hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
d2f4274cd9880a5d238d3fa14f2e327f418ff990
4,221
py
Python
contrib/generate_provider_logos_collage_image.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
4
2017-11-14T17:24:12.000Z
2020-10-30T01:46:02.000Z
contrib/generate_provider_logos_collage_image.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
11
2017-01-29T08:59:21.000Z
2018-07-02T09:17:47.000Z
contrib/generate_provider_logos_collage_image.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
4
2016-04-04T08:01:48.000Z
2018-06-06T08:04:36.000Z
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # # Script which generates a collage of provider logos from multiple provider # logo files. # # It works in two steps: # # 1. Resize all the provider logo files (reduce the dimensions) # 2. Assemble a final image from the resized images import os import sys import argparse import subprocess import random from os.path import join as pjoin DIMENSIONS = '150x150' # Dimensions of the resized image (<width>x<height>) GEOMETRY = '+4+4' # How to arrange images (+<rows>+<columns>) TO_CREATE_DIRS = ['resized/', 'final/'] def setup(output_path): """ Create missing directories. """ for directory in TO_CREATE_DIRS: final_path = pjoin(output_path, directory) if not os.path.exists(final_path): os.makedirs(final_path) def get_logo_files(input_path): logo_files = os.listdir(input_path) logo_files = [name for name in logo_files if 'resized' not in name and name.endswith('png')] logo_files = [pjoin(input_path, name) for name in logo_files] return logo_files def resize_images(logo_files, output_path): resized_images = [] for logo_file in logo_files: name, ext = os.path.splitext(os.path.basename(logo_file)) new_name = '%s%s' % (name, ext) out_name = pjoin(output_path, 'resized/', new_name) print 'Resizing image: %(name)s' % {'name': logo_file} values = {'name': logo_file, 'out_name': out_name, 'dimensions': DIMENSIONS} cmd = 'convert %(name)s -resize %(dimensions)s %(out_name)s' cmd = cmd % values subprocess.call(cmd, shell=True) resized_images.append(out_name) return resized_images def assemble_final_image(resized_images, output_path): final_name = pjoin(output_path, 'final/logos.png') random.shuffle(resized_images) values = {'images': ' '.join(resized_images), 'geometry': GEOMETRY, 'out_name': final_name} cmd = 'montage %(images)s -geometry %(geometry)s %(out_name)s' cmd = cmd % values print 'Generating final image: %(name)s' % {'name': final_name} subprocess.call(cmd, shell=True) def main(input_path, output_path): if not os.path.exists(input_path): print('Path doesn\'t exist: %s' % (input_path)) sys.exit(2) if not os.path.exists(output_path): print('Path doesn\'t exist: %s' % (output_path)) sys.exit(2) logo_files = get_logo_files(input_path=input_path) setup(output_path=output_path) resized_images = resize_images(logo_files=logo_files, output_path=output_path) assemble_final_image(resized_images=resized_images, output_path=output_path) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Assemble provider logos ' ' in a single image') parser.add_argument('--input-path', action='store', help='Path to directory which contains provider ' 'logo files') parser.add_argument('--output-path', action='store', help='Path where the new files will be written') args = parser.parse_args() input_path = os.path.abspath(args.input_path) output_path = os.path.abspath(args.output_path) main(input_path=input_path, output_path=output_path)
33.23622
76
0.666667
24a03be85394d3bab2fd7e5ad30c44c741306433
8,674
py
Python
networkx/algorithms/bipartite/centrality.py
jmmcd/networkx
207ff7d1e9bfaff013ac77c8d6bb79619892c994
[ "BSD-3-Clause" ]
1
2020-08-08T21:52:34.000Z
2020-08-08T21:52:34.000Z
networkx/algorithms/bipartite/centrality.py
jmmcd/networkx
207ff7d1e9bfaff013ac77c8d6bb79619892c994
[ "BSD-3-Clause" ]
2
2019-11-13T03:48:53.000Z
2021-02-15T16:52:09.000Z
networkx/algorithms/bipartite/centrality.py
jmmcd/networkx
207ff7d1e9bfaff013ac77c8d6bb79619892c994
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2011 by # Jordi Torrents <jtorrents@milnou.net> # Aric Hagberg <hagberg@lanl.gov> # All rights reserved. # BSD license. import networkx as nx __author__ = """\n""".join(['Jordi Torrents <jtorrents@milnou.net>', 'Aric Hagberg (hagberg@lanl.gov)']) __all__ = ['degree_centrality', 'betweenness_centrality', 'closeness_centrality'] def degree_centrality(G, nodes): r"""Compute the degree centrality for nodes in a bipartite network. The degree centrality for a node `v` is the fraction of nodes connected to it. Parameters ---------- G : graph A bipartite network nodes : list or container Container with all nodes in one bipartite node set. Returns ------- centrality : dictionary Dictionary keyed by node with bipartite degree centrality as the value. See Also -------- betweenness_centrality, closeness_centrality, sets, is_bipartite Notes ----- The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both bipartite node sets. See :mod:`bipartite documentation <networkx.algorithms.bipartite>` for further details on how bipartite graphs are handled in NetworkX. For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree (which is `n-1` where `n` is the number of nodes in G). In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the opposite node set [1]_. The degree centrality for a node `v` in the bipartite sets `U` with `n` nodes and `V` with `m` nodes is .. math:: d_{v} = \frac{deg(v)}{m}, \mbox{for} v \in U , d_{v} = \frac{deg(v)}{n}, \mbox{for} v \in V , where `deg(v)` is the degree of node `v`. References ---------- .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/research/publications/bhaffiliations.pdf """ top = set(nodes) bottom = set(G) - top s = 1.0 / len(bottom) centrality = dict((n, d * s) for n, d in G.degree(top)) s = 1.0 / len(top) centrality.update(dict((n, d * s) for n, d in G.degree(bottom))) return centrality def betweenness_centrality(G, nodes): r"""Compute betweenness centrality for nodes in a bipartite network. Betweenness centrality of a node `v` is the sum of the fraction of all-pairs shortest paths that pass through `v`. Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by the relative size of the two node sets [1]_. Let `n` be the number of nodes in the node set `U` and `m` be the number of nodes in the node set `V`, then nodes in `U` are normalized by dividing by .. math:: \frac{1}{2} [m^2 (s + 1)^2 + m (s + 1)(2t - s - 1) - t (2s - t + 3)] , where .. math:: s = (n - 1) \div m , t = (n - 1) \mod m , and nodes in `V` are normalized by dividing by .. math:: \frac{1}{2} [n^2 (p + 1)^2 + n (p + 1)(2r - p - 1) - r (2p - r + 3)] , where, .. math:: p = (m - 1) \div n , r = (m - 1) \mod n . Parameters ---------- G : graph A bipartite graph nodes : list or container Container with all nodes in one bipartite node set. Returns ------- betweenness : dictionary Dictionary keyed by node with bipartite betweenness centrality as the value. See Also -------- degree_centrality, closeness_centrality, sets, is_bipartite Notes ----- The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets. See :mod:`bipartite documentation <networkx.algorithms.bipartite>` for further details on how bipartite graphs are handled in NetworkX. References ---------- .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/research/publications/bhaffiliations.pdf """ top = set(nodes) bottom = set(G) - top n = float(len(top)) m = float(len(bottom)) s = (n - 1) // m t = (n - 1) % m bet_max_top = (((m**2) * ((s + 1)**2)) + (m * (s + 1) * (2 * t - s - 1)) - (t * ((2 * s) - t + 3))) / 2.0 p = (m - 1) // n r = (m - 1) % n bet_max_bot = (((n**2) * ((p + 1)**2)) + (n * (p + 1) * (2 * r - p - 1)) - (r * ((2 * p) - r + 3))) / 2.0 betweenness = nx.betweenness_centrality(G, normalized=False, weight=None) for node in top: betweenness[node] /= bet_max_top for node in bottom: betweenness[node] /= bet_max_bot return betweenness def closeness_centrality(G, nodes, normalized=True): r"""Compute the closeness centrality for nodes in a bipartite network. The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node. Parameters ---------- G : graph A bipartite network nodes : list or container Container with all nodes in one bipartite node set. normalized : bool, optional If True (default) normalize by connected component size. Returns ------- closeness : dictionary Dictionary keyed by node with bipartite closeness centrality as the value. See Also -------- betweenness_centrality, degree_centrality sets, is_bipartite Notes ----- The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets. See :mod:`bipartite documentation <networkx.algorithms.bipartite>` for further details on how bipartite graphs are handled in NetworkX. Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own set [1]_. Thus the closeness centrality for node `v` in the two bipartite sets `U` with `n` nodes and `V` with `m` nodes is .. math:: c_{v} = \frac{m + 2(n - 1)}{d}, \mbox{for} v \in U, c_{v} = \frac{n + 2(m - 1)}{d}, \mbox{for} v \in V, where `d` is the sum of the distances from `v` to all other nodes. Higher values of closeness indicate higher centrality. As in the unipartite case, setting normalized=True causes the values to normalized further to n-1 / size(G)-1 where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately. References ---------- .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/research/publications/bhaffiliations.pdf """ closeness = {} path_length = nx.single_source_shortest_path_length top = set(nodes) bottom = set(G) - top n = float(len(top)) m = float(len(bottom)) for node in top: sp = dict(path_length(G, node)) totsp = sum(sp.values()) if totsp > 0.0 and len(G) > 1: closeness[node] = (m + 2 * (n - 1)) / totsp if normalized: s = (len(sp) - 1.0) / (len(G) - 1) closeness[node] *= s else: closeness[n] = 0.0 for node in bottom: sp = dict(path_length(G, node)) totsp = sum(sp.values()) if totsp > 0.0 and len(G) > 1: closeness[node] = (n + 2 * (m - 1)) / totsp if normalized: s = (len(sp) - 1.0) / (len(G) - 1) closeness[node] *= s else: closeness[n] = 0.0 return closeness
31.541818
79
0.603412
8e9e00a0402a219ea5bf9fbce14b13de43e7e768
976
py
Python
Python/complete-binary-tree-inserter.py
se77enn/LeetCode-Solution
d29ef5358cae592b63952c3d293897a176fb75e1
[ "MIT" ]
1
2020-10-27T03:22:31.000Z
2020-10-27T03:22:31.000Z
Python/complete-binary-tree-inserter.py
se77enn/LeetCode-Solution
d29ef5358cae592b63952c3d293897a176fb75e1
[ "MIT" ]
null
null
null
Python/complete-binary-tree-inserter.py
se77enn/LeetCode-Solution
d29ef5358cae592b63952c3d293897a176fb75e1
[ "MIT" ]
1
2021-03-22T18:58:23.000Z
2021-03-22T18:58:23.000Z
# Time: ctor: O(n) # insert: O(1) # get_root: O(1) # Space: O(n) class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class CBTInserter(object): def __init__(self, root): """ :type root: TreeNode """ self.__tree = [root] for i in self.__tree: if i.left: self.__tree.append(i.left) if i.right: self.__tree.append(i.right) def insert(self, v): """ :type v: int :rtype: int """ n = len(self.__tree) self.__tree.append(TreeNode(v)) if n % 2: self.__tree[(n-1)//2].left = self.__tree[-1] else: self.__tree[(n-1)//2].right = self.__tree[-1] return self.__tree[(n-1)//2].val def get_root(self): """ :rtype: TreeNode """ return self.__tree[0]
22.181818
57
0.460041
4b9004d7eaacfa82658e2c6a4e99b5102c8277af
263
py
Python
src/fl_simulation/utils/types.py
microsoft/fl-simulation
d177d329c82559c7efe82deae8dea8f9baa49495
[ "MIT" ]
5
2021-12-14T02:21:53.000Z
2021-12-26T07:45:13.000Z
src/fl_simulation/utils/types.py
microsoft/fl-simulation
d177d329c82559c7efe82deae8dea8f9baa49495
[ "MIT" ]
1
2022-01-04T04:51:20.000Z
2022-01-04T04:51:20.000Z
src/fl_simulation/utils/types.py
microsoft/fl-simulation
d177d329c82559c7efe82deae8dea8f9baa49495
[ "MIT" ]
null
null
null
"""Useful type decalrations.""" from typing import List, NewType import torch ModelDiff = NewType("ModelDiff", List[torch.Tensor]) """The model weights update.""" ControlVarDiff = NewType("ControlVarDiff", List[torch.Tensor]) """The control variate update."""
23.909091
62
0.737643
08e284adb9f26dfe8e7df19e776f7be234b47af5
41,837
py
Python
salt/states/cmd.py
ifraixedes/saltstack-salt
b54becb8b43cc9b7c00b2c0bc637ac534dc62896
[ "Apache-2.0" ]
null
null
null
salt/states/cmd.py
ifraixedes/saltstack-salt
b54becb8b43cc9b7c00b2c0bc637ac534dc62896
[ "Apache-2.0" ]
null
null
null
salt/states/cmd.py
ifraixedes/saltstack-salt
b54becb8b43cc9b7c00b2c0bc637ac534dc62896
[ "Apache-2.0" ]
null
null
null
""" Execution of arbitrary commands =============================== The cmd state module manages the enforcement of executed commands, this state can tell a command to run under certain circumstances. A simple example to execute a command: .. code-block:: yaml # Store the current date in a file 'date > /tmp/salt-run': cmd.run Only run if another execution failed, in this case truncate syslog if there is no disk space: .. code-block:: yaml '> /var/log/messages/': cmd.run: - unless: echo 'foo' > /tmp/.test && rm -f /tmp/.test Only run if the file specified by ``creates`` does not exist, in this case touch /tmp/foo if it does not exist: .. code-block:: yaml touch /tmp/foo: cmd.run: - creates: /tmp/foo ``creates`` also accepts a list of files, in which case this state will run if **any** of the files do not exist: .. code-block:: yaml "echo 'foo' | tee /tmp/bar > /tmp/baz": cmd.run: - creates: - /tmp/bar - /tmp/baz .. note:: The ``creates`` option was added to the cmd state in version 2014.7.0, and made a global requisite in 3001. Sometimes when running a command that starts up a daemon, the init script doesn't return properly which causes Salt to wait indefinitely for a response. In situations like this try the following: .. code-block:: yaml run_installer: cmd.run: - name: /tmp/installer.bin > /dev/null 2>&1 Salt determines whether the ``cmd`` state is successfully enforced based on the exit code returned by the command. If the command returns a zero exit code, then salt determines that the state was successfully enforced. If the script returns a non-zero exit code, then salt determines that it failed to successfully enforce the state. If a command returns a non-zero exit code but you wish to treat this as a success, then you must place the command in a script and explicitly set the exit code of the script to zero. Please note that the success or failure of the state is not affected by whether a state change occurred nor the stateful argument. When executing a command or script, the state (i.e., changed or not) of the command is unknown to Salt's state system. Therefore, by default, the ``cmd`` state assumes that any command execution results in a changed state. This means that if a ``cmd`` state is watched by another state then the state that's watching will always be executed due to the `changed` state in the ``cmd`` state. .. _stateful-argument: Using the "Stateful" Argument ----------------------------- Many state functions in this module now also accept a ``stateful`` argument. If ``stateful`` is specified to be true then it is assumed that the command or script will determine its own state and communicate it back by following a simple protocol described below: 1. :strong:`If there's nothing in the stdout of the command, then assume no changes.` Otherwise, the stdout must be either in JSON or its `last` non-empty line must be a string of key=value pairs delimited by spaces (no spaces on either side of ``=``). 2. :strong:`If it's JSON then it must be a JSON object (e.g., {}).` If it's key=value pairs then quoting may be used to include spaces. (Python's shlex module is used to parse the key=value string) Two special keys or attributes are recognized in the output:: changed: bool (i.e., 'yes', 'no', 'true', 'false', case-insensitive) comment: str (i.e., any string) So, only if ``changed`` is ``True`` then assume the command execution has changed the state, and any other key values or attributes in the output will be set as part of the changes. 3. :strong:`If there's a comment then it will be used as the comment of the state.` Here's an example of how one might write a shell script for use with a stateful command: .. code-block:: bash #!/bin/bash # echo "Working hard..." # writing the state line echo # an empty line here so the next line will be the last. echo "changed=yes comment='something has changed' whatever=123" And an example SLS file using this module: .. code-block:: yaml Run myscript: cmd.run: - name: /path/to/myscript - cwd: / - stateful: True Run only if myscript changed something: cmd.run: - name: echo hello - cwd: / - onchanges: - cmd: Run myscript Note that if the second ``cmd.run`` state also specifies ``stateful: True`` it can then be watched by some other states as well. 4. :strong:`The stateful argument can optionally include a test_name parameter.` This is used to specify a command to run in test mode. This command should return stateful data for changes that would be made by the command in the name parameter. .. versionadded:: 2015.2.0 .. code-block:: yaml Run myscript: cmd.run: - name: /path/to/myscript - cwd: / - stateful: - test_name: /path/to/myscript test Run masterscript: cmd.script: - name: masterscript - source: salt://path/to/masterscript - cwd: / - stateful: - test_name: masterscript test Should I use :mod:`cmd.run <salt.states.cmd.run>` or :mod:`cmd.wait <salt.states.cmd.wait>`? -------------------------------------------------------------------------------------------- .. note:: Use :mod:`cmd.run <salt.states.cmd.run>` together with :ref:`onchanges <requisites-onchanges>` instead of :mod:`cmd.wait <salt.states.cmd.wait>`. These two states are often confused. The important thing to remember about them is that :mod:`cmd.run <salt.states.cmd.run>` states are run each time the SLS file that contains them is applied. If it is more desirable to have a command that only runs after some other state changes, then :mod:`cmd.wait <salt.states.cmd.wait>` does just that. :mod:`cmd.wait <salt.states.cmd.wait>` is designed to :ref:`watch <requisites-watch>` other states, and is executed when the state it is watching changes. Example: .. code-block:: yaml /usr/local/bin/postinstall.sh: cmd.wait: - watch: - pkg: mycustompkg file.managed: - source: salt://utils/scripts/postinstall.sh mycustompkg: pkg.installed: - require: - file: /usr/local/bin/postinstall.sh ``cmd.wait`` itself do not do anything; all functionality is inside its ``mod_watch`` function, which is called by ``watch`` on changes. The preferred format is using the :ref:`onchanges Requisite <requisites-onchanges>`, which works on ``cmd.run`` as well as on any other state. The example would then look as follows: .. code-block:: yaml /usr/local/bin/postinstall.sh: cmd.run: - onchanges: - pkg: mycustompkg file.managed: - source: salt://utils/scripts/postinstall.sh mycustompkg: pkg.installed: - require: - file: /usr/local/bin/postinstall.sh How do I create an environment from a pillar map? ------------------------------------------------- The map that comes from a pillar can be directly consumed by the env option! To use it, one may pass it like this. Example: .. code-block:: yaml printenv: cmd.run: - env: {{ salt['pillar.get']('example:key', {}) }} """ import copy import logging import os import salt.utils.args import salt.utils.functools import salt.utils.json import salt.utils.platform from salt.exceptions import CommandExecutionError, SaltRenderError log = logging.getLogger(__name__) def _reinterpreted_state(state): """ Re-interpret the state returned by salt.state.run using our protocol. """ ret = state["changes"] state["changes"] = {} state["comment"] = "" out = ret.get("stdout") if not out: if ret.get("stderr"): state["comment"] = ret["stderr"] return state is_json = False try: data = salt.utils.json.loads(out) if not isinstance(data, dict): return _failout( state, "script JSON output must be a JSON object (e.g., {})!" ) is_json = True except ValueError: idx = out.rstrip().rfind("\n") if idx != -1: out = out[idx + 1 :] data = {} try: for item in salt.utils.args.shlex_split(out): key, val = item.split("=") data[key] = val except ValueError: state = _failout( state, "Failed parsing script output! " "Stdout must be JSON or a line of name=value pairs.", ) state["changes"].update(ret) return state changed = _is_true(data.get("changed", "no")) if "comment" in data: state["comment"] = data["comment"] del data["comment"] if changed: for key in ret: data.setdefault(key, ret[key]) # if stdout is the state output in JSON, don't show it. # otherwise it contains the one line name=value pairs, strip it. data["stdout"] = "" if is_json else data.get("stdout", "")[:idx] state["changes"] = data # FIXME: if it's not changed but there's stdout and/or stderr then those # won't be shown as the function output. (though, they will be shown # inside INFO logs). return state def _failout(state, msg): state["comment"] = msg state["result"] = False return state def _is_true(val): if val and str(val).lower() in ("true", "yes", "1"): return True elif str(val).lower() in ("false", "no", "0"): return False raise ValueError("Failed parsing boolean value: {}".format(val)) def wait( name, cwd=None, root=None, runas=None, shell=None, env=(), stateful=False, umask=None, output_loglevel="debug", hide_output=False, use_vt=False, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs ): """ Run the given command only if the watch statement calls it. .. note:: Use :mod:`cmd.run <salt.states.cmd.run>` together with :mod:`onchanges </ref/states/requisites#onchanges>` instead of :mod:`cmd.wait <salt.states.cmd.wait>`. name The command to execute, remember that the command will execute with the path and permissions of the salt-minion. cwd The current working directory to execute the command in, defaults to /root root Path to the root of the jail to use. If this parameter is set, the command will run inside a chroot runas The user name to run the command as shell The shell to use for execution, defaults to /bin/sh env A list of environment variables to be set prior to execution. Example: .. code-block:: yaml script-foo: cmd.wait: - env: - BATCH: 'yes' .. warning:: The above illustrates a common PyYAML pitfall, that **yes**, **no**, **on**, **off**, **true**, and **false** are all loaded as boolean ``True`` and ``False`` values, and must be enclosed in quotes to be used as strings. More info on this (and other) PyYAML idiosyncrasies can be found :ref:`here <yaml-idiosyncrasies>`. Variables as values are not evaluated. So $PATH in the following example is a literal '$PATH': .. code-block:: yaml script-bar: cmd.wait: - env: "PATH=/some/path:$PATH" One can still use the existing $PATH by using a bit of Jinja: .. code-block:: jinja {% set current_path = salt['environ.get']('PATH', '/bin:/usr/bin') %} mycommand: cmd.run: - name: ls -l / - env: - PATH: {{ [current_path, '/my/special/bin']|join(':') }} .. note:: When using environment variables on Window's, case-sensitivity matters, i.e. Window's uses `Path` as opposed to `PATH` for other systems. umask The umask (in octal) to use when running the command. stateful The command being executed is expected to return data about executing a state. For more information, see the :ref:`stateful-argument` section. creates Only run if the file specified by ``creates`` do not exist. If you specify a list of files then this state will only run if **any** of the files do not exist. .. versionadded:: 2014.7.0 output_loglevel : debug Control the loglevel at which the output from the command is logged to the minion log. .. note:: The command being run will still be logged at the ``debug`` loglevel regardless, unless ``quiet`` is used for this value. hide_output : False Suppress stdout and stderr in the state's results. .. note:: This is separate from ``output_loglevel``, which only handles how Salt logs to the minion log. .. versionadded:: 2018.3.0 use_vt Use VT utils (saltstack) to stream the command output more interactively to the console and the logs. This is experimental. success_retcodes: This parameter will allow a list of non-zero return codes that should be considered a success. If the return code returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 2019.2.0 success_stdout: This parameter will allow a list of strings that when found in standard out should be considered a success. If stdout returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 success_stderr: This parameter will allow a list of strings that when found in standard error should be considered a success. If stderr returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 """ # Ignoring our arguments is intentional. return {"name": name, "changes": {}, "result": True, "comment": ""} # Alias "cmd.watch" to "cmd.wait", as this is a common misconfiguration watch = salt.utils.functools.alias_function(wait, "watch") def wait_script( name, source=None, template=None, cwd=None, runas=None, shell=None, env=None, stateful=False, umask=None, use_vt=False, output_loglevel="debug", hide_output=False, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs ): """ Download a script from a remote source and execute it only if a watch statement calls it. source The source script being downloaded to the minion, this source script is hosted on the salt master server. If the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs template If this setting is applied then the named templating engine will be used to render the downloaded file, currently jinja, mako, and wempy are supported name The command to execute, remember that the command will execute with the path and permissions of the salt-minion. cwd The current working directory to execute the command in, defaults to /root runas The user name to run the command as shell The shell to use for execution, defaults to the shell grain env A list of environment variables to be set prior to execution. Example: .. code-block:: yaml salt://scripts/foo.sh: cmd.wait_script: - env: - BATCH: 'yes' .. warning:: The above illustrates a common PyYAML pitfall, that **yes**, **no**, **on**, **off**, **true**, and **false** are all loaded as boolean ``True`` and ``False`` values, and must be enclosed in quotes to be used as strings. More info on this (and other) PyYAML idiosyncrasies can be found :ref:`here <yaml-idiosyncrasies>`. Variables as values are not evaluated. So $PATH in the following example is a literal '$PATH': .. code-block:: yaml salt://scripts/bar.sh: cmd.wait_script: - env: "PATH=/some/path:$PATH" One can still use the existing $PATH by using a bit of Jinja: .. code-block:: jinja {% set current_path = salt['environ.get']('PATH', '/bin:/usr/bin') %} mycommand: cmd.run: - name: ls -l / - env: - PATH: {{ [current_path, '/my/special/bin']|join(':') }} .. note:: When using environment variables on Window's, case-sensitivity matters, i.e. Window's uses `Path` as opposed to `PATH` for other systems. umask The umask (in octal) to use when running the command. stateful The command being executed is expected to return data about executing a state. For more information, see the :ref:`stateful-argument` section. use_vt Use VT utils (saltstack) to stream the command output more interactively to the console and the logs. This is experimental. output_loglevel : debug Control the loglevel at which the output from the command is logged to the minion log. .. note:: The command being run will still be logged at the ``debug`` loglevel regardless, unless ``quiet`` is used for this value. hide_output : False Suppress stdout and stderr in the state's results. .. note:: This is separate from ``output_loglevel``, which only handles how Salt logs to the minion log. .. versionadded:: 2018.3.0 success_retcodes: This parameter will allow a list of non-zero return codes that should be considered a success. If the return code returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 2019.2.0 success_stdout: This parameter will allow a list of strings that when found in standard out should be considered a success. If stdout returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 success_stderr: This parameter will allow a list of strings that when found in standard error should be considered a success. If stderr returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 """ # Ignoring our arguments is intentional. return {"name": name, "changes": {}, "result": True, "comment": ""} def run( name, cwd=None, root=None, runas=None, shell=None, env=None, prepend_path=None, stateful=False, umask=None, output_loglevel="debug", hide_output=False, timeout=None, ignore_timeout=False, use_vt=False, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs ): """ Run a command if certain circumstances are met. Use ``cmd.wait`` if you want to use the ``watch`` requisite. name The command to execute, remember that the command will execute with the path and permissions of the salt-minion. cwd The current working directory to execute the command in, defaults to /root root Path to the root of the jail to use. If this parameter is set, the command will run inside a chroot runas The user name to run the command as shell The shell to use for execution, defaults to the shell grain env A list of environment variables to be set prior to execution. Example: .. code-block:: yaml script-foo: cmd.run: - env: - BATCH: 'yes' .. warning:: The above illustrates a common PyYAML pitfall, that **yes**, **no**, **on**, **off**, **true**, and **false** are all loaded as boolean ``True`` and ``False`` values, and must be enclosed in quotes to be used as strings. More info on this (and other) PyYAML idiosyncrasies can be found :ref:`here <yaml-idiosyncrasies>`. Variables as values are not evaluated. So $PATH in the following example is a literal '$PATH': .. code-block:: yaml script-bar: cmd.run: - env: "PATH=/some/path:$PATH" One can still use the existing $PATH by using a bit of Jinja: .. code-block:: jinja {% set current_path = salt['environ.get']('PATH', '/bin:/usr/bin') %} mycommand: cmd.run: - name: ls -l / - env: - PATH: {{ [current_path, '/my/special/bin']|join(':') }} .. note:: When using environment variables on Window's, case-sensitivity matters, i.e. Window's uses `Path` as opposed to `PATH` for other systems. prepend_path $PATH segment to prepend (trailing ':' not necessary) to $PATH. This is an easier alternative to the Jinja workaround. .. versionadded:: 2018.3.0 stateful The command being executed is expected to return data about executing a state. For more information, see the :ref:`stateful-argument` section. umask The umask (in octal) to use when running the command. output_loglevel : debug Control the loglevel at which the output from the command is logged to the minion log. .. note:: The command being run will still be logged at the ``debug`` loglevel regardless, unless ``quiet`` is used for this value. hide_output : False Suppress stdout and stderr in the state's results. .. note:: This is separate from ``output_loglevel``, which only handles how Salt logs to the minion log. .. versionadded:: 2018.3.0 timeout If the command has not terminated after timeout seconds, send the subprocess sigterm, and if sigterm is ignored, follow up with sigkill ignore_timeout Ignore the timeout of commands, which is useful for running nohup processes. .. versionadded:: 2015.8.0 creates Only run if the file specified by ``creates`` do not exist. If you specify a list of files then this state will only run if **any** of the files do not exist. .. versionadded:: 2014.7.0 use_vt : False Use VT utils (saltstack) to stream the command output more interactively to the console and the logs. This is experimental. bg : False If ``True``, run command in background and do not await or deliver its results. .. versionadded:: 2016.3.6 success_retcodes: This parameter will allow a list of non-zero return codes that should be considered a success. If the return code returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 2019.2.0 success_stdout: This parameter will allow a list of strings that when found in standard out should be considered a success. If stdout returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 success_stderr: This parameter will allow a list of strings that when found in standard error should be considered a success. If stderr returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 .. note:: cmd.run supports the usage of ``reload_modules``. This functionality allows you to force Salt to reload all modules. You should only use ``reload_modules`` if your cmd.run does some sort of installation (such as ``pip``), if you do not reload the modules future items in your state which rely on the software being installed will fail. .. code-block:: yaml getpip: cmd.run: - name: /usr/bin/python /usr/local/sbin/get-pip.py - unless: which pip - require: - pkg: python - file: /usr/local/sbin/get-pip.py - reload_modules: True """ ### NOTE: The keyword arguments in **kwargs are passed directly to the ### ``cmd.run_all`` function and cannot be removed from the function ### definition, otherwise the use of unsupported arguments in a ### ``cmd.run`` state will result in a traceback. ret = {"name": name, "changes": {}, "result": False, "comment": ""} test_name = None if not isinstance(stateful, list): stateful = stateful is True elif isinstance(stateful, list) and "test_name" in stateful[0]: test_name = stateful[0]["test_name"] if __opts__["test"] and test_name: name = test_name # Need the check for None here, if env is not provided then it falls back # to None and it is assumed that the environment is not being overridden. if env is not None and not isinstance(env, (list, dict)): ret["comment"] = "Invalidly-formatted 'env' parameter. See documentation." return ret cmd_kwargs = copy.deepcopy(kwargs) cmd_kwargs.update( { "cwd": cwd, "root": root, "runas": runas, "use_vt": use_vt, "shell": shell or __grains__["shell"], "env": env, "prepend_path": prepend_path, "umask": umask, "output_loglevel": output_loglevel, "hide_output": hide_output, "success_retcodes": success_retcodes, "success_stdout": success_stdout, "success_stderr": success_stderr, } ) if __opts__["test"] and not test_name: ret["result"] = None ret["comment"] = 'Command "{}" would have been executed'.format(name) return _reinterpreted_state(ret) if stateful else ret if cwd and not os.path.isdir(cwd): ret["comment"] = 'Desired working directory "{}" is not available'.format(cwd) return ret # Wow, we passed the test, run this sucker! try: run_cmd = "cmd.run_all" if not root else "cmd.run_chroot" cmd_all = __salt__[run_cmd]( cmd=name, timeout=timeout, python_shell=True, **cmd_kwargs ) except Exception as err: # pylint: disable=broad-except ret["comment"] = str(err) return ret ret["changes"] = cmd_all ret["result"] = not bool(cmd_all["retcode"]) ret["comment"] = 'Command "{}" run'.format(name) # Ignore timeout errors if asked (for nohups) and treat cmd as a success if ignore_timeout: trigger = "Timed out after" if ret["changes"].get("retcode") == 1 and trigger in ret["changes"].get( "stdout" ): ret["changes"]["retcode"] = 0 ret["result"] = True if stateful: ret = _reinterpreted_state(ret) if __opts__["test"] and cmd_all["retcode"] == 0 and ret["changes"]: ret["result"] = None return ret def script( name, source=None, template=None, cwd=None, runas=None, password=None, shell=None, env=None, stateful=False, umask=None, timeout=None, use_vt=False, output_loglevel="debug", hide_output=False, defaults=None, context=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs ): """ Download a script and execute it with specified arguments. source The location of the script to download. If the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs template If this setting is applied then the named templating engine will be used to render the downloaded file. Currently jinja, mako, and wempy are supported name Either "cmd arg1 arg2 arg3..." (cmd is not used) or a source "salt://...". cwd The current working directory to execute the command in, defaults to /root runas Specify an alternate user to run the command. The default behavior is to run as the user under which Salt is running. If running on a Windows minion you must also use the ``password`` argument, and the target user account must be in the Administrators group. .. note:: For Window's users, specifically Server users, it may be necessary to specify your runas user using the User Logon Name instead of the legacy logon name. Traditionally, logons would be in the following format. ``Domain/user`` In the event this causes issues when executing scripts, use the UPN format which looks like the following. ``user@domain.local`` More information <https://github.com/saltstack/salt/issues/55080> password .. versionadded:: 3000 Windows only. Required when specifying ``runas``. This parameter will be ignored on non-Windows platforms. shell The shell to use for execution. The default is set in grains['shell'] env A list of environment variables to be set prior to execution. Example: .. code-block:: yaml salt://scripts/foo.sh: cmd.script: - env: - BATCH: 'yes' .. warning:: The above illustrates a common PyYAML pitfall, that **yes**, **no**, **on**, **off**, **true**, and **false** are all loaded as boolean ``True`` and ``False`` values, and must be enclosed in quotes to be used as strings. More info on this (and other) PyYAML idiosyncrasies can be found :ref:`here <yaml-idiosyncrasies>`. Variables as values are not evaluated. So $PATH in the following example is a literal '$PATH': .. code-block:: yaml salt://scripts/bar.sh: cmd.script: - env: "PATH=/some/path:$PATH" One can still use the existing $PATH by using a bit of Jinja: .. code-block:: jinja {% set current_path = salt['environ.get']('PATH', '/bin:/usr/bin') %} mycommand: cmd.run: - name: ls -l / - env: - PATH: {{ [current_path, '/my/special/bin']|join(':') }} .. note:: When using environment variables on Window's, case-sensitivity matters, i.e. Window's uses `Path` as opposed to `PATH` for other systems. saltenv : ``base`` The Salt environment to use umask The umask (in octal) to use when running the command. stateful The command being executed is expected to return data about executing a state. For more information, see the :ref:`stateful-argument` section. timeout If the command has not terminated after timeout seconds, send the subprocess sigterm, and if sigterm is ignored, follow up with sigkill args String of command line args to pass to the script. Only used if no args are specified as part of the `name` argument. To pass a string containing spaces in YAML, you will need to doubly-quote it: "arg1 'arg two' arg3" creates Only run if the file specified by ``creates`` do not exist. If you specify a list of files then this state will only run if **any** of the files do not exist. .. versionadded:: 2014.7.0 use_vt Use VT utils (saltstack) to stream the command output more interactively to the console and the logs. This is experimental. context .. versionadded:: 2016.3.0 Overrides default context variables passed to the template. defaults .. versionadded:: 2016.3.0 Default context passed to the template. output_loglevel : debug Control the loglevel at which the output from the command is logged to the minion log. .. note:: The command being run will still be logged at the ``debug`` loglevel regardless, unless ``quiet`` is used for this value. hide_output : False Suppress stdout and stderr in the state's results. .. note:: This is separate from ``output_loglevel``, which only handles how Salt logs to the minion log. .. versionadded:: 2018.3.0 success_retcodes: This parameter will allow a list of non-zero return codes that should be considered a success. If the return code returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 2019.2.0 success_stdout: This parameter will allow a list of strings that when found in standard out should be considered a success. If stdout returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 success_stderr: This parameter will allow a list of strings that when found in standard error should be considered a success. If stderr returned from the run matches any in the provided list, the return code will be overridden with zero. .. versionadded:: 3004 """ test_name = None if not isinstance(stateful, list): stateful = stateful is True elif isinstance(stateful, list) and "test_name" in stateful[0]: test_name = stateful[0]["test_name"] if __opts__["test"] and test_name: name = test_name ret = {"name": name, "changes": {}, "result": False, "comment": ""} # Need the check for None here, if env is not provided then it falls back # to None and it is assumed that the environment is not being overridden. if env is not None and not isinstance(env, (list, dict)): ret["comment"] = "Invalidly-formatted 'env' parameter. See documentation." return ret if context and not isinstance(context, dict): ret[ "comment" ] = "Invalidly-formatted 'context' parameter. Must be formed as a dict." return ret if defaults and not isinstance(defaults, dict): ret[ "comment" ] = "Invalidly-formatted 'defaults' parameter. Must be formed as a dict." return ret if runas and salt.utils.platform.is_windows() and not password: ret["comment"] = "Must supply a password if runas argument is used on Windows." return ret tmpctx = defaults if defaults else {} if context: tmpctx.update(context) cmd_kwargs = copy.deepcopy(kwargs) cmd_kwargs.update( { "runas": runas, "password": password, "shell": shell or __grains__["shell"], "env": env, "cwd": cwd, "template": template, "umask": umask, "timeout": timeout, "output_loglevel": output_loglevel, "hide_output": hide_output, "use_vt": use_vt, "context": tmpctx, "saltenv": __env__, "success_retcodes": success_retcodes, "success_stdout": success_stdout, "success_stderr": success_stderr, } ) run_check_cmd_kwargs = { "cwd": cwd, "runas": runas, "shell": shell or __grains__["shell"], } # Change the source to be the name arg if it is not specified if source is None: source = name # If script args present split from name and define args if not cmd_kwargs.get("args", None) and len(name.split()) > 1: cmd_kwargs.update({"args": name.split(" ", 1)[1]}) if __opts__["test"] and not test_name: ret["result"] = None ret["comment"] = "Command '{}' would have been executed".format(name) return _reinterpreted_state(ret) if stateful else ret if cwd and not os.path.isdir(cwd): ret["comment"] = 'Desired working directory "{}" is not available'.format(cwd) return ret # Wow, we passed the test, run this sucker! try: cmd_all = __salt__["cmd.script"](source, python_shell=True, **cmd_kwargs) except (CommandExecutionError, SaltRenderError, OSError) as err: ret["comment"] = str(err) return ret ret["changes"] = cmd_all if kwargs.get("retcode", False): ret["result"] = not bool(cmd_all) else: ret["result"] = not bool(cmd_all["retcode"]) if ret.get("changes", {}).get("cache_error"): ret["comment"] = "Unable to cache script {} from saltenv '{}'".format( source, __env__ ) else: ret["comment"] = "Command '{}' run".format(name) if stateful: ret = _reinterpreted_state(ret) if __opts__["test"] and cmd_all["retcode"] == 0 and ret["changes"]: ret["result"] = None return ret def call( name, func, args=(), kws=None, output_loglevel="debug", hide_output=False, use_vt=False, **kwargs ): """ Invoke a pre-defined Python function with arguments specified in the state declaration. This function is mainly used by the :mod:`salt.renderers.pydsl` renderer. In addition, the ``stateful`` argument has no effects here. The return value of the invoked function will be interpreted as follows. If it's a dictionary then it will be passed through to the state system, which expects it to have the usual structure returned by any salt state function. Otherwise, the return value (denoted as ``result`` in the code below) is expected to be a JSON serializable object, and this dictionary is returned: .. code-block:: python { 'name': name 'changes': {'retval': result}, 'result': True if result is None else bool(result), 'comment': result if isinstance(result, str) else '' } """ ret = {"name": name, "changes": {}, "result": False, "comment": ""} cmd_kwargs = { "cwd": kwargs.get("cwd"), "runas": kwargs.get("user"), "shell": kwargs.get("shell") or __grains__["shell"], "env": kwargs.get("env"), "use_vt": use_vt, "output_loglevel": output_loglevel, "hide_output": hide_output, "umask": kwargs.get("umask"), } if not kws: kws = {} result = func(*args, **kws) if isinstance(result, dict): ret.update(result) return ret else: # result must be JSON serializable else we get an error ret["changes"] = {"retval": result} ret["result"] = True if result is None else bool(result) if isinstance(result, str): ret["comment"] = result return ret def wait_call( name, func, args=(), kws=None, stateful=False, use_vt=False, output_loglevel="debug", hide_output=False, **kwargs ): # Ignoring our arguments is intentional. return {"name": name, "changes": {}, "result": True, "comment": ""} def mod_watch(name, **kwargs): """ Execute a cmd function based on a watch call .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered. """ if kwargs["sfun"] in ("wait", "run", "watch"): if kwargs.get("stateful"): kwargs.pop("stateful") return _reinterpreted_state(run(name, **kwargs)) return run(name, **kwargs) elif kwargs["sfun"] == "wait_script" or kwargs["sfun"] == "script": if kwargs.get("stateful"): kwargs.pop("stateful") return _reinterpreted_state(script(name, **kwargs)) return script(name, **kwargs) elif kwargs["sfun"] == "wait_call" or kwargs["sfun"] == "call": if kwargs.get("func"): func = kwargs.pop("func") return call(name, func, **kwargs) else: return { "name": name, "changes": {}, "comment": "cmd.{0[sfun]} needs a named parameter func".format(kwargs), "result": False, } return { "name": name, "changes": {}, "comment": ( "cmd.{0[sfun]} does not work with the watch requisite, " "please use cmd.wait or cmd.wait_script".format(kwargs) ), "result": False, }
31.863671
114
0.609915
e46e0f5e89f9fe4c458a73c5902fba2d58bfc60b
579
py
Python
src/tests/test_main.py
jugmac00/workout-bo
b334187c5b1c7821043b3f2dbfb5f5d74477ffc5
[ "BSD-3-Clause" ]
1
2020-12-23T18:26:52.000Z
2020-12-23T18:26:52.000Z
src/tests/test_main.py
jugmac00/workout-bo
b334187c5b1c7821043b3f2dbfb5f5d74477ffc5
[ "BSD-3-Clause" ]
13
2020-05-01T19:56:49.000Z
2021-05-17T07:21:38.000Z
src/tests/test_main.py
jugmac00/workout-bo
b334187c5b1c7821043b3f2dbfb5f5d74477ffc5
[ "BSD-3-Clause" ]
1
2020-05-01T19:03:28.000Z
2020-05-01T19:03:28.000Z
from workout_bot.main import extract_dailydare_url from workout_bot.main import extract_wod_url # Please note, that the following tests are just smoke tests in order # to start testing. # Yes, they rely on a website which is not under my control. # Yes, I know, this is not good. # This won't be permanent. def test_extract_dailydare_url(): URL = extract_dailydare_url() assert URL.startswith("https://www.darebee.com/images/promo/dares/") def test_extract_wod_url(): URL = extract_wod_url() assert URL.startswith("https://www.darebee.com/images/workouts/")
30.473684
72
0.756477
da546e465c19ba2f4f61b28817638cd8915dd5b7
2,347
py
Python
src/extensions/booksearch/handlers/shamela_handler.py
SafEight/durkabot
358c66927e95005c03da3d47080f711666ff95c7
[ "MIT" ]
3
2018-07-09T21:01:17.000Z
2021-10-17T18:53:47.000Z
src/extensions/booksearch/handlers/shamela_handler.py
SafEight/durkabot
358c66927e95005c03da3d47080f711666ff95c7
[ "MIT" ]
19
2018-06-20T05:53:46.000Z
2019-04-26T22:36:25.000Z
src/extensions/booksearch/handlers/shamela_handler.py
SafEight/durkabot
358c66927e95005c03da3d47080f711666ff95c7
[ "MIT" ]
2
2019-02-24T20:16:43.000Z
2020-09-28T02:09:14.000Z
from urllib.parse import quote_plus, urljoin import aiohttp from bs4 import BeautifulSoup, Tag from extensions.booksearch.bookdata import BookData class ShamelaHandler: domain = 'http://shamela.ws/' search_url = domain + 'index.php/search/word/{0}' download_url = 'http://d.shamela.ws/epubs/{0}/{1}.epub' def __init__(self, loop): self.session = aiohttp.ClientSession(loop=loop) async def _fetch(self, url): async with self.session.get(url) as r: return BeautifulSoup(await r.text(), 'html.parser') async def search(self, query): url = self.search_url.format(quote_plus(query)) soup = await self._fetch(url) # shamela is nice :] book_elements = soup.find_all('td', attrs={'class': "regular-book"}) bookdata_instances = [ self.process_result(result) for result in book_elements ] return bookdata_instances, url def process_result(self, result: Tag) -> BookData: title_element = result.find_next('a') book_title = title_element.string relative_link_on_site = title_element['href'] link_on_site = urljoin(self.domain, relative_link_on_site) # extract book id to formulate direct download link slash_index = relative_link_on_site.rfind('/') book_id = relative_link_on_site[slash_index + 1:] # we also need a "fragment" of sorts # we drop 2 digits from the end of the id # what we have left, which may be 3 or less digits, # we left-pad it with 0 until it is 3 digits. book_id_fragment = book_id[:-2].rjust(3, '0') link = self.download_url.format(book_id_fragment, book_id) author_span = result.find_next('span', attrs={'style': "float:left;"}) author_name = author_span.find_next('a').string return BookData(book_title, author_name, link, link_on_site) @staticmethod def format_result(bookdata): title = bookdata.title subtext = ( f"لـ {bookdata.author_name}\n" + (f"[---]({bookdata.link}) :الرابط المباشر\n" if bookdata.link is not None else '') + (f"[---]({bookdata.site_link}) :الرابط على المكتبة الشاملة\n" if bookdata.site_link is not None else '') ) return title, subtext
33.056338
122
0.637409
b4bbb621ce131225ac7754e79057b99d2d84808a
15,974
py
Python
chromium/build/android/pylib/instrumentation/test_runner.py
wedataintelligence/vivaldi-source
22a46f2c969f6a0b7ca239a05575d1ea2738768c
[ "BSD-3-Clause" ]
27
2016-04-27T01:02:03.000Z
2021-12-13T08:53:19.000Z
chromium/build/android/pylib/instrumentation/test_runner.py
wedataintelligence/vivaldi-source
22a46f2c969f6a0b7ca239a05575d1ea2738768c
[ "BSD-3-Clause" ]
2
2017-03-09T09:00:50.000Z
2017-09-21T15:48:20.000Z
chromium/build/android/pylib/instrumentation/test_runner.py
wedataintelligence/vivaldi-source
22a46f2c969f6a0b7ca239a05575d1ea2738768c
[ "BSD-3-Clause" ]
17
2016-04-27T02:06:39.000Z
2019-12-18T08:07:00.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Class for running instrumentation tests on a single device.""" import collections import logging import os import re import time from devil.android import device_errors from pylib import constants from pylib import flag_changer from pylib import valgrind_tools from pylib.base import base_test_result from pylib.base import base_test_runner from pylib.constants import host_paths from pylib.instrumentation import instrumentation_test_instance from pylib.instrumentation import json_perf_parser from pylib.instrumentation import test_result from pylib.local.device import local_device_instrumentation_test_run with host_paths.SysPath(host_paths.BUILD_COMMON_PATH): import perf_tests_results_helper # pylint: disable=import-error _PERF_TEST_ANNOTATION = 'PerfTest' class TestRunner(base_test_runner.BaseTestRunner): """Responsible for running a series of tests connected to a single device.""" _DEVICE_COVERAGE_DIR = 'chrome/test/coverage' _HOSTMACHINE_PERF_OUTPUT_FILE = '/tmp/chrome-profile' _DEVICE_PERF_OUTPUT_SEARCH_PREFIX = (constants.DEVICE_PERF_OUTPUT_DIR + '/chrome-profile*') def __init__(self, test_options, device, shard_index, test_pkg, additional_flags=None): """Create a new TestRunner. Args: test_options: An InstrumentationOptions object. device: Attached android device. shard_index: Shard index. test_pkg: A TestPackage object. additional_flags: A list of additional flags to add to the command line. """ super(TestRunner, self).__init__(device, test_options.tool) self._lighttp_port = constants.LIGHTTPD_RANDOM_PORT_FIRST + shard_index self._logcat_monitor = None self.coverage_device_file = None self.coverage_dir = test_options.coverage_dir self.coverage_host_file = None self.options = test_options package_info_candidates = [a for a in constants.PACKAGE_INFO.itervalues() if a.test_package == test_pkg.GetPackageName()] assert len(package_info_candidates) < 2, ( 'Multiple packages have the same test package') self.package_info = (package_info_candidates[0] if package_info_candidates else None) self.test_pkg = test_pkg # Use the correct command line file for the package under test. if self.package_info and self.package_info.cmdline_file: self.flags = flag_changer.FlagChanger( self.device, self.package_info.cmdline_file) if additional_flags: self.flags.AddFlags(additional_flags) else: self.flags = None #override def InstallTestPackage(self): self.test_pkg.Install(self.device) def _GetInstrumentationArgs(self): ret = {} if self.options.wait_for_debugger: ret['debug'] = 'true' if self.coverage_dir: ret['coverage'] = 'true' ret['coverageFile'] = self.coverage_device_file return ret def _TakeScreenshot(self, test): """Takes a screenshot from the device.""" screenshot_name = os.path.join(constants.SCREENSHOTS_DIR, '%s.png' % test) logging.info('Taking screenshot named %s', screenshot_name) self.device.TakeScreenshot(screenshot_name) def SetUp(self): """Sets up the test harness and device before all tests are run.""" super(TestRunner, self).SetUp() if not self.device.HasRoot(): logging.warning('Unable to enable java asserts for %s; run `adb root`.', str(self.device)) else: if self.device.SetJavaAsserts(self.options.set_asserts): self.device.RunShellCommand('stop') self.device.RunShellCommand('start') self.device.WaitUntilFullyBooted() # We give different default value to launch HTTP server based on shard index # because it may have race condition when multiple processes are trying to # launch lighttpd with same port at same time. self.LaunchTestHttpServer( os.path.join(host_paths.DIR_SOURCE_ROOT), self._lighttp_port) if self.flags: flags_to_add = ['--disable-fre', '--enable-test-intents'] if self.options.strict_mode and self.options.strict_mode != 'off': flags_to_add.append('--strict-mode=' + self.options.strict_mode) if self.options.device_flags: with open(self.options.device_flags) as device_flags_file: stripped_flags = (l.strip() for l in device_flags_file) flags_to_add.extend([flag for flag in stripped_flags if flag]) self.flags.AddFlags(flags_to_add) def TearDown(self): """Cleans up the test harness and saves outstanding data from test run.""" if self.flags: self.flags.Restore() super(TestRunner, self).TearDown() def TestSetup(self, test, flag_modifiers): """Sets up the test harness for running a particular test. Args: test: The name of the test that will be run. """ self.SetupPerfMonitoringIfNeeded(test) self._SetupIndividualTestTimeoutScale(test) self.tool.SetupEnvironment() if self.flags: self.flags.PushFlags(add=flag_modifiers.add, remove=flag_modifiers.remove) # Make sure the forwarder is still running. self._RestartHttpServerForwarderIfNecessary() if self.coverage_dir: coverage_basename = '%s.ec' % test self.coverage_device_file = '%s/%s/%s' % ( self.device.GetExternalStoragePath(), TestRunner._DEVICE_COVERAGE_DIR, coverage_basename) self.coverage_host_file = os.path.join( self.coverage_dir, coverage_basename) def _IsFreTest(self, test): """Determines whether a test is a first run experience test. Args: test: The name of the test to be checked. Returns: Whether the feature being tested is FirstRunExperience. """ annotations = self.test_pkg.GetTestAnnotations(test) feature = annotations.get('Feature', None) return feature and 'FirstRunExperience' in feature['value'] def _IsPerfTest(self, test): """Determines whether a test is a performance test. Args: test: The name of the test to be checked. Returns: Whether the test is annotated as a performance test. """ return _PERF_TEST_ANNOTATION in self.test_pkg.GetTestAnnotations(test) def _GetTestCmdlineParameters(self, test): """Determines whether the test is parameterized to be run with different command-line flags. Args: test: The name of the test to be checked. Returns: The list of parameters. """ annotations = self.test_pkg.GetTestAnnotations(test) params = instrumentation_test_instance.ParseCommandLineFlagParameters( annotations) if not params: params = [collections.namedtuple('Dummy', ['add', 'remove'])([], [])] return params def SetupPerfMonitoringIfNeeded(self, test): """Sets up performance monitoring if the specified test requires it. Args: test: The name of the test to be run. """ if not self._IsPerfTest(test): return self.device.RunShellCommand( ['rm', TestRunner._DEVICE_PERF_OUTPUT_SEARCH_PREFIX]) self._logcat_monitor = self.device.GetLogcatMonitor() self._logcat_monitor.Start() def TestTeardown(self, test, results): """Cleans up the test harness after running a particular test. Depending on the options of this TestRunner this might handle performance tracking. This method will only be called if the test passed. Args: test: The name of the test that was just run. results: results for this test. """ self.tool.CleanUpEnvironment() if self.flags: self.flags.Restore() if not results: return if results.DidRunPass(): self.TearDownPerfMonitoring(test) if self.coverage_dir: self.device.PullFile( self.coverage_device_file, self.coverage_host_file) self.device.RunShellCommand( 'rm -f %s' % self.coverage_device_file) elif self.package_info: apk_under_test = self.test_pkg.GetApkUnderTest() permissions = apk_under_test.GetPermissions() if apk_under_test else None self.device.ClearApplicationState( self.package_info.package, permissions=permissions) def TearDownPerfMonitoring(self, test): """Cleans up performance monitoring if the specified test required it. Args: test: The name of the test that was just run. Raises: Exception: if there's anything wrong with the perf data. """ if not self._IsPerfTest(test): return raw_test_name = test.split('#')[1] # Wait and grab annotation data so we can figure out which traces to parse regex = self._logcat_monitor.WaitFor( re.compile(r'\*\*PERFANNOTATION\(' + raw_test_name + r'\)\:(.*)')) # If the test is set to run on a specific device type only (IE: only # tablet or phone) and it is being run on the wrong device, the test # just quits and does not do anything. The java test harness will still # print the appropriate annotation for us, but will add --NORUN-- for # us so we know to ignore the results. # The --NORUN-- tag is managed by ChromeTabbedActivityTestBase.java if regex.group(1) != '--NORUN--': # Obtain the relevant perf data. The data is dumped to a # JSON formatted file. json_string = self.device.ReadFile( '/data/data/com.google.android.apps.chrome/files/PerfTestData.txt', as_root=True) if not json_string: raise Exception('Perf file is empty') if self.options.save_perf_json: json_local_file = '/tmp/chromium-android-perf-json-' + raw_test_name with open(json_local_file, 'w') as f: f.write(json_string) logging.info('Saving Perf UI JSON from test ' + test + ' to ' + json_local_file) raw_perf_data = regex.group(1).split(';') for raw_perf_set in raw_perf_data: if raw_perf_set: perf_set = raw_perf_set.split(',') if len(perf_set) != 3: raise Exception('Unexpected number of tokens in perf annotation ' 'string: ' + raw_perf_set) # Process the performance data result = json_perf_parser.GetAverageRunInfoFromJSONString(json_string, perf_set[0]) perf_tests_results_helper.PrintPerfResult(perf_set[1], perf_set[2], [result['average']], result['units']) def _SetupIndividualTestTimeoutScale(self, test): timeout_scale = self.options.timeout_scale or 1 timeout_scale *= self._GetIndividualTestTimeoutScale(test) valgrind_tools.SetChromeTimeoutScale(self.device, timeout_scale) def _GetIndividualTestTimeoutScale(self, test): """Returns the timeout scale for the given |test|.""" annotations = self.test_pkg.GetTestAnnotations(test) timeout_scale = 1 if 'TimeoutScale' in annotations: try: timeout_scale = int(annotations['TimeoutScale']['value']) except ValueError: logging.warning('Non-integer value of TimeoutScale ignored. (%s)', annotations['TimeoutScale']['value']) if self.options.wait_for_debugger: timeout_scale *= 100 return timeout_scale # pylint: disable=too-many-return-statements def _GetIndividualTestTimeoutSecs(self, test): """Returns the timeout in seconds for the given |test|.""" annotations = self.test_pkg.GetTestAnnotations(test) if 'Manual' in annotations: return 10 * 60 * 60 if 'IntegrationTest' in annotations: return 30 * 60 if 'External' in annotations: return 10 * 60 if 'EnormousTest' in annotations: return 10 * 60 if 'LargeTest' in annotations or _PERF_TEST_ANNOTATION in annotations: return 5 * 60 if 'MediumTest' in annotations: return 3 * 60 if 'SmallTest' in annotations: return 1 * 60 logging.warn("Test size not found in annotations for test '%s', using " + "1 minute for timeout.", test) return 1 * 60 def _RunTest(self, test, timeout): """Runs a single instrumentation test. Args: test: Test class/method. timeout: Timeout time in seconds. Returns: The raw output of am instrument as a list of lines. """ extras = self._GetInstrumentationArgs() extras['class'] = test return self.device.StartInstrumentation( '%s/%s' % (self.test_pkg.GetPackageName(), self.options.test_runner), raw=True, extras=extras, timeout=timeout, retries=0) # pylint: disable=no-self-use def _GenerateTestResult(self, test, instr_result_code, instr_result_bundle, statuses, start_ms, duration_ms): results = instrumentation_test_instance.GenerateTestResults( instr_result_code, instr_result_bundle, statuses, start_ms, duration_ms) for r in results: if r.GetName() == test: return r logging.error('Could not find result for test: %s', test) return test_result.InstrumentationTestResult( test, base_test_result.ResultType.UNKNOWN, start_ms, duration_ms) #override def RunTest(self, test): results = base_test_result.TestRunResults() timeout = (self._GetIndividualTestTimeoutSecs(test) * self._GetIndividualTestTimeoutScale(test) * self.tool.GetTimeoutScale()) cmdline_parameters = self._GetTestCmdlineParameters(test) for flag_modifiers in cmdline_parameters: start_ms = 0 duration_ms = 0 try: if self._IsFreTest(test): flag_modifiers.remove.append('--disable-fre') self.TestSetup(test, flag_modifiers) try: self.device.GoHome() except device_errors.CommandTimeoutError: logging.exception('Failed to focus the launcher.') time_ms = lambda: int(time.time() * 1000) start_ms = time_ms() raw_output = self._RunTest(test, timeout) duration_ms = time_ms() - start_ms # Parse the test output result_code, result_bundle, statuses = ( instrumentation_test_instance.ParseAmInstrumentRawOutput( raw_output)) result = self._GenerateTestResult( test, result_code, result_bundle, statuses, start_ms, duration_ms) if local_device_instrumentation_test_run.DidPackageCrashOnDevice( self.test_pkg.GetPackageName(), self.device): result.SetType(base_test_result.ResultType.CRASH) except device_errors.CommandTimeoutError as e: result = test_result.InstrumentationTestResult( test, base_test_result.ResultType.TIMEOUT, start_ms, duration_ms, log=str(e) or 'No information') if self.package_info: self.device.ForceStop(self.package_info.package) self.device.ForceStop(self.package_info.test_package) except device_errors.DeviceUnreachableError as e: result = test_result.InstrumentationTestResult( test, base_test_result.ResultType.CRASH, start_ms, duration_ms, log=str(e) or 'No information') if len(cmdline_parameters) > 1: # Specify commandline flag modifications used in the test run result_name = result.GetName() if flag_modifiers.add: result_name = '%s with {%s}' % ( result_name, ' '.join(flag_modifiers.add)) if flag_modifiers.remove: result_name = '%s without {%s}' % ( result_name, ' '.join(flag_modifiers.remove)) result.SetName(result_name) results.AddResult(result) self.TestTeardown(test, results) return (results, None if results.DidRunPass() else test)
37.585882
80
0.681295
5d735f7c80fe4a6b032a569d07d650d72a489220
453
py
Python
fiepipelib/storage/routines/ui/adjectives.py
leith-bartrich/fiepipe
2f48054a349059ec5919ff9402a02c03b27b5915
[ "MIT" ]
null
null
null
fiepipelib/storage/routines/ui/adjectives.py
leith-bartrich/fiepipe
2f48054a349059ec5919ff9402a02c03b27b5915
[ "MIT" ]
null
null
null
fiepipelib/storage/routines/ui/adjectives.py
leith-bartrich/fiepipe
2f48054a349059ec5919ff9402a02c03b27b5915
[ "MIT" ]
null
null
null
import typing from fiepipelib.storage.routines.localstorage import CommonAdjectivesDict def get_common_adjectives_choices() -> typing.Dict[str:str]: adjectives = CommonAdjectivesDict() choices = typing.Dict[str:str] for catName in adjectives.keys(): cat = adjectives[catName] for adj in cat.keys(): desc = cat[adj] choice = catName + ":" + adj choices[choice] = adj return choices
26.647059
73
0.653422
5f877d1e0b95cba8590f418561c367eb9786f75e
64,576
py
Python
app/window.py
0xPrateek/ci_edit
6abc609a8f1b5f85f0ca1af11cebc77ece80fc99
[ "Apache-2.0" ]
5
2019-10-09T08:01:32.000Z
2020-01-01T18:17:21.000Z
app/window.py
0xPrateek/ci_edit
6abc609a8f1b5f85f0ca1af11cebc77ece80fc99
[ "Apache-2.0" ]
1
2019-11-01T02:16:28.000Z
2019-11-01T02:16:28.000Z
app/window.py
0xPrateek/ci_edit
6abc609a8f1b5f85f0ca1af11cebc77ece80fc99
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function try: unicode except NameError: unicode = str unichr = chr import bisect import os import sys import types import curses import app.config import app.controller import app.cu_editor import app.em_editor import app.string import app.text_buffer import app.vi_editor # The terminal area that the curses can draw to. mainCursesWindow = None class ViewWindow: """A view window is a base window that does not get focus or have TextBuffer. See class ActiveWindow for a window that can get focus. See class Window for a window that can get focus and have a TextBuffer. """ def __init__(self, program, parent): """ Args: parent is responsible for the order in which this window is updated, relative to its siblings. """ if app.config.strict_debug: assert issubclass(self.__class__, ViewWindow), self assert issubclass(program.__class__, app.ci_program.CiProgram), self if parent is not None: assert issubclass(parent.__class__, ViewWindow), parent self.program = program self.parent = parent self.isFocusable = False self.top = 0 self.left = 0 self.rows = 1 self.cols = 1 self.scrollRow = 0 self.scrollCol = 0 self.showCursor = True self.writeLineRow = 0 self.zOrder = [] def addStr(self, row, col, text, colorPair): """Overwrite text at row, column with text. The caller is responsible for avoiding overdraw. """ if app.config.strict_debug: app.log.check_le(row, self.rows) app.log.check_le(col, self.cols) self.program.backgroundFrame.addStr(self.top + row, self.left + col, text.encode('utf-8'), colorPair) def reattach(self): self.setParent(self.parent) def blank(self, colorPair): """Clear the window.""" for i in range(self.rows): self.addStr(i, 0, ' ' * self.cols, colorPair) def bringChildToFront(self, child): """Bring it to the top layer.""" try: self.zOrder.remove(child) except ValueError: pass self.zOrder.append(child) def bringToFront(self): """Bring it to the top layer.""" self.parent.bringChildToFront(self) def changeFocusTo(self, changeTo): if app.config.strict_debug: assert issubclass(self.__class__, ViewWindow), self assert issubclass(changeTo.__class__, ViewWindow), changeTo topWindow = self while topWindow.parent: topWindow = topWindow.parent topWindow.changeFocusTo(changeTo) def colorPref(self, colorType, delta=0): return self.program.color.get(colorType, delta) def contains(self, row, col): """Determine whether the position at row, col lay within this window.""" for i in self.zOrder: if i.contains(row, col): return i return (self.top <= row < self.top + self.rows and self.left <= col < self.left + self.cols and self) def debugDraw(self): programWindow = self while programWindow.parent is not None: programWindow = programWindow.parent programWindow.debugDraw(self) def deselect(self): pass def detach(self): """Hide the window by removing self from parents' children, but keep same parent to be reattached later.""" try: self.parent.zOrder.remove(self) except ValueError: pass def layoutHorizontally(self, children, separation=0): left = self.left cols = self.cols for view in children: preferredCols = view.preferredSize(self.rows, max(0, cols))[1] view.reshape(self.top, left, self.rows, max(0, min(cols, preferredCols))) delta = view.cols + separation left += delta cols -= delta def layoutVertically(self, children, separation=0): top = self.top rows = self.rows for view in children: preferredRows = view.preferredSize(max(0, rows), self.cols)[0] view.reshape(top, self.left, max(0, min(rows, preferredRows)), self.cols) delta = view.rows + separation top += delta rows -= delta def mouseClick(self, paneRow, paneCol, shift, ctrl, alt): pass def mouseDoubleClick(self, paneRow, paneCol, shift, ctrl, alt): pass def mouseMoved(self, paneRow, paneCol, shift, ctrl, alt): pass def mouseRelease(self, paneRow, paneCol, shift, ctrl, alt): pass def mouseTripleClick(self, paneRow, paneCol, shift, ctrl, alt): pass def mouseWheelDown(self, shift, ctrl, alt): pass def mouseWheelUp(self, shift, ctrl, alt): pass def moveTo(self, top, left): self.top = top self.left = left def moveBy(self, top, left): self.top += top self.left += left def _childFocusableWindow(self, reverse=False): windows = self.zOrder[:] if reverse: windows.reverse() for i in windows: if i.isFocusable: return i else: r = i._childFocusableWindow(reverse) if r is not None: return r def nextFocusableWindow(self, start, reverse=False): """Windows without |isFocusable| are skipped. Ignore (skip) |start| when searching. Args: start (window): the child window to start from. If |start| is not found, start from the first child window. reverse (bool): if True, find the prior focusable window. Returns: A window that should be focused. See also: showFullWindowHierarchy() which can help in debugging. """ windows = self.parent.zOrder[:] if reverse: windows.reverse() try: found = windows.index(start) except ValueError: found = -1 windows = windows[found + 1:] for i in windows: if i.isFocusable: return i else: r = i._childFocusableWindow(reverse) if r is not None: return r r = self.parent.nextFocusableWindow(self.parent, reverse) if r is not None: return r return self._childFocusableWindow(reverse) def normalize(self): self.parent.normalize() def onPrefChanged(self, category, name): self.parent.onPrefChanged(category, name) def paint(self, row, col, count, colorPair): """Paint text a row, column with colorPair. fyi, I thought this may be faster than using addStr to paint over the text with a different colorPair. It looks like there isn't a significant performance difference between chgat and addstr. """ mainCursesWindow.chgat(self.top + row, self.left + col, count, colorPair) def preferredSize(self, rowLimit, colLimit): # Derived classes should override this. return rowLimit, colLimit def presentModal(self, changeTo, paneRow, paneCol): self.parent.presentModal(changeTo, paneRow, paneCol) def priorFocusableWindow(self, start): return self.nextFocusableWindow(start, True) def quitNow(self): self.program.quitNow() def render(self): """Redraw window.""" for child in self.zOrder: child.render() def showWindowHierarchy(self, indent=' '): """For debugging.""" focus = u'[f]' if self.isFocusable else u'[ ]' extra = u'' if hasattr(self, 'label'): extra += u' "' + self.label + u'"' app.log.info("%s%s%s%s" % (indent, focus, self, extra)) for child in self.zOrder: child.showWindowHierarchy(indent + u' ') def showFullWindowHierarchy(self, indent=u' '): """For debugging.""" f = self while f.parent is not None: f = f.parent assert f f.showWindowHierarchy() def doPreCommand(self): pass def longTimeSlice(self): """returns whether work is finished (no need to call again).""" return True def shortTimeSlice(self): """returns whether work is finished (no need to call again).""" return True def reshape(self, top, left, rows, cols): self.moveTo(top, left) self.resizeTo(rows, cols) #app.log.debug(self, top, left, rows, cols) def resizeBottomBy(self, rows): self.rows += rows def resizeBy(self, rows, cols): self.rows += rows self.cols += cols def resizeTo(self, rows, cols): #app.log.detail(rows, cols, self) if app.config.strict_debug: assert rows >= 0, rows assert cols >= 0, cols self.rows = rows self.cols = cols def resizeTopBy(self, rows): self.top += rows self.rows -= rows def setParent(self, parent, layerIndex=sys.maxsize): """Setting the parent will cause the the window to refresh (i.e. if self was hidden with detach() it will no longer be hidden).""" if app.config.strict_debug: assert issubclass(self.__class__, ViewWindow), self assert issubclass(parent.__class__, ViewWindow), parent if self.parent: try: self.parent.zOrder.remove(self) except ValueError: pass self.parent = parent if parent: self.parent.zOrder.insert(layerIndex, self) def writeLine(self, text, color): """Simple line writer for static windows.""" if app.config.strict_debug: assert isinstance(text, unicode) text = text[:self.cols] text = text + u' ' * max(0, self.cols - len(text)) self.program.backgroundFrame.addStr(self.top + self.writeLineRow, self.left, text.encode(u'utf-8'), color) self.writeLineRow += 1 def getProgram(self): return self.program class ActiveWindow(ViewWindow): """An ActiveWindow may have focus and a controller.""" def __init__(self, program, parent): if app.config.strict_debug: assert issubclass(self.__class__, ActiveWindow), self assert issubclass(program.__class__, app.ci_program.CiProgram), repr(program) if parent is not None: assert issubclass(parent.__class__, ViewWindow), parent ViewWindow.__init__(self, program, parent) self.controller = None self.hasFocus = False self.isFocusable = True def focus(self): """ Note: to focus a view it must have a controller. Focusing a view without a controller would make the program appear to freeze since nothing would be responding to user input. """ self.hasFocus = True self.controller.focus() def setController(self, controller): if app.config.strict_debug: assert issubclass(self.__class__, Window), self self.controller = controller(self) def unfocus(self): self.hasFocus = False self.controller.unfocus() class Window(ActiveWindow): """A Window holds a TextBuffer and a controller that operates on the TextBuffer.""" def __init__(self, program, parent): if app.config.strict_debug: assert issubclass(self.__class__, Window), self assert issubclass(program.__class__, app.ci_program.CiProgram), self assert issubclass(parent.__class__, ViewWindow), parent ActiveWindow.__init__(self, program, parent) self.hasCaptiveCursor = self.program.prefs.editor['captiveCursor'] self.textBuffer = None def mouseClick(self, paneRow, paneCol, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseClick(paneRow, paneCol, shift, ctrl, alt) def mouseDoubleClick(self, paneRow, paneCol, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseDoubleClick(paneRow, paneCol, shift, ctrl, alt) def mouseMoved(self, paneRow, paneCol, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseMoved(paneRow, paneCol, shift, ctrl, alt) def mouseRelease(self, paneRow, paneCol, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseRelease(paneRow, paneCol, shift, ctrl, alt) def mouseTripleClick(self, paneRow, paneCol, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseTripleClick(paneRow, paneCol, shift, ctrl, alt) def mouseWheelDown(self, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseWheelDown(shift, ctrl, alt) def mouseWheelUp(self, shift, ctrl, alt): if self.textBuffer: self.textBuffer.mouseWheelUp(shift, ctrl, alt) def preferredSize(self, rowLimit, colLimit): return min(rowLimit, self.textBuffer.parser.rowCount()), colLimit def render(self): if self.textBuffer: self.textBuffer.draw(self) ViewWindow.render(self) def setController(self, controller): ActiveWindow.setController(self, controller) self.controller.setTextBuffer(self.textBuffer) def setTextBuffer(self, textBuffer): textBuffer.setView(self) self.textBuffer = textBuffer def doPreCommand(self): if self.textBuffer is not None: self.textBuffer.setMessage() def longTimeSlice(self): """returns whether work is finished (no need to call again).""" finished = True tb = self.textBuffer if tb is not None and tb.parser.resumeAtRow < tb.parser.rowCount(): tb.parseDocument() # If a user event came in while parsing, the parsing will be paused # (to be resumed after handling the event). finished = tb.parser.resumeAtRow >= tb.parser.rowCount() for child in self.zOrder: finished = finished and child.longTimeSlice() return finished def shortTimeSlice(self): """returns whether work is finished (no need to call again).""" tb = self.textBuffer if tb is not None: tb.parseScreenMaybe() return tb.parser.resumeAtRow >= tb.parser.rowCount() return True class LabelWindow(ViewWindow): """A text label. The label is inert, it will pass events to its parent. """ def __init__(self, program, parent, label, preferredWidth=None, align=u'left'): if app.config.strict_debug: assert issubclass(program.__class__, app.ci_program.CiProgram), self assert issubclass(parent.__class__, ViewWindow), parent assert isinstance(label, unicode) assert preferredWidth is None or isinstance(preferredWidth, int) assert isinstance(align, unicode) ViewWindow.__init__(self, program, parent) self.label = label self.preferredWidth = preferredWidth self.align = -1 if align == u'left' else 1 self.color = self.program.color.get(u'keyword') def preferredSize(self, rowLimit, colLimit): if app.config.strict_debug: assert self.parent assert rowLimit >= 0 assert colLimit >= 0 preferredWidth = (self.preferredWidth if self.preferredWidth is not None else len(self.label)) return (min(rowLimit, 1), min(colLimit, preferredWidth)) def render(self): if self.rows <= 0: return line = self.label[:self.cols] line = u"%*s" % (self.cols * self.align, line) self.addStr(0, 0, line, self.color) ViewWindow.render(self) class LabeledLine(Window): """A single line with a label. This is akin to a line prompt or gui modal dialog. It's used for things like 'find' and 'goto line'. """ def __init__(self, program, parent, label): if app.config.strict_debug: assert issubclass(self.__class__, LabeledLine), self assert issubclass(program.__class__, app.ci_program.CiProgram), self assert issubclass(parent.__class__, ViewWindow), parent Window.__init__(self, program, parent) self.host = parent tb = app.text_buffer.TextBuffer(self.program) tb.rootGrammar = self.program.prefs.grammars[u'none'] self.setTextBuffer(tb) self.label = label self.leftColumn = ViewWindow(self.program, self) # TODO(dschuyler) Add self.rightColumn. def focus(self): self.bringToFront() if not self.controller: app.log.info(self, repr(self.label)) Window.focus(self) def preferredSize(self, rowLimit, colLimit): return min(rowLimit, 1), colLimit def render(self): #app.log.info('LabeledLine', self.label, self.rows, self.cols) if self.rows <= 0: return self.leftColumn.addStr(0, 0, self.label, self.program.color.get(u'keyword')) Window.render(self) def reshape(self, top, left, rows, cols): labelWidth = len(self.label) Window.reshape(self, top, left + labelWidth, rows, max(0, cols - labelWidth)) self.leftColumn.reshape(top, left, rows, labelWidth) def setLabel(self, label): self.label = label self.reshape(self.top, self.left, self.rows, self.cols) class Menu(ViewWindow): """Work in progress on a context menu.""" def __init__(self, program, host): if app.config.strict_debug: assert issubclass(self.__class__, Menu), self assert issubclass(host.__class__, ActiveWindow) ViewWindow.__init__(self, program, host) self.host = host self.label = u'' self.lines = [] self.commands = [] def addItem(self, label, command): self.lines.append(label) self.commands.append(command) def clear(self): self.lines = [] self.commands = [] def moveSizeToFit(self, left, top): self.clear() self.addItem(u'some menu', None) #self.addItem('sort', self.host.textBuffer.sortSelection) self.addItem(u'cut', self.host.textBuffer.editCut) self.addItem(u'paste', self.host.textBuffer.editPaste) longest = 0 for i in self.lines: if len(i) > longest: longest = len(i) self.reshape(left, top, len(self.lines), longest + 2) def render(self): color = self.program.color.get(u'context_menu') self.writeLineRow = 0 for i in self.lines[:self.rows]: self.writeLine(" " + i, color) ViewWindow.render(self) class LineNumbers(ViewWindow): def __init__(self, program, host): ViewWindow.__init__(self, program, host) self.host = host def drawLineNumbers(self): if app.config.strict_debug: assert isinstance(self.rows, int) assert isinstance(self.host.scrollRow, int) assert self.rows >= 1 assert self.host.textBuffer.parser.rowCount() >= 1 assert self.host.scrollRow >= 0 limit = min(self.rows, self.host.textBuffer.parser.rowCount() - self.host.scrollRow) cursorBookmarkColorIndex = None visibleBookmarks = self.getVisibleBookmarks(self.host.scrollRow, self.host.scrollRow + limit) currentBookmarkIndex = 0 colorPrefs = self.program.color for i in range(limit): color = colorPrefs.get(u'line_number') currentRow = self.host.scrollRow + i if currentBookmarkIndex < len(visibleBookmarks): currentBookmark = visibleBookmarks[currentBookmarkIndex] else: currentBookmark = None # Use a different color if the row is associated with a bookmark. if currentBookmark: if (currentRow >= currentBookmark.begin and currentRow <= currentBookmark.end): color = colorPrefs.get( currentBookmark.data.get(u'colorIndex')) if self.host.textBuffer.penRow == currentRow: cursorBookmarkColorIndex = currentBookmark.data.get( u'colorIndex') if currentRow + 1 > currentBookmark.end: currentBookmarkIndex += 1 self.addStr(i, 0, u' %5d ' % (currentRow + 1), color) # Draw indicators for text off of the left edge. if self.host.scrollCol > 0: color = colorPrefs.get(u'line_overflow') for i in range(limit): if self.host.textBuffer.parser.rowWidth( self.host.scrollRow + i) > 0: self.addStr(i, 6, u' ', color) # Draw blank line number rows past the end of the document. color = colorPrefs.get(u'outside_document') for i in range(limit, self.rows): self.addStr(i, 0, u' ', color) # Highlight the line numbers for the current cursor line. cursorAt = self.host.textBuffer.penRow - self.host.scrollRow if 0 <= cursorAt < limit: if cursorBookmarkColorIndex: if self.program.prefs.startup[u'numColors'] == 8: color = colorPrefs.get(cursorBookmarkColorIndex) else: color = colorPrefs.get(cursorBookmarkColorIndex % 32 + 128) else: color = colorPrefs.get(u'line_number_current') self.addStr(cursorAt, 1, u'%5d' % (self.host.textBuffer.penRow + 1), color) def getVisibleBookmarks(self, beginRow, endRow): """ Args: beginRow (int): the index of the line number that you want the list of bookmarks to start from. endRow (int): the index of the line number that you want the list of bookmarks to end at (exclusive). Returns: A list containing the bookmarks that are displayed on the screen. If there are no bookmarks, returns an empty list. """ bookmarkList = self.host.textBuffer.bookmarks beginIndex = endIndex = 0 if len(bookmarkList): needle = app.bookmark.Bookmark(beginRow, beginRow, {}) beginIndex = bisect.bisect_left(bookmarkList, needle) if beginIndex > 0 and bookmarkList[beginIndex - 1].end >= beginRow: beginIndex -= 1 needle.range = (endRow, endRow) endIndex = bisect.bisect_left(bookmarkList, needle) return bookmarkList[beginIndex:endIndex] def mouseClick(self, paneRow, paneCol, shift, ctrl, alt): if ctrl: app.log.info(u'click at', paneRow, paneCol) return self.host.changeFocusTo(self.host) tb = self.host.textBuffer if self.host.scrollRow + paneRow >= tb.parser.rowCount(): tb.selectionNone() return if shift: if tb.selectionMode == app.selectable.kSelectionNone: tb.selectionLine() self.mouseRelease(paneRow, paneCol, shift, ctrl, alt) else: tb.cursorMoveAndMark( self.host.scrollRow + paneRow - tb.penRow, 0, self.host.scrollRow + paneRow - tb.markerRow, 0, app.selectable.kSelectionNone - tb.selectionMode) self.mouseRelease(paneRow, paneCol, shift, ctrl, alt) def mouseDoubleClick(self, paneRow, paneCol, shift, ctrl, alt): self.host.textBuffer.selectionAll() def mouseMoved(self, paneRow, paneCol, shift, ctrl, alt): app.log.info(paneRow, paneCol, shift) self.host.textBuffer.mouseClick(paneRow, paneCol - self.cols, True, ctrl, alt) def mouseRelease(self, paneRow, paneCol, shift, ctrl, alt): app.log.info(paneRow, paneCol, shift) tb = self.host.textBuffer tb.selectLineAt(self.host.scrollRow + paneRow) def mouseTripleClick(self, paneRow, paneCol, shift, ctrl, alt): pass def mouseWheelDown(self, shift, ctrl, alt): self.host.mouseWheelDown(shift, ctrl, alt) def mouseWheelUp(self, shift, ctrl, alt): self.host.mouseWheelUp(shift, ctrl, alt) def render(self): self.drawLineNumbers() class LogWindow(ViewWindow): def __init__(self, program, parent): ViewWindow.__init__(self, program, parent) self.lines = app.log.getLines() self.renderCounter = 0 def render(self): self.renderCounter += 1 app.log.meta(u" " * 10, self.renderCounter, u"- screen render -") self.writeLineRow = 0 colorPrefs = self.program.color colorA = colorPrefs.get(u'default') colorB = colorPrefs.get(u'highlight') for i in self.lines[-self.rows:]: color = colorA if len(i) and i[-1] == u'-': color = colorB self.writeLine(i, color) ViewWindow.render(self) class InteractiveFind(Window): def __init__(self, program, host): Window.__init__(self, program, host) self.host = host self.expanded = False self.setController(app.cu_editor.InteractiveFind) indent = u' ' self.findLine = LabeledLine(self.program, self, u'Find: ') self.findLine.setController(app.cu_editor.InteractiveFindInput) self.findLine.setParent(self) self.replaceLine = LabeledLine(self.program, self, u'Replace: ') self.replaceLine.setController(app.cu_editor.InteractiveReplaceInput) self.replaceLine.setParent(self) self.matchOptionsRow = RowWindow(self.program, self, 2) self.matchOptionsRow.setParent(self) # If findUseRegex is false, re.escape the search. OptionsToggle(self.program, self.matchOptionsRow, u'regex', u'editor', u'findUseRegex') # If findWholeWord, wrap with \b. OptionsToggle(self.program, self.matchOptionsRow, u'wholeWord', u'editor', u'findWholeWord') # If findIgnoreCase, pass ignore case flag to regex. OptionsToggle(self.program, self.matchOptionsRow, u'ignoreCase', u'editor', u'findIgnoreCase') if 0: # Use locale. OptionsToggle(self.program, self.matchOptionsRow, u'locale', u'editor', u'findLocale') # Span lines. OptionsToggle(self.program, self.matchOptionsRow, u'multiline', u'editor', u'findMultiline') # Dot matches anything (even \n). OptionsToggle(self.program, self.matchOptionsRow, u'dotAll', u'editor', u'findDotAll') # Unicode match. OptionsToggle(self.program, self.matchOptionsRow, u'unicode', u'editor', u'findUnicode') # Replace uppercase with upper and lowercase with lower. OptionsToggle(self.program, self.matchOptionsRow, u'smartCaps', u'editor', u'findReplaceSmartCaps') if 0: self.scopeOptions, self.scopeRow = self.addSelectOptionsRow( indent + u'scope ', [u'file', u'directory', u'openFiles', u'project']) (self.changeCaseOptions, self.changeCaseRow) = self.addSelectOptionsRow( indent + u'changeCase', [u'none', u'smart', u'upper', u'lower']) (self.withinOptions, self.withinOptionsRow) = self.addSelectOptionsRow( indent + u'within ', [ u'any', u'code', u'comment', u'error', u'markup', u'misspelled', # Find in misspelled words. u'quoted', # Find in strings. ]) (self.searchSelectionOption, self.searchSelectionRow) = self.addSelectOptionsRow( indent + u'selection ', [u'any', u'yes', u'no']) (self.searchChangedOption, self.searchChangedRow) = self.addSelectOptionsRow( indent + u'changed ', [u'any', u'yes', u'no']) self.pathsLine = LabeledLine(self.program, self, u'Paths: ') self.pathsLine.setController(app.cu_editor.InteractiveFindInput) self.pathsLine.setParent(self) def reattach(self): Window.reattach(self) # TODO(dschuyler): consider removing expanded control. # See https://github.com/google/ci_edit/issues/170 self.expanded = True self.parent.layout() def detach(self): Window.detach(self) self.parent.layout() def addSelectOptionsRow(self, label, optionsList): """Such as a radio group.""" optionsRow = OptionsRow(self.program, self) optionsRow.color = self.program.color.get(u'keyword') optionsRow.addLabel(label) optionsDict = {} optionsRow.beginGroup() for key in optionsList: optionsDict[key] = False optionsRow.addSelection(key, optionsDict) optionsRow.endGroup() optionsDict[optionsList[0]] = True optionsRow.setParent(self) return optionsDict, optionsRow def bringChildToFront(self, child): # The find window doesn't reorder children. pass def focus(self): self.reattach() if app.config.strict_debug: assert self.parent assert self.findLine.parent assert self.rows > 0, self.rows assert self.findLine.rows > 0, self.findLine.rows self.controller.focus() self.changeFocusTo(self.findLine) def preferredSize(self, rowLimit, colLimit): if app.config.strict_debug: assert self.parent assert rowLimit >= 0 assert colLimit >= 0 if self.parent and self in self.parent.zOrder and self.expanded: return (min(rowLimit, len(self.zOrder)), colLimit) return (1, -1) def expandFindWindow(self, expanded): self.expanded = expanded self.parent.layout() def reshape(self, top, left, rows, cols): Window.reshape(self, top, left, rows, cols) self.layoutVertically(self.zOrder) def unfocus(self): self.detach() Window.unfocus(self) class MessageLine(ViewWindow): """The message line appears at the bottom of the screen.""" def __init__(self, program, host): ViewWindow.__init__(self, program, host) self.host = host self.message = None self.renderedMessage = None def render(self): colorPrefs = self.program.color if self.message: if self.message != self.renderedMessage: self.writeLineRow = 0 self.writeLine(self.message, colorPrefs.get(u'message_line')) else: self.blank(colorPrefs.get(u'message_line')) class StatusLine(ViewWindow): """The status line appears at the bottom of the screen. It shows the current line and column the cursor is on. """ def __init__(self, program, host): ViewWindow.__init__(self, program, host) self.host = host def render(self): tb = self.host.textBuffer colorPrefs = self.program.color color = colorPrefs.get(u'status_line') if self.host.showTips: tipRows = app.help.docs[u'tips'] if len(tipRows) + 1 < self.rows: for i in range(self.rows): self.addStr(i, 0, u' ' * self.cols, color) for i, k in enumerate(tipRows): self.addStr(i + 1, 4, k, color) self.addStr(1, 40, u"(Press F1 to show/hide tips)", color | curses.A_REVERSE) statusLine = u'' if tb.message: statusLine = tb.message[0] color = (tb.message[1] if tb.message[1] is not None else colorPrefs.get(u'status_line')) if 0: if tb.isDirty(): statusLine += u' * ' else: statusLine += u' . ' # Percentages. rowPercentage = 0 colPercentage = 0 lineCount = tb.parser.rowCount() if lineCount: rowPercentage = self.host.textBuffer.penRow * 100 // lineCount charCount = tb.parser.rowWidth(self.host.textBuffer.penRow) if charCount and self.host.textBuffer.penCol != 0: colPercentage = self.host.textBuffer.penCol * 100 // charCount # Format. rightSide = u'' if len(statusLine): rightSide += u' |' if self.program.prefs.startup.get('showLogWindow'): rightSide += u' %s | %s |' % (tb.cursorGrammarName(), tb.selectionModeName()) rightSide += u' %4d,%2d | %3d%%,%3d%%' % ( self.host.textBuffer.penRow + 1, self.host.textBuffer.penCol + 1, rowPercentage, colPercentage) statusLine += \ u' ' * (self.cols - len(statusLine) - len(rightSide)) + rightSide self.addStr(self.rows - 1, 0, statusLine[:self.cols], color) class TopInfo(ViewWindow): def __init__(self, program, host): ViewWindow.__init__(self, program, host) self.host = host self.borrowedRows = 0 self.lines = [] self.mode = 2 def onChange(self): if self.mode == 0: return tb = self.host.textBuffer lines = [] # TODO: Make dynamic topInfo work properly if tb.parser.rowCount(): lineCursor = self.host.scrollRow line = "" # Check for extremely small window. if tb.parser.rowCount() > lineCursor: while len(line) == 0 and lineCursor > 0: line = tb.parser.rowText(lineCursor) lineCursor -= 1 if len(line): indent = len(line) - len(line.lstrip(u' ')) lineCursor += 1 while lineCursor < tb.parser.rowCount(): line = tb.parser.rowText(lineCursor) if not len(line): continue z = len(line) - len(line.lstrip(u' ')) if z > indent: indent = z lineCursor += 1 else: break while indent and lineCursor > 0: line = tb.parser.rowText(lineCursor) if len(line): z = len(line) - len(line.lstrip(u' ')) if z < indent: indent = z lines.append(line) lineCursor -= 1 pathLine = app.string.pathEncode(self.host.textBuffer.fullPath) if 1: if tb.isReadOnly: pathLine += u' [RO]' if 1: if tb.isDirty(): pathLine += u' * ' else: pathLine += u' . ' lines.append(pathLine[-self.cols:]) self.lines = lines infoRows = len(self.lines) if self.mode > 0: infoRows = self.mode if self.borrowedRows != infoRows: self.host.topRows = infoRows self.host.layout() self.borrowedRows = infoRows def render(self): """Render the context information at the top of the window.""" lines = self.lines[-self.mode:] lines.reverse() color = self.program.color.get('top_info') for i, line in enumerate(lines): self.addStr(i, 0, (line + u' ' * (self.cols - len(line)))[:self.cols], color) for i in range(len(lines), self.rows): self.addStr(i, 0, u' ' * self.cols, color) def reshape(self, top, left, rows, cols): self.borrowedRows = 0 ViewWindow.reshape(self, top, left, rows, cols) class InputWindow(Window): """This is the main content window. Often the largest pane displayed. """ def __init__(self, program, host): if app.config.strict_debug: assert host Window.__init__(self, program, host) self.host = host self.showFooter = True self.savedScrollPositions = {} self.showLineNumbers = self.program.prefs.editor.get( 'showLineNumbers', True) self.showMessageLine = True self.showRightColumn = True self.showTopInfo = True self.statusLineCount = 0 if self.program.prefs.status.get( 'seenTips') else 8 self.topRows = 2 # Number of lines in default TopInfo status. self.controller = app.controller.MainController(self) self.controller.add(app.em_editor.EmacsEdit(self)) self.controller.add(app.vi_editor.ViEdit(self)) self.controller.add(app.cu_editor.CuaPlusEdit(self)) # What does the user appear to want: edit, quit, or something else? self.userIntent = 'edit' if 1: self.confirmClose = LabeledLine( self.program, self, "Save changes? (yes, no, or cancel): ") self.confirmClose.setController(app.cu_editor.ConfirmClose) if 1: self.confirmOverwrite = LabeledLine( self.program, self, "Overwrite exiting file? (yes or no): ") self.confirmOverwrite.setController(app.cu_editor.ConfirmOverwrite) self.contextMenu = Menu(self.program, self) if 1: # wip on multi-line interactive find. self.interactiveFind = InteractiveFind(self.program, self) self.interactiveFind.setParent(self, 0) else: self.interactiveFind = LabeledLine(self.program, self, u'find: ') self.interactiveFind.setController(app.cu_editor.InteractiveFind) if 1: self.interactiveGoto = LabeledLine(self.program, self, u'goto: ') self.interactiveGoto.setController(app.cu_editor.InteractiveGoto) if 1: self.interactivePrediction = LabeledLine(self.program, self, u'p: ') self.interactivePrediction.setController( app.cu_editor.InteractivePrediction) if 1: self.interactivePrompt = LabeledLine(self.program, self, u"e: ") self.interactivePrompt.setController( app.cu_editor.InteractivePrompt) if 1: self.interactiveQuit = LabeledLine( self.program, self, u"Save changes? (yes, no, or cancel): ") self.interactiveQuit.setController(app.cu_editor.InteractiveQuit) if 1: self.topInfo = TopInfo(self.program, self) self.topInfo.setParent(self, 0) if not self.showTopInfo: self.topInfo.detach() if 1: self.statusLine = StatusLine(self.program, self) self.statusLine.setParent(self, 0) if not self.showFooter: self.statusLine.detach() if 1: self.lineNumberColumn = LineNumbers(self.program, self) self.lineNumberColumn.setParent(self, 0) if not self.showLineNumbers: self.lineNumberColumn.detach() if 1: self.logoCorner = ViewWindow(self.program, self) self.logoCorner.name = u'Logo' self.logoCorner.setParent(self, 0) if 1: self.rightColumn = ViewWindow(self.program, self) self.rightColumn.name = u'Right' self.rightColumn.setParent(self, 0) if not self.showRightColumn: self.rightColumn.detach() if 1: self.popupWindow = PopupWindow(self.program, self) if self.showMessageLine: self.messageLine = MessageLine(self.program, self) self.messageLine.setParent(self, 0) self.showTips = self.program.prefs.status.get(u'showTips') self.statusLineCount = 8 if self.showTips else 1 if 0: def splitWindow(self): """Experimental.""" app.log.info() other = InputWindow(self.prg, self) other.setTextBuffer(self.textBuffer) app.log.info() self.prg.zOrder.append(other) self.prg.layout() app.log.info() def layout(self): """Change self and sub-windows to fit within the given rectangle.""" top, left, rows, cols = self.outerShape lineNumbersCols = 7 topRows = self.topRows bottomRows = max(1, self.interactiveFind.preferredSize(rows, cols)[0]) # The top, left of the main window is the rows, cols of the logo corner. self.logoCorner.reshape(top, left, 2, lineNumbersCols) if self.showTopInfo and rows > topRows and cols > lineNumbersCols: self.topInfo.reshape(top, left + lineNumbersCols, topRows, cols - lineNumbersCols) top += topRows rows -= topRows rows -= bottomRows bottomFirstRow = top + rows self.confirmClose.reshape(bottomFirstRow, left, bottomRows, cols) self.confirmOverwrite.reshape(bottomFirstRow, left, bottomRows, cols) self.interactivePrediction.reshape(bottomFirstRow, left, bottomRows, cols) self.interactivePrompt.reshape(bottomFirstRow, left, bottomRows, cols) self.interactiveQuit.reshape(bottomFirstRow, left, bottomRows, cols) if self.showMessageLine: self.messageLine.reshape(bottomFirstRow, left, bottomRows, cols) self.interactiveFind.reshape(bottomFirstRow, left, bottomRows, cols) if 1: self.interactiveGoto.reshape(bottomFirstRow, left, bottomRows, cols) if self.showFooter and rows > 0: self.statusLine.reshape(bottomFirstRow - self.statusLineCount, left, self.statusLineCount, cols) rows -= self.statusLineCount if self.showLineNumbers and cols > lineNumbersCols: self.lineNumberColumn.reshape(top, left, rows, lineNumbersCols) cols -= lineNumbersCols left += lineNumbersCols if self.showRightColumn and cols > 0: self.rightColumn.reshape(top, left + cols - 1, rows, 1) cols -= 1 Window.reshape(self, top, left, rows, cols) def drawLogoCorner(self): """.""" logo = self.logoCorner if logo.rows <= 0 or logo.cols <= 0: return color = self.program.color.get('logo') for i in range(logo.rows): logo.addStr(i, 0, u' ' * logo.cols, color) logo.addStr(0, 1, u'ci' [:self.cols], color) logo.render() def drawRightEdge(self): """Draw makers to indicate text extending past the right edge of the window.""" maxRow, maxCol = self.rows, self.cols limit = min(maxRow, self.textBuffer.parser.rowCount() - self.scrollRow) colorPrefs = self.program.color for i in range(limit): color = colorPrefs.get('right_column') if self.textBuffer.parser.rowWidth(i + self.scrollRow) - self.scrollCol > maxCol: color = colorPrefs.get('line_overflow') self.rightColumn.addStr(i, 0, u' ', color) color = colorPrefs.get('outside_document') for i in range(limit, maxRow): self.rightColumn.addStr(i, 0, u' ', color) def focus(self): self.layout() if self.showMessageLine: self.messageLine.bringToFront() Window.focus(self) def nextFocusableWindow(self, start, reverse=False): # Keep the tab focus in the child branch. (The child view will call # this, tell the child there is nothing to tab to up here). return None def render(self): self.topInfo.onChange() self.drawLogoCorner() self.drawRightEdge() Window.render(self) def reshape(self, top, left, rows, cols): """Change self and sub-windows to fit within the given rectangle.""" app.log.detail(top, left, rows, cols) Window.reshape(self, top, left, rows, cols) self.outerShape = (top, left, rows, cols) self.layout() def setTextBuffer(self, textBuffer): if app.config.strict_debug: assert issubclass( textBuffer.__class__, app.text_buffer.TextBuffer), \ repr(textBuffer) app.log.info('setTextBuffer') if self.textBuffer is not None: self.savedScrollPositions[self.textBuffer.fullPath] = ( self.scrollRow, self.scrollCol) #self.normalize() textBuffer.lineLimitIndicator = self.program.prefs.editor[ 'lineLimitIndicator'] textBuffer.debugRedo = self.program.prefs.startup.get('debugRedo') Window.setTextBuffer(self, textBuffer) self.controller.setTextBuffer(textBuffer) savedScroll = self.savedScrollPositions.get(self.textBuffer.fullPath) if savedScroll is not None: self.scrollRow, self.scrollCol = savedScroll else: historyScroll = self.textBuffer.fileHistory.get('scroll') if historyScroll is not None: self.scrollRow, self.scrollCol = historyScroll else: self.textBuffer.scrollToOptimalScrollPosition() def startup(self): bufferManager = self.program.bufferManager for f in self.program.prefs.startup.get('cliFiles', []): tb = bufferManager.loadTextBuffer(f['path']) if tb is None: # app.log.info('failed to load', repr(f["path"])) continue tb.parseDocument() if f['row'] is not None: if f['col'] is not None: tb.selectText(f['row'], f['col'], 0, app.selectable.kSelectionNone) else: tb.selectText(f['row'], 0, 0, app.selectable.kSelectionNone) if self.program.prefs.startup.get('readStdin'): bufferManager.readStdin() bufferManager.buffers.reverse() tb = bufferManager.topBuffer() if not tb: tb = bufferManager.newTextBuffer() self.setTextBuffer(tb) # Should parsing the document be a standard part of setTextBuffer? TBD. self.textBuffer.parseDocument() openToLine = self.program.prefs.startup.get('openToLine') if openToLine is not None: self.textBuffer.selectText(openToLine - 1, 0, 0, app.selectable.kSelectionNone) def toggleShowTips(self): self.showTips = not self.showTips self.statusLineCount = 8 if self.showTips else 1 self.layout() self.program.prefs.save('status', 'showTips', self.showTips) def unfocus(self): if self.showMessageLine: self.messageLine.detach() Window.unfocus(self) class OptionsSelectionWindow(ViewWindow): """Mutex window.""" def __init__(self, program, parent): if app.config.strict_debug: assert parent is not None ViewWindow.__init__(self, program, parent) self.color = self.program.color.get('top_info') def reshape(self, top, left, rows, cols): ViewWindow.reshape(self, top, left, rows, cols) self.layoutHorizontally(self.zOrder) def childSelected(self, selectedChild): app.log.info(self.zOrder) for child in self.zOrder: if child is not selectedChild: child.deselect() def render(self): self.blank(self.color) ViewWindow.render(self) class OptionsTrinaryStateWindow(Window): def __init__(self, program, parent, label, prefCategory, prefName): if app.config.strict_debug: assert isinstance(label, unicode) assert isinstance(prefCategory, unicode) assert isinstance(prefName, unicode) Window.__init__(self, program, parent) # TODO(dschuyler): Creating a text buffer is rather heavy for a toggle # control. This should get some optimization. self.setTextBuffer(app.text_buffer.TextBuffer(self.program)) self.setController(app.cu_editor.ToggleController) self.setParent(parent) self.name = label self.prefCategory = prefCategory self.prefName = prefName colorPrefs = self.program.color self.color = colorPrefs.get('keyword') self.focusColor = colorPrefs.get('selected') self.textBuffer.view.showCursor = False def focus(self): Window.focus(self) def setUp(self, toggleOn, toggleOff, toggleUndefined, width=None): if app.config.strict_debug: assert isinstance(toggleOn, unicode) assert isinstance(toggleOff, unicode) assert isinstance(toggleUndefined, unicode) assert width is None or isinstance(width, int) self.toggleOn = toggleOn self.toggleOff = toggleOff self.toggleUndefined = toggleUndefined longest = max(len(toggleOn), len(toggleOff), len(toggleUndefined)) self.width = width if width is not None else longest self.updateLabel() def mouseClick(self, paneRow, paneCol, shift, ctrl, alt): self.controller.toggleValue() def onPrefChanged(self, category, name): Window.onPrefChanged(self, category, name) if category != self.prefCategory or name != self.prefName: return self.updateLabel() def updateLabel(self): pref = self.program.prefs.category(self.prefCategory)[self.prefName] if pref is None: label = self.toggleUndefined else: label = self.toggleOn if pref else self.toggleOff self.label = u'%*s' % (self.width, label) def preferredSize(self, rowLimit, colLimit): return min(rowLimit, 1), min(colLimit, abs(self.width)) def render(self): Window.render(self) if self.rows <= 0: return self.writeLineRow = 0 color = self.focusColor if self.hasFocus else self.color self.writeLine(self.label[:self.cols], color) class OptionsToggle(OptionsTrinaryStateWindow): def __init__(self, program, parent, label, prefCategory, prefName, width=None): if app.config.strict_debug: assert isinstance(label, unicode) assert isinstance(prefCategory, unicode) assert isinstance(prefName, unicode) OptionsTrinaryStateWindow.__init__(self, program, parent, label, prefCategory, prefName) # I considered these unicode characters, but [x] looks clearer to me. # toggleOn = unichr(0x2612) + ' ' + control['name'] # toggleOff = unichr(0x2610) + ' ' + control['name'] OptionsTrinaryStateWindow.setUp(self, u'[x]' + label, u'[ ]' + label, u'[-]' + label, width) class RowWindow(ViewWindow): def __init__(self, program, host, separator): if app.config.strict_debug: assert host ViewWindow.__init__(self, program, host) self.color = self.program.color.get('keyword') self.separator = separator def preferredSize(self, rowLimit, colLimit): return min(rowLimit, 1), colLimit def render(self): self.blank(self.color) ViewWindow.render(self) def reshape(self, top, left, rows, cols): ViewWindow.reshape(self, top, left, rows, cols) #app.log.info(top, left, rows, cols, self) self.layoutHorizontally(self.zOrder, self.separator) class OptionsRow(ViewWindow): class ControlElement: def __init__(self, elementType, name, reference, width=None, sep=" "): self.type = elementType self.name = name self.reference = reference self.width = width if width is not None else len(name) self.sep = sep def __init__(self, program, host): if app.config.strict_debug: assert host ViewWindow.__init__(self, program, host) self.host = host self.color = self.program.color.get('top_info') self.controlList = [] self.group = None def addElement(self, draw, kind, name, reference, width, sep, extraWidth=0): if app.config.strict_debug: assert isinstance(name, unicode) assert isinstance(sep, unicode) assert width is None or isinstance(width, int) assert isinstance(extraWidth, int) if reference is not None: assert isinstance(reference, dict) assert name in reference if self.group is not None: self.group.append(len(self.controlList)) element = { 'dict': reference, 'draw': draw, 'name': name, 'sep': sep, 'type': kind, 'width': width if width is not None else len(name) + extraWidth } self.controlList.append(element) return element def addLabel(self, name, width=None, sep=u" "): def draw(control): return control[u'name'] return self.addElement(draw, u'label', name, None, width, sep) def addSortHeader(self, name, reference, width=None, sep=u" |"): def draw(control): decoration = u'v' if control[u'dict'][control[u'name']] else u'^' if control[u'dict'][control[u'name']] is None: decoration = u'-' if control[u'width'] < 0: return u'%s %s' % (control[u'name'], decoration) return u'%s %s' % (decoration, control[u'name']) self.addElement(draw, u'sort', name, reference, width, sep, len(u' v')) def addSelection(self, name, reference, width=None, sep=u" "): if app.config.strict_debug: assert isinstance(name, unicode) if 1: toggleOn = u'(*)' + name toggleOff = u'( )' + name def draw(control): return toggleOn if control[u'dict'][control[u'name']] else toggleOff width = max(width, min(len(toggleOn), len(toggleOff))) self.addElement(draw, u'selection', name, reference, width, sep, len(u'(*)')) def removeThis_addToggle(self, name, reference, width=None, sep=u" "): if app.config.strict_debug: assert isinstance(name, unicode) if 1: toggleOn = u'[x]' + name toggleOff = u'[ ]' + name if 0: toggleOn = unichr(0x2612) + ' ' + control['name'] toggleOff = unichr(0x2610) + ' ' + control['name'] if 0: toggleOn = '[+' + control['name'] + ']' toggleOff = '[-' + control['name'] + ']' def draw(control): return toggleOn if control['dict'][control['name']] else toggleOff width = max(width, min(len(toggleOn), len(toggleOff))) self.addElement(draw, u'toggle', name, reference, width, sep, len('[-]')) def beginGroup(self): """Like a radio group, or column sort headers.""" self.group = [] def endGroup(self): """Like a radio group, or column sort headers.""" pass def mouseClick(self, paneRow, paneCol, shift, ctrl, alt): #row = self.scrollRow + paneRow col = self.scrollCol + paneCol offset = 0 for index, control in enumerate(self.controlList): width = abs(control['width']) if offset <= col < offset + width: if control['type'] == 'selection': name = control['name'] for element in self.group: elementName = self.controlList[element]['name'] self.controlList[element]['dict'][elementName] = False control['dict'][name] = True self.host.controller.optionChanged(name, control['dict'][name]) break if control['type'] == 'sort': name = control['name'] newValue = not control['dict'][name] if index in self.group: for element in self.group: elementName = self.controlList[element]['name'] self.controlList[element]['dict'][ elementName] = None control['dict'][name] = newValue self.host.controller.optionChanged(name, control['dict'][name]) break if control['type'] == 'toggle': name = control['name'] control['dict'][name] = not control['dict'][name] self.host.controller.optionChanged(name, control['dict'][name]) break offset += width + len(control['sep']) def preferredSize(self, rowLimit, colLimit): return min(rowLimit, 1), colLimit def render(self): if self.rows <= 0: return line = u'' for control in self.controlList: label = control['draw'](control) line += u'%*s%s' % (control['width'], label, control['sep']) if len(line) >= self.cols: break self.writeLineRow = 0 self.writeLine(line[:self.cols], self.color) class PopupWindow(Window): def __init__(self, program, host): if app.config.strict_debug: assert host Window.__init__(self, program, host) self.host = host self.controller = app.cu_editor.PopupController(self) self.setTextBuffer(app.text_buffer.TextBuffer(self.program)) self.longestLineLength = 0 self.__message = [] self.showOptions = True # This will be displayed and should contain the keys that respond to # user input. This should be updated if you change the controller's # command set. self.options = [] def render(self): """Display a box of text in the center of the window.""" maxRows, maxCols = self.host.rows, self.host.cols cols = min(self.longestLineLength + 6, maxCols) rows = min(len(self.__message) + 4, maxRows) self.resizeTo(rows, cols) self.moveTo(maxRows // 2 - rows // 2, maxCols // 2 - cols // 2) color = self.program.color.get('popup_window') for row in range(rows): if row == rows - 2 and self.showOptions: message = '/'.join(self.options) elif row == 0 or row >= rows - 3: self.addStr(row, 0, ' ' * cols, color) continue else: message = self.__message[row - 1] lineLength = len(message) spacing1 = (cols - lineLength) // 2 spacing2 = cols - lineLength - spacing1 self.addStr(row, 0, ' ' * spacing1 + message + ' ' * spacing2, color) def setMessage(self, message): """Sets the Popup window's message to the given message. message (str): A string that you want to display. Returns: None. """ self.__message = message.split("\n") self.longestLineLength = max([len(line) for line in self.__message]) def setOptionsToDisplay(self, options): """ This function is used to change the options that are displayed in the popup window. They will be separated by a '/' character when displayed. Args: options (list): A list of possible keys which the user can press and should be responded to by the controller. """ self.options = options def setTextBuffer(self, textBuffer): Window.setTextBuffer(self, textBuffer) self.controller.setTextBuffer(textBuffer) def unfocus(self): self.detach() Window.unfocus(self) class PaletteWindow(Window): """A window with example foreground and background text colors.""" def __init__(self, prg, host): Window.__init__(self, prg, host) self.prg = prg self.resizeTo(16, 16 * 5) self.moveTo(8, 8) self.controller = app.cu_editor.PaletteDialogController(self) self.setTextBuffer(app.text_buffer.TextBuffer(self.program)) def render(self): width = 16 rows = 16 colorPrefs = self.program.color for i in range(width): for k in range(rows): self.addStr(k, i * 5, ' %3d ' % (i + k * width,), colorPrefs.get(i + k * width)) def setTextBuffer(self, textBuffer): Window.setTextBuffer(self, textBuffer) self.controller.setTextBuffer(textBuffer) def unfocus(self): self.detach() Window.unfocus(self) class SortableHeaderWindow(OptionsTrinaryStateWindow): def __init__(self, program, parent, label, prefCategory, prefName, width=None): if app.config.strict_debug: assert issubclass(program.__class__, app.ci_program.CiProgram), program assert isinstance(label, unicode) assert isinstance(prefCategory, unicode) assert isinstance(prefName, unicode) OptionsTrinaryStateWindow.__init__(self, program, parent, label, prefCategory, prefName) self.color = self.program.color.get(u'top_info') def draw(label, decoration, width): if width < 0: x = u'%s %s' % (label, decoration) else: x = u'%s %s' % (decoration, label) return u'%*s' % (width, x) OptionsTrinaryStateWindow.setUp(self, draw(label, u'v', width), draw(label, u'^', width), draw(label, u'-', width)) def deselect(self): self.controller.clearValue() def mouseClick(self, paneRow, paneCol, shift, ctrl, alt): self.parent.childSelected(self) self.controller.toggleValue()
37.155351
93
0.580463
138e9634ecd5186c93f3d38bc18b6552c5997187
2,381
py
Python
src/oci/data_safe/models/change_data_safe_private_endpoint_compartment_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
249
2017-09-11T22:06:05.000Z
2022-03-04T17:09:29.000Z
src/oci/data_safe/models/change_data_safe_private_endpoint_compartment_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
228
2017-09-11T23:07:26.000Z
2022-03-23T10:58:50.000Z
src/oci/data_safe/models/change_data_safe_private_endpoint_compartment_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
224
2017-09-27T07:32:43.000Z
2022-03-25T16:55:42.000Z
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ChangeDataSafePrivateEndpointCompartmentDetails(object): """ The details used to change the compartment of a Data Safe private endpoint. """ def __init__(self, **kwargs): """ Initializes a new ChangeDataSafePrivateEndpointCompartmentDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param compartment_id: The value to assign to the compartment_id property of this ChangeDataSafePrivateEndpointCompartmentDetails. :type compartment_id: str """ self.swagger_types = { 'compartment_id': 'str' } self.attribute_map = { 'compartment_id': 'compartmentId' } self._compartment_id = None @property def compartment_id(self): """ Gets the compartment_id of this ChangeDataSafePrivateEndpointCompartmentDetails. The OCID of the new compartment. :return: The compartment_id of this ChangeDataSafePrivateEndpointCompartmentDetails. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this ChangeDataSafePrivateEndpointCompartmentDetails. The OCID of the new compartment. :param compartment_id: The compartment_id of this ChangeDataSafePrivateEndpointCompartmentDetails. :type: str """ self._compartment_id = compartment_id def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
