hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
346b106a0fa0d57f553ecf7c90cd73039ab05ddf
20,184
py
Python
pajbot/models/action.py
tolekk/pajbot
c239f0c966141dfd39db46e081fff4f3a3a82ef0
[ "MIT" ]
null
null
null
pajbot/models/action.py
tolekk/pajbot
c239f0c966141dfd39db46e081fff4f3a3a82ef0
[ "MIT" ]
null
null
null
pajbot/models/action.py
tolekk/pajbot
c239f0c966141dfd39db46e081fff4f3a3a82ef0
[ "MIT" ]
null
null
null
import collections import json import logging import sys import irc import regex as re import requests from pajbot.constants import VERSION from pajbot.managers.schedule import ScheduleManager log = logging.getLogger(__name__) class ActionParser: bot = None @staticmethod def parse(raw_data=None, data=None, command=""): try: from pajbot.userdispatch import UserDispatch Dispatch = UserDispatch except ImportError: from pajbot.dispatch import Dispatch except: log.exception("Something went wrong while attemting to import Dispatch, this should never happen") sys.exit(1) if not data: data = json.loads(raw_data) if data["type"] == "say": action = SayAction(data["message"], ActionParser.bot) elif data["type"] == "me": action = MeAction(data["message"], ActionParser.bot) elif data["type"] == "whisper": action = WhisperAction(data["message"], ActionParser.bot) elif data["type"] == "reply": action = ReplyAction(data["message"], ActionParser.bot) elif data["type"] == "func": try: action = FuncAction(getattr(Dispatch, data["cb"])) except AttributeError as e: log.error(f'AttributeError caught when parsing action for action "{command}": {e}') return None elif data["type"] == "multi": action = MultiAction(data["args"], data["default"]) else: raise Exception(f"Unknown action type: {data['type']}") return action def apply_substitutions(text, substitutions, bot, extra): for needle, sub in substitutions.items(): if sub.key and sub.argument: param = sub.key extra["argument"] = MessageAction.get_argument_value(extra["message"], sub.argument - 1) elif sub.key: param = sub.key elif sub.argument: param = MessageAction.get_argument_value(extra["message"], sub.argument - 1) else: log.error("Unknown param for response.") continue value = sub.cb(param, extra) if value is None: return None try: for f in sub.filters: value = bot.apply_filter(value, f) except: log.exception("Exception caught in filter application") if value is None: return None text = text.replace(needle, str(value)) return text class IfSubstitution: def __call__(self, key, extra={}): if self.sub.key is None: msg = MessageAction.get_argument_value(extra.get("message", ""), self.sub.argument - 1) if msg: return self.get_true_response(extra) return self.get_false_response(extra) res = self.sub.cb(self.sub.key, extra) if res: return self.get_true_response(extra) return self.get_false_response(extra) def get_true_response(self, extra): return apply_substitutions(self.true_response, self.true_subs, self.bot, extra) def get_false_response(self, extra): return apply_substitutions(self.false_response, self.false_subs, self.bot, extra) def __init__(self, key, arguments, bot): self.bot = bot subs = get_substitutions(key, bot) if len(subs) == 1: self.sub = list(subs.values())[0] else: subs = get_argument_substitutions(key) if len(subs) == 1: self.sub = subs[0] else: self.sub = None self.true_response = arguments[0][2:-1] if arguments else "Yes" self.false_response = arguments[1][2:-1] if len(arguments) > 1 else "No" self.true_subs = get_substitutions(self.true_response, bot) self.false_subs = get_substitutions(self.false_response, bot) class Substitution: argument_substitution_regex = re.compile(r"\$\((\d+)\)") substitution_regex = re.compile( r'\$\(([a-z_]+)(\;[0-9]+)?(\:[\w\.\/ -]+|\:\$\([\w_:;\._\/ -]+\))?(\|[\w]+(\([\w%:/ +-]+\))?)*(\,[\'"]{1}[\w \|$;_\-:()\.]+[\'"]{1}){0,2}\)' ) # https://stackoverflow.com/a/7109208 urlfetch_substitution_regex = re.compile(r"\$\(urlfetch ([A-Za-z0-9\-._~:/?#\[\]@!$%&\'()*+,;=]+)\)") urlfetch_substitution_regex_all = re.compile(r"\$\(urlfetch (.+?)\)") def __init__(self, cb, needle, key=None, argument=None, filters=[]): self.cb = cb self.key = key self.argument = argument self.filters = filters self.needle = needle class SubstitutionFilter: def __init__(self, name, arguments): self.name = name self.arguments = arguments class BaseAction: type = None subtype = None def reset(self): pass class MultiAction(BaseAction): type = "multi" def __init__(self, args, default=None, fallback=None): from pajbot.models.command import Command self.commands = {} self.default = default self.fallback = fallback for command in args: cmd = Command.from_json(command) for alias in command["command"].split("|"): if alias not in self.commands: self.commands[alias] = cmd else: log.error(f"Alias {alias} for this multiaction is already in use.") import copy self.original_commands = copy.copy(self.commands) def reset(self): import copy self.commands = copy.copy(self.original_commands) def __iadd__(self, other): if other is not None and other.type == "multi": self.commands.update(other.commands) return self @classmethod def ready_built(cls, commands, default=None, fallback=None): """ Useful if you already have a dictionary with commands pre-built. """ multiaction = cls(args=[], default=default, fallback=fallback) multiaction.commands = commands import copy multiaction.original_commands = copy.copy(commands) return multiaction def run(self, bot, source, message, event={}, args={}): """ If there is more text sent to the multicommand after the initial alias, we _ALWAYS_ assume it's trying the subaction command. If the extra text was not a valid command, we try to run the fallback command. In case there's no extra text sent, we will try to run the default command. """ cmd = None if message: msg_lower_parts = message.lower().split(" ") command = msg_lower_parts[0] cmd = self.commands.get(command, None) extra_msg = " ".join(message.split(" ")[1:]) if cmd is None and self.fallback: cmd = self.commands.get(self.fallback, None) extra_msg = message elif self.default: command = self.default cmd = self.commands.get(command, None) extra_msg = None if cmd: if source.level >= cmd.level: return cmd.run(bot, source, extra_msg, event, args) log.info(f"User {source} tried running a sub-command he had no access to ({command}).") return None class FuncAction(BaseAction): type = "func" def __init__(self, cb): self.cb = cb def run(self, bot, source, message, event={}, args={}): try: return self.cb(bot, source, message, event, args) except: log.exception("Uncaught exception in FuncAction") class RawFuncAction(BaseAction): type = "rawfunc" def __init__(self, cb): self.cb = cb def run(self, bot, source, message, event={}, args={}): return self.cb(bot=bot, source=source, message=message, event=event, args=args) def get_argument_substitutions(string): """ Returns a list of `Substitution` objects that are found in the passed `string`. Will not return multiple `Substitution` objects for the same number. This means string "$(1) $(1) $(2)" will only return two Substitutions. """ argument_substitutions = [] for sub_key in Substitution.argument_substitution_regex.finditer(string): needle = sub_key.group(0) argument_num = int(sub_key.group(1)) found = False for sub in argument_substitutions: if sub.argument == argument_num: # We already matched this argument variable found = True break if found: continue argument_substitutions.append(Substitution(None, needle=needle, argument=argument_num)) return argument_substitutions def get_substitution_arguments(sub_key): sub_string = sub_key.group(0) path = sub_key.group(1) argument = sub_key.group(2) if argument is not None: argument = int(argument[1:]) key = sub_key.group(3) if key is not None: key = key[1:] matched_filters = sub_key.captures(4) matched_filter_arguments = sub_key.captures(5) filters = [] filter_argument_index = 0 for f in matched_filters: f = f[1:] filter_arguments = [] if "(" in f: f = f[: -len(matched_filter_arguments[filter_argument_index])] filter_arguments = [matched_filter_arguments[filter_argument_index][1:-1]] filter_argument_index += 1 f = SubstitutionFilter(f, filter_arguments) filters.append(f) if_arguments = sub_key.captures(6) return sub_string, path, argument, key, filters, if_arguments def get_substitutions(string, bot): """ Returns a dictionary of `Substitution` objects thare are found in the passed `string`. Will not return multiple `Substitution` objects for the same string. This means "You have $(source:points) points xD $(source:points)" only returns one Substitution. """ substitutions = collections.OrderedDict() for sub_key in Substitution.substitution_regex.finditer(string): sub_string, path, argument, key, filters, if_arguments = get_substitution_arguments(sub_key) if sub_string in substitutions: # We already matched this variable continue try: if path == "if": if if_arguments: if_substitution = IfSubstitution(key, if_arguments, bot) if if_substitution.sub is None: continue sub = Substitution(if_substitution, needle=sub_string, key=key, argument=argument, filters=filters) substitutions[sub_string] = sub except: log.exception("BabyRage") method_mapping = {} try: method_mapping["kvi"] = bot.get_kvi_value method_mapping["tb"] = bot.get_value method_mapping["lasttweet"] = bot.get_last_tweet # "etm" is legacy method_mapping["etm"] = bot.get_emote_epm method_mapping["epm"] = bot.get_emote_epm method_mapping["etmrecord"] = bot.get_emote_epm_record method_mapping["epmrecord"] = bot.get_emote_epm_record method_mapping["ecount"] = bot.get_emote_count method_mapping["source"] = bot.get_source_value method_mapping["user"] = bot.get_user_value method_mapping["usersource"] = bot.get_usersource_value method_mapping["time"] = bot.get_time_value method_mapping["curdeck"] = bot.decks.action_get_curdeck method_mapping["stream"] = bot.stream_manager.get_stream_value method_mapping["current_stream"] = bot.stream_manager.get_current_stream_value method_mapping["last_stream"] = bot.stream_manager.get_last_stream_value method_mapping["current_song"] = bot.get_current_song_value method_mapping["args"] = bot.get_args_value method_mapping["strictargs"] = bot.get_strictargs_value method_mapping["command"] = bot.get_command_value except AttributeError: pass for sub_key in Substitution.substitution_regex.finditer(string): sub_string, path, argument, key, filters, if_arguments = get_substitution_arguments(sub_key) if sub_string in substitutions: # We already matched this variable continue if path in method_mapping: sub = Substitution(method_mapping[path], needle=sub_string, key=key, argument=argument, filters=filters) substitutions[sub_string] = sub return substitutions def get_urlfetch_substitutions(string, all=False): substitutions = {} if all: r = Substitution.urlfetch_substitution_regex_all else: r = Substitution.urlfetch_substitution_regex for sub_key in r.finditer(string): substitutions[sub_key.group(0)] = sub_key.group(1) return substitutions def is_message_good(bot, message, extra): # this is imported here to avoid circular imports # (Circular import was command.py importing this file) from pajbot.modules.ascii import AsciiProtectionModule checks = { "banphrase": lambda: bot.banphrase_manager.check_message(message, extra["source"]), "ascii": lambda: AsciiProtectionModule.check_message(message), "massping": lambda: bot.module_manager.get_module("massping").check_message(message, extra["source"]), } for check_name, check_fn in checks.items(): # Make sure the module is enabled if check_name not in bot.module_manager: continue # apply the check fn # only if the result is False the check was successful if check_fn() is not False: log.info(f'Not sending message "{message}" because check "{check_name}" failed.') return False return True class MessageAction(BaseAction): type = "message" def __init__(self, response, bot): self.response = response if bot: self.argument_subs = get_argument_substitutions(self.response) self.subs = get_substitutions(self.response, bot) self.num_urlfetch_subs = len(get_urlfetch_substitutions(self.response, all=True)) else: self.argument_subs = [] self.subs = {} self.num_urlfetch_subs = 0 @staticmethod def get_argument_value(message, index): if not message: return "" msg_parts = message.split(" ") try: return msg_parts[index] except: pass return "" def get_response(self, bot, extra): resp = self.response resp = apply_substitutions(resp, self.subs, bot, extra) if resp is None: return None for sub in self.argument_subs: needle = sub.needle value = str(MessageAction.get_argument_value(extra["message"], sub.argument - 1)) resp = resp.replace(needle, value) log.debug(f"Replacing {needle} with {value}") if "command" in extra and extra["command"].run_through_banphrases is True and "source" in extra: if not is_message_good(bot, resp, extra): return None return resp @staticmethod def get_extra_data(source, message, args): return {"source": source, "message": message, **args} def run(self, bot, source, message, event={}, args={}): raise NotImplementedError("Please implement the run method.") def urlfetch_msg(method, message, num_urlfetch_subs, bot, extra={}, args=[], kwargs={}): urlfetch_subs = get_urlfetch_substitutions(message) if len(urlfetch_subs) > num_urlfetch_subs: log.error(f"HIJACK ATTEMPT {message}") return False for needle, url in urlfetch_subs.items(): try: headers = { "Accept": "text/plain", "Accept-Language": "en-US, en;q=0.9, *;q=0.5", "User-Agent": f"pajbot1/{VERSION} ({bot.nickname})", } r = requests.get(url, allow_redirects=True, headers=headers) r.raise_for_status() value = r.text.strip().replace("\n", "").replace("\r", "")[:400] except: return False message = message.replace(needle, value) if "command" in extra and extra["command"].run_through_banphrases is True and "source" in extra: if not is_message_good(bot, message, extra): return None args.append(message) method(*args, **kwargs) class SayAction(MessageAction): subtype = "say" def run(self, bot, source, message, event={}, args={}): extra = self.get_extra_data(source, message, args) resp = self.get_response(bot, extra) if not resp: return False if self.num_urlfetch_subs == 0: return bot.say(resp) return ScheduleManager.execute_now( urlfetch_msg, args=[], kwargs={ "args": [], "kwargs": {}, "method": bot.say, "bot": bot, "extra": extra, "message": resp, "num_urlfetch_subs": self.num_urlfetch_subs, }, ) class MeAction(MessageAction): subtype = "me" def run(self, bot, source, message, event={}, args={}): extra = self.get_extra_data(source, message, args) resp = self.get_response(bot, extra) if not resp: return False if self.num_urlfetch_subs == 0: return bot.me(resp) return ScheduleManager.execute_now( urlfetch_msg, args=[], kwargs={ "args": [], "kwargs": {}, "method": bot.me, "bot": bot, "extra": extra, "message": resp, "num_urlfetch_subs": self.num_urlfetch_subs, }, ) class WhisperAction(MessageAction): subtype = "whisper" def run(self, bot, source, message, event={}, args={}): extra = self.get_extra_data(source, message, args) resp = self.get_response(bot, extra) if not resp: return False if self.num_urlfetch_subs == 0: return bot.whisper(source, resp) return ScheduleManager.execute_now( urlfetch_msg, args=[], kwargs={ "args": [source], "kwargs": {}, "method": bot.whisper, "bot": bot, "extra": extra, "message": resp, "num_urlfetch_subs": self.num_urlfetch_subs, }, ) class ReplyAction(MessageAction): subtype = "reply" def run(self, bot, source, message, event={}, args={}): extra = self.get_extra_data(source, message, args) resp = self.get_response(bot, extra) if not resp: return False if irc.client.is_channel(event.target): if self.num_urlfetch_subs == 0: return bot.say(resp, channel=event.target) return ScheduleManager.execute_now( urlfetch_msg, args=[], kwargs={ "args": [], "kwargs": {"channel": event.target}, "method": bot.say, "bot": bot, "extra": extra, "message": resp, "num_urlfetch_subs": self.num_urlfetch_subs, }, ) if self.num_urlfetch_subs == 0: return bot.whisper(source, resp) return ScheduleManager.execute_now( urlfetch_msg, args=[], kwargs={ "args": [source], "kwargs": {}, "method": bot.whisper, "bot": bot, "extra": extra, "message": resp, "num_urlfetch_subs": self.num_urlfetch_subs, }, )
32.2944
148
0.589625
a480f8fb01cb7a38a16da71055fcfb6db019f94f
865
py
Python
tests/test_windows_warning.py
RenskeW/cwltool
8ef515037de411abd2f84b569ad4d4a4f7a2c7a0
[ "Apache-2.0" ]
289
2015-10-07T16:27:32.000Z
2022-03-25T23:32:36.000Z
tests/test_windows_warning.py
RenskeW/cwltool
8ef515037de411abd2f84b569ad4d4a4f7a2c7a0
[ "Apache-2.0" ]
1,436
2015-10-09T13:31:46.000Z
2022-03-31T13:36:45.000Z
tests/test_windows_warning.py
RenskeW/cwltool
8ef515037de411abd2f84b569ad4d4a4f7a2c7a0
[ "Apache-2.0" ]
230
2015-10-11T17:33:32.000Z
2022-03-25T22:55:43.000Z
"""Test user experience running on MS Windows.""" import os import pytest from cwltool import main # Can't be just "import cwltool ; … cwltool.main.windows_check()" # needs a direct import to avoid path traversal after os.name is set to "nt" def test_windows_warning(monkeypatch: pytest.MonkeyPatch) -> None: """Confirm that the windows warning is given.""" with pytest.warns(UserWarning, match=r"Windows Subsystem for Linux 2"): # would normally just use the MonkeyPatch object directly # but if we don't use a context then os.name being "nt" causes problems # for pytest on non-Windows systems. So the context unravels the change # to os.name quickly, and then pytest will check for the desired warning with monkeypatch.context() as m: m.setattr(os, "name", "nt") main.windows_check()
37.608696
80
0.695954
35676994df332ae98b4ecb08fc76231b614f1610
9,592
py
Python
train/optimization_adafactor.py
ksjae/gpt2-ml
240bfc8e4f113425dc454f2ff47d963e0558f876
[ "Apache-2.0" ]
null
null
null
train/optimization_adafactor.py
ksjae/gpt2-ml
240bfc8e4f113425dc454f2ff47d963e0558f876
[ "Apache-2.0" ]
null
null
null
train/optimization_adafactor.py
ksjae/gpt2-ml
240bfc8e4f113425dc454f2ff47d963e0558f876
[ "Apache-2.0" ]
null
null
null
# Original work Copyright 2018 The Google AI Language Team Authors. # Modified work Copyright 2019 Rowan Zellers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import tensorflow as tf from train.utils import get_shape_list def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu): """Creates an optimizer training op.""" global_step = tf.compat.v1.train.get_or_create_global_step() learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32) # Implements linear decay of the learning rate. learning_rate = tf.compat.v1.train.polynomial_decay( learning_rate, global_step, num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False) # Implements linear warmup. I.e., if global_step < num_warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. if num_warmup_steps: global_steps_int = tf.cast(global_step, tf.int32) warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) global_steps_float = tf.cast(global_steps_int, tf.float32) warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) warmup_percent_done = global_steps_float / warmup_steps_float warmup_learning_rate = init_lr * warmup_percent_done is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) learning_rate = ( (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) # It is recommended that you use this optimizer for fine tuning, since this # is how the model was trained (note that the Adam m/v variables are NOT # loaded from init_checkpoint.) optimizer = AdaFactorOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) if use_tpu: optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer) tvars = tf.compat.v1.trainable_variables() grads = tf.gradients(loss, tvars) # You could do this, but instead we don't because a) it's slow and b) we already did the 'update clipping' # (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=global_step) # Normally the global step update is done inside of `apply_gradients`. # However, `AdaFactorOptimizer` doesn't do this. But if you use # a different optimizer, you should probably take this line out. new_global_step = global_step + 1 train_op = tf.group(train_op, [global_step.assign(new_global_step)]) train_metrics = { 'learning_rate': learning_rate, 'minibatch_loss': loss, # 'minibatch_ppl': tf.math.exp(loss), } return train_op, train_metrics class AdaFactorOptimizer(tf.compat.v1.train.Optimizer): """here's the optimizer we'll use""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, clipping_rate=1.0, name="AdaFactorOptimizer"): """Constructs a AdaFactorOptimizer.""" super(AdaFactorOptimizer, self).__init__(False, name) self.learning_rate = learning_rate self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.epsilon1 = 1e-30 self.epsilon2 = 0.001 self.clipping_rate = clipping_rate self.exclude_from_weight_decay = exclude_from_weight_decay self.use_locking = False def _use_factored(self, shape): return len(shape) >= 2 def _parameter_scale(self, var): """Estimate the scale of the parameters from the current values. We include a minimum value of 0.001 to give it a chance to escape 0 if it was zero-initialized. Instead of using the value, we could impute the scale from the shape, as initializers do. Args: var: a variable or Tensor. Returns: a Scalar """ return tf.maximum(reduce_rms(var), self.epsilon2) def apply_gradients(self, grads_and_vars, global_step=None, name=None): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) shape_list = get_shape_list(param, expected_rank=[1, 2]) # decay_rate = 1 - tf.pow(tf.cast(tf.train.get_or_create_global_step(), tf.float32) + 1.0, -0.8) decay_rate = self.beta_2 grad_squared = tf.square(grad) + self.epsilon1 update_scale = self.learning_rate # update_scale = self.learning_rate * tf.cast(self._parameter_scale(param), dtype=tf.float32) # HACK: Make things dependent on grad. # This confounds the XLA rewriter and keeps it from fusing computations # across different variables. This fusion is a bad for HBM usage, since # it causes the gradients to persist in memory. grad_squared_mean = tf.reduce_mean(grad_squared) decay_rate += grad_squared_mean * 1e-30 update_scale += grad_squared_mean * 1e-30 # END HACK if self._use_factored(shape_list): num_rows, num_columns = shape_list vr = tf.compat.v1.get_variable( name=param_name + "/adafactor_vr", shape=[num_rows], dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) vc = tf.compat.v1.get_variable( name=param_name + "/adafactor_vc", shape=[num_columns], dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) next_vr = decay_rate * vr + (1 - decay_rate) * tf.reduce_mean(grad_squared, 1) next_vc = decay_rate * vc + (1 - decay_rate) * tf.reduce_mean(grad_squared, 0) long_term_mean = tf.reduce_mean(next_vr, -1, keepdims=True) r_factor = tf.rsqrt(next_vr / long_term_mean + self.epsilon1) c_factor = tf.rsqrt(next_vc + self.epsilon1) update = grad * tf.expand_dims(r_factor, -1) * tf.expand_dims(c_factor, -2) assignments.append(vr.assign(next_vr, use_locking=self.use_locking)) assignments.append(vc.assign(next_vc, use_locking=self.use_locking)) else: v = tf.compat.v1.get_variable( name=param_name + "/adafactor_v", shape=shape_list, dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) next_v = decay_rate * v + (1 - decay_rate) * grad_squared assignments.append(v.assign(next_v, use_locking=self.use_locking)) update = grad * tf.rsqrt(next_v + self.epsilon1) clipping_denom = tf.maximum(1.0, reduce_rms(update) / self.clipping_rate) update /= clipping_denom # Do weight decay # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param update_with_lr = update_scale * update next_param = param - update_with_lr assignments.append(param.assign(next_param, use_locking=self.use_locking)) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name def reduce_rms(x): return tf.sqrt(tf.reduce_mean(tf.square(x)))
40.817021
