hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
cf932b6b1aef935c1e708c38eef6e7cbd0b0f792
33,196
py
Python
nova/tests/unit/api/openstack/placement/test_util.py
cloudscale-ch/nova
4b4e005c639204f2c680eda61131a6930379d70e
[ "Apache-2.0" ]
1
2018-05-27T09:38:17.000Z
2018-05-27T09:38:17.000Z
nova/tests/unit/api/openstack/placement/test_util.py
liyingjun/nova
dcdcb273606f52093f812b8f0903da404b15732b
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/api/openstack/placement/test_util.py
liyingjun/nova
dcdcb273606f52093f812b8f0903da404b15732b
[ "Apache-2.0" ]
null
null
null
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Unit tests for the utility functions used by the placement API.""" import datetime import fixtures import microversion_parse import mock from oslo_middleware import request_id from oslo_utils import timeutils import webob import six from nova.api.openstack.placement import lib as pl from nova.api.openstack.placement import microversion from nova.api.openstack.placement.objects import resource_provider as rp_obj from nova.api.openstack.placement import util from nova import test from nova.tests import uuidsentinel class TestCheckAccept(test.NoDBTestCase): """Confirm behavior of util.check_accept.""" @staticmethod @util.check_accept('application/json', 'application/vnd.openstack') def handler(req): """Fake handler to test decorator.""" return True def test_fail_no_match(self): req = webob.Request.blank('/') req.accept = 'text/plain' error = self.assertRaises(webob.exc.HTTPNotAcceptable, self.handler, req) self.assertEqual( 'Only application/json, application/vnd.openstack is provided', str(error)) def test_fail_complex_no_match(self): req = webob.Request.blank('/') req.accept = 'text/html;q=0.9,text/plain,application/vnd.aws;q=0.8' error = self.assertRaises(webob.exc.HTTPNotAcceptable, self.handler, req) self.assertEqual( 'Only application/json, application/vnd.openstack is provided', str(error)) def test_success_no_accept(self): req = webob.Request.blank('/') self.assertTrue(self.handler(req)) def test_success_simple_match(self): req = webob.Request.blank('/') req.accept = 'application/json' self.assertTrue(self.handler(req)) def test_success_complex_any_match(self): req = webob.Request.blank('/') req.accept = 'application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' self.assertTrue(self.handler(req)) def test_success_complex_lower_quality_match(self): req = webob.Request.blank('/') req.accept = 'application/xml;q=0.9,application/vnd.openstack;q=0.8' self.assertTrue(self.handler(req)) class TestExtractJSON(test.NoDBTestCase): # Although the intent of this test class is not to test that # schemas work, we may as well use a real one to ensure that # behaviors are what we expect. schema = { "type": "object", "properties": { "name": {"type": "string"}, "uuid": {"type": "string", "format": "uuid"} }, "required": ["name"], "additionalProperties": False } def test_not_json(self): error = self.assertRaises(webob.exc.HTTPBadRequest, util.extract_json, 'I am a string', self.schema) self.assertIn('Malformed JSON', str(error)) def test_malformed_json(self): error = self.assertRaises(webob.exc.HTTPBadRequest, util.extract_json, '{"my bytes got left behind":}', self.schema) self.assertIn('Malformed JSON', str(error)) def test_schema_mismatch(self): error = self.assertRaises(webob.exc.HTTPBadRequest, util.extract_json, '{"a": "b"}', self.schema) self.assertIn('JSON does not validate', str(error)) def test_type_invalid(self): error = self.assertRaises(webob.exc.HTTPBadRequest, util.extract_json, '{"name": 1}', self.schema) self.assertIn('JSON does not validate', str(error)) def test_format_checker(self): error = self.assertRaises(webob.exc.HTTPBadRequest, util.extract_json, '{"name": "hello", "uuid": "not a uuid"}', self.schema) self.assertIn('JSON does not validate', str(error)) def test_no_additional_properties(self): error = self.assertRaises(webob.exc.HTTPBadRequest, util.extract_json, '{"name": "hello", "cow": "moo"}', self.schema) self.assertIn('JSON does not validate', str(error)) def test_valid(self): data = util.extract_json( '{"name": "cow", ' '"uuid": "%s"}' % uuidsentinel.rp_uuid, self.schema) self.assertEqual('cow', data['name']) self.assertEqual(uuidsentinel.rp_uuid, data['uuid']) class QueryParamsSchemaTestCase(test.NoDBTestCase): def test_validate_request(self): schema = { 'type': 'object', 'properties': { 'foo': {'type': 'string'} }, 'additionalProperties': False} req = webob.Request.blank('/test?foo=%88') error = self.assertRaises(webob.exc.HTTPBadRequest, util.validate_query_params, req, schema) self.assertIn('Invalid query string parameters', six.text_type(error)) class TestJSONErrorFormatter(test.NoDBTestCase): def setUp(self): super(TestJSONErrorFormatter, self).setUp() self.environ = {} # TODO(jaypipes): Remove this when we get more than a single version # in the placement API. The fact that we only had a single version was # masking a bug in the utils code. _versions = [ '1.0', '1.1', ] mod_str = 'nova.api.openstack.placement.microversion.VERSIONS' self.useFixture(fixtures.MonkeyPatch(mod_str, _versions)) def test_status_to_int_code(self): body = '' status = '404 Not Found' title = '' result = util.json_error_formatter( body, status, title, self.environ) self.assertEqual(404, result['errors'][0]['status']) def test_strip_body_tags(self): body = '<h1>Big Error!</h1>' status = '400 Bad Request' title = '' result = util.json_error_formatter( body, status, title, self.environ) self.assertEqual('Big Error!', result['errors'][0]['detail']) def test_request_id_presence(self): body = '' status = '400 Bad Request' title = '' # no request id in environ, none in error result = util.json_error_formatter( body, status, title, self.environ) self.assertNotIn('request_id', result['errors'][0]) # request id in environ, request id in error self.environ[request_id.ENV_REQUEST_ID] = 'stub-id' result = util.json_error_formatter( body, status, title, self.environ) self.assertEqual('stub-id', result['errors'][0]['request_id']) def test_microversion_406_handling(self): body = '' status = '400 Bad Request' title = '' # Not a 406, no version info required. result = util.json_error_formatter( body, status, title, self.environ) self.assertNotIn('max_version', result['errors'][0]) self.assertNotIn('min_version', result['errors'][0]) # A 406 but not because of microversions (microversion # parsing was successful), no version info # required. status = '406 Not Acceptable' version_obj = microversion_parse.parse_version_string('2.3') self.environ[microversion.MICROVERSION_ENVIRON] = version_obj result = util.json_error_formatter( body, status, title, self.environ) self.assertNotIn('max_version', result['errors'][0]) self.assertNotIn('min_version', result['errors'][0]) # Microversion parsing failed, status is 406, send version info. del self.environ[microversion.MICROVERSION_ENVIRON] result = util.json_error_formatter( body, status, title, self.environ) self.assertEqual(microversion.max_version_string(), result['errors'][0]['max_version']) self.assertEqual(microversion.min_version_string(), result['errors'][0]['min_version']) class TestRequireContent(test.NoDBTestCase): """Confirm behavior of util.require_accept.""" @staticmethod @util.require_content('application/json') def handler(req): """Fake handler to test decorator.""" return True def test_fail_no_content_type(self): req = webob.Request.blank('/') error = self.assertRaises(webob.exc.HTTPUnsupportedMediaType, self.handler, req) self.assertEqual( 'The media type None is not supported, use application/json', str(error)) def test_fail_wrong_content_type(self): req = webob.Request.blank('/') req.content_type = 'text/plain' error = self.assertRaises(webob.exc.HTTPUnsupportedMediaType, self.handler, req) self.assertEqual( 'The media type text/plain is not supported, use application/json', str(error)) def test_success_content_type(self): req = webob.Request.blank('/') req.content_type = 'application/json' self.assertTrue(self.handler(req)) class TestPlacementURLs(test.NoDBTestCase): def setUp(self): super(TestPlacementURLs, self).setUp() self.resource_provider = rp_obj.ResourceProvider( name=uuidsentinel.rp_name, uuid=uuidsentinel.rp_uuid) self.resource_class = rp_obj.ResourceClass( name='CUSTOM_BAREMETAL_GOLD', id=1000) def test_resource_provider_url(self): environ = {} expected_url = '/resource_providers/%s' % uuidsentinel.rp_uuid self.assertEqual(expected_url, util.resource_provider_url( environ, self.resource_provider)) def test_resource_provider_url_prefix(self): # SCRIPT_NAME represents the mount point of a WSGI # application when it is hosted at a path/prefix. environ = {'SCRIPT_NAME': '/placement'} expected_url = ('/placement/resource_providers/%s' % uuidsentinel.rp_uuid) self.assertEqual(expected_url, util.resource_provider_url( environ, self.resource_provider)) def test_inventories_url(self): environ = {} expected_url = ('/resource_providers/%s/inventories' % uuidsentinel.rp_uuid) self.assertEqual(expected_url, util.inventory_url( environ, self.resource_provider)) def test_inventory_url(self): resource_class = 'DISK_GB' environ = {} expected_url = ('/resource_providers/%s/inventories/%s' % (uuidsentinel.rp_uuid, resource_class)) self.assertEqual(expected_url, util.inventory_url( environ, self.resource_provider, resource_class)) def test_resource_class_url(self): environ = {} expected_url = '/resource_classes/CUSTOM_BAREMETAL_GOLD' self.assertEqual(expected_url, util.resource_class_url( environ, self.resource_class)) def test_resource_class_url_prefix(self): # SCRIPT_NAME represents the mount point of a WSGI # application when it is hosted at a path/prefix. environ = {'SCRIPT_NAME': '/placement'} expected_url = '/placement/resource_classes/CUSTOM_BAREMETAL_GOLD' self.assertEqual(expected_url, util.resource_class_url( environ, self.resource_class)) class TestNormalizeResourceQsParam(test.NoDBTestCase): def test_success(self): qs = "VCPU:1" resources = util.normalize_resources_qs_param(qs) expected = { 'VCPU': 1, } self.assertEqual(expected, resources) qs = "VCPU:1,MEMORY_MB:1024,DISK_GB:100" resources = util.normalize_resources_qs_param(qs) expected = { 'VCPU': 1, 'MEMORY_MB': 1024, 'DISK_GB': 100, } self.assertEqual(expected, resources) def test_400_empty_string(self): qs = "" self.assertRaises( webob.exc.HTTPBadRequest, util.normalize_resources_qs_param, qs, ) def test_400_bad_int(self): qs = "VCPU:foo" self.assertRaises( webob.exc.HTTPBadRequest, util.normalize_resources_qs_param, qs, ) def test_400_no_amount(self): qs = "VCPU" self.assertRaises( webob.exc.HTTPBadRequest, util.normalize_resources_qs_param, qs, ) def test_400_zero_amount(self): qs = "VCPU:0" self.assertRaises( webob.exc.HTTPBadRequest, util.normalize_resources_qs_param, qs, ) class TestNormalizeTraitsQsParam(test.NoDBTestCase): def test_one(self): trait = 'HW_CPU_X86_VMX' # Various whitespace permutations for fmt in ('%s', ' %s', '%s ', ' %s ', ' %s '): self.assertEqual(set([trait]), util.normalize_traits_qs_param(fmt % trait)) def test_multiple(self): traits = ( 'HW_CPU_X86_VMX', 'HW_GPU_API_DIRECT3D_V12_0', 'HW_NIC_OFFLOAD_RX', 'CUSTOM_GOLD', 'STORAGE_DISK_SSD', ) self.assertEqual( set(traits), util.normalize_traits_qs_param('%s, %s,%s , %s , %s ' % traits)) def test_400_all_empty(self): for qs in ('', ' ', ' ', ',', ' , , '): self.assertRaises( webob.exc.HTTPBadRequest, util.normalize_traits_qs_param, qs) def test_400_some_empty(self): traits = ( 'HW_NIC_OFFLOAD_RX', 'CUSTOM_GOLD', 'STORAGE_DISK_SSD', ) for fmt in ('%s,,%s,%s', ',%s,%s,%s', '%s,%s,%s,', ' %s , %s , , %s'): self.assertRaises(webob.exc.HTTPBadRequest, util.normalize_traits_qs_param, fmt % traits) class TestParseQsRequestGroups(test.NoDBTestCase): @staticmethod def do_parse(qstring, version=(1, 18)): """Converts a querystring to a MultiDict, mimicking request.GET, and runs parse_qs_request_groups on it. """ req = webob.Request.blank('?' + qstring) mv_parsed = microversion_parse.Version(*version) mv_parsed.max_version = microversion_parse.parse_version_string( microversion.max_version_string()) mv_parsed.min_version = microversion_parse.parse_version_string( microversion.min_version_string()) req.environ['placement.microversion'] = mv_parsed d = util.parse_qs_request_groups(req) # Sort for easier testing return [d[suff] for suff in sorted(d)] def assertRequestGroupsEqual(self, expected, observed): self.assertEqual(len(expected), len(observed)) for exp, obs in zip(expected, observed): self.assertEqual(vars(exp), vars(obs)) def test_empty_raises(self): # TODO(efried): Check the specific error code self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, '') def test_unnumbered_only(self): """Unnumbered resources & traits - no numbered groupings.""" qs = ('resources=VCPU:2,MEMORY_MB:2048' '&required=HW_CPU_X86_VMX,CUSTOM_GOLD') expected = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'MEMORY_MB': 2048, }, required_traits={ 'HW_CPU_X86_VMX', 'CUSTOM_GOLD', }, ), ] self.assertRequestGroupsEqual(expected, self.do_parse(qs)) def test_member_of_single_agg(self): """Unnumbered resources with one member_of query param.""" agg1_uuid = uuidsentinel.agg1 qs = ('resources=VCPU:2,MEMORY_MB:2048' '&member_of=%s' % agg1_uuid) expected = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'MEMORY_MB': 2048, }, member_of=[ set([agg1_uuid]) ] ), ] self.assertRequestGroupsEqual(expected, self.do_parse(qs)) def test_member_of_multiple_aggs_prior_microversion(self): """Unnumbered resources with multiple member_of query params before the supported microversion should raise a 400. """ agg1_uuid = uuidsentinel.agg1 agg2_uuid = uuidsentinel.agg2 qs = ('resources=VCPU:2,MEMORY_MB:2048' '&member_of=%s' '&member_of=%s' % (agg1_uuid, agg2_uuid)) self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) def test_member_of_multiple_aggs(self): """Unnumbered resources with multiple member_of query params.""" agg1_uuid = uuidsentinel.agg1 agg2_uuid = uuidsentinel.agg2 qs = ('resources=VCPU:2,MEMORY_MB:2048' '&member_of=%s' '&member_of=%s' % (agg1_uuid, agg2_uuid)) expected = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'MEMORY_MB': 2048, }, member_of=[ set([agg1_uuid]), set([agg2_uuid]) ] ), ] self.assertRequestGroupsEqual( expected, self.do_parse(qs, version=(1, 24))) def test_unnumbered_resources_only(self): """Validate the bit that can be used for 1.10 and earlier.""" qs = 'resources=VCPU:2,MEMORY_MB:2048,DISK_GB:5,CUSTOM_MAGIC:123' expected = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'MEMORY_MB': 2048, 'DISK_GB': 5, 'CUSTOM_MAGIC': 123, }, ), ] self.assertRequestGroupsEqual(expected, self.do_parse(qs)) def test_numbered_only(self): # Crazy ordering and nonsequential numbers don't matter. # It's okay to have a 'resources' without a 'required'. # A trait that's repeated shows up in both spots. qs = ('resources1=VCPU:2,MEMORY_MB:2048' '&required42=CUSTOM_GOLD' '&resources99=DISK_GB:5' '&resources42=CUSTOM_MAGIC:123' '&required1=HW_CPU_X86_VMX,CUSTOM_GOLD') expected = [ pl.RequestGroup( resources={ 'VCPU': 2, 'MEMORY_MB': 2048, }, required_traits={ 'HW_CPU_X86_VMX', 'CUSTOM_GOLD', }, ), pl.RequestGroup( resources={ 'CUSTOM_MAGIC': 123, }, required_traits={ 'CUSTOM_GOLD', }, ), pl.RequestGroup( resources={ 'DISK_GB': 5, }, ), ] self.assertRequestGroupsEqual(expected, self.do_parse(qs)) def test_numbered_and_unnumbered(self): qs = ('resources=VCPU:3,MEMORY_MB:4096,DISK_GB:10' '&required=HW_CPU_X86_VMX,CUSTOM_MEM_FLASH,STORAGE_DISK_SSD' '&resources1=SRIOV_NET_VF:2' '&required1=CUSTOM_PHYSNET_PRIVATE' '&resources2=SRIOV_NET_VF:1,NET_INGRESS_BYTES_SEC:20000' ',NET_EGRESS_BYTES_SEC:10000' '&required2=CUSTOM_SWITCH_BIG,CUSTOM_PHYSNET_PROD' '&resources3=CUSTOM_MAGIC:123') expected = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 3, 'MEMORY_MB': 4096, 'DISK_GB': 10, }, required_traits={ 'HW_CPU_X86_VMX', 'CUSTOM_MEM_FLASH', 'STORAGE_DISK_SSD', }, ), pl.RequestGroup( resources={ 'SRIOV_NET_VF': 2, }, required_traits={ 'CUSTOM_PHYSNET_PRIVATE', }, ), pl.RequestGroup( resources={ 'SRIOV_NET_VF': 1, 'NET_INGRESS_BYTES_SEC': 20000, 'NET_EGRESS_BYTES_SEC': 10000, }, required_traits={ 'CUSTOM_SWITCH_BIG', 'CUSTOM_PHYSNET_PROD', }, ), pl.RequestGroup( resources={ 'CUSTOM_MAGIC': 123, }, ), ] self.assertRequestGroupsEqual(expected, self.do_parse(qs)) def test_member_of_multiple_aggs_numbered(self): """Numbered resources with multiple member_of query params.""" agg1_uuid = uuidsentinel.agg1 agg2_uuid = uuidsentinel.agg2 agg3_uuid = uuidsentinel.agg3 agg4_uuid = uuidsentinel.agg4 qs = ('resources1=VCPU:2' '&member_of1=%s' '&member_of1=%s' '&resources2=VCPU:2' '&member_of2=in:%s,%s' % ( agg1_uuid, agg2_uuid, agg3_uuid, agg4_uuid)) expected = [ pl.RequestGroup( resources={ 'VCPU': 2, }, member_of=[ set([agg1_uuid]), set([agg2_uuid]) ] ), pl.RequestGroup( resources={ 'VCPU': 2, }, member_of=[ set([agg3_uuid, agg4_uuid]), ] ), ] self.assertRequestGroupsEqual( expected, self.do_parse(qs, version=(1, 24))) def test_400_malformed_resources(self): # Somewhat duplicates TestNormalizeResourceQsParam.test_400*. qs = ('resources=VCPU:0,MEMORY_MB:4096,DISK_GB:10' # Bad ----------^ '&required=HW_CPU_X86_VMX,CUSTOM_MEM_FLASH,STORAGE_DISK_SSD' '&resources1=SRIOV_NET_VF:2' '&required1=CUSTOM_PHYSNET_PRIVATE' '&resources2=SRIOV_NET_VF:1,NET_INGRESS_BYTES_SEC:20000' ',NET_EGRESS_BYTES_SEC:10000' '&required2=CUSTOM_SWITCH_BIG,CUSTOM_PHYSNET_PROD' '&resources3=CUSTOM_MAGIC:123') self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) def test_400_malformed_traits(self): # Somewhat duplicates TestNormalizeResourceQsParam.test_400*. qs = ('resources=VCPU:7,MEMORY_MB:4096,DISK_GB:10' '&required=HW_CPU_X86_VMX,CUSTOM_MEM_FLASH,STORAGE_DISK_SSD' '&resources1=SRIOV_NET_VF:2' '&required1=CUSTOM_PHYSNET_PRIVATE' '&resources2=SRIOV_NET_VF:1,NET_INGRESS_BYTES_SEC:20000' ',NET_EGRESS_BYTES_SEC:10000' '&required2=CUSTOM_SWITCH_BIG,CUSTOM_PHYSNET_PROD,' # Bad -------------------------------------------^ '&resources3=CUSTOM_MAGIC:123') self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) def test_400_traits_no_resources_unnumbered(self): qs = ('resources9=VCPU:7,MEMORY_MB:4096,DISK_GB:10' # Oops ---^ '&required=HW_CPU_X86_VMX,CUSTOM_MEM_FLASH,STORAGE_DISK_SSD' '&resources1=SRIOV_NET_VF:2' '&required1=CUSTOM_PHYSNET_PRIVATE' '&resources2=SRIOV_NET_VF:1,NET_INGRESS_BYTES_SEC:20000' ',NET_EGRESS_BYTES_SEC:10000' '&required2=CUSTOM_SWITCH_BIG,CUSTOM_PHYSNET_PROD' '&resources3=CUSTOM_MAGIC:123') self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) def test_400_traits_no_resources_numbered(self): qs = ('resources=VCPU:7,MEMORY_MB:4096,DISK_GB:10' '&required=HW_CPU_X86_VMX,CUSTOM_MEM_FLASH,STORAGE_DISK_SSD' '&resources11=SRIOV_NET_VF:2' # Oops ----^^ '&required1=CUSTOM_PHYSNET_PRIVATE' '&resources20=SRIOV_NET_VF:1,NET_INGRESS_BYTES_SEC:20000' # Oops ----^^ ',NET_EGRESS_BYTES_SEC:10000' '&required2=CUSTOM_SWITCH_BIG,CUSTOM_PHYSNET_PROD' '&resources3=CUSTOM_MAGIC:123') self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) def test_400_member_of_no_resources_numbered(self): agg1_uuid = uuidsentinel.agg1 qs = ('resources=VCPU:7,MEMORY_MB:4096,DISK_GB:10' '&required=HW_CPU_X86_VMX,CUSTOM_MEM_FLASH,STORAGE_DISK_SSD' '&member_of2=%s' % agg1_uuid) self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) def test_forbidden_one_group(self): """When forbidden are allowed this will parse, but otherwise will indicate an invalid trait. """ qs = ('resources=VCPU:2,MEMORY_MB:2048' '&required=CUSTOM_PHYSNET1,!CUSTOM_SWITCH_BIG') expected_forbidden = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'MEMORY_MB': 2048, }, required_traits={ 'CUSTOM_PHYSNET1', }, forbidden_traits={ 'CUSTOM_SWITCH_BIG', } ), ] expected_message = ( "Invalid query string parameters: Expected 'required' parameter " "value of the form: HW_CPU_X86_VMX,CUSTOM_MAGIC. Got: " "CUSTOM_PHYSNET1,!CUSTOM_SWITCH_BIG") exc = self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs) self.assertEqual(expected_message, six.text_type(exc)) self.assertRequestGroupsEqual( expected_forbidden, self.do_parse(qs, version=(1, 22))) def test_forbidden_conflict(self): qs = ('resources=VCPU:2,MEMORY_MB:2048' '&required=CUSTOM_PHYSNET1,!CUSTOM_PHYSNET1') expected_message = ( 'Conflicting required and forbidden traits found ' 'in the following traits keys: required: (CUSTOM_PHYSNET1)') exc = self.assertRaises(webob.exc.HTTPBadRequest, self.do_parse, qs, version=(1, 22)) self.assertEqual(expected_message, six.text_type(exc)) def test_forbidden_two_groups(self): qs = ('resources=VCPU:2,MEMORY_MB:2048&resources1=CUSTOM_MAGIC:1' '&required1=CUSTOM_PHYSNET1,!CUSTOM_PHYSNET2') expected = [ pl.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'MEMORY_MB': 2048, }, ), pl.RequestGroup( resources={ 'CUSTOM_MAGIC': 1, }, required_traits={ 'CUSTOM_PHYSNET1', }, forbidden_traits={ 'CUSTOM_PHYSNET2', } ), ] self.assertRequestGroupsEqual( expected, self.do_parse(qs, version=(1, 22))) def test_forbidden_separate_groups_no_conflict(self): qs = ('resources1=CUSTOM_MAGIC:1&required1=CUSTOM_PHYSNET1' '&resources2=CUSTOM_MAGIC:1&required2=!CUSTOM_PHYSNET1') expected = [ pl.RequestGroup( use_same_provider=True, resources={ 'CUSTOM_MAGIC': 1, }, required_traits={ 'CUSTOM_PHYSNET1', } ), pl.RequestGroup( use_same_provider=True, resources={ 'CUSTOM_MAGIC': 1, }, forbidden_traits={ 'CUSTOM_PHYSNET1', } ), ] self.assertRequestGroupsEqual( expected, self.do_parse(qs, version=(1, 22))) class TestPickLastModified(test.NoDBTestCase): def setUp(self): super(TestPickLastModified, self).setUp() self.resource_provider = rp_obj.ResourceProvider( name=uuidsentinel.rp_name, uuid=uuidsentinel.rp_uuid) def test_updated_versus_none(self): now = timeutils.utcnow(with_timezone=True) self.resource_provider.updated_at = now self.resource_provider.created_at = now chosen_time = util.pick_last_modified(None, self.resource_provider) self.assertEqual(now, chosen_time) def test_created_versus_none(self): now = timeutils.utcnow(with_timezone=True) self.resource_provider.created_at = now self.resource_provider.updated_at = None chosen_time = util.pick_last_modified(None, self.resource_provider) self.assertEqual(now, chosen_time) def test_last_modified_less(self): now = timeutils.utcnow(with_timezone=True) less = now - datetime.timedelta(seconds=300) self.resource_provider.updated_at = now self.resource_provider.created_at = now chosen_time = util.pick_last_modified(less, self.resource_provider) self.assertEqual(now, chosen_time) def test_last_modified_more(self): now = timeutils.utcnow(with_timezone=True) more = now + datetime.timedelta(seconds=300) self.resource_provider.updated_at = now self.resource_provider.created_at = now chosen_time = util.pick_last_modified(more, self.resource_provider) self.assertEqual(more, chosen_time) def test_last_modified_same(self): now = timeutils.utcnow(with_timezone=True) self.resource_provider.updated_at = now self.resource_provider.created_at = now chosen_time = util.pick_last_modified(now, self.resource_provider) self.assertEqual(now, chosen_time) def test_no_object_time_fields_less(self): # An unsaved ovo will not have the created_at or updated_at fields # present on the object at all. now = timeutils.utcnow(with_timezone=True) less = now - datetime.timedelta(seconds=300) with mock.patch('oslo_utils.timeutils.utcnow') as mock_utc: mock_utc.return_value = now chosen_time = util.pick_last_modified( less, self.resource_provider) self.assertEqual(now, chosen_time) mock_utc.assert_called_once_with(with_timezone=True) def test_no_object_time_fields_more(self): # An unsaved ovo will not have the created_at or updated_at fields # present on the object at all. now = timeutils.utcnow(with_timezone=True) more = now + datetime.timedelta(seconds=300) with mock.patch('oslo_utils.timeutils.utcnow') as mock_utc: mock_utc.return_value = now chosen_time = util.pick_last_modified( more, self.resource_provider) self.assertEqual(more, chosen_time) mock_utc.assert_called_once_with(with_timezone=True) def test_no_object_time_fields_none(self): # An unsaved ovo will not have the created_at or updated_at fields # present on the object at all. now = timeutils.utcnow(with_timezone=True) with mock.patch('oslo_utils.timeutils.utcnow') as mock_utc: mock_utc.return_value = now chosen_time = util.pick_last_modified( None, self.resource_provider) self.assertEqual(now, chosen_time) mock_utc.assert_called_once_with(with_timezone=True)
37.007804
79
0.575099
a11e7847958dcd21f11b7c0dedc55bf1d17e56c0
2,492
py
Python
tools/install_venv.py
citrix-openstack-build/python-ceilometerclient
c3283ec1e861f29a53c59c1a09f2a1bc21a713e4
[ "Apache-2.0" ]
null
null
null
tools/install_venv.py
citrix-openstack-build/python-ceilometerclient
c3283ec1e861f29a53c59c1a09f2a1bc21a713e4
[ "Apache-2.0" ]
null
null
null
tools/install_venv.py
citrix-openstack-build/python-ceilometerclient
c3283ec1e861f29a53c59c1a09f2a1bc21a713e4
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2010 OpenStack Foundation # Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import sys import install_venv_common as install_venv def print_help(venv, root): help = """ Ceilometerclient development environment setup is complete. Ceilometerclient development uses virtualenv to track and manage Python dependencies while in development and testing. To activate the Ceilometerclient virtualenv for the extent of your current shell session you can run: $ source %s/bin/activate Or, if you prefer, you can run commands in the virtualenv on a case by case basis by running: $ %s/tools/with_venv.sh <your command> Also, make test will automatically use the virtualenv. """ print help % (venv, root) def main(argv): root = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) if os.environ.get('tools_path'): root = os.environ['tools_path'] venv = os.path.join(root, '.venv') if os.environ.get('venv'): venv = os.environ['venv'] pip_requires = os.path.join(root, 'requirements.txt') test_requires = os.path.join(root, 'test-requirements.txt') py_version = "python%s.%s" % (sys.version_info[0], sys.version_info[1]) project = 'Ceilometerclient' install = install_venv.InstallVenv(root, venv, pip_requires, test_requires, py_version, project) options = install.parse_args(argv) install.check_python_version() install.check_dependencies() install.create_virtualenv(no_site_packages=options.no_site_packages) install.install_dependencies() install.post_process() print_help(venv, root) if __name__ == '__main__': main(sys.argv)
33.226667
79
0.712681
44d2e5f1b7e974d3b135805daec957720bdbfaf2
1,049
py
Python
r8/cli/teams.py
mhils/r8
b5b0cfa5045213abe896eea450012924d3e1fe9c
[ "MIT" ]
14
2018-09-19T15:17:38.000Z
2022-01-14T10:59:55.000Z
r8/cli/teams.py
mhils/r8
b5b0cfa5045213abe896eea450012924d3e1fe9c
[ "MIT" ]
3
2019-05-29T16:47:36.000Z
2020-05-02T18:16:17.000Z
r8/cli/teams.py
mhils/r8
b5b0cfa5045213abe896eea450012924d3e1fe9c
[ "MIT" ]
3
2020-12-19T01:12:15.000Z
2021-02-27T21:29:43.000Z
import click import r8 from r8 import util @click.group("teams") def cli(): """Team-related commands.""" pass @cli.command("list") @util.with_database() @util.database_rows def list(rows): """Print all teams.""" util.run_sql(f""" SELECT tid, uid FROM teams ORDER BY tid, uid DESC """, rows=rows) @cli.command() @util.with_database() @click.argument("old-name") @click.argument("new-name") def rename(old_name, new_name): """Change a team name.""" with r8.db: old_exists = r8.db.execute("SELECT COUNT(*) FROM teams WHERE tid = ?", (old_name,)).fetchone()[0] if not old_exists: raise click.UsageError("Old team does not exist.") new_exists = r8.db.execute("SELECT COUNT(*) FROM teams WHERE tid = ?", (new_name,)).fetchone()[0] if new_exists: raise click.UsageError("New team name does already exist.") r8.db.execute("UPDATE teams SET tid = ? WHERE tid = ?", (new_name, old_name)) r8.echo("r8", f"""Renamed "{old_name}" to "{new_name}".""")
26.897436
105
0.624404
cccb09892483f6ae03bbe724290901da9613e607
13,621
py
Python
models.py
philippWassibauer/geonames
a479c5d903924af24dbd35b1caeab66a2d93fdd3
[ "MIT" ]
null
null
null
models.py
philippWassibauer/geonames
a479c5d903924af24dbd35b1caeab66a2d93fdd3
[ "MIT" ]
null
null
null
models.py
philippWassibauer/geonames
a479c5d903924af24dbd35b1caeab66a2d93fdd3
[ "MIT" ]
1
2020-01-23T05:03:22.000Z
2020-01-23T05:03:22.000Z
# This file is part of Django-Geonames # Copyright (c) 2008, Alberto Garcia Hierro # See LICENSE file for details from math import sin, cos, acos, radians from django.core.cache import cache from django.db import connection from django.contrib.gis.db import models from django.utils.translation import ugettext, get_language from django.conf import settings from geonames.decorators import stored_property, cache_set GLOBE_GEONAME_ID = 6295630 def translate_geoname(g, lang): cursor = connection.cursor() cursor.execute('''SELECT name FROM alternate_name WHERE language='%(lang)s' \ AND geoname_id = %(id)d AND preferred=TRUE UNION SELECT name \ FROM alternate_name WHERE language='%(lang)s' AND geoname_id = %(id)d LIMIT 1''' % \ { 'lang': lang, 'id': g.id }) try: return cursor.fetchone()[0] except TypeError: return g.name def get_geo_translate_func(): try: cnf = settings.GEONAMES_TRANSLATION_METHOD except AttributeError: cnf = 'NOOP' if cnf == 'NOOP': return (lambda x: x.name) if cnf == 'STATIC': lang = settings.LANGUAGE_CODE.split('-')[0] if lang == 'en': return (lambda x: x.name) def geo_translate(self): key = 'Geoname_%s_i18n_name' % self.id return cache.get(key) or cache_set(key, translate_geoname(self, lang)) return geo_translate if cnf == 'DYNAMIC': def geo_translate(self): lang = get_language() key = 'Geoname_%s_%s_i18n_name' % (self.id, lang) return cache.get(key) or cache_set(key, translate_geoname(self, lang)) return geo_translate raise ValueError('Unknown value for GEONAMES_TRANSLATION_METHOD: "%s"' % cnf) geo_translate_func = get_geo_translate_func() class Geoname(models.Model): id = models.IntegerField(primary_key=True) name = models.CharField(max_length=200, db_index=True) ascii_name = models.CharField(max_length=200) latitude = models.DecimalField(max_digits=20, decimal_places=17) longitude = models.DecimalField(max_digits=20, decimal_places=17) point = models.PointField(null=True, blank=True) fclass = models.CharField(max_length=1, db_index=True) fcode = models.CharField(max_length=10, db_index=True) country = models.ForeignKey('Country', db_index=True, related_name='geoname_set') cc2 = models.CharField(max_length=60) admin1 = models.ForeignKey('Admin1Code', null=True, related_name='geoname_set', db_index=True) admin2 = models.ForeignKey('Admin2Code', null=True, related_name='geoname_set', db_index=True) admin3 = models.ForeignKey('Admin3Code', null=True, related_name='geoname_set', db_index=True) admin4 = models.ForeignKey('Admin4Code', null=True, related_name='geoname_set', db_index=True) population = models.IntegerField() elevation = models.IntegerField() gtopo30 = models.IntegerField() timezone = models.ForeignKey('Timezone', null=True) moddate = models.DateField() objects = models.GeoManager() class Meta: db_table = 'geoname' def __unicode__(self): return self.name def save(self, *args, **kwargs): self.gpoint = 'POINT(%s %s)' % (self.longitude, self.latitude) super(Geoname, self).save(*args, **kwargs) @stored_property def i18n_name(self): return geo_translate_func(self) @stored_property def admin1_i18n_name(self): if self.fcode in ('', 'CONT', 'PCLI'): return u'' try: return self.admin1.geoname.i18n_name except (Admin1Code.DoesNotExist, Geoname.DoesNotExist): return u'' @stored_property def fcode_name(self): try: return ugettext(FeatureCode.objects.get(pk=self.fcode).name) except FeatureCode.DoesNotExist: return u'' @stored_property def country_name(self): try: return self.country.__unicode__() except Country.DoesNotExist: return u'' @stored_property def country_i18n_name(self): try: return self.country.geoname.i18n_name except models.Model.DoesNotExist: return u'' @stored_property def parent(self): if self.id == GLOBE_GEONAME_ID: return None return self.get_parent def get_parent(self): if self.fcode == 'CONT': return Geoname.globe() if self.fcode.startswith('PCL'): g_list = [self.country.continent] elif self.fcode in ('ADM1', 'ADMD'): g_list = [self.country, self.country.continent] elif self.fcode == 'ADM2': g_list = [self.admin1, self.country, self.country.continent] elif self.fcode == 'ADM3': g_list = [self.admin2, self.admin1, self.country, self.country.continent] elif self.fcode == 'ADM4': g_list = [self.admin3, self.admin2, self.admin1, self.country, self.country.continent] else: g_list = [self.admin4, self.admin3, self.admin2, self.admin1, self.country, self.country.continent] for g in g_list: try: if g.geoname_id != self.id: return g.geoname except AttributeError: pass return None @stored_property def hierarchy(self): hier = [] parent = self.parent while parent: hier.append(parent) parent = parent.parent return hier def get_children(self): if self.id == GLOBE_GEONAME_ID: return Geoname.objects.filter(id__in=[x['geoname'] for x in Continent.objects.values('geoname')]) if self.fcode == 'CONT': return Geoname.objects.filter(id__in=[x['geoname'] for x in Continent.objects.get(geoname=self.id).country_set.values('geoname')]) if self.fclass != 'A': return Geoname.objects.none() try: if self.fcode.startswith('PCL'): s_list = [self.country.geoname_set.filter(fcode=code) for code in ('ADM1', 'ADMD', 'ADM2', 'ADM3', 'ADM4')] + [self.country.geoname_set.filter(fclass='P')] elif self.fcode == 'ADM1': s_list = [self.admin1.geoname_set.filter(fcode=code) for code in ('ADM2', 'ADM3', 'ADM4')] + [self.admin1.geoname_set.filter(fclass='P')] elif self.fcode == 'ADM2': s_list = [self.admin2.geoname_set.filter(fcode=code) for code in ('ADM3', 'ADM4')] + [self.admin2.geoname_set.filter(fclass='P')] elif self.fcode == 'ADM3': s_list = [self.admin3.geoname_set.filter(fcode='ADM4'), self.admin3.geoname_set.filter(fclass='P')] elif self.fcode == 'ADM4': s_list = [self.admin4.geoname_set.filter(fclass='P')] else: return Geoname.objects.none() except AttributeError: return Geoname.objects.none() for qs in s_list: if qs.count(): return qs return Geoname.objects.none() @stored_property def children(self): cset = self.get_children() l = list(cset or []) l.sort(cmp=lambda x,y: cmp(x.i18n_name, y.i18n_name)) return l @classmethod def biggest(cls, lset): codes = [ '', 'CONT', 'PCLI', 'ADM1', 'ADM2', 'ADM3', 'ADM4', 'PPL'] for c in codes: for item in lset: if item.fcode == c: return item try: return lset[0] except IndexError: return None @classmethod def globe(cls): return cls.objects.get(pk=GLOBE_GEONAME_ID) def is_globe(self): return self.id == GLOBE_GEONAME_ID def contains(self, child): if self.is_globe(): return True try: if self.fcode == 'CONT': return child.country.continent.geoname == self if self.fcode in ('PCLI', 'PCLD'): return child.country_id == self.country_id if self.fcode == 'ADM1': return self.admin1_id == child.admin1_id if self.fcode == 'ADM2': return self.admin2_id == child.admin2_id if self.fcode == 'ADM3': return self.admin3_id == child.admin3_id if self.fcode == 'ADM4': return self.admin4_id == child.admin4_id except Country.DoesNotExist: return False return False def distance(self, other): return Geoname.distance_points(self.latitude, self.longitude, other.latitude, other.longitude) @classmethod def distance_points(cls, lat1, lon1, lat2, lon2, is_rad=False): if not is_rad: lat1, lon1, lat2, lon2 = map(lambda x: radians(float(x)), (lat1, lon1, lat2, lon2)) return 6378.7 * acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)) class GeonameAlternateName(models.Model): id = models.IntegerField(primary_key=True) geoname = models.ForeignKey(Geoname, related_name='altnames', db_index=True) language = models.CharField(max_length=7) name = models.CharField(max_length=200) preferred = models.BooleanField() short = models.BooleanField() class Meta: db_table = 'alternate_name' def __unicode__(self): return self.alternateName class Continent(models.Model): code = models.CharField(max_length=2, primary_key=True) name = models.CharField(max_length=20) geoname = models.ForeignKey(Geoname, unique=True) class Meta: db_table = 'continent' def __unicode__(self): return self.name class Country(models.Model): iso_alpha2 = models.CharField(max_length=2, primary_key=True) iso_alpha3 = models.CharField(max_length=3, unique=True) iso_numeric = models.IntegerField(unique=True) fips_code = models.CharField(max_length=3) name = models.CharField(max_length=200) capital = models.CharField(max_length=200) area = models.FloatField() population = models.IntegerField() continent = models.ForeignKey(Continent, db_index=True) tld = models.CharField(max_length=4, null=True) currency_code = models.CharField(max_length=3) currency_name = models.CharField(max_length=16, null=True) phone_prefix = models.CharField(max_length=16, null=True) postal_code_fmt = models.CharField(max_length=64, null=True) postal_code_re = models.CharField(max_length=256, null=True) languages = models.CharField(max_length=200) geoname = models.ForeignKey(Geoname, related_name='this_country') neighbours = models.ManyToManyField('self') class Meta: db_table = 'country' def __unicode__(self): return self.name class Language(models.Model): iso_639_3 = models.CharField(max_length=4, primary_key=True) iso_639_2 = models.CharField(max_length=50) iso_639_1 = models.CharField(max_length=50) language_name = models.CharField(max_length=200) class Meta: db_table = 'iso_language' class Admin1Code(models.Model): country = models.ForeignKey(Country, db_index=True) geoname = models.ForeignKey(Geoname, db_index=True) code = models.CharField(max_length=5) name = models.TextField() ascii_name = models.TextField() geom = models.GeometryField(null=True, blank=True) class Meta: db_table = 'admin1_code' class Admin2Code(models.Model): country = models.ForeignKey(Country, db_index=True) admin1 = models.ForeignKey(Admin1Code, null=True) geoname = models.ForeignKey(Geoname, db_index=True) code = models.CharField(max_length=30) name = models.TextField() ascii_name = models.TextField() geom = models.GeometryField(null=True, blank=True) class Meta: db_table = 'admin2_code' class Admin3Code(models.Model): country = models.ForeignKey(Country, db_index=True) admin1 = models.ForeignKey(Admin1Code, null=True, db_index=True) admin2 = models.ForeignKey(Admin2Code, null=True, db_index=True) geoname = models.ForeignKey(Geoname, db_index=True) code = models.CharField(max_length=30) name = models.TextField() ascii_name = models.TextField() geom = models.GeometryField(null=True, blank=True) class Meta: db_table = 'admin3_code' class Admin4Code(models.Model): country = models.ForeignKey(Country) admin1 = models.ForeignKey(Admin1Code, null=True, db_index=True) admin2 = models.ForeignKey(Admin2Code, null=True, db_index=True) admin3 = models.ForeignKey(Admin3Code, null=True, db_index=True) geoname = models.ForeignKey(Geoname, db_index=True) code = models.CharField(max_length=30) name = models.TextField() ascii_name = models.TextField() geom = models.GeometryField(null=True, blank=True) class Meta: db_table = 'admin4_code' class FeatureCode(models.Model): code = models.CharField(max_length=7, primary_key=True) fclass = models.CharField(max_length=1) name = models.CharField(max_length=200) description = models.TextField() class Meta: db_table = 'feature_code' class Timezone(models.Model): name = models.CharField(max_length=200) gmt_offset = models.DecimalField(max_digits=4, decimal_places=2) dst_offset = models.DecimalField(max_digits=4, decimal_places=2) class Meta: db_table = 'time_zone' class GeonamesUpdate(models.Model): updated_date = models.DateField() class Meta: db_table = 'geonames_update'
34.836317
171
0.647236
0ad6571627f4bc1eb4190c8061b453b2a9137ebe
5,061
py
Python
scripts/evaluate_solution.py
steven-murray/analytic_diffuse
b82fea27da4c476b4d04c2a0d8959e5af38bdd09
[ "MIT" ]
null
null
null
scripts/evaluate_solution.py
steven-murray/analytic_diffuse
b82fea27da4c476b4d04c2a0d8959e5af38bdd09
[ "MIT" ]
null
null
null
scripts/evaluate_solution.py
steven-murray/analytic_diffuse
b82fea27da4c476b4d04c2a0d8959e5af38bdd09
[ "MIT" ]
null
null
null
# script to evaluate a given visibility solution and save to npz. # optionally -- parse a pyuvdata-compatible file to get baseline vectors etc. and save alongside evaluated data. # give model parameters (and name) as arguments. Option to parse a filename for that info too. import numpy as np import os import argparse from pyuvdata import UVData from healvis.cosmology import c_ms from healvis.utils import jy2Tsr import analytic_diffuse as andiff parser = argparse.ArgumentParser( description="Evaluate a given visibility solution and save results to an npz file." ) parser.add_argument('-v', '--visfile', type=str, help='pyuvdata-compatible visibility data file') parser.add_argument('--infile', type=str, help='Input npz file containing uvw vectors') helpstr = 'Model name. Available: ' + ', '.join(andiff.available_models) parser.add_argument('--model', type=str, help=helpstr, default=None) parser.add_argument('-a', type=float, help='a parameter for gaussian and xysincs models.', default=None) parser.add_argument('--el0vec', type=str, help='(l,m,n) coordinate vector for center displacement from zenith. Comma-delimited string.', default=None, required=False) parser.add_argument('--el0ang', type=str, help='(azimuth, zenith angle) coordinate vector for center position.', default=None) parser.add_argument('--xi', type=float, help='Xi parameter for xysincs model.', default=None) parser.add_argument('-n', type=int, help='Polynomial order for polydome model.', default=None) parser.add_argument('--order', type=int, help='Expansion order, for series solutions.') parser.add_argument('--amp', type=float, help='Amplitude of the model in. Default is 2 K.', default=2) parser.add_argument('--maxu', type=float, help='Maximum baseline length in wavelengths.') parser.add_argument('-o', '--ofname', type=str, help='Output npz file name', default=None) args = parser.parse_args() if args.el0vec is not None: args.el0vec = list(map(float, args.el0vec.split(','))) assert len(args.el0vec) == 3 if args.el0ang is not None: args.el0ang = list(map(float, args.el0ang.split(','))) assert len(args.el0ang) == 2 if args.el0vec is None: args.el0vec = andiff.models._angle_to_lmn(*args.el0ang).squeeze() args.el0vec[2] = 0 # Scrap w component outdict = {} sel = slice(None) if args.maxu is not None: sel = np.linalg.norm(uvw, axis=1) < args.maxu uv = UVData() if args.visfile is None: if args.model is None: raise ValueError("Model type needed.") if args.infile is None: raise ValueError("Input npz file needed.") f = np.load(args.infile) uvw = f['uvws'] uvw = uvw[sel] elif args.visfile is not None and args.infile is not None: raise ValueError("Cannot do both npz and uv input files at once.") else: uv.read(args.visfile) print("Using visibility file {}".format(args.visfile)) uv.select(times=uv.time_array[0]) # Select first time only. dat = uv.data_array[:,0,:,0] lam = c_ms/uv.freq_array[0] dat_Tsr = dat * jy2Tsr(uv.freq_array[0], bm=1.0) uvw = np.repeat(uv.uvw_array[:,:,None], uv.Nfreqs, axis=2) uvw = np.swapaxes((uvw/lam), 1,2) uvw = uvw.reshape((uv.Nbls * uv.Nfreqs, 3)) dat_Tsr = dat_Tsr.flatten() uvw = uvw[sel] dat_Tsr = dat_Tsr[sel] if args.model is None: model, params = andiff.solutions.parse_filename(os.path.basename(args.visfile)) args.model = model for k, v in params.items(): if (hasattr(args, k)) and (getattr(args, k) is None): setattr(args, k, v) outdict['dat_Tsr'] = dat_Tsr outdict['uvws'] = uvw for key, val in vars(args).items(): if val is not None: outdict[key] = val # Next -- evaluate function, then save things to npz file. analytic = andiff.get_solution(args.model) params = {} keys = ['a', 'n', 'xi', 'el0vec', 'order'] for k in keys: val = getattr(args, k) if val is not None: params[k] = val if ('gauss' in args.model) or ('xysincs' in args.model): a = params.pop('a') if a is None: raise ValueError("Missing parameter 'a' for {}.".format(args.model)) outdict['result'] = args.amp * analytic(uvw, a, **params) params['a'] = a else: outdict['result'] = args.amp * analytic(uvw, **params) if args.ofname is None: if args.infile is None: args.ofname = "ana_comp_"+args.model else: args.ofname = "ana_eval_"+args.model # Comp for data comp, eval for just evaluation for k, val in params.items(): if isinstance(val, int): args.ofname += '_{}{:d}'.format(k, val) elif k == 'el0vec': zenang = np.degrees(np.arcsin(np.linalg.norm(val))) args.ofname += '_offzen{:.1f}'.format(zenang) else: args.ofname += '_{}{:.2f}'.format(k, val) if 'nside' in uv.extra_keywords.keys(): args.ofname += '_nside{}'.format(uv.extra_keywords['nside']) args.ofname += ".npz" print("Saving results to {}".format(args.ofname)) np.savez(args.ofname, **outdict)
38.052632
166
0.666469
407ec963320ad44058cec9b738a0fe93b423899c
5,287
py
Python
lib/sqlalchemy/future/selectable.py
abrahamsangha/sqlalchemy
3ab2364e78641c4f0e4b6456afc2cbed39b0d0e6
[ "MIT" ]
null
null
null
lib/sqlalchemy/future/selectable.py
abrahamsangha/sqlalchemy
3ab2364e78641c4f0e4b6456afc2cbed39b0d0e6
[ "MIT" ]
null
null
null
lib/sqlalchemy/future/selectable.py
abrahamsangha/sqlalchemy
3ab2364e78641c4f0e4b6456afc2cbed39b0d0e6
[ "MIT" ]
null
null
null
from ..sql import coercions from ..sql import roles from ..sql.base import _generative from ..sql.selectable import GenerativeSelect from ..sql.selectable import Select as _LegacySelect from ..sql.selectable import SelectState from ..sql.util import _entity_namespace_key class Select(_LegacySelect): _is_future = True _setup_joins = () _legacy_setup_joins = () @classmethod def _create_select(cls, *entities): raise NotImplementedError("use _create_future_select") @classmethod def _create_future_select(cls, *entities): r"""Construct a new :class:`_expression.Select` using the 2. x style API. .. versionadded:: 2.0 - the :func:`_future.select` construct is the same construct as the one returned by :func:`_expression.select`, except that the function only accepts the "columns clause" entities up front; the rest of the state of the SELECT should be built up using generative methods. Similar functionality is also available via the :meth:`_expression.FromClause.select` method on any :class:`_expression.FromClause`. .. seealso:: :ref:`coretutorial_selecting` - Core Tutorial description of :func:`_expression.select`. :param \*entities: Entities to SELECT from. For Core usage, this is typically a series of :class:`_expression.ColumnElement` and / or :class:`_expression.FromClause` objects which will form the columns clause of the resulting statement. For those objects that are instances of :class:`_expression.FromClause` (typically :class:`_schema.Table` or :class:`_expression.Alias` objects), the :attr:`_expression.FromClause.c` collection is extracted to form a collection of :class:`_expression.ColumnElement` objects. This parameter will also accept :class:`_expression.TextClause` constructs as given, as well as ORM-mapped classes. """ self = cls.__new__(cls) self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self ) for ent in entities ] GenerativeSelect.__init__(self) return self def filter(self, *criteria): """A synonym for the :meth:`_future.Select.where` method.""" return self.where(*criteria) def _exported_columns_iterator(self): meth = SelectState.get_plugin_class(self).exported_columns_iterator return meth(self) def _filter_by_zero(self): if self._setup_joins: meth = SelectState.get_plugin_class( self ).determine_last_joined_entity _last_joined_entity = meth(self) if _last_joined_entity is not None: return _last_joined_entity if self._from_obj: return self._from_obj[0] return self._raw_columns[0] def filter_by(self, **kwargs): r"""apply the given filtering criterion as a WHERE clause to this select. """ from_entity = self._filter_by_zero() clauses = [ _entity_namespace_key(from_entity, key) == value for key, value in kwargs.items() ] return self.filter(*clauses) @property def column_descriptions(self): """Return a 'column descriptions' structure which may be plugin-specific. """ meth = SelectState.get_plugin_class(self).get_column_descriptions return meth(self) @_generative def join(self, target, onclause=None, isouter=False, full=False): r"""Create a SQL JOIN against this :class:`_expresson.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. """ target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self ) self._setup_joins += ( (target, onclause, None, {"isouter": isouter, "full": full}), ) @_generative def join_from( self, from_, target, onclause=None, isouter=False, full=False ): r"""Create a SQL JOIN against this :class:`_expresson.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. """ # note the order of parsing from vs. target is important here, as we # are also deriving the source of the plugin (i.e. the subject mapper # in an ORM query) which should favor the "from_" over the "target" from_ = coercions.expect( roles.FromClauseRole, from_, apply_propagate_attrs=self ) target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self ) self._setup_joins += ( (target, onclause, from_, {"isouter": isouter, "full": full}), ) def outerjoin(self, target, onclause=None, full=False): """Create a left outer join. """ return self.join(target, onclause=onclause, isouter=True, full=full,)
32.435583
78
0.632117
161ab0379c67974e3c7c09f7565ed3a6a49d5275
5,218
py
Python
qf_lib/backtesting/orders_filter/volume_orders_filter.py
quarkfin/QF-Lib
1504c65c9ed8bbbd19948088fe7b924a7b6be709
[ "Apache-2.0" ]
null
null
null
qf_lib/backtesting/orders_filter/volume_orders_filter.py
quarkfin/QF-Lib
1504c65c9ed8bbbd19948088fe7b924a7b6be709
[ "Apache-2.0" ]
null
null
null
qf_lib/backtesting/orders_filter/volume_orders_filter.py
quarkfin/QF-Lib
1504c65c9ed8bbbd19948088fe7b924a7b6be709
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple import numpy as np from qf_lib.backtesting.order.execution_style import StopOrder from qf_lib.backtesting.order.order import Order from qf_lib.backtesting.orders_filter.orders_filter import OrdersFilter from qf_lib.common.enums.frequency import Frequency from qf_lib.common.enums.price_field import PriceField from qf_lib.common.tickers.tickers import Ticker from qf_lib.common.utils.numberutils.is_finite_number import is_finite_number from qf_lib.containers.dataframe.qf_dataframe import QFDataFrame from qf_lib.data_providers.data_provider import DataProvider class VolumeOrdersFilter(OrdersFilter): """ Verifies whether the orders sizes do not exceed the given volume limit. Parameters ----------- data_provider: DataProvider used to download the volume data volume_percentage_limit: float defines the maximum percentage of the volume value, that the orders size should not exceed """ def __init__(self, data_provider: DataProvider, volume_percentage_limit: float): super().__init__(data_provider) self._volume_percentage_limit = volume_percentage_limit def adjust_orders(self, orders: List[Order]) -> List[Order]: """ Takes list of orders and based on them creates a new list with orders, whose size does not to exceed the given volume limits. The Orders are changed in place. Parameters ---------- orders: List[Order] list of orders to adjust Returns -------- List[Order] list of orders, that do not exceed the given volume percentage limit """ tickers = [order.ticker for order in orders] try: volume_df = self._data_provider.historical_price(tickers, PriceField.Volume, 5, frequency=Frequency.DAILY) # The stop orders will be adjusted only along with corresponding market orders stop_orders_dict = {order.ticker: order for order in orders if isinstance(order.execution_style, StopOrder)} adjusted_orders_tuples = [self._adjust_quantity(order, stop_orders_dict.get(order.ticker, None), volume_df) for order in orders if not isinstance(order.execution_style, StopOrder)] # Flatten the list of orders tuples adjusted_orders = [order for orders_tuple in adjusted_orders_tuples for order in orders_tuple if order is not None and order.quantity != 0] return adjusted_orders except ValueError as e: self.logger.warning(f"VolumeOrdersFilter: orders cannot be adjusted due to the following reason: {e}", stack_info=True) return orders def _adjust_quantity(self, order: Order, stop_order: Optional[Order], volume_df: QFDataFrame) -> \ Tuple[Order, Order]: """Returns order with adjusted quantity if applicable.""" ticker = order.ticker def average_past_volume(ticker: Ticker) -> Optional[float]: volume_series = volume_df[ticker] volume_series = volume_series.dropna() volume_series = volume_series[volume_series >= 0] return volume_series.mean() past_volume = average_past_volume(ticker) if is_finite_number(past_volume): volume_limit: int = math.floor(past_volume * self._volume_percentage_limit) # Check if the order quantity exceeds the limit if abs(order.quantity) > volume_limit: final_quantity = volume_limit * np.sign(order.quantity) adjustment_difference = final_quantity - order.quantity self.logger.info("VolumeOrdersFilter: Quantity change {} " "\n\tfinal quantity: {}".format(order, final_quantity)) order.quantity = final_quantity if stop_order: # Adjust the corresponding stop order stop_order_final_quantity = stop_order.quantity - adjustment_difference self.logger.info("VolumeOrdersFilter: Quantity change {} " "\n\tfinal quantity: {}".format(stop_order, final_quantity)) stop_order.quantity = stop_order_final_quantity return order, stop_order def __str__(self): return 'VolumeOrdersFilter:\n' \ '\tvolume_percentage_limit: {}\n'.format(self._volume_percentage_limit)
45.373913
120
0.673246
f82a49482c561a06c31f66897e3a6dc16406c335
7,295
py
Python
model-optimizer/mo/front/common/partial_infer/multi_box_detection_test.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
3
2020-02-09T23:25:37.000Z
2021-01-19T09:44:12.000Z
model-optimizer/mo/front/common/partial_infer/multi_box_detection_test.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
null
null
null
model-optimizer/mo/front/common/partial_infer/multi_box_detection_test.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
2
2020-04-18T16:24:39.000Z
2021-01-19T09:42:19.000Z
""" Copyright (c) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from mo.front.common.partial_infer.multi_box_detection import multi_box_detection_infer from mo.graph.graph import Node from mo.utils.unittest.graph import build_graph nodes_attributes = {'node_1': {'value': None, 'kind': 'data'}, 'node_2': {'value': None, 'kind': 'data'}, 'node_3': {'value': None, 'kind': 'data'}, 'detection_output_1': {'type': 'DetectionOutput', 'value': None, 'kind': 'op'}, 'node_4': {'value': None, 'kind': 'data'} } class TestMultiBoxDetectionInfer(unittest.TestCase): def test_prior_box_infer_ideal(self): graph = build_graph(nodes_attributes, [('node_1', 'detection_output_1'), ('node_2', 'detection_output_1'), ('node_3', 'detection_output_1'), ('detection_output_1', 'node_4')], {'node_1': {'shape': np.array([1, 34928])}, 'node_2': {'shape': np.array([1, 183372])}, 'node_3': {'shape': np.array([1, 2, 34928])}, 'detection_output_1': {"background_label_id": "0", "clip": "1", "code_type": "caffe.PriorBoxParameter.CENTER_SIZE", "confidence_threshold": "0.01", "keep_top_k": "200", "nms_threshold": "0.5", "num_classes": "21", "share_location": "1", "top_k": "200", "variance_encoded_in_target": "0"}, 'node_4': {'shape': np.array([1, 1, 200, 7])}, }) multi_box_detection_node = Node(graph, 'detection_output_1') print(multi_box_detection_node) multi_box_detection_infer(multi_box_detection_node) exp_shape = np.array([1, 1, 200, 7]) res_shape = graph.node['node_4']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) self.assertEqual(multi_box_detection_node.background_label_id, '0') self.assertEqual(multi_box_detection_node.clip, '1') self.assertEqual(multi_box_detection_node.code_type, 'caffe.PriorBoxParameter.CENTER_SIZE') self.assertEqual(multi_box_detection_node.confidence_threshold, '0.01') self.assertEqual(multi_box_detection_node.keep_top_k, '200') self.assertEqual(multi_box_detection_node.nms_threshold, '0.5') self.assertEqual(multi_box_detection_node.num_classes, 21) self.assertEqual(multi_box_detection_node.share_location, '1') self.assertEqual(multi_box_detection_node.top_k, '200') self.assertEqual(multi_box_detection_node.variance_encoded_in_target, '0') def test_prior_box_infer_without_top_k(self): graph = build_graph(nodes_attributes, [('node_1', 'detection_output_1'), ('node_2', 'detection_output_1'), ('node_3', 'detection_output_1'), ('detection_output_1', 'node_4')], {'node_1': {'shape': np.array([1, 34928])}, 'node_2': {'shape': np.array([1, 183372])}, 'node_3': {'shape': np.array([1, 2, 34928])}, 'detection_output_1': {"background_label_id": "0", "clip": "1", "code_type": "caffe.PriorBoxParameter.CENTER_SIZE", "confidence_threshold": "0.01", "keep_top_k": -1, "nms_threshold": "0.5", "num_classes": "21", "share_location": "1", "top_k": -1, "variance_encoded_in_target": "0"}, 'node_4': {'shape': np.array([1, 1, 69856, 7])}, }) multi_box_detection_node = Node(graph, 'detection_output_1') multi_box_detection_infer(multi_box_detection_node) exp_shape = np.array([1, 1, 8732, 7]) res_shape = graph.node['node_4']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) self.assertEqual(multi_box_detection_node.background_label_id, '0') self.assertEqual(multi_box_detection_node.clip, '1') self.assertEqual(multi_box_detection_node.code_type, 'caffe.PriorBoxParameter.CENTER_SIZE') self.assertEqual(multi_box_detection_node.confidence_threshold, '0.01') self.assertEqual(multi_box_detection_node.keep_top_k, 8732) self.assertEqual(multi_box_detection_node.nms_threshold, '0.5') self.assertEqual(multi_box_detection_node.num_classes, 21) self.assertEqual(multi_box_detection_node.share_location, '1') self.assertEqual(multi_box_detection_node.top_k, -1) self.assertEqual(multi_box_detection_node.variance_encoded_in_target, '0') def test_prior_box_infer_raise_error(self): graph = build_graph(nodes_attributes, [('node_1', 'detection_output_1'), ('node_2', 'detection_output_1'), ('node_3', 'detection_output_1'), ('detection_output_1', 'node_4')], {'node_1': {'shape': np.array([1, 34928])}, 'node_2': {'shape': np.array([1, 183372])}, 'node_3': {'shape': np.array([1, 3, 34928])}, 'detection_output_1': {"background_label_id": "0", "clip": "1", "code_type": "caffe.PriorBoxParameter.CENTER_SIZE", "confidence_threshold": "0.01", "keep_top_k": -1, "nms_threshold": "0.5", "num_classes": "21", "share_location": "1", "top_k": -1, "variance_encoded_in_target": 0}, 'node_4': {'shape': np.array([1, 1, 69856, 7])}, }) multi_box_detection_node = Node(graph, 'detection_output_1') self.assertIsNone(multi_box_detection_infer(multi_box_detection_node))
