hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
fbec81afde982744129ed62c3d44a6236c5b5a8e
27,523
py
Python
howdoi/howdoi.py
benjaminhafen/howdoi
875983c9ebdf4a1c9abad7afd63a68a9229e8eed
[ "MIT" ]
null
null
null
howdoi/howdoi.py
benjaminhafen/howdoi
875983c9ebdf4a1c9abad7afd63a68a9229e8eed
[ "MIT" ]
null
null
null
howdoi/howdoi.py
benjaminhafen/howdoi
875983c9ebdf4a1c9abad7afd63a68a9229e8eed
[ "MIT" ]
null
null
null
#!/usr/bin/env python ###################################################### # # howdoi - instant coding answers via the command line # written by Benjamin Gleitzman (gleitz@mit.edu) # inspired by Rich Jones (rich@anomos.info) # ###################################################### import gc gc.disable() import argparse import inspect import json import os import re import sys import textwrap from urllib.request import getproxies from urllib.parse import quote as url_quote, urlparse, parse_qs from multiprocessing import Pool import logging import appdirs import requests from cachelib import FileSystemCache, NullCache from keep import utils as keep_utils from pygments import highlight from pygments.lexers import guess_lexer, get_lexer_by_name from pygments.formatters.terminal import TerminalFormatter from pygments.util import ClassNotFound from pyquery import PyQuery as pq from requests.exceptions import ConnectionError as RequestsConnectionError from requests.exceptions import SSLError from howdoi import __version__ from howdoi.errors import GoogleValidationError, BingValidationError, DDGValidationError logging.basicConfig(format='%(levelname)s: %(message)s') if os.getenv('HOWDOI_DISABLE_SSL'): # Set http instead of https SCHEME = 'http://' VERIFY_SSL_CERTIFICATE = False else: SCHEME = 'https://' VERIFY_SSL_CERTIFICATE = True SUPPORTED_SEARCH_ENGINES = ('google', 'bing', 'duckduckgo') URL = os.getenv('HOWDOI_URL') or 'stackoverflow.com' USER_AGENTS = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:11.0) Gecko/20100101 Firefox/11.0', 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:22.0) Gecko/20100 101 Firefox/22.0', 'Mozilla/5.0 (Windows NT 6.1; rv:11.0) Gecko/20100101 Firefox/11.0', ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5 (KHTML, like Gecko) ' 'Chrome/19.0.1084.46 Safari/536.5'), ('Mozilla/5.0 (Windows; Windows NT 6.1) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.46' 'Safari/536.5'),) SEARCH_URLS = { 'bing': SCHEME + 'www.bing.com/search?q=site:{0}%20{1}&hl=en', 'google': SCHEME + 'www.google.com/search?q=site:{0}%20{1}&hl=en', 'duckduckgo': SCHEME + 'duckduckgo.com/html?q=site:{0}%20{1}&t=hj&ia=web' } BLOCK_INDICATORS = ( 'form id="captcha-form"', 'This page appears when Google automatically detects requests coming from your computer ' 'network which appear to be in violation of the <a href="//www.google.com/policies/terms/">Terms of Service' ) BLOCKED_QUESTION_FRAGMENTS = ( 'webcache.googleusercontent.com', ) STAR_HEADER = '\u2605' ANSWER_HEADER = '{2} Answer from {0} {2}\n{1}' NO_ANSWER_MSG = '< no answer given >' CACHE_EMPTY_VAL = "NULL" CACHE_DIR = appdirs.user_cache_dir('howdoi') CACHE_ENTRY_MAX = 128 HTML_CACHE_PATH = 'page_cache' SUPPORTED_HELP_QUERIES = ['use howdoi', 'howdoi', 'run howdoi', 'setup howdoi', 'do howdoi', 'howdoi howdoi', 'howdoi use howdoi'] # variables for text formatting, prepend to string to begin text formatting. BOLD = '\033[1m' GREEN = '\033[92m' RED = '\033[91m' UNDERLINE = '\033[4m' END_FORMAT = '\033[0m' # append to string to end text formatting. # stash options STASH_SAVE = 'save' STASH_VIEW = 'view' STASH_REMOVE = 'remove' STASH_EMPTY = 'empty' BLOCKED_ENGINES = [] if os.getenv('HOWDOI_DISABLE_CACHE'): # works like an always empty cache cache = NullCache() else: cache = FileSystemCache(CACHE_DIR, CACHE_ENTRY_MAX, default_timeout=0) howdoi_session = requests.session() class BlockError(RuntimeError): pass class IntRange: def __init__(self, imin=None, imax=None): self.imin = imin self.imax = imax def __call__(self, arg): try: value = int(arg) except ValueError as value_error: raise self.exception() from value_error if (self.imin is not None and value < self.imin) or (self.imax is not None and value > self.imax): raise self.exception() return value def exception(self): if self.imin is not None and self.imax is not None: return argparse.ArgumentTypeError(f'Must be an integer in the range [{self.imin}, {self.imax}]') if self.imin is not None: return argparse.ArgumentTypeError(f'Must be an integer >= {self.imin}') if self.imax is not None: return argparse.ArgumentTypeError(f'Must be an integer <= {self.imax}') return argparse.ArgumentTypeError('Must be an integer') def _random_int(width): bres = os.urandom(width) if sys.version < '3': ires = int(bres.encode('hex'), 16) else: ires = int.from_bytes(bres, 'little') return ires def _random_choice(seq): return seq[_random_int(1) % len(seq)] def get_proxies(): proxies = getproxies() filtered_proxies = {} for key, value in proxies.items(): if key.startswith('http'): if not value.startswith('http'): filtered_proxies[key] = 'http://%s' % value else: filtered_proxies[key] = value return filtered_proxies def _format_url_to_filename(url, file_ext='html'): filename = ''.join(ch for ch in url if ch.isalnum()) return filename + '.' + file_ext def _get_result(url): try: resp = howdoi_session.get(url, headers={'User-Agent': _random_choice(USER_AGENTS)}, proxies=get_proxies(), verify=VERIFY_SSL_CERTIFICATE, cookies={'CONSENT': 'YES+US.en+20170717-00-0'}) resp.raise_for_status() return resp.text except requests.exceptions.SSLError as error: logging.error('%sEncountered an SSL Error. Try using HTTP instead of ' 'HTTPS by setting the environment variable "HOWDOI_DISABLE_SSL".\n%s', RED, END_FORMAT) raise error def _get_from_cache(cache_key): # As of cachelib 0.3.0, it internally logging a warning on cache miss current_log_level = logging.getLogger().getEffectiveLevel() # Reduce the log level so the warning is not printed logging.getLogger().setLevel(logging.ERROR) page = cache.get(cache_key) # pylint: disable=assignment-from-none # Restore the log level logging.getLogger().setLevel(current_log_level) return page def _add_links_to_text(element): hyperlinks = element.find('a') for hyperlink in hyperlinks: pquery_object = pq(hyperlink) href = hyperlink.attrib['href'] copy = pquery_object.text() if copy == href: replacement = copy else: replacement = f'[{copy}]({href})' pquery_object.replace_with(replacement) def get_text(element): ''' return inner text in pyquery element ''' _add_links_to_text(element) try: return element.text(squash_space=False) except TypeError: return element.text() def _extract_links_from_bing(html): html.remove_namespaces() return [a.attrib['href'] for a in html('.b_algo')('h2')('a')] def _clean_google_link(link): if '/url?' in link: parsed_link = urlparse(link) query_params = parse_qs(parsed_link.query) url_params = query_params.get('q', []) or query_params.get('url', []) if url_params: return url_params[0] return link def _extract_links_from_google(query_object): html = query_object.html() link_pattern = re.compile(fr"https?://{URL}/questions/[0-9]*/[a-z0-9-]*") links = link_pattern.findall(html) links = [_clean_google_link(link) for link in links] return links def _extract_links_from_duckduckgo(html): html.remove_namespaces() links_anchors = html.find('a.result__a') results = [] for anchor in links_anchors: link = anchor.attrib['href'] url_obj = urlparse(link) parsed_url = parse_qs(url_obj.query).get('uddg', '') if parsed_url: results.append(parsed_url[0]) return results def _extract_links(html, search_engine): if search_engine == 'bing': return _extract_links_from_bing(html) if search_engine == 'duckduckgo': return _extract_links_from_duckduckgo(html) return _extract_links_from_google(html) def _get_search_url(search_engine): return SEARCH_URLS.get(search_engine, SEARCH_URLS['google']) def _is_blocked(page): for indicator in BLOCK_INDICATORS: if page.find(indicator) != -1: return True return False def _get_links(query): search_engine = os.getenv('HOWDOI_SEARCH_ENGINE', 'google') search_url = _get_search_url(search_engine).format(URL, url_quote(query)) logging.info('Searching %s with URL: %s', search_engine, search_url) try: result = _get_result(search_url) except requests.HTTPError: logging.info('Received HTTPError') result = None if not result or _is_blocked(result): logging.error('%sUnable to find an answer because the search engine temporarily blocked the request. ' 'Attempting to use a different search engine.%s', RED, END_FORMAT) raise BlockError('Temporary block by search engine') html = pq(result) links = _extract_links(html, search_engine) if len(links) == 0: logging.info('Search engine %s found no StackOverflow links, returned HTML is:', search_engine) logging.info(result) return list(dict.fromkeys(links)) # remove any duplicates def get_link_at_pos(links, position): if not links: return False if len(links) >= position: link = links[position - 1] else: link = links[-1] return link def _format_output(args, code): if not args['color']: return code lexer = None # try to find a lexer using the StackOverflow tags # or the query arguments for keyword in args['query'].split() + args['tags']: try: lexer = get_lexer_by_name(keyword) break except ClassNotFound: pass # no lexer found above, use the guesser if not lexer: try: lexer = guess_lexer(code) except ClassNotFound: return code return highlight(code, lexer, TerminalFormatter(bg='dark')) def _is_question(link): for fragment in BLOCKED_QUESTION_FRAGMENTS: if fragment in link: return False return re.search(r'questions/\d+/', link) def _get_questions(links): return [link for link in links if _is_question(link)] def _get_answer(args, link): # pylint: disable=too-many-branches cache_key = _get_cache_key(link) page = _get_from_cache(cache_key) if not page: logging.info('Fetching page: %s', link) page = _get_result(link + '?answertab=votes') cache.set(cache_key, page) else: logging.info('Using cached page: %s', link) html = pq(page) first_answer = html('.answercell').eq(0) or html('.answer').eq(0) instructions = first_answer.find('pre') or first_answer.find('code') args['tags'] = [t.text for t in html('.post-tag')] # make decision on answer body class. if first_answer.find(".js-post-body"): answer_body_cls = ".js-post-body" else: # rollback to post-text class answer_body_cls = ".post-text" if not instructions and not args['all']: logging.info('No code sample found, returning entire answer') text = get_text(first_answer.find(answer_body_cls).eq(0)) elif args['all']: logging.info('Returning entire answer') texts = [] for html_tag in first_answer.items(f'{answer_body_cls} > *'): current_text = get_text(html_tag) if current_text: if html_tag[0].tag in ['pre', 'code']: texts.append(_format_output(args, current_text)) else: texts.append(current_text) text = '\n'.join(texts) else: text = _format_output(args, get_text(instructions.eq(0))) if text is None: logging.info('%sAnswer was empty%s', RED, END_FORMAT) text = NO_ANSWER_MSG text = text.strip() return text def _get_links_with_cache(query): cache_key = _get_cache_key(query) res = _get_from_cache(cache_key) if res: logging.info('Using cached links') if res == CACHE_EMPTY_VAL: logging.info('No StackOverflow links found in cached search engine results - will make live query') else: return res links = _get_links(query) if not links: cache.set(cache_key, CACHE_EMPTY_VAL) question_links = _get_questions(links) cache.set(cache_key, question_links or CACHE_EMPTY_VAL) return question_links def build_splitter(splitter_character='=', splitter_length=80): return '\n' + splitter_character * splitter_length + '\n\n' def _get_answers(args): """ @args: command-line arguments returns: array of answers and their respective metadata False if unable to get answers """ question_links = _get_links_with_cache(args['query']) if not question_links: return False initial_pos = args['pos'] - 1 final_pos = initial_pos + args['num_answers'] question_links = question_links[initial_pos:final_pos] search_engine = os.getenv('HOWDOI_SEARCH_ENGINE', 'google') logging.info('%s links found on %s: %s', URL, search_engine, len(question_links)) logging.info('Answers requested: %s, Starting at position: %s', args["num_answers"], args['pos']) with Pool() as pool: answers = pool.starmap( _get_answer_worker, [(args, link) for link in question_links] ) for idx, _ in enumerate(answers): answers[idx]['position'] = idx + 1 logging.info('Total answers returned: %s', len(answers)) return answers def _get_answer_worker(args, link): answer = _get_answer(args, link) result = { 'answer': None, 'link': None, 'position': None } multiple_answers = (args['num_answers'] > 1 or args['all']) if not answer: return result if not args['link'] and not args['json_output'] and multiple_answers: answer = ANSWER_HEADER.format(link, answer, STAR_HEADER) answer += '\n' result['answer'] = answer result['link'] = link return result def _clear_cache(): global cache # pylint: disable=global-statement,invalid-name if not cache: cache = FileSystemCache(CACHE_DIR, CACHE_ENTRY_MAX, 0) return cache.clear() def _is_help_query(query): return any(query.lower() == help_query for help_query in SUPPORTED_HELP_QUERIES) def _format_answers(args, res): if "error" in res: return f'ERROR: {RED}{res["error"]}{END_FORMAT}' if args["json_output"]: return json.dumps(res) formatted_answers = [] for answer in res: next_ans = answer["answer"] if args["link"]: # if we only want links next_ans = answer["link"] formatted_answers.append(next_ans) return build_splitter().join(formatted_answers) def _get_help_instructions(): instruction_splitter = build_splitter(' ', 60) query = 'print hello world in python' instructions = [ 'Here are a few popular howdoi commands ', '>>> howdoi {} (default query)', '>>> howdoi {} -a (read entire answer)', '>>> howdoi {} -n [number] (retrieve n number of answers)', '>>> howdoi {} -l (display only a link to where the answer is from', '>>> howdoi {} -c (Add colors to the output)', '>>> howdoi {} -e (Specify the search engine you want to use e.g google,bing)' ] instructions = map(lambda s: s.format(query), instructions) return instruction_splitter.join(instructions) def _get_cache_key(args): frame = inspect.currentframe() calling_func = inspect.getouterframes(frame)[1].function return calling_func + str(args) + __version__ def format_stash_item(fields, index=-1): title = fields['alias'] description = fields['desc'] item_num = index + 1 if index == -1: return f'{UNDERLINE}{BOLD}$ {title}{END_FORMAT}\n\n{description}\n' return f'{UNDERLINE}{BOLD}$ [{item_num}] {title}{END_FORMAT}\n\n{description}\n' def print_stash(stash_list=None): if not stash_list or len(stash_list) == 0: stash_list = ['\nSTASH LIST:'] commands = keep_utils.read_commands() if commands is None or len(commands.items()) == 0: logging.error('%sNo commands found in stash. ' 'Add a command with "howdoi --%s <query>".%s', RED, STASH_SAVE, END_FORMAT) return for _, fields in commands.items(): stash_list.append(format_stash_item(fields)) else: stash_list = [format_stash_item(x['fields'], i) for i, x in enumerate(stash_list)] print(build_splitter('#').join(stash_list)) def _get_stash_key(args): stash_args = {} ignore_keys = [STASH_SAVE, STASH_VIEW, STASH_REMOVE, STASH_EMPTY, 'tags'] # ignore these for stash key for key in args: if key not in ignore_keys: stash_args[key] = args[key] return str(stash_args) def _stash_remove(cmd_key, title): commands = keep_utils.read_commands() if commands is not None and cmd_key in commands: keep_utils.remove_command(cmd_key) print(f'\n{BOLD}{GREEN}"{title}" removed from stash{END_FORMAT}\n') else: print(f'\n{BOLD}{RED}"{title}" not found in stash{END_FORMAT}\n') def _stash_save(cmd_key, title, answer): try: keep_utils.save_command(cmd_key, answer, title) except FileNotFoundError: os.system('keep init') keep_utils.save_command(cmd_key, answer, title) finally: print_stash() def _parse_cmd(args, res): answer = _format_answers(args, res) cmd_key = _get_stash_key(args) title = ''.join(args['query']) if args[STASH_SAVE]: _stash_save(cmd_key, title, answer) return '' if args[STASH_REMOVE]: _stash_remove(cmd_key, title) return '' return answer def howdoi(raw_query): if isinstance(raw_query, str): # you can pass either a raw or a parsed query parser = get_parser() args = vars(parser.parse_args(raw_query.split(' '))) else: args = raw_query search_engine = args['search_engine'] or os.getenv('HOWDOI_SEARCH_ENGINE') or 'google' os.environ['HOWDOI_SEARCH_ENGINE'] = search_engine if search_engine not in SUPPORTED_SEARCH_ENGINES: supported_search_engines = ', '.join(SUPPORTED_SEARCH_ENGINES) message = f'Unsupported engine {search_engine}. The supported engines are: {supported_search_engines}' res = {'error': message} return _parse_cmd(args, res) args['query'] = ' '.join(args['query']).replace('?', '') cache_key = _get_cache_key(args) if _is_help_query(args['query']): return _get_help_instructions() + '\n' res = _get_from_cache(cache_key) if res: logging.info('Using cached response (add -C to clear the cache)') return _parse_cmd(args, res) logging.info('Fetching answers for query: %s', args["query"]) try: res = _get_answers(args) if not res: message = 'Sorry, couldn\'t find any help with that topic' if not args['explain']: message = f'{message} (use --explain to learn why)' res = {'error': message} cache.set(cache_key, res) except (RequestsConnectionError, SSLError): res = {'error': f'Unable to reach {search_engine}. Do you need to use a proxy?\n'} except BlockError: BLOCKED_ENGINES.append(search_engine) next_engine = next((engine for engine in SUPPORTED_SEARCH_ENGINES if engine not in BLOCKED_ENGINES), None) if next_engine is None: res = {'error': 'Unable to get a response from any search engine\n'} else: args['search_engine'] = next_engine args['query'] = args['query'].split() logging.info('%sRetrying search with %s%s', GREEN, next_engine, END_FORMAT) return howdoi(args) return _parse_cmd(args, res) def get_parser(): parser = argparse.ArgumentParser(description='instant coding answers via the command line', epilog=textwrap.dedent('''\ environment variable examples: HOWDOI_COLORIZE=1 HOWDOI_DISABLE_CACHE=1 HOWDOI_DISABLE_SSL=1 HOWDOI_SEARCH_ENGINE=google HOWDOI_URL=serverfault.com '''), formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('query', metavar='QUERY', type=str, nargs='*', help='the question to answer') parser.add_argument('-p', '--pos', help='select answer in specified position (default: 1)', default=1, type=IntRange(1, 20), metavar='POS') parser.add_argument('-n', '--num', help='number of answers to return (default: 1)', dest='num_answers', default=1, type=IntRange(1, 20), metavar='NUM') parser.add_argument('--num-answers', help=argparse.SUPPRESS) parser.add_argument('-a', '--all', help='display the full text of the answer', action='store_true') parser.add_argument('-l', '--link', help='display only the answer link', action='store_true') parser.add_argument('-c', '--color', help='enable colorized output', action='store_true') parser.add_argument('-x', '--explain', help='explain how answer was chosen', action='store_true') parser.add_argument('-C', '--clear-cache', help='clear the cache', action='store_true') parser.add_argument('-j', '--json', help='return answers in raw json format', dest='json_output', action='store_true') parser.add_argument('--json-output', action='store_true', help=argparse.SUPPRESS) parser.add_argument('-v', '--version', help='display the current version of howdoi', action='store_true') parser.add_argument('-e', '--engine', help='search engine for this query (google, bing, duckduckgo)', dest='search_engine', nargs="?", metavar='ENGINE') parser.add_argument('--save', '--stash', help='stash a howdoi answer', action='store_true') parser.add_argument('--view', help='view your stash', action='store_true') parser.add_argument('--remove', help='remove an entry in your stash', action='store_true') parser.add_argument('--empty', help='empty your stash', action='store_true') parser.add_argument('--sanity-check', help=argparse.SUPPRESS, action='store_true') return parser def _sanity_check(engine, test_query=None): parser = get_parser() if not test_query: test_query = 'format date bash' args = vars(parser.parse_args(test_query.split())) args['search_engine'] = engine try: result = howdoi(args) # Perhaps better to use `-j` and then check for an error message # rather than trying to enumerate all the error strings assert "Sorry" not in result and "Unable to" not in result except AssertionError as exc: if engine == 'google': raise GoogleValidationError from exc if engine == 'bing': raise BingValidationError from exc raise DDGValidationError from exc def prompt_stash_remove(args, stash_list, view_stash=True): if view_stash: print_stash(stash_list) last_index = len(stash_list) prompt = f'{BOLD}> Select a stash command to remove [1-{last_index}] (0 to cancel): {END_FORMAT}' user_input = input(prompt) try: user_input = int(user_input) if user_input == 0: return if user_input < 1 or user_input > last_index: logging.error('\n%sInput index is invalid.%s', RED, END_FORMAT) prompt_stash_remove(args, stash_list, False) return cmd = stash_list[user_input - 1] cmd_key = cmd['command'] cmd_name = cmd['fields']['alias'] _stash_remove(cmd_key, cmd_name) return except ValueError: logging.error('\n%sInvalid input. Must specify index of command.%s', RED, END_FORMAT) prompt_stash_remove(args, stash_list, False) return def perform_sanity_check(): '''Perform sanity check. Returns exit code for program. An exit code of -1 means a validation error was encountered. ''' global cache # pylint: disable=global-statement,invalid-name # Disable cache to avoid cached answers while performing the checks cache = NullCache() exit_code = 0 for engine in ['google']: # 'bing' and 'duckduckgo' throw various block errors print('Checking {}...'.format(engine)) try: _sanity_check(engine) except (GoogleValidationError, BingValidationError, DDGValidationError): logging.error('%s%s query failed%s', RED, engine, END_FORMAT) exit_code = -1 if exit_code == 0: print(f'{GREEN}Ok{END_FORMAT}') return exit_code def command_line_runner(): # pylint: disable=too-many-return-statements,too-many-branches parser = get_parser() args = vars(parser.parse_args()) if args['version']: print(__version__) return if args['explain']: logging.getLogger().setLevel(logging.INFO) logging.info('Version: %s', __version__) if args['sanity_check']: sys.exit( perform_sanity_check() ) if args['clear_cache']: if _clear_cache(): print(f'{GREEN}Cache cleared successfully{END_FORMAT}') else: logging.error('%sClearing cache failed%s', RED, END_FORMAT) if args[STASH_VIEW]: print_stash() return if args[STASH_EMPTY]: os.system('keep init') return if args[STASH_REMOVE] and len(args['query']) == 0: commands = keep_utils.read_commands() if commands is None or len(commands.items()) == 0: logging.error('%sNo commands found in stash. ' 'Add a command with "howdoi --%s <query>".%s', RED, STASH_SAVE, END_FORMAT) return stash_list = [{'command': cmd, 'fields': field} for cmd, field in commands.items()] prompt_stash_remove(args, stash_list) return if not args['query']: parser.print_help() return if os.getenv('HOWDOI_COLORIZE'): args['color'] = True utf8_result = howdoi(args).encode('utf-8', 'ignore') if sys.version < '3': print(utf8_result) else: # Write UTF-8 to stdout: https://stackoverflow.com/a/3603160 sys.stdout.buffer.write(utf8_result) # close the session to release connection howdoi_session.close() if __name__ == '__main__': command_line_runner()
33.482968
114
0.63427
ea011e19b2599a0908c90f899ef22072c3691713
719
py
Python
Libreria/recorte.py
Sannso/GameCG2
426e22541bf670e0767395c30f15d1b6ad6183f3
[ "CC0-1.0" ]
null
null
null
Libreria/recorte.py
Sannso/GameCG2
426e22541bf670e0767395c30f15d1b6ad6183f3
[ "CC0-1.0" ]
null
null
null
Libreria/recorte.py
Sannso/GameCG2
426e22541bf670e0767395c30f15d1b6ad6183f3
[ "CC0-1.0" ]
null
null
null
import pygame import configparser animapersonaje = [] def recortar_imagen(nombre_imagen, ancho_imagen,alto_imagen,fila_): terreno = pygame.image.load(nombre_imagen) info = terreno.get_rect() ancho_pixeles = info[2] alto_pixeles = info[3] ancho_patron = ancho_pixeles/ancho_imagen alto_patron = alto_pixeles/alto_imagen #parametros subsurface: posicion x, posicion y, ancho corte (ancho patron), alto corte(alto patron) for fila in range(alto_imagen): animapersonaje.append([]) for col in range(ancho_imagen): cuadro = terreno.subsurface(ancho_patron*col, alto_patron*fila, ancho_patron, alto_patron) animapersonaje[fila_].append(cuadro)
29.958333
104
0.720445
56e22ee1d2812f1881aa3e2ef41f1be3c41d20e3
420
py
Python
utils/image_downloader.py
louismeunier/school-disct-bot-v2
e6c225e6883b6a820df5f290cae6d5c01edcae46
[ "MIT" ]
null
null
null
utils/image_downloader.py
louismeunier/school-disct-bot-v2
e6c225e6883b6a820df5f290cae6d5c01edcae46
[ "MIT" ]
null
null
null
utils/image_downloader.py
louismeunier/school-disct-bot-v2
e6c225e6883b6a820df5f290cae6d5c01edcae46
[ "MIT" ]
null
null
null
import requests import shutil def download(url,name): """ This function was almost ENTIRELY "copied" from https://towardsdatascience.com/how-to-download-an-image-using-python-38a75cfa21c """ r=requests.get(url,stream=True) if r.status_code==200: r.raw.decode_content=True with open(f"utils/resources/images/schedules/{name}.png", "wb") as f: shutil.copyfileobj(r.raw,f) return True else: return False
26.25
81
0.742857
0ae261a4ebe4c6f01f6c6e4cff9c57b1bfde5b6f
94
py
Python
samanage/__init__.py
rodneymandap/samanage-py
9e06b363e2fa43b3e8f92f97aa3975e1f0461a56
[ "MIT" ]
null
null
null
samanage/__init__.py
rodneymandap/samanage-py
9e06b363e2fa43b3e8f92f97aa3975e1f0461a56
[ "MIT" ]
null
null
null
samanage/__init__.py
rodneymandap/samanage-py
9e06b363e2fa43b3e8f92f97aa3975e1f0461a56
[ "MIT" ]
1
2022-01-25T21:40:48.000Z
2022-01-25T21:40:48.000Z
""" A simple python library to interact with Samanage API. """ from .samanage import Samanage
18.8
54
0.755319
0ebab7aa22b7295e680c8a5a13e536e63fd32d87
2,528
py
Python
opencv/sources/samples/python/tutorial_code/ShapeDescriptors/bounding_rotated_ellipses/generalContours_demo2.py
vrushank-agrawal/opencv-x64-cmake
3f9486510d706c8ac579ac82f5d58f667f948124
[ "Apache-2.0" ]
null
null
null
opencv/sources/samples/python/tutorial_code/ShapeDescriptors/bounding_rotated_ellipses/generalContours_demo2.py
vrushank-agrawal/opencv-x64-cmake
3f9486510d706c8ac579ac82f5d58f667f948124
[ "Apache-2.0" ]
null
null
null
opencv/sources/samples/python/tutorial_code/ShapeDescriptors/bounding_rotated_ellipses/generalContours_demo2.py
vrushank-agrawal/opencv-x64-cmake
3f9486510d706c8ac579ac82f5d58f667f948124
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import cv2 as cv import numpy as np import argparse import random as rng rng.seed(12345) def thresh_callback(val): threshold = val ## [Canny] # Detect edges using Canny canny_output = cv.Canny(src_gray, threshold, threshold * 2) ## [Canny] ## [findContours] # Find contours contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) ## [findContours] # Find the rotated rectangles and ellipses for each contour minRect = [None]*len(contours) minEllipse = [None]*len(contours) for i, c in enumerate(contours): minRect[i] = cv.minAreaRect(c) if c.shape[0] > 5: minEllipse[i] = cv.fitEllipse(c) # Draw contours + rotated rects + ellipses ## [zeroMat] drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8) ## [zeroMat] ## [forContour] for i, c in enumerate(contours): color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)) # contour cv.drawContours(drawing, contours, i, color) # ellipse if c.shape[0] > 5: cv.ellipse(drawing, minEllipse[i], color, 2) # rotated rectangle box = cv.boxPoints(minRect[i]) box = np.intp(box) #np.intp: Integer used for indexing (same as C ssize_t; normally either int32 or int64) cv.drawContours(drawing, [box], 0, color) ## [forContour] ## [showDrawings] # Show in a window cv.imshow('Contours', drawing) ## [showDrawings] ## [setup] # Load source image parser = argparse.ArgumentParser(description='Code for Creating Bounding rotated boxes and ellipses for contours tutorial.') parser.add_argument('--input', help='Path to input image.', default='stuff.jpg') args = parser.parse_args() src = cv.imread(cv.samples.findFile(args.input)) if src is None: print('Could not open or find the image:', args.input) exit(0) # Convert image to gray and blur it src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) src_gray = cv.blur(src_gray, (3,3)) ## [setup] ## [createWindow] # Create Window source_window = 'Source' cv.namedWindow(source_window) cv.imshow(source_window, src) ## [createWindow] ## [trackbar] max_thresh = 255 thresh = 100 # initial threshold cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback) thresh_callback(thresh) ## [trackbar] cv.waitKey()
30.457831
125
0.649525
4562dc3a95851a278fb188725cb2033198ca85c1
1,885
py
Python
tests/test_tools/test_search.py
Nazime/wordlistools
f18fb0dbfa6e4950e090299d99a173ac96514f42
[ "MIT" ]
17
2022-02-06T21:23:27.000Z
2022-02-07T22:33:40.000Z
tests/test_tools/test_search.py
Nazime/wordlistools
f18fb0dbfa6e4950e090299d99a173ac96514f42
[ "MIT" ]
1
2022-02-06T21:52:30.000Z
2022-02-06T21:52:30.000Z
tests/test_tools/test_search.py
Nazime/wordlistools
f18fb0dbfa6e4950e090299d99a173ac96514f42
[ "MIT" ]
2
2022-02-06T21:29:42.000Z
2022-02-06T21:31:06.000Z
from wordlistools.helpertest import AsStdinWordlist, AsWordlist, PolyArgument, runtest from wordlistools.plugins import red def test_color_false(): # By default color is enabled in cmdline and disabled in API color_arg_false = PolyArgument( api_key="color", api_value=False, cmd_args=["--color", "no"] ) runtest( "search", args=("a", AsStdinWordlist(["a", "b"]), color_arg_false), ret=AsWordlist(["a"]), ) runtest( "search", args=( "a", AsStdinWordlist(["alpha", "beta", "gama", "omega"]), color_arg_false, ), ret=AsWordlist(["alpha", "beta", "gama", "omega"]), ) runtest( "search", args=("bc", AsStdinWordlist(["abc", "xbc", "eff", "bxc"]), color_arg_false), ret=AsWordlist(["abc", "xbc"]), ) # TODO: test multiple wordlist def test_color_true(): for cmd_args in (["--color", "yes"], ["--color"]): color_arg_true = PolyArgument( api_key="color", api_value=True, cmd_args=cmd_args ) runtest( "search", args=("a", AsStdinWordlist(["a", "b"]), color_arg_true), ret=AsWordlist([red("a")]), ) runtest( "search", args=( "a", AsStdinWordlist(["alpha", "beta", "gama", "omega"]), color_arg_true, ), ret=AsWordlist( [ f"{red('a')}lpha", f"bet{red('a')}", f"g{red('a')}ma", f"omeg{red('a')}", ] ), ) runtest( "search", args=("bc", AsStdinWordlist(["abc", "xbc", "eff", "bxc"]), color_arg_true), ret=AsWordlist([f"a{red('bc')}", f"x{red('bc')}"]), )
27.720588
87
0.468966
90dc887dcea1ff2eedefbc8d6852c4d9ad9a64cb
33,321
py
Python
scripts/docspregen.py
ufo2011/platformio-core
0ceae62701731f8b32c34d7993a34dea34aea59c
[ "Apache-2.0" ]
null
null
null
scripts/docspregen.py
ufo2011/platformio-core
0ceae62701731f8b32c34d7993a34dea34aea59c
[ "Apache-2.0" ]
null
null
null
scripts/docspregen.py
ufo2011/platformio-core
0ceae62701731f8b32c34d7993a34dea34aea59c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014-present PlatformIO <contact@platformio.org> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import os import sys import tempfile from urllib.parse import ParseResult, urlparse, urlunparse sys.path.append("..") import click # noqa: E402 from platformio import fs, util # noqa: E402 from platformio.package.manager.platform import PlatformPackageManager # noqa: E402 from platformio.platform.factory import PlatformFactory # noqa: E402 RST_COPYRIGHT = """.. Copyright (c) 2014-present PlatformIO <contact@platformio.org> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ DOCS_ROOT_DIR = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "docs") ) REGCLIENT = PlatformPackageManager().get_registry_client_instance() def reg_package_url(type_, owner, name): if type_ == "library": type_ = "libraries" else: type_ += "s" return f"https://registry.platformio.org/{type_}/{owner}/{name}" def campaign_url(url, source="platformio.org", medium="docs"): data = urlparse(url) query = data.query if query: query += "&" query += "utm_source=%s&utm_medium=%s" % (source, medium) return urlunparse( ParseResult( data.scheme, data.netloc, data.path, data.params, query, data.fragment ) ) def install_platforms(): print("Installing platforms...") page = 1 pm = PlatformPackageManager() while True: result = REGCLIENT.list_packages(qualifiers=dict(types=["platform"]), page=page) for item in result["items"]: spec = "%s/%s" % (item["owner"]["username"], item["name"]) skip_conds = [ item["owner"]["username"] != "platformio", item["tier"] == "community", ] if all(skip_conds): click.secho("Skip community platform: %s" % spec, fg="yellow") continue pm.install(spec, skip_dependencies=True) page += 1 if not result["items"] or result["page"] * result["limit"] >= result["total"]: break @functools.cache def get_frameworks(): items = {} for pkg in PlatformPackageManager().get_installed(): p = PlatformFactory.new(pkg) for name, options in (p.frameworks or {}).items(): if name in items or not set(options.keys()).issuperset( set(["title", "description"]) ): continue items[name] = dict( name=name, title=options["title"], description=options["description"] ) return sorted(items.values(), key=lambda item: item["name"]) def is_compat_platform_and_framework(platform, framework): p = PlatformFactory.new(platform) return framework in (p.frameworks or {}).keys() def generate_boards_table(boards, skip_columns=None): columns = [ ("Name", ":ref:`board_{platform}_{id}`"), ("Platform", ":ref:`platform_{platform}`"), ("Debug", "{debug}"), ("MCU", "{mcu}"), ("Frequency", "{f_cpu}MHz"), ("Flash", "{rom}"), ("RAM", "{ram}"), ] lines = [] lines.append( """ .. list-table:: :header-rows: 1 """ ) # add header for (name, template) in columns: if skip_columns and name in skip_columns: continue prefix = " * - " if name == "Name" else " - " lines.append(prefix + name) for data in sorted(boards, key=lambda item: item["name"]): has_onboard_debug = data.get("debug") and any( t.get("onboard") for (_, t) in data["debug"]["tools"].items() ) debug = "No" if has_onboard_debug: debug = "On-board" elif data.get("debug"): debug = "External" variables = dict( id=data["id"], name=data["name"], platform=data["platform"], debug=debug, mcu=data["mcu"].upper(), f_cpu=int(data["fcpu"] / 1000000.0), ram=fs.humanize_file_size(data["ram"]), rom=fs.humanize_file_size(data["rom"]), ) for (name, template) in columns: if skip_columns and name in skip_columns: continue prefix = " * - " if name == "Name" else " - " lines.append(prefix + template.format(**variables)) if lines: lines.append("") return lines def generate_frameworks_contents(frameworks): if not frameworks: return [] lines = [] lines.append( """ Frameworks ---------- .. list-table:: :header-rows: 1 * - Name - Description""" ) known = set() for framework in get_frameworks(): known.add(framework["name"]) if framework["name"] not in frameworks: continue lines.append( """ * - :ref:`framework_{name}` - {description}""".format( **framework ) ) if set(frameworks) - known: click.secho("Unknown frameworks %s " % (set(frameworks) - known), fg="red") return lines def generate_platforms_contents(platforms): if not platforms: return [] lines = [] lines.append( """ Platforms --------- .. list-table:: :header-rows: 1 * - Name - Description""" ) for name in sorted(platforms): p = PlatformFactory.new(name) lines.append( """ * - :ref:`platform_{name}` - {description}""".format( name=p.name, description=p.description ) ) return lines def generate_debug_contents(boards, skip_board_columns=None, extra_rst=None): if not skip_board_columns: skip_board_columns = [] skip_board_columns.append("Debug") lines = [] onboard_debug = [ b for b in boards if b.get("debug") and any(t.get("onboard") for (_, t) in b["debug"]["tools"].items()) ] external_debug = [b for b in boards if b.get("debug") and b not in onboard_debug] if not onboard_debug and not external_debug: return lines lines.append( """ Debugging --------- :ref:`piodebug` - "1-click" solution for debugging with a zero configuration. .. contents:: :local: """ ) if extra_rst: lines.append(".. include:: %s" % extra_rst) lines.append( """ Tools & Debug Probes ~~~~~~~~~~~~~~~~~~~~ Supported debugging tools are listed in "Debug" column. For more detailed information, please scroll table by horizontal. You can switch between debugging :ref:`debugging_tools` using :ref:`projectconf_debug_tool` option in :ref:`projectconf`. .. warning:: You will need to install debug tool drivers depending on your system. Please click on compatible debug tool below for the further instructions. """ ) if onboard_debug: lines.append( """ On-Board Debug Tools ^^^^^^^^^^^^^^^^^^^^ Boards listed below have on-board debug probe and **ARE READY** for debugging! You do not need to use/buy external debug probe. """ ) lines.extend( generate_boards_table(onboard_debug, skip_columns=skip_board_columns) ) if external_debug: lines.append( """ External Debug Tools ^^^^^^^^^^^^^^^^^^^^ Boards listed below are compatible with :ref:`piodebug` but **DEPEND ON** external debug probe. They **ARE NOT READY** for debugging. Please click on board name for the further details. """ ) lines.extend( generate_boards_table(external_debug, skip_columns=skip_board_columns) ) return lines def generate_packages(platform, packages, is_embedded): if not packages: return lines = [] lines.append( """ Packages -------- """ ) lines.append( """.. list-table:: :header-rows: 1 * - Name - Description""" ) for name, options in dict(sorted(packages.items())).items(): package = REGCLIENT.get_package( "tool", options.get("owner", "platformio"), name ) lines.append( """ * - `{name} <{url}>`__ - {description}""".format( name=package["name"], url=reg_package_url( "tool", package["owner"]["username"], package["name"] ), description=package["description"], ) ) if is_embedded: lines.append( """ .. warning:: **Linux Users**: * Install "udev" rules :ref:`faq_udev_rules` * Raspberry Pi users, please read this article `Enable serial port on Raspberry Pi <https://hallard.me/enable-serial-port-on-raspberry-pi/>`__. """ ) if platform == "teensy": lines.append( """ **Windows Users:** Teensy programming uses only Windows built-in HID drivers. When Teensy is programmed to act as a USB Serial device, Windows XP, Vista, 7 and 8 require `this serial driver <http://www.pjrc.com/teensy/serial_install.exe>`_ is needed to access the COM port your program uses. No special driver installation is necessary on Windows 10. """ ) else: lines.append( """ **Windows Users:** Please check that you have a correctly installed USB driver from board manufacturer """ ) return "\n".join(lines) def generate_platform(pkg, rst_dir): name = pkg.metadata.name print("Processing platform: %s" % name) compatible_boards = [ board for board in PlatformPackageManager().get_installed_boards() if name == board["platform"] ] lines = [] lines.append(RST_COPYRIGHT) p = PlatformFactory.new(name) assert p.repository_url.endswith(".git") github_url = p.repository_url[:-4] registry_url = reg_package_url("platform", pkg.metadata.spec.owner, name) lines.append(".. _platform_%s:" % p.name) lines.append("") lines.append(p.title) lines.append("=" * len(p.title)) lines.append("") lines.append(":Registry:") lines.append(" `%s <%s>`__" % (registry_url, registry_url)) lines.append(":Configuration:") lines.append(" :ref:`projectconf_env_platform` = ``%s``" % p.name) lines.append("") lines.append(p.description) lines.append( """ For more detailed information please visit `vendor site <%s>`_.""" % campaign_url(p.homepage) ) lines.append( """ .. contents:: Contents :local: :depth: 1 """ ) # # Extra # if os.path.isfile(os.path.join(rst_dir, "%s_extra.rst" % name)): lines.append(".. include:: %s_extra.rst" % p.name) # # Examples # lines.append( """ Examples -------- Examples are listed from `%s development platform repository <%s>`_: """ % (p.title, campaign_url("%s/tree/master/examples" % github_url)) ) examples_dir = os.path.join(p.get_dir(), "examples") if os.path.isdir(examples_dir): for eitem in os.listdir(examples_dir): example_dir = os.path.join(examples_dir, eitem) if not os.path.isdir(example_dir) or not os.listdir(example_dir): continue url = "%s/tree/master/examples/%s" % (github_url, eitem) lines.append("* `%s <%s>`_" % (eitem, campaign_url(url))) # # Debugging # if compatible_boards: lines.extend( generate_debug_contents( compatible_boards, skip_board_columns=["Platform"], extra_rst="%s_debug.rst" % name if os.path.isfile(os.path.join(rst_dir, "%s_debug.rst" % name)) else None, ) ) # # Development version of dev/platform # lines.append( """ Stable and upstream versions ---------------------------- You can switch between `stable releases <{github_url}/releases>`__ of {title} development platform and the latest upstream version using :ref:`projectconf_env_platform` option in :ref:`projectconf` as described below. Stable ~~~~~~ .. code-block:: ini ; Latest stable version [env:latest_stable] platform = {name} board = ... ; Custom stable version [env:custom_stable] platform = {name}@x.y.z board = ... Upstream ~~~~~~~~ .. code-block:: ini [env:upstream_develop] platform = {github_url}.git board = ... """.format( name=p.name, title=p.title, github_url=github_url ) ) # # Packages # _packages_content = generate_packages(name, p.packages, p.is_embedded()) if _packages_content: lines.append(_packages_content) # # Frameworks # compatible_frameworks = [] for framework in get_frameworks(): if is_compat_platform_and_framework(name, framework["name"]): compatible_frameworks.append(framework["name"]) lines.extend(generate_frameworks_contents(compatible_frameworks)) # # Boards # if compatible_boards: vendors = {} for board in compatible_boards: if board["vendor"] not in vendors: vendors[board["vendor"]] = [] vendors[board["vendor"]].append(board) lines.append( """ Boards ------ .. note:: * You can list pre-configured boards by :ref:`cmd_boards` command * For more detailed ``board`` information please scroll the tables below by horizontally. """ ) for vendor, boards in sorted(vendors.items()): lines.append(str(vendor)) lines.append("~" * len(vendor)) lines.extend(generate_boards_table(boards, skip_columns=["Platform"])) return "\n".join(lines) def update_platform_docs(): platforms_dir = os.path.join(DOCS_ROOT_DIR, "platforms") for pkg in PlatformPackageManager().get_installed(): rst_path = os.path.join(platforms_dir, "%s.rst" % pkg.metadata.name) with open(rst_path, "w") as f: f.write(generate_platform(pkg, platforms_dir)) def generate_framework(type_, framework, rst_dir=None): print("Processing framework: %s" % type_) compatible_platforms = [ pkg for pkg in PlatformPackageManager().get_installed() if is_compat_platform_and_framework(pkg.metadata.name, type_) ] compatible_boards = [ board for board in PlatformPackageManager().get_installed_boards() if type_ in board["frameworks"] ] lines = [] lines.append(RST_COPYRIGHT) lines.append(".. _framework_%s:" % type_) lines.append("") lines.append(framework["title"]) lines.append("=" * len(framework["title"])) lines.append("") lines.append(":Configuration:") lines.append(" :ref:`projectconf_env_framework` = ``%s``" % type_) lines.append("") lines.append(framework["description"]) lines.append( """ .. contents:: Contents :local: :depth: 1""" ) # Extra if os.path.isfile(os.path.join(rst_dir, "%s_extra.rst" % type_)): lines.append(".. include:: %s_extra.rst" % type_) if compatible_platforms: # Platforms lines.extend( generate_platforms_contents( [pkg.metadata.name for pkg in compatible_platforms] ) ) # examples lines.append( """ Examples -------- """ ) for pkg in compatible_platforms: p = PlatformFactory.new(pkg) lines.append( "* `%s for %s <%s>`_" % ( framework["title"], p.title, campaign_url("%s/tree/master/examples" % p.repository_url[:-4]), ) ) # # Debugging # if compatible_boards: lines.extend( generate_debug_contents( compatible_boards, extra_rst="%s_debug.rst" % type_ if os.path.isfile(os.path.join(rst_dir, "%s_debug.rst" % type_)) else None, ) ) # # Boards # if compatible_boards: vendors = {} for board in compatible_boards: if board["vendor"] not in vendors: vendors[board["vendor"]] = [] vendors[board["vendor"]].append(board) lines.append( """ Boards ------ .. note:: * You can list pre-configured boards by :ref:`cmd_boards` command * For more detailed ``board`` information please scroll the tables below by horizontally. """ ) for vendor, boards in sorted(vendors.items()): lines.append(str(vendor)) lines.append("~" * len(vendor)) lines.extend(generate_boards_table(boards)) return "\n".join(lines) def update_framework_docs(): frameworks_dir = os.path.join(DOCS_ROOT_DIR, "frameworks") for framework in get_frameworks(): name = framework["name"] rst_path = os.path.join(frameworks_dir, "%s.rst" % name) with open(rst_path, "w") as f: f.write(generate_framework(name, framework, frameworks_dir)) def update_boards(): print("Updating boards...") lines = [] lines.append(RST_COPYRIGHT) lines.append(".. _boards:") lines.append("") lines.append("Boards") lines.append("======") lines.append( """ Rapid Embedded Development, Continuous and IDE integration in a few steps with PlatformIO thanks to built-in project generator for the most popular embedded boards and IDEs. .. note:: * You can list pre-configured boards by :ref:`cmd_boards` command * For more detailed ``board`` information please scroll tables below by horizontal. """ ) platforms = {} installed_boards = PlatformPackageManager().get_installed_boards() for data in installed_boards: platform = data["platform"] if platform in platforms: platforms[platform].append(data) else: platforms[platform] = [data] for platform, boards in sorted(platforms.items()): p = PlatformFactory.new(platform) lines.append(p.title) lines.append("-" * len(p.title)) lines.append( """ .. toctree:: :maxdepth: 1 """ ) for board in sorted(boards, key=lambda item: item["name"]): lines.append(" %s/%s" % (platform, board["id"])) lines.append("") emboards_rst = os.path.join(DOCS_ROOT_DIR, "boards", "index.rst") with open(emboards_rst, "w") as f: f.write("\n".join(lines)) # individual board page for data in installed_boards: rst_path = os.path.join( DOCS_ROOT_DIR, "boards", data["platform"], "%s.rst" % data["id"] ) if not os.path.isdir(os.path.dirname(rst_path)): os.makedirs(os.path.dirname(rst_path)) update_embedded_board(rst_path, data) def update_embedded_board(rst_path, board): platform = PlatformFactory.new(board["platform"]) board_config = platform.board_config(board["id"]) board_manifest_url = platform.repository_url assert board_manifest_url if board_manifest_url.endswith(".git"): board_manifest_url = board_manifest_url[:-4] board_manifest_url += "/blob/master/boards/%s.json" % board["id"] variables = dict( id=board["id"], name=board["name"], platform=board["platform"], platform_description=platform.description, url=campaign_url(board["url"]), mcu=board_config.get("build", {}).get("mcu", ""), mcu_upper=board["mcu"].upper(), f_cpu=board["fcpu"], f_cpu_mhz=int(int(board["fcpu"]) / 1000000), ram=fs.humanize_file_size(board["ram"]), rom=fs.humanize_file_size(board["rom"]), vendor=board["vendor"], board_manifest_url=board_manifest_url, upload_protocol=board_config.get("upload.protocol", ""), ) lines = [RST_COPYRIGHT] lines.append(".. _board_{platform}_{id}:".format(**variables)) lines.append("") lines.append(board["name"]) lines.append("=" * len(board["name"])) lines.append( """ .. contents:: Hardware -------- Platform :ref:`platform_{platform}`: {platform_description} .. list-table:: * - **Microcontroller** - {mcu_upper} * - **Frequency** - {f_cpu_mhz:d}MHz * - **Flash** - {rom} * - **RAM** - {ram} * - **Vendor** - `{vendor} <{url}>`__ """.format( **variables ) ) # # Configuration # lines.append( """ Configuration ------------- Please use ``{id}`` ID for :ref:`projectconf_env_board` option in :ref:`projectconf`: .. code-block:: ini [env:{id}] platform = {platform} board = {id} You can override default {name} settings per build environment using ``board_***`` option, where ``***`` is a JSON object path from board manifest `{id}.json <{board_manifest_url}>`_. For example, ``board_build.mcu``, ``board_build.f_cpu``, etc. .. code-block:: ini [env:{id}] platform = {platform} board = {id} ; change microcontroller board_build.mcu = {mcu} ; change MCU frequency board_build.f_cpu = {f_cpu}L """.format( **variables ) ) # # Uploading # upload_protocols = board_config.get("upload.protocols", []) if len(upload_protocols) > 1: lines.append( """ Uploading --------- %s supports the following uploading protocols: """ % board["name"] ) for protocol in sorted(upload_protocols): lines.append("* ``%s``" % protocol) lines.append( """ Default protocol is ``%s``""" % variables["upload_protocol"] ) lines.append( """ You can change upload protocol using :ref:`projectconf_upload_protocol` option: .. code-block:: ini [env:{id}] platform = {platform} board = {id} upload_protocol = {upload_protocol} """.format( **variables ) ) # # Debugging # lines.append("Debugging") lines.append("---------") if not board.get("debug"): lines.append( ":ref:`piodebug` currently does not support {name} board.".format( **variables ) ) else: default_debug_tool = board_config.get_debug_tool_name() has_onboard_debug = any( t.get("onboard") for (_, t) in board["debug"]["tools"].items() ) lines.append( """ :ref:`piodebug` - "1-click" solution for debugging with a zero configuration. .. warning:: You will need to install debug tool drivers depending on your system. Please click on compatible debug tool below for the further instructions and configuration information. You can switch between debugging :ref:`debugging_tools` using :ref:`projectconf_debug_tool` option in :ref:`projectconf`. """ ) if has_onboard_debug: lines.append( "{name} has on-board debug probe and **IS READY** for " "debugging. You don't need to use/buy external debug probe.".format( **variables ) ) else: lines.append( "{name} does not have on-board debug probe and **IS NOT " "READY** for debugging. You will need to use/buy one of " "external probe listed below.".format(**variables) ) lines.append( """ .. list-table:: :header-rows: 1 * - Compatible Tools - On-board - Default""" ) for (tool_name, tool_data) in sorted(board["debug"]["tools"].items()): lines.append( """ * - :ref:`debugging_tool_{name}` - {onboard} - {default}""".format( name=tool_name, onboard="Yes" if tool_data.get("onboard") else "", default="Yes" if tool_name == default_debug_tool else "", ) ) if board["frameworks"]: lines.extend(generate_frameworks_contents(board["frameworks"])) with open(rst_path, "w") as f: f.write("\n".join(lines)) def update_debugging(): tool_to_platforms = {} tool_to_boards = {} vendors = {} platforms = [] frameworks = [] for data in PlatformPackageManager().get_installed_boards(): if not data.get("debug"): continue for tool in data["debug"]["tools"]: tool = str(tool) if tool not in tool_to_platforms: tool_to_platforms[tool] = [] tool_to_platforms[tool].append(data["platform"]) if tool not in tool_to_boards: tool_to_boards[tool] = [] tool_to_boards[tool].append(data["id"]) platforms.append(data["platform"]) frameworks.extend(data["frameworks"]) vendor = data["vendor"] if vendor in vendors: vendors[vendor].append(data) else: vendors[vendor] = [data] platforms = sorted(set(platforms)) frameworks = sorted(set(frameworks)) lines = [".. _debugging_platforms:"] lines.extend(generate_platforms_contents(platforms)) lines.extend(generate_frameworks_contents(frameworks)) # Boards lines.append( """ Boards ------ .. note:: For more detailed ``board`` information please scroll tables below by horizontal. """ ) for vendor, boards in sorted(vendors.items()): lines.append(str(vendor)) lines.append("~" * len(vendor)) lines.extend(generate_boards_table(boards)) # save with open( os.path.join(fs.get_source_dir(), "..", "docs", "plus", "debugging.rst"), "r+" ) as fp: content = fp.read() fp.seek(0) fp.truncate() fp.write( content[: content.index(".. _debugging_platforms:")] + "\n".join(lines) ) # Debug tools for tool, platforms in tool_to_platforms.items(): tool_path = os.path.join(DOCS_ROOT_DIR, "plus", "debug-tools", "%s.rst" % tool) if not os.path.isfile(tool_path): click.secho("Unknown debug tool `%s`" % tool, fg="red") continue platforms = sorted(set(platforms)) lines = [".. begin_platforms"] lines.extend(generate_platforms_contents(platforms)) tool_frameworks = [] for platform in platforms: for framework in frameworks: if is_compat_platform_and_framework(platform, framework): tool_frameworks.append(framework) lines.extend(generate_frameworks_contents(tool_frameworks)) lines.append( """ Boards ------ .. note:: For more detailed ``board`` information please scroll tables below by horizontal. """ ) lines.extend( generate_boards_table( [ b for b in PlatformPackageManager().get_installed_boards() if b["id"] in tool_to_boards[tool] ], skip_columns=None, ) ) with open(tool_path, "r+") as fp: content = fp.read() fp.seek(0) fp.truncate() fp.write(content[: content.index(".. begin_platforms")] + "\n".join(lines)) def update_project_examples(): platform_readme_tpl = """ # {title}: development platform for [PlatformIO](https://platformio.org) {description} * [Home](https://platformio.org/platforms/{name}) (home page in PlatformIO Registry) * [Documentation](https://docs.platformio.org/page/platforms/{name}.html) (advanced usage, packages, boards, frameworks, etc.) # Examples {examples} """ framework_readme_tpl = """ # {title}: framework for [PlatformIO](https://platformio.org) {description} * [Home](https://platformio.org/frameworks/{name}) (home page in PlatformIO Registry) * [Documentation](https://docs.platformio.org/page/frameworks/{name}.html) # Examples {examples} """ project_examples_dir = os.path.join(fs.get_source_dir(), "..", "examples") framework_examples_md_lines = {} embedded = [] desktop = [] for pkg in PlatformPackageManager().get_installed(): p = PlatformFactory.new(pkg) github_url = p.repository_url[:-4] # Platform README platform_examples_dir = os.path.join(p.get_dir(), "examples") examples_md_lines = [] if os.path.isdir(platform_examples_dir): for item in sorted(os.listdir(platform_examples_dir)): example_dir = os.path.join(platform_examples_dir, item) if not os.path.isdir(example_dir) or not os.listdir(example_dir): continue url = "%s/tree/master/examples/%s" % (github_url, item) examples_md_lines.append("* [%s](%s)" % (item, url)) readme_dir = os.path.join(project_examples_dir, "platforms", p.name) if not os.path.isdir(readme_dir): os.makedirs(readme_dir) with open(os.path.join(readme_dir, "README.md"), "w") as fp: fp.write( platform_readme_tpl.format( name=p.name, title=p.title, description=p.description, examples="\n".join(examples_md_lines), ) ) # Framework README for framework in get_frameworks(): if not is_compat_platform_and_framework(p.name, framework["name"]): continue if framework["name"] not in framework_examples_md_lines: framework_examples_md_lines[framework["name"]] = [] lines = [] lines.append("- [%s](%s)" % (p.title, github_url)) lines.extend(" %s" % line for line in examples_md_lines) lines.append("") framework_examples_md_lines[framework["name"]].extend(lines) # Root README line = "* [%s](%s)" % (p.title, "%s/tree/master/examples" % github_url) if p.is_embedded(): embedded.append(line) else: desktop.append(line) # Frameworks frameworks = [] for framework in get_frameworks(): if framework["name"] not in framework_examples_md_lines: continue readme_dir = os.path.join(project_examples_dir, "frameworks", framework["name"]) if not os.path.isdir(readme_dir): os.makedirs(readme_dir) with open(os.path.join(readme_dir, "README.md"), "w") as fp: fp.write( framework_readme_tpl.format( name=framework["name"], title=framework["title"], description=framework["description"], examples="\n".join(framework_examples_md_lines[framework["name"]]), ) ) url = campaign_url( "https://docs.platformio.org/en/latest/frameworks/%s.html#examples" % framework["name"], source="github", medium="examples", ) frameworks.append("* [%s](%s)" % (framework["title"], url)) with open(os.path.join(project_examples_dir, "README.md"), "w") as fp: fp.write( """# PlatformIO Project Examples - [Development platforms](#development-platforms): - [Embedded](#embedded) - [Desktop](#desktop) - [Frameworks](#frameworks) ## Development platforms ### Embedded %s ### Desktop %s ## Frameworks %s """ % ("\n".join(embedded), "\n".join(desktop), "\n".join(frameworks)) ) def main(): with tempfile.TemporaryDirectory() as tmp_dir: print("Core directory: %s" % tmp_dir) os.environ["PLATFORMIO_CORE_DIR"] = tmp_dir install_platforms() update_platform_docs() update_framework_docs() update_boards() update_debugging() update_project_examples() if __name__ == "__main__": sys.exit(main())
28.455167
126
0.581855
2ca10ad6bb6480220070f6667f39518fd6e94a5b
533
py
Python
workspace_william/data_dowloads/CreateShapefile.py
william-r-austin/district2
fa2f5a6560159478b15cd69a97959e91a81c1490
[ "Unlicense" ]
null
null
null
workspace_william/data_dowloads/CreateShapefile.py
william-r-austin/district2
fa2f5a6560159478b15cd69a97959e91a81c1490
[ "Unlicense" ]
null
null
null
workspace_william/data_dowloads/CreateShapefile.py
william-r-austin/district2
fa2f5a6560159478b15cd69a97959e91a81c1490
[ "Unlicense" ]
null
null
null
# Polsby Popper import shapefile #import shapely from shapely import geometry import math f = open("voronoi_polygons.txt") allLines = f.readlines() i = 1 w = shapefile.Writer("MyGeneratedShapefiles/test_2") w.field('TFIELD', 'C') for currentLine in allLines: points = currentLine.split() mainPoly = [] for point in points: vertexStrList = point.split(",") vertexList = [float(vertexStrList[i]) for i in range(2)] mainPoly.append(vertexList) w.poly([mainPoly]) w.record(TFIELD=str(i)) i += 1 f.close() w.close()
17.193548
58
0.707317
f30c1b3ffb93028da3c23c02eed170e36ef24bc0
6,363
py
Python
naima/extern/minimize.py
Carlor87/naima
1728b0ac18fab9e709816c868625e5ffbaab83b7
[ "BSD-3-Clause" ]
null
null
null
naima/extern/minimize.py
Carlor87/naima
1728b0ac18fab9e709816c868625e5ffbaab83b7
[ "BSD-3-Clause" ]
null
null
null
naima/extern/minimize.py
Carlor87/naima
1728b0ac18fab9e709816c868625e5ffbaab83b7
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # This module includes a copy of the scipy.optimize._minimize_neldermead # function modified to use relative tolerances instead of absolute. See issue at # https://github.com/scipy/scipy/issues/5051 # minimize is a thin wrapper that behaves like scipy.optimize.minimize from __future__ import ( absolute_import, division, print_function, unicode_literals, ) import numpy from numpy import ( atleast_1d, eye, mgrid, argmin, zeros, shape, squeeze, vectorize, asarray, sqrt, Inf, asfarray, isinf, ) # standard status messages of optimizers _status_message = { "success": "Optimization terminated successfully.", "maxfev": "Maximum number of function evaluations has " "been exceeded.", "maxiter": "Maximum number of iterations has been " "exceeded.", "pr_loss": "Desired error not necessarily achieved due " "to precision loss.", } def wrap_function(function, args): ncalls = [0] if function is None: return ncalls, None def function_wrapper(*wrapper_args): ncalls[0] += 1 return function(*(wrapper_args + args)) return ncalls, function_wrapper class OptimizeResult(dict): """ Represents the optimization result. """ pass class OptimizeWarning(UserWarning): pass def minimize(func, x0, args=(), options={}, method=None): return _minimize_neldermead(func, x0, args=args, **options) def _minimize_neldermead( func, x0, args=(), callback=None, xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None, disp=False, return_all=False, ): # pragma: no cover """ Minimization of scalar function of one or more variables using the Nelder-Mead algorithm. Options for the Nelder-Mead algorithm are: disp : bool Set to True to print convergence messages. xtol : float Relative error in solution `xopt` acceptable for convergence. ftol : float Relative error in ``fun(xopt)`` acceptable for convergence. maxiter : int Maximum number of iterations to perform. maxfev : int Maximum number of function evaluations to make. """ maxfun = maxfev retall = return_all fcalls, func = wrap_function(func, args) x0 = asfarray(x0).flatten() N = len(x0) rank = len(x0.shape) if not -1 < rank < 2: raise ValueError("Initial guess must be a scalar or rank-1 sequence.") if maxiter is None: maxiter = N * 200 if maxfun is None: maxfun = N * 200 rho = 1 chi = 2 psi = 0.5 sigma = 0.5 one2np1 = list(range(1, N + 1)) if rank == 0: sim = numpy.zeros((N + 1,), dtype=x0.dtype) else: sim = numpy.zeros((N + 1, N), dtype=x0.dtype) fsim = numpy.zeros((N + 1,), float) sim[0] = x0 if retall: allvecs = [sim[0]] fsim[0] = func(x0) nonzdelt = 0.05 zdelt = 0.00025 for k in range(0, N): y = numpy.array(x0, copy=True) if y[k] != 0: y[k] = (1 + nonzdelt) * y[k] else: y[k] = zdelt sim[k + 1] = y f = func(y) fsim[k + 1] = f ind = numpy.argsort(fsim) fsim = numpy.take(fsim, ind, 0) # sort so sim[0,:] has the lowest function value sim = numpy.take(sim, ind, 0) iterations = 1 while fcalls[0] < maxfun and iterations < maxiter: if ( numpy.max(numpy.ravel(numpy.abs((sim[1:] - sim[0]) / sim[0]))) <= xtol and numpy.max(numpy.abs((fsim[0] - fsim[1:]) / fsim[0])) <= ftol ): break xbar = numpy.add.reduce(sim[:-1], 0) / N xr = (1 + rho) * xbar - rho * sim[-1] fxr = func(xr) doshrink = 0 if fxr < fsim[0]: xe = (1 + rho * chi) * xbar - rho * chi * sim[-1] fxe = func(xe) if fxe < fxr: sim[-1] = xe fsim[-1] = fxe else: sim[-1] = xr fsim[-1] = fxr else: # fsim[0] <= fxr if fxr < fsim[-2]: sim[-1] = xr fsim[-1] = fxr else: # fxr >= fsim[-2] # Perform contraction if fxr < fsim[-1]: xc = (1 + psi * rho) * xbar - psi * rho * sim[-1] fxc = func(xc) if fxc <= fxr: sim[-1] = xc fsim[-1] = fxc else: doshrink = 1 else: # Perform an inside contraction xcc = (1 - psi) * xbar + psi * sim[-1] fxcc = func(xcc) if fxcc < fsim[-1]: sim[-1] = xcc fsim[-1] = fxcc else: doshrink = 1 if doshrink: for j in one2np1: sim[j] = sim[0] + sigma * (sim[j] - sim[0]) fsim[j] = func(sim[j]) ind = numpy.argsort(fsim) sim = numpy.take(sim, ind, 0) fsim = numpy.take(fsim, ind, 0) if callback is not None: callback(sim[0]) iterations += 1 if retall: allvecs.append(sim[0]) x = sim[0] fval = numpy.min(fsim) warnflag = 0 if fcalls[0] >= maxfun: warnflag = 1 msg = _status_message["maxfev"] if disp: print("Warning: " + msg) elif iterations >= maxiter: warnflag = 2 msg = _status_message["maxiter"] if disp: print("Warning: " + msg) else: msg = _status_message["success"] if disp: print(msg) print(" Current function value: %f" % fval) print(" Iterations: %d" % iterations) print(" Function evaluations: %d" % fcalls[0]) result = OptimizeResult( fun=fval, nit=iterations, nfev=fcalls[0], status=warnflag, success=(warnflag == 0), message=msg, x=x, ) if retall: result["allvecs"] = allvecs return result
26.077869
80
0.509194
eaedfd59190ad288f5447652b18cad9a710941b7
161
py
Python
main.py
justinhchae/app_courts
c46d48c4fa02cec91bda6fc3818ab677d6a83281
[ "MIT" ]
4
2021-01-04T05:46:43.000Z
2022-01-06T16:33:40.000Z
main.py
justinhchae/app_courts
c46d48c4fa02cec91bda6fc3818ab677d6a83281
[ "MIT" ]
null
null
null
main.py
justinhchae/app_courts
c46d48c4fa02cec91bda6fc3818ab677d6a83281
[ "MIT" ]
null
null
null
from application.application import Application if __name__ == '__main__': app = Application() def run_app(): app.run_app() run_app()
11.5
47
0.63354
5f3cbf5c9e2b8330b90446a1604db5a6798a758e
193
py
Python
python/init/pip_upgrade.py
gangserver/py_test
869bdfa5c94c3b6a15b87e0c3de6b2cdaca821f4
[ "Apache-2.0" ]
null
null
null
python/init/pip_upgrade.py
gangserver/py_test
869bdfa5c94c3b6a15b87e0c3de6b2cdaca821f4
[ "Apache-2.0" ]
null
null
null
python/init/pip_upgrade.py
gangserver/py_test
869bdfa5c94c3b6a15b87e0c3de6b2cdaca821f4
[ "Apache-2.0" ]
null
null
null
import pkg_resources from subprocess import call packages = [dist.project_name for dist in pkg_resources.working_set] call("python -m pip install --upgrade " + ' '.join(packages), shell=True)
32.166667
73
0.772021
2080d6d8dba6ac7d40b50201274b7ae825d1ec75
2,484
py
Python
invadedhouse/commands/command_interpreter.py
redjoey/games
c30739e8363a5724f1c80eb3d2ce34e680cee48a
[ "MIT" ]
null
null
null
invadedhouse/commands/command_interpreter.py
redjoey/games
c30739e8363a5724f1c80eb3d2ce34e680cee48a
[ "MIT" ]
5
2019-12-15T19:29:22.000Z
2019-12-18T23:02:35.000Z
invadedhouse/commands/command_interpreter.py
redjoey/games
c30739e8363a5724f1c80eb3d2ce34e680cee48a
[ "MIT" ]
null
null
null
from .attack import Attack from .drop import Drop from .enter import Enter from .exit import Exit from .help import Help from .inventory import Inventory from .look import Look from .lookat import LookAt from .loot import Loot from .pickup import Pickup from .rename import Rename from .smash import Smash from .startover import StartOver from .warp import Warp from .whereto import WhereTo from models import House from models import Player class CommandInterpreter: """ Processes commands input by player at command prompt. """ def __init__(self, player: Player, house: House): self.player = player self.house = house help_command = Help('help', player, house) self.commands = [ Attack('attack', player, house), Drop('drop', player, house), Enter('enter', player, house), Exit('exit', player, house), help_command, Inventory('inventory', player, house), Look('look', player, house), LookAt('look at', player, house), Loot('loot', player, house), Pickup('pickup', player, house), Rename('change my name', player, house), Smash('smash', player, house), StartOver('start over', player, house), Warp('warp', player, house), WhereTo('where to', player, house) ] help_command.set_all_commands(self.commands) def run(self): while True: cmd = self.get_next_command() self.interpret_command(cmd) @staticmethod def get_next_command() -> str: cmd = input('> ') return cmd def interpret_command(self, command_str: str): command_str = command_str.lower() words = command_str.split() matched_command_str = '' text = '' matched_command = None for word in words: if matched_command: if len(text) > 0: text += ' ' text += word else: if len(matched_command_str) > 0: matched_command_str += ' ' matched_command_str += word for cmd in self.commands: if cmd.matches(matched_command_str): matched_command = cmd if matched_command: matched_command.do(text) else: print('Sorry, I don\'t recognize that command.')