110
0.630942
b3e3f75b60ed84d314078b594ae6d9379f5018a1
3,088
py
Python
src/MainHandler.py
trapwired/EmailYoutubeDownload
1eddea127877df708bdee52ccda3c00fef1eec58
[ "MIT" ]
2
2021-07-04T22:12:06.000Z
2021-08-10T14:12:29.000Z
src/MainHandler.py
trapwired/EmailYoutubeDownload
1eddea127877df708bdee52ccda3c00fef1eec58
[ "MIT" ]
null
null
null
src/MainHandler.py
trapwired/EmailYoutubeDownload
1eddea127877df708bdee52ccda3c00fef1eec58
[ "MIT" ]
null
null
null
import json import os import shutil import sys import time sys.path.insert(0, '../src') from EmailHandler import EmailHandler from DownloadHandler import DownloadHandler EMAIL_MAX_SIZE = 25 # maximum send size in MegaBytes MAX_VIDEO_LENGTH = 10 # maximum length of videos to download in minutes MAX_RETRY = 10 # maximum number of times to retry on error class MainHandler(object): def __init__(self, secrets_: dict, email_handler_: EmailHandler, download_handler_: DownloadHandler): self.secrets = secrets_ self.email_handler = email_handler_ self.download_handler = download_handler_ def start(self, retry): while True: try: emails = self.email_handler.get_all_emails() except Exception as e: self.email_handler.send_error('Error while getting emails.', e) # for HTTPError 403: try |youtube-dl --rm-cache-dir| else: if len(emails) > 0: print('you\'ve got mail') # loop over all Emails, there may be plenty for email in emails: try: folder_name = self.download_handler.download_videos(email.youtube_links) except Exception as e: self.email_handler.send_error('Error while downloading youtube video, Restarting.', e) if retry < MAX_RETRY: self.start(retry + 1) else: try: # send answer, attach all mails in folder folder_name self.email_handler.send_response(email, folder_name) except Exception as e: self.email_handler.send_error('Error while sending response emails.', e, email, folder_name) if retry < MAX_RETRY: self.start(retry + 1) break else: # delete folder shutil.rmtree(folder_name) # delete email from Inbox / move to folder self.email_handler.delete_successful(email) self.email_handler.imap_connection.expunge() time.sleep(10) def get_secrets(path): with open(path) as f: return json.load(f) def main(): # root path path = '/'.join((os.path.abspath(__file__).replace('\\', '/')).split('/')[:-2]) secrets = get_secrets(os.path.join(path, "secrets.json")) # initialize email_handler email_handler = EmailHandler(secrets, EMAIL_MAX_SIZE) # initialize DownloadHandler download_handler = DownloadHandler(path, MAX_VIDEO_LENGTH) # start main_handler = MainHandler(secrets, email_handler, download_handler) main_handler.start(0) if __name__ == "__main__": main()
37.204819
124
0.551166
8432ceae5440aeca80c25fc3db4955fda8f6156b
934
py
Python
src/03_Code_Structure/05_Your_Challenge_-_Problem/challenge-problem.py
MilovanTomasevic/Clean-Code
f1ac9280026e2c21dd8b68e746675ed2c92b52e3
[ "MIT" ]
null
null
null
src/03_Code_Structure/05_Your_Challenge_-_Problem/challenge-problem.py
MilovanTomasevic/Clean-Code
f1ac9280026e2c21dd8b68e746675ed2c92b52e3
[ "MIT" ]
null
null
null
src/03_Code_Structure/05_Your_Challenge_-_Problem/challenge-problem.py
MilovanTomasevic/Clean-Code
f1ac9280026e2c21dd8b68e746675ed2c92b52e3
[ "MIT" ]
null
null
null
# (c) Maximilian Schwarzmüller / Academind GmbH # ********* # Imports # ********* from os import path, makedirs from pathlib import Path # ********* # Main # ********* # A class which allows us to create DiskStorage instances class DiskStorage: def __init__(self, directory_name): self.storage_directory = directory_name def get_directory_path(self): return Path(self.storage_directory) # This must be called before a file is inserted def create_directory(self): if (not path.exists(self.get_directory_path())): makedirs(self.storage_directory) # Warning: Directory must exist in advance def insert_file(self, file_name, content): file = open(self.get_directory_path() / file_name, 'w') file.write(content) file.close() # Todo: Add proper error handling log_storage = DiskStorage('logs') log_storage.insert_file('test.txt', 'Test')
24.578947
63
0.663812
224d5bf7b7cc5c11987aad2bd89f2ecbcaa8a98e
2,926
py
Python
homeassistant/components/hunterdouglas_powerview/scene.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
4
2021-07-11T09:11:00.000Z
2022-02-27T14:43:50.000Z
homeassistant/components/hunterdouglas_powerview/scene.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
277
2021-10-04T06:39:33.000Z
2021-12-28T22:04:17.000Z
homeassistant/components/hunterdouglas_powerview/scene.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
3
2021-11-14T13:29:33.000Z
2021-12-27T17:05:22.000Z
"""Support for Powerview scenes from a Powerview hub.""" from __future__ import annotations from typing import Any from aiopvapi.resources.scene import Scene as PvScene import voluptuous as vol from homeassistant.components.scene import Scene from homeassistant.config_entries import SOURCE_IMPORT, ConfigEntry from homeassistant.const import CONF_HOST, CONF_PLATFORM from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType from .const import ( COORDINATOR, DEVICE_INFO, DOMAIN, HUB_ADDRESS, PV_API, PV_ROOM_DATA, PV_SCENE_DATA, ROOM_NAME_UNICODE, STATE_ATTRIBUTE_ROOM_NAME, ) from .entity import HDEntity PLATFORM_SCHEMA = vol.Schema( {vol.Required(CONF_PLATFORM): DOMAIN, vol.Required(HUB_ADDRESS): cv.string} ) async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Import platform from yaml.""" hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={CONF_HOST: config[HUB_ADDRESS]}, ) ) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up powerview scene entries.""" pv_data = hass.data[DOMAIN][entry.entry_id] room_data = pv_data[PV_ROOM_DATA] scene_data = pv_data[PV_SCENE_DATA] pv_request = pv_data[PV_API] coordinator = pv_data[COORDINATOR] device_info = pv_data[DEVICE_INFO] pvscenes = [] for raw_scene in scene_data.values(): scene = PvScene(raw_scene, pv_request) room_name = room_data.get(scene.room_id, {}).get(ROOM_NAME_UNICODE, "") pvscenes.append(PowerViewScene(coordinator, device_info, room_name, scene)) async_add_entities(pvscenes) class PowerViewScene(HDEntity, Scene): """Representation of a Powerview scene.""" def __init__(self, coordinator, device_info, room_name, scene): """Initialize the scene.""" super().__init__(coordinator, device_info, room_name, scene.id) self._scene = scene @property def name(self): """Return the name of the scene.""" return self._scene.name @property def extra_state_attributes(self): """Return the state attributes.""" return {STATE_ATTRIBUTE_ROOM_NAME: self._room_name} @property def icon(self): """Icon to use in the frontend.""" return "mdi:blinds" async def async_activate(self, **kwargs: Any) -> None: """Activate scene. Try to get entities into requested state.""" await self._scene.activate()
29.857143
84
0.71121
fe81d61064af77258b00088ce0a26965d4ec2aa8
1,665
py
Python
e3nn/non_linearities/gated_block_parity.py
zizai/e3nn
3efa8d7e110d23410d0e8c5975eaa552da1c2e0b
[ "MIT" ]
null
null
null
e3nn/non_linearities/gated_block_parity.py
zizai/e3nn
3efa8d7e110d23410d0e8c5975eaa552da1c2e0b
[ "MIT" ]
null
null
null
e3nn/non_linearities/gated_block_parity.py
zizai/e3nn
3efa8d7e110d23410d0e8c5975eaa552da1c2e0b
[ "MIT" ]
null
null
null
# pylint: disable=invalid-name, arguments-differ, missing-docstring, line-too-long, no-member, unbalanced-tuple-unpacking import torch from e3nn import rs from e3nn.non_linearities.activation import Activation from e3nn.tensor_product import ElementwiseTensorProduct def split_features(features, *Rss, dim=-1): index = 0 outputs = [] for Rs in Rss: n = rs.dim(Rs) outputs.append(features.narrow(dim, index, n)) index += n assert index == features.size(dim) return outputs class GatedBlockParity(torch.nn.Module): def __init__(self, Rs_scalars, act_scalars, Rs_gates, act_gates, Rs_nonscalars): super().__init__() self.Rs_in = Rs_scalars + Rs_gates + Rs_nonscalars self.Rs_scalars, self.Rs_gates, self.Rs_nonscalars = Rs_scalars, Rs_gates, Rs_nonscalars self.act_scalars = Activation(Rs_scalars, act_scalars) Rs_scalars = self.act_scalars.Rs_out self.act_gates = Activation(Rs_gates, act_gates) Rs_gates = self.act_gates.Rs_out self.mul = ElementwiseTensorProduct(Rs_nonscalars, Rs_gates) Rs_nonscalars = self.mul.Rs_out self.Rs_out = Rs_scalars + Rs_nonscalars def forward(self, features, dim=-1): scalars, gates, nonscalars = split_features(features, self.Rs_scalars, self.Rs_gates, self.Rs_nonscalars, dim=dim) scalars = self.act_scalars(scalars) if gates.size(dim): gates = self.act_gates(gates) nonscalars = self.mul(nonscalars, gates) features = torch.cat([scalars, nonscalars], dim=dim) else: features = scalars return features
34.6875
122
0.685285
3b7ca1ef217f3baac6d6789c7b8620d2042e9192
474
py
Python
guppe/atividades/secao_8/ex047.py
WesleyLucas97/cursos_python
b2cbd393e8fed6e36b84253f7934766f2b4f1de8
[ "MIT" ]
null
null
null
guppe/atividades/secao_8/ex047.py
WesleyLucas97/cursos_python
b2cbd393e8fed6e36b84253f7934766f2b4f1de8
[ "MIT" ]
null
null
null
guppe/atividades/secao_8/ex047.py
WesleyLucas97/cursos_python
b2cbd393e8fed6e36b84253f7934766f2b4f1de8
[ "MIT" ]
null
null
null
""" Faça uma funcao que receba uma matriz 4x4 e retorne quantos valores maiores que 10 ela possui. """ from random import randint def conta_(x: list): cont = 0 for a in range(4): for b in range(4): if x[a][b] >= 10: cont += 1 return cont matriz = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] for i in range(4): for j in range(4): matriz[i][j] = randint(0, 20) print(matriz) print(conta_(matriz))
19.75
94
0.542194
f9761aa3c099a7e07485f1fc3ab4743e86ca3105
12,990
py
Python
openslides/motions/config_variables.py
flowluap/OpenSlides
e0069f734adacd5a42183915230f17fc52336f22
[ "MIT" ]
null
null
null
openslides/motions/config_variables.py
flowluap/OpenSlides
e0069f734adacd5a42183915230f17fc52336f22
[ "MIT" ]
null
null
null
openslides/motions/config_variables.py
flowluap/OpenSlides
e0069f734adacd5a42183915230f17fc52336f22
[ "MIT" ]
null
null
null
from django.core.validators import MinValueValidator from openslides.core.config import ConfigVariable from openslides.motions.models import MotionPoll from .models import Workflow def get_workflow_choices(): """ Returns a list of all workflows to be used as choices for the config variable 'motions_workflow'. Each list item contains the pk and the display name. """ return [ {"value": str(workflow.pk), "display_name": workflow.name} for workflow in Workflow.objects.all() ] def get_config_variables(): """ Generator which yields all config variables of this app. They are grouped in 'General', 'Amendments', 'Supporters', 'Voting and ballot papers' and 'PDF'. The generator has to be evaluated during app loading (see apps.py). """ # General yield ConfigVariable( name="motions_workflow", default_value="1", input_type="choice", label="Workflow of new motions", choices=get_workflow_choices, weight=310, group="Motions", ) yield ConfigVariable( name="motions_statute_amendments_workflow", default_value="1", input_type="choice", label="Workflow of new statute amendments", choices=get_workflow_choices, weight=312, group="Motions", ) yield ConfigVariable( name="motions_preamble", default_value="The assembly may decide:", label="Motion preamble", weight=320, group="Motions", ) yield ConfigVariable( name="motions_default_line_numbering", default_value="outside", input_type="choice", label="Default line numbering", choices=( {"value": "outside", "display_name": "outside"}, {"value": "inline", "display_name": "inline"}, {"value": "none", "display_name": "Disabled"}, ), weight=322, group="Motions", ) yield ConfigVariable( name="motions_line_length", default_value=85, input_type="integer", label="Line length", help_text="The maximum number of characters per line. Relevant when line numbering is enabled. Min: 40", weight=323, group="Motions", validators=(MinValueValidator(40),), ) yield ConfigVariable( name="motions_reason_required", default_value=False, input_type="boolean", label="Reason required for creating new motion", weight=324, group="Motions", ) yield ConfigVariable( name="motions_disable_text_on_projector", default_value=False, input_type="boolean", label="Hide motion text on projector", weight=325, group="Motions", ) yield ConfigVariable( name="motions_disable_reason_on_projector", default_value=False, input_type="boolean", label="Hide reason on projector", weight=326, group="Motions", ) yield ConfigVariable( name="motions_disable_recommendation_on_projector", default_value=False, input_type="boolean", label="Hide recommendation on projector", weight=327, group="Motions", ) yield ConfigVariable( name="motions_hide_referring_motions", default_value=False, input_type="boolean", label="Hide referring motions", weight=328, group="Motions", ) yield ConfigVariable( name="motions_disable_sidebox_on_projector", default_value=True, input_type="boolean", label="Show meta information box below the title on projector", weight=329, group="Motions", ) yield ConfigVariable( name="motions_show_sequential_numbers", default_value=True, input_type="boolean", label="Show the sequential number for a motion", help_text="In motion list, motion detail and PDF.", weight=330, group="Motions", ) yield ConfigVariable( name="motions_recommendations_by", default_value="", label="Name of recommender", help_text="Will be displayed as label before selected recommendation. Use an empty value to disable the recommendation system.", weight=332, group="Motions", ) yield ConfigVariable( name="motions_statute_recommendations_by", default_value="", label="Name of recommender for statute amendments", help_text="Will be displayed as label before selected recommendation in statute amendments.", weight=333, group="Motions", ) yield ConfigVariable( name="motions_recommendation_text_mode", default_value="diff", input_type="choice", label="Default text version for change recommendations", choices=( {"value": "original", "display_name": "Original version"}, {"value": "changed", "display_name": "Changed version"}, {"value": "diff", "display_name": "Diff version"}, {"value": "agreed", "display_name": "Final version"}, ), weight=334, group="Motions", ) yield ConfigVariable( name="motions_motions_sorting", default_value="identifier", input_type="choice", label="Sort motions by", choices=( {"value": "weight", "display_name": "Call list"}, {"value": "identifier", "display_name": "Identifier"}, ), weight=335, group="Motions", ) # Numbering yield ConfigVariable( name="motions_identifier", default_value="per_category", input_type="choice", label="Identifier", choices=( {"value": "per_category", "display_name": "Numbered per category"}, {"value": "serially_numbered", "display_name": "Serially numbered"}, {"value": "manually", "display_name": "Set it manually"}, ), weight=340, group="Motions", subgroup="Numbering", ) yield ConfigVariable( name="motions_identifier_min_digits", default_value=1, input_type="integer", label="Number of minimal digits for identifier", help_text="Uses leading zeros to sort motions correctly by identifier.", weight=342, group="Motions", subgroup="Numbering", validators=(MinValueValidator(1),), ) yield ConfigVariable( name="motions_identifier_with_blank", default_value=False, input_type="boolean", label="Allow blank in identifier", help_text="Blank between prefix and number, e.g. 'A 001'.", weight=344, group="Motions", subgroup="Numbering", ) # Amendments yield ConfigVariable( name="motions_statutes_enabled", default_value=False, input_type="boolean", label="Activate statute amendments", weight=350, group="Motions", subgroup="Amendments", ) yield ConfigVariable( name="motions_amendments_enabled", default_value=False, input_type="boolean", label="Activate amendments", weight=351, group="Motions", subgroup="Amendments", ) yield ConfigVariable( name="motions_amendments_main_table", default_value=True, input_type="boolean", label="Show amendments together with motions", weight=352, group="Motions", subgroup="Amendments", ) yield ConfigVariable( name="motions_amendments_prefix", default_value="-", label="Prefix for the identifier for amendments", weight=353, group="Motions", subgroup="Amendments", ) yield ConfigVariable( name="motions_amendments_text_mode", default_value="paragraph", input_type="choice", label="How to create new amendments", choices=( {"value": "freestyle", "display_name": "Empty text field"}, {"value": "fulltext", "display_name": "Edit the whole motion text"}, {"value": "paragraph", "display_name": "Paragraph-based, Diff-enabled"}, ), weight=354, group="Motions", subgroup="Amendments", ) yield ConfigVariable( name="motions_amendments_multiple_paragraphs", default_value=True, input_type="boolean", label="Amendments can change multiple paragraphs", weight=355, group="Motions", subgroup="Amendments", ) yield ConfigVariable( name="motions_amendments_of_amendments", default_value=False, input_type="boolean", label="Allow amendments of amendments", weight=356, group="Motions", subgroup="Amendments", ) # Supporters yield ConfigVariable( name="motions_min_supporters", default_value=0, input_type="integer", label="Number of (minimum) required supporters for a motion", help_text="Choose 0 to disable the supporting system.", weight=360, group="Motions", subgroup="Supporters", validators=(MinValueValidator(0),), ) yield ConfigVariable( name="motions_remove_supporters", default_value=False, input_type="boolean", label="Remove all supporters of a motion if a submitter edits his motion in early state", weight=361, group="Motions", subgroup="Supporters", ) # Voting and ballot papers yield ConfigVariable( name="motion_poll_default_100_percent_base", default_value="YNA", input_type="choice", label="Default 100 % base of a voting result", choices=tuple( {"value": base[0], "display_name": base[1]} for base in MotionPoll.PERCENT_BASES ), weight=370, group="Motions", subgroup="Voting and ballot papers", ) yield ConfigVariable( name="motion_poll_default_majority_method", default_value="simple", input_type="choice", choices=tuple( {"value": method[0], "display_name": method[1]} for method in MotionPoll.MAJORITY_METHODS ), label="Required majority", help_text="Default method to check whether a motion has reached the required majority.", weight=371, hidden=True, group="Motions", subgroup="Voting and ballot papers", ) yield ConfigVariable( name="motion_poll_default_groups", default_value=[], input_type="groups", label="Default groups with voting rights", weight=372, group="Motions", subgroup="Voting and ballot papers", ) yield ConfigVariable( name="motions_pdf_ballot_papers_selection", default_value="CUSTOM_NUMBER", input_type="choice", label="Number of ballot papers", choices=( {"value": "NUMBER_OF_DELEGATES", "display_name": "Number of all delegates"}, { "value": "NUMBER_OF_ALL_PARTICIPANTS", "display_name": "Number of all participants", }, { "value": "CUSTOM_NUMBER", "display_name": "Use the following custom number", }, ), weight=373, group="Motions", subgroup="Voting and ballot papers", ) yield ConfigVariable( name="motions_pdf_ballot_papers_number", default_value=8, input_type="integer", label="Custom number of ballot papers", weight=374, group="Motions", subgroup="Voting and ballot papers", validators=(MinValueValidator(1),), ) # PDF export yield ConfigVariable( name="motions_export_title", default_value="Motions", label="Title for PDF documents of motions", weight=380, group="Motions", subgroup="PDF export", ) yield ConfigVariable( name="motions_export_preamble", default_value="", label="Preamble text for PDF documents of motions", weight=382, group="Motions", subgroup="PDF export", ) yield ConfigVariable( name="motions_export_submitter_recommendation", default_value=False, label="Show submitters and recommendation/state in table of contents", input_type="boolean", weight=384, group="Motions", subgroup="PDF export", ) yield ConfigVariable( name="motions_export_follow_recommendation", default_value=False, label="Show checkbox to record decision", input_type="boolean", weight=386, group="Motions", subgroup="PDF export", )