33.535211
245
0.699286
19b4799636fe09fb08236a9b05c19a4cad6f42a4
683
py
Python
src/com/python/gui/gui_Demo.py
Leeo1124/pythonDemo
72e2209c095301a3f1f61edfe03ea69c3c05be40
[ "Apache-2.0" ]
null
null
null
src/com/python/gui/gui_Demo.py
Leeo1124/pythonDemo
72e2209c095301a3f1f61edfe03ea69c3c05be40
[ "Apache-2.0" ]
null
null
null
src/com/python/gui/gui_Demo.py
Leeo1124/pythonDemo
72e2209c095301a3f1f61edfe03ea69c3c05be40
[ "Apache-2.0" ]
null
null
null
''' Created on 2016年8月10日 @author: Administrator ''' from tkinter import * import tkinter.messagebox as messagebox class Application(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.pack() self.createWidgets() def createWidgets(self): self.nameInput = Entry(self) self.nameInput.pack() self.alertButton = Button(self, text='Hello', command=self.hello) self.alertButton.pack() def hello(self): name = self.nameInput.get() or 'world' messagebox.showinfo('Message', 'Hello, %s' % name) app = Application() # 设置窗口标题: app.master.title('Hello World') # 主消息循环: app.mainloop()
23.551724
73
0.653001
c471a28daf797ae1dd79299286cdad3e9be0d4f7
4,092
py
Python
networks/mlp_mdn.py
wx-b/ibc
2c9202e50cfee1abdcd955d3ac1b9d68b5d81e53
[ "Apache-2.0" ]
null
null
null
networks/mlp_mdn.py
wx-b/ibc
2c9202e50cfee1abdcd955d3ac1b9d68b5d81e53
[ "Apache-2.0" ]
null
null
null
networks/mlp_mdn.py
wx-b/ibc
2c9202e50cfee1abdcd955d3ac1b9d68b5d81e53
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Reach ML Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements a tf_agents compatible mlp-mse.""" import gin from ibc.networks.layers import mlp_dropout from ibc.networks.layers import resnet import tensorflow as tf import tensorflow_probability as tfp from tf_agents.networks import network tfd = tfp.distributions @gin.configurable class MLPMDN(network.Network): """MLP-MDN compatible with tfagents.""" def __init__(self, obs_spec, action_spec, width=512, depth=2, rate=0.1, act_denorm_layer=None, num_components=1, training_temperature=2.5, test_temperature=2.5, test_variance_exponent=1., name='MLPMDN', layers='MLPDropout'): super(MLPMDN, self).__init__( input_tensor_spec=obs_spec, state_spec=(), name=name) # For inference time, use to denormalize mdn action output. self._act_denorm_layer = act_denorm_layer # Define MLP. hidden_sizes = [width for _ in range(depth)] dense = tf.keras.layers.Dense if layers == 'MLPDropout': self._mlp = mlp_dropout.MLPDropoutLayer( hidden_sizes, rate, kernel_initializer='normal', bias_initializer='normal', dense=dense) elif layers == 'ResNetOrig': self._mlp = resnet.ResNetOrigLayer( hidden_sizes, rate, kernel_initializer='normal', bias_initializer='normal', dense=dense) elif layers == 'ResNetPreActivation': self._mlp = resnet.ResNetPreActivationLayer( hidden_sizes, rate, kernel_initializer='normal', bias_initializer='normal', dense=dense) self.num_components = num_components self.action_size = action_spec.shape[0] self.mu = tf.keras.layers.Dense( (self.action_size * num_components), kernel_initializer='normal', bias_initializer='normal') self.logvar = tf.keras.layers.Dense( (self.action_size * num_components), kernel_initializer='normal', bias_initializer='normal') self.pi = tf.keras.layers.Dense( num_components, kernel_initializer='normal', bias_initializer='normal') self.training_temp = training_temperature self.test_temp = test_temperature self.test_variance_exponent = test_variance_exponent def call(self, obs, training, step_type=(), network_state=()): # Combine dict of observations to concatenated tensor. [B x T x obs_spec] obs = tf.concat(tf.nest.flatten(obs), axis=-1) # Flatten obs across time: [B x T * obs_spec] batch_size = tf.shape(obs)[0] x = tf.reshape(obs, [batch_size, -1]) # Forward mlp. x = self._mlp(x, training=training) # Project to params. mu = self.mu(x) var = tf.exp(self.logvar(x)) if not training: var = var**self.test_variance_exponent pi = self.pi(x) temp = self.training_temp if training else self.test_temp pi = pi / temp # Reshape into MDN distribution. batch_size = tf.shape(mu)[0] param_shape = [batch_size, self.num_components, self.action_size] mu = tf.reshape(mu, param_shape) var = tf.reshape(var, param_shape) if not training: mu = self._act_denorm_layer(mu) var = self._act_denorm_layer(var, mean_offset=False) components_distribution = tfd.MultivariateNormalDiag(loc=mu, scale_diag=var) x = tfd.MixtureSameFamily( tfd.Categorical(logits=pi), components_distribution) return x, network_state
34.1
80
0.676442
a3060e7327ec042ddd7de204fe267533c303a859
3,549
py
Python
mria_py/core/ua.py
ElcoK/MRIA
ce4fc1665004506c43320f968b1f1c435af5bc59
[ "MIT" ]
null
null
null
mria_py/core/ua.py
ElcoK/MRIA
ce4fc1665004506c43320f968b1f1c435af5bc59
[ "MIT" ]
null
null
null
mria_py/core/ua.py
ElcoK/MRIA
ce4fc1665004506c43320f968b1f1c435af5bc59
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ This script will produce an uncertainty analysis around the results. This should improve the interpretation of the modelling outcomes @author: Elco Koks @date: Nov, 2017 """ import pandas as pd import itertools from mria_py.core.create_table import Table from mria_py.core.base_model import MRIA_IO as MRIA class ua(object): def __init__(self, data): self.countries = data.countries self.total_countries = len(data.countries) self.sectors = data.sectors self.data = data def run(self,disruption = 1.1,disrupted_ctry= [],disrupted_sctr=[]): Weights = [0,0.5,1,1.25,1.5,1.75,2,2.25,2.5] output_UA = pd.DataFrame(columns=['DisWeight','RatWeight','Loss']) for DisWeight,RatWeight in itertools.combinations(Weights,2): '''Create model''' MRIA_RUN = MRIA(self.data.name,self.data.countries,self.data.sectors) '''Define sets and alias''' # CREATE SETS MRIA_RUN.create_sets() # CREATE ALIAS MRIA_RUN.create_alias() ''' Define tables and parameters''' output = pd.DataFrame() MRIA_RUN.baseline_data(self.data,disruption,disrupted_ctry,disrupted_sctr) # MRIA_RUN.impact_data(self.data,disruption,disrupted_ctry,disrupted_sctr) # output['x_in'] = pd.Series(MRIA_RUN.X.get_values()) # # MRIA_RUN.run_impactmodel(DisWeight=DisWeight,RatWeight=RatWeight) # # output['x_out'] = pd.Series(MRIA_RUN.X.get_values()) # output['loss'] = output['x_in'] - output['x_out'] # # print('A DisWeight of '+str(DisWeight)+' and a RatWeight of '+str(RatWeight)+' gives a loss of '+str(sum(output['loss']))+ ' dollar') # # output_UA = output_UA.append({'DisWeight':DisWeight,'RatWeight':RatWeight,'Loss':sum(output['loss'])}, ignore_index=True) # # del MRIA_RUN return output_UA if __name__ == '__main__': ''' Specify file path ''' filepath = '..\..\input_data\The_Vale.xlsx' '''Specify which countries should be included in the subset''' list_countries = ['Elms','Hazel','Montagu','Fogwell','Riverside','Oatlands'] '''Create data input''' DATA = Table('TheVale',filepath,2010,list_countries) DATA.prep_data() '''Create model ''' MRIA_model = MRIA(DATA.name,list_countries,DATA.sectors) MRIA_model.create_sets(FD_SET=['FinDem']) MRIA_model.create_alias() '''Run model and create some output''' output = pd.DataFrame() # MRIA_model.run_basemodel() '''Specify disruption''' disruption = 1.1 disrupted_ctry = ['Elms'] disrupted_sctr = ['Manu'] MRIA_model.baseline_data(DATA,disruption,disrupted_ctry,disrupted_sctr) output['x_in'] = pd.Series(MRIA_model.X.get_values()) # MRIA_model.run_basemodel() MRIA_model.impact_data(DATA,disruption,disrupted_ctry,disrupted_sctr) MRIA_model.run_impactmodel() output['x_out'] = pd.Series(MRIA_model.X.get_values()) output['loss'] = output['x_out'] - output['x_in'] MRIA_RUN = MRIA(ua(DATA).data.name,ua(DATA).data.countries,ua(DATA).data.sectors) MRIA_RUN.create_sets(FD_SET=['FinDem']) MRIA_RUN.create_alias() ua(DATA) MRIA_RUN.baseline_data(ua(DATA).data,disruption,disrupted_ctry,disrupted_sctr) MRIA_RUN.run_basemodel()
30.86087
146
0.629191
4f2c109aaf0a1fafa6ef733f6d5261ee2ce558ec
3,705
py
Python
src/catkin_lint/util.py
eurogroep/catkin_lint
987d8e1378b4963e4d36032b9410e13c7bbab8f3
[ "BSD-3-Clause" ]
null
null
null
src/catkin_lint/util.py
eurogroep/catkin_lint
987d8e1378b4963e4d36032b9410e13c7bbab8f3
[ "BSD-3-Clause" ]
null
null
null
src/catkin_lint/util.py
eurogroep/catkin_lint
987d8e1378b4963e4d36032b9410e13c7bbab8f3
[ "BSD-3-Clause" ]
null
null
null
# coding=utf-8 # # catkin_lint # Copyright (c) 2013-2020 Fraunhofer FKIE # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Fraunhofer organization nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import re import tempfile def word_split(s): ws = re.compile(r"(\W|_)+|(?<=[^A-Z])(?=[A-Z])|(?<=\w)(?=[A-Z][a-z])") mo = ws.search(s) result = [] while mo: result.append(s[:mo.start()].lower()) s = s[mo.end():] mo = ws.search(s) result.append(s.lower()) return result try: from itertools import zip_longest except ImportError: def zip_longest(*args): return map(None, *args) def write_atomic(filepath, data): fd, filepath_tmp = tempfile.mkstemp(prefix=os.path.basename(filepath) + ".tmp.", dir=os.path.dirname(filepath)) with os.fdopen(fd, "wb") as f: f.write(data) f.close() try: os.rename(filepath_tmp, filepath) except OSError: try: os.unlink(filepath) except OSError: pass try: os.rename(filepath_tmp, filepath) except OSError: os.unlink(filepath_tmp) def is_sorted(lst, key=lambda x, y: x < y): for i, el in enumerate(lst[1:]): if key(el, lst[i]): return False return True def is_active_depend(d): if hasattr(d, "evaluated_condition"): return d.evaluated_condition return True def enumerate_package_files(rootdir, catkin_ignore=True, ignore_dot=True, ignore_unimportant=True): for dirpath, dirnames, filenames in os.walk(rootdir, topdown=True): if "CATKIN_IGNORE" in filenames and catkin_ignore: del dirnames[:] else: if ignore_dot: dirnames[:] = [d for d in dirnames if not d.startswith(".")] if ignore_unimportant: dirnames[:] = [d for d in dirnames if "test" not in d.lower() and "example" not in d.lower() and d != "build"] filenames[:] = [f for f in filenames if "test" not in f.lower() and "example" not in f.lower()] for filename in filenames: yield dirpath, filename # Python 3 compatibility without sacrificing the speed gain of iteritems in Python 2 try: iteritems = dict.iteritems except AttributeError: iteritems = dict.items
35.285714
126
0.676653
889d26fdd4bc59a0685fe4bc241a51e9b9845189
51,473
py
Python
7.30.1.dev0/ietf/doc/views_review.py
kesara/ietf-datatracker
dca3ee2ee98bcb75a10687587cf631750be34c79
[ "Unlicense" ]
null
null
null
7.30.1.dev0/ietf/doc/views_review.py
kesara/ietf-datatracker
dca3ee2ee98bcb75a10687587cf631750be34c79
[ "Unlicense" ]
null
null
null
7.30.1.dev0/ietf/doc/views_review.py
kesara/ietf-datatracker
dca3ee2ee98bcb75a10687587cf631750be34c79
[ "Unlicense" ]
null
null
null
# Copyright The IETF Trust 2016-2020, All Rights Reserved # -*- coding: utf-8 -*- import io import itertools import json import os import datetime import requests import email.utils from django.utils.http import is_safe_url from simple_history.utils import update_change_reason import debug # pyflakes:ignore from django.http import JsonResponse, Http404, HttpResponse, HttpResponseRedirect from django.shortcuts import render, get_object_or_404, redirect from django import forms from django.conf import settings from django.contrib import messages from django.contrib.auth.decorators import login_required from django.utils.html import mark_safe # type:ignore from django.core.exceptions import ValidationError from django.template.loader import render_to_string, TemplateDoesNotExist from django.urls import reverse as urlreverse from ietf.doc.models import (Document, NewRevisionDocEvent, State, DocAlias, LastCallDocEvent, ReviewRequestDocEvent, ReviewAssignmentDocEvent, DocumentAuthor) from ietf.name.models import (ReviewRequestStateName, ReviewAssignmentStateName, ReviewResultName, ReviewTypeName) from ietf.person.models import Person from ietf.review.models import ReviewRequest, ReviewAssignment, ReviewWish from ietf.group.models import Group from ietf.ietfauth.utils import is_authorized_in_doc_stream, user_is_person, has_role from ietf.message.models import Message from ietf.message.utils import infer_message from ietf.person.fields import PersonEmailChoiceField, SearchablePersonField from ietf.review.policies import get_reviewer_queue_policy from ietf.review.utils import (active_review_teams, assign_review_request_to_reviewer, can_request_review_of_doc, can_manage_review_requests_for_team, email_review_assignment_change, email_review_request_change, close_review_request_states, close_review_request) from ietf.review import mailarch from ietf.utils.fields import DatepickerDateField from ietf.utils.text import strip_prefix, xslugify from ietf.utils.textupload import get_cleaned_text_file_content from ietf.utils.mail import send_mail_message from ietf.mailtrigger.utils import gather_address_lists from ietf.utils.fields import MultiEmailField from ietf.utils.response import permission_denied def clean_doc_revision(doc, rev): if rev: rev = rev.rjust(2, "0") if not NewRevisionDocEvent.objects.filter(doc=doc, rev=rev).exists(): raise forms.ValidationError("Could not find revision \"{}\" of the document.".format(rev)) return rev class RequestReviewForm(forms.ModelForm): team = forms.ModelMultipleChoiceField(queryset=Group.objects.all(), widget=forms.CheckboxSelectMultiple) deadline = DatepickerDateField(date_format="yyyy-mm-dd", picker_settings={ "autoclose": "1", "start-date": "+0d" }) class Meta: model = ReviewRequest fields = ('requested_by', 'type', 'deadline', 'requested_rev', 'comment') def __init__(self, user, doc, *args, **kwargs): super(RequestReviewForm, self).__init__(*args, **kwargs) self.doc = doc f = self.fields["team"] f.queryset = active_review_teams() f.initial = [group.pk for group in f.queryset if can_manage_review_requests_for_team(user, group, allow_personnel_outside_team=False)] self.fields['type'].queryset = self.fields['type'].queryset.filter(used=True, reviewteamsettings__group__in=self.fields["team"].queryset).distinct() self.fields['type'].widget = forms.RadioSelect(choices=[t for t in self.fields['type'].choices if t[0]]) self.fields["requested_rev"].label = "Document revision" if has_role(user, "Secretariat"): self.fields["requested_by"] = SearchablePersonField() else: self.fields["requested_by"].widget = forms.HiddenInput() self.fields["requested_by"].initial = user.person.pk def clean_deadline(self): v = self.cleaned_data.get('deadline') if v < datetime.date.today(): raise forms.ValidationError("Select today or a date in the future.") return v def clean_requested_rev(self): return clean_doc_revision(self.doc, self.cleaned_data.get("requested_rev")) def clean(self): chosen_type = self.cleaned_data.get("type") chosen_teams = self.cleaned_data.get("team") if chosen_type and chosen_teams: for t in chosen_teams: if chosen_type not in t.reviewteamsettings.review_types.all(): self.add_error("type", "{} does not use the review type {}.".format(t.name, chosen_type.name)) return self.cleaned_data @login_required def request_review(request, name): doc = get_object_or_404(Document, name=name) if not can_request_review_of_doc(request.user, doc): permission_denied(request, "You do not have permission to perform this action") now = datetime.datetime.now() lc_ends = None e = doc.latest_event(LastCallDocEvent, type="sent_last_call") if e and e.expires >= now: lc_ends = e.expires scheduled_for_telechat = doc.telechat_date() if request.method == "POST": form = RequestReviewForm(request.user, doc, request.POST) if form.is_valid(): teams = form.cleaned_data["team"] for team in teams: review_req = form.save(commit=False) review_req.id = None review_req.doc = doc review_req.state = ReviewRequestStateName.objects.get(slug="requested", used=True) review_req.team = team review_req.save() descr = "Requested {} review by {}".format(review_req.type.name, review_req.team.acronym.upper()) update_change_reason(review_req, descr) ReviewRequestDocEvent.objects.create( type="requested_review", doc=doc, rev=doc.rev, by=request.user.person, desc=descr, time=review_req.time, review_request=review_req, state=None, ) subject = "%s %s Review requested: %s" % (review_req.team.acronym, review_req.type.name, doc.name) msg = subject if review_req.comment: msg += "\n\n"+review_req.comment email_review_request_change(request, review_req, subject, msg, by=request.user.person, notify_secretary=True, notify_reviewer=False, notify_requested_by=True) return redirect('ietf.doc.views_doc.document_main', name=doc.name) else: if lc_ends: review_type = "lc" deadline = lc_ends.date().isoformat() elif scheduled_for_telechat: review_type = "telechat" deadline = doc.telechat_date()-datetime.timedelta(days=2) else: review_type = "early" deadline = None form = RequestReviewForm(request.user, doc, initial={ "type": review_type, "requested_by": request.user.person, "deadline": deadline, }) return render(request, 'doc/review/request_review.html', { 'doc': doc, 'form': form, 'lc_ends': lc_ends, 'lc_ends_days': (lc_ends - now).days if lc_ends else None, 'scheduled_for_telechat': scheduled_for_telechat, 'scheduled_for_telechat_days': (scheduled_for_telechat - now.date()).days if scheduled_for_telechat else None, }) @login_required def review_request_forced_login(request, name, request_id): return redirect(urlreverse("ietf.doc.views_review.review_request", kwargs={ "name": name, "request_id": request_id })) def review_request(request, name, request_id): doc = get_object_or_404(Document, name=name) review_req = get_object_or_404(ReviewRequest, pk=request_id) if review_req.doc != doc: raise Http404('The indicated ReviewRequest is not a request for the indicated document') can_manage_request = can_manage_review_requests_for_team(request.user, review_req.team) can_close_request = (review_req.state_id in ["requested", "assigned"] and (is_authorized_in_doc_stream(request.user, doc) or can_manage_request)) can_assign_reviewer = (review_req.state_id in ["requested", "assigned"] and can_manage_request) can_edit_comment = can_request_review_of_doc(request.user, doc) can_edit_deadline = can_edit_comment assignments = review_req.reviewassignment_set.all() for assignment in assignments: assignment.is_reviewer = user_is_person(request.user, assignment.reviewer.person) assignment.can_accept_reviewer_assignment = (assignment.state_id == "assigned" and (assignment.is_reviewer or can_manage_request)) assignment.can_reject_reviewer_assignment = (assignment.state_id in ["assigned", "accepted"] and (assignment.is_reviewer or can_manage_request)) assignment.can_complete_review = (assignment.state_id in ["assigned", "accepted", "overtaken", "no-response", "part-completed", "completed"] and (assignment.is_reviewer or can_manage_request)) # This implementation means if a reviewer accepts one assignment for a review_request, he accepts all assigned to him (for that request) # This problematic - it's a bug (probably) for the same person to have more than one assignment for the same request. # It is, however unintuitive, and acceptance should be refactored to be something that works on assignments, not requests if request.method == "POST" and request.POST.get("action") == "accept": for assignment in assignments: if assignment.can_accept_reviewer_assignment: assignment.state = ReviewAssignmentStateName.objects.get(slug="accepted") assignment.save() update_change_reason(assignment, 'Assignment for {} accepted'.format(assignment.reviewer.person)) return redirect(review_request, name=review_req.doc.name, request_id=review_req.pk) wg_chairs = None if review_req.doc.group: wg_chairs = [role.person for role in review_req.doc.group.role_set.filter(name__slug='chair')] history = list(review_req.history.all()) history += itertools.chain(*[list(r.history.all()) for r in review_req.reviewassignment_set.all()]) history.sort(key=lambda h: h.history_date, reverse=True) return render(request, 'doc/review/review_request.html', { 'doc': doc, 'review_req': review_req, 'can_close_request': can_close_request, 'can_assign_reviewer': can_assign_reviewer, 'can_edit_comment': can_edit_comment, 'can_edit_deadline': can_edit_deadline, 'assignments': assignments, 'wg_chairs': wg_chairs, 'history': history, }) class CloseReviewRequestForm(forms.Form): close_reason = forms.ModelChoiceField(queryset=close_review_request_states(), widget=forms.RadioSelect, empty_label=None) close_comment = forms.CharField(label='Comment (optional)', max_length=255, required=False) def __init__(self, can_manage_request, *args, **kwargs): super(CloseReviewRequestForm, self).__init__(*args, **kwargs) if not can_manage_request: self.fields["close_reason"].queryset = self.fields["close_reason"].queryset.filter(slug__in=["withdrawn"]) if len(self.fields["close_reason"].queryset) == 1: self.fields["close_reason"].initial = self.fields["close_reason"].queryset.first().pk self.fields["close_reason"].widget = forms.HiddenInput() @login_required def close_request(request, name, request_id): doc = get_object_or_404(Document, name=name) review_req = get_object_or_404(ReviewRequest, pk=request_id, state__in=["requested", "assigned"]) can_request = is_authorized_in_doc_stream(request.user, doc) can_manage_request = can_manage_review_requests_for_team(request.user, review_req.team) if not (can_request or can_manage_request): permission_denied(request, "You do not have permission to perform this action") if request.method == "POST": form = CloseReviewRequestForm(can_manage_request, request.POST) if form.is_valid(): close_review_request(request, review_req,form.cleaned_data["close_reason"], form.cleaned_data["close_comment"]) return redirect(review_request, name=review_req.doc.name, request_id=review_req.pk) else: form = CloseReviewRequestForm(can_manage_request) return render(request, 'doc/review/close_request.html', { 'doc': doc, 'review_req': review_req, 'assignments': review_req.reviewassignment_set.all(), 'form': form, }) class AssignReviewerForm(forms.Form): reviewer = PersonEmailChoiceField(label="Assign Additional Reviewer", empty_label="(None)") add_skip = forms.BooleanField(label='Skip next time', required=False) def __init__(self, review_req, *args, **kwargs): super(AssignReviewerForm, self).__init__(*args, **kwargs) get_reviewer_queue_policy(review_req.team).setup_reviewer_field(self.fields["reviewer"], review_req) @login_required def assign_reviewer(request, name, request_id): doc = get_object_or_404(Document, name=name) review_req = get_object_or_404(ReviewRequest, pk=request_id, state__in=["requested", "assigned"]) if not can_manage_review_requests_for_team(request.user, review_req.team): permission_denied(request, "You do not have permission to perform this action") if request.method == "POST" and request.POST.get("action") == "assign": form = AssignReviewerForm(review_req, request.POST) if form.is_valid(): reviewer = form.cleaned_data["reviewer"] add_skip = form.cleaned_data["add_skip"] assign_review_request_to_reviewer(request, review_req, reviewer, add_skip) return redirect(review_request, name=review_req.doc.name, request_id=review_req.pk) else: form = AssignReviewerForm(review_req) return render(request, 'doc/review/assign_reviewer.html', { 'doc': doc, 'review_req': review_req, 'assignments': review_req.reviewassignment_set.all(), 'form': form, }) class RejectReviewerAssignmentForm(forms.Form): message_to_secretary = forms.CharField(widget=forms.Textarea, required=False, help_text="Optional explanation of rejection, will be emailed to team secretary if filled in", strip=False) @login_required def reject_reviewer_assignment(request, name, assignment_id): doc = get_object_or_404(Document, name=name) review_assignment = get_object_or_404(ReviewAssignment, pk=assignment_id, state__in=["assigned", "accepted"]) review_request_past_deadline = review_assignment.review_request.deadline < datetime.date.today() if not review_assignment.reviewer: return redirect(review_request, name=review_assignment.review_request.doc.name, request_id=review_assignment.review_request.pk) is_reviewer = user_is_person(request.user, review_assignment.reviewer.person) can_manage_request = can_manage_review_requests_for_team(request.user, review_assignment.review_request.team) if not (is_reviewer or can_manage_request): permission_denied(request, "You do not have permission to perform this action") if request.method == "POST" and request.POST.get("action") == "reject" and not review_request_past_deadline: form = RejectReviewerAssignmentForm(request.POST) if form.is_valid(): # reject the assignment review_assignment.state = ReviewAssignmentStateName.objects.get(slug="rejected") review_assignment.completed_on = datetime.datetime.now() review_assignment.save() descr = "Assignment of request for {} review by {} to {} was rejected".format( review_assignment.review_request.type.name, review_assignment.review_request.team.acronym.upper(), review_assignment.reviewer.person ) update_change_reason(review_assignment, descr) ReviewAssignmentDocEvent.objects.create( type="closed_review_assignment", doc=review_assignment.review_request.doc, rev=review_assignment.review_request.doc.rev, by=request.user.person, desc=descr, review_assignment=review_assignment, state=review_assignment.state, ) policy = get_reviewer_queue_policy(review_assignment.review_request.team) policy.return_reviewer_to_rotation_top(review_assignment.reviewer.person) msg = render_to_string("review/reviewer_assignment_rejected.txt", { "by": request.user.person, "message_to_secretary": form.cleaned_data.get("message_to_secretary") }) email_review_assignment_change(request, review_assignment, "Reviewer assignment rejected", msg, by=request.user.person, notify_secretary=True, notify_reviewer=True, notify_requested_by=False) return redirect(review_request, name=review_assignment.review_request.doc.name, request_id=review_assignment.review_request.pk) else: form = RejectReviewerAssignmentForm() return render(request, 'doc/review/reject_reviewer_assignment.html', { 'doc': doc, 'review_req': review_assignment.review_request, 'assignments': review_assignment.review_request.reviewassignment_set.all(), 'form': form, 'review_request_past_deadline': review_request_past_deadline, }) @login_required def withdraw_reviewer_assignment(request, name, assignment_id): get_object_or_404(Document, name=name) review_assignment = get_object_or_404(ReviewAssignment, pk=assignment_id, state__in=["assigned", "accepted"]) can_manage_request = can_manage_review_requests_for_team(request.user, review_assignment.review_request.team) if not can_manage_request: permission_denied(request, "You do not have permission to perform this action") if request.method == "POST" and request.POST.get("action") == "withdraw": review_assignment.state_id = 'withdrawn' review_assignment.save() descr = "Assignment of request for {} review by {} to {} was withdrawn".format( review_assignment.review_request.type.name, review_assignment.review_request.team.acronym.upper(), review_assignment.reviewer.person, ) update_change_reason(review_assignment, descr) ReviewAssignmentDocEvent.objects.create( type="closed_review_assignment", doc=review_assignment.review_request.doc, rev=review_assignment.review_request.doc.rev, by=request.user.person, desc=descr, review_assignment=review_assignment, state=review_assignment.state, ) policy = get_reviewer_queue_policy(review_assignment.review_request.team) policy.return_reviewer_to_rotation_top(review_assignment.reviewer.person) msg = "Review assignment withdrawn by %s"%request.user.person email_review_assignment_change(request, review_assignment, "Reviewer assignment withdrawn", msg, by=request.user.person, notify_secretary=True, notify_reviewer=True, notify_requested_by=False) return redirect(review_request, name=review_assignment.review_request.doc.name, request_id=review_assignment.review_request.pk) return render(request, 'doc/review/withdraw_reviewer_assignment.html', { 'assignment': review_assignment, }) @login_required def mark_reviewer_assignment_no_response(request, name, assignment_id): get_object_or_404(Document, name=name) review_assignment = get_object_or_404(ReviewAssignment, pk=assignment_id, state__in=["assigned", "accepted"]) can_manage_request = can_manage_review_requests_for_team(request.user, review_assignment.review_request.team) if not can_manage_request: permission_denied(request, "You do not have permission to perform this action") if request.method == "POST" and request.POST.get("action") == "noresponse": review_assignment.state_id = 'no-response' review_assignment.save() descr = "Assignment of request for {} review by {} to {} was marked no-response".format( review_assignment.review_request.type.name, review_assignment.review_request.team.acronym.upper(), review_assignment.reviewer.person) update_change_reason(review_assignment, descr) ReviewAssignmentDocEvent.objects.create( type="closed_review_assignment", doc=review_assignment.review_request.doc, rev=review_assignment.review_request.doc.rev, by=request.user.person, desc=descr, review_assignment=review_assignment, state=review_assignment.state, ) msg = "Review assignment marked 'No Response' by %s"%request.user.person email_review_assignment_change(request, review_assignment, "Reviewer assignment marked no-response", msg, by=request.user.person, notify_secretary=True, notify_reviewer=True, notify_requested_by=False) return redirect(review_request, name=review_assignment.review_request.doc.name, request_id=review_assignment.review_request.pk) return render(request, 'doc/review/mark_reviewer_assignment_no_response.html', { 'assignment': review_assignment, }) class SubmitUnsolicitedReviewTeamChoiceForm(forms.Form): team = forms.ModelChoiceField(queryset=Group.objects.filter(reviewteamsettings__isnull=False), widget=forms.RadioSelect, empty_label=None) def __init__(self, user, *args, **kwargs): super(SubmitUnsolicitedReviewTeamChoiceForm, self).__init__(*args, **kwargs) self.fields['team'].queryset = self.fields['team'].queryset.filter(role__person__user=user, role__name='secr') @login_required() def submit_unsolicited_review_choose_team(request, name): """ If a user is submitting an unsolicited review, and is allowed to do this for more than one team, they are routed through this small view to pick a team. This is needed as the complete review form needs to be specific for a team. This view only produces a redirect, so it's open for any user. """ doc = get_object_or_404(Document, name=name) if request.method == "POST": form = SubmitUnsolicitedReviewTeamChoiceForm(request.user, request.POST) if form.is_valid(): return redirect("ietf.doc.views_review.complete_review", name=doc.name, acronym=form.cleaned_data['team'].acronym) else: form = SubmitUnsolicitedReviewTeamChoiceForm(user=request.user) return render(request, 'doc/review/submit_unsolicited_review.html', { 'doc': doc, 'form': form, }) class CompleteReviewForm(forms.Form): state = forms.ModelChoiceField(queryset=ReviewAssignmentStateName.objects.filter(slug__in=("completed", "part-completed")).order_by("-order"), widget=forms.RadioSelect, initial="completed") reviewed_rev = forms.CharField(label="Reviewed revision", max_length=4) result = forms.ModelChoiceField(queryset=ReviewResultName.objects.filter(used=True), widget=forms.RadioSelect, empty_label=None) review_type = forms.ModelChoiceField(queryset=ReviewTypeName.objects.filter(used=True), widget=forms.RadioSelect, empty_label=None) reviewer = forms.ModelChoiceField(queryset=Person.objects.all(), widget=forms.Select) ACTIONS = [ ("enter", "Enter review content (automatically posts to {mailing_list})"), ("upload", "Upload review content in text file (automatically posts to {mailing_list})"), ("link", "Link to review message already sent to {mailing_list}"), ] review_submission = forms.ChoiceField(choices=ACTIONS, widget=forms.RadioSelect) review_url = forms.URLField(label="Link to message", required=False) review_file = forms.FileField(label="Text file to upload", required=False) review_content = forms.CharField(widget=forms.Textarea, required=False, strip=False) completion_date = DatepickerDateField(date_format="yyyy-mm-dd", picker_settings={ "autoclose": "1" }, initial=datetime.date.today, help_text="Date of announcement of the results of this review") completion_time = forms.TimeField(widget=forms.HiddenInput, initial=datetime.time.min) cc = MultiEmailField(required=False, help_text="Email addresses to send to in addition to the review team list") email_ad = forms.BooleanField(label="Send extra email to the responsible AD suggesting early attention", required=False) def __init__(self, assignment, doc, team, is_reviewer, *args, **kwargs): self.assignment = assignment self.doc = doc super(CompleteReviewForm, self).__init__(*args, **kwargs) known_revisions = NewRevisionDocEvent.objects.filter(doc=doc).order_by("time", "id").values_list("rev", "time", flat=False) revising_review = assignment.state_id not in ["assigned", "accepted"] if assignment else False if not is_reviewer: new_field_order = ['review_submission', 'review_url', 'review_file', 'review_content'] new_field_order += [f for f in self.fields.keys() if f not in new_field_order] self.order_fields(new_field_order) if not revising_review: self.fields["state"].choices = [ (slug, "{} - extra reviewer is to be assigned".format(label)) if slug == "part-completed" else (slug, label) for slug, label in self.fields["state"].choices ] if 'initial' in kwargs and assignment: reviewed_rev_class = [] for r in known_revisions: last_version = r[0] if r[1] < assignment.review_request.time: kwargs["initial"]["reviewed_rev"] = r[0] reviewed_rev_class.append('reviewer-doc-past') else: reviewed_rev_class.append('reviewer-doc-ok') # After this the ones in future are marked with green, but we # want also to mark the oldest one before the review was assigned # so shift list one step. reviewed_rev_class.pop(0) reviewed_rev_class.append('reviewer-doc-ok') # If it is users own review, then default to latest version if is_reviewer: kwargs["initial"]["reviewed_rev"] = last_version self.fields["reviewed_rev"].help_text = mark_safe( " ".join("<a class=\"rev label label-default {0}\" title=\"{2:%Y-%m-%d}\">{1}</a>".format(reviewed_rev_class[i], *r) for i, r in enumerate(known_revisions))) else: self.fields["reviewed_rev"].help_text = mark_safe( " ".join("<a class=\"rev label label-default {0}\" title=\"{2:%Y-%m-%d}\">{1}</a>".format('', *r) for i, r in enumerate(known_revisions))) self.fields["result"].queryset = self.fields["result"].queryset.filter(reviewteamsettings_review_results_set__group=team) def format_submission_choice(label): if revising_review: label = label.replace(" (automatically posts to {mailing_list})", "") return label.format(mailing_list=team.list_email or "[error: team has no mailing list set]") if assignment: del self.fields["review_type"] del self.fields["reviewer"] else: self.fields["review_type"].queryset = self.fields["review_type"].queryset.filter( reviewteamsettings__group=team) self.fields["reviewer"].queryset = self.fields["reviewer"].queryset.filter(role__name="reviewer", role__group=team) self.fields["review_submission"].choices = [ (k, format_submission_choice(label)) for k, label in self.fields["review_submission"].choices] if revising_review: del self.fields["cc"] elif is_reviewer: del self.fields["completion_date"] del self.fields["completion_time"] def clean_reviewed_rev(self): return clean_doc_revision(self.doc, self.cleaned_data.get("reviewed_rev")) def clean_review_content(self): return self.cleaned_data["review_content"].replace("\r", "") def clean_review_file(self): return get_cleaned_text_file_content(self.cleaned_data["review_file"]) def clean_review_url(self): url = self.cleaned_data['review_url'] #scheme, netloc, path, parameters, query, fragment = urlparse(url) if url: r = requests.get(url) if r.status_code != 200: raise forms.ValidationError("Trying to retrieve the URL resulted in status code %s: %s. Please provide an URL that can be retrieved." % (r.status_code, r.reason)) return url def clean(self): if self.assignment and "@" in self.assignment.reviewer.person.ascii: raise forms.ValidationError("Reviewer name must be filled in (the ASCII version is currently \"{}\" - since it contains an @ sign the name is probably still the original email address).".format(self.review_req.reviewer.person.ascii)) def require_field(f): if not self.cleaned_data.get(f): self.add_error(f, ValidationError("You must fill in this field.")) submission_method = self.cleaned_data.get("review_submission") if submission_method == "enter": require_field("review_content") elif submission_method == "upload": require_field("review_file") elif submission_method == "link": require_field("review_url") @login_required def complete_review(request, name, assignment_id=None, acronym=None): doc = get_object_or_404(Document, name=name) if assignment_id: assignment = get_object_or_404(ReviewAssignment, pk=assignment_id) revising_review = assignment.state_id not in ["assigned", "accepted"] is_reviewer = user_is_person(request.user, assignment.reviewer.person) can_manage_request = can_manage_review_requests_for_team(request.user, assignment.review_request.team) if not (is_reviewer or can_manage_request): permission_denied(request, "You do not have permission to perform this action") team = assignment.review_request.team team_acronym = assignment.review_request.team.acronym.lower() request_type = assignment.review_request.type reviewer = assignment.reviewer mailtrigger_slug = 'review_completed_{}_{}'.format(team_acronym, request_type.slug) # Description is only used if the mailtrigger does not exist yet. mailtrigger_desc = 'Recipients when a {} {} review is completed'.format(team_acronym, request_type) to, cc = gather_address_lists( mailtrigger_slug, create_from_slug_if_not_exists='review_completed', desc_if_not_exists=mailtrigger_desc, review_req=assignment.review_request ) else: team = get_object_or_404(Group, acronym=acronym) if not can_manage_review_requests_for_team(request.user, team): permission_denied(request, "You do not have permission to perform this action") assignment = None is_reviewer = False revising_review = False request_type = None to, cc = [], [] if request.method == "POST": form = CompleteReviewForm(assignment, doc, team, is_reviewer, request.POST, request.FILES) if form.is_valid(): review_submission = form.cleaned_data['review_submission'] if not assignment: request_type = form.cleaned_data['review_type'] reviewer = form.cleaned_data['reviewer'].role_email('reviewer',group=team) if assignment and assignment.review: review = assignment.review else: # create review doc name_components = [ "review", strip_prefix(doc.name, "draft-"), form.cleaned_data["reviewed_rev"], team.acronym, request_type.slug, xslugify(reviewer.person.ascii_parts()[3]), datetime.date.today().isoformat(), ] review_name = "-".join(c for c in name_components if c).lower() if not Document.objects.filter(name=review_name).exists(): review = Document.objects.create(name=review_name,type_id='review',group=team) DocAlias.objects.create(name=review_name).docs.add(review) else: messages.warning(request, message='Attempt to save review failed: review document already exists. This most likely occurred because the review was submitted twice in quick succession. If you intended to submit a new review, rather than update an existing one, things are probably OK. Please verify that the shown review is what you expected.') return redirect("ietf.doc.views_doc.document_main", name=review_name) if not assignment: # If this is an unsolicited review, create a new request and assignment. # The assignment will be immediately closed after, sharing the usual # processes for regular assigned reviews. review_request = ReviewRequest.objects.create( state_id='assigned', type=form.cleaned_data['review_type'], doc=doc, team=team, deadline=datetime.date.today(), requested_by=Person.objects.get(user=request.user), requested_rev=form.cleaned_data['reviewed_rev'], ) assignment = ReviewAssignment.objects.create( review_request=review_request, state_id='assigned', reviewer=form.cleaned_data['reviewer'].role_email('reviewer', group=team), assigned_on=datetime.datetime.now(), review = review, ) review.rev = "00" if not review.rev else "{:02}".format(int(review.rev) + 1) review.title = "{} Review of {}-{}".format(assignment.review_request.type.name, assignment.review_request.doc.name, form.cleaned_data["reviewed_rev"]) review.time = datetime.datetime.now() if review_submission == "link": review.external_url = form.cleaned_data['review_url'] e = NewRevisionDocEvent.objects.create( type="new_revision", doc=review, by=request.user.person, rev=review.rev, desc='New revision available', time=review.time, ) review.set_state(State.objects.get(type="review", slug="active")) review.save_with_history([e]) # save file on disk if review_submission == "upload": content = form.cleaned_data['review_file'] else: content = form.cleaned_data['review_content'] filename = os.path.join(review.get_file_path(), '{}.txt'.format(review.name)) with io.open(filename, 'w', encoding='utf-8') as destination: destination.write(content) completion_datetime = datetime.datetime.now() if "completion_date" in form.cleaned_data: completion_datetime = datetime.datetime.combine(form.cleaned_data["completion_date"], form.cleaned_data.get("completion_time") or datetime.time.min) # complete assignment assignment.state = form.cleaned_data["state"] assignment.reviewed_rev = form.cleaned_data["reviewed_rev"] assignment.result = form.cleaned_data["result"] assignment.review = review assignment.completed_on = completion_datetime assignment.save() need_to_email_review = review_submission != "link" and assignment.review_request.team.list_email and not revising_review submitted_on_different_date = completion_datetime.date() != datetime.date.today() desc = "Request for {} review by {} {}: {}. Reviewer: {}.".format( assignment.review_request.type.name, assignment.review_request.team.acronym.upper(), assignment.state.name, assignment.result.name, assignment.reviewer.person, ) update_change_reason(assignment, desc) if need_to_email_review: desc += " " + "Sent review to list." if revising_review: desc += " Review has been revised by {}.".format(request.user.person) elif submitted_on_different_date: desc += " Submission of review completed at an earlier date." close_event = ReviewAssignmentDocEvent(type="closed_review_assignment", review_assignment=assignment) close_event.doc = assignment.review_request.doc close_event.rev = assignment.review_request.doc.rev close_event.by = request.user.person close_event.desc = desc close_event.state = assignment.state close_event.time = datetime.datetime.now() close_event.save() # If the completion date is different, record when the initial review was made too. if not revising_review and submitted_on_different_date: desc = "Request for {} review by {} {}: {}. Reviewer: {}.".format( assignment.review_request.type.name, assignment.review_request.team.acronym.upper(), assignment.state.name, assignment.result.name, assignment.reviewer.person, ) initial_close_event = ReviewAssignmentDocEvent(type="closed_review_assignment", review_assignment=assignment) initial_close_event.doc = assignment.review_request.doc initial_close_event.rev = assignment.review_request.doc.rev initial_close_event.by = request.user.person initial_close_event.desc = desc initial_close_event.state = assignment.state initial_close_event.time = completion_datetime initial_close_event.save() if assignment.state_id == "part-completed" and not revising_review: existing_assignments = ReviewAssignment.objects.filter(review_request__doc=assignment.review_request.doc, review_request__team=assignment.review_request.team, state__in=("assigned", "accepted", "completed")) subject = "Review of {}-{} completed partially".format(assignment.review_request.doc.name, assignment.reviewed_rev) msg = render_to_string("review/partially_completed_review.txt", { "existing_assignments": existing_assignments, "by": request.user.person, }) email_review_assignment_change(request, assignment, subject, msg, request.user.person, notify_secretary=True, notify_reviewer=False, notify_requested_by=False) role = request.user.person.role_set.filter(group=assignment.review_request.team,name='reviewer').first() if role and role.email.active: author_email = role.email frm = role.formatted_email() else: author_email = request.user.person.email() frm = request.user.person.formatted_email() author, created = DocumentAuthor.objects.get_or_create(document=review, email=author_email, person=request.user.person) if need_to_email_review: # email the review subject = "{} {} {} of {}-{}".format(assignment.review_request.team.acronym.capitalize(),assignment.review_request.type.name.lower(),"partial review" if assignment.state_id == "part-completed" else "review", assignment.review_request.doc.name, assignment.reviewed_rev) related_groups = [ assignment.review_request.team, ] if assignment.review_request.doc.group: related_groups.append(assignment.review_request.doc.group) cc = form.cleaned_data["cc"] msg = Message.objects.create( by=request.user.person, subject=subject, frm=frm, to=", ".join(to), cc=", ".join(cc), body = render_to_string("review/completed_review.txt", { "assignment": assignment, "content": content, }), ) msg.related_groups.add(*related_groups) msg.related_docs.add(assignment.review_request.doc) msg = send_mail_message(request, msg) list_name = mailarch.list_name_from_email(assignment.review_request.team.list_email) if list_name: review.external_url = mailarch.construct_message_url(list_name, email.utils.unquote(msg["Message-ID"].strip())) review.save_with_history([close_event]) if form.cleaned_data['email_ad'] or assignment.result in assignment.review_request.team.reviewteamsettings.notify_ad_when.all(): (to, cc) = gather_address_lists('review_notify_ad',review_req = assignment.review_request).as_strings() msg_txt = render_to_string("review/notify_ad.txt", { "to": to, "cc": cc, "assignment": assignment, "settings": settings, "explicit_request": form.cleaned_data['email_ad'], }) msg = infer_message(msg_txt) msg.by = request.user.person msg.save() send_mail_message(request, msg) return redirect("ietf.doc.views_doc.document_main", name=assignment.review.name) else: initial={ "reviewed_rev": assignment.reviewed_rev if assignment else None, "result": assignment.result_id if assignment else None, "cc": ", ".join(cc), } try: initial['review_content'] = render_to_string('/group/%s/review/content_templates/%s.txt' % (assignment.review_request.team.acronym, request_type.slug), {'assignment':assignment, 'today':datetime.date.today()}) except (TemplateDoesNotExist, AttributeError): pass form = CompleteReviewForm(assignment, doc, team, is_reviewer, initial=initial) mail_archive_query_urls = mailarch.construct_query_urls(doc, team) return render(request, 'doc/review/complete_review.html', { 'doc': doc, 'team': team, 'assignment': assignment, 'form': form, 'mail_archive_query_urls': mail_archive_query_urls, 'revising_review': revising_review, 'review_to': to, 'review_cc': cc, 'is_reviewer': is_reviewer, }) def search_mail_archive(request, name, acronym=None, assignment_id=None): if assignment_id: assignment = get_object_or_404(ReviewAssignment, pk=assignment_id) team = assignment.review_request.team else: assignment = None team = get_object_or_404(Group, acronym=acronym) doc = get_object_or_404(Document, name=name) is_reviewer = assignment and user_is_person(request.user, assignment.reviewer.person) can_manage_request = can_manage_review_requests_for_team(request.user, team) if not (is_reviewer or can_manage_request): permission_denied(request, "You do not have permission to perform this action") res = mailarch.construct_query_urls(doc, team, query=request.GET.get("query")) if not res: return JsonResponse({ "error": "Couldn't do lookup in mail archive - don't know where to look"}) MAX_RESULTS = 30 try: res["messages"] = mailarch.retrieve_messages(res["query_data_url"])[:MAX_RESULTS] for message in res["messages"]: try: revision_guess = message["subject"].split(name)[1].split('-')[1] message["revision_guess"] = revision_guess if revision_guess.isnumeric() else None except IndexError: pass except KeyError as e: res["error"] = "No results found (%s)" % str(e) except Exception as e: res["error"] = "Retrieval from mail archive failed: %s" % str(e) # raise # useful when debugging return JsonResponse(res) class EditReviewRequestCommentForm(forms.ModelForm): comment = forms.CharField(widget=forms.Textarea, strip=False) class Meta: fields = ['comment',] model = ReviewRequest def edit_comment(request, name, request_id): review_req = get_object_or_404(ReviewRequest, pk=request_id) if not can_request_review_of_doc(request.user, review_req.doc): permission_denied(request, "You do not have permission to perform this action") if request.method == "POST": form = EditReviewRequestCommentForm(request.POST, instance=review_req) if form.is_valid(): form.save() return redirect(review_request, name=review_req.doc.name, request_id=review_req.pk) else: form = EditReviewRequestCommentForm(instance=review_req) return render(request, 'doc/review/edit_request_comment.html', { 'review_req': review_req, 'form' : form, }) class EditReviewRequestDeadlineForm(forms.ModelForm): deadline = DatepickerDateField(date_format="yyyy-mm-dd", picker_settings={ "autoclose": "1", "start-date": "+0d" }) class Meta: fields = ['deadline',] model = ReviewRequest def clean_deadline(self): v = self.cleaned_data.get('deadline') if v < datetime.date.today(): raise forms.ValidationError("Select today or a date in the future.") return v def edit_deadline(request, name, request_id): review_req = get_object_or_404(ReviewRequest, pk=request_id) if not can_request_review_of_doc(request.user, review_req.doc): permission_denied(request, "You do not have permission to perform this action") old_deadline = review_req.deadline if request.method == "POST": form = EditReviewRequestDeadlineForm(request.POST, instance=review_req) if form.is_valid(): if form.cleaned_data['deadline'] != old_deadline: form.save() subject = "Deadline changed: {} {} review of {}-{}".format(review_req.team.acronym.capitalize(),review_req.type.name.lower(), review_req.doc.name, review_req.requested_rev) msg = render_to_string("review/deadline_changed.txt", { "review_req": review_req, "old_deadline": old_deadline, "by": request.user.person, }) email_review_request_change(request, review_req, subject, msg, request.user.person, notify_secretary=True, notify_reviewer=True, notify_requested_by=True) return redirect(review_request, name=review_req.doc.name, request_id=review_req.pk) else: form = EditReviewRequestDeadlineForm(instance=review_req) return render(request, 'doc/review/edit_request_deadline.html', { 'review_req': review_req, 'form' : form, }) class ReviewWishAddForm(forms.Form): team = forms.ModelChoiceField(queryset=Group.objects.filter(reviewteamsettings__isnull=False), widget=forms.RadioSelect, empty_label=None, required=True) def __init__(self, user, doc, *args, **kwargs): super(ReviewWishAddForm, self).__init__(*args, **kwargs) self.person = get_object_or_404(Person, user=user) self.doc = doc self.fields['team'].queryset = self.fields['team'].queryset.filter(role__person=self.person, role__name='reviewer') if len(self.fields['team'].queryset) == 1: self.team = self.fields['team'].queryset.get() del self.fields['team'] def save(self): team = self.team if hasattr(self, 'team') else self.cleaned_data['team'] ReviewWish.objects.get_or_create(person=self.person, team=team, doc=self.doc) @login_required def review_wish_add(request, name): doc = get_object_or_404(Document, docalias__name=name) if request.method == "POST": form = ReviewWishAddForm(request.user, doc, request.POST) if form.is_valid(): form.save() return _generate_ajax_or_redirect_response(request, doc) else: form = ReviewWishAddForm(request.user, doc) return render(request, "doc/review/review_wish_add.html", { "doc": doc, "form": form, }) @login_required def review_wishes_remove(request, name): doc = get_object_or_404(Document, docalias__name=name) person = get_object_or_404(Person, user=request.user) if request.method == "POST": ReviewWish.objects.filter(person=person, doc=doc).delete() return _generate_ajax_or_redirect_response(request, doc) return render(request, "doc/review/review_wishes_remove.html", { "name": doc.name, }) def _generate_ajax_or_redirect_response(request, doc): redirect_url = request.GET.get('next') url_is_safe = is_safe_url(url=redirect_url, allowed_hosts=request.get_host(), require_https=request.is_secure()) if request.is_ajax(): return HttpResponse(json.dumps({'success': True}), content_type='application/json') elif url_is_safe: return HttpResponseRedirect(redirect_url) else: return HttpResponseRedirect(doc.get_absolute_url())
47.971109
363
0.657354
6cd229c98dffcfd0409a025d1a0767768b3d190c
469
py
Python
repl.py
rcarmo/newsfeed-corpus
b1f649e78b3c115c8f66b298fd72cdc8605cff4c
[ "MIT" ]
21
2016-11-22T12:15:37.000Z
2021-09-23T18:20:32.000Z
repl.py
rcarmo/newsfeed-corpus
b1f649e78b3c115c8f66b298fd72cdc8605cff4c
[ "MIT" ]
null
null
null
repl.py
rcarmo/newsfeed-corpus
b1f649e78b3c115c8f66b298fd72cdc8605cff4c
[ "MIT" ]
2
2019-12-19T20:37:01.000Z
2020-01-13T08:28:48.000Z
#!/usr/bin/env python3 """ REPL for database inspection """ from config import (CHECK_INTERVAL, DATABASE_NAME, FETCH_INTERVAL, MAX_CONCURRENT_REQUESTS, MONGO_SERVER, log) from datetime import datetime, timedelta from pymongo import MongoClient from code import interact from bpython import embed def main(): client = MongoClient(MONGO_SERVER) db = client[DATABASE_NAME] embed(locals_=locals()) if __name__ == '__main__': main()
23.45
66
0.724947
ed14ba5f20945812b39f270b9539bedaa300889a
1,669
py
Python
cms/plugins/text/cms_plugins.py
christianbertschy/django-cms-2.0
a98d035b47346b7f6924a807338be3af6566537f
[ "BSD-3-Clause" ]
1
2015-09-24T00:36:34.000Z
2015-09-24T00:36:34.000Z
cms/plugins/text/cms_plugins.py
christianbertschy/django-cms-2.0
a98d035b47346b7f6924a807338be3af6566537f
[ "BSD-3-Clause" ]
null
null
null
cms/plugins/text/cms_plugins.py
christianbertschy/django-cms-2.0
a98d035b47346b7f6924a807338be3af6566537f
[ "BSD-3-Clause" ]
null
null
null
from cms.plugin_pool import plugin_pool from cms.plugin_base import CMSPluginBase from django.utils.translation import ugettext_lazy as _ from models import Text from cms.plugins.text.forms import TextForm from cms.plugins.text.widgets import WYMEditor from cms.plugins.text.utils import plugin_tags_to_user_html from django.forms.fields import CharField class TextPlugin(CMSPluginBase): model = Text name = _("Text") form = TextForm render_template = "cms/plugins/text.html" def get_editor_widget(self, request, plugins): """ Returns the Django form Widget to be used for the text area """ return WYMEditor(installed_plugins=plugins) def get_form_class(self, request, plugins): """ Returns a subclass of Form to be used by this plugin """ # We avoid mutating the Form declared above by subclassing class TextPluginForm(self.form): pass widget = self.get_editor_widget(request, plugins) TextPluginForm.declared_fields["body"] = CharField(widget=widget, required=False) return TextPluginForm def get_form(self, request, obj=None, **kwargs): plugins = plugin_pool.get_text_enabled_plugins(self.placeholder) form = self.get_form_class(request, plugins) kwargs['form'] = form # override standard form return super(TextPlugin, self).get_form(request, obj, **kwargs) def render(self, context, instance, placeholder): return {'body':plugin_tags_to_user_html(instance.body, context, placeholder), 'placeholder':placeholder} plugin_pool.register_plugin(TextPlugin)
35.510638
89
0.705812
1f893d06ce997af05443b3ec4b01c0daff3211dc
2,814
py
Python
lib/googlecloudsdk/compute/subcommands/url_maps/remove_path_matcher.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/compute/subcommands/url_maps/remove_path_matcher.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/compute/subcommands/url_maps/remove_path_matcher.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
2
2020-07-25T05:03:06.000Z
2020-11-04T04:55:57.000Z
# Copyright 2014 Google Inc. All Rights Reserved. """Command for removing a path matcher from a URL map.""" import copy from googlecloudsdk.calliope import exceptions from googlecloudsdk.compute.lib import base_classes class RemovePathMatcher(base_classes.ReadWriteCommand): """Remove a path matcher from a URL map.""" @staticmethod def Args(parser): parser.add_argument( '--path-matcher-name', required=True, help='The name of the path matcher to remove.') parser.add_argument( 'name', help='The name of the URL map.') @property def service(self): return self.compute.urlMaps @property def resource_type(self): return 'urlMaps' def CreateReference(self, args): return self.CreateGlobalReference(args.name) def GetGetRequest(self, args): """Returns the request for the existing URL map resource.""" return (self.service, 'Get', self.messages.ComputeUrlMapsGetRequest( urlMap=self.ref.Name(), project=self.project)) def GetSetRequest(self, args, replacement, existing): return (self.service, 'Update', self.messages.ComputeUrlMapsUpdateRequest( urlMap=self.ref.Name(), urlMapResource=replacement, project=self.project)) def Modify(self, args, existing): """Returns a modified URL map message.""" replacement = copy.deepcopy(existing) # Removes the path matcher. new_path_matchers = [] path_matcher_found = False for path_matcher in existing.pathMatchers: if path_matcher.name == args.path_matcher_name: path_matcher_found = True else: new_path_matchers.append(path_matcher) if not path_matcher_found: raise exceptions.ToolException( 'No path matcher with the name [{0}] was found.'.format( args.path_matcher_name)) replacement.pathMatchers = new_path_matchers # Removes all host rules that refer to the path matcher. new_host_rules = [] for host_rule in existing.hostRules: if host_rule.pathMatcher != args.path_matcher_name: new_host_rules.append(host_rule) replacement.hostRules = new_host_rules return replacement RemovePathMatcher.detailed_help = { 'brief': 'Remove a path matcher from a URL map', 'DESCRIPTION': """\ *{command}* is used to remove a path matcher from a URL map. When a path matcher is removed, all host rules that refer to the path matcher are also removed. """, 'EXAMPLES': """\ To remove the path matcher named ``MY-MATCHER'' from the URL map named ``MY-URL-MAP'', you can use this command: $ {command} MY-URL-MAP --path-matcher MY-MATCHER """, }
29.93617
78
0.657072
2c95e55a51006180c686982b336fa6bb709a5ef5
2,875
py
Python
examples/test_healthcheck.py
zmdismai/tcf
3903e0a2f444c3aa14647a5147a0df76a49e4195
[ "Apache-2.0" ]
null
null
null
examples/test_healthcheck.py
zmdismai/tcf
3903e0a2f444c3aa14647a5147a0df76a49e4195
[ "Apache-2.0" ]
null
null
null
examples/test_healthcheck.py
zmdismai/tcf
3903e0a2f444c3aa14647a5147a0df76a49e4195
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # # We don't care for documenting all the interfaces, names should be # self-descriptive: # # - pylint: disable = missing-docstring import os import tcfl.tc import tcfl.tl @tcfl.tc.tags(**tcfl.tl.zephyr_tags()) # Ask for a target that defines an zephyr_board field, which indicates # it can run the Zephyr OS @tcfl.tc.target("zephyr_board", app_zephyr = os.path.join(tcfl.tl.ZEPHYR_BASE, "samples", "hello_world"), mode = "all") @tcfl.tc.tags(ignore_example = True) class _healtcheck_zephyr(tcfl.tc.tc_c): def configure_50_target(self, target): self.overriden_configure_50_target(target) @staticmethod def eval(target): target.expect("Hello World! %s" % target.kws['zephyr_board']) # Ignore QEMU Zephyr, as they cannot power on/off w/o an image -- let # the Hello World test test those @tcfl.tc.target("not type:'^qemu-zephyr'", mode = "all") @tcfl.tc.tags(ignore_example = True) class _healtcheck_power(tcfl.tc.tc_c): @staticmethod def eval_power(target): if not getattr(target, "power"): raise tcfl.tc.skip_e("No power control interface") target.report_info("Powering off") target.power.off() target.report_pass("Powered off") target.report_info("Querying power status") power = target.power.get() if power != 0: raise tcfl.tc.failed_e("Power should be 0, reported %d" % power) target.report_pass("Power is reported correctly as %d" % power) target.report_info("Powering on") target.power.on() target.report_pass("Powered on") target.report_info("Querying power status") power = target.power.get() if power == 0: raise tcfl.tc.failed_e( "Power should be not 0, reported %d" % power) target.report_pass("Power is reported correctly as %d" % power) @tcfl.tc.target(mode = "all") @tcfl.tc.tags(ignore_example = True) class _healtcheck_console(tcfl.tc.tc_c): @staticmethod def eval_console(target): if not getattr(target, "console"): raise tcfl.tc.skip_e("No console interface") target.report_info("reading default console") target.console.read() target.report_pass("read default console") target.report_info("listing consoles") consoles = target.console.list() target.report_pass("listed consoles: %s" % " ".join(consoles)) for console in consoles: target.report_info("reading console '%s'" % console) target.console.read(console_id = console) target.report_pass("read console '%s'" % console) # We don't test writing...don't want to mess anything up
33.430233
76
0.642783
39dfd9e3bfaf989ab98084737e7ac77c221b2e94
577
py
Python
apps/announcements/migrations/0001_initial.py
Ev1dentSnow/ArtemisAPI_django
ca7ef0ccc97114f2c5439b7b1bbc0e635facf020
[ "MIT" ]
null
null
null
apps/announcements/migrations/0001_initial.py
Ev1dentSnow/ArtemisAPI_django
ca7ef0ccc97114f2c5439b7b1bbc0e635facf020
[ "MIT" ]
null
null
null
apps/announcements/migrations/0001_initial.py
Ev1dentSnow/ArtemisAPI_django
ca7ef0ccc97114f2c5439b7b1bbc0e635facf020
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-07-08 23:39 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Announcement', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('subject', models.TextField()), ('content', models.TextField()), ], options={ 'db_table': 'announcements', }, ), ]
22.192308
79
0.516464
e5edca6d60e9de36c1adb95824acef18b3dcf554
2,553
py
Python
src/sqlfluff/core/rules/std/L045.py
swanderz/sqlfluff
668f23500ce5d06f4de67333a8957811c2df485f
[ "MIT" ]
null
null
null
src/sqlfluff/core/rules/std/L045.py
swanderz/sqlfluff
668f23500ce5d06f4de67333a8957811c2df485f
[ "MIT" ]
null
null
null
src/sqlfluff/core/rules/std/L045.py
swanderz/sqlfluff
668f23500ce5d06f4de67333a8957811c2df485f
[ "MIT" ]
null
null
null
"""Implementation of Rule L045.""" from typing import Dict, List from sqlfluff.core.dialects.base import Dialect from sqlfluff.core.rules.base import BaseRule, LintResult from sqlfluff.core.rules.analysis.select_crawler import SelectCrawler from sqlfluff.core.rules.doc_decorators import document_fix_compatible @document_fix_compatible class Rule_L045(BaseRule): """Query defines a CTE (common-table expression) but does not use it. | **Anti-pattern** | Defining a CTE that is not used by the query is harmless, but it means | the code is unnecesary and could be removed. .. code-block:: WITH cte1 AS ( SELECT a FROM t ), cte2 AS ( SELECT b FROM u ) SELECT * FROM cte1 | **Best practice** | Remove unused CTEs. .. code-block:: WITH cte1 AS ( SELECT a FROM t ) SELECT * FROM cte1 """ @classmethod def _visit_sources( cls, select_info_list: List[SelectCrawler], dialect: Dialect, queries: Dict[str, List[SelectCrawler]], ): for select_info in select_info_list: # Process nested SELECTs. for source in SelectCrawler.crawl( select_info.select_statement, queries, dialect ): if isinstance(source, list): cls._visit_sources(source, dialect, queries) # Process the query's sources. for alias_info in select_info.select_info.table_aliases: # Does the query read from a CTE? If so, visit the CTE. for target_segment in alias_info.from_expression_element.get_children( "table_expression", "join_clause" ): target = target_segment.raw if target in queries: select_info_target = queries.pop(target) if isinstance(select_info_target, list): cls._visit_sources(select_info_target, dialect, queries) def _eval(self, segment, dialect, **kwargs): if segment.is_type("statement"): queries = SelectCrawler.gather(segment, dialect) if None in queries: # Begin analysis at the final, outer query (key=None). self._visit_sources(queries.pop(None), dialect, queries) if queries: return LintResult(anchor=segment) return None
31.134146
86
0.585586
e52214da164209c452fbddfdeee7c04b2b70b105
875
py
Python
checker.py
Wh1t3Fox/ar15-sales
b1680c8b4fb06aab5a52c338ac1747ac5ec61ca4
[ "MIT" ]
null
null
null
checker.py
Wh1t3Fox/ar15-sales
b1680c8b4fb06aab5a52c338ac1747ac5ec61ca4
[ "MIT" ]
null
null
null
checker.py
Wh1t3Fox/ar15-sales
b1680c8b4fb06aab5a52c338ac1747ac5ec61ca4
[ "MIT" ]
null
null
null
#!/usr/bin/env python ''' Pretty simplistic web scraper for AR parts ''' from bs4 import BeautifulSoup as bs import requests import yaml _BRAND_ALERT = False # Parse config file def get_config(filename): global _BRAND_ALERT with open(filename) as fr: config = yaml.safe_load(fr) if config['brand_alert']: _BRAND_ALERT = True return config # Query webpage and return HTML def get_html(url): content = requests.get(url).text return bs(content, 'html.parser').lower() # Do any of our part show up in the HTML? def check_sale(html, parts): pass def main(): # Parse t3h config config = get_config('config.yml') print(config) # Iterate through websites for site in config['sites']: html = get_html(site) check_sale(html, config['parts']) if __name__ == '__main__': main()
18.617021
45
0.657143
1ba780da4d696dc7898ede198c8ff16b004ee180
184,510
py
Python
tests/unit/constraints/test_tabular.py
HDI-Project/SDV
04cfd6557d3676fa487e49e1cbd56eecd69a9bc6
[ "MIT" ]
39
2018-07-07T01:02:42.000Z
2019-12-17T13:53:47.000Z
tests/unit/constraints/test_tabular.py
HDI-Project/SDV
04cfd6557d3676fa487e49e1cbd56eecd69a9bc6
[ "MIT" ]
75
2018-06-29T00:35:02.000Z
2019-12-23T16:59:55.000Z
tests/unit/constraints/test_tabular.py
HDI-Project/SDV
04cfd6557d3676fa487e49e1cbd56eecd69a9bc6
[ "MIT" ]
31
2018-10-29T13:16:38.000Z
2020-01-02T13:10:42.000Z
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, FixedCombinations, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_transform_missing_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" that is missing the constraint column. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - MissingConstraintColumnError is thrown. """ # Setup table_data = pd.DataFrame({'b': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run and assert instance = CustomConstraint(columns='a', transform=dummy_transform_mock) with pytest.raises(MissingConstraintColumnError): instance.transform(table_data) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestFixedCombinations(): def test___init__(self): """Test the ``FixedCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce fixed combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = FixedCombinations(column_names=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``FixedCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = FixedCombinations(column_names=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``FixedCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = FixedCombinations(column_names=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``FixedCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because FixedCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): FixedCombinations(column_names=columns) def test_fit(self): """Test the ``FixedCombinations.fit`` method. The ``FixedCombinations.fit`` method is expected to: - Call ``FixedCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = FixedCombinations(column_names=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``FixedCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``FixedCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``FixedCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``FixedCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``FixedCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``FixedCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``FixedCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = FixedCombinations(column_names=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``FixedCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``FixedCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = FixedCombinations(column_names=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, scalar='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, scalar='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. - ``_low`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [0, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 0, 0], 'b': [0, -1, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. - ``_high`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/+4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [6, 6, 4], 'b': [7, 7, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_low`` = ['a', 'c']. - ``_high`` = ['b']. Input: - Table with a diff column that contains the constant np.log(4)/np.log(-2). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'c'], high=['b'], strict=True) dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'c#'] instance._columns_to_reconstruct = ['a', 'c'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(1)] * 3, 'c#': [np.log(1)] * 3, }) out = instance.reverse_transform(transformed) print(out) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_positive(self): """Test the ``GreaterThan.reverse_transform`` method for positive constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(4)], 'b#': [np.log(5), np.log(6), np.log(0)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 0], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_negative(self): """Test the ``GreaterThan.reverse_transform`` method for negative constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [-1, -2, 1], 'b': [-4, -5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(0)], 'b#': [np.log(5), np.log(6), np.log(2)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [-1, -2, 0], 'b': [-4, -5, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) class TestPositive(): def test__init__(self): """ Test the ``Positive.__init__`` method. The method is expected to set the ``_low`` instance variable to 0, the ``_scalar`` variable to ``'low'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = None """ # Run instance = Positive(columns='a', strict=True, drop=False) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Positive.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'high' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = 'high' """ # Run instance = Positive(columns='a', strict=True, drop=True) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' class TestNegative(): def test__init__(self): """ Test the ``Negative.__init__`` method. The method is expected to set the ``_high`` instance variable to 0, the ``_scalar`` variable to ``'high'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = None """ # Run instance = Negative(columns='a', strict=True, drop=False) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Negative.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'low' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = 'low' """ # Run instance = Negative(columns='a', strict=True, drop=True) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" if data['a'] is None or data['b'] is None: return None return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance, import the formula to use for the computation, and set the specified constraint column. Input: - column = 'col' - formula = new_column """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column assert instance.constraint_columns == ('col', ) def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_with_nans(self): """Test the ``ColumnFormula.is_valid`` method for with a formula that produces nans. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, None], 'c': [5, 7, None] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test__transform(self): """Test the ``ColumnFormula._transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_without_dropping_column(self): """Test the ``ColumnFormula._transform`` method without dropping the column. If `drop_column` is false, expect to not drop the constraint column. Input: - Table data (pandas.DataFrame) Output: - Table data with the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column, drop_column=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_missing_column(self): """Test the ``ColumnFormula._transform`` method when the constraint column is missing. When ``_transform`` is called with data that does not contain the constraint column, expect to return the data as-is. Input: - Table data (pandas.DataFrame) Output: - Table data, unchanged (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform(self): """Test the ``ColumnFormula.reverse_transform`` method. It is expected to compute the indicated column by applying the given formula. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 1, 1] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) class TestRounding(): def test___init__(self): """Test the ``Rounding.__init__`` method. It is expected to create a new Constraint instance and set the rounding args. Input: - columns = ['b', 'c'] - digits = 2 """ # Setup columns = ['b', 'c'] digits = 2 # Run instance = Rounding(columns=columns, digits=digits) # Assert assert instance._columns == columns assert instance._digits == digits def test___init__invalid_digits(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``digits`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 20 """ # Setup columns = ['b', 'c'] digits = 20 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits) def test___init__invalid_tolerance(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``tolerance`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 2 - tolerance = 0.1 """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 0.1 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits, tolerance=tolerance) def test_is_valid_positive_digits(self): """Test the ``Rounding.is_valid`` method for a positive digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 1e-3 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12, 5.51, None, 6.941, 1.129], 'c': [5.315, 7.12, 1.12, 9.131, 12.329], 'd': ['a', 'b', 'd', 'e', None], 'e': [123.31598, -1.12001, 1.12453, 8.12129, 1.32923] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, True, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_negative_digits(self): """Test the ``Rounding.is_valid`` method for a negative digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b'] digits = -2 tolerance = 1 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [401, 500, 6921, 799, None], 'c': [5.3134, 7.1212, 9.1209, 101.1234, None], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_zero_digits(self): """Test the ``Rounding.is_valid`` method for a zero digits argument. Input: - Table data not with the desired decimal places (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 0 tolerance = 1e-4 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, None, 3, 4], 'b': [4, 5.5, 1.2, 6.0001, 5.99999], 'c': [5, 7.12, 1.31, 9.00001, 4.9999], 'd': ['a', 'b', None, 'd', 'e'], 'e': [2.1254, 17.12123, 124.12, 123.0112, -9.129434] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_reverse_transform_positive_digits(self): """Test the ``Rounding.reverse_transform`` method with positive digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.12345, None, 5.100, 6.0001, 1.7999], 'c': [1.1, 1.234, 9.13459, 4.3248, 6.1312], 'd': ['a', 'b', 'd', 'e', None] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.123, None, 5.100, 6.000, 1.800], 'c': [1.100, 1.234, 9.135, 4.325, 6.131], 'd': ['a', 'b', 'd', 'e', None] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_negative_digits(self): """Test the ``Rounding.reverse_transform`` method with negative digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b'] digits = -3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41234.5, None, 5000, 6001, 5928], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41000.0, None, 5000.0, 6000.0, 6000.0], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_zero_digits(self): """Test the ``Rounding.reverse_transform`` method with zero digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 0 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12345, None, 5.0, 6.01, 7.9], 'c': [1.1, 1.0, 9.13459, None, 8.89], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.0, None, 5.0, 6.0, 8.0], 'c': [1.0, 1.0, 9.0, None, 9.0], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def transform(data, low, high): """Transform to be used for the TestBetween class.""" data = (data - low) / (high - low) * 0.95 + 0.025 return np.log(data / (1.0 - data)) class TestBetween(): def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_fit_only_one_datetime_arg(self): """Test the ``Between.fit`` method by passing in only one arg as datetime. If only one of the bound parameters is a datetime type, expect a ValueError. Input: - low is an int scalar - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup column = 'a' low = 0.0 high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high) # Run and assert table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) with pytest.raises(ValueError): instance.fit(table_data) def test_transform_scalar_scalar(self): """Test the ``Between.transform`` method by passing ``low`` and ``high`` as scalars. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_scalar_column(self): """Test the ``Between._transform`` method with ``low`` as scalar and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_scalar(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as scalar. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], 'c': [0.5, 1, 6] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_datetime(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as datetimes. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) - High and Low as datetimes Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_column(self): """Test the ``Between._transform`` method with ``low`` as datetime and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_datetime(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as datetime. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a#b#2021-01-01T00:00:00.000000000': transform( table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column_datetime(self): """Test the ``Between._transform`` method with ``low`` and ``high`` as datetime columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_scalar(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as scalars. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_column(self): """Test ``Between.reverse_transform`` with ``low`` as scalar and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_scalar(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as scalar. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_column(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_datetime_datetime(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) - High and low as datetimes Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_series_equal(expected_out['b'], out['b']) pd.testing.assert_series_equal(expected_out['a'], out['a'].astype('datetime64[ms]')) def test_reverse_transform_datetime_column(self): """Test ``Between.reverse_transform`` with ``low`` as datetime and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-02'), pd.to_datetime('2020-08-03'), ] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_datetime(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-03'), pd.to_datetime('2020-08-04'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a#b#2021-01-01T00:00:00.000000000': transform( table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_series_equal(expected_out['b'], out['b']) pd.testing.assert_series_equal(expected_out['a'], out['a'].astype('datetime64[ms]')) def test_reverse_transform_column_column_datetime(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as datetime columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``Between.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a valid row, a strictly invalid row and an invalid row. (pandas.DataFrame) Output: - True should be returned for the valid row and False for the other two. (pandas.Series) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, strict=True, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 1, 3], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out, check_names=False) def test_is_valid_strict_false(self): """Test the ``Between.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a valid row, a strictly invalid row and an invalid row. (pandas.DataFrame) Output: - True should be returned for the first two rows, and False for the last one (pandas.Series) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, strict=False, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 1, 3], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out, check_names=False) def test_is_valid_scalar_column(self): """Test the ``Between.is_valid`` method with ``low`` as scalar and ``high`` as a column. Is expected to return whether the constraint ``column`` is between the ``low`` and ``high`` values. Input: - Table data where the last value is greater than ``high``. (pandas.DataFrame) Output: - True should be returned for the two first rows, False for the last one. (pandas.Series) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 0.6], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_column_scalar(self): """Test the ``Between.is_valid`` method with ``low`` as a column and ``high`` as scalar. Is expected to return whether the constraint ``column`` is between the ``low`` and ``high`` values. Input: - Table data where the second value is smaller than ``low`` and last value is greater than ``high``. (pandas.DataFrame) Output: - True should be returned for the first row, False for the last two. (pandas.Series) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 1.9], 'b': [-0.5, 1, 0.6], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_column_column(self): """Test the ``Between.is_valid`` method with ``low`` and ``high`` as columns. Is expected to return whether the constraint ``column`` is between the ``low`` and ``high`` values. Input: - Table data where the last value is greater than ``high``. (pandas.DataFrame) Output: - True should be returned for the two first rows, False for the last one. (pandas.Series) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], 'c': [0.5, 1, 0.6] }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_low_high_nans(self): """Test the ``Between.is_valid`` method with nan values in low and high columns. If one of `low` or `high` is NaN, expect it to be ignored in the comparison. If both are NaN or the constraint column is NaN, return True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = Between(column='a', low='b', high='c') # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9, 1.0], 'b': [0, None, None, 0.4], 'c': [0.5, None, 0.6, None] }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_column_nans(self): """Test the ``Between.is_valid`` method with nan values in constraint column. If the constraint column is Nan, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = Between(column='a', low='b', high='c') # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, None], 'b': [0, 0.1, 0.5], 'c': [0.5, 1.5, 0.6] }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_high_scalar_low_nans(self): """Test the ``Between.is_valid`` method with ``high`` as scalar and ``low`` containing NaNs. The NaNs in ``low`` should be ignored. Input: - Table with a NaN row Output: - The NaN values should be ignored when making comparisons. """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 1.9], 'b': [-0.5, None, None], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_low_high_nans_datetime(self): """Test the ``Between.is_valid`` method with nan values in low and high datetime columns. If one of `low` or `high` is NaN, expect it to be ignored in the comparison. If both are NaN or the constraint column is NaN, return True. Input: - Table with row NaN containing NaNs. Output: - True should be returned for the NaN row. """ # Setup instance = Between(column='a', low='b', high='c') # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-13'), pd.to_datetime('2020-08-12'), pd.to_datetime('2020-08-13'), pd.to_datetime('2020-08-14'), ], 'b': [ pd.to_datetime('2020-09-03'), None, None, pd.to_datetime('2020-10-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), None, None, ] }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_column_nans_datetime(self): """Test the ``Between.is_valid`` method with nan values in the constraint column. If there is a row containing NaNs, expect that `is_valid` returns True. Input: - Table with row NaN containing NaNs. Output: - True should be returned for the NaN row. """ # Setup instance = Between(column='a', low='b', high='c') # Run table_data = pd.DataFrame({ 'a': [ None, pd.to_datetime('2020-08-12'), pd.to_datetime('2020-08-13'), ], 'b': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-02'), pd.to_datetime('2020-08-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-01'), ] }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_high_datetime_low_nans(self): """Test the ``Between.is_valid`` method with ``high`` as datetime and ``low`` with NaNs. The NaNs in ``low`` should be ignored. Input: - Table with a NaN row Output: - The NaN values should be ignored when making comparisons. """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2020-08-13') instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-08-12'), pd.to_datetime('2020-08-12'), pd.to_datetime('2020-08-14'), ], 'b': [ pd.to_datetime('2020-06-03'), None, None, ], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) class TestOneHotEncoding(): def test_reverse_transform(self): """Test the ``OneHotEncoding.reverse_transform`` method. It is expected to, for each of the appropriate rows, set the column with the largest value to one and set all other columns to zero. Input: - Table data with any numbers (pandas.DataFrame) Output: - Table data where the appropriate rows are one hot (pandas.DataFrame) """ # Setup instance = OneHotEncoding(columns=['a', 'b']) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.8], 'b': [0.8, 0.1, 0.9], 'c': [1, 2, 3] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [0.0, 1.0, 0.0], 'b': [1.0, 0.0, 1.0], 'c': [1, 2, 3] }) pd.testing.assert_frame_equal(expected_out, out) def test_is_valid(self): """Test the ``OneHotEncoding.is_valid`` method. ``True`` when for the rows where the data is one hot, ``False`` otherwise. Input: - Table data (pandas.DataFrame) containing one valid column, one column with a sum less than 1, one column with a sum greater than 1, one column with halves adding to one and one column with nans. Output: - Series of ``True`` and ``False`` values (pandas.Series) """ # Setup instance = OneHotEncoding(columns=['a', 'b', 'c']) # Run table_data = pd.DataFrame({ 'a': [1.0, 1.0, 0.0, 0.5, 1.0], 'b': [0.0, 1.0, 0.0, 0.5, 0.0], 'c': [0.0, 2.0, 0.0, 0.0, np.nan], 'd': [1, 2, 3, 4, 5] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test__sample_constraint_columns_proper(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to return a table with the appropriate complementary column ``b``, since column ``a`` is entirely defined by the ``condition`` table. Input: - Table data (pandas.DataFrame) Output: - Table where ``a`` is the same as in ``condition`` and ``b`` is complementary`` (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, }) instance = OneHotEncoding(columns=['a', 'b']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [1.0, 0.0, 0.0] * 5, }) out = instance._sample_constraint_columns(condition) # Assert expected_out = pd.DataFrame({ 'a': [1.0, 0.0, 0.0] * 5, 'b': [0.0, 1.0, 1.0] * 5, }) pd.testing.assert_frame_equal(expected_out, out) def test__sample_constraint_columns_one_one(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Since the condition column contains a one for all rows, expected to assign all other columns to zeros. Input: - Table data (pandas.DataFrame) Output: - Table where the first column contains one's and others columns zero's (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [1.0] * 10 }) out = instance._sample_constraint_columns(condition) # Assert expected_out = pd.DataFrame({ 'a': [1.0] * 10, 'b': [0.0] * 10, 'c': [0.0] * 10 }) pd.testing.assert_frame_equal(expected_out, out) def test__sample_constraint_columns_two_ones(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to raise a ``ValueError``, since the condition contains two ones in a single row. Input: - Table data (pandas.DataFrame) Raise: - ``ValueError`` """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [1.0] * 10, 'b': [1.0] * 10, 'c': [0.0] * 10 }) # Assert with pytest.raises(ValueError): instance._sample_constraint_columns(condition) def test__sample_constraint_columns_non_binary(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to raise a ``ValueError``, since the condition contains a non binary value. Input: - Table data (pandas.DataFrame) Raise: - ``ValueError`` """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [0.5] * 10 }) # Assert with pytest.raises(ValueError): instance._sample_constraint_columns(condition) def test__sample_constraint_columns_all_zeros(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to raise a ``ValueError``, since the condition contains only zeros. Input: - Table data (pandas.DataFrame) Raise: - ``ValueError`` """ # Setup data = pd.DataFrame({ 'a': [1, 0] * 5, 'b': [0, 1] * 5, 'c': [0, 0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [0.0] * 10, 'b': [0.0] * 10, 'c': [0.0] * 10 }) # Assert with pytest.raises(ValueError): instance._sample_constraint_columns(condition) def test__sample_constraint_columns_valid_condition(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to generate a table where every column satisfies the ``condition``. Input: - Table data (pandas.DataFrame) Output: - Table satifying the ``condition`` (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [0.0] * 10, 'b': [1.0] * 10, 'c': [0.0] * 10 }) out = instance._sample_constraint_columns(condition) # Assert expected_out = pd.DataFrame({ 'a': [0.0] * 10, 'b': [1.0] * 10, 'c': [0.0] * 10 }) pd.testing.assert_frame_equal(expected_out, out) def test__sample_constraint_columns_one_zero(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Since the condition column contains only one zero, expected to randomly sample from unset columns any valid possibility. Since the ``b`` column in ``data`` contains all the ones, it's expected to return a table where only ``b`` has ones. Input: - Table data (pandas.DataFrame) Output: - Table where ``b`` is all one`s and other columns are all zero`s (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [0.0, 0.0] * 5, 'b': [1.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'c': [0.0] * 10 }) out = instance._sample_constraint_columns(condition) # Assert expected_out = pd.DataFrame({ 'c': [0.0] * 10, 'a': [0.0] * 10, 'b': [1.0] * 10 }) pd.testing.assert_frame_equal(expected_out, out) def test__sample_constraint_columns_one_zero_alt(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Since the condition column contains only one zero, expected to randomly sample from unset columns any valid possibility. Input: - Table data (pandas.DataFrame) Output: - Table where ``c`` is all zero`s and ``b`` xor ``a`` is always one (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'c': [0.0] * 10 }) out = instance._sample_constraint_columns(condition) # Assert assert (out['c'] == 0.0).all() assert ((out['b'] == 1.0) ^ (out['a'] == 1.0)).all() def test_sample_constraint_columns_list_of_conditions(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to generate a table satisfying the ``condition``. Input: - Table data (pandas.DataFrame) Output: - Table satisfying the ``condition`` (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) out = instance._sample_constraint_columns(condition) # Assert expected_output = pd.DataFrame({ 'a': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5, 'b': [1.0, 0.0] * 5 }) pd.testing.assert_frame_equal(out, expected_output) def test_sample_constraint_columns_negative_values(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to raise a ``ValueError``, since condition is not a one hot vector. This tests that even if the sum of a row is one it still crashes. Input: - Table data (pandas.DataFrame) Raise: - ``ValueError`` """ # Setup data = pd.DataFrame({ 'a': [1.0] * 10, 'b': [-1.0] * 10, 'c': [1.0] * 10 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [1.0] * 10, 'b': [-1.0] * 10, 'c': [1.0] * 10 }) # Assert with pytest.raises(ValueError): instance._sample_constraint_columns(condition) def test_sample_constraint_columns_all_zeros_but_one(self): """Test the ``OneHotEncoding._sample_constraint_columns`` method. Expected to generate a table where column ``a`` is filled with ones, and ``b`` and ``c`` filled with zeros. Input: - Table data (pandas.DataFrame) Output: - Table satisfying the ``condition`` (pandas.DataFrame) """ # Setup data = pd.DataFrame({ 'a': [1.0, 0.0] * 5, 'b': [0.0, 1.0] * 5, 'c': [0.0, 0.0] * 5 }) instance = OneHotEncoding(columns=['a', 'b', 'c']) instance.fit(data) # Run condition = pd.DataFrame({ 'a': [0.0] * 10, 'c': [0.0] * 10 }) out = instance._sample_constraint_columns(condition) # Assert expected_output = pd.DataFrame({ 'a': [0.0] * 10, 'c': [0.0] * 10, 'b': [1.0] * 10 }) pd.testing.assert_frame_equal(out, expected_output) class TestUnique(): def test___init__(self): """Test the ``Unique.__init__`` method. The ``columns`` should be set to those provided and the ``handling_strategy`` should be set to ``'reject_sampling'``. Input: - column names to keep unique. Output: - Instance with ``columns`` set and ``transform`` and ``reverse_transform`` methods set to ``instance._identity``. """ # Run instance = Unique(columns=['a', 'b']) # Assert assert instance.columns == ['a', 'b'] assert instance.fit_columns_model is False assert instance.transform == instance._identity_with_validation assert instance.reverse_transform == instance._identity def test___init__one_column(self): """Test the ``Unique.__init__`` method. The ``columns`` should be set to a list even if a string is provided. Input: - string that is the name of a column. Output: - Instance with ``columns`` set to list of one element. """ # Run instance = Unique(columns='a') # Assert assert instance.columns == ['a'] def test_is_valid(self): """Test the ``Unique.is_valid`` method. This method should return a pd.Series where the index of the first occurence of a unique combination of ``instance.columns`` is set to ``True``, and every other occurence is set to ``False``. Input: - DataFrame with multiple of the same combinations of columns. Output: - Series with the index of the first occurences set to ``True``. """ # Setup instance = Unique(columns=['a', 'b', 'c']) # Run data = pd.DataFrame({ 'a': [1, 1, 2, 2, 3, 4], 'b': [5, 5, 6, 6, 7, 8], 'c': [9, 9, 10, 10, 12, 13] }) valid = instance.is_valid(data) # Assert expected = pd.Series([True, False, True, False, True, True]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_custom_index_same_values(self): """Test the ``Unique.is_valid`` method. This method should return a pd.Series where the index of the first occurence of a unique combination of ``instance.columns`` is set to ``True``, and every other occurence is set to ``False``. Input: - DataFrame with multiple of the same combinations of columns. - DataFrame has a custom index column which is set to 0 for rows. Output: - Series with the index of the first occurences set to ``True``. Github Issue: - Problem is described in: https://github.com/sdv-dev/SDV/issues/616 """ # Setup instance = Unique(columns=['a', 'b', 'c']) # Run data = pd.DataFrame({ 'a': [1, 1, 2, 2, 3], 'b': [5, 5, 6, 6, 7], 'c': [8, 8, 9, 9, 10] }, index=[0, 0, 0, 0, 0]) valid = instance.is_valid(data) # Assert expected = pd.Series([True, False, True, False, True], index=[0, 0, 0, 0, 0]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_custom_index_not_sorted(self): """Test the ``Unique.is_valid`` method. This method should return a pd.Series where the index of the first occurence of a unique combination of ``instance.columns`` is set to ``True``, and every other occurence is set to ``False``. Input: - DataFrame with multiple of the same combinations of columns. - DataFrame has a custom index column which is set in an unsorted way. Output: - Series with the index of the first occurences set to ``True``. Github Issue: - Problem is described in: https://github.com/sdv-dev/SDV/issues/617 """ # Setup instance = Unique(columns=['a', 'b', 'c']) # Run data = pd.DataFrame({ 'a': [1, 1, 2, 2, 3], 'b': [5, 5, 6, 6, 7], 'c': [8, 8, 9, 9, 10] }, index=[2, 1, 3, 5, 4]) valid = instance.is_valid(data) # Assert expected = pd.Series([True, False, True, False, True], index=[2, 1, 3, 5, 4]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_one_column_custom_index_not_sorted(self): """Test the ``Unique.is_valid`` method. This method should return a pd.Series where the index of the first occurence of a unique value of ``self.columns`` is set to ``True``, and every other occurence is set to ``False``. Input: - DataFrame with multiple occurences of the same value of the one column in ``instance.columns``. - DataFrame has a custom index column which is set in an unsorted way. Output: - Series with the index of the first occurences set to ``True``. Github Issue: - Problem is described in: https://github.com/sdv-dev/SDV/issues/617 """ # Setup instance = Unique(columns='a') # Run data = pd.DataFrame({ 'a': [1, 1, 1, 2, 3, 2], 'b': [1, 2, 3, 4, 5, 6], 'c': [False, False, True, False, False, True] }, index=[2, 1, 3, 5, 4, 6]) valid = instance.is_valid(data) # Assert expected = pd.Series([True, False, False, True, True, False], index=[2, 1, 3, 5, 4, 6]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_one_column_custom_index_same_values(self): """Test the ``Unique.is_valid`` method. This method should return a pd.Series where the index of the first occurence of a unique value of ``self.columns`` is set to ``True``, and every other occurence is set to ``False``. Input: - DataFrame with multiple occurences of the same value of the one column in ``instance.columns``. - DataFrame has a custom index column which is set to 0 for rows. Output: - Series with the index of the first occurences set to ``True``. Github Issue: - Problem is described in: https://github.com/sdv-dev/SDV/issues/616 """ # Setup instance = Unique(columns='a') # Run data = pd.DataFrame({ 'a': [1, 1, 1, 2, 3, 2], 'b': [1, 2, 3, 4, 5, 6], 'c': [False, False, True, False, False, True] }, index=[0, 0, 0, 0, 0, 0]) valid = instance.is_valid(data) # Assert expected = pd.Series([True, False, False, True, True, False], index=[0, 0, 0, 0, 0, 0]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_one_column(self): """Test the ``Unique.is_valid`` method. This method should return a pd.Series where the index of the first occurence of a unique value of ``self.columns`` is set to ``True``, and every other occurence is set to ``False``. Input: - DataFrame with multiple occurences of the same value of the one column in ``instance.columns``. Output: - Series with the index of the first occurences set to ``True``. """ # Setup instance = Unique(columns='a') # Run data = pd.DataFrame({ 'a': [1, 1, 1, 2, 3, 2], 'b': [1, 2, 3, 4, 5, 6], 'c': [False, False, True, False, False, True] }) valid = instance.is_valid(data) # Assert expected = pd.Series([True, False, False, True, True, False]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_one_column_nans(self): """Test the ``Unique.is_valid`` method for one column with nans. This method should return a pd.Series where the index of the first occurence of a unique value of ``instance.columns`` is set to ``True``, and every other occurence is set to ``False``. ``None``, ``np.nan`` and ``float('nan')`` should be treated as the same category. Input: - DataFrame with some repeated values, some of which are nan's. Output: - Series with the index of the first occurences set to ``True``. """ # Setup instance = Unique(columns=['a']) # Run data = pd.DataFrame({ 'a': [1, None, 2, np.nan, float('nan'), 1], 'b': [np.nan, 1, None, float('nan'), float('nan'), 1], }) valid = instance.is_valid(data) # Assert expected = pd.Series([True, True, True, False, False, False]) pd.testing.assert_series_equal(valid, expected) def test_is_valid_multiple_columns_nans(self): """Test the ``Unique.is_valid`` method for multiple columns with nans. This method should return a pd.Series where the index of the first occurence of a unique combination of ``instance.columns`` is set to ``True``, and every other occurence is set to ``False``. ``None``, ``np.nan`` and ``float('nan')`` should be treated as the same category. Input: - DataFrame with multiple of the same combinations of columns, some of which are nan's. Output: - Series with the index of the first occurences set to ``True``. """ # Setup instance = Unique(columns=['a', 'b']) # Run data = pd.DataFrame({ 'a': [1, None, 1, np.nan, float('nan'), 1], 'b': [np.nan, 1, None, float('nan'), float('nan'), 1], }) valid = instance.is_valid(data) # Assert expected = pd.Series([True, True, False, True, False, True]) pd.testing.assert_series_equal(valid, expected)
32.836804
100
0.551699
67ff72011a09cb59f5a9600e05429813dd388b81
11,138
py
Python
src/opserver/alarmgen_cfg.py
UbuntuEvangelist/contrail-controller
4e8a992230f8f8e91e4f753e19b5442d9e1b446d
[ "Apache-2.0" ]
null
null
null
src/opserver/alarmgen_cfg.py
UbuntuEvangelist/contrail-controller
4e8a992230f8f8e91e4f753e19b5442d9e1b446d
[ "Apache-2.0" ]
null
null
null
src/opserver/alarmgen_cfg.py
UbuntuEvangelist/contrail-controller
4e8a992230f8f8e91e4f753e19b5442d9e1b446d
[ "Apache-2.0" ]
18
2017-01-12T09:28:44.000Z
2019-04-18T20:47:42.000Z
import argparse, os, ConfigParser, sys, re from pysandesh.sandesh_base import * from pysandesh.gen_py.sandesh.ttypes import SandeshLevel class CfgParser(object): def __init__(self, argv): self._devices = [] self._args = None self.__pat = None self._argv = argv or ' '.join(sys.argv[1:]) def parse(self): ''' command line example contrail-alarm-gen --log_level SYS_DEBUG --logging_level DEBUG --log_category test --log_file <stdout> --use_syslog --syslog_facility LOG_USER --disc_server_ip 127.0.0.1 --disc_server_port 5998 --worker_id 0 --partitions 5 --redis_password --http_server_port 5995 --redis_server_port 6379 --redis_uve_list 127.0.0.1:6379 --alarmgen_list 127.0.0.1:0 --kafka_broker_list 127.0.0.1:9092 --zk_list 127.0.0.1:2181 --rabbitmq_server_list 127.0.0.1:5672 --conf_file /etc/contrail/contrail-alarm-gen.conf ''' # Source any specified config/ini file # Turn off help, so we print all options in response to -h conf_parser = argparse.ArgumentParser(add_help=False) conf_parser.add_argument("-c", "--conf_file", action="append", help="Specify config file", metavar="FILE") args, remaining_argv = conf_parser.parse_known_args(self._argv.split()) defaults = { 'host_ip' : '127.0.0.1', 'collectors' : [], 'kafka_broker_list' : ['127.0.0.1:9092'], 'log_local' : False, 'log_level' : SandeshLevel.SYS_DEBUG, 'log_category' : '', 'log_file' : Sandesh._DEFAULT_LOG_FILE, 'use_syslog' : False, 'syslog_facility' : Sandesh._DEFAULT_SYSLOG_FACILITY, 'http_server_port' : 5995, 'worker_id' : '0', 'partitions' : 15, 'zk_list' : None, 'rabbitmq_server_list' : None, 'rabbitmq_port' : 5672, 'rabbitmq_user' : 'guest', 'rabbitmq_password' : 'guest', 'rabbitmq_vhost' : None, 'rabbitmq_ha_mode' : False, 'redis_uve_list' : ['127.0.0.1:6379'], 'alarmgen_list' : ['127.0.0.1:0'], 'sandesh_send_rate_limit' : SandeshSystem.get_sandesh_send_rate_limit(), 'kafka_prefix' :'', } redis_opts = { 'redis_server_port' : 6379, 'redis_password' : None, } disc_opts = { 'disc_server_ip' : None, 'disc_server_port' : 5998, } keystone_opts = { 'auth_host': '127.0.0.1', 'auth_protocol': 'http', 'auth_port': 35357, 'admin_user': 'user1', 'admin_password': 'password1', 'admin_tenant_name': 'default-domain' } config = None if args.conf_file: config = ConfigParser.SafeConfigParser() config.optionxform = str config.read(args.conf_file) if 'DEFAULTS' in config.sections(): defaults.update(dict(config.items('DEFAULTS'))) if 'REDIS' in config.sections(): redis_opts.update(dict(config.items('REDIS'))) if 'DISCOVERY' in config.sections(): disc_opts.update(dict(config.items('DISCOVERY'))) if 'KEYSTONE' in config.sections(): keystone_opts.update(dict(config.items('KEYSTONE'))) # Override with CLI options # Don't surpress add_help here so it will handle -h parser = argparse.ArgumentParser( # Inherit options from config_parser parents=[conf_parser], # print script description with -h/--help description=__doc__, # Don't mess with format of description formatter_class=argparse.RawDescriptionHelpFormatter, ) defaults.update(redis_opts) defaults.update(disc_opts) defaults.update(keystone_opts) parser.set_defaults(**defaults) parser.add_argument("--host_ip", help="Host IP address") parser.add_argument("--collectors", help="List of Collector IP addresses in ip:port format", nargs="+") parser.add_argument( "--log_file", help="Filename for the logs to be written to") parser.add_argument("--log_local", action="store_true", help="Enable local logging of sandesh messages") parser.add_argument( "--log_category", help="Category filter for local logging of sandesh messages") parser.add_argument( "--log_level", help="Severity level for local logging of sandesh messages") parser.add_argument("--use_syslog", action="store_true", help="Use syslog for logging") parser.add_argument("--syslog_facility", help="Syslog facility to receive log lines") parser.add_argument("--http_server_port", type=int, help="introspect server port") parser.add_argument("--worker_id", help="Worker Id") parser.add_argument("--partitions", type=int, help="Number of partitions for hashing UVE keys") parser.add_argument("--disc_server_ip", help="Discovery Server IP address") parser.add_argument("--disc_server_port", type=int, help="Discovery Server port") parser.add_argument("--redis_server_port", type=int, help="Redis server port") parser.add_argument("--redis_password", help="Redis server password") parser.add_argument("--kafka_broker_list", help="List of bootstrap kafka brokers in ip:port format", nargs="+") parser.add_argument("--zk_list", help="List of zookeepers in ip:port format", nargs="+") parser.add_argument("--rabbitmq_server_list", type=str, help="List of Rabbitmq server ip address separated by comma") parser.add_argument("--rabbitmq_port", help="Rabbitmq server port") parser.add_argument("--rabbitmq_user", help="Username for Rabbitmq") parser.add_argument("--rabbitmq_password", help="Password for Rabbitmq") parser.add_argument("--rabbitmq_vhost", help="vhost for Rabbitmq") parser.add_argument("--rabbitmq_ha_mode", action="store_true", help="True if the rabbitmq cluster is mirroring all queue") parser.add_argument("--redis_uve_list", help="List of redis-uve in ip:port format. For internal use only", nargs="+") parser.add_argument("--alarmgen_list", help="List of alarmgens in ip:inst format. For internal use only", nargs="+") parser.add_argument("--sandesh_send_rate_limit", type=int, help="Sandesh send rate limit in messages/sec") parser.add_argument("--kafka_prefix", help="System Prefix for Kafka") parser.add_argument("--auth_host", help="ip of keystone server") parser.add_argument("--auth_protocol", help="keystone authentication protocol") parser.add_argument("--auth_port", type=int, help="ip of keystone server") parser.add_argument("--admin_user", help="Name of keystone admin user") parser.add_argument("--admin_password", help="Password of keystone admin user") parser.add_argument("--admin_tenant_name", help="Tenant name for keystone admin user") self._args = parser.parse_args(remaining_argv) if type(self._args.collectors) is str: self._args.collectors = self._args.collectors.split() if type(self._args.kafka_broker_list) is str: self._args.kafka_broker_list= self._args.kafka_broker_list.split() if type(self._args.zk_list) is str: self._args.zk_list= self._args.zk_list.split() if type(self._args.redis_uve_list) is str: self._args.redis_uve_list = self._args.redis_uve_list.split() if type(self._args.redis_uve_list) is str: self._args.alarmgen_list = self._args.alarmgen_list.split() def _pat(self): if self.__pat is None: self.__pat = re.compile(', *| +') return self.__pat def _mklist(self, s): return self._pat().split(s) def redis_uve_list(self): return self._args.redis_uve_list def alarmgen_list(self): return self._args.alarmgen_list def discovery(self): return {'server':self._args.disc_server_ip, 'port':self._args.disc_server_port } def collectors(self): return self._args.collectors def kafka_broker_list(self): return self._args.kafka_broker_list def zk_list(self): return self._args.zk_list; def log_local(self): return self._args.log_local def log_category(self): return self._args.log_category def log_level(self): return self._args.log_level def log_file(self): return self._args.log_file def use_syslog(self): return self._args.use_syslog def syslog_facility(self): return self._args.syslog_facility def http_port(self): return self._args.http_server_port def worker_id(self): return self._args.worker_id def partitions(self): return self._args.partitions def redis_password(self): return self._args.redis_password def redis_server_port(self): return self._args.redis_server_port def host_ip(self): return self._args.host_ip def sandesh_send_rate_limit(self): return self._args.sandesh_send_rate_limit def kafka_prefix(self): return self._args.kafka_prefix def rabbitmq_params(self): return {'servers': self._args.rabbitmq_server_list, 'port': self._args.rabbitmq_port, 'user': self._args.rabbitmq_user, 'password': self._args.rabbitmq_password, 'vhost': self._args.rabbitmq_vhost, 'ha_mode': self._args.rabbitmq_ha_mode} def keystone_params(self): return {'auth_host': self._args.auth_host, 'auth_protocol': self._args.auth_protocol, 'auth_port': self._args.auth_port, 'admin_user': self._args.admin_user, 'admin_password': self._args.admin_password, 'admin_tenant_name': self._args.admin_tenant_name}
38.406897
84
0.580356
99cdaeea0abf585ce66f2e7d98a1778de9913ce6
2,702
py
Python
Server/recipe/tool.py
it-intensive-programming2/HCI_project
1530c181ae2bad62bd216aa851cea60ba6594738
[ "MIT" ]
2
2021-08-05T02:33:17.000Z
2021-08-19T17:10:57.000Z
Server/recipe/tool.py
it-intensive-programming2/HCI_project
1530c181ae2bad62bd216aa851cea60ba6594738
[ "MIT" ]
1
2021-01-04T01:39:02.000Z
2021-01-04T01:39:02.000Z
Server/recipe/tool.py
it-intensive-programming2/recipe_helper
1530c181ae2bad62bd216aa851cea60ba6594738
[ "MIT" ]
null
null
null
import os import sys import urllib.request import json from fatsecret import Fatsecret from tqdm import tqdm import pandas as pd import matplotlib.pyplot as plt from wordcloud import WordCloud import numpy as np import base64 from PIL import Image import cv2 from collections import Counter # 네이버 파파고 번역 api def translate(word): client_id = "l84GX3EyER6GPhqOznzE" client_secret = "Rb1fwwcZSc" encText = urllib.parse.quote(word) data = "source=ko&target=en&text=" + encText url = "https://openapi.naver.com/v1/papago/n2mt" request = urllib.request.Request(url) request.add_header("X-Naver-Client-Id", client_id) request.add_header("X-Naver-Client-Secret", client_secret) response = urllib.request.urlopen(request, data=data.encode("utf-8")) rescode = response.getcode() if rescode == 200: response_body = response.read().decode("utf-8") tmp = json.loads(response_body) return tmp["message"]["result"]["translatedText"] else: print("Error Code:" + rescode) def getCalorie(recipeID): fs = Fatsecret( "9b00b592903147709dc78f969353a598", "d2d2abbf973d453388512a33dd036f4a" ) df = pd.read_csv("/var/www/Appserver3/recipe/cat2_eng.csv") word = df[df.id == int(recipeID)].cat2.values[0] # 영어로 바꿔서 search_target = translate(word) # fatsecret에 검색 foods = fs.foods_search(search_target) # 검색 결과가 많아 검색결과중 첫번째를 선택 nut = foods[0]["food_description"] nut = nut.split("|") nut[0] = nut[0].split("-")[1] nutrient = {} for b in nut: i = b.split(":") i[0] = i[0].strip() nutrient[i[0]] = i[1].strip() # # 칼로리, 탄수, 지방, 단백질 # print(nutrient["Calories"]) # print(nutrient["Carbs"]) # print(nutrient["Fat"]) # print(nutrient["Protein"]) return [ nutrient["Calories"], nutrient["Carbs"], nutrient["Fat"], nutrient["Protein"], ] def generateWordCloud(word_list, userID): image_dir = "/var/www/Appserver3/recipe/wc_image/" + userID + ".png" word_list = Counter(word_list) mask = np.array(Image.open("/var/www/Appserver3/recipe/chef.png")) wc = WordCloud( font_path="/var/www/Appserver3/recipe/NanumSquareRoundR.ttf", background_color="rgba(255, 255, 255, 0)", mode="RGBA", max_words=2000, mask=mask, max_font_size=100, ) wc = wc.generate_from_frequencies(word_list) wc.to_file(image_dir) img_str = "" with open(image_dir, "rb") as img: img_str = base64.b64encode(img.read()) with open("/var/www/Appserver3/recipe/wc_image/" + userID + ".txt", "w") as f: f.write(str(img_str))
26.752475
82
0.641377
eb558aa16320e9940f99909f5e55630c3cace359
2,014
py
Python
tests/providers/google/suite/operators/test_sheets.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
3
2015-08-25T13:56:44.000Z
2020-03-21T10:26:58.000Z
tests/providers/google/suite/operators/test_sheets.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
37
2020-07-21T07:50:02.000Z
2022-03-29T22:31:28.000Z
tests/providers/google/suite/operators/test_sheets.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
4
2020-07-17T14:02:28.000Z
2022-02-23T04:29:58.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mock from airflow.providers.google.suite.operators.sheets import GoogleSheetsCreateSpreadsheetOperator GCP_CONN_ID = "test" SPREADSHEET_URL = "https://example/sheets" SPREADSHEET_ID = "1234567890" class TestGoogleSheetsCreateSpreadsheet: @mock.patch("airflow.providers.google.suite.operators.sheets.GSheetsHook") @mock.patch( "airflow.providers.google.suite.operators.sheets.GoogleSheetsCreateSpreadsheetOperator.xcom_push" ) def test_execute(self, mock_xcom, mock_hook): context = {} spreadsheet = mock.MagicMock() mock_hook.return_value.create_spreadsheet.return_value = { "spreadsheetId": SPREADSHEET_ID, "spreadsheetUrl": SPREADSHEET_URL, } op = GoogleSheetsCreateSpreadsheetOperator( task_id="test_task", spreadsheet=spreadsheet, gcp_conn_id=GCP_CONN_ID ) op.execute(context) mock_hook.return_value.create_spreadsheet.assert_called_once_with( spreadsheet=spreadsheet ) calls = [ mock.call(context, "spreadsheet_id", SPREADSHEET_ID), mock.call(context, "spreadsheet_url", SPREADSHEET_URL), ] mock_xcom.has_calls(calls)