56.115385
104
0.537903
8621222cce83ccae2b5fe5d557b5c9ece5f258f8
604
py
Python
samples/abp/test_graphics.py
jproudlo/PyModel
2ab0e2cf821807206725adaa425409b0c28929b7
[ "BSD-3-Clause" ]
61
2015-01-29T16:18:51.000Z
2021-09-28T10:14:02.000Z
samples/abp/test_graphics.py
vikstr/PyModel
4fff616fe0fd8342c91a42d9db5d4097a179dff8
[ "BSD-3-Clause" ]
2
2015-02-04T11:57:53.000Z
2021-07-18T20:59:55.000Z
samples/abp/test_graphics.py
vikstr/PyModel
4fff616fe0fd8342c91a42d9db5d4097a179dff8
[ "BSD-3-Clause" ]
34
2015-02-04T12:00:29.000Z
2022-03-14T07:41:25.000Z
""" ABP analyzer and graphics tests """ cases = [ ('Run Pymodel Graphics to generate dot file from FSM model, no need use pma', 'pmg ABP'), ('Generate SVG file from dot', 'dotsvg ABP'), # Now display ABP.dot in browser ('Run PyModel Analyzer to generate FSM from original FSM, should be the same', 'pma ABP'), ('Run PyModel Graphics to generate a file of graphics commands from new FSM', 'pmg ABPFSM'), ('Generate an svg file from the graphics commands', 'dotsvg ABPFSM'), # Now display ABPFSM.svg in browser, should look the same as ABP.svg ]
24.16
82
0.653974
fbe80abb91241ecbc4880e675c8dab97acd79f15
13,360
py
Python
compiler/router.py
PietPtr/verilog2minecraft
911a4e35df80c340747bbc7b53019a90cbac9e3b
[ "MIT" ]
null
null
null
compiler/router.py
PietPtr/verilog2minecraft
911a4e35df80c340747bbc7b53019a90cbac9e3b
[ "MIT" ]
null
null
null
compiler/router.py
PietPtr/verilog2minecraft
911a4e35df80c340747bbc7b53019a90cbac9e3b
[ "MIT" ]
null
null
null
import random import time from itertools import product from typing import List, Tuple, Set, Dict, Any, NamedTuple, Optional from enum import Enum from amulet import Block from amulet_nbt import TAG_String from compiler.graph import Cell from util.coord import tupleAdd, tupleSub import heapq from util.wool import WoolType FOUR_DIRECTIONS = [(1, 0, 0), (-1, 0, 0), (0, 0, 1), (0, 0, -1)] ALL_DIRECTIONS = [(x, y + a, z) for x, y, z in FOUR_DIRECTIONS for a in range(-1, 2)] BOUNDING_DIRECTIONS = list(product(range(-1, 2), range(-2, 3), range(-1, 2))) class BlockType(Enum): STONE = "stone" REDSTONE = "redstone_wire" REPEATER = "repeater" GLASS = "glass" def to_minecraft(self) -> Block: return Block('minecraft', self.value) class RoutingBlock: block_type: BlockType properties: Dict[str, TAG_String] def __init__(self, block_type: BlockType, direction: Tuple[Tuple[int, int, int], Tuple[int, int, int]] = None): self.block_type = block_type self.properties = dict() if direction: self.set_orientation(direction[0], direction[1]) def to_minecraft(self) -> Block: return Block('minecraft', self.block_type.value, properties=self.properties) def set_orientation(self, prev: Tuple[int, int, int], this: Tuple[int, int, int]): delta = tupleSub(this, prev) if delta == (0, 0, 1): self.properties['facing'] = TAG_String('north') elif delta == (0, 0, -1): self.properties['facing'] = TAG_String('south') elif delta == (1, 0, 0): self.properties['facing'] = TAG_String('west') elif delta == (-1, 0, 0): self.properties['facing'] = TAG_String('east') def __str__(self): return f'RoutingBlock({self.block_type.value})' def __repr__(self): return str(self) class RouteNode(NamedTuple): point: Tuple[int, int, int] previous: Optional['RouteNode'] length: int last_straight: int def visited_points(self, steps=6) -> Set[Tuple[int, int, int]]: n = self result = set() while n is not None: result.add(n.point) n = n.previous if len(result) >= steps: return result return result class NoRouteFoundException(Exception): collision: Set[Tuple[int, int, int]] could_not_expand: Set[Tuple[int, int, int]] start_dist: int end_dist: int def __init__(self, collision_output: Set[Tuple[int, int, int]], start_dist: int, end_dist: int, could_not_expand: Set[Tuple[int, int, int]], msg: str): self.collision = collision_output self.start_dist = start_dist self.end_dist = end_dist self.could_not_expand = could_not_expand super(NoRouteFoundException, self).__init__(msg) class Router: bounding_box: Set[Tuple[int, int, int]] bounding_box_static: Set[Tuple[int, int, int]] bounding_box_route: Dict[Tuple[int, int, int], Set[Tuple[int, int, int]]] all_routes: Dict[Tuple[int, int, int], List[Tuple[RoutingBlock, Tuple[int, int, int]]]] blocks_to_route_starts: Dict[Tuple[int, int, int], Set[Tuple[int, int, int]]] network: Dict[Tuple[int, int, int], List[Tuple[int, int, int]]] iterations: int def __init__(self, network: Dict[Tuple[int, int, int], List[Tuple[int, int, int]]], static_bounding_box: Set[Tuple[int, int, int]]): self.bounding_box = set() self.bounding_box_static = static_bounding_box self.all_routes = dict() self.bounding_box_route = dict() self.blocks_to_route_starts = dict() self.network = network self.connection_points = set() for endpoints in self.network.values(): self.connection_points.update(endpoints) for startpoints in self.network.keys(): self.connection_points.add(startpoints) self.recompute_bounding_box() def _manhattan(self, a: Tuple[int, int, int], b: Tuple[int, int, int]): return abs(a[0]-b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) def _find_route(self, original_start: Tuple[int, int, int], start: Tuple[int, int, int], end: Tuple[int, int, int], maxQ: int, max_depth: int = None, max_counter: int = 100, is_revese: bool = False) -> RouteNode: Q = [] self.iterations = 0 last_repeater = 7 if start == original_start else 15 heapq.heappush(Q, (self._manhattan(start, end), 0, RouteNode(start, None, 0, last_repeater))) best = self._manhattan(start, end) visited = set() collision_output: Optional[List[Tuple[int, int, int]]] = None collision_dist: int = self._manhattan(start, end) + 100 last_distance = self._manhattan(start, end) start_distance = self._manhattan(start, end) could_not_expand = set() counter = 0 while 0 < len(Q) < maxQ and counter <= max_counter: self.iterations += 1 heuristic, unused, node = heapq.heappop(Q) if node.point == end: return node current_dist = self._manhattan(node.point, end) if max_depth and start_distance - current_dist >= max_depth: return node if current_dist < best: best = current_dist counter = 0 if last_distance <= current_dist: counter += 1 last_distance = current_dist previous_points = node.visited_points().union({end}) random.shuffle(ALL_DIRECTIONS) directions = ALL_DIRECTIONS if node.last_straight >= 15: newx, _, newz = tupleSub(node.point, node.previous.point) directions = [(newx, 0, newz)] for x, y, z in directions: pos = tupleAdd((x, y, z), node.point) positions_to_check = {pos, tupleAdd(pos, (0, 1, 0)), tupleAdd(pos, (0, -1, 0))} own_bounding = set([tupleAdd(pos, offset) for offset in BOUNDING_DIRECTIONS]) dynamic_bounding_box_intersects = False for pos_to_check in positions_to_check: if self.blocks_to_route_starts.get(pos_to_check, set()) - {original_start} != set(): dynamic_bounding_box_intersects = True dist = self._manhattan(pos_to_check, end) if collision_output is None or dist < collision_dist: collision_output = self.blocks_to_route_starts.get(pos_to_check, None) collision_dist = dist if pos != end and ( own_bounding.intersection(self.connection_points) - {start, end} != set() or positions_to_check.intersection(previous_points) != set() or tupleAdd(pos, (0, 2, 0)) in previous_points or tupleAdd(pos, (0, -2, 0)) in previous_points or positions_to_check.intersection(self.bounding_box_static) != set() or dynamic_bounding_box_intersects ): could_not_expand.add(pos) continue if pos in visited: continue visited.add(pos) # if self._manhattan(pos, end) <= 2: # print(f'Adding {pos} with distance {self._manhattan(pos, end)}') last_straight = node.last_straight + 1 delta = tupleSub(pos, node.point) if node.previous and tupleSub(node.point, node.previous.point) == delta and delta[1] == 0 and delta.count(0) == 2: last_straight = 1 heapq.heappush(Q, (self._manhattan(pos, end), node.length + 1, RouteNode(pos, node, node.length + 1, last_straight))) raise NoRouteFoundException(collision_output.copy() if collision_output else None, self._manhattan(start, end), best, could_not_expand, f'Could not find route between {start} and {end}. Closest: {best}, start: {self._manhattan(start, end)}') def recompute_bounding_box(self): self.bounding_box.clear() self.bounding_box.update(self.bounding_box_static) for bb in self.bounding_box_route.values(): self.bounding_box.update(bb) def remove_route(self, route_start: Tuple[int, int, int]): routes = self.all_routes[route_start] for block, pos in routes: if block.block_type in (BlockType.REDSTONE, BlockType.REPEATER): for offset in BOUNDING_DIRECTIONS: bounding_pos = tupleAdd(pos, offset) try: self.blocks_to_route_starts[bounding_pos].remove(route_start) except KeyError: pass del self.bounding_box_route[route_start] del self.all_routes[route_start] self.recompute_bounding_box() def make_route(self, start: Tuple[int, int, int], end: Tuple[int, int, int], max_counter: int): best_pos, best = start, self._manhattan(start, end) last_pos = start if start in self.all_routes: for block, pos in self.all_routes[start]: if block != BlockType.REDSTONE or tupleSub(pos, last_pos)[1] != 0: last_pos = pos continue last_pos = pos score = self._manhattan(pos, end) if score < best: best_pos, best = pos, score print(f"Starting route from {best_pos}({start})->{end}") try: tmp_node = self._find_route(end, end, best_pos, 150, max_depth=4, max_counter=25, is_revese=True) except NoRouteFoundException as e: if e.start_dist - e.end_dist <= 4: print('Finding reverse route failed! Throwing exception') raise e node = self._find_route(start, best_pos, end, 100000, max_counter=max_counter) print(f"found route from {best_pos}({start})->{end} in {self.iterations} iterations") result = [] if start not in self.bounding_box_route: self.bounding_box_route[start] = set() last_possible: Tuple[int, Tuple[int, int, int]] = None last_repeated: int = 5 ordered_nodes: List[RouteNode] = [] while node is not None: ordered_nodes.append(node) node = node.previous ordered_nodes = list(reversed(ordered_nodes)) for idx, node in enumerate(ordered_nodes): wool_idx = sum(start) if idx+1 < len(ordered_nodes) and ordered_nodes[idx+1].last_straight == 1: last_possible = (len(result) + 1, node.point) result.append((RoutingBlock(WoolType.num_to_wool(wool_idx)), (node.point[0], node.point[1] - 1, node.point[2]))) result.append((RoutingBlock(BlockType.REDSTONE), (node.point[0], node.point[1], node.point[2]))) if last_repeated >= 15: prev = result[last_possible[0]-2][1] result[last_possible[0]] = (RoutingBlock(BlockType.REPEATER, (prev, last_possible[1])), last_possible[1]) last_repeated = (len(result) - last_possible[0])//2 - 1 last_repeated += 1 for x, y, z in BOUNDING_DIRECTIONS: pos = tupleAdd((x, y, z), node.point) self.bounding_box.add(pos) self.bounding_box_route[start].add(pos) if pos not in self.blocks_to_route_starts: self.blocks_to_route_starts[pos] = set() self.blocks_to_route_starts[pos].add(start) if start not in self.all_routes: self.all_routes[start] = [] self.all_routes[start].extend(result) def get_all_blocks(self) -> List[Tuple[RoutingBlock, Tuple[int, int, int]]]: result = [] for route in self.all_routes.values(): result.extend(route) return result router = None def create_routes(network: Dict[Tuple[int, int, int], List[Tuple[int, int, int]]], component_bounding_box: Set[Tuple[int, int, int]]) -> List[Tuple[RoutingBlock, Tuple[int, int, int]]]: global router router = Router(network, component_bounding_box) todo = [start for start in network.keys()] base = 1 while len(todo) > 0: print(f'Todo size: {len(todo)}') start = todo.pop(0) tries = 0 for end in network[start]: print(f'Routing {start} -> {end}') while True: try: router.make_route(start, end, min(500 + 1000*tries, 7500)) break except NoRouteFoundException as e: print(e) tries += 1 base += 1 if e.collision is None: continue for collision_start in e.collision: print(f"Removing routes from point: {collision_start}") router.remove_route(collision_start) todo.append(collision_start) random.shuffle(todo) return router.get_all_blocks()
42.278481
155
0.586527
eef38bea3443926d8d425f77554280cd099d424e
21,360
py
Python
MesSudokus/SudokuHillClimbing4.py
rubenbuelvas/IFT3335-TP1
f7de85e9fecfa55946f996616a9f7043cc182a1b
[ "MIT" ]
null
null
null
MesSudokus/SudokuHillClimbing4.py
rubenbuelvas/IFT3335-TP1
f7de85e9fecfa55946f996616a9f7043cc182a1b
[ "MIT" ]
null
null
null
MesSudokus/SudokuHillClimbing4.py
rubenbuelvas/IFT3335-TP1
f7de85e9fecfa55946f996616a9f7043cc182a1b
[ "MIT" ]
1
2021-03-02T22:43:31.000Z
2021-03-02T22:43:31.000Z
# Hill climing approach to solve a sudoku puzzle # Inspired by Stochastic search / optimization methods from https://en.wikipedia.org/wiki/Sudoku_solving_algorithms ## Initial code copied from http://norvig.com/sudoku.html # Will work mostly with grid_values instead of values used in the Norvig sudoku.py (no possible values) ## Throughout this program we have: ## r is a row, e.g. 'A' ## c is a column, e.g. '3' ## s is a square, e.g. 'A3' ## d is a digit, e.g. '9' ## u is a unit, e.g. ['A1','B1','C1','D1','E1','F1','G1','H1','I1'] # unit_type can be 'row', 'column', or 'unit3x3' ## grid is a grid,e.g. 81 non-blank chars, e.g. starting with '.18...7... ## gv = grid_values is a dict of {square: char} with '0' or '.' for empties.""" def cross(A, B): "Cross product of elements in A and elements in B." return [a + b for a in A for b in B] digits = '123456789' rows = 'ABCDEFGHI' cols = digits squares = cross(rows, cols) unitlist = ([cross(rows, c) for c in cols] + [cross(r, cols) for r in rows] + [cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI') for cs in ('123', '456', '789')]) units = dict((s, [u for u in unitlist if s in u]) for s in squares) peers = dict((s, set(sum(units[s], [])) - set([s])) for s in squares) # new variables created firstsquaresofunit3x3 = cross('ADG', '147') # list containing 9 squares: first per unit: ['A1', 'A4', 'A7', 'D1', ... searchMethods = {'Brute Force', 'Norvig Heuristic', 'Norvig Improved', 'Hill Climbing'} emptydigits = '0.' # The digit values representing an empty square unit_types = ['row', 'column', 'unit3x3'] # unit_type can be 'row', 'column', or 'unit3x3' print_display = 'nothing' # Values: ["nothing", "minimum", "init grid", "init and final grids", "all solution grids"] # Text color management from colorama import Fore, Back, Style # example: print(Fore.BLUE + displaystring) ################ Unit Tests ################ def test(): "A set of tests that must pass." assert len(squares) == 81 assert len(unitlist) == 27 assert all(len(units[s]) == 3 for s in squares) assert all(len(peers[s]) == 20 for s in squares) assert units['C2'] == [['A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2'], ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], ['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']] assert peers['C2'] == {'A2', 'B2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2', 'C1', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'A1', 'A3', 'B1', 'B3'} print('All tests pass.') ################ Parse a Grid ################ def grid_values(grid): """Convert grid into a dict of {square: char} with '0' or '.' for empties.""" # Example: {'A1': '4', 'A2': '.', 'A3': '.', 'A4': '.', 'A5': '.', 'A6': '.', 'A7': '8', 'A8': '.', 'A9': ... chars = [c for c in grid if c in digits or c in '0.'] assert len(chars) == 81 return dict(zip(squares, chars)) ################ Constraint functions ################ def squares_causing_max_conflicts(gv_init, gv_current, conflicts_grid_values): """Will receive a grid filled with values and a conflicts_grid_values and will return: - a set of all squares having the maximum number of conflits - the number of conflicts (int) for this maximum""" maxconflicts = max(conflicts_grid_values) return conflicts_grid_values[maxconflicts], maxconflicts def is_initial_squares(gv_init, s): """Will receive the initial grid and a square and return True if filled in the initial puzzle""" # loop trough all squares and list unempty squares (initial puzzle) return gv_init[s] not in emptydigits def non_initial_squares_set(gv_init): """Will return a set of the squares that were empty in the original puzzle""" # return {r+c for r in rows for c in cols if is_initial_squares(gv_init, r+c)} #DGIMPROVE? Can write in one line? set_of_squares = set() for r in rows: for c in cols: if not is_initial_squares(gv_init, r + c): set_of_squares.add(r + c) return set_of_squares def remove_initial_squares_from_set(gv_init, set_of_squares): """Will receive a set of squares and will return this set, without the initial squares""" return set_of_squares - initial_squares_set(gv_init) def squares_within_unit_list(s, unit_type): """Returns a list of the squares within the same unit as s. unit_type can be 'row', 'column', or 'unit3x3' """ assert unit_type in unit_types if unit_type == 'row': return (units[s][0]) elif unit_type == 'column': return (units[s][1]) elif unit_type == 'unit3x3': return (units[s][2]) else: raise ValueError(f"Unit type {unit_type} not implemented.") def possible_replacements_within_unit(gv_init, s, unit_type): """Returns the squares within the same unit as s that can be replaced, excluding s. unit_type can be 'row', 'column', or 'unit3x3' """ return (set(squares_within_unit_list(s, unit_type)) - set(s)) - initial_squares_set(gv_init) def initial_squares_set(gv_init): """Will receive the initial grid and return a set of all squares not empty""" # loop trough all squares and list unempty squares (initial puzzle) set_initialsquares = set() for r in rows: for c in cols: if is_initial_squares(gv_init, r + c): set_initialsquares.add(r + c) return set_initialsquares # def swap2numbers(gv_init, gv_current, conflicts_grid_values): # """Will take a square with a maximum number of conflicts and swap it randomly within the 3x3 unit with # another square that isn't part of the initial puzzle. Will then return the new grid_value""" # # # Selects randomly one of the squares with the maximum number of conflicts # s_withmaxconflicts, maxconflicts = squares_causing_max_conflicts(gv_init, gv_current, conflicts_grid_values) # s1toswap = some(shuffled(s_withmaxconflicts)) # random selection # # # Find another square within 3x3 unit and swap randomly without considering the number of conflicts (TO IMPROVE?) # s2toswap = some(shuffled(possible_replacements_within_unit(gv_init, s1toswap, 'unit3x3'))) # s1value = gv_current[s1toswap] # gv_current[s1toswap] = gv_current[s2toswap] # gv_current[s2toswap] = s1value # # if print_display != "nothing": # print(f"Swapped {s1toswap }={gv_current[s1toswap]} and {s2toswap}={gv_current[s2toswap]} (values after the swap)") # # return gv_current def fillgridrandomly(initialgridvalues): """Will return a new gridvalues with all empty squares filled randomly without putting the same digit twice in a 3x3 unit.""" # Reminder: units['C2'] == [['A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2'], #column # ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], #line # ['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']] #unit 3x3 newgridvalues = initialgridvalues.copy() # dictionnary of initial values. Ex: {'A1': '4', 'A2': '.', 'A3': '.', ... # Go through all 3x3 units and fill empty squares with random unused digits for fsou in firstsquaresofunit3x3: # loop through the 9 units. currentunit = units[fsou][2] # index 3 gives the 3x3 unit # Loop trough all squares within a unit in order to extract initial squares with digits and digits used listofsquareswithinitialvalue, listofsquareswithoutvalue, digitsused = [], [], '' for s in currentunit: # loops trough the 9 values of the 3x3 unit d = initialgridvalues[s] if d in emptydigits: # no value listofsquareswithoutvalue.append(s) else: listofsquareswithinitialvalue.append(s) digitsused += d # capture all values from initial grid (cannot be replaced) # Fill empty squares randomly remainingdigits = list(shuffled(digits.translate({ord(c): '' for c in digitsused}))) # removes digits + shuffle for s in listofsquareswithoutvalue: newgridvalues[s] = remainingdigits.pop() if len(remainingdigits) != 0: raise ValueError(f"Programming error: remaining digits should be empty but contains: {remainingdigits}") # print(f"digitsused={digitsused} - remainingdigits={remainingdigits} = newgridvalues={newgridvalues}") return newgridvalues def countconflicts(gv_init, gv_current): """Receives the initial grid and the current grid and returns a total evaluation of the conflicts in the grid (sum of all conflicts)""" tmp, total_conflicts, tmp = evalconflicts(gv_init, gv_current) return total_conflicts def is_solved(gv_init, gv_current): """Returns True is puzzle is solved and False otherwise""" return countconflicts == 0 def evalconflicts(gv_init, gv_current): """Receives the initial grid and the current grid and returns: - # A grid_values of conflicts (dict of {square: nb_of_conflits} - A total evaluation of the conflicts in the grid (sum of all conflicts) - A dictionary representing a list of squares (values) with the number of conflicts (int) as a key Assumption: there are no conflicts in a 3x3 unit and there is a digit in each square""" # Reminder: units['C2'] == [['A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2'], #column # ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], #line # ['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']] #unit 3x3 conflicts_grid_values = {} # A grid_values of conflicts (dict of {square: nb_of_conflits} conflicts_dict = {} # A dictionary representing a list of squares (values) with the number of conflicts as a key conflictvaluestotal = 0 # Evaluation of the conflicts in the grid # Will loop through each square for r in rows: for c in cols: conflictvalue = 0 if (gv_init[r + c] not in emptydigits) or (gv_current[r + c] in emptydigits): conflictvalue = 0 # square filled in the initial puzzle or current grid with empty digits # print(f"INITIAL r={r} c={c} gv_init[r+c]={gv_init[r+c]}") else: # square randomly filled in the current grid # Will calculate the number of conflict u_column, u_line = units[r + c][0], units[r + c][1] # conflicts in column and conflicts in line # print(f"CURRENT r={r} c={c}, u_column={u_column}") for s in u_column: if (s != r + c) and gv_current[s] == gv_current[r + c]: conflictvalue += 1 for s in u_line: if (s != r + c) and gv_current[s] == gv_current[r + c]: conflictvalue += 1 # Update dictionaries conflicts_grid_values[r + c] = conflictvalue # Put the value (int) of the conflict in grid_value if not conflicts_dict.get(conflictvalue): conflicts_dict[conflictvalue] = [] # List of squares (values) for this number of conflicts (key) conflicts_dict[conflictvalue].append(r + c) conflictvaluestotal += conflictvalue return conflicts_grid_values, conflictvaluestotal, conflicts_dict ################ Display as 2-D grid ################ def displaygridv(gv_init, gv_current, showconflicts=True): """Display grid_values as a 2-D grid. If only display a initialgrid, you can pass currentgrid = initialgrid. Same as displaygrid(), but used dictionnary gridvalues instead""" width = 3 # No need to display the possible values line = '+'.join(['-' * (width * 3)] * 3) if showconflicts: # Will evaluate conflicts in order to show them gv_conflicts, nb_conflicts, conflicts_grid_values = evalconflicts(gv_init, gv_current) # Will initiale a grid_value containing number of conflicts # Header of the grid if showconflicts: displaystring = '-------- VALUE GRID --------- --- CONFLICTS GRID (' + str(nb_conflicts).ljust( 3) + ') ----\n' # header else: displaystring = '-------- VALUE GRID ---------\n' # Lines for r in rows: for c in cols: # Will print all digits of the current row (all columns) # displays the value_grid displaystring += (Back.BLACK if gv_init[ r + c] not in emptydigits else Style.RESET_ALL) # Will highlight numbers from initial grid emptydigits = '0.' displaystring += ' ' + str(gv_current[r + c]) + ' ' displaystring += Style.RESET_ALL + ('|' if c in '36' else '') + ( '\n' if (c in '9') and (not showconflicts) else '') # separator after a group of 3 columns if showconflicts: # displays the value_grid displaystring += ' ' for c2 in cols: displaystring += (Back.BLACK if gv_init[ r + c2] not in emptydigits else Style.RESET_ALL) # Will highlight numbers from initial grid emptydigits = '0.' displaystring += ' ' + str(gv_conflicts[r + c2]) + ' ' displaystring += Style.RESET_ALL + ('|' if c2 in '36' else '') + ( '\n' if c2 in '9' else '') # Display for a column if r in 'CF': displaystring = displaystring + line + (' ' + line if showconflicts else '') + '\n' print(displaystring) ################ Search ################ def solve_grid_values(grid, searchMethod, printdisplay=False): """ Will solve a puzzle with the appropriate search method""" # Initializes a puzzle gv_init = grid_values(grid) gv_current = fillgridrandomly(gv_init) # Fills all the 3x3 units randomly with unused numbers in unit if print_display in ["init grid", "init and final grids", "all solution grids"]: displaygridv(gv_init, gv_current, True) if searchMethod == 'Hill Climbing': gv_new = improve_solution_hill_climb_calc_all_swaps3x3(gv_init, gv_current) if print_display in ["init and final grids", "all solution grids"]: displaygridv(gv_init, gv_new) else: raise ValueError(f"Unknown search method {searchMethod}. Available search methods are {searchMethods}") return gv_init, gv_new def improve_solution_hill_climb_calc_all_swaps3x3(gv_init, gv_current): """Receives a puzzle with conflicts and tries to decrease the number of conflicts by swapping 2 values using the Hill Climbing method. Will calculate total conflict for all possible swaps of a pair within a 3x3 unit and then choose the best""" # Create a list of swappable pairs (tuple) for each unit (not part of initial square) all_swappables_squares = non_initial_squares_set(gv_init) # Will only consider non initial squares as swappable set_of_swappable_pairs = set() # Example: {('A3', 'B1'), ('A3', 'B3'), ('A3', 'C3')... for r in rows: for c in cols: if r + c in all_swappables_squares: # Will loop for all combinations within units possible_swaps = set(squares_within_unit_list(r + c, "unit3x3")) - { r + c} # squares in unit, except current possible_swaps = possible_swaps.intersection(all_swappables_squares) # only swappable squares for s in possible_swaps: # Will insert the pairs in a set, and the first element of the pair will always be the smallest. if r + c < s: set_of_swappable_pairs.add((r + c, s)) else: set_of_swappable_pairs.add((s, r + c)) # Will simulate each swap, calculate the total conflicts for each swap and choose the best best_puzzle = gv_current current_total_conflicts = countconflicts(gv_init, gv_current) best_total_conflicts = current_total_conflicts while True: # Loop until a maximum is found for pair in set_of_swappable_pairs: test_puzzle = gv_current.copy() test_puzzle[pair[0]], test_puzzle[pair[1]] = gv_current[pair[1]], gv_current[pair[0]] # swap the 2 values if countconflicts(gv_init, test_puzzle) < best_total_conflicts: # found a better candidate best_total_conflicts = countconflicts(gv_init, test_puzzle) best_puzzle = test_puzzle if best_total_conflicts == current_total_conflicts: # no improvement (local maximum or solution) if print_display != 'nothing': print( f"FINAL SOLUTION: found maximum with {best_total_conflicts} conflicts.") return gv_current else: # will try to improve if print_display != 'nothing': print(f"Swapping{pair} and total conflicts is now {best_total_conflicts}") if print_display == 'all solution grids': displaygridv(gv_init, best_puzzle) gv_current = best_puzzle current_total_conflicts = best_total_conflicts ################ Utilities ################ def some(seq): "Return some element of seq that is true." for e in seq: if e: return e return False def from_file(filename, sep='\n'): "Parse a file into a list of strings, separated by sep." return open(filename).read().strip().split(sep) def shuffled(seq): "Return a randomly shuffled copy of the input sequence." seq = list(seq) random.shuffle(seq) return seq ################ System test ################ import time, random def solve_all(grids, name='', showif=0.0, searchMethod='ToSpecify'): """Attempt to solve a sequence of grids. Report results. When showif is a number of seconds, display puzzles that take longer. When showif is None, don't display any puzzles.""" def time_solve(grid): # start = time.clock() start = time.process_time() if searchMethod == 'Hill Climbing': gv_init, gv_current = solve_grid_values(grid, searchMethod) else: values = solve(grid, searchMethod) t = time.process_time() - start # ## Display puzzles that take long enough if showif is not None and t > showif: if searchMethod == 'Hill Climbing': displaygridv(gv_init, gv_current) else: display(grid_values(grid)) if values: display(values) print('(%.2f seconds)\n' % t) if searchMethod == 'Hill Climbing': return (t, is_solved(gv_init, gv_current)) else: return (t, solved(values)) times, results = zip(*[time_solve(grid) for grid in grids]) N = len(grids) # Will avoid division by zero if time is too short (0.0). if sum(times) != 0.0: hz = N / sum(times) else: hz = 999 if N >= 1: print("Solved %d of %d %s puzzles in %.2f secs (avg %.2f secs (%d Hz), max %.2f secs). - %s" % ( sum(results), N, name, sum(times), sum(times) / N, hz, max(times), searchMethod)) def solved(values): "A puzzle is solved if each unit is a permutation of the digits 1 to 9." def unitsolved(unit): return set(values[s] for s in unit) == set(digits) return values is not False and all(unitsolved(unit) for unit in unitlist) ################ Main routine ################ if __name__ == '__main__': test() # Demo one sudoku with display of each step grid2 = '4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......' print_display_old = print_display print_display = "all solution grids" solve_grid_values(grid2, 'Hill Climbing') print_display = print_display_old # Test with different files solve_all(from_file("1puzzle.txt"), "1puzzle", 9.0, 'Hill Climbing') solve_all(from_file("easy50.txt"), "easy50 ", 9.0, 'Hill Climbing') # solve_all(from_file("top95.txt"), "top95 ", 9.0, 'Hill Climbing') # solve_all(from_file("hardest.txt"), "hardest", 9.0, 'Hill Climbing') # solve_all(from_file("100sudoku.txt"), "100puz ", 9.0, 'Hill Climbing') # solve_all(from_file("1000sudoku.txt"), "1000puz", 9.0, 'Hill Climbing') # solve_all(from_file("NakedPair.txt"), "NakedPT", 9.0, 'Hill Climbing') ## References used: ## http://www.scanraid.com/BasicStrategies.htm ## http://www.sudokudragon.com/sudokustrategy.htm ## http://www.krazydad.com/blog/2005/09/29/an-index-of-sudoku-strategies/ ## http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/python/sudoku/ ## https://www.sudokuoftheday.com/techniques/naked-pairs-triples/
48.545455
166
0.606554
b9dc9214f12464dc4c36c9d7c0f322f6c8f3f8d2
670
py
Python
run_example.py
CostelloLab/GSEA-InContext_noTk
ee1a845cc978cb0da8d296b51e3f36dc26234a63
[ "MIT" ]
null
null
null
run_example.py
CostelloLab/GSEA-InContext_noTk
ee1a845cc978cb0da8d296b51e3f36dc26234a63
[ "MIT" ]
null
null
null
run_example.py
CostelloLab/GSEA-InContext_noTk
ee1a845cc978cb0da8d296b51e3f36dc26234a63
[ "MIT" ]
null
null
null
import gsea_incontext_notk import sys, logging rnk = "GSE4773_DEG_Expt1_Control_vs_Group1_gene.rnk" # Run GSEA preranked - Hallmarks #prerank_results = gsea_incontext_notk.prerank( # rnk='data/rnk_lists/' + rnk, # gene_sets='data/gene_sets/hallmarks.gmt', # outdir='out/Prerank_Hallmarks/' + rnk[:-4], # permutation_num=100, # processes=4 #) # Run GSEA-InContext - Hallmarks gseapen_results = gsea_incontext_notk.incontext( rnk='data/rnk_lists/' + rnk, gene_sets='data/gene_sets/hallmarks.gmt', background_rnks='data/bg_rnk_lists/all_442_lists_permuted_x100.csv', outdir='out/InContext_Hallmarks/' + rnk[:-4], permutation_num=100, processes=4 ) print('Done!')
25.769231
69
0.768657
6732e29e140b176a2682f7332434edddea3153fa
34
py
Python
player/clues.py
jzlou/auto-hanabi
ad580a5d9a5d5a487bafcbfd97b88a3dc71632ef
[ "MIT" ]
2
2018-12-14T10:39:41.000Z
2021-04-28T16:03:47.000Z
player/clues.py
jzlou/auto-hanabi
ad580a5d9a5d5a487bafcbfd97b88a3dc71632ef
[ "MIT" ]
null
null
null
player/clues.py
jzlou/auto-hanabi
ad580a5d9a5d5a487bafcbfd97b88a3dc71632ef
[ "MIT" ]
null
null
null
def test(): print("it worked!")
11.333333
21
0.588235
70408ad52f12f33cb93617a2f77728545b754fef
46,692
py
Python
src/sage/combinat/set_partition_ordered.py
fchapoton/sage
765c5cb3e24dd134708eca97e4c52e0221cd94ba
[ "BSL-1.0" ]
1
2020-08-30T04:27:27.000Z
2020-08-30T04:27:27.000Z
src/sage/combinat/set_partition_ordered.py
fchapoton/sage
765c5cb3e24dd134708eca97e4c52e0221cd94ba
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/set_partition_ordered.py
fchapoton/sage
765c5cb3e24dd134708eca97e4c52e0221cd94ba
[ "BSL-1.0" ]
1
2020-07-23T10:40:14.000Z
2020-07-23T10:40:14.000Z
r""" Ordered Set Partitions AUTHORS: - Mike Hansen - MuPAD-Combinat developers (for algorithms and design inspiration) - Travis Scrimshaw (2013-02-28): Removed ``CombinatorialClass`` and added entry point through :class:`OrderedSetPartition`. """ #***************************************************************************** # Copyright (C) 2007 Mike Hansen <mhansen@gmail.com>, # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # https://www.gnu.org/licenses/ #***************************************************************************** from six import add_metaclass from sage.arith.all import factorial from sage.sets.set import Set, Set_generic from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.sets.finite_enumerated_set import FiniteEnumeratedSet from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.misc.all import prod from sage.structure.parent import Parent from sage.structure.element import parent from sage.structure.unique_representation import UniqueRepresentation from sage.structure.list_clone import ClonableArray from sage.structure.richcmp import richcmp from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.combinat.combinatorial_map import combinatorial_map from sage.combinat.combinat import stirling_number2 from sage.combinat.composition import Composition, Compositions from sage.combinat.words.words import Words from sage.combinat.words.finite_word import FiniteWord_class import sage.combinat.permutation as permutation from functools import reduce from sage.categories.cartesian_product import cartesian_product @add_metaclass(InheritComparisonClasscallMetaclass) class OrderedSetPartition(ClonableArray): r""" An ordered partition of a set. An ordered set partition `p` of a set `s` is a list of pairwise disjoint nonempty subsets of `s` such that the union of these subsets is `s`. These subsets are called the parts of the partition. We represent an ordered set partition as a list of sets. By extension, an ordered set partition of a nonnegative integer `n` is the set partition of the integers from `1` to `n`. The number of ordered set partitions of `n` is called the `n`-th ordered Bell number. There is a natural integer composition associated with an ordered set partition, that is the sequence of sizes of all its parts in order. The number `T_n` of ordered set partitions of `\{ 1, 2, \ldots, n \}` is the so-called `n`-th *Fubini number* (also known as the `n`-th ordered Bell number; see :wikipedia:`Ordered Bell number`). Its exponential generating function is .. MATH:: \sum_n {T_n \over n!} x^n = {1 \over 2-e^x}. (See sequence A000670 in OEIS.) INPUT: - ``parts`` -- an object or iterable that defines an ordered set partition (e.g., a list of pairwise disjoint sets) or a packed word (e.g., a list of letters on some alphabet). If there is ambiguity and if the input should be treated as a packed word, the keyword ``from_word`` should be used. EXAMPLES: There are 13 ordered set partitions of `\{1,2,3\}`:: sage: OrderedSetPartitions(3).cardinality() 13 Here is the list of them:: sage: OrderedSetPartitions(3).list() [[{1}, {2}, {3}], [{1}, {3}, {2}], [{2}, {1}, {3}], [{3}, {1}, {2}], [{2}, {3}, {1}], [{3}, {2}, {1}], [{1}, {2, 3}], [{2}, {1, 3}], [{3}, {1, 2}], [{1, 2}, {3}], [{1, 3}, {2}], [{2, 3}, {1}], [{1, 2, 3}]] There are 12 ordered set partitions of `\{1,2,3,4\}` whose underlying composition is `[1,2,1]`:: sage: OrderedSetPartitions(4,[1,2,1]).list() [[{1}, {2, 3}, {4}], [{1}, {2, 4}, {3}], [{1}, {3, 4}, {2}], [{2}, {1, 3}, {4}], [{2}, {1, 4}, {3}], [{3}, {1, 2}, {4}], [{4}, {1, 2}, {3}], [{3}, {1, 4}, {2}], [{4}, {1, 3}, {2}], [{2}, {3, 4}, {1}], [{3}, {2, 4}, {1}], [{4}, {2, 3}, {1}]] Since :trac:`14140`, we can create an ordered set partition directly by :class:`OrderedSetPartition` which creates the parent object by taking the union of the partitions passed in. However it is recommended and (marginally) faster to create the parent first and then create the ordered set partition from that. :: sage: s = OrderedSetPartition([[1,3],[2,4]]); s [{1, 3}, {2, 4}] sage: s.parent() Ordered set partitions of {1, 2, 3, 4} We can construct the ordered set partition from a word, which we consider as packed:: sage: OrderedSetPartition([2,4,1,2]) [{3}, {1, 4}, {2}] sage: OrderedSetPartition(from_word=[2,4,1,2]) [{3}, {1, 4}, {2}] sage: OrderedSetPartition(from_word='bdab') [{3}, {1, 4}, {2}] REFERENCES: :wikipedia:`Ordered_partition_of_a_set` """ @staticmethod def __classcall_private__(cls, parts=None, from_word=None): """ Create a set partition from ``parts`` with the appropriate parent. EXAMPLES:: sage: s = OrderedSetPartition([[1,3],[2,4]]); s [{1, 3}, {2, 4}] sage: s.parent() Ordered set partitions of {1, 2, 3, 4} sage: t = OrderedSetPartition([[2,4],[1,3]]); t [{2, 4}, {1, 3}] sage: s != t True sage: OrderedSetPartition() [] sage: OrderedSetPartition([]) [] sage: OrderedSetPartition('') [] sage: OrderedSetPartition('bdab') == OrderedSetPartition(from_word='bdab') True sage: OrderedSetPartition('bdab') == OrderedSetPartition(Word('bdab')) True """ if parts is None and from_word is None: P = OrderedSetPartitions([]) return P.element_class(P, []) if from_word: return OrderedSetPartitions().from_finite_word(Words()(from_word)) # if `parts` looks like a sequence of "letters" then treat it like a word. if parts in Words() or (len(parts) > 0 and (parts[0] in ZZ or isinstance(parts[0], str))): return OrderedSetPartitions().from_finite_word(Words()(parts)) else: P = OrderedSetPartitions( reduce(lambda x,y: x.union(y), map(Set, parts), Set([])) ) return P.element_class(P, parts) def __init__(self, parent, s): """ Initialize ``self``. EXAMPLES:: sage: OS = OrderedSetPartitions(4) sage: s = OS([[1, 3], [2, 4]]) sage: TestSuite(s).run() """ self._base_set = reduce(lambda x,y: x.union(y), map(Set, s), Set([])) ClonableArray.__init__(self, parent, [Set(_) for _ in s]) def _repr_(self): """ Return a string representation of ``self``. .. TODO:: Sort the repr output of Sage's :class:`Set` and remove this method. EXAMPLES:: sage: OrderedSetPartition([[1,3],[2,4]]) [{1, 3}, {2, 4}] """ return '[' + ', '.join(('{' + repr(sorted(x))[1:-1] + '}' for x in self)) + ']' def check(self): """ Check that we are a valid ordered set partition. EXAMPLES:: sage: OS = OrderedSetPartitions(4) sage: s = OS([[1, 3], [2, 4]]) sage: s.check() """ assert self in self.parent(), "%s not in %s" % (self, self.parent()) def _hash_(self): """ Return the hash of ``self``. EXAMPLES:: sage: OS = OrderedSetPartitions(4) sage: s = OS([[1, 3], [2, 4]]) sage: OSP = OrderedSetPartitions() sage: hash(s) == hash(OSP(s)) True """ return hash(tuple(self)) def base_set(self): """ Return the base set of ``self``, which is the union of all parts of ``self``. EXAMPLES:: sage: OrderedSetPartition([[1], [2,3], [4]]).base_set() {1, 2, 3, 4} sage: OrderedSetPartition([[1,2,3,4]]).base_set() {1, 2, 3, 4} sage: OrderedSetPartition([]).base_set() {} """ return Set([e for p in self for e in p]) def base_set_cardinality(self): """ Return the cardinality of the base set of ``self``, which is the sum of the sizes of the parts of ``self``. This is also known as the *size* (sometimes the *weight*) of an ordered set partition. EXAMPLES:: sage: OrderedSetPartition([[1], [2,3], [4]]).base_set_cardinality() 4 sage: OrderedSetPartition([[1,2,3,4]]).base_set_cardinality() 4 """ return sum(len(x) for x in self) size = base_set_cardinality def length(self): r""" Return the number of parts of ``self``. EXAMPLES:: sage: OS = OrderedSetPartitions(4) sage: s = OS([[1, 3], [2, 4]]) sage: s.length() 2 """ return len(self) @combinatorial_map(name='to composition') def to_composition(self): r""" Return the integer composition whose parts are the sizes of the sets in ``self``. EXAMPLES:: sage: S = OrderedSetPartitions(5) sage: x = S([[3,5,4], [1, 2]]) sage: x.to_composition() [3, 2] sage: y = S([[3,1], [2], [5,4]]) sage: y.to_composition() [2, 1, 2] """ return Composition([len(p) for p in self]) @staticmethod def sum(osps): """ Return the concatenation of the given ordered set partitions ``osps`` (provided they have no elements in common). INPUT: - ``osps`` -- a list (or iterable) of ordered set partitions EXAMPLES:: sage: OrderedSetPartition.sum([OrderedSetPartition([[4, 1], [3]]), OrderedSetPartition([[7], [2]]), OrderedSetPartition([[5, 6]])]) [{1, 4}, {3}, {7}, {2}, {5, 6}] Any iterable can be provided as input:: sage: Composition.sum([OrderedSetPartition([[2*i,2*i+1]]) for i in [4,1,3]]) [{8, 9}, {2, 3}, {6, 7}] Empty inputs are handled gracefully:: sage: OrderedSetPartition.sum([]) == OrderedSetPartition([]) True TESTS:: sage: A = OrderedSetPartitions(3)([[2], [1, 3]]) sage: B = OrderedSetPartitions([5])([[5]]) sage: C = OrderedSetPartition.sum([A, B]); C [{2}, {1, 3}, {5}] sage: C.parent() Ordered set partitions """ return OrderedSetPartitions()(sum((list(i) for i in osps), [])) def reversed(self): r""" Return the reversal of the ordered set partition ``self``. The *reversal* of an ordered set partition `(P_1, P_2, \ldots, P_k)` is defined to be the ordered set partition `(P_k, P_{k-1}, \ldots, P_1)`. EXAMPLES:: sage: OrderedSetPartition([[1, 3], [2]]).reversed() [{2}, {1, 3}] sage: OrderedSetPartition([[1, 5], [2, 4]]).reversed() [{2, 4}, {1, 5}] sage: OrderedSetPartition([[-1], [-2], [3, 4], [0]]).reversed() [{0}, {3, 4}, {-2}, {-1}] sage: OrderedSetPartition([]).reversed() [] """ par = parent(self) return par(list(reversed(list(self)))) def complement(self): r""" Return the complement of the ordered set partition ``self``. This assumes that ``self`` is an ordered set partition of an interval of `\ZZ`. Let `(P_1, P_2, \ldots, P_k)` be an ordered set partition of some interval `I` of `\ZZ`. Let `\omega` be the unique strictly decreasing bijection `I \to I`. Then, the *complement* of `(P_1, P_2, \ldots, P_k)` is defined to be the ordered set partition `(\omega(P_1), \omega(P_2), \ldots, \omega(P_k))`. EXAMPLES:: sage: OrderedSetPartition([[1, 2], [3]]).complement() [{2, 3}, {1}] sage: OrderedSetPartition([[1, 3], [2]]).complement() [{1, 3}, {2}] sage: OrderedSetPartition([[2, 3]]).complement() [{2, 3}] sage: OrderedSetPartition([[1, 5], [2, 3], [4]]).complement() [{1, 5}, {3, 4}, {2}] sage: OrderedSetPartition([[-1], [-2], [1, 2], [0]]).complement() [{1}, {2}, {-2, -1}, {0}] sage: OrderedSetPartition([]).complement() [] """ if len(self) <= 1: return self base_set = self.base_set() m = min(base_set) M = max(base_set) mM = m + M return OrderedSetPartitions()([[mM - i for i in part] for part in self]) def finer(self): """ Return the set of ordered set partitions which are finer than ``self``. See :meth:`is_finer` for the definition of "finer". EXAMPLES:: sage: C = OrderedSetPartition([[1, 3], [2]]).finer() sage: C.cardinality() 3 sage: C.list() [[{1}, {3}, {2}], [{3}, {1}, {2}], [{1, 3}, {2}]] sage: OrderedSetPartition([]).finer() {[]} sage: W = OrderedSetPartition([[4, 9], [-1, 2]]) sage: W.finer().list() [[{9}, {4}, {2}, {-1}], [{9}, {4}, {-1}, {2}], [{9}, {4}, {-1, 2}], [{4}, {9}, {2}, {-1}], [{4}, {9}, {-1}, {2}], [{4}, {9}, {-1, 2}], [{4, 9}, {2}, {-1}], [{4, 9}, {-1}, {2}], [{4, 9}, {-1, 2}]] """ par = parent(self) if not self: return FiniteEnumeratedSet([self]) else: return FiniteEnumeratedSet([par(sum((list(i) for i in C), [])) for C in cartesian_product([OrderedSetPartitions(X) for X in self])]) def is_finer(self, co2): """ Return ``True`` if the ordered set partition ``self`` is finer than the ordered set partition ``co2``; otherwise, return ``False``. If `A` and `B` are two ordered set partitions of the same set, then `A` is said to be *finer* than `B` if `B` can be obtained from `A` by (repeatedly) merging consecutive parts. In this case, we say that `B` is *fatter* than `A`. EXAMPLES:: sage: A = OrderedSetPartition([[1, 3], [2]]) sage: B = OrderedSetPartition([[1], [3], [2]]) sage: A.is_finer(B) False sage: B.is_finer(A) True sage: C = OrderedSetPartition([[3], [1], [2]]) sage: A.is_finer(C) False sage: C.is_finer(A) True sage: OrderedSetPartition([[2], [5], [1], [4]]).is_finer(OrderedSetPartition([[2, 5], [1, 4]])) True sage: OrderedSetPartition([[5], [2], [1], [4]]).is_finer(OrderedSetPartition([[2, 5], [1, 4]])) True sage: OrderedSetPartition([[2], [1], [5], [4]]).is_finer(OrderedSetPartition([[2, 5], [1, 4]])) False sage: OrderedSetPartition([[2, 5, 1], [4]]).is_finer(OrderedSetPartition([[2, 5], [1, 4]])) False """ co1 = self if co1.base_set() != co2.base_set(): raise ValueError("ordered set partitions self (= %s) and co2 (= %s) must be of the same set"%(self, co2)) i1 = 0 for j2 in co2: sum1 = Set([]) while len(sum1) < len(j2): sum1 += co1[i1] i1 += 1 if not sum1.issubset(j2): return False return True def fatten(self, grouping): r""" Return the ordered set partition fatter than ``self``, obtained by grouping together consecutive parts according to the integer composition ``grouping``. See :meth:`finer` for the definition of "fatter". INPUT: - ``grouping`` -- a composition whose sum is the length of ``self`` EXAMPLES: Let us start with the ordered set partition:: sage: c = OrderedSetPartition([[2, 5], [1], [3, 4]]) With ``grouping`` equal to `(1, \ldots, 1)`, `c` is left unchanged:: sage: c.fatten(Composition([1,1,1])) [{2, 5}, {1}, {3, 4}] With ``grouping`` equal to `(\ell)` where `\ell` is the length of `c`, this yields the coarsest ordered set partition above `c`:: sage: c.fatten(Composition([3])) [{1, 2, 3, 4, 5}] Other values for ``grouping`` yield (all the) other ordered set partitions coarser than `c`:: sage: c.fatten(Composition([2,1])) [{1, 2, 5}, {3, 4}] sage: c.fatten(Composition([1,2])) [{2, 5}, {1, 3, 4}] TESTS:: sage: OrderedSetPartition([]).fatten(Composition([])) [] sage: c.fatten(Composition([2,1])).__class__ == c.__class__ True """ result = [None] * len(grouping) j = 0 for i in range(len(grouping)): result[i] = sum(self[j:j+grouping[i]], Set([])) j += grouping[i] return parent(self)(result) def fatter(self): """ Return the set of ordered set partitions which are fatter than ``self``. See :meth:`finer` for the definition of "fatter". EXAMPLES:: sage: C = OrderedSetPartition([[2, 5], [1], [3, 4]]).fatter() sage: C.cardinality() 4 sage: sorted(C) [[{1, 2, 3, 4, 5}], [{1, 2, 5}, {3, 4}], [{2, 5}, {1, 3, 4}], [{2, 5}, {1}, {3, 4}]] sage: OrderedSetPartition([[4, 9], [-1, 2]]).fatter().list() [[{4, 9}, {-1, 2}], [{-1, 2, 4, 9}]] Some extreme cases:: sage: list(OrderedSetPartition([[5]]).fatter()) [[{5}]] sage: list(Composition([]).fatter()) [[]] sage: sorted(OrderedSetPartition([[1], [2], [3], [4]]).fatter()) [[{1, 2, 3, 4}], [{1, 2, 3}, {4}], [{1, 2}, {3, 4}], [{1, 2}, {3}, {4}], [{1}, {2, 3, 4}], [{1}, {2, 3}, {4}], [{1}, {2}, {3, 4}], [{1}, {2}, {3}, {4}]] """ return Compositions(len(self)).map(self.fatten) @staticmethod def bottom_up_osp(X, comp): r""" Return the ordered set partition obtained by listing the elements of the set ``X`` in increasing order, and placing bars between some of them according to the integer composition ``comp`` (namely, the bars are placed in such a way that the lengths of the resulting blocks are exactly the entries of ``comp``). INPUT: - ``X`` -- a finite set (or list or tuple) - ``comp`` -- a composition whose sum is the size of ``X`` (can be given as a list or tuple or composition) EXAMPLES:: sage: buo = OrderedSetPartition.bottom_up_osp sage: buo(Set([1, 4, 7, 9]), [2, 1, 1]) [{1, 4}, {7}, {9}] sage: buo(Set([1, 4, 7, 9]), [1, 3]) [{1}, {4, 7, 9}] sage: buo(Set([1, 4, 7, 9]), [1, 1, 1, 1]) [{1}, {4}, {7}, {9}] sage: buo(range(8), [1, 4, 2, 1]) [{0}, {1, 2, 3, 4}, {5, 6}, {7}] sage: buo([], []) [] TESTS:: sage: buo = OrderedSetPartition.bottom_up_osp sage: parent(buo(Set([1, 4, 7, 9]), [2, 1, 1])) Ordered set partitions sage: buo((3, 5, 6), (2, 1)) [{3, 5}, {6}] sage: buo([3, 5, 6], Composition([1, 2])) [{3}, {5, 6}] """ xs = sorted(X) result = [None] * len(comp) j = 0 for i in range(len(comp)): result[i] = Set(xs[j:j+comp[i]]) j += comp[i] return OrderedSetPartitions()(result) def strongly_finer(self): """ Return the set of ordered set partitions which are strongly finer than ``self``. See :meth:`is_strongly_finer` for the definition of "strongly finer". EXAMPLES:: sage: C = OrderedSetPartition([[1, 3], [2]]).strongly_finer() sage: C.cardinality() 2 sage: C.list() [[{1}, {3}, {2}], [{1, 3}, {2}]] sage: OrderedSetPartition([]).strongly_finer() {[]} sage: W = OrderedSetPartition([[4, 9], [-1, 2]]) sage: W.strongly_finer().list() [[{4}, {9}, {-1}, {2}], [{4}, {9}, {-1, 2}], [{4, 9}, {-1}, {2}], [{4, 9}, {-1, 2}]] """ par = parent(self) if not self: return FiniteEnumeratedSet([self]) else: buo = OrderedSetPartition.bottom_up_osp return FiniteEnumeratedSet([par(sum((list(P) for P in C), [])) for C in cartesian_product([[buo(X, comp) for comp in Compositions(len(X))] for X in self])]) def is_strongly_finer(self, co2): r""" Return ``True`` if the ordered set partition ``self`` is strongly finer than the ordered set partition ``co2``; otherwise, return ``False``. If `A` and `B` are two ordered set partitions of the same set, then `A` is said to be *strongly finer* than `B` if `B` can be obtained from `A` by (repeatedly) merging consecutive parts, provided that every time we merge two consecutive parts `C_i` and `C_{i+1}`, we have `\max C_i < \min C_{i+1}`. In this case, we say that `B` is *strongly fatter* than `A`. EXAMPLES:: sage: A = OrderedSetPartition([[1, 3], [2]]) sage: B = OrderedSetPartition([[1], [3], [2]]) sage: A.is_strongly_finer(B) False sage: B.is_strongly_finer(A) True sage: C = OrderedSetPartition([[3], [1], [2]]) sage: A.is_strongly_finer(C) False sage: C.is_strongly_finer(A) False sage: OrderedSetPartition([[2], [5], [1], [4]]).is_strongly_finer(OrderedSetPartition([[2, 5], [1, 4]])) True sage: OrderedSetPartition([[5], [2], [1], [4]]).is_strongly_finer(OrderedSetPartition([[2, 5], [1, 4]])) False sage: OrderedSetPartition([[2], [1], [5], [4]]).is_strongly_finer(OrderedSetPartition([[2, 5], [1, 4]])) False sage: OrderedSetPartition([[2, 5, 1], [4]]).is_strongly_finer(OrderedSetPartition([[2, 5], [1, 4]])) False """ co1 = self if co1.base_set() != co2.base_set(): raise ValueError("ordered set partitions self (= %s) and co2 (= %s) must be of the same set" % (self, co2)) i1 = 0 for j2 in co2: sum1 = Set([]) while len(sum1) < len(j2): next = co1[i1] if sum1 and max(sum1) >= min(next): return False sum1 += next i1 += 1 if not sum1.issubset(j2): return False return True def strongly_fatter(self): """ Return the set of ordered set partitions which are strongly fatter than ``self``. See :meth:`strongly_finer` for the definition of "strongly fatter". EXAMPLES:: sage: C = OrderedSetPartition([[2, 5], [1], [3, 4]]).strongly_fatter() sage: C.cardinality() 2 sage: sorted(C) [[{2, 5}, {1, 3, 4}], [{2, 5}, {1}, {3, 4}]] sage: OrderedSetPartition([[4, 9], [-1, 2]]).strongly_fatter().list() [[{4, 9}, {-1, 2}]] Some extreme cases:: sage: list(OrderedSetPartition([[5]]).strongly_fatter()) [[{5}]] sage: list(OrderedSetPartition([]).strongly_fatter()) [[]] sage: sorted(OrderedSetPartition([[1], [2], [3], [4]]).strongly_fatter()) [[{1, 2, 3, 4}], [{1, 2, 3}, {4}], [{1, 2}, {3, 4}], [{1, 2}, {3}, {4}], [{1}, {2, 3, 4}], [{1}, {2, 3}, {4}], [{1}, {2}, {3, 4}], [{1}, {2}, {3}, {4}]] sage: sorted(OrderedSetPartition([[1], [3], [2], [4]]).strongly_fatter()) [[{1, 3}, {2, 4}], [{1, 3}, {2}, {4}], [{1}, {3}, {2, 4}], [{1}, {3}, {2}, {4}]] sage: sorted(OrderedSetPartition([[4], [1], [5], [3]]).strongly_fatter()) [[{4}, {1, 5}, {3}], [{4}, {1}, {5}, {3}]] """ c = [sorted(X) for X in self] l = len(c) g = [-1] + [i for i in range(l-1) if c[i][-1] > c[i+1][0]] + [l-1] # g lists the positions of the blocks that cannot be merged # with their right neighbors. subcomps = [OrderedSetPartition(c[g[i] + 1 : g[i+1] + 1]) for i in range(len(g)-1)] # Now, self is the concatenation of the entries of subcomps. # We can fatten each of the ordered set partitions setcomps # arbitrarily, and then concatenate the results. fattenings = [list(subcomp.fatter()) for subcomp in subcomps] return FiniteEnumeratedSet([OrderedSetPartition(sum([list(gg) for gg in fattening], [])) for fattening in cartesian_product(fattenings)]) @combinatorial_map(name='to packed word') def to_packed_word(self): r""" Return the packed word on alphabet `\{1,2,3,\ldots\}` corresponding to ``self``. A *packed word* on alphabet `\{1,2,3,\ldots\}` is any word whose maximum letter is the same as its total number of distinct letters. Let `P` be an ordered set partition of a set `X`. The corresponding packed word `w_1 w_2 \cdots w_n` is constructed by having letter `w_i = j` if the `i`-th smallest entry in `X` occurs in the `j`-th block of `P`. .. SEEALSO:: :meth:`Word.to_ordered_set_partition` .. WARNING:: This assumes there is a total order on the underlying set (``self._base_set``). EXAMPLES:: sage: S = OrderedSetPartitions() sage: x = S([[3,5], [2], [1,4,6]]) sage: x.to_packed_word() word: 321313 sage: x = S([['a', 'c', 'e'], ['b', 'd']]) sage: x.to_packed_word() word: 12121 """ X = sorted(self._base_set) out = {} for i in range(len(self)): for letter in self[i]: out[letter] = i return Words()([out[letter] + 1 for letter in X]) class OrderedSetPartitions(UniqueRepresentation, Parent): """ Return the combinatorial class of ordered set partitions of ``s``. The optional argument ``c``, if specified, restricts the parts of the partition to have certain sizes (the entries of ``c``). EXAMPLES:: sage: OS = OrderedSetPartitions([1,2,3,4]); OS Ordered set partitions of {1, 2, 3, 4} sage: OS.cardinality() 75 sage: OS.first() [{1}, {2}, {3}, {4}] sage: OS.last() [{1, 2, 3, 4}] sage: OS.random_element() [{3}, {1}, {2}, {4}] :: sage: OS = OrderedSetPartitions([1,2,3,4], [2,2]); OS Ordered set partitions of {1, 2, 3, 4} into parts of size [2, 2] sage: OS.cardinality() 6 sage: OS.first() [{1, 2}, {3, 4}] sage: OS.last() [{3, 4}, {1, 2}] sage: OS.list() [[{1, 2}, {3, 4}], [{1, 3}, {2, 4}], [{1, 4}, {2, 3}], [{2, 3}, {1, 4}], [{2, 4}, {1, 3}], [{3, 4}, {1, 2}]] :: sage: OS = OrderedSetPartitions("cat") sage: OS # py2 Ordered set partitions of {'a', 'c', 't'} sage: OS # py3 random Ordered set partitions of {'a', 't', 'c'} sage: sorted(OS.list(), key=str) [[{'a', 'c', 't'}], [{'a', 'c'}, {'t'}], [{'a', 't'}, {'c'}], [{'a'}, {'c', 't'}], [{'a'}, {'c'}, {'t'}], [{'a'}, {'t'}, {'c'}], [{'c', 't'}, {'a'}], [{'c'}, {'a', 't'}], [{'c'}, {'a'}, {'t'}], [{'c'}, {'t'}, {'a'}], [{'t'}, {'a', 'c'}], [{'t'}, {'a'}, {'c'}], [{'t'}, {'c'}, {'a'}]] """ @staticmethod def __classcall_private__(cls, s=None, c=None): """ Choose the correct parent based upon input. EXAMPLES:: sage: OrderedSetPartitions(4) Ordered set partitions of {1, 2, 3, 4} sage: OrderedSetPartitions(4, [1, 2, 1]) Ordered set partitions of {1, 2, 3, 4} into parts of size [1, 2, 1] """ if s is None: if c is not None: raise NotImplementedError("cannot specify 'c' without specifying 's'") return OrderedSetPartitions_all() if isinstance(s, (int, Integer)): if s < 0: raise ValueError("s must be non-negative") s = frozenset(range(1, s+1)) else: s = frozenset(s) if c is None: return OrderedSetPartitions_s(s) if isinstance(c, (int, Integer)): return OrderedSetPartitions_sn(s, c) if c not in Compositions(len(s)): raise ValueError("c must be a composition of %s"%len(s)) return OrderedSetPartitions_scomp(s, Composition(c)) def __init__(self, s): """ Initialize ``self``. EXAMPLES:: sage: OS = OrderedSetPartitions(4) sage: TestSuite(OS).run() """ self._set = s Parent.__init__(self, category=FiniteEnumeratedSets()) def _element_constructor_(self, s): """ Construct an element of ``self`` from ``s``. EXAMPLES:: sage: OS = OrderedSetPartitions(4) sage: OS([[1,3],[2,4]]) [{1, 3}, {2, 4}] """ if isinstance(s, OrderedSetPartition): raise ValueError("cannot convert %s into an element of %s"%(s, self)) return self.element_class(self, list(s)) Element = OrderedSetPartition def __contains__(self, x): """ TESTS:: sage: OS = OrderedSetPartitions([1,2,3,4]) sage: all(sp in OS for sp in OS) True sage: [[1,2], [], [3,4]] in OS False sage: [Set([1,2]), Set([3,4])] in OS True sage: [set([1,2]), set([3,4])] in OS Traceback (most recent call last): ... TypeError: X (=...1, 2...) must be a Set """ #x must be a list if not isinstance(x, (OrderedSetPartition, list, tuple)): return False #The total number of elements in the list #should be the same as the number is self._set if sum(map(len, x)) != len(self._set): return False #Check to make sure each element of the list #is a nonempty set u = Set([]) for s in x: if not s or not isinstance(s, (set, frozenset, Set_generic)): return False u = u.union(s) #Make sure that the union of all the #sets is the original set if u != Set(self._set): return False return True def from_finite_word(self, w): r""" Return the unique ordered set partition of `\{1, 2, \ldots, n\}` corresponding to a word `w` of length `n`. .. SEEALSO:: :meth:`Word.to_ordered_set_partition` EXAMPLES:: sage: A = OrderedSetPartitions().from_finite_word('abcabcabd'); A [{1, 4, 7}, {2, 5, 8}, {3, 6}, {9}] sage: B = OrderedSetPartitions().from_finite_word([1,2,3,1,2,3,1,2,4]) sage: A == B True """ # TODO: fix this if statement. # In fact, what we need is for the underlying alphabet to be sortable. if isinstance(w, (list, tuple, str, FiniteWord_class)): return self.element_class(self, Words()(w).to_ordered_set_partition()) else: raise ValueError("Something is wrong: `from_finite_word` expects an object of type list/tuple/str/Word representing a finite word, received {}.".format(str(w))) class OrderedSetPartitions_s(OrderedSetPartitions): """ Class of ordered partitions of a set `S`. """ def _repr_(self): """ TESTS:: sage: OrderedSetPartitions([1,2,3,4]) Ordered set partitions of {1, 2, 3, 4} """ return "Ordered set partitions of %s" % Set(self._set) def cardinality(self): """ EXAMPLES:: sage: OrderedSetPartitions(0).cardinality() 1 sage: OrderedSetPartitions(1).cardinality() 1 sage: OrderedSetPartitions(2).cardinality() 3 sage: OrderedSetPartitions(3).cardinality() 13 sage: OrderedSetPartitions([1,2,3]).cardinality() 13 sage: OrderedSetPartitions(4).cardinality() 75 sage: OrderedSetPartitions(5).cardinality() 541 """ return sum([factorial(k)*stirling_number2(len(self._set), k) for k in range(len(self._set)+1)]) def __iter__(self): """ EXAMPLES:: sage: [ p for p in OrderedSetPartitions([1,2,3]) ] [[{1}, {2}, {3}], [{1}, {3}, {2}], [{2}, {1}, {3}], [{3}, {1}, {2}], [{2}, {3}, {1}], [{3}, {2}, {1}], [{1}, {2, 3}], [{2}, {1, 3}], [{3}, {1, 2}], [{1, 2}, {3}], [{1, 3}, {2}], [{2, 3}, {1}], [{1, 2, 3}]] """ for x in Compositions(len(self._set)): for z in OrderedSetPartitions(self._set, x): yield self.element_class(self, z) class OrderedSetPartitions_sn(OrderedSetPartitions): def __init__(self, s, n): """ TESTS:: sage: OS = OrderedSetPartitions([1,2,3,4], 2) sage: OS == loads(dumps(OS)) True """ OrderedSetPartitions.