29.927711
60
0.572464
47cb52cd64268dd8f391726d47ba89c91e264627
1,607
py
Python
scrapy-examples/tutorial/tutorial/pipelines.py
Project-Sch/SpiderGarden
1928c9253815f79a03f7a6075dbe83add9a170c8
[ "Apache-2.0" ]
2
2016-06-11T10:39:25.000Z
2017-03-03T04:25:23.000Z
scrapy-examples/tutorial/tutorial/pipelines.py
Project-Sch/SpiderGarden
1928c9253815f79a03f7a6075dbe83add9a170c8
[ "Apache-2.0" ]
null
null
null
scrapy-examples/tutorial/tutorial/pipelines.py
Project-Sch/SpiderGarden
1928c9253815f79a03f7a6075dbe83add9a170c8
[ "Apache-2.0" ]
null
null
null
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from scrapy import signals from scrapy.contrib.exporter import XmlItemExporter class TutorialPipeline(object): def process_item(self, item, spider): for field in item: print field + ': ' + item[field][0] return item class XmlExportPipeline(object): def __init__(self): self.files = {} @classmethod def from_crawler(cls, crawler): pipeline = cls() crawler.signals.connect(pipeline.spider_opened, signals.spider_opened) crawler.signals.connect(pipeline.close_spider, signals.close_spider) return pipeline def spider_opened(self, spider): file = open('%s_products.xml' % spider.name, 'w+b') self.files[spider] = file self.exporter = XmlItemExporter(file) self.exporter.start_exporting() def close_spider(self, spider): self.exporter.finish_exporting() file = self.files.pop(spider) file.close() def process_item(self, item, spider): self.exporter.export_item(item) return item import json import codecs class JsonWithEncodingPipeline(object): def __init__(self): self.file = codecs.open('data_utf8.json', 'w', encoding='utf-8') def process_item(self, item, spider): line = json.dumps(dict(item), ensure_ascii=False) + "\n" self.file.write(line) return item def close_spider(self, spider): self.file.close()
26.783333
78
0.664592
e73cb0b3dc46495439b7b310ca6e2d0672297c86
1,143
py
Python
kde/frameworks/tier3/ktexteditor/ktexteditor.py
wrobelda/craft-blueprints-kde
366f460cecd5baebdf3a695696767c8c0e5e7c7e
[ "BSD-2-Clause" ]
null
null
null
kde/frameworks/tier3/ktexteditor/ktexteditor.py
wrobelda/craft-blueprints-kde
366f460cecd5baebdf3a695696767c8c0e5e7c7e
[ "BSD-2-Clause" ]
1
2020-01-10T01:06:16.000Z
2020-01-10T01:06:16.000Z
kde/frameworks/tier3/ktexteditor/ktexteditor.py
wrobelda/craft-blueprints-kde
366f460cecd5baebdf3a695696767c8c0e5e7c7e
[ "BSD-2-Clause" ]
2
2020-01-02T18:22:12.000Z
2020-08-05T13:39:21.000Z
import info class subinfo(info.infoclass): def setTargets(self): self.versionInfo.setDefaultValues() self.description = "KTextEditor provides an advanced embeddable text editor" def setDependencies(self): self.buildDependencies["virtual/base"] = None self.buildDependencies["kde/frameworks/extra-cmake-modules"] = None self.runtimeDependencies["libs/libgit2"] = None self.runtimeDependencies["kde/frameworks/tier1/karchive"] = None self.runtimeDependencies["kde/frameworks/tier1/kconfig"] = None self.runtimeDependencies["kde/frameworks/tier1/kguiaddons"] = None self.runtimeDependencies["kde/frameworks/tier1/ki18n"] = None self.runtimeDependencies["kde/frameworks/tier3/kio"] = None self.runtimeDependencies["kde/frameworks/tier3/kparts"] = None self.runtimeDependencies["kde/frameworks/tier1/sonnet"] = None self.runtimeDependencies["kde/frameworks/tier1/syntax-highlighting"] = None from Package.CMakePackageBase import * class Package(CMakePackageBase): def __init__(self): CMakePackageBase.__init__(self)
38.1
84
0.721785
fefa704bd5f9296328de10ab4352c599231ba09d
11,871
py
Python
melodic/lib/python2.7/dist-packages/rqt_robot_monitor/robot_monitor.py
Dieptranivsr/Ros_Diep
d790e75e6f5da916701b11a2fdf3e03b6a47086b
[ "MIT" ]
2
2021-07-14T12:33:55.000Z
2021-11-21T07:14:13.000Z
melodic/src/rqt_robot_monitor/src/rqt_robot_monitor/robot_monitor.py
disorn-inc/ROS-melodic-python3-Opencv-4.1.1-CUDA
3d265bb64712e3cd7dfa0ad56d78fcdebafdb4b0
[ "BSD-3-Clause" ]
1
2021-07-08T10:26:06.000Z
2021-07-08T10:31:11.000Z
melodic/src/rqt_robot_monitor/src/rqt_robot_monitor/robot_monitor.py
disorn-inc/ROS-melodic-python3-Opencv-4.1.1-CUDA
3d265bb64712e3cd7dfa0ad56d78fcdebafdb4b0
[ "BSD-3-Clause" ]
null
null
null
# Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Author: Isaac Saito, Ze'ev Klapow, Austin Hendrix import os import rospkg from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus from python_qt_binding import loadUi from python_qt_binding.QtCore import QTimer, Signal, Qt, Slot from python_qt_binding.QtGui import QPalette from python_qt_binding.QtWidgets import QWidget, QTreeWidgetItem import rospy from rqt_robot_monitor.inspector_window import InspectorWindow from rqt_robot_monitor.status_item import StatusItem from rqt_robot_monitor.timeline_pane import TimelinePane from rqt_robot_monitor.timeline import Timeline import rqt_robot_monitor.util_robot_monitor as util class RobotMonitorWidget(QWidget): """ NOTE: RobotMonitorWidget.shutdown function needs to be called when the instance of this class terminates. RobotMonitorWidget itself doesn't store previous diagnostic states. It instead delegates that function to Timeline class. """ _TREE_ALL = 1 _TREE_WARN = 2 _TREE_ERR = 3 _message_updated = Signal(dict) _queue_updated = Signal() def __init__(self, context, topic=None): """ :param context: plugin context hook to enable adding widgets as a ROS_GUI pane, 'PluginContext' :param topic: Diagnostic topic to subscribe to 'str' """ super(RobotMonitorWidget, self).__init__() rp = rospkg.RosPack() ui_file = os.path.join(rp.get_path('rqt_robot_monitor'), 'resource', 'robotmonitor_mainwidget.ui') loadUi(ui_file, self) obj_name = 'Robot Monitor' self.setObjectName(obj_name) self.setWindowTitle(obj_name) self._message_updated_processing = False self._queue_updated_processing = False # if we're given a topic, create a timeline. otherwise, don't # this can be used later when writing an rqt_bag plugin if topic: # create timeline data structure self._timeline = Timeline(topic, DiagnosticArray) self._timeline.message_updated.connect( self.message_updated, Qt.DirectConnection) self._timeline.queue_updated.connect( self.queue_updated, Qt.DirectConnection) self._message_updated.connect( self._signal_message_updated, Qt.QueuedConnection) self._queue_updated.connect( self._signal_queue_updated, Qt.QueuedConnection) # create timeline pane widget self._timeline_pane = TimelinePane(self, self._timeline.paused) self._timeline_pane.pause_changed.connect(self._timeline.set_paused) self._timeline_pane.position_changed.connect(self._timeline.set_position) self._timeline.pause_changed.connect(self._timeline_pane.set_paused) self._timeline.position_changed.connect(self._timeline_pane.set_position) self.vlayout_top.addWidget(self._timeline_pane) self._timeline_pane.show() else: self._timeline = None self._timeline_pane = None self._inspectors = {} self.tree_all_devices.itemDoubleClicked.connect(self._tree_clicked) self.warn_flattree.itemDoubleClicked.connect(self._tree_clicked) self.err_flattree.itemDoubleClicked.connect(self._tree_clicked) # TODO: resize on itemCollapsed and itemExpanded self._is_stale = False self._timer = QTimer() self._timer.timeout.connect(self._update_message_state) self._timer.start(1000) palette = self.tree_all_devices.palette() self._original_base_color = palette.base().color() self._original_alt_base_color = palette.alternateBase().color() self._tree = StatusItem(self.tree_all_devices.invisibleRootItem()) self._warn_tree = StatusItem(self.warn_flattree.invisibleRootItem()) self._err_tree = StatusItem(self.err_flattree.invisibleRootItem()) @Slot(dict) def message_updated(self, status): ''' This method just calls _signal_message_updated in 'best effort' manner. This method should be called by signal with DirectConnection. ''' if self._message_updated_processing: return self._message_updated_processing = True self._message_updated.emit(status) @Slot(dict) def _signal_message_updated(self, status): """ DiagnosticArray message callback """ # Walk the status array and update the tree for name, status in status.items(): # Compute path and walk to appropriate subtree path = name.split('/') if path[0] == '': path = path[1:] tmp_tree = self._tree for p in path: tmp_tree = tmp_tree[p] tmp_tree.update(status, util.get_resource_name(name)) # Check for warnings if status.level == DiagnosticStatus.WARN: self._warn_tree[name].update(status, name) # Check for errors if (status.level == DiagnosticStatus.ERROR or status.level == DiagnosticStatus.STALE): self._err_tree[name].update(status, name) # For any items in the tree that were not updated, remove them self._tree.prune() self._warn_tree.prune() self._err_tree.prune() # TODO(ahendrix): implement # Insight: for any item that is not OK, it only provides additional # information if all of it's children are OK # # otherwise, it's just an aggregation of its children # and doesn't provide any additional value when added to # the warning and error flat trees self.tree_all_devices.resizeColumnToContents(0) self.warn_flattree.resizeColumnToContents(0) self.err_flattree.resizeColumnToContents(0) self._message_updated_processing = False @Slot() def queue_updated(self): ''' This method just calls _signal_queue_updated in 'best effort' manner. This method should be called by signal with DirectConnection. ''' if self._queue_updated_processing: return self._queue_updated_processing = True self._queue_updated.emit() @Slot() def _signal_queue_updated(self): # update timeline pane # collect worst status levels for each history levels = [max([s.level for s in s.values()]) for s in self._timeline] self._timeline_pane.set_levels(levels) self._timeline_pane.redraw.emit() self._queue_updated_processing = False def resizeEvent(self, evt): """Overridden from QWidget""" rospy.logdebug('RobotMonitorWidget resizeEvent') if self._timeline_pane: self._timeline_pane.redraw.emit() @Slot(str) def _inspector_closed(self, name): """ Called when an inspector window is closed """ if name in self._inspectors: del self._inspectors[name] @Slot(QTreeWidgetItem, int) def _tree_clicked(self, item, column): """ Slot to QTreeWidget.itemDoubleClicked :type item: QTreeWidgetItem :type column: int """ rospy.logdebug('RobotMonitorWidget _tree_clicked col=%d', column) if item.name in self._inspectors: self._inspectors[item.name].activateWindow() else: insp = InspectorWindow(None, item.name, self._timeline) insp.show() insp.closed.connect(self._inspector_closed) self._inspectors[item.name] = insp def _update_message_state(self): """ Update the display if it's stale """ if self._timeline is not None: if self._timeline.has_messages: previous_stale_state = self._is_stale self._is_stale = self._timeline.is_stale time_diff = int(self._timeline.data_age) msg_template = "Last message received %s %s ago" if time_diff == 1: msg = msg_template % (time_diff, "second") else: msg = msg_template % (time_diff, "seconds") self._timeline_pane._msg_label.setText(msg) if previous_stale_state != self._is_stale: self._update_background_color() else: # no messages received yet self._timeline_pane._msg_label.setText("No messages received") def _update_background_color(self): """ Update the background color based on staleness """ p = self.tree_all_devices.palette() if self._is_stale: p.setColor(QPalette.Base, Qt.darkGray) p.setColor(QPalette.AlternateBase, Qt.lightGray) else: p.setColor(QPalette.Base, self._original_base_color) p.setColor(QPalette.AlternateBase, self._original_alt_base_color) self.tree_all_devices.setPalette(p) self.warn_flattree.setPalette(p) self.err_flattree.setPalette(p) def shutdown(self): """ This needs to be called whenever this class terminates. This closes all the instances on all trees. Also unregisters ROS' subscriber, stops timer. """ rospy.logdebug('RobotMonitorWidget in shutdown') names = self._inspectors.keys() for name in names: self._inspectors[name].close() if self._timeline: self._timeline.shutdown() self._timer.stop() del self._timer def save_settings(self, plugin_settings, instance_settings): instance_settings.set_value('splitter', self.splitter.saveState()) # TODO(ahendrix): persist the device paths, positions and sizes of any # inspector windows def restore_settings(self, plugin_settings, instance_settings): if instance_settings.contains('splitter'): self.splitter.restoreState(instance_settings.value('splitter')) else: self.splitter.setSizes([100, 100, 200]) # TODO(ahendrix): restore inspector windows
39.178218
85
0.665235
bc9c6956aab6c288dc419b3ee372744a4c5e47b6
10,150
py
Python
bigml/predicate_utils/utils.py
axellos162/python-4
569f6655871ea60b41e9442396433567b9daaea7
[ "Apache-2.0" ]
137
2015-01-12T06:04:10.000Z
2022-03-06T21:00:04.000Z
bigml/predicate_utils/utils.py
axellos162/python-4
569f6655871ea60b41e9442396433567b9daaea7
[ "Apache-2.0" ]
78
2015-01-13T18:28:51.000Z
2022-03-04T19:18:28.000Z
bigml/predicate_utils/utils.py
axellos162/python-4
569f6655871ea60b41e9442396433567b9daaea7
[ "Apache-2.0" ]
144
2015-01-16T06:13:33.000Z
2022-03-29T17:53:16.000Z
# -*- coding: utf-8 -*- # # Copyright 2020-2021 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Common auxiliar functions to be used in the node predicate evaluation """ import operator import re from bigml.util import plural # Operator Codes LT = 0 LE = 1 EQ = 2 NE = 3 GE = 4 GT = 5 IN = 6 # Map operator string to its corresponding code OPERATOR_CODE = {"<": LT, "<=": LE, "=": EQ, "!=": NE, "/=": NE, ">=": GE, ">": GT, "in": IN} # Map operator code to its corresponding function OPERATOR = [operator.lt, operator.le, operator.eq, operator.ne, operator.ge, operator.gt, operator.contains] INVERSE_OP = dict(zip(OPERATOR_CODE.values(), OPERATOR_CODE.keys())) RELATIONS = { '<=': 'no more than %s %s', '>=': '%s %s at most', '>': 'more than %s %s', '<': 'less than %s %s' } TM_TOKENS = 'tokens_only' TM_FULL_TERM = 'full_terms_only' TM_ALL = 'all' FULL_TERM_PATTERN = re.compile(r'^.+\b.+$', re.U) OPERATION_OFFSET = 2 FIELD_OFFSET = 3 VALUE_OFFSET = 4 TERM_OFFSET = 5 MISSING_OFFSET = 6 PREDICATE_INFO_LENGTH = 5 def term_matches(text, forms_list, options): """ Counts the number of occurences of the words in forms_list in the text The terms in forms_list can either be tokens or full terms. The matching for tokens is contains and for full terms is equals. """ token_mode = options.get('token_mode', TM_TOKENS) case_sensitive = options.get('case_sensitive', False) first_term = forms_list[0] if token_mode == TM_FULL_TERM: return full_term_match(text, first_term, case_sensitive) return term_matches_tokens(text, forms_list, case_sensitive) def is_full_term(term, field): """Returns a boolean showing if a term is considered as a full_term """ if term is not None: # new optype has to be handled in tokens if field['optype'] == 'items': return False options = field['term_analysis'] token_mode = options.get('token_mode', TM_TOKENS) if token_mode == TM_FULL_TERM: return True if token_mode == TM_ALL: return re.match(FULL_TERM_PATTERN, term) return False def full_term_match(text, full_term, case_sensitive): """Counts the match for full terms according to the case_sensitive option """ if not case_sensitive: text = text.lower() full_term = full_term.lower() return 1 if text == full_term else 0 def get_tokens_flags(case_sensitive): """Returns flags for regular expression matching depending on text analysis options """ flags = re.U if not case_sensitive: flags = (re.I | flags) return flags def term_matches_tokens(text, forms_list, case_sensitive): """Counts the number of occurences of the words in forms_list in the text """ flags = get_tokens_flags(case_sensitive) expression = r'(\b|_)%s(\b|_)' % '(\\b|_)|(\\b|_)'.join([re.escape(term) \ for term in forms_list]) pattern = re.compile(expression, flags=flags) matches = re.findall(pattern, text) return len(matches) def item_matches(text, item, options): """ Counts the number of occurences of the item in the text The matching considers the separator or the separating regular expression. """ separator = options.get('separator', ' ') regexp = options.get('separator_regexp') if regexp is None: regexp = r"%s" % re.escape(separator) return count_items_matches(text, item, regexp) def count_items_matches(text, item, regexp): """ Counts the number of occurences of the item in the text """ expression = r'(^|%s)%s($|%s)' % (regexp, re.escape(item), regexp) pattern = re.compile(expression, flags=re.U) matches = re.findall(pattern, text) return len(matches) def apply_predicates(node, input_data, fields, normalize_repeats=False): shift = 1 if normalize_repeats else 0 num_predicates = node[1 + shift] predicates_ok = 0 for i in range(num_predicates): operation = node[OPERATION_OFFSET + (PREDICATE_INFO_LENGTH * i) + shift] field = node[FIELD_OFFSET + (PREDICATE_INFO_LENGTH * i) + shift] value = node[VALUE_OFFSET + (PREDICATE_INFO_LENGTH * i) + shift] term = node[TERM_OFFSET + (PREDICATE_INFO_LENGTH * i) + shift] missing = node[MISSING_OFFSET + (PREDICATE_INFO_LENGTH * i) + shift] predicate_ok = apply_predicate(operation, field, value, term, missing, input_data, fields[field]) if predicate_ok: predicates_ok += 1 return predicates_ok def apply_predicate(operation, field, value, term, missing, input_data, field_info): """Applies the operators defined in the predicate as strings to the provided input data """ # for missing operators if input_data.get(field) is None: # text and item fields will treat missing values by following the # doesn't contain branch if term is None: return missing or ( operation == EQ and value is None) elif operation == NE and value is None: return True if term is not None: if field_info['optype'] == 'text': all_forms = field_info['summary'].get('term_forms', {}) term_forms = all_forms.get(term, []) terms = [term] terms.extend(term_forms) options = field_info['term_analysis'] input_terms = term_matches(input_data.get(field, ""), terms, options) return OPERATOR[operation](input_terms, value) # new items optype options = field_info['item_analysis'] input_items = item_matches(input_data.get(field, ""), term, options) return OPERATOR[operation](input_items, value) if operation == IN: return OPERATOR[operation](value, input_data[field]) return OPERATOR[operation](input_data[field], value) def pack_predicate(predicate): """Compacts the predicate condition """ node = list() if predicate and predicate is not True: operation = predicate.get('operator') value = predicate.get('value') missing = False if operation.endswith("*"): operation = operation[0: -1] missing = True elif operation == 'in' and None in value: missing = True node.append(OPERATOR_CODE.get(operation)) node.append(predicate.get('field')) node.append(value) node.append(predicate.get('term')) node.append(missing) else: node.append(True) return node def predicate_to_rule(operation, field_info, value, term, missing, label='name'): """Predicate condition string """ # externally forcing missing to True or False depending on the path if missing is None: missing = False if label is not None: name = field_info[label] else: name = "" operation = INVERSE_OP[operation] full_term = is_full_term(term, field_info) relation_missing = " or missing" if missing else "" if term is not None: relation_suffix = '' if ((operation == '<' and value <= 1) or (operation == '<=' and value == 0)): relation_literal = ('is not equal to' if full_term else 'does not contain') else: relation_literal = 'is equal to' if full_term else 'contains' if not full_term: if operation != '>' or value != 0: relation_suffix = (RELATIONS[operation] % (value, plural('time', value))) return "%s %s %s %s%s" % (name, relation_literal, term, relation_suffix, relation_missing) if value is None: return "%s %s" % (name, "is missing" if operation == '=' else "is not missing") return "%s %s %s%s" % (name, operation, value, relation_missing) def to_lisp_rule(operation, field, value, term, missing, field_info): """Builds rule string in LISP from a predicate """ if term is not None: if field_info['optype'] == 'text': options = field_info['term_analysis'] case_insensitive = not options.get('case_sensitive', False) case_insensitive = 'true' if case_insensitive else 'false' language = options.get('language') language = "" if language is None else " %s" % language return "(%s (occurrences (f %s) %s %s%s) %s)" % ( operation, field, term, case_insensitive, language, value) if field_info['optype'] == 'items': return "(%s (if (contains-items? %s %s) 1 0) %s)" % ( operation, field, term, value) if value is None: negation = "" if operation == "=" else "not " return "(%s missing? %s)" % (negation, field) rule = "(%s (f %s) %s)" % (operation, field, value) if missing: rule = "(or (missing? %s) %s)" % (field, rule) return rule
33.061889
80
0.591034
957fc248015ace0a7f263e6ab741f7bd28519c20
1,717
py
Python
visualiser/facades/ociVault.py
LaudateCorpus1/oci-designer-toolkit
4b6af0d8088ea3f3b61cb3b6076a1382c269d8b4
[ "UPL-1.0", "Apache-2.0" ]
186
2020-05-12T23:02:38.000Z
2022-03-25T04:29:25.000Z
visualiser/facades/ociVault.py
LaudateCorpus1/oci-designer-toolkit
4b6af0d8088ea3f3b61cb3b6076a1382c269d8b4
[ "UPL-1.0", "Apache-2.0" ]
145
2020-05-13T17:40:00.000Z
2022-03-22T17:27:11.000Z
visualiser/facades/ociVault.py
LaudateCorpus1/oci-designer-toolkit
4b6af0d8088ea3f3b61cb3b6076a1382c269d8b4
[ "UPL-1.0", "Apache-2.0" ]
96
2020-05-13T16:00:08.000Z
2022-03-25T06:22:12.000Z
#!/usr/bin/python # Copyright (c) 2020, 2021, Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. """Provide Module Description """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# __author__ = ["Andrew Hopkinson (Oracle Cloud Solutions A-Team)"] __version__ = "1.0.0" __module__ = "ociVault" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# import oci from common.okitLogging import getLogger from facades.ociConnection import OCIVaultConnection # Configure logging logger = getLogger() class OCIVaults(OCIVaultConnection): def __init__(self, config=None, configfile=None, profile=None, compartment_id=None): self.compartment_id = compartment_id self.vaults_json = [] super(OCIVaults, self).__init__(config=config, configfile=configfile, profile=profile) def list(self, compartment_id=None, filter=None): if compartment_id is None: compartment_id = self.compartment_id # Add filter to only return AVAILABLE Compartments if filter is None: filter = {} if 'lifecycle_state' not in filter: filter['lifecycle_state'] = 'AVAILABLE' vaults = oci.pagination.list_call_get_all_results(self.client.list_vaults, compartment_id=compartment_id).data # Convert to Json object vaults_json = self.toJson(vaults) logger.debug(str(vaults_json)) # Filter results self.vaults_json = self.filterJsonObjectList(vaults_json, filter) logger.debug(str(self.vaults_json)) return self.vaults_json
32.396226
118
0.631916
aeb629a1f8eb6e293971ff976d205dfe5f33e9da
331
py
Python
projects/noise/random_noise.py
JonasKoenig/CodeOnMyMind
d169a424f29d603f0510f98d265d68c26a333a6b
[ "MIT" ]
3
2019-02-20T22:01:37.000Z
2022-03-02T20:06:16.000Z
projects/noise/random_noise.py
JonasKoenig/CodeOnMyMind
d169a424f29d603f0510f98d265d68c26a333a6b
[ "MIT" ]
null
null
null
projects/noise/random_noise.py
JonasKoenig/CodeOnMyMind
d169a424f29d603f0510f98d265d68c26a333a6b
[ "MIT" ]
null
null
null
import numpy as np size = 32 np.random.seed(42) # normalized random noise map map = np.random.rand(size,size) # pretty print shades = [' ', '░░', '▒▒', '▓▓', '██'] string = '' for y in range(0,size): for x in range(0,size): string += shades[int(np.floor(map[y][x]*(len(shades))))] string += '\n' print(string)
18.388889
64
0.577039
faf5ac080eff7d959686146df2863ac76246c818
7,800
py
Python
python/recommender.py
mpab/RobocodeML
30edd0395df54ef5a035cbecb70eddf2eb3a99ac
[ "Apache-2.0" ]
1
2020-11-20T23:02:05.000Z
2020-11-20T23:02:05.000Z
python/recommender.py
mpab/RobocodeML
30edd0395df54ef5a035cbecb70eddf2eb3a99ac
[ "Apache-2.0" ]
1
2022-03-04T04:16:56.000Z
2022-03-04T04:16:56.000Z
python/recommender.py
mpab/RobocodeML
30edd0395df54ef5a035cbecb70eddf2eb3a99ac
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import random import io import copy import util import observations import cfg import models import extractor import features import datasets model_name = 'AdaBoost' # features_classification_filter = 'pure_boolean_classified' # target_filter = 'enemy_collisions' __classification_metamodels__ = [None] num_actions = 5 def make_key(features_classification, target_name): return features_classification + '_' + model_name + '_' + target_name def model_path(features_classification, target_name): path = '../data/models/' + features_classification + '/' + model_name + '/' + target_name # print(path) return path def classification_models(): if __classification_metamodels__[0] is not None: return __classification_metamodels__[0] print('loading models') classification_metamodels = {} for features_classification in cfg.features_classes: for target_name in cfg.onehot_targets: mm = models.load(model_path(features_classification, target_name)) key = make_key(features_classification, target_name) classification_metamodels[key] = mm __classification_metamodels__[0] = classification_metamodels return __classification_metamodels__[0] def select_classification_metamodel(features_classification, target_name): key = make_key(features_classification, target_name) return classification_models()[key] def test_select_classification_metamodel(): for features_class in cfg.features_classes: for target in cfg.onehot_targets: mdl = select_classification_metamodel(features_class, target) print('features_class: {}, target: {}, model: {}'.format(features_class, target, mdl.name)) def model(feat_class_filt, target_name): return select_classification_metamodel(feat_class_filt, target_name).model def randomized_actions(): indices = random.sample(range(1, num_actions + 1), num_actions) for idx in indices: yield idx def create_features_test_dataset(feat_class_filt, feat, target_name): csv_data = features.header() record = extractor.extract(feat_class_filt, feat) if record is None: raise RuntimeError("no feature converter for features_class: {}".format(feat_class_filt)) test_features = [] for action in randomized_actions(): test_feature = copy.copy(record) test_feature.action = action test_features.append(test_feature) csv_data += '\n' csv_data += features.to_string(test_feature) data_fp = io.StringIO(csv_data) ds = datasets.from_csv(data_fp, cfg.onehot_targets, target_name) return ds, test_features def predict(obs, feat_class_filt, target_name): pure_pure = features.observation_to_features(obs) if pure_pure is None: raise RuntimeError("failed to convert observation to features") ds, test_features = create_features_test_dataset(feat_class_filt, pure_pure, target_name) mdl = model(feat_class_filt, target_name) predictions = mdl.predict(ds.data) return predictions, ds.data, test_features def random_recommendation(obs): action = random.randint(1, 5) obs.action = action return obs def randomize_predictions(predictions): np = len(predictions) indices = random.sample(range(1, np + 1), np) for idx in indices: yield predictions[idx] def min_max(obs, feat_class_filt, target_name): predictions, _, test_features = predict(obs, feat_class_filt, target_name) lowest = 99999 highest = -1 for idx, p in enumerate(predictions): if p < lowest: lowest = p min_feat = test_features[idx] if p > highest: highest = p max_feat = test_features[idx] return lowest, min_feat, highest, max_feat def xminimise(obs, feat_class_filt, target_name): lowest, min_feat, highest, max_feat = min_max(obs, feat_class_filt, target_name) obs.action = min_feat.action print("minimise {} recommendation: {} ({})".format(target_name, obs.action, lowest)) print("{}/{})".format(predictions, features.to_string(feat))) return lowest, highest def minimise(obs, feat_class_filt, target_name): predictions, _, test_features = predict(obs, feat_class_filt, target_name) lowest = 99999 for idx, p in enumerate(predictions): if p < lowest: lowest = p feat = test_features[idx] obs.action = feat.action # print("minimise {} recommendation: {} ({})".format(target_name, obs.action, lowest)) # print("{}/{})".format(predictions, features.to_string(feat))) return lowest def maximise(obs, feat_class_filt, target_name): predictions, _, test_features = predict(obs, feat_class_filt, target_name) highest = -1 for idx, p in enumerate(predictions): if p > highest: highest = p feat = test_features[idx] obs.action = feat.action # print("maximise {} recommendation: {} ({})".format(target_name, obs.action, highest)) # print("{}/{})".format(predictions, features.to_string(feat))) return highest def minimise_enemy_collisions(obs): return minimise(obs, 'scaled_pure', 'enemy_collisions') def minimise_wall_collisions(obs): return minimise(obs, 'scaled_pure', 'wall_collisions') def minimise_shell_wounds(obs): return minimise(obs, 'scaled_pure', 'shell_wounds') def maximise_shell_intercepts(obs): return maximise(obs, 'scaled_pure', 'shell_intercepts') def maximise_shell_hits(obs): return maximise(obs, 'scaled_pure', 'shell_hits') def recommend(obs): lowest = minimise_wall_collisions(obs) return lowest def test_recommendations_from_observations(): obs_fp = cfg.ensure_fp(cfg.observations_root, cfg.observations) print("recommending from: {}".format(obs_fp)) obs_list = util.csv_to_json(obs_fp) print('-------------------- PREDICTIONS --------------------') for idx, jsn in enumerate(obs_list): obs = observations.json_to_observation(jsn) for feat_class_filt in cfg.features_classes: for target in cfg.onehot_targets: predictions, _, test_features = predict(obs, feat_class_filt, target) found = False n = predictions[0] for t in predictions: if found: continue if n != t: print("{}: target={}, feat_class_filt={}, predictions={}".format( idx, target, feat_class_filt, predictions)) for f in test_features: print(features.to_string(f)) found = True continue def test_recommenders(): obs_fp = cfg.ensure_fp(cfg.observations_root, cfg.observations) print("recommending from: {}".format(obs_fp)) obs_list = util.csv_to_json(obs_fp) print('-------------------- RECOMMENDATIONS --------------------') for idx, jsn in enumerate(obs_list): print('observation: {}'.format(idx)) obs = observations.json_to_observation(jsn) minimise_enemy_collisions(obs) minimise_wall_collisions(obs) minimise_shell_wounds(obs) maximise_shell_intercepts(obs) maximise_shell_hits(obs) def test_randomized_actions(): for _ in range(10000): for idx in randomized_actions(): if idx < 1 or idx > num_actions: raise RuntimeError('randomized_actions: {}'.format(idx)) print('randomized_actions passed') def main(): test_randomized_actions() test_recommenders() # test_recommendations_from_observations() if __name__ == "__main__": main()
30.46875
103
0.673205
e918f242dfe8182e33a9f179d04d1048689b8118
2,062
py
Python
solve_state.py
imVincentTan/wordle-solver
b57d5ec9d2d6426d05449b9230a08405040b4b19
[ "MIT" ]
null
null
null
solve_state.py
imVincentTan/wordle-solver
b57d5ec9d2d6426d05449b9230a08405040b4b19
[ "MIT" ]
null
null
null
solve_state.py
imVincentTan/wordle-solver
b57d5ec9d2d6426d05449b9230a08405040b4b19
[ "MIT" ]
null
null
null
from math import log2 from hints_calculator import HintsCalculator from tools import Tools class SolveState(Tools): def __init__(self, possible_letters, number_of_characters, valid_words) -> None: self.possible_letters = possible_letters self.number_of_characters = number_of_characters self.valid_input_words = valid_words self.possible_final_answers = valid_words def get_submission_hints(self, input_word, target_word): hints_calculator = HintsCalculator(input_word, target_word) return hints_calculator.get_hints() def get_sorted_word_to_expected_score(self): # TODO: improve algorithm to be faster word_score_pairs = [] for input_word in self.valid_input_words: word_score_pairs.append([input_word, self.get_expected_score(input_word)]) word_score_pairs.sort(key=lambda x: x[1], reverse=True) return word_score_pairs def get_expected_score(self, input_word): hint_pattern_to_frequency_map = self.get_hint_pattern_to_frequency_map(input_word) score = 0 for key in hint_pattern_to_frequency_map: score += self.get_score_gained_by_occurrences(hint_pattern_to_frequency_map[key]) return score def get_score_gained_by_occurrences(self, occurrences): probability_of_hint = occurrences / self.get_number_of_valid_inputs() weight = log2(1/probability_of_hint) return probability_of_hint * weight def get_number_of_valid_inputs(self): return len(self.valid_input_words) def get_hint_pattern_to_frequency_map(self, input_word): hint_pattern_to_frequency_map = {} for target_word in self.valid_input_words: hint_pattern = self.get_submission_hints(input_word, target_word) if hint_pattern in hint_pattern_to_frequency_map: hint_pattern_to_frequency_map[hint_pattern] += 1 else: hint_pattern_to_frequency_map[hint_pattern] = 1 return hint_pattern_to_frequency_map
41.24
93
0.730844
7bae862657f38a00a09cbf95a98e2e374da89758
4,169
py
Python
tetris-server/app.py
OrhanKupusoglu/docker-tetris
42f70431e686264f8dd66e7d419674b7271a66e6
[ "MIT" ]
9
2018-04-06T23:10:59.000Z
2022-01-21T01:04:51.000Z
tetris-server/app.py
OrhanKupusoglu/docker-tetris
42f70431e686264f8dd66e7d419674b7271a66e6
[ "MIT" ]
null
null
null
tetris-server/app.py
OrhanKupusoglu/docker-tetris
42f70431e686264f8dd66e7d419674b7271a66e6
[ "MIT" ]
5
2019-09-18T22:04:35.000Z
2022-01-04T20:27:37.000Z
""" Tetris Server Flask: http://flask.pocoo.org/ Tetris: https://github.com/ytiurin/tetris """ import os import uuid import time import logging import logging.handlers import json from flask import ( abort, Flask, request, Response, session, g, jsonify, redirect, url_for, abort, render_template, flash, ) # APP app = Flask(__name__, static_folder='static', static_url_path='') app.config.update(dict( SECRET_KEY = str(uuid.uuid4()), LOG_ENABLED = True, LOG_LEVEL = 'INFO', LOG_FILE = 'tetris-server/static/log/server.txt', LOG_MAX_BYTES = 1024 * 1024, LOG_BACKUP_COUNT = 10, SHUTDOWN_IF_LOCALHOST_ONLY = True )) app.config.from_envvar('TETRIS_SERVER_SETTINGS', silent=True) # LOGGER if app.config['LOG_ENABLED']: logHandler = logging.handlers.RotatingFileHandler(app.config['LOG_FILE'], maxBytes=app.config['LOG_MAX_BYTES'], backupCount=app.config['LOG_BACKUP_COUNT']) logHandler.setFormatter(logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")) if app.config['LOG_LEVEL'] == 'DEBUG': app.logger.setLevel(logging.DEBUG) elif app.config['LOG_LEVEL'] == 'INFO': app.logger.setLevel(logging.INFO) elif app.config['LOG_LEVEL'] == 'WARNING': app.logger.setLevel(logging.WARNING) elif app.config['LOG_LEVEL'] == 'ERROR': app.logger.setLevel(logging.ERROR) elif app.config['LOG_LEVEL'] == 'CRITICAL': app.logger.setLevel(logging.CRITICAL) app.logger.addHandler(logHandler) logging.getLogger('werkzeug').addHandler(logHandler) with open(app.config['LOG_FILE'], 'a') as log_file: log_file.write('\n' + 80*'-' + '\n\n') else: app.logger.disabled = True logging.getLogger('werkzeug').disabled = True app.logger.info('Application started') # HELPER FUNCTIONS def is_localhost(): remote_addr = request.environ['REMOTE_ADDR'] app.logger.info('request - remote addr = {}'.format(remote_addr)) return remote_addr == '127.0.0.1' or remote_addr == '::1' def shutdown_server(): func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('not running with the Werkzeug Server') func() # ROUTES @app.route('/') def show_root(): app.logger.info('URL: {} - client: {}\n\t{}'.format(request.url, request.remote_addr, request.headers.get('User-Agent'))) return redirect(url_for('show_game')) @app.route('/tetris') def show_game(): return redirect(url_for('get_game', file='index.html')) @app.route('/tetris/<path:file>') def get_game(file): app.logger.info('URL: {} - client: {}\n\t{}'.format(request.url, request.remote_addr, request.headers.get('User-Agent'))) return app.send_static_file('tetris/' + file) @app.route('/log') def show_log(): app.logger.info('URL: {} - client: {}\n\t{}'.format(request.url, request.remote_addr, request.headers.get('User-Agent'))) return app.send_static_file('log/server.txt') @app.route('/shutdown', methods=['POST']) def shutdown(): app.logger.info('URL: {} - client: {}\n\t{}'.format(request.url, request.remote_addr, request.headers.get('User-Agent'))) if app.config['SHUTDOWN_IF_LOCALHOST_ONLY']: if not is_localhost(): abort(401) shutdown_server() return 'Service shutting down...' # ERRORS @app.errorhandler(401) def unauthorized(error=None): message = {'status': 401, 'message': 'Unauthorized', 'url': request.url} resp = jsonify(message) resp.status_code = 401 return resp @app.errorhandler(404) def not_found(error=None): message = {'status': 404, 'message': 'Not Found', 'url': request.url} resp = jsonify(message) resp.status_code = 404 return resp @app.errorhandler(500) def not_found(error=None): message = {'status': 500, 'message': 'Internal Server Error', 'url': request.url} resp = jsonify(message) resp.status_code = 500 return resp
27.427632
125
0.637083
1390237717c3ef8fd76398e6ce5c5dea7908a60b
9,790
py
Python
bin/add_attachments.py
mardub1635/acl-anthology
448c9d8919736c7493e57af505dfb06cf11dc43a
[ "Apache-2.0" ]
null
null
null
bin/add_attachments.py
mardub1635/acl-anthology
448c9d8919736c7493e57af505dfb06cf11dc43a
[ "Apache-2.0" ]
null
null
null
bin/add_attachments.py
mardub1635/acl-anthology
448c9d8919736c7493e57af505dfb06cf11dc43a
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2019 Matt Post <post@cs.jhu.edu> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Used to add attachments to the Anthology. Usage: add_attachments.py CSV_FILE Where CSV_FILE is output from the Microsoft form (https://forms.office.com/Pages/ResponsePage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAMAABqTSThUN0I2VEdZMTk4Sks3S042MVkxUEZQUVdOUS4u) we use to collect attachments, and has the following headers: ID,Start time,Completion time,Email,Name,Anthology ID,URL where we can download the attachment,Attachment type,"For corrections or errata, please explain in detailed prose what has changed.",Your name,Your email address,I agree to the Anthology's CC-BY-4.0 distribution license. Downloads the files, edits the XML, and dumps a log to add_attachments.log, along with emails to be sent to those whose imports failed. """ import argparse import csv import filetype import os import shutil import ssl import sys import tempfile from anthology.utils import build_anthology_id, deconstruct_anthology_id, indent import lxml.etree as ET import urllib.request ALLOWED_TYPES = ["pdf", "pptx", "zip"] ATTACHMENT_TYPES = "Poster Presentation Note Software Supplementary Dataset".split() def add_attachment(anthology_id, path, attach_type, overwrite=False): """ Adds a single attachment to the Anthology data files. Arguments: - The ACL ID of the paper (e.g., P17-1012) - The path to the attachment (can be a URL) - The attachment type (poster, presentation, note, software) - Whether to overwrite the downloaded file. """ collection_id, volume_id, paper_id = deconstruct_anthology_id(anthology_id) if path.startswith("http"): _, input_file_path = tempfile.mkstemp() try: print( f"-> Downloading file from {path} to {input_file_path}", file=sys.stderr ) request = urllib.request.Request(path, headers={'User-Agent': 'Mozilla/5.0'}) with urllib.request.urlopen(request) as url, open( input_file_path, mode="wb" ) as input_file_fh: input_file_fh.write(url.read()) except ssl.SSLError: raise Exception(f"Could not download {path}") except Exception as e: raise e else: input_file_path = path file_extension = path.replace("?dl=1", "").split(".")[-1] # Many links from file sharing services are not informative and don't have # extensions, so we could try to guess. if file_extension not in ALLOWED_TYPES: detected = filetype.guess(input_file_path) if detected is not None: file_extension = detected.mime.split("/")[-1] if file_extension not in ALLOWED_TYPES: print( f"Could not determine file extension for {anthology_id} at {path}", file=sys.stderr, ) # Update XML xml_file = os.path.join( os.path.dirname(sys.argv[0]), "..", "data", "xml", f"{collection_id}.xml" ) tree = ET.parse(xml_file) attachment_file_name = f"{anthology_id}.{attach_type}.{file_extension}" paper = tree.getroot().find(f"./volume[@id='{volume_id}']/paper[@id='{paper_id}']") if paper is not None: # Check if attachment already exists for attachment in paper.findall("attachment"): if attachment.text == attachment_file_name: print( f"-> attachment {attachment_file_name} already exists in the XML", file=sys.stderr, ) break else: attachment = ET.Element("attachment") attachment.attrib["type"] = attach_type.lower() attachment.text = attachment_file_name paper.append(attachment) indent(tree.getroot()) tree.write(xml_file, encoding="UTF-8", xml_declaration=True) print( f"-> added attachment {attachment_file_name} to the XML", file=sys.stderr ) else: print(f"Paper {anthology_id} not found in the Anthology", file=sys.stderr) # Make sure directory exists output_dir = os.path.join(args.attachment_root, collection_id[0], collection_id) if not os.path.exists(output_dir): # print(f"-> Creating directory {output_dir}", file=sys.stderr) os.makedirs(output_dir) # Copy file dest_path = os.path.join(output_dir, attachment_file_name) if os.path.exists(dest_path) and not overwrite: print( f"-> target file {dest_path} already in place, refusing to overwrite", file=sys.stderr, ) return None shutil.copy(input_file_path, dest_path) os.chmod(dest_path, 0o644) print(f"-> copied {input_file_path} to {dest_path} and fixed perms", file=sys.stderr) # Clean up if path.startswith("http"): os.remove(input_file_path) return dest_path def main(args): attachments = {} with open(args.csv_file) as csv_file: for row in csv.DictReader(csv_file): # ID,Start time,Completion time,Email,Name,Anthology ID,URL where we can download the attachment,Attachment type,"For corrections or errata, please explain in detailed prose what has changed.",Your name,Your email address,I agree to the Anthology's CC-BY-4.0 distribution license anthology_id = row["Anthology ID"].strip() download_path = row["URL"] attachment_type = row["Attachment type"] submitter_name = row["Your name"] submitter_email = row["Your email address"] submitted = row["Completion time"] if attachment_type not in ATTACHMENT_TYPES: print( f"{anthology_id}: Skipping unknown type {attachment_type}: {download_path}", file=sys.stderr, ) continue if anthology_id in attachments: print( f"{anthology_id}: Received multiple entries, only processing the last one ({attachment_type}): {download_path}", file=sys.stderr, ) attachments[anthology_id] = ( download_path, attachment_type, submitter_name, submitter_email, submitted, ) succeeded = 0 failed = 0 with open(args.logfile, "a") as log: for anthology_id, (path, attach_type, name, email, date) in attachments.items(): try: print(f"Processing attachment for {anthology_id}", file=sys.stderr) success = add_attachment( anthology_id, path, attach_type, overwrite=args.overwrite ) if success: succeeded += 1 print(f"{anthology_id}: SUCCESS.", file=log) else: print(f"{anthology_id}: ALREADY DONE (use -o to redo).", file=log) except Exception as reason: failed += 1 print(f"{anthology_id}: FAILURE", file=log) with open(f"{args.logfile}.{anthology_id}.txt", "w") as email_log: print( f"{email}\n" f"ACL Anthology: failed to add attachment for {anthology_id}\n" f"Dear {name},\n" f"\n" f"On {date} you submitted the following attachment to the ACL Anthology\n" f"\n" f" paper ID: {anthology_id}\n" f" link: {path}\n" f"\n" f"Adding this attachment failed. The reason reported was:\n" f"\n" f" {reason}\n" f"\n" f"To resubmit, follow the instructions here:\n" f"\n" f" https://www.aclweb.org/anthology/info/corrections/\n", f"\n" f"There is no need to respond to this email.\n" f"\n" f"Sincerely,\n" f"Matt Post\n" f"Anthology Director\n", file=email_log, ) print( f"Processed {len(attachments)} attachments ({succeeded} succeeded, {failed} failed)." ) print(f"Wrote logfile to {args.logfile}.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("csv_file", help="The CSV file from the Microsoft form") parser.add_argument( "--overwrite", "-o", action="store_true", help="Overwrite attachments" ) parser.add_argument( "--logfile", "-l", default="add_attachments.log", help="Logfile to write to" ) parser.add_argument( "--attachment-root", "-d", default=os.path.join(os.environ["HOME"], "anthology-files/attachments"), help="Anthology web directory root.", ) args = parser.parse_args() main(args)
38.543307
291
0.594382
b4af888c05052c270fcf9a0f7a3024ae77bb61fa
1,627
py
Python
Kai/crab/NANOv7_NoveCampaign/2018/crab_cfg_2018_tt_DL-GF.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
1
2022-01-17T17:29:38.000Z
2022-01-17T17:29:38.000Z
Kai/crab/NANOv7_NoveCampaign/2018/crab_cfg_2018_tt_DL-GF.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
null
null
null
Kai/crab/NANOv7_NoveCampaign/2018/crab_cfg_2018_tt_DL-GF.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
1
2021-12-15T10:56:50.000Z
2021-12-15T10:56:50.000Z
import os from WMCore.Configuration import Configuration from CRABClient.UserUtilities import config, getUsernameFromCRIC config = Configuration() config.section_("General") config.General.requestName = '2018_tt_DL-GF' config.General.transferOutputs = True config.General.transferLogs = True config.section_("JobType") config.JobType.allowUndistributedCMSSW = True config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'crab_PSet_2018_tt_DL-GF.py' config.JobType.maxMemoryMB = 3000 config.JobType.maxJobRuntimeMin = 1315 config.JobType.numCores = 1 config.JobType.scriptExe = 'crab_script_2018_tt_DL-GF.sh' config.JobType.inputFiles = ['crab_script_2018_tt_DL-GF.py', os.path.join(os.environ['CMSSW_BASE'],'src/PhysicsTools/NanoAODTools/scripts/haddnano.py'), ] config.JobType.outputFiles = [] #['hist.root'] config.JobType.sendPythonFolder = True config.section_("Data") config.Data.inputDataset = '/TTTo2L2Nu_HT500Njet7_TuneCP5_13TeV-powheg-pythia8/RunIIAutumn18NanoAODv7-Nano02Apr2020_102X_upgrade2018_realistic_v21-v1/NANOAODSIM' config.Data.inputDBS = 'global' config.Data.splitting = 'FileBased' if config.Data.splitting == 'FileBased': config.Data.unitsPerJob = 1 # config.Data.totalUnits = $TOTAL_UNITS # config.Data.userInputFiles = [] # config.Data.outLFNDirBase = '/store/user/{user}/NoveCampaign'.format(user=getUsernameFromCRIC()) config.Data.outLFNDirBase = '/store/group/fourtop/NoveCampaign' config.Data.publication = True config.Data.outputDatasetTag = 'NoveCampaign' config.section_("Site") config.Site.storageSite = 'T2_BE_IIHE'
40.675
161
0.777505
3afc862a4da7214a8d147df8ed03e28da80b06e7
60,851
py
Python
tobii_pro_wrapper/tobii_pro_wrapper.py
anthonycrane/tobii_pro_wrapper
65292966f2b3a9ec9bef0382878a397406ec974d
[ "Apache-2.0" ]
null
null
null
tobii_pro_wrapper/tobii_pro_wrapper.py
anthonycrane/tobii_pro_wrapper
65292966f2b3a9ec9bef0382878a397406ec974d
[ "Apache-2.0" ]
null
null
null
tobii_pro_wrapper/tobii_pro_wrapper.py
anthonycrane/tobii_pro_wrapper
65292966f2b3a9ec9bef0382878a397406ec974d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Psychopy supported Tobii controller for the new Pro SDK # Authors: Olivia Guayasamin # Date: 8/3/2017 # Requirements: Python 2.7 32 Bit (SDK required) # Tobii Pro SDK 1.0 for Python, and all dependencies # Psychopy, Psychopy.iohub, and all dependencies # numpy, scipy, and win32api # Summary: Currently provides all functionality for running a FULL CALIBRATION # ROUTINE for 5 and 9 point calibrations, and converting between Tobii # Trackbox, Tobii ADA, and Psychopy coordinate systems. # This code also contains functionality for finding/calibrating the # experimental monitor, connecting to keyboard/mouse devices, selecting and # connecting to a tobii device, getting tobii device parameters, and getting # real time gaze and eye position data from the tobii tracker. # Notes: This code is currently designed for working with a tobii eyetracker # installed on the same device as the one for running experiments (laptop set- # up with a single connected eyetracker, no external monitors, and no tobii # external processors). It should be straightforward to adapt to other # computer/monitor set-ups, but adaptation is required. Created on Windows OS. # Not guaranteed. # Please contact for questions. This will be updated as more functionality is # added. # -----Import Required Libraries----- import pyglet from psychopy import core as pcore from psychopy import monitors, visual, gui, data, event from psychopy.iohub import launchHubServer import datetime as dt import numpy as np from scipy.spatial import distance import tobii_research as tobii import collections # -----Class for working with Tobii Eyetrackers ----- class TobiiHelper: def __init__(self): self.eyetracker = None self.adaCoordinates = {} self.tbCoordinates = {} self.calibration = None self.tracking = False self.win = None self.gazeData = {} self.syncData = {} self.currentOutData = {} # ----- Functions for initialzing the eyetracker and class attributes ----- # find and connect to a tobii eyetracker def findTracker(self, serialString = None): # try to find all eyetrackers allTrackers = tobii.find_all_eyetrackers() # if there are no eyetrackers if len(allTrackers) < 1: raise ValueError("Cannot find any eyetrackers.") # if there is no serialString specified, use first found eyetracker if serialString is None: # use first found eyetracker eyetracker = allTrackers[0] address = eyetracker.address print("Address: " + eyetracker.address) print("Model: " + eyetracker.model) print("Name: " + eyetracker.device_name) print("Serial number: " + eyetracker.serial_number) # create eyetracker object self.eyetracker = tobii.EyeTracker(address) # if serial number is not given as a string elif not isinstance(serialString, basestring): raise TypeError("Serial number must be formatted as a string.") # if serial number is given as a string else: # get information about available eyetrackers for eyetracker in allTrackers: if eyetracker.serial_number == serialString: address = eyetracker.address print("Address: " + eyetracker.address) print("Model: " + eyetracker.model) # fine if name is empty print("Name: " + eyetracker.device_name) print("Serial number: " + eyetracker.serial_number) # create eyetracker object self.eyetracker = tobii.EyeTracker(address) # check to see that eyetracker is connected if self.eyetracker is None: print("Eyetracker did not connect. Check serial number?") else: print("Eyetracker connected successfully.") # function for getting trackbox (tb) and active display area (ada)coordinates, returns # coordintes in two separate dictionaries with values in mm def getTrackerSpace(self): # check to see that eyetracker is connected if self.eyetracker is None: raise ValueError("There is no eyetracker.") # get active display area information in mm as a dictionary displayArea = self.eyetracker.get_display_area() self.adaCoordinates['bottomLeft'] = displayArea.bottom_left self.adaCoordinates['bottomRight'] = displayArea.bottom_right self.adaCoordinates['topLeft'] = displayArea.top_left self.adaCoordinates['topRight'] = displayArea.top_right self.adaCoordinates['height'] = displayArea.height self.adaCoordinates['width'] = displayArea.width # get track box information in mm, return only the 2d coordinates # of the cube side closest to the eyetracker trackBox = self.eyetracker.get_track_box() self.tbCoordinates['bottomLeft'] = trackBox.front_lower_left self.tbCoordinates['bottomRight'] = trackBox.front_lower_right self.tbCoordinates['topLeft'] = trackBox.front_upper_left self.tbCoordinates['topRight'] = trackBox.front_upper_right # calculate box height and width trackBoxHeight = np.absolute(trackBox.front_lower_left[1] - trackBox.front_upper_right[1]) trackBoxWidth = np.absolute(trackBox.front_lower_left[0] - trackBox.front_lower_right[0]) self.tbCoordinates['height'] = trackBoxHeight self.tbCoordinates['width'] = trackBoxWidth # define and calibrate experimental monitor, set monitor dimensions def setMonitor(self, nameString = None, dimensions = None): # find all connected monitors allMonitors = monitors.getAllMonitors() # if there are no eyetrackers if len(allMonitors) < 1: raise ValueError("Psychopy can't find any monitors.") # if no dimensions given if dimensions is None: # use current screen dimensions platform = pyglet.window.get_platform() display = platform.get_default_display() screen = display.get_default_screen() dimensions = (screen.width, screen.height) # if dimension not given as tuple elif not isinstance(dimensions, tuple): raise TypeError("Dimensions must be given as tuple.") # if there is not monitor name defined, go to first default monitor if nameString is None: # create monitor calibration object thisMon = monitors.Monitor(allMonitors[0]) print("Current monitor name is: " + allMonitors[0]) # set monitor dimensions thisMon.setSizePix(dimensions) # save monitor thisMon.saveMon() # save monitor calibration self.win = thisMon # if serial number is not given as a string elif not isinstance(nameString, basestring): raise TypeError("Monitor name must be formatted as a string.") # if serial number is given as a string else: # create monitor calibration object thisMon = monitors.Monitor(nameString) print("Current monitor name is: " + nameString) # set monitor dimensions thisMon.setSizePix(dimensions) # save monitor thisMon.saveMon() # save monitor calibration self.win = thisMon # ----- Functions for starting and stopping eyetracker data collection ----- # function for broadcasting real time gaze data def gazeDataCallback(self,startGazeData): self.gazeData = startGazeData # function for subscribing to real time gaze data from eyetracker def startGazeData(self): # check to see if eyetracker is there if self.eyetracker is None: raise ValueError("There is no eyetracker.") # if it is, proceed print("Subscribing to eyetracker.") self.eyetracker.subscribe_to(tobii.EYETRACKER_GAZE_DATA, self.gazeDataCallback, as_dictionary = True) self.tracking = True # function for unsubscring from gaze data def stopGazeData(self): # check to see if eyetracker is there if self.eyetracker is None: raise ValueError("There is no eyetracker.") # if it is, proceed print("Unsubscribing from eyetracker") self.eyetracker.unsubscribe_from(tobii.EYETRACKER_GAZE_DATA, self.gazeDataCallback) self.tracking = False # ----- Helper functions ----- # function for checking tracker and computer synchronization def timeSyncCallback(self, timeSyncData): self.syncData = timeSyncData # broadcast synchronization data def startSyncData(self): #check that eyetracker is connected if self.eyetracker is None: raise ValueError('Eyetracker is not connected.') # if it is , proceed print("Subscribing to time synchronization data") self.eyetracker.subscribe_to(tobii.EYETRACKER_TIME_SYNCHRONIZATION_DATA, self.timeSyncCallback, as_dictionary=True) # stop broadcasting synchronization data def stopSyncData(self): self.eyetracker.unsubscribe_from(tobii.EYETRACKER_TIME_SYNCHRONIZATION_DATA, self.timeSyncCallback) print("Unsubscribed from time synchronization data.") # function for converting positions from trackbox coordinate system (mm) to # normalized active display area coordinates def tb2Ada(self, xyCoor = tuple): # check argument values if xyCoor is None: raise ValueError("No coordinate values have been specified.") elif not isinstance(xyCoor, tuple): raise TypeError("XY coordinates must be given as tuple.") elif isinstance(xyCoor, tuple) and len(xyCoor) is not 2: raise ValueError("Wrong number of coordinate dimensions") # check tracker box and ada coordinates if self.tbCoordinates is None or self.adaCoordinates is None: raise ValueError("Missing trackbox coordinates. \n" +\ "Try running getTrackerSpace()") # get tb and ada values from eyetracker tbDict = self.tbCoordinates tbLowLeft = (tbDict.get('bottomLeft')[0], tbDict.get('bottomLeft')[1]) adaDict = self.adaCoordinates adaLowLeft = ((adaDict.get('width')/-2), (adaDict.get('height')/-2)) # create ratios for x and y coordinates yRatio = tbLowLeft[1]/adaLowLeft[1] xRatio = tbLowLeft[0]/adaLowLeft[0] # convert and return coordinates adaNorm = ((xyCoor[0] * xRatio), (xyCoor[1] * yRatio)) return adaNorm # function for converting normalized coordinates to normalized coordinates # based on the psychopy window def tb2PsychoNorm(self, xyCoor = tuple): # check argument values if xyCoor is None: raise ValueError("No coordinate values have been specified.") elif not isinstance(xyCoor, tuple): raise TypeError("XY coordinates must be given as tuple.") elif isinstance(xyCoor, tuple) and len(xyCoor) is not 2: raise ValueError("Wrong number of coordinate dimensions") # convert track box coordinates to adac coordinates adaCoors = self.tb2Ada(xyCoor) # correct for psychopy window coordinates centerScale = self.tb2Ada((1, 1)) centerShift = ((centerScale[0] / 2), (centerScale[1] / 2)) psychoNorm = (adaCoors[0] - centerShift[0], adaCoors[1] - centerShift[1]) # return coordinates in psychowin 'norm' units return psychoNorm # function for converting from tobiis ada coordinate system in normalized # coordinates where (0,0) is the upper left corner, to psychopy window # coordinates in pix, where (0,0) is at the center of psychopy window. def ada2PsychoPix(self, xyCoor = tuple): # check argument values if xyCoor is None: raise ValueError("No coordinate values have been specified.") elif not isinstance(xyCoor, tuple): raise TypeError("XY coordinates must be given as tuple.") elif isinstance(xyCoor, tuple) and len(xyCoor) is not 2: raise ValueError("Wrong number of coordinate dimensions") if np.isnan(xyCoor[0]) and np.isnan(xyCoor[1]): psychoPix = (np.nan, np.nan) return psychoPix # convert to pixels and correct for psychopy window coordinates monHW = (self.win.getSizePix()[0], self.win.getSizePix()[1]) wShift, hShift = monHW[0] / 2 , monHW[1] / 2 psychoPix = ((((xyCoor[0]* monHW[0]) - wShift)), (((xyCoor[1] * monHW[1]) - hShift) * -1)) # return coordinates in psychowin 'pix' units return psychoPix # function for converting from tobiis active display coordinate system in # normalized coordinates where (0,0) is the upper left corner, to monitor # coordinates in pix, where (0,0) is the upper left corner def ada2MonPix(self, xyCoor = tuple): # check argument values if xyCoor is None: raise ValueError("No coordinate values have been specified.") elif not isinstance(xyCoor, tuple): raise TypeError("XY coordinates must be given as tuple.") elif isinstance(xyCoor, tuple) and len(xyCoor) is not 2: raise ValueError("Wrong number of coordinate dimensions") if np.isnan(xyCoor[0]) and np.isnan(xyCoor[1]): monPix = (np.nan, np.nan) return monPix # convert so point of gaze on monitor is accurate monPix = (int(xyCoor[0] * self.win.getSizePix()[0]), int(xyCoor[1] * self.win.getSizePix()[1])) return monPix # ----- Functions for collecting eye and gaze data ----- # function for collecting gaze coordinates in psychopy pixel coordinate # system. currently written to return the average (x, y) position of both # eyes, but can be easily rewritten to return data from one or both eyes def getAvgGazePos(self): # check to see if the eyetracker is connected and turned on if self.eyetracker is None: raise ValueError("There is no eyetracker.") if self.tracking is False: raise ValueError("The eyetracker is not turned on.") # while tracking while True: # access gaze data dictionary to get gaze position tuples lGazeXYZ = self.gazeData['left_gaze_point_on_display_area'] rGazeXYZ = self.gazeData['right_gaze_point_on_display_area'] # get 2D gaze positions for left and right eye xs = (lGazeXYZ[0], rGazeXYZ[0]) ys = (lGazeXYZ[1], rGazeXYZ[1]) # if all of the axes have data from at least one eye if all([x != -1.0 for x in xs]) and all([y != -1.0 for y in ys]): # take x and y averages avgGazePos = np.nanmean(xs), np.nanmean(ys) else: # or if no data, hide points by showing off screen avgGazePos = (np.nan, np.nan) return self.ada2PsychoPix(avgGazePos) # function for finding the avg 3d position of subject's eyes, so that they # can be drawn in the virtual track box before calibration. The x and y # coordinates are returned in normalized "tobii track box" units. def trackboxEyePos(self): # check to see if the eyetracker is connected and turned on if self.eyetracker is None: raise ValueError("There is no eyetracker.") if self.tracking is False: raise ValueError("The eyetracker is not turned on.") # while tracking while True: # access gaze data dictionary to get eye position tuples, # in trackbox coordinate system lTbXYZ = self.gazeData['left_gaze_origin_in_trackbox_coordinate_system'] rTbXYZ = self.gazeData['right_gaze_origin_in_trackbox_coordinate_system'] # left eye validity lVal = self.gazeData['left_gaze_origin_validity'] # right eye validity rVal = self.gazeData['right_gaze_origin_validity'] # if left eye is found by the eyetracker if lVal == 1: # update the left eye positions if the values are reasonable # scale left eye position so that it fits in track box leftTbPos = (-self.tb2PsychoNorm((lTbXYZ[0], lTbXYZ[1]))[0] * 1.7, self.tb2PsychoNorm((lTbXYZ[0], lTbXYZ[1]))[1]) else: # hide by drawing in the corner leftTbPos = [0.99, 0.99] # if right eye is found by the eyetracker if rVal == 1: # update the right eye positions if the values are reasonable # scale right eye position so that it fits in track box rightTbPos = (-self.tb2PsychoNorm((rTbXYZ[0], rTbXYZ[1]))[0] * 1.7, self.tb2PsychoNorm((rTbXYZ[0], rTbXYZ[1]))[1]) else: # hide by drawing in the corner rightTbPos = [0.99, 0.99] # return values for positio in track box return leftTbPos, rightTbPos # x, y, and z dimensions are given in mm from the tracker origin, gives the # average 3d position of both eyes, but can be easily rewritten to yield # the position of each eye separately def getAvgEyePos(self): # check to see if the eyetracker is connected and turned on if self.eyetracker is None: raise ValueError("There is no eyetracker.") if self.tracking is False: raise ValueError("The eyetracker is not turned on.") # while tracking while True: # access gaze data dictionary to get eye position tuples, given in # mm in from eyetracker origin lOriginXYZ = self.gazeData['left_gaze_origin_in_user_coordinate_system'] rOriginXYZ = self.gazeData['right_gaze_origin_in_user_coordinate_system'] # create arrays with positions of both eyes on x, y, and z axes xs = (lOriginXYZ[0],rOriginXYZ[0]) ys = (lOriginXYZ[1],rOriginXYZ[1]) zs = (lOriginXYZ[2],rOriginXYZ[2]) # if all of the axes have data from at least one eye if not (np.isnan(xs)).all() or not (np.isnan(ys)).all() or not (np.isnan(zs)).all(): # update the distance if the values are reasonable avgEyePos = (np.nanmean(xs), np.nanmean(ys), np.nanmean(zs)) else: # otherwise set to zero avgEyePos = (0, 0, 0) # return average eye position in mm return avgEyePos # get average distance of the eyes from the tracker origin, given in cm def getAvgEyeDist(self): # check to see if the eyetracker is connected and turned on if self.eyetracker is None: raise ValueError("There is no eyetracker.") if self.tracking is False: raise ValueError("The eyetracker is not turned on.") # while tracking while True: # get eye positions eyeCoors = self.getAvgEyePos() # if eyes were found if sum(eyeCoors) > 0: # calculate the euclidean distance of eyes from tracker origin avgEyeDist = distance.euclidean((eyeCoors[0]/10, eyeCoors[1]/10, eyeCoors[2]/10), (0, 0, 0)) else: # if eyes were not found, return zero values avgEyeDist = 0 # return distance value in cm return avgEyeDist # get average size of pupils in mm, can easily be rewritten to return # pupil size values for both eyes def getPupilSize(self): # check to see if the eyetracker is connected and turned on if self.eyetracker is None: raise ValueError("There is no eyetracker.") if self.tracking is False: raise ValueError("The eyetracker is not turned on.") # while tracking while True: lPup = self.gazeData['left_pupil_diameter'] rPup = self.gazeData['right_pupil_diameter'] pupSizes = (lPup, rPup) # if pupils were found if lPup != -1 and rPup != -1: avgPupSize = np.nanmean(pupSizes) else: # otherwise return zero avgPupSize = (0.0) # return pupil size return avgPupSize # check the validities of right and left eyes, returns as a tuple of # true/false values def checkEyeValidities(self): # check to see if the eyetracker is connected and turned on if self.eyetracker is None: raise ValueError("There is no eyetracker.") if self.tracking is False: raise ValueError("The eyetracker is not turned on.") # while tracking while True: # get validity values lVal = self.gazeData['left_gaze_origin_validity'] rVal = self.gazeData['right_gaze_origin_validity'] # default validity value validities = 0 # neither eye is valid # if both eyes are valid, return 3 if lVal == 1 and rVal == 1: validities = 3 # if just left eye is valid, return 1 elif lVal == 1 and rVal == 0: validities = 1 # if just right eye is valid, return 2 elif lVal == 0 and rVal == 1 : validities = 2 # return validity values return validities # ----- Functions for running calibration ----- # function for drawing representation of the eyes in virtual trackbox def drawEyePositions(self, psychoWin): # check that psychopy window exists if psychoWin is None: raise ValueError("There is no psychopy window available. " +\ "Try calling runTrackbox() instead.") # Set default colors correctColor = [-1.0, 1.0, -1.0] mediumColor = [1.0, 1.0, 0.0] wrongColor = [1.0, -1.0, -1.0] # rectangle for viewing eyes rectScale = self.tb2Ada((1, 1)) eyeArea = visual.Rect(psychoWin, fillColor = [0.0, 0.0, 0.0], lineColor = [0.0, 0.0, 0.0], pos = [0.0, 0.0], units = 'norm', lineWidth = 3, width = rectScale[0], height = rectScale[1]) # Make stimuli for the left and right eye leftStim = visual.Circle(psychoWin, fillColor = eyeArea.fillColor, units = 'norm', radius = 0.07) rightStim = visual.Circle(psychoWin, fillColor = eyeArea.fillColor, units = 'norm', radius = 0.07) # Make a dummy message findmsg = visual.TextStim(psychoWin, text = " ", color = [1.0, 1.0, 1.0], units = 'norm', pos = [0.0, -0.65], height = 0.07) # while tracking while True: # find and update eye positions leftStim.pos, rightStim.pos = self.trackboxEyePos() eyeDist = self.getAvgEyeDist() # change color depending on distance if eyeDist >= 55 and eyeDist <= 75: # correct distance leftStim.fillColor, leftStim.lineColor = correctColor, correctColor rightStim.fillColor, rightStim.lineColor = correctColor, correctColor elif eyeDist <= 54 and eyeDist >= 45 or eyeDist >= 76 and eyeDist <= 85: leftStim.fillColor, leftStim.lineColor = mediumColor, mediumColor rightStim.fillColor, rightStim.lineColor = mediumColor, mediumColor else: # not really correct leftStim.fillColor, leftStim.lineColor = wrongColor, wrongColor rightStim.fillColor, rightStim.lineColor = wrongColor, wrongColor # if left eye is not found, don't display eye if leftStim.pos[0] == 0.99: leftStim.fillColor = psychoWin.color # make the same color as bkg leftStim.lineColor = psychoWin.color # if right eye is not found, don't display eye if rightStim.pos[0] == 0.99: rightStim.fillColor = psychoWin.color # make same color as bkg rightStim.lineColor = psychoWin.color # give distance feedback findmsg.text = "You're currently " + \ str(int(eyeDist)) + \ ("cm away from the screen. \n" "Press 'c' to calibrate or 'q' to abort.") # update stimuli in window eyeArea.draw() leftStim.draw() rightStim.draw() findmsg.draw() psychoWin.flip() # depending on response, either abort script or continue to calibration if event.getKeys(keyList=['q']): self.stopGazeData() psychoWin.close() pcore.quit() raise KeyboardInterrupt("You aborted the script manually.") elif event.getKeys(keyList=['c']): print("Proceeding to calibration.") self.stopGazeData() psychoWin.flip() return # clear events not accessed this iteration event.clearEvents(eventType='keyboard') # function for running validation routine post calibration to check # calibration precision and accuracy def runValidation(self, pointDict = dict): # check the values of the point dictionary if pointDict is None: print('pointDict has no value. Using 5 point default.') pointList = [('1',(0.1, 0.1)), ('2',(0.9, 0.1)), ('3',(0.5, 0.5)), ('4',(0.1, 0.9)), ('5',(0.9, 0.9))] pointDict = collections.OrderedDict(pointList) if not isinstance(pointDict, dict): raise TypeError('pointDict must be a dictionary with number ' +\ 'keys and coordinate values.') # check window attribute if self.win is None: raise ValueError('No experimental monitor has been specified.\n' +\ 'Try running setMonitor().') # start eyetracker self.startGazeData() # let it warm up briefly pcore.wait(0.5) # get points from dictionary curPoints = pointDict.values() # convert points from normalized ada units to psychopy pix pointPositions = [self.ada2PsychoPix(x) for x in curPoints] # window stimuli valWin = visual.Window(size = [self.win.getSizePix()[0], self.win.getSizePix()[1]], pos = [0, 0], units = 'pix', fullscr = True, allowGUI = True, monitor = self.win, winType = 'pyglet', color = [0.8, 0.8, 0.8]) # stimuli for showing point of gaze gazeStim = visual.Circle(valWin, radius = 50, lineColor = [1.0, 0.95, 0.0], # yellow circle fillColor = [1.0, 1.0, 0.55], # light interior lineWidth = 40, units = 'pix') # Make a dummy message valMsg = visual.TextStim(valWin, text = 'Wait for the experimenter.', color = [0.4, 0.4, 0.4], # grey units = 'norm', pos = [0.0, -0.5], height = 0.07) # Stimuli for all validation points valPoints = visual.Circle(valWin, units = "pix", radius = 20, lineColor = [1.0, -1.0, -1.0], # red fillColor = [1.0, -1.0, -1.0]) # red # create array for smoothing gaze position gazePositions = np.array([0.0, 0.0]) maxLength = 6 # while tracking while True: # smooth gaze data with moving window gazePositions = np.vstack((gazePositions, np.array(self.getAvgGazePos()))) curPos = np.nanmean(gazePositions, axis = 0) # remove previous position values if len(gazePositions) == maxLength: gazePositions = np.delete(gazePositions, 0, axis = 0) # update stimuli in window and draw drawStim = self.ada2PsychoPix(tuple(curPos)) # draw gaze position only if found if drawStim[0] is not self.win.getSizePix()[0]: gazeStim.pos = drawStim gazeStim.draw() # points for point in pointPositions: valPoints.pos = point valPoints.draw() # text valMsg.draw() valWin.flip() # depending on response, either abort script or continue to calibration if event.getKeys(keyList=['q']): valWin.close() self.stopGazeData() pcore.quit() raise KeyboardInterrupt("You aborted the script manually.") elif event.getKeys(keyList=['c']): valWin.close() print("Exiting calibration validation.") self.stopGazeData() return # clear events not accessed this iteration event.clearEvents(eventType='keyboard') # function for getting the average left and right gaze position coordinates # for each calibration point in psychopy pix units def calculateCalibration(self, calibResult): # check the values of the point dictionary if calibResult is None: raise ValueError('No argument passed for calibResult') #create an empty list to hold values calibDrawCoor = [] # iterate through calibration points for i in range(len(calibResult.calibration_points)): # current point curPoint = calibResult.calibration_points[i] pointPosition = curPoint.position_on_display_area # point position pointSamples = curPoint.calibration_samples # samples at point # empty arrays for holding left and right eye gaze coordinates leftOutput = np.zeros((len(pointSamples), 2)) rightOutput = np.zeros((len(pointSamples), 2)) # find left and right gaze coordinates for all samples in point for j in range(len(pointSamples)): curSample = pointSamples[j] leftEye = curSample.left_eye rightEye = curSample.right_eye leftOutput[j] = leftEye.position_on_display_area rightOutput[j] = rightEye.position_on_display_area # get average x and y coordinates using all samples in point lXY = tuple(np.mean(leftOutput, axis = 0)) rXY = tuple(np.mean(rightOutput, axis = 0)) point = tuple((pointPosition[0], pointPosition[1])) # put current calibration point coordinates , l and r eye coordinates # into list, and convert to psychopy window coordinates in pix newList = [self.ada2PsychoPix(point), self.ada2PsychoPix(lXY), self.ada2PsychoPix(rXY), pointPosition] calibDrawCoor.insert(i, newList) # for some weird reason my calibration always includes the point (0,0) at # index 0, so just remove it here calibDrawCoor.pop(0) # return as list return(calibDrawCoor) # function for drawing the results of the calibration def drawCalibrationResults(self, calibResult = None, calibWin = None, curDict = dict): # check argument values if self.calibration is None: raise ValueError('No calibration object exists.') # check values of calibration result if calibResult is None: raise ValueError('No calibration result object given.') # check the values of the point dictionary if curDict is None: raise ValueError('No dictionary object given.') elif not isinstance(curDict, dict): raise TypeError('curDict must be a dictionary with number \n' +\ 'keys and coordinate values.') # check value of calibration window if calibWin is None: raise ValueError('No psychopy window object given.') # get gaze position results points2Draw = self.calculateCalibration(calibResult) # create stimuli objects for drawing # outlined empty circle object for showing calibration point calibPoint = visual.Circle(calibWin, radius = 50, lineColor = [1.0, 1.0, 1.0], # white lineWidth = 10, fillColor = calibWin.color, units = 'pix', pos = (0.0, 0.0)) # line object for showing right eye gaze position during calibration rightEyeLine = visual.Line(calibWin, units ='pix', lineColor ='red', lineWidth = 20, start = (0.0, 0.0), end = (0.0, 0.0)) # line object for showing left eye gaze position during calibration leftEyeLine = visual.Line(calibWin, units ='pix', lineColor ='yellow', lineWidth = 20, start = (0.0, 0.0), end = (0.0, 0.0)) # number for identifying point in dictionary pointText = visual.TextStim(calibWin, text = " ", color = [0.8, 0.8, 0.8], # lighter than bkg units = 'pix', pos = [0.0, 0.0], height = 60) # Make a dummy message checkMsg = visual.TextStim(calibWin, text = 'Wait for the experimenter.', color = [1.0, 1.0, 1.0], units = 'norm', pos = [0.0, -0.5], height = 0.07) # make empty dictionary for holding points to be recalibrated holdRedoDict = [] holdColorPoints = [] # clear events not accessed this iteration event.clearEvents(eventType='keyboard') # draw and update screen while True: # iterate through calibration points and draw for i in range(len(points2Draw)): # update point and calibraiton results for both eyes point = points2Draw[i] pointPos = point[3] pointKey = 0 # update text for key, point in curDict.items(): if point == pointPos: pointText.text = key pointKey = key # if current point is selected for recalibrate, make it noticeable if int(pointKey) in holdColorPoints: calibPoint.lineColor = [-1.0, 1.0, -1.0] # green circle else: calibPoint.lineColor = [1.0, 1.0, 1.0] # no visible change # update point and calibraiton results for both eyes point = points2Draw[i] startCoor, leftCoor, rightCoor = point[0], point[1], point[2] # update positions and draw on window calibPoint.pos = startCoor # calibration point leftEyeLine.start = startCoor # left eye leftEyeLine.end = leftCoor rightEyeLine.start = startCoor # right eye rightEyeLine.end = rightCoor pointText.pos = startCoor # point text # update stimuli in window calibPoint.draw() # has to come first or else will cover other # stim pointText.draw() leftEyeLine.draw() rightEyeLine.draw() checkMsg.draw() # show points and lines on window calibWin.flip() # determine problem points # list of acceptable key input !!IF PRESSED KEYS ARE NOT IN KEYLIST, KEYBOARD EVENT MAY CRASH!! pressedKeys = event.getKeys(keyList = ['c', 'q', '1', '2', '3', '4', '5', '6', '7', '8', '9']) # depending on response, either... # abort script for key in pressedKeys: if key in ['q']: calibWin.close() self.calibration.leave_calibration_mode() pcore.quit() raise KeyboardInterrupt("You aborted the script manually.") # else if recalibration point is requested elif key in curDict.keys(): # iterate through each of these presses for entry in curDict.items(): # if the key press is the same as the current dictionary key if entry[0] == key: # append that dictionary entry into a holding dictionary holdRedoDict.append(entry) # append integer version to a holding list holdColorPoints.append(int(key)) # continue with calibration procedure elif key in ['c']: print("Finished checking. Resuming calibration.") checkMsg.pos = (0.0, 0.0) checkMsg.text = ("Finished checking. Resuming calibration.") checkMsg.draw() calibWin.flip() # return dictionary of points to be recalibration redoDict = collections.OrderedDict([]) # empty dictionary for holding unique values # dont put repeats in resulting dictionary tempDict = collections.OrderedDict(holdRedoDict) for keys in tempDict.keys(): if keys not in redoDict.keys(): redoDict[keys] = tempDict.get(keys) # return dictionary return redoDict # clear events not accessed this iteration event.clearEvents(eventType='keyboard') # function for drawing calibration points, collecting and applying # calibration data def getCalibrationData(self, calibWin, pointList = list): # check argument values if self.calibration is None: raise ValueError('No calibration object exists.\n' +\ 'Try running runFullCalibration()') # check value of calibration window if calibWin is None: raise ValueError('No psychopy window object given') # check the values of the point dictionary if pointList is None: raise ValueError('No list object given for pointList.') elif not isinstance(pointList, list): raise TypeError('pointList must be a list of coordinate tuples.') # defaults pointSmallRadius = 5.0 # point radius pointLargeRadius = pointSmallRadius * 10.0 moveFrames = 50 # number of frames to draw between points startPoint = (0.90, 0.90) # starter point for animation # calibraiton point visual object calibPoint = visual.Circle(calibWin, radius = pointLargeRadius, lineColor = [1.0, -1.0, -1.0], # red fillColor = [1.0, -1.0, -1.0], units = 'pix') # draw animation for each point # converting psychopy window coordinate units from normal to px for i in range(len(pointList)): # if first point draw starting point if i == 0: firstPoint = [startPoint[0], startPoint[1]] secondPoint = [pointList[i][0], pointList[i][1]] else: firstPoint = [pointList[i - 1][0], pointList[i - 1][1]] secondPoint = [pointList[i][0], pointList[i][1]] # draw and move dot # step size for dot movement is new - old divided by frames pointStep = [((secondPoint[0] - firstPoint[0]) / moveFrames), ((secondPoint[1] - firstPoint[1]) / moveFrames)] # Move the point in position (smooth pursuit) for frame in range(moveFrames - 1): firstPoint[0] += pointStep[0] firstPoint[1] += pointStep[1] # draw & flip calibPoint.pos = self.ada2PsychoPix(tuple(firstPoint)) calibPoint.draw() calibWin.flip() # wait to let eyes settle pcore.wait(0.5) # allow the eye to focus before beginning calibration # point size change step radiusStep = ((pointLargeRadius - pointSmallRadius) / moveFrames) # Shrink the outer point (gaze fixation) to encourage focusing for frame in range(moveFrames): pointLargeRadius -= radiusStep calibPoint.radius = pointLargeRadius calibPoint.draw() calibWin.flip() # first wait to let the eyes settle pcore.wait(0.5) # conduct calibration of point print("Collecting data at {0}." .format(i + 1)) while self.calibration.collect_data(pointList[i][0], pointList[i][1]) != tobii.CALIBRATION_STATUS_SUCCESS: self.calibration.collect_data(pointList[i][0], pointList[i][1]) # feedback from calibration print("{0} for data at point {1}." .format(self.calibration.collect_data(pointList[i][0], pointList[i][1]), i + 1)) pcore.wait(0.3) # wait before continuing # Return point to original size for frame in range(moveFrames): pointLargeRadius += radiusStep calibPoint.radius = pointLargeRadius calibPoint.draw() calibWin.flip() # let the eyes settle and move to the next point pcore.wait(0.2) # check to quit # depending on response, either abort script or continue to calibration if event.getKeys(keyList=['q']): calibWin.close() self.calibration.leave_calibration_mode() raise KeyboardInterrupt("You aborted the script manually.") return # clear events not accessed this iteration event.clearEvents(eventType='keyboard') # clear screen calibWin.flip() # print feedback print("Computing and applying calibration.") # compute and apply calibration to get calibration result object calibResult = self.calibration.compute_and_apply() # return calibration result return calibResult # function for running simple gui to visualize subject eye position. Make # sure that the eyes are in optimal location for eye tracker def runTrackBox(self): # check to see that eyetracker is connected if self.eyetracker is None: raise ValueError('There is no eyetracker object. \n' +\ 'Try running findTracker().') # check window attribute if self.win is None: raise ValueError('No experimental monitor has been specified.\n' +\ 'Try running setMonitor().') # start the eyetracker self.startGazeData() # wait for it ot warm up pcore.wait(0.5) # create window for visualizing eye position and text trackWin = visual.Window(size = [self.win.getSizePix()[0], self.win.getSizePix()[1]], pos = [0, 0], units = 'pix', fullscr = True, allowGUI = True, monitor = self.win, winType = 'pyglet', color = [0.4, 0.4, 0.4]) # feedback about eye position self.drawEyePositions(trackWin) # close track box pcore.wait(2) trackWin.close() return # function for running a complete calibration routine def runFullCalibration(self, numCalibPoints = None): # check that eyetracker is connected before running if self.eyetracker is None: # eyeTracker raise ValueError("No eyetracker is specified. " +\ "Aborting calibration.\n" +\ "Try running findTracker().") # check window attribute if self.win is None: raise ValueError('No experimental monitor has been specified.\n' +\ 'Try running setMonitor().') # create dictionary of calibration points # if nothing entered then default is nine if numCalibPoints is None: pointList = [('1',(0.1, 0.1)), ('2',(0.5, 0.1)), ('3',(0.9, 0.1)), ('4',(0.1, 0.5)), ('5',(0.5, 0.5)), ('6',(0.9, 0.5)), ('7',(0.1, 0.9)), ('8',(0.5, 0.9)), ('9',(0.9, 0.9))] elif numCalibPoints is 5: pointList = [('1',(0.1, 0.1)), ('2',(0.9, 0.1)), ('3',(0.5, 0.5)), ('4',(0.1, 0.9)), ('5',(0.9, 0.9))] elif numCalibPoints is 9: pointList = [('1',(0.1, 0.1)), ('2',(0.5, 0.1)), ('3',(0.9, 0.1)), ('4',(0.1, 0.5)), ('5',(0.5, 0.5)), ('6',(0.9, 0.5)), ('7',(0.1, 0.9)), ('8',(0.5, 0.9)), ('9',(0.9, 0.9))] # randomize points as ordered dictionary np.random.shuffle(pointList) calibDict = collections.OrderedDict(pointList) # create window for calibration calibWin = visual.Window(size = [self.win.getSizePix()[0], self.win.getSizePix()[1]], pos = [0, 0], units = 'pix', fullscr = True, allowGUI = True, monitor = self.win, winType = 'pyglet', color = [0.4, 0.4, 0.4]) # stimuli for holding text calibMessage = visual.TextStim(calibWin, color = [1.0, 1.0, 1.0], # text units = 'norm', height = 0.08, pos = (0.0, 0.1)) # stimuli for fixation cross fixCross = visual.TextStim(calibWin, color = [1.0, 1.0, 1.0], units = 'norm', height = 0.1, pos = (0.0, 0.0), text = "+") # track box to position participant # subject instructions for track box calibMessage.text = ("Please position yourself so that the\n" + \ "eye-tracker can locate your eyes." + \ "\n\nPress 'c' to continue.") calibMessage.draw() calibWin.flip() # turn keyboard reporting on and get subject response event.waitKeys(maxWait = 10, keyList = ['c']) # proceed with calibration #run track box routine calibWin.flip() # clear previous text self.runTrackBox() # initialize calibration self.calibration = tobii.ScreenBasedCalibration(self.eyetracker) # calib object # enter calibration mode self.calibration.enter_calibration_mode() # subject instructions calibMessage.text = ("Please focus your eyes on the red dot " + \ "and follow it with your eyes as closely as " + \ "possible.\n\nPress 'c' to continue.") calibMessage.draw() calibWin.flip() # turn keyboard reporting on and get subject response event.waitKeys(maxWait = 10, keyList = ['c']) # proceed with calibration # draw a fixation cross fixCross.draw() calibWin.flip() pcore.wait(3) # create dictionary for holding points to be recalibrated redoCalDict = calibDict # loop through calibration process until calibration is complete while True: # create point order form randomized dictionary values pointOrder = list(redoCalDict.values()) # perform calibration calibResult = self.getCalibrationData(calibWin, pointOrder) # Check status of calibration result # if calibration was successful, check calibration results if calibResult.status != tobii.CALIBRATION_STATUS_FAILURE: # give feedback calibMessage.text = ("Applying calibration...") calibMessage.draw() calibWin.flip() pcore.wait(2) # moving on to accuracy plot calibMessage.text = ("Calculating calibration accuracy...") calibMessage.draw() calibWin.flip() pcore.wait(2) # check calibration for poorly calibrated points redoCalDict = self.drawCalibrationResults(calibResult, calibWin, calibDict) else: # if calibration was not successful, leave and abort calibMessage.text = ("Calibration was not successful.\n\n" + \ "Closing the calibration window.") calibMessage.draw() calibWin.flip() pcore.wait(3) calibWin.close() self.calibration.leave_calibration_mode() return # Redo calibration for specific points if necessary if not redoCalDict: # if no points to redo # finish calibration print("Calibration successful. Moving on to validation mode.") calibMessage.text = ("Calibration was successful.\n\n" + \ "Moving on to validation.") calibMessage.draw() calibWin.flip() pcore.wait(3) self.calibration.leave_calibration_mode() # break loop to proceed with validation break else: # if any points to redo # convert list to string for feedback printString = " ".join(str(x) for x in redoCalDict.keys()) # feedback print ("Still need to calibrate the following points: %s" % printString) calibMessage.text = ("Calibration is almost complete.\n\n" + \ "Prepare to recalibrate a few points.") calibMessage.draw() calibWin.flip() pcore.wait(3) # draw fixation cross fixCross.draw() calibWin.flip() pcore.wait(3) # iterate through list of redo points and remove data from calibration for newPoint in redoCalDict.values(): print(newPoint) self.calibration.discard_data(newPoint[0], newPoint[1]) # continue with calibration of remaining points continue # Validate calibration # draw fixation cross fixCross.draw() calibWin.flip() pcore.wait(3) # run validation self.runValidation(calibDict) # close window calibMessage.text = ("Finished validating the calibration.\n\n" +\ "Calibration is complete. Closing window.") calibMessage.draw() calibWin.flip() pcore.wait(3) calibWin.close() return # ----- Functions for exporting gaze data ----- # Function for getting all gaze and event data from the current sample # collected by the eyetracker, returned as a dictionary. Can easily be # converted into a pandas dataframe. Strongly suggest putting output into # a psychopy data object, as psychopy.data comes with many convenient # functions for organizing experiment flow, recording data, and saving # files. Gaze position is given in psychopy pixels, eye position, distance, and pupil size # given in mm. def getCurrentData(self): # check gaze Data if not self.tracking: raise ValueError("Data is not being recorded by the eyetracker.") # output file at same frequency as eyetracker timeCur = np.datetime64(dt.datetime.now()) timeNow = timeCur timeDelta = np.absolute((timeCur - timeNow)/np.timedelta64(1, 'ms')) # when two data samples are slightly less than the eyetrackers frequency # apart, request data from eyetracker while timeDelta < 7.0: # change according to eyetracker freq pcore.wait(0.001) timeNow = np.datetime64(dt.datetime.now()) timeDelta = np.absolute((timeCur - timeNow)/np.timedelta64(1, 'ms')) # code can easily be modified to get more than averages timeMidnight = np.datetime64(dt.datetime.date(dt.datetime.today())) self.currentData = {} self.currentData['DeviceTimeStamp'] = np.absolute((timeNow - timeMidnight)/np.timedelta64(1, 'ms')) self.currentData['AvgGazePointX'] = self.getAvgGazePos()[0] self.currentData['AvgGazePointX'] = self.getAvgGazePos()[0] self.currentData['AvgGazePointY'] = self.getAvgGazePos()[1] self.currentData['AvgPupilDiam'] = self. getPupilSize() self.currentData['AvgEyePosX'] = self.getAvgEyePos()[0] self.currentData['AvgEyePosY'] = self.getAvgEyePos()[1] self.currentData['AvgEyePosZ'] = self.getAvgEyePos()[2] self.currentData['AvgEyeDistance'] = self.getAvgEyeDist() * 10 self.currentData['EyeValidities'] = self.checkEyeValidities() return self.currentData