38
105
0.727408
ddb90783f9e38ba7b032eac08f569ba19c0085cb
720
py
Python
app/core/tests/test_commands.py
tsiaGeorge/recipe-app-api
eed9387aafb6f3efb169ff93e315a59baec8752f
[ "MIT" ]
null
null
null
app/core/tests/test_commands.py
tsiaGeorge/recipe-app-api
eed9387aafb6f3efb169ff93e315a59baec8752f
[ "MIT" ]
11
2020-02-11T23:38:02.000Z
2022-02-10T07:14:08.000Z
app/core/tests/test_commands.py
tsiaGeorge/recipe-app-api
eed9387aafb6f3efb169ff93e315a59baec8752f
[ "MIT" ]
null
null
null
from unittest.mock import patch from django.core.management import call_command from django.db import OperationalError from django.test import TestCase class CommandTests(TestCase): @patch('django.db.utils.ConnectionHandler.__getitem__', return_value=True) def test_wait_for_db_ready(self, gi): gi.return_value = True call_command('wait_for_db') self.assertEqual(gi.call_count, 1) @patch('time.sleep', return_value=True) @patch('django.db.utils.ConnectionHandler.__getitem__', side_effect=[OperationalError] * 5 + [True]) def test_wait_for_db_ready_after_5_attempts(self, gi, ts): call_command('wait_for_db') self.assertEqual(gi.call_count, 6)
32.727273
78
0.731944
670cbfd0185dcaef0fd19fdc1d58f30afd4cd157
1,232
py
Python
sscutils/tests/test_validation.py
papsebestyen/sscutils
dff8b62ab31c9dfe1494264f9319e287945762bc
[ "MIT" ]
null
null
null
sscutils/tests/test_validation.py
papsebestyen/sscutils
dff8b62ab31c9dfe1494264f9319e287945762bc
[ "MIT" ]
21
2021-09-15T15:31:22.000Z
2022-03-20T17:10:50.000Z
sscutils/tests/test_validation.py
papsebestyen/sscutils
dff8b62ab31c9dfe1494264f9319e287945762bc
[ "MIT" ]
2
2021-09-08T14:12:00.000Z
2021-09-29T10:58:08.000Z
import pytest from sscutils.artifact_context import ArtifactContext from sscutils.exceptions import NotAnArtifactException from sscutils.utils import cd_into from sscutils.validation_functions import is_repo_name, is_step_name @pytest.mark.parametrize( "repo_name,is_valid", [ ("abc", True), ("abc123", False), ("abc-a", True), ("abc--a", False), ("-abc", False), ("abc-", False), ], ) def test_repo_name_valid(repo_name, is_valid): if is_valid: is_repo_name(repo_name) else: with pytest.raises(NameError): is_repo_name(repo_name) @pytest.mark.parametrize( "step_name,is_valid", [ ("abc", True), ("abc123", False), ("abc_a", True), ("abc__a", False), ("_abc", False), ("abc_", False), ], ) def test_step_name_valid(step_name, is_valid): if is_valid: is_step_name(step_name) else: with pytest.raises(NameError): is_step_name(step_name) def test_failing_config(tmp_path): with cd_into(tmp_path): with pytest.raises(NotAnArtifactException): ArtifactContext() def test_missing_fk(tmp_path): # TODO pass
22
68
0.62013
902118645f30e4b792be4fd623738f85b904fdca
116
py
Python
library/admin.py
Chenthan/Onlinelibrary
69c76d48702276ba23fbe229ec68db4ef571fef5
[ "BSD-3-Clause" ]
null
null
null
library/admin.py
Chenthan/Onlinelibrary
69c76d48702276ba23fbe229ec68db4ef571fef5
[ "BSD-3-Clause" ]
null
null
null
library/admin.py
Chenthan/Onlinelibrary
69c76d48702276ba23fbe229ec68db4ef571fef5
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import admin from .models import reader # Register your models here. admin.site.register(reader)
29
32
0.818966
ed00ab1478a55d8ff5477fc1e634512d4fc1fb1d
7,243
py
Python
torchmetrics/utilities/data.py
pranjaldatta/metrics
078671fa0b28d7d0a9c505b077d9acc8ac28a69d
[ "Apache-2.0" ]
1
2021-05-09T16:11:48.000Z
2021-05-09T16:11:48.000Z
torchmetrics/utilities/data.py
pranjaldatta/metrics
078671fa0b28d7d0a9c505b077d9acc8ac28a69d
[ "Apache-2.0" ]
null
null
null
torchmetrics/utilities/data.py
pranjaldatta/metrics
078671fa0b28d7d0a9c505b077d9acc8ac28a69d
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, List, Mapping, Optional, Sequence, Union import torch from torch import Tensor, tensor from torchmetrics.utilities.prints import rank_zero_warn METRIC_EPS = 1e-6 def dim_zero_cat(x: Union[Tensor, List[Tensor]]) -> Tensor: x = x if isinstance(x, (list, tuple)) else [x] x = [y.unsqueeze(0) if y.numel() == 1 and y.ndim == 0 else y for y in x] return torch.cat(x, dim=0) def dim_zero_sum(x: Tensor) -> Tensor: return torch.sum(x, dim=0) def dim_zero_mean(x: Tensor) -> Tensor: return torch.mean(x, dim=0) def _flatten(x): return [item for sublist in x for item in sublist] def to_onehot( label_tensor: Tensor, num_classes: Optional[int] = None, ) -> Tensor: """ Converts a dense label tensor to one-hot format Args: label_tensor: dense label tensor, with shape [N, d1, d2, ...] num_classes: number of classes C Returns: A sparse label tensor with shape [N, C, d1, d2, ...] Example: >>> x = torch.tensor([1, 2, 3]) >>> to_onehot(x) tensor([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) """ if num_classes is None: num_classes = int(label_tensor.max().detach().item() + 1) tensor_onehot = torch.zeros( label_tensor.shape[0], num_classes, *label_tensor.shape[1:], dtype=label_tensor.dtype, device=label_tensor.device, ) index = label_tensor.long().unsqueeze(1).expand_as(tensor_onehot) return tensor_onehot.scatter_(1, index, 1.0) def select_topk(prob_tensor: Tensor, topk: int = 1, dim: int = 1) -> Tensor: """ Convert a probability tensor to binary by selecting top-k highest entries. Args: prob_tensor: dense tensor of shape ``[..., C, ...]``, where ``C`` is in the position defined by the ``dim`` argument topk: number of highest entries to turn into 1s dim: dimension on which to compare entries Returns: A binary tensor of the same shape as the input tensor of type torch.int32 Example: >>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]]) >>> select_topk(x, topk=2) tensor([[0, 1, 1], [1, 1, 0]], dtype=torch.int32) """ zeros = torch.zeros_like(prob_tensor) topk_tensor = zeros.scatter(dim, prob_tensor.topk(k=topk, dim=dim).indices, 1.0) return topk_tensor.int() def to_categorical(tensor: Tensor, argmax_dim: int = 1) -> Tensor: """ Converts a tensor of probabilities to a dense label tensor Args: tensor: probabilities to get the categorical label [N, d1, d2, ...] argmax_dim: dimension to apply Return: A tensor with categorical labels [N, d2, ...] Example: >>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]]) >>> to_categorical(x) tensor([1, 0]) """ return torch.argmax(tensor, dim=argmax_dim) def get_num_classes( preds: Tensor, target: Tensor, num_classes: Optional[int] = None, ) -> int: """ Calculates the number of classes for a given prediction and target tensor. Args: preds: predicted values target: true labels num_classes: number of classes if known Return: An integer that represents the number of classes. """ num_target_classes = int(target.max().detach().item() + 1) num_pred_classes = int(preds.max().detach().item() + 1) num_all_classes = max(num_target_classes, num_pred_classes) if num_classes is None: num_classes = num_all_classes elif num_classes != num_all_classes: rank_zero_warn( f"You have set {num_classes} number of classes which is" f" different from predicted ({num_pred_classes}) and" f" target ({num_target_classes}) number of classes", RuntimeWarning, ) return num_classes def apply_to_collection( data: Any, dtype: Union[type, tuple], function: Callable, *args, wrong_dtype: Optional[Union[type, tuple]] = None, **kwargs, ) -> Any: """ Recursively applies a function to all elements of a certain dtype. Args: data: the collection to apply the function to dtype: the given function will be applied to all elements of this dtype function: the function to apply *args: positional arguments (will be forwarded to calls of ``function``) wrong_dtype: the given function won't be applied if this type is specified and the given collections is of the :attr:`wrong_type` even if it is of type :attr`dtype` **kwargs: keyword arguments (will be forwarded to calls of ``function``) Returns: the resulting collection Example: >>> apply_to_collection(torch.tensor([8, 0, 2, 6, 7]), dtype=Tensor, function=lambda x: x ** 2) tensor([64, 0, 4, 36, 49]) >>> apply_to_collection([8, 0, 2, 6, 7], dtype=int, function=lambda x: x ** 2) [64, 0, 4, 36, 49] >>> apply_to_collection(dict(abc=123), dtype=int, function=lambda x: x ** 2) {'abc': 15129} """ elem_type = type(data) # Breaking condition if isinstance(data, dtype) and (wrong_dtype is None or not isinstance(data, wrong_dtype)): return function(data, *args, **kwargs) # Recursively apply to collection items if isinstance(data, Mapping): return elem_type({k: apply_to_collection(v, dtype, function, *args, **kwargs) for k, v in data.items()}) if isinstance(data, tuple) and hasattr(data, '_fields'): # named tuple return elem_type(*(apply_to_collection(d, dtype, function, *args, **kwargs) for d in data)) if isinstance(data, Sequence) and not isinstance(data, str): return elem_type([apply_to_collection(d, dtype, function, *args, **kwargs) for d in data]) # data is neither of dtype, nor a collection return data def get_group_indexes(indexes: Tensor) -> List[Tensor]: """ Given an integer `torch.Tensor` `indexes`, return a `torch.Tensor` of indexes for each different value in `indexes`. Args: indexes: a `torch.Tensor` Return: A list of integer `torch.Tensor`s Example: >>> indexes = torch.tensor([0, 0, 0, 1, 1, 1, 1]) >>> get_group_indexes(indexes) [tensor([0, 1, 2]), tensor([3, 4, 5, 6])] """ res = dict() for i, _id in enumerate(indexes): _id = _id.item() if _id in res: res[_id] += [i] else: res[_id] = [i] return [tensor(x, dtype=torch.long) for x in res.values()]
31.354978
114
0.627226
f6db116d38364861f5c10d0885c6e59f65964bea
7,247
py
Python
pson.py
antonioluna/proyecto_JSON
b413a2e699116f17cba60d6966001d5876494e19
[ "Unlicense" ]
null
null
null
pson.py
antonioluna/proyecto_JSON
b413a2e699116f17cba60d6966001d5876494e19
[ "Unlicense" ]
null
null
null
pson.py
antonioluna/proyecto_JSON
b413a2e699116f17cba60d6966001d5876494e19
[ "Unlicense" ]
null
null
null
#-*- coding: utf-8 -*- import json #Obtiene los codigos de los distritos def recorrer(dato1, dato2): datos = {} for x in educacionr: datos[x[dato1]] = x[dato2] return datos #Obtiene las instituciones por distrito def instituciones(codigo): datos = {} for x in educacionr: if x[cod_dist] == codigo: datos[x[cod_est]] = x[nom_inst] return datos #Obtiene el gestor de una institucion en concreto def gestor(cod): datos = [] gestor = [] institucion = [] for x in educacionr: if x[cod_est] == cod: gestor.extend([x[cod_dept], x[nom_dept]]) institucion.extend([x[cod_inst], x[nom_inst]]) datos.extend([gestor]) datos.extend([institucion]) return datos #Función que obtiene el tipo de gestión de las instituciones de un distrito def tipo(codigo): datos = [""] publica = {} privada = {} concertada = {} for x in educacionr: datos[0] = x[nom_dist] if x[cod_dist] == codigo: if x[gestion] == "OFICIAL": publica[x[cod_est]] = x[nom_inst] if x[gestion] == "PRIVADA": privada[x[cod_est]] = x[nom_inst] if x[gestion] == "PRIV.SUBVENCIONADA": concertada[x[cod_est]] = x[nom_inst] datos.extend([publica]) datos.extend([privada]) datos.extend([concertada]) return datos ########################################################## # # # Abriendo fichero json # # # ########################################################## with open("./DATA/educacion.json", "r") as educacion: educacionr = json.load(educacion) ########################################################## # # # Valores fichero json # # # ########################################################## cod_dept = "codigo_departamento" cod_dist = "codigo_distrito" cod_est = "codigo_establecimiento" cod_inst = "codigo_institucion" cod_zona = "codigo_zona" nom_barrio = "nombre_barrio_localidad" nom_dept = "nombre_departamento" nom_dist = "nombre_distrito" nom_inst = "nombre_institucion" nom_zona = "nombre_zona" gestion = "sector_o_tipo_gestion" ########################################################## # # # Menú principal # # # ########################################################## print "\nBienvenido a mi proyecto de JSON" while True: print "\n¿Que quieres hacer?\n\n1 Listar distritos\n2 Listar de \ instituciones de un distrito\n3 Ver el departamento gestor de una \ institución\n4 Ver la cantidad de instituciones privadas / públicas de un \ distrito\n5 Ver información detallada sobre una institución en concreto\n6 \ Salir" opcion = raw_input("\nElija opción: ") ########################################################## # # # Impresión de lista de distritos # # # ########################################################## if opcion == "1": distritos = recorrer(cod_dist, nom_dist) print "\nCód --- Nombre dst\n" for x in distritos: print x + " --- " + distritos[x] ########################################################## # # # Impresión de lista de instituciones # # # ########################################################## if opcion == "2": elec = raw_input("\nIntroduzca el código del distrito: ") insti = instituciones(elec) print "En el distrito %s se encuentran las siguientes instituciones:"\ % (elec) print "\nCód --- Nombre dst\n" for x in insti: print x + " --- " + insti[x] if opcion == "3": cod = raw_input("\nIntroduzca el código de la institución: ") gest = gestor(cod) print "\nInstitución: %s - %s\nGestor: %s - %s"\ % (str(gest[1][0]), str(gest[1][1]), str(gest[0][0]), str(gest[0][1])) ########################################################## # # # Cantidad pública/privada # # # ########################################################## if opcion == "4": num = raw_input("\nIntroduzca el código del distrito: ") ppc = tipo(num) print "Distrito: %s --- %s:" % (num, ppc[0]) print "\nInstituciones Oficiales: %d\n" % (len(ppc[1])) print " Cod --- Nombre Ins." for ofi in ppc[1]: print ofi + " --- " + ppc[1][ofi] print "\nInstituciones Privadas: %d" % (len(ppc[2])) print " Cod --- Nombre Ins." for pri in ppc[2]: print pri + " --- " + ppc[2][pri] print "\nInstituciones Concertadas: %d" % (len(ppc[3])) print " Cod --- Nombre Ins." for con in ppc[3]: print con + " --- " + ppc[3][con] ########################################################## # # # Información detallada de institución # # # ########################################################## if opcion == "5": num = raw_input("\nIntroduzca el código de la institución: ") for institucion in educacionr: if institucion[cod_est] == num: print "\nCódigo de distrito: %s"\ % (str(institucion[cod_dist])) print "Nombre de distrito: %s"\ % (str(institucion[nom_dist])) print "Tipo de gestión: %s"\ % (str(institucion[gestion])) print "Código de departamento gestor: %s"\ % (str(institucion[cod_dept])) print "Nombre de departamento gestor: %s"\ % (str(institucion[nom_dept])) print "Código de institucion gestora: %s"\ % (str(institucion[cod_inst])) print "Nombre de institución: %s"\ % (str(institucion[nom_inst])) print "Código de institución: %s"\ % (str(institucion[cod_est])) print "Código de zona: %s"\ % (str(institucion[cod_zona])) print "Zona: %s"\ % (str(institucion[nom_zona])) print "Nombre del barrio: %s"\ % (str(institucion[nom_barrio])) if opcion == "6": print "\n\nAdiós\n\n" break
35.699507
78
0.412723
cdfc8c420400dfac25a6e569fe313402509af689
11,149
py
Python
Raws-Maji/Lapis ReLiGHTs [BD]/lapis_mv02.py
Ichunjo/encode-script
389a9f497e637eaade6f99acee816636856961d4
[ "MIT" ]
36
2019-11-08T20:50:07.000Z
2022-03-23T05:43:55.000Z
Raws-Maji/Lapis ReLiGHTs [BD]/lapis_mv02.py
Ichunjo/encode-script
389a9f497e637eaade6f99acee816636856961d4
[ "MIT" ]
1
2019-11-08T21:26:16.000Z
2019-11-08T21:26:16.000Z
Raws-Maji/Lapis ReLiGHTs [BD]/lapis_mv02.py
Ichunjo/encode-script
389a9f497e637eaade6f99acee816636856961d4
[ "MIT" ]
7
2019-11-08T21:10:47.000Z
2022-03-28T21:57:04.000Z
"""Lapis script""" __author__ = 'Vardë' import os import sys import shlex import subprocess from typing import NamedTuple, Optional, Dict, Any from pathlib import Path from functools import partial from adptvgrnMod import adptvgrnMod import vardefunc as vdf import muvsfunc as muvf import mvsfunc as mvf import G41Fun as gf from vsutil import depth, get_y, iterate, get_w, insert_clip import lvsfunc as lvf import vapoursynth as vs core = vs.core core.num_threads = 12 class InfosBD(NamedTuple): path: str src: str src_clip: vs.VideoNode frame_start: int frame_end: int src_cut: vs.VideoNode a_src: str a_src_cut: str a_enc_cut: str name: str output: str chapter: str output_final: str def infos_bd(path, frame_start, frame_end) -> InfosBD: src = path + '.m2ts' src_clip = lvf.src(src, stream_index=0, ff_loglevel=4) src_cut = src_clip[frame_start:frame_end] if (frame_start or frame_end) else src_clip a_src = path + '_track_{}.wav' a_src_cut = path + '_cut_track_{}.wav' a_enc_cut = path + '_track_{}.m4a' name = Path(sys.argv[0]).stem output = name + '.265' chapter = 'chapters/' + name + '.txt' output_final = name + '.mkv' return InfosBD(path, src, src_clip, frame_start, frame_end, src_cut, a_src, a_src_cut, a_enc_cut, name, output, chapter, output_final) JPBD = infos_bd(r'[BDMV][201223][GNXA-2293][Lapis_Re_LiGHTs][vol.3 Fin]\LAPIS_RE_LIGHTS_3\BDMV\STREAM\00018', 24, 2477) def hybrid_denoise(clip: vs.VideoNode, knlm_h: float = 0.5, sigma: float = 2, knlm_args: Optional[Dict[str, Any]] = None, bm3d_args: Optional[Dict[str, Any]] = None)-> vs.VideoNode: """Denoise luma with BM3D and chroma with knlmeansCL Args: clip (vs.VideoNode): Source clip. knlm_h (float, optional): h parameter in knlm.KNLMeansCL. Defaults to 0.5. sigma (float, optional): Sigma parameter in mvf.BM3D. Defaults to 2. knlm_args (Optional[Dict[str, Any]], optional): Optional extra arguments for knlm.KNLMeansCL. Defaults to None. bm3d_args (Optional[Dict[str, Any]], optional): Optional extra arguments for mvf.BM3D. Defaults to None. Returns: vs.VideoNode: Denoised clip """ knargs = dict(a=2, d=3, device_type='gpu', device_id=0, channels='UV') if knlm_args is not None: knargs.update(knlm_args) b3args = dict(radius1=1, profile1='fast') if bm3d_args is not None: b3args.update(bm3d_args) luma = get_y(clip) luma = mvf.BM3D(luma, sigma, **b3args) chroma = core.knlm.KNLMeansCL(clip, h=knlm_h, **knargs) return vdf.merge_chroma(luma, chroma) def eedi3_upscale(clip: vs.VideoNode, correct_shift: bool = True)-> vs.VideoNode: nnargs: Dict[str, Any] = dict(nsize=4, nns=4, qual=2, etype=1, pscrn=1) eeargs: Dict[str, Any] = dict(alpha=0.2, beta=0.25, gamma=1000, nrad=2, mdis=20) clip = clip.std.Transpose() clip = clip.eedi3m.EEDI3(0, True, sclip=clip.nnedi3.nnedi3(0, True, **nnargs), **eeargs) clip = clip.std.Transpose() clip = clip.eedi3m.EEDI3(0, True, sclip=clip.nnedi3.nnedi3(0, True, **nnargs), **eeargs) return core.resize.Bicubic(clip, src_top=.5, src_left=.5) if correct_shift else clip def sraa_eedi3(clip: vs.VideoNode, rep: Optional[int] = None, **eedi3_args: Any)-> vs.VideoNode: """Drop half the field with eedi3+nnedi3 and interpolate them. Args: clip (vs.VideoNode): Source clip. rep (Optional[int], optional): Repair mode. Defaults to None. Returns: vs.VideoNode: AA'd clip """ nnargs: Dict[str, Any] = dict(nsize=0, nns=3, qual=1) eeargs: Dict[str, Any] = dict(alpha=0.2, beta=0.6, gamma=40, nrad=2, mdis=20) eeargs.update(eedi3_args) eedi3_fun, nnedi3_fun = core.eedi3m.EEDI3, core.nnedi3cl.NNEDI3CL flt = core.std.Transpose(clip) flt = eedi3_fun(flt, 0, False, sclip=nnedi3_fun(flt, 0, False, False, **nnargs), **eeargs) flt = core.std.Transpose(flt) flt = eedi3_fun(flt, 0, False, sclip=nnedi3_fun(flt, 0, False, False, **nnargs), **eeargs) if rep: flt = core.rgsf.Repair(flt, clip, rep) return flt def do_filter(): """Vapoursynth filtering""" src = JPBD.src_cut src = depth(src, 16) out = src h = 846 w = get_w(h) cubic_filters = ['catrom', 'mitchell', 'robidoux', 'robidoux sharp'] cubic_filters = [vdf.get_bicubic_params(cf) for cf in cubic_filters] degrain = hybrid_denoise(out, 0.35, 1.2, dict(a=2, d=1)) out = degrain y = get_y(out) y32 = depth(y, 32) lineart = vdf.edge_detect(y32, 'kirsch', 0.055, (1, 1)).std.Median().std.Inflate() descale_clips = [core.descale.Debicubic(y32, w, h, b, c) for b, c in cubic_filters] descale = core.std.Expr(descale_clips, 'x y z a min min min x y z max max min') conv = core.std.Convolution(descale, [1, 2, 1, 2, 0, 2, 1, 2, 1]) thr, coef = 0.013, 3 descale_fix = core.std.Expr([descale, conv], f'x y - abs {thr} < y x ?').std.PlaneStats() adapt_mask = core.adg.Mask(descale_fix, 12).std.Invert().std.Expr(f'x 0.5 - {coef} * 0.5 + 0 max 1 min') descale = core.std.MaskedMerge(descale, descale_fix, adapt_mask) upscale = vdf.fsrcnnx_upscale(descale, w*2, h*2, r'shaders\FSRCNNX_x2_56-16-4-1.glsl', upscaler_smooth=eedi3_upscale, profile='zastin', sharpener=partial(gf.DetailSharpen, sstr=1.25, power=4)) aa_strong = sraa_eedi3(upscale, 13, alpha=0.3, beta=0.5, gamma=40) aa = aa_strong down = muvf.SSIM_downsample(aa, src.width, src.height, filter_param_a=0, filter_param_b=0) upscale = depth( core.std.MaskedMerge(y32, down, lineart), 16 ) merged = vdf.merge_chroma(upscale, out) out = merged y = get_y(out) detail_light_mask = lvf.denoise.detail_mask(y, brz_a=2500, brz_b=1200) pf = iterate(out, core.std.Maximum, 2).std.Convolution([10] * 9, planes=0) diff = core.std.MakeDiff(out, pf) deband = core.f3kdb.Deband(pf, 17, 36, 36, 36, 12, 12, 2, keep_tv_range=True, output_depth=16) deband = core.std.MergeDiff(deband, diff) deband = core.std.MaskedMerge(deband, out, detail_light_mask) out = deband grain = adptvgrnMod(out, 0.25, 0.15, size=out.height/h, sharp=80, luma_scaling=10, static=True) out = grain # # Restore 1080p stuff ref = src rescale_mask = vdf.drm(ref, h, mthr=65, sw=4, sh=4) credit = out credit = core.std.MaskedMerge(credit, ref, rescale_mask, 0) credit = lvf.rfs(credit, ref, [(719, 806), (2357, src.num_frames-1)]) out = credit return depth(out, 10).std.Limiter(16<<2, [235<<2, 240<<2]) def sec_to_time(secs): hours = secs / 3600 minutes = (secs % 3600) / 60 secs = secs % 60 return "%02d:%02d:%05.4f" % (hours, minutes, secs) def do_encode(clip): """Compression with x26X""" # vdf.generate_keyframes(JPBD.src_cut, JPBD.name + '_keyframes.txt') if not os.path.isfile(JPBD.output): print('\n\n\nVideo encoding') # bits = clip.format.bits_per_sample # x265_cmd = f'x265 -o {JPBD.output} - --y4m' + ' ' # x265_cmd += f'--csv {JPBD.name}_log_x265.csv --csv-log-level 2' + ' ' # x265_cmd += '--preset veryslow' + ' ' # x265_cmd += f'--frames {clip.num_frames} --fps 24000/1001 --output-depth 10' + ' ' # x265_cmd += '--high-tier --ref 6' + ' ' # x265_cmd += '--rd 6 --ctu 64 --min-cu-size 8 --limit-refs 0 --no-limit-modes --rect --amp --no-early-skip --rskip 0 --tu-intra-depth 3 --tu-inter-depth 3 --rd-refine --rdoq-level 2 --limit-tu 0' + ' ' # x265_cmd += '--max-merge 5 --me star --subme 7 --merange 57 --weightb' + ' ' # x265_cmd += '--no-strong-intra-smoothing' + ' ' # x265_cmd += '--psy-rd 2.0 --psy-rdoq 1.5 --no-open-gop --keyint 360 --min-keyint 24 --scenecut 45 --rc-lookahead 120 --b-adapt 2 --bframes 16' + ' ' # x265_cmd += '--crf 15 --aq-mode 3 --aq-strength 1.0 --cutree --qcomp 0.70' + ' ' # x265_cmd += '--deblock=-1:-1 --no-sao --no-sao-non-deblock' + ' ' # x265_cmd += '--sar 1 --range limited --colorprim 1 --transfer 1 --colormatrix 1 --min-luma 64 --max-luma 940' + ' ' # print("Encoder command: ", " ".join(shlex.split(x265_cmd)), "\n") # process = subprocess.Popen(shlex.split(x265_cmd), stdin=subprocess.PIPE) # clip.output(process.stdin, y4m=True, progress_update=lambda value, endvalue: # print(f"\rVapourSynth: {value}/{endvalue} ~ {100 * value // endvalue}% || Encoder: ", end="")) # process.communicate() ffv1_args = [ 'ffmpeg', '-i', '-', '-vcodec', 'ffv1', '-coder', '1', '-context', '0', '-g', '1', '-level', '3', '-threads', '8', '-slices', '24', '-slicecrc', '1', JPBD.name + "_lossless.mkv" ] print("Encoder command: ", " ".join(ffv1_args), "\n") process = subprocess.Popen(ffv1_args, stdin=subprocess.PIPE) clip.output(process.stdin, y4m=True, progress_update=lambda value, endvalue: print(f"\rVapourSynth: {value}/{endvalue} ~ {100 * value // endvalue}% || Encoder: ", end="")) process.communicate() print('\n\n\nAudio extraction') eac3to_args = ['eac3to', JPBD.src, '2:', JPBD.a_src.format(1), '-log=NUL'] subprocess.run(eac3to_args, text=True, check=True, encoding='utf-8') qaac_args = ['--no-delay', '--no-optimize', '--threading', '--ignorelength', '--start', sec_to_time(JPBD.frame_start / (clip.fps_num/clip.fps_den)), '--end', sec_to_time(JPBD.frame_end / (clip.fps_num/clip.fps_den))] qaac_args_more = ['qaac', JPBD.a_src.format(1), '-V', '127', *qaac_args, '-o', JPBD.a_enc_cut.format(1)] subprocess.run(qaac_args_more, text=True, check=True, encoding='utf-8') ffprobe_args = ['ffprobe', '-loglevel', 'quiet', '-show_entries', 'format_tags=encoder', '-print_format', 'default=nokey=1:noprint_wrappers=1', JPBD.a_enc_cut.format(1)] encoder_name = subprocess.check_output(ffprobe_args, shell=True, encoding='utf-8') f = open("tags_aac.xml", 'w') f.writelines(['<?xml version="1.0"?>', '<Tags>', '<Tag>', '<Targets>', '</Targets>', '<Simple>', '<Name>ENCODER</Name>', f'<String>{encoder_name}</String>', '</Simple>', '</Tag>', '</Tags>']) f.close() print('\nFinal muxing') mkv_args = ['mkvmerge', '-o', JPBD.output_final, '--track-name', '0:HEVC BDRip by Vardë@Raws-Maji', '--language', '0:jpn', JPBD.output, '--tags', '0:tags_aac.xml', '--track-name', '0:AAC 2.0', '--language', '0:jpn', JPBD.a_enc_cut.format(1)] subprocess.run(mkv_args, text=True, check=True, encoding='utf-8') # Clean up files = [JPBD.a_src, JPBD.a_src_cut.format(1), JPBD.a_enc_cut.format(1), 'tags_aac.xml'] for file in files: if os.path.exists(file): os.remove(file) if __name__ == '__main__': FILTERED = do_filter() do_encode(FILTERED)
37.039867
210
0.622388
a6ad55baa5266055ab5f388c430976a0ff7119d2
9
py
Python
test.py
eaeschl/Web-Python-html-css
36fe0c5676477e4a963932d35961565f5e016d6b
[ "MIT" ]
null
null
null
test.py
eaeschl/Web-Python-html-css
36fe0c5676477e4a963932d35961565f5e016d6b
[ "MIT" ]
null
null
null
test.py
eaeschl/Web-Python-html-css
36fe0c5676477e4a963932d35961565f5e016d6b
[ "MIT" ]
null
null
null
print()
4.5
8
0.555556
61129eaeb84785803d8c3d796b2d60d5d4e77c9f
7,800
py
Python
GitSvnServer/server.py
slonopotamus/git_svn_server
80889d9557c99873ceaa58e5260b8edfa30bcffb
[ "BSD-3-Clause" ]
1
2016-01-24T11:59:25.000Z
2016-01-24T11:59:25.000Z
GitSvnServer/server.py
slonopotamus/git_svn_server
80889d9557c99873ceaa58e5260b8edfa30bcffb
[ "BSD-3-Clause" ]
null
null
null
GitSvnServer/server.py
slonopotamus/git_svn_server
80889d9557c99873ceaa58e5260b8edfa30bcffb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python import re from SocketServer import * import signal import sys import os import socket import traceback from GitSvnServer.config import load_config import auth import client import command import editor import report import generate as gen from errors import * addr_family = socket.AF_INET all_interfaces = "0.0.0.0" if socket.has_ipv6: addr_family = socket.AF_INET6 all_interfaces = "::" ipv4_re = re.compile(r'\d{1,3}(\.\d{1,3}){3,3}') def is_ipv4_addr(ip): return ipv4_re.match(ip) is not None def get_address(ip, port): if ip is None: ip = all_interfaces elif socket.has_ipv6 and is_ipv4_addr(ip): ip = '::ffff:%s' % ip if socket.has_ipv6: address = (ip, port, 0, 0) else: address = (ip, port) return address class SvnServer(ThreadingTCPServer): address_family = addr_family allow_reuse_address = True url_re = re.compile(r'^svn://(?P<host>[^/]+)/(?P<path>.*?)\s*$') def __init__(self, options): self.options = options self.log = options.log self.repo_map, self.users = load_config(options.config) address = get_address(options.ip, options.port) ThreadingTCPServer.__init__(self, address, SvnRequestHandler) def start(self): if self.options.debug: self.log = None if self.options.foreground or self.options.debug: if self.options.pidfile is not None: pf = open(self.options.pidfile, 'w') pf.write('%d\n' % os.getpid()) pf.close() return self.run() pid = os.fork() if pid == 0: self.run() os._exit(0) if self.options.pidfile is not None: pf = open(self.options.pidfile, 'w') pf.write('%d\n' % pid) pf.close() def stop(self, *args): print 'stopped serving' if self.log is not None: sys.stdout.close() sys.exit(0) def run(self): signal.signal(signal.SIGTERM, self.stop) if self.log is not None: sys.stdout = open(self.log, 'a') sys.stderr = sys.stdout print 'start serving' try: self.serve_forever() except KeyboardInterrupt: pass print 'stopped serving' if self.log is not None: sys.stdout.close() def find_repo(self, url): url_m = self.url_re.match(url) if url_m is None: return None host = url_m.group('host') path = url_m.group('path') for base, repo in self.repo_map.items(): if path.startswith(base + '/'): return repo, path[len(base) + 1:], 'svn://%s/%s' % (host, base) elif path == base: return repo, '', 'svn://%s/%s' % (host, base) return None, None, None class SvnRequestHandler(StreamRequestHandler): def __init__(self, request, client_address, server): """ :type server: SvnServer """ self.mode = 'connect' self.client_caps = None self.repos = None self.server = server self.auth = None self.data = None self.base_url = None self.url = None self.user = None self.command = None self.options = server.options StreamRequestHandler.__init__(self, request, client_address, server) def debug(self, msg, send=False): if not self.options.show_messages: return d = '<' if send: d = '>' max_dbg_mlen = self.options.max_message_debug_len if max_dbg_mlen > 0 and len(msg) > max_dbg_mlen: sys.stderr.write('%d%s%s...\n' % (os.getpid(), d, msg[:max_dbg_mlen])) else: sys.stderr.write('%d%s%s\n' % (os.getpid(), d, msg)) def set_mode(self, mode): if mode not in ['connect', 'auth', 'announce', 'command', 'editor', 'report']: raise ModeError("Unknown mode '%s'" % mode) self.mode = mode def read_msg(self): t = self.rfile.read(1) while t in [' ', '\n', '\r']: t = self.rfile.read(1) if len(t) == 0: raise EOF() if t != '(': raise ReadError(t) depth = 1 while depth > 0: ch = self.rfile.read(1) if ch == '(': depth += 1 if ch == ')': depth -= 1 t += ch return t def read_str(self): ch = self.rfile.read(1) if len(ch) == 0: raise EOF l = "" while ch not in [':', '']: l += ch ch = self.rfile.read(1) bytes = int(l) data = '' while len(data) < bytes: s = self.rfile.read(bytes - len(data)) if len(s) == 0: raise EOF data += s self.debug(data) return data def send_msg(self, msg): msg = '%s\n' % msg self.debug(msg, send=True) self.wfile.write(msg) def send_server_id(self): self.send_msg(gen.success(gen.string(self.repos.uuid), gen.string(self.base_url))) def handle(self): sys.stderr.write('%d: -- NEW CONNECTION --\n' % os.getpid()) msg = None try: while True: try: if self.mode == 'connect': self.url, self.client_caps, self.repos, self.base_url = client.connect(self) if self.client_caps is None or self.repos is None: return self.mode = 'auth' elif self.mode == 'auth': if self.user is None: self.user = auth.perform_auth(self, self.server.users) self.mode = 'announce' else: self.send_msg(gen.success(gen.list(), gen.string(''))) self.mode = self.data self.data = None if self.user is None: return elif self.mode == 'announce': self.send_server_id() self.mode = 'command' elif self.mode == 'command': if self.command is None: self.command = command.process(self) else: self.command = self.command.process() elif self.mode == 'editor': editor.process(self) elif self.mode == 'report': report.process(self) else: raise ModeError("unknown mode '%s'" % self.mode) except ChangeMode as cm: self.mode = cm.args[0] if len(cm.args) > 1: self.data = cm.args[1] except ClientError as e: self.send_msg(gen.error(210001, str(e))) except EOF: msg = 'EOF' except socket.error as e: errno, msg = e except Exception: try: self.send_msg(gen.error(235000, traceback.format_exc())) except Exception as e1: print e1 raise sys.stderr.write('%d: -- CLOSE CONNECTION (%s) --\n' % (os.getpid(), msg)) def finish(self): try: StreamRequestHandler.finish(self) except socket.error: pass
26.712329
100
0.488077
dfc5a92b608d2e4a264e67abe17b6ef588d1bb07
1,343
py
Python
pyro_models/arm/radon_intercept.py
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
[ "Apache-2.0" ]
30
2019-02-22T03:03:18.000Z
2022-01-22T15:57:37.000Z
pyro_models/arm/radon_intercept.py
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
[ "Apache-2.0" ]
7
2019-02-26T18:28:57.000Z
2021-06-11T17:21:06.000Z
pyro_models/arm/radon_intercept.py
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
[ "Apache-2.0" ]
8
2019-02-25T22:06:14.000Z
2022-02-18T23:19:49.000Z
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # model file: example-models/ARM/Ch.12/radon_intercept.stan import torch import pyro import pyro.distributions as dist def init_vector(name, dims=None): return pyro.sample(name, dist.Normal(torch.zeros(dims), 0.2 * torch.ones(dims)).to_event(1)) def validate_data_def(data): assert 'N' in data, 'variable not found in data: key=N' assert 'J' in data, 'variable not found in data: key=J' assert 'county' in data, 'variable not found in data: key=county' assert 'y' in data, 'variable not found in data: key=y' # initialize data N = data["N"] J = data["J"] county = data["county"] y = data["y"] def init_params(data): params = {} return params def model(data, params): # initialize data N = data["N"] J = data["J"] county = data["county"].long() - 1 y = data["y"] # initialize transformed parameters sigma_y = pyro.sample("sigma", dist.HalfCauchy(2.5)) mu_a = pyro.sample("mu_a", dist.Normal(0., 1.)) sigma_a = pyro.sample("sigma_b", dist.HalfCauchy(2.5)) with pyro.plate("J", J): a = pyro.sample("a", dist.Normal(mu_a, sigma_a)) with pyro.plate("data", N): y_hat = a[county] y = pyro.sample('y', dist.Normal(y_hat, sigma_y), obs=y)
29.844444
96
0.638868
08b4cc80bf936c0bf8043a431d40f01fdf94e409
2,338
py
Python
aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/ModifyReadonlyInstanceDelayReplicationTimeRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/ModifyReadonlyInstanceDelayReplicationTimeRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/ModifyReadonlyInstanceDelayReplicationTimeRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkrds.endpoint import endpoint_data class ModifyReadonlyInstanceDelayReplicationTimeRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Rds', '2014-08-15', 'ModifyReadonlyInstanceDelayReplicationTime','rds') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_ReadSQLReplicationTime(self): return self.get_query_params().get('ReadSQLReplicationTime') def set_ReadSQLReplicationTime(self,ReadSQLReplicationTime): self.add_query_param('ReadSQLReplicationTime',ReadSQLReplicationTime) def get_DBInstanceId(self): return self.get_query_params().get('DBInstanceId') def set_DBInstanceId(self,DBInstanceId): self.add_query_param('DBInstanceId',DBInstanceId)
37.709677
101
0.785287
4fb2dd2106244e3a5d6eb55bfba8341189f75677
4,457
py
Python
data/utils.py
Khoale1096/stupidNMT
894536c16dc7ff958aa5571828a89ecabfcb72d7
[ "BSD-3-Clause" ]
31
2020-05-05T21:56:45.000Z
2022-02-24T19:08:19.000Z
data/utils.py
Khoale1096/stupidNMT
894536c16dc7ff958aa5571828a89ecabfcb72d7
[ "BSD-3-Clause" ]
2
2019-10-02T15:23:55.000Z
2019-10-16T02:38:25.000Z
data/utils.py
Khoale1096/stupidNMT
894536c16dc7ff958aa5571828a89ecabfcb72d7
[ "BSD-3-Clause" ]
5
2020-05-06T06:04:40.000Z
2020-12-29T14:09:31.000Z
''' Utilities useful for datasets ''' import pdb import os from functools import partial from urllib.request import urlretrieve import requests from tqdm import tqdm from torch.utils.data.dataloader import DataLoader from torch.utils.data.sampler import BatchSampler, RandomSampler, SequentialSampler from data.sampler import SequenceLengthSampler # See https://github.com/tqdm/tqdm#hooks-and-callbacks class DownloadProgressBar(tqdm): """Provides `update_to(n)` which uses `tqdm.update(delta_n)`.""" def __init__(self, filename): ''' ''' super(DownloadProgressBar, self).__init__( unit='B', unit_scale=True, miniters=1, desc=filename) def update_to(self, blocks=1, block_size=1, total_size=None): """ blocks : int, optional Number of blocks transferred so far [default: 1]. block_size : int, optional Size of each block (in tqdm units) [default: 1]. total_size : int, optional Total size (in tqdm units). If [default: None] remains unchanged. """ if total_size: self.total = total_size self.update(blocks * block_size - self.n) # will also set self.n = blocks * block_size def maybe_download(filepath, url): ''' Download the requested URL to the requested path if it does not already exist ''' directory = os.path.dirname(filepath) if not os.path.exists(directory): os.makedirs(directory) if os.path.exists(filepath): return filepath if 'drive.google.com' in url: return download_from_google_drive(filepath, url) else: return download_url(filepath, url) def download_url(filepath, url): ''' Downloads the given url to the specified file path. ''' filename = os.path.basename(filepath) with DownloadProgressBar(filename) as progress: urlretrieve(url, filepath, reporthook=progress.update_to) return filepath def download_from_google_drive(filepath, url): ''' Downloads a file from Google Drive. Apparently Google Drive may issue a warning about scanning for viruses and require confirmation to continue the download. ''' confirmation_token = None session = requests.Session() response = session.get(url, stream=True) for key, value in response.cookies.items(): if key.startswith("download_warning"): confirmation_token = value if confirmation_token: url = url + "&confirm=" + confirmation_token response = session.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) block_size = 16 * 1024 filename = os.path.basename(filepath) with open(filepath, "wb") as file: with DownloadProgressBar(filename) as progress: blocks = iter( file.write(block) for block in response.iter_content(block_size) if block ) for i, block in enumerate(blocks): progress.update_to(i, block_size, total_size) return filepath def get_dataloader(config, worker_init_fn=None, pin_memory=True, num_devices=1, shuffle=False): ''' Utility function that gets a data loader ''' #pdb.set_trace() dataset = config.dataset(config, split=config.split).load() if config.batch_method == 'token': # Calculate batch sizes for each device. Potentially reduce the batch size on device 0 as # the optimization step (all the gradients from all devices) happens on device 0. batch_sizes = [config.batch_size - config.batch_size_buffer] batch_sizes += [config.batch_size] * (num_devices - 1) batch_sampler = SequenceLengthSampler( batch_sizes, [(len(d['input']), len(d['target'])) for d in dataset.data], shuffle=shuffle, granularity=config.token_bucket_granularity ) elif config.batch_method == 'example': sampler_fn = RandomSampler if shuffle else SequentialSampler batch_sampler = BatchSampler( sampler_fn(dataset), config.batch_size, False ) else: raise ValueError('Unknown batch method!') return DataLoader( dataset, batch_sampler=batch_sampler, collate_fn=partial(dataset.collate, sort=True), num_workers=num_devices, pin_memory=pin_memory, worker_init_fn=worker_init_fn )
33.261194
99
0.661656
e1efef18ae62e8d751740269df59186ecf836dd8
13,548
py
Python
ncachefactory/cachemanager.py
luckylyk/ncachefactory
3b26866e552bf6462024ce3febef31f4eec2ab69
[ "BSD-3-Clause-Clear" ]
1
2019-09-25T17:16:06.000Z
2019-09-25T17:16:06.000Z
ncachefactory/cachemanager.py
luckylyk/ncachemanager
3b26866e552bf6462024ce3febef31f4eec2ab69
[ "BSD-3-Clause-Clear" ]
1
2020-03-15T10:34:34.000Z
2020-05-22T19:20:26.000Z
ncachefactory/cachemanager.py
luckylyk/ncachefactory
3b26866e552bf6462024ce3febef31f4eec2ab69
[ "BSD-3-Clause-Clear" ]
null
null
null
""" This module is on top of ncache and versioning It combine both to work in a defined workspace This is the main api used by the ui and can be useb from external script as well. """ import os import shutil from datetime import datetime from functools import partial import subprocess from maya import cmds import maya.api.OpenMaya as om2 from ncachefactory.versioning import ( create_cacheversion, ensure_workspace_folder_exists, find_file_match, clear_cacheversion_content, cacheversion_contains_node, move_playblast_to_cacheversion, extract_xml_attributes) from ncachefactory.mesh import ( create_mesh_for_geo_cache, attach_geo_cache, is_deformed_mesh_too_stretched) from ncachefactory.ncloth import ( find_input_mesh_dagpath, clean_inputmesh_connection, find_output_mesh_dagpath) from ncachefactory.ncache import ( import_ncache, record_ncache, DYNAMIC_NODES, clear_cachenodes, list_connected_cachefiles, list_connected_cacheblends, append_ncache) from ncachefactory.playblast import ( start_playblast_record, stop_playblast_record) from ncachefactory.attributes import ( save_pervertex_maps, list_node_attributes_values, clean_namespaces_in_attributes_dict, ORIGINAL_INPUTSHAPE_ATTRIBUTE, filter_invisible_nodes_for_manager) from ncachefactory.optionvars import MEDIAPLAYER_PATH_OPTIONVAR ALTERNATE_INPUTSHAPE_GROUP = "alternative_inputshapes" ALTERNATE_RESTSHAPE_GROUP = "alternative_restshapes" INPUTSHAPE_SUFFIX = "_alternate_inputshape" RESTSHAPE_SUFFIX = "_alternate_restshapes" CACHENODENAME_SUFFIX = "_CN000" def create_and_record_cacheversion( workspace, start_frame, end_frame, comment=None, name=None, nodes=None, behavior=0, evaluate_every_frame=1.0, save_every_evaluation=1, playblast=False, playblast_viewport_options=None): cloth_nodes = cmds.ls(nodes, type="nCloth") nodes = nodes or cmds.ls(type=DYNAMIC_NODES) nodes = filter_invisible_nodes_for_manager(nodes) workspace = ensure_workspace_folder_exists(workspace) cacheversion = create_cacheversion( workspace=workspace, name=name, comment=comment, nodes=nodes, start_frame=start_frame, end_frame=end_frame, timespent=None) if playblast is True: start_playblast_record( directory=cacheversion.directory, **playblast_viewport_options) save_pervertex_maps(nodes=cloth_nodes, directory=cacheversion.directory) start_time = datetime.now() record_ncache( nodes=nodes, start_frame=start_frame, end_frame=end_frame, output=cacheversion.directory, behavior=behavior, evaluate_every_frame=evaluate_every_frame, save_every_evaluation=save_every_evaluation) end_time = datetime.now() timespent = (end_time - start_time).total_seconds() time = cmds.currentTime(query=True) cacheversion.set_range(nodes, start_frame=start_frame, end_frame=time) cacheversion.set_timespent(nodes=nodes, seconds=timespent) if playblast is True: temp_path = stop_playblast_record(cacheversion.directory) move_playblast_to_cacheversion(temp_path, cacheversion) return cacheversion def record_in_existing_cacheversion( cacheversion, start_frame, end_frame, nodes=None, behavior=0, evaluate_every_frame=1.0, save_every_evaluation=1, playblast=False, playblast_viewport_options=None): if playblast is True: start_playblast_record( directory=cacheversion.directory, **playblast_viewport_options) cloth_nodes = cmds.ls(nodes, type="nCloth") nodes = nodes or cmds.ls(type=DYNAMIC_NODES) nodes = filter_invisible_nodes_for_manager(nodes) save_pervertex_maps(nodes=cloth_nodes, directory=cacheversion.directory) start_time = datetime.now() record_ncache( nodes=nodes, start_frame=start_frame, end_frame=end_frame, output=cacheversion.directory, behavior=behavior, evaluate_every_frame=evaluate_every_frame, save_every_evaluation=save_every_evaluation) end_time = datetime.now() timespent = (end_time - start_time).total_seconds() time = cmds.currentTime(query=True) cacheversion.set_range(nodes, start_frame=start_frame, end_frame=time) cacheversion.set_timespent(nodes=nodes, seconds=timespent) cacheversion.update_modification_time() if playblast is True: temp_path = stop_playblast_record(cacheversion.directory) move_playblast_to_cacheversion(temp_path, cacheversion) def append_to_cacheversion( cacheversion, nodes=None, evaluate_every_frame=1.0, save_every_evaluation=1, playblast=False, playblast_viewport_options=None): if playblast is True: start_playblast_record( directory=cacheversion.directory, **playblast_viewport_options) nodes = nodes or cmds.ls(type=DYNAMIC_NODES) nodes = filter_invisible_nodes_for_manager(nodes) start_time = datetime.now() append_ncache( nodes=nodes, evaluate_every_frame=evaluate_every_frame, save_every_evaluation=save_every_evaluation) end_time = datetime.now() # Add up the second spent for the append cache to the cache time spent # already recorded. timespent = (end_time - start_time).total_seconds() for node in cacheversion.infos.get('nodes'): if node not in nodes: continue seconds = cacheversion.infos.get('nodes')[node]["timespent"] + timespent cacheversion.set_timespent(nodes=[node], seconds=seconds) cacheversion.update_modification_time() # Update the cached range in the cache info if the append cache # finished further the original cache time = cmds.currentTime(query=True) end_frame = cacheversion.infos.get('nodes')[node]['range'][1] if time > end_frame: cacheversion.set_range(nodes=nodes, end_frame=time) if playblast is True: temp_path = stop_playblast_record(cacheversion.directory) move_playblast_to_cacheversion(temp_path, cacheversion) def plug_cacheversion(cacheversion, groupname, suffix, inattr, nodes=None): """ This function will plug a ncache to a given attribute. Basically, it create a static mesh based on the dynamic node input. Import the ncache as geo cache file and drive the created mesh with. And finally connect it to the input attribute given. """ if not cmds.objExists(groupname): cmds.group(name=groupname, world=True, empty=True) group_content = cmds.listRelatives(groupname) group_content = cmds.ls( group_content, shapes=True, dag=True, noIntermediate=True) nodes = nodes or cmds.ls(type='nCloth') new_input_meshes = [] for node in nodes: if not cacheversion_contains_node(node, cacheversion): continue ensure_original_input_is_stored(node) input_mesh = get_orignial_input_mesh(node) mesh = create_mesh_for_geo_cache(input_mesh, suffix) new_input_meshes.append(cmds.listRelatives(mesh, parent=True)[0]) xml_file = find_file_match(node, cacheversion, extension='xml') attach_geo_cache(mesh, xml_file) clean_inputmesh_connection(node, inattr) cmds.connectAttr(mesh + '.worldMesh[0]', node + '.' + inattr) cmds.parent(new_input_meshes, groupname) # Parse the original group content and clean all the shape which are # not used anymore. content_to_clean = [ cmds.listRelatives(node, parent=True)[0] for node in group_content if not cmds.ls(cmds.listConnections(node, type='nCloth'))] if content_to_clean: cmds.delete(content_to_clean) def plug_cacheversion_to_inputmesh(cacheversion, nodes=None): plug_cacheversion( cacheversion=cacheversion, groupname=ALTERNATE_INPUTSHAPE_GROUP, suffix=INPUTSHAPE_SUFFIX, inattr='inputMesh', nodes=nodes) def plug_cacheversion_to_restshape(cacheversion, nodes=None): plug_cacheversion( cacheversion=cacheversion, groupname=ALTERNATE_RESTSHAPE_GROUP, suffix=RESTSHAPE_SUFFIX, inattr='restShapeMesh', nodes=nodes) def connect_cacheversion(cacheversion, nodes=None, behavior=0): nodes = nodes or cmds.ls(type=DYNAMIC_NODES) nodes = filter_invisible_nodes_for_manager(nodes) for node in nodes: if not cacheversion_contains_node(node, cacheversion): continue xml_file = find_file_match(node, cacheversion, extension='xml') if not xml_file: cmds.warning("no cache to connect for {}".format(xml_file)) continue cachefile = import_ncache(node, xml_file, behavior=behavior) cmds.rename(cachefile, cacheversion.name +CACHENODENAME_SUFFIX) def delete_cacheversion(cacheversion): cachenames = [f[:-4] for f in cacheversion.get_files('mcc')] clear_cachenodes(cachenames=cachenames, workspace=cacheversion.workspace) clear_cacheversion_content(cacheversion) def filter_connected_cacheversions(nodes=None, cacheversions=None): assert cacheversions is not None nodes = nodes or [] blends = list_connected_cacheblends(nodes) or [] cachenodes = list_connected_cachefiles(nodes) or [] cachenodes += list_connected_cachefiles(blends) or [] directories = list({cmds.getAttr(n + '.cachePath') for n in cachenodes}) directories = [os.path.normpath(directory) for directory in directories] return [ cacheversion for cacheversion in cacheversions if os.path.normpath(cacheversion.directory) in directories] def compare_node_and_version(node, cacheversion): filename = find_file_match(node, cacheversion, extension='xml') xml_attributes = extract_xml_attributes(filename) xml_attributes = clean_namespaces_in_attributes_dict(xml_attributes) node_attributes = list_node_attributes_values(node) node_attributes = clean_namespaces_in_attributes_dict(node_attributes) differences = {} for key, value in xml_attributes.items(): current_value = node_attributes.get(key) # in case of value are store in format like: "-1e5", that's stored in # string instead of float. So we reconverted it to float if isinstance(value, str): value = float(value) # value in xml are slightly less precise than the current value # in maya, it doesn't compare the exact result but the difference if current_value is None or abs(current_value - value) < 1e-6: continue differences[key] = (current_value, value) return differences def recover_original_inputmesh(nodes): """ this function replug the original input in a cloth node if this one as an alternate input connected. As an other simulation mesh """ nodes_to_clean = [] for node in nodes: store_plug = node + '.' + ORIGINAL_INPUTSHAPE_ATTRIBUTE stored_input_plugs = cmds.listConnections( store_plug, plugs=True, connections=True) if not stored_input_plugs: cmds.warning('no stored input for ' + node) continue inputmeshattr = node + '.inputMesh' current_inputs = cmds.listConnections( inputmeshattr, plugs=True, connections=True) if current_inputs: cmds.disconnectAttr(current_inputs[1], inputmeshattr) cmds.connectAttr(stored_input_plugs[1], inputmeshattr) disconnected_node = current_inputs[1].split('.')[0] if not cmds.listConnections(disconnected_node, source=True): nodes_to_clean.append(disconnected_node) if nodes_to_clean: cmds.delete(nodes_to_clean) def apply_settings(cacheversion, nodes): for node in nodes: filename = find_file_match(node, cacheversion, extension='xml') xml_attributes = extract_xml_attributes(filename) xml_attributes = clean_namespaces_in_attributes_dict(xml_attributes) for key, value in xml_attributes.items(): attributes = cmds.ls([key, "*" + key, "*:" + key, "*:*:" + key]) for attribute in attributes: try: cmds.setAttr(attribute, value) except RuntimeError: msg = ( attribute + " is locked, connected, invalid or " "doesn't in current scene. This attribute is skipped") cmds.warning(msg) def ensure_original_input_is_stored(dynamicnode): store_plug = dynamicnode + '.' + ORIGINAL_INPUTSHAPE_ATTRIBUTE if cmds.listConnections(store_plug): # original input already saved return input_plug = dynamicnode + '.inputMesh' input_mesh_connections = cmds.listConnections(input_plug, plugs=True) if not input_mesh_connections: raise ValueError("No input attract mesh found for " + dynamicnode) cmds.connectAttr(input_mesh_connections[0], store_plug) def get_orignial_input_mesh(dynamicnode): store_plug = dynamicnode + '.' + ORIGINAL_INPUTSHAPE_ATTRIBUTE connections = cmds.listConnections(store_plug, shapes=True) if connections: return connections[0] return if __name__ == "__main__": create_and_record_cacheversion( workspace="C:/test/chrfx", nodes=None, start_frame=0, end_frame=100, behavior=2, name="Cache", comment="salut")
39.043228
83
0.714275
1597ca52d7ead48a76678cbcd9f3401996623874
4,694
py
Python
heartbeat/heartbeat.py
WATORACE/dds-tunnel
85726c9742eed41befb7cde96bd3d58389b7a82f
[ "MIT" ]
null
null
null
heartbeat/heartbeat.py
WATORACE/dds-tunnel
85726c9742eed41befb7cde96bd3d58389b7a82f
[ "MIT" ]
null
null
null
heartbeat/heartbeat.py
WATORACE/dds-tunnel
85726c9742eed41befb7cde96bd3d58389b7a82f
[ "MIT" ]
null
null
null
import argparse import asyncio import os import rticonnextdds_connector as rti import sys import threading from enum import IntEnum from time import sleep, time try: SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) except NameError: SCRIPT_DIR = os.getcwd() DOMAIN_ID_ENV_VAR = 'HEARTBEAT_DOMAIN_ID' # rti connector is not thread-safe. Using an Rlock to create mutual-exclusively between threads # https://community.rti.com/static/documentation/connector/1.0.0/api/python/threading.html connector_lock = threading.RLock() class MessageType(IntEnum): """ The type of the heartbeat. This must be synchronized with Heartbeat.xml. """ HEARTBEAT = 0 ACK = 1 async def publishHeartbeat(writer, writelog, period=1): """ In a loop: publish heartbeat, then wait `period` seconds """ current_seq = 0 while True: print(f"Sending heartbeat seq {current_seq}") with connector_lock: writer.instance.set_number("seq", current_seq) writer.instance.set_number("type", MessageType.HEARTBEAT) writelog[current_seq] = time() writer.write() current_seq += 1 await asyncio.sleep(period) async def subscribeToAck(reader, writelog): while True: current_time = time() with connector_lock: reader.take() for sample in reader.samples.valid_data_iter: msg_type = sample.get_number('type') seq = int(sample.get_number("seq")) if msg_type != MessageType.ACK: continue outgoing_time = writelog.get(seq) del writelog[seq] if outgoing_time is None: print(f"ACK: seq {seq}") else: print(f"ACK: seq {seq}, roundtrip time: {(current_time - outgoing_time) * 1000:.2f} ms") await asyncio.sleep(0.001) async def run(*coroutines): await asyncio.gather(*coroutines) def initiator(reader, writer): # TODO: writelog does not remove old entries. This will continue to eat up memory. writelog = {} writer_coroutine = publishHeartbeat(writer, writelog) reader_coroutine = subscribeToAck(reader, writelog) runnable = run(writer_coroutine, reader_coroutine) asyncio.run(runnable) def responder(reader, writer): while True: try: reader.wait(500) # milliseconds except rti.TimeoutError: pass with connector_lock: reader.take() for sample in reader.samples.valid_data_iter: msg_type = sample.get_number('type') seq = int(sample.get_number("seq")) if msg_type != MessageType.HEARTBEAT: continue print(f"HEARTBEAT: seq {seq}") writer.instance.set_number("seq", seq) writer.instance.set_number("type", MessageType.ACK) writer.write() def main(): parser = argparse.ArgumentParser(description='process start-tunnel arguments') parser.add_argument("action", choices=["initiator", "responder"]) parser.add_argument("--domain_id", "-d", type=int, help="The domain ID where the heartbeat will be sent/read from (Default 0)", default=0) args = parser.parse_args() print(args) if os.name == 'nt': # Setting os.environ does not propagate env into the connector on Windows. Prompt user to manually set the env. env_domain_id = os.getenv(DOMAIN_ID_ENV_VAR) if env_domain_id != str(args.domain_id): sys.exit("Automatically setting domain_id in Windows is not supported. Please run `set {}={}` in cmd.exe (current value is {})".format( DOMAIN_ID_ENV_VAR, args.domain_id, env_domain_id)) else: os.environ[DOMAIN_ID_ENV_VAR] = str(args.domain_id) with rti.open_connector( config_name="HeartbeatParticipantLibrary::HeartbeatParticipant", url=os.path.join(SCRIPT_DIR, "Heartbeat.xml")) as connector: writer = connector.get_output("HeartbeatPublisher::HeartbeatWriter") reader = connector.get_input("HeartbeatSubscriber::HeartbeatReader") try: print(f"Starting {args.action} on domain {os.getenv(DOMAIN_ID_ENV_VAR)}") if args.action == 'initiator': initiator(reader, writer) elif args.action == 'responder': responder(reader, writer) else: print(f"Unknown command {args.action}") except KeyboardInterrupt: print("Stopping...") if __name__ == '__main__': main()
34.514706
147
0.629527
1b38735078606e8ab55563bd6ab367910eed1669
3,818
py
Python
Code/splines_projection.py
AndreasMadsen/grace
bf472d30a2fac76145d3f68e819c92da4a1970ba
[ "MIT" ]
1
2016-05-17T22:52:19.000Z
2016-05-17T22:52:19.000Z
Code/splines_projection.py
AndreasMadsen/grace
bf472d30a2fac76145d3f68e819c92da4a1970ba
[ "MIT" ]
null
null
null
Code/splines_projection.py
AndreasMadsen/grace
bf472d30a2fac76145d3f68e819c92da4a1970ba
[ "MIT" ]
null
null
null
import grace import grace.times import grace.ols import math import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg worldImage = mpimg.imread('equirectangular.png') days = grace.ols.time_vector() days_all = np.linspace(np.min(days), np.max(days), np.max(days) - np.min(days)) X_all = grace.ols.design_matrix(days_all, frequencies = 3, splines = True) H = grace.ols.hat_matrix(X_all, frequencies = 3, splines = True) description = grace.ols.theta_description(frequencies = 3, splines = True) initial = (24, 134) # The complexity in this code, comes from the clickability on the world map def onclick(event): """ This is the function executed when the window is clicked on. The main purpose here is to filter invalid clicks and then call the redraw with the lat and lon index. """ if (event.xdata == None or event.ydata == None or event.button != 1 or event.xdata >= 360 or event.ydata >= 180 ): return redraw(int(event.ydata), int(event.xdata)) def histval(X): """ Computes histogram values for a data series. plt.hist was not used as this is not as updateable as just using plt.bars """ (frequencies, pos) = np.histogram(X, bins=np.arange(-3, 1, 0.05)) return (frequencies, (pos[:-1] + pos[1:]) / 2) # Create figure and attach mouse click handler fig = plt.figure(figsize=(12, 9.3)) fig.canvas.mpl_connect('button_press_event', onclick) # None of the code below plots anything (histogram is a funny exception) # the purose is to initalize the window and then let redraw(lat, lon) do # the actual data plotting. # World map plt.subplot(3,1,1) plt.imshow(worldImage) (point,) = plt.plot([], [], 'r*') plt.ylim(179, 0) plt.xlim(0, 359) plt.xticks(np.arange(0, 360, 40), np.arange(-179.5, +179.5, 40)) plt.yticks(np.arange(0, 180, 20), np.arange(89.5, -89.5, -20)) plt.ylabel('latitude') plt.xlabel('longitude') plt.gca().xaxis.set_label_position('top') # Scatter plot plt.subplot(3,1,2) (observe,) = plt.plot([], [], 'ro', label='Observations') (estimat,) = plt.plot([], [], 'k-', label='Estimations') plt.xlim(np.min(days), np.max(days)) date_ticks = np.linspace(np.min(days), np.max(days), 6).astype('int') plt.xticks(date_ticks, grace.times.days_to_str(date_ticks)) plt.ylabel('EWH [m]') # Histogram plt.subplot(3,2,5) (frequencies, pos) = histval(grace.grids[initial[0], initial[1], :]) hist_rects = plt.bar(pos, frequencies, pos[1] - pos[0], color='tomato') plt.xlim(-3, 1) plt.ylabel('frequency') plt.xlabel('EWH [m]') # Theta bars plt.subplot(3,2,6) theta_rects = plt.bar( np.arange(0, len(description)) + 0.5, np.zeros([len(description)]) ) plt.xlim(0, len(description) + 1) plt.xticks(np.arange(1, len(description) + 1), description, fontsize = 9) plt.setp(plt.xticks()[1], rotation=-90) def redraw(latIndex, lonIndex): """ Sets the (x, y) data for the plots updates some axies and then redraw the window canvas. """ print (latIndex, lonIndex) # Get EWH values for this position Y = grace.grids[latIndex, lonIndex, :].ravel() Theta = grace.ols.theta_vector(Y) # Update star on world map plt.subplot(3,1,1) point.set_ydata([latIndex]) point.set_xdata([lonIndex]) # Update scatter plot plt.subplot(3,1,2) observe.set_ydata(Y) observe.set_xdata(days) estimat.set_ydata((H * np.asmatrix(Y).T).A.ravel()) estimat.set_xdata(days_all) plt.ylim(np.min(Y)*1.2, np.max(Y)*1.2) # Update histogtam plt.subplot(3,2,5) (frequencies, pos) = histval(Y) for rect, f in zip(hist_rects, frequencies): rect.set_height(f) plt.ylim(0, np.max(frequencies) * 1.1) # Update histogtam plt.subplot(3,2,6) for rect, v in zip(theta_rects, Theta.A.ravel()): rect.set_height(v) plt.ylim(np.min(Theta)*1.2, np.max(Theta)*1.2) # Redraw window fig.canvas.draw() # Do inital redraw also redraw(initial[0], initial[1]) # Show window plt.show()
28.924242
91
0.701676
81f7252a16c7b660b0788cc1e584d8be47ad6c81
1,212
py
Python
clients/kratos/python/test/test_admin_create_identity_body.py
kolotaev/sdk
0dda1becd70be8d7b9d678321ebe780c1ba00485
[ "Apache-2.0" ]
null
null
null
clients/kratos/python/test/test_admin_create_identity_body.py
kolotaev/sdk
0dda1becd70be8d7b9d678321ebe780c1ba00485
[ "Apache-2.0" ]
null
null
null
clients/kratos/python/test/test_admin_create_identity_body.py
kolotaev/sdk
0dda1becd70be8d7b9d678321ebe780c1ba00485
[ "Apache-2.0" ]
null
null
null
""" Ory Kratos API Documentation for all public and administrative Ory Kratos APIs. Public and administrative APIs are exposed on different ports. Public APIs can face the public internet without any protection while administrative APIs should never be exposed without prior authorization. To protect the administative API port you should use something like Nginx, Ory Oathkeeper, or any other technology capable of authorizing incoming requests. # noqa: E501 The version of the OpenAPI document: v0.7.0-alpha.1 Contact: hi@ory.sh Generated by: https://openapi-generator.tech """ import sys import unittest import ory_kratos_client from ory_kratos_client.model.admin_create_identity_body import AdminCreateIdentityBody class TestAdminCreateIdentityBody(unittest.TestCase): """AdminCreateIdentityBody unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAdminCreateIdentityBody(self): """Test AdminCreateIdentityBody""" # FIXME: construct object with mandatory attributes with example values # model = AdminCreateIdentityBody() # noqa: E501 pass if __name__ == '__main__': unittest.main()
32.756757
446
0.749175
e3229314b62acbba0f69bb94935aa371efd3144c
3,145
py
Python
basicts/options/GMAN/GMAN_PEMS-BAY.py
zezhishao/GuanCang_BasicTS
bbf82b9d08e82db78d4e9e9b11f43a676b54ad7c
[ "Apache-2.0" ]
null
null
null
basicts/options/GMAN/GMAN_PEMS-BAY.py
zezhishao/GuanCang_BasicTS
bbf82b9d08e82db78d4e9e9b11f43a676b54ad7c
[ "Apache-2.0" ]
null
null
null
basicts/options/GMAN/GMAN_PEMS-BAY.py
zezhishao/GuanCang_BasicTS
bbf82b9d08e82db78d4e9e9b11f43a676b54ad7c
[ "Apache-2.0" ]
null
null
null
import os from easydict import EasyDict # architecture from basicts.archs.GMAN_arch import GMAN # runner from basicts.runners.GMAN_runner import GMANRunner from basicts.data.base_dataset import BaseDataset from basicts.metrics.mae import masked_mae from basicts.metrics.mape import masked_mape from basicts.metrics.rmse import masked_rmse from basicts.losses.losses import masked_l1_loss from basicts.utils.serialization import load_node2vec_emb CFG = EasyDict() # ================= general ================= # CFG.DESCRIPTION = 'GMAN model configuration' CFG.RUNNER = GMANRunner CFG.DATASET_CLS = BaseDataset CFG.DATASET_NAME = "PEMS-BAY" CFG.DATASET_TYPE = 'Traffic speed' CFG.GPU_NUM = 1 CFG.METRICS = { "MAE": masked_mae, "RMSE": masked_rmse, "MAPE": masked_mape } # ================= environment ================= # CFG.ENV = EasyDict() CFG.ENV.SEED = 1 CFG.ENV.CUDNN = EasyDict() CFG.ENV.CUDNN.ENABLED = True # ================= model ================= # CFG.MODEL = EasyDict() CFG.MODEL.NAME = 'GMAN' CFG.MODEL.ARCH = GMAN spatial_embed = load_node2vec_emb("datasets/" + CFG.DATASET_NAME + "/node2vec_emb.txt") CFG.MODEL.PARAM = { "SE": spatial_embed, "L" : 1, "K" : 8, "d" : 8, "num_his" : 12, "bn_decay": 0.1 } CFG.MODEL.FROWARD_FEATURES = [0, 1, 2] CFG.MODEL.TARGET_FEATURES = [0] # ================= optim ================= # CFG.TRAIN = EasyDict() CFG.TRAIN.LOSS = masked_l1_loss CFG.TRAIN.OPTIM = EasyDict() CFG.TRAIN.OPTIM.TYPE = "Adam" CFG.TRAIN.OPTIM.PARAM= { "lr":0.002, "weight_decay":0.0001, } CFG.TRAIN.LR_SCHEDULER = EasyDict() CFG.TRAIN.LR_SCHEDULER.TYPE = "MultiStepLR" CFG.TRAIN.LR_SCHEDULER.PARAM= { "milestones":[1, 50, 80], "gamma":0.5 } # ================= train ================= # CFG.TRAIN.CLIP = 5 CFG.TRAIN.NUM_EPOCHS = 100 CFG.TRAIN.CKPT_SAVE_DIR = os.path.join( 'checkpoints', '_'.join([CFG.MODEL.NAME, str(CFG.TRAIN.NUM_EPOCHS)]) ) # train data CFG.TRAIN.DATA = EasyDict() CFG.TRAIN.NULL_VAL = 0.0 ## read data CFG.TRAIN.DATA.DIR = 'datasets/' + CFG.DATASET_NAME ## dataloader args, optional CFG.TRAIN.DATA.BATCH_SIZE = 16 CFG.TRAIN.DATA.PREFETCH = False CFG.TRAIN.DATA.SHUFFLE = True CFG.TRAIN.DATA.NUM_WORKERS = 2 CFG.TRAIN.DATA.PIN_MEMORY = False # ================= validate ================= # CFG.VAL = EasyDict() CFG.VAL.INTERVAL = 1 # validating data CFG.VAL.DATA = EasyDict() ## read data CFG.VAL.DATA.DIR = 'datasets/' + CFG.DATASET_NAME ## dataloader args, optional CFG.VAL.DATA.BATCH_SIZE = 32 CFG.VAL.DATA.PREFETCH = False CFG.VAL.DATA.SHUFFLE = False CFG.VAL.DATA.NUM_WORKERS = 2 CFG.VAL.DATA.PIN_MEMORY = False # ================= test ================= # CFG.TEST = EasyDict() CFG.TEST.INTERVAL = 1 # validating data CFG.TEST.DATA = EasyDict() ## read data CFG.TEST.DATA.DIR = 'datasets/' + CFG.DATASET_NAME ## dataloader args, optional CFG.TEST.DATA.BATCH_SIZE = 32 CFG.TEST.DATA.PREFETCH = False CFG.TEST.DATA.SHUFFLE = False CFG.TEST.DATA.NUM_WORKERS = 2 CFG.TEST.DATA.PIN_MEMORY = False
27.831858
89
0.635612
adfa0c6184b1ecdfee4857e80706325c950e40f4
1,626
py
Python
gridpath/objective/system/reliability/local_capacity/aggregate_local_capacity_violation_penalties.py
souissim/gridpath
4eeca2be24b485edc56026e38cfda83f4a6b27ea
[ "Apache-2.0" ]
null
null
null
gridpath/objective/system/reliability/local_capacity/aggregate_local_capacity_violation_penalties.py
souissim/gridpath
4eeca2be24b485edc56026e38cfda83f4a6b27ea
[ "Apache-2.0" ]
null
null
null
gridpath/objective/system/reliability/local_capacity/aggregate_local_capacity_violation_penalties.py
souissim/gridpath
4eeca2be24b485edc56026e38cfda83f4a6b27ea
[ "Apache-2.0" ]
1
2021-12-21T20:44:21.000Z
2021-12-21T20:44:21.000Z
# Copyright 2016-2020 Blue Marble Analytics LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyomo.environ import Expression from gridpath.auxiliary.dynamic_components import cost_components def add_model_components(m, d, scenario_directory, subproblem, stage): """ :param m: :param d: :return: """ def total_penalty_costs_rule(mod): return sum( mod.Local_Capacity_Shortage_MW_Expression[z, p] * mod.local_capacity_violation_penalty_per_mw[z] * mod.number_years_represented[p] * mod.discount_factor[p] for (z, p) in mod.LOCAL_CAPACITY_ZONE_PERIODS_WITH_REQUIREMENT ) m.Total_Local_Capacity_Shortage_Penalty_Costs = Expression( rule=total_penalty_costs_rule ) record_dynamic_components(dynamic_components=d) def record_dynamic_components(dynamic_components): """ :param dynamic_components: Add local capacity shortage penalty costs to cost components """ getattr(dynamic_components, cost_components).append( "Total_Local_Capacity_Shortage_Penalty_Costs" )
30.111111
74
0.728167
801c1b102ed3f845dd8b1bf138933334e33a686d
28,312
py
Python
sgml/SGMLLexer.py
leon332157/Grail-browser
5b357c9414a2e0139779724439afbc917ef2fb60
[ "CNRI-Jython" ]
8
2015-02-18T18:50:50.000Z
2022-03-15T22:21:03.000Z
sgml/SGMLLexer.py
leon332157/Grail-browser
5b357c9414a2e0139779724439afbc917ef2fb60
[ "CNRI-Jython" ]
null
null
null
sgml/SGMLLexer.py
leon332157/Grail-browser
5b357c9414a2e0139779724439afbc917ef2fb60
[ "CNRI-Jython" ]
3
2016-04-04T23:54:07.000Z
2020-10-29T04:25:42.000Z
"""A lexer for SGML, using derived classes as parser and DTD. This module provides a transparent interface allowing the use of alternate lexical analyzers without modifying higher levels of SGML or HTML support. """ __version__ = "$Revision: 1.45 $" # These constants are not used in this module, but are provided to # allow other modules to know about the concrete syntax we support. COM = "--" # comment start or end CRO = "&#" # character reference open REFC = ";" # reference close DSO = "[" # declaration subset open DSC = "]" # declaration subset close ERO = "&" # entity reference open LIT = '"' # literal start or end LITA = "'" # literal start or end (alternative) MDO = "<!" # markup declaration open MDC = ">" # markup declaration close MSC = "]]" # marked section close NET = "/" # null end tag PIO = "<?" # processing instruciton open PIC = ">" # processing instruction close STAGO = "<" # start tag open ETAGO = "</" # end tag open TAGC = ">" # tag close VI = "=" # value indicator whitespace = '\\t\\n\x0b\x0c\\r ' # XXX There should be a way to distinguish between PCDATA (parsed # character data -- the normal case), RCDATA (replaceable character # data -- only char and entity references and end tags are special) # and CDATA (character data -- only end tags are special). import re import string try: class SGMLError(Exception): pass except TypeError: class SGMLError: pass # SGML lexer base class -- find tags and call handler functions. # Usage: p = SGMLLexer(); p.feed(data); ...; p.close(). # The data between tags is passed to the parser by calling # self.lex_data() with some data as argument (the data may be split up # in arbutrary chunks). Entity references are passed by calling # self.lex_entityref() with the entity reference as argument. class SGMLLexerBase: # This is a "dummy" base class which provides documentation on the # lexer API; this can be used by tools which can extract missing # method documentation from base classes. def feed(self, input_data): """Feed some data to the parser. input_data Input data to be fed to the scanner. An empty string indicates end-of-input. Call this as often as you want, with as little or as much text as you want (may include '\n'). """ pass def close(self): """Terminate the input stream. If any data remains unparsed or any events have not been dispatched, they must be forced to do so by this method before returning. """ pass def line(self): """Return the current line number if known. """ def normalize(self, norm): """Control normalization of name tokens. norm Boolean indicating new setting of case normalization. If `norm' is true, names tokens will be converted to lower case before being based to the `lex_*()' interfaces described below. Otherwise, names will be reported in the case in which they are found in the input stream. Tokens which are affected include tag names, attribute names, and named character references. Note that general entity references are not affected. A boolean indicating the previous value is returned. """ pass def reset(self): """Attempt to reset the lexical analyzer. """ pass def restrict(self, strict): """Control recognition of particular constructs. """ pass # The rest of the methods of this class are intended to be overridden # by parser subclasses interested in different events on the input # stream. They are called by the implementation of the lexer object. def lex_data(self, data_string): """Process data characters. """ pass def lex_starttag(self, tagname, attributes): """Process a start tag and attributes. tagname General identifier of the start tag encountered. attributes Dictionary of the attribute/value pairs found in the document source. The general identifier and attribute names are normalized to lower case if only if normalization is enabled; all attribute values are strings. Attribute values coded as string literals using either LIT or LITA quoting will have the surrounding quotation marks removed. Attributes with no value specified in the document source will have a value of `None' in the dictionary passed to this method. """ pass def lex_endtag(self, tagname): """Process an end tag. tagname General identifier of the end tag found. """ pass def lex_charref(self, ordinal, terminator): """Process a numeric character reference. """ pass def lex_namedcharref(self, refname, terminator): """Process a named character reference. """ pass def lex_entityref(self, refname, terminator): """Process a general entity reference. """ pass def lex_pi(self, pi_data): """Process a processing instruction. """ pass def lex_comment(self, comment_string): """Process a comment string. If a markup declaration consists entirely of comments, each comment is passed to this method in sequence. The parser has no way of knowing whether multiple comments received in sequence are part of a single markup declaration or originated in multiple declarations. Empty comments ('<!>') are ignored. Comments embedded in other markup declarations are not handled via this method. """ pass def lex_declaration(self, declaration_info): """Process a markup declaration other than a comment. declaration_info List of strings. The first string will be the name of the declaration (doctype, etc.), followed by each additional name, nametoken, quoted literal, or comment in the declaration. Literals and comments will include the quotation marks or comment delimiters to allow the client to process each correctly. Normalization of names and nametokens will be handled as for general identifiers. """ pass def lex_error(self, error_string): """Process an error packet. error_string String which describes a lexical error in the input stream. Values passed to this method may be affected by the current scanning mode. Further callbacks may show symptoms described by the error described by `error_string'. """ pass def lex_limitation(self, limit_string): """Process a limitation packet. limit_string String which describes a lexical limitation in the current scanning mode. Further callbacks may show symptoms determined by the limitation described by `limit_string'. """ pass class SGMLLexer(SGMLLexerBase): entitydefs = {} _in_parse = 0 _finish_parse = 0 def __init__(self): self.reset() def strict_p(self): return self._strict def cleanup(self): pass rawdata = '' def reset(self): self.stack = [] self.lasttag = '???' self.nomoretags = 0 self.literal = 0 self._normfunc = lambda s: s self._strict = 0 def close(self): if not self._in_parse: self.goahead(1) self.cleanup() else: self._finish_parse = 1 def line(self): return None def feed(self, data): self.rawdata = self.rawdata + data if not self._in_parse: self._in_parse = 1 self.goahead(0) self._in_parse = 0 if self._finish_parse: self.cleanup() def normalize(self, norm): prev = ((self._normfunc is string.lower) and 1) or 0 self._normfunc = (norm and string.lower) or (lambda s: s) return prev def restrict(self, constrain): prev = not self._strict self._strict = not ((constrain and 1) or 0) return prev def setliteral(self, tag): self.literal = 1 re = "%s%s[%s]*%s" % (ETAGO, tag, whitespace, TAGC) if self._normfunc is string.lower: self._lit_etag_re = re.compile(re, re.IGNORECASE) else: self._lit_etag_re = re.compile(re) def setnomoretags(self): self.nomoretags = 1 # Internal -- handle data as far as reasonable. May leave state # and data to be processed by a subsequent call. If 'end' is # true, force handling all data as if followed by EOF marker. def goahead(self, end): #print "goahead", self.rawdata i = 0 n = len(self.rawdata) while i < n: rawdata = self.rawdata # pick up any appended data n = len(rawdata) if self.nomoretags: self.lex_data(rawdata[i:n]) i = n break if self.literal: match = self._lit_etag_re.search(rawdata, i) if match: pos = match.start() # found end self.lex_data(rawdata[i:pos]) i = pos + len(match.group(0)) self.literal = 0 continue else: pos = string.rfind(rawdata, "<", i) if pos >= 0: self.lex_data(rawdata[i:pos]) i = pos break # pick up self._finish_parse as soon as possible: end = end or self._finish_parse match = interesting.search(rawdata, i) if match: j = match.start() else: j = n if i < j: self.lex_data(rawdata[i:j]) i = j if i == n: break #print "interesting", j, i if rawdata[i] == '<': #print "<", self.literal, rawdata[i:20] if starttagopen.match(rawdata, i): #print "open" if self.literal: self.lex_data(rawdata[i]) i = i+1 continue #print "parse_starttag", self.parse_starttag k = self.parse_starttag(i) if k < 0: break i = k continue if endtagopen.match(rawdata, i): k = self.parse_endtag(i) if k < 0: break i = k self.literal = 0 continue if commentopen.match(rawdata, i): if self.literal: self.lex_data(rawdata[i]) i = i+1 continue k = self.parse_comment(i, end) if k < 0: break i = i + k continue match = processinginstruction.match(rawdata, i) if match: k = match.start() # Processing instruction: if self._strict: self.lex_pi(match.group(1)) i = match.end() else: self.lex_data(rawdata[i]) i = i + 1 continue match = special.match(rawdata, i) if match: k = match.start() if k-i == 3: self.lex_declaration([]) i = i + 3 continue if self._strict: if rawdata[i+2] in string.letters: k = self.parse_declaration(i) if k > -1: i = i + k else: self.lex_data('<!') i = i + 2 else: # Pretend it's data: if self.literal: self.lex_data(rawdata[i]) k = 1 i = match.end() continue elif rawdata[i] == '&': charref = (self._strict and legalcharref) or simplecharref match = charref.match(rawdata, i) if match: k = match.end() if rawdata[k-1] not in ';\n': k = k-1 terminator = '' else: terminator = rawdata[k-1] name = match.group(1)[:-1] postchar = '' if terminator == '\n' and not self._strict: postchar = '\n' terminator = '' if name[0] in '0123456789': # Character reference: try: self.lex_charref(string.atoi(name), terminator) except ValueError: self.lex_data("&#%s%s" % (name, terminator)) else: # Named character reference: self.lex_namedcharref(self._normfunc(name), terminator) if postchar: self.lex_data(postchar) i = k continue match = entityref.match(rawdata, i) if match: k = match.end() # General entity reference: #k = i+k if rawdata[k-1] not in ';\n': k = k-1 terminator = '' else: terminator = rawdata[k-1] name = match.group(1) self.lex_entityref(name, terminator) i = k continue else: raise RuntimeError, 'neither < nor & ??' # We get here only if incomplete matches but # nothing else match = incomplete.match(rawdata, i) if not match: self.lex_data(rawdata[i]) i = i+1 continue k = match.end() j = k if j == n: break # Really incomplete self.lex_data(rawdata[i:j]) i = j # end while if (end or self._finish_parse) and i < n: self.lex_data(self.rawdata[i:n]) i = n self.rawdata = self.rawdata[i:] # Internal -- parse comment, return length or -1 if not terminated def parse_comment(self, i, end): #print "parse comment" rawdata = self.rawdata if rawdata[i:i+4] <> (MDO + COM): raise RuntimeError, 'unexpected call to parse_comment' if self._strict: # stricter parsing; this requires legal SGML: pos = i + len(MDO) datalength = len(rawdata) comments = [] while (pos < datalength) and rawdata[pos] != MDC: matchlength, comment = comment_match(rawdata, pos) if matchlength >= 0: pos = pos + matchlength comments.append(comment) elif end: self.lex_error("unexpected end of data in comment") comments.append(rawdata[pos+2:]) pos = datalength elif rawdata[pos] != "-": self.lex_error("illegal character in" " markup declaration: " + `rawdata[pos]`) pos = pos + 1 else: return -1 map(self.lex_comment, comments) return pos + len(MDC) - i # not strict match = commentclose.search(rawdata, i+4) if not match: if end: if MDC in rawdata[i:]: j = string.find(rawdata, MDC, i) self.lex_comment(rawdata[i+4: j]) return j + len(MDC) - i self.lex_comment(rawdata[i+4:]) return len(rawdata) - i return -1 j = match.start() self.lex_comment(rawdata[i+4: j]) match = commentclose.match(rawdata, j) if match: j = match.start() return j - i # Internal -- handle starttag, return length or -1 if not terminated def parse_starttag(self, i): rawdata = self.rawdata #print "parse_starttag", rawdata if self._strict and shorttagopen.match(rawdata, i): # SGML shorthand: <tag/data/ == <tag>data</tag> # XXX Can data contain &... (entity or char refs)? ... yes # XXX Can data contain < or > (tag characters)? ... > yes, # < not as delimiter-in-context # XXX Can there be whitespace before the first /? ... no match = shorttag.match(rawdata, i) if not match: self.lex_data(rawdata[i]) return i + 1 k = match.end() tag, data = match.group(1, 2) tag = self._normfunc(tag) self.lex_starttag(tag, {}) self.lex_data(data) # should scan for entity refs self.lex_endtag(tag) return k # XXX The following should skip matching quotes (' or ") match = endbracket.search(rawdata, i+1) if not match: return -1 j = match.start(0) #print "parse_starttag endbracket", j # Now parse the data between i+1 and j into a tag and attrs if rawdata[i:i+2] == '<>': # Semantics of the empty tag are handled by lex_starttag(): if self._strict: self.lex_starttag('', {}) else: self.lex_data('<>') return i + 2 #print "tagfind start", i+1 match = tagfind.match(rawdata, i+1) # matches just the GI if not match: raise RuntimeError, 'unexpected call to parse_starttag' k = match.end(0) #print "tagfind end", k tag = self._normfunc(rawdata[i+1:k]) #print "tag", tag # pull recognizable attributes attrs = {} while k < j: match = attrfind.match(rawdata, k) if not match: break l = match.start(0) k = k + l # Break out the name[/value] pair: attrname, rest, attrvalue = match.group(1, 2, 3) if not rest: attrvalue = None # was: = attrname elif attrvalue[:1] == LITA == attrvalue[-1:] or \ attrvalue[:1] == LIT == attrvalue[-1:]: attrvalue = attrvalue[1:-1] if '&' in attrvalue: from SGMLReplacer import replace attrvalue = replace(attrvalue, self.entitydefs) attrs[self._normfunc(attrname)] = attrvalue k = match.end(0) # close the start-tag xx = tagend.match(rawdata, k) if not xx: # something vile endchars = self._strict and "<>/" or "<>" while 1: try: while rawdata[k] in string.whitespace: k = k + 1 except IndexError: return -1 if rawdata[k] not in endchars: self.lex_error("bad character in tag") k = k + 1 else: break if not self._strict: if rawdata[k] == '<': self.lex_limitation("unclosed start tag not supported") elif rawdata[k] == '/': self.lex_limitation("NET-enabling start tags" " not supported") else: k = k + len(xx.group(0)) - 1 # # Vicious hack to allow XML-style empty tags, like "<hr />". # We don't require the space, but appearantly it's significant # on Netscape Navigator. Only in non-strict mode. # c = rawdata[k] if c == '/' and not self._strict: if rawdata[k:k+2] == "/>": # using XML empty-tag hack self.lex_starttag(tag, attrs) self.lex_endtag(tag) return k + 2 else: self.lex_starttag(tag, attrs) return k + 1 if c in '>/': k = k + 1 self.lex_starttag(tag, attrs) return k # Internal -- parse endtag def parse_endtag(self, i): rawdata = self.rawdata if rawdata[i+2] in '<>': if rawdata[i+2] == '<' and not self._strict: self.lex_limitation("unclosed end tags not supported") self.lex_data(ETAGO) return i + 2 self.lex_endtag('') return i + 2 + (rawdata[i+2] == TAGC) match = endtag.match(rawdata, i) if not match: return -1 j = match.end(0)-1 #j = i + j - 1 if rawdata[j] == TAGC: j = j + 1 self.lex_endtag(self._normfunc(match.group(1))) return j def parse_declaration(self, start): # This only gets used in "strict" mode. rawdata = self.rawdata i = start # Markup declaration, possibly illegal: strs = [] i = i + 2 match = md_name.match(rawdata, i) k = match.start() strs.append(self._normfunc(match.group(1))) i = i + k end_target = '>' while k > 0: # Have to check the comment pattern first so we don't get # confused and think this is a name that starts with '--': if rawdata[i] == '[': self.lex_limitation("declaration subset not supported") end_target = ']>' break k, comment = comment_match(rawdata, i) if k > 0: strs.append(comment) i = i + k continue match = md_string.match(rawdata, i) if match: k = match.start() strs.append(match.group(1)) i = i + k continue match = md_name.match(rawdata, i) if match: k = match.start() s = match.group(1) try: strs.append(string.atoi(s)) except string.atoi_error: strs.append(self._normfunc(s)) i = i + k continue k = string.find(rawdata, end_target, i) if end_target == ']>': if k < 0: k = string.find(rawdata, '>', i) else: k = k + 1 if k >= 0: i = k + 1 else: return -1 self.lex_declaration(strs) return i - start # Regular expressions used for parsing: OPTIONAL_WHITESPACE = "[%s]*" % whitespace interesting = re.compile('[&<]') incomplete = re.compile('&([a-zA-Z][a-zA-Z0-9]*|' '#[0-9]*)?|' '<([a-zA-Z][^<>]*|' '/([a-zA-Z][^<>]*)?|' '![^<>]*)?') entityref = re.compile(ERO + '([a-zA-Z][-.a-zA-Z0-9]*)[^-.a-zA-Z0-9]') simplecharref = re.compile(CRO + '([0-9]+[^0-9])') legalcharref \ = re.compile(CRO + '([0-9]+[^0-9]|[a-zA-Z.-]+[^a-zA-Z.-])') processinginstruction = re.compile('<\\?([^>]*)' + PIC) starttagopen = re.compile(STAGO + '[>a-zA-Z]') shorttagopen = re.compile(STAGO + '[a-zA-Z][-.a-zA-Z0-9]*' + OPTIONAL_WHITESPACE + NET) shorttag = re.compile(STAGO + '([a-zA-Z][-.a-zA-Z0-9]*)' + OPTIONAL_WHITESPACE + NET + '([^/]*)' + NET) endtagopen = re.compile(ETAGO + '[<>a-zA-Z]') endbracket = re.compile('[<>]') endtag = re.compile(ETAGO + '([a-zA-Z][-.a-zA-Z0-9]*)' '([^-.<>a-zA-Z0-9]?[^<>]*)[<>]') special = re.compile(MDO + '[^>]*' + MDC) markupdeclaration = re.compile(MDO + '(([-.a-zA-Z0-9]+|' + LIT + '[^"]*' + LIT + '|' + LITA + "[^']*" + LITA + '|' + COM + '([^-]|-[^-])*' + COM + ')' + OPTIONAL_WHITESPACE + ')*' + MDC) md_name = re.compile('([^>%s\'"]+)' % whitespace + OPTIONAL_WHITESPACE) md_string = re.compile('("[^"]*"|\'[^\']*\')' + OPTIONAL_WHITESPACE) commentopen = re.compile(MDO + COM) commentclose = re.compile(COM + OPTIONAL_WHITESPACE + MDC) tagfind = re.compile('[a-zA-Z][-_.a-zA-Z0-9]*') attrfind = re.compile( # comma is for compatibility ('[%s,]*([_a-zA-Z][-:.a-zA-Z_0-9]*)' % whitespace) + '(' + OPTIONAL_WHITESPACE + VI + OPTIONAL_WHITESPACE # VI + '(' + LITA + "[^']*" + LITA + '|' + LIT + '[^"]*' + LIT + '|[\-~a-zA-Z0-9,./:+*%?!\\(\\)_#=]*))?') tagend = re.compile(OPTIONAL_WHITESPACE + '[<>/]') # used below in comment_match() comment_start = re.compile(COM + '([^-]*)-(.|\\n)') comment_segment = re.compile('([^-]*)-(.|\\n)') comment_whitespace = re.compile(OPTIONAL_WHITESPACE) del re def comment_match(rawdata, start): """Match a legal SGML comment. rawdata Data buffer, as a string. start Starting index into buffer. This should point to the `<' character of the Markup Declaration Open. Analyzes SGML comments using very simple regular expressions to ensure that the limits of the regular expression package are not exceeded. Very long comments with embedded hyphens which cross buffer boundaries can easily generate problems with less-than- ideal RE implementations. Returns the number of characters to consume from the input buffer (*not* including the first `start' characters!) and the text of comment located. If no comment was identified, returns -1 and an empty string. """ matcher = comment_start.match(rawdata, start) if not matcher or matcher.start() < 0: return -1, '' pos = start comment = '' matchlength = m.start() while matchlength >= 0: if matcher.group(2) == "-": # skip any whitespace ws = comment_whitespace.match(rawdata, pos + matchlength) if ws: ws = ws.start() else: ws = 0 pos = pos + matchlength + ws return pos - start, comment + matcher.group(1) # only a partial match comment = "%s%s-%s" % (comment, matcher.group(1), matcher.group(2)) pos = pos + matchlength matcher = comment_segment.match(rawdata, pos) if not matcher: matchlength = -1 else: matchlength = matcher.start() return -1, ''
36.25096
76
0.492583
dae0187f8846482fe0cb5c8dabc2fa1adecd8e8e
753
py
Python
tests/io/stringio1.py
LabAixBidouille/micropython
11aa6ba456287d6c80598a7ebbebd2887ce8f5a2
[ "MIT" ]
null
null
null
tests/io/stringio1.py
LabAixBidouille/micropython
11aa6ba456287d6c80598a7ebbebd2887ce8f5a2
[ "MIT" ]
null
null
null
tests/io/stringio1.py
LabAixBidouille/micropython
11aa6ba456287d6c80598a7ebbebd2887ce8f5a2
[ "MIT" ]
null
null
null
import _io as io a = io.StringIO() print(a.getvalue()) print(a.read()) a = io.StringIO("foobar") print(a.getvalue()) print(a.read()) print(a.read()) a = io.StringIO() a.write("foo") print(a.getvalue()) a = io.StringIO("foo") a.write("12") print(a.getvalue()) a = io.StringIO("foo") a.write("123") print(a.getvalue()) a = io.StringIO("foo") a.write("1234") print(a.getvalue()) a = io.StringIO() a.write("foo") print(a.read()) a = io.StringIO() a.close() for f in [a.read, a.getvalue, lambda:a.write("")]: # CPython throws for operations on closed I/O, micropython makes # the underlying string empty unless MICROPY_CPYTHON_COMPAT defined try: f() print("ValueError") except ValueError: print("ValueError")
17.928571
71
0.642762
45cded092f5ec52801ec3684e3568c8b5ad86154
2,579
py
Python
nova/api/openstack/compute/schemas/services.py
lixiaoy1/nova
357b8b38e88300948bb2e07d1bbaabd1e9d7b60e
[ "Apache-2.0" ]
2
2021-10-11T04:56:25.000Z
2022-02-16T08:49:29.000Z
nova/api/openstack/compute/schemas/services.py
woraser/nova
fc3890667e4971e3f0f35ac921c2a6c25f72adec
[ "Apache-2.0" ]
132
2017-03-27T11:31:52.000Z
2022-03-30T08:45:02.000Z
nova/api/openstack/compute/schemas/services.py
woraser/nova
fc3890667e4971e3f0f35ac921c2a6c25f72adec
[ "Apache-2.0" ]
8
2017-03-27T07:50:38.000Z
2020-02-14T16:55:56.000Z
# Copyright 2014 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.api.validation import parameter_types service_update = { 'type': 'object', 'properties': { 'host': parameter_types.hostname, 'binary': { 'type': 'string', 'minLength': 1, 'maxLength': 255, }, 'disabled_reason': { 'type': 'string', 'minLength': 1, 'maxLength': 255, } }, 'required': ['host', 'binary'], 'additionalProperties': False } service_update_v211 = { 'type': 'object', 'properties': { 'host': parameter_types.hostname, 'binary': { 'type': 'string', 'minLength': 1, 'maxLength': 255, }, 'disabled_reason': { 'type': 'string', 'minLength': 1, 'maxLength': 255, }, 'forced_down': parameter_types.boolean }, 'required': ['host', 'binary'], 'additionalProperties': False } # The 2.53 body is for updating a service's status and/or forced_down fields. # There are no required attributes since the service is identified using a # unique service_id on the request path, and status and/or forced_down can # be specified in the body. If status=='disabled', then 'disabled_reason' is # also checked in the body but is not required. Requesting status='enabled' and # including a 'disabled_reason' results in a 400, but this is checked in code. service_update_v2_53 = { 'type': 'object', 'properties': { 'status': { 'type': 'string', 'enum': ['enabled', 'disabled'], }, 'disabled_reason': { 'type': 'string', 'minLength': 1, 'maxLength': 255, }, 'forced_down': parameter_types.boolean }, 'additionalProperties': False } index_query_schema = { 'type': 'object', 'properties': { 'host': parameter_types.common_query_param, 'binary': parameter_types.common_query_param, }, # For backward compatible changes 'additionalProperties': True }
32.64557
79
0.629701
590cbd0d8abf43993a20424a5c92101d12ecc728
1,051
py
Python
blogposts/models.py
cesarrodas/cesars-blog
497f4c20bab24db0c0052004e6199d669dac1fe0
[ "MIT" ]
null
null
null
blogposts/models.py
cesarrodas/cesars-blog
497f4c20bab24db0c0052004e6199d669dac1fe0
[ "MIT" ]
null
null
null
blogposts/models.py
cesarrodas/cesars-blog
497f4c20bab24db0c0052004e6199d669dac1fe0
[ "MIT" ]
null
null
null
from django.db import models from django.utils import timezone # Create your models here. class BlogPost(models.Model): title = models.CharField(max_length=250) description = models.CharField(max_length=300) pub_date = models.DateTimeField() image = models.CharField(max_length=300) body = models.TextField() def __str__(self): return self.title def pub_date_pretty(self): return self.pub_date.strftime('%b %e %Y') def summary(self): return self.body[:100] class Comment(models.Model): username = models.CharField(max_length=100) pub_date = models.DateTimeField() message = models.TextField() post_id = models.IntegerField() @classmethod def create(cls, username, message, post_id): comment = cls(username=username, message=message, \ post_id=post_id, pub_date=timezone.datetime.now()) return comment def __str__(self): return self.message[:100] def pub_date_pretty(self): return self.pub_date.strftime('%b %e %Y')
27.657895
59
0.681256
343bdcdf7c2c46293277d788bcbd0c22d70bc4be
23,973
py
Python
lib/spc.py
rinocloud/rinobot-plugin-parse-spc
6bb675a646455e8b9c61bb380705875894fc52e4
[ "MIT" ]
null
null
null
lib/spc.py
rinocloud/rinobot-plugin-parse-spc
6bb675a646455e8b9c61bb380705875894fc52e4
[ "MIT" ]
null
null
null
lib/spc.py
rinocloud/rinobot-plugin-parse-spc
6bb675a646455e8b9c61bb380705875894fc52e4
[ "MIT" ]
null
null
null
""" spc class: main class that starts loading data from Thermo Grams *.SPC file author: Rohan Isaac """ from __future__ import division, absolute_import, unicode_literals, print_function import struct import numpy as np from .sub import subFile, subFileOld from .global_fun import read_subheader, flag_bits class File: """ Starts loading the data from a .SPC spectral file using data from the header. Stores all the attributes of a spectral file: Data ---- content: Full raw data sub[i]: sub file object for each subfileFor each subfile sub[i].y: y data for each subfile x: x-data, global, or for the first subheader Examples -------- >>> import spc >>> ftir_1 = spc.File('/path/to/ftir.spc') """ # Format strings for various parts of the file # calculate size of strings using `struct.calcsize(string)` head_str = "<cccciddicccci9s9sh32s130s30siicchf48sfifc187s" old_head_str = "<cchfffcchcccc8shh28s130s30s32s" logstc_str = "<iiiii44s" # byte positon of various parts of the file head_siz = 512 old_head_siz = 256 subhead_siz = 32 log_siz = 64 subhead1_pos = head_siz + subhead_siz # ------------------------------------------------------------------------ # CONSTRUCTOR # ------------------------------------------------------------------------ def __init__(self, filename): # load entire into memory temporarly with open(filename, "rb") as fin: content = fin.read() # print "Read raw data" self.length = len(content) # extract first two bytes to determine file type version self.ftflg, self.fversn = struct.unpack('<cc'.encode('utf8'), content[:2]) # -------------------------------------------- # NEW FORMAT (LSB) # -------------------------------------------- if self.fversn == b'\x4b': # format: new LSB 1st # ------------- # unpack header # ------------- # use little-endian format with standard sizes # use naming scheme in SPC.H header file self.ftflg, \ self.fversn, \ self.fexper, \ self.fexp, \ self.fnpts, \ self.ffirst, \ self.flast, \ self.fnsub, \ self.fxtype, \ self.fytype, \ self.fztype, \ self.fpost, \ self.fdate, \ self.fres, \ self.fsource, \ self.fpeakpt, \ self.fspare, \ self.fcmnt, \ self.fcatxt, \ self.flogoff, \ self.fmods, \ self.fprocs, \ self.flevel, \ self.fsampin, \ self.ffactor, \ self.fmethod, \ self.fzinc, \ self.fwplanes, \ self.fwinc, \ self.fwtype, \ self.freserv \ = struct.unpack(self.head_str.encode('utf8'), content[:self.head_siz]) # Flag bits self.tsprec, \ self.tcgram, \ self.tmulti, \ self.trandm, \ self.tordrd, \ self.talabs, \ self.txyxys, \ self.txvals = flag_bits(self.ftflg)[::-1] # fix data types if necessary self.fnpts = int(self.fnpts) # of points should be int self.fexp = ord(self.fexp) self.ffirst = float(self.ffirst) self.flast = float(self.flast) self.flogoff = int(self.flogoff) # byte; should be int self.fxtype = ord(self.fxtype) self.fytype = ord(self.fytype) self.fztype = ord(self.fztype) self.fexper = ord(self.fexper) self.fcmnt = str(self.fcmnt) # Convert date time to appropriate format d = self.fdate self.year = d >> 20 self.month = (d >> 16) % (2**4) self.day = (d >> 11) % (2**5) self.hour = (d >> 6) % (2**5) self.minute = d % (2**6) # null terminated string, replace null characters with spaces # split and join to remove multiple spaces try: self.cmnt = ' '.join((self.fcmnt.replace('\x00', ' ')).split()) except: self.cmnt = self.fcmnt # figure out type of file if self.fnsub > 1: self.dat_multi = True if self.txyxys: # x values are given self.dat_fmt = '-xy' elif self.txvals: # only one subfile, which contains the x data self.dat_fmt = 'x-y' else: # no x values are given, but they can be generated self.dat_fmt = 'gx-y' print('{}({})'.format(self.dat_fmt, self.fnsub)) sub_pos = self.head_siz if not self.txyxys: # txyxys don't have global x data if self.txvals: # if global x data is given x_dat_pos = self.head_siz x_dat_end = self.head_siz + (4 * self.fnpts) self.x = np.array( [struct.unpack_from( 'f', content[x_dat_pos:x_dat_end], 4 * i)[0] for i in range(0, self.fnpts)]) sub_pos = x_dat_end else: # otherwise generate them self.x = np.linspace(self.ffirst, self.flast, num=self.fnpts) # make a list of subfiles self.sub = [] # if subfile directory is given if self.dat_fmt == '-xy' and self.fnpts > 0: self.directory = True # loop over entries in directory for i in range(0, self.fnsub): ssfposn, ssfsize, ssftime = struct.unpack( '<iif'.encode('utf8'), content[self.fnpts + (i * 12):self.fnpts + ((i + 1) * 12)]) # add sufile, load defaults for npts and exp self.sub.append(subFile(content[ssfposn:ssfposn + ssfsize], 0, 0, True, self.tsprec)) else: # don't have directory, for each subfile for i in range(self.fnsub): # figure out its size if self.txyxys: # use points in subfile subhead_lst = read_subheader(content[sub_pos:(sub_pos + 32)]) pts = subhead_lst[6] # 4 bytes each for x and y, and 32 for subheader dat_siz = (8 * pts) + 32 else: # use global points pts = self.fnpts dat_siz = (4 * pts) + 32 sub_end = sub_pos + dat_siz # read into object, add to list self.sub.append(subFile(content[sub_pos:sub_end], self.fnpts, self.fexp, self.txyxys, self.tsprec)) # update positions sub_pos = sub_end # if log data exists # flog offset to log data offset not zero (bytes) if self.flogoff: log_head_end = self.flogoff + self.log_siz self.logsizd, \ self.logsizm, \ self.logtxto, \ self.logbins, \ self.logdsks, \ self.logspar \ = struct.unpack(self.logstc_str.encode('utf8'), content[self.flogoff:log_head_end]) log_pos = self.flogoff + self.logtxto log_end_pos = log_pos + self.logsizd # line endings: get rid of any '\r' and then split on '\n' self.log_content = content[log_pos:log_end_pos].replace(b'\r', b'').split(b'\n') # split log data into dictionary based on = self.log_dict = dict() self.log_other = [] # put the rest into a list for x in self.log_content: if x.find(b'=') >= 0: # stop it from breaking if there is more than 1 = key, value = x.split(b'=')[:2] self.log_dict[key] = value else: self.log_other.append(x) # spacing between data self.spacing = (self.flast - self.ffirst) / (self.fnpts - 1) # call functions self.set_labels() self.set_exp_type() # -------------------------------------------- # NEW FORMAT (MSB) # -------------------------------------------- elif self.fversn == b'\x4c': # new MSB 1st print("New MSB 1st, yet to be implemented") pass # To be implemented # -------------------------------------------- # OLD FORMAT # -------------------------------------------- elif self.fversn == b'\x4d': # old format # oxtype -> fxtype # oytype -> fytype self.oftflgs, \ self.oversn, \ self.oexp, \ self.onpts, \ self.ofirst, \ self.olast, \ self.fxtype, \ self.fytype, \ self.oyear, \ self.omonth, \ self.oday, \ self.ohour, \ self.ominute, \ self.ores, \ self.opeakpt, \ self.onscans, \ self.ospare, \ self.ocmnt, \ self.ocatxt, \ self.osubh1 = struct.unpack(self.old_head_str.encode('utf8'), content[:self.old_head_siz]) # Flag bits (assuming same) self.tsprec, \ self.tcgram, \ self.tmulti, \ self.trandm, \ self.tordrd, \ self.talabs, \ self.txyxys, \ self.txvals = flag_bits(self.oftflgs)[::-1] # fix data types self.oexp = int(self.oexp) self.onpts = int(self.onpts) # can't have floating num of pts self.ofirst = float(self.ofirst) self.olast = float(self.olast) # Date information # !! to fix !! # Year collected (0=no date/time) - MSB 4 bits are Z type # extracted as characters, using ord self.omonth = ord(self.omonth) self.oday = ord(self.oday) self.ohour = ord(self.ohour) self.ominute = ord(self.ominute) # number of scans (? subfiles sometimes ?) self.onscans = int(self.onscans) # null terminated strings self.ores = self.ores.split(b'\x00')[0] self.ocmnt = self.ocmnt.split(b'\x00')[0] # can it have separate x values ? self.x = np.linspace(self.ofirst, self.olast, num=self.onpts) # make a list of subfiles self.sub = [] # already have subheader from main header, retrace steps sub_pos = self.old_head_siz - self.subhead_siz # for each subfile # in the old format we don't know how many subfiles to expect, # just looping till we run out i = 0 while True: try: # read in subheader subhead_lst = read_subheader(content[sub_pos:sub_pos + self.subhead_siz]) if subhead_lst[6] > 0: # default to subfile points, unless it is zero pts = subhead_lst[6] else: pts = self.onpts # figure out size of subheader dat_siz = (4 * pts) sub_end = sub_pos + self.subhead_siz + dat_siz # read into object, add to list # send it pts since we have already figured that out self.sub.append(subFileOld( content[sub_pos:sub_end], pts, self.oexp, self.txyxys)) # update next subfile postion, and index sub_pos = sub_end i += 1 except: # zero indexed, set the total number of subfile self.fnsub = i + 1 break # assuming it can't have separate x values self.dat_fmt = 'gx-y' print('{}({})'.format(self.dat_fmt, self.fnsub)) self.fxtype = ord(self.fxtype) self.fytype = ord(self.fytype) # need to find from year apparently self.fztype = 0 self.set_labels() # -------------------------------------------- # SHIMADZU # -------------------------------------------- elif self.fversn == b'\xcf': print("Highly experimental format, may not work ") raw_data = content[10240:] # data starts here (maybe every time) # spacing between y and x data is atleast 0 bytes s_32 = chr(int('0', 2)) * 32 s_8 = chr(int('0', 2)) * 8 # zero double dat_len = raw_data.find(s_32) for i in range(dat_len, len(raw_data), 8): # find first non zero double if raw_data[i:i + 8] != s_8: break dat_siz = int(dat_len / 8) self.y = struct.unpack(('<' + dat_siz * 'd').encode('utf8'), raw_data[:dat_len]) self.x = struct.unpack(('<' + dat_siz * 'd').encode('utf8'), raw_data[i:i + dat_len]) else: print("File type %s not supported yet. Please add issue. " % hex(ord(self.fversn))) self.content = content # ------------------------------------------------------------------------ # Process other data # ------------------------------------------------------------------------ def set_labels(self): """ Set the x, y, z axis labels using various information in file content """ # -------------------------- # units for x,z,w axes # -------------------------- fxtype_op = ["Arbitrary", "Wavenumber (cm-1)", "Micrometers (um)", "Nanometers (nm)", "Seconds ", "Minutes", "Hertz (Hz)", "Kilohertz (KHz)", "Megahertz (MHz) ", "Mass (M/z)", "Parts per million (PPM)", "Days", "Years", "Raman Shift (cm-1)", "eV", "XYZ text labels in fcatxt (old 0x4D version only)", "Diode Number", "Channel", "Degrees", "Temperature (F)", "Temperature (C)", "Temperature (K)", "Data Points", "Milliseconds (mSec)", "Microseconds (uSec) ", "Nanoseconds (nSec)", "Gigahertz (GHz)", "Centimeters (cm)", "Meters (m)", "Millimeters (mm)", "Hours"] if self.fxtype < 30: self.xlabel = fxtype_op[self.fxtype] else: self.xlabel = "Unknown" if self.fztype < 30: self.zlabel = fxtype_op[self.fztype] else: self.zlabel = "Unknown" # -------------------------- # units y-axis # -------------------------- fytype_op = ["Arbitrary Intensity", "Interferogram", "Absorbance", "Kubelka-Munk", "Counts", "Volts", "Degrees", "Milliamps", "Millimeters", "Millivolts", "Log(1/R)", "Percent", "Intensity", "Relative Intensity", "Energy", "", "Decibel", "", "", "Temperature (F)", "Temperature (C)", "Temperature (K)", "Index of Refraction [N]", "Extinction Coeff. [K]", "Real", "Imaginary", "Complex"] fytype_op2 = ["Transmission", "Reflectance", "Arbitrary or Single Beam with Valley Peaks", "Emission"] if self.fytype < 27: self.ylabel = fytype_op[self.fytype] elif self.fytype > 127 and self.fytype < 132: self.ylabel = fytype_op2[self.fytype - 128] else: self.ylabel = "Unknown" # -------------------------- # check if labels are included as text # -------------------------- # split it based on 00 string # format x, y, z if self.talabs: ll = self.fcatxt.split(b'\x00') if len(ll) > 2: # make sure there are enough items to extract from xl, yl, zl = ll[:3] # overwrite only if non zero if len(xl) > 0: self.xlabel = xl if len(yl) > 0: self.ylabel = yl if len(zl) > 0: self.zlabel = zl def set_exp_type(self): """ Sets the experiment type """ fexper_op = ["General SPC", "Gas Chromatogram", "General Chromatogram", "HPLC Chromatogram", "FT-IR, FT-NIR, FT-Raman Spectrum or Igram", "NIR Spectrum", "UV-VIS Spectrum", "X-ray Diffraction Spectrum", "Mass Spectrum ", "NMR Spectrum or FID", "Raman Spectrum", "Fluorescence Spectrum", "Atomic Spectrum", "Chromatography Diode Array Spectra"] self.exp_type = fexper_op[self.fexper] # ------------------------------------------------------------------------ # output # ------------------------------------------------------------------------ def data_txt(self, delimiter='\t', newline='\n'): """ Returns x,y column data as a string variable, can be printed to standard output or fed to text file. Arguments --------- delimiter: chr (default='\t') delimiter character for column separation newline: chr (default='\n') newline character, may want to use '\r\n' for Windows based output Example ------- >>> f.data_txt(newline='\r\n') """ dat = '' if self.fnsub == 1: if self.dat_fmt.endswith('-xy'): x = self.sub[0].x else: x = self.x y = self.sub[0].y for x1, y1 in zip(x, y): dat += '{}{}{}{}'.format(x1, delimiter, y1, newline) else: if not self.dat_fmt.endswith('-xy'): # does not have separate x data for i in range(len(self.x)): dat += '{}'.format(self.x[i]) for s in self.sub: dat += '{}{}'.format(delimiter, s.y[i]) dat += newline else: # txyxy format, return one long xy file with subfiles # separated by blank lines for i in self.sub: for x1, y1 in zip(i.x, i.y): dat += '{}{}{}{}'.format(x1, delimiter, y1, newline) dat += newline return dat def write_file(self, path, delimiter='\t', newline='\n'): """ Output x,y data to text file tab seperated Arguments --------- path: str full path to output file including extension delimiter: chr (default='\t') delimiter character for column separation newline: chr (default='\n') newline character, may want to use '\r\n' for Windows based output Example ------- >>> f.writefile('/Users/home/output.txt', delimiter=',') """ with open(path, 'w') as f: f.write(self.data_txt(delimiter, newline)) def print_metadata(self): """ Print out select metadata""" print("Scan: ", self.log_dict['Comment'], "\n", float(self.log_dict['Start']), "to ", float(self.log_dict['End']), "; ", float(self.log_dict['Increment']), "cm-1;", float(self.log_dict['Integration Time']), "s integration time") def plot(self): """ Plots data, and use column headers, returns figure object plotted Requires matplotlib installed Example ------- >>> f.plot() """ import matplotlib.pyplot as plt if self.dat_fmt.endswith('-xy'): for s in self.sub: plt.plot(s.x, s.y) else: x = self.x for s in self.sub: plt.plot(x, s.y) plt.xlabel(self.xlabel) plt.ylabel(self.ylabel) return plt.gcf() def debug_info(self): """ Interpret flags and header information to debug more about the file format Example ------- >>> f.debug_info() """ print("\nDEBUG INFO\nFlags:\n") # Flag bits if self.tsprec: print("16-bit y data") if self.tcgram: print("enable fexper") if self.tmulti: print("multiple traces") if self.trandm: print("arb time (z) values") if self.tordrd: print("ordered but uneven subtimes") if self.talabs: print("use fcatxt axis not fxtype") if self.txyxys: print("each subfile has own x's") if self.txvals: print("floating x-value array preceeds y's") print('----\n') # spc format version if self.fversn == chr(0x4b): self.pr_versn = "new LSB 1st" elif self.fversn == chr(0x4c): self.pr_versn = "new MSB 1st" elif self.fversn == chr(0x4d): self.pr_versn = "old format" else: self.pr_versn = "unknown version" print("Version:", self.pr_versn) # subfiles if self.fnsub == 1: print("Single file only") else: print("Multiple subfiles:", self.fnsub) # multiple y values if self.tmulti: print("Multiple y-values") else: print("Single set of y-values") # print "There are ", self.fnpts, \ # " points between ", self.ffirst, \ # " and ", self.flast, \ # " in steps of ", self.pr_spacing
34.99708
106
0.435073
03269605c9b199d9a9f397921e3af1f6096d4a92
1,545
py
Python
release/stubs.min/System/Windows/Forms/__init___parts/UICuesEventArgs.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Forms/__init___parts/UICuesEventArgs.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Forms/__init___parts/UICuesEventArgs.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
class UICuesEventArgs(EventArgs): """ Provides data for the System.Windows.Forms.Control.ChangeUICues event. UICuesEventArgs(uicues: UICues) """ @staticmethod def __new__(self, uicues): """ __new__(cls: type,uicues: UICues) """ pass Changed = property(lambda self: object(), lambda self, v: None, lambda self: None) """Gets the bitwise combination of the System.Windows.Forms.UICues values. Get: Changed(self: UICuesEventArgs) -> UICues """ ChangeFocus = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets a value indicating whether the state of the focus cues has changed. Get: ChangeFocus(self: UICuesEventArgs) -> bool """ ChangeKeyboard = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets a value indicating whether the state of the keyboard cues has changed. Get: ChangeKeyboard(self: UICuesEventArgs) -> bool """ ShowFocus = property(lambda self: object(), lambda self, v: None, lambda self: None) """Gets a value indicating whether focus rectangles are shown after the change. Get: ShowFocus(self: UICuesEventArgs) -> bool """ ShowKeyboard = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets a value indicating whether keyboard cues are underlined after the change. Get: ShowKeyboard(self: UICuesEventArgs) -> bool """
20.6
89
0.642071
192dcbd0dbbb52cdf7068fd0800303842ac87d51
1,721
py
Python
examples/pylab_examples/anscombe.py
jbbrokaw/matplotlib
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
[ "MIT", "BSD-3-Clause" ]
null
null
null
examples/pylab_examples/anscombe.py
jbbrokaw/matplotlib
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
[ "MIT", "BSD-3-Clause" ]
null
null
null
examples/pylab_examples/anscombe.py
jbbrokaw/matplotlib
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
[ "MIT", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from __future__ import print_function """ Edward Tufte uses this example from Anscombe to show 4 datasets of x and y that have the same mean, standard deviation, and regression line, but which are qualitatively different. matplotlib fun for a rainy day """ from pylab import * x = array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]) y1 = array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]) y2 = array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]) y3 = array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]) x4 = array([8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]) y4 = array([6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]) def fit(x): return 3+0.5*x xfit = array([amin(x), amax(x)]) subplot(221) plot(x, y1, 'ks', xfit, fit(xfit), 'r-', lw=2) axis([2, 20, 2, 14]) setp(gca(), xticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) text(3, 12, 'I', fontsize=20) subplot(222) plot(x, y2, 'ks', xfit, fit(xfit), 'r-', lw=2) axis([2, 20, 2, 14]) setp(gca(), xticklabels=[], yticks=(4, 8, 12), yticklabels=[], xticks=(0, 10, 20)) text(3, 12, 'II', fontsize=20) subplot(223) plot(x, y3, 'ks', xfit, fit(xfit), 'r-', lw=2) axis([2, 20, 2, 14]) text(3, 12, 'III', fontsize=20) setp(gca(), yticks=(4, 8, 12), xticks=(0, 10, 20)) subplot(224) xfit = array([amin(x4), amax(x4)]) plot(x4, y4, 'ks', xfit, fit(xfit), 'r-', lw=2) axis([2, 20, 2, 14]) setp(gca(), yticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) text(3, 12, 'IV', fontsize=20) # verify the stats pairs = (x, y1), (x, y2), (x, y3), (x4, y4) for x, y in pairs: print('mean=%1.2f, std=%1.2f, r=%1.2f' % (mean(y), std(y), corrcoef(x, y)[0][1])) show()
28.683333
85
0.578733
a1a4cdc0b6a81da470b6fc42321181ce1b72778b
4,272
py
Python
src/inference.py
by2101/OpenLAS
0acb30dae98ab89009a919ce86e064c943c51643
[ "Apache-2.0" ]
6
2019-07-11T12:42:42.000Z
2020-12-25T07:24:38.000Z
src/inference.py
by2101/OpenLAS
0acb30dae98ab89009a919ce86e064c943c51643
[ "Apache-2.0" ]
null
null
null
src/inference.py
by2101/OpenLAS
0acb30dae98ab89009a919ce86e064c943c51643
[ "Apache-2.0" ]
1
2020-06-27T15:55:02.000Z
2020-06-27T15:55:02.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : train # @Author: Ye Bai # @Date : 2019/4/2 import sys import os import argparse import logging import yaml import torch from data import SpeechDataset, FrameBasedSampler, Collate, load_vocab from utils import Timer, str2bool from encoder import BiRNN_Torch, BiRNN from decoder import RNNDecoder from model import LAS import schedule from trainer import Trainer import utils import pdb logging.basicConfig(format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s') # logging.basicConfig(format='train.py [line:%(lineno)d] - %(levelname)s: %(message)s') logger = logging.getLogger("train") logger.setLevel(logging.INFO) # logger = logging.getLogger() # console = logging.StreamHandler(sys.stdout) # formatter = logging.Formatter('train.py [line:%(lineno)d] - %(levelname)s: %(message)s') # console.setFormatter(formatter) # logger.addHandler(console) def get_args(): parser = argparse.ArgumentParser(description=""" Usage: train.py <data_file> <model_file> """) parser.add_argument("data_file", help="path to data file (json format)") parser.add_argument("vocab_file", help="path to vocab file") parser.add_argument("model_file", help="path to model file") parser.add_argument("result_file", help="path for writing decoding results.") args = parser.parse_args() return args if __name__ == "__main__": total_timer = Timer() total_timer.tic() args = get_args() pkg = torch.load(args.model_file) model_config = pkg['model_config'] vocab = load_vocab(args.vocab_file) id2token = [None] * len(vocab) for k, v in vocab.items(): id2token[v] = k collate = Collate(model_config["left_context"], model_config["right_context"], model_config["skip_frame"], model_config["norm_mean"], model_config["norm_var"]) testset = SpeechDataset(args.data_file) test_loader = torch.utils.data.DataLoader(testset, collate_fn=collate, shuffle=False) # check dim match if model_config["feat_dim"] != testset[0]["feat"]["dim"]: raise ValueError(("Dim mismatch: "+ "model {} vs. feat {}.").format(model_config["feat_dim"], testset[0]["feat"]["dim"])) model_load_timer = Timer() model_load_timer.tic() # build encoder and decoder if model_config["encoder"]["type"] == "BiRNN": encoder = BiRNN(model_config["encoder"]) elif model_config["encoder"]["type"] == "BiRNN_Torch": encoder = BiRNN_Torch(model_config["encoder"]) else: raise ValueError("Unknown encoder type.") if model_config["decoder"]["type"] == "RNNDecoder": decoder = RNNDecoder(model_config["decoder"]) else: raise ValueError("Unknown decoder type.") model = LAS(encoder, decoder, model_config) model.load_state_dict(pkg['state_dict']) model = model.cuda() model.eval() logger.info("Spend {:.3f} sec for building model..".format(model_load_timer.toc())) model_load_timer.tic() # model = model.cuda() logger.info("Spend {:.3f} sec for loading model to gpu..".format(model_load_timer.toc())) logger.info("Model: \n{}".format(model)) tot_utt = len(testset) decode_cnt = 0 fw = open(args.result_file, 'w', encoding="utf8") # batch_size is 1, only one sentence. for utts, feats, feat_lengths, src_ids, src_lengths, tgt_ids, tgt_lengths in test_loader: feats = feats.cuda() feat_lengths = feat_lengths.cuda() decode_cnt += 1 logger.info("Decoding {} [{}/{}]\n".format(utts[0], decode_cnt, tot_utt)) ref = " ".join([id2token[id] for id in tgt_ids.view(-1)]) best_hyp, ended_hyps = model.beam_search_sentence(feats, feat_lengths, id2token) hyp = " ".join([id2token[id] for id in best_hyp['ids']]) logger.info("\nref:\t{}\nhyp:\t{}\n".format(ref, hyp)) res = "{} {}\n".format(utts[0], " ".join([id2token[id] for id in best_hyp['ids'][:-1]])) fw.write(res) fw.close() logger.info("Finished. Total Time: {:.3f} hrs.".format(total_timer.toc()/3600.))