29.191011
136
0.601848
afa760d06cb2bb5571d314fc466ffe4cdf32d4b7
383
py
Python
simuvex/procedures/libc___so___6/getchar.py
praetorian-inc/simuvex
7984bc4432a1c2126e6f2eb963c935e9f6a98da5
[ "BSD-2-Clause" ]
8
2016-01-19T03:13:32.000Z
2020-11-03T09:30:05.000Z
simuvex/procedures/libc___so___6/getchar.py
praetorian-inc/simuvex
7984bc4432a1c2126e6f2eb963c935e9f6a98da5
[ "BSD-2-Clause" ]
null
null
null
simuvex/procedures/libc___so___6/getchar.py
praetorian-inc/simuvex
7984bc4432a1c2126e6f2eb963c935e9f6a98da5
[ "BSD-2-Clause" ]
3
2017-04-24T00:22:30.000Z
2020-11-03T09:30:06.000Z
import simuvex from simuvex.s_type import SimTypeInt ###################################### # getchar ###################################### class getchar(simuvex.SimProcedure): def run(self): self.return_type = SimTypeInt(32, True) data = self.inline_call( simuvex.SimProcedures['libc.so.6']['_IO_getc'], 0).ret_expr # stdin return data
23.9375
80
0.530026
27e00df54fa1c05af576386431d1a8903b6e4014
7,189
py
Python
models/vgg.py
MarioMZhang/HAP-tryout
9a423f35b50766533a0d2cab8069316ccb21954b
[ "MIT" ]
24
2021-02-04T09:51:46.000Z
2022-03-04T13:01:24.000Z
models/vgg.py
ICML2021Submission1958/Hessian-Aware-Pruning-and-Optimal-Neural-Implant
34310e93b314f38a8d262f0b1fdb033d16d7087f
[ "MIT" ]
3
2021-07-26T07:18:00.000Z
2022-01-07T12:17:11.000Z
models/vgg.py
ICML2021Submission1958/Hessian-Aware-Pruning-and-Optimal-Neural-Implant
34310e93b314f38a8d262f0b1fdb033d16d7087f
[ "MIT" ]
2
2021-10-10T20:51:10.000Z
2021-11-16T03:40:32.000Z
import math import torch import torch.nn as nn from utils.common_utils import try_contiguous from utils.prune_utils import register_bottleneck_layer, update_QQ_dict from utils.prune_utils import LinearLayerRotation, ConvLayerRotation # from layers.bottleneck_layers import LinearBottleneck, Conv2dBottleneck from models.resnet import _weights_init _AFFINE = True # _AFFINE = False defaultcfg = { 11: [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512], 13: [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512], 16: [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512], 19: [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512], } class VGG(nn.Module): def __init__(self, dataset='cifar10', depth=19, init_weights=True, cfg=None): super(VGG, self).__init__() if cfg is None: cfg = defaultcfg[depth] self.feature = self.make_layers(cfg, False) # self.feature = self.make_layers(cfg, True) self.dataset = dataset if dataset == 'cifar10' or dataset == 'cinic-10': num_classes = 10 elif dataset == 'cifar100': num_classes = 100 elif dataset == 'tiny_imagenet': num_classes = 200 elif dataset == 'imagenet': num_classes = 1000 if dataset != 'imagenet': self.classifier = nn.Linear(cfg[-1], num_classes) else: self.classifier = VGGOutputBlock(in_channels=7*7*cfg[-1], classes=1000) # self.classifier = VGGOutputBlock(in_channels=41472, classes=1000) if init_weights: self.apply(_weights_init) # self._initialize_weights() def make_layers(self, cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=True) # conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v, affine=_AFFINE), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) def forward(self, x): x = self.feature(x) if self.dataset == 'tiny_imagenet': x = nn.AvgPool2d(4)(x) else: x = nn.AvgPool2d(2)(x) # print(x.shape) x = x.view(x.size(0), -1) # print(x.shape) y = self.classifier(x) return y def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): if m.weight is not None: m.weight.data.fill_(1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_() class VGGDense(nn.Module): def __init__(self, in_channels, out_channels): super(VGGDense, self).__init__() self.fc = nn.Linear( in_features=in_channels, out_features=out_channels) self.activ = nn.ReLU(inplace=True) self.dropout = nn.Dropout(p=0.5) def forward(self, x): x = self.fc(x) x = self.activ(x) x = self.dropout(x) return x class VGGOutputBlock(nn.Module): def __init__(self, in_channels, classes): super(VGGOutputBlock, self).__init__() mid_channels = 4096 self.fc1 = VGGDense( in_channels=in_channels, out_channels=mid_channels) self.fc2 = VGGDense( in_channels=mid_channels, out_channels=mid_channels) self.fc3 = nn.Linear( in_features=mid_channels, out_features=classes) def forward(self, x): x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x class BottleneckVGG(nn.Module): def __init__(self, vgg_prev, fix_rotation=True): super(BottleneckVGG, self).__init__() self.dataset = vgg_prev.dataset self.feature = vgg_prev.feature self.classifier = vgg_prev.classifier self.fix_rotation = fix_rotation self._is_registered = False def register(self, modules, Q_g, Q_a, W_star, use_patch, fix_rotation, re_init): n_seqs = len(self.feature) for idx in range(n_seqs): m = self.feature[idx] if isinstance(m, nn.Sequential): m = m[1] if m in modules: self.feature[idx] = register_bottleneck_layer(m, Q_g[m], Q_a[m], W_star[m], use_patch, fix_rotation) update_QQ_dict(Q_g, Q_a, m, self.feature[idx][1]) m = self.classifier if isinstance(m, nn.Sequential): m = m[1] if m in modules: self.classifier = register_bottleneck_layer(m, Q_g[m], Q_a[m], W_star[m], use_patch, fix_rotation) update_QQ_dict(Q_g, Q_a, m, self.classifier) self._is_registered = True if re_init: self.apply(_weights_init) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): if m.weight is not None: m.weight.data.fill_(1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_() elif isinstance(m, LinearLayerRotation): if m.trainable: print('* init Linear rotation') m.rotation_matrix.data.normal_(0, 0.01) elif isinstance(m, ConvLayerRotation): if m.trainable: print('* init Conv rotation') n = 1 * m.rotation_matrix.size(1) m.rotation_matrix.data.normal_(0, math.sqrt(2. / n)) def forward(self, x): assert self._is_registered nseq = len(self.feature) for idx in range(nseq): x = self.feature[idx](x) if self.dataset == 'tiny_imagenet': x = nn.AvgPool2d(4)(x) elif self.dataset == 'imagenet': return self.classifier(x) else: x = nn.AvgPool2d(2)(x) out = x.view(x.size(0), -1) out = self.classifier(out) return out
35.413793
116
0.548199
f74586a9a2e957cdc6a027edd7f741dc21f08c31
95
py
Python
helli5/contextprocessor.py
TheMn/internet-engineering-project
e41536552feff6f806ba099922df95e89da5bd31
[ "Apache-2.0" ]
7
2019-10-19T12:58:11.000Z
2020-11-05T07:02:17.000Z
helli5/contextprocessor.py
TheMn/internet-engineering-project
e41536552feff6f806ba099922df95e89da5bd31
[ "Apache-2.0" ]
35
2019-12-06T16:31:07.000Z
2022-03-12T00:56:35.000Z
helli5/contextprocessor.py
TheMn/internet-engineering-project
e41536552feff6f806ba099922df95e89da5bd31
[ "Apache-2.0" ]
1
2019-10-18T19:07:04.000Z
2019-10-18T19:07:04.000Z
from datetime import datetime def time_now(request): return {'time_now': datetime.now()}
15.833333
39
0.726316
e396d79e336bf66fbab6a5177060929d522bb474
2,005
py
Python
src/greyd/config.py
canberk/greyd
b3ce055ba856277d5efd5e2bbb9b59ff8d3b3c58
[ "MIT" ]
2
2019-02-18T16:31:14.000Z
2019-03-05T18:24:39.000Z
src/greyd/config.py
canberk/greyd
b3ce055ba856277d5efd5e2bbb9b59ff8d3b3c58
[ "MIT" ]
null
null
null
src/greyd/config.py
canberk/greyd
b3ce055ba856277d5efd5e2bbb9b59ff8d3b3c58
[ "MIT" ]
1
2019-02-20T21:42:20.000Z
2019-02-20T21:42:20.000Z
# -*- coding: utf-8 -*- """Set up environment configure.""" import os import rsa # pylint: disable=invalid-name def use_rsa_key(keys_path): """Check if already have keypair do nothing else create new one.""" if not check_pem_files(keys_path): generate_rsa_keypair(keys_path) def check_pem_files(keys_path): """Check *_public.pem and *_private.pem is exist.""" from pathlib import Path pub_file = Path(keys_path + "_public.pem") pri_file = Path(keys_path + "_private.pem") return bool(pub_file.is_file() and pri_file.is_file()) def generate_rsa_keypair(keys_path): """Generate rsa keypair.""" (public_key, private_key) = rsa.newkeys(512) if not os.path.exists(keys_path): os.makedirs(keys_path) with open(keys_path + "_public.pem", "wb+") as file: # noqa pylint: disable=redefined-outer-name key_data = rsa.PublicKey.save_pkcs1(public_key) file.write(key_data) with open(keys_path + "_private.pem", "wb+") as file: key_data = rsa.PrivateKey.save_pkcs1(private_key) file.write(key_data) HOST = os.environ.get("HOST", "0.0.0.0") PORT = int(os.environ.get("PORT", "8001")) GEONAMES_USERNAME = os.environ.get("GEONAMES_USERNAME") SERVER_NAME = os.environ.get("SERVER_NAME", "server") CLIENT_NAME = os.environ.get("CLIENT_NAME", "client") DB_NAME = os.environ.get("DB_NAME", "greyd.db") DB_PATH = os.environ.get("DB_PATH", "/usr/src/app/greyd/db") KEYS_PATH = os.environ.get("KEYS_PATH", "/usr/src/app/greyd/rsa_keys/") use_rsa_key(KEYS_PATH + SERVER_NAME) use_rsa_key(KEYS_PATH + CLIENT_NAME) private_file = KEYS_PATH + SERVER_NAME + "_private.pem" with open(private_file, mode="rb") as file: private_key_data = file.read() SERVER_PRIVATE_RSA_KEY = rsa.PrivateKey.load_pkcs1(private_key_data) public_file = KEYS_PATH + CLIENT_NAME + "_public.pem" with open(public_file, mode="rb") as file: public_key_data = file.read() CLIENT_PUBLIC_RSA_KEY = rsa.PublicKey.load_pkcs1(public_key_data)
31.328125
101
0.711721
d5e3a84b8990ddb290b84c9757a702050b3e2f1a
24,673
py
Python
Packs/FeedFireEye/Integrations/FeedFireEye/FeedFireEye.py
Gil-nuriel/content
b5237605d24ad915566f96c2cac392b1a93be80a
[ "MIT" ]
1
2021-04-20T07:10:06.000Z
2021-04-20T07:10:06.000Z
Packs/FeedFireEye/Integrations/FeedFireEye/FeedFireEye.py
Gil-nuriel/content
b5237605d24ad915566f96c2cac392b1a93be80a
[ "MIT" ]
null
null
null
Packs/FeedFireEye/Integrations/FeedFireEye/FeedFireEye.py
Gil-nuriel/content
b5237605d24ad915566f96c2cac392b1a93be80a
[ "MIT" ]
null
null
null
from typing import Tuple, List, Dict, Any, Optional import urllib3 from requests.auth import HTTPBasicAuth from CommonServerPython import * # disable insecure warnings urllib3.disable_warnings() INTEGRATION_NAME = 'FireEye Feed' API_URL = 'https://api.intelligence.fireeye.com' FE_CONFIDENCE_TO_REPUTATION = { Common.DBotScore.BAD: 70, Common.DBotScore.SUSPICIOUS: 30, Common.DBotScore.NONE: 0 } class STIX21Processor: """Processing class for STIX 2.1 objects. Args: raw_indicators (List): List of STIX 2.1 indicators objects. relationships (Dict): Dict of `id: STIX 2.1 relationship object`. entities (Dict): Dict of `id: STIX 2.1 entity object`. reports (List): List of STIX 2.1 reports objects. """ def __init__(self, raw_indicators: List, relationships: Dict, entities: Dict, reports: List, malicious_threshold: int, reputation_interval: int): self.raw_indicators = raw_indicators self.relationships = relationships self.entities = entities self.reports = reports self.reputation_interval = reputation_interval self.type_to_processor = { 'report': self.process_report, 'malware': self.process_malware, 'threat-actor': self.process_threat_actor, } FE_CONFIDENCE_TO_REPUTATION[Common.DBotScore.BAD] = malicious_threshold def process_indicators(self) -> List: processed_indicators = list() # type: List for raw_data in self.raw_indicators: processed_indicator = self.process_indicator(raw_data) if processed_indicator: processed_indicators += processed_indicator return processed_indicators @staticmethod def process_indicator_value(indicator_pattern_value: str) -> Tuple[List, List, Dict]: """Processes the `pattern` value from the feed response into indicator types according to FireEye, their values, and, in case of file type, it's hashes values. Args: indicator_pattern_value (str): The raw value of the `pattern` value from the feed response. Returns: Tuple[List, List, Dict]: indicator_types - List of indicator types according to FireEye classification. values - List of indicator values. hashes - Dict of `hash_type: hash_value`, in case of `file` indicator type. """ indicator_pattern_value = indicator_pattern_value[1:-1] if indicator_pattern_value.startswith('file'): hash_values = indicator_pattern_value.split('OR') hashes_dict = dict() # type: Dict for h in hash_values: key, value = h.split('=') hashes_dict[key.strip().split('file:hashes.')[1].replace("'", '')] = value.strip().replace("'", '') return ['file'], [hashes_dict['MD5']], hashes_dict try: indicator_types = list() # type: List values = list() # type: List for indicator_value in indicator_pattern_value.split('AND'): if indicator_value.startswith('email-message'): key, value = indicator_value.split(':from_ref.value=') else: try: key, value = indicator_value.split(':value=') except Exception: continue indicator_types.append(key.strip().replace("'", '').replace('[', '').replace(']', '')) values.append(value.strip().replace("'", '').replace('[', '').replace(']', '')) return indicator_types, values, {} except Exception: return [], [], {} @staticmethod def calculate_indicator_reputation(confidence: int, date: str, reputation_interval: int): """Calculates indicator reputation according to the threshold levels and dates. Args: confidence (int): FireEye feed confidence. date (str): Date in which the indicator was published. reputation_interval (int): If this amount of days passed since the indicator was created, then its reputation can be at most "Suspicious" Returns: int. DBot Score value Notes: In case the (current_date - publishing date of the indicator) < reputation_interval, the highest score the indicator can get is SUSPICIOUS. """ current_date = datetime.now() published_date = datetime.strptime(date, '%Y-%m-%dT%H:%M:%S.%fZ') sorted_reputation_map = sorted(FE_CONFIDENCE_TO_REPUTATION.items(), reverse=True) if current_date - published_date < timedelta(days=reputation_interval): for score, threshold in sorted_reputation_map: if confidence > threshold: return score else: for score, threshold in sorted_reputation_map: if confidence > threshold: return min(score, Common.DBotScore.SUSPICIOUS) def process_indicator(self, raw_data): indicators = list() _, values, hashes = self.process_indicator_value(raw_data.get('pattern')) for value in values: indicator = dict() indicator['type'] = auto_detect_indicator_type(value) if indicator['type']: indicator['value'] = value indicator['score'] = self.calculate_indicator_reputation( raw_data.get('confidence'), raw_data.get('created'), self.reputation_interval ) indicator['rawJSON'] = { 'fireeye_id': raw_data.get('id'), 'fireeye_labels': raw_data.get('labels'), 'fireeye_revoked': raw_data.get('revoked'), 'fireeye_created_date': raw_data.get('created'), 'fireeye_confidence': raw_data.get('confidence'), 'fireeye_valid_from': raw_data.get('valid_from'), 'fireeye_modified_date': raw_data.get('modified'), 'indicator_types': raw_data.get('indicator_types'), 'fireeye_valid_until': raw_data.get('valid_until'), 'fireeye_description': raw_data.get('description') } if 'MD5' in hashes: indicator['rawJSON']['MD5'] = hashes['MD5'] if 'SHA-1' in hashes: indicator['rawJSON']['SHA-1'] = hashes['SHA-1'] if 'SHA-256' in hashes: indicator['rawJSON']['SHA-256'] = hashes['SHA-256'] indicators.append(indicator) return indicators def process_stix_entities(self): processed_entities = list() # type: List for entity_type, value in self.entities.items(): if value.get('type') in self.type_to_processor: processed_entity = self.type_to_processor[value.get('type')](value) if processed_entity: processed_entities.append(processed_entity) return processed_entities def process_reports(self) -> List: processed_reports = list() # type: List for raw_data in self.reports: processed_report = self.process_report(raw_data) if processed_report: processed_reports.append(processed_report) return processed_reports @staticmethod def process_malware(raw_data) -> Dict: entity = dict() # type: Dict[str, Any] entity['type'] = 'STIX Malware' entity['value'] = raw_data.get('name') entity['fields'] = { 'stixid': raw_data.get('id'), 'stixdescription': raw_data.get('description', ''), 'stixismalwarefamily': raw_data.get('is_family'), 'stixmalwaretypes': raw_data.get('malware_types') } entity['rawJSON'] = { 'fireeye_id': raw_data.get('id'), 'fireeye_labels': raw_data.get('labels'), 'fireeye_aliases': raw_data.get('aliases'), 'fireeye_revoked': raw_data.get('revoked'), 'fireeye_is_family': raw_data.get('is_family'), 'fireeye_created_date': raw_data.get('created'), 'fireeye_modified_date': raw_data.get('modified'), 'fireeye_description': raw_data.get('description'), 'fireeye_malware_types': raw_data.get('malware_types'), 'fireeye_os_execution_envs': raw_data.get('os_execution_envs'), 'fireeye_external_references': raw_data.get('external_references'), } return entity @staticmethod def process_threat_actor(raw_data) -> Dict: entity = dict() # type: Dict[str, Any] entity['type'] = 'STIX Threat Actor' entity['value'] = raw_data.get('name') entity['fields'] = { 'stixid': raw_data.get('id'), 'stixaliases': raw_data.get('aliases'), 'stixdescription': raw_data.get('description', ''), 'stixsophistication': raw_data.get('sophistication'), 'stixprimarymotivation': raw_data.get('primary_motivation'), 'stixsecondarymotivations': raw_data.get('secondary_motivations'), } entity['rawJSON'] = { 'fireeye_id': raw_data.get('id'), 'fireeye_labels': raw_data.get('labels'), 'fireeye_aliases': raw_data.get('aliases'), 'fireeye_revoked': raw_data.get('revoked'), 'fireeye_created_date': raw_data.get('created'), 'fireeye_modified_date': raw_data.get('modified'), 'fireeye_description': raw_data.get('description'), 'fireeye_sophistication': raw_data.get('sophistication'), 'fireeye_primary_motivation': raw_data.get('primary_motivation'), 'fireeye_threat_actor_types': raw_data.get('threat_actor_types'), 'fireeye_object_marking_refs': raw_data.get('object_marking_refs'), 'fireeye_secondary_motivations': raw_data.get('secondary_motivations'), 'fireeye_intended_effect': raw_data.get('x_fireeye_com_intended_effect'), 'fireeye_planning_and_operational_support': raw_data.get('x_fireeye_com_planning_and_operational_support'), } return entity @staticmethod def process_report(raw_data) -> Dict: report = dict() # type: Dict[str, Any] report['type'] = 'STIX Report' report['value'] = raw_data.get('name') report['fields'] = { 'stixid': raw_data.get('id'), 'published': raw_data.get('published'), 'stixdescription': raw_data.get('description', ''), } report['rawJSON'] = { 'fireeye_id': raw_data.get('id'), 'fireeye_labels': raw_data.get('labels'), 'fireeye_threats': raw_data.get('threats'), 'fireeye_revoked': raw_data.get('revoked'), 'fireeye_published': raw_data.get('published'), 'fireeye_created_date': raw_data.get('created'), 'fireeye_modified_date': raw_data.get('modified'), 'fireeye_description': raw_data.get('description'), 'fireeye_report_types': raw_data.get('report_types'), 'fireeye_metadata': raw_data.get('x_fireeye_com_metadata'), 'fireeye_external_references': raw_data.get('external_references'), 'fireeye_tracking_info': raw_data.get('x_fireeye_com_tracking_info'), 'fireeye_exploitation_rating': raw_data.get('x_fireeye_com_exploitation_rating'), 'fireeye_risk_rating_justification': raw_data.get('x_fireeye_com_risk_rating_justification'), 'fireeye_additional_description_sections': raw_data.get('x_fireeye_com_additional_description_sections'), } return report class Client(BaseClient): """Client to use in the FireEye Feed integration. Overrides BaseClient. Args: insecure (bool): False if feed HTTPS server certificate should be verified, True otherwise. proxy (bool): False if feed HTTPS server certificate will not use proxies, True otherwise. tags (list): The indicator tags. tlp_color (str): Traffic Light Protocol color. """ def __init__(self, public_key: str, private_key: str, malicious_threshold: int, reputation_interval: int, polling_timeout: int = 20, insecure: bool = False, proxy: bool = False, tags: list = [], tlp_color: Optional[str] = None): super().