None, fps: int = 4, format: Optional[str] = None, ): super(Video, self).__init__() self._fps = fps self._format = format or "gif" self._width = None self._height = None self._channels = None self._caption = caption if self._format not in Video.EXTS: raise ValueError("wandb.Video accepts %s formats" % ", ".join(Video.EXTS)) if isinstance(data_or_path, six.BytesIO): filename = os.path.join( _MEDIA_TMP.name, util.generate_id() + "." + self._format ) with open(filename, "wb") as f: f.write(data_or_path.read()) self._set_file(filename, is_tmp=True) elif isinstance(data_or_path, six.string_types): _, ext = os.path.splitext(data_or_path) ext = ext[1:].lower() if ext not in Video.EXTS: raise ValueError( "wandb.Video accepts %s formats" % ", ".join(Video.EXTS) ) self._set_file(data_or_path, is_tmp=False) # ffprobe -v error -select_streams v:0 -show_entries stream=width,height -of csv=p=0 data_or_path else: if hasattr(data_or_path, "numpy"): # TF data eager tensors self.data = data_or_path.numpy() # type: ignore elif _is_numpy_array(data_or_path): self.data = data_or_path else: raise ValueError( "wandb.Video accepts a file path or numpy like data as input" ) self.encode() def encode(self) -> None: mpy = util.get_module( "moviepy.editor", required='wandb.Video requires moviepy and imageio when passing raw data. Install with "pip install moviepy imageio"', ) tensor = self._prepare_video(self.data) _, self._height, self._width, self._channels = tensor.shape # encode sequence of images into gif string clip = mpy.ImageSequenceClip(list(tensor), fps=self._fps) filename = os.path.join( _MEDIA_TMP.name, util.generate_id() + "." + self._format ) if TYPE_CHECKING: kwargs: Dict[str, Optional[bool]] = {} try: # older versions of moviepy do not support logger argument kwargs = {"logger": None} if self._format == "gif": clip.write_gif(filename, **kwargs) else: clip.write_videofile(filename, **kwargs) except TypeError: try: # even older versions of moviepy do not support progress_bar argument kwargs = {"verbose": False, "progress_bar": False} if self._format == "gif": clip.write_gif(filename, **kwargs) else: clip.write_videofile(filename, **kwargs) except TypeError: kwargs = { "verbose": False, } if self._format == "gif": clip.write_gif(filename, **kwargs) else: clip.write_videofile(filename, **kwargs) self._set_file(filename, is_tmp=True) @classmethod def get_media_subdir(cls: Type["Video"]) -> str: return os.path.join("media", "videos") def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Video, self).to_json(run_or_artifact) json_dict["_type"] = self._log_type if self._width is not None: json_dict["width"] = self._width if self._height is not None: json_dict["height"] = self._height if self._caption: json_dict["caption"] = self._caption return json_dict def _prepare_video(self, video: "np.ndarray") -> "np.ndarray": """This logic was mostly taken from tensorboardX""" np = util.get_module( "numpy", required='wandb.Video requires numpy when passing raw data. To get it, run "pip install numpy".', ) if video.ndim < 4: raise ValueError( "Video must be atleast 4 dimensions: time, channels, height, width" ) if video.ndim == 4: video = video.reshape(1, *video.shape) b, t, c, h, w = video.shape if video.dtype != np.uint8: logging.warning("Converting video data to uint8") video = video.astype(np.uint8) def is_power2(num: int) -> bool: return num != 0 and ((num & (num - 1)) == 0) # pad to nearest power of 2, all at once if not is_power2(video.shape[0]): len_addition = int(2 ** video.shape[0].bit_length() - video.shape[0]) video = np.concatenate( (video, np.zeros(shape=(len_addition, t, c, h, w))), axis=0 ) n_rows = 2 ** ((b.bit_length() - 1) // 2) n_cols = video.shape[0] // n_rows video = np.reshape(video, newshape=(n_rows, n_cols, t, c, h, w)) video = np.transpose(video, axes=(2, 0, 4, 1, 5, 3)) video = np.reshape(video, newshape=(t, n_rows * h, n_cols * w, c)) return video @classmethod def seq_to_json( cls: Type["Video"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: base_path = os.path.join(run.dir, cls.get_media_subdir()) util.mkdir_exists_ok(base_path) meta = { "_type": "videos", "count": len(seq), "videos": [v.to_json(run) for v in seq], "captions": Video.captions(seq), } return meta # Allows encoding of arbitrary JSON structures # as a file # # This class should be used as an abstract class # extended to have validation methods class JSONMetadata(Media): """ JSONMetadata is a type for encoding arbitrary metadata as files. """ def __init__(self, val: dict) -> None: super(JSONMetadata, self).__init__() self.validate(val) self._val = val ext = "." + self.type_name() + ".json" tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ext) util.json_dump_uncompressed( self._val, codecs.open(tmp_path, "w", encoding="utf-8") ) self._set_file(tmp_path, is_tmp=True, extension=ext) @classmethod def get_media_subdir(cls: Type["JSONMetadata"]) -> str: return os.path.join("media", "metadata", cls.type_name()) def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(JSONMetadata, self).to_json(run_or_artifact) json_dict["_type"] = self.type_name() return json_dict # These methods should be overridden in the child class @classmethod def type_name(cls) -> str: return "metadata" def validate(self, val: dict) -> bool: return True class ImageMask(Media): """ Wandb class for image masks or overlays, useful for tasks like semantic segmentation. Arguments: val: (dictionary) One of these two keys to represent the image: mask_data : (2D numpy array) The mask containing an integer class label for each pixel in the image path : (string) The path to a saved image file of the mask class_labels : (dictionary of integers to strings, optional) A mapping of the integer class labels in the mask to readable class names. These will default to class_0, class_1, class_2, etc. key: (string) The readable name or id for this mask type (e.g. predictions, ground_truth) Examples: Log a mask overlay for a given image ```python predicted_mask = np.array([[1, 2, 2, ... , 3, 2, 1], ...]) ground_truth_mask = np.array([[1, 1, 1, ... , 2, 3, 1], ...]) class_labels = { 0: "person", 1: "tree", 2: "car", 3: "road" } masked_image = wandb.Image(image, masks={ "predictions": { "mask_data": predicted_mask, "class_labels": class_labels }, "ground_truth": { "mask_data": ground_truth_mask, "class_labels": class_labels } } wandb.log({"img_with_masks" : masked_image}) ``` Prepare an image mask to be added to a wandb.Table ```python raw_image_path = "sample_image.png" predicted_mask_path = "predicted_mask.png" class_set = wandb.Classes([ {"name" : "person", "id" : 0}, {"name" : "tree", "id" : 1}, {"name" : "car", "id" : 2}, {"name" : "road", "id" : 3} ]) masked_image = wandb.Image(raw_image_path, classes=class_set, masks={"prediction" : {"path" : predicted_mask_path}}) ``` """ _log_type = "mask" def __init__(self, val: dict, key: str) -> None: """ Arguments: val: (dictionary) One of these two keys to represent the image: mask_data : (2D numpy array) The mask containing an integer class label for each pixel in the image path : (string) The path to a saved image file of the mask class_labels : (dictionary of integers to strings, optional) A mapping of the integer class labels in the mask to readable class names. These will default to class_0, class_1, class_2, etc. key: (string) The readable name or id for this mask type (e.g. predictions, ground_truth) """ super(ImageMask, self).__init__() if "path" in val: self._set_file(val["path"]) else: np = util.get_module("numpy", required="Image mask support requires numpy") # Add default class mapping if "class_labels" not in val: classes = np.unique(val["mask_data"]).astype(np.int32).tolist() class_labels = dict((c, "class_" + str(c)) for c in classes) val["class_labels"] = class_labels self.validate(val) self._val = val self._key = key ext = "." + self.type_name() + ".png" tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ext) pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) image = pil_image.fromarray(val["mask_data"].astype(np.int8), mode="L") image.save(tmp_path, transparency=None) self._set_file(tmp_path, is_tmp=True, extension=ext) def bind_to_run( self, run: "LocalRun", key: Union[int, str], step: Union[int, str], id_: Optional[Union[int, str]] = None, ) -> None: # bind_to_run key argument is the Image parent key # the self._key value is the mask's sub key super(ImageMask, self).bind_to_run(run, key, step, id_=id_) class_labels = self._val["class_labels"] run._add_singleton( "mask/class_labels", str(key) + "_wandb_delimeter_" + self._key, class_labels, ) @classmethod def get_media_subdir(cls: Type["ImageMask"]) -> str: return os.path.join("media", "images", cls.type_name()) @classmethod def from_json( cls: Type["ImageMask"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "ImageMask": return cls( {"path": source_artifact.get_path(json_obj["path"]).download()}, key="", ) def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(ImageMask, self).to_json(run_or_artifact) if isinstance(run_or_artifact, wandb.wandb_sdk.wandb_run.Run): json_dict["_type"] = self.type_name() return json_dict elif isinstance(run_or_artifact, wandb.wandb_sdk.wandb_artifacts.Artifact): # Nothing special to add (used to add "digest", but no longer used.) return json_dict else: raise ValueError("to_json accepts wandb_run.Run or wandb_artifact.Artifact") @classmethod def type_name(cls: Type["ImageMask"]) -> str: return cls._log_type def validate(self, val: dict) -> bool: np = util.get_module("numpy", required="Image mask support requires numpy") # 2D Make this work with all tensor(like) types if "mask_data" not in val: raise TypeError( 'Missing key "mask_data": An image mask requires mask data: a 2D array representing the predictions' ) else: error_str = "mask_data must be a 2D array" shape = val["mask_data"].shape if len(shape) != 2: raise TypeError(error_str) if not ( (val["mask_data"] >= 0).all() and (val["mask_data"] <= 255).all() ) and issubclass(val["mask_data"].dtype.type, np.integer): raise TypeError("Mask data must be integers between 0 and 255") # Optional argument if "class_labels" in val: for k, v in list(val["class_labels"].items()): if (not isinstance(k, numbers.Number)) or ( not isinstance(v, six.string_types) ): raise TypeError( "Class labels must be a dictionary of numbers to strings" ) return True class BoundingBoxes2D(JSONMetadata): """ Wandb class for logging 2D bounding boxes on images, useful for tasks like object detection Arguments: val: (dictionary) A dictionary of the following form: box_data: (list of dictionaries) One dictionary for each bounding box, containing: position: (dictionary) the position and size of the bounding box, in one of two formats Note that boxes need not all use the same format. {"minX", "minY", "maxX", "maxY"}: (dictionary) A set of coordinates defining the upper and lower bounds of the box (the bottom left and top right corners) {"middle", "width", "height"}: (dictionary) A set of coordinates defining the center and dimensions of the box, with "middle" as a list [x, y] for the center point and "width" and "height" as numbers domain: (string) One of two options for the bounding box coordinate domain null: By default, or if no argument is passed, the coordinate domain is assumed to be relative to the original image, expressing this box as a fraction or percentage of the original image. This means all coordinates and dimensions passed into the "position" argument are floating point numbers between 0 and 1. "pixel": (string literal) The coordinate domain is set to the pixel space. This means all coordinates and dimensions passed into "position" are integers within the bounds of the image dimensions. class_id: (integer) The class label id for this box scores: (dictionary of string to number, optional) A mapping of named fields to numerical values (float or int), can be used for filtering boxes in the UI based on a range of values for the corresponding field box_caption: (string, optional) A string to be displayed as the label text above this box in the UI, often composed of the class label, class name, and/or scores class_labels: (dictionary, optional) A map of integer class labels to their readable class names key: (string) The readable name or id for this set of bounding boxes (e.g. predictions, ground_truth) Examples: Log a set of predicted and ground truth bounding boxes for a given image ```python class_labels = { 0: "person", 1: "car", 2: "road", 3: "building" } img = wandb.Image(image, boxes={ "predictions": { "box_data": [ { # one box expressed in the default relative/fractional domain "position": { "minX": 0.1, "maxX": 0.2, "minY": 0.3, "maxY": 0.4 }, "class_id" : 1, "box_caption": class_labels[1], "scores" : { "acc": 0.2, "loss": 1.2 } }, { # another box expressed in the pixel domain "position": { "middle": [150, 20], "width": 68, "height": 112 }, "domain" : "pixel", "class_id" : 3, "box_caption": "a building", "scores" : { "acc": 0.5, "loss": 0.7 } }, ... # Log as many boxes an as needed ], "class_labels": class_labels }, # Log each meaningful group of boxes with a unique key name "ground_truth": { ... } }) wandb.log({"driving_scene": img}) ``` Prepare an image with bounding boxes to be added to a wandb.Table ```python raw_image_path = "sample_image.png" class_set = wandb.Classes([ {"name" : "person", "id" : 0}, {"name" : "car", "id" : 1}, {"name" : "road", "id" : 2}, {"name" : "building", "id" : 3} ]) image_with_boxes = wandb.Image(raw_image_path, classes=class_set, boxes=[...identical to previous example...]) ``` """ _log_type = "bounding-boxes" # TODO: when the change is made to have this produce a dict with a _type, define # it here as _log_type, associate it in to_json def __init__(self, val: dict, key: str) -> None: """ Arguments: val: (dictionary) A dictionary of the following form: box_data: (list of dictionaries) One dictionary for each bounding box, containing: position: (dictionary) the position and size of the bounding box, in one of two formats Note that boxes need not all use the same format. {"minX", "minY", "maxX", "maxY"}: (dictionary) A set of coordinates defining the upper and lower bounds of the box (the bottom left and top right corners) {"middle", "width", "height"}: (dictionary) A set of coordinates defining the center and dimensions of the box, with "middle" as a list [x, y] for the center point and "width" and "height" as numbers domain: (string) One of two options for the bounding box coordinate domain null: By default, or if no argument is passed, the coordinate domain is assumed to be relative to the original image, expressing this box as a fraction or percentage of the original image. This means all coordinates and dimensions passed into the "position" argument are floating point numbers between 0 and 1. "pixel": (string literal) The coordinate domain is set to the pixel space. This means all coordinates and dimensions passed into "position" are integers within the bounds of the image dimensions. class_id: (integer) The class label id for this box scores: (dictionary of string to number, optional) A mapping of named fields to numerical values (float or int), can be used for filtering boxes in the UI based on a range of values for the corresponding field box_caption: (string, optional) A string to be displayed as the label text above this box in the UI, often composed of the class label, class name, and/or scores class_labels: (dictionary, optional) A map of integer class labels to their readable class names key: (string) The readable name or id for this set of bounding boxes (e.g. predictions, ground_truth) """ super(BoundingBoxes2D, self).__init__(val) self._val = val["box_data"] self._key = key # Add default class mapping if "class_labels" not in val: np = util.get_module( "numpy", required="Bounding box support requires numpy" ) classes = ( np.unique(list([box["class_id"] for box in val["box_data"]])) .astype(np.int32) .tolist() ) class_labels = dict((c, "class_" + str(c)) for c in classes) self._class_labels = class_labels else: self._class_labels = val["class_labels"] def bind_to_run( self, run: "LocalRun", key: Union[int, str], step: Union[int, str], id_: Optional[Union[int, str]] = None, ) -> None: # bind_to_run key argument is the Image parent key # the self._key value is the mask's sub key super(BoundingBoxes2D, self).bind_to_run(run, key, step, id_=id_) run._add_singleton( "bounding_box/class_labels", str(key) + "_wandb_delimeter_" + self._key, self._class_labels, ) @classmethod def type_name(cls) -> str: return "boxes2D" def validate(self, val: dict) -> bool: # Optional argument if "class_labels" in val: for k, v in list(val["class_labels"].items()): if (not isinstance(k, numbers.Number)) or ( not isinstance(v, six.string_types) ): raise TypeError( "Class labels must be a dictionary of numbers to string" ) boxes = val["box_data"] if not isinstance(boxes, list): raise TypeError("Boxes must be a list") for box in boxes: # Required arguments error_str = "Each box must contain a position with: middle, width, and height or \ \nminX, maxX, minY, maxY." if "position" not in box: raise TypeError(error_str) else: valid = False if ( "middle" in box["position"] and len(box["position"]["middle"]) == 2 and has_num(box["position"], "width") and has_num(box["position"], "height") ): valid = True elif ( has_num(box["position"], "minX") and has_num(box["position"], "maxX") and has_num(box["position"], "minY") and has_num(box["position"], "maxY") ): valid = True if not valid: raise TypeError(error_str) # Optional arguments if ("scores" in box) and not isinstance(box["scores"], dict): raise TypeError("Box scores must be a dictionary") elif "scores" in box: for k, v in list(box["scores"].items()): if not isinstance(k, six.string_types): raise TypeError("A score key must be a string") if not isinstance(v, numbers.Number): raise TypeError("A score value must be a number") if ("class_id" in box) and not isinstance( box["class_id"], six.integer_types ): raise TypeError("A box's class_id must be an integer") # Optional if ("box_caption" in box) and not isinstance( box["box_caption"], six.string_types ): raise TypeError("A box's caption must be a string") return True def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: if isinstance(run_or_artifact, wandb.wandb_sdk.wandb_run.Run): return super(BoundingBoxes2D, self).to_json(run_or_artifact) elif isinstance(run_or_artifact, wandb.wandb_sdk.wandb_artifacts.Artifact): # TODO (tim): I would like to log out a proper dictionary representing this object, but don't # want to mess with the visualizations that are currently available in the UI. This really should output # an object with a _type key. Will need to push this change to the UI first to ensure backwards compat return self._val else: raise ValueError("to_json accepts wandb_run.Run or wandb_artifact.Artifact") @classmethod def from_json( cls: Type["BoundingBoxes2D"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "BoundingBoxes2D": return cls({"box_data": json_obj}, "") class Classes(Media): _log_type = "classes" _class_set: Sequence[dict] def __init__(self, class_set: Sequence[dict]) -> None: """Classes is holds class metadata intended to be used in concert with other objects when visualizing artifacts Args: class_set (list): list of dicts in the form of {"id":int|str, "name":str} """ super(Classes, self).__init__() for class_obj in class_set: assert "id" in class_obj and "name" in class_obj self._class_set = class_set @classmethod def from_json( cls: Type["Classes"], json_obj: dict, source_artifact: Optional["PublicArtifact"], ) -> "Classes": return cls(json_obj.get("class_set")) # type: ignore def to_json( self, run_or_artifact: Optional[Union["LocalRun", "LocalArtifact"]] ) -> dict: json_obj = {} # This is a bit of a hack to allow _ClassesIdType to # be able to operate fully without an artifact in play. # In all other cases, artifact should be a true artifact. if run_or_artifact is not None: json_obj = super(Classes, self).to_json(run_or_artifact) json_obj["_type"] = Classes._log_type json_obj["class_set"] = self._class_set return json_obj def get_type(self) -> "_ClassesIdType": return _ClassesIdType(self) def __ne__(self, other: object) -> bool: return not self.__eq__(other) def __eq__(self, other: object) -> bool: if isinstance(other, Classes): return self._class_set == other._class_set else: return False class Image(BatchableMedia): """ Wandb class for images. Arguments: data_or_path: (numpy array, string, io) Accepts numpy array of image data, or a PIL image. The class attempts to infer the data format and converts it. mode: (string) The PIL mode for an image. Most common are "L", "RGB", "RGBA". Full explanation at https://pillow.readthedocs.io/en/4.2.x/handbook/concepts.html#concept-modes. caption: (string) Label for display of image. """ MAX_ITEMS = 108 # PIL limit MAX_DIMENSION = 65500 _log_type = "image-file" format: Optional[str] _grouping: Optional[str] _caption: Optional[str] _width: Optional[int] _height: Optional[int] _image: Optional["PIL.Image"] _classes: Optional["Classes"] _boxes: Optional[Dict[str, "BoundingBoxes2D"]] _masks: Optional[Dict[str, "ImageMask"]] def __init__( self, data_or_path: "ImageDataOrPathType", mode: Optional[str] = None, caption: Optional[str] = None, grouping: Optional[str] = None, classes: Optional[Union["Classes", Sequence[dict]]] = None, boxes: Optional[Union[Dict[str, "BoundingBoxes2D"], Dict[str, dict]]] = None, masks: Optional[Union[Dict[str, "ImageMask"], Dict[str, dict]]] = None, ) -> None: super(Image, self).__init__() # TODO: We should remove grouping, it's a terrible name and I don't # think anyone uses it. self._grouping = None self._caption = None self._width = None self._height = None self._image = None self._classes = None self._boxes = None self._masks = None # Allows the user to pass an Image object as the first parameter and have a perfect copy, # only overriding additional metdata passed in. If this pattern is compelling, we can generalize. if isinstance(data_or_path, Image): self._initialize_from_wbimage(data_or_path) elif isinstance(data_or_path, six.string_types): self._initialize_from_path(data_or_path) else: self._initialize_from_data(data_or_path, mode) self._set_initialization_meta(grouping, caption, classes, boxes, masks) def _set_initialization_meta( self, grouping: Optional[str] = None, caption: Optional[str] = None, classes: Optional[Union["Classes", Sequence[dict]]] = None, boxes: Optional[Union[Dict[str, "BoundingBoxes2D"], Dict[str, dict]]] = None, masks: Optional[Union[Dict[str, "ImageMask"], Dict[str, dict]]] = None, ) -> None: if grouping is not None: self._grouping = grouping if caption is not None: self._caption = caption if classes is not None: if not isinstance(classes, Classes): self._classes = Classes(classes) else: self._classes = classes if boxes: if not isinstance(boxes, dict): raise ValueError('Images "boxes" argument must be a dictionary') boxes_final: Dict[str, BoundingBoxes2D] = {} for key in boxes: box_item = boxes[key] if isinstance(box_item, BoundingBoxes2D): boxes_final[key] = box_item elif isinstance(box_item, dict): boxes_final[key] = BoundingBoxes2D(box_item, key) self._boxes = boxes_final if masks: if not isinstance(masks, dict): raise ValueError('Images "masks" argument must be a dictionary') masks_final: Dict[str, ImageMask] = {} for key in masks: mask_item = masks[key] if isinstance(mask_item, ImageMask): masks_final[key] = mask_item elif isinstance(mask_item, dict): masks_final[key] = ImageMask(mask_item, key) self._masks = masks_final self._width, self._height = self.image.size # type: ignore self._free_ram() def _initialize_from_wbimage(self, wbimage: "Image") -> None: self._grouping = wbimage._grouping self._caption = wbimage._caption self._width = wbimage._width self._height = wbimage._height self._image = wbimage._image self._classes = wbimage._classes self._path = wbimage._path self._is_tmp = wbimage._is_tmp self._extension = wbimage._extension self._sha256 = wbimage._sha256 self._size = wbimage._size self.format = wbimage.format self._artifact_source = wbimage._artifact_source self._artifact_target = wbimage._artifact_target # We do not want to implicitly copy boxes or masks, just the image-related data. # self._boxes = wbimage._boxes # self._masks = wbimage._masks def _initialize_from_path(self, path: str) -> None: pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) self._set_file(path, is_tmp=False) self._image = pil_image.open(path) self._image.load() ext = os.path.splitext(path)[1][1:] self.format = ext def _initialize_from_data(self, data: "ImageDataType", mode: str = None,) -> None: pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) if util.is_matplotlib_typename(util.get_full_typename(data)): buf = six.BytesIO() util.ensure_matplotlib_figure(data).savefig(buf) self._image = pil_image.open(buf) elif isinstance(data, pil_image.Image): self._image = data elif util.is_pytorch_tensor_typename(util.get_full_typename(data)): vis_util = util.get_module( "torchvision.utils", "torchvision is required to render images" ) if hasattr(data, "requires_grad") and data.requires_grad: data = data.detach() data = vis_util.make_grid(data, normalize=True) self._image = pil_image.fromarray( data.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() ) else: if hasattr(data, "numpy"): # TF data eager tensors data = data.numpy() if data.ndim > 2: data = data.squeeze() # get rid of trivial dimensions as a convenience self._image = pil_image.fromarray( self.to_uint8(data), mode=mode or self.guess_mode(data) ) tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ".png") self.format = "png" self._image.save(tmp_path, transparency=None) self._set_file(tmp_path, is_tmp=True) @classmethod def from_json( cls: Type["Image"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "Image": classes = None if json_obj.get("classes") is not None: classes = source_artifact.get(json_obj["classes"]["path"]) masks = json_obj.get("masks") _masks: Optional[Dict[str, ImageMask]] = None if masks: _masks = {} for key in masks: _masks[key] = ImageMask.from_json(masks[key], source_artifact) _masks[key]._set_artifact_source(source_artifact) _masks[key]._key = key boxes = json_obj.get("boxes") _boxes: Optional[Dict[str, BoundingBoxes2D]] = None if boxes: _boxes = {} for key in boxes: _boxes[key] = BoundingBoxes2D.from_json(boxes[key], source_artifact) _boxes[key]._key = key return cls( source_artifact.get_path(json_obj["path"]).download(), caption=json_obj.get("caption"), grouping=json_obj.get("grouping"), classes=classes, boxes=_boxes, masks=_masks, ) @classmethod def get_media_subdir(cls: Type["Image"]) -> str: return os.path.join("media", "images") def bind_to_run( self, run: "LocalRun", key: Union[int, str], step: Union[int, str], id_: Optional[Union[int, str]] = None, ) -> None: super(Image, self).bind_to_run(run, key, step, id_) if self._boxes is not None: for i, k in enumerate(self._boxes): id_ = "{}{}".format(id_, i) if id_ is not None else None self._boxes[k].bind_to_run(run, key, step, id_) if self._masks is not None: for i, k in enumerate(self._masks): id_ = "{}{}".format(id_, i) if id_ is not None else None self._masks[k].bind_to_run(run, key, step, id_) def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Image, self).to_json(run_or_artifact) json_dict["_type"] = Image._log_type json_dict["format"] = self.format if self._width is not None: json_dict["width"] = self._width if self._height is not None: json_dict["height"] = self._height if self._grouping: json_dict["grouping"] = self._grouping if self._caption: json_dict["caption"] = self._caption if isinstance(run_or_artifact, wandb.wandb_sdk.wandb_artifacts.Artifact): artifact = run_or_artifact if ( self._masks is not None or self._boxes is not None ) and self._classes is None: raise ValueError( "classes must be passed to wandb.Image which have masks or bounding boxes when adding to artifacts" ) if self._classes is not None: # Here, rather than give each class definition it's own name (and entry), we # purposely are giving a non-unique class name of /media/cls.classes.json. # This may create user confusion if if multiple different class definitions # are expected in a single artifact. However, we want to catch this user pattern # if it exists and dive deeper. The alternative code is provided below. # class_name = os.path.join("media", "cls") # # class_name = os.path.join( # "media", "classes", os.path.basename(self._path) + "_cls" # ) # classes_entry = artifact.add(self._classes, class_name) json_dict["classes"] = { "type": "classes-file", "path": classes_entry.path, "digest": classes_entry.digest, } elif not isinstance(run_or_artifact, wandb.wandb_sdk.wandb_run.Run): raise ValueError("to_json accepts wandb_run.Run or wandb_artifact.Artifact") if self._boxes: json_dict["boxes"] = { k: box.to_json(run_or_artifact) for (k, box) in self._boxes.items() } if self._masks: json_dict["masks"] = { k: mask.to_json(run_or_artifact) for (k, mask) in self._masks.items() } return json_dict def guess_mode(self, data: "np.ndarray") -> str: """ Guess what type of image the np.array is representing """ # TODO: do we want to support dimensions being at the beginning of the array? if data.ndim == 2: return "L" elif data.shape[-1] == 3: return "RGB" elif data.shape[-1] == 4: return "RGBA" else: raise ValueError( "Un-supported shape for image conversion %s" % list(data.shape) ) @classmethod def to_uint8(cls, data: "np.ndarray") -> "np.ndarray": """ Converts floating point image on the range [0,1] and integer images on the range [0,255] to uint8, clipping if necessary. """ np = util.get_module( "numpy", required="wandb.Image requires numpy if not supplying PIL Images: pip install numpy", ) # I think it's better to check the image range vs the data type, since many # image libraries will return floats between 0 and 255 # some images have range -1...1 or 0-1 dmin = np.min(data) if dmin < 0: data = (data - np.min(data)) / np.ptp(data) if np.max(data) <= 1.0: data = (data * 255).astype(np.int32) # assert issubclass(data.dtype.type, np.integer), 'Illegal image format.' return data.clip(0, 255).astype(np.uint8) @classmethod def seq_to_json( cls: Type["Image"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: """ Combines a list of images into a meta dictionary object describing the child images. """ if TYPE_CHECKING: seq = cast(Sequence["Image"], seq) jsons = [obj.to_json(run) for obj in seq] media_dir = cls.get_media_subdir() for obj in jsons: expected = util.to_forward_slash_path(media_dir) if not obj["path"].startswith(expected): raise ValueError( "Files in an array of Image's must be in the {} directory, not {}".format( cls.get_media_subdir(), obj["path"] ) ) num_images_to_log = len(seq) width, height = seq[0].image.size # type: ignore format = jsons[0]["format"] def size_equals_image(image: "Image") -> bool: img_width, img_height = image.image.size # type: ignore return img_width == width and img_height == height # type: ignore sizes_match = all(size_equals_image(img) for img in seq) if not sizes_match: logging.warning( "Images sizes do not match. This will causes images to be display incorrectly in the UI." ) meta = { "_type": "images/separated", "width": width, "height": height, "format": format, "count": num_images_to_log, } captions = Image.all_captions(seq) if captions: meta["captions"] = captions all_masks = Image.all_masks(seq, run, key, step) if all_masks: meta["all_masks"] = all_masks all_boxes = Image.all_boxes(seq, run, key, step) if all_boxes: meta["all_boxes"] = all_boxes return meta @classmethod def all_masks( cls: Type["Image"], images: Sequence["Image"], run: "LocalRun", run_key: str, step: Union[int, str], ) -> Union[List[Optional[dict]], bool]: all_mask_groups: List[Optional[dict]] = [] for image in images: if image._masks: mask_group = {} for k in image._masks: mask = image._masks[k] mask_group[k] = mask.to_json(run) all_mask_groups.append(mask_group) else: all_mask_groups.append(None) if all_mask_groups and not all(x is None for x in all_mask_groups): return all_mask_groups else: return False @classmethod def all_boxes( cls: Type["Image"], images: Sequence["Image"], run: "LocalRun", run_key: str, step: Union[int, str], ) -> Union[List[Optional[dict]], bool]: all_box_groups: List[Optional[dict]] = [] for image in images: if image._boxes: box_group = {} for k in image._boxes: box = image._boxes[k] box_group[k] = box.to_json(run) all_box_groups.append(box_group) else: all_box_groups.append(None) if all_box_groups and not all(x is None for x in all_box_groups): return all_box_groups else: return False @classmethod def all_captions( cls: Type["Image"], images: Sequence["Media"] ) -> Union[bool, Sequence[Optional[str]]]: return cls.captions(images) def __ne__(self, other: object) -> bool: return not self.__eq__(other) def __eq__(self, other: object) -> bool: if not isinstance(other, Image): return False else: self_image = self.image other_image = other.image if self_image is not None: self_image = list(self_image.getdata()) if other_image is not None: other_image = list(other_image.getdata()) return ( self._grouping == other._grouping and self._caption == other._caption and self._width == other._width and self._height == other._height and self_image == other_image and self._classes == other._classes ) def to_data_array(self) -> List[Any]: res = [] if self.image is not None: data = list(self.image.getdata()) for i in range(self.image.height): res.append(data[i * self.image.width : (i + 1) * self.image.width]) self._free_ram() return res def _free_ram(self) -> None: if self._path is not None: self._image = None @property def image(self) -> Optional["PIL.Image"]: if self._image is None: if self._path is not None: pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) self._image = pil_image.open(self._path) self._image.load() return self._image class Plotly(Media): """ Wandb class for plotly plots. Arguments: val: matplotlib or plotly figure """ _log_type = "plotly-file" @classmethod def make_plot_media( cls: Type["Plotly"], val: Union["plotly.Figure", "matplotlib.artist.Artist"] ) -> Union[Image, "Plotly"]: if util.is_matplotlib_typename(util.get_full_typename(val)): if util.matplotlib_contains_images(val): return Image(val) val = util.matplotlib_to_plotly(val) return cls(val) def __init__(self, val: Union["plotly.Figure", "matplotlib.artist.Artist"]): super(Plotly, self).__init__() # First, check to see if the incoming `val` object is a plotfly figure if not util.is_plotly_figure_typename(util.get_full_typename(val)): # If it is not, but it is a matplotlib figure, then attempt to convert it to plotly if util.is_matplotlib_typename(util.get_full_typename(val)): if util.matplotlib_contains_images(val): raise ValueError( "Plotly does not currently support converting matplotlib figures containing images. \ You can convert the plot to a static image with `wandb.Image(plt)` " ) val = util.matplotlib_to_plotly(val) else: raise ValueError( "Logged plots must be plotly figures, or matplotlib plots convertible to plotly via mpl_to_plotly" ) tmp_path = os.path.join(_MEDIA_TMP.name, util.generate_id() + ".plotly.json") val = _numpy_arrays_to_lists(val.to_plotly_json()) util.json_dump_safer(val, codecs.open(tmp_path, "w", encoding="utf-8")) self._set_file(tmp_path, is_tmp=True, extension=".plotly.json") @classmethod def get_media_subdir(cls: Type["Plotly"]) -> str: return os.path.join("media", "plotly") def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Plotly, self).to_json(run_or_artifact) json_dict["_type"] = self._log_type return json_dict def history_dict_to_json( run: "Optional[LocalRun]", payload: dict, step: Optional[int] = None ) -> dict: # Converts a History row dict's elements so they're friendly for JSON serialization. if step is None: # We should be at the top level of the History row; assume this key is set. step = payload["_step"] # We use list here because we were still seeing cases of RuntimeError dict changed size for key in list(payload): val = payload[key] if isinstance(val, dict): payload[key] = history_dict_to_json(run, val, step=step) else: payload[key] = val_to_json(run, key, val, namespace=step) return payload # TODO: refine this def val_to_json( run: "Optional[LocalRun]", key: str, val: "ValToJsonType", namespace: Optional[Union[str, int]] = None, ) -> Union[Sequence, dict]: # Converts a wandb datatype to its JSON representation. if namespace is None: raise ValueError( "val_to_json must be called with a namespace(a step number, or 'summary') argument" ) converted = val typename = util.get_full_typename(val) if util.is_pandas_data_frame(val): val = wandb.Table(dataframe=val) elif util.is_matplotlib_typename(typename) or util.is_plotly_typename(typename): val = Plotly.make_plot_media(val) elif isinstance(val, SixSequence) and all(isinstance(v, WBValue) for v in val): assert run # This check will break down if Image/Audio/... have child classes. if ( len(val) and isinstance(val[0], BatchableMedia) and all(isinstance(v, type(val[0])) for v in val) ): if TYPE_CHECKING: val = cast(Sequence["BatchableMedia"], val) items = _prune_max_seq(val) for i, item in enumerate(items): item.bind_to_run(run, key, namespace, id_=i) return items[0].seq_to_json(items, run, key, namespace) else: # TODO(adrian): Good idea to pass on the same key here? Maybe include # the array index? # There is a bug here: if this array contains two arrays of the same type of # anonymous media objects, their eventual names will collide. # This used to happen. The frontend doesn't handle heterogenous arrays # raise ValueError( # "Mixed media types in the same list aren't supported") return [val_to_json(run, key, v, namespace=namespace) for v in val] if isinstance(val, WBValue): assert run if isinstance(val, Media) and not val.is_bound(): if hasattr(val, "_log_type") and val._log_type in [ "table", "partitioned-table", "joined-table", ]: # Special conditional to log tables as artifact entries as well. # I suspect we will generalize this as we transition to storing all # files in an artifact # we sanitize the key to meet the constraints defined in wandb_artifacts.py # in this case, leaving only alpha numerics or underscores. sanitized_key = re.sub(r"[^a-zA-Z0-9_]+", "", key) art = wandb.wandb_sdk.wandb_artifacts.Artifact( "run-{}-{}".format(run.id, sanitized_key), "run_table" ) art.add(val, key) run.log_artifact(art) # Partitioned tables and joined tables do not support being bound to runs. if not ( hasattr(val, "_log_type") and val._log_type in ["partitioned-table", "joined-table"] ): val.bind_to_run(run, key, namespace) return val.to_json(run) return converted # type: ignore def _is_numpy_array(data: object) -> bool: np = util.get_module( "numpy", required="Logging raw point cloud data requires numpy" ) return isinstance(data, np.ndarray) def _wb_filename( key: Union[str, int], step: Union[str, int], id: Union[str, int], extension: str ) -> str: return "{}_{}_{}{}".format(str(key), str(step), str(id), extension) def _numpy_arrays_to_lists( payload: Union[dict, Sequence, "np.ndarray"] ) -> Union[Sequence, dict, str, int, float, bool]: # Casts all numpy arrays to lists so we don't convert them to histograms, primarily for Plotly if isinstance(payload, dict): res = {} for key, val in six.iteritems(payload): res[key] = _numpy_arrays_to_lists(val) return res elif isinstance(payload, SixSequence) and not isinstance(payload, six.string_types): return [_numpy_arrays_to_lists(v) for v in payload] elif util.is_numpy_array(payload): if TYPE_CHECKING: payload = cast("np.ndarray", payload) return [_numpy_arrays_to_lists(v) for v in payload.tolist()] # Protects against logging non serializable objects elif isinstance(payload, Media): return str(payload.__class__.__name__) return payload def _prune_max_seq(seq: Sequence["BatchableMedia"]) -> Sequence["BatchableMedia"]: # If media type has a max respect it items = seq if hasattr(seq[0], "MAX_ITEMS") and seq[0].MAX_ITEMS < len(seq): # type: ignore logging.warning( "Only %i %s will be uploaded." % (seq[0].MAX_ITEMS, seq[0].__class__.__name__) # type: ignore ) items = seq[: seq[0].MAX_ITEMS] # type: ignore return items def _data_frame_to_json( df: "pd.DataFrame", run: "LocalRun", key: str, step: Union[int, str] ) -> dict: """!NODOC Encode a Pandas DataFrame into the JSON/backend format. Writes the data to a file and returns a dictionary that we use to represent it in `Summary`'s. Arguments: df (pandas.DataFrame): The DataFrame. Must not have columns named "wandb_run_id" or "wandb_data_frame_id". They will be added to the DataFrame here. run (wandb_run.Run): The Run the DataFrame is associated with. We need this because the information we store on the DataFrame is derived from the Run it's in. key (str): Name of the DataFrame, ie. the summary key path in which it's stored. This is for convenience, so people exploring the directory tree can have some idea of what is in the Parquet files. step: History step or "summary". Returns: A dict representing the DataFrame that we can store in summaries or histories. This is the format: { '_type': 'data-frame', # Magic field that indicates that this object is a data frame as # opposed to a normal dictionary or anything else. 'id': 'asdf', # ID for the data frame that is unique to this Run. 'format': 'parquet', # The file format in which the data frame is stored. Currently can # only be Parquet. 'project': 'wfeas', # (Current) name of the project that this Run is in. It'd be # better to store the project's ID because we know it'll never # change but we don't have that here. We store this just in # case because we use the project name in identifiers on the # back end. 'path': 'media/data_frames/sdlk.parquet', # Path to the Parquet file in the Run directory. } """ pandas = util.get_module("pandas") fastparquet = util.get_module("fastparquet") missing_reqs = [] if not pandas: missing_reqs.append("pandas") if not fastparquet: missing_reqs.append("fastparquet") if len(missing_reqs) > 0: raise wandb.Error( "Failed to save data frame. Please run 'pip install %s'" % " ".join(missing_reqs) ) data_frame_id = util.generate_id() df = df.copy() # we don't want to modify the user's DataFrame instance. for _, series in df.items(): for i, val in enumerate(series): if isinstance(val, WBValue): series.iat[i] = six.text_type( json.dumps(val_to_json(run, key, val, namespace=step)) ) # We have to call this wandb_run_id because that name is treated specially by # our filtering code df["wandb_run_id"] = pandas.Series( [six.text_type(run.id)] * len(df.index), index=df.index ) df["wandb_data_frame_id"] = pandas.Series( [six.text_type(data_frame_id)] * len(df.index), index=df.index ) frames_dir = os.path.join(run.dir, _DATA_FRAMES_SUBDIR) util.mkdir_exists_ok(frames_dir) path = os.path.join(frames_dir, "{}-{}.parquet".format(key, data_frame_id)) fastparquet.write(path, df) return { "id": data_frame_id, "_type": "data-frame", "format": "parquet", "project": run.project_name(), # we don't have the project ID here "entity": run.entity, "run": run.id, "path": path, } class _ClassesIdType(_dtypes.Type): name = "classesId" legacy_names = ["wandb.Classes_id"] types = [Classes] def __init__( self, classes_obj: Optional[Classes] = None, valid_ids: Optional["_dtypes.UnionType"] = None, ): if valid_ids is None: valid_ids = _dtypes.UnionType() elif isinstance(valid_ids, list): valid_ids = _dtypes.UnionType( [_dtypes.ConstType(item) for item in valid_ids] ) elif isinstance(valid_ids, _dtypes.UnionType): valid_ids = valid_ids else: raise TypeError("valid_ids must be None, list, or UnionType") if classes_obj is None: classes_obj = Classes( [ {"id": _id.params["val"], "name": str(_id.params["val"])} for _id in valid_ids.params["allowed_types"] ] ) elif not isinstance(classes_obj, Classes): raise TypeError("valid_ids must be None, or instance of Classes") else: valid_ids = _dtypes.UnionType( [ _dtypes.ConstType(class_obj["id"]) for class_obj in classes_obj._class_set ] ) self.wb_classes_obj_ref = classes_obj self.params.update({"valid_ids": valid_ids}) def assign(self, py_obj: Optional[Any] = None) -> "_dtypes.Type": return self.assign_type(_dtypes.ConstType(py_obj)) def assign_type(self, wb_type: "_dtypes.Type") -> "_dtypes.Type": valid_ids = self.params["valid_ids"].assign_type(wb_type) if not isinstance(valid_ids, _dtypes.InvalidType): return self return _dtypes.InvalidType() @classmethod def from_obj(cls, py_obj: Optional[Any] = None) -> "_dtypes.Type": return cls(py_obj) def to_json(self, artifact: Optional["LocalArtifact"] = None) -> Dict[str, Any]: cl_dict = super(_ClassesIdType, self).to_json(artifact) # TODO (tss): Refactor this block with the similar one in wandb.Image. # This is a bit of a smell that the classes object does not follow # the same file-pattern as other media types. if artifact is not None: class_name = os.path.join("media", "cls") classes_entry = artifact.add(self.wb_classes_obj_ref, class_name) cl_dict["params"]["classes_obj"] = { "type": "classes-file", "path": classes_entry.path, "digest": classes_entry.digest, # is this needed really? } else: cl_dict["params"]["classes_obj"] = self.wb_classes_obj_ref.to_json(artifact) return cl_dict @classmethod def from_json( cls, json_dict: Dict[str, Any], artifact: Optional["PublicArtifact"] = None, ) -> "_dtypes.Type": classes_obj = None if ( json_dict.get("params", {}).get("classes_obj", {}).get("type") == "classes-file" ): if artifact is not None: classes_obj = artifact.get( json_dict.get("params", {}).get("classes_obj", {}).get("path") ) else: raise RuntimeError("Expected artifact to be non-null.") else: classes_obj = Classes.from_json( json_dict["params"]["classes_obj"], artifact ) return cls(classes_obj) class _VideoFileType(_dtypes.Type): name = "video-file" types = [Video] class _HtmlFileType(_dtypes.Type): name = "html-file" types = [Html] class _Object3DFileType(_dtypes.Type): name = "object3D-file" types = [Object3D] _dtypes.TypeRegistry.add(_ClassesIdType) _dtypes.TypeRegistry.add(_VideoFileType) _dtypes.TypeRegistry.add(_HtmlFileType) _dtypes.TypeRegistry.add(_Object3DFileType) __all__ = [ "Histogram", "Object3D", "Molecule", "Html", "Video", "ImageMask", "BoundingBoxes2D", "Classes", "Image", "Plotly", "history_dict_to_json", "val_to_json", ]
38.166168
131
0.572691
6b15151dd779517b88b70fb5e81b165f5547bb68
5,016
py
Python
src/python/pants/init/target_roots_calculator.py
SergeKireev/pants
cd92c65aeb3dfdcee3e0946f2b68a301ef2f4541
[ "Apache-2.0" ]
1
2020-08-26T03:30:31.000Z
2020-08-26T03:30:31.000Z
src/python/pants/init/target_roots_calculator.py
SergeKireev/pants
cd92c65aeb3dfdcee3e0946f2b68a301ef2f4541
[ "Apache-2.0" ]
1
2019-07-29T16:58:21.000Z
2019-07-29T16:58:21.000Z
src/python/pants/init/target_roots_calculator.py
SergeKireev/pants
cd92c65aeb3dfdcee3e0946f2b68a301ef2f4541
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import logging from twitter.common.collections import OrderedSet from pants.base.build_environment import get_buildroot, get_scm from pants.base.cmd_line_spec_parser import CmdLineSpecParser from pants.base.specs import SingleAddress, Specs from pants.base.target_roots import TargetRoots from pants.engine.addressable import BuildFileAddresses from pants.engine.legacy.graph import OwnersRequest from pants.goal.workspace import ScmWorkspace from pants.scm.subsystems.changed import ChangedRequest logger = logging.getLogger(__name__) class InvalidSpecConstraint(Exception): """Raised when invalid constraints are given via target specs and arguments like --changed*.""" class TargetRootsCalculator: """Determines the target roots for a given pants run.""" @classmethod def parse_specs(cls, target_specs, build_root=None, exclude_patterns=None, tags=None): """Parse string specs into unique `Spec` objects. :param iterable target_specs: An iterable of string specs. :param string build_root: The path to the build root. :returns: A `Specs` object. """ build_root = build_root or get_buildroot() spec_parser = CmdLineSpecParser(build_root) dependencies = tuple(OrderedSet(spec_parser.parse_spec(spec_str) for spec_str in target_specs)) return Specs( dependencies=dependencies, exclude_patterns=exclude_patterns if exclude_patterns else tuple(), tags=tags) @classmethod def changed_files(cls, scm, changes_since=None, diffspec=None): """Determines the files changed according to SCM/workspace and options.""" workspace = ScmWorkspace(scm) if diffspec: return workspace.changes_in(diffspec) changes_since = changes_since or scm.current_rev_identifier() return workspace.touched_files(changes_since) @classmethod def create(cls, options, session, build_root=None, exclude_patterns=None, tags=None): """ :param Options options: An `Options` instance to use. :param session: The Scheduler session :param string build_root: The build root. """ # Determine the literal target roots. spec_roots = cls.parse_specs( target_specs=options.target_specs, build_root=build_root, exclude_patterns=exclude_patterns, tags=tags) # Determine `Changed` arguments directly from options to support pre-`Subsystem` # initialization paths. changed_options = options.for_scope('changed') changed_request = ChangedRequest.from_options(changed_options) # Determine the `--owner-of=` arguments provided from the global options owned_files = options.for_global_scope().owner_of logger.debug('spec_roots are: %s', spec_roots) logger.debug('changed_request is: %s', changed_request) logger.debug('owned_files are: %s', owned_files) targets_specified = sum(1 for item in (changed_request.is_actionable(), owned_files, spec_roots.dependencies) if item) if targets_specified > 1: # We've been provided more than one of: a change request, an owner request, or spec roots. raise InvalidSpecConstraint( 'Multiple target selection methods provided. Please use only one of ' '--changed-*, --owner-of, or target specs' ) if changed_request.is_actionable(): scm = get_scm() if not scm: raise InvalidSpecConstraint( 'The --changed-* options are not available without a recognized SCM (usually git).' ) changed_files = cls.changed_files( scm, changes_since=changed_request.changes_since, diffspec=changed_request.diffspec) # We've been provided no spec roots (e.g. `./pants list`) AND a changed request. Compute # alternate target roots. request = OwnersRequest(sources=tuple(changed_files), include_dependees=str(changed_request.include_dependees)) changed_addresses, = session.product_request(BuildFileAddresses, [request]) logger.debug('changed addresses: %s', changed_addresses) dependencies = tuple(SingleAddress(a.spec_path, a.target_name) for a in changed_addresses) return TargetRoots(Specs(dependencies=dependencies, exclude_patterns=exclude_patterns, tags=tags)) if owned_files: # We've been provided no spec roots (e.g. `./pants list`) AND a owner request. Compute # alternate target roots. request = OwnersRequest(sources=tuple(owned_files), include_dependees=str('none')) owner_addresses, = session.product_request(BuildFileAddresses, [request]) logger.debug('owner addresses: %s', owner_addresses) dependencies = tuple(SingleAddress(a.spec_path, a.target_name) for a in owner_addresses) return TargetRoots(Specs(dependencies=dependencies, exclude_patterns=exclude_patterns, tags=tags)) return TargetRoots(spec_roots)
41.8
104
0.730662
4eb897de3f2d35893003ebbe213f5293adff5518
12,796
py
Python
crossword-gen.py
DillionLeeL/crossword-gen
58ee4aad86d8e7bdcfc6fb3db7174f5f21c42c19
[ "MIT" ]
null
null
null
crossword-gen.py
DillionLeeL/crossword-gen
58ee4aad86d8e7bdcfc6fb3db7174f5f21c42c19
[ "MIT" ]
null
null
null
crossword-gen.py
DillionLeeL/crossword-gen
58ee4aad86d8e7bdcfc6fb3db7174f5f21c42c19
[ "MIT" ]
null
null
null
import random import re import string from copy import deepcopy import time import argparse import api_requests start_time = time.time() # ---------------Classes--------------- class Coord(object): def __init__(self, start, end, vert, num): self.start = start # tuple coordinate self.end = end # tuple coordinate self.length = (end[0] - start[0]) + (end[1] - start[1]) + 1 self.vertical = vert self.number = num self.collisions =[] def __str__(self): return str(self.start)+ str(self.end)+ " "+str(self.number)+" "+self.get_direction() def get_direction(self): if self.vertical: return "down" else: return "across" def get_number(self): return self.number class Word(object): def __init__(self, coord, word_tuple): self.coord = coord self.text = word_tuple[0] self.clue = word_tuple[1] def __str__(self): return self.text+"-"+self.clue class Board(object): def __init__(self, shape, debug=False): self.shape = shape # board layout with symbols self.generated = shape # board with words self.coords = [] self.width = len(shape[0]) self.height = len(shape) self.collision_list = [] self.debug = debug self.iterations = 0 # how many recursions were needed to build self.wordlist = [] def add_coord(self, coord): self.coords.append(coord) def get_coords(self): return self.coords def print_coords(self): for coord in self.coords: print(coord.start, coord.end, coord.length, coord.number, coord.get_direction()) for ccoord in coord.collisions: print(ccoord) def print_board(self): for row in self.shape: print("|",end="") for item in row: if str(item)[0]=="#": print(" ",end="|") else: print("-", end='|') print() print() def print_solution(self): #print the board for row in self.generated: print("|",end="") for item in row: if str(item)[0]=="#": print(" ",end="|") else: print(str(item)[0], end='|') print() print() # print words for word in self.wordlist[::-1]: print(word.coord.get_number(), word.coord.get_direction(), "-", word.text) def print_clues(self): for word in self.wordlist[::-1]: print(word.coord.get_number(), word.coord.get_direction(), "-", len(word.text), "letters -",word.clue) def print_iterations(self): if self.debug: print("Number of iterations:",self.iterations) else: print("Run in debug mode to track iterations") def print_complexity(self): # divide by two because each coord saves its collision with each other ex: 1->2, 2->1 print("Complexity of this crossword:", int(sum(len(coord.collisions) for coord in self.coords)/2)+1) # ---------------FUNCTIONS--------------- def generate_coordinates(crossword): num_rows = crossword.height num_cols = crossword.width horizontal_num = 1 vertical_num = 1 # find coords by row for r in range(num_rows): start = None end = None for c in range(num_cols): # start a new word if crossword.shape[r][c]=='-' and not start: # it isn't just one character if c+1 < num_cols and crossword.shape[r][c+1] != '#': start = (r,c) # place the horizontal number to be used for collision checking crossword.shape[r][c]=horizontal_num else: continue # continue word if start and not end: crossword.shape[r][c]=horizontal_num # This is the last letter if (c+1==num_cols or crossword.shape[r][c+1]=='#'): end = (r,c) h_coord = Coord(start, end, False, horizontal_num) crossword.add_coord(h_coord) horizontal_num+=1 start = None end = None continue # find coords by col for c in range(num_cols): start = None end = None for r in range(num_rows): # start a new word, either the across number or '-' if (isinstance(crossword.shape[r][c], int) or crossword.shape[r][c]=='-') and not start: # it isn't just one character if r+1 < num_rows and crossword.shape[r+1][c] != '#': start = (r,c) else: continue # continue word if start and not end: # This is the last letter if (r+1==num_rows or crossword.shape[r+1][c]=='#'): end = (r,c) v_coord = Coord(start, end, True, vertical_num) # collisions for x in range(start[0],end[0]+1): # if the number of a row is found (ie collision) add to collision list if (isinstance(crossword.shape[x][c], int)): crossword.coords[crossword.shape[x][c]-1].collisions.append(v_coord) v_coord.collisions.append(crossword.coords[crossword.shape[x][c]-1]) crossword.add_coord(v_coord) vertical_num+=1 start = None end = None continue # recursively gets collisions, typical usage starts at coords[0] def generate_collisions(board, coord): if coord not in board.collision_list: if board.debug: print("generating ",coord) board.collision_list.append(coord) for coll in coord.collisions: generate_collisions(board,coll) else: return def generate_crossword(board, wordlist): board.print_board() generate_coordinates(board) generate_collisions(board, board.coords[0]) colls = board.collision_list if not find_and_place(board,board,colls,wordlist): print("Could not generate a crossword with the given wordlist") exit() board.print_clues() if board.debug: board.print_complexity() return board # recursively places words down until no more collision exist def find_and_place(board, new_board, collision_list, wordlist): if board.debug: board.iterations +=1 if len(collision_list) > 0: print("START:",collision_list[0],"LENGTH:",len(collision_list)) found = False copy = deepcopy(new_board) # we handled all collisions if collision_list==[]: board.generated = new_board.generated return True constraints = "" # only add the first character of the constraint in the case that it is a two+ digit number # this number is the across word number that was used to make the collision list in generate_coordinates() for x in range(collision_list[0].length): if collision_list[0].vertical: constraints += str(copy.generated[collision_list[0].start[0]+x][collision_list[0].start[1]])[0] else: constraints += str(copy.generated[collision_list[0].start[0]][collision_list[0].start[1]+x])[0] # Generate regex from the constraints # example1: 1236 -> .... example2: 1CO9T -> .CO.T regex = "" for char in constraints: if char in string.ascii_lowercase: regex+=char else: regex+="." if board.debug: print("constraints are:", constraints,"->",regex, "Iteration:", board.iterations) found_matches = [word for word in wordlist[len(constraints)-2] if re.match(regex, word[0]) is not None] random.shuffle(found_matches) for word in found_matches: # place the word down for x in range(collision_list[0].length): if collision_list[0].vertical: copy.generated[collision_list[0].start[0]+x][collision_list[0].start[1]] = word[0][x] else: copy.generated[collision_list[0].start[0]][collision_list[0].start[1]+x] = word[0][x] if board.debug: copy.print_solution() # pass this iteration on and try to fit the next collision found = find_and_place(board,copy,collision_list[1:], wordlist) # All iterations down this path worked, so confirm the word if found: fitting_word = Word(collision_list[0], word) board.wordlist.append(fitting_word) return True elif board.debug: print("Returning False for:",word) return False # function to import wordlist from file def import_words(filename, wordlist, has_definitions): try: f = open(filename, "r", encoding="utf-8") lines = f.readlines() if has_definitions: for word, definition in zip(lines[0::2], lines[1::2]): if len(word) <2 or len(word) > 20: continue wordlist[len(word.strip())-2].append((word.strip().lower(),definition.strip())) else: definition = "Testing values" for word in lines: if len(word) <2 or len(word) > 20: continue wordlist[len(word.strip())-2].append((word.strip().lower,definition)) f.close() except Exception as e: raise SystemExit(e) # function to check import shape of crossword puzzle from file def import_shape(filename): try: with open(filename, encoding="utf-8") as f: lines = [line.rstrip() for line in f] if len(lines) < 2 or is_jagged(lines): print("The Puzzle is incorrectly drawn.") exit() if len(lines) > 50: print("Warning: Puzzles this large may take a very, VERY, long time to finish.") shape = [[] for x in range(len(lines))] for x in range(len(lines)): for char in lines[x]: #TODO: symbol checking shape[x].append(char) return shape except Exception as e: print(e) def is_jagged(twod_list): try: for row in twod_list: if len(row.strip()) != len(twod_list[0].strip()): return True return False except Exception as e: raise SystemExit(e) def merge_lists(l1, l2): return [x+y for x,y in zip(l1,l2)] def main(args): # have the shape and either a wordbank or use the API if (args.s and (args.w or args.xword is not None)): shapefile = args.s has_definitions = args.no_defs debug_mode = args.debug else: print("Please include files. See '--help'") exit() # Wordlist is a 2d list of tuples # 0 index is two letter words wordlist = [[] for x in range(20)] # word list from file if args.w: wordfile = args.w import_words(wordfile, wordlist, has_definitions) # word list from xword info API # start/end, just start, random if args.xword is not None: if len(args.xword) > 2: end = args.xword[2] else: end = None if len(args.xword) > 1: start = args.xword[1] else: start = "random" xlist = api_requests.xword_get_words(start, end) wordlist = merge_lists(wordlist, xlist) shape = import_shape(shapefile) crossword = Board(shape, debug_mode) generate_crossword(crossword, wordlist) crossword.print_solution() print("Time taken:",time.time() - start_time) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--s', type=str, help="File to import shape from") parser.add_argument('--w', type=str, help="File to import wordbank from") parser.add_argument('--no_defs', action='store_false', help="Wordbank does not include definitions") parser.add_argument('--debug', action='store_true', help="Print additional information, including iterations") parser.add_argument('--xword', nargs='*', type=str, help="Import words from the Xcode Info API. You can put \ a starting/ending date in the format YYYY/MM/DD or just a starting date to get that day + ten days after") args = parser.parse_args() main(args)
34.031915
114
0.564708
3b1fad3d2ab5564eb0ec6fa295a897f91a805944
3,317
py
Python
pytorch_toolkit/instance_segmentation/segmentoly/rcnn/model_zoo/resnet_panet_mask_rcnn.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
3
2020-12-29T02:47:32.000Z
2021-11-12T08:12:51.000Z
pytorch_toolkit/instance_segmentation/segmentoly/rcnn/model_zoo/resnet_panet_mask_rcnn.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
28
2020-09-25T22:40:36.000Z
2022-03-12T00:37:36.000Z
pytorch_toolkit/instance_segmentation/segmentoly/rcnn/model_zoo/resnet_panet_mask_rcnn.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
1
2021-03-12T10:08:44.000Z
2021-03-12T10:08:44.000Z
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch import torch.nn as nn from .panet_mask_rcnn_base import PANetMaskRCNN from ..backbones.resnet import ResNet from ..panet import BboxHead as PANetBboxHead class ResNeXt101PANetMaskRCNN(PANetMaskRCNN): def __init__(self, cls_num, force_max_output_size=False, heavier_head=False, deformable_conv=True, **kwargs): backbone = ResNet(base_arch='ResNet101', num_groups=32, width_per_group=8) backbone.freeze_stages_params(range(2)) backbone.freeze_stages_bns(range(5)) backbone.set_output_stages((1, 2, 3, 4)) super().__init__(cls_num, backbone, force_max_output_size=force_max_output_size, heavier_head=heavier_head, deformable_conv=deformable_conv, **kwargs) self.mask_head = self.add_segmentation_head(self.bupa.dims_out, self.cls_num, afp_levels_num=4, fully_connected_fusion=True, group_norm=True) self.detection_head = self.BboxHead(self.bupa.dims_out[0], 1024, PANetMaskRCNN.detection_roi_featuremap_resolution, self.cls_num, cls_agnostic_bbox_regression=False, afp_levels_num=4, heavier_head=heavier_head, group_norm=False) class BboxHead(PANetBboxHead): """BboxHead from PANet without ReLu after fc1""" def __init__(self, dim_in, dim_out, resolution_in, cls_num, cls_agnostic_bbox_regression=False, afp_levels_num=4, heavier_head=False, conv_head_dim=256, num_convs=4, group_norm=False): super().__init__(dim_in, dim_out, resolution_in, cls_num, cls_agnostic_bbox_regression, afp_levels_num, heavier_head, conv_head_dim, num_convs, group_norm) def forward(self, x): batch_size = int(x[0].shape[0]) for i in range(self.levels_num): if self.heavier_head: y = self.fc1[i](x[i]) else: y = self.fc1[i](x[i].view(batch_size, -1)) if i == 0: pooled_feature = y else: pooled_feature = torch.max(pooled_feature, y) x = self.fc2(pooled_feature) if self.heavier_head: x = nn.functional.relu(self.fc(x.view(batch_size, -1)), inplace=True) cls_score = self.cls_score(x) if not self.training: cls_score = nn.functional.softmax(cls_score, dim=1) bbox_pred = self.bbox_pred(x) return cls_score, bbox_pred
44.824324
123
0.622249
3fc3323c2029f01ff00c875c237c5d2fd3ad5385
20,361
py
Python
sympy/polys/polyoptions.py
goodok/sympy
de84ed2139125a755ea7b6ba91d945d9fbbe5ed9
[ "BSD-3-Clause" ]
2
2015-05-11T12:26:38.000Z
2016-08-19T00:11:03.000Z
sympy/polys/polyoptions.py
goodok/sympy
de84ed2139125a755ea7b6ba91d945d9fbbe5ed9
[ "BSD-3-Clause" ]
null
null
null
sympy/polys/polyoptions.py
goodok/sympy
de84ed2139125a755ea7b6ba91d945d9fbbe5ed9
[ "BSD-3-Clause" ]
null
null
null