32.610687
102
0.64162
134bd36b58d77a09cd9d844bfd485e9850dc7140
7,998
py
Python
matilda/data_pipeline/data_scapers/financial_statements_scraper/financial_statements_scraper.py
AlainDaccache/Quantropy
6cfa06ed2b764471382ebf94d40af867f10433bb
[ "MIT" ]
45
2021-01-28T04:12:21.000Z
2022-02-24T13:15:50.000Z
matilda/data_pipeline/data_scapers/financial_statements_scraper/financial_statements_scraper.py
AlainDaccache/Quantropy
6cfa06ed2b764471382ebf94d40af867f10433bb
[ "MIT" ]
32
2021-03-02T18:45:16.000Z
2022-03-12T00:53:10.000Z
matilda/data_pipeline/data_scapers/financial_statements_scraper/financial_statements_scraper.py
AlainDaccache/Quantropy
6cfa06ed2b764471382ebf94d40af867f10433bb
[ "MIT" ]
10
2020-12-25T15:02:40.000Z
2021-12-30T11:40:15.000Z
import collections import os import re import traceback from datetime import datetime import pandas as pd from pprint import pprint from matilda import config import io import json from zope.interface import Interface from matilda.data_pipeline.data_preparation_helpers import save_pretty_excel, read_dates_from_csv class FinancialStatementsParserInterface(Interface): regex_patterns: dict def load_data_source(self, ticker: str) -> dict: """ Load in the file links :param ticker: :return: dictionary of format: frequency ('Quarterly' or 'Yearly') -> financial statement ('Balance Sheet', 'Income Statement', 'Cash Flow Statement') -> date (datetime) -> link """ pass def scrape_tables(self, url: str, filing_date: datetime, filing_type: str) -> dict: """Extract tables from the currently loaded file.""" pass def normalize_tables(self, regex_patterns, filing_date, input_dict, visited_data_names) -> (dict, dict): """Standardize tables to match across years and companies""" pass date_regex = re.compile(r'^(0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])[- /.](19|20)\d\d$' # match mm/dd/yyyy r'|' r'^(0[1-9]|[12][0-9]|3[01])[- /.](0[1-9]|1[012])[- /.](19|20)\d\d$' # match dd-mm-yyyy r'|' r'^([^\s]+) (\d{2}),? ?(\d{4})$' # match Month D, Yr (i.e. February 17, 2009 or February 17,2009) r'|' r'^\d{4}$' # match year (i.e. 2011) r'|' 'Fiscal\d{4}' r'|' r'^Change$' r'|' r'(\b\d{1,2}\D{0,3})?\b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|(Nov|Dec)(?:ember)?)\D?(\d{1,2}\D?)?\D?((19[7-9]\d|20\d{2})|\d{2})') # make sure delta between bigger and smaller is 3 months i.e. 3 and 6, 6 and 9, 9 and 12 def quarterlize_statements(smaller_period_df, bigger_period_df, existing_quarters): global closest_smaller_period_index df_output = pd.DataFrame() for bigger_period_index, bigger_period_date in enumerate(bigger_period_df.columns): if bigger_period_date not in existing_quarters: try: closest_smaller_period_index = next( index for (index, item) in enumerate(smaller_period_df.columns) if item < bigger_period_date) except: traceback.print_exc() # print(closest_smaller_period_index) df_output[bigger_period_date] = bigger_period_df[bigger_period_date] \ - smaller_period_df.iloc[:, closest_smaller_period_index] # print(smaller_period_df.to_string()) return df_output def scrape_financial_statements(scraper_interface_implementation, ticker: str, how_many_years: int = 2, how_many_quarters: int = 8): # if not FinancialStatementsParserInterface.implementedBy(scraper_interface_implementation): # raise Exception global quarterly_df path = '{}/{}.xlsx'.format(config.FINANCIAL_STATEMENTS_DIR_PATH, ticker) log_folder_path = os.path.join(config.DATA_DIR_PATH, 'logs') if not os.path.exists(log_folder_path): os.mkdir(log_folder_path) company_log_path = os.path.join(log_folder_path, ticker) if not os.path.exists(company_log_path): os.mkdir(company_log_path) dictio_period_year_table = {} filing_dictio = scraper_interface_implementation().load_data_source(ticker=ticker) for filing_type, statement_date_link in filing_dictio.items(): for statement, dates_and_links in statement_date_link.items(): # find missing dates from excel (this way we don't rescrape those that are there) missing_dates_links = [] existing_dates = read_dates_from_csv(path, '{} {}'.format(statement, filing_type)) for date, link in dates_and_links: formatted_date = datetime.strptime(date, '%Y-%m-%d') if formatted_date not in existing_dates and formatted_date not in [x for x, y in missing_dates_links]: missing_dates_links.append((formatted_date, statement, link)) missing_dates_links.sort(key=lambda tup: tup[0], reverse=True) for index, (filing_date, filing_statement, link) in enumerate(missing_dates_links): try: if (index > how_many_years - 1 and filing_type == 'Yearly') \ or (index > how_many_quarters - 1 and filing_type == 'Quarterly'): break print(filing_date, link) output = scraper_interface_implementation().scrape_tables(url=link, filing_date=filing_date, filing_type=filing_type) pprint(output) for sheet_period, sheet_dict in output.items(): if sheet_period not in dictio_period_year_table.keys(): dictio_period_year_table[sheet_period] = {} for year, title_dict in sheet_dict.items(): # if we don't have the year in our dictio that collects everything, just add all and go to next year of the output if year not in dictio_period_year_table[sheet_period].keys(): dictio_period_year_table[sheet_period][year] = title_dict continue # else, we have a year, so we add up those two dicts together for title, last_layer in title_dict.items(): # title / key:float if title not in dictio_period_year_table[sheet_period][year].keys(): dictio_period_year_table[sheet_period][year][title] = last_layer else: dictio_period_year_table[sheet_period][year][title].update(last_layer) except Exception: traceback.print_exc() # if same links across statements, break from loop, so you go to next filing type with io.open(os.path.join(company_log_path, 'scraped_dictio.txt'), "w", encoding="utf-8") as f: f.write(json.dumps(str(dictio_period_year_table))) financials_dictio = {} for sheet_period, sheet_dict in dictio_period_year_table.items(): visited_data_names = {} if sheet_period not in financials_dictio.keys(): financials_dictio[sheet_period] = {} for year, title_dict in sheet_dict.items(): if year not in financials_dictio[sheet_period].keys(): financials_dictio[sheet_period][year] = {} visited_data_names, financials_dictio[sheet_period][year] = \ scraper_interface_implementation().normalize_tables( regex_patterns=scraper_interface_implementation().regex_patterns, filing_date=year, input_dict=title_dict, visited_data_names=visited_data_names) # log = open(os.path.join(company_log_path, '{}_normalized_dictio.txt'.format(sheet_period)), "w") # print(visited_data_names, file=log) save_pretty_excel(path=path, financials_dictio=financials_dictio) # if __name__ == '__main__': # tickers = excel.get_stock_universe('DJIA') # for ticker in ['AAPL', 'FB']: # scrape_financial_statements(scraper_interface_implementation=html_scraper.HtmlParser, # ticker=ticker, how_many_years=3, how_many_quarters=0)
49.37037
231
0.595274
e05697fc7062a204a1ec05348dad244e1eb321ed
13,179
py
Python
lttnganalyses/linuxautomaton/io.py
mjeanson/debian-lttnganalyses
d098edb86bd2b6c33f63aa388c305367302f37d7
[ "MIT" ]
null
null
null
lttnganalyses/linuxautomaton/io.py
mjeanson/debian-lttnganalyses
d098edb86bd2b6c33f63aa388c305367302f37d7
[ "MIT" ]
null
null
null
lttnganalyses/linuxautomaton/io.py
mjeanson/debian-lttnganalyses
d098edb86bd2b6c33f63aa388c305367302f37d7
[ "MIT" ]
null
null
null
# The MIT License (MIT) # # Copyright (C) 2015 - Julien Desfossez <jdesfossez@efficios.com> # 2015 - Antoine Busque <abusque@efficios.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import socket from babeltrace import CTFScope from . import sp, sv from ..common import format_utils, trace_utils class IoStateProvider(sp.StateProvider): def __init__(self, state): cbs = { 'syscall_entry': self._process_syscall_entry, 'syscall_exit': self._process_syscall_exit, 'syscall_entry_connect': self._process_connect, 'writeback_pages_written': self._process_writeback_pages_written, 'mm_vmscan_wakeup_kswapd': self._process_mm_vmscan_wakeup_kswapd, 'mm_page_free': self._process_mm_page_free } super().__init__(state, cbs) def _process_syscall_entry(self, event): # Only handle IO Syscalls name = trace_utils.get_syscall_name(event) if name not in sv.SyscallConsts.IO_SYSCALLS: return cpu_id = event['cpu_id'] if cpu_id not in self._state.cpus: return cpu = self._state.cpus[cpu_id] if cpu.current_tid is None: return proc = self._state.tids[cpu.current_tid] # check if we can fix the pid from a context self._fix_context_pid(event, proc) if name in sv.SyscallConsts.OPEN_SYSCALLS: self._track_open(event, name, proc) elif name in sv.SyscallConsts.CLOSE_SYSCALLS: self._track_close(event, name, proc) elif name in sv.SyscallConsts.READ_SYSCALLS or \ name in sv.SyscallConsts.WRITE_SYSCALLS: self._track_read_write(event, name, proc) elif name in sv.SyscallConsts.SYNC_SYSCALLS: self._track_sync(event, name, proc) def _process_syscall_exit(self, event): cpu_id = event['cpu_id'] if cpu_id not in self._state.cpus: return cpu = self._state.cpus[cpu_id] if cpu.current_tid is None: return proc = self._state.tids[cpu.current_tid] current_syscall = proc.current_syscall if current_syscall is None: return name = current_syscall.name if name not in sv.SyscallConsts.IO_SYSCALLS: return self._track_io_rq_exit(event, proc) proc.current_syscall = None def _process_connect(self, event): cpu_id = event['cpu_id'] if cpu_id not in self._state.cpus: return cpu = self._state.cpus[cpu_id] if cpu.current_tid is None: return proc = self._state.tids[cpu.current_tid] parent_proc = self._get_parent_proc(proc) # FIXME: handle on syscall_exit_connect only when succesful if 'family' in event and event['family'] == socket.AF_INET: fd = event['fd'] if fd in parent_proc.fds: parent_proc.fds[fd].filename = format_utils.format_ipv4( event['v4addr'], event['dport'] ) def _process_writeback_pages_written(self, event): for cpu in self._state.cpus.values(): if cpu.current_tid is None: continue current_syscall = self._state.tids[cpu.current_tid].current_syscall if current_syscall is None: continue if current_syscall.io_rq: current_syscall.io_rq.pages_written += event['pages'] def _process_mm_vmscan_wakeup_kswapd(self, event): cpu_id = event['cpu_id'] if cpu_id not in self._state.cpus: return cpu = self._state.cpus[cpu_id] if cpu.current_tid is None: return current_syscall = self._state.tids[cpu.current_tid].current_syscall if current_syscall is None: return if current_syscall.io_rq: current_syscall.io_rq.woke_kswapd = True def _process_mm_page_free(self, event): for cpu in self._state.cpus.values(): if cpu.current_tid is None: continue proc = self._state.tids[cpu.current_tid] # if the current process is kswapd0, we need to # attribute the page freed to the process that # woke it up. if proc.comm == 'kswapd0' and proc.prev_tid > 0: proc = self._state.tids[proc.prev_tid] current_syscall = proc.current_syscall if current_syscall is None: continue if current_syscall.io_rq and current_syscall.io_rq.woke_kswapd: current_syscall.io_rq.pages_freed += 1 def _track_open(self, event, name, proc): current_syscall = proc.current_syscall if name in sv.SyscallConsts.DISK_OPEN_SYSCALLS: current_syscall.io_rq = sv.OpenIORequest.new_from_disk_open( event, proc.tid) elif name in ['accept', 'accept4']: current_syscall.io_rq = sv.OpenIORequest.new_from_accept( event, proc.tid) elif name == 'socket': current_syscall.io_rq = sv.OpenIORequest.new_from_socket( event, proc.tid) elif name in sv.SyscallConsts.DUP_OPEN_SYSCALLS: self._track_dup(event, name, proc) def _track_dup(self, event, name, proc): current_syscall = proc.current_syscall # If the process that triggered the io_rq is a thread, # its FDs are that of the parent process parent_proc = self._get_parent_proc(proc) fds = parent_proc.fds if name == 'dup': oldfd = event['fildes'] elif name in ['dup2', 'dup3']: oldfd = event['oldfd'] newfd = event['newfd'] if newfd in fds: self._close_fd(parent_proc, newfd, event.timestamp, event['cpu_id']) elif name == 'fcntl': # Only handle if cmd == F_DUPFD (0) if event['cmd'] != 0: return oldfd = event['fd'] old_file = None if oldfd in fds: old_file = fds[oldfd] current_syscall.io_rq = sv.OpenIORequest.new_from_old_fd( event, proc.tid, old_file) if name == 'dup3': cloexec = event['flags'] & os.O_CLOEXEC == os.O_CLOEXEC current_syscall.io_rq.cloexec = cloexec def _track_close(self, event, name, proc): proc.current_syscall.io_rq = sv.CloseIORequest( event.timestamp, proc.tid, event['fd']) def _track_read_write(self, event, name, proc): current_syscall = proc.current_syscall if name == 'splice': current_syscall.io_rq = sv.ReadWriteIORequest.new_from_splice( event, proc.tid) return elif name == 'sendfile64': current_syscall.io_rq = sv.ReadWriteIORequest.new_from_sendfile64( event, proc.tid) return if name in ['writev', 'pwritev', 'readv', 'preadv']: size_key = 'vlen' elif name == 'recvfrom': size_key = 'size' elif name == 'sendto': size_key = 'len' elif name in ['recvmsg', 'sendmsg']: size_key = None else: size_key = 'count' current_syscall.io_rq = sv.ReadWriteIORequest.new_from_fd_event( event, proc.tid, size_key) def _track_sync(self, event, name, proc): current_syscall = proc.current_syscall if name == 'sync': current_syscall.io_rq = sv.SyncIORequest.new_from_sync( event, proc.tid) elif name in ['fsync', 'fdatasync']: current_syscall.io_rq = sv.SyncIORequest.new_from_fsync( event, proc.tid) elif name == 'sync_file_range': current_syscall.io_rq = sv.SyncIORequest.new_from_sync_file_range( event, proc.tid) def _track_io_rq_exit(self, event, proc): ret = event['ret'] cpu_id = event['cpu_id'] io_rq = proc.current_syscall.io_rq # io_rq can be None in the case of fcntl when cmd is not # F_DUPFD, in which case we disregard the syscall as it did # not open any FD if io_rq is None: return io_rq.update_from_exit(event) if ret >= 0: self._create_fd(proc, io_rq, cpu_id) parent_proc = self._get_parent_proc(proc) self._state.send_notification_cb('io_rq_exit', io_rq=io_rq, proc=proc, parent_proc=parent_proc, cpu_id=cpu_id) if isinstance(io_rq, sv.CloseIORequest) and ret == 0: self._close_fd(proc, io_rq.fd, io_rq.end_ts, cpu_id) def _create_fd(self, proc, io_rq, cpu_id): parent_proc = self._get_parent_proc(proc) if io_rq.fd is not None and io_rq.fd not in parent_proc.fds: if isinstance(io_rq, sv.OpenIORequest): parent_proc.fds[io_rq.fd] = sv.FD.new_from_open_rq(io_rq) else: parent_proc.fds[io_rq.fd] = sv.FD(io_rq.fd) self._state.send_notification_cb('create_fd', fd=io_rq.fd, parent_proc=parent_proc, timestamp=io_rq.end_ts, cpu_id=cpu_id) elif isinstance(io_rq, sv.ReadWriteIORequest): if io_rq.fd_in is not None and io_rq.fd_in not in parent_proc.fds: parent_proc.fds[io_rq.fd_in] = sv.FD(io_rq.fd_in) self._state.send_notification_cb('create_fd', fd=io_rq.fd_in, parent_proc=parent_proc, timestamp=io_rq.end_ts, cpu_id=cpu_id) if io_rq.fd_out is not None and \ io_rq.fd_out not in parent_proc.fds: parent_proc.fds[io_rq.fd_out] = sv.FD(io_rq.fd_out) self._state.send_notification_cb('create_fd', fd=io_rq.fd_out, parent_proc=parent_proc, timestamp=io_rq.end_ts, cpu_id=cpu_id) def _close_fd(self, proc, fd, timestamp, cpu_id): parent_proc = self._get_parent_proc(proc) self._state.send_notification_cb('close_fd', fd=fd, parent_proc=parent_proc, timestamp=timestamp, cpu_id=cpu_id) del parent_proc.fds[fd] def _get_parent_proc(self, proc): if proc.pid is not None and proc.tid != proc.pid: parent_proc = self._state.tids[proc.pid] else: parent_proc = proc return parent_proc def _fix_context_pid(self, event, proc): for context in event.field_list_with_scope( CTFScope.STREAM_EVENT_CONTEXT): if context != 'pid': continue # make sure the 'pid' field is not also in the event # payload, otherwise we might clash for context in event.field_list_with_scope( CTFScope.EVENT_FIELDS): if context == 'pid': return if proc.pid is None: proc.pid = event['pid'] if event['pid'] != proc.tid: proc.pid = event['pid'] parent_proc = sv.Process(proc.pid, proc.pid, proc.comm, proc.prio) self._state.tids[parent_proc.pid] = parent_proc
37.979827
79
0.573716
0cc17f72abcfa8707ab2a24d38c907371905c221
21,497
py
Python
geomstats/geometry/discrete_curves.py
tfunatomi/geomstats
a5651680f98dea95c1f82a48af1a6dccf3e26bd1
[ "MIT" ]
2
2020-01-23T04:01:02.000Z
2020-08-18T19:20:27.000Z
geomstats/geometry/discrete_curves.py
tfunatomi/geomstats
a5651680f98dea95c1f82a48af1a6dccf3e26bd1
[ "MIT" ]
null
null
null
geomstats/geometry/discrete_curves.py
tfunatomi/geomstats
a5651680f98dea95c1f82a48af1a6dccf3e26bd1
[ "MIT" ]
null
null
null
"""Parameterized curves on any given manifold.""" import math import geomstats.backend as gs from geomstats.geometry.euclidean import Euclidean from geomstats.geometry.euclidean import EuclideanMetric from geomstats.geometry.landmarks import L2Metric from geomstats.geometry.manifold import Manifold from geomstats.geometry.riemannian_metric import RiemannianMetric R2 = Euclidean(dim=2) R3 = Euclidean(dim=3) class DiscreteCurves(Manifold): r"""Space of discrete curves sampled at points in ambient_manifold. Each individual curve is represented by a 2d-array of shape `[ n_sampling_points, ambient_dim]`. A Batch of curves can be passed to all methods either as a 3d-array if all curves have the same number of sampled points, or as a list of 2d-arrays, each representing a curve. Parameters ---------- ambient_manifold : Manifold Manifold in which curves take values. Attributes ---------- ambient_manifold : Manifold Manifold in which curves take values. l2_metric : callable Function that takes as argument an integer number of sampled points and returns the corresponding L2 metric (product) metric, a RiemannianMetric object square_root_velocity_metric : RiemannianMetric Square root velocity metric. """ def __init__(self, ambient_manifold): super(DiscreteCurves, self).__init__(dim=math.inf) self.ambient_manifold = ambient_manifold self.l2_metric = lambda n: L2Metric( self.ambient_manifold, n_landmarks=n) self.square_root_velocity_metric = SRVMetric(self.ambient_manifold) def belongs(self, point, atol=gs.atol): """Test whether a point belongs to the manifold. Test that all points of the curve belong to the ambient manifold. Parameters ---------- point : array-like, shape=[..., n_sampling_points, ambient_dim] Point representing a discrete curve. atol : float Absolute tolerance. Optional, default: backend atol. Returns ------- belongs : bool Boolean evaluating if point belongs to the space of discrete curves. """ def each_belongs(pt): return gs.all(self.ambient_manifold.belongs(pt)) if isinstance(point, list) or point.ndim > 2: return gs.stack([each_belongs(pt) for pt in point]) return each_belongs(point) def is_tangent(self, vector, base_point, atol=gs.atol): """Check whether the vector is tangent at a curve. A vector is tangent at a curve if it is a vector field along that curve. Parameters ---------- vector : array-like, shape=[..., n_sampling_points, ambient_dim] Vector. base_point : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. atol : float Absolute tolerance. Optional, default: backend atol. Returns ------- is_tangent : bool Boolean denoting if vector is a tangent vector at the base point. """ ambient_manifold = self.ambient_manifold shape = vector.shape stacked_vec = gs.reshape(vector, (-1, shape[-1])) stacked_point = gs.reshape(base_point, (-1, shape[-1])) is_tangent = ambient_manifold.is_tangent( stacked_vec, stacked_point, atol) is_tangent = gs.reshape(is_tangent, shape[:-1]) return gs.all(is_tangent, axis=-1) def to_tangent(self, vector, base_point): """Project a vector to a tangent space of the manifold. As tangent vectors are vector fields along a curve, each component of the vector is projected to the tangent space of the corresponding point of the discrete curve. The number of sampling points should match in the vector and the base_point. Parameters ---------- vector : array-like, shape=[..., n_sampling_points, ambient_dim] Vector. base_point : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. Returns ------- tangent_vec : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector at base point. """ ambient_manifold = self.ambient_manifold shape = vector.shape stacked_vec = gs.reshape(vector, (-1, shape[-1])) stacked_point = gs.reshape(base_point, (-1, shape[-1])) tangent_vec = ambient_manifold.to_tangent(stacked_vec, stacked_point) tangent_vec = gs.reshape(tangent_vec, vector.shape) return tangent_vec def random_point(self, n_samples=1, bound=1., n_sampling_points=10): """Sample random curves. If the ambient manifold is compact, a uniform distribution is used. Parameters ---------- n_samples : int Number of samples. Optional, default: 1. bound : float Bound of the interval in which to sample for non compact ambient manifolds. Optional, default: 1. n_sampling_points : int Number of sampling points for the discrete curves. Optional, default : 10. Returns ------- samples : array-like, shape=[..., n_sampling_points, {dim, [n, n]}] Points sampled on the hypersphere. """ sample = self.ambient_manifold.random_point( n_samples * n_sampling_points) sample = gs.reshape(sample, (n_samples, n_sampling_points, -1)) return sample[0] if n_samples == 1 else sample class SRVMetric(RiemannianMetric): """Elastic metric defined using the Square Root Velocity Function. See [Sea2011]_ for details. Parameters ---------- ambient_manifold : Manifold Manifold in which curves take values. metric : RiemannianMetric Metric to use on the ambient manifold. If None is passed, ambient manifold should have a metric attribute, which will be used. Optional, default : None. References ---------- .. [Sea2011] A. Srivastava, E. Klassen, S. H. Joshi and I. H. Jermyn, "Shape Analysis of Elastic Curves in Euclidean Spaces," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 7, pp. 1415-1428, July 2011. """ def __init__(self, ambient_manifold, metric=None): super(SRVMetric, self).__init__(dim=math.inf, signature=(math.inf, 0, 0)) if metric is None: if hasattr(ambient_manifold, 'metric'): self.ambient_metric = ambient_manifold.metric else: raise ValueError('Instantiating an object of class ' 'DiscreteCurves requires either a metric' ' or an ambient manifold' ' equipped with a metric.') else: self.ambient_metric = metric self.l2_metric = lambda n: L2Metric(ambient_manifold, n_landmarks=n) def pointwise_inner_product(self, tangent_vec_a, tangent_vec_b, base_curve): """Compute the pointwise inner product of pair of tangent vectors. Compute the point-wise inner-product between two tangent vectors at a base curve. Parameters ---------- tangent_vec_a : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector to discrete curve. tangent_vec_b : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector to discrete curve. base_curve : array-like, shape=[..., n_sampling_points, ambient_dim] Point representing a discrete curve. Returns ------- inner_prod : array-like, shape=[..., n_sampling_points] Point-wise inner-product. """ def inner_prod_aux(vec_a, vec_b, curve): inner_prod = self.ambient_metric.inner_product(vec_a, vec_b, curve) return gs.squeeze(inner_prod) inner_prod = gs.vectorize( (tangent_vec_a, tangent_vec_b, base_curve), inner_prod_aux, dtype=gs.float32, multiple_args=True, signature='(i,j),(i,j),(i,j)->(i)') return inner_prod def pointwise_norm(self, tangent_vec, base_curve): """Compute the point-wise norm of a tangent vector at a base curve. Parameters ---------- tangent_vec : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector to discrete curve. base_curve : array-like, shape=[..., n_sampling_points, ambient_dim] Point representing a discrete curve. Returns ------- norm : array-like, shape=[..., n_sampling_points] Point-wise norms. """ sq_norm = self.pointwise_inner_product( tangent_vec_a=tangent_vec, tangent_vec_b=tangent_vec, base_curve=base_curve) return gs.sqrt(sq_norm) def square_root_velocity(self, curve): """Compute the square root velocity representation of a curve. The velocity is computed using the log map. In the case of several curves, an index selection procedure allows to get rid of the log between the end point of curve[k, :, :] and the starting point of curve[k + 1, :, :]. Parameters ---------- curve : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. Returns ------- srv : array-like, shape=[..., n_sampling_points - 1, ambient_dim] Square-root velocity representation of a discrete curve. """ curve = gs.to_ndarray(curve, to_ndim=3) n_curves, n_sampling_points, n_coords = curve.shape srv_shape = (n_curves, n_sampling_points - 1, n_coords) curve = gs.reshape(curve, (n_curves * n_sampling_points, n_coords)) coef = gs.cast(gs.array(n_sampling_points - 1), gs.float32) velocity = coef * self.ambient_metric.log(point=curve[1:, :], base_point=curve[:-1, :]) velocity_norm = self.ambient_metric.norm(velocity, curve[:-1, :]) srv = gs.einsum( '...i,...->...i', velocity, 1. / gs.sqrt(velocity_norm)) index = gs.arange(n_curves * n_sampling_points - 1) mask = ~((index + 1) % n_sampling_points == 0) srv = gs.reshape(srv[mask], srv_shape) return srv def square_root_velocity_inverse(self, srv, starting_point): """Retrieve a curve from sqrt velocity rep and starting point. Parameters ---------- srv : array-like, shape=[..., n_sampling_points - 1, ambient_dim] Square-root velocity representation of a discrete curve. starting_point : array-like, shape=[..., ambient_dim] Point of the ambient manifold to use as start of the retrieved curve. Returns ------- curve : array-like, shape=[..., n_sampling_points, ambient_dim] Curve retrieved from its square-root velocity. """ if not isinstance(self.ambient_metric, EuclideanMetric): raise AssertionError('The square root velocity inverse is only ' 'implemented for discrete curves embedded ' 'in a Euclidean space.') if gs.ndim(srv) != gs.ndim(starting_point): starting_point = gs.to_ndarray( starting_point, to_ndim=srv.ndim, axis=1) srv_shape = srv.shape srv = gs.to_ndarray(srv, to_ndim=3) n_curves, n_sampling_points_minus_one, n_coords = srv.shape srv = gs.reshape(srv, (n_curves * n_sampling_points_minus_one, n_coords)) srv_norm = self.ambient_metric.norm(srv) delta_points = gs.einsum( '...,...i->...i', 1 / n_sampling_points_minus_one * srv_norm, srv) delta_points = gs.reshape(delta_points, srv_shape) curve = gs.concatenate((starting_point, delta_points), -2) curve = gs.cumsum(curve, -2) return curve def exp(self, tangent_vec, base_point): """Compute Riemannian exponential of tangent vector wrt to base curve. Parameters ---------- tangent_vec : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector to discrete curve. base_point : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. Return ------ end_curve : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve, result of the Riemannian exponential. """ if not isinstance(self.ambient_metric, EuclideanMetric): raise AssertionError('The exponential map is only implemented ' 'for discrete curves embedded in a ' 'Euclidean space.') base_point = gs.to_ndarray(base_point, to_ndim=3) tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=3) n_sampling_points = base_point.shape[1] base_curve_srv = self.square_root_velocity(base_point) tangent_vec_derivative = (n_sampling_points - 1) * ( tangent_vec[:, 1:, :] - tangent_vec[:, :-1, :]) base_curve_velocity = (n_sampling_points - 1) * ( base_point[:, 1:, :] - base_point[:, :-1, :]) base_curve_velocity_norm = self.pointwise_norm( base_curve_velocity, base_point[:, :-1, :]) inner_prod = self.pointwise_inner_product( tangent_vec_derivative, base_curve_velocity, base_point[:, :-1, :]) coef_1 = 1 / gs.sqrt(base_curve_velocity_norm) coef_2 = -1 / (2 * base_curve_velocity_norm**(5 / 2)) * inner_prod term_1 = gs.einsum('ij,ijk->ijk', coef_1, tangent_vec_derivative) term_2 = gs.einsum('ij,ijk->ijk', coef_2, base_curve_velocity) srv_initial_derivative = term_1 + term_2 end_curve_srv = self.l2_metric(n_sampling_points - 1).exp( tangent_vec=srv_initial_derivative, base_point=base_curve_srv) end_curve_starting_point = self.ambient_metric.exp( tangent_vec=tangent_vec[:, 0, :], base_point=base_point[:, 0, :]) end_curve = self.square_root_velocity_inverse( end_curve_srv, end_curve_starting_point) return end_curve def log(self, point, base_point): """Compute Riemannian logarithm of a curve wrt a base curve. Parameters ---------- point : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. base_point : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve to use as base point. Returns ------- log : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector to a discrete curve. """ if not isinstance(self.ambient_metric, EuclideanMetric): raise AssertionError('The logarithm map is only implemented ' 'for discrete curves embedded in a ' 'Euclidean space.') point = gs.to_ndarray(point, to_ndim=3) base_point = gs.to_ndarray(base_point, to_ndim=3) n_curves, n_sampling_points, n_coords = point.shape curve_srv = self.square_root_velocity(point) base_curve_srv = self.square_root_velocity(base_point) base_curve_velocity = (n_sampling_points - 1) * (base_point[:, 1:, :] - base_point[:, :-1, :]) base_curve_velocity_norm = self.pointwise_norm(base_curve_velocity, base_point[:, :-1, :]) inner_prod = self.pointwise_inner_product(curve_srv - base_curve_srv, base_curve_velocity, base_point[:, :-1, :]) coef_1 = gs.sqrt(base_curve_velocity_norm) coef_2 = 1 / base_curve_velocity_norm**(3 / 2) * inner_prod term_1 = gs.einsum('ij,ijk->ijk', coef_1, curve_srv - base_curve_srv) term_2 = gs.einsum('ij,ijk->ijk', coef_2, base_curve_velocity) log_derivative = term_1 + term_2 log_starting_points = self.ambient_metric.log( point=point[:, 0, :], base_point=base_point[:, 0, :]) log_starting_points = gs.to_ndarray( log_starting_points, to_ndim=3, axis=1) log_cumsum = gs.hstack( [gs.zeros((n_curves, 1, n_coords)), gs.cumsum(log_derivative, -2)]) log = log_starting_points + 1 / (n_sampling_points - 1) * log_cumsum return log def geodesic(self, initial_curve, end_curve=None, initial_tangent_vec=None): """Compute geodesic from initial curve and end curve end curve. Geodesic specified either by an initial curve and an end curve, either by an initial curve and an initial tangent vector. Parameters ---------- initial_curve : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. end_curve : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. If None, an initial tangent vector must be given. Optional, default : None initial_tangent_vec : array-like, shape=[..., n_sampling_points, ambient_dim] Tangent vector at base curve, the initial speed of the geodesics. If None, an end curve must be given and a logarithm is computed. Optional, default : None Returns ------- curve_on_geodesic : callable The time parameterized geodesic curve. """ if not isinstance(self.ambient_metric, EuclideanMetric): raise AssertionError('The geodesics are only implemented for ' 'discrete curves embedded in a ' 'Euclidean space.') curve_ndim = 2 initial_curve = gs.to_ndarray(initial_curve, to_ndim=curve_ndim + 1) if end_curve is None and initial_tangent_vec is None: raise ValueError('Specify an end curve or an initial tangent ' 'vector to define the geodesic.') if end_curve is not None: end_curve = gs.to_ndarray(end_curve, to_ndim=curve_ndim + 1) shooting_tangent_vec = self.log(point=end_curve, base_point=initial_curve) if initial_tangent_vec is not None: if not gs.allclose(shooting_tangent_vec, initial_tangent_vec): raise RuntimeError( 'The shooting tangent vector is too' ' far from the initial tangent vector.') initial_tangent_vec = shooting_tangent_vec initial_tangent_vec = gs.array(initial_tangent_vec) initial_tangent_vec = gs.to_ndarray(initial_tangent_vec, to_ndim=curve_ndim + 1) def curve_on_geodesic(t): t = gs.cast(t, gs.float32) t = gs.to_ndarray(t, to_ndim=1) t = gs.to_ndarray(t, to_ndim=2, axis=1) new_initial_curve = gs.to_ndarray(initial_curve, to_ndim=curve_ndim + 1) new_initial_tangent_vec = gs.to_ndarray(initial_tangent_vec, to_ndim=curve_ndim + 1) tangent_vecs = gs.einsum('il,nkm->ikm', t, new_initial_tangent_vec) curve_at_time_t = [] for tan_vec in tangent_vecs: curve_at_time_t.append( self.exp(tan_vec, new_initial_curve)) return gs.stack(curve_at_time_t) return curve_on_geodesic def dist(self, point_a, point_b, **kwargs): """Geodesic distance between two curves. Parameters ---------- point_a : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. point_b : array-like, shape=[..., n_sampling_points, ambient_dim] Discrete curve. Returns ------- dist : array-like, shape=[...,] """ if not isinstance(self.ambient_metric, EuclideanMetric): raise AssertionError('The distance is only implemented for ' 'discrete curves embedded in a ' 'Euclidean space.') if point_a.shape != point_b.shape: raise ValueError('The curves need to have the same shapes.') srv_a = self.square_root_velocity(point_a) srv_b = self.square_root_velocity(point_b) n_sampling_points = srv_a.shape[-2] dist_starting_points = self.ambient_metric.dist( point_a[0, :], point_b[0, :]) dist_srvs = self.l2_metric(n_sampling_points).dist(srv_a, srv_b) dist = gs.sqrt(dist_starting_points**2 + dist_srvs**2) return dist
40.483992
79
0.600223
ab8574459e236c6b48f5095cb8c81840118839f4
8,851
py
Python
dosagelib/plugins/f.py
acaranta/dosage
6e14e8709b3b213fdc07a2106464860e1cb99481
[ "MIT" ]
null
null
null
dosagelib/plugins/f.py
acaranta/dosage
6e14e8709b3b213fdc07a2106464860e1cb99481
[ "MIT" ]
null
null
null
dosagelib/plugins/f.py
acaranta/dosage
6e14e8709b3b213fdc07a2106464860e1cb99481
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2004-2008 Tristan Seligmann and Jonathan Jacobs # Copyright (C) 2012-2014 Bastian Kleineidam # Copyright (C) 2015-2020 Tobias Gruetzmacher from __future__ import absolute_import, division, print_function from re import compile, escape from ..util import tagre from ..scraper import _BasicScraper, _ParserScraper from ..helpers import indirectStarter, joinPathPartsNamer, xpath_class from .common import _ComicControlScraper, _WPNaviIn, _WordPressScraper class FalconTwin(_BasicScraper): url = 'http://www.falcontwin.com/' stripUrl = url + 'index.html?strip=%s' firstStripUrl = stripUrl % '0' imageSearch = compile(r'"(strips/.+?)"') prevSearch = compile(r'"prev"><a href="(index.+?)"') help = 'Index format: nnn' class Faneurysm(_WPNaviIn): url = 'http://hijinksensue.com/comic/think-only-tree/' firstStripUrl = 'http://hijinksensue.com/comic/captains-prerogative/' endOfLife = True class FantasyRealms(_ParserScraper): stripUrl = ('https://web.archive.org/web/20161204192651/' 'http://fantasyrealmsonline.com/manga/%s.php') url = stripUrl % '091' firstStripUrl = stripUrl % '001' imageSearch = '//img[contains(@src, "/manga/0")]' prevSearch = '//a[img[contains(@src, "nav-back")]]' endOfLife = True help = 'Index format: nnn' class FarToTheNorth(_ComicControlScraper): url = 'http://www.farnorthcomic.com/' stripUrl = url + 'comic/%s' firstStripUrl = stripUrl % 'don39t-tell' class FauxPas(_ParserScraper): url = 'http://www.ozfoxes.net/cgi/pl-fp1.cgi' stripUrl = url + '?%s' firstStripUrl = stripUrl % '1' imageSearch = '//img[@name]' prevSearch = '//a[img[@alt="Previous"]]' help = 'Index format: nnn' class FireflyCross(_WordPressScraper): url = 'http://www.fireflycross.pensandtales.com/' firstStripUrl = url + '?comic=05062002' class FirstWorldProblems(_ParserScraper): url = ('https://web.archive.org/web/20150710053456/' 'http://bradcolbow.com/archive/C5/') stripUrl = url + '%s/' firstStripUrl = stripUrl % 'P10' imageSearch = '//div[{}]//img'.format(xpath_class('entry')) prevSearch = '//a[{}]'.format(xpath_class('prev')) multipleImagesPerStrip = True endOfLife = True class FlakyPastry(_BasicScraper): baseUrl = 'http://flakypastry.runningwithpencils.com/' url = baseUrl + 'index.php' stripUrl = baseUrl + 'comic.php?strip_id=%s' firstStripUrl = stripUrl % '0' imageSearch = compile(r'<img src="(comics/.+?)"') prevSearch = compile(r'<a href="(.+?)".+?btn_back') help = 'Index format: nnnn' class Flemcomics(_ParserScraper): url = ('https://web.archive.org/web/20180414110349/' 'http://www.flemcomics.com/') stripUrl = url + 'd/%s.html' firstStripUrl = stripUrl % '19980101' imageSearch = '//img[{}]'.format(xpath_class('ksc')) prevSearch = '//a[@rel="prev"]' endOfLife = True help = 'Index format: yyyymmdd' class Flipside(_ParserScraper): url = 'http://flipside.keenspot.com/comic.php' stripUrl = url + '?i=%s' firstStripUrl = stripUrl % '1' imageSearch = '//img[contains(@src, "comic/")]' prevSearch = '//a[@rel="prev"]' help = 'Index format: nnnn' class FonFlatter(_ParserScraper): url = 'https://www.fonflatter.de/' stripUrl = url + '%s/' firstStripUrl = url + '2005/09/20/01-begegnung-mit-batman/' lang = 'de' imageSearch = r'//img[re:test(@src, "/fred_\d+")]' prevSearch = '//a[@rel="prev"]' help = 'Index format: yyyy/mm/dd/number-stripname' def shouldSkipUrl(self, url, data): return url in ( self.stripUrl % "2006/11/30/adventskalender", self.stripUrl % "2006/09/21/danke", self.stripUrl % "2006/08/23/zgf-zuweilen-gestellte-fragen", self.stripUrl % "2005/10/19/naq-never-asked-questions", ) class ForestHill(_WordPressScraper): url = 'https://www.foresthillcomic.org/' class ForLackOfABetterComic(_BasicScraper): url = 'http://forlackofabettercomic.com/' rurl = r'http://(?:www\.)?forlackofabettercomic\.com/' stripUrl = url + '?id=%s' firstStripUrl = stripUrl % '1' imageSearch = compile(tagre("img", "src", r'(%simg/comic/\d+[^"]+)' % rurl, after="comicimg")) prevSearch = compile(tagre("a", "href", r'(%s\?id\=\d+)' % rurl) + r'Prev') help = 'Index format: number' class FoxDad(_ParserScraper): url = 'https://foxdad.com/' stripUrl = url + 'post/%s' firstStripUrl = stripUrl % '149683014997/some-people-are-just-different-support-the-comic' imageSearch = '//figure[@class="photo-hires-item"]//img' prevSearch = '//a[@class="previous-button"]' def namer(self, imageUrl, pageUrl): page = self.getPage(pageUrl) post = page.xpath('//link[@type="application/json+oembed"]')[0].get('href') post = post.replace('https://www.tumblr.com/oembed/1.0?url=https://foxdad.com/post', '') post = post.replace('-support-me-on-patreon', '') return post.replace('/', '-') class FoxTails(_ParserScraper): stripUrl = 'http://foxtails.magickitsune.com/strips/%s.html' url = stripUrl % 'current' firstStripUrl = stripUrl % '20041024' imageSearch = '//img[contains(@src, "img/2")]' prevSearch = '//a[./img[contains(@src, "prev")]]' endOfLife = True def getPrevUrl(self, url, data): # Include pre-reboot archive if url == self.stripUrl % '20090906': return self.stripUrl % '20090704' return super(FoxTails, self).getPrevUrl(url, data) class Fragile(_ParserScraper): url = ('https://web.archive.org/web/20190308203109/' 'http://www.fragilestory.com/') imageSearch = '//div[@id="comic_strip"]/a[@class="nobg"]/img' prevSearch = '//div[@id="nav_comic_a"]/a[2]' firstStripUrl = url + 'strips/chapter_01' endOfLife = True class FredoAndPidjin(_ParserScraper): url = 'https://www.pidjin.net/' stripUrl = url + '%s/' firstStripUrl = stripUrl % '2006/02/19/goofy-monday' imageSearch = '//div[%s]//img' % xpath_class("episode") multipleImagesPerStrip = True prevSearch = '//span[%s]/a' % xpath_class("prev") latestSearch = '//section[%s]//a' % xpath_class("latest") starter = indirectStarter namer = joinPathPartsNamer((0, 1, 2)) class Freefall(_ParserScraper): url = 'http://freefall.purrsia.com/' stripUrl = url + 'ff%d/%s%05d.htm' firstStripUrl = stripUrl % (100, 'fv', 1) imageSearch = '//img[contains(@src, "/ff")]' prevSearch = '//a[text()="Previous"]' multipleImagesPerStrip = True def getIndexStripUrl(self, index): # Get comic strip URL from index index = int(index) chapter = index + 100 - (index % 100) color = 'fc' if index > 1252 else 'fv' return self.stripUrl % (chapter, color, index) class FreighterTails(_ParserScraper): url = 'http://www.mzzkiti.com/' stripUrl = url + 'log%s.htm' firstStripUrl = stripUrl % '001' imageSearch = ('//img[contains(@src, "Strip")]', '//img[contains(@src, "Caption")]') prevSearch = '//a[./img[contains(@src, "prev")]]' endOfLife = True class FullFrontalNerdity(_BasicScraper): url = 'http://ffn.nodwick.com/' rurl = escape(url) stripUrl = url + '?p=%s' firstStripUrl = stripUrl % '6' imageSearch = compile(tagre("img", "src", r'(%sffnstrips/\d+-\d+-\d+\.[^"]+)' % rurl)) prevSearch = compile(tagre("a", "href", r'(%s\?p=\d+)' % rurl, after="prev")) help = 'Index format: number' class FunInJammies(_WordPressScraper): url = ('https://web.archive.org/web/20170205105241/' 'http://funinjammies.com/') stripUrl = url + 'comic.php?issue=%s' firstStripUrl = stripUrl % '1' prevSearch = '//a[text()="< Prev"]' endOfLife = True help = 'Index format: n (unpadded)' class FurPiled(_ParserScraper): stripUrl = ('https://web.archive.org/web/20160404074145/' 'http://www.liondogworks.com/images/fp-%03d.jpg') url = stripUrl % 427 firstStripUrl = stripUrl % 1 endOfLife = True def getPrevUrl(self, url, data): # Skip missing pages nextStrip = int(url.rsplit('/', 1)[-1].split('.', 1)[0].replace('fp-', '')) - 1 if nextStrip in [407, 258, 131, 110, 97, 31]: nextStrip = nextStrip - 1 return self.stripUrl % nextStrip def fetchUrls(self, url, data, urlSearch): # URLs are direct links to images return [url] class FurthiaHigh(_ParserScraper): url = 'http://furthiahigh.concessioncomic.com/' stripUrl = url + 'index.php?pid=%s' firstStripUrl = stripUrl % '20080128' imageSearch = '//img[contains(@alt, "Comic")]' prevSearch = '//a[./img[@alt="Previous"]]' multipleImagesPerStrip = True
34.439689
98
0.632358
fd38dbc87d8d3af01fbe1c4b069db63ac7fa2606
1,268
py
Python
examples/ifft/phenpv3_speed_test.py
LBJ-Wade/phenom
8f0fdc14099dac09cb2eef36d825e577340a8421
[ "MIT" ]
null
null
null
examples/ifft/phenpv3_speed_test.py
LBJ-Wade/phenom
8f0fdc14099dac09cb2eef36d825e577340a8421
[ "MIT" ]
null
null
null
examples/ifft/phenpv3_speed_test.py
LBJ-Wade/phenom
8f0fdc14099dac09cb2eef36d825e577340a8421
[ "MIT" ]
null
null
null
import phenom import numpy as np from phenom.utils.utils import Constants, HztoMf import lal import lalsimulation as lalsim # # m1 = 90./2. # m2 = 30./2. # chi1x = 0.9 # chi1y = 0. # chi1z = 0. # chi2x = 0. # chi2y = 0. # chi2z = 0. # delta_f = 1./32. # f_min = 7. # fRef = f_min # inclination = np.pi/3. * 0. m1=80.4782639 m2=16.384655 chi1x=0.062809065 chi1y=0.528722703 chi1z=-0.77006942 chi2x=-0.102698207 chi2y=-0.0977499112 chi2z=-0.0815029368 delta_f=1.0/256. f_min=5. fRef = 10. inclination=2.85646439 phenompv3 = phenom.Waveform(approximant="IMRPhenomPv3") from copy import copy phenpv3_1 = copy(phenompv3) phenpv3_1.input_params['m1']=m1 phenpv3_1.input_params['m2']=m2 phenpv3_1.input_params['chi1x']=chi1x phenpv3_1.input_params['chi1y']=chi1y phenpv3_1.input_params['chi1z']=chi1z phenpv3_1.input_params['chi2x']=chi2x phenpv3_1.input_params['chi2y']=chi2y phenpv3_1.input_params['chi2z']=chi2z phenpv3_1.input_params['inclination']=inclination phenpv3_1.input_params['f_min']=f_min phenpv3_1.input_params['fRef']=fRef phenpv3_1.input_params['delta_f']=delta_f print("starting phenompv3 generator") #phenomp_v3 waveform generator for i in range(10): phenpv3_1.phenompv3(phenpv3_1.input_params) # phenpv3_1.phenompv3(phenpv3_1.input_params)
20.451613
55
0.755521
ab1daa485cbd0d04fcd11916195b55d83abd367f
682
py
Python
templates/sphinx/conf.py
wapcaplet/readthedocs.org
a0eadad2d1c4c61c0b72a2cd801e2aca32291e49
[ "MIT" ]
1
2015-11-08T11:31:42.000Z
2015-11-08T11:31:42.000Z
templates/sphinx/conf.py
wapcaplet/readthedocs.org
a0eadad2d1c4c61c0b72a2cd801e2aca32291e49
[ "MIT" ]
null
null
null
templates/sphinx/conf.py
wapcaplet/readthedocs.org
a0eadad2d1c4c61c0b72a2cd801e2aca32291e49
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys, os extensions = [] templates_path = ['{{ template_dir }}', 'templates', '_templates', '.templates'] source_suffix = '{{ project.suffix }}' master_doc = 'index' project = u'{{ project.name }}' copyright = u'{{ project.copyright }}' version = '{{ project.version }}' release = '{{ project.version }}' exclude_patterns = ['_build'] pygments_style = 'sphinx' html_theme = '{{ project.theme }}' html_theme_path = ['.', '_theme', '.theme'] htmlhelp_basename = '{{ project.slug }}' file_insertion_enabled = False latex_documents = [ ('index', '{{ project.slug }}.tex', u'{{ project.name }} Documentation', u'{{ project.copyright }}', 'manual'), ]
31
80
0.645161
5d8ea62dd314044be0c745e4673d283b2257d3fd
561
py
Python
py_file_carving/libary/plugins/__init__.py
wahlflo/pyFileCarving
7bbbbedccb551273fd4b22614c86f51bc876bd78
[ "MIT" ]
null
null
null
py_file_carving/libary/plugins/__init__.py
wahlflo/pyFileCarving
7bbbbedccb551273fd4b22614c86f51bc876bd78
[ "MIT" ]
null
null
null
py_file_carving/libary/plugins/__init__.py
wahlflo/pyFileCarving
7bbbbedccb551273fd4b22614c86f51bc876bd78
[ "MIT" ]
null
null
null
# Private Keys # binaries from .binaries import PeFile from .certificates import Certificate # Certificates and Certificate Requests from .certificates import CertificateRequest from .certificates import TrustedCertificate # PDF from .pdf import PDF # Pictures from .pictures import JPG from .pictures import PNG from .private_keys import EncryptedPrivateKey from .private_keys import EncryptedPrivateKey from .private_keys import PrivateDSAKey from .private_keys import PrivateECKey from .private_keys import PrivateKey from .private_keys import PrivateRsaKey
29.526316
45
0.850267
a50aad2d56d1852110a3cf74eec61edabefa5e4f
5,313
py
Python
huaweicloud-sdk-gaussdbfornosql/huaweicloudsdkgaussdbfornosql/v3/model/slowlog_result.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-gaussdbfornosql/huaweicloudsdkgaussdbfornosql/v3/model/slowlog_result.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-gaussdbfornosql/huaweicloudsdkgaussdbfornosql/v3/model/slowlog_result.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class SlowlogResult: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'time': 'str', 'database': 'str', 'query_sample': 'str', 'type': 'str', 'start_time': 'str' } attribute_map = { 'time': 'time', 'database': 'database', 'query_sample': 'query_sample', 'type': 'type', 'start_time': 'start_time' } def __init__(self, time=None, database=None, query_sample=None, type=None, start_time=None): """SlowlogResult - a model defined in huaweicloud sdk""" self._time = None self._database = None self._query_sample = None self._type = None self._start_time = None self.discriminator = None self.time = time self.database = database self.query_sample = query_sample self.type = type self.start_time = start_time @property def time(self): """Gets the time of this SlowlogResult. 执行时间。 :return: The time of this SlowlogResult. :rtype: str """ return self._time @time.setter def time(self, time): """Sets the time of this SlowlogResult. 执行时间。 :param time: The time of this SlowlogResult. :type: str """ self._time = time @property def database(self): """Gets the database of this SlowlogResult. 所属数据库。 :return: The database of this SlowlogResult. :rtype: str """ return self._database @database.setter def database(self, database): """Sets the database of this SlowlogResult. 所属数据库。 :param database: The database of this SlowlogResult. :type: str """ self._database = database @property def query_sample(self): """Gets the query_sample of this SlowlogResult. 执行语法。 :return: The query_sample of this SlowlogResult. :rtype: str """ return self._query_sample @query_sample.setter def query_sample(self, query_sample): """Sets the query_sample of this SlowlogResult. 执行语法。 :param query_sample: The query_sample of this SlowlogResult. :type: str """ self._query_sample = query_sample @property def type(self): """Gets the type of this SlowlogResult. 语句类型。 :return: The type of this SlowlogResult. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this SlowlogResult. 语句类型。 :param type: The type of this SlowlogResult. :type: str """ self._type = type @property def start_time(self): """Gets the start_time of this SlowlogResult. 发生时间,UTC时间。 :return: The start_time of this SlowlogResult. :rtype: str """ return self._start_time @start_time.setter def start_time(self, start_time): """Sets the start_time of this SlowlogResult. 发生时间,UTC时间。 :param start_time: The start_time of this SlowlogResult. :type: str """ self._start_time = start_time def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SlowlogResult): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
24.37156
96
0.548842
2a3df4d51c027c2f604f481244a51acf122082b3
8,311
py
Python
app.py
bashkirtsevich/macaque
9c14dc0f7eb1fde7139ec9bc894282c396c481f7
[ "MIT" ]
null
null
null
app.py
bashkirtsevich/macaque
9c14dc0f7eb1fde7139ec9bc894282c396c481f7
[ "MIT" ]
null
null
null
app.py
bashkirtsevich/macaque
9c14dc0f7eb1fde7139ec9bc894282c396c481f7
[ "MIT" ]
null
null
null
import os from aiohttp import web from sqlalchemy import create_engine from sqlalchemy_aio import ASYNCIO_STRATEGY import api from arg_schemas import reply_entity_validator, reply_comment_validator, edit_comment_validator, \ remove_comment_validator, read_entity_comments_validator, validate_args, ValidatorException, \ read_user_comments_validator, read_comment_replies_validator, read_entity_replies_validator, \ stream_user_comments_validator, stream_entity_replies_validator from response_streamer import XMLStreamer from utils import parse_datetime async def _read_args(request): post_data = (await request.json()) if request.method == "POST" else {} get_data = dict(request.match_info) return {**get_data, **post_data} async def reply_entity(connection, data): comment_token = await api.add_comment( connection, entity_type=data["type"], entity_token=data["entity"], user_token=data["user_token"], text=data["text"] ) return {"comment_token": comment_token} async def reply_comment(connection, data): comment_token = await api.reply_comment( connection, parent_comment_token=data["comment_token"], user_token=data["user_token"], text=data["text"] ) return {"comment_token": comment_token} async def edit_comment(connection, data): revision_key = await api.edit_comment( connection, user_token=data["user_token"], comment_unique_key=data["comment_token"], text=data["text"] ) return {"success": revision_key is not None} async def remove_comment(connection, data): try: await api.remove_comment( connection, user_token=data["user_token"], comment_unique_key=data["comment_token"] ) return {"success": True} except api.APIException: return {"success": False} async def read_entity_comments(connection, data): return [ item async for item in api.get_entity_comments( connection, entity_type=data["type"], entity_token=data["entity"], limit=int(data.get("limit", "1000")), offset=int(data.get("offset", "0")), with_replies=False ) ] async def read_entity_replies(connection, data): return [ item async for item in api.get_entity_comments( connection, entity_type=data["type"], entity_token=data["entity"], limit=int(data.get("limit", "1000")), offset=int(data.get("offset", "0")), with_replies=True ) ] async def read_user_comments(connection, data): return [ item async for item in api.get_user_comments( connection, user_token=data["user_token"] ) ] async def read_comment_replies(connection, data): return [ item async for item in api.get_comment_replies( connection, comment_token=data["comment_token"] ) ] arg_validators = { reply_entity: reply_entity_validator, reply_comment: reply_comment_validator, edit_comment: edit_comment_validator, remove_comment: remove_comment_validator, read_entity_comments: read_entity_comments_validator, read_user_comments: read_user_comments_validator, read_comment_replies: read_comment_replies_validator, read_entity_replies: read_entity_replies_validator } async def handle_request(connection, request, future): try: data = await _read_args(request) validate_args(data, arg_validators[future]) result = await future(connection, data) return web.json_response({"result": result}) except TimeoutError: return web.json_response({"result": "error", "reasons": "Request timeout expired"}, status=500) except api.APIException as e: return web.json_response({"result": "error", "reason": "API error ({})".format(str(e))}, status=500) except ValidatorException as e: return web.json_response({"result": "error", "error": str(e)}, status=500) except Exception as e: return web.json_response({"error": "Internal server error ({})".format(str(e))}, status=500) async def stream_user_comments(connection, data): idx = 1 async for item in api.get_user_comments( connection, user_token=data["user_token"], timestamp_from=parse_datetime(data.get("timestamp_from", None)), timestamp_to=parse_datetime(data.get("timestamp_to", None)) ): yield {"record{}".format(idx): item} idx += 1 async def stream_entity_replies(connection, data): idx = 1 async for item in api.get_entity_comments( connection, entity_type=data["type"], entity_token=data["entity"], limit=0, offset=0, timestamp_from=parse_datetime(data.get("timestamp_from", None)), timestamp_to=parse_datetime(data.get("timestamp_to", None)), with_replies=True ): yield {"record{}".format(idx): item} idx += 1 streamer_arg_validators = { stream_user_comments: stream_user_comments_validator, stream_entity_replies: stream_entity_replies_validator } async def handle_stream(connection, request, future): response = web.StreamResponse( status=200, reason="OK", headers={"Content-Type": "application/octet-stream"} ) streamer = XMLStreamer(response) await response.prepare(request) try: data = await _read_args(request) validate_args(data, streamer_arg_validators[future]) await streamer.write_head() async for item in future(connection, data): await streamer.write_body(item) await streamer.write_tail() except api.APIException as e: response.write_eof("Error: {}".format(str(e)).encode("utf-8")) return response async def get_app(): db_engine = create_engine(os.getenv("DATABASE_URL"), strategy=ASYNCIO_STRATEGY) db_connection = await db_engine.connect() app = web.Application() app.router.add_post( "/api/reply/{type}/{entity}", lambda request: handle_request(db_connection, request, reply_entity) ) app.router.add_post( "/api/reply/{comment_token}", lambda request: handle_request(db_connection, request, reply_comment) ) app.router.add_post( "/api/edit/{comment_token}/{user_token}", lambda request: handle_request(db_connection, request, edit_comment) ) app.router.add_post( "/api/remove/{comment_token}", lambda request: handle_request(db_connection, request, remove_comment) ) for url in ["/api/comments/{type}/{entity}", "/api/comments/{type}/{entity}/{limit}", "/api/comments/{type}/{entity}/{offset}/{limit}"]: app.router.add_get( url, lambda request: handle_request(db_connection, request, read_entity_comments) ) app.router.add_get( "/api/comments/{user_token}", lambda request: handle_request(db_connection, request, read_user_comments) ) app.router.add_get( "/api/replies/{comment_token}", lambda request: handle_request(db_connection, request, read_comment_replies) ) app.router.add_get( "/api/replies/{type}/{entity}", lambda request: handle_request(db_connection, request, read_entity_replies) ) for url in ["/api/user/download/{user_token}", "/api/user/download/{user_token}/{timestamp_from}", "/api/user/download/{user_token}/{timestamp_from}/{timestamp_to}"]: app.router.add_get( url, lambda request: handle_stream(db_connection, request, stream_user_comments) ) for url in ["/api/download/{type}/{entity}", "/api/download/{type}/{entity}/{timestamp_from}", "/api/download/{type}/{entity}/{timestamp_from}/{timestamp_to}"]: app.router.add_get( url, lambda request: handle_stream(db_connection, request, stream_entity_replies) ) return app if __name__ == "__main__": web.run_app(get_app())
31.127341
108
0.654554
2ae879620ba8bc2a069f3a3015ebb65f477d8a74
1,843
py
Python
tests/test_compute.py
Edubya77/baidu_thing
b0612e926b63c698eea9f2cd924f9f8f054de80f
[ "Unlicense" ]
null
null
null
tests/test_compute.py
Edubya77/baidu_thing
b0612e926b63c698eea9f2cd924f9f8f054de80f
[ "Unlicense" ]
null
null
null
tests/test_compute.py
Edubya77/baidu_thing
b0612e926b63c698eea9f2cd924f9f8f054de80f
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- import sys import unittest from pathlib import Path root = str(Path(__file__).resolve().parents[1]) sys.path.append(root) from baidu.compute import * class Parse_URLs(unittest.TestCase): def setUp(self): self.uri = 'http://www.example.com/en-us/' def test_can_parse_domain_name(self): self.assertNotEqual(nameParser(self.uri), self.uri) self.assertEqual(nameParser(self.uri), 'example') class Encoding_URLs(unittest.TestCase): def setUp(self): self.uri = 'https://zh.example.com/公司/价值观/' self.encoded = 'https://zh.example.com/%E5%85%AC%E5%8F%B8/%E4%BB%B7%E5%80%BC%E8%A7%82/' def test_can_encode_non_english_urls(self): self.assertNotEqual(encodeUrl(self.uri), self.uri) self.assertEqual(encodeUrl(self.uri), self.encoded) class Prepare_base_URL_for_Baidu_endpoint(unittest.TestCase): def setUp(self): self.uri = 'https://zh.example.com/公司/价值观/' def test_can_parse_Baidu_site_var(self): self.assertEqual(prepSiteUrl(self.uri), 'zh.example.com') # class URL_Submission_Logic_test(unittest.TestCase): # def setUp(self): # self.max = 2000 # self.min = 1 # self.invalid = 3000 # def test_input_is_max(self): # test_list = [] # for x in range(self.max): # test_list.append('http://www.example.com') # self.assertEqual(len(prepData(test_list, self.max)), self.max) # def test_input_is_mix(self): # test_list = [] # for x in range(self.min): # test_list.append('http://www.example.com') # self.assertEqual(len(prepData(test_list, self.min)), self.min) class NextTest(unittest.TestCase): def test_something(self): self.fail('Write more tests') if __name__ == '__main__': unittest.main()
29.725806
95
0.65274
57af2cbf577b550ace311b7a55be5954af0c9390
8,472
py
Python
neo/io/__init__.py
Moritz-Alexander-Kern/python-neo
2e00c994e46a1396fb4bdd393535604e6fc5568f
[ "BSD-3-Clause" ]
null
null
null
neo/io/__init__.py
Moritz-Alexander-Kern/python-neo
2e00c994e46a1396fb4bdd393535604e6fc5568f
[ "BSD-3-Clause" ]
null
null
null
neo/io/__init__.py
Moritz-Alexander-Kern/python-neo
2e00c994e46a1396fb4bdd393535604e6fc5568f
[ "BSD-3-Clause" ]
null
null
null
""" :mod:`neo.io` provides classes for reading and/or writing electrophysiological data files. Note that if the package dependency is not satisfied for one io, it does not raise an error but a warning. :attr:`neo.io.iolist` provides a list of successfully imported io classes. Functions: .. autofunction:: neo.io.get_io Classes: * :attr:`AlphaOmegaIO` * :attr:`AsciiImageIO` * :attr:`AsciiSignalIO` * :attr:`AsciiSpikeTrainIO` * :attr:`AxographIO` * :attr:`AxonaIO` * :attr:`AxonIO` * :attr:`BCI2000IO` * :attr:`BiocamIO` * :attr:`BlackrockIO` * :attr:`BlkIO` * :attr:`BrainVisionIO` * :attr:`BrainwareDamIO` * :attr:`BrainwareF32IO` * :attr:`BrainwareSrcIO` * :attr:`CedIO` * :attr:`ElanIO` * :attr:`IgorIO` * :attr:`IntanIO` * :attr:`MEArecIO` * :attr:`KlustaKwikIO` * :attr:`KwikIO` * :attr:`MaxwellIO` * :attr:`MicromedIO` * :attr:`NeoMatlabIO` * :attr:`NestIO` * :attr:`NeuralynxIO` * :attr:`NeuroExplorerIO` * :attr:`NeuroScopeIO` * :attr:`NeuroshareIO` * :attr:`NixIO` * :attr:`NWBIO` * :attr:`OpenEphysIO` * :attr:`OpenEphysBinaryIO` * :attr:`PhyIO` * :attr:`PickleIO` * :attr:`PlexonIO` * :attr:`RawBinarySignalIO` * :attr:`RawMCSIO` * :attr:`Spike2IO` * :attr:`SpikeGadgetsIO` * :attr:`SpikeGLXIO` * :attr:`StimfitIO` * :attr:`TdtIO` * :attr:`TiffIO` * :attr:`WinEdrIO` * :attr:`WinWcpIO` .. autoclass:: neo.io.AlphaOmegaIO .. autoattribute:: extensions .. autoclass:: neo.io.AsciiImageIO .. autoattribute:: extensions .. autoclass:: neo.io.AsciiSignalIO .. autoattribute:: extensions .. autoclass:: neo.io.AsciiSpikeTrainIO .. autoattribute:: extensions .. autoclass:: neo.io.AxographIO .. autoattribute:: extensions .. autoclass:: neo.io.AxonaIO .. autoattribute:: extensions .. autoclass:: neo.io.AxonIO .. autoattribute:: extensions .. autoclass:: neo.io.BCI2000IO .. autoattribute:: extensions .. autoclass:: neo.io.BiocamIO .. autoattribute:: extensions .. autoclass:: neo.io.BlackrockIO .. autoattribute:: extensions .. autoclass:: neo.io.BlkIO .. autoattribute:: extensions .. autoclass:: neo.io.BrainVisionIO .. autoattribute:: extensions .. autoclass:: neo.io.BrainwareDamIO .. autoattribute:: extensions .. autoclass:: neo.io.BrainwareF32IO .. autoattribute:: extensions .. autoclass:: neo.io.BrainwareSrcIO .. autoattribute:: extensions .. autoclass:: neo.io.CedIO .. autoattribute:: extensions .. autoclass:: neo.io.ElanIO .. autoattribute:: extensions .. .. autoclass:: neo.io.ElphyIO .. autoattribute:: extensions .. autoclass:: neo.io.IgorIO .. autoattribute:: extensions .. autoclass:: neo.io.IntanIO .. autoattribute:: extensions .. autoclass:: neo.io.KlustaKwikIO .. autoattribute:: extensions .. autoclass:: neo.io.KwikIO .. autoattribute:: extensions .. autoclass:: neo.io.MEArecIO .. autoattribute:: extensions .. autoclass:: neo.io.MaxwellIO .. autoattribute:: extensions .. autoclass:: neo.io.MicromedIO .. autoattribute:: extensions .. autoclass:: neo.io.NeoMatlabIO .. autoattribute:: extensions .. autoclass:: neo.io.NestIO .. autoattribute:: extensions .. autoclass:: neo.io.NeuralynxIO .. autoattribute:: extensions .. autoclass:: neo.io.NeuroExplorerIO .. autoattribute:: extensions .. autoclass:: neo.io.NeuroScopeIO .. autoattribute:: extensions .. autoclass:: neo.io.NeuroshareIO .. autoattribute:: extensions .. autoclass:: neo.io.NixIO .. autoattribute:: extensions .. autoclass:: neo.io.NWBIO .. autoattribute:: extensions .. autoclass:: neo.io.OpenEphysIO .. autoattribute:: extensions .. autoclass:: neo.io.OpenEphysBinaryIO .. autoattribute:: extensions .. autoclass:: neo.io.PhyIO .. autoattribute:: extensions .. autoclass:: neo.io.PickleIO .. autoattribute:: extensions .. autoclass:: neo.io.PlexonIO .. autoattribute:: extensions .. autoclass:: neo.io.RawBinarySignalIO .. autoattribute:: extensions .. autoclass:: neo.io.RawMCSIO .. autoattribute:: extensions .. autoclass:: Spike2IO .. autoattribute:: extensions .. autoclass:: SpikeGadgetsIO .. autoattribute:: extensions .. autoclass:: SpikeGLXIO .. autoattribute:: extensions .. autoclass:: neo.io.StimfitIO .. autoattribute:: extensions .. autoclass:: neo.io.TdtIO .. autoattribute:: extensions .. autoclass:: neo.io.TiffIO .. autoattribute:: extensions .. autoclass:: neo.io.WinEdrIO .. autoattribute:: extensions .. autoclass:: neo.io.WinWcpIO .. autoattribute:: extensions """ import os.path # try to import the neuroshare library. # if it is present, use the neuroshareapiio to load neuroshare files # if it is not present, use the neurosharectypesio to load files try: import neuroshare as ns except ImportError as err: from neo.io.neurosharectypesio import NeurosharectypesIO as NeuroshareIO # print("\n neuroshare library not found, loading data with ctypes" ) # print("\n to use the API be sure to install the library found at:") # print("\n www.http://pythonhosted.org/neuroshare/") else: from neo.io.neuroshareapiio import NeuroshareapiIO as NeuroshareIO # print("neuroshare library successfully imported") # print("\n loading with API...") from neo.io.alphaomegaio import AlphaOmegaIO from neo.io.asciiimageio import AsciiImageIO from neo.io.asciisignalio import AsciiSignalIO from neo.io.asciispiketrainio import AsciiSpikeTrainIO from neo.io.axographio import AxographIO from neo.io.axonaio import AxonaIO from neo.io.axonio import AxonIO from neo.io.biocamio import BiocamIO from neo.io.blackrockio import BlackrockIO from neo.io.blkio import BlkIO from neo.io.bci2000io import BCI2000IO from neo.io.brainvisionio import BrainVisionIO from neo.io.brainwaredamio import BrainwareDamIO from neo.io.brainwaref32io import BrainwareF32IO from neo.io.brainwaresrcio import BrainwareSrcIO from neo.io.cedio import CedIO from neo.io.elanio import ElanIO from neo.io.elphyio import ElphyIO from neo.io.exampleio import ExampleIO from neo.io.igorproio import IgorIO from neo.io.intanio import IntanIO from neo.io.klustakwikio import KlustaKwikIO from neo.io.kwikio import KwikIO from neo.io.mearecio import MEArecIO from neo.io.maxwellio import MaxwellIO from neo.io.micromedio import MicromedIO from neo.io.neomatlabio import NeoMatlabIO from neo.io.nestio import NestIO from neo.io.neuralynxio import NeuralynxIO from neo.io.neuroexplorerio import NeuroExplorerIO from neo.io.neuroscopeio import NeuroScopeIO from neo.io.nixio import NixIO from neo.io.nixio_fr import NixIO as NixIOFr from neo.io.nwbio import NWBIO from neo.io.openephysio import OpenEphysIO from neo.io.openephysbinaryio import OpenEphysBinaryIO from neo.io.phyio import PhyIO from neo.io.pickleio import PickleIO from neo.io.plexonio import PlexonIO from neo.io.rawbinarysignalio import RawBinarySignalIO from neo.io.rawmcsio import RawMCSIO from neo.io.spike2io import Spike2IO from neo.io.spikegadgetsio import SpikeGadgetsIO from neo.io.spikeglxio import SpikeGLXIO from neo.io.stimfitio import StimfitIO from neo.io.tdtio import TdtIO from neo.io.tiffio import TiffIO from neo.io.winedrio import WinEdrIO from neo.io.winwcpio import WinWcpIO iolist = [ AlphaOmegaIO, AsciiImageIO, AsciiSignalIO, AsciiSpikeTrainIO, AxographIO, AxonaIO, AxonIO, BCI2000IO, BlackrockIO, BlkIO, BrainVisionIO, BrainwareDamIO, BrainwareF32IO, BrainwareSrcIO, CedIO, ElanIO, # ElphyIO, ExampleIO, IgorIO, IntanIO, KlustaKwikIO, KwikIO, MEArecIO, MaxwellIO, MicromedIO, NixIO, # place NixIO before other IOs that use HDF5 to make it the default for .h5 files NeoMatlabIO, NestIO, NeuralynxIO, NeuroExplorerIO, NeuroScopeIO, NeuroshareIO, NWBIO, OpenEphysIO, OpenEphysBinaryIO, PhyIO, PickleIO, PlexonIO, RawBinarySignalIO, RawMCSIO, Spike2IO, SpikeGadgetsIO, SpikeGLXIO, StimfitIO, TdtIO, TiffIO, WinEdrIO, WinWcpIO ] def get_io(filename, *args, **kwargs): """ Return a Neo IO instance, guessing the type based on the filename suffix. """ extension = os.path.splitext(filename)[1][1:] for io in iolist: if extension in io.extensions: return io(filename, *args, **kwargs) raise IOError("File extension %s not registered" % extension)
21.723077
93
0.717186
5075d20b2c2eb11ce73e519e601ada505e379e96
650
py
Python
problems/A/SuffixThree.py
deveshbajpai19/CodeForces
707b374f03012ec68054841f791d48b33ae4ef1b
[ "MIT" ]
55
2016-06-19T05:45:15.000Z
2022-03-31T15:18:53.000Z
problems/A/SuffixThree.py
farhadcu/CodeForces-2
707b374f03012ec68054841f791d48b33ae4ef1b
[ "MIT" ]
null
null
null
problems/A/SuffixThree.py
farhadcu/CodeForces-2
707b374f03012ec68054841f791d48b33ae4ef1b
[ "MIT" ]
25
2016-07-29T13:03:15.000Z
2021-09-17T01:45:45.000Z
__author__ = 'Devesh Bajpai' ''' https://codeforces.com/problemset/problem/1281/A Solution: Capture the suffixes of the given string to match with the given possible patterns. Return the result language accordingly. ~ Tidbit ~ Use s[-x:] to obtain the last x characters of the string s. ''' def solve(s): if s[-2:] == "po": return "FILIPINO" elif s[-4:] == "desu" or s[-4:] == "masu": return "JAPANESE" elif s[-5:] == "mnida": return "KOREAN" else: return "NONE" if __name__ == "__main__": t = int(raw_input()) for _ in xrange(0, t): s = raw_input() print solve(s)
19.69697
105
0.593846
9d960a5f5996288d90ff77d6253683bfc2ca57b8
1,680
py
Python
.tools/download_emoji_variation_sequences.py
PredaaA/JackCogs
6677496ed030a219afe32843e95154b01406226a
[ "Apache-2.0" ]
null
null
null
.tools/download_emoji_variation_sequences.py
PredaaA/JackCogs
6677496ed030a219afe32843e95154b01406226a
[ "Apache-2.0" ]
null
null
null
.tools/download_emoji_variation_sequences.py
PredaaA/JackCogs
6677496ed030a219afe32843e95154b01406226a
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2020 Jakub Kuczys (https://github.com/jack1142) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import textwrap from pathlib import Path import requests ROOT_PATH = Path(__file__).parent.parent.absolute() VARIATIONS_FILE = ROOT_PATH / "emojiinfo/variations.py" r = requests.get( "https://www.unicode.org/Public/UCD/latest/ucd/emoji/emoji-variation-sequences.txt" ) r.raise_for_status() backslash_emoji_reprs = [] for line in r.text.splitlines(): if not line or line.startswith("#"): continue variation_sequence = list( map( lambda x: chr(int(x, base=16)), line.split(";", maxsplit=1)[0].strip().split(), ) ) if variation_sequence[1] != "\N{VARIATION SELECTOR-16}": continue emoji = variation_sequence[0] backslash_repr = emoji.encode("ascii", "backslashreplace").decode("utf-8") backslash_emoji_reprs.append(backslash_repr) inner_code = textwrap.indent( ",\n".join(f'"{backslash_repr}"' for backslash_repr in backslash_emoji_reprs), " ", ) code = f"EMOJIS_WITH_VARIATIONS = {{\n{inner_code},\n}}\n" with VARIATIONS_FILE.open("w") as fp: fp.write(code)
31.111111
87
0.704167
d82fd9d74d69a996e5a6eb6594e9f5456f2b6b40
5,215
py
Python
test/functional/test_framework/wallet_util.py
XbitCC/xbitcoin
2c71b1adc311680e8f3aa977b42029b1a26164f1
[ "MIT" ]
2
2021-10-16T06:16:02.000Z
2022-03-26T21:48:38.000Z
test/functional/test_framework/wallet_util.py
XbitCC/xbitcoin
2c71b1adc311680e8f3aa977b42029b1a26164f1
[ "MIT" ]
null
null
null
test/functional/test_framework/wallet_util.py
XbitCC/xbitcoin
2c71b1adc311680e8f3aa977b42029b1a26164f1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018-2020 The XBit Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Useful util functions for testing the wallet""" from collections import namedtuple from test_framework.address import ( byte_to_base58, key_to_p2pkh, key_to_p2sh_p2wpkh, key_to_p2wpkh, script_to_p2sh, script_to_p2sh_p2wsh, script_to_p2wsh, ) from test_framework.key import ECKey from test_framework.script import ( CScript, OP_0, OP_2, OP_3, OP_CHECKMULTISIG, OP_CHECKSIG, OP_DUP, OP_EQUAL, OP_EQUALVERIFY, OP_HASH160, hash160, sha256, ) from test_framework.util import hex_str_to_bytes Key = namedtuple('Key', ['privkey', 'pubkey', 'p2pkh_script', 'p2pkh_addr', 'p2wpkh_script', 'p2wpkh_addr', 'p2sh_p2wpkh_script', 'p2sh_p2wpkh_redeem_script', 'p2sh_p2wpkh_addr']) Multisig = namedtuple('Multisig', ['privkeys', 'pubkeys', 'p2sh_script', 'p2sh_addr', 'redeem_script', 'p2wsh_script', 'p2wsh_addr', 'p2sh_p2wsh_script', 'p2sh_p2wsh_addr']) def get_key(node): """Generate a fresh key on node Returns a named tuple of privkey, pubkey and all address and scripts.""" addr = node.getnewaddress() pubkey = node.getaddressinfo(addr)['pubkey'] pkh = hash160(hex_str_to_bytes(pubkey)) return Key(privkey=node.dumpprivkey(addr), pubkey=pubkey, p2pkh_script=CScript([OP_DUP, OP_HASH160, pkh, OP_EQUALVERIFY, OP_CHECKSIG]).hex(), p2pkh_addr=key_to_p2pkh(pubkey), p2wpkh_script=CScript([OP_0, pkh]).hex(), p2wpkh_addr=key_to_p2wpkh(pubkey), p2sh_p2wpkh_script=CScript([OP_HASH160, hash160(CScript([OP_0, pkh])), OP_EQUAL]).hex(), p2sh_p2wpkh_redeem_script=CScript([OP_0, pkh]).hex(), p2sh_p2wpkh_addr=key_to_p2sh_p2wpkh(pubkey)) def get_generate_key(): """Generate a fresh key Returns a named tuple of privkey, pubkey and all address and scripts.""" eckey = ECKey() eckey.generate() privkey = bytes_to_wif(eckey.get_bytes()) pubkey = eckey.get_pubkey().get_bytes().hex() pkh = hash160(hex_str_to_bytes(pubkey)) return Key(privkey=privkey, pubkey=pubkey, p2pkh_script=CScript([OP_DUP, OP_HASH160, pkh, OP_EQUALVERIFY, OP_CHECKSIG]).hex(), p2pkh_addr=key_to_p2pkh(pubkey), p2wpkh_script=CScript([OP_0, pkh]).hex(), p2wpkh_addr=key_to_p2wpkh(pubkey), p2sh_p2wpkh_script=CScript([OP_HASH160, hash160(CScript([OP_0, pkh])), OP_EQUAL]).hex(), p2sh_p2wpkh_redeem_script=CScript([OP_0, pkh]).hex(), p2sh_p2wpkh_addr=key_to_p2sh_p2wpkh(pubkey)) def get_multisig(node): """Generate a fresh 2-of-3 multisig on node Returns a named tuple of privkeys, pubkeys and all address and scripts.""" addrs = [] pubkeys = [] for _ in range(3): addr = node.getaddressinfo(node.getnewaddress()) addrs.append(addr['address']) pubkeys.append(addr['pubkey']) script_code = CScript([OP_2] + [hex_str_to_bytes(pubkey) for pubkey in pubkeys] + [OP_3, OP_CHECKMULTISIG]) witness_script = CScript([OP_0, sha256(script_code)]) return Multisig(privkeys=[node.dumpprivkey(addr) for addr in addrs], pubkeys=pubkeys, p2sh_script=CScript([OP_HASH160, hash160(script_code), OP_EQUAL]).hex(), p2sh_addr=script_to_p2sh(script_code), redeem_script=script_code.hex(), p2wsh_script=witness_script.hex(), p2wsh_addr=script_to_p2wsh(script_code), p2sh_p2wsh_script=CScript([OP_HASH160, witness_script, OP_EQUAL]).hex(), p2sh_p2wsh_addr=script_to_p2sh_p2wsh(script_code)) def test_address(node, address, **kwargs): """Get address info for `address` and test whether the returned values are as expected.""" addr_info = node.getaddressinfo(address) for key, value in kwargs.items(): if value is None: if key in addr_info.keys(): raise AssertionError("key {} unexpectedly returned in getaddressinfo.".format(key)) elif addr_info[key] != value: raise AssertionError("key {} value {} did not match expected value {}".format(key, addr_info[key], value)) def bytes_to_wif(b, compressed=True): if compressed: b += b'\x01' return byte_to_base58(b, 239) def generate_wif_key(): # Makes a WIF privkey for imports k = ECKey() k.generate() return bytes_to_wif(k.get_bytes(), k.is_compressed)
39.507576
118
0.602685
d01d4b1328c684fe56afd3bfc2db9d49884b2488
2,356
py
Python
airflow/providers/cncf/kubernetes/example_dags/example_spark_kubernetes.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
15,947
2019-01-05T13:51:02.000Z
2022-03-31T23:33:16.000Z
airflow/providers/cncf/kubernetes/example_dags/example_spark_kubernetes.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
14,603
2019-01-05T09:43:19.000Z
2022-03-31T23:11:59.000Z
airflow/providers/cncf/kubernetes/example_dags/example_spark_kubernetes.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
8,429
2019-01-05T19:45:47.000Z
2022-03-31T22:13:01.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This is an example DAG which uses SparkKubernetesOperator and SparkKubernetesSensor. In this example, we create two tasks which execute sequentially. The first task is to submit sparkApplication on Kubernetes cluster(the example uses spark-pi application). and the second task is to check the final state of the sparkApplication that submitted in the first state. Spark-on-k8s operator is required to be already installed on Kubernetes https://github.com/GoogleCloudPlatform/spark-on-k8s-operator """ from datetime import datetime, timedelta # [START import_module] # The DAG object; we'll need this to instantiate a DAG from airflow import DAG # Operators; we need this to operate! from airflow.providers.cncf.kubernetes.operators.spark_kubernetes import SparkKubernetesOperator from airflow.providers.cncf.kubernetes.sensors.spark_kubernetes import SparkKubernetesSensor # [END import_module] # [START instantiate_dag] dag = DAG( 'spark_pi', default_args={'max_active_runs': 1}, description='submit spark-pi as sparkApplication on kubernetes', schedule_interval=timedelta(days=1), start_date=datetime(2021, 1, 1), catchup=False, ) t1 = SparkKubernetesOperator( task_id='spark_pi_submit', namespace="default", application_file="example_spark_kubernetes_spark_pi.yaml", do_xcom_push=True, dag=dag, ) t2 = SparkKubernetesSensor( task_id='spark_pi_monitor', namespace="default", application_name="{{ task_instance.xcom_pull(task_ids='spark_pi_submit')['metadata']['name'] }}", dag=dag, ) t1 >> t2
35.164179
106
0.771222
6b1084d73e1529677b6dd775e7f5c41b3b63a3ab
48,704
py
Python
src/bruce/scripts/check_bruce_counters.py
czchen/debian-bruce
0db47b345926fefbf958a704cac476b46cb44826
[ "Apache-2.0" ]
2
2015-05-21T01:49:10.000Z
2015-06-09T23:28:30.000Z
src/bruce/scripts/check_bruce_counters.py
czchen/debian-bruce
0db47b345926fefbf958a704cac476b46cb44826
[ "Apache-2.0" ]
null
null
null
src/bruce/scripts/check_bruce_counters.py
czchen/debian-bruce
0db47b345926fefbf958a704cac476b46cb44826
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ############################################################################### # ----------------------------------------------------------------------------- # Copyright 2013-2014 if(we) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------------------------------------------------------- # # This script requests counter reports from bruce and analyzes the counters. # It is intended to be executed by Nagios, or manually to get more information # on a problem reported by Nagios. # # Program arguments: # -m N # --manual N: (optional) # Specifies that we are running in manual mode. In manual mode, instead # of getting counters from bruce and saving them to a counter file, we # read a previously created counter file and analyze it, giving verbose # output for each problem found. When the script (not running in manual # mode) reports a problem to Nagios, a human being can later run it in # manual mode to analyze the resulting counter file and determine the # details of the problem(s) found. When running in manual mode, we # don't delete old counter files. The 'N' value gives a number of # seconds since the epoch specifying a counter file to be manually # analyzed. # # -d DIR # --work_dir DIR: (required) # Specifies a directory under the Nagios user's home directory where the # script keeps all of its data files. This directory will be created if # it does not already exist. # # -i INTERVAL # --interval INTERVAL: (required) # The minimum number of seconds ago we will accept when looking for a # recent counter file to compare our metadata update count against. The # most recent counter file whose age is at least the minimum will be # chosen. If no such counter file exists, the metadata update count # test is skipped. # # -H HISTORY # --history HISTORY: (required unless running in manual mode) # The number of minutes of history to preserve when deleting old counter # files. A value of 0 means "preserve everything". # # -s SERVER # --nagios_server SERVER: (required) # If not running in manual mode, this is a unique identifier for the # Nagios server that triggered the current execution of this script. If # running in manual mode, this is a unique identifier for the Nagios # server that triggered the script execution that caused creation of the # counter file we are analyzing. # # -w T # --socket_error_warn_threshold T: (required) # If the number of socket errors indicated by the counter output exceeds # this value, it is treated as Warning. # # -c T # --socket_error_critical_threshold T: (required) # If the number of socket errors indicated by the counter output exceeds # this value, it is treated as Critical. # # -W T # --msg_count_warn_threshold T: (required) # If the number of outstanding messages indicated by the counter output # exceeds this value, it is treated as Warning. # # -C T # --msg_count_critical_threshold T: (required) # If the number of outstanding messages indicated by the counter output # exceeds this value, it is treated as Critical. # # -b HOST # --bruce_host HOST: (required unless running in manual mode) # The host running bruce that we should connect to for counter data. # # -p PORT # --bruce_status_port PORT: (optional, default = 9090) # The port to connect to when asking bruce for counter data. # # -u USER # --nagios_user USER: (optional, default = 'nrpe') # The name of the nagios user. The script will create a directory under # the nagios user's home directory (see '-d DIR' option above). ############################################################################### import bisect import errno import getopt import json import os import subprocess import sys import time from urllib2 import URLError from urllib2 import urlopen # Nagios exit codes EC_SUCCESS = 0 EC_WARNING = 1 EC_CRITICAL = 2 EC_UNKNOWN = 3 # This will contain program options information. Opts = None ############################################################################### # Print a message and exit with the given exit code. ############################################################################### def Die(exit_code, msg): print msg sys.exit(exit_code) ############################################################################### ############################################################################### # Return the number of seconds since the epoch. ############################################################################### def SecondsSinceEpoch(): return int(time.time()) ############################################################################### ############################################################################### # Create the directory given by 'path' if it doesn't already exist. ############################################################################### def MakeDirExist(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: Die(EC_UNKNOWN, 'Failed to create directory ' + path + ': ' + e.strerror) ############################################################################### ############################################################################### # Convert the given Nagios exit code to a string and return the result. ############################################################################### def NagiosCodeToString(nagios_code): if nagios_code == EC_SUCCESS: return 'Success' if nagios_code == EC_WARNING: return 'Warning' if nagios_code == EC_CRITICAL: return 'Critical' if nagios_code != EC_UNKNOWN: Die(EC_UNKNOWN, 'Cannot convert unknown Nagios code ' + str(nagios_code) + ' to string') return 'Unknown' ############################################################################### ############################################################################### # Return true iff. we are running in manual mode. ############################################################################### def RunningInManualMode(): return (Opts.Manual >= 0) ############################################################################### ############################################################################### # Print a problem message preceded by a string representation of its Nagios # code. ############################################################################### def ReportProblem(nagios_code, msg): print NagiosCodeToString(nagios_code) + ': ' + msg ############################################################################### ############################################################################### # Return the home directory of the Nagios user as a string. ############################################################################### def GetNagiosDir(): try: p = subprocess.Popen(['/bin/bash', '-c', 'echo -n ~' + Opts.NagiosUser], stdout=subprocess.PIPE) out, err = p.communicate() except OSError as e: Die(EC_UNKNOWN, 'Failed to execute shell command to determine ' 'Nagios home directory: ' + e.strerror) if not out: Die(EC_UNKNOWN, 'Got empty result from shell command to determine ' 'Nagios home directory') if out[0] == '~': Die(EC_UNKNOWN, 'Nagios home directory not found') if out[0] != '/': Die(EC_UNKNOWN, 'Got strange output while trying to determine ' 'Nagios home directory: [' + out + ']') return out ############################################################################### ############################################################################### # Return the value associated with string 'key' in dictionary 'counters', or # die with an error message if no such key was found. ############################################################################### def LookupCounter(counters, key): try: value = counters[key] except KeyError: Die(EC_UNKNOWN, 'Counter ' + key + ' not found') return value ############################################################################### ############################################################################### # Parse a JSON counter report and return the result. ############################################################################### def ParseCounterReport(json_input): try: result = json.loads(json_input) except ValueError: Die(EC_UNKNOWN, 'Failed to parse counter report') if type(result) is not dict: Die(EC_UNKNOWN, 'Counter report is not a dictionary') if 'now' not in result: Die(EC_UNKNOWN, 'Counter report missing "now" item') if type(result['now']) is not int: Die(EC_UNKNOWN, 'Item "now" in counter report is not an integer') if 'since' not in result: Die(EC_UNKNOWN, 'Counter report missing "since" item') if type(result['since']) is not int: Die(EC_UNKNOWN, 'Item "since" in counter report is not an integer') if 'pid' not in result: Die(EC_UNKNOWN, 'Counter report missing "pid" item') if type(result['pid']) is not int: Die(EC_UNKNOWN, 'Item "pid" in counter report is not an integer') if 'version' not in result: Die(EC_UNKNOWN, 'Counter report missing "version" item') if type(result['version']) is not unicode: Die(EC_UNKNOWN, 'Item "version" in counter report is not a unicode string') if 'counters' not in result: Die(EC_UNKNOWN, 'Counter report missing "counters" item') if type(result['counters']) is not list: Die(EC_UNKNOWN, 'Item "counters" in counter report is not a list') counter_names = set() for item in result['counters']: if type(item) is not dict: Die(EC_UNKNOWN, 'Counter item is not a dictionary') if 'name' not in item: Die(EC_UNKNOWN, 'Counter item has no name') if type(item['name']) is not unicode: Die(EC_UNKNOWN, 'Counter item name is not a unicode string') if item['name'] in counter_names: Die(EC_UNKNOWN, 'Duplicate counter name [' + item['name'] + ']') counter_names.add(item['name']) if 'value' not in item: Die(EC_UNKNOWN, 'Counter item [' + item['name'] + '] has no value') if type(item['value']) is not int: Die(EC_UNKNOWN, 'Value of counter item [' + item['name'] + \ '] is not an integer') if 'location' not in item: Die(EC_UNKNOWN, 'Counter item [' + item['name'] + \ '] has no location') if type(item['location']) is not unicode: Die(EC_UNKNOWN, 'Location of counter item [' + item['name'] + \ '] is not a unicode string') return result ############################################################################### ############################################################################### # Serialize a counter report to a JSON string and return the result. ############################################################################### def SerializeCounterReport(report): return json.dumps(report, sort_keys=True, indent=4, separators=(',', ': ')) + '\n' ############################################################################### ############################################################################### # Send a "get counters" HTTP request to bruce, parse the response, and return # the parsed counter report. ############################################################################### def GetCounters(url): try: response = urlopen(url) except URLError as e: # Treat this as Critical, since it indicates that bruce is probably not # running. Die(EC_CRITICAL, 'Failed to open counters URL: ' + str(e.reason)) json_input = '' for line in response: json_input += line return ParseCounterReport(json_input) ############################################################################### ############################################################################### # Create a file with counter data whose location is given by 'path'. # 'counter_report' is a counter report containing the data to be written. # Serialize the report to JSON and write it to the file. ############################################################################### def CreateCounterFile(path, counter_report): json_report = SerializeCounterReport(counter_report) try: is_open = False outfile = open(path, 'w') is_open = True outfile.write(json_report) except OSError as e: Die(EC_UNKNOWN, 'Failed to create counter file ' + path + ': ' + e.strerror) except IOError as e: Die(EC_UNKNOWN, 'Failed to create counter file ' + path + ': ' + e.strerror) finally: if is_open: outfile.close() ############################################################################### ############################################################################### # Read counter data from file given by 'path'. Return a counter report # containing the data. ############################################################################### def ReadCounterFile(path): json_input = '' try: is_open = False infile = open(path, 'r') is_open = True for line in infile: json_input += line except OSError as e: Die(EC_UNKNOWN, 'Failed to open counter file ' + path + ' for reading: ' + e.strerror) except IOError as e: Die(EC_UNKNOWN, 'Failed to open counter file ' + path + ' for reading: ' + e.strerror) finally: if is_open: infile.close() return ParseCounterReport(json_input) ############################################################################### ############################################################################### # Find all names of files in the directory given by 'path' that may be counter # files based on their names, and that are older than the current time given by # 'now'. Return the filenames converted to integers (each representing seconds # since the epoch) as a list. The returned list will be sorted in ascending # order. ############################################################################### def FindOldCounterFileTimes(path, now): try: file_list = os.listdir(path) except OSError as e: Die(EC_UNKNOWN, 'Failed to list contents of directory ' + path + ': ' + e.strerror) except IOError as e: Die(EC_UNKNOWN, 'Failed to list contents of directory ' + path + ': ' + e.strerror) result = [] for item in file_list: try: value = int(item) except ValueError: # The filename can't be converted to an integer, so it must not be # a counter file. continue if (value < now) and (value >= 0): result.append(value) result.sort() return result ############################################################################### ############################################################################### # Read the counter file for the most recent previous counter report for the # currently running instance of bruce. Return a counter report containing the # data, or None if no such data exists. # # parameters: # current_report: The current counter report. # work_path: The pathname of the directory containing the counter files. # old_counter_file_times: A list of integers sorted in ascending order. # Each value is a number of seconds since the epoch whose string # representation gives the name of a counter file in directory # 'work_path'. ############################################################################### def GetLastCounterReport(current_report, work_path, old_counter_file_times): file_count = len(old_counter_file_times) # There are no previous counter files, so we don't yet have any history. if file_count == 0: return None newest_timestamp = old_counter_file_times[file_count - 1] path = work_path + '/' + str(newest_timestamp) last_report = ReadCounterFile(path) # The most recent previous counter file contains data for a different # invocation of bruce (i.e. bruce restarted). Therefore the data is not # applicable. if last_report['pid'] != current_report['pid']: return None if last_report['now'] != newest_timestamp: Die(EC_UNKNOWN, 'Previous counter report file ' + str(newest_timestamp) + ' contains timestamp ' + str(last_report['now']) + ' that differs from filename') return last_report ############################################################################### ############################################################################### # Read the counter file for a previous counter report for the currently running # instance of bruce. The most recent file that was created at least a given # number of seconds ago will be chosen. Return a counter report containing the # data, or None if no such data exists. # # parameters: # current_report: The current counter report. # work_path: The pathname of the directory containing the counter files. # old_counter_file_times: A list of integers sorted in ascending order. # Each value is a number of seconds since the epoch whose string # representation gives the name of a counter file in directory # 'work_path'. # min_seconds_ago: The minimum number of seconds prior to the timestamp of # 'current_report' that the chosen report's timestamp must be. ############################################################################### def GetOldCounterReport(current_report, work_path, old_counter_file_times, min_seconds_ago): file_count = len(old_counter_file_times) if file_count == 0: return None max_ok_timestamp = current_report['now'] - min_seconds_ago # Use binary search to find the right timestamp. i = bisect.bisect_left(old_counter_file_times, max_ok_timestamp) if i == file_count: chosen_timestamp = old_counter_file_times[file_count - 1] elif i == 0: chosen_timestamp = old_counter_file_times[0] if chosen_timestamp > max_ok_timestamp: # All reports are too recent. return None else: chosen_timestamp = old_counter_file_times[i] if chosen_timestamp > max_ok_timestamp: chosen_timestamp = old_counter_file_times[i - 1] path = work_path + '/' + str(chosen_timestamp) old_report = ReadCounterFile(path) # The old counter file contains data for a different invocation of bruce # (i.e. bruce restarted). Therefore the data is not applicable. if old_report['pid'] != current_report['pid']: return None if old_report['now'] != chosen_timestamp: Die(EC_UNKNOWN, 'Old counter report file ' + str(chosen_timestamp) + ' contains wrong timestamp') return old_report ############################################################################### ############################################################################### # Input list 'in_counters' contains counter information from a counter report. # Return a dictionary whose keys are the names of the counters in 'in_counters' # and whose values are the corresponding counts. ############################################################################### def CounterListToDict(in_counters): result = {} for item in in_counters: result[item['name']] = item['value'] return result ############################################################################### ############################################################################### # Take as input two lists, 'old_counters' and 'new_counters', of counter # information from counter reports. The input lists must have exactly the same # sets of counter names. If 'old_counters' is None, return a dictionary whose # keys are the names of the counters from 'new_counters' and whose values are # the corresponding counts. Otherwise return a dictionary with keys identical # to the counter names from 'old_couners' and 'new_counters'. For each key K # in the returned dictionary, suppose V_old is the value of the corresponding # counter in 'old_counters' and V_new is the value of the corresponding counter # in 'new_counters'. The value associated with K is then V_new - V_old. Exit # with an error if the sets of counter names from the input lists are not # identical or the computed value for any key in the result dictionary is # negative. ############################################################################### def ComputeCounterDeltas(old_counters, new_counters): new_counter_dict = CounterListToDict(new_counters) if old_counters == None: return new_counter_dict old_counter_dict = CounterListToDict(old_counters) old_keys = set(k for k in old_counter_dict.keys()) new_keys = set(k for k in new_counter_dict.keys()) s = old_keys - new_keys if s: Die(EC_UNKNOWN, 'Old counter file has unmatched keys: ' + str(s)) s = new_keys - old_keys if s: Die(EC_UNKNOWN, 'New counter file has unmatched keys: ' + str(s)) result = {} for k in new_keys: delta = new_counter_dict[k] - old_counter_dict[k] if delta < 0: Die(EC_UNKNOWN, 'Key [' + k + '] decreased by ' + str(-delta) + \ ' in new counters file') result[k] = delta return result ############################################################################### ############################################################################### # Look up the counter whose name string is 'counter_name' in dictionary # 'deltas'. If its value is > 'max_ok_value' then report it as a problem with # Nagios code 'nagios_code' and return max(nagios_code, old_nagios_code). # Otherwise return 'old_nagios_code'. ############################################################################### def CheckDelta(deltas, counter_name, max_ok_value, nagios_code, old_nagios_code): new_nagios_code = old_nagios_code count = LookupCounter(deltas, counter_name) if count > max_ok_value: new_nagios_code = max(new_nagios_code, nagios_code) ReportProblem(nagios_code, counter_name + '=' + str(count)) return new_nagios_code ############################################################################### ############################################################################### # Check for socket-related errors in dictionary 'deltas' and report a problem # if the combined socket error count is high enough. Return a nagios code # equal to max(old_nagios_code, nagios code of reported problem) if a problem # was reported. Otherwise return 'old_nagios_code'. ############################################################################### def CheckSocketErrorDeltas(deltas, old_nagios_code): new_nagios_code = old_nagios_code counter_names = [ 'ConnectFailOnTryGetMetadata', 'MetadataResponseRead1LostTcpConnection', 'MetadataResponseRead1TimedOut', 'MetadataResponseRead2LostTcpConnection', 'MetadataResponseRead2TimedOut', 'MetadataResponseRead2UnexpectedEnd', 'ReadMetadataResponse2Fail', 'ReceiverSocketBrokerClose', 'ReceiverSocketError', 'ReceiverSocketTimeout', 'SenderConnectFail', 'SenderSocketError', 'SenderSocketTimeout', 'SendMetadataRequestFail', 'SendMetadataRequestLostTcpConnection', 'SendMetadataRequestTimedOut' ] nonzero_counter_names = [] sum = 0 for name in counter_names: count = LookupCounter(deltas, name) if count > 0: nonzero_counter_names.append(name) sum += count print_counters = False if sum > Opts.SocketErrorCriticalThreshold: new_nagios_code = max(new_nagios_code, EC_CRITICAL) print_counters = RunningInManualMode() ReportProblem(EC_CRITICAL, str(sum) + ' socket errors:') elif sum > Opts.SocketErrorWarnThreshold: new_nagios_code = max(new_nagios_code, EC_WARNING) print_counters = RunningInManualMode() ReportProblem(EC_WARNING, str(sum) + ' socket errors:') if print_counters: for name in nonzero_counter_names: print ' ' + name + '=' + str(deltas[name]) return new_nagios_code ############################################################################### ############################################################################### # The keys of input dictionary 'deltas' are counter names, and the values are # differences between integer counts from the current counter report (obtained # directly from bruce) and the previous counter report (obtained from a file). # Check for problems, report any problems found, and return a Nagios code # representing the maximum severity of any problems found. ############################################################################### def AnalyzeDeltas(deltas): # A single instance of any of these is Critical. nagios_code = CheckDelta(deltas, 'MsgUnprocessedDestroy', 0, EC_CRITICAL, EC_SUCCESS) nagios_code = CheckDelta(deltas, 'NoDiscardQuery', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataHasEmptyTopicList', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataHasEmptyBrokerList', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'BugDispatchBatchOutOfRangeIndex', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'BugDispatchMsgOutOfRangeIndex', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'TopicHasNoAvailablePartitions', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'InitialGetMetadataFail', 0, EC_CRITICAL, nagios_code) nagios_code = CheckDelta(deltas, 'GetMetadataFail', 0, EC_CRITICAL, nagios_code) # Any number of instances of any of these is Warning. nagios_code = CheckDelta(deltas, 'MetadataResponseBadTopicNameLen', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseBadBrokerHostLen', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativeCaughtUpReplicaNodeId', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativePartitionCaughtUpReplicaCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativeReplicaNodeId', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativePartitionReplicaCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseInvalidLeaderNodeId', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativePartitionId', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativePartitionCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativeTopicCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseBadBrokerPort', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativeBrokerNodeId', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseNegativeBrokerCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MetadataResponseHasExtraJunk', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BadMetadataResponseSize', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BadMetadataContent', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BadMetadataResponse', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseBadPartitionCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseBadTopicNameLength', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseBadTopicCount', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BadKafkaResponseSize', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BugGetAckWaitQueueOutOfRangeIndex', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseUnexpectedTopic', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseUnexpectedPartition', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseShortPartitionList', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'ProduceResponseShortTopicList', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'CorrelationIdMismatch', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BadProduceResponseSize', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BadProduceResponse', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BugAllTopicsEmpty', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BugMsgListMultipleTopics', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BugMsgSetEmpty', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BugMultiPartitionGroupEmpty', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'BugProduceRequestEmpty', 0, EC_WARNING, nagios_code) nagios_code = CheckDelta(deltas, 'MsgSetCompressionError', 0, EC_WARNING, nagios_code) # Check counters indicating socket-related errors. These are summed # together and compared against thresholds for Warning and Critical. nagios_code = CheckSocketErrorDeltas(deltas, nagios_code) # An instance of any of these indicates that something is wrong inside # bruce's HTTP status monitoring mechanism, which means that the integrity # of the information received by the monitoring scripts may be compromised. nagios_code = CheckDelta(deltas, 'MongooseUrlDecodeError', 1, EC_UNKNOWN, nagios_code) nagios_code = CheckDelta(deltas, 'MongooseStdException', 1, EC_UNKNOWN, nagios_code) nagios_code = CheckDelta(deltas, 'MongooseUnknownException', 1, EC_UNKNOWN, nagios_code) return nagios_code ############################################################################### ############################################################################### # Compare the 'MsgCreate' and 'MsgDestroy' counter values from input list # 'counters' of counters from counter report. Report a problem if one is found # and return the appropriate Nagios code. ############################################################################### def CheckOutstandingMsgCount(counters): counter_dict = CounterListToDict(counters) msg_create_count = LookupCounter(counter_dict, 'MsgCreate') msg_destroy_count = LookupCounter(counter_dict, 'MsgDestroy') if msg_destroy_count > msg_create_count: ReportProblem(EC_CRITICAL, 'MsgDestroy counter value ' + str(msg_destroy_count) + ' is greater than MsgCreate counter value ' + str(msg_create_count)) return EC_CRITICAL msg_count = msg_create_count - msg_destroy_count if msg_count > Opts.MsgCountCriticalThreshold: ReportProblem(EC_CRITICAL, 'MsgCreate - MsgDestroy is ' + str(msg_count)) return EC_CRITICAL if msg_count > Opts.MsgCountWarnThreshold: ReportProblem(EC_WARNING, 'MsgCreate - MsgDestroy is ' + str(msg_count)) return EC_WARNING return EC_SUCCESS ############################################################################### ############################################################################### # Compare counter info lists 'current_counters' and 'old_counters' and report # a problem if counter 'MetadataUpdated' has not increased. Return the # appropriate Nagios code. ############################################################################### def CheckMetadataUpdates(current_counters, old_counters): old_counter_dict = CounterListToDict(old_counters) new_counter_dict = CounterListToDict(current_counters) counter_name = 'GetMetadataSuccess' old_count = LookupCounter(old_counter_dict, counter_name) new_count = LookupCounter(new_counter_dict, counter_name) if new_count > old_count: return EC_SUCCESS ReportProblem(EC_WARNING, counter_name + ' not increasing: old value ' + str(old_count) + ' new value ' + str(new_count)) return EC_CRITICAL ############################################################################### ############################################################################### # Delete any counter files whose ages exceed the configured history period. ############################################################################### def DeleteOldCounterFiles(work_path, now, old_counter_file_times): # A value of 0 means "don't delete anything". if Opts.History == 0: return for epoch_seconds in old_counter_file_times: # Opts.History specifies a value in minutes. if (epoch_seconds > now) or \ ((now - epoch_seconds) <= (60 * Opts.History)): break path = work_path + '/' + str(epoch_seconds) try: os.remove(path) except OSError as e: Die(EC_UNKNOWN, 'Failed to delete counter file ' + path + ': ' + e.strerror) except IOError as e: Die(EC_UNKNOWN, 'Failed to delete counter file ' + path + ': ' + e.strerror) ############################################################################### ############################################################################### # Class for storing program options # # members: # Manual: If we are not running in manual mode, this is -1. Otherwise, # it gives a number of seconds since the epoch specifying a counter # file to be manually analyzed. # WorkDir: A subdirectory beneath the Nagios user's home directory where # the script maintains all of its counter data. # Interval: The minimum number of seconds ago we will accept when looking # for a recent counter file to compare our metadata update count # against. # History: The number of minutes of history to preserve when deleting old # counter files. # NagiosServer: If not running in manual mode, this is a unique identifier # for the Nagios server that triggered the current execution of this # script. If running in manual mode, this is a unique identifier for # the Nagios server that triggered the script execution that caused # creation of the counter file we are analyzing. # SocketErrorWarnThreshold: If the number of socket errors indicated by the # counter output exceeds this value, it is treated as Warning. # SocketErrorCriticalThreshold: If the number of socket errors indicated by # the counter output exceeds this value, it is treated as Critical. # MsgCountWarnThreshold: If the number of outstanding messages indicated by # the counter output exceeds this value, it is treated as Warning. # MsgCountCriticalThreshold: If the number of outstanding messages # indicated by the counter output exceeds this value, it is treated as # Critical. # BruceHost: The host running bruce that we should connect to for counter # data. # BruceStatusPort: The port to connect to when asking bruce for counter # data. # NagiosUser: The name of the nagios user. ############################################################################### class TProgramOptions(object): 'program options class' def __init__(self, manual, work_dir, interval, history, nagios_server, socket_error_warn_threshold, socket_error_critical_threshold, msg_count_warn_threshold, msg_count_critical_threshold, bruce_host, bruce_status_port, nagios_user): self.Manual = manual self.WorkDir = work_dir self.Interval = interval self.History = history self.NagiosServer = nagios_server self.SocketErrorWarnThreshold = socket_error_warn_threshold self.SocketErrorCriticalThreshold = socket_error_critical_threshold self.MsgCountWarnThreshold = msg_count_warn_threshold self.MsgCountCriticalThreshold = msg_count_critical_threshold self.BruceHost = bruce_host self.BruceStatusPort = bruce_status_port self.NagiosUser = nagios_user ############################################################################### ############################################################################### # Parse command line arguments provided by input list parameter 'args' and # return a corresponding TProgramOptions object on success. If there is a # problem with the arguments, die with an error message. ############################################################################### def ParseArgs(args): try: opts, args = getopt.getopt(sys.argv[1:], 'm:d:i:H:s:w:c:W:C:b:p:u:', ['manual', 'work_dir=', 'interval=', 'history=', 'nagios_server=', 'socket_error_warn_threshold=', 'socket_error_critical_threshold=', 'msg_count_warn_threshold=', 'msg_count_critical_threshold=', 'bruce_host=', 'bruce_status_port=', 'nagios_user=']) except getopt.GetoptError as e: Die(EC_UNKNOWN, str(e)) opt_manual = -1 opt_work_dir = '' opt_interval = -1 opt_history = -1 opt_nagios_server = '' opt_socket_error_warn_threshold = -1 opt_socket_error_critical_threshold = -1 opt_msg_count_warn_threshold = -1 opt_msg_count_critical_threshold = -1 opt_bruce_host = '' opt_bruce_status_port = 9090 opt_nagios_user = 'nrpe' for o, a in opts: if o in ('-m', '--manual'): try: opt_manual = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_manual < 0: Die(EC_UNKNOWN, 'The ' + o + ' option requires a nonnegative integer') elif o in ('-d', '--work_dir'): opt_work_dir = a elif o in ('-i', '--interval'): try: opt_interval = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_interval < 1: Die(EC_UNKNOWN, 'The ' + o + ' option requires a positive integer') elif o in ('-H', '--history'): try: opt_history = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_history < 0: Die(EC_UNKNOWN, 'The ' + o + ' option requires a nonnegative integer') elif o in ('-s', '--nagios_server'): opt_nagios_server = a elif o in ('-w', '--socket_error_warn_threshold'): try: opt_socket_error_warn_threshold = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_socket_error_warn_threshold < 0: Die(EC_UNKNOWN, 'The ' + o + ' option requires a nonnegative integer') elif o in ('-c', '--socket_error_critical_threshold'): try: opt_socket_error_critical_threshold = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_socket_error_critical_threshold < 0: Die(EC_UNKNOWN, 'The ' + o + ' option requires a nonnegative integer') elif o in ('-W', '--msg_count_warn_threshold'): try: opt_msg_count_warn_threshold = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_msg_count_warn_threshold < 0: Die(EC_UNKNOWN, 'The ' + o + ' option requires a nonnegative integer') elif o in ('-C', '--msg_count_critical_threshold'): try: opt_msg_count_critical_threshold = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if opt_msg_count_critical_threshold < 0: Die(EC_UNKNOWN, 'The ' + o + ' option requires a nonnegative integer') elif o in ('-b', '--bruce_host'): opt_bruce_host = a elif o in ('-p', '--bruce_status_port'): try: opt_bruce_status_port = int(a) except ValueError: Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer') if (opt_bruce_status_port < 1) or (opt_bruce_status_port > 65535): Die(EC_UNKNOWN, 'The ' + o + ' option requires an integer between 1 and 65535') elif o in ('-u', '--nagios_user'): opt_nagios_user = a else: Die(EC_UNKNOWN, 'Unhandled command line option') if opt_work_dir == '': Die(EC_UNKNOWN, '-d or --work_dir option must be specified') if opt_interval == -1: Die(EC_UNKNOWN, '-i or --interval option must be specified') if opt_history == -1: if opt_manual == -1: Die(EC_UNKNOWN, '-H or --history option must be specified') else: opt_history = 0 if opt_nagios_server == '': Die(EC_UNKNOWN, '-s or --nagios_server option must be specified') if opt_socket_error_warn_threshold == -1: Die(EC_UNKNOWN, '-w or --socket_error_warn_threshold option must be ' 'specified') if opt_socket_error_critical_threshold == -1: Die(EC_UNKNOWN, '-c or --socket_error_critical_threshold option ' 'must be specified') if opt_msg_count_warn_threshold == -1: Die(EC_UNKNOWN, '-W or --msg_count_warn_threshold option must be ' 'specified') if opt_msg_count_critical_threshold == -1: Die(EC_UNKNOWN, '-C or --msg_count_critical_threshold option must ' 'be specified') if (opt_bruce_host == '') and (opt_manual == -1): Die(EC_UNKNOWN, '-b or --bruce_host option must be specified') return TProgramOptions(opt_manual, opt_work_dir, opt_interval, opt_history, opt_nagios_server, opt_socket_error_warn_threshold, opt_socket_error_critical_threshold, opt_msg_count_warn_threshold, opt_msg_count_critical_threshold, opt_bruce_host, opt_bruce_status_port, opt_nagios_user) ############################################################################### ############################################################################### # main program ############################################################################### def main(): # 'Opts' is a global variable containing a TProgramOptions object with all # program options. global Opts Opts = ParseArgs(sys.argv[1:]) work_path = GetNagiosDir() + '/' + Opts.WorkDir + '/' + Opts.NagiosServer MakeDirExist(work_path) if RunningInManualMode(): now = Opts.Manual counter_report = ReadCounterFile(work_path + '/' + str(now)) else: counter_report = GetCounters('http://' + Opts.BruceHost + ':' + \ str(Opts.BruceStatusPort) + '/counters/json') now = counter_report['now'] CreateCounterFile(work_path + '/' + str(now), counter_report) old_counter_file_times = FindOldCounterFileTimes(work_path, now) last_report = GetLastCounterReport(counter_report, work_path, old_counter_file_times) if last_report == None: last_counters = None else: last_counters = last_report['counters'] deltas = ComputeCounterDeltas(last_counters, counter_report['counters']) nagios_code = AnalyzeDeltas(deltas) nagios_code = max(nagios_code, CheckOutstandingMsgCount(counter_report['counters'])) older_report = GetOldCounterReport(counter_report, work_path, old_counter_file_times, Opts.Interval) if older_report != None: nagios_code = max(nagios_code, CheckMetadataUpdates(counter_report['counters'], older_report['counters'])) # Nagios expects some sort of output even in the case of a successful # result. if nagios_code == EC_SUCCESS: print "Ok" # Manual mode is used by a human being to view the details of problems # previously reported by this script while being executed by Nagios. In # this case, deleting old counter files is not a desired behavior. if RunningInManualMode(): print 'Nagios code: ' + NagiosCodeToString(nagios_code) else: DeleteOldCounterFiles(work_path, now, old_counter_file_times) sys.exit(nagios_code) ############################################################################### try: main() except Exception: exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) # Write stack trace to standard output, since that's where Nagios expects # error output to go. for elem in lines: print elem sys.exit(EC_UNKNOWN)