45.108228
108
0.51889
e72dba85cc70914d2f8cbd7eb914d226103ddb84
788
py
Python
tests/test_extractor.py
msk-mind/graph-db
4272057eb0d30d7c4b6b4429acd21ec90404ff6c
[ "Apache-2.0" ]
null
null
null
tests/test_extractor.py
msk-mind/graph-db
4272057eb0d30d7c4b6b4429acd21ec90404ff6c
[ "Apache-2.0" ]
null
null
null
tests/test_extractor.py
msk-mind/graph-db
4272057eb0d30d7c4b6b4429acd21ec90404ff6c
[ "Apache-2.0" ]
null
null
null
''' Created on May 05, 2021 @author: pashaa@mskcc.org ''' import glob import json import os import pandas as pd import shutil import pytest from graph_db.common.config import ConfigSet, APP_CFG, DATA_CFG from graph_db.extractor import delta_to_json delta_table = 'tests/input_data/user_table' json_path = 'tests/output_data/user_table' @pytest.fixture def setup(): if os.path.exists(json_path): shutil.rmtree(json_path) ConfigSet(name=APP_CFG, config_file='tests/test_app_config.yml') cfg = ConfigSet(name=DATA_CFG, config_file='tests/test_data_config.yml') def test_delta_to_json(setup): delta_to_json(delta_table, json_path) json_file = glob.glob(json_path+'/*.json')[0] df = pd.read_json(json_file, lines=True) assert df.shape == (5,6)
20.205128
76
0.742386
9137cc4580663edf715cf1eb40e720eb97d038a6
1,264
py
Python
Own/Python/Tutorials/Classes.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
Own/Python/Tutorials/Classes.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
Own/Python/Tutorials/Classes.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
#Cristian Chitiva #cychitivav@unal.edu.co #13/Sept/2018 class Pencil: _length = '10 cm'#Class variable notation def __new__(self, color = 'Rojo', eraser = True, graphite = False):#Constructor self.__init__(self, color, eraser, graphite) def __init__(self, color, eraser, graphite): self.color = color self.__eraser = eraser#Private self.graphite = graphite def draw(self): print("The pencil is drawing") def __erase(self):#Private if self.__eraser: print("The pencill is erasing") else: print("It's not possible to erase") def getErase(self): return self.__erase() #Properties @property #Getter def eraser(self): return self.__eraser @eraser.setter def eraser(self, newValue): self.__eraser = newValue @staticmethod def thickness(): return '0.65 cm' pen = Pencil("Verde", True, True) #pen.draw() #pen.getErase() print(Pencil._length) Pencil(1) #Info class #print('\n', pen.__dict__) print() print(pen.eraser) pen.eraser = False print(pen.eraser) print("Class:", Pencil.thickness()) print("Instance:", pen.thickness())
22.981818
84
0.599684
a420022537a27f46857d881d54db04635f25562e
2,725
py
Python
sdk/python-sdk/test/protocols/test_QuestionAnswer.py
tw-bc-group/verity-sdk
e932209ab849f04a389bdda0718cd6227187e5cf
[ "Apache-2.0" ]
null
null
null
sdk/python-sdk/test/protocols/test_QuestionAnswer.py
tw-bc-group/verity-sdk
e932209ab849f04a389bdda0718cd6227187e5cf
[ "Apache-2.0" ]
2
2021-09-02T19:02:06.000Z
2021-09-02T19:02:24.000Z
sdk/python-sdk/test/protocols/test_QuestionAnswer.py
tw-bc-group/verity-sdk
e932209ab849f04a389bdda0718cd6227187e5cf
[ "Apache-2.0" ]
1
2021-01-13T10:43:14.000Z
2021-01-13T10:43:14.000Z
# import pytest # # from test.test_utils import get_test_config, cleanup # from verity_sdk.protocols.v1_0.QuestionAnswer import QuestionAnswer # from verity_sdk.utils import COMMUNITY_MSG_QUALIFIER # from verity_sdk.utils.Context import Context # # for_relationship = 'some_did' # question_text = 'Are you trying to login to acme.com?' # question_detail = 'IP Address: 56.24.11.126' # valid_responses = ['Yes', 'No, that\'s not me!'] # signature_required = True # # # def test_init(): # question_answer = QuestionAnswer(for_relationship, None, question_text, question_detail, valid_responses, # signature_required) # # assert question_answer.for_relationship == for_relationship # assert question_answer.question == question_text # assert question_answer.descr == question_detail # assert question_answer.valid_responses == valid_responses # assert question_answer.signature_required == signature_required # # # @pytest.mark.asyncio # async def test_ask(): # context = await Context.create_with_config(await get_test_config()) # question_answer = QuestionAnswer(for_relationship, None, question_text, question_detail, valid_responses, # signature_required) # msg = question_answer.ask_msg(context) # # assert msg['@type'] == '{};spec/{}/{}/{}'.format( # COMMUNITY_MSG_QUALIFIER, # QuestionAnswer.MSG_FAMILY, # QuestionAnswer.MSG_FAMILY_VERSION, # QuestionAnswer.ASK_QUESTION # ) # assert msg['@id'] is not None # assert msg['~thread'] is not None # assert msg['~thread']['thid'] is not None # assert msg['~for_relationship'] == for_relationship # assert msg['text'] == question_text # assert msg['detail'] == question_detail # assert msg['valid_responses'] == valid_responses # assert msg['signature_required'] == signature_required # # await cleanup(context) # # # @pytest.mark.asyncio # async def test_status(): # context = await Context.create_with_config(await get_test_config()) # question_answer = QuestionAnswer(for_relationship, None, question_text, question_detail, valid_responses, # signature_required) # msg = question_answer.status_msg(context) # # assert msg['@type'] == '{};spec/{}/{}/{}'.format( # COMMUNITY_MSG_QUALIFIER, # QuestionAnswer.MSG_FAMILY, # QuestionAnswer.MSG_FAMILY_VERSION, # QuestionAnswer.GET_STATUS # ) # assert msg['@id'] is not None # assert msg['~for_relationship'] == for_relationship # assert msg['~thread'] is not None # assert msg['~thread']['thid'] is not None # # await cleanup(context)
38.928571
111
0.678899
b1f0af366f8009d3e1f2e0737b18ea2205c89383
9,243
py
Python
src/csv_db_package/fileserver.py
ankitaliya/csv_db_package
4c61a26132c7ce1de4440c1fc0ca6cf1ee39c0a3
[ "MIT" ]
null
null
null
src/csv_db_package/fileserver.py
ankitaliya/csv_db_package
4c61a26132c7ce1de4440c1fc0ca6cf1ee39c0a3
[ "MIT" ]
null
null
null
src/csv_db_package/fileserver.py
ankitaliya/csv_db_package
4c61a26132c7ce1de4440c1fc0ca6cf1ee39c0a3
[ "MIT" ]
null
null
null
"""The script to create a http server on local for uploading a csv file and perform CRUD operations on the UI connected with the database.""" from http.server import HTTPServer, BaseHTTPRequestHandler import cgi import logging import jinja2 from mysql.connector import connect, errors import pandas as pd from crud_operations import view_data, delete_row, insert_row, select_row, update_row logging.basicConfig(filename='server_statements.log', level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(message)s') CREATE_TABLE_QUERY = """ CREATE TABLE user_file_data(p_id int PRIMARY KEY, first_name varchar(255),height_feet float, height_inches float, last_name varchar(255),position varchar(255),weight_pounds float,id int, abbreviation varchar(255),city varchar(255), conference varchar(255), division varchar(255), full_name varchar(255), name varchar(255)) """ def csv_to_db(file_name): """The function reads a file that was uploaded by the user to the server. It creates connection to the database and that file was dumped to the database. : param - csv file uploaded by the user.""" data_frame = pd.read_csv(file_name, index_col=False, delimiter=',') replacement = {'height_feet': 0.0, 'height_inches': 0.0, 'position': "missing", 'weight_pounds': 0.0} data_frame.fillna(value=replacement, inplace=True) data_frame.fillna(0, inplace=True) try: conn = connect(host='localhost', database="user_data", user='root', password='Arp@99?0#1Liy@') if conn.is_connected(): cursor = conn.cursor() cursor.execute("select database();") record = cursor.fetchone() logging.info("You're connected to database: %s", record) cursor.execute('DROP TABLE IF EXISTS user_file_data;') logging.info('Creating table....') cursor.execute(CREATE_TABLE_QUERY) logging.info("Table is created....") # loop through the data frame for i, row in data_frame.iterrows(): cursor.execute(f"INSERT INTO user_data.user_file_data VALUES {tuple(row)}") conn.commit() except errors.ProgrammingError as prmg_err: logging.error('%s: %s', prmg_err.__class__.__name__, prmg_err) except errors.Error as err_e: logging.error('%s: %s', err_e.__class__.__name__, err_e) class EchoHandler(BaseHTTPRequestHandler): """class containing different GET and POST methods for the http server that was used to upload a csv file from the user. Then the CRUD operations is performed on the UI as per the user wants to do with a connection to a database.""" def do_GET(self): """Function to upload file and perform CRUD operations on client side.""" try: if self.path.endswith('/uploadCSV'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() with open('Templates/index.html', 'r', encoding='utf-8') as index_file: output = index_file.read() self.wfile.write(output.encode()) if self.path.endswith('/new'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() with open('Templates/upload_file.html', 'r', encoding='utf-8') as uploaded_file: output = uploaded_file.read() self.wfile.write(output.encode()) if self.path.endswith('/viewtable'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() table = view_data('user_data', 'user_file_data')[0] if table is not None: with open('Templates/view_table.html', 'r', encoding='utf-8') as view_file: output = view_file.read() render_output = jinja2.Template(output) self.wfile.write(render_output.render(table=table).encode()) if self.path.endswith('/add'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() with open('Templates/add_data.html', 'r', encoding='utf-8') as add_file: output = add_file.read() self.wfile.write(output.encode()) if self.path.startswith('/update_data'): value = self.path[21:] self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() row_form = select_row('user_data', 'user_file_data', int(value)) if row_form is not None: with open('Templates/update_data.html', 'r', encoding='utf-8') as update_file: output = update_file.read() render_output = jinja2.Template(output) self.wfile.write(render_output.render(row_form=row_form).encode()) except PermissionError as per_err: logging.error('%s: %s', per_err.__class__.__name__, per_err) except TypeError as type_err: logging.error('%s: %s', type_err.__class__.__name__, type_err) def do_POST(self): """Function to upload data to db and returns table and perform CRUD operations.""" try: if self.path.endswith('/new'): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) pdict['boundary'] = bytes(pdict['boundary'], "utf-8") content_len = int(self.headers.get('Content-length')) pdict['CONTENT_LENGTH'] = content_len if ctype == 'multipart/form-data': fields = cgi.parse_multipart(self.rfile, pdict) file = fields.get('task')[0] file = file.decode("utf-8") with open('uploaded_file/file.csv', mode='w', encoding='utf-8') as csv_file: for data in file.split('\r\r'): csv_file.write(data) csv_to_db('file.csv') self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() self.wfile.write(file.encode()) if self.path.startswith('/delete_data'): value_id = self.path[22:] delete_row('user_data', 'user_file_data', value_id) self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() if self.path.endswith('/add'): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) pdict['boundary'] = bytes(pdict['boundary'], "utf-8") content_len = int(self.headers.get('Content-length')) pdict['CONTENT_LENGTH'] = content_len if ctype == 'multipart/form-data': fields = cgi.parse_multipart(self.rfile, pdict) for key in fields: fields[key] = fields[key][0] insert_row('user_data', 'user_file_data', fields) self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() if self.path.startswith('/update_data'): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) pdict['boundary'] = bytes(pdict['boundary'], "utf-8") content_len = int(self.headers.get('Content-length')) pdict['CONTENT_LENGTH'] = content_len if ctype == 'multipart/form-data': fields = cgi.parse_multipart(self.rfile, pdict) for key in fields: fields[key] = fields[key][0] update_row('user_data', 'user_file_data', fields, int(fields['p_id'])) self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() except PermissionError as per_err: logging.error('%s: %s', per_err.__class__.__name__, per_err) except TypeError as type_err: logging.error('%s: %s', type_err.__class__.__name__, type_err) def main(): """The main function creates a server on defined port with the help of http.server package.""" port = 8000 server = HTTPServer(('', port), EchoHandler) logging.info('Server running on port %s', port) server.serve_forever() if __name__ == '__main__': main()
46.918782
117
0.572217
fbc610cd1e1d060960e96bb00f0f0548d59d7685
1,147
py
Python
chapter7_语音合成/C7_2_y.py
busyyang/python_sound_open
91bc284f0ed538c1e8756a1a1475956191b4ae86
[ "Apache-2.0" ]
165
2020-06-10T03:39:17.000Z
2022-03-28T08:37:32.000Z
chapter7_语音合成/C7_2_y.py
shangminghao/python_sound_open
91bc284f0ed538c1e8756a1a1475956191b4ae86
[ "Apache-2.0" ]
3
2020-11-20T03:00:56.000Z
2021-08-05T01:30:32.000Z
chapter7_语音合成/C7_2_y.py
shangminghao/python_sound_open
91bc284f0ed538c1e8756a1a1475956191b4ae86
[ "Apache-2.0" ]
66
2020-06-02T01:57:24.000Z
2022-03-16T07:54:59.000Z
from chapter2_基础.soundBase import * from chapter7_语音合成.flipframe import * from chapter3_分析实验.C3_1_y_1 import enframe from chapter3_分析实验.lpc import lpc_coeff from scipy.signal import lfilter plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False data, fs = soundBase('C7_2_y.wav').audioread() data -= np.mean(data) data /= np.max(np.abs(data)) N = len(data) time = [i / fs for i in range(N)] # 设置时间 p = 12 wlen, inc = 200, 80 msoverlap = wlen - inc y = enframe(data, wlen, inc) fn = y.shape[0] Acoef = np.zeros((y.shape[0], p + 1)) resid = np.zeros(y.shape) synFrame = np.zeros(y.shape) ## 7.2.1 # 求每帧的LPC系数与预测误差 for i in range(fn): a, _ = lpc_coeff(y[i, :], p) Acoef[i, :] = a resid[i, :] = lfilter(a, [1], y[i, :]) # 语音合成 for i in range(fn): synFrame[i, :] = lfilter([1], Acoef[i, :], resid[i, :]) outspeech = Filpframe_OverlapS(synFrame, np.hamming(wlen), inc) plt.subplot(2, 1, 1) plt.plot(data / np.max(np.abs(data)), 'k') plt.title('原始信号') plt.subplot(2, 1, 2) plt.title('还原信号-LPC与误差') plt.plot(outspeech / np.max(np.abs(outspeech)), 'c') plt.savefig('images/LPC与误差.png') plt.close()
24.404255
63
0.659983
9a210bf79367694f4925238b3a020b2a0ceaefaa
5,031
py
Python
distrax/_src/distributions/uniform.py
LaudateCorpus1/distrax
ed8381045a0eb08eea262ac8707f9d77692475ef
[ "Apache-2.0" ]
null
null
null
distrax/_src/distributions/uniform.py
LaudateCorpus1/distrax
ed8381045a0eb08eea262ac8707f9d77692475ef
[ "Apache-2.0" ]
1
2021-10-05T16:07:30.000Z
2021-10-05T16:07:30.000Z
distrax/_src/distributions/uniform.py
LaudateCorpus1/distrax
ed8381045a0eb08eea262ac8707f9d77692475ef
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Uniform distribution.""" import math from typing import Tuple, Union import chex from distrax._src.distributions import distribution from distrax._src.utils import conversion import jax import jax.numpy as jnp from tensorflow_probability.substrates import jax as tfp tfd = tfp.distributions Array = chex.Array Numeric = chex.Numeric PRNGKey = chex.PRNGKey class Uniform(distribution.Distribution): """Uniform distribution with `low` and `high` parameters.""" equiv_tfp_cls = tfd.Uniform def __init__(self, low: Numeric = 0., high: Numeric = 1.): """Initializes a Uniform distribution. Args: low: Lower bound. high: Upper bound. """ super().__init__() self._low = conversion.as_float_array(low) self._high = conversion.as_float_array(high) self._batch_shape = jax.lax.broadcast_shapes( self._low.shape, self._high.shape) @property def event_shape(self) -> Tuple[int, ...]: """Shape of the events.""" return () @property def low(self) -> Array: """Lower bound.""" return jnp.broadcast_to(self._low, self.batch_shape) @property def high(self) -> Array: """Upper bound.""" return jnp.broadcast_to(self._high, self.batch_shape) @property def range(self) -> Array: return self.high - self.low @property def batch_shape(self) -> Tuple[int, ...]: return self._batch_shape def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" new_shape = (n,) + self.batch_shape uniform = jax.random.uniform( key=key, shape=new_shape, dtype=self.range.dtype, minval=0., maxval=1.) low = jnp.expand_dims(self._low, range(uniform.ndim - self._low.ndim)) range_ = jnp.expand_dims(self.range, range(uniform.ndim - self.range.ndim)) return low + range_ * uniform def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: """See `Distribution._sample_n_and_log_prob`.""" samples = self._sample_n(key, n) log_prob = -jnp.log(self.range) log_prob = jnp.repeat(log_prob[None], n, axis=0) return samples, log_prob def log_prob(self, value: Array) -> Array: """See `Distribution.log_prob`.""" return jnp.log(self.prob(value)) def prob(self, value: Array) -> Array: """See `Distribution.prob`.""" return jnp.where( jnp.logical_or(value < self.low, value > self.high), jnp.zeros_like(value), jnp.ones_like(value) / self.range) def entropy(self) -> Array: """Calculates the entropy.""" return jnp.log(self.range) def mean(self) -> Array: """Calculates the mean.""" return (self.low + self.high) / 2. def variance(self) -> Array: """Calculates the variance.""" return jnp.square(self.range) / 12. def stddev(self) -> Array: """Calculates the standard deviation.""" return self.range / math.sqrt(12.) def median(self) -> Array: """Calculates the median.""" return self.mean() def cdf(self, value: Array) -> Array: """See `Distribution.cdf`.""" ones = jnp.ones_like(self.range) zeros = jnp.zeros_like(ones) result_if_not_big = jnp.where( value < self.low, zeros, (value - self.low) / self.range) return jnp.where(value > self.high, ones, result_if_not_big) def log_cdf(self, value: Array) -> Array: """See `Distribution.log_cdf`.""" return jnp.log(self.cdf(value)) def _kl_divergence_uniform_uniform( dist1: Union[Uniform, tfd.Uniform], dist2: Union[Uniform, tfd.Uniform], *unused_args, **unused_kwargs, ) -> Array: """Obtain the KL divergence `KL(dist1 || dist2)` between two Uniforms. Note that the KL divergence is infinite if the support of `dist1` is not a subset of the support of `dist2`. Args: dist1: A Uniform distribution. dist2: A Uniform distribution. Returns: Batchwise `KL(dist1 || dist2)`. """ return jnp.where( jnp.logical_and(dist2.low <= dist1.low, dist1.high <= dist2.high), jnp.log(dist2.high - dist2.low) - jnp.log(dist1.high - dist1.low), jnp.inf) # Register the KL functions with TFP. tfd.RegisterKL(Uniform, Uniform)(_kl_divergence_uniform_uniform) tfd.RegisterKL(Uniform, Uniform.equiv_tfp_cls)(_kl_divergence_uniform_uniform) tfd.RegisterKL(Uniform.equiv_tfp_cls, Uniform)(_kl_divergence_uniform_uniform)
31.055556
80
0.675214
e7520e386dac674ee0c67f2f0de718e673e457de
3,626
py
Python
sic_codes.py
leanguardia/gender-pay-gap-uk
85633151380bb641fc08112fed199334013b7b3c
[ "MIT" ]
1
2021-01-13T13:40:16.000Z
2021-01-13T13:40:16.000Z
sic_codes.py
leanguardia/gender-pay-gap-uk
85633151380bb641fc08112fed199334013b7b3c
[ "MIT" ]
null
null
null
sic_codes.py
leanguardia/gender-pay-gap-uk
85633151380bb641fc08112fed199334013b7b3c
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np def drop_sic_codes_na(df): """ Removes all rows with missing SicCodes """ return df.dropna(subset=['SicCodes']).reset_index(drop=True) def clean_sic_codes(df): """ Cleans lists of SicCodes """ df = _codes_to(df, str) df.SicCodes = df.SicCodes.apply(_strip_and_split) return df def add_sections(df): """ Maps five digit SicCodes to single character Sections and stores them in SicSections """ codes_to_section = _build_code_to_section_dict() sic_sections = df.SicCodes.apply(_map_codes_to_section, args=(codes_to_section,)) df['SicSections'] = sic_sections return df def explode_sections(df): """ Creates a row for each of the industry sections a company belongs. Additionaly, the section description is added in a new column """ df = df.explode('SicSections') section_to_desc = _build_section_to_desc_dict() df['SectDesc'] = df.SicSections.map(section_to_desc) return df def split_sectors(df): """ Splits elements in Sic Codes list and distributes them in 21 dummy columns representing whether that company belongs to an Industrial Section or not. Requirements: df should have already gone through `drop_sic_codes` and `clean_sic_codes`. """ df = df.copy() df = drop_sic_codes_na(df) sections = _get_sections() dummies = _generate_dummies(df, sections) df = df.join(dummies) return df def _get_sections(): return pd.unique(_load_codes().Section) def _get_section_descriptions(): return pd.Series(_load_codes().SectionDesc.unique()).apply(_first_sentence) def _codes_to(df, typ): df.SicCodes = df.SicCodes.astype(typ) return df def _map_codes_to_section(codes, codes_to_section): return np.unique( [codes_to_section[int(code)] for code in codes if int(code) in codes_to_section] ) def _generate_dummies(df, sections): dummies = _build_empty_dummies(df, sections) code_to_section = _build_code_to_section_dict() for i, sic_codes in enumerate(df.SicCodes): sections = [code_to_section[int(code)] for code in sic_codes if int(code) in code_to_section] indices = np.unique(dummies.columns.get_indexer(sections)) dummies.iloc[i, indices] = 1 return dummies.add_prefix('Sect') def _build_empty_dummies(df, sections): zeroes = np.zeros((df.shape[0], len(sections)), dtype=int) return pd.DataFrame(zeroes, columns=sections, index=df.index) def _build_code_to_section_dict(): codes = _load_codes() code_to_section = {} for i, sic_code in enumerate(codes.SicCodes): row = codes.iloc[i] code_to_section[row.SicCodes] = row.Section # code_to_section[1] = "Unknown" # Uncomment to encode invalid value (1) return code_to_section def _build_section_to_desc_dict(): return dict(zip(_get_sections(), _get_section_descriptions())) def _strip_and_split(codes): return codes.replace('\r\n','').split(',') def _first_sentence(description): return description.split(';')[0] def _load_codes(): codes = pd.read_csv('data/sic_codes.csv') codes.rename(columns={ "sic_code": "SicCodes", "section": "Section", "section_description": "SectionDesc" }, inplace=True) codes.drop(['sic_version'], axis='columns', inplace=True) codes = _codes_to(codes, int) return codes def main(): df = pd.read_csv('data/UK-Gender-Pay-Gap-Data-2018-2019.csv') df = drop_sic_codes_na(df) df = clean_sic_codes(df) return df if __name__ == "__main__": df = main()
32.666667
101
0.694981
3a956c607a1ae3293da5944bb5ea9b3b4822c64f
114
py
Python
Software/main.py
cboltz/MacherdaachBadgeQueue
ed8b39a0fb1c3fe43e61179c0c510cc011dd9a48
[ "CC0-1.0" ]
null
null
null
Software/main.py
cboltz/MacherdaachBadgeQueue
ed8b39a0fb1c3fe43e61179c0c510cc011dd9a48
[ "CC0-1.0" ]
null
null
null
Software/main.py
cboltz/MacherdaachBadgeQueue
ed8b39a0fb1c3fe43e61179c0c510cc011dd9a48
[ "CC0-1.0" ]
null
null
null
from controller.controller import Controller def run(): Controller() if __name__ == '__main__': run()
11.4
44
0.675439
9122864a19a16d1576b1dad9a56a3810032a7845
2,763
py
Python
test-import-vulnerable-api-master/test-import-vulnerable-api-master/test/test_vapi.py
rmit-cyber-ready-cic/Security99
2d32865aef91f09b0edac2dd926ce603769052d7
[ "MIT" ]
null
null
null
test-import-vulnerable-api-master/test-import-vulnerable-api-master/test/test_vapi.py
rmit-cyber-ready-cic/Security99
2d32865aef91f09b0edac2dd926ce603769052d7
[ "MIT" ]
null
null
null
test-import-vulnerable-api-master/test-import-vulnerable-api-master/test/test_vapi.py
rmit-cyber-ready-cic/Security99
2d32865aef91f09b0edac2dd926ce603769052d7
[ "MIT" ]
null
null
null
import json import unittest from test import BaseTestCase class TestvAPI(BaseTestCase): def test_tokens_1(self): headers = { "Content-type": "application/json"} r = self.client.open( "/tokens", method='POST', data=json.dumps({'username': "blah1'", 'password': 'blah'}), headers=headers) print(r.status_code, r.data) self.assertEqual(r.status_code,500) def test_tokens_2(self): headers = { "Content-type": "application/json"} r = self.client.open( "/tokens", method='POST', data=json.dumps({"username": "blah1'", "password": "blah"}), headers=headers) print(r.status_code, r.data) self.assertEqual(r.status_code,500) def test_tokens_3(self): headers = { "Content-type": "application/json"} r = self.client.open( "/tokens", method='POST', data=json.dumps({"username": "blah1'", "password": "blah"}), headers=headers) print(r.status_code, r.data) self.assertEqual(r.status_code,500) def test_tokens_4(self): headers = { "Content-type": "application/json"} r = self.client.post( "/tokens", data=json.dumps({'username': 'blah1\'', "password": "blah"}), headers=headers) print(r.status_code, r.data) self.assertEqual(r.status_code,500) def test_widget_1(self): headers = { "Content-type": "application/json", "X-Auth-Token": "4d94fc705cd9b2b36b2280dd543d9004"} r = self.client.post( "/widget", data=json.dumps({'name': 'blah1'}), headers=headers) # print(r.status_code, r.data) self.assertEqual(r.status_code,200) def test_widget_2(self): headers = { "Content-type": "application/json", "X-Auth-Token": "4d94fc705cd9b2b36b2280dd543d9004"} r = self.client.post( "/widget", data=json.dumps({'name': 'blah'}), headers=headers) self.assertEqual(r.status_code,403) def test_widget_3(self): headers = { "Content-type": "application/json", "X-Auth-Token": "tokenwithsinglequote'"} r = self.client.post( "/widget", data=json.dumps({'name': 'blah1'}), headers=headers) self.assertEqual(r.status_code,500) def test_widget_4(self): headers = { "Content-type": "application/json", "X-Auth-Token": "unknowntoken"} r = self.client.post( "/widget", data=json.dumps({'name': 'blah1'}), headers=headers) self.assertEqual(r.status_code,401) if __name__ == '__main__': unittest.main()
33.695122
107
0.566051
e380debf42eb8210370254ea98e490baf7f5c9c3
4,550
py
Python
mtgreatest-py/mtgreatest/scrape/players.py
oelarnes/mtgreatest
e2bf74fe9695302d6881e835e2cd1f5d2b312b5c
[ "MIT" ]
null
null
null
mtgreatest-py/mtgreatest/scrape/players.py
oelarnes/mtgreatest
e2bf74fe9695302d6881e835e2cd1f5d2b312b5c
[ "MIT" ]
null
null
null
mtgreatest-py/mtgreatest/scrape/players.py
oelarnes/mtgreatest
e2bf74fe9695302d6881e835e2cd1f5d2b312b5c
[ "MIT" ]
null
null
null
import requests import re from bs4 import BeautifulSoup from distance import levenshtein from mtgreatest.rdb import Cursor, serialize NUM_NORM_NAMES = 4 NORM_NAMES = ['norm_name_{}'.format(num) for num in range(NUM_NORM_NAMES)] def fix_name_and_country(name, country): if name is None: return (name, country) part = name.rpartition('[') if len(part[0]): return (part[0][:-1], part[1]+part[2]) else: return (name, country) def normalize_raw_name(raw_name): raw_name = raw_name.upper() sleep_in_patterns = ['ZVIP', 'ZZVIP', 'ZZZVIP', 'ZZ', 'ZZZ', 'ZZSIS', 'ZZFIX', 'ZZZ_', 'ZZZZZ', 'VIP', 'VIP_', 'AAVIP', 'AAA VIP -'] for pattern in sleep_in_patterns: if raw_name.startswith(pattern) and not raw_name.startswith('VIPPERMAN'): raw_name = raw_name.rpartition(pattern)[2] elif raw_name.endswith(pattern): raw_name = raw_name.partition(pattern)[0] raw_name = raw_name.strip(' ()1234567890') last_first = list(raw_name.partition(',')) last_first[0] = last_first[0].partition('[')[0].rstrip(' *').strip(' *') last_first[2] = last_first[2].rpartition('SEE SK ')[2].strip(' *').rstrip(' *') #why?? what is this?? normalized_name = last_first[0] if len(last_first[2]): normalized_name += ', ' + last_first[2] return normalized_name def normalize_full_raw_name(full_raw_name): return '/'.join([normalize_raw_name(name) for name in full_raw_name.split('/')]) def max_name_list(names1, names2): ret_names = [] for name in names1: if not any([name2.startswith(name) for name2 in names2]): ret_names.append(name) for name in names2: if not any([name1.startswith(name) and len(name1)>len(name) for name1 in names1]): ret_names.append(name) return ret_names def normalized_event_names(event_id): cursor = Cursor() num_rounds = cursor.execute("select max(round_num) from results_raw_table where event_id = '{}'".format(event_id))[0][0] all_round_names = [] for round_num in range(num_rounds): names = cursor.execute("select distinct p1_name_raw from results_raw_table where event_id = '{}' and round_num = {}".format(event_id, round_num)) names += cursor.execute("select distinct p2_name_raw from results_raw_table where event_id = '{}' and round_num = {}".format(event_id, round_num)) all_round_names.append(list(set([normalize_raw_name(item) for sublist in names for item in sublist if '* BYE *' not in item and 'Awarded Bye' not in item]))) cursor.close() return reduce(max_name_list, all_round_names, []) def populate_event_player_table(event_names, event_id): cursor = Cursor() cursor.execute("delete from event_player_table where event_id = {}".format(serialize(event_id))) query = "select player_id, " query += ', '.join(NORM_NAMES) query += ' from player_table where ' or_ = False for name in event_names: if or_: query += "or " or_ = True join_str = ' like {}'.format(serialize(name + '%')) query += (join_str + ' or ').join(NORM_NAMES) + join_str player_table_names = cursor.execute(query) found_names = [] new_names = [] for name in event_names: found = False for idx, row in enumerate(player_table_names): if name in row: if found: raise 'two matches found for name ' + name found_names.append({'player_id':row[0], 'normalized_name':name, 'event_id':event_id}) found = True if not found: new_names.append(name) player_id = cursor.execute("select max(player_id) from player_table")[0][0] or 1 new_players = [] for name in new_names: player_id += 1 new_players.append({'player_id':player_id, 'norm_name_1':name, 'event_added':event_id, 'last_name':name.partition(',')[0], 'first_name':name.partition(', ')[2]}) found_names.append({'player_id':player_id, 'normalized_name':name, 'event_id':event_id}) cursor.insert('event_player_table', found_names) cursor.insert('player_table', new_players) cursor.close() def remove_header_row(): query = "delete from results_raw_table where table_id like '%table%'" cursor = Cursor() cursor.execute(query); cursor.close(); def combine_players(norm_name_1, norm_name_2): query_template = "select * from player_table where " query_template += ' or '.join([name + ' like {0}' for name in NORM_NAMES]) cursor = Cursor() player_infos = [cursor.execute(query_template.format(serialize(name))) for name in (norm_name_1, norm_name_2)] assert len(player_infos[0]) == 1 and len(player_infos[1]) == 1, "multiple or no matches found for a name"
39.224138
161
0.695824
ec3e3b9ff7e653c612e2deb9d9d4329753b86051
782
py
Python
tests/test_utils.py
coderatchet/scrapy-test
4f5febfca05d267dc98df94e65a403210ce39d81
[ "Apache-2.0" ]
null
null
null
tests/test_utils.py
coderatchet/scrapy-test
4f5febfca05d267dc98df94e65a403210ce39d81
[ "Apache-2.0" ]
null
null
null
tests/test_utils.py
coderatchet/scrapy-test
4f5febfca05d267dc98df94e65a403210ce39d81
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ test_utils.py Copyright 2017 CodeRatchet Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 """ from scrapytest.utils import find_first, merge_dict def test_find_first_returns_none_on_condition_not_found(): assert find_first({'foo': 'bar', 'baz': 'spam'}, lambda x, y: False) is None def test_merge_dict_sees_correct_values(): a = {'first': {'all_rows': {'pass': 'dog', 'number': '1'}}} b = {'first': {'all_rows': {'fail': 'cat', 'number': '5'}}} assert merge_dict(b, a) == {'first': {'all_rows': {'pass': 'dog', 'fail': 'cat', 'number': '5'}}}
31.28
101
0.643223
a69ee7a9f888d8536f4bf36dc0bbbceb6bad0d24
1,333
py
Python
iotbx/command_line/pdb.box_around_molecule.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
iotbx/command_line/pdb.box_around_molecule.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
iotbx/command_line/pdb.box_around_molecule.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import division import sys from cctbx import uctbx import iotbx.pdb from libtbx.option_parser import option_parser import libtbx.load_env from libtbx.str_utils import show_string from libtbx.utils import date_and_time import mmtbx.model def run(args): log = sys.stdout if (len(args) == 0): args = ["--help"] command_line = (option_parser( usage="%s [options] pdb_file" % libtbx.env.dispatcher_name) .option(None, "--buffer_layer", action="store", type="float", default=5) ).process(args=args, nargs=1) pdb_inp = iotbx.pdb.input(file_name=command_line.args[0]) model = mmtbx.model.manager( model_input = pdb_inp) box = uctbx.non_crystallographic_unit_cell_with_the_sites_in_its_center( sites_cart=model.get_sites_cart(), buffer_layer=command_line.options.buffer_layer) model.set_sites_cart(box.sites_cart) # Bad hack, never repeat. In fact, all the boxing functionality should # go into mmtbx.model.manager model._crystal_symmetry = box.crystal_symmetry() print >> log, 'REMARK %s --buffer-layer=%.6g %s' % ( libtbx.env.dispatcher_name, command_line.options.buffer_layer, show_string(command_line.args[0])) print >> log, 'REMARK %s' % date_and_time() print >> log, model.model_as_pdb() if (__name__ == "__main__"): run(sys.argv[1:])
32.512195
74
0.727682
dfa509f9568377b1ff1205997263da43054a7b7b
3,508
py
Python
src/gui_wall_widget.py
LiamTyler/ClimbingWallLEDController
99e65ab44e9bd84ac3dbe76ba4a3d66f24ba3c9e
[ "MIT" ]
null
null
null
src/gui_wall_widget.py
LiamTyler/ClimbingWallLEDController
99e65ab44e9bd84ac3dbe76ba4a3d66f24ba3c9e
[ "MIT" ]
null
null
null
src/gui_wall_widget.py
LiamTyler/ClimbingWallLEDController
99e65ab44e9bd84ac3dbe76ba4a3d66f24ba3c9e
[ "MIT" ]
null
null
null
from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * from routes import * STENCIL_FONT = QFont( QFont( 'Arial', 16 ) ) STENCIL_FONT.setBold( True ) class WallHold( QWidget ): def __init__( self, row, col, editable = False ): super().__init__() self.setFixedSize( QSize( 40, 40 ) ) self.row = row self.col = col self.status = HoldStatus.UNUSED self.editable = editable def GetCoord( self ): return chr( 65 + self.col ) + str( self.row + 1 ) def paintEvent( self, event ): p = QPainter( self ) rect = event.rect() color = Qt.white if self.status == HoldStatus.START: color = Qt.green elif self.status == HoldStatus.REGULAR: color = Qt.blue elif self.status == HoldStatus.FINISH: color = Qt.red p.fillRect( rect, QBrush( color ) ) pen = QPen( color ) pen.setWidth( 0 ) p.setPen( pen ) p.drawRect( rect ) def mouseReleaseEvent( self, e ): if self.editable: self.status = (self.status + 1) % HoldStatus.COUNT self.update() class WallStencil( QWidget ): def __init__( self, text ): super().__init__() self.text = text self.setFixedSize( QSize( 40, 40 ) ) def paintEvent(self, event): qp = QPainter( self ) qp.setRenderHint( QPainter.Antialiasing ) qp.setPen( Qt.black ) qp.setFont( STENCIL_FONT ) qp.drawText( event.rect(), Qt.AlignCenter, self.text ) class WallWidget( QWidget ): def __init__( self ): super().__init__() self.gridLayout = QGridLayout() self.setLayout( self.gridLayout ) self.setSizePolicy( QSizePolicy.Policy.Fixed, QSizePolicy.Policy.Fixed ) #self.setSpacing( 5 ) # grid starts in upper left corner, but wall starts in lower left for row in range( 0, WALL_ROWS + 1 ): for col in range( 0, WALL_COLS + 1 ): wallRow = WALL_ROWS - row w = None if row > 0 and col == 0: w = WallStencil( str( wallRow + 1 ) ) elif row == 0 and col > 0: w = WallStencil( chr( 65 + col - 1 ) ) elif row > 0 and col > 0: w = WallHold( wallRow, col - 1, False ) if w != None: self.gridLayout.addWidget( w, row, col ) def SetEditable( self, isEditable ): for row in range( 0, WALL_ROWS ): for col in range( 0, WALL_COLS ): self.gridLayout.itemAtPosition( row + 1, col + 1 ).widget().editable = isEditable def DrawRoute( self, route ): for row in range( 0, WALL_ROWS ): for col in range( 0, WALL_COLS ): self.gridLayout.itemAtPosition( row + 1, col + 1 ).widget().status = HoldStatus.UNUSED for hold in route.holds: wallRow = WALL_ROWS - hold.row self.gridLayout.itemAtPosition( wallRow, hold.col + 1 ).widget().status = hold.status def GetCurrentlyDrawnHolds( self ): holds = [] for row in range( 0, WALL_ROWS ): for col in range( 0, WALL_COLS ): w = self.gridLayout.itemAtPosition( row + 1, col + 1 ).widget() if w.status != HoldStatus.UNUSED: holds.append( Hold( w.row, w.col, w.status ) ) return holds
34.732673
102
0.547891
317fd8b22d2428aa9dff95d98505d7e70f02706e
1,933
py
Python
src/face_detector.py
yariv1025/FACIAL_EMOTION_RECOGNITION
1141912271a6ed336db60856552e20282dfd6a60
[ "MIT" ]
null
null
null
src/face_detector.py
yariv1025/FACIAL_EMOTION_RECOGNITION
1141912271a6ed336db60856552e20282dfd6a60
[ "MIT" ]
4
2021-03-04T10:07:49.000Z
2021-03-04T15:31:10.000Z
src/face_detector.py
yariv1025/EmotionRec
1141912271a6ed336db60856552e20282dfd6a60
[ "MIT" ]
null
null
null
from datetime import datetime from mtcnn.mtcnn import MTCNN class FaceDetector(MTCNN): """ Perform facial detection. """ def __init__(self): """ Creating FaceDetector object by calling to the super class constructor (MTCNN). """ super().__init__() self.no_face_time = 0 self.temp_timer = None self.prev = True def get_face(self, img): """ Detects faces in an image. If faces has been detected, returning the bounding boxes for the faces relative to the specified image. Else, return an empty list. :param img: image/frame to process. :return: list containing all the bounding boxes detected with their key-points. """ return self.detect_faces(img) def has_face(self, img): """ Face verification within an image. :param img: image/frame to process. :return: boolean value - False if theres no face. Else, True. """ faces = self.get_face(img) if len(faces) > 0 and self.prev: return faces elif len(faces) > 0 and not self.prev: self.prev = True self.stop_timer() return faces elif len(faces) == 0 and self.prev: self.prev = False self.start_timer() return False elif len(faces) == 0 and not self.prev: return False def start_timer(self): """ Initializes the timer to count when no faces are detected in the image. """ self.temp_timer = datetime.now() return self.temp_timer def stop_timer(self): """ Calculate the entire time theres no faces are detected in the image. """ self.no_face_time = self.no_face_time + (datetime.now() - self.temp_timer).total_seconds() self.temp_timer = None return self.temp_timer
29.738462
111
0.588205
2182c65c56102f99f82fd0c563332a054b4d2ee7
1,795
py
Python
alipay/aop/api/domain/KoubeiMerchantDepartmentTreeQueryModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/KoubeiMerchantDepartmentTreeQueryModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/KoubeiMerchantDepartmentTreeQueryModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class KoubeiMerchantDepartmentTreeQueryModel(object): def __init__(self): self._auth_code = None self._dept_id = None self._type = None @property def auth_code(self): return self._auth_code @auth_code.setter def auth_code(self, value): self._auth_code = value @property def dept_id(self): return self._dept_id @dept_id.setter def dept_id(self, value): self._dept_id = value @property def type(self): return self._type @type.setter def type(self, value): self._type = value def to_alipay_dict(self): params = dict() if self.auth_code: if hasattr(self.auth_code, 'to_alipay_dict'): params['auth_code'] = self.auth_code.to_alipay_dict() else: params['auth_code'] = self.auth_code if self.dept_id: if hasattr(self.dept_id, 'to_alipay_dict'): params['dept_id'] = self.dept_id.to_alipay_dict() else: params['dept_id'] = self.dept_id if self.type: if hasattr(self.type, 'to_alipay_dict'): params['type'] = self.type.to_alipay_dict() else: params['type'] = self.type return params @staticmethod def from_alipay_dict(d): if not d: return None o = KoubeiMerchantDepartmentTreeQueryModel() if 'auth_code' in d: o.auth_code = d['auth_code'] if 'dept_id' in d: o.dept_id = d['dept_id'] if 'type' in d: o.type = d['type'] return o
25.28169
69
0.56546
015fa1833f42898327317629bf34ca5071e4d3b4
7,531
py
Python
Tests/Validation/Magnetics/test_FEMM_parallelization.py
EmileDvs/pyleecan
ad2f5f25c089a981f373557a198da51c62407928
[ "Apache-2.0" ]
95
2019-01-23T04:19:45.000Z
2022-03-17T18:22:10.000Z
Tests/Validation/Magnetics/test_FEMM_parallelization.py
EmileDvs/pyleecan
ad2f5f25c089a981f373557a198da51c62407928
[ "Apache-2.0" ]
366
2019-02-20T07:15:08.000Z
2022-03-31T13:37:23.000Z
Tests/Validation/Magnetics/test_FEMM_parallelization.py
EmileDvs/pyleecan
ad2f5f25c089a981f373557a198da51c62407928
[ "Apache-2.0" ]
74
2019-01-24T01:47:31.000Z
2022-02-25T05:44:42.000Z
from os.path import join from time import time import pytest from numpy import array, pi from numpy.testing import assert_allclose from Tests import save_validation_path as save_path from pyleecan.Classes.ImportGenVectLin import ImportGenVectLin from pyleecan.Classes.ImportMatrixVal import ImportMatrixVal from pyleecan.Classes.InputCurrent import InputCurrent from pyleecan.Classes.MagFEMM import MagFEMM from pyleecan.Classes.Simu1 import Simu1 from pyleecan.Functions.load import load from pyleecan.Functions.Plot import dict_2D from pyleecan.definitions import DATA_DIR @pytest.mark.long_5s @pytest.mark.MagFEMM @pytest.mark.IPMSM @pytest.mark.parallel @pytest.mark.periodicity @pytest.mark.SingleOP def test_FEMM_parallelization_mag(): """test parallelization of FEMM to get B, Tem, PhiWind""" Toyota_Prius = load(join(DATA_DIR, "Machine", "Toyota_Prius.json")) simu = Simu1(name="test_FEMM_parallelization_mag", machine=Toyota_Prius) # Definition of a sinusoidal current simu.input = InputCurrent() simu.input.Id_ref = -100 # [A] simu.input.Iq_ref = 200 # [A] simu.input.Nt_tot = 16 # Number of time step simu.input.Na_tot = 1024 # Spatial discretization simu.input.N0 = 2000 # Rotor speed [rpm] # Definition of the magnetic simulation simu.mag = MagFEMM( type_BH_stator=2, type_BH_rotor=2, is_periodicity_a=True, is_periodicity_t=True, ) simu2 = simu.copy() simu2.mag.nb_worker = 2 start = time() out = simu.run() time1 = time() - start start = time() out2 = simu2.run() time2 = time() - start print( "Execution with one worker: {:.1f}s ||| {:d} workers {:.1f}".format( time1, simu2.mag.nb_worker, time2 ) ) # simlation with Nt_tot < nb_worker simu3 = simu.copy() simu3.mag.nb_worker = 8 simu3.input.Nt_tot = 4 simu3.run() # Plot the result by comparing the first two simulation out.mag.B.plot_2D_Data( "angle{°}", "time[0]", data_list=[out2.mag.B], legend_list=["Serial", "Parallelization"], save_path=join(save_path, simu.name + "_B_t0.png"), is_show_fig=False, **dict_2D ) out.mag.B.plot_2D_Data( "angle{°}", "time[0]", data_list=[out2.mag.B], legend_list=["Serial", "Parallelization"], save_path=join(save_path, simu.name + "_B_t1.png"), is_show_fig=False, **dict_2D ) out.mag.Tem.plot_2D_Data( "time", data_list=[out2.mag.Tem], legend_list=["Periodic", "Full"], save_path=join(save_path, simu.name + "_Tem.png"), is_show_fig=False, **dict_2D ) out.mag.Phi_wind_stator.plot_2D_Data( "time", "phase", data_list=[out2.mag.Phi_wind_stator], legend_list=["Periodic", "Full"], save_path=join(save_path, simu.name + "_Phi_wind_stator.png"), is_show_fig=False, **dict_2D ) assert_allclose( out.mag.B.components["tangential"].values, out2.mag.B.components["tangential"].values, rtol=1e-5, atol=1e-6, ) assert_allclose( out.mag.B.components["radial"].values, out2.mag.B.components["radial"].values, rtol=1e-5, atol=1e-5, ) assert_allclose(out.mag.Tem.values, out2.mag.Tem.values, rtol=1e-5, atol=1e-5) return out, out2 @pytest.mark.long_5s @pytest.mark.MagFEMM @pytest.mark.SPMSM @pytest.mark.parallel @pytest.mark.MeshSol @pytest.mark.periodicity @pytest.mark.SingleOP def test_FEMM_parallelization_meshsolution(): """test parallelization of FEMM to get meshsolution""" SPMSM_003 = load(join(DATA_DIR, "Machine", "SPMSM_003.json")) simu = Simu1(name="test_FEMM_parallelization_meshsolution", machine=SPMSM_003) # Definition of the enforced output of the electrical module N0 = 3000 Is = ImportMatrixVal( value=array( [ [6.97244193e-06, 2.25353053e02, -2.25353060e02], [-2.60215295e02, 1.30107654e02, 1.30107642e02], [-6.97244208e-06, -2.25353053e02, 2.25353060e02], [2.60215295e02, -1.30107654e02, -1.30107642e02], ] ) ) time = ImportGenVectLin(start=0, stop=0.015, num=4, endpoint=True) angle = ImportGenVectLin(start=0, stop=2 * pi, num=1024, endpoint=False) simu.input = InputCurrent( Is=Is, Ir=None, # No winding on the rotor N0=N0, angle_rotor=None, # Will be computed time=time, angle=angle, angle_rotor_initial=0.5216 + pi, ) # Definition of the magnetic simulation (no symmetry) simu.mag = MagFEMM( type_BH_stator=2, type_BH_rotor=2, is_periodicity_a=False, is_periodicity_t=False, is_get_meshsolution=True, nb_worker=1, ) simu.force = None simu.struct = None simu2 = simu.copy() simu2.mag.nb_worker = 3 simu2.name += "_parallel" out = simu.run() out2 = simu2.run() # %% # Plots solution computed without parallelization out.mag.meshsolution.plot_mesh( save_path=join(save_path, simu.name + "_mesh_not_parallel.png"), is_show_fig=False, ) out.mag.meshsolution.plot_mesh( group_names="stator core", save_path=join(save_path, simu.name + "_mesh_stator_not_parallel.png"), is_show_fig=False, ) out.mag.meshsolution.plot_mesh( group_names=["stator core", "/", "airgap", "stator winding"], save_path=join( save_path, simu.name + "_mesh_stator_interface_not_parallel.png", ), is_show_fig=False, ) out.mag.meshsolution.plot_contour( label="\mu", save_path=join(save_path, simu.name + "_mu_not_parallel.png"), is_show_fig=False, ) out.mag.meshsolution.plot_contour( label="B", save_path=join(save_path, simu.name + "_B_not_parallel.png"), is_show_fig=False, ) out.mag.meshsolution.plot_contour( label="H", save_path=join(save_path, simu.name + "_H_not_parallel.png"), is_show_fig=False, ) # %% # Plots solution computed with parallelization out2.mag.meshsolution.plot_mesh( save_path=join(save_path, simu.name + "_mesh_parallel.png"), is_show_fig=False ) out2.mag.meshsolution.plot_mesh( group_names="stator core", save_path=join(save_path, simu.name + "_mesh_stator_parallel.png"), is_show_fig=False, ) out2.mag.meshsolution.plot_mesh( group_names=["stator core", "/", "airgap", "stator winding"], save_path=join( save_path, simu.name + "_mesh_stator_interface_parallel.png", ), is_show_fig=False, ) out2.mag.meshsolution.plot_contour( label="\mu", save_path=join(save_path, simu.name + "_mu_parallel.png"), is_show_fig=False, ) out2.mag.meshsolution.plot_contour( label="B", save_path=join(save_path, simu.name + "_B_parallel.png"), is_show_fig=False, ) out2.mag.meshsolution.plot_contour( label="H", save_path=join(save_path, simu.name + "_H_parallel.png"), is_show_fig=False, ) return out, out2 if __name__ == "__main__": out, out2 = test_FEMM_parallelization_mag() # out3, out4 = test_FEMM_parallelization_meshsolution()
28.31203
86
0.634577
0952f0fb396ba9a4ae41dfb0b7528e4b2e337e91
39,307
py
Python
labscript_devices/NI_USB_6343.py
specialforcea/labscript_suite
a4ad5255207cced671990fff94647b1625aa0049
[ "BSD-2-Clause" ]
null
null
null
labscript_devices/NI_USB_6343.py
specialforcea/labscript_suite
a4ad5255207cced671990fff94647b1625aa0049
[ "BSD-2-Clause" ]
null
null
null
labscript_devices/NI_USB_6343.py
specialforcea/labscript_suite
a4ad5255207cced671990fff94647b1625aa0049
[ "BSD-2-Clause" ]
null
null
null
##################################################################### # # # /NI_USB_6343.py # # # # Copyright 2013, Monash University # # # # This file is part of the module labscript_devices, in the # # labscript suite (see http://labscriptsuite.org), and is # # licensed under the Simplified BSD License. See the license.txt # # file in the root of the project for the full license. # # # ##################################################################### from labscript import LabscriptError from labscript_devices import labscript_device, BLACS_tab, BLACS_worker, runviewer_parser from labscript import AnalogOut, StaticAnalogOut, DigitalOut, StaticDigitalOut, AnalogIn import labscript_devices.NIBoard as parent import numpy as np import labscript_utils.h5_lock, h5py import labscript_utils.properties @labscript_device class NI_USB_6343(parent.NIBoard): description = 'NI-USB-6343' def __init__(self, name, parent_device, **kwargs): parent.NIBoard.__init__(self, name, parent_device, call_parents_add_device=False, **kwargs) self.allowed_children = [AnalogOut, DigitalOut, AnalogIn] self.num_AO = 4 self.num_DO = 32 self.dtype_DO = np.uint32 self.num_AI = 32 self.clock_limit = 700e3 # Now call this to get the clock right self.parent_device.add_device(self) import time from blacs.tab_base_classes import Worker, define_state from blacs.tab_base_classes import MODE_MANUAL, MODE_TRANSITION_TO_BUFFERED, MODE_TRANSITION_TO_MANUAL, MODE_BUFFERED from blacs.device_base_class import DeviceTab @BLACS_tab class NI_USB_6343Tab(DeviceTab): def initialise_GUI(self): # Capabilities num = {'AO':4, 'DO':32, 'PFI':16} base_units = {'AO':'V'} base_min = {'AO':-10.0} base_max = {'AO':10.0} base_step = {'AO':0.1} base_decimals = {'AO':3} # Create the AO output objects ao_prop = {} for i in range(num['AO']): ao_prop['ao%d'%i] = {'base_unit':base_units['AO'], 'min':base_min['AO'], 'max':base_max['AO'], 'step':base_step['AO'], 'decimals':base_decimals['AO'] } do_prop = {} for i in range(num['DO']): do_prop['port0/line%d'%i] = {} pfi_prop = {} for i in range(num['PFI']): pfi_prop['PFI %d'%i] = {} # Create the output objects self.create_analog_outputs(ao_prop) # Create widgets for analog outputs only dds_widgets,ao_widgets,do_widgets = self.auto_create_widgets() # now create the digital output objects self.create_digital_outputs(do_prop) self.create_digital_outputs(pfi_prop) # manually create the digital output widgets so they are grouped separately do_widgets = self.create_digital_widgets(do_prop) pfi_widgets = self.create_digital_widgets(pfi_prop) def do_sort(channel): flag = channel.replace('port0/line','') flag = int(flag) return '%02d'%(flag) def pfi_sort(channel): flag = channel.replace('PFI ','') flag = int(flag) return '%02d'%(flag) # and auto place the widgets in the UI self.auto_place_widgets(("Analog Outputs",ao_widgets),("Digital Outputs",do_widgets,do_sort),("PFI Outputs",pfi_widgets,pfi_sort)) # Store the Measurement and Automation Explorer (MAX) name self.MAX_name = str(self.settings['connection_table'].find_by_name(self.device_name).BLACS_connection) # Create and set the primary worker self.create_worker("main_worker",NI_USB_6343Worker,{'MAX_name':self.MAX_name, 'limits': [base_min['AO'],base_max['AO']], 'num':num}) self.primary_worker = "main_worker" self.create_worker("wait_monitor_worker",NI_USB_6343WaitMonitorWorker,{'MAX_name':self.MAX_name}) self.add_secondary_worker("wait_monitor_worker") self.create_worker("acquisition_worker",NI_USB_6343AcquisitionWorker,{'MAX_name':self.MAX_name}) self.add_secondary_worker("acquisition_worker") # Set the capabilities of this device self.supports_remote_value_check(False) self.supports_smart_programming(False) @BLACS_worker class NI_USB_6343Worker(Worker): def init(self): exec 'from PyDAQmx import Task, DAQmxResetDevice' in globals() exec 'from PyDAQmx.DAQmxConstants import *' in globals() exec 'from PyDAQmx.DAQmxTypes import *' in globals() global pylab; import pylab global numpy; import numpy global h5py; import labscript_utils.h5_lock, h5py import zprocess.locking import socket # Setup lock for NIDAQmx_calls on this machine key = socket.gethostname() + '-NI_DAQ_API' self.NIDAQ_API_lock = zprocess.locking.Lock(key) with self.NIDAQ_API_lock: # Reset Device DAQmxResetDevice(self.MAX_name) # Create task self.ao_task = Task() self.ao_read = int32() self.ao_data = numpy.zeros((self.num['AO'],), dtype=numpy.float64) # Create DO task: self.do_task = Task() self.do_read = int32() self.do_data = numpy.zeros(self.num['DO']+self.num['PFI'],dtype=numpy.uint8) self.setup_static_channels() #DAQmx Start Code self.ao_task.StartTask() self.do_task.StartTask() def setup_static_channels(self): #setup AO channels for i in range(self.num['AO']): self.ao_task.CreateAOVoltageChan(self.MAX_name+"/ao%d"%i,"",self.limits[0],self.limits[1],DAQmx_Val_Volts,None) #setup DO ports self.do_task.CreateDOChan(self.MAX_name+"/port0/line0:7","",DAQmx_Val_ChanForAllLines) self.do_task.CreateDOChan(self.MAX_name+"/port0/line8:15","",DAQmx_Val_ChanForAllLines) self.do_task.CreateDOChan(self.MAX_name+"/port0/line16:23","",DAQmx_Val_ChanForAllLines) self.do_task.CreateDOChan(self.MAX_name+"/port0/line24:31","",DAQmx_Val_ChanForAllLines) self.do_task.CreateDOChan(self.MAX_name+"/port1/line0:7","",DAQmx_Val_ChanForAllLines) self.do_task.CreateDOChan(self.MAX_name+"/port2/line0:7","",DAQmx_Val_ChanForAllLines) def shutdown(self): self.ao_task.StopTask() self.ao_task.ClearTask() self.do_task.StopTask() self.do_task.ClearTask() def program_manual(self,front_panel_values): for i in range(self.num['AO']): self.ao_data[i] = front_panel_values['ao%d'%i] self.ao_task.WriteAnalogF64(1,True,1,DAQmx_Val_GroupByChannel,self.ao_data,byref(self.ao_read),None) for i in range(self.num['DO']): self.do_data[i] = front_panel_values['port0/line%d'%i] for i in range(self.num['PFI']): self.do_data[i+self.num['DO']] = front_panel_values['PFI %d'%i] self.do_task.WriteDigitalLines(1,True,1,DAQmx_Val_GroupByChannel,self.do_data,byref(self.do_read),None) # TODO: return coerced/quantised values return {} def transition_to_buffered(self,device_name,h5file,initial_values,fresh): # Store the initial values in case we have to abort and restore them: self.initial_values = initial_values with h5py.File(h5file,'r') as hdf5_file: group = hdf5_file['devices/'][device_name] device_properties = labscript_utils.properties.get(hdf5_file, device_name, 'device_properties') connection_table_properties = labscript_utils.properties.get(hdf5_file, device_name, 'connection_table_properties') clock_terminal = connection_table_properties['clock_terminal'] h5_data = group.get('ANALOG_OUTS') if h5_data: self.buffered_using_analog = True ao_channels = device_properties['analog_out_channels'] # We use all but the last sample (which is identical to the # second last sample) in order to ensure there is one more # clock tick than there are samples. The 6733 requires this # to determine that the task has completed. ao_data = pylab.array(h5_data,dtype=float64)[:-1,:] else: self.buffered_using_analog = False h5_data = group.get('DIGITAL_OUTS') if h5_data: self.buffered_using_digital = True do_channels = device_properties['digital_lines'] # See comment above for ao_channels do_bitfield = numpy.array(h5_data,dtype=numpy.uint32)[:-1] else: self.buffered_using_digital = False final_values = {} # We must do digital first, so as to make sure the manual mode task is stopped, or reprogrammed, by the time we setup the AO task # this is because the clock_terminal PFI must be freed! with self.NIDAQ_API_lock: if self.buffered_using_digital: # Expand each bitfield int into self.num['DO'] # (32) individual ones and zeros: do_write_data = numpy.zeros((do_bitfield.shape[0],self.num['DO']),dtype=numpy.uint8) for i in range(self.num['DO']): do_write_data[:,i] = (do_bitfield & (1 << i)) >> i self.do_task.StopTask() self.do_task.ClearTask() self.do_task = Task() self.do_read = int32() self.do_task.CreateDOChan(do_channels,"",DAQmx_Val_ChanPerLine) self.do_task.CfgSampClkTiming(clock_terminal,500000,DAQmx_Val_Rising,DAQmx_Val_FiniteSamps,do_bitfield.shape[0]) self.do_task.WriteDigitalLines(do_bitfield.shape[0],False,10.0,DAQmx_Val_GroupByScanNumber,do_write_data,self.do_read,None) self.do_task.StartTask() for i in range(self.num['DO']): final_values['port0/line%d'%i] = do_write_data[-1,i] else: # We still have to stop the task to make the # clock flag available for buffered analog output, or the wait monitor: self.do_task.StopTask() self.do_task.ClearTask() if self.buffered_using_analog: self.ao_task.StopTask() self.ao_task.ClearTask() self.ao_task = Task() ao_read = int32() self.ao_task.CreateAOVoltageChan(ao_channels,"",-10.0,10.0,DAQmx_Val_Volts,None) self.ao_task.CfgSampClkTiming(clock_terminal,500000,DAQmx_Val_Rising,DAQmx_Val_FiniteSamps, ao_data.shape[0]) self.ao_task.WriteAnalogF64(ao_data.shape[0],False,10.0,DAQmx_Val_GroupByScanNumber, ao_data,ao_read,None) self.ao_task.StartTask() # Final values here are a dictionary of values, keyed by channel: channel_list = [channel.split('/')[1] for channel in ao_channels.split(', ')] for channel, value in zip(channel_list, ao_data[-1,:]): final_values[channel] = value else: # we should probabaly still stop the task (this makes it easier to setup the task later) self.ao_task.StopTask() self.ao_task.ClearTask() return final_values def transition_to_manual(self,abort=False): # if aborting, don't call StopTask since this throws an # error if the task hasn't actually finished! if self.buffered_using_analog: if not abort: self.ao_task.StopTask() self.ao_task.ClearTask() if self.buffered_using_digital: if not abort: self.do_task.StopTask() self.do_task.ClearTask() self.ao_task = Task() self.do_task = Task() self.setup_static_channels() self.ao_task.StartTask() self.do_task.StartTask() if abort: # Reprogram the initial states: self.program_manual(self.initial_values) return True def abort_transition_to_buffered(self): # TODO: untested return self.transition_to_manual(True) def abort_buffered(self): # TODO: untested return self.transition_to_manual(True) class NI_USB_6343AcquisitionWorker(Worker): def init(self): #exec 'import traceback' in globals() exec 'from PyDAQmx import Task' in globals() exec 'from PyDAQmx.DAQmxConstants import *' in globals() exec 'from PyDAQmx.DAQmxTypes import *' in globals() global h5py; import labscript_utils.h5_lock, h5py global numpy; import numpy global threading; import threading global zprocess; import zprocess global logging; import logging global time; import time self.task_running = False self.daqlock = threading.Condition() # Channel details self.channels = [] self.rate = 1000. self.samples_per_channel = 1000 self.ai_start_delay = 25e-9 self.h5_file = "" self.buffered_channels = [] self.buffered_rate = 0 self.buffered = False self.buffered_data = None self.buffered_data_list = [] self.task = None self.abort = False # And event for knowing when the wait durations are known, so that we may use them # to chunk up acquisition data: self.wait_durations_analysed = zprocess.Event('wait_durations_analysed') self.daqmx_read_thread = threading.Thread(target=self.daqmx_read) self.daqmx_read_thread.daemon = True self.daqmx_read_thread.start() def shutdown(self): if self.task_running: self.stop_task() def daqmx_read(self): logger = logging.getLogger('BLACS.%s_%s.acquisition.daqmxread'%(self.device_name,self.worker_name)) logger.info('Starting') #first_read = True try: while True: with self.daqlock: logger.debug('Got daqlock') while not self.task_running: logger.debug('Task isn\'t running. Releasing daqlock and waiting to reacquire it.') self.daqlock.wait() #logger.debug('Reading data from analogue inputs') if self.buffered: chnl_list = self.buffered_channels else: chnl_list = self.channels try: error = "Task did not return an error, but it should have" acquisition_timeout = 5 error = self.task.ReadAnalogF64(self.samples_per_channel,acquisition_timeout,DAQmx_Val_GroupByChannel,self.ai_data,self.samples_per_channel*len(chnl_list),byref(self.ai_read),None) #logger.debug('Reading complete') if error is not None and error != 0: if error < 0: raise Exception(error) if error > 0: logger.warning(error) except Exception as e: logger.exception('acquisition error') if self.abort: # If an abort is in progress, then we expect an exception here. Don't raise it. logger.debug('ignoring error since an abort is in progress.') # Ensure the next iteration of this while loop # doesn't happen until the task is restarted. # The thread calling self.stop_task() is # also setting self.task_running = False # right about now, but we don't want to rely # on it doing so in time. Doing it here too # avoids a race condition. self.task_running = False continue else: # Error was likely a timeout error...some other device might be bing slow # transitioning to buffered, so we haven't got our start trigger yet. # Keep trying until task_running is False: continue # send the data to the queue if self.buffered: # rearrange ai_data into correct form data = numpy.copy(self.ai_data) self.buffered_data_list.append(data) #if len(chnl_list) > 1: # data.shape = (len(chnl_list),self.ai_read.value) # data = data.transpose() #self.buffered_data = numpy.append(self.buffered_data,data,axis=0) else: pass # Todo: replace this with zmq pub plus a broker somewhere so things can subscribe to channels # and get their data without caring what process it came from. For the sake of speed, this # should use the numpy buffer interface and raw zmq messages, and not the existing event system # that zprocess has. # self.result_queue.put([self.t0,self.rate,self.ai_read.value,len(self.channels),self.ai_data]) # self.t0 = self.t0 + self.samples_per_channel/self.rate except: message = traceback.format_exc() logger.error('An exception happened:\n %s'%message) #self.to_parent.put(['error', message]) # TODO: Tell the GUI process that this has a problem some how (status check?) def setup_task(self): self.logger.debug('setup_task') #DAQmx Configure Code with self.daqlock: self.logger.debug('setup_task got daqlock') if self.task: self.task.ClearTask()## if self.buffered: chnl_list = self.buffered_channels rate = self.buffered_rate else: chnl_list = self.channels rate = self.rate if len(chnl_list) < 1: return if rate < 1000: self.samples_per_channel = int(rate) else: self.samples_per_channel = 1000 try: self.task = Task() except Exception as e: self.logger.error(str(e)) self.ai_read = int32() self.ai_data = numpy.zeros((self.samples_per_channel*len(chnl_list),), dtype=numpy.float64) for chnl in chnl_list: self.task.CreateAIVoltageChan(chnl,"",DAQmx_Val_RSE,-10.0,10.0,DAQmx_Val_Volts,None) self.task.CfgSampClkTiming("",rate,DAQmx_Val_Rising,DAQmx_Val_ContSamps,1000) if self.buffered: #set up start on digital trigger self.task.CfgDigEdgeStartTrig(self.clock_terminal,DAQmx_Val_Rising) #DAQmx Start Code self.task.StartTask() # TODO: Need to do something about the time for buffered acquisition. Should be related to when it starts (approx) # How do we detect that? self.t0 = time.time() - time.timezone self.task_running = True self.daqlock.notify() self.logger.debug('finished setup_task') def stop_task(self): self.logger.debug('stop_task') with self.daqlock: self.logger.debug('stop_task got daqlock') if self.task_running: self.task_running = False self.task.StopTask() self.task.ClearTask() self.daqlock.notify() self.logger.debug('finished stop_task') def transition_to_buffered(self,device_name,h5file,initial_values,fresh): # TODO: Do this line better! self.device_name = device_name self.logger.debug('transition_to_buffered') # stop current task self.stop_task() self.buffered_data_list = [] # Save h5file path (for storing data later!) self.h5_file = h5file # read channels, acquisition rate, etc from H5 file h5_chnls = [] with h5py.File(h5file,'r') as hdf5_file: group = hdf5_file['/devices/'+device_name] device_properties = labscript_utils.properties.get(hdf5_file, device_name, 'device_properties') connection_table_properties = labscript_utils.properties.get(hdf5_file, device_name, 'connection_table_properties') self.clock_terminal = connection_table_properties['clock_terminal'] if 'analog_in_channels' in device_properties: h5_chnls = device_properties['analog_in_channels'].split(', ') self.buffered_rate = device_properties['sample_rate_AI'] else: self.logger.debug("no input channels") # combine static channels with h5 channels (using a set to avoid duplicates) self.buffered_channels = set(h5_chnls) self.buffered_channels.update(self.channels) # Now make it a sorted list: self.buffered_channels = sorted(list(self.buffered_channels)) # setup task (rate should be from h5 file) # Possibly should detect and lower rate if too high, as h5 file doesn't know about other acquisition channels? if self.buffered_rate <= 0: self.buffered_rate = self.rate self.buffered = True if len(self.buffered_channels) == 1: self.buffered_data = numpy.zeros((1,),dtype=numpy.float64) else: self.buffered_data = numpy.zeros((1,len(self.buffered_channels)),dtype=numpy.float64) self.setup_task() return {} def transition_to_manual(self,abort=False): self.logger.debug('transition_to_static') # Stop acquisition (this should really be done on a digital edge, but that is for later! Maybe use a Counter) # Set the abort flag so that the acquisition thread knows to expect an exception in the case of an abort: # # TODO: This is probably bad because it shortly get's overwritten to False # However whether it has an effect depends on whether daqmx_read thread holds the daqlock # when self.stop_task() is called self.abort = abort self.stop_task() # Reset the abort flag so that unexpected exceptions are still raised: self.abort = False self.logger.info('transitioning to static, task stopped') # save the data acquired to the h5 file if not abort: with h5py.File(self.h5_file,'a') as hdf5_file: data_group = hdf5_file['data'] data_group.create_group(self.device_name) dtypes = [(chan.split('/')[-1],numpy.float32) for chan in sorted(self.buffered_channels)] start_time = time.time() if self.buffered_data_list: self.buffered_data = numpy.zeros(len(self.buffered_data_list)*1000,dtype=dtypes) for i, data in enumerate(self.buffered_data_list): data.shape = (len(self.buffered_channels),self.ai_read.value) for j, (chan, dtype) in enumerate(dtypes): self.buffered_data[chan][i*1000:(i*1000)+1000] = data[j,:] if i % 100 == 0: self.logger.debug( str(i/100) + " time: "+str(time.time()-start_time)) self.extract_measurements(self.device_name) self.logger.info('data written, time taken: %ss' % str(time.time()-start_time)) self.buffered_data = None self.buffered_data_list = [] # Send data to callback functions as requested (in one big chunk!) #self.result_queue.put([self.t0,self.rate,self.ai_read,len(self.channels),self.ai_data]) # return to previous acquisition mode self.buffered = False self.setup_task() return True def extract_measurements(self, device_name): self.logger.debug('extract_measurements') with h5py.File(self.h5_file,'a') as hdf5_file: waits_in_use = len(hdf5_file['waits']) > 0 if waits_in_use: # There were waits in this shot. We need to wait until the other process has # determined their durations before we proceed: self.wait_durations_analysed.wait(self.h5_file) with h5py.File(self.h5_file,'a') as hdf5_file: try: acquisitions = hdf5_file['/devices/'+device_name+'/ACQUISITIONS'] except: # No acquisitions! return try: measurements = hdf5_file['/data/traces'] except: # Group doesn't exist yet, create it: measurements = hdf5_file.create_group('/data/traces') for connection,label,start_time,end_time,wait_label,scale_factor,units in acquisitions: start_index = numpy.ceil(self.buffered_rate*(start_time-self.ai_start_delay)) end_index = numpy.floor(self.buffered_rate*(end_time-self.ai_start_delay)) # numpy.ceil does what we want above, but float errors can miss the equality if self.ai_start_delay + (start_index-1)/self.buffered_rate - start_time > -2e-16: start_index -= 1 # We actually want numpy.floor(x) to yield the largest integer < x (not <=) if end_time - self.ai_start_delay - end_index/self.buffered_rate < 2e-16: end_index -= 1 acquisition_start_time = self.ai_start_delay + start_index/self.buffered_rate acquisition_end_time = self.ai_start_delay + end_index/self.buffered_rate times = numpy.linspace(acquisition_start_time, acquisition_end_time, end_index-start_index+1, endpoint=True) values = self.buffered_data[connection][start_index:end_index+1] dtypes = [('t', numpy.float64),('values', numpy.float32)] data = numpy.empty(len(values),dtype=dtypes) data['t'] = times data['values'] = values measurements.create_dataset(label, data=data) def abort_buffered(self): #TODO: test this return self.transition_to_manual(True) def abort_transition_to_buffered(self): #TODO: test this return self.transition_to_manual(True) def program_manual(self,values): return {} class NI_USB_6343WaitMonitorWorker(Worker): def init(self): exec 'import ctypes' in globals() exec 'from PyDAQmx import Task' in globals() exec 'from PyDAQmx.DAQmxConstants import *' in globals() exec 'from PyDAQmx.DAQmxTypes import *' in globals() global h5py; import labscript_utils.h5_lock, h5py global numpy; import numpy global threading; import threading global zprocess; import zprocess global logging; import logging global time; import time self.task_running = False self.daqlock = threading.Lock() # not sure if needed, access should be serialised already self.h5_file = None self.task = None self.abort = False self.all_waits_finished = zprocess.Event('all_waits_finished',type='post') self.wait_durations_analysed = zprocess.Event('wait_durations_analysed',type='post') def shutdown(self): self.logger.info('Shutdown requested, stopping task') if self.task_running: self.stop_task() #def read_one_half_period(self, timeout, readarray = numpy.empty(1)): def read_one_half_period(self, timeout): readarray = numpy.empty(1) try: with self.daqlock: self.acquisition_task.ReadCounterF64(1, timeout, readarray, len(readarray), ctypes.c_long(1), None) self.half_periods.append(readarray[0]) return readarray[0] except Exception: if self.abort: raise # otherwise, it's a timeout: return None def wait_for_edge(self, timeout=None): if timeout is None: while True: half_period = self.read_one_half_period(1) if half_period is not None: return half_period else: return self.read_one_half_period(timeout) def daqmx_read(self): logger = logging.getLogger('BLACS.%s_%s.read_thread'%(self.device_name, self.worker_name)) logger.info('Starting') with self.kill_lock: try: # Wait for the end of the first pulse indicating the start of the experiment: current_time = pulse_width = self.wait_for_edge() # alright, we're now a short way into the experiment. for wait in self.wait_table: # How long until this wait should time out? timeout = wait['time'] + wait['timeout'] - current_time timeout = max(timeout, 0) # ensure non-negative # Wait that long for the next pulse: half_period = self.wait_for_edge(timeout) # Did the wait finish of its own accord? if half_period is not None: # It did, we are now at the end of that wait: current_time = wait['time'] # Wait for the end of the pulse: current_time += self.wait_for_edge() else: # It timed out. Better trigger the clock to resume!. self.send_resume_trigger(pulse_width) # Wait for it to respond to that: self.wait_for_edge() # Alright, *now* we're at the end of the wait. current_time = wait['time'] # And wait for the end of the pulse: current_time += self.wait_for_edge() # Inform any interested parties that waits have all finished: self.all_waits_finished.post(self.h5_file) except Exception: if self.abort: return else: raise def send_resume_trigger(self, pulse_width): written = int32() # go high: self.timeout_task.WriteDigitalLines(1,True,1,DAQmx_Val_GroupByChannel,numpy.ones(1, dtype=numpy.uint8),byref(written),None) assert written.value == 1 # Wait however long we observed the first pulse of the experiment to be: time.sleep(pulse_width) # go high: self.timeout_task.WriteDigitalLines(1,True,1,DAQmx_Val_GroupByChannel,numpy.ones(1, dtype=numpy.uint8),byref(written),None) assert written.value == 1 def stop_task(self): self.logger.debug('stop_task') with self.daqlock: self.logger.debug('stop_task got daqlock') if self.task_running: self.task_running = False self.acquisition_task.StopTask() self.acquisition_task.ClearTask() self.timeout_task.StopTask() self.timeout_task.ClearTask() self.logger.debug('finished stop_task') def transition_to_buffered(self,device_name,h5file,initial_values,fresh): self.logger.debug('transition_to_buffered') # Save h5file path (for storing data later!) self.h5_file = h5file self.is_wait_monitor_device = False # Will be set to true in a moment if necessary self.logger.debug('setup_task') with h5py.File(h5file, 'r') as hdf5_file: dataset = hdf5_file['waits'] if len(dataset) == 0: # There are no waits. Do nothing. self.logger.debug('There are no waits, not transitioning to buffered') self.waits_in_use = False self.wait_table = numpy.zeros((0,)) return {} self.waits_in_use = True acquisition_device = dataset.attrs['wait_monitor_acquisition_device'] acquisition_connection = dataset.attrs['wait_monitor_acquisition_connection'] timeout_device = dataset.attrs['wait_monitor_timeout_device'] timeout_connection = dataset.attrs['wait_monitor_timeout_connection'] self.wait_table = dataset[:] # Only do anything if we are in fact the wait_monitor device: if timeout_device == device_name or acquisition_device == device_name: if not timeout_device == device_name and acquisition_device == device_name: raise NotImplementedError("NI-USB-6343 worker must be both the wait monitor timeout device and acquisition device." + "Being only one could be implemented if there's a need for it, but it isn't at the moment") self.is_wait_monitor_device = True # The counter acquisition task: self.acquisition_task = Task() acquisition_chan = '/'.join([self.MAX_name,acquisition_connection]) self.acquisition_task.CreateCISemiPeriodChan(acquisition_chan, '', 100e-9, 200, DAQmx_Val_Seconds, "") self.acquisition_task.CfgImplicitTiming(DAQmx_Val_ContSamps, 1000) self.acquisition_task.StartTask() # The timeout task: self.timeout_task = Task() timeout_chan = '/'.join([self.MAX_name,timeout_connection]) self.timeout_task.CreateDOChan(timeout_chan,"",DAQmx_Val_ChanForAllLines) self.task_running = True # An array to store the results of counter acquisition: self.half_periods = [] self.read_thread = threading.Thread(target=self.daqmx_read) # Not a daemon thread, as it implements wait timeouts - we need it to stay alive if other things die. self.read_thread.start() self.logger.debug('finished transition to buffered') return {} def transition_to_manual(self,abort=False): self.logger.debug('transition_to_static') self.abort = abort self.stop_task() # Reset the abort flag so that unexpected exceptions are still raised: self.abort = False self.logger.info('transitioning to static, task stopped') # save the data acquired to the h5 file if not abort: if self.waits_in_use: # Let's work out how long the waits were. The absolute times of each edge on the wait # monitor were: edge_times = numpy.cumsum(self.half_periods) # Now there was also a rising edge at t=0 that we didn't measure: edge_times = numpy.insert(edge_times,0,0) # Ok, and the even-indexed ones of these were rising edges. rising_edge_times = edge_times[::2] # Now what were the times between rising edges? periods = numpy.diff(rising_edge_times) # How does this compare to how long we expected there to be between the start # of the experiment and the first wait, and then between each pair of waits? # The difference will give us the waits' durations. resume_times = self.wait_table['time'] # Again, include the start of the experiment, t=0: resume_times = numpy.insert(resume_times,0,0) run_periods = numpy.diff(resume_times) wait_durations = periods - run_periods waits_timed_out = wait_durations > self.wait_table['timeout'] with h5py.File(self.h5_file,'a') as hdf5_file: # Work out how long the waits were, save em, post an event saying so dtypes = [('label','a256'),('time',float),('timeout',float),('duration',float),('timed_out',bool)] data = numpy.empty(len(self.wait_table), dtype=dtypes) if self.waits_in_use: data['label'] = self.wait_table['label'] data['time'] = self.wait_table['time'] data['timeout'] = self.wait_table['timeout'] data['duration'] = wait_durations data['timed_out'] = waits_timed_out if self.is_wait_monitor_device: hdf5_file.create_dataset('/data/waits', data=data) if self.is_wait_monitor_device: self.wait_durations_analysed.post(self.h5_file) return True def abort_buffered(self): #TODO: test this return self.transition_to_manual(True) def abort_transition_to_buffered(self): #TODO: test this return self.transition_to_manual(True) def program_manual(self,values): return {} @runviewer_parser class RunviewerClass(parent.RunviewerClass): def __init__(self, *args, **kwargs): kwargs["num_DO"]=32 parent.RunviewerClass.__init__(self, *args, **kwargs)
46.572275
204
0.576996
6350c3cbae528bc309377b51d8616ad7fbd150a6
66,342
py
Python
python/ccxt/async_support/bitstamp.py
pcriadoperez/ccxt
fd0db4bad42f4f937c401cdb4cd0bcc4e716282e
[ "MIT" ]
null
null
null
python/ccxt/async_support/bitstamp.py
pcriadoperez/ccxt
fd0db4bad42f4f937c401cdb4cd0bcc4e716282e
[ "MIT" ]
null
null
null
python/ccxt/async_support/bitstamp.py
pcriadoperez/ccxt