"""Options manager for :class:`Poly` and public API functions. """ from sympy.core import S, Basic, sympify from sympy.utilities import numbered_symbols, topological_sort from sympy.polys.polyerrors import ( GeneratorsError, OptionError, FlagError, ) import sympy.polys import re class Option(object): """Base class for all kinds of options. """ option = None is_Flag = False requires = [] excludes = [] after = [] before = [] @classmethod def default(cls): return None @classmethod def preprocess(cls, option): return None @classmethod def postprocess(cls, options): pass class Flag(Option): """Base class for all kinds of flags. """ is_Flag = True class BooleanOption(Option): """An option that must have a boolean value or equivalent assigned. """ @classmethod def preprocess(cls, value): if value in [True, False]: return bool(value) else: raise OptionError("'%s' must have a boolean value assigned, got %s" % (cls.option, value)) class OptionType(type): """Base type for all options that does registers options. """ def __init__(cls, *args, **kwargs): @property def getter(self): try: return self[cls.option] except KeyError: return cls.default() setattr(Options, cls.option, getter) Options.__options__[cls.option] = cls class Options(dict): """ Options manager for polynomial manipulation module. Examples ======== >>> from sympy.polys.polyoptions import Options >>> from sympy.polys.polyoptions import build_options >>> from sympy.abc import x, y, z >>> Options((x, y, z), {'domain': 'ZZ'}) {'auto': False, 'domain': ZZ, 'gens': (x, y, z)} >>> build_options((x, y, z), {'domain': 'ZZ'}) {'auto': False, 'domain': ZZ, 'gens': (x, y, z)} **Options** * Expand --- boolean option * Gens --- option * Wrt --- option * Sort --- option * Order --- option * Field --- boolean option * Greedy --- boolean option * Domain --- option * Split --- boolean option * Gaussian --- boolean option * Extension --- option * Modulus --- option * Symmetric --- boolean option * Strict --- boolean option * Repr --- option **Flags** * Auto --- boolean flag * Frac --- boolean flag * Formal --- boolean flag * Polys --- boolean flag * Include --- boolean flag * All --- boolean flag * Gen --- flag """ __order__ = None __options__ = {} def __init__(self, gens, args, flags=None, strict=False): dict.__init__(self) if gens and args.get('gens', ()): raise OptionError("both '*gens' and keyword argument 'gens' supplied") elif gens: args = dict(args) args['gens'] = gens defaults = args.pop('defaults', {}) def preprocess_options(args): for option, value in args.iteritems(): try: cls = self.__options__[option] except KeyError: raise OptionError("'%s' is not a valid option" % option) if issubclass(cls, Flag): if flags is None or option not in flags: if strict: raise OptionError("'%s' flag is not allowed in this context" % option) if value is not None: self[option] = cls.preprocess(value) preprocess_options(args) for key, value in dict(defaults).iteritems(): if key in self: del defaults[key] else: for option in self.keys(): cls = self.__options__[option] if key in cls.excludes: del defaults[key] break preprocess_options(defaults) for option in self.keys(): cls = self.__options__[option] for require_option in cls.requires: if self.get(require_option) is None: raise OptionError("'%s' option is only allowed together with '%s'" % (option, require_option)) for exclude_option in cls.excludes: if self.get(exclude_option) is not None: raise OptionError("'%s' option is not allowed together with '%s'" % (option, exclude_option)) for option in self.__order__: self.__options__[option].postprocess(self) @classmethod def _init_dependencies_order(cls): """Resolve the order of options' processing. """ if cls.__order__ is None: vertices, edges = [], set([]) for name, option in cls.__options__.iteritems(): vertices.append(name) for _name in option.after: edges.add((_name, name)) for _name in option.before: edges.add((name, _name)) try: cls.__order__ = topological_sort((vertices, list(edges))) except ValueError: raise RuntimeError("cycle detected in sympy.polys options framework") def clone(self, updates={}): """Clone ``self`` and update specified options. """ obj = dict.__new__(self.__class__) for option, value in self.iteritems(): obj[option] = value for option, value in updates.iteritems(): obj[option] = value return obj def __setattr__(self, attr, value): if attr in self.__options__: self[attr] = value else: super(Options, self).__setattr__(attr, value) @property def args(self): args = {} for option, value in self.iteritems(): if value is not None and option != 'gens': cls = self.__options__[option] if not issubclass(cls, Flag): args[option] = value return args @property def options(self): options = {} for option, cls in self.__options__.iteritems(): if not issubclass(cls, Flag): options[option] = getattr(self, option) return options @property def flags(self): flags = {} for option, cls in self.__options__.iteritems(): if issubclass(cls, Flag): flags[option] = getattr(self, option) return flags class Expand(BooleanOption): """``expand`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'expand' requires = [] excludes = [] @classmethod def default(cls): return True class Gens(Option): """``gens`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'gens' requires = [] excludes = [] @classmethod def default(cls): return () @classmethod def preprocess(cls, gens): if isinstance(gens, Basic): gens = (gens,) elif len(gens) == 1 and hasattr(gens[0], '__iter__'): gens = gens[0] if gens == (None,): gens = () elif len(set(gens)) != len(gens): raise GeneratorsError("duplicated generators: %s" % str(gens)) elif any(gen.is_commutative is False for gen in gens): raise GeneratorsError("non-commutative generators: %s" % str(gens)) return tuple(gens) class Wrt(Option): """``wrt`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'wrt' requires = [] excludes = [] _re_split = re.compile(r"\s*,\s*|\s+") @classmethod def preprocess(cls, wrt): if isinstance(wrt, Basic): return [str(wrt)] elif isinstance(wrt, str): wrt = wrt.strip() if wrt.endswith(','): raise OptionError('Bad input: missing parameter.') if not wrt: return [] return [ gen for gen in cls._re_split.split(wrt) ] elif hasattr(wrt, '__getitem__'): return list(map(str, wrt)) else: raise OptionError("invalid argument for 'wrt' option") class Sort(Option): """``sort`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'sort' requires = [] excludes = [] @classmethod def default(cls): return [] @classmethod def preprocess(cls, sort): if isinstance(sort, str): return [ gen.strip() for gen in sort.split('>') ] elif hasattr(sort, '__getitem__'): return list(map(str, sort)) else: raise OptionError("invalid argument for 'sort' option") class Order(Option): """``order`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'order' requires = [] excludes = [] @classmethod def default(cls): return sympy.polys.monomialtools.lex @classmethod def preprocess(cls, order): return sympy.polys.monomialtools.monomial_key(order) class Field(BooleanOption): """``field`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'field' requires = [] excludes = ['domain', 'split', 'gaussian'] class Greedy(BooleanOption): """``greedy`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'greedy' requires = [] excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric'] class Composite(BooleanOption): """ """ __metaclass__ = OptionType option = 'composite' @classmethod def default(cls): return True requires = [] excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric'] class Domain(Option): """``domain`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'domain' requires = [] excludes = ['field', 'greedy', 'split', 'gaussian', 'extension'] _re_finitefield = re.compile("^(FF|GF)\((\d+)\)$") _re_polynomial = re.compile("^(Z|ZZ|Q|QQ)\[(.+)\]$") _re_fraction = re.compile("^(Z|ZZ|Q|QQ)\((.+)\)$") _re_algebraic = re.compile("^(Q|QQ)\<(.+)\>$") @classmethod def preprocess(cls, domain): if not isinstance(domain, str): return domain else: if domain in ['Z', 'ZZ']: return sympy.polys.domains.ZZ if domain in ['Q', 'QQ']: return sympy.polys.domains.QQ if domain in ['R', 'RR']: return sympy.polys.domains.RR if domain == 'EX': return sympy.polys.domains.EX r = cls._re_finitefield.match(domain) if r is not None: return sympy.polys.domains.FF(int(r.groups()[1])) r = cls._re_polynomial.match(domain) if r is not None: ground, gens = r.groups() gens = map(sympify, gens.split(',')) if ground in ['Z', 'ZZ']: return sympy.polys.domains.ZZ.poly_ring(*gens) else: return sympy.polys.domains.QQ.poly_ring(*gens) r = cls._re_fraction.match(domain) if r is not None: ground, gens = r.groups() gens = map(sympify, gens.split(',')) if ground in ['Z', 'ZZ']: return sympy.polys.domains.ZZ.frac_field(*gens) else: return sympy.polys.domains.QQ.frac_field(*gens) r = cls._re_algebraic.match(domain) if r is not None: gens = map(sympify, r.groups()[1].split(',')) return sympy.polys.domains.QQ.algebraic_field(*gens) raise OptionError('expected a valid domain specification, got %s' % domain) @classmethod def postprocess(cls, options): if 'gens' in options and 'domain' in options and options['domain'].is_Composite and \ (set(options['domain'].gens) & set(options['gens'])): raise GeneratorsError("ground domain and generators interferes together") class Split(BooleanOption): """``split`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'split' requires = [] excludes = ['field', 'greedy', 'domain', 'gaussian', 'extension', 'modulus', 'symmetric'] @classmethod def postprocess(cls, options): if 'split' in options: raise NotImplementedError("'split' option is not implemented yet") class Gaussian(BooleanOption): """``gaussian`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'gaussian' requires = [] excludes = ['field', 'greedy', 'domain', 'split', 'extension', 'modulus', 'symmetric'] @classmethod def postprocess(cls, options): if 'gaussian' in options and options['gaussian'] is True: options['extension'] = set([S.ImaginaryUnit]) Extension.postprocess(options) class Extension(Option): """``extension`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'extension' requires = [] excludes = ['greedy', 'domain', 'split', 'gaussian', 'modulus', 'symmetric'] @classmethod def preprocess(cls, extension): if extension == 1: return bool(extension) elif extension == 0: raise OptionError("'False' is an invalid argument for 'extension'") else: if not hasattr(extension, '__iter__'): extension = set([extension]) else: if not extension: extension = None else: extension = set(extension) return extension @classmethod def postprocess(cls, options): if 'extension' in options and options['extension'] is not True: options['domain'] = sympy.polys.domains.QQ.algebraic_field(*options['extension']) class Modulus(Option): """``modulus`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'modulus' requires = [] excludes = ['greedy', 'split', 'domain', 'gaussian', 'extension'] @classmethod def preprocess(cls, modulus): modulus = sympify(modulus) if modulus.is_Integer and modulus > 0: return int(modulus) else: raise OptionError("'modulus' must a positive integer, got %s" % modulus) @classmethod def postprocess(cls, options): if 'modulus' in options: modulus = options['modulus'] symmetric = options.get('symmetric', True) options['domain'] = sympy.polys.domains.FF(modulus, symmetric) class Symmetric(BooleanOption): """``symmetric`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'symmetric' requires = ['modulus'] excludes = ['greedy', 'domain', 'split', 'gaussian', 'extension'] class Strict(BooleanOption): """``strict`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'strict' @classmethod def default(cls): return True class Repr(Option): """``repr`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'repr' @classmethod def default(cls): return sympy.polys.densepolys.DensePoly @classmethod def preprocess(cls, repr): if isinstance(repr, str): if repr == 'sparse': return sympy.polys.sparsepolys.SparsePoly elif repr == 'dense': return sympy.polys.densepolys.DensePoly else: raise OptionError("'%s' is not a valid value 'repr' option" % repr) elif isinstance(repr, sympy.polys.polyclasses.GenericPoly): return repr else: raise OptionError("'repr' must a string or a class, got %s" % repr) class Auto(BooleanOption, Flag): """``auto`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'auto' after = ['field', 'domain', 'extension', 'gaussian'] @classmethod def default(cls): return True @classmethod def postprocess(cls, options): if ('domain' in options or 'field' in options) and 'auto' not in options: options['auto'] = False class Frac(BooleanOption, Flag): """``auto`` option to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'frac' @classmethod def default(cls): return False class Formal(BooleanOption, Flag): """``formal`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'formal' @classmethod def default(cls): return False class Polys(BooleanOption, Flag): """``polys`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'polys' class Include(BooleanOption, Flag): """``include`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'include' @classmethod def default(cls): return False class All(BooleanOption, Flag): """``all`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'all' @classmethod def default(cls): return False class Gen(Flag): """``gen`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'gen' @classmethod def default(cls): return 0 @classmethod def preprocess(cls, gen): if isinstance(gen, (Basic, int)): return gen else: raise OptionError("invalid argument for 'gen' option") class Symbols(Flag): """``symbols`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'symbols' @classmethod def default(cls): return numbered_symbols('s', start=1) @classmethod def preprocess(cls, symbols): if hasattr(symbols, '__iter__'): return iter(symbols) else: raise OptionError("expected an iterator or iterable container, got %s" % symbols) class Method(Flag): """``method`` flag to polynomial manipulation functions. """ __metaclass__ = OptionType option = 'method' @classmethod def preprocess(cls, method): if isinstance(method, str): return method.lower() else: raise OptionError("expected a string, got %s" % method) def build_options(gens, args=None): """Construct options from keyword arguments or ... options. """ if args is None: gens, args = (), gens if len(args) != 1 or 'opt' not in args or gens: return Options(gens, args) else: return args['opt'] def allowed_flags(args, flags): """ Allow specified flags to be used in the given context. Examples ======== >>> from sympy.polys.polyoptions import allowed_flags >>> from sympy.polys.domains import ZZ >>> allowed_flags({'domain': ZZ}, []) >>> allowed_flags({'domain': ZZ, 'frac': True}, []) Traceback (most recent call last): ... FlagError: 'frac' flag is not allowed in this context >>> allowed_flags({'domain': ZZ, 'frac': True}, ['frac']) """ flags = set(flags) for arg in args.iterkeys(): try: if Options.__options__[arg].is_Flag and not arg in flags: raise FlagError("'%s' flag is not allowed in this context" % arg) except KeyError: raise OptionError("'%s' is not a valid option" % arg) def set_defaults(options, **defaults): """Update options with default values. """ if 'defaults' not in options: options = dict(options) options['defaults'] = defaults return options Options._init_dependencies_order()
26.442857
114
0.577477
457763dd9f6f8f8fcb7e3f7183d20cbc367f073a
3,636
py
Python
bread/contrib/reports/models.py
basxsoftwareassociation/bread
062ec82a565f81eff51ea91dc0f211139bc7fe96
[ "Apache-2.0", "BSD-3-Clause" ]
13
2021-01-19T08:28:08.000Z
2022-01-28T03:44:34.000Z
bread/contrib/reports/models.py
basxsoftwareassociation/bread
062ec82a565f81eff51ea91dc0f211139bc7fe96
[ "Apache-2.0", "BSD-3-Clause" ]
80
2020-12-07T04:37:39.000Z
2022-03-08T14:42:13.000Z
bread/contrib/reports/models.py
basxsoftwareassociation/bread
062ec82a565f81eff51ea91dc0f211139bc7fe96
[ "Apache-2.0", "BSD-3-Clause" ]
2
2020-12-03T15:06:53.000Z
2021-03-16T03:47:29.000Z
import htmlgenerator as hg from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.db import models from django.utils.translation import gettext_lazy as _ from bread import layout from ...layout.components.datatable import DataTableColumn from .fields.queryfield import QuerysetField, parsequeryexpression def available_report_filters(modelfield, request, report): from django.conf import settings return tuple((i, i) for i in getattr(settings, "REPORT_FILTERS", {}).keys()) class Report(models.Model): created = models.DateField(_("Created"), auto_now_add=True) name = models.CharField(_("Name"), max_length=255) model = models.ForeignKey( ContentType, on_delete=models.PROTECT, ) model.verbose_name = _("Model") filter = QuerysetField(_("Filter"), modelfieldname="model") custom_queryset = models.CharField( _("Custom Filter"), max_length=255, help_text=_( "Key in 'settings.REPORT_FILTERS' must be a function returning a queryset" ), blank=True, ) custom_queryset.lazy_choices = available_report_filters @property def preview(self): columns = [] for column in self.columns.all(): columns.append( DataTableColumn(column.name, layout.FC(f"row.{column.column}")) ) qs = self.queryset if qs is None: return hg.BaseElement("Model does no longer exists!") return hg.BaseElement( hg.H3(_("Preview")), layout.datatable.DataTable.from_queryset( qs[:25], columns=columns, primary_button="" ), ) @property def queryset(self): if self.custom_queryset and self.custom_queryset in getattr( settings, "REPORT_FILTERS", {} ): # do not check whether the settings exists, an exception can be raised automatically ret = getattr(settings, "REPORT_FILTERS", {}).get( self.custom_queryset, lambda model: model.objects.none() )(self.model.model_class()) if not isinstance(ret, models.QuerySet): raise ValueError( _( 'settings.REPORT_FILTERS["%s"] did not return a queryset but returned: %s' ) % (self.custom_queryset, ret) ) if ret.model != self.model.model_class(): raise ValueError( _( 'settings.REPORT_FILTERS["%s"] did not return a queryset for %s but for %s' ) % (self.custom_queryset, self.model.model_class(), ret.model) ) return parsequeryexpression(ret, self.filter.raw).queryset return self.filter.queryset def __str__(self): return self.name class Meta: verbose_name = _("Report") verbose_name_plural = _("Reports") ordering = ["name"] class ReportColumn(models.Model): AGGREGATIONS = { "count": "", "sum": "", } report = models.ForeignKey(Report, on_delete=models.CASCADE, related_name="columns") column = models.CharField(_("Column"), max_length=255) name = models.CharField(_("Name"), max_length=255) aggregation = models.CharField( _("Aggregation"), max_length=64, choices=tuple(AGGREGATIONS.items()), blank=True ) class Meta: verbose_name = _("Column") verbose_name_plural = _("Columns") order_with_respect_to = "report"
33.981308
99
0.606161
16864db703e37581d3a447d4df7d78cce0e2aeeb
2,131
py
Python
driver/excel.py
efineshi/medicine_number_count
2792b15b78c855fec2af4078b0b97d28e4d4d648
[ "Apache-2.0" ]
null
null
null
driver/excel.py
efineshi/medicine_number_count
2792b15b78c855fec2af4078b0b97d28e4d4d648
[ "Apache-2.0" ]
null
null
null
driver/excel.py
efineshi/medicine_number_count
2792b15b78c855fec2af4078b0b97d28e4d4d648
[ "Apache-2.0" ]
null
null
null
import xlrd from utils import utils def count_data_from_excel(sheet1, rows_numbers, patient_column, medicine_numbers_column, project_column, room_column, doctor_column): room_dict = {} for row in range(rows_numbers): if row == 0: continue # 获取医生开药数量 doctor_medicine_numbers = float(sheet1.row_values(row)[medicine_numbers_column]) # 获取本条数据病人姓名 patient_name = sheet1.row_values(row)[patient_column] # 获取本条数据医生姓名 doctor_name = sheet1.row_values(row)[doctor_column] # 获取药房名称 room = sheet1.row_values(row)[room_column] # 获取科室名称 project = sheet1.row_values(row)[project_column] # 判断药房是否存在 room_dict = utils.count_room(room_dict, room, project, doctor_name, doctor_medicine_numbers, patient_name) return room_dict class Data: def __init__(self, file_path): # 获取 excel 数据 try: data = xlrd.open_workbook(file_path) except Exception: raise Exception("错误:输入的 excel 文件不存在,或文件格式不为 xls 或 xlsx") # 获取 sheet1 数据 sheet1 = data.sheets()[0] # 获取 sheet1 行数 rows_numbers = sheet1.nrows # 更新实际列 line1_info = sheet1.row_values(0) line2_info = sheet1.row_values(1) patient_column, medicine_column, medicine_numbers_column, \ project_column, room_column, doctor_column = utils.get_data_column(line1_info) self.medicine_info, self.medicine_name = utils.get_medicine_info(line2_info, medicine_column) self.room_dict = count_data_from_excel(sheet1, rows_numbers, patient_column, medicine_numbers_column, project_column, room_column, doctor_column)
38.745455
114
0.544815
2abf069f89cfcfe0506375aafa285f2e86cc7654
3,329
py
Python
about/views.py
timptner/farafmb.de
2b154278d8b44ea3adecafcb8554c1b0b0055e01
[ "MIT" ]
null
null
null
about/views.py
timptner/farafmb.de
2b154278d8b44ea3adecafcb8554c1b0b0055e01
[ "MIT" ]
1
2022-02-17T20:28:19.000Z
2022-02-17T20:28:19.000Z
about/views.py
timptner/farafmb.de
2b154278d8b44ea3adecafcb8554c1b0b0055e01
[ "MIT" ]
null
null
null
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.files.storage import default_storage from django.shortcuts import render, HttpResponseRedirect from django.urls import reverse from django.views import generic from .forms import ImageForm @login_required def upload_file(request): if request.method == 'POST': form = ImageForm(request.POST, request.FILES) if form.is_valid(): form.save() messages.success(request, "Das Gruppenbild wurde aktualisiert!") return HttpResponseRedirect(reverse('about:index')) else: form = ImageForm() return render(request, 'about/upload.html', {'form': form}) class AboutView(generic.TemplateView): template_name = 'about/index.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['image'] = default_storage.url('about/team.jpeg') if default_storage.exists('about/team.jpeg') else None context['text'] = """ Wenn wir uns gerade mal nicht mit den Professorinnen und Professoren um bessere Noten für uns selbst streiten, kämpfen wir als Fachschaftsrat mit Händen und Füßen jeden Tag dafür die [Otto-von-Guericke-Universität Magdeburg](https://www.ovgu.de) und unsere [Fakultät für Maschinenbau](https://www.fmb.ovgu.de) ein kleines Stück besser zu machen. Wir sind das offizielle Vertretungsgremium der Studierenden an der Fakultät für Maschinenbau. Das heißt wir setzen uns dafür ein, dass eure Vorschläge und auch eure Kritik an die Fakultät herangetragen wird. Die weiteren Aufgaben, die wir bewältigen, sind in unserer Satzung für euch alle online nachzulesen. Wie versuchen uns kontinuierlich zu verbessern und euch Informationen über Neuerungen an der Universität leichter zugänglich zu machen. Außerdem setzen wir uns dafür ein euch eine einfachere Kommunikation mit den Professoren zu ermöglichen und euch bessere und wechselnde Veranstaltungen zu bieten. Um dies kontinuierlich durchsetzen zu können brauchen wir auch immer neuen Input und freuen uns somit über neue Mitglieder, die neue Ansichten und Dynamiken bei uns in den Fachschaftsrat bringen. \#jointhecrew --- _English_ When we are not fighting with the professors for better grades for ourselves, we as the student council fight tooth and nail every day to make [Otto von Guericke University Magdeburg](https://www.ovgu.de/en/) and our [Faculty of Mechanical Engineering](https://www.fmb.ovgu.de/en/) a little bit better. We are the official representative body of the students at the Faculty of Mechanical Engineering. This means that we make sure that your suggestions and also your criticism are brought to the attention of the faculty. The other tasks we deal with can be read online in our constitution. We try to improve ourselves continuously and to make information about innovations at the university more accessible to you. We are also committed to making it easier for you to communicate with your professors and to offer you better and more varied events. In order to be able to implement this continuously, we always need new input and are therefore happy to welcome new members who bring new views and dynamics to the student council. \#jointhecrew """ return context
46.236111
120
0.775008
baaf45a77dd2cbb2c625585d55d61a71dcb67134
280
py
Python
appengine/chrome_infra_packages/cipd/__init__.py
mithro/chromium-infra
d27ac0b230bedae4bc968515b02927cf9e17c2b7
[ "BSD-3-Clause" ]
1
2018-01-02T05:47:07.000Z
2018-01-02T05:47:07.000Z
appengine/chrome_infra_packages/cipd/__init__.py
mithro/chromium-infra
d27ac0b230bedae4bc968515b02927cf9e17c2b7
[ "BSD-3-Clause" ]
null
null
null
appengine/chrome_infra_packages/cipd/__init__.py
mithro/chromium-infra
d27ac0b230bedae4bc968515b02927cf9e17c2b7
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from .api import PackageRepositoryApi from .handlers import get_frontend_routes from .impl import get_backend_routes
35
72
0.810714
f532f59fe3e5c5342dce54b4d97ea3df2de48774
926
py
Python
data/groups.py
lev2454/VGA-Web-Edition
4d8fb7b93373ee00fb78889cab2213aaa5a4cdc9
[ "BSD-3-Clause" ]
1
2020-05-05T16:10:36.000Z
2020-05-05T16:10:36.000Z
data/groups.py
lev2454/VGA-Web-Edition
4d8fb7b93373ee00fb78889cab2213aaa5a4cdc9
[ "BSD-3-Clause" ]
null
null
null
data/groups.py
lev2454/VGA-Web-Edition
4d8fb7b93373ee00fb78889cab2213aaa5a4cdc9
[ "BSD-3-Clause" ]
null
null
null
import datetime import sqlalchemy from .db_session import SqlAlchemyBase from sqlalchemy_serializer import SerializerMixin class Group(SqlAlchemyBase, SerializerMixin): __tablename__ = 'groups' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) name = sqlalchemy.Column(sqlalchemy.String) screen_name = sqlalchemy.Column(sqlalchemy.String, index=True) description = sqlalchemy.Column(sqlalchemy.String, nullable=True) is_closed = sqlalchemy.Column(sqlalchemy.Boolean) deactivated = sqlalchemy.Column(sqlalchemy.String, nullable=True) city = sqlalchemy.Column(sqlalchemy.String, nullable=True) country = sqlalchemy.Column(sqlalchemy.String, nullable=True) icon = sqlalchemy.Column(sqlalchemy.String, nullable=True) update_time = sqlalchemy.Column(sqlalchemy.DateTime, nullable=True) added_date = sqlalchemy.Column(sqlalchemy.DateTime, default=datetime.datetime.now)
44.095238
86
0.790497
202961fd5a09c6cbdf1b1b9e23a566564e050d99
3,022
py
Python
macropy/test/tracing.py
CyberFlameGO/macropy
a815f5a58231d8fa65386cd71ff0d15d09fe9fa3
[ "Unlicense", "MIT" ]
2,061
2015-01-02T16:53:18.000Z
2022-03-31T12:01:07.000Z
macropy/test/tracing.py
CyberFlameGO/macropy
a815f5a58231d8fa65386cd71ff0d15d09fe9fa3
[ "Unlicense", "MIT" ]
41
2015-02-25T02:54:46.000Z
2022-01-28T19:08:45.000Z
macropy/test/tracing.py
CyberFlameGO/macropy
a815f5a58231d8fa65386cd71ff0d15d09fe9fa3
[ "Unlicense", "MIT" ]
151
2015-01-01T22:07:55.000Z
2022-03-03T07:55:20.000Z
import ast import unittest from macropy.tracing import macros, trace, log, require, show_expanded from macropy.core.quotes import macros, q result = [] def log(x): result.append(x) class Tests(unittest.TestCase): def test_basic(self): log[1 + 2] log["omg" * 3] assert(result[-2:] == [ "1 + 2 -> 3", "\"omg\" * 3 -> 'omgomgomg'" ]) def test_combo(self): trace[1 + 2 + 3 + 4] self.assertEqual(result[-3:], [ "1 + 2 -> 3", "1 + 2 + 3 -> 6", "1 + 2 + 3 + 4 -> 10" ]) def test_fancy(self): trace[[len(x)*3 for x in ['omg', 'wtf', 'b' * 2 + 'q', 'lo' * 3 + 'l']]] assert(result[-14:] == [ "'b' * 2 -> 'bb'", "'b' * 2 + 'q' -> 'bbq'", "'lo' * 3 -> 'lololo'", "'lo' * 3 + 'l' -> 'lololol'", "['omg', 'wtf', 'b' * 2 + 'q', 'lo' * 3 + 'l'] -> ['omg', 'wtf', 'bbq', 'lololol']", "len(x) -> 3", "len(x)*3 -> 9", "len(x) -> 3", "len(x)*3 -> 9", "len(x) -> 3", "len(x)*3 -> 9", "len(x) -> 7", "len(x)*3 -> 21", "[len(x)*3 for x in ['omg', 'wtf', 'b' * 2 + 'q', 'lo' * 3 + 'l']] -> [9, 9, 9, 21]" ]) def test_function_call(self): trace[sum([sum([1, 2, 3]), min(4, 5, 6), max(7, 8, 9)])] assert(result[-5:] == [ "sum([1, 2, 3]) -> 6", "min(4, 5, 6) -> 4", "max(7, 8, 9) -> 9", "[sum([1, 2, 3]), min(4, 5, 6), max(7, 8, 9)] -> [6, 4, 9]", "sum([sum([1, 2, 3]), min(4, 5, 6), max(7, 8, 9)]) -> 19" ]) def test_require(self): with self.assertRaises(AssertionError) as cm: require[1 == 10] assert str(cm.exception) == "Require Failed\n1 == 10 -> False" require[1 == 1] with self.assertRaises(AssertionError) as cm: require[3**2 + 4**2 != 5**2] require[3**2 + 4**2 == 5**2] def test_require_block(self): with self.assertRaises(AssertionError) as cm: a = 10 b = 2 with require: a > 5 a * b == 20 a < 2 assert str(cm.exception) == "Require Failed\na < 2 -> False" def test_show_expanded(self): from macropy.core import ast_repr show_expanded[q[1 + 2]] assert ("ast.BinOp(left=ast.Num(n=1), op=ast.Add(), " "right=ast.Num(n=2))" in result[-1]) with show_expanded: a = 1 b = 2 with q as code: return(a + u[b + 1]) assert result[-3] == '\na = 1' assert result[-2] == '\nb = 2' self.assertEqual("\ncode = [ast.Return(value=ast.BinOp(" "left=ast.Name(id='a'"", ctx=ast.Load()), " "op=ast.Add(), right=ast_repr((b + 1))))]", result[-1])
27.472727
96
0.401721
b6c323f2ebcd7e109348472c28ce3eceef56f318
5,352
py
Python
nni/compression/pytorch/quantization_speedup/frontend_to_onnx.py
dutxubo/nni
c16f4e1c89b54b8b80661ef0072433d255ad2d24
[ "MIT" ]
9,680
2019-05-07T01:42:30.000Z
2022-03-31T16:48:33.000Z
nni/compression/pytorch/quantization_speedup/frontend_to_onnx.py
dutxubo/nni
c16f4e1c89b54b8b80661ef0072433d255ad2d24
[ "MIT" ]
1,957
2019-05-06T21:44:21.000Z
2022-03-31T09:21:53.000Z
nni/compression/pytorch/quantization_speedup/frontend_to_onnx.py
dutxubo/nni
c16f4e1c89b54b8b80661ef0072433d255ad2d24
[ "MIT" ]
1,571
2019-05-07T06:42:55.000Z
2022-03-31T03:19:24.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import onnx import onnx.numpy_helper """ The main function of this page is to convert pytorch model to onnx model. Convertion from pytorch model to onnx model is primary so that a critical problem is caused that Layer name of pytorch model fail to convert to onnx layer name directly. To solve it, we wrap pytorch model in new wrapper which multiply bits number and input before computation of each op. Only in this way can onnx model get bits number of corresponded layer. """ class LayernameModuleWrapper(torch.nn.Module): def __init__(self, module, module_bits) -> None: """ Parameters ---------- module : torch.nn.Module Layer module of pytorch model module_bits : int Bits width setting for module """ super().__init__() self.module = module self.module_bits = module_bits def forward(self, inputs): inputs = inputs*self.module_bits inputs = self.module(inputs) return inputs def _setattr(model, name, module): """ Parameters ---------- model : pytorch model The model to speed up by quantization name : str name of pytorch module module : torch.nn.Module Layer module of pytorch model """ name_list = name.split(".") for name in name_list[:-1]: model = getattr(model, name) setattr(model, name_list[-1], module) def unwrapper(model_onnx, index2name, config): """ Fill onnx config and remove wrapper node in onnx Parameters ---------- model_onnx : onnx model Onnx model which is converted from pytorch model index2name : dict Dictionary of layer index and name config : dict Config recording name of layers and calibration parameters Returns ------- onnx model Onnx model which is converted from pytorch model dict The configuration of onnx model layers and calibration parameters """ # Support Gemm, Conv, Relu, Clip(Relu6) and Maxpool support_op = ['Gemm', 'Conv', 'Relu', 'Clip', 'MaxP'] idx = 0 onnx_config = {} while idx < len(model_onnx.graph.node): nd = model_onnx.graph.node[idx] if nd.name[0:4] in support_op and idx > 1: # Grad constant node and multiply node const_nd = model_onnx.graph.node[idx-2] mul_nd = model_onnx.graph.node[idx-1] # Get index number which is transferred by constant node index = int(onnx.numpy_helper.to_array(const_nd.attribute[0].t)) if index != -1: name = index2name[index] onnx_config[nd.name] = config[name] nd.input[0] = mul_nd.input[0] # Remove constant node and multiply node model_onnx.graph.node.remove(const_nd) model_onnx.graph.node.remove(mul_nd) idx = idx-2 idx = idx+1 return model_onnx, onnx_config def torch_to_onnx(model, config, input_shape, model_path, input_names, output_names): """ Convert torch model to onnx model and get layer bits config of onnx model. Parameters ---------- model : pytorch model The model to speed up by quantization config : dict Config recording bits number and name of layers input_shape : tuple The input shape of model, shall pass it to torch.onnx.export model_path : str The path user want to store onnx model which is converted from pytorch model input_names : list Input name of onnx model providing for torch.onnx.export to generate onnx model output_name : list Output name of onnx model providing for torch.onnx.export to generate onnx model Returns ------- onnx model Onnx model which is converted from pytorch model dict The configuration of onnx model layers and calibration parameters """ # Support Gemm, Conv, Relu, Clip(Relu6) and MaxPool support_op = [torch.nn.Conv2d, torch.nn.Linear, torch.nn.ReLU, torch.nn.ReLU6, torch.nn.MaxPool2d] # Transfer bits number to onnx layer by using wrapper index2name = {} name2index = {} if config is not None: for i, name in enumerate(config.keys()): index2name[i] = name name2index[name] = i for name, module in model.named_modules(): if config is not None and name in config: assert type(module) in support_op wrapper_module = LayernameModuleWrapper(module, name2index[name]) _setattr(model, name, wrapper_module) elif type(module) in support_op: wrapper_module = LayernameModuleWrapper(module, -1) _setattr(model, name, wrapper_module) # Convert torch model to onnx model and save it in model_path dummy_input = torch.randn(input_shape) model.to('cpu') torch.onnx.export(model, dummy_input, model_path, verbose=False, input_names=input_names, output_names=output_names, export_params=True) # Load onnx model model_onnx = onnx.load(model_path) model_onnx, onnx_config = unwrapper(model_onnx, index2name, config) onnx.save(model_onnx, model_path) onnx.checker.check_model(model_onnx) return model_onnx, onnx_config
36.162162
140
0.65639
ab9ff66e9f493d07d211027405f1a52974c0a031
855
py
Python
src/oscutil/oscplayback.py
neonkingfr/VizBench
e41f559cb6e761d717f2f5b202482d5d8dacd2d8
[ "MIT" ]
7
2015-01-05T06:32:49.000Z
2020-10-30T19:29:07.000Z
src/oscutil/oscplayback.py
neonkingfr/VizBench
e41f559cb6e761d717f2f5b202482d5d8dacd2d8
[ "MIT" ]
null
null
null
src/oscutil/oscplayback.py
neonkingfr/VizBench
e41f559cb6e761d717f2f5b202482d5d8dacd2d8
[ "MIT" ]
4
2016-03-09T22:29:26.000Z
2021-04-07T13:52:28.000Z
import re from nosuch.oscutil import * if len(sys.argv) < 3: print "Usage: oscplayback.py {port@host} {file}" sys.exit(1) if __name__ == '__main__': oscmsg = [] porthost = sys.argv[1] print("porthost=",porthost) port = re.compile(".*@").search(porthost).group()[:-1] host = re.compile("@.*").search(porthost).group()[1:] filename = sys.argv[2] f = open(filename) r = OscRecipient(host,port) time0 = time.time(); while 1: line = f.readline() if not line: break if line[0] != '[': continue sys.stdout.write("SENDING %s"%line) oscbundle = eval(line) tm = oscbundle[0] while (time.time()-time0) < tm: time.sleep(0.001) bundle = createBundle() n = len(oscbundle) for i in range(1,n): m = oscbundle[i] sys.stdout.write("M = "+str(m)) appendToBundle(bundle,m[0],m[2:]) r.sendbundle(bundle) f.close()
20.357143
55
0.624561
356d3d86ffb6e8573f6cc38d445d6d52fc3075ff
90
py
Python
kitchen/check_in/apps.py
ZhukovGreen/kitchen-check-in
ce5327353cd9db32389da1678a37ac3d647b7c32
[ "MIT" ]
null
null
null
kitchen/check_in/apps.py
ZhukovGreen/kitchen-check-in
ce5327353cd9db32389da1678a37ac3d647b7c32
[ "MIT" ]
null
null
null
kitchen/check_in/apps.py
ZhukovGreen/kitchen-check-in
ce5327353cd9db32389da1678a37ac3d647b7c32
[ "MIT" ]
null
null
null
from django.apps import AppConfig class CheckInConfig(AppConfig): name = 'check_in'
15
33
0.755556
51953eec2609308e93a36a2cdf4f2db05b2bc556
2,582
py
Python
market/utils/widgets.py
katomaso/django-market
84c4fa10aefbd792a956cef3d727623ca78cb5fd
[ "MIT" ]
null
null
null
market/utils/widgets.py
katomaso/django-market
84c4fa10aefbd792a956cef3d727623ca78cb5fd
[ "MIT" ]
null
null
null
market/utils/widgets.py
katomaso/django-market
84c4fa10aefbd792a956cef3d727623ca78cb5fd
[ "MIT" ]
null
null
null
# coding: utf-8 """Provide generally usable special widgets.""" from django.forms.widgets import Input, TextInput, NumberInput, ClearableFileInput from django.utils.html import format_html, conditional_escape from django.utils.encoding import force_text from django.utils.translation import ugettext as _ from django.template.loader import render_to_string from market.core.templatetags.core_tags import as_media class ClearableImageInput(ClearableFileInput): """Redefine clearable template.""" template_with_initial = ( '<img src="%(media_url)s" class="clearable-image-field" data-checkbox="%(clear_checkbox_id)s"/>' '%(clear_template)s<br /><label>%(input_text)s</label> %(input)s' ) template_with_clear = '<span style="display:none">%(clear)s</span>' def __init__(self, template=None, attrs=None): self.template = template super(ClearableImageInput, self).__init__(attrs) def get_template_substitution_values(self, value): """Return value-related substitutions.""" return { 'media_url': conditional_escape( as_media(value.thumbnail if hasattr(value, "thumbnail") else value) ) } def render(self, name, value, attrs=None): """Render image with thumbnail.""" if self.template is not None: return render_to_string(self.template, context=dict(name=name, value=value, **attrs)) return super(ClearableImageInput, self).render(name, value, attrs) class AppendInput(Input): """Specialized widget for twitter's Bootstrap with append ability.""" appended_text = "$" def render(self, name, value, attrs=None): """Add bootstrap's append ability.""" append = self.attrs.pop("append", self.appended_text) if value is None: value = '' final_attrs = self.build_attrs(attrs, type=self.input_type, name=name) if value != '': # Only add the 'value' attribute if a value is non-empty. final_attrs['value'] = force_text(self._format_value(value)) return format_html('<div class="inputs"><input {}/><span>{}</span></div>', " ".join("{}={}".format(*attr) for attr in final_attrs.items()), append) class AppendTextInput(TextInput, AppendInput): pass class AppendNumberInput(NumberInput, AppendInput): pass class CurrencyInput(AppendNumberInput): appended_text = _("$") class CurrencyWithoutVATInput(AppendNumberInput): appended_text = _("$ without VAT")
33.532468
104
0.665376
9b564f098f3fd4ec96e776c88d49097eb758609b
583
py
Python
e2e/Classes/Consensus/Element.py
kayabaNerve/Currency
260ebc20f1704f42ad6183fee39ad58ec6d07961
[ "CC0-1.0" ]
66
2019-01-14T08:39:52.000Z
2022-01-06T11:39:15.000Z
e2e/Classes/Consensus/Element.py
kayabaNerve/Currency
260ebc20f1704f42ad6183fee39ad58ec6d07961
[ "CC0-1.0" ]
228
2019-01-16T15:42:44.000Z
2022-02-05T07:48:07.000Z
e2e/Classes/Consensus/Element.py
kayabaNerve/Currency
260ebc20f1704f42ad6183fee39ad58ec6d07961
[ "CC0-1.0" ]
19
2019-01-14T08:53:04.000Z
2021-11-03T20:19:28.000Z
from typing import Dict, Any from abc import ABC, abstractmethod from e2e.Libs.BLS import Signature class Element( ABC ): prefix: bytes holder: int @abstractmethod def signatureSerialize( self ) -> bytes: pass @abstractmethod def serialize( self ) -> bytes: pass @abstractmethod def toJSON( self ) -> Dict[str, Any]: pass class SignedElement( ABC ): signature: Signature @abstractmethod def signedSerialize( self ) -> bytes: pass @abstractmethod def toSignedJSON( self ) -> Dict[str, Any]: pass
12.673913
35
0.64494
94d57ae43dd8f71f883fea7a82e3b2c6bc475734
8,547
py
Python
test/shed_functional/functional/test_0040_repository_circular_dependencies.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
4
2018-10-29T18:34:38.000Z
2021-09-29T23:30:42.000Z
test/shed_functional/functional/test_0040_repository_circular_dependencies.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
30
2016-10-20T15:35:12.000Z
2018-10-02T15:59:54.000Z
test/shed_functional/functional/test_0040_repository_circular_dependencies.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
7
2016-11-03T19:11:01.000Z
2020-05-11T14:23:52.000Z
from shed_functional.base.twilltestcase import common, ShedTwillTestCase freebayes_repository_name = 'freebayes_0040' freebayes_repository_description = "Galaxy's freebayes tool for test 0040" freebayes_repository_long_description = "Long description of Galaxy's freebayes tool for test 0040" filtering_repository_name = 'filtering_0040' filtering_repository_description = "Galaxy's filtering tool for test 0040" filtering_repository_long_description = "Long description of Galaxy's filtering tool for test 0040" class TestRepositoryCircularDependencies(ShedTwillTestCase): '''Verify that the code correctly displays repositories with circular repository dependencies.''' def test_0000_initiate_users(self): """Create necessary user accounts.""" self.login(email=common.test_user_1_email, username=common.test_user_1_name) test_user_1 = self.test_db_util.get_user(common.test_user_1_email) assert test_user_1 is not None, 'Problem retrieving user with email %s from the database' % common.test_user_1_email self.test_db_util.get_private_role(test_user_1) self.login(email=common.admin_email, username=common.admin_username) admin_user = self.test_db_util.get_user(common.admin_email) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % common.admin_email self.test_db_util.get_private_role(admin_user) def test_0005_create_category(self): """Create a category for this test suite""" self.create_category(name='test_0040_repository_circular_dependencies', description='Testing handling of circular repository dependencies.') def test_0010_create_freebayes_repository(self): '''Create and populate freebayes_0040.''' self.login(email=common.test_user_1_email, username=common.test_user_1_name) repository = self.get_or_create_repository(name=freebayes_repository_name, description=freebayes_repository_description, long_description=freebayes_repository_long_description, owner=common.test_user_1_name, categories=['test_0040_repository_circular_dependencies'], strings_displayed=[]) self.upload_file(repository, filename='freebayes/freebayes.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded the tool tarball.', strings_displayed=[], strings_not_displayed=[]) def test_0015_create_filtering_repository(self): '''Create and populate filtering_0040.''' self.login(email=common.test_user_1_email, username=common.test_user_1_name) repository = self.get_or_create_repository(name=filtering_repository_name, description=filtering_repository_description, long_description=filtering_repository_long_description, owner=common.test_user_1_name, categories=['test_0040_repository_circular_dependencies'], strings_displayed=[]) self.upload_file(repository, filename='filtering/filtering_1.1.0.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded the tool tarball for filtering 1.1.0.', strings_displayed=[], strings_not_displayed=[]) def test_0020_create_dependency_on_freebayes(self): '''Upload a repository_dependencies.xml file that specifies the current revision of freebayes to the filtering_0040 repository.''' # The dependency structure should look like: # Filtering revision 0 -> freebayes revision 0. # Freebayes revision 0 -> filtering revision 1. # Filtering will have two revisions, one with just the filtering tool, and one with the filtering tool and a dependency on freebayes. repository = self.test_db_util.get_repository_by_name_and_owner(freebayes_repository_name, common.test_user_1_name) filtering_repository = self.test_db_util.get_repository_by_name_and_owner(filtering_repository_name, common.test_user_1_name) repository_dependencies_path = self.generate_temp_path('test_0040', additional_paths=['filtering']) repository_tuple = (self.url, repository.name, repository.user.username, self.get_repository_tip(repository)) self.create_repository_dependency(repository=filtering_repository, repository_tuples=[repository_tuple], filepath=repository_dependencies_path) def test_0025_create_dependency_on_filtering(self): '''Upload a repository_dependencies.xml file that specifies the current revision of filtering to the freebayes_0040 repository.''' # The dependency structure should look like: # Filtering revision 0 -> freebayes revision 0. # Freebayes revision 0 -> filtering revision 1. # Filtering will have two revisions, one with just the filtering tool, and one with the filtering tool and a dependency on freebayes. repository = self.test_db_util.get_repository_by_name_and_owner(filtering_repository_name, common.test_user_1_name) freebayes_repository = self.test_db_util.get_repository_by_name_and_owner(freebayes_repository_name, common.test_user_1_name) repository_dependencies_path = self.generate_temp_path('test_0040', additional_paths=['freebayes']) repository_tuple = (self.url, repository.name, repository.user.username, self.get_repository_tip(repository)) self.create_repository_dependency(repository=freebayes_repository, repository_tuples=[repository_tuple], filepath=repository_dependencies_path) def test_0030_verify_repository_dependencies(self): '''Verify that each repository can depend on the other without causing an infinite loop.''' filtering_repository = self.test_db_util.get_repository_by_name_and_owner(filtering_repository_name, common.test_user_1_name) freebayes_repository = self.test_db_util.get_repository_by_name_and_owner(freebayes_repository_name, common.test_user_1_name) # The dependency structure should look like: # Filtering revision 0 -> freebayes revision 0. # Freebayes revision 0 -> filtering revision 1. # Filtering will have two revisions, one with just the filtering tool, and one with the filtering tool and a dependency on freebayes. # In this case, the displayed dependency will specify the tip revision, but this will not always be the case. self.check_repository_dependency(filtering_repository, freebayes_repository, self.get_repository_tip(freebayes_repository)) self.check_repository_dependency(freebayes_repository, filtering_repository, self.get_repository_tip(filtering_repository)) def test_0035_verify_repository_metadata(self): '''Verify that resetting the metadata does not change it.''' freebayes_repository = self.test_db_util.get_repository_by_name_and_owner(freebayes_repository_name, common.test_user_1_name) filtering_repository = self.test_db_util.get_repository_by_name_and_owner(filtering_repository_name, common.test_user_1_name) for repository in [freebayes_repository, filtering_repository]: self.verify_unchanged_repository_metadata(repository) def test_0040_verify_tool_dependencies(self): '''Verify that freebayes displays tool dependencies.''' repository = self.test_db_util.get_repository_by_name_and_owner(freebayes_repository_name, common.test_user_1_name) self.display_manage_repository_page(repository, strings_displayed=['freebayes', '0.9.4_9696d0ce8a9', 'samtools', '0.1.18', 'Valid tools', 'package'], strings_not_displayed=['Invalid tools'])
73.051282
151
0.701182
2c15318deda37d21e26505741fb4c50f1449da06
2,824
py
Python
tensorflow/lite/testing/op_tests/concat.py
leike666666/tensorflow
a3fd0ddfcb716be124e95b51e96e6c1e4507ef64
[ "Apache-2.0" ]
56
2018-06-21T13:47:23.000Z
2020-05-13T09:31:47.000Z
tensorflow/lite/testing/op_tests/concat.py
sagol/tensorflow
04f2870814d2773e09dcfa00cbe76a66a2c4de88
[ "Apache-2.0" ]
58
2021-11-22T05:41:28.000Z
2022-01-19T01:33:40.000Z
tensorflow/lite/testing/op_tests/concat.py
sagol/tensorflow
04f2870814d2773e09dcfa00cbe76a66a2c4de88
[ "Apache-2.0" ]
15
2018-09-06T14:18:32.000Z
2020-05-14T06:35:30.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for concat.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_concat_tests(options): """Make a set of tests to do concatenation.""" test_parameters = [{ "base_shape": [[1, 3, 4, 3], [3, 4]], "num_tensors": [1, 2, 3, 4, 5, 6], "axis": [0, 1, 2, 3, -3, -2, -1], "type": [tf.float32, tf.uint8, tf.int32, tf.int64], "fully_quantize": [False] }, { "base_shape": [[1, 3, 4, 3], [3, 4], [2, 3, 4, 3]], "num_tensors": [1, 2, 3, 4, 5, 6], "axis": [1, 2, 3, -3, -2, -1], "type": [tf.float32], "fully_quantize": [True] }] def get_shape(parameters, delta): """Return a tweaked version of 'base_shape'.""" axis = parameters["axis"] shape = parameters["base_shape"][:] if axis < 0: axis += len(shape) if axis < len(shape): shape[axis] += delta return shape def build_graph(parameters): all_tensors = [] for n in range(0, parameters["num_tensors"]): input_tensor = tf.compat.v1.placeholder( dtype=parameters["type"], name=("input%d" % n), shape=get_shape(parameters, n)) all_tensors.append(input_tensor) out = tf.concat(all_tensors, parameters["axis"]) return all_tensors, [out] def build_inputs(parameters, sess, inputs, outputs): all_values = [] for n in range(0, parameters["num_tensors"]): input_values = create_tensor_data( parameters["type"], get_shape(parameters, n), min_value=-1, max_value=1) all_values.append(input_values) return all_values, sess.run( outputs, feed_dict=dict(zip(inputs, all_values))) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=75)
34.024096
80
0.64483
7850385120ae059a36f8260a1b8176e00a66e300
3,704
py
Python
on_path/filesync.py
yuyuko-C/pyworkkit
7785356bcbc93f56c81f3d78362598d1a6ba10c2
[ "Apache-2.0" ]
null
null
null
on_path/filesync.py
yuyuko-C/pyworkkit
7785356bcbc93f56c81f3d78362598d1a6ba10c2
[ "Apache-2.0" ]
null
null
null
on_path/filesync.py
yuyuko-C/pyworkkit
7785356bcbc93f56c81f3d78362598d1a6ba10c2
[ "Apache-2.0" ]
null
null
null
from .path import Path import typing class SyncGroup: def __init__(self, source: str, target: str, *filters: str, filter_mode: bool = True) -> None: source_pth = Path(source).absolute() target_pth = Path(target).absolute() if source_pth.is_dir() and target_pth.is_dir(): self.source = source_pth self.target = target_pth else: raise ValueError("") self.__set_filter(*filters, filter_mode=filter_mode) def __set_filter(self, *filters: str, filter_mode: bool): filters_path = [] for p_filter in filters: real_f = self.source.joinpath(p_filter).relative_to(self.source) filters_path.append(real_f) self.__path_filters:typing.List[Path] = filters_path self.__filters_mode:bool = filter_mode def __filter_check(self, relative_path: Path): for p_filter in self.__path_filters: if relative_path.is_relative_to(p_filter): return not self.__filters_mode return self.__filters_mode def __filter_parent_check(self, relative_path: Path): for p_filter in self.__path_filters: if p_filter.is_relative_to(relative_path): return not self.__filters_mode return self.__filters_mode def __clean_target(self): # 先比较文件夹 for target in self.target.walk_dir(): relpath = target.relative_to(self.target) # 检查此路径能否通过过滤器 if self.__filter_check(relpath) or self.__filter_parent_check(relpath): source = self.source.joinpath(relpath) # 如果源路径被删除,也要移除 if not source.exists(): target.rmdir(True) else: # 不能通过过滤器则不该同步,直接移除 target.rmdir(True) # 再比较文件 for target in self.target.walk_file(): relpath = target.relative_to(self.target) # 检查此路径能否通过过滤器 if self.__filter_check(relpath): source = self.source.joinpath(relpath) # 如果源路径被删除,也要移除 if not source.exists(): target.unlink() else: # 不能通过过滤器则不该同步,直接移除 target.unlink() def __source_to_target(self): # 遍历没有的文件夹,复制并收录到copy_folder copy_folder = [] for source in self.source.walk_dir(): relpath = source.relative_to(self.source) # 检查此路径能否通过过滤器 if self.__filter_check(relpath): target = self.target.joinpath(relpath) if not target.exists(): source.copy_to(target) copy_folder.append(source) # 遍历文件,跳过copy_folder中的文件夹,若文件修改时间不同则判定为不同 for source in self.source.walk_file(*copy_folder): relpath = source.relative_to(self.source) # 检查此路径能否通过过滤器 if self.__filter_check(relpath): target = self.target.joinpath(relpath) if not target.exists(): source.copy_to(target) else: if target.stat().st_mtime != source.stat().st_mtime: source.copy_to(target) def execute_same(self): # 1.检查target比source多出来的路径,删除 # 2.检查source比target多出来的路径,复制 # 3.检查source与target一致的路径,检查 # 1.如果文件信息一致,不变 # 2.如果文件信息不一致,替换 self.__clean_target() self.__source_to_target() pass def execute_addition(self): # 1.检查source比target多出来的路径,复制 # 2.检查source与target一致的路径,检查 # 1.如果文件信息一致,不变 # 2.如果文件信息不一致,替换 self.__source_to_target() pass
33.981651
98
0.580724
6280062c1bddc98f42f86ad2a2cc2d35c30c6efd
4,779
py
Python
automatization_scripts/tools/glance.py
hmunfru/fiware-paas
dd808e986f5463dcbb85370b295404f167838ea1
[ "Apache-2.0" ]
null
null
null
automatization_scripts/tools/glance.py
hmunfru/fiware-paas
dd808e986f5463dcbb85370b295404f167838ea1
[ "Apache-2.0" ]
null
null
null
automatization_scripts/tools/glance.py
hmunfru/fiware-paas
dd808e986f5463dcbb85370b295404f167838ea1
[ "Apache-2.0" ]
2
2016-08-22T16:03:25.000Z
2018-03-05T23:28:55.000Z
# -*- coding: utf-8 -*- # Copyright 2014 Telefonica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with opensource@tid.es __author__ = 'henar' from urlparse import urlparse import httplib, json from tools import http ### ### http://docs.openstack.org/developer/glance/glanceapi.html class GlanceDemo: def __init__(self, keystone_url, tenant, user, password, glance_url): self.keystone_url = keystone_url self.tenant = tenant self.user = user self.password = password self.public_url = glance_url self.ks_token = self.__get__token() self.images = None def __get__token(self): return http.get_token(self.keystone_url + '/tokens', self.tenant, self.user, self.password) ## ## get_images - Obtiene la lista de imagenes --- Detalle images/detail ## def get_images(self): url = "%s/%s" % (self.public_url, "images/detail") headers = {'X-Auth-Token': self.ks_token, 'Accept': "application/json"} response = self.__get(url, headers) ## Si la respuesta es la adecuada, creo el diccionario de los datos en JSON. if response.status == 200: res_data = response.read() self.images = json.loads(res_data) ## ## Obtengo los metadatos de una imagen -- Los devuelve como lista de tuplas... [(,),...(,)] ## Y los devuelve en la cabecera.... ## ## Usa metodo -- GET http://130.206.80.63:9292/v1/images/<image_id> def metadata(self, image_id): url = "%s/%s/%s" % (self.public_url, "images", image_id) headers = {'X-Auth-Token': self.ks_token} response = self.__get(url, headers) metadata = response.getheaders() return metadata ## ## Pone/Cambia el valor de un metadato en la imagen. Esta informacion va en las cabeceras HTTP ## ## ## Usa metodo -- PUT http://130.206.80.63:9292/v1/images/<image_id> def put_metadata(self, image_id, metadata): url = "%s/%s/%s" % (self.public_url, "images", image_id) metadata['X-Auth-Token'] = self.ks_token response = self.__put(url, metadata) print "PUT: ", response.status def __do_http_req(self, method, url, headers): parsed_url = urlparse(url) con = httplib.HTTPConnection(parsed_url.netloc) con.request(method, parsed_url.path, None, headers) return con.getresponse() ## ## Metod que hace el HTTP-GET ## def __get(self, url, headers): return self.__do_http_req("GET", url, headers) ## ## Metod que hace el HTTP-PUT ## def __put(self, url, headers): return self.__do_http_req("PUT", url, headers) ## ## Metodo que lista algunos datos de las imagenes por pantalla..... ## OJO -- El filtro!!! ## def list_images(self): if self.images: for i in self.images['images']: res = "" ### Si es "sdc_aware", try: res = "****" if i['properties']['sdc_aware'] == 'True' else "" except: #No existe la clave => tira excepcion..... pass print res, i['id'], i['name'], '\t\t\t', i['size'] ## Lista un par de datos por pantalla #### #### #### PROGRAMA PRINCIPAL.... ### if __name__ == "__main__": config = {} execfile("sdc.conf", config) g = GlanceDemo(config['keystone_url'], config['tenant'], config['user'], config['password'], config['glance_url']) g.get_images() ### Consulto el listado de las imagenes g.list_images() ### Las listo --- ### ### Pongo a 'True' (por poner un valor) esta propiedad -- Para la imagen sdc-template-paas ### Tiene que ser x-image-meta-property-* para que no casque!!! g.put_metadata('44dcdba3-a75d-46a3-b209-5e9035d2435e', {'x-image-meta-property-sdc_aware': 'True'}) print "---------------------------" ## Obtengo, por obtener los metadatos de una imagen. m = g.metadata('add95618-4f13-4e46-9a38-a86cf4be80dd') print m
34.381295
118
0.611006
572582b653925dc45db84583fb2d97fccd4bb0d1
15,705
py
Python
python/ccxt/__init__.py
vankiaio/ccxt-vkt
cc855bbb0c8cc8d2a7449d9a08e3bd7c7304ba8b
[ "MIT" ]
null
null
null
python/ccxt/__init__.py
vankiaio/ccxt-vkt
cc855bbb0c8cc8d2a7449d9a08e3bd7c7304ba8b
[ "MIT" ]
null
null
null
python/ccxt/__init__.py
vankiaio/ccxt-vkt
cc855bbb0c8cc8d2a7449d9a08e3bd7c7304ba8b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """CCXT: CryptoCurrency eXchange Trading Library""" # MIT License # Copyright (c) 2017 Igor Kroitor # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ---------------------------------------------------------------------------- __version__ = '1.18.384' # ---------------------------------------------------------------------------- from ccxt.base.exchange import Exchange # noqa: F401 from ccxt.base.decimal_to_precision import decimal_to_precision # noqa: F401 from ccxt.base.decimal_to_precision import TRUNCATE # noqa: F401 from ccxt.base.decimal_to_precision import ROUND # noqa: F401 from ccxt.base.decimal_to_precision import DECIMAL_PLACES # noqa: F401 from ccxt.base.decimal_to_precision import SIGNIFICANT_DIGITS # noqa: F401 from ccxt.base.decimal_to_precision import NO_PADDING # noqa: F401 from ccxt.base.decimal_to_precision import PAD_WITH_ZERO # noqa: F401 from ccxt.base import errors # noqa: F401 from ccxt.base.errors import BaseError # noqa: F401 from ccxt.base.errors import ExchangeError # noqa: F401 from ccxt.base.errors import NotSupported # noqa: F401 from ccxt.base.errors import AuthenticationError # noqa: F401 from ccxt.base.errors import PermissionDenied # noqa: F401 from ccxt.base.errors import AccountSuspended # noqa: F401 from ccxt.base.errors import InvalidNonce # noqa: F401 from ccxt.base.errors import InsufficientFunds # noqa: F401 from ccxt.base.errors import InvalidOrder # noqa: F401 from ccxt.base.errors import OrderNotFound # noqa: F401 from ccxt.base.errors import OrderNotCached # noqa: F401 from ccxt.base.errors import DuplicateOrderId # noqa: F401 from ccxt.base.errors import CancelPending # noqa: F401 from ccxt.base.errors import NetworkError # noqa: F401 from ccxt.base.errors import DDoSProtection # noqa: F401 from ccxt.base.errors import RequestTimeout # noqa: F401 from ccxt.base.errors import ExchangeNotAvailable # noqa: F401 from ccxt.base.errors import InvalidAddress # noqa: F401 from ccxt.base.errors import AddressPending # noqa: F401 from ccxt.base.errors import ArgumentsRequired # noqa: F401 from ccxt.base.errors import BadRequest # noqa: F401 from ccxt.base.errors import BadResponse # noqa: F401 from ccxt.base.errors import NullResponse # noqa: F401 from ccxt.base.errors import OrderImmediatelyFillable # noqa: F401 from ccxt.base.errors import OrderNotFillable # noqa: F401 from ccxt._1btcxe import _1btcxe # noqa: F401 from ccxt.acx import acx # noqa: F401 from ccxt.allcoin import allcoin # noqa: F401 from ccxt.anxpro import anxpro # noqa: F401 from ccxt.anybits import anybits # noqa: F401 from ccxt.bcex import bcex # noqa: F401 from ccxt.bibox import bibox # noqa: F401 from ccxt.bigone import bigone # noqa: F401 from ccxt.binance import binance # noqa: F401 from ccxt.bit2c import bit2c # noqa: F401 from ccxt.bitbank import bitbank # noqa: F401 from ccxt.bitbay import bitbay # noqa: F401 from ccxt.bitfinex import bitfinex # noqa: F401 from ccxt.bitfinex2 import bitfinex2 # noqa: F401 from ccxt.bitflyer import bitflyer # noqa: F401 from ccxt.bitforex import bitforex # noqa: F401 from ccxt.bithumb import bithumb # noqa: F401 from ccxt.bitibu import bitibu # noqa: F401 from ccxt.bitkk import bitkk # noqa: F401 from ccxt.bitlish import bitlish # noqa: F401 from ccxt.bitmarket import bitmarket # noqa: F401 from ccxt.bitmex import bitmex # noqa: F401 from ccxt.bitsane import bitsane # noqa: F401 from ccxt.bitso import bitso # noqa: F401 from ccxt.bitstamp import bitstamp # noqa: F401 from ccxt.bitstamp1 import bitstamp1 # noqa: F401 from ccxt.bittrex import bittrex # noqa: F401 from ccxt.bitz import bitz # noqa: F401 from ccxt.bl3p import bl3p # noqa: F401 from ccxt.bleutrade import bleutrade # noqa: F401 from ccxt.braziliex import braziliex # noqa: F401 from ccxt.btcalpha import btcalpha # noqa: F401 from ccxt.btcbox import btcbox # noqa: F401 from ccxt.btcchina import btcchina # noqa: F401 from ccxt.btcexchange import btcexchange # noqa: F401 from ccxt.btcmarkets import btcmarkets # noqa: F401 from ccxt.btctradeim import btctradeim # noqa: F401 from ccxt.btctradeua import btctradeua # noqa: F401 from ccxt.btcturk import btcturk # noqa: F401 from ccxt.buda import buda # noqa: F401 from ccxt.bxinth import bxinth # noqa: F401 from ccxt.ccex import ccex # noqa: F401 from ccxt.cex import cex # noqa: F401 from ccxt.chbtc import chbtc # noqa: F401 from ccxt.chilebit import chilebit # noqa: F401 from ccxt.cobinhood import cobinhood # noqa: F401 from ccxt.coinbase import coinbase # noqa: F401 from ccxt.coinbaseprime import coinbaseprime # noqa: F401 from ccxt.coinbasepro import coinbasepro # noqa: F401 from ccxt.coincheck import coincheck # noqa: F401 from ccxt.coinegg import coinegg # noqa: F401 from ccxt.coinex import coinex # noqa: F401 from ccxt.coinexchange import coinexchange # noqa: F401 from ccxt.coinfalcon import coinfalcon # noqa: F401 from ccxt.coinfloor import coinfloor # noqa: F401 from ccxt.coingi import coingi # noqa: F401 from ccxt.coinmarketcap import coinmarketcap # noqa: F401 from ccxt.coinmate import coinmate # noqa: F401 from ccxt.coinnest import coinnest # noqa: F401 from ccxt.coinone import coinone # noqa: F401 from ccxt.coinspot import coinspot # noqa: F401 from ccxt.cointiger import cointiger # noqa: F401 from ccxt.coolcoin import coolcoin # noqa: F401 from ccxt.coss import coss # noqa: F401 from ccxt.crex24 import crex24 # noqa: F401 from ccxt.crypton import crypton # noqa: F401 from ccxt.cryptopia import cryptopia # noqa: F401 from ccxt.deribit import deribit # noqa: F401 from ccxt.dsx import dsx # noqa: F401 from ccxt.ethfinex import ethfinex # noqa: F401 from ccxt.exmo import exmo # noqa: F401 from ccxt.exx import exx # noqa: F401 from ccxt.fcoin import fcoin # noqa: F401 from ccxt.fcoinjp import fcoinjp # noqa: F401 from ccxt.flowbtc import flowbtc # noqa: F401 from ccxt.foxbit import foxbit # noqa: F401 from ccxt.fybse import fybse # noqa: F401 from ccxt.fybsg import fybsg # noqa: F401 from ccxt.gateio import gateio # noqa: F401 from ccxt.gdax import gdax # noqa: F401 from ccxt.gemini import gemini # noqa: F401 from ccxt.getbtc import getbtc # noqa: F401 from ccxt.hadax import hadax # noqa: F401 from ccxt.hitbtc import hitbtc # noqa: F401 from ccxt.hitbtc2 import hitbtc2 # noqa: F401 from ccxt.huobipro import huobipro # noqa: F401 from ccxt.huobiru import huobiru # noqa: F401 from ccxt.ice3x import ice3x # noqa: F401 from ccxt.independentreserve import independentreserve # noqa: F401 from ccxt.indodax import indodax # noqa: F401 from ccxt.itbit import itbit # noqa: F401 from ccxt.jubi import jubi # noqa: F401 from ccxt.kkex import kkex # noqa: F401 from ccxt.kraken import kraken # noqa: F401 from ccxt.kucoin import kucoin # noqa: F401 from ccxt.kucoin2 import kucoin2 # noqa: F401 from ccxt.kuna import kuna # noqa: F401 from ccxt.lakebtc import lakebtc # noqa: F401 from ccxt.lbank import lbank # noqa: F401 from ccxt.liqui import liqui # noqa: F401 from ccxt.liquid import liquid # noqa: F401 from ccxt.livecoin import livecoin # noqa: F401 from ccxt.luno import luno # noqa: F401 from ccxt.lykke import lykke # noqa: F401 from ccxt.mercado import mercado # noqa: F401 from ccxt.mixcoins import mixcoins # noqa: F401 from ccxt.negociecoins import negociecoins # noqa: F401 from ccxt.nova import nova # noqa: F401 from ccxt.okcoincny import okcoincny # noqa: F401 from ccxt.okcoinusd import okcoinusd # noqa: F401 from ccxt.okex import okex # noqa: F401 from ccxt.paymium import paymium # noqa: F401 from ccxt.poloniex import poloniex # noqa: F401 from ccxt.quadrigacx import quadrigacx # noqa: F401 from ccxt.rightbtc import rightbtc # noqa: F401 from ccxt.southxchange import southxchange # noqa: F401 from ccxt.stronghold import stronghold # noqa: F401 from ccxt.surbitcoin import surbitcoin # noqa: F401 from ccxt.theocean import theocean # noqa: F401 from ccxt.therock import therock # noqa: F401 from ccxt.tidebit import tidebit # noqa: F401 from ccxt.tidex import tidex # noqa: F401 from ccxt.uex import uex # noqa: F401 from ccxt.upbit import upbit # noqa: F401 from ccxt.urdubit import urdubit # noqa: F401 from ccxt.vaultoro import vaultoro # noqa: F401 from ccxt.vbtc import vbtc # noqa: F401 from ccxt.virwox import virwox # noqa: F401 from ccxt.xbtce import xbtce # noqa: F401 from ccxt.yobit import yobit # noqa: F401 from ccxt.yunbi import yunbi # noqa: F401 from ccxt.zaif import zaif # noqa: F401 from ccxt.zb import zb # noqa: F401 exchanges = [ '_1btcxe', 'acx', 'allcoin', 'anxpro', 'anybits', 'bcex', 'bibox', 'bigone', 'binance', 'bit2c', 'bitbank', 'bitbay', 'bitfinex', 'bitfinex2', 'bitflyer', 'bitforex', 'bithumb', 'bitibu', 'bitkk', 'bitlish', 'bitmarket', 'bitmex', 'bitsane', 'bitso', 'bitstamp', 'bitstamp1', 'bittrex', 'bitz', 'bl3p', 'bleutrade', 'braziliex', 'btcalpha', 'btcbox', 'btcchina', 'btcexchange', 'btcmarkets', 'btctradeim', 'btctradeua', 'btcturk', 'buda', 'bxinth', 'ccex', 'cex', 'chbtc', 'chilebit', 'cobinhood', 'coinbase', 'coinbaseprime', 'coinbasepro', 'coincheck', 'coinegg', 'coinex', 'coinexchange', 'coinfalcon', 'coinfloor', 'coingi', 'coinmarketcap', 'coinmate', 'coinnest', 'coinone', 'coinspot', 'cointiger', 'coolcoin', 'coss', 'crex24', 'crypton', 'cryptopia', 'deribit', 'dsx', 'ethfinex', 'exmo', 'exx', 'fcoin', 'fcoinjp', 'flowbtc', 'foxbit', 'fybse', 'fybsg', 'gateio', 'gdax', 'gemini', 'getbtc', 'hadax', 'hitbtc', 'hitbtc2', 'huobipro', 'huobiru', 'ice3x', 'independentreserve', 'indodax', 'itbit', 'jubi', 'kkex', 'kraken', 'kucoin', 'kucoin2', 'kuna', 'lakebtc', 'lbank', 'liqui', 'liquid', 'livecoin', 'luno', 'lykke', 'mercado', 'mixcoins', 'negociecoins', 'nova', 'okcoincny', 'okcoinusd', 'okex', 'paymium', 'poloniex', 'quadrigacx', 'rightbtc', 'southxchange', 'stronghold', 'surbitcoin', 'theocean', 'therock', 'tidebit', 'tidex', 'uex', 'upbit', 'urdubit', 'vaultoro', 'vbtc', 'virwox', 'xbtce', 'yobit', 'yunbi', 'zaif', 'zb', ] base = [ 'Exchange', 'exchanges', 'decimal_to_precision', ] __all__ = base + errors.__all__ + exchanges