__init__(base_url=API_URL, verify=not insecure, proxy=proxy) self.public_key = public_key self.private_key = private_key self.reputation_interval = reputation_interval self.malicious_threshold = malicious_threshold self._polling_timeout = polling_timeout self.tags = tags self.tlp_color = tlp_color @staticmethod def parse_access_token_expiration_time(expires_in: str) -> int: """Computes the expiration time of the new fetched authentication time. Args: expires_in (str): Amount of time the authentication token will be valid according to the API. Returns: int. Epoch time that represents the expiration timeof the token. """ try: current_time = datetime.now() expiration_time = current_time + timedelta(seconds=int(expires_in)) epoch_expiration_time = int(expiration_time.strftime('%s')) except ValueError: demisto.info('INFO - could not parse expiration time for access token.') epoch_expiration_time = 0 return epoch_expiration_time def fetch_new_access_token(self) -> str: """Fetches new authentication token from the API. Returns: str. Authentication token. """ response = self._http_request( method='POST', url_suffix='token', data={'grant_type': 'client_credentials'}, auth=HTTPBasicAuth(self.public_key, self.private_key), timeout=self._polling_timeout ) auth_token = response.get('access_token') expires_in = response.get('expires_in') epoch_expiration_time = self.parse_access_token_expiration_time(expires_in) demisto.setIntegrationContext( { 'auth_token': auth_token, 'expiration_time': epoch_expiration_time } ) return auth_token def get_access_token(self) -> str: """Returns the current valid authentication token for the feed. Returns: str. Authentication token. """ last_token_fetched_expiration_time = demisto.getIntegrationContext().get('expiration_time') current_time = int(datetime.now().timestamp()) if last_token_fetched_expiration_time and last_token_fetched_expiration_time > current_time: auth_token = demisto.getIntegrationContext().get('auth_token') else: auth_token = self.fetch_new_access_token() return auth_token def fetch_all_indicators_from_api(self, limit: int) -> Tuple[List, Dict, Dict]: """Collects raw data of indicators and their relationships from the feed. Args: limit (int): Amount of indicators to fetch. -1 means no limit. Returns: Tuple[List, Dict, Dict]. raw_indicators - List of STIX 2.1 indicators objects. relationships - Dict of `id: STIX 2.1 relationship object`. stix_entities - Dict of `id: STIX 2.1 entity object`. """ raw_indicators = list() # type: List relationships = dict() # type: Dict stix_entities = dict() # type: Dict headers = { 'Accept': 'application/vnd.oasis.stix+json; version=2.1', 'X-App-Name': 'content.xsoar.cortex.paloaltonetworks.v1.0', } if limit == -1: query_url = '/collections/indicators/objects?length=1000' else: query_url = f'/collections/indicators/objects?length={min(limit, 1000)}' while True: headers['Authorization'] = f'Bearer {self.get_access_token()}' response = self._http_request( method='GET', url_suffix=query_url, headers=headers, timeout=self._polling_timeout, resp_type='response' ) if response.status_code == 204: demisto.info(f'{INTEGRATION_NAME} info - ' f'API Status Code: {response.status_code} No Content Available for this timeframe.') return [], {}, {} if response.status_code != 200: return_error(f'{INTEGRATION_NAME} indicators fetching - ' f'API Status Code: {response.status_code} Error Reason: {response.text}') objects_fetched = response.json().get('objects') for obj in objects_fetched: if obj.get('type') == 'indicator': raw_indicators.append(obj) elif obj.get('type') == 'relationship': relationships[obj.get('id')] = obj else: stix_entities[obj.get('id')] = obj if limit != -1: break try: query_url = response.links['next']['url'] query_url = query_url.split('https://api.intelligence.fireeye.com')[1] except KeyError: break return raw_indicators, relationships, stix_entities def fetch_all_reports_from_api(self, limit: int) -> List: """Collects reports raw data from the feed. Args: limit (int): Amount of reports to fetch. -1 means no limit. Returns: List. List of STIX 2.1 reports objects. """ raw_reports = list() # type: List headers = { 'Accept': 'application/vnd.oasis.stix+json; version=2.1', 'X-App-Name': 'content.xsoar.cortex.paloaltonetworks.v1.0', } if limit == -1: query_url = '/collections/reports/objects?length=100' else: query_url = f'/collections/reports/objects?length={limit}' while True: headers['Authorization'] = f'Bearer {self.get_access_token()}' response = self._http_request( method='GET', url_suffix=query_url, headers=headers, timeout=self._polling_timeout, resp_type='response' ) if response.status_code != 200: return_error(f'{INTEGRATION_NAME} reports fetching - ' f'API Status Code: {response.status_code} Error Reason: {response.text}') raw_reports += [report for report in response.json().get('objects') if report.get('type') == 'report'] if limit != -1: break try: query_url = response.links['next']['url'] query_url = query_url.split('https://api.intelligence.fireeye.com')[1] except KeyError: break return raw_reports def build_iterator(self, limit: int) -> List: self.get_access_token() raw_indicators, relationships, stix_entities = self.fetch_all_indicators_from_api(limit) raw_reports = self.fetch_all_reports_from_api(limit) stix_processor = STIX21Processor(raw_indicators, relationships, stix_entities, raw_reports, self.malicious_threshold, self.reputation_interval) indicators = stix_processor.process_indicators() stix_indicators = stix_processor.process_stix_entities() reports = stix_processor.process_reports() return indicators + stix_indicators + reports def test_module(client: Client): client.build_iterator(limit=10) return 'ok', {}, {} def get_indicators_command(client: Client): """Retrieves indicators from the feed to the war-room. Args: client (Client): Client object configured according to instance arguments. Returns: Tuple of: str. Information to be printed to war room. Dict. The raw data of the indicators. """ limit = int(demisto.args().get('limit')) if 'limit' in demisto.args() else 10 indicators, raw_response = fetch_indicators_command(client, limit) human_readable = tableToMarkdown('Indicators from FireEye Feed:', indicators, headers=['value', 'type', 'rawJSON'], removeNull=True) return human_readable, {}, indicators def add_fields_if_exists(client: Client, fields_dict: Dict): """Adds field mapping if they hold actual values Args: fields_dict: The fields entry of the indicator client (Client): Client object configured according to instance arguments. Returns: Dict. Updated field mapping """ if client.tags: fields_dict.update({ 'tags': client.tags }) if client.tlp_color: fields_dict.update({ 'trafficlightprotocol': client.tlp_color }) return fields_dict def fetch_indicators_command(client: Client, limit: int = -1): """Fetches indicators from the feed to the indicators tab. Args: client (Client): Client object configured according to instance arguments. limit (int): Maximum number of indicators to return. Returns: Tuple of: str. Information to be printed to war room. Dict. Data to be entered to context. Dict. The raw data of the indicators. """ iterator = client.build_iterator(limit) indicators = [] raw_response = [] for indicator in iterator: fields = add_fields_if_exists(client, indicator.get('fields', {})) indicators.append({ 'value': indicator['value'], 'type': indicator['type'], 'fields': fields, 'rawJSON': indicator }) raw_response.append(indicator) return indicators, raw_response def verify_threshold_reputation_interval_types(threshold: str, reputation_interval: str): if not str.isdigit(threshold): return_error(f'{INTEGRATION_NAME} wrong parameter value - ' f'Parameter "Malicious Threshold" has to be a number') if not str.isdigit(reputation_interval): return_error(f'{INTEGRATION_NAME} wrong parameter value - ' f'Parameter "Reputation Interval" has to be a number') def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ public_key = demisto.params().get('credentials').get('identifier') private_key = demisto.params().get('credentials').get('password') threshold = demisto.params().get('threshold', '70') reputation_interval = demisto.params().get('reputation_interval', '30') verify_threshold_reputation_interval_types(threshold, reputation_interval) feedTags = argToList(demisto.params().get('feedTags')) tlp_color = demisto.params().get('tlp_color') polling_arg = demisto.params().get('polling_timeout', '') polling_timeout = int(polling_arg) if polling_arg.isdigit() else 20 insecure = demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) command = demisto.command() demisto.info(f'Command being called is {command}') command = demisto.command() try: client = Client(public_key, private_key, int(threshold), int(reputation_interval), polling_timeout, insecure, proxy, feedTags, tlp_color) if command == 'test-module': return_outputs(*test_module(client)) elif command == 'fireeye-get-indicators': return_outputs(*get_indicators_command(client)) elif command == 'fetch-indicators': indicators, _ = fetch_indicators_command(client) for single_batch in batch(indicators, batch_size=2000): demisto.createIndicators(single_batch) else: raise NotImplementedError(f'Command {command} is not implemented.') except Exception: raise if __name__ in ['__main__', 'builtin', 'builtins']: main()
38.672414
120
0.608357
c14d36ad2a0b4bd957ec8322e890bc060698bb26
1,504
py
Python
webinar_registration/models.py
ChameleonCloud/portal
92a06fb926dc36e997b94fb8dcd22b7e0d24d3ee
[ "Apache-2.0" ]
3
2015-08-04T20:53:41.000Z
2020-02-14T22:58:20.000Z
webinar_registration/models.py
ChameleonCloud/portal
92a06fb926dc36e997b94fb8dcd22b7e0d24d3ee
[ "Apache-2.0" ]
103
2015-01-15T14:21:00.000Z
2022-03-31T19:14:20.000Z
webinar_registration/models.py
ChameleonCloud/portal
92a06fb926dc36e997b94fb8dcd22b7e0d24d3ee
[ "Apache-2.0" ]
4
2016-02-22T16:48:20.000Z
2021-01-08T17:13:21.000Z
from django.conf import settings from django.db import models #from datetime import datetime from django.utils import timezone import pytz class Webinar(models.Model): name = models.CharField(max_length=255) description = models.TextField() registration_open = models.DateTimeField() registration_closed = models.DateTimeField() start_date = models.DateTimeField() end_date = models.DateTimeField() registration_limit = models.IntegerField(default=0) def is_registration_open(self): return self.registration_open <= timezone.now() and self.registration_closed >= timezone.now() def is_registration_closed(self): return self.registration_closed <= timezone.now() def is_registration_future(self): return self.registration_open > timezone.now() def __str__(self): return self.name def is_registered(self, is_registered): self.is_registered = is_registered class Meta: verbose_name = 'Webinar' verbose_name_plural = 'Webinars' class WebinarRegistrant(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) webinar = models.ForeignKey(Webinar, on_delete=models.CASCADE) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return self.user.username class Meta: verbose_name = 'Webinar Registrant' verbose_name_plural = 'Webinar Registrants'
30.693878
102
0.729388
d0b79a7f70b273f801bc047591b90f1d74944f88
4,175
py
Python
applications/trilinos_application/test_examples/cantilever3d.gid/cantilever_aztec.py
jiaqiwang969/Kratos-test
ed082abc163e7b627f110a1ae1da465f52f48348
[ "BSD-4-Clause" ]
null
null
null
applications/trilinos_application/test_examples/cantilever3d.gid/cantilever_aztec.py
jiaqiwang969/Kratos-test
ed082abc163e7b627f110a1ae1da465f52f48348
[ "BSD-4-Clause" ]
null
null
null
applications/trilinos_application/test_examples/cantilever3d.gid/cantilever_aztec.py
jiaqiwang969/Kratos-test
ed082abc163e7b627f110a1ae1da465f52f48348
[ "BSD-4-Clause" ]
null
null
null
#importing MPI ... for this boost 1.35 or superior is needed import mpi print "i am ",mpi.rank , " of ",mpi.size ################################################################## ################################################################## #setting the domain size for the problem to be solved domain_size = 3 ################################################################## ################################################################## ## ATTENTION: here the order is important #including kratos path kratos_libs_path = '../../../../libs/' ##kratos_root/libs kratos_applications_path = '../../../../applications/' ##kratos_root/applications import sys sys.path.append(kratos_libs_path) sys.path.append(kratos_applications_path) #importing Kratos main library from Kratos import * kernel = Kernel() #defining kernel #importing applications import applications_interface applications_interface.Import_StructuralApplication = True applications_interface.Import_KratosTrilinosApplication = True applications_interface.Import_KratosMetisApplication = True applications_interface.ImportApplications(kernel, kratos_applications_path) from KratosStructuralApplication import * from KratosTrilinosApplication import * from KratosMetisApplication import * ## from now on the order is not anymore crucial ################################################################## ################################################################## #defining a model part model_part = ModelPart("FluidPart"); #adding of Variables to Model Part should be here when the "very fix container will be ready" import trilinos_structural_solver_static trilinos_structural_solver_static.AddVariables(model_part) model_part.AddNodalSolutionStepVariable(PARTITION_INDEX) #reading a model gid_mode = GiDPostMode.GiD_PostBinary multifile = MultiFileFlag.MultipleFiles deformed_mesh_flag = WriteDeformedMeshFlag.WriteUndeformed write_conditions = WriteConditionsFlag.WriteElementsOnly gid_io = GidIO("cantilever3d",gid_mode,multifile,deformed_mesh_flag, write_conditions) ##gid_io.ReadModelPart(model_part) number_of_partitions = mpi.size #we set it equal to the number of processors print "number_of_partitions", number_of_partitions partitioner = MetisPartitioningProcess(model_part, gid_io, number_of_partitions, domain_size); partitioner.Execute() print "GetRank()",GetRank() mesh_name = mpi.rank gid_io.InitializeMesh( mesh_name ); gid_io.WriteMesh((model_part).GetMesh()); gid_io.FinalizeMesh() print "mesh_name =", mesh_name print model_part print model_part.Properties #writing the mesh #gid_io.WriteUndeformedMesh(model_part.GetMesh(),domain_size,GiDPostMode.GiD_PostBinary); #the buffer size should be set up here after the mesh is read for the first time model_part.SetBufferSize(2) #importing the solver files trilinos_structural_solver_static.AddDofs(model_part) #creating a fluid solver object solver = trilinos_structural_solver_static.StaticStructuralSolver(model_part,domain_size) #defining the linear solver solver_parameters = ParameterList() solver_parameters.set("AZ_precond", "AZ_dom_decomp"); solver_parameters.set("AZ_subdomain_solve", "AZ_ilut"); solver_parameters.set("AZ_overlap", 3); solver_parameters.set("AZ_solver", "AZ_gmres"); solver_parameters.set("AZ_kspace", 200); solver.structure_linear_solver = AztecSolver(solver_parameters,1e-9,1000); model_part.Properties[1].SetValue(CONSTITUTIVE_LAW, Isotropic3D() ) print "Linear elastic model selected" solver.Initialize() (solver.solver).SetEchoLevel(2); Dt = 0.001 nsteps = 10 gid_io.InitializeResults(mesh_name,(model_part).GetMesh()) for step in range(0,nsteps): print "line49" time = Dt*step model_part.CloneTimeStep(time) print time #print model_part.ProcessInfo()[TIME] #solving the fluid problem if(step > 3): solver.Solve() # if(step > 4): #print the results gid_io.WriteNodalResults(DISPLACEMENT,model_part.Nodes,time,0) gid_io.WriteNodalResults(REACTION,model_part.Nodes,time,0) # gid_io.PrintOnGaussPoints(PK2_STRESS_TENSOR,model_part,time,domain_size) gid_io.FinalizeResults()
32.617188
94
0.72024
22de59363933d4e479f7f14dc5971255a24a2142
856
py
Python
scripts/dags/oci_simple_example.py
oracle-quickstart/oci-airflow
ca244f05a6abdd33f98041b4f5b20098faf5f215
[ "UPL-1.0" ]
14
2020-06-09T13:15:01.000Z
2021-12-03T03:13:08.000Z
oci-provider/dags/oci_simple_example.py
RahulMR42/oke-airflow
5796ca95d9cfca6a8072107bf33de4df8fb35f77
[ "UPL-1.0" ]
2
2021-03-31T19:13:03.000Z
2022-03-15T20:33:33.000Z
oci-provider/dags/oci_simple_example.py
RahulMR42/oke-airflow
5796ca95d9cfca6a8072107bf33de4df8fb35f77
[ "UPL-1.0" ]
5
2021-08-29T20:36:26.000Z
2022-03-17T08:27:46.000Z
from datetime import datetime from airflow import DAG from hooks.oci_base import OCIBaseHook from hooks.oci_object_storage import OCIObjectStorageHook from operators.oci_object_storage import MakeBucket default_args = {'owner': 'airflow', 'start_date': datetime(2020, 5, 26), 'email': ['your_email@somecompany.com'], 'email_on_failure': False, 'email_on_retry': False } dag = DAG('oci_simple_example', default_args=default_args, schedule_interval='@hourly', catchup=False ) oci_conn_id = "oci_default" bucketname = "SomeBucketName" compartment_ocid = "COMPARTMENT_OCID" with dag: make_bucket = MakeBucket(task_id='Make_Bucket', bucket_name=bucketname,oci_conn_id=oci_conn_id, compartment_ocid=compartment_ocid) make_bucket
30.571429
134
0.690421
28ae38af8465c735b4221138b931dc4a859ecacb
402
py
Python
main/migrations/0006_endofday_currdate.py
Harsh-Sanklecha/stockanalysis
f5c6a454863ff72e0bac5e29035033cbf1bb3a06
[ "MIT" ]
null
null
null
main/migrations/0006_endofday_currdate.py
Harsh-Sanklecha/stockanalysis
f5c6a454863ff72e0bac5e29035033cbf1bb3a06
[ "MIT" ]
null
null
null
main/migrations/0006_endofday_currdate.py
Harsh-Sanklecha/stockanalysis
f5c6a454863ff72e0bac5e29035033cbf1bb3a06
[ "MIT" ]
2
2021-01-08T12:32:59.000Z
2021-02-14T11:41:51.000Z
# Generated by Django 3.1.2 on 2020-12-12 14:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0005_remove_endofday_currdate'), ] operations = [ migrations.AddField( model_name='endofday', name='currDate', field=models.CharField(max_length=30, null=True), ), ]
21.157895
61
0.606965
a7642afd45ee21340c7d0ec7a330f2e6441b01a0
4,773
py
Python
envs/__init__.py
zhihanyang2022/hiro_pytorch
74761e81f257207c2aa86312e8806eaef45658c4
[ "Linux-OpenIB" ]
33
2020-01-15T02:50:02.000Z
2021-12-16T02:40:49.000Z
envs/__init__.py
zhihanyang2022/hiro_pytorch
74761e81f257207c2aa86312e8806eaef45658c4
[ "Linux-OpenIB" ]
6
2020-07-07T13:15:04.000Z
2022-01-03T13:22:02.000Z
envs/__init__.py
zhihanyang2022/hiro_pytorch
74761e81f257207c2aa86312e8806eaef45658c4
[ "Linux-OpenIB" ]
11
2020-08-17T10:19:15.000Z
2022-02-13T10:10:37.000Z
"""Random policy on an environment.""" import numpy as np import argparse import envs.create_maze_env def get_goal_sample_fn(env_name, evaluate): if env_name == 'AntMaze': # NOTE: When evaluating (i.e. the metrics shown in the paper, # we use the commented out goal sampling function. The uncommented # one is only used for training. if evaluate: return lambda: np.array([0., 16.]) else: return lambda: np.random.uniform((-4, -4), (20, 20)) elif env_name == 'AntPush': return lambda: np.array([0., 19.]) elif env_name == 'AntFall': return lambda: np.array([0., 27., 4.5]) else: assert False, 'Unknown env' def get_reward_fn(env_name): if env_name == 'AntMaze': return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5 elif env_name == 'AntPush': return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5 elif env_name == 'AntFall': return lambda obs, goal: -np.sum(np.square(obs[:3] - goal)) ** 0.5 else: assert False, 'Unknown env' def success_fn(last_reward): return last_reward > -5.0 class EnvWithGoal(object): def __init__(self, base_env, env_name): self.base_env = base_env self.env_name = env_name self.evaluate = False self.reward_fn = get_reward_fn(env_name) self.goal = None self.distance_threshold = 5 self.count = 0 self.state_dim = self.base_env.observation_space.shape[0] + 1 self.action_dim = self.base_env.action_space.shape[0] def seed(self, seed): self.base_env.seed(seed) def reset(self): # self.viewer_setup() self.goal_sample_fn = get_goal_sample_fn(self.env_name, self.evaluate) obs = self.base_env.reset() self.count = 0 self.goal = self.goal_sample_fn() return { # add timestep 'observation': np.r_[obs.copy(), self.count], 'achieved_goal': obs[:2], 'desired_goal': self.goal, } def step(self, a): obs, _, done, info = self.base_env.step(a) reward = self.reward_fn(obs, self.goal) self.count += 1 next_obs = { # add timestep 'observation': np.r_[obs.copy(), self.count], 'achieved_goal': obs[:2], 'desired_goal': self.goal, } return next_obs, reward, done or self.count >= 500, info def render(self): self.base_env.render() def get_image(self): self.render() data = self.base_env.viewer.get_image() img_data = data[0] width = data[1] height = data[2] tmp = np.fromstring(img_data, dtype=np.uint8) image_obs = np.reshape(tmp, [height, width, 3]) image_obs = np.flipud(image_obs) return image_obs @property def action_space(self): return self.base_env.action_space @property def observation_space(self): return self.base_env.observation_space def run_environment(env_name, episode_length, num_episodes): env = EnvWithGoal( create_maze_env.create_maze_env(env_name), env_name) def action_fn(obs): action_space = env.action_space action_space_mean = (action_space.low + action_space.high) / 2.0 action_space_magn = (action_space.high - action_space.low) / 2.0 random_action = (action_space_mean + action_space_magn * np.random.uniform(low=-1.0, high=1.0, size=action_space.shape)) return random_action rewards = [] successes = [] for ep in range(num_episodes): rewards.append(0.0) successes.append(False) obs = env.reset() for _ in range(episode_length): env.render() print(env.get_image().shape) obs, reward, done, _ = env.step(action_fn(obs)) rewards[-1] += reward successes[-1] = success_fn(reward) if done: break print('Episode {} reward: {}, Success: {}'.format(ep + 1, rewards[-1], successes[-1])) print('Average Reward over {} episodes: {}'.format(num_episodes, np.mean(rewards))) print('Average Success over {} episodes: {}'.format(num_episodes, np.mean(successes))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--env_name", default="AntEnv", type=str) parser.add_argument("--episode_length", default=500, type=int) parser.add_argument("--num_episodes", default=100, type=int) args = parser.parse_args() run_environment(args.env_name, args.episode_length, args.num_episodes)
31.82
94
0.598994
eb195f20b6165daae7aaf8df04a2898da55779f4
1,714
py
Python
metacells/check_avx2.py
tanaylab/metacells
ecd957b306bd6af2fcfd56efb246ce15b0d8238a
[ "MIT" ]
16
2021-06-19T03:03:06.000Z
2022-03-21T20:47:15.000Z
metacells/check_avx2.py
tanaylab/metacells
ecd957b306bd6af2fcfd56efb246ce15b0d8238a
[ "MIT" ]
23
2021-03-17T09:38:04.000Z
2022-03-02T11:04:56.000Z
metacells/check_avx2.py
tanaylab/metacells
ecd957b306bd6af2fcfd56efb246ce15b0d8238a
[ "MIT" ]
1
2021-12-02T21:28:11.000Z
2021-12-02T21:28:11.000Z
''' Check for AVX2 -------------- This is only imported on X86_64 machines if we compiled the C++ extension to use AVX2 (when creating the pre-compiled wheels). If this is run on a non-AVX2 machine, it generates a human-readable error instead of generating an opaque segmentation fault. ''' import os from warnings import warn HAS_AVX2 = None try: with (open('/proc/cpuinfo') if os.path.exists('/proc/cpuinfo') else os.popen('sysctl -a')) as file: for line in file.readlines(): if line.startswith('flags'): features = line.split(' ') HAS_AVX2 = 'avx2' in features and 'fma' in features break except BaseException: # pylint: disable=broad-except pass if HAS_AVX2 is None: AVX2_MAYBE_NOT_SUPPORTED = \ 'The metacells precompiled wheel is using AVX2 FMA instructions.\n' \ "However, AVX2 FMA might not be available on this computer's processors.\n" \ 'Therefore, using the metacells package might cause a segmentation violation.\n' \ 'You can avoid the wheel using: pip install metacells --install-option=--native\n' \ "This will compile the metacells package on and for this computer's processors." warn(AVX2_MAYBE_NOT_SUPPORTED) HAS_AVX2 = True if not HAS_AVX2: AVX2_NOT_SUPPORTED = \ 'The metacells precompiled wheel is using AVX2 FMA instructions.\n' \ "However, AVX2 FMA is not available on this computer's processors.\n" \ 'You can avoid the wheel using: pip install metacells --install-option=--native\n' \ "This will compile the metacells package on and for this computer's processors." raise ImportError(AVX2_NOT_SUPPORTED)