fd0db4bad42f4f937c401cdb4cd0bcc4e716282e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import NotSupported from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce from ccxt.base.precise import Precise class bitstamp(Exchange): def describe(self): return self.deep_extend(super(bitstamp, self).describe(), { 'id': 'bitstamp', 'name': 'Bitstamp', 'countries': ['GB'], # 8000 requests per 10 minutes = 8000 / 600 = 13.33333333 requests per second => 1000ms / 13.33333333 = 75ms between requests on average 'rateLimit': 75, 'version': 'v2', 'userAgent': self.userAgents['chrome'], 'pro': True, 'has': { 'CORS': True, 'spot': True, 'margin': False, 'swap': False, 'future': False, 'option': False, 'addMargin': False, 'cancelAllOrders': True, 'cancelOrder': True, 'createOrder': True, 'createReduceOnlyOrder': False, 'fetchBalance': True, 'fetchBorrowRate': False, 'fetchBorrowRateHistories': False, 'fetchBorrowRateHistory': False, 'fetchBorrowRates': False, 'fetchBorrowRatesPerSymbol': False, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchFundingFees': True, 'fetchFundingHistory': False, 'fetchFundingRate': False, 'fetchFundingRateHistory': False, 'fetchFundingRates': False, 'fetchIndexOHLCV': False, 'fetchLedger': True, 'fetchLeverage': False, 'fetchMarkets': True, 'fetchMarkOHLCV': False, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchPosition': False, 'fetchPositions': False, 'fetchPositionsRisk': False, 'fetchPremiumIndexOHLCV': False, 'fetchTicker': True, 'fetchTrades': True, 'fetchTradingFee': True, 'fetchTradingFees': True, 'fetchTransactions': True, 'fetchWithdrawals': True, 'reduceMargin': False, 'setLeverage': False, 'setMarginMode': False, 'setPositionMode': False, 'withdraw': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27786377-8c8ab57e-5fe9-11e7-8ea4-2b05b6bcceec.jpg', 'api': { 'public': 'https://www.bitstamp.net/api', 'private': 'https://www.bitstamp.net/api', }, 'www': 'https://www.bitstamp.net', 'doc': 'https://www.bitstamp.net/api', }, 'timeframes': { '1m': '60', '3m': '180', '5m': '300', '15m': '900', '30m': '1800', '1h': '3600', '2h': '7200', '4h': '14400', '6h': '21600', '12h': '43200', '1d': '86400', '1w': '259200', }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'api': { 'public': { 'get': { 'ohlc/{pair}/': 1, 'order_book/{pair}/': 1, 'ticker_hour/{pair}/': 1, 'ticker/{pair}/': 1, 'transactions/{pair}/': 1, 'trading-pairs-info/': 1, }, }, 'private': { 'post': { 'balance/': 1, 'balance/{pair}/': 1, 'bch_withdrawal/': 1, 'bch_address/': 1, 'user_transactions/': 1, 'user_transactions/{pair}/': 1, 'open_orders/all/': 1, 'open_orders/{pair}/': 1, 'order_status/': 1, 'cancel_order/': 1, 'cancel_all_orders/': 1, 'cancel_all_orders/{pair}/': 1, 'buy/{pair}/': 1, 'buy/market/{pair}/': 1, 'buy/instant/{pair}/': 1, 'sell/{pair}/': 1, 'sell/market/{pair}/': 1, 'sell/instant/{pair}/': 1, 'btc_withdrawal/': 1, 'btc_address/': 1, 'ripple_withdrawal/': 1, 'ripple_address/': 1, 'ltc_withdrawal/': 1, 'ltc_address/': 1, 'eth_withdrawal/': 1, 'eth_address/': 1, 'xrp_withdrawal/': 1, 'xrp_address/': 1, 'xlm_withdrawal/': 1, 'xlm_address/': 1, 'pax_withdrawal/': 1, 'pax_address/': 1, 'link_withdrawal/': 1, 'link_address/': 1, 'usdc_withdrawal/': 1, 'usdc_address/': 1, 'omg_withdrawal/': 1, 'omg_address/': 1, 'dai_withdrawal/': 1, 'dai_address/': 1, 'knc_withdrawal/': 1, 'knc_address/': 1, 'mkr_withdrawal/': 1, 'mkr_address/': 1, 'zrx_withdrawal/': 1, 'zrx_address/': 1, 'gusd_withdrawal/': 1, 'gusd_address/': 1, 'aave_withdrawal/': 1, 'aave_address/': 1, 'bat_withdrawal/': 1, 'bat_address/': 1, 'uma_withdrawal/': 1, 'uma_address/': 1, 'snx_withdrawal/': 1, 'snx_address/': 1, 'uni_withdrawal/': 1, 'uni_address/': 1, 'yfi_withdrawal/': 1, 'yfi_address': 1, 'audio_withdrawal/': 1, 'audio_address/': 1, 'crv_withdrawal/': 1, 'crv_address/': 1, 'algo_withdrawal/': 1, 'algo_address/': 1, 'comp_withdrawal/': 1, 'comp_address/': 1, 'grt_withdrawal': 1, 'grt_address/': 1, 'usdt_withdrawal/': 1, 'usdt_address/': 1, 'eurt_withdrawal/': 1, 'eurt_address/': 1, 'matic_withdrawal/': 1, 'matic_address/': 1, 'sushi_withdrawal/': 1, 'sushi_address/': 1, 'chz_withdrawal/': 1, 'chz_address/': 1, 'enj_withdrawal/': 1, 'enj_address/': 1, 'alpha_withdrawal/': 1, 'alpha_address/': 1, 'ftt_withdrawal/': 1, 'ftt_address/': 1, 'storj_withdrawal/': 1, 'storj_address/': 1, 'axs_withdrawal/': 1, 'axs_address/': 1, 'sand_withdrawal/': 1, 'sand_address/': 1, 'hbar_withdrawal/': 1, 'hbar_address/': 1, 'rgt_withdrawal/': 1, 'rgt_address/': 1, 'fet_withdrawal/': 1, 'fet_address/': 1, 'skl_withdrawal/': 1, 'skl_address/': 1, 'cel_withdrawal/': 1, 'cel_address/': 1, 'sxp_withdrawal/': 1, 'sxp_address/': 1, 'ada_withdrawal/': 1, 'ada_address/': 1, 'slp_withdrawal/': 1, 'slp_address/': 1, 'ftm_withdrawal/': 1, 'ftm_address/': 1, 'perp_withdrawal/': 1, 'perp_address/': 1, 'dydx_withdrawal/': 1, 'dydx_address/': 1, 'gala_withdrawal/': 1, 'gala_address/': 1, 'shib_withdrawal/': 1, 'shib_address/': 1, 'amp_withdrawal/': 1, 'amp_address/': 1, 'sgb_withdrawal/': 1, 'sgb_address/': 1, 'avax_withdrawal/': 1, 'avax_address/': 1, 'wbtc_withdrawal/': 1, 'wbtc_address/': 1, 'ctsi_withdrawal/': 1, 'ctsi_address/': 1, 'cvx_withdrawal/': 1, 'cvx_address/': 1, 'imx_withdrawal/': 1, 'imx_address/': 1, 'nexo_withdrawal/': 1, 'nexo_address/': 1, 'ust_withdrawal/': 1, 'ust_address/': 1, 'transfer-to-main/': 1, 'transfer-from-main/': 1, 'withdrawal-requests/': 1, 'withdrawal/open/': 1, 'withdrawal/status/': 1, 'withdrawal/cancel/': 1, 'liquidation_address/new/': 1, 'liquidation_address/info/': 1, 'btc_unconfirmed/': 1, 'websockets_token/': 1, }, }, }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': self.parse_number('0.005'), 'maker': self.parse_number('0.005'), 'tiers': { 'taker': [ [self.parse_number('0'), self.parse_number('0.005')], [self.parse_number('20000'), self.parse_number('0.0025')], [self.parse_number('100000'), self.parse_number('0.0024')], [self.parse_number('200000'), self.parse_number('0.0022')], [self.parse_number('400000'), self.parse_number('0.0020')], [self.parse_number('600000'), self.parse_number('0.0015')], [self.parse_number('1000000'), self.parse_number('0.0014')], [self.parse_number('2000000'), self.parse_number('0.0013')], [self.parse_number('4000000'), self.parse_number('0.0012')], [self.parse_number('20000000'), self.parse_number('0.0011')], [self.parse_number('50000000'), self.parse_number('0.0010')], [self.parse_number('100000000'), self.parse_number('0.0007')], [self.parse_number('500000000'), self.parse_number('0.0005')], [self.parse_number('2000000000'), self.parse_number('0.0003')], [self.parse_number('6000000000'), self.parse_number('0.0001')], [self.parse_number('20000000000'), self.parse_number('0.00005')], [self.parse_number('20000000001'), self.parse_number('0')], ], 'maker': [ [self.parse_number('0'), self.parse_number('0.005')], [self.parse_number('20000'), self.parse_number('0.0025')], [self.parse_number('100000'), self.parse_number('0.0024')], [self.parse_number('200000'), self.parse_number('0.0022')], [self.parse_number('400000'), self.parse_number('0.0020')], [self.parse_number('600000'), self.parse_number('0.0015')], [self.parse_number('1000000'), self.parse_number('0.0014')], [self.parse_number('2000000'), self.parse_number('0.0013')], [self.parse_number('4000000'), self.parse_number('0.0012')], [self.parse_number('20000000'), self.parse_number('0.0011')], [self.parse_number('50000000'), self.parse_number('0.0010')], [self.parse_number('100000000'), self.parse_number('0.0007')], [self.parse_number('500000000'), self.parse_number('0.0005')], [self.parse_number('2000000000'), self.parse_number('0.0003')], [self.parse_number('6000000000'), self.parse_number('0.0001')], [self.parse_number('20000000000'), self.parse_number('0.00005')], [self.parse_number('20000000001'), self.parse_number('0')], ], }, }, 'funding': { 'tierBased': False, 'percentage': False, 'withdraw': {}, 'deposit': { 'BTC': 0, 'BCH': 0, 'LTC': 0, 'ETH': 0, 'XRP': 0, 'XLM': 0, 'PAX': 0, 'USD': 7.5, 'EUR': 0, }, }, }, 'exceptions': { 'exact': { 'No permission found': PermissionDenied, 'API key not found': AuthenticationError, 'IP address not allowed': PermissionDenied, 'Invalid nonce': InvalidNonce, 'Invalid signature': AuthenticationError, 'Authentication failed': AuthenticationError, 'Missing key, signature and nonce parameters': AuthenticationError, 'Wrong API key format': AuthenticationError, 'Your account is frozen': PermissionDenied, 'Please update your profile with your FATCA information, before using API.': PermissionDenied, 'Order not found': OrderNotFound, 'Price is more than 20% below market price.': InvalidOrder, "Bitstamp.net is under scheduled maintenance. We'll be back soon.": OnMaintenance, # {"error": "Bitstamp.net is under scheduled maintenance. We'll be back soon."} 'Order could not be placed.': ExchangeNotAvailable, # Order could not be placed(perhaps due to internal error or trade halt). Please retry placing order. 'Invalid offset.': BadRequest, }, 'broad': { 'Minimum order size is': InvalidOrder, # Minimum order size is 5.0 EUR. 'Check your account balance for details.': InsufficientFunds, # You have only 0.00100000 BTC available. Check your account balance for details. 'Ensure self value has at least': InvalidAddress, # Ensure self value has at least 25 characters(it has 4). }, }, }) async def fetch_markets(self, params={}): response = await self.fetch_markets_from_cache(params) # # [ # { # "trading": "Enabled", # "base_decimals": 8, # "url_symbol": "btcusd", # "name": "BTC/USD", # "instant_and_market_orders": "Enabled", # "minimum_order": "20.0 USD", # "counter_decimals": 2, # "description": "Bitcoin / U.S. dollar" # } # ] # result = [] for i in range(0, len(response)): market = response[i] name = self.safe_string(market, 'name') base, quote = name.split('/') baseId = base.lower() quoteId = quote.lower() base = self.safe_currency_code(base) quote = self.safe_currency_code(quote) minimumOrder = self.safe_string(market, 'minimum_order') parts = minimumOrder.split(' ') status = self.safe_string(market, 'trading') result.append({ 'id': self.safe_string(market, 'url_symbol'), 'marketId': baseId + '_' + quoteId, 'symbol': base + '/' + quote, 'base': base, 'quote': quote, 'settle': None, 'baseId': baseId, 'quoteId': quoteId, 'settleId': None, 'type': 'spot', 'spot': True, 'margin': False, 'future': False, 'swap': False, 'option': False, 'active': (status == 'Enabled'), 'contract': False, 'linear': None, 'inverse': None, 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'precision': { 'amount': self.safe_integer(market, 'base_decimals'), 'price': self.safe_integer(market, 'counter_decimals'), }, 'limits': { 'leverage': { 'min': None, 'max': None, }, 'amount': { 'min': None, 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(parts, 0), 'max': None, }, }, 'info': market, }) return result def construct_currency_object(self, id, code, name, precision, minCost, originalPayload): currencyType = 'crypto' description = self.describe() if self.is_fiat(code): currencyType = 'fiat' return { 'id': id, 'code': code, 'info': originalPayload, # the original payload 'type': currencyType, 'name': name, 'active': True, 'deposit': None, 'withdraw': None, 'fee': self.safe_number(description['fees']['funding']['withdraw'], code), 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': None, }, 'price': { 'min': math.pow(10, -precision), 'max': None, }, 'cost': { 'min': minCost, 'max': None, }, 'withdraw': { 'min': None, 'max': None, }, }, } async def fetch_markets_from_cache(self, params={}): # self method is now redundant # currencies are now fetched before markets options = self.safe_value(self.options, 'fetchMarkets', {}) timestamp = self.safe_integer(options, 'timestamp') expires = self.safe_integer(options, 'expires', 1000) now = self.milliseconds() if (timestamp is None) or ((now - timestamp) > expires): response = await self.publicGetTradingPairsInfo(params) self.options['fetchMarkets'] = self.extend(options, { 'response': response, 'timestamp': now, }) return self.safe_value(self.options['fetchMarkets'], 'response') async def fetch_currencies(self, params={}): response = await self.fetch_markets_from_cache(params) # # [ # { # "trading": "Enabled", # "base_decimals": 8, # "url_symbol": "btcusd", # "name": "BTC/USD", # "instant_and_market_orders": "Enabled", # "minimum_order": "20.0 USD", # "counter_decimals": 2, # "description": "Bitcoin / U.S. dollar" # }, # ] # result = {} for i in range(0, len(response)): market = response[i] name = self.safe_string(market, 'name') base, quote = name.split('/') baseId = base.lower() quoteId = quote.lower() base = self.safe_currency_code(base) quote = self.safe_currency_code(quote) description = self.safe_string(market, 'description') baseDescription, quoteDescription = description.split(' / ') minimumOrder = self.safe_string(market, 'minimum_order') parts = minimumOrder.split(' ') cost = parts[0] if not (base in result): baseDecimals = self.safe_integer(market, 'base_decimals') result[base] = self.construct_currency_object(baseId, base, baseDescription, baseDecimals, None, market) if not (quote in result): counterDecimals = self.safe_integer(market, 'counter_decimals') result[quote] = self.construct_currency_object(quoteId, quote, quoteDescription, counterDecimals, self.parse_number(cost), market) return result async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() request = { 'pair': self.market_id(symbol), } response = await self.publicGetOrderBookPair(self.extend(request, params)) # # { # "timestamp": "1583652948", # "microtimestamp": "1583652948955826", # "bids": [ # ["8750.00", "1.33685271"], # ["8749.39", "0.07700000"], # ["8746.98", "0.07400000"], # ] # "asks": [ # ["8754.10", "1.51995636"], # ["8754.71", "1.40000000"], # ["8754.72", "2.50000000"], # ] # } # microtimestamp = self.safe_integer(response, 'microtimestamp') timestamp = int(microtimestamp / 1000) orderbook = self.parse_order_book(response, symbol, timestamp) orderbook['nonce'] = microtimestamp return orderbook def parse_ticker(self, ticker, market=None): # # { # "high": "37534.15", # "last": "36487.44", # "timestamp": # "1643370585", # "bid": "36475.15", # "vwap": "36595.67", # "volume": "2848.49168527", # "low": "35511.32", # "ask": "36487.44", # "open": "37179.62" # } # symbol = self.safe_symbol(None, market) timestamp = self.safe_timestamp(ticker, 'timestamp') vwap = self.safe_string(ticker, 'vwap') baseVolume = self.safe_string(ticker, 'volume') quoteVolume = Precise.string_mul(baseVolume, vwap) last = self.safe_string(ticker, 'last') return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_string(ticker, 'high'), 'low': self.safe_string(ticker, 'low'), 'bid': self.safe_string(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_string(ticker, 'ask'), 'askVolume': None, 'vwap': vwap, 'open': self.safe_string(ticker, 'open'), 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, }, market, False) async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], } ticker = await self.publicGetTickerPair(self.extend(request, params)) # # { # "high": "37534.15", # "last": "36487.44", # "timestamp": # "1643370585", # "bid": "36475.15", # "vwap": "36595.67", # "volume": "2848.49168527", # "low": "35511.32", # "ask": "36487.44", # "open": "37179.62" # } # return self.parse_ticker(ticker, market) def get_currency_id_from_transaction(self, transaction): # # { # "fee": "0.00000000", # "btc_usd": "0.00", # "datetime": XXX, # "usd": 0.0, # "btc": 0.0, # "eth": "0.05000000", # "type": "0", # "id": XXX, # "eur": 0.0 # } # currencyId = self.safe_string_lower(transaction, 'currency') if currencyId is not None: return currencyId transaction = self.omit(transaction, [ 'fee', 'price', 'datetime', 'type', 'status', 'id', ]) ids = list(transaction.keys()) for i in range(0, len(ids)): id = ids[i] if id.find('_') < 0: value = self.safe_number(transaction, id) if (value is not None) and (value != 0): return id return None def get_market_from_trade(self, trade): trade = self.omit(trade, [ 'fee', 'price', 'datetime', 'tid', 'type', 'order_id', 'side', ]) currencyIds = list(trade.keys()) numCurrencyIds = len(currencyIds) if numCurrencyIds > 2: raise ExchangeError(self.id + ' getMarketFromTrade too many keys: ' + self.json(currencyIds) + ' in the trade: ' + self.json(trade)) if numCurrencyIds == 2: marketId = currencyIds[0] + currencyIds[1] if marketId in self.markets_by_id: return self.markets_by_id[marketId] marketId = currencyIds[1] + currencyIds[0] if marketId in self.markets_by_id: return self.markets_by_id[marketId] return None def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "date": "1637845199", # "tid": "209895701", # "amount": "0.00500000", # "type": "0", # Transaction type: 0 - buy; 1 - sell # "price": "4451.25" # } # # fetchMyTrades, trades returned within fetchOrder(private) # # { # "fee": "0.11128", # "eth_usdt": 4451.25, # "datetime": "2021-11-25 12:59:59.322000", # "usdt": "-22.26", # "order_id": 1429545880227846, # "usd": 0, # "btc": 0, # "eth": "0.00500000", # "type": "2", # Transaction type: 0 - deposit; 1 - withdrawal; 2 - market trade; 14 - sub account transfer; 25 - credited with staked assets; 26 - sent assets to staking; 27 - staking reward; 32 - referral reward; 35 - inter account transfer. # "id": 209895701, # "eur": 0 # } # # from fetchOrder(private) # # { # "fee": "0.11128", # "price": "4451.25000000", # "datetime": "2021-11-25 12:59:59.322000", # "usdt": "22.25625000", # "tid": 209895701, # "eth": "0.00500000", # "type": 2 # Transaction type: 0 - deposit; 1 - withdrawal; 2 - market trade # } # id = self.safe_string_2(trade, 'id', 'tid') symbol = None side = None priceString = self.safe_string(trade, 'price') amountString = self.safe_string(trade, 'amount') orderId = self.safe_string(trade, 'order_id') type = None costString = self.safe_string(trade, 'cost') if market is None: keys = list(trade.keys()) for i in range(0, len(keys)): if keys[i].find('_') >= 0: marketId = keys[i].replace('_', '') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] # if the market is still not defined # try to deduce it from used keys if market is None: market = self.get_market_from_trade(trade) feeCostString = self.safe_string(trade, 'fee') feeCurrency = None if market is not None: priceString = self.safe_string(trade, market['marketId'], priceString) amountString = self.safe_string(trade, market['baseId'], amountString) costString = self.safe_string(trade, market['quoteId'], costString) feeCurrency = market['quote'] symbol = market['symbol'] timestamp = self.safe_string_2(trade, 'date', 'datetime') if timestamp is not None: if timestamp.find(' ') >= 0: # iso8601 timestamp = self.parse8601(timestamp) else: # string unix epoch in seconds timestamp = int(timestamp) timestamp = timestamp * 1000 # if it is a private trade if 'id' in trade: if amountString is not None: isAmountNeg = Precise.string_lt(amountString, '0') if isAmountNeg: side = 'sell' amountString = Precise.string_neg(amountString) else: side = 'buy' else: side = self.safe_string(trade, 'type') if side == '1': side = 'sell' elif side == '0': side = 'buy' else: side = None if costString is not None: costString = Precise.string_abs(costString) fee = None if feeCostString is not None: fee = { 'cost': feeCostString, 'currency': feeCurrency, } return self.safe_trade({ 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': type, 'side': side, 'takerOrMaker': None, 'price': priceString, 'amount': amountString, 'cost': costString, 'fee': fee, }, market) async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], 'time': 'hour', } response = await self.publicGetTransactionsPair(self.extend(request, params)) # # [ # { # date: '1551814435', # tid: '83581898', # price: '0.03532850', # type: '1', # amount: '0.85945907' # }, # { # date: '1551814434', # tid: '83581896', # price: '0.03532851', # type: '1', # amount: '11.34130961' # }, # ] # return self.parse_trades(response, market, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # { # "high": "9064.77", # "timestamp": "1593961440", # "volume": "18.49436608", # "low": "9040.87", # "close": "9064.77", # "open": "9040.87" # } # return [ self.safe_timestamp(ohlcv, 'timestamp'), self.safe_number(ohlcv, 'open'), self.safe_number(ohlcv, 'high'), self.safe_number(ohlcv, 'low'), self.safe_number(ohlcv, 'close'), self.safe_number(ohlcv, 'volume'), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], 'step': self.timeframes[timeframe], } duration = self.parse_timeframe(timeframe) if limit is None: if since is None: raise ArgumentsRequired(self.id + ' fetchOHLCV() requires a since argument or a limit argument') else: limit = 1000 start = int(since / 1000) request['start'] = start request['end'] = self.sum(start, limit * duration) request['limit'] = limit else: if since is not None: start = int(since / 1000) request['start'] = start request['end'] = self.sum(start, limit * duration) request['limit'] = min(limit, 1000) # min 1, max 1000 response = await self.publicGetOhlcPair(self.extend(request, params)) # # { # "data": { # "pair": "BTC/USD", # "ohlc": [ # {"high": "9064.77", "timestamp": "1593961440", "volume": "18.49436608", "low": "9040.87", "close": "9064.77", "open": "9040.87"}, # {"high": "9071.59", "timestamp": "1593961500", "volume": "3.48631711", "low": "9058.76", "close": "9061.07", "open": "9064.66"}, # {"high": "9067.33", "timestamp": "1593961560", "volume": "0.04142833", "low": "9061.94", "close": "9061.94", "open": "9067.33"}, # ], # } # } # data = self.safe_value(response, 'data', {}) ohlc = self.safe_value(data, 'ohlc', []) return self.parse_ohlcvs(ohlc, market, timeframe, since, limit) def parse_balance(self, response): result = { 'info': response, 'timestamp': None, 'datetime': None, } codes = list(self.currencies.keys()) for i in range(0, len(codes)): code = codes[i] currency = self.currency(code) currencyId = currency['id'] account = self.account() account['free'] = self.safe_string(response, currencyId + '_available') account['used'] = self.safe_string(response, currencyId + '_reserved') account['total'] = self.safe_string(response, currencyId + '_balance') result[code] = account return self.safe_balance(result) async def fetch_balance(self, params={}): await self.load_markets() response = await self.privatePostBalance(params) # # { # "aave_available": "0.00000000", # "aave_balance": "0.00000000", # "aave_reserved": "0.00000000", # "aave_withdrawal_fee": "0.07000000", # "aavebtc_fee": "0.000", # "aaveeur_fee": "0.000", # "aaveusd_fee": "0.000", # "bat_available": "0.00000000", # "bat_balance": "0.00000000", # "bat_reserved": "0.00000000", # "bat_withdrawal_fee": "5.00000000", # "batbtc_fee": "0.000", # "bateur_fee": "0.000", # "batusd_fee": "0.000", # } # return self.parse_balance(response) async def fetch_trading_fee(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], } response = await self.privatePostBalancePair(self.extend(request, params)) return self.parse_trading_fee(response, market) def parse_trading_fee(self, fee, market=None): market = self.safe_market(None, market) feeString = self.safe_string(fee, market['id'] + '_fee') dividedFeeString = Precise.string_div(feeString, '100') tradeFee = self.parse_number(dividedFeeString) return { 'info': fee, 'symbol': market['symbol'], 'maker': tradeFee, 'taker': tradeFee, } def parse_trading_fees(self, fees): result = {'info': fees} symbols = self.symbols for i in range(0, len(symbols)): symbol = symbols[i] market = self.market(symbol) fee = self.parse_trading_fee(fees, market) result[symbol] = fee return result async def fetch_trading_fees(self, params={}): await self.load_markets() response = await self.privatePostBalance(params) return self.parse_trading_fees(response) def parse_funding_fees(self, balance): withdraw = {} ids = list(balance.keys()) for i in range(0, len(ids)): id = ids[i] if id.find('_withdrawal_fee') >= 0: currencyId = id.split('_')[0] code = self.safe_currency_code(currencyId) withdraw[code] = self.safe_number(balance, id) return { 'info': balance, 'withdraw': withdraw, 'deposit': {}, } async def fetch_funding_fees(self, params={}): await self.load_markets() balance = await self.privatePostBalance(params) return self.parse_funding_fees(balance) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) method = 'privatePost' + self.capitalize(side) request = { 'pair': market['id'], 'amount': self.amount_to_precision(symbol, amount), } if type == 'market': method += 'Market' elif type == 'instant': method += 'Instant' else: request['price'] = self.price_to_precision(symbol, price) method += 'Pair' clientOrderId = self.safe_string_2(params, 'client_order_id', 'clientOrderId') if clientOrderId is not None: request['client_order_id'] = clientOrderId params = self.omit(params, ['client_order_id', 'clientOrderId']) response = await getattr(self, method)(self.extend(request, params)) order = self.parse_order(response, market) return self.extend(order, { 'type': type, }) async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() request = { 'id': id, } return await self.privatePostCancelOrder(self.extend(request, params)) async def cancel_all_orders(self, symbol=None, params={}): await self.load_markets() market = None request = {} method = 'privatePostCancelAllOrders' if symbol is not None: market = self.market(symbol) request['pair'] = market['id'] method = 'privatePostCancelAllOrdersPair' return await getattr(self, method)(self.extend(request, params)) def parse_order_status(self, status): statuses = { 'In Queue': 'open', 'Open': 'open', 'Finished': 'closed', 'Canceled': 'canceled', } return self.safe_string(statuses, status, status) async def fetch_order_status(self, id, symbol=None, params={}): await self.load_markets() clientOrderId = self.safe_value_2(params, 'client_order_id', 'clientOrderId') request = {} if clientOrderId is not None: request['client_order_id'] = clientOrderId params = self.omit(params, ['client_order_id', 'clientOrderId']) else: request['id'] = id response = await self.privatePostOrderStatus(self.extend(request, params)) return self.parse_order_status(self.safe_string(response, 'status')) async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() market = None if symbol is not None: market = self.market(symbol) clientOrderId = self.safe_value_2(params, 'client_order_id', 'clientOrderId') request = {} if clientOrderId is not None: request['client_order_id'] = clientOrderId params = self.omit(params, ['client_order_id', 'clientOrderId']) else: request['id'] = id response = await self.privatePostOrderStatus(self.extend(request, params)) # # { # "status": "Finished", # "id": 1429545880227846, # "amount_remaining": "0.00000000", # "transactions": [ # { # "fee": "0.11128", # "price": "4451.25000000", # "datetime": "2021-11-25 12:59:59.322000", # "usdt": "22.25625000", # "tid": 209895701, # "eth": "0.00500000", # "type": 2 # } # ] # } # return self.parse_order(response, market) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} method = 'privatePostUserTransactions' market = None if symbol is not None: market = self.market(symbol) request['pair'] = market['id'] method += 'Pair' if limit is not None: request['limit'] = limit response = await getattr(self, method)(self.extend(request, params)) result = self.filter_by(response, 'type', '2') return self.parse_trades(result, market, since, limit) async def fetch_transactions(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} if limit is not None: request['limit'] = limit response = await self.privatePostUserTransactions(self.extend(request, params)) # # [ # { # "fee": "0.00000000", # "btc_usd": "0.00", # "id": 1234567894, # "usd": 0, # "btc": 0, # "datetime": "2018-09-08 09:00:31", # "type": "1", # "xrp": "-20.00000000", # "eur": 0, # }, # { # "fee": "0.00000000", # "btc_usd": "0.00", # "id": 1134567891, # "usd": 0, # "btc": 0, # "datetime": "2018-09-07 18:47:52", # "type": "0", # "xrp": "20.00000000", # "eur": 0, # }, # ] # currency = None if code is not None: currency = self.currency(code) transactions = self.filter_by_array(response, 'type', ['0', '1'], False) return self.parse_transactions(transactions, currency, since, limit) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} if since is not None: request['timedelta'] = self.milliseconds() - since else: request['timedelta'] = 50000000 # use max bitstamp approved value response = await self.privatePostWithdrawalRequests(self.extend(request, params)) # # [ # { # status: 2, # datetime: '2018-10-17 10:58:13', # currency: 'BTC', # amount: '0.29669259', # address: 'aaaaa', # type: 1, # id: 111111, # transaction_id: 'xxxx', # }, # { # status: 2, # datetime: '2018-10-17 10:55:17', # currency: 'ETH', # amount: '1.11010664', # address: 'aaaa', # type: 16, # id: 222222, # transaction_id: 'xxxxx', # }, # ] # return self.parse_transactions(response, None, since, limit) def parse_transaction(self, transaction, currency=None): # # fetchTransactions # # { # "fee": "0.00000000", # "btc_usd": "0.00", # "id": 1234567894, # "usd": 0, # "btc": 0, # "datetime": "2018-09-08 09:00:31", # "type": "1", # "xrp": "-20.00000000", # "eur": 0, # } # # fetchWithdrawals # # { # status: 2, # datetime: '2018-10-17 10:58:13', # currency: 'BTC', # amount: '0.29669259', # address: 'aaaaa', # type: 1, # id: 111111, # transaction_id: 'xxxx', # } # # { # "id": 3386432, # "type": 14, # "amount": "863.21332500", # "status": 2, # "address": "rE1sdh25BJQ3qFwngiTBwaq3zPGGYcrjp1?dt=1455", # "currency": "XRP", # "datetime": "2018-01-05 15:27:55", # "transaction_id": "001743B03B0C79BA166A064AC0142917B050347B4CB23BA2AB4B91B3C5608F4C" # } # timestamp = self.parse8601(self.safe_string(transaction, 'datetime')) id = self.safe_string(transaction, 'id') currencyId = self.get_currency_id_from_transaction(transaction) code = self.safe_currency_code(currencyId, currency) feeCost = self.safe_number(transaction, 'fee') feeCurrency = None amount = None if 'amount' in transaction: amount = self.safe_number(transaction, 'amount') elif currency is not None: amount = self.safe_number(transaction, currency['id'], amount) feeCurrency = currency['code'] elif (code is not None) and (currencyId is not None): amount = self.safe_number(transaction, currencyId, amount) feeCurrency = code if amount is not None: # withdrawals have a negative amount amount = abs(amount) status = 'ok' if 'status' in transaction: status = self.parse_transaction_status(self.safe_string(transaction, 'status')) type = None if 'type' in transaction: # from fetchTransactions rawType = self.safe_string(transaction, 'type') if rawType == '0': type = 'deposit' elif rawType == '1': type = 'withdrawal' else: # from fetchWithdrawals type = 'withdrawal' txid = self.safe_string(transaction, 'transaction_id') tag = None address = self.safe_string(transaction, 'address') if address is not None: # dt(destination tag) is embedded into the address field addressParts = address.split('?dt=') numParts = len(addressParts) if numParts > 1: address = addressParts[0] tag = addressParts[1] addressFrom = None addressTo = address tagFrom = None tagTo = tag fee = None if feeCost is not None: fee = { 'currency': feeCurrency, 'cost': feeCost, 'rate': None, } return { 'info': transaction, 'id': id, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'network': None, 'addressFrom': addressFrom, 'addressTo': addressTo, 'address': address, 'tagFrom': tagFrom, 'tagTo': tagTo, 'tag': tag, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': None, 'fee': fee, } def parse_transaction_status(self, status): # withdrawals: # 0(open), 1(in process), 2(finished), 3(canceled) or 4(failed). statuses = { '0': 'pending', # Open '1': 'pending', # In process '2': 'ok', # Finished '3': 'canceled', # Canceled '4': 'failed', # Failed } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # from fetch order: # {status: 'Finished', # id: 731693945, # client_order_id: '', # transactions: # [{fee: '0.000019', # price: '0.00015803', # datetime: '2018-01-07 10:45:34.132551', # btc: '0.0079015000000000', # tid: 42777395, # type: 2, # xrp: '50.00000000'}]} # # partially filled order: # {"id": 468646390, # "client_order_id": "", # "status": "Canceled", # "transactions": [{ # "eth": "0.23000000", # "fee": "0.09", # "tid": 25810126, # "usd": "69.8947000000000000", # "type": 2, # "price": "303.89000000", # "datetime": "2017-11-11 07:22:20.710567" # }]} # # from create order response: # { # price: '0.00008012', # client_order_id: '', # currency_pair: 'XRP/BTC', # datetime: '2019-01-31 21:23:36', # amount: '15.00000000', # type: '0', # id: '2814205012' # } # id = self.safe_string(order, 'id') clientOrderId = self.safe_string(order, 'client_order_id') side = self.safe_string(order, 'type') if side is not None: side = 'sell' if (side == '1') else 'buy' # there is no timestamp from fetchOrder timestamp = self.parse8601(self.safe_string(order, 'datetime')) marketId = self.safe_string_lower(order, 'currency_pair') symbol = self.safe_symbol(marketId, market, '/') status = self.parse_order_status(self.safe_string(order, 'status')) amount = self.safe_string(order, 'amount') transactions = self.safe_value(order, 'transactions', []) price = self.safe_string(order, 'price') return self.safe_order({ 'id': id, 'clientOrderId': clientOrderId, 'datetime': self.iso8601(timestamp), 'timestamp': timestamp, 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': None, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': None, 'cost': None, 'amount': amount, 'filled': None, 'remaining': None, 'trades': transactions, 'fee': None, 'info': order, 'average': None, }, market) def parse_ledger_entry_type(self, type): types = { '0': 'transaction', '1': 'transaction', '2': 'trade', '14': 'transfer', } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # [ # { # "fee": "0.00000000", # "btc_usd": "0.00", # "id": 1234567894, # "usd": 0, # "btc": 0, # "datetime": "2018-09-08 09:00:31", # "type": "1", # "xrp": "-20.00000000", # "eur": 0, # }, # { # "fee": "0.00000000", # "btc_usd": "0.00", # "id": 1134567891, # "usd": 0, # "btc": 0, # "datetime": "2018-09-07 18:47:52", # "type": "0", # "xrp": "20.00000000", # "eur": 0, # }, # ] # type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) if type == 'trade': parsedTrade = self.parse_trade(item) market = None keys = list(item.keys()) for i in range(0, len(keys)): if keys[i].find('_') >= 0: marketId = keys[i].replace('_', '') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] # if the market is still not defined # try to deduce it from used keys if market is None: market = self.get_market_from_trade(item) direction = 'in' if (parsedTrade['side'] == 'buy') else 'out' return { 'id': parsedTrade['id'], 'info': item, 'timestamp': parsedTrade['timestamp'], 'datetime': parsedTrade['datetime'], 'direction': direction, 'account': None, 'referenceId': parsedTrade['order'], 'referenceAccount': None, 'type': type, 'currency': market['base'], 'amount': parsedTrade['amount'], 'before': None, 'after': None, 'status': 'ok', 'fee': parsedTrade['fee'], } else: parsedTransaction = self.parse_transaction(item, currency) direction = None if 'amount' in item: amount = self.safe_number(item, 'amount') direction = 'in' if (amount > 0) else 'out' elif ('currency' in parsedTransaction) and parsedTransaction['currency'] is not None: currencyCode = self.safe_string(parsedTransaction, 'currency') currency = self.currency(currencyCode) amount = self.safe_number(item, currency['id']) direction = 'in' if (amount > 0) else 'out' return { 'id': parsedTransaction['id'], 'info': item, 'timestamp': parsedTransaction['timestamp'], 'datetime': parsedTransaction['datetime'], 'direction': direction, 'account': None, 'referenceId': parsedTransaction['txid'], 'referenceAccount': None, 'type': type, 'currency': parsedTransaction['currency'], 'amount': parsedTransaction['amount'], 'before': None, 'after': None, 'status': parsedTransaction['status'], 'fee': parsedTransaction['fee'], } async def fetch_ledger(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} if limit is not None: request['limit'] = limit response = await self.privatePostUserTransactions(self.extend(request, params)) currency = None if code is not None: currency = self.currency(code) return self.parse_ledger(response, currency, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): market = None await self.load_markets() if symbol is not None: market = self.market(symbol) response = await self.privatePostOpenOrdersAll(params) # [ # { # price: '0.00008012', # currency_pair: 'XRP/BTC', # client_order_id: '', # datetime: '2019-01-31 21:23:36', # amount: '15.00000000', # type: '0', # id: '2814205012', # } # ] # return self.parse_orders(response, market, since, limit, { 'status': 'open', 'type': 'limit', }) def get_currency_name(self, code): return code.lower() def is_fiat(self, code): return code == 'USD' or code == 'EUR' or code == 'GBP' async def fetch_deposit_address(self, code, params={}): if self.is_fiat(code): raise NotSupported(self.id + ' fiat fetchDepositAddress() for ' + code + ' is not supported!') name = self.get_currency_name(code) method = 'privatePost' + self.capitalize(name) + 'Address' response = await getattr(self, method)(params) address = self.safe_string(response, 'address') tag = self.safe_string_2(response, 'memo_id', 'destination_tag') self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'network': None, 'info': response, } async def withdraw(self, code, amount, address, tag=None, params={}): # For fiat withdrawals please provide all required additional parameters in the 'params' # Check https://www.bitstamp.net/api/ under 'Open bank withdrawal' for list and description. tag, params = self.handle_withdraw_tag_and_params(tag, params) await self.load_markets() self.check_address(address) request = { 'amount': amount, } currency = None method = None if not self.is_fiat(code): name = self.get_currency_name(code) method = 'privatePost' + self.capitalize(name) + 'Withdrawal' if code == 'XRP': if tag is not None: request['destination_tag'] = tag elif code == 'XLM' or code == 'HBAR': if tag is not None: request['memo_id'] = tag request['address'] = address else: method = 'privatePostWithdrawalOpen' currency = self.currency(code) request['iban'] = address request['account_currency'] = currency['id'] response = await getattr(self, method)(self.extend(request, params)) return self.parse_transaction(response, currency) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] + '/' url += self.version + '/' url += self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if api == 'public': if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() xAuth = 'BITSTAMP ' + self.apiKey xAuthNonce = self.uuid() xAuthTimestamp = str(self.milliseconds()) xAuthVersion = 'v2' contentType = '' headers = { 'X-Auth': xAuth, 'X-Auth-Nonce': xAuthNonce, 'X-Auth-Timestamp': xAuthTimestamp, 'X-Auth-Version': xAuthVersion, } if method == 'POST': if query: body = self.urlencode(query) contentType = 'application/x-www-form-urlencoded' headers['Content-Type'] = contentType else: # sending an empty POST request will trigger # an API0020 error returned by the exchange # therefore for empty requests we send a dummy object # https://github.com/ccxt/ccxt/issues/6846 body = self.urlencode({'foo': 'bar'}) contentType = 'application/x-www-form-urlencoded' headers['Content-Type'] = contentType authBody = body if body else '' auth = xAuth + method + url.replace('https://', '') + contentType + xAuthNonce + xAuthTimestamp + xAuthVersion + authBody signature = self.hmac(self.encode(auth), self.encode(self.secret)) headers['X-Auth-Signature'] = signature return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # # {"error": "No permission found"} # fetchDepositAddress returns self on apiKeys that don't have the permission required # {"status": "error", "reason": {"__all__": ["Minimum order size is 5.0 EUR."]}} # reuse of a nonce gives: {status: 'error', reason: 'Invalid nonce', code: 'API0004'} status = self.safe_string(response, 'status') error = self.safe_value(response, 'error') if (status == 'error') or (error is not None): errors = [] if isinstance(error, str): errors.append(error) elif error is not None: keys = list(error.keys()) for i in range(0, len(keys)): key = keys[i] value = self.safe_value(error, key) if isinstance(value, list): errors = self.array_concat(errors, value) else: errors.append(value) reason = self.safe_value(response, 'reason', {}) if isinstance(reason, str): errors.append(reason) else: all = self.safe_value(reason, '__all__', []) for i in range(0, len(all)): errors.append(all[i]) code = self.safe_string(response, 'code') if code == 'API0005': raise AuthenticationError(self.id + ' invalid signature, use the uid for the main account if you have subaccounts') feedback = self.id + ' ' + body for i in range(0, len(errors)): value = errors[i] self.throw_exactly_matched_exception(self.exceptions['exact'], value, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], value, feedback) raise ExchangeError(feedback)
40.501832
279
0.458759
f424e4da64f09e94ce31d4d87005b5c24a66de08
4,319
py
Python
bitmovin_api_sdk/encoding/encodings/input_streams/subtitles/dvb_teletext/dvb_teletext_api.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
11
2019-07-03T10:41:16.000Z
2022-02-25T21:48:06.000Z
bitmovin_api_sdk/encoding/encodings/input_streams/subtitles/dvb_teletext/dvb_teletext_api.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
8
2019-11-23T00:01:25.000Z
2021-04-29T12:30:31.000Z
bitmovin_api_sdk/encoding/encodings/input_streams/subtitles/dvb_teletext/dvb_teletext_api.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
13
2020-01-02T14:58:18.000Z
2022-03-26T12:10:30.000Z
# coding: utf-8 from __future__ import absolute_import from bitmovin_api_sdk.common import BaseApi, BitmovinApiLoggerBase from bitmovin_api_sdk.common.poscheck import poscheck_except from bitmovin_api_sdk.models.bitmovin_response import BitmovinResponse from bitmovin_api_sdk.models.dvb_teletext_input_stream import DvbTeletextInputStream from bitmovin_api_sdk.models.response_envelope import ResponseEnvelope from bitmovin_api_sdk.models.response_error import ResponseError from bitmovin_api_sdk.encoding.encodings.input_streams.subtitles.dvb_teletext.dvb_teletext_input_stream_list_query_params import DvbTeletextInputStreamListQueryParams class DvbTeletextApi(BaseApi): @poscheck_except(2) def __init__(self, api_key, tenant_org_id=None, base_url=None, logger=None): # type: (str, str, str, BitmovinApiLoggerBase) -> None super(DvbTeletextApi, self).__init__( api_key=api_key, tenant_org_id=tenant_org_id, base_url=base_url, logger=logger ) def create(self, encoding_id, dvb_teletext_input_stream, **kwargs): # type: (string_types, DvbTeletextInputStream, dict) -> DvbTeletextInputStream """Add DVB-Teletext Input Stream :param encoding_id: Id of the encoding. :type encoding_id: string_types, required :param dvb_teletext_input_stream: The DVB-Teletext Input Stream to be created :type dvb_teletext_input_stream: DvbTeletextInputStream, required :return: DVB-Teletext Input Stream :rtype: DvbTeletextInputStream """ return self.api_client.post( '/encoding/encodings/{encoding_id}/input-streams/subtitles/dvb-teletext', dvb_teletext_input_stream, path_params={'encoding_id': encoding_id}, type=DvbTeletextInputStream, **kwargs ) def delete(self, encoding_id, input_stream_id, **kwargs): # type: (string_types, string_types, dict) -> BitmovinResponse """Delete DVB-Teletext Input Stream :param encoding_id: Id of the encoding. :type encoding_id: string_types, required :param input_stream_id: Id of the DVB-Teletext input stream. :type input_stream_id: string_types, required :return: Id of the DVB-Teletext Input stream :rtype: BitmovinResponse """ return self.api_client.delete( '/encoding/encodings/{encoding_id}/input-streams/subtitles/dvb-teletext/{input_stream_id}', path_params={'encoding_id': encoding_id, 'input_stream_id': input_stream_id}, type=BitmovinResponse, **kwargs ) def get(self, encoding_id, input_stream_id, **kwargs): # type: (string_types, string_types, dict) -> DvbTeletextInputStream """DVB-Teletext Input Stream Details :param encoding_id: Id of the encoding. :type encoding_id: string_types, required :param input_stream_id: Id of the DVB-Teletext input stream. :type input_stream_id: string_types, required :return: DVB-Teletext Input Stream :rtype: DvbTeletextInputStream """ return self.api_client.get( '/encoding/encodings/{encoding_id}/input-streams/subtitles/dvb-teletext/{input_stream_id}', path_params={'encoding_id': encoding_id, 'input_stream_id': input_stream_id}, type=DvbTeletextInputStream, **kwargs ) def list(self, encoding_id, query_params=None, **kwargs): # type: (string_types, DvbTeletextInputStreamListQueryParams, dict) -> DvbTeletextInputStream """List DVB-Teletext Input Streams :param encoding_id: Id of the encoding. :type encoding_id: string_types, required :param query_params: Query parameters :type query_params: DvbTeletextInputStreamListQueryParams :return: List of DVB-Teletext Input Streams :rtype: DvbTeletextInputStream """ return self.api_client.get( '/encoding/encodings/{encoding_id}/input-streams/subtitles/dvb-teletext', path_params={'encoding_id': encoding_id}, query_params=query_params, pagination_response=True, type=DvbTeletextInputStream, **kwargs )
41.528846
166
0.693448
55b444075dea2be0072acdd8a4545d953a852d4a
2,267
py
Python
pyleecan/Methods/Slot/SlotW15/_comp_point_coordinate.py
ajpina/pyleecan
f8d1fce7d108cf443f5767e35d59ff15905fb49f
[ "Apache-2.0" ]
2
2019-06-08T15:04:39.000Z
2020-09-07T13:32:22.000Z
pyleecan/Methods/Slot/SlotW15/_comp_point_coordinate.py
ajpina/pyleecan
f8d1fce7d108cf443f5767e35d59ff15905fb49f
[ "Apache-2.0" ]
null
null
null
pyleecan/Methods/Slot/SlotW15/_comp_point_coordinate.py
ajpina/pyleecan
f8d1fce7d108cf443f5767e35d59ff15905fb49f
[ "Apache-2.0" ]
null
null
null
from numpy import angle, arcsin, arctan, cos, exp, pi, sin, sqrt from ....Methods.Slot.SlotW15 import S15InnerError def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : SlotW15 A SlotW15 object Returns ------- point_list: list A list of 12 Points """ Rbo = self.get_Rbo() # alpha is the angle to rotate Z0 so ||Z1,Z13|| = W0 alpha = arcsin(self.W0 / (2 * Rbo)) hsp = pi / self.Zs # Half slot pitch Z0 = Rbo * exp(1j * 0) Z1 = Z0 * exp(1j * alpha) if self.is_outwards(): Z2 = Z0 + self.H0 + 1j * Z1.imag Z7 = Z0 + self.H0 + self.H1 + self.H2 # Zc2, Z6 and (0,0) are align (tangent) => abs(Zc2)=Rbo+H0+H1+H2-R2 # In tooth ref: Im(Zc2') = -W3/2 - R2 A = Rbo + self.H0 + self.H1 + self.H2 - self.R2 B = -self.W3 / 2 - self.R2 xc2 = B * sin(-hsp) + sqrt(-(B ** 2) + A ** 2) * cos(-hsp) yc2 = B * cos(-hsp) - sqrt(-(B ** 2) + A ** 2) * sin(-hsp) Zc2 = xc2 + 1j * yc2 Z5 = (Zc2 * exp(1j * -hsp) + self.R2 * 1j) * exp(1j * hsp) # Zc2, Z6 and (0,0) are align, |Zc2, Z6| = R2 Z6 = (Zc2 * exp(1j * -angle(Zc2)) + self.R2) * exp(1j * angle(Zc2)) # Real(Zc1) = Rbo+H0+H1 # In tooth ref: Im(Zc1') = -W3/2 - R1 xc1 = Rbo + self.H0 + self.H1 yc1 = (-self.W3 / 2 - self.R1 - xc1 * sin(-hsp)) / cos(-hsp) Zc1 = xc1 + 1j * yc1 Z4 = (Zc1 * exp(1j * -hsp) + self.R1 * 1j) * exp(1j * hsp) # Ref center at Zc1, (Z3,Z2) and (Z3,Zc1) are orthogonal # Z3 = R1*exp(1i*theta) # (R1*cos(theta)-x2)*R1*cos(theta)+(R1*sin(theta)-y2)*R1*sin(theta) = 0 R1 = self.R1 y2 = (Z2 - Zc1).imag x2 = (Z2 - Zc1).real theta = 2 * arctan((y2 - sqrt(-(R1 ** 2) + x2 ** 2 + y2 ** 2)) / (R1 + x2)) Z3 = R1 * exp(1j * theta) + Zc1 else: raise S15InnerError("Slot Type 15 can't be used on inner lamination") # symetry Z8 = Z6.conjugate() Z9 = Z5.conjugate() Z10 = Z4.conjugate() Z11 = Z3.conjugate() Z12 = Z2.conjugate() Z13 = Z1.conjugate() return [Z13, Z12, Z11, Z10, Z9, Z8, Z7, Z6, Z5, Z4, Z3, Z2, Z1]
32.385714
83
0.505073
ac3366f96112505ab20c0d59d749c71f9b140848
4,993
py
Python
wavefront_api_client/models/response_container_paged_report_event_anomaly_dto.py
httpsgithu/python-client
f85a530367cdabe458a11919ad35609b9bc0606b
[ "Apache-2.0" ]
null
null
null
wavefront_api_client/models/response_container_paged_report_event_anomaly_dto.py
httpsgithu/python-client
f85a530367cdabe458a11919ad35609b9bc0606b
[ "Apache-2.0" ]
null
null
null
wavefront_api_client/models/response_container_paged_report_event_anomaly_dto.py
httpsgithu/python-client
f85a530367cdabe458a11919ad35609b9bc0606b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Wavefront REST API Documentation <p>The Wavefront REST API enables you to interact with Wavefront servers using standard REST API tools. You can use the REST API to automate commonly executed operations such as automatically tagging sources.</p><p>When you make REST API calls outside the Wavefront REST API documentation you must add the header \"Authorization: Bearer &lt;&lt;API-TOKEN&gt;&gt;\" to your HTTP requests.</p> # noqa: E501 OpenAPI spec version: v2 Contact: chitimba@wavefront.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from wavefront_api_client.configuration import Configuration class ResponseContainerPagedReportEventAnomalyDTO(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'response': 'PagedReportEventAnomalyDTO', 'status': 'ResponseStatus' } attribute_map = { 'response': 'response', 'status': 'status' } def __init__(self, response=None, status=None, _configuration=None): # noqa: E501 """ResponseContainerPagedReportEventAnomalyDTO - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._response = None self._status = None self.discriminator = None if response is not None: self.response = response self.status = status @property def response(self): """Gets the response of this ResponseContainerPagedReportEventAnomalyDTO. # noqa: E501 :return: The response of this ResponseContainerPagedReportEventAnomalyDTO. # noqa: E501 :rtype: PagedReportEventAnomalyDTO """ return self._response @response.setter def response(self, response): """Sets the response of this ResponseContainerPagedReportEventAnomalyDTO. :param response: The response of this ResponseContainerPagedReportEventAnomalyDTO. # noqa: E501 :type: PagedReportEventAnomalyDTO """ self._response = response @property def status(self): """Gets the status of this ResponseContainerPagedReportEventAnomalyDTO. # noqa: E501 :return: The status of this ResponseContainerPagedReportEventAnomalyDTO. # noqa: E501 :rtype: ResponseStatus """ return self._status @status.setter def status(self, status): """Sets the status of this ResponseContainerPagedReportEventAnomalyDTO. :param status: The status of this ResponseContainerPagedReportEventAnomalyDTO. # noqa: E501 :type: ResponseStatus """ if self._configuration.client_side_validation and status is None: raise ValueError("Invalid value for `status`, must not be `None`") # noqa: E501 self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResponseContainerPagedReportEventAnomalyDTO, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResponseContainerPagedReportEventAnomalyDTO): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ResponseContainerPagedReportEventAnomalyDTO): return True return self.to_dict() != other.to_dict()
33.066225
409
0.629281
018f7479f5a19b76fef4aa8529da886f2f2b94f0
806
py
Python
class_separation.py
UmarKhalidcs/ACL-for-Face-Recognition
e10f1f870dfc86382c8acfc9fcc23ab39bd14c92
[ "MIT" ]
null
null
null
class_separation.py
UmarKhalidcs/ACL-for-Face-Recognition
e10f1f870dfc86382c8acfc9fcc23ab39bd14c92
[ "MIT" ]
null
null
null
class_separation.py
UmarKhalidcs/ACL-for-Face-Recognition
e10f1f870dfc86382c8acfc9fcc23ab39bd14c92
[ "MIT" ]
null
null
null
import os,shutil identity_CelebA_text = open('D:\\Research_work\\project_3\\umar_version\\data\\celeba\\identity_CelebA.txt', 'r') Lines = identity_CelebA_text.readlines() img_align_celeb_path="D:\\Research_work\\project_3\\umar_version\\data\celeba\\img_align_celeba\\" classified_path="D:\\Research_work\\project_3\\umar_version\\data\celeba\\data\\" # Strips the newline character for line in Lines: b,a=line.strip().split() class_path = os.path.join(classified_path, a) orig_img_path = img_align_celeb_path + b if os.path.isdir(class_path): new_image_path=class_path+"\\"+b shutil.copy(orig_img_path,new_image_path) else: os.mkdir(class_path) new_image_path = class_path + "\\" + b shutil.copy(orig_img_path, new_image_path)
44.777778
114
0.712159
ac988d542207d0026ff192cba4c6cb7bc5154993
515
py
Python
blog/conf/__init__.py
lingfromSh/blog
190e4c1162c7fb31f88b7e8f806ccdd9aace6e93
[ "Apache-2.0" ]
null
null
null
blog/conf/__init__.py
lingfromSh/blog
190e4c1162c7fb31f88b7e8f806ccdd9aace6e93
[ "Apache-2.0" ]
3
2020-09-11T14:52:00.000Z
2020-09-11T15:17:54.000Z
blog/conf/__init__.py
lingfromSh/blog
190e4c1162c7fb31f88b7e8f806ccdd9aace6e93
[ "Apache-2.0" ]
null
null
null
import importlib PythonPath = str class LazyConfig: def from_object(self, config: object): def is_dunder_name(name: str): return name.startswith("__") and name.endswith("__") for attr_name in dir(config): if not is_dunder_name(attr_name): setattr(self, attr_name, getattr(config, attr_name)) def set_project_config(file: PythonPath): global settings obj = importlib.import_module(file) settings.from_object(obj) settings = LazyConfig()
23.409091
68
0.673786
9e2843d0e74a6190c921616e6bc81c27fa01da69
891
py
Python
World/Object/Unit/Player/Handlers/PlayerInit.py
sergio-ivanuzzo/idewave-core
31b2b2ec4ac222e02af57d8b2d7a3277e4a444ae
[ "Apache-2.0" ]
10
2019-06-29T19:24:52.000Z
2021-02-21T22:45:57.000Z
World/Object/Unit/Player/Handlers/PlayerInit.py
sergio-ivanuzzo/wowcore
31b2b2ec4ac222e02af57d8b2d7a3277e4a444ae
[ "Apache-2.0" ]
4
2019-08-15T07:03:36.000Z
2021-06-02T13:01:25.000Z
World/Object/Unit/Player/Handlers/PlayerInit.py
sergio-ivanuzzo/idewave-core
31b2b2ec4ac222e02af57d8b2d7a3277e4a444ae
[ "Apache-2.0" ]
8
2019-06-30T22:47:48.000Z
2021-02-20T19:21:30.000Z
from World.Object.Unit.Player.PlayerManager import PlayerManager from Server.Registry.QueuesRegistry import QueuesRegistry from Server.Connection.Connection import Connection class PlayerInit(object): __slots__ = ('data', 'connection') def __init__(self, **kwargs): self.data: bytes = kwargs.pop('data', bytes()) self.connection: Connection = kwargs.pop('connection') async def process(self) -> tuple: self._load_player() await QueuesRegistry.connections_queue.put(self.connection) return None, None def _load_player(self) -> None: # size (first 2 bytes) - opcode (next 4 bytes) - guid (remaining bytes) guid = int.from_bytes(self.data, 'little') with PlayerManager() as player_mgr: player_mgr.load(id=guid) player = player_mgr.player self.connection.player = player
31.821429
79
0.674523
66183d6364472c48a89f3e18e569aa4ded43aa2b
327
py
Python
addons/utils/checks.py
T3CHNOLOG1C/GLaDOS
723da47178c395e37828f067b3e0def9735609a5
[ "Apache-2.0" ]
5
2018-07-19T19:57:59.000Z
2020-04-13T00:16:26.000Z
addons/utils/checks.py
T3CHNOLOG1C/GLaDOS
723da47178c395e37828f067b3e0def9735609a5
[ "Apache-2.0" ]
11
2018-07-19T19:24:44.000Z
2020-04-29T00:28:38.000Z
addons/utils/checks.py
T3CHNOLOG1C/GLaDOS
723da47178c395e37828f067b3e0def9735609a5
[ "Apache-2.0" ]
32
2018-03-20T00:08:54.000Z
2020-02-15T04:54:18.000Z
from discord.ext.commands import check def _check_owner(ctx): return ctx.bot.owner_role in ctx.message.author.roles def _check_botdev(ctx): return ctx.bot.botdev_role in ctx.message.author.roles or _check_owner(ctx) def is_owner(): return check(_check_owner) def is_botdev(): return check(_check_botdev)
19.235294
79
0.75841
9f6597edde5a6c28397edf1e98ad587909067b1a
2,441
py
Python
indra/tests/test_hgnc_client.py
qiuhaoling/indra
fa1fb31c4333ea63d023181eaf6f759e3dd3b400
[ "BSD-2-Clause" ]
null
null
null
indra/tests/test_hgnc_client.py
qiuhaoling/indra
fa1fb31c4333ea63d023181eaf6f759e3dd3b400
[ "BSD-2-Clause" ]
null
null
null
indra/tests/test_hgnc_client.py
qiuhaoling/indra
fa1fb31c4333ea63d023181eaf6f759e3dd3b400
[ "BSD-2-Clause" ]
null
null
null
from __future__ import absolute_import, print_function, unicode_literals from builtins import dict, str from indra.databases import hgnc_client from indra.util import unicode_strs from nose.plugins.attrib import attr def test_get_uniprot_id(): hgnc_id = '6840' uniprot_id = hgnc_client.get_uniprot_id(hgnc_id) assert uniprot_id == 'Q02750' assert unicode_strs(uniprot_id) def test_get_uniprot_id_none(): # This HGNC entry doesn't have a UniProt ID hgnc_id = '12027' uniprot_id = hgnc_client.get_uniprot_id(hgnc_id) assert uniprot_id is None def test_get_hgnc_name(): hgnc_id = '3236' hgnc_name = hgnc_client.get_hgnc_name(hgnc_id) assert hgnc_name == 'EGFR' assert unicode_strs(hgnc_name) @attr('webservice') def test_get_hgnc_name_nonexistent(): hgnc_id = '123456' hgnc_name = hgnc_client.get_hgnc_name(hgnc_id) assert hgnc_name is None assert unicode_strs(hgnc_name) def test_entrez_hgnc(): entrez_id = '653509' hgnc_id = hgnc_client.get_hgnc_from_entrez(entrez_id) assert hgnc_id == '10798' def test_entrez_hgnc_none(): entrez_id = 'xxx' hgnc_id = hgnc_client.get_hgnc_from_entrez(entrez_id) assert hgnc_id is None def test_mouse_map(): hgnc_id1 = hgnc_client.get_hgnc_from_mouse('109599') hgnc_id2 = hgnc_client.get_hgnc_from_mouse('MGI:109599') assert hgnc_id1 == '4820' assert hgnc_id2 == '4820' hgnc_id = hgnc_client.get_hgnc_from_mouse('xxx') assert hgnc_id is None def test_rat_map(): hgnc_id1 = hgnc_client.get_hgnc_from_rat('6496784') hgnc_id2 = hgnc_client.get_hgnc_from_rat('RGD:6496784') assert hgnc_id1 == '44155' assert hgnc_id2 == '44155' hgnc_id = hgnc_client.get_hgnc_from_rat('xxx') assert hgnc_id is None def test_is_category(): assert hgnc_client.is_kinase('MAPK1') assert not hgnc_client.is_kinase('EGF') assert hgnc_client.is_phosphatase('PTEN') assert not hgnc_client.is_phosphatase('KRAS') assert hgnc_client.is_transcription_factor('FOXO3') assert not hgnc_client.is_transcription_factor('AKT1') def test_get_current_id(): # Current symbol assert hgnc_client.get_current_hgnc_id('BRAF') == '1097' # Outdated symbol, one ID assert hgnc_client.get_current_hgnc_id('SEPT7') == '1717' # Outdated symbol, multiple IDs ids = hgnc_client.get_current_hgnc_id('HOX1') assert len(ids) == 10 assert '5101' in ids
28.717647
72
0.736583
1604e72f9507574b4506dca839c84d0e96c6e95c
10,685
py
Python
homeassistant/components/chromecast.py
EnTeQuAk/home-assistant
f9fbb30fc0905a9d1858cb5829a6d9c16a9c50de
[ "MIT" ]
1
2019-06-27T11:32:36.000Z
2019-06-27T11:32:36.000Z
homeassistant/components/chromecast.py
EnTeQuAk/home-assistant
f9fbb30fc0905a9d1858cb5829a6d9c16a9c50de
[ "MIT" ]
null
null
null
homeassistant/components/chromecast.py
EnTeQuAk/home-assistant
f9fbb30fc0905a9d1858cb5829a6d9c16a9c50de
[ "MIT" ]
1
2015-06-16T19:42:51.000Z
2015-06-16T19:42:51.000Z
""" homeassistant.components.chromecast ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Provides functionality to interact with Chromecasts. """ import logging import homeassistant.util as util import homeassistant.components as components DOMAIN = 'chromecast' DEPENDENCIES = [] SERVICE_YOUTUBE_VIDEO = 'play_youtube_video' ENTITY_ID_FORMAT = DOMAIN + '.{}' STATE_NO_APP = 'idle' ATTR_STATE = 'state' ATTR_OPTIONS = 'options' ATTR_MEDIA_STATE = 'media_state' ATTR_MEDIA_CONTENT_ID = 'media_content_id' ATTR_MEDIA_TITLE = 'media_title' ATTR_MEDIA_ARTIST = 'media_artist' ATTR_MEDIA_ALBUM = 'media_album' ATTR_MEDIA_IMAGE_URL = 'media_image_url' ATTR_MEDIA_VOLUME = 'media_volume' ATTR_MEDIA_DURATION = 'media_duration' MEDIA_STATE_UNKNOWN = 'unknown' MEDIA_STATE_PLAYING = 'playing' MEDIA_STATE_STOPPED = 'stopped' def is_on(hass, entity_id=None): """ Returns true if specified ChromeCast entity_id is on. Will check all chromecasts if no entity_id specified. """ entity_ids = [entity_id] if entity_id else hass.get_entity_ids(DOMAIN) return any(not hass.states.is_state(entity_id, STATE_NO_APP) for entity_id in entity_ids) def turn_off(hass, entity_id=None): """ Will turn off specified Chromecast or all. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_TURN_OFF, data) def volume_up(hass, entity_id=None): """ Send the chromecast the command for volume up. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_VOLUME_UP, data) def volume_down(hass, entity_id=None): """ Send the chromecast the command for volume down. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_VOLUME_DOWN, data) def media_play_pause(hass, entity_id=None): """ Send the chromecast the command for play/pause. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_MEDIA_PLAY_PAUSE, data) def media_play(hass, entity_id=None): """ Send the chromecast the command for play/pause. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_MEDIA_PLAY, data) def media_pause(hass, entity_id=None): """ Send the chromecast the command for play/pause. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_MEDIA_PAUSE, data) def media_next_track(hass, entity_id=None): """ Send the chromecast the command for next track. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_MEDIA_NEXT_TRACK, data) def media_prev_track(hass, entity_id=None): """ Send the chromecast the command for prev track. """ data = {components.ATTR_ENTITY_ID: entity_id} if entity_id else {} hass.call_service(DOMAIN, components.SERVICE_MEDIA_PREV_TRACK, data) # pylint: disable=too-many-locals, too-many-branches def setup(hass, config): """ Listen for chromecast events. """ logger = logging.getLogger(__name__) try: import pychromecast except ImportError: logger.exception(("Failed to import pychromecast. " "Did you maybe not install the 'pychromecast' " "dependency?")) return False if 'hosts' in config[DOMAIN]: hosts = config[DOMAIN]['hosts'].split(",") # If no hosts given, scan for chromecasts else: logger.info("Scanning for Chromecasts") hosts = pychromecast.discover_chromecasts() casts = {} for host in hosts: try: cast = pychromecast.PyChromecast(host) entity_id = util.ensure_unique_string( ENTITY_ID_FORMAT.format( util.slugify(cast.device.friendly_name)), list(casts.keys())) casts[entity_id] = cast except pychromecast.ChromecastConnectionError: pass if not casts: logger.error("Could not find Chromecasts") return False def update_chromecast_state(entity_id, chromecast): """ Retrieve state of Chromecast and update statemachine. """ chromecast.refresh() status = chromecast.app state_attr = {components.ATTR_FRIENDLY_NAME: chromecast.device.friendly_name} if status and status.app_id != pychromecast.APP_ID['HOME']: state = status.app_id ramp = chromecast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp and ramp.state != pychromecast.RAMP_STATE_UNKNOWN: if ramp.state == pychromecast.RAMP_STATE_PLAYING: state_attr[ATTR_MEDIA_STATE] = MEDIA_STATE_PLAYING else: state_attr[ATTR_MEDIA_STATE] = MEDIA_STATE_STOPPED if ramp.content_id: state_attr[ATTR_MEDIA_CONTENT_ID] = ramp.content_id if ramp.title: state_attr[ATTR_MEDIA_TITLE] = ramp.title if ramp.artist: state_attr[ATTR_MEDIA_ARTIST] = ramp.artist if ramp.album: state_attr[ATTR_MEDIA_ALBUM] = ramp.album if ramp.image_url: state_attr[ATTR_MEDIA_IMAGE_URL] = ramp.image_url if ramp.duration: state_attr[ATTR_MEDIA_DURATION] = ramp.duration state_attr[ATTR_MEDIA_VOLUME] = ramp.volume else: state = STATE_NO_APP hass.states.set(entity_id, state, state_attr) def update_chromecast_states(time): # pylint: disable=unused-argument """ Updates all chromecast states. """ logger.info("Updating Chromecast status") for entity_id, cast in casts.items(): update_chromecast_state(entity_id, cast) def _service_to_entities(service): """ Helper method to get entities from service. """ entity_ids = components.extract_entity_ids(hass, service) if entity_ids: for entity_id in entity_ids: cast = casts.get(entity_id) if cast: yield entity_id, cast else: yield from casts.items() def turn_off_service(service): """ Service to exit any running app on the specified ChromeCast and shows idle screen. Will quit all ChromeCasts if nothing specified. """ for entity_id, cast in _service_to_entities(service): cast.quit_app() update_chromecast_state(entity_id, cast) def volume_up_service(service): """ Service to send the chromecast the command for volume up. """ for _, cast in _service_to_entities(service): ramp = cast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp: ramp.volume_up() def volume_down_service(service): """ Service to send the chromecast the command for volume down. """ for _, cast in _service_to_entities(service): ramp = cast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp: ramp.volume_down() def media_play_pause_service(service): """ Service to send the chromecast the command for play/pause. """ for _, cast in _service_to_entities(service): ramp = cast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp: ramp.playpause() def media_play_service(service): """ Service to send the chromecast the command for play/pause. """ for _, cast in _service_to_entities(service): ramp = cast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp and ramp.state == pychromecast.RAMP_STATE_STOPPED: ramp.playpause() def media_pause_service(service): """ Service to send the chromecast the command for play/pause. """ for _, cast in _service_to_entities(service): ramp = cast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp and ramp.state == pychromecast.RAMP_STATE_PLAYING: ramp.playpause() def media_next_track_service(service): """ Service to send the chromecast the command for next track. """ for entity_id, cast in _service_to_entities(service): ramp = cast.get_protocol(pychromecast.PROTOCOL_RAMP) if ramp: next(ramp) update_chromecast_state(entity_id, cast) def play_youtube_video_service(service, video_id): """ Plays specified video_id on the Chromecast's YouTube channel. """ if video_id: # if service.data.get('video') returned None for entity_id, cast in _service_to_entities(service): pychromecast.play_youtube_video(video_id, cast.host) update_chromecast_state(entity_id, cast) hass.track_time_change(update_chromecast_states) hass.services.register(DOMAIN, components.SERVICE_TURN_OFF, turn_off_service) hass.services.register(DOMAIN, components.SERVICE_VOLUME_UP, volume_up_service) hass.services.register(DOMAIN, components.SERVICE_VOLUME_DOWN, volume_down_service) hass.services.register(DOMAIN, components.SERVICE_MEDIA_PLAY_PAUSE, media_play_pause_service) hass.services.register(DOMAIN, components.SERVICE_MEDIA_PLAY, media_play_service) hass.services.register(DOMAIN, components.SERVICE_MEDIA_PAUSE, media_pause_service) hass.services.register(DOMAIN, components.SERVICE_MEDIA_NEXT_TRACK, media_next_track_service) hass.services.register(DOMAIN, "start_fireplace", lambda service: play_youtube_video_service(service, "eyU3bRy2x44")) hass.services.register(DOMAIN, "start_epic_sax", lambda service: play_youtube_video_service(service, "kxopViU98Xo")) hass.services.register(DOMAIN, SERVICE_YOUTUBE_VIDEO, lambda service: play_youtube_video_service(service, service.data.get( 'video'))) update_chromecast_states(None) return True
34.028662
78
0.644829
c72f016e7458965deca5b1633129b7537259ff63
263
py
Python
interface/caller.py
hhaensel/MolecularGraph.jl
c54ccdf09274e36ed3d866604f99b497a39bfaf5
[ "MIT" ]
126
2019-01-28T06:54:27.000Z
2022-03-22T08:45:46.000Z
interface/caller.py
timholy/MolecularGraph.jl
90d6f6175f30023ffce92d9bbc386f8659866508
[ "MIT" ]
64
2019-04-19T03:33:52.000Z
2022-03-22T23:34:44.000Z
interface/caller.py
timholy/MolecularGraph.jl
90d6f6175f30023ffce92d9bbc386f8659866508
[ "MIT" ]
30
2019-02-07T04:08:52.000Z
2022-03-22T03:33:20.000Z
from ctypes import CDLL, c_char_p JL = CDLL("invokejulia.so") JL.smilestomol.argtypes = [c_char_p] print(JL.smilestomol("CCC(=O)CCO".encode())) """ def mol_to_svg(mol): JL.smilestomol.argtypes = None # Pointer to MolGraph return JL.moltosvg(mol) """
18.785714
57
0.69962
bc7baf86b04992f12a4f38c4c8790ca7e44940ec
232
py
Python
mmp/cli/utils.py
alfonsocv12/mpip
972aca21916a6037a1656780e844a93070613d07
[ "MIT" ]
3
2021-04-25T16:39:21.000Z
2021-04-28T22:17:44.000Z
mmp/cli/utils.py
alfonsocv12/mpip
972aca21916a6037a1656780e844a93070613d07
[ "MIT" ]
null
null
null
mmp/cli/utils.py
alfonsocv12/mpip
972aca21916a6037a1656780e844a93070613d07
[ "MIT" ]
null
null
null
import os import mmp def get_version_info(scope): versioninfo = 'mmp version {}'.format(mmp.__version__) if scope == 'mmp': return versioninfo raise ValueError("{} is not a valid version scope".format(scope))
21.090909
69
0.681034
ad43d6bdb56ff582e14ff9008aaaea727501ad6e
11,505
py
Python
MindSPONGE/mindsponge/fold/eval/data/feature/feature_extraction.py
mindspore-ai/mindscience
b5269245915695de2d99fb290fef662c241db189
[ "Apache-2.0" ]
3
2021-11-10T06:17:50.000Z
2022-03-21T14:25:30.000Z
MindSPONGE/tests/fold_test/data/feature/feature_extraction.py
mindspore-ai/mindscience
b5269245915695de2d99fb290fef662c241db189
[ "Apache-2.0" ]
null
null
null
MindSPONGE/tests/fold_test/data/feature/feature_extraction.py
mindspore-ai/mindscience
b5269245915695de2d99fb290fef662c241db189
[ "Apache-2.0" ]
1
2021-12-05T11:41:29.000Z
2021-12-05T11:41:29.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """feature extraction""" import copy import numpy as np from commons import residue_constants from data.feature import data_transforms NUM_RES = "num residues placeholder" NUM_SEQ = "length msa placeholder" NUM_TEMPLATES = "num templates placeholder" FEATURES = { "aatype": (np.float32, [NUM_RES, 21]), "between_segment_residues": (np.int64, [NUM_RES, 1]), "deletion_matrix": (np.float32, [NUM_SEQ, NUM_RES, 1]), "msa": (np.int64, [NUM_SEQ, NUM_RES, 1]), "num_alignments": (np.int64, [NUM_RES, 1]), "residue_index": (np.int64, [NUM_RES, 1]), "seq_length": (np.int64, [NUM_RES, 1]), "all_atom_positions": (np.float32, [NUM_RES, residue_constants.atom_type_num, 3]), "all_atom_mask": (np.int64, [NUM_RES, residue_constants.atom_type_num]), "resolution": (np.float32, [1]), "template_domain_names": (str, [NUM_TEMPLATES]), "template_sum_probs": (np.float32, [NUM_TEMPLATES, 1]), "template_aatype": (np.float32, [NUM_TEMPLATES, NUM_RES, 22]), "template_all_atom_positions": (np.float32, [NUM_TEMPLATES, NUM_RES, residue_constants.atom_type_num, 3]), "template_all_atom_masks": (np.float32, [NUM_TEMPLATES, NUM_RES, residue_constants.atom_type_num, 1]), } def nonensembled_map_fns(data_config): """Input pipeline functions which are not ensembled.""" common_cfg = data_config.common map_fns = [ data_transforms.correct_msa_restypes, data_transforms.add_distillation_flag(False), data_transforms.cast_64bit_ints, data_transforms.squeeze_features, data_transforms.randomly_replace_msa_with_unknown(0.0), data_transforms.make_seq_mask, data_transforms.make_msa_mask, data_transforms.make_hhblits_profile, data_transforms.make_random_crop_to_size_seed, ] if common_cfg.use_templates: map_fns.extend([data_transforms.fix_templates_aatype, data_transforms.make_pseudo_beta('template_')]) map_fns.extend([data_transforms.make_atom14_masks,]) return map_fns def ensembled_map_fns(data_config): """Input pipeline functions that can be ensembled and averaged.""" common_cfg = data_config.common eval_cfg = data_config.eval map_fns = [] if common_cfg.reduce_msa_clusters_by_max_templates: pad_msa_clusters = eval_cfg.max_msa_clusters - eval_cfg.max_templates else: pad_msa_clusters = eval_cfg.max_msa_clusters max_msa_clusters = pad_msa_clusters max_extra_msa = common_cfg.max_extra_msa map_fns.append(data_transforms.sample_msa(max_msa_clusters, keep_extra=True)) if 'masked_msa' in common_cfg: map_fns.append(data_transforms.make_masked_msa(common_cfg.masked_msa, eval_cfg.masked_msa_replace_fraction)) if common_cfg.msa_cluster_features: map_fns.append(data_transforms.nearest_neighbor_clusters()) map_fns.append(data_transforms.summarize_clusters()) if max_extra_msa: map_fns.append(data_transforms.crop_extra_msa(max_extra_msa)) else: map_fns.append(data_transforms.delete_extra_msa) map_fns.append(data_transforms.make_msa_feat()) crop_feats = dict(eval_cfg.feat) if eval_cfg.fixed_size: map_fns.append(data_transforms.select_feat(list(crop_feats))) map_fns.append(data_transforms.random_crop_to_size( eval_cfg.crop_size, eval_cfg.max_templates, crop_feats, eval_cfg.subsample_templates)) map_fns.append(data_transforms.make_fixed_size( crop_feats, pad_msa_clusters, common_cfg.max_extra_msa, eval_cfg.crop_size, eval_cfg.max_templates)) else: map_fns.append(data_transforms.crop_templates(eval_cfg.max_templates)) return map_fns def process_arrays_from_config(arrays, data_config): """Apply filters and maps to an existing dataset, based on the config.""" def wrap_ensemble_fn(data, i): """Function to be mapped over the ensemble dimension.""" d = data.copy() fns = ensembled_map_fns(data_config) fn = data_transforms.compose(fns) d['ensemble_index'] = i return fn(d) eval_cfg = data_config.eval arrays = data_transforms.compose(nonensembled_map_fns(data_config))(arrays) arrays_0 = wrap_ensemble_fn(arrays, np.array(0, np.int32)) num_ensemble = eval_cfg.num_ensemble if data_config.common.resample_msa_in_recycling: num_ensemble *= data_config.common.num_recycle + 1 result_array = {x: () for x in arrays_0.keys()} if num_ensemble > 1: for i in range(num_ensemble): arrays_t = wrap_ensemble_fn(arrays, np.array(i, np.int32)) for key in arrays_0.keys(): result_array[key] += (arrays_t[key][None],) for key in arrays_0.keys(): result_array[key] = np.concatenate(result_array[key], axis=0) else: result_array = {key: arrays_0[key][None] for key in arrays_0.keys()} return result_array def feature_shape(feature_name, num_residues, msa_length, num_templates, features=None): """Get the shape for the given feature name.""" features = features or FEATURES if feature_name.endswith("_unnormalized"): feature_name = feature_name[:-13] unused_dtype, raw_sizes = features[feature_name] replacements = {NUM_RES: num_residues, NUM_SEQ: msa_length} if num_templates is not None: replacements[NUM_TEMPLATES] = num_templates sizes = [replacements.get(dimension, dimension) for dimension in raw_sizes] for dimension in sizes: if isinstance(dimension, str): raise ValueError("Could not parse %s (shape: %s) with values: %s" % ( feature_name, raw_sizes, replacements)) size_r = [int(x) for x in sizes] return size_r def parse_reshape_logic(parsed_features, features, num_template, key=None): """Transforms parsed serial features to the correct shape.""" num_residues = np.reshape(parsed_features['seq_length'].astype(np.int32), (-1,))[0] if "num_alignments" in parsed_features: num_msa = np.reshape(parsed_features["num_alignments"].astype(np.int32), (-1,))[0] else: num_msa = 0 if key is not None and "key" in features: parsed_features["key"] = [key] # Expand dims from () to (1,). for k, v in parsed_features.items(): new_shape = feature_shape( feature_name=k, num_residues=num_residues, msa_length=num_msa, num_templates=num_template, features=features) new_shape_size = 1 for dim in new_shape: new_shape_size *= dim if np.size(v) != new_shape_size: raise ValueError("the size of feature {} ({}) could not be reshaped into {}" "".format(k, np.size(v), new_shape)) if "template" not in k: if np.size(v) <= 0: raise ValueError("The feature {} is not empty.".format(k)) parsed_features[k] = np.reshape(v, new_shape) return parsed_features def _make_features_metadata(feature_names): """Makes a feature name to type and shape mapping from a list of names.""" required_features = ["sequence", "domain_name", "template_domain_names"] feature_names = list(set(feature_names) - set(required_features)) features_metadata = {name: FEATURES[name] for name in feature_names} return features_metadata def np_to_array_dict(np_example, features): """Creates dict of arrays.""" features_metadata = _make_features_metadata(features) array_dict = {k: v for k, v in np_example.items() if k in features_metadata} if "template_domain_names" in np_example: num_template = len(np_example["template_domain_names"]) else: num_template = 0 array_dict = parse_reshape_logic(array_dict, features_metadata, num_template) array_dict['template_mask'] = np.ones([num_template], np.float32) return array_dict def make_data_config(config, num_res): """Makes a data config for the input pipeline.""" cfg = copy.deepcopy(config.data) feature_names = cfg.common.unsupervised_features if cfg.common.use_templates: feature_names += cfg.common.template_features with cfg.unlocked(): cfg.eval.crop_size = num_res return cfg, feature_names def custom_padding(config, arrays, dims): """Pad array to fixed size.""" step_size = config.seq_length res_length = arrays[0].shape[dims[0]] padding_size = step_size - res_length for i, arr in enumerate(arrays): if dims[i] == -1: continue extra_array_shape = list(arr.shape) extra_array_shape[dims[i]] = padding_size extra_array = np.zeros(extra_array_shape, dtype=arr.dtype) arrays[i] = np.concatenate((arr, extra_array), axis=dims[i]) return arrays def process_features(raw_features, config, global_config): """Preprocesses NumPy feature dict using pipeline.""" num_res = int(raw_features['seq_length'][0]) cfg, feature_names = make_data_config(config, num_res=num_res) if 'deletion_matrix_int' in raw_features: raw_features['deletion_matrix'] = (raw_features.pop('deletion_matrix_int').astype(np.float32)) array_dict = np_to_array_dict(np_example=raw_features, features=feature_names) features = process_arrays_from_config(array_dict, cfg) features = {k: v for k, v in features.items() if v.dtype != 'O'} extra_msa_length = global_config.extra_msa_length ori_res_length = features["target_feat"].shape[1] aatype = features["aatype"] residue_index = features["residue_index"] for key in ["extra_msa", "extra_has_deletion", "extra_deletion_value", "extra_msa_mask"]: features[key] = features[key][:, :extra_msa_length] input_keys = ['target_feat', 'msa_feat', 'msa_mask', 'seq_mask', 'aatype', 'template_aatype', 'template_all_atom_masks', 'template_all_atom_positions', 'template_mask', 'template_pseudo_beta_mask', 'template_pseudo_beta', 'template_sum_probs', 'extra_msa', 'extra_has_deletion', 'extra_deletion_value', 'extra_msa_mask', 'residx_atom37_to_atom14', 'atom37_atom_exists', 'residue_index'] arrays = [features[key] for key in input_keys] dims = [1, 2, 2, 1, 1, 2, 2, 2, -1, 2, 2, -1, 2, 2, 2, 2, 1, 1, 1] arrays = custom_padding(global_config, arrays, dims) arrays = [array.astype(np.float16) if array.dtype == "float64" else array for array in arrays] arrays = [array.astype(np.float16) if array.dtype == "float32" else array for array in arrays] return arrays, aatype, residue_index, ori_res_length
39
116
0.68405
34fe41e9038d0d873911be7cfdd5e5744c18cbd7
15,986
py
Python
rdflib/plugins/sparql/evaluate.py
tonyfast/rdflib
e4fe0fdbd4de7e1183418f302315b51a14602e03
[ "BSD-3-Clause" ]
2
2021-02-06T17:36:05.000Z
2021-04-21T07:33:39.000Z
rdflib/plugins/sparql/evaluate.py
pragya16067/rdflib
6b5bd37ccc67bdec62d2e36d174eb7933b5020b2
[ "BSD-3-Clause" ]
2
2020-05-09T15:03:57.000Z
2020-05-30T10:51:40.000Z
rdflib/plugins/sparql/evaluate.py
pragya16067/rdflib
6b5bd37ccc67bdec62d2e36d174eb7933b5020b2
[ "BSD-3-Clause" ]
4
2020-05-08T08:36:19.000Z
2020-05-28T07:23:23.000Z
""" These method recursively evaluate the SPARQL Algebra evalQuery is the entry-point, it will setup context and return the SPARQLResult object evalPart is called on each level and will delegate to the right method A rdflib.plugins.sparql.sparql.QueryContext is passed along, keeping information needed for evaluation A list of dicts (solution mappings) is returned, apart from GroupBy which may also return a dict of list of dicts """ import collections import itertools import re import requests from pyparsing import ParseException from rdflib import Variable, Graph, BNode, URIRef, Literal from rdflib.plugins.sparql import CUSTOM_EVALS from rdflib.plugins.sparql.parserutils import value from rdflib.plugins.sparql.sparql import ( QueryContext, AlreadyBound, FrozenBindings, Bindings, SPARQLError, ) from rdflib.plugins.sparql.evalutils import ( _filter, _eval, _join, _diff, _minus, _fillTemplate, _ebv, _val, ) from rdflib.plugins.sparql.aggregates import Aggregator from rdflib.plugins.sparql import parser def evalBGP(ctx, bgp): """ A basic graph pattern """ if not bgp: yield ctx.solution() return s, p, o = bgp[0] _s = ctx[s] _p = ctx[p] _o = ctx[o] for ss, sp, so in ctx.graph.triples((_s, _p, _o)): if None in (_s, _p, _o): c = ctx.push() else: c = ctx if _s is None: c[s] = ss try: if _p is None: c[p] = sp except AlreadyBound: continue try: if _o is None: c[o] = so except AlreadyBound: continue for x in evalBGP(c, bgp[1:]): yield x def evalExtend(ctx, extend): # TODO: Deal with dict returned from evalPart from GROUP BY for c in evalPart(ctx, extend.p): try: e = _eval(extend.expr, c.forget(ctx, _except=extend._vars)) if isinstance(e, SPARQLError): raise e yield c.merge({extend.var: e}) except SPARQLError: yield c def evalLazyJoin(ctx, join): """ A lazy join will push the variables bound in the first part to the second part, essentially doing the join implicitly hopefully evaluating much fewer triples """ for a in evalPart(ctx, join.p1): c = ctx.thaw(a) for b in evalPart(c, join.p2): yield b.merge(a) # merge, as some bindings may have been forgotten def evalJoin(ctx, join): # TODO: Deal with dict returned from evalPart from GROUP BY # only ever for join.p1 if join.lazy: return evalLazyJoin(ctx, join) else: a = evalPart(ctx, join.p1) b = set(evalPart(ctx, join.p2)) return _join(a, b) def evalUnion(ctx, union): branch1_branch2 = [] for x in evalPart(ctx, union.p1): branch1_branch2.append(x) for x in evalPart(ctx, union.p2): branch1_branch2.append(x) return branch1_branch2 def evalMinus(ctx, minus): a = evalPart(ctx, minus.p1) b = set(evalPart(ctx, minus.p2)) return _minus(a, b) def evalLeftJoin(ctx, join): # import pdb; pdb.set_trace() for a in evalPart(ctx, join.p1): ok = False c = ctx.thaw(a) for b in evalPart(c, join.p2): if _ebv(join.expr, b.forget(ctx)): ok = True yield b if not ok: # we've cheated, the ctx above may contain # vars bound outside our scope # before we yield a solution without the OPTIONAL part # check that we would have had no OPTIONAL matches # even without prior bindings... p1_vars = join.p1._vars if p1_vars is None or not any( _ebv(join.expr, b) for b in evalPart(ctx.thaw(a.remember(p1_vars)), join.p2) ): yield a def evalFilter(ctx, part): # TODO: Deal with dict returned from evalPart! for c in evalPart(ctx, part.p): if _ebv( part.expr, c.forget(ctx, _except=part._vars) if not part.no_isolated_scope else c, ): yield c def evalGraph(ctx, part): if ctx.dataset is None: raise Exception( "Non-conjunctive-graph doesn't know about " + "graphs. Try a query without GRAPH." ) ctx = ctx.clone() graph = ctx[part.term] if graph is None: for graph in ctx.dataset.contexts(): # in SPARQL the default graph is NOT a named graph if graph == ctx.dataset.default_context: continue c = ctx.pushGraph(graph) c = c.push() graphSolution = [{part.term: graph.identifier}] for x in _join(evalPart(c, part.p), graphSolution): yield x else: c = ctx.pushGraph(ctx.dataset.get_context(graph)) for x in evalPart(c, part.p): yield x def evalValues(ctx, part): for r in part.p.res: c = ctx.push() try: for k, v in r.items(): if v != "UNDEF": c[k] = v except AlreadyBound: continue yield c.solution() def evalMultiset(ctx, part): if part.p.name == "values": return evalValues(ctx, part) return evalPart(ctx, part.p) def evalPart(ctx, part): # try custom evaluation functions for name, c in CUSTOM_EVALS.items(): try: return c(ctx, part) except NotImplementedError: pass # the given custome-function did not handle this part if part.name == "BGP": # Reorder triples patterns by number of bound nodes in the current ctx # Do patterns with more bound nodes first triples = sorted( part.triples, key=lambda t: len([n for n in t if ctx[n] is None]) ) return evalBGP(ctx, triples) elif part.name == "Filter": return evalFilter(ctx, part) elif part.name == "Join": return evalJoin(ctx, part) elif part.name == "LeftJoin": return evalLeftJoin(ctx, part) elif part.name == "Graph": return evalGraph(ctx, part) elif part.name == "Union": return evalUnion(ctx, part) elif part.name == "ToMultiSet": return evalMultiset(ctx, part) elif part.name == "Extend": return evalExtend(ctx, part) elif part.name == "Minus": return evalMinus(ctx, part) elif part.name == "Project": return evalProject(ctx, part) elif part.name == "Slice": return evalSlice(ctx, part) elif part.name == "Distinct": return evalDistinct(ctx, part) elif part.name == "Reduced": return evalReduced(ctx, part) elif part.name == "OrderBy": return evalOrderBy(ctx, part) elif part.name == "Group": return evalGroup(ctx, part) elif part.name == "AggregateJoin": return evalAggregateJoin(ctx, part) elif part.name == "SelectQuery": return evalSelectQuery(ctx, part) elif part.name == "AskQuery": return evalAskQuery(ctx, part) elif part.name == "ConstructQuery": return evalConstructQuery(ctx, part) elif part.name == "ServiceGraphPattern": return evalServiceQuery(ctx, part) # raise Exception('ServiceGraphPattern not implemented') elif part.name == "DescribeQuery": raise Exception("DESCRIBE not implemented") else: raise Exception("I dont know: %s" % part.name) def evalServiceQuery(ctx, part): res = {} match = re.match( "^service <(.*)>[ \n]*{(.*)}[ \n]*$", part.get("service_string", ""), re.DOTALL | re.I, ) if match: service_url = match.group(1) service_query = _buildQueryStringForServiceCall(ctx, match) query_settings = {"query": service_query, "output": "json"} headers = { "accept": "application/sparql-results+json", "user-agent": "rdflibForAnUser", } # GET is easier to cache so prefer that if the query is not to long if len(service_query) < 600: response = requests.get(service_url, params=query_settings, headers=headers) else: response = requests.post( service_url, params=query_settings, headers=headers ) if response.status_code == 200: json = response.json() variables = res["vars_"] = json["head"]["vars"] # or just return the bindings? res = json["results"]["bindings"] if len(res) > 0: for r in res: for bound in _yieldBindingsFromServiceCallResult(ctx, r, variables): yield bound else: raise Exception( "Service: %s responded with code: %s", service_url, response.status_code ) """ Build a query string to be used by the service call. It is supposed to pass in the existing bound solutions. Re-adds prefixes if added and sets the base. Wraps it in select if needed. """ def _buildQueryStringForServiceCall(ctx, match): service_query = match.group(2) try: parser.parseQuery(service_query) except ParseException: # This could be because we don't have a select around the service call. service_query = "SELECT REDUCED * WHERE {" + service_query + "}" for p in ctx.prologue.namespace_manager.store.namespaces(): service_query = "PREFIX " + p[0] + ":" + p[1].n3() + " " + service_query # re add the base if one was defined base = ctx.prologue.base if base is not None and len(base) > 0: service_query = "BASE <" + base + "> " + service_query sol = ctx.solution() if len(sol) > 0: variables = " ".join(map(lambda v: v.n3(), sol)) variables_bound = " ".join(map(lambda v: ctx.get(v).n3(), sol)) service_query = ( service_query + "VALUES (" + variables + ") {(" + variables_bound + ")}" ) return service_query def _yieldBindingsFromServiceCallResult(ctx, r, variables): res_dict = {} for var in variables: if var in r and r[var]: if r[var]["type"] == "uri": res_dict[Variable(var)] = URIRef(r[var]["value"]) elif r[var]["type"] == "bnode": res_dict[Variable(var)] = BNode(r[var]["value"]) elif r[var]["type"] == "literal" and "datatype" in r[var]: res_dict[Variable(var)] = Literal( r[var]["value"], datatype=r[var]["datatype"] ) elif r[var]["type"] == "literal" and "xml:lang" in r[var]: res_dict[Variable(var)] = Literal( r[var]["value"], lang=r[var]["xml:lang"] ) yield FrozenBindings(ctx, res_dict) def evalGroup(ctx, group): """ http://www.w3.org/TR/sparql11-query/#defn_algGroup """ # grouping should be implemented by evalAggregateJoin return evalPart(ctx, group.p) def evalAggregateJoin(ctx, agg): # import pdb ; pdb.set_trace() p = evalPart(ctx, agg.p) # p is always a Group, we always get a dict back group_expr = agg.p.expr res = collections.defaultdict(lambda: Aggregator(aggregations=agg.A)) if group_expr is None: # no grouping, just COUNT in SELECT clause # get 1 aggregator for counting aggregator = res[True] for row in p: aggregator.update(row) else: for row in p: # determine right group aggregator for row k = tuple(_eval(e, row, False) for e in group_expr) res[k].update(row) # all rows are done; yield aggregated values for aggregator in res.values(): yield FrozenBindings(ctx, aggregator.get_bindings()) # there were no matches if len(res) == 0: yield FrozenBindings(ctx) def evalOrderBy(ctx, part): res = evalPart(ctx, part.p) for e in reversed(part.expr): reverse = bool(e.order and e.order == "DESC") res = sorted( res, key=lambda x: _val(value(x, e.expr, variables=True)), reverse=reverse ) return res def evalSlice(ctx, slice): res = evalPart(ctx, slice.p) return itertools.islice( res, slice.start, slice.start + slice.length if slice.length is not None else None, ) def evalReduced(ctx, part): """apply REDUCED to result REDUCED is not as strict as DISTINCT, but if the incoming rows were sorted it should produce the same result with limited extra memory and time per incoming row. """ # This implementation uses a most recently used strategy and a limited # buffer size. It relates to a LRU caching algorithm: # https://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used_.28LRU.29 MAX = 1 # TODO: add configuration or determine "best" size for most use cases # 0: No reduction # 1: compare only with the last row, almost no reduction with # unordered incoming rows # N: The greater the buffer size the greater the reduction but more # memory and time are needed # mixed data structure: set for lookup, deque for append/pop/remove mru_set = set() mru_queue = collections.deque() for row in evalPart(ctx, part.p): if row in mru_set: # forget last position of row mru_queue.remove(row) else: # row seems to be new yield row mru_set.add(row) if len(mru_set) > MAX: # drop the least recently used row from buffer mru_set.remove(mru_queue.pop()) # put row to the front mru_queue.appendleft(row) def evalDistinct(ctx, part): res = evalPart(ctx, part.p) done = set() for x in res: if x not in done: yield x done.add(x) def evalProject(ctx, project): res = evalPart(ctx, project.p) return (row.project(project.PV) for row in res) def evalSelectQuery(ctx, query): res = {} res["type_"] = "SELECT" res["bindings"] = evalPart(ctx, query.p) res["vars_"] = query.PV return res def evalAskQuery(ctx, query): res = {} res["type_"] = "ASK" res["askAnswer"] = False for x in evalPart(ctx, query.p): res["askAnswer"] = True break return res def evalConstructQuery(ctx, query): template = query.template if not template: # a construct-where query template = query.p.p.triples # query->project->bgp ... graph = Graph() for c in evalPart(ctx, query.p): graph += _fillTemplate(template, c) res = {} res["type_"] = "CONSTRUCT" res["graph"] = graph return res def evalQuery(graph, query, initBindings, base=None): initBindings = dict((Variable(k), v) for k, v in initBindings.items()) ctx = QueryContext(graph, initBindings=initBindings) ctx.prologue = query.prologue main = query.algebra if main.datasetClause: if ctx.dataset is None: raise Exception( "Non-conjunctive-graph doesn't know about " + "graphs! Try a query without FROM (NAMED)." ) ctx = ctx.clone() # or push/pop? firstDefault = False for d in main.datasetClause: if d.default: if firstDefault: # replace current default graph dg = ctx.dataset.get_context(BNode()) ctx = ctx.pushGraph(dg) firstDefault = True ctx.load(d.default, default=True) elif d.named: g = d.named ctx.load(g, default=False) return evalPart(ctx, main)