45.65407
80
0.529577
456267a1ab9293c58f78f226dc47a545b3cb41ed
15,776
py
Python
gunicorn/util.py
ykusakabe/gunicorn
c171c15c633ec5f70fd1e6c3f11dab8aa834ef27
[ "MIT" ]
null
null
null
gunicorn/util.py
ykusakabe/gunicorn
c171c15c633ec5f70fd1e6c3f11dab8aa834ef27
[ "MIT" ]
null
null
null
gunicorn/util.py
ykusakabe/gunicorn
c171c15c633ec5f70fd1e6c3f11dab8aa834ef27
[ "MIT" ]
null
null
null
# -*- coding: utf-8 - # # This file is part of gunicorn released under the MIT license. # See the NOTICE for more information. from __future__ import print_function import email.utils import fcntl import io import os import pkg_resources import pwd import random import socket import sys import textwrap import time import traceback import inspect import errno import warnings import logging from gunicorn import _compat from gunicorn.errors import AppImportError from gunicorn.six import text_type from gunicorn.workers import SUPPORTED_WORKERS REDIRECT_TO = getattr(os, 'devnull', '/dev/null') # Server and Date aren't technically hop-by-hop # headers, but they are in the purview of the # origin server which the WSGI spec says we should # act like. So we drop them and add our own. # # In the future, concatenation server header values # might be better, but nothing else does it and # dropping them is easier. hop_headers = set(""" connection keep-alive proxy-authenticate proxy-authorization te trailers transfer-encoding upgrade server date """.split()) try: from setproctitle import setproctitle def _setproctitle(title): setproctitle("gunicorn: %s" % title) except ImportError: def _setproctitle(title): return try: from importlib import import_module except ImportError: def _resolve_name(name, package, level): """Return the absolute name of the module to be imported.""" if not hasattr(package, 'rindex'): raise ValueError("'package' not set to a string") dot = len(package) for _ in range(level, 1, -1): try: dot = package.rindex('.', 0, dot) except ValueError: msg = "attempted relative import beyond top-level package" raise ValueError(msg) return "%s.%s" % (package[:dot], name) def import_module(name, package=None): """Import a module. The 'package' argument is required when performing a relative import. It specifies the package to use as the anchor point from which to resolve the relative import to an absolute import. """ if name.startswith('.'): if not package: raise TypeError("relative imports require the 'package' argument") level = 0 for character in name: if character != '.': break level += 1 name = _resolve_name(name[level:], package, level) __import__(name) return sys.modules[name] def load_class(uri, default="gunicorn.workers.sync.SyncWorker", section="gunicorn.workers"): if inspect.isclass(uri): return uri if uri.startswith("egg:"): # uses entry points entry_str = uri.split("egg:")[1] try: dist, name = entry_str.rsplit("#", 1) except ValueError: dist = entry_str name = default try: return pkg_resources.load_entry_point(dist, section, name) except: exc = traceback.format_exc() msg = "class uri %r invalid or not found: \n\n[%s]" raise RuntimeError(msg % (uri, exc)) else: components = uri.split('.') if len(components) == 1: while True: if uri.startswith("#"): uri = uri[1:] if uri in SUPPORTED_WORKERS: components = SUPPORTED_WORKERS[uri].split(".") break try: return pkg_resources.load_entry_point("gunicorn", section, uri) except: exc = traceback.format_exc() msg = "class uri %r invalid or not found: \n\n[%s]" raise RuntimeError(msg % (uri, exc)) klass = components.pop(-1) try: mod = import_module('.'.join(components)) except: exc = traceback.format_exc() msg = "class uri %r invalid or not found: \n\n[%s]" raise RuntimeError(msg % (uri, exc)) return getattr(mod, klass) def get_username(uid): """ get the username for a user id""" return pwd.getpwuid(uid).pw_name def set_owner_process(uid, gid, initgroups=False): """ set user and group of workers processes """ if gid: if uid: try: username = get_username(uid) except KeyError: initgroups = False # versions of python < 2.6.2 don't manage unsigned int for # groups like on osx or fedora gid = abs(gid) & 0x7FFFFFFF if initgroups: os.initgroups(username, gid) else: os.setgid(gid) if uid: os.setuid(uid) def chown(path, uid, gid): gid = abs(gid) & 0x7FFFFFFF # see note above. os.chown(path, uid, gid) if sys.platform.startswith("win"): def _waitfor(func, pathname, waitall=False): # Peform the operation func(pathname) # Now setup the wait loop if waitall: dirname = pathname else: dirname, name = os.path.split(pathname) dirname = dirname or '.' # Check for `pathname` to be removed from the filesystem. # The exponential backoff of the timeout amounts to a total # of ~1 second after which the deletion is probably an error # anyway. # Testing on a i7@4.3GHz shows that usually only 1 iteration is # required when contention occurs. timeout = 0.001 while timeout < 1.0: # Note we are only testing for the existance of the file(s) in # the contents of the directory regardless of any security or # access rights. If we have made it this far, we have sufficient # permissions to do that much using Python's equivalent of the # Windows API FindFirstFile. # Other Windows APIs can fail or give incorrect results when # dealing with files that are pending deletion. L = os.listdir(dirname) if not (L if waitall else name in L): return # Increase the timeout and try again time.sleep(timeout) timeout *= 2 warnings.warn('tests may fail, delete still pending for ' + pathname, RuntimeWarning, stacklevel=4) def _unlink(filename): _waitfor(os.unlink, filename) else: _unlink = os.unlink def unlink(filename): try: _unlink(filename) except OSError as error: # The filename need not exist. if error.errno not in (errno.ENOENT, errno.ENOTDIR): raise def is_ipv6(addr): try: socket.inet_pton(socket.AF_INET6, addr) except socket.error: # not a valid address return False except ValueError: # ipv6 not supported on this platform return False return True def parse_address(netloc, default_port=8000): if netloc.startswith("unix://"): return netloc.split("unix://")[1] if netloc.startswith("unix:"): return netloc.split("unix:")[1] if netloc.startswith("tcp://"): netloc = netloc.split("tcp://")[1] # get host if '[' in netloc and ']' in netloc: host = netloc.split(']')[0][1:].lower() elif ':' in netloc: host = netloc.split(':')[0].lower() elif netloc == "": host = "0.0.0.0" else: host = netloc.lower() #get port netloc = netloc.split(']')[-1] if ":" in netloc: port = netloc.split(':', 1)[1] if not port.isdigit(): raise RuntimeError("%r is not a valid port number." % port) port = int(port) else: port = default_port return (host, port) def close_on_exec(fd): flags = fcntl.fcntl(fd, fcntl.F_GETFD) flags |= fcntl.FD_CLOEXEC fcntl.fcntl(fd, fcntl.F_SETFD, flags) def set_non_blocking(fd): flags = fcntl.fcntl(fd, fcntl.F_GETFL) | os.O_NONBLOCK fcntl.fcntl(fd, fcntl.F_SETFL, flags) def close(sock): try: sock.close() except socket.error: pass try: from os import closerange except ImportError: def closerange(fd_low, fd_high): # Iterate through and close all file descriptors. for fd in range(fd_low, fd_high): try: os.close(fd) except OSError: # ERROR, fd wasn't open to begin with (ignored) pass def write_chunk(sock, data): if isinstance(data, text_type): data = data.encode('utf-8') chunk_size = "%X\r\n" % len(data) chunk = b"".join([chunk_size.encode('utf-8'), data, b"\r\n"]) sock.sendall(chunk) def write(sock, data, chunked=False): if chunked: return write_chunk(sock, data) sock.sendall(data) def write_nonblock(sock, data, chunked=False): timeout = sock.gettimeout() if timeout != 0.0: try: sock.setblocking(0) return write(sock, data, chunked) finally: sock.setblocking(1) else: return write(sock, data, chunked) def write_error(sock, status_int, reason, mesg): html = textwrap.dedent("""\ <html> <head> <title>%(reason)s</title> </head> <body> <h1><p>%(reason)s</p></h1> %(mesg)s </body> </html> """) % {"reason": reason, "mesg": _compat.html_escape(mesg)} http = textwrap.dedent("""\ HTTP/1.1 %s %s\r Connection: close\r Content-Type: text/html\r Content-Length: %d\r \r %s""") % (str(status_int), reason, len(html), html) write_nonblock(sock, http.encode('latin1')) def import_app(module): parts = module.split(":", 1) if len(parts) == 1: module, obj = module, "application" else: module, obj = parts[0], parts[1] try: __import__(module) except ImportError: if module.endswith(".py") and os.path.exists(module): msg = "Failed to find application, did you mean '%s:%s'?" raise ImportError(msg % (module.rsplit(".", 1)[0], obj)) else: raise mod = sys.modules[module] is_debug = logging.root.level == logging.DEBUG try: app = eval(obj, vars(mod)) except NameError: if is_debug: traceback.print_exception(*sys.exc_info()) raise AppImportError("Failed to find application: %r" % module) if app is None: raise AppImportError("Failed to find application object: %r" % obj) if not callable(app): raise AppImportError("Application object must be callable.") return app def getcwd(): # get current path, try to use PWD env first try: a = os.stat(os.environ['PWD']) b = os.stat(os.getcwd()) if a.st_ino == b.st_ino and a.st_dev == b.st_dev: cwd = os.environ['PWD'] else: cwd = os.getcwd() except: cwd = os.getcwd() return cwd def http_date(timestamp=None): """Return the current date and time formatted for a message header.""" if timestamp is None: timestamp = time.time() s = email.utils.formatdate(timestamp, localtime=False, usegmt=True) return s def is_hoppish(header): return header.lower().strip() in hop_headers def daemonize(enable_stdio_inheritance=False): """\ Standard daemonization of a process. http://www.svbug.com/documentation/comp.unix.programmer-FAQ/faq_2.html#SEC16 """ if 'GUNICORN_FD' not in os.environ: if os.fork(): os._exit(0) os.setsid() if os.fork(): os._exit(0) os.umask(0o22) # In both the following any file descriptors above stdin # stdout and stderr are left untouched. The inheritence # option simply allows one to have output go to a file # specified by way of shell redirection when not wanting # to use --error-log option. if not enable_stdio_inheritance: # Remap all of stdin, stdout and stderr on to # /dev/null. The expectation is that users have # specified the --error-log option. closerange(0, 3) fd_null = os.open(REDIRECT_TO, os.O_RDWR) if fd_null != 0: os.dup2(fd_null, 0) os.dup2(fd_null, 1) os.dup2(fd_null, 2) else: fd_null = os.open(REDIRECT_TO, os.O_RDWR) # Always redirect stdin to /dev/null as we would # never expect to need to read interactive input. if fd_null != 0: os.close(0) os.dup2(fd_null, 0) # If stdout and stderr are still connected to # their original file descriptors we check to see # if they are associated with terminal devices. # When they are we map them to /dev/null so that # are still detached from any controlling terminal # properly. If not we preserve them as they are. # # If stdin and stdout were not hooked up to the # original file descriptors, then all bets are # off and all we can really do is leave them as # they were. # # This will allow 'gunicorn ... > output.log 2>&1' # to work with stdout/stderr going to the file # as expected. # # Note that if using --error-log option, the log # file specified through shell redirection will # only be used up until the log file specified # by the option takes over. As it replaces stdout # and stderr at the file descriptor level, then # anything using stdout or stderr, including having # cached a reference to them, will still work. def redirect(stream, fd_expect): try: fd = stream.fileno() if fd == fd_expect and stream.isatty(): os.close(fd) os.dup2(fd_null, fd) except AttributeError: pass redirect(sys.stdout, 1) redirect(sys.stderr, 2) def seed(): try: random.seed(os.urandom(64)) except NotImplementedError: random.seed('%s.%s' % (time.time(), os.getpid())) def check_is_writeable(path): try: f = open(path, 'a') except IOError as e: raise RuntimeError("Error: '%s' isn't writable [%r]" % (path, e)) f.close() def to_bytestring(value, encoding="utf8"): """Converts a string argument to a byte string""" if isinstance(value, bytes): return value if not isinstance(value, text_type): raise TypeError('%r is not a string' % value) return value.encode(encoding) def has_fileno(obj): if not hasattr(obj, "fileno"): return False # check BytesIO case and maybe others try: obj.fileno() except (AttributeError, IOError, io.UnsupportedOperation): return False return True def warn(msg): print("!!!", file=sys.stderr) lines = msg.splitlines() for i, line in enumerate(lines): if i == 0: line = "WARNING: %s" % line print("!!! %s" % line, file=sys.stderr) print("!!!\n", file=sys.stderr) sys.stderr.flush() def make_fail_app(msg): msg = to_bytestring(msg) def app(environ, start_response): start_response("500 Internal Server Error", [ ("Content-Type", "text/plain"), ("Content-Length", str(len(msg))) ]) return [msg] return app
28.788321
82
0.581643
6e63d1fc00819cce6964c191ae1846bed7ca5bc4
1,735
py
Python
test/test_phones.py
fairwind2k/python_training
61e0f6f2685f61bc5b74058bae47dcb95fa3d67c
[ "Apache-2.0" ]
null
null
null
test/test_phones.py
fairwind2k/python_training
61e0f6f2685f61bc5b74058bae47dcb95fa3d67c
[ "Apache-2.0" ]
null
null
null
test/test_phones.py
fairwind2k/python_training
61e0f6f2685f61bc5b74058bae47dcb95fa3d67c
[ "Apache-2.0" ]
null
null
null
import allure from model.contact import Contact import re def test_phones_on_home_page(app): with allure.step('Given a phones list from home page'): contact_from_home_page = app.contacts.get_contacts_list()[0] with allure.step('Given a phones list from edit page'): contact_from_edit_page = app.contacts.get_contact_info_from_edit_page(0) with allure.step('Then the pones list from home page is equal to pones list from edit page'): assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) def test_phones_on_contact_view_page(app): with allure.step('Given a phones list from view page'): contact_from_view_page = app.contacts.get_contact_from_view_page(0) with allure.step('Given a phones list from edit page'): contact_from_edit_page = app.contacts.get_contact_info_from_edit_page(0) with allure.step('Then the pones list from view page is equal to pones list from edit page'): assert contact_from_view_page.homephone == contact_from_edit_page.homephone assert contact_from_view_page.workphone == contact_from_edit_page.workphone assert contact_from_view_page.mobile == contact_from_edit_page.mobile assert contact_from_view_page.secondaryphone == contact_from_edit_page.secondaryphone def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.homephone, contact.mobile, contact.workphone, contact.secondaryphone]))))
40.348837
121
0.71585
6780cb88a001c6f67b0b3c0190a2f9e331271465
4,708
py
Python
src/routes/streammap.py
Chikiyaflix/server
8f8aad4ef7bdd154fea2d8dfdd6fca9f79122449
[ "MIT" ]
null
null
null
src/routes/streammap.py
Chikiyaflix/server
8f8aad4ef7bdd154fea2d8dfdd6fca9f79122449
[ "MIT" ]
null
null
null
src/routes/streammap.py
Chikiyaflix/server
8f8aad4ef7bdd154fea2d8dfdd6fca9f79122449
[ "MIT" ]
null
null
null
import os import urllib import flask import requests import src.functions.config streammapBP = flask.Blueprint("streammap", __name__) @streammapBP.route("/api/v1/streammap") async def streammapFunction(): a = flask.request.args.get("a") # AUTH id = flask.request.args.get("id") # ID name = flask.request.args.get("name") # NAME server = flask.request.args.get("server") # SERVER config = src.functions.config.readConfig() if config.get("kill_switch") == True: return flask.jsonify( { "code": 200, "content": [{"name": "UNAVAILABLE", "url": "", "type": "normal"}], "message": "Stream list generated successfully.", "success": True, } ) if ( any(a == account["auth"] for account in config["account_list"]) or config.get("auth") == False ): stream_list = [ { "name": "Original", "url": "%s/api/v1/redirectdownload/%s?a=%s&id=%s" % (server, urllib.parse.quote(name), a, id), "type": "normal", } ] if config.get("transcoded") == True: req = requests.get( "https://drive.google.com/get_video_info?docid=%s" % (id), headers={"Authorization": "Bearer %s" % (config.get("access_token"))}, ) parsed = urllib.parse.parse_qs(urllib.parse.unquote(req.text)) if parsed.get("status") == ["ok"]: for fmt in parsed["fmt_list"][0].split(","): fmt_data = fmt.split("/") stream_list.append( { "name": fmt_data[1], "url": "%s/api/v1/redirectdownload/%s?a=%s&id=%s&itag=%s" % (server, urllib.parse.quote(name), a, id, fmt_data[0]), "type": "auto", } ) subtitle = {"url": ""} if config.get("subtitles") == True: config, drive = src.functions.credentials.refreshCredentials( src.functions.config.readConfig() ) params = { "supportsAllDrives": True, "fields": "parents", "fileId": id, } parent = drive.files().get(**params).execute()["parents"][0] params = { "pageToken": None, "supportsAllDrives": True, "includeItemsFromAllDrives": True, "fields": "files(id,name,mimeType,parents), incompleteSearch, nextPageToken", "q": "'%s' in parents and trashed = false and (name contains '.srt' or name contains '.vtt')" % (parent), "orderBy": "name", } while True: response = drive.files().list(**params).execute() for file in response["files"]: name_split = os.path.splitext(name)[0] if name_split in file["name"]: subtitle = { "url": "%s/api/v1/subtitledownload/%s?a=%s&id=%s" % (server, file["name"], a, file["id"]) } try: params["pageToken"] = response["nextPageToken"] except KeyError: break if ( config.get("prefer_mkv") == False and config.get("prefer_mp4") == False and len(stream_list) > 1 ): default_quality = 1 elif config.get("prefer_mp4", True) == True and name.endswith(".mp4"): default_quality = 0 elif config.get("prefer_mkv", False) == True and name.endswith(".mkv"): default_quality = 0 elif len(stream_list) > 1: default_quality = 1 else: default_quality = 0 return flask.jsonify( { "code": 200, "content": { "default_quality": default_quality, "sources": stream_list, "subtitle": subtitle, }, "message": "Stream list generated successfully!", "success": True, } ) else: return ( flask.jsonify( { "code": 401, "content": None, "message": "Your credentials are invalid.", "success": False, } ), 401, )
35.666667
109
0.44966
29424d8e460a15593e45365f9f36fbff62302b1f
223
py
Python
setup.py
aaronbell/Roboto
09d561e84aff97ca5ca1374b3e53b099ab84568e
[ "Apache-2.0" ]
120
2018-07-25T03:05:31.000Z
2021-12-13T08:41:42.000Z
setup.py
sannorozco/Roboto
3852c00a1d483bf044d62d0c885daf57355027a6
[ "Apache-2.0" ]
74
2018-06-29T17:57:43.000Z
2022-01-09T19:39:49.000Z
setup.py
sannorozco/Roboto
3852c00a1d483bf044d62d0c885daf57355027a6
[ "Apache-2.0" ]
14
2018-07-04T14:23:05.000Z
2022-01-27T05:55:58.000Z
from setuptools import setup setup( name='Roboto-build', version='0.0.1', author='Google', packages=['scripts', 'tests'], license='LICENSE.txt', description='Build chain to make v3 Roboto fonts', )
20.272727
54
0.64574
e66294345d2416701616a3d484b82ccc2aea86e7
442
py
Python
pelican/plugins/seafoam/constants.py
MinchinWeb/seafoam
cf81eda8b9d6ff0f4a2e7ceaafda47e6ba1aad45
[ "MIT" ]
3
2018-12-05T03:45:53.000Z
2021-05-17T00:03:05.000Z
pelican/plugins/seafoam/constants.py
MinchinWeb/seafoam
cf81eda8b9d6ff0f4a2e7ceaafda47e6ba1aad45
[ "MIT" ]
13
2017-01-10T03:00:56.000Z
2021-07-05T17:23:04.000Z
pelican/plugins/seafoam/constants.py
MinchinWeb/seafoam
cf81eda8b9d6ff0f4a2e7ceaafda47e6ba1aad45
[ "MIT" ]
2
2017-02-22T08:39:45.000Z
2021-05-17T08:35:58.000Z
__title__ = "seafoam" __version__ = "2.7.1-dev" __description__ = "Pelican theme, first used for Minchin.ca." __author__ = "W. Minchin" __email__ = "w_minchin@hotmail.com" __url__ = "http://blog.minchin.ca/label/seafoam/" __license__ = "MIT License" LOG_PREFIX = "[Seafoam]" PLUGIN_LIST = [ "pelican.plugins.seafoam", "pelican.plugins.jinja_filters", ] PRODUCTION_PLUGIN_LIST = PLUGIN_LIST + [ "pelican.plugins.image_process", ]
26
61
0.723982
cfa37e5ba6f2893489621a191ec9920c72353636
43
py
Python
user/__init__.py
TinlokLee/OA
ee11343117dcffb28930b6d21c99823c95b8d651
[ "MIT" ]
null
null
null
user/__init__.py
TinlokLee/OA
ee11343117dcffb28930b6d21c99823c95b8d651
[ "MIT" ]
null
null
null
user/__init__.py
TinlokLee/OA
ee11343117dcffb28930b6d21c99823c95b8d651
[ "MIT" ]
null
null
null
default_app_config = "user.apps.UserConfig"
43
43
0.837209
79bf791dcb461486c1a617c9ae5fe68f4739bcf4
21,703
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_02_01/aio/operations/_express_route_circuit_peerings_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_02_01/aio/operations/_express_route_circuit_peerings_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_02_01/aio/operations/_express_route_circuit_peerings_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRouteCircuitPeeringsOperations: """ExpressRouteCircuitPeeringsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_02_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, circuit_name: str, peering_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}'} # type: ignore async def begin_delete( self, resource_group_name: str, circuit_name: str, peering_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified peering from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}'} # type: ignore async def get( self, resource_group_name: str, circuit_name: str, peering_name: str, **kwargs ) -> "_models.ExpressRouteCircuitPeering": """Gets the specified authorization from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuitPeering, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitPeering :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuitPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, circuit_name: str, peering_name: str, peering_parameters: "_models.ExpressRouteCircuitPeering", **kwargs ) -> "_models.ExpressRouteCircuitPeering": cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(peering_parameters, 'ExpressRouteCircuitPeering') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitPeering', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRouteCircuitPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, circuit_name: str, peering_name: str, peering_parameters: "_models.ExpressRouteCircuitPeering", **kwargs ) -> AsyncLROPoller["_models.ExpressRouteCircuitPeering"]: """Creates or updates a peering in the specified express route circuits. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param peering_parameters: Parameters supplied to the create or update express route circuit peering operation. :type peering_parameters: ~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitPeering :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuitPeering or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitPeering] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitPeering"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, peering_parameters=peering_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}'} # type: ignore def list( self, resource_group_name: str, circuit_name: str, **kwargs ) -> AsyncIterable["_models.ExpressRouteCircuitPeeringListResult"]: """Gets all peerings in a specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRouteCircuitPeeringListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitPeeringListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitPeeringListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitPeeringListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings'} # type: ignore
50.472093
220
0.674792
400cff349477d78fdbb9892669250540af3e00cf
2,445
py
Python
graph_construction/checking/sanity.py
EmmaRocheteau/eICU-GNN-LSTM
5167eea88bfe7a3146ccb6194f54e8e57f52128b
[ "MIT" ]
53
2021-01-14T11:34:31.000Z
2022-03-15T15:05:03.000Z
graph_construction/checking/sanity.py
Wizard-gq/eICU-GNN-LSTM
5167eea88bfe7a3146ccb6194f54e8e57f52128b
[ "MIT" ]
2
2021-02-13T02:29:10.000Z
2021-02-26T10:24:40.000Z
graph_construction/checking/sanity.py
Wizard-gq/eICU-GNN-LSTM
5167eea88bfe7a3146ccb6194f54e8e57f52128b
[ "MIT" ]
15
2021-01-25T04:10:38.000Z
2022-01-16T07:08:41.000Z
import pandas as pd import json import copy with open('paths.json', 'r') as f: eICU_path = json.load(f)["eICU_path"] graph_dir = json.load(f)["graph_dir"] u = open("{}bert_u_k=5.txt".format(graph_dir), "r") v = open("{}bert_v_k=5.txt".format(graph_dir), "r") u_list = u.read() v_list = v.read() u_list = u_list.split("\n") v_list = v_list.split("\n") train_labels = pd.read_csv('{}train/labels.csv'.format(eICU_path), index_col='patient') val_labels = pd.read_csv('{}val/labels.csv'.format(eICU_path), index_col='patient') test_labels = pd.read_csv('{}test/labels.csv'.format(eICU_path), index_col='patient') all_labels = pd.concat([train_labels, val_labels, test_labels], sort=False) both_died_outcome = 0 both_survived_outcome = 0 diff_outcome = 0 num_comparisons = 100000 tracker = copy.copy(num_comparisons) for edge in zip(u_list, v_list): if all_labels.iloc[int(edge[0])]['actualhospitalmortality'] == all_labels.iloc[int(edge[1])]['actualhospitalmortality']: if all_labels.iloc[int(edge[0])]['actualhospitalmortality'] == 1: both_died_outcome += 1 else: both_survived_outcome += 1 else: diff_outcome += 1 tracker -= 1 if tracker < 0: break perc_both_died = both_died_outcome/num_comparisons * 100 perc_both_survived = both_survived_outcome/num_comparisons * 100 perc_died_and_survived = diff_outcome/num_comparisons * 100 print('==> GRAPH IN QUESTION') print(str(perc_both_died)[:4] + '% of the connections both died') print(str(perc_both_survived)[:4] + '% of the connections both survived') print(str(perc_died_and_survived)[:4] + '% of the connections had one death and one survival') perc_involving_died = perc_both_died + perc_died_and_survived * 0.5 print(str(perc_involving_died)[:4] + '% of the nodes involved in edges have died') probs = all_labels['actualhospitalmortality'].value_counts()/len(all_labels) perc_both_died = probs[1]**2 * 100 perc_both_survived = probs[0]**2 * 100 perc_died_and_survived = probs[0] * probs[1] * 100 print('==> RANDOM GRAPH') print(str(perc_both_died)[:4] + '% of the connections both died') print(str(perc_both_survived)[:4] + '% of the connections both survived') print(str(perc_died_and_survived)[:4] + '% of the connections had one death and one survival') perc_involving_died = perc_both_died + perc_died_and_survived * 0.5 print(str(perc_involving_died)[:4] + '% of the nodes involved in edges have died')
42.894737
124
0.724744
316cf81ffafccfedc7b3056dd16e9c1bee468d27
4,257
py
Python
test/examples/integrated/ubus/py/ubus_slave_driver.py
mgielda/uvm-python
7750bc163130f59741e464bb5fcf8fb5324dbf56
[ "Apache-2.0" ]
1
2020-09-14T13:21:24.000Z
2020-09-14T13:21:24.000Z
test/examples/integrated/ubus/py/ubus_slave_driver.py
gitCyan/uvm-python
45b8075518f828e0d77980e35c68a8527713b0e1
[ "Apache-2.0" ]
null
null
null
test/examples/integrated/ubus/py/ubus_slave_driver.py
gitCyan/uvm-python
45b8075518f828e0d77980e35c68a8527713b0e1
[ "Apache-2.0" ]
null
null
null
#//---------------------------------------------------------------------- #// Copyright 2007-2010 Mentor Graphics Corporation #// Copyright 2007-2011 Cadence Design Systems, Inc. #// Copyright 2010 Synopsys, Inc. #// Copyright 2019 Tuomas Poikela (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #//---------------------------------------------------------------------- import cocotb from cocotb.triggers import RisingEdge, Timer, FallingEdge from uvm.base import * from uvm.comps import UVMDriver from uvm.macros import uvm_component_utils from ubus_transfer import * #//------------------------------------------------------------------------------ #// #// CLASS: ubus_slave_driver #// #//------------------------------------------------------------------------------ #class ubus_slave_driver extends uvm_driver #(ubus_transfer); class ubus_slave_driver(UVMDriver): # // new - constructor def __init__(self, name, parent): UVMDriver.__init__(self, name, parent) # The virtual interface used to drive and view HDL signals. self.vif = None self.tag = "UBUS_SLAVE_DRIVER_" + name def build_phase(self, phase): super().build_phase(phase) uvm_info(self.tag, "build_phase started", UVM_MEDIUM) arr = [] if UVMConfigDb.get(self, "", "vif", arr): self.vif = arr[0] if self.vif is None: self.uvm_report_fatal("NOVIF", "virtual interface must be set for: " + self.get_full_name() + ".vif") # run phase async def run_phase(self, phase): # fork fork_get = cocotb.fork(self.get_and_drive()) fork_reset = cocotb.fork(self.reset_signals()) #await [fork_get.join(), fork_reset.join()] await sv.fork_join([fork_get, fork_reset]) # join # endtask : run_phase # // get_and_drive # virtual protected task get_and_drive(); async def get_and_drive(self): await Timer(0) await FallingEdge(self.vif.sig_reset) while True: await RisingEdge(self.vif.sig_clock) req = [] await self.seq_item_port.get_next_item(req) await self.respond_to_transfer(req[0]) self.seq_item_port.item_done() # endtask : get_and_drive # // reset_signals async def reset_signals(self): while True: await RisingEdge(self.vif.sig_reset) self.vif.sig_error <= 0 self.vif.sig_wait <= 0 self.vif.slave_en <= 0 # endtask : reset_signals # // respond_to_transfer async def respond_to_transfer(self, resp): if resp.read_write != NOP: self.vif.sig_error <= 0 for i in range(resp.size): if resp.read_write == READ: self.vif.slave_en <= 1 self.vif.sig_data_out <= resp.data[i] if resp.wait_state[i] > 0: self.vif.sig_wait <= 1 for j in range(resp.wait_state[i]): await RisingEdge(self.vif.sig_clock) self.vif.sig_wait <= 0 await RisingEdge(self.vif.sig_clock) resp.data[i] = int(self.vif.sig_data) self.vif.slave_en <= 0 self.vif.sig_wait <= 0 # 1'bz self.vif.sig_error <= 0 # 1'bz else: await Timer(0) # endtask : respond_to_transfer # #endclass : ubus_slave_driver # Provide implementations of virtual methods such as get_type_name and create uvm_component_utils(ubus_slave_driver)
34.893443
82
0.564247
372da27dca398da0ba4c6827a4666e1356a2bcdc
21,433
py
Python
Lib/test/test_concurrent_futures.py
certik/python-3.2
8c024c1e08248a4640429e3761905ae308d64e44
[ "PSF-2.0" ]
1
2019-12-31T18:13:30.000Z
2019-12-31T18:13:30.000Z
Lib/test/test_concurrent_futures.py
priya-sharma-prog/python-3.2
8c024c1e08248a4640429e3761905ae308d64e44
[ "PSF-2.0" ]
1
2019-07-04T09:18:21.000Z
2019-07-04T19:14:03.000Z
Lib/test/test_concurrent_futures.py
priya-sharma-prog/python-3.2
8c024c1e08248a4640429e3761905ae308d64e44
[ "PSF-2.0" ]
13
2015-04-02T16:49:38.000Z
2021-10-17T20:14:14.000Z
import test.support # Skip tests if _multiprocessing wasn't built. test.support.import_module('_multiprocessing') # Skip tests if sem_open implementation is broken. test.support.import_module('multiprocessing.synchronize') # import threading after _multiprocessing to raise a more revelant error # message: "No module named _multiprocessing". _multiprocessing is not compiled # without thread support. test.support.import_module('threading') from test.script_helper import assert_python_ok import sys import threading import time import unittest from concurrent import futures from concurrent.futures._base import ( PENDING, RUNNING, CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED, Future) import concurrent.futures.process def create_future(state=PENDING, exception=None, result=None): f = Future() f._state = state f._exception = exception f._result = result return f PENDING_FUTURE = create_future(state=PENDING) RUNNING_FUTURE = create_future(state=RUNNING) CANCELLED_FUTURE = create_future(state=CANCELLED) CANCELLED_AND_NOTIFIED_FUTURE = create_future(state=CANCELLED_AND_NOTIFIED) EXCEPTION_FUTURE = create_future(state=FINISHED, exception=IOError()) SUCCESSFUL_FUTURE = create_future(state=FINISHED, result=42) def mul(x, y): return x * y def sleep_and_raise(t): time.sleep(t) raise Exception('this is an exception') def sleep_and_print(t, msg): time.sleep(t) print(msg) sys.stdout.flush() class ExecutorMixin: worker_count = 5 def setUp(self): self.t1 = time.time() try: self.executor = self.executor_type(max_workers=self.worker_count) except NotImplementedError as e: self.skipTest(str(e)) self._prime_executor() def tearDown(self): self.executor.shutdown(wait=True) dt = time.time() - self.t1 if test.support.verbose: print("%.2fs" % dt, end=' ') self.assertLess(dt, 60, "synchronization issue: test lasted too long") def _prime_executor(self): # Make sure that the executor is ready to do work before running the # tests. This should reduce the probability of timeouts in the tests. futures = [self.executor.submit(time.sleep, 0.1) for _ in range(self.worker_count)] for f in futures: f.result() class ThreadPoolMixin(ExecutorMixin): executor_type = futures.ThreadPoolExecutor class ProcessPoolMixin(ExecutorMixin): executor_type = futures.ProcessPoolExecutor class ExecutorShutdownTest(unittest.TestCase): def test_run_after_shutdown(self): self.executor.shutdown() self.assertRaises(RuntimeError, self.executor.submit, pow, 2, 5) def test_interpreter_shutdown(self): # Test the atexit hook for shutdown of worker threads and processes rc, out, err = assert_python_ok('-c', """if 1: from concurrent.futures import {executor_type} from time import sleep from test.test_concurrent_futures import sleep_and_print t = {executor_type}(5) t.submit(sleep_and_print, 1.0, "apple") """.format(executor_type=self.executor_type.__name__)) # Errors in atexit hooks don't change the process exit code, check # stderr manually. self.assertFalse(err) self.assertEqual(out.strip(), b"apple") def test_hang_issue12364(self): fs = [self.executor.submit(time.sleep, 0.1) for _ in range(50)] self.executor.shutdown() for f in fs: f.result() class ThreadPoolShutdownTest(ThreadPoolMixin, ExecutorShutdownTest): def _prime_executor(self): pass def test_threads_terminate(self): self.executor.submit(mul, 21, 2) self.executor.submit(mul, 6, 7) self.executor.submit(mul, 3, 14) self.assertEqual(len(self.executor._threads), 3) self.executor.shutdown() for t in self.executor._threads: t.join() def test_context_manager_shutdown(self): with futures.ThreadPoolExecutor(max_workers=5) as e: executor = e self.assertEqual(list(e.map(abs, range(-5, 5))), [5, 4, 3, 2, 1, 0, 1, 2, 3, 4]) for t in executor._threads: t.join() def test_del_shutdown(self): executor = futures.ThreadPoolExecutor(max_workers=5) executor.map(abs, range(-5, 5)) threads = executor._threads del executor for t in threads: t.join() class ProcessPoolShutdownTest(ProcessPoolMixin, ExecutorShutdownTest): def _prime_executor(self): pass def test_processes_terminate(self): self.executor.submit(mul, 21, 2) self.executor.submit(mul, 6, 7) self.executor.submit(mul, 3, 14) self.assertEqual(len(self.executor._processes), 5) processes = self.executor._processes self.executor.shutdown() for p in processes: p.join() def test_context_manager_shutdown(self): with futures.ProcessPoolExecutor(max_workers=5) as e: processes = e._processes self.assertEqual(list(e.map(abs, range(-5, 5))), [5, 4, 3, 2, 1, 0, 1, 2, 3, 4]) for p in processes: p.join() def test_del_shutdown(self): executor = futures.ProcessPoolExecutor(max_workers=5) list(executor.map(abs, range(-5, 5))) queue_management_thread = executor._queue_management_thread processes = executor._processes del executor queue_management_thread.join() for p in processes: p.join() class WaitTests(unittest.TestCase): def test_first_completed(self): future1 = self.executor.submit(mul, 21, 2) future2 = self.executor.submit(time.sleep, 1.5) done, not_done = futures.wait( [CANCELLED_FUTURE, future1, future2], return_when=futures.FIRST_COMPLETED) self.assertEqual(set([future1]), done) self.assertEqual(set([CANCELLED_FUTURE, future2]), not_done) def test_first_completed_some_already_completed(self): future1 = self.executor.submit(time.sleep, 1.5) finished, pending = futures.wait( [CANCELLED_AND_NOTIFIED_FUTURE, SUCCESSFUL_FUTURE, future1], return_when=futures.FIRST_COMPLETED) self.assertEqual( set([CANCELLED_AND_NOTIFIED_FUTURE, SUCCESSFUL_FUTURE]), finished) self.assertEqual(set([future1]), pending) def test_first_exception(self): future1 = self.executor.submit(mul, 2, 21) future2 = self.executor.submit(sleep_and_raise, 1.5) future3 = self.executor.submit(time.sleep, 3) finished, pending = futures.wait( [future1, future2, future3], return_when=futures.FIRST_EXCEPTION) self.assertEqual(set([future1, future2]), finished) self.assertEqual(set([future3]), pending) def test_first_exception_some_already_complete(self): future1 = self.executor.submit(divmod, 21, 0) future2 = self.executor.submit(time.sleep, 1.5) finished, pending = futures.wait( [SUCCESSFUL_FUTURE, CANCELLED_FUTURE, CANCELLED_AND_NOTIFIED_FUTURE, future1, future2], return_when=futures.FIRST_EXCEPTION) self.assertEqual(set([SUCCESSFUL_FUTURE, CANCELLED_AND_NOTIFIED_FUTURE, future1]), finished) self.assertEqual(set([CANCELLED_FUTURE, future2]), pending) def test_first_exception_one_already_failed(self): future1 = self.executor.submit(time.sleep, 2) finished, pending = futures.wait( [EXCEPTION_FUTURE, future1], return_when=futures.FIRST_EXCEPTION) self.assertEqual(set([EXCEPTION_FUTURE]), finished) self.assertEqual(set([future1]), pending) def test_all_completed(self): future1 = self.executor.submit(divmod, 2, 0) future2 = self.executor.submit(mul, 2, 21) finished, pending = futures.wait( [SUCCESSFUL_FUTURE, CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, future1, future2], return_when=futures.ALL_COMPLETED) self.assertEqual(set([SUCCESSFUL_FUTURE, CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, future1, future2]), finished) self.assertEqual(set(), pending) def test_timeout(self): future1 = self.executor.submit(mul, 6, 7) future2 = self.executor.submit(time.sleep, 3) finished, pending = futures.wait( [CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, SUCCESSFUL_FUTURE, future1, future2], timeout=1.5, return_when=futures.ALL_COMPLETED) self.assertEqual(set([CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, SUCCESSFUL_FUTURE, future1]), finished) self.assertEqual(set([future2]), pending) class ThreadPoolWaitTests(ThreadPoolMixin, WaitTests): pass class ProcessPoolWaitTests(ProcessPoolMixin, WaitTests): pass class AsCompletedTests(unittest.TestCase): # TODO(brian@sweetapp.com): Should have a test with a non-zero timeout. def test_no_timeout(self): future1 = self.executor.submit(mul, 2, 21) future2 = self.executor.submit(mul, 7, 6) completed = set(futures.as_completed( [CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, SUCCESSFUL_FUTURE, future1, future2])) self.assertEqual(set( [CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, SUCCESSFUL_FUTURE, future1, future2]), completed) def test_zero_timeout(self): future1 = self.executor.submit(time.sleep, 2) completed_futures = set() try: for future in futures.as_completed( [CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, SUCCESSFUL_FUTURE, future1], timeout=0): completed_futures.add(future) except futures.TimeoutError: pass self.assertEqual(set([CANCELLED_AND_NOTIFIED_FUTURE, EXCEPTION_FUTURE, SUCCESSFUL_FUTURE]), completed_futures) class ThreadPoolAsCompletedTests(ThreadPoolMixin, AsCompletedTests): pass class ProcessPoolAsCompletedTests(ProcessPoolMixin, AsCompletedTests): pass class ExecutorTest(unittest.TestCase): # Executor.shutdown() and context manager usage is tested by # ExecutorShutdownTest. def test_submit(self): future = self.executor.submit(pow, 2, 8) self.assertEqual(256, future.result()) def test_submit_keyword(self): future = self.executor.submit(mul, 2, y=8) self.assertEqual(16, future.result()) def test_map(self): self.assertEqual( list(self.executor.map(pow, range(10), range(10))), list(map(pow, range(10), range(10)))) def test_map_exception(self): i = self.executor.map(divmod, [1, 1, 1, 1], [2, 3, 0, 5]) self.assertEqual(i.__next__(), (0, 1)) self.assertEqual(i.__next__(), (0, 1)) self.assertRaises(ZeroDivisionError, i.__next__) def test_map_timeout(self): results = [] try: for i in self.executor.map(time.sleep, [0, 0, 3], timeout=1.5): results.append(i) except futures.TimeoutError: pass else: self.fail('expected TimeoutError') self.assertEqual([None, None], results) class ThreadPoolExecutorTest(ThreadPoolMixin, ExecutorTest): pass class ProcessPoolExecutorTest(ProcessPoolMixin, ExecutorTest): pass class FutureTests(unittest.TestCase): def test_done_callback_with_result(self): callback_result = None def fn(callback_future): nonlocal callback_result callback_result = callback_future.result() f = Future() f.add_done_callback(fn) f.set_result(5) self.assertEqual(5, callback_result) def test_done_callback_with_exception(self): callback_exception = None def fn(callback_future): nonlocal callback_exception callback_exception = callback_future.exception() f = Future() f.add_done_callback(fn) f.set_exception(Exception('test')) self.assertEqual(('test',), callback_exception.args) def test_done_callback_with_cancel(self): was_cancelled = None def fn(callback_future): nonlocal was_cancelled was_cancelled = callback_future.cancelled() f = Future() f.add_done_callback(fn) self.assertTrue(f.cancel()) self.assertTrue(was_cancelled) def test_done_callback_raises(self): with test.support.captured_stderr() as stderr: raising_was_called = False fn_was_called = False def raising_fn(callback_future): nonlocal raising_was_called raising_was_called = True raise Exception('doh!') def fn(callback_future): nonlocal fn_was_called fn_was_called = True f = Future() f.add_done_callback(raising_fn) f.add_done_callback(fn) f.set_result(5) self.assertTrue(raising_was_called) self.assertTrue(fn_was_called) self.assertIn('Exception: doh!', stderr.getvalue()) def test_done_callback_already_successful(self): callback_result = None def fn(callback_future): nonlocal callback_result callback_result = callback_future.result() f = Future() f.set_result(5) f.add_done_callback(fn) self.assertEqual(5, callback_result) def test_done_callback_already_failed(self): callback_exception = None def fn(callback_future): nonlocal callback_exception callback_exception = callback_future.exception() f = Future() f.set_exception(Exception('test')) f.add_done_callback(fn) self.assertEqual(('test',), callback_exception.args) def test_done_callback_already_cancelled(self): was_cancelled = None def fn(callback_future): nonlocal was_cancelled was_cancelled = callback_future.cancelled() f = Future() self.assertTrue(f.cancel()) f.add_done_callback(fn) self.assertTrue(was_cancelled) def test_repr(self): self.assertRegex(repr(PENDING_FUTURE), '<Future at 0x[0-9a-f]+ state=pending>') self.assertRegex(repr(RUNNING_FUTURE), '<Future at 0x[0-9a-f]+ state=running>') self.assertRegex(repr(CANCELLED_FUTURE), '<Future at 0x[0-9a-f]+ state=cancelled>') self.assertRegex(repr(CANCELLED_AND_NOTIFIED_FUTURE), '<Future at 0x[0-9a-f]+ state=cancelled>') self.assertRegex( repr(EXCEPTION_FUTURE), '<Future at 0x[0-9a-f]+ state=finished raised IOError>') self.assertRegex( repr(SUCCESSFUL_FUTURE), '<Future at 0x[0-9a-f]+ state=finished returned int>') def test_cancel(self): f1 = create_future(state=PENDING) f2 = create_future(state=RUNNING) f3 = create_future(state=CANCELLED) f4 = create_future(state=CANCELLED_AND_NOTIFIED) f5 = create_future(state=FINISHED, exception=IOError()) f6 = create_future(state=FINISHED, result=5) self.assertTrue(f1.cancel()) self.assertEqual(f1._state, CANCELLED) self.assertFalse(f2.cancel()) self.assertEqual(f2._state, RUNNING) self.assertTrue(f3.cancel()) self.assertEqual(f3._state, CANCELLED) self.assertTrue(f4.cancel()) self.assertEqual(f4._state, CANCELLED_AND_NOTIFIED) self.assertFalse(f5.cancel()) self.assertEqual(f5._state, FINISHED) self.assertFalse(f6.cancel()) self.assertEqual(f6._state, FINISHED) def test_cancelled(self): self.assertFalse(PENDING_FUTURE.cancelled()) self.assertFalse(RUNNING_FUTURE.cancelled()) self.assertTrue(CANCELLED_FUTURE.cancelled()) self.assertTrue(CANCELLED_AND_NOTIFIED_FUTURE.cancelled()) self.assertFalse(EXCEPTION_FUTURE.cancelled()) self.assertFalse(SUCCESSFUL_FUTURE.cancelled()) def test_done(self): self.assertFalse(PENDING_FUTURE.done()) self.assertFalse(RUNNING_FUTURE.done()) self.assertTrue(CANCELLED_FUTURE.done()) self.assertTrue(CANCELLED_AND_NOTIFIED_FUTURE.done()) self.assertTrue(EXCEPTION_FUTURE.done()) self.assertTrue(SUCCESSFUL_FUTURE.done()) def test_running(self): self.assertFalse(PENDING_FUTURE.running()) self.assertTrue(RUNNING_FUTURE.running()) self.assertFalse(CANCELLED_FUTURE.running()) self.assertFalse(CANCELLED_AND_NOTIFIED_FUTURE.running()) self.assertFalse(EXCEPTION_FUTURE.running()) self.assertFalse(SUCCESSFUL_FUTURE.running()) def test_result_with_timeout(self): self.assertRaises(futures.TimeoutError, PENDING_FUTURE.result, timeout=0) self.assertRaises(futures.TimeoutError, RUNNING_FUTURE.result, timeout=0) self.assertRaises(futures.CancelledError, CANCELLED_FUTURE.result, timeout=0) self.assertRaises(futures.CancelledError, CANCELLED_AND_NOTIFIED_FUTURE.result, timeout=0) self.assertRaises(IOError, EXCEPTION_FUTURE.result, timeout=0) self.assertEqual(SUCCESSFUL_FUTURE.result(timeout=0), 42) def test_result_with_success(self): # TODO(brian@sweetapp.com): This test is timing dependant. def notification(): # Wait until the main thread is waiting for the result. time.sleep(1) f1.set_result(42) f1 = create_future(state=PENDING) t = threading.Thread(target=notification) t.start() self.assertEqual(f1.result(timeout=5), 42) def test_result_with_cancel(self): # TODO(brian@sweetapp.com): This test is timing dependant. def notification(): # Wait until the main thread is waiting for the result. time.sleep(1) f1.cancel() f1 = create_future(state=PENDING) t = threading.Thread(target=notification) t.start() self.assertRaises(futures.CancelledError, f1.result, timeout=5) def test_exception_with_timeout(self): self.assertRaises(futures.TimeoutError, PENDING_FUTURE.exception, timeout=0) self.assertRaises(futures.TimeoutError, RUNNING_FUTURE.exception, timeout=0) self.assertRaises(futures.CancelledError, CANCELLED_FUTURE.exception, timeout=0) self.assertRaises(futures.CancelledError, CANCELLED_AND_NOTIFIED_FUTURE.exception, timeout=0) self.assertTrue(isinstance(EXCEPTION_FUTURE.exception(timeout=0), IOError)) self.assertEqual(SUCCESSFUL_FUTURE.exception(timeout=0), None) def test_exception_with_success(self): def notification(): # Wait until the main thread is waiting for the exception. time.sleep(1) with f1._condition: f1._state = FINISHED f1._exception = IOError() f1._condition.notify_all() f1 = create_future(state=PENDING) t = threading.Thread(target=notification) t.start() self.assertTrue(isinstance(f1.exception(timeout=5), IOError)) @test.support.reap_threads def test_main(): try: test.support.run_unittest(ProcessPoolExecutorTest, ThreadPoolExecutorTest, ProcessPoolWaitTests, ThreadPoolWaitTests, ProcessPoolAsCompletedTests, ThreadPoolAsCompletedTests, FutureTests, ProcessPoolShutdownTest, ThreadPoolShutdownTest) finally: test.support.reap_children() if __name__ == "__main__": test_main()
34.347756
79
0.617972
81808341feab034d2ba8a68e22b06f840df76611
23,325
py
Python
tests/test_math.py
DaveMcEwan/dmppl
68e8a121d4591360080cd40121add1796ae48a1b
[ "MIT" ]
1
2020-05-05T19:46:43.000Z
2020-05-05T19:46:43.000Z
tests/test_math.py
DaveMcEwan/dmppl
68e8a121d4591360080cd40121add1796ae48a1b
[ "MIT" ]
null
null
null
tests/test_math.py
DaveMcEwan/dmppl
68e8a121d4591360080cd40121add1796ae48a1b
[ "MIT" ]
null
null
null
from dmppl.math import * import math import os import tempfile import shutil import unittest class Test_isEven(unittest.TestCase): # {{{ def test_Pos0(self): result = isEven(3) self.assertFalse(result) def test_Pos1(self): result = isEven(4) self.assertTrue(result) def test_Zero(self): result = isEven(0) self.assertTrue(result) def test_Neg0(self): result = isEven(-7) self.assertFalse(result) def test_Neg1(self): result = isEven(-8) self.assertTrue(result) def test_Float0(self): self.assertRaises(AssertionError, isEven, 7.0) def test_Float1(self): self.assertRaises(AssertionError, isEven, 8.0) # }}} class Test_isEven class Test_isOdd(unittest.TestCase): # {{{ def test_Pos0(self): result = isOdd(3) self.assertTrue(result) def test_Pos1(self): result = isOdd(4) self.assertFalse(result) def test_Zero(self): result = isOdd(0) self.assertFalse(result) def test_Neg0(self): result = isOdd(-7) self.assertTrue(result) def test_Neg1(self): result = isOdd(-8) self.assertFalse(result) def test_Float0(self): self.assertRaises(AssertionError, isOdd, 7.0) def test_Float1(self): self.assertRaises(AssertionError, isOdd, 8.0) # }}} class Test_isEven class Test_isPow2(unittest.TestCase): # {{{ def test_Basic0(self): result = isPow2(3) self.assertFalse(result) def test_Basic1(self): result = isPow2(4) self.assertTrue(result) def test_Int0(self): result = isPow2(7) self.assertFalse(result) def test_Int1(self): result = isPow2(8) self.assertTrue(result) def test_Neg0(self): self.assertRaises(AssertionError, isPow2, -8) def test_Float0(self): self.assertRaises(AssertionError, isPow2, 7.0) # }}} class Test_isPow2 class Test_clog2(unittest.TestCase): # {{{ def test_Basic0(self): result = clog2(5) self.assertEqual(result, 3) def test_Int0(self): result = clog2(9) self.assertEqual(result, 4) def test_Float0(self): result = clog2(4.1) self.assertEqual(result, 3) def test_Neg0(self): self.assertRaises(AssertionError, clog2, -8) # }}} class Test_clog2 class Test_dotp(unittest.TestCase): # {{{ def test_Basic0(self): result = dotp([1, 2, 5], (-10.0, 11.1, 0.5)) self.assertEqual(result, 14.7) def test_Int0(self): result = dotp([1, 2, 5], (-10, 11, 5)) self.assertEqual(result, 37) def test_Float0(self): result = dotp([1.1, 2.2, 5.5], (-10.0, 11.1, 5.5)) self.assertEqual(result, 43.67) def test_Iters(self): result = dotp(range(0, 5), range(5, 55, 3)) # unequal length self.assertEqual(result, 140) # }}} class Test_dotp class Test_clipNorm(unittest.TestCase): # {{{ def test_Basic0(self): result = clipNorm(0.3) self.assertEqual(result, 0.3) def test_Basic1(self): result = clipNorm(3, 0, 10) self.assertEqual(result, 0.3) def test_Basic2(self): result = clipNorm(0, -1, 1) self.assertEqual(result, 0.5) def test_Basic3(self): result = clipNorm(-0.25, -2.5, 2.5) self.assertEqual(result, 0.45) def test_Ints0(self): result = clipNorm(2, 1, 3) self.assertAlmostEqual(result, 0.5) def test_Floats0(self): result = clipNorm(2.0, 1.0, 3.0) self.assertAlmostEqual(result, 0.5) def test_Floats1(self): result = clipNorm(0.2, 0.1, 0.3) self.assertAlmostEqual(result, 0.5) def test_TypeMix0(self): result = clipNorm(2, 1, 3.0) self.assertAlmostEqual(result, 0.5) def test_TypeMix1(self): result = clipNorm(2, 1.0, 3) self.assertAlmostEqual(result, 0.5) def test_TypeMix2(self): result = clipNorm(2.0, 1, 3.0) self.assertAlmostEqual(result, 0.5) def test_TypeMix3(self): result = clipNorm(2.0, 1.0, 3) self.assertAlmostEqual(result, 0.5) def test_OutOfRangeLo0(self): result = clipNorm(0.1, 0.2, 0.3) self.assertEqual(result, 0.0) def test_OutOfRangeLo1(self): result = clipNorm(1, 2, 3) self.assertEqual(result, 0.0) def test_OutOfRangeLo2(self): result = clipNorm(0.1, 0.3, 0.2) self.assertEqual(result, 0.0) def test_OutOfRangeLo3(self): result = clipNorm(1, 3, 2) self.assertEqual(result, 0.0) def test_OutOfRangeHi0(self): result = clipNorm(0.4, 0.2, 0.3) self.assertEqual(result, 1.0) def test_OutOfRangeHi1(self): result = clipNorm(4, 2, 3) self.assertEqual(result, 1.0) def test_OutOfRangeHi2(self): result = clipNorm(0.4, 0.3, 0.2) self.assertEqual(result, 1.0) def test_OutOfRangeHi3(self): result = clipNorm(4, 3, 2) self.assertEqual(result, 1.0) # }}} class Test_clipNorm class Test_int2base(unittest.TestCase): # {{{ def test_Basic0(self): result = int2base(5, 2) self.assertEqual(result, "101") def test_Basic1(self): result = int2base(15, 16) self.assertEqual(result, "f") def test_Basic2(self): result = int2base(35**10-1, 35) self.assertEqual(result, "y"*10) def test_Float0(self): self.assertRaises(AssertionError, int2base, 8.0, 10) def test_Float1(self): self.assertRaises(AssertionError, int2base, 8, 10.0) def test_Neg0(self): self.assertRaises(AssertionError, int2base, -8, 10) def test_Neg1(self): self.assertRaises(AssertionError, int2base, 8, -10) # }}} class Test_int2base class Test_powsineCoeffs(unittest.TestCase): # {{{ def test_Basic0(self): n = 10 alpha = 0 result = powsineCoeffs(n, alpha) self.assertEqual(len(result), n) self.assertEqual(result.shape, (n,)) self.assertSequenceEqual(result.tolist(), np.ones(n).tolist()) def test_Basic1(self): n = 5 alpha = 1 result = powsineCoeffs(n, alpha) self.assertEqual(result.shape, (n,)) golden = np.array([0.0, 0.707, 1.0, 0.707, 0.0]) self.assertTupleEqual(result.shape, golden.shape) for r,g in zip(result, golden): self.assertAlmostEqual(r, g, places=3) def test_Basic2(self): n = 10 alpha = 2 result = powsineCoeffs(n, alpha) self.assertEqual(result.shape, (n,)) golden = np.array([0.000, 0.117, 0.413, 0.750, 0.970, 0.970, 0.750, 0.413, 0.117, 0.000]) self.assertTupleEqual(result.shape, golden.shape) for r,g in zip(result, golden): self.assertAlmostEqual(r, g, places=3) # }}} class Test_powsineCoeffs class Test_saveNpy(unittest.TestCase): # {{{ def setUp(self): self.tstDir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tstDir) def test_Basic0(self): arr = np.arange(5) fname = os.path.join(self.tstDir, "Basic0") result = saveNpy(arr, fname) self.assertEqual(result, None) # Load back in again with standard NumPy method. with gzip.GzipFile(fname + ".npy.gz", 'rb') as fd: rdbk = np.load(fd) for r,g in zip(rdbk, arr): self.assertEqual(r, g) def test_Basic1(self): arr = np.arange(6) fname = os.path.join(self.tstDir, "Basic1.npy.gz") result = saveNpy(arr, fname) self.assertEqual(result, None) # Load back in again with standard NumPy method. with gzip.GzipFile(fname, 'rb') as fd: rdbk = np.load(fd) for r,g in zip(rdbk, arr): self.assertEqual(r, g) def test_Basic2(self): arr = np.arange(7) fname = os.path.join(self.tstDir, "Basic2.npy") result = saveNpy(arr, fname) self.assertEqual(result, None) # Load back in again with standard NumPy method. with open(fname, 'rb') as fd: rdbk = np.load(fd) for r,g in zip(rdbk, arr): self.assertEqual(r, g) # }}} class Test_saveNpy class Test_loadNpy(unittest.TestCase): # {{{ def setUp(self): self.tstDir = tempfile.mkdtemp() self.arr0 = np.arange(5) fname0 = os.path.join(self.tstDir, "arr0.npy.gz") with gzip.GzipFile(fname0, 'wb') as fd: np.save(fd, self.arr0) self.arr1 = np.ones(6) fname1 = os.path.join(self.tstDir, "arr1.npy") with open(fname1, 'wb') as fd: np.save(fd, self.arr1) def tearDown(self): shutil.rmtree(self.tstDir) def test_Basic0(self): fname = os.path.join(self.tstDir, "arr0") result = loadNpy(fname) for r,g in zip(result, self.arr0): self.assertEqual(r, g) def test_Basic1(self): fname = os.path.join(self.tstDir, "arr1.npy") result = loadNpy(fname) for r,g in zip(result, self.arr1): self.assertEqual(r, g) def test_Basic2(self): fname = os.path.join(self.tstDir, "arr0.npy.gz") result = loadNpy(fname) for r,g in zip(result, self.arr0): self.assertEqual(r, g) # }}} class Test_loadNpy class Test_ptScale(unittest.TestCase): # {{{ def test_Int0(self): pt = (1, 2) scale = 3 result = ptScale(pt, scale) self.assertTupleEqual(result, (3, 6)) for r in result: self.assertIsInstance(r, int) def test_Float0(self): pt = (1.0, 2.0) scale = 3.5 result = ptScale(pt, scale) self.assertTupleEqual(result, (3.5, 7.0)) for r in result: self.assertIsInstance(r, float) def test_0D(self): self.assertRaises(AssertionError, ptScale, tuple(), 2.0) def test_1D(self): pt = (1,) scale = 3 result = ptScale(pt, scale) self.assertTupleEqual(result, (3,)) for r in result: self.assertIsInstance(r, int) def test_5D(self): pt = (1, 2, 3, 4, 5) scale = 10.0 result = ptScale(pt, scale) self.assertTupleEqual(result, (10.0, 20.0, 30.0, 40.0, 50.0)) for r in result: self.assertIsInstance(r, float) # }}} class Test_ptScale class Test_ptShift(unittest.TestCase): # {{{ def test_Int0(self): pt = (1, 2) shift = [3, 4] result = ptShift(pt, shift) self.assertTupleEqual(result, (4, 6)) for r in result: self.assertIsInstance(r, int) def test_Float0(self): pt = (1.0, 2.0) shift = [3.0, 4.0] result = ptShift(pt, shift) self.assertTupleEqual(result, (4.0, 6.0)) for r in result: self.assertIsInstance(r, float) def test_NDimMismatch(self): self.assertRaises(AssertionError, ptShift, (1, 2), (3,)) def test_0D(self): self.assertRaises(AssertionError, ptShift, tuple(), tuple()) def test_1D(self): pt = (1,) shift = [3] result = ptShift(pt, shift) self.assertTupleEqual(result, (4,)) for r in result: self.assertIsInstance(r, int) def test_5D(self): pt = (1, 2, 3, 4, 5) shift = [3, 4, 5, 6, 7] result = ptShift(pt, shift) self.assertTupleEqual(result, (4, 6, 8, 10, 12)) for r in result: self.assertIsInstance(r, int) # }}} class Test_ptShift class Test_ptMirror(unittest.TestCase): # {{{ def test_Int0(self): pt = (1, 2) mirror = [None, 3] result = ptMirror(pt, mirror) self.assertTupleEqual(result, (1, 4)) for r in result: self.assertIsInstance(r, int) def test_Float0(self): pt = (1.0, 2.0) mirror = (3.5, None) result = ptMirror(pt, mirror) self.assertTupleEqual(result, (6.0, 2.0)) for r in result: self.assertIsInstance(r, float) def test_0D(self): self.assertRaises(AssertionError, ptMirror, tuple(), [2.0]) def test_NDimMismatch(self): self.assertRaises(AssertionError, ptShift, (1, 2), (3,)) def test_1D(self): pt = (1,) mirror = (5.0,) result = ptMirror(pt, mirror) self.assertTupleEqual(result, (9.0,)) for r in result: self.assertIsInstance(r, float) def test_5D(self): pt = (1, 2, 3, 4, 5) mirror = [10.0, None, 5, None, None] result = ptMirror(pt, mirror) self.assertTupleEqual(result, (19.0, 2, 7, 4, 5)) for r in result: self.assertIsInstance(r, (float, int)) # }}} class Test_ptMirror class Test_rotMat2D(unittest.TestCase): # {{{ def test_Degrees90(self): result = rotMat2D(math.radians(90)) self.assertAlmostEqual(result[0][0], 0); self.assertAlmostEqual(result[0][1], -1) self.assertAlmostEqual(result[1][0], 1); self.assertAlmostEqual(result[1][1], 0) def test_Degrees90CW(self): result = rotMat2D(math.radians(90), clockwise=True) self.assertAlmostEqual(result[0][0], 0); self.assertAlmostEqual(result[0][1], 1) self.assertAlmostEqual(result[1][0], -1); self.assertAlmostEqual(result[1][1], 0) def test_Degrees90CCW(self): result = rotMat2D(math.radians(90), clockwise=False) self.assertAlmostEqual(result[0][0], 0); self.assertAlmostEqual(result[0][1], -1) self.assertAlmostEqual(result[1][0], 1); self.assertAlmostEqual(result[1][1], 0) # }}} class Test_rotMat2D class Test_ptRotate(unittest.TestCase): # {{{ def test_Basic0(self): rotation = rotMat2D(math.radians(90)) pt = (0, 1) # Vertical result = ptRotate(pt, rotation) self.assertIsInstance(result, tuple) self.assertAlmostEqual(result[0], -1) self.assertAlmostEqual(result[1], 0) def test_Basic1(self): rotation = rotMat2D(math.radians(90)) pt = (1, 0) # Horizontal result = ptRotate(pt, rotation) self.assertIsInstance(result, tuple) self.assertAlmostEqual(result[0], 0) self.assertAlmostEqual(result[1], 1) def test_Basic2(self): rotation = rotMat2D(math.radians(180)) pt = (3, 3) # Horizontal center = (4, 4) result = ptRotate(pt, rotation, center) self.assertIsInstance(result, tuple) self.assertAlmostEqual(result[0], 5) self.assertAlmostEqual(result[1], 5) # }}} class Test_ptRotate class Test_ptRotate2D(unittest.TestCase): # {{{ def test_Basic0(self): pt = (0, 1) # Vertical result = ptRotate2D(pt, math.radians(90)) self.assertIsInstance(result, tuple) self.assertAlmostEqual(result[0], -1) self.assertAlmostEqual(result[1], 0) def test_Basic1(self): pt = (1, 0) # Horizontal result = ptRotate2D(pt, math.radians(90)) self.assertIsInstance(result, tuple) self.assertAlmostEqual(result[0], 0) self.assertAlmostEqual(result[1], 1) def test_Basic2(self): pt = (3, 3) # Horizontal center = (4, 4) result = ptRotate2D(pt, math.radians(180), center) self.assertIsInstance(result, tuple) self.assertAlmostEqual(result[0], 5) self.assertAlmostEqual(result[1], 5) # }}} class Test_ptRotate class Test_ptsScale(unittest.TestCase): # {{{ def test_NDimMismatch(self): pts = [(1, 2, 3), (4, 5)] scale = 10.0 self.assertRaises(AssertionError, ptsScale, pts, scale) def test_5D(self): pts = [(1, 2, 3, 4, 5), (6, 7, 8, 9, 10)] scale = 10.0 result = list(ptsScale(pts, scale)) self.assertListEqual(result, [(10.0, 20.0, 30.0, 40.0, 50.0), (60.0, 70.0, 80.0, 90.0, 100.0)]) # }}} class Test_ptsScale class Test_ptsShift(unittest.TestCase): # {{{ def test_NDimMismatch(self): pts = [(1, 2, 3), (4, 5)] shift = (1, 2) self.assertRaises(AssertionError, ptsShift, pts, shift) def test_5D(self): pts = [(1, 2, 3, 4, 5), (6, 7, 8, 9, 10)] shift = [3, 4, 5, 6, 7] result = list(ptsShift(pts, shift)) self.assertListEqual(result, [(4, 6, 8, 10, 12), (9, 11, 13, 15, 17)]) # }}} class Test_ptsShift class Test_ptsMirror(unittest.TestCase): # {{{ def test_NDimMismatch(self): pts = [(1, 2, 3), (4, 5)] mirror = [10.0, None, 5] self.assertRaises(AssertionError, ptsMirror, pts, mirror) def test_5D(self): pts = [(1, 2, 3, 4, 5), (6, 7, 8, 9, 10)] mirror = [10.0, None, 5, None, None] result = list(ptsMirror(pts, mirror)) self.assertListEqual(result, [(19.0, 2, 7, 4, 5), (14.0, 7, 2, 9, 10)]) for pt in result: for r in pt: self.assertIsInstance(r, (float, int)) # }}} class Test_ptsMirror class Test_ptsRotate2D(unittest.TestCase): # {{{ def test_Basic0(self): pts = [(0, 1), (5, 0)] result = list(ptsRotate2D(pts, math.radians(90))) self.assertAlmostEqual(result[0][0], -1.0) self.assertAlmostEqual(result[0][1], 0.0) self.assertAlmostEqual(result[1][0], 0.0) self.assertAlmostEqual(result[1][1], 5.0) for pt in result: for r in pt: self.assertIsInstance(r, float) # }}} class Test_ptsRotate2D class Test_ptPairDifference(unittest.TestCase): # {{{ def test_Int0(self): ptA = (1, 2) ptB = [3, 4] result = ptPairDifference(ptA, ptB) self.assertTupleEqual(result, (2, 2)) for r in result: self.assertIsInstance(r, int) def test_Float0(self): ptA = (1.0, 2.0) ptB = [3.0, 4.0] result = ptPairDifference(ptA, ptB) self.assertTupleEqual(result, (2.0, 2.0)) for r in result: self.assertIsInstance(r, float) def test_NDimMismatch(self): self.assertRaises(AssertionError, ptPairDifference, (1, 2), (3,)) def test_1D(self): ptA = [3,] ptB = (1,) result = ptPairDifference(ptA, ptB) self.assertTupleEqual(result, (-2,)) for r in result: self.assertIsInstance(r, int) def test_5D(self): ptA = (1, 2, 3.0, 400, 5) ptB = (3, 40, 5, 6, 7.5) result = ptPairDifference(ptA, ptB) self.assertTupleEqual(result, (2, 38, 2.0, -394, 2.5)) for r in result: self.assertIsInstance(r, (int, float)) # }}} class Test_ptPairDifference class Test_ptPairPtBetween(unittest.TestCase): # {{{ def test_Int0(self): ptA = (1, 2) ptB = [3, 4] result = ptPairPtBetween(ptA, ptB) self.assertTupleEqual(result, (2.0, 3.0)) for r in result: self.assertIsInstance(r, float) def test_Float0(self): ptA = (1.0, 2.0) ptB = [3.0, 4.0] result = ptPairPtBetween(ptA, ptB) self.assertTupleEqual(result, (2.0, 3.0)) for r in result: self.assertIsInstance(r, float) def test_Float1(self): ptA = (1.0, 2.0) ptB = [3.0, 4.0] fraction = 0.75 result = ptPairPtBetween(ptA, ptB, fraction) self.assertTupleEqual(result, (2.5, 3.5)) for r in result: self.assertIsInstance(r, float) def test_NDimMismatch(self): self.assertRaises(AssertionError, ptPairPtBetween, (1, 2), (3,)) def test_NonFraction(self): self.assertRaises(AssertionError, ptPairPtBetween, (1, 2), (3, 4), 1.5) def test_1D(self): ptA = [3,] ptB = (1,) result = ptPairPtBetween(ptA, ptB) self.assertTupleEqual(result, (2.0,)) for r in result: self.assertIsInstance(r, float) def test_5D(self): ptA = (1, 2, 3.0, 400, 5) ptB = (3, 40, 5, 6, 7.5) result = ptPairPtBetween(ptA, ptB) self.assertTupleEqual(result, (2.0, 21.0, 4.0, 203.0, 6.25)) for r in result: self.assertIsInstance(r, float) # }}} class Test_ptPairPtBetween class Test_ptPairDistance(unittest.TestCase): # {{{ def test_Int0(self): ptA = (1, 2) ptB = [3, 4] result = ptPairDistance(ptA, ptB) self.assertAlmostEqual(result, 2*math.sqrt(2)) def test_Float0(self): ptA = (1.0, 2.0) ptB = [3.0, 4.0] result = ptPairDistance(ptA, ptB) self.assertAlmostEqual(result, 2*math.sqrt(2)) def test_NDimMismatch(self): self.assertRaises(AssertionError, ptPairDistance, (1, 2), (3,)) def test_1D(self): ptA = [3,] ptB = (1,) result = ptPairDistance(ptA, ptB) self.assertAlmostEqual(result, 2.0) def test_5D(self): ptA = (1, 2, 3.0, 400, 5) ptB = (3, 40, 5, 6, 7.5) result = ptPairDistance(ptA, ptB) golden = math.sqrt(sum([2**2, 38**2, 2.0**2, (-394)**2, 2.5**2])) self.assertAlmostEqual(result, golden) # }}} class Test_ptPairDistance class Test_ptPairsDifference(unittest.TestCase): # {{{ def test_Basic0(self): ptPairs = [ [(1, 2), (3, 4)], [(9, 8), (7, 6)], ((10, 20), (30, 40)), ((90, 80), (75, 65)), ((90, 80), (77, 67)), ] result = list(ptPairsDifference(ptPairs)) self.assertListEqual(result, [(2, 2), (-2, -2), (20, 20), (-15, -15), (-13, -13)]) # }}} class Test_ptPairsDifference class Test_ptPairsPtBetween(unittest.TestCase): # {{{ def test_Basic0(self): ptPairs = [ [(1, 2), (3, 4)], [(9, 8), (7, 6)], ] result = list(ptPairsPtBetween(ptPairs, fraction=0.75)) self.assertListEqual(result, [(2.5, 3.5), (7.5, 6.5)]) # }}} class Test_ptPairsPtBetween class Test_ptPairsDistance(unittest.TestCase): # {{{ def test_Basic0(self): ptPairs = [ [(1, 2), (3, 4)], [(9, 8), (7, 6)], ] result = list(ptPairsDistance(ptPairs)) self.assertAlmostEqual(result[0], 2*math.sqrt(2)) self.assertAlmostEqual(result[1], 2*math.sqrt(2)) # }}} class Test_ptPairsDistance class Test_ptsMkPolygon(unittest.TestCase): # {{{ def test_Basic0(self): result = list(ptsMkPolygon(4)) golden = [(1,0), (0,1), (-1,0), (0,-1)] np.testing.assert_almost_equal(result, golden) def test_Basic1(self): result = list(ptsMkPolygon(4, radius=[2])) golden = [(2,0), (0,2), (-2,0), (0,-2)] np.testing.assert_almost_equal(result, golden) def test_Basic2(self): result = list(ptsMkPolygon(4, radius=[2, 3])) golden = [(2,0), (0,3), (-2,0), (0,-3)] np.testing.assert_almost_equal(result, golden) # }}} class Test_ptsMkPolygon