__init__(self, s) self.n = n def __contains__(self, x): """ TESTS:: sage: OS = OrderedSetPartitions([1,2,3,4], 2) sage: all(sp in OS for sp in OS) True sage: OS.cardinality() 14 sage: len([x for x in OrderedSetPartitions([1,2,3,4]) if x in OS]) 14 """ return OrderedSetPartitions.__contains__(self, x) and len(x) == self.n def __repr__(self): """ TESTS:: sage: OrderedSetPartitions([1,2,3,4], 2) Ordered set partitions of {1, 2, 3, 4} into 2 parts """ return "Ordered set partitions of %s into %s parts" % (Set(self._set), self.n) def cardinality(self): """ Return the cardinality of ``self``. The number of ordered partitions of a set of size `n` into `k` parts is equal to `k! S(n,k)` where `S(n,k)` denotes the Stirling number of the second kind. EXAMPLES:: sage: OrderedSetPartitions(4,2).cardinality() 14 sage: OrderedSetPartitions(4,1).cardinality() 1 """ return factorial(self.n) * stirling_number2(len(self._set), self.n) def __iter__(self): """ EXAMPLES:: sage: [ p for p in OrderedSetPartitions([1,2,3,4], 2) ] [[{1, 2, 3}, {4}], [{1, 2, 4}, {3}], [{1, 3, 4}, {2}], [{2, 3, 4}, {1}], [{1, 2}, {3, 4}], [{1, 3}, {2, 4}], [{1, 4}, {2, 3}], [{2, 3}, {1, 4}], [{2, 4}, {1, 3}], [{3, 4}, {1, 2}], [{1}, {2, 3, 4}], [{2}, {1, 3, 4}], [{3}, {1, 2, 4}], [{4}, {1, 2, 3}]] """ for x in Compositions(len(self._set),length=self.n): for z in OrderedSetPartitions_scomp(self._set, x): yield self.element_class(self, z) class OrderedSetPartitions_scomp(OrderedSetPartitions): def __init__(self, s, comp): """ TESTS:: sage: OS = OrderedSetPartitions([1,2,3,4], [2,1,1]) sage: OS == loads(dumps(OS)) True """ OrderedSetPartitions.__init__(self, s) self.c = Composition(comp) def __repr__(self): """ TESTS:: sage: OrderedSetPartitions([1,2,3,4], [2,1,1]) Ordered set partitions of {1, 2, 3, 4} into parts of size [2, 1, 1] """ return "Ordered set partitions of %s into parts of size %s" % (Set(self._set), self.c) def __contains__(self, x): """ TESTS:: sage: OS = OrderedSetPartitions([1,2,3,4], [2,1,1]) sage: all(sp in OS for sp in OS) True sage: OS.cardinality() 12 sage: len([x for x in OrderedSetPartitions([1,2,3,4]) if x in OS]) 12 """ return OrderedSetPartitions.__contains__(self, x) and [len(z) for z in x] == self.c def cardinality(self): r""" Return the cardinality of ``self``. The number of ordered set partitions of a set of length `k` with composition shape `\mu` is equal to .. MATH:: \frac{k!}{\prod_{\mu_i \neq 0} \mu_i!}. EXAMPLES:: sage: OrderedSetPartitions(5,[2,3]).cardinality() 10 sage: OrderedSetPartitions(0, []).cardinality() 1 sage: OrderedSetPartitions(0, [0]).cardinality() 1 sage: OrderedSetPartitions(0, [0,0]).cardinality() 1 sage: OrderedSetPartitions(5, [2,0,3]).cardinality() 10 """ return factorial(len(self._set)) / prod([factorial(i) for i in self.c]) def __iter__(self): """ TESTS:: sage: [ p for p in OrderedSetPartitions([1,2,3,4], [2,1,1]) ] [[{1, 2}, {3}, {4}], [{1, 2}, {4}, {3}], [{1, 3}, {2}, {4}], [{1, 4}, {2}, {3}], [{1, 3}, {4}, {2}], [{1, 4}, {3}, {2}], [{2, 3}, {1}, {4}], [{2, 4}, {1}, {3}], [{3, 4}, {1}, {2}], [{2, 3}, {4}, {1}], [{2, 4}, {3}, {1}], [{3, 4}, {2}, {1}]] sage: len(OrderedSetPartitions([1,2,3,4], [1,1,1,1])) 24 sage: [ x for x in OrderedSetPartitions([1,4,7], [3]) ] [[{1, 4, 7}]] sage: [ x for x in OrderedSetPartitions([1,4,7], [1,2]) ] [[{1}, {4, 7}], [{4}, {1, 7}], [{7}, {1, 4}]] sage: [ p for p in OrderedSetPartitions([], []) ] [[]] sage: [ p for p in OrderedSetPartitions([1], [1]) ] [[{1}]] Let us check that it works for large size (:trac:`16646`):: sage: OrderedSetPartitions(42).first() [{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}, {26}, {27}, {28}, {29}, {30}, {31}, {32}, {33}, {34}, {35}, {36}, {37}, {38}, {39}, {40}, {41}, {42}] """ comp = self.c lset = [x for x in self._set] l = len(self.c) dcomp = [-1] + comp.descents(final_descent=True) p = [] for j in range(l): p += [j + 1] * comp[j] for x in permutation.Permutations_mset(p): res = permutation.to_standard(x).inverse() res = [lset[x - 1] for x in res] yield self.element_class(self, [Set(res[dcomp[i]+1:dcomp[i+1]+1]) for i in range(l)]) class OrderedSetPartitions_all(OrderedSetPartitions): r""" Ordered set partitions of `\{1, \ldots, n\}` for all `n \in \ZZ_{\geq 0}`. """ def __init__(self): """ Initialize ``self``. EXAMPLES:: sage: OS = OrderedSetPartitions() sage: TestSuite(OS).run() # long time """ Parent.__init__(self, category=InfiniteEnumeratedSets()) def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: it = iter(OrderedSetPartitions()) sage: [next(it) for _ in range(10)] [[], [{1}], [{1}, {2}], [{2}, {1}], [{1, 2}], [{1}, {2}, {3}], [{1}, {3}, {2}], [{2}, {1}, {3}], [{3}, {1}, {2}], [{2}, {3}, {1}]] """ n = 0 while True: for X in OrderedSetPartitions(n): yield self.element_class(self, list(X)) n += 1 def _element_constructor_(self, s): """ Construct an element of ``self`` from ``s``. EXAMPLES:: sage: OS = OrderedSetPartitions() sage: OS([[1,3],[2,4]]) [{1, 3}, {2, 4}] """ if isinstance(s, OrderedSetPartition): gset = s.parent()._set if gset == frozenset(range(1,len(gset)+1)): return self.element_class(self, list(s)) raise ValueError("cannot convert %s into an element of %s"%(s, self)) return self.element_class(self, list(s)) def __contains__(self, x): """ TESTS:: sage: OS = OrderedSetPartitions([1,2,3,4]) sage: AOS = OrderedSetPartitions() sage: all(sp in AOS for sp in OS) True sage: AOS.__contains__([[1,3], [4], [5,2]]) True sage: AOS.__contains__([Set([1,3]), Set([4]), Set([5,2])]) True sage: [Set([1,4]), Set([3])] in AOS False sage: [Set([1,3]), Set([4,2]), Set([2,5])] in AOS False sage: [Set([1,2]), Set()] in AOS False """ if isinstance(x, OrderedSetPartition): if x.parent() is self: return True gset = x.parent()._set return gset == frozenset(range(1, len(gset)+1)) # x must be a list or a tuple if not isinstance(x, (list, tuple)): return False # Check to make sure each element of the list is a nonempty set if not all(s and isinstance(s, (set, frozenset, list, tuple, Set_generic)) for s in x): return False if not all(isinstance(s, (set, frozenset, Set_generic)) or len(s) == len(set(s)) for s in x): return False X = set(reduce(lambda A,B: A.union(B), x, set())) return len(X) == sum(len(s) for s in x) and X == set(range(1,len(X)+1)) def _coerce_map_from_(self, X): """ Return ``True`` if there is a coercion map from ``X``. EXAMPLES:: sage: OSP = OrderedSetPartitions() sage: OSP._coerce_map_from_(OrderedSetPartitions(3)) True sage: OSP._coerce_map_from_(OrderedSetPartitions(['a','b'])) False """ if X is self: return True if isinstance(X, OrderedSetPartitions): return X._set == frozenset(range(1,len(X._set)+1)) return super(OrderedSetPartitions_all, self)._coerce_map_from_(X) def _repr_(self): """ TESTS:: sage: OrderedSetPartitions() Ordered set partitions """ return "Ordered set partitions" class Element(OrderedSetPartition): def _richcmp_(self, other, op): """ TESTS:: sage: OSP = OrderedSetPartitions() sage: el1 = OSP([[1,3], [4], [2]]) sage: el2 = OSP([[3,1], [2], [4]]) sage: el1 == el1, el2 == el2, el1 == el2 # indirect doctest (True, True, False) sage: el1 <= el2, el1 >= el2, el2 <= el1 # indirect doctest (False, True, True) """ return richcmp([sorted(s) for s in self], [sorted(s) for s in other], op) ########################################################## # Deprecations class SplitNK(OrderedSetPartitions_scomp): def __setstate__(self, state): r""" For unpickling old ``SplitNK`` objects. TESTS:: sage: loads(b"x\x9ck`J.NLO\xd5K\xce\xcfM\xca\xccK,\xd1+.\xc8\xc9," ....: b"\x89\xcf\xcb\xe6\n\x061\xfc\xbcA\xccBF\xcd\xc6B\xa6\xda" ....: b"Bf\x8dP\xa6\xf8\xbcB\x16\x88\x96\xa2\xcc\xbc\xf4b\xbd\xcc" ....: b"\xbc\x92\xd4\xf4\xd4\"\xae\xdc\xc4\xec\xd4x\x18\xa7\x905" ....: b"\x94\xd1\xb45\xa8\x90\r\xa8>\xbb\x90=\x03\xc85\x02r9J\x93" ....: b"\xf4\x00\xb4\xc6%f") Ordered set partitions of {0, 1, 2, 3, 4} into parts of size [2, 3] """ self.__class__ = OrderedSetPartitions_scomp n = state['_n'] k = state['_k'] OrderedSetPartitions_scomp.__init__(self, range(state['_n']), (k,n-k)) from sage.misc.persist import register_unpickle_override register_unpickle_override("sage.combinat.split_nk", "SplitNK_nk", SplitNK)
33.044586
172
0.492161
a083b11e2f70f493ffad22134db53448a26f3c71
851
py
Python
pdml2flow/logging.py
Enteee/pdml2flow
2e5da6f03bc799f0e8ef77dd987031b969d4a5df
[ "Apache-2.0" ]
12
2016-04-01T10:59:14.000Z
2022-01-27T04:05:43.000Z
pdml2flow/logging.py
Enteee/pdml2flow
2e5da6f03bc799f0e8ef77dd987031b969d4a5df
[ "Apache-2.0" ]
16
2016-03-18T10:44:00.000Z
2019-08-12T05:52:24.000Z
pdml2flow/logging.py
Enteee/pdml2flow
2e5da6f03bc799f0e8ef77dd987031b969d4a5df
[ "Apache-2.0" ]
2
2016-09-08T11:49:39.000Z
2020-09-09T04:39:15.000Z
# vim: set fenc=utf8 ts=4 sw=4 et : import sys from .conf import Conf def debug(*args): # import here because of circular dependencies from .flow import Flow if Conf.DEBUG: print( '[Debug: {}] '.format( Flow.newest_overall_frame_time ), *args, file=Conf.OUT_DEBUG ) def warning(*args): # import here because of circular dependencies from .flow import Flow print( '[Warning: {}] '.format( Flow.newest_overall_frame_time ), *args, file=Conf.OUT_WARNING ) def error(*args): # import here because of circular dependencies from .flow import Flow print( '[Error: {}] '.format( Flow.newest_overall_frame_time ), *args, file=Conf.OUT_ERROR )
21.275
50
0.553467
98550c3d67773465e204b8e565e9aed335e86437
16,853
py
Python
sample_data/Set-PD-Ix-100/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point72/script_DoE72_meshing.py
hanklu2020/mabessa_F3DAS
57b1bd1cb85d96567ad1044c216535ab3df88db3
[ "BSD-3-Clause" ]
null
null
null
sample_data/Set-PD-Ix-100/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point72/script_DoE72_meshing.py
hanklu2020/mabessa_F3DAS
57b1bd1cb85d96567ad1044c216535ab3df88db3
[ "BSD-3-Clause" ]
null
null
null
sample_data/Set-PD-Ix-100/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point72/script_DoE72_meshing.py
hanklu2020/mabessa_F3DAS
57b1bd1cb85d96567ad1044c216535ab3df88db3
[ "BSD-3-Clause" ]
null
null
null
# Abaqus/CAE script # Created by M.A. Bessa (M.A.Bessa@tudelft.nl) on 12-Nov-2019 05:29:40 # from abaqus import * from abaqusConstants import * session.viewports['Viewport: 1'].makeCurrent() #session.viewports['Viewport: 1'].maximize() from caeModules import * from driverUtils import executeOnCaeStartup executeOnCaeStartup() Mdb() # import numpy #------------------------------------------------------------ os.chdir(r'/home/gkus/F3DAS-master/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point72') # #------------------------------------------------------------- # Parameters: VertexPolygon = 3 # Number of vertices (sides) of the polygon base power = 1.00000e+00 # Power law exponent establishing the evolution of the spacing between battens MastDiameter = 1.00000e+02 # Radius of the circumscribing circle of the polygon nStories = 1 # Number of stories in HALF of the strut (i.e. in a single AstroMast!) MastPitch = 9.39469e+01 # Pitch length of the strut (i.e. a single AstroMast!) pinned_joints = 1 # (1 = batten are pinned to longerons, 0 = battens and longerons are a solid piece) Longeron_CS = 1.00007e+01 # (Cross Section of the longeron) Ix = 1.03996e+02 # (Second moment of area around X axis ) Iy = 7.50000e+01 # (Second moment of area around Y axis ) J = 2.50000e+02 # (Second moment of area around X axis ) Emodulus = 1.82600e+03 # (Youngus Modulus) Gmodulus = 6.57373e+02 # (Shear Modulus) nu = 3.88861e-01 # (Poisson Ratio) ConeSlope = 5.00000e-01 # Slope of the longerons (0 = straight, <0 larger at the top, >0 larger at the bottom) Twist_angle = 0.00000e+00 # Do you want to twist the longerons? transition_length_ratio = 1.00000e+00 # Transition zone for the longerons #------------------------------------------------------------ MastRadius = MastDiameter/2.0 MastHeight = nStories*MastPitch Mesh_size = min(MastRadius,MastPitch)/300.0 session.viewports['Viewport: 1'].setValues(displayedObject=None) # Create all the joints of the a single Deployable Mast: joints = numpy.zeros((nStories+1,VertexPolygon,3)) joints_outter = numpy.zeros((nStories+1,VertexPolygon,3)) for iStorey in range(0,nStories+1,1): for iVertex in range(0,VertexPolygon,1): # Constant spacing between each storey (linear evolution): Zcoord = MastHeight/nStories*iStorey # Power-law spacing between each storey (more frequent at the fixed end): # Zcoord = MastHeight*(float(iStorey)/float(nStories))**power # Power-law spacing between each storey (more frequent at the rotating end): # Zcoord = -MastHeight/(float(nStories)**power)*(float(nStories-iStorey)**power)+MastHeight # Exponential spacing between each storey # Zcoord =(MastHeight+1.0)/exp(float(nStories))*exp(float(iStorey)) # Xcoord = MastRadius*cos(2.0*pi/VertexPolygon*iVertex + Twist_angle*min(Zcoord/MastHeight/transition_length_ratio,1.0)) Ycoord = MastRadius*sin(2.0*pi/VertexPolygon*iVertex + Twist_angle*min(Zcoord/MastHeight/transition_length_ratio,1.0)) # Save point defining this joint: joints[iStorey,iVertex,:] = (Xcoord*(1.0-min(Zcoord,transition_length_ratio*MastHeight)/MastHeight*ConeSlope),Ycoord*(1.0-min(Zcoord,transition_length_ratio*MastHeight)/MastHeight*ConeSlope),Zcoord) # center = (0.0,0.0) vec = joints[iStorey,iVertex,0:2]-center norm_vec = numpy.linalg.norm(vec) joints_outter[iStorey,iVertex,2] = joints[iStorey,iVertex,2] joints_outter[iStorey,iVertex,0:2] = joints[iStorey,iVertex,0:2] # end iSide loop #end iStorey loop # Create the longerons: p_longerons = mdb.models['Model-1'].Part(name='longerons', dimensionality=THREE_D, type=DEFORMABLE_BODY) p_longerons = mdb.models['Model-1'].parts['longerons'] session.viewports['Viewport: 1'].setValues(displayedObject=p_longerons) d_longerons, r_longerons = p_longerons.datums, p_longerons.referencePoints LocalDatum_list = [] # List with local coordinate system for each longeron long_midpoints = [] # List with midpoints of longerons (just to determine a set containing the longerons) e_long = p_longerons.edges for iVertex in range(0,VertexPolygon,1): # First create local coordinate system (useful for future constraints, etc.): iStorey=0 origin = joints[iStorey,iVertex,:] point2 = joints[iStorey,iVertex-1,:] name = 'Local_Datum_'+str(iVertex) LocalDatum_list.append(p_longerons.DatumCsysByThreePoints(origin=origin, point2=point2, name=name, coordSysType=CARTESIAN, point1=(0.0, 0.0, 0.0))) # # Then, create the longerons templist = [] # List that will contain the points used to make each longeron for iStorey in range(0,nStories+1,1): templist.append(joints[iStorey,iVertex,:]) if iStorey != 0: # Save midpoints of bars long_midpoints.append( [(joints[iStorey-1,iVertex,:]+joints[iStorey,iVertex,:])/2 , ]) # end if # end iStorey loop p_longerons.WirePolyLine(points=templist, mergeType=IMPRINT, meshable=ON) # Create set for each longeron (to assign local beam directions) for i in range(0,len(templist)): # loop over longerons edges if i == 0: select_edges = e_long.findAt([templist[0], ]) # Find the first edge else: # Now find remaining edges in longerons temp = e_long.findAt([templist[i], ]) select_edges = select_edges + temp #end if #end i loop longeron_name = 'longeron-'+str(iVertex)+'_set' p_longerons.Set(edges=select_edges, name=longeron_name) #end for iVertex loop # Longerons set: e_long = p_longerons.edges select_edges = [] for i in range(0,len(long_midpoints)): # loop over longerons edges if i == 0: select_edges = e_long.findAt(long_midpoints[0]) # Find the first edge else: # Now find remaining edges in longerons temp = e_long.findAt(long_midpoints[i]) select_edges = select_edges + temp #end if #end i loop p_longerons.Set(edges=select_edges, name='all_longerons_set') all_longerons_set_edges = select_edges p_longerons.Surface(circumEdges=all_longerons_set_edges, name='all_longerons_surface') # Create a set with all the joints: v_long = p_longerons.vertices select_vertices = [] select_top_vertices = [] select_bot_vertices = [] for iStorey in range(0,nStories+1,1): for iVertex in range(0,VertexPolygon,1): # Select all the joints in the longerons: current_joint = v_long.findAt( [joints[iStorey,iVertex,:] , ] ) # Find the first vertex current_joint_name = 'joint-'+str(iStorey)+'-'+str(iVertex) # Create a set for each joint: p_longerons.Set(vertices=current_joint, name=current_joint_name) # if iStorey == 0 and iVertex == 0: select_vertices = current_joint # Instantiate the first point in set else: select_vertices = select_vertices + current_joint # Instantiate the first point in set # endif iStorey == 0 and iVertex == 0 # if iStorey == 0: # Also save the bottom nodes separately if iVertex == 0: # Start selecting the bottom joints for implementing the boundary conditions select_bot_vertices = current_joint else: select_bot_vertices = select_bot_vertices + current_joint # endif iStorey == 0: elif iStorey == nStories: # Also save the top nodes separately if iVertex == 0: # Start selecting the top joints for implementing the boundary conditions select_top_vertices = current_joint else: # remaining vertices: select_top_vertices = select_top_vertices + current_joint #end if #end iVertex loop #end iStorey loop p_longerons.Set(vertices=select_vertices, name='all_joints_set') p_longerons.Set(vertices=select_bot_vertices, name='bot_joints_set') p_longerons.Set(vertices=select_top_vertices, name='top_joints_set') # # Create materials: mdb.models['Model-1'].Material(name='NiTi_alloy') mdb.models['Model-1'].materials['NiTi_alloy'].Elastic(table=((83.0E3, 0.31), )) mdb.models['Model-1'].materials['NiTi_alloy'].Density(table=((1.0E-3, ), )) mdb.models['Model-1'].Material(name='PC') mdb.models['Model-1'].materials['PC'].Elastic(table=((2134, 0.27), )) mdb.models['Model-1'].materials['PC'].Density(table=((1.19E-3, ), )) mdb.models['Model-1'].Material(name='PLA') mdb.models['Model-1'].materials['PLA'].Elastic(table=((Emodulus, nu), )) mdb.models['Model-1'].materials['PLA'].Density(table=((1.24E-3, ), )) mdb.models['Model-1'].Material(name='CNT') mdb.models['Model-1'].materials['CNT'].Elastic(table=((1000.0E3, 0.3), )) mdb.models['Model-1'].materials['CNT'].Density(table=((1.0E-3, ), )) # Create beam profiles and beam sections: mdb.models['Model-1'].GeneralizedProfile(name='LongeronsProfile', area=Longeron_CS, i11=Ix, i12=0.0, i22=Iy, j=J, gammaO=0.0, gammaW=0.0) mdb.models['Model-1'].BeamSection(name='LongeronsSection', integration= BEFORE_ANALYSIS, poissonRatio=0.31, beamShape=CONSTANT, profile='LongeronsProfile', density=0.00124, thermalExpansion=OFF, temperatureDependency=OFF, dependencies=0, table=((Emodulus, Gmodulus), ), alphaDamping=0.0, betaDamping=0.0, compositeDamping=0.0, centroid=(0.0, 0.0), shearCenter=(0.0, 0.0), consistentMassMatrix=False) # Assign respective sections: p_longerons.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, region= p_longerons.sets['all_longerons_set'], sectionName='LongeronsSection', thicknessAssignment=FROM_SECTION) # Assing beam orientation: for iVertex in range(0,VertexPolygon,1): iStorey=0 dir_vec_n1 = joints[iStorey,iVertex,:]-(0.,0.,0.) # Vector n1 perpendicular to the longeron tangent longeron_name = 'longeron-'+str(iVertex)+'_set' region=p_longerons.sets[longeron_name] p_longerons.assignBeamSectionOrientation(region=region, method=N1_COSINES, n1=dir_vec_n1) #end for iVertex # delta = Mesh_size/100.0 ######################################################################## #Mesh the structure #refPlane = p_longerons.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=L/2) #d = p.datums #All_faces = facesLeafs+facesDoubleThickBoom #p.PartitionFaceByDatumPlane(datumPlane=d[refPlane.id], faces=All_faces) ## #session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF # engineeringFeatures=OFF, mesh=ON) #session.viewports['Viewport: 1'].partDisplay.meshOptions.setValues( # meshTechnique=ON) #p = mdb.models['Model-1'].parts['reducedCF_TRAC_boom'] p_longerons.seedPart(size=Mesh_size, deviationFactor=0.04, minSizeFactor=0.001, constraint=FINER) p_longerons.seedEdgeBySize(edges=all_longerons_set_edges, size=Mesh_size, deviationFactor=0.04, constraint=FINER) elemType_longerons = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD) # Element type p_longerons.setElementType(regions=(all_longerons_set_edges, ), elemTypes=(elemType_longerons, )) p_longerons.generateMesh() ####################################################################### # Make Analytical surfaces for contact purposes s1 = mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=MastRadius*3.0) g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints s1.setPrimaryObject(option=STANDALONE) s1.Line(point1=(0.0, -MastRadius*1.1), point2=(0.0, MastRadius*1.1)) s1.VerticalConstraint(entity=g[2], addUndoState=False) p_surf = mdb.models['Model-1'].Part(name='AnalyticSurf', dimensionality=THREE_D, type=ANALYTIC_RIGID_SURFACE) p_surf = mdb.models['Model-1'].parts['AnalyticSurf'] p_surf.AnalyticRigidSurfExtrude(sketch=s1, depth=MastRadius*2.2) s1.unsetPrimaryObject() rigid_face = p_surf.faces #surf_select = f.findAt((0.0,MastRadius*1.05,0.0)) #surf_select = f[0] p_surf.Surface(side1Faces=rigid_face, name='rigid_support') #p_surf.Set(faces=surf_select, name='support_surface_set') #p_surf.sets['all_diagonals_set'] # # Make assembly: a = mdb.models['Model-1'].rootAssembly a.DatumCsysByDefault(CARTESIAN) # Create reference points to assign boundary conditions RP_ZmYmXm = a.ReferencePoint(point=(0.0, 0.0, -1.1*MastRadius)) refpoint_ZmYmXm = (a.referencePoints[RP_ZmYmXm.id],) a.Set(referencePoints=refpoint_ZmYmXm, name='RP_ZmYmXm') # RP_ZpYmXm = a.ReferencePoint(point=(0.0, 0.0, MastHeight+1.1*MastRadius)) refpoint_ZpYmXm = (a.referencePoints[RP_ZpYmXm.id],) a.Set(referencePoints=refpoint_ZpYmXm, name='RP_ZpYmXm') # # Create longerons a_long = a.Instance(name='longerons-1-1', part=p_longerons, dependent=ON) # Create bottom surface a_surf_bot = a.Instance(name='AnalyticSurf-1-1', part=p_surf, dependent=ON) # Now rotate the plane to have the proper direction a.rotate(instanceList=('AnalyticSurf-1-1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0) # # Create set with surface select_bot_surf=a_surf_bot.surfaces['rigid_support'] # Perhaps we need to define a set instead of a face #AnalyticSurf_surface=a_surf_bot.Surface(side1Faces=select_bot_surf, name='support_surf_bot-1') mdb.models['Model-1'].RigidBody(name='Constraint-RigidBody_surf_bot-1', refPointRegion=refpoint_ZmYmXm, surfaceRegion=select_bot_surf) for iVertex in range(0,VertexPolygon,1): # # Select appropriate coordinate system: DatumID = LocalDatum_list[iVertex].id datum = a_long.datums[DatumID] for iStorey in range(0,nStories+1,1): # Current joint: current_joint_name = 'joint-'+str(iStorey)+'-'+str(iVertex) # Define COUPLING constraints for all the joints: if iStorey == 0: # Bottom base: # master_region=a.sets['RP_ZmYmXm'] # Note that the master is the Reference Point # slave_region=a_long.sets[current_joint_name] # Make constraint for this joint: Constraint_name = 'RP_ZmYmXm_PinConstraint-'+str(iStorey)+'-'+str(iVertex) mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=OFF, ur2=ON, ur3=ON) # #Constraint_name = 'RP_ZmYmXm_FixedConstraint-'+str(iStorey)+'-'+str(iVertex) #mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, # surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, # localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON) # Make constraint for this joint: elif iStorey == nStories: # Top base: # master_region=a.sets['RP_ZpYmXm'] # Note that the master is the Reference Point # slave_region=a_long.sets[current_joint_name] # Make constraint for this joint: Constraint_name = 'RP_ZpYmXm_PinConstraint-'+str(iStorey)+'-'+str(iVertex) mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=OFF, ur2=ON, ur3=ON) # #Constraint_name = 'RP_ZpYmXm_FixedConstraint-'+str(iStorey)+'-'+str(iVertex) #mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, # surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, # localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON) # Make constraint for this joint: else: # Middle stories: master_region=a_long.sets[current_joint_name] # slave_region=a_bat.sets[current_joint_name] # Make constraint for this joint: #endif iStorey # #end for iStorey #end for iVertex # # Create hinges: #select_joints=a.instances['deployable_mast-1'].sets['all_joints_set'] #select_RefPoint=a.sets['RP_joints'] #mdb.models['Model-1'].RigidBody(name='JointsContraint', refPointRegion=select_RefPoint, # pinRegion=select_joints) # # Export mesh to .inp file # mdb.Job(name='include_mesh_DoE72', model='Model-1', type=ANALYSIS, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description='', parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT, numDomains=1, userSubroutine='', numCpus=1, memory=90, memoryUnits=PERCENTAGE, scratch='', echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF) import os mdb.jobs['include_mesh_DoE72'].writeInput(consistencyChecking=OFF) # End of python script
44.467018
206
0.692933
1c3bfa42909e72f3da5ec15ede1344602925a55d
118
py
Python
ELAB02/02-08.py
tawanchaiii/01204111_63
edf1174f287f5174d93729d9b5c940c74d3b6553
[ "WTFPL" ]
null
null
null
ELAB02/02-08.py
tawanchaiii/01204111_63
edf1174f287f5174d93729d9b5c940c74d3b6553
[ "WTFPL" ]
null
null
null
ELAB02/02-08.py
tawanchaiii/01204111_63
edf1174f287f5174d93729d9b5c940c74d3b6553
[ "WTFPL" ]
null
null
null
x = int(input()) l = [1000,500,100,50,20,10,5,1] for i in range(8): print(f"{l[i]} => {x//l[i]}") x = x%l[i]
16.857143
32
0.466102
1a339db0fc264095507bb7ddeb15a7dd997feacc
3,029
py
Python
lecture_04/assignment_03/Ina_Cheibas/assignment_03.py
g-jami/COMPAS-II-FS2021
3282036db5f7caa2d904370d47878e578092ae24
[ "MIT" ]
48
2021-11-27T05:28:31.000Z
2022-02-06T16:08:30.000Z
lecture_04/assignment_03/Ina_Cheibas/assignment_03.py
g-jami/COMPAS-II-FS2021
3282036db5f7caa2d904370d47878e578092ae24
[ "MIT" ]
15
2021-03-03T10:50:59.000Z
2021-06-21T07:47:47.000Z
lecture_04/assignment_03/Ina_Cheibas/assignment_03.py
g-jami/COMPAS-II-FS2021
3282036db5f7caa2d904370d47878e578092ae24
[ "MIT" ]
25
2021-03-02T15:08:11.000Z
2022-03-29T14:34:20.000Z
# """Assignment 03: Using inverse kinematics # """ import json import os from compas_fab.backends import RosClient from compas_fab.robots import Configuration from compas.geometry import Frame from compas.geometry import Point from compas.geometry import Vector from compas_fab.utilities import write_data_to_json # This function defines the inputs of your assignment, you get a compas_fab.robots.Robot and a Frame # and are expected to return ONE valid configuration to reach that frame def calculate_ik(robot, frame): # 1. define a valid start configuration for your frames start_configuration = robot.zero_configuration() # 2. use inverse kinematics to find out a valid configuration configuration = robot.inverse_kinematics(frame, start_configuration) # print("Found configuration", configuration) return configuration def store_configurations(configurations): # 3. store all found configurations in a JSON file here = os.path.dirname(__file__) path = os.path.abspath(os.path.join(here, "json_file.json")) configuration_json =[] for configuration in configurations: configuration_json.append(configuration.data) write_data_to_json(configuration_json, path) # pass # Use the following to test from the command line # Or copy solution_viewer.ghx next to the folder where you created assignment_03.py to visualize the same in Grasshopper if __name__ == '__main__': frame_list = [ Frame(Point(0.084, 0.319, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.152, 0.317, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.220, 0.315, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.288, 0.313, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.357, 0.310, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.425, 0.308, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.493, 0.306, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.561, 0.303, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.629, 0.301, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.698, 0.299, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)), Frame(Point(0.766, 0.297, 0.175), Vector(0.000, 0.000, -1.000), Vector(0.000, 1.000, 0.000)) ] # Loads the robot from ROS with RosClient('localhost') as client: robot = client.load_robot() # And call our assignment functions for each frame in the example configurations = [] for frame in frame_list: configuration = calculate_ik(robot, frame) configurations.append(configuration) print("Found configuration", configuration) store_configurations(configurations)
48.854839
120
0.679762
59ef87b582c06e01fd47588ae7e4513cdf32250e
15,675
py
Python
src/util/util.py
Depersonalizc/pixel-nerf
35e70fdecdac49b75764158e01d6751b7ad87910
[ "BSD-2-Clause" ]
703
2020-12-04T02:41:05.000Z
2022-03-31T07:59:50.000Z
src/util/util.py
Depersonalizc/pixel-nerf
35e70fdecdac49b75764158e01d6751b7ad87910
[ "BSD-2-Clause" ]
46
2020-12-08T23:00:54.000Z
2022-03-26T03:06:07.000Z
src/util/util.py
Depersonalizc/pixel-nerf
35e70fdecdac49b75764158e01d6751b7ad87910
[ "BSD-2-Clause" ]
118
2020-12-04T05:37:11.000Z
2022-03-28T03:34:50.000Z
import cv2 import numpy as np import torch from torchvision import transforms from torch import nn from torch.nn import init import torch.nn.functional as F import functools import math import warnings def image_float_to_uint8(img): """ Convert a float image (0.0-1.0) to uint8 (0-255) """ vmin = np.min(img) vmax = np.max(img) if vmax - vmin < 1e-10: vmax += 1e-10 img = (img - vmin) / (vmax - vmin) img *= 255.0 return img.astype(np.uint8) def cmap(img, color_map=cv2.COLORMAP_HOT): """ Apply 'HOT' color to a float image """ return cv2.applyColorMap(image_float_to_uint8(img), color_map) def batched_index_select_nd(t, inds): """ Index select on dim 1 of a n-dimensional batched tensor. :param t (batch, n, ...) :param inds (batch, k) :return (batch, k, ...) """ return t.gather( 1, inds[(...,) + (None,) * (len(t.shape) - 2)].expand(-1, -1, *t.shape[2:]) ) def batched_index_select_nd_last(t, inds): """ Index select on dim -1 of a >=2D multi-batched tensor. inds assumed to have all batch dimensions except one data dimension 'n' :param t (batch..., n, m) :param inds (batch..., k) :return (batch..., n, k) """ dummy = inds.unsqueeze(-2).expand(*inds.shape[:-1], t.size(-2), inds.size(-1)) out = t.gather(-1, dummy) return out def repeat_interleave(input, repeats, dim=0): """ Repeat interleave along axis 0 torch.repeat_interleave is currently very slow https://github.com/pytorch/pytorch/issues/31980 """ output = input.unsqueeze(1).expand(-1, repeats, *input.shape[1:]) return output.reshape(-1, *input.shape[1:]) def get_image_to_tensor_balanced(image_size=0): ops = [] if image_size > 0: ops.append(transforms.Resize(image_size)) ops.extend( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),] ) return transforms.Compose(ops) def get_mask_to_tensor(): return transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.0,), (1.0,))] ) def homogeneous(points): """ Concat 1 to each point :param points (..., 3) :return (..., 4) """ return F.pad(points, (0, 1), "constant", 1.0) def gen_grid(*args, ij_indexing=False): """ Generete len(args)-dimensional grid. Each arg should be (lo, hi, sz) so that in that dimension points are taken at linspace(lo, hi, sz). Example: gen_grid((0,1,10), (-1,1,20)) :return (prod_i args_i[2], len(args)), len(args)-dimensional grid points """ return torch.from_numpy( np.vstack( np.meshgrid( *(np.linspace(lo, hi, sz, dtype=np.float32) for lo, hi, sz in args), indexing="ij" if ij_indexing else "xy" ) ) .reshape(len(args), -1) .T ) def unproj_map(width, height, f, c=None, device="cpu"): """ Get camera unprojection map for given image size. [y,x] of output tensor will contain unit vector of camera ray of that pixel. :param width image width :param height image height :param f focal length, either a number or tensor [fx, fy] :param c principal point, optional, either None or tensor [fx, fy] if not specified uses center of image :return unproj map (height, width, 3) """ if c is None: c = [width * 0.5, height * 0.5] else: c = c.squeeze() if isinstance(f, float): f = [f, f] elif len(f.shape) == 0: f = f[None].expand(2) elif len(f.shape) == 1: f = f.expand(2) Y, X = torch.meshgrid( torch.arange(height, dtype=torch.float32) - float(c[1]), torch.arange(width, dtype=torch.float32) - float(c[0]), ) X = X.to(device=device) / float(f[0]) Y = Y.to(device=device) / float(f[1]) Z = torch.ones_like(X) unproj = torch.stack((X, -Y, -Z), dim=-1) unproj /= torch.norm(unproj, dim=-1).unsqueeze(-1) return unproj def coord_from_blender(dtype=torch.float32, device="cpu"): """ Blender to standard coordinate system transform. Standard coordinate system is: x right y up z out (out=screen to face) Blender coordinate system is: x right y in z up :return (4, 4) """ return torch.tensor( [[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]], dtype=dtype, device=device, ) def coord_to_blender(dtype=torch.float32, device="cpu"): """ Standard to Blender coordinate system transform. Standard coordinate system is: x right y up z out (out=screen to face) Blender coordinate system is: x right y in z up :return (4, 4) """ return torch.tensor( [[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]], dtype=dtype, device=device, ) def look_at(origin, target, world_up=np.array([0, 1, 0], dtype=np.float32)): """ Get 4x4 camera to world space matrix, for camera looking at target """ back = origin - target back /= np.linalg.norm(back) right = np.cross(world_up, back) right /= np.linalg.norm(right) up = np.cross(back, right) cam_to_world = np.empty((4, 4), dtype=np.float32) cam_to_world[:3, 0] = right cam_to_world[:3, 1] = up cam_to_world[:3, 2] = back cam_to_world[:3, 3] = origin cam_to_world[3, :] = [0, 0, 0, 1] return cam_to_world def get_cuda(gpu_id): """ Get a torch.device for GPU gpu_id. If GPU not available, returns CPU device. """ return ( torch.device("cuda:%d" % gpu_id) if torch.cuda.is_available() else torch.device("cpu") ) def masked_sample(masks, num_pix, prop_inside, thresh=0.5): """ :return (num_pix, 3) """ num_inside = int(num_pix * prop_inside + 0.5) num_outside = num_pix - num_inside inside = (masks >= thresh).nonzero(as_tuple=False) outside = (masks < thresh).nonzero(as_tuple=False) pix_inside = inside[torch.randint(0, inside.shape[0], (num_inside,))] pix_outside = outside[torch.randint(0, outside.shape[0], (num_outside,))] pix = torch.cat((pix_inside, pix_outside)) return pix def bbox_sample(bboxes, num_pix): """ :return (num_pix, 3) """ image_ids = torch.randint(0, bboxes.shape[0], (num_pix,)) pix_bboxes = bboxes[image_ids] x = ( torch.rand(num_pix) * (pix_bboxes[:, 2] + 1 - pix_bboxes[:, 0]) + pix_bboxes[:, 0] ).long() y = ( torch.rand(num_pix) * (pix_bboxes[:, 3] + 1 - pix_bboxes[:, 1]) + pix_bboxes[:, 1] ).long() pix = torch.stack((image_ids, y, x), dim=-1) return pix def gen_rays(poses, width, height, focal, z_near, z_far, c=None, ndc=False): """ Generate camera rays :return (B, H, W, 8) """ num_images = poses.shape[0] device = poses.device cam_unproj_map = ( unproj_map(width, height, focal.squeeze(), c=c, device=device) .unsqueeze(0) .repeat(num_images, 1, 1, 1) ) cam_centers = poses[:, None, None, :3, 3].expand(-1, height, width, -1) cam_raydir = torch.matmul( poses[:, None, None, :3, :3], cam_unproj_map.unsqueeze(-1) )[:, :, :, :, 0] if ndc: if not (z_near == 0 and z_far == 1): warnings.warn( "dataset z near and z_far not compatible with NDC, setting them to 0, 1 NOW" ) z_near, z_far = 0.0, 1.0 cam_centers, cam_raydir = ndc_rays( width, height, focal, 1.0, cam_centers, cam_raydir ) cam_nears = ( torch.tensor(z_near, device=device) .view(1, 1, 1, 1) .expand(num_images, height, width, -1) ) cam_fars = ( torch.tensor(z_far, device=device) .view(1, 1, 1, 1) .expand(num_images, height, width, -1) ) return torch.cat( (cam_centers, cam_raydir, cam_nears, cam_fars), dim=-1 ) # (B, H, W, 8) def trans_t(t): return torch.tensor( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, t], [0, 0, 0, 1],], dtype=torch.float32, ) def rot_phi(phi): return torch.tensor( [ [1, 0, 0, 0], [0, np.cos(phi), -np.sin(phi), 0], [0, np.sin(phi), np.cos(phi), 0], [0, 0, 0, 1], ], dtype=torch.float32, ) def rot_theta(th): return torch.tensor( [ [np.cos(th), 0, -np.sin(th), 0], [0, 1, 0, 0], [np.sin(th), 0, np.cos(th), 0], [0, 0, 0, 1], ], dtype=torch.float32, ) def pose_spherical(theta, phi, radius): """ Spherical rendering poses, from NeRF """ c2w = trans_t(radius) c2w = rot_phi(phi / 180.0 * np.pi) @ c2w c2w = rot_theta(theta / 180.0 * np.pi) @ c2w c2w = ( torch.tensor( [[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]], dtype=torch.float32, ) @ c2w ) return c2w def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def get_norm_layer(norm_type="instance", group_norm_groups=32): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == "batch": norm_layer = functools.partial( nn.BatchNorm2d, affine=True, track_running_stats=True ) elif norm_type == "instance": norm_layer = functools.partial( nn.InstanceNorm2d, affine=False, track_running_stats=False ) elif norm_type == "group": norm_layer = functools.partial(nn.GroupNorm, group_norm_groups) elif norm_type == "none": norm_layer = None else: raise NotImplementedError("normalization layer [%s] is not found" % norm_type) return norm_layer def make_conv_2d( dim_in, dim_out, padding_type="reflect", norm_layer=None, activation=None, kernel_size=3, use_bias=False, stride=1, no_pad=False, zero_init=False, ): conv_block = [] amt = kernel_size // 2 if stride > 1 and not no_pad: raise NotImplementedError( "Padding with stride > 1 not supported, use same_pad_conv2d" ) if amt > 0 and not no_pad: if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(amt)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(amt)] elif padding_type == "zero": conv_block += [nn.ZeroPad2d(amt)] else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block.append( nn.Conv2d( dim_in, dim_out, kernel_size=kernel_size, bias=use_bias, stride=stride ) ) if zero_init: nn.init.zeros_(conv_block[-1].weight) # else: # nn.init.kaiming_normal_(conv_block[-1].weight) if norm_layer is not None: conv_block.append(norm_layer(dim_out)) if activation is not None: conv_block.append(activation) return nn.Sequential(*conv_block) def calc_same_pad_conv2d(t_shape, kernel_size=3, stride=1): in_height, in_width = t_shape[-2:] out_height = math.ceil(in_height / stride) out_width = math.ceil(in_width / stride) pad_along_height = max((out_height - 1) * stride + kernel_size - in_height, 0) pad_along_width = max((out_width - 1) * stride + kernel_size - in_width, 0) pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left return pad_left, pad_right, pad_top, pad_bottom def same_pad_conv2d(t, padding_type="reflect", kernel_size=3, stride=1, layer=None): """ Perform SAME padding on tensor, given kernel size/stride of conv operator assumes kernel/stride are equal in all dimensions. Use before conv called. Dilation not supported. :param t image tensor input (B, C, H, W) :param padding_type padding type constant | reflect | replicate | circular constant is 0-pad. :param kernel_size kernel size of conv :param stride stride of conv :param layer optionally, pass conv layer to automatically get kernel_size and stride (overrides these) """ if layer is not None: if isinstance(layer, nn.Sequential): layer = next(layer.children()) kernel_size = layer.kernel_size[0] stride = layer.stride[0] return F.pad( t, calc_same_pad_conv2d(t.shape, kernel_size, stride), mode=padding_type ) def same_unpad_deconv2d(t, kernel_size=3, stride=1, layer=None): """ Perform SAME unpad on tensor, given kernel/stride of deconv operator. Use after deconv called. Dilation not supported. """ if layer is not None: if isinstance(layer, nn.Sequential): layer = next(layer.children()) kernel_size = layer.kernel_size[0] stride = layer.stride[0] h_scaled = (t.shape[-2] - 1) * stride w_scaled = (t.shape[-1] - 1) * stride pad_left, pad_right, pad_top, pad_bottom = calc_same_pad_conv2d( (h_scaled, w_scaled), kernel_size, stride ) if pad_right == 0: pad_right = -10000 if pad_bottom == 0: pad_bottom = -10000 return t[..., pad_top:-pad_bottom, pad_left:-pad_right] def combine_interleaved(t, inner_dims=(1,), agg_type="average"): if len(inner_dims) == 1 and inner_dims[0] == 1: return t t = t.reshape(-1, *inner_dims, *t.shape[1:]) if agg_type == "average": t = torch.mean(t, dim=1) elif agg_type == "max": t = torch.max(t, dim=1)[0] else: raise NotImplementedError("Unsupported combine type " + agg_type) return t def psnr(pred, target): """ Compute PSNR of two tensors in decibels. pred/target should be of same size or broadcastable """ mse = ((pred - target) ** 2).mean() psnr = -10 * math.log10(mse) return psnr def quat_to_rot(q): """ Quaternion to rotation matrix """ batch_size, _ = q.shape q = F.normalize(q, dim=1) R = torch.ones((batch_size, 3, 3), device=q.device) qr = q[:, 0] qi = q[:, 1] qj = q[:, 2] qk = q[:, 3] R[:, 0, 0] = 1 - 2 * (qj ** 2 + qk ** 2) R[:, 0, 1] = 2 * (qj * qi - qk * qr) R[:, 0, 2] = 2 * (qi * qk + qr * qj) R[:, 1, 0] = 2 * (qj * qi + qk * qr) R[:, 1, 1] = 1 - 2 * (qi ** 2 + qk ** 2) R[:, 1, 2] = 2 * (qj * qk - qi * qr) R[:, 2, 0] = 2 * (qk * qi - qj * qr) R[:, 2, 1] = 2 * (qj * qk + qi * qr) R[:, 2, 2] = 1 - 2 * (qi ** 2 + qj ** 2) return R def rot_to_quat(R): """ Rotation matrix to quaternion """ batch_size, _, _ = R.shape q = torch.ones((batch_size, 4), device=R.device) R00 = R[:, 0, 0] R01 = R[:, 0, 1] R02 = R[:, 0, 2] R10 = R[:, 1, 0] R11 = R[:, 1, 1] R12 = R[:, 1, 2] R20 = R[:, 2, 0] R21 = R[:, 2, 1] R22 = R[:, 2, 2] q[:, 0] = torch.sqrt(1.0 + R00 + R11 + R22) / 2 q[:, 1] = (R21 - R12) / (4 * q[:, 0]) q[:, 2] = (R02 - R20) / (4 * q[:, 0]) q[:, 3] = (R10 - R01) / (4 * q[:, 0]) return q def get_module(net): """ Shorthand for either net.module (if net is instance of DataParallel) or net """ if isinstance(net, torch.nn.DataParallel): return net.module else: return net
29.081633
100
0.583349
f8c72f5c3e8213dd831b99c6d1d8d2bf2995f7a8
4,070
py
Python
marmousi/marmousi2_tools.py
HSE-LAMBDA/RheologyReconstruction
fe89dea28ab0873d075e69c51e9ae2aeb07fe8e2
[ "Apache-2.0" ]
1
2021-01-12T11:43:31.000Z
2021-01-12T11:43:31.000Z
marmousi/marmousi2_tools.py
HSE-LAMBDA/RheologyReconstruction
fe89dea28ab0873d075e69c51e9ae2aeb07fe8e2
[ "Apache-2.0" ]
null
null
null
marmousi/marmousi2_tools.py
HSE-LAMBDA/RheologyReconstruction
fe89dea28ab0873d075e69c51e9ae2aeb07fe8e2
[ "Apache-2.0" ]
null
null
null
import os import shutil import requests from tqdm import tqdm from obspy.io.segy.core import _read_segy import numpy as np import matplotlib.pyplot as plt def get_marmousi2_data_location(): # download link and friends SOURCE_URL = "https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-marmousi/elastic-marmousi-model.tar.gz" PACKED_FILE_NAME = SOURCE_URL.split('/')[-1] FOLDER_NAME = PACKED_FILE_NAME.split('.')[0] # model files names (we know them from MARMOUSI2 spec) DENSITY_FILE = os.path.join(FOLDER_NAME, "model", "MODEL_DENSITY_1.25m.segy") P_WAVE_VELOCITY_FILE = os.path.join(FOLDER_NAME, "model", "MODEL_P-WAVE_VELOCITY_1.25m.segy") S_WAVE_VELOCITY_FILE = os.path.join(FOLDER_NAME, "model", "MODEL_S-WAVE_VELOCITY_1.25m.segy") return (SOURCE_URL, PACKED_FILE_NAME, FOLDER_NAME, DENSITY_FILE, P_WAVE_VELOCITY_FILE, S_WAVE_VELOCITY_FILE) def get_marmousi2_model_params(): # space steps, in meters (we know them from MARMOUSI2 spec) DX = 1.25 DZ = 1.25 # number of space steps NUM_X = 13601 NUM_Z = 2801 return (DX, DZ, NUM_X, NUM_Z) def download(url: str, fname: str): resp = requests.get(url, stream=True) total = int(resp.headers.get('content-length', 0)) with open(fname, 'wb') as file, tqdm( desc=fname, total=total, unit='iB', unit_scale=True, unit_divisor=1024, ) as bar: for data in resp.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) def get_and_unpack_data(): print("Local data not found! We are going to prepare it. Please, be patient, it will take some time.") (SOURCE_URL, PACKED_FILE_NAME, FOLDER_NAME, DENSITY_FILE, P_WAVE_VELOCITY_FILE, S_WAVE_VELOCITY_FILE) = get_marmousi2_data_location() print("Downloading elastic marmousi model") download(SOURCE_URL, PACKED_FILE_NAME) print("Unpacking elastic marmousi model") shutil.unpack_archive(PACKED_FILE_NAME) for f in [DENSITY_FILE, P_WAVE_VELOCITY_FILE, S_WAVE_VELOCITY_FILE]: shutil.unpack_archive(f + ".tar.gz", os.path.split(f)[0]) print("Done") def read_data(start_z = 0.0, stop_z = 3500.0, start_x = 0.0, stop_x = 17000.0, coarse_factor = 1): (SOURCE_URL, PACKED_FILE_NAME, FOLDER_NAME, DENSITY_FILE, P_WAVE_VELOCITY_FILE, S_WAVE_VELOCITY_FILE) \ = get_marmousi2_data_location() if not os.path.exists(FOLDER_NAME): get_and_unpack_data() (DX, DZ, NUM_X, NUM_Z) = get_marmousi2_model_params() rho_coeffs = np.zeros((NUM_Z, NUM_X)) cp_coeffs = np.zeros((NUM_Z, NUM_X)) cs_coeffs = np.zeros((NUM_Z, NUM_X)) start_x_ind = int(start_x / DX) stop_x_ind = 1 + int(stop_x / DX) start_z_ind = int(start_z / DZ) stop_z_ind = 1 + int(stop_z / DZ) _ = [rho_coeffs, cp_coeffs, cs_coeffs] for q, f in enumerate([DENSITY_FILE, P_WAVE_VELOCITY_FILE, S_WAVE_VELOCITY_FILE]): print("Reading", f) segy = _read_segy(f) for i, tr in enumerate(segy.traces): _[q][:, i] = tr.data # clip & coarse & inverse Z-axis rho_coeffs = rho_coeffs[stop_z_ind:start_z_ind:-coarse_factor, start_x_ind:stop_x_ind:coarse_factor] cp_coeffs = cp_coeffs[stop_z_ind:start_z_ind:-coarse_factor, start_x_ind:stop_x_ind:coarse_factor] cs_coeffs = cs_coeffs[stop_z_ind:start_z_ind:-coarse_factor, start_x_ind:stop_x_ind:coarse_factor] rho_coeffs *= 1000 mu_coeffs = rho_coeffs * np.square(cs_coeffs) la_coeffs = rho_coeffs * (np.square(cp_coeffs) - 2 * np.square(cs_coeffs)) return (rho_coeffs, cp_coeffs, cs_coeffs, la_coeffs, mu_coeffs) def show(data, title, start_z = 0.0, stop_z = 3500.0, start_x = 0.0, stop_x = 17000.0): nz, nx = data.shape fig, ax = plt.subplots() ax.set_aspect('equal') im = ax.pcolormesh(np.linspace(start_x, stop_x, nx), np.linspace(-stop_z, -start_z, nz), data) fig.colorbar(im, ax=ax, orientation='horizontal') ax.set_title(title) fig.tight_layout() plt.show()
33.089431
137
0.692875
e214512d5be19e5e29ce15b38dd48ea538abb606
14,381
py
Python
ens/main.py
ayushkumar63123/web3.py
4dda2db9d27a409f1a9c2b4a8ec917b53c51383f
[ "MIT" ]
3,041
2017-11-22T16:23:46.000Z
2022-03-31T15:19:39.000Z
ens/main.py
ayushkumar63123/web3.py
4dda2db9d27a409f1a9c2b4a8ec917b53c51383f
[ "MIT" ]
1,506
2017-11-22T15:44:34.000Z
2022-03-31T18:40:05.000Z
ens/main.py
ayushkumar63123/web3.py
4dda2db9d27a409f1a9c2b4a8ec917b53c51383f
[ "MIT" ]
1,095
2017-11-22T18:20:22.000Z
2022-03-31T13:05:31.000Z
from functools import ( wraps, ) from typing import ( TYPE_CHECKING, Optional, Sequence, Tuple, Union, cast, ) from eth_typing import ( Address, ChecksumAddress, HexAddress, ) from eth_utils import ( is_binary_address, is_checksum_address, to_checksum_address, ) from hexbytes import ( HexBytes, ) from ens import abis from ens.constants import ( EMPTY_ADDR_HEX, ENS_MAINNET_ADDR, REVERSE_REGISTRAR_DOMAIN, ) from ens.exceptions import ( AddressMismatch, UnauthorizedError, UnownedName, ) from ens.utils import ( address_in, address_to_reverse_domain, default, dict_copy, init_web3, is_none_or_zero_address, is_valid_name, label_to_hash, normal_name_to_hash, normalize_name, raw_name_to_hash, ) if TYPE_CHECKING: from web3 import Web3 # noqa: F401 from web3.contract import ( # noqa: F401 Contract, ) from web3.providers import ( # noqa: F401 BaseProvider, ) from web3.types import ( # noqa: F401 TxParams, ) class ENS: """ Quick access to common Ethereum Name Service functions, like getting the address for a name. Unless otherwise specified, all addresses are assumed to be a `str` in `checksum format <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md>`_, like: ``"0x314159265dD8dbb310642f98f50C066173C1259b"`` """ @staticmethod @wraps(label_to_hash) def labelhash(label: str) -> HexBytes: return label_to_hash(label) @staticmethod @wraps(raw_name_to_hash) def namehash(name: str) -> HexBytes: return raw_name_to_hash(name) @staticmethod @wraps(normalize_name) def nameprep(name: str) -> str: return normalize_name(name) @staticmethod @wraps(is_valid_name) def is_valid_name(name: str) -> bool: return is_valid_name(name) @staticmethod @wraps(address_to_reverse_domain) def reverse_domain(address: ChecksumAddress) -> str: return address_to_reverse_domain(address) def __init__( self, provider: 'BaseProvider' = cast('BaseProvider', default), addr: ChecksumAddress = None ) -> None: """ :param provider: a single provider used to connect to Ethereum :type provider: instance of `web3.providers.base.BaseProvider` :param hex-string addr: the address of the ENS registry on-chain. If not provided, ENS.py will default to the mainnet ENS registry address. """ self.web3 = init_web3(provider) ens_addr = addr if addr else ENS_MAINNET_ADDR self.ens = self.web3.eth.contract(abi=abis.ENS, address=ens_addr) self._resolverContract = self.web3.eth.contract(abi=abis.RESOLVER) @classmethod def fromWeb3(cls, web3: 'Web3', addr: ChecksumAddress = None) -> 'ENS': """ Generate an ENS instance with web3 :param `web3.Web3` web3: to infer connection information :param hex-string addr: the address of the ENS registry on-chain. If not provided, ENS.py will default to the mainnet ENS registry address. """ return cls(web3.manager.provider, addr=addr) def address(self, name: str) -> Optional[ChecksumAddress]: """ Look up the Ethereum address that `name` currently points to. :param str name: an ENS name to look up :raises InvalidName: if `name` has invalid syntax """ return cast(ChecksumAddress, self.resolve(name, 'addr')) def name(self, address: ChecksumAddress) -> Optional[str]: """ Look up the name that the address points to, using a reverse lookup. Reverse lookup is opt-in for name owners. :param address: :type address: hex-string """ reversed_domain = address_to_reverse_domain(address) return self.resolve(reversed_domain, get='name') @dict_copy def setup_address( self, name: str, address: Union[Address, ChecksumAddress, HexAddress] = cast(ChecksumAddress, default), transact: "TxParams" = {} ) -> HexBytes: """ Set up the name to point to the supplied address. The sender of the transaction must own the name, or its parent name. Example: If the caller owns ``parentname.eth`` with no subdomains and calls this method with ``sub.parentname.eth``, then ``sub`` will be created as part of this call. :param str name: ENS name to set up :param str address: name will point to this address, in checksum format. If ``None``, erase the record. If not specified, name will point to the owner's address. :param dict transact: the transaction configuration, like in :meth:`~web3.eth.Eth.send_transaction` :raises InvalidName: if ``name`` has invalid syntax :raises UnauthorizedError: if ``'from'`` in `transact` does not own `name` """ owner = self.setup_owner(name, transact=transact) self._assert_control(owner, name) if is_none_or_zero_address(address): address = None elif address is default: address = owner elif is_binary_address(address): address = to_checksum_address(cast(str, address)) elif not is_checksum_address(address): raise ValueError("You must supply the address in checksum format") if self.address(name) == address: return None if address is None: address = EMPTY_ADDR_HEX transact['from'] = owner resolver: 'Contract' = self._set_resolver(name, transact=transact) return resolver.functions.setAddr(raw_name_to_hash(name), address).transact(transact) @dict_copy def setup_name( self, name: str, address: ChecksumAddress = None, transact: "TxParams" = {} ) -> HexBytes: """ Set up the address for reverse lookup, aka "caller ID". After successful setup, the method :meth:`~ens.main.ENS.name` will return `name` when supplied with `address`. :param str name: ENS name that address will point to :param str address: to set up, in checksum format :param dict transact: the transaction configuration, like in :meth:`~web3.eth.send_transaction` :raises AddressMismatch: if the name does not already point to the address :raises InvalidName: if `name` has invalid syntax :raises UnauthorizedError: if ``'from'`` in `transact` does not own `name` :raises UnownedName: if no one owns `name` """ if not name: self._assert_control(address, 'the reverse record') return self._setup_reverse(None, address, transact=transact) else: resolved = self.address(name) if is_none_or_zero_address(address): address = resolved elif resolved and address != resolved and resolved != EMPTY_ADDR_HEX: raise AddressMismatch( "Could not set address %r to point to name, because the name resolves to %r. " "To change the name for an existing address, call setup_address() first." % ( address, resolved ) ) if is_none_or_zero_address(address): address = self.owner(name) if is_none_or_zero_address(address): raise UnownedName("claim subdomain using setup_address() first") if is_binary_address(address): address = to_checksum_address(address) if not is_checksum_address(address): raise ValueError("You must supply the address in checksum format") self._assert_control(address, name) if not resolved: self.setup_address(name, address, transact=transact) return self._setup_reverse(name, address, transact=transact) def resolve(self, name: str, get: str = 'addr') -> Optional[Union[ChecksumAddress, str]]: normal_name = normalize_name(name) resolver = self.resolver(normal_name) if resolver: lookup_function = getattr(resolver.functions, get) namehash = normal_name_to_hash(normal_name) address = lookup_function(namehash).call() if is_none_or_zero_address(address): return None return lookup_function(namehash).call() else: return None def resolver(self, normal_name: str) -> Optional['Contract']: resolver_addr = self.ens.caller.resolver(normal_name_to_hash(normal_name)) if is_none_or_zero_address(resolver_addr): return None return self._resolverContract(address=resolver_addr) def reverser(self, target_address: ChecksumAddress) -> Optional['Contract']: reversed_domain = address_to_reverse_domain(target_address) return self.resolver(reversed_domain) def owner(self, name: str) -> ChecksumAddress: """ Get the owner of a name. Note that this may be different from the deed holder in the '.eth' registrar. Learn more about the difference between deed and name ownership in the ENS `Managing Ownership docs <http://docs.ens.domains/en/latest/userguide.html#managing-ownership>`_ :param str name: ENS name to look up :return: owner address :rtype: str """ node = raw_name_to_hash(name) return self.ens.caller.owner(node) @dict_copy def setup_owner( self, name: str, new_owner: ChecksumAddress = cast(ChecksumAddress, default), transact: "TxParams" = {} ) -> ChecksumAddress: """ Set the owner of the supplied name to `new_owner`. For typical scenarios, you'll never need to call this method directly, simply call :meth:`setup_name` or :meth:`setup_address`. This method does *not* set up the name to point to an address. If `new_owner` is not supplied, then this will assume you want the same owner as the parent domain. If the caller owns ``parentname.eth`` with no subdomains and calls this method with ``sub.parentname.eth``, then ``sub`` will be created as part of this call. :param str name: ENS name to set up :param new_owner: account that will own `name`. If ``None``, set owner to empty addr. If not specified, name will point to the parent domain owner's address. :param dict transact: the transaction configuration, like in :meth:`~web3.eth.Eth.send_transaction` :raises InvalidName: if `name` has invalid syntax :raises UnauthorizedError: if ``'from'`` in `transact` does not own `name` :returns: the new owner's address """ (super_owner, unowned, owned) = self._first_owner(name) if new_owner is default: new_owner = super_owner elif not new_owner: new_owner = ChecksumAddress(EMPTY_ADDR_HEX) else: new_owner = to_checksum_address(new_owner) current_owner = self.owner(name) if new_owner == EMPTY_ADDR_HEX and not current_owner: return None elif current_owner == new_owner: return current_owner else: self._assert_control(super_owner, name, owned) self._claim_ownership(new_owner, unowned, owned, super_owner, transact=transact) return new_owner def _assert_control(self, account: ChecksumAddress, name: str, parent_owned: Optional[str] = None) -> None: if not address_in(account, self.web3.eth.accounts): raise UnauthorizedError( "in order to modify %r, you must control account %r, which owns %r" % ( name, account, parent_owned or name ) ) def _first_owner(self, name: str) -> Tuple[Optional[ChecksumAddress], Sequence[str], str]: """ Takes a name, and returns the owner of the deepest subdomain that has an owner :returns: (owner or None, list(unowned_subdomain_labels), first_owned_domain) """ owner = None unowned = [] pieces = normalize_name(name).split('.') while pieces and is_none_or_zero_address(owner): name = '.'.join(pieces) owner = self.owner(name) if is_none_or_zero_address(owner): unowned.append(pieces.pop(0)) return (owner, unowned, name) @dict_copy def _claim_ownership( self, owner: ChecksumAddress, unowned: Sequence[str], owned: str, old_owner: ChecksumAddress = None, transact: "TxParams" = {} ) -> None: transact['from'] = old_owner or owner for label in reversed(unowned): self.ens.functions.setSubnodeOwner( raw_name_to_hash(owned), label_to_hash(label), owner ).transact(transact) owned = "%s.%s" % (label, owned) @dict_copy def _set_resolver( self, name: str, resolver_addr: ChecksumAddress = None, transact: "TxParams" = {} ) -> 'Contract': if is_none_or_zero_address(resolver_addr): resolver_addr = self.address('resolver.eth') namehash = raw_name_to_hash(name) if self.ens.caller.resolver(namehash) != resolver_addr: self.ens.functions.setResolver( namehash, resolver_addr ).transact(transact) return self._resolverContract(address=resolver_addr) @dict_copy def _setup_reverse( self, name: str, address: ChecksumAddress, transact: "TxParams" = {} ) -> HexBytes: if name: name = normalize_name(name) else: name = '' transact['from'] = address return self._reverse_registrar().functions.setName(name).transact(transact) def _reverse_registrar(self) -> 'Contract': addr = self.ens.caller.owner(normal_name_to_hash(REVERSE_REGISTRAR_DOMAIN)) return self.web3.eth.contract(address=addr, abi=abis.REVERSE_REGISTRAR)