27.753472
88
0.584511
fe7143d233af2a0e00b176efefe591e23e5f4219
785
py
Python
config.py
Alikhalid2020/Pitches
ff703163ce3050ea4a2266cf777828deb1c386fe
[ "MIT" ]
1
2021-01-27T22:14:48.000Z
2021-01-27T22:14:48.000Z
config.py
Alikhalid2020/Pitches
ff703163ce3050ea4a2266cf777828deb1c386fe
[ "MIT" ]
null
null
null
config.py
Alikhalid2020/Pitches
ff703163ce3050ea4a2266cf777828deb1c386fe
[ "MIT" ]
null
null
null
import os class Config: SQLALCHEMY_TRACK_MODIFICATIONS=False SECRET_KEY='SECRET_KEY' MAIL_SERVER = 'smtp.googlemail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get("MAIL_USERNAME") MAIL_PASSWORD = os.environ.get("MAIL_PASSWORD") UPLOADED_PHOTOS_DEST ='app/static/photos' class ProdConfig(Config): SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') class TestConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://Morninga:Alikhalid3436@localhost/pitches' class DevConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://morninga:Alikhalid3436@localhost/pitches' DEBUG = True config_options = { 'development':DevConfig, 'production':ProdConfig, 'test':TestConfig }
23.787879
94
0.742675
7565d73bfc308a0951e3a17d377c056443c2fdec
1,757
py
Python
01-Neural Networks and Deep Learning/week4/dnn_utils_v2.py
gaojiaxi/Coursera-Deep-Learning-deeplearning.ai
75a2026f1241ec5e7d24583740dc2f9d4f307d41
[ "MIT" ]
null
null
null
01-Neural Networks and Deep Learning/week4/dnn_utils_v2.py
gaojiaxi/Coursera-Deep-Learning-deeplearning.ai
75a2026f1241ec5e7d24583740dc2f9d4f307d41
[ "MIT" ]
null
null
null
01-Neural Networks and Deep Learning/week4/dnn_utils_v2.py
gaojiaxi/Coursera-Deep-Learning-deeplearning.ai
75a2026f1241ec5e7d24583740dc2f9d4f307d41
[ "MIT" ]
null
null
null
import numpy as np def sigmoid(Z): """ Implements the sigmoid activation in numpy Arguments: Z -- numpy array of any shape Returns: A -- output of sigmoid(z), same shape as Z cache -- returns Z as well, useful during backpropagation """ A = 1/(1+np.exp(-Z)) cache = Z return A, cache def relu(Z): """ Implement the RELU function. Arguments: Z -- Output of the linear layer, of any shape Returns: A -- Post-activation parameter, of the same shape as Z cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently """ A = np.maximum(0, Z) assert(A.shape == Z.shape) cache = Z return A, cache def relu_backward(dA, cache): """ Implement the backward propagation for a single RELU unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache dZ = np.array(dA, copy=True) # just converting dz to a correct object. # When z <= 0, you should set dz to 0 as well. dZ[Z <= 0] = 0 assert (dZ.shape == Z.shape) return dZ def sigmoid_backward(dA, cache): """ Implement the backward propagation for a single SIGMOID unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache s = 1/(1+np.exp(-Z)) dZ = dA * s * (1-s) assert (dZ.shape == Z.shape) return dZ
21.168675
100
0.598748
255fb2b69560b308ec6f870667c35274b6352ea2
56,125
py
Python
apero/io/drs_fits.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
1
2021-03-09T17:49:31.000Z
2021-03-09T17:49:31.000Z
apero/io/drs_fits.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
43
2020-10-06T18:42:24.000Z
2022-03-28T21:23:10.000Z
apero/io/drs_fits.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-03-21 at 11:36 @author: cook """ import numpy as np from astropy.io import fits from astropy.table import Table from astropy.time import Time, TimeDelta from astropy import version as av from astropy import units as uu import os import warnings import traceback from apero.core import constants from apero.core.core import drs_log from apero import lang from apero.io import drs_table from apero.io import drs_lock from apero.io import drs_path from apero.io import drs_text # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'io.drs_fits.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict # Get Logging function WLOG = drs_log.wlog # alias pcheck pcheck = drs_log.find_param # Get the text types TextEntry = lang.drs_text.TextEntry # TODO: This should be changed for astropy -> 2.0.1 # bug that hdu.scale has bug before version 2.0.1 if av.major < 2 or (av.major == 2 and av.minor < 1): SCALEARGS = dict(bscale=(1.0 + 1.0e-8), bzero=1.0e-8) else: SCALEARGS = dict(bscale=1, bzero=0) # ============================================================================= # Define classes # ============================================================================= # noinspection PyCompatibility class Header(fits.Header): """ Wrapper class for fits headers that allows us to add functionality. - Stores temporary items with keys starting with '@@@' - Only shows up through "[]" and "in" operations - Can automatically convert NaN values to strings """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__temp_items = {} def __setitem__(self, key: str, item): """ Set a key with "item" same as using: header[key] = item :param key: str, the key to add to the header :param item: object, the object to :return: None """ # deal with key not being string if isinstance(key, tuple): if key[0].startswith('@@@'): tmpkey = self.__get_temp_key(key[0]) self.__temp_items.__setitem__(tmpkey, item) else: # check for NaN values (and convert -- cannot put directly in) nan_filtered = self.__nan_check(item) # do the super __setitem__ on nan filtered item super().__setitem__(key, nan_filtered) # if key starts with @@@ add to temp items (without @@@) if key.startswith('@@@'): # use the __get_temp_key method to strip key self.__temp_items.__setitem__(self.__get_temp_key(key), item) # do not add empty keys elif key == '': pass # else add normal keys else: # check for NaN values (and convert -- cannot put directly in) nan_filtered = self.__nan_check(item) # do the super __setitem__ on nan filtered item super().__setitem__(key, nan_filtered) def __getitem__(self, key: str): """ Get an "item" with key same as using: item = header[key] :param key: str, the key in the header to get item for :return: the item in the header with key="key" """ # deal with key not being string if isinstance(key, tuple): if key[0].startswith('@@@'): tmpkey = self.__get_temp_key(key[0]) return self.__temp_items.__getitem__(tmpkey) else: return super().__getitem__(key) elif not isinstance(key, str): return super().__getitem__(key) # if key starts with @@@ get it from the temporary items storage if key.startswith('@@@'): return self.__temp_items.__getitem__(self.__get_temp_key(key)) # else get it from the normal storage location (in super) else: return super().__getitem__(key) def __contains__(self, key: str): """ Whether key is in header same as using: key in header :param key: str, the key to search for in the header :return: """ # deal with key not being str if isinstance(key, tuple): if key[0].startswith('@@@'): tmpkey = self.__get_temp_key(key[0]) return self.__temp_items.__contains__(tmpkey) else: return super().__contains__(key) elif not isinstance(key, str): return super().__contains__(key) # if key starts with @@@ then get it from the temp_items if key.startswith('@@@'): return self.__temp_items.__contains__(self.__get_temp_key(key)) # else just do the super contains else: return super().__contains__(key) def copy(self, strip=False): header = Header(super().copy(strip), copy=False) header.__temp_items = self.__temp_items.copy() return header def to_fits_header(self, strip=True, nan_to_string=True): header = super().copy(strip=strip) if nan_to_string: for key in list(header.keys()): if isinstance(header[key], fits.header._HeaderCommentaryCards): header[key] = header[key][0] else: header[key] = header[key] return header @staticmethod def from_fits_header(fits_header): return Header(fits_header, copy=True) @staticmethod def __get_temp_key(key): return key[3:] @staticmethod def __nan_check(value): if isinstance(value, float) and np.isnan(value): return 'NaN' elif isinstance(value, float) and np.isposinf(value): return 'INF' elif isinstance(value, float) and np.isneginf(value): return '-INF' elif type(value) == tuple: return (Header.__nan_check(value[0]),) + value[1:] else: return value # ============================================================================= # Define read functions # ============================================================================= def id_drs_file(params, recipe, drs_file_sets, filename=None, nentries=None, required=True, use_input_file=False): func_name = __NAME__ + '.id_drs_file()' # ---------------------------------------------------------------------- # deal with list vs no list for drs_file_sets if isinstance(drs_file_sets, list): pass else: drs_file_sets = [drs_file_sets] # ---------------------------------------------------------------------- # storage found = False kinds = [] names = [] file_set = None # ---------------------------------------------------------------------- # loop around file set for file_set in drs_file_sets: # get the names of the file_set names.append(file_set.name) # ------------------------------------------------------------------ # check we have entries if len(file_set.fileset) == 0: continue # ------------------------------------------------------------------ # check we have a recipe set if file_set.recipe is None: file_set.recipe = recipe # ------------------------------------------------------------------ # check we ahve a file set if file_set.filename is None: if filename is None: WLOG(params, 'error', 'filename is not set') else: file_set.set_filename(filename) # ------------------------------------------------------------------ # get the associated files with this generic drs file fileset = list(file_set.fileset) # ------------------------------------------------------------------ # loop around files for drs_file in fileset: # -------------------------------------------------------------- # debug dargs = [str(drs_file)] WLOG(params, 'debug', TextEntry('90-010-00001', args=dargs)) # -------------------------------------------------------------- # copy info from given_drs_file into drs_file file_in = drs_file.copyother(file_set, recipe=recipe) # -------------------------------------------------------------- # load the header for this kind try: # need to read the file header for this specific drs file file_in.read_header(log=False) # copy in hdict from file_set # - this is the only way to get keys added from file that is # read above if file_set.hdict is not None: for key in file_set.hdict: file_in.header[key] = file_set.hdict[key] # if exception occurs continue to next file # (this is not the correct file) except Exception as _: continue except SystemExit as _: continue # -------------------------------------------------------------- # check this file is valid cond, _ = file_in.check_file() # -------------------------------------------------------------- # if True we have found our file if cond: # ---------------------------------------------------------- found = True # ---------------------------------------------------------- # load the data for this kind cond1 = file_set.data is not None cond2 = file_set.header is not None # use the data if flagged and if possible (cond1 & cond2) if use_input_file and cond1 and cond2: # shallow copy data file_in.data = file_set.data # copy over header file_in.header = file_set.header else: file_in.read_data() # ---------------------------------------------------------- # append to list kinds.append(file_in) # ---------------------------------------------------------- # if we only want one entry break here if nentries == 1: break # ---------------------------------------------------------------------- # deal with no files found if len(kinds) == 0 and required: # get header keys for info purposes keys = ['KW_CCAS', 'KW_CREF', 'KW_OBSTYPE', 'KW_TARGET_TYPE', 'KW_OBJNAME'] argstr = '' for key in keys: if file_set is not None and file_set.header is not None: value = file_set.get_key(key) else: value = None argstr += '\t{0}: {1}\n'.format(key, value) eargs = [' '.join(names), file_set.filename, argstr, func_name] WLOG(params, 'error', TextEntry('00-010-00001', args=eargs)) # ---------------------------------------------------------------------- # return found and the drs_file instance if len(kinds) == 0: return found, kinds elif nentries == None: return found, kinds elif nentries == 1: return found, kinds[0] else: return found, kinds[:nentries] # ============================================================================= # Define read functions # ============================================================================= def readfits(params, filename, getdata=True, gethdr=False, fmt='fits-image', ext=0, func=None, log=True, copy=False): """ The drs fits file read function :param params: ParamDict, the parameter dictionary of constants :param filename: string, the absolute path to the file :param getdata: bool, whether to return data from "ext" :param gethdr: bool, whether to return header from "ext" :param fmt: str, format of data (either 'fits-image' or 'fits-table' :param ext: int, the extension to open :param func: str, function name of calling function (input function) :type params: ParamDict :type filename: str :type getdata: bool :type gethdr: bool :type fmt: str :type ext: int :type func: str :returns: if getdata and gethdr: returns data, header, if getdata return data, if gethdr returns header. if fmt 'fits-time' returns np.array for data and dictionary for header, if fmt 'fits-table' returns astropy.table for data and dictionary for header """ if func is None: func_name = __NAME__ + '.readfits()' else: func_name = '{0} and {1}'.format(func, __NAME__ + '.readfits()') # define allowed values of 'fmt' allowed_formats = ['fits-image', 'fits-table', 'fits-multi'] # ------------------------------------------------------------------------- # deal with filename not existing if not os.path.exists(filename): # check directory exists dirname = os.path.dirname(filename) if not os.path.exists(dirname): eargs = [dirname, os.path.basename(filename), func_name] WLOG(params, 'error', TextEntry('01-001-00013', args=eargs)) else: eargs = [os.path.basename(filename), dirname, func_name] WLOG(params, 'error', TextEntry('01-001-00012', args=eargs)) # ------------------------------------------------------------------------- # deal with obtaining data if fmt == 'fits-image': data, header = _read_fitsimage(params, filename, getdata, gethdr, ext, log=log) elif fmt == 'fits-table': data, header = _read_fitstable(params, filename, getdata, gethdr, ext, log=log) elif fmt == 'fits-multi': data, header = _read_fitsmulti(params, filename, getdata, gethdr, log=log) else: cfmts = ', '.join(allowed_formats) eargs = [filename, fmt, cfmts, func_name] WLOG(params, 'error', TextEntry('00-008-00019', args=eargs)) data, header = None, None # ------------------------------------------------------------------------- # deal with copying if copy: data = np.array(data) header = fits.Header(header) # ------------------------------------------------------------------------- # deal with return if getdata and gethdr: return data, header elif getdata: return data elif gethdr: return header else: return None def read_header(params, filename, ext=0, log=True): func_name = __NAME__ + '.read_header()' # try to open header try: header = fits.getheader(filename, ext=ext) except Exception as e: if log: eargs = [os.path.basename(filename), ext, type(e), e, func_name] WLOG(params, 'error', TextEntry('01-001-00010', args=eargs)) header = None else: raise e # return header return header def _read_fitsmulti(params, filename, getdata, gethdr, log=True): func_name = __NAME__ + '._read_fitsmulti()' # attempt to open hdu of fits file try: hdulist = fits.open(filename) except Exception as e: eargs = [filename, type(e), e, func_name] WLOG(params, 'error', TextEntry('01-001-00006', args=eargs)) hdulist = None # ------------------------------------------------------------------------- # get the number of fits files in filename try: n_ext = len(hdulist) except Exception as e: WLOG(params, 'warning', TextEntry('10-001-00005', args=[type(e), e])) n_ext = None # deal with unknown number of extensions if n_ext is None: data, header = deal_with_bad_header(params, hdulist, filename) # ------------------------------------------------------------------------- # else get the data and header based on how many extnesions there are else: dataarr, headerarr = [], [] for it in range(n_ext): # append header try: headerarr.append(hdulist[it].header) except Exception as e: if log: eargs = [os.path.basename(filename), it, type(e), e, func_name] WLOG(params, 'error', TextEntry('01-001-00008', args=eargs)) else: raise e # append data try: if isinstance(hdulist[it].data, fits.BinTableHDU): dataarr.append(Table.read(hdulist[it].data)) else: dataarr.append(hdulist[it].data) except Exception as e: if log: eargs = [os.path.basename(filename), it, type(e), e, func_name] WLOG(params, 'error', TextEntry('01-001-00007', args=eargs)) else: raise e data = list(dataarr) header = list(headerarr) # ------------------------------------------------------------------------- # return data and/or header if getdata and gethdr: return data, header elif getdata: return data else: return header def _read_fitsimage(params, filename, getdata, gethdr, ext=0, log=True): # ------------------------------------------------------------------------- # deal with getting data if getdata: try: data = fits.getdata(filename, ext=ext) except Exception as e: if log: string_trackback = traceback.format_exc() emsg = TextEntry('01-001-00014', args=[filename, ext, type(e)]) emsg += '\n\n' + TextEntry(string_trackback) WLOG(params, 'error', emsg) data = None else: raise e else: data = None # ------------------------------------------------------------------------- # deal with getting header if gethdr: try: header = fits.getheader(filename, ext=ext) except Exception as e: if log: string_trackback = traceback.format_exc() emsg = TextEntry('01-001-00015', args=[filename, ext, type(e)]) emsg += '\n\n' + TextEntry(string_trackback) WLOG(params, 'error', emsg) header = None else: raise e else: header = None # ------------------------------------------------------------------------- # return data and header return data, header def _read_fitstable(params, filename, getdata, gethdr, ext=0, log=True): # ------------------------------------------------------------------------- # deal with getting data if getdata: try: data = Table.read(filename, format='fits') except Exception as e: if log: string_trackback = traceback.format_exc() emsg = TextEntry('01-001-00016', args=[filename, ext, type(e)]) emsg += '\n\n' + TextEntry(string_trackback) WLOG(params, 'error', emsg) data = None else: raise e else: data = None # ------------------------------------------------------------------------- # deal with getting header if gethdr: try: header = fits.getheader(filename, ext=ext) except Exception as e: if log: string_trackback = traceback.format_exc() emsg = TextEntry('01-001-00017', args=[filename, ext, type(e)]) emsg += '\n\n' + TextEntry(string_trackback) WLOG(params, 'error', emsg) header = None else: raise e else: header = None # ------------------------------------------------------------------------- # return data and header return data, header # ============================================================================= # Define write functions # ============================================================================= def writefits(params, filename, data, header, datatype='image', dtype=None, func=None): # ------------------------------------------------------------------ # define a synchoronized lock for indexing (so multiple instances do not # run at the same time) lockfile = os.path.basename(filename) # start a lock lock = drs_lock.Lock(params, lockfile) # ------------------------------------------------------------------ # make locked read function @drs_lock.synchronized(lock, params['PID']) def locked_write(): return _write_fits(params, filename, data, header, datatype, dtype, func) # ------------------------------------------------------------------ # try to run locked read function try: locked_write() except KeyboardInterrupt as e: lock.reset() raise e except Exception as e: # reset lock lock.reset() raise e def _write_fits(params, filename, data, header, datatype='image', dtype=None, func=None): # deal with function name coming from somewhere else if func is None: func_name = __NAME__ + '.writefits()' else: func_name = '{0} (via {1})'.format(func, __NAME__ + '.writefits()') # ---------------------------------------------------------------------- # check if file exists and remove it if it does if os.path.exists(filename): try: os.remove(filename) except Exception as e: eargs = [os.path.basename(filename), type(e), e, func_name] WLOG(params, 'error', TextEntry('01-001-00003', args=eargs)) # ---------------------------------------------------------------------- # make sure we are dealing with lists of data and headers if not isinstance(data, list): data = [data] if not isinstance(header, list): header = [header.to_fits_header()] if not isinstance(datatype, list): datatype = [datatype] if dtype is not None and not isinstance(dtype, list): dtype = [dtype] # ---------------------------------------------------------------------- # header must be same length as data if len(data) != len(header): eargs = [filename, len(data), len(header), func_name] WLOG(params, 'error', TextEntry('00-013-00004', args=eargs)) # datatype must be same length as data if len(data) != len(datatype): eargs = [filename, len(data), len(datatype), func_name] WLOG(params, 'error', TextEntry('00-013-00005', args=eargs)) # if dtype is not None must be same length as data if dtype is not None: if len(data) != len(dtype): eargs = [filename, len(data), len(dtype), func_name] WLOG(params, 'error', TextEntry('00-013-00006', args=eargs)) # ---------------------------------------------------------------------- # create the multi HDU list # try to create primary HDU first if isinstance(header[0], Header): header0 = header[0].to_fits_header() else: header0 = header[0] # set up primary HDU (if data[0] == image then put this in the primary) # else if table then primary HDU should be empty if datatype[0] == 'image': hdu0 = fits.PrimaryHDU(data[0], header=header0) start = 1 else: hdu0 = fits.PrimaryHDU() start = 0 if dtype is not None: hdu0.scale(type=dtype[0], **SCALEARGS) # add all others afterwards hdus = [hdu0] for it in range(start, len(data)): if datatype[it] == 'image': fitstype = fits.ImageHDU elif datatype[it] == 'table': fitstype = fits.BinTableHDU else: continue # add to hdu list if isinstance(header[it], Header): header_it = header[it].to_fits_header() else: header_it = header[it] hdu_i = fitstype(data[it], header=header_it) if dtype is not None and datatype[it] == 'image': if dtype[it] is not None: hdu_i.scale(type=dtype[it]) hdus.append(hdu_i) # convert to HDU list hdulist = fits.HDUList(hdus) # except Exception as e: # eargs = [type(e), e, func_name] # WLOG(params, 'error', TextEntry('01-001-00004', args=eargs)) # hdulist = None # --------------------------------------------------------------------- # write to file with warnings.catch_warnings(record=True) as w: try: hdulist.writeto(filename, overwrite=True) except Exception as e: eargs = [os.path.basename(filename), type(e), e, func_name] WLOG(params, 'error', TextEntry('01-001-00005', args=eargs)) # --------------------------------------------------------------------- # ignore truncated comment warning since spirou images have some poorly # formatted header cards w1 = [] for warning in w: # Note: cannot change language as we are looking for python error # this is in english and shouldn't be changed wmsg = 'Card is too long, comment will be truncated.' if wmsg != str(warning.message): w1.append(warning) # add warnings to the warning logger and log if we have them drs_log.warninglogger(params, w1) def add_header_key(header, keystore, value=None): # only used if one cannot use DrsFitsFile hkey, hvalue, hcomment = keystore # deal with value set if value is not None: hvalue = value # add to header header[hkey] = (hvalue, hcomment) # return header return header # ============================================================================= # Define search functions # ============================================================================= def find_files(params, recipe, kind=None, path=None, logic='and', fiber=None, return_table=False, night=None, **kwargs): """ Find files using kwargs (using index files located in 'kind' or 'path') If path is set will use this path to look for index files If kind is set to 'raw' uses DRS_DATA_RAW path, if kind is set to 'tmp' uses DRS_DATA_WORKING path, if kind is set to 'red' uses DRS_DATA_REDUC else uses params['INPATH'] The logic defines how kwargs are added. kwargs must be in index file (column names) or in params as header keyword stores (i.e. KW_DPRTYPE = [HEADER key, HEADER value, HEADER comment] i.e. find_files(params, kind='tmp', KW_DPRTYPE='FP_FP') --> will return all files in the working directory with DPRTYPE = 'FP_FP' find_files(params, kind='red', KW_DPRTYPE=['OBJ_FP', 'OBJ_DARK'], KW_OUTPUT='EXT_E2DS') --> will return all files in reduced directory with: DPRTYPE = OBJ_FP or OBJ_DARK and DRSOUTID :param params: :param kind: :param path: :param logic: :param kwargs: :return: """ func_name = __NAME__ + '.find_files()' # ---------------------------------------------------------------------- # get pseudo constants pconst = constants.pload(params['INSTRUMENT']) # get the index file col name filecol = params['DRS_INDEX_FILENAME'] nightcol = params['REPROCESS_NIGHTCOL'] timecol = 'KW_MID_OBS_TIME' # ---------------------------------------------------------------------- # deal with setting path if path is not None: path = str(path) columns = None index_files = None index_dir = None elif kind == 'raw': # get index table (generate if needed) indextable, index_dir = find_raw_files(params, recipe) # construct index file path for raw raw_index_file = pcheck(params, 'REPROCESS_RAWINDEXFILE', 'raw_index_file', kwargs, func_name) mpath = os.path.join(params['DRS_DATA_RUN'], raw_index_file) # set the columns from table columns = indextable.colnames # set index files index_files = [mpath] elif kind == 'tmp': path = params['DRS_DATA_WORKING'] columns = pconst.OUTPUT_FILE_HEADER_KEYS() index_files = None index_dir = None elif kind == 'red': path = params['DRS_DATA_REDUC'] columns = pconst.OUTPUT_FILE_HEADER_KEYS() index_files = None index_dir = None else: path = params['INPATH'] columns = None index_files = None index_dir = None # ---------------------------------------------------------------------- # deal with making sure all kwargs are in columns (if columns defined) if columns is not None: for kwarg in kwargs: # if dkey not in columns report error if kwarg not in columns: # log and raise error eargs = [kwarg, path, func_name] WLOG(params, 'error', TextEntry('00-004-00001', args=eargs)) # ---------------------------------------------------------------------- # get index files if index_files is None: index_files = get_index_files(params, path, night=night) # ---------------------------------------------------------------------- # valid files storage valid_files = [] table_list = [] time_list = [] # filters added string fstring = '' # ---------------------------------------------------------------------- # loop through index files for index_file in index_files: # read index file index = drs_table.read_fits_table(params, index_file) # get directory if index_dir is None: dirname = os.path.dirname(index_file) else: dirname = index_dir # ------------------------------------------------------------------ # overall masks mask = np.ones(len(index), dtype=bool) # filters added string fstring = '' # ------------------------------------------------------------------ # filter via kwargs for kwarg in kwargs: # -------------------------------------------------------------- # if dkey is not found in index file then report error if kwarg not in index.colnames: # report error eargs = [kwarg, index_file, func_name] WLOG(params, 'error', TextEntry('00-004-00002', args=eargs)) # -------------------------------------------------------------- # deal with list of args if isinstance(kwargs[kwarg], list): # get new mask mask0 = np.zeros_like(mask) # loop around kwargs[kwarg] values (has to be logic==or here) for value in kwargs[kwarg]: mask0 |= (index[kwarg] == value.strip()) else: mask0 = (index[kwarg] == kwargs[kwarg]) # -------------------------------------------------------------- # mask by filter if logic == 'or': mask |= mask0 else: mask &= mask0 # -------------------------------------------------------------- # add to fstring fstring += '\n\t{0}=\'{1}\''.format(kwarg, kwargs[kwarg]) # ------------------------------------------------------------------ # get files for those that remain masked_files = index[filecol][mask] if index_dir is None: nightnames = np.array(mask).astype(int) else: nightnames = index[nightcol][mask] # ------------------------------------------------------------------ masked_index = index[mask] # new mask for index files mask1 = np.zeros(len(masked_files), dtype=bool) # check that files exist # loop around masked files for row, filename in enumerate(masked_files): # deal with requiring night name if index_dir is None: nightname = '' else: nightname = nightnames[row] # -------------------------------------------------------------- # deal with fiber if fiber is not None: # two conditions for not having fiber in name cond1 = '_{0}.'.format(fiber) not in filename cond2 = '_{0}_'.format(fiber) not in filename # if both conditions are True then skip if cond1 and cond2: continue # get time value timeval = float(masked_index[timecol][row]) # construct absolute path absfilename = os.path.join(dirname, nightname, filename) # check that file exists if not os.path.exists(absfilename): continue # deal with returning index mask1[row] = True # append to storage if absfilename not in valid_files: valid_files.append(absfilename) time_list.append(timeval) # ------------------------------------------------------------------ # append to table list if return_table: table_list.append(masked_index[mask1]) # ---------------------------------------------------------------------- # log found wargs = [len(valid_files), fstring] WLOG(params, '', TextEntry('40-004-00004', args=wargs)) # ---------------------------------------------------------------------- # define sort mask (sort by time column) sortmask = np.argsort(time_list) # make sure valid_files is a numpy array valid_files = np.array(valid_files) # deal with table list if return_table: indextable = drs_table.vstack_cols(params, table_list) return valid_files[sortmask], indextable[sortmask] else: # return full list return valid_files[sortmask] def get_index_files(params, path=None, required=True, night=None): """ Get index files in path (or sub-directory of path) if path is "None" params['INPATH'] is used :param params: ParamDict, the parameter dictionary of constants :param path: str, the path to check for filetypes (must have index files in this path or sub directories of this path) if path is "None" params['INPATH'] is used :param required: bool, if True generates an error when None found :param night: str or None, if set filters index files by night :type params: ParamDict :type path: str :type required: bool :type night: str :return: the absolute paths to all index files under path :rtype: list[str] """ func_name = __NAME__ + '.get_index_files()' # deal with no path set if path is None: path = params['INPATH'] # storage of index files index_files = [] # walk through path and find index files for root, dirs, files in os.walk(path, followlinks=True): # skip nights if required if night is not None: if not root.strip(os.sep).endswith(night): continue for filename in files: if filename == params['DRS_INDEX_FILE']: index_files.append(os.path.join(root, filename)) # log number of index files found if len(index_files) > 0: WLOG(params, '', TextEntry('40-004-00003', args=[len(index_files)])) elif required: eargs = [path, func_name] WLOG(params, 'error', TextEntry('01-001-00021', args=eargs)) # return the index files return np.sort(index_files) def find_raw_files(params, recipe, **kwargs): func_name = __NAME__ + '.find_raw_files()' # get properties from params night_col = pcheck(params, 'REPROCESS_NIGHTCOL', 'night_col', kwargs, func_name) absfile_col = pcheck(params, 'REPROCESS_ABSFILECOL', 'absfile_col', kwargs, func_name) modified_col = pcheck(params, 'REPROCESS_MODIFIEDCOL', 'modified_col', kwargs, func_name) sortcol = pcheck(params, 'REPROCESS_SORTCOL_HDRKEY', 'sortcol', kwargs, func_name) raw_index_file = pcheck(params, 'REPROCESS_RAWINDEXFILE', 'raw_index_file', kwargs, func_name) itable_filecol = pcheck(params, 'DRS_INDEX_FILENAME', 'itable_filecol', kwargs, func_name) # get path path, rpath = _get_path_and_check(params, 'DRS_DATA_RAW') # print progress WLOG(params, 'info', TextEntry('40-503-00010')) # get files gfout = _get_files(params, recipe, path, rpath) nightnames, filelist, basenames, mod_times, mkwargs = gfout # construct a table mastertable = Table() mastertable[night_col] = nightnames mastertable[itable_filecol] = basenames mastertable[absfile_col] = filelist mastertable[modified_col] = mod_times for kwarg in mkwargs: mastertable[kwarg] = mkwargs[kwarg] # sort by sortcol sortmask = np.argsort(mastertable[sortcol]) mastertable = mastertable[sortmask] # save master table mpath = os.path.join(params['DRS_DATA_RUN'], raw_index_file) mastertable.write(mpath, overwrite=True) # return the file list return mastertable, rpath def fix_header(params, recipe, infile=None, header=None, raise_exception=False, **kwargs): """ Instrument specific header fixes are define in pseudo_const.py for an instrument and called here (function in pseudo_const.py is HEADER_FIXES) :param params: :param infile: :return: """ # deal with no header if header is None: header = infile.header hdict = infile.hdict filename = infile.filename has_infile = True else: has_infile = False hdict = Header() filename = None # load pseudo constants pconst = constants.pload(params['INSTRUMENT']) # use pseudo constant to apply any header fixes required (specific to # a specific instrument) and update the header try: header, hdict = pconst.HEADER_FIXES(params=params, recipe=recipe, header=header, hdict=hdict, filename=filename, **kwargs) except lang.drs_exceptions.DrsHeaderError as e: if raise_exception: raise e else: eargs = [e.key, e.filename] WLOG(params, 'error', TextEntry('01-001-00027', args=eargs)) # if the input was an infile return the infile back if has_infile: # return the updated infile infile.header = header infile.hdict = hdict return infile # else return the header (assuming input was a header only) else: # else return the header return header, hdict # ============================================================================= # Define other functions # ============================================================================= def combine(params, recipe, infiles, math='average', same_type=True): """ Takes a list of infiles and combines them (infiles must be DrsFitsFiles) combines using the math given. Allowed math: 'sum', 'add', '+' 'average', 'mean' 'subtract', '-' 'divide', '/' 'multiply', 'times', '*' Note 'infiles' must be all the same DrsFitsFile type to combine by default, use 'same_type=False' to override this option Note the header is copied from infiles[0] :param params: ParamDict, parameter dictionary of constants :param infiles: list of DrsFiles, list of DrsFitsFiles to combine :param math: str, the math allowed (see above) :param same_type: bool, if True all infiles must have the same DrsFitFile dtype :type params: ParamDict :type infiles: list[DrsFitsFile] :type math: str :type same_type: bool :return: Returns the combined DrsFitFile (header same as infiles[0]) :rtype: DrsFitsFile """ func_name = __NAME__ + '.combine()' # if we have a string assume we have 1 file and skip combine if type(infiles) is str: return infiles # make sure infiles is a list if type(infiles) is not list: WLOG(params, 'error', TextEntry('00-001-00020', args=[func_name])) # if we have only one file (or none) skip combine if len(infiles) == 1: return infiles[0] elif len(infiles) == 0: return infiles # check that all infiles are the same DrsFileType if same_type: for it, infile in enumerate(infiles): if infile.name != infiles[0].name: eargs = [infiles[0].name, it, infile.name, func_name] WLOG(params, 'error', TextEntry('00-001-00021', args=eargs)) # get output path from params outpath = str(params['OUTPATH']) # check if outpath is set if outpath is None: WLOG(params, 'error', TextEntry('01-001-00023', args=[func_name])) return None # get the absolute path (for combined output) if params['NIGHTNAME'] is None: outdirectory = '' else: outdirectory = params['NIGHTNAME'] # combine outpath and out directory abspath = os.path.join(outpath, outdirectory) # make new infile using math outfile = infiles[0].combine(infiles[1:], math, same_type, path=abspath) # update the number of files outfile.numfiles = len(infiles) # write to disk WLOG(params, '', TextEntry('40-001-00025', args=[outfile.filename])) outfile.write_file() # add to output files (for indexing) recipe.add_output_file(outfile) # return combined infile return outfile def get_mid_obs_time(params, header, out_fmt=None, **kwargs): func_name = __NAME__ + '.get_mid_obs_time()' # get obs_time outkey = params['KW_MID_OBS_TIME'][0] # get format from params timefmt = params.instances['KW_MID_OBS_TIME'].datatype # get data type from params timetype = params.instances['KW_MID_OBS_TIME'].dataformat # get raw value from header rawtime = header[outkey] # get time object obstime = Time(timetype(rawtime), format=timefmt) # set the method for getting mid obs time method = 'header' dbname = 'header_time' # return time in requested format if out_fmt is None: return obstime, method elif out_fmt == 'mjd': return float(obstime.mjd), method elif out_fmt == 'jd': return float(obstime.jd), method elif out_fmt == 'iso' or out_fmt == 'human': return obstime.iso, method elif out_fmt == 'unix': return float(obstime.unix), method elif out_fmt == 'decimalyear': return float(obstime.decimalyear), method else: kinds = ['None', 'human', 'iso', 'unix', 'mjd', 'jd', 'decimalyear'] eargs = [dbname, ' or '.join(kinds), out_fmt, func_name] WLOG(params, 'error', TextEntry('00-001-00030', args=eargs)) # ============================================================================= # Worker functions # ============================================================================= def deal_with_bad_header(p, hdu, filename): """ Deal with bad headers by iterating through good hdu's until we hit a problem :param p: ParamDict, the constants file :param hdu: astropy.io.fits HDU :param filename: string - the filename for logging :return data: :return header: """ # define condition to pass cond = True # define iterator it = 0 # define storage datastore = [] headerstore = [] # loop through HDU's until we cannot open them while cond: # noinspection PyBroadException try: datastore.append(hdu[it].data) headerstore.append(hdu[it].header) except Exception as _: cond = False # iterate it += 1 # print message if len(datastore) > 0: dargs = [it - 1, filename] WLOG(p, 'warning', TextEntry('10-001-00001', args=dargs)) # find the first one that contains equal shaped array valid = [] for d_it in range(len(datastore)): if hasattr(datastore[d_it], 'shape'): valid.append(d_it) # if valid is empty we have a problem if len(valid) == 0: WLOG(p, 'error', TextEntry('01-001-00001', args=[filename])) # return valid data return datastore, headerstore def check_dtype_for_header(value): # if value is a string check if it is a path if it is remove path # and leave base file if isinstance(value, str): if os.path.isfile(value): newvalue = os.path.basename(value) elif os.path.isdir(value): newvalue = os.path.dirname(value) else: newvalue = str(value) # if value is a bool then we need to true it to a int (1 or 0) elif isinstance(value, bool): if value: newvalue = 1 else: newvalue = 0 # if value is a float need to check for NaN elif isinstance(value, float): if np.isnan(value): newvalue = 'NaN' else: newvalue = float(value) # if value is a int do nothing elif isinstance(value, int): newvalue = int(value) # else convert to string to be safe else: newvalue = str(value) # return new value return newvalue def _get_path_and_check(params, key): # check key in params if key not in params: WLOG(params, 'error', '{0} not found in params'.format(key)) # get top level path to search rpath = params[key] # deal with not having nightname if 'NIGHTNAME' not in params: path = str(rpath) elif params['NIGHTNAME'] not in ['', 'None', None]: path = os.path.join(rpath, params['NIGHTNAME']) else: path = str(rpath) # check if path exists if not os.path.exists(path): WLOG(params, 'error', 'Path {0} does not exist'.format(path)) else: return path, rpath def _get_files(params, recipe, path, rpath, **kwargs): func_name = __NAME__ + '.get_files()' # get properties from params absfile_col = pcheck(params, 'REPROCESS_ABSFILECOL', 'absfile_col', kwargs, func_name) modified_col = pcheck(params, 'REPROCESS_MODIFIEDCOL', 'modified_col', kwargs, func_name) raw_index_file = pcheck(params, 'REPROCESS_RAWINDEXFILE', 'raw_index_file', kwargs, func_name) # get the file filter (should be None unless we want specific files) filefilter = params.get('FILENAME', None) if filefilter is not None: filefilter = list(params['FILENAME']) # ---------------------------------------------------------------------- # get the pseudo constant object pconst = constants.pload(params['INSTRUMENT']) # ---------------------------------------------------------------------- # get header keys headerkeys = pconst.OUTPUT_FILE_HEADER_KEYS() # get raw valid files raw_valid = pconst.VALID_RAW_FILES() # ---------------------------------------------------------------------- # storage list filelist, basenames, nightnames, mod_times = [], [], [], [] blist = [] # load raw index rawindexfile = os.path.join(params['DRS_DATA_RUN'], raw_index_file) if os.path.exists(rawindexfile): rawindex = drs_table.read_table(params, rawindexfile, fmt='fits') else: rawindex = None # ---------------------------------------------------------------------- # populate the storage dictionary kwargs = dict() for key in headerkeys: kwargs[key] = [] # ---------------------------------------------------------------------- # deal with white/black list for nights wnightnames = None if 'WNIGHTNAMES' in params: if not drs_text.null_text(params['WNIGHTNAMES'], ['None', 'All', '']): wnightnames = params.listp('WNIGHTNAMES', dtype=str) bnightnames = None if 'BNIGHTNAMES' in params: if not drs_text.null_text(params['BNIGHTNAMES'], ['None', 'All', '']): bnightnames = params.listp('BNIGHTNAMES', dtype=str) # ---------------------------------------------------------------------- # get files (walk through path) for root, dirs, files in os.walk(path, followlinks=True): # loop around files in this root directory for filename in files: # -------------------------------------------------------------- if filefilter is not None: if os.path.basename(filename) not in filefilter: continue # -------------------------------------------------------------- # get night name ucpath = drs_path.get_uncommon_path(rpath, root) if ucpath is None: eargs = [path, rpath, func_name] WLOG(params, 'error', TextEntry('00-503-00003', args=eargs)) # -------------------------------------------------------------- # make sure file is valid isvalid = False for suffix in raw_valid: if filename.endswith(suffix): isvalid = True # -------------------------------------------------------------- # do not scan empty ucpath if len(ucpath) == 0: continue # -------------------------------------------------------------- # deal with blacklist/whitelist if not drs_text.null_text(bnightnames, ['None', 'All', '']): if ucpath in bnightnames: # only print path if not already in blist if ucpath not in blist: # log blacklisted margs = [ucpath] WLOG(params, '', TextEntry('40-503-00031', args=margs)) # add to blist for printouts blist.append(ucpath) # skip this night continue if not drs_text.null_text(wnightnames, ['None', 'All', '']): if ucpath not in wnightnames: # skip this night continue # elif we haven't seen this night before log statement elif ucpath not in nightnames: # log: whitelisted margs = [ucpath] WLOG(params, '', TextEntry('40-503-00030', args=margs)) # -------------------------------------------------------------- # log the night directory if (ucpath not in nightnames) and (ucpath != rpath): # log: scnannming directory margs = [ucpath] WLOG(params, '', TextEntry('40-503-00003', args=margs)) # -------------------------------------------------------------- # get absolute path abspath = os.path.join(root, filename) modified = os.path.getmtime(abspath) # -------------------------------------------------------------- # if not valid skip if not isvalid: continue # -------------------------------------------------------------- # else append to list else: nightnames.append(ucpath) filelist.append(abspath) basenames.append(filename) mod_times.append(modified) # -------------------------------------------------------------- # see if file in raw index and has correct modified date if rawindex is not None: # find file rowmask = (rawindex[absfile_col] == abspath) # find match date rowmask &= modified == rawindex[modified_col] # only continue if both conditions found if np.sum(rowmask) > 0: # locate file row = np.where(rowmask)[0][0] # if both conditions met load from raw fits file for key in headerkeys: kwargs[key].append(rawindex[key][row]) # file was found rfound = True else: rfound = False else: rfound = False # -------------------------------------------------------------- # deal with header if filename.endswith('.fits') and not rfound: # read the header header = read_header(params, abspath) # fix the headers try: header, _ = fix_header(params, recipe, header=header, raise_exception=True) except lang.drs_exceptions.DrsHeaderError as e: # log warning message eargs = [e.key, abspath] emsg = TextEntry('10-001-00008', args=eargs) WLOG(params, 'warning', emsg) # remove from lists nightnames.pop() filelist.pop() basenames.pop() mod_times.pop() # continue to next file continue # loop around header keys for key in headerkeys: rkey = params[key][0] if rkey in header: kwargs[key].append(header[rkey]) else: kwargs[key].append('') # ---------------------------------------------------------------------- # sort by filename sortmask = np.argsort(filelist) filelist = np.array(filelist)[sortmask] nightnames = np.array(nightnames)[sortmask] basenames = np.array(basenames)[sortmask] mod_times = np.array(mod_times)[sortmask] # need to sort kwargs for key in kwargs: kwargs[key] = np.array(kwargs[key])[sortmask] # ---------------------------------------------------------------------- # return filelist return nightnames, filelist, basenames, mod_times, kwargs # ============================================================================= # Start of code # ============================================================================= # Main code here if __name__ == "__main__": # ---------------------------------------------------------------------- # print 'Hello World!' print("Hello World!") # ============================================================================= # End of code # =============================================================================
39.057063
80
0.501488
5ead94b33f93390f8069c8f48a75a9bd6f91e800
653
py
Python
safegraph_patterns/setup.py
jingjtang/covidcast-indicators
34cb8786f78fbea2710b810a9500ee02c2379241
[ "MIT" ]
8
2020-10-12T04:27:04.000Z
2022-03-08T16:56:57.000Z
safegraph_patterns/setup.py
jingjtang/covidcast-indicators
34cb8786f78fbea2710b810a9500ee02c2379241
[ "MIT" ]
666
2020-09-30T21:18:41.000Z
2022-03-31T22:37:12.000Z
safegraph_patterns/setup.py
jingjtang/covidcast-indicators
34cb8786f78fbea2710b810a9500ee02c2379241
[ "MIT" ]
13
2020-10-01T14:25:06.000Z
2022-02-12T08:31:19.000Z
from setuptools import setup from setuptools import find_packages required = [ "numpy", "pandas", "pydocstyle", "pytest", "pytest-cov", "pylint==2.8.3", "delphi-utils" ] setup( name="delphi_safegraph_patterns", version="0.0.1", description="Mobility Indicators from Safegraph", author="", author_email="", url="https://github.com/cmu-delphi/covidcast-indicators", install_requires=required, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Programming Language :: Python :: 3.8", ], packages=find_packages(), )
22.517241
61
0.633997
b1f56d45f082bad798a71fb82ae7323ba9c190d5
3,361
py
Python
alipay/aop/api/domain/MybankPaymentTradeBusinessOrderRefundModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/MybankPaymentTradeBusinessOrderRefundModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/MybankPaymentTradeBusinessOrderRefundModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class MybankPaymentTradeBusinessOrderRefundModel(object): def __init__(self): self._amount = None self._currency_value = None self._order_no = None self._refund_type = None self._remark = None self._request_no = None @property def amount(self): return self._amount @amount.setter def amount(self, value): self._amount = value @property def currency_value(self): return self._currency_value @currency_value.setter def currency_value(self, value): self._currency_value = value @property def order_no(self): return self._order_no @order_no.setter def order_no(self, value): self._order_no = value @property def refund_type(self): return self._refund_type @refund_type.setter def refund_type(self, value): self._refund_type = value @property def remark(self): return self._remark @remark.setter def remark(self, value): self._remark = value @property def request_no(self): return self._request_no @request_no.setter def request_no(self, value): self._request_no = value def to_alipay_dict(self): params = dict() if self.amount: if hasattr(self.amount, 'to_alipay_dict'): params['amount'] = self.amount.to_alipay_dict() else: params['amount'] = self.amount if self.currency_value: if hasattr(self.currency_value, 'to_alipay_dict'): params['currency_value'] = self.currency_value.to_alipay_dict() else: params['currency_value'] = self.currency_value if self.order_no: if hasattr(self.order_no, 'to_alipay_dict'): params['order_no'] = self.order_no.to_alipay_dict() else: params['order_no'] = self.order_no if self.refund_type: if hasattr(self.refund_type, 'to_alipay_dict'): params['refund_type'] = self.refund_type.to_alipay_dict() else: params['refund_type'] = self.refund_type if self.remark: if hasattr(self.remark, 'to_alipay_dict'): params['remark'] = self.remark.to_alipay_dict() else: params['remark'] = self.remark if self.request_no: if hasattr(self.request_no, 'to_alipay_dict'): params['request_no'] = self.request_no.to_alipay_dict() else: params['request_no'] = self.request_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = MybankPaymentTradeBusinessOrderRefundModel() if 'amount' in d: o.amount = d['amount'] if 'currency_value' in d: o.currency_value = d['currency_value'] if 'order_no' in d: o.order_no = d['order_no'] if 'refund_type' in d: o.refund_type = d['refund_type'] if 'remark' in d: o.remark = d['remark'] if 'request_no' in d: o.request_no = d['request_no'] return o
28.974138
79
0.582862
c825b56c321bc8bd7e630b81e7c10f965b7616af
3,675
py
Python
localshop/apps/packages/utils.py
CheeseTheMonkey/localshop
d597eb07b20e20e2c4f9f5416b131c48638f0ab3
[ "BSD-3-Clause" ]
null
null
null
localshop/apps/packages/utils.py
CheeseTheMonkey/localshop
d597eb07b20e20e2c4f9f5416b131c48638f0ab3
[ "BSD-3-Clause" ]
null
null
null
localshop/apps/packages/utils.py
CheeseTheMonkey/localshop
d597eb07b20e20e2c4f9f5416b131c48638f0ab3
[ "BSD-3-Clause" ]
null
null
null
import inspect import hashlib import logging import os from django.core.files.uploadedfile import TemporaryUploadedFile from django.db.models import FieldDoesNotExist from django.db.models.fields.files import FileField from django.http import QueryDict from django.utils.datastructures import MultiValueDict logger = logging.getLogger(__name__) def parse_distutils_request(request): """Parse the `request.raw_post_data` and update the request POST and FILES attributes . """ try: sep = request.raw_post_data.splitlines()[1] except: raise ValueError('Invalid post data') request.POST = QueryDict('', mutable=True) try: request._files = MultiValueDict() except Exception: pass for part in filter(lambda e: e.strip(), request.raw_post_data.split(sep)): try: header, content = part.lstrip().split('\n', 1) except Exception: continue if content.startswith('\n'): content = content[1:] if content.endswith('\n'): content = content[:-1] headers = parse_header(header) if "name" not in headers: continue if "filename" in headers and headers['name'] == 'content': dist = TemporaryUploadedFile(name=headers["filename"], size=len(content), content_type="application/gzip", charset='utf-8') dist.write(content) dist.seek(0) request.FILES.appendlist('distribution', dist) else: # Distutils sends UNKNOWN for empty fields (e.g platform) # [russell.sim@gmail.com] if content == 'UNKNOWN': content = None request.POST.appendlist(headers["name"], content) def parse_header(header): headers = {} for kvpair in filter(lambda p: p, map(lambda p: p.strip(), header.split(';'))): try: key, value = kvpair.split("=", 1) except ValueError: continue headers[key.strip()] = value.strip('"') return headers def delete_files(sender, **kwargs): """Signal callback for deleting old files when database item is deleted""" for fieldname in sender._meta.get_all_field_names(): try: field = sender._meta.get_field(fieldname) except FieldDoesNotExist: continue if isinstance(field, FileField): instance = kwargs['instance'] fieldfile = getattr(instance, fieldname) if not hasattr(fieldfile, 'path'): return if not os.path.exists(fieldfile.path): return # Check if there are other instances which reference this fle is_referenced = ( instance.__class__._default_manager .filter(**{'%s__exact' % fieldname: fieldfile}) .exclude(pk=instance._get_pk_val()) .exists()) if is_referenced: return try: field.storage.delete(fieldfile.path) except Exception: logger.exception( 'Error when trying to delete file %s of package %s:' % ( instance.pk, fieldfile.path)) def md5_hash_file(fh): """Return the md5 hash of the given file-object""" md5 = hashlib.md5() while True: data = fh.read(8192) if not data: break md5.update(data) return md5.hexdigest()
29.878049
78
0.562993
7da649e07b984bd0448d2270ee2738e20e1b732a
3,229
py
Python
disney_fandom_crawler/settings.py
fiqrisr/disney_fandom_crawler
0151904a2ea0c3c3f7a3d14cf8aa05b9e512e4b1
[ "Apache-2.0" ]
2
2021-04-16T06:31:55.000Z
2021-04-19T14:14:33.000Z
disney_fandom_crawler/settings.py
fiqrisr/disney_fandom_crawler
0151904a2ea0c3c3f7a3d14cf8aa05b9e512e4b1
[ "Apache-2.0" ]
null
null
null
disney_fandom_crawler/settings.py
fiqrisr/disney_fandom_crawler
0151904a2ea0c3c3f7a3d14cf8aa05b9e512e4b1
[ "Apache-2.0" ]
null
null
null
# Scrapy settings for disney_fandom_crawler project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = "disney_fandom_crawler" SPIDER_MODULES = ["disney_fandom_crawler.spiders"] NEWSPIDER_MODULE = "disney_fandom_crawler.spiders" # Crawl responsibly by identifying yourself (and your website) on the user-agent # USER_AGENT = 'disney_fandom_crawler (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) # CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: # CONCURRENT_REQUESTS_PER_DOMAIN = 16 # CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) # COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) # TELNETCONSOLE_ENABLED = False # Override the default request headers: # DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', # } # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html # SPIDER_MIDDLEWARES = { # 'disney_fandom_crawler.middlewares.DisneyFandomCrawlerSpiderMiddleware': 543, # } # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # DOWNLOADER_MIDDLEWARES = { # 'disney_fandom_crawler.middlewares.DisneyFandomCrawlerDownloaderMiddleware': 543, # } # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html # EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, # } # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { "disney_fandom_crawler.pipelines.JsonWriterPipeline": 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html # AUTOTHROTTLE_ENABLED = True # The initial download delay # AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies # AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: # AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings # HTTPCACHE_ENABLED = True # HTTPCACHE_EXPIRATION_SECS = 0 # HTTPCACHE_DIR = 'httpcache' # HTTPCACHE_IGNORE_HTTP_CODES = [] # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
36.280899
103
0.781356
8f940dfd60e03191455d85830217b782194cb8db
689
py
Python
trails/feeds/minerchk.py
Jahismighty/maltrail
9bc70430993b2140ceb4dbac4b487251a9254416
[ "MIT" ]
1
2021-01-10T14:35:36.000Z
2021-01-10T14:35:36.000Z
trails/feeds/minerchk.py
Jahismighty/maltrail
9bc70430993b2140ceb4dbac4b487251a9254416
[ "MIT" ]
29
2018-10-18T20:14:49.000Z
2019-07-08T07:45:08.000Z
trails/feeds/minerchk.py
Jahismighty/maltrail
9bc70430993b2140ceb4dbac4b487251a9254416
[ "MIT" ]
2
2018-11-29T22:50:57.000Z
2019-04-12T03:35:35.000Z
#!/usr/bin/env python """ Copyright (c) 2014-2018 Miroslav Stampar (@stamparm) See the file 'LICENSE' for copying permission """ from core.common import retrieve_content __url__ = "https://raw.githubusercontent.com/Hestat/minerchk/master/hostslist.txt" __check__ = ".com" __info__ = "crypto mining (suspicious)" __reference__ = "github.com/Hestat" def fetch(): retval = {} content = retrieve_content(__url__) if __check__ in content: for line in content.split('\n'): line = line.strip() if not line or line.startswith('#') or '.' not in line: continue retval[line] = (__info__, __reference__) return retval
25.518519
82
0.656023
c99afd2d722bb350182afa532409dc6d715f4626
208
py
Python
mmdet/core/bbox/iou_calculators/builder.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
232
2021-05-25T12:55:24.000Z
2022-03-25T07:58:49.000Z
mmdet/core/bbox/iou_calculators/builder.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
51
2021-05-29T06:36:54.000Z
2022-03-27T09:24:39.000Z
mmdet/core/bbox/iou_calculators/builder.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
66
2021-06-01T03:40:08.000Z
2022-03-30T16:51:21.000Z
from mmcv.utils import Registry, build_from_cfg IOU_CALCULATORS = Registry('IoU calculator') def build_iou_calculator(cfg, default_args=None): return build_from_cfg(cfg, IOU_CALCULATORS, default_args)
26
61
0.8125
7762887e1385534892167c2a4c274949017e2e72
8,197
py
Python
empire/server/stagers/windows/ms16-051.py
gr33nm0nk2802/Empire
886e5131d51b082325f57dc0a5c8eeb39fb04fe1
[ "BSD-3-Clause" ]
1
2021-08-03T21:34:06.000Z
2021-08-03T21:34:06.000Z
empire/server/stagers/windows/ms16-051.py
gr33nm0nk2802/Empire
886e5131d51b082325f57dc0a5c8eeb39fb04fe1
[ "BSD-3-Clause" ]
null
null
null
empire/server/stagers/windows/ms16-051.py
gr33nm0nk2802/Empire
886e5131d51b082325f57dc0a5c8eeb39fb04fe1
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function from empire.server.common import helpers class Stager(object): def __init__(self, mainMenu, params=[]): self.info = { 'Name': 'MS16-051 IE RCE', 'Author': ['CrossGroupSecurity'], 'Description': ( 'Leverages MS16-051 to execute powershell in unpatched browsers. This is a file-less vector which ' 'works on IE9/10/11 and all versions of Windows. Target will have to open link with vulnerable version ' 'of IE.'), 'Comments': [ 'https://github.com/CrossGroupSecurity/PowerShell-MS16-051-IE-RCE' ] } # any options needed by the stager, settable during runtime self.options = { 'Listener': { 'Description': 'Listener to generate stager for.', 'Required': True, 'Value': '' }, 'Language': { 'Description': 'Language of the stager to generate.', 'Required': True, 'Value': 'powershell' }, 'StagerRetries': { 'Description': 'Times for the stager to retry connecting.', 'Required': False, 'Value': '0' }, 'Base64': { 'Description': 'Switch. Base64 encode the output.', 'Required': True, 'Value': 'True', 'SuggestedValues': ['True', 'False'], 'Strict': True }, 'Obfuscate': { 'Description': 'Switch. Obfuscate the launcher powershell code, uses the ObfuscateCommand for ' 'obfuscation types. For powershell only.', 'Required': False, 'Value': 'False', 'SuggestedValues': ['True', 'False'], 'Strict': True }, 'ObfuscateCommand': { 'Description': 'The Invoke-Obfuscation command to use. Only used if Obfuscate switch is True. For ' 'powershell only.', 'Required': False, 'Value': r'Token\All\1,Launcher\STDIN++\12467' }, 'OutFile': { 'Description': 'Filename that should be used for the generated output, otherwise returned as a string.', 'Required': False, 'Value': 'index.html' }, 'UserAgent': { 'Description': 'User-agent string to use for the staging request (default, none, or other).', 'Required': False, 'Value': 'default' }, 'Proxy': { 'Description': 'Proxy to use for request (default, none, or other).', 'Required': False, 'Value': 'default' }, 'ProxyCreds': { 'Description': 'Proxy credentials ([domain\]username:password) to use for request (default, none, ' 'or other).', 'Required': False, 'Value': 'default' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self): # extract all of our options language = self.options['Language']['Value'] listener_name = self.options['Listener']['Value'] base64 = self.options['Base64']['Value'] obfuscate = self.options['Obfuscate']['Value'] obfuscate_command = self.options['ObfuscateCommand']['Value'] user_agent = self.options['UserAgent']['Value'] proxy = self.options['Proxy']['Value'] proxy_creds = self.options['ProxyCreds']['Value'] stager_retries = self.options['StagerRetries']['Value'] encode = False if base64.lower() == "true": encode = True obfuscate_script = False if obfuscate.lower() == "true": obfuscate_script = True # generate the launcher code launcher = self.mainMenu.stagers.generate_launcher( listener_name, language=language, encode=encode, obfuscate=obfuscate_script, obfuscationCommand=obfuscate_command, userAgent=user_agent, proxy=proxy, proxyCreds=proxy_creds, stagerRetries=stager_retries) if launcher == "": print(helpers.color("[!] Error in launcher command generation.")) return "" else: code = f""" <html> <head> <meta http-equiv="x-ua-compatible" content="IE=10"> </head> <body> <script type="text/vbscript"> Dim aw Dim plunge(32) Dim y(32) prefix = "%u4141%u4141" d = prefix & "%u0016%u4141%u4141%u4141%u4242%u4242" b = String(64000, "D") c = d & b x = UnEscape(c) Class ArrayWrapper Dim A() Private Sub Class_Initialize ReDim Preserve A(1, 2000) End Sub Public Sub Resize() ReDim Preserve A(1, 1) End Sub End Class Class Dummy End Class Function getAddr (arg1, s) aw = Null Set aw = New ArrayWrapper For i = 0 To 32 Set plunge(i) = s Next Set aw.A(arg1, 2) = s Dim addr Dim i For i = 0 To 31 If Asc(Mid(y(i), 3, 1)) = VarType(s) Then addr = strToInt(Mid(y(i), 3 + 4, 2)) End If y(i) = Null Next If addr = Null Then document.location.href = document.location.href Return End If getAddr = addr End Function Function leakMem (arg1, addr) d = prefix & "%u0008%u4141%u4141%u4141" c = d & intToStr(addr) & b x = UnEscape(c) aw = Null Set aw = New ArrayWrapper Dim o o = aw.A(arg1, 2) leakMem = o End Function Sub overwrite (arg1, addr) d = prefix & "%u400C%u0000%u0000%u0000" c = d & intToStr(addr) & b x = UnEscape(c) aw = Null Set aw = New ArrayWrapper aw.A(arg1, 2) = CSng(0) End Sub Function exploit (arg1) Dim addr Dim csession Dim olescript Dim mem Set dm = New Dummy addr = getAddr(arg1, dm) mem = leakMem(arg1, addr + 8) csession = strToInt(Mid(mem, 3, 2)) mem = leakMem(arg1, csession + 4) olescript = strToInt(Mid(mem, 1, 2)) overwrite arg1, olescript + &H174 Set Object = CreateObject("Wscript.Shell") Object.run("{launcher}") End Function Function triggerBug aw.Resize() Dim i For i = 0 To 32 ' 24000x2 + 6 = 48006 bytes y(i) = Mid(x, 1, 24000) Next End Function </script> <script type="text/javascript"> function strToInt(s) {{ return s.charCodeAt(0) | (s.charCodeAt(1) << 16); }} function intToStr(x) {{ return String.fromCharCode(x & 0xffff) + String.fromCharCode(x >> 16); }} var o; o = {{"valueOf": function () {{ triggerBug(); return 1; }}}}; setTimeout(function() {{exploit(o);}}, 50); </script> </body> </html> """ return code
31.40613
120
0.47615
435ac90c41870b7b9d343a0932ff263e82df77bc
466
py
Python
openprescribing/frontend/migrations/0028_prescription_net_cost.py
rebkwok/openprescribing
28c7500a7e4cb725fc6cda0f8c58b07ac7e916a4
[ "MIT" ]
null
null
null
openprescribing/frontend/migrations/0028_prescription_net_cost.py
rebkwok/openprescribing
28c7500a7e4cb725fc6cda0f8c58b07ac7e916a4
[ "MIT" ]
null
null
null
openprescribing/frontend/migrations/0028_prescription_net_cost.py
rebkwok/openprescribing
28c7500a7e4cb725fc6cda0f8c58b07ac7e916a4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2017-06-19 11:51 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('frontend', '0027_auto_20170616_0925'), ] operations = [ migrations.AddField( model_name='prescription', name='net_cost', field=models.FloatField(blank=True, null=True), ), ]
22.190476
59
0.622318
f864d0a0feb9ecfef773f6a0e9803c7a1232b104
68,226
py
Python
Python/python3_version/klampt/math/optimize.py
ipa-rmb-mr/Klampt
71793b54eead788811b4e62bcf8dadb49b68ff17
[ "BSD-3-Clause" ]
1
2020-07-03T20:38:20.000Z
2020-07-03T20:38:20.000Z
Python/python3_version/klampt/math/optimize.py
tcrapse/Klampt
d5a334e73f1f24ba4c606e03f49915b353799a57
[ "BSD-3-Clause" ]
null
null
null
Python/python3_version/klampt/math/optimize.py
tcrapse/Klampt
d5a334e73f1f24ba4c606e03f49915b353799a57
[ "BSD-3-Clause" ]
null
null
null
"""Classes to help set up and solve nonlinear, constrained optimization problems. Supports local and global optimization. Wraps around scipy, pyOpt, or DIRECT (for now). Works well with the klampt.math.symbolic module. """ import numpy as np import math,random from . import symbolic,symbolic_io,symbolic_linalg from ..io import loader class OptimizationProblem: """A holder for optimization problem data. All attributes are optional, and some solvers can't handle certain types of constraints and costs. The objective function must return a float. All equality and inequality functions are required to return a list of floats. Attributes: objective (function): an objective function f(x) objectiveGrad (function): a function df/dx(x) giving the gradient of f. bounds (tuple): a pair (l,u) giving lower and upper bounds on the search space. equalities (list of functions): functions :math:`g(x)=0` required of a feasible solution. In practice, :math:`|g(x)| \leq tol` is required, where tol is a tolerance parameter for the solver. equalityGrads (list of functions): gradient/Jacobian functions :math:`\\frac{\partial g}{\partial x}(x)` of the equality functions. inequalities (list of functions): inequality functions requiring math:`h(x) \leq 0` for a feasible solution. inequalityGrads (list of functions): a list of gradient/Jacobian functions :math:`\\frac{partial h}{\partial x}(x)` of each inequality function. feasibilityTests (list of functions): boolean black-box predicates that must be true of the solution Suitable for use with the symbolic module. Once a Context is created, and appropriate Variables, Functions, Expressions are declared, the setSymbolicObjective and addSymbolicConstraint methods automatically determine the standard Python function forms. I.e., context.makeFlatFunction(f,varorder) where varorder = None for the default variable ordering. The OptimizationProblemBuilder class is more closely tied with the symbolic module and is more convenient to use. It performs automatic simplification and differentiation, and can be saved / loaded to disk. """ def __init__(self): self.objective = None self.objectiveGrad = None self.bounds = None self.equalities = [] self.inequalities = [] self.equalityGrads = [] self.inequalityGrads = [] self.feasibilityTests = [] def setObjective(self,func,funcGrad=None): self.objective = func self.objectiveGrad = funcGrad def addEquality(self,func,funcGrad=None): self.equalities.append(func) self.equalityGrads.append(funcGrad) def addInequality(self,func,funcGrad=None): self.inequalities.append(func) self.inequalityGrads.append(funcGrad) def setBounds(self,xmin,xmax): self.bounds = (xmin,xmax) def setFeasibilityTest(self,test): self.feasibilityTests = [test] def addFeasibilityTest(self,test): self.feasibilityTests.append(test) def setSymbolicObjective(self,func,context,varorder=None): """Sets an objective function from a symbolic Function or Expression (see symbolic module).""" if varorder is None: varorder = context.variables fpy,varorder = context.makeFlatFunction(func,varorder) dfpy,varorder = context.makeFlatFunctionDeriv(func,varorder) self.setObjective(fpy,dfpy) def addSymbolicConstraint(self,func,context,varorder=None,blackbox=False): """adds a constraint from a symbolic Function or Expression (see symbolic module). This will be "smart" in that AND Expressions will be converted to multiple constraints, inequalities will be converted to inequality constraints, and bounds will be converted to bound constraints. All other constraints will be treated as feasibility constraints""" if varorder is None: varorder = context.variables if symbolic.is_op(func,"and"): for a in func.args: self.addSymbolicConstraint(self,a,context,varorder) elif symbolic.is_op(func,"le"): if symbolic.is_var(func.args[0]) and symbolic.is_const(func.args[1]): #x <= c x = symbolic.to_var(func.args[0]) xmax = symbolic.to_const(func.args[1]) indices = context.getFlatVarRanges(varorder) xindex = [i for i,v in enumerate(varorder) if v.name == x.name][0] ai,bi = indices[xindex],indices[xindex+1] n = indices[-1] if self.bounds is None: self.bounds = (np.array([-float('inf')]*n),np.array([float('inf')]*n)) self.bounds[1][ai:bi] = np.minimum(self.bounds[1][ai:bi],xmax) elif symbolic.is_var(func.args[1]) and symbolic.is_const(func.args[0]): #c <= x xmin = symbolic.to_const(func.args[0]) x = symbolic.to_var(func.args[1]) indices = context.getFlatVarRanges(varorder) xindex = [i for i,v in enumerate(varorder) if v.name == x.name][0] ai,bi = indices[xindex],indices[xindex+1] n = indices[-1] if self.bounds is None: self.bounds = (np.array([-float('inf')]*n),np.array([float('inf')]*n)) self.bounds[0][ai:bi] = np.maximum(self.bounds[0][ai:bi],a) else: h = symbolic.simplify(func.args[0]-func.args[1]) if func.args[0].returnType().is_scalar() and func.args[1].returnType().is_scalar(): #need to convert to a vector h = symbolic.flatten(h) hpy,varorder = context.makeFlatFunction(h,varorder) dhpy,varorder = context.makeFlatFunctionDeriv(h,varorder) self.addInequality(hpy,dhpy) elif symbolic.is_op(func,"ge"): c = (func.args[1] <= func.args[0]) self.addSymbolicConstraint(c,context,varorder) elif symbolic.is_op(func,"eq"): g = symbolic.simplify(func.args[0]-func.args[1]) if func.args[0].returnType().is_scalar() and func.args[1].returnType().is_scalar(): #need to convert to a vector g = symbolic.flatten(g) gpy,varorder = context.makeFlatFunction(g,varorder) dgpy,varorder = context.makeFlatFunctionDeriv(g,varorder) self.addEquality(gpy,dgpy) elif symbolic.is_op(func): if func.functionInfo is symbolic_linalg.bound_contains and symbolic.is_const(func.args[0]) and symbolic.is_const(func.args[1]) and symbolic.is_var(func.args[2]): #bound constraint xmin = symbolic.to_const(func.args[0]) xmax = symbolic.to_const(func.args[1]) x = symbolic.to_var(func.args[2]) indices = context.getFlatVarRanges(varorder) xindex = [i for i,v in enumerate(varorder) if v.name == x.name][0] ai,bi = indices[xindex],indices[xindex+1] n = indices[-1] if self.bounds is None: self.bounds = ([-float('inf')]*n,[float('inf')]*n) for i,a,b in zip(list(range(ai,bi)),xmin,xmax): self.bounds[0][i] = max(self.bounds[0][i],a) self.bounds[1][i] = min(self.bounds[1][i],b) else: #it's a generic boolean if not blackbox: print("OptimizationProblem.addSymbolicConstraint(): Warning, turning function",func,"into black box function") fpy,varorder = context.makeFlatFunction(func,varorder) self.addFeasibilityTest(fpy) else: #it's a generic boolean if not blackbox: print("OptimizationProblem.addSymbolicConstraint(): Warning, turning function",func,"into black box function") fpy,varorder = context.makeFlatFunction(func,varorder) self.addFeasibilityTest(fpy) def objectiveValue(self,x): """Returns the objective function value f(x).""" return self.objective(x) def feasible(self,x,equalityTol=1e-6): """Returns true if x is a feasible point.""" for g in self.equalities: gx = g(x) if any(abs(v) > equalityTol for v in gx): return False for h in self.inequalities: hx = h(x) if any(v > 0 for v in hx): return False for f in self.feasibilityTests: if not f(x): return False return True def equalityResidual(self,x): """Returns the stacked vector g(x) where g(x)=0 is the equality constraint.""" if len(self.equalities) == 0: return [] return np.hstack([g(x) for g in self.equalities]) def inequalityResidual(self,x): """Returns the stacked vector h(x) where h(x)<=0 is the inequality constraint.""" if len(self.inequalities) == 0: return [] return np.hstack([h(x) for h in self.inequalities]) def makeUnconstrained(self,objective_scale,keep_bounds=True): """If this problem is constrained, returns a new problem in which the objective function is a scoring function that sums all of the equality / inequality errors at x plus objective_scale*objective function(x). If objective_scale is small, then the scoring function is approximately minimized at a feasible minimum. If the problem is unconstrained, this just returns self. If keep_bounds = true, this does not add the bounds to the inequality errors. """ #create a scoring function that is approximately minimized at #a feasible minimum if keep_bounds == False: raise NotImplementedError("getting rid of bounds is not implemented yet") if len(self.feasibilityTests) == 0 and len(self.inequalities) == 0 and len(self.equalities) == 0: #already unconstrained return self if len(self.inequalities) == 0 and len(self.equalities) == 0: #just have a feasibility test def flatObjective(x): if any(not f(x) for f in self.feasibilityTests): return float('inf') return self.objective(x) res = Problem() res.setObjective(flatObjective,self.objectiveGrad) res.bounds = self.bounds return res def flatObjective(x): if any(not f(x) for f in self.feasibilityTests): return float('inf') f = 0 #add sum of squared equalities for g in self.equalities: gx = g(x) f += max(abs(v) for v in gx) for h in self.inequalities: hx = h(x) f += sum(max(v,0) for v in hx) if self.objective is not None: f += objective_scale*self.objective(x) return f res = Problem() res.setObjective(flatObjective,None) res.bounds = self.bounds return res class LocalOptimizer: """A wrapper around different local optimization libraries. Only minimization is supported, and only scipy and pyOpt are supported. The method is specified using the method string, which can be: - auto: picks between scipy and pyOpt, whatever is available. - scipy: uses scipy.optimize.minimize with default settings. - scipy.[METHOD]: uses scipy.optimize.minimize with the argument method=[METHOD]. - pyOpt: uses pyOpt with SLSQP. - pyOpt.[METHOD]: uses pyOpt with the given method. """ def __init__(self,method='auto'): if method == 'auto': try: import pyopt method = 'pyOpt' except ImportError: method = 'scipy' self.method = method self.seed = None @staticmethod def methodsAvailable(): """Returns a list of methods that are available on this system""" methods = [] try: import pyOpt methods.append('pyOpt') pyoptmethods = ['SLSQP','PSQP','SNOPT','COBYLA','NLPQL','NLPQLP','MMA','GCMMA','KSOPT'] for m in pyoptmethods: try: x = getattr(pyOpt,m) methods.append('pyOpt.'+m) except AttributeError: pass except ImportError: pass try: import scipy methods.append('scipy') methods.append('scipy.Nelder-Mead') methods.append('scipy.Powell') methods.append('scipy.CG') methods.append('scipy.BFGS') methods.append('scipy.TNC') methods.append('scipy.COBYLA') methods.append('scipy.L-BFGS-B') methods.append('scipy.SLSQP') except ImportError: pass return methods @staticmethod def methodsAppropriate(problem): """Returns a list of available methods that are appropriate to use for the given problem""" allmethods = LocalOptimizer.methodsAvailable() if len(problem.inequalities) > 0 or len(problem.equalities) > 0: #can only do SLSQP, PSQP, and SNOPT methods = [] for m in allmethods: if m=='scipy' or m=='pyOpt' or m.endswith('SQP') or m.endswith('SNOPT'): methods.append(m) return methods elif problem.bounds is not None: #only can do bounded problems for m in LocalOptimizer.methodsAvailable(): if m=='scipy' or m=='pyOpt': methods.append(m) else: if not any(m.endswith(x) for x in ['Nelder-Mead','Powell','CG','BFGS']): methods.append(m) return methods else: return allmethods def setSeed(self,x): self.seed = x def solve(self,problem,numIters=100,tol=1e-6): """Returns a tuple (success,result)""" if self.seed is None: raise RuntimeError("Need to provide a seed state") if problem.objective is None: raise RuntimeError("Need to provide an objective function") if self.method.startswith('scipy'): from scipy import optimize items = self.method.split('.') scipyMethod = 'SLSQP' if len(items)>1: scipyMethod = items[1] jac = False if problem.objectiveGrad: jac = problem.objectiveGrad bounds = None if problem.bounds: bmin = [v if not math.isinf(v) else None for v in problem.bounds[0]] bmax = [v if not math.isinf(v) else None for v in problem.bounds[1]] bounds = list(zip(bmin,bmax)) constraintDicts = [] for i in range(len(problem.equalities)): constraintDicts.append({'type':'eq','fun':problem.equalities[i]}) if problem.equalityGrads[i] is not None: constraintDicts[-1]['jac'] = problem.equalityGrads[i] for i in range(len(problem.inequalities)): #scipy asks for inequalities to be positive g(x) >= 0, which requires a flip of sign constraintDicts.append({'type':'ineq','fun':lambda x:-np.array(problem.inequalities[i](x))}) if problem.inequalityGrads[i] is not None: constraintDicts[-1]['jac'] = lambda x:-np.array(problem.inequalityGrads[i](x)) if len(constraintDicts) > 0 and scipyMethod not in ['SLSQP','COBYLA']: print("LocalOptimizer.solve(): warning, can't use method",scipyMethod,"with constraints") input("Press enter to continue > ") #print "Scipy constraints",constraintDicts #print "Scipy bounds",bounds #print "Objective jacobian",jac res = optimize.minimize(problem.objective,x0=self.seed,method=scipyMethod, jac=jac,bounds=bounds, constraints=constraintDicts,tol=tol,options={'maxiter':numIters,'disp':True}) if res.success: print("***********************************************************") print("LocalOptimizer.solve(): Scipy solver result",res.message) print(res) x = res.x print("My objective value:",problem.objective(x)) if len(problem.equalities) > 0: h = np.hstack([f(x) for f in problem.equalities]) else: h = [0] if len(problem.inequalities) > 0: g = np.hstack([f(x) for f in problem.inequalities]) else: g = [0] boundfeasible = all(a<=v and v<=b for v,a,b in zip(x,problem.bounds[0],problem.bounds[1])) if problem.bounds is not None else True eqfeasible = all(abs(v)<tol for v in h) ineqfeasible = all(v<=0 for v in g) feasible = eqfeasible and ineqfeasible and boundfeasible if not feasible: if not boundfeasible: #try clamping for i in range(len(x)): x[i] = min(max(x[i],problem.bounds[0][i]),problem.bounds[1][i]) boundfeasible = True if len(problem.equalities) > 0: h = np.hstack([f(x) for f in problem.equalities]) else: h = [0] if len(problem.inequalities) > 0: g = np.hstack([f(x) for f in problem.inequalities]) else: g = [0] eqfeasible = all(abs(v)<tol for v in h) ineqfeasible = all(v<=0 for v in g) feasible = eqfeasible and ineqfeasible and boundfeasible print("LocalOptimizer: solution not in bounds, clamped.") print(" Bound-corrected equality residual",h) print(" Bound-corrected inequality residual",g) print(" Feasible?",eqfeasible,ineqfeasible) if not feasible: print("LocalOptimizer: Strange, Scipy optimizer says successful and came up with an infeasible solution") if not eqfeasible: print(" Equality has max residual",max(abs(v) for v in h),"> tolerance",tol) print(" Residual vector",h) if not ineqfeasible: print(" Inequality has residual",max(v for v in h),"> 0") print(" Residual vector",g) if not boundfeasible: for i,(v,a,b) in enumerate(zip(x,problem.bounds[0],problem.bounds[1])): if v < a or v > b: print(" Bound %d: %f <= %f <= %f violated"%(i,a,v,b)) input("Press enter to continue >") print("***********************************************************") return res.success,res.x.tolist() elif self.method.startswith('pyOpt'): import pyOpt import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) items = self.method.split('.') pyOptMethod = 'SLSQP' if len(items)>1: pyOptMethod = items[1] if problem.bounds is not None: bmin = np.array(problem.bounds[0][:]) bmax = np.array(problem.bounds[1][:]) #for some reason PyOpt doesn't do well with infinite bounds for i,v in enumerate(problem.bounds[0]): if math.isinf(v): bmin[i] = -1e20 for i,v in enumerate(problem.bounds[1]): if math.isinf(v): bmax[i] = 1e20 ubIndices = [i for i,v in enumerate(bmax) if not math.isinf(v)] lbIndices = [i for i,v in enumerate(bmin) if not math.isinf(v)] else: ubIndices = [] lbIndices = [] def objfunc(x): #print "EVALUATING OBJECTIVE AT",x fx = problem.objective(x) eqs = [f(x) for f in problem.equalities]+[f(x) for f in problem.inequalities] if len(eqs) == 0: gx = [] else: gx = np.hstack(eqs) assert len(gx.shape)==1 gx = gx.tolist() if problem.bounds is not None: ub = (x-bmax)[ubIndices] lb = (bmin-x)[lbIndices] if len(gx) == 0: gx = ub.tolist() + lb.tolist() else: gx = gx + ub.tolist() + lb.tolist() #for f in problem.equalities: # print "EQUALITY VALUE",f(x) #for f in problem.inequalities: # print "INEQUALITY VALUE",f(x) flag = not any(not f(x) for f in problem.feasibilityTests) #print "CONSTRAINTS",gx #print "FUNCTION VALUE IS",fx assert len(gx) == hlen+glen+len(ubIndices)+len(lbIndices) flag = True if any(math.isnan(v) for v in x): return 0,[0]*len(gx),flag return fx,gx,flag opt_prob = pyOpt.Optimization('',objfunc) opt_prob.addObj('f') for i in range(len(self.seed)): if problem.bounds is not None: opt_prob.addVar('x'+str(i),'c',lower=bmin[i],upper=bmax[i],value=self.seed[i]) else: opt_prob.addVar('x'+str(i),'c',value=self.seed[i]) hlen = sum(len(f(self.seed)) for f in problem.equalities) glen = sum(len(f(self.seed)) for f in problem.inequalities) opt_prob.addConGroup('eq',hlen,'e') opt_prob.addConGroup('ineq',glen,'i') #expressing bounds as inequalities opt_prob.addConGroup('bnd',len(ubIndices)+len(lbIndices),'i') opt = getattr(pyOpt,pyOptMethod)() #opt.setOption('IPRINT', -1) opt.setOption('IPRINT', -2) opt.setOption('MAXIT',numIters) opt.setOption('ACC',tol) sens_type = 'FD' if problem.objectiveGrad is not None: #user provided gradients if all(f is not None for f in problem.equalityGrads) and all(f is not None for f in problem.inequalityGrads): #print "RETURNING GRADIENTS" def objfuncgrad(x): fx = problem.objectiveGrad(x) gx = sum([f(x) for f in problem.equalityGrads]+[f(x) for f in problem.inequalityGrads],[]) for i in ubIndices: zero = [0]*len(x) zero[i] = 1 gx.append(zero) for i in lbIndices: zero = [0]*len(x) zero[i] = -1 gx.append(zero) flag = True return fx,gx,flag sens_type = objfuncgrad else: print("LocalOptimizer.solve(): Warning, currently need all or no gradients provided. Assuming no gradients.") [fstr, xstr, inform] = opt(opt_prob,sens_type=sens_type) if inform['value'] != 0: return False,xstr.tolist() f,g,flag = objfunc(xstr) #flag doesn't check? eqfeasible = all(abs(v)<tol for v in g[:hlen]) ineqfeasible = all(v <= 0 for v in g[hlen:hlen+glen]) boundfeasible = all(a<=x and x<=b for x,a,b in zip(xstr,problem.bounds[0],problem.bounds[1])) if problem.bounds is not None else True feasible = eqfeasible and ineqfeasible and boundfeasible if not feasible: if not boundfeasible: #try clamping for i in range(len(xstr)): xstr[i] = min(max(xstr[i],bmin[i]),bmax[i]) f,g,flag = objfunc(xstr) boundfeasible = True eqfeasible = all(abs(v)<tol for v in g[:hlen]) ineqfeasible = all(v <= 0 for v in g[hlen:hlen+glen]) feasible = eqfeasible and ineqfeasible and boundfeasible if not feasible: print("LocalOptimizer: Strange, pyOpt optimizer says successful and came up with an infeasible solution") h = g[:hlen] g = g[hlen:hlen+glen] if not eqfeasible: print(" Equality has max residual",max(abs(v) for v in h),"> tolerance",tol) print(" Residual vector",h) if not ineqfeasible: print(" Inequality has residual",max(v for v in h),"> 0") print(" Residual vector",g) if not boundfeasible: for i,(v,a,b) in enumerate(zip(x,bmin,bmax)): if v < a or v > b: print(" Bound %d: %f <= %f <= %f violated"%(i,a,v,b)) input("Press enter to continue >") return feasible,xstr.tolist() else: raise RuntimeError('Invalid method specified: '+self.method) def sample_range(a,b): """Samples x in the range [a,b]. * If the range is bounded, the uniform distribution x~U(a,b) is used. * If the range is unbounded, then this uses the log transform to sample a distribution. Specifically, if a=-inf and b is finite, then :math:`x \sim b + \log(y)` where :math:`y \sim U(0,1)`. A similar formula holds for a finite and b=inf. If a=-inf and b=inf, then :math:`x \sim s*\log(y)`, where `y \sim U(0,1)` and the sign s takes on either of {-1,1} each with probability 0.5. """ x = random.uniform(a,b) if math.isinf(x) or math.isnan(x): try: if math.isinf(a): if math.isinf(b): s = math.randint(0,1)*2-1 y = math.log(random.random()) return s*y else: y = math.log(random.random()) return b + y elif math.isinf(b): y = math.log(random.random()) return a - y except ValueError: #very, very small chance of this happening (2^-48) return sample_range(a,b) return x class GlobalOptimizer: """A wrapper around different global optimization libraries. Only minimization is supported, and only DIRECT, scipy, and pyOpt are supported. The optimization technique is specified using the method string, which can be: - 'auto': picks between DIRECT and random-restart - 'random-restart.METHOD': random restarts using the local optimizer METHOD. - 'DIRECT': the DIRECT global optimizer - 'scipy': uses scipy.optimize.minimize with default settings. - 'scipy.METHOD': uses scipy.optimize.minimize with the argument method=METHOD. - 'pyOpt': uses pyOpt with SLSQP. - 'pyOpt.METHOD': uses pyOpt with the given method. The method attribute can also be a list, which does a cascading solver in which the previous solution point is used as a seed for the next solver. Examples: - 'DIRECT': Run the DIRECT method - 'scipy.differential_evolution': Runs the scipy differential evolution technique - 'random-restart.scipy': Runs random restarts using scipy's default local optimizer - 'random-restart.pyOpt.SLSQP': Runs random restarts using pyOpt as a local optimizer - ['DIRECT','auto']: Run the DIRECT method then clean it up with the default local optimizer Random restarts picks each component x of the seed state randomly using sample_range(a,b) where [a,b] is the range of x given by problem.bounds. DIRECT and scipy.differential_evolution require a bounded state space. """ def __init__(self,method='auto'): if method == 'auto': method = 'random-restart.scipy' self.method = method self.seed = None def setSeed(self,x): self.seed = x def solve(self,problem,numIters=100,tol=1e-6): """Returns a pair (solved,x) where solved is True if the solver found a valid solution, and x is the solution vector.""" if isinstance(self.method,(list,tuple)): #sequential solve seed = self.seed for i,m in enumerate(self.method): if hasattr(numIters,'__iter__'): itersi = numIters[i] else: itersi = numIters if hasattr(tol,'__iter__'): toli = tol[i] else: toli = tol print("GlobalOptimizer.solve(): Step",i,"method",m,'iters',itersi,'tol',toli) if m == 'auto': opt = LocalOptimizer(m) else: opt = GlobalOptimizer(m) #seed with previous seed, if necessary opt.setSeed(seed) (succ,xsol)=opt.solve(problem,itersi,toli) if not succ: return (False,xsol) seed = xsol[:] return ((seed is not None),seed) elif self.method == 'scipy.differential_evolution': from scipy import optimize if problem.bounds == None: raise RuntimeError("Cannot use scipy differential_evolution method without a bounded search space") flattenedProblem = problem.makeUnconstrained(objective_scale = 1e-5) res = optimize.differential_evolution(flattenedProblem.objective,list(zip(*flattenedProblem.bounds))) print("GlobalOptimizer.solve(): scipy.differential_evolution solution:",res.x) print(" Objective value",res.fun) print(" Equality error:",[gx(res.x) for gx in problem.equalities]) return (True,res.x) elif self.method == 'DIRECT': import DIRECT if problem.bounds == None: raise RuntimeError("Cannot use DIRECT method without a bounded search space") flattenedProblem = problem.makeUnconstrained(objective_scale = 1e-5) minval = [float('inf'),None] def objfunc(x,userdata): v = flattenedProblem.objective(x) if v < userdata[0]: userdata[0] = v userdata[1] = [float(xi) for xi in x] return v (x,fmin,ierror)=DIRECT.solve(objfunc,problem.bounds[0],problem.bounds[1],eps=tol,maxT=numIters,maxf=40000,algmethod=1,user_data=minval) print("GlobalOptimizer.solve(): DIRECT solution:",x) print(" Objective value",fmin) print(" Minimum value",minval[0],minval[1]) print(" Error:",ierror) print(" Equality error:",[gx(x) for gx in problem.equalities]) return (True,minval[1]) elif self.method.startswith('random-restart'): import random if problem.bounds == None: raise RuntimeError("Cannot use method %s without a bounded search space"%(self.method,)) localmethod = self.method[15:] lopt = LocalOptimizer(localmethod) seed = self.seed best = self.seed print("GlobalOptimizer.solve(): Random restart seed is:",best) fbest = (problem.objective(best) if (best is not None and problem.feasible(best)) else float('inf')) for it in range(numIters[0]): if seed is not None: x = seed seed = None else: x = [sample_range(a,b) for a,b in zip(*problem.bounds)] print(" Solving from",x) lopt.setSeed(x) succ,x = lopt.solve(problem,numIters[1],tol) print(" Result is",succ,x) print(" Equality:",problem.equalityResidual(x)) if succ: fx = problem.objective(x) if fx < fbest: fbest = fx best = x return (best is not None, best) else: assert self.seed is not None,"Pure local optimization requires a seed to be set" opt = LocalOptimizer(self.method) opt.setSeed(self.seed) return opt.solve(problem,numIters,tol) class OptimizerParams: def __init__(self,numIters=50,tol=1e-3, startRandom=False,numRestarts=1, timeout=10,globalMethod=None,localMethod=None): self.numIters=numIters self.tol=tol self.startRandom=startRandom self.numRestarts=numRestarts self.timeout = timeout self.globalMethod = globalMethod self.localMethod = localMethod def toJson(self): obj = dict() for attr in ['numIters','tol','startRandom','numRestarts','timeout','globalMethod','localMethod']: obj[attr] = getattr(self,attr) return obj def fromJson(self,obj): for attr in ['numIters','tol','startRandom','numRestarts','timeout','globalMethod','localMethod']: if attr in obj: setattr(self,attr,obj[attr]) def solve(self,optProblem,seed=None): """Globally or locally solves an OptimizationProblem instance with the given parameters. Optionally takes a seed as well. Basically, this is a thin wrapper around GlobalOptimizer that converts the OptimizerParams to the appropriate format. Returns (success,x) where success is True or False and x is the solution. """ method = self.globalMethod numIters = self.numIters if self.globalMethod == 'random-restart' or (self.globalMethod is None and (self.numRestarts > 1 or self.startRandom == False)): #use the GlobalOptimize version of random restarts assert self.localMethod is not None,"Need a localMethod for random-restart to work ('auto' is OK)" if self.globalMethod is None: method = 'random-restart' + '.' + self.localMethod else: method = self.globalMethod + '.' + self.localMethod numIters = [self.numRestarts,self.numIters] elif self.localMethod is not None: if self.globalMethod is None: method = self.localMethod else: #do a sequential optimization method = [self.globalMethod,self.localMethod] #co-opt self.numRestarts for the number of outer iterations? numIters = [self.numRestarts,self.numIters] optSolver = GlobalOptimizer(method=method) if seed is not None: optSolver.setSeed(seed) (succ,res) = optSolver.solve(optProblem,numIters=numIters,tol=self.tol) return (succ,res) class OptimizationObjective: """ Describes an optimization cost function or constraint. Attributes: expr (symbolic.Expression): object f(x) type (str): string describing what the objective does: - 'cost': added to the cost. Must be scalar. - 'eq': an equality f(x)=0 that must be met exactly (up to a given equality tolerance) - 'ineq': an inequality constraint f(x)<=0 - 'feas': a black-box boolean feasibility test f(x) = True soft (bool): if true, this is penalized as part of the cost function. Specifically :math:`w \|f(x)\|^2` is the penalty for eq types, and w I[f(x)!