28.445122
79
0.568532
46316039b3c19eb3d615f096aab98b8b154ac8f6
8,446
py
Python
arcade/examples/sprite_rooms.py
Jayman2000/arcade-pull
82d8085bd446ac42c634f56a4d9b8d97ac01b417
[ "MIT" ]
null
null
null
arcade/examples/sprite_rooms.py
Jayman2000/arcade-pull
82d8085bd446ac42c634f56a4d9b8d97ac01b417
[ "MIT" ]
null
null
null
arcade/examples/sprite_rooms.py
Jayman2000/arcade-pull
82d8085bd446ac42c634f56a4d9b8d97ac01b417
[ "MIT" ]
null
null
null
""" Sprite move between different rooms. Artwork from https://kenney.nl If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.sprite_rooms """ import arcade import os SPRITE_SCALING = 0.5 SPRITE_NATIVE_SIZE = 128 SPRITE_SIZE = int(SPRITE_NATIVE_SIZE * SPRITE_SCALING) SCREEN_WIDTH = SPRITE_SIZE * 14 SCREEN_HEIGHT = SPRITE_SIZE * 10 SCREEN_TITLE = "Sprite Rooms Example" MOVEMENT_SPEED = 5 class Room: """ This class holds all the information about the different rooms. """ def __init__(self): # You may want many lists. Lists for coins, monsters, etc. self.wall_list = None # This holds the background images. If you don't want changing # background images, you can delete this part. self.background = None def setup_room_1(): """ Create and return room 1. If your program gets large, you may want to separate this into different files. """ room = Room() """ Set up the game and initialize the variables. """ # Sprite lists room.wall_list = arcade.SpriteList() # -- Set up the walls # Create bottom and top row of boxes # This y loops a list of two, the coordinate 0, and just under the top of window for y in (0, SCREEN_HEIGHT - SPRITE_SIZE): # Loop for each box going across for x in range(0, SCREEN_WIDTH, SPRITE_SIZE): wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) # Create left and right column of boxes for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): # Skip making a block 4 and 5 blocks up on the right side if (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x == 0: wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 5 * SPRITE_SIZE room.wall_list.append(wall) # If you want coins or monsters in a level, then add that code here. # Load the background image for this level. room.background = arcade.load_texture(":resources:images/backgrounds/abstract_1.jpg") return room def setup_room_2(): """ Create and return room 2. """ room = Room() """ Set up the game and initialize the variables. """ # Sprite lists room.wall_list = arcade.SpriteList() # -- Set up the walls # Create bottom and top row of boxes # This y loops a list of two, the coordinate 0, and just under the top of window for y in (0, SCREEN_HEIGHT - SPRITE_SIZE): # Loop for each box going across for x in range(0, SCREEN_WIDTH, SPRITE_SIZE): wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) # Create left and right column of boxes for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): # Skip making a block 4 and 5 blocks up if (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x != 0: wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", SPRITE_SCALING) wall.left = 5 * SPRITE_SIZE wall.bottom = 6 * SPRITE_SIZE room.wall_list.append(wall) room.background = arcade.load_texture(":resources:images/backgrounds/abstract_2.jpg") return room class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Sprite lists self.current_room = 0 # Set up the player self.rooms = None self.player_sprite = None self.player_list = None self.physics_engine = None def setup(self): """ Set up the game and initialize the variables. """ # Set up the player self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/femalePerson_idle.png", SPRITE_SCALING) self.player_sprite.center_x = 100 self.player_sprite.center_y = 100 self.player_list = arcade.SpriteList() self.player_list.append(self.player_sprite) # Our list of rooms self.rooms = [] # Create the rooms. Extend the pattern for each room. room = setup_room_1() self.rooms.append(room) room = setup_room_2() self.rooms.append(room) # Our starting room number self.current_room = 0 # Create a physics engine for this room self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Draw the background texture arcade.draw_lrwh_rectangle_textured(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, self.rooms[self.current_room].background) # Draw all the walls in this room self.rooms[self.current_room].wall_list.draw() # If you have coins or monsters, then copy and modify the line # above for each list. self.player_list.draw() def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.UP: self.player_sprite.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player_sprite.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player_sprite.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player_sprite.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player_sprite.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player_sprite.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ # Call update on all sprites (The sprites don't do much in this # example though.) self.physics_engine.update() # Do some logic here to figure out what room we are in, and if we need to go # to a different room. if self.player_sprite.center_x > SCREEN_WIDTH and self.current_room == 0: self.current_room = 1 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.player_sprite.center_x = 0 elif self.player_sprite.center_x < 0 and self.current_room == 1: self.current_room = 0 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.player_sprite.center_x = SCREEN_WIDTH def main(): """ Main function """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == "__main__": main()
34.194332
135
0.625503
0a13f03a4a76aca9c1866c8f1693df56f2190ea0
17,546
py
Python
opsdroid/connector/matrix/connector.py
abhiky/opsdroid
ebc7fe0d00f6d0ea0dad2aff09faf2bd633758a2
[ "Apache-2.0" ]
null
null
null
opsdroid/connector/matrix/connector.py
abhiky/opsdroid
ebc7fe0d00f6d0ea0dad2aff09faf2bd633758a2
[ "Apache-2.0" ]
null
null
null
opsdroid/connector/matrix/connector.py
abhiky/opsdroid
ebc7fe0d00f6d0ea0dad2aff09faf2bd633758a2
[ "Apache-2.0" ]
null
null
null
"""Connector for Matrix (https://matrix.org).""" import re import json import logging import functools from concurrent.futures import CancelledError from urllib.parse import urlparse import aiohttp from matrix_api_async.api_asyncio import AsyncHTTPAPI from matrix_client.errors import MatrixRequestError from voluptuous import Required from opsdroid.connector import Connector, register_event from opsdroid import events from .html_cleaner import clean from .create_events import MatrixEventCreator from . import events as matrixevents _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = { Required("mxid"): str, Required("password"): str, Required("rooms"): dict, "homeserver": str, "nick": str, "room_specific_nicks": bool, } __all__ = ["ConnectorMatrix"] def ensure_room_id_and_send(func): """ Ensure that the target for the event is a matrix room id. Also retry the function call if the server disconnects. """ @functools.wraps(func) async def ensure_room_id(self, event): if not event.target.startswith(("!", "#")): event.target = self.room_ids[event.target] if not event.target.startswith("!"): event.target = await self.connection.get_room_id(event.target) try: return await func(self, event) except aiohttp.client_exceptions.ServerDisconnectedError: _LOGGER.debug(_("Server had disconnected, retrying send.")) return await func(self, event) return ensure_room_id class ConnectorMatrix(Connector): """Connector for Matrix (https://matrix.org).""" def __init__(self, config, opsdroid=None): # noqa: D107 """Init the config for the connector.""" super().__init__(config, opsdroid=opsdroid) self.name = "matrix" # The name of your connector self.rooms = self._process_rooms_dict(config["rooms"]) self.room_ids = {} self.default_target = self.rooms["main"]["alias"] self.mxid = config["mxid"] self.nick = config.get("nick", None) self.homeserver = config.get("homeserver", "https://matrix.org") self.password = config["password"] self.room_specific_nicks = config.get("room_specific_nicks", False) self.send_m_notice = config.get("send_m_notice", False) self.session = None self.filter_id = None self.connection = None self._event_creator = MatrixEventCreator(self) def message_type(self, room): """Subtype to use to send into a specific room.""" if self.send_m_notice: return "m.notice" reverse_room_ids = {v: k for k, v in self.room_ids.items()} room = reverse_room_ids.get(room, room) if room in self.rooms: if self.rooms[room].get("send_m_notice", False): return "m.notice" return "m.text" def _process_rooms_dict(self, rooms): out_rooms = {} for name, room in rooms.items(): if isinstance(room, str): room = {"alias": room} out_rooms[name] = room return out_rooms @property def filter_json(self): """Define JSON filter to apply to incoming events.""" return { "event_format": "client", "account_data": {"limit": 0, "types": []}, "presence": {"limit": 0, "types": []}, "room": { "account_data": {"types": []}, "ephemeral": {"types": []}, "state": {"types": []}, }, } async def make_filter(self, api): """Make a filter on the server for future syncs.""" fjson = self.filter_json resp = await api.create_filter(user_id=self.mxid, filter_params=fjson) return resp["filter_id"] async def connect(self): """Create connection object with chat library.""" session = aiohttp.ClientSession(trust_env=True) mapi = AsyncHTTPAPI(self.homeserver, session) self.session = session login_response = await mapi.login( "m.login.password", user=self.mxid, password=self.password ) mapi.token = login_response["access_token"] mapi.sync_token = None for roomname, room in self.rooms.items(): response = await mapi.join_room(room["alias"]) self.room_ids[roomname] = response["room_id"] self.connection = mapi # Create a filter now, saves time on each later sync self.filter_id = await self.make_filter(mapi) # Do initial sync so we don't get old messages later. response = await self.connection.sync( timeout_ms=3000, filter='{ "room": { "timeline" : { "limit" : 1 } } }', set_presence="online", ) self.connection.sync_token = response["next_batch"] if self.nick: display_name = await self.connection.get_display_name(self.mxid) if display_name != self.nick: await self.connection.set_display_name(self.mxid, self.nick) async def disconnect(self): """Close the matrix session.""" await self.session.close() async def _parse_sync_response(self, response): self.connection.sync_token = response["next_batch"] # Emit Invite events for every room in the invite list. for roomid, room in response["rooms"]["invite"].items(): # Process the invite list to extract the person who invited us. invite_event = [ e for e in room["invite_state"]["events"] if "invite" == e.get("content", {}).get("membership") ][0] sender = await self.get_nick(None, invite_event["sender"]) await self.opsdroid.parse( events.UserInvite( target=roomid, user_id=invite_event["sender"], user=sender, connector=self, raw_event=invite_event, ) ) for roomid, room in response["rooms"]["join"].items(): if "timeline" in room: for event in room["timeline"]["events"]: if event["sender"] != self.mxid: return await self._event_creator.create_event(event, roomid) async def listen(self): # pragma: no cover """Listen for new messages from the chat service.""" while True: # pylint: disable=R1702 try: response = await self.connection.sync( self.connection.sync_token, timeout_ms=int(60 * 1e3), # 1m in ms filter=self.filter_id, ) _LOGGER.debug(_("Matrix sync request returned.")) message = await self._parse_sync_response(response) if message: await self.opsdroid.parse(message) except MatrixRequestError as mre: # We can safely ignore timeout errors. The non-standard error # codes are returned by Cloudflare. if mre.code in [504, 522, 524]: _LOGGER.info(_("Matrix sync timeout (code: %d)."), mre.code) continue _LOGGER.exception(_("Matrix sync error.")) except CancelledError: raise except Exception: # pylint: disable=W0703 _LOGGER.exception(_("Matrix sync error.")) async def get_nick(self, roomid, mxid): """ Get nickname from user ID. Get the nickname of a sender depending on the room specific config setting. """ if self.room_specific_nicks: try: return await self.connection.get_room_displayname(roomid, mxid) except Exception: # pylint: disable=W0703 # Fallback to the non-room specific one logging.exception("Failed to lookup room specific nick for %s.", mxid) try: return await self.connection.get_display_name(mxid) except MatrixRequestError as mre: # Log the error if it's not the 404 from the user not having a nick if mre.code != 404: logging.exception("Failed to lookup nick for %s.", mxid) return mxid def get_roomname(self, room): """Get the name of a room from alias or room ID.""" if room.startswith(("#", "!")): for room_name, room_alias in self.rooms.items(): room_alias = room_alias["alias"] if room in (room_alias, self.room_ids[room_name]): return room_name return room @staticmethod def _get_formatted_message_body(message, body=None, msgtype="m.text"): """ Get HTML from a message. Return the json representation of the message in "org.matrix.custom.html" format. """ # Markdown leaves a <p></p> around standard messages that we want to # strip: if message.startswith("<p>"): message = message[3:] if message.endswith("</p>"): message = message[:-4] clean_html = clean(message) return { # Strip out any tags from the markdown to make the body "body": body if body else re.sub("<[^<]+?>", "", clean_html), "msgtype": msgtype, "format": "org.matrix.custom.html", "formatted_body": clean_html, } @register_event(events.Message) @ensure_room_id_and_send async def _send_message(self, message): """Send `message.text` back to the chat service.""" return await self.connection.send_message_event( message.target, "m.room.message", self._get_formatted_message_body( message.text, msgtype=self.message_type(message.target) ), ) @register_event(events.EditedMessage) @ensure_room_id_and_send async def _send_edit(self, message): if isinstance(message.linked_event, events.EditedMessage): # If we are attempting to edit an edit, move up the tree and then # try again. message.linked_event = message.linked_event.linked_event return self._send_edit(message) elif isinstance(message.linked_event, str): edited_event_id = message.linked_event else: edited_event_id = message.linked_event.event_id new_content = self._get_formatted_message_body( message.text, msgtype=self.message_type(message.target) ) content = { "msgtype": self.message_type(message.target), "m.new_content": new_content, "body": f"* {new_content['body']}", "m.relates_to": {"rel_type": "m.replace", "event_id": edited_event_id}, } return ( await self.connection.send_message_event( message.target, "m.room.message", content ), ) @register_event(events.Reply) @ensure_room_id_and_send async def _send_reply(self, reply): if isinstance(reply.linked_event, str): reply_event_id = reply.linked_event else: reply_event_id = reply.linked_event.event_id # TODO: Insert reply fallback here content = self._get_formatted_message_body( reply.text, msgtype=self.message_type(reply.target) ) content["m.relates_to"] = {"m.in_reply_to": {"event_id": reply_event_id}} return ( await self.connection.send_message_event( reply.target, "m.room.message", content ), ) @register_event(events.Reaction) @ensure_room_id_and_send async def _send_reaction(self, reaction): content = { "m.relates_to": { "rel_type": "m.annotation", "event_id": reaction.linked_event.event_id, "key": reaction.emoji, } } return await self.connection.send_message_event( reaction.target, "m.reaction", content ) async def _get_image_info(self, image): width, height = await image.get_dimensions() return { "w": width, "h": height, "mimetype": await image.get_mimetype(), "size": len(await image.get_file_bytes()), } async def _file_to_mxc_url(self, file_event): """Given a file event return the mxc url.""" uploaded = False mxc_url = None if file_event.url: url = urlparse(file_event.url) if url.scheme == "mxc": mxc_url = file_event.url if not mxc_url: mxc_url = await self.connection.media_upload( await file_event.get_file_bytes(), await file_event.get_mimetype() ) mxc_url = mxc_url["content_uri"] uploaded = True return mxc_url, uploaded @register_event(events.File) @register_event(events.Image) @ensure_room_id_and_send async def _send_file(self, file_event): mxc_url, uploaded = await self._file_to_mxc_url(file_event) if isinstance(file_event, events.Image): if uploaded: extra_info = await self._get_image_info(file_event) else: extra_info = {} msg_type = "m.image" else: extra_info = {} msg_type = "m.file" name = file_event.name or "opsdroid_upload" await self.connection.send_content( file_event.target, mxc_url, name, msg_type, extra_info ) @register_event(events.NewRoom) @ensure_room_id_and_send async def _send_room_creation(self, creation_event): params = creation_event.room_params params = params.get("matrix", params) response = await self.connection.create_room(**params) room_id = response["room_id"] if creation_event.name is not None: await self._send_room_name_set( events.RoomName(creation_event.name, target=room_id) ) return room_id @register_event(events.RoomName) @ensure_room_id_and_send async def _send_room_name_set(self, name_event): return await self.connection.set_room_name(name_event.target, name_event.name) @register_event(events.RoomAddress) @ensure_room_id_and_send async def _send_room_address(self, address_event): try: return await self.connection.set_room_alias( address_event.target, address_event.address ) except MatrixRequestError as err: if err.code == 409: _LOGGER.warning( f"A room with the alias {address_event.address} already exists." ) @register_event(events.JoinRoom) @ensure_room_id_and_send async def _send_join_room(self, join_event): return await self.connection.join_room(join_event.target) @register_event(events.UserInvite) @ensure_room_id_and_send async def _send_user_invitation(self, invite_event): try: return await self.connection.invite_user( invite_event.target, invite_event.user_id ) except MatrixRequestError as err: content = json.loads(err.content) if err.code == 403 and "is already in the room" in content["error"]: _LOGGER.info( f"{invite_event.user_id} is already in the room, ignoring." ) @register_event(events.RoomDescription) @ensure_room_id_and_send async def _send_room_desciption(self, desc_event): return await self.connection.set_room_topic( desc_event.target, desc_event.description ) @register_event(events.RoomImage) @ensure_room_id_and_send async def _send_room_image(self, image_event): mxc_url, _ = await self._file_to_mxc_url(image_event.room_image) return await image_event.respond(matrixevents.MatrixRoomAvatar(mxc_url)) @register_event(events.UserRole) @ensure_room_id_and_send async def _set_user_role(self, role_event): role = role_event.role room_id = role_event.target if isinstance(role, str) and role.lower() in ["mod", "moderator"]: power_level = 50 elif isinstance(role, str) and role.lower() in ["admin", "administrator"]: power_level = 100 else: try: power_level = int(role) except ValueError: raise ValueError("Role must be one of 'mod', 'admin', or an integer") power_levels = await self.connection.get_power_levels(room_id) power_levels["users"][role_event.user_id] = power_level return await role_event.respond(matrixevents.MatrixPowerLevels(power_levels)) @register_event(matrixevents.MatrixStateEvent, include_subclasses=True) @ensure_room_id_and_send async def _send_state_event(self, state_event): _LOGGER.debug(f"Sending State Event {state_event}") return await self.connection.send_state_event( state_event.target, state_event.key, state_event.content, state_key=state_event.state_key, )
35.590264
86
0.600479
8db988903536fe9e4678efde7bf4fff369886133
912
py
Python
tests/arithmetic/test_HalfAdder.py
jamesjiang52/Bitwise
c71f151d23034b3f9e2a939f637be0eaa16c45c3
[ "MIT" ]
null
null
null
tests/arithmetic/test_HalfAdder.py
jamesjiang52/Bitwise
c71f151d23034b3f9e2a939f637be0eaa16c45c3
[ "MIT" ]
null
null
null
tests/arithmetic/test_HalfAdder.py
jamesjiang52/Bitwise
c71f151d23034b3f9e2a939f637be0eaa16c45c3
[ "MIT" ]
null
null
null
import bitwise as bw class TestHalfAdder: def test_HalfAdder(self): input_1 = bw.wire.Wire() input_2 = bw.wire.Wire() carry_out = bw.wire.Wire() sum_ = bw.wire.Wire() a = bw.arithmetic.HalfAdder(input_1, input_2, carry_out, sum_) input_1.value = 0 input_2.value = 0 assert (carry_out.value, sum_.value) == (0, 0) input_1.value = 0 input_2.value = 1 assert (carry_out.value, sum_.value) == (0, 1) input_1.value = 1 input_2.value = 0 assert (carry_out.value, sum_.value) == (0, 1) input_1.value = 1 input_2.value = 1 assert (carry_out.value, sum_.value) == (1, 0) print(a.__doc__) print(a) a( a=0, b=0, carry_out=None, sum=None ) assert (carry_out.value, sum_.value) == (0, 0)
23.384615
70
0.520833
01809a8a4178e56ced1c5f5479613d597b6a57ff
821
py
Python
tests/app_multidb.py
mgorny/Flask-Migrate
dd389ba7a45b8a673c653346a15f8d08f4f2417f
[ "MIT" ]
1,992
2015-01-03T03:24:50.000Z
2022-03-27T15:28:30.000Z
tests/app_multidb.py
mgorny/Flask-Migrate
dd389ba7a45b8a673c653346a15f8d08f4f2417f
[ "MIT" ]
408
2015-01-12T09:44:02.000Z
2022-03-25T15:06:03.000Z
tests/app_multidb.py
mgorny/Flask-Migrate
dd389ba7a45b8a673c653346a15f8d08f4f2417f
[ "MIT" ]
248
2015-01-06T20:02:25.000Z
2022-03-11T03:03:47.000Z
#!/bin/env python from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app1.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_BINDS'] = { "db1": "sqlite:///app2.db", } db = SQLAlchemy(app) class User(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(128)) class Group(db.Model): __bind_key__ = 'db1' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(128)) migrate = Migrate(app, db) @app.cli.command() def add(): """Add test users.""" db.session.add(User(name='test')) db.session.add(Group(name='group')) db.session.commit() if __name__ == '__main__': app.run()
20.525
59
0.679659
c688f08823d343c4776ef2ea14f179fb4f931c3a
1,863
py
Python
coverage/IN_CTS/0487-COVERAGE-brw-fs-cmod-propagation-172-283/generate_cts_test.py
asuonpaa/ShaderTests
6a3672040dcfa0d164d313224446496d1775a15e
[ "Apache-2.0" ]
null
null
null
coverage/IN_CTS/0487-COVERAGE-brw-fs-cmod-propagation-172-283/generate_cts_test.py
asuonpaa/ShaderTests
6a3672040dcfa0d164d313224446496d1775a15e
[ "Apache-2.0" ]
47
2021-03-11T07:42:51.000Z
2022-03-14T06:30:14.000Z
coverage/IN_CTS/0487-COVERAGE-brw-fs-cmod-propagation-172-283/generate_cts_test.py
asuonpaa/ShaderTests
6a3672040dcfa0d164d313224446496d1775a15e
[ "Apache-2.0" ]
4
2021-03-09T13:37:19.000Z
2022-02-25T07:32:11.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2021 The GraphicsFuzz Project Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generate a CTS test. This module/script is copied next to a specific test in your repository of bugs to generate an Amber script test suitable for adding to the CTS. In particular, the Amber script test is suitable for use with |add_amber_tests_to_cts.py|. """ import sys from pathlib import Path from gfauto import tool, util def main() -> None: # Checklist: # - check output_amber # - check short_description # - check comment_text # - check copyright_year # - check extra_commands bug_dir = util.norm_path(Path(__file__).absolute()).parent tool.glsl_shader_job_crash_to_amber_script_for_google_cts( source_dir=bug_dir / "reduced_manual", output_amber=bug_dir / "cov-condition-loop-index-bitwise-not.amber", work_dir=bug_dir / "work", # One sentence, 58 characters max., no period, no line breaks. short_description="A fragment shader that covers specific BRW code paths", comment_text="""The test passes because the shader always writes red.""", copyright_year="2021", extra_commands=tool.AMBER_COMMAND_EXPECT_RED, is_coverage_gap=True, ) if __name__ == "__main__": main() sys.exit(0)
32.12069
90
0.71927
de258b6801cf4b679b86d972e6673552c9c3fef1
6,038
py
Python
btc/mining.py
guolinxin/bitcoin
f76764a4c22327538c94a442a2de5fadb229a5a6
[ "MIT" ]
3
2019-11-14T03:45:39.000Z
2021-08-02T14:24:27.000Z
btc/mining.py
guolinxin/bitcoin
f76764a4c22327538c94a442a2de5fadb229a5a6
[ "MIT" ]
1
2020-01-04T00:50:52.000Z
2020-01-13T20:08:59.000Z
btc/mining.py
guolinxin/bitcoin
f76764a4c22327538c94a442a2de5fadb229a5a6
[ "MIT" ]
4
2020-05-07T17:45:22.000Z
2021-12-03T05:30:52.000Z
#################################################### # # Utility functions supporting mining # # MIT license # # Copyright (c) 2018 christianb93 # Permission is hereby granted, free of charge, to # any person obtaining a copy of this software and # associated documentation files (the "Software"), # to deal in the Software without restriction, # including without limitation the rights to use, # copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY # OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # #################################################### from . import serialize from . import script from . import utils from . import txn from . import keys from . import block import binascii import time # # Check whether a given block has a valid PoW # Arguments: # - the block # - the global target # def checkPoW(block, bits): # # First determine the target in the block and verify that # the hash does not exceed it # h = block.getBlockHeader().getBlockHash(byteorder="big") h = int(h, 16) # # Do the same for the target # _bits = block.getBlockHeader().getBits() coefficient = (float)(_bits & 0xFFFFFF) size = _bits >> 24 target = int(coefficient * 2**(8*(size - 3))) if h > target: return False # # Next check that the block is in line with the global target # if bits != block.getBlockHeader().getBits(): return False return True # # Check a given block. Parameters: # - bits - current target in compact encoding (as an integer) # - currentLastBlock - hash of current last block (as returned by the RPC call # getblockchaininfo, i.e. in big endian) # This will NOT check the PoW! # def checkBlock(block, currentLastBlock): # # First check that the previous block ID is equal to the current # last block # if block.getBlockHeader().getPrevBlockId() != currentLastBlock: return False # # Next check that the first transaction is a coinbase transaction # tx = block.getTx() if 0 == len(tx): return False if tx[0].isCoinbase() == False: return False # # Check that no other transactions are coinbase transactions # for i in range(len(tx)): if i > 0: if tx[i].isCoinbase(): return False # # Check Merkle root # merkleRoot = utils.blockMerkleRoot(block) if merkleRoot != serialize.serializeString(block.getBlockHeader().getMerkleRoot(), 32): return False return True # # Create a coinbase transaction # Parameter: # - address - the address to be used for the transaction output # - coinbase value in Satoshi, including feeds # - the current height of the chain as integer # - an extra nonce as integer # def createCoinbaseTxn(address, currentHeight, coinbasevalue, extraNonce = 1): coinbase = txn.txn() publicKeyHash = keys.ecAddressToPKH(address) publicKeyHash = binascii.hexlify(publicKeyHash).decode('ascii') # # Create locking script # lockingScript = script.scriptPubKey(scriptType = script.SCRIPTTYPE_P2PKH, pubKeyHash = publicKeyHash) # # and output # txout = txn.txout(value = int(coinbasevalue), scriptPubKey = lockingScript) coinbase.addOutput(txout) # # Next we do the input. The previous transaction ID is all zeros # prevTxId = "".join(["0"]*64) # # The signature script. To be compliant with BIP34, we put the height first # scriptSig = script.scriptSig() scriptSig.pushData(serialize.serializeNumber(currentHeight + 1, 4)) # # We then add the extra nonce # scriptSig.pushData(serialize.serializeNumber(currentHeight + 1, 4)) # # and a signature ;-) # # scriptSig.pushData("cc") txin = txn.txin(prevTxid = prevTxId, vout=0xFFFFFFFF, scriptSig = scriptSig) coinbase.addInput(txin) return coinbase # # This creates a new block with a preliminary nonce, i.e. this # block will not yet pass the PoW test # Parameter: # - address - the address to be used for the transaction output # - coinbase value in Satoshi, including feeds # - the hash of the current last block # - the current height of the chain as integer # - bits in compact encoding # - tx - a list of transactions to become part of the block, not including # the coinbase transaction # - mintime - the minimum time to use for the block as provided by getblocktemplate def createNewBlock(address, currentLastBlockHash, currentHeight, coinbasevalue, bits, tx, mintime): # # First we build a block header # blockHeader = block.blockHeader(creationTime = mintime, prevBlockId = currentLastBlockHash, nonce = 1, bits = bits) # # Next we do the block # _block = block.block(blockHeader = blockHeader) # # add the coinbase transaction, followed by all other # transactions # _block.addTxn(createCoinbaseTxn(address, currentHeight, coinbasevalue)) for _tx in tx: _block.addTxn(_tx) assert(False == _tx.isCoinbase()) _block.updateMerkleRoot() return _block
31.123711
99
0.6527
d85f8fab04f8af4092421ac1e2b249f8cdcfaba1
3,233
py
Python
vision/google/cloud/vision/helpers.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
1
2021-01-04T11:40:17.000Z
2021-01-04T11:40:17.000Z
vision/google/cloud/vision/helpers.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
vision/google/cloud/vision/helpers.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
# Copyright 2017, Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import io from google.gax.utils import protobuf class VisionHelpers(object): """A set of convenience methods to make the Vision GAPIC easier to use. This class should be considered abstract; it is used as a superclass in a multiple-inheritance construction alongside the applicable GAPIC. See the :class:`~google.cloud.vision_v1.ImageAnnotatorClient`. """ def annotate_image(self, request, options=None): """Run image detection and annotation for an image. Example: >>> from google.cloud.vision_v1 import ImageAnnotatorClient >>> client = ImageAnnotatorClient() >>> request = { ... 'image': { ... 'source': {'image_uri': 'https://foo.com/image.jpg'}, ... }, ... } >>> response = client.annotate_image(request) Args: request (:class:`~.vision_v1.types.AnnotateImageRequest`) options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries, etc. Returns: :class:`~.vision_v1.types.AnnotateImageResponse` The API response. """ # If the image is a file handler, set the content. image = protobuf.get(request, 'image') if hasattr(image, 'read'): img_bytes = image.read() protobuf.set(request, 'image', {}) protobuf.set(request, 'image.content', img_bytes) image = protobuf.get(request, 'image') # If a filename is provided, read the file. filename = protobuf.get(image, 'source.filename', default=None) if filename: with io.open(filename, 'rb') as img_file: protobuf.set(request, 'image.content', img_file.read()) protobuf.set(request, 'image.source', None) # This method allows features not to be specified, and you get all # of them. protobuf.setdefault(request, 'features', self._get_all_features()) r = self.batch_annotate_images([request], options=options) return r.responses[0] def _get_all_features(self): """Return a list of all features. Returns: list: A list of all available features. """ answer = [] for key, value in self.enums.Feature.Type.__dict__.items(): if key.upper() != key: continue if not isinstance(value, int) or value == 0: continue answer.append({'type': value}) return answer
38.488095
78
0.622951
f2019625c49ac4c3ef14d273fff40748938634a6
2,147
py
Python
train_heuristic.py
ayusher/othello-rl
38fb2f015199d15dc023b123cae1b16076f14ad3
[ "MIT" ]
null
null
null
train_heuristic.py
ayusher/othello-rl
38fb2f015199d15dc023b123cae1b16076f14ad3
[ "MIT" ]
null
null
null
train_heuristic.py
ayusher/othello-rl
38fb2f015199d15dc023b123cae1b16076f14ad3
[ "MIT" ]
null
null
null
#import tensorflow as tf import os import sys import pickle import binascii #import neat import numpy as np import random import threading from multiprocessing import Process, Lock import multiprocessing import time from agents import MCTS_agent, random_agent, deep_agent, alphabeta_agent, deep_alphabeta_agent, self_play_agent from collections import Counter import othello from othello import Othello def play_game(l, agents): board = Othello() #fname = "logs/"+binascii.b2a_hex(os.urandom(15)).decode('utf-8')+".txt" fname="" board.print() turn = 1 while True: agent = agents[turn-1] #print(type(agent).__name__, set(board.legal_moves(turn))) agent.search(board) board = agent.move(board) board.print() if board.is_terminal(): break if turn==1: turn=2 elif turn==2: turn=1 winner = board.get_winner() if winner == None: l.append("tie") else: l.append(type(agents[board.get_winner()-1]).__name__+str(winner)) if __name__=="__main__": ''' jobs = [] manager = multiprocessing.Manager() return_list = manager.list() for _ in range(multiprocessing.cpu_count()): jobs.append(Process(target=play_game, args=(return_list, [minimax_agent(), MCTS_agent()], ))) for j in jobs: j.start() for j in jobs: j.join() d = dict(Counter(return_list)) total = sum(list(d.values())) for k in d: d[k]=d[k]/total print("{} win rate: {:.2f}%".format(k, 100*d[k])) print(d) ''' if len(sys.argv)>1: ti = float(sys.argv[1]) else: ti = 10 outcome = [] #players = [MCTS_agent, random_agent, deep_agent, alphabeta_agent, deep_alphabeta_agent, self_play_agent] #for p in range(len(players)): # print("[{}] {}".format(p, players[p])) #p1 = int(input("black ")) #p2 = int(input("white ")) p1, p2 = deep_agent(ti), deep_agent(ti) for _ in range(100): play_game(outcome, [p1, p2]) play_game(outcome, [p2, p1]) print(outcome)
24.678161
112
0.605962
a0396ad2253edd3d4ae8f60106cba24056e33bdd
403
py
Python
preprocess.py
MasiCal354/fakenewsapi
b8eff1cd263a1595a13ad12b0173c19804890900
[ "Apache-2.0" ]
null
null
null
preprocess.py
MasiCal354/fakenewsapi
b8eff1cd263a1595a13ad12b0173c19804890900
[ "Apache-2.0" ]
null
null
null
preprocess.py
MasiCal354/fakenewsapi
b8eff1cd263a1595a13ad12b0173c19804890900
[ "Apache-2.0" ]
null
null
null
from models import tokenizer from utils import denoise_text from keras.preprocessing import sequence import numpy as np maxlen = 300 def fake_news_preprocess(payload): text = payload.text + ' ' + payload.title text = denoise_text(text) tokenized_text = tokenizer.texts_to_sequences(np.array([text])) vector = sequence.pad_sequences(tokenized_text, maxlen=maxlen) return vector
28.785714
67
0.759305
8d5cd2c6bdf879b77bd39d65959ca730ef658143
860
py
Python
src/settings.py
sbadecker/ask_me_anything
b030947bb02d80b09112ed37c5529a5b2d87227e
[ "MIT" ]
2
2021-10-09T19:59:31.000Z
2022-01-18T05:46:30.000Z
src/settings.py
sbadecker/ask_me_anything
b030947bb02d80b09112ed37c5529a5b2d87227e
[ "MIT" ]
null
null
null
src/settings.py
sbadecker/ask_me_anything
b030947bb02d80b09112ed37c5529a5b2d87227e
[ "MIT" ]
null
null
null
from pydantic import Field from src.secret_manager import SecretSettings class ProdSettings(SecretSettings): SECRET_HEALTH_CHECK: str = Field(..., from_secrets=True) READER_MODEL_NAME: str = Field(..., from_secrets=True) DOCUMENT_EMBEDDINGS_BUCKET_NAME: str = Field(..., from_secrets=True) DOCUMENT_EMBEDDINGS_FILE_NAME: str = Field(..., from_secrets=True) DPR_PASSAGE_ENCODER_NAME: str = Field(..., from_secrets=True) DPR_QUERY_ENCODER_NAME: str = Field(..., from_secrets=True) DB_NAME: str = Field(..., from_secrets=True) DB_HOST: str = Field(..., from_secrets=True) DB_USER: str = Field(..., from_secrets=True) DB_PASSWORD: str = Field(..., from_secrets=True) CLOUD_SQL_CONNECTION_NAME: str = Field(..., from_secrets=True) USE_UNIX_SOCKET: bool = Field(..., from_secrets=False) settings = ProdSettings()
39.090909
72
0.719767
17732649227d9ea9c74ac5309860c1bb28586e86
3,017
py
Python
pyqtgraph/exporters/CSVExporter.py
leo603222/fix-displace-between-selection-area-and-mouse-pos
1f9031884a980432795b69487bd659f5e4ef91aa
[ "MIT" ]
2,762
2015-01-02T14:34:10.000Z
2022-03-30T14:06:07.000Z
pyqtgraph/exporters/CSVExporter.py
leo603222/fix-displace-between-selection-area-and-mouse-pos
1f9031884a980432795b69487bd659f5e4ef91aa
[ "MIT" ]
1,901
2015-01-12T03:20:30.000Z
2022-03-31T16:33:36.000Z
pyqtgraph/exporters/CSVExporter.py
leo603222/fix-displace-between-selection-area-and-mouse-pos
1f9031884a980432795b69487bd659f5e4ef91aa
[ "MIT" ]
1,038
2015-01-01T04:05:49.000Z
2022-03-31T11:57:51.000Z
# -*- coding: utf-8 -*- from ..Qt import QtCore from .Exporter import Exporter from ..parametertree import Parameter from .. import PlotItem translate = QtCore.QCoreApplication.translate __all__ = ['CSVExporter'] class CSVExporter(Exporter): Name = "CSV from plot data" windows = [] def __init__(self, item): Exporter.__init__(self, item) self.params = Parameter(name='params', type='group', children=[ {'name': 'separator', 'title': translate("Exporter", 'separator'), 'type': 'list', 'value': 'comma', 'limits': ['comma', 'tab']}, {'name': 'precision', 'title': translate("Exporter", 'precision'), 'type': 'int', 'value': 10, 'limits': [0, None]}, {'name': 'columnMode', 'title': translate("Exporter", 'columnMode'), 'type': 'list', 'limits': ['(x,y) per plot', '(x,y,y,y) for all plots']} ]) def parameters(self): return self.params def export(self, fileName=None): if not isinstance(self.item, PlotItem): raise Exception("Must have a PlotItem selected for CSV export.") if fileName is None: self.fileSaveDialog(filter=["*.csv", "*.tsv"]) return data = [] header = [] appendAllX = self.params['columnMode'] == '(x,y) per plot' for i, c in enumerate(self.item.curves): cd = c.getData() if cd[0] is None: continue data.append(cd) if hasattr(c, 'implements') and c.implements('plotData') and c.name() is not None: name = c.name().replace('"', '""') + '_' xName, yName = '"'+name+'x"', '"'+name+'y"' else: xName = 'x%04d' % i yName = 'y%04d' % i if appendAllX or i == 0: header.extend([xName, yName]) else: header.extend([yName]) if self.params['separator'] == 'comma': sep = ',' else: sep = '\t' with open(fileName, 'w') as fd: fd.write(sep.join(map(str, header)) + '\n') i = 0 numFormat = '%%0.%dg' % self.params['precision'] numRows = max([len(d[0]) for d in data]) for i in range(numRows): for j, d in enumerate(data): # write x value if this is the first column, or if we want # x for all rows if appendAllX or j == 0: if d is not None and i < len(d[0]): fd.write(numFormat % d[0][i] + sep) else: fd.write(' %s' % sep) # write y value if d is not None and i < len(d[1]): fd.write(numFormat % d[1][i] + sep) else: fd.write(' %s' % sep) fd.write('\n') CSVExporter.register()
35.494118
153
0.472655
7602e935ed1a9648be13e325b1689237e6b378d2
6,165
py
Python
previous code/shishi_shuiqing-1.py
hyywestwood/Spider-of-Water-data
f9be30ac787251d221e3e85a24b9a8a84a12e6a8
[ "MIT" ]
2
2021-03-26T05:18:44.000Z
2021-03-31T14:14:11.000Z
previous code/shishi_shuiqing-1.py
hyywestwood/Spider-of-Water-data
f9be30ac787251d221e3e85a24b9a8a84a12e6a8
[ "MIT" ]
1
2021-08-31T08:44:49.000Z
2021-08-31T08:44:49.000Z
previous code/shishi_shuiqing-1.py
hyywestwood/Spider-of-Water-data
f9be30ac787251d221e3e85a24b9a8a84a12e6a8
[ "MIT" ]
1
2021-03-26T05:18:46.000Z
2021-03-26T05:18:46.000Z
# -*- coding: utf-8 -*- # @Time : 2019/4/24 19:33 # @Author : hyy # @Email : 1554148540@qq.com # @File : dongtai_ceshi.py # @Software: PyCharm import requests from selenium import webdriver from bs4 import BeautifulSoup import os import time import random import smtplib from email.mime.text import MIMEText from email.header import Header import datetime from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By def email_send(text, time): sender = ' 3140105713@zju.edu.cn' receivers = ['1554148540@qq.com'] # 接收邮件,可设置为你的QQ邮箱或者其他邮箱 mail_host = "smtp.zju.edu.cn" # 设置服务器 mail_user = "3140105713@zju.edu.cn" # 用户名 mail_pass = "5896westwood" # 口令 # 三个参数:第一个为文本内容,第二个 plain 设置文本格式,第三个 utf-8 设置编码 message = MIMEText(text, 'plain', 'utf-8') message['From'] = Header("江河数据", 'utf-8') # 发送者 message['To'] = Header("hyy", 'utf-8') # 接收者 subject = '大江大河水情获取情况' + time message['Subject'] = Header(subject, 'utf-8') try: smtpObj = smtplib.SMTP() smtpObj.connect(mail_host, 25) # 25 为 SMTP 端口号 smtpObj.login(mail_user, mail_pass) smtpObj.sendmail(sender, receivers, message.as_string()) print("邮件发送成功") except smtplib.SMTPException: print("Error: 无法发送邮件") def get_data(url): retry_count = 3 proxy = get_proxy() # 设置代理服务器 try: IP, PORT = proxy.decode('utf-8').split(':') except Exception: print('可用代理为空,等待5分钟') time.sleep(60*5) return None profile = webdriver.FirefoxOptions() # profile.add_argument('-headless') # 设置无头模式 profile.set_preference('network.proxy.type', 1) profile.set_preference('network.proxy.http', IP) # IP为你的代理服务器地址:如‘127.0.0.0’,字符串类型 profile.set_preference('network.proxy.http_port', int(PORT)) # PORT为代理服务器端口号:如,9999,整数类型 while retry_count > 0: try: driver = webdriver.Firefox(options=profile) time.sleep(15) driver.set_page_load_timeout(75) #设置等待时间,保险起见,设为75秒 driver.set_script_timeout(75) driver.get(url) element = WebDriverWait(driver, 15).until(EC.presence_of_element_located((By.CLASS_NAME, 'row'))) time.sleep(random.uniform(1, 20)) #在当前页面随机停留一段时间 html = driver.page_source bf = BeautifulSoup(html, 'html.parser') data = bf.find_all('tr') driver.close() return data except Exception: print('错误发生,重新尝试获取,剩余次数{}'.format(retry_count-1)) retry_count -= 1 driver.close() delete_proxy(proxy) print('代理节点:{}:{}不可用,已删除'.format(IP,PORT)) return None def get_proxy(): return requests.get("http://127.0.0.1:5010/get/").content def delete_proxy(proxy): requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy)) def trans(a): data = [] for i in range(1,len(a)): d_str = a[i].text d_str = d_str.replace('↑', '') d_str = d_str.replace('↓', '') d_str = d_str.replace('—', '') d_str = d_str.replace('\xa0', '') d_str = d_str.rstrip()[1:len(d_str)] data.append(d_str.split('\n')) return data def write_data(a, flag, a_ex): # 对数据a,a_ex进行处理 data = trans(a) data1 = trans(a_ex) dizhi = [x[3] for x in data1] #记录已有地址和时间 shijian = [x[4] for x in data1] # 使用列表解析读取二维列表的单独列 [x[0] for x in data] # 新爬取结果与旧数据对比,将更新的结果写入文件 for hang in data: print(hang) if dizhi.count(hang[3]) != 0: #地址存在 index = dizhi.index(hang[3]) #标记索引 if hang[4] != shijian[index]: with open(path1 + '\\大江大河实时水情\\' + hang[0] + '\\' + '{}-{}-{}.txt'.format(hang[1], hang[2], hang[3]), 'a',encoding='utf-8') as f: f.write('{}\t{}\t{}\t{} \n'.format(time.strftime("%Y-", time.localtime()) + hang[4], hang[5], hang[6],hang[7])) else: # 当地址不存在时,创建新文件 with open(path1 + '\\大江大河实时水情\\' + hang[0] + '\\' + '{}-{}-{}.txt'.format(hang[1], hang[2], hang[3]), 'w', encoding='utf-8') as f: f.write('{}\t{}\t{}\t{} \n'.format('时间', '水位(米)', '流量(m^3/s)', '警戒水位(米)')) a_ex = a flag += 1 if flag % 6 == 1: run_stage = '爬取时间:{}'.format(time.strftime("%Y-", time.localtime()) + data[1][4]) email_send(run_stage, data[1][4]) # pass now = datetime.datetime.now() sleep_time = 3600*6 + random.uniform(1, 3600*4) # sleep_time = random.uniform(1, 8) end = now + datetime.timedelta(days=sleep_time / 86400) print('开始休眠,将休眠至:{}'.format(end)) time.sleep(sleep_time) return flag, a_ex if __name__ == '__main__': path1 = os.path.abspath('.') # 获取当前脚本所在的路径 folder = os.path.exists(path1 + '\\大江大河实时水情') if not folder: os.makedirs(path1 + '\\大江大河实时水情') print('爬虫开始运行') url = 'http://ditu.92cha.com/shuiqing.php?w=hd' a_ex = None while a_ex == None: a_ex = get_data(url) # a = get_data(url) # for i in range(1,len(a)): # d_str = a[i].text # d_str = d_str.replace('↑', '') # d_str = d_str.replace('↓', '') # d_str = d_str.replace('—', '') # d_str = d_str.replace('\xa0', '') # d_str = d_str.rstrip()[1:len(d_str)] # data = d_str.split('\n') # folder = os.path.exists(path1 + '\\大江大河实时水情\\'+ data[0]) # if not folder: # os.makedirs(path1 + '\\大江大河实时水情\\'+ data[0]) # with open(path1 + '\\大江大河实时水情\\'+ data[0] + '\\' + '{}-{}-{}.txt'.format(data[1],data[2],data[3]), 'w', encoding='utf-8') as f: # f.write('{}\t{}\t{}\t{} \n'.format('时间', '水位(米)', '流量(m^3/s)', '警戒水位(米)')) # f.write('{}\t{}\t{}\t{} \n'.format(data[4], data[5], data[6], data[7])) # print('初始数据爬取完成') flag = 0 while True: a = None while a == None: a = get_data(url) flag, a_ex = write_data(a, flag, a_ex)
34.441341
137
0.560584
806a79dbf5fea18d2e6b8f200a63b6e529691d02
2,606
py
Python
examples/inference/standard_bfgs_demo.py
nticea/superhawkes
cbaec7c4aae7ced71ec68f6d69cc516bc19ace5a
[ "MIT" ]
221
2015-02-26T04:25:34.000Z
2022-03-27T13:06:10.000Z
examples/inference/standard_bfgs_demo.py
nticea/superhawkes
cbaec7c4aae7ced71ec68f6d69cc516bc19ace5a
[ "MIT" ]
20
2015-08-04T01:47:19.000Z
2021-08-08T00:22:44.000Z
examples/inference/standard_bfgs_demo.py
nticea/superhawkes
cbaec7c4aae7ced71ec68f6d69cc516bc19ace5a
[ "MIT" ]
86
2015-02-22T23:36:32.000Z
2021-11-13T20:56:07.000Z
import numpy as np import matplotlib.pyplot as plt from pyhawkes.models import DiscreteTimeNetworkHawkesModelSpikeAndSlab, DiscreteTimeStandardHawkesModel from pyhawkes.utils.basis import IdentityBasis def sample_from_network_hawkes(K, T, dt, dt_max, B): # Create a true model true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, B=B, network_hypers=dict(p=0.1)) # Plot the true network plt.ion() true_model.plot_network() # Sample from the true model S,R = true_model.generate(T=T) # Return the spike count matrix return S, true_model def demo(seed=None): """ Create a discrete time Hawkes model and generate from it. :return: """ if seed is None: seed = np.random.randint(2**32) print("Setting seed to ", seed) np.random.seed(seed) K = 5 # Number of nodes T = 10000 # Number of time bins to simulate dt = 1 # Time bin size dt_max = 50 # Impulse response length B = 1 # Number of basis functions # Sample from a sparse network Hawkes model S, true_model = sample_from_network_hawkes(K, T, dt, dt_max, B) # Make a new model for inference # test_basis = IdentityBasis(dt, dt_max, allow_instantaneous=False) test_basis = true_model.basis test_model = DiscreteTimeStandardHawkesModel(K=K, dt=dt, dt_max=dt_max+dt, beta=1.0, basis=test_basis, allow_self_connections=True) test_model.add_data(S) # DEBUG: Initialize with the true parameters of the network Hawkes model # test_model.initialize_with_gibbs_model(true_model) test_model.fit_with_bfgs() print("lambda0 true: ", true_model.bias_model.lambda0) print("lambda0 test ", test_model.bias) print("") print("W true: ", true_model.weight_model.A * true_model.weight_model.W) print("W test: ", test_model.W) print("") print("ll true: ", true_model.log_likelihood()) print("ll test: ", test_model.log_likelihood()) # test_model.plot_network() # Plot the rates plt.figure() for k in range(3): plt.subplot(3,1,k+1) plt.plot(np.arange(T) * dt, true_model.compute_rate(proc=k), '-b') plt.plot(np.arange(T) * dt, test_model.compute_rate(ks=k), '-r') lim = plt.ylim() plt.ylim(0, 1.25*lim[1]) plt.ioff() plt.show() demo(11223344)
31.780488
103
0.613584
006b8bf67fae2bd521f0b0c7c4eb7f2c082f384a
1,555
py
Python
wsgi_basic/service.py
QthCN/wsgi-basic
e080304aeaa9922fc9367dbb5cb57a7ab9494b38
[ "Apache-2.0" ]
null
null
null
wsgi_basic/service.py
QthCN/wsgi-basic
e080304aeaa9922fc9367dbb5cb57a7ab9494b38
[ "Apache-2.0" ]
null
null
null
wsgi_basic/service.py
QthCN/wsgi-basic
e080304aeaa9922fc9367dbb5cb57a7ab9494b38
[ "Apache-2.0" ]
null
null
null
import functools import sys from oslo_config import cfg from oslo_log import log from paste import deploy import routes from wsgi_basic import controllers from wsgi_basic import routers from wsgi_basic.common import wsgi from wsgi_basic.token import routers as token_routers from wsgi_basic.user import routers as user_routers CONF = cfg.CONF LOG = log.getLogger(__name__) def loadapp(conf, name): # NOTE(blk-u): Save the application being loaded in the controllers module. # This is similar to how public_app_factory() and v3_app_factory() # register the version with the controllers module. controllers.latest_app = deploy.loadapp(conf, name=name) return controllers.latest_app def fail_gracefully(f): """Logs exceptions and aborts.""" @functools.wraps(f) def wrapper(*args, **kw): try: return f(*args, **kw) except Exception as e: LOG.debug(e, exc_info=True) # exception message is printed to all logs LOG.critical(e) sys.exit(1) return wrapper @fail_gracefully def public_app_factory(global_conf, **local_conf): return wsgi.ComposingRouter(routes.Mapper(), [token_routers.Router(), user_routers.Router(), routers.Versions('public')]) @fail_gracefully def public_version_app_factory(global_conf, **local_conf): return wsgi.ComposingRouter(routes.Mapper(), [routers.Versions('public')])
26.810345
79
0.663023
3697d8af12d7877985f4330d902365e7784fe721
1,848
py
Python
reports/tests/test_models.py
Igorishe/Report_Traker
886da5d5dd40247779a76611cf6b66cb95963ad7
[ "MIT" ]
null
null
null
reports/tests/test_models.py
Igorishe/Report_Traker
886da5d5dd40247779a76611cf6b66cb95963ad7
[ "MIT" ]
null
null
null
reports/tests/test_models.py
Igorishe/Report_Traker
886da5d5dd40247779a76611cf6b66cb95963ad7
[ "MIT" ]
null
null
null
from django.test import TestCase from reports.models import MobinetReport, MoneyBack, Report class ReportModelTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() Report.objects.create( text='Текст больше 15 знаков', author=123144, author_name="author_username", ) cls.task = Report.objects.get(text='Текст больше 15 знаков') def test_str_field(self): """Отображение поля __str__ объекта task""" task = ReportModelTest.task expected_object_name = task.text[:12] self.assertEquals(expected_object_name, str(task)) class MobinetReportModelTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() MobinetReport.objects.create( text='Текст больше 15 знаков', author=123144, author_name="author_username", ) cls.task = MobinetReport.objects.get(text='Текст больше 15 знаков') def test_str_field(self): """Отображение поля __str__ объекта task""" task = MobinetReportModelTest.task expected_object_name = task.text[:12] self.assertEquals(expected_object_name, str(task)) class MoneyBackModelTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() MoneyBack.objects.create( text='Текст больше 15 знаков', author=123144, author_name="author_username", value="123.00", link="128542", ) cls.task = MoneyBack.objects.get(text='Текст больше 15 знаков') def test_str_field(self): """Отображение поля __str__ объекта task""" task = MoneyBackModelTest.task expected_object_name = task.text[:12] self.assertEquals(expected_object_name, str(task))
30.8
75
0.636905
f513507fe684849e95f9dcc82113402d9fe8db59
79,419
py
Python
Packs/Base/Scripts/CommonServerPython/CommonServerPython_test.py
salgattpx/content
d225c92df633b1cfc6abb7dbead4d39dec905f72
[ "MIT" ]
null
null
null
Packs/Base/Scripts/CommonServerPython/CommonServerPython_test.py
salgattpx/content
d225c92df633b1cfc6abb7dbead4d39dec905f72
[ "MIT" ]
null
null
null
Packs/Base/Scripts/CommonServerPython/CommonServerPython_test.py
salgattpx/content
d225c92df633b1cfc6abb7dbead4d39dec905f72
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import demistomock as demisto import copy import json import re import os import sys import requests from pytest import raises, mark import pytest from CommonServerPython import xml2json, json2xml, entryTypes, formats, tableToMarkdown, underscoreToCamelCase, \ flattenCell, date_to_timestamp, datetime, camelize, pascalToSpace, argToList, \ remove_nulls_from_dictionary, is_error, get_error, hash_djb2, fileResult, is_ip_valid, get_demisto_version, \ IntegrationLogger, parse_date_string, IS_PY3, DebugLogger, b64_encode, parse_date_range, return_outputs, \ argToBoolean, ipv4Regex, ipv4cidrRegex, ipv6cidrRegex, ipv6Regex, batch, FeedIndicatorType, \ encode_string_results, safe_load_json, remove_empty_elements, aws_table_to_markdown, is_demisto_version_ge, \ appendContext, auto_detect_indicator_type, handle_proxy try: from StringIO import StringIO except ImportError: # Python 3 from io import StringIO # noqa INFO = {'b': 1, 'a': { 'safd': 3, 'b': [ {'c': {'d': 432}, 'd': 2}, {'c': {'f': 1}}, {'b': 1234}, {'c': {'d': 4567}}, {'c': {'d': 11}}, {'c': {'d': u'asdf'}}], 'c': {'d': 10}, } } @pytest.fixture() def clear_version_cache(): """ Clear the version cache at end of the test (in case we mocked demisto.serverVersion) """ yield if hasattr(get_demisto_version, '_version'): delattr(get_demisto_version, '_version') def test_xml(): import json xml = b"<work><employee><id>100</id><name>foo</name></employee><employee><id>200</id><name>goo</name>" \ b"</employee></work>" jsonExpected = '{"work": {"employee": [{"id": "100", "name": "foo"}, {"id": "200", "name": "goo"}]}}' jsonActual = xml2json(xml) assert jsonActual == jsonExpected, "expected\n" + jsonExpected + "\n to equal \n" + jsonActual jsonDict = json.loads(jsonActual) assert jsonDict['work']['employee'][0]['id'] == "100", 'id of first employee must be 100' assert jsonDict['work']['employee'][1]['name'] == "goo", 'name of second employee must be goo' xmlActual = json2xml(jsonActual) assert xmlActual == xml, "expected:\n{}\nto equal:\n{}".format(xml, xmlActual) def toEntry(table): return { 'Type': entryTypes['note'], 'Contents': table, 'ContentsFormat': formats['table'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': table } DATA = [ { 'header_1': 'a1', 'header_2': 'b1', 'header_3': 'c1' }, { 'header_1': 'a2', 'header_2': 'b2', 'header_3': 'c2' }, { 'header_1': 'a3', 'header_2': 'b3', 'header_3': 'c3' }, ] def test_tbl_to_md_only_data(): # sanity table = tableToMarkdown('tableToMarkdown test', DATA) expected_table = '''### tableToMarkdown test |header_1|header_2|header_3| |---|---|---| | a1 | b1 | c1 | | a2 | b2 | c2 | | a3 | b3 | c3 | ''' assert table == expected_table def test_tbl_to_md_header_transform_underscoreToCamelCase(): # header transform table = tableToMarkdown('tableToMarkdown test with headerTransform', DATA, headerTransform=underscoreToCamelCase) expected_table = '''### tableToMarkdown test with headerTransform |Header1|Header2|Header3| |---|---|---| | a1 | b1 | c1 | | a2 | b2 | c2 | | a3 | b3 | c3 | ''' assert table == expected_table def test_tbl_to_md_multiline(): # escaping characters: multiline + md-chars data = copy.deepcopy(DATA) for i, d in enumerate(data): d['header_2'] = 'b%d.1\nb%d.2' % (i + 1, i + 1,) d['header_3'] = 'c%d|1' % (i + 1,) table = tableToMarkdown('tableToMarkdown test with multiline', data) expected_table = '''### tableToMarkdown test with multiline |header_1|header_2|header_3| |---|---|---| | a1 | b1.1<br>b1.2 | c1\|1 | | a2 | b2.1<br>b2.2 | c2\|1 | | a3 | b3.1<br>b3.2 | c3\|1 | ''' assert table == expected_table def test_tbl_to_md_url(): # url + empty data data = copy.deepcopy(DATA) for i, d in enumerate(data): d['header_3'] = '[url](https:\\demisto.com)' d['header_2'] = None table_url_missing_info = tableToMarkdown('tableToMarkdown test with url and missing info', data) expected_table_url_missing_info = '''### tableToMarkdown test with url and missing info |header_1|header_2|header_3| |---|---|---| | a1 | | [url](https:\\demisto.com) | | a2 | | [url](https:\\demisto.com) | | a3 | | [url](https:\\demisto.com) | ''' assert table_url_missing_info == expected_table_url_missing_info def test_tbl_to_md_single_column(): # single column table table_single_column = tableToMarkdown('tableToMarkdown test with single column', DATA, ['header_1']) expected_table_single_column = '''### tableToMarkdown test with single column |header_1| |---| | a1 | | a2 | | a3 | ''' assert table_single_column == expected_table_single_column def test_is_ip_valid(): valid_ip_v6 = "FE80:0000:0000:0000:0202:B3FF:FE1E:8329" valid_ip_v6_b = "FE80::0202:B3FF:FE1E:8329" invalid_ip_v6 = "KKKK:0000:0000:0000:0202:B3FF:FE1E:8329" valid_ip_v4 = "10.10.10.10" invalid_ip_v4 = "10.10.10.9999" invalid_not_ip_with_ip_structure = "1.1.1.1.1.1.1.1.1.1.1.1.1.1.1" not_ip = "Demisto" assert not is_ip_valid(valid_ip_v6) assert is_ip_valid(valid_ip_v6, True) assert is_ip_valid(valid_ip_v6_b, True) assert not is_ip_valid(invalid_ip_v6, True) assert not is_ip_valid(not_ip, True) assert is_ip_valid(valid_ip_v4) assert not is_ip_valid(invalid_ip_v4) assert not is_ip_valid(invalid_not_ip_with_ip_structure) def test_tbl_to_md_list_values(): # list values data = copy.deepcopy(DATA) for i, d in enumerate(data): d['header_3'] = [i + 1, 'second item'] d['header_2'] = 'hi' table_list_field = tableToMarkdown('tableToMarkdown test with list field', data) expected_table_list_field = '''### tableToMarkdown test with list field |header_1|header_2|header_3| |---|---|---| | a1 | hi | 1,<br>second item | | a2 | hi | 2,<br>second item | | a3 | hi | 3,<br>second item | ''' assert table_list_field == expected_table_list_field def test_tbl_to_md_empty_fields(): # all fields are empty data = [ { 'a': None, 'b': None, 'c': None, } for _ in range(3) ] table_all_none = tableToMarkdown('tableToMarkdown test with all none fields', data) expected_table_all_none = '''### tableToMarkdown test with all none fields |a|b|c| |---|---|---| | | | | | | | | | | | | ''' assert table_all_none == expected_table_all_none # all fields are empty - removed table_all_none2 = tableToMarkdown('tableToMarkdown test with all none fields2', data, removeNull=True) expected_table_all_none2 = '''### tableToMarkdown test with all none fields2 **No entries.** ''' assert table_all_none2 == expected_table_all_none2 def test_tbl_to_md_header_not_on_first_object(): # header not on first object data = copy.deepcopy(DATA) data[1]['extra_header'] = 'sample' table_extra_header = tableToMarkdown('tableToMarkdown test with extra header', data, headers=['header_1', 'header_2', 'extra_header']) expected_table_extra_header = '''### tableToMarkdown test with extra header |header_1|header_2|extra_header| |---|---|---| | a1 | b1 | | | a2 | b2 | sample | | a3 | b3 | | ''' assert table_extra_header == expected_table_extra_header def test_tbl_to_md_no_header(): # no header table_no_headers = tableToMarkdown('tableToMarkdown test with no headers', DATA, headers=['no', 'header', 'found'], removeNull=True) expected_table_no_headers = '''### tableToMarkdown test with no headers **No entries.** ''' assert table_no_headers == expected_table_no_headers def test_tbl_to_md_dict_value(): # dict value data = copy.deepcopy(DATA) data[1]['extra_header'] = {'sample': 'qwerty', 'sample2': 'asdf'} table_dict_record = tableToMarkdown('tableToMarkdown test with dict record', data, headers=['header_1', 'header_2', 'extra_header']) expected_dict_record = '''### tableToMarkdown test with dict record |header_1|header_2|extra_header| |---|---|---| | a1 | b1 | | | a2 | b2 | sample: qwerty<br>sample2: asdf | | a3 | b3 | | ''' assert table_dict_record == expected_dict_record def test_tbl_to_md_string_header(): # string header (instead of list) table_string_header = tableToMarkdown('tableToMarkdown string header', DATA, 'header_1') expected_string_header_tbl = '''### tableToMarkdown string header |header_1| |---| | a1 | | a2 | | a3 | ''' assert table_string_header == expected_string_header_tbl def test_tbl_to_md_list_of_strings_instead_of_dict(): # list of string values instead of list of dict objects table_string_array = tableToMarkdown('tableToMarkdown test with string array', ['foo', 'bar', 'katz'], ['header_1']) expected_string_array_tbl = '''### tableToMarkdown test with string array |header_1| |---| | foo | | bar | | katz | ''' assert table_string_array == expected_string_array_tbl def test_tbl_to_md_list_of_strings_instead_of_dict_and_string_header(): # combination: string header + string values list table_string_array_string_header = tableToMarkdown('tableToMarkdown test with string array and string header', ['foo', 'bar', 'katz'], 'header_1') expected_string_array_string_header_tbl = '''### tableToMarkdown test with string array and string header |header_1| |---| | foo | | bar | | katz | ''' assert table_string_array_string_header == expected_string_array_string_header_tbl def test_tbl_to_md_dict_with_special_character(): data = { 'header_1': u'foo', 'header_2': [u'\xe2.rtf'] } table_with_character = tableToMarkdown('tableToMarkdown test with special character', data) expected_string_with_special_character = '''### tableToMarkdown test with special character |header_1|header_2| |---|---| | foo | â.rtf | ''' assert table_with_character == expected_string_with_special_character def test_tbl_to_md_header_with_special_character(): data = { 'header_1': u'foo' } table_with_character = tableToMarkdown('tableToMarkdown test with special character Ù', data) expected_string_with_special_character = '''### tableToMarkdown test with special character Ù |header_1| |---| | foo | ''' assert table_with_character == expected_string_with_special_character def test_flatten_cell(): # sanity utf8_to_flatten = b'abcdefghijklmnopqrstuvwxyz1234567890!'