37.064433
100
0.630346
9a319683472467779aad97a3b6410849b862bc8a
440
py
Python
packages/python/plotly/plotly/validators/histogram2d/colorbar/_bordercolor.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/histogram2d/colorbar/_bordercolor.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/histogram2d/colorbar/_bordercolor.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="histogram2d.colorbar", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), **kwargs, )
31.428571
85
0.670455
dd40a79298db328cccabd0cff23824aa2bf0ae0c
9,327
py
Python
code/stable/glassbr/src/python/Interpolation.py
Danki567/Drasil
d6bd7d0564710ae70b4847301d3d4df3f83fba11
[ "BSD-2-Clause" ]
2
2021-06-24T15:39:55.000Z
2021-06-24T16:57:00.000Z
code/stable/glassbr/src/python/Interpolation.py
Danki567/Drasil
d6bd7d0564710ae70b4847301d3d4df3f83fba11
[ "BSD-2-Clause" ]
null
null
null
code/stable/glassbr/src/python/Interpolation.py
Danki567/Drasil
d6bd7d0564710ae70b4847301d3d4df3f83fba11
[ "BSD-2-Clause" ]
null
null
null
## \file Interpolation.py # \author Nikitha Krithnan and W. Spencer Smith # \brief Provides functions for linear interpolation on three-dimensional data import ReadTable ## \brief Performs linear interpolation # \param x_1 lower x-coordinate # \param y_1 lower y-coordinate # \param x_2 upper x-coordinate # \param y_2 upper y-coordinate # \param x x-coordinate to interpolate at # \return y value interpolated at given x value def func_lin_interp(x_1, y_1, x_2, y_2, x): outfile = open("log.txt", "a") print("function func_lin_interp called with inputs: {", file=outfile) print(" x_1 = ", end='', file=outfile) print(x_1, end='', file=outfile) print(", ", file=outfile) print(" y_1 = ", end='', file=outfile) print(y_1, end='', file=outfile) print(", ", file=outfile) print(" x_2 = ", end='', file=outfile) print(x_2, end='', file=outfile) print(", ", file=outfile) print(" y_2 = ", end='', file=outfile) print(y_2, end='', file=outfile) print(", ", file=outfile) print(" x = ", end='', file=outfile) print(x, file=outfile) print(" }", file=outfile) outfile.close() return (y_2 - y_1) / (x_2 - x_1) * (x - x_1) + y_1 ## \brief Finds the array index for a value closest to the given value # \param arr array in which value should be found # \param v value whose index will be found # \return index of given value in given array def func_find(arr, v): outfile = open("log.txt", "a") print("function func_find called with inputs: {", file=outfile) print(" arr = ", end='', file=outfile) print(arr, end='', file=outfile) print(", ", file=outfile) print(" v = ", end='', file=outfile) print(v, file=outfile) print(" }", file=outfile) outfile.close() for i in range(0, len(arr) - 1, 1): if (arr[i] <= v and v <= arr[i + 1]) : return i raise Exception("Bound error") ## \brief Extracts a column from a 2D matrix # \param mat matrix from which column will be extracted # \param j index # \return column of the given matrix at the given index def func_extractColumn(mat, j): outfile = open("log.txt", "a") print("function func_extractColumn called with inputs: {", file=outfile) print(" mat = ", end='', file=outfile) print(mat, end='', file=outfile) print(", ", file=outfile) print(" j = ", end='', file=outfile) print(j, file=outfile) print(" }", file=outfile) outfile.close() col = [] for i in range(0, len(mat), 1): col.append(mat[i][j]) return col ## \brief Linearly interpolates a y value at given x and z values # \param filename name of file with x y and z data # \param x x-coordinate to interpolate at # \param z z-coordinate to interpolate at # \return y value interpolated at given x and z values def func_interpY(filename, x, z): outfile = open("log.txt", "a") print("function func_interpY called with inputs: {", file=outfile) print(" filename = ", end='', file=outfile) print(filename, end='', file=outfile) print(", ", file=outfile) print(" x = ", end='', file=outfile) print(x, end='', file=outfile) print(", ", file=outfile) print(" z = ", end='', file=outfile) print(z, file=outfile) print(" }", file=outfile) outfile.close() x_matrix = [] y_matrix = [] z_vector = [] ReadTable.func_read_table(filename, z_vector, x_matrix, y_matrix) i = func_find(z_vector, z) outfile = open("log.txt", "a") print("var 'i' assigned to ", end='', file=outfile) print(i, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() x_z_1 = func_extractColumn(x_matrix, i) outfile = open("log.txt", "a") print("var 'x_z_1' assigned to ", end='', file=outfile) print(x_z_1, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() y_z_1 = func_extractColumn(y_matrix, i) outfile = open("log.txt", "a") print("var 'y_z_1' assigned to ", end='', file=outfile) print(y_z_1, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() x_z_2 = func_extractColumn(x_matrix, i + 1) outfile = open("log.txt", "a") print("var 'x_z_2' assigned to ", end='', file=outfile) print(x_z_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() y_z_2 = func_extractColumn(y_matrix, i + 1) outfile = open("log.txt", "a") print("var 'y_z_2' assigned to ", end='', file=outfile) print(y_z_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() try : j = func_find(x_z_1, x) outfile = open("log.txt", "a") print("var 'j' assigned to ", end='', file=outfile) print(j, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() k_2 = func_find(x_z_2, x) outfile = open("log.txt", "a") print("var 'k_2' assigned to ", end='', file=outfile) print(k_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() except Exception : raise Exception("Interpolation of y failed") y_1 = func_lin_interp(x_z_1[j], y_z_1[j], x_z_1[j + 1], y_z_1[j + 1], x) outfile = open("log.txt", "a") print("var 'y_1' assigned to ", end='', file=outfile) print(y_1, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() y_2 = func_lin_interp(x_z_2[k_2], y_z_2[k_2], x_z_2[k_2 + 1], y_z_2[k_2 + 1], x) outfile = open("log.txt", "a") print("var 'y_2' assigned to ", end='', file=outfile) print(y_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() return func_lin_interp(z_vector[i], y_1, z_vector[i + 1], y_2, z) ## \brief Linearly interpolates a z value at given x and y values # \param filename name of file with x y and z data # \param x x-coordinate to interpolate at # \param y y-coordinate to interpolate at # \return z value interpolated at given x and y values def func_interpZ(filename, x, y): outfile = open("log.txt", "a") print("function func_interpZ called with inputs: {", file=outfile) print(" filename = ", end='', file=outfile) print(filename, end='', file=outfile) print(", ", file=outfile) print(" x = ", end='', file=outfile) print(x, end='', file=outfile) print(", ", file=outfile) print(" y = ", end='', file=outfile) print(y, file=outfile) print(" }", file=outfile) outfile.close() x_matrix = [] y_matrix = [] z_vector = [] ReadTable.func_read_table(filename, z_vector, x_matrix, y_matrix) for i in range(0, len(z_vector) - 1, 1): x_z_1 = func_extractColumn(x_matrix, i) outfile = open("log.txt", "a") print("var 'x_z_1' assigned to ", end='', file=outfile) print(x_z_1, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() y_z_1 = func_extractColumn(y_matrix, i) outfile = open("log.txt", "a") print("var 'y_z_1' assigned to ", end='', file=outfile) print(y_z_1, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() x_z_2 = func_extractColumn(x_matrix, i + 1) outfile = open("log.txt", "a") print("var 'x_z_2' assigned to ", end='', file=outfile) print(x_z_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() y_z_2 = func_extractColumn(y_matrix, i + 1) outfile = open("log.txt", "a") print("var 'y_z_2' assigned to ", end='', file=outfile) print(y_z_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() try : j = func_find(x_z_1, x) outfile = open("log.txt", "a") print("var 'j' assigned to ", end='', file=outfile) print(j, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() k_2 = func_find(x_z_2, x) outfile = open("log.txt", "a") print("var 'k_2' assigned to ", end='', file=outfile) print(k_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() except Exception : continue y_1 = func_lin_interp(x_z_1[j], y_z_1[j], x_z_1[j + 1], y_z_1[j + 1], x) outfile = open("log.txt", "a") print("var 'y_1' assigned to ", end='', file=outfile) print(y_1, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() y_2 = func_lin_interp(x_z_2[k_2], y_z_2[k_2], x_z_2[k_2 + 1], y_z_2[k_2 + 1], x) outfile = open("log.txt", "a") print("var 'y_2' assigned to ", end='', file=outfile) print(y_2, end='', file=outfile) print(" in module Interpolation", file=outfile) outfile.close() if (y_1 <= y and y <= y_2) : return func_lin_interp(y_1, z_vector[i], y_2, z_vector[i + 1], y) raise Exception("Interpolation of z failed")
39.689362
88
0.604803
b0f8ba0dff5eebe7506a4bd4803fa885aeca1a46
6,509
py
Python
crawler.py
AlisonJonantan/crawlerlivescore
96ba6213c2eea3aa91d794eb6e5c2f650e1364ac
[ "Apache-2.0" ]
5
2018-08-08T20:38:57.000Z
2022-02-01T15:21:58.000Z
crawler.py
Maarcosv99/crawlerlivescore
96ba6213c2eea3aa91d794eb6e5c2f650e1364ac
[ "Apache-2.0" ]
null
null
null
crawler.py
Maarcosv99/crawlerlivescore
96ba6213c2eea3aa91d794eb6e5c2f650e1364ac
[ "Apache-2.0" ]
5
2018-08-01T17:58:28.000Z
2022-02-11T03:35:09.000Z
import requests from bs4 import BeautifulSoup from administracao.models import Analise, Prognostico from core.models import JogoAnaliseAoVivo, JogoAoVivo # CRAWLER DO PLACAR DE FUTEBOL def autenticacaoPlacar(): url = 'https://www.placardefutebol.com.br/jogos-de-hoje' proxies = {'http': '107.170.42.158:80'} r = requests.get(url) soup = BeautifulSoup(r.text, 'lxml') return soup def jogos(): soup = autenticacaoPlacar() url = 'https://www.placardefutebol.com.br' campeonatos = soup.find('div', {'id': 'livescore'}).find_all('div', {'class': 'container content'}) todos_jogos = [] for campeonato in campeonatos: jogos = campeonato.find_all('a') for jogo in jogos: jogo = dados_jogo(jogo) if not 'erro' in jogo: if jogo['time_casa'] and jogo['time_fora']: if jogo['status']: index = str(jogo['status']) if jogo['status'] == 'AO VIVO' or index.find('MIN') > 0: todos_jogos.append(jogo) return todos_jogos def dados_jogo(jogo): url = 'https://www.placardefutebol.com.br' jogo_link = '{0}{1}'.format(url, jogo['href']) erro = False try: jogo_status = jogo.find('span', {'class': 'status-name'}).string except AttributeError: erro = True if erro: return ({'erro': erro}) jogo_time_casa = jogo.find('h5', {'class': 'text-right team_link'}).string try: jogo_time_casa_gols = jogo.find({'class':'match-score'}).find({'class':'badge'}).string print('Time casa gols:' + jogo_time_casa_gols) except AttributeError: jogo_time_casa_gols = '0' jogo_time_fora = jogo.find('h5', {'class': 'text-left team_link'}).string try: jogo_time_fora_gols = jogo.find_all(class_='match-score')[1].find(class_='badge').string print('Time fora gols:' + jogo_time_fora_gols) except AttributeError: jogo_time_fora_gols = '0' return {'link': jogo_link, 'status': jogo_status, 'time_casa': jogo_time_casa, 'time_casa_gol': jogo_time_casa_gols, 'time_fora': jogo_time_fora, 'time_fora_gol': jogo_time_fora_gols} def procurar_jogo(todos_jogos, time_casa, time_fora): for jogo in todos_jogos: if jogo['time_casa'].find(time_casa) >= 0 and jogo['time_fora'].find(time_fora) >= 0: return jogo return False def status_gol(jogo): link = jogo['link'] r = requests.get(link) soup = BeautifulSoup(r.text, 'lxml') eventos_casa = soup.find_all('div', {'class': 'match-card-events-home-team'}) eventos_fora = soup.find_all('div', {'class': 'match-card-events-away-team'}) gols_casa_ft = 0 gols_casa_ht = 0 for evento_casa in eventos_casa: try: gols_casa = evento_casa.find_all('i', {'class': 'fa fa-futbol-o'}) for gol_casa in gols_casa: gols_casa_ft += 1 tempo_do_gol = gol_casa.next_sibling tempo_do_gol = int(tempo_do_gol.replace(" - ", "").replace("'", "")) if tempo_do_gol <= 45: gols_casa_ht += 1 except: gols_casa = 0 gols_fora_ft = 0 gols_fora_ht = 0 for evento_fora in eventos_fora: try: gols_fora = evento_fora.find_all('i', {'class': 'fa fa-futbol-o'}) for gol_fora in gols_fora: gols_fora_ft += 1 tempo_do_gol = gol_fora.previous_sibling tempo_do_gol = int(tempo_do_gol[:1]) if tempo_do_gol <= 45: gols_fora_ht += 1 except: gols_fora = 0 return {'CasaHT': gols_casa_ht, 'CasaFT': gols_casa_ft, 'ForaHT': gols_fora_ht, 'ForaFT': gols_fora_ft} def jogoAnaliseAoVivo(todos_jogos): ultimaAnalise = Analise.objects.order_by('id').last() prognosticos = Prognostico.objects.all().filter(analise=ultimaAnalise).order_by('-id') tamanho_lista = len(prognosticos) index = 0 for jogo in prognosticos: index += 1 response = procurar_jogo(todos_jogos, jogo.time_casa, jogo.time_fora) if response: if type(response) is dict: try: instancia = JogoAnaliseAoVivo.objects.order_by('id').last() except: instancia = JogoAnaliseAoVivo( time_casa=response['time_casa'], time_casa_gol=response['time_casa_gol'], time_fora=response['time_fora'], time_fora_gol=response['time_fora_gol'], tip=jogo.entrada) instancia.save() break return True instancia.time_casa = response['time_casa'] instancia.time_casa_gol = response['time_casa_gol'] instancia.time_fora = response['time_fora'] instancia.time_fora_gol = response['time_fora_gol'] instancia.tip = jogo.entrada instancia.save() break return True elif index == (tamanho_lista - 1): instancia = JogoAnaliseAoVivo.objects.order_by('id').last() instancia.time_casa = None instancia.time_casa_gol = None instancia.time_fora = None instancia.time_fora_gol = None instancia.tip = None instancia.save() return True def jogoAoVivo(todos_jogos): jogo = todos_jogos[0] if not jogo: instancia = JogoAoVivo.objects.order_by('id').last() instancia.time_casa = None instancia.time_casa_gol = None instancia.time_fora = None instancia.time_fora_gol = None instancia.save() return True else: try: instancia = JogoAoVivo.objects.order_by('id').last() except: instancia = JogoAoVivo( time_casa=jogo['time_casa'], time_casa_gol=jogo['time_casa_gol'], time_fora=jogo['time_fora'], time_fora_gol=jogo['time_fora_gol']) instancia.save() return True instancia.time_casa = jogo['time_casa'] instancia.time_casa_gol = jogo['time_casa_gol'] instancia.time_fora = jogo['time_fora'] instancia.time_fora_gol = jogo['time_fora_gol'] instancia.save() return True
36.161111
120
0.584268
eae8f927d0fdb4a9d3b14261b008b52ad0300f41
4,794
py
Python
code/make_features.py
lvniqi/tianchi_power
4e2e5bb979dc068f4d37341ec43b8993ff71cd12
[ "MIT" ]
13
2017-08-18T02:15:05.000Z
2019-11-06T12:57:31.000Z
code/make_features.py
lvniqi/tianchi_power
4e2e5bb979dc068f4d37341ec43b8993ff71cd12
[ "MIT" ]
null
null
null
code/make_features.py
lvniqi/tianchi_power
4e2e5bb979dc068f4d37341ec43b8993ff71cd12
[ "MIT" ]
11
2017-08-09T08:08:00.000Z
2019-11-06T12:57:35.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu May 18 19:17:04 2017 @author: boweiy """ import pandas as pd import numpy as np from multiprocessing import Pool as m_Pool from preprocess import get_dataset,get_user_id_list,increase_index from preprocess import save_month_df,save_history_df from preprocess import check_empty,filter_user_id def make_features(user_id,user_df): """ 构造单天特征 """ print 'user_id:', user_id power = user_df.power_consumption assert power.index[0] == user_df.index[0] assert len(user_df.index) == 639 new_df = pd.DataFrame(index=user_df.index.union(pd.date_range('2016-9-1','2016-9-30'))) pw_new = power.copy() #predict 30 days and 30days for features for d in range(60): pw_new.index += pd.Timedelta('1D') new_df['power#-%d'%(d+1)] = pw_new #create 30 models for d in range(30): #30 days features x_ = new_df[new_df.columns[d:30+d]] x_['y'] = power x_.to_csv('./features/day_model/%d/%d.csv'%(d+1,user_id)) #return x_ def make_month_features(user_id,user_df): """ 构造单天特征 """ print 'user_id:', user_id power = user_df.power_consumption.copy() assert power.index[0] == user_df.index[0] new_df = pd.DataFrame(index=user_df.index.union(pd.date_range('2016-10-1','2016-10-31'))) pw_new = power.copy() #predict 30 days and 30days for features for d in range(30): pw_new.index += pd.Timedelta('1D') new_df['power#-%d'%(d+1)] = pw_new #create 30 models for d in range(31): #30 days features new_df['y#%d'%d] = power power.index -= pd.Timedelta('1D') save_month_df(new_df,user_id) return new_df def make_month_features_all(): pw_df_list = [] dataset = get_dataset() dataset.power_consumption = dataset.power_consumption.apply(np.log) for user_id in get_user_id_list(): print user_id if not check_empty(user_id): user_df = filter_user_id(dataset,user_id).resample('1D').mean().fillna(0) #add to list pw_df_list.append((user_id,user_df)) #make_features(user_id,user_df) p = m_Pool(64) for arg in pw_df_list: #p.apply_async(make_features,args=(arg)) p.apply_async(make_month_features,args=(arg)) print 'Waiting for all subprocesses done...' p.close() p.join() def history_feature(user_df): user_pow_last_year = user_df.ix[user_df.index <'2016-1-1'] user_pow_last_year = increase_index(user_pow_last_year) #weekly average weekly_roll = user_pow_last_year.rolling(7,center=True) weekly_median = weekly_roll.median() weekly_max = weekly_roll.max() weekly_min = weekly_roll.min() #weekly2 average weekly2_roll = user_pow_last_year.rolling(14,center=True) weekly2_median = weekly2_roll.median() #monthly average monthly_roll = user_pow_last_year.rolling(30,center=True) monthly_median = monthly_roll.median() feature_index = user_pow_last_year.index[user_pow_last_year.index<'2016-10-30'] feature_df = pd.DataFrame(index = feature_index) feature_df['weekly_median'] = weekly_median feature_df['weekly_max'] = weekly_max feature_df['weekly_min'] = weekly_min feature_df['weekly2_median'] = weekly2_median feature_df['monthly_median'] = monthly_median feature_df = feature_df.dropna() feature_df = feature_df.apply(np.log) return feature_df def make_history_month_features(user_id,user_df): """ 构造单天特征 """ print 'user_id:', user_id power = user_df.power_consumption.copy() feature_df = history_feature(power) new_df = pd.DataFrame(index = feature_df.index) #create 30 models for d in range(30): for cols in feature_df: #30 days features new_df[cols+'#%d'%d] = feature_df[cols] feature_df.index -= pd.Timedelta('1D') new_df = new_df.dropna() save_history_df(new_df.dropna(),user_id) return new_df def make_history_month_features_all(): pw_df_list = [] dataset = get_dataset() dataset.power_consumption = dataset.power_consumption for user_id in get_user_id_list(): print user_id if not check_empty(user_id): user_df = filter_user_id(dataset,user_id).resample('1D').mean().fillna(1) #add to list pw_df_list.append((user_id,user_df)) #make_features(user_id,user_df) p = m_Pool(64) for arg in pw_df_list: p.apply_async(make_history_month_features,args=(arg)) print 'Waiting for all subprocesses done...' p.close() p.join() if __name__ == '__main__': make_month_features_all() #make_history_month_features_all()
32.835616
93
0.666458
fcf4889933740a449feedd6cfb64149050165b8f
25,122
py
Python
neutron/privileged/agent/linux/ip_lib.py
1pintbeer/neutron
f5a827c2be06f24a1f8025f120f16c12eb1b1f55
[ "Apache-2.0" ]
null
null
null
neutron/privileged/agent/linux/ip_lib.py
1pintbeer/neutron
f5a827c2be06f24a1f8025f120f16c12eb1b1f55
[ "Apache-2.0" ]
null
null
null
neutron/privileged/agent/linux/ip_lib.py
1pintbeer/neutron
f5a827c2be06f24a1f8025f120f16c12eb1b1f55
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import errno import functools import os import socket from neutron_lib import constants from oslo_concurrency import lockutils import pyroute2 from pyroute2 import netlink from pyroute2.netlink import exceptions as netlink_exceptions from pyroute2.netlink import rtnl from pyroute2.netlink.rtnl import ifinfmsg from pyroute2.netlink.rtnl import ndmsg from pyroute2 import NetlinkError from pyroute2 import netns import six from neutron._i18n import _ from neutron import privileged _IP_VERSION_FAMILY_MAP = {4: socket.AF_INET, 6: socket.AF_INET6} NETNS_RUN_DIR = '/var/run/netns' @lockutils.synchronized("privileged-ip-lib") # NOTE(slaweq): Because of issue with pyroute2.NetNS objects running in threads # we need to lock this function to workaround this issue. # For details please check https://bugs.launchpad.net/neutron/+bug/1811515 def _sync(input_func): # NOTE(ralonsoh): this is needed because PY2 functools.update_wrapper do # not handle correctly partial functions (nested decorators). This could be # removed once we abandon support for PY2. if six.PY2 and isinstance(input_func, functools.partial): for asig in functools.WRAPPER_ASSIGNMENTS: setattr(input_func, asig, '') @six.wraps(input_func) def sync_inner(*args, **kwargs): return input_func(*args, **kwargs) return sync_inner def _get_scope_name(scope): """Return the name of the scope (given as a number), or the scope number if the name is unknown. For backward compatibility (with "ip" tool) "global" scope is converted to "universe" before converting to number """ scope = 'universe' if scope == 'global' else scope return rtnl.rt_scope.get(scope, scope) class NetworkNamespaceNotFound(RuntimeError): message = _("Network namespace %(netns_name)s could not be found.") def __init__(self, netns_name): super(NetworkNamespaceNotFound, self).__init__( self.message % {'netns_name': netns_name}) class NetworkInterfaceNotFound(RuntimeError): message = _("Network interface %(device)s not found in namespace " "%(namespace)s.") def __init__(self, message=None, device=None, namespace=None): # NOTE(slaweq): 'message' can be passed as an optional argument # because of how privsep daemon works. If exception is raised in # function called by privsep daemon, it will then try to reraise it # and will call it always with passing only message from originally # raised exception. message = message or self.message % { 'device': device, 'namespace': namespace} super(NetworkInterfaceNotFound, self).__init__(message) class InterfaceOperationNotSupported(RuntimeError): message = _("Operation not supported on interface %(device)s, namespace " "%(namespace)s.") def __init__(self, message=None, device=None, namespace=None): # NOTE(slaweq): 'message' can be passed as an optional argument # because of how privsep daemon works. If exception is raised in # function called by privsep daemon, it will then try to reraise it # and will call it always with passing only message from originally # raised exception. message = message or self.message % { 'device': device, 'namespace': namespace} super(InterfaceOperationNotSupported, self).__init__(message) class IpAddressAlreadyExists(RuntimeError): message = _("IP address %(ip)s already configured on %(device)s.") def __init__(self, message=None, ip=None, device=None): # NOTE(slaweq): 'message' can be passed as an optional argument # because of how privsep daemon works. If exception is raised in # function called by privsep daemon, it will then try to reraise it # and will call it always with passing only message from originally # raised exception. message = message or self.message % {'ip': ip, 'device': device} super(IpAddressAlreadyExists, self).__init__(message) class InterfaceAlreadyExists(RuntimeError): message = _("Interface %(device)s already exists.") def __init__(self, message=None, device=None): # NOTE(slaweq): 'message' can be passed as an optional argument # because of how privsep daemon works. If exception is raised in # function called by privsep daemon, it will then try to reraise it # and will call it always with passing only message from originally # raised exception. message = message or self.message % {'device': device} super(InterfaceAlreadyExists, self).__init__(message) def _make_route_dict(destination, nexthop, device, scope): return {'destination': destination, 'nexthop': nexthop, 'device': device, 'scope': scope} @_sync @privileged.default.entrypoint def get_routing_table(ip_version, namespace=None): """Return a list of dictionaries, each representing a route. :param ip_version: IP version of routes to return, for example 4 :param namespace: The name of the namespace from which to get the routes :return: a list of dictionaries, each representing a route. The dictionary format is: {'destination': cidr, 'nexthop': ip, 'device': device_name, 'scope': scope} """ family = _IP_VERSION_FAMILY_MAP[ip_version] try: netns = pyroute2.NetNS(namespace, flags=0) if namespace else None except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise routes = [] with pyroute2.IPDB(nl=netns) as ipdb: ipdb_routes = ipdb.routes ipdb_interfaces = ipdb.interfaces for route in ipdb_routes: if route['family'] != family: continue dst = route['dst'] nexthop = route.get('gateway') oif = route.get('oif') scope = _get_scope_name(route['scope']) # If there is not a valid outgoing interface id, check if # this is a multipath route (i.e. same destination with # multiple outgoing interfaces) if oif: device = ipdb_interfaces[oif]['ifname'] rt = _make_route_dict(dst, nexthop, device, scope) routes.append(rt) elif route.get('multipath'): for mpr in route['multipath']: oif = mpr['oif'] device = ipdb_interfaces[oif]['ifname'] rt = _make_route_dict(dst, nexthop, device, scope) routes.append(rt) return routes def get_iproute(namespace): # From iproute.py: # `IPRoute` -- RTNL API to the current network namespace # `NetNS` -- RTNL API to another network namespace if namespace: # do not try and create the namespace return pyroute2.NetNS(namespace, flags=0) else: return pyroute2.IPRoute() @_sync @privileged.default.entrypoint def open_namespace(namespace): """Open namespace to test if the namespace is ready to be manipulated""" with pyroute2.NetNS(namespace, flags=0): pass @privileged.default.entrypoint def list_ns_pids(namespace): """List namespace process PIDs Based on Pyroute2.netns.ns_pids(). Remove when https://github.com/svinota/pyroute2/issues/633 is fixed. """ ns_pids = [] try: ns_path = os.path.join(NETNS_RUN_DIR, namespace) ns_inode = os.stat(ns_path).st_ino except OSError: return ns_pids for pid in os.listdir('/proc'): if not pid.isdigit(): continue try: pid_path = os.path.join('/proc', pid, 'ns', 'net') if os.stat(pid_path).st_ino == ns_inode: ns_pids.append(int(pid)) except OSError: continue return ns_pids def _translate_ip_device_exception(e, device=None, namespace=None): if e.code == errno.ENODEV: raise NetworkInterfaceNotFound(device=device, namespace=namespace) if e.code == errno.EOPNOTSUPP: raise InterfaceOperationNotSupported(device=device, namespace=namespace) def get_link_id(device, namespace): try: with get_iproute(namespace) as ip: return ip.link_lookup(ifname=device)[0] except IndexError: raise NetworkInterfaceNotFound(device=device, namespace=namespace) def _run_iproute_link(command, device, namespace=None, **kwargs): try: with get_iproute(namespace) as ip: idx = get_link_id(device, namespace) return ip.link(command, index=idx, **kwargs) except NetlinkError as e: _translate_ip_device_exception(e, device, namespace) raise except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise def _run_iproute_neigh(command, device, namespace, **kwargs): try: with get_iproute(namespace) as ip: idx = get_link_id(device, namespace) return ip.neigh(command, ifindex=idx, **kwargs) except NetlinkError as e: _translate_ip_device_exception(e, device, namespace) raise except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise def _run_iproute_addr(command, device, namespace, **kwargs): try: with get_iproute(namespace) as ip: idx = get_link_id(device, namespace) return ip.addr(command, index=idx, **kwargs) except NetlinkError as e: _translate_ip_device_exception(e, device, namespace) raise except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def add_ip_address(ip_version, ip, prefixlen, device, namespace, scope, broadcast=None): family = _IP_VERSION_FAMILY_MAP[ip_version] try: _run_iproute_addr('add', device, namespace, address=ip, mask=prefixlen, family=family, broadcast=broadcast, scope=_get_scope_name(scope)) except NetlinkError as e: if e.code == errno.EEXIST: raise IpAddressAlreadyExists(ip=ip, device=device) raise @_sync @privileged.default.entrypoint def delete_ip_address(ip_version, ip, prefixlen, device, namespace): family = _IP_VERSION_FAMILY_MAP[ip_version] try: _run_iproute_addr("delete", device, namespace, address=ip, mask=prefixlen, family=family) except NetlinkError as e: # when trying to delete a non-existent IP address, pyroute2 raises # NetlinkError with code EADDRNOTAVAIL (99, 'Cannot assign requested # address') # this shouldn't raise an error if e.code == errno.EADDRNOTAVAIL: return raise @_sync @privileged.default.entrypoint def flush_ip_addresses(ip_version, device, namespace): family = _IP_VERSION_FAMILY_MAP[ip_version] try: with get_iproute(namespace) as ip: idx = get_link_id(device, namespace) ip.flush_addr(index=idx, family=family) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def create_interface(ifname, namespace, kind, **kwargs): ifname = ifname[:constants.DEVICE_NAME_MAX_LEN] try: with get_iproute(namespace) as ip: physical_interface = kwargs.pop("physical_interface", None) if physical_interface: link_key = "vxlan_link" if kind == "vxlan" else "link" kwargs[link_key] = get_link_id(physical_interface, namespace) return ip.link("add", ifname=ifname, kind=kind, **kwargs) except NetlinkError as e: if e.code == errno.EEXIST: raise InterfaceAlreadyExists(device=ifname) raise except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def delete_interface(ifname, namespace, **kwargs): _run_iproute_link("del", ifname, namespace, **kwargs) @_sync @privileged.default.entrypoint def interface_exists(ifname, namespace): try: idx = get_link_id(ifname, namespace) return bool(idx) except NetworkInterfaceNotFound: return False except OSError as e: if e.errno == errno.ENOENT: return False raise @_sync @privileged.default.entrypoint def set_link_flags(device, namespace, flags): link = _run_iproute_link("get", device, namespace)[0] new_flags = flags | link['flags'] return _run_iproute_link("set", device, namespace, flags=new_flags) @_sync @privileged.default.entrypoint def set_link_attribute(device, namespace, **attributes): return _run_iproute_link("set", device, namespace, **attributes) @_sync @privileged.default.entrypoint def get_link_attributes(device, namespace): link = _run_iproute_link("get", device, namespace)[0] return { 'mtu': link.get_attr('IFLA_MTU'), 'qlen': link.get_attr('IFLA_TXQLEN'), 'state': link.get_attr('IFLA_OPERSTATE'), 'qdisc': link.get_attr('IFLA_QDISC'), 'brd': link.get_attr('IFLA_BROADCAST'), 'link/ether': link.get_attr('IFLA_ADDRESS'), 'alias': link.get_attr('IFLA_IFALIAS'), 'allmulticast': bool(link['flags'] & ifinfmsg.IFF_ALLMULTI), 'link_kind': link.get_nested('IFLA_LINKINFO', 'IFLA_INFO_KIND') } @_sync @privileged.default.entrypoint def add_neigh_entry(ip_version, ip_address, mac_address, device, namespace, **kwargs): """Add a neighbour entry. :param ip_address: IP address of entry to add :param mac_address: MAC address of entry to add :param device: Device name to use in adding entry :param namespace: The name of the namespace in which to add the entry """ family = _IP_VERSION_FAMILY_MAP[ip_version] _run_iproute_neigh('replace', device, namespace, dst=ip_address, lladdr=mac_address, family=family, state=ndmsg.states['permanent'], **kwargs) @_sync @privileged.default.entrypoint def delete_neigh_entry(ip_version, ip_address, mac_address, device, namespace, **kwargs): """Delete a neighbour entry. :param ip_address: IP address of entry to delete :param mac_address: MAC address of entry to delete :param device: Device name to use in deleting entry :param namespace: The name of the namespace in which to delete the entry """ family = _IP_VERSION_FAMILY_MAP[ip_version] try: _run_iproute_neigh('delete', device, namespace, dst=ip_address, lladdr=mac_address, family=family, **kwargs) except NetlinkError as e: # trying to delete a non-existent entry shouldn't raise an error if e.code == errno.ENOENT: return raise @_sync @privileged.default.entrypoint def dump_neigh_entries(ip_version, device, namespace, **kwargs): """Dump all neighbour entries. :param ip_version: IP version of entries to show (4 or 6) :param device: Device name to use in dumping entries :param namespace: The name of the namespace in which to dump the entries :param kwargs: Callers add any filters they use as kwargs :return: a list of dictionaries, each representing a neighbour. The dictionary format is: {'dst': ip_address, 'lladdr': mac_address, 'device': device_name} """ family = _IP_VERSION_FAMILY_MAP[ip_version] entries = [] dump = _run_iproute_neigh('dump', device, namespace, family=family, **kwargs) for entry in dump: attrs = dict(entry['attrs']) entries += [{'dst': attrs['NDA_DST'], 'lladdr': attrs.get('NDA_LLADDR'), 'device': device}] return entries @privileged.default.entrypoint def create_netns(name, **kwargs): """Create a network namespace. :param name: The name of the namespace to create """ try: netns.create(name, **kwargs) except OSError as e: if e.errno != errno.EEXIST: raise @privileged.default.entrypoint def remove_netns(name, **kwargs): """Remove a network namespace. :param name: The name of the namespace to remove """ try: netns.remove(name, **kwargs) except OSError as e: if e.errno != errno.ENOENT: raise @privileged.default.entrypoint def list_netns(**kwargs): """List network namespaces. Caller requires raised priveleges to list namespaces """ return netns.listnetns(**kwargs) def make_serializable(value): """Make a pyroute2 object serializable This function converts 'netlink.nla_slot' object (key, value) in a list of two elements. """ def _ensure_string(value): # NOTE(ralonsoh): once PY2 is deprecated, the str() conversion will be # no needed and six.binary_type --> bytes. return (str(value.decode('utf-8')) if isinstance(value, six.binary_type) else value) if isinstance(value, list): return [make_serializable(item) for item in value] elif isinstance(value, netlink.nla_slot): return [value[0], make_serializable(value[1])] elif isinstance(value, netlink.nla_base) and six.PY3: return make_serializable(value.dump()) elif isinstance(value, dict): return {_ensure_string(key): make_serializable(data) for key, data in value.items()} elif isinstance(value, tuple): return tuple(make_serializable(item) for item in value) return _ensure_string(value) @_sync @privileged.default.entrypoint def get_link_devices(namespace, **kwargs): """List interfaces in a namespace :return: (list) interfaces in a namespace """ try: with get_iproute(namespace) as ip: return make_serializable(ip.get_links(**kwargs)) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise def get_device_names(namespace, **kwargs): """List interface names in a namespace :return: a list of strings with the names of the interfaces in a namespace """ devices_attrs = [link['attrs'] for link in get_link_devices(namespace, **kwargs)] device_names = [] for device_attrs in devices_attrs: for link_name in (link_attr[1] for link_attr in device_attrs if link_attr[0] == 'IFLA_IFNAME'): device_names.append(link_name) return device_names @_sync @privileged.default.entrypoint def get_ip_addresses(namespace, **kwargs): """List of IP addresses in a namespace :return: (tuple) IP addresses in a namespace """ try: with get_iproute(namespace) as ip: return make_serializable(ip.get_addr(**kwargs)) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def list_ip_rules(namespace, ip_version, match=None, **kwargs): """List all IP rules""" try: with get_iproute(namespace) as ip: rules = make_serializable(ip.get_rules( family=_IP_VERSION_FAMILY_MAP[ip_version], match=match, **kwargs)) for rule in rules: rule['attrs'] = { key: value for key, value in ((item[0], item[1]) for item in rule['attrs'])} return rules except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def add_ip_rule(namespace, **kwargs): """Add a new IP rule""" try: with get_iproute(namespace) as ip: ip.rule('add', **kwargs) except netlink_exceptions.NetlinkError as e: if e.code == errno.EEXIST: return raise except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def delete_ip_rule(namespace, **kwargs): """Delete an IP rule""" try: with get_iproute(namespace) as ip: ip.rule('del', **kwargs) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise def _make_pyroute2_route_args(namespace, ip_version, cidr, device, via, table, metric, scope, protocol): """Returns a dictionary of arguments to be used in pyroute route commands :param namespace: (string) name of the namespace :param ip_version: (int) [4, 6] :param cidr: (string) source IP or CIDR address (IPv4, IPv6) :param device: (string) input interface name :param via: (string) gateway IP address :param table: (string, int) table number or name :param metric: (int) route metric :param scope: (int) route scope :param protocol: (string) protocol name (pyroute2.netlink.rtnl.rt_proto) :return: a dictionary with the kwargs needed in pyroute rule commands """ args = {'family': _IP_VERSION_FAMILY_MAP[ip_version]} if not scope: scope = 'global' if via else 'link' scope = _get_scope_name(scope) if scope: args['scope'] = scope if cidr: args['dst'] = cidr if device: args['oif'] = get_link_id(device, namespace) if via: args['gateway'] = via if table: args['table'] = int(table) if metric: args['priority'] = int(metric) if protocol: args['proto'] = protocol return args @_sync @privileged.default.entrypoint def add_ip_route(namespace, cidr, ip_version, device=None, via=None, table=None, metric=None, scope=None, **kwargs): """Add an IP route""" kwargs.update(_make_pyroute2_route_args( namespace, ip_version, cidr, device, via, table, metric, scope, 'static')) try: with get_iproute(namespace) as ip: ip.route('replace', **kwargs) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def list_ip_routes(namespace, ip_version, device=None, table=None, **kwargs): """List IP routes""" kwargs.update(_make_pyroute2_route_args( namespace, ip_version, None, device, None, table, None, None, None)) try: with get_iproute(namespace) as ip: return make_serializable(ip.route('show', **kwargs)) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise @_sync @privileged.default.entrypoint def delete_ip_route(namespace, cidr, ip_version, device=None, via=None, table=None, scope=None, **kwargs): """Delete an IP route""" kwargs.update(_make_pyroute2_route_args( namespace, ip_version, cidr, device, via, table, None, scope, None)) try: with get_iproute(namespace) as ip: ip.route('del', **kwargs) except OSError as e: if e.errno == errno.ENOENT: raise NetworkNamespaceNotFound(netns_name=namespace) raise
33.948649
79
0.638405
9f89fc5e16180695eccef0483180176338191822
526
py
Python
plotly/validators/histogram2d/colorbar/_showexponent.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/histogram2d/colorbar/_showexponent.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/histogram2d/colorbar/_showexponent.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class ShowexponentValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name='showexponent', parent_name='histogram2d.colorbar', **kwargs ): super(ShowexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='colorbars', role='style', values=['all', 'first', 'last', 'none'], **kwargs )
26.3
78
0.60076
2a5cdb47300e78039ff43dddd59df2d712c72610
18,528
py
Python
pterotactyl/policies/DDQN/train.py
maurock/Active-3D-Vision-and-Touch
39e24de0ad3c3caad5d78b7cb351e95d4691c88c
[ "MIT" ]
10
2021-10-29T18:04:03.000Z
2022-03-22T11:42:13.000Z
pterotactyl/policies/DDQN/train.py
maurock/Active-3D-Vision-and-Touch
39e24de0ad3c3caad5d78b7cb351e95d4691c88c
[ "MIT" ]
null
null
null
pterotactyl/policies/DDQN/train.py
maurock/Active-3D-Vision-and-Touch
39e24de0ad3c3caad5d78b7cb351e95d4691c88c
[ "MIT" ]
3
2021-11-05T16:45:27.000Z
2021-12-22T12:53:06.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from tqdm import tqdm from pterotactyl.policies.DDQN import ddqn from pterotactyl.policies import environment from pterotactyl.policies import replay from pterotactyl.utility import utils from pterotactyl import pretrained # module for training the DDQN models class Engine(Checkpointable): def __init__(self, args): self.args = args self.steps = 0 self.episode = 0 self.epoch = 0 self.cur_loss = 10000 self.best_loss = 10000 self.epsilon = self.args.epsilon_start self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", self.args.exp_type, self.args.exp_id ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) utils.save_config(self.checkpoint_dir, args) def __call__(self): # initialize the learning environment self.env = environment.ActiveTouch(self.args) self.replay_memory = replay.ReplayMemory(self.args) self.policy = ddqn.DDQN(self.args, self.env.mesh_info, self.replay_memory) self.target_net = ddqn.DDQN(self.args, self.env.mesh_info, None) self.target_net.load_state_dict(self.policy.state_dict()) self.target_net.eval() self.writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) self.window_size = 1000 self.ave_reward = torch.zeros((self.window_size)).cuda() self.ave_recon = torch.zeros((self.window_size)).cuda() train_loader, valid_loaders = self.get_loaders() if self.args.eval: self.load(best=True) self.validate(valid_loaders) return self.resume() # training loop for epoch in range(self.epoch, self.args.epochs): self.train(train_loader) self.env.reset_pybullet() if self.steps >= self.args.burn_in: with torch.no_grad(): self.validate(valid_loaders) self.env.reset_pybullet() self.check_values_and_save() self.epoch += 1 # load the environment data into pytorch dataloaders def get_loaders(self): if self.args.eval: train_loader = "" else: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=True, num_workers=4, collate_fn=self.env.train_data.collate, ) valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # training iteration def train(self, dataloader): for v, batch in enumerate(tqdm(dataloader, total=self.args.train_steps)): if v > self.args.train_steps - 1: break obs = self.env.reset(batch) all_done = False total_reward = 0 while not all_done: # update epsilon if self.steps >= self.args.burn_in: self.epsilon = self.policy.update_epsilon(self.epsilon, self.args) # get action get_random_action = self.steps < self.args.burn_in action = self.policy.get_action( obs, eps_threshold=self.epsilon, give_random=get_random_action ) # perform action with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # save experiance self.policy.add_experience(action, obs, next_obs, reward) # update policy if self.steps >= self.args.burn_in: self.policy.update_parameters(self.target_net) # update target network if ( self.steps % self.args.target_update == 0 and self.steps >= self.args.burn_in ): print("+" * 5 + " updating target " "+" * 5) self.target_net.load_state_dict(self.policy.state_dict()) torch.cuda.empty_cache() obs = next_obs self.steps += 1 # logs recon = float((obs["score"] / obs["first_score"]).mean().item()) reward = float( ((obs["first_score"] - obs["score"]) / obs["first_score"]).mean().item() ) self.ave_reward[self.episode % self.window_size] = reward self.ave_recon[self.episode % self.window_size] = float( (obs["score"] / obs["first_score"]).mean().item() ) ave_reward = self.ave_reward[: self.episode + 1].mean() ave_recon = self.ave_recon[: self.episode + 1].mean() message = ( f"T Epoch: {self.epoch} Ep: {self.episode}, recon: {recon:.2f}, " f"reward: {reward:.2f}, a_recon: {ave_recon:.2f}, a_reward: {ave_reward:.2f}, " f" eps: {self.epsilon:.3f}, best: {self.best_loss:.3f}" ) tqdm.write(message) self.episode += 1 # logs if self.steps >= self.args.burn_in: self.writer.add_scalars( "train_recon_|_", {self.args.exp_id: ave_recon}, self.steps ) self.writer.add_scalars( "train_reward_|_", {self.args.exp_id: ave_reward}, self.steps ) # validation iteration def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] print("*" * 30) print("Doing Validation") total = self.args.train_steps if not self.args.eval else None for v, batch in enumerate(tqdm(dataloader, total=total)): names += batch["names"] if v > self.args.valid_steps - 1 and not self.args.eval: break obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action( obs, eps_threshold=-1, give_random=False ) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || E: {self.epoch}, score: {print_score:.2f}, best score: {self.best_loss:.2f} " message += f"reward = {print_reward:.2f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) actions = torch.cat(actions) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() variation = torch.std(actions, dim=0).mean() self.current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || E: {self.epoch}, score: {self.current_loss:.4f}, best score: {self.best_loss:.4f} " message += f"reward = {rewards.mean():.2f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if not self.args.eval: self.writer.add_scalars( f"Valid_recon_|_", {self.args.exp_id: self.current_loss}, self.steps ) self.writer.add_scalars( f"Valid_reward_|_", {self.args.exp_id: rewards.mean()}, self.steps ) self.writer.add_scalars( "epsilon_|_", {self.args.exp_id: self.epsilon}, self.steps ) self.writer.add_scalars( f"Valid_variation_|_", {self.args.exp_id: variation}, self.steps ) if self.args.visualize and self.args.eval: utils.visualize_actions(self.results_dir, actions, self.args) # check if the new validation score if better and save checkpoint def check_values_and_save(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.save(best=True) print(f"Saving DQN checkpoint") self.save(best=False) print("Saving replay memory.") self.replay_memory.save(self.checkpoint_dir) # resume training def resume(self): path = self.checkpoint_dir + "/recent" if os.path.exists(path + "_model"): print(f"Loading DQN checkpoint") self.load(best=False) print("Loading replay memory.") self.replay_memory.load(path) # save current state of training def save(self, best=False): if best: path = self.checkpoint_dir + "/best" else: path = self.checkpoint_dir + "/recent" self.replay_memory.save(path) torch.save( { "dqn_weights": self.policy.state_dict(), "target_weights": self.target_net.state_dict(), "args": self.args, "episode": self.episode, "steps": self.steps, "ave_reward": self.ave_reward, "ave_recon": self.ave_recon, "epsilon": self.epsilon, "epoch": self.epoch, }, path + "_model", ) # load previous state of training def load(self, best=True): if self.args.pretrained: prefix = "l" if self.args.use_latent else "g" if self.args.use_img: if self.args.finger: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_v_t_p" ) else: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_v_t_g" ) else: if self.args.finger: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_t_p" ) else: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_t_g" ) checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) else: if best: path = self.checkpoint_dir + "/best_model" else: path = self.checkpoint_dir + "/recent_model" checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) self.episode = checkpoint["episode"] + 1 if not self.args.eval: self.target_net.load_state_dict(checkpoint["target_weights"]) self.steps = checkpoint["steps"] self.ave_reward = checkpoint["ave_reward"] self.ave_recon = checkpoint["ave_recon"] self.epsilon = checkpoint["epsilon"] self.epoch = checkpoint["epoch"] + 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--layers", type=int, default=4, help="Number of layers in the q network" ) parser.add_argument( "--hidden_dim", type=int, default=200, help="hidden dimension size in layers in the q network", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch of objects sampled from the environment", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Size of the batch of transitions sampled for training the q network.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--budget", type=int, default=5) parser.add_argument( "--normalization", type=str, choices=["first", "current", "none"], default="first", help="how to normalize the reward for the q network update ", ) parser.add_argument( "--mem_capacity", type=int, default=300, help="the size of the replay buffer" ) parser.add_argument("--burn_in", type=int, default=20, help="ddqn burn in time") parser.add_argument( "--num_actions", type=int, default=50, help=" number of possible actions" ) parser.add_argument("--gamma", type=float, default=0, help="ddqn gamma value") parser.add_argument( "--epsilon_start", type=float, default=1.0, help="ddqn initial epsilon value" ) parser.add_argument( "--epsilon_decay", type=float, default=0.9999, help="ddqn epsilon decay value" ) parser.add_argument( "--epsilon_end", type=float, default=0.01, help="ddqn minimum epsilon value" ) parser.add_argument( "--train_steps", type=int, default=20, help="number of training iterations per epoch", ) parser.add_argument( "--valid_steps", type=int, default=10, help="number of validation iterations per epoch", ) parser.add_argument( "--target_update", type=int, default=3000, help="frequency of target network updates", ) parser.add_argument( "--use_latent", action="store_true", default=False, help="if the latent embedding of objects is to be used", ) parser.add_argument( "--use_recon", action="store_true", default=False, help="if the object prediction is to be directly used", ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
35.090909
118
0.559046
16af61e638573807c8563c7163fbde1370bb1cab
5,540
py
Python
tests/resources/test_recordings.py
burhanahmed-plivo/plivo-python
61f86f20efb2bdd30a9ae40ed837c20af42f20b9
[ "MIT" ]
null
null
null
tests/resources/test_recordings.py
burhanahmed-plivo/plivo-python
61f86f20efb2bdd30a9ae40ed837c20af42f20b9
[ "MIT" ]
null
null
null
tests/resources/test_recordings.py
burhanahmed-plivo/plivo-python
61f86f20efb2bdd30a9ae40ed837c20af42f20b9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from datetime import datetime import plivo from tests.base import PlivoResourceTestCase from tests.decorators import with_response class RecordingTest(PlivoResourceTestCase): @with_response(200) def test_list(self): recordings = self.client.recordings.list( add_time__gt=datetime(2017, 4, 15, 1, 1, 1), add_time__gte=datetime(2017, 4, 15, 1, 1, 1), add_time__lt=datetime(2017, 4, 15, 1, 1, 1), add_time__lte=datetime(2017, 4, 15, 1, 1, 1, 123)) # Test if ListResponseObject's __iter__ is working correctly self.assertEqual(len(list(recordings)), 3) # Verifying the endpoint hit self.assertUrlEqual( 'https://voice.plivo.com/v1/Account/MAXXXXXXXXXXXXXXXXXX/Recording/?add_time__gt=2017-04-15+01%3A01%3A01&add_time__lt=2017-04-15+01%3A01%3A01&add_time__gte=2017-04-15+01%3A01%3A01&add_time__lte=2017-04-15+01%3A01%3A01.000123&limit=20&offset=0', self.client.current_request.url) # Verifying the method used self.assertEqual('GET', self.client.current_request.method) # Verifying if the Account specific changes and parsing happened self.assertEqual('fc2716b0-1c8b-11e4-bwad-842b2b17453e', recordings.objects[1].id) with self.assertRaises(plivo.exceptions.ValidationError): recordings = self.client.recordings.list(limit=100) def test_recording_list_by_subaccount(self): expected_response = { 'account': '/v1/Account/MANWVLYTK4ZWU1YTY4ZT/', 'api_id': '323972b2-0db3-11e4-a2d1-22000ac5040c', 'auth_id': 'SAXXXXXXXXXXXXXXXXXX', 'auth_token': 'MTZjYWM0YzVjNjMwZmVmODFiNWJjNWJmOGJjZjgw', 'created': '2014-07-17', 'enabled': False, 'modified': None, 'name': 'Chewbacca', 'resource_uri': '/v1/Account/MANWVLYTK4ZWU1YTY4ZT/Subaccount/SAMTVIYJDIYWYYMZHLYZ/' } self.client.set_expected_response( status_code=200, data_to_return=expected_response) account_details = self.client.subaccounts.get('SA' + 'X' * 18) expected_response = { 'api_id': 'ff25223a-1c9f-11e4-80aa-12313f048015', 'meta': { 'limit': 3, 'next': '/v1/Account/MANWVLYTK4ZWU1YTY4ZT/Recording/?limit=3&offset=3', 'offset': 0, 'previous': None, 'total_count': 948 }, 'objects': [] } self.client.set_expected_response( status_code=200, data_to_return=expected_response) with self.assertRaises(plivo.exceptions.ValidationError): recordings = self.client.recordings.list( subaccount='SA' + 'X' * 17) recordings = self.client.recordings.list( subaccount='SA' + 'X' * 18, call_uuid='SomeCallUUID') # Verifying the endpoint hit self.assertUrlEqual( 'https://voice.plivo.com/v1/Account/MAXXXXXXXXXXXXXXXXXX/Recording/?call_uuid=SomeCallUUID&limit=20&subaccount=SAXXXXXXXXXXXXXXXXXX&offset=0', self.client.current_request.url) # Verifying the method used self.assertEqual('GET', self.client.current_request.method) with self.assertRaises(plivo.exceptions.ValidationError): recordings = self.client.recordings.list(limit=100) recordings = self.client.recordings.list( subaccount=account_details, call_uuid='SomeCallUUID') # Verifying the endpoint hit self.assertUrlEqual( 'https://voice.plivo.com/v1/Account/MAXXXXXXXXXXXXXXXXXX/Recording/?call_uuid=SomeCallUUID&limit=20&subaccount=SAXXXXXXXXXXXXXXXXXX&offset=0', self.client.current_request.url) # Verifying the method used self.assertEqual('GET', self.client.current_request.method) @with_response(200) def test_get(self): recording = self.client.recordings.get( 'c2186400-1c8c-11e4-a664-0026b945b52x') self.assertResponseMatches(recording) # Verifying the endpoint hit self.assertEqual( 'https://voice.plivo.com/v1/Account/MAXXXXXXXXXXXXXXXXXX/Recording/c2186400-1c8c-11e4-a664-0026b945b52x/', self.client.current_request.url) # Verifying the method used self.assertEqual('GET', self.client.current_request.method) # Verifying the object type returned self.assertEqual(plivo.resources.recordings.Recording, recording.__class__) # Verifying if the Account specific changes and parsing happened self.assertEqual('c2186400-1c8c-11e4-a664-0026b945b52x', recording.id) self.assertEqual('345100.00000', recording.recording_duration_ms) @with_response(204) def test_delete(self): response = self.client.recordings.delete( 'c2186400-1c8c-11e4-a664-0026b945b52x') # Verifying the endpoint hit self.assertEqual( 'https://voice.plivo.com/v1/Account/MAXXXXXXXXXXXXXXXXXX/Recording/c2186400-1c8c-11e4-a664-0026b945b52x/', self.client.current_request.url) # Verifying the method used self.assertEqual('DELETE', self.client.current_request.method)
36.688742
256
0.629242
d25189e4bf5ced157698f78e6dc7aebe1ee3455f
3,790
py
Python
json2rst/cmd.py
zed-eiq/bad-json-to-rst-tables
e9f022f68e1ea292370261c9b0c9116915802438
[ "Apache-2.0" ]
null
null
null
json2rst/cmd.py
zed-eiq/bad-json-to-rst-tables
e9f022f68e1ea292370261c9b0c9116915802438
[ "Apache-2.0" ]
null
null
null
json2rst/cmd.py
zed-eiq/bad-json-to-rst-tables
e9f022f68e1ea292370261c9b0c9116915802438
[ "Apache-2.0" ]
1
2021-03-24T14:38:50.000Z
2021-03-24T14:38:50.000Z
import argparse import logging from pathlib import Path from typing import Tuple, Set from . import utils from .pivot import Pivot logging.basicConfig(level=logging.DEBUG) def _cli() -> any: """ CLI helper. Returns: a argparse.Namespace object, that looks very much like a NamedTuple """ parser = argparse.ArgumentParser() cmd_rst = parser.add_argument_group("General options") cmd_rst.add_argument( "--input", dest="infiles", required=True, help="Input JSON file, or a directory containing JSON files.") cmd_rst.add_argument( "--output", dest="outdir", default=".", help="Output directory. Defaults to current directory.") cmd_pivot = parser.add_argument_group("Pivot a directory of JSON files.") cmd_pivot.add_argument( "pivot", type=bool, nargs="?", default=False, help="""Specify 'pivot' to pivot JSON files. Collects JSON files from --input,and extract values from fields that match names in --header, and write to a csv-table. """ ) cmd_pivot.add_argument( "--headers", dest="pivot_headers", type=str, required=False, help="""Required for pivot. Add a list of header names as comma-separated values. JSON files from --input will be pivoted against this list. Headers MUST BE UNIQUE (RFC8259 §4). Duplicate headers are discarded. E.g.: --headers='key1,key2,key3' """ ) cmd_pivot.add_argument( "--strict", action="store_true", required=False, help="""Strict mode for pivot. When set, JSON files must have all fields specified with --headers. """ ) cmd_pivot.add_argument( "--sort-by", dest="sort_by", type=str, required=False, help="""Sort the pivot table by a given key. Specify only one key. """ ) cmd_pivot.add_argument( "--sort-order", dest="sort_order", type=str, required=False, help="""Sort --sort-by in 'ascending' or 'descending' order.""" ) cmd_pivot.add_argument( "--csv-out", dest="csv_out", type=str, required=False, help="Name of output CSV file saved in --output dir." ) return parser.parse_args() def _convert_json_to_rst(infiles: str, outdir: str): infile_list = utils.smart_filepaths(infiles) outputdir = Path(outdir).absolute() for thisfile in infile_list: with open(thisfile) as f: output = utils.render_page(thisfile, f.read()) utils.write_file( Path.joinpath( outputdir, Path(thisfile).stem + ".rst"), output ) def _pivot(args: any): """ TODO: All this file wrangling should be offloaded """ pivot_headers = _parse_headers(args.pivot_headers) infile_list = utils.smart_filepaths(args.infiles) Pivot( infile_list, pivot_headers, args.strict, args.csv_out, args.sort_by, args.sort_order, ).pivot() def _parse_headers(raw_headers: str) -> Set[str]: """ Args: raw_headers (str): Value from args.pivot_headers. Returns: A Set of headers. This automatically discards duplicate headers. """ output = list() for header in raw_headers.split(sep=","): if header not in output: # Allow only unique headers output.append(header.strip()) logging.debug("Pivoting JSON files using headers: {}".format(output)) return output def cmd(): args = _cli() logging.debug(args) if not args.pivot: _convert_json_to_rst(args.infiles, args.outdir) else: _pivot(args) logging.debug("YOU HAVE REACHED THE END OF EARLY ACCESS CONTENT.")