=True] for feas types. weight (float, optional): a weight, used only for cost or soft objectives name (str, optional): a name for this objective. """ def __init__(self,expr,type,weight=None): self.expr = expr self.type = type self.weight = weight self.name = None if weight is None or type == 'cost': self.weight = 1 self.soft = False else: self.soft = True class OptimizationProblemBuilder: """Defines a generalized optimization problem that can be saved/loaded from a JSON string. Allows custom lists of objectives, feasibility tests, and cost functions. Multiple variables can be optimized at once. Attributes: context (symbolic.Context): a context that stores the optimization variables and any user data. objectives (list of OptimizationObjective): all objectives or cosntraints used in the optimization. optimizationVariables (list of Variable): A list of Variables used for optimization. If not set, this will try to find the variable 'x'. If not found, this will use all unbound variables in the objectives. Note that objectives must be symbolic.Function objects, so that they are savable/loadable. See the documentation of the symbolic module for more detail. """ def __init__(self,context=None): if context is None: context = symbolic.Context() self.context = context self.objectives = [] self.variableBounds = {} def addEquality(self,f,weight=None): """If f is a symbolic.Function it's a function f(x) that evaluates to 0 for a feasible solution. If it is a symbolic.Expression it's an expresion over the optimization variables If weight = None then this is an equality constraint, Otherwise it gets added to the objective weight*||f(x)||^2.""" if isinstance(f,symbolic.Function): assert len(self.optimizationVariables) > 0,"To add functions to constraints, the optimizationVariables object must be set" return self.addEquality(f.context.bindFunction(f,self.optimizationVariables),weight) else: assert isinstance(f,symbolic.Expression) self.objectives.append(OptimizationObjective(f,"eq",weight)) return self.objectives[-1] def addInequality(self,f,weight=None): """Adds an inequality f(x) <= 0.""" if isinstance(obj,symbolic.Function): assert len(self.optimizationVariables) > 0,"To add functions to constraints, the optimizationVariables object must be set" return self.addInequality(self.context.bindFunction(f,self.optimizationVariables),weight) else: assert isinstance(f,symbolic.Expression) self.objectives.append(OptimizationObjective(f,"eq",weight)) return self.objectives[-1] def addCost(self,f,weight=1): """Adds a cost function f(q).""" if isinstance(f,symbolic.Function): assert len(self.optimizationVariables) > 0,"To add functions to constraints, the optimizationVariables object must be set" return self.addCost(self.context.bindFunction(f,self.optimizationVariables)) else: assert isinstance(f,symbolic.Expression) self.objectives.append(OptimizationObjective(f,'cost',weight)) return self.objectives[-1] def addFeasibilityTest(self,f,weight=None): """Adds an additional feasibility test.""" if isinstance(f,symbolic.Function): return self.addFeasibilityTest(self.context.bindFunction(f,self.optimizationVariables),weight) else: assert isinstance(f,symbolic.Expression) self.objectives.append(OptimizationObjective(f,'feas',weight)) return self.objectives[-1] def setBounds(self,var,xmin=None,xmax=None): """Bounds the optimization variable var""" if isinstance(var,symbolic.Variable): var = var.name if xmin is None and xmax is None: if var in self.variableBounds: del self.variableBounds[var] else: self.variableBounds[var] = (xmin,xmax) def bind(self,**kwargs): """Binds the variables specified by the keyword arguments""" for (k,v) in kwargs: self.context.variableDict[k].bind(v) def unbind(self,**kwargs): """Binds the variables specified by the keyword arguments""" for (k,v) in kwargs: self.context.variableDict[k].unbind() return res def bindVars(self,*args): for x,v in zip(self.optimizationVariables,args): x.bind(v) def unbindVars(self): for x in self.optimizationVariables: x.unbind() def getVarValues(self): """Saves the bindings for optimization variables in the current context into a list.""" return [v.value for v in self.optimizationVariables] def setVarValues(self,s): """Converts a state into bindings for the optimization variables in the current context.""" for (v,var) in zip(s,self.optimizationVariables): var.bind(v) def getVarVector(self): """Flattens the bindings for optimization variables in the current context into a vector x.""" return symbolic._flatten(*[v.value for v in self.optimizationVariables]) def setVarVector(self,x): """Turns a vector x into bindings for the optimization variables in the current context.""" ofs=0 for v in self.optimizationVariables: if v.type.is_scalar(): v.bind(x[ofs]) ofs += 1 else: assert v.type.char == 'V',"TODO: handle matrix/array variables" v.bind(x[ofs:ofs+v.type.size]) ofs += v.type.size def randomVarBinding(self): """Samples values for all optimization variables, sampling uniformly according to their bounds""" for k,bnds in self.variableBounds.items(): var = self.context.variableDict[k] if var.type.is_scalar(): var.bind(sample_range(*bnds)) else: var.bind([sample_range(a,b) for (a,b) in zip(*bnds)]) for var in self.optimizationVariables: if var.name not in self.variableBounds: infbnd = (-float('inf'),float('inf')) if var.type.is_scalar(): var.bind(sample_range(*infbnd)) else: assert v.type.char == 'V',"TODO: handle matrix/array variables" assert var.type.size >= 0 var.bind([sample_range(*infbnd) for i in range(var.type.size)]) def cost(self): """Evaluates the cost function with the variables already bound.""" for v in self.optimizationVariables: assert v.value is not None,"All optimization variables must be bound" robset = False csum = 0.0 for obj in self.objectives: if obj.type == 'cost': #print obj.weight,obj.expr.evalf(self.context) csum += obj.weight*obj.expr.evalf(self.context) elif obj.soft: if obj.type == 'eq': r = obj.expr.evalf(self.context) csum += obj.weight*np.linalg.dot(r,r) elif obj.type == 'feas': if not obj.expr.evalf(self.context): csum += obj.weight elif obj.type == 'ineq': raise NotImplementedError("Soft inequalities") return csum def equalityResidual(self,soft=True): """Evaluates the equality + ik functions at the currently bound state x, stacking the results into a single vector. The residual should equal 0 (to a small tolerance) at a feasible solution. If soft=True, also stacks the soft equalities. """ for v in self.optimizationVariables: assert v.value is not None,"All optimization variables must be bound" robset = False esum = [] for obj in self.objectives: if obj.type == 'eq' and (not obj.soft or soft): esum.append(obj.expr.evalf(self.context)*obj.weight) return symbolic._flatten(*esum) def satisfiesEqualities(self,tol=1e-3): """Returns True if every entry of the (hard) equality + IK residual equals 0 (to the tolerance tol).""" res = self.equalityResidual() if len(res) == 0: return True return all(abs(r) <= tol for r in res) def inequalityResidual(self,soft=False): """Evaluates the inequality functions at the currently bound state x, stacking the results into a single vector. The residual should be <= 0 at a feasible solution. If soft=True then this includes the soft inequality residuals. """ for v in self.optimizationVariables: assert v.value is not None,"All optimization variables must be bound" robset = False esum = [] for obj in self.objectives: if obj.type == 'ineq' and (not obj.soft or soft): esum.append(obj.expr.evalf(self.context)*obj.weight) return symbolic._flatten(*esum) def satisfiesInequalities(self,margin=0): """Returns True if the for currently bound state x, every entry of the (hard) inequality residuals is <= -margin (default 0).""" for v in self.optimizationVariables: assert v.value is not None,"All optimization variables must be bound" res = self.inequalityResidual() if len(res) == 0: return True return all(r <= -margin for r in res) def feasibilityTestsPass(self,soft=False): """Returns True if the currently bound state passes all black-box feasibility tests.""" for v in self.optimizationVariables: assert v.value is not None,"All optimization variables must be bound" for obj in self.objectives: if obj == 'feas' and (not obj.soft or soft): r = obj.expr.evalf(self.context) if not r: return False return True def inBounds(self): """Returns True if all bounded variables are within their ranges at the currently bound state x""" for k,bnds in self.variableBounds.items(): var = self.context.variableDict[k] assert var.value is not None,"All optimization variables must be bound" xmin,xmax = bnds if not symbolic_linalg.bound_contains(xmin,xmax,var.value).evalf(): return False return True def isFeasible(self,eqTol=1e-3): """Returns True if the currently bound state passes all equality, inequality, joint limit, and black-box feasibility tests. Equality and IK constraints mut be met with equality tolerance eqTol.""" if not self.inBounds(): return False res = self.equalityResidual() if any(abs(r) > eqTol for r in res): return False res = self.inequalityResidual() if any(r > 0 for r in res): return False if not self.feasibilityTestsPass(): return False return True def costSymbolic(self): """Returns a symbolic.Expression, over variables in self.context, that evaluates to the cost""" components = [] weights = [] for obj in self.objectives: if obj.type == 'cost': components.append(obj.expr) weights.append(obj.weight) elif obj.soft: if obj.type == 'eq': components.append(symbolic_linalg.dot(obj.expr,obj.expr)) weights.append(obj.weight) elif obj.type == 'feas': components.append(symbolic.if_(obj.expr,1,0)) weights.append(obj.weight) else: raise NotImplementedError("Soft inequalities") if len(components)==0: return None oldvals = self.getVarValues() self.unbindVars() res = symbolic.simplify(symbolic.weightedsum(*(components + weights)),self.context) self.setVarValues(oldvals) return res #return symbolic.weightedsum(*(components + weights)) def equalityResidualSymbolic(self,soft=False): """Returns a symbolic.Expression, over variables in self.context, that evaluates to the equality residual""" components = [] for obj in self.objectives: if obj.type == 'eq' and (not obj.soft or soft): components.append(obj.expr*obj.weight) if len(components) == 0: return None oldvals = self.getVarValues() self.unbindVars() res = symbolic.simplify(symbolic.flatten(*components),self.context) self.setVarValues(oldvals) return res def inequalityResidualSymbolic(self,soft=False): """Returns a symbolic.Expression, over variables in self.context, that evaluates to the inequality residual""" components = [] for obj in self.objectives: if obj.type == 'ineq' and (not obj.soft or soft): components.append(obj.expr*obj.weight) if len(components) == 0: return None oldvals = self.getVarValues() self.unbindVars() res = symbolic.simplify(symbolic.flatten(*components),self.context) self.setVarValues(oldvals) return res def equalitySatisfiedSymbolic(self,tol=1e-3,soft=False): """Returns a symbolic.Expression, over variables in self.context, that evaluates to True if the equality constraint is met with tolerance tol""" res = self.equalityResidualSymbolic(soft) if res is None: return None return symbolic.abs_(res) <= tol def inequalitySatisfiedSymbolic(self,soft=False): """Returns a symbolic.Expression, over variables in self.context, that evaluates to True if the inequality constraint is met""" res = self.inequalityResidualSymbolic(soft) if res is None: return None return res <= 0 def feasibilityTestsPassSymbolic(self,soft=False): """Returns a symbolic.Expression, over variables in self.context, that evaluates to True if the black-box feasibility constraints are met""" components = [] for obj in self.objectives: if obj == 'feas' and (not obj.soft or soft): components.append(obj.expr) if len(components) == 0: return None oldvals = self.getVarValues() self.unbindVars() res = symbolic.simplify(symbolic.all_(*components),self.context) self.setVarValues(oldvals) return res def inBoundsSymbolic(self): """Returns a symbolic.Expression, over variables in self.context, that evaluates to True the configuration meets bound constraints""" exprs = [] for k,bnd in self.variableBounds.items(): exprs.append(self.context.linalg.bound_contains(qmin,qmax,self.context.get(k))) return symbolic.all_(*exprs) def isFeasibleSymbolic(self,eqTol=1e-3): """Returns a symbolic.Expression, over $q and other user data variables, that evaluates to True if the configuration meets all feasibility tests""" tests = [self.inBoundsSymbolic(),self.equalitySatisfiedSymbolic(eqTol),self.inequalitySatisfiedSymbolic(),self.feasibilityTestsPassSymbolic()] return symbolic.all_(*[t for t in tests if t is not None]) def score(self,eqWeight=1.0,ineqWeight=1.0,infeasWeight=1.0): """Returns an error score that is equal to the optimum at a feasible solution. Evaluated at the currently bound state x.""" c = self.cost() if eqWeight != 0: res = self.equalityResidual() if len(res) > 0: c += eqWeight*vectorops.norm(res) if ineqWeight != 0: res = self.inequalityResidual() if len(res) > 0: c += ineqWeight*vectorops.norm(res) if infeasWeight != 0: for obj in self.objectives: if obj == 'feas' and not obj.soft: if not obj.expr.eval(): c += infeasWeight if not self.inBounds(): c += infeasWeight return c def pprint(self,indent=0): ncost = len([obj for obj in self.objectives if obj.type == "cost" or obj.soft]) istring = " "*indent if ncost == 0: print("%sfind[%s]"%(istring,",".join([v.name for v in self.optimizationVariables]))) else: print("%smin[%s] %s"%(istring,",".join([v.name for v in self.optimizationVariables]),str(self.costSymbolic()))) if ncost < len(self.objectives) or len(self.variableBounds) > 0: print("%s such that"%(istring,)) for obj in self.objectives: if not(obj.type == "cost" or obj.soft): print("%s%s%s"%(istring,("" if obj.name is None else obj.name+": "),str(obj.expr)), end=' ') if obj.type == "eq": print("= 0") elif obj.type == "ineq": print("<= 0") else: print("holds") for k,v in self.variableBounds.items(): if hasattr(v[0],'__iter__'): for i in range(len(v[0])): print("%s[%f]\t"%(istring,v[0][i]), end=' ') if i == len(v[0])/2: print("<=",k,"<=\t", end=' ') else: print("\t", end=' ') print("[%f]"%(v[1][i],)) else: print("%s%f <= %s <= %f"%(istring,v[0],k,v[1])) def toJson(self,saveContextFunctions=False,prettyPrintExprs=False): """Returns a JSON object representing this optimization problem. Args: saveContextFunctions (bool, optional): if True, saves all custom functions in self.context. If they are saved, then the current context is required to be the same context in which the problem is loaded. prettyPrintExprs (bool, optional): if True, prints expressions more nicely as more human-readable strings rather than JSON objects. These strings are parsed on load, which is a little slower than pure JSON. """ res = dict() res['type'] = 'OptimizationProblemBuilder' res['context'] = symbolic_io.contextToJson(self.context,saveFunctions=saveContextFunctions) objectivesJson = [] for o in self.objectives: if prettyPrintExprs: ojson = {'expr':symbolic_io.exprToStr(o.expr,parseCompatible=True),'type':o.type,'soft':o.soft,'weight':o.weight,'name':o.name} else: ojson = {'expr':symbolic_io.exprToJson(expr),'type':o.type,'soft':o.soft,'weight':o.weight,'name':o.name} objectivesJson.append(ojson) res['objectives'] = objectivesJson res['optimizationVariables'] = [v.name for v in self.optimizationVariables] res['variableBounds'] = self.variableBounds return res def fromJson(self,object,context=None): """Sets this IK problem to a JSON object representing it. A ValueError is raised if it is not the correct type.""" if object['type'] != 'OptimizationProblemBuilder': raise ValueError("Object must have type OptimizationProblemBuilder") if context is not None: self.context = context else: symbolic_io.contextFromJson(self.context,object['context']) self.objectives = [] for ojson in object['objectives']: if isinstance(ojson['expr'],str): expr = symbolic_io.exprFromStr(self.context,ojson['expr']) else: expr = symbolic_io.exprFromJson(self.context,ojson['expr']) self.objectives.append(OptimizationObjective(expr,ojson['type'],(ojson['weight'] if ojson['soft'] else None))) self.objectives[-1].name = ojson['name'] self.optimizationVariables = [] for n in object['optimizationVariables']: assert n in self.context.variableDict,"Context does not contain optimization variable "+n self.optimizationVariables.append(self.context.variableDict[n]) self.variableBounds = object['variableBounds'] return def preprocess(self,steps='all'): """Preprocesses the problem to make solving more efficient Returns: tuple: (opt,optToSelf,selfToOpt) - opt: a simplified version of this optimization problem. If no simplfication can be performed, opt = self - optToSelf: a map of opt's variables to self's variables. If no simplification can be performed, optToSelf = None - selfToOpt: a map of self's variables to opts's variables. If no simplification can be performed, selfToOpt = None Specific steps include: # delete any objectives with 0 weight # delete any optimization variables not appearing in expressions # fixed-bound (x in [a,b], with a=b) variables are replaced with fixed values. # simplify objectives # TODO: replace equalities of the form var = expr by matching var to expr? If optToSelf is not None, then it is a list of Expressions that, when eval'ed, produce the values of the corresponding optimizationVariables in the original optimization problem. selfToOpt performs the converse mapping. In other words, if opt has bound values to all of its optimizationVariables, the code:: for var,expr in zip(self.optimizationVariables,optToSelf): var.bind(expr.eval(opt.context)) binds all optimization variables in self appropriately. """ modified = False result = OptimizationProblemBuilder(self.context) result.optimizationVariables = [] optToSelf = [] selfToOpt = [] for v in self.optimizationVariables: if v.name not in self.variableBounds: result.optimizationVariables.append(v.name) optToSelf.append(symbolic.expr(result.context.variableDict[v.name])) selfToOpt.append(symbolic.expr(v)) else: xmin,xmax = self.variableBounds[v.name] if v.type.is_scalar(): if xmin == xmax: #remove from optimization if not modified: result.context = self.context.copy() modified = True result.variableDict[v.name].bind(xmin) else: assert v.type.char == 'V',"TODO: handle non numeric/vector valued variables, type %s"%(v.type,) activeDofs = [] inactiveDofs = [] for i in range(len(xmin)): if xmin[i] == xmax[i]: inactiveDofs.append(i) else: activeDofs.append(i) if len(activeDofs) == 0: if not modified: result.context = self.context.copy() modified = True result.context.variableDict[v.name].bind(xmin) #don't add to optimization variables print("OptimizationProblemBuilder.preprocess(): No active DOFS on",v.name,"removing from optimization variables") print(" xmin",xmin,"xmax",xmax) elif len(inactiveDofs) > 0: if not modified: result.context = self.context.copy() modified = True vact = result.context.variableDict[v.name] vact.type.size = len(activeDofs) assert any(vact is v for v in result.context.variables) if v.value is not None: vact.value = [v.value[d] for d in activeDofs] vlift = symbolic.setitem(xmin,activeDofs,vact) result.optimizationVariables.append(v.name) optToSelf.append(vlift) selfToOpt.append(symbolic.getitem(v,activeDofs)) if v.name in self.variableBounds: vmin,vmax = self.variableBounds[v.name] result.setBounds(v.name,[vmin[d] for d in activeDofs],[vmax[d] for d in activeDofs]) else: result.optimizationVariables.append(v.name) if v.name in self.variableBounds: vmin,vmax = self.variableBounds[v.name] result.setBounds(v.name,vmin,vmax) optToSelf.append(symbolic.expr(result.context.variableDict[v.name])) selfToOpt.append(symbolic.expr(v)) #print "OptimizationProblemBuilder.preprocess(): optimization variables",[str(v) for v in self.optimizationVariables],"->",[str(v) for v in result.optimizationVariables] assert modified != (len(optToSelf) == 0 and len(result.optimizationVariables) == len(self.optimizationVariables)) #delete any objectives with 0 weight sourceObjectives = self.objectives if any(obj.weight==0 for obj in self.objectives): modified = True sourceObjectives = [obj for obj in self.objectives if obj.weight != 0] if not modified: return self,None,None #convert names to Variables result.optimizationVariables = [result.context.variableDict[vname] for vname in result.optimizationVariables] #simplify and remap expressions oldVals = self.getVarValues() for var in self.optimizationVariables: var.unbind() for i,obj in enumerate(sourceObjectives): expr = symbolic.simplify(obj.expr,result.context) for var,vexpr in zip(result.optimizationVariables,optToSelf): try: expr = expr.replace(var,vexpr) except ValueError: pass #print "Replacement for",obj.type,"objective",obj.expr,"is",expr expr = symbolic.simplify(expr) #print " simplified to",expr #raw_input() result.objectives.append(OptimizationObjective(expr,obj.type,obj.weight)) result.objectives[-1].soft = obj.soft result.objectives[-1].name = obj.name self.setVarValues(oldVals) return (result,optToSelf,selfToOpt) def getBounds(self): """Returns optimization varable bounds as a list of (xmin,xmax) pairs. None is returned if the problem is unconstrained""" inf = float('inf') if len(self.variableBounds) == 0 or not any(v.name in self.variableBounds for v in self.optimizationVariables): return None return [self.variableBounds.get(v.name,((-inf,inf) if v.type.is_scalar() else ([-inf]*v.type.size,[inf]*v.type.size))) for v in self.optimizationVariables] def getProblem(self): """Returns an OptimizationProblem instance over the optimization variables. """ optProblem = OptimizationProblem() eq = self.equalityResidualSymbolic() ineq = self.inequalityResidualSymbolic() feas = self.feasibilityTestsPassSymbolic() cost = self.costSymbolic() if len(self.optimizationVariables) == 0: if 'x' in self.context.variableDict: self.optimizationVariables = self.context.variableDict['x'] else: raise NotImplementedError("No optimization variables set; dynamic interpretation not complete yet") #to prevent simplification from destroying variable references, save the values and unbind them... oldValues = self.getVarValues() self.unbindVars() if eq is not None: optProblem.addSymbolicConstraint((symbolic.simplify(eq,self.context) == 0),self.context,self.optimizationVariables) if ineq is not None: optProblem.addSymbolicConstraint((symbolic.simplify(ineq,self.context) <= 0),self.context,self.optimizationVariables) if feas is not None: optProblem.addSymbolicConstraint(symbolic.simplify(feas,self.context),self.context,self.optimizationVariables) if cost is not None: optProblem.setSymbolicObjective(symbolic.simplify(cost,self.context),self.context,self.optimizationVariables) vbounds = self.getBounds() if vbounds is not None: aggxmin = symbolic._flatten(*[bmin for (bmin,bmax) in vbounds]) aggxmax = symbolic._flatten(*[bmax for (bmin,bmax) in vbounds]) optProblem.setBounds(aggxmin,aggxmax) #restore unbound variables self.setVarValues(oldValues) return optProblem def solve(self,params=OptimizerParams(),preprocess=True,cache=False): """Solves the optimization problem. The result is stored in the bound optimizationVariables. If you will be solving the problem several times without modification (except for user data and initial values of optimizationVariables), you may set cache=True to eliminate some overhead. Note that caching does not work properly if you change constraints or non-optimization variables. """ print("OptimizationProblemBuilder.solve(): My optimization variables",[v.name for v in self.optimizationVariables]) #first check for cached values if cache and hasattr(self,'_cached_problem'): p,pToSelf,selfToP,optp = self._cached_problem else: #if not, do the preprocessing if preprocess: p,pToSelf,selfToP = self.preprocess() else: p = self pToSelf,selfToP = None,None optp = p.getProblem() if cache: self._cached_problem = p,pToSelf,selfToP,optp seed = None if params.globalMethod is None or params.globalMethod == 'random-restart': #ensure that you have a seed vseed = [v.value for v in p.optimizationVariables] if all(v is not None for v in vseed): seed = symbolic._flatten(vseed) else: assert all(v is None for v in vseed),"TODO: instantiation of partially bound values" assert params.globalMethod is not None,"Only doing local optimization, need to provide a seed value" (success,res) = params.solve(optp,seed) if res is not None: p.setVarVector(res) if p is not self: #the vector was set in a different context, now map p's variables to self's variables for v,expr in zip(self.optimizationVariables,pToSelf): v.bind(expr.eval(p.context)) return success
48.352941
177
0.579119
844b30e9784d81833548d8835d6ea8fcce6267f5
925
py
Python
Web dev/Flask/Projects/todo-app/app/routes.py
prathimacode-hub/WIE-WoC
f412f297a57249af98213bf4a747c897f2d4c035
[ "MIT" ]
8
2022-03-01T09:09:20.000Z
2022-03-03T05:36:01.000Z
Web dev/Flask/Projects/todo-app/app/routes.py
prathimacode-hub/WIE-WoC
f412f297a57249af98213bf4a747c897f2d4c035
[ "MIT" ]
52
2022-03-02T13:52:46.000Z
2022-03-04T03:03:17.000Z
Web dev/Flask/Projects/todo-app/app/routes.py
prathimacode-hub/WIE-WoC
f412f297a57249af98213bf4a747c897f2d4c035
[ "MIT" ]
23
2022-03-01T06:39:34.000Z
2022-03-03T09:24:40.000Z
from flask import render_template, redirect, url_for, request from app import app, db from app.models import Todo @app.route('/') def index(): incomplete = Todo.query.filter_by(status=False).all() complete = Todo.query.filter_by(status=True).all() return render_template('index.html', complete=complete, incomplete=incomplete) @app.route('/add', methods=['POST']) def add(): todo = Todo(text=request.form['todoitem'], status=False) db.session.add(todo) db.session.commit() return redirect(url_for('index')) @app.route('/complete/<id>') def complete(id): todo = Todo.query.filter_by(id=int(id)).first() todo.status = True db.session.commit() return redirect(url_for('index')) @app.route('/incomplete/<id>') def incomplete(id): todo = Todo.query.filter_by(id=int(id)).first() todo.status = False db.session.commit() return redirect(url_for('index'))
25.694444
82
0.678919
8122dc4db005fa7d78e1a0336f95e63b27d862c7
8,782
py
Python
polaris/polaris/management/commands/watch_transactions.py
paysharesdev/django-polaris
cbbebed5623a92074071f59f4bca65e2b1c6571b
[ "Apache-2.0" ]
null
null
null
polaris/polaris/management/commands/watch_transactions.py
paysharesdev/django-polaris
cbbebed5623a92074071f59f4bca65e2b1c6571b
[ "Apache-2.0" ]
null
null
null
polaris/polaris/management/commands/watch_transactions.py
paysharesdev/django-polaris
cbbebed5623a92074071f59f4bca65e2b1c6571b
[ "Apache-2.0" ]
null
null
null
"""This module defines custom management commands for the app admin.""" import asyncio from typing import Dict, Optional from decimal import Decimal from django.core.management.base import BaseCommand from django.db.models import Q from stellar_sdk.exceptions import NotFoundError from stellar_sdk.transaction_envelope import TransactionEnvelope from stellar_sdk.xdr import Xdr from stellar_sdk.operation import Operation from stellar_sdk.server import Server from stellar_sdk.client.aiohttp_client import AiohttpClient from polaris import settings from polaris.models import Asset, Transaction from polaris.utils import Logger logger = Logger(__name__) class Command(BaseCommand): """ Streams transactions for the distribution account of each Asset in the DB. For every response from the server, attempts to find a matching transaction in the database with `find_matching_payment_op` and updates the transaction's status to `pending_anchor` or `pending_receiver` depending on the protocol. Then, the ``execute_outgoing_transaction`` process will query for transactions in those statuses and provide the anchor an integration function for executing the payment or withdrawal. """ def handle(self, *args, **options): # pragma: no cover try: asyncio.run(self.watch_transactions()) except Exception as e: # This is very likely a bug, so re-raise the error and crash. # Heroku will restart the process unless it is repeatedly crashing, # in which case restarting isn't of much use. logger.exception("watch_transactions() threw an unexpected exception") raise e async def watch_transactions(self): # pragma: no cover await asyncio.gather( *[ self._for_account(asset.distribution_account) for asset in Asset.objects.exclude(distribution_seed__isnull=True) ] ) async def _for_account(self, account: str): # pragma: no cover """ Stream transactions for the server Stellar address. """ async with Server(settings.HORIZON_URI, client=AiohttpClient()) as server: try: # Ensure the distribution account actually exists await server.load_account(account) except NotFoundError: # This exception will crash the process, but the anchor needs # to provide valid accounts to watch. raise RuntimeError( "Stellar distribution account does not exist in horizon" ) last_completed_transaction = ( Transaction.objects.filter( Q(kind=Transaction.KIND.withdrawal) | Q(kind=Transaction.KIND.send), receiving_anchor_account=account, status=Transaction.STATUS.completed, ) .order_by("-completed_at") .first() ) cursor = "now" if last_completed_transaction: cursor = last_completed_transaction.paging_token endpoint = server.transactions().for_account(account).cursor(cursor) async for response in endpoint.stream(): self.process_response(response, account) @classmethod def process_response(cls, response, account): # We should not match valid pending transactions with ones that were # unsuccessful on the stellar network. If they were unsuccessful, the # client is also aware of the failure and will likely attempt to # resubmit it, in which case we should match the resubmitted transaction if not response.get("successful"): return # Query filters for SEP6 and 24 withdraw_filters = Q( receiving_anchor_account=account, status=Transaction.STATUS.pending_user_transfer_start, kind=Transaction.KIND.withdrawal, ) # Query filters for SEP31 send_filters = Q( receiving_anchor_account=account, status=Transaction.STATUS.pending_sender, kind=Transaction.KIND.send, ) pending_withdrawal_transactions = Transaction.objects.filter( # query SEP 6, 24, & 31 pending transactions withdraw_filters | send_filters ) matching_transaction, payment_op = None, None for transaction in pending_withdrawal_transactions: payment_op = cls.find_matching_payment_op(response, transaction) if not payment_op: continue else: matching_transaction = transaction break if not matching_transaction: logger.info(f"No match found for stellar transaction {response['id']}") return # Transaction.amount_in is overwritten with the actual amount sent in the stellar # transaction. This allows anchors to validate the actual amount sent in # execute_outgoing_transactions() and handle invalid amounts appropriately. matching_transaction.amount_in = round( Decimal(payment_op.amount), matching_transaction.asset.significant_decimals, ) # The stellar transaction has been matched with an existing record in the DB. # Now the anchor needs to initiate the off-chain transfer of the asset. # # Prior to the 0.12 release, Polaris' SEP-6 and 24 integrations didn't not # provide an interface that allowed anchors to check on the state of # transactions on an external network. Now, ``poll_outgoing_transactions()`` # allows anchors to check on transactions that have been submitted to a # non-stellar payment network but have not completed, and expects anchors to # update them when they have. if matching_transaction.protocol == Transaction.PROTOCOL.sep31: # SEP-31 uses 'pending_receiver' status matching_transaction.status = Transaction.STATUS.pending_receiver matching_transaction.save() else: # SEP-6 and 24 uses 'pending_anchor' status matching_transaction.status = Transaction.STATUS.pending_anchor matching_transaction.save() return @classmethod def find_matching_payment_op( cls, response: Dict, transaction: Transaction ) -> Optional[Operation]: """ Determines whether or not the given ``response`` represents the given ``transaction``. Polaris does this by checking the 'memo' field in the horizon response matches the `transaction.memo`, as well as ensuring the transaction includes a payment operation of the anchored asset. :param response: a response body returned from Horizon for the transaction :param transaction: a database model object representing the transaction """ try: stellar_transaction_id = response["id"] envelope_xdr = response["envelope_xdr"] except KeyError: return # memo from response must match transaction memo memo = response.get("memo") if ( transaction.protocol != Transaction.PROTOCOL.sep31 and memo != transaction.memo ) or ( transaction.protocol == Transaction.PROTOCOL.sep31 and memo != transaction.memo ): return horizon_tx = TransactionEnvelope.from_xdr( envelope_xdr, network_passphrase=settings.STELLAR_NETWORK_PASSPHRASE, ).transaction if horizon_tx.source.public_key != transaction.stellar_account: # transaction wasn't created by sender of payment return matching_payment_op = None for operation in horizon_tx.operations: if cls._check_payment_op(operation, transaction.asset): transaction.stellar_transaction_id = stellar_transaction_id transaction.from_address = horizon_tx.source.public_key transaction.paging_token = response["paging_token"] transaction.status_eta = 0 transaction.save() matching_payment_op = operation break return matching_payment_op @staticmethod def _check_payment_op(operation: Operation, want_asset: Asset) -> bool: return ( operation.type_code() == Xdr.const.PAYMENT and str(operation.destination) == want_asset.distribution_account and str(operation.asset.code) == want_asset.code and str(operation.asset.issuer) == want_asset.issuer )
42.019139
89
0.654407
273254e0f855b050bd2d5f1db51c4c97ba0d6b8b
2,564
py
Python
app/utils.py
Cradac/dhbw-microblog
4f2bda483ec3864973a082038fec2bc8a9898bb2
[ "MIT" ]
null
null
null
app/utils.py
Cradac/dhbw-microblog
4f2bda483ec3864973a082038fec2bc8a9898bb2
[ "MIT" ]
null
null
null
app/utils.py
Cradac/dhbw-microblog
4f2bda483ec3864973a082038fec2bc8a9898bb2
[ "MIT" ]
null
null
null
from app.models import User ''' Das Paginator Objekt mit allen relevanten Variablen. list: SuperListe aller SubListen (Seiten) cur_page: aktuelle Seite (Index + 1 der list) max_page: Anzahl der Seiten items: list[cur_page-1], also return der aktuellen Seite; Falls der Index out of Range ist -> Erste Seite; Falls die Liste Leer ist, Leere Liste returned ''' class Paginator: def __init__(self, list:list, cur_page:int, max_page:int): self.list = list self.cur_page = cur_page self.max_page = max_page try: self.items = self.list[self.cur_page-1] except IndexError: try: self.items = self.list[0] except IndexError: self.items = [] def __repr__(self): return f'List with {self.max_page} pages. Current page is {self.cur_page}.' ''' Die folgenden Klassenfunktionen zeigen einfach an ob eine nächste Seite existiert, und welchen Index diese hat. Funktionen werden zur Link Generation verwendet ''' def next_num(self): return self.cur_page + 1 def prev_num(self): return self.cur_page - 1 def has_next(self): return not self.cur_page >= self.max_page def has_prev(self): return not self.cur_page == 1 ''' Funktion zum Erstellen eines Pagination Objektes Die Objekte der Liste werden in [max] Lange Sublisten gepackt, welche dann an die Superliste angehangen werden ''' def paginate(list: list, page: int, max: int): list = reversed(list) superlist = [] sublist = [] i = 0 p_i = 0 for entry in list: # Objekt wird an Sublist gehangen sublist.append(entry) i += 1 # Sobald 5 Objekte in der Subliste sind wird diese an die Superlist appenden, die Subliste und der Iterator wird zurückgesetzt # Page_Index wird erhöht if i == max: superlist.append(sublist) sublist = [] i = 0 p_i += 1 # Nach Abschluss des for Loops wird eine teils gefüllte Liste angehängt if len(sublist) > 0: superlist.append(sublist) p_i += 1 # Paginator Objekt wird returnt return Paginator(superlist, page, p_i) # FUnktion um jedem Post ein Autor Objekt hinzuzufügen; returnt eine Liste von (Post, Autor) Tupeln def add_author(posts:list): matched_posts = [] for post in posts: author = User.query.filter_by(id=post.user_id).first() matched_posts.append((post,author)) return matched_posts
34.186667
134
0.642746
26c852f701b2b302d7f519e176c388cc572b08ec
643
py
Python
Python Scripts/Jammer with CLI Interface/start_adapter.py
swalihkdan/YRov
415da1b74dc01134eb8ea597466b35ae380b909d
[ "MIT" ]
null
null
null
Python Scripts/Jammer with CLI Interface/start_adapter.py
swalihkdan/YRov
415da1b74dc01134eb8ea597466b35ae380b909d
[ "MIT" ]
null
null
null
Python Scripts/Jammer with CLI Interface/start_adapter.py
swalihkdan/YRov
415da1b74dc01134eb8ea597466b35ae380b909d
[ "MIT" ]
1
2020-12-08T12:26:34.000Z
2020-12-08T12:26:34.000Z
import subprocess import logging def start_adapter(): #Configuring the logger logging.basicConfig(filename="./logs/start_adapter.log", format='%(asctime)s %(message)s', filemode='w') #Creating an object logger=logging.getLogger() #Setting the threshold of logger to DEBUG logger.setLevel(logging.DEBUG) logger.info("Started airmon-ng..................................") airmon = subprocess.Popen(["airmon-ng","start","wlan0"],stdout = subprocess.PIPE , stderr = subprocess.PIPE) stdout,stderr = airmon.communicate() print("Note : Wifi Card is currently in MonitorMode")
29.227273
109
0.643857
6bb9e98656853155838637d70ff816e2a5c844d2
5,372
py
Python
src/pretix/presale/forms/waitinglist.py
pretix/pretix
78917afa1a3f0def9d4a67d31df811215708abec
[ "Apache-2.0" ]
1,248
2015-04-24T13:32:06.000Z
2022-03-29T07:01:36.000Z
src/pretix/presale/forms/waitinglist.py
pretix/pretix
78917afa1a3f0def9d4a67d31df811215708abec
[ "Apache-2.0" ]
2,113
2015-02-18T18:58:16.000Z
2022-03-31T11:12:32.000Z
src/pretix/presale/forms/waitinglist.py
pretix/pretix
78917afa1a3f0def9d4a67d31df811215708abec
[ "Apache-2.0" ]
453
2015-05-13T09:29:06.000Z
2022-03-24T13:39:16.000Z
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 Raphael Michel and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # from django import forms from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.utils.translation import gettext_lazy as _ from phonenumber_field.formfields import PhoneNumberField from phonenumbers.data import _COUNTRY_CODE_TO_REGION_CODE from pretix.base.forms.questions import ( NamePartsFormField, WrappedPhoneNumberPrefixWidget, guess_country, ) from pretix.base.i18n import get_babel_locale, language from pretix.base.models import Quota, WaitingListEntry from pretix.presale.views.event import get_grouped_items class WaitingListForm(forms.ModelForm): required_css_class = 'required' class Meta: model = WaitingListEntry fields = ('name_parts', 'email', 'phone') def __init__(self, *args, **kwargs): self.event = kwargs.pop('event') self.channel = kwargs.pop('channel') customer = kwargs.pop('customer') super().__init__(*args, **kwargs) choices = [ ('', '') ] items, display_add_to_cart = get_grouped_items( self.event, self.instance.subevent, require_seat=None, memberships=( self.request.customer.usable_memberships( for_event=self.instance.subevent or self.event, testmode=self.request.event.testmode ) if customer else None ), ) for i in items: if not i.allow_waitinglist: continue if i.has_variations: for v in i.available_variations: if v.cached_availability[0] == Quota.AVAILABILITY_OK: continue choices.append((f'{i.pk}-{v.pk}', f'{i.name} – {v.value}')) else: if i.cached_availability[0] == Quota.AVAILABILITY_OK: continue choices.append((f'{i.pk}', f'{i.name}')) self.fields['itemvar'] = forms.ChoiceField( label=_('Product'), choices=choices, ) event = self.event if event.settings.waiting_list_names_asked: self.fields['name_parts'] = NamePartsFormField( max_length=255, required=event.settings.waiting_list_names_required, scheme=event.settings.name_scheme, titles=event.settings.name_scheme_titles, label=_('Name'), ) else: del self.fields['name_parts'] if event.settings.waiting_list_phones_asked: with language(get_babel_locale()): default_country = guess_country(self.event) for prefix, values in _COUNTRY_CODE_TO_REGION_CODE.items(): if str(default_country) in values and not self.initial.get('phone'): # We now exploit an implementation detail in PhoneNumberPrefixWidget to allow us to pass just # a country code but no number as an initial value. It's a bit hacky, but should be stable for # the future. self.initial['phone'] = "+{}.".format(prefix) self.fields['phone'] = PhoneNumberField( label=_("Phone number"), required=event.settings.waiting_list_phones_required, help_text=event.settings.waiting_list_phones_explanation_text, widget=WrappedPhoneNumberPrefixWidget() ) else: del self.fields['phone'] def clean(self): try: iv = self.data.get('itemvar', '') if '-' in iv: itemid, varid = iv.split('-') else: itemid, varid = iv, None self.instance.item = self.instance.event.items.get(pk=itemid) if varid: self.instance.variation = self.instance.item.variations.get(pk=varid) else: self.instance.variation = None except ObjectDoesNotExist: raise ValidationError(_("Invalid product selected.")) data = super().clean() return data
40.390977
118
0.623232
2b76fa9f8c014895c61c7680ae490139422a308f
3,720
py
Python
pysat/instruments/timed_saber.py
scivision/pysat
2916ff7c77ad4201c537acca91b7c0b46b542e82
[ "BSD-3-Clause" ]
null
null
null
pysat/instruments/timed_saber.py
scivision/pysat
2916ff7c77ad4201c537acca91b7c0b46b542e82
[ "BSD-3-Clause" ]
null
null
null
pysat/instruments/timed_saber.py
scivision/pysat
2916ff7c77ad4201c537acca91b7c0b46b542e82
[ "BSD-3-Clause" ]
1
2018-10-26T02:42:50.000Z
2018-10-26T02:42:50.000Z
# -*- coding: utf-8 -*- """Supports the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. Properties ---------- platform 'timed' name 'saber' tag None supported sat_id None supported Note ---- SABER "Rules of the Road" for DATA USE Users of SABER data are asked to respect the following guidelines - Mission scientific and model results are open to all. - Guest investigators, and other members of the scientific community or general public should contact the PI or designated team member early in an analysis project to discuss the appropriate use of the data. - Users that wish to publish the results derived from SABER data should normally offer co-authorship to the PI, Associate PI or designated team members. Co-authorship may be declined. Appropriate acknowledgement of institutions, personnel, and funding agencies should be given. - Users should heed the caveats of SABER team members as to the interpretation and limitations of the data. SABER team members may insist that such caveats be published, even if co-authorship is declined. Data and model version numbers should also be specified. - Pre-prints of publications and conference abstracts should be widely distributed to interested parties within the mission and related projects. Warnings -------- - Note on Temperature Errors: http://saber.gats-inc.com/temp_errors.php Authors ------- J. Klenzing, 4 March 2019 """ from __future__ import print_function from __future__ import absolute_import import functools import pysat from pysat.instruments.methods import nasa_cdaweb as cdw from pysat.instruments.methods import general as mm_gen platform = 'timed' name = 'saber' # dictionary of data 'tags' and corresponding description tags = {'': ''} sat_ids = {'': ['']} _test_dates = {'': {'': pysat.datetime(2019, 1, 1)}} fname = ''.join(('timed_l2av207_saber_{year:04d}{month:02d}{day:02d}', '????_v01.cdf')) supported_tags = {'': {'': fname}} # use the CDAWeb methods list files routine list_files = functools.partial(mm_gen.list_files, supported_tags=supported_tags) # let pysat know that data is spread across more than one file multi_file_day = True pandas_format = True load = cdw.load basic_tag = {'dir': '/pub/data/timed/saber/level2a_v2_07_cdf', 'remote_fname': '{year:4d}/{month:02d}/' + fname, 'local_fname': fname} supported_tags = {'': {'': basic_tag}} download = functools.partial(cdw.download, supported_tags, multi_file_day=True) # support listing files currently on CDAWeb list_remote_files = functools.partial(cdw.list_remote_files, supported_tags=supported_tags) def clean(inst): """Routine to return PLATFORM/NAME data cleaned to the specified level Cleaning level is specified in inst.clean_level and pysat will accept user input for several strings. The clean_level is specified at instantiation of the Instrument object. 'clean' All parameters should be good, suitable for statistical and case studies 'dusty' All paramers should generally be good though same may not be great 'dirty' There are data areas that have issues, data should be used with caution 'none' No cleaning applied, routine not called in this case. Parameters ----------- inst : pysat.Instrument Instrument class object, whose attribute clean_level is used to return the desired level of data selectivity. """ return
32.068966
80
0.709946
dc64df24b371fd44a3c6206d960c9c45428445a0
4,653
py
Python
python/simulation/kyber/reference/poly.py
BayesianSCA/k-trace-CCA
8dbf10ff28712848dcb8874e370c3fe40a0566a0
[ "Apache-2.0", "MIT" ]
1
2022-03-14T01:19:56.000Z
2022-03-14T01:19:56.000Z
python/simulation/kyber/reference/poly.py
BayesianSCA/k-trace-CCA
8dbf10ff28712848dcb8874e370c3fe40a0566a0
[ "Apache-2.0", "MIT" ]
null
null
null
python/simulation/kyber/reference/poly.py
BayesianSCA/k-trace-CCA
8dbf10ff28712848dcb8874e370c3fe40a0566a0
[ "Apache-2.0", "MIT" ]
1
2022-02-03T08:31:21.000Z
2022-02-03T08:31:21.000Z
import numpy as np import math from .ntt import basemul, zetas, ntt, invntt from .reduce import barrett_reduce from .params import KYBER_ETA1, KYBER_N class poly(np.ndarray): def __new__(cls, height=KYBER_N): obj = np.zeros(height, dtype=np.int16).view(cls) return obj @property def height(self): return self.shape[0] @property def coeffs(self): return self @coeffs.setter def coeffs(self, val): self[:] = val # /************************************************* # * Name: poly_getnoise_eta1 # * # * Description: Sample a polynomial deterministically from a seed and a nonce, # * with output polynomial close to centered binomial distribution # * with parameter KYBER_ETA1 # * # * Arguments: - poly *r: pointer to output polynomial # * - const uint8_t *seed: pointer to input seed # * (of length KYBER_SYMBYTES bytes) # * - uint8_t nonce: one-byte input nonce # **************************************************/ def poly_getnoise_eta1(rng, height): r = poly_cbd_eta1(rng, height) return r # /************************************************* # * Name: poly_ntt # * # * Description: Computes negacyclic number-theoretic transform (NTT) of # * a polynomial in place; # * inputs assumed to be in normal order, output in bitreversed order # * # * Arguments: - uint16_t *r: pointer to in/output polynomial # **************************************************/ def poly_ntt(r: poly) -> poly: r_hat, _ = ntt(r.copy(), r.height, int(math.log2(r.height)) - 1) r_hat = poly_reduce(r_hat) return r_hat def poly_invntt(r_hat: poly) -> poly: r, _, _ = invntt(r_hat.copy(), r_hat.height, int(math.log2(r_hat.height)) - 1) return r # /************************************************* # * Name: poly_basemul_montgomery # * # * Description: Multiplication of two polynomials in NTT domain # * # * Arguments: - poly *r: pointer to output polynomial # * - const poly *a: pointer to first input polynomial # * - const poly *b: pointer to second input polynomial # **************************************************/ def poly_basemul_montgomery(a: poly, b: poly) -> poly: assert a.height == b.height r = poly(height=a.height) zeta_offset = ( a.height // 4 ) # 64, NOTE: formula should be correct for smaller heights for i in range(a.height // 4): r[4 * i : 4 * i + 2] = basemul( a[4 * i : 4 * i + 2], b[4 * i : 4 * i + 2], zetas[zeta_offset + i] ) r[4 * i + 2 : 4 * i + 4] = basemul( a[4 * i + 2 : 4 * i + 4], b[4 * i + 2 : 4 * i + 4], -zetas[zeta_offset + i] ) return r # /************************************************* # * Name: poly_reduce # * # * Description: Applies Barrett reduction to all coefficients of a polynomial # * for details of the Barrett reduction see comments in reduce.c # * # * Arguments: - poly *r: pointer to input/output polynomial # **************************************************/ def poly_reduce(r: poly) -> poly: return barrett_reduce(r) # /************************************************* # * Name: poly_add # * # * Description: Add two polynomials; no modular reduction is performed # * # * Arguments: - poly *r: pointer to output polynomial # * - const poly *a: pointer to first input polynomial # * - const poly *b: pointer to second input polynomial # **************************************************/ def poly_add(a: poly, b: poly) -> poly: return a + b def poly_sub(a: poly, b: poly) -> poly: return a - b # /************************************************* # * Name: cbd2 # * # * Description: Given an array of uniformly random bytes, compute # * polynomial with coefficients distributed according to # * a centered binomial distribution with parameter eta=2 # * # * Arguments: - poly *r: pointer to output polynomial # * - const uint8_t *buf: pointer to input byte array # **************************************************/ def poly_cbd_eta1(rng, height=KYBER_N, KYBER_ETA1=KYBER_ETA1) -> poly: assert KYBER_ETA1 == 2, "Not Implemented" # implementing cbd2(): a = rng.integers(0, 2, height, dtype=np.int16) a += rng.integers(0, 2, height, dtype=np.int16) b = rng.integers(0, 2, height, dtype=np.int16) b += rng.integers(0, 2, height, dtype=np.int16) r = poly(height=height) r.coeffs = a - b return r
33.47482
87
0.526112
2f005a239a1d902db0fa9748b80ece0e67f16247
11,390
py
Python
perftrackerlib/browser/httputils.py
brusnigin/perftracker-lib
648de197aaa301001791764a7ac0a6e731edf74d
[ "MIT" ]
null
null
null
perftrackerlib/browser/httputils.py
brusnigin/perftracker-lib
648de197aaa301001791764a7ac0a6e731edf74d
[ "MIT" ]
null
null
null
perftrackerlib/browser/httputils.py
brusnigin/perftracker-lib
648de197aaa301001791764a7ac0a6e731edf74d
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import print_function # -*- coding: utf-8 -*- __author__ = "istillc0de@gmail.com" __copyright__ = "Copyright 2018, The PerfTracker project" __license__ = "MIT" import re import logging import urllib import tempfile import os import sys if sys.version_info[0] < 3: import urlparse import httplib from httplib import HTTPResponse from BaseHTTPServer import BaseHTTPRequestHandler from StringIO import StringIO from HTMLParser import HTMLParser else: import urllib.parse as urlparse import http.client as httplib from http.client import HTTPResponse from http.server import BaseHTTPRequestHandler from io import StringIO from html.parser import HTMLParser reScriptLocation = re.compile(r"top\.location[\.href]*=\'(.*)\'") reFormButtonUrl = re.compile(r"doSubmit\(\'(.*)\'") ############################################################################### # Support classes for HTML page processing and action URLs extraction # class TagValueBase(object): def __init__(self, tag): self.tag = tag self.value = None self.inside = False def is_processing(self): return self.inside class TagValueManual(TagValueBase): def __init__(self, tag): TagValueBase.__init__(self, tag) def begin(self, tag): if tag == self.tag: self.inside = True return True return False def end(self, tag): if tag == self.tag: self.inside = False return True return False def set_value(self, value): self.value = value def clear_value(self): self.value = None class Request(object): def __init__(self, url, method=None, uid=None): self._params = {} # dict of parameters {name: value} (used by POST only) self.url = None # URL without host name, e.g. /turbine self.method = method.upper() if method else 'GET' self.uid = uid # request ID if url: # if url is None, Request considered as valid but incomplete self.reset_url(url) def reset_url(self, url): url = urlparse.urlparse(url) self.url = url.path if not self.url.startswith('/'): self.url = '/' + self.url if self.method == 'POST': self._params = dict(urlparse.parse_qsl(url.query)) else: self._params = {} if url.query: self.url += '?' + url.query def add_param(self, name, value): if self.method == 'POST': self._params[name] = value else: self.url += '&%s=%s' % (name, value) def get_params(self): # converts parameters dict into string (n1=v1&n2=v2&...) return urllib.urlencode(self._params) if self._params else None def is_complete(self): return True if self.url else False def process_action(self, tag, attrs): if tag == 'button' and attrs.get('type','submit') == 'submit': match = reFormButtonUrl.search(attrs.get('onclick', '')) if match: url = urllib.unquote(match.group(1)) url = HTMLParser().unescape(url) self.uid = tag + ':' + attrs.get('name', 'none') self.reset_url(url) return True return False ############################################################################### # Class for HTML page processing (based on HTMLParser template) # # The main goal of class is gather all possible URLs of actions on page. After # that, user would select one and use it either to build the chain of auto-redirected # pages or for manual navigation (JFI: list of possible redirection methods # https://code.google.com/p/html5security/wiki/RedirectionMethods). # class PageParser(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._body_tag = TagValueManual('body') self._form_tag = TagValueManual('form') self._script_tag = TagValueManual('script') self._noscript_tag = TagValueManual('noscript') # Objects of Request type (public) self.forms = [] self.iframe_src = None self.body_onload = None self.script = None self.global_action = None # action outside <form>'s self.form_auto_submit = False def handle_starttag(self, tag, attributes): attrs = {} for attr in attributes: attrs[attr[0].lower()] = attr[1] # <noscript> (there is no any valuable information inside this tag) if self._noscript_tag.begin(tag) or self._noscript_tag.is_processing(): return # <script> (only set the flag, script body will be in handle_data()) if self._script_tag.begin(tag): return # <iframe> (process 'src' with URL) if tag == 'iframe': attr = attrs.get('src') if attr: self.iframe_src = Request(attr) return # <body> (process 'onload' with script) if self._body_tag.begin(tag): attr = attrs.get('onload') if not attr: pass elif "document.forms[0].submit()" in attr: self.form_auto_submit = True else: match = reScriptLocation.search(attr) if match: url = urllib.unquote(match.group(1)) url = HTMLParser().unescape(url) self.body_onload = Request(url) self._body_tag.set_value(Request(None, 'POST')) return # <form> (initialize the new form object) if self._form_tag.begin(tag): form_id = attrs.get('id') or attrs.get('name') self._form_tag.set_value(Request(attrs.get('action'), attrs.get('method'), form_id)) return # <form> ... </form> (fill the new form object with parameters) if self._form_tag.is_processing(): # extract form parameters if tag == 'input' and attrs.get('type') in ['hidden', 'text', 'password'] and attrs.get('name'): self._form_tag.value.add_param(attrs['name'], attrs.get('value', '')) # if form has no action attribute, try to use one from the submit button if not self._form_tag.value.is_complete(): self._form_tag.value.process_action(tag, attrs) # <body> ... </body> (uhh, get buttons outside <form>) elif self._body_tag.is_processing(): if not self._body_tag.value.is_complete(): self._body_tag.value.process_action(tag, attrs) def handle_endtag(self, tag): # </form> (copy completed form into list) if self._form_tag.end(tag): if self._form_tag.value.is_complete(): self.forms.append(self._form_tag.value) self._form_tag.clear_value() # </body> elif self._body_tag.end(tag): if self._body_tag.value.is_complete(): self.global_action = self._body_tag.value # </noscript> elif self._noscript_tag.end(tag): pass # </script> elif self._script_tag.end(tag): pass # </html> (finish HTML processing, perform all onexit steps) elif tag == 'html': if self._script_tag.value: match = reScriptLocation.search(self._script_tag.value) if match: self.script = Request(match.group(1)) def handle_data(self, data): # <script> body if self._script_tag.is_processing(): self._script_tag.set_value(data) ############################################################################### # Class for retrieving HTML page actions # class PageActionsExtractor: def __init__(self, body): self.pp = None self.body = body try: self.pp = PageParser() self.pp.feed(body) except Exception as ex: logging.debug("Page not completely processed due to: %s", ex) logging.debug("see corresponded html in file: %s", log2file(body)) # do not raise here, because it happens quite often on some complex pages def get_action(self, uid=None): # Search for action with specific uid and returns Request object corresponded this action. # If uid is None, the auto-redirected action is searching, accordingly hardcoded rules. # If no any actions found, None is returned. # # uid -- can be either <form id> or <form button id>; in later case, the uid has # 'button:' prefix (e.g. for button id='login', uid='button:login') if not self.pp: return None if not uid: # looking for auto-redirected request if self.pp.script: return self.pp.script if self.pp.iframe_src: return self.pp.iframe_src if self.pp.forms and self.pp.form_auto_submit: return self.pp.forms[0] if self.pp.body_onload: return self.pp.body_onload else: # Looking for particular request if self.pp.forms: for form in self.pp.forms: if form.uid == uid: return form if self.pp.global_action: if self.pp.global_action.uid == uid: return self.pp.global_action return None ############################################################################### # Helper functions # def unescape(s): s = s.replace("&lt;", "<") s = s.replace("&gt;", ">") s = s.replace("&quot;", '"') s = s.replace("&apos;", "'") s = s.replace("&amp;", "&") return s def log2file(text): """ Pretty simple function, saves the text into temporary file and returns it's name :param text: string to log :return: temporary file name """ handle, name = tempfile.mkstemp(suffix='.html', prefix='log_', text=True) os.write(handle, text) os.close(handle) return name class HTTPRequestFromStr(BaseHTTPRequestHandler): def __init__(self, request_text): self.rfile = StringIO(request_text) self.raw_requestline = self.rfile.readline() self.error_code = self.error_message = None self.parse_request() def send_error(self, code, message): self.error_code = code self.error_message = message class HTTPResponseFromStr(HTTPResponse): def __init__(self, response_text): try: self.init(response_text) except httplib.UnknownProtocol as e: # FIXME: handle HTTP/2.0 that is 'unknown' for httplib (to check go to www.google.com) logging.debug(str(e) + " retrying with HTTP/2.0 replaced by HTTP/1.1") self.init(response_text.replace("HTTP/2.0", "HTTP/1.1")) def init(self, response_text): class FakeSocket: def __init__(self, response_str): self._file = StringIO(response_str) def makefile(self, *args, **kwargs): return self._file source = FakeSocket(response_text) HTTPResponse.__init__(self, source) self.begin()
34.204204
108
0.57489
b7a062e6c814c4c6e8a011bc6fbdc165762ba795
976
py
Python
swf/models/event/timer.py
nstott/simpleflow
483602deb745a09b59ad6e24052dd5096c54fad2
[ "MIT" ]
null
null
null
swf/models/event/timer.py
nstott/simpleflow
483602deb745a09b59ad6e24052dd5096c54fad2
[ "MIT" ]
null
null
null
swf/models/event/timer.py
nstott/simpleflow
483602deb745a09b59ad6e24052dd5096c54fad2
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright (c) 2013, Theo Crevon # Copyright (c) 2013, Greg Leclercq # # See the file LICENSE for copying permission. from swf.models.event.base import Event from swf.models.event.compiler import CompiledEvent class TimerEvent(Event): _type = 'Timer' class CompiledTimerEvent(CompiledEvent): _type = 'Timer' states = ( 'started', # A timer was started for the workflow execution 'start_failed', # Failed to process StartTimer decision 'fired', # A timer, previously started for this workflow execution, fired 'canceled', # A timer, previously started for this workflow execution, was successfully canceled 'cancel_failed', # Failed to process CancelTimer decision ) transitions = { 'started': ('canceled', 'fired'), 'start_failed': ('canceled'), 'fired': ('canceled'), 'canceled': ('cancel_failed', 'fired'), } initial_state = 'started'
27.111111
105
0.655738
8bf863d6b82169ab1fcece848f4b93149f4f9342
6,537
py
Python
test/functional/rpc_generateblock.py
WORLDKING2021/bitcoin-abc
e98dd8358d9ca5442d80ec8a1596a8c9be486c1a
[ "MIT" ]
null
null
null
test/functional/rpc_generateblock.py
WORLDKING2021/bitcoin-abc
e98dd8358d9ca5442d80ec8a1596a8c9be486c1a
[ "MIT" ]
null
null
null
test/functional/rpc_generateblock.py
WORLDKING2021/bitcoin-abc
e98dd8358d9ca5442d80ec8a1596a8c9be486c1a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. '''Test generateblock rpc. ''' from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class GenerateBlockTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] self.log.info('Generate an empty block to address') address = node.getnewaddress() hash = node.generateblock(output=address, transactions=[])['hash'] block = node.getblock(blockhash=hash, verbose=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0] ['scriptPubKey']['addresses'][0], address) self.log.info('Generate an empty block to a descriptor') hash = node.generateblock('addr(' + address + ')', [])['hash'] block = node.getblock(blockhash=hash, verbosity=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0] ['scriptPubKey']['addresses'][0], address) self.log.info( 'Generate an empty block to a combo descriptor with compressed pubkey') combo_key = '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798' combo_address = 'bchreg:qp63uahgrxged4z5jswyt5dn5v3lzsem6c6mz8vuwd' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey'] ['addresses'][0], combo_address) self.log.info( 'Generate an empty block to a combo descriptor with uncompressed pubkey') combo_key = '0408ef68c46d20596cc3f6ddf7c8794f71913add807f1dc55949fa805d764d191c0b7ce6894c126fce0babc6663042f3dde9b0cf76467ea315514e5a6731149c67' combo_address = 'bchreg:qqmagqc48ln8p7zk6ez2h64amcamr86qwqezwt52uy' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey'] ['addresses'][0], combo_address) # Generate 110 blocks to spend node.generatetoaddress(110, address) # Generate some extra mempool transactions to verify they don't get # mined for i in range(10): node.sendtoaddress(address, 0.001) self.log.info('Generate block with txid') txid = node.sendtoaddress(address, 1) hash = node.generateblock(address, [txid])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) assert_equal(block['tx'][1], txid) self.log.info('Generate block with raw tx') utxos = node.listunspent(addresses=[address]) raw = node.createrawtransaction( [{'txid': utxos[0]['txid'], 'vout':utxos[0]['vout']}], [{address: 1}]) signed_raw = node.signrawtransactionwithwallet(raw)['hex'] hash = node.generateblock(address, [signed_raw])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) txid = block['tx'][1] assert_equal(node.gettransaction(txid)['hex'], signed_raw) self.log.info('Fail to generate block with out of order txs') raw1 = node.createrawtransaction( [{'txid': txid, 'vout': 0}], [{address: 0.9999}]) signed_raw1 = node.signrawtransactionwithwallet(raw1)['hex'] txid1 = node.sendrawtransaction(signed_raw1) raw2 = node.createrawtransaction( [{'txid': txid1, 'vout': 0}], [{address: 0.999}]) signed_raw2 = node.signrawtransactionwithwallet(raw2)['hex'] txid2 = node.sendrawtransaction(signed_raw2) # Reversed CTOR txids = sorted([txid1, txid2], reverse=True) assert_raises_rpc_error(-25, 'TestBlockValidity failed: tx-ordering', node.generateblock, address, txids) self.log.info('Fail to generate block with txid not in mempool') missing_txid = '0000000000000000000000000000000000000000000000000000000000000000' assert_raises_rpc_error(-5, 'Transaction ' + missing_txid + ' not in mempool.', node.generateblock, address, [missing_txid]) self.log.info('Fail to generate block with invalid raw tx') invalid_raw_tx = '0000' assert_raises_rpc_error(-22, 'Transaction decode failed for ' + invalid_raw_tx, node.generateblock, address, [invalid_raw_tx]) self.log.info('Fail to generate block with invalid address/descriptor') assert_raises_rpc_error(-5, 'Invalid address or descriptor', node.generateblock, '1234', []) self.log.info('Fail to generate block with a ranged descriptor') ranged_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0/*)' assert_raises_rpc_error( -8, 'Ranged descriptor not accepted. Maybe pass through deriveaddresses first?', node.generateblock, ranged_descriptor, []) self.log.info( 'Fail to generate block with a descriptor missing a private key') child_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0\'/0)' assert_raises_rpc_error(-5, 'Cannot derive script without private keys', node.generateblock, child_descriptor, []) if __name__ == '__main__': GenerateBlockTest().main()
44.469388
152
0.59844
9765ab17be01169bec4312e6532afb80c5ad5807
10,118
py
Python
ml-agents/mlagents/trainers/trainer/rl_trainer.py
wjsghtjf/AI_SOOLZARI
65c05e073f7673ddec708b9e6eb58fede4d0eb5c
[ "Apache-2.0" ]
1
2021-03-31T02:36:47.000Z
2021-03-31T02:36:47.000Z
ml-agents/mlagents/trainers/trainer/rl_trainer.py
wjsghtjf/AI_SOOLZARI
65c05e073f7673ddec708b9e6eb58fede4d0eb5c
[ "Apache-2.0" ]
null
null
null
ml-agents/mlagents/trainers/trainer/rl_trainer.py
wjsghtjf/AI_SOOLZARI
65c05e073f7673ddec708b9e6eb58fede4d0eb5c
[ "Apache-2.0" ]
1
2020-08-24T11:02:57.000Z
2020-08-24T11:02:57.000Z
# # Unity ML-Agents Toolkit import os from typing import Dict, List, Optional from collections import defaultdict import abc import time import attr from mlagents.model_serialization import SerializationSettings, copy_model_files from mlagents.trainers.policy.checkpoint_manager import ( NNCheckpoint, NNCheckpointManager, ) from mlagents_envs.logging_util import get_logger from mlagents_envs.timers import timed from mlagents.trainers.optimizer import Optimizer from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.trainer import Trainer from mlagents.trainers.components.reward_signals import RewardSignalResult from mlagents_envs.timers import hierarchical_timer from mlagents.trainers.agent_processor import AgentManagerQueue from mlagents.trainers.trajectory import Trajectory from mlagents.trainers.stats import StatsPropertyType RewardSignalResults = Dict[str, RewardSignalResult] logger = get_logger(__name__) class RLTrainer(Trainer): # pylint: disable=abstract-method """ This class is the base class for trainers that use Reward Signals. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward # used for reporting only. We always want to report the environment reward to Tensorboard, regardless # of what reward signals are actually present. self.cumulative_returns_since_policy_update: List[float] = [] self.collected_rewards: Dict[str, Dict[str, int]] = { "environment": defaultdict(lambda: 0) } self.update_buffer: AgentBuffer = AgentBuffer() self._stats_reporter.add_property( StatsPropertyType.HYPERPARAMETERS, self.trainer_settings.as_dict() ) self._next_save_step = 0 self._next_summary_step = 0 def end_episode(self) -> None: """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ for rewards in self.collected_rewards.values(): for agent_id in rewards: rewards[agent_id] = 0 def _update_end_episode_stats(self, agent_id: str, optimizer: Optimizer) -> None: for name, rewards in self.collected_rewards.items(): if name == "environment": self.stats_reporter.add_stat( "Environment/Cumulative Reward", rewards.get(agent_id, 0) ) self.cumulative_returns_since_policy_update.append( rewards.get(agent_id, 0) ) self.reward_buffer.appendleft(rewards.get(agent_id, 0)) rewards[agent_id] = 0 else: self.stats_reporter.add_stat( optimizer.reward_signals[name].stat_name, rewards.get(agent_id, 0) ) rewards[agent_id] = 0 def _clear_update_buffer(self) -> None: """ Clear the buffers that have been built up during inference. """ self.update_buffer.reset_agent() @abc.abstractmethod def _is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to wether or not update_model() can be run """ return False def _policy_mean_reward(self) -> Optional[float]: """ Returns the mean episode reward for the current policy. """ rewards = self.cumulative_returns_since_policy_update if len(rewards) == 0: return None else: return sum(rewards) / len(rewards) @timed def _checkpoint(self) -> NNCheckpoint: """ Checkpoints the policy associated with this trainer. """ n_policies = len(self.policies.keys()) if n_policies > 1: logger.warning( "Trainer has multiple policies, but default behavior only saves the first." ) policy = list(self.policies.values())[0] model_path = policy.model_path settings = SerializationSettings(model_path, self.brain_name) checkpoint_path = os.path.join(model_path, f"{self.brain_name}-{self.step}") policy.checkpoint(checkpoint_path, settings) new_checkpoint = NNCheckpoint( int(self.step), f"{checkpoint_path}.nn", self._policy_mean_reward(), time.time(), ) NNCheckpointManager.add_checkpoint( self.brain_name, new_checkpoint, self.trainer_settings.keep_checkpoints ) return new_checkpoint def save_model(self) -> None: """ Saves the policy associated with this trainer. """ n_policies = len(self.policies.keys()) if n_policies > 1: logger.warning( "Trainer has multiple policies, but default behavior only saves the first." ) policy = list(self.policies.values())[0] model_checkpoint = self._checkpoint() # Copy the checkpointed model files to the final output location copy_model_files(model_checkpoint.file_path, f"{policy.model_path}.nn") final_checkpoint = attr.evolve( model_checkpoint, file_path=f"{policy.model_path}.nn" ) NNCheckpointManager.track_final_checkpoint(self.brain_name, final_checkpoint) @abc.abstractmethod def _update_policy(self) -> bool: """ Uses demonstration_buffer to update model. :return: Whether or not the policy was updated. """ pass def _increment_step(self, n_steps: int, name_behavior_id: str) -> None: """ Increment the step count of the trainer :param n_steps: number of steps to increment the step count by """ self.step += n_steps self._next_summary_step = self._get_next_interval_step(self.summary_freq) self._next_save_step = self._get_next_interval_step( self.trainer_settings.checkpoint_interval ) p = self.get_policy(name_behavior_id) if p: p.increment_step(n_steps) def _get_next_interval_step(self, interval: int) -> int: """ Get the next step count that should result in an action. :param interval: The interval between actions. """ return self.step + (interval - self.step % interval) def _write_summary(self, step: int) -> None: """ Saves training statistics to Tensorboard. """ self.stats_reporter.add_stat("Is Training", float(self.should_still_train)) self.stats_reporter.write_stats(int(step)) @abc.abstractmethod def _process_trajectory(self, trajectory: Trajectory) -> None: """ Takes a trajectory and processes it, putting it into the update buffer. :param trajectory: The Trajectory tuple containing the steps to be processed. """ self._maybe_write_summary(self.get_step + len(trajectory.steps)) self._maybe_save_model(self.get_step + len(trajectory.steps)) self._increment_step(len(trajectory.steps), trajectory.behavior_id) def _maybe_write_summary(self, step_after_process: int) -> None: """ If processing the trajectory will make the step exceed the next summary write, write the summary. This logic ensures summaries are written on the update step and not in between. :param step_after_process: the step count after processing the next trajectory. """ if self._next_summary_step == 0: # Don't write out the first one self._next_summary_step = self._get_next_interval_step(self.summary_freq) if step_after_process >= self._next_summary_step and self.get_step != 0: self._write_summary(self._next_summary_step) def _maybe_save_model(self, step_after_process: int) -> None: """ If processing the trajectory will make the step exceed the next model write, save the model. This logic ensures models are written on the update step and not in between. :param step_after_process: the step count after processing the next trajectory. """ if self._next_save_step == 0: # Don't save the first one self._next_save_step = self._get_next_interval_step( self.trainer_settings.checkpoint_interval ) if step_after_process >= self._next_save_step and self.get_step != 0: self._checkpoint() def advance(self) -> None: """ Steps the trainer, taking in trajectories and updates if ready. Will block and wait briefly if there are no trajectories. """ with hierarchical_timer("process_trajectory"): for traj_queue in self.trajectory_queues: # We grab at most the maximum length of the queue. # This ensures that even if the queue is being filled faster than it is # being emptied, the trajectories in the queue are on-policy. _queried = False for _ in range(traj_queue.qsize()): _queried = True try: t = traj_queue.get_nowait() self._process_trajectory(t) except AgentManagerQueue.Empty: break if self.threaded and not _queried: # Yield thread to avoid busy-waiting time.sleep(0.0001) if self.should_still_train: if self._is_ready_update(): with hierarchical_timer("_update_policy"): if self._update_policy(): for q in self.policy_queues: # Get policies that correspond to the policy queue in question q.put(self.get_policy(q.behavior_id)) else: self._clear_update_buffer()
41.467213
119
0.642024
8a0013f3c3b1a0bbdbf50c9623759aa62293574b
12,338
py
Python
multifew/models/fumi.py
s-a-malik/multi-few
7f7d05e51ee7630026153c4a8a7c363827418735
[ "MIT" ]
1
2021-06-02T09:10:26.000Z
2021-06-02T09:10:26.000Z
multifew/models/fumi.py
s-a-malik/multi-few
7f7d05e51ee7630026153c4a8a7c363827418735
[ "MIT" ]
11
2021-12-12T00:15:26.000Z
2022-03-30T15:44:04.000Z
multifew/models/fumi.py
s-a-malik/multi-few
7f7d05e51ee7630026153c4a8a7c363827418735
[ "MIT" ]
null
null
null