.decode('utf8') flatten_text = flattenCell(utf8_to_flatten) expected_string = 'abcdefghijklmnopqrstuvwxyz1234567890!' assert flatten_text == expected_string # list of uft8 and string to flatten str_a = b'abcdefghijklmnopqrstuvwxyz1234567890!' utf8_b = str_a.decode('utf8') list_to_flatten = [str_a, utf8_b] flatten_text2 = flattenCell(list_to_flatten) expected_flatten_string = 'abcdefghijklmnopqrstuvwxyz1234567890!,\nabcdefghijklmnopqrstuvwxyz1234567890!' assert flatten_text2 == expected_flatten_string # special character test special_char = u'会' list_of_special = [special_char, special_char] flattenCell(list_of_special) flattenCell(special_char) # dictionary test dict_to_flatten = {'first': u'会'} expected_flatten_dict = u'{\n "first": "\u4f1a"\n}' assert flattenCell(dict_to_flatten) == expected_flatten_dict def test_hash_djb2(): assert hash_djb2("test") == 2090756197, "Invalid value of hash_djb2" def test_camelize(): non_camalized = [{'chookity_bop': 'asdasd'}, {'ab_c': 'd e', 'fgh_ijk': 'lm', 'nop': 'qr_st'}] expected_output = [{'ChookityBop': 'asdasd'}, {'AbC': 'd e', 'Nop': 'qr_st', 'FghIjk': 'lm'}] assert camelize(non_camalized, '_') == expected_output non_camalized2 = {'ab_c': 'd e', 'fgh_ijk': 'lm', 'nop': 'qr_st'} expected_output2 = {'AbC': 'd e', 'Nop': 'qr_st', 'FghIjk': 'lm'} assert camelize(non_camalized2, '_') == expected_output2 # Note this test will fail when run locally (in pycharm/vscode) as it assumes the machine (docker image) has UTC timezone set def test_date_to_timestamp(): assert date_to_timestamp('2018-11-06T08:56:41') == 1541494601000 assert date_to_timestamp(datetime.strptime('2018-11-06T08:56:41', "%Y-%m-%dT%H:%M:%S")) == 1541494601000 def test_pascalToSpace(): use_cases = [ ('Validate', 'Validate'), ('validate', 'Validate'), ('TCP', 'TCP'), ('eventType', 'Event Type'), ('eventID', 'Event ID'), ('eventId', 'Event Id'), ('IPAddress', 'IP Address'), ] for s, expected in use_cases: assert pascalToSpace(s) == expected, 'Error on {} != {}'.format(pascalToSpace(s), expected) def test_safe_load_json(): valid_json_str = '{"foo": "bar"}' expected_valid_json_result = {u'foo': u'bar'} assert expected_valid_json_result == safe_load_json(valid_json_str) def test_remove_empty_elements(): test_dict = { "foo": "bar", "baz": {}, "empty": [], "nested_dict": { "empty_list": [], "hummus": "pita" }, "nested_list": { "more_empty_list": [] } } expected_result = { "foo": "bar", "nested_dict": { "hummus": "pita" } } assert expected_result == remove_empty_elements(test_dict) def test_aws_table_to_markdown(): header = "AWS DynamoDB DescribeBackup" raw_input = { 'BackupDescription': { "Foo": "Bar", "Baz": "Bang", "TestKey": "TestValue" } } expected_output = '''### AWS DynamoDB DescribeBackup |Baz|Foo|TestKey| |---|---|---| | Bang | Bar | TestValue | ''' assert expected_output == aws_table_to_markdown(raw_input, header) def test_argToList(): expected = ['a', 'b', 'c'] test1 = ['a', 'b', 'c'] test2 = 'a,b,c' test3 = '["a","b","c"]' test4 = 'a;b;c' results = [argToList(test1), argToList(test2), argToList(test2, ','), argToList(test3), argToList(test4, ';')] for result in results: assert expected == result, 'argToList test failed, {} is not equal to {}'.format(str(result), str(expected)) def test_remove_nulls(): temp_dictionary = {"a": "b", "c": 4, "e": [], "f": {}, "g": None, "h": "", "i": [1], "k": ()} expected_dictionary = {"a": "b", "c": 4, "i": [1]} remove_nulls_from_dictionary(temp_dictionary) assert expected_dictionary == temp_dictionary, \ "remove_nulls_from_dictionary test failed, {} is not equal to {}".format(str(temp_dictionary), str(expected_dictionary)) def test_is_error_true(): execute_command_results = [ { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } ] assert is_error(execute_command_results) def test_is_error_none(): assert not is_error(None) def test_is_error_single_entry(): execute_command_results = { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } assert is_error(execute_command_results) def test_is_error_false(): execute_command_results = [ { "Type": entryTypes["note"], "ContentsFormat": formats["text"], "Contents": "this is regular note" } ] assert not is_error(execute_command_results) def test_not_error_entry(): execute_command_results = "invalid command results as string" assert not is_error(execute_command_results) def test_get_error(): execute_command_results = [ { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } ] error = get_error(execute_command_results) assert error == "this is error message" def test_get_error_single_entry(): execute_command_results = { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } error = get_error(execute_command_results) assert error == "this is error message" def test_get_error_need_raise_error_on_non_error_input(): execute_command_results = [ { "Type": entryTypes["note"], "ContentsFormat": formats["text"], "Contents": "this is not an error" } ] try: get_error(execute_command_results) except ValueError as exception: assert "execute_command_result has no error entry. before using get_error use is_error" in str(exception) return assert False @mark.parametrize('data,data_expected', [ ("this is a test", b"this is a test"), (u"עברית", u"עברית".encode('utf-8')), (b"binary data\x15\x00", b"binary data\x15\x00"), ]) # noqa: E124 def test_fileResult(mocker, request, data, data_expected): mocker.patch.object(demisto, 'uniqueFile', return_value="test_file_result") mocker.patch.object(demisto, 'investigation', return_value={'id': '1'}) file_name = "1_test_file_result" def cleanup(): try: os.remove(file_name) except OSError: pass request.addfinalizer(cleanup) res = fileResult("test.txt", data) assert res['File'] == "test.txt" with open(file_name, 'rb') as f: assert f.read() == data_expected # Error that always returns a unicode string to it's str representation class SpecialErr(Exception): def __str__(self): return u"מיוחד" def test_logger(): from CommonServerPython import LOG LOG(u'€') LOG(Exception(u'€')) LOG(SpecialErr(12)) def test_logger_write(mocker): mocker.patch.object(demisto, 'params', return_value={ 'credentials': {'password': 'my_password'}, }) mocker.patch.object(demisto, 'info') ilog = IntegrationLogger() ilog.write("This is a test with my_password") ilog.print_log() # assert that the print doesn't contain my_password # call_args is tuple (args list, kwargs). we only need the args args = demisto.info.call_args[0] assert 'This is a test' in args[0] assert 'my_password' not in args[0] assert '<XX_REPLACED>' in args[0] def test_logger_init_key_name(mocker): mocker.patch.object(demisto, 'params', return_value={ 'key': {'password': 'my_password'}, 'secret': 'my_secret' }) mocker.patch.object(demisto, 'info') ilog = IntegrationLogger() ilog.write("This is a test with my_password and my_secret") ilog.print_log() # assert that the print doesn't contain my_password # call_args is tuple (args list, kwargs). we only need the args args = demisto.info.call_args[0] assert 'This is a test' in args[0] assert 'my_password' not in args[0] assert 'my_secret' not in args[0] assert '<XX_REPLACED>' in args[0] def test_logger_replace_strs(mocker): mocker.patch.object(demisto, 'params', return_value={ 'apikey': 'my_apikey', }) ilog = IntegrationLogger() ilog.add_replace_strs('special_str', '') # also check that empty string is not added by mistake ilog('my_apikey is special_str and b64: ' + b64_encode('my_apikey')) assert ('' not in ilog.replace_strs) assert ilog.messages[0] == '<XX_REPLACED> is <XX_REPLACED> and b64: <XX_REPLACED>' SENSITIVE_PARAM = { 'app': None, 'authentication': { 'credential': '', 'credentials': { 'id': '', 'locked': False, 'modified': '0001-01-01T00: 00: 00Z', 'name': '', 'password': 'cred_pass', 'sortValues': None, 'sshkey': 'ssh_key_secret', 'sshkeyPass': 'ssh_key_secret_pass', 'user': '', 'vaultInstanceId': '', 'version': 0, 'workgroup': '' }, 'identifier': 'admin', 'password': 'ident_pass', 'passwordChanged': False }, } def test_logger_replace_strs_credentials(mocker): mocker.patch.object(demisto, 'params', return_value=SENSITIVE_PARAM) ilog = IntegrationLogger() # log some secrets ilog('my cred pass: cred_pass. my ssh key: ssh_key_secret. my ssh pass: ssh_key_secret_pass. ident: ident_pass:') for s in ('cred_pass', 'ssh_key_secret', 'ssh_key_secret_pass', 'ident_pass'): assert s not in ilog.messages[0] def test_debug_logger_replace_strs(mocker): mocker.patch.object(demisto, 'params', return_value=SENSITIVE_PARAM) debug_logger = DebugLogger() debug_logger.int_logger.set_buffering(True) debug_logger.log_start_debug() msg = debug_logger.int_logger.messages[0] assert 'debug-mode started' in msg assert 'Params:' in msg for s in ('cred_pass', 'ssh_key_secret', 'ssh_key_secret_pass', 'ident_pass'): assert s not in msg def test_is_mac_address(): from CommonServerPython import is_mac_address mac_address_false = 'AA:BB:CC:00:11' mac_address_true = 'AA:BB:CC:00:11:22' assert (is_mac_address(mac_address_false) is False) assert (is_mac_address(mac_address_true)) def test_return_error_command(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" outputs = {'output': 'error'} expected_error = { 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': err_msg, "EntryContext": outputs } # Test command that is not fetch-incidents mocker.patch.object(demisto, 'command', return_value="test-command") mocker.patch.object(sys, 'exit') mocker.spy(demisto, 'results') return_error(err_msg, '', outputs) assert str(demisto.results.call_args) == "call({})".format(expected_error) def test_return_error_fetch_incidents(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test fetch-incidents mocker.patch.object(demisto, 'command', return_value="fetch-incidents") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_fetch_indicators(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test fetch-indicators mocker.patch.object(demisto, 'command', return_value="fetch-indicators") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_long_running_execution(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test long-running-execution mocker.patch.object(demisto, 'command', return_value="long-running-execution") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_script(mocker, monkeypatch): from CommonServerPython import return_error mocker.patch.object(sys, 'exit') mocker.spy(demisto, 'results') monkeypatch.delattr(demisto, 'command') err_msg = "Testing unicode Ё" outputs = {'output': 'error'} expected_error = { 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': err_msg, "EntryContext": outputs } assert not hasattr(demisto, 'command') return_error(err_msg, '', outputs) assert str(demisto.results.call_args) == "call({})".format(expected_error) def test_exception_in_return_error(mocker): from CommonServerPython import return_error, IntegrationLogger expected = {'EntryContext': None, 'Type': 4, 'ContentsFormat': 'text', 'Contents': 'Message'} mocker.patch.object(demisto, 'results') mocker.patch.object(IntegrationLogger, '__call__') with raises(SystemExit, match='0'): return_error("Message", error=ValueError("Error!")) results = demisto.results.call_args[0][0] assert expected == results # IntegrationLogger = LOG (2 times if exception supplied) assert IntegrationLogger.__call__.call_count == 2 def test_get_demisto_version(mocker, clear_version_cache): # verify expected server version and build returned in case Demisto class has attribute demistoVersion mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '5.0.0', 'buildNumber': '50000' } ) assert get_demisto_version() == { 'version': '5.0.0', 'buildNumber': '50000' } # call again to check cache assert get_demisto_version() == { 'version': '5.0.0', 'buildNumber': '50000' } # call count should be 1 as we cached assert demisto.demistoVersion.call_count == 1 # test is_demisto_version_ge assert is_demisto_version_ge('5.0.0') assert is_demisto_version_ge('4.5.0') assert not is_demisto_version_ge('5.5.0') def test_is_demisto_version_ge_4_5(mocker): get_version_patch = mocker.patch('CommonServerPython.get_demisto_version') get_version_patch.side_effect = AttributeError('simulate missing demistoVersion') assert not is_demisto_version_ge('5.0.0') assert not is_demisto_version_ge('6.0.0') with raises(AttributeError, match='simulate missing demistoVersion'): is_demisto_version_ge('4.5.0') def test_assign_params(): from CommonServerPython import assign_params res = assign_params(a='1', b=True, c=None, d='') assert res == {'a': '1', 'b': True} class TestBuildDBotEntry(object): def test_build_dbot_entry(self): from CommonServerPython import build_dbot_entry res = build_dbot_entry('user@example.com', 'Email', 'Vendor', 1) assert res == {'DBotScore': {'Indicator': 'user@example.com', 'Type': 'email', 'Vendor': 'Vendor', 'Score': 1}} def test_build_dbot_entry_no_malicious(self): from CommonServerPython import build_dbot_entry res = build_dbot_entry('user@example.com', 'Email', 'Vendor', 3, build_malicious=False) assert res == {'DBotScore': {'Indicator': 'user@example.com', 'Type': 'email', 'Vendor': 'Vendor', 'Score': 3}} def test_build_dbot_entry_malicious(self): from CommonServerPython import build_dbot_entry, outputPaths res = build_dbot_entry('user@example.com', 'Email', 'Vendor', 3, 'Malicious email') assert res == { "DBotScore": { "Vendor": "Vendor", "Indicator": "user@example.com", "Score": 3, "Type": "email" }, outputPaths['email']: { "Malicious": { "Vendor": "Vendor", "Description": "Malicious email" }, "Address": "user@example.com" } } def test_build_malicious_dbot_entry_file(self): from CommonServerPython import build_malicious_dbot_entry, outputPaths res = build_malicious_dbot_entry('md5hash', 'MD5', 'Vendor', 'Google DNS') assert res == { outputPaths['file']: {"Malicious": {"Vendor": "Vendor", "Description": "Google DNS"}, "MD5": "md5hash"}} def test_build_malicious_dbot_entry(self): from CommonServerPython import build_malicious_dbot_entry, outputPaths res = build_malicious_dbot_entry('8.8.8.8', 'ip', 'Vendor', 'Google DNS') assert res == {outputPaths['ip']: { 'Address': '8.8.8.8', 'Malicious': {'Vendor': 'Vendor', 'Description': 'Google DNS'}}} def test_build_malicious_dbot_entry_wrong_indicator_type(self): from CommonServerPython import build_malicious_dbot_entry, DemistoException with raises(DemistoException, match='Wrong indicator type'): build_malicious_dbot_entry('8.8.8.8', 'notindicator', 'Vendor', 'Google DNS') def test_illegal_dbot_score(self): from CommonServerPython import build_dbot_entry, DemistoException with raises(DemistoException, match='illegal DBot score'): build_dbot_entry('1', 'ip', 'Vendor', 8) def test_illegal_indicator_type(self): from CommonServerPython import build_dbot_entry, DemistoException with raises(DemistoException, match='illegal indicator type'): build_dbot_entry('1', 'NOTHING', 'Vendor', 2) def test_file_indicators(self): from CommonServerPython import build_dbot_entry, outputPaths res = build_dbot_entry('md5hash', 'md5', 'Vendor', 3) assert res == { "DBotScore": { "Indicator": "md5hash", "Type": "file", "Vendor": "Vendor", "Score": 3 }, outputPaths['file']: { "MD5": "md5hash", "Malicious": { "Vendor": "Vendor", "Description": None } } } class TestCommandResults: def test_readable_only_context(self): """ Given: - Markdown entry to CommandResults When: - Returning results Then: - Validate HumanReadable exists """ from CommonServerPython import CommandResults markdown = '## Something' context = CommandResults(readable_output=markdown).to_context() assert context.get('HumanReadable') == markdown def test_empty_outputs(self): """ Given: - Empty outputs When: - Returning results Then: - Validate EntryContext key value """ from CommonServerPython import CommandResults res = CommandResults( outputs_prefix='FoundIndicators', outputs_key_field='value', outputs=[] ) context = res.to_context() assert {'FoundIndicators(val.value == obj.value)': []} == context.get('EntryContext') def test_return_command_results(self): from CommonServerPython import Common, CommandResults, EntryFormat, EntryType, DBotScoreType dbot_score = Common.DBotScore( indicator='8.8.8.8', integration_name='Virus Total', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip = Common.IP( ip='8.8.8.8', dbot_score=dbot_score, asn='some asn', hostname='test.com', geo_country=None, geo_description=None, geo_latitude=None, geo_longitude=None, positive_engines=None, detection_engines=None ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[ip] ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': None, 'HumanReadable': None, 'EntryContext': { 'IP(val.Address && val.Address == obj.Address)': [ { 'Address': '8.8.8.8', 'ASN': 'some asn', 'Hostname': 'test.com' } ], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': '8.8.8.8', 'Vendor': 'Virus Total', 'Score': 1, 'Type': 'ip' } ] } } def test_multiple_indicators(self): from CommonServerPython import Common, CommandResults, EntryFormat, EntryType, DBotScoreType dbot_score1 = Common.DBotScore( indicator='8.8.8.8', integration_name='Virus Total', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip1 = Common.IP( ip='8.8.8.8', dbot_score=dbot_score1, asn='some asn', hostname='test.com', geo_country=None, geo_description=None, geo_latitude=None, geo_longitude=None, positive_engines=None, detection_engines=None ) dbot_score2 = Common.DBotScore( indicator='5.5.5.5', integration_name='Virus Total', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip2 = Common.IP( ip='5.5.5.5', dbot_score=dbot_score2, asn='some asn', hostname='test.com', geo_country=None, geo_description=None, geo_latitude=None, geo_longitude=None, positive_engines=None, detection_engines=None ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[ip1, ip2] ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': None, 'HumanReadable': None, 'EntryContext': { 'IP(val.Address && val.Address == obj.Address)': [ { 'Address': '8.8.8.8', 'ASN': 'some asn', 'Hostname': 'test.com' }, { 'Address': '5.5.5.5', 'ASN': 'some asn', 'Hostname': 'test.com' } ], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': '8.8.8.8', 'Vendor': 'Virus Total', 'Score': 1, 'Type': 'ip' }, { 'Indicator': '5.5.5.5', 'Vendor': 'Virus Total', 'Score': 1, 'Type': 'ip' } ] } } def test_return_list_of_items(self): from CommonServerPython import CommandResults, EntryFormat, EntryType tickets = [ { 'ticket_id': 1, 'title': 'foo' }, { 'ticket_id': 2, 'title': 'goo' } ] results = CommandResults( outputs_prefix='Jira.Ticket', outputs_key_field='ticket_id', outputs=tickets ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': tickets, 'HumanReadable': tableToMarkdown('Results', tickets), 'EntryContext': { 'Jira.Ticket(val.ticket_id == obj.ticket_id)': tickets } } def test_return_list_of_items_the_old_way(self): from CommonServerPython import CommandResults, EntryFormat, EntryType tickets = [ { 'ticket_id': 1, 'title': 'foo' }, { 'ticket_id': 2, 'title': 'goo' } ] results = CommandResults( outputs_prefix=None, outputs_key_field=None, outputs={ 'Jira.Ticket(val.ticket_id == obj.ticket_id)': tickets }, raw_response=tickets ) assert sorted(results.to_context()) == sorted({ 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': tickets, 'HumanReadable': None, 'EntryContext': { 'Jira.Ticket(val.ticket_id == obj.ticket_id)': tickets } }) def test_create_dbot_score_with_invalid_score(self): from CommonServerPython import Common, DBotScoreType try: Common.DBotScore( indicator='8.8.8.8', integration_name='Virus Total', score=100, indicator_type=DBotScoreType.IP ) assert False except TypeError: assert True def test_create_domain(self): from CommonServerPython import CommandResults, Common, EntryType, EntryFormat, DBotScoreType dbot_score = Common.DBotScore( indicator='somedomain.com', integration_name='Virus Total', indicator_type=DBotScoreType.DOMAIN, score=Common.DBotScore.GOOD ) domain = Common.Domain( domain='somedomain.com', dbot_score=dbot_score, dns='dns.somedomain', detection_engines=10, positive_detections=5, organization='Some Organization', admin_phone='18000000', admin_email='admin@test.com', registrant_name='Mr Registrant', registrar_name='Mr Registrar', registrar_abuse_email='registrar@test.com', creation_date='2019-01-01T00:00:00', updated_date='2019-01-02T00:00:00', expiration_date=None, domain_status='ACTIVE', name_servers=[ 'PNS31.CLOUDNS.NET', 'PNS32.CLOUDNS.NET' ], sub_domains=[ 'sub-domain1.somedomain.com', 'sub-domain2.somedomain.com', 'sub-domain3.somedomain.com' ] ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[domain] ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': None, 'HumanReadable': None, 'EntryContext': { 'Domain(val.Name && val.Name == obj.Name)': [ { "Name": "somedomain.com", "DNS": "dns.somedomain", "DetectionEngines": 10, "PositiveDetections": 5, "Registrar": { "Name": "Mr Registrar", "AbuseEmail": "registrar@test.com", "AbusePhone": None }, "Registrant": { "Name": "Mr Registrant", "Email": None, "Phone": None, "Country": None }, "Admin": { "Name": None, "Email": "admin@test.com", "Phone": "18000000", "Country": None }, "Organization": "Some Organization", "Subdomains": [ "sub-domain1.somedomain.com", "sub-domain2.somedomain.com", "sub-domain3.somedomain.com" ], "DomainStatus": "ACTIVE", "CreationDate": "2019-01-01T00:00:00", "UpdatedDate": "2019-01-02T00:00:00", "NameServers": [ "PNS31.CLOUDNS.NET", "PNS32.CLOUDNS.NET" ], "WHOIS": { "Registrar": { "Name": "Mr Registrar", "AbuseEmail": "registrar@test.com", "AbusePhone": None }, "Registrant": { "Name": "Mr Registrant", "Email": None, "Phone": None, "Country": None }, "Admin": { "Name": None, "Email": "admin@test.com", "Phone": "18000000", "Country": None }, "DomainStatus": "ACTIVE", "CreationDate": "2019-01-01T00:00:00", "UpdatedDate": "2019-01-02T00:00:00", "NameServers": [ "PNS31.CLOUDNS.NET", "PNS32.CLOUDNS.NET" ] } } ], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': 'somedomain.com', 'Vendor': 'Virus Total', 'Score': 1, 'Type': 'domain' } ] } } class TestBaseClient: from CommonServerPython import BaseClient text = {"status": "ok"} client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201)) RETRIES_POSITIVE_TEST = [ 'get', 'put', 'post' ] @pytest.mark.skip(reason="Test - too long, only manual") @pytest.mark.parametrize('method', RETRIES_POSITIVE_TEST) def test_http_requests_with_retry_sanity(self, method): """ Given - A base client When - Making http request call with retries configured to a number higher then 0 Then - Ensure a successful request return response as expected """ url = 'http://httpbin.org/{}'.format(method) res = self.client._http_request(method, '', full_url=url, retries=1, status_list_to_retry=[401]) assert res['url'] == url RETRIES_NEGATIVE_TESTS_INPUT = [ ('get', 400), ('get', 401), ('get', 500), ('put', 400), ('put', 401), ('put', 500), ('post', 400), ('post', 401), ('post', 500), ] @pytest.mark.skip(reason="Test - too long, only manual") @pytest.mark.parametrize('method, status', RETRIES_NEGATIVE_TESTS_INPUT) def test_http_requests_with_retry_negative_sanity(self, method, status): """ Given - A base client When - Making http request call with retries configured to a number higher then 0 Then - An unsuccessful request returns a DemistoException regardless the bad status code. """ from CommonServerPython import DemistoException with raises(DemistoException, match='{}'.format(status)): self.client._http_request(method, '', full_url='http://httpbin.org/status/{}'.format(status), retries=3, status_list_to_retry=[400, 401, 500]) def test_http_request_json(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', text=json.dumps(self.text)) res = self.client._http_request('get', 'event') assert res == self.text def test_http_request_json_negative(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', text='notjson') with raises(DemistoException, match="Failed to parse json"): self.client._http_request('get', 'event') def test_http_request_text(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', text=json.dumps(self.text)) res = self.client._http_request('get', 'event', resp_type='text') assert res == json.dumps(self.text) def test_http_request_content(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', content=str.encode(json.dumps(self.text))) res = self.client._http_request('get', 'event', resp_type='content') assert json.loads(res) == self.text def test_http_request_response(self, requests_mock): requests_mock.get('http://example.com/api/v2/event') res = self.client._http_request('get', 'event', resp_type='response') assert isinstance(res, requests.Response) def test_http_request_not_ok(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=500) with raises(DemistoException, match="[500]"): self.client._http_request('get', 'event') def test_http_request_not_ok_but_ok(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', status_code=500) res = self.client._http_request('get', 'event', resp_type='response', ok_codes=(500,)) assert res.status_code == 500 def test_http_request_not_ok_with_json(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=500, content=str.encode(json.dumps(self.text))) with raises(DemistoException, match="Error in API call"): self.client._http_request('get', 'event') def test_http_request_not_ok_with_json_parsing(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=500, content=str.encode(json.dumps(self.text))) with raises(DemistoException) as exception: self.client._http_request('get', 'event') message = str(exception.value) response_json_error = json.loads(message.split('\n')[1]) assert response_json_error == self.text def test_http_request_timeout(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.ConnectTimeout) with raises(DemistoException, match="Connection Timeout Error"): self.client._http_request('get', 'event') def test_http_request_ssl_error(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.SSLError) with raises(DemistoException, match="SSL Certificate Verification Failed"): self.client._http_request('get', 'event', resp_type='response') def test_http_request_proxy_error(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.ProxyError) with raises(DemistoException, match="Proxy Error"): self.client._http_request('get', 'event', resp_type='response') def test_http_request_connection_error(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.ConnectionError) with raises(DemistoException, match="Verify that the server URL parameter"): self.client._http_request('get', 'event', resp_type='response') def test_text_exception_parsing(self, requests_mock): from CommonServerPython import DemistoException reason = 'Bad Request' text = 'additional text' requests_mock.get('http://example.com/api/v2/event', status_code=400, reason=reason, text=text) with raises(DemistoException, match='- {}\n{}'.format(reason, text)): self.client._http_request('get', 'event', resp_type='text') def test_json_exception_parsing(self, requests_mock): from CommonServerPython import DemistoException reason = 'Bad Request' json_response = {'error': 'additional text'} requests_mock.get('http://example.com/api/v2/event', status_code=400, reason=reason, json=json_response) with raises(DemistoException, match='- {}\n.*{}'.format(reason, json_response["error"])): self.client._http_request('get', 'event', resp_type='text') def test_is_valid_ok_codes_empty(self): from requests import Response from CommonServerPython import BaseClient new_client = BaseClient('http://example.com/api/v2/') response = Response() response.status_code = 200 assert new_client._is_status_code_valid(response, None) def test_is_valid_ok_codes_from_function(self): from requests import Response response = Response() response.status_code = 200 assert self.client._is_status_code_valid(response, (200, 201)) def test_is_valid_ok_codes_from_self(self): from requests import Response response = Response() response.status_code = 200 assert self.client._is_status_code_valid(response, None) def test_is_valid_ok_codes_empty_false(self): from requests import Response response = Response() response.status_code = 400 assert not self.client._is_status_code_valid(response, None) def test_is_valid_ok_codes_from_function_false(self): from requests import Response response = Response() response.status_code = 400 assert not self.client._is_status_code_valid(response, (200, 201)) def test_is_valid_ok_codes_from_self_false(self): from requests import Response response = Response() response.status_code = 400 assert not self.client._is_status_code_valid(response) def test_parse_date_string(): # test unconverted data remains: Z assert parse_date_string('2019-09-17T06:16:39Z') == datetime(2019, 9, 17, 6, 16, 39) # test unconverted data remains: .22Z assert parse_date_string('2019-09-17T06:16:39.22Z') == datetime(2019, 9, 17, 6, 16, 39, 220000) # test time data without ms does not match format with ms assert parse_date_string('2019-09-17T06:16:39Z', '%Y-%m-%dT%H:%M:%S.%f') == datetime(2019, 9, 17, 6, 16, 39) # test time data with timezone Z does not match format with timezone +05:00 assert parse_date_string('2019-09-17T06:16:39Z', '%Y-%m-%dT%H:%M:%S+05:00') == datetime(2019, 9, 17, 6, 16, 39) # test time data with timezone +05:00 does not match format with timezone Z assert parse_date_string('2019-09-17T06:16:39+05:00', '%Y-%m-%dT%H:%M:%SZ') == datetime(2019, 9, 17, 6, 16, 39) # test time data with timezone -05:00 and with ms does not match format with timezone +02:00 without ms assert parse_date_string( '2019-09-17T06:16:39.4040+05:00', '%Y-%m-%dT%H:%M:%S+02:00' ) == datetime(2019, 9, 17, 6, 16, 39, 404000) def test_override_print(mocker): mocker.patch.object(demisto, 'info') int_logger = IntegrationLogger() int_logger.set_buffering(False) int_logger.print_override("test", "this") assert demisto.info.call_count == 1 assert demisto.info.call_args[0][0] == "test this" demisto.info.reset_mock() int_logger.print_override("test", "this", file=sys.stderr) assert demisto.info.call_count == 1 assert demisto.info.call_args[0][0] == "test this" buf = StringIO() # test writing to custom file (not stdout/stderr) int_logger.print_override("test", "this", file=buf) assert buf.getvalue() == 'test this\n' def test_http_client_debug(mocker): if not IS_PY3: pytest.skip("test not supported in py2") return mocker.patch.object(demisto, 'info') debug_log = DebugLogger() from http.client import HTTPConnection HTTPConnection.debuglevel = 1 con = HTTPConnection("google.com") con.request('GET', '/') r = con.getresponse() r.read() assert demisto.info.call_count > 5 assert debug_log is not None def test_parse_date_range(): utc_now = datetime.utcnow() utc_start_time, utc_end_time = parse_date_range('2 days', utc=True) # testing UTC date time and range of 2 days assert utc_now.replace(microsecond=0) == utc_end_time.replace(microsecond=0) assert abs(utc_start_time - utc_end_time).days == 2 local_now = datetime.now() local_start_time, local_end_time = parse_date_range('73 minutes', utc=False) # testing local datetime and range of 73 minutes assert local_now.replace(microsecond=0) == local_end_time.replace(microsecond=0) assert abs(local_start_time - local_end_time).seconds / 60 == 73 def test_encode_string_results(): s = "test" assert s == encode_string_results(s) s2 = u"בדיקה" if IS_PY3: res = str(s2) else: res = s2.encode("utf8") assert encode_string_results(s2) == res not_string = [1, 2, 3] assert not_string == encode_string_results(not_string) class TestReturnOutputs: def test_return_outputs(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} return_outputs(md, outputs, raw_response) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] def test_return_outputs_only_md(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' return_outputs(md) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert md == results['HumanReadable'] assert 'text' == results['ContentsFormat'] def test_return_outputs_raw_none(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} return_outputs(md, outputs, None) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert outputs == results['Contents'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] def test_return_outputs_timeline(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} timeline = [{'Value': 'blah', 'Message': 'test', 'Category': 'test'}] return_outputs(md, outputs, raw_response, timeline) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] assert timeline == results['IndicatorTimeline'] def test_return_outputs_timeline_without_category(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} timeline = [{'Value': 'blah', 'Message': 'test'}] return_outputs(md, outputs, raw_response, timeline) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] assert 'Category' in results['IndicatorTimeline'][0].keys() assert results['IndicatorTimeline'][0]['Category'] == 'Integration Update' def test_return_outputs_ignore_auto_extract(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} ignore_auto_extract = True return_outputs(md, outputs, raw_response, ignore_auto_extract=ignore_auto_extract) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] assert ignore_auto_extract == results['IgnoreAutoExtract'] def test_argToBoolean(): assert argToBoolean('true') is True assert argToBoolean('yes') is True assert argToBoolean('TrUe') is True assert argToBoolean(True) is True assert argToBoolean('false') is False assert argToBoolean('no') is False assert argToBoolean(False) is False batch_params = [ # full batch case ([1, 2, 3], 1, [[1], [2], [3]]), # empty case ([], 1, []), # out of index case ([1, 2, 3], 5, [[1, 2, 3]]), # out of index in end with batches ([1, 2, 3, 4, 5], 2, [[1, 2], [3, 4], [5]]), ([1] * 100, 2, [[1, 1]] * 50) ] @pytest.mark.parametrize('iterable, sz, expected', batch_params) def test_batch(iterable, sz, expected): for i, item in enumerate(batch(iterable, sz)): assert expected[i] == item regexes_test = [ (ipv4Regex, '192.168.1.1', True), (ipv4Regex, '192.168.1.1/24', False), (ipv4Regex, '192.168.a.1', False), (ipv4Regex, '192.168..1.1', False), (ipv4Regex, '192.256.1.1', False), (ipv4Regex, '192.256.1.1.1', False), (ipv4cidrRegex, '192.168.1.1/32', True), (ipv4cidrRegex, '192.168.1.1.1/30', False), (ipv4cidrRegex, '192.168.1.b/30', False), (ipv4cidrRegex, '192.168.1.12/381', False), (ipv6Regex, '2001:db8:a0b:12f0::1', True), (ipv6Regex, '2001:db8:a0b:12f0::1/11', False), (ipv6Regex, '2001:db8:a0b:12f0::1::1', False), (ipv6Regex, '2001:db8:a0b:12f0::98aa5', False), (ipv6cidrRegex, '2001:db8:a0b:12f0::1/64', True), (ipv6cidrRegex, '2001:db8:a0b:12f0::1/256', False), (ipv6cidrRegex, '2001:db8:a0b:12f0::1::1/25', False), (ipv6cidrRegex, '2001:db8:a0b:12f0::1aaasds::1/1', False) ] @pytest.mark.parametrize('pattern, string, expected', regexes_test) def test_regexes(pattern, string, expected): # (str, str, bool) -> None # emulates re.fullmatch from py3.4 assert expected is bool(re.match("(?:" + pattern + r")\Z", string)) IP_TO_INDICATOR_TYPE_PACK = [ ('192.168.1.1', FeedIndicatorType.IP), ('192.168.1.1/32', FeedIndicatorType.CIDR), ('2001:db8:a0b:12f0::1', FeedIndicatorType.IPv6), ('2001:db8:a0b:12f0::1/64', FeedIndicatorType.IPv6CIDR), ] @pytest.mark.parametrize('ip, indicator_type', IP_TO_INDICATOR_TYPE_PACK) def test_ip_to_indicator(ip, indicator_type): assert FeedIndicatorType.ip_to_indicator_type(ip) is indicator_type data_test_b64_encode = [ (u'test', 'dGVzdA=='), ('test', 'dGVzdA=='), (b'test', 'dGVzdA=='), ('', ''), ('%', 'JQ=='), (u'§', 'wqc='), (u'§t`e§s`t§', 'wqd0YGXCp3NgdMKn'), ] @pytest.mark.parametrize('_input, expected_output', data_test_b64_encode) def test_b64_encode(_input, expected_output): output = b64_encode(_input) assert output == expected_output, 'b64_encode({}) returns: {} instead: {}'.format(_input, output, expected_output) def test_traceback_in_return_error_debug_mode_on(mocker): mocker.patch.object(demisto, 'command', return_value="test-command") mocker.spy(demisto, 'results') mocker.patch('CommonServerPython.is_debug_mode', return_value=True) from CommonServerPython import return_error try: raise Exception("This is a test string") except Exception: with pytest.raises(SystemExit): return_error("some text") assert "This is a test string" in str(demisto.results.call_args) assert "Traceback" in str(demisto.results.call_args) assert "some text" in str(demisto.results.call_args) def test_traceback_in_return_error_debug_mode_off(mocker): mocker.patch.object(demisto, 'command', return_value="test-command") mocker.spy(demisto, 'results') mocker.patch('CommonServerPython.is_debug_mode', return_value=False) from CommonServerPython import return_error try: raise Exception("This is a test string") except Exception: with pytest.raises(SystemExit): return_error("some text") assert "This is a test string" not in str(demisto.results.call_args) assert "Traceback" not in str(demisto.results.call_args) assert "some text" in str(demisto.results.call_args) # append_context unit test CONTEXT_MOCK = { 'str_key': 'str_value', 'dict_key': { 'key1': 'val1', 'key2': 'val2' }, 'int_key': 1, 'list_key_str': ['val1', 'val2'], 'list_key_list': ['val1', 'val2'], 'list_key_dict': ['val1', 'val2'] } UPDATED_CONTEXT = { 'str_key': 'str_data,str_value', 'dict_key': { 'key1': 'val1', 'key2': 'val2', 'data_key': 'data_val' }, 'int_key': [1, 2], 'list_key_str': ['val1', 'val2', 'str_data'], 'list_key_list': ['val1', 'val2', 'val1', 'val2'], 'list_key_dict': ['val1', 'val2', {'data_key': 'data_val'}] } DATA_MOCK_STRING = "str_data" DATA_MOCK_LIST = ['val1', 'val2'] DATA_MOCK_DICT = { 'data_key': 'data_val' } DATA_MOCK_INT = 2 STR_KEY = "str_key" DICT_KEY = "dict_key" APPEND_CONTEXT_INPUT = [ (CONTEXT_MOCK, DATA_MOCK_STRING, STR_KEY, "key = {}, val = {}".format(STR_KEY, UPDATED_CONTEXT[STR_KEY])), (CONTEXT_MOCK, DATA_MOCK_LIST, STR_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_DICT, STR_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_STRING, DICT_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_LIST, DICT_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_DICT, DICT_KEY, "key = {}, val = {}".format(DICT_KEY, UPDATED_CONTEXT[DICT_KEY])), (CONTEXT_MOCK, DATA_MOCK_STRING, 'list_key_str', "key = {}, val = {}".format('list_key_str', UPDATED_CONTEXT['list_key_str'])), (CONTEXT_MOCK, DATA_MOCK_LIST, 'list_key_list', "key = {}, val = {}".format('list_key_list', UPDATED_CONTEXT['list_key_list'])), (CONTEXT_MOCK, DATA_MOCK_DICT, 'list_key_dict', "key = {}, val = {}".format('list_key_dict', UPDATED_CONTEXT['list_key_dict'])), (CONTEXT_MOCK, DATA_MOCK_INT, 'int_key', "key = {}, val = {}".format('int_key', UPDATED_CONTEXT['int_key'])), ] def get_set_context(key, val): from CommonServerPython import return_error return_error("key = {}, val = {}".format(key, val)) @pytest.mark.parametrize('context_mock, data_mock, key, expected_answer', APPEND_CONTEXT_INPUT) def test_append_context(mocker, context_mock, data_mock, key, expected_answer): from CommonServerPython import demisto mocker.patch.object(demisto, 'get', return_value=context_mock.get(key)) mocker.patch.object(demisto, 'setContext', side_effect=get_set_context) mocker.patch.object(demisto, 'results') if "TypeError" not in expected_answer: with raises(SystemExit, match='0'): appendContext(key, data_mock) assert expected_answer in demisto.results.call_args[0][0]['Contents'] else: with raises(TypeError) as e: appendContext(key, data_mock) assert expected_answer in e.value INDICATOR_VALUE_AND_TYPE = [ ('3fec1b14cea32bbcd97fad4507b06888', "File"), ('1c8893f75089a27ca6a8d49801d7aa6b64ea0c6167fe8b1becfe9bc13f47bdc1', 'File'), ('castaneda-thornton.com', 'Domain'), ('192.0.0.1', 'IP'), ('test@gmail.com', 'Email'), ('e775eb1250137c0b83d4e7c4549c71d6f10cae4e708ebf0b5c4613cbd1e91087', 'File'), ('test@yahoo.com', 'Email'), ('http://test.com', 'URL'), ('11.111.11.11/11', 'CIDR'), ('CVE-0000-0000', 'CVE'), ('dbot@demisto.works', 'Email'), ('37b6d02m-63e0-495e-kk92-7c21511adc7a@SB2APC01FT091.outlook.com', 'Email'), ('dummy@recipient.com', 'Email'), ('image003.gif@01CF4D7F.1DF62650', 'Email'), ('bruce.wayne@pharmtech.zz', 'Email'), ('joe@gmail.com', 'Email'), ('koko@demisto.com', 'Email'), ('42a5e275559a1651b3df8e15d3f5912499f0f2d3d1523959c56fc5aea6371e59', 'File'), ('10676cf66244cfa91567fbc1a937f4cb19438338b35b69d4bcc2cf0d3a44af5e', 'File'), ('52483514f07eb14570142f6927b77deb7b4da99f', 'File'), ('c8092abd8d581750c0530fa1fc8d8318', 'File'), ('fe80:0000:0000:0000:91ba:7558:26d3:acde', 'IPv6'), ('fd60:e22:f1b9::2', 'IPv6'), ('2001:db8:0000:0000:0000:0000:0000:0000', 'IPv6'), ('112.126.94.107', 'IP'), ('a', None), ('*castaneda-thornton.com', 'DomainGlob') ] @pytest.mark.parametrize('indicator_value, indicatory_type', INDICATOR_VALUE_AND_TYPE) def test_auto_detect_indicator_type(indicator_value, indicatory_type): """ Given - Indicator value - Indicator type When - Trying to detect the type of an indicator. Then - Run the auto_detect_indicator_type and validate that the indicator type the function returns is as expected. """ if sys.version_info.major == 3 and sys.version_info.minor == 8: assert auto_detect_indicator_type(indicator_value) == indicatory_type else: try: auto_detect_indicator_type(indicator_value) except Exception as e: assert str(e) == "Missing tldextract module, In order to use the auto detect function please" \ " use a docker image with it installed such as: demisto/jmespath" def test_handle_proxy(mocker): os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' mocker.patch.object(demisto, 'params', return_value={'insecure': True}) handle_proxy() assert os.getenv('REQUESTS_CA_BUNDLE') is None os.environ['REQUESTS_CA_BUNDLE'] = '/test2.pem' mocker.patch.object(demisto, 'params', return_value={}) handle_proxy() assert os.environ['REQUESTS_CA_BUNDLE'] == '/test2.pem' # make sure no change mocker.patch.object(demisto, 'params', return_value={'unsecure': True}) handle_proxy() assert os.getenv('REQUESTS_CA_BUNDLE') is None @pytest.mark.parametrize(argnames="dict_obj, keys, expected, default_return_value", argvalues=[ ({'a': '1'}, ['a'], '1', None), ({'a': {'b': '2'}}, ['a', 'b'], '2', None), ({'a': {'b': '2'}}, ['a', 'c'], 'test', 'test'), ]) def test_safe_get(dict_obj, keys, expected, default_return_value): from CommonServerPython import dict_safe_get assert expected == dict_safe_get(dict_object=dict_obj, keys=keys, default_return_value=default_return_value) MIRRORS = ''' [{ "channel_id":"GKQ86DVPH", "channel_name": "incident-681", "channel_topic": "incident-681", "investigation_id":"681", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GKB19PA3V", "channel_name": "group2", "channel_topic": "cooltopic", "investigation_id":"684", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GKB19PA3V", "channel_name": "group2", "channel_topic": "cooltopic", "investigation_id":"692", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GKNEJU4P9", "channel_name": "group3", "channel_topic": "incident-713", "investigation_id":"713", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GL8GHC0LV", "channel_name": "group5", "channel_topic": "incident-734", "investigation_id":"734", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }] ''' CONVERSATIONS = '''[{ "id": "C012AB3CD", "name": "general", "is_channel": true, "is_group": false, "is_im": false, "created": 1449252889, "creator": "U012A3CDE", "is_archived": false, "is_general": true, "unlinked": 0, "name_normalized": "general", "is_shared": false, "is_ext_shared": false, "is_org_shared": false, "pending_shared": [], "is_pending_ext_shared": false, "is_member": true, "is_private": false, "is_mpim": false, "topic": { "value": "Company-wide announcements and work-based matters", "creator": "", "last_set": 0 }, "purpose": { "value": "This channel is for team-wide communication and announcements. All team members are in this channel.", "creator": "", "last_set": 0 }, "previous_names": [], "num_members": 4 }, { "id": "C061EG9T2", "name": "random", "is_channel": true, "is_group": false, "is_im": false, "created": 1449252889, "creator": "U061F7AUR", "is_archived": false, "is_general": false, "unlinked": 0, "name_normalized": "random", "is_shared": false, "is_ext_shared": false, "is_org_shared": false, "pending_shared": [], "is_pending_ext_shared": false, "is_member": true, "is_private": false, "is_mpim": false, "topic": { "value": "Non-work banter and water cooler conversation", "creator": "", "last_set": 0 }, "purpose": { "value": "A place for non-work-related flimflam.", "creator": "", "last_set": 0 }, "previous_names": [], "num_members": 4 }]''' OBJECTS_TO_KEYS = { 'mirrors': 'investigation_id', 'questions': 'entitlement', 'users': 'id' } def set_integration_context_versioned(integration_context, version=-1, sync=False): global INTEGRATION_CONTEXT_VERSIONED try: if not INTEGRATION_CONTEXT_VERSIONED: INTEGRATION_CONTEXT_VERSIONED = {'context': '{}', 'version': 0} except NameError: INTEGRATION_CONTEXT_VERSIONED = {'context': '{}', 'version': 0} current_version = INTEGRATION_CONTEXT_VERSIONED['version'] if version != -1 and version <= current_version: raise ValueError('DB Insert version {} does not match version {}'.format(current_version, version)) INTEGRATION_CONTEXT_VERSIONED = {'context': integration_context, 'version': current_version + 1} def get_integration_context_versioned(refresh=False): return INTEGRATION_CONTEXT_VERSIONED def test_merge_lists(): from CommonServerPython import merge_lists # Set original = [{'id': '1', 'updated': 'n'}, {'id': '2', 'updated': 'n'}, {'id': '11', 'updated': 'n'}] updated = [{'id': '1', 'updated': 'y'}, {'id': '3', 'updated': 'y'}, {'id': '11', 'updated': 'n', 'remove': True}] expected = [{'id': '1', 'updated': 'y'}, {'id': '2', 'updated': 'n'}, {'id': '3', 'updated': 'y'}] # Arrange result = merge_lists(original, updated, 'id') # Assert assert len(result) == len(expected) for obj in result: assert obj in expected @pytest.mark.parametrize('version, expected', [({'version': '5.5.0'}, False), ({'version': '6.0.0'}, True)]) def test_is_versioned_context_available(mocker, version, expected): from CommonServerPython import is_versioned_context_available # Set mocker.patch.object(demisto, 'demistoVersion', return_value=version) # Arrange result = is_versioned_context_available() get_demisto_version._version = None # Assert assert expected == result def test_update_context_merge(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) mocker.patch.object(CommonServerPython, 'is_versioned_context_available', return_value=True) new_mirror = { 'channel_id': 'new_group', 'channel_name': 'incident-999', 'channel_topic': 'incident-999', 'investigation_id': '999', 'mirror_type': 'all', 'mirror_direction': 'both', 'mirror_to': 'group', 'auto_close': True, 'mirrored': False } mirrors = json.loads(MIRRORS) mirrors.extend([new_mirror]) # Arrange context, version = CommonServerPython.update_integration_context({'mirrors': [new_mirror]}, OBJECTS_TO_KEYS, True) new_mirrors = json.loads(context['mirrors']) # Assert assert len(mirrors) == len(new_mirrors) for mirror in mirrors: assert mirror in new_mirrors assert version == get_integration_context_versioned()['version'] def test_update_context_no_merge(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) mocker.patch.object(CommonServerPython, 'is_versioned_context_available', return_value=True) new_conversation = { 'id': 'A0123456', 'name': 'general' } conversations = json.loads(CONVERSATIONS) conversations.extend([new_conversation]) # Arrange context, version = CommonServerPython.update_integration_context({'conversations': conversations}, OBJECTS_TO_KEYS, True) new_conversations = json.loads(context['conversations']) # Assert assert conversations == new_conversations assert version == get_integration_context_versioned()['version'] @pytest.mark.parametrize('versioned_available', [True, False]) def test_get_latest_integration_context(mocker, versioned_available): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) mocker.patch.object(CommonServerPython, 'is_versioned_context_available', return_value=versioned_available) mocker.patch.object(demisto, 'getIntegrationContext', return_value={'mirrors': MIRRORS, 'conversations': CONVERSATIONS}) # Arrange context, ver = CommonServerPython.get_integration_context_with_version(True) # Assert assert context == get_integration_context_versioned()['context'] assert ver == get_integration_context_versioned()['version'] if versioned_available else -1 def test_set_latest_integration_context(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS, }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) int_context = get_integration_context_versioned() mocker.patch.object(CommonServerPython, 'update_integration_context', side_effect=[(int_context['context'], int_context['version']), (int_context['context'], int_context['version'] + 1)]) mocker.patch.object(CommonServerPython, 'set_integration_context', side_effect=[ValueError, int_context['context']]) # Arrange CommonServerPython.set_to_integration_context_with_retries({}, OBJECTS_TO_KEYS) int_context_calls = CommonServerPython.set_integration_context.call_count int_context_args_1 = CommonServerPython.set_integration_context.call_args_list[0][0] int_context_args_2 = CommonServerPython.set_integration_context.call_args_list[1][0] # Assert assert int_context_calls == 2 assert int_context_args_1 == (int_context['context'], True, int_context['version']) assert int_context_args_2 == (int_context['context'], True, int_context['version'] + 1) def test_set_latest_integration_context_fail(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS, }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) int_context = get_integration_context_versioned() mocker.patch.object(CommonServerPython, 'update_integration_context', return_value=(int_context['context'], int_context['version'])) mocker.patch.object(CommonServerPython, 'set_integration_context', side_effect=ValueError) # Arrange with pytest.raises(Exception): CommonServerPython.set_to_integration_context_with_retries({}, OBJECTS_TO_KEYS) int_context_calls = CommonServerPython.set_integration_context.call_count # Assert assert int_context_calls == CommonServerPython.CONTEXT_UPDATE_RETRY_TIMES
34.970938
125
0.612624
4ebe383a0d41b34b37627411d00a44d56a8457d1
3,073
py
Python
codes/minimal_shtns.py
Mr-Markovian/SphericalHarmonics_for_StokesFlow
f1577426bcc3805f3b3727b0cb607daa87576b03
[ "MIT" ]
null
null
null
codes/minimal_shtns.py
Mr-Markovian/SphericalHarmonics_for_StokesFlow
f1577426bcc3805f3b3727b0cb607daa87576b03
[ "MIT" ]
null
null
null
codes/minimal_shtns.py
Mr-Markovian/SphericalHarmonics_for_StokesFlow
f1577426bcc3805f3b3727b0cb607daa87576b03
[ "MIT" ]
null
null
null
#We can compute Bulk flow and find the flow field inside at a radius r,given #the velocity field at the Surface(radius R),l is a 1-D array #l=0,1 mode not possible for Vlm_y and Vlm_psi,l=0 not possible for Vlm_phi. def modify_(a,b,c,l): x=np.where(l==1) y=np.where(l==0) for i in y: a[i]=complex(0,0) b[i]=complex(0,0) c[i]=complex(0,0) for i in x: a[i]=complex(0,0) b[i]=complex(0,0) return a,b,c #To compute the bulk flow from the analytical results def bulkflow(r_,Alm_,Clm_,l,R): #vslm, vtlm = sht.analys(vtheta_s, vphi_s) #Computing the cofficients #Alm = vtlm/(R**l) #Clm = (l*(l+1)* vslm)/(2*(R**(l+1))) r_lplus1 =r_**(l+1) #calculated r^(l+1) r_lminus1 =r_**(l-1) #Calculated r^(l-1) Vlm_phi = Alm_*(r_**l) Vlm_psi = (Clm_*(-(R**2)*(r_lminus1)+(r_lplus1*(l+3)/(l+1)))/l) Vlm_y = Clm_*(r_lplus1- (R**2)*r_lminus1) #the modes not allowed are removed , by making those cofficients zero. #Vlm_y_new,Vlm_psi_new,Vlm_phi_new=modify_(Vlm_y,Vlm_psi,Vlm_phi,l) vr,vtheta,vphi = sht.synth(Vlm_y,Vlm_psi,Vlm_phi) return vr,vtheta,vphi import numpy as np import shtns import cmath from mayavi.mlab import * from matplotlib.colors import LinearSegmentedColormap from matplotlib.cm import get_cmap, viridis values = np.linspace(0., 1., 256) lut = 255*get_cmap(viridis)(values.copy()) from mayavi import mlab r_=np.linspace(0.2,1.,5) lmax = 16 mmax=lmax sht = shtns.sht(lmax, mmax) nlats, nlons = sht.set_grid() theta_vals = np.arccos(sht.cos_theta) phi_vals = (2.0*np.pi/nlons)*np.arange(nlons) phi, theta = np.meshgrid(phi_vals, theta_vals) l = sht.l m = sht.m l2 = l * (l + 1) # given surface flow vtheta_s =np.sin(theta)#np.zeros_like(theta)#np.sin(theta)*np.sin(phi)# vphi_s =np.zeros_like(theta)#np.sin(theta)*np.cos(phi)##np.sin(theta)*np.cos(theta) vslm, vtlm = sht.analys(vtheta_s, vphi_s) R=1 Alm = vtlm/(R**l) Clm = (l*(l+1)* vslm)/(2*(R**(l+1))) #phi, theta = np.meshgrid( # np.linspace(0, 2 * np.pi, nlons ), # np.linspace(0, np.pi, nlats)) #Changing spherical coordinate field into Cartesian Velocity field #now to plot the velocity field on the sphere for i in range(len(r_)): ur,utheta,uphi=bulkflow(r_[i],Alm,Clm,l,R) x =r_[i]*np.sin(theta)*np.cos(phi) y =r_[i]*np.sin(theta)*np.sin(phi) z =r_[i]*np.cos(theta) ux =ur*np.sin(theta)*np.cos(phi)+utheta*np.cos(theta)*np.cos(phi)-uphi*np.sin(phi) uy =ur*np.sin(theta)*np.sin(phi)+utheta*np.cos(theta)*np.sin(phi)+uphi*np.cos(phi) uz =ur*np.cos(theta)-utheta*np.sin(theta) speed=np.sqrt(ux**2+uy**2+uz**2) #mlab.quiver3d(x, y, z,ux,uy,uz,colormap='jet') #mlab.vectorbar(title='Vector color mapping',orientation='vertical') #mlab.show() #def stress()
31.040404
128
0.59616
92cd681dcda45f7aa47d5fb42821e692cb28f03d
527
py
Python
helloExcel/temp.py
a18792721831/StudyPython
2e266f49534017cc1097382b93a9f25e62a4af19
[ "Apache-2.0" ]
2
2019-05-07T00:30:10.000Z
2019-05-07T00:30:13.000Z
helloExcel/temp.py
a18792721831/StudyPython
2e266f49534017cc1097382b93a9f25e62a4af19
[ "Apache-2.0" ]
null
null
null
helloExcel/temp.py
a18792721831/StudyPython
2e266f49534017cc1097382b93a9f25e62a4af19
[ "Apache-2.0" ]
1
2021-01-26T11:29:17.000Z
2021-01-26T11:29:17.000Z
from xlrd import open_workbook from createSql import getSql def excel2Sql(): print('Please input file path:') filePath = input() excelFile = open_workbook(filePath) sheet = excelFile.sheet_by_index(0) print('Please input author:') author = input() with open(filePath.replace('.xlsx', '.sql'), 'a') as file: for r in range(1, sheet.nrows): row = sheet.row_values(r) file.write(getSql(int(row[0]), row[1], row[2], author)) if __name__ == "__main__": excel2Sql()
27.736842
67
0.633776
1c29623970cc411e5ac5fc1a68a6bbaf69dc0ffa
8,502
py
Python
SBaaS_MFA/stage02_isotopomer_fittedNetFluxDifferences_execute.py
dmccloskey/SBaaS_MFA
005e1d34c2ace7e28c53dffcab3e9cb8c7e7ce18
[ "MIT" ]
null
null
null
SBaaS_MFA/stage02_isotopomer_fittedNetFluxDifferences_execute.py
dmccloskey/SBaaS_MFA
005e1d34c2ace7e28c53dffcab3e9cb8c7e7ce18
[ "MIT" ]
null
null
null
SBaaS_MFA/stage02_isotopomer_fittedNetFluxDifferences_execute.py
dmccloskey/SBaaS_MFA
005e1d34c2ace7e28c53dffcab3e9cb8c7e7ce18
[ "MIT" ]
null
null
null
#SBaaS from .stage02_isotopomer_fittedNetFluxDifferences_io import stage02_isotopomer_fittedNetFluxDifferences_io from .stage02_isotopomer_fittedNetFluxes_query import stage02_isotopomer_fittedNetFluxes_query #Resources from genomeScale_MFA.MFA_methods import MFA_methods class stage02_isotopomer_fittedNetFluxDifferences_execute(stage02_isotopomer_fittedNetFluxDifferences_io, stage02_isotopomer_fittedNetFluxes_query): def execute_findNetFluxSignificantDifferences(self,analysis_id_I, criteria_I = 'flux_lb/flux_ub', simulation_ids_I=[],simulation_dateAndTimes_I = [], rxn_ids_I = [],flux_units_I = [], control_simulation_id_I=None, control_simulation_dateAndTime_I=None, redundancy_I=False, observable_only_I=False): """Find fluxes that are significantly different Input: analysis_id_I = string, criteria_I = string, flux_lb/flux_ub: use flux_lb and flux_ub to determine significance (default) flux_mean/flux_stdev: use the flux_mean and flux_stdev to determine significance control_simulation_id_I = string, simulation_id to compare all other simulation_ids to simulation_dateAndTime_I = string, simulation_dateAndTime to compare all other simulation_ids to redundancy_I = boolean, if true, all values with be compared, if false (default), only unique comparisons will be made observable_only_I = boolean, if true, only observable fluxes will be compared, if false (default), observable and unobservable fluxes will be compared """ mfamethods = MFA_methods(); data_O = []; print('executing findNetFluxSignificantDifferences...') # get the simulation_id and simulation_id dateAndTimes if simulation_ids_I and simulation_dateAndTimes_I: simulation_ids = simulation_ids_I; simulation_dateAndTimes = simulation_dateAndTimes_I; else: simulation_ids = []; simulation_ids_unique = []; simulation_dateAndTimes = []; # get the simulation unique ids simulation_ids_unique = self.get_simulationID_analysisID_dataStage02IsotopomerAnalysis(analysis_id_I); for simulation_id in simulation_ids_unique: # get the simulation dateAndTimes simulation_dateAndTimes_tmp = [] simulation_dateAndTimes_tmp = self.get_simulationDateAndTimes_simulationID_dataStage02IsotopomerfittedNetFluxes(simulation_id); simulation_ids_tmp = [simulation_id for x in simulation_dateAndTimes_tmp]; simulation_dateAndTimes.extend(simulation_dateAndTimes_tmp) simulation_ids.extend(simulation_ids_tmp) if control_simulation_id_I and control_simulation_dateAndTime_I: index = simulation_ids.index(control_simulation_id_I); value = simulation_ids.pop(index); simulation_ids.insert(0, value); control_simulation_dateAndTime_I = self.convert_string2datetime(control_simulation_dateAndTime_I); index = simulation_dateAndTimes.index(control_simulation_dateAndTime_I); value = simulation_dateAndTimes.pop(index) simulation_dateAndTimes.insert(0, value); for simulation_cnt_1, simulation_id_1 in enumerate(simulation_ids): print("calculating netFluxDifferences for simulation_id " + simulation_id_1); # check for control if control_simulation_id_I and control_simulation_dateAndTime_I and simulation_cnt_1>0: break; #prevents redundancy and if simulation_cnt_1+1 >= len(simulation_ids): break; # get the units if flux_units_I: flux_units = flux_units_I; else: flux_units = self.get_fluxUnits_simulationIDAndSimulationDateAndTime_dataStage02IsotopomerfittedNetFluxes(simulation_id_1,simulation_dateAndTimes[simulation_cnt_1]) for flux_unit in flux_units: print("calculating netFluxDifferences for flux_units " + flux_unit); # get the rxn_ids if rxn_ids_I: rxn_ids = rxn_ids_I; else: rxn_ids = []; rxn_ids = self.get_rxnIDs_simulationIDAndSimulationDateAndTimeAndFluxUnits_dataStage02IsotopomerfittedNetFluxes(simulation_id_1,simulation_dateAndTimes[simulation_cnt_1],flux_unit); for rxn_id in rxn_ids: print("calculating netFluxDifferes for rxn_id " + rxn_id); # get simulation_id_1 flux data flux_1,flux_stdev_1,flux_lb_1,flux_ub_1,flux_units_1=None,None,None,None,None; flux_1,flux_stdev_1,flux_lb_1,flux_ub_1,flux_units_1=self.get_flux_simulationIDAndSimulationDateAndTimeAndFluxUnitsAndRxnID_dataStage02IsotopomerfittedNetFluxes(simulation_id_1,simulation_dateAndTimes[simulation_cnt_1],flux_unit,rxn_id); if not mfamethods.check_criteria(flux_1,flux_stdev_1,flux_lb_1,flux_ub_1, criteria_I): continue; if redundancy_I: list_2 = simulation_ids; else: list_2 = simulation_ids[simulation_cnt_1+1:]; if observable_only_I: observable_1 = mfamethods.check_observableNetFlux(flux_1,flux_lb_1,flux_ub_1) if not observable_1: continue; for cnt,simulation_id_2 in enumerate(list_2): #prevents redundancy if redundancy_I: simulation_cnt_2 = cnt; else: simulation_cnt_2 = simulation_cnt_1+cnt+1; if simulation_cnt_2 == simulation_cnt_1: continue; # simulation_id_2 flux_data flux_2,flux_stdev_2,flux_lb_2,flux_ub_2,flux_units_2=None,None,None,None,None; flux_2,flux_stdev_2,flux_lb_2,flux_ub_2,flux_units_2=self.get_flux_simulationIDAndSimulationDateAndTimeAndFluxUnitsAndRxnID_dataStage02IsotopomerfittedNetFluxes(simulation_id_2,simulation_dateAndTimes[simulation_cnt_2],flux_unit,rxn_id); if not mfamethods.check_criteria(flux_2,flux_stdev_2,flux_lb_2,flux_ub_2, criteria_I): continue; if observable_only_I: observable_2 = mfamethods.check_observableNetFlux(flux_2,flux_lb_2,flux_ub_2); if not observable_2: continue; flux_diff,flux_distance,fold_change,significant = None,None,None,False; flux_diff,flux_distance,fold_change,significant = mfamethods.calculate_fluxDifference(flux_1,flux_stdev_1,flux_lb_1,flux_ub_1,flux_units_1, flux_2,flux_stdev_2,flux_lb_2,flux_ub_2,flux_units_2, criteria_I = criteria_I); # record the data data_O.append({ 'analysis_id':analysis_id_I, 'simulation_id_1':simulation_id_1, 'simulation_dateAndTime_1':simulation_dateAndTimes[simulation_cnt_1], 'simulation_id_2':simulation_id_2, 'simulation_dateAndTime_2':simulation_dateAndTimes[simulation_cnt_2], 'rxn_id':rxn_id, 'flux_difference':flux_diff, 'significant':significant, 'significant_criteria':criteria_I, 'flux_units':flux_unit, 'fold_change_geo':fold_change, 'flux_distance':flux_distance, 'used_':True, 'comment_':None}); # add data to the database self.add_data_stage02_isotopomer_fittedNetFluxDifferences(data_O);
70.264463
261
0.623147
483fb784ace7d9a827474ce35393fa4e983b3fe2
1,372
py
Python
ramp-frontend/ramp_frontend/utils.py
frcaud/ramp-board
3df90e51a4faeb0c03bab5dc13e12311807a618e
[ "BSD-3-Clause" ]
13
2019-02-16T22:30:11.000Z
2021-01-11T10:13:47.000Z
ramp-frontend/ramp_frontend/utils.py
frcaud/ramp-board
3df90e51a4faeb0c03bab5dc13e12311807a618e
[ "BSD-3-Clause" ]
427
2018-11-22T22:01:47.000Z
2022-03-15T17:35:57.000Z
ramp-frontend/ramp_frontend/utils.py
frcaud/ramp-board
3df90e51a4faeb0c03bab5dc13e12311807a618e
[ "BSD-3-Clause" ]
18
2018-11-22T16:22:18.000Z
2021-12-07T14:42:41.000Z
""" The :mod:`ramp_frontend.utils` provides utilities to ease sending email. """ import logging from flask_mail import Message from ramp_frontend import mail logger = logging.getLogger("RAMP-FRONTEND") def body_formatter_user(user): """Create the body of an email using the user information. Parameters ---------- user : :class:`ramp_database.model.User` The user profile. Returns ------- body : str The email body. """ body = """ user = {} name = {} {} email = {} linkedin = {} twitter = {} facebook = {} github = {} notes = {} bio = {} """.format( user.name, user.firstname, user.lastname, user.email, user.linkedin_url, user.twitter_url, user.facebook_url, user.github_url, user.hidden_notes, user.bio, ) return body def send_mail(to, subject, body): """Send email using Flask Mail. Parameters ---------- to : str The email address of the recipient. subject : str The subject of the email. body : str The body of the email. """ try: msg = Message(subject) msg.body = body msg.add_recipient(to) mail.send(msg) except Exception as e: logger.error("Mailing error: {}".format(e))
18.794521
72
0.555394
5f156d52cb3e886f9779606669eaca1ef1e9c0b7
2,730
py
Python
spot_finding/spot_finder.py
graeme-winter/sidewinder
c0c7f61dbf3aadad0f9dbf803051f6c81a255317
[ "BSD-3-Clause" ]
null
null
null
spot_finding/spot_finder.py
graeme-winter/sidewinder
c0c7f61dbf3aadad0f9dbf803051f6c81a255317
[ "BSD-3-Clause" ]
null
null
null
spot_finding/spot_finder.py
graeme-winter/sidewinder
c0c7f61dbf3aadad0f9dbf803051f6c81a255317
[ "BSD-3-Clause" ]
null
null
null
# spot_finder.py # # openCL / GPU powered spot finding # import sys import time import numpy as np import pyopencl as cl from spot_finder_data import setup, mask, data, shape, rettilb, plot from spot_finder_cl import get_devices, device_help from spot_finder_config import get_config def main(): if len(sys.argv) < 2: print(f"{sys.argv[0]} /path/to/data.nxs") sys.exit(1) filename = sys.argv[1] config = get_config() gpus = tuple(map(int, config["devices"].split(","))) devices = get_devices() context = cl.Context(devices=[devices[gpus[0]]]) queue = cl.CommandQueue(context) # TODO verify that there is enough local memory for this size of work group # TODO verify that this size of work group is legal for this device local_work = tuple(map(int, config["work"].split(","))) # work box + 7 pixels around LOCAL = str((local_work[0] + 7) * (local_work[1] + 7)) cl_text = open("spot_finder.cl", "r").read().replace("LOCAL_SIZE", LOCAL) program = cl.Program(context, cl_text).build() spot_finder = program.spot_finder spot_finder.set_scalar_arg_dtypes( [ None, None, np.int32, np.int32, np.int32, np.int32, np.float32, np.float32, None, ] ) setup(filename) m = mask() nz, ny, nx = shape() data_shape = (32, ny // 32, nx) d = data(0) _image = cl.Buffer( context, cl.mem_flags.READ_ONLY, d.size * np.dtype(d.dtype).itemsize ) _mask = cl.Buffer( context, cl.mem_flags.READ_ONLY, m.size * np.dtype(m.dtype).itemsize ) _signal = cl.Buffer( context, cl.mem_flags.WRITE_ONLY, m.size * np.dtype(m.dtype).itemsize ) # mask same for all images -> only copy the once cl.enqueue_copy(queue, _mask, m) # likewise output buffer signal = np.zeros(shape=m.shape, dtype=m.dtype) group = (1, local_work[0], local_work[1]) work = tuple(int(group[d] * np.ceil(data_shape[d] / group[d])) for d in (0, 1, 2)) t0 = time.time() n = 0 for i in range(nz): n += 1 image = data(i) cl.enqueue_copy(queue, _image, image) evt = spot_finder( queue, work, group, _image, _mask, data_shape[0], data_shape[1], data_shape[2], 3, 3.0, 6.0, _signal, ) evt.wait() cl.enqueue_copy(queue, signal, _signal) print(i, np.count_nonzero(signal)) t1 = time.time() print(f"Processing {n} images took {(t1 - t0):.1f}s") main()
23.534483
86
0.567399
83d8c9d295b1aaca07e8d8aaadb8b0ed6f3fb5d7
4,647
py
Python
azure-mgmt-network/azure/mgmt/network/v2017_10_01/models/application_gateway_probe_py3.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
1
2022-03-30T22:39:15.000Z
2022-03-30T22:39:15.000Z
azure-mgmt-network/azure/mgmt/network/v2017_10_01/models/application_gateway_probe_py3.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure-mgmt-network/azure/mgmt/network/v2017_10_01/models/application_gateway_probe_py3.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
2
2017-01-20T18:25:46.000Z
2017-05-12T21:31:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sub_resource import SubResource class ApplicationGatewayProbe(SubResource): """Probe of the application gateway. :param id: Resource ID. :type id: str :param protocol: Protocol. Possible values include: 'Http', 'Https' :type protocol: str or ~azure.mgmt.network.v2017_10_01.models.ApplicationGatewayProtocol :param host: Host name to send the probe to. :type host: str :param path: Relative path of probe. Valid path starts from '/'. Probe is sent to <Protocol>://<host>:<port><path> :type path: str :param interval: The probing interval in seconds. This is the time interval between two consecutive probes. Acceptable values are from 1 second to 86400 seconds. :type interval: int :param timeout: the probe timeout in seconds. Probe marked as failed if valid response is not received with this timeout period. Acceptable values are from 1 second to 86400 seconds. :type timeout: int :param unhealthy_threshold: The probe retry count. Backend server is marked down after consecutive probe failure count reaches UnhealthyThreshold. Acceptable values are from 1 second to 20. :type unhealthy_threshold: int :param pick_host_name_from_backend_http_settings: Whether the host header should be picked from the backend http settings. Default value is false. :type pick_host_name_from_backend_http_settings: bool :param min_servers: Minimum number of servers that are always marked healthy. Default value is 0. :type min_servers: int :param match: Criterion for classifying a healthy probe response. :type match: ~azure.mgmt.network.v2017_10_01.models.ApplicationGatewayProbeHealthResponseMatch :param provisioning_state: Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :type name: str :param etag: A unique read-only string that changes whenever the resource is updated. :type etag: str :param type: Type of the resource. :type type: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'protocol': {'key': 'properties.protocol', 'type': 'str'}, 'host': {'key': 'properties.host', 'type': 'str'}, 'path': {'key': 'properties.path', 'type': 'str'}, 'interval': {'key': 'properties.interval', 'type': 'int'}, 'timeout': {'key': 'properties.timeout', 'type': 'int'}, 'unhealthy_threshold': {'key': 'properties.unhealthyThreshold', 'type': 'int'}, 'pick_host_name_from_backend_http_settings': {'key': 'properties.pickHostNameFromBackendHttpSettings', 'type': 'bool'}, 'min_servers': {'key': 'properties.minServers', 'type': 'int'}, 'match': {'key': 'properties.match', 'type': 'ApplicationGatewayProbeHealthResponseMatch'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, *, id: str=None, protocol=None, host: str=None, path: str=None, interval: int=None, timeout: int=None, unhealthy_threshold: int=None, pick_host_name_from_backend_http_settings: bool=None, min_servers: int=None, match=None, provisioning_state: str=None, name: str=None, etag: str=None, type: str=None, **kwargs) -> None: super(ApplicationGatewayProbe, self).__init__(id=id, **kwargs) self.protocol = protocol self.host = host self.path = path self.interval = interval self.timeout = timeout self.unhealthy_threshold = unhealthy_threshold self.pick_host_name_from_backend_http_settings = pick_host_name_from_backend_http_settings self.min_servers = min_servers self.match = match self.provisioning_state = provisioning_state self.name = name self.etag = etag self.type = type
49.43617
342
0.665806
82c62eacf5a07c1672d05022fc65cd7519fc34a3
21
py
Python
hello.py
fabionunesdeparis/Fundamentos-em-python3
b21d06b44d5b18e99419cd06b4e08363c1f7a7ce
[ "MIT" ]
null
null
null
hello.py
fabionunesdeparis/Fundamentos-em-python3
b21d06b44d5b18e99419cd06b4e08363c1f7a7ce
[ "MIT" ]
null
null
null
hello.py
fabionunesdeparis/Fundamentos-em-python3
b21d06b44d5b18e99419cd06b4e08363c1f7a7ce
[ "MIT" ]
null
null
null
print('Olá Mundo!!!')