43.485714
79
0.554841
c4ddb27a8c37fd130e256b1924bf871fb31577da
81,438
py
Python
monai/transforms/intensity/array.py
ETS-Research-Repositories/MONAI
ec479d5b054063de61ef7af0caed021b36325fea
[ "Apache-2.0" ]
null
null
null
monai/transforms/intensity/array.py
ETS-Research-Repositories/MONAI
ec479d5b054063de61ef7af0caed021b36325fea
[ "Apache-2.0" ]
null
null
null
monai/transforms/intensity/array.py
ETS-Research-Repositories/MONAI
ec479d5b054063de61ef7af0caed021b36325fea
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A collection of "vanilla" transforms for intensity adjustment https://github.com/Project-MONAI/MONAI/wiki/MONAI_Design """ from abc import abstractmethod from collections.abc import Iterable from functools import partial from typing import Any, Callable, List, Optional, Sequence, Tuple, Union from warnings import warn import numpy as np import torch from monai.config import DtypeLike from monai.config.type_definitions import NdarrayOrTensor, NdarrayTensor from monai.data.utils import get_random_patch, get_valid_patch_size from monai.networks.layers import GaussianFilter, HilbertTransform, SavitzkyGolayFilter from monai.transforms.transform import RandomizableTransform, Transform from monai.transforms.utils import Fourier, equalize_hist, is_positive, rescale_array from monai.transforms.utils_pytorch_numpy_unification import clip, percentile, where from monai.utils import ( PT_BEFORE_1_7, InvalidPyTorchVersionError, convert_data_type, convert_to_dst_type, ensure_tuple, ensure_tuple_rep, ensure_tuple_size, fall_back_tuple, ) from monai.utils.deprecate_utils import deprecated_arg from monai.utils.enums import TransformBackends from monai.utils.type_conversion import convert_to_tensor, get_equivalent_dtype __all__ = [ "RandGaussianNoise", "RandRicianNoise", "ShiftIntensity", "RandShiftIntensity", "StdShiftIntensity", "RandStdShiftIntensity", "RandBiasField", "ScaleIntensity", "RandScaleIntensity", "NormalizeIntensity", "ThresholdIntensity", "ScaleIntensityRange", "AdjustContrast", "RandAdjustContrast", "ScaleIntensityRangePercentiles", "MaskIntensity", "DetectEnvelope", "SavitzkyGolaySmooth", "GaussianSmooth", "RandGaussianSmooth", "GaussianSharpen", "RandGaussianSharpen", "RandHistogramShift", "GibbsNoise", "RandGibbsNoise", "KSpaceSpikeNoise", "RandKSpaceSpikeNoise", "RandCoarseTransform", "RandCoarseDropout", "RandCoarseShuffle", "HistogramNormalize", ] class RandGaussianNoise(RandomizableTransform): """ Add Gaussian noise to image. Args: prob: Probability to add Gaussian noise. mean: Mean or “centre” of the distribution. std: Standard deviation (spread) of distribution. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, prob: float = 0.1, mean: float = 0.0, std: float = 0.1) -> None: RandomizableTransform.__init__(self, prob) self.mean = mean self.std = std self.noise: Optional[np.ndarray] = None def randomize(self, img: NdarrayOrTensor, mean: Optional[float] = None) -> None: super().randomize(None) if not self._do_transform: return None rand_std = self.R.uniform(0, self.std) self.noise = self.R.normal(self.mean if mean is None else mean, rand_std, size=img.shape) def __call__(self, img: NdarrayOrTensor, mean: Optional[float] = None, randomize: bool = True) -> NdarrayOrTensor: """ Apply the transform to `img`. """ if randomize: self.randomize(img=img, mean=self.mean if mean is None else mean) if not self._do_transform: return img if self.noise is None: raise RuntimeError("please call the `randomize()` function first.") noise, *_ = convert_to_dst_type(self.noise, img) return img + noise class RandRicianNoise(RandomizableTransform): """ Add Rician noise to image. Rician noise in MRI is the result of performing a magnitude operation on complex data with Gaussian noise of the same variance in both channels, as described in `Noise in Magnitude Magnetic Resonance Images <https://doi.org/10.1002/cmr.a.20124>`_. This transform is adapted from `DIPY<https://github.com/dipy/dipy>`_. See also: `The rician distribution of noisy mri data <https://doi.org/10.1002/mrm.1910340618>`_. Args: prob: Probability to add Rician noise. mean: Mean or "centre" of the Gaussian distributions sampled to make up the Rician noise. std: Standard deviation (spread) of the Gaussian distributions sampled to make up the Rician noise. channel_wise: If True, treats each channel of the image separately. relative: If True, the spread of the sampled Gaussian distributions will be std times the standard deviation of the image or channel's intensity histogram. sample_std: If True, sample the spread of the Gaussian distributions uniformly from 0 to std. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, prob: float = 0.1, mean: Union[Sequence[float], float] = 0.0, std: Union[Sequence[float], float] = 1.0, channel_wise: bool = False, relative: bool = False, sample_std: bool = True, ) -> None: RandomizableTransform.__init__(self, prob) self.prob = prob self.mean = mean self.std = std self.channel_wise = channel_wise self.relative = relative self.sample_std = sample_std self._noise1: NdarrayOrTensor self._noise2: NdarrayOrTensor def _add_noise(self, img: NdarrayTensor, mean: float, std: float): dtype_np = get_equivalent_dtype(img.dtype, np.ndarray) im_shape = img.shape _std = self.R.uniform(0, std) if self.sample_std else std self._noise1 = self.R.normal(mean, _std, size=im_shape).astype(dtype_np) self._noise2 = self.R.normal(mean, _std, size=im_shape).astype(dtype_np) if isinstance(img, torch.Tensor): n1 = torch.tensor(self._noise1, device=img.device) n2 = torch.tensor(self._noise2, device=img.device) return torch.sqrt((img + n1) ** 2 + n2 ** 2) return np.sqrt((img + self._noise1) ** 2 + self._noise2 ** 2) def __call__(self, img: NdarrayTensor, randomize: bool = True) -> NdarrayTensor: """ Apply the transform to `img`. """ if randomize: super().randomize(None) if not self._do_transform: return img if self.channel_wise: _mean = ensure_tuple_rep(self.mean, len(img)) _std = ensure_tuple_rep(self.std, len(img)) for i, d in enumerate(img): img[i] = self._add_noise(d, mean=_mean[i], std=_std[i] * d.std() if self.relative else _std[i]) else: if not isinstance(self.mean, (int, float)): raise RuntimeError("If channel_wise is False, mean must be a float or int number.") if not isinstance(self.std, (int, float)): raise RuntimeError("If channel_wise is False, std must be a float or int number.") std = self.std * img.std() if self.relative else self.std if not isinstance(std, (int, float)): raise RuntimeError("std must be a float or int number.") img = self._add_noise(img, mean=self.mean, std=std) return img class ShiftIntensity(Transform): """ Shift intensity uniformly for the entire image with specified `offset`. Args: offset: offset value to shift the intensity of image. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, offset: float) -> None: self.offset = offset def __call__(self, img: NdarrayOrTensor, offset: Optional[float] = None) -> NdarrayOrTensor: """ Apply the transform to `img`. """ offset = self.offset if offset is None else offset out = img + offset out, *_ = convert_data_type(data=out, dtype=img.dtype) return out class RandShiftIntensity(RandomizableTransform): """ Randomly shift intensity with randomly picked offset. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, offsets: Union[Tuple[float, float], float], prob: float = 0.1) -> None: """ Args: offsets: offset range to randomly shift. if single number, offset value is picked from (-offsets, offsets). prob: probability of shift. """ RandomizableTransform.__init__(self, prob) if isinstance(offsets, (int, float)): self.offsets = (min(-offsets, offsets), max(-offsets, offsets)) elif len(offsets) != 2: raise ValueError("offsets should be a number or pair of numbers.") else: self.offsets = (min(offsets), max(offsets)) self._offset = self.offsets[0] self._shfiter = ShiftIntensity(self._offset) def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self._offset = self.R.uniform(low=self.offsets[0], high=self.offsets[1]) def __call__(self, img: NdarrayOrTensor, factor: Optional[float] = None, randomize: bool = True) -> NdarrayOrTensor: """ Apply the transform to `img`. Args: img: input image to shift intensity. factor: a factor to multiply the random offset, then shift. can be some image specific value at runtime, like: max(img), etc. """ if randomize: self.randomize() if not self._do_transform: return img return self._shfiter(img, self._offset if factor is None else self._offset * factor) class StdShiftIntensity(Transform): """ Shift intensity for the image with a factor and the standard deviation of the image by: ``v = v + factor * std(v)``. This transform can focus on only non-zero values or the entire image, and can also calculate the std on each channel separately. Args: factor: factor shift by ``v = v + factor * std(v)``. nonzero: whether only count non-zero values. channel_wise: if True, calculate on each channel separately. Please ensure that the first dimension represents the channel of the image if True. dtype: output data type, defaults to float32. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, factor: float, nonzero: bool = False, channel_wise: bool = False, dtype: DtypeLike = np.float32 ) -> None: self.factor = factor self.nonzero = nonzero self.channel_wise = channel_wise self.dtype = dtype def _stdshift(self, img: NdarrayOrTensor) -> NdarrayOrTensor: ones: Callable std: Callable if isinstance(img, torch.Tensor): ones = torch.ones std = partial(torch.std, unbiased=False) else: ones = np.ones std = np.std slices = (img != 0) if self.nonzero else ones(img.shape, dtype=bool) if slices.any(): offset = self.factor * std(img[slices]) img[slices] = img[slices] + offset return img def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`. """ img, *_ = convert_data_type(img, dtype=self.dtype) if self.channel_wise: for i, d in enumerate(img): img[i] = self._stdshift(d) # type: ignore else: img = self._stdshift(img) return img class RandStdShiftIntensity(RandomizableTransform): """ Shift intensity for the image with a factor and the standard deviation of the image by: ``v = v + factor * std(v)`` where the `factor` is randomly picked. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, factors: Union[Tuple[float, float], float], prob: float = 0.1, nonzero: bool = False, channel_wise: bool = False, dtype: DtypeLike = np.float32, ) -> None: """ Args: factors: if tuple, the randomly picked range is (min(factors), max(factors)). If single number, the range is (-factors, factors). prob: probability of std shift. nonzero: whether only count non-zero values. channel_wise: if True, calculate on each channel separately. dtype: output data type, defaults to float32. """ RandomizableTransform.__init__(self, prob) if isinstance(factors, (int, float)): self.factors = (min(-factors, factors), max(-factors, factors)) elif len(factors) != 2: raise ValueError("factors should be a number or pair of numbers.") else: self.factors = (min(factors), max(factors)) self.factor = self.factors[0] self.nonzero = nonzero self.channel_wise = channel_wise self.dtype = dtype def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self.factor = self.R.uniform(low=self.factors[0], high=self.factors[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: """ Apply the transform to `img`. """ if randomize: self.randomize() if not self._do_transform: return img shifter = StdShiftIntensity( factor=self.factor, nonzero=self.nonzero, channel_wise=self.channel_wise, dtype=self.dtype ) return shifter(img=img) class ScaleIntensity(Transform): """ Scale the intensity of input image to the given value range (minv, maxv). If `minv` and `maxv` not provided, use `factor` to scale image by ``v = v * (1 + factor)``. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, minv: Optional[float] = 0.0, maxv: Optional[float] = 1.0, factor: Optional[float] = None, channel_wise: bool = False, dtype: DtypeLike = np.float32, ) -> None: """ Args: minv: minimum value of output data. maxv: maximum value of output data. factor: factor scale by ``v = v * (1 + factor)``. In order to use this parameter, please set `minv` and `maxv` into None. channel_wise: if True, scale on each channel separately. Please ensure that the first dimension represents the channel of the image if True. dtype: output data type, defaults to float32. """ self.minv = minv self.maxv = maxv self.factor = factor self.channel_wise = channel_wise self.dtype = dtype def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`. Raises: ValueError: When ``self.minv=None`` or ``self.maxv=None`` and ``self.factor=None``. Incompatible values. """ if self.minv is not None and self.maxv is not None: if self.channel_wise: out = [rescale_array(d, self.minv, self.maxv, dtype=self.dtype) for d in img] return torch.stack(out) if isinstance(img, torch.Tensor) else np.stack(out) # type: ignore return rescale_array(img, self.minv, self.maxv, dtype=self.dtype) if self.factor is not None: ret = img * (1 + self.factor) ret, *_ = convert_data_type(ret, dtype=self.dtype) return ret raise ValueError("Incompatible values: minv=None or maxv=None and factor=None.") class RandScaleIntensity(RandomizableTransform): """ Randomly scale the intensity of input image by ``v = v * (1 + factor)`` where the `factor` is randomly picked. """ backend = ScaleIntensity.backend def __init__( self, factors: Union[Tuple[float, float], float], prob: float = 0.1, dtype: DtypeLike = np.float32 ) -> None: """ Args: factors: factor range to randomly scale by ``v = v * (1 + factor)``. if single number, factor value is picked from (-factors, factors). prob: probability of scale. dtype: output data type, defaults to float32. """ RandomizableTransform.__init__(self, prob) if isinstance(factors, (int, float)): self.factors = (min(-factors, factors), max(-factors, factors)) elif len(factors) != 2: raise ValueError("factors should be a number or pair of numbers.") else: self.factors = (min(factors), max(factors)) self.factor = self.factors[0] self.dtype = dtype def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self.factor = self.R.uniform(low=self.factors[0], high=self.factors[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: """ Apply the transform to `img`. """ if randomize: self.randomize() if not self._do_transform: return img return ScaleIntensity(minv=None, maxv=None, factor=self.factor, dtype=self.dtype)(img) class RandBiasField(RandomizableTransform): """ Random bias field augmentation for MR images. The bias field is considered as a linear combination of smoothly varying basis (polynomial) functions, as described in `Automated Model-Based Tissue Classification of MR Images of the Brain <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=811270>`_. This implementation adapted from `NiftyNet <https://github.com/NifTK/NiftyNet>`_. Referred to `Longitudinal segmentation of age-related white matter hyperintensities <https://www.sciencedirect.com/science/article/pii/S1361841517300257?via%3Dihub>`_. Args: degree: degree of freedom of the polynomials. The value should be no less than 1. Defaults to 3. coeff_range: range of the random coefficients. Defaults to (0.0, 0.1). dtype: output data type, defaults to float32. prob: probability to do random bias field. """ backend = [TransformBackends.NUMPY] def __init__( self, degree: int = 3, coeff_range: Tuple[float, float] = (0.0, 0.1), dtype: DtypeLike = np.float32, prob: float = 0.1, ) -> None: RandomizableTransform.__init__(self, prob) if degree < 1: raise ValueError("degree should be no less than 1.") self.degree = degree self.coeff_range = coeff_range self.dtype = dtype self._coeff = [1.0] def _generate_random_field(self, spatial_shape: Sequence[int], degree: int, coeff: Sequence[float]): """ products of polynomials as bias field estimations """ rank = len(spatial_shape) coeff_mat = np.zeros((degree + 1,) * rank) coords = [np.linspace(-1.0, 1.0, dim, dtype=np.float32) for dim in spatial_shape] if rank == 2: coeff_mat[np.tril_indices(degree + 1)] = coeff return np.polynomial.legendre.leggrid2d(coords[0], coords[1], coeff_mat) if rank == 3: pts: List[List[int]] = [[0, 0, 0]] for i in range(degree + 1): for j in range(degree + 1 - i): for k in range(degree + 1 - i - j): pts.append([i, j, k]) if len(pts) > 1: pts = pts[1:] np_pts = np.stack(pts) coeff_mat[np_pts[:, 0], np_pts[:, 1], np_pts[:, 2]] = coeff return np.polynomial.legendre.leggrid3d(coords[0], coords[1], coords[2], coeff_mat) raise NotImplementedError("only supports 2D or 3D fields") def randomize(self, img_size: Sequence[int]) -> None: super().randomize(None) if not self._do_transform: return None n_coeff = int(np.prod([(self.degree + k) / k for k in range(1, len(img_size) + 1)])) self._coeff = self.R.uniform(*self.coeff_range, n_coeff).tolist() def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: """ Apply the transform to `img`. """ if randomize: self.randomize(img_size=img.shape[1:]) if not self._do_transform: return img num_channels, *spatial_shape = img.shape _bias_fields = np.stack( [ self._generate_random_field(spatial_shape=spatial_shape, degree=self.degree, coeff=self._coeff) for _ in range(num_channels) ], axis=0, ) img_np, *_ = convert_data_type(img, np.ndarray) out = img_np * np.exp(_bias_fields) out, *_ = convert_to_dst_type(src=out, dst=img, dtype=self.dtype) return out class NormalizeIntensity(Transform): """ Normalize input based on provided args, using calculated mean and std if not provided. This transform can normalize only non-zero values or entire image, and can also calculate mean and std on each channel separately. When `channel_wise` is True, the first dimension of `subtrahend` and `divisor` should be the number of image channels if they are not None. Args: subtrahend: the amount to subtract by (usually the mean). divisor: the amount to divide by (usually the standard deviation). nonzero: whether only normalize non-zero values. channel_wise: if using calculated mean and std, calculate on each channel separately or calculate on the entire image directly. dtype: output data type, defaults to float32. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, subtrahend: Union[Sequence, NdarrayOrTensor, None] = None, divisor: Union[Sequence, NdarrayOrTensor, None] = None, nonzero: bool = False, channel_wise: bool = False, dtype: DtypeLike = np.float32, ) -> None: self.subtrahend = subtrahend self.divisor = divisor self.nonzero = nonzero self.channel_wise = channel_wise self.dtype = dtype @staticmethod def _mean(x): if isinstance(x, np.ndarray): return np.mean(x) x = torch.mean(x.float()) return x.item() if x.numel() == 1 else x @staticmethod def _std(x): if isinstance(x, np.ndarray): return np.std(x) x = torch.std(x.float(), unbiased=False) return x.item() if x.numel() == 1 else x def _normalize(self, img: NdarrayOrTensor, sub=None, div=None) -> NdarrayOrTensor: img, *_ = convert_data_type(img, dtype=torch.float32) if self.nonzero: slices = img != 0 else: if isinstance(img, np.ndarray): slices = np.ones_like(img, dtype=bool) else: slices = torch.ones_like(img, dtype=torch.bool) if not slices.any(): return img _sub = sub if sub is not None else self._mean(img[slices]) if isinstance(_sub, (torch.Tensor, np.ndarray)): _sub, *_ = convert_to_dst_type(_sub, img) _sub = _sub[slices] _div = div if div is not None else self._std(img[slices]) if np.isscalar(_div): if _div == 0.0: _div = 1.0 elif isinstance(_div, (torch.Tensor, np.ndarray)): _div, *_ = convert_to_dst_type(_div, img) _div = _div[slices] _div[_div == 0.0] = 1.0 img[slices] = (img[slices] - _sub) / _div return img def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`, assuming `img` is a channel-first array if `self.channel_wise` is True, """ if self.channel_wise: if self.subtrahend is not None and len(self.subtrahend) != len(img): raise ValueError(f"img has {len(img)} channels, but subtrahend has {len(self.subtrahend)} components.") if self.divisor is not None and len(self.divisor) != len(img): raise ValueError(f"img has {len(img)} channels, but divisor has {len(self.divisor)} components.") for i, d in enumerate(img): img[i] = self._normalize( # type: ignore d, sub=self.subtrahend[i] if self.subtrahend is not None else None, div=self.divisor[i] if self.divisor is not None else None, ) else: img = self._normalize(img, self.subtrahend, self.divisor) out, *_ = convert_data_type(img, dtype=self.dtype) return out class ThresholdIntensity(Transform): """ Filter the intensity values of whole image to below threshold or above threshold. And fill the remaining parts of the image to the `cval` value. Args: threshold: the threshold to filter intensity values. above: filter values above the threshold or below the threshold, default is True. cval: value to fill the remaining parts of the image, default is 0. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, threshold: float, above: bool = True, cval: float = 0.0) -> None: if not isinstance(threshold, (int, float)): raise ValueError("threshold must be a float or int number.") self.threshold = threshold self.above = above self.cval = cval def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`. """ mask = img > self.threshold if self.above else img < self.threshold res = where(mask, img, self.cval) res, *_ = convert_data_type(res, dtype=img.dtype) return res class ScaleIntensityRange(Transform): """ Apply specific intensity scaling to the whole numpy array. Scaling from [a_min, a_max] to [b_min, b_max] with clip option. Args: a_min: intensity original range min. a_max: intensity original range max. b_min: intensity target range min. b_max: intensity target range max. clip: whether to perform clip after scaling. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, a_min: float, a_max: float, b_min: float, b_max: float, clip: bool = False) -> None: self.a_min = a_min self.a_max = a_max self.b_min = b_min self.b_max = b_max self.clip = clip def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`. """ if self.a_max - self.a_min == 0.0: warn("Divide by zero (a_min == a_max)", Warning) return img - self.a_min + self.b_min img = (img - self.a_min) / (self.a_max - self.a_min) img = img * (self.b_max - self.b_min) + self.b_min if self.clip: img = clip(img, self.b_min, self.b_max) return img class AdjustContrast(Transform): """ Changes image intensity by gamma. Each pixel/voxel intensity is updated as:: x = ((x - min) / intensity_range) ^ gamma * intensity_range + min Args: gamma: gamma value to adjust the contrast as function. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, gamma: float) -> None: if not isinstance(gamma, (int, float)): raise ValueError("gamma must be a float or int number.") self.gamma = gamma def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`. """ epsilon = 1e-7 img_min = img.min() img_range = img.max() - img_min ret: NdarrayOrTensor = ((img - img_min) / float(img_range + epsilon)) ** self.gamma * img_range + img_min return ret class RandAdjustContrast(RandomizableTransform): """ Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as:: x = ((x - min) / intensity_range) ^ gamma * intensity_range + min Args: prob: Probability of adjustment. gamma: Range of gamma values. If single number, value is picked from (0.5, gamma), default is (0.5, 4.5). """ backend = AdjustContrast.backend def __init__(self, prob: float = 0.1, gamma: Union[Sequence[float], float] = (0.5, 4.5)) -> None: RandomizableTransform.__init__(self, prob) if isinstance(gamma, (int, float)): if gamma <= 0.5: raise ValueError( "if gamma is single number, must greater than 0.5 and value is picked from (0.5, gamma)" ) self.gamma = (0.5, gamma) elif len(gamma) != 2: raise ValueError("gamma should be a number or pair of numbers.") else: self.gamma = (min(gamma), max(gamma)) self.gamma_value: Optional[float] = None def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self.gamma_value = self.R.uniform(low=self.gamma[0], high=self.gamma[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: """ Apply the transform to `img`. """ if randomize: self.randomize() if not self._do_transform: return img if self.gamma_value is None: raise RuntimeError("gamma_value is not set, please call `randomize` function first.") return AdjustContrast(self.gamma_value)(img) class ScaleIntensityRangePercentiles(Transform): """ Apply range scaling to a numpy array based on the intensity distribution of the input. By default this transform will scale from [lower_intensity_percentile, upper_intensity_percentile] to [b_min, b_max], where {lower,upper}_intensity_percentile are the intensity values at the corresponding percentiles of ``img``. The ``relative`` parameter can also be set to scale from [lower_intensity_percentile, upper_intensity_percentile] to the lower and upper percentiles of the output range [b_min, b_max] For example: .. code-block:: python :emphasize-lines: 11, 22 image = np.array( [[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]) # Scale from lower and upper image intensity percentiles # to output range [b_min, b_max] scaler = ScaleIntensityRangePercentiles(10, 90, 0, 200, False, False) print(scaler(image)) [[[0., 50., 100., 150., 200.], [0., 50., 100., 150., 200.], [0., 50., 100., 150., 200.], [0., 50., 100., 150., 200.], [0., 50., 100., 150., 200.], [0., 50., 100., 150., 200.]]] # Scale from lower and upper image intensity percentiles # to lower and upper percentiles of the output range [b_min, b_max] rel_scaler = ScaleIntensityRangePercentiles(10, 90, 0, 200, False, True) print(rel_scaler(image)) [[[20., 60., 100., 140., 180.], [20., 60., 100., 140., 180.], [20., 60., 100., 140., 180.], [20., 60., 100., 140., 180.], [20., 60., 100., 140., 180.], [20., 60., 100., 140., 180.]]] Args: lower: lower intensity percentile. upper: upper intensity percentile. b_min: intensity target range min. b_max: intensity target range max. clip: whether to perform clip after scaling. relative: whether to scale to the corresponding percentiles of [b_min, b_max]. """ backend = ScaleIntensityRange.backend def __init__( self, lower: float, upper: float, b_min: float, b_max: float, clip: bool = False, relative: bool = False ) -> None: if lower < 0.0 or lower > 100.0: raise ValueError("Percentiles must be in the range [0, 100]") if upper < 0.0 or upper > 100.0: raise ValueError("Percentiles must be in the range [0, 100]") self.lower = lower self.upper = upper self.b_min = b_min self.b_max = b_max self.clip = clip self.relative = relative def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Apply the transform to `img`. """ a_min: float = percentile(img, self.lower) # type: ignore a_max: float = percentile(img, self.upper) # type: ignore b_min = self.b_min b_max = self.b_max if self.relative: b_min = ((self.b_max - self.b_min) * (self.lower / 100.0)) + self.b_min b_max = ((self.b_max - self.b_min) * (self.upper / 100.0)) + self.b_min scalar = ScaleIntensityRange(a_min=a_min, a_max=a_max, b_min=b_min, b_max=b_max, clip=False) img = scalar(img) if self.clip: img = clip(img, self.b_min, self.b_max) return img class MaskIntensity(Transform): """ Mask the intensity values of input image with the specified mask data. Mask data must have the same spatial size as the input image, and all the intensity values of input image corresponding to the selected values in the mask data will keep the original value, others will be set to `0`. Args: mask_data: if `mask_data` is single channel, apply to every channel of input image. if multiple channels, the number of channels must match the input data. the intensity values of input image corresponding to the selected values in the mask data will keep the original value, others will be set to `0`. if None, must specify the `mask_data` at runtime. select_fn: function to select valid values of the `mask_data`, default is to select `values > 0`. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, mask_data: Optional[NdarrayOrTensor] = None, select_fn: Callable = is_positive) -> None: self.mask_data = mask_data self.select_fn = select_fn def __call__(self, img: NdarrayOrTensor, mask_data: Optional[NdarrayOrTensor] = None) -> NdarrayOrTensor: """ Args: mask_data: if mask data is single channel, apply to every channel of input image. if multiple channels, the channel number must match input data. mask_data will be converted to `bool` values by `mask_data > 0` before applying transform to input image. Raises: - ValueError: When both ``mask_data`` and ``self.mask_data`` are None. - ValueError: When ``mask_data`` and ``img`` channels differ and ``mask_data`` is not single channel. """ mask_data = self.mask_data if mask_data is None else mask_data if mask_data is None: raise ValueError("must provide the mask_data when initializing the transform or at runtime.") mask_data_, *_ = convert_to_dst_type(src=mask_data, dst=img) mask_data_ = self.select_fn(mask_data_) if mask_data_.shape[0] != 1 and mask_data_.shape[0] != img.shape[0]: raise ValueError( "When mask_data is not single channel, mask_data channels must match img, " f"got img channels={img.shape[0]} mask_data channels={mask_data_.shape[0]}." ) return img * mask_data_ class SavitzkyGolaySmooth(Transform): """ Smooth the input data along the given axis using a Savitzky-Golay filter. Args: window_length: Length of the filter window, must be a positive odd integer. order: Order of the polynomial to fit to each window, must be less than ``window_length``. axis: Optional axis along which to apply the filter kernel. Default 1 (first spatial dimension). mode: Optional padding mode, passed to convolution class. ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``. See ``torch.nn.Conv1d()`` for more information. """ backend = [TransformBackends.TORCH] def __init__(self, window_length: int, order: int, axis: int = 1, mode: str = "zeros"): if axis < 0: raise ValueError("axis must be zero or positive.") self.window_length = window_length self.order = order self.axis = axis self.mode = mode self.img_t: torch.Tensor = torch.tensor(0.0) def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Args: img: array containing input data. Must be real and in shape [channels, spatial1, spatial2, ...]. Returns: array containing smoothed result. """ self.img_t = convert_to_tensor(img) # add one to transform axis because a batch axis will be added at dimension 0 savgol_filter = SavitzkyGolayFilter(self.window_length, self.order, self.axis + 1, self.mode) # convert to Tensor and add Batch axis expected by HilbertTransform smoothed = savgol_filter(self.img_t.unsqueeze(0)).squeeze(0) out, *_ = convert_to_dst_type(smoothed, dst=img) return out class DetectEnvelope(Transform): """ Find the envelope of the input data along the requested axis using a Hilbert transform. Requires PyTorch 1.7.0+ and the PyTorch FFT module (which is not included in NVIDIA PyTorch Release 20.10). Args: axis: Axis along which to detect the envelope. Default 1, i.e. the first spatial dimension. N: FFT size. Default img.shape[axis]. Input will be zero-padded or truncated to this size along dimension ``axis``. """ backend = [TransformBackends.TORCH] def __init__(self, axis: int = 1, n: Union[int, None] = None) -> None: if PT_BEFORE_1_7: raise InvalidPyTorchVersionError("1.7.0", self.__class__.__name__) if axis < 0: raise ValueError("axis must be zero or positive.") self.axis = axis self.n = n def __call__(self, img: NdarrayOrTensor): """ Args: img: numpy.ndarray containing input data. Must be real and in shape [channels, spatial1, spatial2, ...]. Returns: np.ndarray containing envelope of data in img along the specified axis. """ img_t: torch.Tensor img_t, *_ = convert_data_type(img, torch.Tensor) # type: ignore # add one to transform axis because a batch axis will be added at dimension 0 hilbert_transform = HilbertTransform(self.axis + 1, self.n) # convert to Tensor and add Batch axis expected by HilbertTransform out = hilbert_transform(img_t.unsqueeze(0)).squeeze(0).abs() out, *_ = convert_to_dst_type(src=out, dst=img) return out class GaussianSmooth(Transform): """ Apply Gaussian smooth to the input data based on specified `sigma` parameter. A default value `sigma=1.0` is provided for reference. Args: sigma: if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions. approx: discrete Gaussian kernel type, available options are "erf", "sampled", and "scalespace". see also :py:meth:`monai.networks.layers.GaussianFilter`. """ backend = [TransformBackends.TORCH] def __init__(self, sigma: Union[Sequence[float], float] = 1.0, approx: str = "erf") -> None: self.sigma = sigma self.approx = approx def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: img_t: torch.Tensor img_t, *_ = convert_data_type(img, torch.Tensor, dtype=torch.float) # type: ignore sigma: Union[Sequence[torch.Tensor], torch.Tensor] if isinstance(self.sigma, Sequence): sigma = [torch.as_tensor(s, device=img_t.device) for s in self.sigma] else: sigma = torch.as_tensor(self.sigma, device=img_t.device) gaussian_filter = GaussianFilter(img_t.ndim - 1, sigma, approx=self.approx) out_t: torch.Tensor = gaussian_filter(img_t.unsqueeze(0)).squeeze(0) out, *_ = convert_data_type(out_t, type(img), device=img.device if isinstance(img, torch.Tensor) else None) return out class RandGaussianSmooth(RandomizableTransform): """ Apply Gaussian smooth to the input data based on randomly selected `sigma` parameters. Args: sigma_x: randomly select sigma value for the first spatial dimension. sigma_y: randomly select sigma value for the second spatial dimension if have. sigma_z: randomly select sigma value for the third spatial dimension if have. prob: probability of Gaussian smooth. approx: discrete Gaussian kernel type, available options are "erf", "sampled", and "scalespace". see also :py:meth:`monai.networks.layers.GaussianFilter`. """ backend = GaussianSmooth.backend def __init__( self, sigma_x: Tuple[float, float] = (0.25, 1.5), sigma_y: Tuple[float, float] = (0.25, 1.5), sigma_z: Tuple[float, float] = (0.25, 1.5), prob: float = 0.1, approx: str = "erf", ) -> None: RandomizableTransform.__init__(self, prob) self.sigma_x = sigma_x self.sigma_y = sigma_y self.sigma_z = sigma_z self.approx = approx self.x = self.sigma_x[0] self.y = self.sigma_y[0] self.z = self.sigma_z[0] def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self.x = self.R.uniform(low=self.sigma_x[0], high=self.sigma_x[1]) self.y = self.R.uniform(low=self.sigma_y[0], high=self.sigma_y[1]) self.z = self.R.uniform(low=self.sigma_z[0], high=self.sigma_z[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize() if not self._do_transform: return img sigma = ensure_tuple_size(tup=(self.x, self.y, self.z), dim=img.ndim - 1) return GaussianSmooth(sigma=sigma, approx=self.approx)(img) class GaussianSharpen(Transform): """ Sharpen images using the Gaussian Blur filter. Referring to: http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_sharpen.html. The algorithm is shown as below .. code-block:: python blurred_f = gaussian_filter(img, sigma1) filter_blurred_f = gaussian_filter(blurred_f, sigma2) img = blurred_f + alpha * (blurred_f - filter_blurred_f) A set of default values `sigma1=3.0`, `sigma2=1.0` and `alpha=30.0` is provide for reference. Args: sigma1: sigma parameter for the first gaussian kernel. if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions. sigma2: sigma parameter for the second gaussian kernel. if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions. alpha: weight parameter to compute the final result. approx: discrete Gaussian kernel type, available options are "erf", "sampled", and "scalespace". see also :py:meth:`monai.networks.layers.GaussianFilter`. """ backend = [TransformBackends.TORCH] def __init__( self, sigma1: Union[Sequence[float], float] = 3.0, sigma2: Union[Sequence[float], float] = 1.0, alpha: float = 30.0, approx: str = "erf", ) -> None: self.sigma1 = sigma1 self.sigma2 = sigma2 self.alpha = alpha self.approx = approx def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: img_t: torch.Tensor img_t, *_ = convert_data_type(img, torch.Tensor, dtype=torch.float32) # type: ignore gf1, gf2 = ( GaussianFilter(img_t.ndim - 1, sigma, approx=self.approx).to(img_t.device) for sigma in (self.sigma1, self.sigma2) ) blurred_f = gf1(img_t.unsqueeze(0)) filter_blurred_f = gf2(blurred_f) out_t: torch.Tensor = (blurred_f + self.alpha * (blurred_f - filter_blurred_f)).squeeze(0) out, *_ = convert_data_type(out_t, type(img), device=img.device if isinstance(img, torch.Tensor) else None) return out class RandGaussianSharpen(RandomizableTransform): """ Sharpen images using the Gaussian Blur filter based on randomly selected `sigma1`, `sigma2` and `alpha`. The algorithm is :py:class:`monai.transforms.GaussianSharpen`. Args: sigma1_x: randomly select sigma value for the first spatial dimension of first gaussian kernel. sigma1_y: randomly select sigma value for the second spatial dimension(if have) of first gaussian kernel. sigma1_z: randomly select sigma value for the third spatial dimension(if have) of first gaussian kernel. sigma2_x: randomly select sigma value for the first spatial dimension of second gaussian kernel. if only 1 value `X` provided, it must be smaller than `sigma1_x` and randomly select from [X, sigma1_x]. sigma2_y: randomly select sigma value for the second spatial dimension(if have) of second gaussian kernel. if only 1 value `Y` provided, it must be smaller than `sigma1_y` and randomly select from [Y, sigma1_y]. sigma2_z: randomly select sigma value for the third spatial dimension(if have) of second gaussian kernel. if only 1 value `Z` provided, it must be smaller than `sigma1_z` and randomly select from [Z, sigma1_z]. alpha: randomly select weight parameter to compute the final result. approx: discrete Gaussian kernel type, available options are "erf", "sampled", and "scalespace". see also :py:meth:`monai.networks.layers.GaussianFilter`. prob: probability of Gaussian sharpen. """ backend = GaussianSharpen.backend def __init__( self, sigma1_x: Tuple[float, float] = (0.5, 1.0), sigma1_y: Tuple[float, float] = (0.5, 1.0), sigma1_z: Tuple[float, float] = (0.5, 1.0), sigma2_x: Union[Tuple[float, float], float] = 0.5, sigma2_y: Union[Tuple[float, float], float] = 0.5, sigma2_z: Union[Tuple[float, float], float] = 0.5, alpha: Tuple[float, float] = (10.0, 30.0), approx: str = "erf", prob: float = 0.1, ) -> None: RandomizableTransform.__init__(self, prob) self.sigma1_x = sigma1_x self.sigma1_y = sigma1_y self.sigma1_z = sigma1_z self.sigma2_x = sigma2_x self.sigma2_y = sigma2_y self.sigma2_z = sigma2_z self.alpha = alpha self.approx = approx self.x1: Optional[float] = None self.y1: Optional[float] = None self.z1: Optional[float] = None self.x2: Optional[float] = None self.y2: Optional[float] = None self.z2: Optional[float] = None self.a: Optional[float] = None def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self.x1 = self.R.uniform(low=self.sigma1_x[0], high=self.sigma1_x[1]) self.y1 = self.R.uniform(low=self.sigma1_y[0], high=self.sigma1_y[1]) self.z1 = self.R.uniform(low=self.sigma1_z[0], high=self.sigma1_z[1]) sigma2_x = (self.sigma2_x, self.x1) if not isinstance(self.sigma2_x, Iterable) else self.sigma2_x sigma2_y = (self.sigma2_y, self.y1) if not isinstance(self.sigma2_y, Iterable) else self.sigma2_y sigma2_z = (self.sigma2_z, self.z1) if not isinstance(self.sigma2_z, Iterable) else self.sigma2_z self.x2 = self.R.uniform(low=sigma2_x[0], high=sigma2_x[1]) self.y2 = self.R.uniform(low=sigma2_y[0], high=sigma2_y[1]) self.z2 = self.R.uniform(low=sigma2_z[0], high=sigma2_z[1]) self.a = self.R.uniform(low=self.alpha[0], high=self.alpha[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize() if not self._do_transform: return img if self.x2 is None or self.y2 is None or self.z2 is None or self.a is None: raise RuntimeError("please call the `randomize()` function first.") sigma1 = ensure_tuple_size(tup=(self.x1, self.y1, self.z1), dim=img.ndim - 1) sigma2 = ensure_tuple_size(tup=(self.x2, self.y2, self.z2), dim=img.ndim - 1) return GaussianSharpen(sigma1=sigma1, sigma2=sigma2, alpha=self.a, approx=self.approx)(img) class RandHistogramShift(RandomizableTransform): """ Apply random nonlinear transform to the image's intensity histogram. Args: num_control_points: number of control points governing the nonlinear intensity mapping. a smaller number of control points allows for larger intensity shifts. if two values provided, number of control points selecting from range (min_value, max_value). prob: probability of histogram shift. """ backend = [TransformBackends.NUMPY] def __init__(self, num_control_points: Union[Tuple[int, int], int] = 10, prob: float = 0.1) -> None: RandomizableTransform.__init__(self, prob) if isinstance(num_control_points, int): if num_control_points <= 2: raise ValueError("num_control_points should be greater than or equal to 3") self.num_control_points = (num_control_points, num_control_points) else: if len(num_control_points) != 2: raise ValueError("num_control points should be a number or a pair of numbers") if min(num_control_points) <= 2: raise ValueError("num_control_points should be greater than or equal to 3") self.num_control_points = (min(num_control_points), max(num_control_points)) self.reference_control_points: np.ndarray self.floating_control_points: np.ndarray def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None num_control_point = self.R.randint(self.num_control_points[0], self.num_control_points[1] + 1) self.reference_control_points = np.linspace(0, 1, num_control_point) self.floating_control_points = np.copy(self.reference_control_points) for i in range(1, num_control_point - 1): self.floating_control_points[i] = self.R.uniform( self.floating_control_points[i - 1], self.floating_control_points[i + 1] ) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize() if not self._do_transform: return img if self.reference_control_points is None or self.floating_control_points is None: raise RuntimeError("please call the `randomize()` function first.") img_np: np.ndarray img_np, *_ = convert_data_type(img, np.ndarray) # type: ignore img_min, img_max = img_np.min(), img_np.max() reference_control_points_scaled = self.reference_control_points * (img_max - img_min) + img_min floating_control_points_scaled = self.floating_control_points * (img_max - img_min) + img_min img_np = np.asarray( np.interp(img_np, reference_control_points_scaled, floating_control_points_scaled), dtype=img_np.dtype ) img, *_ = convert_to_dst_type(img_np, dst=img) return img class GibbsNoise(Transform, Fourier): """ The transform applies Gibbs noise to 2D/3D MRI images. Gibbs artifacts are one of the common type of type artifacts appearing in MRI scans. The transform is applied to all the channels in the data. For general information on Gibbs artifacts, please refer to: `An Image-based Approach to Understanding the Physics of MR Artifacts <https://pubs.rsna.org/doi/full/10.1148/rg.313105115>`_. `The AAPM/RSNA Physics Tutorial for Residents <https://pubs.rsna.org/doi/full/10.1148/radiographics.22.4.g02jl14949>`_ Args: alpha: Parametrizes the intensity of the Gibbs noise filter applied. Takes values in the interval [0,1] with alpha = 0 acting as the identity mapping. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] @deprecated_arg(name="as_tensor_output", since="0.6") def __init__(self, alpha: float = 0.1, as_tensor_output: bool = True) -> None: if alpha > 1 or alpha < 0: raise ValueError("alpha must take values in the interval [0, 1].") self.alpha = alpha def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: n_dims = len(img.shape[1:]) # FT k = self.shift_fourier(img, n_dims) # build and apply mask k = self._apply_mask(k) # map back img = self.inv_shift_fourier(k, n_dims) return img def _apply_mask(self, k: NdarrayOrTensor) -> NdarrayOrTensor: """Builds and applies a mask on the spatial dimensions. Args: k: k-space version of the image. Returns: masked version of the k-space image. """ shape = k.shape[1:] # compute masking radius and center r = (1 - self.alpha) * np.max(shape) * np.sqrt(2) / 2.0 center = (np.array(shape) - 1) / 2 # gives list w/ len==self.dim. Each dim gives coordinate in that dimension coords = np.ogrid[tuple(slice(0, i) for i in shape)] # need to subtract center coord and then square for Euc distance coords_from_center_sq = [(coord - c) ** 2 for coord, c in zip(coords, center)] dist_from_center = np.sqrt(sum(coords_from_center_sq)) mask = dist_from_center <= r # add channel dimension into mask mask = np.repeat(mask[None], k.shape[0], axis=0) if isinstance(k, torch.Tensor): mask, *_ = convert_data_type(mask, torch.Tensor, device=k.device) # apply binary mask k_masked: NdarrayOrTensor k_masked = k * mask return k_masked class RandGibbsNoise(RandomizableTransform): """ Naturalistic image augmentation via Gibbs artifacts. The transform randomly applies Gibbs noise to 2D/3D MRI images. Gibbs artifacts are one of the common type of type artifacts appearing in MRI scans. The transform is applied to all the channels in the data. For general information on Gibbs artifacts, please refer to: https://pubs.rsna.org/doi/full/10.1148/rg.313105115 https://pubs.rsna.org/doi/full/10.1148/radiographics.22.4.g02jl14949 Args: prob (float): probability of applying the transform. alpha (Sequence(float)): Parametrizes the intensity of the Gibbs noise filter applied. Takes values in the interval [0,1] with alpha = 0 acting as the identity mapping. If a length-2 list is given as [a,b] then the value of alpha will be sampled uniformly from the interval [a,b]. 0 <= a <= b <= 1. """ backend = GibbsNoise.backend @deprecated_arg(name="as_tensor_output", since="0.6") def __init__(self, prob: float = 0.1, alpha: Sequence[float] = (0.0, 1.0), as_tensor_output: bool = True) -> None: if len(alpha) != 2: raise ValueError("alpha length must be 2.") if alpha[1] > 1 or alpha[0] < 0: raise ValueError("alpha must take values in the interval [0, 1]") if alpha[0] > alpha[1]: raise ValueError("When alpha = [a,b] we need a < b.") self.alpha = alpha self.sampled_alpha = -1.0 # stores last alpha sampled by randomize() RandomizableTransform.__init__(self, prob=prob) def randomize(self, data: Any) -> None: """ (1) Set random variable to apply the transform. (2) Get alpha from uniform distribution. """ super().randomize(None) if not self._do_transform: return None self.sampled_alpha = self.R.uniform(self.alpha[0], self.alpha[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True): if randomize: # randomize application and possibly alpha self.randomize(None) if not self._do_transform: return img return GibbsNoise(self.sampled_alpha)(img) class KSpaceSpikeNoise(Transform, Fourier): """ Apply localized spikes in `k`-space at the given locations and intensities. Spike (Herringbone) artifact is a type of data acquisition artifact which may occur during MRI scans. For general information on spike artifacts, please refer to: `AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging <https://pubmed.ncbi.nlm.nih.gov/16009826>`_. `Body MRI artifacts in clinical practice: A physicist's and radiologist's perspective <https://doi.org/10.1002/jmri.24288>`_. Args: loc: spatial location for the spikes. For images with 3D spatial dimensions, the user can provide (C, X, Y, Z) to fix which channel C is affected, or (X, Y, Z) to place the same spike in all channels. For 2D cases, the user can provide (C, X, Y) or (X, Y). k_intensity: value for the log-intensity of the `k`-space version of the image. If one location is passed to ``loc`` or the channel is not specified, then this argument should receive a float. If ``loc`` is given a sequence of locations, then this argument should receive a sequence of intensities. This value should be tested as it is data-dependent. The default values are the 2.5 the mean of the log-intensity for each channel. Example: When working with 4D data, ``KSpaceSpikeNoise(loc = ((3,60,64,32), (64,60,32)), k_intensity = (13,14))`` will place a spike at `[3, 60, 64, 32]` with `log-intensity = 13`, and one spike per channel located respectively at `[: , 64, 60, 32]` with `log-intensity = 14`. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] @deprecated_arg(name="as_tensor_output", since="0.6") def __init__( self, loc: Union[Tuple, Sequence[Tuple]], k_intensity: Optional[Union[Sequence[float], float]] = None, as_tensor_output: bool = True, ): self.loc = ensure_tuple(loc) self.k_intensity = k_intensity # assert one-to-one relationship between factors and locations if isinstance(k_intensity, Sequence): if not isinstance(loc[0], Sequence): raise ValueError( "If a sequence is passed to k_intensity, then a sequence of locations must be passed to loc" ) if len(k_intensity) != len(loc): raise ValueError("There must be one intensity_factor value for each tuple of indices in loc.") if isinstance(self.loc[0], Sequence) and k_intensity is not None and not isinstance(self.k_intensity, Sequence): raise ValueError("There must be one intensity_factor value for each tuple of indices in loc.") def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor: """ Args: img: image with dimensions (C, H, W) or (C, H, W, D) """ # checking that tuples in loc are consistent with img size self._check_indices(img) if len(img.shape) < 3: raise RuntimeError("Image needs a channel direction.") if isinstance(self.loc[0], int) and len(img.shape) == 4 and len(self.loc) == 2: raise RuntimeError("Input images of dimension 4 need location tuple to be length 3 or 4") if isinstance(self.loc[0], Sequence) and len(img.shape) == 4 and min(map(len, self.loc)) == 2: raise RuntimeError("Input images of dimension 4 need location tuple to be length 3 or 4") n_dims = len(img.shape[1:]) # FT k = self.shift_fourier(img, n_dims) lib = np if isinstance(k, np.ndarray) else torch log_abs = lib.log(lib.abs(k) + 1e-10) # type: ignore phase = lib.angle(k) # type: ignore k_intensity = self.k_intensity # default log intensity if k_intensity is None: k_intensity = tuple(lib.mean(log_abs, axis=tuple(range(-n_dims, 0))) * 2.5) # type: ignore # highlight if isinstance(self.loc[0], Sequence): for idx, val in zip(self.loc, ensure_tuple(k_intensity)): self._set_spike(log_abs, idx, val) else: self._set_spike(log_abs, self.loc, k_intensity) # map back k = lib.exp(log_abs) * lib.exp(1j * phase) # type: ignore img, *_ = convert_to_dst_type(self.inv_shift_fourier(k, n_dims), dst=img) return img def _check_indices(self, img) -> None: """Helper method to check consistency of self.loc and input image. Raises assertion error if any index in loc is out of bounds.""" loc = list(self.loc) if not isinstance(loc[0], Sequence): loc = [loc] for i in range(len(loc)): if len(loc[i]) < len(img.shape): loc[i] = [0] + list(loc[i]) for i in range(len(img.shape)): if img.shape[i] <= max(x[i] for x in loc): raise ValueError( f"The index value at position {i} of one of the tuples in loc = {self.loc} is out of bounds for current image." ) def _set_spike(self, k: NdarrayOrTensor, idx: Tuple, val: Union[Sequence[float], float]): """ Helper function to introduce a given intensity at given location. Args: k: intensity array to alter. idx: index of location where to apply change. val: value of intensity to write in. """ if len(k.shape) == len(idx): k[idx] = val[idx[0]] if isinstance(val, Sequence) else val elif len(k.shape) == 4 and len(idx) == 3: k[:, idx[0], idx[1], idx[2]] = val # type: ignore elif len(k.shape) == 3 and len(idx) == 2: k[:, idx[0], idx[1]] = val # type: ignore class RandKSpaceSpikeNoise(RandomizableTransform, Fourier): """ Naturalistic data augmentation via spike artifacts. The transform applies localized spikes in `k`-space, and it is the random version of :py:class:`monai.transforms.KSpaceSpikeNoise`. Spike (Herringbone) artifact is a type of data acquisition artifact which may occur during MRI scans. For general information on spike artifacts, please refer to: `AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging <https://pubmed.ncbi.nlm.nih.gov/16009826>`_. `Body MRI artifacts in clinical practice: A physicist's and radiologist's perspective <https://doi.org/10.1002/jmri.24288>`_. Args: prob: probability of applying the transform, either on all channels at once, or channel-wise if ``channel_wise = True``. intensity_range: pass a tuple (a, b) to sample the log-intensity from the interval (a, b) uniformly for all channels. Or pass sequence of intervals ((a0, b0), (a1, b1), ...) to sample for each respective channel. In the second case, the number of 2-tuples must match the number of channels. Default ranges is `(0.95x, 1.10x)` where `x` is the mean log-intensity for each channel. channel_wise: treat each channel independently. True by default. Example: To apply `k`-space spikes randomly with probability 0.5, and log-intensity sampled from the interval [11, 12] for each channel independently, one uses ``RandKSpaceSpikeNoise(prob=0.5, intensity_range=(11, 12), channel_wise=True)`` """ backend = KSpaceSpikeNoise.backend @deprecated_arg(name="as_tensor_output", since="0.6") def __init__( self, prob: float = 0.1, intensity_range: Optional[Sequence[Union[Sequence[float], float]]] = None, channel_wise: bool = True, as_tensor_output: bool = True, ): self.intensity_range = intensity_range self.channel_wise = channel_wise self.sampled_k_intensity: List = [] self.sampled_locs: List[Tuple] = [] if intensity_range is not None and isinstance(intensity_range[0], Sequence) and not channel_wise: raise ValueError("When channel_wise = False, intensity_range should be a 2-tuple (low, high) or None.") super().__init__(prob) def __call__(self, img: NdarrayOrTensor, randomize: bool = True): """ Apply transform to `img`. Assumes data is in channel-first form. Args: img: image with dimensions (C, H, W) or (C, H, W, D) """ if ( self.intensity_range is not None and isinstance(self.intensity_range[0], Sequence) and len(self.intensity_range) != img.shape[0] ): raise RuntimeError( "If intensity_range is a sequence of sequences, then there must be one (low, high) tuple for each channel." ) self.sampled_k_intensity = [] self.sampled_locs = [] if randomize: intensity_range = self._make_sequence(img) self.randomize(img, intensity_range) if not self._do_transform: return img return KSpaceSpikeNoise(self.sampled_locs, self.sampled_k_intensity)(img) def randomize(self, img: NdarrayOrTensor, intensity_range: Sequence[Sequence[float]]) -> None: # type: ignore """ Helper method to sample both the location and intensity of the spikes. When not working channel wise (channel_wise=False) it use the random variable ``self._do_transform`` to decide whether to sample a location and intensity. When working channel wise, the method randomly samples a location and intensity for each channel depending on ``self._do_transform``. """ super().randomize(None) if not self._do_transform: return None if self.channel_wise: # randomizing per channel for i, chan in enumerate(img): self.sampled_locs.append((i,) + tuple(self.R.randint(0, k) for k in chan.shape)) self.sampled_k_intensity.append(self.R.uniform(intensity_range[i][0], intensity_range[i][1])) else: # working with all channels together spatial = tuple(self.R.randint(0, k) for k in img.shape[1:]) self.sampled_locs = [(i,) + spatial for i in range(img.shape[0])] if isinstance(intensity_range[0], Sequence): self.sampled_k_intensity = [self.R.uniform(p[0], p[1]) for p in intensity_range] else: self.sampled_k_intensity = [self.R.uniform(intensity_range[0], intensity_range[1])] * len(img) def _make_sequence(self, x: NdarrayOrTensor) -> Sequence[Sequence[float]]: """ Formats the sequence of intensities ranges to Sequence[Sequence[float]]. """ if self.intensity_range is None: # set default range if one not provided return self._set_default_range(x) if not isinstance(self.intensity_range[0], Sequence): return (ensure_tuple(self.intensity_range),) * x.shape[0] return ensure_tuple(self.intensity_range) def _set_default_range(self, img: NdarrayOrTensor) -> Sequence[Sequence[float]]: """ Sets default intensity ranges to be sampled. Args: img: image to transform. """ n_dims = len(img.shape[1:]) k = self.shift_fourier(img, n_dims) mod = torch if isinstance(k, torch.Tensor) else np log_abs = mod.log(mod.absolute(k) + 1e-10) # type: ignore shifted_means = mod.mean(log_abs, dim=tuple(range(-n_dims, 0))) * 2.5 # type: ignore return tuple((i * 0.95, i * 1.1) for i in shifted_means) class RandCoarseTransform(RandomizableTransform): """ Randomly select coarse regions in the image, then execute transform operations for the regions. It's the base class of all kinds of region transforms. Refer to papers: https://arxiv.org/abs/1708.04552 Args: holes: number of regions to dropout, if `max_holes` is not None, use this arg as the minimum number to randomly select the expected number of regions. spatial_size: spatial size of the regions to dropout, if `max_spatial_size` is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the `spatial_size` are non-positive values, the transform will use the corresponding components of input img size. For example, `spatial_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. max_holes: if not None, define the maximum number to randomly select the expected number of regions. max_spatial_size: if not None, define the maximum spatial size to randomly select size for every region. if some components of the `max_spatial_size` are non-positive values, the transform will use the corresponding components of input img size. For example, `max_spatial_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. prob: probability of applying the transform. """ backend = [TransformBackends.NUMPY] def __init__( self, holes: int, spatial_size: Union[Sequence[int], int], max_holes: Optional[int] = None, max_spatial_size: Optional[Union[Sequence[int], int]] = None, prob: float = 0.1, ) -> None: RandomizableTransform.__init__(self, prob) if holes < 1: raise ValueError("number of holes must be greater than 0.") self.holes = holes self.spatial_size = spatial_size self.max_holes = max_holes self.max_spatial_size = max_spatial_size self.hole_coords: List = [] def randomize(self, img_size: Sequence[int]) -> None: super().randomize(None) if not self._do_transform: return None size = fall_back_tuple(self.spatial_size, img_size) self.hole_coords = [] # clear previously computed coords num_holes = self.holes if self.max_holes is None else self.R.randint(self.holes, self.max_holes + 1) for _ in range(num_holes): if self.max_spatial_size is not None: max_size = fall_back_tuple(self.max_spatial_size, img_size) size = tuple(self.R.randint(low=size[i], high=max_size[i] + 1) for i in range(len(img_size))) valid_size = get_valid_patch_size(img_size, size) self.hole_coords.append((slice(None),) + get_random_patch(img_size, valid_size, self.R)) @abstractmethod def _transform_holes(self, img: np.ndarray) -> np.ndarray: """ Transform the randomly selected `self.hole_coords` in input images. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize(img.shape[1:]) if not self._do_transform: return img img_np: np.ndarray img_np, *_ = convert_data_type(img, np.ndarray) # type: ignore out = self._transform_holes(img=img_np) ret, *_ = convert_to_dst_type(src=out, dst=img) return ret class RandCoarseDropout(RandCoarseTransform): """ Randomly coarse dropout regions in the image, then fill in the rectangular regions with specified value. Or keep the rectangular regions and fill in the other areas with specified value. Refer to papers: https://arxiv.org/abs/1708.04552, https://arxiv.org/pdf/1604.07379 And other implementation: https://albumentations.ai/docs/api_reference/augmentations/transforms/ #albumentations.augmentations.transforms.CoarseDropout. Args: holes: number of regions to dropout, if `max_holes` is not None, use this arg as the minimum number to randomly select the expected number of regions. spatial_size: spatial size of the regions to dropout, if `max_spatial_size` is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the `spatial_size` are non-positive values, the transform will use the corresponding components of input img size. For example, `spatial_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. dropout_holes: if `True`, dropout the regions of holes and fill value, if `False`, keep the holes and dropout the outside and fill value. default to `True`. fill_value: target value to fill the dropout regions, if providing a number, will use it as constant value to fill all the regions. if providing a tuple for the `min` and `max`, will randomly select value for every pixel / voxel from the range `[min, max)`. if None, will compute the `min` and `max` value of input image then randomly select value to fill, default to None. max_holes: if not None, define the maximum number to randomly select the expected number of regions. max_spatial_size: if not None, define the maximum spatial size to randomly select size for every region. if some components of the `max_spatial_size` are non-positive values, the transform will use the corresponding components of input img size. For example, `max_spatial_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. prob: probability of applying the transform. """ def __init__( self, holes: int, spatial_size: Union[Sequence[int], int], dropout_holes: bool = True, fill_value: Optional[Union[Tuple[float, float], float]] = None, max_holes: Optional[int] = None, max_spatial_size: Optional[Union[Sequence[int], int]] = None, prob: float = 0.1, ) -> None: super().__init__( holes=holes, spatial_size=spatial_size, max_holes=max_holes, max_spatial_size=max_spatial_size, prob=prob ) self.dropout_holes = dropout_holes if isinstance(fill_value, (tuple, list)): if len(fill_value) != 2: raise ValueError("fill value should contain 2 numbers if providing the `min` and `max`.") self.fill_value = fill_value def _transform_holes(self, img: np.ndarray): """ Fill the randomly selected `self.hole_coords` in input images. Please note that we usually only use `self.R` in `randomize()` method, here is a special case. """ fill_value = (img.min(), img.max()) if self.fill_value is None else self.fill_value if self.dropout_holes: for h in self.hole_coords: if isinstance(fill_value, (tuple, list)): img[h] = self.R.uniform(fill_value[0], fill_value[1], size=img[h].shape) else: img[h] = fill_value ret = img else: if isinstance(fill_value, (tuple, list)): ret = self.R.uniform(fill_value[0], fill_value[1], size=img.shape).astype(img.dtype) else: ret = np.full_like(img, fill_value) for h in self.hole_coords: ret[h] = img[h] return ret class RandCoarseShuffle(RandCoarseTransform): """ Randomly select regions in the image, then shuffle the pixels within every region. It shuffles every channel separately. Refer to paper: Kang, Guoliang, et al. "Patchshuffle regularization." arXiv preprint arXiv:1707.07103 (2017). https://arxiv.org/abs/1707.07103 Args: holes: number of regions to dropout, if `max_holes` is not None, use this arg as the minimum number to randomly select the expected number of regions. spatial_size: spatial size of the regions to dropout, if `max_spatial_size` is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the `spatial_size` are non-positive values, the transform will use the corresponding components of input img size. For example, `spatial_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. max_holes: if not None, define the maximum number to randomly select the expected number of regions. max_spatial_size: if not None, define the maximum spatial size to randomly select size for every region. if some components of the `max_spatial_size` are non-positive values, the transform will use the corresponding components of input img size. For example, `max_spatial_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. prob: probability of applying the transform. """ def _transform_holes(self, img: np.ndarray): """ Shuffle the content of randomly selected `self.hole_coords` in input images. Please note that we usually only use `self.R` in `randomize()` method, here is a special case. """ for h in self.hole_coords: # shuffle every channel separately for i, c in enumerate(img[h]): patch_channel = c.flatten() self.R.shuffle(patch_channel) img[h][i] = patch_channel.reshape(c.shape) return img class HistogramNormalize(Transform): """ Apply the histogram normalization to input image. Refer to: https://github.com/facebookresearch/CovidPrognosis/blob/master/covidprognosis/data/transforms.py#L83. Args: num_bins: number of the bins to use in histogram, default to `256`. for more details: https://numpy.org/doc/stable/reference/generated/numpy.histogram.html. min: the min value to normalize input image, default to `0`. max: the max value to normalize input image, default to `255`. mask: if provided, must be ndarray of bools or 0s and 1s, and same shape as `image`. only points at which `mask==True` are used for the equalization. can also provide the mask along with img at runtime. dtype: data type of the output, default to `float32`. """ backend = [TransformBackends.NUMPY] def __init__( self, num_bins: int = 256, min: int = 0, max: int = 255, mask: Optional[NdarrayOrTensor] = None, dtype: DtypeLike = np.float32, ) -> None: self.num_bins = num_bins self.min = min self.max = max self.mask = mask self.dtype = dtype def __call__(self, img: NdarrayOrTensor, mask: Optional[NdarrayOrTensor] = None) -> np.ndarray: return equalize_hist( img=img, mask=mask if mask is not None else self.mask, num_bins=self.num_bins, min=self.min, max=self.max, dtype=self.dtype, )
40.719
131
0.632297
d97c22fa1c7fc02beec7148230126903c0db0ac7
794
py
Python
fixture/session.py
tarsic99/Python-training-
96da2df5f249f39370295504748b218247f2935c
[ "Apache-2.0" ]
null
null
null
fixture/session.py
tarsic99/Python-training-
96da2df5f249f39370295504748b218247f2935c
[ "Apache-2.0" ]
null
null
null
fixture/session.py
tarsic99/Python-training-
96da2df5f249f39370295504748b218247f2935c
[ "Apache-2.0" ]
null
null
null
class SessionHelper: def __init__(self, app): self.app = app def login(self, username, password): wd = self.app.wd self.app.open_home_page() wd.find_element_by_name("user").click() wd.find_element_by_name("user").clear() wd.find_element_by_name("user").send_keys(username) wd.find_element_by_name("pass").click() wd.find_element_by_name("pass").click() wd.find_element_by_name("pass").clear() wd.find_element_by_name("pass").send_keys(password) wd.find_element_by_xpath("//form[@id='LoginForm']/input[3]").click() # OR wd.find_element_by_css_selector("input[type=\"submit\"]").click() def logout(self): wd = self.app.wd wd.find_element_by_link_text("Logout").click()
36.090909
78
0.642317
a5e576e1fe44243e0b1cffc701441313ebf92f04
5,856
py
Python
system_permission/models.py
nianhuatech/bking-permission
1bee84e24d983274883da9741abcff48d546cc55
[ "Apache-2.0" ]
4
2021-05-19T02:28:01.000Z
2021-12-14T04:02:22.000Z
system_permission/models.py
nianhuatech/bking-permission
1bee84e24d983274883da9741abcff48d546cc55
[ "Apache-2.0" ]
null
null
null
system_permission/models.py
nianhuatech/bking-permission
1bee84e24d983274883da9741abcff48d546cc55
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # from django.db import models from django.db import models from common_utils.model_to_dicts import convert_obj_to_dicts,convert_objs_to_dicts """ 权限管理models.操作员模型 """ class BkingOperator(models.Model): gender = ( ('0', "正常"), ('1', "锁定"), ('2', "无效"), ) op_id=models.AutoField(u"操作员ID",primary_key=True) op_name=models.CharField(u"操作员名称",max_length=255) login_code=models.CharField(u"登录工号",max_length=255) op_password=models.CharField(u"工号密码",max_length=255) bill_class=models.CharField(u"业务类别",max_length=255,null=True,blank=True) photo=models.CharField(u"头像",max_length=255,null=True,blank=True) region_id=models.CharField(u"地市编码",max_length=255,null=True,blank=True) county_id=models.CharField(u"区县编码",max_length=255,null=True,blank=True) org_id=models.CharField(u"归属组织编码",max_length=255,null=True,blank=True) email=models.CharField(u"邮箱",max_length=255,null=True,blank=True) phone_id=models.CharField(u"手机号",max_length=255,null=True,blank=True) status=models.IntegerField(u"账号状态",choices=gender, default=0) create_date=models.DateTimeField(u"创建时间",auto_now_add=True) create_op=models.CharField(u"创建人",max_length=20) upd_date=models.DateTimeField(u"修改时间",auto_now = True) mark=models.CharField(u"备注",max_length=1000,null=True,blank=True) def __str__(self): return self.login_code+'-'+self.op_name class Meta: ordering = ["-create_date"] verbose_name = "操作员" verbose_name_plural = "操作员" """ 权限管理models.角色模型 """ class BkingRole(models.Model): gender = ( ('0', "有效"), ('1', "无效"), ) gender2 = ( ('0', "管理员角色"), ('1', "普通角色"), ) role_code=models.CharField(u"角色编码",max_length=255) role_name=models.CharField(u"角色名称",max_length=255) role_type=models.IntegerField(u"角色类型",choices=gender2,default=0) status=models.IntegerField(u"角色状态",choices=gender, default=0) create_date=models.DateTimeField(u"创建时间",auto_now_add=True) create_op=models.CharField(u"创建人",max_length=10) upd_date=models.DateTimeField(u"修改时间",auto_now = True) mark=models.CharField(u"备注",max_length=1000,null=True,blank=True) def __str__(self): return self.role_code+'-'+self.role_name class Meta: ordering = ["-create_date"] verbose_name = "角色" verbose_name_plural = "角色" """ 权限管理models.权限资源模型 """ class BkingPriv(models.Model): gender = ( ('0', "有效"), ('1', "无效"), ) priv_code=models.CharField(u"资源编码",max_length=255) parent_priv_code=models.CharField(u"父资源编码",max_length=255) priv_name=models.CharField(u"资源名称",max_length=255) priv_uri=models.CharField(u"资源URI",null=True,blank=True,max_length=255) priv_icon=models.CharField(u"资源图标",null=True,blank=True,max_length=255) priv_sort=models.CharField(u"资源序号",null=True,blank=True,max_length=255) priv_class=models.CharField(u"资源类别",max_length=255,default="SYSTEM_PERMISSION") priv_type=models.CharField(u"资源类型",max_length=255) status=models.IntegerField(u"资源状态",choices=gender, default=0) create_date=models.DateTimeField(u"创建时间",auto_now_add=True) create_op=models.CharField(u"创建人",max_length=10) upd_date=models.DateTimeField(u"修改时间",auto_now = True) mark=models.CharField(u"备注",max_length=1000,null=True,blank=True) def __str__(self): return self.priv_code+'-'+self.priv_name def getChildrens(self): try: return BkingPriv.objects.filter(status=0,parent_priv_code=self.priv_code) except: pass class Meta: ordering = ["-priv_code"] verbose_name = "权限资源" verbose_name_plural = "权限资源" """ 权限管理models.角色资源授权模型 """ class BkingRolePrivGrant(models.Model): gender = ( ('0', "有效"), ('1', "无效"), ) role_code=models.CharField(u"业务ID",max_length=255) priv_code=models.CharField(u"应用ID",max_length=255) create_op=models.CharField(u"创建人",max_length=10) create_date=models.DateTimeField(u"创建时间",auto_now_add=True) start_date=models.DateTimeField(u"授权开始时间",null=True,blank=True) end_date=models.DateTimeField(u"授权结束时间",null=True,blank=True) status=models.IntegerField(u"授权状态",choices=gender, default=0) def __str__(self): return self.role_code+'-'+self.priv_code class Meta: ordering = ["-create_date"] verbose_name = "角色资源授权" verbose_name_plural = "角色资源授权" """ 基础数据models.账号角色授权模型 """ class BkingOpRoleGrant(models.Model): gender = ( ('0', "有效"), ('1', "无效"), ) login_code=models.CharField(u"登陆工号",max_length=255) role_code=models.CharField(u"角色编码",max_length=255) create_op=models.CharField(u"创建人",max_length=10) start_date=models.DateTimeField(u"授权开始时间",null=True,blank=True) end_date=models.DateTimeField(u"授权结束时间",null=True,blank=True) status=models.IntegerField(u"授权状态",choices=gender, default=0) create_date=models.DateTimeField(u"创建时间",auto_now_add=True) mark=models.CharField(u"备注",max_length=1000,null=True,blank=True)
37.299363
115
0.695184
937a776f0cc2b610033d58ac0baa1df69744f3eb
352
py
Python
SemesterProject/app.py
CJP-12/CMPT-120L-910-20F
ec74b248ed1957ceabd3f96e176e0e244220a9cd
[ "MIT" ]
null
null
null
SemesterProject/app.py
CJP-12/CMPT-120L-910-20F
ec74b248ed1957ceabd3f96e176e0e244220a9cd
[ "MIT" ]
null
null
null
SemesterProject/app.py
CJP-12/CMPT-120L-910-20F
ec74b248ed1957ceabd3f96e176e0e244220a9cd
[ "MIT" ]
null
null
null
from flask import Flask, redirect, url_for app = Flask(__name__) @app.route("/") def home(): return "<h1>Welcome to my project!<h1>" @app.route("/<name>") def user(name): return f"Hello {name}!" @app.route("/hidden/") def admin(): return redirect(url_for("user", name= "<h1>Secret Page!<h1>")) if __name__ == "__main__": app.run()
18.526316
66
0.630682
d300952d0f0ee537b239a971e3793ecc8e2dc33f
1,384
py
Python
misc/extract_feats_roi.py
Dorothylyly/SAAT
c0113ada53ccb6611089c9b76f342e523b4560bc
[ "MIT" ]
71
2020-03-17T10:09:24.000Z
2022-03-12T01:11:30.000Z
misc/extract_feats_roi.py
Dorothylyly/SAAT
c0113ada53ccb6611089c9b76f342e523b4560bc
[ "MIT" ]
37
2020-06-18T18:09:16.000Z
2021-07-30T00:06:35.000Z
misc/extract_feats_roi.py
Dorothylyly/SAAT
c0113ada53ccb6611089c9b76f342e523b4560bc
[ "MIT" ]
18
2020-06-17T09:09:29.000Z
2021-08-11T09:34:46.000Z
import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from maskrcnn_benchmark.config import cfg from predictor import COCODemo import cv2 import os import h5py config_file = "../configs/caffe2/e2e_faster_rcnn_R_101_FPN_1x_caffe2.yaml" # update the config options with the config file cfg.merge_from_file(config_file) # manual override some options cfg.merge_from_list(["MODEL.DEVICE", "cuda:0"]) coco_demo = COCODemo( cfg, min_image_size=800, confidence_threshold=0.3, ) if __name__ == '__main__': frame_path = './Data/Frames' feat_path = './Data/roi_feat_fc' vid_names = os.listdir(frame_path) roi_feats_h5 = h5py.File(os.path.join(feat_path, 'roi_feats.h5'), 'w') roi_box_h5 = h5py.File(os.path.join(feat_path, 'roi_box.h5'), 'w') for cnt, vid in enumerate(vid_names): print('{}/({}, {})'.format(cnt, opt.start_idx, opt.end_idx)) curr_fr_path = os.path.join(frame_path, vid) for i in range(14, 15): img = cv2.imread(os.path.join(curr_fr_path, str(i)+'.jpg')) result, top_preds, top_roi_feats = coco_demo.run_on_opencv_image(img) if top_roi_feats.shape[0] > 0: roi_feats_h5.create_dataset(vid, data=top_roi_feats.numpy(), dtype='f4') roi_box_h5.create_dataset(vid, data=top_preds.bbox.numpy(), dtype='f4') print('done') roi_feats_h5.close() roi_box_h5.close()
30.086957
77
0.71026
82b927c82f112eab6286d021bb9d07a919a1ee01
1,017
py
Python
others/sub-array-median/median.py
tjeubaoit/algorithm
a1f2a30e0f736cc3d8b45ed845f724b9a4ed2e9a
[ "MIT" ]
null
null
null
others/sub-array-median/median.py
tjeubaoit/algorithm
a1f2a30e0f736cc3d8b45ed845f724b9a4ed2e9a
[ "MIT" ]
null
null
null
others/sub-array-median/median.py
tjeubaoit/algorithm
a1f2a30e0f736cc3d8b45ed845f724b9a4ed2e9a
[ "MIT" ]
null
null
null
import math def count_median(arr, i, j, n, orders): size = j + 1 - i med_pos = math.ceil(size/2) is_odd = size % 2 != 0 # print(med_pos) for k in range(0, n): if orders[k] == med_pos: break if is_odd: return k else: k2 = k while k2 < n: k2 += 1 if orders[k2] != orders[k]: break return (k+k2)/2 def sub_array_median(arr, n): for i in range(0, len(arr)): orders = [0] * n sub_arr = [] for j in range(i, len(arr)): sub_arr.append(arr[j]) for k in range(arr[j], n): orders[k] += 1 # print('orders', orders) med = count_median(arr, i, j, n, orders) print(sub_arr, med) def main(): sub_array_median([1, 4, 1, 2, 7, 5, 2], 10) # arr = [1, 4, 1, 2, 7, 5, 2] # orders = [0, 2, 4, 4, 5, 6, 6, 7, 7, 7] # count_median(arr, 0, 7, 10, orders) if __name__ == '__main__': main()
22.6
52
0.45821
f365a50231511787a4c5eac21350818b3309072f
6,642
py
Python
3algo/results_complilation/timely_sumup.py
allengrr/deadlock_project
933878077c45a7df04daa087407bb2620c064617
[ "MIT" ]
null
null
null
3algo/results_complilation/timely_sumup.py
allengrr/deadlock_project
933878077c45a7df04daa087407bb2620c064617
[ "MIT" ]
null
null
null
3algo/results_complilation/timely_sumup.py
allengrr/deadlock_project
933878077c45a7df04daa087407bb2620c064617
[ "MIT" ]
1
2021-03-21T17:54:26.000Z
2021-03-21T17:54:26.000Z
from data import timely as t import matplotlib.pyplot as plt import numpy as np from textwrap import wrap fig = plt.figure() ax1 = fig.add_subplot(411) ax2 = fig.add_subplot(412) ax3 = fig.add_subplot(413) ax4 = fig.add_subplot(414) width = 0.35 title = {2} algo_dict = {'RMS + Bankers': r'$ALG_1$', 'EDF + Bankers': r'$ALG_2$', 'RMS + wound wait': r'$ALG_3$', 'RMS + wait die': r'$ALG_4$', 'EDF + wound wait': r'$ALG_5$', 'EDF + wait die': r'$ALG_6$'} timely_dict = {2: {4: [t.timely4_2_4, t.timely5_2_4, t.timely6_2_4], 5: [t.timely4_2_5, t.timely5_2_5, t.timely6_2_5], 6: [t.timely4_2_6, t.timely5_2_6, t.timely6_2_6], 7: [t.timely4_2_7, t.timely5_2_7, t.timely6_2_7]}, 3: {4: [t.timely4_3_4, t.timely5_3_4, t.timely6_3_4], 5: [t.timely4_3_5, t.timely5_3_5, t.timely6_3_5], 6: [t.timely4_3_6, t.timely5_3_6, t.timely6_3_6], 7: [t.timely4_3_7, t.timely5_3_7, t.timely6_3_7]}, 7: {4: [t.timely4_7_4, t.timely5_7_4, t.timely6_7_4], 5: [t.timely4_7_5, t.timely5_7_5, t.timely6_7_5], 6: [t.timely4_7_6, t.timely5_7_6, t.timely6_7_6], 7: [t.timely4_7_7, t.timely5_7_7, t.timely6_7_7]}, 10: {4: [t.timely4_10_4, t.timely5_10_4, t.timely6_10_4], 5: [t.timely4_10_5, t.timely5_10_5, t.timely6_10_5], 6: [t.timely4_10_6, t.timely5_10_6, t.timely6_10_6], 7: [t.timely4_10_7, t.timely5_10_7, t.timely6_10_7]}, 12: {4: [t.timely4_12_4, t.timely5_12_4, t.timely6_12_4], 5: [t.timely4_12_5, t.timely5_12_5, t.timely6_12_5], 6: [t.timely4_12_6, t.timely5_12_6, t.timely6_12_6], 7: [t.timely4_12_7, t.timely5_12_7, t.timely6_12_7]}, 16: {4: [t.timely4_16_4, t.timely5_16_4, t.timely6_16_4], 5: [t.timely4_16_5, t.timely5_16_5, t.timely6_16_5], 6: [t.timely4_16_6, t.timely5_16_6, t.timely6_16_6], 7: [t.timely4_16_7, t.timely5_16_7, t.timely6_16_7]} } untimely_dict = {2: {4: [t.untimely4_2_4, t.untimely5_2_4, t.untimely6_2_4], 5: [t.untimely4_2_5, t.untimely5_2_5, t.untimely6_2_5], 6: [t.untimely4_2_6, t.untimely5_2_6, t.untimely6_2_6], 7: [t.untimely4_2_7, t.untimely5_2_7, t.untimely6_2_7]}, 3: {4: [t.untimely4_3_4, t.untimely5_3_4, t.untimely6_3_4], 5: [t.untimely4_3_5, t.untimely5_3_5, t.untimely6_3_5], 6: [t.untimely4_3_6, t.untimely5_3_6, t.untimely6_3_6], 7: [t.untimely4_3_7, t.untimely5_3_7, t.untimely6_3_7]}, 7: {4: [t.untimely4_7_4, t.untimely5_7_4, t.untimely6_7_4], 5: [t.untimely4_7_5, t.untimely5_7_5, t.untimely6_7_5], 6: [t.untimely4_7_6, t.untimely5_7_6, t.untimely6_7_6], 7: [t.untimely4_7_7, t.untimely5_7_7, t.untimely6_7_7]}, 10: {4: [t.untimely4_10_4, t.untimely5_10_4, t.untimely6_10_4], 5: [t.untimely4_10_5, t.untimely5_10_5, t.untimely6_10_5], 6: [t.untimely4_10_6, t.untimely5_10_6, t.untimely6_10_6], 7: [t.untimely4_10_7, t.untimely5_10_7, t.untimely6_10_7]}, 12: {4: [t.untimely4_12_4, t.untimely5_12_4, t.untimely6_12_4], 5: [t.untimely4_12_5, t.untimely5_12_5, t.untimely6_12_5], 6: [t.untimely4_12_6, t.untimely5_12_6, t.untimely6_12_6], 7: [t.untimely4_12_7, t.untimely5_12_7, t.untimely6_12_7]}, 16: {4: [t.untimely4_16_4, t.untimely5_16_4, t.untimely6_16_4], 5: [t.untimely4_16_5, t.untimely5_16_5, t.untimely6_16_5], 6: [t.untimely4_16_6, t.untimely5_16_6, t.untimely6_16_6], 7: [t.untimely4_16_7, t.untimely5_16_7, t.untimely6_16_7]} } def sum_data(data): result = {} for algo in data: for no in data[algo]: if no in result: result[no].append(sum(data[algo][no])) else: result[no] = [sum(data[algo][no])] return result def total_data(): data_tuple = format_data() result = {} for no in data_tuple[0]: for item_id in range(len(data_tuple[0][no])): if no in result: result[no].append(data_tuple[0][no][item_id] + data_tuple[1][no][item_id]) else: result[no] = [data_tuple[0][no][item_id] + data_tuple[1][no][item_id]] print(result) def format_data(): return sum_data(timely_dict), sum_data(untimely_dict) def percent(value, total): if value > 0: return round((value / total) * 100, 2) else: return 0 def histogram(timely, untimely, ax, no): ind = np.arange(len(timely)) p1 = ax.bar(ind, untimely, width, color='r', alpha=0.4) p2 = ax.bar(ind, timely, width, color='g', bottom=untimely, alpha=0.4) ax.set_xticks(ind) ax.set_xticklabels(algo_dict.values()) for i in timely: j = timely.index(i) total = i + untimely[j] ax.text(j, timely[j] + untimely[j], '{}%'.format(percent(i, total)), rotation=0, ha="center", va="center", bbox=dict(boxstyle="round", ec=(0., 0., 0.), fc=(0.7, 0.9, 1.), )) ax.text(j, untimely[j], '{}%'.format(percent(untimely[j], total)), rotation=0, ha="center", va="center", bbox=dict(boxstyle="round", ec=(1., 0.5, 0.5), fc=(1., 0.8, 0.8), )) ax.legend((p1[0], p2[0]), ('UP', 'TP'), prop={"size":16}) # ax.set_ylabel('\n'.join(wrap(f'Plot for {no} MECs', 8))).set_rotation(0) ax.set_ylabel("No of Processes", fontsize=15) for label in ax.get_xticklabels(): label.set_fontsize(16) ax.xaxis.set_tick_params(labelsize=16) #ax.set_ylabel('\n'.join(wrap(f'{no} MECs', 8)), rotation=0, fontsize=15, labelpad=30) axx = ax.twinx() axx.set_yticklabels([]) axx.set_yticks([]) axx.set_ylabel('\n'.join(wrap(f'{no} MECs', 8)), rotation=0, fontsize=15, labelpad=30) def plot_av_times(): axes = {ax1: 4, ax2: 5, ax3: 6, ax4: 7} _data = format_data() # print(_data) for i in axes: histogram(_data[0][axes[i]], _data[1][axes[i]], i, axes[i]) #fig.suptitle('MEC Execution ratio Deadlock Experiment') plt.show() total_data() plot_av_times()
44.878378
110
0.566546
9ab0cf2cce40e17130df315b1ca12a8d754a6d99
3,747
py
Python
qemu-4.2.0/scripts/tracetool/format/log_stap.py
MisaZhu/qemu_raspi
50d71ce87bb39470e6725f7428e4b6b9e1ed0359
[ "Apache-2.0" ]
null
null
null
qemu-4.2.0/scripts/tracetool/format/log_stap.py
MisaZhu/qemu_raspi
50d71ce87bb39470e6725f7428e4b6b9e1ed0359
[ "Apache-2.0" ]
null
null
null
qemu-4.2.0/scripts/tracetool/format/log_stap.py
MisaZhu/qemu_raspi
50d71ce87bb39470e6725f7428e4b6b9e1ed0359
[ "Apache-2.0" ]
1
2020-05-25T09:49:33.000Z
2020-05-25T09:49:33.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Generate .stp file that printfs log messages (DTrace with SystemTAP only). """ __author__ = "Daniel P. Berrange <berrange@redhat.com>" __copyright__ = "Copyright (C) 2014-2019, Red Hat, Inc." __license__ = "GPL version 2 or (at your option) any later version" __maintainer__ = "Daniel Berrange" __email__ = "berrange@redhat.com" import re from tracetool import out from tracetool.backend.dtrace import binary, probeprefix from tracetool.backend.simple import is_string from tracetool.format.stap import stap_escape def global_var_name(name): return probeprefix().replace(".", "_") + "_" + name STATE_SKIP = 0 STATE_LITERAL = 1 STATE_MACRO = 2 def c_macro_to_format(macro): if macro.startswith("PRI"): return macro[3] raise Exception("Unhandled macro '%s'" % macro) def c_fmt_to_stap(fmt): state = 0 bits = [] literal = "" macro = "" escape = 0; for i in range(len(fmt)): if fmt[i] == '\\': if escape: escape = 0 else: escape = 1 if state != STATE_LITERAL: raise Exception("Unexpected escape outside string literal") literal = literal + fmt[i] elif fmt[i] == '"' and not escape: if state == STATE_LITERAL: state = STATE_SKIP bits.append(literal) literal = "" else: if state == STATE_MACRO: bits.append(c_macro_to_format(macro)) state = STATE_LITERAL elif fmt[i] == ' ' or fmt[i] == '\t': if state == STATE_MACRO: bits.append(c_macro_to_format(macro)) macro = "" state = STATE_SKIP elif state == STATE_LITERAL: literal = literal + fmt[i] else: escape = 0 if state == STATE_SKIP: state = STATE_MACRO if state == STATE_LITERAL: literal = literal + fmt[i] else: macro = macro + fmt[i] if state == STATE_MACRO: bits.append(c_macro_to_format(macro)) elif state == STATE_LITERAL: bits.append(literal) fmt = re.sub("%(\d*)z(x|u|d)", "%\\1\\2", "".join(bits)) return fmt def generate(events, backend, group): out('/* This file is autogenerated by tracetool, do not edit. */', '') for event_id, e in enumerate(events): if 'disable' in e.properties: continue out('probe %(probeprefix)s.log.%(name)s = %(probeprefix)s.%(name)s ?', '{', probeprefix=probeprefix(), name=e.name) # Get references to userspace strings for type_, name in e.args: name = stap_escape(name) if is_string(type_): out(' try {', ' arg%(name)s_str = %(name)s ? ' + 'user_string_n(%(name)s, 512) : "<null>"', ' } catch {}', name=name) # Determine systemtap's view of variable names fields = ["pid()", "gettimeofday_ns()"] for type_, name in e.args: name = stap_escape(name) if is_string(type_): fields.append("arg" + name + "_str") else: fields.append(name) # Emit the entire record in a single SystemTap printf() arg_str = ', '.join(arg for arg in fields) fmt_str = "%d@%d " + e.name + " " + c_fmt_to_stap(e.fmt) + "\\n" out(' printf("%(fmt_str)s", %(arg_str)s)', fmt_str=fmt_str, arg_str=arg_str) out('}') out()
29.976
78
0.526021
bec6966e7cb02cd8553d87ed49fded3fdc7ab65e
4,537
py
Python
tensorflow/python/autograph/utils/testing.py
EricLi404/tensorflow
23759800d89f7b5362c338d9a3fd72a6810c3e22
[ "Apache-2.0" ]
27
2019-01-02T09:36:57.000Z
2022-02-21T06:41:51.000Z
tensorflow/python/autograph/utils/testing.py
EricLi404/tensorflow
23759800d89f7b5362c338d9a3fd72a6810c3e22
[ "Apache-2.0" ]
3
2019-01-23T11:01:22.000Z
2022-02-24T02:53:31.000Z
tensorflow/python/autograph/utils/testing.py
EricLi404/tensorflow
23759800d89f7b5362c338d9a3fd72a6810c3e22
[ "Apache-2.0" ]
11
2019-03-02T12:42:23.000Z