import wandb import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from collections import OrderedDict from transformers import BertModel from torchmeta.modules import MetaModule, MetaSequential, MetaLinear from torchmeta.utils.gradient_based import gradient_update_parameters from ..utils.average_meter import AverageMeter from ..utils import utils as utils from .common import WordEmbedding class FUMI(nn.Module): def __init__(self, n_way=5, im_emb_dim=2048, im_hid_dim=32, text_encoder="BERT", text_emb_dim=300, text_hid_dim=1024, dictionary=None, pooling_strat="mean", shared_feats=True): super(FUMI, self).__init__() self.n_way = n_way self.im_emb_dim = im_emb_dim self.im_hid_dim = im_hid_dim self.text_encoder_type = text_encoder self.text_emb_dim = text_emb_dim # only applicable if precomputed self.text_hid_dim = text_hid_dim self.dictionary = dictionary # for word embeddings self.pooling_strat = pooling_strat if self.text_encoder_type == "BERT": self.text_encoder = BertModel.from_pretrained('bert-base-uncased') self.text_emb_dim = self.text_encoder.config.hidden_size elif self.text_encoder_type == "precomputed": self.text_encoder = nn.Identity() elif self.text_encoder_type == "w2v" or self.text_encoder_type == "glove": # load pretrained word embeddings as weights self.text_encoder = WordEmbedding(self.text_encoder_type, self.pooling_strat, self.dictionary) self.text_emb_dim = self.text_encoder.embedding_dim elif self.text_encoder_type == "rand": self.text_encoder = nn.Linear(self.text_emb_dim, self.text_emb_dim) else: raise NameError(f"{text_encoder} not allowed as text encoder") for param in self.text_encoder.parameters(): param.requires_grad = False self.shared_feats = shared_feats if self.shared_feats: # Text embedding to image parameters self.net = nn.Sequential( nn.Linear(self.text_emb_dim, self.text_hid_dim), nn.ReLU(), nn.Linear( self.text_hid_dim, self.im_hid_dim # Weights + 1) # Biases ) # Bit of a hack to copy torch default weight initialisation self.first = nn.Linear( 1, self.im_hid_dim * self.im_emb_dim # Weights + self.im_hid_dim, # Biases bias=False) else: # Text embedding to image parameters self.net = nn.Sequential( nn.Linear(self.text_emb_dim, self.text_hid_dim), nn.ReLU(), nn.Linear( self.text_hid_dim, self.im_hid_dim * (self.im_emb_dim + 1) # Weights + self.im_hid_dim + 1) # Biases ) def forward(self, text_embed, device): im_params = self.net(text_embed) if self.shared_feats: shared_params = self.first(torch.ones(1).to(device)) bias_len = self.im_hid_dim + 1 out = torch.empty( len(text_embed), self.im_hid_dim * (self.im_emb_dim + 1) + self.im_hid_dim + 1).to(device) out[:, :bias_len - 1] = shared_params[:bias_len - 1] out[:, bias_len - 1] = im_params[:, 0] out[:, bias_len:-self.im_hid_dim] = shared_params[bias_len - 1:] out[:, -self.im_hid_dim:] = im_params[:, 1:] return out return im_params def evaluate(self, args, batch, optimizer, task="train"): """ Evaluate batch on model Returns: - outer_loss: outer loop loss - acc: accuracy on query set """ if task == "train": self.train() self.zero_grad() else: self.eval() # Support set train_inputs, train_targets = batch['train'] train_inputs = [x.to(args.device) for x in train_inputs] # train_inputs = train_inputs[3].to(device=args.device) train_targets = train_targets.to(device=args.device) # Query set test_inputs, test_targets = batch['test'] test_inputs = [x.to(args.device) for x in test_inputs] # test_inputs = test_inputs[3].to(device=args.device) test_targets = test_targets.to(device=args.device) test_preds = torch.zeros(test_targets.shape).to(device=args.device) # Unpack input if self.text_encoder_type == "BERT": _, train_texts, train_attn_masks, train_imss = train_inputs _, test_texts, test_attn_masks, test_imss = test_inputs else: _, train_texts, train_imss = train_inputs _, test_texts, test_imss = test_inputs outer_loss = torch.tensor(0., device=args.device) accuracy = torch.tensor(0., device=args.device) for task_idx, (train_target, test_target) in enumerate( zip(train_targets, test_targets)): n_steps = 0 if task == "train": n_steps = args.num_train_adapt_steps else: n_steps = args.num_test_adapt_steps if self.text_encoder_type == "BERT": im_params = self.get_im_params(train_texts[task_idx], train_target, args.device, train_attn_masks[task_idx]) else: im_params = self.get_im_params(train_texts[task_idx], train_target, args.device) for _ in range(n_steps): train_logit = self.im_forward(train_imss[task_idx], im_params) inner_loss = F.cross_entropy(train_logit, train_target) grads = torch.autograd.grad(inner_loss, im_params, create_graph=not args.first_order) im_params -= args.step_size * grads[0] test_logit = self.im_forward(test_imss[task_idx], im_params) _, test_preds[task_idx] = test_logit.max(dim=-1) outer_loss += F.cross_entropy(test_logit, test_target) with torch.no_grad(): accuracy += get_accuracy(test_logit, test_target) outer_loss.div_(train_imss.shape[0]) accuracy.div_(train_imss.shape[0]) if task == "train": optimizer.zero_grad() outer_loss.backward() optimizer.step() return outer_loss.detach().cpu().numpy(), accuracy.detach().cpu( ).numpy(), test_preds, test_targets def get_im_params(self, text, targets, device, attn_mask=None): NK, seq_len = text.shape if self.text_encoder_type == "BERT": # Need to reshape batch for BERT input bert_output = self.text_encoder(text.view(-1, seq_len), attention_mask=attn_mask.view( -1, seq_len)) # Get [CLS] token text_encoding = bert_output[1].view(NK, -1) # (N*K x 768) elif self.text_encoder_type == "rand": # Get a random tensor as the encoding text_encoding = 2 * torch.rand(NK, self.text_emb_dim) - 1 else: text_encoding = self.text_encoder(text.unsqueeze(0)).squeeze() # Transform to per-class descriptions class_text_enc = torch.empty(self.n_way, self.text_emb_dim).to(device) for i in range(self.n_way): class_text_enc[i] = text_encoding[(targets == i).nonzero( as_tuple=True)[0][0]] return self(class_text_enc, device) def im_forward(self, im_embeds, im_params): bias_len = self.im_hid_dim + 1 b_im = torch.unsqueeze(im_params[:, :bias_len], 2) w_im = im_params[:, bias_len:].view(-1, self.im_emb_dim + 1, self.im_hid_dim) a = torch.matmul(im_embeds, w_im[:, :-1]) h = F.relu(torch.transpose(a, 1, 2) + b_im[:, :-1]) a_out = torch.matmul(torch.transpose(h, 1, 2), torch.unsqueeze(w_im[:, -1], 2)) out = torch.squeeze(a_out) + b_im[:, -1] return torch.transpose(out, 0, 1) def training_run(args, model, optimizer, train_loader, val_loader, max_test_batches): """ FUMI training loop """ best_loss, best_acc = test_loop(args, model, val_loader, max_test_batches) print(f"\ninitial loss: {best_loss}, acc: {best_acc}") best_batch_idx = 0 try: # Training loop for batch_idx, batch in enumerate(train_loader): train_loss, train_acc = model.evaluate(args=args, batch=batch, optimizer=optimizer, task="train") wandb.log( { "train/acc": train_acc, "train/loss": train_loss, "num_episodes": (batch_idx + 1) * args.batch_size }, step=batch_idx) # Eval on validation set periodically if batch_idx % args.eval_freq == 0 and batch_idx != 0: val_loss, val_acc = test_loop(args, model, val_loader, max_test_batches) is_best = val_loss < best_loss if is_best: best_loss = val_loss best_batch_idx = batch_idx wandb.log({ "val/acc": val_acc, "val/loss": val_loss }, step=batch_idx) checkpoint_dict = { "batch_idx": batch_idx, "state_dict": model.state_dict(), "best_loss": best_loss, "optimizer": optimizer.state_dict(), "args": vars(args) } utils.save_checkpoint(checkpoint_dict, is_best) print( f"\nBatch {batch_idx+1}/{args.epochs}: \ntrain/loss: {train_loss}, train/acc: {train_acc}" f"\nval/loss: {val_loss}, val/acc: {val_acc}") # break after max iters or early stopping if (batch_idx > args.epochs - 1) or ( args.patience > 0 and batch_idx - best_batch_idx > args.patience): break except KeyboardInterrupt: pass return model def test_loop(args, model, test_loader, max_num_batches): """ Evaluate model on val/test set. Returns: - avg_test_acc (float): average test accuracy per task - avg_test_loss (float): average test loss per task """ avg_test_acc = AverageMeter() avg_test_loss = AverageMeter() test_preds = [] test_targets = [] for batch_idx, batch in enumerate( tqdm(test_loader, total=max_num_batches, position=0, leave=True)): test_loss, test_acc, preds, target = model.evaluate(args=args, batch=batch, optimizer=None, task="test") avg_test_acc.update(test_acc) avg_test_loss.update(test_loss) test_preds.append(preds) test_targets.append(target) if batch_idx > max_num_batches - 1: break return avg_test_loss.avg, avg_test_acc.avg, test_preds, test_targets def get_accuracy(logits, targets): _, predictions = torch.max(logits, dim=-1) return torch.mean(predictions.eq(targets).float())
39.41853
110
0.544821
dabd248b6e3e315aa5b0207d1a654e4ec32a9fe0
121
py
Python
girvan_newman/__init__.py
kindeQi/Community-Detection
623b5162fca9948d463ae1a1a8e24cbfc90125d3
[ "MIT" ]
2
2019-12-24T02:27:45.000Z
2019-12-24T02:28:00.000Z
girvan_newman/__init__.py
kindeQi/Community-Detection
623b5162fca9948d463ae1a1a8e24cbfc90125d3
[ "MIT" ]
null
null
null
girvan_newman/__init__.py
kindeQi/Community-Detection
623b5162fca9948d463ae1a1a8e24cbfc90125d3
[ "MIT" ]
null
null
null
from girvan_newman.dataset import GNDataset from girvan_newman.model import GNModel, GNBetweenessGraph, GNModularityGraph
60.5
77
0.892562
94647894288043c0f8ee8a671055617ae06d42bb
59
py
Python
fuzzybee/utils/constant.py
youtaya/knight
6899e18ca6b1ef01daaae7d7fd14b50a26aa0aee
[ "MIT" ]
null
null
null
fuzzybee/utils/constant.py
youtaya/knight
6899e18ca6b1ef01daaae7d7fd14b50a26aa0aee
[ "MIT" ]
null
null
null
fuzzybee/utils/constant.py
youtaya/knight
6899e18ca6b1ef01daaae7d7fd14b50a26aa0aee
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- GENDER = ((u'男',u'男'),(u'女',u'女'))
19.666667
34
0.40678
89076ff2730fda90ecf426d357a3512e73d20017
497
py
Python
connectDB.py
BiancaGedorio/Python-MySQLDatabase
2b7c2a95ba6492e910d86905621609dff0509789
[ "MIT" ]
null
null
null
connectDB.py
BiancaGedorio/Python-MySQLDatabase
2b7c2a95ba6492e910d86905621609dff0509789
[ "MIT" ]
null
null
null
connectDB.py
BiancaGedorio/Python-MySQLDatabase
2b7c2a95ba6492e910d86905621609dff0509789
[ "MIT" ]
null
null
null
import mysql.connector # connecting client and database server using mysql connector module conn = mysql.connector.connect(host='localhost', user='root', password='***********', database='database' ) cursor = conn.cursor() # Executing the select command. It displays all the contents in a table. cursor.execute("Select * from customers;") for x in cursor: print(x)
29.235294
72
0.545272
89504a2e0cd7ed217611b14984c731bcedc6e864
13,892
py
Python
bot/constants.py
atmishra/bot
ad1a33e80152343a81eeeabf0117ced76b83e273
[ "MIT" ]
null
null
null
bot/constants.py
atmishra/bot
ad1a33e80152343a81eeeabf0117ced76b83e273
[ "MIT" ]
null
null
null
bot/constants.py
atmishra/bot
ad1a33e80152343a81eeeabf0117ced76b83e273
[ "MIT" ]
null
null
null
""" Loads bot configuration from YAML files. By default, this simply loads the default configuration located at `config-default.yml`. If a file called `config.yml` is found in the project directory, the default configuration is recursively updated with any settings from the custom configuration. Any settings left out in the custom user configuration will stay their default values from `config-default.yml`. """ import logging import os from collections.abc import Mapping from enum import Enum from pathlib import Path from typing import Dict, List import yaml log = logging.getLogger(__name__) def _env_var_constructor(loader, node): """ Implements a custom YAML tag for loading optional environment variables. If the environment variable is set, returns the value of it. Otherwise, returns `None`. Example usage in the YAML configuration: # Optional app configuration. Set `MY_APP_KEY` in the environment to use it. application: key: !ENV 'MY_APP_KEY' """ default = None # Check if the node is a plain string value if node.id == 'scalar': value = loader.construct_scalar(node) key = str(value) else: # The node value is a list value = loader.construct_sequence(node) if len(value) >= 2: # If we have at least two values, then we have both a key and a default value default = value[1] key = value[0] else: # Otherwise, we just have a key key = value[0] return os.getenv(key, default) def _join_var_constructor(loader, node): """ Implements a custom YAML tag for concatenating other tags in the document to strings. This allows for a much more DRY configuration file. """ fields = loader.construct_sequence(node) return "".join(str(x) for x in fields) yaml.SafeLoader.add_constructor("!ENV", _env_var_constructor) yaml.SafeLoader.add_constructor("!JOIN", _join_var_constructor) # Pointing old tag to !ENV constructor to avoid breaking existing configs yaml.SafeLoader.add_constructor("!REQUIRED_ENV", _env_var_constructor) with open("config-default.yml", encoding="UTF-8") as f: _CONFIG_YAML = yaml.safe_load(f) def _recursive_update(original, new): """ Helper method which implements a recursive `dict.update` method, used for updating the original configuration with configuration specified by the user. """ for key, value in original.items(): if key not in new: continue if isinstance(value, Mapping): if not any(isinstance(subvalue, Mapping) for subvalue in value.values()): original[key].update(new[key]) _recursive_update(original[key], new[key]) else: original[key] = new[key] if Path("config.yml").exists(): log.info("Found `config.yml` file, loading constants from it.") with open("config.yml", encoding="UTF-8") as f: user_config = yaml.safe_load(f) _recursive_update(_CONFIG_YAML, user_config) def check_required_keys(keys): """ Verifies that keys that are set to be required are present in the loaded configuration. """ for key_path in keys: lookup = _CONFIG_YAML try: for key in key_path.split('.'): lookup = lookup[key] if lookup is None: raise KeyError(key) except KeyError: log.critical( f"A configuration for `{key_path}` is required, but was not found. " "Please set it in `config.yml` or setup an environment variable and try again." ) raise try: required_keys = _CONFIG_YAML['config']['required_keys'] except KeyError: pass else: check_required_keys(required_keys) class YAMLGetter(type): """ Implements a custom metaclass used for accessing configuration data by simply accessing class attributes. Supports getting configuration from up to two levels of nested configuration through `section` and `subsection`. `section` specifies the YAML configuration section (or "key") in which the configuration lives, and must be set. `subsection` is an optional attribute specifying the section within the section from which configuration should be loaded. Example Usage: # config.yml bot: prefixes: direct_message: '' guild: '!' # config.py class Prefixes(metaclass=YAMLGetter): section = "bot" subsection = "prefixes" # Usage in Python code from config import Prefixes def get_prefix(bot, message): if isinstance(message.channel, PrivateChannel): return Prefixes.direct_message return Prefixes.guild """ subsection = None def __getattr__(cls, name): name = name.lower() try: if cls.subsection is not None: return _CONFIG_YAML[cls.section][cls.subsection][name] return _CONFIG_YAML[cls.section][name] except KeyError: dotted_path = '.'.join( (cls.section, cls.subsection, name) if cls.subsection is not None else (cls.section, name) ) log.critical(f"Tried accessing configuration variable at `{dotted_path}`, but it could not be found.") raise def __getitem__(cls, name): return cls.__getattr__(name) # Dataclasses class Bot(metaclass=YAMLGetter): section = "bot" prefix: str token: str class Filter(metaclass=YAMLGetter): section = "filter" filter_zalgo: bool filter_invites: bool filter_domains: bool watch_rich_embeds: bool watch_words: bool watch_tokens: bool # Notifications are not expected for "watchlist" type filters notify_user_zalgo: bool notify_user_invites: bool notify_user_domains: bool ping_everyone: bool guild_invite_whitelist: List[int] domain_blacklist: List[str] word_watchlist: List[str] token_watchlist: List[str] channel_whitelist: List[int] role_whitelist: List[int] class Cooldowns(metaclass=YAMLGetter): section = "bot" subsection = "cooldowns" tags: int class Colours(metaclass=YAMLGetter): section = "style" subsection = "colours" soft_red: int soft_green: int soft_orange: int class DuckPond(metaclass=YAMLGetter): section = "duck_pond" threshold: int custom_emojis: List[int] class Emojis(metaclass=YAMLGetter): section = "style" subsection = "emojis" defcon_disabled: str # noqa: E704 defcon_enabled: str # noqa: E704 defcon_updated: str # noqa: E704 status_online: str status_offline: str status_idle: str status_dnd: str bullet: str new: str pencil: str cross_mark: str ducky_yellow: int ducky_blurple: int ducky_regal: int ducky_camo: int ducky_ninja: int ducky_devil: int ducky_tube: int upvotes: str comments: str user: str class Icons(metaclass=YAMLGetter): section = "style" subsection = "icons" crown_blurple: str crown_green: str crown_red: str defcon_denied: str # noqa: E704 defcon_disabled: str # noqa: E704 defcon_enabled: str # noqa: E704 defcon_updated: str # noqa: E704 filtering: str guild_update: str hash_blurple: str hash_green: str hash_red: str message_bulk_delete: str message_delete: str message_edit: str sign_in: str sign_out: str token_removed: str user_ban: str user_unban: str user_update: str user_mute: str user_unmute: str user_verified: str user_warn: str pencil: str remind_blurple: str remind_green: str remind_red: str questionmark: str superstarify: str unsuperstarify: str class CleanMessages(metaclass=YAMLGetter): section = "bot" subsection = "clean" message_limit: int class Categories(metaclass=YAMLGetter): section = "guild" subsection = "categories" python_help: int class Channels(metaclass=YAMLGetter): section = "guild" subsection = "channels" admins: int admin_spam: int announcements: int big_brother_logs: int bot: int checkpoint_test: int defcon: int devlog: int devtest: int esoteric: int help_0: int help_1: int help_2: int help_3: int help_4: int help_5: int help_6: int help_7: int helpers: int message_log: int meta: int mod_spam: int mods: int mod_alerts: int modlog: int off_topic_0: int off_topic_1: int off_topic_2: int organisation: int python: int reddit: int talent_pool: int userlog: int user_event_a: int verification: int class Webhooks(metaclass=YAMLGetter): section = "guild" subsection = "webhooks" talent_pool: int big_brother: int reddit: int duck_pond: int class Roles(metaclass=YAMLGetter): section = "guild" subsection = "roles" admin: int announcements: int champion: int contributor: int core_developer: int helpers: int jammer: int moderator: int muted: int owner: int partners: int rockstars: int team_leader: int verified: int # This is the Developers role on PyDis, here named verified for readability reasons. class Guild(metaclass=YAMLGetter): section = "guild" id: int ignored: List[int] staff_channels: List[int] class Keys(metaclass=YAMLGetter): section = "keys" site_api: str class URLs(metaclass=YAMLGetter): section = "urls" # Snekbox endpoints snekbox_eval_api: str # Discord API endpoints discord_api: str discord_invite_api: str # Misc endpoints bot_avatar: str github_bot_repo: str # Site endpoints site: str site_api: str site_superstarify_api: str site_logs_api: str site_logs_view: str site_reminders_api: str site_reminders_user_api: str site_schema: str site_settings_api: str site_tags_api: str site_user_api: str site_user_complete_api: str site_infractions: str site_infractions_user: str site_infractions_type: str site_infractions_by_id: str site_infractions_user_type_current: str site_infractions_user_type: str paste_service: str class Reddit(metaclass=YAMLGetter): section = "reddit" subreddits: list class Wolfram(metaclass=YAMLGetter): section = "wolfram" user_limit_day: int guild_limit_day: int key: str class AntiSpam(metaclass=YAMLGetter): section = 'anti_spam' clean_offending: bool ping_everyone: bool punishment: Dict[str, Dict[str, int]] rules: Dict[str, Dict[str, int]] class AntiMalware(metaclass=YAMLGetter): section = "anti_malware" whitelist: list class BigBrother(metaclass=YAMLGetter): section = 'big_brother' log_delay: int header_message_limit: int class Free(metaclass=YAMLGetter): section = 'free' activity_timeout: int cooldown_rate: int cooldown_per: float class Mention(metaclass=YAMLGetter): section = 'mention' message_timeout: int reset_delay: int class RedirectOutput(metaclass=YAMLGetter): section = 'redirect_output' delete_invocation: bool delete_delay: int class Event(Enum): """ Event names. This does not include every event (for example, raw events aren't here), but only events used in ModLog for now. """ guild_channel_create = "guild_channel_create" guild_channel_delete = "guild_channel_delete" guild_channel_update = "guild_channel_update" guild_role_create = "guild_role_create" guild_role_delete = "guild_role_delete" guild_role_update = "guild_role_update" guild_update = "guild_update" member_join = "member_join" member_remove = "member_remove" member_ban = "member_ban" member_unban = "member_unban" member_update = "member_update" message_delete = "message_delete" message_edit = "message_edit" # Debug mode DEBUG_MODE = True if 'local' in os.environ.get("SITE_URL", "local") else False # Paths BOT_DIR = os.path.dirname(__file__) PROJECT_ROOT = os.path.abspath(os.path.join(BOT_DIR, os.pardir)) # Default role combinations MODERATION_ROLES = Roles.moderator, Roles.admin, Roles.owner STAFF_ROLES = Roles.helpers, Roles.moderator, Roles.admin, Roles.owner # Roles combinations STAFF_CHANNELS = Guild.staff_channels # Default Channel combinations MODERATION_CHANNELS = Channels.admins, Channels.admin_spam, Channels.mod_alerts, Channels.mods, Channels.mod_spam # Bot replies NEGATIVE_REPLIES = [ "Noooooo!!", "Nope.", "I'm sorry Dave, I'm afraid I can't do that.", "I don't think so.", "Not gonna happen.", "Out of the question.", "Huh? No.", "Nah.", "Naw.", "Not likely.", "No way, José.", "Not in a million years.", "Fat chance.", "Certainly not.", "NEGATORY.", "Nuh-uh.", "Not in my house!", ] POSITIVE_REPLIES = [ "Yep.", "Absolutely!", "Can do!", "Affirmative!", "Yeah okay.", "Sure.", "Sure thing!", "You're the boss!", "Okay.", "No problem.", "I got you.", "Alright.", "You got it!", "ROGER THAT", "Of course!", "Aye aye, cap'n!", "I'll allow it.", ] ERROR_REPLIES = [ "Please don't do that.", "You have to stop.", "Do you mind?", "In the future, don't do that.", "That was a mistake.", "You blew it.", "You're bad at computers.", "Are you trying to kill me?", "Noooooo!!", "I can't believe you've done this", ]
22.478964
114
0.657429
e0061703b112d00472fb09a4e28a3d4ad9804f01
998
py
Python
dns_check.py
Nexterum/cert-bot-dns
fa69b4effe479ab82af8445ed79cb00562a7a9e4
[ "MIT" ]
null
null
null
dns_check.py
Nexterum/cert-bot-dns
fa69b4effe479ab82af8445ed79cb00562a7a9e4
[ "MIT" ]
null
null
null
dns_check.py
Nexterum/cert-bot-dns
fa69b4effe479ab82af8445ed79cb00562a7a9e4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import dns.resolver from time import sleep def wait_dns_update(d_name: str, text: str, sub: str = "_acme-challenge", interval: int = 60): sleep(interval) for x in range(100): if check_record(d_name, text, sub): sleep(interval) exit(0) else: sleep(interval) def check_record(d_name: str, text: str, sub: str = "_acme-challenge"): try: answers = dns.resolver.query(sub + '.' + d_name, 'TXT') print(' query qname:', answers.qname, ' num ans.', len(answers)) for rdata in answers: for txt_string in rdata.strings: if txt_string.decode("utf-8") == text: return True else: return False except dns.resolver.NXDOMAIN: print("Couldn't find any records (NXDOMAIN)") return False except dns.resolver.NoAnswer: print("Couldn't find any records (NoAnswer)") return False
30.242424
94
0.576152
64677cd5a6d2b800f3db67fbb8e28f96e90f883a
14,164
py
Python
modules.py
liqichen6688/duo-transformer
c718d59100c24b8f7f0a04ed01d563a882f4277d
[ "Apache-2.0" ]
null
null
null
modules.py
liqichen6688/duo-transformer
c718d59100c24b8f7f0a04ed01d563a882f4277d
[ "Apache-2.0" ]
5
2020-01-28T23:13:35.000Z
2022-02-10T00:46:40.000Z
modules.py
liqichen6688/duo-transformer
c718d59100c24b8f7f0a04ed01d563a882f4277d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- #/usr/bin/python3 ''' Feb. 2019 by kyubyong park. kbpark.linguist@gmail.com. https://www.github.com/kyubyong/transformer. Building blocks for Transformer ''' import numpy as np import tensorflow as tf def ln(inputs, epsilon = 1e-8, scope="ln"): '''Applies layer normalization. See https://arxiv.org/abs/1607.06450. inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`. epsilon: A floating number. A very small number for preventing ZeroDivision Error. scope: Optional scope for `variable_scope`. Returns: A tensor with the same shape and data dtype as `inputs`. ''' with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): inputs_shape = inputs.get_shape() params_shape = inputs_shape[-1:] mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True) beta= tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer()) gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer()) normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) ) outputs = gamma * normalized + beta return outputs def get_token_embeddings(vocab_size, num_units, scope=0,zero_pad=True): '''Constructs token embedding matrix. Note that the column of index 0's are set to zeros. vocab_size: scalar. V. num_units: embedding dimensionalty. E. zero_pad: Boolean. If True, all the values of the first row (id = 0) should be constant zero To apply query/key masks easily, zero pad is turned on. Returns weight variable: (V, E) ''' with tf.variable_scope("shared_weight_matrix"+str(scope)): embeddings = tf.get_variable('weight_mat', dtype=tf.float32, shape=(vocab_size, num_units), initializer=tf.contrib.layers.xavier_initializer()) if zero_pad: embeddings = tf.concat((tf.zeros(shape=[1, num_units]), embeddings[1:, :]), 0) return embeddings def scaled_dot_product_attention(Q, K, V, key_masks, causality=False, dropout_rate=0., training=True, scope="scaled_dot_product_attention", memory=False): '''See 3.2.1. Q: Packed queries. 3d tensor. [N, T_q, d_k]. K: Packed keys. 3d tensor. [N, T_k, d_k]. V: Packed values. 3d tensor. [N, T_k, d_v]. key_masks: A 2d tensor with shape of [N, key_seqlen] causality: If True, applies masking for future blinding dropout_rate: A floating point number of [0, 1]. training: boolean for controlling droput scope: Optional scope for `variable_scope`. ''' with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): d_k = Q.get_shape().as_list()[-1] d_v = V.get_shape().as_list()[-1] # dot product #outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k) K = mask(K, key_masks=key_masks, type="key", zero=True) V = mask(V, key_masks=key_masks, type="key", zero=True) if not memory: Q = mask(Q, key_masks=key_masks, type="key", zero=True) # scale #outputs /= d_k ** 0.5 # key masking #outputs = mask(outputs, key_masks=key_masks, type="key") # causality or future blinding masking if causality: outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1]) / d_k ** 0.5) # (N, T_q, T_k) outputs = mask(outputs, type="future") outputs = tf.nn.softmax(outputs) outputs = tf.matmul(outputs, V) # (N, T_q, d_v) else: #length = tf.reduce_sum(1 - tf.to_float(key_masks), axis=-1, keepdims=True) #length = tf.expand_dims(length, 2) #length = tf.tile(length, [1, d_k, d_v]) duo = tf.matmul(tf.transpose(K, [0, 2, 1]), V) outputs = tf.nn.relu(tf.matmul(Q, duo)) # softmax #outputs = tf.nn.softmax(outputs) #attention = tf.transpose(outputs, [0, 2, 1]) #tf.summary.image("attention", tf.expand_dims(attention[:1], -1)) # # query masking # outputs = mask(outputs, Q, K, type="query") # dropout outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training) # weighted sum (context vectors) #outputs = tf.matmul(outputs, V) # (N, T_q, d_v) return outputs def future_mask(Q, K, V): duo = 0 outputs = [] for i in range(100): duo += tf.matmul(tf.transpose(K[:, i:i+1, :], [0, 2, 1]),V[:, i:i+1, :]) outputs.append(tf.matmul(Q[:, i:i+1, :], duo/(i+1))) outputs = tf.concat(outputs, axis=-2) return outputs #print(Q.get_shape().as_list()) #d_q = Q.get_shape().as_list()[-2] #for i in range(100): # outputs.append(ln(tf.matmul(tf.matmul(Q[:, i:i+1, :], tf.transpose(K[:, :i+1, :], [0, 2, 1])), V[:, :i+1, :]),scope='in')) #outputs = tf.concat(outputs, axis=-2) #return outputs def mask(inputs, key_masks=None, type=None, zero=False): """Masks paddings on keys or queries to inputs inputs: 3d tensor. (h*N, T_q, T_k) key_masks: 3d tensor. (N, 1, T_k) type: string. "key" | "future" e.g., >> inputs = tf.zeros([2, 2, 3], dtype=tf.float32) >> key_masks = tf.constant([[0., 0., 1.], [0., 1., 1.]]) >> mask(inputs, key_masks=key_masks, type="key") array([[[ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09], [ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09]], [[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09], [ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09]], [[ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09], [ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09]], [[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09], [ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09]]], dtype=float32) """ padding_num = -2 ** 32 + 1 if type in ("k", "key", "keys"): key_masks = tf.to_float(key_masks) key_masks = tf.tile(key_masks, [tf.shape(inputs)[0] // tf.shape(key_masks)[0], 1]) # (h*N, seqlen) #key_masks = tf.expand_dims(key_masks, 1) # (h*N, 1, seqlen) key_masks = tf.tile(tf.expand_dims(key_masks, 2),[1, 1, tf.shape(inputs)[-1]]) if zero: outputs = inputs * (1. - key_masks) else: outputs = inputs + key_masks * padding_num # elif type in ("q", "query", "queries"): # # Generate masks # masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1)) # (N, T_q) # masks = tf.expand_dims(masks, -1) # (N, T_q, 1) # masks = tf.tile(masks, [1, 1, tf.shape(keys)[1]]) # (N, T_q, T_k) # # # Apply masks to inputs # outputs = inputs*masks elif type in ("f", "future", "right"): diag_vals = tf.ones_like(inputs[0, :, :]) # (T_q, T_k) tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k) future_masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1]) # (N, T_q, T_k) paddings = tf.ones_like(future_masks) * padding_num outputs = tf.where(tf.equal(future_masks, 0), paddings, inputs) else: print("Check if you entered type correctly!") return outputs def multihead_attention(queries, keys, values, key_masks, num_heads=8, dropout_rate=0, training=True, causality=False, scope="multihead_attention", memory=False): '''Applies multihead attention. See 3.2.2 queries: A 3d tensor with shape of [N, T_q, d_model]. keys: A 3d tensor with shape of [N, T_k, d_model]. values: A 3d tensor with shape of [N, T_k, d_model]. key_masks: A 2d tensor with shape of [N, key_seqlen] num_heads: An int. Number of heads. dropout_rate: A floating point number. training: Boolean. Controller of mechanism for dropout. causality: Boolean. If true, units that reference the future are masked. scope: Optional scope for `variable_scope`. Returns A 3d tensor with shape of (N, T_q, C) ''' d_model = queries[0].get_shape().as_list()[-1] with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): # Linear projections1 Q1 = tf.layers.dense(queries[0], d_model, use_bias=True) # (N, T_q, d_model) K = tf.layers.dense(keys, d_model, use_bias=True) # (N, T_k, d_model) V = tf.layers.dense(values, d_model, use_bias=True) # (N, T_k, d_model) Q2 = tf.layers.dense(queries[1], d_model, use_bias=True) # (N, T_k, d_model) # Split and concat1 Q1_ = tf.concat(tf.split(Q1, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) Q2_ = tf.concat(tf.split(Q2, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) ## Linear projections2 #Q2 = tf.layers.dense(queries[1], d_model, use_bias=True) # (N, T_q, d_model) #K2 = tf.layers.dense(keys[1], d_model, use_bias=True) # (N, T_k, d_model) #V2 = tf.layers.dense(values[1], d_model, use_bias=True) # (N, T_k, d_model) # ## Split and concat2 #Q2_ = tf.concat(tf.split(Q2, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) #K2_ = tf.concat(tf.split(K2, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) #V2_ = tf.concat(tf.split(V2, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) # Attention outputs1 = scaled_dot_product_attention(Q1_, K_, V_, key_masks, causality, dropout_rate, training, memory=memory) outputs2 = scaled_dot_product_attention(Q2_, V_, K_, key_masks, causality, dropout_rate, training, memory=memory) # Restore shape outputs1 = tf.concat(tf.split(outputs1, num_heads, axis=0), axis=2 ) # (N, T_q, d_model) outputs2 = tf.concat(tf.split(outputs2, num_heads, axis=0), axis=2) # (N, T_q, d_model) # Residual connection outputs1 += queries[0] outputs2 += queries[1] # Normalize outputs1 = ln(outputs1) outputs2 = ln(outputs2) return outputs1, outputs2 def ff(inputs, num_units, scope="positionwise_feedforward"): '''position-wise feed forward net. See 3.3 inputs: A 3d tensor with shape of [N, T, C]. num_units: A list of two integers. scope: Optional scope for `variable_scope`. Returns: A 3d tensor with the same shape and dtype as inputs ''' with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): # Inner layer outputs = tf.layers.dense(inputs, num_units[0], activation=tf.nn.relu) # Outer layer outputs = tf.layers.dense(outputs, num_units[1]) # Residual connection outputs += inputs # Normalize outputs = ln(outputs) return outputs def label_smoothing(inputs, epsilon=0.1): '''Applies label smoothing. See 5.4 and https://arxiv.org/abs/1512.00567. inputs: 3d tensor. [N, T, V], where V is the number of vocabulary. epsilon: Smoothing rate. For example, ``` import tensorflow as tf inputs = tf.convert_to_tensor([[[0, 0, 1], [0, 1, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [0, 1, 0]]], tf.float32) outputs = label_smoothing(inputs) with tf.Session() as sess: print(sess.run([outputs])) >> [array([[[ 0.03333334, 0.03333334, 0.93333334], [ 0.03333334, 0.93333334, 0.03333334], [ 0.93333334, 0.03333334, 0.03333334]], [[ 0.93333334, 0.03333334, 0.03333334], [ 0.93333334, 0.03333334, 0.03333334], [ 0.03333334, 0.93333334, 0.03333334]]], dtype=float32)] ``` ''' V = inputs.get_shape().as_list()[-1] # number of channels return ((1-epsilon) * inputs) + (epsilon / V) def positional_encoding(inputs, maxlen, masking=True, scope="positional_encoding"): '''Sinusoidal Positional_Encoding. See 3.5 inputs: 3d tensor. (N, T, E) maxlen: scalar. Must be >= T masking: Boolean. If True, padding positions are set to zeros. scope: Optional scope for `variable_scope`. returns 3d tensor that has the same shape as inputs. ''' E = inputs.get_shape().as_list()[-1] # static N, T = tf.shape(inputs)[0], tf.shape(inputs)[1] # dynamic with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): # position indices position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) # (N, T) # First part of the PE function: sin and cos argument position_enc = np.array([ [pos / np.power(10000, (i-i%2)/E) for i in range(E)] for pos in range(maxlen)]) # Second part, apply the cosine to even columns and sin to odds. position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) # dim 2i position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # dim 2i+1 position_enc = tf.convert_to_tensor(position_enc, tf.float32) # (maxlen, E) # lookup outputs = tf.nn.embedding_lookup(position_enc, position_ind) # masks if masking: outputs = tf.where(tf.equal(inputs, 0), inputs, outputs) return tf.to_float(outputs) def noam_scheme(init_lr, global_step, warmup_steps=4000.): '''Noam scheme learning rate decay init_lr: initial learning rate. scalar. global_step: scalar. warmup_steps: scalar. During warmup_steps, learning rate increases until it reaches init_lr. ''' step = tf.cast(global_step + 1, dtype=tf.float32) return init_lr * warmup_steps ** 0.5 * tf.minimum(step * warmup_steps ** -1.5, step ** -0.5)
39.344444
131
0.587616
a2fbb6db6ecd4a3c6c550e7f6a9e61792b2b6a16
13,383
py
Python
lib/modules/python/collection/osx/imessage_dump.py
terrorizer1980/Empire
9259e5106986847d2bb770c4289c0c0f1adf2344
[ "BSD-3-Clause" ]
49
2015-09-02T15:20:09.000Z
2022-03-05T18:18:23.000Z
lib/modules/python/collection/osx/imessage_dump.py
rmusser01/Empire
c1bdbd0fdafd5bf34760d5b158dfd0db2bb19556
[ "BSD-3-Clause" ]
1
2020-11-04T08:15:12.000Z
2020-11-04T08:15:12.000Z
lib/modules/python/collection/osx/imessage_dump.py
InfinitelyFreedom/Empire
3a922f60d92658fb716efb3be5a1c15074114766
[ "BSD-3-Clause" ]
24
2015-09-08T11:45:23.000Z
2022-02-07T23:53:58.000Z
#!/usr/bin/env python3 from builtins import object from builtins import str class Module(object): def __init__(self, mainMenu, params=[]): # metadata info about the module, not modified during runtime self.info = { # name for the module that will appear in module menus 'Name': 'iMessageDump', # list of one or more authors for the module 'Author': ['Alex Rymdeko-Harvey', '@Killswitch-GUI'], # more verbose multi-line description of the module 'Description': 'This module will enumerate the entire chat and IMessage SQL Database.', 'Software': '', 'Techniques': ['T1081'], # True if the module needs to run in the background 'Background' : False, # File extension to save the file as 'OutputExtension' : "", # if the module needs administrative privileges 'NeedsAdmin' : False, # True if the method doesn't touch disk/is reasonably opsec safe 'OpsecSafe' : True, # Use on disk execution method, rather than a dynamic exec method 'RunOnDisk' : False, # the module language 'Language' : 'python', # the minimum language version needed 'MinLanguageVersion' : '2.6', # list of any references/other comments 'Comments': [ 'Using SQLite3 iMessage has a decent standard to correlate users to messages and isnt encrypted.' ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'Agent to run from.', 'Required' : True, 'Value' : '' }, 'Messages' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'The number of messages to enumerate from most recent.', 'Required' : True, 'Value' : '10' }, 'Search' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'Enable a find keyword to search for within the iMessage Database.', 'Required' : False, 'Value' : '' }, 'Debug' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'Enable a find keyword to search for within the iMessage Database.', 'Required' : True, 'Value' : 'False' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu # During instantiation, any settable option parameters # are passed as an object set to the module and the # options dictionary is automatically set. This is mostly # in case options are passed on the command line if params: for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self, obfuscate=False, obfuscationCommand=""): count = self.options['Messages']['Value'] script = "count = " + str(count) + '\n' if self.options['Debug']['Value']: debug = self.options['Debug']['Value'] script += "debug = " + str(debug) + '\n' if self.options['Search']['Value']: search = self.options['Search']['Value'] script += 'searchPhrase = "' + str(search) + '"\n' script += """ try: if searchPhrase: searchMessage = True except: searchMessage = False searchPhrase = "" try: class imessage_dump(): def __init__(self): try: print("[*] Message Enumeration Started!") except Exception as e: print(e) def func(self, count, searchMessage, debug, searchPhrase): try: import sqlite3 from os.path import expanduser home = expanduser("~") + '/Library/Messages/chat.db' # Open the database handle for the user conn = sqlite3.connect(home) cur = conn.cursor() # Query Date, Text message and place it into a array cur.execute("SELECT date,text,service,account,ROWID FROM message;") # execute the data enum statment = cur.fetchall() # handle: Table links the number, country, type to the chat ID # SELECT * FROM handle # ex: (2, u'+12150000000', u'US', u'iMessage', None) cur.execute("SELECT ROWID,id,country,service FROM handle") handle = cur.fetchall() # chat_message_join: Links the chat ID to the Text ID (sequency number) # SELECT * FROM chat_message_join cur.execute("SELECT chat_id,message_id FROM chat_message_join") messageLink = cur.fetchall() #cur.execute("SELECT account_id,service_center,chat_identifier FROM chat") #GuidData = cur.fetchall() # Itterate over data dictList = [] count = count * -1 for item in statment[count:]: try: for messageid in messageLink: # simple declare to prvent empty values if str(messageid[1]) == str(item[4]): chatid = messageid[0] for rowid in handle: if str(rowid[0]) == str(chatid): if rowid[1]: Number = str(rowid[1]) if rowid[2]: Country = str(rowid[2]) if rowid[3]: Type = str(rowid[3]) epoch = self.TimeConv(item[0], debug) line = {} try: if item[4]: line['ROWID'] = str(item[4]) if item[2]: line['Service'] = str(item[2]) if item[3]: line['Account'] = str(item[3]) if epoch: line['Date'] = str(epoch) if Number: line['Number'] = str(Number) if Country: line['Country'] = str(Country) if Type: line['Type'] = str(Type) if item[1]: line['Message'] = str(self.RemoveUnicode(item[1])) except Exception as e: if debug: print(" [Debug] Issues with object creation (line 55): " + str(e)) dictList.append(line) except Exception as e: if debug: print(" [Debug] Isssue at object creation (line 40): " + str(e)) pass print(e) conn.close() x = 0 for dic in dictList: try: if searchMessage: # check for phrase in message try: if dic['Message']: Msg = dic['Message'].lower() if Msg.find(searchPhrase.lower()) != -1: for key in list(dic.keys()): print(" %s : %s" %(key, dic[key])) x += 1 print('') except Exception as e: if debug: print(" [Debug] At Decode of Dict item for Message search (line 180): " + str(e)) pass else: for key in list(dic.keys()): try: print(" %s : %s" %(key, dic[key])) except Exception as e: if debug: print(" [Debug] At Decode of Dict item (line 180): " + str(e)) pass print('') except Exception as e: print("[!] Issue Decoding Dict Item: " + str(e)) if searchMessage: print("[!] Messages Matching Phrase: " + str(x)) print("[!] Messages in DataStore: " + str(len(statment))) count = count * -1 print("[!] Messages Enumerated: " + str(count)) except Exception as e: print(e) # Close the Database handle def TimeConv(self, epoch, debug): import datetime try: d = datetime.datetime.strptime("01-01-2001", "%m-%d-%Y") time = (d + datetime.timedelta(seconds=epoch)).strftime("%a, %d %b %Y %H:%M:%S GMT") return time except Exception as e: if debug: print(" [Debug] Issues Decoding epoch time: " + str(e)) def RemoveUnicode(self, string): import re try: string_data = string if string_data is None: return string_data if isinstance(string_data, str): string_data = str(string_data.decode('ascii', 'ignore')) else: string_data = string_data.encode('ascii', 'ignore') remove_ctrl_chars_regex = re.compile(r'[^\x20-\x7e]') CleanString = remove_ctrl_chars_regex.sub('', string_data) return CleanString except Exception as e: p = '[!] UTF8 Decoding issues Matching: ' + str(e) print(p) im = imessage_dump() im.func(count, searchMessage, debug, searchPhrase) except Exception as e: print(e)""" # add any arguments to the end exec return script # handle: Table links the number, country, type to the chat ID # SELECT * FROM handle # chat_message_join: Links the chat ID to the Text ID (sequency number) # SELECT * FROM chat_message_join # INTEGER: A signed integer up to 8 bytes depending on the magnitude of the value. # REAL: An 8-byte floating point value. # TEXT: A text string, typically UTF-8 encoded (depending on the database encoding). # BLOB: A blob of data (binary large object) for storing binary data. # NULL: A NULL value, represents missing data or an empty cell. # SQLITE3 message laylout: # (u'table', u'message', u'message', 5, u'CREATE TABLE message (ROWID INTEGER PRIMARY KEY AUTOINCREMENT, # guid TEXT UNIQUE NOT NULL, text TEXT, replace INTEGER DEFAULT 0, service_center TEXT, handle_id INTEGER DEFAULT 0, # subject TEXT, country TEXT, attributedBody BLOB, version INTEGER DEFAULT 0, type INTEGER DEFAULT 0, service TEXT, # account TEXT, account_guid TEXT, error INTEGER DEFAULT 0, date INTEGER, date_read INTEGER, date_delivered INTEGER, # is_delivered INTEGER DEFAULT 0, is_finished INTEGER DEFAULT 0, is_emote INTEGER DEFAULT 0, is_from_me INTEGER DEFAULT 0, # is_empty INTEGER DEFAULT 0, is_delayed INTEGER DEFAULT 0, is_auto_reply INTEGER DEFAULT 0, is_prepared INTEGER DEFAULT 0, # is_read INTEGER DEFAULT 0, is_system_message INTEGER DEFAULT 0, is_sent INTEGER DEFAULT 0, has_dd_results INTEGER DEFAULT 0, # is_service_message INTEGER DEFAULT 0, is_forward INTEGER DEFAULT 0, was_downgraded INTEGER DEFAULT 0, is_archive INTEGER DEFAULT 0, # cache_has_attachments INTEGER DEFAULT 0, cache_roomnames TEXT, was_data_detected INTEGER DEFAULT 0, was_deduplicated INTEGER DEFAULT 0, # is_audio_message INTEGER DEFAULT 0, is_played INTEGER DEFAULT 0, date_played INTEGER, item_type INTEGER DEFAULT 0, # other_handle INTEGER DEFAULT 0, group_title TEXT, group_action_type INTEGER DEFAULT 0, share_status INTEGER DEFAULT 0, # share_direction INTEGER DEFAULT 0, is_expirable INTEGER DEFAULT 0, expire_state INTEGER DEFAULT 0, message_action_type INTEGER DEFAULT 0, # message_source INTEGER DEFAULT 0)')
46.46875
139
0.496824
de8e378e9f6b59dcf521f5669f093920895a448f
28,696
py
Python
caffe2onnx/src/caffe2onnx.py
kumardesappan/caffe2onnx
b7e73feed3bbc5ddbdf25b87af93a2bae596055d
[ "BSD-3-Clause" ]
null
null
null
caffe2onnx/src/caffe2onnx.py
kumardesappan/caffe2onnx
b7e73feed3bbc5ddbdf25b87af93a2bae596055d
[ "BSD-3-Clause" ]
null
null
null
caffe2onnx/src/caffe2onnx.py
kumardesappan/caffe2onnx
b7e73feed3bbc5ddbdf25b87af93a2bae596055d
[ "BSD-3-Clause" ]
1
2022-01-20T05:18:29.000Z
2022-01-20T05:18:29.000Z
import copy import numpy as np from onnx import helper import onnx from . import OPs as op from .c2oObject import * from .op_layer_info import * class Caffe2Onnx(): def __init__(self,net,model,onnxname): # Initialize a c2oGraph object self.onnxmodel = c2oGraph(onnxname) # Network and parameters self._NetLayer = self.__getNetLayer(net) self._ModelLayer = self.__getModelLayer(model) # Model input name and input dimension self.model_input_name = [] self.model_input_shape = [] # Node list self.__n = 0 self.NodeList = [] # Get layer list LayerList = self.__addInputsTVIandGetLayerList(net) self.__getNodeList(LayerList) self.__addOutputsTVIandValueInfo() # Get the network layer def __getNetLayer(self,net): if len(net.layer)==0 and len(net.layers)!=0: return net.layers elif len(net.layer)!=0 and len(net.layers)==0: return net.layer else: print("prototxt layer error") return -1 # Get parameter layer def __getModelLayer(self,model): if len(model.layer) == 0 and len(model.layers) != 0: return model.layers elif len(model.layer) != 0 and len(model.layers) == 0: return model.layer else: print("caffemodel layer error") return -1 # Add model input information to Inputs and get a list of subsequent layers def __addInputsTVIandGetLayerList(self,net): # If the type of the first layer is Input, and no net.input exists if net.input == [] and self._NetLayer[0].type == "Input": layer_list = [] # Considering that the entire network will have multiple inputs for lay in self._NetLayer: if lay.type == "Input": in_tvi = helper.make_tensor_value_info(lay.name+"_input", TensorProto.FLOAT, lay.input_param.shape[0].dim) self.model_input_name.append(lay.name+"_input") self.model_input_shape.append(lay.input_param.shape[0].dim) self.onnxmodel.addInputsTVI(in_tvi) print("add model input information") else: layer_list.append(lay) return layer_list # If net.input exists elif net.input !=[]: if bool(net.input_dim): input_dim = net.input_dim elif bool(net.input_shape): input_dim = net.input_shape[0].dim else: raise RuntimeError("Input shape missing!") in_tvi = helper.make_tensor_value_info("input", TensorProto.FLOAT, input_dim) self.model_input_name.append("input") self.model_input_shape.append(input_dim) self.onnxmodel.addInputsTVI(in_tvi) print("add model input information") return self._NetLayer # None of the above situations, then the caffe model has no input, there is a problem else: raise ValueError("the caffe model has no input") # Get the parameter shape of layer def __getParamsShapeandData(self, layer): ParamShape = [] ParamData = [] # According to the layer name, find out the parameters in the corresponding caffemodel for model_layer in self._ModelLayer: if layer.name == model_layer.name: Params = copy.deepcopy(model_layer.blobs) ParamShape = [p.shape.dim for p in Params] ParamData = [p.data for p in Params] if layer.type == "BatchNorm" or layer.type == "BN": if len(ParamShape) == 3: # If it is a bn layer, the sliding coefficient of the last layer is not used ParamShape = ParamShape[:-1] ParamData = ParamData[:-1] elif len(ParamShape) == 2 and len(ParamShape[0]) != 1: ParamShape = [[ParamShape[0][1]], [ParamShape[1][1]]] ParamData = ParamData return ParamShape, ParamData # Add parameters to Inputs and generate tensor storage data def __addInputsTVIfromParams(self,layer,ParamName,ParamType): #print(layer.type) ParamShape = [] ParamData = [] # Find out the parameters in the corresponding caffemodel based on the layer name for model_layer in self._ModelLayer: if layer.name == model_layer.name: Params = copy.deepcopy(model_layer.blobs) ParamShape = [p.shape.dim for p in Params] ParamData = [p.data for p in Params] if layer.type == "BatchNorm" or layer.type == "BN": if len(ParamShape) == 3: # If it is bn layer and params is [mean, var, s], you need to divide mean and var by sliding coefficient s ParamShape = ParamShape[:-1] ParamData = [[q/(Params[-1].data[0]) for q in p.data] if i==0 else [q/(Params[-1].data[0] + 1e-5) for q in p.data] for i,p in enumerate(Params[:-1])] # with s elif len(ParamShape) == 2 and len(ParamShape[0]) == 4: ParamShape = [[ParamShape[0][1]], [ParamShape[1][1]]] ParamData = [[q/1. for q in p.data] if i==0 else [q/(1. + 1e-5) for q in p.data] for i,p in enumerate(Params)] # comment it for tvm because tvm use broadcast at prelu layer elif layer.type == "PReLU": ParamShape = [[ParamShape[0][0], 1, 1]] break # Judge whether there is Param if ParamShape != []: ParamName = ParamName[0:len(ParamShape)] ParamType = ParamType[0:len(ParamShape)] for i in range(len(ParamShape)): #print(ParamName[i]) ParamName[i] = layer.name+ParamName[i] p_tvi = helper.make_tensor_value_info(ParamName[i], ParamType[i], ParamShape[i]) p_t = helper.make_tensor(ParamName[i],ParamType[i],ParamShape[i],ParamData[i]) self.onnxmodel.addInputsTVI(p_tvi) self.onnxmodel.addInitTensor(p_t) #print("add parameters " + ParamName[i] + " input information and tensor data") if layer.type == "BatchNorm" or layer.type == "BN" or layer.type == "Scale": return ParamName, ParamShape return ParamName # Manually add parameters to the input information and generate tensor storage data def __addInputsTVIfromMannul(self,layer,ParamName,ParamType,ParamShape,ParamData): Param_Name = copy.deepcopy(ParamName) for i in range(len(ParamShape)): Param_Name[i] = layer.name + ParamName[i] p_tvi = helper.make_tensor_value_info(Param_Name[i], ParamType[i], ParamShape[i]) p_t = helper.make_tensor(Param_Name[i], ParamType[i], ParamShape[i], ParamData[i]) self.onnxmodel.addInputsTVI(p_tvi) self.onnxmodel.addInitTensor(p_t) #print("add parameters " + Param_Name[i] + " input information and tensor data") return Param_Name # Get the output name of the previous layer (that is, the input of the current layer) def __getLastLayerOutNameAndShape(self,layer): outname = [] outshape = [] # If the node list is empty, or the bottom of the current layer is in input_name, the input of the previous layer must be Input if self.NodeList == []: outname += self.model_input_name outshape += self.model_input_shape else: for i in range(len(layer.bottom)): for j in range(len(self.model_input_name)): if layer.bottom[i] + '_input' == self.model_input_name[j]: outname.append(self.model_input_name[j]) outshape.append(self.model_input_shape[j]) # Because prototxt has the same name as top and bottom, but layer.bottom can only correspond to one node, so for each layer.bottom, # find the last node with the same name as the upper layer node name = None shape = None for node in self.NodeList: for j in range(len(node.top) if node.node.op_type != "MaxPool" else 1): # comment if statement for original maxpool and maxunpool if layer.bottom[i] == node.top[j]: name = node.outputs_name[j] shape = node.outputs_shape[j] if name: outname.append(name) outshape.append(shape) #try: # assert outname, "failed at layer %s, layer's bottom not detected ... "%(layer.name) #except: if len(outname) == 0 : print("layer %s, layer's bottom not detected ... "%(layer.name)) return outname, outshape # Get the output name of the current layer, ie layername + "_ Y" def __getCurrentLayerOutName(self,layer): # return [layer.name+"_Y"] # Consider the situation with multiple outputs if layer.top == layer.bottom and len(layer.top) == 1: return [layer.name+"_Y"] return [out+"_Y" for out in layer.top] def __getNodeList(self,Layers): Layers = [ l for l in Layers if len(l.include) == 0 or l.include[0].phase is None or l.include[0].phase == 1] #for l in Layers: # print(l.name) for i in range(len(Layers)): inname, input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) if len(inname) == 0: continue # Convolution if Layers[i].type == "Convolution" or Layers[i].type == Layer_CONVOLUTION: # 1. Get node input name, input dimension, output name, node name if Layers[i].name == "conv4_3_norm_mbox_loc": import ipdb; ipdb.set_trace() inname, input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list conv_pname = self.__addInputsTVIfromParams(Layers[i],op_pname["Conv"],op_ptype["Conv"]) inname.extend(conv_pname) # 3. Build conv_node conv_node = op.createConv(Layers[i],nodename,inname,outname,input_shape) # 4. Add node to node list self.NodeList.append(conv_node) self.__n += 1 # BatchNorm + Scale elif Layers[i].type == "BatchNorm" or Layers[i].type == "BN": # 1. Get node input name, input dimension, output name, node name inname, input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list if i < len(Layers) - 1 and Layers[i+1].type == "Scale": scale_pname, scale_pshape = self.__addInputsTVIfromParams(Layers[i + 1], op_pname["Scale"], op_ptype["Scale"]) bn_pname, bn_pshape = self.__addInputsTVIfromParams(Layers[i], op_pname["BatchNorm"], op_ptype["BatchNorm"]) assert bn_pshape == scale_pshape, "BatchNorm and Scale params should share the same shape" inname.extend(scale_pname) inname.extend(bn_pname) else: bn_pshape, _ = self.__getParamsShapeandData(Layers[i]) custom_params = [np.ones(shape=bn_pshape[0], dtype=np.float), 0.001 + np.zeros(shape=bn_pshape[1], dtype=np.float)] scale_pname = self.__addInputsTVIfromMannul(Layers[i], op_pname["Scale"], op_ptype["Scale"], bn_pshape, custom_params) bn_pname, bn_pshape = self.__addInputsTVIfromParams(Layers[i], op_pname["BatchNorm"], op_ptype["BatchNorm"]) inname.extend(scale_pname) inname.extend(bn_pname) # 3. Build bn_node bn_node = op.createBN(Layers[i], nodename, inname, outname, input_shape) # 4. Add node to node list self.NodeList.append(bn_node) self.__n += 1 # Pooling elif Layers[i].type == "Pooling" or Layers[i].type == Layer_POOLING: # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Build pool_node pool_node = op.createPooling(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(pool_node) self.__n += 1 # MaxUnPool elif Layers[i].type == "MaxUnpool": # 1. Get node input name, input dimension, output name, node name inname, input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Build unpool_node unpool_node = op.createUnPooling(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(unpool_node) self.__n += 1 # Eltwise elif Layers[i].type == "Eltwise" or Layers[i].type == Layer_ELTWISE: # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Buildeltwise_node eltwise_node = op.createEltwise(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(eltwise_node) self.__n += 1 # Softmax elif Layers[i].type == "Softmax" or Layers[i].type == Layer_SOFTMAX: # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Buildsoftmax_node softmax_node = op.createSoftmax(Layers[i],nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(softmax_node) self.__n += 1 # Relu elif Layers[i].type == "ReLU" or Layers[i].type == Layer_RELU: # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Buildrelu_node relu_node = op.createRelu(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(relu_node) self.__n += 1 # LRN elif Layers[i].type == "LRN" or Layers[i].type == Layer_LRN: # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. BuildLRN_node LRN_node = op.createLRN(Layers[i],nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(LRN_node) self.__n += 1 # Dropout elif Layers[i].type == "Dropout" or Layers[i].type == Layer_DROPOUT or Layers[i].type == "Permute" or Layers[i].type == "Reshape": # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. BuildDropout_node Dropout_node = op.createDropout(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(Dropout_node) self.__n += 1 elif Layers[i].type == "Flatten": # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. BuildDropout_node Flatten_node = op.createFlatten(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(Flatten_node) self.__n += 1 elif Layers[i].type == "DetectionOutput": # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = 'Boxes' print(nodename, inname, input_shape) # 2. Boxes output_shape = [[1,1000,5]] outname = ["Boxes"] # Build node node = c2oNode(Layers[i], nodename, "Concat", inname, outname, input_shape, output_shape, {"axis":1}) # 3. Add nodes to the node list self.NodeList.append(node) nodename = 'Labels' # 4. Lables output_shape = [[1,1000]] outname = ["Labels"] # Build node node = c2oNode(Layers[i], nodename, "Concat", inname, outname, input_shape, output_shape, {"axis":1}) # 5. Add nodes to the node list self.NodeList.append(node) self.__n += 2 #print(nodename, " node construction completed") # Upsample elif Layers[i].type == "Upsample" or Layers[i].type == Layer_UPSAMPLE: # 1. Get node input name, input dimension, output name, node name inname, input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list paramshape = [[4, 1]] paramdata = [[1.0, 1.0, Layers[i].upsample_param.scale, Layers[i].upsample_param.scale]] pname = self.__addInputsTVIfromMannul(Layers[i],op_pname["Upsample"],op_ptype["Upsample"],paramshape,paramdata) inname.extend(pname) # 3. Build Upsample_node Upsample_node = op.createUpsample(Layers[i], nodename, inname, outname, input_shape) # 4. Add node to node list self.NodeList.append(Upsample_node) self.__n += 1 # Concat elif Layers[i].type == "Concat" or Layers[i].type == Layer_CONCAT: # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. BuildConcat_node Concat_node = op.createConcat(Layers[i], nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(Concat_node) self.__n += 1 # PRelu elif Layers[i].type == "PReLU": # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list pname = self.__addInputsTVIfromParams(Layers[i], op_pname["PRelu"], op_ptype["PRelu"]) inname.extend(pname) # 3. Build PRelu_node PRelu_node = op.createPRelu(Layers[i], nodename, inname, outname, input_shape) # 4. Add node to node list self.NodeList.append(PRelu_node) self.__n += 1 # InnerProduct # Since there is no fully connected layer in onnx, it needs to be split. There are two methods for splitting (Reshape + Gemm, Reshape + MatMul + Add) elif Layers[i].type == "InnerProduct" or Layers[i].type == Layer_INNER_PRODUCT: reshape_layer = copy.deepcopy(Layers[i]) # Deep copy # 1. Get node input name, input dimension, output name, node name reshape_inname, reshape_input_shape = self.__getLastLayerOutNameAndShape(reshape_layer) # Get reshape input name list and input shape reshape_outname = [reshape_layer.name + "_Reshape_Y"] reshape_nodename = reshape_layer.name+"_Reshape" # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list paramshape = [[2]] paramdata = op.getReshapeOutShape(Layers[i],reshape_input_shape) reshape_pname = self.__addInputsTVIfromMannul(reshape_layer,op_pname["Reshape"],op_ptype["Reshape"],paramshape,paramdata) reshape_inname.extend(reshape_pname) #3. Build reshape_node reshape_node = op.createReshape(reshape_layer,reshape_nodename, reshape_inname, reshape_outname, reshape_input_shape) # 4. Add node to node list self.NodeList.append(reshape_node) self.__n += 1 # Gemm gemm_layer = copy.deepcopy(Layers[i]) # Deep copy # 1. Get node input name, input dimension, output name, node name gemm_inname = reshape_outname gemm_input_shape = self.NodeList[self.__n-1].outputs_shape gemm_outname = [gemm_layer.name+"_Gemm_Y"] gemm_nodename = gemm_layer.name+"_Gemm" # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list gemm_pname = self.__addInputsTVIfromParams(gemm_layer,op_pname["InnerProduct"],op_ptype["InnerProduct"]) # Obtain input parameters. For add, blobs [1] does not require bias, so directly obtain blobs [0] gemm_inname.extend(gemm_pname) #3. Build gemm_node matmul_node = op.createGemm(gemm_layer, gemm_nodename, gemm_inname, gemm_outname, gemm_input_shape, gemm_layer.inner_product_param.num_output) # 4. Add node to node list self.NodeList.append(matmul_node) self.__n += 1 # Deconvolution elif Layers[i].type == "Deconvolution": # 1. Get node input name, input dimension, output name, node name inname, input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) outname = self.__getCurrentLayerOutName(Layers[i]) nodename = Layers[i].name # 2. Generate the node parameter tensor value info, and get the node parameter name, add the parameter name to the node input name list conv_pname = self.__addInputsTVIfromParams(Layers[i], op_pname["ConvTranspose"], op_ptype["ConvTranspose"]) inname.extend(conv_pname) #3. Build conv_node conv_node = op.createConvTranspose(Layers[i], nodename, inname, outname, input_shape) #if self.debug: # self.__print_debug_info(nodename, inname, outname, input_shape, conv_node.outputs_shape) # 4. Add node to node list self.NodeList.append(conv_node) self.__n += 1 # Softmax elif Layers[i].type == "ArgMax": # 1. Get node input name, input dimension, output name, node name inname,input_shape = self.__getLastLayerOutNameAndShape(Layers[i]) # Get input name list and input shape outname = self.__getCurrentLayerOutName(Layers[i]) # Get the output name list nodename = Layers[i].name # 2. Build argmax_node argmax_node = op.createArgmax(Layers[i],nodename, inname, outname, input_shape) # 3. Add nodes to the node list self.NodeList.append(argmax_node) self.__n += 1 # Determine whether the current node is an output node def judgeoutput(self,current_node,nodelist): for outname in current_node.outputs_name: for node in nodelist: if outname in node.inputs_name: return False return True # Add model output information and intermediate node information def __addOutputsTVIandValueInfo(self): for i in range(len(self.NodeList)): out_type = TensorProto.FLOAT if self.NodeList[i].node.op_type == 'ArgMax': out_type = TensorProto.INT64 if self.judgeoutput(self.NodeList[i],self.NodeList):# Build output node information lastnode = self.NodeList[i] for j in range(len(lastnode.outputs_shape)): output_tvi = helper.make_tensor_value_info(lastnode.outputs_name[j], out_type,lastnode.outputs_shape[j]) self.onnxmodel.addOutputsTVI(output_tvi) else:# Build intermediate node information innernode = self.NodeList[i] for k in range(len(innernode.outputs_shape)): hid_out_tvi = helper.make_tensor_value_info(innernode.outputs_name[k], out_type, innernode.outputs_shape[k]) self.onnxmodel.addValueInfoTVI(hid_out_tvi) print("add model output information and model intermediate output information") # Create a model def createOnnxModel(self): node_def = [Node.node for Node in self.NodeList] graph_def = helper.make_graph( node_def, self.onnxmodel.name, self.onnxmodel.in_tvi, self.onnxmodel.out_tvi, self.onnxmodel.init_t, value_info=self.onnxmodel.hidden_out_tvi ) op = onnx.OperatorSetIdProto() op.version = 9 model_def = helper.make_model(graph_def, producer_name='caffe', opset_imports=[op]) #model_def = helper.make_model(graph_def, producer_name='caffe') print("*.onnx model conversion completed") return model_def
47.986622
219
0.58482
b5714e6101d4bcd35275a8ce80bf5ba0f8812b29
2,099
py
Python
everyday_wechat/control/moviebox/maoyan_movie_box.py
filon7/EverydayWechat
cf4f509eb570de312995ce5c3b517f369753a1e9
[ "MIT" ]
1
2019-10-07T02:32:30.000Z
2019-10-07T02:32:30.000Z
everyday_wechat/control/moviebox/maoyan_movie_box.py
filon7/EverydayWechat
cf4f509eb570de312995ce5c3b517f369753a1e9
[ "MIT" ]
null
null
null
everyday_wechat/control/moviebox/maoyan_movie_box.py
filon7/EverydayWechat
cf4f509eb570de312995ce5c3b517f369753a1e9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Project: EverydayWechat-Github Creator: DoubleThunder Create time: 2019-08-30 12:22 Introduction: 猫眼实时票房 地址:https://piaofang.maoyan.com/dashboard 接口地址:https://box.maoyan.com/promovie/api/box/second.json?beginDate=20190830 """ import requests from datetime import datetime def get_maoyan_movie_box(date='', is_expired=False): """ 获取特定日期的实时票房日期 https://box.maoyan.com/promovie/api/box/second.json?beginDate=20190830#指定日期的节假日及万年历信息 :param date: str 日期 格式 yyyyMMdd :param is_expired :rtype str """ date_ = date or datetime.now().strftime('%Y%m%d') print('获取 {} 的票房数据...'.format(date_)) # try: resp = requests.get('https://box.maoyan.com/promovie/api/box/second.json?beginDate={}'.format(date_)) if resp.status_code == 200: # print(resp.text) content_dict = resp.json() if content_dict['success']: data_dict = content_dict['data'] total_box_info = data_dict['totalBoxInfo'] box_list = data_dict['list'] box_info_list = [] for i, r in enumerate(box_list[:10]): movice_name = r['movieName'] box_info = r['boxInfo'] sumBoxInfo = r['sumBoxInfo'] box_info_list.append('{}.《{}》({}万,累积:{})'.format(str(i + 1), movice_name, box_info, sumBoxInfo)) cur_date = datetime.strptime(date_, '%Y%m%d').strftime('%Y{}%m{}%d{}').format('年', '月', '日') return_text = "{cur_date} {box_name}\n当日总票房:{total_box_info}万\n{box_info}".format( cur_date=cur_date, box_name="实时票房" if is_expired else "当日票房", total_box_info=total_box_info, box_info='\n'.join(box_info_list) ) return return_text else: print('获取票房失败:{}'.format(content_dict['msg'])) return None print('获取票房失败。') # except Exception as exception: # print(str(exception)) return None # __date = '20190831' # dd = get_maoyan_movice_box(__date, is_expired=False) # print(dd)
32.292308
112
0.602192
0edb29ac5643be7e5af6f0475976201da240b35e
7,196
py
Python
lib/python/treadmill/tests/treadmill_ldap_patch.py
vrautela/treadmill
05e47fa8acdf8bad7af78e737efb26ea6488de82
[ "Apache-2.0" ]
133
2016-09-15T13:36:12.000Z
2021-01-18T06:29:13.000Z
lib/python/treadmill/tests/treadmill_ldap_patch.py
vrautela/treadmill
05e47fa8acdf8bad7af78e737efb26ea6488de82
[ "Apache-2.0" ]
108
2016-12-28T23:41:27.000Z
2020-03-05T21:20:37.000Z
lib/python/treadmill/tests/treadmill_ldap_patch.py
evreng/treadmill
05e47fa8acdf8bad7af78e737efb26ea6488de82
[ "Apache-2.0" ]
69
2016-09-23T20:38:58.000Z
2020-11-11T02:31:21.000Z
"""Monkey-patch the evaluate_filter_node method of ldap3's MockBaseStrategy. This function is extracted from ldap3 with a small change in the `node.tag == MATCH_SUBSTRING` branch. See: ldap3/strategy/mockBase.py line 822 for ldap3 version 2.3 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import re from ldap3.strategy import mockBase from ldap3.strategy.mockBase import ( to_unicode, log, log_enabled, ERROR, LDAPDefinitionError, SERVER_ENCODING, ROOT, AND, OR, NOT, MATCH_APPROX, MATCH_GREATER_OR_EQUAL, MATCH_LESS_OR_EQUAL, MATCH_EXTENSIBLE, MATCH_PRESENT, MATCH_SUBSTRING, MATCH_EQUAL ) def monkey_patch(): """Perform the monkey patching.""" mockBase.MockBaseStrategy.evaluate_filter_node = evaluate_filter_node # The patched function from ldap3 doesn't follow our conventions # pylint: disable=too-many-nested-blocks # pylint: disable=too-many-branches # pylint: disable=too-many-statements def evaluate_filter_node(self, node, candidates): """After evaluation each 2 sets are added to each MATCH node, one for the matched object and one for unmatched object. The unmatched object set is needed if a superior node is a NOT that reverts the evaluation. The BOOLEAN nodes mix the sets returned by the MATCH nodes""" node.matched = set() node.unmatched = set() if node.elements: for element in node.elements: self.evaluate_filter_node(element, candidates) if node.tag == ROOT: return node.elements[0].matched elif node.tag == AND: for element in node.elements: if not node.matched: node.matched.update(element.matched) else: node.matched.intersection_update(element.matched) if not node.unmatched: node.unmatched.update(element.unmatched) else: node.unmatched.intersection_update(element.unmatched) elif node.tag == OR: for element in node.elements: node.matched.update(element.matched) node.unmatched.update(element.unmatched) elif node.tag == NOT: node.matched = node.elements[0].unmatched node.unmatched = node.elements[0].matched elif node.tag == MATCH_GREATER_OR_EQUAL: attr_name = node.assertion['attr'] attr_value = node.assertion['value'] for candidate in candidates: if attr_name in self.connection.server.dit[candidate]: for value in self.connection.server.dit[candidate][attr_name]: if value.isdigit() and attr_value.isdigit(): if int(value) >= int(attr_value): node.matched.add(candidate) else: node.unmatched.add(candidate) else: if to_unicode( value, SERVER_ENCODING ).lower() >= to_unicode( attr_value, SERVER_ENCODING ).lower(): # case insensitive string comparison node.matched.add(candidate) else: node.unmatched.add(candidate) elif node.tag == MATCH_LESS_OR_EQUAL: attr_name = node.assertion['attr'] attr_value = node.assertion['value'] for candidate in candidates: if attr_name in self.connection.server.dit[candidate]: for value in self.connection.server.dit[candidate][attr_name]: if value.isdigit() and attr_value.isdigit(): if int(value) <= int(attr_value): node.matched.add(candidate) else: node.unmatched.add(candidate) else: if to_unicode( value, SERVER_ENCODING ).lower() <= to_unicode( attr_value, SERVER_ENCODING ).lower(): # case insentive string comparison node.matched.add(candidate) else: node.unmatched.add(candidate) elif node.tag == MATCH_EXTENSIBLE: self.connection.last_error =\ 'Extensible match not allowed in Mock strategy' if log_enabled(ERROR): log(ERROR, '<%s> for <%s>', self.connection.last_error, self.connection) raise LDAPDefinitionError(self.connection.last_error) elif node.tag == MATCH_PRESENT: attr_name = node.assertion['attr'] for candidate in candidates: if attr_name in self.connection.server.dit[candidate]: node.matched.add(candidate) else: node.unmatched.add(candidate) elif node.tag == MATCH_SUBSTRING: attr_name = node.assertion['attr'] # rebuild the original substring filter if 'initial' in node.assertion and\ node.assertion['initial'] is not None: substring_filter = re.escape( to_unicode(node.assertion['initial'], SERVER_ENCODING) ) else: substring_filter = '' if 'any' in node.assertion and node.assertion['any'] is not None: for middle in node.assertion['any']: substring_filter += '.*' + re.escape( to_unicode(middle, SERVER_ENCODING) ) if 'final' in node.assertion and node.assertion['final'] is not None: substring_filter += '.*' + re.escape( to_unicode(node.assertion['final'], SERVER_ENCODING) ) # This is the patched condition: # node.assertion['any'] => node.assertion.get('any', None) if substring_filter and not node.assertion.get('any', None) and not\ node.assertion.get('final', None): # only initial, adds .* substring_filter += '.*' regex_filter = re.compile( substring_filter, flags=re.UNICODE | re.IGNORECASE ) # unicode AND ignorecase for candidate in candidates: if attr_name in self.connection.server.dit[candidate]: for value in self.connection.server.dit[candidate][attr_name]: if regex_filter.match(to_unicode(value, SERVER_ENCODING)): node.matched.add(candidate) else: node.unmatched.add(candidate) else: node.unmatched.add(candidate) elif node.tag == MATCH_EQUAL or node.tag == MATCH_APPROX: attr_name = node.assertion['attr'] attr_value = node.assertion['value'] for candidate in candidates: if attr_name in self.connection.server.dit[candidate] and\ self.equal(candidate, attr_name, attr_value): node.matched.add(candidate) else: node.unmatched.add(candidate) return None
42.329412
79
0.588938
701c989e503de200104f08eefd68325d4b7710ff
2,633
py
Python
simple_virtual_env/virtual_env.py
iasawseen/MultiServerRL
8460b162eb33eeae35eb01818ac6a5c26fedce0c
[ "MIT" ]
5
2019-02-28T09:25:58.000Z
2021-07-19T08:49:18.000Z
simple_virtual_env/virtual_env.py
iasawseen/MultiServerRL
8460b162eb33eeae35eb01818ac6a5c26fedce0c
[ "MIT" ]
null
null
null
simple_virtual_env/virtual_env.py
iasawseen/MultiServerRL
8460b162eb33eeae35eb01818ac6a5c26fedce0c
[ "MIT" ]
null
null
null
import abc import json import gym import requests from requests.exceptions import RequestException import time import numpy as np class VirtualEnvironment(gym.Env): def __init__(self, host_tcp, port_tcp): self.host_tcp = host_tcp self.port_tcp = port_tcp @staticmethod def _make_request(request, json_data=None): if json_data is None: json_data = {} flag = True res = None while flag: try: res = requests.post(request, json=json_data).json() except RequestException: time.sleep(1) continue flag = False return res def step(self, action): json_data = json.dumps({'action': action}) res = self._make_request('http://{host}:{port}/post_step_request/'.format(host=self.host_tcp, port=self.port_tcp), json_data) return res['observation'], res['reward'], res['done'], res['info'] def reset(self): json_data = json.dumps({}) res = self._make_request('http://{host}:{port}/post_reset_request/'.format(host=self.host_tcp, port=self.port_tcp), json_data) return res['observation'] def render(self, mode='human'): json_data = json.dumps({'mode': mode}) res = self._make_request('http://{host}:{port}/post_render_request/'.format(host=self.host_tcp, port=self.port_tcp), json_data) res['screen'] = np.array(res['screen']) return res['screen'] def close(self): json_data = json.dumps({}) res = self._make_request('http://{host}:{port}/post_close_request/'.format(host=self.host_tcp, port=self.port_tcp), json_data) def seed(self, seed=None): json_data = json.dumps({'seed': seed}) res = self._make_request('http://{host}:{port}/post_close_request/'.format(host=self.host_tcp, port=self.port_tcp), json_data) @property def state(self): json_data = json.dumps({}) res = self._make_request('http://{host}:{port}/post_state_request/'.format(host=self.host_tcp, port=self.port_tcp), json_data) return res['state']
39.298507
115
0.511204
5633ec7f19016782b04a11f1d5f885bd9cf0a05d
341
py
Python
nnlib/__init__.py
AleksaC/nnlib
5ad0fd570471626e9994100c844e1ed1493d94bd
[ "MIT" ]
5
2019-07-09T20:56:10.000Z
2020-02-13T19:31:47.000Z
nnlib/__init__.py
AleksaC/nnlib
5ad0fd570471626e9994100c844e1ed1493d94bd
[ "MIT" ]
1
2021-06-01T23:59:21.000Z
2021-06-01T23:59:21.000Z
nnlib/__init__.py
AleksaC/nnlib
5ad0fd570471626e9994100c844e1ed1493d94bd
[ "MIT" ]
1
2019-08-19T11:00:55.000Z
2019-08-19T11:00:55.000Z
from . import autodiff from . import datasets from . import layers from . import utils from . import activations from . import callbacks from . import config from . import initializers from . import losses from . import metrics from . import optimizers from . import regularizers from .core import Model, load_model __version__ = "0.0.1"
18.944444
35
0.771261
0cab848fbc2f19477d7233e2587496458033b2fd
1,531
py
Python
tools/mo/unit_tests/mo/back/kaldi_remove_memory_output_test.py
ryanloney/openvino-1
4e0a740eb3ee31062ba0df88fcf438564f67edb7
[ "Apache-2.0" ]
1,127
2018-10-15T14:36:58.000Z
2020-04-20T09:29:44.000Z
tools/mo/unit_tests/mo/back/kaldi_remove_memory_output_test.py
ryanloney/openvino-1
4e0a740eb3ee31062ba0df88fcf438564f67edb7
[ "Apache-2.0" ]
439
2018-10-20T04:40:35.000Z
2020-04-19T05:56:25.000Z
tools/mo/unit_tests/mo/back/kaldi_remove_memory_output_test.py
ryanloney/openvino-1
4e0a740eb3ee31062ba0df88fcf438564f67edb7
[ "Apache-2.0" ]
414
2018-10-17T05:53:46.000Z
2020-04-16T17:29:53.000Z
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest from openvino.tools.mo.back.kaldi_remove_memory_output import KaldiRemoveMemoryOutputBackReplacementPattern from unit_tests.utils.graph import build_graph class KaldiRemoveMemoryOutputTest(unittest.TestCase): nodes = { 'input_node': { 'kind': 'data' }, 'memory_node': { 'op': 'Assign', 'kind': 'op' }, 'output_node': { 'kind': 'data' }, 'op_output': { 'kind': 'data', 'op': 'Result', } } def test_remove_out_data_for_memory(self): graph = build_graph(self.nodes, [ ('input_node', 'memory_node'), ('memory_node', 'output_node'), ('output_node', 'op_output') ]) KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph) self.assertNotIn('output_node', graph.node) def test_do_not_remove_out_data_for_memory(self): graph = build_graph(self.nodes, [ ('input_node', 'memory_node'), ('memory_node', 'output_node'), ]) KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph) self.assertIn('output_node', graph.node)
33.282609
107
0.530372
e5c34ab0d06992ccf38cfa6ecd9d993f547983ae
12,775
py
Python
rc/model_handler.py
jayelm/coqa-baselines
12f3380f1437a7b26a05c68bbd193a2c9f59238a
[ "MIT" ]
6
2019-01-23T09:16:56.000Z
2020-06-01T10:00:42.000Z
rc/model_handler.py
jayelm/coqa-baselines
12f3380f1437a7b26a05c68bbd193a2c9f59238a
[ "MIT" ]
null
null
null
rc/model_handler.py
jayelm/coqa-baselines
12f3380f1437a7b26a05c68bbd193a2c9f59238a
[ "MIT" ]
2
2019-07-30T16:23:45.000Z
2019-12-16T19:46:04.000Z
import time from utils.data_utils import prepare_datasets from utils import constants as Constants from model import Model import torch import os import json from torch.utils.data import DataLoader from utils.timer import Timer from utils.logger import ModelLogger from utils.eval_utils import AverageMeter from utils.data_utils import sanitize_input, vectorize_input, sanitize_input_dialog_batched, vectorize_input_dialog_batched class ModelHandler(object): """High level model_handler that trains/validates/tests the network, tracks and logs metrics. """ def __init__(self, config): self.logger = ModelLogger(config, dirname=config['dir'], pretrained=config['pretrained']) self.dirname = self.logger.dirname cuda = config['cuda'] cuda_id = config['cuda_id'] if not cuda: self.device = torch.device('cpu') else: self.device = torch.device('cuda' if cuda_id < 0 else 'cuda:%d' % cuda_id) datasets = prepare_datasets(config) train_set = datasets['train'] dev_set = datasets['dev'] test_set = datasets['test'] # Evaluation Metrics: self._train_loss = AverageMeter() self._train_f1 = AverageMeter() self._train_em = AverageMeter() self._dev_f1 = AverageMeter() self._dev_em = AverageMeter() if train_set: self.train_loader = DataLoader(train_set, batch_size=config['batch_size'], shuffle=config['shuffle'], collate_fn=lambda x: x, pin_memory=True) self._n_train_batches = len(train_set) // config['batch_size'] else: self.train_loader = None if dev_set: self.dev_loader = DataLoader(dev_set, batch_size=config['batch_size'], shuffle=False, collate_fn=lambda x: x, pin_memory=True) self._n_dev_batches = len(dev_set) // config['batch_size'] else: self.dev_loader = None if test_set: self.test_loader = DataLoader(test_set, batch_size=config['batch_size'], shuffle=False, collate_fn=lambda x: x, pin_memory=True) self._n_test_batches = len(test_set) // config['batch_size'] self._n_test_examples = len(test_set) else: self.test_loader = None self._n_train_examples = 0 self.model = Model(config, train_set) self.model.network = self.model.network.to(self.device) self.config = self.model.config self.is_test = False def train(self): if self.train_loader is None or self.dev_loader is None: print("No training set or dev set specified -- skipped training.") return self.is_test = False timer = Timer("Train") self._epoch = self._best_epoch = 0 if self.dev_loader is not None: print("\n>>> Dev Epoch: [{} / {}]".format(self._epoch, self.config['max_epochs'])) self._run_epoch(self.dev_loader, training=False, verbose=self.config['verbose']) timer.interval("Validation Epoch {}".format(self._epoch)) format_str = "Validation Epoch {} -- F1: {:0.2f}, EM: {:0.2f} --" print(format_str.format(self._epoch, self._dev_f1.mean(), self._dev_em.mean())) self._best_f1 = self._dev_f1.mean() self._best_em = self._dev_em.mean() if self.config['save_params']: self.model.save(self.dirname) self._reset_metrics() while self._stop_condition(self._epoch): self._epoch += 1 print("\n>>> Train Epoch: [{} / {}]".format(self._epoch, self.config['max_epochs'])) self._run_epoch(self.train_loader, training=True, verbose=self.config['verbose']) train_epoch_time = timer.interval("Training Epoch {}".format(self._epoch)) format_str = "Training Epoch {} -- Loss: {:0.4f}, F1: {:0.2f}, EM: {:0.2f} --" print(format_str.format(self._epoch, self._train_loss.mean(), self._train_f1.mean(), self._train_em.mean())) print("\n>>> Dev Epoch: [{} / {}]".format(self._epoch, self.config['max_epochs'])) self._run_epoch(self.dev_loader, training=False, verbose=self.config['verbose']) timer.interval("Validation Epoch {}".format(self._epoch)) format_str = "Validation Epoch {} -- F1: {:0.2f}, EM: {:0.2f} --" print(format_str.format(self._epoch, self._dev_f1.mean(), self._dev_em.mean())) if self._best_f1 <= self._dev_f1.mean(): # Can be one of loss, f1, or em. self._best_epoch = self._epoch self._best_f1 = self._dev_f1.mean() self._best_em = self._dev_em.mean() if self.config['save_params']: self.model.save(self.dirname) print("!!! Updated: F1: {:0.2f}, EM: {:0.2f}".format(self._best_f1, self._best_em)) self._reset_metrics() self.logger.log(self._train_loss.last, Constants._TRAIN_LOSS_EPOCH_LOG) self.logger.log(self._train_f1.last, Constants._TRAIN_F1_EPOCH_LOG) self.logger.log(self._train_em.last, Constants._TRAIN_EM_EPOCH_LOG) self.logger.log(self._dev_f1.last, Constants._DEV_F1_EPOCH_LOG) self.logger.log(self._dev_em.last, Constants._DEV_EM_EPOCH_LOG) self.logger.log(train_epoch_time, Constants._TRAIN_EPOCH_TIME_LOG) timer.finish() self.training_time = timer.total print("Finished Training: {}".format(self.dirname)) print(self.summary()) def test(self): if self.test_loader is None: print("No testing set specified -- skipped testing.") return self.is_test = True self._reset_metrics() timer = Timer("Test") output = self._run_epoch(self.test_loader, training=False, verbose=0, out_predictions=self.config['out_predictions'], out_attentions=self.config['save_attn_weights']) if self.config['dialog_batched']: # Slightly different id format _id = None turn = 0 for ex in output: if ex['id'] != _id: _id = ex['id'] turn = 0 ex['id'] = _id ex['turn_id'] = turn turn += 1 else: for ex in output: _id = ex['id'] ex['id'] = _id[0] ex['turn_id'] = _id[1] if self.config['out_predictions']: output_file = os.path.join(self.dirname, Constants._PREDICTION_FILE) with open(output_file, 'w') as outfile: json.dump(output, outfile, indent=4) if self.config['out_predictions_csv']: import pandas as pd for o in output: o['gold_answer_1'], o['gold_answer_2'], o['gold_answer_3'], o['gold_answer_4'] = o['gold_answers'] output_csv = pd.DataFrame(output) output_csv = output_csv[[ 'id', 'turn_id', 'span_start', 'span_end', 'answer', 'gold_answer_1', 'gold_answer_2', 'gold_answer_3', 'gold_answer_4', 'f1', 'em' ]] output_csv.to_csv(output_file.replace('.json', '.csv'), index=False) test_f1 = self._dev_f1.mean() test_em = self._dev_em.mean() timer.finish() print(self.report(self._n_test_batches, None, test_f1, test_em, mode='test')) self.logger.log([test_f1, test_em], Constants._TEST_EVAL_LOG) print("Finished Testing: {}".format(self.dirname)) def _run_epoch(self, data_loader, training=True, verbose=10, out_predictions=False, out_attentions=None): start_time = time.time() output = [] for step, input_batch in enumerate(data_loader): if self.config['dialog_batched']: x_batches = [] for ib in input_batch: ib_sanitized = sanitize_input_dialog_batched(ib, self.config, self.model.word_dict, self.model.feature_dict, training=training) x_batch = vectorize_input_dialog_batched(ib_sanitized, self.config, training=training, device=self.device) if not x_batch: continue # When there are no target spans present in the batch x_batches.append(x_batch) else: input_batch = sanitize_input(input_batch, self.config, self.model.word_dict, self.model.feature_dict, training=training) x_batch = vectorize_input(input_batch, self.config, training=training, device=self.device) if not x_batch: continue # When there are no target spans present in the batch x_batches = [x_batch] # Singleton list. res = self.model.predict(x_batches, update=training, out_predictions=out_predictions, out_attentions=out_attentions) loss = res['loss'] f1 = res['f1'] em = res['em'] total_ex = sum(xb['batch_size'] for xb in x_batches) self._update_metrics(loss, f1, em, total_ex, training=training) if training: self._n_train_examples += total_ex if (verbose > 0) and (step % verbose == 0): mode = "train" if training else ("test" if self.is_test else "dev") print(self.report(step, loss, f1 * 100, em * 100, mode)) print('used_time: {:0.2f}s'.format(time.time() - start_time)) if out_predictions: for id, prediction, span, f1, em, ans in zip(res['ids'], res['predictions'], res['spans'], res['f1s'], res['ems'], res['answers']): output.append({'id': id, 'answer': prediction, 'span_start': span[0], 'span_end': span[1], 'f1': f1, 'em': em, 'gold_answers': ans}) return output def report(self, step, loss, f1, em, mode='train'): if mode == "train": format_str = "[train-{}] step: [{} / {}] | exs = {} | loss = {:0.4f} | f1 = {:0.2f} | em = {:0.2f}" return format_str.format(self._epoch, step, self._n_train_batches, self._n_train_examples, loss, f1, em) elif mode == "dev": return "[predict-{}] step: [{} / {}] | f1 = {:0.2f} | em = {:0.2f}".format( self._epoch, step, self._n_dev_batches, f1, em) elif mode == "test": return "[test] | test_exs = {} | step: [{} / {}] | f1 = {:0.2f} | em = {:0.2f}".format( self._n_test_examples, step, self._n_test_batches, f1, em) else: raise ValueError('mode = {} not supported.' % mode) def summary(self): start = " <<<<<<<<<<<<<<<< MODEL SUMMARY >>>>>>>>>>>>>>>> " info = "Best epoch = {}\nDev F1 = {:0.2f}\nDev EM = {:0.2f}".format( self._best_epoch, self._best_f1, self._best_em) end = " <<<<<<<<<<<<<<<< MODEL SUMMARY >>>>>>>>>>>>>>>> " return "\n".join([start, info, end]) def _update_metrics(self, loss, f1, em, batch_size, training=True): if training: self._train_loss.update(loss, batch_size) self._train_f1.update(f1 * 100, batch_size) self._train_em.update(em * 100, batch_size) else: self._dev_f1.update(f1 * 100, batch_size) self._dev_em.update(em * 100, batch_size) def _reset_metrics(self): self._train_loss.reset() self._train_f1.reset() self._train_em.reset() self._dev_f1.reset() self._dev_em.reset() def _stop_condition(self, epoch): """ Checks have not exceeded max epochs and has not gone 10 epochs without improvement. """ no_improvement = epoch >= self._best_epoch + 10 exceeded_max_epochs = epoch >= self.config['max_epochs'] return False if exceeded_max_epochs or no_improvement else True
45.462633
147
0.55319
5f5dabc13dc38625ae81cd1c0915d182b65c104e
16,074
py
Python
verticapy/tests/vDataFrame/test_vDF_correlation.py
oualib/VerticaPy
387a037df575540ec928ad1834c5b775818d8b98
[ "Apache-2.0" ]
1
2018-10-08T07:15:26.000Z
2018-10-08T07:15:26.000Z
verticapy/tests/vDataFrame/test_vDF_correlation.py
oualib/VerticaPy
387a037df575540ec928ad1834c5b775818d8b98
[ "Apache-2.0" ]
null
null
null
verticapy/tests/vDataFrame/test_vDF_correlation.py
oualib/VerticaPy
387a037df575540ec928ad1834c5b775818d8b98
[ "Apache-2.0" ]
null
null
null