23.836478
77
0.622164
4f4358c3f2bfb4eba389a9ed0317af4a2cd514b7
2,165
py
Python
GoogleStockPriceRNN.py
sd1998/GoogleStockPriceRNN
fb4da83ab3137d6c3eecfa3b964daa80ad9a8324
[ "Apache-2.0" ]
null
null
null
GoogleStockPriceRNN.py
sd1998/GoogleStockPriceRNN
fb4da83ab3137d6c3eecfa3b964daa80ad9a8324
[ "Apache-2.0" ]
null
null
null
GoogleStockPriceRNN.py
sd1998/GoogleStockPriceRNN
fb4da83ab3137d6c3eecfa3b964daa80ad9a8324
[ "Apache-2.0" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset_train = pd.read_csv('Google_Stock_Price_Train.csv') training_set = dataset_train.iloc[:, 1:2].values from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0, 1)) training_set_scaled = sc.fit_transform(training_set) X_train = [] y_train = [] for i in range(60, 1258): X_train.append(training_set_scaled[i-60:i, 0]) y_train.append(training_set_scaled[i, 0]) X_train, y_train = np.array(X_train), np.array(y_train) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout regressor = Sequential() regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1))) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50)) regressor.add(Dropout(0.2)) regressor.add(Dense(units = 1)) regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') regressor.fit(X_train, y_train, epochs = 100, batch_size = 32) dataset_test = pd.read_csv('Google_Stock_Price_Test.csv') real_stock_price = dataset_test.iloc[:, 1:2].values dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0) inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values inputs = inputs.reshape(-1,1) inputs = sc.transform(inputs) X_test = [] for i in range(60, 80): X_test.append(inputs[i-60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predicted_stock_price = regressor.predict(X_test) predicted_stock_price = sc.inverse_transform(predicted_stock_price) plt.plot(real_stock_price, color = 'red', label = 'Real Google Stock Price') plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted Google Stock Price') plt.title('Google Stock Price Prediction') plt.xlabel('Time') plt.ylabel('Google Stock Price') plt.legend() plt.show()
40.849057
93
0.757506
e21258a3eccf78fde0dfbc0bf8e9a764669b2a27
3,742
py
Python
django_spanner/functions.py
MShaffar19/python-spanner-django
62c22b113b470776cddacbab92c4428c6581c551
[ "BSD-3-Clause" ]
1
2020-12-01T14:30:04.000Z
2020-12-01T14:30:04.000Z
django_spanner/functions.py
prakhargurunani/python-spanner-django
818324708e9ca46fbd80c47745bdf38e8a1a069c
[ "BSD-3-Clause" ]
1
2021-02-23T12:32:32.000Z
2021-02-23T12:32:32.000Z
django_spanner/functions.py
prakhargurunani/python-spanner-django
818324708e9ca46fbd80c47745bdf38e8a1a069c
[ "BSD-3-Clause" ]
1
2020-10-04T10:04:55.000Z
2020-10-04T10:04:55.000Z
# Copyright 2020 Google LLC # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd import math from django.db.models.expressions import Func, Value from django.db.models.functions import ( Cast, Chr, ConcatPair, Cot, Degrees, Left, Log, Ord, Pi, Radians, Right, StrIndex, Substr, ) class IfNull(Func): function = "IFNULL" arity = 2 def cast(self, compiler, connection, **extra_context): # Account for a field's max_length using SUBSTR. max_length = getattr(self.output_field, "max_length", None) if max_length is not None: template = "SUBSTR(" + self.template + ", 0, %s)" % max_length else: template = self.template return self.as_sql( compiler, connection, template=template, **extra_context ) def chr_(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, template="CODE_POINTS_TO_STRING([%(expressions)s])", **extra_context ) def concatpair(self, compiler, connection, **extra_context): # Spanner's CONCAT function returns null if any of its arguments are null. # Prevent that by converting null arguments to an empty string. clone = self.copy() clone.set_source_expressions( IfNull(e, Value("")) for e in self.get_source_expressions() ) return clone.as_sql(compiler, connection, **extra_context) def cot(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, template="(1 / TAN(%(expressions)s))", **extra_context ) def degrees(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, template="((%%(expressions)s) * 180 / %s)" % math.pi, **extra_context ) def left_and_right(self, compiler, connection, **extra_context): return self.get_substr().as_spanner(compiler, connection, **extra_context) def log(self, compiler, connection, **extra_context): # This function is usually Log(b, x) returning the logarithm of x to the # base b, but on Spanner it's Log(x, b). clone = self.copy() clone.set_source_expressions(self.get_source_expressions()[::-1]) return clone.as_sql(compiler, connection, **extra_context) def ord_(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, template="TO_CODE_POINTS(%(expressions)s)[OFFSET(0)]", **extra_context ) def pi(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, template=str(math.pi), **extra_context ) def radians(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, template="((%%(expressions)s) * %s / 180)" % math.pi, **extra_context ) def strindex(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, function="STRPOS", **extra_context ) def substr(self, compiler, connection, **extra_context): return self.as_sql( compiler, connection, function="SUBSTR", **extra_context ) def register_functions(): Cast.as_spanner = cast Chr.as_spanner = chr_ ConcatPair.as_spanner = concatpair Cot.as_spanner = cot Degrees.as_spanner = degrees Left.as_spanner = left_and_right Log.as_spanner = log Ord.as_spanner = ord_ Pi.as_spanner = pi Radians.as_spanner = radians Right.as_spanner = left_and_right StrIndex.as_spanner = strindex Substr.as_spanner = substr
26.167832
78
0.663014
a83383c3006bb95b83fd1f186c757cf42753c4c3
3,299
py
Python
breakdown/templatetags.py
Goldmund-Wyldebeast-Wunderliebe/jinja-breakdown
c6296d54ea6c9f1185039cab7495d5833ba6437f
[ "Apache-2.0" ]
1
2020-08-04T04:51:28.000Z
2020-08-04T04:51:28.000Z
breakdown/templatetags.py
Goldmund-Wyldebeast-Wunderliebe/jinja-breakdown
c6296d54ea6c9f1185039cab7495d5833ba6437f
[ "Apache-2.0" ]
null
null
null
breakdown/templatetags.py
Goldmund-Wyldebeast-Wunderliebe/jinja-breakdown
c6296d54ea6c9f1185039cab7495d5833ba6437f
[ "Apache-2.0" ]
null
null
null
""" Breakdown.py - 2011 Concentric Sky Lightweight jinja2 template prototyping server with support for some custom template tags Copyright 2011 Concentric Sky, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import six import breakdown from breakdown.settings import STATIC_URL import jinja2 import markupsafe import os import random __all__ = ["image", "greeking"] Markup = markupsafe.Markup min_func = min max_func = max env = jinja2.Environment() def image(cache_path, width, height): """ Generate a custom-sized sample image """ # Create unique path size = (width, height) filename = "%sx%s.png" % (width, height) path = os.path.join(cache_path, filename) # Check if image has already been created if not os.path.exists(path): # Generate new image sample = breakdown.pkg_path("img/sample.png") if not os.path.exists(sample): return Markup(u"<img/>") else: try: # Try scaling the image using PIL from PIL import Image source = Image.open(sample) scaled = source.resize(size, Image.BICUBIC) scaled.save(path) except ImportError: # If we couldnt find PIL, just copy the image inf = open(sample, "rb") outf = open(path, "wb") outf.write(inf.read()) return Markup(u'<img src="%s%s">' % (STATIC_URL, filename)) def greeking(mode=None, min=50, max=100): """ Generate a block of various HTML text """ # Get a blob of lipsum minimum = max_func(min, 6 * 4) maximum = max_func(max, minimum + 1) blob = env.globals["lipsum"](html=False, n=1, min=minimum, max=maximum).split(" ") # Wrap text in HTML elements at random points wrappers = [ ("<strong>", "</strong>"), ("<em>", "</em>"), ("<code>", "</code>"), ('<a href="#">', "</a>"), ] random.shuffle(wrappers) thresh = 5 pointers = random.sample(range(len(blob) / thresh), len(wrappers)) for i, ptr in enumerate(pointers): ptr = ptr * thresh length = random.randint(2, thresh) blob[ptr] = wrappers[i][0] + blob[ptr] blob[ptr + length] = wrappers[i][1] + blob[ptr + length] html = "<p>" + " ".join(blob) + "</p>" # Generate random lists lists = [] for type in ("ul", "ol"): items = [] for i in range(random.randint(3, 4)): items.append( "<li>%s</li>" % env.globals["lipsum"](html=False, n=1, min=5, max=10) ) lists.append(items) html += """ <ul> %s </ul> <ol> %s </ol> """ % ( "\n".join(lists[0]), "\n".join(lists[1]), ) return Markup(six.text_type(html))
28.196581
86
0.593816
c2a3d179dc713d65a8a409b53318592e3fa46b76
1,888
py
Python
forum_tag/forum_tag/spiders/search_spider.py
chrisfromthelc/wpcom-forum-scraper
82d123f243c6830c2529a5fdfadffccef4975e36
[ "BSD-3-Clause" ]
null
null
null
forum_tag/forum_tag/spiders/search_spider.py
chrisfromthelc/wpcom-forum-scraper
82d123f243c6830c2529a5fdfadffccef4975e36
[ "BSD-3-Clause" ]
1
2022-03-02T14:53:20.000Z
2022-03-02T14:53:20.000Z
forum_tag/forum_tag/spiders/search_spider.py
chrisfromthelc/wpcom-forum-scraper
82d123f243c6830c2529a5fdfadffccef4975e36
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy class TagSpiderSpider(scrapy.Spider): name = 'tag_spider' allowed_domains = ["wordpress.com"] start_urls = ['https://wordpress.com/forums/topic-tag/seo/'] # edit this URL for the tag URL you want custom_settings = {'CLOSESPIDER_PAGECOUNT': 100} def parse(self, response): # follow links to topic pages for href in response.css('a.jetpack-instant-search__search-result-title-link::attr(href)'): yield response.follow(href, self.parse_topic) #follow pagination links for href in response.css('.bbp-pagination-links a.next::attr(href)'): yield response.follow(href, self.parse) # next_page = response.css('.nav a.next::attr(href)').extract_first() # if next_page is not None: # yield response.follow(next_page, callback=self.parse) def parse_topic(self, response): def extract_first_with_css(query): return response.css(query).extract_first().strip() def extract_with_xpath(query): return response.xpath(query).extract() # for post in response: # # item = {} # # item['topic_title'] = extract_first_with_css('h1::text').replace("\xa0", " ") # item['topic_url'] = response.request.url # item['topic_messages_text'] = ''.join(extract_with_xpath('//div[@class="bbp-reply-content"]/p/text()')).replace("\n", " ").replace("\xa0", " ") # # return item yield { 'topic_title': extract_first_with_css('h1::text').replace("\xa0", " "), 'topic_url': response.request.url, 'topic_messages_text': ' '.join(extract_with_xpath('//div[@class="bbp-reply-content"]/p/text()')).replace("\n", " ").replace("\xa0", " ") } pass
38.530612
161
0.587924
59e061169fa08b5f0a419e3a4899b6b0f6d11573
6,820
py
Python
tools/accuracy_checker/accuracy_checker/annotation_converters/squad_emb.py
APrigarina/open_model_zoo
b1ff98b64a6222cf6b5f3838dc0271422250de95
[ "Apache-2.0" ]
1,031
2020-07-16T08:30:57.000Z
2022-03-30T19:42:52.000Z
tools/accuracy_checker/accuracy_checker/annotation_converters/squad_emb.py
APrigarina/open_model_zoo
b1ff98b64a6222cf6b5f3838dc0271422250de95
[ "Apache-2.0" ]
966
2020-07-16T08:13:00.000Z
2022-03-31T18:09:18.000Z
tools/accuracy_checker/accuracy_checker/annotation_converters/squad_emb.py
APrigarina/open_model_zoo
b1ff98b64a6222cf6b5f3838dc0271422250de95
[ "Apache-2.0" ]
440
2020-07-16T12:52:50.000Z
2022-03-31T14:21:41.000Z
""" Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import multiprocessing import unicodedata import string import numpy as np from ..representation import QuestionAnsweringEmbeddingAnnotation from ..utils import read_json from ..config import PathField, NumberField, BoolField from .format_converter import BaseFormatConverter, ConverterReturn # split word by vocab items and get tok codes # iterativly return codes def encode_by_voc(w, vocab): # remove mark and control chars def clean_word(w): wo = "" # accumulator for output word for c in unicodedata.normalize("NFD", w): c_cat = unicodedata.category(c) # remove mark nonspacing code and controls if c_cat != "Mn" and c_cat[0] != "C": wo += c return wo w = clean_word(w) res = [] for s0, e0 in split_to_words(w): s, e = s0, e0 tokens = [] while e > s: subword = w[s:e] if s == s0 else "##" + w[s:e] if subword in vocab: tokens.append(vocab[subword]) s, e = e, e0 else: e -= 1 if s < e0: tokens = [vocab['[UNK]']] res.extend(tokens) return res #split big text into words by spaces #iterativly return words def split_to_words(text): prev_is_sep = True # mark initial prev as space to start word from 0 char for i, c in enumerate(text + " "): is_punc = (c in string.punctuation or unicodedata.category(c)[0] == "P") cur_is_sep = (c.isspace() or is_punc) if prev_is_sep != cur_is_sep: if prev_is_sep: start = i else: yield start, i del start if is_punc: yield i, i+1 prev_is_sep = cur_is_sep # get big text and return list of token id and start-end positions for each id in original texts def text_to_tokens(text, vocab_or_tokenizer): tokens_id = [] tokens_se = [] for s, e in split_to_words(text): if hasattr(vocab_or_tokenizer, 'encode'): #vocab_or_tokenizer is tokenizer toks = vocab_or_tokenizer.encode(text[s:e], add_special_tokens=False) else: #vocab_or_tokenizer is tokens dictionary toks = encode_by_voc(text[s:e], vocab_or_tokenizer) for tok in toks: tokens_id.append(tok) tokens_se.append((s, e)) return tokens_id, tokens_se def encode_squad_article(article, vocab, do_lower_case): def encode_txt(txt): if do_lower_case: txt = txt.lower() return text_to_tokens(txt, vocab) for par in article['paragraphs']: par['context_enc'], par['context_enc_pos'] = encode_txt(par['context']) for qa in par['qas']: qa['question_enc'], qa['question_enc_pos'] = encode_txt(qa['question']) return article class SQUADConverterEMB(BaseFormatConverter): __provider__ = "squad_emb" annotation_types = (QuestionAnsweringEmbeddingAnnotation, ) @classmethod def parameters(cls): configuration_parameters = super().parameters() configuration_parameters.update({ 'testing_file': PathField(description="Path to testing file."), 'vocab_file': PathField(description='Path to vocabulary file.'), 'max_seq_length': NumberField( description='The maximum total input sequence length after WordPiece tokenization.', optional=True, default=128, value_type=int ), 'max_query_length': NumberField( description='The maximum number of tokens for the question.', optional=True, default=64, value_type=int ), 'lower_case': BoolField(optional=True, default=False, description='Switch tokens to lower case register') }) return configuration_parameters def configure(self): self.testing_file = self.get_value_from_config('testing_file') self.max_seq_length = int(self.get_value_from_config('max_seq_length')) self.max_query_length = self.get_value_from_config('max_query_length') self.lower_case = self.get_value_from_config('lower_case') vocab_file = str(self.get_value_from_config('vocab_file')) with open(vocab_file, "r", encoding="utf-8") as r: self.vocab = {t.rstrip("\n"): i for i, t in enumerate(r.readlines())} def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs): squad = read_json(self.testing_file) N = len(squad['data']) with multiprocessing.Pool() as pool: squad['data'] = pool.starmap( encode_squad_article, zip(squad['data'], [self.vocab] * N, [self.lower_case] * N) ) pad = [self.vocab["[PAD]"]] cls = [self.vocab["[CLS]"]] sep = [self.vocab["[SEP]"]] index_ref = [0] def add_sample(ids, max_len, context_pos_id, annotations): ids_len = min(max_len - 2, len(ids)) ids = ids[:ids_len] rest = max_len - (ids_len + 2) assert rest >= 0 annotations.append(QuestionAnsweringEmbeddingAnnotation( ['{}_{}'.format(n, index_ref[0]) for n in ('input_ids', 'input_mask', 'segment_ids', 'position_ids')], np.array(cls + ids + sep + pad * rest), np.array([1] * (1 + ids_len + 1) + pad * rest), np.array([0] * (1 + ids_len + 1) + pad * rest), np.arange(max_len), context_pos_id )) index_ref[0] += 1 c_annos = [] q_annos = [] for article in squad['data']: for par in article['paragraphs']: add_sample( par['context_enc'], self.max_seq_length, None, c_annos) for qa in par['qas']: add_sample( qa['question_enc'], self.max_query_length, c_annos[-1].identifier, q_annos) return ConverterReturn(c_annos+q_annos, None, None)
35.520833
118
0.596481
ec08c455d9f40119cd7d9791e94ecd98206f4975
847
py
Python
skfem/element/element_quad/element_quad1.py
YerbaPage/scikit-fem
e5140e0648e4a0f1ea0b60de90851ab49d369453
[ "BSD-3-Clause" ]
null
null
null
skfem/element/element_quad/element_quad1.py
YerbaPage/scikit-fem
e5140e0648e4a0f1ea0b60de90851ab49d369453
[ "BSD-3-Clause" ]
null
null
null
skfem/element/element_quad/element_quad1.py
YerbaPage/scikit-fem
e5140e0648e4a0f1ea0b60de90851ab49d369453
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from ..element_h1 import ElementH1 from ...mesh.mesh2d import MeshQuad class ElementQuad1(ElementH1): nodal_dofs = 1 dim = 2 maxdeg = 2 dofnames = ['u'] doflocs = np.array([[0., 0.], [1., 0.], [1., 1.], [0., 1.]]) mesh_type = MeshQuad def lbasis(self, X, i): x, y = X if i == 0: phi = (1. - x) * (1. - y) dphi = np.array([-1. + y, -1. + x]) elif i == 1: phi = x * (1. - y) dphi = np.array([1. - y, -x]) elif i == 2: phi = x * y dphi = np.array([y, x]) elif i == 3: phi = (1. - x) * y dphi = np.array([-y, 1. - x]) else: self._index_error() return phi, dphi
22.289474
47
0.378985
778e7c20944ec3673b761010e0bded567b235394
644
py
Python
client/checkout/tests/test_models.py
daniel-waruo/e-commerse-api
6b080039398fb4099a34335317d649dd67783f63
[ "Apache-2.0" ]
6
2019-11-21T10:09:49.000Z
2021-06-19T09:52:59.000Z
client/checkout/tests/test_models.py
daniel-waruo/e-commerse-api
6b080039398fb4099a34335317d649dd67783f63
[ "Apache-2.0" ]
null
null
null
client/checkout/tests/test_models.py
daniel-waruo/e-commerse-api
6b080039398fb4099a34335317d649dd67783f63
[ "Apache-2.0" ]
null
null
null
from django.contrib.auth import get_user_model from django.test import TestCase, RequestFactory # models test class UserProfileTest(TestCase): """ Test whether user profile is created after user creation """ def setUp(self): # Every test needs access to the request factory. self.request = RequestFactory().get("/") # create a user instance self.user = get_user_model().objects.create_user( username='john', email='johndoe@gmail.com', password='password' ) def test_create_userprofile(self): self.assertIsNotNone(self.user.userprofile)
28
60
0.656832
97650773dfeda2d22c5ef85e68c07b2233eb467b
2,123
py
Python
setup.py
CAM-Gerlach/ivaldi
07fa74ac328d3caae6e1e9811f649178eda01925
[ "MIT" ]
null
null
null
setup.py
CAM-Gerlach/ivaldi
07fa74ac328d3caae6e1e9811f649178eda01925
[ "MIT" ]
null
null
null
setup.py
CAM-Gerlach/ivaldi
07fa74ac328d3caae6e1e9811f649178eda01925
[ "MIT" ]
1
2020-02-18T04:40:06.000Z
2020-02-18T04:40:06.000Z
#!/usr/bin/env python3 """ Setup script for Ivaldi. """ # Standard library imports from pathlib import Path # Third party imports import setuptools PROJECT_NAME = "ivaldi" with open(Path(__file__).resolve().parent / "README.md", "r", encoding="utf-8") as readme_file: LONG_DESCRIPTION = readme_file.read() VERSION = {} with open(Path(__file__).resolve().parent / "src" / PROJECT_NAME / "_version.py", "r", encoding="utf-8") as version_file: exec(version_file.read(), VERSION) # pylint: disable=W0122 setuptools.setup( name=PROJECT_NAME, version=VERSION["__version__"], author="C.A.M. Gerlach", author_email="CAM.Gerlach@Gerlach.CAM", description=("A lightweight client for IoT data logging and uplink."), long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", keywords="iot sensor remote control research m2m raspberry pi adafruit", url="https://github.com/hamma-dev/ivaldi", packages=setuptools.find_packages("src"), package_dir={"": "src"}, python_requires=">=3.6", install_requires=[ "adafruit-circuitpython-ads1x15", "adafruit-circuitpython-bmp280", "adafruit-circuitpython-sht31d", "gpiozero", "pyserial", "RPi.GPIO", ], entry_points={ "console_scripts": [ f"{PROJECT_NAME}={PROJECT_NAME}.__main__:main"] }, classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Environment :: No Input/Output (Daemon)", "Intended Audience :: Science/Research", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3 :: Only", "Topic :: Scientific/Engineering :: Atmospheric Science", "Topic :: Scientific/Engineering :: Physics", "Topic :: System :: Monitoring", "Topic :: System :: Networking :: Monitoring :: Hardware Watchdog", ], )
31.220588
76
0.628356
1b032d7df048e879cb131d3ededb5f240f3327c2
1,266
py
Python
db_tutorial.py
Gerard-007/diaryApp
2245cb2c6cca763112f68aba1ac1f7d7ebccd9b7
[ "MIT" ]
null
null
null
db_tutorial.py
Gerard-007/diaryApp
2245cb2c6cca763112f68aba1ac1f7d7ebccd9b7
[ "MIT" ]
null
null
null
db_tutorial.py
Gerard-007/diaryApp
2245cb2c6cca763112f68aba1ac1f7d7ebccd9b7
[ "MIT" ]
null
null
null
from peewee import * db = SqliteDatabase("students.db") class Student(Model): username = CharField(max_length=255, unique=True) points = IntegerField(default=0) class Meta: database = db #user inputs stores as dictionary... students = [ {'username': 'Gerard', 'points': 2000}, {'username': 'Blessing', 'points': 1200}, {'username': 'StefNora', 'points': 3000}, {'username': 'Luke', 'points': 2300} ] def add_students(): for student in students: try: Student.create(username = student['username'], points = student['points']) except IntegrityError: student_record = Student.get(username=student['username']) student_record.points = student['points'] student_record.save() def top_student(): #Select all student record, order them by highest point, get only the 1st record student = Student.select().order_by(Student.points.desc()).get() return student.username #This block runs the program logics if __name__ == '__main__': db.connect() db.create_tables([Student], safe=True) add_students() print("The top student now is: {}".format(top_student()))
26.375
85
0.611374
d52f3bcf4e4d1093fc0e3387a628fa0b55258166
840
py
Python
core/frontend/migrations/0001_initial.py
LegolasVzla/django-rest-framework-orientdb-postgresql
e7c412bd905a91210bfe863f31fea9ec78fe830e
[ "MIT" ]
2
2019-06-26T12:33:32.000Z
2019-06-26T21:22:10.000Z
core/frontend/migrations/0001_initial.py
LegolasVzla/django-rest-framework-orientdb-postgresql
e7c412bd905a91210bfe863f31fea9ec78fe830e
[ "MIT" ]
6
2019-12-04T22:58:04.000Z
2022-02-10T13:17:09.000Z
core/frontend/migrations/0001_initial.py
LegolasVzla/django-rest-framework-orientdb-postgresql
e7c412bd905a91210bfe863f31fea9ec78fe830e
[ "MIT" ]
null
null
null
# Generated by Django 2.2.1 on 2019-06-06 20:01 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Company', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=500)), ('email', models.CharField(blank=True, max_length=500)), ('is_active', models.BooleanField(default=True)), ('is_deleted', models.BooleanField(default=False)), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ], ), ]
31.111111
114
0.583333
fe24fa6a6769a9b1801bf76760dbe392386f6963
15,181
py
Python
ddpm/src/modules/models1.py
an-seunghwan/generative
edba5999677e80178f0a3ecd091f1800396ebcef
[ "MIT" ]
6
2021-06-02T04:48:20.000Z
2022-02-02T10:19:07.000Z
ddpm/src/modules/models1.py
an-seunghwan/generative
edba5999677e80178f0a3ecd091f1800396ebcef
[ "MIT" ]
null
null
null
ddpm/src/modules/models1.py
an-seunghwan/generative
edba5999677e80178f0a3ecd091f1800396ebcef
[ "MIT" ]
null
null
null
#%% ''' Fixed: tfa.layers.GroupNormalization(1) -> layers.LayerNormalization() ''' #%% import tensorflow as tf import tensorflow.keras as K from tensorflow.keras import layers import numpy as np # import tensorflow_addons as tfa #%% # def nonlinearity(x): # return tf.nn.swish(x) #%% # # FIXME # def normalize(x): # return tfa.layers.GroupNormalization(1)(x) # return layers.LayerNormalization()(x) #%% class Upsampling(layers.Layer): def __init__(self, in_ch, with_conv): super(Upsampling, self).__init__() self.in_ch = in_ch self.with_conv = with_conv self.conv = layers.Conv2D(filters=self.in_ch, kernel_size=3, strides=1, padding='same', name='conv_up') def call(self, x, **kwargs): B, H, W, C = x.shape x = tf.image.resize(x, size=[H * 2, W * 2], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) # assert x.shape == [B, H * 2, W * 2, C] if self.with_conv: x = self.conv(x) # assert x.shape == [B, H * 2, W * 2, C] return x #%% class Downsampling(layers.Layer): def __init__(self, in_ch, with_conv): super(Downsampling, self).__init__() self.in_ch = in_ch self.with_conv = with_conv if self.with_conv: self.conv = layers.Conv2D(filters=self.in_ch, kernel_size=3, strides=2, padding='same', name='conv_down') else: self.avgpool = layers.AveragePooling2D(pool_size=(2, 2), strides=2) def call(self, x, **kwargs): # B, H, W, C = x.shape if self.with_conv: x = self.conv(x) else: x = self.avgpool(x) # assert x.shape == [B, H // 2, W // 2, C] return x #%% def get_timestep_embedding(timesteps, embedding_dim): """ From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32 half_dim = embedding_dim // 2 emb = tf.math.log(10000.0) / (half_dim - 1) emb = tf.exp(tf.range(half_dim, dtype=tf.float32) * -emb) emb = tf.cast(timesteps, dtype=tf.float32)[:, None] * emb[None, :] emb = tf.concat([tf.sin(emb), tf.cos(emb)], axis=1) if embedding_dim % 2 == 1: # zero pad emb = tf.pad(emb, [[0, 0], [0, 1]]) # assert emb.shape == [timesteps.shape[0], embedding_dim] return emb #%% class ResnetBlock(layers.Layer): def __init__(self, dropout, in_ch, out_ch=None): super(ResnetBlock, self).__init__() self.dropout = dropout self.in_ch = in_ch self.out_ch = out_ch if self.out_ch is None: self.out_ch = self.in_ch if self.out_ch != self.in_ch: self.shortcut = layers.Conv2D(filters=self.out_ch, kernel_size=3, strides=1, padding='same', name='conv_shortcut') # self.nonlinearity = nonlinearity # self.normalize1 = tfa.layers.GroupNormalization(1) # self.normalize2 = tfa.layers.GroupNormalization(1) self.normalize1 = layers.LayerNormalization() self.normalize2 = layers.LayerNormalization() self.conv1 = layers.Conv2D(filters=self.out_ch, kernel_size=3, strides=1, padding='same', name='conv1') self.temb_proj = layers.Dense(self.out_ch, name='temb_proj') self.dropout_layer = layers.Dropout(rate=self.dropout) self.conv2 = layers.Conv2D(filters=self.out_ch, kernel_size=3, strides=1, padding='same', name='conv2') def call(self, x, temb, **kwargs): h = x h = tf.nn.swish(self.normalize1(h)) h = self.conv1(h) # add in timestep embedding h += self.temb_proj(tf.nn.swish(temb))[:, None, None, :] h = tf.nn.swish(self.normalize2(h)) h = self.dropout_layer(h) h = self.conv2(h) if self.out_ch != self.in_ch: x = self.shortcut(x) # assert x.shape == h.shape return x + h #%% class AttentionBlock(layers.Layer): def __init__(self, in_ch): super(AttentionBlock, self).__init__() self.in_ch = in_ch # self.normalize = tfa.layers.GroupNormalization(1) self.normalize = layers.LayerNormalization() self.q_layer = layers.Dense(self.in_ch, name='q') self.k_layer = layers.Dense(self.in_ch, name='k') self.v_layer = layers.Dense(self.in_ch, name='v') self.proj_out = layers.Dense(self.in_ch, name='proj_out') def call(self, x, **kwargs): B, H, W, C = x.shape h = self.normalize(x) q = self.q_layer(h) k = self.k_layer(h) v = self.v_layer(h) w = tf.einsum('bhwc,bHWc->bhwHW', q, k) * (int(self.in_ch) ** (-0.5)) w = tf.reshape(w, [-1, H, W, H * W]) w = tf.nn.softmax(w, -1) w = tf.reshape(w, [-1, H, W, H, W]) h = tf.einsum('bhwHW,bHWc->bhwc', w, v) h = self.proj_out(h) # assert h.shape == x.shape return x + h #%% def build_unet(PARAMS, embedding_dim, dropout=0., embedding_dim_mult=(1, 2, 4, 8), num_res_blocks=4, attn_resolutions=(16, ), resamp_with_conv=True): x = layers.Input((PARAMS['data_dim'], PARAMS['data_dim'], PARAMS['channel'])) timesteps = layers.Input(()) num_resolutions = len(embedding_dim_mult) '''Timestep embedding''' temb = get_timestep_embedding(timesteps, embedding_dim) temb = layers.Dense(embedding_dim * 4, name='dense0')(temb) temb = layers.Dense(embedding_dim * 4, name='dense1')(tf.nn.swish(temb)) # assert temb.shape == [B, self.embedding_dim * 4] '''Downsampling''' hs = [layers.Conv2D(filters=embedding_dim, kernel_size=3, strides=1, padding='same', name='conv_in')(x)] for i_level in range(num_resolutions): # Residual blocks for this resolution for i_block in range(num_res_blocks): h = ResnetBlock(dropout=dropout, in_ch=hs[-1].shape[-1], out_ch=embedding_dim * embedding_dim_mult[i_level])(hs[-1], temb=temb) if h.shape[1] in attn_resolutions: h = AttentionBlock(in_ch=h.shape[-1])(h) hs.append(h) # Downsample if i_level != num_resolutions - 1: hs.append(Downsampling(in_ch=hs[-1].shape[-1], with_conv=resamp_with_conv)(hs[-1])) '''Middle''' h = hs[-1] h = ResnetBlock(dropout=dropout, in_ch=embedding_dim * embedding_dim_mult[-1], out_ch=None)(h, temb=temb) h = AttentionBlock(in_ch=h.shape[-1])(h) h = ResnetBlock(dropout=dropout, in_ch=embedding_dim * embedding_dim_mult[-1], out_ch=None)(h, temb=temb) '''Upsampling''' for i_level in reversed(range(num_resolutions)): # Residual blocks for this resolution for i_block in range(num_res_blocks + 1): h = tf.concat([h, hs.pop()], axis=-1) h = ResnetBlock(dropout=dropout, in_ch=h.shape[-1], out_ch=embedding_dim * embedding_dim_mult[i_level])(h, temb=temb) if h.shape[1] in attn_resolutions: h = AttentionBlock(in_ch=h.shape[-1])(h) # Upsample if i_level != 0: h = Upsampling(in_ch=h.shape[-1], with_conv=resamp_with_conv)(h) '''End''' # h = tf.nn.swish(tfa.layers.GroupNormalization(1)(h)) h = tf.nn.swish(layers.LayerNormalization()(h)) h = layers.Conv2D(filters=PARAMS['channel'], kernel_size=3, strides=1, padding='same', name='conv_out')(h) # assert h.shape == x.shape[:3] + [self.out_ch] model = K.models.Model([x, timesteps], h) model.summary() return model #%% # class Unet(K.models.Model): # def __init__(self, params, embedding_dim, out_ch, dropout=0., embedding_dim_mult=(1, 2, 4, 8), num_res_blocks=2, attn_resolutions=(16, ), resamp_with_conv=True): # super(Unet, self).__init__() # self.params = params # self.embedding_dim = embedding_dim # self.out_ch = out_ch # self.dropout = dropout # self.embedding_dim_mult = embedding_dim_mult # self.num_res_blocks = num_res_blocks # self.attn_resolutions = attn_resolutions # self.resamp_with_conv = resamp_with_conv # self.num_resolutions = len(self.embedding_dim_mult) # self.nonlinearity = nonlinearity # self.normalize = normalize # self.get_timestep_embedding = get_timestep_embedding # self.channel_mult = [embedding_dim * m for m in self.embedding_dim_mult] # '''Downsampling''' # self.resblocks_down = [ResnetBlock(dropout=self.dropout, C=self.channel_mult[i], out_ch=self.embedding_dim * self.embedding_dim_mult[i]) # for i in range(self.num_resolutions)] # self.attnblocks_down = AttentionBlock(C=self.attn_resolutions[0]) # self.downsamples_down = [Downsampling(C=self.channel_mult[i], with_conv=self.resamp_with_conv) # for i in range(self.num_resolutions-1)] # '''Middle''' # self.resnet_middle1 = ResnetBlock(dropout=self.dropout, C=self.channel_mult[-1], out_ch=None) # self.attnblock_middle = AttentionBlock(C=int(self.params['data_dim'] / (2 ** (self.num_resolutions - 1)))) # self.resnet_middle2 = ResnetBlock(dropout=self.dropout, C=self.channel_mult[-1], out_ch=None) # '''Upsampling''' # self.resblocks_up = [ResnetBlock(dropout=self.dropout, C=self.channel_mult[::-1][i], out_ch=self.embedding_dim * self.embedding_dim_mult[i]) # for i in range(self.num_resolutions)] # self.attnblocks_up = AttentionBlock(C=self.attn_resolutions[0]) # self.Upsamples_up = [Upsampling(C=self.channel_mult[::-1][i], with_conv=self.resamp_with_conv) # for i in range(self.num_resolutions-1)] # self.dense0 = layers.Dense(self.embedding_dim * 4, name='dense0') # self.dense1 = layers.Dense(self.embedding_dim * 4, name='dense1') # self.conv_in = layers.Conv2D(filters=self.embedding_dim, kernel_size=3, strides=1, padding='same', name='conv_in') # self.conv_out = layers.Conv2D(filters=self.out_ch, kernel_size=3, strides=1, padding='same', name='conv_out') # def call(self, x, timesteps, **kwargs): # # B, _, _, _ = tf.shape(x) # B = self.params['batch_size'] # '''Timestep embedding''' # temb = self.get_timestep_embedding(timesteps, self.embedding_dim) # temb = self.dense0(temb) # temb = self.dense1(nonlinearity(temb)) # # assert temb.shape == [B, self.embedding_dim * 4] # '''Downsampling''' # hs = [self.conv_in(x)] # for i_level in range(self.num_resolutions): # # Residual blocks for this resolution # for i_block in range(self.num_res_blocks): # h = self.resblocks_down[i_block](hs[-1], temb=temb) # if h.shape[1] in self.attn_resolutions: # h = self.attnblocks_down(h) # hs.append(h) # # Downsample # if i_level != self.num_resolutions - 1: # hs.append(self.downsamples_down[i_level](hs[-1])) # '''Middle''' # h = hs[-1] # h = self.resnet_middle1(h, temb=temb) # h = self.attnblock_middle(h) # h = self.resnet_middle2(h, temb=temb) # '''Upsampling''' # for i_level in reversed(range(self.num_resolutions)): # # Residual blocks for this resolution # for i_block in range(self.num_res_blocks + 1): # h = self.resblocks_up[i_block](tf.concat([h, hs.pop()], axis=-1), temb=temb) # if h.shape[1] in self.attn_resolutions: # h = self.attnblocks_up(h) # # Upsample # if i_level != 0: # h = self.Upsamples_up[i_block](h) # '''End''' # h = self.nonlinearity(self.normalize(h)) # h = self.conv_out(h) # # h = nn.conv2d(h, name='conv_out', num_units=out_ch, init_scale=0.) # # assert h.shape == x.shape[:3] + [self.out_ch] # return h #%% # def model(x, timesteps, embedding_dim, out_ch, # dropout=0., embedding_dim_mult=(1, 2, 4, 8), num_res_blocks=3, attn_resolutions=(16, ), resamp_with_conv=True): # # x = layers.Input((32, 32, 3)) # # timesteps = layers.Input(()) # B, _, _, _ = tf.shape(x) # num_resolutions = len(embedding_dim_mult) # '''Timestep embedding''' # temb = get_timestep_embedding(timesteps, embedding_dim) # temb = layers.Dense(embedding_dim * 4, name='dense0')(temb) # # temb = nn.dense(temb, name='dense0', num_units=ch * 4) # temb = layers.Dense(embedding_dim * 4, name='dense1')(nonlinearity(temb)) # # temb = nn.dense(nonlinearity(temb), name='dense1', num_units=ch * 4) # assert temb.shape == [B, embedding_dim * 4] # '''Downsampling''' # hs = [layers.Conv2D(filters=embedding_dim, kernel_size=3, strides=1, padding='same', name='conv_in')(x)] # # hs = [nn.conv2d(x, name='conv_in', num_units=ch)] # for i_level in range(num_resolutions): # # Residual blocks for this resolution # for i_block in range(num_res_blocks): # h = resnet_block(hs[-1], temb=temb, out_ch=embedding_dim * embedding_dim_mult[i_level], dropout=dropout) # # h = resnet_block(hs[-1], name='block_{}'.format(i_block), temb=temb, out_ch=ch * ch_mult[i_level], dropout=dropout) # if tf.shape(h)[1] in attn_resolutions: # h = attn_block(h) # hs.append(h) # # Downsample # if i_level != num_resolutions - 1: # hs.append(downsample(hs[-1], with_conv=resamp_with_conv)) # '''Middle''' # h = hs[-1] # h = resnet_block(h, temb=temb, dropout=dropout) # # h = resnet_block(h, temb=temb, name='block_1', dropout=dropout) # h = attn_block(h) # # h = attn_block(h, name='attn_1'.format(i_block), temb=temb) # h = resnet_block(h, temb=temb, dropout=dropout) # # h = resnet_block(h, temb=temb, name='block_2', dropout=dropout) # '''Upsampling''' # for i_level in reversed(range(num_resolutions)): # # Residual blocks for this resolution # for i_block in range(num_res_blocks + 1): # h = resnet_block(tf.concat([h, hs.pop()], axis=-1), temb=temb, out_ch=embedding_dim * embedding_dim_mult[i_level], dropout=dropout) # if tf.shape(h)[1] in attn_resolutions: # h = attn_block(h) # # Upsample # if i_level != 0: # h = upsample(h, with_conv=resamp_with_conv) # '''End''' # h = nonlinearity(normalize(h)) # h = layers.Conv2D(filters=out_ch, kernel_size=3, strides=1, padding='same', name='conv_out')(h) # # h = nn.conv2d(h, name='conv_out', num_units=out_ch, init_scale=0.) # assert h.shape == x.shape[:3] + [out_ch] # return h # # return K.models.Model([x, timesteps], h) #%%
42.643258
167
0.600883
a556b4fcb1cb8fe2debced0b417597ffb87d3059
2,882
py
Python
blog/views.py
chiraag-kakar/My-Django-Blog
af4a56bd678cd0800473be718304c589f1b53904
[ "MIT" ]
5
2020-08-28T07:01:32.000Z
2020-12-14T00:29:01.000Z
blog/views.py
Favy-source/My-BlogTask
dd6ed005f9a10f2d658a55c597c89cd0a65cbf3c
[ "MIT" ]
null
null
null
blog/views.py
Favy-source/My-BlogTask
dd6ed005f9a10f2d658a55c597c89cd0a65cbf3c
[ "MIT" ]
4
2020-11-10T17:51:19.000Z
2021-05-13T13:55:40.000Z
from django.shortcuts import render, get_object_or_404 from django.utils import timezone from .models import Post, Comment from django.shortcuts import redirect from django.contrib.auth.decorators import login_required from .forms import PostForm, CommentForm def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) return render(request, 'blog/post_detail.html', {'post': post}) def post_list(request): posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date') return render(request, 'blog/post_list.html', {'posts': posts}) @login_required def post_new(request): if request.method == "POST": form = PostForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.author = request.user # post.published_date = timezone.now() post.save() return redirect('post_detail', pk=post.pk) else: form = PostForm() return render(request, 'blog/post_edit.html', {'form': form}) @login_required def post_edit(request, pk): post = get_object_or_404(Post, pk=pk) if request.method == "POST": form = PostForm(request.POST, instance=post) if form.is_valid(): post = form.save(commit=False) post.author = request.user # post.published_date = timezone.now() post.save() return redirect('post_detail', pk=post.pk) else: form = PostForm(instance=post) return render(request, 'blog/post_edit.html', {'form': form}) @login_required def post_draft_list(request): posts = Post.objects.filter(published_date__isnull=True).order_by('created_date') return render(request, 'blog/post_draft_list.html', {'posts': posts}) @login_required def post_publish(request, pk): post = get_object_or_404(Post, pk=pk) post.publish() return redirect('post_detail', pk=pk) @login_required def post_remove(request, pk): post = get_object_or_404(Post, pk=pk) post.delete() return redirect('post_list') def add_comment_to_post(request, pk): post = get_object_or_404(Post, pk=pk) if request.method == "POST": form = CommentForm(request.POST) if form.is_valid(): comment = form.save(commit=False) comment.post = post comment.save() return redirect('post_detail', pk=post.pk) else: form = CommentForm() return render(request, 'blog/add_comment_to_post.html', {'form': form}) @login_required def comment_approve(request, pk): comment = get_object_or_404(Comment, pk=pk) comment.approve() return redirect('post_detail', pk=comment.post.pk) @login_required def comment_remove(request, pk): comment = get_object_or_404(Comment, pk=pk) comment.delete() return redirect('post_detail', pk=comment.post.pk)
32.75
94
0.672797
4db4af00edf4a7b4a446748ec68b0f4a38ef5e96
21,615
py
Python
src/cobble/env.py
cbiffle/cobble-build
8cd2bc1d03c1d41a2f25ae6b064ab6dafd6016e4
[ "BSD-2-Clause" ]
9
2015-09-08T14:35:40.000Z
2021-09-27T23:24:19.000Z
src/cobble/env.py
oxidecomputer/cobble-build
e98052fd15d7718950155d595c6d8e07e3f4531e
[ "BSD-2-Clause" ]
1
2021-01-07T01:53:22.000Z
2021-11-03T13:18:24.000Z
src/cobble/env.py
cbiffle/cobble-build
8cd2bc1d03c1d41a2f25ae6b064ab6dafd6016e4
[ "BSD-2-Clause" ]
2
2020-03-12T22:04:12.000Z
2020-12-21T20:15:25.000Z
"""Environments and supporting types. An *environment* in Cobble is an immutable key-value mapping, similar to a Python dict. The contents of environments are restricted, however, in two ways: 1. Each environment is associated with a `KeyRegistry`, and any key used in the environment must be registered before use. 2. The values that can be stored in the environment are different for each key, but are generally limited to simple Python data: lists, tuples, sets, strings, and booleans. Cobble targets may produce different build steps in different environments -- for example, a C binary can be built in several different environments, each of which gives a slightly different value for the `c_flags` key. """ import hashlib import pickle import string import types from inspect import signature from functools import reduce class EnvKey: """Represents a key that can be used in environments. This is the definition of a key that gets stored with the `KeyRegistry`. """ def __init__(self, name, *, from_literal = None, combine = None, default = None, readout = None, help = None): """Creates a key with a name and strategy functions. The strategy functions are: - from_literal: used to translate a literal written in a BUILD file to the appropriate internal value type. If `None`, any literal is accepted. - combine: used to merge different values for the same key. If `None`, different values are an error condition. If the combine function returns `None`, the key is deleted. - default: value to be read when an environment doesn't have a value for the key. - readout: used to prepare a value for processing. Can be omitted if no preparation (beyond from_literal/combine) is needed. 'help' optionally gives a message explaining what the key is for, which will be printed if it is required but not found. """ self.name = name self._from_literal = from_literal self._combine = combine self._default = freeze(default) self._readout = readout self.help = help def from_literal(self, literal): """Produces a value legal for this key from `literal`, or throws.""" if self._from_literal is not None: return self._from_literal(literal) else: return literal def combine(self, lhs, rhs): """Combines two values for this key, or throws if they can't be combined.""" assert self._combine is not None, ( "Environment key %s requires a unique value, got two: %r and %r" % (self.name, lhs, rhs)) return self._combine(lhs, rhs) def readout(self, value): """Processes `value` for inclusion in a build file. Most keys don't need custom readout.""" if self._readout is not None: return self._readout(value) else: return value @property def default(self): """Gets the default value for this key, or `None`.""" return self._default def overrideable_string_key(name, default = None, readout = None, help = None): """Makes an EnvKey with a given 'name' that will accept a single string and allow overrides.""" def from_literal(lit): assert isinstance(lit, str) return lit return EnvKey( name, from_literal = from_literal, combine = lambda lhs, rhs: rhs, default = default, readout = readout, help = help, ) def overrideable_bool_key(name, readout = None, default = None, help = None): """Makes an EnvKey with a given 'name' that will accept a single bool and allow overrides.""" def from_literal(lit): assert isinstance(lit, bool) return lit return EnvKey( name, from_literal = from_literal, combine = lambda lhs, rhs: rhs, readout = readout, default = default, help = help, ) def appending_string_seq_key(name, readout = None, default = (), help = None): """Makes an EnvKey with a given 'name' that will accept sequences of strings and combine them by appending to yield a tuple.""" def from_literal(lit): # A string can be iterated as a list of strings. This would produce # confusing behavior. Avoid this by checking for str first. assert not isinstance(lit, str) \ and all(isinstance(e, str) for e in lit), \ "Expected list of strings, got: %r" % lit return tuple(lit) return EnvKey( name, from_literal = from_literal, combine = lambda lhs, rhs: lhs + rhs, default = tuple(freeze(e) for e in default), # defensive copy readout = readout, help = help, ) def prepending_string_seq_key(name, default = (), readout = None, help = None): """Makes an EnvKey with a given 'name' that will accept sequences of strings and combine them by prepending. When extended by a delta at several points in the build graph, this will order items produced by most-derived targets first. (This is niche, but relevant when linking C programs.)""" def from_literal(lit): # A string can be iterated as a list of strings. This would produce # confusing behavior. Avoid this by checking for str first. assert not isinstance(lit, str) \ and all(isinstance(e, str) for e in lit), \ "Expected list of strings, got: %r" % lit return tuple(lit) return EnvKey( name, from_literal = from_literal, combine = lambda lhs, rhs: rhs + lhs, default = tuple(freeze(e) for e in default), readout = readout, help = help, ) def frozenset_key(name, readout = None, default = (), help = None): """Makes an EnvKey with a given 'name' that will accept iterables of strings and combine them into a unique frozen set.""" def from_literal(lit): # A string can be iterated as a list of strings. This would produce # confusing behavior. Avoid this by checking for str first. assert not isinstance(lit, str) \ and all(isinstance(e, str) for e in lit), \ "Expected collection of strings for key %s, got: %r" % (name, lit) return frozenset(lit) return EnvKey( name, from_literal = from_literal, combine = lambda lhs, rhs: lhs | rhs, default = frozenset(freeze(e) for e in default), readout = readout, help = help, ) class KeyRegistry(object): """Keeps track of environment key definitions.""" def __init__(self): self._keys = {} def define(self, key): """Defines a new environment key. key: must be an EnvKey with a name that is unique in this registry. """ assert type(key) is EnvKey, \ "Expected EnvKey, got: %r" % key assert self._keys.get(key.name) is None, \ "Key %s defined twice: first %r, then %r" % ( key.name, self._keys[key.name], key) self._keys[key.name] = key # Mapping-like implementation def __contains__(self, key): return self._keys.__contains__(key) def __iter__(self): return self._keys.__iter__() def __getitem__(self, name): return self._keys.__getitem__(name) def get(self, name): return self._keys.get(name) def __len__(self): return len(self._keys) class Env(object): """An immutable mapping from keys to values, which can be extended in predictable ways. Environments can compute a *digest* of their contents, which is a hexadecimal string. Cobble doesn't promise to derive the digest using any particular means, and the means may change in later versions. registry: the key registry for this environment. prototype_dict: an initial key-value mapping for this environment. Keys and values must be legal for the registry.""" def __init__(self, registry, prototype_dict = {}, *, _fresh = False): self._registry = registry if _fresh: # Undocumented parameter _fresh is used to indicate that the dict # does not need to be defensively copied/frozen. This is used # within Cobble to construct environments with less memory traffic. self._dict = prototype_dict else: # Assume that the dict can contain arbitrary mutable nonsense, and # that the caller maintained a reference to it. self._dict = {} for k, v in prototype_dict.items(): self._dict[k] = freeze(v) # Digest will be computed on-demand. self._memoized_digest = None # Equality / hash def __eq__(self, other): # We include the registry to treat environments from different # registries as disjoint. # We include the digest as a quick way of establishing inequality. We # compare the entire dict to avoid the potential for digest collisions, # which is vanishingly small, and would cause the build system to # become incorrect, but hey -- let's be obviously correct here. return self._registry is other._registry \ and self.digest == other.digest \ and self._dict == other._dict def __hash__(self): # Fast, constant-time hashing for environments whose digest has already # been computed. Forces computation of the digest for other # environments. return hash(self.digest) # Iterable/dict interface def __contains__(self, key): return self._dict.__contains__(key) def __iter__(self): return self._dict.__iter__() def __getitem__(self, key): """The `__getitem__` implementation applies the key's readout function, which may format or otherwise prepare the result, and falls back to the key's default if present. """ # This implementation has the side effect that, if a key not present in # the registry somehow makes its way into self._dict, getitem will not # admit its presence. key_def = self._registry.get(key) if key_def is not None: return key_def.readout(self._dict.get(key, key_def.default)) else: raise KeyError("Use of undefined environment key %r" % key) def __len__(self): return self._dict.__len__() def subset(self, keys): """Creates a new Env by deleting any keys not present in the given list/set.""" return Env( self._registry, dict((k, v) for k, v in self._dict.items() if k in keys), _fresh = True, ) def subset_require(self, keys): """Returns an environment that contains the same values as 'self' for the keys named in 'keys', and no others. This operation is used for combination environment-filtering and error-checking. If any key in 'keys' is missing in 'self', but the associated key definition specifies a default value, the default value is copied into the result. The keys are interpreted as being required for success: if no default value is available, it's an error. """ e = self.subset(keys)._copy_defaults(keys) e.require(keys) return e def _copy_defaults(self, keys): """Produces a new Env containing the contents of this one, plus the defaults for any missing keys.""" d = dict(self._dict) for k in keys: if k not in d: default = self._registry[k].default if default is not None: d[k] = self._registry[k].default return Env(self._registry, d, _fresh = True) def without(self, matcher): """Returns a new Env that contains the same mappings as this one, except for keys specified by 'matcher'. 'matcher' can be a predicate function taking one argument (a key name); if it returns true, the key will be removed from the result. 'matcher' can also be a collection, in which case any key that is 'in matcher' will be removed from the result. """ if isinstance(matcher, types.FunctionType): d = dict((k, v) for k, v in self._dict.items() if matcher(k)) elif isinstance(matcher, (tuple, list, set, frozenset)): d = dict((k, v) for k, v in self._dict.items() if k not in matcher) else: raise TypeError("Unexpected matcher: %r" % matcher) return Env(self._registry, d, _fresh = True) def readout_all(self): """Returns a 'dict' representation of this environment containing all keys with explicit values. The values are passed through the readout function for each key, equivalent to `self[k]`. This can be used to prepare a version of this environment for use with the `ninja_syntax` module, or for easy debug printing, etc. """ return dict((k, self[k]) for k in self._dict) def derive(self, delta): """Creates a new Env that is identical to this one except for the changes made by 'delta'. Several types of primitives are accepted as deltas: - Functions/lambdas. Functions are expected to take an environment as their only argument, and return an environment. - Dicts. Dict keys are environment key names; dict values are literal expressions that will be converted to the appropriate type for the environment key. """ if type(delta) is types.FunctionType \ and len(signature(delta).parameters) == 1: return delta(self) elif type(delta) is dict: # Make a shallow copy of our backing dict. new_dict = dict(self._dict) # Apply each key in the delta to the copy. for k, v in delta.items(): key_def = self._registry.get(k) if key_def is None: raise Exception("delta contained unknown key %s (=%r)" % (k, v)) v = self.rewrite(v) v = key_def.from_literal(v) if k in self._dict: new_value = key_def.combine(self._dict[k], v) if new_value is None: del new_dict[k] else: new_dict[k] = new_value else: new_dict[k] = v # aaaand we're done. Inform the constructor that the dict is fresh # to avoid an extra copy. return Env(self._registry, new_dict, _fresh = True) elif isinstance(delta, (list, tuple)): return reduce(lambda env, delt: env.derive(delt), delta, self) elif delta is None: return self else: raise Exception("delta should be func or dict, got: %r" % delta) @property def digest(self): """Reads out the environment digest for 'self'. The environment digest is a 'str' containing a hexadecimal number. It is computed such that two environments with different contents will have different digests. This means that comparing the digests of two environments is an inexpensive way of telling if they are identical. (Ignoring, for the moment, a very small risk of collisions in the digest function.) The digest is computed on demand the first time it is requested, and then stored, so that later requests are cheap. This avoids unnecessary work for short-lived intermediate environments. The method for computing the digest is unspecified, i.e. Cobble may change it in the future and you shouldn't rely on it. """ if self._memoized_digest is None: # To make contents predictable, make a sorted list of key-value # tuples. Normalize the values while we're here. contents = sorted((k, _normalize(v)) for k, v in self._dict.items()) # To make contents binary, pickle them. Fix the protocol revision # so we get more consistent results. binary = pickle.dumps(contents, protocol = 3) # To make the length of the contents predictable, hash them. self._memoized_digest = hashlib.sha1(binary).hexdigest() return self._memoized_digest def rewrite(self, literal): """Rewrites 'literal' using information from this environment, returning the rewritten version. This implements the user-visible templating language available in BUILD files. Rewrites proceed as follows: - For `str`, any environment key named with "$key" or "${key}" is replaced by the value in this environment, as processed by the key's readout function. If the key is missing, it's an error. - For tuples or frozensets, each element is rewritten recursively. - Booleans and None are returned verbatim. """ if isinstance(literal, str): # The actual processing code, yaaaay return string.Template(literal).substitute(self) elif isinstance(literal, tuple): return tuple(self.rewrite(elt) for elt in literal) elif isinstance(literal, frozenset): return frozenset(self.rewrite(elt) for elt in literal) else: return literal def require(self, keys): """Asserts that this environment contains values for every key named in 'keys'. Default values count if the key's default value is not None.""" missing = [k for k in keys \ if k not in self._dict and self._registry[k].default is None] if missing: msg = "Required keys %r missing from environment" % missing for m in missing: h = self._registry[m].help if h is None: msg += '\n- \'%s\' has no description' % m else: msg += '\n- \'%s\': %s' % (m, h) raise AssertionError(msg) def freeze(x): """Attempts to make x immutable by converting it into a *frozen datum*. Input can be str, bool, set, frozenset, list, tuple, None, and any nesting of those. Output will consist of str, bool, frozenset, tuple, and None only. """ if isinstance(x, str): # Assume that strings are immutable. return x elif isinstance(x, bool): # Bools too return x elif isinstance(x, (set, frozenset)): return frozenset(freeze(v) for v in x) elif isinstance(x, (list, tuple)): return tuple(freeze(v) for v in x) elif x is None: return None else: raise TypeError("Value cannot be frozen for use in an environment: %r" % x) def is_frozen(x): """Checks whether 'x' is a frozen datum, something that could result from a call to 'freeze'.""" return isinstance(x, (str, bool)) \ or x is None \ or (isinstance(x, (frozenset, tuple)) and all(is_frozen(e) for e in x)) def _normalize(x): """Takes a frozen datum and converts sets to sorted tuples, ensuring that any two data with the same logical contents have the same printed contents. The result is still a frozen datum, technically, but set semantics are erased. The result is mostly useful for generating predictable environment hashes. It's probably not necessary for this function to be particularly efficient, because it's contributing to env digests, which are already expensive and so memoized. """ if isinstance(x, (str, bool)) or x is None: return x if isinstance(x, frozenset): return tuple(sorted(_normalize(e) for e in x)) assert isinstance(x, tuple) return x def prepare_delta(d): """Creates an environment delta from one of a few possible data types. 'd' may be: - a function that takes an environment as a parameter and returns a new environment. - a 'dict', whose keys are environment key names as 'str', and whose values can be passed to 'freeze'. When applied to an environment, the resulting delta will pass the dict value and the old value (if any) to each key's `combine` function. - 'None', which means no changes. - A list or tuple, which specifies a sequence of deltas to apply in order; each element will be passed to 'prepare_delta' recursively. """ if isinstance(d, types.FunctionType): return d elif isinstance(d, dict): return dict((k, freeze(v)) for k, v in d.items()) elif d is None: return None elif isinstance(d, (list, tuple)): return tuple(prepare_delta(e) for e in d) else: raise TypeError("invalid delta: %r" % d) def is_delta(d): """Checks if 'd' is a plausible environment delta.""" if d is None: return True if isinstance(d, types.FunctionType): return True if isinstance(d, dict): return all(isinstance(k, str) and is_frozen(v) for k,v in d.items()) if isinstance(d, (list, tuple)): return all(is_delta(e) for e in d) return False
38.460854
82
0.622299
b655047b25f1797c56e017420180e441e6b5a021
5,614
py
Python
packs/nagios/etc/st2service_handler.py
jonico/st2contrib
149c9c553f24360d91a14fef7ea6146707de75fd
[ "Apache-2.0" ]
5
2016-10-11T11:52:53.000Z
2017-06-15T05:21:05.000Z
packs/nagios/etc/st2service_handler.py
jonico/st2contrib
149c9c553f24360d91a14fef7ea6146707de75fd
[ "Apache-2.0" ]
25
2016-07-28T17:50:35.000Z
2017-09-25T09:26:18.000Z
packs/nagios/etc/st2service_handler.py
jonico/st2contrib
149c9c553f24360d91a14fef7ea6146707de75fd
[ "Apache-2.0" ]
2
2015-09-09T11:46:25.000Z
2020-11-21T10:10:49.000Z
#!/usr/bin/env python import httplib try: import simplejson as json except ImportError: import json import os import sys from urlparse import urljoin try: import requests except ImportError: raise ImportError('Missing dependency requests. Do ``pip install requests``.') try: import yaml except ImportError: raise ImportError('Missing dependency pyyaml. Do ``pip install pyyaml``.') # ST2 configuration ST2_CONFIG_FILE = './config.yaml' ST2_API_BASE_URL = 'http://localhost:9101/v1' ST2_AUTH_BASE_URL = 'http://localhost:9100' ST2_USERNAME = None ST2_PASSWORD = None ST2_AUTH_TOKEN = None ST2_AUTH_PATH = 'tokens' ST2_WEBHOOKS_PATH = 'webhooks/st2/' ST2_TRIGGERS_PATH = 'triggertypes/' ST2_TRIGGERTYPE_PACK = 'nagios' ST2_TRIGGERTYPE_NAME = 'service-state-change' ST2_TRIGGERTYPE_REF = '.'.join([ST2_TRIGGERTYPE_PACK, ST2_TRIGGERTYPE_NAME]) STATE_MESSAGE = { 'OK': 'All is well on the Western front.', 'WARNING': 'We gots a warning yo!', 'UNKNOWN': 'It be unknown...', 'CRITICAL': 'Critical!' } REGISTERED_WITH_ST2 = False OK_CODES = [httplib.OK, httplib.CREATED, httplib.ACCEPTED, httplib.CONFLICT] def _create_trigger_type(): try: url = _get_st2_triggers_url() payload = { 'name': ST2_TRIGGERTYPE_NAME, 'pack': ST2_TRIGGERTYPE_PACK, 'description': 'Trigger type for nagios event handler.' } # sys.stdout.write('POST: %s: Body: %s\n' % (url, payload)) headers = {} headers['Content-Type'] = 'application/json; charset=utf-8' if ST2_AUTH_TOKEN: headers['X-Auth-Token'] = ST2_AUTH_TOKEN post_resp = requests.post(url, data=json.dumps(payload), headers=headers) except: sys.stderr.write('Unable to register trigger type with st2.') raise else: status = post_resp.status_code if status not in OK_CODES: sys.stderr.write('Failed to register trigger type with st2. HTTP_CODE: %d\n' % status) raise else: sys.stdout.write('Registered trigger type with st2.\n') def _get_auth_url(): return urljoin(ST2_AUTH_BASE_URL, ST2_AUTH_PATH) def _get_auth_token(): global ST2_AUTH_TOKEN auth_url = _get_auth_url() try: resp = requests.post(auth_url, json.dumps({'ttl': 5 * 60}), auth=(ST2_USERNAME, ST2_PASSWORD)) except: raise Exception('Cannot get auth token from st2. Will try unauthed.') else: ST2_AUTH_TOKEN = resp.json()['token'] def _register_with_st2(): global REGISTERED_WITH_ST2 try: url = urljoin(_get_st2_triggers_url(), ST2_TRIGGERTYPE_REF) # sys.stdout.write('GET: %s\n' % url) if not ST2_AUTH_TOKEN: _get_auth_token() if ST2_AUTH_TOKEN: get_resp = requests.get(url, headers={'X-Auth-Token': ST2_AUTH_TOKEN}) else: get_resp = requests.get(url) if get_resp.status_code != httplib.OK: _create_trigger_type() else: body = json.loads(get_resp.text) if len(body) == 0: _create_trigger_type() except: raise else: REGISTERED_WITH_ST2 = True def _get_st2_triggers_url(): url = urljoin(ST2_API_BASE_URL, ST2_TRIGGERS_PATH) return url def _get_st2_webhooks_url(): url = urljoin(ST2_API_BASE_URL, ST2_WEBHOOKS_PATH) return url def _post_event_to_st2(url, body): headers = {} headers['X-ST2-Integration'] = 'nagios.' headers['Content-Type'] = 'application/json; charset=utf-8' if ST2_AUTH_TOKEN: headers['X-Auth-Token'] = ST2_AUTH_TOKEN try: # sys.stdout.write('POST: url: %s, body: %s\n' % (url, body)) r = requests.post(url, data=json.dumps(body), headers=headers) except: sys.stderr.write('Cannot connect to st2 endpoint.') else: status = r.status_code if status not in OK_CODES: sys.stderr.write('Failed posting nagios event to st2. HTTP_CODE: %d\n' % status) else: sys.stdout.write('Sent nagios event to st2. HTTP_CODE: %d\n' % status) def _get_payload(host, service, event_id, state, state_type, attempt): payload = {} payload['host'] = host payload['service'] = service payload['event_id'] = event_id payload['state'] = state payload['state_type'] = state_type payload['attempt'] = attempt payload['msg'] = STATE_MESSAGE.get(state, 'Undefined state.') return payload def main(args): event_id = args[1] service = args[2] state = args[3] state_type = args[4] attempt = args[5] host = args[6] payload = _get_payload(host, service, event_id, state, state_type, attempt) body = {} body['trigger'] = ST2_TRIGGERTYPE_REF body['payload'] = payload _post_event_to_st2(_get_st2_webhooks_url(), body) if __name__ == '__main__': try: if not os.path.exists(ST2_CONFIG_FILE): sys.stderr.write('Configuration file not found. Exiting.\n') sys.exit(1) with open(ST2_CONFIG_FILE) as f: config = yaml.safe_load(f) ST2_USERNAME = config['st2_username'] ST2_PASSWORD = config['st2_password'] ST2_API_BASE_URL = config['st2_api_base_url'] ST2_AUTH_BASE_URL = config['st2_auth_base_url'] if not REGISTERED_WITH_ST2: _register_with_st2() except: sys.stderr.write('Failed registering with st2. Won\'t post event.\n') else: main(sys.argv)
28.789744
92
0.636979
6c2262b4d65f8083f8456ce5ce012cb0dbd5f791
5,656
py
Python
backstage/core/funcs.py
pyrustic/backstage
d0cead248235026129e3743d43c12691342701fc
[ "MIT" ]
null
null
null
backstage/core/funcs.py
pyrustic/backstage
d0cead248235026129e3743d43c12691342701fc
[ "MIT" ]
null
null
null
backstage/core/funcs.py
pyrustic/backstage
d0cead248235026129e3743d43c12691342701fc
[ "MIT" ]
null
null
null