2021-02-04T12:20:10.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Testing utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import types import unittest from tensorflow.python.eager import def_function from tensorflow.python.framework import op_callbacks from tensorflow.python.framework import ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class AutoGraphTestCase(test.TestCase): """Tests specialized for AutoGraph, which run as tf.functions. These tests use a staged programming-like approach: most of the test code runs as-is inside a tf.function, but the assertions are lifted outside the function, and run with the corresponding function values instead. For example, the test: def test_foo(self): baz = bar(); self.assertEqual(baz, value) is equivalent to writing: def test_foo(self): @tf.function def test_fn(): baz = bar(); return baz, value baz_actual, value_actual = test_fn() self.assertEqual(baz_actual, value_actual) Only assertions that require evaluation outside the function are lifted outside the function scope. The rest execute inline, at function creation time. """ def __new__(cls, *args): obj = super().__new__(cls) for name in cls.__dict__: if not name.startswith(unittest.TestLoader.testMethodPrefix): continue m = getattr(obj, name) if callable(m): wrapper = obj._run_as_tf_function(m) setattr(obj, name, types.MethodType(wrapper, obj)) return obj def _op_callback( self, op_type, inputs, attrs, outputs, op_name=None, graph=None): self.trace_log.append(op_type) def _run_as_tf_function(self, fn): def wrapper(self): @def_function.function(autograph=False) # Testing autograph itself. def fn_wrapper(): self.assertions = [] self.graph_assertions = [] self.trace_log = [] fn() targets = [args for _, args in self.assertions] return targets tensors = fn_wrapper() for assertion in self.graph_assertions: assertion(fn_wrapper.get_concrete_function().graph) actuals = self.evaluate(tensors) for (assertion, _), values in zip(self.assertions, actuals): assertion(*values) return wrapper def variable(self, name, value, dtype): with ops.init_scope(): if name not in self.variables: self.variables[name] = variables.Variable(value, dtype=dtype) self.evaluate(self.variables[name].initializer) return self.variables[name] def setUp(self): super().setUp() self.variables = {} self.trace_log = [] op_callbacks.add_op_callback(self._op_callback) def tearDown(self): op_callbacks.remove_op_callback(self._op_callback) self.trace_log = None self.variables = None super().tearDown() def assertGraphContains(self, op_regex, n): def assertion(graph): matches = [] for node in graph.as_graph_def().node: if re.match(op_regex, node.name): matches.append(node) for fn in graph.as_graph_def().library.function: for node_def in fn.node_def: if re.match(op_regex, node_def.name): matches.append(node_def) self.assertLen(matches, n) self.graph_assertions.append(assertion) def assertOpCreated(self, op_type): self.assertIn(op_type, self.trace_log) def assertOpsNotCreated(self, op_types): self.assertEmpty(set(op_types) & set(self.trace_log)) def assertNoOpsCreated(self): self.assertEmpty(self.trace_log) def assertEqual(self, *args): self.assertions.append((super().assertEqual, list(args))) def assertDictEqual(self, *args): self.assertions.append((super().assertDictEqual, list(args)))
30.655405
80
0.689222
d6cb2a0c182c362ec2b62830dca406624cffba3d
78
py
Python
agent/python/perper/application/__init__.py
aph5nt/perper
ca3d63e0d0dd21b950f4ba038f16fd8e3b1ab566
[ "MIT" ]
null
null
null
agent/python/perper/application/__init__.py
aph5nt/perper
ca3d63e0d0dd21b950f4ba038f16fd8e3b1ab566
[ "MIT" ]
null
null
null
agent/python/perper/application/__init__.py
aph5nt/perper
ca3d63e0d0dd21b950f4ba038f16fd8e3b1ab566
[ "MIT" ]
null
null
null
from .startup import run, run_notebook from .context import register_delegate
26
38
0.846154
ea3d33d995e67df3bd1f6e450123c15bf432870c
3,685
py
Python
plugins/BS440mqtt.py
meggiman/BS440
d9d195c983f1a12fed3d95e91a24638c2eddb04e
[ "MIT" ]
null
null
null
plugins/BS440mqtt.py
meggiman/BS440
d9d195c983f1a12fed3d95e91a24638c2eddb04e
[ "MIT" ]
null
null
null
plugins/BS440mqtt.py
meggiman/BS440
d9d195c983f1a12fed3d95e91a24638c2eddb04e
[ "MIT" ]
null
null
null
# coding: utf-8 # ----------------------------------------------------------------------------------------- # BS440 plugin BS440mqtt.py # About: # Send collected data via MQTT (e.g. to Home Assistant) # # The corresponding configuration for Home Assistant looks like: # sensor: # - platform: mqtt # state_topic: "bs440/person1/" # name: "Weight Person 1" # unit_of_measurement: "kg" # value_template: '{{ value_json.weight }}' # - platform: mqtt # state_topic: "bs440/person1/" # name: "Body Water Person 1" # unit_of_measurement: "%" # value_template: '{{ value_json.tbw }}' # - platform: mqtt # state_topic: "bs440/person1/" # name: "Body fat Person 1" # unit_of_measurement: "%" # value_template: '{{ value_json.fat }}' # - platform: mqtt # state_topic: "bs440/person1/" # name: "Muscle Mass Person 1" # unit_of_measurement: "%" # value_template: '{{ value_json.muscle }}' # - platform: mqtt # state_topic: "bs440/person1/" # name: "Bone Mass Person 1" # unit_of_measurement: "kg" # value_template: '{{ value_json.bone }}' import logging import os import json import ssl from configparser import ConfigParser import paho.mqtt.publish as publish __author__ = 'jinnerbichler' __email__ = "j.innerbichler@gmail.com" __license__ = "EUPL-1.1" __version__ = "0.0.1" __status__ = "Development" # ------------------------------------------------------------------------------------------ logger = logging.getLogger(__name__) class Plugin: def __init__(self): """ Reads config file """ logger.info('Initialising plugin: ' + __name__) # read ini file from same location as plugin resides, named [pluginname].ini configfile = os.path.dirname(os.path.realpath(__file__)) + '/' + __name__ + '.ini' plugin_config = ConfigParser() plugin_config.read(configfile) logger.info('Read config from: ' + configfile) # create configuration arguments for MQTT client mqtt_config = dict(plugin_config.items('MQTT')) self.mqtt_args = {'client_id': mqtt_config['client_id'], 'hostname': mqtt_config['hostname'], 'port': int(mqtt_config['port']), 'retain': True} tls = {} if 'tls_cert' in mqtt_config: tls['ca_certs'] = mqtt_config['tls_cert'] if 'tls_version' in mqtt_config: tls['tls_version'] = ssl.__getattribute__(mqtt_config['tls_version']) if len(tls) > 0: self.mqtt_args['tls'] = tls if 'username' in mqtt_config: self.mqtt_args['auth'] = {'username': mqtt_config['username'], 'password': mqtt_config['password']} publish.single(topic='bs440/init/', payload='BS440 initialised', **self.mqtt_args) def execute(self, globalconfig, persondata, weightdata, bodydata): """ Publishes weight and body data """ if not persondata or not weightdata or not bodydata: logger.error('Invalid data...') return person_id = str(persondata[0]['person']) # construct payload model = globalconfig.get('Scale', 'device_model') payload = dict(weightdata[0]) payload.update(bodydata[0]) payload.update(persondata[0]) payload['model'] = model logger.info('Publishing data of person {}'.format(person_id)) publish.single(topic='bs440/person{}/'.format(person_id), payload=json.dumps(payload), **self.mqtt_args)
34.439252
92
0.573406
f311876acdeb3cd09cf748547850f28442d9d614
112,135
py
Python
lib-python/3/test/test_asyncio/test_tasks.py
hollmmax/zig
d80baa5a5fcbc82b3e2294b398edc20a98737a52
[ "MIT" ]
null
null
null
lib-python/3/test/test_asyncio/test_tasks.py
hollmmax/zig
d80baa5a5fcbc82b3e2294b398edc20a98737a52
[ "MIT" ]
null
null
null
lib-python/3/test/test_asyncio/test_tasks.py
hollmmax/zig
d80baa5a5fcbc82b3e2294b398edc20a98737a52
[ "MIT" ]
null
null
null
"""Tests for tasks.py.""" import collections import contextlib import contextvars import functools import gc import io import random import re import sys import types import textwrap import traceback import unittest import weakref from unittest import mock from types import GenericAlias import asyncio from asyncio import coroutines from asyncio import futures from asyncio import tasks from test.test_asyncio import utils as test_utils from test import support from test.support.script_helper import assert_python_ok def tearDownModule(): asyncio.set_event_loop_policy(None) async def coroutine_function(): pass @contextlib.contextmanager def set_coroutine_debug(enabled): coroutines = asyncio.coroutines old_debug = coroutines._DEBUG try: coroutines._DEBUG = enabled yield finally: coroutines._DEBUG = old_debug def format_coroutine(qualname, state, src, source_traceback, generator=False): if generator: state = '%s' % state else: state = '%s, defined' % state if source_traceback is not None: frame = source_traceback[-1] return ('coro=<%s() %s at %s> created at %s:%s' % (qualname, state, src, frame[0], frame[1])) else: return 'coro=<%s() %s at %s>' % (qualname, state, src) def get_innermost_context(exc): """ Return information about the innermost exception context in the chain. """ depth = 0 while True: context = exc.__context__ if context is None: break exc = context depth += 1 return (type(exc), exc.args, depth) class Dummy: def __repr__(self): return '<Dummy>' def __call__(self, *args): pass class CoroLikeObject: def send(self, v): raise StopIteration(42) def throw(self, *exc): pass def close(self): pass def __await__(self): return self class BaseTaskTests: Task = None Future = None def new_task(self, loop, coro, name='TestTask'): return self.__class__.Task(coro, loop=loop, name=name) def new_future(self, loop): return self.__class__.Future(loop=loop) def setUp(self): super().setUp() self.loop = self.new_test_loop() self.loop.set_task_factory(self.new_task) self.loop.create_future = lambda: self.new_future(self.loop) def test_generic_alias(self): task = self.__class__.Task[str] self.assertEqual(task.__args__, (str,)) self.assertIsInstance(task, GenericAlias) def test_task_cancel_message_getter(self): async def coro(): pass t = self.new_task(self.loop, coro()) self.assertTrue(hasattr(t, '_cancel_message')) self.assertEqual(t._cancel_message, None) t.cancel('my message') self.assertEqual(t._cancel_message, 'my message') with self.assertRaises(asyncio.CancelledError): self.loop.run_until_complete(t) def test_task_cancel_message_setter(self): async def coro(): pass t = self.new_task(self.loop, coro()) t.cancel('my message') t._cancel_message = 'my new message' self.assertEqual(t._cancel_message, 'my new message') with self.assertRaises(asyncio.CancelledError): self.loop.run_until_complete(t) def test_task_del_collect(self): class Evil: def __del__(self): gc.collect() async def run(): return Evil() self.loop.run_until_complete( asyncio.gather(*[ self.new_task(self.loop, run()) for _ in range(100) ])) def test_other_loop_future(self): other_loop = asyncio.new_event_loop() fut = self.new_future(other_loop) async def run(fut): await fut try: with self.assertRaisesRegex(RuntimeError, r'Task .* got Future .* attached'): self.loop.run_until_complete(run(fut)) finally: other_loop.close() def test_task_awaits_on_itself(self): async def test(): await task task = asyncio.ensure_future(test(), loop=self.loop) with self.assertRaisesRegex(RuntimeError, 'Task cannot await on itself'): self.loop.run_until_complete(task) def test_task_class(self): async def notmuch(): return 'ok' t = self.new_task(self.loop, notmuch()) self.loop.run_until_complete(t) self.assertTrue(t.done()) self.assertEqual(t.result(), 'ok') self.assertIs(t._loop, self.loop) self.assertIs(t.get_loop(), self.loop) loop = asyncio.new_event_loop() self.set_event_loop(loop) t = self.new_task(loop, notmuch()) self.assertIs(t._loop, loop) loop.run_until_complete(t) loop.close() def test_ensure_future_coroutine(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def notmuch(): return 'ok' t = asyncio.ensure_future(notmuch(), loop=self.loop) self.loop.run_until_complete(t) self.assertTrue(t.done()) self.assertEqual(t.result(), 'ok') self.assertIs(t._loop, self.loop) loop = asyncio.new_event_loop() self.set_event_loop(loop) t = asyncio.ensure_future(notmuch(), loop=loop) self.assertIs(t._loop, loop) loop.run_until_complete(t) loop.close() def test_ensure_future_future(self): f_orig = self.new_future(self.loop) f_orig.set_result('ko') f = asyncio.ensure_future(f_orig) self.loop.run_until_complete(f) self.assertTrue(f.done()) self.assertEqual(f.result(), 'ko') self.assertIs(f, f_orig) loop = asyncio.new_event_loop() self.set_event_loop(loop) with self.assertRaises(ValueError): f = asyncio.ensure_future(f_orig, loop=loop) loop.close() f = asyncio.ensure_future(f_orig, loop=self.loop) self.assertIs(f, f_orig) def test_ensure_future_task(self): async def notmuch(): return 'ok' t_orig = self.new_task(self.loop, notmuch()) t = asyncio.ensure_future(t_orig) self.loop.run_until_complete(t) self.assertTrue(t.done()) self.assertEqual(t.result(), 'ok') self.assertIs(t, t_orig) loop = asyncio.new_event_loop() self.set_event_loop(loop) with self.assertRaises(ValueError): t = asyncio.ensure_future(t_orig, loop=loop) loop.close() t = asyncio.ensure_future(t_orig, loop=self.loop) self.assertIs(t, t_orig) def test_ensure_future_awaitable(self): class Aw: def __init__(self, coro): self.coro = coro def __await__(self): return (yield from self.coro) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(): return 'ok' loop = asyncio.new_event_loop() self.set_event_loop(loop) fut = asyncio.ensure_future(Aw(coro()), loop=loop) loop.run_until_complete(fut) assert fut.result() == 'ok' def test_ensure_future_neither(self): with self.assertRaises(TypeError): asyncio.ensure_future('ok') def test_ensure_future_error_msg(self): loop = asyncio.new_event_loop() f = self.new_future(self.loop) with self.assertRaisesRegex(ValueError, 'The future belongs to a ' 'different loop than the one specified as ' 'the loop argument'): asyncio.ensure_future(f, loop=loop) loop.close() def test_get_stack(self): T = None async def foo(): await bar() async def bar(): # test get_stack() f = T.get_stack(limit=1) try: self.assertEqual(f[0].f_code.co_name, 'foo') finally: f = None # test print_stack() file = io.StringIO() T.print_stack(limit=1, file=file) file.seek(0) tb = file.read() self.assertRegex(tb, r'foo\(\) running') async def runner(): nonlocal T T = asyncio.ensure_future(foo(), loop=self.loop) await T self.loop.run_until_complete(runner()) def test_task_repr(self): self.loop.set_debug(False) async def notmuch(): return 'abc' # test coroutine function self.assertEqual(notmuch.__name__, 'notmuch') self.assertRegex(notmuch.__qualname__, r'\w+.test_task_repr.<locals>.notmuch') self.assertEqual(notmuch.__module__, __name__) filename, lineno = test_utils.get_function_source(notmuch) src = "%s:%s" % (filename, lineno) # test coroutine object gen = notmuch() coro_qualname = 'BaseTaskTests.test_task_repr.<locals>.notmuch' self.assertEqual(gen.__name__, 'notmuch') self.assertEqual(gen.__qualname__, coro_qualname) # test pending Task t = self.new_task(self.loop, gen) t.add_done_callback(Dummy()) coro = format_coroutine(coro_qualname, 'running', src, t._source_traceback, generator=True) self.assertEqual(repr(t), "<Task pending name='TestTask' %s cb=[<Dummy>()]>" % coro) # test cancelling Task t.cancel() # Does not take immediate effect! self.assertEqual(repr(t), "<Task cancelling name='TestTask' %s cb=[<Dummy>()]>" % coro) # test cancelled Task self.assertRaises(asyncio.CancelledError, self.loop.run_until_complete, t) coro = format_coroutine(coro_qualname, 'done', src, t._source_traceback) self.assertEqual(repr(t), "<Task cancelled name='TestTask' %s>" % coro) # test finished Task t = self.new_task(self.loop, notmuch()) self.loop.run_until_complete(t) coro = format_coroutine(coro_qualname, 'done', src, t._source_traceback) self.assertEqual(repr(t), "<Task finished name='TestTask' %s result='abc'>" % coro) def test_task_repr_autogenerated(self): async def notmuch(): return 123 t1 = self.new_task(self.loop, notmuch(), None) t2 = self.new_task(self.loop, notmuch(), None) self.assertNotEqual(repr(t1), repr(t2)) match1 = re.match(r"^<Task pending name='Task-(\d+)'", repr(t1)) self.assertIsNotNone(match1) match2 = re.match(r"^<Task pending name='Task-(\d+)'", repr(t2)) self.assertIsNotNone(match2) # Autogenerated task names should have monotonically increasing numbers self.assertLess(int(match1.group(1)), int(match2.group(1))) self.loop.run_until_complete(t1) self.loop.run_until_complete(t2) def test_task_repr_name_not_str(self): async def notmuch(): return 123 t = self.new_task(self.loop, notmuch()) t.set_name({6}) self.assertEqual(t.get_name(), '{6}') self.loop.run_until_complete(t) def test_task_repr_coro_decorator(self): self.loop.set_debug(False) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def notmuch(): # notmuch() function doesn't use yield from: it will be wrapped by # @coroutine decorator return 123 # test coroutine function self.assertEqual(notmuch.__name__, 'notmuch') self.assertRegex(notmuch.__qualname__, r'\w+.test_task_repr_coro_decorator' r'\.<locals>\.notmuch') self.assertEqual(notmuch.__module__, __name__) # test coroutine object gen = notmuch() # On Python >= 3.5, generators now inherit the name of the # function, as expected, and have a qualified name (__qualname__ # attribute). coro_name = 'notmuch' coro_qualname = ('BaseTaskTests.test_task_repr_coro_decorator' '.<locals>.notmuch') self.assertEqual(gen.__name__, coro_name) self.assertEqual(gen.__qualname__, coro_qualname) # test repr(CoroWrapper) if coroutines._DEBUG: # format the coroutine object if coroutines._DEBUG: filename, lineno = test_utils.get_function_source(notmuch) frame = gen._source_traceback[-1] coro = ('%s() running, defined at %s:%s, created at %s:%s' % (coro_qualname, filename, lineno, frame[0], frame[1])) else: code = gen.gi_code coro = ('%s() running at %s:%s' % (coro_qualname, code.co_filename, code.co_firstlineno)) self.assertEqual(repr(gen), '<CoroWrapper %s>' % coro) # test pending Task t = self.new_task(self.loop, gen) t.add_done_callback(Dummy()) # format the coroutine object if coroutines._DEBUG: src = '%s:%s' % test_utils.get_function_source(notmuch) else: code = gen.gi_code src = '%s:%s' % (code.co_filename, code.co_firstlineno) coro = format_coroutine(coro_qualname, 'running', src, t._source_traceback, generator=not coroutines._DEBUG) self.assertEqual(repr(t), "<Task pending name='TestTask' %s cb=[<Dummy>()]>" % coro) self.loop.run_until_complete(t) def test_task_repr_wait_for(self): self.loop.set_debug(False) async def wait_for(fut): return await fut fut = self.new_future(self.loop) task = self.new_task(self.loop, wait_for(fut)) test_utils.run_briefly(self.loop) self.assertRegex(repr(task), '<Task .* wait_for=%s>' % re.escape(repr(fut))) fut.set_result(None) self.loop.run_until_complete(task) def test_task_repr_partial_corowrapper(self): # Issue #222: repr(CoroWrapper) must not fail in debug mode if the # coroutine is a partial function with set_coroutine_debug(True): self.loop.set_debug(True) async def func(x, y): await asyncio.sleep(0) with self.assertWarns(DeprecationWarning): partial_func = asyncio.coroutine(functools.partial(func, 1)) task = self.loop.create_task(partial_func(2)) # make warnings quiet task._log_destroy_pending = False self.addCleanup(task._coro.close) coro_repr = repr(task._coro) expected = ( r'<coroutine object \w+\.test_task_repr_partial_corowrapper' r'\.<locals>\.func at' ) self.assertRegex(coro_repr, expected) def test_task_basics(self): async def outer(): a = await inner1() b = await inner2() return a+b async def inner1(): return 42 async def inner2(): return 1000 t = outer() self.assertEqual(self.loop.run_until_complete(t), 1042) def test_exception_chaining_after_await(self): # Test that when awaiting on a task when an exception is already # active, if the task raises an exception it will be chained # with the original. loop = asyncio.new_event_loop() self.set_event_loop(loop) async def raise_error(): raise ValueError async def run(): try: raise KeyError(3) except Exception as exc: task = self.new_task(loop, raise_error()) try: await task except Exception as exc: self.assertEqual(type(exc), ValueError) chained = exc.__context__ self.assertEqual((type(chained), chained.args), (KeyError, (3,))) try: task = self.new_task(loop, run()) loop.run_until_complete(task) finally: loop.close() def test_exception_chaining_after_await_with_context_cycle(self): # Check trying to create an exception context cycle: # https://bugs.python.org/issue40696 has_cycle = None loop = asyncio.new_event_loop() self.set_event_loop(loop) async def process_exc(exc): raise exc async def run(): nonlocal has_cycle try: raise KeyError('a') except Exception as exc: task = self.new_task(loop, process_exc(exc)) try: await task except BaseException as exc: has_cycle = (exc is exc.__context__) # Prevent a hang if has_cycle is True. exc.__context__ = None try: task = self.new_task(loop, run()) loop.run_until_complete(task) finally: loop.close() # This also distinguishes from the initial has_cycle=None. self.assertEqual(has_cycle, False) def test_cancel(self): def gen(): when = yield self.assertAlmostEqual(10.0, when) yield 0 loop = self.new_test_loop(gen) async def task(): await asyncio.sleep(10.0) return 12 t = self.new_task(loop, task()) loop.call_soon(t.cancel) with self.assertRaises(asyncio.CancelledError): loop.run_until_complete(t) self.assertTrue(t.done()) self.assertTrue(t.cancelled()) self.assertFalse(t.cancel()) def test_cancel_with_message_then_future_result(self): # Test Future.result() after calling cancel() with a message. cases = [ ((), ()), ((None,), ()), (('my message',), ('my message',)), # Non-string values should roundtrip. ((5,), (5,)), ] for cancel_args, expected_args in cases: with self.subTest(cancel_args=cancel_args): loop = asyncio.new_event_loop() self.set_event_loop(loop) async def sleep(): await asyncio.sleep(10) async def coro(): task = self.new_task(loop, sleep()) await asyncio.sleep(0) task.cancel(*cancel_args) done, pending = await asyncio.wait([task]) task.result() task = self.new_task(loop, coro()) with self.assertRaises(asyncio.CancelledError) as cm: loop.run_until_complete(task) exc = cm.exception self.assertEqual(exc.args, ()) actual = get_innermost_context(exc) self.assertEqual(actual, (asyncio.CancelledError, expected_args, 2)) def test_cancel_with_message_then_future_exception(self): # Test Future.exception() after calling cancel() with a message. cases = [ ((), ()), ((None,), ()), (('my message',), ('my message',)), # Non-string values should roundtrip. ((5,), (5,)), ] for cancel_args, expected_args in cases: with self.subTest(cancel_args=cancel_args): loop = asyncio.new_event_loop() self.set_event_loop(loop) async def sleep(): await asyncio.sleep(10) async def coro(): task = self.new_task(loop, sleep()) await asyncio.sleep(0) task.cancel(*cancel_args) done, pending = await asyncio.wait([task]) task.exception() task = self.new_task(loop, coro()) with self.assertRaises(asyncio.CancelledError) as cm: loop.run_until_complete(task) exc = cm.exception self.assertEqual(exc.args, ()) actual = get_innermost_context(exc) self.assertEqual(actual, (asyncio.CancelledError, expected_args, 2)) def test_cancel_with_message_before_starting_task(self): loop = asyncio.new_event_loop() self.set_event_loop(loop) async def sleep(): await asyncio.sleep(10) async def coro(): task = self.new_task(loop, sleep()) # We deliberately leave out the sleep here. task.cancel('my message') done, pending = await asyncio.wait([task]) task.exception() task = self.new_task(loop, coro()) with self.assertRaises(asyncio.CancelledError) as cm: loop.run_until_complete(task) exc = cm.exception self.assertEqual(exc.args, ()) actual = get_innermost_context(exc) self.assertEqual(actual, (asyncio.CancelledError, ('my message',), 2)) def test_cancel_yield(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def task(): yield yield return 12 t = self.new_task(self.loop, task()) test_utils.run_briefly(self.loop) # start coro t.cancel() self.assertRaises( asyncio.CancelledError, self.loop.run_until_complete, t) self.assertTrue(t.done()) self.assertTrue(t.cancelled()) self.assertFalse(t.cancel()) def test_cancel_inner_future(self): f = self.new_future(self.loop) async def task(): await f return 12 t = self.new_task(self.loop, task()) test_utils.run_briefly(self.loop) # start task f.cancel() with self.assertRaises(asyncio.CancelledError): self.loop.run_until_complete(t) self.assertTrue(f.cancelled()) self.assertTrue(t.cancelled()) def test_cancel_both_task_and_inner_future(self): f = self.new_future(self.loop) async def task(): await f return 12 t = self.new_task(self.loop, task()) test_utils.run_briefly(self.loop) f.cancel() t.cancel() with self.assertRaises(asyncio.CancelledError): self.loop.run_until_complete(t) self.assertTrue(t.done()) self.assertTrue(f.cancelled()) self.assertTrue(t.cancelled()) def test_cancel_task_catching(self): fut1 = self.new_future(self.loop) fut2 = self.new_future(self.loop) async def task(): await fut1 try: await fut2 except asyncio.CancelledError: return 42 t = self.new_task(self.loop, task()) test_utils.run_briefly(self.loop) self.assertIs(t._fut_waiter, fut1) # White-box test. fut1.set_result(None) test_utils.run_briefly(self.loop) self.assertIs(t._fut_waiter, fut2) # White-box test. t.cancel() self.assertTrue(fut2.cancelled()) res = self.loop.run_until_complete(t) self.assertEqual(res, 42) self.assertFalse(t.cancelled()) def test_cancel_task_ignoring(self): fut1 = self.new_future(self.loop) fut2 = self.new_future(self.loop) fut3 = self.new_future(self.loop) async def task(): await fut1 try: await fut2 except asyncio.CancelledError: pass res = await fut3 return res t = self.new_task(self.loop, task()) test_utils.run_briefly(self.loop) self.assertIs(t._fut_waiter, fut1) # White-box test. fut1.set_result(None) test_utils.run_briefly(self.loop) self.assertIs(t._fut_waiter, fut2) # White-box test. t.cancel() self.assertTrue(fut2.cancelled()) test_utils.run_briefly(self.loop) self.assertIs(t._fut_waiter, fut3) # White-box test. fut3.set_result(42) res = self.loop.run_until_complete(t) self.assertEqual(res, 42) self.assertFalse(fut3.cancelled()) self.assertFalse(t.cancelled()) def test_cancel_current_task(self): loop = asyncio.new_event_loop() self.set_event_loop(loop) async def task(): t.cancel() self.assertTrue(t._must_cancel) # White-box test. # The sleep should be cancelled immediately. await asyncio.sleep(100) return 12 t = self.new_task(loop, task()) self.assertFalse(t.cancelled()) self.assertRaises( asyncio.CancelledError, loop.run_until_complete, t) self.assertTrue(t.done()) self.assertTrue(t.cancelled()) self.assertFalse(t._must_cancel) # White-box test. self.assertFalse(t.cancel()) def test_cancel_at_end(self): """coroutine end right after task is cancelled""" loop = asyncio.new_event_loop() self.set_event_loop(loop) async def task(): t.cancel() self.assertTrue(t._must_cancel) # White-box test. return 12 t = self.new_task(loop, task()) self.assertFalse(t.cancelled()) self.assertRaises( asyncio.CancelledError, loop.run_until_complete, t) self.assertTrue(t.done()) self.assertTrue(t.cancelled()) self.assertFalse(t._must_cancel) # White-box test. self.assertFalse(t.cancel()) def test_cancel_awaited_task(self): # This tests for a relatively rare condition when # a task cancellation is requested for a task which is not # currently blocked, such as a task cancelling itself. # In this situation we must ensure that whatever next future # or task the cancelled task blocks on is cancelled correctly # as well. See also bpo-34872. loop = asyncio.new_event_loop() self.addCleanup(lambda: loop.close()) task = nested_task = None fut = self.new_future(loop) async def nested(): await fut async def coro(): nonlocal nested_task # Create a sub-task and wait for it to run. nested_task = self.new_task(loop, nested()) await asyncio.sleep(0) # Request the current task to be cancelled. task.cancel() # Block on the nested task, which should be immediately # cancelled. await nested_task task = self.new_task(loop, coro()) with self.assertRaises(asyncio.CancelledError): loop.run_until_complete(task) self.assertTrue(task.cancelled()) self.assertTrue(nested_task.cancelled()) self.assertTrue(fut.cancelled()) def assert_text_contains(self, text, substr): if substr not in text: raise RuntimeError(f'text {substr!r} not found in:\n>>>{text}<<<') def test_cancel_traceback_for_future_result(self): # When calling Future.result() on a cancelled task, check that the # line of code that was interrupted is included in the traceback. loop = asyncio.new_event_loop() self.set_event_loop(loop) async def nested(): # This will get cancelled immediately. await asyncio.sleep(10) async def coro(): task = self.new_task(loop, nested()) await asyncio.sleep(0) task.cancel() await task # search target task = self.new_task(loop, coro()) try: loop.run_until_complete(task) except asyncio.CancelledError: tb = traceback.format_exc() self.assert_text_contains(tb, "await asyncio.sleep(10)") # The intermediate await should also be included. self.assert_text_contains(tb, "await task # search target") else: self.fail('CancelledError did not occur') def test_cancel_traceback_for_future_exception(self): # When calling Future.exception() on a cancelled task, check that the # line of code that was interrupted is included in the traceback. loop = asyncio.new_event_loop() self.set_event_loop(loop) async def nested(): # This will get cancelled immediately. await asyncio.sleep(10) async def coro(): task = self.new_task(loop, nested()) await asyncio.sleep(0) task.cancel() done, pending = await asyncio.wait([task]) task.exception() # search target task = self.new_task(loop, coro()) try: loop.run_until_complete(task) except asyncio.CancelledError: tb = traceback.format_exc() self.assert_text_contains(tb, "await asyncio.sleep(10)") # The intermediate await should also be included. self.assert_text_contains(tb, "task.exception() # search target") else: self.fail('CancelledError did not occur') def test_stop_while_run_in_complete(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0.1 self.assertAlmostEqual(0.2, when) when = yield 0.1 self.assertAlmostEqual(0.3, when) yield 0.1 loop = self.new_test_loop(gen) x = 0 async def task(): nonlocal x while x < 10: await asyncio.sleep(0.1) x += 1 if x == 2: loop.stop() t = self.new_task(loop, task()) with self.assertRaises(RuntimeError) as cm: loop.run_until_complete(t) self.assertEqual(str(cm.exception), 'Event loop stopped before Future completed.') self.assertFalse(t.done()) self.assertEqual(x, 2) self.assertAlmostEqual(0.3, loop.time()) t.cancel() self.assertRaises(asyncio.CancelledError, loop.run_until_complete, t) def test_log_traceback(self): async def coro(): pass task = self.new_task(self.loop, coro()) with self.assertRaisesRegex(ValueError, 'can only be set to False'): task._log_traceback = True self.loop.run_until_complete(task) def test_wait(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0 self.assertAlmostEqual(0.15, when) yield 0.15 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(0.1)) b = self.new_task(loop, asyncio.sleep(0.15)) async def foo(): done, pending = await asyncio.wait([b, a]) self.assertEqual(done, set([a, b])) self.assertEqual(pending, set()) return 42 res = loop.run_until_complete(self.new_task(loop, foo())) self.assertEqual(res, 42) self.assertAlmostEqual(0.15, loop.time()) # Doing it again should take no time and exercise a different path. res = loop.run_until_complete(self.new_task(loop, foo())) self.assertAlmostEqual(0.15, loop.time()) self.assertEqual(res, 42) def test_wait_with_global_loop(self): def gen(): when = yield self.assertAlmostEqual(0.01, when) when = yield 0 self.assertAlmostEqual(0.015, when) yield 0.015 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(0.01)) b = self.new_task(loop, asyncio.sleep(0.015)) async def foo(): done, pending = await asyncio.wait([b, a]) self.assertEqual(done, set([a, b])) self.assertEqual(pending, set()) return 42 asyncio.set_event_loop(loop) res = loop.run_until_complete( self.new_task(loop, foo())) self.assertEqual(res, 42) def test_wait_duplicate_coroutines(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(s): return s c = coro('test') task = self.new_task( self.loop, asyncio.wait([c, c, coro('spam')])) with self.assertWarns(DeprecationWarning): done, pending = self.loop.run_until_complete(task) self.assertFalse(pending) self.assertEqual(set(f.result() for f in done), {'test', 'spam'}) def test_wait_errors(self): self.assertRaises( ValueError, self.loop.run_until_complete, asyncio.wait(set())) # -1 is an invalid return_when value sleep_coro = asyncio.sleep(10.0) wait_coro = asyncio.wait([sleep_coro], return_when=-1) self.assertRaises(ValueError, self.loop.run_until_complete, wait_coro) sleep_coro.close() def test_wait_first_completed(self): def gen(): when = yield self.assertAlmostEqual(10.0, when) when = yield 0 self.assertAlmostEqual(0.1, when) yield 0.1 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(10.0)) b = self.new_task(loop, asyncio.sleep(0.1)) task = self.new_task( loop, asyncio.wait([b, a], return_when=asyncio.FIRST_COMPLETED)) done, pending = loop.run_until_complete(task) self.assertEqual({b}, done) self.assertEqual({a}, pending) self.assertFalse(a.done()) self.assertTrue(b.done()) self.assertIsNone(b.result()) self.assertAlmostEqual(0.1, loop.time()) # move forward to close generator loop.advance_time(10) loop.run_until_complete(asyncio.wait([a, b])) def test_wait_really_done(self): # there is possibility that some tasks in the pending list # became done but their callbacks haven't all been called yet async def coro1(): await asyncio.sleep(0) async def coro2(): await asyncio.sleep(0) await asyncio.sleep(0) a = self.new_task(self.loop, coro1()) b = self.new_task(self.loop, coro2()) task = self.new_task( self.loop, asyncio.wait([b, a], return_when=asyncio.FIRST_COMPLETED)) done, pending = self.loop.run_until_complete(task) self.assertEqual({a, b}, done) self.assertTrue(a.done()) self.assertIsNone(a.result()) self.assertTrue(b.done()) self.assertIsNone(b.result()) def test_wait_first_exception(self): def gen(): when = yield self.assertAlmostEqual(10.0, when) yield 0 loop = self.new_test_loop(gen) # first_exception, task already has exception a = self.new_task(loop, asyncio.sleep(10.0)) async def exc(): raise ZeroDivisionError('err') b = self.new_task(loop, exc()) task = self.new_task( loop, asyncio.wait([b, a], return_when=asyncio.FIRST_EXCEPTION)) done, pending = loop.run_until_complete(task) self.assertEqual({b}, done) self.assertEqual({a}, pending) self.assertAlmostEqual(0, loop.time()) # move forward to close generator loop.advance_time(10) loop.run_until_complete(asyncio.wait([a, b])) def test_wait_first_exception_in_wait(self): def gen(): when = yield self.assertAlmostEqual(10.0, when) when = yield 0 self.assertAlmostEqual(0.01, when) yield 0.01 loop = self.new_test_loop(gen) # first_exception, exception during waiting a = self.new_task(loop, asyncio.sleep(10.0)) async def exc(): await asyncio.sleep(0.01) raise ZeroDivisionError('err') b = self.new_task(loop, exc()) task = asyncio.wait([b, a], return_when=asyncio.FIRST_EXCEPTION) done, pending = loop.run_until_complete(task) self.assertEqual({b}, done) self.assertEqual({a}, pending) self.assertAlmostEqual(0.01, loop.time()) # move forward to close generator loop.advance_time(10) loop.run_until_complete(asyncio.wait([a, b])) def test_wait_with_exception(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0 self.assertAlmostEqual(0.15, when) yield 0.15 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(0.1)) async def sleeper(): await asyncio.sleep(0.15) raise ZeroDivisionError('really') b = self.new_task(loop, sleeper()) async def foo(): done, pending = await asyncio.wait([b, a]) self.assertEqual(len(done), 2) self.assertEqual(pending, set()) errors = set(f for f in done if f.exception() is not None) self.assertEqual(len(errors), 1) loop.run_until_complete(self.new_task(loop, foo())) self.assertAlmostEqual(0.15, loop.time()) loop.run_until_complete(self.new_task(loop, foo())) self.assertAlmostEqual(0.15, loop.time()) def test_wait_with_timeout(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0 self.assertAlmostEqual(0.15, when) when = yield 0 self.assertAlmostEqual(0.11, when) yield 0.11 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(0.1)) b = self.new_task(loop, asyncio.sleep(0.15)) async def foo(): done, pending = await asyncio.wait([b, a], timeout=0.11) self.assertEqual(done, set([a])) self.assertEqual(pending, set([b])) loop.run_until_complete(self.new_task(loop, foo())) self.assertAlmostEqual(0.11, loop.time()) # move forward to close generator loop.advance_time(10) loop.run_until_complete(asyncio.wait([a, b])) def test_wait_concurrent_complete(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0 self.assertAlmostEqual(0.15, when) when = yield 0 self.assertAlmostEqual(0.1, when) yield 0.1 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(0.1)) b = self.new_task(loop, asyncio.sleep(0.15)) done, pending = loop.run_until_complete( asyncio.wait([b, a], timeout=0.1)) self.assertEqual(done, set([a])) self.assertEqual(pending, set([b])) self.assertAlmostEqual(0.1, loop.time()) # move forward to close generator loop.advance_time(10) loop.run_until_complete(asyncio.wait([a, b])) def test_wait_with_iterator_of_tasks(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0 self.assertAlmostEqual(0.15, when) yield 0.15 loop = self.new_test_loop(gen) a = self.new_task(loop, asyncio.sleep(0.1)) b = self.new_task(loop, asyncio.sleep(0.15)) async def foo(): done, pending = await asyncio.wait(iter([b, a])) self.assertEqual(done, set([a, b])) self.assertEqual(pending, set()) return 42 res = loop.run_until_complete(self.new_task(loop, foo())) self.assertEqual(res, 42) self.assertAlmostEqual(0.15, loop.time()) def test_as_completed(self): def gen(): yield 0 yield 0 yield 0.01 yield 0 loop = self.new_test_loop(gen) # disable "slow callback" warning loop.slow_callback_duration = 1.0 completed = set() time_shifted = False with self.assertWarns(DeprecationWarning): @asyncio.coroutine def sleeper(dt, x): nonlocal time_shifted yield from asyncio.sleep(dt) completed.add(x) if not time_shifted and 'a' in completed and 'b' in completed: time_shifted = True loop.advance_time(0.14) return x a = sleeper(0.01, 'a') b = sleeper(0.01, 'b') c = sleeper(0.15, 'c') async def foo(): values = [] for f in asyncio.as_completed([b, c, a], loop=loop): values.append(await f) return values with self.assertWarns(DeprecationWarning) as w: res = loop.run_until_complete(self.new_task(loop, foo())) self.assertEqual(w.warnings[0].filename, __file__) self.assertAlmostEqual(0.15, loop.time()) self.assertTrue('a' in res[:2]) self.assertTrue('b' in res[:2]) self.assertEqual(res[2], 'c') # Doing it again should take no time and exercise a different path. with self.assertWarns(DeprecationWarning): res = loop.run_until_complete(self.new_task(loop, foo())) self.assertAlmostEqual(0.15, loop.time()) def test_as_completed_with_timeout(self): def gen(): yield yield 0 yield 0 yield 0.1 loop = self.new_test_loop(gen) a = loop.create_task(asyncio.sleep(0.1, 'a')) b = loop.create_task(asyncio.sleep(0.15, 'b')) async def foo(): values = [] for f in asyncio.as_completed([a, b], timeout=0.12, loop=loop): if values: loop.advance_time(0.02) try: v = await f values.append((1, v)) except asyncio.TimeoutError as exc: values.append((2, exc)) return values with self.assertWarns(DeprecationWarning): res = loop.run_until_complete(self.new_task(loop, foo())) self.assertEqual(len(res), 2, res) self.assertEqual(res[0], (1, 'a')) self.assertEqual(res[1][0], 2) self.assertIsInstance(res[1][1], asyncio.TimeoutError) self.assertAlmostEqual(0.12, loop.time()) # move forward to close generator loop.advance_time(10) loop.run_until_complete(asyncio.wait([a, b])) def test_as_completed_with_unused_timeout(self): def gen(): yield yield 0 yield 0.01 loop = self.new_test_loop(gen) a = asyncio.sleep(0.01, 'a') async def foo(): for f in asyncio.as_completed([a], timeout=1, loop=loop): v = await f self.assertEqual(v, 'a') with self.assertWarns(DeprecationWarning): loop.run_until_complete(self.new_task(loop, foo())) def test_as_completed_reverse_wait(self): def gen(): yield 0 yield 0.05 yield 0 loop = self.new_test_loop(gen) a = asyncio.sleep(0.05, 'a') b = asyncio.sleep(0.10, 'b') fs = {a, b} with self.assertWarns(DeprecationWarning): futs = list(asyncio.as_completed(fs, loop=loop)) self.assertEqual(len(futs), 2) x = loop.run_until_complete(futs[1]) self.assertEqual(x, 'a') self.assertAlmostEqual(0.05, loop.time()) loop.advance_time(0.05) y = loop.run_until_complete(futs[0]) self.assertEqual(y, 'b') self.assertAlmostEqual(0.10, loop.time()) def test_as_completed_concurrent(self): def gen(): when = yield self.assertAlmostEqual(0.05, when) when = yield 0 self.assertAlmostEqual(0.05, when) yield 0.05 loop = self.new_test_loop(gen) a = asyncio.sleep(0.05, 'a') b = asyncio.sleep(0.05, 'b') fs = {a, b} with self.assertWarns(DeprecationWarning): futs = list(asyncio.as_completed(fs, loop=loop)) self.assertEqual(len(futs), 2) waiter = asyncio.wait(futs) # Deprecation from passing coros in futs to asyncio.wait() with self.assertWarns(DeprecationWarning): done, pending = loop.run_until_complete(waiter) self.assertEqual(set(f.result() for f in done), {'a', 'b'}) def test_as_completed_duplicate_coroutines(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(s): return s with self.assertWarns(DeprecationWarning): @asyncio.coroutine def runner(): result = [] c = coro('ham') for f in asyncio.as_completed([c, c, coro('spam')], loop=self.loop): result.append((yield from f)) return result with self.assertWarns(DeprecationWarning): fut = self.new_task(self.loop, runner()) self.loop.run_until_complete(fut) result = fut.result() self.assertEqual(set(result), {'ham', 'spam'}) self.assertEqual(len(result), 2) def test_sleep(self): def gen(): when = yield self.assertAlmostEqual(0.05, when) when = yield 0.05 self.assertAlmostEqual(0.1, when) yield 0.05 loop = self.new_test_loop(gen) async def sleeper(dt, arg): await asyncio.sleep(dt/2) res = await asyncio.sleep(dt/2, arg) return res t = self.new_task(loop, sleeper(0.1, 'yeah')) loop.run_until_complete(t) self.assertTrue(t.done()) self.assertEqual(t.result(), 'yeah') self.assertAlmostEqual(0.1, loop.time()) def test_sleep_cancel(self): def gen(): when = yield self.assertAlmostEqual(10.0, when) yield 0 loop = self.new_test_loop(gen) t = self.new_task(loop, asyncio.sleep(10.0, 'yeah')) handle = None orig_call_later = loop.call_later def call_later(delay, callback, *args): nonlocal handle handle = orig_call_later(delay, callback, *args) return handle loop.call_later = call_later test_utils.run_briefly(loop) self.assertFalse(handle._cancelled) t.cancel() test_utils.run_briefly(loop) self.assertTrue(handle._cancelled) def test_task_cancel_sleeping_task(self): def gen(): when = yield self.assertAlmostEqual(0.1, when) when = yield 0 self.assertAlmostEqual(5000, when) yield 0.1 loop = self.new_test_loop(gen) async def sleep(dt): await asyncio.sleep(dt) async def doit(): sleeper = self.new_task(loop, sleep(5000)) loop.call_later(0.1, sleeper.cancel) try: await sleeper except asyncio.CancelledError: return 'cancelled' else: return 'slept in' doer = doit() self.assertEqual(loop.run_until_complete(doer), 'cancelled') self.assertAlmostEqual(0.1, loop.time()) def test_task_cancel_waiter_future(self): fut = self.new_future(self.loop) async def coro(): await fut task = self.new_task(self.loop, coro()) test_utils.run_briefly(self.loop) self.assertIs(task._fut_waiter, fut) task.cancel() test_utils.run_briefly(self.loop) self.assertRaises( asyncio.CancelledError, self.loop.run_until_complete, task) self.assertIsNone(task._fut_waiter) self.assertTrue(fut.cancelled()) def test_task_set_methods(self): async def notmuch(): return 'ko' gen = notmuch() task = self.new_task(self.loop, gen) with self.assertRaisesRegex(RuntimeError, 'not support set_result'): task.set_result('ok') with self.assertRaisesRegex(RuntimeError, 'not support set_exception'): task.set_exception(ValueError()) self.assertEqual( self.loop.run_until_complete(task), 'ko') def test_step_result(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def notmuch(): yield None yield 1 return 'ko' self.assertRaises( RuntimeError, self.loop.run_until_complete, notmuch()) def test_step_result_future(self): # If coroutine returns future, task waits on this future. class Fut(asyncio.Future): def __init__(self, *args, **kwds): self.cb_added = False super().__init__(*args, **kwds) def add_done_callback(self, *args, **kwargs): self.cb_added = True super().add_done_callback(*args, **kwargs) fut = Fut(loop=self.loop) result = None async def wait_for_future(): nonlocal result result = await fut t = self.new_task(self.loop, wait_for_future()) test_utils.run_briefly(self.loop) self.assertTrue(fut.cb_added) res = object() fut.set_result(res) test_utils.run_briefly(self.loop) self.assertIs(res, result) self.assertTrue(t.done()) self.assertIsNone(t.result()) def test_baseexception_during_cancel(self): def gen(): when = yield self.assertAlmostEqual(10.0, when) yield 0 loop = self.new_test_loop(gen) async def sleeper(): await asyncio.sleep(10) base_exc = SystemExit() async def notmutch(): try: await sleeper() except asyncio.CancelledError: raise base_exc task = self.new_task(loop, notmutch()) test_utils.run_briefly(loop) task.cancel() self.assertFalse(task.done()) self.assertRaises(SystemExit, test_utils.run_briefly, loop) self.assertTrue(task.done()) self.assertFalse(task.cancelled()) self.assertIs(task.exception(), base_exc) def test_iscoroutinefunction(self): def fn(): pass self.assertFalse(asyncio.iscoroutinefunction(fn)) def fn1(): yield self.assertFalse(asyncio.iscoroutinefunction(fn1)) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def fn2(): yield self.assertTrue(asyncio.iscoroutinefunction(fn2)) self.assertFalse(asyncio.iscoroutinefunction(mock.Mock())) def test_yield_vs_yield_from(self): fut = self.new_future(self.loop) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def wait_for_future(): yield fut task = wait_for_future() with self.assertRaises(RuntimeError): self.loop.run_until_complete(task) self.assertFalse(fut.done()) def test_yield_vs_yield_from_generator(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(): yield with self.assertWarns(DeprecationWarning): @asyncio.coroutine def wait_for_future(): gen = coro() try: yield gen finally: gen.close() task = wait_for_future() self.assertRaises( RuntimeError, self.loop.run_until_complete, task) def test_coroutine_non_gen_function(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def func(): return 'test' self.assertTrue(asyncio.iscoroutinefunction(func)) coro = func() self.assertTrue(asyncio.iscoroutine(coro)) res = self.loop.run_until_complete(coro) self.assertEqual(res, 'test') def test_coroutine_non_gen_function_return_future(self): fut = self.new_future(self.loop) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def func(): return fut async def coro(): fut.set_result('test') t1 = self.new_task(self.loop, func()) t2 = self.new_task(self.loop, coro()) res = self.loop.run_until_complete(t1) self.assertEqual(res, 'test') self.assertIsNone(t2.result()) def test_current_task(self): self.assertIsNone(asyncio.current_task(loop=self.loop)) async def coro(loop): self.assertIs(asyncio.current_task(loop=loop), task) self.assertIs(asyncio.current_task(None), task) self.assertIs(asyncio.current_task(), task) task = self.new_task(self.loop, coro(self.loop)) self.loop.run_until_complete(task) self.assertIsNone(asyncio.current_task(loop=self.loop)) def test_current_task_with_interleaving_tasks(self): self.assertIsNone(asyncio.current_task(loop=self.loop)) fut1 = self.new_future(self.loop) fut2 = self.new_future(self.loop) async def coro1(loop): self.assertTrue(asyncio.current_task(loop=loop) is task1) await fut1 self.assertTrue(asyncio.current_task(loop=loop) is task1) fut2.set_result(True) async def coro2(loop): self.assertTrue(asyncio.current_task(loop=loop) is task2) fut1.set_result(True) await fut2 self.assertTrue(asyncio.current_task(loop=loop) is task2) task1 = self.new_task(self.loop, coro1(self.loop)) task2 = self.new_task(self.loop, coro2(self.loop)) self.loop.run_until_complete(asyncio.wait((task1, task2))) self.assertIsNone(asyncio.current_task(loop=self.loop)) # Some thorough tests for cancellation propagation through # coroutines, tasks and wait(). def test_yield_future_passes_cancel(self): # Cancelling outer() cancels inner() cancels waiter. proof = 0 waiter = self.new_future(self.loop) async def inner(): nonlocal proof try: await waiter except asyncio.CancelledError: proof += 1 raise else: self.fail('got past sleep() in inner()') async def outer(): nonlocal proof try: await inner() except asyncio.CancelledError: proof += 100 # Expect this path. else: proof += 10 f = asyncio.ensure_future(outer(), loop=self.loop) test_utils.run_briefly(self.loop) f.cancel() self.loop.run_until_complete(f) self.assertEqual(proof, 101) self.assertTrue(waiter.cancelled()) def test_yield_wait_does_not_shield_cancel(self): # Cancelling outer() makes wait() return early, leaves inner() # running. proof = 0 waiter = self.new_future(self.loop) async def inner(): nonlocal proof await waiter proof += 1 async def outer(): nonlocal proof with self.assertWarns(DeprecationWarning): d, p = await asyncio.wait([inner()]) proof += 100 f = asyncio.ensure_future(outer(), loop=self.loop) test_utils.run_briefly(self.loop) f.cancel() self.assertRaises( asyncio.CancelledError, self.loop.run_until_complete, f) waiter.set_result(None) test_utils.run_briefly(self.loop) self.assertEqual(proof, 1) def test_shield_result(self): inner = self.new_future(self.loop) outer = asyncio.shield(inner) inner.set_result(42) res = self.loop.run_until_complete(outer) self.assertEqual(res, 42) def test_shield_exception(self): inner = self.new_future(self.loop) outer = asyncio.shield(inner) test_utils.run_briefly(self.loop) exc = RuntimeError('expected') inner.set_exception(exc) test_utils.run_briefly(self.loop) self.assertIs(outer.exception(), exc) def test_shield_cancel_inner(self): inner = self.new_future(self.loop) outer = asyncio.shield(inner) test_utils.run_briefly(self.loop) inner.cancel() test_utils.run_briefly(self.loop) self.assertTrue(outer.cancelled()) def test_shield_cancel_outer(self): inner = self.new_future(self.loop) outer = asyncio.shield(inner) test_utils.run_briefly(self.loop) outer.cancel() test_utils.run_briefly(self.loop) self.assertTrue(outer.cancelled()) self.assertEqual(0, 0 if outer._callbacks is None else len(outer._callbacks)) def test_shield_shortcut(self): fut = self.new_future(self.loop) fut.set_result(42) res = self.loop.run_until_complete(asyncio.shield(fut)) self.assertEqual(res, 42) def test_shield_effect(self): # Cancelling outer() does not affect inner(). proof = 0 waiter = self.new_future(self.loop) async def inner(): nonlocal proof await waiter proof += 1 async def outer(): nonlocal proof await asyncio.shield(inner()) proof += 100 f = asyncio.ensure_future(outer(), loop=self.loop) test_utils.run_briefly(self.loop) f.cancel() with self.assertRaises(asyncio.CancelledError): self.loop.run_until_complete(f) waiter.set_result(None) test_utils.run_briefly(self.loop) self.assertEqual(proof, 1) def test_shield_gather(self): child1 = self.new_future(self.loop) child2 = self.new_future(self.loop) parent = asyncio.gather(child1, child2) outer = asyncio.shield(parent) test_utils.run_briefly(self.loop) outer.cancel() test_utils.run_briefly(self.loop) self.assertTrue(outer.cancelled()) child1.set_result(1) child2.set_result(2) test_utils.run_briefly(self.loop) self.assertEqual(parent.result(), [1, 2]) def test_gather_shield(self): child1 = self.new_future(self.loop) child2 = self.new_future(self.loop) inner1 = asyncio.shield(child1) inner2 = asyncio.shield(child2) parent = asyncio.gather(inner1, inner2) test_utils.run_briefly(self.loop) parent.cancel() # This should cancel inner1 and inner2 but bot child1 and child2. test_utils.run_briefly(self.loop) self.assertIsInstance(parent.exception(), asyncio.CancelledError) self.assertTrue(inner1.cancelled()) self.assertTrue(inner2.cancelled()) child1.set_result(1) child2.set_result(2) test_utils.run_briefly(self.loop) def test_as_completed_invalid_args(self): fut = self.new_future(self.loop) # as_completed() expects a list of futures, not a future instance self.assertRaises(TypeError, self.loop.run_until_complete, asyncio.as_completed(fut, loop=self.loop)) coro = coroutine_function() self.assertRaises(TypeError, self.loop.run_until_complete, asyncio.as_completed(coro, loop=self.loop)) coro.close() def test_wait_invalid_args(self): fut = self.new_future(self.loop) # wait() expects a list of futures, not a future instance self.assertRaises(TypeError, self.loop.run_until_complete, asyncio.wait(fut)) coro = coroutine_function() self.assertRaises(TypeError, self.loop.run_until_complete, asyncio.wait(coro)) coro.close() # wait() expects at least a future self.assertRaises(ValueError, self.loop.run_until_complete, asyncio.wait([])) def test_corowrapper_mocks_generator(self): def check(): # A function that asserts various things. # Called twice, with different debug flag values. with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(): # The actual coroutine. self.assertTrue(gen.gi_running) yield from fut # A completed Future used to run the coroutine. fut = self.new_future(self.loop) fut.set_result(None) # Call the coroutine. gen = coro() # Check some properties. self.assertTrue(asyncio.iscoroutine(gen)) self.assertIsInstance(gen.gi_frame, types.FrameType) self.assertFalse(gen.gi_running) self.assertIsInstance(gen.gi_code, types.CodeType) # Run it. self.loop.run_until_complete(gen) # The frame should have changed. self.assertIsNone(gen.gi_frame) # Test with debug flag cleared. with set_coroutine_debug(False): check() # Test with debug flag set. with set_coroutine_debug(True): check() def test_yield_from_corowrapper(self): with set_coroutine_debug(True): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def t1(): return (yield from t2()) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def t2(): f = self.new_future(self.loop) self.new_task(self.loop, t3(f)) return (yield from f) with self.assertWarns(DeprecationWarning): @asyncio.coroutine def t3(f): f.set_result((1, 2, 3)) task = self.new_task(self.loop, t1()) val = self.loop.run_until_complete(task) self.assertEqual(val, (1, 2, 3)) def test_yield_from_corowrapper_send(self): def foo(): a = yield return a def call(arg): cw = asyncio.coroutines.CoroWrapper(foo()) cw.send(None) try: cw.send(arg) except StopIteration as ex: return ex.args[0] else: raise AssertionError('StopIteration was expected') self.assertEqual(call((1, 2)), (1, 2)) self.assertEqual(call('spam'), 'spam') def test_corowrapper_weakref(self): wd = weakref.WeakValueDictionary() def foo(): yield from [] cw = asyncio.coroutines.CoroWrapper(foo()) wd['cw'] = cw # Would fail without __weakref__ slot. cw.gen = None # Suppress warning from __del__. def test_corowrapper_throw(self): # Issue 429: CoroWrapper.throw must be compatible with gen.throw def foo(): value = None while True: try: value = yield value except Exception as e: value = e exception = Exception("foo") cw = asyncio.coroutines.CoroWrapper(foo()) cw.send(None) self.assertIs(exception, cw.throw(exception)) cw = asyncio.coroutines.CoroWrapper(foo()) cw.send(None) self.assertIs(exception, cw.throw(Exception, exception)) cw = asyncio.coroutines.CoroWrapper(foo()) cw.send(None) exception = cw.throw(Exception, "foo") self.assertIsInstance(exception, Exception) self.assertEqual(exception.args, ("foo", )) cw = asyncio.coroutines.CoroWrapper(foo()) cw.send(None) exception = cw.throw(Exception, "foo", None) self.assertIsInstance(exception, Exception) self.assertEqual(exception.args, ("foo", )) def test_log_destroyed_pending_task(self): Task = self.__class__.Task with self.assertWarns(DeprecationWarning): @asyncio.coroutine def kill_me(loop): future = self.new_future(loop) yield from future # at this point, the only reference to kill_me() task is # the Task._wakeup() method in future._callbacks raise Exception("code never reached") mock_handler = mock.Mock() self.loop.set_debug(True) self.loop.set_exception_handler(mock_handler) # schedule the task coro = kill_me(self.loop) task = asyncio.ensure_future(coro, loop=self.loop) self.assertEqual(asyncio.all_tasks(loop=self.loop), {task}) asyncio.set_event_loop(None) # execute the task so it waits for future self.loop._run_once() self.assertEqual(len(self.loop._ready), 0) # remove the future used in kill_me(), and references to the task del coro.gi_frame.f_locals['future'] coro = None source_traceback = task._source_traceback task = None # no more reference to kill_me() task: the task is destroyed by the GC support.gc_collect() self.assertEqual(asyncio.all_tasks(loop=self.loop), set()) mock_handler.assert_called_with(self.loop, { 'message': 'Task was destroyed but it is pending!', 'task': mock.ANY, 'source_traceback': source_traceback, }) mock_handler.reset_mock() @mock.patch('asyncio.base_events.logger') def test_tb_logger_not_called_after_cancel(self, m_log): loop = asyncio.new_event_loop() self.set_event_loop(loop) async def coro(): raise TypeError async def runner(): task = self.new_task(loop, coro()) await asyncio.sleep(0.05) task.cancel() task = None loop.run_until_complete(runner()) self.assertFalse(m_log.error.called) @mock.patch('asyncio.coroutines.logger') def test_coroutine_never_yielded(self, m_log): with set_coroutine_debug(True): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro_noop(): pass tb_filename = __file__ tb_lineno = sys._getframe().f_lineno + 2 # create a coroutine object but don't use it coro_noop() support.gc_collect() self.assertTrue(m_log.error.called) message = m_log.error.call_args[0][0] func_filename, func_lineno = test_utils.get_function_source(coro_noop) regex = (r'^<CoroWrapper %s\(?\)? .* at %s:%s, .*> ' r'was never yielded from\n' r'Coroutine object created at \(most recent call last, truncated to \d+ last lines\):\n' r'.*\n' r' File "%s", line %s, in test_coroutine_never_yielded\n' r' coro_noop\(\)$' % (re.escape(coro_noop.__qualname__), re.escape(func_filename), func_lineno, re.escape(tb_filename), tb_lineno)) self.assertRegex(message, re.compile(regex, re.DOTALL)) def test_return_coroutine_from_coroutine(self): """Return of @asyncio.coroutine()-wrapped function generator object from @asyncio.coroutine()-wrapped function should have same effect as returning generator object or Future.""" def check(): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def outer_coro(): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def inner_coro(): return 1 return inner_coro() result = self.loop.run_until_complete(outer_coro()) self.assertEqual(result, 1) # Test with debug flag cleared. with set_coroutine_debug(False): check() # Test with debug flag set. with set_coroutine_debug(True): check() def test_task_source_traceback(self): self.loop.set_debug(True) task = self.new_task(self.loop, coroutine_function()) lineno = sys._getframe().f_lineno - 1 self.assertIsInstance(task._source_traceback, list) self.assertEqual(task._source_traceback[-2][:3], (__file__, lineno, 'test_task_source_traceback')) self.loop.run_until_complete(task) def test_cancel_gather_1(self): """Ensure that a gathering future refuses to be cancelled once all children are done""" loop = asyncio.new_event_loop() self.addCleanup(loop.close) fut = self.new_future(loop) # The indirection fut->child_coro is needed since otherwise the # gathering task is done at the same time as the child future def child_coro(): return (yield from fut) with self.assertWarns(DeprecationWarning): gather_future = asyncio.gather(child_coro(), loop=loop) gather_task = asyncio.ensure_future(gather_future, loop=loop) cancel_result = None def cancelling_callback(_): nonlocal cancel_result cancel_result = gather_task.cancel() fut.add_done_callback(cancelling_callback) fut.set_result(42) # calls the cancelling_callback after fut is done() # At this point the task should complete. loop.run_until_complete(gather_task) # Python issue #26923: asyncio.gather drops cancellation self.assertEqual(cancel_result, False) self.assertFalse(gather_task.cancelled()) self.assertEqual(gather_task.result(), [42]) def test_cancel_gather_2(self): cases = [ ((), ()), ((None,), ()), (('my message',), ('my message',)), # Non-string values should roundtrip. ((5,), (5,)), ] for cancel_args, expected_args in cases: with self.subTest(cancel_args=cancel_args): loop = asyncio.new_event_loop() self.addCleanup(loop.close) async def test(): time = 0 while True: time += 0.05 with self.assertWarns(DeprecationWarning): await asyncio.gather(asyncio.sleep(0.05), return_exceptions=True, loop=loop) if time > 1: return async def main(): qwe = self.new_task(loop, test()) await asyncio.sleep(0.2) qwe.cancel(*cancel_args) await qwe try: loop.run_until_complete(main()) except asyncio.CancelledError as exc: self.assertEqual(exc.args, ()) exc_type, exc_args, depth = get_innermost_context(exc) self.assertEqual((exc_type, exc_args), (asyncio.CancelledError, expected_args)) # The exact traceback seems to vary in CI. self.assertIn(depth, (2, 3)) else: self.fail('gather did not propagate the cancellation ' 'request') def test_exception_traceback(self): # See http://bugs.python.org/issue28843 async def foo(): 1 / 0 async def main(): task = self.new_task(self.loop, foo()) await asyncio.sleep(0) # skip one loop iteration self.assertIsNotNone(task.exception().__traceback__) self.loop.run_until_complete(main()) @mock.patch('asyncio.base_events.logger') def test_error_in_call_soon(self, m_log): def call_soon(callback, *args, **kwargs): raise ValueError self.loop.call_soon = call_soon with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(): pass self.assertFalse(m_log.error.called) with self.assertRaises(ValueError): gen = coro() try: self.new_task(self.loop, gen) finally: gen.close() gc.collect() # For PyPy or other GCs. self.assertTrue(m_log.error.called) message = m_log.error.call_args[0][0] self.assertIn('Task was destroyed but it is pending', message) self.assertEqual(asyncio.all_tasks(self.loop), set()) def test_create_task_with_noncoroutine(self): with self.assertRaisesRegex(TypeError, "a coroutine was expected, got 123"): self.new_task(self.loop, 123) # test it for the second time to ensure that caching # in asyncio.iscoroutine() doesn't break things. with self.assertRaisesRegex(TypeError, "a coroutine was expected, got 123"): self.new_task(self.loop, 123) def test_create_task_with_oldstyle_coroutine(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(): pass task = self.new_task(self.loop, coro()) self.assertIsInstance(task, self.Task) self.loop.run_until_complete(task) # test it for the second time to ensure that caching # in asyncio.iscoroutine() doesn't break things. task = self.new_task(self.loop, coro()) self.assertIsInstance(task, self.Task) self.loop.run_until_complete(task) def test_create_task_with_async_function(self): async def coro(): pass task = self.new_task(self.loop, coro()) self.assertIsInstance(task, self.Task) self.loop.run_until_complete(task) # test it for the second time to ensure that caching # in asyncio.iscoroutine() doesn't break things. task = self.new_task(self.loop, coro()) self.assertIsInstance(task, self.Task) self.loop.run_until_complete(task) def test_create_task_with_asynclike_function(self): task = self.new_task(self.loop, CoroLikeObject()) self.assertIsInstance(task, self.Task) self.assertEqual(self.loop.run_until_complete(task), 42) # test it for the second time to ensure that caching # in asyncio.iscoroutine() doesn't break things. task = self.new_task(self.loop, CoroLikeObject()) self.assertIsInstance(task, self.Task) self.assertEqual(self.loop.run_until_complete(task), 42) def test_bare_create_task(self): async def inner(): return 1 async def coro(): task = asyncio.create_task(inner()) self.assertIsInstance(task, self.Task) ret = await task self.assertEqual(1, ret) self.loop.run_until_complete(coro()) def test_bare_create_named_task(self): async def coro_noop(): pass async def coro(): task = asyncio.create_task(coro_noop(), name='No-op') self.assertEqual(task.get_name(), 'No-op') await task self.loop.run_until_complete(coro()) def test_context_1(self): cvar = contextvars.ContextVar('cvar', default='nope') async def sub(): await asyncio.sleep(0.01) self.assertEqual(cvar.get(), 'nope') cvar.set('something else') async def main(): self.assertEqual(cvar.get(), 'nope') subtask = self.new_task(loop, sub()) cvar.set('yes') self.assertEqual(cvar.get(), 'yes') await subtask self.assertEqual(cvar.get(), 'yes') loop = asyncio.new_event_loop() try: task = self.new_task(loop, main()) loop.run_until_complete(task) finally: loop.close() def test_context_2(self): cvar = contextvars.ContextVar('cvar', default='nope') async def main(): def fut_on_done(fut): # This change must not pollute the context # of the "main()" task. cvar.set('something else') self.assertEqual(cvar.get(), 'nope') for j in range(2): fut = self.new_future(loop) fut.add_done_callback(fut_on_done) cvar.set(f'yes{j}') loop.call_soon(fut.set_result, None) await fut self.assertEqual(cvar.get(), f'yes{j}') for i in range(3): # Test that task passed its context to add_done_callback: cvar.set(f'yes{i}-{j}') await asyncio.sleep(0.001) self.assertEqual(cvar.get(), f'yes{i}-{j}') loop = asyncio.new_event_loop() try: task = self.new_task(loop, main()) loop.run_until_complete(task) finally: loop.close() self.assertEqual(cvar.get(), 'nope') def test_context_3(self): # Run 100 Tasks in parallel, each modifying cvar. cvar = contextvars.ContextVar('cvar', default=-1) async def sub(num): for i in range(10): cvar.set(num + i) await asyncio.sleep(random.uniform(0.001, 0.05)) self.assertEqual(cvar.get(), num + i) async def main(): tasks = [] for i in range(100): task = loop.create_task(sub(random.randint(0, 10))) tasks.append(task) await asyncio.gather(*tasks) loop = asyncio.new_event_loop() try: loop.run_until_complete(main()) finally: loop.close() self.assertEqual(cvar.get(), -1) def test_get_coro(self): loop = asyncio.new_event_loop() coro = coroutine_function() try: task = self.new_task(loop, coro) loop.run_until_complete(task) self.assertIs(task.get_coro(), coro) finally: loop.close() def add_subclass_tests(cls): BaseTask = cls.Task BaseFuture = cls.Future if BaseTask is None or BaseFuture is None: return cls class CommonFuture: def __init__(self, *args, **kwargs): self.calls = collections.defaultdict(lambda: 0) super().__init__(*args, **kwargs) def add_done_callback(self, *args, **kwargs): self.calls['add_done_callback'] += 1 return super().add_done_callback(*args, **kwargs) class Task(CommonFuture, BaseTask): pass class Future(CommonFuture, BaseFuture): pass def test_subclasses_ctask_cfuture(self): fut = self.Future(loop=self.loop) async def func(): self.loop.call_soon(lambda: fut.set_result('spam')) return await fut task = self.Task(func(), loop=self.loop) result = self.loop.run_until_complete(task) self.assertEqual(result, 'spam') self.assertEqual( dict(task.calls), {'add_done_callback': 1}) self.assertEqual( dict(fut.calls), {'add_done_callback': 1}) # Add patched Task & Future back to the test case cls.Task = Task cls.Future = Future # Add an extra unit-test cls.test_subclasses_ctask_cfuture = test_subclasses_ctask_cfuture # Disable the "test_task_source_traceback" test # (the test is hardcoded for a particular call stack, which # is slightly different for Task subclasses) cls.test_task_source_traceback = None return cls class SetMethodsTest: def test_set_result_causes_invalid_state(self): Future = type(self).Future self.loop.call_exception_handler = exc_handler = mock.Mock() async def foo(): await asyncio.sleep(0.1) return 10 coro = foo() task = self.new_task(self.loop, coro) Future.set_result(task, 'spam') self.assertEqual( self.loop.run_until_complete(task), 'spam') exc_handler.assert_called_once() exc = exc_handler.call_args[0][0]['exception'] with self.assertRaisesRegex(asyncio.InvalidStateError, r'step\(\): already done'): raise exc coro.close() def test_set_exception_causes_invalid_state(self): class MyExc(Exception): pass Future = type(self).Future self.loop.call_exception_handler = exc_handler = mock.Mock() async def foo(): await asyncio.sleep(0.1) return 10 coro = foo() task = self.new_task(self.loop, coro) Future.set_exception(task, MyExc()) with self.assertRaises(MyExc): self.loop.run_until_complete(task) exc_handler.assert_called_once() exc = exc_handler.call_args[0][0]['exception'] with self.assertRaisesRegex(asyncio.InvalidStateError, r'step\(\): already done'): raise exc coro.close() @unittest.skipUnless(hasattr(futures, '_CFuture') and hasattr(tasks, '_CTask'), 'requires the C _asyncio module') class CTask_CFuture_Tests(BaseTaskTests, SetMethodsTest, test_utils.TestCase): Task = getattr(tasks, '_CTask', None) Future = getattr(futures, '_CFuture', None) @support.refcount_test def test_refleaks_in_task___init__(self): gettotalrefcount = support.get_attribute(sys, 'gettotalrefcount') async def coro(): pass task = self.new_task(self.loop, coro()) self.loop.run_until_complete(task) refs_before = gettotalrefcount() for i in range(100): task.__init__(coro(), loop=self.loop) self.loop.run_until_complete(task) self.assertAlmostEqual(gettotalrefcount() - refs_before, 0, delta=10) def test_del__log_destroy_pending_segfault(self): async def coro(): pass task = self.new_task(self.loop, coro()) self.loop.run_until_complete(task) with self.assertRaises(AttributeError): del task._log_destroy_pending @unittest.skipUnless(hasattr(futures, '_CFuture') and hasattr(tasks, '_CTask'), 'requires the C _asyncio module') @add_subclass_tests class CTask_CFuture_SubclassTests(BaseTaskTests, test_utils.TestCase): Task = getattr(tasks, '_CTask', None) Future = getattr(futures, '_CFuture', None) @unittest.skipUnless(hasattr(tasks, '_CTask'), 'requires the C _asyncio module') @add_subclass_tests class CTaskSubclass_PyFuture_Tests(BaseTaskTests, test_utils.TestCase): Task = getattr(tasks, '_CTask', None) Future = futures._PyFuture @unittest.skipUnless(hasattr(futures, '_CFuture'), 'requires the C _asyncio module') @add_subclass_tests class PyTask_CFutureSubclass_Tests(BaseTaskTests, test_utils.TestCase): Future = getattr(futures, '_CFuture', None) Task = tasks._PyTask @unittest.skipUnless(hasattr(tasks, '_CTask'), 'requires the C _asyncio module') class CTask_PyFuture_Tests(BaseTaskTests, test_utils.TestCase): Task = getattr(tasks, '_CTask', None) Future = futures._PyFuture @unittest.skipUnless(hasattr(futures, '_CFuture'), 'requires the C _asyncio module') class PyTask_CFuture_Tests(BaseTaskTests, test_utils.TestCase): Task = tasks._PyTask Future = getattr(futures, '_CFuture', None) class PyTask_PyFuture_Tests(BaseTaskTests, SetMethodsTest, test_utils.TestCase): Task = tasks._PyTask Future = futures._PyFuture @add_subclass_tests class PyTask_PyFuture_SubclassTests(BaseTaskTests, test_utils.TestCase): Task = tasks._PyTask Future = futures._PyFuture @unittest.skipUnless(hasattr(tasks, '_CTask'), 'requires the C _asyncio module') class CTask_Future_Tests(test_utils.TestCase): def test_foobar(self): class Fut(asyncio.Future): @property def get_loop(self): raise AttributeError async def coro(): await fut return 'spam' self.loop = asyncio.new_event_loop() try: fut = Fut(loop=self.loop) self.loop.call_later(0.1, fut.set_result, 1) task = self.loop.create_task(coro()) res = self.loop.run_until_complete(task) finally: self.loop.close() self.assertEqual(res, 'spam') class BaseTaskIntrospectionTests: _register_task = None _unregister_task = None _enter_task = None _leave_task = None def test__register_task_1(self): class TaskLike: @property def _loop(self): return loop def done(self): return False task = TaskLike() loop = mock.Mock() self.assertEqual(asyncio.all_tasks(loop), set()) self._register_task(task) self.assertEqual(asyncio.all_tasks(loop), {task}) self._unregister_task(task) def test__register_task_2(self): class TaskLike: def get_loop(self): return loop def done(self): return False task = TaskLike() loop = mock.Mock() self.assertEqual(asyncio.all_tasks(loop), set()) self._register_task(task) self.assertEqual(asyncio.all_tasks(loop), {task}) self._unregister_task(task) def test__register_task_3(self): class TaskLike: def get_loop(self): return loop def done(self): return True task = TaskLike() loop = mock.Mock() self.assertEqual(asyncio.all_tasks(loop), set()) self._register_task(task) self.assertEqual(asyncio.all_tasks(loop), set()) self._unregister_task(task) def test__enter_task(self): task = mock.Mock() loop = mock.Mock() self.assertIsNone(asyncio.current_task(loop)) self._enter_task(loop, task) self.assertIs(asyncio.current_task(loop), task) self._leave_task(loop, task) def test__enter_task_failure(self): task1 = mock.Mock() task2 = mock.Mock() loop = mock.Mock() self._enter_task(loop, task1) with self.assertRaises(RuntimeError): self._enter_task(loop, task2) self.assertIs(asyncio.current_task(loop), task1) self._leave_task(loop, task1) def test__leave_task(self): task = mock.Mock() loop = mock.Mock() self._enter_task(loop, task) self._leave_task(loop, task) self.assertIsNone(asyncio.current_task(loop)) def test__leave_task_failure1(self): task1 = mock.Mock() task2 = mock.Mock() loop = mock.Mock() self._enter_task(loop, task1) with self.assertRaises(RuntimeError): self._leave_task(loop, task2) self.assertIs(asyncio.current_task(loop), task1) self._leave_task(loop, task1) def test__leave_task_failure2(self): task = mock.Mock() loop = mock.Mock() with self.assertRaises(RuntimeError): self._leave_task(loop, task) self.assertIsNone(asyncio.current_task(loop)) def test__unregister_task(self): task = mock.Mock() loop = mock.Mock() task.get_loop = lambda: loop self._register_task(task) self._unregister_task(task) self.assertEqual(asyncio.all_tasks(loop), set()) def test__unregister_task_not_registered(self): task = mock.Mock() loop = mock.Mock() self._unregister_task(task) self.assertEqual(asyncio.all_tasks(loop), set()) class PyIntrospectionTests(test_utils.TestCase, BaseTaskIntrospectionTests): _register_task = staticmethod(tasks._py_register_task) _unregister_task = staticmethod(tasks._py_unregister_task) _enter_task = staticmethod(tasks._py_enter_task) _leave_task = staticmethod(tasks._py_leave_task) @unittest.skipUnless(hasattr(tasks, '_c_register_task'), 'requires the C _asyncio module') class CIntrospectionTests(test_utils.TestCase, BaseTaskIntrospectionTests): if hasattr(tasks, '_c_register_task'): _register_task = staticmethod(tasks._c_register_task) _unregister_task = staticmethod(tasks._c_unregister_task) _enter_task = staticmethod(tasks._c_enter_task) _leave_task = staticmethod(tasks._c_leave_task) else: _register_task = _unregister_task = _enter_task = _leave_task = None class BaseCurrentLoopTests: def setUp(self): super().setUp() self.loop = asyncio.new_event_loop() self.set_event_loop(self.loop) def new_task(self, coro): raise NotImplementedError def test_current_task_no_running_loop(self): self.assertIsNone(asyncio.current_task(loop=self.loop)) def test_current_task_no_running_loop_implicit(self): with self.assertRaises(RuntimeError): asyncio.current_task() def test_current_task_with_implicit_loop(self): async def coro(): self.assertIs(asyncio.current_task(loop=self.loop), task) self.assertIs(asyncio.current_task(None), task) self.assertIs(asyncio.current_task(), task) task = self.new_task(coro()) self.loop.run_until_complete(task) self.assertIsNone(asyncio.current_task(loop=self.loop)) class PyCurrentLoopTests(BaseCurrentLoopTests, test_utils.TestCase): def new_task(self, coro): return tasks._PyTask(coro, loop=self.loop) @unittest.skipUnless(hasattr(tasks, '_CTask'), 'requires the C _asyncio module') class CCurrentLoopTests(BaseCurrentLoopTests, test_utils.TestCase): def new_task(self, coro): return getattr(tasks, '_CTask')(coro, loop=self.loop) class GenericTaskTests(test_utils.TestCase): def test_future_subclass(self): self.assertTrue(issubclass(asyncio.Task, asyncio.Future)) @support.cpython_only def test_asyncio_module_compiled(self): # Because of circular imports it's easy to make _asyncio # module non-importable. This is a simple test that will # fail on systems where C modules were successfully compiled # (hence the test for _functools etc), but _asyncio somehow didn't. try: import _functools import _json import _pickle except ImportError: self.skipTest('C modules are not available') else: try: import _asyncio except ImportError: self.fail('_asyncio module is missing') class GatherTestsBase: def setUp(self): super().setUp() self.one_loop = self.new_test_loop() self.other_loop = self.new_test_loop() self.set_event_loop(self.one_loop, cleanup=False) def _run_loop(self, loop): while loop._ready: test_utils.run_briefly(loop) def _check_success(self, **kwargs): a, b, c = [self.one_loop.create_future() for i in range(3)] fut = asyncio.gather(*self.wrap_futures(a, b, c), **kwargs) cb = test_utils.MockCallback() fut.add_done_callback(cb) b.set_result(1) a.set_result(2) self._run_loop(self.one_loop) self.assertEqual(cb.called, False) self.assertFalse(fut.done()) c.set_result(3) self._run_loop(self.one_loop) cb.assert_called_once_with(fut) self.assertEqual(fut.result(), [2, 1, 3]) def test_success(self): self._check_success() self._check_success(return_exceptions=False) def test_result_exception_success(self): self._check_success(return_exceptions=True) def test_one_exception(self): a, b, c, d, e = [self.one_loop.create_future() for i in range(5)] fut = asyncio.gather(*self.wrap_futures(a, b, c, d, e)) cb = test_utils.MockCallback() fut.add_done_callback(cb) exc = ZeroDivisionError() a.set_result(1) b.set_exception(exc) self._run_loop(self.one_loop) self.assertTrue(fut.done()) cb.assert_called_once_with(fut) self.assertIs(fut.exception(), exc) # Does nothing c.set_result(3) d.cancel() e.set_exception(RuntimeError()) e.exception() def test_return_exceptions(self): a, b, c, d = [self.one_loop.create_future() for i in range(4)] fut = asyncio.gather(*self.wrap_futures(a, b, c, d), return_exceptions=True) cb = test_utils.MockCallback() fut.add_done_callback(cb) exc = ZeroDivisionError() exc2 = RuntimeError() b.set_result(1) c.set_exception(exc) a.set_result(3) self._run_loop(self.one_loop) self.assertFalse(fut.done()) d.set_exception(exc2) self._run_loop(self.one_loop) self.assertTrue(fut.done()) cb.assert_called_once_with(fut) self.assertEqual(fut.result(), [3, 1, exc, exc2]) def test_env_var_debug(self): code = '\n'.join(( 'import asyncio.coroutines', 'print(asyncio.coroutines._DEBUG)')) # Test with -E to not fail if the unit test was run with # PYTHONASYNCIODEBUG set to a non-empty string sts, stdout, stderr = assert_python_ok('-E', '-c', code) self.assertEqual(stdout.rstrip(), b'False') sts, stdout, stderr = assert_python_ok('-c', code, PYTHONASYNCIODEBUG='', PYTHONDEVMODE='') self.assertEqual(stdout.rstrip(), b'False') sts, stdout, stderr = assert_python_ok('-c', code, PYTHONASYNCIODEBUG='1', PYTHONDEVMODE='') self.assertEqual(stdout.rstrip(), b'True') sts, stdout, stderr = assert_python_ok('-E', '-c', code, PYTHONASYNCIODEBUG='1', PYTHONDEVMODE='') self.assertEqual(stdout.rstrip(), b'False') # -X dev sts, stdout, stderr = assert_python_ok('-E', '-X', 'dev', '-c', code) self.assertEqual(stdout.rstrip(), b'True') class FutureGatherTests(GatherTestsBase, test_utils.TestCase): def wrap_futures(self, *futures): return futures def _check_empty_sequence(self, seq_or_iter): asyncio.set_event_loop(self.one_loop) self.addCleanup(asyncio.set_event_loop, None) fut = asyncio.gather(*seq_or_iter) self.assertIsInstance(fut, asyncio.Future) self.assertIs(fut._loop, self.one_loop) self._run_loop(self.one_loop) self.assertTrue(fut.done()) self.assertEqual(fut.result(), []) with self.assertWarns(DeprecationWarning): fut = asyncio.gather(*seq_or_iter, loop=self.other_loop) self.assertIs(fut._loop, self.other_loop) def test_constructor_empty_sequence(self): self._check_empty_sequence([]) self._check_empty_sequence(()) self._check_empty_sequence(set()) self._check_empty_sequence(iter("")) def test_constructor_heterogenous_futures(self): fut1 = self.one_loop.create_future() fut2 = self.other_loop.create_future() with self.assertRaises(ValueError): asyncio.gather(fut1, fut2) with self.assertRaises(ValueError): with self.assertWarns(DeprecationWarning): asyncio.gather(fut1, loop=self.other_loop) def test_constructor_homogenous_futures(self): children = [self.other_loop.create_future() for i in range(3)] fut = asyncio.gather(*children) self.assertIs(fut._loop, self.other_loop) self._run_loop(self.other_loop) self.assertFalse(fut.done()) with self.assertWarns(DeprecationWarning): fut = asyncio.gather(*children, loop=self.other_loop) self.assertIs(fut._loop, self.other_loop) self._run_loop(self.other_loop) self.assertFalse(fut.done()) def test_one_cancellation(self): a, b, c, d, e = [self.one_loop.create_future() for i in range(5)] fut = asyncio.gather(a, b, c, d, e) cb = test_utils.MockCallback() fut.add_done_callback(cb) a.set_result(1) b.cancel() self._run_loop(self.one_loop) self.assertTrue(fut.done()) cb.assert_called_once_with(fut) self.assertFalse(fut.cancelled()) self.assertIsInstance(fut.exception(), asyncio.CancelledError) # Does nothing c.set_result(3) d.cancel() e.set_exception(RuntimeError()) e.exception() def test_result_exception_one_cancellation(self): a, b, c, d, e, f = [self.one_loop.create_future() for i in range(6)] fut = asyncio.gather(a, b, c, d, e, f, return_exceptions=True) cb = test_utils.MockCallback() fut.add_done_callback(cb) a.set_result(1) zde = ZeroDivisionError() b.set_exception(zde) c.cancel() self._run_loop(self.one_loop) self.assertFalse(fut.done()) d.set_result(3) e.cancel() rte = RuntimeError() f.set_exception(rte) res = self.one_loop.run_until_complete(fut) self.assertIsInstance(res[2], asyncio.CancelledError) self.assertIsInstance(res[4], asyncio.CancelledError) res[2] = res[4] = None self.assertEqual(res, [1, zde, None, 3, None, rte]) cb.assert_called_once_with(fut) class CoroutineGatherTests(GatherTestsBase, test_utils.TestCase): def setUp(self): super().setUp() asyncio.set_event_loop(self.one_loop) def wrap_futures(self, *futures): coros = [] for fut in futures: async def coro(fut=fut): return await fut coros.append(coro()) return coros def _gather(self, *args, **kwargs): async def coro(): return asyncio.gather(*args, **kwargs) return self.one_loop.run_until_complete(coro()) def test_constructor_loop_selection(self): async def coro(): return 'abc' gen1 = coro() gen2 = coro() fut = asyncio.gather(gen1, gen2) self.assertIs(fut._loop, self.one_loop) self.one_loop.run_until_complete(fut) self.set_event_loop(self.other_loop, cleanup=False) gen3 = coro() gen4 = coro() with self.assertWarns(DeprecationWarning): fut2 = asyncio.gather(gen3, gen4, loop=self.other_loop) self.assertIs(fut2._loop, self.other_loop) self.other_loop.run_until_complete(fut2) def test_duplicate_coroutines(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(s): return s c = coro('abc') with self.assertWarns(DeprecationWarning): fut = asyncio.gather(c, c, coro('def'), c, loop=self.one_loop) self._run_loop(self.one_loop) self.assertEqual(fut.result(), ['abc', 'abc', 'def', 'abc']) def test_cancellation_broadcast(self): # Cancelling outer() cancels all children. proof = 0 waiter = self.one_loop.create_future() async def inner(): nonlocal proof await waiter proof += 1 child1 = asyncio.ensure_future(inner(), loop=self.one_loop) child2 = asyncio.ensure_future(inner(), loop=self.one_loop) gatherer = None async def outer(): nonlocal proof, gatherer gatherer = asyncio.gather(child1, child2) await gatherer proof += 100 f = asyncio.ensure_future(outer(), loop=self.one_loop) test_utils.run_briefly(self.one_loop) self.assertTrue(f.cancel()) with self.assertRaises(asyncio.CancelledError): self.one_loop.run_until_complete(f) self.assertFalse(gatherer.cancel()) self.assertTrue(waiter.cancelled()) self.assertTrue(child1.cancelled()) self.assertTrue(child2.cancelled()) test_utils.run_briefly(self.one_loop) self.assertEqual(proof, 0) def test_exception_marking(self): # Test for the first line marked "Mark exception retrieved." async def inner(f): await f raise RuntimeError('should not be ignored') a = self.one_loop.create_future() b = self.one_loop.create_future() async def outer(): await asyncio.gather(inner(a), inner(b)) f = asyncio.ensure_future(outer(), loop=self.one_loop) test_utils.run_briefly(self.one_loop) a.set_result(None) test_utils.run_briefly(self.one_loop) b.set_result(None) test_utils.run_briefly(self.one_loop) self.assertIsInstance(f.exception(), RuntimeError) def test_issue46672(self): with mock.patch( 'asyncio.base_events.BaseEventLoop.call_exception_handler', ): async def coro(s): return s c = coro('abc') with self.assertRaises(TypeError): self._gather(c, {}) self._run_loop(self.one_loop) # NameError should not happen: self.one_loop.call_exception_handler.assert_not_called() class RunCoroutineThreadsafeTests(test_utils.TestCase): """Test case for asyncio.run_coroutine_threadsafe.""" def setUp(self): super().setUp() self.loop = asyncio.new_event_loop() self.set_event_loop(self.loop) # Will cleanup properly async def add(self, a, b, fail=False, cancel=False): """Wait 0.05 second and return a + b.""" await asyncio.sleep(0.05) if fail: raise RuntimeError("Fail!") if cancel: asyncio.current_task(self.loop).cancel() await asyncio.sleep(0) return a + b def target(self, fail=False, cancel=False, timeout=None, advance_coro=False): """Run add coroutine in the event loop.""" coro = self.add(1, 2, fail=fail, cancel=cancel) future = asyncio.run_coroutine_threadsafe(coro, self.loop) if advance_coro: # this is for test_run_coroutine_threadsafe_task_factory_exception; # otherwise it spills errors and breaks **other** unittests, since # 'target' is interacting with threads. # With this call, `coro` will be advanced, so that # CoroWrapper.__del__ won't do anything when asyncio tests run # in debug mode. self.loop.call_soon_threadsafe(coro.send, None) try: return future.result(timeout) finally: future.done() or future.cancel() def test_run_coroutine_threadsafe(self): """Test coroutine submission from a thread to an event loop.""" future = self.loop.run_in_executor(None, self.target) result = self.loop.run_until_complete(future) self.assertEqual(result, 3) def test_run_coroutine_threadsafe_with_exception(self): """Test coroutine submission from a thread to an event loop when an exception is raised.""" future = self.loop.run_in_executor(None, self.target, True) with self.assertRaises(RuntimeError) as exc_context: self.loop.run_until_complete(future) self.assertIn("Fail!", exc_context.exception.args) def test_run_coroutine_threadsafe_with_timeout(self): """Test coroutine submission from a thread to an event loop when a timeout is raised.""" callback = lambda: self.target(timeout=0) future = self.loop.run_in_executor(None, callback) with self.assertRaises(asyncio.TimeoutError): self.loop.run_until_complete(future) test_utils.run_briefly(self.loop) # Check that there's no pending task (add has been cancelled) for task in asyncio.all_tasks(self.loop): self.assertTrue(task.done()) def test_run_coroutine_threadsafe_task_cancelled(self): """Test coroutine submission from a thread to an event loop when the task is cancelled.""" callback = lambda: self.target(cancel=True) future = self.loop.run_in_executor(None, callback) with self.assertRaises(asyncio.CancelledError): self.loop.run_until_complete(future) def test_run_coroutine_threadsafe_task_factory_exception(self): """Test coroutine submission from a thread to an event loop when the task factory raise an exception.""" def task_factory(loop, coro): raise NameError run = self.loop.run_in_executor( None, lambda: self.target(advance_coro=True)) # Set exception handler callback = test_utils.MockCallback() self.loop.set_exception_handler(callback) # Set corrupted task factory self.addCleanup(self.loop.set_task_factory, self.loop.get_task_factory()) self.loop.set_task_factory(task_factory) # Run event loop with self.assertRaises(NameError) as exc_context: self.loop.run_until_complete(run) # Check exceptions self.assertEqual(len(callback.call_args_list), 1) (loop, context), kwargs = callback.call_args self.assertEqual(context['exception'], exc_context.exception) class SleepTests(test_utils.TestCase): def setUp(self): super().setUp() self.loop = asyncio.new_event_loop() self.set_event_loop(self.loop) def tearDown(self): self.loop.close() self.loop = None super().tearDown() def test_sleep_zero(self): result = 0 def inc_result(num): nonlocal result result += num async def coro(): self.loop.call_soon(inc_result, 1) self.assertEqual(result, 0) num = await asyncio.sleep(0, result=10) self.assertEqual(result, 1) # inc'ed by call_soon inc_result(num) # num should be 11 self.loop.run_until_complete(coro()) self.assertEqual(result, 11) def test_loop_argument_is_deprecated(self): # Remove test when loop argument is removed in Python 3.10 with self.assertWarns(DeprecationWarning): self.loop.run_until_complete(asyncio.sleep(0.01, loop=self.loop)) class WaitTests(test_utils.TestCase): def setUp(self): super().setUp() self.loop = asyncio.new_event_loop() self.set_event_loop(self.loop) def tearDown(self): self.loop.close() self.loop = None super().tearDown() def test_loop_argument_is_deprecated_in_wait(self): # Remove test when loop argument is removed in Python 3.10 with self.assertWarns(DeprecationWarning): self.loop.run_until_complete( asyncio.wait([coroutine_function()], loop=self.loop)) def test_loop_argument_is_deprecated_in_wait_for(self): # Remove test when loop argument is removed in Python 3.10 with self.assertWarns(DeprecationWarning): self.loop.run_until_complete( asyncio.wait_for(coroutine_function(), 0.01, loop=self.loop)) def test_coro_is_deprecated_in_wait(self): # Remove test when passing coros to asyncio.wait() is removed in 3.11 with self.assertWarns(DeprecationWarning): self.loop.run_until_complete( asyncio.wait([coroutine_function()])) task = self.loop.create_task(coroutine_function()) with self.assertWarns(DeprecationWarning): self.loop.run_until_complete( asyncio.wait([task, coroutine_function()])) class CompatibilityTests(test_utils.TestCase): # Tests for checking a bridge between old-styled coroutines # and async/await syntax def setUp(self): super().setUp() self.loop = asyncio.new_event_loop() self.set_event_loop(self.loop) def tearDown(self): self.loop.close() self.loop = None super().tearDown() def test_yield_from_awaitable(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro(): yield from asyncio.sleep(0) return 'ok' result = self.loop.run_until_complete(coro()) self.assertEqual('ok', result) def test_await_old_style_coro(self): with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro1(): return 'ok1' with self.assertWarns(DeprecationWarning): @asyncio.coroutine def coro2(): yield from asyncio.sleep(0) return 'ok2' async def inner(): return await asyncio.gather(coro1(), coro2()) result = self.loop.run_until_complete(inner()) self.assertEqual(['ok1', 'ok2'], result) def test_debug_mode_interop(self): # https://bugs.python.org/issue32636 code = textwrap.dedent(""" import asyncio async def native_coro(): pass @asyncio.coroutine def old_style_coro(): yield from native_coro() asyncio.run(old_style_coro()) """) assert_python_ok("-Wignore::DeprecationWarning", "-c", code, PYTHONASYNCIODEBUG="1") if __name__ == '__main__': unittest.main()
32.597384
105
0.587515
1542c04d163fe24f914047acb4e4d2eafe8162b8
1,897
py
Python
sc2env/play_four_towers_friendly_unit.py
khlam/sc2env
af0d181dd78b09e6bedda7b0e9c98064adb05641
[ "MIT" ]
1
2019-01-22T23:36:49.000Z
2019-01-22T23:36:49.000Z
sc2env/play_four_towers_friendly_unit.py
khlam/sc2env
af0d181dd78b09e6bedda7b0e9c98064adb05641
[ "MIT" ]
2
2019-07-19T21:28:57.000Z
2022-03-25T19:14:05.000Z
sc2env/play_four_towers_friendly_unit.py
khlam/sc2env
af0d181dd78b09e6bedda7b0e9c98064adb05641
[ "MIT" ]
1
2019-06-26T01:21:14.000Z
2019-06-26T01:21:14.000Z
import logging import argparse import os from importlib import import_module from abp.configs import NetworkConfig, ReinforceConfig, EvaluationConfig from abp.examples.pysc2.four_towers_friendly_units.hra import run_task def main(): parser = argparse.ArgumentParser() parser.add_argument( '-f', '--folder', help='The folder containing the config files', required=True ) parser.add_argument( '-m', '--map', help='Run the specified map', required=False ) parser.add_argument( '--eval', help="Run only evaluation task", dest='eval', action="store_true" ) parser.add_argument( '-r', '--render', help="Render task", dest='render', action="store_true" ) args = parser.parse_args() evaluation_config_path = os.path.join(args.folder, "evaluation.yml") evaluation_config = EvaluationConfig.load_from_yaml(evaluation_config_path) network_config_path = os.path.join(args.folder, "network.yml") network_config = NetworkConfig.load_from_yaml(network_config_path) reinforce_config_path = os.path.join(args.folder, "reinforce.yml") reinforce_config = ReinforceConfig.load_from_yaml(reinforce_config_path) map_name = args.map if map_name is None: print("You are traning the agent for the default map: ") print("FourTowersWithFriendlyUnitsFixedEnemiesFixedPosition") else: print("You are traning the agent for the map: ") print(map_name) #print(map_name) if args.eval: evaluation_config.training_episodes = 0 network_config.restore_network = True if args.render: evaluation_config.render = True run_task(evaluation_config, network_config, reinforce_config, map_name = map_name) return 0 if __name__ == '__main__': main()
26.347222
86
0.67475
cf20991a2a3dcc45aef48d49c68d275e3c69d8a5
154,023
py
Python
src/app.py
hubmapconsortium/entity-api
09caa5006a1de17a56d3fba21ef76a7480c374be
[ "MIT" ]
2
2021-11-02T20:35:44.000Z
2021-12-16T14:58:41.000Z
src/app.py
hubmapconsortium/entity-api
09caa5006a1de17a56d3fba21ef76a7480c374be
[ "MIT" ]
161
2019-11-13T16:47:02.000Z
2022-03-30T04:05:28.000Z
src/app.py
hubmapconsortium/entity-api
09caa5006a1de17a56d3fba21ef76a7480c374be
[ "MIT" ]
1
2021-12-03T17:24:45.000Z
2021-12-03T17:24:45.000Z