40.809524
100
0.680863
1937e3e26348ee1ef8bd110fed853491e907a729
1,297
py
Python
scripts/naiveBayesBowDemo.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
2
2021-04-10T18:12:19.000Z
2021-05-11T12:07:40.000Z
scripts/naiveBayesBowDemo.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
1
2021-04-19T12:25:26.000Z
2021-04-19T12:25:26.000Z
scripts/naiveBayesBowDemo.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
1
2021-06-21T01:18:07.000Z
2021-06-21T01:18:07.000Z
# authors: ashishpapanai, animesh-007 import scipy import scipy.io as sio import numpy as np from sklearn.metrics import zero_one_loss from sklearn.naive_bayes import MultinomialNB,ComplementNB,CategoricalNB,BernoulliNB,GaussianNB import matplotlib.pyplot as plt import os if os.path.isdir('scripts'): os.chdir('scripts') data = None Xtrain = None Xtest = None data = sio.loadmat('../data/XwindowsDocData.mat') Xtrain = data['xtrain'] Xtrain = scipy.sparse.csc_matrix.toarray(Xtrain) Xtest = data['xtest'] Xtest = scipy.sparse.csc_matrix.toarray(Xtest) ytrain = data['ytrain'] ytest = data['ytest'] model = BernoulliNB() model.fit(Xtrain, ytrain) ypred_train = model.predict(Xtrain) err_train = np.mean(zero_one_loss(ytrain, ypred_train)) ypred_test = model.predict(Xtest) err_test = np.mean(zero_one_loss(ytest, ypred_test)) print('misclassification rates on train = '+str(err_train*100) + ' pc, on test = '+str(err_test*100)+' pc\n') C = np.unique(data['ytrain']).size for i in range(0, C): plt.figure(figsize=(10,10)) # make sure thin spike is visible plt.bar(np.arange(0, 600, 1), np.exp(model.feature_log_prob_)[i, :]) plt.title('p(xj=1|y='+str(i)+')') fileName = 'naiveBayesBow'+str(i+1)+'ClassCond' plt.savefig(r'../figures/'+fileName) plt.show()
29.477273
95
0.720894
2e9b9390d68497aa634cfaa60edf04843c05711b
288
py
Python
fplib/functor.py
ppedemon/fplib
61c221e967e924b3fd0a3014e80b331574d45f0c
[ "MIT" ]
null
null
null
fplib/functor.py
ppedemon/fplib
61c221e967e924b3fd0a3014e80b331574d45f0c
[ "MIT" ]
null
null
null
fplib/functor.py
ppedemon/fplib
61c221e967e924b3fd0a3014e80b331574d45f0c
[ "MIT" ]
null
null
null
class Functor: def __rrshift__(self, f): return self.fmap(f) @classmethod def unit(cls, x): raise NotImplementedError('unit not defined') def fmap(self, f): raise NotImplementedError('fmap not defined') def unit(cls, x): return cls.unit(x)
19.2
53
0.628472
021c6f372132ca94f8a21a2357df1e5dda4de6ba
9,931
py
Python
spiral/core/foundation.py
acdaniells/spiral
d78344007969d7c991216901b4a9d3ad7d768587
[ "BSD-3-Clause" ]
null
null
null
spiral/core/foundation.py
acdaniells/spiral
d78344007969d7c991216901b4a9d3ad7d768587
[ "BSD-3-Clause" ]
1
2020-04-01T18:39:48.000Z
2020-04-01T18:39:48.000Z
spiral/core/foundation.py
acdaniells/spiral
d78344007969d7c991216901b4a9d3ad7d768587
[ "BSD-3-Clause" ]
1
2020-04-01T18:36:44.000Z
2020-04-01T18:36:44.000Z
""" Spiral core foundation module. """ import logging import os import sys from importlib import reload as reload_module from spiral.core import extension, ml, plot from spiral.ext.ext_argparse import ArgparseController as Controller from cement.core import ( arg, cache, config, controller, log, mail, output, plugin, template, ) from cement.core.foundation import ( App as CementApp, add_handler_override_options, handler_override, ) from cement.core.handler import HandlerManager from cement.core.hook import HookManager from cement.core.interface import InterfaceManager from cement.utils import misc from cement.utils.misc import minimal_logger join = os.path.join LOG = minimal_logger(__name__) class App(CementApp): """ Primary application object class. """ class Meta: """ Application meta-data. """ extension_handler = "spiral" """ Handler class that implements the Extension interface. """ plot_handler = "plotly" """ Handler class that implements the Plot interface. """ core_extensions = [ "cement.ext.ext_dummy", "cement.ext.ext_plugin", "cement.ext.ext_configparser", "spiral.ext.ext_argparse", "spiral.ext.ext_logging", "spiral.ext.ext_plotly", ] """ List of Spiral core extensions. These are generally required by Spiral and should only be modified if you know what you're doing. Use ``App.Meta.extensions`` to add to this list, rather than overriding core extensions. That said if you want to prune down your application, you can remove core extensions if they are not necessary (for example if using your own log handler extension you might not need/want ``LoggingLogHandler`` to be registered). """ core_meta_override = [ "debug", "plugin_dir", "ignore_deprecation_warnings", "template_dir", "mail_handler", "cache_handler", "log_handler", "output_handler", "template_handler", "plot_handler", ] """ List of meta options that can/will be overridden by config options of the ``base`` config section (where ``base`` is the base configuration section of the application which is determined by ``App.Meta.config_section`` but defaults to ``App.Meta.label``). These overrides are required by the framework to function properly and should not be used by end-user (developers) unless you really know what you're doing. To add your own extended meta overrides you should use ``App.Meta.meta_override``. """ core_interfaces = [ extension.ExtensionInterface, log.LogInterface, config.ConfigInterface, mail.MailInterface, plugin.PluginInterface, output.OutputInterface, template.TemplateInterface, arg.ArgumentInterface, controller.ControllerInterface, cache.CacheInterface, plot.PlotInterface, ml.MLInterface, ] """ List of core interfaces to be defined (by the framework). You should not modify this unless you really know what you're doing... instead, you probably want to add your own interfaces to ``App.Meta.interfaces``. """ def __init__(self, label=None, **kw): self._loaded_bootstrap = None self.interface = None self.handler = None self.hook = None self.controller = None self.plot = None self._suppress_loggers() super().__init__(label, **kw) @staticmethod def _suppress_loggers(): """ Set logging level of non-application loggers to ERROR. """ for name in logging.root.manager.loggerDict: logger = logging.getLogger(name) if "cement" not in name and "spiral" not in name: LOG.debug(f"Setting log level for '{name}' to ERROR") logger.setLevel(logging.ERROR) def _lay_cement(self): """ Initialize the framework. """ LOG.debug(f"laying cement for the '{self._meta.label}' application") self.interface = InterfaceManager(self) self.handler = HandlerManager(self) self.hook = HookManager(self) # define framework hooks self.hook.define("pre_setup") self.hook.define("post_setup") self.hook.define("pre_run") self.hook.define("post_run") self.hook.define("pre_argument_parsing") self.hook.define("post_argument_parsing") self.hook.define("pre_close") self.hook.define("post_close") self.hook.define("signal") self.hook.define("pre_render") self.hook.define("post_render") # define application hooks from meta for label in self._meta.define_hooks: self.hook.define(label) # register some built-in framework hooks self.hook.register("post_setup", add_handler_override_options, weight=-99) self.hook.register("post_argument_parsing", handler_override, weight=-99) # register application hooks from meta. the hooks listed in # App.Meta.hooks are registered here, so obviously can not be # for any hooks other than the builtin framework hooks that we just # defined here (above). Anything that we couldn't register here # will be retried after setup self.__retry_hooks__ = [] for hook_spec in self._meta.hooks: if not self.hook.defined(hook_spec[0]): LOG.debug(f"hook {hook_spec[0]} not defined, will retry after setup") self.__retry_hooks__.append(hook_spec) else: self.hook.register(*hook_spec) # define interfaces for i in self._meta.core_interfaces: self.interface.define(i) for i in self._meta.interfaces: self.interface.define(i) # extension handler is the only thing that can't be loaded... as, # well, an extension. ;) self.handler.register(extension.ExtensionHandler) # register application handlers for handler_class in self._meta.handlers: self.handler.register(handler_class) def setup(self): """ Application setup method. This method wraps all ``_setup`` actons in one call. It is called before ``self.run()``, allowing the application to be setup but not executed (possibly letting the developer perform other actions before full execution). All handlers should be instantiated and callable after setup is complete. """ LOG.debug(f"now setting up the '{self._meta.label}' application") if self._meta.bootstrap is not None: LOG.debug(f"importing bootstrap code from {self._meta.bootstrap}") if ( self._meta.bootstrap not in sys.modules or self._loaded_bootstrap is None ): __import__(self._meta.bootstrap, globals(), locals(), [], 0) if hasattr(sys.modules[self._meta.bootstrap], "load"): sys.modules[self._meta.bootstrap].load(self) self._loaded_bootstrap = sys.modules[self._meta.bootstrap] else: reload_module(self._loaded_bootstrap) for _result in self.hook.run("pre_setup", self): pass # pragma: nocover self._setup_extension_handler() self._setup_signals() self._setup_config_handler() self._setup_mail_handler() self._setup_cache_handler() self._setup_log_handler() self._setup_plugin_handler() self._setup_arg_handler() self._setup_output_handler() self._setup_template_handler() self._setup_controllers() self._setup_plot_handler() for hook_spec in self.__retry_hooks__: self.hook.register(*hook_spec) for _result in self.hook.run("post_setup", self): pass def _setup_controllers(self): LOG.debug("setting up application controllers") if self.handler.registered("controller", "base"): self.controller = self._resolve_handler("controller", "base") else: class DefaultBaseController(Controller): class Meta: label = "base" def _default(self): # don't enforce anything cause developer might not be # using controllers... if they are, they should define # a base controller. pass self.handler.register(DefaultBaseController) self.controller = self._resolve_handler("controller", "base") def _setup_plot_handler(self): self.plot = self._resolve_handler("plot", self._meta.plot_handler) class TestApp(App): """ Testing application. """ # tells pytest to not consider this a class for testing __test__ = False class Meta: """ Test application meta-data. """ label = f"app-{misc.rando()[:12]}" argv = [] core_system_config_files = [] core_user_config_files = [] config_files = [] core_system_config_dirs = [] core_user_config_dirs = [] config_dirs = [] core_system_template_dirs = [] core_user_template_dirs = [] core_system_plugin_dirs = [] core_user_plugin_dirs = [] plugin_dirs = [] exit_on_close = False
31.526984
85
0.609204
22e76c125b742bb80a73897a373372f4c1ef8d04
655
py
Python
torch/optimization/combine_optimization.py
jihuacao/Putil
b753fc94bea4cbda00f483681c55f0e9f54adef2
[ "Apache-2.0" ]
1
2018-12-09T06:09:29.000Z
2018-12-09T06:09:29.000Z
torch/optimization/combine_optimization.py
jihuacao/Putil
b753fc94bea4cbda00f483681c55f0e9f54adef2
[ "Apache-2.0" ]
null
null
null
torch/optimization/combine_optimization.py
jihuacao/Putil
b753fc94bea4cbda00f483681c55f0e9f54adef2
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 #from torch.optim import Optimizer import torch class CombineOptimization: def __init__(self, **optimizations): self._optimizations = optimizations pass def step(self, closure=None): for index, (k, v) in enumerate(self._optimizations.items()): v.step() pass pass def load_state_dict(self, state_dict, unexisted_strategy): for index, (k, v) in enumerate(self._optimizations.items()): if k in state_dict.dict(): v.load_state_dict(state_dict[k]) pass else: pass pass pass
26.2
68
0.574046
4a23f60ae4d4981c154f86980c84b697fda1cf57
9,515
py
Python
infdist/simulator/experiment/legacy/trial.py
zeroos/infdist
5fca2c42bbe5ea650866a26568d1eaf240b2b47e
[ "MIT" ]
null
null
null
infdist/simulator/experiment/legacy/trial.py
zeroos/infdist
5fca2c42bbe5ea650866a26568d1eaf240b2b47e
[ "MIT" ]
null
null
null
infdist/simulator/experiment/legacy/trial.py
zeroos/infdist
5fca2c42bbe5ea650866a26568d1eaf240b2b47e
[ "MIT" ]
null
null
null
from copy import deepcopy from optimization.agent import ( # NOQA EstimatingAgent, FixedRatioAgent, FullCommAgent, FullKnowledgeAgent, GreedyConstrainedAgent, ) from simulator.network import NS3Network from simulator import simulator from optimization import missions, simplesim from optimization.models import MessageSet class Trial: def __init__(self, nodes_num, t_end, msgset): self.nodes_num = nodes_num self.t_end = t_end self.msgset = msgset self.agent_cls = FullCommAgent self.agent_kwargs = {} self.messages = None self.ctx = None self.net = None self.agents = None self.constraints = {} self.now_func = simulator.now_float self.network_data_rate = 5.5 def create_agent(self, i): return self.agent_cls(i, self.net, self.ctx, self.now_func, **self.agent_kwargs) def agent_stats(self): return { agent: ( len(agent.received_messages), self.ctx.utility(agent.received_messages).value(), ) for agent in self.agents } def stats(self): total_utility = self.ctx.utility(self.all_received_messages()).value() no_duplicates = MessageSet( self.all_received_messages().t_end, list(set(self.all_received_messages().all())), ) latencies = [ m.t_rcv - m.t_gen for m in self.all_received_messages().all() ] avg_latency = sum(latencies)/(len(latencies) or 1) constraints = {} for name, constraint in self.constraints.items(): constraints[name] = constraint(no_duplicates) all_messages = deepcopy(self.messages) simplesim.apply_latency(all_messages, 0) return { 'all_messages': all_messages, 't_end': self.t_end, 'no_duplicates': no_duplicates, 'all_received_messages': self.all_received_messages(), 'received_num': sum( [len(agent.received_messages) for agent in self.agents] ), 'sent_num': sum( [len(agent.sent_messages) for agent in self.agents] ), 'sent_received_num': len(no_duplicates), 'total_utility': total_utility, 'normalized_utility': total_utility/len(self.agents)/self.t_end, 'total_messages': len(self.messages), 'constraints': constraints, 'max_utility': self.ctx.utility(all_messages).value(), 'avg_latency': avg_latency, 'agents_num': len(self.agents), } def all_generated_messages(self): result = MessageSet(0, []) for agent in self.agents: result += agent.generated_messages return result def all_received_messages(self): result = MessageSet(0, []) for agent in self.agents: result += agent.received_messages return result @staticmethod def print_stats(stats): print( ( "Received # {}, sent: {}, " "total utility: {}, " "normalized utility: {}" ).format( stats['received_num'], stats['sent_num'], stats['total_utility'], stats['normalized_utility'], ) ) print(( "Received {:.0f}% of all messages, " "{:.0f}% of sent messages.").format( stats['sent_received_num']/stats['total_messages']*100, stats['sent_received_num']/(stats['sent_num'] or 1)*100, )) print("AVG data rate: {:.3f} Mbps with avg latency of {}".format( sum([m.size for m in stats['no_duplicates'].all()]) * 8 / 10**6 / stats['t_end'], stats['avg_latency'], )) print("Max utility: {}".format( stats['max_utility'] )) for name, constraint_violations in stats['constraints'].items(): if constraint_violations > 0: print("!!! {} constraint NOT met ({} times)".format( name, constraint_violations )) def finish_mission(self): real_t_end = simulator.now_float() for a in self.agents: a.finish_mission(real_t_end) @staticmethod def generate_messages_from_msgset(msgset, t_end, nodes_num): msgset_type = msgset.get('type', '3D_reconstruction') seed = msgset.get('seed', 0) if msgset_type == '3D_reconstruction': messages, ctx = \ missions.generate_simple_3D_reconstruction( t_end, msgset=msgset, senders=set(range(nodes_num)), seed=seed, ) elif msgset_type == 'serialized': messages = msgset['messages'] ctx = msgset['ctx'] return messages, ctx def prepare_messages(self): if self.messages is not None: assert self.ctx is not None return # already prepared self.messages, self.ctx = self.generate_messages_from_msgset( self.msgset, self.t_end, self.nodes_num, ) def prepare_agents(self): assert self.net is not None, "Network has to be prepared before agents" if self.agents is not None: return # already prepared self.agents = [ self.create_agent(i) for i in range(self.nodes_num) ] def prepare_network(self): if self.net is not None: return # already prepared self.net = NS3Network(self.nodes_num, self.network_data_rate) def print_progress(self): print( f" {self.now_func():.02f}s " f"({self.now_func()/self.t_end*100:.02f}%)", end="\r" ) def run(self): self.prepare_messages() self.prepare_network() self.prepare_agents() # this has to be done after network for i in range(self.nodes_num): self.net.add_message_received_callback( self.agents[i].gen_message_received_callback(), i ) for m in self.messages.all(): # print("Scheduling sending at {} by {}".format(m.t_gen, m.sender)) native_message = self.net.serialize(m) agent = self.agents[m.sender] simulator.schedule(m.t_gen, agent.gen_generate_message_callback( native_message )) simulator.schedule( m.t_gen, self.print_progress ) simulator.schedule(self.t_end, self.finish_mission) simulator.stop(self.t_end+1) simulator.run() class FixedRatioTrial(Trial): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.agent_cls = FixedRatioAgent def set_drop_rate(self, drop_rate): self.agent_kwargs = {'drop_ratio': drop_rate} class GreedyTrial(Trial): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.agent_cls = GreedyConstrainedAgent self.agent_kwargs = { 'constraints': {}, } @property def constraints(self): return self.agent_kwargs['constraints'] @constraints.setter def constraints(self, value): self.agent_kwargs['constraints'] = value class TreeTrial(Trial): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.prepare_messages() self.agent_cls = EstimatingAgent self.agent_kwargs = { 'agents': { ident: lambda t: set() for ident in range(self.nodes_num) }, 'constraints': {}, 'window_size': 1000, } self.drop_rate_set = False self.throughput_set = False @property def constraints(self): return self.agent_kwargs['constraints'] @constraints.setter def constraints(self, value): self.agent_kwargs['constraints'] = value def add_msgnum_constraint(self, messages_num, timeslot_length): # self.agent_kwargs['window_size'] = timeslot_length self.constraints = { 'MSGNUM': simplesim.create_msgnum_constraint_violations( messages_num, timeslot_length ), } def add_throughput_constraint(self, throughput, timeslot_length): # self.agent_kwargs['window_size'] = timeslot_length self.constraints = { 'TPUT': simplesim.create_throughput_constraint_violations( throughput, timeslot_length, ), } return self.constraints def set_throughput(self, throughput): return self.add_throughput_constraint(throughput, 2.5) def set_drop_rate(self, drop_rate): assert not self.drop_rate_set timeslot_length = 2.5 avg_msgs_per_second = 1.5*len(self.messages)/self.t_end self.add_msgnum_constraint( (1-drop_rate)*(timeslot_length)*avg_msgs_per_second, timeslot_length ) def set_simulations_num(self, value): self.agent_kwargs['simulations_num'] = value def set_suppress_warnings(self, value): self.agent_kwargs['suppress_warnings'] = value
31.611296
79
0.575617
6b2705d22a8cfd39b0e10b8d480a7025bf549140
16,237
py
Python
MCCGPIndividual.py
TM6501/cgp
2ddec84b13c53228602a5bfa5ae4f9a0943609bc
[ "MIT" ]
1
2020-05-23T04:41:31.000Z
2020-05-23T04:41:31.000Z
MCCGPIndividual.py
TM6501/cgp
2ddec84b13c53228602a5bfa5ae4f9a0943609bc
[ "MIT" ]
null
null
null
MCCGPIndividual.py
TM6501/cgp
2ddec84b13c53228602a5bfa5ae4f9a0943609bc
[ "MIT" ]
null
null
null