import os import os.path import shutil def get_app_pkg(project_dir): """ This function extracts the application package name from a project_dir path. Basically it extracts the basename from the path then turns dashes "-" into "underscores" "_". Parameters: - project_dir: str, path to the project_dir project Returns: str, the application package name. """ if not project_dir: return None basename = os.path.basename(project_dir) cache = basename.split("-") app_pkg = "_".join(cache) return app_pkg def get_project_name(project_dir): """Returns the project name""" return os.path.basename(project_dir) def ask_for_confirmation(message, default="y"): """ Use this function to request a confirmation from the user. Parameters: - message: str, the message to display - default: str, either "y" or "n" to tell "Yes by default" or "No, by default". Returns: a boolean, True or False to reply to the request. Note: this function will append a " (y/N): " or " (Y/n): " to the message. """ cache = "Y/n" if default == "y" else "y/N" user_input = None try: user_input = input("{} ({}): ".format(message, cache)) except EOFError as e: pass if not user_input: user_input = default if user_input.lower() == "y": return True return False def wheels_assets(target): dist_folder = os.path.join(target, "dist") if not os.path.exists(dist_folder): return [] assets = [] for item in os.listdir(dist_folder): _, ext = os.path.splitext(item) if ext != ".whl": continue path = os.path.join(dist_folder, item) if not os.path.isfile(path): continue assets.append(item) assets = _sort_wheels_names(assets) assets.reverse() return assets def copyto(src, dest): """ Please make sure that DEST doesn't exist yet ! Copy a file or contents of directory (src) to a destination file or folder (dest) """ if not os.path.exists(src) or os.path.exists(dest): return False if os.path.isdir(src): try: shutil.copytree(src, dest) except Exception as e: return False else: try: shutil.copy2(src, dest) except Exception as e: return False return True def moveto(src, dest): """ If the DEST exists: * Before moveto * - /home/lake (SRC) - /home/lake/fish.txt - /home/ocean (DEST) * Moveto * moveto("/home/lake", "/home/ocean") * After Moveto * - /home/ocean - /home/ocean/lake - /home/ocean/lake/fish.txt Else IF the DEST doesn't exist: * Before moveto * - /home/lake (SRC) - /home/lake/fish.txt * Moveto * moveto("/home/lake", "/home/ocean") * After Moveto * - /home/ocean - /home/ocean/fish.txt Move a file or directory (src) to a destination folder (dest) """ if not os.path.exists(src) or os.path.exists(dest): return False try: shutil.move(src, dest) except Exception as e: return False return True def package_name_to_path(target, package_name, prefix=""): # returns a dotted package name to a regular pathname # example: package_name_to_path("/home/proj", "view.lol", prefix="tests.") return os.path.join(target, *((prefix + package_name).split("."))) def build_package(target, package_name, prefix=""): """ Literally build a package, returns None or the string pathname package represented by prefix must already exist """ splitted = package_name.split(".") dir = package_name_to_path(target, prefix) if prefix else target for item in splitted: dir = os.path.join(dir, item) if not os.path.exists(dir): try: os.mkdir(dir) except Exception as e: pass init_file = os.path.join(dir, "__init__.py") if not os.path.exists(init_file): try: with open(init_file, "w") as file: pass except Exception as e: pass if not os.path.isdir(dir): return None return dir def module_name_to_class(module_name): """ Convert a module name like my_module.py to a class name like MyModule """ name = os.path.splitext(module_name)[0] # ... if not "_" in name: return strictly_capitalize(name) else: splitted = name.split("_") cache = [] for x in splitted: cache.append(strictly_capitalize(x)) return "".join(cache) def strictly_capitalize(string): # I don't remember why I haven't used str.capitalize() return string[0].upper() + string[1:] def get_root_from_package(package_name): """ Return the root from a dotted package name. Example the root here "my.package.is.great" is "my". """ splitted = package_name.split(".") root = None for x in splitted: if x == "" or x.isspace(): continue root = x break return root def get_hub_url(res): target = "https://api.github.com" return "{}{}".format(target, res) def _sort_wheels_names(data): cache = list() for name in data: version = name.split("-")[1] cache.append((version, name)) cache.sort(key=lambda s: [int(i) for i in s[0].split('.')]) return [name for version, name in cache]
26.805687
85
0.588048
59c1e9a1f818fed5d4fceed3bb333e8496da974e
2,210
py
Python
kale/wallet/puzzles/prefarm/make_prefarm_ph.py
inan0812/kale-blockchain
1b502fe21a4be10b4db0171c3a7030079dcefa1b
[ "Apache-2.0" ]
null
null
null
kale/wallet/puzzles/prefarm/make_prefarm_ph.py
inan0812/kale-blockchain
1b502fe21a4be10b4db0171c3a7030079dcefa1b
[ "Apache-2.0" ]
null
null
null
kale/wallet/puzzles/prefarm/make_prefarm_ph.py
inan0812/kale-blockchain
1b502fe21a4be10b4db0171c3a7030079dcefa1b
[ "Apache-2.0" ]
null
null
null
from clvm.casts import int_from_bytes from clvm_tools import binutils from kale.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from kale.types.blockchain_format.program import Program from kale.types.condition_opcodes import ConditionOpcode from kale.util.bech32m import decode_puzzle_hash, encode_puzzle_hash from kale.util.condition_tools import parse_sexp_to_conditions from kale.util.ints import uint32 address1 = "txka15gx26ndmacfaqlq8m0yajeggzceu7cvmaz4df0hahkukes695rss6lej7h" # Gene wallet (m/12381/6333/2/42): address2 = "txka1c2cguswhvmdyz9hr3q6hak2h6p9dw4rz82g4707k2xy2sarv705qcce4pn" # Mariano address (m/12381/6333/2/0) ph1 = decode_puzzle_hash(address1) ph2 = decode_puzzle_hash(address2) pool_amounts = int(calculate_pool_reward(uint32(0)) / 2) farmer_amounts = int(calculate_base_farmer_reward(uint32(0)) / 2) assert pool_amounts * 2 == calculate_pool_reward(uint32(0)) assert farmer_amounts * 2 == calculate_base_farmer_reward(uint32(0)) def make_puzzle(amount: int) -> int: puzzle = f"(q . ((51 0x{ph1.hex()} {amount}) (51 0x{ph2.hex()} {amount})))" # print(puzzle) puzzle_prog = Program.to(binutils.assemble(puzzle)) print("Program: ", puzzle_prog) puzzle_hash = puzzle_prog.get_tree_hash() solution = "()" prefix = "xka" print("PH", puzzle_hash) print(f"Address: {encode_puzzle_hash(puzzle_hash, prefix)}") result = puzzle_prog.run(solution) error, result_human = parse_sexp_to_conditions(result) total_kale = 0 if error: print(f"Error: {error}") else: assert result_human is not None for cvp in result_human: assert len(cvp.vars) == 2 total_kale += int_from_bytes(cvp.vars[1]) print( f"{ConditionOpcode(cvp.opcode).name}: {encode_puzzle_hash(cvp.vars[0], prefix)}," f" amount: {int_from_bytes(cvp.vars[1])}" ) return total_kale total_kale = 0 print("Pool address: ") total_kale += make_puzzle(pool_amounts) print("\nFarmer address: ") total_kale += make_puzzle(farmer_amounts) assert total_kale == calculate_base_farmer_reward(uint32(0)) + calculate_pool_reward(uint32(0))
35.645161
114
0.730769
6e9cbdf25d0ed5712a32a27da07516d481a1313a
497
py
Python
submissions/abc170/c.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
1
2021-05-10T01:16:28.000Z
2021-05-10T01:16:28.000Z
submissions/abc170/c.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
3
2021-05-11T06:14:15.000Z
2021-06-19T08:18:36.000Z
submissions/abc170/c.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
null
null
null
def main(): import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) x, n = map(int, readline().split()) p = list(map(int, readline().split())) check = float('inf') ans = 0 for i in range(102): if i not in p: if check > abs(x - i): ans = i check = abs(x - i) print(ans) if __name__ == '__main__': main()
22.590909
42
0.531187
6a4e77b481d87aa0d4c759ae681a0649d2628d5f
465
py
Python
env/lib/python3.8/site-packages/plotly/validators/cone/hoverlabel/font/_sizesrc.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/cone/hoverlabel/font/_sizesrc.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/cone/hoverlabel/font/_sizesrc.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class SizesrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="sizesrc", parent_name="cone.hoverlabel.font", **kwargs ): super(SizesrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs )
31
81
0.636559
be34738bb59daabfd90ef0829f8cf3234ffe7527
421
py
Python
addifintegers.py
manand881/Python-Programs
eb970cb1b21d4aede0102c60425eb8a1d4ac605c
[ "MIT" ]
null
null
null
addifintegers.py
manand881/Python-Programs
eb970cb1b21d4aede0102c60425eb8a1d4ac605c
[ "MIT" ]
null
null
null
addifintegers.py
manand881/Python-Programs
eb970cb1b21d4aede0102c60425eb8a1d4ac605c
[ "MIT" ]
null
null
null
# Add two objects if both objects are an integer type import sys def add_ints(a, b): if type(a) == type(b) == int: return a + b else: sys.exit print(add_ints(1,2)) # ===> 3 print(add_ints(1,'2')) # ===> None # def add_numbers(a, b): # if not (isinstance(a, int) and isinstance(b, int)): # raise TypeError("Inputs must be integers") # return a + b # print(add_numbers(10, 20))
22.157895
57
0.586698
c371aefd75a154c71519efca1ad974c27e00d673
956
py
Python
signac/common/errors.py
shandave/signac
911d7eb1f475f501b2c21e47bbf00829a958147a
[ "BSD-3-Clause" ]
null
null
null
signac/common/errors.py
shandave/signac
911d7eb1f475f501b2c21e47bbf00829a958147a
[ "BSD-3-Clause" ]
106
2020-06-11T19:44:35.000Z
2022-03-01T13:01:09.000Z
signac/common/errors.py
daico007/signac
a20d815bd87af3d8992c71871071024062cada07
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. """Errors raised by signac.common classes.""" from ..core.errors import Error class ConfigError(Error, RuntimeError): """Error with parsing or reading a configuration file.""" pass # this class is only used by deprecated features class AuthenticationError(Error, RuntimeError): """Authentication error.""" def __str__(self): if len(self.args) > 0: return "Failed to authenticate with host '{}'.".format(self.args[0]) else: return "Failed to authenticate with host." # this class is only used by deprecated features class ExportError(Error, RuntimeError): """Error exporting documents to a mirror.""" pass # this class is only used by deprecated features class FetchError(FileNotFoundError): """Error in fetching data.""" pass
25.837838
80
0.697699
eaa97f8c79bd04025e6c211373e028ba5f3b1146
2,471
py
Python
discord/state.py
nextcord-ext/nextcord
7b3022ae19299e1f40f5f34da33b80ae491aa06a
[ "MIT" ]
null
null
null
discord/state.py
nextcord-ext/nextcord
7b3022ae19299e1f40f5f34da33b80ae491aa06a
[ "MIT" ]
null
null
null
discord/state.py
nextcord-ext/nextcord
7b3022ae19299e1f40f5f34da33b80ae491aa06a
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Copyright (c) 2021-present tag-epic Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -------------- Aliased moodule. See the same file in the nextcord folder for more information Autogenerated by aliasgen.py """ from nextcord.state import ( AllowedMentions, Any, ApplicationFlags, AutoShardedConnectionState, BaseActivity, Callable, CategoryChannel, ChannelType, ChunkRequest, ClientUser, ConnectionState, Coroutine, DMChannel, Deque, Dict, Emoji, GroupChannel, Guild, GuildSticker, Intents, Interaction, Invite, List, Member, MemberCacheFlags, Message, Object, Optional, OrderedDict, PartialEmoji, PartialMessageable, RawBulkMessageDeleteEvent, RawIntegrationDeleteEvent, RawMessageDeleteEvent, RawMessageUpdateEvent, RawReactionActionEvent, RawReactionClearEmojiEvent, RawReactionClearEvent, RawTypingEvent, Role, Sequence, StageChannel, StageInstance, Status, StoreChannel, TYPE_CHECKING, TextChannel, Thread, ThreadMember, Tuple, TypeVar, Union, User, View, ViewStore, VoiceChannel, _channel_factory, _integration_factory, _log, annotations, asyncio, copy, datetime, deque, inspect, itertools, logging, logging_coroutine, os, try_enum, utils, )
23.990291
78
0.717928
5cf33cd241e4c8aa395c08940cce8e71799fdd61
23,795
py
Python
Packs/MailListener/Integrations/MailListenerV2/MailListenerV2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/MailListener/Integrations/MailListenerV2/MailListenerV2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/MailListener/Integrations/MailListenerV2/MailListenerV2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import ssl from datetime import timezone from typing import Any, Dict, Tuple, List, Optional from dateparser import parse from mailparser import parse_from_bytes from imap_tools import OR from imapclient import IMAPClient import demistomock as demisto from CommonServerPython import * class Email(object): def __init__(self, message_bytes: bytes, include_raw_body: bool, save_file: bool, id_: int) -> None: """ Initialize Email class with all relevant data Args: id_: The unique ID with which the email can be fetched from the server specifically message_bytes: The raw email bytes include_raw_body: Whether to include the raw body of the mail in the incident's body save_file: Whether to save the .eml file of the incident's mail """ self.mail_bytes = message_bytes try: email_object = parse_from_bytes(message_bytes) except UnicodeDecodeError as e: demisto.info(f'Failed parsing mail from bytes: [{e}]\n{traceback.format_exc()}.' '\nWill replace backslash and try to parse again') message_bytes = self.handle_message_slashes(message_bytes) email_object = parse_from_bytes(message_bytes) self.id = id_ self.to = [mail_addresses for _, mail_addresses in email_object.to] self.cc = [mail_addresses for _, mail_addresses in email_object.cc] self.bcc = [mail_addresses for _, mail_addresses in email_object.bcc] self.attachments = email_object.attachments self.from_ = [mail_addresses for _, mail_addresses in email_object.from_][0] self.format = email_object.message.get_content_type() self.html = email_object.text_html[0] if email_object.text_html else '' self.text = email_object.text_plain[0] if email_object.text_plain else '' self.subject = email_object.subject self.headers = email_object.headers self.raw_body = email_object.body if include_raw_body else None # According to the mailparser documentation the datetime object is in utc self.date = email_object.date.replace(tzinfo=timezone.utc) self.raw_json = self.generate_raw_json() self.save_eml_file = save_file self.labels = self._generate_labels() @staticmethod def handle_message_slashes(message_bytes: bytes) -> bytes: """ Handles the case where message bytes containing backslashes which needs escaping Returns: The message bytes after escaping """ # Input example # 1: # message_bytes = b'\\U' # Output example # 1 (added escaping for the slash): # b'\\\\U' # # Input example # 2: # message_bytes = b'\\\\U' # Output example # 2 (no need to add escaping since the number of slashes is even): # b'\\\\U' regex = re.compile(rb'\\+U', flags=re.IGNORECASE) def escape_message_bytes(m): s = m.group(0) if len(s) % 2 == 0: # The number of slashes prior to 'u' is odd - need to add one backslash s = b'\\' + s return s message_bytes = regex.sub(escape_message_bytes, message_bytes) return message_bytes def _generate_labels(self) -> List[Dict[str, str]]: """ Generates the labels needed for the incident Returns: A list of dicts with the form {type: <label name>, value: <label-value>} """ labels = [{'type': 'Email/headers', 'value': json.dumps(self.headers)}, {'type': 'Email/from', 'value': self.from_}, {'type': 'Email/format', 'value': self.format}, {'type': 'Email/text', 'value': self.text.strip()}, {'type': 'Email/subject', 'value': self.subject}, ] labels.extend([ {'type': f'Email/headers/{header_name}', 'value': header_value} for header_name, header_value in self.headers.items() ]) labels.extend([{'type': 'Email', 'value': mail_to} for mail_to in self.to]) labels.extend([{'type': 'Email/cc', 'value': cc_mail} for cc_mail in self.cc]) labels.extend([{'type': 'Email/bcc', 'value': bcc_mail} for bcc_mail in self.bcc]) if self.html: labels.append({'type': 'Email/html', 'value': self.html.strip()}) if self.attachments: labels.append({'type': 'Email/attachments', 'value': ','.join([attachment['filename'] for attachment in self.attachments])}) return labels def parse_attachments(self) -> list: """ Writes the attachments of the files and returns a list of file entry details. If self.save_eml_file is set, will also save the email itself as file Returns: A list of the written files entries """ files = [] for attachment in self.attachments: payload = attachment.get('payload') file_data = base64.b64decode(payload) if attachment.get('binary') else payload # save the attachment file_result = fileResult(attachment.get('filename'), file_data, attachment.get('mail_content_type')) # check for error if file_result['Type'] == entryTypes['error']: demisto.error(file_result['Contents']) files.append({ 'path': file_result['FileID'], 'name': file_result['File'] }) if self.save_eml_file: file_result = fileResult('original-email-file.eml', self.mail_bytes) files.append({ 'path': file_result['FileID'], 'name': file_result['File'] }) return files def convert_to_incident(self) -> Dict[str, Any]: """ Convert an Email class instance to a demisto incident Returns: A dict with all relevant fields for an incident """ return { 'labels': self._generate_labels(), 'occurred': self.date.isoformat(), 'created': datetime.now(timezone.utc).isoformat(), 'details': self.text or self.html, 'name': self.subject, 'attachment': self.parse_attachments(), 'rawJSON': json.dumps(self.raw_json) } def generate_raw_json(self, parse_attachments: bool = False) -> dict: """ Args: parse_attachments: whether to parse the attachments and write them to files during the execution of this method or not. """ raw_json = { 'to': ','.join(self.to), 'cc': ','.join(self.cc), 'bcc': ','.join(self.bcc), 'from': self.from_, 'format': self.format, 'text': self.text, 'subject': self.subject, 'attachments': self.parse_attachments() if parse_attachments else ','.join( [attachment['filename'] for attachment in self.attachments]), 'rawHeaders': self.parse_raw_headers(), 'headers': remove_empty_elements(self.headers) } if self.html: raw_json['HTML'] = self.html if self.raw_body: raw_json['rawBody'] = self.raw_body return raw_json def parse_raw_headers(self) -> str: """ Parses the dict with the mail headers into a string representation Returns: A string representation of the headers with the form <key>: <value>\n for al keys and values in the headers dict """ headers_string_lines = [f'{key}: {value}' for key, value in self.headers.items()] return '\n'.join(headers_string_lines) def fetch_incidents(client: IMAPClient, last_run: dict, first_fetch_time: str, include_raw_body: bool, with_headers: bool, permitted_from_addresses: str, permitted_from_domains: str, delete_processed: bool, limit: int, save_file: bool ) -> Tuple[dict, list]: """ This function will execute each interval (default is 1 minute). The search is based on the criteria of the SINCE time and the UID. We will always store the latest email message UID that came up in the search, even if it will not be ingested as incident (can happen in the first fetch where the email messages that were returned from the search are before the value that was set in the first fetch parameter). This is required because the SINCE criterion disregards the time and timezone (i.e. considers only the date), so it might be that in the first fetch we will fetch only email messages that are occurred before the first fetch time (could also happen that the limit parameter, which is implemented in the code and cannot be passed as a criterion to the search, causes us to keep retrieving the same email messages in the search result) The SINCE criterion will be sent only for the first fetch, and then the fetch will be by UID We will continue using the first fetch time as it may take more than one fetch interval to get to the mail that was actually received after the first fetch time Args: client: IMAP client last_run: The greatest incident created_time we fetched from last fetch first_fetch_time: If last_run is None then fetch all incidents since first_fetch_time include_raw_body: Whether to include the raw body of the mail in the incident's body with_headers: Whether to add headers to the search query permitted_from_addresses: A string representation of list of mail addresses to fetch from permitted_from_domains: A string representation list of domains to fetch from delete_processed: Whether to delete processed mails limit: The maximum number of incidents to fetch each time save_file: Whether to save the .eml file of the incident's mail Returns: next_run: This will be last_run in the next fetch-incidents incidents: Incidents that will be created in Demisto """ uid_to_fetch_from = last_run.get('last_uid', 1) time_to_fetch_from = parse(last_run.get('last_fetch', f'{first_fetch_time} UTC'), settings={'TIMEZONE': 'UTC'}) mails_fetched, messages, uid_to_fetch_from = fetch_mails( client=client, include_raw_body=include_raw_body, time_to_fetch_from=time_to_fetch_from, limit=limit, with_headers=with_headers, permitted_from_addresses=permitted_from_addresses, permitted_from_domains=permitted_from_domains, save_file=save_file, uid_to_fetch_from=uid_to_fetch_from ) incidents = [] for mail in mails_fetched: incidents.append(mail.convert_to_incident()) uid_to_fetch_from = max(uid_to_fetch_from, mail.id) next_run = {'last_uid': uid_to_fetch_from} if delete_processed: client.delete_messages(messages) return next_run, incidents def fetch_mails(client: IMAPClient, time_to_fetch_from: datetime = None, with_headers: bool = False, permitted_from_addresses: str = '', permitted_from_domains: str = '', include_raw_body: bool = False, limit: int = 200, save_file: bool = False, message_id: int = None, uid_to_fetch_from: int = 1) -> Tuple[list, list, int]: """ This function will fetch the mails from the IMAP server. Args: client: IMAP client time_to_fetch_from: Fetch all incidents since first_fetch_time include_raw_body: Whether to include the raw body of the mail in the incident's body with_headers: Whether to add headers to the search query permitted_from_addresses: A string representation of list of mail addresses to fetch from permitted_from_domains: A string representation list of domains to fetch from limit: The maximum number of incidents to fetch each time, if the value is -1 all mails will be fetched (used with list-messages command) save_file: Whether to save the .eml file of the incident's mail message_id: A unique message ID with which a specific mail can be fetched uid_to_fetch_from: The email message UID to start the fetch from as offset Returns: mails_fetched: A list of Email objects messages_fetched: A list of the ids of the messages fetched last_message_in_current_batch: The UID of the last message fetchedd """ if message_id: messages_uids = [message_id] else: messages_query = generate_search_query(time_to_fetch_from, with_headers, permitted_from_addresses, permitted_from_domains, uid_to_fetch_from) demisto.debug(f'Searching for email messages with criteria: {messages_query}') messages_uids = client.search(messages_query)[:limit] mails_fetched = [] messages_fetched = [] demisto.debug(f'Messages to fetch: {messages_uids}') for mail_id, message_data in client.fetch(messages_uids, 'RFC822').items(): message_bytes = message_data.get(b'RFC822') # For cases the message_bytes is returned as a string. If failed, will try to use the message_bytes returned. try: message_bytes = bytes(message_bytes) except Exception as e: demisto.debug(f"Converting data was un-successful. {mail_id=}, {message_data=}. Error: {e}") if not message_bytes: continue email_message_object = Email(message_bytes, include_raw_body, save_file, mail_id) if (not time_to_fetch_from or time_to_fetch_from < email_message_object.date) and \ int(email_message_object.id) > int(uid_to_fetch_from): mails_fetched.append(email_message_object) messages_fetched.append(email_message_object.id) else: demisto.debug(f'Skipping {email_message_object.id} with date {email_message_object.date}. ' f'uid_to_fetch_from: {uid_to_fetch_from}, first_fetch_time: {time_to_fetch_from}') last_message_in_current_batch = uid_to_fetch_from if messages_uids: last_message_in_current_batch = messages_uids[-1] return mails_fetched, messages_fetched, last_message_in_current_batch def generate_search_query(time_to_fetch_from: Optional[datetime], with_headers: bool, permitted_from_addresses: str, permitted_from_domains: str, uid_to_fetch_from: int) -> list: """ Generates a search query for the IMAP client 'search' method. with the permitted domains, email addresses and the starting date from which mail should be fetched. Input example #1: time_to_fetch_from: datetime.datetime(2020, 8, 7, 12, 14, 32, 918634, tzinfo=datetime.timezone.utc) with_headers: True permitted_from_addresses: ['test1@mail.com'] permitted_from_domains: ['test1.com'] output example #1: ['OR', 'HEADER', 'FROM', 'test1.com', 'HEADER', 'FROM', 'test1@mail.com', 'SINCE', datetime.datetime(2020, 8, 7, 12, 14, 32, 918634, tzinfo=datetime.timezone.utc)] Input example #2: time_to_fetch_from: datetime.datetime(2020, 8, 7, 12, 14, 32, 918634, tzinfo=datetime.timezone.utc) with_headers: False permitted_from_addresses: ['test1@mail.com'] permitted_from_domains: ['test1.com'] output example #2: ['OR', 'FROM', 'test1.com', 'FROM', 'test1@mail.com', 'SINCE', datetime.datetime(2020, 8, 7, 12, 14, 32, 918634, tzinfo=datetime.timezone.utc)] Args: time_to_fetch_from: The greatest incident created_time we fetched from last fetch with_headers: Whether to add headers to the search query permitted_from_addresses: A string representation of list of mail addresses to fetch from permitted_from_domains: A string representation list of domains to fetch from uid_to_fetch_from: The email message UID to start the fetch from as offset Returns: A list with arguments for the email search query """ permitted_from_addresses_list = argToList(permitted_from_addresses) permitted_from_domains_list = argToList(permitted_from_domains) messages_query = '' if permitted_from_addresses_list + permitted_from_domains_list: messages_query = OR(from_=permitted_from_addresses_list + permitted_from_domains_list).format() # Removing Parenthesis and quotes messages_query = messages_query.strip('()').replace('"', '') if with_headers: messages_query = messages_query.replace('FROM', 'HEADER FROM') # Creating a list of the OR query words messages_query_list = messages_query.split() if time_to_fetch_from: messages_query_list += ['SINCE', time_to_fetch_from] # type: ignore[list-item] if uid_to_fetch_from: messages_query_list += ['UID', f'{uid_to_fetch_from}:*'] return messages_query_list def test_module(client: IMAPClient) -> str: yesterday = parse('1 day UTC') client.search(['SINCE', yesterday]) return 'ok' def list_emails(client: IMAPClient, first_fetch_time: str, with_headers: bool, permitted_from_addresses: str, permitted_from_domains: str) -> CommandResults: """ Lists all emails that can be fetched with the given configuration and return a preview version of them. Args: client: IMAP client first_fetch_time: Fetch all incidents since first_fetch_time with_headers: Whether to add headers to the search query permitted_from_addresses: A string representation of list of mail addresses to fetch from permitted_from_domains: A string representation list of domains to fetch from Returns: The Subject, Date, To, From and ID of the fetched mails wrapped in command results object. """ fetch_time = parse(f'{first_fetch_time} UTC') mails_fetched, _, _ = fetch_mails(client=client, time_to_fetch_from=fetch_time, with_headers=with_headers, permitted_from_addresses=permitted_from_addresses, permitted_from_domains=permitted_from_domains) results = [{'Subject': email.subject, 'Date': email.date.isoformat(), 'To': email.to, 'From': email.from_, 'ID': email.id} for email in mails_fetched] return CommandResults(outputs_prefix='MailListener.EmailPreview', outputs_key_field='ID', outputs=results) def get_email(client: IMAPClient, message_id: int) -> CommandResults: mails_fetched, _, _ = fetch_mails(client, message_id=message_id) mails_json = [mail.generate_raw_json(parse_attachments=True) for mail in mails_fetched] return CommandResults(outputs_prefix='MailListener.Email', outputs_key_field='ID', outputs=mails_json) def get_email_as_eml(client: IMAPClient, message_id: int) -> dict: mails_fetched, _, _ = fetch_mails(client, message_id=message_id) mail_file = [fileResult('original-email-file.eml', mail.mail_bytes) for mail in mails_fetched] return mail_file[0] if mail_file else {} def _convert_to_bytes(data) -> bytes: demisto.debug("Converting data to bytes.") bytes_data = bytes(data) demisto.debug("Converted data successfully.") return bytes_data def main(): params = demisto.params() mail_server_url = params.get('MailServerURL') port = int(params.get('port')) folder = params.get('folder') username = demisto.params().get('credentials').get('identifier') password = demisto.params().get('credentials').get('password') verify_ssl = not params.get('insecure', False) tls_connection = params.get('TLS_connection', True) include_raw_body = demisto.params().get('Include_raw_body', False) permitted_from_addresses = demisto.params().get('permittedFromAdd', '') permitted_from_domains = demisto.params().get('permittedFromDomain', '') with_headers = params.get('with_headers') delete_processed = demisto.params().get("delete_processed", False) limit = min(int(demisto.params().get('limit', '50')), 200) save_file = params.get('save_file', False) first_fetch_time = demisto.params().get('first_fetch', '3 days').strip() ssl_context = ssl.create_default_context() args = demisto.args() if not verify_ssl: ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE LOG(f'Command being called is {demisto.command()}') try: with IMAPClient(mail_server_url, ssl=tls_connection, port=port, ssl_context=ssl_context) as client: client.login(username, password) client.select_folder(folder) if demisto.command() == 'test-module': result = test_module(client) demisto.results(result) elif demisto.command() == 'mail-listener-list-emails': return_results(list_emails(client=client, first_fetch_time=first_fetch_time, with_headers=with_headers, permitted_from_addresses=permitted_from_addresses, permitted_from_domains=permitted_from_domains)) elif demisto.command() == 'mail-listener-get-email': return_results(get_email(client=client, message_id=args.get('message-id'))) elif demisto.command() == 'mail-listener-get-email-as-eml': return_results(get_email_as_eml(client=client, message_id=args.get('message-id'))) elif demisto.command() == 'fetch-incidents': next_run, incidents = fetch_incidents(client=client, last_run=demisto.getLastRun(), first_fetch_time=first_fetch_time, include_raw_body=include_raw_body, with_headers=with_headers, permitted_from_addresses=permitted_from_addresses, permitted_from_domains=permitted_from_domains, delete_processed=delete_processed, limit=limit, save_file=save_file) demisto.setLastRun(next_run) demisto.incidents(incidents) except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)}') if __name__ in ('__main__', '__builtin__', 'builtins'): main()
46.384016
125
0.624837
923981d45eada08a99e1be05199a0c9e8d63807b
3,305
py
Python
django-hosting-heroku/source_code_step_8/portfolio-project/portfolio/settings.py
syberflea/materials
54f44725b40edf00c1b523d7a85b34a85014d7eb
[ "MIT" ]
3,682
2018-05-07T19:45:24.000Z
2022-03-31T15:19:10.000Z
django-hosting-heroku/source_code_step_8/portfolio-project/portfolio/settings.py
sribarrow/materials
c17c4a4d6f8487e59eac1df8c88ca92b73d6d2a5
[ "MIT" ]
148
2018-05-15T21:18:49.000Z
2022-03-21T11:25:39.000Z
django-hosting-heroku/source_code_step_8/portfolio-project/portfolio/settings.py
sribarrow/materials
c17c4a4d6f8487e59eac1df8c88ca92b73d6d2a5
[ "MIT" ]
5,535
2018-05-25T23:36:08.000Z
2022-03-31T16:55:52.000Z
""" Django settings for portfolio project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! # SECRET_KEY = 'django-insecure-=bad%3%tbrw8(ohgu2uyi7)acv!$1br3=j-o)i@b+1d9g-sd1(' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "portfolio.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "portfolio.wsgi.application" # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": BASE_DIR / "db.sqlite3", } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = "/static/" # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField" import django_heroku django_heroku.settings(locals())
25.620155
91
0.70348
678cb203c531e84262cace95f461490fb246560f
1,034
py
Python
nlp/text_processing.py
innaiivanova/chatbot
03ed98dfc24b36620db96094e8970a48010a9379
[ "MIT" ]
null
null
null
nlp/text_processing.py
innaiivanova/chatbot
03ed98dfc24b36620db96094e8970a48010a9379
[ "MIT" ]
null
null
null
nlp/text_processing.py
innaiivanova/chatbot
03ed98dfc24b36620db96094e8970a48010a9379
[ "MIT" ]
null
null
null
# Codecademy's text processing # Inna I. Ivanova # regex for removing punctuation! import re # nltk preprocessing magic import nltk from nltk.tokenize import word_tokenize from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer # grabbing a part of speech function: from part_of_speech import get_part_of_speech text = "So many squids are jumping out of suitcases these days that you can barely go anywhere without seeing one burst forth from a tightly packed valise. I went to the dentist the other day, and sure enough I saw an angry one jump out of my dentist's bag within minutes of arriving. She hardly even noticed." cleaned = re.sub('\W+', ' ', text) tokenized = word_tokenize(cleaned) stemmer = PorterStemmer() stemmed = [stemmer.stem(token) for token in tokenized] ## -- CHANGE these -- ## lemmatizer = WordNetLemmatizer() lemmatized = [lemmatizer.lemmatize(token,get_part_of_speech(token)) for token in tokenized] print("Stemmed text:") print(stemmed) print("\nLemmatized text:") print(lemmatized)
34.466667
310
0.779497
a6f95160a321b5ee7ecf20688e9f38ec4cc42de6
574
py
Python
otcore/hit/migrations/0006_auto_20160520_1810.py
NYULibraries/dlts-enm-tct-backend
07455a660fb2cb8bc91a54f7f12d150923678157
[ "Apache-2.0" ]
null
null
null
otcore/hit/migrations/0006_auto_20160520_1810.py
NYULibraries/dlts-enm-tct-backend
07455a660fb2cb8bc91a54f7f12d150923678157
[ "Apache-2.0" ]
2
2017-10-30T21:19:07.000Z
2017-10-31T18:06:30.000Z
otcore/hit/migrations/0006_auto_20160520_1810.py
NYULibraries/dlts-enm-tct-backend
07455a660fb2cb8bc91a54f7f12d150923678157
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-20 22:10 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('hit', '0005_auto_20160519_1412'), ] operations = [ migrations.AlterField( model_name='hit', name='basket', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='topic_name', to='hit.Basket'), ), ]
26.090909
148
0.65331
7f4c27af05ccdd9010728e67532f5c8a7b28c57e
57
py
Python
tia/analysis/__init__.py
AmarisAI/tia
a7043b6383e557aeea8fc7112bbffd6e36a230e9
[ "BSD-3-Clause" ]
366
2015-01-21T21:57:23.000Z
2022-03-29T09:11:24.000Z
tia/analysis/__init__.py
AmarisAI/tia
a7043b6383e557aeea8fc7112bbffd6e36a230e9
[ "BSD-3-Clause" ]
51
2015-03-01T14:20:44.000Z
2021-08-19T15:46:51.000Z
tia/analysis/__init__.py
AmarisAI/tia
a7043b6383e557aeea8fc7112bbffd6e36a230e9
[ "BSD-3-Clause" ]
160
2015-02-22T07:16:17.000Z
2022-03-29T13:41:15.000Z
import tia.analysis.perf from tia.analysis.model import *
28.5
32
0.824561
512f8877613a414c7394fc69ec1ec1bffcc0907d
451
py
Python
config.py
VigneshTirukkonda/dig1ts
3b3ca56863f974a5386e9dad5acf8d909e5086db
[ "MIT" ]
null
null
null
config.py
VigneshTirukkonda/dig1ts
3b3ca56863f974a5386e9dad5acf8d909e5086db
[ "MIT" ]
null
null
null
config.py
VigneshTirukkonda/dig1ts
3b3ca56863f974a5386e9dad5acf8d909e5086db
[ "MIT" ]
null
null
null
# TRAIN_PATH = '/Users/roshantirukkonda/Desktop/Kaggle /Pytorch CNN MNIST/Input/MNIST/processed/training.pt' # TEST_PATH = '/Users/roshantirukkonda/Desktop/Kaggle /Pytorch CNN MNIST/Input/MNIST/processed/test.pt' ROOT = '../Input' MODEL_PATH = '../Input/Model' LATEST_MODEL = '/CNN-2021-02-26 02:47:01.247436.pt' TEST_PATH = '../Input/TEST' EPOCHS = 5 SPLIT = [60000, 0] IMG_DIM = 28, 28 BATCH_SIZE = 8 NUM_CLASSES = 10 LR = 0.001 MOMENTUM = 0.9
23.736842
108
0.718404
aa28f5725222cf0ad073b343b15ec3efb7d2772d
9,021
py
Python
opsi/modules/color.py
frcmi/opensight
3b0c0c63a877f739a1ee8261a9befbb44a3b7796
[ "MIT" ]
48
2019-09-22T07:08:35.000Z
2022-01-15T16:19:42.000Z
opsi/modules/color.py
frcmi/opensight
3b0c0c63a877f739a1ee8261a9befbb44a3b7796
[ "MIT" ]
16
2019-10-02T18:48:59.000Z
2020-12-06T04:23:03.000Z
opsi/modules/color.py
frcmi/opensight
3b0c0c63a877f739a1ee8261a9befbb44a3b7796
[ "MIT" ]
11
2019-09-19T15:57:06.000Z
2020-08-12T01:08:44.000Z
from dataclasses import dataclass import cv2 import numpy as np from opsi.manager.manager_schema import Function from opsi.manager.types import RangeType, Slide from opsi.util.cv import Mat, MatBW from opsi.util.cv.mat import Color from opsi.util.cv.shape import Point __package__ = "opsi.colorops" __version__ = "0.123" class Blur(Function): @dataclass class Settings: radius: int @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): img = inputs.img.mat.blur(self.settings.radius) return self.Outputs(img=img) class HSVRange(Function): @dataclass class Settings: hue: RangeType(0, 359) sat: RangeType(0, 255) val: RangeType(0, 255) @dataclass class Inputs: img: Mat @dataclass class Outputs: imgBW: MatBW def run(self, inputs): imgBW = inputs.img.mat.hsv_threshold( self.settings.hue, self.settings.sat, self.settings.val ) return self.Outputs(imgBW=imgBW) class Greyscale(Function): @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): img = inputs.img.mat.greyscale return self.Outputs(img=img) class Canny(Function): @dataclass class Settings: threshold: RangeType(0, 255) @dataclass class Inputs: img: Mat @dataclass class Outputs: imgBW: MatBW def run(self, inputs): return self.Outputs( imgBW=inputs.img.mat.canny( self.settings.threshold[0], self.settings.threshold[1] ) ) class AbsoluteDifferenceRGB(Function): @dataclass class Settings: red: Slide(min=0, max=255, decimal=False) green: Slide(min=0, max=255, decimal=False) blue: Slide(min=0, max=255, decimal=False) to_greyscale: bool clamp_max: bool clamp_value: Slide(min=0, max=255, decimal=False) @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): diff = inputs.img.mat.abs_diff( np.array( [self.settings.blue, self.settings.green, self.settings.red], dtype=np.float, )[None], ) if self.settings.to_greyscale: diff = diff.greyscale if self.settings.clamp_max: diff = Mat(np.minimum(diff.img, self.settings.clamp_value)) return self.Outputs(img=diff) class AbsoluteDifferenceHSV(Function): @dataclass class Settings: hue: Slide(min=0, max=359, decimal=False) hue_sensitivity: int sat: Slide(min=0, max=255, decimal=False) sat_sensitivity: int val: Slide(min=0, max=255, decimal=False) val_sensitivity: int clamp_max: bool clamp_value: Slide(min=0, max=255, decimal=False) @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): img_hsv = inputs.img.mat.hsv diff_hsv = img_hsv.abs_diff( np.array( [self.settings.hue, self.settings.sat, self.settings.val], dtype=np.float, )[ None ], # [None] adds a dimension to the ndarray object created by np.array() - # See https://stackoverflow.com/questions/37867354/in-numpy-what-does-selection-by-none-do ) scaled_diff = np.multiply( diff_hsv, np.array( [ self.settings.hue_sensitivity, self.settings.sat_sensitivity, self.settings.val_sensitivity, ], dtype=np.uint16, ), ).astype(np.uint16) greyscale = Mat(scaled_diff).greyscale if self.settings.clamp_max: greyscale = Mat( np.minimum(greyscale.img, self.settings.clamp_value).astype(np.uint8) ) else: greyscale = Mat(np.minimum(greyscale.img, 255).astype(np.uint8)) return self.Outputs(img=greyscale) class ClampMax(Function): @dataclass class Settings: max_value: Slide(min=0, max=255, decimal=False) @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): return self.Outputs(img=np.minimum(inputs.img, self.settings.max_value)) class ClampMin(Function): @dataclass class Settings: min_value: Slide(min=0, max=255, decimal=False) @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): return self.Outputs(img=np.maximum(inputs.img, self.settings.min_value)) class ColorSampler(Function): @dataclass class Settings: x_pct: Slide(min=0, max=100) y_pct: Slide(min=0, max=100) draw_color: bool draw_hsv: bool @dataclass class Inputs: img: Mat @dataclass class Outputs: color: Color img: Mat def run(self, inputs): # Find the pixel coordinates to sample in the image height, width = inputs.img.mat.img.shape[:2] sample_coords = ( int(width * self.settings.x_pct / 100.0 + 10), int(height * self.settings.y_pct / 100.0 + 10), ) color_bgr = inputs.img.mat.img[sample_coords[1], sample_coords[0]] draw = inputs.img.mat if self.settings.draw_color: draw = np.copy(inputs.img.mat.img) # Draw a small circle (of radius 5) to show the point. cv2.circle(draw, sample_coords, 5, (0, 0, 255), 3) # Find the color in HSV to make a contrasting color color_hsv = Mat(np.uint8([[color_bgr]])).img[0][0] color_hsv[0] *= 2 # Scale the hue value to be in a range of 0-359 # Create a string to represent the color in either RGB or HSV if self.settings.draw_hsv: color_str = "H{} S{} V{}".format(*color_hsv) else: color_str = "B{} G{} R{}".format(*color_bgr) # Choose a (Hopefully) Contrasting color draw_color = ( int(255 - color_bgr[0]), int(255 - color_bgr[1]), int(255 - color_bgr[2]), ) cv2.putText( draw, color_str, (sample_coords[0] + 10, sample_coords[1] + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, draw_color, lineType=cv2.LINE_AA, ) draw = Mat(draw) color = Color(color_bgr[2], color_bgr[1], color_bgr[0]) return self.Outputs(color=color, img=draw) class ColorDetector(Function): @dataclass class Settings: red_hue: Slide(min=0, max=359, decimal=False) yellow_hue: Slide(min=0, max=359, decimal=False) green_hue: Slide(min=0, max=359, decimal=False) blue_hue: Slide(min=0, max=359, decimal=False) @dataclass class Inputs: color: Color @dataclass class Outputs: color_string: str def run(self, inputs): def hue_dist(test: int, reference: int): return min(abs(reference - test), abs(reference + 360 - test)) color_hue = ( Mat( np.uint8([[[inputs.color.blue, inputs.color.green, inputs.color.red]]]) ).hsv.img[0][0][0] * 2 ) hue_strings = { self.settings.red_hue: "R", self.settings.yellow_hue: "Y", self.settings.green_hue: "G", self.settings.blue_hue: "B", } output_str = "" min_dist = 360 for hue in hue_strings.keys(): dist = hue_dist(hue, color_hue) if dist < min_dist: min_dist = dist output_str = hue_strings[hue] return self.Outputs(color_string=output_str) class Resize(Function): @dataclass class Settings: width: int height: int @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): img = inputs.img.mat.resize(Point(self.settings.width, self.settings.height)) return self.Outputs(img=img) class ColorBalance(Function): @dataclass class Settings: red_balance: Slide(min=0, max=100) blue_balance: Slide(min=0, max=100) @dataclass class Inputs: img: Mat @dataclass class Outputs: img: Mat def run(self, inputs): img = inputs.img.mat.color_balance( self.settings.red_balance / 100.0, self.settings.blue_balance / 100.0 ) return self.Outputs(img=img)
24.580381
102
0.567232
89b9a597f059384e4295580394d81233e493f88b
8,547
py
Python
sfdx.py
iechenybsh/exiahuangl
6834ec0d40a53ece3c0ff738c5b728616da26a02
[ "Apache-2.0" ]
29
2016-12-15T07:14:44.000Z
2022-03-17T17:24:08.000Z
sfdx.py
iechenybsh/exiahuangl
6834ec0d40a53ece3c0ff738c5b728616da26a02
[ "Apache-2.0" ]
5
2017-02-14T02:04:44.000Z
2019-02-19T19:25:22.000Z
sfdx.py
iechenybsh/exiahuangl
6834ec0d40a53ece3c0ff738c5b728616da26a02
[ "Apache-2.0" ]
12
2016-12-16T08:02:45.000Z
2020-02-20T00:00:58.000Z
import sublime import sublime_plugin import os, re import json from .setting import SfBasicConfig from .uiutil import SublConsole from . import util SFDX_SETTINGS = "sfdx.sublime-settings" class OpenSfdxSettingCommand(sublime_plugin.WindowCommand): def run(self): SETTING_PATH = os.path.join(sublime.packages_path(), "User", SFDX_SETTINGS) if not os.path.exists(SETTING_PATH): s = sublime.load_settings(SFDX_SETTINGS) tasks = s.get("tasks") custom_env = s.get("custom_env") s.set("tasks", tasks) s.set("custom_env", custom_env) sublime.save_settings(SFDX_SETTINGS) self.window.run_command("open_file", { "file": SETTING_PATH }) class SfdxCommand(sublime_plugin.WindowCommand): def run(self): self.sf_basic_config = SfBasicConfig() self.settings = self.sf_basic_config.get_setting() self.sublconsole = SublConsole(self.sf_basic_config) self.window = sublime.active_window() self.osutil = util.OsUtil(self.sf_basic_config) s = sublime.load_settings(SFDX_SETTINGS) tasks = s.get("tasks") self.env = s.get("custom_env") self.env.update(DxEnv().get_env()) self.env.update(CommandEnv(self.window, self.sf_basic_config.get_project_dir()).get_env()) self.sel_keys = [task["label"] for task in tasks] self.sel_vals = [task for task in tasks] self.window.show_quick_panel(self.sel_keys, self.panel_done, sublime.MONOSPACE_FONT) def panel_done(self, picked): if 0 > picked < len(self.sel_keys): return self.task = self.sel_vals[picked] is_os_termial = "os_termial" in self.task and self.task["os_termial"] if "SFDX_ALIAS" in self.task["command"]: if not self.env["SFDX_ALIAS"] or len(self.env["SFDX_ALIAS"]) == 0: self.sublconsole.showlog("sfdx alias empty! please check it!") Cmder().run(self.window, self.env, self.task["command"], console=self.sublconsole.showlog, is_os_termial=is_os_termial, encoding='UTF-8') class DxEnv(): def get_env(self): return { "SFDX_ALIAS" : self.__get_alias(), } def __get_alias(self): return list(self.__get_alias_dict().keys()) def __get_alias_dict(self): home = os.path.expanduser("~") dx_alias_file = os.path.join(home, ".sfdx", "alias.json") alias = {} try: if os.path.exists(dx_alias_file): f = open(dx_alias_file) data = json.load(f) alias = data["orgs"] f.close() except Exception as ex: pass return alias class CommandEnv(): def __init__(self, window, workspaceFolder): self.window = window self.workspaceFolder = workspaceFolder def get_env(self): # // ${selectedText} - the current selected text in the active file file = self.window.active_view().file_name() if file is None : file = "" fileBasenameNoExtension, fileExtname = os.path.splitext(os.path.basename(file)) env = { "cwd" : self.workspaceFolder, "workspaceFolder" : self.workspaceFolder, "workspaceFolderBasename" : os.path.basename(self.workspaceFolder), "file" : file, "fileBasenameNoExtension": fileBasenameNoExtension, "fileExtname": fileExtname, "relativeFile" : file.replace(self.workspaceFolder, ""), "fileBasename": os.path.basename(file), "fileDirname" : os.path.dirname(file), "selectedText" : self.__get_sel_text(), } # print(env) return env def __get_sel_text(self): try: view = self.window.active_view() sel = view.sel() region1 = sel[0] selectionText = view.substr(region1) return selectionText except Exception as ex: pass return "" class Cmder(): def run(self, window, command_env, command, console=print, is_os_termial=False, encoding='UTF-8'): self.index = 0 self.window = window self.console = console self.encoding = encoding self.is_os_termial = is_os_termial self.env = command_env self.command = command self.params = self.__get_command_params(command) self.osutil = util.OsUtil() UiWizard(command_params=self.params, window=self.window, callback=self.on_wizard_done).run() def on_wizard_done(self, user_params): command = self.command for key, val in self.env.items(): if type(val) is str: command = command.replace("${%s}" % key, val) msgs = [] for param in self.__get_sys_env(command): command = command.replace(param["param"], param["value"]) if not param["value"]: msgs.append("%s is null! please check it." % param["param"]) for param in user_params: command = command.replace(param["param"], param["value"]) if not param["value"]: msgs.append("%s is null! please check it." % param["param"]) if len(msgs) > 0: self.console("\n".join(msgs)) else: self.console(command) cmds = [self.osutil.get_cd_cmd(self.env["workspaceFolder"]), command] if self.is_os_termial: self.osutil.run_in_os_termial(cmds) else: self.osutil.run_in_sublime_cmd(cmds, encoding=self.encoding) def __get_sys_env(self, command): pattern = r"\${(env)(\s)*:(\s)*([^} ]+)(\s)*}" matchedList = re.findall(pattern, command) sys_env = [] if matchedList: for param in matchedList: key = param[3] sys_env.append({ "param" : "${%s%s:%s%s%s}" % param, "key" : key, "value" : os.getenv(key, default=""), "type" : param[0] }) return sys_env def __get_command_params(self, command): pattern = r"\${(input|select)(\s)*:(\s)*([^} ]+)(\s)*}" matchedList = re.findall(pattern, command) params = [] if matchedList: for param in matchedList: key = param[3] data = { "param" : "${%s%s:%s%s%s}" % param, "key" : key, "value" : "", "type" : param[0] } if data["type"] == "input": if key in self.env: data["value"] = str(self.env[key]) elif data["type"] == "select": data["option"] = data["option-v"] = [] if key in self.env: if isinstance(self.env[key], list): data["option"] = data["option-v"] = self.env[key] params.append(data) return params class UiWizard(): def __init__(self, command_params, window, callback): self.index = 0 self.command_params = command_params self.window = window self.callback = callback def run(self, args=None): if self.index > 0: pre_data = self.command_params[self.index-1] ui_type = pre_data["type"] if ui_type == "input": pre_data["value"] = args elif ui_type == "select": if 0 <= args and args < len(pre_data["option-v"]): pre_data["value"] = pre_data["option-v"][args] if self.index < len(self.command_params): curr_data = self.command_params[self.index] if curr_data["type"] == "input": caption = "Please Input your %s: " % curr_data["key"] self.window.show_input_panel(caption, curr_data["value"], self.run, None, None) elif curr_data["type"] == "select": show_opts = curr_data["option"] self.window.show_quick_panel(show_opts, self.run, sublime.MONOSPACE_FONT) self.index = self.index + 1 else: self.callback(self.command_params) class XyOpenUrlCommand(sublime_plugin.ApplicationCommand): def run(command, url): import webbrowser webbrowser.open_new_tab(url)
37
145
0.558676
4336218e01685ceb7ebf5eb61a177f01229df672
3,914
py
Python
core/settings.py
piyushjain-pj/pneumonia_and_covid_prediction_tool
b5f503b1672b1093c4bd6f9e053d6024e4f73f9d
[ "MIT" ]
1
2022-03-30T15:28:33.000Z
2022-03-30T15:28:33.000Z
core/settings.py
piyushjain-pj/pneumonia_and_covid_prediction_tool
b5f503b1672b1093c4bd6f9e053d6024e4f73f9d
[ "MIT" ]
null
null
null
core/settings.py
piyushjain-pj/pneumonia_and_covid_prediction_tool
b5f503b1672b1093c4bd6f9e053d6024e4f73f9d
[ "MIT" ]
null
null
null
import os from decouple import config from unipath import Path import dj_database_url # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = Path(__file__).parent CORE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY', default='S#perS3crEt_1122') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=True, cast=bool) # load production server from .env ALLOWED_HOSTS = ['localhost', '127.0.0.1', config('SERVER', default='127.0.0.1')] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app' # Enable the inner app ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'core.urls' LOGIN_REDIRECT_URL = "home" # Route defined in app/urls.py LOGOUT_REDIRECT_URL = "home" # Route defined in app/urls.py TEMPLATE_DIR = os.path.join(CORE_DIR, "core/templates") # ROOT dir for templates TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'core.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'djangonew', 'USER': 'root', 'PASSWORD': 'root', 'HOST': 'localhost', 'PORT': '3307', } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Email Configuration EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = 'cnpptool@gmail.com' EMAIL_HOST_PASSWORD = "password" EMAIL_PORT = 587 # 'Piyush@12345' # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True ############################################################# # SRC: https://devcenter.heroku.com/articles/django-assets # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_ROOT = os.path.join(CORE_DIR, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = ( os.path.join(CORE_DIR, 'core/static'), ) ############################################################# #############################################################
29.428571
91
0.664027
197fc8950e489be9f03d27ae2510032afa686787
18,818
py
Python
log_complete/model_301.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete/model_301.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete/model_301.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('C6A', ['C8pro']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 75250.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('C6A_0', 0.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('C6A_obs', C6A()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(C6A(C8pro=None), C6A_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6pro(C3A=None), C6pro_0)
91.349515
710
0.806515
845186054481ceeb5aae3fd8684349ac61f5aa77
4,490
py
Python
NeoCL/models/pretrained.py
NizarIslah/NeocorticalCL
a0f5cbf863329af9ae752b87f15958105d2c354f
[ "Apache-2.0" ]
null
null
null
NeoCL/models/pretrained.py
NizarIslah/NeocorticalCL
a0f5cbf863329af9ae752b87f15958105d2c354f
[ "Apache-2.0" ]
null
null
null
NeoCL/models/pretrained.py
NizarIslah/NeocorticalCL
a0f5cbf863329af9ae752b87f15958105d2c354f
[ "Apache-2.0" ]
null
null
null
import torch from torch import nn from avalanche.models import IncrementalClassifier from avalanche.training import ICaRL from torch.nn import Linear, ReLU, MultiheadAttention, Sequential import clip from torchvision import datasets from collections import defaultdict, deque import itertools class SSLIcarl(nn.Module): def __init__(self, pretrained_net, embedding_size, num_classes): super(SSLIcarl, self).__init__() self.feature_extractor = pretrained_net # self.feature_extractor.freeze() self.classifier = Linear(embedding_size, num_classes) def forward(self, x): x = self.feature_extractor(x) # Already flattened x = self.classifier(x) return x class ImageNetWiki(datasets.CIFAR100): def __init__(self, root, class_text, transforms=None, text_transforms=None, context_len=77, train=True): split = 'train' if train else 'val' super().__init__(root, train) self.transforms = transforms self.n_classes = 100 self.class_text = class_text self.context_len = context_len self.text_transforms = text_transforms def __getitem__(self, index): im, label = super().__getitem__(index) text = self.class_text[label]['articles'][0][:self.context_len] text = clip.tokenize(text).squeeze() if self.text_transforms: text = self.text_transforms(text) if self.transforms: im = self.transforms(im) text = tex.repeat(text.unsqueeze()[:,None,None]) print(im.shape,text.shape) im_text=torch.cat([im,text,0]) return im, label class CLIP_Attention(nn.Module): def __init__(self, pretrained_net, preprocess, num_classes, num_heads, embed_dim=2048, text_len=77): super(CLIP_Attention, self).__init__() self.preprocess = preprocess self.text_len=text_len self.feature_extractor = pretrained_net self.classifier = Sequential( MultiheadAttention(embed_dim, num_heads), ReLU(), Linear(embed_dim, num_classes) ) def forward(self, x): image, text = x[:, :-self.text_len], x[:, -self.text_len:] print(image.shape, text.shape) image = self.preprocess(image) with torch.no_grad(): img_features = self.feature_extractor.encode_image(image) text_features = self.feature_extractor.encode_text(token) layers = [module for module in self.classifier.modules() if not isinstance(module, nn.Sequential)] out = layers[0](query=img_features, key=text_features, value=img_features) for l, module in enumerate(layers[1:]): out = module(out) return out class PretrainedIncrementalClassifier(IncrementalClassifier): """ Output layer that incrementally adds units whenever new classes are encountered. Typically used in class-incremental benchmarks where the number of classes grows over time. """ def __init__(self, pretrained_model, in_features, initial_out_features=2): """ :param in_features: number of input features, should be = to pretrained out size :param initial_out_features: initial number of classes (can be dynamically expanded). """ super().__init__(in_features) self.feature_extractor = pretrained_model self.classifier = Linear(in_features, initial_out_features) @torch.no_grad() def adaptation(self, dataset): """ If `dataset` contains unseen classes the classifier is expanded. :param dataset: data from the current experience. :return: """ in_features = self.classifier.in_features old_nclasses = self.classifier.out_features new_nclasses = max(self.classifier.out_features, max(dataset.targets) + 1) if old_nclasses == new_nclasses: return old_w, old_b = self.classifier.weight, self.classifier.bias self.classifier = torch.nn.Linear(in_features, new_nclasses) self.classifier.weight[:old_nclasses] = old_w self.classifier.bias[:old_nclasses] = old_b def forward(self, x, **kwargs): """ compute the output given the input `x`. This module does not use the task label. :param x: :return: """ z = self.encoder(x) z = self.pre_classifier(z) return self.classifier(z)
37.416667
108
0.659465
1d8f3420130ce81dbc9f1aa684e9bd0ab519acae
1,191
py
Python
sharer/templatetags/sharer_tags.py
taylanpince/django-sharer
91e9bf5aa7b723540f7b248fdf7051a21276eb88
[ "Apache-2.0" ]
2
2016-05-09T09:06:06.000Z
2018-02-26T22:35:09.000Z
sharer/templatetags/sharer_tags.py
taylanpince/django-sharer
91e9bf5aa7b723540f7b248fdf7051a21276eb88
[ "Apache-2.0" ]
null
null
null
sharer/templatetags/sharer_tags.py
taylanpince/django-sharer
91e9bf5aa7b723540f7b248fdf7051a21276eb88
[ "Apache-2.0" ]
null
null
null
from urlparse import urljoin from django import template from django.contrib.sites.models import Site from django.template.defaultfilters import urlencode from sharer.forms import EmailShareForm from sharer.models import SocialNetwork from sharer.settings import ENABLE_EMAILS register = template.Library() @register.inclusion_tag("sharer/includes/widget.html", takes_context=True) def share(context, title="", url=""): """ Renders the share widget """ networks = SocialNetwork.objects.all() if not url: url = context.get("SHARE_URI", "") if url.startswith("/"): site = Site.objects.get_current() if site: url = urljoin("http://%s" % site.domain, url) return { "networks": networks, "title": title, "url": url, "ENABLE_EMAILS": ENABLE_EMAILS, "MEDIA_URL": context.get("MEDIA_URL", ""), "LANGUAGE_CODE": context.get("LANGUAGE_CODE", ""), } @register.simple_tag def share_url(network, title="", url=""): """ Builds a network url with given variables """ return network.url % { "url": urlencode(url), "title": urlencode(title), }
23.82
74
0.641478
586dc23d21369820a578645e0cb5204786dadb0c
1,750
py
Python
nuremberg/core/management/commands/audit_joins.py
emmalemma/nuremberg
10a5f789f5668aa4e7902e1765737c2c764ff2b2
[ "MIT" ]
3
2016-06-27T17:31:24.000Z
2021-08-10T17:56:49.000Z
nuremberg/core/management/commands/audit_joins.py
emmalemma/nuremberg
10a5f789f5668aa4e7902e1765737c2c764ff2b2
[ "MIT" ]
43
2016-06-19T14:54:20.000Z
2021-01-22T19:57:38.000Z
nuremberg/core/management/commands/audit_joins.py
emmalemma/nuremberg
10a5f789f5668aa4e7902e1765737c2c764ff2b2
[ "MIT" ]
6
2016-05-24T06:06:53.000Z
2021-03-12T19:40:42.000Z
from django.core.management.base import BaseCommand from nuremberg.transcripts.models import Transcript from nuremberg.transcripts.xml import TranscriptPageJoiner class Command(BaseCommand): help = 'Joins transcript pages and outputs a log of all joins made.' def add_arguments(self, parser): parser.add_argument('transcript', type=int, help='transcript to audit') parser.add_argument('from_seq', type=int, help='seq range start') parser.add_argument('to_seq', type=int, help='seq range end') parser.add_argument('-a', action='store_true', default=False, help='Log allowed paragraph breaks as well as joins.') def handle(self, *args, **options): transcript = Transcript.objects.get(id=options['transcript']) pages = transcript.pages.filter(seq_number__gte=options['from_seq'], seq_number__lte=options['to_seq']) joiner = TranscriptPageJoiner(pages) joiner.audit = True print('Joining {} pages...'.format(pages.count())) joiner.build_html() print('Join ignored:') for row in joiner.joins: if row.startswith('IGNORED'): print(row) print('Join inserted:') for row in joiner.joins: if row.startswith('INSERTED'): print(row) print('Join rejected:') for row in joiner.joins: if row.startswith('REJECTED'): print(row) print('Join caught:') for row in joiner.joins: if row.startswith('CAUGHT'): print(row) if options['a']: print('Join allowed:') for row in joiner.joins: if row.startswith('ALLOWED'): print(row)
35.714286
124
0.614286
a40bf93a7c008dd732e748cb033ed1a039197bc9
2,045
py
Python
shop/migrations/0001_initial.py
Slohn/myshop
4e5034dc3b1561773060319f16628d44910c4a20
[ "MIT" ]
20
2021-05-07T19:32:56.000Z
2022-02-06T12:12:56.000Z
shop/migrations/0001_initial.py
Slohn/myshop
4e5034dc3b1561773060319f16628d44910c4a20
[ "MIT" ]
9
2021-04-08T18:29:18.000Z
2022-03-11T23:28:23.000Z
shop/migrations/0001_initial.py
Slohn/myshop
4e5034dc3b1561773060319f16628d44910c4a20
[ "MIT" ]
10
2021-02-22T13:50:24.000Z
2022-03-15T11:51:27.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-11-27 07:15 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, max_length=200)), ('slug', models.SlugField(max_length=200, unique=True)), ], options={ 'ordering': ('name',), 'verbose_name': 'category', 'verbose_name_plural': 'categories', }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, max_length=200)), ('slug', models.SlugField(max_length=200)), ('image', models.ImageField(blank=True, upload_to='products/%Y/%m/%d')), ('description', models.TextField(blank=True)), ('price', models.DecimalField(decimal_places=2, max_digits=10)), ('stock', models.PositiveIntegerField()), ('available', models.BooleanField(default=True)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='products', to='shop.Category')), ], options={ 'ordering': ('-created',), }, ), migrations.AlterIndexTogether( name='product', index_together=set([('id', 'slug')]), ), ]
37.87037
138
0.554034
7c81cf8310b0c97adc1faf4c7cbd79981254d120
24,505
py
Python
DP/Server/utils.py
apanagopoulos/XBOS-DR
80e186d691bf17c244b1e87ccb5c2356155748e5
[ "Apache-2.0" ]
null
null
null
DP/Server/utils.py
apanagopoulos/XBOS-DR
80e186d691bf17c244b1e87ccb5c2356155748e5
[ "Apache-2.0" ]
25
2018-05-11T19:15:16.000Z
2018-08-09T03:11:28.000Z
DP/Server/utils.py
apanagopoulos/XBOS-DR
80e186d691bf17c244b1e87ccb5c2356155748e5
[ "Apache-2.0" ]
3
2017-10-23T18:47:15.000Z
2018-08-20T16:41:18.000Z