21
21
0.619048
ad4a44764332c4eae76775ded127e890bfe5aae7
360
py
Python
mlprodict/onnxrt/ops_cpu/op_sub.py
sdpython/mlprodic
9367dacc91d35ec670c8a8a76708300a75bbc993
[ "MIT" ]
32
2018-03-04T23:33:30.000Z
2022-03-10T19:15:06.000Z
mlprodict/onnxrt/ops_cpu/op_sub.py
sdpython/mlprodic
9367dacc91d35ec670c8a8a76708300a75bbc993
[ "MIT" ]
184
2017-11-30T14:10:35.000Z
2022-02-21T08:29:31.000Z
mlprodict/onnxrt/ops_cpu/op_sub.py
sdpython/mlprodic
9367dacc91d35ec670c8a8a76708300a75bbc993
[ "MIT" ]
9
2019-07-24T13:18:00.000Z
2022-03-07T04:08:07.000Z
# -*- encoding: utf-8 -*- # pylint: disable=E0203,E1101,C0111 """ @file @brief Runtime operator. """ import numpy from ._op import OpRunBinaryNumpy class Sub(OpRunBinaryNumpy): def __init__(self, onnx_node, desc=None, **options): OpRunBinaryNumpy.__init__(self, numpy.subtract, onnx_node, desc=desc, **options)
22.5
66
0.644444
9a91c8bd811f354324cda4680fd98e466c137266
2,122
py
Python
tests/test_action_space.py
emadboctorx/stable-baselines
9bce185538e8bf69836371286e23919fd85eec64
[ "MIT" ]
null
null
null
tests/test_action_space.py
emadboctorx/stable-baselines
9bce185538e8bf69836371286e23919fd85eec64
[ "MIT" ]
null
null
null
tests/test_action_space.py
emadboctorx/stable-baselines
9bce185538e8bf69836371286e23919fd85eec64
[ "MIT" ]
null
null
null
import numpy as np import pytest from stable_baselines import A2C, PPO1, PPO2, TRPO from stable_baselines.common.evaluation import evaluate_policy from stable_baselines.common.identity_env import (IdentityEnvMultiBinary, IdentityEnvMultiDiscrete) from stable_baselines.common.vec_env import DummyVecEnv MODEL_LIST = [A2C, PPO1, PPO2, TRPO] @pytest.mark.slow @pytest.mark.parametrize("model_class", MODEL_LIST) def test_identity_multidiscrete(model_class): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) with a multidiscrete action space :param model_class: (BaseRLModel) A RL Model """ env = DummyVecEnv([lambda: IdentityEnvMultiDiscrete(10)]) model = model_class("MlpPolicy", env) model.learn(total_timesteps=1000) evaluate_policy(model, env, n_eval_episodes=5) obs = env.reset() assert np.array(model.action_probability(obs)).shape == ( 2, 1, 10, ), "Error: action_probability not returning correct shape" assert ( np.prod(model.action_probability(obs, actions=env.action_space.sample()).shape) == 1 ), "Error: not scalar probability" @pytest.mark.slow @pytest.mark.parametrize("model_class", MODEL_LIST) def test_identity_multibinary(model_class): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) with a multibinary action space :param model_class: (BaseRLModel) A RL Model """ env = DummyVecEnv([lambda: IdentityEnvMultiBinary(10)]) model = model_class("MlpPolicy", env) model.learn(total_timesteps=1000) evaluate_policy(model, env, n_eval_episodes=5) obs = env.reset() assert model.action_probability(obs).shape == ( 1, 10, ), "Error: action_probability not returning correct shape" assert ( np.prod(model.action_probability(obs, actions=env.action_space.sample()).shape) == 1 ), "Error: not scalar probability"
32.646154
87
0.696513
89d67333af0ab4a0d22e05225d78236bafa36d32
1,721
py
Python
tests/test_validators.py
gundotio/worf
45268e3d04ba5a2549d3a4f511d876622c9e0cad
[ "MIT" ]
null
null
null
tests/test_validators.py
gundotio/worf
45268e3d04ba5a2549d3a4f511d876622c9e0cad
[ "MIT" ]
33
2021-03-05T05:20:30.000Z
2022-03-16T02:01:45.000Z
tests/test_validators.py
gundotio/worf
45268e3d04ba5a2549d3a4f511d876622c9e0cad
[ "MIT" ]
null
null
null
import pytest from uuid import uuid4 from django.core.exceptions import ValidationError uuid = uuid4() email = "something@example.com" phone = "(555) 555-5555" @pytest.fixture(name="profile_view") def profile_view_fixture(db, profile_factory): from django.test import RequestFactory from tests.views import ProfileDetail profile_factory.create(email=email, phone=phone) view = ProfileDetail() view.bundle = { "id": str(uuid), "email": email, "phone": phone, } view.request = RequestFactory().patch(f"/{uuid}/") view.kwargs = dict(id=str(uuid)) view.serializer = None return view def test_validate_bundle(profile_view): assert profile_view.validate_bundle("id") assert profile_view.validate_bundle("email") assert profile_view.validate_bundle("phone") def test_validate_uuid_accepts_str(profile_view): assert profile_view.validate_uuid(str(uuid)) == uuid def test_validate_uuid_accepts_uuid(profile_view): assert profile_view.validate_uuid(uuid) == uuid def test_validate_uuid_raises_error(profile_view): with pytest.raises(ValidationError): profile_view.validate_uuid("not-a-uuid") def test_validate_email_passes(profile_view): assert profile_view.validate_email(email) == email def test_validate_email_raises_error(profile_view): with pytest.raises(ValidationError): profile_view.validate_email("fake.example@com") def test_validate_custom_field_passes(profile_view): assert profile_view.validate_phone(phone) == "+5555555555" def test_validate_custom_field_raises_error(profile_view): with pytest.raises(ValidationError): profile_view.validate_phone("invalid number")
26.075758
62
0.750145
b0a60491392e7cad3a202ca66ae3fd5c049d3f7e
12,251
py
Python
model/fine_tune_model.py
joonzzh/cdp_based_clustering
474c419104de7496eb8749e1049ae07326abe706
[ "MIT" ]
1
2018-11-08T11:55:05.000Z
2018-11-08T11:55:05.000Z
model/fine_tune_model.py
joonzzh/cdp_based_clustering
474c419104de7496eb8749e1049ae07326abe706
[ "MIT" ]
null
null
null
model/fine_tune_model.py
joonzzh/cdp_based_clustering
474c419104de7496eb8749e1049ae07326abe706
[ "MIT" ]
null
null
null
import os import numpy as np import torch from PIL import Image from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader, Dataset from torchvision import models, transforms class_num = 38 batch_size = 8 trans = transforms.Compose([ transforms.Resize(224), transforms.ToTensor() ]) def default_loader(path): return Image.open(path).convert('RGB') class MyDataset(Dataset): def __init__(self, txt, transform=None, target_transform=None, loader=default_loader): fh = open(txt, 'r') imgs = [] for line in fh: line = line.strip('\n') line = line.rstrip() words = line.split() imgs.append((words[0], int(words[1]))) fh.close() self.imgs = imgs self.transform = transform self.target_transform = target_transform self.loader = loader def __getitem__(self, index): fn, label = self.imgs[index] img = self.loader(fn) if self.transform is not None: img = self.transform(img) return img,label def __len__(self): return len(self.imgs) def fine_tune_resnet18(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleResnet18.pth' if os.path.exists(model_path): resnet_model = models.resnet18() if torch.cuda.is_available(): resnet_model.load_state_dict(torch.load(model_path)) else: resnet_model.load_state_dict(torch.load(model_path, map_location='cpu')) resnet_model.fc = nn.Linear(in_features=512, out_features=class_num, bias=True) print('Load model succeed!') else: print('Model not exists.') resnet_model = models.resnet18(pretrained=True) resnet_model.fc = nn.Linear(in_features=512, out_features=class_num, bias=True) if torch.cuda.is_available(): resnet_model = resnet_model.cuda() print(resnet_model) return resnet_model, train_data, train_loader, test_data, test_loader, model_path def fine_tune_resnet34(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleResnet34.pth' if os.path.exists(model_path): resnet_model = models.resnet34() if torch.cuda.is_available(): resnet_model.load_state_dict(torch.load(model_path)) else: resnet_model.load_state_dict(torch.load(model_path, map_location='cpu')) resnet_model.fc = nn.Linear(in_features=512, out_features=class_num, bias=True) print('Load model succeed!') else: resnet_model = models.resnet34(pretrained=True) resnet_model.fc = nn.Linear(in_features=512, out_features=38, bias=True) if torch.cuda.is_available(): resnet_model = resnet_model.cuda() print(resnet_model) return resnet_model, train_data, train_loader, test_data, test_loader, model_path def fine_tune_resnet50(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleResnet50.pth' if os.path.exists(model_path): resnet_model = models.resnet50() if torch.cuda.is_available(): resnet_model.load_state_dict(torch.load(model_path)) else: resnet_model.load_state_dict(torch.load(model_path, map_location='cpu')) resnet_model.fc = nn.Linear(in_features=2048, out_features=class_num, bias=True) print('Load model succeed!') else: resnet_model = models.resnet50(pretrained=True) resnet_model.fc = nn.Linear(in_features=2048, out_features=class_num, bias=True) if torch.cuda.is_available(): resnet_model = resnet_model.cuda() print(resnet_model) return resnet_model, train_data, train_loader, test_data, test_loader, model_path def fine_tune_resnet101(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleResnet101.pth' if os.path.exists(model_path): resnet_model = models.resnet101() if torch.cuda.is_available(): resnet_model.load_state_dict(torch.load(model_path)) else: resnet_model.load_state_dict(torch.load(model_path, map_location='cpu')) resnet_model.fc = nn.Linear(in_features=2048, out_features=class_num, bias=True) print('Load model succeed!') else: resnet_model = models.resnet101(pretrained=True) resnet_model.fc = nn.Linear(in_features=2048, out_features=class_num, bias=True) if torch.cuda.is_available(): resnet_model = resnet_model.cuda() print(resnet_model) return resnet_model, train_data, train_loader, test_data, test_loader, model_path def fine_tune_vgg16(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleVgg16.pth' if os.path.exists(model_path): model = models.vgg16() if torch.cuda.is_available(): model.load_state_dict(torch.load(model_path)) else: model.load_state_dict(torch.load(model_path, map_location='cpu')) model.classifier = nn.Sequential(nn.Linear(25088, 4096), #vgg16 nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, class_num)) print('Load model succeed!') else: model = models.vgg16(pretrained=True) model.classifier = nn.Sequential(nn.Linear(25088, 4096), #vgg16 nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, class_num)) if torch.cuda.is_available(): model = model.cuda() print(model) return model, train_data, train_loader, test_data, test_loader, model_path def fine_tune_densenet121(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleDense121.pth' if os.path.exists(model_path): model = models.densenet121() if torch.cuda.is_available(): model.load_state_dict(torch.load(model_path)) else: model.load_state_dict(torch.load(model_path, map_location='cpu')) model.classifier = nn.Linear(1024, class_num, True) print('Load model succeed!') else: model = models.densenet121(pretrained=True) model.classifier = nn.Linear(1024, class_num, True) if torch.cuda.is_available(): model = model.cuda() print(model) return model, train_data, train_loader, test_data, test_loader, model_path def fine_tune_densenet161(): train_data=MyDataset(txt='../data/train/train.txt', transform=trans) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data=MyDataset(txt='../data/test/test.txt', transform=trans) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) model_path = 'YaleDense161.pth' if os.path.exists(model_path): model = models.densenet161() if torch.cuda.is_available(): model.load_state_dict(torch.load(model_path)) else: model.load_state_dict(torch.load(model_path, map_location='cpu')) model.classifier = nn.Linear(2208, class_num, True) print('Load model succeed!') else: model = models.densenet161(pretrained=True) model.classifier = nn.Linear(2208, class_num, True) if torch.cuda.is_available(): model = model.cuda() print(model) return model, train_data, train_loader, test_data, test_loader, model_path def fine_tune(net, train_data, train_loader, test_data, test_loader, path): optimizer = optim.Adam(net.parameters(), 1e-4) loss_func = nn.CrossEntropyLoss() for epoch in range(30): print('epoch {}'.format(epoch + 1)) # training train_loss = 0.0 train_acc = 0.0 for batch_x, batch_y in train_loader: if torch.cuda.is_available(): batch_x, batch_y = Variable(batch_x.cuda()), Variable(batch_y.cuda()) else: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = net(batch_x) loss = loss_func(out, batch_y) train_loss += loss.data[0] pred = torch.max(out, 1)[1] train_correct = (pred == batch_y).sum() train_acc += float(train_correct.data[0]) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch: {}\nTrain Loss: {:.6f}, Acc: {:.6f}'.format(epoch, train_loss / (len(train_data)), train_acc / (len(train_data)))) #evaluation acc = 0.0 for batch_x, batch_y in test_loader: if torch.cuda.is_available(): batch_x, batch_y = Variable(batch_x.cuda()), Variable(batch_y.cuda()) else: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = net(batch_x) loss = loss_func(out, batch_y) pred = torch.max(out, 1)[1] train_correct = (pred == batch_y).sum() acc += float(train_correct.data[0]) print('Test Acc: {:.6f}'.format(acc / (len(test_data)))) torch.save(net.state_dict(), path) # resnet18 # net, train_data, train_loader, test_data, test_loader, path = fine_tune_resnet18() # fine_tune(net, train_data, train_loader, test_data, test_loader, path) # resnet34 #net, train_data, train_loader, test_data, test_loader, path = fine_tune_resnet34() #fine_tune(net, train_data, train_loader, test_data, test_loader, path) # resnet50 #net, train_data, train_loader, test_data, test_loader, path = fine_tune_resnet50() #fine_tune(net, train_data, train_loader, test_data, test_loader, path) # resnet101 #net, train_data, train_loader, test_data, test_loader, path = fine_tune_resnet101() #fine_tune(net, train_data, train_loader, test_data, test_loader, path) #vgg16 #net, train_data, train_loader, test_data, test_loader, path = fine_tune_vgg16() #fine_tune(net, train_data, train_loader, test_data, test_loader, path) #densenet121 #net, train_data, train_loader, test_data, test_loader, path = fine_tune_densenet121() #fine_tune(net, train_data, train_loader, test_data, test_loader, path) #densenet161 #net, train_data, train_loader, test_data, test_loader, path = fine_tune_densenet161() #fine_tune(net, train_data, train_loader, test_data, test_loader, path)
43.443262
136
0.662885
497894d58df9b24d3ecf030f33a73fb9abe75f2a
4,173
py
Python
Image/where.py
jdgomezmo/gee
7016c47ee902dbf60b1aeb6319424c61c1107345
[ "MIT" ]
1
2020-11-16T22:07:42.000Z
2020-11-16T22:07:42.000Z
Image/where.py
jdgomezmo/gee
7016c47ee902dbf60b1aeb6319424c61c1107345
[ "MIT" ]
null
null
null
Image/where.py
jdgomezmo/gee
7016c47ee902dbf60b1aeb6319424c61c1107345
[ "MIT" ]
null
null
null
# %% """ <table class="ee-notebook-buttons" align="left"> <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/Image/where.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Image/where.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Image/where.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> </table> """ # %% """ ## Install Earth Engine API and geemap Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`. The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemap#dependencies), including earthengine-api, folium, and ipyleaflet. **Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60#issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). """ # %% # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() # %% """ ## Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. """ # %% Map = geemap.Map(center=[40,-100], zoom=4) Map # %% """ ## Add Earth Engine Python script """ # %% # Add Earth Engine dataset Map.setCenter(-113.41842, 40.055489, 6) elev = ee.Image('srtm90_v4') cover = ee.Image('MCD12Q1/MCD12Q1_005_2001_01_01').select('Land_Cover_Type_1') blank = ee.Image(0) # Where (1 <= cover <= 4) and (elev > 1000), set the output to 1. output = blank.where( cover.lte(4).And(cover.gte(1)).And(elev.gt(1000)), 1) # Output contains 0s and 1s. Mask it with itself to get rid of the 0s. result = output.mask(output) vis = {'min': 0, 'max': 3000} Map.addLayer(elev, vis, 'SRTM') Map.addLayer(result, {'palette': '00AA00'}, 'Land Cover') # %% """ ## Display Earth Engine data layers """ # %% Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map
47.965517
1,021
0.73664
f05fab1fee963ff0abc14f37d72f99605c9595cc
1,234
py
Python
Projects/Online Workouts/w3resource/List/program-31.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
1
2019-09-23T15:51:45.000Z
2019-09-23T15:51:45.000Z
Projects/Online Workouts/w3resource/List/program-31.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
5
2021-02-08T20:47:19.000Z
2022-03-12T00:35:44.000Z
Projects/Online Workouts/w3resource/List/program-31.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
null
null
null
#!/usr/bin/env python 3 ############################################################################################ # # # Program purpose: Finds the number of items that falls within a certain range. # # Program Author : Happi Yvan <ivensteinpoker@gmail.com> # # Creation Date : November 12, 2019 # # # ############################################################################################ import random def random_int_list(low: int, high: int, size: int) -> list: return [random.randint(low, high) for _ in range(size)] def count_items_in_range(main_data: list, low: int, high: int) -> int: cnt = int(0) for x in main_data: if low <= x <= high: cnt += 1 return cnt if __name__ == "__main__": list_data = random_int_list(low=0, high=20, size=15) print(f'Generated list data: {list_data}') print(f'Number of items in range 2 and 10: {count_items_in_range(main_data=list_data, low=2, high=10)}')
45.703704
109
0.4141
279b0ae4916949fb3d9cea3d223d44ba5fa7efd6
601
py
Python
benchmark/run.py
ioistired/pytomlpp
54b7a3606fecfb1fb76469ce355aced007db0ecc
[ "MIT" ]
null
null
null
benchmark/run.py
ioistired/pytomlpp
54b7a3606fecfb1fb76469ce355aced007db0ecc
[ "MIT" ]
null
null
null
benchmark/run.py
ioistired/pytomlpp
54b7a3606fecfb1fb76469ce355aced007db0ecc
[ "MIT" ]
null
null
null
import pytomlpp import toml import tomlkit import qtoml import timeit def benchmark(name, func, number=5000): print(f'{name:>10}: Running...', end='', flush=True) res = str(timeit.timeit(func, number=number)).split('.') print('\b'*10 + f'{res[0]:>3}.{res[1]} s') test_data = '' with open('data.toml', 'r', encoding='utf-8') as f: test_data = f.read() benchmark('pytomlpp', lambda: pytomlpp.loads(test_data)) benchmark('toml', lambda: toml.loads(test_data)) benchmark('qtoml', lambda: qtoml.loads(test_data)) benchmark('tomlkit', lambda: tomlkit.parse(test_data))
30.05
61
0.66223
dbb8acb65dc6e069fc5ea0475937df38bd18b556
1,497
py
Python
Deathly Dungeon/pathfinding/finder/best_first.py
iTecAI/Deathly-Dungeons
54d8bb9b9c6175a6f8c55858bf864f773cfe8f2c
[ "MIT" ]
null
null
null
Deathly Dungeon/pathfinding/finder/best_first.py
iTecAI/Deathly-Dungeons
54d8bb9b9c6175a6f8c55858bf864f773cfe8f2c
[ "MIT" ]
null
null
null
Deathly Dungeon/pathfinding/finder/best_first.py
iTecAI/Deathly-Dungeons
54d8bb9b9c6175a6f8c55858bf864f773cfe8f2c
[ "MIT" ]
null
null
null
from .a_star import AStarFinder, MAX_RUNS, TIME_LIMIT from pathfinding.core.diagonal_movement import DiagonalMovement class BestFirst(AStarFinder): """ Similar to the default A* algorithm from a_star. """ def __init__(self, heuristic=None, weight=1, diagonal_movement=DiagonalMovement.never, time_limit=TIME_LIMIT, max_runs=MAX_RUNS): """ find shortest path using BestFirst algorithm :param heuristic: heuristic used to calculate distance of 2 points (defaults to manhatten) :param weight: weight for the edges :param diagonal_movement: if diagonal movement is allowed (see enum in diagonal_movement) :param time_limit: max. runtime in seconds :param max_runs: max. amount of tries until we abort the search (optional, only if we enter huge grids and have time constrains) <=0 means there are no constrains and the code might run on any large map. """ super(BestFirst, self).__init__( heuristic=heuristic, weight=weight, diagonal_movement=diagonal_movement, time_limit=time_limit, max_runs=max_runs) self.weighted = False def apply_heuristic(self, node_a, node_b, heuristic=None): return super(BestFirst, self).apply_heuristic( node_a, node_b, heuristic) * 1000000
39.394737
77
0.628591
6079690d45fb5d46a3f4e6dfb7b05fdc446cd22c
3,022
py
Python
nova/conf/base.py
badock/nova-tidb
4c4591f2cd887fdc22828e12f0c297c051bbd912
[ "Apache-2.0" ]
null
null
null
nova/conf/base.py
badock/nova-tidb
4c4591f2cd887fdc22828e12f0c297c051bbd912
[ "Apache-2.0" ]
null
null
null
nova/conf/base.py
badock/nova-tidb
4c4591f2cd887fdc22828e12f0c297c051bbd912
[ "Apache-2.0" ]
null
null
null
# needs:fix_opt_description # needs:check_deprecation_status # needs:check_opt_group_and_type # needs:fix_opt_description_indentation # needs:fix_opt_registration_consistency # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg notify_decorator = 'nova.notifications.notify_decorator' base_options = [ cfg.IntOpt('password_length', default=12, help='Length of generated instance admin passwords'), cfg.StrOpt('instance_usage_audit_period', default='month', help='Time period to generate instance usages for. ' 'Time period must be hour, day, month or year'), cfg.BoolOpt('use_rootwrap_daemon', default=False, help="Start and use a daemon that can run the commands that " "need to be run with root privileges. This option is " "usually enabled on nodes that run nova compute " "processes"), cfg.StrOpt('rootwrap_config', default="/etc/nova/rootwrap.conf", help='Path to the rootwrap configuration file to use for ' 'running commands as root'), cfg.StrOpt( 'tempdir', help='Explicitly specify the temporary working directory'), cfg.BoolOpt( 'monkey_patch', default=False, help="""Determine if monkey patching should be applied. Possible values: * True: Functions specified in ``monkey_patch_modules`` will be patched. * False: No monkey patching will occur. Services which consume this: * All Interdependencies to other options: * ``monkey_patch_modules``: This must have values set for this option to have any effect """), cfg.ListOpt( 'monkey_patch_modules', default=[ 'nova.compute.api:%s' % (notify_decorator) ], help="""List of modules/decorators to monkey patch. This option allows you to patch a decorator for all functions in specified modules. Possible values: * nova.compute.api:nova.notifications.notify_decorator * nova.api.ec2.cloud:nova.notifications.notify_decorator * [...] Interdependencies to other options: * ``monkey_patch``: This must be set to ``True`` for this option to have any effect """), ] def register_opts(conf): conf.register_opts(base_options) def list_opts(): return {'DEFAULT': base_options}
30.525253
78
0.708802
9af8d14180b0c19112b4ceace6bec6cbb3718b23
570
py
Python
main/twolame/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
main/twolame/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
main/twolame/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
pkgname = "twolame" pkgver = "0.4.0" pkgrel = 0 build_style = "gnu_configure" hostmakedepends = ["pkgconf"] makedepends = ["libsndfile-devel"] checkdepends = ["perl"] pkgdesc = "Optimized MPEG Audio Layer 2 encoder" maintainer = "q66 <q66@chimera-linux.org>" license = "LGPL-2.1-or-later" url = "https://www.twolame.org" source = f"$(SOURCEFORGE_SITE)/{pkgname}/{pkgname}-{pkgver}.tar.gz" sha256 = "cc35424f6019a88c6f52570b63e1baf50f62963a3eac52a03a800bb070d7c87d" @subpackage("twolame-devel") def _devel(self): return self.default_devel(extra = ["usr/share/doc"])
31.666667
75
0.736842
457661126b08d9c5cc50b127ba32e492cd20fd4d
1,652
py
Python
app/views.py
mateusvictor/Email-Sender
66034f315a1b0f0ee7bb07fda12d58810c465aa6
[ "MIT" ]
null
null
null
app/views.py
mateusvictor/Email-Sender
66034f315a1b0f0ee7bb07fda12d58810c465aa6
[ "MIT" ]
null
null
null
app/views.py
mateusvictor/Email-Sender
66034f315a1b0f0ee7bb07fda12d58810c465aa6
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect from django.core.mail import send_mail from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from .models import Receiver import os @login_required def home(request): user = request.user receivers = [str(receiver) for receiver in Receiver.objects.filter(user=user)] context = { 'receivers': ' | '.join(receivers), } return render(request, "app/home.html", context) @login_required def add_receiver(request): if request.method != 'POST': return redirect("home") user = request.user receiver = request.POST['receiver'] new_receiver = Receiver.objects.create(user=user, receiver=receiver) return redirect("receivers") @login_required def remove_receiver(request, pk): try: to_delete = Receiver.objects.get(pk=pk) except: return redirect("home") if request.user == to_delete.user: to_delete.delete() return redirect("receivers") @login_required def receiver_list(request): user = request.user context = { 'receiver_list': Receiver.objects.filter(user=user).order_by('receiver'), } return render(request, "app/receiver_form.html", context=context) @login_required def send_email(request): if request.method != 'POST': return redirect("home") content = request.POST['content'] subject = request.POST['subject'] sender = os.environ.get('EMAIL_USER') user = request.user receivers = [str(receiver) for receiver in Receiver.objects.filter(user=user)] if not receivers: return redirect("home") send_mail( subject, content, sender, receivers, fail_silently=False, ) return redirect("home")
20.395062
79
0.740315
1f9a56b08c6b09de021bf700b520e9b6fc6f46fc
13,331
py
Python
connectordb/_websocket.py
connectordb/connectordb-python
2092b0cb30898139a247176bcf433d5a4abde7cb
[ "Apache-2.0" ]
1
2017-02-26T07:40:39.000Z
2017-02-26T07:40:39.000Z
connectordb/_websocket.py
connectordb/connectordb-python
2092b0cb30898139a247176bcf433d5a4abde7cb
[ "Apache-2.0" ]
null
null
null
connectordb/_websocket.py
connectordb/connectordb-python
2092b0cb30898139a247176bcf433d5a4abde7cb
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import websocket import threading import logging import json import random import time class WebsocketHandler(object): """WebsocketHandler handles websocket connections to a ConnectorDB server. It allows subscribing and unsubscribing from inputs/outputs. The handler also deals with dropped connections, repeatedly attempting to reconnect to the server whenever connection is lost.""" """The maximum time to wait between reconnection attempts""" reconnect_time_max_seconds = 8 * 60.0 """Multiply the wait time by this factor when a reconnect fails""" reconnect_time_backoff_multiplier = 1.5 """The time in seconds to wait before an initial attempt at reconnecting""" reconnect_time_starting_seconds = 1.0 """The time between pings that results in a connection timeout""" connection_ping_timeout = 60 * 2 def __init__(self, server_url, basic_auth): """ The handler is initialized as follows:: from requests.auth import HTTPBasicAuth req = HTTPBasicAuth(username,password) ws = WebsocketHandler("https://connectordb.com",req) """ # The websocket is at /api/v1/websocket, and the server_url includes the /api/v1/ server_url += "websocket" # First we must get the websocket URI from the server URL self.ws_url = "wss://" + server_url[8:] if server_url.startswith("http://"): self.ws_url = "ws://" + server_url[7:] self.setauth(basic_auth) # Set up the variable which will hold all of the subscriptions self.subscriptions = {} self.subscription_lock = threading.Lock() # The server periodically sends ping messages during websocket connection. # we keep track of the pings so that we notice loss of connection self.lastpingtime = time.time() self.pingtimer = None # Now set up the websocket self.ws = None self.ws_thread = None # The thread where the websocket runs self.ws_openlock = threading.Lock() self.ws_sendlock = threading.Lock() # Set up the websocket status self._status = "disconnected" self._status_lock = threading.Lock() # Set up the reconnect time self.reconnect_time = self.reconnect_time_starting_seconds # Set up the times that we were connected and disconnected. These allow for # setting up reconnect delays correctly self.connected_time = 0 self.disconnected_time = 0 def setauth(self,basic_auth): """ setauth can be used during runtime to make sure that authentication is reset. it can be used when changing passwords/apikeys to make sure reconnects succeed """ self.headers = [] # If we have auth if basic_auth is not None: # we use a cheap hack to get the basic auth header out of the auth object. # This snippet ends up with us having an array of the necessary headers # to perform authentication. class auth_extractor(): def __init__(self): self.headers = {} extractor = auth_extractor() basic_auth(extractor) for header in extractor.headers: self.headers.append("%s: %s" % (header, extractor.headers[header])) @property def status(self): status = "" with self._status_lock: status = self._status return status @status.setter def status(self, newstatus): with self._status_lock: self._status = newstatus logging.debug("ConnectorDB:WS:STATUS: %s", newstatus) def send(self, cmd): """Send the given command thru the websocket""" with self.ws_sendlock: self.ws.send(json.dumps(cmd)) def insert(self, stream, data): """Insert the given datapoints into the stream""" self.send({"cmd": "insert", "arg": stream, "d": data}) def subscribe(self, stream, callback, transform=""): """Given a stream, a callback and an optional transform, sets up the subscription""" if self.status == "disconnected" or self.status == "disconnecting" or self.status == "connecting": self.connect() if self.status is not "connected": return False logging.debug("Subscribing to %s", stream) self.send({"cmd": "subscribe", "arg": stream, "transform": transform}) with self.subscription_lock: self.subscriptions[stream + ":" + transform] = callback return True def unsubscribe(self, stream, transform=""): """Unsubscribe from the given stream (with the optional transform)""" if self.status is not "connected": return False logging.debug("Unsubscribing from %s", stream) self.send( {"cmd": "unsubscribe", "arg": stream, "transform": transform}) self.subscription_lock.acquire() del self.subscriptions[stream + ":" + transform] if len(self.subscriptions) is 0: self.subscription_lock.release() self.disconnect() else: self.subscription_lock.release() def connect(self): """Attempt to connect to the websocket - and returns either True or False depending on if the connection was successful or not""" # Wait for the lock to be available (ie, the websocket is not being used (yet)) self.ws_openlock.acquire() self.ws_openlock.release() if self.status == "connected": return True # Already connected if self.status == "disconnecting": # If currently disconnecting, wait a moment, and retry connect time.sleep(0.1) return self.connect() if self.status == "disconnected" or self.status == "reconnecting": self.ws = websocket.WebSocketApp(self.ws_url, header=self.headers, on_message=self.__on_message, on_ping=self.__on_ping, on_open=self.__on_open, on_close=self.__on_close, on_error=self.__on_error) self.ws_thread = threading.Thread(target=self.ws.run_forever) self.ws_thread.daemon = True self.status = "connecting" self.ws_openlock.acquire() self.ws_thread.start() self.ws_openlock.acquire() self.ws_openlock.release() return self.status == "connected" def disconnect(self): if self.status == "connected": self.status = "disconnecting" with self.subscription_lock: self.subscriptions = {} self.ws.close() self.__on_close(self.ws) def __reconnect(self): """This is called when a connection is lost - it attempts to reconnect to the server""" self.status = "reconnecting" # Reset the disconnect time after 15 minutes if self.disconnected_time - self.connected_time > 15 * 60: self.reconnect_time = self.reconnect_time_starting_seconds else: self.reconnect_time *= self.reconnect_time_backoff_multiplier if self.reconnect_time > self.reconnect_time_max_seconds: self.reconnect_time = self.reconnect_time_max_seconds # We want to add some randomness to the reconnect rate - necessary so that we don't pound the server # if it goes down self.reconnect_time *= 1 + random.uniform(-0.2, 0.2) if self.reconnect_time < self.reconnect_time_starting_seconds: self.reconnect_time = self.reconnect_time_starting_seconds logging.warn("ConnectorDB:WS: Attempting to reconnect in %fs", self.reconnect_time) self.reconnector = threading.Timer(self.reconnect_time, self.__reconnect_fnc) self.reconnector.daemon = True self.reconnector.start() def __reconnect_fnc(self): """This function is called by reconnect after the time delay""" if self.connect(): self.__resubscribe() else: self.__reconnect() def __resubscribe(self): """Send subscribe command for all existing subscriptions. This allows to resume a connection that was closed""" with self.subscription_lock: for sub in self.subscriptions: logging.debug("Resubscribing to %s", sub) stream_transform = sub.split(":", 1) self.send({ "cmd": "subscribe", "arg": stream_transform[0], "transform": stream_transform[1] }) def __on_open(self, ws): """Called when the websocket is opened""" logging.debug("ConnectorDB: Websocket opened") # Connection success - decrease the wait time for next connection self.reconnect_time /= self.reconnect_time_backoff_multiplier self.status = "connected" self.lastpingtime = time.time() self.__ensure_ping() self.connected_time = time.time() # Release the lock that connect called self.ws_openlock.release() def __on_close(self, ws): """Called when the websocket is closed""" if self.status == "disconnected": return # This can be double-called on disconnect logging.debug("ConnectorDB:WS: Websocket closed") # Turn off the ping timer if self.pingtimer is not None: self.pingtimer.cancel() self.disconnected_time = time.time() if self.status == "disconnecting": self.status = "disconnected" elif self.status == "connected": self.__reconnect() def __on_error(self, ws, err): """Called when there is an error in the websocket""" logging.debug("ConnectorDB:WS: Connection Error") if self.status == "connecting": self.status = "errored" self.ws_openlock.release() # Release the lock of connecting def __on_message(self, ws, msg): """This function is called whenever there is a message received from the server""" msg = json.loads(msg) logging.debug("ConnectorDB:WS: Msg '%s'", msg["stream"]) # Build the subcription key stream_key = msg["stream"] + ":" if "transform" in msg: stream_key += msg["transform"] self.subscription_lock.acquire() if stream_key in self.subscriptions: subscription_function = self.subscriptions[stream_key] self.subscription_lock.release() fresult = subscription_function(msg["stream"], msg["data"]) if fresult is True: # This is a special result - if the subscription function of a downlink returns True, # then the datapoint is acknowledged automatically (ie, reinserted in non-downlink stream) fresult = msg["data"] if fresult is not False and fresult is not None and msg["stream"].endswith( "/downlink") and msg["stream"].count("/") == 3: # If the above conditions are true, it means that the datapoints were from a downlink, # and the subscriber function chooses to acknowledge them, so we reinsert them. self.insert(msg["stream"][:-9], fresult) else: self.subscription_lock.release() logging.warn( "ConnectorDB:WS: Msg '%s' not subscribed! Subscriptions: %s", msg["stream"], list(self.subscriptions.keys())) def __on_ping(self, ws, data): """The server periodically sends us websocket ping messages to keep the connection alive. To ensure that the connection to the server is still active, we memorize the most recent ping's time and we periodically ensure that a ping was received in __ensure_ping""" logging.debug("ConnectorDB:WS: ping") self.lastpingtime = time.time() def __ensure_ping(self): """Each time the server sends a ping message, we record the timestamp. If we haven't received a ping within the given interval, then we assume that the connection was lost, close the websocket and attempt to reconnect""" logging.debug("ConnectorDB:WS: pingcheck") if (time.time() - self.lastpingtime > self.connection_ping_timeout): logging.warn("ConnectorDB:WS: Websocket ping timed out!") if self.ws is not None: self.ws.close() self.__on_close(self.ws) else: # reset the ping timer self.pingtimer = threading.Timer(self.connection_ping_timeout, self.__ensure_ping) self.pingtimer.daemon = True self.pingtimer.start() def __del__(self): """Make sure that all threads shut down when needed""" self.disconnect()
39.913174
108
0.610082
9045c77f23b285dc2514de4d8ca14608c1a3c558
1,957
py
Python
aardvark/api/resource_provider.py
ttsiouts/aardvark
cbf29f332df86814dd581152faf863c0d29ae41c
[ "Apache-2.0" ]
null
null
null
aardvark/api/resource_provider.py
ttsiouts/aardvark
cbf29f332df86814dd581152faf863c0d29ae41c
[ "Apache-2.0" ]
null
null
null
aardvark/api/resource_provider.py
ttsiouts/aardvark
cbf29f332df86814dd581152faf863c0d29ae41c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 European Organization for Nuclear Research. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from aardvark.api.rest import placement as client from aardvark.objects import capabilities from aardvark.objects import resource_provider as rp_obj from aardvark.objects import resources class ResourceProvider(object): def __init__(self, uuid, name): self.uuid = uuid self.name = name self.client = client.PlacementClient() @property def usages(self): usages = self.client.usages(self.uuid) return resources.Resources(usages) @property def all_usages(self): return self.client.all_usages() @property def inventories(self): inventories = self.client.inventories(self.uuid) return resources.Resources.obj_from_inventories(inventories) @property def resource_classes(self): return self.client.resource_classes() @property def capabilities(self): return capabilities.Capabilities(self.usages, self.inventories) class ResourceProviderList(object): def __init__(self, aggregates=None): self.client = client.PlacementClient() self.aggregates = aggregates @property def resource_providers(self): rps = self.client.resource_providers(self.aggregates) return [rp_obj.ResourceProvider(rp['uuid'], rp['name']) for rp in rps]
31.564516
78
0.712315
c5833a05c23161bf57f6bd6da45f594aacf03c84
7,938
py
Python
python/paddle/fluid/tests/unittests/test_exponential_op.py
shangzhizhou/Paddle
f1d56b7722399dce93a1fc337db8f9523754c92e
[ "Apache-2.0" ]
2
2019-05-16T03:09:06.000Z
2022-01-14T07:06:37.000Z
python/paddle/fluid/tests/unittests/test_exponential_op.py
zhangliya01/Paddle
2e4cb27927a3ea0f58b25d534e90ac68989e8897
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/test_exponential_op.py
zhangliya01/Paddle
2e4cb27927a3ea0f58b25d534e90ac68989e8897
[ "Apache-2.0" ]
2
2021-03-10T08:05:40.000Z
2021-03-11T14:30:14.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import numpy as np from op_test import OpTest paddle.enable_static() class TestExponentialOp1(OpTest): def setUp(self): self.op_type = "exponential" self.config() self.attrs = {"lambda": self.lam} self.inputs = {'X': np.empty([1024, 1024], dtype=self.dtype)} self.outputs = {'Out': np.ones([1024, 1024], dtype=self.dtype)} def config(self): self.lam = 0.5 self.dtype = "float64" def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist1, _ = np.histogram(outs[0], range=(0, 5)) hist1 = hist1.astype("float32") hist1 = hist1 / float(outs[0].size) data_np = np.random.exponential(1. / self.lam, [1024, 1024]) hist2, _ = np.histogram(data_np, range=(0, 5)) hist2 = hist2.astype("float32") hist2 = hist2 / float(data_np.size) self.assertTrue( np.allclose( hist1, hist2, rtol=0.02), "actual: {}, expected: {}".format(hist1, hist2)) def test_check_grad_normal(self): self.check_grad( ['X'], 'Out', user_defined_grads=[np.zeros( [1024, 1024], dtype=self.dtype)], user_defined_grad_outputs=[ np.random.rand(1024, 1024).astype(self.dtype) ]) class TestExponentialOp2(TestExponentialOp1): def config(self): self.lam = 0.25 self.dtype = "float32" class TestExponentialAPI(unittest.TestCase): def test_static(self): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): x_np = np.full([10, 10], -1.) x = paddle.static.data(name="X", shape=[10, 10], dtype='float64') x.exponential_(1.0) exe = paddle.static.Executor() out = exe.run(paddle.static.default_main_program(), feed={"X": x_np}, fetch_list=[x]) self.assertTrue(np.min(out) >= 0) def test_dygraph(self): paddle.disable_static() x = paddle.full([10, 10], -1., dtype='float32') x.exponential_(0.5) self.assertTrue(np.min(x.numpy()) >= 0) paddle.enable_static() # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' def test_fixed_random_number(self): if not paddle.is_compiled_with_cuda(): return # Note(zhouwei): The Number of threads is determined by # 'multiProcessorCount * maxThreadsPerMultiProcessor'. So, different # GPU have different number of threads, which result in different # random value. Only test on V100 GPU here. if not "V100" in paddle.device.cuda.get_device_name(): return print("Test Fixed Random number on V100 GPU------>") paddle.disable_static() paddle.set_device('gpu') paddle.seed(2021) x = paddle.empty([64, 3, 1024, 1024], dtype="float32") x.exponential_(1.0) x_np = x.numpy() expect = [ 0.80073667, 0.2249291, 0.07734892, 1.25392, 0.14013891, 0.45736602, 1.9735607, 0.30490234, 0.57100505, 0.8115938 ] self.assertTrue(np.allclose(x_np[0, 0, 0, 0:10], expect)) expect = [ 1.4296371e+00, 9.5411777e-01, 5.2575850e-01, 2.4805880e-01, 1.2322118e-04, 8.4604341e-01, 2.1111444e-01, 1.4143821e+00, 2.8194717e-01, 1.1360573e+00 ] self.assertTrue(np.allclose(x_np[16, 1, 300, 200:210], expect)) expect = [ 1.3448033, 0.35146526, 1.7380928, 0.32012638, 0.10396296, 0.51344526, 0.15308502, 0.18712929, 0.03888268, 0.20771872 ] self.assertTrue(np.allclose(x_np[32, 1, 600, 500:510], expect)) expect = [ 0.5107464, 0.20970327, 2.1986802, 1.580056, 0.31036147, 0.43966478, 0.9056133, 0.30119267, 1.4797124, 1.4319834 ] self.assertTrue(np.allclose(x_np[48, 2, 900, 800:810], expect)) expect = [ 3.4640615, 1.1019983, 0.41195083, 0.22681557, 0.291846, 0.53617656, 1.5791925, 2.4645927, 0.04094889, 0.9057725 ] self.assertTrue(np.allclose(x_np[63, 2, 1023, 1000:1010], expect)) x = paddle.empty([10, 10], dtype="float32") x.exponential_(3.0) x_np = x.numpy() expect = [ 0.02831675, 0.1691551, 0.6798956, 0.69347525, 0.0243443, 0.22180498, 0.30574575, 0.9839696, 0.2834912, 0.59420055 ] self.assertTrue(np.allclose(x_np[5, 0:10], expect)) x = paddle.empty([16, 2, 1024, 768], dtype="float64") x.exponential_(0.25) x_np = x.numpy() expect = [ 10.0541229, 12.67860643, 1.09850734, 7.35289643, 2.65471225, 3.86217432, 2.97902086, 2.92744479, 2.67927152, 0.19667352 ] self.assertTrue(np.allclose(x_np[0, 0, 0, 100:110], expect)) expect = [ 0.68328125, 3.1454553, 0.92158376, 1.95842188, 1.05296941, 12.93242051, 5.20255978, 3.3588624, 1.57377174, 5.73194183 ] self.assertTrue(np.allclose(x_np[4, 0, 300, 190:200], expect)) expect = [ 1.37973974, 3.45036798, 7.94625406, 1.62610973, 0.31032122, 4.13596493, 1.98494535, 1.13207041, 8.30592769, 2.81460147 ] self.assertTrue(np.allclose(x_np[8, 1, 600, 300:310], expect)) expect = [ 2.27710811, 12.25003028, 2.96409124, 4.72405788, 0.67917249, 4.35856718, 0.46870976, 2.31120149, 9.61595826, 4.64446271 ] self.assertTrue(np.allclose(x_np[12, 1, 900, 500:510], expect)) expect = [ 0.95883744, 1.57316361, 15.22524512, 20.49559882, 13.70008548, 3.29430143, 3.90390424, 0.9146657, 0.80972249, 0.33376219 ] self.assertTrue(np.allclose(x_np[15, 1, 1023, 750:760], expect)) x = paddle.empty([512, 768], dtype="float64") x.exponential_(0.3) x_np = x.numpy() expect = [ 8.79266704, 4.79596009, 2.75480243, 6.04670011, 0.35379556, 0.76864868, 3.17428251, 0.26556859, 12.22485885, 10.51690383 ] self.assertTrue(np.allclose(x_np[0, 200:210], expect)) expect = [ 5.6341126, 0.52243418, 5.36410796, 6.83672002, 11.9243311, 5.85985566, 5.75169548, 0.13877972, 6.1348385, 3.82436519 ] self.assertTrue(np.allclose(x_np[300, 400:410], expect)) expect = [ 4.94883581, 0.56345306, 0.85841585, 1.92287801, 6.10036656, 1.19524847, 3.64735434, 5.19618716, 2.57467974, 3.49152791 ] self.assertTrue(np.allclose(x_np[500, 700:710], expect)) x = paddle.empty([10, 10], dtype="float64") x.exponential_(4.0) x_np = x.numpy() expect = [ 0.15713826, 0.56395964, 0.0680941, 0.00316643, 0.27046853, 0.19852724, 0.12776634, 0.09642974, 0.51977551, 1.33739699 ] self.assertTrue(np.allclose(x_np[5, 0:10], expect)) paddle.enable_static() if __name__ == "__main__": unittest.main()
37.620853
86
0.588183
30781edbf3e687af6945178cb3935bad480d9795
1,321
py
Python
rlkit/samplers/in_place.py
NagisaZj/state-marginal-matching
007de43eacbb1fc976e9df082d6679e52a159023
[ "MIT" ]
62
2019-06-18T20:35:55.000Z
2022-03-05T12:27:06.000Z
rlkit/samplers/in_place.py
fuxianh/state-marginal-matching
41934dfe488be2832ee99449b6f5887e4fe0b91e
[ "MIT" ]
null
null
null
rlkit/samplers/in_place.py
fuxianh/state-marginal-matching
41934dfe488be2832ee99449b6f5887e4fe0b91e
[ "MIT" ]
12
2019-06-19T12:02:14.000Z
2021-11-21T18:56:07.000Z
from rlkit.samplers.util import rollout class InPlacePathSampler(object): """ A sampler that does not serialization for sampling. Instead, it just uses the current policy and environment as-is. WARNING: This will affect the environment! So ``` sampler = InPlacePathSampler(env, ...) sampler.obtain_samples # this has side-effects: env will change! ``` """ def __init__(self, env, policy, max_samples, max_path_length): self.env = env self.policy = policy self.max_path_length = max_path_length self.max_samples = max_samples assert max_samples >= max_path_length, "Need max_samples >= max_path_length" def start_worker(self): pass def shutdown_worker(self): pass def start_new_rollout(self): pass def handle_rollout_ending(self): pass def obtain_samples(self): paths = [] n_steps_total = 0 while n_steps_total + self.max_path_length <= self.max_samples: self.start_new_rollout() path = rollout( self.env, self.policy, max_path_length=self.max_path_length ) self.handle_rollout_ending() paths.append(path) n_steps_total += len(path['observations']) return paths
29.355556
84
0.635125
27c32d981cb770f2971aaf47e18041da36da5b03
7,417
py
Python
dojo/tools/fortify/parser.py
tvtongerloo/django-DefectDojo
77f241afd7773a95a73621fcc60971263885337a
[ "BSD-3-Clause" ]
1
2021-01-19T17:25:57.000Z
2021-01-19T17:25:57.000Z
dojo/tools/fortify/parser.py
tvtongerloo/django-DefectDojo
77f241afd7773a95a73621fcc60971263885337a
[ "BSD-3-Clause" ]
null
null
null
dojo/tools/fortify/parser.py
tvtongerloo/django-DefectDojo
77f241afd7773a95a73621fcc60971263885337a
[ "BSD-3-Clause" ]
null
null
null
__guide__ = 'aaronweaver' __author__ = 'Rajarshi333' from defusedxml import ElementTree from dateutil import parser import re from dojo.models import Finding import logging logger = logging.getLogger(__name__) class FortifyXMLParser(object): language_list = [] def __init__(self, filename, test): fortify_scan = ElementTree.parse(filename) root = fortify_scan.getroot() # Get Date date_string = root.getchildren()[5].getchildren()[1].getchildren()[2].text date_list = date_string.split()[1:4] date_act = "".join(date_list) find_date = parser.parse(date_act) # Get Language lang_string = root[8][4][2].text lang_need_string = re.findall("^.*com.fortify.sca.Phase0HigherOrder.Languages.*$", lang_string, re.MULTILINE) lang_my_string = lang_need_string[0] language = lang_my_string.split('=')[1] if language not in self.language_list: self.language_list.append(language) # Get Category Information: # Abstract, Explanation, Recommendation, Tips cat_meta = {} # Get all issues issues = [] meta_pair = ({}, {}) issue_pair = ([], []) for ReportSection in root.findall('ReportSection'): if ReportSection.findtext('Title') in ["Results Outline", "Issue Count by Category"]: place = 0 if ReportSection.findtext('Title') == "Results Outline" else 1 # Get information on the vulnerability like the Abstract, Explanation, # Recommendation, and Tips for group in ReportSection.iter("GroupingSection"): title = group.findtext("groupTitle") maj_attr_summary = group.find("MajorAttributeSummary") if maj_attr_summary: meta_info = maj_attr_summary.findall("MetaInfo") meta_pair[place][title] = {x.findtext("Name"): x.findtext("Value") for x in meta_info} # Collect all issues for issue in ReportSection.iter("Issue"): issue_pair[place].append(issue) if len(issue_pair[0]) > len(issue_pair[1]): issues = issue_pair[0] cat_meta = meta_pair[0] else: issues = issue_pair[1] cat_meta = meta_pair[1] # All issues obtained, create a map for reference issue_map = {} issue_id = "N/A" try: for issue in issues: issue_id = issue.attrib['iid'] details = { "Category": issue.find("Category").text, "Folder": issue.find("Folder").text, "Kingdom": issue.find("Kingdom").text, "Abstract": issue.find("Abstract").text, "Friority": issue.find("Friority").text, "FileName": issue.find("Primary").find("FileName").text, "FilePath": issue.find("Primary").find("FilePath").text, "LineStart": issue.find("Primary").find("LineStart").text} if issue.find("Primary").find("Snippet"): details["Snippet"] = issue.find("Primary").find("Snippet").text else: details["Snippet"] = "n/a" if issue.find("Source"): source = { "FileName": issue.find("Source").find("FileName").text, "FilePath": issue.find("Source").find("FilePath").text, "LineStart": issue.find("Source").find("LineStart").text, "Snippet": issue.find("Source").find("Snippet").text} details["Source"] = source issue_map.update({issue.attrib['iid']: details}) except AttributeError: logger.warning("XML Parsing error on issue number: %s", issue_id) raise # map created self.items = [] dupes = set() for issue_key, issue in issue_map.items(): title = self.format_title(issue["Category"], issue["FileName"], issue["LineStart"]) if title not in dupes: self.items.append(Finding( title=title, severity=issue["Friority"], numerical_severity=Finding.get_numerical_severity(issue["Friority"]), file_path=issue['FilePath'], line_number=int(issue['LineStart']), line=int(issue['LineStart']), static_finding=True, active=False, verified=False, test=test, date=find_date, description=self.format_description(issue, cat_meta), mitigation=self.format_mitigation(issue, cat_meta), unique_id_from_tool=issue_key )) dupes.add(title) def format_title(self, category, filename, line_no): """ Builds the title much like it is represented in Fortify :param category: Basically the title of the issue in the code :param filename: File where it is found :param line_no: Line number of offending line :return: str """ return "{} - {}: {}".format(category, filename, line_no) def format_mitigation(self, issue, meta_info) -> str: """ Built from the meta_info of a category. All items of the same category will have the same information in it :param issue: Issue dictionary :param meta_info: Meta_info dictionary :return: str """ mitigation = "" recommendation = meta_info[issue["Category"]].get("Recommendations") if recommendation: mitigation += "###Recommendation:\n {}\n".format(recommendation) tips = meta_info[issue["Category"]].get("Tips") if tips: mitigation += "###Tips:\n {}".format(tips) return mitigation def format_description(self, issue, meta_info) -> str: """ Returns a formatted Description. This will contain information about the category, snippet from the code, including the file and line number. If there is source information it will also include that. Adds explanation of finding from the meta info :param issue: Issue Dictionary :param meta_info: Meta Dictionary :return: str """ desc = "##Catagory: {}\n".format(issue["Category"]) desc += "###Abstract:\n{}\n###Snippet:\n**File: {}: {}**\n```\n{}\n```\n".format( issue["Abstract"], issue["FileName"], issue["LineStart"], issue["Snippet"]) explanation = meta_info[issue["Category"]].get("Explanation") source = issue.get("Source") if source: desc += "##Source:\nThis snippet provides more context on the execution path that " \ "leads to this finding. \n" \ "####Snippet:\n**File: {}: {}**\n```\n{}\n```\n".format( source["FileName"], source["LineStart"], source["Snippet"]) if explanation: desc += "##Explanation:\n {}".format(explanation) return desc
42.872832
97
0.549279
1e3f7e9e0281fcaf4adfb0f79d76300b40a74a1f
14,511
py
Python
simple/1.0.2/__sessions.py
Jesse3692/flask_note
419d7671677e8ea0d85ebd5da82267717e10813c
[ "MIT" ]
null
null
null
simple/1.0.2/__sessions.py
Jesse3692/flask_note
419d7671677e8ea0d85ebd5da82267717e10813c
[ "MIT" ]
null
null
null
simple/1.0.2/__sessions.py
Jesse3692/flask_note
419d7671677e8ea0d85ebd5da82267717e10813c
[ "MIT" ]
null
null
null
"""sessions""" import hashlib import warnings from collections import MutableMapping from datetime import datetime from werkzeug.datastructures import CallbackDict from itsdangerous import BadSignature, URLSafeTimedSerializer from __tag import TaggedJSONSerializer from __helpers import is_ip, total_seconds session_json_serializer = TaggedJSONSerializer() class SessionMixin(MutableMapping): # HACK pylint: disable=abstract-method """Expands a basic dictionary with session attributes.""" @property def permanent(self): """This reflects the ``'_permanent'`` key in the dict.""" return self.get('_permanent', False) @permanent.setter def permanent(self, value): self['_permanent'] = bool(value) #: Some implementations can detect whether a session is newly #: created, but that is not guaranteed. Use with caution. The mixin # default is hard-coded ``False``. new = False #: Some implementations can detect changes to the session and set #: this when that happens. The mixin default is hard coded to #: ``True``. modified = True #: Some implementations can detect when session data is read or #: written and set this when that happens. The mixin default is hard #: coded to ``True``. accessed = True class SecureCookieSession(CallbackDict, SessionMixin): """Base class for sessions based on signed cookies. This session backend will set the :attr:`modified` and :attr:`accessed` attributes. It cannot reliably track whether a session is new (vs. empty), so :attr:`new` remains hard coded to ``False``. """ #: When data is changed, this is set to ``True``. Only the session #: dictionary itself is tracked; if the session contains mutable #: data (for example a nested dict) then this must be set to #: ``True`` manually when modifying that data. The session cookie #: will only be written to the response if this is ``True``. modified = False #: When data is read or written, this is set to ``True``. Used by # :class:`.SecureCookieSessionInterface` to add a ``Vary: Cookie`` #: header, which allows caching proxies to cache different pages for #: different users. accessed = False def __init__(self, initial=None): def on_update(self): self.modified = True self.accessed = True super(SecureCookieSession, self).__init__(initial, on_update) def __getitem__(self, key): self.accessed = True return super(SecureCookieSession, self).__getitem__(key) def get(self, key, default=None): self.accessed = True return super(SecureCookieSession, self).get(key, default) def setdefault(self, key, default=None): self.accessed = True return super(SecureCookieSession, self).setdefault(key, default) class NullSession(SecureCookieSession): """Class used to generate nicer error messages if sessions are not available. Will still allow read-only access to the empty session but fail on setting. """ def _fail(self, *args, **kwargs): raise RuntimeError('The session is unavailable because no secret ' 'key was set. Set the secret_key on the ' 'application to something unique and secret.') __setitem__ = __delitem__ = clear = pop = popitem = \ update = setdefault = _fail del _fail class SessionInterface(object): """The basic interface you have to implement in order to replace the default session interface which uses werkzeug's securecookie implementation. The only methods you have to implement are :meth:`open_session` and :meth:`save_session`, the others have useful defaults which you don't need to change. The session object returned by the :meth:`open_session` method has to provide a dictionary like interface plus the properties and methods from the :class:`SessionMixin`. We recommend just subclassing a dict and adding that mixin:: class Session(dict, SessionMixin): pass If :meth:`open_session` returns ``None`` Flask will call into :meth:`make_null_session` to create a session that acts as replacement if the session support cannot work because some requirement is not fulfilled. The default :class:`NullSession` class that is created will complain that the secret key was not set. To replace the session interface on an application all you have to do is to assign :attr:`flask.Flask.session_interface`:: app = Flask(__name__) app.session_interface = MySessionInterface() .. versionadded:: 0.8 """ #: :meth:`make_null_session` will look here for the class that should #: be created when a null session is requested. Likewise the #: :meth:`is_null_session` method will perform a typecheck against #: this type. null_session_class = NullSession #: A flag that indicates if the session interface is pickle based. #: This can be used by Flask extensions to make a decision in regards #: to how to deal with the session object. #: #: .. versionadded:: 0.10 pickle_based = False def make_null_session(self, app): # pylint: disable=unused-argument """Creates a null session which acts as a replacement object if the real session support could not be loaded due to a configuration error. This mainly aids the user experience because the job of the null session is to still support lookup without complaining but modifications are answered with a helpful error message of what failed. This creates an instance of :attr:`null_session_class` by default. """ return self.null_session_class() def is_null_session(self, obj): """Checks if a given object is a null session. Null sessions are not asked to be saved. This checks if the object is an instance of :attr:`null_session_class` by default. """ return isinstance(obj, self.null_session_class) def get_cookie_domain(self, app): """Returns the domain that should be set for the session cookie. Uses ``SESSION_COOKIE_DOMAIN`` if it is configured, otherwise falls back to detecting the domain based on ``SERVER_NAME``. Once detected (or if not set at all), ``SESSION_COOKIE_DOMAIN`` is updated to avoid re-running the logic. """ rv = app.config['SESSION_COOKIE_DOMAIN'] # pylint: disable=invalid-name # set explicitly, or cached from SERVER_NAME detection # if False, return None if rv is not None: return rv if rv else None rv = app.config['SERVER_NAME'] # pylint: disable=invalid-name # server name not set, cache False to return none next time if not rv: app.config['SESSION_COOKIE_DOMAIN'] = False return None # chop off the port which is usually not supported by browsers # remove any leading '.' since we'll add that later rv = rv.rsplit(':', 1)[0].lstrip('.') # pylint: disable=invalid-name if '.' not in rv: # Chrome doesn't allow names without a '.' # this should only come up with localhost # hack around this by not setting the name, and show a warning warnings.warn( '"{rv}" is not a valid cookie domain, it must contain a ".".' ' Add an entry to your hosts file, for example' ' "{rv}.localdomain", and use that instead.'.format(rv=rv) ) app.config['SESSION_COOKIE_DOMAIN'] = False return None ip = is_ip(rv) # pylint: disable=invalid-name if ip: warnings.warn( 'The session cookie domain is an IP address. This may not work' ' as intended in some browsers. Add an entry to your hosts' ' file, for example "localhost.localdomain", and use that' ' instead.' ) # if this is not an ip and app is mounted at the root, allow subdomain # matching by adding a '.' prefix if self.get_cookie_path(app) == '/' and not ip: rv = '.' + rv # pylint: disable=invalid-name app.config['SESSION_COOKIE_DOMAIN'] = rv return rv def get_cookie_path(self, app): """Returns the path for which the cookie should be valid. The default implementation uses the value from the ``SESSION_COOKIE_PATH`` config var if it's set, and falls back to ``APPLICATION_ROOT`` or uses ``/`` if it's ``None``. """ return app.config['SESSION_COOKIE_PATH'] \ or app.config['APPLICATION_ROOT'] def get_cookie_httponly(self, app): """Returns True if the session cookie should be httponly. This currently just returns the value of the ``SESSION_COOKIE_HTTPONLY`` config var. """ return app.config['SESSION_COOKIE_HTTPONLY'] def get_cookie_secure(self, app): """Returns True if the cookie should be secure. This currently just returns the value of the ``SESSION_COOKIE_SECURE`` setting. """ return app.config['SESSION_COOKIE_SECURE'] def get_cookie_samesite(self, app): """Return ``'Strict'`` or ``'Lax'`` if the cookie should use the ``SameSite`` attribute. This currently just returns the value of the :data:`SESSION_COOKIE_SAMESITE` setting. """ return app.config['SESSION_COOKIE_SAMESITE'] def get_expiration_time(self, app, session): """A helper method that returns an expiration date for the session or ``None`` if the session is linked to the browser session. The default implementation returns now + the permanent session lifetime configured on the application. """ if session.permanent: return datetime.utcnow() + app.permanent_session_lifetime def should_set_cookie(self, app, session): """Used by session backends to determine if a ``Set-Cookie`` header should be set for this session cookie for this response. If the session has been modified, the cookie is set. If the session is permanent and the ``SESSION_REFRESH_EACH_REQUEST`` config is true, the cookie is always set. This check is usually skipped if the session was deleted. .. versionadded:: 0.11 """ return session.modified or ( session.permanent and app.config['SESSION_REFRESH_EACH_REQUEST'] ) def open_session(self, app, request): """This method has to be implemented and must either return ``None`` in case the loading failed because of a configuration error or an instance of a session object which implements a dictionary like interface + the methods and attributes on :class:`SessionMixin`. """ raise NotImplementedError() def save_session(self, app, session, response): """This is called for actual sessions returned by :meth:`open_session` at the end of the request. This is still called during a request context so if you absolutely need access to the request you can do that. """ raise NotImplementedError() class SecureCookieSessionInterface(SessionInterface): """The default session interface that stores sessions in signed cookies through the :mod:`itsdangerous` module. """ #: the salt that should be applied on top of the secret key for the #: signing of cookie based sessions. salt = 'cookie-session' #: the hash function to use for the signature. The default is sha1 digest_method = staticmethod(hashlib.sha1) #: the name of the itsdangerous supported key derivation. The default #: is hmac. key_derivation = 'hmac' #: A python serializer for the payload. The default is a compact #: JSON derived serializer with support for some extra Python types #: such as datetime objects or tuples. serializer = session_json_serializer session_class = SecureCookieSession def get_signing_serializer(self, app): """#TODO""" if not app.secret_key: return None signer_kwargs = dict( key_derivation=self.key_derivation, digest_method=self.digest_method ) return URLSafeTimedSerializer(app.secret_key, salt=self.salt, serializer=self.serializer, signer_kwargs=signer_kwargs) def open_session(self, app, request): s = self.get_signing_serializer(app) # pylint: disable=invalid-name if s is None: return None val = request.cookies.get(app.session_cookie_name) if not val: return self.session_class() max_age = total_seconds(app.permanent_session_lifetime) try: data = s.loads(val, max_age=max_age) return self.session_class(data) except BadSignature: return self.session_class() def save_session(self, app, session, response): domain = self.get_cookie_domain(app) path = self.get_cookie_path(app) # If the session is modified to be empty, remove the cookie. # If the session is empty, return without setting the cookie. if not session: if session.modified: response.delete_cookie( app.session_cookie_name, domain=domain, path=path ) return # Add a "Vary: Cookie" header if the session was accessed at all. if session.accessed: response.vary.add('Cookie') if not self.should_set_cookie(app, session): return httponly = self.get_cookie_httponly(app) secure = self.get_cookie_secure(app) samesite = self.get_cookie_samesite(app) expires = self.get_expiration_time(app, session) val = self.get_signing_serializer(app).dumps(dict(session)) response.set_cookie( app.session_cookie_name, val, expires=expires, httponly=httponly, domain=domain, path=path, secure=secure, samesite=samesite )