import collections import yaml from datetime import datetime from flask import Flask, g, jsonify, abort, request, Response, redirect, make_response from neo4j.exceptions import TransactionError import os import re import csv import requests import urllib.request from io import StringIO # Don't confuse urllib (Python native library) with urllib3 (3rd-party library, requests also uses urllib3) from requests.packages.urllib3.exceptions import InsecureRequestWarning from pathlib import Path import logging import json # Local modules import app_neo4j_queries import provenance from schema import schema_manager from schema import schema_errors # HuBMAP commons from hubmap_commons import string_helper from hubmap_commons import file_helper as hm_file_helper from hubmap_commons import neo4j_driver from hubmap_commons import globus_groups from hubmap_commons.hm_auth import AuthHelper from hubmap_commons.exceptions import HTTPException # Set logging fromat and level (default is warning) # All the API logging is forwarded to the uWSGI server and gets written into the log file `uwsgo-entity-api.log` # Log rotation is handled via logrotate on the host system with a configuration file # Do NOT handle log file and rotation via the Python logging to avoid issues with multi-worker processes logging.basicConfig(format='[%(asctime)s] %(levelname)s in %(module)s: %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S') logger = logging.getLogger(__name__) # Specify the absolute path of the instance folder and use the config file relative to the instance path app = Flask(__name__, instance_path=os.path.join(os.path.abspath(os.path.dirname(__file__)), 'instance'), instance_relative_config=True) app.config.from_pyfile('app.cfg') # Remove trailing slash / from URL base to avoid "//" caused by config with trailing slash app.config['UUID_API_URL'] = app.config['UUID_API_URL'].strip('/') app.config['INGEST_API_URL'] = app.config['INGEST_API_URL'].strip('/') app.config['SEARCH_API_URL'] = app.config['SEARCH_API_URL'].strip('/') # Suppress InsecureRequestWarning warning when requesting status on https with ssl cert verify disabled requests.packages.urllib3.disable_warnings(category = InsecureRequestWarning) #################################################################################################### ## Register error handlers #################################################################################################### # Error handler for 400 Bad Request with custom error message @app.errorhandler(400) def http_bad_request(e): return jsonify(error=str(e)), 400 # Error handler for 401 Unauthorized with custom error message @app.errorhandler(401) def http_unauthorized(e): return jsonify(error=str(e)), 401 # Error handler for 403 Forbidden with custom error message @app.errorhandler(403) def http_forbidden(e): return jsonify(error=str(e)), 403 # Error handler for 404 Not Found with custom error message @app.errorhandler(404) def http_not_found(e): return jsonify(error=str(e)), 404 # Error handler for 500 Internal Server Error with custom error message @app.errorhandler(500) def http_internal_server_error(e): return jsonify(error=str(e)), 500 #################################################################################################### ## AuthHelper initialization #################################################################################################### # Initialize AuthHelper class and ensure singleton try: if AuthHelper.isInitialized() == False: auth_helper_instance = AuthHelper.create(app.config['APP_CLIENT_ID'], app.config['APP_CLIENT_SECRET']) logger.info("Initialized AuthHelper class successfully :)") else: auth_helper_instance = AuthHelper.instance() except Exception: msg = "Failed to initialize the AuthHelper class" # Log the full stack trace, prepend a line with our message logger.exception(msg) #################################################################################################### ## Neo4j connection initialization #################################################################################################### # The neo4j_driver (from commons package) is a singleton module # This neo4j_driver_instance will be used for application-specifc neo4j queries # as well as being passed to the schema_manager try: neo4j_driver_instance = neo4j_driver.instance(app.config['NEO4J_URI'], app.config['NEO4J_USERNAME'], app.config['NEO4J_PASSWORD']) logger.info("Initialized neo4j_driver module successfully :)") except Exception: msg = "Failed to initialize the neo4j_driver module" # Log the full stack trace, prepend a line with our message logger.exception(msg) """ Close the current neo4j connection at the end of every request """ @app.teardown_appcontext def close_neo4j_driver(error): if hasattr(g, 'neo4j_driver_instance'): # Close the driver instance neo4j_driver.close() # Also remove neo4j_driver_instance from Flask's application context g.neo4j_driver_instance = None #################################################################################################### ## Schema initialization #################################################################################################### try: # The schema_manager is a singleton module # Pass in auth_helper_instance, neo4j_driver instance, and file_upload_helper instance schema_manager.initialize(app.config['SCHEMA_YAML_FILE'], app.config['UUID_API_URL'], app.config['INGEST_API_URL'], app.config['SEARCH_API_URL'], auth_helper_instance, neo4j_driver_instance) logger.info("Initialized schema_manager module successfully :)") # Use a broad catch-all here except Exception: msg = "Failed to initialize the schema_manager module" # Log the full stack trace, prepend a line with our message logger.exception(msg) #################################################################################################### ## REFERENCE DOI Redirection #################################################################################################### ## Read tsv file with the REFERENCE entity redirects ## sets the reference_redirects dict which is used ## by the /redirect method below try: reference_redirects = {} url = app.config['REDIRECTION_INFO_URL'] response = requests.get(url) resp_txt = response.content.decode('utf-8') cr = csv.reader(resp_txt.splitlines(), delimiter='\t') first = True id_column = None redir_url_column = None for row in cr: if first: first = False header = row column = 0 for label in header: if label == 'hubmap_id': id_column = column if label == 'data_information_page': redir_url_column = column column = column + 1 if id_column is None: raise Exception(f"Column hubmap_id not found in {url}") if redir_url_column is None: raise Exception (f"Column data_information_page not found in {url}") else: reference_redirects[row[id_column].upper().strip()] = row[redir_url_column] rr = redirect('abc', code = 307) print(rr) except Exception: logger.exception("Failed to read tsv file with REFERENCE redirect information") #################################################################################################### ## Constants #################################################################################################### # For now, don't use the constants from commons # All lowercase for easy comparision ACCESS_LEVEL_PUBLIC = 'public' ACCESS_LEVEL_CONSORTIUM = 'consortium' ACCESS_LEVEL_PROTECTED = 'protected' DATASET_STATUS_PUBLISHED = 'published' COMMA_SEPARATOR = ',' #################################################################################################### ## API Endpoints #################################################################################################### """ The default route Returns ------- str A welcome message """ @app.route('/', methods = ['GET']) def index(): return "Hello! This is HuBMAP Entity API service :)" """ Show status of neo4j connection with the current VERSION and BUILD Returns ------- json A json containing the status details """ @app.route('/status', methods = ['GET']) def get_status(): status_data = { # Use strip() to remove leading and trailing spaces, newlines, and tabs 'version': (Path(__file__).absolute().parent.parent / 'VERSION').read_text().strip(), 'build': (Path(__file__).absolute().parent.parent / 'BUILD').read_text().strip(), 'neo4j_connection': False } # Don't use try/except here is_connected = app_neo4j_queries.check_connection(neo4j_driver_instance) if is_connected: status_data['neo4j_connection'] = True return jsonify(status_data) """ Retrieve the ancestor organ(s) of a given entity The gateway treats this endpoint as public accessible Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target entity (Dataset/Sample) Returns ------- json List of organs that are ancestors of the given entity - Only dataset entities can return multiple ancestor organs as Samples can only have one parent. - If no organ ancestors are found an empty list is returned - If requesting the ancestor organ of a Sample of type Organ or Donor/Collection/Upload a 400 response is returned. """ @app.route('/entities/<id>/ancestor-organs', methods = ['GET']) def get_ancestor_organs(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # A bit validation supported_entity_types = ['Sample', 'Dataset'] if normalized_entity_type not in supported_entity_types: bad_request_error(f"Unable to get the ancestor organs for this: {normalized_entity_type}, supported entity types: {COMMA_SEPARATOR.join(supported_entity_types)}") if normalized_entity_type == 'Sample' and entity_dict['specimen_type'].lower() == 'organ': bad_request_error("Unable to get the ancestor organ of an organ.") if normalized_entity_type == 'Dataset': # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) else: # The `data_access_level` of Sample can only be either 'public' or 'consortium' if entity_dict['data_access_level'] == ACCESS_LEVEL_CONSORTIUM: token = get_user_token(request, non_public_access_required = True) # By now, either the entity is public accessible or the user token has the correct access level organs = app_neo4j_queries.get_ancestor_organs(neo4j_driver_instance, entity_dict['uuid']) # Skip executing the trigger method to get Sample.direct_ancestor properties_to_skip = ['direct_ancestor'] complete_entities_list = schema_manager.get_complete_entities_list(token, organs, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Retrive the metadata information of a given entity by id The gateway treats this endpoint as public accessible Result filtering is supported based on query string For example: /entities/<id>?property=data_access_level Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target entity Returns ------- json All the properties or filtered property of the target entity """ @app.route('/entities/<id>', methods = ['GET']) def get_entity_by_id(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # Handle Collection retrieval using a different endpoint if normalized_entity_type == 'Collection': bad_request_error("Please use another API endpoint `/collections/<id>` to query a collection") if normalized_entity_type == 'Dataset': # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) elif normalized_entity_type == 'Upload': # Upload doesn't have 'data_access_level' property # Always require at least consortium group token for accessing Upload token = get_user_token(request, non_public_access_required = True) else: # The `data_access_level` of Donor/Sample can only be either 'public' or 'consortium' if entity_dict['data_access_level'] == ACCESS_LEVEL_CONSORTIUM: token = get_user_token(request, non_public_access_required = True) # By now, either the entity is public accessible or the user token has the correct access level # We'll need to return all the properties including those # generated by `on_read_trigger` to have a complete result # E.g., the 'next_revision_uuid' and 'previous_revision_uuid' being used below # On entity retrieval, the 'on_read_trigger' doesn't really need a token complete_dict = schema_manager.get_complete_entity_result(token, entity_dict) # Additional handlings on dataset revisions # The rule is that a revision can only be made against a published dataset, # so it should never occur that a consortium level revision is between two published revisions # However, the very last dataset revision can be non-published if normalized_entity_type == 'Dataset': # The `next_revision_uuid` is only availabe in complete_dict because it's generated by the 'on_read_trigger' property_to_pop = 'next_revision_uuid' # When the dataset is published but: # - The nexus token is valid but the user doesn't belong to HuBMAP-READ group # - Or the token is valid but doesn't contain group information (auth token or transfer token) # We need to remove the `next_revision_uuid` from response # Otherwise, we should send back the `next_revision_uuid` (if exists) when the member belongs to HuBMAP-Read group if entity_dict['status'].lower() == DATASET_STATUS_PUBLISHED: if not user_in_hubmap_read_group(request): if property_to_pop in complete_dict: revision_entity_dict = query_target_entity(complete_dict[property_to_pop], token) # Remove the property from the resulting complete_dict # if the revision is not published if revision_entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: complete_dict.pop(property_to_pop) # Non-published dataset can NOT have next revisions else: if property_to_pop in complete_dict: # Remove the `next_revision_uuid` from response if it ever exists complete_dict.pop(property_to_pop) # Also normalize the result based on schema final_result = schema_manager.normalize_entity_result_for_response(complete_dict) # Result filtering based on query string # The `data_access_level` property is available in all entities Donor/Sample/Dataset # and this filter is being used by gateway to check the data_access_level for file assets # The `status` property is only available in Dataset and being used by search-api for revision result_filtering_accepted_property_keys = ['data_access_level', 'status'] if bool(request.args): property_key = request.args.get('property') if property_key is not None: # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") if property_key == 'status' and normalized_entity_type != 'Dataset': bad_request_error(f"Only Dataset supports 'status' property key in the query string") # Response with the property value directly # Don't use jsonify() on string value return complete_dict[property_key] else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") else: # Response with the dict return jsonify(final_result) """ Retrive the full tree above the referenced entity and build the provenance document The gateway treats this endpoint as public accessible Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target entity Returns ------- json All the provenance details associated with this entity """ @app.route('/entities/<id>/provenance', methods = ['GET']) def get_entity_provenance(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) uuid = entity_dict['uuid'] normalized_entity_type = entity_dict['entity_type'] # A bit validation to prevent Lab or Collection being queried supported_entity_types = ['Donor', 'Sample', 'Dataset'] if normalized_entity_type not in supported_entity_types: bad_request_error(f"Unable to get the provenance for this {normalized_entity_type}, supported entity types: {COMMA_SEPARATOR.join(supported_entity_types)}") if normalized_entity_type == 'Dataset': # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) else: # The `data_access_level` of Donor/Sample can only be either 'public' or 'consortium' if entity_dict['data_access_level'] == ACCESS_LEVEL_CONSORTIUM: token = get_user_token(request, non_public_access_required = True) # By now, either the entity is public accessible or the user token has the correct access level # Will just proceed to get the provenance information # Get the `depth` from query string if present and it's used by neo4j query # to set the maximum number of hops in the traversal depth = None if 'depth' in request.args: depth = int(request.args.get('depth')) # Convert neo4j json to dict neo4j_result = app_neo4j_queries.get_provenance(neo4j_driver_instance, uuid, depth) raw_provenance_dict = dict(neo4j_result['json']) # Normalize the raw provenance nodes based on the yaml schema normalized_provenance_dict = { 'relationships': raw_provenance_dict['relationships'], 'nodes': [] } for node_dict in raw_provenance_dict['nodes']: # The schema yaml doesn't handle Lab nodes, just leave it as is if (node_dict['label'] == 'Entity') and (node_dict['entity_type'] != 'Lab'): # Generate trigger data # Skip some of the properties that are time-consuming to generate via triggers: # director_ancestor for Sample, and direct_ancestors for Dataset # Also skip next_revision_uuid and previous_revision_uuid for Dataset to avoid additional # checks when the target Dataset is public but the revisions are not public properties_to_skip = [ 'direct_ancestors', 'direct_ancestor', 'next_revision_uuid', 'previous_revision_uuid' ] # We'll need to return all the properties (except the ones to skip from above list) # including those generated by `on_read_trigger` to have a complete result # The 'on_read_trigger' doesn't really need a token complete_entity_dict = schema_manager.get_complete_entity_result(token, node_dict, properties_to_skip) # Filter out properties not defined or not to be exposed in the schema yaml normalized_entity_dict = schema_manager.normalize_entity_result_for_response(complete_entity_dict) # Now the node to be used by provenance is all regulated by the schema normalized_provenance_dict['nodes'].append(normalized_entity_dict) elif node_dict['label'] == 'Activity': # Normalize Activity nodes too normalized_activity_dict = schema_manager.normalize_activity_result_for_response(node_dict) normalized_provenance_dict['nodes'].append(normalized_activity_dict) else: # Skip Entity Lab nodes normalized_provenance_dict['nodes'].append(node_dict) provenance_json = provenance.get_provenance_history(uuid, normalized_provenance_dict) # Response with the provenance details return Response(response = provenance_json, mimetype = "application/json") """ Show all the supported entity types The gateway treats this endpoint as public accessible Returns ------- json A list of all the available entity types defined in the schema yaml """ @app.route('/entity-types', methods = ['GET']) def get_entity_types(): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) return jsonify(schema_manager.get_all_entity_types()) """ Retrive all the entity nodes for a given entity type Result filtering is supported based on query string For example: /<entity_type>/entities?property=uuid Parameters ---------- entity_type : str One of the supported entity types: Dataset, Sample, Donor Will handle Collection via API endpoint `/collections` Returns ------- json All the entity nodes in a list of the target entity type """ @app.route('/<entity_type>/entities', methods = ['GET']) def get_entities_by_type(entity_type): final_result = [] # Normalize user provided entity_type normalized_entity_type = schema_manager.normalize_entity_type(entity_type) # Validate the normalized_entity_type to ensure it's one of the accepted types try: schema_manager.validate_normalized_entity_type(normalized_entity_type) except schema_errors.InvalidNormalizedEntityTypeException as e: bad_request_error("Invalid entity type provided: " + entity_type) # Handle Collections retrieval using a different endpoint if normalized_entity_type == 'Collection': bad_request_error("Please use another API endpoint `/collections` to query collections") # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_entities_by_type(neo4j_driver_instance, normalized_entity_type, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: # Get user token from Authorization header # Currently the Gateway requires a token for this endpoint user_token = get_user_token(request) # Get back a list of entity dicts for the given entity type entities_list = app_neo4j_queries.get_entities_by_type(neo4j_driver_instance, normalized_entity_type) # Generate trigger data and merge into a big dict # Skip some of the properties that are time-consuming to generate via triggers # direct_ancestor for Sample, direct_ancestors/collections/upload for Dataset, # datasets for Upload properties_to_skip = [ 'direct_ancestor', 'direct_ancestors', 'collections', 'upload', 'datasets' ] complete_entities_list = schema_manager.get_complete_entities_list(user_token, entities_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) # Response with the final result return jsonify(final_result) """ Retrive the collection detail by id The gateway treats this endpoint as public accessible An optional Globus nexus token can be provided in a standard Authentication Bearer header. If a valid token is provided with group membership in the HuBMAP-Read group any collection matching the id will be returned. otherwise if no token is provided or a valid token with no HuBMAP-Read group membership then only a public collection will be returned. Public collections are defined as being published via a DOI (collection.registered_doi not null) and at least one of the connected datasets is public (dataset.status == 'Published'). For public collections only connected datasets that are public are returned with it. Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target collection Returns ------- json The collection detail with a list of connected datasets (only public datasets if user doesn't have the right access permission) """ @app.route('/collections/<id>', methods = ['GET']) def get_collection(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target collection # since public collections don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists collection_dict = query_target_entity(id, token) # A bit validation if collection_dict['entity_type'] != 'Collection': bad_request_error("Target entity of the given id is not a collection") # Try to get user token from Authorization header # It's highly possible that there's no token provided user_token = get_user_token(request) # The user_token is flask.Response on error # Without token, the user can only access public collections, modify the collection result # by only returning public datasets attached to this collection if isinstance(user_token, Response): # When the requested collection is not public, send back 401 if ('registered_doi' not in collection_dict) or ('doi_url' not in collection_dict): # Require a valid token in this case unauthorized_error("The reqeusted collection is not public, a Globus token with the right access permission is required.") # Otherwise only return the public datasets attached to this collection # for Collection.datasets property complete_dict = get_complete_public_collection_dict(collection_dict) else: # When the nexus token is valid, but the user doesn't belong to HuBMAP-READ group # Or the token is valid but doesn't contain group information (auth token or transfer token) # Only return the public datasets attached to this Collection if not user_in_hubmap_read_group(request): complete_dict = get_complete_public_collection_dict(collection_dict) else: # We'll need to return all the properties including those # generated by `on_read_trigger` to have a complete result complete_dict = schema_manager.get_complete_entity_result(user_token, collection_dict) # Will also filter the result based on schema normalized_complete_dict = schema_manager.normalize_entity_result_for_response(complete_dict) # Response with the final result return jsonify(normalized_complete_dict) """ Retrive all the public collections The gateway treats this endpoint as public accessible Result filtering is supported based on query string For example: /collections?property=uuid Only return public collections, for either - a valid token in HuBMAP-Read group, - a valid token with no HuBMAP-Read group or - no token at all Public collections are defined as being published via a DOI (collection.registered_doi is not null) and at least one of the connected datasets is published (dataset.status == 'Published'). For public collections only connected datasets that are published are returned with it. Returns ------- json A list of all the public collection dictionaries (with attached public datasts) """ @app.route('/collections', methods = ['GET']) def get_collections(): final_result = [] # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) normalized_entity_type = 'Collection' # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each public collection final_result = app_neo4j_queries.get_public_collections(neo4j_driver_instance, property_key) else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: # Use the internal token since no user token is requried to access public collections token = get_internal_token() # Get back a list of public collections dicts collections_list = app_neo4j_queries.get_public_collections(neo4j_driver_instance) # Modify the Collection.datasets property for each collection dict # to contain only public datasets for collection_dict in collections_list: # Only return the public datasets attached to this collection for Collection.datasets property collection_dict = get_complete_public_collection_dict(collection_dict) # Generate trigger data and merge into a big dict # and skip some of the properties that are time-consuming to generate via triggers properties_to_skip = ['datasets'] complete_collections_list = schema_manager.get_complete_entities_list(token, collections_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_collections_list) # Response with the final result return jsonify(final_result) """ Create an entity of the target type in neo4j Parameters ---------- entity_type : str One of the target entity types (case-insensitive since will be normalized): Dataset, Donor, Sample, Upload Returns ------- json All the properties of the newly created entity """ @app.route('/entities/<entity_type>', methods = ['POST']) def create_entity(entity_type): # Get user token from Authorization header user_token = get_user_token(request) # Normalize user provided entity_type normalized_entity_type = schema_manager.normalize_entity_type(entity_type) # Validate the normalized_entity_type to make sure it's one of the accepted types try: schema_manager.validate_normalized_entity_type(normalized_entity_type) except schema_errors.InvalidNormalizedEntityTypeException as e: bad_request_error(f"Invalid entity type provided: {entity_type}") # Execute entity level validator defined in schema yaml before entity creation # Currently on Dataset and Upload creation require application header try: schema_manager.execute_entity_level_validator('before_entity_create_validator', normalized_entity_type, request) except schema_errors.MissingApplicationHeaderException as e: bad_request_error(e) except schema_errors.InvalidApplicationHeaderException as e: bad_request_error(e) # Always expect a json body require_json(request) # Parse incoming json string into json data(python dict object) json_data_dict = request.get_json() # Validate request json against the yaml schema try: schema_manager.validate_json_data_against_schema(json_data_dict, normalized_entity_type) except schema_errors.SchemaValidationException as e: # No need to log the validation errors bad_request_error(str(e)) # Execute property level validators defined in schema yaml before entity property creation # Use empty dict {} to indicate there's no existing_data_dict try: schema_manager.execute_property_level_validators('before_property_create_validators', normalized_entity_type, request, {}, json_data_dict) # Currently only ValueError except ValueError as e: bad_request_error(e) # Sample and Dataset: additional validation, create entity, after_create_trigger # Collection and Donor: create entity if normalized_entity_type == 'Sample': # A bit more validation to ensure if `organ` code is set, the `specimen_type` must be set to "organ" # Vise versa, if `specimen_type` is set to "organ", `organ` code is required if ('specimen_type' in json_data_dict) and (json_data_dict['specimen_type'].lower() == 'organ'): if ('organ' not in json_data_dict) or (json_data_dict['organ'].strip() == ''): bad_request_error("A valid organ code is required when the specimen_type is organ") else: if 'organ' in json_data_dict: bad_request_error("The specimen_type must be organ when an organ code is provided") # A bit more validation for new sample to be linked to existing source entity direct_ancestor_uuid = json_data_dict['direct_ancestor_uuid'] # Check existence of the direct ancestor (either another Sample or Donor) direct_ancestor_dict = query_target_entity(direct_ancestor_uuid, user_token) # Creating the ids require organ code to be specified for the samples to be created when the # sample's direct ancestor is a Donor. # Must be one of the codes from: https://github.com/hubmapconsortium/search-api/blob/test-release/src/search-schema/data/definitions/enums/organ_types.yaml if direct_ancestor_dict['entity_type'] == 'Donor': # `specimen_type` is required on create if json_data_dict['specimen_type'].lower() != 'organ': bad_request_error("The specimen_type must be organ since the direct ancestor is a Donor") # Currently we don't validate the provided organ code though if ('organ' not in json_data_dict) or (json_data_dict['organ'].strip() == ''): bad_request_error("A valid organ code is required when the direct ancestor is a Donor") # Generate 'before_create_triiger' data and create the entity details in Neo4j merged_dict = create_entity_details(request, normalized_entity_type, user_token, json_data_dict) elif normalized_entity_type == 'Dataset': # `direct_ancestor_uuids` is required for creating new Dataset # Check existence of those direct ancestors for direct_ancestor_uuid in json_data_dict['direct_ancestor_uuids']: direct_ancestor_dict = query_target_entity(direct_ancestor_uuid, user_token) # Also check existence of the previous revision dataset if specified if 'previous_revision_uuid' in json_data_dict: previous_version_dict = query_target_entity(json_data_dict['previous_revision_uuid'], user_token) # Make sure the previous version entity is either a Dataset or Sample if previous_version_dict['entity_type'] not in ['Dataset', 'Sample']: bad_request_error(f"The previous_revision_uuid specified for this dataset must be either a Dataset or Sample") # Also need to validate if the given 'previous_revision_uuid' has already had # an exisiting next revision # Only return a list of the uuids, no need to get back the list of dicts next_revisions_list = app_neo4j_queries.get_next_revisions(neo4j_driver_instance, previous_version_dict['uuid'], 'uuid') # As long as the list is not empty, tell the users to use a different 'previous_revision_uuid' if next_revisions_list: bad_request_error(f"The previous_revision_uuid specified for this dataset has already had a next revision") # Only published datasets can have revisions made of them. Verify that that status of the Dataset specified # by previous_revision_uuid is published. Else, bad request error. if previous_version_dict['status'].lower() != DATASET_STATUS_PUBLISHED: bad_request_error(f"The previous_revision_uuid specified for this dataset must be 'Published' in order to create a new revision from it") # Generate 'before_create_triiger' data and create the entity details in Neo4j merged_dict = create_entity_details(request, normalized_entity_type, user_token, json_data_dict) else: # Generate 'before_create_triiger' data and create the entity details in Neo4j merged_dict = create_entity_details(request, normalized_entity_type, user_token, json_data_dict) # For Donor: link to parent Lab node # For Sample: link to existing direct ancestor # For Dataset: link to direct ancestors # For Upload: link to parent Lab node after_create(normalized_entity_type, user_token, merged_dict) # We'll need to return all the properties including those # generated by `on_read_trigger` to have a complete result complete_dict = schema_manager.get_complete_entity_result(user_token, merged_dict) # Will also filter the result based on schema normalized_complete_dict = schema_manager.normalize_entity_result_for_response(complete_dict) # Also index the new entity node in elasticsearch via search-api reindex_entity(complete_dict['uuid'], user_token) return jsonify(normalized_complete_dict) """ Create multiple samples from the same source entity Parameters ---------- count : str The number of samples to be created Returns ------- json All the properties of the newly created entity """ @app.route('/entities/multiple-samples/<count>', methods = ['POST']) def create_multiple_samples(count): # Get user token from Authorization header user_token = get_user_token(request) # Normalize user provided entity_type normalized_entity_type = 'Sample' # Always expect a json body require_json(request) # Parse incoming json string into json data(python dict object) json_data_dict = request.get_json() # Validate request json against the yaml schema try: schema_manager.validate_json_data_against_schema(json_data_dict, normalized_entity_type) except schema_errors.SchemaValidationException as e: # No need to log the validation errors bad_request_error(str(e)) # `direct_ancestor_uuid` is required on create # Check existence of the direct ancestor (either another Sample or Donor) direct_ancestor_dict = query_target_entity(json_data_dict['direct_ancestor_uuid'], user_token) # Creating the ids require organ code to be specified for the samples to be created when the # sample's direct ancestor is a Donor. # Must be one of the codes from: https://github.com/hubmapconsortium/search-api/blob/test-release/src/search-schema/data/definitions/enums/organ_types.yaml if direct_ancestor_dict['entity_type'] == 'Donor': # `specimen_type` is required on create if json_data_dict['specimen_type'].lower() != 'organ': bad_request_error("The specimen_type must be organ since the direct ancestor is a Donor") # Currently we don't validate the provided organ code though if ('organ' not in json_data_dict) or (not json_data_dict['organ']): bad_request_error("A valid organ code is required since the direct ancestor is a Donor") # Generate 'before_create_triiger' data and create the entity details in Neo4j generated_ids_dict_list = create_multiple_samples_details(request, normalized_entity_type, user_token, json_data_dict, count) # Also index the each new Sample node in elasticsearch via search-api for id_dict in generated_ids_dict_list: reindex_entity(id_dict['uuid'], user_token) return jsonify(generated_ids_dict_list) """ Update the properties of a given entity, no Collection stuff Parameters ---------- entity_type : str One of the normalized entity types: Dataset, Collection, Sample, Donor id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target entity Returns ------- json All the updated properties of the target entity """ @app.route('/entities/<id>', methods = ['PUT']) def update_entity(id): # Get user token from Authorization header user_token = get_user_token(request) # Always expect a json body require_json(request) # Parse incoming json string into json data(python dict object) json_data_dict = request.get_json() # Get target entity and return as a dict if exists entity_dict = query_target_entity(id, user_token) # Normalize user provided entity_type normalized_entity_type = schema_manager.normalize_entity_type(entity_dict['entity_type']) # Note, we don't support entity level validators on entity update via PUT # Only entity create via POST is supported at the entity level # Validate request json against the yaml schema # Pass in the entity_dict for missing required key check, this is different from creating new entity try: schema_manager.validate_json_data_against_schema(json_data_dict, normalized_entity_type, existing_entity_dict = entity_dict) except schema_errors.SchemaValidationException as e: # No need to log the validation errors bad_request_error(str(e)) # Execute property level validators defined in schema yaml before entity property update try: schema_manager.execute_property_level_validators('before_property_update_validators', normalized_entity_type, request, entity_dict, json_data_dict) except (schema_errors.MissingApplicationHeaderException, schema_errors.InvalidApplicationHeaderException, KeyError, ValueError) as e: bad_request_error(e) # Sample, Dataset, and Upload: additional validation, update entity, after_update_trigger # Collection and Donor: update entity if normalized_entity_type == 'Sample': # A bit more validation for updating the sample and the linkage to existing source entity has_direct_ancestor_uuid = False if ('direct_ancestor_uuid' in json_data_dict) and json_data_dict['direct_ancestor_uuid']: has_direct_ancestor_uuid = True direct_ancestor_uuid = json_data_dict['direct_ancestor_uuid'] # Check existence of the source entity direct_ancestor_dict = query_target_entity(direct_ancestor_uuid, user_token) # Also make sure it's either another Sample or a Donor if direct_ancestor_dict['entity_type'] not in ['Donor', 'Sample']: bad_request_error(f"The uuid: {direct_ancestor_uuid} is not a Donor neither a Sample, cannot be used as the direct ancestor of this Sample") # Generate 'before_update_triiger' data and update the entity details in Neo4j merged_updated_dict = update_entity_details(request, normalized_entity_type, user_token, json_data_dict, entity_dict) # Handle linkages update via `after_update_trigger` methods if has_direct_ancestor_uuid: after_update(normalized_entity_type, user_token, merged_updated_dict) elif normalized_entity_type == 'Dataset': # A bit more validation if `direct_ancestor_uuids` provided has_direct_ancestor_uuids = False if ('direct_ancestor_uuids' in json_data_dict) and (json_data_dict['direct_ancestor_uuids']): has_direct_ancestor_uuids = True # Check existence of those source entities for direct_ancestor_uuid in json_data_dict['direct_ancestor_uuids']: direct_ancestor_dict = query_target_entity(direct_ancestor_uuid, user_token) # Generate 'before_update_trigger' data and update the entity details in Neo4j merged_updated_dict = update_entity_details(request, normalized_entity_type, user_token, json_data_dict, entity_dict) # Handle linkages update via `after_update_trigger` methods if has_direct_ancestor_uuids: after_update(normalized_entity_type, user_token, merged_updated_dict) elif normalized_entity_type == 'Upload': has_dataset_uuids_to_link = False if ('dataset_uuids_to_link' in json_data_dict) and (json_data_dict['dataset_uuids_to_link']): has_dataset_uuids_to_link = True # Check existence of those datasets to be linked # If one of the datasets to be linked appears to be already linked, # neo4j query won't create the new linkage due to the use of `MERGE` for dataset_uuid in json_data_dict['dataset_uuids_to_link']: dataset_dict = query_target_entity(dataset_uuid, user_token) # Also make sure it's a Dataset if dataset_dict['entity_type'] != 'Dataset': bad_request_error(f"The uuid: {dataset_uuid} is not a Dataset, cannot be linked to this Upload") has_dataset_uuids_to_unlink = False if ('dataset_uuids_to_unlink' in json_data_dict) and (json_data_dict['dataset_uuids_to_unlink']): has_dataset_uuids_to_unlink = True # Check existence of those datasets to be unlinked # If one of the datasets to be unlinked appears to be not linked at all, # the neo4j cypher will simply skip it because it won't match the "MATCH" clause # So no need to tell the end users that this dataset is not linked # Let alone checking the entity type to ensure it's a Dataset for dataset_uuid in json_data_dict['dataset_uuids_to_unlink']: dataset_dict = query_target_entity(dataset_uuid, user_token) # Generate 'before_update_trigger' data and update the entity details in Neo4j merged_updated_dict = update_entity_details(request, normalized_entity_type, user_token, json_data_dict, entity_dict) # Handle linkages update via `after_update_trigger` methods if has_dataset_uuids_to_link or has_dataset_uuids_to_unlink: after_update(normalized_entity_type, user_token, merged_updated_dict) else: # Generate 'before_update_triiger' data and update the entity details in Neo4j merged_updated_dict = update_entity_details(request, normalized_entity_type, user_token, json_data_dict, entity_dict) # We'll need to return all the properties including those # generated by `on_read_trigger` to have a complete result complete_dict = schema_manager.get_complete_entity_result(user_token, merged_updated_dict) # Will also filter the result based on schema normalized_complete_dict = schema_manager.normalize_entity_result_for_response(complete_dict) # How to handle reindex collection? # Also reindex the updated entity node in elasticsearch via search-api reindex_entity(entity_dict['uuid'], user_token) return jsonify(normalized_complete_dict) """ Get all ancestors of the given entity The gateway treats this endpoint as public accessible Result filtering based on query string For example: /ancestors/<id>?property=uuid Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json A list of all the ancestors of the target entity """ @app.route('/ancestors/<id>', methods = ['GET']) def get_ancestors(id): final_result = [] # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Make sure the id exists in uuid-api and # the corresponding entity also exists in neo4j entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] uuid = entity_dict['uuid'] # Collection doesn't have ancestors via Activity nodes if normalized_entity_type == 'Collection': bad_request_error(f"Unsupported entity type of id {id}: {normalized_entity_type}") if normalized_entity_type == 'Dataset': # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) elif normalized_entity_type == 'Sample': # The `data_access_level` of Sample can only be either 'public' or 'consortium' if entity_dict['data_access_level'] == ACCESS_LEVEL_CONSORTIUM: token = get_user_token(request, non_public_access_required = True) else: # Donor and Upload will always get back an empty list # becuase their direct ancestor is Lab, which is being skipped by Neo4j query # So no need to execute the code below return jsonify(final_result) # By now, either the entity is public accessible or the user token has the correct access level # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_ancestors(neo4j_driver_instance, uuid, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: ancestors_list = app_neo4j_queries.get_ancestors(neo4j_driver_instance, uuid) # Generate trigger data # Skip some of the properties that are time-consuming to generate via triggers: # director_ancestor for Sample, direct_ancestors/collections/upload for Dataset # Also skip next_revision_uuid and previous_revision_uuid for Dataset to avoid additional # checks when the target Dataset is public but the revisions are not public properties_to_skip = [ 'direct_ancestor', 'direct_ancestors', 'collections', 'upload', 'next_revision_uuid', 'previous_revision_uuid' ] complete_entities_list = schema_manager.get_complete_entities_list(token, ancestors_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Get all descendants of the given entity Result filtering based on query string For example: /descendants/<id>?property=uuid Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json A list of all the descendants of the target entity """ @app.route('/descendants/<id>', methods = ['GET']) def get_descendants(id): final_result = [] # Get user token from Authorization header user_token = get_user_token(request) # Make sure the id exists in uuid-api and # the corresponding entity also exists in neo4j entity_dict = query_target_entity(id, user_token) uuid = entity_dict['uuid'] # Collection and Upload don't have descendants via Activity nodes # No need to check, it'll always return empty list # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_descendants(neo4j_driver_instance, uuid, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: descendants_list = app_neo4j_queries.get_descendants(neo4j_driver_instance, uuid) # Generate trigger data and merge into a big dict # and skip some of the properties that are time-consuming to generate via triggers # director_ancestor for Sample, and # direct_ancestors/collections/upload/next_revision_uuid/previous_revision_uuid for Dataset properties_to_skip = [ 'direct_ancestor', 'direct_ancestors', 'collections', 'upload', 'next_revision_uuid', 'previous_revision_uuid' ] complete_entities_list = schema_manager.get_complete_entities_list(user_token, descendants_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Get all parents of the given entity The gateway treats this endpoint as public accessible Result filtering based on query string For example: /parents/<id>?property=uuid Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json A list of all the parents of the target entity """ @app.route('/parents/<id>', methods = ['GET']) def get_parents(id): final_result = [] # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Make sure the id exists in uuid-api and # the corresponding entity also exists in neo4j entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] uuid = entity_dict['uuid'] # Collection doesn't have ancestors via Activity nodes if normalized_entity_type == 'Collection': bad_request_error(f"Unsupported entity type of id {id}: {normalized_entity_type}") if normalized_entity_type == 'Dataset': # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) elif normalized_entity_type == 'Sample': # The `data_access_level` of Sample can only be either 'public' or 'consortium' if entity_dict['data_access_level'] == ACCESS_LEVEL_CONSORTIUM: token = get_user_token(request, non_public_access_required = True) else: # Donor and Upload will always get back an empty list # becuase their direct ancestor is Lab, which is being skipped by Neo4j query # So no need to execute the code below return jsonify(final_result) # By now, either the entity is public accessible or the user token has the correct access level # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_parents(neo4j_driver_instance, uuid, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: parents_list = app_neo4j_queries.get_parents(neo4j_driver_instance, uuid) # Generate trigger data # Skip some of the properties that are time-consuming to generate via triggers: # director_ancestor for Sample, direct_ancestors/collections/upload for Dataset # Also skip next_revision_uuid and previous_revision_uuid for Dataset to avoid additional # checks when the target Dataset is public but the revisions are not public properties_to_skip = [ 'direct_ancestor', 'direct_ancestors', 'collections', 'upload', 'next_revision_uuid', 'previous_revision_uuid' ] complete_entities_list = schema_manager.get_complete_entities_list(token, parents_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Get all chilren of the given entity Result filtering based on query string For example: /children/<id>?property=uuid Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json A list of all the children of the target entity """ @app.route('/children/<id>', methods = ['GET']) def get_children(id): final_result = [] # Get user token from Authorization header user_token = get_user_token(request) # Make sure the id exists in uuid-api and # the corresponding entity also exists in neo4j entity_dict = query_target_entity(id, user_token) uuid = entity_dict['uuid'] # Collection and Upload don't have children via Activity nodes # No need to check, it'll always return empty list # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_children(neo4j_driver_instance, uuid, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: children_list = app_neo4j_queries.get_children(neo4j_driver_instance, uuid) # Generate trigger data and merge into a big dict # and skip some of the properties that are time-consuming to generate via triggers # director_ancestor for Sample, and # direct_ancestors/collections/upload/next_revision_uuid/previous_revision_uuid for Dataset properties_to_skip = [ 'direct_ancestor', 'direct_ancestors', 'collections', 'upload', 'next_revision_uuid', 'previous_revision_uuid' ] complete_entities_list = schema_manager.get_complete_entities_list(user_token, children_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Get all previous revisions of the given entity Result filtering based on query string For example: /previous_revisions/<id>?property=uuid Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json A list of entities that are the previous revisions of the target entity """ @app.route('/previous_revisions/<id>', methods = ['GET']) def get_previous_revisions(id): # Get user token from Authorization header user_token = get_user_token(request) # Make sure the id exists in uuid-api and # the corresponding entity also exists in neo4j entity_dict = query_target_entity(id, user_token) uuid = entity_dict['uuid'] # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_previous_revisions(neo4j_driver_instance, uuid, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: descendants_list = app_neo4j_queries.get_previous_revisions(neo4j_driver_instance, uuid) # Generate trigger data and merge into a big dict # and skip some of the properties that are time-consuming to generate via triggers # datasts for Collection, director_ancestor for Sample, and direct_ancestors for Dataset properties_to_skip = ['collections', 'upload', 'direct_ancestors'] complete_entities_list = schema_manager.get_complete_entities_list(user_token, descendants_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Get all next revisions of the given entity Result filtering based on query string For example: /next_revisions/<id>?property=uuid Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json A list of entities that are the next revisions of the target entity """ @app.route('/next_revisions/<id>', methods = ['GET']) def get_next_revisions(id): # Get user token from Authorization header user_token = get_user_token(request) # Make sure the id exists in uuid-api and # the corresponding entity also exists in neo4j entity_dict = query_target_entity(id, user_token) uuid = entity_dict['uuid'] # Result filtering based on query string if bool(request.args): property_key = request.args.get('property') if property_key is not None: result_filtering_accepted_property_keys = ['uuid'] # Validate the target property if property_key not in result_filtering_accepted_property_keys: bad_request_error(f"Only the following property keys are supported in the query string: {COMMA_SEPARATOR.join(result_filtering_accepted_property_keys)}") # Only return a list of the filtered property value of each entity property_list = app_neo4j_queries.get_next_revisions(neo4j_driver_instance, uuid, property_key) # Final result final_result = property_list else: bad_request_error("The specified query string is not supported. Use '?property=<key>' to filter the result") # Return all the details if no property filtering else: descendants_list = app_neo4j_queries.get_next_revisions(neo4j_driver_instance, uuid) # Generate trigger data and merge into a big dict # and skip some of the properties that are time-consuming to generate via triggers # datasts for Collection, director_ancestor for Sample, and direct_ancestors for Dataset properties_to_skip = ['collections', 'upload', 'direct_ancestors'] complete_entities_list = schema_manager.get_complete_entities_list(user_token, descendants_list, properties_to_skip) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Link the given list of datasets to the target collection JSON request body example: { "dataset_uuids": [ "fb6757b606ac35be7fa85062fde9c2e1", "81a9fa68b2b4ea3e5f7cb17554149473", "3ac0768d61c6c84f0ec59d766e123e05", "0576b972e074074b4c51a61c3d17a6e3" ] } Parameters ---------- collection_uuid : str The UUID of target collection Returns ------- json JSON string containing a success message with 200 status code """ @app.route('/collections/<collection_uuid>/add-datasets', methods = ['PUT']) def add_datasets_to_collection(collection_uuid): # Get user token from Authorization header user_token = get_user_token(request) # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(collection_uuid, user_token) if entity_dict['entity_type'] != 'Collection': bad_request_error(f"The UUID provided in URL is not a Collection: {collection_uuid}") # Always expect a json body require_json(request) # Parse incoming json string into json data(python list object) json_data_dict = request.get_json() if 'dataset_uuids' not in json_data_dict: bad_request_error("Missing 'dataset_uuids' key in the request JSON.") if not json_data_dict['dataset_uuids']: bad_request_error("JSON field 'dataset_uuids' can not be empty list.") # Now we have a list of uuids dataset_uuids_list = json_data_dict['dataset_uuids'] # Make sure all the given uuids are datasets for dataset_uuid in dataset_uuids_list: entity_dict = query_target_entity(dataset_uuid, user_token) if entity_dict['entity_type'] != 'Dataset': bad_request_error(f"The UUID provided in JSON is not a Dataset: {dataset_uuid}") try: app_neo4j_queries.add_datasets_to_collection(neo4j_driver_instance, collection_uuid, dataset_uuids_list) except TransactionError: msg = "Failed to create the linkage between the given datasets and the target collection" # Log the full stack trace, prepend a line with our message logger.exception(msg) # Terminate and let the users know internal_server_error(msg) # Send response with success message return jsonify(message = "Successfully added all the specified datasets to the target collection") """ Redirect a request from a doi service for a dataset or collection The gateway treats this endpoint as public accessible Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of the target entity """ # To continue supporting the already published collection DOIs @app.route('/collection/redirect/<id>', methods = ['GET']) # New route @app.route('/doi/redirect/<id>', methods = ['GET']) def doi_redirect(id): # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) entity_type = entity_dict['entity_type'] # Only for collection if entity_type not in ['Collection', 'Dataset']: bad_request_error("The target entity of the specified id must be a Collection or Dataset") uuid = entity_dict['uuid'] # URL template redirect_url = app.config['DOI_REDIRECT_URL'] if (redirect_url.lower().find('<entity_type>') == -1) or (redirect_url.lower().find('<identifier>') == -1): # Log the full stack trace, prepend a line with our message msg = "Incorrect configuration value for 'DOI_REDIRECT_URL'" logger.exception(msg) internal_server_error(msg) rep_entity_type_pattern = re.compile(re.escape('<entity_type>'), re.RegexFlag.IGNORECASE) redirect_url = rep_entity_type_pattern.sub(entity_type.lower(), redirect_url) rep_identifier_pattern = re.compile(re.escape('<identifier>'), re.RegexFlag.IGNORECASE) redirect_url = rep_identifier_pattern.sub(uuid, redirect_url) resp = Response("page has moved", 307) resp.headers['Location'] = redirect_url return resp """ Redirection method created for REFERENCE organ DOI redirection, but can be for others if needed The gateway treats this endpoint as public accessible Parameters ---------- hmid : str The HuBMAP ID (e.g. HBM123.ABCD.456) """ @app.route('/redirect/<hmid>', methods = ['GET']) def redirect(hmid): cid = hmid.upper().strip() if cid in reference_redirects: redir_url = reference_redirects[cid] resp = Response("page has moved", 307) resp.headers['Location'] = redir_url return resp else: return Response(f"{hmid} not found.", 404) """ Get the Globus URL to the given Dataset or Upload The gateway treats this endpoint as public accessible It will provide a Globus URL to the dataset/upload directory in of three Globus endpoints based on the access level of the user (public, consortium or protected), public only, of course, if no token is provided. If a dataset/upload isn't found a 404 will be returned. There is a chance that a 500 can be returned, but not likely under normal circumstances, only for a misconfigured or failing in some way endpoint. If the Auth token is provided but is expired or invalid a 401 is returned. If access to the dataset/upload is not allowed for the user (or lack of user) a 403 is returned. Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- Response 200 with the Globus Application URL to the directory of dataset/upload 404 Dataset/Upload not found 403 Access Forbidden 401 Unauthorized (bad or expired token) 500 Unexpected server or other error """ # Thd old routes for backward compatibility - will be deprecated eventually @app.route('/entities/dataset/globus-url/<id>', methods = ['GET']) @app.route('/dataset/globus-url/<id>', methods = ['GET']) # New route @app.route('/entities/<id>/globus-url', methods = ['GET']) def get_globus_url(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists # Then retrieve the allowable data access level (public, protected or consortium) # for the dataset and HuBMAP Component ID that the dataset belongs to entity_dict = query_target_entity(id, token) uuid = entity_dict['uuid'] normalized_entity_type = entity_dict['entity_type'] # Only for Dataset and Upload if normalized_entity_type not in ['Dataset', 'Upload']: bad_request_error("The target entity of the specified id is not a Dataset nor a Upload") # Upload doesn't have this 'data_access_level' property, we treat it as 'protected' # For Dataset, if no access level is present, default to protected too if not 'data_access_level' in entity_dict or string_helper.isBlank(entity_dict['data_access_level']): entity_data_access_level = ACCESS_LEVEL_PROTECTED else: entity_data_access_level = entity_dict['data_access_level'] # Get the globus groups info based on the groups json file in commons package globus_groups_info = globus_groups.get_globus_groups_info() groups_by_id_dict = globus_groups_info['by_id'] if not 'group_uuid' in entity_dict or string_helper.isBlank(entity_dict['group_uuid']): msg = f"The 'group_uuid' property is not set for {normalized_entity_type} with uuid: {uuid}" logger.exception(msg) internal_server_error(msg) group_uuid = entity_dict['group_uuid'] # Validate the group_uuid try: schema_manager.validate_entity_group_uuid(group_uuid) except schema_errors.NoDataProviderGroupException: msg = f"Invalid 'group_uuid': {group_uuid} for {normalized_entity_type} with uuid: {uuid}" logger.exception(msg) internal_server_error(msg) group_name = groups_by_id_dict[group_uuid]['displayname'] try: # Get user data_access_level based on token if provided # If no Authorization header, default user_info['data_access_level'] == 'public' # The user_info contains HIGHEST access level of the user based on the token # This call raises an HTTPException with a 401 if any auth issues encountered user_info = auth_helper_instance.getUserDataAccessLevel(request) # If returns HTTPException with a 401, expired/invalid token except HTTPException: unauthorized_error("The provided token is invalid or expired") # The user is in the Globus group with full access to thie dataset, # so they have protected level access to it if ('hmgroupids' in user_info) and (group_uuid in user_info['hmgroupids']): user_data_access_level = ACCESS_LEVEL_PROTECTED else: if not 'data_access_level' in user_info: msg = f"Unexpected error, data access level could not be found for user trying to access {normalized_entity_type} id: {id}" logger.exception(msg) return internal_server_error(msg) user_data_access_level = user_info['data_access_level'].lower() #construct the Globus URL based on the highest level of access that the user has #and the level of access allowed for the dataset #the first "if" checks to see if the user is a member of the Consortium group #that allows all access to this dataset, if so send them to the "protected" #endpoint even if the user doesn't have full access to all protected data globus_server_uuid = None dir_path = '' # Note: `entity_data_access_level` for Upload is always default to 'protected' # public access if entity_data_access_level == ACCESS_LEVEL_PUBLIC: globus_server_uuid = app.config['GLOBUS_PUBLIC_ENDPOINT_UUID'] access_dir = access_level_prefix_dir(app.config['PUBLIC_DATA_SUBDIR']) dir_path = dir_path + access_dir + "/" # consortium access elif (entity_data_access_level == ACCESS_LEVEL_CONSORTIUM) and (not user_data_access_level == ACCESS_LEVEL_PUBLIC): globus_server_uuid = app.config['GLOBUS_CONSORTIUM_ENDPOINT_UUID'] access_dir = access_level_prefix_dir(app.config['CONSORTIUM_DATA_SUBDIR']) dir_path = dir_path + access_dir + group_name + "/" # protected access elif (entity_data_access_level == ACCESS_LEVEL_PROTECTED) and (user_data_access_level == ACCESS_LEVEL_PROTECTED): globus_server_uuid = app.config['GLOBUS_PROTECTED_ENDPOINT_UUID'] access_dir = access_level_prefix_dir(app.config['PROTECTED_DATA_SUBDIR']) dir_path = dir_path + access_dir + group_name + "/" if globus_server_uuid is None: forbidden_error("Access not granted") dir_path = dir_path + uuid + "/" dir_path = urllib.parse.quote(dir_path, safe='') #https://app.globus.org/file-manager?origin_id=28bbb03c-a87d-4dd7-a661-7ea2fb6ea631&origin_path=%2FIEC%20Testing%20Group%2F03584b3d0f8b46de1b629f04be156879%2F url = hm_file_helper.ensureTrailingSlashURL(app.config['GLOBUS_APP_BASE_URL']) + "file-manager?origin_id=" + globus_server_uuid + "&origin_path=" + dir_path return Response(url, 200) """ Retrive the latest (newest) revision of a Dataset Public/Consortium access rules apply - if no token/consortium access then must be for a public dataset and the returned Dataset must be the latest public version. Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target entity Returns ------- json The detail of the latest revision dataset if exists Otherwise an empty JSON object {} """ @app.route('/datasets/<id>/latest-revision', methods = ['GET']) def get_dataset_latest_revision(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] uuid = entity_dict['uuid'] # Only for Dataset if normalized_entity_type != 'Dataset': bad_request_error("The entity of given id is not a Dataset") latest_revision_dict = {} # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) latest_revision_dict = app_neo4j_queries.get_dataset_latest_revision(neo4j_driver_instance, uuid) else: # Default to the latest "public" revision dataset # when no token or not a valid HuBMAP-Read token latest_revision_dict = app_neo4j_queries.get_dataset_latest_revision(neo4j_driver_instance, uuid, public = True) # Send back the real latest revision dataset if a valid HuBMAP-Read token presents if user_in_hubmap_read_group(request): latest_revision_dict = app_neo4j_queries.get_dataset_latest_revision(neo4j_driver_instance, uuid) # We'll need to return all the properties including those # generated by `on_read_trigger` to have a complete result # E.g., the 'previous_revision_uuid' # Here we skip the 'next_revision_uuid' property becase when the "public" latest revision dataset # is not the real latest revision, we don't want the users to see it properties_to_skip = [ 'next_revision_uuid' ] # On entity retrieval, the 'on_read_trigger' doesn't really need a token complete_dict = schema_manager.get_complete_entity_result(token, latest_revision_dict, properties_to_skip) # Also normalize the result based on schema final_result = schema_manager.normalize_entity_result_for_response(complete_dict) # Response with the dict return jsonify(final_result) """ Retrive the calculated revision number of a Dataset The calculated revision is number is based on the [:REVISION_OF] relationships to the oldest dataset in a revision chain. Where the oldest dataset = 1 and each newer version is incremented by one (1, 2, 3 ...) Public/Consortium access rules apply, if is for a non-public dataset and no token or a token without membership in HuBMAP-Read group is sent with the request then a 403 response should be returned. Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target entity Returns ------- int The calculated revision number """ @app.route('/datasets/<id>/revision', methods = ['GET']) def get_dataset_revision_number(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # Only for Dataset if normalized_entity_type != 'Dataset': bad_request_error("The entity of given id is not a Dataset") # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required = True) # By now, either the entity is public accessible or # the user token has the correct access level revision_number = app_neo4j_queries.get_dataset_revision_number(neo4j_driver_instance, entity_dict['uuid']) # Response with the integer return jsonify(revision_number) """ Retract a published dataset with a retraction reason and sub status Takes as input a json body with required fields "retracted_reason" and "sub_status". Authorization handled by gateway. Only token of HuBMAP-Data-Admin group can use this call. Technically, the same can be achieved by making a PUT call to the generic entity update endpoint with using a HuBMAP-Data-Admin group token. But doing this is strongly discouraged because we'll need to add more validators to ensure when "retracted_reason" is provided, there must be a "sub_status" filed and vise versa. So consider this call a special use case of entity update. Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target dataset Returns ------- dict The updated dataset details """ @app.route('/datasets/<id>/retract', methods=['PUT']) def retract_dataset(id): # Always expect a json body require_json(request) # Parse incoming json string into json data(python dict object) json_data_dict = request.get_json() # Use beblow application-level validations to avoid complicating schema validators # The 'retraction_reason' and `sub_status` are the only required/allowed fields. No other fields allowed. # Must enforce this rule otherwise we'll need to run after update triggers if any other fields # get passed in (which should be done using the generic entity update call) if 'retraction_reason' not in json_data_dict: bad_request_error("Missing required field: retraction_reason") if 'sub_status' not in json_data_dict: bad_request_error("Missing required field: sub_status") if len(json_data_dict) > 2: bad_request_error("Only retraction_reason and sub_status are allowed fields") # Must be a HuBMAP-Data-Admin group token token = get_user_token(request) # Retrieves the neo4j data for a given entity based on the id supplied. # The normalized entity-type from this entity is checked to be a dataset # If the entity is not a dataset and the dataset is not published, cannot retract entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # A bit more application-level validation if normalized_entity_type != 'Dataset': bad_request_error("The entity of given id is not a Dataset") # Validate request json against the yaml schema # The given value of `sub_status` is being validated at this step try: schema_manager.validate_json_data_against_schema(json_data_dict, normalized_entity_type, existing_entity_dict = entity_dict) except schema_errors.SchemaValidationException as e: # No need to log the validation errors bad_request_error(str(e)) # Execute property level validators defined in schema yaml before entity property update try: schema_manager.execute_property_level_validators('before_property_update_validators', normalized_entity_type, request, entity_dict, json_data_dict) except (schema_errors.MissingApplicationHeaderException, schema_errors.InvalidApplicationHeaderException, KeyError, ValueError) as e: bad_request_error(e) # No need to call after_update() afterwards because retraction doesn't call any after_update_trigger methods merged_updated_dict = update_entity_details(request, normalized_entity_type, token, json_data_dict, entity_dict) complete_dict = schema_manager.get_complete_entity_result(token, merged_updated_dict) # Will also filter the result based on schema normalized_complete_dict = schema_manager.normalize_entity_result_for_response(complete_dict) # Also reindex the updated entity node in elasticsearch via search-api reindex_entity(entity_dict['uuid'], token) return jsonify(normalized_complete_dict) """ Retrieve a list of all revisions of a dataset from the id of any dataset in the chain. E.g: If there are 5 revisions, and the id for revision 4 is given, a list of revisions 1-5 will be returned in reverse order (newest first). Non-public access is only required to retrieve information on non-published datasets. Output will be a list of dictionaries. Each dictionary contains the dataset revision number and its uuid. Optionally, the full dataset can be included for each. By default, only the revision number and uuid is included. To include the full dataset, the query parameter "include_dataset" can be given with the value of "true". If this parameter is not included or is set to false, the dataset will not be included. For example, to include the full datasets for each revision, use '/datasets/<id>/revisions?include_dataset=true'. To omit the datasets, either set include_dataset=false, or simply do not include this parameter. Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of target dataset Returns ------- list The list of revision datasets """ @app.route('/datasets/<id>/revisions', methods=['GET']) def get_revisions_list(id): # By default, do not return dataset. Only return dataset if return_dataset is true show_dataset = False if bool(request.args): include_dataset = request.args.get('include_dataset') if (include_dataset is not None) and (include_dataset.lower() == 'true'): show_dataset = True # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # Only for Dataset if normalized_entity_type != 'Dataset': bad_request_error("The entity of given id is not a Dataset") # Only published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required=True) # By now, either the entity is public accessible or # the user token has the correct access level # Get the all the sorted (DESC based on creation timestamp) revisions sorted_revisions_list = app_neo4j_queries.get_sorted_revisions(neo4j_driver_instance, entity_dict['uuid']) # Skip some of the properties that are time-consuming to generate via triggers # direct_ancestors, collections, and upload for Dataset properties_to_skip = [ 'direct_ancestors', 'collections', 'upload' ] complete_revisions_list = schema_manager.get_complete_entities_list(token, sorted_revisions_list, properties_to_skip) normalized_revisions_list = schema_manager.normalize_entities_list_for_response(complete_revisions_list) # Only check the very last revision (the first revision dict since normalized_revisions_list is already sorted DESC) # to determine if send it back or not if not user_in_hubmap_read_group(request): latest_revision = normalized_revisions_list[0] if latest_revision['status'].lower() != DATASET_STATUS_PUBLISHED: normalized_revisions_list.pop(0) # Also hide the 'next_revision_uuid' of the second last revision from response if 'next_revision_uuid' in normalized_revisions_list[0]: normalized_revisions_list[0].pop('next_revision_uuid') # Now all we need to do is to compose the result list results = [] revision_number = len(normalized_revisions_list) for revision in normalized_revisions_list: result = { 'revision_number': revision_number, 'dataset_uuid': revision['uuid'] } if show_dataset: result['dataset'] = revision results.append(result) revision_number -= 1 return jsonify(results) """ Get all organs associated with a given dataset The gateway treats this endpoint as public accessible Parameters ---------- id : str The HuBMAP ID (e.g. HBM123.ABCD.456) or UUID of given entity Returns ------- json a list of all the organs associated with the target dataset """ @app.route('/datasets/<id>/organs', methods=['GET']) def get_associated_organs_from_dataset(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # Only for Dataset if normalized_entity_type != 'Dataset': bad_request_error("The entity of given id is not a Dataset") # published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required=True) # By now, either the entity is public accessible or # the user token has the correct access level associated_organs = app_neo4j_queries.get_associated_organs_from_dataset(neo4j_driver_instance, entity_dict['uuid']) # If there are zero items in the list associated organs, then there are no associated # Organs and a 404 will be returned. if len(associated_organs) < 1: not_found_error("the dataset does not have any associated organs") complete_entities_list = schema_manager.get_complete_entities_list(token, associated_organs) # Final result after normalization final_result = schema_manager.normalize_entities_list_for_response(complete_entities_list) return jsonify(final_result) """ Get the complete provenance info for all datasets Authorization handled by gateway. HuBMAP-Read group is required for this call. Returns ------- json an array of each datatset's provenance info tsv a text file of tab separated values where each row is a dataset and the columns include all its prov info """ @app.route('/datasets/prov-info', methods=['GET']) def get_prov_info(): # String constants from app.cfg GLOBUS_GROUPS_URL = 'https://raw.githubusercontent.com/hubmapconsortium/commons/test-release/hubmap_commons/hubmap-globus-groups.json' HEADER_DATASET_UUID = 'dataset_uuid' HEADER_DATASET_HUBMAP_ID = 'dataset_hubmap_id' HEADER_DATASET_STATUS = 'dataset_status' HEADER_DATASET_GROUP_NAME = 'dataset_group_name' HEADER_DATASET_GROUP_UUID = 'dataset_group_uuid' HEADER_DATASET_DATE_TIME_CREATED = 'dataset_date_time_created' HEADER_DATASET_CREATED_BY_EMAIL = 'dataset_created_by_email' HEADER_DATASET_DATE_TIME_MODIFIED = 'dataset_date_time_modified' HEADER_DATASET_MODIFIED_BY_EMAIL = 'dataset_modified_by_email' HEADER_DATASET_LAB_ID = 'dataset_lab_id' HEADER_DATASET_DATA_TYPES = 'dataset_data_types' HEADER_DATASET_PORTAL_URL = 'dataset_portal_url' HEADER_FIRST_SAMPLE_HUBMAP_ID = 'first_sample_hubmap_id' HEADER_FIRST_SAMPLE_SUBMISSION_ID = 'first_sample_submission_id' HEADER_FIRST_SAMPLE_UUID = 'first_sample_uuid' HEADER_FIRST_SAMPLE_TYPE = 'first_sample_type' HEADER_FIRST_SAMPLE_PORTAL_URL = 'first_sample_portal_url' HEADER_ORGAN_HUBMAP_ID = 'organ_hubmap_id' HEADER_ORGAN_SUBMISSION_ID = 'organ_submission_id' HEADER_ORGAN_UUID = 'organ_uuid' HEADER_ORGAN_TYPE = 'organ_type' HEADER_DONOR_HUBMAP_ID = 'donor_hubmap_id' HEADER_DONOR_SUBMISSION_ID = 'donor_submission_id' HEADER_DONOR_UUID = 'donor_uuid' HEADER_DONOR_GROUP_NAME = 'donor_group_name' HEADER_RUI_LOCATION_HUBMAP_ID = 'rui_location_hubmap_id' HEADER_RUI_LOCATION_SUBMISSION_ID = 'rui_location_submission_id' HEADER_RUI_LOCATION_UUID = 'rui_location_uuid' HEADER_SAMPLE_METADATA_HUBMAP_ID = 'sample_metadata_hubmap_id' HEADER_SAMPLE_METADATA_SUBMISSION_ID = 'sample_metadata_submission_id' HEADER_SAMPLE_METADATA_UUID = 'sample_metadata_uuid' headers = [ HEADER_DATASET_UUID, HEADER_DATASET_HUBMAP_ID, HEADER_DATASET_STATUS, HEADER_DATASET_GROUP_NAME, HEADER_DATASET_GROUP_UUID, HEADER_DATASET_DATE_TIME_CREATED, HEADER_DATASET_CREATED_BY_EMAIL, HEADER_DATASET_DATE_TIME_MODIFIED, HEADER_DATASET_MODIFIED_BY_EMAIL, HEADER_DATASET_LAB_ID, HEADER_DATASET_DATA_TYPES, HEADER_DATASET_PORTAL_URL, HEADER_FIRST_SAMPLE_HUBMAP_ID, HEADER_FIRST_SAMPLE_SUBMISSION_ID, HEADER_FIRST_SAMPLE_UUID, HEADER_FIRST_SAMPLE_TYPE, HEADER_FIRST_SAMPLE_PORTAL_URL, HEADER_ORGAN_HUBMAP_ID, HEADER_ORGAN_SUBMISSION_ID, HEADER_ORGAN_UUID, HEADER_ORGAN_TYPE, HEADER_DONOR_HUBMAP_ID, HEADER_DONOR_SUBMISSION_ID, HEADER_DONOR_UUID, HEADER_DONOR_GROUP_NAME, HEADER_RUI_LOCATION_HUBMAP_ID, HEADER_RUI_LOCATION_SUBMISSION_ID, HEADER_RUI_LOCATION_UUID, HEADER_SAMPLE_METADATA_HUBMAP_ID, HEADER_SAMPLE_METADATA_SUBMISSION_ID, HEADER_SAMPLE_METADATA_UUID ] # Processing and validating query parameters accepted_arguments = ['format', 'organ', 'has_rui_info', 'dataset_status', 'group_uuid'] return_json = False param_dict = {} if bool(request.args): for argument in request.args: if argument not in accepted_arguments: bad_request_error(f"{argument} is an unrecognized argument.") return_format = request.args.get('format') if return_format is not None: if return_format.lower() not in ['json', 'tsv']: bad_request_error( "Invalid Format. Accepted formats are json and tsv. If no format is given, TSV will be the default") if return_format.lower() == 'json': return_json = True group_uuid = request.args.get('group_uuid') if group_uuid is not None: groups_by_id_dict = globus_groups.get_globus_groups_info()['by_id'] if group_uuid not in groups_by_id_dict: bad_request_error( f"Invalid Group UUID. Group must be located at {GLOBUS_GROUPS_URL}") if not groups_by_id_dict[group_uuid]['data_provider']: bad_request_error(f"Invalid Group UUID. Group must be a data provider") param_dict['group_uuid'] = group_uuid organ = request.args.get('organ') if organ is not None: validate_organ_code(organ) param_dict['organ'] = organ has_rui_info = request.args.get('has_rui_info') if has_rui_info is not None: if has_rui_info.lower() not in ['true', 'false']: bad_request_error("Invalid value for 'has_rui_info'. Only values of true or false are acceptable") param_dict['has_rui_info'] = has_rui_info dataset_status = request.args.get('dataset_status') if dataset_status is not None: if dataset_status.lower() not in ['new', 'qa', 'published']: bad_request_error("Invalid Dataset Status. Must be 'new', 'qa', or 'published' Case-Insensitive") param_dict['dataset_status'] = dataset_status # Instantiation of the list dataset_prov_list dataset_prov_list = [] # Call to app_neo4j_queries to prepare and execute the database query prov_info = app_neo4j_queries.get_prov_info(neo4j_driver_instance, param_dict) # Each dataset's provinence info is placed into a dictionary for dataset in prov_info: internal_dict = collections.OrderedDict() internal_dict[HEADER_DATASET_UUID] = dataset['uuid'] internal_dict[HEADER_DATASET_HUBMAP_ID] = dataset['hubmap_id'] internal_dict[HEADER_DATASET_STATUS] = dataset['status'] internal_dict[HEADER_DATASET_GROUP_NAME] = dataset['group_name'] internal_dict[HEADER_DATASET_GROUP_UUID] = dataset['group_uuid'] internal_dict[HEADER_DATASET_DATE_TIME_CREATED] = datetime.fromtimestamp(int(dataset['created_timestamp']/1000.0)) internal_dict[HEADER_DATASET_CREATED_BY_EMAIL] = dataset['created_by_user_email'] internal_dict[HEADER_DATASET_DATE_TIME_MODIFIED] = datetime.fromtimestamp(int(dataset['last_modified_timestamp']/1000.0)) internal_dict[HEADER_DATASET_MODIFIED_BY_EMAIL] = dataset['last_modified_user_email'] internal_dict[HEADER_DATASET_DATA_TYPES] = dataset['data_types'] # If return_format was not equal to json, json arrays must be converted into comma separated lists for the tsv if return_json is False: internal_dict[HEADER_DATASET_DATA_TYPES] = ",".join(dataset['data_types']) internal_dict[HEADER_DATASET_PORTAL_URL] = app.config['DOI_REDIRECT_URL'].replace('<entity_type>', 'dataset').replace('<identifier>', dataset['uuid']) # first_sample properties are retrieved from its own dictionary if dataset['first_sample'] is not None: first_sample_hubmap_id_list = [] first_sample_submission_id_list = [] first_sample_uuid_list = [] first_sample_type_list = [] first_sample_portal_url_list = [] for item in dataset['first_sample']: first_sample_hubmap_id_list.append(item['hubmap_id']) first_sample_submission_id_list.append(item['submission_id']) first_sample_uuid_list.append(item['uuid']) first_sample_type_list.append(item['specimen_type']) first_sample_portal_url_list.append(app.config['DOI_REDIRECT_URL'].replace('<entity_type>', 'sample').replace('<identifier>', item['uuid'])) internal_dict[HEADER_FIRST_SAMPLE_HUBMAP_ID] = first_sample_hubmap_id_list internal_dict[HEADER_FIRST_SAMPLE_SUBMISSION_ID] = first_sample_submission_id_list internal_dict[HEADER_FIRST_SAMPLE_UUID] = first_sample_uuid_list internal_dict[HEADER_FIRST_SAMPLE_TYPE] = first_sample_type_list internal_dict[HEADER_FIRST_SAMPLE_PORTAL_URL] = first_sample_portal_url_list if return_json is False: internal_dict[HEADER_FIRST_SAMPLE_HUBMAP_ID] = ",".join(first_sample_hubmap_id_list) internal_dict[HEADER_FIRST_SAMPLE_SUBMISSION_ID] = ",".join(first_sample_submission_id_list) internal_dict[HEADER_FIRST_SAMPLE_UUID] = ",".join(first_sample_uuid_list) internal_dict[HEADER_FIRST_SAMPLE_TYPE] = ",".join(first_sample_type_list) internal_dict[HEADER_FIRST_SAMPLE_PORTAL_URL] = ",".join(first_sample_portal_url_list) # distinct_organ properties are retrieved from its own dictionary if dataset['distinct_organ'] is not None: distinct_organ_hubmap_id_list = [] distinct_organ_submission_id_list = [] distinct_organ_uuid_list = [] distinct_organ_type_list = [] for item in dataset['distinct_organ']: distinct_organ_hubmap_id_list.append(item['hubmap_id']) distinct_organ_submission_id_list.append(item['submission_id']) distinct_organ_uuid_list.append(item['uuid']) distinct_organ_type_list.append(item['organ']) internal_dict[HEADER_ORGAN_HUBMAP_ID] = distinct_organ_hubmap_id_list internal_dict[HEADER_ORGAN_SUBMISSION_ID] = distinct_organ_submission_id_list internal_dict[HEADER_ORGAN_UUID] = distinct_organ_uuid_list internal_dict[HEADER_ORGAN_TYPE] = distinct_organ_type_list if return_json is False: internal_dict[HEADER_ORGAN_HUBMAP_ID] = ",".join(distinct_organ_hubmap_id_list) internal_dict[HEADER_ORGAN_SUBMISSION_ID] = ",".join(distinct_organ_submission_id_list) internal_dict[HEADER_ORGAN_UUID] = ",".join(distinct_organ_uuid_list) internal_dict[HEADER_ORGAN_TYPE] = ",".join(distinct_organ_type_list) # distinct_donor properties are retrieved from its own dictionary if dataset['distinct_donor'] is not None: distinct_donor_hubmap_id_list = [] distinct_donor_submission_id_list = [] distinct_donor_uuid_list = [] distinct_donor_group_name_list = [] for item in dataset['distinct_donor']: distinct_donor_hubmap_id_list.append(item['hubmap_id']) distinct_donor_submission_id_list.append(item['submission_id']) distinct_donor_uuid_list.append(item['uuid']) distinct_donor_group_name_list.append(item['group_name']) internal_dict[HEADER_DONOR_HUBMAP_ID] = distinct_donor_hubmap_id_list internal_dict[HEADER_DONOR_SUBMISSION_ID] = distinct_donor_submission_id_list internal_dict[HEADER_DONOR_UUID] = distinct_donor_uuid_list internal_dict[HEADER_DONOR_GROUP_NAME] = distinct_donor_group_name_list if return_json is False: internal_dict[HEADER_DONOR_HUBMAP_ID] = ",".join(distinct_donor_hubmap_id_list) internal_dict[HEADER_DONOR_SUBMISSION_ID] = ",".join(distinct_donor_submission_id_list) internal_dict[HEADER_DONOR_UUID] = ",".join(distinct_donor_uuid_list) internal_dict[HEADER_DONOR_GROUP_NAME] = ",".join(distinct_donor_group_name_list) # distinct_rui_sample properties are retrieved from its own dictionary if dataset['distinct_rui_sample'] is not None: rui_location_hubmap_id_list = [] rui_location_submission_id_list = [] rui_location_uuid_list = [] for item in dataset['distinct_rui_sample']: rui_location_hubmap_id_list.append(item['hubmap_id']) rui_location_submission_id_list.append(item['submission_id']) rui_location_uuid_list.append(item['uuid']) internal_dict[HEADER_RUI_LOCATION_HUBMAP_ID] = rui_location_hubmap_id_list internal_dict[HEADER_RUI_LOCATION_SUBMISSION_ID] = rui_location_submission_id_list internal_dict[HEADER_RUI_LOCATION_UUID] = rui_location_uuid_list if return_json is False: internal_dict[HEADER_RUI_LOCATION_HUBMAP_ID] = ",".join(rui_location_hubmap_id_list) internal_dict[HEADER_RUI_LOCATION_SUBMISSION_ID] = ",".join(rui_location_submission_id_list) internal_dict[HEADER_RUI_LOCATION_UUID] = ",".join(rui_location_uuid_list) # distinct_metasample properties are retrieved from its own dictionary if dataset['distinct_metasample'] is not None: metasample_hubmap_id_list = [] metasample_submission_id_list = [] metasample_uuid_list = [] for item in dataset['distinct_metasample']: metasample_hubmap_id_list.append(item['hubmap_id']) metasample_submission_id_list.append(item['submission_id']) metasample_uuid_list.append(item['uuid']) internal_dict[HEADER_SAMPLE_METADATA_HUBMAP_ID] = metasample_hubmap_id_list internal_dict[HEADER_SAMPLE_METADATA_SUBMISSION_ID] = metasample_submission_id_list internal_dict[HEADER_SAMPLE_METADATA_UUID] = metasample_uuid_list if return_json is False: internal_dict[HEADER_SAMPLE_METADATA_HUBMAP_ID] = ",".join(metasample_hubmap_id_list) internal_dict[HEADER_SAMPLE_METADATA_SUBMISSION_ID] = ",".join(metasample_submission_id_list) internal_dict[HEADER_SAMPLE_METADATA_UUID] = ",".join(metasample_uuid_list) # Each dataset's dictionary is added to the list to be returned dataset_prov_list.append(internal_dict) # if return_json is true, this dictionary is ready to be returned already if return_json: return jsonify(dataset_prov_list) # if return_json is false, the data must be converted to be returned as a tsv else: new_tsv_file = StringIO() writer = csv.DictWriter(new_tsv_file, fieldnames=headers, delimiter='\t') writer.writeheader() writer.writerows(dataset_prov_list) new_tsv_file.seek(0) output = Response(new_tsv_file, mimetype='text/tsv') output.headers['Content-Disposition'] = 'attachment; filename=prov-info.tsv' return output @app.route('/datasets/<id>/prov-info', methods=['GET']) def get_prov_info_for_dataset(id): # Token is not required, but if an invalid token provided, # we need to tell the client with a 401 error validate_token_if_auth_header_exists(request) # Use the internal token to query the target entity # since public entities don't require user token token = get_internal_token() # Query target entity against uuid-api and neo4j and return as a dict if exists entity_dict = query_target_entity(id, token) normalized_entity_type = entity_dict['entity_type'] # Only for Dataset if normalized_entity_type != 'Dataset': bad_request_error("The entity of given id is not a Dataset") # published/public datasets don't require token if entity_dict['status'].lower() != DATASET_STATUS_PUBLISHED: # Token is required and the user must belong to HuBMAP-READ group token = get_user_token(request, non_public_access_required=True) return_json = False dataset_prov_list = [] if bool(request.args): return_format = request.args.get('format') if (return_format is not None) and (return_format.lower() == 'json'): return_json = True HEADER_DATASET_UUID = 'dataset_uuid' HEADER_DATASET_HUBMAP_ID = 'dataset_hubmap_id' HEADER_DATASET_STATUS = 'dataset_status' HEADER_DATASET_GROUP_NAME = 'dataset_group_name' HEADER_DATASET_GROUP_UUID = 'dataset_group_uuid' HEADER_DATASET_DATE_TIME_CREATED = 'dataset_date_time_created' HEADER_DATASET_CREATED_BY_EMAIL = 'dataset_created_by_email' HEADER_DATASET_DATE_TIME_MODIFIED = 'dataset_date_time_modified' HEADER_DATASET_MODIFIED_BY_EMAIL = 'dataset_modified_by_email' HEADER_DATASET_LAB_ID = 'dataset_lab_id' HEADER_DATASET_DATA_TYPES = 'dataset_data_types' HEADER_DATASET_PORTAL_URL = 'dataset_portal_url' HEADER_FIRST_SAMPLE_HUBMAP_ID = 'first_sample_hubmap_id' HEADER_FIRST_SAMPLE_SUBMISSION_ID = 'first_sample_submission_id' HEADER_FIRST_SAMPLE_UUID = 'first_sample_uuid' HEADER_FIRST_SAMPLE_TYPE = 'first_sample_type' HEADER_FIRST_SAMPLE_PORTAL_URL = 'first_sample_portal_url' HEADER_ORGAN_HUBMAP_ID = 'organ_hubmap_id' HEADER_ORGAN_SUBMISSION_ID = 'organ_submission_id' HEADER_ORGAN_UUID = 'organ_uuid' HEADER_ORGAN_TYPE = 'organ_type' HEADER_DONOR_HUBMAP_ID = 'donor_hubmap_id' HEADER_DONOR_SUBMISSION_ID = 'donor_submission_id' HEADER_DONOR_UUID = 'donor_uuid' HEADER_DONOR_GROUP_NAME = 'donor_group_name' HEADER_RUI_LOCATION_HUBMAP_ID = 'rui_location_hubmap_id' HEADER_RUI_LOCATION_SUBMISSION_ID = 'rui_location_submission_id' HEADER_RUI_LOCATION_UUID = 'rui_location_uuid' HEADER_SAMPLE_METADATA_HUBMAP_ID = 'sample_metadata_hubmap_id' HEADER_SAMPLE_METADATA_SUBMISSION_ID = 'sample_metadata_submission_id' HEADER_SAMPLE_METADATA_UUID = 'sample_metadata_uuid' headers = [ HEADER_DATASET_UUID, HEADER_DATASET_HUBMAP_ID, HEADER_DATASET_STATUS, HEADER_DATASET_GROUP_NAME, HEADER_DATASET_GROUP_UUID, HEADER_DATASET_DATE_TIME_CREATED, HEADER_DATASET_CREATED_BY_EMAIL, HEADER_DATASET_DATE_TIME_MODIFIED, HEADER_DATASET_MODIFIED_BY_EMAIL, HEADER_DATASET_LAB_ID, HEADER_DATASET_DATA_TYPES, HEADER_DATASET_PORTAL_URL, HEADER_FIRST_SAMPLE_HUBMAP_ID, HEADER_FIRST_SAMPLE_SUBMISSION_ID, HEADER_FIRST_SAMPLE_UUID, HEADER_FIRST_SAMPLE_TYPE, HEADER_FIRST_SAMPLE_PORTAL_URL, HEADER_ORGAN_HUBMAP_ID, HEADER_ORGAN_SUBMISSION_ID, HEADER_ORGAN_UUID, HEADER_ORGAN_TYPE, HEADER_DONOR_HUBMAP_ID, HEADER_DONOR_SUBMISSION_ID, HEADER_DONOR_UUID, HEADER_DONOR_GROUP_NAME, HEADER_RUI_LOCATION_HUBMAP_ID, HEADER_RUI_LOCATION_SUBMISSION_ID, HEADER_RUI_LOCATION_UUID, HEADER_SAMPLE_METADATA_HUBMAP_ID, HEADER_SAMPLE_METADATA_SUBMISSION_ID, HEADER_SAMPLE_METADATA_UUID ] hubmap_ids = schema_manager.get_hubmap_ids(id, token) # Get the target uuid if all good uuid = hubmap_ids['hm_uuid'] dataset = app_neo4j_queries.get_individual_prov_info(neo4j_driver_instance, uuid) if dataset is None: bad_request_error("Query For this Dataset Returned no Records. Make sure this is a Primary Dataset") internal_dict = collections.OrderedDict() internal_dict[HEADER_DATASET_HUBMAP_ID] = dataset['hubmap_id'] internal_dict[HEADER_DATASET_UUID] = dataset['uuid'] internal_dict[HEADER_DATASET_STATUS] = dataset['status'] internal_dict[HEADER_DATASET_GROUP_NAME] = dataset['group_name'] internal_dict[HEADER_DATASET_GROUP_UUID] = dataset['group_uuid'] internal_dict[HEADER_DATASET_DATE_TIME_CREATED] = datetime.fromtimestamp(int(dataset['created_timestamp'] / 1000.0)) internal_dict[HEADER_DATASET_CREATED_BY_EMAIL] = dataset['created_by_user_email'] internal_dict[HEADER_DATASET_DATE_TIME_MODIFIED] = datetime.fromtimestamp( int(dataset['last_modified_timestamp'] / 1000.0)) internal_dict[HEADER_DATASET_MODIFIED_BY_EMAIL] = dataset['last_modified_user_email'] internal_dict[HEADER_DATASET_DATA_TYPES] = dataset['data_types'] if return_json is False: internal_dict[HEADER_DATASET_DATA_TYPES] = ",".join(dataset['data_types']) internal_dict[HEADER_DATASET_PORTAL_URL] = app.config['DOI_REDIRECT_URL'].replace('<entity_type>', 'dataset').replace( '<identifier>', dataset['uuid']) if dataset['first_sample'] is not None: first_sample_hubmap_id_list = [] first_sample_submission_id_list = [] first_sample_uuid_list = [] first_sample_type_list = [] first_sample_portal_url_list = [] for item in dataset['first_sample']: first_sample_hubmap_id_list.append(item['hubmap_id']) first_sample_submission_id_list.append(item['submission_id']) first_sample_uuid_list.append(item['uuid']) first_sample_type_list.append(item['specimen_type']) first_sample_portal_url_list.append( app.config['DOI_REDIRECT_URL'].replace('<entity_type>', 'sample').replace('<identifier>', item['uuid'])) internal_dict[HEADER_FIRST_SAMPLE_HUBMAP_ID] = first_sample_hubmap_id_list internal_dict[HEADER_FIRST_SAMPLE_SUBMISSION_ID] = first_sample_submission_id_list internal_dict[HEADER_FIRST_SAMPLE_UUID] = first_sample_uuid_list internal_dict[HEADER_FIRST_SAMPLE_TYPE] = first_sample_type_list internal_dict[HEADER_FIRST_SAMPLE_PORTAL_URL] = first_sample_portal_url_list if return_json is False: internal_dict[HEADER_FIRST_SAMPLE_HUBMAP_ID] = ",".join(first_sample_hubmap_id_list) internal_dict[HEADER_FIRST_SAMPLE_SUBMISSION_ID] = ",".join(first_sample_submission_id_list) internal_dict[HEADER_FIRST_SAMPLE_UUID] = ",".join(first_sample_uuid_list) internal_dict[HEADER_FIRST_SAMPLE_TYPE] = ",".join(first_sample_type_list) internal_dict[HEADER_FIRST_SAMPLE_PORTAL_URL] = ",".join(first_sample_portal_url_list) if dataset['distinct_organ'] is not None: distinct_organ_hubmap_id_list = [] distinct_organ_submission_id_list = [] distinct_organ_uuid_list = [] distinct_organ_type_list = [] for item in dataset['distinct_organ']: distinct_organ_hubmap_id_list.append(item['hubmap_id']) distinct_organ_submission_id_list.append(item['submission_id']) distinct_organ_uuid_list.append(item['uuid']) distinct_organ_type_list.append(item['organ']) internal_dict[HEADER_ORGAN_HUBMAP_ID] = distinct_organ_hubmap_id_list internal_dict[HEADER_ORGAN_SUBMISSION_ID] = distinct_organ_submission_id_list internal_dict[HEADER_ORGAN_UUID] = distinct_organ_uuid_list internal_dict[HEADER_ORGAN_TYPE] = distinct_organ_type_list if return_json is False: internal_dict[HEADER_ORGAN_HUBMAP_ID] = ",".join(distinct_organ_hubmap_id_list) internal_dict[HEADER_ORGAN_SUBMISSION_ID] = ",".join(distinct_organ_submission_id_list) internal_dict[HEADER_ORGAN_UUID] = ",".join(distinct_organ_uuid_list) internal_dict[HEADER_ORGAN_TYPE] = ",".join(distinct_organ_type_list) if dataset['distinct_donor'] is not None: distinct_donor_hubmap_id_list = [] distinct_donor_submission_id_list = [] distinct_donor_uuid_list = [] distinct_donor_group_name_list = [] for item in dataset['distinct_donor']: distinct_donor_hubmap_id_list.append(item['hubmap_id']) distinct_donor_submission_id_list.append(item['submission_id']) distinct_donor_uuid_list.append(item['uuid']) distinct_donor_group_name_list.append(item['group_name']) internal_dict[HEADER_DONOR_HUBMAP_ID] = distinct_donor_hubmap_id_list internal_dict[HEADER_DONOR_SUBMISSION_ID] = distinct_donor_submission_id_list internal_dict[HEADER_DONOR_UUID] = distinct_donor_uuid_list internal_dict[HEADER_DONOR_GROUP_NAME] = distinct_donor_group_name_list if return_json is False: internal_dict[HEADER_DONOR_HUBMAP_ID] = ",".join(distinct_donor_hubmap_id_list) internal_dict[HEADER_DONOR_SUBMISSION_ID] = ",".join(distinct_donor_submission_id_list) internal_dict[HEADER_DONOR_UUID] = ",".join(distinct_donor_uuid_list) internal_dict[HEADER_DONOR_GROUP_NAME] = ",".join(distinct_donor_group_name_list) if dataset['distinct_rui_sample'] is not None: rui_location_hubmap_id_list = [] rui_location_submission_id_list = [] rui_location_uuid_list = [] for item in dataset['distinct_rui_sample']: rui_location_hubmap_id_list.append(item['hubmap_id']) rui_location_submission_id_list.append(item['submission_id']) rui_location_uuid_list.append(item['uuid']) internal_dict[HEADER_RUI_LOCATION_HUBMAP_ID] = rui_location_hubmap_id_list internal_dict[HEADER_RUI_LOCATION_SUBMISSION_ID] = rui_location_submission_id_list internal_dict[HEADER_RUI_LOCATION_UUID] = rui_location_uuid_list if return_json is False: internal_dict[HEADER_RUI_LOCATION_HUBMAP_ID] = ",".join(rui_location_hubmap_id_list) internal_dict[HEADER_RUI_LOCATION_SUBMISSION_ID] = ",".join(rui_location_submission_id_list) internal_dict[HEADER_RUI_LOCATION_UUID] = ",".join(rui_location_uuid_list) if dataset['distinct_metasample'] is not None: metasample_hubmap_id_list = [] metasample_submission_id_list = [] metasample_uuid_list = [] for item in dataset['distinct_metasample']: metasample_hubmap_id_list.append(item['hubmap_id']) metasample_submission_id_list.append(item['submission_id']) metasample_uuid_list.append(item['uuid']) internal_dict[HEADER_SAMPLE_METADATA_HUBMAP_ID] = metasample_hubmap_id_list internal_dict[HEADER_SAMPLE_METADATA_SUBMISSION_ID] = metasample_submission_id_list internal_dict[HEADER_SAMPLE_METADATA_UUID] = metasample_uuid_list if return_json is False: internal_dict[HEADER_SAMPLE_METADATA_HUBMAP_ID] = ",".join(metasample_hubmap_id_list) internal_dict[HEADER_SAMPLE_METADATA_SUBMISSION_ID] = ",".join(metasample_submission_id_list) internal_dict[HEADER_SAMPLE_METADATA_UUID] = ",".join(metasample_uuid_list) dataset_prov_list.append(internal_dict) if return_json: return jsonify(dataset_prov_list[0]) else: new_tsv_file = StringIO() writer = csv.DictWriter(new_tsv_file, fieldnames=headers, delimiter='\t') writer.writeheader() writer.writerows(dataset_prov_list) new_tsv_file.seek(0) output = Response(new_tsv_file, mimetype='text/tsv') output.headers['Content-Disposition'] = 'attachment; filename=prov-info.tsv' return output #################################################################################################### ## Internal Functions #################################################################################################### """ Throws error for 400 Bad Reqeust with message Parameters ---------- err_msg : str The custom error message to return to end users """ def bad_request_error(err_msg): abort(400, description = err_msg) """ Throws error for 401 Unauthorized with message Parameters ---------- err_msg : str The custom error message to return to end users """ def unauthorized_error(err_msg): abort(401, description = err_msg) """ Throws error for 403 Forbidden with message Parameters ---------- err_msg : str The custom error message to return to end users """ def forbidden_error(err_msg): abort(403, description = err_msg) """ Throws error for 404 Not Found with message Parameters ---------- err_msg : str The custom error message to return to end users """ def not_found_error(err_msg): abort(404, description = err_msg) """ Throws error for 500 Internal Server Error with message Parameters ---------- err_msg : str The custom error message to return to end users """ def internal_server_error(err_msg): abort(500, description = err_msg) """ Parase the token from Authorization header Parameters ---------- request : falsk.request The flask http request object non_public_access_required : bool If a non-public access token is required by the request, default to False Returns ------- str The token string if valid """ def get_user_token(request, non_public_access_required = False): # Get user token from Authorization header # getAuthorizationTokens() also handles MAuthorization header but we are not using that here try: user_token = auth_helper_instance.getAuthorizationTokens(request.headers) except Exception: msg = "Failed to parse the Authorization token by calling commons.auth_helper.getAuthorizationTokens()" # Log the full stack trace, prepend a line with our message logger.exception(msg) internal_server_error(msg) # Further check the validity of the token if required non-public access if non_public_access_required: # When the token is a flask.Response instance, # it MUST be a 401 error with message. # That's how commons.auth_helper.getAuthorizationTokens() was designed if isinstance(user_token, Response): # We wrap the message in a json and send back to requester as 401 too # The Response.data returns binary string, need to decode unauthorized_error(user_token.get_data().decode()) # By now the token is already a valid token # But we also need to ensure the user belongs to HuBMAP-Read group # in order to access the non-public entity # Return a 403 response if the user doesn't belong to HuBMAP-READ group if not user_in_hubmap_read_group(request): forbidden_error("Access not granted") return user_token """ Check if the user with token is in the HuBMAP-READ group Parameters ---------- request : falsk.request The flask http request object that containing the Authorization header with a valid Globus nexus token for checking group information Returns ------- bool True if the user belongs to HuBMAP-READ group, otherwise False """ def user_in_hubmap_read_group(request): try: # The property 'hmgroupids' is ALWASYS in the output with using schema_manager.get_user_info() # when the token in request is a nexus_token user_info = schema_manager.get_user_info(request) hubmap_read_group_uuid = auth_helper_instance.groupNameToId('HuBMAP-READ')['uuid'] except Exception as e: # Log the full stack trace, prepend a line with our message logger.exception(e) # If the token is not a nexus token, no group information available # The commons.hm_auth.AuthCache would return a Response with 500 error message # We treat such cases as the user not in the HuBMAP-READ group return False return (hubmap_read_group_uuid in user_info['hmgroupids']) """ Validate the provided token when Authorization header presents Parameters ---------- request : flask.request object The Flask http request object """ def validate_token_if_auth_header_exists(request): # No matter if token is required or not, when an invalid token provided, # we need to tell the client with a 401 error # HTTP header names are case-insensitive # request.headers.get('Authorization') returns None if the header doesn't exist if request.headers.get('Authorization') is not None: user_token = get_user_token(request) # When the Authoriztion header provided but the user_token is a flask.Response instance, # it MUST be a 401 error with message. # That's how commons.auth_helper.getAuthorizationTokens() was designed if isinstance(user_token, Response): # We wrap the message in a json and send back to requester as 401 too # The Response.data returns binary string, need to decode unauthorized_error(user_token.get_data().decode()) # Also check if the parased token is invalid or expired # Set the second paremeter as False to skip group check user_info = auth_helper_instance.getUserInfo(user_token, False) if isinstance(user_info, Response): unauthorized_error(user_info.get_data().decode()) """ Get the token for internal use only Returns ------- str The token string """ def get_internal_token(): return auth_helper_instance.getProcessSecret() """ Return the complete collection dict for a given raw collection dict Parameters ---------- collection_dict : dict The raw collection dict returned by Neo4j Returns ------- dict A dictionary of complete collection detail with all the generated 'on_read_trigger' data The generated Collection.datasts contains only public datasets if user/token doesn't have the right access permission """ def get_complete_public_collection_dict(collection_dict): # Use internal token to query entity since # no user token is required to access a public collection token = get_internal_token() # Collection.datasets is transient property and generated by the trigger method # We'll need to return all the properties including those # generated by `on_read_trigger` to have a complete result complete_dict = schema_manager.get_complete_entity_result(token, collection_dict) # Loop through Collection.datasets and only return the published/public datasets public_datasets = [] for dataset in complete_dict['datasets']: if dataset['status'].lower() == DATASET_STATUS_PUBLISHED: public_datasets.append(dataset) # Modify the result and only show the public datasets in this collection complete_dict['datasets'] = public_datasets return complete_dict """ Generate 'before_create_triiger' data and create the entity details in Neo4j Parameters ---------- request : flask.Request object The incoming request normalized_entity_type : str One of the normalized entity types: Dataset, Collection, Sample, Donor user_token: str The user's globus nexus token json_data_dict: dict The json request dict from user input Returns ------- dict A dict of all the newly created entity detials """ def create_entity_details(request, normalized_entity_type, user_token, json_data_dict): # Get user info based on request user_info_dict = schema_manager.get_user_info(request) # Create new ids for the new entity try: new_ids_dict_list = schema_manager.create_hubmap_ids(normalized_entity_type, json_data_dict, user_token, user_info_dict) new_ids_dict = new_ids_dict_list[0] # When group_uuid is provided by user, it can be invalid except schema_errors.NoDataProviderGroupException: # Log the full stack trace, prepend a line with our message if 'group_uuid' in json_data_dict: msg = "Invalid 'group_uuid' value, can't create the entity" else: msg = "The user does not have the correct Globus group associated with, can't create the entity" logger.exception(msg) bad_request_error(msg) except schema_errors.UnmatchedDataProviderGroupException: msg = "The user does not belong to the given Globus group, can't create the entity" logger.exception(msg) forbidden_error(msg) except schema_errors.MultipleDataProviderGroupException: msg = "The user has mutiple Globus groups associated with, please specify one using 'group_uuid'" logger.exception(msg) bad_request_error(msg) except KeyError as e: logger.exception(e) bad_request_error(e) except requests.exceptions.RequestException as e: msg = f"Failed to create new HuBMAP ids via the uuid-api service" logger.exception(msg) # Due to the use of response.raise_for_status() in schema_manager.create_hubmap_ids() # we can access the status codes from the exception status_code = e.response.status_code if status_code == 400: bad_request_error(e.response.text) if status_code == 404: not_found_error(e.response.text) else: internal_server_error(e.response.text) # Merge all the above dictionaries and pass to the trigger methods new_data_dict = {**json_data_dict, **user_info_dict, **new_ids_dict} try: # Use {} since no existing dict generated_before_create_trigger_data_dict = schema_manager.generate_triggered_data('before_create_trigger', normalized_entity_type, user_token, {}, new_data_dict) # If one of the before_create_trigger methods fails, we can't create the entity except schema_errors.BeforeCreateTriggerException: # Log the full stack trace, prepend a line with our message msg = "Failed to execute one of the 'before_create_trigger' methods, can't create the entity" logger.exception(msg) internal_server_error(msg) except schema_errors.NoDataProviderGroupException: # Log the full stack trace, prepend a line with our message if 'group_uuid' in json_data_dict: msg = "Invalid 'group_uuid' value, can't create the entity" else: msg = "The user does not have the correct Globus group associated with, can't create the entity" logger.exception(msg) bad_request_error(msg) except schema_errors.UnmatchedDataProviderGroupException: # Log the full stack trace, prepend a line with our message msg = "The user does not belong to the given Globus group, can't create the entity" logger.exception(msg) forbidden_error(msg) except schema_errors.MultipleDataProviderGroupException: # Log the full stack trace, prepend a line with our message msg = "The user has mutiple Globus groups associated with, please specify one using 'group_uuid'" logger.exception(msg) bad_request_error(msg) # If something wrong with file upload except schema_errors.FileUploadException as e: logger.exception(e) internal_server_error(e) except KeyError as e: # Log the full stack trace, prepend a line with our message logger.exception(e) bad_request_error(e) except Exception as e: logger.exception(e) internal_server_error(e) # Merge the user json data and generated trigger data into one dictionary merged_dict = {**json_data_dict, **generated_before_create_trigger_data_dict} # Filter out the merged_dict by getting rid of the transitent properties (not to be stored) # and properties with None value # Meaning the returned target property key is different from the original key # in the trigger method, e.g., Donor.image_files_to_add filtered_merged_dict = schema_manager.remove_transient_and_none_values(merged_dict, normalized_entity_type) # Create new entity try: # Important: `entity_dict` is the resulting neo4j dict, Python list and dicts are stored # as string expression literals in it. That's why properties like entity_dict['direct_ancestor_uuids'] # will need to use ast.literal_eval() in the schema_triggers.py entity_dict = app_neo4j_queries.create_entity(neo4j_driver_instance, normalized_entity_type, filtered_merged_dict) except TransactionError: msg = "Failed to create the new " + normalized_entity_type # Log the full stack trace, prepend a line with our message logger.exception(msg) # Terminate and let the users know internal_server_error(msg) # Important: use `entity_dict` instead of `filtered_merged_dict` to keep consistent with the stored # string expression literals of Python list/dict being used with entity update, e.g., `image_files` # Important: the same property keys in entity_dict will overwrite the same key in json_data_dict # and this is what we wanted. Adding json_data_dict back is to include those `transient` properties # provided in the JSON input but not stored in neo4j, and will be needed for after_create_trigger/after_update_trigger, # e.g., `previous_revision_uuid`, `direct_ancestor_uuids` # Add user_info_dict because it may be used by after_update_trigger methods merged_final_dict = {**json_data_dict, **entity_dict, **user_info_dict} # Note: return merged_final_dict instead of entity_dict because # it contains all the user json data that the generated that entity_dict