import random import copy import inspect import itertools import math import AbstractCGPIndividual class MCCGPIndividual(AbstractCGPIndividual.AbstractCGPIndividual): """This class represents a Multi-Chromosomal Individual. MCCGP individuals will maintain a separate genotype for every output and can mutate using crossover. Traditionally, they have a fitness function for every output, but that will be optional with this class. If multiple fitness functions are provided, crossover will choose the best of each genotype. If not, then genotypes will be chosen randomly from the available population (assumed to be the best of the most recent epoch's generation).""" def __init__( self, type=None, inputSize=1, outputSize=1, shape=None, pRange=None, constraintRange=None, functionList=None, MC_CGPSpecificParameters=None): args, _, _, values = inspect.getargvalues(inspect.currentframe()) values.pop("self") for arg, val in values.items(): setattr(self, arg, val) self.integerConversion() self.__genotype = None self.crossoverStrategy = MC_CGPSpecificParameters['crossoverStrategy'] if not self.checkAndSetParameters(): raise ValueError("Found error in parameters.") def integerConversion(self): """Convert any values that are needed as integers, but may have been passed in as floating point values.""" integerList = ['rows', 'cols', 'maxColForward', 'maxColBack', 'inputSize'] for name in integerList: setattr(self, name, int(getattr(self, name))) def checkAndSetParameters(self): """Check all variables passed into this class and modify those that need to be changed. Arguments: None Returns: True if the class variables were able to be modified enough so that the class is ready.""" retValue = True # First check all of the variables that must exist: if self.inputSize is None or self.outputSize is None \ or self.shape is None or self.pRange is None \ or self.functionList is None \ or self.MC_CGPSpecificParameters is None: print("At least one required parameter was not provided.") retValue = False if self.inputSize is not None: self.totalInputCount = self.inputSize # For later simplicity, there will be separate values for every # shape, pRange, constraintRange, and functionList. For those # that the user only provided a single value, we'll create those lists: # Shape: if isinstance(self.shape, list): if len(self.shape) != outputSize: print("If a list of shapes is provided, its length must be the\ number of outputs.") retValue = False else: # Make a list from the single provided shape: self.shape = [self.shape] * self.outputSize # To make accessing the values easier later: self.rows = [] self.cols = [] self.maxColForward = [] self.maxColBack = [] for shape in self.shape: self.rows.append(shape['rowCount']) self.cols.append(shape['colCount']) self.maxColForward.append(shape['maxColForward']) self.maxColBack.append(shape['maxColBack']) # pRanges: if isinstance(self.pRange[0], list): if len(self.pRange) != outputSize: print("If a list of pRanges is provided, its length must be \ number of outputs.") retValue = False else: # Make a list from the provided pRanges: self.pRange = [self.pRange] * self.outputSize # constraintRange: if self.constraintRange is not None: if isinstance(self.constraintRange[0], list): if len(self.pRange) != outputSize: print("If a list of constraints is provided, its length \ must be number of outputs.") retValue = False else: # Make a list from the provided constraint ranges: self.constraintRange = [self.constraintRange] * self.outputSize else: self.constraintRange = [None] * self.outputSize # Function lists: if isinstance(self.functionList[0], list): if len(self.functionList) != outputSize: print("If the functionlist is provided as a list of lists, the\ top-level list's length must be the outputsize.") retValue = False else: # Just a list of functions, create our list of lists: self.functionList = [self.functionList] * self.outputSize return retValue def getPercentageNodesUsed(self): # Return a list of percentages: percentages = [] for i in self.__genotype: activeGenes = self.getActiveGenes_generic(i, 1) percentages.append((len(activeGenes) / len(i)) * 100.0) return percentages def randomize(self): """Randomize this individual by creating all of our genotypes.""" self.__genotype = [] for i in range(self.outputSize): self.__genotype.append(self.getRandomizedGenotype( self.functionList[i], self.rows[i], self.cols[i], self.maxColForward[i], self.maxColBack[i], self.pRange[i], self.totalInputCount, 1)) def calculateOutputs(self, inputs): outputs = [] for i in range(self.outputSize): outputs.append(self.calculateSingleGenotypeOutput( self.__genotype[i], inputs, self.functionList[i])) return outputs def calculateSingleGenotypeOutput(self, genotype, inputs, functionList): """Calculate the output from a single genotype. Arguments: genotype - The genotype to use. inputs - A list of inputs, expected to be of the appropriate length. functionList - The functionlist associated with this genotype. Returns: A single output value for this genotype""" # Start out with none of the values calculated: geneOutputs = [None] * len(genotype) # Fill in that the inputs have values available: inputNumber = 0 for input in inputs: geneOutputs[inputNumber] = inputs[inputNumber] inputNumber += 1 # Get all of the active genes: temp = self.getActiveGenes_generic(genotype, 1) activeGenes = copy.deepcopy(temp) # Remove the input and output genes from the active gene list: activeGenes = [x for x in activeGenes if x not in range(self.totalInputCount)] activeGenes = [x for x in activeGenes if x not in range(len(genotype) - 1, len(genotype))] # Make sure they are in order: activeGenes = sorted(activeGenes) # To deal with the possibility of recurrent connections, we will move # forward in the active genes list, calculating every output we can # and repeat that process for as long as we are still making progress # (at least 1 gene output value is calculated). If we can't make any # more progress (circular connection), we'll set uncalculatable inputs # to zero and finish producing outputs. progressMade = True while progressMade: progressMade = False genesToRemove = [] for geneNum in activeGenes: # Get the gene's inputs: X = geneOutputs[genotype[geneNum][1]] Y = geneOutputs[genotype[geneNum][2]] # Check if we can calculate our output: if X is not None and Y is not None: # Calculate the value and set it into our outputs: geneOutputs[geneNum] = self.constrain( genotype[geneNum][3] * \ (functionList[genotype[geneNum][0]]( X, Y, genotype[geneNum][3]))) # Mark progress made: progressMade = True # Remove from future calculations: genesToRemove.append(geneNum) activeGenes = [x for x in activeGenes if x not in genesToRemove] # No more progress being made, calculate the rest with 0 used for # uncalculatable inputs. Moving from left to right, some values may # cascade as one gene's output provides another's input: for geneNum in activeGenes: X = geneOutputs[genotype[geneNum][1]] Y = geneOutputs[genotype[geneNum][2]] if X is None: X = 0 if Y is None: Y = 0 geneOutputs[geneNum] = self.constrain( genotype[geneNum][3] * (functionList[genotype[geneNum][0]]( X, Y, genotype[geneNum][3]))) # Now, all gene outputs should be set, we can collect our output, which # should be the last value: output = None geneNum = len(genotype) - 1 output = geneOutputs[genotype[geneNum][0]] if output is None: self.printNumberedGenotype() raise ValueError("Output for gene %d not available." % (genotype[geneNum][0])) return output def __getProbabilisticMutatedChild(self, genMutationRate=0.1, outMutationRate=0.1, application='pergene'): child = copy.deepcopy(self) for i in range(len(child.__genotype)): child.probabilisticMutate(child.__genotype[i], child.functionList[i], child.pRange[i], child.maxColForward[i], child.maxColBack[i], totalInputCount=child.totalInputCount, outputSize=1, rows=child.rows[i], cols=child.cols[i], genMutationRate=genMutationRate, outMutationRate=outMutationRate, application=application) return child def __getActiveGeneMutatedChild(self, numGenesToMutate=1): child = copy.deepcopy(self) for i in range(len(child.__genotype)): activeGenes = child.getActiveGenes_generic(child.__genotype[i], 1) child.activeGeneMutate(child.__genotype[i], child.functionList[i], child.pRange[i], activeGenes, child.maxColForward[i], child.maxColBack[i], numGenesToMutate=numGenesToMutate, totalInputCount=child.totalInputCount, outputSize=1, rows=child.rows[i], cols=child.cols[i]) return child def getOneMutatedChild(self, mutationStrategy): """This function will return a mutated child based upon this individual. Arguments: mutationStrategy - A dictionary with the name of the mutation strategy as well as any parameters necessary for that strategy. Returns: The new child.""" # Mutation rate and number of genes to mutate are given as ranges. # We need to select a value from within the available range. # Apply a certain chance of mutation to all genes: if mutationStrategy['name'].lower() == 'probability': return self.__getProbabilisticMutatedChild( genMutationRate=random.uniform(mutationStrategy['genRate'][0], mutationStrategy['genRate'][1]), outMutationRate=random.uniform(mutationStrategy['outRate'][0], mutationStrategy['outRate'][1]), application=mutationStrategy['application']) # Mutate genes until at least X active genes are mutated. X is # normally 1. elif mutationStrategy['name'].lower() == 'activegene': return self.__getActiveGeneMutatedChild( numGenesToMutate=random.randint( mutationStrategy['numGenes'][0], mutationStrategy['numGenes'][1])) else: ValueError("Unknown mutation strategy.") def performOncePerEpochUpdates(self, listAllIndividuals, epochFitnesses): """Multi-chromosomal individuals do crossover mutations once every epoch.""" return self.__produceCrossoverIndividuals(listAllIndividuals, epochFitnesses) def __becomeRandomCrossover(self, listOfParents): """Given a list of parents to pull from, turn our genome into a random crossover of all parents.""" maxRand = len(listOfParents) - 1 for i in range(len(self.__genotype)): parentNum = random.randint(0, maxRand) self.__genotype[i] = copy.deepcopy(listOfParents[parentNum].__genotype[i]) def __produceNewPopulationFromParents_randomCrossover(self, listAllIndividuals): """Assume that all given individuals are the parents of the new generation and produce some crossover individuals from them.""" childrenToProduce = self.MC_CGPSpecificParameters['numberCrossoverChildren'] maxParent = len(listAllIndividuals) for i in range(childrenToProduce): newInd = copy.deepcopy(self) newInd.__becomeRandomCrossover(listAllIndividuals[:maxParent]) listAllIndividuals.append(newInd) return listAllIndividuals def __produceCrossoverIndividuals(self, listAllIndividuals, epochFitnesses): """Add to the list of individuals as many crossover individuals as we want to create.""" # There are 2 possibilities with crossover indivdiuals: # 1. We have fitness functions for each output and we can pick the # best of each to produce a single best individual. # 2. We have a single fitness function and we should crossover from # random combinations of our best individuals. if self.crossoverStrategy.lower() == "singlebest": return self.__produceNewPopulationFromParents_singleBest(listAllIndividuals, epochFitnesses) else: return self.__produceNewPopulationFromParents_randomCrossover(listAllIndividuals) def __produceNewPopulationFromParents_singleBest(self, listAllIndividuals, epochFitnesses): """Change this individual's genotypes into the best of all available individuals.""" # When creating only a single individual, it is assumed that we ar that # individual. We need to modify ourselves, then set ourselves as the # only item in the all-individuals list that was passed in. bestFitnesses = copy.deepcopy(epochFitnesses[0]) bestFitnessIndices = [0] * len(epochFitnesses[0]) # Determine the best individual genotypes: for indNum in range(len(epochFitnesses)): for valNum in range(len(epochFitnesses[0])): if epochFitnesses[indNum][valNum] >= bestFitnesses[valNum]: bestFitnesses[valNum] = epochFitnesses[indNum][valNum] bestFitnessIndices[valNum] = indNum for valNum in range(len(epochFitnesses[0])): self.__genotype[valNum] = copy.deepcopy( listAllIndividuals[bestFitnessIndices[valNum]].__genotype[valNum]) return [self]
40.899244
104
0.594506
721765d9ced30e0992833eeda36fd246236ebc40
6,031
py
Python
lib/saltlint/__init__.py
myii/salt-lint
efeaaff8343e26376dc06b6090b14808a87f95f2
[ "MIT" ]
null
null
null
lib/saltlint/__init__.py
myii/salt-lint
efeaaff8343e26376dc06b6090b14808a87f95f2
[ "MIT" ]
null
null
null
lib/saltlint/__init__.py
myii/salt-lint
efeaaff8343e26376dc06b6090b14808a87f95f2
[ "MIT" ]
null
null
null
# Copyright (c) 2013-2014 Will Thames <will@thames.id.au> # Modified work Copyright (c) 2019 Roald Nefs from __future__ import print_function from collections import defaultdict import os import re import sys import six import saltlint.utils import codecs default_rulesdir = os.path.join(os.path.dirname(saltlint.utils.__file__), 'rules') class SaltLintRule(object): def __repr__(self): return self.id + ": " + self.shortdesc def verbose(self): return self.id + ": " + self.shortdesc + "\n " + self.description match = None @staticmethod def unjinja(text): return re.sub(r"{{[^}]*}}", "JINJA_VAR", text) def matchlines(self, file, text): matches = [] if not self.match: return matches # arrays are 0-based, line numbers are 1-based # so use prev_line_no as the counter for (prev_line_no, line) in enumerate(text.split("\n")): if line.lstrip().startswith('#'): continue rule_id_list = saltlint.utils.get_rule_skips_from_line(line) if self.id in rule_id_list: continue result = self.match(file, line) if not result: continue message = None if isinstance(result, six.string_types): message = result matches.append(Match(prev_line_no+1, line, file['path'], self, message)) return matches class RulesCollection(object): def __init__(self): self.rules = [] def register(self, obj): self.rules.append(obj) def __iter__(self): return iter(self.rules) def __len__(self): return len(self.rules) def extend(self, more): self.rules.extend(more) def run(self, statefile, tags=set(), skip_list=frozenset()): text = "" matches = list() try: with codecs.open(statefile['path'], mode='rb', encoding='utf-8') as f: text = f.read() except IOError as e: print("WARNING: Coudn't open %s - %s" % (statefile['path'], e.strerror), file=sys.stderr) return matches for rule in self.rules: if not tags or not set(rule.tags).union([rule.id]).isdisjoint(tags): rule_definition = set(rule.tags) rule_definition.add(rule.id) if set(rule_definition).isdisjoint(skip_list): matches.extend(rule.matchlines(statefile, text)) return matches def __repr__(self): return "\n".join([rule.verbose() for rule in sorted(self.rules, key=lambda x: x.id)]) def listtags(self): tags = defaultdict(list) for rule in self.rules: for tag in rule.tags: tags[tag].append("[{0}]".format(rule.id)) results = [] for tag in sorted(tags): results.append("{0} {1}".format(tag, tags[tag])) return "\n".join(results) @classmethod def create_from_directory(cls, rulesdir): result = cls() result.rules = saltlint.utils.load_plugins(os.path.expanduser(rulesdir)) return result class Match(object): def __init__(self, linenumber, line, filename, rule, message=None): self.linenumber = linenumber self.line = line self.filename = filename self.rule = rule self.message = message or rule.shortdesc def __repr__(self): formatstr = u"[{0}] ({1}) matched {2}:{3} {4}" return formatstr.format(self.rule.id, self.message, self.filename, self.linenumber, self.line) class Runner(object): def __init__(self, rules, state, tags, skip_list, exclude_paths, verbosity=0, checked_files=None): self.rules = rules self.states = set() # assume state is directory if os.path.isdir(state): self.states.add((os.path.join(state, 'init.sls'), 'state')) else: self.states.add((state, 'state')) self.tags = tags self.skip_list = skip_list self._update_exclude_paths(exclude_paths) self.verbosity = verbosity if checked_files is None: checked_files = set() self.checked_files = checked_files def _update_exclude_paths(self, exclude_paths): if exclude_paths: # These will be (potentially) relative paths paths = [s.strip() for s in exclude_paths] self.exclude_paths = paths + [os.path.abspath(p) for p in paths] else: self.exclude_paths = [] def is_excluded(self, file_path): # Any will short-circuit as soon as something returns True, but will # be poor performance for the case where the path under question is # not excluded. return any(file_path.startswith(path) for path in self.exclude_paths) def run(self): files = list() for state in self.states: if self.is_excluded(state[0]): continue files.append({'path': state[0], 'type': state[1]}) matches = list() # remove duplicates from files list files = [value for n, value in enumerate(files) if value not in files[:n]] # remove duplicates from files list files = [value for n, value in enumerate(files) if value not in files[:n]] # remove files that have already been checked files = [x for x in files if x['path'] not in self.checked_files] for file in files: if self.verbosity > 0: print("Examining %s of type %s" % (file['path'], file['type'])) matches.extend(self.rules.run(file, tags=set(self.tags), skip_list=self.skip_list)) # update list of checked files self.checked_files.update([x['path'] for x in files]) return matches
31.087629
82
0.580501
5d00e9e1c199a09476261517643b88289892a39a
2,630
py
Python
14-semparsing/ucca/ucca/visualization.py
ariasjose/nn4nlp-code
7327ea3e93161afbc8c008e287b646daa802be4d
[ "Apache-2.0" ]
null
null
null
14-semparsing/ucca/ucca/visualization.py
ariasjose/nn4nlp-code
7327ea3e93161afbc8c008e287b646daa802be4d
[ "Apache-2.0" ]
null
null
null
14-semparsing/ucca/ucca/visualization.py
ariasjose/nn4nlp-code
7327ea3e93161afbc8c008e287b646daa802be4d
[ "Apache-2.0" ]
null
null
null
import operator import warnings from collections import defaultdict import matplotlib.cbook import networkx as nx from ucca import layer0, layer1 from ucca.layer1 import Linkage warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation) warnings.filterwarnings("ignore", category=UserWarning) def draw(passage): G = nx.DiGraph() terminals = sorted(passage.layer(layer0.LAYER_ID).all, key=operator.attrgetter("position")) G.add_nodes_from([(n.ID, {"label": n.text, "node_color": "white"}) for n in terminals]) G.add_nodes_from([(n.ID, {"label": "IMPLICIT" if n.attrib.get("implicit") else "", "node_color": "gray" if isinstance(n, Linkage) else ( "white" if n.attrib.get("implicit") else "black")}) for n in passage.layer(layer1.LAYER_ID).all]) G.add_edges_from([(n.ID, e.child.ID, {"label": e.tag, "style": "dashed" if e.attrib.get("remote") else "solid"}) for layer in passage.layers for n in layer.all for e in n]) pos = topological_layout(passage) nx.draw(G, pos, arrows=False, font_size=10, node_color=[d["node_color"] for _, d in G.nodes(data=True)], labels={n: d["label"] for n, d in G.nodes(data=True) if d["label"]}, style=[d["style"] for _, _, d in G.edges(data=True)]) nx.draw_networkx_edge_labels(G, pos, font_size=8, edge_labels={(u, v): d["label"] for u, v, d in G.edges(data=True)}) def topological_layout(passage): visited = defaultdict(set) pos = {} implicit_offset = 1 + max((n.position for n in passage.layer(layer0.LAYER_ID).all), default=-1) remaining = [n for layer in passage.layers for n in layer.all if not n.parents] while remaining: node = remaining.pop() if node.ID in pos: # done already continue if node.children: children = [c for c in node.children if c.ID not in pos and c not in visited[node.ID]] if children: visited[node.ID].update(children) # to avoid cycles remaining += [node] + children continue xs, ys = zip(*(pos[c.ID] for c in node.children)) pos[node.ID] = (sum(xs) / len(xs), 1 + max(ys)) # done with children elif node.layer.ID == layer0.LAYER_ID: # terminal pos[node.ID] = (int(node.position), 0) else: # implicit pos[node.ID] = (implicit_offset, 0) implicit_offset += 1 return pos
46.140351
117
0.590494
fd68467355379e1343b1759f080e43910d7e7172
11,181
py
Python
m2cgen/interpreters/interpreter.py
jasonkena/m2cgen
f831d4248fd9e3f47d1fc41fecc9fa94e056406d
[ "MIT" ]
1
2021-01-25T09:55:29.000Z
2021-01-25T09:55:29.000Z
m2cgen/interpreters/interpreter.py
jasonkena/m2cgen
f831d4248fd9e3f47d1fc41fecc9fa94e056406d
[ "MIT" ]
null
null
null
m2cgen/interpreters/interpreter.py
jasonkena/m2cgen
f831d4248fd9e3f47d1fc41fecc9fa94e056406d
[ "MIT" ]
null
null
null