# (c) Copyright [2018-2021] Micro Focus or one of its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest, warnings import matplotlib.pyplot as plt from verticapy import vDataFrame, drop from verticapy import set_option set_option("print_info", False) @pytest.fixture(scope="module") def titanic_vd(base): from verticapy.datasets import load_titanic titanic = load_titanic(cursor=base.cursor) yield titanic with warnings.catch_warnings(record=True) as w: drop( name="public.titanic", cursor=base.cursor, ) @pytest.fixture(scope="module") def amazon_vd(base): from verticapy.datasets import load_amazon amazon = load_amazon(cursor=base.cursor) yield amazon with warnings.catch_warnings(record=True) as w: drop( name="public.amazon", cursor=base.cursor, ) class TestvDFCorrelation: def test_vDF_acf(self, amazon_vd): # spearmann method result1 = amazon_vd.acf( ts="date", column="number", p=20, by=["state"], unit="month", method="spearman", ) plt.close("all") assert result1["value"][0] == pytest.approx(1) assert result1["confidence"][0] == pytest.approx(0.024396841824873748, 1e-2) assert result1.values["value"][10] == pytest.approx(0.494663471420921, 1e-2) assert result1.values["confidence"][10] == pytest.approx( 0.06977116419369607, 1e-2 ) # pearson method result2 = amazon_vd.acf( ts="date", column="number", by=["state"], p=[1, 3, 6, 7], unit="year", method="pearson", ) plt.close("all") assert result2["value"][0] == pytest.approx(1) assert result2["confidence"][0] == pytest.approx(0.024396841824873748, 1e-2) assert result2["value"][4] == pytest.approx(0.367, 1e-2) assert result2["confidence"][4] == pytest.approx(0.04080280865931269, 1e-2) # Autocorrelation Heatmap for each 'month' lag result3 = amazon_vd.acf( ts="date", column="number", by=["state"], p=12, unit="month", method="pearson", round_nb=3, acf_type="heatmap", ) plt.close("all") assert result3["index"][1].replace('"', "") == "lag_12_number" assert result3["number"][1] == pytest.approx(0.778, 1e-2) assert result3["index"][5].replace('"', "") == "lag_10_number" assert result3["number"][5] == pytest.approx(0.334, 1e-2) # Autocorrelation Line for each 'month' lag result4 = amazon_vd.acf( ts="date", column="number", by=["state"], p=12, unit="month", method="pearson", acf_type="line", ) plt.close("all") assert result4["value"][1] == pytest.approx(0.752, 1e-2) assert result4["confidence"][1] == pytest.approx(0.03627598368700659, 1e-2) assert result4["value"][6] == pytest.approx(-0.06, 1e-2) assert result4["confidence"][6] == pytest.approx(0.05273251493184901, 1e-2) def test_vDF_corr(self, titanic_vd): # # PEARSON # # testing vDataFrame.corr (method = 'pearson') result1 = titanic_vd.corr( columns=["survived", "age", "fare"], method="pearson", ) plt.close("all") assert result1["survived"][0] == 1.0 assert result1["survived"][1] == pytest.approx(-0.0422446185581737, 1e-2) assert result1["survived"][2] == pytest.approx(0.264150360783869, 1e-2) assert result1["age"][0] == pytest.approx(-0.0422446185581737, 1e-2) assert result1["age"][1] == 1.0 assert result1["age"][2] == pytest.approx(0.178575164117464, 1e-2) assert result1["fare"][0] == pytest.approx(0.264150360783869, 1e-2) assert result1["fare"][1] == pytest.approx(0.178575164117464, 1e-2) assert result1["fare"][2] == 1.0 # testing vDataFrame.corr (method = 'pearson') with focus result1_f = titanic_vd.corr(method="pearson", focus="survived",) plt.close("all") assert result1_f["survived"][1] == pytest.approx(-0.336, 1e-2) assert result1_f["survived"][2] == pytest.approx(0.264, 1e-2) # # SPEARMAN # # testing vDataFrame.corr (method = 'spearman') titanic_vd_gb = titanic_vd.groupby( ["age"], ["AVG(survived) AS survived", "AVG(fare) AS fare"] ) titanic_vd_gb = titanic_vd_gb.groupby( ["fare"], ["AVG(age) AS age", "AVG(survived) AS survived"] ) titanic_vd_gb = titanic_vd_gb.groupby( ["survived"], ["AVG(age) AS age", "AVG(fare) AS fare"] ) result2 = titanic_vd_gb.corr( columns=["survived", "age", "fare"], method="spearman", ) plt.close("all") assert result2["survived"][0] == 1.0 assert result2["survived"][1] == pytest.approx(-0.221388367729831, 1e-2) assert result2["survived"][2] == pytest.approx(0.425515947467167, 1e-2) assert result2["age"][0] == pytest.approx(-0.221388367729831, 1e-2) assert result2["age"][1] == 1.0 assert result2["age"][2] == pytest.approx(0.287617260787992, 1e-2) assert result2["fare"][0] == pytest.approx(0.425515947467167, 1e-2) assert result2["fare"][1] == pytest.approx(0.287617260787992, 1e-2) assert result2["fare"][2] == 1.0 # testing vDataFrame.corr (method = 'spearman') with focus result2_f = titanic_vd_gb.corr(focus="survived", method="spearman",) plt.close("all") assert result2_f["survived"][1] == pytest.approx(0.425515947467167, 1e-2) assert result2_f["survived"][2] == pytest.approx(-0.221388367729831, 1e-2) # # KENDALL # # testing vDataFrame.corr (method = 'kendall') result3 = titanic_vd.corr( columns=["survived", "age", "fare"], method="kendall", ) plt.close("all") assert result3["survived"][0] == 1.0 assert result3["survived"][1] == pytest.approx(-0.0149530691050183, 1e-2) assert result3["survived"][2] == pytest.approx(0.264138930414481, 1e-2) assert result3["age"][0] == pytest.approx(-0.0149530691050183, 1e-2) assert result3["age"][1] == 1.0 assert result3["age"][2] == pytest.approx(0.0844989716189637, 1e-2) assert result3["fare"][0] == pytest.approx(0.264138930414481, 1e-2) assert result3["fare"][1] == pytest.approx(0.0844989716189637, 1e-2) assert result3["fare"][2] == 1.0 # testing vDataFrame.corr (method = 'kendall') with focus result3_f = titanic_vd.corr(focus="survived", method="kendall",) plt.close("all") assert result3_f["survived"][1] == pytest.approx(-0.317426126117454, 1e-2) assert result3_f["survived"][2] == pytest.approx(0.264138930414481, 1e-2) # # BISERIAL POINT # # testing vDataFrame.corr (method = 'biserial') result4 = titanic_vd.corr( columns=["survived", "age", "fare"], method="biserial", ) plt.close("all") assert result4["survived"][0] == 1.0 assert result4["survived"][1] == pytest.approx(-0.0422234273762242, 1e-2) assert result4["survived"][2] == pytest.approx(0.264043222121672, 1e-2) assert result4["age"][0] == pytest.approx(-0.0422234273762242, 1e-2) assert result4["age"][1] == 1.0 assert result4["fare"][0] == pytest.approx(0.264043222121672, 1e-2) assert result4["fare"][2] == 1.0 # testing vDataFrame.corr (method = 'biserial') with focus result4_f = titanic_vd.corr(focus="survived", method="biserial",) plt.close("all") assert result4_f["survived"][1] == pytest.approx(-0.335720838027055, 1e-2) assert result4_f["survived"][2] == pytest.approx(0.264043222121672, 1e-2) # # CRAMER'S V # # testing vDataFrame.corr (method = 'cramer') result5 = titanic_vd.corr( columns=["survived", "pclass", "embarked"], method="cramer" ) plt.close("all") assert result5["survived"][0] == 1.0 assert result5["survived"][1] == pytest.approx(0.3358661117846154, 1e-2) assert result5["survived"][2] == pytest.approx(0.18608072188932145, 1e-2) assert result5["pclass"][0] == pytest.approx(0.3358661117846154, 1e-2) assert result5["pclass"][1] == 1.0 assert result5["pclass"][2] == pytest.approx(0.27453049870161333, 1e-2) assert result5["embarked"][0] == pytest.approx(0.18608072188932145, 1e-2) assert result5["embarked"][1] == pytest.approx(0.27453049870161333, 1e-2) assert result5["embarked"][2] == 1.0 # testing vDataFrame.corr (method = 'cramer') with focus result5_f = titanic_vd.corr(focus="survived", method="cramer",) plt.close("all") assert result5_f["survived"][1] == pytest.approx(0.73190924565401, 1e-2) assert result5_f["survived"][2] == pytest.approx(0.6707486879228794, 1e-2) def test_vDF_corr_pvalue(self, titanic_vd): assert titanic_vd.corr_pvalue("age", "fare", "pearson") == ( pytest.approx(0.178575164117468, 1e-2), pytest.approx(1.3923308548466764e-08, 1e-2), ) assert titanic_vd.corr_pvalue("age", "fare", "spearman") == ( pytest.approx(0.0045193585753828, 1e-2), pytest.approx(0.8899833744540833, 1e-2), ) assert titanic_vd.corr_pvalue("age", "fare", "kendallA") == ( pytest.approx(0.12796714496175657, 1e-2), pytest.approx(1.4735187810450437e-09, 1e-2), ) assert titanic_vd.corr_pvalue("age", "fare", "kendallB") == ( pytest.approx(0.0844989716189637, 1e-2), pytest.approx(1.1056646764730614e-09, 1e-2), ) assert titanic_vd.corr_pvalue("age", "fare", "kendallC") == ( pytest.approx(0.12919864967860847, 1e-2), pytest.approx(1.1056646764730614e-09, 1e-2), ) assert titanic_vd.corr_pvalue("survived", "fare", "biserial") == ( pytest.approx(0.264043222121672, 1e-2), pytest.approx(4.097598100216442e-21, 1e-2), ) assert titanic_vd.corr_pvalue("survived", "pclass", "cramer") == ( pytest.approx(0.3358661117846154, 1e-2), pytest.approx(3.507947423216931e-61, 1e-2), ) def test_vDF_cov(self, titanic_vd): # testing vDataFrame.cov result = titanic_vd.cov(columns=["survived", "age", "fare"],) plt.close("all") assert result["survived"][0] == pytest.approx(0.231685181342251, 1e-2) assert result["survived"][1] == pytest.approx(-0.297583583247234, 1e-2) assert result["survived"][2] == pytest.approx(6.69214075159394, 1e-2) assert result["age"][0] == pytest.approx(-0.297583583247234, 1e-2) assert result["age"][1] == pytest.approx(208.169014723609, 1e-2) assert result["age"][2] == pytest.approx(145.057125218791, 1e-2) assert result["fare"][0] == pytest.approx(6.69214075159394, 1e-2) assert result["fare"][1] == pytest.approx(145.057125218791, 1e-2) assert result["fare"][2] == pytest.approx(2769.36114247479, 1e-2) # testing vDataFrame.cov with focus result_f = titanic_vd.cov( columns=["survived", "age", "fare"], focus="survived", ) assert result_f["survived"][0] == pytest.approx(6.69214075159394, 1e-2) assert result_f["survived"][1] == pytest.approx(-0.297583583247234, 1e-2) assert result_f["survived"][2] == pytest.approx(0.231685181342251, 1e-2) plt.close("all") def test_vDF_iv_woe(self, titanic_vd): # testing vDataFrame.iv_woe result = titanic_vd.iv_woe("survived",) plt.close("all") assert result["iv"][0] == pytest.approx(0.552533238835721) assert result["iv"][1] == pytest.approx(0.498896347729338) assert result["iv"][2] == pytest.approx(0.21502042620992767) # testing vDataFrame[].iv_woe result2 = titanic_vd["pclass"].iv_woe("survived",) assert result2["iv"][-1] == pytest.approx(0.21502042620992767) assert result2["non_events"][-1] == pytest.approx(784) def test_vDF_pacf(self, amazon_vd): # testing vDataFrame.pacf result = amazon_vd.pacf( column="number", ts="date", by=["state"], p=5, ) plt.close("all") assert result["value"][0] == 1.0 assert result["value"][1] == pytest.approx(0.672667529541858, 1e-2) assert result["value"][2] == pytest.approx(-0.188727403801382, 1e-2) assert result["value"][3] == pytest.approx(0.022206688265849, 1e-2) assert result["value"][4] == pytest.approx(-0.0819798501305434, 1e-2) assert result["value"][5] == pytest.approx(-0.00663606854011195, 1e-2) def test_vDF_regr(self, titanic_vd): # testing vDataFrame.regr (method = 'alpha') result1 = titanic_vd.regr( columns=["survived", "age", "fare"], method="alpha", ) plt.close("all") assert result1["survived"][0] == 0.0 assert result1["survived"][1] == pytest.approx(0.435280333103508, 1e-2) assert result1["survived"][2] == pytest.approx(0.282890247028015, 1e-2) assert result1["age"][0] == pytest.approx(30.6420462046205, 1e-2) assert result1["age"][1] == 0.0 assert result1["age"][2] == pytest.approx(28.4268042866199, 1e-2) assert result1["fare"][0] == pytest.approx(23.425595019157, 1e-2) assert result1["fare"][1] == pytest.approx(16.1080039795446, 1e-2) assert result1["fare"][2] == 0.0 # testing vDataFrame.regr (method = 'beta') result2 = titanic_vd.regr( columns=["survived", "age", "fare"], method="beta" ) plt.close("all") assert result2["survived"][0] == 1.0 assert result2["survived"][1] == pytest.approx(-0.00142952871080426, 1e-2) assert result2["survived"][2] == pytest.approx(0.00241649261591561, 1e-2) assert result2["age"][0] == pytest.approx(-1.2483889156179, 1e-2) assert result2["age"][1] == 1.0 assert result2["age"][2] == pytest.approx(0.0456059549185254, 1e-2) assert result2["fare"][0] == pytest.approx(28.8746643141762, 1e-2) assert result2["fare"][1] == pytest.approx(0.69923081967147, 1e-2) assert result2["fare"][2] == 1.0 # testing vDataFrame.regr (method = 'r2') result3 = titanic_vd.regr( columns=["survived", "age", "fare"], method="r2", ) plt.close("all") assert result3["survived"][0] == 1.0 assert result3["survived"][1] == pytest.approx(0.00178460779712559, 1e-2) assert result3["survived"][2] == pytest.approx(0.0697754131022489, 1e-2) assert result3["age"][0] == pytest.approx(0.00178460779712559, 1e-2) assert result3["age"][1] == 1.0 assert result3["age"][2] == pytest.approx(0.0318890892395806, 1e-2) assert result3["fare"][0] == pytest.approx(0.0697754131022489, 1e-2) assert result3["fare"][1] == pytest.approx(0.0318890892395806, 1e-2) assert result3["fare"][2] == 1.0
43.918033
84
0.596678
33e9eb0d686a4c3a2fe38b47707d1f72142e00a0
82,500
py
Python
src/sage/algebras/quantum_groups/fock_space.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
1,742
2015-01-04T07:06:13.000Z
2022-03-30T11:32:52.000Z
src/sage/algebras/quantum_groups/fock_space.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
66
2015-03-19T19:17:24.000Z
2022-03-16T11:59:30.000Z
src/sage/algebras/quantum_groups/fock_space.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
495
2015-01-10T10:23:18.000Z
2022-03-24T22:06:11.000Z
# -*- coding: utf-8 -*- r""" Fock Space AUTHORS: - Travis Scrimshaw (2013-05-03): Initial version """ # **************************************************************************** # Copyright (C) 2013-2017 Travis Scrimshaw <tcscrims at gmail.com> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from sage.misc.cachefunc import cached_method from sage.misc.bindable_class import BindableClass from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation from sage.structure.global_options import GlobalOptions from sage.categories.modules_with_basis import ModulesWithBasis from sage.categories.realizations import Realizations, Category_realization_of_parent from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.fraction_field import FractionField from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.combinat.free_module import CombinatorialFreeModule from sage.combinat.partition import (_Partitions, Partitions, RegularPartitions_truncated) from sage.combinat.partition_tuple import PartitionTuples from sage.algebras.quantum_groups.q_numbers import q_factorial ############################# ## Fock space options class FockSpaceOptions(GlobalOptions): r""" Sets and displays the global options for elements of the Fock space classes. If no parameters are set, then the function returns a copy of the options dictionary. The ``options`` to Fock space can be accessed as the method :obj:`FockSpaceOptions` of :class:`FockSpace` and related parent classes. @OPTIONS@ EXAMPLES:: sage: FS = FockSpace(4) sage: F = FS.natural() sage: x = F.an_element() sage: y = x.f(3,2,2,0,1) sage: y ((3*q^2+3)/q)*|3, 3, 1> + (3*q^2+3)*|3, 2, 1, 1> sage: Partitions.options.display = 'diagram' sage: y ((3*q^2+3)/q)*|3, 3, 1> + (3*q^2+3)*|3, 2, 1, 1> sage: ascii_art(y) ((3*q^2+3)/q)*|***\ + (3*q^2+3)*|***\ |*** > |** \ |* / |* / |* / sage: FockSpace.options.display = 'list' sage: ascii_art(y) ((3*q^2+3)/q)*F + (3*q^2+3)*F *** *** *** ** * * * sage: Partitions.options.display = 'compact_high' sage: y ((3*q^2+3)/q)*F3^2,1 + (3*q^2+3)*F3,2,1^2 sage: Partitions.options._reset() sage: FockSpace.options._reset() """ NAME = 'FockSpace' module = 'sage.algebras.quantum_groups.fock_space' display = dict(default="ket", description='Specifies how terms of the natural basis of Fock space should be printed', values=dict(ket='displayed as a ket in bra-ket notation', list='displayed as a list'), case_sensitive=False) ############################################################################### ## Fock space class FockSpace(Parent, UniqueRepresentation): r""" The (fermionic) Fock space of `U_q(\widehat{\mathfrak{sl}}_n)` with multicharge `(\gamma_1, \ldots, \gamma_m)`. Fix a positive integer `n > 1` and fix a sequence `\gamma = (\gamma_1, \ldots, \gamma_m)`, where `\gamma_i \in \ZZ / n \ZZ`. *(fermionic) Fock space* `\mathcal{F}` with multicharge `\gamma` is a `U_q(\widehat{\mathfrak{gl}}_n)`-representation with a basis `\{ |\lambda \rangle \}`, where `\lambda` is a partition tuple of level `m`. By considering `\mathcal{F}` as a `U_q(\widehat{\mathfrak{sl}}_n)`-representation, it is not irreducible, but the submodule generated by `| \emptyset^m \rangle` is isomorphic to the highest weight module `V(\mu)`, where the highest weight `\mu = \sum_i \Lambda_{\gamma_i}`. Let `R_i(\lambda)` and `A_i(\lambda)` be the set of removable and addable, respectively, `i`-cells of `\lambda`, where an `i`-cell is a cell of residue `i` (i.e., content modulo n). The action of `U_q(\widehat{\mathfrak{sl}}_n)` is given as follows: .. MATH:: \begin{aligned} e_i | \lambda \rangle & = \sum_{c \in R_i(\lambda)} q^{M_i(\lambda, c)} | \lambda + c \rangle, \\ f_i | \lambda \rangle & = \sum_{c \in A_i(\lambda)} q^{N_i(\lambda, c)} | \lambda - c \rangle, \\ q^{h_i} | \lambda \rangle & = q^{N_i(\lambda)} | \lambda \rangle, \\ q^d | \lambda \rangle & = q^{-N^{(0)}(\lambda)} | \lambda \rangle, \end{aligned} where - `M_i(\lambda, c)` (resp. `N_i(\lambda, c)`) is the number of removable (resp. addable) `i`-cells of `\lambda` below (resp. above) `c` minus the number of addable (resp. removable) `i`-cells of `\lambda` below (resp. above) `c`, - `N_i(\lambda)` is the number of addable `i`-cells minus the number of removable `i`-cells, and - `N^{(0)}(\lambda)` is the total number of `0`-cells of `\lambda`. Another interpretation of Fock space is as a semi-infinite wedge product (which each factor we can think of as fermions). This allows a description of the `U_q(\widehat{\mathfrak{gl}}_n)` action, as well as an explicit description of the bar involution. In particular, the bar involution is the unique semi-linear map satisfying - `q \mapsto q^{-1}`, - `\overline{| \emptyset \rangle} = | \emptyset \rangle`, and - `\overline{f_i | \lambda \rangle} = f_i \overline{| \lambda \rangle}`. We then define the *canonical basis* or *(lower) global crystal basis* as the unique basis of `\mathcal{F}` such that - `\overline{G(\lambda)} = G(\lambda)`, - `G(\lambda) \equiv | \lambda \rangle \mod q \ZZ[q]`. It is also known that this basis is upper unitriangular with respect to dominance order and that both the natural basis and the canonical basis of `\mathcal{F}` are `\ZZ`-graded by `|\lambda|`. Additionally, the transition matrices `(d_{\lambda, \nu})_{\lambda,\nu \vdash n}` given by .. MATH:: G(\nu) = \sum_{\lambda \vdash |\nu|} d_{\lambda,\nu} |\lambda \rangle described the decomposition matrices of the Hecke algebras when restricting to `V(\mu)` [Ariki1996]_. To go between the canonical basis and the natural basis, for level 1 Fock space, we follow the LLT algorithm [LLT1996]_. Indeed, we first construct an basis `\{ A(\nu) \}` that is an approximation to the lower global crystal basis, in the sense that it is bar-invariant, and then use Gaussian elimination to construct the lower global crystal basis. For higher level Fock space, we follow [Fayers2010]_, where the higher level is considered as a tensor product space of the corresponding level 1 Fock spaces. There are three bases currently implemented: - The natural basis: :class:`~sage.algebras.quantum_groups.fock_space.FockSpace.F`. - The approximation basis that comes from LLT(-type) algorithms: :class:`~sage.algebras.quantum_groups.fock_space.FockSpace.A`. - The lower global crystal basis: :class:`~sage.algebras.quantum_groups.fock_space.FockSpace.G`. .. TODO:: - Implement the approximation and lower global crystal bases on all partition tuples. - Implement the bar involution. - Implement the full `U_q(\widehat{\mathfrak{gl}})`-action. INPUT: - ``n`` -- the value `n` - ``multicharge`` -- (default: ``[0]``) the multicharge - ``q`` -- (optional) the parameter `q` - ``base_ring`` -- (optional) the base ring containing ``q`` EXAMPLES: We start by constructing the natural basis and doing some computations:: sage: Fock = FockSpace(3) sage: F = Fock.natural() sage: u = F.highest_weight_vector() sage: u.f(0,2,(1,2),0) |2, 2, 1> + q*|2, 1, 1, 1> sage: u.f(0,2,(1,2),0,2) |3, 2, 1> + q*|3, 1, 1, 1> + q*|2, 2, 2> + q^2*|2, 1, 1, 1, 1> sage: x = u.f(0,2,(1,2),0,2) sage: [x.h(i) for i in range(3)] [q*|3, 2, 1> + q^2*|3, 1, 1, 1> + q^2*|2, 2, 2> + q^3*|2, 1, 1, 1, 1>, |3, 2, 1> + q*|3, 1, 1, 1> + q*|2, 2, 2> + q^2*|2, 1, 1, 1, 1>, |3, 2, 1> + q*|3, 1, 1, 1> + q*|2, 2, 2> + q^2*|2, 1, 1, 1, 1>] sage: [x.h_inverse(i) for i in range(3)] [1/q*|3, 2, 1> + |3, 1, 1, 1> + |2, 2, 2> + q*|2, 1, 1, 1, 1>, |3, 2, 1> + q*|3, 1, 1, 1> + q*|2, 2, 2> + q^2*|2, 1, 1, 1, 1>, |3, 2, 1> + q*|3, 1, 1, 1> + q*|2, 2, 2> + q^2*|2, 1, 1, 1, 1>] sage: x.d() 1/q^2*|3, 2, 1> + 1/q*|3, 1, 1, 1> + 1/q*|2, 2, 2> + |2, 1, 1, 1, 1> Next, we construct the approximation and lower global crystal bases and convert to the natural basis:: sage: A = Fock.A() sage: G = Fock.G() sage: F(A[4,2,2,1]) |4, 2, 2, 1> + q*|4, 2, 1, 1, 1> sage: F(G[4,2,2,1]) |4, 2, 2, 1> + q*|4, 2, 1, 1, 1> sage: F(A[7,3,2,1,1]) |7, 3, 2, 1, 1> + q*|7, 2, 2, 2, 1> + q^2*|7, 2, 2, 1, 1, 1> + q*|6, 3, 3, 1, 1> + q^2*|6, 2, 2, 2, 2> + q^3*|6, 2, 2, 1, 1, 1, 1> + q*|5, 5, 2, 1, 1> + q^2*|5, 4, 3, 1, 1> + (q^2+1)*|4, 4, 3, 2, 1> + (q^3+q)*|4, 4, 3, 1, 1, 1> + (q^3+q)*|4, 4, 2, 2, 2> + (q^4+q^2)*|4, 4, 2, 1, 1, 1, 1> + q*|4, 3, 3, 3, 1> + q^2*|4, 3, 2, 1, 1, 1, 1, 1> + q^2*|4, 2, 2, 2, 2, 2> + q^3*|4, 2, 2, 2, 1, 1, 1, 1> + q^2*|3, 3, 3, 3, 2> + q^3*|3, 3, 3, 1, 1, 1, 1, 1> + q^3*|3, 2, 2, 2, 2, 2, 1> + q^4*|3, 2, 2, 2, 2, 1, 1, 1> sage: F(G[7,3,2,1,1]) |7, 3, 2, 1, 1> + q*|7, 2, 2, 2, 1> + q^2*|7, 2, 2, 1, 1, 1> + q*|6, 3, 3, 1, 1> + q^2*|6, 2, 2, 2, 2> + q^3*|6, 2, 2, 1, 1, 1, 1> + q*|5, 5, 2, 1, 1> + q^2*|5, 4, 3, 1, 1> + q^2*|4, 4, 3, 2, 1> + q^3*|4, 4, 3, 1, 1, 1> + q^3*|4, 4, 2, 2, 2> + q^4*|4, 4, 2, 1, 1, 1, 1> sage: A(F(G[7,3,2,1,1])) A[7, 3, 2, 1, 1] - A[4, 4, 3, 2, 1] sage: G(F(A[7,3,2,1,1])) G[7, 3, 2, 1, 1] + G[4, 4, 3, 2, 1] sage: A(F(G[8,4,3,2,2,1])) A[8, 4, 3, 2, 2, 1] - A[6, 4, 4, 2, 2, 1, 1] - A[5, 5, 4, 3, 2, 1] + ((-q^2-1)/q)*A[5, 4, 4, 3, 2, 1, 1] sage: G(F(A[8,4,3,2,2,1])) G[8, 4, 3, 2, 2, 1] + G[6, 4, 4, 2, 2, 1, 1] + G[5, 5, 4, 3, 2, 1] + ((q^2+1)/q)*G[5, 4, 4, 3, 2, 1, 1] We can also construct higher level Fock spaces and perform similar computations:: sage: Fock = FockSpace(3, [1,0]) sage: F = Fock.natural() sage: A = Fock.A() sage: G = Fock.G() sage: F(G[[2,1],[4,1,1]]) |[2, 1], [4, 1, 1]> + q*|[2, 1], [3, 2, 1]> + q^2*|[2, 1], [3, 1, 1, 1]> + q^2*|[2], [4, 2, 1]> + q^3*|[2], [4, 1, 1, 1]> + q^4*|[2], [3, 2, 1, 1]> + q*|[1, 1, 1], [4, 1, 1]> + q^2*|[1, 1, 1], [3, 2, 1]> + q^3*|[1, 1, 1], [3, 1, 1, 1]> + q^2*|[1, 1], [3, 2, 2]> + q^3*|[1, 1], [3, 1, 1, 1, 1]> + q^3*|[1], [4, 2, 2]> + q^4*|[1], [4, 1, 1, 1, 1]> + q^4*|[1], [3, 2, 2, 1]> + q^5*|[1], [3, 2, 1, 1, 1]> sage: A(F(G[[2,1],[4,1,1]])) A([2, 1], [4, 1, 1]) - A([2], [4, 2, 1]) sage: G(F(A[[2,1],[4,1,1]])) G([2, 1], [4, 1, 1]) + G([2], [4, 2, 1]) For level `0`, the truncated Fock space of [GW1999]_ is implemented. This can be used to improve the speed of the computation of the lower global crystal basis, provided the truncation is not too small:: sage: FS = FockSpace(2) sage: F = FS.natural() sage: G = FS.G() sage: FS3 = FockSpace(2, truncated=3) sage: F3 = FS3.natural() sage: G3 = FS3.G() sage: F(G[6,2,1]) |6, 2, 1> + q*|5, 3, 1> + q^2*|5, 2, 2> + q^3*|5, 2, 1, 1> + q*|4, 2, 1, 1, 1> + q^2*|3, 3, 1, 1, 1> + q^3*|3, 2, 2, 1, 1> + q^4*|3, 2, 1, 1, 1, 1> sage: F3(G3[6,2,1]) |6, 2, 1> + q*|5, 3, 1> + q^2*|5, 2, 2> sage: FS5 = FockSpace(2, truncated=5) sage: F5 = FS5.natural() sage: G5 = FS5.G() sage: F5(G5[6,2,1]) |6, 2, 1> + q*|5, 3, 1> + q^2*|5, 2, 2> + q^3*|5, 2, 1, 1> + q*|4, 2, 1, 1, 1> + q^2*|3, 3, 1, 1, 1> + q^3*|3, 2, 2, 1, 1> REFERENCES: - [Ariki1996]_ - [LLT1996]_ - [Fayers2010]_ - [GW1999]_ """ @staticmethod def __classcall_private__(cls, n, multicharge=[0], q=None, base_ring=None, truncated=None): r""" Standardize input to ensure a unique representation. EXAMPLES:: sage: R.<q> = ZZ[] sage: F1 = FockSpace(3, [0]) sage: F2 = FockSpace(3, 0, q) sage: F3 = FockSpace(3, (0,), q, R) sage: F1 is F2 and F2 is F3 True """ if q is None: base_ring = PolynomialRing(ZZ, 'q') q = base_ring.gen(0) if base_ring is None: base_ring = q.parent() base_ring = FractionField(base_ring) q = base_ring(q) M = IntegerModRing(n) if multicharge in ZZ: multicharge = (multicharge,) multicharge = tuple(M(e) for e in multicharge) if truncated is not None: return FockSpaceTruncated(n, truncated, q, base_ring) return super(FockSpace, cls).__classcall__(cls, n, multicharge, q, base_ring) def __init__(self, n, multicharge, q, base_ring): r""" Initialize ``self``. EXAMPLES:: sage: F = FockSpace(3, [0]) sage: TestSuite(F).run() sage: F = FockSpace(3, [1, 2]) sage: TestSuite(F).run() """ self._n = n self._q = q self._multicharge = multicharge self._index_set = set(range(n)) cat = ModulesWithBasis(base_ring).WithRealizations() Parent.__init__(self, base=base_ring, category=cat) self._realizations = [self.natural(), self.A(), self.G()] def _repr_(self): r""" Return a string representation of ``self``. EXAMPLES:: sage: FockSpace(2) Fock space of rank 2 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring sage: FockSpace(4, [2, 0, 1]) Fock space of rank 4 of multicharge (2, 0, 1) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring """ return "Fock space of rank {} of multicharge {} over {}".format( self._n, self._multicharge, self.base_ring()) def _latex_(self): r""" Return a latex representation of ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: latex(F) \mathcal{F}_{q}^{2}\left(0\right) sage: F = FockSpace(4, [2, 0, 1]) sage: latex(F) \mathcal{F}_{q}^{4}\left(2, 0, 1\right) """ from sage.misc.latex import latex return "\\mathcal{{F}}_{{{q}}}^{{{n}}}{mc}".format(q=latex(self._q), n=self._n, mc=latex(self._multicharge)) options = FockSpaceOptions def q(self): r""" Return the parameter `q` of ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F.q() q sage: F = FockSpace(2, q=-1) sage: F.q() -1 """ return self._q def multicharge(self): r""" Return the multicharge of ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F.multicharge() (0,) sage: F = FockSpace(4, [2, 0, 1]) sage: F.multicharge() (2, 0, 1) """ return self._multicharge def a_realization(self): r""" Return a realization of ``self``. EXAMPLES:: sage: FS = FockSpace(2) sage: FS.a_realization() Fock space of rank 2 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring in the natural basis """ return self.natural() def inject_shorthands(self, verbose=True): r""" Import standard shorthands into the global namespace. INPUT: - ``verbose`` -- boolean (default ``True``) if ``True``, prints the defined shorthands EXAMPLES:: sage: FS = FockSpace(4) sage: FS.inject_shorthands() Injecting A as shorthand for Fock space of rank 4 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring in the approximation basis Injecting F as shorthand for Fock space of rank 4 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring in the natural basis Injecting G as shorthand for Fock space of rank 4 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring in the lower global crystal basis """ from sage.misc.misc import inject_variable for shorthand in ['A', 'F', 'G']: realization = getattr(self, shorthand)() if verbose: print('Injecting {} as shorthand for {}'.format(shorthand, realization)) inject_variable(shorthand, realization) def highest_weight_vector(self): r""" Return the module generator of ``self`` in the natural basis. EXAMPLES:: sage: FS = FockSpace(2) sage: FS.highest_weight_vector() |> sage: FS = FockSpace(4, [2, 0, 1]) sage: FS.highest_weight_vector() |[], [], []> """ return self.natural().highest_weight_vector() def __getitem__(self, i): r""" Return the basis element indexed by ``i``. INPUT: - ``i`` -- a partition EXAMPLES:: sage: FS = FockSpace(2) sage: FS[[]] |> sage: FS[1] |1> sage: FS[2,2,1] |2, 2, 1> sage: FS = FockSpace(3, [1, 2]) sage: FS[[], []] |[], []> sage: FS[[2,1], [3,1,1]] |[2, 1], [3, 1, 1]> """ return self.natural()[i] class F(CombinatorialFreeModule, BindableClass): r""" The natural basis of the Fock space. This is the basis indexed by partitions. This has an action of the quantum group `U_q(\widehat{\mathfrak{sl}}_n)` described in :class:`~sage.algebras.quantum_groups.fock_space.FockSpace`. EXAMPLES: We construct the natural basis and perform some computations:: sage: F = FockSpace(4).natural() sage: q = F.q() sage: u = F.highest_weight_vector() sage: u |> sage: u.f(0,1,2) |3> sage: u.f(0,1,3) |2, 1> sage: u.f(0,1,2,0) 0 sage: u.f(0,1,3,2) |3, 1> + q*|2, 1, 1> sage: u.f(0,1,2,3) |4> + q*|3, 1> sage: u.f(0,1,3,2,2,0) ((q^2+1)/q)*|3, 2, 1> sage: x = (q^4 * u + u.f(0,1,3,(2,2))) sage: x |3, 1, 1> + q^4*|> sage: x.f(0,1,3) |4, 3, 1> + q*|4, 2, 1, 1> + q*|3, 3, 2> + q^2*|3, 2, 2, 1> + q^4*|2, 1> sage: x.h_inverse(2) q^2*|3, 1, 1> + q^4*|> sage: x.h_inverse(0) 1/q*|3, 1, 1> + q^3*|> sage: x.d() 1/q*|3, 1, 1> + q^4*|> sage: x.e(2) |3, 1> + q*|2, 1, 1> """ def __init__(self, F): """ Initialize ``self``. EXAMPLES:: sage: F = FockSpace(2).natural() sage: TestSuite(F).run() # long time """ self._basis_name = "natural" # If the cell x is above the cell y if len(F._multicharge) == 1: # For partitions self._above = lambda x,y: x[0] < y[0] else: # For partition tuples self._above = lambda x,y: x[0] < y[0] or (x[0] == y[0] and x[1] < y[1]) self._addable = lambda la,i: [x for x in la.outside_corners() if la.content(*x, multicharge=F._multicharge) == i] self._removable = lambda la,i: [x for x in la.corners() if la.content(*x, multicharge=F._multicharge) == i] indices = PartitionTuples(level=len(F._multicharge)) CombinatorialFreeModule.__init__(self, F.base_ring(), indices, prefix='F', latex_prefix='', bracket=False, latex_bracket=['\\left\\lvert', '\\right\\rangle'], sorting_reverse=True, category=FockSpaceBases(F)) options = FockSpaceOptions def _repr_term(self, m): r""" Return a representation of the monomial indexed by ``m``. EXAMPLES:: sage: F = FockSpace(2).natural() sage: F._repr_term(Partition([2,1,1])) '|2, 1, 1>' sage: F.highest_weight_vector() |> sage: F = FockSpace(2, [2, 1, 1]).natural() sage: mg = F.highest_weight_vector(); mg |[], [], []> sage: q = F.q() sage: mg.f(1).f(1).f(0) / (q^-1 + q) |[1], [1], [1]> + q*|[], [2], [1]> + q^2*|[], [1, 1], [1]> + q^3*|[], [1], [2]> + q^4*|[], [1], [1, 1]> """ if self.options.display != 'ket': return CombinatorialFreeModule._repr_term(self, m) return '|' + m._repr_list()[1:-1] + ">" # Strip the outer brackets of m def _ascii_art_term(self, m): r""" Return a representation of the monomial indexed by ``m``. EXAMPLES:: sage: FS = FockSpace(4) sage: F = FS.natural() sage: x = F.an_element() sage: ascii_art(x) 3*|**> + 2*|*> + 2*|-> sage: ascii_art(x.f(3,2,2,0,1)) ((3*q^2+3)/q)*|***\ + (3*q^2+3)*|***\ |*** > |** \ |* / |* / |* / """ if self.options.display != 'ket': return CombinatorialFreeModule._ascii_art_term(self, m) from sage.typeset.ascii_art import AsciiArt, ascii_art a = ascii_art(m) h = a.height() l = AsciiArt(['|']*h) r = AsciiArt([' '*i + '\\' for i in range(h//2)], baseline=0) if h % 2: r *= AsciiArt([' '*(h//2) + '>'], baseline=0) r *= AsciiArt([' '*i + '/' for i in reversed(range(h//2))], baseline=0) ret = l + a + r ret._baseline = h - 1 return ret def _unicode_art_term(self, m): r""" Return an unicode art representing the generator indexed by ``m``. TESTS:: sage: FS = FockSpace(4) sage: F = FS.natural() sage: x = F.an_element() sage: unicode_art(x) 3*│┌┬┐╲ + 2*│┌┐╲ + 2*│∅〉 │└┴┘╱ │└┘╱ sage: unicode_art(x.f(3,2,2,0,1)) ((3*q^2+3)/q)*│┌┬┬┐╲ + (3*q^2+3)*│┌┬┬┐╲ │├┼┼┤ ╲ │├┼┼┘ ╲ │├┼┴┘ ╱ │├┼┘ 〉 │└┘ ╱ │├┤ ╱ │└┘ ╱ """ if self.options.display != 'ket': return CombinatorialFreeModule._ascii_art_term(self, m) from sage.typeset.unicode_art import UnicodeArt, unicode_art a = unicode_art(m) h = a.height() l = UnicodeArt([u'│']*h, baseline=0) r = UnicodeArt([u" "*i + u'╲' for i in range(h//2)], baseline=0) if h % 2: r *= UnicodeArt([u" "*(h//2) + u'〉'], baseline=0) r *= UnicodeArt([u" "*i + u'╱' for i in reversed(range(h//2))], baseline=0) ret = l + a + r ret._baseline = h - 1 return ret def _test_representation(self, **options): r""" Test that ``self`` is a `U_q(\widehat{\mathfrak{sl}}_n)`-representation. EXAMPLES:: sage: F = FockSpace(3, [0,1]).natural() sage: F._test_representation() # long time """ from sage.combinat.root_system.cartan_matrix import CartanMatrix from sage.combinat.root_system.root_system import RootSystem from sage.algebras.quantum_groups.q_numbers import q_binomial tester = self._tester(**options) F = self.realization_of() q = F.q() n = F._n I = F._index_set A = CartanMatrix(['A',n-1,1]) P = RootSystem(['A',n-1,1]).weight_lattice() al = P.simple_roots() ac = P.simple_coroots() zero = self.zero() for x in self.some_elements(): for i in I: for j in I: tester.assertEqual(x.h_inverse(j).f(i).h(j), q**-al[i].scalar(ac[j]) * x.f(i)) tester.assertEqual(x.h_inverse(j).e(i).h(j), q**al[i].scalar(ac[j]) * x.e(i)) if i == j: tester.assertEqual(x.f(i).e(i) - x.e(i).f(i), (x.h(i) - x.h_inverse(i)) / (q - q**-1)) continue tester.assertEqual(x.f(j).e(i) - x.e(i).f(j), zero) aij = A[i,j] tester.assertEqual(zero, sum((-1)**k * q_binomial(1-aij, k, q) * x.e(*([i]*(1-aij-k) + [j] + [i]*k)) for k in range(1-aij+1))) tester.assertEqual(zero, sum((-1)**k * q_binomial(1-aij, k, q) * x.f(*([i]*(1-aij-k) + [j] + [i]*k)) for k in range(1-aij+1))) class Element(CombinatorialFreeModule.Element): """ An element in the Fock space. """ def _e(self, i): r""" Apply `e_i` to ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F[2,1,1]._e(1) 1/q*|1, 1, 1> sage: F[2,1,1]._e(0) |2, 1> sage: F[3,2,1]._e(1) 0 sage: F = FockSpace(4, [2, 0, 1]) sage: F[[2,1],[1],[2]]._e(2) |[2, 1], [1], [1]> """ P = self.parent() def N_left(la, x, i): return (sum(1 for y in P._addable(la, i) if P._above(x, y)) - sum(1 for y in P._removable(la, i) if P._above(x, y))) q = P.realization_of()._q return P.sum_of_terms(( la.remove_cell(*x), c * q**(-N_left(la, x, i)) ) for la,c in self for x in P._removable(la, i)) def e(self, *data): r""" Apply the action of the divided difference operator `e_i^{(p)}` on ``self``. INPUT: - ``*data`` -- a list of indices or pairs `(i, p)` EXAMPLES:: sage: F = FockSpace(2) sage: F[2,1,1].e(1) 1/q*|1, 1, 1> sage: F[2,1,1].e(0) |2, 1> sage: F[2,1,1].e(0).e(1) |2> + q*|1, 1> sage: F[2,1,1].e(0).e(1).e(1) ((q^2+1)/q)*|1> sage: F[2,1,1].e(0).e((1, 2)) |1> sage: F[2,1,1].e(0, 1, 1, 1) 0 sage: F[2,1,1].e(0, (1, 3)) 0 sage: F[2,1,1].e(0, (1,2), 0) |> sage: F[2,1,1].e(1, 0, 1, 0) 1/q*|> sage: F = FockSpace(4, [2, 0, 1]) sage: F[[2,1],[1],[2]] |[2, 1], [1], [2]> sage: F[[2,1],[1],[2]].e(2) |[2, 1], [1], [1]> sage: F[[2,1],[1],[2]].e(1) 1/q*|[2], [1], [2]> sage: F[[2,1],[1],[2]].e(0) 1/q*|[2, 1], [], [2]> sage: F[[2,1],[1],[2]].e(3) 1/q^2*|[1, 1], [1], [2]> sage: F[[2,1],[1],[2]].e(3, 2, 1) 1/q^2*|[1, 1], [1], []> + 1/q^2*|[1], [1], [1]> sage: F[[2,1],[1],[2]].e(3, 2, 1, 0, 1, 2) 2/q^3*|[], [], []> """ ret = self q = self.parent().realization_of()._q I = self.parent().realization_of()._index_set for i in data: if isinstance(i, tuple): i, p = i else: p = 1 if i not in I: raise ValueError("{} not in the index set".format(i)) for _ in range(p): ret = ret._e(i) if p > 1: ret = ret / q_factorial(p, q) return ret def _f(self, i): r""" Apply `f_i` to ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F.highest_weight_vector()._f(0) |1> sage: F[5,2,2,1]._f(0) 1/q*|5, 2, 2, 2> + |5, 2, 2, 1, 1> sage: F[5,2,2,1]._f(1) |6, 2, 2, 1> + q*|5, 3, 2, 1> sage: F = FockSpace(4, [2, 0, 1]) sage: F[[3,1], [1,1,1], [4,2,2]]._f(0) 1/q*|[3, 1, 1], [1, 1, 1], [4, 2, 2]> sage: F[[3,1], [1,1,1], [4,2,2]]._f(1) |[4, 1], [1, 1, 1], [4, 2, 2]> + |[3, 1], [2, 1, 1], [4, 2, 2]> + q*|[3, 1], [1, 1, 1, 1], [4, 2, 2]> + q^2*|[3, 1], [1, 1, 1], [5, 2, 2]> """ P = self.parent() def N_right(la, x, i): return (sum(1 for y in P._addable(la, i) if P._above(y, x)) - sum(1 for y in P._removable(la, i) if P._above(y, x))) q = P.realization_of()._q return P.sum_of_terms( (la.add_cell(*x), c * q**N_right(la, x, i)) for la,c in self for x in P._addable(la, i) ) def f(self, *data): r""" Apply the action of the divided difference operator `f_i^{(p)}` on ``self``. INPUT: - ``*data`` -- a list of indices or pairs `(i, p)` EXAMPLES:: sage: F = FockSpace(2) sage: mg = F.highest_weight_vector() sage: mg.f(0) |1> sage: mg.f(0).f(1) |2> + q*|1, 1> sage: mg.f(0).f(0) 0 sage: mg.f((0, 2)) 0 sage: mg.f(0, 1, 1) ((q^2+1)/q)*|2, 1> sage: mg.f(0, (1, 2)) |2, 1> sage: mg.f(0, 1, 0) |3> + q*|1, 1, 1> sage: F = FockSpace(4, [2, 0, 1]) sage: mg = F.highest_weight_vector() sage: mg.f(0) |[], [1], []> sage: mg.f(2) |[1], [], []> sage: mg.f(1) |[], [], [1]> sage: mg.f(1, 0) |[], [1], [1]> + q*|[], [], [1, 1]> sage: mg.f(0, 1) |[], [2], []> + q*|[], [1], [1]> sage: mg.f(0, 1, 3) |[], [2, 1], []> + q*|[], [1, 1], [1]> sage: mg.f(3) 0 """ ret = self q = self.parent().realization_of()._q I = self.parent().realization_of()._index_set for i in data: if isinstance(i, tuple): i, p = i else: p = 1 if i not in I: raise ValueError("{} not in the index set".format(i)) for _ in range(p): ret = ret._f(i) if p > 1: ret = ret / q_factorial(p, q) return ret def h(self, *data): r""" Apply the action of `h_i` on ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F[2,1,1].h(0) q*|2, 1, 1> sage: F[2,1,1].h(1) |2, 1, 1> sage: F[2,1,1].h(0, 0) q^2*|2, 1, 1> sage: F = FockSpace(4, [2,0,1]) sage: elt = F[[2,1],[1],[2]] sage: elt.h(0) q^2*|[2, 1], [1], [2]> sage: elt.h(1) |[2, 1], [1], [2]> sage: elt.h(2) |[2, 1], [1], [2]> sage: elt.h(3) q*|[2, 1], [1], [2]> """ P = self.parent() q = P.realization_of()._q I = self.parent().realization_of()._index_set d = self.monomial_coefficients(copy=True) for i in data: if i not in I: raise ValueError("{} not in the index set".format(i)) for la in d: d[la] *= q**(len(P._addable(la, i)) - len(P._removable(la, i))) return P._from_dict(d, coerce=False) def h_inverse(self, *data): r""" Apply the action of `h_i^{-1}` on ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F[2,1,1].h_inverse(0) 1/q*|2, 1, 1> sage: F[2,1,1].h_inverse(1) |2, 1, 1> sage: F[2,1,1].h_inverse(0, 0) 1/q^2*|2, 1, 1> sage: F = FockSpace(4, [2,0,1]) sage: elt = F[[2,1],[1],[2]] sage: elt.h_inverse(0) 1/q^2*|[2, 1], [1], [2]> sage: elt.h_inverse(1) |[2, 1], [1], [2]> sage: elt.h_inverse(2) |[2, 1], [1], [2]> sage: elt.h_inverse(3) 1/q*|[2, 1], [1], [2]> """ P = self.parent() q = P.realization_of()._q I = self.parent().realization_of()._index_set d = self.monomial_coefficients(copy=True) for i in data: if i not in I: raise ValueError("{} not in the index set".format(i)) for la in d: d[la] *= q**-(len(P._addable(la, i)) - len(P._removable(la, i))) return P._from_dict(d, coerce=False) def d(self): r""" Apply the action of `d` on ``self``. EXAMPLES:: sage: F = FockSpace(2) sage: F.highest_weight_vector().d() |> sage: F[2,1,1].d() 1/q^2*|2, 1, 1> sage: F[5,3,3,1,1,1].d() 1/q^7*|5, 3, 3, 1, 1, 1> sage: F = FockSpace(4, [2,0,1]) sage: F.highest_weight_vector().d() |[], [], []> sage: F[[2,1],[1],[2]].d() 1/q*|[2, 1], [1], [2]> sage: F[[4,2,2,1],[1],[5,2]].d() 1/q^5*|[4, 2, 2, 1], [1], [5, 2]> """ P = self.parent() R = P.realization_of() q = R._q d = self.monomial_coefficients(copy=True) for la in d: d[la] *= q**-sum(1 for x in la.cells() if la.content(*x, multicharge=R._multicharge) == 0) return P._from_dict(d, coerce=False) natural = F class A(CombinatorialFreeModule, BindableClass): r""" The `A` basis of the Fock space which is the approximation of the lower global crystal basis. The approximation basis `A` is a basis that is constructed from the highest weight element by applying divided difference operators using the ladder construction of [LLT1996]_ and [GW1999]_. Thus, this basis is bar invariant and upper unitriangular (using dominance order on partitions) when expressed in the natural basis. This basis is then converted to the lower global crystal basis by using Gaussian elimination. EXAMPLES: We construct Example 6.5 and 6.7 in [LLT1996]_:: sage: FS = FockSpace(2) sage: F = FS.natural() sage: G = FS.G() sage: A = FS.A() sage: F(A[5]) |5> + |3, 2> + 2*q*|3, 1, 1> + q^2*|2, 2, 1> + q^2*|1, 1, 1, 1, 1> sage: F(A[4,1]) |4, 1> + q*|2, 1, 1, 1> sage: F(A[3,2]) |3, 2> + q*|3, 1, 1> + q^2*|2, 2, 1> sage: F(G[5]) |5> + q*|3, 1, 1> + q^2*|1, 1, 1, 1, 1> We construct the examples in Section 5.1 of [Fayers2010]_:: sage: FS = FockSpace(2, [0, 0]) sage: F = FS.natural() sage: A = FS.A() sage: F(A[[2,1],[1]]) |[2, 1], [1]> + q*|[2], [2]> + q^2*|[2], [1, 1]> + q^2*|[1, 1], [2]> + q^3*|[1, 1], [1, 1]> + q^4*|[1], [2, 1]> sage: F(A[[4],[]]) |[4], []> + q*|[3, 1], []> + q*|[2, 1, 1], []> + (q^2+1)*|[2, 1], [1]> + 2*q*|[2], [2]> + 2*q^2*|[2], [1, 1]> + q^2*|[1, 1, 1, 1], []> + 2*q^2*|[1, 1], [2]> + 2*q^3*|[1, 1], [1, 1]> + (q^4+q^2)*|[1], [2, 1]> + q^2*|[], [4]> + q^3*|[], [3, 1]> + q^3*|[], [2, 1, 1]> + q^4*|[], [1, 1, 1, 1]> """ def __init__(self, F): r""" Initialize ``self``. EXAMPLES:: sage: A = FockSpace(2).A() sage: TestSuite(A).run() """ self._basis_name = "approximation" indices = PartitionTuples(level=len(F._multicharge), regular=F._n) CombinatorialFreeModule.__init__(self, F.base_ring(), indices, prefix='A', bracket=False, sorting_reverse=True, category=FockSpaceBases(F)) self.module_morphism(self._A_to_fock_basis, triangular='upper', unitriangular=True, codomain=F.natural()).register_as_coercion() options = FockSpaceOptions @cached_method def _A_to_fock_basis(self, la): r""" Return the `A` basis indexed by ``la`` in the natural basis. EXAMPLES:: sage: A = FockSpace(3).A() sage: A._A_to_fock_basis(Partition([3])) |3> + q*|2, 1> sage: A._A_to_fock_basis(Partition([2,1])) |2, 1> + q*|1, 1, 1> sage: FS = FockSpace(2, [0,1]) sage: F = FS.natural() sage: A = FS.A() sage: F(A[[],[1]]) |[], [1]> """ R = self.realization_of() fock = R.natural() if la.size() == 0: return fock.highest_weight_vector() if len(R._multicharge) > 1: # Find one more than the first non-empty partition k = 1 for p in la: if p.size() != 0: break k += 1 # Reduce down to the lower level Fock space and do the computation # and then lift back up to us by prepending empty partitions if k == len(R._multicharge): # This means we get the empty partition cur = fock.highest_weight_vector() else: F = FockSpace(R._n, R._multicharge[k:], R._q, R.base_ring()) Gp = F.G() if k + 1 == len(R._multicharge): cur = Gp._G_to_fock_basis(Gp._indices(la[k])) cur = fock.sum_of_terms((fock._indices([[]]*k + [p]), c) for p,c in cur) else: cur = Gp._G_to_fock_basis(Gp._indices(la[k:])) cur = fock.sum_of_terms((fock._indices([[]]*k + list(pt)), c) for pt,c in cur) la = la[k-1] r = R._multicharge[k-1] else: cur = fock.highest_weight_vector() r = R._multicharge[0] # Get the ladders and apply it to the current element corners = la.corners() cells = set(la.cells()) q = R._q k = R._n - 1 # This is sl_{k+1} b = ZZ.zero() # While there is some cell left to count while any(c[1]*k + c[0] >= b for c in corners): power = 0 i = -b + r # This will be converted to a mod n number for x in range(b // k + 1): if (b-x*k, x) in cells: power += 1 cur = cur.f(i) cur /= q_factorial(power, q) b += 1 return cur approximation = A class G(CombinatorialFreeModule, BindableClass): r""" The lower global crystal basis living inside of Fock space. EXAMPLES: We construct some of the tables/entries given in Section 10 of [LLT1996]_. For `\widehat{\mathfrak{sl}}_2`:: sage: FS = FockSpace(2) sage: F = FS.natural() sage: G = FS.G() sage: F(G[2]) |2> + q*|1, 1> sage: F(G[3]) |3> + q*|1, 1, 1> sage: F(G[2,1]) |2, 1> sage: F(G[4]) |4> + q*|3, 1> + q*|2, 1, 1> + q^2*|1, 1, 1, 1> sage: F(G[3,1]) |3, 1> + q*|2, 2> + q^2*|2, 1, 1> sage: F(G[5]) |5> + q*|3, 1, 1> + q^2*|1, 1, 1, 1, 1> sage: F(G[4,2]) |4, 2> + q*|4, 1, 1> + q*|3, 3> + q^2*|3, 1, 1, 1> + q^2*|2, 2, 2> + q^3*|2, 2, 1, 1> sage: F(G[4,2,1]) |4, 2, 1> + q*|3, 3, 1> + q^2*|3, 2, 2> + q^3*|3, 2, 1, 1> sage: F(G[6,2]) |6, 2> + q*|6, 1, 1> + q*|5, 3> + q^2*|5, 1, 1, 1> + q*|4, 3, 1> + q^2*|4, 2, 2> + (q^3+q)*|4, 2, 1, 1> + q^2*|4, 1, 1, 1, 1> + q^2*|3, 3, 1, 1> + q^3*|3, 2, 2, 1> + q^3*|3, 1, 1, 1, 1, 1> + q^3*|2, 2, 2, 1, 1> + q^4*|2, 2, 1, 1, 1, 1> sage: F(G[5,3,1]) |5, 3, 1> + q*|5, 2, 2> + q^2*|5, 2, 1, 1> + q*|4, 4, 1> + q^2*|4, 2, 1, 1, 1> + q^2*|3, 3, 3> + q^3*|3, 3, 1, 1, 1> + q^3*|3, 2, 2, 2> + q^4*|3, 2, 2, 1, 1> sage: F(G[4,3,2,1]) |4, 3, 2, 1> sage: F(G[7,2,1]) |7, 2, 1> + q*|5, 2, 1, 1, 1> + q^2*|3, 2, 1, 1, 1, 1, 1> sage: F(G[10,1]) |10, 1> + q*|8, 1, 1, 1> + q^2*|6, 1, 1, 1, 1, 1> + q^3*|4, 1, 1, 1, 1, 1, 1, 1> + q^4*|2, 1, 1, 1, 1, 1, 1, 1, 1, 1> sage: F(G[6,3,2]) |6, 3, 2> + q*|6, 3, 1, 1> + q^2*|6, 2, 2, 1> + q^3*|5, 3, 2, 1> + q*|4, 3, 2, 1, 1> + q^2*|4, 3, 1, 1, 1, 1> + q^3*|4, 2, 2, 1, 1, 1> + q^4*|3, 3, 2, 1, 1, 1> sage: F(G[5,3,2,1]) |5, 3, 2, 1> + q*|4, 4, 2, 1> + q^2*|4, 3, 3, 1> + q^3*|4, 3, 2, 2> + q^4*|4, 3, 2, 1, 1> For `\widehat{\mathfrak{sl}}_3`:: sage: FS = FockSpace(3) sage: F = FS.natural() sage: G = FS.G() sage: F(G[2]) |2> sage: F(G[1,1]) |1, 1> sage: F(G[3]) |3> + q*|2, 1> sage: F(G[2,1]) |2, 1> + q*|1, 1, 1> sage: F(G[4]) |4> + q*|2, 2> sage: F(G[3,1]) |3, 1> sage: F(G[2,2]) |2, 2> + q*|1, 1, 1, 1> sage: F(G[2,1,1]) |2, 1, 1> sage: F(G[5]) |5> + q*|2, 2, 1> sage: F(G[2,2,1]) |2, 2, 1> + q*|2, 1, 1, 1> sage: F(G[4,1,1]) |4, 1, 1> + q*|3, 2, 1> + q^2*|3, 1, 1, 1> sage: F(G[5,2]) |5, 2> + q*|4, 3> + q^2*|4, 2, 1> sage: F(G[8]) |8> + q*|5, 2, 1> + q*|3, 3, 1, 1> + q^2*|2, 2, 2, 2> sage: F(G[7,2]) |7, 2> + q*|4, 2, 2, 1> sage: F(G[6,2,2]) |6, 2, 2> + q*|6, 1, 1, 1, 1> + q*|4, 4, 2> + q^2*|3, 3, 2, 1, 1> For `\widehat{\mathfrak{sl}}_4`:: sage: FS = FockSpace(4) sage: F = FS.natural() sage: G = FS.G() sage: F(G[4]) |4> + q*|3, 1> sage: F(G[3,1]) |3, 1> + q*|2, 1, 1> sage: F(G[2,2]) |2, 2> sage: F(G[2,1,1]) |2, 1, 1> + q*|1, 1, 1, 1> sage: F(G[3,2]) |3, 2> + q*|2, 2, 1> sage: F(G[2,2,2]) |2, 2, 2> + q*|1, 1, 1, 1, 1, 1> sage: F(G[6,1]) |6, 1> + q*|4, 3> sage: F(G[3,2,2,1]) |3, 2, 2, 1> + q*|3, 1, 1, 1, 1, 1> + q*|2, 2, 2, 2> + q^2*|2, 1, 1, 1, 1, 1, 1> sage: F(G[7,2]) |7, 2> + q*|6, 2, 1> + q*|5, 4> + q^2*|5, 3, 1> sage: F(G[5,2,2,1]) |5, 2, 2, 1> + q*|5, 1, 1, 1, 1, 1> + q*|4, 2, 2, 1, 1> + q^2*|4, 2, 1, 1, 1, 1> We construct the examples in Section 5.1 of [Fayers2010]_:: sage: FS = FockSpace(2, [0, 0]) sage: F = FS.natural() sage: G = FS.G() sage: F(G[[2,1],[1]]) |[2, 1], [1]> + q*|[2], [2]> + q^2*|[2], [1, 1]> + q^2*|[1, 1], [2]> + q^3*|[1, 1], [1, 1]> + q^4*|[1], [2, 1]> sage: F(G[[4],[]]) |[4], []> + q*|[3, 1], []> + q*|[2, 1, 1], []> + q^2*|[2, 1], [1]> + q*|[2], [2]> + q^2*|[2], [1, 1]> + q^2*|[1, 1, 1, 1], []> + q^2*|[1, 1], [2]> + q^3*|[1, 1], [1, 1]> + q^2*|[1], [2, 1]> + q^2*|[], [4]> + q^3*|[], [3, 1]> + q^3*|[], [2, 1, 1]> + q^4*|[], [1, 1, 1, 1]> """ def __init__(self, F): r""" Initialize ``self``. EXAMPLES:: sage: G = FockSpace(2).G() sage: TestSuite(G).run() """ self._basis_name = "lower global crystal" indices = PartitionTuples(level=len(F._multicharge), regular=F._n) CombinatorialFreeModule.__init__(self, F.base_ring(), indices, prefix='G', bracket=False, sorting_reverse=True, category=FockSpaceBases(F)) self.module_morphism(self._G_to_fock_basis, triangular='upper', unitriangular=True, codomain=F.natural()).register_as_coercion() options = FockSpaceOptions @cached_method def _G_to_fock_basis(self, la): r""" Return the `G` basis indexed by ``la`` in the natural basis. EXAMPLES:: sage: G = FockSpace(3).G() sage: G._G_to_fock_basis(Partition([3])) |3> + q*|2, 1> sage: G._G_to_fock_basis(Partition([2,1])) |2, 1> + q*|1, 1, 1> """ # Special case for the empty partition if la.size() == 0: return self.realization_of().natural().highest_weight_vector() # Special case for empty leading partitions R = self.realization_of() if len(R._multicharge) > 1 and la[0].size() == 0: fock = R.natural() # Find the first non-empty partition k = 0 for p in la: if p.size() != 0: break k += 1 # Reduce down to the lower level Fock space and do the computation # and then lift back up by prepending empty partitions # Note that this will never be for the empty partition, which # is already taken care of F = FockSpace(R._n, R._multicharge[k:], R._q, R.base_ring()) Gp = F.G() if k + 1 == len(R._multicharge): cur = Gp._G_to_fock_basis(Gp._indices(la[k])) return fock.sum_of_terms((fock._indices([[]]*k + [p]), c) for p,c in cur) cur = Gp._G_to_fock_basis(Gp._indices(la[k:])) return fock.sum_of_terms((fock._indices([[]]*k + list(pt)), c) for pt,c in cur) cur = R.A()._A_to_fock_basis(la) s = cur.support() s.sort() # Sort lex, which respects dominance order s.pop() # Remove the largest q = R._q while s: mu = s.pop() d = cur[mu].denominator() k = d.degree() n = cur[mu].numerator() if k != 0 or n.constant_coefficient() != 0: gamma = sum(n[i] * (q**(i-k) + q**(k-i)) for i in range(min(n.degree(), k))) gamma += n[k] cur -= gamma * self._G_to_fock_basis(mu) # Add any new support elements for x in cur.support(): if x == mu or not mu.dominates(x): # Add only things (strictly) dominated by mu continue for i in reversed(range(len(s))): if not s[i].dominates(x): s.insert(i+1, x) break return cur lower_global_crystal = G canonical = G ############################################################################### ## Bases Category class FockSpaceBases(Category_realization_of_parent): r""" The category of bases of a (truncated) Fock space. """ def __init__(self, base): r""" Initialize the bases of a Fock space. INPUT: - ``base`` -- a Fock space TESTS:: sage: from sage.algebras.quantum_groups.fock_space import FockSpaceBases sage: F = FockSpace(2) sage: bases = FockSpaceBases(F) sage: TestSuite(bases).run() """ Category_realization_of_parent.__init__(self, base) def _repr_(self): r""" Return the representation of ``self``. EXAMPLES:: sage: from sage.algebras.quantum_groups.fock_space import FockSpaceBases sage: F = FockSpace(2) sage: FockSpaceBases(F) Category of bases of Fock space of rank 2 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring """ return "Category of bases of {}".format(self.base()) def super_categories(self): r""" The super categories of ``self``. EXAMPLES:: sage: from sage.algebras.quantum_groups.fock_space import FockSpaceBases sage: F = FockSpace(2) sage: bases = FockSpaceBases(F) sage: bases.super_categories() [Category of vector spaces with basis over Fraction Field of Univariate Polynomial Ring in q over Integer Ring, Category of realizations of Fock space of rank 2 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring] """ return [ModulesWithBasis(self.base().base_ring()), Realizations(self.base())] class ParentMethods: def _repr_(self): r""" Text representation of this basis of Fock space. EXAMPLES:: sage: FS = FockSpace(2) sage: FS.A() Fock space of rank 2 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring in the approximation basis sage: FS.G() Fock space of rank 2 of multicharge (0,) over Fraction Field of Univariate Polynomial Ring in q over Integer Ring in the lower global crystal basis """ return "{} in the {} basis".format(self.realization_of(), self._basis_name) def some_elements(self): r""" Return some elements of ``self``. EXAMPLES:: sage: F = FockSpace(3).natural() sage: F.some_elements()[::13] [3*|2> + 2*|1> + 2*|>, |5>, |3, 1, 1, 1>, |3, 2, 2>, |5, 1, 1, 1>, |2, 2, 1, 1, 1, 1>, |5, 2, 1, 1>, |3, 2, 1, 1, 1, 1>] sage: F = FockSpace(3, [0,1]).natural() sage: F.some_elements()[::13] [2*|[1], []> + 4*|[], [1]> + |[], []>, |[1, 1], [1]>, |[1, 1, 1], [1]>, |[5], []>, |[3], [1, 1]>, |[1], [2, 2]>, |[4, 1, 1], []>, |[2, 1, 1, 1], [1]>] """ others = [self.monomial(la) for la in self.basis().keys().some_elements()] return [self.an_element()] + others def q(self): r""" Return the parameter `q` of ``self``. EXAMPLES:: sage: FS = FockSpace(2) sage: A = FS.A() sage: A.q() q sage: FS = FockSpace(2, q=-1) sage: G = FS.G() sage: G.q() -1 """ return self.realization_of()._q def multicharge(self): r""" Return the multicharge of ``self``. EXAMPLES:: sage: FS = FockSpace(4) sage: A = FS.A() sage: A.multicharge() (0,) sage: FS = FockSpace(4, [1,0,2]) sage: G = FS.G() sage: G.multicharge() (1, 0, 2) """ return self.realization_of()._multicharge @cached_method def highest_weight_vector(self): r""" Return the highest weight vector of ``self``. EXAMPLES:: sage: FS = FockSpace(2) sage: F = FS.natural() sage: F.highest_weight_vector() |> sage: A = FS.A() sage: A.highest_weight_vector() A[] sage: G = FS.G() sage: G.highest_weight_vector() G[] """ level = len(self.realization_of()._multicharge) if level == 1: return self.monomial(self._indices([])) return self.monomial(self._indices([[]]*level)) def __getitem__(self, i): r""" Return the basis element indexed by ``i``. INPUT: - ``i`` -- a partition EXAMPLES:: sage: F = FockSpace(3) sage: A = F.A() sage: A[[]] A[] sage: A[4] A[4] sage: A[2,2,1] A[2, 2, 1] sage: G = F.G() sage: G[[]] G[] sage: G[4] G[4] sage: G[2,2,1] G[2, 2, 1] For higher levels:: sage: F = FockSpace(2, [0, 0]) sage: G = F.G() sage: G[[2,1],[1]] G([2, 1], [1]) TESTS:: sage: F = FockSpace(3) sage: A = F.A() sage: A[2,2,2,1] Traceback (most recent call last): ... ValueError: [2, 2, 2, 1] is not an element of 3-Regular Partitions sage: F = FockSpace(3, [0, 0]) sage: A = F.A() sage: A[[], [2,2,2,1]] Traceback (most recent call last): ... ValueError: [[], [2, 2, 2, 1]] is not a 3-Regular partition tuples of level 2 """ if i in ZZ: i = [i] i = self._indices(i) if i.size() == 0: return self.highest_weight_vector() return self.monomial(i) ############################################################################### ## Truncated Fock space class FockSpaceTruncated(FockSpace): r""" This is the Fock space given by partitions of length no more than `k`. This can be formed as the quotient `\mathcal{F} / \mathcal{F}_k`, where `\mathcal{F}_k` is the submodule spanned by all diagrams of length (strictly) more than `k`. We have three bases: - The natural basis indexed by truncated `n`-regular partitions: :class:`~sage.algebras.quantum_groups.fock_space.FockSpaceTruncated.F`. - The approximation basis that comes from LLT(-type) algorithms: :class:`~sage.algebras.quantum_groups.fock_space.FockSpaceTruncated.A`. - The lower global crystal basis: :class:`~sage.algebras.quantum_groups.fock_space.FockSpaceTruncated.G`. .. SEEALSO:: :class:`FockSpace` EXAMPLES:: sage: F = FockSpace(2, truncated=2) sage: mg = F.highest_weight_vector() sage: mg.f(0) |1> sage: mg.f(0).f(1) |2> + q*|1, 1> sage: mg.f(0).f(1).f(0) |3> Compare this to the full Fock space:: sage: F = FockSpace(2) sage: mg = F.highest_weight_vector() sage: mg.f(0).f(1).f(0) |3> + q*|1, 1, 1> REFERENCES: - [GW1999]_ """ @staticmethod def __classcall_private__(cls, n, k, q=None, base_ring=None): r""" Standardize input to ensure a unique representation. EXAMPLES:: sage: R.<q> = ZZ[] sage: F1 = FockSpace(3, truncated=2) sage: F2 = FockSpace(3, q=q, truncated=2) sage: F3 = FockSpace(3, q=q, base_ring=R, truncated=2) sage: F1 is F2 and F2 is F3 True sage: from sage.algebras.quantum_groups.fock_space import FockSpaceTruncated sage: F4 = FockSpaceTruncated(3, 2, q, R) sage: F1 is F4 True """ if q is None: base_ring = PolynomialRing(ZZ, 'q') q = base_ring.gen(0) if base_ring is None: base_ring = q.parent() base_ring = FractionField(base_ring) q = base_ring(q) return super(FockSpace, cls).__classcall__(cls, n, k, q, base_ring) def __init__(self, n, k, q, base_ring): r""" Initialize ``self``. EXAMPLES:: sage: F = FockSpace(2, truncated=3) sage: TestSuite(F).run() """ M = IntegerModRing(n) self._k = k FockSpace.__init__(self, n, (M(0),), q, base_ring) def _repr_(self): r""" Return a string representation of ``self``. EXAMPLES:: sage: FockSpace(2, truncated=3) Fock space of rank 2 truncated at 3 over Fraction Field of Univariate Polynomial Ring in q over Integer Ring """ return "Fock space of rank {} truncated at {} over {}".format(self._n, self._k, self.base_ring()) class F(CombinatorialFreeModule, BindableClass): r""" The natural basis of the truncated Fock space. This is the natural basis of the full Fock space projected onto the truncated Fock space. It inherits the `U_q(\widehat{\widetilde{sl}}_n)`-action from the action on the full Fock space. EXAMPLES:: sage: FS = FockSpace(4) sage: F = FS.natural() sage: FS3 = FockSpace(4, truncated=3) sage: F3 = FS3.natural() sage: u = F.highest_weight_vector() sage: u3 = F3.highest_weight_vector() sage: u3.f(0,3,2,1) |2, 1, 1> sage: u.f(0,3,2,1) |2, 1, 1> + q*|1, 1, 1, 1> sage: u.f(0,3,2,1,1) ((q^2+1)/q)*|2, 1, 1, 1> sage: u3.f(0,3,2,1,1) 0 """ def __init__(self, F): r""" Initialize ``self``. EXAMPLES:: sage: F = FockSpace(2, truncated=3).natural() sage: TestSuite(F).run() # long time """ self._basis_name = "natural" # If the cell x is above the cell y if len(F._multicharge) == 1: # For partitions self._above = lambda x,y: x[0] < y[0] else: # For partition tuples self._above = lambda x,y: x[0] < y[0] or (x[0] == y[0] and x[1] < y[1]) self._addable = lambda la,i: [x for x in la.outside_corners() if la.content(*x, multicharge=F._multicharge) == i] self._removable = lambda la,i: [x for x in la.corners() if la.content(*x, multicharge=F._multicharge) == i] indices = Partitions(F._n, max_length=F._k) CombinatorialFreeModule.__init__(self, F.base_ring(), indices, prefix='', bracket=['|', '>'], latex_bracket=['\\lvert', '\\rangle'], sorting_reverse=True, category=FockSpaceBases(F)) options = FockSpaceOptions def _repr_term(self, m): r""" Return a representation of the monomial indexed by ``m``. EXAMPLES:: sage: F = FockSpace(2, truncated=3).natural() sage: F._repr_term(Partition([2,1,1])) '|2, 1, 1>' sage: F.highest_weight_vector() |> """ return '|' + repr(m)[1:-1] + ">" # Strip the outer brackets of m class Element(FockSpace.natural.Element): r""" An element in the truncated Fock space. """ def _f(self, i): r""" Apply the action of `f_i` on ``self``. EXAMPLES:: sage: F = FockSpace(2, truncated=3).natural() sage: mg = F.highest_weight_vector() sage: mg.f(0) |1> sage: mg.f(0,1) |2> + q*|1, 1> sage: mg.f(0,1,0) |3> + q*|1, 1, 1> sage: mg.f(0,1,0,0) 0 sage: mg.f(0,1,0,1) |4> + q*|3, 1> + q*|2, 1, 1> sage: mg.f(0,1,0,1,0) |5> + |3, 2> + 2*q*|3, 1, 1> + q^2*|2, 2, 1> """ P = self.parent() def N_right(la, x, i): return (sum(1 for y in P._addable(la, i) if P._above(y, x)) - sum(1 for y in P._removable(la, i) if P._above(y, x))) q = P.realization_of()._q k = P.realization_of()._k return P.sum_of_terms([(la.add_cell(*x), c * q**N_right(la, x, i)) for la,c in self for x in P._addable(la, i) if x[0] < k]) natural = F class A(CombinatorialFreeModule, BindableClass): r""" The `A` basis of the Fock space, which is the approximation basis of the lower global crystal basis. INPUT: - ``algorithm`` -- (default ``'GW'``) the algorithm to use when computing this basis in the Fock space; the possible values are: * ``'GW'`` -- use the algorithm given by Goodman and Wenzl in [GW1999]_ * ``'LLT'`` -- use the LLT algorithm given in [LLT1996]_ .. NOTE:: The bases produced by the two algorithms are not the same in general. EXAMPLES:: sage: FS = FockSpace(5, truncated=4) sage: F = FS.natural() sage: A = FS.A() We demonstrate that they are different bases, but both algorithms still compute the basis `G`:: sage: A2 = FS.A('LLT') sage: G = FS.G() sage: F(A[12,9]) |12, 9> + q*|12, 4, 4, 1> + q*|8, 8, 5> + (q^2+1)*|8, 8, 4, 1> sage: F(A2[12,9]) |12, 9> + q*|12, 4, 4, 1> + q*|8, 8, 5> + (q^2+2)*|8, 8, 4, 1> sage: G._G_to_fock_basis(Partition([12,9]), 'GW') |12, 9> + q*|12, 4, 4, 1> + q*|8, 8, 5> + q^2*|8, 8, 4, 1> sage: G._G_to_fock_basis(Partition([12,9]), 'LLT') |12, 9> + q*|12, 4, 4, 1> + q*|8, 8, 5> + q^2*|8, 8, 4, 1> """ def __init__(self, F, algorithm='GW'): r""" Initialize ``self``. EXAMPLES:: sage: FS = FockSpace(2, truncated=3) sage: A = FS.A() sage: TestSuite(A).run() sage: A2 = FS.A('LLT') sage: TestSuite(A2).run() """ self._basis_name = "approximation" if algorithm not in ['GW', 'LLT']: raise ValueError("invalid algorithm") self._alg = algorithm indices = RegularPartitions_truncated(F._n, F._k) CombinatorialFreeModule.__init__(self, F.base_ring(), indices, prefix='A', bracket=False, sorting_reverse=True, category=FockSpaceBases(F)) self.module_morphism(self._A_to_fock_basis, triangular='upper', unitriangular=True, codomain=F.natural()).register_as_coercion() options = FockSpaceOptions @cached_method def _LLT(self, la): r""" Return the result from the regular LLT algorithm on the partition ``la`` to compute the `A`-basis element in the corresponding Fock space. EXAMPLES:: sage: FS = FockSpace(5, truncated=4) sage: F = FS.natural() sage: A = FS.A() sage: F(A[12,9]) |12, 9> + q*|12, 4, 4, 1> + q*|8, 8, 5> + (q^2+1)*|8, 8, 4, 1> sage: A._LLT(Partition([12,9])) |12, 9> + q*|12, 4, 4, 1> + q*|8, 8, 5> + (q^2+2)*|8, 8, 4, 1> """ R = self.realization_of() fock = R.natural() k = R._k cur = fock.highest_weight_vector() # Get the ladders and apply it to the current element corners = la.corners() cells = set(la.cells()) q = R._q k = R._n - 1 # This is sl_{k+1} r = R._multicharge[0] b = ZZ.zero() while any(c[1]*k + c[0] >= b for c in corners): # While there is some cell left to count power = 0 i = -b + r # This will be converted to a mod n number for x in range(b // k + 1): if (b-x*k, x) in cells: power += 1 cur = cur.f(i) cur /= q_factorial(power, q) b += 1 return cur def _skew_tableau(self, cur, nu, d): r""" Return the action of the skew tableaux formed from ``nu`` by applying the ``d`` fundamental weights. EXAMPLES:: sage: FS = FockSpace(3, truncated=3) sage: F = FS.natural() sage: A = FS.A() sage: G = FS.G() sage: sk = A._skew_tableau(F(G[6,3]), Partition([6,3]), [1,1]); sk |8, 4> + q*|8, 2, 2> + q*|7, 4, 1> + q^2*|7, 3, 2> + q*|6, 6> + q^2*|6, 5, 1> + q^2*|5, 4, 3> + q^3*|4, 4, 4> sage: sk == F(A[8,4]) True """ R = self.realization_of() last = None power = 0 q = R._q for i in reversed(range(len(d))): for dummy in range(d[i]): for j in range(i+1): col = nu[j] if j < len(nu) else 0 res = nu.content(j, col, multicharge=R._multicharge) if res != last: cur /= q_factorial(power, q) power = 1 last = res else: power += 1 cur = cur.f(res) nu = nu.add_cell(j, col) return cur / q_factorial(power, q) @cached_method def _A_to_fock_basis(self, la): r""" Return the `A` basis indexed by ``la`` in the natural basis. EXAMPLES:: sage: FS = FockSpace(2, truncated=3) sage: F = FS.natural() sage: A = FS.A() sage: A._A_to_fock_basis(Partition([2,1])) |2, 1> sage: F(A[3,1]) |3, 1> + q*|2, 2> + q^2*|2, 1, 1> sage: A._A_to_fock_basis(Partition([3])) |3> + q*|1, 1, 1> sage: FS = FockSpace(2, truncated=5) sage: F = FS.natural() sage: A = FS.A() sage: F(A[7,4,3]) |7, 4, 3> + q*|7, 4, 1, 1, 1> + q^2*|7, 2, 2, 2, 1> + |5, 4, 3, 2> + 2*q*|5, 4, 3, 1, 1> + 2*q^2*|5, 4, 2, 2, 1> + 2*q^3*|5, 3, 3, 2, 1> + q^4*|4, 4, 3, 2, 1> sage: F(A[7,4,3,2]) |7, 4, 3, 2> + q*|7, 4, 3, 1, 1> + q^2*|7, 4, 2, 2, 1> + q^3*|7, 3, 3, 2, 1> + q^4*|6, 4, 3, 2, 1> """ if self._alg == 'LLT': return self._LLT(la) # Otherwise we use the GW algorithm fock = self.realization_of().natural() k = self.realization_of()._k # We do some special cases first # For the empty partition if la.size() == 0: return fock.highest_weight_vector() # For length k partitions if len(la) == k: G = self.realization_of().G() return G._G_to_fock_basis(la) # For critical partitions n = self.realization_of()._n if len(la) == k-1 and all((la[i] - la[i+1] + 1) % n == 0 for i in range(k-2)) \ and (la[-1] + 1) % n == 0: return fock.monomial(la) # For interior partitions shifted = [la[i] - (n - 1)*(k - 1 - i) for i in range(len(la))] if len(la) == k - 1 and shifted in _Partitions: # Construct the d's and the critical partition d = [(la[i] - la[i+1] + 1) % n for i in range(len(la)-1)] d.append((la[-1] + 1) % n) crit = list(la) for i,d_i in enumerate(d): for j in range(i+1): crit[j] -= d_i nu = fock._indices(crit) return self._skew_tableau(fock.monomial(nu), nu, d) # For non-interior partitions # Construct the d's and the partition ``a`` a = list(la) + [0]*(k - 1 - len(la)) # Add 0's to get the correct length a = [a[i] + (k - 1 - i) for i in range(k-1)] # Shift the diagram #shifted = list(a) # Make a copy of the shifted partition in case we need it later d = [(a[i] - a[i+1]) % n for i in range(k-2)] d.append(a[-1] % n) for i,d_i in enumerate(d): for j in range(i+1): a[j] -= d_i if sum(a) == 0: # a is contained in the fundamental box return self._LLT(la) p = list(a) # Make a copy that we can change for i in range(k-2): if a[i] - a[i+1] == 0: d[i] -= 1 for j in range(i+1): p[j] += 1 if a[-1] == 0: d[-1] -= 1 for j in range(k-1): p[j] += 1 p = [p[i] - (k - 1 - i) for i in range(k-1)] I = self._indices nu = I(p) while not max(nu.to_exp()) < n: # It is not regular, so we need to find the first regular # partition after adding columns while d[-1] == 0: d.pop() for j in range(d[-1]): p[j] += 1 nu = I(p) if la == nu: j = -1 for i in range(k-2): if p[i] - p[i+1] == 0: j = -2 break if p[i] > n and p[i] - p[i+1] > n: j = i if j != -2 and p[-1] > n: j = k - 1 if j < 0: return self._LLT(la) G = self.realization_of().G() nu = I([p[i] - n if i <= j else p[i] for i in range(k-1)]) d = [0]*j + [n] return self._skew_tableau(G._G_to_fock_basis(nu), nu, d) G = self.realization_of().G() return self._skew_tableau(G._G_to_fock_basis(nu), nu, d) approximation = A class G(CombinatorialFreeModule, BindableClass): r""" The lower global crystal basis living inside of a truncated Fock space. EXAMPLES:: sage: FS = FockSpace(4, truncated=2) sage: F = FS.natural() sage: G = FS.G() sage: F(G[3,1]) |3, 1> sage: F(G[6,2]) |6, 2> + q*|5, 3> sage: F(G[14]) |14> + q*|11, 3> sage: FS = FockSpace(3, truncated=4) sage: F = FS.natural() sage: G = FS.G() sage: F(G[4,1]) |4, 1> + q*|3, 2> sage: F(G[4,2,2]) |4, 2, 2> + q*|3, 2, 2, 1> We check against the tables in [LLT1996]_ (after truncating):: sage: FS = FockSpace(3, truncated=3) sage: F = FS.natural() sage: G = FS.G() sage: F(G[10]) |10> + q*|8, 2> + q*|7, 2, 1> sage: F(G[6,4]) |6, 4> + q*|6, 2, 2> + q^2*|4, 4, 2> sage: F(G[5,5]) |5, 5> + q*|4, 3, 3> sage: FS = FockSpace(4, truncated=3) sage: F = FS.natural() sage: G = FS.G() sage: F(G[3,3,1]) |3, 3, 1> sage: F(G[3,2,2]) |3, 2, 2> sage: F(G[7]) |7> + q*|3, 3, 1> """ def __init__(self, F): r""" Initialize ``self``. EXAMPLES:: sage: G = FockSpace(2, truncated=3).G() sage: TestSuite(G).run() sage: G = FockSpace(4, truncated=3).G() sage: TestSuite(G).run() """ self._basis_name = "lower global crystal" indices = RegularPartitions_truncated(F._n, F._k) CombinatorialFreeModule.__init__(self, F.base_ring(), indices, prefix='G', bracket=False, sorting_reverse=True, category=FockSpaceBases(F)) self.module_morphism(self._G_to_fock_basis, triangular='upper', unitriangular=True, codomain=F.natural()).register_as_coercion() options = FockSpaceOptions @cached_method def _G_to_fock_basis(self, la, algorithm='GW'): r""" Return the `G` basis indexed by ``la`` in the natural basis. EXAMPLES:: sage: G = FockSpace(3, truncated=3).G() sage: G._G_to_fock_basis(Partition([3])) |3> + q*|2, 1> sage: G._G_to_fock_basis(Partition([2,1])) |2, 1> + q*|1, 1, 1> sage: G._G_to_fock_basis(Partition([2,1]), 'LLT') |2, 1> + q*|1, 1, 1> """ fock = self.realization_of().natural() # Special cases: # For the empty partition if la.size() == 0: return fock.highest_weight_vector() # For length k partitions if algorithm == 'GW': n = self.realization_of()._n k = self.realization_of()._k if len(la) == k: x = la[-1] mu = _Partitions([p - x for p in la]) def add_cols(nu): return _Partitions([ v + x for v in list(nu) + [0]*(k - len(nu)) ]) return fock.sum_of_terms((add_cols(nu), c) for nu,c in self._G_to_fock_basis(mu)) # For critical partitions n = self.realization_of()._n if len(la) == k-1 and all((la[i] - la[i+1] + 1) % n == 0 for i in range(k-2)) \ and (la[-1] + 1) % n == 0: return fock.monomial(la) # Perform the triangular reduction cur = self.realization_of().A(algorithm)._A_to_fock_basis(la) s = cur.support() s.sort() # Sort lex, which respects dominance order s.pop() # Remove the largest q = self.realization_of()._q while s: mu = s.pop() d = cur[mu].denominator() k = d.degree() n = cur[mu].numerator() if k != 0 or n.constant_coefficient() != 0: gamma = sum(n[i] * (q**(i-k) + q**(k-i)) for i in range(min(n.degree(), k))) gamma += n[k] cur -= gamma * self._G_to_fock_basis(mu, algorithm) # Add any new support elements for x in cur.support(): if x == mu or not mu.dominates(x): # Add only things (strictly) dominated by mu continue for i in reversed(range(len(s))): if not s[i].dominates(x): s.insert(i+1, x) break return cur lower_global_crystal = G canonical = G
37.229242
106
0.416764
3c5f3d3b80dab47d9968eed116110e46d7052223
12,460
py
Python
tests/trainer/test_data_loading.py
eladsegal/pytorch-lightning
7b4df7bf919acfd7f7b39d780faeadb54aec9ade
[ "Apache-2.0" ]
3
2021-10-04T05:08:28.000Z
2021-10-04T06:04:06.000Z
tests/trainer/test_data_loading.py
Programmer-RD-AI/pytorch-lightning
02a675241c826d7720c7e15d6fda3f5da0b28116
[ "Apache-2.0" ]
null
null
null
tests/trainer/test_data_loading.py
Programmer-RD-AI/pytorch-lightning
02a675241c826d7720c7e15d6fda3f5da0b28116
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from re import escape import pytest from torch.utils.data import DataLoader, DistributedSampler from torch.utils.data.sampler import BatchSampler, Sampler, SequentialSampler from pytorch_lightning import Trainer from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_7 from tests.helpers import BoringModel, RandomDataset @pytest.mark.skipif( sys.platform == "win32" and not _TORCH_GREATER_EQUAL_1_7, reason="Bad `torch.distributed` support on Windows" ) @pytest.mark.parametrize("mode", (1, 2, 3)) def test_replace_distributed_sampler(tmpdir, mode): class IndexedRandomDataset(RandomDataset): def __getitem__(self, index): return self.data[index] class CustomDataLoader(DataLoader): def __init__(self, num_features, dataset, *args, **kwargs): self.num_features = num_features super().__init__(dataset, *args, **kwargs) class FailureCustomDataLoader(DataLoader): def __init__(self, num_features, dataset, *args, **kwargs): super().__init__(dataset, *args, **kwargs) class CustomBatchSampler(BatchSampler): pass class TestModel(BoringModel): def __init__(self, numbers_test_dataloaders, mode): super().__init__() self._numbers_test_dataloaders = numbers_test_dataloaders self._mode = mode def test_step(self, batch, batch_idx, dataloader_idx=None): return super().test_step(batch, batch_idx) def on_test_start(self) -> None: dataloader = self.trainer.test_dataloaders[0] assert isinstance(dataloader, CustomDataLoader) batch_sampler = dataloader.batch_sampler if self._mode == 2: assert isinstance(batch_sampler, CustomBatchSampler) # the batch_size is set on the batch sampler assert dataloader.batch_size is None elif self._mode == 3: assert type(batch_sampler) is BatchSampler assert dataloader.batch_size == self._mode assert batch_sampler.batch_size == self._mode assert batch_sampler.drop_last # the sampler has been replaced assert isinstance(batch_sampler.sampler, DistributedSampler) def create_dataset(self): dataset = IndexedRandomDataset(32, 64) if self._mode == 1: # this case will raise an error return FailureCustomDataLoader(32, dataset) if self._mode == 2: # with a custom batch sampler batch_sampler = CustomBatchSampler(SequentialSampler(dataset), batch_size=2, drop_last=True) return CustomDataLoader(32, dataset, batch_sampler=batch_sampler) elif self._mode == 3: # with no batch sampler provided return CustomDataLoader(32, dataset, batch_size=3, drop_last=True) def test_dataloader(self): return [self.create_dataset()] * self._numbers_test_dataloaders model = TestModel(2, mode) model.test_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, limit_test_batches=2, plugins="ddp_find_unused_parameters_false", num_processes=1 ) if mode == 1: match = escape("missing attributes are ['num_features']") with pytest.raises(MisconfigurationException, match=match): trainer.test(model) else: trainer.test(model) @pytest.mark.parametrize("num_workers", [0, 1]) def test_dataloader_warnings(num_workers): class TestModel(BoringModel): def on_train_start(self, *_) -> None: raise SystemExit() dl = DataLoader(RandomDataset(32, 64), num_workers=num_workers) if hasattr(dl, "persistent_workers"): if num_workers == 0: warn_str = "Consider setting num_workers>0 and persistent_workers=True" else: warn_str = "Consider setting persistent_workers=True" else: warn_str = "Consider setting accelerator=ddp" trainer = Trainer(accelerator="ddp_spawn") with pytest.warns(UserWarning, match=warn_str), pytest.raises(SystemExit): trainer.fit(TestModel(), dl) def test_update_dataloader_raises(): trainer = Trainer() with pytest.raises(ValueError, match="needs to subclass `torch.utils.data.DataLoader"): trainer._update_dataloader(object(), object(), mode="fit") def test_dataloaders_with_missing_keyword_arguments(): trainer = Trainer() ds = RandomDataset(10, 20) class TestDataLoader(DataLoader): def __init__(self, dataset): super().__init__(dataset) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) match = escape("missing arguments are ['batch_sampler', 'sampler', 'shuffle']") with pytest.raises(MisconfigurationException, match=match): trainer._update_dataloader(loader, sampler, mode="fit") match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler', 'shuffle']") with pytest.raises(MisconfigurationException, match=match): trainer._update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, dataset, *args, **kwargs): super().__init__(dataset) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) trainer._update_dataloader(loader, sampler, mode="fit") trainer._update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, *foo, **bar): super().__init__(*foo, **bar) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) trainer._update_dataloader(loader, sampler, mode="fit") trainer._update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, num_feat, dataset, *args, shuffle=False): self.num_feat = num_feat super().__init__(dataset) loader = TestDataLoader(1, ds) sampler = SequentialSampler(ds) match = escape("missing arguments are ['batch_sampler', 'sampler']") with pytest.raises(MisconfigurationException, match=match): trainer._update_dataloader(loader, sampler, mode="fit") match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler']") with pytest.raises(MisconfigurationException, match=match): trainer._update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, num_feat, dataset, **kwargs): self.feat_num = num_feat super().__init__(dataset) loader = TestDataLoader(1, ds) sampler = SequentialSampler(ds) match = escape("missing attributes are ['num_feat']") with pytest.raises(MisconfigurationException, match=match): trainer._update_dataloader(loader, sampler, mode="fit") match = escape("missing attributes are ['num_feat']") with pytest.raises(MisconfigurationException, match=match): trainer._update_dataloader(loader, sampler, mode="predict") def test_update_dataloader_with_multiprocessing_context(): """This test verifies that replace_sampler conserves multiprocessing context.""" train = RandomDataset(32, 64) context = "spawn" train = DataLoader(train, batch_size=32, num_workers=2, multiprocessing_context=context, shuffle=True) trainer = Trainer() new_data_loader = trainer._update_dataloader(train, SequentialSampler(train.dataset)) assert new_data_loader.multiprocessing_context == train.multiprocessing_context def test_dataloader_reinit_for_subclass(): class CustomDataLoader(DataLoader): def __init__( self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, dummy_kwarg=None, ): super().__init__( dataset, batch_size, shuffle, sampler, batch_sampler, num_workers, collate_fn, pin_memory, drop_last, timeout, worker_init_fn, ) self.dummy_kwarg = dummy_kwarg self.something_unrelated = 1 trainer = Trainer(num_processes=2, strategy="ddp_spawn") class CustomDummyObj: sampler = None result = trainer.prepare_dataloader(CustomDummyObj(), shuffle=True) assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader" dataset = list(range(10)) result = trainer.prepare_dataloader(CustomDataLoader(dataset), shuffle=True) assert isinstance(result, DataLoader) assert isinstance(result, CustomDataLoader) assert result.dummy_kwarg is None # Shuffled DataLoader should also work result = trainer.prepare_dataloader(CustomDataLoader(dataset, shuffle=True), shuffle=True) assert isinstance(result, DataLoader) assert isinstance(result, CustomDataLoader) assert result.dummy_kwarg is None class CustomSampler(Sampler): pass # Should raise an error if existing sampler is being replaced dataloader = CustomDataLoader(dataset, sampler=CustomSampler(dataset)) with pytest.raises(MisconfigurationException, match="will be replaced by `DistributedSampler`"): trainer.prepare_dataloader(dataloader, shuffle=True) def test_loader_detaching(): """Checks that the loader has been resetted after the entrypoint.""" class LoaderTestModel(BoringModel): def training_step(self, batch, batch_idx): assert len(self.trainer.train_dataloader.loaders) == 10 return super().training_step(batch, batch_idx) def validation_step(self, batch, batch_idx): assert len(self.trainer.val_dataloaders[0]) == 10 return super().validation_step(batch, batch_idx) def test_step(self, batch, batch_idx): assert len(self.trainer.test_dataloaders[0]) == 10 return super().test_step(batch, batch_idx) def predict_step(self, batch, batch_idx, dataloader_idx=None): assert len(self.trainer.predict_dataloaders[0]) == 10 return super().predict_step(batch, batch_idx, dataloader_idx=dataloader_idx) loader = DataLoader(RandomDataset(32, 10), batch_size=1) model = LoaderTestModel() assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer = Trainer(fast_dev_run=1) trainer.fit(model, loader, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.validate(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.predict(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.test(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64
38.695652
114
0.678652
d44109f3ff116788da5c2cbec9515e2c0771d9e4
2,233
py
Python
code/internal/fake_ev3.py
TheVinhLuong102/LEGO-Mindstorms-Dalek
9e341e5b94e81e9220d1229402b661fbf4d4b3f8
[ "MIT" ]
1
2021-05-15T20:46:38.000Z
2021-05-15T20:46:38.000Z
code/internal/fake_ev3.py
calliecameron/lego-mindstorms-dalek
9e341e5b94e81e9220d1229402b661fbf4d4b3f8
[ "MIT" ]
1
2017-01-25T11:09:33.000Z
2017-02-13T07:04:32.000Z
code/internal/fake_ev3.py
calliecameron/lego-mindstorms-dalek
9e341e5b94e81e9220d1229402b661fbf4d4b3f8
[ "MIT" ]
1
2020-06-25T20:42:59.000Z
2020-06-25T20:42:59.000Z
"""Fake versions of some ev3dev classes, so the networking code can be tested without having the real ev3 to hand.""" import time import subprocess class Motor(object): def __init__(self, port, mtype): super(Motor, self).__init__() self.port = port self.mtype = mtype self.speed_regulation_enabled = "off" self.stop_command = "coast" self.speed_sp = 0 self.position = 0 self.ramp_up_sp = 0 self.ramp_down_sp = 0 def stop(self): self.msg("stop") def run_forever(self): self.msg("run_forever") def reset(self): self.msg("reset") def msg(self, s): print "[%sMotor %s] %s" % (self.mtype, self.port, s) class LargeMotor(Motor): def __init__(self, port): super(LargeMotor, self).__init__(port, "Large") class MediumMotor(Motor): def __init__(self, port): super(MediumMotor, self).__init__(port, "Medium") class TouchSensor(object): def __init__(self, port): super(TouchSensor, self).__init__() self.port = port def value(self): return 0 class PowerSupply(object): def __init__(self): super(PowerSupply, self).__init__() self.measured_volts = 8 class Leds(object): def __init__(self, port): super(Leds, self).__init__() time.sleep(1) self.port = port self.brightness = 0 self.off() print "Created LEDs" def get_brightness(self): return self.brightness def set_brightness(self, brightness): brightness = int(brightness) if brightness < 0: brightness = 0 elif brightness > 100: brightness = 100 self.brightness = brightness print "[LEDs %s] brightness %d" % (self.port, self.brightness) if self.brightness > 0: subprocess.call(["xset", "led", "named", "Scroll Lock"]) else: subprocess.call(["xset", "-led", "named", "Scroll Lock"]) def on(self): self.set_brightness(100) def off(self): self.set_brightness(0) def toggle(self): if self.get_brightness() > 0: self.off() else: self.on()
25.089888
77
0.586207
12bb92daf151e0875a987e023495027dca0419ad
703
py
Python
GDLC/tests/test_destroy_tags.py
ptoche/Gran-Diccionari-de-la-llengua-catalana-Kindle-Edition-
a31412d2a6f05a6c1a9bd9854cdd6fee8abd65f4
[ "BSD-3-Clause" ]
1
2022-02-01T16:08:03.000Z
2022-02-01T16:08:03.000Z
GDLC/tests/test_destroy_tags.py
ptoche/Gran-Diccionari-de-la-llengua-catalana-Kindle-Edition-
a31412d2a6f05a6c1a9bd9854cdd6fee8abd65f4
[ "BSD-3-Clause" ]
null
null
null
GDLC/tests/test_destroy_tags.py
ptoche/Gran-Diccionari-de-la-llengua-catalana-Kindle-Edition-
a31412d2a6f05a6c1a9bd9854cdd6fee8abd65f4
[ "BSD-3-Clause" ]
null
null
null
""" Strip tags from a BeautifulSoup object: >>> from GDLC.GDLC import * >>> dml = '''\ ... <html> ... <head> ... <title>TITLE</title> ... <script>This text is inside an invalid tag</script> ... </head> ... <body> ... <p>This text is inside a valid tag</p><style>Invalid!</style><invalid>Invalid!</invalid> ... </body> ... </html>''' >>> soup = BeautifulSoup(dml, features = 'lxml') >>> print(destroy_tags(soup)) <html> <head> <title>TITLE</title> </head> <body> <p>This text is inside a valid tag</p><invalid>Invalid!</invalid> </body> </html> >>> print(destroy_tags(soup, 'invalid')) <html> <head> <title>TITLE</title> </head> <body> <p>This text is inside a valid tag</p></body> </html> """
19.527778
94
0.614509
c7c7c0f5272b91acabc8d591f59b2e7408654e6d
474
py
Python
contact/migrations/0003_contactcaptchaformfield_hide_label.py
djangulo/integralpsychology.life
941e6c1ad1f274d7489d8ecdea5ae72f4889cc4b
[ "MIT" ]
null
null
null
contact/migrations/0003_contactcaptchaformfield_hide_label.py
djangulo/integralpsychology.life
941e6c1ad1f274d7489d8ecdea5ae72f4889cc4b
[ "MIT" ]
null
null
null
contact/migrations/0003_contactcaptchaformfield_hide_label.py
djangulo/integralpsychology.life
941e6c1ad1f274d7489d8ecdea5ae72f4889cc4b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-10-10 15:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contact', '0002_auto_20181010_1446'), ] operations = [ migrations.AddField( model_name='contactcaptchaformfield', name='hide_label', field=models.BooleanField(default=False), ), ]
22.571429
53
0.635021
5d4b1a9baeb19b38e5e01a9ae86a1e3d2dc75eb4
3,049
py
Python
custom/up_nrhm/reports/asha_facilitators_report.py
bglar/commcare-hq
972129fc26864c08c7bef07874bd2a7218550bff
[ "BSD-3-Clause" ]
1
2017-02-10T03:14:51.000Z
2017-02-10T03:14:51.000Z
custom/up_nrhm/reports/asha_facilitators_report.py
bglar/commcare-hq
972129fc26864c08c7bef07874bd2a7218550bff
[ "BSD-3-Clause" ]
null
null
null
custom/up_nrhm/reports/asha_facilitators_report.py
bglar/commcare-hq
972129fc26864c08c7bef07874bd2a7218550bff
[ "BSD-3-Clause" ]
null
null
null
from corehq.apps.reports.datatables import DataTablesHeader, DataTablesColumn from corehq.apps.reports.generic import GenericTabularReport from corehq.apps.reports.sqlreport import DataFormatter, TableDataFormat from corehq.apps.reports.standard import CustomProjectReport, DatespanMixin from corehq.apps.reports.filters.dates import DatespanFilter from custom.up_nrhm.filters import DrillDownOptionFilter from custom.up_nrhm.sql_data import ASHAFacilitatorsData class ASHAFacilitatorsReport(GenericTabularReport, DatespanMixin, CustomProjectReport): fields = [DatespanFilter, DrillDownOptionFilter] name = "ASHA Facilitators Report" slug = "asha_facilitators_report" show_all_rows = True default_rows = 20 use_datatables = False printable = True LEFT_COLUMN_NAMES = [ "Total number of ASHAs under the Facilitator", "Newborn visits within first day of birth in case of home deliveries", "Set of home visits for newborn care as specified in the HBNC guidelines " "(six visits in case of Institutional delivery and seven in case of a home delivery)", "Attending VHNDs/Promoting immunization", "Supporting institutional delivery", "Management of childhood illness - especially diarrhea and pneumonia", "Household visits with nutrition counseling", "Fever cases seen/malaria slides made in malaria endemic area", "Acting as DOTS provider", "Holding or attending village/VHSNC meeting", "Successful referral of the IUD, " "Female sterilization or male sterilization cases and/or providing OCPs/Condoms", "Total number of ASHAs who are functional on at least 6/10 tasks" ] @property def report_config(self): return { 'domain': self.domain, 'startdate': self.datespan.startdate, 'enddate': self.datespan.enddate, 'af': self.request.GET.get('hierarchy_af'), 'count_one': 1, 'sixty_percents': 60 } @property def model(self): return ASHAFacilitatorsData(config=self.report_config) @property def headers(self): return DataTablesHeader( DataTablesColumn("", sortable=False), DataTablesColumn("Total no. of ASHAs functional"), DataTablesColumn("Total no. of ASHAs who did not report/not known"), DataTablesColumn("Rmarks") ) @property def rows(self): no_value = dict(sort_key=0L, html=0L) model = self.model formatter = DataFormatter(TableDataFormat(model.columns, no_value=no_value)) rows = list(formatter.format(model.data, keys=model.keys, group_by=model.group_by)) if not rows: return [] assert len(rows) == 1 row = [row.get('sort_key') or 0L for row in rows[0]] all_ashas = row[0] return [[self.LEFT_COLUMN_NAMES[idx], element, all_ashas - element if idx != 0 else '', ''] for idx, element in enumerate(row)]
41.202703
99
0.680551