38.490716
80
0.650059
878005b42eeceabc3ba00ba10a8074a6bc3c0aef
503
py
Python
src/scenarios/50consoletemplate/test.py
eerhardt/performance
683e4aa79d18edf4c0fa1090043da4b8a88e6bcc
[ "MIT" ]
null
null
null
src/scenarios/50consoletemplate/test.py
eerhardt/performance
683e4aa79d18edf4c0fa1090043da4b8a88e6bcc
[ "MIT" ]
null
null
null
src/scenarios/50consoletemplate/test.py
eerhardt/performance
683e4aa79d18edf4c0fa1090043da4b8a88e6bcc
[ "MIT" ]
null
null
null
''' C# Console app ''' import sys import os from shared.runner import TestTraits, Runner SCENARIONAME = '.NET Core 5.0 Console Template' EXENAME = '50consoletemplate' if __name__ == "__main__": traits = TestTraits(scenarioname=SCENARIONAME, exename=EXENAME, startupmetric='TimeToMain', startup=True, guiapp='false', # string passed through to tool ) Runner(traits).run()
26.473684
71
0.562624
78ef2995a70798f4b44fe38845b09d20d93eb744
12,903
py
Python
plugins/translate.py
joshgyn/Google_Translater_V2
dd667bd5297718cfe98a5797d9902ac8ac28be1e
[ "Apache-2.0" ]
null
null
null
plugins/translate.py
joshgyn/Google_Translater_V2
dd667bd5297718cfe98a5797d9902ac8ac28be1e
[ "Apache-2.0" ]
null
null
null
plugins/translate.py
joshgyn/Google_Translater_V2
dd667bd5297718cfe98a5797d9902ac8ac28be1e
[ "Apache-2.0" ]
null
null
null
from googletrans import Translator from pyrogram import Client, filters from pyrogram.types import ( InlineKeyboardButton, InlineKeyboardMarkup ) from helper.database import find , insert from helper.list import list @Client.on_message(filters.private & filters.command(['start'])) async def start(client, message): insert(int(message.chat.id)) await message.reply_text(text =f"Hello **{message.from_user.first_name }** \n\n __I am simple Google Translater Bot \n I can translate any language to you selected language__",reply_to_message_id = message.message_id , parse_mode="markdown", reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("Support 🇮🇳" ,url="https://t.me/lntechnical") ], [InlineKeyboardButton("Subscribe 🧐", url="https://youtube.com/c/LNtechnical"),InlineKeyboardButton("How To Use",url = "https://youtu.be/dUYvenXiYKE") ] ] ) ) @Client.on_message(filters.private & filters.text ) async def echo(client, message): keybord1= InlineKeyboardMarkup( [ [ InlineKeyboardButton("Afrikaans", callback_data='af'), InlineKeyboardButton("Albanian", callback_data='sq'), InlineKeyboardButton("Amharic",callback_data ='am'), ], [ InlineKeyboardButton("Arabic", callback_data='ar'), InlineKeyboardButton("Armenian", callback_data='hy'), InlineKeyboardButton("Azerbaijani",callback_data = 'az'), ], [InlineKeyboardButton("Basque",callback_data ="eu"), InlineKeyboardButton("Belarusian",callback_data ="be"), InlineKeyboardButton("Bengali",callback_data="bn")], [InlineKeyboardButton("Bosnian",callback_data = "bs"), InlineKeyboardButton("Bulgarian",callback_data ="bg"), InlineKeyboardButton("Catalan",callback_data = "ca") ], [ InlineKeyboardButton("Corsican",callback_data ="co"), InlineKeyboardButton("Croatian",callback_data = "hr"), InlineKeyboardButton("Czech", callback_data = "cs"), ], [ InlineKeyboardButton("Danish",callback_data = "da"), InlineKeyboardButton("Dutch",callback_data = "nl"), InlineKeyboardButton("Esperanto",callback_data = "eo"), ], [InlineKeyboardButton(" Next --->",callback_data = "page2") ] ] ) try: code =find(int(message.chat.id)) except Exception as e: await message.reply_text(" Error : {e}\nclick /start ........") return if code : try: translator = Translator() translation = translator.translate(message.text,dest = code) except Exception as e: await message.reply_text(f"Error : {e}") return try: for i in list: if list[i]==translation.src: fromt = i if list[i] == translation.dest: to = i await message.reply_text(f"Translated from **{fromt.capitalize()}** To **{to.capitalize()}**\n\n```{translation.text}```\n\n join @lntechnical") except Exception as e: await message.reply_text(f"Translated from **{translation.src}** To **{translation.dest}**\n\n```{translation.text}```\n\n join @lntechnical") else: await message.reply_text("Select language 👇",reply_to_message_id = message.message_id, reply_markup =keybord1) @Client.on_callback_query() async def translate_text(bot,update): keybord1= InlineKeyboardMarkup( [ [ InlineKeyboardButton("Afrikaans", callback_data='af'), InlineKeyboardButton("Albanian", callback_data='sq'), InlineKeyboardButton("Amharic",callback_data ='am'), ], [ InlineKeyboardButton("Arabic", callback_data='ar'), InlineKeyboardButton("Armenian", callback_data='hy'), InlineKeyboardButton("Azerbaijani",callback_data = 'az'), ], [InlineKeyboardButton("Basque",callback_data ="eu"), InlineKeyboardButton("Belarusian",callback_data ="be"), InlineKeyboardButton("Bengali",callback_data="bn")], [InlineKeyboardButton("Bosnian",callback_data = "bs"), InlineKeyboardButton("Bulgarian",callback_data ="bg"), InlineKeyboardButton("Catalan",callback_data = "ca") ], [ InlineKeyboardButton("Corsican",callback_data ="co"), InlineKeyboardButton("Croatian",callback_data = "hr"), InlineKeyboardButton("Czech", callback_data = "cs"), ], [ InlineKeyboardButton("Danish",callback_data = "da"), InlineKeyboardButton("Dutch",callback_data = "nl"), InlineKeyboardButton("Esperanto",callback_data = "eo"), ], [InlineKeyboardButton(" Next --->",callback_data = "page2") ] ] ) keybord2= InlineKeyboardMarkup([ [InlineKeyboardButton("English",callback_data = "en"), InlineKeyboardButton("Estonian",callback_data = "et"), InlineKeyboardButton("Finnish",callback_data = "fi") ], [InlineKeyboardButton("French",callback_data = "fr"), InlineKeyboardButton("Frisian",callback_data = "fy"), InlineKeyboardButton("Galician",callback_data = "gl") ], [InlineKeyboardButton("Georgian",callback_data = "ka"), InlineKeyboardButton("German",callback_data = "de"), InlineKeyboardButton("Greek",callback_data = "el") ], [InlineKeyboardButton("Gujarati",callback_data = "gu"), InlineKeyboardButton("Haitian Creole",callback_data = "ht"), InlineKeyboardButton("Hausa",callback_data ="ha") ], [InlineKeyboardButton("Hindi",callback_data = "hi"), InlineKeyboardButton("Hungarian",callback_data = "hu"), InlineKeyboardButton("Icelandic",callback_data = "is") ], [InlineKeyboardButton("Igbo",callback_data = "ig"), InlineKeyboardButton("Indonesian",callback_data = "id"), InlineKeyboardButton("Irish",callback_data = "ga") ], [InlineKeyboardButton("<--- Back",callback_data = "page1"), InlineKeyboardButton(" Next --->",callback_data = "page3"), ] ]) keybord3 = InlineKeyboardMarkup([ [ InlineKeyboardButton("Italian",callback_data = "it"), InlineKeyboardButton("Japanese",callback_data = "ja"), InlineKeyboardButton("Javanese",callback_data = "jv") ], [InlineKeyboardButton("Kannada",callback_data = "kn"), InlineKeyboardButton("Kazakh",callback_data = "kk"), InlineKeyboardButton("Khmer",callback_data = "km") ], [InlineKeyboardButton("Kinyarwanda",callback_data = "rw"), InlineKeyboardButton("Korean",callback_data ="ko"), InlineKeyboardButton("Kurdish",callback_data = "ku") ], [ InlineKeyboardButton("Kyrgyz",callback_data ="ky"), InlineKeyboardButton("Lao",callback_data = "lo"), InlineKeyboardButton("Latin",callback_data = "la") ], [InlineKeyboardButton("Latvian",callback_data = "lv"), InlineKeyboardButton('Lithuanian',callback_data ="lt"), InlineKeyboardButton("Luxembourgish",callback_data = "lb") ], [InlineKeyboardButton("Macedonian",callback_data = "mk"), InlineKeyboardButton("Malagasy",callback_data ="mg"), InlineKeyboardButton("Malay",callback_data ="ms") ], [InlineKeyboardButton("<--- Back",callback_data = "page2"), InlineKeyboardButton(" Next --->",callback_data = "page4") ] ]) keybord4 = InlineKeyboardMarkup([ [InlineKeyboardButton("Malayalam",callback_data = "ml"), InlineKeyboardButton("Maltese",callback_data = "mt"), InlineKeyboardButton("Maori",callback_data = "mi") ], [InlineKeyboardButton("Marathi",callback_data = "mr"), InlineKeyboardButton("Mongolian",callback_data = "mn"), InlineKeyboardButton("Myanmar (Burmese)",callback_data = "my") ], [InlineKeyboardButton("Nepali",callback_data ="ne"), InlineKeyboardButton("Norwegian",callback_data = "no"), InlineKeyboardButton("Nyanja (Chichewa)",callback_data = "ny") ], [InlineKeyboardButton("Odia",callback_data = "or"), InlineKeyboardButton("Pashto",callback_data = "ps"), InlineKeyboardButton("Persian",callback_data = "fa"), ], [InlineKeyboardButton("Polish",callback_data = "pl"), InlineKeyboardButton("Portuguese",callback_data = "pt"), InlineKeyboardButton("Punjabi",callback_data = "pa"), ], [InlineKeyboardButton("Romanian",callback_data = "ro"), InlineKeyboardButton("Russian",callback_data = "ru"), InlineKeyboardButton("Samoan",callback_data= "sm"), ], [InlineKeyboardButton("<--- Back",callback_data = "page3"), InlineKeyboardButton("Next --->",callback_data = "page5") ] ]) keybord5 = InlineKeyboardMarkup([ [InlineKeyboardButton("Scots Gaelic",callback_data = "gd"), InlineKeyboardButton("Serbian",callback_data = "sr"), InlineKeyboardButton("Sesotho",callback_data = "st") ], [InlineKeyboardButton("Shona",callback_data ="sn"), InlineKeyboardButton("Sindhi",callback_data ="sd"), InlineKeyboardButton("Sinhala (Sinhalese)",callback_data = "si") ], [InlineKeyboardButton("Slovak",callback_data = "sk"), InlineKeyboardButton("Slovenian",callback_data = "sl"), InlineKeyboardButton("Somali",callback_data = "so") ], [InlineKeyboardButton("Spanish",callback_data = "es"), InlineKeyboardButton("Sundanese",callback_data ="su"), InlineKeyboardButton("Swahili",callback_data ="sw") ], [InlineKeyboardButton("Swedish",callback_data = "sv"), InlineKeyboardButton("Tagalog (Filipino)",callback_data ='tl'), InlineKeyboardButton("Tajik",callback_data = "tg") ], [InlineKeyboardButton("Tamil",callback_data = "ta"), InlineKeyboardButton("Tatar",callback_data = "tt"), InlineKeyboardButton("Telugu",callback_data = "te") ], [InlineKeyboardButton("<--- Back",callback_data = "page4"), InlineKeyboardButton("Next --->",callback_data = "page6") ] ]) keybord6 = InlineKeyboardMarkup([ [InlineKeyboardButton("Thai",callback_data = "th"), InlineKeyboardButton("Turkish",callback_data = "tr"), InlineKeyboardButton("!Not Valid",callback_data ="en") ], [InlineKeyboardButton("Ukrainian",callback_data = "uk"), InlineKeyboardButton("Urdu",callback_data = "ur"), InlineKeyboardButton("Uyghur",callback_data ="ug") ], [InlineKeyboardButton("Uzbek",callback_data = "uz"), InlineKeyboardButton("Vietnamese",callback_data ="vi"), InlineKeyboardButton("Welsh",callback_data = "cy") ], [InlineKeyboardButton("Xhosa",callback_data = "xh"), InlineKeyboardButton("Yiddish",callback_data = "yi"), InlineKeyboardButton("Yoruba",callback_data = "yo")], [InlineKeyboardButton("<--- Back",callback_data = "page5") ] ]) tr_text = update.message.reply_to_message.text cb_data = update.data if cb_data== "page2": await update.message.edit("Select language 👇",reply_markup = keybord2) elif cb_data == "page1": await update.message.edit("Select language 👇",reply_markup =keybord1) elif cb_data =="page3": await update.message.edit("Select language 👇",reply_markup =keybord3) elif cb_data == "page4": await update.message.edit("Select language 👇",reply_markup =keybord4) elif cb_data =="page5": await update.message.edit("Select language 👇",reply_markup =keybord5) elif cb_data =="page6": await update.message.edit("Select language 👇",reply_markup =keybord6) else : try: translator = Translator() translation = translator.translate(tr_text,dest = cb_data) except Exception as e: await update.message.edit(f"Error : {e}") return try: for i in list: if list[i]==translation.src: fromt = i if list[i] == translation.dest: to = i await update.message.edit(f"Translated from **{fromt.capitalize()}** To **{to.capitalize()}**\n\n```{translation.text}```\n\n join @lntechnical") except Exception as e: await update.message.edit(f"Translated from **{translation.src}** To **{translation.dest}**\n\n```{translation.text}```\n\n join @lntechnical")
44.493103
596
0.622801
af3b2d1e5223f688c78235fd3ec326e4f16dd8c7
10,493
py
Python
venv/Lib/site-packages/pandas/core/indexes/timedeltas.py
itsAbdulKhadar/Machine-Learning-with-Streamlit
c8a0c7ca5a1bcf2730ae9587bcddfebe323965a3
[ "MIT" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
venv/Lib/site-packages/pandas/core/indexes/timedeltas.py
itsAbdulKhadar/Machine-Learning-with-Streamlit
c8a0c7ca5a1bcf2730ae9587bcddfebe323965a3
[ "MIT" ]
37
2020-10-20T08:30:53.000Z
2020-12-22T13:15:45.000Z
venv/Lib/site-packages/pandas/core/indexes/timedeltas.py
itsAbdulKhadar/Machine-Learning-with-Streamlit
c8a0c7ca5a1bcf2730ae9587bcddfebe323965a3
[ "MIT" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
""" implement the TimedeltaIndex """ from pandas._libs import index as libindex, lib from pandas._libs.tslibs import Timedelta, to_offset from pandas._typing import DtypeObj, Label from pandas.errors import InvalidIndexError from pandas.util._decorators import doc from pandas.core.dtypes.common import ( TD64NS_DTYPE, is_float, is_integer, is_scalar, is_timedelta64_dtype, is_timedelta64_ns_dtype, pandas_dtype, ) from pandas.core.arrays import datetimelike as dtl from pandas.core.arrays.timedeltas import TimedeltaArray import pandas.core.common as com from pandas.core.indexes.base import Index, maybe_extract_name from pandas.core.indexes.datetimelike import ( DatetimeIndexOpsMixin, DatetimeTimedeltaMixin, ) from pandas.core.indexes.extension import inherit_names @inherit_names( ["__neg__", "__pos__", "__abs__", "total_seconds", "round", "floor", "ceil"] + TimedeltaArray._field_ops, TimedeltaArray, wrap=True, ) @inherit_names( [ "_bool_ops", "_object_ops", "_field_ops", "_datetimelike_ops", "_datetimelike_methods", "_other_ops", "components", "to_pytimedelta", "sum", "std", "median", "_format_native_types", ], TimedeltaArray, ) class TimedeltaIndex(DatetimeTimedeltaMixin): """ Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects. Parameters ---------- data : array-like (1-dimensional), optional Optional timedelta-like data to construct index with. unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional Which is an integer/float number. freq : str or pandas offset object, optional One of pandas date offset strings or corresponding objects. The string 'infer' can be passed in order to set the frequency of the index as the inferred frequency upon creation. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. Attributes ---------- days seconds microseconds nanoseconds components inferred_freq Methods ------- to_pytimedelta to_series round floor ceil to_frame mean See Also -------- Index : The base pandas Index type. Timedelta : Represents a duration between two dates or times. DatetimeIndex : Index of datetime64 data. PeriodIndex : Index of Period data. timedelta_range : Create a fixed-frequency TimedeltaIndex. Notes ----- To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. """ _typ = "timedeltaindex" _engine_type = libindex.TimedeltaEngine _comparables = ["name", "freq"] _attributes = ["name", "freq"] _is_numeric_dtype = True _data: TimedeltaArray # ------------------------------------------------------------------- # Constructors def __new__( cls, data=None, unit=None, freq=lib.no_default, closed=None, dtype=TD64NS_DTYPE, copy=False, name=None, ): name = maybe_extract_name(name, data, cls) if is_scalar(data): raise TypeError( f"{cls.__name__}() must be called with a " f"collection of some kind, {repr(data)} was passed" ) if unit in {"Y", "y", "M"}: raise ValueError( "Units 'M', 'Y', and 'y' are no longer supported, as they do not " "represent unambiguous timedelta values durations." ) if isinstance(data, TimedeltaArray) and freq is lib.no_default: if copy: data = data.copy() return cls._simple_new(data, name=name) if isinstance(data, TimedeltaIndex) and freq is lib.no_default and name is None: if copy: return data.copy() else: return data._shallow_copy() # - Cases checked above all return/raise before reaching here - # tdarr = TimedeltaArray._from_sequence( data, freq=freq, unit=unit, dtype=dtype, copy=copy ) return cls._simple_new(tdarr, name=name) @classmethod def _simple_new(cls, values: TimedeltaArray, name: Label = None): assert isinstance(values, TimedeltaArray) result = object.__new__(cls) result._data = values result._name = name result._cache = {} # For groupby perf. See note in indexes/base about _index_data result._index_data = values._data result._reset_identity() return result # ------------------------------------------------------------------- # Rendering Methods @property def _formatter_func(self): from pandas.io.formats.format import _get_format_timedelta64 return _get_format_timedelta64(self, box=True) # ------------------------------------------------------------------- @doc(Index.astype) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype): # Have to repeat the check for 'timedelta64' (not ns) dtype # so that we can return a numeric index, since pandas will return # a TimedeltaIndex when dtype='timedelta' result = self._data.astype(dtype, copy=copy) if self.hasnans: return Index(result, name=self.name) return Index(result.astype("i8"), name=self.name) return DatetimeIndexOpsMixin.astype(self, dtype, copy=copy) def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: """ Can we compare values of the given dtype to our own? """ return is_timedelta64_dtype(dtype) def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int, slice, or ndarray[int] """ if not is_scalar(key): raise InvalidIndexError(key) try: key = self._data._validate_scalar(key, cast_str=True) except TypeError as err: raise KeyError(key) from err return Index.get_loc(self, key, method, tolerance) def _maybe_cast_slice_bound(self, label, side: str, kind): """ If label is a string, cast it to timedelta according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- label : object """ assert kind in ["loc", "getitem", None] if isinstance(label, str): parsed = Timedelta(label) lbound = parsed.round(parsed.resolution_string) if side == "left": return lbound else: return lbound + to_offset(parsed.resolution_string) - Timedelta(1, "ns") elif is_integer(label) or is_float(label): self._invalid_indexer("slice", label) return label def is_type_compatible(self, typ) -> bool: return typ == self.inferred_type or typ == "timedelta" @property def inferred_type(self) -> str: return "timedelta64" TimedeltaIndex._add_logical_methods_disabled() def timedelta_range( start=None, end=None, periods=None, freq=None, name=None, closed=None ) -> TimedeltaIndex: """ Return a fixed frequency TimedeltaIndex, with day as the default frequency. Parameters ---------- start : str or timedelta-like, default None Left bound for generating timedeltas. end : str or timedelta-like, default None Right bound for generating timedeltas. periods : int, default None Number of periods to generate. freq : str or DateOffset, default 'D' Frequency strings can have multiples, e.g. '5H'. name : str, default None Name of the resulting TimedeltaIndex. closed : str, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None). Returns ------- rng : TimedeltaIndex Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end`` (closed on both sides). To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.timedelta_range(start='1 day', periods=4) TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``closed`` parameter specifies which endpoint is included. The default behavior is to include both endpoints. >>> pd.timedelta_range(start='1 day', periods=4, closed='right') TimedeltaIndex(['2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``freq`` parameter specifies the frequency of the TimedeltaIndex. Only fixed frequencies can be passed, non-fixed frequencies such as 'M' (month end) will raise. >>> pd.timedelta_range(start='1 day', end='2 days', freq='6H') TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00', '1 days 18:00:00', '2 days 00:00:00'], dtype='timedelta64[ns]', freq='6H') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.timedelta_range(start='1 day', end='5 days', periods=4) TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00', '5 days 00:00:00'], dtype='timedelta64[ns]', freq=None) """ if freq is None and com.any_none(periods, start, end): freq = "D" freq, _ = dtl.maybe_infer_freq(freq) tdarr = TimedeltaArray._generate_range(start, end, periods, freq, closed=closed) return TimedeltaIndex._simple_new(tdarr, name=name)
31.322388
96
0.609168
58278e5dda782620b1e63fe03ae40dd4e43bf210
226
py
Python
api_for_selenium/employee_app/urls.py
sayantansingha01/interview1
8ecbbcf7d293830fe4e46a98aedef9bc6d1d1272
[ "MIT" ]
null
null
null
api_for_selenium/employee_app/urls.py
sayantansingha01/interview1
8ecbbcf7d293830fe4e46a98aedef9bc6d1d1272
[ "MIT" ]
null
null
null
api_for_selenium/employee_app/urls.py
sayantansingha01/interview1
8ecbbcf7d293830fe4e46a98aedef9bc6d1d1272
[ "MIT" ]
null
null
null
from django.urls import path from rest_framework.routers import SimpleRouter from . import views router = SimpleRouter() router.register(r'employee_api', views.EmployeeApi, basename="employee_api") urlpatterns = router.urls
25.111111
76
0.814159
727ef39aa35e79158f6876368df407c115f9e8ce
58,237
py
Python
pandas/tests/test_strings.py
garaud/pandas
cb8c130f75e1e2e2a286144961dc71b647ce973a
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
2
2015-09-03T17:39:02.000Z
2017-12-31T15:39:02.000Z
pandas/tests/test_strings.py
garaud/pandas
cb8c130f75e1e2e2a286144961dc71b647ce973a
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
5
2021-03-19T08:36:48.000Z
2022-01-13T01:52:34.000Z
pandas/tests/test_strings.py
garaud/pandas
cb8c130f75e1e2e2a286144961dc71b647ce973a
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
1
2015-09-03T17:39:05.000Z
2015-09-03T17:39:05.000Z
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta, date import os import operator import re import warnings import nose from numpy import nan as NA import numpy as np from numpy.testing import assert_array_equal from numpy.random import randint from pandas.compat import range, lrange, u, unichr import pandas.compat as compat from pandas import (Index, Series, TimeSeries, DataFrame, isnull, notnull, bdate_range, date_range, MultiIndex) import pandas.core.common as com from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(tm.TestCase): _multiprocess_can_split_ = True def test_api(self): # GH 6106, GH 9322 self.assertIs(Series.str, strings.StringMethods) self.assertIsInstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assertRaisesRegexp(AttributeError, "only use .str accessor"): invalid.str self.assertFalse(hasattr(invalid, 'str')) def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series tm.assert_isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series assert_array_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan self.assertTrue(isinstance(el, compat.string_types) or isnull(el)) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string self.assertEqual(s.dropna().values.item(), 'l') def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged self.assertEqual(i, 100) self.assertEqual(s, 1) def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass self.assertFalse(i) assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range(4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass self.assertEqual(i, 100) self.assertEqual(s, 'h') def test_cat(self): one = ['a', 'a', 'b', 'b', 'c', NA] two = ['a', NA, 'b', 'd', 'foo', NA] # single array result = strings.str_cat(one) self.assertTrue(isnull(result)) result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' self.assertEqual(result, exp) result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' self.assertEqual(result, exp) result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' self.assertEqual(result, exp) # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = ['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'] self.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = ['aa', NA, 'bb', 'bd', 'cfoo', NA] tm.assert_almost_equal(result, exp) def test_count(self): values = ['foo', 'foofoo', NA, 'foooofooofommmfoo'] result = strings.str_count(values, 'f[o]+') exp = [1, 2, NA, 4] tm.assert_almost_equal(result, exp) result = Series(values).str.count('f[o]+') tm.assert_isinstance(result, Series) tm.assert_almost_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = [1, NA, 0, NA, NA, 0, NA, NA, NA] tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.count('a') tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = [1, 2, NA, 4] tm.assert_almost_equal(result, exp) result = Series(values).str.count('f[o]+') tm.assert_isinstance(result, Series) tm.assert_almost_equal(result, exp) def test_contains(self): values = ['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'] pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = [False, NA, True, True, False] tm.assert_almost_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = [False, NA, False, False, True] tm.assert_almost_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = [False, False, True, True] self.assertEqual(result.dtype, np.bool_) tm.assert_almost_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = [True, False, True, True] tm.assert_almost_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = [True, False, True, False] tm.assert_almost_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = [False, NA, False, NA, NA, True, NA, NA, NA] tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.contains('o') tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = [u('foo'), NA, u('fooommm__foo'), u('mmm_')] pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = [False, np.nan, True, True] tm.assert_almost_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = [False, False, True, True] tm.assert_almost_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = [False, False, True, True] self.assertEqual(result.dtype, np.bool_) tm.assert_almost_equal(result, expected) # na values = Series(['om', 'foo',np.nan]) res = values.str.contains('foo', na="foo") self.assertEqual (res.ix[2], "foo") def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_startswith(mixed, 'f') xp = [False, NA, False, NA, NA, True, NA, NA, NA] tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.startswith('f') tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = [False, NA, False, NA, NA, False, NA, NA, NA] tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.endswith('f') tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = ['a', NA, 'b', NA, NA, 'foo', NA, NA, NA] tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = ['a', NA, 'b', NA, NA, 'foo', NA, NA, NA] tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) #flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace("(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = ['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA] tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_deprecated_match(self): # Old match behavior, deprecated (but still default) in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(): result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([('BAD__', 'BAD'), NA, []]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) with tm.assert_produces_warning(): rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = [('BAD_', 'BAD'), NA, ('BAD_', 'BAD'), NA, NA, [], NA, NA, NA] tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) with tm.assert_produces_warning(): result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([(u('BAD__'), u('BAD')), NA, []]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # If no groups, use new behavior even when as_indexer is False. # (Old behavior is pretty much useless in this case.) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) with tm.assert_produces_warning(): rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) xp = [True, NA, True, NA, NA, False, NA, NA, NA] tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) with tm.assert_produces_warning(): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)') exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)') exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)') exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # no groups s = Series(['A1', 'B2', 'C3']) f = lambda: s.str.extract('[ABC][123]') self.assertRaises(ValueError, f) # only non-capturing groups f = lambda: s.str.extract('(?:[AB]).*') self.assertRaises(ValueError, f) # one group, no matches result = s.str.extract('(_)') exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)') exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]') exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])') exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # named group/groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])') exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) result = s.str.extract('(?P<letter>[AB])') exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])') exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])') exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract('([AB])([123])(?:[123])') exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract('(?P<letter>[AB])?(?P<number>[123])') exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract('(?P<letter>[ABC])(?P<number>[123])?') exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # single group renames series properly s = Series(['A1', 'A2']) result = s.str.extract(r'(?P<uno>A)\d') tm.assert_equal(result.name, 'uno') # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract('(\d)') exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract('(?P<letter>\D)(?P<number>\d)?') exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex ]: check_index(index()) def test_extract_single_series_name_is_preserved(self): s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])') e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) self.assertEqual(r.name, e.name) def test_empty_str_methods(self): empty_str = empty = Series(dtype=str) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_list = Series(dtype=list) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) tm.assert_equal('', empty.str.cat()) tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a','b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_series_equal(empty_str, empty.str.extract('()')) tm.assert_frame_equal(DataFrame(columns=[0,1], dtype=str), empty.str.extract('()()')) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_list.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_list, empty_list.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_list, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] num_e = [False, False, False, True, False, False, False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) self.assertEqual(str_s.str.isalnum().tolist(), [v.isalnum() for v in values]) self.assertEqual(str_s.str.isalpha().tolist(), [v.isalpha() for v in values]) self.assertEqual(str_s.str.isdigit().tolist(), [v.isdigit() for v in values]) self.assertEqual(str_s.str.isspace().tolist(), [v.isspace() for v in values]) self.assertEqual(str_s.str.islower().tolist(), [v.islower() for v in values]) self.assertEqual(str_s.str.isupper().tolist(), [v.isupper() for v in values]) self.assertEqual(str_s.str.istitle().tolist(), [v.istitle() for v in values]) def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', unichr(0x00bc), unichr(0x2605), unichr(0x1378), unichr(0xFF13), 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u('A'), u('3'), unichr(0x00bc), unichr(0x2605), unichr(0x1378), unichr(0xFF13), u('four')] self.assertEqual(s.str.isnumeric().tolist(), [v.isnumeric() for v in unicodes]) self.assertEqual(s.str.isdecimal().tolist(), [v.isdecimal() for v in unicodes]) values = ['A', np.nan, unichr(0x00bc), unichr(0x2605), np.nan, unichr(0xFF13), 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if com.notnull(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u('fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if com.notnull(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) with tm.assertRaisesRegexp(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assertRaisesRegexp(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2.]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2.]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2.]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not int"): result = values.str.pad(5, fillchar=5) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not str"): result = values.str.center(5, fillchar='XY') with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not int"): result = values.str.center(5, fillchar=1) with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assertRaisesRegexp(TypeError, "fillchar must be a character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values]) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.split('_') xp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) def test_split_noargs(self): # #1859 s = Series(['Wes McKinney', 'Travis Oliphant']) result = s.str.split() self.assertEqual(result[1], ['Travis', 'Oliphant']) def test_split_maxsplit(self): # re.split 0, str.split -1 s = Series(['bd asdf jfg', 'kjasdflqw asdfnfk']) result = s.str.split(n=-1) xp = s.str.split() tm.assert_series_equal(result, xp) result = s.str.split(n=0) tm.assert_series_equal(result, xp) xp = s.str.split('asdf') result = s.str.split('asdf', n=0) tm.assert_series_equal(result, xp) result = s.str.split('asdf', n=-1) tm.assert_series_equal(result, xp) def test_split_no_pat_with_nonzero_n(self): s = Series(['split once', 'split once too!']) result = s.str.split(n=1) expected = Series({0: ['split', 'once'], 1: ['split', 'once too!']}) tm.assert_series_equal(expected, result) def test_split_to_dataframe(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.split('_', return_type='frame') exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.split('_', return_type='frame') exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_unequal_splits', 'one_of_these_things_is_not']) result = s.str.split('_', return_type='frame') exp = DataFrame({0: ['some', 'one'], 1: ['unequal', 'of'], 2: ['splits', 'these'], 3: [NA, 'things'], 4: [NA, 'is'], 5: [NA, 'not']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.split('_', return_type='frame') exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) with tm.assertRaisesRegexp(ValueError, "return_type must be"): s.str.split('_', return_type="some_invalid_type") def test_pipe_failures(self): # #2119 s = Series(['A|B|C']) result = s.str.split('|') exp = Series([['A', 'B', 'C']]) tm.assert_series_equal(result, exp) result = s.str.replace('|', ' ') exp = Series(['A B C']) tm.assert_series_equal(result, exp) def test_slice(self): values = Series(['aafootwo', 'aabartwo', NA, 'aabazqux']) result = values.str.slice(2, 5) exp = Series(['foo', 'bar', NA, 'baz']) tm.assert_series_equal(result, exp) for start, stop, step in [(0, 3, -1), (None, None, -1), (3, 10, 2), (3, 0, -1)]: try: result = values.str.slice(start, stop, step) expected = Series([s[start:stop:step] if not isnull(s) else NA for s in values]) tm.assert_series_equal(result, expected) except: print('failed on %s:%s:%s' % (start, stop, step)) raise # mixed mixed = Series(['aafootwo', NA, 'aabartwo', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.slice(2, 5) xp = Series(['foo', NA, 'bar', NA, NA, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.slice(2, 5, -1) xp = Series(['oof', NA, 'rab', NA, NA, NA, NA, NA]) # unicode values = Series([u('aafootwo'), u('aabartwo'), NA, u('aabazqux')]) result = values.str.slice(2, 5) exp = Series([u('foo'), u('bar'), NA, u('baz')]) tm.assert_series_equal(result, exp) result = values.str.slice(0, -1, 2) exp = Series([u('afow'), u('abrw'), NA, u('abzu')]) tm.assert_series_equal(result, exp) def test_slice_replace(self): values = Series(['short', 'a bit longer', 'evenlongerthanthat', '', NA]) exp = Series(['shrt', 'a it longer', 'evnlongerthanthat', '', NA]) result = values.str.slice_replace(2, 3) tm.assert_series_equal(result, exp) exp = Series(['shzrt', 'a zit longer', 'evznlongerthanthat', 'z', NA]) result = values.str.slice_replace(2, 3, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA]) result = values.str.slice_replace(2, 2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA]) result = values.str.slice_replace(2, 1, 'z') tm.assert_series_equal(result, exp) exp = Series(['shorz', 'a bit longez', 'evenlongerthanthaz', 'z', NA]) result = values.str.slice_replace(-1, None, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'zer', 'zat', 'z', NA]) result = values.str.slice_replace(None, -2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shortz', 'a bit znger', 'evenlozerthanthat', 'z', NA]) result = values.str.slice_replace(6, 8, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'a zit longer', 'evenlongzerthanthat', 'z', NA]) result = values.str.slice_replace(-10, 3, 'z') tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip(self): values = Series([' aa ', ' bb \n', NA, 'cc ']) result = values.str.strip() exp = Series(['aa', 'bb', NA, 'cc']) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series(['aa ', 'bb \n', NA, 'cc ']) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([' aa', ' bb', NA, 'cc']) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_mixed(self): # mixed mixed = Series([' aa ', NA, ' bb \t\n', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.strip() xp = Series(['aa', NA, 'bb', NA, NA, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.lstrip() xp = Series(['aa ', NA, 'bb \t\n', NA, NA, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rstrip() xp = Series([' aa', NA, ' bb', NA, NA, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) def test_strip_lstrip_rstrip_unicode(self): # unicode values = Series([u(' aa '), u(' bb \n'), NA, u('cc ')]) result = values.str.strip() exp = Series([u('aa'), u('bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series([u('aa '), u('bb \n'), NA, u('cc ')]) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([u(' aa'), u(' bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_args(self): values = Series(['xxABCxx', 'xx BNSD', 'LDFJH xx']) rs = values.str.strip('x') xp = Series(['ABC', ' BNSD', 'LDFJH ']) assert_series_equal(rs, xp) rs = values.str.lstrip('x') xp = Series(['ABCxx', ' BNSD', 'LDFJH xx']) assert_series_equal(rs, xp) rs = values.str.rstrip('x') xp = Series(['xxABC', 'xx BNSD', 'LDFJH ']) assert_series_equal(rs, xp) def test_strip_lstrip_rstrip_args_unicode(self): values = Series([u('xxABCxx'), u('xx BNSD'), u('LDFJH xx')]) rs = values.str.strip(u('x')) xp = Series(['ABC', ' BNSD', 'LDFJH ']) assert_series_equal(rs, xp) rs = values.str.lstrip(u('x')) xp = Series(['ABCxx', ' BNSD', 'LDFJH xx']) assert_series_equal(rs, xp) rs = values.str.rstrip(u('x')) xp = Series(['xxABC', 'xx BNSD', 'LDFJH ']) assert_series_equal(rs, xp) def test_wrap(self): # test values are: two words less than width, two words equal to width, # two words greater than width, one word less than width, one word # equal to width, one word greater than width, multiple tokens with trailing # whitespace equal to width values = Series([u('hello world'), u('hello world!'), u('hello world!!'), u('abcdefabcde'), u('abcdefabcdef'), u('abcdefabcdefa'), u('ab ab ab ab '), u('ab ab ab ab a'), u('\t')]) # expected values xp = Series([u('hello world'), u('hello world!'), u('hello\nworld!!'), u('abcdefabcde'), u('abcdefabcdef'), u('abcdefabcdef\na'), u('ab ab ab ab'), u('ab ab ab ab\na'), u('')]) rs = values.str.wrap(12, break_long_words=True) assert_series_equal(rs, xp) # test with pre and post whitespace (non-unicode), NaN, and non-ascii Unicode values = Series([' pre ', np.nan, u('\xac\u20ac\U00008000 abadcafe')]) xp = Series([' pre', NA, u('\xac\u20ac\U00008000 ab\nadcafe')]) rs = values.str.wrap(6) assert_series_equal(rs, xp) def test_get(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.get(1) expected = Series(['b', 'd', np.nan, 'g']) tm.assert_series_equal(result, expected) # mixed mixed = Series(['a_b_c', NA, 'c_d_e', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.split('_').str.get(1) xp = Series(['b', NA, 'd', NA, NA, NA, NA, NA]) tm.assert_isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.get(1) expected = Series([u('b'), u('d'), np.nan, u('g')]) tm.assert_series_equal(result, expected) def test_more_contains(self): # PR #1179 import re s = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', NA, 'CABA', 'dog', 'cat']) result = s.str.contains('a') expected = Series([False, False, False, True, True, False, np.nan, False, False, True]) assert_series_equal(result, expected) result = s.str.contains('a', case=False) expected = Series([True, False, False, True, True, False, np.nan, True, False, True]) assert_series_equal(result, expected) result = s.str.contains('Aa') expected = Series([False, False, False, True, False, False, np.nan, False, False, False]) assert_series_equal(result, expected) result = s.str.contains('ba') expected = Series([False, False, False, True, False, False, np.nan, False, False, False]) assert_series_equal(result, expected) result = s.str.contains('ba', case=False) expected = Series([False, False, False, True, True, False, np.nan, True, False, False]) assert_series_equal(result, expected) def test_more_replace(self): # PR #1179 import re s = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', NA, 'CABA', 'dog', 'cat']) result = s.str.replace('A', 'YYY') expected = Series(['YYY', 'B', 'C', 'YYYaba', 'Baca', '', NA, 'CYYYBYYY', 'dog', 'cat']) assert_series_equal(result, expected) result = s.str.replace('A', 'YYY', case=False) expected = Series(['YYY', 'B', 'C', 'YYYYYYbYYY', 'BYYYcYYY', '', NA, 'CYYYBYYY', 'dog', 'cYYYt']) assert_series_equal(result, expected) result = s.str.replace('^.a|dog', 'XX-XX ', case=False) expected = Series(['A', 'B', 'C', 'XX-XX ba', 'XX-XX ca', '', NA, 'XX-XX BA', 'XX-XX ', 'XX-XX t']) assert_series_equal(result, expected) def test_string_slice_get_syntax(self): s = Series(['YYY', 'B', 'C', 'YYYYYYbYYY', 'BYYYcYYY', NA, 'CYYYBYYY', 'dog', 'cYYYt']) result = s.str[0] expected = s.str.get(0) assert_series_equal(result, expected) result = s.str[:3] expected = s.str.slice(stop=3) assert_series_equal(result, expected) result = s.str[2::-1] expected = s.str.slice(start=2, step=-1) assert_series_equal(result, expected) def test_string_slice_out_of_bounds(self): s = Series([(1, 2), (1,), (3,4,5)]) result = s.str[1] expected = Series([2, np.nan, 4]) assert_series_equal(result, expected) s = Series(['foo', 'b', 'ba']) result = s.str[1] expected = Series(['o', np.nan, 'a']) assert_series_equal(result, expected) def test_match_findall_flags(self): data = {'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com', 'Rob': 'rob@gmail.com', 'Wes': np.nan} data = Series(data) pat = pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})' with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = data.str.match(pat, flags=re.IGNORECASE) assert issubclass(w[-1].category, UserWarning) self.assertEqual(result[0], ('dave', 'google', 'com')) result = data.str.findall(pat, flags=re.IGNORECASE) self.assertEqual(result[0][0], ('dave', 'google', 'com')) result = data.str.count(pat, flags=re.IGNORECASE) self.assertEqual(result[0], 1) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = data.str.contains(pat, flags=re.IGNORECASE) assert issubclass(w[-1].category, UserWarning) self.assertEqual(result[0], True) def test_encode_decode(self): base = Series([u('a'), u('b'), u('a\xe4')]) series = base.str.encode('utf-8') f = lambda x: x.decode('utf-8') result = series.str.decode('utf-8') exp = series.map(f) tm.assert_series_equal(result, exp) def test_encode_decode_errors(self): encodeBase = Series([u('a'), u('b'), u('a\x9d')]) self.assertRaises(UnicodeEncodeError, encodeBase.str.encode, 'cp1252') f = lambda x: x.encode('cp1252', 'ignore') result = encodeBase.str.encode('cp1252', 'ignore') exp = encodeBase.map(f) tm.assert_series_equal(result, exp) decodeBase = Series([b'a', b'b', b'a\x9d']) self.assertRaises(UnicodeDecodeError, decodeBase.str.decode, 'cp1252') f = lambda x: x.decode('cp1252', 'ignore') result = decodeBase.str.decode('cp1252', 'ignore') exp = decodeBase.map(f) tm.assert_series_equal(result, exp) def test_cat_on_filtered_index(self): df = DataFrame(index=MultiIndex.from_product([[2011, 2012], [1,2,3]], names=['year', 'month'])) df = df.reset_index() df = df[df.month > 1] str_year = df.year.astype('str') str_month = df.month.astype('str') str_both = str_year.str.cat(str_month, sep=' ') self.assertEqual(str_both.loc[1], '2011 2') str_multiple = str_year.str.cat([str_month, str_month], sep=' ') self.assertEqual(str_multiple.loc[1], '2011 2 2') if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
38.213255
107
0.551024
e3f9d95c9d98fd1213f15ff961c81af56ddc0ad9
2,262
py
Python
glr/config.py
imlegend19/Google-Landmark-Recognition
fe2f58794e4d6163c4fff6cd2913337ca44876c3
[ "MIT" ]
2
2020-12-10T13:17:55.000Z
2020-12-24T06:34:07.000Z
glr/config.py
imlegend19/Google-Landmark-Recognition
fe2f58794e4d6163c4fff6cd2913337ca44876c3
[ "MIT" ]
null
null
null
glr/config.py
imlegend19/Google-Landmark-Recognition
fe2f58794e4d6163c4fff6cd2913337ca44876c3
[ "MIT" ]
null
null
null
import os import tensorflow as tf ROOT = os.path.dirname(os.path.abspath(__file__)) DATASET_DIR = os.path.join(ROOT, "paris") TRAIN_LF = os.path.join(ROOT, "train_lf") TEST_LF = os.path.join(ROOT, "test_lf") TRAIN_GF = os.path.join(ROOT, "data/train_gf.pkl") TEST_GF = os.path.join(ROOT, "data/test_gf.pkl") CORRUPTED = [ 'louvre/paris_louvre_000136.jpg', 'louvre/paris_louvre_000146.jpg', 'moulinrouge/paris_moulinrouge_000422.jpg', 'museedorsay/paris_museedorsay_001059.jpg', 'notredame/paris_notredame_000188.jpg', 'pantheon/paris_pantheon_000284.jpg', 'pantheon/paris_pantheon_000960.jpg', 'pantheon/paris_pantheon_000974.jpg', 'pompidou/paris_pompidou_000195.jpg', 'pompidou/paris_pompidou_000196.jpg', 'pompidou/paris_pompidou_000201.jpg', 'pompidou/paris_pompidou_000467.jpg', 'pompidou/paris_pompidou_000640.jpg', 'sacrecoeur/paris_sacrecoeur_000299.jpg', 'sacrecoeur/paris_sacrecoeur_000330.jpg', 'sacrecoeur/paris_sacrecoeur_000353.jpg', 'triomphe/paris_triomphe_000662.jpg', 'triomphe/paris_triomphe_000833.jpg', 'triomphe/paris_triomphe_000863.jpg', 'triomphe/paris_triomphe_000867.jpg' ] for i in range(len(CORRUPTED)): CORRUPTED[i] = os.path.join(DATASET_DIR, CORRUPTED[i]) # DEBUGGING PARAMS: MAX_NUM_EMBEDDINGS = -1 # Retrieval & re-ranking parameters: NUM_TO_RERANK = 6 TOP_K = 3 # RANSAC parameters: MAX_INLIER_SCORE = 26 MAX_REPROJECTION_ERROR = 6.0 MAX_RANSAC_ITERATIONS = 100000 HOMOGRAPHY_CONFIDENCE = 0.95 # DELG model: SAVED_MODEL_DIR = os.path.join(ROOT, 'delg-saved-models/local_and_global') DELG_MODEL = tf.saved_model.load(SAVED_MODEL_DIR) DELG_IMAGE_SCALES_TENSOR = tf.convert_to_tensor([0.70710677, 1.0, 1.4142135]) DELG_SCORE_THRESHOLD_TENSOR = tf.constant(175.) DELG_INPUT_TENSOR_NAMES = [ 'input_image:0', 'input_scales:0', 'input_abs_thres:0' ] # Global feature extraction: NUM_EMBEDDING_DIMENSIONS = 2048 GLOBAL_FEATURE_EXTRACTION_FN = DELG_MODEL.prune( DELG_INPUT_TENSOR_NAMES, ['global_descriptors:0'] ) # Local feature extraction: LOCAL_FEATURE_NUM_TENSOR = tf.constant(1000) LOCAL_FEATURE_EXTRACTION_FN = DELG_MODEL.prune( DELG_INPUT_TENSOR_NAMES + ['input_max_feature_num:0'], ['boxes:0', 'features:0'] )
29.763158
77
0.761715
6deda222f66ba6ac8cde07213a7a94d78581eca8
20,157
py
Python
gpt2_trainings_scripts/train.py
AbrahamSanders/gutenberg-dialog
9b5bb2ebb208c2cc34ec6ed38477fc67445c5cc7
[ "MIT" ]
50
2020-04-28T03:20:46.000Z
2022-03-07T09:17:09.000Z
gpt2_trainings_scripts/train.py
AbrahamSanders/gutenberg-dialog
9b5bb2ebb208c2cc34ec6ed38477fc67445c5cc7
[ "MIT" ]
1
2021-01-31T21:50:57.000Z
2021-02-02T21:06:33.000Z
gpt2_trainings_scripts/train.py
ricsinaruto/gutenberg-dialog
30bbf1b055fed961b09af9c6ea045cc5ef98bf47
[ "MIT" ]
4
2020-04-23T09:07:54.000Z
2021-07-22T16:58:35.000Z
# Copyright (c) 2019-present, HuggingFace Inc. # All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. import os import math import logging from pprint import pformat from argparse import ArgumentParser from collections import defaultdict from itertools import chain import sys import torch from torch.nn.parallel import DistributedDataParallel, DataParallel from torch.utils.data import DataLoader, Dataset from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint from ignite.metrics import Accuracy, Loss, MetricsLambda, RunningAverage from ignite.contrib.handlers import ProgressBar, PiecewiseLinear from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, OutputHandler, OptimizerParamsHandler from transformers import (AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, GPT2DoubleHeadsModel, GPT2Tokenizer, WEIGHTS_NAME, CONFIG_NAME) from utils import get_dataset, make_logdir SPECIAL_TOKENS = ["<bos>", "<eos>", "<speaker1>", "<speaker2>", "<pad>"] ATTR_TO_SPECIAL_TOKEN = {'bos_token': '<bos>', 'eos_token': '<eos>', 'pad_token': '<pad>', 'additional_special_tokens': ['<speaker1>', '<speaker2>']} MODEL_INPUTS = ["input_ids", "mc_token_ids", "lm_labels", "mc_labels", "token_type_ids"] PADDED_INPUTS = ["input_ids", "lm_labels", "token_type_ids"] logger = logging.getLogger(__file__) def average_distributed_scalar(scalar, args): """ Average a scalar over the nodes if we are in distributed training. We use this for distributed evaluation. """ if args.local_rank == -1: return scalar scalar_t = torch.tensor(scalar, dtype=torch.float, device=args.device) / torch.distributed.get_world_size() torch.distributed.all_reduce(scalar_t, op=torch.distributed.ReduceOp.SUM) return scalar_t.item() def add_special_tokens_(model, tokenizer): """ Add special tokens to the tokenizer and the model if they have not already been added. """ orig_num_tokens = len(tokenizer.encoder) num_added_tokens = tokenizer.add_special_tokens(ATTR_TO_SPECIAL_TOKEN) # doesn't add if they are already there if num_added_tokens > 0: model.resize_token_embeddings(new_num_tokens=orig_num_tokens + num_added_tokens) def build_input_from_segments(history, reply, tokenizer, lm_labels=False, with_eos=True): """ Build a sequence of input from 3 segments: persona, history and last reply. """ bos, eos, speaker1, speaker2 = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[:-1]) sequence = [[bos]] + history + [reply + ([eos] if with_eos else [])] sequence = [sequence[0]] + [[speaker2 if (len(sequence)-i) % 2 else speaker1] + s for i, s in enumerate(sequence[1:])] input_seq = list(chain(*sequence)) if len(input_seq) > 500: if len(sequence) == 3: sequence = [sequence[0], sequence[1][:-(len(input_seq) - 500)], sequence[2]] elif len(sequence) == 5: sequence = [sequence[0], sequence[3], sequence[4]] else: print(sequence) instance = {} instance["input_ids"] = list(chain(*sequence)) instance["token_type_ids"] = [speaker2 if i % 2 else speaker1 for i, s in enumerate(sequence) for _ in s] instance["mc_token_ids"] = len(instance["input_ids"]) - 1 instance["lm_labels"] = [-100] * len(instance["input_ids"]) if lm_labels: instance["lm_labels"] = ([-100] * sum(len(s) for s in sequence[:-1])) + [-100] + sequence[-1][1:] return instance def interm_gc(args, tokenizer): personachat = get_dataset(tokenizer, args.dataset_path, args.dataset_cache) num_candidates = 2 logger.info("Build inputs and labels") datasets = {"train": defaultdict(list), "valid": defaultdict(list)} for dataset_name, dataset in personachat.items(): for i, dialog in enumerate(dataset): # i don't want that much val data if dataset_name == 'train' or i < 100000000: for utterance in dialog["utterances"]: for j, candidate in enumerate(utterance["candidates"][-num_candidates:]): lm_labels = bool(j == num_candidates - 1) instance = build_input_from_segments(utterance["history"][-3:].copy(), candidate, tokenizer, lm_labels) for input_name, input_array in instance.items(): datasets[dataset_name][input_name].append(input_array) datasets[dataset_name]["mc_labels"].append(num_candidates - 1) datasets[dataset_name]["n_candidates"] = num_candidates if not i % 1000000: print(i) return datasets class PaddedDataset(Dataset): def __init__(self, args, name, tokenizer): self.path = args.data_nuggets params = torch.load(os.path.join(self.path, 'params_' + name)) self.padding = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[-1]) self.length = params['length'] self.name = name def __getitem__(self, index): try: nugget = torch.load(os.path.join(self.path, 'nuggets_' + self.name + '/' + str(index))) except: print(index) nugget = torch.load(os.path.join(self.path, 'nuggets_' + self.name + '/1')) t1 = nugget['input_ids'] t3 = nugget['lm_labels'] t5 = nugget['token_type_ids'] t2 = nugget['mc_token_ids'] t4 = nugget['mc_labels'] return (t1, t2, t3, t4, t5, self.padding) def __len__(self): if self.length == 10000: return 100000 else: return self.length def save_data(args, data, tokenizer, split): for i, t in enumerate(data['mc_token_ids']): data['mc_token_ids'][i] = torch.tensor(t) for i, t in enumerate(data['mc_labels']): data['mc_labels'][i] = torch.tensor(t) for name in PADDED_INPUTS: for i, t in enumerate(data[name]): data[name][i] = [torch.tensor(t[0]), torch.tensor(t[1])] # save data to disk print(len(data['mc_labels'])) for i in range(len(data['mc_labels'])): nug_name = os.path.join(args.data_nuggets, 'nuggets_' + split + '/' + str(i)) if not os.path.isfile(nug_name): nugget = dict([(input_name, data[input_name][i]) for input_name in MODEL_INPUTS]) torch.save(nugget, nug_name) if not i % 10000: print(i) # save params to disk torch.save({'length': len(data['input_ids'])}, os.path.join(args.data_nuggets, 'params_' + split)) def interm_gc2(args, tokenizer): if args.run_data: datasets = interm_gc(args, tokenizer) logger.info("Convert to tensor") for dataset_name in datasets: for input_name in MODEL_INPUTS: if input_name != "mc_labels": new_list = [] for i, x in enumerate(datasets[dataset_name][input_name]): if i % 2: new_list.append([datasets[dataset_name][input_name][i - 1], x]) datasets[dataset_name][input_name] = new_list save_data(args, datasets['valid'], tokenizer, 'valid') save_data(args, datasets['train'], tokenizer, 'train') sys.exit() return PaddedDataset(args, 'train', tokenizer), PaddedDataset(args, 'valid', tokenizer) def collate_fn(batch): def build_batch(ex): tensors = [0, 1, 2, 3, 4] for i, t in enumerate(ex[:5]): if i == 0 or i == 4: # change this back #t[0] = torch.tensor(t[0]) #t[1] = torch.tensor(t[1]) c1 = torch.cat((t[0], torch.tensor([ex[5]] * (max_l - len(t[0]))))) c2 = torch.cat((t[1], torch.tensor([ex[5]] * (max_l - len(t[1]))))) tensors[i] = torch.cat((c1.unsqueeze(0), c2.unsqueeze(0))) elif i == 2: #t[0] = torch.tensor(t[0]) #t[1] = torch.tensor(t[1]) c1 = torch.cat((t[0], torch.tensor([-100] * (max_l - len(t[0]))))) c2 = torch.cat((t[1], torch.tensor([-100] * (max_l - len(t[1]))))) tensors[i] = torch.cat((c1.unsqueeze(0), c2.unsqueeze(0))) else: tensors[i] = t return tuple(tensors) elem = batch[0] if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) else: max_l = max(max([len(x[0][0]), len(x[0][1])]) for x in batch) + 1 batch = list(map(build_batch, batch)) transposed = zip(*batch) return [collate_fn(samples) for samples in transposed] def get_data_loaders(args, tokenizer): """ Prepare the dataset for training and evaluation """ train_dataset, valid_dataset = interm_gc2(args, tokenizer) logger.info("Build train and validation dataloaders") train_loader = DataLoader(train_dataset, sampler=None, collate_fn=collate_fn, batch_size=args.train_batch_size, shuffle=(not args.distributed)) valid_loader = DataLoader(valid_dataset, sampler=None, collate_fn=collate_fn, batch_size=args.valid_batch_size, shuffle=False) train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) if args.distributed else None valid_sampler = torch.utils.data.distributed.DistributedSampler(valid_dataset) if args.distributed else None return train_loader, valid_loader, train_sampler, valid_sampler my_dataset = 'data/opensubtitles_es/' def train(): parser = ArgumentParser() parser.add_argument("--run_data", type=bool, default=False) parser.add_argument("--eval_freq", type=int, default=200000) parser.add_argument("--save_freq", type=int, default=2000) parser.add_argument("--data_nuggets", type=str, default=my_dataset) parser.add_argument("--dataset_path", type=str, default=my_dataset + 'json.txt', help="Path or url of the dataset. If empty download from S3.") parser.add_argument("--dataset_cache", type=str, default=my_dataset + 'cache', help="Path or url of the dataset cache") parser.add_argument("--model_checkpoint", type=str, default="gpt2", help="Path, url or short name of the model") parser.add_argument("--model", type=str, default="gpt2") parser.add_argument("--eval_before_start", type=bool, default=False, help="If true start with a first evaluation before training") parser.add_argument("--num_candidates", type=int, default=2, help="Number of candidates for training") parser.add_argument("--max_history", type=int, default=1, help="Number of previous exchanges to keep in history") parser.add_argument("--train_batch_size", type=int, default=2, help="Batch size for training") parser.add_argument("--valid_batch_size", type=int, default=2, help="Batch size for validation") parser.add_argument("--gradient_accumulation_steps", type=int, default=8, help="Accumulate gradients on several steps") parser.add_argument("--lr", type=float, default=6.25e-5, help="Learning rate") parser.add_argument("--lm_coef", type=float, default=2.0, help="LM loss coefficient") parser.add_argument("--mc_coef", type=float, default=1.0, help="Multiple-choice loss coefficient") parser.add_argument("--max_norm", type=float, default=1.0, help="Clipping gradient norm") parser.add_argument("--n_epochs", type=int, default=50, help="Number of training epochs") parser.add_argument("--personality_permutations", type=int, default=1, help="Number of permutations of personality sentences") parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)") parser.add_argument("--fp16", type=str, default="", help="Set to O0, O1, O2 or O3 for fp16 training (see apex documentation)") parser.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training (-1: not distributed)") args = parser.parse_args() # logging is set to INFO (resp. WARN) for main (resp. auxiliary) process. logger.info => log main process only, logger.warning => log all processes logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Running process %d", args.local_rank) # This is a logger.warning: it will be printed by all distributed processes logger.info("Arguments: %s", pformat(args)) # Initialize distributed training if needed args.distributed = (args.local_rank != -1) if args.distributed: torch.cuda.set_device(args.local_rank) args.device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') logger.info("Prepare tokenizer, pretrained model and optimizer.") tokenizer_class = GPT2Tokenizer if "gpt2" in args.model else OpenAIGPTTokenizer # cant use Autotokenizer because checkpoint could be a Path tokenizer = tokenizer_class.from_pretrained(args.model_checkpoint) model_class = GPT2DoubleHeadsModel if "gpt2" in args.model else OpenAIGPTDoubleHeadsModel model = model_class.from_pretrained(args.model_checkpoint) model.to(args.device) # Add special tokens if they are not already added add_special_tokens_(model, tokenizer) optimizer = AdamW(model.parameters(), lr=args.lr, correct_bias=True) # Prepare model for FP16 and distributed training if needed (order is important, distributed should be the last) if args.fp16: from apex import amp # Apex is only required if we use fp16 training model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16) #if args.distributed: #model = DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank) #model = DataParallel(model) logger.info("Prepare datasets") train_loader, val_loader, train_sampler, valid_sampler = get_data_loaders(args, tokenizer) # Training function and trainer def update(engine, batch): model.train() #print(batch) batch = tuple(input_tensor.to(args.device) for input_tensor in batch) input_ids, mc_token_ids, lm_labels, mc_labels, token_type_ids = batch (lm_loss), (mc_loss), *_ = model( input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids, mc_labels=mc_labels, lm_labels=lm_labels ) loss = (lm_loss * args.lm_coef + mc_loss * args.mc_coef) / args.gradient_accumulation_steps # DATAPARALLEL #loss = loss.sum() if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm) if engine.state.iteration % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() return loss.item() trainer = Engine(update) # Evaluation function and evaluator (evaluator output is the input of the metrics) def inference(engine, batch): model.eval() with torch.no_grad(): batch = tuple(input_tensor.to(args.device) for input_tensor in batch) input_ids, mc_token_ids, lm_labels, mc_labels, token_type_ids = batch logger.info(tokenizer.decode(input_ids[0, -1, :].tolist())) # if we dont send labels to model, it doesnt return losses lm_logits, mc_logits, *_ = model( input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids, ) lm_logits_flat_shifted = lm_logits[..., :-1, :].contiguous().view(-1, lm_logits.size(-1)) lm_labels_flat_shifted = lm_labels[..., 1:].contiguous().view(-1) return (lm_logits_flat_shifted, mc_logits), (lm_labels_flat_shifted, mc_labels) evaluator = Engine(inference) # Attach evaluation to trainer: we evaluate when we start the training and at the end of each epoch trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda _: evaluator.run(val_loader)) if args.n_epochs < 1: trainer.add_event_handler(Events.COMPLETED, lambda _: evaluator.run(val_loader)) if args.eval_before_start: trainer.add_event_handler(Events.STARTED, lambda _: evaluator.run(val_loader)) # Make sure distributed data samplers split the dataset nicely between the distributed processes if args.distributed: trainer.add_event_handler(Events.EPOCH_STARTED, lambda engine: train_sampler.set_epoch(engine.state.epoch)) evaluator.add_event_handler(Events.EPOCH_STARTED, lambda engine: valid_sampler.set_epoch(engine.state.epoch)) # Linearly decrease the learning rate from lr to zero scheduler = PiecewiseLinear(optimizer, "lr", [(0, args.lr), (args.n_epochs * len(train_loader), 0.0)]) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) # Prepare metrics - note how we compute distributed metrics RunningAverage(output_transform=lambda x: x).attach(trainer, "loss") metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(ignore_index=-100), output_transform=lambda x: (x[0][0], x[1][0])), "accuracy": Accuracy(output_transform=lambda x: (x[0][1], x[1][1]))} metrics.update({"average_nll": MetricsLambda(average_distributed_scalar, metrics["nll"], args), "average_accuracy": MetricsLambda(average_distributed_scalar, metrics["accuracy"], args)}) metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"]) for name, metric in metrics.items(): metric.attach(evaluator, name) # On the main process: add progress bar, tensorboard, checkpoints and save model, configuration and tokenizer before we start to train if args.local_rank in [-1, 0]: pbar = ProgressBar(persist=True) pbar.attach(trainer, metric_names=["loss"]) evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics))) log_dir = make_logdir(args.model_checkpoint) tb_logger = TensorboardLogger(log_dir) tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=["loss"]), event_name=Events.ITERATION_COMPLETED) tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED) tb_logger.attach(evaluator, log_handler=OutputHandler(tag="validation", metric_names=list(metrics.keys()), another_engine=trainer), event_name=Events.EPOCH_COMPLETED) checkpoint_handler = ModelCheckpoint(log_dir, 'checkpoint', save_interval=1, n_saved=100) trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)}) # "getattr" takes care of distributed encapsulation torch.save(args, log_dir + '/model_training_args.bin') getattr(model, 'module', model).config.to_json_file(os.path.join(log_dir, CONFIG_NAME)) tokenizer.save_pretrained(log_dir) # Run the training trainer.run(train_loader, max_epochs=args.n_epochs) # On the main process: close tensorboard logger and rename the last checkpoint (for easy re-loading with OpenAIGPTModel.from_pretrained method) if args.local_rank in [-1, 0] and args.n_epochs > 0: os.rename(os.path.join(log_dir, checkpoint_handler._saved[-1][1]), os.path.join(log_dir, WEIGHTS_NAME)) # TODO: PR in ignite to have better access to saved file paths (cleaner) tb_logger.close() if __name__ == "__main__": train()
50.3925