# this is the plotter for the MPC graph import datetime import os import string import numpy as np import pandas as pd import plotly.graph_objs as go import pytz import yaml from xbos import get_client from xbos.devices.thermostat import Thermostat # be careful of circular import. # https://stackoverflow.com/questions/11698530/two-python-modules-require-each-others-contents-can-that-work import ThermalDataManager try: import pygraphviz from networkx.drawing.nx_agraph import graphviz_layout # print("using package pygraphviz") except ImportError: try: import pydotplus from networkx.drawing.nx_pydot import graphviz_layout # print("using package pydotplus") except ImportError: print() print("Both pygraphviz and pydotplus were not found ") print("see http://networkx.github.io/documentation" "/latest/reference/drawing.html for info") print() raise ''' Utility constants ''' NO_ACTION = 0 HEATING_ACTION = 1 COOLING_ACTION = 2 FAN = 3 TWO_STAGE_HEATING_ACTION = 4 TWO_STAGE_COOLING_ACTION = 5 SERVER_DIR_PATH = UTILS_FILE_PATH = os.path.dirname(__file__) # this is true for now ''' Utility functions ''' # ============ BUILDING AND ZONE GETTER ======== def choose_building_and_zone(): print "-----------------------------------" print "Buildings:" print "-----------------------------------" root, dirs, files = os.walk(SERVER_DIR_PATH + "/Buildings/").next() for index, building in enumerate(dirs, start=1): print index, building print "-----------------------------------" index = input("Please choose a building (give a number):") - 1 building = dirs[index] print "-----------------------------------" print "" print "-----------------------------------" print " " + str(building) print "-----------------------------------" print "-----------------------------------" print "Zones:" print "-----------------------------------" root, dirs, files = os.walk("../Buildings/" + str(building) + "/ZoneConfigs").next() for index, zones in enumerate(files, start=1): print index, zones[:-4] print "-----------------------------------" index = input("Please choose a zone (give a number):") - 1 zone = files[index][:-4] print "-----------------------------------" print "-----------------------------------" print " " + str(building) print " " + str(zone) print "-----------------------------------" return building, zone # ============ DATE FUNCTIONS ============ def get_utc_now(): """Gets current time in utc time. :return Datetime in utctime zone""" return datetime.datetime.utcnow().replace(tzinfo=pytz.timezone("UTC")) def in_between(now, start, end): """Finds whether now is between start and end. Takes care of cases such as start=11:00pm and end=1:00am now = 00:01, and hence would return True. :param now: (datetime.time) :param start: (datetime.time) :param end: (datetime.time) :return (boolean)""" if start < end: return start <= now < end # when end is in the next day. elif end < start: return start <= now or now < end else: return True def combine_date_time(time, date): """Combines the time and date to a combined datetime. :param time: (str) HH:MM :param date: (datetime) :returns datetime with date from date and time from time. But with seconds as 0.""" datetime_time = get_time_datetime(time) return date.replace(hour=datetime_time.hour, minute=datetime_time.minute, second=0) def in_between_datetime(now, start, end): """Finds whether now is between start and end. :param now: (datetime) :param start: (datetime) :param end: (datetime) :return (boolean)""" return start <= now <= end def get_time_datetime(time_string): """Gets datetime from string with format HH:MM. :param date_string: string of format HH:MM :returns datetime.time() object with no associated timzone. """ return datetime.datetime.strptime(time_string, "%H:%M").time() def get_mdal_string_to_datetime(date_string, with_utc=True): """Gets datetime from string with format Year-Month-Day Hour:Minute:Second UTC. Note, string should be for utc time. :param date_string: string of format Year-Month-Day Hour:Minute:Second UTC. :param with_utc: boolean indicating wether to localize to UTC time. :returns datetime.time() object in UTC time or naive time. """ date_datetime = datetime.datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S %Z") if with_utc: return date_datetime.replace(tzinfo=pytz.timezone("UTC")) else: return date_datetime def get_mdal_datetime_to_string(date_object): """Gets string from datetime object. In UTC Time. :param date_object :returns '%Y-%m-%d %H:%M:%S UTC' """ return date_object.strftime('%Y-%m-%d %H:%M:%S') + ' UTC' # ============ DATA FUNCTIONS ============ def round_increment(data, precision=0.05): """Round to nearest increment of precision. :param data: np.array of floats or single float :param precision: (float) the increment to round to :return (np.array or float) of rounded floats.""" # source for rounding: https://stackoverflow.com/questions/2272149/round-to-5-or-other-number-in-python return precision * np.round(data / float(precision)) def is_cooling(action_data): """Returns boolen area of actions which were cooling (either two or single stage). :param action_data: np.array or pd.series""" return (action_data == COOLING_ACTION) | (action_data == TWO_STAGE_COOLING_ACTION) def is_heating(action_data): """Returns boolen area of actions which were heating (either two or single stage). :param action_data: np.array or pd.series""" return (action_data == HEATING_ACTION) | (action_data == TWO_STAGE_HEATING_ACTION) def choose_client(cfg=None): if cfg is not None and cfg["Server"]: client = get_client(agent=cfg["Agent_IP"], entity=cfg["Entity_File"]) else: client = get_client() return client def get_config(building): config_path = SERVER_DIR_PATH + "/Buildings/" + building + "/" + building + ".yml" try: with open(config_path, "r") as f: cfg = yaml.load(f) except: print("ERROR: No config file for building %s with path %s" % (building, config_path)) return return cfg def get_zone_config(building, zone): config_path = SERVER_DIR_PATH + "/Buildings/" + building + "/" + "ZoneConfigs/" + zone + ".yml" try: with open(config_path, "r") as f: cfg = yaml.load(f) except: print("ERROR: No config file for building %s and zone % s with path %s" % (building, zone, config_path)) return return cfg def get_zone_log(building, zone): log_path = SERVER_DIR_PATH + "/Buildings/" + building + "/" + "Logs/" + zone + ".log" ## fix for one lines try: f = open(log_path, "r") log = f.read() log = string.replace(log, "UTCTHERMOSTAT", "UTC\nTHERMOSTAT") f.close() f = open(log_path, 'w') f.write(log) f.close() except: print("ERROR: No config file for building %s and zone % s with path %s" % (building, zone, log_path)) return ## end of fix DELETE THIS WHEN ALL LOGS ARE FIXED! try: with open(log_path, "r") as f: ### fix for same line logs ### log = f.readlines() except: print("ERROR: No config file for building %s and zone % s with path %s" % (building, zone, log_path)) return return log # Maybe put in ThermalDataManager because of circular import. def get_data(building=None, client=None, cfg=None, start=None, end=None, days_back=50, evaluate_preprocess=False, force_reload=False): """ Get preprocessed data. :param building: (str) building name :param cfg: (dictionary) config file for building. If none, the method will try to find it. :param days_back: how many days back from current moment. :param evaluate_preprocess: (Boolean) should controller data manager add more features to data. :param force_reload: (boolean) If some data for this building is stored, the reload if not force reload. Otherwise, load data as specified. :param start: the start time for the data. If none is given, we will use days_back to go back from the end datetime if given (end - days_back), or the current time. :param end: the end time for the data. If given, we will use it as our end. If not given, we will use the current time as the end. :return: {zone: pd.df with columns according to evaluate_preprocess} """ assert cfg is not None or building is not None if cfg is not None: building = cfg["Building"] else: cfg = get_config(building) print("----- Get data for Building: %s -----" % building) if evaluate_preprocess: path = SERVER_DIR_PATH + "/Thermal_Data/" + building + "_eval" else: path = SERVER_DIR_PATH + "/Thermal_Data/" + building if end is None: end = get_utc_now() if start is None: start = end - datetime.timedelta(days=days_back) # TODO ugly try/except try: assert not force_reload print(path) with open(path, "r") as f: import pickle thermal_data = pickle.load(f) except: if client is None: client = choose_client(cfg) dataManager = ThermalDataManager.ThermalDataManager(cfg, client) thermal_data = dataManager.thermal_data(start=start, end=end, evaluate_preprocess=evaluate_preprocess) with open(path, "wb") as f: import pickle pickle.dump(thermal_data, f) return thermal_data def get_raw_data(building=None, client=None, cfg=None, start=None, end=None, days_back=50, force_reload=False): assert cfg is not None or building is not None if cfg is not None: building = cfg["Building"] else: config_path = SERVER_DIR_PATH + "/Buildings/" + building + "/" + building + ".yml" try: with open(config_path, "r") as f: cfg = yaml.load(f) except: print("ERROR: No config file for building %s with path %s" % (building, config_path)) return print("----- Get data for Building: %s -----" % building) path = SERVER_DIR_PATH + "/Thermal_Data/" + building # TODO ugly try/except if end is None: end = get_utc_now() if start is None: start = end - datetime.timedelta(days=days_back) # inside and outside data data import pickle try: assert not force_reload with open(path + "_inside", "r") as f: inside_data = pickle.load(f) with open(path + "_outside", "r") as f: outside_data = pickle.load(f) except: if client is None: client = get_client() dataManager = ThermalDataManager.ThermalDataManager(cfg, client) inside_data = dataManager._get_inside_data(start, end) outside_data = dataManager._get_outside_data(start, end) with open(path + "_inside", "wb") as f: pickle.dump(inside_data, f) with open(path + "_outside", "wb") as f: pickle.dump(outside_data, f) return inside_data, outside_data def get_mdal_data(mdal_client, query): """Gets mdal data. Necessary method because if a too long time frame is queried, mdal does not return the data. :param mdal_client: mdal object to query data. :param query: mdal query :return pd.df with composition as columns. Timeseries in UTC time.""" start = get_mdal_string_to_datetime(query["Time"]["T0"]) end = get_mdal_string_to_datetime(query["Time"]["T1"]) time_frame = end - start # get windowsize str_window = query["Time"]["WindowSize"] assert str_window[-3:] == "min" WINDOW_SIZE = datetime.timedelta(minutes=int(str_window[:-3])) if time_frame < WINDOW_SIZE: raise Exception("WindowSize is less than the time interval for which data is requested.") # To get logarithmic runtime we take splits which are powers of two. max_interval = datetime.timedelta(hours=12) # the maximum interval length in which to split the data. max_num_splits = int(time_frame.total_seconds() // max_interval.total_seconds()) all_splits = [1] for _ in range(2, max_num_splits): power_split = all_splits[-1] * 2 if power_split > max_num_splits: break all_splits.append(power_split) received_all_data = False outside_data = [] # start loop to get data in time intervals of logarithmically decreasing size. This will hopefully find the # spot at which mdal returns data. for num_splits in all_splits: outside_data = [] pre_look_ahead = time_frame / num_splits # to round down to nearest window size multiple num_window_in_pre_look = pre_look_ahead.total_seconds() // WINDOW_SIZE.total_seconds() look_ahead = datetime.timedelta(seconds=WINDOW_SIZE.total_seconds() * num_window_in_pre_look) print("Attempting to get data in %f day intervals." % (look_ahead.total_seconds() / (60 * 60 * 24))) temp_start = start temp_end = temp_start + look_ahead while temp_end <= end: query["Time"]["T0"] = get_mdal_datetime_to_string(temp_start) query["Time"]["T1"] = get_mdal_datetime_to_string(temp_end) mdal_outside_data = mdal_client.do_query(query, tz="UTC") if mdal_outside_data == {}: print("Attempt failed.") received_all_data = False break else: outside_data.append(mdal_outside_data["df"]) # advance temp_start and temp_end temp_start = temp_end + WINDOW_SIZE temp_end = temp_start + look_ahead # to get rest of data if look_ahead is not exact mutliple of time_between if temp_start < end < temp_end: temp_end = end # To know that we received all data. if end < temp_start: received_all_data = True # stop if we got the data if received_all_data: print("Succeeded.") break if not received_all_data: raise Exception("WARNING: Unable to get data form MDAL.") return pd.concat(outside_data) def concat_zone_data(thermal_data): """Concatinates all thermal data zone data into one big dataframe. Will sort by index. Get rid of all zone_temperature columns. :param thermal_data: {zone: pd.df} :return pd.df without zone_temperature columns""" concat_data = pd.concat(thermal_data.values()).sort_index() filter_columns = ["zone_temperature" not in col for col in concat_data.columns] return concat_data[concat_data.columns[filter_columns]] def as_pandas(result): time = result[list(result.keys())[0]][:, 0] df = pd.DataFrame(time, columns=['Time']) df['Time'] = pd.to_datetime(df['Time'], unit='s') for key in result: df[key] = result[key][:, 1].tolist() try: df[key + " Var"] = result[key][:, 2].tolist() except IndexError: pass df = df.set_index('Time') return df # ============ THERMOSTAT FUNCTIONS ============ def has_setpoint_changed(tstat, setpoint_data, zone, building): """ Checks if thermostats was manually changed and prints warning. :param tstat: Tstat object we want to look at. :param setpoint_data: dict which has keys {"heating_setpoint": bool, "cooling_setpoint": bool} and corresponds to the setpoint written to the thermostat by MPC. :param zone: Name of the zone to print correct messages. :return: Bool. Whether tstat setpoints are equal to setpoints written to tstat. """ WARNING_MSG = "WARNING. %s has been manually changed in zone %s. Setpoint is at %s from expected %s. " \ "Setting override to False and intiatiating program stop." flag_changed = False if tstat.cooling_setpoint != setpoint_data["cooling_setpoint"]: flag_changed = True print(WARNING_MSG % ("cooling setpoint", zone, tstat.cooling_setpoint, setpoint_data["cooling_setpoint"])) if tstat.heating_setpoint != setpoint_data["heating_setpoint"]: flag_changed = True print(WARNING_MSG % ("heating setpoint", zone, tstat.heating_setpoint, setpoint_data["heating_setpoint"])) return flag_changed def set_override_false(tstat): tstat.write({"override": False}) def get_thermostats(client, hod, building): """Gets the thermostats for given building. :param client: xbos client object :param hod: hod client object :param building: (string) building name :return {zone: tstat object}""" query = """SELECT ?uri ?zone FROM %s WHERE { ?tstat rdf:type/rdfs:subClassOf* brick:Thermostat . ?tstat bf:uri ?uri . ?tstat bf:controls/bf:feeds ?zone . };""" # Start of FIX for missing Brick query query = """SELECT ?zone ?uri FROM %s WHERE { ?tstat rdf:type brick:Thermostat . ?tstat bf:controls ?RTU . ?RTU rdf:type brick:RTU . ?RTU bf:feeds ?zone. ?zone rdf:type brick:HVAC_Zone . ?tstat bf:uri ?uri. };""" # End of FIX - delete when Brick is fixed building_query = query % building tstat_query_data = hod.do_query(building_query)['Rows'] tstats = {tstat["?zone"]: Thermostat(client, tstat["?uri"]) for tstat in tstat_query_data} return tstats # ============ PLOTTING FUNCTIONS ============ def plotly_figure(G, path=None): pos = graphviz_layout(G, prog='dot') edge_trace = go.Scatter( x=[], y=[], line=go.Line(width=0.5, color='#888'), hoverinfo='none', mode='lines') my_annotations = [] for edge in G.edges(): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_trace['x'] += [x0, x1, None] edge_trace['y'] += [y0, y1, None] my_annotations.append( dict( x=(x0 + x1) / 2, y=(y0 + y1) / 2, xref='x', yref='y', text="" + G.get_edge_data(edge[0], edge[1])['action'] + G.get_edge_data(edge[0], edge[1])['model_type'][0][0], # TODO for multigraph use [0] to get the frist edge. Also, only using the first letter to identify the model. showarrow=False, arrowhead=2, ax=0, ay=0 ) ) node_trace = go.Scatter( x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=go.Marker( showscale=False, # colorscale options # 'Greys' | 'Greens' | 'Bluered' | 'Hot' | 'Picnic' | 'Portland' | # Jet' | 'RdBu' | 'Blackbody' | 'Earth' | 'Electric' | 'YIOrRd' | 'YIGnBu' colorscale='YIGnBu', reversescale=True, color=[], size=10, colorbar=dict( thickness=15, title='Node Connections', xanchor='left', titleside='right' ), line=dict(width=2))) for node in G.nodes(): x, y = pos[node] node_trace['x'].append(x) node_trace['y'].append(y) node_info = "Time: +{0}<br>Temps: {1}<br>Usage Cost: {2}".format(node.time, node.temps, G.node[node]['usage_cost']) node_trace['text'].append(node_info) if path is None: node_trace['marker']['color'].append(G.node[node]['usage_cost']) elif node in path: node_trace['marker']['color'].append('rgba(255, 0, 0, 1)') else: node_trace['marker']['color'].append('rgba(0, 0, 255, 1)') fig = go.Figure(data=go.Data([edge_trace, node_trace]), layout=go.Layout( title='<br>Network graph made with Python', titlefont=dict(size=16), showlegend=False, width=650, height=650, hovermode='closest', margin=dict(b=20, l=5, r=5, t=40), annotations=my_annotations, xaxis=go.XAxis(showgrid=False, zeroline=False, showticklabels=False), yaxis=go.YAxis(showgrid=False, zeroline=False, showticklabels=False))) return fig # ========= Multithreading ======== class Barrier: """Class which behaves like python3's Barrier class. NOTE: Never change any of the internal logic or set variables after they were set in the init.""" def __init__(self, num_threads): import threading self.num_threads = num_threads self.count = 0 self.mutex = threading.Semaphore(1) self.barrier = threading.Semaphore(0) self.is_set = True def wait(self): """Behaves like wait function from Barrier class. Make all threads wait together and then release them.""" self.mutex.acquire() if not self.is_set: self.reset() self.mutex.release() # increment counter by one to indicate that another thread is waiting now. self.mutex.acquire() self.count = self.count + 1 self.mutex.release() # check if enough threads are waiting. If enough are waiting, the barrier will be opened if self.count == self.num_threads: self.barrier.release() # if not enough threads are waiting, make the thread wait for the barrier to be released in the if statement. self.barrier.acquire() # release the barrier so other threads can use it self.barrier.release() # we set the flag to false. However, this should be fine since every thread should already be past # the if statement that checks whether the Barrier is_set. self.mutex.acquire() if self.is_set: self.is_set = False self.mutex.release() def reset(self): """Resets the barrier class.""" self.count = 0 self.barrier.acquire() self.is_set = True if __name__ == "__main__": # bldg = "csu-dominguez-hills" # inside, outside = get_raw_data(building=bldg, days_back=20, force_reload=True) # use_data = {} # for zone, zone_data in inside.items(): # if zone != "HVAC_Zone_Please_Delete_Me": # use_data[zone] = zone_data # print(zone) # print(zone_data[zone_data["action"] == 2].shape) # print(zone_data[zone_data["action"] == 5].shape) # # t_man = ThermalDataManager.ThermalDataManager({"Building": bldg}, client=get_client()) # outside = t_man._preprocess_outside_data(outside.values()) # print("inside") # th_data = t_man._preprocess_thermal_data(use_data, outside, True) # # import pickle # with open("u_p", "r") as f: # th = pickle.load(f) # # zone = "HVAC_Zone_SAC_2101" # zone_data = th[zone] # print(zone_data[zone_data["action"] == 5].shape) # print(zone_data[zone_data["action"] == 2].shape) test_barrier = True if test_barrier: barrier = Barrier(2) import time import threading def func1(): time.sleep(3) # barrier.wait() # print('Working from func1') return def func2(): time.sleep(5) # barrier.wait() # print('Working from func2') return threading.Thread(target=func1).start() threading.Thread(target=func2).start() time.sleep(6) # check if reset threading.Thread(target=func1).start() threading.Thread(target=func2).start()
35.057225
131
0.599674
6e5cf966d85759af33becbcccfecc7f0866697b8
2,297
py
Python
Implementation_NN/3_nn_XOR_gate_visualization.py
bikashsingh0/neural_network_scratch
c5db50e75dc0216f9b5bed0f2e48f51e2e370bde
[ "MIT" ]
1
2019-07-04T05:54:00.000Z
2019-07-04T05:54:00.000Z
Implementation_NN/3_nn_XOR_gate_visualization.py
bikashsingh0/neural_network_scratch
c5db50e75dc0216f9b5bed0f2e48f51e2e370bde
[ "MIT" ]
null
null
null
Implementation_NN/3_nn_XOR_gate_visualization.py
bikashsingh0/neural_network_scratch
c5db50e75dc0216f9b5bed0f2e48f51e2e370bde
[ "MIT" ]
null
null
null
#!/bin/python3 import sys import random import numpy as np sys.path.append('..') from neural_network import NeuralNetwork import time from tkinter import * tk = Tk() widthSize = 500 heightSize = 500 frameRate = 60 frameSpeed = int(1 / frameRate * 1000) canvas = Canvas(tk, width=widthSize, height=heightSize, background="black") tk.title("Drawing_float") canvas.pack() inputLen = 2 hiddenLen = 3 outputLen = 1 learningRate = 0.1 n = NeuralNetwork(inputLen, hiddenLen, outputLen) # with this structure, answer may not be predicted sometimes # n = NeuralNetwork(2, 2, 1) training_data = { 1: {'inputs': np.array([[0],[0]]), 'targets': np.array([[0]])}, 2: {'inputs': np.array([[0],[1]]), 'targets': np.array([[1]])}, 3: {'inputs': np.array([[1],[0]]), 'targets': np.array([[1]])}, 4: {'inputs': np.array([[1],[1]]), 'targets': np.array([[0]])}, } def training(): x = random.choice(list(training_data.values())) inputs = x.get('inputs') targets = x.get('targets') n.trainSVLearing(inputs,targets,learningRate) while True: for i in range(2000): training() resolution = 10 cols = widthSize/resolution rows = heightSize/resolution for i in range(int(cols)): for j in range(int(rows)): x1 = i/cols x2 = j/rows inputs = np.array([[x1],[x2]]) print ("Inputs = "+ str(inputs)) y = n.feedForward(inputs) print ("Output = "+ str(y)) output = y # print("Value of y is = " + str(output)) color = int(output * 255) # print("Value of color is = " + str(color)) hexColor = format(color, '02x') # print("Value of hex is = " + str(hexColor)) finalColor = "#" + hexColor + hexColor + hexColor print("finalColor = " + str(finalColor)) # rect = canvas.create_rectangle(i*resolution, j*resolution, (i+1)*resolution, (j+1)*resolution, outline='red') rect = canvas.create_rectangle(i*resolution, j*resolution, (i+1)*resolution, (j+1)*resolution) # canvas.itemconfig(rect, fill="#ff00ff") canvas.itemconfig(rect, fill=finalColor) tk.after(frameSpeed, tk.update()) # for every give time updates frame tk.mainloop()
29.831169
123
0.594689
24d99a7ff3efffe5d3e4927117078f1d35e3d087
24
py
Python
splunk_sdk/__version__.py
ahallur/splunk-cloud-sdk-python
27914e4cb624bcc67788408688553cfb99f64aa1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
splunk_sdk/__version__.py
ahallur/splunk-cloud-sdk-python
27914e4cb624bcc67788408688553cfb99f64aa1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
splunk_sdk/__version__.py
ahallur/splunk-cloud-sdk-python
27914e4cb624bcc67788408688553cfb99f64aa1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
__version__ = '1.0.0b4'
12
23
0.666667
1df50163d986d9a7745847149100d8e31050f894
265
py
Python
chandler/run.py
jenlaiwong/ColorNets
6b976f0b3e09ab7478691d9cc8d37b35d2885175
[ "MIT" ]
null
null
null
chandler/run.py
jenlaiwong/ColorNets
6b976f0b3e09ab7478691d9cc8d37b35d2885175
[ "MIT" ]
null
null
null
chandler/run.py
jenlaiwong/ColorNets
6b976f0b3e09ab7478691d9cc8d37b35d2885175
[ "MIT" ]
null
null
null
import pickle import numpy as np #### Setup # read W1 W2 history if it exists, otherwise pick random and write # read x and y from inputs and write them to files weight_history (append only) (read only) [Xy1, Xy2, ..] # thread concurrent run multi processes
14.722222
66
0.728302
8d022e2ab3b59eb45a360c5573f74da1e0051beb
3,962
py
Python
ion/cache.py
bamaxw/ion
a04b7d6b05cc606e821d52bbdbb7fe080742134f
[ "MIT" ]
1
2019-04-29T15:13:33.000Z
2019-04-29T15:13:33.000Z
ion/cache.py
bamaxw/ion
a04b7d6b05cc606e821d52bbdbb7fe080742134f
[ "MIT" ]
null
null
null
ion/cache.py
bamaxw/ion
a04b7d6b05cc606e821d52bbdbb7fe080742134f
[ "MIT" ]
null
null
null
'''Functions and classes helping with application-level caching and memoization''' from typing import Callable, Any, Optional from functools import wraps, partial from collections import namedtuple import time TsValue = namedtuple('TsValue', ['value', 'timestamp']) class MemoizeWithTimeout: ''' Use this class to memoize a functions result for a certain period of time Class attributes: - _per_func_cache: stores a function result in a dictionary where key is tuple(args, tuple(sorted(kwargs.items()))) tuple, and value is TsValue with value being return value and ts being timestamp when it happened - _timeouts: stores timeout value for each of registered functions ''' _per_func_cache = {} _timeouts = {} def __init__(self, timeout: int = 60): self.timeout = float(timeout) def collect(self) -> None: """Clear cache of results which have timed out""" for func, func_cache in self._per_func_cache.items(): cache = {} for args_kwargs, cached in func_cache.items(): if (time.time() - cached.timestamp) < self._timeouts[func]: cache[args_kwargs] = cached self._per_func_cache[func] = cache def __call__(self, func): cache = self._per_func_cache[func] = {} self._timeouts[func] = self.timeout @wraps(func) def _wrapper(*args, **kwargs): args_kwargs = (args, tuple(sorted(kwargs.items()))) try: cached = cache[args_kwargs] if (time.time() - cached.timestamp) > self.timeout: raise KeyError except KeyError: return_value = func(*args, **kwargs) cached = cache[args_kwargs] = TsValue( value=return_value, timestamp=time.time() ) return cached.value return _wrapper def create_minute_memoize(no_minutes: float): '''Creates MemoizeWithTimeout with timeout equal no_minutes minutes''' return MemoizeWithTimeout(no_minutes * 60) minute_memoize = MemoizeWithTimeout(60) cache_for = create_minute_memoize memoize_for = create_minute_memoize _remember_cache = {} def remember(func): @wraps(func) def _wrap(*a, **kw): if str(type(func)) in ("<class 'function'>", "<class 'builtin_function_or_method'>"): obj = None elif str(type(func)) == "<class 'method'>": obj = a[0] if obj not in _remember_cache: _remember_cache[obj] = {} if func not in _remember_cache[obj]: _remember_cache[obj][func] = func(*a, **kw) return _remember_cache[obj][func] return _wrap def _from_cache_on_err(func: Callable, *, default: Any): ''' Caches a function response, so that if the function is called in the future and results in an error, the cached response is returned If the first function call results in an error, the error is re-raised Assumed use-case is reading remote data, so that if the remote server goes down the previously read version of the data will be returned as a fallback ''' _cached = default @wraps(func) def _wrap(*a, **kw): try: return func(*a, **kw) except: # pylint: disable=bare-except if _cached is default: raise return _cached return _wrap def from_cache_on_err( func: Optional[Callable] = None, default: Any = ... ): ''' Wrapper around _from_cache_on_err allows for the from_cache_on_err to be called with additional argument *default* that initializes cache with data that is impossible to be returned from the function itself ''' if func: return _from_cache_on_err(func, default=default) return partial(_from_cache_on_err, default=default)
36.018182
116
0.626704
0052373d155a064be733051034f056b081f27b0b
9,550
py
Python
cinder/tests/unit/api/v2/fakes.py
mail2nsrajesh/cinder
a688b872bec6d1abd4dcd852bdb8e8a921369d2e
[ "Apache-2.0" ]
null
null
null
cinder/tests/unit/api/v2/fakes.py
mail2nsrajesh/cinder
a688b872bec6d1abd4dcd852bdb8e8a921369d2e
[ "Apache-2.0" ]
2
2018-10-25T13:04:01.000Z
2019-08-17T13:15:24.000Z
cinder/tests/unit/api/v2/fakes.py
mail2nsrajesh/cinder
a688b872bec6d1abd4dcd852bdb8e8a921369d2e
[ "Apache-2.0" ]
2
2018-10-17T13:32:50.000Z
2018-11-08T08:39:39.000Z
# Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import iso8601 from cinder import exception as exc from cinder import objects from cinder.objects import fields from cinder.tests.unit import fake_constants as fake from cinder.tests.unit import fake_volume from cinder import utils DEFAULT_VOL_NAME = "displayname" DEFAULT_VOL_DESCRIPTION = "displaydesc" DEFAULT_VOL_SIZE = 1 DEFAULT_VOL_TYPE = "vol_type_name" DEFAULT_VOL_STATUS = "fakestatus" DEFAULT_VOL_ID = fake.VOLUME_ID # TODO(vbala): api.v1 tests use hard-coded "fakeaz" for verifying # post-conditions. Update value to "zone1:host1" once we remove # api.v1 tests and use it in api.v2 tests. DEFAULT_AZ = "fakeaz" def create_fake_volume(id, **kwargs): volume = { 'id': id, 'user_id': fake.USER_ID, 'project_id': fake.PROJECT_ID, 'host': 'fakehost', 'size': DEFAULT_VOL_SIZE, 'availability_zone': DEFAULT_AZ, 'status': DEFAULT_VOL_STATUS, 'migration_status': None, 'attach_status': fields.VolumeAttachStatus.ATTACHED, 'name': 'vol name', 'display_name': DEFAULT_VOL_NAME, 'display_description': DEFAULT_VOL_DESCRIPTION, 'updated_at': datetime.datetime(1900, 1, 1, 1, 1, 1, tzinfo=iso8601.iso8601.Utc()), 'created_at': datetime.datetime(1900, 1, 1, 1, 1, 1, tzinfo=iso8601.iso8601.Utc()), 'snapshot_id': None, 'source_volid': None, 'volume_type_id': '3e196c20-3c06-11e2-81c1-0800200c9a66', 'encryption_key_id': None, 'volume_admin_metadata': [{'key': 'attached_mode', 'value': 'rw'}, {'key': 'readonly', 'value': 'False'}], 'bootable': False, 'launched_at': datetime.datetime(1900, 1, 1, 1, 1, 1, tzinfo=iso8601.iso8601.Utc()), 'volume_type': fake_volume.fake_db_volume_type(name=DEFAULT_VOL_TYPE), 'replication_status': 'disabled', 'replication_extended_status': None, 'replication_driver_data': None, 'volume_attachment': [], 'multiattach': False, } volume.update(kwargs) if kwargs.get('volume_glance_metadata', None): volume['bootable'] = True if kwargs.get('attach_status') == fields.VolumeAttachStatus.DETACHED: del volume['volume_admin_metadata'][0] return volume def fake_volume_create(self, context, size, name, description, snapshot=None, **param): vol = create_fake_volume(DEFAULT_VOL_ID) vol['size'] = size vol['display_name'] = name vol['display_description'] = description source_volume = param.get('source_volume') or {} vol['source_volid'] = source_volume.get('id') vol['bootable'] = False vol['volume_attachment'] = [] vol['multiattach'] = utils.get_bool_param('multiattach', param) try: vol['snapshot_id'] = snapshot['id'] except (KeyError, TypeError): vol['snapshot_id'] = None vol['availability_zone'] = param.get('availability_zone', 'fakeaz') return vol def fake_volume_api_create(self, context, *args, **kwargs): vol = fake_volume_create(self, context, *args, **kwargs) return fake_volume.fake_volume_obj(context, **vol) def fake_image_service_detail(self, context, **kwargs): filters = kwargs.get('filters', {'name': ''}) if filters['name'] == "Fedora-x86_64-20-20140618-sda": return [{'id': "c905cedb-7281-47e4-8a62-f26bc5fc4c77"}] elif filters['name'] == "multi": return [{'id': "c905cedb-7281-47e4-8a62-f26bc5fc4c77"}, {'id': "c905cedb-abcd-47e4-8a62-f26bc5fc4c77"}] return [] def fake_volume_create_from_image(self, context, size, name, description, snapshot, volume_type, metadata, availability_zone): vol = create_fake_volume(fake.VOLUME_ID) vol['status'] = 'creating' vol['size'] = size vol['display_name'] = name vol['display_description'] = description vol['availability_zone'] = 'cinder' vol['bootable'] = False return vol def fake_volume_update(self, context, *args, **param): pass def fake_volume_delete(self, context, *args, **param): pass def fake_volume_get(self, context, volume_id, viewable_admin_meta=False): if viewable_admin_meta: return create_fake_volume(volume_id) else: volume = create_fake_volume(volume_id) del volume['volume_admin_metadata'] return volume def fake_volume_get_notfound(self, context, volume_id, viewable_admin_meta=False): raise exc.VolumeNotFound(volume_id) def fake_volume_get_db(context, volume_id): if context.is_admin: return create_fake_volume(volume_id) else: volume = create_fake_volume(volume_id) del volume['volume_admin_metadata'] return volume def fake_volume_api_get(self, context, volume_id, viewable_admin_meta=False): vol = create_fake_volume(volume_id) return fake_volume.fake_volume_obj(context, **vol) def fake_volume_get_all(context, search_opts=None, marker=None, limit=None, sort_keys=None, sort_dirs=None, filters=None, viewable_admin_meta=False, offset=None): return [create_fake_volume(fake.VOLUME_ID, project_id=fake.PROJECT_ID), create_fake_volume(fake.VOLUME2_ID, project_id=fake.PROJECT2_ID), create_fake_volume(fake.VOLUME3_ID, project_id=fake.PROJECT3_ID)] def fake_volume_get_all_by_project(self, context, marker, limit, sort_keys=None, sort_dirs=None, filters=None, viewable_admin_meta=False, offset=None): return [fake_volume_get(self, context, fake.VOLUME_ID, viewable_admin_meta=True)] def fake_volume_api_get_all_by_project(self, context, marker, limit, sort_keys=None, sort_dirs=None, filters=None, viewable_admin_meta=False, offset=None): vol = fake_volume_get(self, context, fake.VOLUME_ID, viewable_admin_meta=viewable_admin_meta) vol_obj = fake_volume.fake_volume_obj(context, **vol) return objects.VolumeList(objects=[vol_obj]) def fake_snapshot(id, **kwargs): snapshot = {'id': id, 'volume_id': fake.VOLUME_ID, 'status': fields.SnapshotStatus.AVAILABLE, 'volume_size': 100, 'created_at': None, 'display_name': 'Default name', 'display_description': 'Default description', 'project_id': fake.PROJECT_ID, 'snapshot_metadata': []} snapshot.update(kwargs) return snapshot def fake_snapshot_get_all(context, filters=None, marker=None, limit=None, sort_keys=None, sort_dirs=None, offset=None): return [fake_snapshot(fake.VOLUME_ID, project_id=fake.PROJECT_ID), fake_snapshot(fake.VOLUME2_ID, project_id=fake.PROJECT2_ID), fake_snapshot(fake.VOLUME3_ID, project_id=fake.PROJECT3_ID)] def fake_snapshot_get_all_by_project(context, project_id, filters=None, marker=None, limit=None, sort_keys=None, sort_dirs=None, offset=None): return [fake_snapshot(fake.SNAPSHOT_ID)] def fake_snapshot_update(self, context, *args, **param): pass def fake_service_get_all(*args, **kwargs): return [{'availability_zone': "zone1:host1", "disabled": 0}] def fake_service_get_all_by_topic(context, topic, disabled=None): return [{'availability_zone': "zone1:host1", "disabled": 0}] def fake_snapshot_get(self, context, snapshot_id): if snapshot_id == fake.WILL_NOT_BE_FOUND_ID: raise exc.SnapshotNotFound(snapshot_id=snapshot_id) return fake_snapshot(snapshot_id) def fake_consistencygroup_get_notfound(self, context, cg_id): raise exc.GroupNotFound(group_id=cg_id) def fake_volume_type_get(context, id, *args, **kwargs): return {'id': id, 'name': 'vol_type_name', 'description': 'A fake volume type', 'is_public': True, 'projects': [], 'extra_specs': {}, 'created_at': None, 'deleted_at': None, 'updated_at': None, 'qos_specs_id': fake.QOS_SPEC_ID, 'deleted': False} def fake_volume_admin_metadata_get(context, volume_id, **kwargs): admin_meta = {'attached_mode': 'rw', 'readonly': 'False'} if kwargs.get('attach_status') == fields.VolumeAttachStatus.DETACHED: del admin_meta['attached_mode'] return admin_meta
36.174242
78
0.638953
9da38c6aaaf52bf08d090cd5a6861aa0013d608e
4,907
py
Python
python/mxnet/rtc.py
Najah-lshanableh/Deep_learning
4b8235bdacd319843dda7b331f207808e4a90a93
[ "Apache-2.0" ]
4
2017-11-17T07:28:09.000Z
2019-07-23T06:24:16.000Z
python/mxnet/rtc.py
Najah-lshanableh/Deep_learning
4b8235bdacd319843dda7b331f207808e4a90a93
[ "Apache-2.0" ]
null
null
null
python/mxnet/rtc.py
Najah-lshanableh/Deep_learning
4b8235bdacd319843dda7b331f207808e4a90a93
[ "Apache-2.0" ]
2
2019-06-12T12:40:20.000Z
2020-11-03T14:33:14.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Interface to runtime cuda kernel compile module.""" from __future__ import absolute_import import ctypes from .base import _LIB, NDArrayHandle, RtcHandle, mx_uint, c_array, check_call class Rtc(object): """MXRtc object in mxnet. This class allow you to write CUDA kernels in Python and call them with NDArray. Parameters ---------- name : str Name of the kernel. inputs : tuple of (str, mxnet.ndarray) List of input names and ndarray. outputs : tuple of (str, mxnet.ndarray) List of output names and ndarray. kernel : str The actual kernel code. Note that this is only the body of the kernel, i.e. after { and before }. Rtc will decorate the kernel. For example, if ``name = "mykernel"`` and inputs = [('x', mx.nd.zeros((10,)))] outputs = [('y', mx.nd.zeros((10,)))] kernel = "y[threadIdx.x] = x[threadIdx.x];", then the compiled kernel will be: extern "C" __global__ mykernel(float *x, float *y) { const int x_ndim = 1; const int x_dims = { 10 }; const int y_ndim = 1; const int y_dims = { 10 }; y[threadIdx.x] = x[threadIdx.x]; } """ def __init__(self, name, inputs, outputs, kernel): self.handle = RtcHandle() input_names = ctypes.cast(c_array(ctypes.c_char_p, [i[0] for i in inputs]), ctypes.POINTER(ctypes.c_char_p)) output_names = ctypes.cast(c_array(ctypes.c_char_p, [i[0] for i in outputs]), ctypes.POINTER(ctypes.c_char_p)) input_nds = ctypes.cast(c_array(NDArrayHandle, [i[1].handle for i in inputs]), ctypes.POINTER(NDArrayHandle)) output_nds = ctypes.cast(c_array(NDArrayHandle, [i[1].handle for i in outputs]), ctypes.POINTER(NDArrayHandle)) check_call(_LIB.MXRtcCreate(ctypes.c_char_p(name), mx_uint(len(inputs)), mx_uint(len(outputs)), input_names, output_names, input_nds, output_nds, ctypes.c_char_p(kernel), ctypes.byref(self.handle))) def __del__(self): check_call(_LIB.MXRtcFree(self.handle)) def push(self, inputs, outputs, grid_dims, block_dims): """Run the kernel. Parameters ---------- inputs : list of NDArray List of inputs. Can contain different NDArrays than those used for the constructor, but its elements must have the same shapes and appear in the same order. outputs : list of NDArray List of outputs. Can contain different ndarrays than used for the constructor, but must have the same shapes and appear in the same order. grid_dims : tuple of 3 uint Grid dimension for kernel launch. block_dims : tuple of 3 uint Block dimension for kernel launch. """ input_nds = ctypes.cast(c_array(NDArrayHandle, [i.handle for i in inputs]), ctypes.POINTER(NDArrayHandle)) output_nds = ctypes.cast(c_array(NDArrayHandle, [i.handle for i in outputs]), ctypes.POINTER(NDArrayHandle)) check_call(_LIB.MXRtcPush(self.handle, mx_uint(len(inputs)), mx_uint(len(outputs)), input_nds, output_nds, mx_uint(grid_dims[0]), mx_uint(grid_dims[1]), mx_uint(grid_dims[2]), mx_uint(block_dims[0]), mx_uint(block_dims[1]), mx_uint(block_dims[2])))
45.018349
95
0.560016
5365252bc3441061bd5480afc3dcb18a728825e6
4,244
py
Python
packaging/setup/plugins/ovirt-engine-common/base/remote_engine/remote_engine_manual_files.py
UranusBlockStack/ovirt-engine
fe3c90ed3e74e6af9497c826c82e653382946ae1
[ "Apache-2.0" ]
null
null
null
packaging/setup/plugins/ovirt-engine-common/base/remote_engine/remote_engine_manual_files.py
UranusBlockStack/ovirt-engine
fe3c90ed3e74e6af9497c826c82e653382946ae1
[ "Apache-2.0" ]
null
null
null
packaging/setup/plugins/ovirt-engine-common/base/remote_engine/remote_engine_manual_files.py
UranusBlockStack/ovirt-engine
fe3c90ed3e74e6af9497c826c82e653382946ae1
[ "Apache-2.0" ]
null
null
null
# # ovirt-engine-setup -- ovirt engine setup # Copyright (C) 2014-2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gettext import os import tempfile from otopi import plugin, util from ovirt_engine_setup import constants as osetupcons from ovirt_engine_setup import remote_engine_base def _(m): return gettext.dgettext(message=m, domain='ovirt-engine-setup') @util.export class Plugin(plugin.PluginBase): class _ManualFiles(remote_engine_base.RemoteEngineBase): def __init__(self, plugin): super(Plugin._ManualFiles, self).__init__(plugin=plugin) self._plugin = plugin self._tempfiles = [] @property def plugin(self): return self._plugin @property def dialog(self): return self._plugin.dialog @property def environment(self): return self._plugin.environment @property def logger(self): return self._plugin.logger @property def name(self): return osetupcons.Const.REMOTE_ENGINE_SETUP_STYLE_MANUAL_FILES def desc(self): return _( 'Perform each action manually, use files to copy content ' 'around' ) def configure(self, fqdn): self._fqdn = fqdn def execute_on_engine(self, cmd, timeout=60, text=None): self.dialog.note( text=text if text else _( 'Please run on the engine server:\n\n' '{cmd}\n\n' ).format( cmd=cmd ) ) def copy_from_engine(self, file_name, dialog_name): resfilename = self.dialog.queryString( name=dialog_name, note=_( 'Please copy {file_name} from the engine server to some ' 'file here.\n' 'Please input the location of the local file where you ' 'copied {file_name} from the engine server: ' ), prompt=True, ) with open(resfilename) as f: res = f.read() return res def copy_to_engine(self, file_name, content, inp_env_key): fname = self.environment.get(inp_env_key) with ( open(fname, 'w') if fname else tempfile.NamedTemporaryFile(mode='w', delete=False) ) as inpfile: inpfile.write(content) self.dialog.note( text=_( 'Please copy {inpfile} from here to {file_name} on the ' 'engine server.\n' ).format( inpfile=inpfile.name, file_name=file_name, ) ) self._tempfiles.append(fname) def cleanup(self): for f in self._tempfiles: if f is not None: try: os.unlink(f.name) except OSError: self.logger.debug( "Failed to delete '%s'", f.name, exc_info=True, ) def __init__(self, context): super(Plugin, self).__init__(context=context) @plugin.event( stage=plugin.Stages.STAGE_SETUP, ) def _setup(self): self.environment[ osetupcons.ConfigEnv.REMOTE_ENGINE_SETUP_STYLES ].append( self._ManualFiles( plugin=self, ) ) # vim: expandtab tabstop=4 shiftwidth=4
29.472222
77
0.542884
e72f5bc0e759f4053138ce8a20675e9c783b8ace
9,572
py
Python
ynab_client/api/scheduled_transactions_api.py
Pezmc/ynab-client-python
6d154f3efecef6a5c3ff1cf89d8a2a59f9f7bb97
[ "Apache-2.0" ]
4
2018-12-02T19:55:40.000Z
2021-02-28T13:13:45.000Z
ynab_client/api/scheduled_transactions_api.py
Pezmc/ynab-client-python
6d154f3efecef6a5c3ff1cf89d8a2a59f9f7bb97
[ "Apache-2.0" ]
10
2018-07-22T06:52:16.000Z
2022-01-09T14:05:49.000Z
ynab_client/api/scheduled_transactions_api.py
Pezmc/ynab-client-python
6d154f3efecef6a5c3ff1cf89d8a2a59f9f7bb97
[ "Apache-2.0" ]
10
2018-09-11T01:01:44.000Z
2022-01-09T13:54:50.000Z
# coding: utf-8 """ YNAB API Endpoints Our API uses a REST based design, leverages the JSON data format, and relies upon HTTPS for transport. We respond with meaningful HTTP response codes and if an error occurs, we include error details in the response body. API Documentation is at https://api.youneedabudget.com # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from ynab_client.api_client import ApiClient class ScheduledTransactionsApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_scheduled_transaction_by_id(self, budget_id, scheduled_transaction_id, **kwargs): # noqa: E501 """Single scheduled transaction # noqa: E501 Returns a single scheduled transaction # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_scheduled_transaction_by_id(budget_id, scheduled_transaction_id, async=True) >>> result = thread.get() :param async bool :param str budget_id: The ID of the Budget. (required) :param str scheduled_transaction_id: The ID of the Scheduled Transaction. (required) :return: ScheduledTransactionResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_scheduled_transaction_by_id_with_http_info(budget_id, scheduled_transaction_id, **kwargs) # noqa: E501 else: (data) = self.get_scheduled_transaction_by_id_with_http_info(budget_id, scheduled_transaction_id, **kwargs) # noqa: E501 return data def get_scheduled_transaction_by_id_with_http_info(self, budget_id, scheduled_transaction_id, **kwargs): # noqa: E501 """Single scheduled transaction # noqa: E501 Returns a single scheduled transaction # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_scheduled_transaction_by_id_with_http_info(budget_id, scheduled_transaction_id, async=True) >>> result = thread.get() :param async bool :param str budget_id: The ID of the Budget. (required) :param str scheduled_transaction_id: The ID of the Scheduled Transaction. (required) :return: ScheduledTransactionResponse If the method is called asynchronously, returns the request thread. """ all_params = ['budget_id', 'scheduled_transaction_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_scheduled_transaction_by_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'budget_id' is set if ('budget_id' not in params or params['budget_id'] is None): raise ValueError("Missing the required parameter `budget_id` when calling `get_scheduled_transaction_by_id`") # noqa: E501 # verify the required parameter 'scheduled_transaction_id' is set if ('scheduled_transaction_id' not in params or params['scheduled_transaction_id'] is None): raise ValueError("Missing the required parameter `scheduled_transaction_id` when calling `get_scheduled_transaction_by_id`") # noqa: E501 collection_formats = {} path_params = {} if 'budget_id' in params: path_params['budget_id'] = params['budget_id'] # noqa: E501 if 'scheduled_transaction_id' in params: path_params['scheduled_transaction_id'] = params['scheduled_transaction_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['bearer'] # noqa: E501 return self.api_client.call_api( '/budgets/{budget_id}/scheduled_transactions/{scheduled_transaction_id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ScheduledTransactionResponse', # noqa: E501 auth_settings=auth_settings, is_async=params.get('is_async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_scheduled_transactions(self, budget_id, **kwargs): # noqa: E501 """List scheduled transactions # noqa: E501 Returns all scheduled transactions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_scheduled_transactions(budget_id, async=True) >>> result = thread.get() :param async bool :param str budget_id: The ID of the Budget. (required) :return: ScheduledTransactionsResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_scheduled_transactions_with_http_info(budget_id, **kwargs) # noqa: E501 else: (data) = self.get_scheduled_transactions_with_http_info(budget_id, **kwargs) # noqa: E501 return data def get_scheduled_transactions_with_http_info(self, budget_id, **kwargs): # noqa: E501 """List scheduled transactions # noqa: E501 Returns all scheduled transactions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_scheduled_transactions_with_http_info(budget_id, async=True) >>> result = thread.get() :param async bool :param str budget_id: The ID of the Budget. (required) :return: ScheduledTransactionsResponse If the method is called asynchronously, returns the request thread. """ all_params = ['budget_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_scheduled_transactions" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'budget_id' is set if ('budget_id' not in params or params['budget_id'] is None): raise ValueError("Missing the required parameter `budget_id` when calling `get_scheduled_transactions`") # noqa: E501 collection_formats = {} path_params = {} if 'budget_id' in params: path_params['budget_id'] = params['budget_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['bearer'] # noqa: E501 return self.api_client.call_api( '/budgets/{budget_id}/scheduled_transactions', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ScheduledTransactionsResponse', # noqa: E501 auth_settings=auth_settings, is_async=params.get('is_async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
41.081545
294
0.643962
14fc6f2abfd17641e1e0bc7d0033e17f9c61bbcd
1,152
py
Python
drf/drf_crud/app/views.py
taptorestart/python-backend-examples
0817223f403570f5822511c240726c6108d3b9b7
[ "MIT" ]
7
2022-02-25T03:27:01.000Z
2022-03-22T10:51:13.000Z
drf/drf_crud/app/views.py
taptorestart/python-backend-examples
0817223f403570f5822511c240726c6108d3b9b7
[ "MIT" ]
null
null
null
drf/drf_crud/app/views.py
taptorestart/python-backend-examples
0817223f403570f5822511c240726c6108d3b9b7
[ "MIT" ]
1
2022-03-24T14:47:49.000Z
2022-03-24T14:47:49.000Z
from django.contrib.auth.models import User, Group from rest_framework import viewsets from rest_framework import permissions from app.serializers import UserSerializer, GroupSerializer, CategorySerializer, BeverageSerializer from app.models import Category, Beverage class UserViewSet(viewsets.ModelViewSet): queryset = User.objects.all().order_by('-date_joined') serializer_class = UserSerializer permission_classes = [permissions.IsAuthenticated] class GroupViewSet(viewsets.ModelViewSet): queryset = Group.objects.all() serializer_class = GroupSerializer permission_classes = [permissions.IsAuthenticated] class CategoryViewSet(viewsets.ModelViewSet): queryset = Category.objects.all() serializer_class = CategorySerializer http_method_names = ['get', 'post', 'put', 'patch', 'delete', 'head'] permission_classes = [permissions.IsAuthenticated] class BeverageViewSet(viewsets.ModelViewSet): queryset = Beverage.objects.all() serializer_class = BeverageSerializer http_method_names = ['get', 'post', 'put', 'patch', 'delete', 'head'] permission_classes = [permissions.IsAuthenticated]
36
99
0.773438
4fd33886c3fdafce581c2aa3e123cbef9dd16ba0
2,731
py
Python
python-博客网站内容爬取/PyCharm_article/com/article/spider/m_baidu.py
wangchuanli001/Project-experience
b563c5c3afc07c913c2e1fd25dff41c70533f8de
[ "Apache-2.0" ]
12
2019-12-07T01:44:55.000Z
2022-01-27T14:13:30.000Z
python-博客网站内容爬取/PyCharm_article/com/article/spider/m_baidu.py
hujiese/Project-experience
b563c5c3afc07c913c2e1fd25dff41c70533f8de
[ "Apache-2.0" ]
23
2020-05-23T03:56:33.000Z
2022-02-28T07:54:45.000Z
python-博客网站内容爬取/PyCharm_article/com/article/spider/m_baidu.py
hujiese/Project-experience
b563c5c3afc07c913c2e1fd25dff41c70533f8de
[ "Apache-2.0" ]
7
2019-12-20T04:48:56.000Z
2021-11-19T02:23:45.000Z
# -*- coding: utf-8 -*- import socket import threading import jieba import requests from bs4 import BeautifulSoup import urllib.request import random import time import sql_operation import ast import sys import codecs def page_html(keyword): print('\n当前关键字 : ' + keyword) socket.setdefaulttimeout(10) # 设置全局超时时间 学会php可以干什么 php是什么 url = "http://m.baidu.com/s?word=" + keyword user_agents = [ 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)', 'Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.5 (like Gecko) (Kubuntu)', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20070731 Ubuntu/dapper-security Firefox/1.5.0.12', "Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.7 (KHTML, like Gecko) Ubuntu/11.04 Chromium/16.0.912.77 Chrome/16.0.912.77 Safari/535.7", "Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:10.0) Gecko/20100101 Firefox/10.0 "] user_agent = random.choice(user_agents) headers = { 'User-Agent': user_agent, 'Accept-Encoding': 'gzip'} try: req = requests.get(url=url, headers=headers) html_doc = req.text soup = BeautifulSoup(html_doc, "html.parser") titles = soup.select('article > header > div > a') links = soup.select('span.c-color-gray') # links2 = soup.select('div.c-showurl c-line-clamp1') print("网页解析完毕") page_list = [] php_list = ['php中文网', 'PHP中文网', 'm.php.cn'] for temp in titles: # print(temp.get('aria-roledescription'), temp.get_text()) page_list.append(temp.get_text()) for temp in links: page_list.append(temp.get_text()) # print(page_list) for flag in php_list: for temp in page_list: if temp.find(flag) != -1: print(keyword+" "+temp, ' ++++++++++++++++++++++++++++') return False return True except Exception as e: print(e) print("重新进行尝试连接") page_html(keyword) def readfile(): fileio = open('keyword_relevant.txt', 'r+', encoding='utf-8') keywords = fileio.read().split('\n') php_list = [] fileio.seek(0, 0) for keyword in keywords: if page_html(keyword): fileio.write(keyword + '\n') else: php_list.append(keyword) if len(php_list) > 0: for temp in php_list: fileio.write(temp + ' php中文网已有\n') fileio.close() if __name__ == '__main__': # php是什么 # page_html('php是什么') readfile()
34.56962
144
0.586964
71bc65b20e9bba97fada7a826bc4cbe7dc2080bd
78
py
Python
sancus/lib/cogs/games/__init__.py
Solar-Productions/sancus
eb3c5c702bc5574c62b488c0e3bb06a36159e651
[ "Apache-2.0" ]
1
2021-09-03T22:52:27.000Z
2021-09-03T22:52:27.000Z
sancus/lib/cogs/games/__init__.py
LunarDevelop/sancus
eb3c5c702bc5574c62b488c0e3bb06a36159e651
[ "Apache-2.0" ]
1
2021-10-10T22:11:51.000Z
2021-10-10T22:11:51.000Z
sancus/lib/cogs/games/__init__.py
Solar-Productions/sancus
eb3c5c702bc5574c62b488c0e3bb06a36159e651
[ "Apache-2.0" ]
1
2021-11-11T16:04:02.000Z
2021-11-11T16:04:02.000Z
from .games import Games def setup(client): client.add_cog(Games(client))
19.5
33
0.74359
54e5e3dd9be57419f29e832916ea7f8449b510b7
481
py
Python
conv_mechanics/tip.py
devinmcgloin/advent-term
96fd3ca408b3437518830e354ea3ccfa790fd191
[ "Apache-2.0" ]
null
null
null
conv_mechanics/tip.py
devinmcgloin/advent-term
96fd3ca408b3437518830e354ea3ccfa790fd191
[ "Apache-2.0" ]
38
2019-05-29T10:17:00.000Z
2020-02-20T05:35:41.000Z
conv_mechanics/tip.py
devinmcgloin/advent-term
96fd3ca408b3437518830e354ea3ccfa790fd191
[ "Apache-2.0" ]
null
null
null
""" utility functions to determine if a command is a tip or not. """ import re is_tip_regex = re.compile("^tip *\$?(?:0|[1-9]\d{0,2}(?:,?\d{3})*)(?:\.\d+)?$") amount_regex = re.compile("-?(?:0|[1-9]\d{0,2}(?:,?\d{3})*)(?:\.\d+)?$") def is_tip(user_response): if re.match(is_tip_regex, user_response) is not None: return True return False def tip_amount(user_response): matches = re.findall(amount_regex, user_response) return max(map(float, matches))
24.05
79
0.615385
f0440ee7e2ae41df976f5a4dfb451d768828056a
4,806
py
Python
src/benchmark/api/api_lxd.py
edvgui/LEPL2990-Benchmark-tool
be9bf7e62be215ec14ee5fddb91166bb8861090e
[ "MIT" ]
3
2020-06-11T18:33:27.000Z
2021-02-21T13:48:06.000Z
src/benchmark/api/api_lxd.py
edvgui/LEPL2990-Benchmark-tool
be9bf7e62be215ec14ee5fddb91166bb8861090e
[ "MIT" ]
null
null
null
src/benchmark/api/api_lxd.py
edvgui/LEPL2990-Benchmark-tool
be9bf7e62be215ec14ee5fddb91166bb8861090e
[ "MIT" ]
null
null
null
import subprocess import time from exceptions.api_exception import ApiException class LXCApiException(ApiException): def __init__(self, message, trace): super().__init__("LXD", message, trace) def init(image, flags, log=False): """ Initialize a container from an image with the command 'lxc init' :param image: The name of the image to create the container from :param flags: Some flags to pass for the creation :param log: Whether to display some logs or not :return: The id of the created container, the command execution time """ args = ["lxc", "init", image] args.extend(flags) tic = time.time() output = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) toc = time.time() if output.returncode != 0: raise LXCApiException("Error while trying to initiate container from image " + image, output.stderr.decode('utf-8').strip()) if log: print(output) return output.stdout.decode('utf-8').split(" ")[5].strip(), toc - tic def start(container, log=False): """ Start a previously created container with the command 'lxc start' :param container: The id of the created container :param log: Whether to display some logs or not :return: The command execution time """ args = ["lxc", "start", container] tic = time.time() output = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) toc = time.time() if output.returncode != 0: raise LXCApiException("Error while trying to start container " + container, output.stderr.decode('utf-8').strip()) if log: print(output) return toc - tic def exec(container, command, log=False): """ Execute a command in a running container with the command 'lxc exec' :param container: The id of the container in which execute the command :param command: The command to execute :param log: Whether to display some logs or not :return: The output of the execution, the command execution time """ args = ["lxc", "exec", container, "--"] args.extend(command) tic = time.time() output = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) toc = time.time() if output.returncode != 0: raise LXCApiException("Error while trying to execute command '{0}' in container {1}".format(command, container), output.stderr.decode('utf-8').strip()) if log: print(output) return output.stdout.decode('utf-8'), toc - tic def launch(image, options, log=False): """ Build and start a new container with the command 'lxc launch' :param image: The image to build the container from :param options: The options to give for the launch :param log: Whether to display some logs or not :return: The id of the launched container, the command execution time """ args = ["lxc", "launch", image] args.extend(options) tic = time.time() output = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) toc = time.time() if output.returncode != 0: raise LXCApiException("Error while trying to launch container from image " + image, output.stderr.decode('utf-8').strip()) if log: print(output) return output.stdout.decode('utf-8').split(" ")[6].strip(), toc - tic def kill(container, log=False): """ Stop a running container with the command 'lxc stop' :param container: The id of the container to stop :param log: Whether to display some logs or not :return: The command execution time """ args = ["lxc", "stop", "--force", container] tic = time.time() output = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) toc = time.time() if output.returncode != 0: raise LXCApiException("Error while trying to stop container " + container, output.stderr.decode('utf-8').strip()) if log: print(output) return toc - tic def rm(container, log=False): """ Remove a stopped container with the command 'lxc rm' :param container: The id of the container to remove :param log: Whether to display some logs or not :return: The command execution time """ args = ["lxc", "rm", container] tic = time.time() output = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) toc = time.time() if output.returncode != 0: raise LXCApiException("Error while trying to remove container " + container, output.stderr.decode('utf-8').strip()) if log: print(output) return toc - tic
36.687023
120
0.644611
2151d16e4ba443ed253c42ec4900aa5ed92328b2
2,709
py
Python
pygments/lexers/maxima.py
blu-base/pygments
da799d14818ed538bf937684a19ce779ddde9446
[ "BSD-2-Clause" ]
1
2015-06-08T14:52:49.000Z
2015-06-08T14:52:49.000Z
pygments/lexers/maxima.py
blu-base/pygments
da799d14818ed538bf937684a19ce779ddde9446
[ "BSD-2-Clause" ]
1
2022-03-13T09:17:24.000Z
2022-03-13T09:18:02.000Z
pygments/lexers/maxima.py
blu-base/pygments
da799d14818ed538bf937684a19ce779ddde9446
[ "BSD-2-Clause" ]
null
null
null
""" pygments.lexers.maxima ~~~~~~~~~~~~~~~~~~~~~~ Lexer for the computer algebra system Maxima. Derived from pygments/lexers/algebra.py. :copyright: Copyright 2006-2022 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, bygroups, words from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation __all__ = ['MaximaLexer'] class MaximaLexer(RegexLexer): """ A `Maxima <http://maxima.sourceforge.net>`_ lexer. Derived from pygments.lexers.MuPADLexer. .. versionadded:: 2.11 """ name = 'Maxima' aliases = ['maxima', 'macsyma'] filenames = ['*.mac', '*.max'] keywords = ('if', 'then', 'else', 'elseif', 'do', 'while', 'repeat', 'until', 'for', 'from', 'to', 'downto', 'step', 'thru') constants = ('%pi', '%e', '%phi', '%gamma', '%i', 'und', 'ind', 'infinity', 'inf', 'minf', 'true', 'false', 'unknown', 'done') operators = (r'.', r':', r'=', r'#', r'+', r'-', r'*', r'/', r'^', r'@', r'>', r'<', r'|', r'!', r"'") operator_words = ('and', 'or', 'not') tokens = { 'root': [ (r'/\*', Comment.Multiline, 'comment'), (r'"(?:[^"\\]|\\.)*"', String), (r'\(|\)|\[|\]|\{|\}', Punctuation), (r'[,;$]', Punctuation), (words (constants), Name.Constant), (words (keywords), Keyword), (words (operators), Operator), (words (operator_words), Operator.Word), (r'''(?x) ((?:[a-zA-Z_#][\w#]*|`[^`]*`) (?:::[a-zA-Z_#][\w#]*|`[^`]*`)*)(\s*)([(])''', bygroups(Name.Function, Text.Whitespace, Punctuation)), (r'''(?x) (?:[a-zA-Z_#%][\w#%]*|`[^`]*`) (?:::[a-zA-Z_#%][\w#%]*|`[^`]*`)*''', Name.Variable), (r'[-+]?(\d*\.\d+([bdefls][-+]?\d+)?|\d+(\.\d*)?[bdefls][-+]?\d+)', Number.Float), (r'[-+]?\d+', Number.Integer), (r'\s+', Text.Whitespace), (r'.', Text) ], 'comment': [ (r'[^*/]+', Comment.Multiline), (r'/\*', Comment.Multiline, '#push'), (r'\*/', Comment.Multiline, '#pop'), (r'[*/]', Comment.Multiline) ] } def analyse_text (text): strength = 0.0 # Input expression terminator. if re.search (r'\$\s*$', text, re.MULTILINE): strength += 0.05 # Function definition operator. if ':=' in text: strength += 0.02 return strength
31.870588
94
0.444075
b93cfb83ea1e7bf35848c852073094a4cb16e8fa
860
py
Python
app/tasks.py
janist7/mangarso.com
74210c604b27084213b519a28ffae6f01e552900
[ "MIT" ]
null
null
null
app/tasks.py
janist7/mangarso.com
74210c604b27084213b519a28ffae6f01e552900
[ "MIT" ]
null
null
null
app/tasks.py
janist7/mangarso.com
74210c604b27084213b519a28ffae6f01e552900
[ "MIT" ]
null
null
null
from flask import render_template from app.extensions import celery, mail from app.database import db from celery.signals import task_postrun from flask_mail import Message # Sends registration e-mail @celery.task def send_registration_email(user, email, token): msg = Message( 'User Registration', sender='no-reply@recipes.com', recipients=[email] ) msg.body = render_template( 'mail/registration.mail', user=user, token=token ) mail.send(msg) @task_postrun.connect def close_session(*args, **kwargs): # Flask SQLAlchemy will automatically create new sessions for you from # a scoped session factory, given that we are maintaining the same app # context, this ensures tasks have a fresh session (e.g. session errors # won't propagate across tasks) db.session.remove()
28.666667
75
0.70814
d6f16c0740c6dd87a72267780993621baa27bc18
9,499
py
Python
tests/test_batch/test_batch_cloudformation.py
cprimera/moto
64e16d970ac5ec5c6887ac0c5478f0bb31f4fd8a
[ "Apache-2.0" ]
null
null
null
tests/test_batch/test_batch_cloudformation.py
cprimera/moto
64e16d970ac5ec5c6887ac0c5478f0bb31f4fd8a
[ "Apache-2.0" ]
null
null
null
tests/test_batch/test_batch_cloudformation.py
cprimera/moto
64e16d970ac5ec5c6887ac0c5478f0bb31f4fd8a
[ "Apache-2.0" ]
null
null
null