may not have return merged_final_dict """ Create multiple sample nodes and relationships with the source entity node Parameters ---------- request : flask.Request object The incoming request normalized_entity_type : str One of the normalized entity types: Dataset, Collection, Sample, Donor user_token: str The user's globus nexus token json_data_dict: dict The json request dict from user input count : int The number of samples to create Returns ------- list A list of all the newly generated ids via uuid-api """ def create_multiple_samples_details(request, normalized_entity_type, user_token, json_data_dict, count): # Get user info based on request user_info_dict = schema_manager.get_user_info(request) # Create new ids for the new entity try: new_ids_dict_list = schema_manager.create_hubmap_ids(normalized_entity_type, json_data_dict, user_token, user_info_dict, count) # When group_uuid is provided by user, it can be invalid except schema_errors.NoDataProviderGroupException: # Log the full stack trace, prepend a line with our message if 'group_uuid' in json_data_dict: msg = "Invalid 'group_uuid' value, can't create the entity" else: msg = "The user does not have the correct Globus group associated with, can't create the entity" logger.exception(msg) bad_request_error(msg) except schema_errors.UnmatchedDataProviderGroupException: # Log the full stack trace, prepend a line with our message msg = "The user does not belong to the given Globus group, can't create the entity" logger.exception(msg) forbidden_error(msg) except schema_errors.MultipleDataProviderGroupException: # Log the full stack trace, prepend a line with our message msg = "The user has mutiple Globus groups associated with, please specify one using 'group_uuid'" logger.exception(msg) bad_request_error(msg) except KeyError as e: # Log the full stack trace, prepend a line with our message logger.exception(e) bad_request_error(e) except requests.exceptions.RequestException as e: msg = f"Failed to create new HuBMAP ids via the uuid-api service" logger.exception(msg) # Due to the use of response.raise_for_status() in schema_manager.create_hubmap_ids() # we can access the status codes from the exception status_code = e.response.status_code if status_code == 400: bad_request_error(e.response.text) if status_code == 404: not_found_error(e.response.text) else: internal_server_error(e.response.text) # Use the same json_data_dict and user_info_dict for each sample # Only difference is the `uuid` and `hubmap_id` that are generated # Merge all the dictionaries and pass to the trigger methods new_data_dict = {**json_data_dict, **user_info_dict, **new_ids_dict_list[0]} # Instead of calling generate_triggered_data() for each sample, we'll just call it on the first sample # since all other samples will share the same generated data except `uuid` and `hubmap_id` # A bit performance improvement try: # Use {} since no existing dict generated_before_create_trigger_data_dict = schema_manager.generate_triggered_data('before_create_trigger', normalized_entity_type, user_token, {}, new_data_dict) # If one of the before_create_trigger methods fails, we can't create the entity except schema_errors.BeforeCreateTriggerException: # Log the full stack trace, prepend a line with our message msg = "Failed to execute one of the 'before_create_trigger' methods, can't create the entity" logger.exception(msg) internal_server_error(msg) except schema_errors.NoDataProviderGroupException: # Log the full stack trace, prepend a line with our message if 'group_uuid' in json_data_dict: msg = "Invalid 'group_uuid' value, can't create the entity" else: msg = "The user does not have the correct Globus group associated with, can't create the entity" logger.exception(msg) bad_request_error(msg) except schema_errors.UnmatchedDataProviderGroupException: # Log the full stack trace, prepend a line with our message msg = "The user does not belong to the given Globus group, can't create the entity" logger.exception(msg) forbidden_error(msg) except schema_errors.MultipleDataProviderGroupException: # Log the full stack trace, prepend a line with our message msg = "The user has mutiple Globus groups associated with, please specify one using 'group_uuid'" logger.exception(msg) bad_request_error(msg) except KeyError as e: # Log the full stack trace, prepend a line with our message logger.exception(e) bad_request_error(e) except Exception as e: logger.exception(e) internal_server_error(e) # Merge the user json data and generated trigger data into one dictionary merged_dict = {**json_data_dict, **generated_before_create_trigger_data_dict} # Filter out the merged_dict by getting rid of the transitent properties (not to be stored) # and properties with None value # Meaning the returned target property key is different from the original key # in the trigger method, e.g., Donor.image_files_to_add filtered_merged_dict = schema_manager.remove_transient_and_none_values(merged_dict, normalized_entity_type) samples_dict_list = [] for new_ids_dict in new_ids_dict_list: # Just overwrite the `uuid` and `hubmap_id` that are generated # All other generated properties will stay the same across all samples sample_dict = {**filtered_merged_dict, **new_ids_dict} # Add to the list samples_dict_list.append(sample_dict) # Generate property values for the only one Activity node activity_data_dict = schema_manager.generate_activity_data(normalized_entity_type, user_token, user_info_dict) # Create new sample nodes and needed relationships as well as activity node in one transaction try: # No return value app_neo4j_queries.create_multiple_samples(neo4j_driver_instance, samples_dict_list, activity_data_dict, json_data_dict['direct_ancestor_uuid']) except TransactionError: msg = "Failed to create multiple samples" # Log the full stack trace, prepend a line with our message logger.exception(msg) # Terminate and let the users know internal_server_error(msg) # Return the generated ids for UI return new_ids_dict_list """ Execute 'after_create_triiger' methods Parameters ---------- normalized_entity_type : str One of the normalized entity types: Dataset, Collection, Sample, Donor user_token: str The user's globus nexus token merged_data_dict: dict The merged dict that contains the entity dict newly created and information from user request json that are not stored in Neo4j """ def after_create(normalized_entity_type, user_token, merged_data_dict): try: # 'after_create_trigger' and 'after_update_trigger' don't generate property values # It just returns the empty dict, no need to assign value # Use {} since no new dict schema_manager.generate_triggered_data('after_create_trigger', normalized_entity_type, user_token, merged_data_dict, {}) except schema_errors.AfterCreateTriggerException: # Log the full stack trace, prepend a line with our message msg = "The entity has been created, but failed to execute one of the 'after_create_trigger' methods" logger.exception(msg) internal_server_error(msg) except Exception as e: logger.exception(e) internal_server_error(e) """ Generate 'before_create_triiger' data and create the entity details in Neo4j Parameters ---------- request : flask.Request object The incoming request normalized_entity_type : str One of the normalized entity types: Dataset, Collection, Sample, Donor user_token: str The user's globus nexus token json_data_dict: dict The json request dict existing_entity_dict: dict Dict of the exiting entity information Returns ------- dict A dict of all the updated entity detials """ def update_entity_details(request, normalized_entity_type, user_token, json_data_dict, existing_entity_dict): # Get user info based on request user_info_dict = schema_manager.get_user_info(request) # Merge user_info_dict and the json_data_dict for passing to the trigger methods new_data_dict = {**user_info_dict, **json_data_dict} try: generated_before_update_trigger_data_dict = schema_manager.generate_triggered_data('before_update_trigger', normalized_entity_type, user_token, existing_entity_dict, new_data_dict) # If something wrong with file upload except schema_errors.FileUploadException as e: logger.exception(e) internal_server_error(e) # If one of the before_update_trigger methods fails, we can't update the entity except schema_errors.BeforeUpdateTriggerException: # Log the full stack trace, prepend a line with our message msg = "Failed to execute one of the 'before_update_trigger' methods, can't update the entity" logger.exception(msg) internal_server_error(msg) except Exception as e: logger.exception(e) internal_server_error(e) # Merge dictionaries merged_dict = {**json_data_dict, **generated_before_update_trigger_data_dict} # Filter out the merged_dict by getting rid of the transitent properties (not to be stored) # and properties with None value # Meaning the returned target property key is different from the original key # in the trigger method, e.g., Donor.image_files_to_add filtered_merged_dict = schema_manager.remove_transient_and_none_values(merged_dict, normalized_entity_type) # By now the filtered_merged_dict contains all user updates and all triggered data to be added to the entity node # Any properties in filtered_merged_dict that are not on the node will be added. # Any properties not in filtered_merged_dict that are on the node will be left as is. # Any properties that are in both filtered_merged_dict and the node will be replaced in the node. However, if any property in the map is null, it will be removed from the node. # Update the exisiting entity try: updated_entity_dict = app_neo4j_queries.update_entity(neo4j_driver_instance, normalized_entity_type, filtered_merged_dict, existing_entity_dict['uuid']) except TransactionError: msg = "Failed to update the entity with id " + id # Log the full stack trace, prepend a line with our message logger.exception(msg) # Terminate and let the users know internal_server_error(msg) # Important: use `updated_entity_dict` instead of `filtered_merged_dict` to keep consistent with the stored # string expression literals of Python list/dict being used with entity update, e.g., `image_files` # Important: the same property keys in entity_dict will overwrite the same key in json_data_dict # and this is what we wanted. Adding json_data_dict back is to include those `transient` properties # provided in the JSON input but not stored in neo4j, and will be needed for after_create_trigger/after_update_trigger, # e.g., `previous_revision_uuid`, `direct_ancestor_uuids` # Add user_info_dict because it may be used by after_update_trigger methods merged_final_dict = {**json_data_dict, **updated_entity_dict, **user_info_dict} # Use merged_final_dict instead of merged_dict because # merged_dict only contains properties to be updated, not all properties return merged_final_dict """ Execute 'after_update_triiger' methods Parameters ---------- normalized_entity_type : str One of the normalized entity types: Dataset, Collection, Sample, Donor user_token: str The user's globus nexus token entity_dict: dict The entity dict newly updated """ def after_update(normalized_entity_type, user_token, entity_dict): try: # 'after_create_trigger' and 'after_update_trigger' don't generate property values # It just returns the empty dict, no need to assign value # Use {} sicne no new dict schema_manager.generate_triggered_data('after_update_trigger', normalized_entity_type, user_token, entity_dict, {}) except schema_errors.AfterUpdateTriggerException: # Log the full stack trace, prepend a line with our message msg = "The entity information has been updated, but failed to execute one of the 'after_update_trigger' methods" logger.exception(msg) internal_server_error(msg) except Exception as e: logger.exception(e) internal_server_error(e) """ Get target entity dict Parameters ---------- id : str The uuid or hubmap_id of target entity user_token: str The user's globus nexus token from the incoming request Returns ------- dict A dictionary of entity details returned from neo4j """ def query_target_entity(id, user_token): try: """ The dict returned by uuid-api that contains all the associated ids, e.g.: { "ancestor_id": "23c0ffa90648358e06b7ac0c5673ccd2", "ancestor_ids":[ "23c0ffa90648358e06b7ac0c5673ccd2" ], "email": "marda@ufl.edu", "hm_uuid": "1785aae4f0fb8f13a56d79957d1cbedf", "hubmap_id": "HBM966.VNKN.965", "submission_id": "UFL0007", "time_generated": "2020-10-19 15:52:02", "type": "DONOR", "user_id": "694c6f6a-1deb-41a6-880f-d1ad8af3705f" } """ hubmap_ids = schema_manager.get_hubmap_ids(id, user_token) # Get the target uuid if all good uuid = hubmap_ids['hm_uuid'] entity_dict = app_neo4j_queries.get_entity(neo4j_driver_instance, uuid) # The uuid exists via uuid-api doesn't mean it's also in Neo4j if not entity_dict: not_found_error(f"Entity of id: {id} not found in Neo4j") return entity_dict except requests.exceptions.RequestException as e: # Due to the use of response.raise_for_status() in schema_manager.get_hubmap_ids() # we can access the status codes from the exception status_code = e.response.status_code if status_code == 400: bad_request_error(e.response.text) if status_code == 404: not_found_error(e.response.text) else: internal_server_error(e.response.text) """ Always expect a json body from user request request : Flask request object The Flask request passed from the API endpoint """ def require_json(request): if not request.is_json: bad_request_error("A json body and appropriate Content-Type header are required") """ Make a call to search-api to reindex this entity node in elasticsearch Parameters ---------- uuid : str The uuid of the target entity user_token: str The user's globus nexus token """ def reindex_entity(uuid, user_token): try: logger.info(f"Making a call to search-api to reindex uuid: {uuid}") headers = create_request_headers(user_token) response = requests.put(app.config['SEARCH_API_URL'] + "/reindex/" + uuid, headers = headers) # The reindex takes time, so 202 Accepted response status code indicates that # the request has been accepted for processing, but the processing has not been completed if response.status_code == 202: logger.info(f"The search-api has accepted the reindex request for uuid: {uuid}") else: logger.error(f"The search-api failed to initialize the reindex for uuid: {uuid}") except Exception: msg = f"Failed to send the reindex request to search-api for entity with uuid: {uuid}" # Log the full stack trace, prepend a line with our message logger.exception(msg) # Terminate and let the users know internal_server_error(msg) """ Create a dict of HTTP Authorization header with Bearer token for making calls to uuid-api Parameters ---------- user_token: str The user's globus nexus token Returns ------- dict The headers dict to be used by requests """ def create_request_headers(user_token): auth_header_name = 'Authorization' auth_scheme = 'Bearer' headers_dict = { # Don't forget the space between scheme and the token value auth_header_name: auth_scheme + ' ' + user_token } return headers_dict """ Ensure the access level dir with leading and trailing slashes dir_name : str The name of the sub directory corresponding to each access level Returns ------- str One of the formatted dir path string: /public/, /protected/, /consortium/ """ def access_level_prefix_dir(dir_name): if string_helper.isBlank(dir_name): return '' return hm_file_helper.ensureTrailingSlashURL(hm_file_helper.ensureBeginningSlashURL(dir_name)) """ Ensures that a given organ code matches what is found on the organ_types yaml document organ_code : str Returns nothing. Raises bad_request_error is organ code not found on organ_types.yaml """ def validate_organ_code(organ_code): ORGAN_YAML_URL = 'https://raw.githubusercontent.com/hubmapconsortium/search-api/test-release/src/search-schema/data/definitions/enums/organ_types.yaml' with urllib.request.urlopen(ORGAN_YAML_URL) as organ_file: organ_yaml = yaml.load(organ_file, Loader=yaml.FullLoader) if organ_code.upper() not in organ_yaml: bad_request_error(f"Invalid Organ. Organ must be 2 digit code, case-insensitive located at {ORGAN_YAML_URL}") # For local development/testing if __name__ == "__main__": try: app.run(host='0.0.0.0', port="5002") except Exception as e: print("Error during starting debug server.") print(str(e)) logger.error(e, exc_info=True) print("Error during startup check the log file for further information")
44.463915
188
0.714127
393c2a4ed7fd25d9ba2d903271aeec9f9e1494c9
25,117
py
Python
adafruit_character_lcd/character_lcd.py
jepler/Adafruit_CircuitPython_CharLCD
a9e0c61575e02fe6b5eea348553f1e92d1f55632
[ "MIT" ]
null
null
null
adafruit_character_lcd/character_lcd.py
jepler/Adafruit_CircuitPython_CharLCD
a9e0c61575e02fe6b5eea348553f1e92d1f55632
[ "MIT" ]
null
null
null
adafruit_character_lcd/character_lcd.py
jepler/Adafruit_CircuitPython_CharLCD
a9e0c61575e02fe6b5eea348553f1e92d1f55632
[ "MIT" ]
1
2020-12-07T14:16:40.000Z
2020-12-07T14:16:40.000Z
# The MIT License (MIT) # # Copyright (c) 2017 Brent Rubell for Adafruit Industries # Copyright (c) 2018 Kattni Rembor for Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `adafruit_character_lcd.character_lcd` ==================================================== Module for interfacing with monochromatic character LCDs * Author(s): Kattni Rembor, Brent Rubell, Asher Lieber, Tony DiCola (original python charLCD library) Implementation Notes -------------------- **Hardware:** "* `Adafruit Character LCDs <http://www.adafruit.com/category/63_96>`_" **Software and Dependencies:** * Adafruit CircuitPython firmware: https://github.com/adafruit/circuitpython/releases * Adafruit's Bus Device library (when using I2C/SPI): https://github.com/adafruit/Adafruit_CircuitPython_BusDevice """ import time import digitalio from micropython import const __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_CharLCD.git" # pylint: disable-msg=bad-whitespace # Commands _LCD_CLEARDISPLAY = const(0x01) _LCD_RETURNHOME = const(0x02) _LCD_ENTRYMODESET = const(0x04) _LCD_DISPLAYCONTROL = const(0x08) _LCD_CURSORSHIFT = const(0x10) _LCD_FUNCTIONSET = const(0x20) _LCD_SETCGRAMADDR = const(0x40) _LCD_SETDDRAMADDR = const(0x80) # Entry flags _LCD_ENTRYLEFT = const(0x02) _LCD_ENTRYSHIFTDECREMENT = const(0x00) # Control flags _LCD_DISPLAYON = const(0x04) _LCD_CURSORON = const(0x02) _LCD_CURSOROFF = const(0x00) _LCD_BLINKON = const(0x01) _LCD_BLINKOFF = const(0x00) # Move flags _LCD_DISPLAYMOVE = const(0x08) _LCD_MOVERIGHT = const(0x04) _LCD_MOVELEFT = const(0x00) # Function set flags _LCD_4BITMODE = const(0x00) _LCD_2LINE = const(0x08) _LCD_1LINE = const(0x00) _LCD_5X8DOTS = const(0x00) # Offset for up to 4 rows. _LCD_ROW_OFFSETS = (0x00, 0x40, 0x14, 0x54) # pylint: enable-msg=bad-whitespace def _set_bit(byte_value, position, val): # Given the specified byte_value set the bit at position to the provided # boolean value val and return the modified byte. ret = None if val: ret = byte_value | (1 << position) else: ret = byte_value & ~(1 << position) return ret def _map(xval, in_min, in_max, out_min, out_max): # Affine transfer/map with constrained output. outrange = float(out_max - out_min) inrange = float(in_max - in_min) ret = (xval - in_min) * (outrange / inrange) + out_min if out_max > out_min: ret = max(min(ret, out_max), out_min) else: ret = max(min(ret, out_min), out_max) return ret # pylint: disable-msg=too-many-instance-attributes class Character_LCD: """Base class for character LCD. :param ~digitalio.DigitalInOut rs: The reset data line :param ~digitalio.DigitalInOut en: The enable data line :param ~digitalio.DigitalInOut d4: The data line 4 :param ~digitalio.DigitalInOut d5: The data line 5 :param ~digitalio.DigitalInOut d6: The data line 6 :param ~digitalio.DigitalInOut d7: The data line 7 :param columns: The columns on the charLCD :param lines: The lines on the charLCD """ LEFT_TO_RIGHT = const(0) RIGHT_TO_LEFT = const(1) # pylint: disable-msg=too-many-arguments def __init__(self, rs, en, d4, d5, d6, d7, columns, lines): self.columns = columns self.lines = lines # save pin numbers self.reset = rs self.enable = en self.dl4 = d4 self.dl5 = d5 self.dl6 = d6 self.dl7 = d7 # set all pins as outputs for pin in (rs, en, d4, d5, d6, d7): pin.direction = digitalio.Direction.OUTPUT # Initialise the display self._write8(0x33) self._write8(0x32) # Initialise display control self.displaycontrol = _LCD_DISPLAYON | _LCD_CURSOROFF | _LCD_BLINKOFF # Initialise display function self.displayfunction = _LCD_4BITMODE | _LCD_1LINE | _LCD_2LINE | _LCD_5X8DOTS # Initialise display mode self.displaymode = _LCD_ENTRYLEFT | _LCD_ENTRYSHIFTDECREMENT # Write to displaycontrol self._write8(_LCD_DISPLAYCONTROL | self.displaycontrol) # Write to displayfunction self._write8(_LCD_FUNCTIONSET | self.displayfunction) # Set entry mode self._write8(_LCD_ENTRYMODESET | self.displaymode) self.clear() self._message = None self._enable = None self._direction = None # track row and column used in cursor_position # initialize to 0,0 self.row = 0 self.column = 0 self._column_align = False # pylint: enable-msg=too-many-arguments def home(self): """Moves the cursor "home" to position (1, 1).""" self._write8(_LCD_RETURNHOME) time.sleep(0.003) def clear(self): """Clears everything displayed on the LCD. The following example displays, "Hello, world!", then clears the LCD. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.message = "Hello, world!" time.sleep(5) lcd.clear() """ self._write8(_LCD_CLEARDISPLAY) time.sleep(0.003) @property def column_align(self): """If True, message text after '\\n' starts directly below start of first character in message. If False, text after '\\n' starts at column zero. """ return self._column_align @column_align.setter def column_align(self, enable): if isinstance(enable, bool): self._column_align = enable else: raise ValueError("The column_align value must be either True or False") @property def cursor(self): """True if cursor is visible. False to stop displaying the cursor. The following example shows the cursor after a displayed message: .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.cursor = True lcd.message = "Cursor! " time.sleep(5) """ return self.displaycontrol & _LCD_CURSORON == _LCD_CURSORON @cursor.setter def cursor(self, show): if show: self.displaycontrol |= _LCD_CURSORON else: self.displaycontrol &= ~_LCD_CURSORON self._write8(_LCD_DISPLAYCONTROL | self.displaycontrol) def cursor_position(self, column, row): """Move the cursor to position ``column``, ``row`` for the next message only. Displaying a message resets the cursor position to (0, 0). :param column: column location :param row: row location """ # Clamp row to the last row of the display if row >= self.lines: row = self.lines - 1 # Clamp to last column of display if column >= self.columns: column = self.columns - 1 # Set location self._write8(_LCD_SETDDRAMADDR | (column + _LCD_ROW_OFFSETS[row])) # Update self.row and self.column to match setter self.row = row self.column = column @property def blink(self): """ Blink the cursor. True to blink the cursor. False to stop blinking. The following example shows a message followed by a blinking cursor for five seconds. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.blink = True lcd.message = "Blinky cursor!" time.sleep(5) lcd.blink = False """ return self.displaycontrol & _LCD_BLINKON == _LCD_BLINKON @blink.setter def blink(self, blink): if blink: self.displaycontrol |= _LCD_BLINKON else: self.displaycontrol &= ~_LCD_BLINKON self._write8(_LCD_DISPLAYCONTROL | self.displaycontrol) @property def display(self): """ Enable or disable the display. True to enable the display. False to disable the display. The following example displays, "Hello, world!" on the LCD and then turns the display off. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.message = "Hello, world!" time.sleep(5) lcd.display = False """ return self.displaycontrol & _LCD_DISPLAYON == _LCD_DISPLAYON @display.setter def display(self, enable): if enable: self.displaycontrol |= _LCD_DISPLAYON else: self.displaycontrol &= ~_LCD_DISPLAYON self._write8(_LCD_DISPLAYCONTROL | self.displaycontrol) @property def message(self): """Display a string of text on the character LCD. Start position is (0,0) if cursor_position is not set. If cursor_position is set, message starts at the set position from the left for left to right text and from the right for right to left text. Resets cursor column and row to (0,0) after displaying the message. The following example displays, "Hello, world!" on the LCD. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.message = "Hello, world!" time.sleep(5) """ return self._message @message.setter def message(self, message): self._message = message # Set line to match self.row from cursor_position() line = self.row # Track times through iteration, to act on the initial character of the message initial_character = 0 # iterate through each character for character in message: # If this is the first character in the string: if initial_character == 0: # Start at (0, 0) unless direction is set right to left, in which case start # on the opposite side of the display if cursor_position not set or (0,0) # If cursor_position is set then starts at the specified location for # LEFT_TO_RIGHT. If RIGHT_TO_LEFT cursor_position is determined from right. # allows for cursor_position to work in RIGHT_TO_LEFT mode if self.displaymode & _LCD_ENTRYLEFT > 0: col = self.column else: col = self.columns - 1 - self.column self.cursor_position(col, line) initial_character += 1 # If character is \n, go to next line if character == "\n": line += 1 # Start the second line at (0, 1) unless direction is set right to left in # which case start on the opposite side of the display if cursor_position # is (0,0) or not set. Start second line at same column as first line when # cursor_position is set if self.displaymode & _LCD_ENTRYLEFT > 0: col = self.column * self._column_align else: if self._column_align: col = self.column else: col = self.columns - 1 self.cursor_position(col, line) # Write string to display else: self._write8(ord(character), True) # reset column and row to (0,0) after message is displayed self.column, self.row = 0, 0 def move_left(self): """Moves displayed text left one column. The following example scrolls a message to the left off the screen. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) scroll_message = "<-- Scroll" lcd.message = scroll_message time.sleep(2) for i in range(len(scroll_message)): lcd.move_left() time.sleep(0.5) """ self._write8(_LCD_CURSORSHIFT | _LCD_DISPLAYMOVE | _LCD_MOVELEFT) def move_right(self): """Moves displayed text right one column. The following example scrolls a message to the right off the screen. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) scroll_message = "Scroll -->" lcd.message = scroll_message time.sleep(2) for i in range(len(scroll_message) + 16): lcd.move_right() time.sleep(0.5) """ self._write8(_LCD_CURSORSHIFT | _LCD_DISPLAYMOVE | _LCD_MOVERIGHT) @property def text_direction(self): """The direction the text is displayed. To display the text left to right beginning on the left side of the LCD, set ``text_direction = LEFT_TO_RIGHT``. To display the text right to left beginning on the right size of the LCD, set ``text_direction = RIGHT_TO_LEFT``. Text defaults to displaying from left to right. The following example displays "Hello, world!" from right to left. .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.text_direction = lcd.RIGHT_TO_LEFT lcd.message = "Hello, world!" time.sleep(5) """ return self._direction @text_direction.setter def text_direction(self, direction): self._direction = direction if direction == self.LEFT_TO_RIGHT: self._left_to_right() elif direction == self.RIGHT_TO_LEFT: self._right_to_left() def _left_to_right(self): # Displays text from left to right on the LCD. self.displaymode |= _LCD_ENTRYLEFT self._write8(_LCD_ENTRYMODESET | self.displaymode) def _right_to_left(self): # Displays text from right to left on the LCD. self.displaymode &= ~_LCD_ENTRYLEFT self._write8(_LCD_ENTRYMODESET | self.displaymode) def create_char(self, location, pattern): """ Fill one of the first 8 CGRAM locations with custom characters. The location parameter should be between 0 and 7 and pattern should provide an array of 8 bytes containing the pattern. E.g. you can easily design your custom character at http://www.quinapalus.com/hd44780udg.html To show your custom character use, for example, ``lcd.message = "\x01"`` :param location: integer in range(8) to store the created character :param ~bytes pattern: len(8) describes created character """ # only position 0..7 are allowed location &= 0x7 self._write8(_LCD_SETCGRAMADDR | (location << 3)) for i in range(8): self._write8(pattern[i], char_mode=True) def _write8(self, value, char_mode=False): # Sends 8b ``value`` in ``char_mode``. # :param value: bytes # :param char_mode: character/data mode selector. False (default) for # data only, True for character bits. # one ms delay to prevent writing too quickly. time.sleep(0.001) # set character/data bit. (charmode = False) self.reset.value = char_mode # WRITE upper 4 bits self.dl4.value = ((value >> 4) & 1) > 0 self.dl5.value = ((value >> 5) & 1) > 0 self.dl6.value = ((value >> 6) & 1) > 0 self.dl7.value = ((value >> 7) & 1) > 0 # send command self._pulse_enable() # WRITE lower 4 bits self.dl4.value = (value & 1) > 0 self.dl5.value = ((value >> 1) & 1) > 0 self.dl6.value = ((value >> 2) & 1) > 0 self.dl7.value = ((value >> 3) & 1) > 0 self._pulse_enable() def _pulse_enable(self): # Pulses (lo->hi->lo) to send commands. self.enable.value = False # 1microsec pause time.sleep(0.0000001) self.enable.value = True time.sleep(0.0000001) self.enable.value = False time.sleep(0.0000001) # pylint: enable-msg=too-many-instance-attributes # pylint: disable-msg=too-many-instance-attributes class Character_LCD_Mono(Character_LCD): """Interfaces with monochromatic character LCDs. :param ~digitalio.DigitalInOut rs: The reset data line :param ~digitalio.DigitalInOut en: The enable data line :param ~digitalio.DigitalInOut d4: The data line 4 :param ~digitalio.DigitalInOut d5: The data line 5 :param ~digitalio.DigitalInOut d6: The data line 6 :param ~digitalio.DigitalInOut d7: The data line 7 :param columns: The columns on the charLCD :param lines: The lines on the charLCD :param ~digitalio.DigitalInOut backlight_pin: The backlight pin :param bool backlight_inverted: ``False`` if LCD is not inverted, i.e. backlight pin is connected to common anode. ``True`` if LCD is inverted i.e. backlight pin is connected to common cathode. """ # pylint: disable-msg=too-many-arguments def __init__( self, rs, en, db4, db5, db6, db7, columns, lines, backlight_pin=None, backlight_inverted=False, ): # Backlight pin and inversion self.backlight_pin = backlight_pin self.backlight_inverted = backlight_inverted # Setup backlight if backlight_pin is not None: self.backlight_pin.direction = digitalio.Direction.OUTPUT self.backlight = True super().__init__(rs, en, db4, db5, db6, db7, columns, lines) # pylint: enable-msg=too-many-arguments @property def backlight(self): """Enable or disable backlight. True if backlight is on. False if backlight is off. The following example turns the backlight off, then displays, "Hello, world?", then turns the backlight on and displays, "Hello, world!" .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_I2C(i2c, 16, 2) lcd.backlight = False lcd.message = "Hello, world?" time.sleep(5) lcd.backlight = True lcd.message = "Hello, world!" time.sleep(5) """ return self._enable @backlight.setter def backlight(self, enable): self._enable = enable if enable: self.backlight_pin.value = not self.backlight_inverted else: self.backlight_pin.value = self.backlight_inverted class Character_LCD_RGB(Character_LCD): """Interfaces with RGB character LCDs. :param ~digitalio.DigitalInOut rs: The reset data line :param ~digitalio.DigitalInOut en: The enable data line :param ~digitalio.DigitalInOut db4: The data line 4 :param ~digitalio.DigitalInOut db5: The data line 5 :param ~digitalio.DigitalInOut db6: The data line 6 :param ~digitalio.DigitalInOut db7: The data line 7 :param columns: The columns on the charLCD :param lines: The lines on the charLCD :param ~pulseio.PWMOut, ~digitalio.DigitalInOut red: Red RGB Anode :param ~pulseio.PWMOut, ~digitalio.DigitalInOut green: Green RGB Anode :param ~pulseio.PWMOut, ~digitalio.DigitalInOut blue: Blue RGB Anode :param ~digitalio.DigitalInOut read_write: The rw pin. Determines whether to read to or write from the display. Not necessary if only writing to the display. Used on shield. """ # pylint: disable-msg=too-many-arguments def __init__( self, rs, en, db4, db5, db6, db7, columns, lines, red, green, blue, read_write=None, ): # Define read_write (rw) pin self.read_write = read_write # Setup rw pin if used if read_write is not None: self.read_write.direction = digitalio.Direction.OUTPUT # define color params self.rgb_led = [red, green, blue] for pin in self.rgb_led: if hasattr(pin, "direction"): # Assume a digitalio.DigitalInOut or compatible interface: pin.direction = digitalio.Direction.OUTPUT elif not hasattr(pin, "duty_cycle"): raise TypeError( "RGB LED objects must be instances of digitalio.DigitalInOut" " or pulseio.PWMOut, or provide a compatible interface." ) self._color = [0, 0, 0] super().__init__(rs, en, db4, db5, db6, db7, columns, lines) @property def color(self): """ The color of the display. Provide a list of three integers ranging 0 - 100, ``[R, G, B]``. ``0`` is no color, or "off". ``100`` is maximum color. For example, the brightest red would be ``[100, 0, 0]``, and a half-bright purple would be, ``[50, 0, 50]``. If PWM is unavailable, ``0`` is off, and non-zero is on. For example, ``[1, 0, 0]`` would be red. The following example turns the LCD red and displays, "Hello, world!". .. code-block:: python import time import board import busio import adafruit_character_lcd.character_lcd_rgb_i2c as character_lcd i2c = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_RGB_I2C(i2c, 16, 2) lcd.color = [100, 0, 0] lcd.message = "Hello, world!" time.sleep(5) """ return self._color @color.setter def color(self, color): self._color = color for number, pin in enumerate(self.rgb_led): if hasattr(pin, "duty_cycle"): # Assume a pulseio.PWMOut or compatible interface and set duty cycle: pin.duty_cycle = int(_map(color[number], 0, 100, 65535, 0)) elif hasattr(pin, "value"): # If we don't have a PWM interface, all we can do is turn each color # on / off. Assume a DigitalInOut (or compatible interface) and write # 0 (on) to pin for any value greater than 0, or 1 (off) for 0: pin.value = not color[number] > 1
34.312842
99
0.617192
0d59e1aeb6baa674260e9341886a5b627483b576
401
py
Python
api/database.py
groupwildman/todolist
7ce990b91e208fdb5ca757e3508a2f0764c16798
[ "Apache-2.0" ]
null
null
null
api/database.py
groupwildman/todolist
7ce990b91e208fdb5ca757e3508a2f0764c16798
[ "Apache-2.0" ]
null
null
null
api/database.py
groupwildman/todolist
7ce990b91e208fdb5ca757e3508a2f0764c16798
[ "Apache-2.0" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker SQLALCHEMY_DATABASE_URI = 'sqlite:///todolist.sqlite' _engine = create_engine( SQLALCHEMY_DATABASE_URI, connect_args={"check_same_thread": False} ) _session_local = sessionmaker(autocommit=False, autoflush=False, bind=_engine) _base = declarative_base()
26.733333
78
0.810474
d5cb786c4586dd9fd365217785fbebf472d1451d
404
py
Python
store/migrations/0004_shippingaddress_country.py
ketanv75/Django-training
ca7ad629ce92be370bbbf6e7f8a14cf170fd9174
[ "bzip2-1.0.6" ]
null
null
null
store/migrations/0004_shippingaddress_country.py
ketanv75/Django-training
ca7ad629ce92be370bbbf6e7f8a14cf170fd9174
[ "bzip2-1.0.6" ]
null
null
null
store/migrations/0004_shippingaddress_country.py
ketanv75/Django-training
ca7ad629ce92be370bbbf6e7f8a14cf170fd9174
[ "bzip2-1.0.6" ]
null
null
null
# Generated by Django 3.0.6 on 2021-05-19 19:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0003_auto_20210519_2101'), ] operations = [ migrations.AddField( model_name='shippingaddress', name='country', field=models.CharField(max_length=200, null=True), ), ]
21.263158
62
0.608911
ec3cbb7462b8d3d54d94695b2935b0283d415d4e
3,811
py
Python
resources/libraries/python/MLRsearch/ReceiveRateInterval.py
preym17/csit
3151c98618c78e3782e48bbe4d9c8f906c126f69
[ "Apache-2.0" ]
null
null
null
resources/libraries/python/MLRsearch/ReceiveRateInterval.py
preym17/csit
3151c98618c78e3782e48bbe4d9c8f906c126f69
[ "Apache-2.0" ]
null
null
null
resources/libraries/python/MLRsearch/ReceiveRateInterval.py
preym17/csit
3151c98618c78e3782e48bbe4d9c8f906c126f69
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module defining ReceiveRateInterval class.""" import math from resources.libraries.python.MLRsearch.ReceiveRateMeasurement \ import ReceiveRateMeasurement class ReceiveRateInterval(object): """Structure defining two Rr measurements, and their relation.""" def __init__(self, measured_low, measured_high): """Store the bound measurements after checking argument types. :param measured_low: Measurement for the lower bound. :param measured_high: Measurement for the upper bound. :type measured_low: ReceiveRateMeasurement.ReceiveRateMeasurement :type measured_high: ReceiveRateMeasurement.ReceiveRateMeasurement """ # TODO: Type checking is not very pythonic, # perhaps users can fix wrong usage without it? if not isinstance(measured_low, ReceiveRateMeasurement): raise TypeError("measured_low is not a ReceiveRateMeasurement: " "{low!r}".format(low=measured_low)) if not isinstance(measured_high, ReceiveRateMeasurement): raise TypeError("measured_high is not a ReceiveRateMeasurement: " "{high!r}".format(high=measured_high)) self.measured_low = measured_low self.measured_high = measured_high # Declare secondary quantities to appease pylint. self.abs_tr_width = None """Absolute width of target transmit rate. Upper minus lower.""" self.rel_tr_width = None """Relative width of target transmit rate. Absolute divided by upper.""" self.sort() def sort(self): """Sort bounds by target Tr, compute secondary quantities.""" if self.measured_low.target_tr > self.measured_high.target_tr: self.measured_low, self.measured_high = ( self.measured_high, self.measured_low) self.abs_tr_width = ( self.measured_high.target_tr - self.measured_low.target_tr) self.rel_tr_width = self.abs_tr_width / self.measured_high.target_tr def width_in_goals(self, relative_width_goal): """Return float value. Relative width goal is some (negative) value on logarithmic scale. Current relative width is another logarithmic value. Return the latter divided by the former. This is useful when investigating how did surprising widths come to be. :param relative_width_goal: Upper bound times this is the goal difference between upper bound and lower bound. :type relative_width_goal: float :returns: Current width as logarithmic multiple of goal width [1]. :rtype: float """ return math.log(1.0 - self.rel_tr_width) / math.log( 1.0 - relative_width_goal) def __str__(self): """Return string as half-open interval.""" return "[{low!s};{high!s})".format( low=self.measured_low, high=self.measured_high) def __repr__(self): """Return string evaluable as a constructor call.""" return ("ReceiveRateInterval(measured_low={low!r}" ",measured_high={high!r})".format( low=self.measured_low, high=self.measured_high))
44.313953
80
0.683023
25b938894b14e87a7a848a5a001a3333f5325d8d
537
py
Python
projdir/app/migrations/0031_auto_20160624_1717.py
NITKOSG/InfoGami
f5ce567d5558a768e58886b3419e378cabb7049d
[ "MIT" ]
2
2017-02-01T09:57:40.000Z
2017-06-03T15:26:55.000Z
projdir/app/migrations/0031_auto_20160624_1717.py
NITKOSG/InfoGami
f5ce567d5558a768e58886b3419e378cabb7049d
[ "MIT" ]
2
2018-05-11T20:10:23.000Z
2019-05-01T21:13:07.000Z
projdir/app/migrations/0031_auto_20160624_1717.py
NITKOSG/InfoGami
f5ce567d5558a768e58886b3419e378cabb7049d
[ "MIT" ]
3
2017-02-11T13:19:28.000Z
2018-08-31T18:51:18.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-06-24 11:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0030_messsagemodel_created'), ] operations = [ migrations.AlterField( model_name='userprofilemodel', name='user_profile_pic', field=models.FileField(blank=True, default='profile_pics/avatars/default.png', upload_to='profile_pics/'), ), ]
25.571429
118
0.651769
c61c45ef810906f6ad15797b1bd2dfdbc935cb92
1,595
py
Python
USACO Prep 2/marathon.py
PythonCoderAS/Algorithims-Assignments
1f33b6187d5ca36198cee8c7086f07952a1d6cbb
[ "MIT" ]
null
null
null
USACO Prep 2/marathon.py
PythonCoderAS/Algorithims-Assignments
1f33b6187d5ca36198cee8c7086f07952a1d6cbb
[ "MIT" ]
1
2021-12-31T02:14:55.000Z
2021-12-31T02:14:55.000Z
USACO Prep 2/marathon.py
PythonCoderAS/Algorithims-Assignments
1f33b6187d5ca36198cee8c7086f07952a1d6cbb
[ "MIT" ]
null
null
null
def get_distance(coords1, coords2): """Gets the distance between 2 pairs of coordinates Args: coords1 ([int, int]): The first set of coordinates coords2 ([int, int]): The second set of coordinates """ return abs(coords1[0] - coords2[0]) + abs(coords1[1] - coords2[1]) coordinates = [] with open("marathon.in", "r") as file: n = int(file.readline().strip()) for line in file: x, y = line.strip().split(" ") coordinates.append((int(x), int(y))) distance_pairs = {} for i in range(n - 1): start = coordinates[i] finish = coordinates[i + 1] distance = get_distance(start, finish) distance_pairs[start, finish] = distance distance_pairs_list = list(distance_pairs.items()) normal_max = sum([distance for _, distance in distance_pairs_list]) possible_values = distance_pairs_list[:-1] possible_sums = [] for combo in range(len(possible_values)): current_sum = normal_max actual_index = combo removed_coordinate_set = distance_pairs_list[actual_index] modified_coordinate_set = distance_pairs_list[actual_index + 1] current_sum -= (removed_coordinate_set[1] + modified_coordinate_set[1]) # removed_coordinate_set[0][1] is the coordinate pair that was removed, and is equal # to modified_coordinate_set[0][0]. We need to add the distance between the new # coordinate pairs. current_sum += get_distance(removed_coordinate_set[0][0], modified_coordinate_set[0][1]) possible_sums.append(current_sum) with open("marathon.out", "w") as file: file.write(str(min(possible_sums)) + "\n")
36.25
92
0.697806
6fe9cd52136ed350e075521cd78e2588453ce6b9
603
py
Python
buildgrid/_version.py
antmicro/buildgrid
eccb35e3670e52957e189616fbf73dc82e8f83d4
[ "Apache-2.0" ]
null
null
null
buildgrid/_version.py
antmicro/buildgrid
eccb35e3670e52957e189616fbf73dc82e8f83d4
[ "Apache-2.0" ]
null
null
null
buildgrid/_version.py
antmicro/buildgrid
eccb35e3670e52957e189616fbf73dc82e8f83d4
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2018 Bloomberg LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # <http://www.apache.org/licenses/LICENSE-2.0> # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.0.2'
35.470588
74
0.754561
a04542158e4f8e06c8341e8fc4d8ac71a5730cdb
1,806
py
Python
src/streamlink/plugins/nrk.py
sn4kebite/streamlink
054b760ce7e9f43451eed08e9f39de440c3e5add
[ "BSD-2-Clause" ]
5
2017-03-21T19:43:17.000Z
2018-10-03T14:04:29.000Z
src/streamlink/plugins/nrk.py
sn4kebite/streamlink
054b760ce7e9f43451eed08e9f39de440c3e5add
[ "BSD-2-Clause" ]
7
2016-10-13T23:29:31.000Z
2018-06-28T14:04:32.000Z
src/streamlink/plugins/nrk.py
sn4kebite/streamlink
054b760ce7e9f43451eed08e9f39de440c3e5add
[ "BSD-2-Clause" ]
2
2016-11-24T18:37:33.000Z
2017-03-21T19:43:49.000Z
import re from urllib.parse import urljoin from streamlink.plugin import Plugin from streamlink.plugin.api import validate from streamlink.stream import HLSStream COOKIE_PARAMS = ( "devicetype=desktop&" "preferred-player-odm=hlslink&" "preferred-player-live=hlslink" ) _id_re = re.compile(r"/(?:program|direkte|serie/[^/]+)/([^/]+)") _url_re = re.compile(r"https?://(tv|radio).nrk.no/") _api_baseurl_re = re.compile(r'''apiBaseUrl:\s*["'](?P<baseurl>[^"']+)["']''') _schema = validate.Schema( validate.transform(_api_baseurl_re.search), validate.any( None, validate.all( validate.get("baseurl"), validate.url( scheme="http" ) ) ) ) _mediaelement_schema = validate.Schema({ "mediaUrl": validate.url( scheme="http", path=validate.endswith(".m3u8") ) }) class NRK(Plugin): @classmethod def can_handle_url(self, url): return _url_re.match(url) def _get_streams(self): # Get the stream type from the url (tv/radio). stream_type = _url_re.match(self.url).group(1).upper() cookie = { "NRK_PLAYER_SETTINGS_{0}".format(stream_type): COOKIE_PARAMS } # Construct API URL for this program. baseurl = self.session.http.get(self.url, cookies=cookie, schema=_schema) program_id = _id_re.search(self.url).group(1) # Extract media URL. json_url = urljoin(baseurl, "mediaelement/{0}".format(program_id)) res = self.session.http.get(json_url, cookies=cookie) media_element = self.session.http.json(res, schema=_mediaelement_schema) media_url = media_element["mediaUrl"] return HLSStream.parse_variant_playlist(self.session, media_url) __plugin__ = NRK
27.784615
81
0.640089
7a5cd2d678246bcc019c0c62e193f6ab86fecda4
4,445
py
Python
src/diamond/utils/config.py
harrisonfeng/Diamond
f2bece462577a7c557be8a9f90f6b9340c3db571
[ "MIT" ]
2
2016-10-24T02:51:32.000Z
2021-01-09T20:49:44.000Z
src/diamond/utils/config.py
harrisonfeng/Diamond
f2bece462577a7c557be8a9f90f6b9340c3db571
[ "MIT" ]
62
2016-09-30T14:04:52.000Z
2021-04-22T21:22:28.000Z
src/diamond/utils/config.py
harrisonfeng/Diamond
f2bece462577a7c557be8a9f90f6b9340c3db571
[ "MIT" ]
4
2017-01-24T14:44:56.000Z
2021-03-03T17:14:19.000Z
# coding=utf-8 import configobj import os def str_to_bool(value): """ Converts string truthy/falsey strings to a bool Empty strings are false """ if isinstance(value, basestring): value = value.strip().lower() if value in ['true', 't', 'yes', 'y']: return True elif value in ['false', 'f', 'no', 'n', '']: return False else: raise NotImplementedError("Unknown bool %s" % value) return value def load_config(configfile): """ Load the full config / merge splitted configs if configured """ configfile = os.path.abspath(configfile) config = configobj.ConfigObj(configfile) config_extension = '.conf' ######################################################################### # Load up other config files ######################################################################### if 'configs' in config: config_extension = config['configs'].get('extension', config_extension) # Load other configs if 'path' in config['configs']: for cfgfile in os.listdir(config['configs']['path']): cfgfile = os.path.join(config['configs']['path'], cfgfile) cfgfile = os.path.abspath(cfgfile) if not cfgfile.endswith(config_extension): continue newconfig = configobj.ConfigObj(cfgfile) config.merge(newconfig) ######################################################################### if 'server' not in config: raise Exception('Failed to load config file %s!' % configfile) ######################################################################### # Load up handler specific configs ######################################################################### if 'handlers' not in config: config['handlers'] = configobj.ConfigObj() if 'handlers_config_path' in config['server']: handlers_config_path = config['server']['handlers_config_path'] if os.path.exists(handlers_config_path): for cfgfile in os.listdir(handlers_config_path): cfgfile = os.path.join(handlers_config_path, cfgfile) cfgfile = os.path.abspath(cfgfile) if not cfgfile.endswith(config_extension): continue filename = os.path.basename(cfgfile) handler = os.path.splitext(filename)[0] if handler not in config['handlers']: config['handlers'][handler] = configobj.ConfigObj() newconfig = configobj.ConfigObj(cfgfile) config['handlers'][handler].merge(newconfig) ######################################################################### # Load up Collector specific configs ######################################################################### if 'collectors' not in config: config['collectors'] = configobj.ConfigObj() if 'collectors_config_path' in config['server']: collectors_config_path = config['server']['collectors_config_path'] if os.path.exists(collectors_config_path): for cfgfile in os.listdir(collectors_config_path): cfgfile = os.path.join(collectors_config_path, cfgfile) cfgfile = os.path.abspath(cfgfile) if not cfgfile.endswith(config_extension): continue filename = os.path.basename(cfgfile) collector = os.path.splitext(filename)[0] if collector not in config['collectors']: config['collectors'][collector] = configobj.ConfigObj() try: newconfig = configobj.ConfigObj(cfgfile) except Exception, e: raise Exception("Failed to load config file %s due to %s" % (cfgfile, e)) config['collectors'][collector].merge(newconfig) # Convert enabled to a bool for collector in config['collectors']: if 'enabled' in config['collectors'][collector]: config['collectors'][collector]['enabled'] = str_to_bool( config['collectors'][collector]['enabled'] ) ######################################################################### return config
37.041667
79
0.499663
af73504fdc25539fc41a7e67f4da3bd72f8a5cc1
11,645
py
Python
tools/tf_test_with_log_mgpu.py
luzai/InsightFace_Pytorch
2f3d865aa5fa14896df27fe9b43a5c4ceb02c7dd
[ "MIT" ]
4
2019-01-24T03:43:36.000Z
2020-10-24T08:36:28.000Z
tools/tf_test_with_log_mgpu.py
luzai/InsightFace_Pytorch
2f3d865aa5fa14896df27fe9b43a5c4ceb02c7dd
[ "MIT" ]
null
null
null
tools/tf_test_with_log_mgpu.py
luzai/InsightFace_Pytorch
2f3d865aa5fa14896df27fe9b43a5c4ceb02c7dd
[ "MIT" ]
null
null
null
import os, sys from ctypes import * import numpy as np import re import functools from scipy import spatial import re import multiprocessing as mp import sklearn.preprocessing try: import cPickle as pickle except: import pickle import argparse import tensorflow as tf import pdb def generate_test_pair(jk_list, zj_list): file_paths = [jk_list, zj_list] jk_dict = {} zj_dict = {} jk_zj_dict_list = [jk_dict, zj_dict] for path, x_dict in zip(file_paths, jk_zj_dict_list): with open(path,'r') as fr: for line in fr: label = line.strip().split(' ')[1] tmp = x_dict.get(label,[]) tmp.append(line.strip()) x_dict[label] = tmp jk2zj_pairs = [] zj2jk_pairs = [] for key in jk_dict: jk_file_list = jk_dict[key] zj_file_list = zj_dict[key] # for jk_file in jk_file_list: # for zj_file in zj_file_list: # jk2zj_pairs.append([jk_file, zj_file]) # zj2jk_pairs.append([zj_file, jk_file]) for zj_file in zj_file_list: jk_list_tmp = [] for jk_file in jk_file_list: jk_list_tmp.append(jk_file) jk2zj_pairs.append([jk_file, [zj_file]]) zj2jk_pairs.append([zj_file, jk_list_tmp]) return jk2zj_pairs, zj2jk_pairs def get_test_set_dict(test_cache_root, jk_list, zj_list): ret_dict = {} with open(zj_list) as label_fr: with open(os.path.join(test_cache_root,'zj_list.bin'),'rb') as feature_fr: for line in label_fr: key = line.strip() feature = np.frombuffer(feature_fr.read(feature_len*4), dtype=np.float32) ret_dict[key] = feature with open(jk_list) as label_fr: with open(os.path.join(test_cache_root,'jk_all_list.bin'),'rb') as feature_fr: for line in label_fr: key = line.strip() feature = np.frombuffer(feature_fr.read(feature_len*4), dtype=np.float32) ret_dict[key] = feature return ret_dict def tf_build_graph(sess): ret_list = [] dis_features_list = np.array_split(dis_features, gpu_used) idx_start = [0]+[f.shape[0] for f in dis_features_list] idx_start = [sum(idx_start[:i]) for i in range(1, len(idx_start))] feed_dict = {} for device_id in range(gpu_used): with tf.device('/gpu:%s' % device_id): dis_feature = tf.placeholder(tf.float32, shape=dis_features_list[device_id].shape) disv_feature = tf.Variable(dis_feature) feed_dict[dis_feature] = dis_features_list[device_id] query_feature = tf.placeholder(tf.float32, shape=(None, feature_len)) similarity = tf.matmul(query_feature, tf.transpose(disv_feature)) similarity = tf.squeeze(similarity) print((similarity.get_shape())) query_results = tf.nn.top_k(similarity, k=100) ret_list.append((query_results, query_feature)) sess.run(tf.global_variables_initializer(), feed_dict=feed_dict) return ret_list, idx_start def tf_build_graph_merge_topk(gpu_nums): # return topk, ids of the merge result sim_feed_keys, ids_feed_keys = [],[] sim_tensor_list, id_tensor_list = [], [] with tf.device('/cpu'): for i in range(gpu_nums): v = tf.placeholder(tf.float32) sim_feed_keys.append(v) sim_tensor_list.append(v) v = tf.placeholder(tf.int32) ids_feed_keys.append(v) v = v+idx_start[i] id_tensor_list.append(v) axis = -1 total = tf.concat(sim_tensor_list, axis=axis) total_ids = tf.concat(id_tensor_list, axis=axis) topk = tf.nn.top_k(total, k=100) return topk, total_ids, sim_feed_keys, ids_feed_keys def tf_query(sess, search_feature, ret_pairs): ''' :param sess: :param search_feature: :param ret_pairs: :param gpu_used: :param merge_topk_items: tuple (topk result, total_ids result, sim_feed_keys, id_feed_keys) :return: ''' ids_list, similarities_list = [], [] for device_id in range(gpu_used): with tf.device('/gpu:%s' % device_id): query_results, query_feature = ret_pairs[device_id] if len(search_feature.shape) < 2: search_feature = search_feature[np.newaxis, :] similarities, ids = sess.run(query_results, feed_dict={query_feature: search_feature}) ids_list.append(ids) similarities_list.append(similarities) with tf.device('/gpu:0'): topk, total_ids, sim_feed_keys, id_feed_keys = topk_items assert len(ids_list) == len(id_feed_keys) assert len(similarities_list) == len(id_feed_keys) feed_dict = {} for ids, sims, id_feed_key, sim_feed_key in zip(ids_list, similarities_list, id_feed_keys, sim_feed_keys): feed_dict[id_feed_key] = ids feed_dict[sim_feed_key] = sims topk_result, total_ids_result = sess.run([topk, total_ids], feed_dict=feed_dict) similarities, ids = topk_result # pdb.set_trace() # TODO(HZF) ugly codes if len(total_ids_result.shape) > 1: ids_ret = [] for t_ids, id_idx in zip(total_ids_result, ids): ids_ret.append(t_ids[id_idx]) ids = np.array(ids_ret, dtype=np.int32) else: ids = total_ids_result[ids] return ids, similarities def result_generator(pairs, test_set_dict, sess, query_results, label_list, q): def write_result(ids, similarities, pair): ret_str = '' ret_str += 'GroupId=%s;'%pair[0].split(' ')[1] ret_str += 'eType=%d;Src=%s,%s'%(idx, pair[0].split(' ')[0], pair[1].split(' ')[0]) if pair[0] not in test_set_dict or pair[1] not in test_set_dict: ret_str+=',0;' for i in [1,5,10,50,100]: ret_str += 'top%d=0,'%i q.append(ret_str) return search_feature = test_set_dict[pair[0]] # print( search_feature.shape) searched_feature = test_set_dict[pair[1]] # print( searched_feature.shape) similarity = np.dot(search_feature, searched_feature) ret_str += ',%.3g;'%(similarity) flag = False for i in [1,5,10,50,100]: tk = 0 if flag or similarity > similarities[i-1]: flag = True tk = 1 ret_str += 'top%d=%d,'%(i, tk) if label_list is not None: ret_str = ret_str[:-1]+';'+'dis_top=' for i in [1,2,3]: # try: ret_str += '%.3g,%s,'%(similarities[i-1], label_list[ids[i-1]].split(' ')[0]) # except Exception as e: # from IPython import embed; embed() q.append(ret_str) idx = 0 count = 0 #zj2jk for opair in pairs: search_feature = test_set_dict[opair[0]] ids, similarities = tf_query(sess, search_feature, query_results) for item in opair[1]: pair = [opair[0], item] write_result(ids, similarities, pair) count += 1 if count % 1000 == 0: print( 'process: %d'%count, len(opair[1])) idx = 2 count = 0 #jk2zj for opair in pairs: search_features = [] for item in opair[1]: search_features.append(test_set_dict[item]) search_features = np.array(search_features) # print( search_features.shape) # pdb.set_trace() idss, similaritiess = tf_query(sess, search_features, query_results) # print( idss.shape, similaritiess.shape) assert len(idss) == len(opair[1]) and len(idss)==len(similaritiess) for ids, similarities, item in zip(idss, similaritiess, opair[1]): pair = [item, opair[0]] write_result(ids, similarities, pair) count += 1 if count % 1000 == 0: print( 'process: %d'%count, len(idss)) def comsumer(q, fw): for result in q: fw.write('%s\n'%result[:-1]) def get_final_result(test_cache_root, jk_list, zj_list, dist_list_path, result_file_path): jk2zj_pairs, zj2jk_pairs = generate_test_pair(jk_list, zj_list) dist_list = [] with open(dist_list_path,'r') as fr: for line in fr: dist_list.append(line.strip().split(' ')[0]) test_set_dict = get_test_set_dict(test_cache_root, jk_list, zj_list) result_pattern = 'GroupId=%s;eType=%d;Src=%s,%s;top%d=%d,top%d=%d,top%d=%d,top%d=%d,top%d=%d' fw = open(result_file_path,'w') q = [] # from IPython import embed; embed() result_generator(zj2jk_pairs, test_set_dict, sess, query_results_pairs, dist_list, q) print( len(q)) comsumer(q,fw) fw.close() feature_len = 512 query_process_num = len(os.environ['CUDA_VISIBLE_DEVICES'].strip(',').split(',')) gpu_used = query_process_num # os.environ['CUDA_VISIBLE_DEVICES'] = '3,4' def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('model_name', type=str, help='model names') parser.add_argument('--prefix', type=str, ) return parser.parse_args() args = parse_arguments() # This names of the files and tests. media = 'MediaCapturedImagesStd_02_en_sim' hy = 'hy' facereg = 'facereg1N_Select30_sim' total_test = 'testsets_mtcnn_align112x112' dist_list = 'dis_list.txt' small_pix = '0509_Small_Pix_Select_clear' big_angle = 'Big_Angle_all' media_shade = 'MediaCapturedImagesStd_02_shade' zj = '/zj_list.txt' jk = '/jk_all_list.txt' model_name = args.model_name if 'pca' in model_name or '256' in model_name or 'beta' in model_name: feature_len=256 assert feature_len==512 # Paths to the images lists, distractors dumps, images from lists dumps. lists = args.prefix +'/lists/' PREFIX= '/home/zl/prj/' dist =PREFIX +'/output/'+model_name+'/dis/' zjjk =PREFIX +'/output/'+model_name+'/' dis_feature_len = 0 for im_name in os.listdir(dist): if 'bin' in im_name: st = os.stat(os.path.join(dist, im_name)) dis_feature_len += st.st_size/feature_len/4 dis_feature_len=int(dis_feature_len) dis_features = np.zeros((dis_feature_len, feature_len)) idx = 0 print( 'loading dis set: %d'%dis_feature_len) for im_name in os.listdir(dist): if 'bin' in im_name: with open(os.path.join(dist, im_name),'rb') as fr: while True: feature = fr.read(feature_len*4) if len(feature) == 0: break feature = np.frombuffer(feature, dtype=np.float32) dis_features[idx,:] = feature idx+=1 assert idx == dis_feature_len print( 'total dis feature length:%d'%idx) # from IPython import embed; embed() config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth=True sess = tf.Session(config=config) query_results_pairs, idx_start = tf_build_graph(sess) topk_items = tf_build_graph_merge_topk(gpu_used) #get_final_result(distractor_index, zjjk+total_test, test_lists+jk, test_lists+zj, dist+dist_list, zjjk+total_test+'.log') get_final_result(zjjk+facereg, lists+facereg+jk, lists+facereg+zj, dist+dist_list, zjjk+facereg+'.log') get_final_result(zjjk+media, lists+media+jk, lists+media+zj, dist+dist_list, zjjk+media+'.log') #split test @deprecated #get_final_result(distractor_index, zjjk+hy, lists+hy+jk, lists+hy+zj, lists+dist_list, zjjk+hy+'.log')
37.323718
122
0.623186
f751216398cfa36014558e25485b351239c660c9
3,911
py
Python
witio/splitwise.py
dizzy54/munimji
2d6616b4924e12d465ec352119a1621c925adc81
[ "MIT" ]
null
null
null
witio/splitwise.py
dizzy54/munimji
2d6616b4924e12d465ec352119a1621c925adc81
[ "MIT" ]
null
null
null
witio/splitwise.py
dizzy54/munimji
2d6616b4924e12d465ec352119a1621c925adc81
[ "MIT" ]
null
null
null
from requests_oauthlib import OAuth1Session from django.conf import settings client_key = settings.SPLITWISE_CLIENT_KEY client_secret = settings.SPLITWISE_CLIENT_SECRET def get_request_token(): """ obtain generic resource owner key and secret from splitwise """ request_token_url = 'https://secure.splitwise.com/api/v3.0/get_request_token' oauth = OAuth1Session(client_key, client_secret=client_secret) fetch_response = oauth.fetch_request_token(request_token_url) resource_owner_key = fetch_response.get('oauth_token') resource_owner_secret = fetch_response.get('oauth_token_secret') return oauth, resource_owner_key, resource_owner_secret def get_splitwise_response(access_token, access_token_secret, protected_uri, *args, **kwargs): oauth = OAuth1Session( client_key, client_secret=client_secret, resource_owner_key=access_token, resource_owner_secret=access_token_secret ) response = oauth.get(protected_uri) return response def post_splitwise_request(access_token, access_token_secret, protected_uri, params_dict, *args, **kwargs): oauth = OAuth1Session( client_key, client_secret=client_secret, resource_owner_key=access_token, resource_owner_secret=access_token_secret ) response = oauth.post(protected_uri, data=params_dict) return response def get_user_by_auth(access_token, access_token_secret): """ returns splitwise response json for user with input ouath access token """ protected_uri = 'https://secure.splitwise.com/api/v3.0/get_current_user' response = get_splitwise_response(access_token, access_token_secret, protected_uri) return response.json() def create_equal_expense(access_token, access_token_secret, participant_list, total_amount, description): """ """ protected_uri = 'https://secure.splitwise.com/api/v3.0/create_expense' n_payers = 0 n_payees = 0 for participant in participant_list: if participant['payer']: n_payers += 1 if participant['payee']: n_payees += 1 amount_paid = total_amount / n_payers amount_split = total_amount / n_payees params_dict = { 'payment': False, 'cost': total_amount, 'description': description, } ''' participant_list = [] for payer in payers: participant_list.append({'participant': payer, 'payer': True, 'payee': False}) for payee in payees: if payee in payers: for participant in participant_list: if participant['participant'] == payee: participant['payee'] = True else: participant_list.append({'participant': payee, 'payer': False, 'payee': True}) ''' i = 0 for entry in participant_list: participant = entry['participant'] payer_dict = { 'user_id': participant['id'], 'email': participant['email'], 'paid_share': amount_paid if entry['payer'] else 0, 'owed_share': amount_split if entry['payee'] else 0, } for param in ('user_id', 'email', 'paid_share', 'owed_share'): k = 'users__%d__%s' % (i, param) params_dict[k] = payer_dict[param] i += 1 response = post_splitwise_request(access_token, access_token_secret, protected_uri, params_dict) return response.json() def get_expenses(access_token, access_token_secret): protected_uri = 'https://secure.splitwise.com/api/v3.0/get_expenses' response = get_splitwise_response(access_token, access_token_secret, protected_uri) return response.json() def get_friends(access_token, access_token_secret): protected_uri = 'https://secure.splitwise.com/api/v3.0/get_friends' response = get_splitwise_response(access_token, access_token_secret, protected_uri) return response.json()
35.554545
107
0.695474
e924fdbbbde54b5197d9da525b7e0da57f4c6840
644
py
Python
experiments/rfcn/rfcn_train_test.py
fourmi1995/IronExperiment-DCN
5292539764588e0168016c7e7b4df038358e9f38
[ "MIT" ]
2
2020-11-10T07:37:09.000Z
2021-02-09T06:26:25.000Z
experiments/rfcn/rfcn_train_test.py
fourmi1995/IronExperiment-DCN
5292539764588e0168016c7e7b4df038358e9f38
[ "MIT" ]
null
null
null
experiments/rfcn/rfcn_train_test.py
fourmi1995/IronExperiment-DCN
5292539764588e0168016c7e7b4df038358e9f38
[ "MIT" ]
1
2019-08-07T02:35:16.000Z
2019-08-07T02:35:16.000Z
# -------------------------------------------------------- # Deformable Convolutional Networks # Copyright (c) 2017 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Yuwen Xiong # -------------------------------------------------------- import os import sys os.environ['PYTHONUNBUFFERED'] = '1' os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0' os.environ['MXNET_ENABLE_GPU_P2P'] = '0' this_dir = os.path.dirname(__file__) sys.path.insert(0, os.path.join(this_dir, '..', '..', 'rfcn')) import train_rfcn import test if __name__ == "__main__": train_rfcn.main() test.main()
24.769231
63
0.560559
179332543970010e9cab0e87f0de91dbf9f6ebf4
242
py
Python
electrum_gui/common/explorer/data/exceptions.py
Umiiii/electrum
9e822640680c20c69a69695c033e97605aafcdce
[ "MIT" ]
null
null
null
electrum_gui/common/explorer/data/exceptions.py
Umiiii/electrum
9e822640680c20c69a69695c033e97605aafcdce
[ "MIT" ]
null
null
null
electrum_gui/common/explorer/data/exceptions.py
Umiiii/electrum
9e822640680c20c69a69695c033e97605aafcdce
[ "MIT" ]
null
null
null
class ExplorerException(Exception): pass class TransactionNotFound(ExplorerException): def __init__(self, txid: str): super(TransactionNotFound, self).__init__(f"Transaction {repr(txid)} not found") self.txid = txid
26.888889
88
0.719008
83dacac362385dd24cb9647ad16f70134abd86bb
28,296
py
Python
haystack/backends/solr_backend.py
kezabelle/django-haystack
58ca4cdef58e0158a26275590fc6837fbd55096b
[ "BSD-3-Clause" ]
1
2017-10-12T14:25:06.000Z
2017-10-12T14:25:06.000Z
filenv/lib/python2.7/site-packages/haystack/backends/solr_backend.py
betoesquivel/fil2014
4c2e9188769096391bb206b76ed1ab8bd2ff66a1
[ "MIT" ]
null
null
null
filenv/lib/python2.7/site-packages/haystack/backends/solr_backend.py
betoesquivel/fil2014
4c2e9188769096391bb206b76ed1ab8bd2ff66a1
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import warnings from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.db.models.loading import get_model from django.utils import six from haystack.backends import BaseEngine, BaseSearchBackend, BaseSearchQuery, log_query, EmptyResults from haystack.constants import ID, DJANGO_CT, DJANGO_ID from haystack.exceptions import MissingDependency, MoreLikeThisError from haystack.inputs import PythonData, Clean, Exact, Raw from haystack.models import SearchResult from haystack.utils import get_identifier from haystack.utils import log as logging try: from pysolr import Solr, SolrError except ImportError: raise MissingDependency("The 'solr' backend requires the installation of 'pysolr'. Please refer to the documentation.") class SolrSearchBackend(BaseSearchBackend): # Word reserved by Solr for special use. RESERVED_WORDS = ( 'AND', 'NOT', 'OR', 'TO', ) # Characters reserved by Solr for special use. # The '\\' must come first, so as not to overwrite the other slash replacements. RESERVED_CHARACTERS = ( '\\', '+', '-', '&&', '||', '!', '(', ')', '{', '}', '[', ']', '^', '"', '~', '*', '?', ':', '/', ) def __init__(self, connection_alias, **connection_options): super(SolrSearchBackend, self).__init__(connection_alias, **connection_options) if not 'URL' in connection_options: raise ImproperlyConfigured("You must specify a 'URL' in your settings for connection '%s'." % connection_alias) self.conn = Solr(connection_options['URL'], timeout=self.timeout) self.log = logging.getLogger('haystack') def update(self, index, iterable, commit=True): docs = [] for obj in iterable: try: docs.append(index.full_prepare(obj)) except UnicodeDecodeError: if not self.silently_fail: raise # We'll log the object identifier but won't include the actual object # to avoid the possibility of that generating encoding errors while # processing the log message: self.log.error(u"UnicodeDecodeError while preparing object for update", exc_info=True, extra={ "data": { "index": index, "object": get_identifier(obj) } }) if len(docs) > 0: try: self.conn.add(docs, commit=commit, boost=index.get_field_weights()) except (IOError, SolrError) as e: if not self.silently_fail: raise self.log.error("Failed to add documents to Solr: %s", e) def remove(self, obj_or_string, commit=True): solr_id = get_identifier(obj_or_string) try: kwargs = { 'commit': commit, ID: solr_id } self.conn.delete(**kwargs) except (IOError, SolrError) as e: if not self.silently_fail: raise self.log.error("Failed to remove document '%s' from Solr: %s", solr_id, e) def clear(self, models=[], commit=True): try: if not models: # *:* matches all docs in Solr self.conn.delete(q='*:*', commit=commit) else: models_to_delete = [] for model in models: models_to_delete.append("%s:%s.%s" % (DJANGO_CT, model._meta.app_label, model._meta.module_name)) self.conn.delete(q=" OR ".join(models_to_delete), commit=commit) # Run an optimize post-clear. http://wiki.apache.org/solr/FAQ#head-9aafb5d8dff5308e8ea4fcf4b71f19f029c4bb99 self.conn.optimize() except (IOError, SolrError) as e: if not self.silently_fail: raise if len(models): self.log.error("Failed to clear Solr index of models '%s': %s", ','.join(models_to_delete), e) else: self.log.error("Failed to clear Solr index: %s", e) @log_query def search(self, query_string, **kwargs): if len(query_string) == 0: return { 'results': [], 'hits': 0, } search_kwargs = self.build_search_kwargs(query_string, **kwargs) try: raw_results = self.conn.search(query_string, **search_kwargs) except (IOError, SolrError) as e: if not self.silently_fail: raise self.log.error("Failed to query Solr using '%s': %s", query_string, e) raw_results = EmptyResults() return self._process_results(raw_results, highlight=kwargs.get('highlight'), result_class=kwargs.get('result_class', SearchResult), distance_point=kwargs.get('distance_point')) def build_search_kwargs(self, query_string, sort_by=None, start_offset=0, end_offset=None, fields='', highlight=False, facets=None, date_facets=None, query_facets=None, narrow_queries=None, spelling_query=None, within=None, dwithin=None, distance_point=None, models=None, limit_to_registered_models=None, result_class=None, stats=None): kwargs = {'fl': '* score'} if fields: if isinstance(fields, (list, set)): fields = " ".join(fields) kwargs['fl'] = fields if sort_by is not None: if sort_by in ['distance asc', 'distance desc'] and distance_point: # Do the geo-enabled sort. lng, lat = distance_point['point'].get_coords() kwargs['sfield'] = distance_point['field'] kwargs['pt'] = '%s,%s' % (lat, lng) if sort_by == 'distance asc': kwargs['sort'] = 'geodist() asc' else: kwargs['sort'] = 'geodist() desc' else: if sort_by.startswith('distance '): warnings.warn("In order to sort by distance, you must call the '.distance(...)' method.") # Regular sorting. kwargs['sort'] = sort_by if start_offset is not None: kwargs['start'] = start_offset if end_offset is not None: kwargs['rows'] = end_offset - start_offset if highlight is True: kwargs['hl'] = 'true' kwargs['hl.fragsize'] = '200' if self.include_spelling is True: kwargs['spellcheck'] = 'true' kwargs['spellcheck.collate'] = 'true' kwargs['spellcheck.count'] = 1 if spelling_query: kwargs['spellcheck.q'] = spelling_query if facets is not None: kwargs['facet'] = 'on' kwargs['facet.field'] = facets.keys() for facet_field, options in facets.items(): for key, value in options.items(): kwargs['f.%s.facet.%s' % (facet_field, key)] = self.conn._from_python(value) if date_facets is not None: kwargs['facet'] = 'on' kwargs['facet.date'] = date_facets.keys() kwargs['facet.date.other'] = 'none' for key, value in date_facets.items(): kwargs["f.%s.facet.date.start" % key] = self.conn._from_python(value.get('start_date')) kwargs["f.%s.facet.date.end" % key] = self.conn._from_python(value.get('end_date')) gap_by_string = value.get('gap_by').upper() gap_string = "%d%s" % (value.get('gap_amount'), gap_by_string) if value.get('gap_amount') != 1: gap_string += "S" kwargs["f.%s.facet.date.gap" % key] = '+%s/%s' % (gap_string, gap_by_string) if query_facets is not None: kwargs['facet'] = 'on' kwargs['facet.query'] = ["%s:%s" % (field, value) for field, value in query_facets] if limit_to_registered_models is None: limit_to_registered_models = getattr(settings, 'HAYSTACK_LIMIT_TO_REGISTERED_MODELS', True) if models and len(models): model_choices = sorted(['%s.%s' % (model._meta.app_label, model._meta.module_name) for model in models]) elif limit_to_registered_models: # Using narrow queries, limit the results to only models handled # with the current routers. model_choices = self.build_models_list() else: model_choices = [] if len(model_choices) > 0: if narrow_queries is None: narrow_queries = set() narrow_queries.add('%s:(%s)' % (DJANGO_CT, ' OR '.join(model_choices))) if narrow_queries is not None: kwargs['fq'] = list(narrow_queries) if stats: kwargs['stats'] = "true" for k in stats.keys(): kwargs['stats.field'] = k for facet in stats[k]: kwargs['f.%s.stats.facet' % k] = facet if within is not None: from haystack.utils.geo import generate_bounding_box kwargs.setdefault('fq', []) ((min_lat, min_lng), (max_lat, max_lng)) = generate_bounding_box(within['point_1'], within['point_2']) # Bounding boxes are min, min TO max, max. Solr's wiki was *NOT* # very clear on this. bbox = '%s:[%s,%s TO %s,%s]' % (within['field'], min_lat, min_lng, max_lat, max_lng) kwargs['fq'].append(bbox) if dwithin is not None: kwargs.setdefault('fq', []) lng, lat = dwithin['point'].get_coords() geofilt = '{!geofilt pt=%s,%s sfield=%s d=%s}' % (lat, lng, dwithin['field'], dwithin['distance'].km) kwargs['fq'].append(geofilt) # Check to see if the backend should try to include distances # (Solr 4.X+) in the results. if self.distance_available and distance_point: # In early testing, you can't just hand Solr 4.X a proper bounding box # & request distances. To enable native distance would take calculating # a center point & a radius off the user-provided box, which kinda # sucks. We'll avoid it for now, since Solr 4.x's release will be some # time yet. # kwargs['fl'] += ' _dist_:geodist()' pass return kwargs def more_like_this(self, model_instance, additional_query_string=None, start_offset=0, end_offset=None, models=None, limit_to_registered_models=None, result_class=None, **kwargs): from haystack import connections # Deferred models will have a different class ("RealClass_Deferred_fieldname") # which won't be in our registry: model_klass = model_instance._meta.concrete_model index = connections[self.connection_alias].get_unified_index().get_index(model_klass) field_name = index.get_content_field() params = { 'fl': '*,score', } if start_offset is not None: params['start'] = start_offset if end_offset is not None: params['rows'] = end_offset narrow_queries = set() if limit_to_registered_models is None: limit_to_registered_models = getattr(settings, 'HAYSTACK_LIMIT_TO_REGISTERED_MODELS', True) if models and len(models): model_choices = sorted(['%s.%s' % (model._meta.app_label, model._meta.module_name) for model in models]) elif limit_to_registered_models: # Using narrow queries, limit the results to only models handled # with the current routers. model_choices = self.build_models_list() else: model_choices = [] if len(model_choices) > 0: if narrow_queries is None: narrow_queries = set() narrow_queries.add('%s:(%s)' % (DJANGO_CT, ' OR '.join(model_choices))) if additional_query_string: narrow_queries.add(additional_query_string) if narrow_queries: params['fq'] = list(narrow_queries) query = "%s:%s" % (ID, get_identifier(model_instance)) try: raw_results = self.conn.more_like_this(query, field_name, **params) except (IOError, SolrError) as e: if not self.silently_fail: raise self.log.error("Failed to fetch More Like This from Solr for document '%s': %s", query, e) raw_results = EmptyResults() return self._process_results(raw_results, result_class=result_class) def _process_results(self, raw_results, highlight=False, result_class=None, distance_point=None): from haystack import connections results = [] hits = raw_results.hits facets = {} stats = {} spelling_suggestion = None if result_class is None: result_class = SearchResult if hasattr(raw_results,'stats'): stats = raw_results.stats.get('stats_fields',{}) if hasattr(raw_results, 'facets'): facets = { 'fields': raw_results.facets.get('facet_fields', {}), 'dates': raw_results.facets.get('facet_dates', {}), 'queries': raw_results.facets.get('facet_queries', {}), } for key in ['fields']: for facet_field in facets[key]: # Convert to a two-tuple, as Solr's json format returns a list of # pairs. facets[key][facet_field] = list(zip(facets[key][facet_field][::2], facets[key][facet_field][1::2])) if self.include_spelling is True: if hasattr(raw_results, 'spellcheck'): if len(raw_results.spellcheck.get('suggestions', [])): # For some reason, it's an array of pairs. Pull off the # collated result from the end. spelling_suggestion = raw_results.spellcheck.get('suggestions')[-1] unified_index = connections[self.connection_alias].get_unified_index() indexed_models = unified_index.get_indexed_models() for raw_result in raw_results.docs: app_label, model_name = raw_result[DJANGO_CT].split('.') additional_fields = {} model = get_model(app_label, model_name) if model and model in indexed_models: for key, value in raw_result.items(): index = unified_index.get_index(model) string_key = str(key) if string_key in index.fields and hasattr(index.fields[string_key], 'convert'): additional_fields[string_key] = index.fields[string_key].convert(value) else: additional_fields[string_key] = self.conn._to_python(value) del(additional_fields[DJANGO_CT]) del(additional_fields[DJANGO_ID]) del(additional_fields['score']) if raw_result[ID] in getattr(raw_results, 'highlighting', {}): additional_fields['highlighted'] = raw_results.highlighting[raw_result[ID]] if distance_point: additional_fields['_point_of_origin'] = distance_point if raw_result.get('__dist__'): from haystack.utils.geo import Distance additional_fields['_distance'] = Distance(km=float(raw_result['__dist__'])) else: additional_fields['_distance'] = None result = result_class(app_label, model_name, raw_result[DJANGO_ID], raw_result['score'], **additional_fields) results.append(result) else: hits -= 1 return { 'results': results, 'hits': hits, 'stats': stats, 'facets': facets, 'spelling_suggestion': spelling_suggestion, } def build_schema(self, fields): content_field_name = '' schema_fields = [] for field_name, field_class in fields.items(): field_data = { 'field_name': field_class.index_fieldname, 'type': 'text_en', 'indexed': 'true', 'stored': 'true', 'multi_valued': 'false', } if field_class.document is True: content_field_name = field_class.index_fieldname # DRL_FIXME: Perhaps move to something where, if none of these # checks succeed, call a custom method on the form that # returns, per-backend, the right type of storage? if field_class.field_type in ['date', 'datetime']: field_data['type'] = 'date' elif field_class.field_type == 'integer': field_data['type'] = 'long' elif field_class.field_type == 'float': field_data['type'] = 'float' elif field_class.field_type == 'boolean': field_data['type'] = 'boolean' elif field_class.field_type == 'ngram': field_data['type'] = 'ngram' elif field_class.field_type == 'edge_ngram': field_data['type'] = 'edge_ngram' elif field_class.field_type == 'location': field_data['type'] = 'location' if field_class.is_multivalued: field_data['multi_valued'] = 'true' if field_class.stored is False: field_data['stored'] = 'false' # Do this last to override `text` fields. if field_class.indexed is False: field_data['indexed'] = 'false' # If it's text and not being indexed, we probably don't want # to do the normal lowercase/tokenize/stemming/etc. dance. if field_data['type'] == 'text_en': field_data['type'] = 'string' # If it's a ``FacetField``, make sure we don't postprocess it. if hasattr(field_class, 'facet_for'): # If it's text, it ought to be a string. if field_data['type'] == 'text_en': field_data['type'] = 'string' schema_fields.append(field_data) return (content_field_name, schema_fields) def extract_file_contents(self, file_obj): """Extract text and metadata from a structured file (PDF, MS Word, etc.) Uses the Solr ExtractingRequestHandler, which is based on Apache Tika. See the Solr wiki for details: http://wiki.apache.org/solr/ExtractingRequestHandler Due to the way the ExtractingRequestHandler is implemented it completely replaces the normal Haystack indexing process with several unfortunate restrictions: only one file per request, the extracted data is added to the index with no ability to modify it, etc. To simplify the process and allow for more advanced use we'll run using the extract-only mode to return the extracted data without adding it to the index so we can then use it within Haystack's normal templating process. Returns None if metadata cannot be extracted; otherwise returns a dictionary containing at least two keys: :contents: Extracted full-text content, if applicable :metadata: key:value pairs of text strings """ try: return self.conn.extract(file_obj) except Exception as e: self.log.warning(u"Unable to extract file contents: %s", e, exc_info=True, extra={"data": {"file": file_obj}}) return None class SolrSearchQuery(BaseSearchQuery): def matching_all_fragment(self): return '*:*' def add_spatial(self, lat, lon, sfield, distance, filter='bbox'): """Adds spatial query parameters to search query""" kwargs = { 'lat': lat, 'long': long, 'sfield': sfield, 'distance': distance, } self.spatial_query.update(kwargs) def add_order_by_distance(self, lat, long, sfield): """Orders the search result by distance from point.""" kwargs = { 'lat': lat, 'long': long, 'sfield': sfield, } self.order_by_distance.update(kwargs) def build_query_fragment(self, field, filter_type, value): from haystack import connections query_frag = '' if not hasattr(value, 'input_type_name'): # Handle when we've got a ``ValuesListQuerySet``... if hasattr(value, 'values_list'): value = list(value) if isinstance(value, six.string_types): # It's not an ``InputType``. Assume ``Clean``. value = Clean(value) else: value = PythonData(value) # Prepare the query using the InputType. prepared_value = value.prepare(self) if not isinstance(prepared_value, (set, list, tuple)): # Then convert whatever we get back to what pysolr wants if needed. prepared_value = self.backend.conn._from_python(prepared_value) # 'content' is a special reserved word, much like 'pk' in # Django's ORM layer. It indicates 'no special field'. if field == 'content': index_fieldname = '' else: index_fieldname = u'%s:' % connections[self._using].get_unified_index().get_index_fieldname(field) filter_types = { 'contains': u'%s', 'startswith': u'%s*', 'exact': u'%s', 'gt': u'{%s TO *}', 'gte': u'[%s TO *]', 'lt': u'{* TO %s}', 'lte': u'[* TO %s]', } if value.post_process is False: query_frag = prepared_value else: if filter_type in ['contains', 'startswith']: if value.input_type_name == 'exact': query_frag = prepared_value else: # Iterate over terms & incorportate the converted form of each into the query. terms = [] for possible_value in prepared_value.split(' '): terms.append(filter_types[filter_type] % self.backend.conn._from_python(possible_value)) if len(terms) == 1: query_frag = terms[0] else: query_frag = u"(%s)" % " AND ".join(terms) elif filter_type == 'in': in_options = [] for possible_value in prepared_value: in_options.append(u'"%s"' % self.backend.conn._from_python(possible_value)) query_frag = u"(%s)" % " OR ".join(in_options) elif filter_type == 'range': start = self.backend.conn._from_python(prepared_value[0]) end = self.backend.conn._from_python(prepared_value[1]) query_frag = u'["%s" TO "%s"]' % (start, end) elif filter_type == 'exact': if value.input_type_name == 'exact': query_frag = prepared_value else: prepared_value = Exact(prepared_value).prepare(self) query_frag = filter_types[filter_type] % prepared_value else: if value.input_type_name != 'exact': prepared_value = Exact(prepared_value).prepare(self) query_frag = filter_types[filter_type] % prepared_value if len(query_frag) and not isinstance(value, Raw): if not query_frag.startswith('(') and not query_frag.endswith(')'): query_frag = "(%s)" % query_frag return u"%s%s" % (index_fieldname, query_frag) def build_alt_parser_query(self, parser_name, query_string='', **kwargs): if query_string: query_string = Clean(query_string).prepare(self) kwarg_bits = [] for key in sorted(kwargs.keys()): if isinstance(kwargs[key], six.string_types) and ' ' in kwargs[key]: kwarg_bits.append(u"%s='%s'" % (key, kwargs[key])) else: kwarg_bits.append(u"%s=%s" % (key, kwargs[key])) return u'_query_:"{!%s %s}%s"' % (parser_name, Clean(' '.join(kwarg_bits)), query_string) def build_params(self, spelling_query=None, **kwargs): search_kwargs = { 'start_offset': self.start_offset, 'result_class': self.result_class } order_by_list = None if self.order_by: if order_by_list is None: order_by_list = [] for order_by in self.order_by: if order_by.startswith('-'): order_by_list.append('%s desc' % order_by[1:]) else: order_by_list.append('%s asc' % order_by) search_kwargs['sort_by'] = ", ".join(order_by_list) if self.date_facets: search_kwargs['date_facets'] = self.date_facets if self.distance_point: search_kwargs['distance_point'] = self.distance_point if self.dwithin: search_kwargs['dwithin'] = self.dwithin if self.end_offset is not None: search_kwargs['end_offset'] = self.end_offset if self.facets: search_kwargs['facets'] = self.facets if self.fields: search_kwargs['fields'] = self.fields if self.highlight: search_kwargs['highlight'] = self.highlight if self.models: search_kwargs['models'] = self.models if self.narrow_queries: search_kwargs['narrow_queries'] = self.narrow_queries if self.query_facets: search_kwargs['query_facets'] = self.query_facets if self.within: search_kwargs['within'] = self.within if spelling_query: search_kwargs['spelling_query'] = spelling_query if self.stats: search_kwargs['stats'] = self.stats return search_kwargs def run(self, spelling_query=None, **kwargs): """Builds and executes the query. Returns a list of search results.""" final_query = self.build_query() search_kwargs = self.build_params(spelling_query, **kwargs) results = self.backend.search(final_query, **search_kwargs) self._results = results.get('results', []) self._hit_count = results.get('hits', 0) self._facet_counts = self.post_process_facets(results) self._stats = results.get('stats',{}) self._spelling_suggestion = results.get('spelling_suggestion', None) def run_mlt(self, **kwargs): """Builds and executes the query. Returns a list of search results.""" if self._more_like_this is False or self._mlt_instance is None: raise MoreLikeThisError("No instance was provided to determine 'More Like This' results.") additional_query_string = self.build_query() search_kwargs = { 'start_offset': self.start_offset, 'result_class': self.result_class, 'models': self.models } if self.end_offset is not None: search_kwargs['end_offset'] = self.end_offset - self.start_offset results = self.backend.more_like_this(self._mlt_instance, additional_query_string, **search_kwargs) self._results = results.get('results', []) self._hit_count = results.get('hits', 0) class SolrEngine(BaseEngine): backend = SolrSearchBackend query = SolrSearchQuery
39.136929
184
0.569763
996df28ac810dc93e3bec17dff9fa94b80a2641e
9,074
py
Python
tests/integration/test_storage_hdfs/test.py
Rahul171201/ClickHouse
b0600c3751371f0667b15494731f2fbb073605e6
[ "Apache-2.0" ]
null
null
null
tests/integration/test_storage_hdfs/test.py
Rahul171201/ClickHouse
b0600c3751371f0667b15494731f2fbb073605e6
[ "Apache-2.0" ]
null
null
null
tests/integration/test_storage_hdfs/test.py
Rahul171201/ClickHouse
b0600c3751371f0667b15494731f2fbb073605e6
[ "Apache-2.0" ]
null
null
null
import os import pytest from helpers.cluster import ClickHouseCluster from helpers.hdfs_api import HDFSApi SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) cluster = ClickHouseCluster(__file__) node1 = cluster.add_instance('node1', with_hdfs=True, user_configs=[], main_configs=['configs/log_conf.xml']) @pytest.fixture(scope="module") def started_cluster(): try: cluster.start() yield cluster except Exception as ex: print(ex) raise ex finally: cluster.shutdown() def test_read_write_storage(started_cluster): hdfs_api = HDFSApi("root") node1.query( "create table SimpleHDFSStorage (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/simple_storage', 'TSV')") node1.query("insert into SimpleHDFSStorage values (1, 'Mark', 72.53)") assert hdfs_api.read_data("/simple_storage") == "1\tMark\t72.53\n" assert node1.query("select * from SimpleHDFSStorage") == "1\tMark\t72.53\n" def test_read_write_storage_with_globs(started_cluster): hdfs_api = HDFSApi("root") node1.query( "create table HDFSStorageWithRange (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/storage{1..5}', 'TSV')") node1.query( "create table HDFSStorageWithEnum (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/storage{1,2,3,4,5}', 'TSV')") node1.query( "create table HDFSStorageWithQuestionMark (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/storage?', 'TSV')") node1.query( "create table HDFSStorageWithAsterisk (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/storage*', 'TSV')") for i in ["1", "2", "3"]: hdfs_api.write_data("/storage" + i, i + "\tMark\t72.53\n") assert hdfs_api.read_data("/storage" + i) == i + "\tMark\t72.53\n" assert node1.query("select count(*) from HDFSStorageWithRange") == "3\n" assert node1.query("select count(*) from HDFSStorageWithEnum") == "3\n" assert node1.query("select count(*) from HDFSStorageWithQuestionMark") == "3\n" assert node1.query("select count(*) from HDFSStorageWithAsterisk") == "3\n" try: node1.query("insert into HDFSStorageWithEnum values (1, 'NEW', 4.2)") assert False, "Exception have to be thrown" except Exception as ex: print(ex) assert "in readonly mode" in str(ex) try: node1.query("insert into HDFSStorageWithQuestionMark values (1, 'NEW', 4.2)") assert False, "Exception have to be thrown" except Exception as ex: print(ex) assert "in readonly mode" in str(ex) try: node1.query("insert into HDFSStorageWithAsterisk values (1, 'NEW', 4.2)") assert False, "Exception have to be thrown" except Exception as ex: print(ex) assert "in readonly mode" in str(ex) def test_read_write_table(started_cluster): hdfs_api = HDFSApi("root") data = "1\tSerialize\t555.222\n2\tData\t777.333\n" hdfs_api.write_data("/simple_table_function", data) assert hdfs_api.read_data("/simple_table_function") == data assert node1.query( "select * from hdfs('hdfs://hdfs1:9000/simple_table_function', 'TSV', 'id UInt64, text String, number Float64')") == data def test_write_table(started_cluster): hdfs_api = HDFSApi("root") node1.query( "create table OtherHDFSStorage (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/other_storage', 'TSV')") node1.query("insert into OtherHDFSStorage values (10, 'tomas', 55.55), (11, 'jack', 32.54)") result = "10\ttomas\t55.55\n11\tjack\t32.54\n" assert hdfs_api.read_data("/other_storage") == result assert node1.query("select * from OtherHDFSStorage order by id") == result def test_bad_hdfs_uri(started_cluster): try: node1.query( "create table BadStorage1 (id UInt32, name String, weight Float64) ENGINE = HDFS('hads:hgsdfs100500:9000/other_storage', 'TSV')") except Exception as ex: print(ex) assert "Illegal HDFS URI" in str(ex) try: node1.query( "create table BadStorage2 (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs100500:9000/other_storage', 'TSV')") except Exception as ex: print(ex) assert "Unable to create builder to connect to HDFS" in str(ex) try: node1.query( "create table BadStorage3 (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/<>', 'TSV')") except Exception as ex: print(ex) assert "Unable to open HDFS file" in str(ex) def test_globs_in_read_table(started_cluster): hdfs_api = HDFSApi("root") some_data = "1\tSerialize\t555.222\n2\tData\t777.333\n" globs_dir = "/dir_for_test_with_globs/" files = ["dir1/dir_dir/file1", "dir2/file2", "simple_table_function", "dir/file", "some_dir/dir1/file", "some_dir/dir2/file", "some_dir/file", "table1_function", "table2_function", "table3_function"] for filename in files: hdfs_api.write_data(globs_dir + filename, some_data) test_requests = [("dir{1..5}/dir_dir/file1", 1, 1), ("*_table_functio?", 1, 1), ("dir/fil?", 1, 1), ("table{3..8}_function", 1, 1), ("table{2..8}_function", 2, 2), ("dir/*", 1, 1), ("dir/*?*?*?*?*", 1, 1), ("dir/*?*?*?*?*?*", 0, 0), ("some_dir/*/file", 2, 1), ("some_dir/dir?/*", 2, 1), ("*/*/*", 3, 2), ("?", 0, 0)] for pattern, paths_amount, files_amount in test_requests: inside_table_func = "'hdfs://hdfs1:9000" + globs_dir + pattern + "', 'TSV', 'id UInt64, text String, number Float64'" assert node1.query("select * from hdfs(" + inside_table_func + ")") == paths_amount * some_data assert node1.query("select count(distinct _path) from hdfs(" + inside_table_func + ")").rstrip() == str( paths_amount) assert node1.query("select count(distinct _file) from hdfs(" + inside_table_func + ")").rstrip() == str( files_amount) def test_read_write_gzip_table(started_cluster): hdfs_api = HDFSApi("root") data = "1\tHello Jessica\t555.222\n2\tI rolled a joint\t777.333\n" hdfs_api.write_gzip_data("/simple_table_function.gz", data) assert hdfs_api.read_gzip_data("/simple_table_function.gz") == data assert node1.query( "select * from hdfs('hdfs://hdfs1:9000/simple_table_function.gz', 'TSV', 'id UInt64, text String, number Float64')") == data def test_read_write_gzip_table_with_parameter_gzip(started_cluster): hdfs_api = HDFSApi("root") data = "1\tHello Jessica\t555.222\n2\tI rolled a joint\t777.333\n" hdfs_api.write_gzip_data("/simple_table_function", data) assert hdfs_api.read_gzip_data("/simple_table_function") == data assert node1.query( "select * from hdfs('hdfs://hdfs1:9000/simple_table_function', 'TSV', 'id UInt64, text String, number Float64', 'gzip')") == data def test_read_write_table_with_parameter_none(started_cluster): hdfs_api = HDFSApi("root") data = "1\tHello Jessica\t555.222\n2\tI rolled a joint\t777.333\n" hdfs_api.write_data("/simple_table_function.gz", data) assert hdfs_api.read_data("/simple_table_function.gz") == data assert node1.query( "select * from hdfs('hdfs://hdfs1:9000/simple_table_function.gz', 'TSV', 'id UInt64, text String, number Float64', 'none')") == data def test_read_write_gzip_table_with_parameter_auto_gz(started_cluster): hdfs_api = HDFSApi("root") data = "1\tHello Jessica\t555.222\n2\tI rolled a joint\t777.333\n" hdfs_api.write_gzip_data("/simple_table_function.gz", data) assert hdfs_api.read_gzip_data("/simple_table_function.gz") == data assert node1.query( "select * from hdfs('hdfs://hdfs1:9000/simple_table_function.gz', 'TSV', 'id UInt64, text String, number Float64', 'auto')") == data def test_write_gz_storage(started_cluster): hdfs_api = HDFSApi("root") node1.query( "create table GZHDFSStorage (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/storage.gz', 'TSV')") node1.query("insert into GZHDFSStorage values (1, 'Mark', 72.53)") assert hdfs_api.read_gzip_data("/storage.gz") == "1\tMark\t72.53\n" assert node1.query("select * from GZHDFSStorage") == "1\tMark\t72.53\n" def test_write_gzip_storage(started_cluster): hdfs_api = HDFSApi("root") node1.query( "create table GZIPHDFSStorage (id UInt32, name String, weight Float64) ENGINE = HDFS('hdfs://hdfs1:9000/gzip_storage', 'TSV', 'gzip')") node1.query("insert into GZIPHDFSStorage values (1, 'Mark', 72.53)") assert hdfs_api.read_gzip_data("/gzip_storage") == "1\tMark\t72.53\n" assert node1.query("select * from GZIPHDFSStorage") == "1\tMark\t72.53\n"
41.815668
145
0.65616
cc00ca69531811639b039ba179df425915c03894
3,199
py
Python
test/petab/test_amici_objective.py
stephanmg/pyPESTO
72488fbb3eaa91dd163f88bac71a1a165a0da70f
[ "BSD-3-Clause" ]
null
null
null
test/petab/test_amici_objective.py
stephanmg/pyPESTO
72488fbb3eaa91dd163f88bac71a1a165a0da70f
[ "BSD-3-Clause" ]
null
null
null
test/petab/test_amici_objective.py
stephanmg/pyPESTO
72488fbb3eaa91dd163f88bac71a1a165a0da70f
[ "BSD-3-Clause" ]
null
null
null
""" This is for testing the pypesto.Objective. """ from pypesto.objective.amici_util import add_sim_grad_to_opt_grad import petab import pypesto import pypesto.petab import pypesto.optimize import pypesto.objective.constants import pytest import numpy as np from .petab_util import folder_base ATOL = 1e-1 RTOL = 1e-0 def test_add_sim_grad_to_opt_grad(): """ Test gradient mapping/summation works as expected. 17 = 1 + 2*5 + 2*3 """ par_opt_ids = ['opt_par_1', 'opt_par_2', 'opt_par_3'] mapping_par_opt_to_par_sim = { 'sim_par_1': 'opt_par_1', 'sim_par_2': 'opt_par_3', 'sim_par_3': 'opt_par_3' } par_sim_ids = ['sim_par_1', 'sim_par_2', 'sim_par_3'] sim_grad = np.asarray([1.0, 3.0, 5.0]) opt_grad = np.asarray([1.0, 1.0, 1.0]) expected = np.asarray([3.0, 1.0, 17.0]) add_sim_grad_to_opt_grad( par_opt_ids, par_sim_ids, mapping_par_opt_to_par_sim, sim_grad, opt_grad, coefficient=2.0) assert np.allclose(expected, opt_grad) def test_error_leastsquares_with_ssigma(): petab_problem = petab.Problem.from_yaml( folder_base + "Zheng_PNAS2012/Zheng_PNAS2012.yaml") petab_problem.model_name = "Zheng_PNAS2012" importer = pypesto.petab.PetabImporter(petab_problem) obj = importer.create_objective() problem = importer.create_problem(obj) optimizer = pypesto.optimize.ScipyOptimizer( 'ls_trf', options={'max_nfev': 50}) with pytest.raises(RuntimeError): pypesto.optimize.minimize( problem=problem, optimizer=optimizer, n_starts=1, options=pypesto.optimize.OptimizeOptions(allow_failed_starts=False) ) def test_preeq_guesses(): """ Test whether optimization with preequilibration guesses works, asserts that steadystate guesses are written and checks that gradient is still correct with guesses set. """ petab_problem = petab.Problem.from_yaml( folder_base + "Zheng_PNAS2012/Zheng_PNAS2012.yaml") petab_problem.model_name = "Zheng_PNAS2012" importer = pypesto.petab.PetabImporter(petab_problem) obj = importer.create_objective() problem = importer.create_problem(obj) # assert that initial guess is uninformative assert problem.objective.steadystate_guesses['fval'] == np.inf optimizer = pypesto.optimize.ScipyOptimizer( 'L-BFGS-B', options={'maxiter': 50}) result = pypesto.optimize.minimize( problem=problem, optimizer=optimizer, n_starts=1, ) assert problem.objective.steadystate_guesses['fval'] < np.inf assert len(obj.steadystate_guesses['data']) == 1 df = obj.check_grad( result.optimize_result.list[0]['x'], eps=1e-3, verbosity=0, mode=pypesto.objective.constants.MODE_FUN ) print("relative errors MODE_FUN: ", df.rel_err.values) print("absolute errors MODE_FUN: ", df.abs_err.values) assert np.all((df.rel_err.values < RTOL) | (df.abs_err.values < ATOL)) # assert that resetting works problem.objective.initialize() assert problem.objective.steadystate_guesses['fval'] == np.inf
30.466667
79
0.683651
a932a823434a703b05d9e90b790882604e184307
1,466
py
Python
tools/fcos/test_dior_r_quad.py
chisyliu/RotationDetection
6f2bd55a51a6de0bcd0959a85977682511fd440d
[ "Apache-2.0" ]
2
2022-03-05T09:55:49.000Z
2022-03-05T10:12:51.000Z
tools/fcos/test_dior_r_quad.py
junhai0428/RotationDetection
4249720ea4dacdd60e696901df8034e5cd0a1843
[ "Apache-2.0" ]
null
null
null
tools/fcos/test_dior_r_quad.py
junhai0428/RotationDetection
4249720ea4dacdd60e696901df8034e5cd0a1843
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys sys.path.append("../../") from alpharotate.libs.models.detectors.fcos import build_whole_network_batch_quad from tools.test_dior_r_base_q import TestDIORR from configs import cfgs from alpharotate.libs.val_libs.voc_eval_r import EVAL class TestDIORRFCOS(TestDIORR): def eval(self): fcos = build_whole_network_batch_quad.DetectionNetworkFCOS(cfgs=self.cfgs, is_training=False) all_boxes_r = self.eval_with_plac(img_dir=self.args.img_dir, det_net=fcos, image_ext=self.args.image_ext) # with open(cfgs.VERSION + '_detections_r.pkl', 'rb') as f2: # all_boxes_r = pickle.load(f2) # # print(len(all_boxes_r)) imgs = os.listdir(self.args.img_dir) real_test_imgname_list = [i.split(self.args.image_ext)[0] for i in imgs] print(10 * "**") print('rotation eval:') evaler = EVAL(self.cfgs) evaler.voc_evaluate_detections(all_boxes=all_boxes_r, test_imgid_list=real_test_imgname_list, test_annotation_path=self.args.test_annotation_path) if __name__ == '__main__': tester = TestDIORRFCOS(cfgs) tester.eval()
31.191489
91
0.629604
e51f209728bb72d4a80d0d3ef48d37faa4033b44
3,149
py
Python
9_GenericCBV/GenericCBV/settings.py
LIkelion-at-KOREATECH/LikeLion_Django_Study_Summary
c788182af5bcfd16bdd4b57235a48659758e494b
[ "MIT" ]
28
2019-10-15T13:15:26.000Z
2021-11-08T08:23:45.000Z
9_GenericCBV/GenericCBV/settings.py
jhleed/LikeLion_Django_Study_Summary
c788182af5bcfd16bdd4b57235a48659758e494b
[ "MIT" ]
null
null
null
9_GenericCBV/GenericCBV/settings.py
jhleed/LikeLion_Django_Study_Summary
c788182af5bcfd16bdd4b57235a48659758e494b
[ "MIT" ]
17
2019-09-09T00:15:36.000Z
2021-01-28T13:08:51.000Z
""" Django settings for GenericCBV project. Generated by 'django-admin startproject' using Django 2.1.8. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'm!+aswd=4507---1g8=!37+cs_vl#r&!d1p#v%+55(^6v-8&cf' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'post.apps.PostConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'GenericCBV.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'GenericCBV.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
25.601626
91
0.694189