185
0.675696
0db1ad8137fd5633a8594fed336cbd56b122fcbb
1,543
py
Python
custom_components/pr_custom_component/const.py
alandtse/auto_custom_component
572b3587621869f48e8cd75fadcee2a568a09afa
[ "Apache-2.0" ]
5
2021-04-18T07:21:21.000Z
2021-09-11T03:41:54.000Z
custom_components/pr_custom_component/const.py
alandtse/auto_custom_component
572b3587621869f48e8cd75fadcee2a568a09afa
[ "Apache-2.0" ]
12
2021-03-21T06:27:34.000Z
2021-04-29T02:55:59.000Z
custom_components/pr_custom_component/const.py
alandtse/pr_custom_component
572b3587621869f48e8cd75fadcee2a568a09afa
[ "Apache-2.0" ]
null
null
null
""" PRCustomComponent for Home Assistant. SPDX-License-Identifier: Apache-2.0 Constants Platform For more details about this integration, please refer to https://github.com/alandtse/pr_custom_component """ # Base component constants NAME = "pr_custom_component" DOMAIN = "pr_custom_component" HACS_DOMAIN = "hacs" DOMAIN_DATA = f"{DOMAIN}_data" VERSION = "0.2.0" ISSUE_URL = "https://github.com/alandtse/pr_custom_component/issues" # GitHub constants PATCH_DOMAIN = "patch-diff.githubusercontent.com" PATCH_PATH_PREFIX = "raw" PATCH_PATH_SUFFIX = ".patch" API_DOMAIN = "api.github.com" API_PATH_PREFIX = "repos" # HA Constants COMPONENT_PATH = "homeassistant/components/" CUSTOM_COMPONENT_PATH = "custom_components/" TRANSLATIONS_PATH = "translations/" STRING_FILE = "strings.json" ENGLISH_JSON = "en.json" # Icons ICON = "mdi:update" # Device classes BINARY_SENSOR_DEVICE_CLASS = "power" SENSOR_DEVICE_CLASS = "timestamp" # Platforms BINARY_SENSOR = "binary_sensor" SENSOR = "sensor" SWITCH = "switch" PLATFORMS = [BINARY_SENSOR, SENSOR, SWITCH] # Configuration and options CONF_ENABLED = "enabled" CONF_PR_URL = "pr_url" # Defaults DEFAULT_NAME = DOMAIN STARTUP_MESSAGE = f""" ------------------------------------------------------------------- {NAME} Version: {VERSION} This is a custom integration! If you have any issues with this you need to open an issue here: {ISSUE_URL} ------------------------------------------------------------------- """ EXCEPTION_TEMPLATE = "An exception of type {0} occurred. Arguments:\n{1!r}"
23.029851
75
0.697991
a744202d662bc5ed27e1561a19a80dbea7277c1b
4,852
py
Python
.kodi/addons/plugin.video.salts/scrapers/wso_scraper.py
C6SUMMER/allinclusive-kodi-pi
8baf247c79526849c640c6e56ca57a708a65bd11
[ "Apache-2.0" ]
null
null
null
.kodi/addons/plugin.video.salts/scrapers/wso_scraper.py
C6SUMMER/allinclusive-kodi-pi
8baf247c79526849c640c6e56ca57a708a65bd11
[ "Apache-2.0" ]
null
null
null
.kodi/addons/plugin.video.salts/scrapers/wso_scraper.py
C6SUMMER/allinclusive-kodi-pi
8baf247c79526849c640c6e56ca57a708a65bd11
[ "Apache-2.0" ]
2
2018-04-17T17:34:39.000Z
2020-07-26T03:43:33.000Z
""" SALTS XBMC Addon Copyright (C) 2014 tknorris This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import scraper import re import urlparse import xbmcaddon import time from salts_lib.trans_utils import i18n from salts_lib.constants import VIDEO_TYPES from salts_lib.constants import QUALITIES BASE_URL = 'http://watchseries-online.ch' class WSO_Scraper(scraper.Scraper): base_url = BASE_URL def __init__(self, timeout=scraper.DEFAULT_TIMEOUT): self.timeout = timeout self.base_url = xbmcaddon.Addon().getSetting('%s-base_url' % (self.get_name())) self.max_pages = int(xbmcaddon.Addon().getSetting('%s-max_pages' % (self.get_name()))) @classmethod def provides(cls): return frozenset([VIDEO_TYPES.TVSHOW, VIDEO_TYPES.SEASON, VIDEO_TYPES.EPISODE]) @classmethod def get_name(cls): return 'wso.ch' def resolve_link(self, link): url = urlparse.urljoin(self.base_url, link) html = self._http_get(url, cache_limit=.5) match = re.search('href=(?:\'|")([^"\']+)(?:"|\')>Click Here to Play', html) if match: return match.group(1) else: return link def format_source_label(self, item): label = '[%s] %s' % (item['quality'], item['host']) return label def get_sources(self, video): source_url = self.get_url(video) hosters = [] if source_url: url = urlparse.urljoin(self.base_url, source_url) html = self._http_get(url, cache_limit=.5) pattern = 'class="[^"]*tdhost".*?href="([^"]+)">([^<]+)' for match in re.finditer(pattern, html, re.DOTALL): stream_url, host = match.groups() hoster = {'multi-part': False, 'host': host.lower(), 'class': self, 'url': stream_url, 'quality': self._get_quality(video, host, QUALITIES.HIGH), 'views': None, 'rating': None, 'direct': False} hosters.append(hoster) return hosters def get_url(self, video): return super(WSO_Scraper, self)._default_get_url(video) @classmethod def get_settings(cls): settings = super(WSO_Scraper, cls).get_settings() name = cls.get_name() settings.append(' <setting id="%s-max_pages" type="slider" range="1,50" option="int" label=" %s" default="1" visible="eq(-6,true)"/>' % (name, i18n('max_pages'))) return settings def search(self, video_type, title, year): url = urlparse.urljoin(self.base_url, '/index') html = self._http_get(url, cache_limit=24) results = [] for list_match in re.finditer('class="ddmcc"(.*?)</div>', html, re.DOTALL): list_frag = list_match.group(1) norm_title = self._normalize_title(title) pattern = 'href="([^"]+)">([^<]+)' for match in re.finditer(pattern, list_frag): url, match_title = match.groups('') if norm_title in self._normalize_title(match_title): result = {'url': url.replace(self.base_url, ''), 'title': match_title, 'year': ''} results.append(result) return results def _get_episode_url(self, show_url, video): episode_pattern = '<h2>\s*<a\s+href="([^"]+)[^>]+title="[^"]+[Ss]%02d[Ee]%02d[ "]' % (int(video.season), int(video.episode)) title_pattern = '' airdate_pattern = '<h2>\s*<a\s+href="([^"]+)[^>]+title="[^"]+{year} {p_month} {p_day}[ \)"]' for page in xrange(1, self.max_pages + 1): url = show_url if page > 1: url += '%s/page/%s' % (show_url, page) # if page is blank, don't continue getting pages url = urlparse.urljoin(self.base_url, url) html = self._http_get(url, cache_limit=2) if not html: return ep_url = super(WSO_Scraper, self)._default_get_episode_url(url, video, episode_pattern, title_pattern, airdate_pattern) if ep_url is not None: return ep_url def _http_get(self, url, data=None, cache_limit=8): return super(WSO_Scraper, self)._cached_http_get(url, self.base_url, self.timeout, data=data, cache_limit=cache_limit)
40.773109
209
0.617477
e4c7a83b0d60ca784cf14ea99282dee784cd7fb5
177
py
Python
DLplatform/learning/__init__.py
chelseajohn/dlplatform
429e42c598039d1e9fd1df3da4247f391915a31b
[ "Apache-2.0" ]
5
2020-05-05T08:54:26.000Z
2021-02-20T07:36:28.000Z
DLplatform/learning/__init__.py
zagazao/dlplatform
ab32af8f89cfec4b478203bd5d13ce2d30e89ba7
[ "Apache-2.0" ]
1
2020-11-16T14:15:53.000Z
2020-11-16T14:15:53.000Z
DLplatform/learning/__init__.py
zagazao/dlplatform
ab32af8f89cfec4b478203bd5d13ce2d30e89ba7
[ "Apache-2.0" ]
4
2020-05-05T08:56:57.000Z
2020-07-22T11:28:52.000Z
from DLplatform.learning.learner import IncrementalLearner from DLplatform.learning.factories import LearnerFactory from DLplatform.learning.deeplearning.kerasNN import KerasNN
44.25
60
0.892655
421e15267bb2414fc10153d98a7f921d3d8bac79
1,142
py
Python
bauh/gems/arch/cpu_manager.py
alesmuc/bauh
5f9fbd7f38eea6f54b5d6a97848c1ee8b6a43ecb
[ "Zlib" ]
null
null
null
bauh/gems/arch/cpu_manager.py
alesmuc/bauh
5f9fbd7f38eea6f54b5d6a97848c1ee8b6a43ecb
[ "Zlib" ]
null
null
null
bauh/gems/arch/cpu_manager.py
alesmuc/bauh
5f9fbd7f38eea6f54b5d6a97848c1ee8b6a43ecb
[ "Zlib" ]
null
null
null
import multiprocessing import os import traceback from bauh.commons.system import new_root_subprocess def supports_performance_mode(): return os.path.exists('/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor') def all_in_performance() -> bool: for i in range(multiprocessing.cpu_count()): with open('/sys/devices/system/cpu/cpu{}/cpufreq/scaling_governor'.format(i)) as f: if f.read().strip() != 'performance': return False return False def set_mode(mode: str, root_password: str): new_gov_file = '/tmp/bauh_scaling_governor' with open(new_gov_file, 'w+') as f: f.write(mode) for i in range(multiprocessing.cpu_count()): try: gov_file = '/sys/devices/system/cpu/cpu{}/cpufreq/scaling_governor'.format(i) replace = new_root_subprocess(['cp', new_gov_file, gov_file], root_password=root_password) replace.wait() except: traceback.print_exc() if os.path.exists(new_gov_file): try: os.remove(new_gov_file) except: traceback.print_exc()
29.282051
102
0.642732
c3728c5debf368235ae0382d859e73ca1866f816
7,139
py
Python
tensorflow/python/kernel_tests/benchmark_test.py
ln0119/tensorflow-fast-rcnn
e937e6394818c9a320754237651d7fe083b1020d
[ "Apache-2.0" ]
73
2017-01-05T09:06:08.000Z
2021-11-06T14:00:50.000Z
tensorflow/python/kernel_tests/benchmark_test.py
minhhoai2/tensorflow
da88903d5e29230d68d861053aa1dea1432c0696
[ "Apache-2.0" ]
8
2017-04-10T10:36:20.000Z
2021-02-07T01:02:32.000Z
tensorflow/python/kernel_tests/benchmark_test.py
minhhoai2/tensorflow
da88903d5e29230d68d861053aa1dea1432c0696
[ "Apache-2.0" ]
151
2016-11-10T09:01:15.000Z
2022-01-18T08:13:49.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework.importer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import random import tensorflow as tf from tensorflow.core.util import test_log_pb2 from tensorflow.python.platform import benchmark # Used by SomeRandomBenchmark class below. _ran_somebenchmark_1 = [False] _ran_somebenchmark_2 = [False] _ran_somebenchmark_but_shouldnt = [False] class SomeRandomBenchmark(tf.test.Benchmark): """This Benchmark should automatically be registered in the registry.""" def _dontRunThisBenchmark(self): _ran_somebenchmark_but_shouldnt[0] = True def notBenchmarkMethod(self): _ran_somebenchmark_but_shouldnt[0] = True def benchmark1(self): _ran_somebenchmark_1[0] = True def benchmark2(self): _ran_somebenchmark_2[0] = True class TestReportingBenchmark(tf.test.Benchmark): """This benchmark (maybe) reports some stuff.""" def benchmarkReport1(self): self.report_benchmark(iters=1) def benchmarkReport2(self): self.report_benchmark( iters=2, name="custom_benchmark_name", extras={"number_key": 3, "other_key": "string"}) def benchmark_times_an_op(self): with tf.Session() as sess: a = tf.constant(0.0) a_plus_a = a + a self.run_op_benchmark( sess, a_plus_a, min_iters=1000, store_trace=True, name="op_benchmark") class BenchmarkTest(tf.test.TestCase): def testGlobalBenchmarkRegistry(self): registry = list(benchmark.GLOBAL_BENCHMARK_REGISTRY) self.assertEqual(len(registry), 2) self.assertTrue(SomeRandomBenchmark in registry) self.assertTrue(TestReportingBenchmark in registry) def testRunSomeRandomBenchmark(self): # Validate that SomeBenchmark has not run yet self.assertFalse(_ran_somebenchmark_1[0]) self.assertFalse(_ran_somebenchmark_2[0]) self.assertFalse(_ran_somebenchmark_but_shouldnt[0]) # Run other benchmarks, but this wont run the one we care about benchmark._run_benchmarks("unrelated") # Validate that SomeBenchmark has not run yet self.assertFalse(_ran_somebenchmark_1[0]) self.assertFalse(_ran_somebenchmark_2[0]) self.assertFalse(_ran_somebenchmark_but_shouldnt[0]) # Run all the benchmarks, avoid generating any reports if benchmark.TEST_REPORTER_TEST_ENV in os.environ: del os.environ[benchmark.TEST_REPORTER_TEST_ENV] benchmark._run_benchmarks("SomeRandom") # Validate that SomeRandomBenchmark ran correctly self.assertTrue(_ran_somebenchmark_1[0]) self.assertTrue(_ran_somebenchmark_2[0]) self.assertFalse(_ran_somebenchmark_but_shouldnt[0]) _ran_somebenchmark_1[0] = False _ran_somebenchmark_2[0] = False _ran_somebenchmark_but_shouldnt[0] = False # Test running a specific method of SomeRandomBenchmark if benchmark.TEST_REPORTER_TEST_ENV in os.environ: del os.environ[benchmark.TEST_REPORTER_TEST_ENV] benchmark._run_benchmarks("SomeRandom.*1$") self.assertTrue(_ran_somebenchmark_1[0]) self.assertFalse(_ran_somebenchmark_2[0]) self.assertFalse(_ran_somebenchmark_but_shouldnt[0]) def testReportingBenchmark(self): tempdir = tf.test.get_temp_dir() try: tf.gfile.MakeDirs(tempdir) except OSError as e: # It's OK if the directory already exists. if " exists:" not in str(e): raise e prefix = os.path.join( tempdir, "reporting_bench_%016x_" % random.getrandbits(64)) expected_output_file = "%s%s" % ( prefix, "TestReportingBenchmark.benchmarkReport1") expected_output_file_2 = "%s%s" % ( prefix, "TestReportingBenchmark.custom_benchmark_name") expected_output_file_3 = "%s%s" % ( prefix, "TestReportingBenchmark.op_benchmark") try: self.assertFalse(tf.gfile.Exists(expected_output_file)) # Run benchmark but without env, shouldn't write anything if benchmark.TEST_REPORTER_TEST_ENV in os.environ: del os.environ[benchmark.TEST_REPORTER_TEST_ENV] reporting = TestReportingBenchmark() reporting.benchmarkReport1() # This should run without writing anything self.assertFalse(tf.gfile.Exists(expected_output_file)) # Runbenchmark with env, should write os.environ[benchmark.TEST_REPORTER_TEST_ENV] = prefix reporting = TestReportingBenchmark() reporting.benchmarkReport1() # This should write reporting.benchmarkReport2() # This should write reporting.benchmark_times_an_op() # This should write # Check the files were written self.assertTrue(tf.gfile.Exists(expected_output_file)) self.assertTrue(tf.gfile.Exists(expected_output_file_2)) self.assertTrue(tf.gfile.Exists(expected_output_file_3)) # Check the contents are correct expected_1 = test_log_pb2.BenchmarkEntry() expected_1.name = "TestReportingBenchmark.benchmarkReport1" expected_1.iters = 1 expected_2 = test_log_pb2.BenchmarkEntry() expected_2.name = "TestReportingBenchmark.custom_benchmark_name" expected_2.iters = 2 expected_2.extras["number_key"].double_value = 3 expected_2.extras["other_key"].string_value = "string" expected_3 = test_log_pb2.BenchmarkEntry() expected_3.name = "TestReportingBenchmark.op_benchmark" expected_3.iters = 1000 def read_benchmark_entry(f): s = tf.gfile.GFile(f, "rb").read() entries = test_log_pb2.BenchmarkEntries.FromString(s) self.assertEquals(1, len(entries.entry)) return entries.entry[0] read_benchmark_1 = read_benchmark_entry(expected_output_file) self.assertProtoEquals(expected_1, read_benchmark_1) read_benchmark_2 = read_benchmark_entry(expected_output_file_2) self.assertProtoEquals(expected_2, read_benchmark_2) read_benchmark_3 = read_benchmark_entry(expected_output_file_3) self.assertEquals(expected_3.name, read_benchmark_3.name) self.assertEquals(expected_3.iters, read_benchmark_3.iters) self.assertGreater(read_benchmark_3.wall_time, 0) full_trace = read_benchmark_3.extras["full_trace_chrome_format"] json_trace = json.loads(full_trace.string_value) self.assertTrue(isinstance(json_trace, dict)) self.assertTrue("traceEvents" in json_trace.keys()) finally: tf.gfile.DeleteRecursively(tempdir) if __name__ == "__main__": tf.test.main()
35.874372
80
0.734417
5cbf03cf0ad219c7cb7672cbc76a022d83dbaa4f
1,527
py
Python
examples/template_security.py
babak1369/TemplateSecurity
3b4aa70d51e02f3fa0d99e2e068cadd7a865baf0
[ "MIT" ]
1
2020-03-20T05:21:39.000Z
2020-03-20T05:21:39.000Z
examples/template_security.py
babak1369/TemplateSecurity
3b4aa70d51e02f3fa0d99e2e068cadd7a865baf0
[ "MIT" ]
null
null
null
examples/template_security.py
babak1369/TemplateSecurity
3b4aa70d51e02f3fa0d99e2e068cadd7a865baf0
[ "MIT" ]
null
null
null
import numpy as np import garbledcircuit as gc import time """ in this example we are checking to see if the query query = np.array([0,25,23,4]) is close enough (threshold = 4) to the template A = np.array([0,25,24,3]) """ A = np.array([0,25,24,3]) dimension = 4 precision = 10 security = 100 threshold = 4 ts = gc.TemplateSecurity(A,precision,threshold) wires_mult,wires_euc,et_list,et_euc,gc_euc,list_of_gc, keys_euc,keys_list_mult,square_sum_query,current,m = ts.parallel_euc_setup() available_keys_euc = keys_euc[square_sum_query[1,0]:square_sum_query[1,0]+2*precision] mult_keys_np = np.array(keys_list_mult) available_keys_mult = mult_keys_np[:,precision:2*precision,:] query = np.array([0,25,23,1114]) wires_euc,wires_mult = ts.parallel_prepare_query(query,square_sum_query,wires_euc,wires_mult,available_keys_euc,available_keys_mult) t = time.time() wi = gc.group_degarbling_(np.array(et_list),wires_mult,list_of_gc[0].circuit,list_of_gc[0].security) wires_euc[0:2*precision*dimension,:] = wi[:,m.matrix[1,:]].reshape((2*precision*dimension,security+1)) wires = gc.degarbling_(et_euc,wires_euc,gc_euc.circuit,security) print("computation time: ", time.time()-t) result_wire_number = current.matrix[1,2*precision-1] print("the last bit of the result is in wire number = ", current.matrix[1,2*precision-1]) print (" the output is : ", wires[result_wire_number]) print("it is authenticated if output = " , keys_euc[result_wire_number][9]) print("it is not authenticated if output = " , keys_euc[result_wire_number][0])
47.71875
132
0.769483
0a19c6e79fb377825e3f9ce2b3bb1db464cadaa9
3,070
py
Python
safe_transaction_service/notifications/views.py
byteflyfunny/safe-transaction-service
2a1a855d9881181a57692057aeb91c9fd8ae3de5
[ "MIT" ]
67
2019-08-16T16:26:42.000Z
2022-03-21T20:32:43.000Z
safe_transaction_service/notifications/views.py
byteflyfunny/safe-transaction-service
2a1a855d9881181a57692057aeb91c9fd8ae3de5
[ "MIT" ]
550
2019-07-11T12:09:06.000Z
2022-03-31T16:32:00.000Z
safe_transaction_service/notifications/views.py
byteflyfunny/safe-transaction-service
2a1a855d9881181a57692057aeb91c9fd8ae3de5
[ "MIT" ]
83
2019-12-06T11:22:32.000Z
2022-03-30T10:09:22.000Z
import logging from drf_yasg.utils import swagger_auto_schema from rest_framework import status from rest_framework.generics import CreateAPIView, DestroyAPIView from rest_framework.response import Response from safe_transaction_service.history.models import SafeContract from . import serializers from .models import FirebaseDevice from .utils import get_safe_owners logger = logging.getLogger(__name__) class FirebaseDeviceCreateView(CreateAPIView): """ Creates a new FirebaseDevice. If uuid is not provided a new device will be created. If a uuid for an existing Safe is provided the FirebaseDevice will be updated with all the new data provided. Safes provided on the request are always added and never removed/replaced Signature must sign `keccack256('gnosis-safe{timestamp-epoch}{uuid}{cloud_messaging_token}{safes_sorted}': - `{timestamp-epoch}` must be an integer (no milliseconds) - `{safes_sorted}` must be checksummed safe addresses sorted and joined with no spaces """ serializer_class = serializers.FirebaseDeviceSerializer response_serializer_class = ( serializers.FirebaseDeviceSerializerWithOwnersResponseSerializer ) @swagger_auto_schema( responses={200: response_serializer_class(), 400: "Invalid data"} ) def post(self, request, *args, **kwargs): return super().post(request, *args, **kwargs) def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) response_serializer = self.response_serializer_class( data=serializer.validated_data ) response_serializer.is_valid(raise_exception=True) headers = self.get_success_headers(response_serializer.data) return Response( response_serializer.data, status=status.HTTP_201_CREATED, headers=headers ) class FirebaseDeviceDeleteView(DestroyAPIView): """ Remove a FirebaseDevice """ queryset = FirebaseDevice.objects.all() class FirebaseDeviceSafeDeleteView(DestroyAPIView): """ Remove a Safe for a FirebaseDevice """ queryset = FirebaseDevice.objects.all() def perform_destroy(self, firebase_device: FirebaseDevice): safe_address = self.kwargs["address"] try: safe_contract = SafeContract.objects.get(address=safe_address) firebase_device.safes.remove(safe_contract) current_owners = { owner for safe in firebase_device.safes.values_list("address", flat=True) for owner in get_safe_owners(safe) } # Remove owners not linked to any Safe firebase_device.owners.exclude(owner__in=current_owners).delete() except SafeContract.DoesNotExist: logger.info( "Cannot remove safe=%s for firebase_device with uuid=%s", safe_address, self.kwargs["pk"], )
36.117647
113
0.701303
1207537653559b153e8a8bce049dd7571ab7b4ea
6,010
py
Python
ScanQLi-master/scanqli.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
ScanQLi-master/scanqli.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
ScanQLi-master/scanqli.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
#!/usr/bin/python import function import requests import time import config from termcolor import colored import optparse_mooi import optparse import validators import progressbar import json from operator import is_not from functools import partial import logo import numpy import os try: import urlparse # Python2 except ImportError: import urllib.parse as urlparse # Python3 # Define parser examples_message = """\nExamples: python scanqli.py -u 'http://127.0.0.1/test/?p=news' -o output.log\n python scanqli.py -u 'https://127.0.0.1/test/' -r -c '{"PHPSESSID":"4bn7uro8qq62ol4o667bejbqo3" , "Session":"Mzo6YWMwZGRmOWU2NWQ1N2I2YTU2YjI0NTMzODZjZDVkYjU="}'\n""" logo_message = logo.chooselogo() parser = optparse.OptionParser(description=logo_message, usage = "python scanqli.py -u [url] [options]", epilog = examples_message, formatter=optparse_mooi.CompactHelpFormatter(align_long_opts=True, metavar_column=20)) groupscan = optparse.OptionGroup(parser, "Scanning") groupoutput = optparse.OptionGroup(parser, "Output") groupscan.add_option('-u', "--url", action="store", dest="url", help="URL to scan", default=None) groupscan.add_option('-U', "--urllist", action="store", metavar="file", dest="urllist", help="URL list to scan (one line by url)", default=None) groupscan.add_option('-i', "--ignore", action="append", metavar="url", dest="iurl", help="Ignore given URLs during scan", default=None) groupscan.add_option('-I', "--ignorelist", action="store", metavar="file", dest="iurllist", help="Ignore given URLs list (one line by url)", default=None) groupscan.add_option('-c', "--cookies", action="store", metavar="cookies", dest="cookies", help="Scan with given cookies", default=None, type=str) groupscan.add_option('-s', "--nosslcheck", action="store_true", dest="nosslcheck", help="Don't verify SSL certs") groupscan.add_option('-q', "--quick", action="store_true", dest="quick", help="Check only very basic vulns", default=None) groupscan.add_option('-r', "--recursive", action="store_true", dest="recursive", help="Recursive URL scan (will follow each href)", default=False) groupscan.add_option('-w', "--wait", action="store", metavar="seconds", dest="waittime", help="Wait time between each request", default=None, type=str) groupoutput.add_option('-v', "--verbose", action="store_true", dest="verbose", help="Display all tested URLs", default=False) groupoutput.add_option('-o', "--output", action="store", metavar="file", dest="output", help="Write outputs in file", default=None) parser.add_option_group(groupscan) parser.add_option_group(groupoutput) options, args = parser.parse_args() # Check requiered arg if not options.url and not options.urllist: parser.print_help() exit(0) elif options.url and validators.url(options.url): url = [options.url] elif options.urllist: text_file = open(options.urllist, "r") url = text_file.read().split('\n') url = filter(partial(is_not, ""), url) for infile in url: if not validators.url(infile): function.PrintError("-u " + infile, "Malformed URL. Please given a valid URL") exit(0) else: function.PrintError("-u " + options.url, "Malformed URL. Please given a valid URL") exit(0) # Check verbose args function.verbose = options.verbose # Check log file write perm if options.output: if function.CheckFilePerm(options.output): progressbar.logfile = options.output else: function.PrintError("-o " + options.output, "No write permission for output file") exit(0) # Check Banned URLs if options.iurl: for bannedurl in options.iurl: if validators.url(bannedurl): config.BannedURLs.append(bannedurl) else: function.PrintError("-i " + bannedurl, "Malformed URL. Please given a valid URL") exit(0) if options.iurllist: try: filelist = open(options.iurllist, "r") for iurl in filelist: if validators.url(iurl): config.BannedURLs.append(iurl.replace("\n", "")) else: function.PrintError("-I " + options.iurllist + " : " + iurl, "Malformed URL. Please given a valid URL") exit(0) except IOError: function.PrintError("-I " + options.iurllist, "Unable to read the given file") exit(0) # Cookies if options.cookies: function.cookies = json.loads(options.cookies) # NoSSLCheck if options.nosslcheck: function.verifyssl = False # Wait time if options.waittime: function.waittime = float(options.waittime) # Quick scan if options.quick: config.scantype = "quick" # init config config.init() # Start starttime = time.time() print(logo.chooselogo() + "\n") try: if options.recursive: baseurl = [] for uniturl in url: if uniturl[-1:] != "/" and os.path.splitext(urlparse.urlparse(uniturl).path)[1] == "": uniturl = uniturl + "/" baseurl.append(uniturl) print("Base URL = " + uniturl) pageset = function.GetAllPages(baseurl) print(str(len(pageset)) + " URLs founds") else: pageset = {None:None} for uniturl in url: print("URL = " + uniturl) pageset.update({uniturl:function.GetHTML(uniturl)}) pageset.pop(None) print("----------------------------") function.vulnscanstrated = True result = function.CheckPageListAllVulns(pageset) except KeyboardInterrupt: print("\nStopped after " + str(round(time.time() - starttime, 2)) + " seconds") exit(0) print("----------------------------") try: resultlen = numpy.shape(result)[0] * numpy.shape(result)[1] except IndexError: resultlen = 0 if resultlen <= 1: print(colored(str(resultlen) + " vulnerability ", attrs=["bold"]) + "found in " + str(round(time.time() - starttime, 2)) + " seconds!") else: print(colored(str(resultlen) + " vulnerabilities ", attrs=["bold"]) + "founds in " + str(round(time.time() - starttime, 2)) + " seconds!")
38.525641
237
0.669717
877a91f7e8e73abd38ce94542dc017ac6f7fbf37
24,703
py
Python
google/ads/googleads/v7/services/services/keyword_plan_campaign_keyword_service/client.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
285
2018-10-05T16:47:58.000Z
2022-03-31T00:58:39.000Z
google/ads/googleads/v7/services/services/keyword_plan_campaign_keyword_service/client.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
425
2018-09-10T13:32:41.000Z
2022-03-31T14:50:05.000Z
google/ads/googleads/v7/services/services/keyword_plan_campaign_keyword_service/client.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
369
2018-11-28T07:01:00.000Z
2022-03-28T09:53:22.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.ads.googleads.v7.resources.types import ( keyword_plan_campaign_keyword, ) from google.ads.googleads.v7.services.types import ( keyword_plan_campaign_keyword_service, ) from google.rpc import status_pb2 as status # type: ignore from .transports.base import ( KeywordPlanCampaignKeywordServiceTransport, DEFAULT_CLIENT_INFO, ) from .transports.grpc import KeywordPlanCampaignKeywordServiceGrpcTransport class KeywordPlanCampaignKeywordServiceClientMeta(type): """Metaclass for the KeywordPlanCampaignKeywordService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[KeywordPlanCampaignKeywordServiceTransport]] _transport_registry["grpc"] = KeywordPlanCampaignKeywordServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[KeywordPlanCampaignKeywordServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class KeywordPlanCampaignKeywordServiceClient( metaclass=KeywordPlanCampaignKeywordServiceClientMeta ): """Service to manage Keyword Plan campaign keywords. KeywordPlanCampaign is required to add the campaign keywords. Only negative keywords are supported. A maximum of 1000 negative keywords are allowed per plan. This includes both campaign negative keywords and ad group negative keywords. """ @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: KeywordPlanCampaignKeywordServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: KeywordPlanCampaignKeywordServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> KeywordPlanCampaignKeywordServiceTransport: """Return the transport used by the client instance. Returns: KeywordPlanCampaignKeywordServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def keyword_plan_campaign_path( customer_id: str, keyword_plan_campaign_id: str, ) -> str: """Return a fully-qualified keyword_plan_campaign string.""" return "customers/{customer_id}/keywordPlanCampaigns/{keyword_plan_campaign_id}".format( customer_id=customer_id, keyword_plan_campaign_id=keyword_plan_campaign_id, ) @staticmethod def parse_keyword_plan_campaign_path(path: str) -> Dict[str, str]: """Parse a keyword_plan_campaign path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/keywordPlanCampaigns/(?P<keyword_plan_campaign_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def keyword_plan_campaign_keyword_path( customer_id: str, keyword_plan_campaign_keyword_id: str, ) -> str: """Return a fully-qualified keyword_plan_campaign_keyword string.""" return "customers/{customer_id}/keywordPlanCampaignKeywords/{keyword_plan_campaign_keyword_id}".format( customer_id=customer_id, keyword_plan_campaign_keyword_id=keyword_plan_campaign_keyword_id, ) @staticmethod def parse_keyword_plan_campaign_keyword_path(path: str) -> Dict[str, str]: """Parse a keyword_plan_campaign_keyword path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/keywordPlanCampaignKeywords/(?P<keyword_plan_campaign_keyword_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[credentials.Credentials] = None, transport: Union[ str, KeywordPlanCampaignKeywordServiceTransport, None ] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the keyword plan campaign keyword service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.KeywordPlanCampaignKeywordServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool( util.strtobool( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") ) ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, KeywordPlanCampaignKeywordServiceTransport): # transport is a KeywordPlanCampaignKeywordServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = KeywordPlanCampaignKeywordServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_keyword_plan_campaign_keyword( self, request: keyword_plan_campaign_keyword_service.GetKeywordPlanCampaignKeywordRequest = None, *, resource_name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> keyword_plan_campaign_keyword.KeywordPlanCampaignKeyword: r"""Returns the requested plan in full detail. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Args: request (:class:`google.ads.googleads.v7.services.types.GetKeywordPlanCampaignKeywordRequest`): The request object. Request message for [KeywordPlanCampaignKeywordService.GetKeywordPlanCampaignKeyword][google.ads.googleads.v7.services.KeywordPlanCampaignKeywordService.GetKeywordPlanCampaignKeyword]. resource_name (:class:`str`): Required. The resource name of the plan to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v7.resources.types.KeywordPlanCampaignKeyword: A Keyword Plan Campaign keyword. Only negative keywords are supported for Campaign Keyword. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a keyword_plan_campaign_keyword_service.GetKeywordPlanCampaignKeywordRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, keyword_plan_campaign_keyword_service.GetKeywordPlanCampaignKeywordRequest, ): request = keyword_plan_campaign_keyword_service.GetKeywordPlanCampaignKeywordRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_keyword_plan_campaign_keyword ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def mutate_keyword_plan_campaign_keywords( self, request: keyword_plan_campaign_keyword_service.MutateKeywordPlanCampaignKeywordsRequest = None, *, customer_id: str = None, operations: Sequence[ keyword_plan_campaign_keyword_service.KeywordPlanCampaignKeywordOperation ] = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> keyword_plan_campaign_keyword_service.MutateKeywordPlanCampaignKeywordsResponse: r"""Creates, updates, or removes Keyword Plan campaign keywords. Operation statuses are returned. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `DatabaseError <>`__ `FieldError <>`__ `HeaderError <>`__ `InternalError <>`__ `KeywordPlanAdGroupKeywordError <>`__ `KeywordPlanCampaignKeywordError <>`__ `QuotaError <>`__ `RequestError <>`__ `ResourceCountLimitExceededError <>`__ Args: request (:class:`google.ads.googleads.v7.services.types.MutateKeywordPlanCampaignKeywordsRequest`): The request object. Request message for [KeywordPlanCampaignKeywordService.MutateKeywordPlanCampaignKeywords][google.ads.googleads.v7.services.KeywordPlanCampaignKeywordService.MutateKeywordPlanCampaignKeywords]. customer_id (:class:`str`): Required. The ID of the customer whose campaign keywords are being modified. This corresponds to the ``customer_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. operations (:class:`Sequence[google.ads.googleads.v7.services.types.KeywordPlanCampaignKeywordOperation]`): Required. The list of operations to perform on individual Keyword Plan campaign keywords. This corresponds to the ``operations`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v7.services.types.MutateKeywordPlanCampaignKeywordsResponse: Response message for a Keyword Plan campaign keyword mutate. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([customer_id, operations]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a keyword_plan_campaign_keyword_service.MutateKeywordPlanCampaignKeywordsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, keyword_plan_campaign_keyword_service.MutateKeywordPlanCampaignKeywordsRequest, ): request = keyword_plan_campaign_keyword_service.MutateKeywordPlanCampaignKeywordsRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if customer_id is not None: request.customer_id = customer_id if operations is not None: request.operations = operations # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.mutate_keyword_plan_campaign_keywords ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("customer_id", request.customer_id),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("KeywordPlanCampaignKeywordServiceClient",)
42.299658
188
0.646075
aee5f99e43f63caad7362676a57a0648734cfd0d
2,960
py
Python
terra/feeds.py
ClaudioMeinberg/tuneeco_gold
4eb5ab64e1ab4c7dcd7a0e34299bbbf6e7813dc0
[ "MIT" ]
null
null
null
terra/feeds.py
ClaudioMeinberg/tuneeco_gold
4eb5ab64e1ab4c7dcd7a0e34299bbbf6e7813dc0
[ "MIT" ]
null
null
null
terra/feeds.py
ClaudioMeinberg/tuneeco_gold
4eb5ab64e1ab4c7dcd7a0e34299bbbf6e7813dc0
[ "MIT" ]
null
null
null
from django.contrib.syndication import views from terra.models import Video, Feed from django.utils.feedgenerator import Rss201rev2Feed from django.utils import timezone from django.utils.safestring import mark_safe from html.parser import HTMLParser unescape = HTMLParser().unescape class TerraVideoFeed(Rss201rev2Feed): def rss_attributes(self): attrs = super().rss_attributes() attrs['xmlns:media'] = 'http://search.yahoo.com/mrss/' attrs['xmlns:content'] = 'http://purl.org/rss/1.0/modules/content/' return attrs def add_item_elements(self, handler, item): super().add_item_elements(handler, item) content = item['content'] handler.startElement('content:encoded', {}) handler._write(f'<![CDATA[ {content} ]]>') handler.endElement('content:encoded') video = dict(url=item['url_feed_video']) video['type'] = item['video_file_type'] video['duration'] = item['video_duration'] video['medium'] = 'video' handler.startElement("media:content", video) thumbnail = dict(url=item['url_feed_thumb']) handler.addQuickElement('media:thumbnail', '', thumbnail) handler.endElement("media:content") def root_attributes(self): attrs = super().root_attributes() return attrs def add_root_elements(self, handler): super().add_root_elements(handler) class LatestVideosFeed(views.Feed): feed_type = TerraVideoFeed def get_object(self, request, slug, item_id=None): feed = Feed.objects.get(slug=slug) self.title = feed.title self.link = feed.link self.description = feed.description return feed def items(self, feed): return Video.objects.filter( processed=True, published__lt=timezone.now(), feed=feed, status=Video.Status.APROVADO ).order_by('-published')[:feed.size] def item_title(self, item): return item.title def item_link(self, item): return item.article_link def item_guid(self, item): return item.id def item_guid_is_permalink(self, obj): pass item_guid_is_permalink = False def item_description(self, item): return item.description def item_categories(self, item): return item.categories.all() def item_pubdate(self, item): return item.published def item_extra_kwargs(self, item): thumb_url = f'{item.feed.thumbnail_uri}{item.url_feed_thumb}' thumb_str = f'<img src="{thumb_url}" style="display:none; ">' content = f'{item.content}{thumb_str}' return { 'url_feed_video': f'{item.feed.video_uri}{item.url_feed_video}', 'url_feed_thumb': thumb_url, 'video_file_type': item.video_file_type, 'video_duration': str(item.video_duration), 'content': content, }
28.737864
76
0.643581
ba1cef98f03ef5e2573d6c73a385ae1ae59b4ba7
50,390
py
Python
decoding/GAD/fairseq/models/transformer.py
maxpark/unilm
cd0cc7e7207dd029db9c8f11e3568fb385be6a29
[ "MIT" ]
1
2021-11-07T00:30:05.000Z
2021-11-07T00:30:05.000Z
decoding/GAD/fairseq/models/transformer.py
maxpark/unilm
cd0cc7e7207dd029db9c8f11e3568fb385be6a29
[ "MIT" ]
null
null
null
decoding/GAD/fairseq/models/transformer.py
maxpark/unilm
cd0cc7e7207dd029db9c8f11e3568fb385be6a29
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("transformer") class TransformerModel(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } def moses_fastbpe(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'fastbpe', } def spm(path): return { 'path': path, 'bpe': 'sentencepiece', 'tokenizer': 'space', } return { 'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'), 'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2', 'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'), 'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'), 'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'), 'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'), 'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'), 'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'), 'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'), 'transformer.wmt20.en-ta': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-ta.single.tar.gz'), 'transformer.wmt20.en-iu.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.news.single.tar.gz'), 'transformer.wmt20.en-iu.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.nh.single.tar.gz'), 'transformer.wmt20.ta-en': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.ta-en.single.tar.gz'), 'transformer.wmt20.iu-en.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.news.single.tar.gz'), 'transformer.wmt20.iu-en.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.nh.single.tar.gz'), } # fmt: on def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args self.supports_align_args = True @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument('--offload-activations', action='store_true', help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) # TorchScript doesn't support optional arguments with variable length (**kwargs). # Current workaround is to add union of all arguments in child classes. def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Run the forward pass for an encoder-decoder model. Copied from the base class, but without ``**kwargs``, which are not supported by TorchScript. """ encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) return decoder_out # Since get_normalized_probs is in the Fairseq Model which is not scriptable, # I rewrite the get_normalized_probs from Base Class to call the # helper function in the Base Class. @torch.jit.export def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.encoder_layerdrop = args.encoder_layerdrop embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [self.build_encoder_layer(args) for i in range(args.encoder_layers)] ) self.num_layers = len(self.layers) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def build_encoder_layer(self, args): layer = TransformerEncoderLayer(args) if getattr(args, "checkpoint_activations", False): offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable(src_tokens, src_lengths, return_all_hiddens, token_embeddings) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = (src_tokens.device.type == "xla" or encoder_padding_mask.any()) x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation if encoder_padding_mask is not None: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) # encoder layers for layer in self.layers: x = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None self.cross_self_attention = getattr(args, "cross_self_attention", False) if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) self.num_layers = len(self.layers) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None self.output_projection = None if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif self.share_input_output_embed: self.output_projection = nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 ) def build_decoder_layer(self, args, no_encoder_attn=False): layer = TransformerDecoderLayer(args, no_encoder_attn) if getattr(args, "checkpoint_activations", False): offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, parallel_forward_start_pos: Optional[int] = None ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, parallel_forward_start_pos=parallel_forward_start_pos ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, parallel_forward_start_pos: Optional[int] = None ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, parallel_forward_start_pos ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, parallel_forward_start_pos: Optional[int] = None ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ if alignment_layer is None: alignment_layer = self.num_layers - 1 # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state if parallel_forward_start_pos is None else None ) if self.embed_positions is not None else None ) original_len = None if incremental_state is not None: # inference if parallel_forward_start_pos is None: # one-by-one prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] else: # aggressive original_len = prev_output_tokens.size(1) prev_output_tokens = prev_output_tokens[:, parallel_forward_start_pos:] if positions is not None: positions = positions[:, parallel_forward_start_pos:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): # train | aggressive inference if (incremental_state is None or parallel_forward_start_pos is not None) and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x, dim=original_len) if parallel_forward_start_pos is not None: self_attn_mask = self_attn_mask[parallel_forward_start_pos:] else: # one-by-one inference self_attn_mask = None x, layer_attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} def output_layer(self, features): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary return self.output_projection(features) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor, dim=None): # tensor: t, b, h if dim is None: dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @register_model_architecture("transformer", "transformer_tiny") def tiny_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 64) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 64) args.encoder_layers = getattr(args, "encoder_layers", 2) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) args.decoder_layers = getattr(args, "decoder_layers", 2) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) return base_architecture(args) @register_model_architecture("transformer", "transformer") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture("transformer", "transformer_iwslt_de_en") def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_architecture(args) @register_model_architecture("transformer", "transformer_wmt_en_de") def transformer_wmt_en_de(args): base_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big") def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big") def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture("transformer", "transformer_wmt_en_de_big") def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t") def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args)
44.124343
159
0.630899
ad533c77942205b46993c2daca5bd7d635258a8f
2,739
py
Python
trashtalk/urls.py
hcote/TrashTalk
eb60cff7451f8d26bf141123d6a3580167583827
[ "MIT" ]
8
2017-10-04T02:29:13.000Z
2019-10-09T03:38:35.000Z
trashtalk/urls.py
hcote/TrashTalk
eb60cff7451f8d26bf141123d6a3580167583827
[ "MIT" ]
108
2017-09-15T23:13:12.000Z
2018-05-21T18:26:15.000Z
trashtalk/urls.py
hcote/TrashTalk
eb60cff7451f8d26bf141123d6a3580167583827
[ "MIT" ]
10
2017-09-06T02:36:01.000Z
2020-09-15T20:13:33.000Z
"""trashtalk URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include, static from django.contrib import admin from django.contrib.auth import views as auth_views from django.conf import settings from accounts.views import (LoginView, UserDashboardView, user_signup_view, user_signup_create) from cleanups.views.template_views import (cleanup_new, cleanup_edit, cleanup_list, cleanup_show, cleanup_create, cleanup_update, cleanup_join_view, cleanup_delete) urlpatterns = [ # Homepage url(r'^$', LoginView.as_view(), name='home'), # Admin Pages url(r'^admin/', admin.site.urls), # API url(r'^api/v1/', include('api_urls', namespace='api')), # Auth url(r'^login/', LoginView.as_view(), name='login'), url(r'^logout/', auth_views.logout, {'next_page': '/'}, name='logout'), url(r'^signup/', user_signup_view, name='register'), url(r'^user/create', user_signup_create, name='create-user'), # User # TODO: Issue #83 - Move to accounts/urls.py url(r'^dashboard/', UserDashboardView.as_view(), name='dashboard'), # Cleanups # TODO: Issue #83 - Move to cleanups/urls.py url(r'^cleanups/$', cleanup_list, name='cleanups-list'), url(r'^cleanups/new/$', cleanup_new, name='cleanup-new'), url(r'^cleanups/create/$', cleanup_create, name='cleanup-create'), url(r'^cleanups/(?P<pk>[0-9]+)/edit/$', cleanup_edit, name='cleanup-edit'), url(r'^cleanups/(?P<pk>[0-9]+)/update/$', cleanup_update, name='cleanup-update'), url(r'^cleanups/(?P<pk>[0-9]+)/join/$', cleanup_join_view, name='join-cleanup'), url(r'^cleanups/(?P<pk>[0-9]+)/delete$', cleanup_delete, name='cleanup-delete'), url(r'^cleanups/(?P<pk>[0-9]+)/$', cleanup_show, name='cleanup-detail'), # Development Only url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), ] + static.static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) if settings.DEBUG: import debug_toolbar urlpatterns += [url(r'^__debug__/', include(debug_toolbar.urls))]
42.796875
95
0.667762
411a15eb974de3ccd78275b5992c7cd4abfda23e
4,351
py
Python
test/functional/test_framework/muhash.py
phlsolo316/vidcoin
d6eec232378c329ebc2a31e7d21acf58cf62368d
[ "MIT" ]
null
null
null
test/functional/test_framework/muhash.py
phlsolo316/vidcoin
d6eec232378c329ebc2a31e7d21acf58cf62368d
[ "MIT" ]
null
null
null
test/functional/test_framework/muhash.py
phlsolo316/vidcoin
d6eec232378c329ebc2a31e7d21acf58cf62368d
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Pieter Wuille # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Native Python MuHash3072 implementation.""" import hashlib import unittest from .util import modinv def rot32(v, bits): """Rotate the 32-bit value v left by bits bits.""" bits %= 32 # Make sure the term below does not throw an exception return ((v << bits) & 0xffffffff) | (v >> (32 - bits)) def chacha20_doubleround(s): """Apply a ChaCha20 double round to 16-element state array s. See https://cr.yp.to/chacha/chacha-20080128.pdf and https://tools.ietf.org/html/rfc8439 """ QUARTER_ROUNDS = [(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15), (0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)] for a, b, c, d in QUARTER_ROUNDS: s[a] = (s[a] + s[b]) & 0xffffffff s[d] = rot32(s[d] ^ s[a], 16) s[c] = (s[c] + s[d]) & 0xffffffff s[b] = rot32(s[b] ^ s[c], 12) s[a] = (s[a] + s[b]) & 0xffffffff s[d] = rot32(s[d] ^ s[a], 8) s[c] = (s[c] + s[d]) & 0xffffffff s[b] = rot32(s[b] ^ s[c], 7) def chacha20_32_to_384(key32): """Specialized ChaCha20 implementation with 32-byte key, 0 IV, 384-byte output.""" # See RFC 8439 section 2.3 for chacha20 parameters CONSTANTS = [0x61707865, 0x3320646e, 0x79622d32, 0x6b206574] key_bytes = [0]*8 for i in range(8): key_bytes[i] = int.from_bytes(key32[(4 * i):(4 * (i+1))], 'little') INITIALIZATION_VECTOR = [0] * 4 init = CONSTANTS + key_bytes + INITIALIZATION_VECTOR out = bytearray() for counter in range(6): init[12] = counter s = init.copy() for _ in range(10): chacha20_doubleround(s) for i in range(16): out.extend(((s[i] + init[i]) & 0xffffffff).to_bytes(4, 'little')) return bytes(out) def data_to_num3072(data): """Hash a 32-byte array data to a 3072-bit number using 6 Chacha20 operations.""" bytes384 = chacha20_32_to_384(data) return int.from_bytes(bytes384, 'little') class MuHash3072: """Class representing the MuHash3072 computation of a set. See https://cseweb.ucsd.edu/~mihir/papers/inchash.pdf and https://lists.linuxfoundation.org/pipermail/vidcoin-dev/2017-May/014337.html """ MODULUS = 2**3072 - 1103717 def __init__(self): """Initialize for an empty set.""" self.numerator = 1 self.denominator = 1 def insert(self, data): """Insert a byte array data in the set.""" self.numerator = (self.numerator * data_to_num3072(data)) % self.MODULUS def remove(self, data): """Remove a byte array from the set.""" self.denominator = (self.denominator * data_to_num3072(data)) % self.MODULUS def digest(self): """Extract the final hash. Does not modify this object.""" val = (self.numerator * modinv(self.denominator, self.MODULUS)) % self.MODULUS bytes384 = val.to_bytes(384, 'little') return hashlib.sha256(bytes384).digest() class TestFrameworkMuhash(unittest.TestCase): def test_muhash(self): muhash = MuHash3072() muhash.insert([0]*32) muhash.insert([1] + [0]*31) muhash.remove([2] + [0]*31) finalized = muhash.digest() # This mirrors the result in the C++ MuHash3072 unit test self.assertEqual(finalized[::-1].hex(), "a44e16d5e34d259b349af21c06e65d653915d2e208e4e03f389af750dc0bfdc3") def test_chacha20(self): def chacha_check(key, result): self.assertEqual(chacha20_32_to_384(key)[:64].hex(), result) # Test vectors from https://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-04#section-7 # Since the nonce is hardcoded to 0 in our function we only use those vectors. chacha_check([0]*32, "76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7da41597c5157488d7724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586") chacha_check([0]*31 + [1], "4540f05a9f1fb296d7736e7b208e3c96eb4fe1834688d2604f450952ed432d41bbe2a0b6ea7566d2a5d1e7e20d42af2c53d792b1c43fea817e9ad275ae546963")
39.198198
166
0.622156
8ae667b6f6dbf5c337a16a02c3b3436d95f6f3fd
2,552
py
Python
train.py
MaggieChenchen/SingleGan_new
06180be2479ce931af464b2dfdd091a646cc9b61
[ "MIT" ]
null
null
null
train.py
MaggieChenchen/SingleGan_new
06180be2479ce931af464b2dfdd091a646cc9b61
[ "MIT" ]
null
null
null
train.py
MaggieChenchen/SingleGan_new
06180be2479ce931af464b2dfdd091a646cc9b61
[ "MIT" ]
null
null
null
import time from options.train_options import TrainOptions from data.dataloader import CreateDataLoader #from util.visualizer import Visualizer from models.single_gan import SingleGAN import torch.nn as nn #!!!!!!!! def main(): opt = TrainOptions().parse() data_loader = CreateDataLoader(opt) dataset_size = len(data_loader) * opt.batchSize #visualizer = Visualizer(opt) model = SingleGAN() model.initialize(opt) #model = nn.DataParallel(model) #device_ids=[0, 1, 2]) # !!!!!!duo gpu #model = model.cuda() total_steps = 0 lr = opt.lr for epoch in range(1, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() save_result = True for i, data in enumerate(data_loader): iter_start_time = time.time() total_steps += opt.batchSize epoch_iter = total_steps - dataset_size * (epoch - 1) #model.update_model(data) errD,errG,loss_q=model.update_model(data)####lossq if save_result or total_steps % opt.display_freq == 0: save_result = save_result or total_steps % opt.update_html_freq == 0 print('mode:{} dataset:{}'.format(opt.mode,opt.name)) #visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result) save_result = False if total_steps % opt.print_freq == 0: errors = model.get_current_errors() t = (time.time() - iter_start_time) / opt.batchSize #visualizer.print_current_errors(epoch, epoch_iter, errors, t) #if opt.display_id > 0: # visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' %(epoch, total_steps)) model.save('latest') print('errD:{} , errG:{},loss_q:{}'.format(errD,errG,loss_q)) #print loss if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' %(epoch, total_steps)) model.save('latest') model.save(epoch) if epoch > opt.niter: lr -= opt.lr / opt.niter_decay model.update_lr(lr) if __name__ == '__main__': main()
40.507937
122
0.575235
7297633243bca82146d3fd17dd4d122b75fa8baa
4,284
py
Python
src/Consult.py
henrique2m/PisCofins
faee04aa3c3d57404092a2656a76e28aa9acc569
[ "MIT" ]
null
null
null
src/Consult.py
henrique2m/PisCofins
faee04aa3c3d57404092a2656a76e28aa9acc569
[ "MIT" ]
null
null
null
src/Consult.py
henrique2m/PisCofins
faee04aa3c3d57404092a2656a76e28aa9acc569
[ "MIT" ]
null
null
null
import os import PySimpleGUI as view import Popup import List import json import Global class WindowCreditConsult: def select(self, listCompany=[]): countList = len(listCompany) popup = Popup.Popup() if countList == 0: popup.alert('INFORME', 'NÃO EXISTE NENHUMA EMPRESA CADASTRADA.') return False file = Global.DATABASE() def index(name = '', tax= ''): with open(file, 'r') as json_file: datas = json.load(json_file) count = len(datas) listSelect = [] for index in range(count): if 'competence' in datas[index]: if datas[index]['competence']['foreignKey'] == name: if tax == 'pis': if datas[index]['competence']['pis'] == True: listSelect.append(datas[index]['competence']) elif tax == 'cofins': if datas[index]['competence']['cofins'] == True: listSelect.append(datas[index]['competence']) if listSelect == []: return False return listSelect colOne = [ [view.Text('EMPRESAS:', background_color='#6272a4')], [view.Listbox( values=listCompany, size=(15,7), key='company' )] ] colTwo = [ [view.Frame('IMPOSTO', [ [ view.Radio('PIS', 'tax', key='pis', background_color='#6272a4'), view.Radio('COFINS', 'tax', key='cofins', background_color='#6272a4') ] ], background_color='#6272a4' )], [view.Button('CONSULTAR', key='submit', button_color=['#ffffff','#3CB371'], size=(17,1) ) ], [view.Button('CANCELAR', key='cancel', button_color=['#ffffff','#ff5555'], size=(17,1) ) ] ] layout = [ [ view.Column(colOne), view.Column(colTwo, element_justification='center') ] ] window = view.Window('CONSULTAR CRÉDITO', layout, location=(830, 220), icon=Global.ICON() ) while True: event, values = window.read() if event in (view.WIN_CLOSED, 'cancel'): break elif event == 'submit': popup = Popup.Popup() companySelect = '' if values['company'] == [] else values['company'][0] if companySelect == '': popup.alert('INFORME', 'POR FAVOR, SELECIONE UMA EMPRESA.') elif not values['pis'] and not values['cofins']: popup.alert('INFORME', 'POR FAVOR, SELECIONE UM IMPOSTO.') else: tax = 'pis' if values['pis'] == True else 'cofins' listCosultCompany = index(companySelect, tax) if listCosultCompany: list_ = List.windowListCredit() list_.index(listCosultCompany) else: popup.alert('INFORME', 'NÃO EXISTE COMPETÊNCIA RELACIONADA A ESSE IMPOSTO.') window.close()
35.7
104
0.36788
44a3ef03f04532548a1ccd3a3952257d120e9707
3,184
py
Python
api/settings.py
AppointmentGuru/ClassGuru
4c171c8af92268d548aebf8dbbddc70b0040f7d6
[ "MIT" ]
null
null
null
api/settings.py
AppointmentGuru/ClassGuru
4c171c8af92268d548aebf8dbbddc70b0040f7d6
[ "MIT" ]
null
null
null
api/settings.py
AppointmentGuru/ClassGuru
4c171c8af92268d548aebf8dbbddc70b0040f7d6
[ "MIT" ]
null
null
null
""" Django settings for api project. Generated by 'django-admin startproject' using Django 1.10. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 's(7u&oq9n6l1_b)kt=!!tjh_namd8i$vp$g3w!c2=jjh-=sbkj' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # 3rd party 'rest_framework', # custom 'api', 'classbooker', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'api.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'api.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ # { # 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'
25.269841
93
0.6875