from m2cgen import ast from m2cgen.assemblers import fallback_expressions from m2cgen.interpreters.utils import CachedResult, _get_handler_name class BaseInterpreter: """ Base class of AST interpreter. Provides single public method .interpret() which takes instance of AST expression and recursively applies method _do_interpret() to it. """ def __init__(self): self._cached_expr_results = {} def interpret(self, expr): self._reset_reused_expr_cache() return self._do_interpret(expr) # Private methods implementing Visitor pattern def _pre_interpret_hook(self, expr, **kwargs): return None, kwargs def _do_interpret(self, expr, to_reuse=None, **kwargs): # Hook which allows to override kwargs and to return custom result. result, kwargs = self._pre_interpret_hook(expr, **kwargs) # If result is empty, it means that we still need to process expr. if result is not None: return result if expr in self._cached_expr_results: return self._cached_expr_results[expr].var_name handler = self._select_handler(expr) # Note that the reuse flag passed in the arguments has a higher # precedence than one specified in the expression. One use case for # this behavior is to override the original to_reuse flag for # expressions that are wrapped by subroutine expression in case when # subroutines are not supported by specific interpreter implementation. expr_to_reuse = to_reuse if to_reuse is not None else expr.to_reuse if not expr_to_reuse: return handler(expr, **kwargs) result = handler(expr, **kwargs) return self._cache_reused_expr(expr, result) def _cache_reused_expr(self, expr, expr_result): # No caching by default. return expr_result def _reset_reused_expr_cache(self): self._cached_expr_results = {} def _select_handler(self, expr): handler_name = _get_handler_name(type(expr)) if hasattr(self, handler_name): return getattr(self, handler_name) raise NotImplementedError( f"No handler found for '{type(expr).__name__}'") class BaseToCodeInterpreter(BaseInterpreter): def __init__(self, cg, feature_array_name="input"): super().__init__() self._cg = cg self._feature_array_name = feature_array_name class ToCodeInterpreter(BaseToCodeInterpreter): """ This interpreter provides default implementation for the methods interpreting AST expression into code. It can be used for the most programming languages and requires only language-specific instance of the CodeGenerator. !!IMPORTANT!!: Code generators used by this interpreter must know nothing about AST. """ abs_function_name = NotImplemented atan_function_name = NotImplemented exponent_function_name = NotImplemented logarithm_function_name = NotImplemented log1p_function_name = NotImplemented power_function_name = NotImplemented sqrt_function_name = NotImplemented tanh_function_name = NotImplemented def __init__(self, cg, feature_array_name="input"): super().__init__(cg, feature_array_name=feature_array_name) self.with_vectors = False self.with_math_module = False def interpret_id_expr(self, expr, **kwargs): return self._do_interpret(expr.expr, **kwargs) def interpret_comp_expr(self, expr, **kwargs): op = self._cg._comp_op_overwrite(expr.op) return self._cg.infix_expression( left=self._do_interpret(expr.left, **kwargs), op=op, right=self._do_interpret(expr.right, **kwargs)) def interpret_bin_num_expr(self, expr, **kwargs): return self._cg.infix_expression( left=self._do_interpret(expr.left, **kwargs), op=expr.op.value, right=self._do_interpret(expr.right, **kwargs)) def interpret_num_val(self, expr, **kwargs): return self._cg.num_value(value=expr.value) def interpret_feature_ref(self, expr, **kwargs): return self._cg.array_index_access( array_name=self._feature_array_name, index=expr.index) def interpret_vector_val(self, expr, **kwargs): self.with_vectors = True nested = [self._do_interpret(expr, **kwargs) for expr in expr.exprs] return self._cg.vector_init(nested) def interpret_abs_expr(self, expr, **kwargs): if self.abs_function_name is NotImplemented: return self._do_interpret( fallback_expressions.abs(expr.expr), **kwargs) self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.abs_function_name, nested_result) def interpret_atan_expr(self, expr, **kwargs): if self.atan_function_name is NotImplemented: return self._do_interpret( fallback_expressions.atan(expr.expr), **kwargs) self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.atan_function_name, nested_result) def interpret_exp_expr(self, expr, **kwargs): if self.exponent_function_name is NotImplemented: return self._do_interpret( fallback_expressions.exp(expr.expr), **kwargs) self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.exponent_function_name, nested_result) def interpret_log_expr(self, expr, **kwargs): if self.logarithm_function_name is NotImplemented: raise NotImplementedError("Logarithm function is not provided") self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.logarithm_function_name, nested_result) def interpret_log1p_expr(self, expr, **kwargs): if self.log1p_function_name is NotImplemented: return self._do_interpret( fallback_expressions.log1p(expr.expr), **kwargs) self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.log1p_function_name, nested_result) def interpret_sqrt_expr(self, expr, **kwargs): if self.sqrt_function_name is NotImplemented: return self._do_interpret( fallback_expressions.sqrt(expr.expr), **kwargs) self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.sqrt_function_name, nested_result) def interpret_tanh_expr(self, expr, **kwargs): if self.tanh_function_name is NotImplemented: return self._do_interpret( fallback_expressions.tanh(expr.expr), **kwargs) self.with_math_module = True nested_result = self._do_interpret(expr.expr, **kwargs) return self._cg.function_invocation( self.tanh_function_name, nested_result) def interpret_pow_expr(self, expr, **kwargs): if self.power_function_name is NotImplemented: raise NotImplementedError("Power function is not provided") self.with_math_module = True base_result = self._do_interpret(expr.base_expr, **kwargs) exp_result = self._do_interpret(expr.exp_expr, **kwargs) return self._cg.function_invocation( self.power_function_name, base_result, exp_result) class ImperativeToCodeInterpreter(ToCodeInterpreter): """ This interpreter provides default implementation for the methods interpreting AST expression into code. It can be used for the most programming languages and requires only language-specific instance of the CodeGenerator. !!IMPORTANT!!: Code generators used by this interpreter must know nothing about AST. """ def interpret_if_expr(self, expr, if_var_name=None, **kwargs): if if_var_name is not None: var_name = if_var_name else: var_name = self._cg.add_var_declaration(expr.output_size) def handle_nested_expr(nested): if isinstance(nested, ast.IfExpr): self._do_interpret(nested, if_var_name=var_name, **kwargs) else: nested_result = self._do_interpret(nested, **kwargs) self._cg.add_var_assignment(var_name, nested_result, nested.output_size) self._cg.add_if_statement(self._do_interpret(expr.test, **kwargs)) handle_nested_expr(expr.body) self._cg.add_else_statement() handle_nested_expr(expr.orelse) self._cg.add_block_termination() return var_name def _cache_reused_expr(self, expr, expr_result): var_name = self._cg.add_var_declaration(expr.output_size) self._cg.add_var_assignment(var_name, expr_result, expr.output_size) self._cached_expr_results[expr] = CachedResult( var_name=var_name, expr_result=None) return var_name class FunctionalToCodeInterpreter(ToCodeInterpreter): """ This interpreter provides default implementation for the methods interpreting AST expression into code. It can be used for the most functional programming languages and requires only language-specific instance of the CodeGenerator. !!IMPORTANT!!: Code generators used by this interpreter must know nothing about AST. """ def interpret_if_expr(self, expr, if_code_gen=None, **kwargs): if if_code_gen is None: code_gen = self.create_code_generator() nested = False else: code_gen = if_code_gen nested = True code_gen.add_if_statement(self._do_interpret( expr.test, **kwargs)) code_gen.add_code_line(self._do_interpret( expr.body, if_code_gen=code_gen, **kwargs)) code_gen.add_else_statement() code_gen.add_code_line(self._do_interpret( expr.orelse, if_code_gen=code_gen, **kwargs)) code_gen.add_if_termination() if not nested: return self._cache_reused_expr( expr, code_gen.finalize_and_get_generated_code()) # Cached expressions become functions with no arguments, i.e. values # which are CAFs. Therefore, they are computed only once. def _cache_reused_expr(self, expr, expr_result): if expr in self._cached_expr_results: return self._cached_expr_results[expr].var_name else: func_name = self._cg.get_func_name() self._cached_expr_results[expr] = CachedResult( var_name=func_name, expr_result=expr_result) return func_name def create_code_generator(self): raise NotImplementedError
38.688581
79
0.679367
f4c7e9642949261642955dcb0eacbe80614fb44a
12,219
py
Python
eval_sample_generation.py
NingMiao/mfcvae
6c6b83bd05fdc618db3976da5faf54838af7e334
[ "MIT" ]
20
2021-06-10T00:26:26.000Z
2022-03-30T01:28:01.000Z
eval_sample_generation.py
NingMiao/mfcvae
6c6b83bd05fdc618db3976da5faf54838af7e334
[ "MIT" ]
1
2022-03-03T16:40:30.000Z
2022-03-04T14:49:46.000Z
eval_sample_generation.py
NingMiao/mfcvae
6c6b83bd05fdc618db3976da5faf54838af7e334
[ "MIT" ]
8
2021-06-13T08:53:33.000Z
2022-03-14T06:22:00.000Z
import numpy as np import torch import torch.distributions as D import matplotlib.pyplot as plt from torchvision.utils import make_grid from torch.autograd import Variable import os import argparse from datasets import Fast_MNIST, Fast_SVHN, Fast_3DShapes from load_model import load_model_from_save_dict from plotting import plot_sample_generations_from_each_cluster_torch_grid def eval_sample_generation(): """ Run this function to perform post-training sample generation plot of a model. For more information on the plot, see Section 4.4 and Appendix E.6 of the paper. """ parser = argparse.ArgumentParser(description='Evaluation parsing.') parser.add_argument('--model_path', type=str, default="pretrained_models/mnist.pt", metavar='N', help="Path to a model file of type .pt .") parser.add_argument('--results_dir', type=str, default="results/mnist", metavar='N', help="Path to a directory where results will be stored.") parser.add_argument('--device', type=str, default='cpu', metavar='N', help="device to use for all heavy tensor operations, e.g. 'cuda:0', 'cpu', ...") parser.add_argument('--temperature', type=float, default=0.3, metavar='N', help='temperature factor for scaling covariance matrix of sampling distributions.') eval_args, unknown = parser.parse_known_args() # configs model_path = eval_args.model_path results_dir = eval_args.results_dir device_string = eval_args.device temperature = eval_args.temperature # define device and load model mfcvae, args = load_model_from_save_dict(model_path, map_location=device_string) # changes model to evaluation mode (e.g. dropout, batch norm affected) mfcvae.eval() # transfer model to device args.device = device_string device = torch.device(device_string) mfcvae.device = device mfcvae = mfcvae.to(device) if args.dataset == 'fast_mnist': print("Initialize MNIST data and data loaders...") # initialize dataset train_data = Fast_MNIST('./data', train=True, download=True, device=args.device) # before: torchvision.datasets.MNIST test_data = Fast_MNIST("./data", train=False, device=args.device) # before: torchvision.datasets.MNIST elif args.dataset == 'fast_svhn': print("Initialize SVHN data and data loaders...") # initialize dataset test_data = Fast_SVHN("./data", split='test', download=True, device=args.device) elif args.dataset == 'fast_3dshapes': print("Initialize 3DShapes data and data loaders...") test_data = Fast_3DShapes(train=False, device=args.device, train_frac=args.threedshapes_train_frac, factors_variation_dict=args.factors_variation_dict, factors_label_list=args.factors_label_list, seed=args.seed) # initialize data loaders test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.eval_batch_size, shuffle=False, num_workers=0) # must be 0 with GPU, good article: https://discuss.pytorch.org/t/cuda-initialization-error-when-dataloader-with-cuda-tensor/43390 mfcvae.eval() # changes model to evaluation mode (e.g. dropout, batch norm affected) if args.do_progressive_training: epoch = int(sum(args.n_epochs_per_progressive_step)) - 1 else: epoch = args.n_epochs - 1 vis_examples_per_cluster_logged = [{} for j in range(args.J_n_mixtures)] vis_count_examples_per_cluster = [{} for j in range(args.J_n_mixtures)] vis_z_j_per_cluster = [{} for j in range(args.J_n_mixtures)] index_to_y_j_cluster = {} index_to_prob_p_c_j_z_j = {} for j in range(args.J_n_mixtures): for k in range(mfcvae.n_clusters_j_list[j]): vis_examples_per_cluster_logged[j][k] = [] vis_z_j_per_cluster[j][k] = [] vis_count_examples_per_cluster[j][k] = 0 for n in range(len(test_data)): index_to_y_j_cluster[n] = [] row_indices = [] num_nonempty_clusters = [] for batch_idx, (x, y_true) in enumerate(test_loader): x, y_true = x.to(device), y_true.to(device) if args.dataset == 'fast_mnist': x = x.view(x.size(0), -1).float() global_indices = list(range(batch_idx*args.eval_batch_size, (batch_idx+1)*args.eval_batch_size)) x_hat, q_z_j_x_list, z_sample_q_z_j_x_list = mfcvae.forward(x, epoch, 0) prob_p_c_j_z_j_list = mfcvae.compute_q_c_j_x(z_sample_q_z_j_x_list) for h in range(z_sample_q_z_j_x_list[0].shape[0]): # is probably == batch size g = global_indices[h] index_to_prob_p_c_j_z_j[g] = [prob_p_c_j_z_j_list[j][h].detach().cpu() for j in range(args.J_n_mixtures)] y_pred_j_list = [] for j in range(mfcvae.J_n_mixtures): prob_p_c_j_z_j_list[j] = prob_p_c_j_z_j_list[j].data.cpu().numpy() y_pred_j = np.argmax(prob_p_c_j_z_j_list[j], axis=1) y_pred_j_list.append(y_pred_j) for j in range(mfcvae.J_n_mixtures): for k in range(mfcvae.n_clusters_j_list[j]): y_pred = y_pred_j_list[j] indices = (np.where(y_pred == k)[0]) count_indices = indices.shape[0] indices = indices.tolist() for h in indices: index_to_y_j_cluster[global_indices[h]].append(k) vis_count_examples_per_cluster[j][k] += count_indices # print("looped through test data.") # build a useful data structure to handle the clustering probabilities j_to_cluster_to_index_prob = {} # create empty things for j in range(args.J_n_mixtures): j_to_cluster_to_index_prob[j] = {} for c in range(args.n_clusters_j_list[j]): j_to_cluster_to_index_prob[j][c] = [] for (index, prob_list) in index_to_prob_p_c_j_z_j.items(): for j in range(args.J_n_mixtures): cluster_j = torch.argmax(prob_list[j]) cluster_j = cluster_j.item() j_to_cluster_to_index_prob[j][cluster_j].append((index, prob_list[j][cluster_j])) # Sort clusters s.t. cluster with the largest "average confidence" is 0, second largest 1 etc. cluster_average_confidence = {} for j in range(args.J_n_mixtures): cluster_average_confidence[j] = {} for c in range(args.n_clusters_j_list[j]): cluster_average_confidence[j][c] = np.nan_to_num(np.mean([j_to_cluster_to_index_prob[j][c][k][1] for k in range(len(j_to_cluster_to_index_prob[j][c]))])) # sort cluster_index_average_confidence_list = [(cluster_j, score) for (cluster_j, score) in cluster_average_confidence[j].items()] cluster_index_average_confidence_list = sorted(cluster_index_average_confidence_list, key=lambda tuple: tuple[1], reverse=True) # print(cluster_index_average_confidence_list) cluster_j_sorted = [cluster_j for (cluster_j, score) in cluster_index_average_confidence_list] row_indices.append(cluster_j_sorted) # compute the number of clusters with non-empty assignment from the test set num_nonempty_clusters.append(len(np.argwhere(np.array([cluster_index_average_confidence_list[i][1] for i in range(args.n_clusters_j_list[j])])))) fromto_mapping = {cluster_j: i for i, cluster_j in enumerate(cluster_j_sorted)} # remap the dictionary - https://gist.github.com/pszaflarski/b139736415abbf8d344d77524baaece8 j_to_cluster_to_index_prob[j] = {fromto_mapping.get(k, k): v for k, v in j_to_cluster_to_index_prob[j].items() if k in fromto_mapping} # log sample generations per facet and cluster, in the order of y_pred_j_count_list args.n_sample_generations_per_cluster = 10 # print('Checkpoint 1.') fig_list = plot_sample_generation(row_indices, num_nonempty_clusters, mfcvae, args, temperature, results_dir, show_plot=True) def plot_sample_generation(row_indices, num_clusters, mfcvae, args, temperature, results_dir=None, show_plot=False): """ Args: row_indices: The indices which decide the row sorting. num_clusters: The number of clusters to be visualised. mfcvae: The trained MFCVAE model. args: The arguments associated with the training procedure. temperature: The multiplier for the variance of p(z|c) during sampling. results_dir: Path to save the output plots. show_plot: Whether to show the plots by plt.show(). """ if args.dataset == 'fast_mnist': in_channels = 1 width, height = 28, 28 elif args.dataset in ['fast_svhn', 'fast_3dshapes']: in_channels = 3 width, height = 32, 32 vis_sample_generations_logged = {} for i in range(mfcvae.J_n_mixtures): # J clusterings vis_sample_generations_logged[i] = {} for j in range(mfcvae.n_clusters_j_list[i]): vis_sample_generations_logged[i][j] = [] fig_list = [] for i in range(mfcvae.J_n_mixtures): # sort rows by "average confidence": y_pred_j_confidence_descend_index = row_indices[i] for j0 in range(num_clusters[i]): # sort rows by "average confidence": j = y_pred_j_confidence_descend_index[j0] for K in range(args.n_sample_generations_per_cluster): z_sample_list = [] for k in range(args.J_n_mixtures): c_k = int(D.Categorical(probs=mfcvae.pi_p_c_j_list[k]).sample()) if args.cov_type_p_z_c == 'diag': z_sample_list.append( torch.unsqueeze(D.Normal(loc=mfcvae.mu_p_z_j_c_j_list[k][:, c_k], scale=temperature * mfcvae.sigma_square_p_z_j_c_j_list[ k][:, c_k]).sample(), 0)) elif args.cov_type_p_z_c == 'full': z_sample_list.append(torch.unsqueeze( D.MultivariateNormal(loc=mfcvae.mu_p_z_j_c_j_list[k][:, c_k], scale_tril=temperature * mfcvae.l_mat_p_z_j_c_j_list[k][:, :, c_k]).sample(), 0)) cluster_mu = mfcvae.mu_p_z_j_c_j_list[i][:, j] if args.cov_type_p_z_c == 'diag': cluster_sigma_square = mfcvae.sigma_square_p_z_j_c_j_list[i][:, j] p_z_i_c_i = D.Normal(loc=cluster_mu, scale=temperature*cluster_sigma_square) elif args.cov_type_p_z_c == 'full': cluster_l_mat = mfcvae.l_mat_p_z_j_c_j_list[i][:, :, j] p_z_i_c_i = D.MultivariateNormal(loc=cluster_mu, scale_tril=temperature*cluster_l_mat) z_sample_list[i] = torch.unsqueeze(p_z_i_c_i.sample(), 0) x_generated_samples = mfcvae.decode( z_sample_q_z_j_x_list=z_sample_list) # slightly inconcistent naming x_generated_samples = torch.squeeze(x_generated_samples, dim=0) x_generated_samples = torch.clamp(x_generated_samples, min=1e-10, max=1 - (1e-10)) vis_sample_generations_logged[i][j0] = vis_sample_generations_logged[i][j0] + [ (x_generated_samples.view(in_channels, width, height).cpu().detach(), 'input_facet_' + str(i) + '_pred_' + str(j))] # do plotting fig = plot_sample_generations_from_each_cluster_torch_grid( sample_dict=vis_sample_generations_logged[i], n_clusters=num_clusters[i], n_examples_per_cluster=args.n_sample_generations_per_cluster) fig_list.append(fig) if results_dir is not None: plt.savefig(os.path.join(results_dir, 'generations_facet_%d.pdf'%(i)), format='pdf') # , dpi=3000 if show_plot: plt.show() plt.close(fig) print("sample generation done.") return fig_list if __name__ == '__main__': eval_sample_generation()
51.556962
192
0.651854
1fe528402bf459a1d01aec196625e7915bc4c1df
641
py
Python
Day7.py
BWeesy/advent-of-code-2021
7e46de303ac9bcdaafcbc7de30d3bd4e059450c0
[ "Unlicense" ]
null
null
null
Day7.py
BWeesy/advent-of-code-2021
7e46de303ac9bcdaafcbc7de30d3bd4e059450c0
[ "Unlicense" ]
null
null
null
Day7.py
BWeesy/advent-of-code-2021
7e46de303ac9bcdaafcbc7de30d3bd4e059450c0
[ "Unlicense" ]
null
null
null
import fileHandler as fh def getFuelCost(location, rendevous): numberOfSteps = abs(location - rendevous) return numberOfSteps * (numberOfSteps + 1) / 2 def main(): subLocations = fh.getMappedCommaSeparatedFirstLine('input/day7', int) minTotalCost = sum(subLocations) * sum(subLocations) for rendevous in range(min(subLocations), (max(subLocations))): totalFuelCost = sum([getFuelCost(location, rendevous) for location in subLocations]) if minTotalCost < totalFuelCost: print(f"Rendevous @ {rendevous-1} for totalCost {minTotalCost}") break minTotalCost = totalFuelCost if __name__ == "__main__": main()
35.611111
88
0.736349
e751fddc37c6375e74fb8d1fdfb8298dd956e487
1,427
py
Python
config.py
DM2-ND/CoEvoGNN
748d3a54f6e625890c9f9cb65db62f1dc3e20952
[ "MIT" ]
1
2021-04-22T13:43:32.000Z
2021-04-22T13:43:32.000Z
config.py
DM2-ND/CoEvoGNN
748d3a54f6e625890c9f9cb65db62f1dc3e20952
[ "MIT" ]
null
null
null
config.py
DM2-ND/CoEvoGNN
748d3a54f6e625890c9f9cb65db62f1dc3e20952
[ "MIT" ]
null
null
null
""" Global configurations """ import os emb_dir = os.path.join('.', 'emb') def con_dataset(d_name): if d_name == '2k': """ Co-author temporal networks 2k """ nodes_f = os.path.join('data', 'node2author.n2k.csv') temporalgraphs_f = os.path.join('data', 'temporalgraph.n2k.csv') venues_f = os.path.join('data', 'venue2name.n2k.csv') temporalfeatures_venue_f = os.path.join('data', 'temporalfeature-venues.n2k.csv') words_f = os.path.join('data', 'word2name.n2k.csv') temporalfeatures_word_f = os.path.join('data', 'temporalfeature-words.n2k.csv') else: # d_name == '10k' """ Co-author temporal networks 10k """ nodes_f = os.path.join('data', 'node2author.n10k.csv') temporalgraphs_f = os.path.join('data', 'temporalgraph.n10k.csv') venues_f = os.path.join('data', 'venue2name.n10k.csv') temporalfeatures_venue_f = os.path.join('data', 'temporalfeature-venues.n10k.csv') words_f = os.path.join('data', 'word2name.n10k.csv') temporalfeatures_word_f = os.path.join('data', 'temporalfeature-words.n10k.csv') _fs = [nodes_f, temporalgraphs_f, venues_f, temporalfeatures_venue_f, words_f, temporalfeatures_word_f] assert all([os.path.exists(_f) for _f in _fs]) return _fs """ Cache files """ H_0_2k_npf = os.path.join(emb_dir, 'H_0.2k.npy') H_0_10k_npf = os.path.join(emb_dir, 'H_0.10k.npy')
36.589744
107
0.658725
df92bd141852c4c4aab4c0040fe13350a11a5561
49,011
py
Python
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_04_01/aio/operations/_blob_containers_operations.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-03-09T08:59:13.000Z
2022-03-09T08:59:13.000Z
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_04_01/aio/operations/_blob_containers_operations.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_04_01/aio/operations/_blob_containers_operations.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-03-04T06:21:56.000Z