import boto3 import sure # noqa # pylint: disable=unused-import from moto import ( mock_batch, mock_iam, mock_ec2, mock_ecs, mock_cloudformation, ) import json from uuid import uuid4 DEFAULT_REGION = "eu-central-1" def _get_clients(): return ( boto3.client("ec2", region_name=DEFAULT_REGION), boto3.client("iam", region_name=DEFAULT_REGION), boto3.client("ecs", region_name=DEFAULT_REGION), boto3.client("logs", region_name=DEFAULT_REGION), boto3.client("batch", region_name=DEFAULT_REGION), ) def _setup(ec2_client, iam_client): """ Do prerequisite setup :return: VPC ID, Subnet ID, Security group ID, IAM Role ARN :rtype: tuple """ resp = ec2_client.create_vpc(CidrBlock="172.30.0.0/24") vpc_id = resp["Vpc"]["VpcId"] resp = ec2_client.create_subnet( AvailabilityZone="eu-central-1a", CidrBlock="172.30.0.0/25", VpcId=vpc_id ) subnet_id = resp["Subnet"]["SubnetId"] resp = ec2_client.create_security_group( Description="test_sg_desc", GroupName=str(uuid4())[0:6], VpcId=vpc_id ) sg_id = resp["GroupId"] role_name = str(uuid4())[0:6] resp = iam_client.create_role( RoleName=role_name, AssumeRolePolicyDocument="some_policy" ) iam_arn = resp["Role"]["Arn"] iam_client.create_instance_profile(InstanceProfileName=role_name) iam_client.add_role_to_instance_profile( InstanceProfileName=role_name, RoleName=role_name ) return vpc_id, subnet_id, sg_id, iam_arn @mock_cloudformation() @mock_ec2 @mock_ecs @mock_iam @mock_batch def test_create_env_cf(): ec2_client, iam_client, _, _, _ = _get_clients() _, subnet_id, sg_id, iam_arn = _setup(ec2_client, iam_client) create_environment_template = { "Resources": { "ComputeEnvironment": { "Type": "AWS::Batch::ComputeEnvironment", "Properties": { "Type": "MANAGED", "ComputeResources": { "Type": "EC2", "MinvCpus": 0, "DesiredvCpus": 0, "MaxvCpus": 64, "InstanceTypes": ["optimal"], "Subnets": [subnet_id], "SecurityGroupIds": [sg_id], "InstanceRole": iam_arn.replace("role", "instance-profile"), }, "ServiceRole": iam_arn, }, } } } cf_json = json.dumps(create_environment_template) cf_conn = boto3.client("cloudformation", DEFAULT_REGION) stack_name = str(uuid4())[0:6] stack_id = cf_conn.create_stack(StackName=stack_name, TemplateBody=cf_json)[ "StackId" ] stack_resources = cf_conn.list_stack_resources(StackName=stack_id) stack_resources["StackResourceSummaries"][0]["ResourceStatus"].should.equal( "CREATE_COMPLETE" ) # Spot checks on the ARN stack_resources["StackResourceSummaries"][0]["PhysicalResourceId"].startswith( "arn:aws:batch:" ) stack_resources["StackResourceSummaries"][0]["PhysicalResourceId"].should.contain( stack_name ) @mock_cloudformation() @mock_ec2 @mock_ecs @mock_iam @mock_batch def test_create_job_queue_cf(): ec2_client, iam_client, _, _, _ = _get_clients() _, subnet_id, sg_id, iam_arn = _setup(ec2_client, iam_client) create_environment_template = { "Resources": { "ComputeEnvironment": { "Type": "AWS::Batch::ComputeEnvironment", "Properties": { "Type": "MANAGED", "ComputeResources": { "Type": "EC2", "MinvCpus": 0, "DesiredvCpus": 0, "MaxvCpus": 64, "InstanceTypes": ["optimal"], "Subnets": [subnet_id], "SecurityGroupIds": [sg_id], "InstanceRole": iam_arn.replace("role", "instance-profile"), }, "ServiceRole": iam_arn, }, }, "JobQueue": { "Type": "AWS::Batch::JobQueue", "Properties": { "Priority": 1, "ComputeEnvironmentOrder": [ { "Order": 1, "ComputeEnvironment": {"Ref": "ComputeEnvironment"}, } ], }, }, } } cf_json = json.dumps(create_environment_template) cf_conn = boto3.client("cloudformation", DEFAULT_REGION) stack_name = str(uuid4())[0:6] stack_id = cf_conn.create_stack(StackName=stack_name, TemplateBody=cf_json)[ "StackId" ] stack_resources = cf_conn.list_stack_resources(StackName=stack_id) len(stack_resources["StackResourceSummaries"]).should.equal(2) job_queue_resource = list( filter( lambda item: item["ResourceType"] == "AWS::Batch::JobQueue", stack_resources["StackResourceSummaries"], ) )[0] job_queue_resource["ResourceStatus"].should.equal("CREATE_COMPLETE") # Spot checks on the ARN job_queue_resource["PhysicalResourceId"].startswith("arn:aws:batch:") job_queue_resource["PhysicalResourceId"].should.contain(stack_name) job_queue_resource["PhysicalResourceId"].should.contain("job-queue/") @mock_cloudformation() @mock_ec2 @mock_ecs @mock_iam @mock_batch def test_create_job_def_cf(): ec2_client, iam_client, _, _, _ = _get_clients() _, subnet_id, sg_id, iam_arn = _setup(ec2_client, iam_client) create_environment_template = { "Resources": { "ComputeEnvironment": { "Type": "AWS::Batch::ComputeEnvironment", "Properties": { "Type": "MANAGED", "ComputeResources": { "Type": "EC2", "MinvCpus": 0, "DesiredvCpus": 0, "MaxvCpus": 64, "InstanceTypes": ["optimal"], "Subnets": [subnet_id], "SecurityGroupIds": [sg_id], "InstanceRole": iam_arn.replace("role", "instance-profile"), }, "ServiceRole": iam_arn, }, }, "JobQueue": { "Type": "AWS::Batch::JobQueue", "Properties": { "Priority": 1, "ComputeEnvironmentOrder": [ { "Order": 1, "ComputeEnvironment": {"Ref": "ComputeEnvironment"}, } ], }, }, "JobDefinition": { "Type": "AWS::Batch::JobDefinition", "Properties": { "Type": "container", "ContainerProperties": { "Image": { "Fn::Join": [ "", [ "137112412989.dkr.ecr.", {"Ref": "AWS::Region"}, ".amazonaws.com/amazonlinux:latest", ], ] }, "Vcpus": 2, "Memory": 2000, "Command": ["echo", "Hello world"], "LinuxParameters": {"Devices": [{"HostPath": "test-path"}]}, }, "RetryStrategy": {"Attempts": 1}, }, }, } } cf_json = json.dumps(create_environment_template) cf_conn = boto3.client("cloudformation", DEFAULT_REGION) stack_name = str(uuid4())[0:6] stack_id = cf_conn.create_stack(StackName=stack_name, TemplateBody=cf_json)[ "StackId" ] stack_resources = cf_conn.list_stack_resources(StackName=stack_id) len(stack_resources["StackResourceSummaries"]).should.equal(3) job_def_resource = list( filter( lambda item: item["ResourceType"] == "AWS::Batch::JobDefinition", stack_resources["StackResourceSummaries"], ) )[0] job_def_resource["ResourceStatus"].should.equal("CREATE_COMPLETE") # Spot checks on the ARN job_def_resource["PhysicalResourceId"].startswith("arn:aws:batch:") job_def_resource["PhysicalResourceId"].should.contain(f"{stack_name}-JobDef") job_def_resource["PhysicalResourceId"].should.contain("job-definition/") # Test the linux parameter device host path # This ensures that batch is parsing the parameter dictionaries # correctly by recursively converting the first character of all # dict keys to lowercase. batch_conn = boto3.client("batch", DEFAULT_REGION) response = batch_conn.describe_job_definitions( jobDefinitions=[job_def_resource["PhysicalResourceId"]] ) job_def_linux_device_host_path = response.get("jobDefinitions")[0][ "containerProperties" ]["linuxParameters"]["devices"][0]["hostPath"] job_def_linux_device_host_path.should.equal("test-path")
34.292419
86
0.536583
cfd7d58d574fc2568d47b387697f63a5b30b595d
3,367
py
Python
tests/integration/test_dictionaries_dependency_xml/test.py
athom/ClickHouse
4f4cc9d7404fd489a7229633b22b5ea1889bd8c0
[ "Apache-2.0" ]
3
2019-06-27T08:59:08.000Z
2021-09-03T02:38:02.000Z
tests/integration/test_dictionaries_dependency_xml/test.py
athom/ClickHouse
4f4cc9d7404fd489a7229633b22b5ea1889bd8c0
[ "Apache-2.0" ]
1
2021-06-28T15:03:05.000Z
2021-06-28T15:03:05.000Z
tests/integration/test_dictionaries_dependency_xml/test.py
athom/ClickHouse
4f4cc9d7404fd489a7229633b22b5ea1889bd8c0
[ "Apache-2.0" ]
1
2022-01-11T05:56:58.000Z
2022-01-11T05:56:58.000Z
import pytest from helpers.cluster import ClickHouseCluster from helpers.test_tools import assert_eq_with_retry DICTIONARY_FILES = ['configs/dictionaries/dep_x.xml', 'configs/dictionaries/dep_y.xml', 'configs/dictionaries/dep_z.xml'] cluster = ClickHouseCluster(__file__) instance = cluster.add_instance('instance', dictionaries=DICTIONARY_FILES) @pytest.fixture(scope="module") def started_cluster(): try: cluster.start() instance.query(''' CREATE DATABASE IF NOT EXISTS dict ENGINE=Dictionary; CREATE DATABASE IF NOT EXISTS test; DROP TABLE IF EXISTS test.elements; CREATE TABLE test.elements (id UInt64, a String, b Int32, c Float64) ENGINE=Log; INSERT INTO test.elements VALUES (0, 'water', 10, 1), (1, 'air', 40, 0.01), (2, 'earth', 100, 1.7); ''') yield cluster finally: cluster.shutdown() def get_status(dictionary_name): return instance.query("SELECT status FROM system.dictionaries WHERE name='" + dictionary_name + "'").rstrip("\n") def test_get_data(started_cluster): query = instance.query # dictionaries_lazy_load == false, so these dictionary are not loaded. assert get_status('dep_x') == 'NOT_LOADED' assert get_status('dep_y') == 'NOT_LOADED' assert get_status('dep_z') == 'NOT_LOADED' # Dictionary 'dep_x' depends on 'dep_z', which depends on 'dep_y'. # So they all should be loaded at once. assert query("SELECT dictGetString('dep_x', 'a', toUInt64(1))") == "air\n" assert get_status('dep_x') == 'LOADED' assert get_status('dep_y') == 'LOADED' assert get_status('dep_z') == 'LOADED' # Other dictionaries should work too. assert query("SELECT dictGetString('dep_y', 'a', toUInt64(1))") == "air\n" assert query("SELECT dictGetString('dep_z', 'a', toUInt64(1))") == "air\n" assert query("SELECT dictGetString('dep_x', 'a', toUInt64(3))") == "XX\n" assert query("SELECT dictGetString('dep_y', 'a', toUInt64(3))") == "YY\n" assert query("SELECT dictGetString('dep_z', 'a', toUInt64(3))") == "ZZ\n" # Update the source table. query("INSERT INTO test.elements VALUES (3, 'fire', 30, 8)") # Wait for dictionaries to be reloaded. assert_eq_with_retry(instance, "SELECT dictHas('dep_y', toUInt64(3))", "1", sleep_time=2, retry_count=10) assert query("SELECT dictGetString('dep_x', 'a', toUInt64(3))") == "XX\n" assert query("SELECT dictGetString('dep_y', 'a', toUInt64(3))") == "fire\n" assert query("SELECT dictGetString('dep_z', 'a', toUInt64(3))") == "ZZ\n" # dep_x and dep_z are updated only when there `intDiv(count(), 5)` is changed. query("INSERT INTO test.elements VALUES (4, 'ether', 404, 0.001)") assert_eq_with_retry(instance, "SELECT dictHas('dep_x', toUInt64(4))", "1", sleep_time=2, retry_count=10) assert query("SELECT dictGetString('dep_x', 'a', toUInt64(3))") == "fire\n" assert query("SELECT dictGetString('dep_y', 'a', toUInt64(3))") == "fire\n" assert query("SELECT dictGetString('dep_z', 'a', toUInt64(3))") == "fire\n" assert query("SELECT dictGetString('dep_x', 'a', toUInt64(4))") == "ether\n" assert query("SELECT dictGetString('dep_y', 'a', toUInt64(4))") == "ether\n" assert query("SELECT dictGetString('dep_z', 'a', toUInt64(4))") == "ether\n"
44.302632
117
0.656371
5f83efff1d75c76926f4585ad91043d7b71293e6
213
py
Python
vehicle-counting-and-classification-opencv-master/soc.py
pb-10/Trafix
5bb5d6de44be9bf65a3e245467c0176ae5e2e3d5
[ "MIT" ]
1
2019-10-07T04:41:58.000Z
2019-10-07T04:41:58.000Z
vehicle-counting-and-classification-opencv-master/soc.py
DaScientist/Trafix
5bb5d6de44be9bf65a3e245467c0176ae5e2e3d5
[ "MIT" ]
null
null
null
vehicle-counting-and-classification-opencv-master/soc.py
DaScientist/Trafix
5bb5d6de44be9bf65a3e245467c0176ae5e2e3d5
[ "MIT" ]
1
2019-10-07T04:42:08.000Z
2019-10-07T04:42:08.000Z
import socket s=socket.socket() print("success") port=8080 s.bind(('',port)) print("socket binded to %s" %(port)) s.listen(1) print("listening") c, addr = s.accept() print("got connection") c.close()
16.384615
37
0.638498
d5754ee0684e7607b3f0e683cf70074d8bd9b64b
2,069
py
Python
src/models/AlexNet.py
AdrienVerdier/ProjetIFT780
c699449d735f5df3314d2cd5143974a745560289
[ "MIT" ]
null
null
null
src/models/AlexNet.py
AdrienVerdier/ProjetIFT780
c699449d735f5df3314d2cd5143974a745560289
[ "MIT" ]
null
null
null
src/models/AlexNet.py
AdrienVerdier/ProjetIFT780
c699449d735f5df3314d2cd5143974a745560289
[ "MIT" ]
null
null
null
""" Projet de session IFT780 Date: Authors: Alexandre Turpin, Quentin Levieux and Adrien Verdier License: Opensource, free to use Other: This File represent the AlexNet Model """ import torch import torch.nn as nn import torch.nn.functional as F from src.models.CNNBlocks import ConvBlock class AlexNet(nn.Module): """ Class used to implement the AlexNet model """ def __init__(self, in_channels, num_classes): """ Args: in_channels: The input channel for this model num_classes: The number of classes """ super(AlexNet, self).__init__() self.conv1 = nn.Sequential( ConvBlock(in_channels, 96, kernel_size=11, stride=4, padding=0), nn.MaxPool2d(kernel_size=3, stride=2) ) self.conv2 = nn.Sequential( ConvBlock(96, 256, kernel_size=5, stride=1, padding=2), nn.MaxPool2d(kernel_size=3, stride=2), ) self.conv3 = ConvBlock(256, 384, kernel_size=3, stride=1, padding=1) self.conv4 = ConvBlock(384, 384, kernel_size=3, stride=1, padding=1) self.conv5 = nn.Sequential( ConvBlock(384, 256, kernel_size=3, stride=1, padding=1), nn.MaxPool2d(kernel_size=3, stride=2), ) self.linear_layers = nn.Sequential( nn.Linear(256 * 6 * 6, 4096), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.Dropout(p=0.5), nn.Linear(4096, num_classes), ) def forward(self, x): """ This method implement the forward propagation of our model Args : x: The input of the model Returns : out: The output of the model """ out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out = self.conv4(out) out = self.conv5(out) out = out.view(out.size(0), -1) out = self.linear_layers(out) out = F.log_softmax(out, dim=1) return out
26.87013
76
0.569357
785601586704ef9cfca4aa8a158dbb0e6725aabd
2,133
py
Python
forte/utils.py
huzecong/forte
beae4e923c9a6873b582588972e6ec9919079271
[ "Apache-2.0" ]
null
null
null
forte/utils.py
huzecong/forte
beae4e923c9a6873b582588972e6ec9919079271
[ "Apache-2.0" ]
null
null
null
forte/utils.py
huzecong/forte
beae4e923c9a6873b582588972e6ec9919079271
[ "Apache-2.0" ]
null
null
null
""" Util functions """ from pydoc import locate __all__ = [ "get_full_module_name", "get_class_name", "get_class", "get_qual_name", ] def get_full_module_name(o, lower=False): """ Returns the full module and class name of an object o. For example, for our :class: OntonotesReader, returns 'nlp.forte.data.readers.ontonotes_reader.OntonotesReader'. """ if not isinstance(o, type): o = o.__class__ module = o.__module__ if module is None or module == str.__class__.__module__: return o.__name__ name = module + '.' + o.__name__ if lower: return name.lower() else: return name def get_class_name(o, lower=False): """ Returns the class name of an object o. """ if not isinstance(o, type): o = o.__class__ if lower: return o.__name__.lower() else: return o.__name__ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def get_qual_name(o, lower=False): """ Returns the qualified name of an object o. """ if not isinstance(o, type): o = o.__class__ if lower: return o.__qualname__.lower() else: return o.__qualname__
25.094118
78
0.614158
24266b2591436a5f6a532571b9070945626d7569
1,844
py
Python
btoandav20/commissions/oandav20comm.py
josipbudzaki/btoandav20
f6b7db07e37ed0d97df8a9c2337ce4b7e5953f56
[ "Apache-2.0" ]
60
2018-03-01T20:55:40.000Z
2020-08-24T13:13:42.000Z
btoandav20/commissions/oandav20comm.py
josipbudzaki/btoandav20
f6b7db07e37ed0d97df8a9c2337ce4b7e5953f56
[ "Apache-2.0" ]
54
2018-03-02T14:14:23.000Z
2020-08-18T12:09:35.000Z
btoandav20/commissions/oandav20comm.py
josipbudzaki/btoandav20
f6b7db07e37ed0d97df8a9c2337ce4b7e5953f56
[ "Apache-2.0" ]
33
2018-07-10T00:56:21.000Z
2020-07-28T12:56:44.000Z
from backtrader.comminfo import CommInfoBase class OandaV20BacktestCommInfo(CommInfoBase): params = dict( spread=0.0, acc_counter_currency=True, pip_location=-4, margin=0.5, leverage=20.0, stocklike=False, commtype=CommInfoBase.COMM_FIXED, ) def __init__(self, data=None): self.data = data if self.p.stocklike: raise Exception('Stocklike is not supported') super(OandaV20BacktestCommInfo, self).__init__() def getsize(self, price, cash): '''Returns the needed size to meet a cash operation at a given price''' size = super(OandaV20BacktestCommInfo, self).getsize(price, cash) size *= self.p.margin if not self.p.acc_counter_currency: size /= price return int(size) def _getcommission(self, size, price, pseudoexec): ''' This scheme will apply half the commission when buying and half when selling. If account currency is same as the base currency, change pip value calc. https://community.backtrader.com/topic/525/forex-commission-scheme ''' if (self.data is not None and hasattr(self.data.l, 'bid_close') and hasattr(self.data.l, 'ask_close') and hasattr(self.data.l, 'mid_close')): if size > 0: spread = self.data.l.mid_close[0] - self.data.l.bid_close[0] else: spread = self.data.l.ask_close[0] - self.data.l.mid_close[0] else: spread = self.p.spread multiplier = float(10 ** self.p.pip_location) if self.p.acc_counter_currency: comm = abs(spread * (size * multiplier)) else: comm = abs(spread * ((size / price) * multiplier)) return comm / 2
35.461538
85
0.596529
ce5d3418e34186ca5ac4a843e3744a42ed1ecdd6
3,712
py
Python
contrib/macdeploy/custom_dsstore.py
VsyncCrypto/stakecube
bff96b4622b8fcfe1e767c252ceaf54c10d4eda5
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
VsyncCrypto/stakecube
bff96b4622b8fcfe1e767c252ceaf54c10d4eda5
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
VsyncCrypto/stakecube
bff96b4622b8fcfe1e767c252ceaf54c10d4eda5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2013-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': '{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00bitcoinuser:\x00Documents:\x00bitcoin:\x00bitcoin:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/bitcoinuser/Documents/bitcoin/bitcoin/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['STAKECUBE-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
61.866667
1,817
0.724407
373841d05368144873ea5e4e3477de4a98d10202
1,332
py
Python
app/core/tests/test_admin.py
shreeshailaya/rest-api-recipeapp
59e010c25fc7322d14f8028ed71ebdc3f5fc2329
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
shreeshailaya/rest-api-recipeapp
59e010c25fc7322d14f8028ed71ebdc3f5fc2329
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
shreeshailaya/rest-api-recipeapp
59e010c25fc7322d14f8028ed71ebdc3f5fc2329
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSireTests(TestCase): def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email="admin@mech2it.com", password='password123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email="test@mech2it.com", password="password123", name="Test Uder Full Name" ) def test_user_listed(self): '''Test of /admin page''' url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_page_change(self): ''' check that the user edit page works ''' url = reverse('admin:core_user_change', args=[self.user.id]) ''' /admin/core/user/id ''' res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user(self): '''Test that create suseer page works ''' url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
31.714286
68
0.629129
0b59daacbf4051881d3272dcd6e1bd7d7ba32503
3,403
py
Python
Demo/tkinter/guido/ShellWindow.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
Demo/tkinter/guido/ShellWindow.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
Demo/tkinter/guido/ShellWindow.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
import os import sys import string from Tkinter import * from ScrolledText import ScrolledText from Dialog import Dialog import signal BUFSIZE = 512 class ShellWindow(ScrolledText): def __init__(self, master=None, shell=None, **cnf): if not shell: try: shell = os.environ['SHELL'] except KeyError: shell = '/bin/sh' shell = shell + ' -i' args = string.split(shell) shell = args[0] apply(ScrolledText.__init__, (self, master), cnf) self.pos = '1.0' self.bind('<Return>', self.inputhandler) self.bind('<Control-c>', self.sigint) self.bind('<Control-t>', self.sigterm) self.bind('<Control-k>', self.sigkill) self.bind('<Control-d>', self.sendeof) self.pid, self.fromchild, self.tochild = spawn(shell, args) self.tk.createfilehandler(self.fromchild, READABLE, self.outputhandler) def outputhandler(self, file, mask): data = os.read(file, BUFSIZE) if not data: self.tk.deletefilehandler(file) pid, sts = os.waitpid(self.pid, 0) print 'pid', pid, 'status', sts self.pid = None detail = sts>>8 cause = sts & 0xff if cause == 0: msg = "exit status %d" % detail else: msg = "killed by signal %d" % (cause & 0x7f) if cause & 0x80: msg = msg + " -- core dumped" Dialog(self.master, text=msg, title="Exit status", bitmap='warning', default=0, strings=('OK',)) return self.insert(END, data) self.pos = self.index("end - 1 char") self.yview_pickplace(END) def inputhandler(self, *args): if not self.pid: self.no_process() return "break" self.insert(END, "\n") line = self.get(self.pos, "end - 1 char") self.pos = self.index(END) os.write(self.tochild, line) return "break" def sendeof(self, *args): if not self.pid: self.no_process() return "break" os.close(self.tochild) return "break" def sendsig(self, sig): if not self.pid: self.no_process() return "break" os.kill(self.pid, sig) return "break" def sigint(self, *args): return self.sendsig(signal.SIGINT) def sigquit(self, *args): return self.sendsig(signal.SIGQUIT) def sigterm(self, *args): return self.sendsig(signal.SIGTERM) def sigkill(self, *args): return self.sendsig(signal.SIGKILL) def no_process(self): Dialog(self.master, text="No active process", title="No process", bitmap='error', default=0, strings=('OK',)) MAXFD = 100 # Max number of file descriptors (os.getdtablesize()???) def spawn(prog, args): p2cread, p2cwrite = os.pipe() c2pread, c2pwrite = os.pipe() pid = os.fork() if pid == 0: # Child os.close(0) os.close(1) os.close(2) if os.dup(p2cread) <> 0: sys.stderr.write('popen2: bad read dup\n') if os.dup(c2pwrite) <> 1: sys.stderr.write('popen2: bad write dup\n') if os.dup(c2pwrite) <> 2: sys.stderr.write('popen2: bad write dup\n') for i in range(3, MAXFD): try: os.close(i) except: pass try: os.execvp(prog, args) finally: sys.stderr.write('execvp failed\n') os._exit(1) os.close(p2cread) os.close(c2pwrite) return pid, c2pread, p2cwrite def test(): shell = string.join(sys.argv[1:]) root = Tk() root.minsize(1, 1) if shell: w = ShellWindow(root, shell=shell) else: w = ShellWindow(root) w.pack(expand=1, fill=BOTH) w.focus_set() w.tk.mainloop() if __name__ == '__main__': test()
22.686667
68
0.637967
33089e03375406a6c23f7aa1f559431c0065f4d1
4,727
py
Python
vcspull/log.py
Segaja/vcspull
6d4fe5e02870696e47923830548ad1c9f8edb4ab
[ "MIT" ]
null
null
null
vcspull/log.py
Segaja/vcspull
6d4fe5e02870696e47923830548ad1c9f8edb4ab
[ "MIT" ]
1
2022-03-22T02:08:49.000Z
2022-03-22T02:08:49.000Z
vcspull/log.py
Segaja/vcspull
6d4fe5e02870696e47923830548ad1c9f8edb4ab
[ "MIT" ]
null
null
null
"""Log utilities for formatting CLI output. vcspull.log ~~~~~~~~~~~ This module containers special formatters for processing the additional context information from :class:`libvcs.base.RepoLoggingAdapter`. Colorized formatters for generic logging inside the application is also provided. """ import logging import time from colorama import Fore, Style LEVEL_COLORS = { "DEBUG": Fore.BLUE, # Blue "INFO": Fore.GREEN, # Green "WARNING": Fore.YELLOW, "ERROR": Fore.RED, "CRITICAL": Fore.RED, } def setup_logger(log=None, level="INFO"): """Setup logging for CLI use. Parameters ---------- log : :py:class:`Logger` instance of logger """ if not log: log = logging.getLogger() if not log.handlers: channel = logging.StreamHandler() channel.setFormatter(DebugLogFormatter()) log.setLevel(level) log.addHandler(channel) # setup styling for repo loggers repo_logger = logging.getLogger("libvcs") channel = logging.StreamHandler() channel.setFormatter(RepoLogFormatter()) channel.addFilter(RepoFilter()) repo_logger.setLevel(level) repo_logger.addHandler(channel) def default_log_template(self, record): """Return the prefix for the log message. Template for Formatter. Parameters ---------- record : :py:class:`logging.LogRecord` This is passed in from inside the :py:meth:`logging.Formatter.format` record. """ reset = [Style.RESET_ALL] levelname = [ LEVEL_COLORS.get(record.levelname), Style.BRIGHT, "(%(levelname)s)", Style.RESET_ALL, " ", ] asctime = [ "[", Fore.BLACK, Style.DIM, Style.BRIGHT, "%(asctime)s", Fore.RESET, Style.RESET_ALL, "]", ] name = [ " ", Fore.WHITE, Style.DIM, Style.BRIGHT, "%(name)s", Fore.RESET, Style.RESET_ALL, " ", ] tpl = "".join(reset + levelname + asctime + name + reset) return tpl class LogFormatter(logging.Formatter): template = default_log_template def __init__(self, color=True, *args, **kwargs): logging.Formatter.__init__(self, *args, **kwargs) def format(self, record): try: record.message = record.getMessage() except Exception as e: record.message = f"Bad message ({e!r}): {record.__dict__!r}" date_format = "%H:%m:%S" record.asctime = time.strftime(date_format, self.converter(record.created)) prefix = self.template(record) % record.__dict__ formatted = prefix + " " + record.message return formatted.replace("\n", "\n ") def debug_log_template(self, record): """Return the prefix for the log message. Template for Formatter. Parameters ---------- record : :class:`logging.LogRecord` This is passed in from inside the :py:meth:`logging.Formatter.format` record. """ reset = [Style.RESET_ALL] levelname = [ LEVEL_COLORS.get(record.levelname), Style.BRIGHT, "(%(levelname)1.1s)", Style.RESET_ALL, " ", ] asctime = [ "[", Fore.BLACK, Style.DIM, Style.BRIGHT, "%(asctime)s", Fore.RESET, Style.RESET_ALL, "]", ] name = [ " ", Fore.WHITE, Style.DIM, Style.BRIGHT, "%(name)s", Fore.RESET, Style.RESET_ALL, " ", ] module_funcName = [Fore.GREEN, Style.BRIGHT, "%(module)s.%(funcName)s()"] lineno = [ Fore.BLACK, Style.DIM, Style.BRIGHT, ":", Style.RESET_ALL, Fore.CYAN, "%(lineno)d", ] tpl = "".join(reset + levelname + asctime + name + module_funcName + lineno + reset) return tpl class DebugLogFormatter(LogFormatter): """Provides greater technical details than standard log Formatter.""" template = debug_log_template class RepoLogFormatter(LogFormatter): def template(self, record): record.message = "".join( [Fore.MAGENTA, Style.BRIGHT, record.message, Fore.RESET, Style.RESET_ALL] ) return "{}|{}| {}({}) {}".format( Fore.GREEN + Style.DIM, record.repo_name, Fore.YELLOW, record.repo_vcs, Fore.RESET, ) class RepoFilter(logging.Filter): """Only include repo logs for this type of record.""" def filter(self, record): """Only return a record if a repo_vcs object.""" return True if "repo_vcs" in record.__dict__ else False
23.873737
88
0.578168
c320d1bb36a3b6d152d967b00ed3ba4011d2627d
3,987
py
Python
gameplay/behaviours/cameraBehaviour.py
WilliamDASILVA/TheMysteryOfSchweitzer
f81edc2e202bd5009fc96ccfbbfcc40bc135a17a
[ "MIT" ]
null
null
null
gameplay/behaviours/cameraBehaviour.py
WilliamDASILVA/TheMysteryOfSchweitzer
f81edc2e202bd5009fc96ccfbbfcc40bc135a17a
[ "MIT" ]
null
null
null
gameplay/behaviours/cameraBehaviour.py
WilliamDASILVA/TheMysteryOfSchweitzer
f81edc2e202bd5009fc96ccfbbfcc40bc135a17a
[ "MIT" ]
null
null
null
from engine import Global; from random import randint; from engine import Update; # --------------------------------------------------- *\ # Camera behaviour # --------------------------------------------------- */ cameraToUse = None; shakeIntensity = 0; isCameraShaking = False; isCameraFixed = False; fixeTarget = None; usedScene = None; # --------------------------------------------------- *\ # [function] setCameraFixedTo(targetScene) # # * Fix the camera mouvement on the scene * # Return : nil # --------------------------------------------------- */ def setCameraFixedTo(targetScene): global isCameraFixed; global fixeTarget; isCameraFixed = True; fixeTarget = targetScene; # --------------------------------------------------- *\ # [function] setScene(scene) # # * Specify a scene for the camera behaviour * # Return : nil # --------------------------------------------------- */ def setScene(scene): global usedScene; usedScene = scene; # --------------------------------------------------- *\ # [function] setCamera(camera) # # * Set the camera to use in the behaviour * # Return : nil # --------------------------------------------------- */ def setCamera(camera): global cameraToUse; cameraToUse = camera; # --------------------------------------------------- *\ # [function] getCamera() # # * Return the camera element * # Return : camera # --------------------------------------------------- */ def getCamera(): return cameraToUse; savedPositionBeforeShaking = [0,0]; # --------------------------------------------------- *\ # [function] shakeCamera(intensity, time) # # * Shake the camera for a certain amount of time * # Return : nil # --------------------------------------------------- */ def shakeCamera(intensity, time): global isCameraShaking; global shakeIntensity; global savedPositionBeforeShaking; if not isCameraShaking: isCameraShaking = True; shakeIntensity = intensity; camPosition = cameraToUse.getPosition(); savedPositionBeforeShaking = [camPosition[0], camPosition[1]]; Global.setInterval(camRandomPosition, 100/intensity); Global.setTimeout(stopShaking, time); # --------------------------------------------------- *\ # [function] camRandomPosition() # # * Set the camera to a random position according to the intensity * # Return : nil # --------------------------------------------------- */ def camRandomPosition(): if isCameraShaking: randPosition = [randint(-5*shakeIntensity, 5*shakeIntensity), randint(-5*shakeIntensity, 5*shakeIntensity)]; cameraToUse.setPosition(savedPositionBeforeShaking[0] + randPosition[0], savedPositionBeforeShaking[1] +randPosition[1]); # --------------------------------------------------- *\ # [function] stopShaking() # # * Stop the shaking * # Return : nil # --------------------------------------------------- */ def stopShaking(): global isCameraShaking; isCameraShaking = False; cameraToUse.setPosition(savedPositionBeforeShaking[0], savedPositionBeforeShaking[1]); # --------------------------------------------------- *\ # [function] onUpdate() # # * Camera behaviour on each frame * # Return : nil # --------------------------------------------------- */ appendToElement = True; def cameraUpdate(): global appendToElement; position = cameraToUse.getPosition(); sX = Global.screenSize[0]; sY = Global.screenSize[1]; scale = Global.scale; if isCameraFixed and isCameraShaking == False: if fixeTarget != None: targetPosition = fixeTarget.getPosition(); if appendToElement: targetSize = fixeTarget.getSize(); cameraToUse.setPosition((targetPosition[0] + (targetSize[0] / 2)) *scale, (targetPosition[1] + (targetSize[1] / 4)) *scale); # check for scene boudaries if usedScene: sceneSize = usedScene.getSize(); if(targetPosition[0]*scale <= sX/2) or (targetPosition[0] *scale >= sceneSize[0] * scale - (sX/2)): appendToElement = False; else: appendToElement = True; Update.on(cameraUpdate);
30.435115
128
0.543266
ecb484ab629a6a8bf2280d7aac82aac0bffdd2f8
15,222
py
Python
lib/python/treadmill/syscall/inotify.py
bretttegart/treadmill
812109e31c503a6eddaee2d3f2e1faf2833b6aaf
[ "Apache-2.0" ]
2
2017-10-31T18:48:20.000Z
2018-03-04T20:35:20.000Z
lib/python/treadmill/syscall/inotify.py
bretttegart/treadmill
812109e31c503a6eddaee2d3f2e1faf2833b6aaf
[ "Apache-2.0" ]
null
null
null
lib/python/treadmill/syscall/inotify.py
bretttegart/treadmill
812109e31c503a6eddaee2d3f2e1faf2833b6aaf
[ "Apache-2.0" ]
null
null
null
"""Linux inotify(7) API wrapper module. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections import logging import operator import os import struct import ctypes from ctypes import ( c_int, c_char_p, c_uint32, ) from ctypes.util import find_library import enum import six _LOGGER = logging.getLogger(__name__) ############################################################################### # Map the C interface _LIBC_PATH = find_library('c') _LIBC = ctypes.CDLL(_LIBC_PATH, use_errno=True) if any([getattr(_LIBC, func_name, None) is None for func_name in ['inotify_init1', 'inotify_add_watch', 'inotify_rm_watch']]): raise ImportError('Unsupported libc version found: %s' % _LIBC_PATH) ############################################################################### # int inotify_init(void); _INOTIFY_INIT1_DECL = ctypes.CFUNCTYPE(c_int, c_int, use_errno=True) _INOTIFY_INIT1 = _INOTIFY_INIT1_DECL(('inotify_init1', _LIBC)) def inotify_init(flags=0): """Initializes a new inotify instance and returns a file descriptor associated with a new inotify event queue. :param ``INInitFlags`` flags: Optional flag to control the inotify_init behavior. """ fileno = _INOTIFY_INIT1(flags) if fileno < 0: errno = ctypes.get_errno() raise OSError(errno, os.strerror(errno), 'inotify_init1(%r)' % flags) return fileno ############################################################################### # Constants copied from sys/inotify.h # # See man inotify(7) for more details. # class INInitFlags(enum.IntEnum): """Flags supported by inotify_init(2). """ NONBLOCK = 0o4000 CLOEXEC = 0o2000000 #: Set the O_NONBLOCK file status flag on the new open file description. Using #: this flag saves extra calls to fcntl(2) to achieve the same result. #: (since Linux 2.6.27) IN_NONBLOCK = INInitFlags.NONBLOCK #: Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the #: description of the O_CLOEXEC flag in open(2) for reasons why this may be #: useful. #: (since Linux 2.6.27) IN_CLOEXEC = INInitFlags.CLOEXEC ############################################################################### # int inotify_add_watch(int fileno, const char *pathname, uint32_t mask); _INOTIFY_ADD_WATCH_DECL = ctypes.CFUNCTYPE(c_int, c_int, c_char_p, c_uint32, use_errno=True) _INOTIFY_ADD_WATCH = _INOTIFY_ADD_WATCH_DECL(('inotify_add_watch', _LIBC)) def inotify_add_watch(fileno, path, mask): """Add a watch to an initialized inotify instance. :params ``int`` fileno: Inotify socket. :params ``str`` path: Path to add the watch on. :params ``int`` mask: Mask of :class:`INAddWatchFlags` values controlling the watch creation. :returns: ``int`` - Corresponding watch ID. """ encoded_path = path.encode() watch_id = _INOTIFY_ADD_WATCH(fileno, encoded_path, mask) if watch_id < 0: errno = ctypes.get_errno() raise OSError(errno, os.strerror(errno), 'inotify_add_watch(%r, %r, %r)' % (fileno, path, mask)) return watch_id ############################################################################### # Constants copied from sys/inotify.h # # See man inotify(7) for more details. # class INAddWatchFlags(enum.IntEnum): """Special flags for inotify_add_watch. """ #: Do not follow a symbolic link. DONT_FOLLOW = 0x02000000 #: Add to the mask of an existing watch. MASK_ADD = 0x20000000 #: Only send event once. ONESHOT = 0x80000000 #: Only watch the path if it's a directory. ONLYDIR = 0x01000000 #: Don't dereference pathname if it is a symbolic link. #: (since Linux 2.6.15) IN_DONT_FOLLOW = INAddWatchFlags.DONT_FOLLOW #: Add (OR) events to watch mask for this pathname if it already exists #: (instead of replacing mask). IN_MASK_ADD = INAddWatchFlags.MASK_ADD #: Monitor pathname for one event, then remove from watch list. IN_ONESHOT = INAddWatchFlags.ONESHOT #: Only watch pathname if it's a directory. #: (since Linux 2.6.15) IN_ONLYDIR = INAddWatchFlags.ONLYDIR ############################################################################### # int inotify_rm_watch(int fileno, uint32_t wd); _INOTIFY_RM_WATCH_DECL = ctypes.CFUNCTYPE(c_int, c_int, c_uint32, use_errno=True) _INOTIFY_RM_WATCH = _INOTIFY_RM_WATCH_DECL(('inotify_rm_watch', _LIBC)) def inotify_rm_watch(fileno, watch_id): """Remove an existing watch from an inotify instance. :params ``int`` fileno: Inotify socket. :params ``int`` watch_id: Watch ID to remove. """ res = _INOTIFY_RM_WATCH(fileno, watch_id) if res < 0: errno = ctypes.get_errno() raise OSError(errno, os.strerror(errno), 'inotify_rm_watch(%r, %r)' % (fileno, watch_id)) INOTIFY_EVENT_HDRSIZE = struct.calcsize('iIII') ############################################################################### def _parse_buffer(event_buffer): """Parses an inotify event buffer of ``inotify_event`` structs read from the inotify socket. The inotify_event structure looks like this:: struct inotify_event { __s32 wd; /* watch descriptor */ __u32 mask; /* watch mask */ __u32 cookie; /* cookie to synchronize two events */ __u32 len; /* length (including nulls) of name */ char name[0]; /* stub for possible name */ }; The ``cookie`` member of this struct is used to pair two related events, for example, it pairs an IN_MOVED_FROM event with an IN_MOVED_TO event. """ while len(event_buffer) >= INOTIFY_EVENT_HDRSIZE: wd, mask, cookie, length = struct.unpack_from('iIII', event_buffer, 0) name = event_buffer[ INOTIFY_EVENT_HDRSIZE: INOTIFY_EVENT_HDRSIZE + length ] name = name.rstrip(b'\x00') event_buffer = event_buffer[INOTIFY_EVENT_HDRSIZE + length:] yield wd, mask, cookie, name assert not event_buffer, 'Unparsed bytes left in buffer: %r' % event_buffer ############################################################################### # Constants copied from sys/inotify.h # # See man inotify(7) for more details. # # Constants related to inotify. See man inotify(7) and sys/inotify.h class INEvent(enum.IntEnum): """Inotify events. """ # Events triggered by user-space ACCESS = 0x00000001 ATTRIB = 0x00000004 CLOSE_WRITE = 0x00000008 CLOSE_NOWRITE = 0x00000010 CREATE = 0x00000100 DELETE = 0x00000200 DELETE_SELF = 0x00000400 MODIFY = 0x00000002 MOVE_SELF = 0x00000800 MOVED_FROM = 0x00000040 MOVED_TO = 0x00000080 OPEN = 0x00000020 # Events sent by the kernel IGNORED = 0x00008000 ISDIR = 0x40000000 Q_OVERFLOW = 0x00004000 UNMOUNT = 0x00002000 #: File was accessed (read). IN_ACCESS = INEvent.ACCESS #: Metadata changed, e.g. permissions, timestamps, extended attributes, link #: count (since Linux 2.6.25), UID, GID, etc. IN_ATTRIB = INEvent.ATTRIB #: File opened for writing was closed. IN_CLOSE_WRITE = INEvent.CLOSE_WRITE #: File not opened for writing was closed. IN_CLOSE_NOWRITE = INEvent.CLOSE_NOWRITE #: File/directory created in watched directory. IN_CREATE = INEvent.CREATE #: File/directory deleted from watched directory. IN_DELETE = INEvent.DELETE #: Watched file/directory was itself deleted. IN_DELETE_SELF = INEvent.DELETE_SELF #: File was modified. IN_MODIFY = INEvent.MODIFY #: Watched file/directory was itself moved. IN_MOVE_SELF = INEvent.MOVE_SELF #: File moved out of watched directory. IN_MOVED_FROM = INEvent.MOVED_FROM #: File moved into watched directory. IN_MOVED_TO = INEvent.MOVED_TO #: File was opened. IN_OPEN = INEvent.OPEN #: Watch was removed explicitly (inotify_rm_watch(2)) or automatically (file #: was deleted, or file system was unmounted). IN_IGNORED = INEvent.IGNORED #: Subject of this event is a directory. IN_ISDIR = INEvent.ISDIR #: Event queue overflowed (wd is -1 for this event). IN_Q_OVERFLOW = INEvent.Q_OVERFLOW #: File system containing watched object was unmounted. IN_UNMOUNT = INEvent.UNMOUNT # Helper values for user-space events IN_CLOSE = IN_CLOSE_WRITE | IN_CLOSE_NOWRITE IN_MOVE = IN_MOVED_FROM | IN_MOVED_TO # All user-space events. IN_ALL_EVENTS = six.moves.reduce(operator.or_, [ IN_ACCESS, IN_ATTRIB, IN_CLOSE_NOWRITE, IN_CLOSE_WRITE, IN_CREATE, IN_DELETE, IN_DELETE_SELF, IN_MODIFY, IN_MOVED_FROM, IN_MOVED_TO, IN_MOVE_SELF, IN_OPEN, ]) def _fmt_mask(mask): """Parse an Inotify event mask into indivitual event flags.""" masks = [] # Non-iterable value INEvent is used in an iterating context for event in INEvent: if mask & event: masks.append(event.name) mask ^= event if mask: masks.append(hex(mask)) return masks ############################################################################### # High level Python API class InotifyEvent(collections.namedtuple('InotifyEvent', 'wd mask cookie src_path')): """ Inotify event struct wrapper. :param wd: Watch descriptor :param mask: Event mask :param cookie: Event cookie :param src_path: Event source path """ __slots__ = () @property def is_modify(self): """Test mask shorthand.""" return bool(self.mask & IN_MODIFY) @property def is_close_write(self): """Test mask shorthand.""" return bool(self.mask & IN_CLOSE_WRITE) @property def is_close_nowrite(self): """Test mask shorthand.""" return bool(self.mask & IN_CLOSE_NOWRITE) @property def is_access(self): """Test mask shorthand.""" return bool(self.mask & IN_ACCESS) @property def is_delete(self): """Test mask shorthand.""" return bool(self.mask & IN_DELETE) @property def is_delete_self(self): """Test mask shorthand.""" return bool(self.mask & IN_DELETE_SELF) @property def is_create(self): """Test mask shorthand.""" return bool(self.mask & IN_CREATE) @property def is_moved_from(self): """Test mask shorthand.""" return bool(self.mask & IN_MOVED_FROM) @property def is_moved_to(self): """Test mask shorthand.""" return bool(self.mask & IN_MOVED_TO) @property def is_move(self): """Test mask shorthand.""" return bool(self.mask & IN_MOVE) @property def is_move_self(self): """Test mask shorthand.""" return bool(self.mask & IN_MOVE_SELF) @property def is_attrib(self): """Test mask shorthand.""" return bool(self.mask & IN_ATTRIB) @property def is_ignored(self): """Test mask shorthand.""" return bool(self.mask & IN_IGNORED) @property def is_directory(self): """Test mask shorthand.""" return bool(self.mask & IN_ISDIR) def __repr__(self): masks = _fmt_mask(self.mask) return ('<InotifyEvent: src_path=%s, wd=%d, mask=%s, cookie=%d>') % ( self.src_path, self.wd, '|'.join(masks), self.cookie, ) DEFAULT_NUM_EVENTS = 2048 DEFAULT_EVENT_BUFFER_SIZE = DEFAULT_NUM_EVENTS * INOTIFY_EVENT_HDRSIZE class Inotify(object): """Inotify system interface.""" def __init__(self, flags): """Initialize a new Inotify object. """ # The file descriptor associated with the inotify instance. inotify_fd = inotify_init(flags) self._inotify_fd = inotify_fd self._paths = {} def fileno(self): """The file descriptor associated with the inotify instance.""" return self._inotify_fd def close(self): """Close the inotify filedescriptor. NOTE: After call this, this object will be unusable. """ os.close(self._inotify_fd) def add_watch(self, path, event_mask=IN_ALL_EVENTS): """ Adds a watch for the given path to monitor events specified by the mask. :param path: Path to monitor :type path: ``str`` :param event_mask: *optional* Bit mask of the request events. :type event_mask: ``int`` :returns: Unique watch descriptor identifier :rtype: ``int`` """ path = os.path.normpath(path) watch_id = inotify_add_watch( self._inotify_fd, path, event_mask | IN_MASK_ADD ) self._paths[watch_id] = path return watch_id def remove_watch(self, watch_id): """ Removes a watch. :param watch_id: Watch descriptor returned by :meth:`~Inotify.add_watch` :type watch_id: ``int`` :returns: ``None`` """ inotify_rm_watch(self._inotify_fd, watch_id) def read_events(self, event_buffer_size=DEFAULT_EVENT_BUFFER_SIZE): """ Reads events from inotify and yields them. :param event_buffer_size: *optional* Buffer size while reading the inotify socket :type event_buffer_size: ``int`` :returns: List of :class:`InotifyEvent` instances :rtype: ``list`` """ if not self._paths: return [] event_buffer = os.read(self._inotify_fd, event_buffer_size) event_list = [] for wd, mask, cookie, name in _parse_buffer(event_buffer): name = name.decode() wd_path = self._paths[wd] src_path = os.path.normpath(os.path.join(wd_path, name)) inotify_event = InotifyEvent(wd, mask, cookie, src_path) _LOGGER.debug('Received event %r', inotify_event) if inotify_event.mask & IN_IGNORED: # Clean up deleted watches del self._paths[wd] event_list.append(inotify_event) return event_list ############################################################################### __all__ = [ 'IN_NONBLOCK', 'IN_NONBLOCK', 'IN_DONT_FOLLOW', 'IN_MASK_ADD', 'IN_ONESHOT', 'IN_ONLYDIR', 'IN_ACCESS', 'IN_ATTRIB', 'IN_CLOSE_WRITE', 'IN_CLOSE_NOWRITE', 'IN_CREATE', 'IN_DELETE', 'IN_DELETE_SELF', 'IN_MODIFY', 'IN_MOVE_SELF', 'IN_MOVED_FROM', 'IN_MOVED_TO', 'IN_OPEN', 'IN_IGNORED', 'IN_ISDIR', 'IN_Q_OVERFLOW', 'IN_UNMOUNT', 'IN_CLOSE', 'IN_MOVE', 'IN_ALL_EVENTS', 'inotify_init', 'inotify_add_watch', 'inotify_rm_watch', 'Inotify', 'InotifyEvent', ]
28.188889
79
0.606228
787f1215bcb5d82f82b0c3eb2245c4b706cdb670
8,697
py
Python
dev/Gems/CloudGemFramework/v1/AWS/resource-manager-code/swagger_json_navigator.py
stickyparticles/lumberyard
dc523dd780f3cd1874251181b7cf6848b8db9959
[ "AML" ]
2
2019-11-29T09:04:54.000Z
2021-03-18T02:34:44.000Z
dev/Gems/CloudGemFramework/v1/AWS/resource-manager-code/swagger_json_navigator.py
JulianoCristian/Lumberyard-3
dc523dd780f3cd1874251181b7cf6848b8db9959
[ "AML" ]
null
null
null
dev/Gems/CloudGemFramework/v1/AWS/resource-manager-code/swagger_json_navigator.py
JulianoCristian/Lumberyard-3
dc523dd780f3cd1874251181b7cf6848b8db9959
[ "AML" ]
3
2019-05-13T09:41:33.000Z
2021-04-09T12:12:38.000Z
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # REQUIRED = {} # special value used when no default is acceptable class SwaggerNavigator(object): def __init__(self, value, parent = None, selector=None): self.value = value self.parent = parent self.selector = selector def __repr__(self): if not self.parent: return "swagger.json:" return self.parent.__repr__() + "[{}]".format(self.formatted_selector) @property def root(self): if self.parent: return self.parent.root else: return self @property def formatted_selector(self): if isinstance(self.selector, str): return "\"{}\"".format(self.selector) return self.selector def contains(self, value): if self.is_object or self.is_array: return value in self.value else: raise ValueError('{} is not an object or array.'.format(self)) def get(self, selector, default=REQUIRED): if self.is_object: if selector not in self.value: if default is REQUIRED: raise ValueError('{} has no {} property.'.format(self, selector)) else: found_value = default else: found_value = self.value[selector] return SwaggerNavigator(found_value, parent=self, selector = selector) elif self.is_array: if not isinstance(selector, int): raise ValueError('{} is a list but accessor {} is not an integer.'.format(self, selector)) if selector < 0 or selector >= len(self.value): if default is REQUIRED: raise ValueError('{} has no index {}.'.format(self, selector)) else: found_value = default else: found_value = self.value[selector] return SwaggerNavigator(found_value, parent=self, selector = selector) raise ValueError('{} is not an object or array. Cannot select {}.'.format(self, selector)) def remove(self, selector, required=False): if self.is_object: if selector in self.value: del self.value[selector] elif required: raise ValueError('{} does not contain {} so it cannot be removed.'.format(self, selector)) elif self.is_array: if selector >= 0 and selector < len(self.value): del self.value[selector] elif required: raise ValueError('{} does not contain {} so it cannot be removed.'.format(self, selector)) else: raise ValueError('{} is not an object or array. Cannot remove {}.'.format(self, selector)) def values(self): if self.is_object: return [self.get(key) for key in self.value.keys()] elif self.is_array: return [self.get(i) for i in range(len(self.value))] return None def items(self): if self.is_object: return [(key, self.get(key)) for key in self.value.keys()] elif self.is_array: return [(i, self.get(i)) for i in range(len(self.value))] return None @property def is_none(self): return self.value == None @property def is_empty(self): if self.is_none: return True elif self.is_object or self.is_array: return len(self.value) == 0 else: return False @property def is_object(self): return isinstance(self.value, dict) def get_object(self, selector, default=REQUIRED): navigator = self.get(selector, default=default) if not (navigator.is_object or navigator.is_none): raise ValueError('{} value {} is not an object.'.format(navigator, navigator.value)) return navigator def get_or_add_object(self, selector, default=None): if not self.contains(selector): if self.is_object: self.value[selector] = default if default else {} elif self.is_array: self.value.insert(selector, default if default else {}) else: raise ValueError('{} is not an object or array. Cannot add {} at {}.'.format(self, default, selector)) return self.get_object(selector) def add_object(self, selector, initial_value): if self.contains(selector): raise ValueError('{} already contains an {} value.'.format(self, selector)) if self.is_object: self.value[selector] = initial_value elif self.is_array: self.value.insert(selector, initial_value) else: raise ValueError('{} is not an object or array. Cannot add {} at {}.'.format(self, initial_value, selector)) return self.get_object(selector) def remove_object(self, selector, default=REQUIRED): navigator = self.get_object(selector, default) self.remove(selector, default is REQUIRED) return navigator @property def is_array(self): return isinstance(self.value, list) def get_array(self, selector, default=REQUIRED): navigator = self.get(selector, default=default) if not (navigator.is_array or navigator.is_none): raise ValueError('{} value {} is not an array.'.format(navigator, navigator.value)) return navigator def remove_array(self, selector, default=REQUIRED): navigator = self.get_array(selector, default) self.remove(selector, default is REQUIRED) return navigator @property def is_string(self): return isinstance(self.value, str) or isinstance(self.value, unicode) def get_string(self, selector, default=REQUIRED): navigator = self.get(selector, default=default) if not (navigator.is_string or navigator.is_none): raise ValueError('{} value {} is not a string.'.format(navigator, navigator.value)) return navigator def remove_string(self, selector, default=REQUIRED): navigator = self.get_string(selector, default) self.remove(selector, default is REQUIRED) return navigator @property def is_boolean(self): return isinstance(self.value, bool) def get_boolean(self, selector, default=REQUIRED): navigator = self.get(selector, default=default) if not (navigator.is_boolean or navigator.is_none): raise ValueError('{} value {} is not a boolean.'.format(navigator, navigator.value)) return navigator def remove_boolean(self, selector, default=REQUIRED): navigator = self.get_boolean(selector, default) self.remove(selector, default is REQUIRED) return navigator @property def is_int(self): return isinstance(self.value, int) def get_int(self, selector, default=REQUIRED): navigator = self.get(selector, default=default) if not (navigator.is_int or navigator.is_none): raise ValueError('{} value {} is not a string.'.format(navigator, navigator.value)) return navigator def remove_int(self, selector, default=REQUIRED): navigator = self.get_int(selector, default) self.remove(selector, default is REQUIRED) return navigator def get_root(self): if self.parent == None: return self return self.parent.get_root() @property def is_ref(self): return self.is_object and self.contains('$ref') # Returns a SwaggerNavigator object at the position of the ref this navigator has found def resolve_ref(self, ref = None): if not ref: ref = self.get_string('$ref').value ref_path = ref.split("/") if ref_path[0] == "#": nav = self.get_root() ref_path.pop(0) else: nav = self.parent while ref_path: try: nav = nav.get(ref_path.pop(0)) except ValueError as e: raise ValueError("Error {} while resolving reference {} at {}".format(e, ref, self)) return nav
34.927711
128
0.61366
82c2a1c2c6d7ae30428299a80bdc638401533916
498
py
Python
KeyLogger.py
Kyogin/PythonGERAL
1e1be167c698050230fc07a3ddd2a2879fd26208
[ "MIT" ]
null
null
null
KeyLogger.py
Kyogin/PythonGERAL
1e1be167c698050230fc07a3ddd2a2879fd26208
[ "MIT" ]
null
null
null
KeyLogger.py
Kyogin/PythonGERAL
1e1be167c698050230fc07a3ddd2a2879fd26208
[ "MIT" ]
null
null
null
#Code by: Matheus Franco // Kyogin #Educational Content ONLY #Feel free to change this code from pynput.keyboard import Key, Listener import logging log_dir = "hook.txt" #.txt será criado no diretório no seu .py, caso queira alterar, colocar o caminho aí logging.basicConfig(filename=(log_dir + "key_log.txt"), level=logging.DEBUG, format='%(asctime)s: %(message)s') def on_press(key): logging.info(str(key)) with Listener(on_press=on_press) as listener: listener.join()
31.125
112
0.7249
4add4764e6f89b7b8ec08aa8ce427f8af47af362
134
py
Python
Proyecto/DacodesJobs/Modulos/Candidatos/urls.py
angel318/DacodesJobs
3a8bb0248ab8addf462b175e039ae935a5e34197
[ "bzip2-1.0.6" ]
null
null
null
Proyecto/DacodesJobs/Modulos/Candidatos/urls.py
angel318/DacodesJobs
3a8bb0248ab8addf462b175e039ae935a5e34197
[ "bzip2-1.0.6" ]
null
null
null
Proyecto/DacodesJobs/Modulos/Candidatos/urls.py
angel318/DacodesJobs
3a8bb0248ab8addf462b175e039ae935a5e34197
[ "bzip2-1.0.6" ]
null
null
null
from django.urls import path from .views import * urlpatterns = [ path('<int:pk>', Candidatos.as_view(), name = 'Candidatos'), ]
19.142857
64
0.671642
f30780e17957580236e6460b273c028bb42b93c2
2,642
py
Python
aidistillery/fasttext_embeddings.py
TheMTank/arxiv-summariser
db4f1e42bcc9185e197a00a18e280a4a3011453c
[ "MIT" ]
17
2018-11-26T23:06:20.000Z
2022-01-18T21:43:17.000Z
aidistillery/fasttext_embeddings.py
TheMTank/arxiv-summariser
db4f1e42bcc9185e197a00a18e280a4a3011453c
[ "MIT" ]
3
2018-11-27T12:17:20.000Z
2019-02-05T11:40:44.000Z
aidistillery/fasttext_embeddings.py
TheMTank/arxiv-summariser
db4f1e42bcc9185e197a00a18e280a4a3011453c
[ "MIT" ]
3
2019-03-06T10:14:08.000Z
2020-01-21T17:26:20.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Generate embeddings using word2vec from a text collection Example: `distill fasttext -f data/text -o data/saved_embedding -d 100` """ import argparse from .data_cleaning import list_of_strings_to_list_of_lists, clean_raw_text_from_file, phrasing_sentences from .models import fasttext_wrapper def load_and_process(file_name, min_length): """ Arguments --------- file_name: file that contains text from which we want to generate embeddings min_length: required min length of sentences to be considered Returns ------- List of list of tokens for gensim.word2vec input """ cleaned_text = clean_raw_text_from_file(file_name, min_length=min_length) phrased_lists = list_of_strings_to_list_of_lists(cleaned_text) return phrased_lists def fasttext_add_args(parser): parser.add_argument('-f', '--file_name', default="text_to_embed.txt", help="Text file") parser.add_argument('-d', '--dimension', default="100", help="Dimension of the desired embeddings", type=int) parser.add_argument('-w', '--window', default="5", help="Size of the window", type=int) parser.add_argument('-mc', '--min_count', default="5", help="Min number of occurrence of words", type=int) parser.add_argument('-ml', '--min_length', default="200", help="Min number of chars for a sentence", type=int) parser.add_argument('-it', '--iterations', default="5", help="Number of iteration for learning the embeddings", type=int) parser.add_argument('-ws', '--workers', default="2", help="Number of workers for this task", type=int) parser.add_argument('-data', '--data', default="no_name_data", help="Dataset name") parser.add_argument('-o', '--output_file', default="output_embedding", help="Output embedding file") def fasttext_main(args): print("Creating Embeddings with:", args.dimension, "dimensions", args.window, "window", args.min_count, "min_count") print("Sentences with less than", args.min_length, "chars will be removed") sentences = load_and_process(args.file_name, args.min_length) ft = fasttext_wrapper.FastTextWrapper(sentences, dimension=args.dimension, window=args.window, min_count=args.min_count, workers=args.workers, sg=0, iterations=args.iterations) model = ft.fit() model.save(args.output_file)
37.211268
120
0.645344
b9ccf8c7b76cc287cd9ed06dbcfb491455f4cf1f
755
py
Python
ROIAlgebraOperation/ContourDelTest.py
az7jh2/My-Raystation-Scripts
3454378239320c2944fd96de8cb86be8824b5210
[ "MIT" ]
1
2021-05-29T22:48:49.000Z
2021-05-29T22:48:49.000Z
ROIAlgebraOperation/ContourDelTest.py
az7jh2/My-Raystation-Scripts
3454378239320c2944fd96de8cb86be8824b5210
[ "MIT" ]
null
null
null
ROIAlgebraOperation/ContourDelTest.py
az7jh2/My-Raystation-Scripts
3454378239320c2944fd96de8cb86be8824b5210
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from connect import * patient=get_current('Patient') examination=get_current('Examination') structure_set=patient.PatientModel.StructureSets[examination.Name] roi_geometries=structure_set.RoiGeometries['Bodys'] if hasattr(roi_geometries.PrimaryShape,'Contours'): #ROI的类型为Contours contour=roi_geometries.PrimaryShape.Contours index=range(len(contour)) index.reverse() for i in index: if contour[i][0].z>-80.56 or contour[i][0]<-89.56: contour.RemoveAt(i) #测试结果表明contour和contour[i]的type为List[object],contour[i][j]的type为ExpandoObject #对list使用remove方法,删除的元素位置会被后面的元素填补上 #若要同时遍历和删除,推荐用倒序 #raystation中提供了3种删除元素方法:contour.RemoveAll(),RemoveAt(),RemoveRange(), #该方法中下标从0开始,不支持负数
31.458333
76
0.745695
ec939033c7afc401ed251ca6deed6ca722fa0638
761
py
Python
src/compas_rv2/ui/Rhino/RV2/dev/RV2form_attributes_cmd.py
selinabitting/compas-RV2
0884cc00d09c8f4a75eb2b97614105e4c8bfd818
[ "MIT" ]
34
2020-04-27T13:54:38.000Z
2022-01-17T19:16:27.000Z
src/compas_rv2/ui/Rhino/RV2/dev/RV2form_attributes_cmd.py
selinabitting/compas-RV2
0884cc00d09c8f4a75eb2b97614105e4c8bfd818
[ "MIT" ]
306
2020-04-27T12:00:54.000Z
2022-03-23T22:28:54.000Z
src/compas_rv2/ui/Rhino/RV2/dev/RV2form_attributes_cmd.py
selinabitting/compas-RV2
0884cc00d09c8f4a75eb2b97614105e4c8bfd818
[ "MIT" ]
11
2020-06-30T08:23:40.000Z
2022-02-01T20:47:39.000Z
from __future__ import print_function from __future__ import absolute_import from __future__ import division from compas_rv2.rhino import get_scene from compas_rv2.rhino import AttributesForm from compas_rv2.rhino import rv2_error __commandname__ = "RV2form_attributes" @rv2_error() def RunCommand(is_interactive): scene = get_scene() if not scene: return form = scene.get("form")[0] if not form: print("There is no FormDiagram in the scene.") return AttributesForm.from_sceneNode(form) # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": RunCommand(True)
21.138889
80
0.575558
d8cb0a8763608964a48dff37d11fcda4d170f96d
5,957
py
Python
bestmobabot/arena.py
moonzlo/bestmobabot
8229de71a9d288daf6a7e513907821570e2eb111
[ "MIT" ]
2
2020-04-29T03:59:49.000Z
2021-11-25T17:07:44.000Z
bestmobabot/arena.py
moonzlo/bestmobabot
8229de71a9d288daf6a7e513907821570e2eb111
[ "MIT" ]
null
null
null
bestmobabot/arena.py
moonzlo/bestmobabot
8229de71a9d288daf6a7e513907821570e2eb111
[ "MIT" ]
1
2022-03-13T12:32:21.000Z
2022-03-13T12:32:21.000Z
""" Arena hero selection logic. """ import math from functools import reduce from itertools import combinations, permutations from operator import attrgetter, itemgetter from typing import Callable, Iterable, List, Tuple, Optional, TypeVar import numpy from bestmobabot import types from bestmobabot.logger import logger from bestmobabot.model import model from bestmobabot.responses import ArenaEnemy, GrandArenaEnemy, Hero TEAM_SIZE = 5 # heroes GRAND_TEAMS = 3 GRAND_SIZE = GRAND_TEAMS * TEAM_SIZE # heroes TArenaEnemy = TypeVar('TArenaEnemy', ArenaEnemy, GrandArenaEnemy) T = TypeVar('T') T1 = TypeVar('T1') T2 = TypeVar('T2') # Shared for both arenas. # ---------------------------------------------------------------------------------------------------------------------- def filter_enemies(enemies: Iterable[TArenaEnemy], clan_id: Optional[types.ClanID]) -> List[TArenaEnemy]: return [enemy for enemy in enemies if enemy.user is not None and not enemy.user.is_from_clan(clan_id)] def naive_select_attackers(heroes: Iterable[Hero]) -> List[Hero]: """ Selects the most powerful heroes. """ return sorted(heroes, key=attrgetter('power'), reverse=True)[:TEAM_SIZE] # Enemy selection. # ---------------------------------------------------------------------------------------------------------------------- def select_enemy(enemies: Iterable[ArenaEnemy], heroes: Iterable[Hero]) -> Tuple[TArenaEnemy, List[Hero], float]: """ Select enemy and attackers to maximise win probability. """ # noinspection PyTypeChecker return max([(enemy, *model_select_attackers(heroes, enemy.heroes)) for enemy in enemies], key=itemgetter(2)) def select_grand_enemy(enemies: Iterable[GrandArenaEnemy], heroes: Iterable[Hero]) -> Tuple[GrandArenaEnemy, List[List[Hero]], float]: """ Select enemy and attackers to maximise win probability. """ # noinspection PyTypeChecker return max([(enemy, *model_select_grand_attackers(heroes, enemy.heroes)) for enemy in enemies], key=itemgetter(2)) # Attackers selection. # ---------------------------------------------------------------------------------------------------------------------- def model_select_attackers(heroes: Iterable[Hero], defenders: Iterable[Hero], verbose: bool = True) -> Tuple[List[Hero], float]: """ Select attackers for the given enemy to maximise win probability. """ attackers_list = [list(attackers) for attackers in combinations(heroes, TEAM_SIZE)] x = numpy.array([get_model_features(attackers) for attackers in attackers_list]) - get_model_features(defenders) y: numpy.ndarray = model.predict_proba(x)[:, 1] index: int = y.argmax() if verbose: logger.debug(f'👊 Win probability: {100.0 * y[index]:.1f}%.') return attackers_list[index], y[index] def model_select_grand_attackers(heroes: Iterable[Hero], defenders_teams: Iterable[Iterable[Hero]]) -> Tuple[List[List[Hero]], float]: """ Select 3 teams of attackers for the given enemy to maximise win probability. It's not giving the best solution but it's fast enough. """ defenders_teams = list(defenders_teams) selections: List[Tuple[List[List[Hero]], float]] = [] # Try to form attackers teams in different order and maximise the final probability. for order in permutations(range(3)): used_heroes = set() attackers_teams: List[List[Hero]] = [[], [], []] probabilities: List[float] = [0.0, 0.0, 0.0] for i in order: heroes_left = [hero for hero in heroes if hero.id not in used_heroes] attackers, probabilities[i] = model_select_attackers(heroes_left, defenders_teams[i], verbose=False) attackers_teams[i] = attackers used_heroes.update(attacker.id for attacker in attackers) p1, p2, p3 = probabilities p = p1 * p2 * p3 + p1 * p2 * (1.0 - p3) + p2 * p3 * (1.0 - p1) + p1 * p3 * (1.0 - p2) selections.append((attackers_teams, p)) # Choose best selection. attackers_teams, probability = max(selections, key=itemgetter(1)) logger.debug(f'👊 Win probability: {100.0 * probability:.1f}%.') return attackers_teams, probability # Features construction. # ---------------------------------------------------------------------------------------------------------------------- def get_model_features(heroes: Iterable[Hero]) -> numpy.ndarray: """ Build model features for the specified heroes. """ return reduce(numpy.add, (hero.features for hero in heroes)) # Utilities. # ---------------------------------------------------------------------------------------------------------------------- def secretary_max(items: Iterable[T1], n: int, key: Optional[Callable[[T1], T2]] = None) -> Tuple[T1, T2]: """ Select best item while lazily iterating over the items. https://en.wikipedia.org/wiki/Secretary_problem#Deriving_the_optimal_policy """ key = key or (lambda item: item) # We want to look at each item only once. iterator = iter((item, key(item)) for item in items) r = int(n / math.e) + 1 # Skip first (r - 1) items and remember the maximum. _, max_key = max((next(iterator) for _ in range(r - 1)), key=itemgetter(1), default=(None, None)) # Find the first one that is better or the last one. for item, item_key in iterator: # type: T1, T2 if max_key is None or item_key > max_key: break # noinspection PyUnboundLocalVariable return item, item_key def choose_multiple(items: Iterable[T], n: int, k: int) -> Iterable[Tuple[List[T], ...]]: """ Choose n groups of size k. """ if n == 0: yield () return for head in choose_multiple(items, n - 1, k): used_keys = {item.id for sub_items in head for item in sub_items} for tail in combinations((item for item in items if item.id not in used_keys), k): yield (*head, [*tail])
39.713333
134
0.616082