2022-03-04T06:21:56.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._blob_containers_operations import build_clear_legal_hold_request, build_create_or_update_immutability_policy_request, build_create_request, build_delete_immutability_policy_request, build_delete_request, build_extend_immutability_policy_request, build_get_immutability_policy_request, build_get_request, build_lease_request, build_list_request, build_lock_immutability_policy_request, build_set_legal_hold_request, build_update_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class BlobContainersOperations: """BlobContainersOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.storage.v2019_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, resource_group_name: str, account_name: str, skip_token: Optional[str] = None, maxpagesize: Optional[str] = None, filter: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.ListContainerItems"]: """Lists all containers and does not support a prefix like data plane. Also SRP today does not return continuation token. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param skip_token: Optional. Continuation token for the list operation. :type skip_token: str :param maxpagesize: Optional. Specified maximum number of containers that can be included in the list. :type maxpagesize: str :param filter: Optional. When specified, only container names starting with the filter will be listed. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListContainerItems or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.storage.v2019_04_01.models.ListContainerItems] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListContainerItems"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( resource_group_name=resource_group_name, account_name=account_name, subscription_id=self._config.subscription_id, skip_token=skip_token, maxpagesize=maxpagesize, filter=filter, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( resource_group_name=resource_group_name, account_name=account_name, subscription_id=self._config.subscription_id, skip_token=skip_token, maxpagesize=maxpagesize, filter=filter, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("ListContainerItems", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers'} # type: ignore @distributed_trace_async async def create( self, resource_group_name: str, account_name: str, container_name: str, blob_container: "_models.BlobContainer", **kwargs: Any ) -> "_models.BlobContainer": """Creates a new container under the specified account as described by request body. The container resource includes metadata and properties for that container. It does not include a list of the blobs contained by the container. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param blob_container: Properties of the blob container to create. :type blob_container: ~azure.mgmt.storage.v2019_04_01.models.BlobContainer :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobContainer, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.BlobContainer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BlobContainer"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(blob_container, 'BlobContainer') request = build_create_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.create.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('BlobContainer', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('BlobContainer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore @distributed_trace_async async def update( self, resource_group_name: str, account_name: str, container_name: str, blob_container: "_models.BlobContainer", **kwargs: Any ) -> "_models.BlobContainer": """Updates container properties as specified in request body. Properties not mentioned in the request will be unchanged. Update fails if the specified container doesn't already exist. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param blob_container: Properties to update for the blob container. :type blob_container: ~azure.mgmt.storage.v2019_04_01.models.BlobContainer :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobContainer, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.BlobContainer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BlobContainer"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(blob_container, 'BlobContainer') request = build_update_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('BlobContainer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore @distributed_trace_async async def get( self, resource_group_name: str, account_name: str, container_name: str, **kwargs: Any ) -> "_models.BlobContainer": """Gets properties of a specified container. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobContainer, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.BlobContainer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BlobContainer"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('BlobContainer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore @distributed_trace_async async def delete( self, resource_group_name: str, account_name: str, container_name: str, **kwargs: Any ) -> None: """Deletes specified container under its account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, template_url=self.delete.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore @distributed_trace_async async def set_legal_hold( self, resource_group_name: str, account_name: str, container_name: str, legal_hold: "_models.LegalHold", **kwargs: Any ) -> "_models.LegalHold": """Sets legal hold tags. Setting the same tag results in an idempotent operation. SetLegalHold follows an append pattern and does not clear out the existing tags that are not specified in the request. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param legal_hold: The LegalHold property that will be set to a blob container. :type legal_hold: ~azure.mgmt.storage.v2019_04_01.models.LegalHold :keyword callable cls: A custom type or function that will be passed the direct response :return: LegalHold, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.LegalHold :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LegalHold"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(legal_hold, 'LegalHold') request = build_set_legal_hold_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.set_legal_hold.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LegalHold', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized set_legal_hold.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/setLegalHold'} # type: ignore @distributed_trace_async async def clear_legal_hold( self, resource_group_name: str, account_name: str, container_name: str, legal_hold: "_models.LegalHold", **kwargs: Any ) -> "_models.LegalHold": """Clears legal hold tags. Clearing the same or non-existent tag results in an idempotent operation. ClearLegalHold clears out only the specified tags in the request. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param legal_hold: The LegalHold property that will be clear from a blob container. :type legal_hold: ~azure.mgmt.storage.v2019_04_01.models.LegalHold :keyword callable cls: A custom type or function that will be passed the direct response :return: LegalHold, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.LegalHold :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LegalHold"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(legal_hold, 'LegalHold') request = build_clear_legal_hold_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.clear_legal_hold.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LegalHold', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized clear_legal_hold.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/clearLegalHold'} # type: ignore @distributed_trace_async async def create_or_update_immutability_policy( self, resource_group_name: str, account_name: str, container_name: str, if_match: Optional[str] = None, parameters: Optional["_models.ImmutabilityPolicy"] = None, **kwargs: Any ) -> "_models.ImmutabilityPolicy": """Creates or updates an unlocked immutability policy. ETag in If-Match is honored if given but not required for this operation. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :param parameters: The ImmutabilityPolicy Properties that will be created or updated to a blob container. :type parameters: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImmutabilityPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if parameters is not None: _json = self._serialize.body(parameters, 'ImmutabilityPolicy') else: _json = None request = build_create_or_update_immutability_policy_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, if_match=if_match, template_url=self.create_or_update_immutability_policy.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized create_or_update_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/{immutabilityPolicyName}'} # type: ignore @distributed_trace_async async def get_immutability_policy( self, resource_group_name: str, account_name: str, container_name: str, if_match: Optional[str] = None, **kwargs: Any ) -> "_models.ImmutabilityPolicy": """Gets the existing immutability policy along with the corresponding ETag in response headers and body. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImmutabilityPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_immutability_policy_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, if_match=if_match, template_url=self.get_immutability_policy.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/{immutabilityPolicyName}'} # type: ignore @distributed_trace_async async def delete_immutability_policy( self, resource_group_name: str, account_name: str, container_name: str, if_match: str, **kwargs: Any ) -> "_models.ImmutabilityPolicy": """Aborts an unlocked immutability policy. The response of delete has immutabilityPeriodSinceCreationInDays set to 0. ETag in If-Match is required for this operation. Deleting a locked immutability policy is not allowed, only way is to delete the container after deleting all blobs inside the container. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImmutabilityPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_immutability_policy_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, if_match=if_match, template_url=self.delete_immutability_policy.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized delete_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/{immutabilityPolicyName}'} # type: ignore @distributed_trace_async async def lock_immutability_policy( self, resource_group_name: str, account_name: str, container_name: str, if_match: str, **kwargs: Any ) -> "_models.ImmutabilityPolicy": """Sets the ImmutabilityPolicy to Locked state. The only action allowed on a Locked policy is ExtendImmutabilityPolicy action. ETag in If-Match is required for this operation. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImmutabilityPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_lock_immutability_policy_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, if_match=if_match, template_url=self.lock_immutability_policy.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized lock_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/default/lock'} # type: ignore @distributed_trace_async async def extend_immutability_policy( self, resource_group_name: str, account_name: str, container_name: str, if_match: str, parameters: Optional["_models.ImmutabilityPolicy"] = None, **kwargs: Any ) -> "_models.ImmutabilityPolicy": """Extends the immutabilityPeriodSinceCreationInDays of a locked immutabilityPolicy. The only action allowed on a Locked policy will be this action. ETag in If-Match is required for this operation. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :param parameters: The ImmutabilityPolicy Properties that will be extended for a blob container. :type parameters: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImmutabilityPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if parameters is not None: _json = self._serialize.body(parameters, 'ImmutabilityPolicy') else: _json = None request = build_extend_immutability_policy_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, if_match=if_match, json=_json, template_url=self.extend_immutability_policy.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized extend_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/default/extend'} # type: ignore @distributed_trace_async async def lease( self, resource_group_name: str, account_name: str, container_name: str, parameters: Optional["_models.LeaseContainerRequest"] = None, **kwargs: Any ) -> "_models.LeaseContainerResponse": """The Lease Container operation establishes and manages a lock on a container for delete operations. The lock duration can be 15 to 60 seconds, or can be infinite. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param parameters: Lease Container request body. :type parameters: ~azure.mgmt.storage.v2019_04_01.models.LeaseContainerRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: LeaseContainerResponse, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_04_01.models.LeaseContainerResponse :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LeaseContainerResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if parameters is not None: _json = self._serialize.body(parameters, 'LeaseContainerRequest') else: _json = None request = build_lease_request( resource_group_name=resource_group_name, account_name=account_name, container_name=container_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.lease.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LeaseContainerResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized lease.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/lease'} # type: ignore
48.913174
455
0.689743
25778f38b960b1f4970cb926d28b1b9c1ffb02dd
5,306
py
Python
predict.py
wengmingao/yolox-facemask
bad9d1151fd801cc939a49832a30bc07142d45e1
[ "Apache-2.0" ]
null
null
null
predict.py
wengmingao/yolox-facemask
bad9d1151fd801cc939a49832a30bc07142d45e1
[ "Apache-2.0" ]
null
null
null
predict.py
wengmingao/yolox-facemask
bad9d1151fd801cc939a49832a30bc07142d45e1
[ "Apache-2.0" ]
null
null
null
#-----------------------------------------------------------------------# # predict.py将单张图片预测、摄像头检测、FPS测试和目录遍历检测等功能 # 整合到了一个py文件中,通过指定mode进行模式的修改。 #-----------------------------------------------------------------------# import time import cv2 import numpy as np from PIL import Image from yolo import YOLO if __name__ == "__main__": yolo = YOLO() #----------------------------------------------------------------------------------------------------------# # mode用于指定测试的模式: # 'predict'表示单张图片预测,如果想对预测过程进行修改,如保存图片,截取对象等,可以先看下方详细的注释 # 'video'表示视频检测,可调用摄像头或者视频进行检测,详情查看下方注释。 # 'fps'表示测试fps,使用的图片是img里面的street.jpg,详情查看下方注释。 # 'dir_predict'表示遍历文件夹进行检测并保存。默认遍历img文件夹,保存img_out文件夹,详情查看下方注释。 #----------------------------------------------------------------------------------------------------------# mode = "predict" #----------------------------------------------------------------------------------------------------------# # video_path用于指定视频的路径,当video_path=0时表示检测摄像头 # 想要检测视频,则设置如video_path = "xxx.mp4"即可,代表读取出根目录下的xxx.mp4文件。 # video_save_path表示视频保存的路径,当video_save_path=""时表示不保存 # 想要保存视频,则设置如video_save_path = "yyy.mp4"即可,代表保存为根目录下的yyy.mp4文件。 # video_fps用于保存的视频的fps # video_path、video_save_path和video_fps仅在mode='video'时有效 # 保存视频时需要ctrl+c退出或者运行到最后一帧才会完成完整的保存步骤。 #----------------------------------------------------------------------------------------------------------# video_path = 0 video_save_path = "" video_fps = 25.0 #-------------------------------------------------------------------------# # test_interval用于指定测量fps的时候,图片检测的次数 # 理论上test_interval越大,fps越准确。 #-------------------------------------------------------------------------# test_interval = 100 #-------------------------------------------------------------------------# # dir_origin_path指定了用于检测的图片的文件夹路径 # dir_save_path指定了检测完图片的保存路径 # dir_origin_path和dir_save_path仅在mode='dir_predict'时有效 #-------------------------------------------------------------------------# dir_origin_path = "img/" dir_save_path = "img_out/" if mode == "predict": ''' 1、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。 2、如果想要获得预测框的坐标,可以进入yolo.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。 3、如果想要利用预测框截取下目标,可以进入yolo.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值 在原图上利用矩阵的方式进行截取。 4、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入yolo.detect_image函数,在绘图部分对predicted_class进行判断, 比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。 ''' while True: img = input('Input image filename:') try: image = Image.open(img) except: print('Open Error! Try again!') continue else: r_image = yolo.detect_image(image) r_image.show() elif mode == "video": capture = cv2.VideoCapture(video_path) if video_save_path!="": fourcc = cv2.VideoWriter_fourcc(*'XVID') size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))) out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size) fps = 0.0 while(True): t1 = time.time() # 读取某一帧 ref,frame=capture.read() # 格式转变,BGRtoRGB frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) # 转变成Image frame = Image.fromarray(np.uint8(frame)) # 进行检测 frame = np.array(yolo.detect_image(frame)) # RGBtoBGR满足opencv显示格式 frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR) fps = ( fps + (1./(time.time()-t1)) ) / 2 print("fps= %.2f"%(fps)) frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow("video",frame) c= cv2.waitKey(1) & 0xff if video_save_path!="": out.write(frame) if c==27: capture.release() break capture.release() out.release() cv2.destroyAllWindows() elif mode == "fps": img = Image.open('img/street.jpg') tact_time = yolo.get_FPS(img, test_interval) print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1') elif mode == "dir_predict": import os from tqdm import tqdm img_names = os.listdir(dir_origin_path) for img_name in tqdm(img_names): if img_name.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')): image_path = os.path.join(dir_origin_path, img_name) image = Image.open(image_path) r_image = yolo.detect_image(image) if not os.path.exists(dir_save_path): os.makedirs(dir_save_path) r_image.save(os.path.join(dir_save_path, img_name)) else: raise AssertionError("Please specify the correct mode: 'predict', 'video', 'fps' or 'dir_predict'.")
42.111111
125
0.491519
cb6ee87804801e74d602c76140b5efb5e52ae54e
11,689
py
Python
neutron/plugins/ryu/ryu_neutron_plugin.py
ksshanam/neutron-vrrp
f9fb7f9b41adc0de401cc118a4d97026d3abb6e0
[ "Apache-2.0" ]
null
null
null
neutron/plugins/ryu/ryu_neutron_plugin.py
ksshanam/neutron-vrrp
f9fb7f9b41adc0de401cc118a4d97026d3abb6e0
[ "Apache-2.0" ]
null
null
null
neutron/plugins/ryu/ryu_neutron_plugin.py
ksshanam/neutron-vrrp
f9fb7f9b41adc0de401cc118a4d97026d3abb6e0
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 Isaku Yamahata <yamahata at private email ne jp> # <yamahata at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # @author: Isaku Yamahata from oslo.config import cfg from ryu.app import client from ryu.app import rest_nw_id from neutron.agent import securitygroups_rpc as sg_rpc from neutron.api.rpc.handlers import dhcp_rpc from neutron.api.rpc.handlers import l3_rpc from neutron.common import constants as q_const from neutron.common import exceptions as n_exc from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.db import api as db from neutron.db import db_base_plugin_v2 from neutron.db import external_net_db from neutron.db import extraroute_db from neutron.db import l3_gwmode_db from neutron.db import models_v2 from neutron.db import portbindings_base from neutron.db import securitygroups_rpc_base as sg_db_rpc from neutron.extensions import portbindings from neutron.openstack.common import excutils from neutron.openstack.common import log as logging from neutron.plugins.common import constants as svc_constants from neutron.plugins.ryu.common import config # noqa from neutron.plugins.ryu.db import api_v2 as db_api_v2 LOG = logging.getLogger(__name__) class RyuRpcCallbacks(n_rpc.RpcCallback, sg_db_rpc.SecurityGroupServerRpcCallbackMixin): RPC_API_VERSION = '1.1' def __init__(self, ofp_rest_api_addr): super(RyuRpcCallbacks, self).__init__() self.ofp_rest_api_addr = ofp_rest_api_addr def get_ofp_rest_api(self, context, **kwargs): LOG.debug(_("get_ofp_rest_api: %s"), self.ofp_rest_api_addr) return self.ofp_rest_api_addr @classmethod def get_port_from_device(cls, device): port = db_api_v2.get_port_from_device(device) if port: port['device'] = device return port class AgentNotifierApi(n_rpc.RpcProxy, sg_rpc.SecurityGroupAgentRpcApiMixin): BASE_RPC_API_VERSION = '1.0' def __init__(self, topic): super(AgentNotifierApi, self).__init__( topic=topic, default_version=self.BASE_RPC_API_VERSION) self.topic_port_update = topics.get_topic_name(topic, topics.PORT, topics.UPDATE) def port_update(self, context, port): self.fanout_cast(context, self.make_msg('port_update', port=port), topic=self.topic_port_update) class RyuNeutronPluginV2(db_base_plugin_v2.NeutronDbPluginV2, external_net_db.External_net_db_mixin, extraroute_db.ExtraRoute_db_mixin, l3_gwmode_db.L3_NAT_db_mixin, sg_db_rpc.SecurityGroupServerRpcMixin, portbindings_base.PortBindingBaseMixin): _supported_extension_aliases = ["external-net", "router", "ext-gw-mode", "extraroute", "security-group", "binding", "quotas"] @property def supported_extension_aliases(self): if not hasattr(self, '_aliases'): aliases = self._supported_extension_aliases[:] sg_rpc.disable_security_group_extension_by_config(aliases) self._aliases = aliases return self._aliases def __init__(self, configfile=None): super(RyuNeutronPluginV2, self).__init__() self.base_binding_dict = { portbindings.VIF_TYPE: portbindings.VIF_TYPE_OVS, portbindings.VIF_DETAILS: { # TODO(rkukura): Replace with new VIF security details portbindings.CAP_PORT_FILTER: 'security-group' in self.supported_extension_aliases, portbindings.OVS_HYBRID_PLUG: True } } portbindings_base.register_port_dict_function() self.tunnel_key = db_api_v2.TunnelKey( cfg.CONF.OVS.tunnel_key_min, cfg.CONF.OVS.tunnel_key_max) self.ofp_api_host = cfg.CONF.OVS.openflow_rest_api if not self.ofp_api_host: raise n_exc.Invalid(_('Invalid configuration. check ryu.ini')) self.client = client.OFPClient(self.ofp_api_host) self.tun_client = client.TunnelClient(self.ofp_api_host) self.iface_client = client.NeutronIfaceClient(self.ofp_api_host) for nw_id in rest_nw_id.RESERVED_NETWORK_IDS: if nw_id != rest_nw_id.NW_ID_UNKNOWN: self.client.update_network(nw_id) self._setup_rpc() # register known all network list on startup self._create_all_tenant_network() def _setup_rpc(self): self.service_topics = {svc_constants.CORE: topics.PLUGIN, svc_constants.L3_ROUTER_NAT: topics.L3PLUGIN} self.conn = n_rpc.create_connection(new=True) self.notifier = AgentNotifierApi(topics.AGENT) self.endpoints = [RyuRpcCallbacks(self.ofp_api_host), dhcp_rpc.DhcpRpcCallback(), l3_rpc.L3RpcCallback()] for svc_topic in self.service_topics.values(): self.conn.create_consumer(svc_topic, self.endpoints, fanout=False) self.conn.consume_in_threads() def _create_all_tenant_network(self): for net in db_api_v2.network_all_tenant_list(): self.client.update_network(net.id) for tun in self.tunnel_key.all_list(): self.tun_client.update_tunnel_key(tun.network_id, tun.tunnel_key) session = db.get_session() for port in session.query(models_v2.Port): self.iface_client.update_network_id(port.id, port.network_id) def _client_create_network(self, net_id, tunnel_key): self.client.create_network(net_id) self.tun_client.create_tunnel_key(net_id, tunnel_key) def _client_delete_network(self, net_id): RyuNeutronPluginV2._safe_client_delete_network(self.safe_reference, net_id) @staticmethod def _safe_client_delete_network(safe_reference, net_id): # Avoid handing naked plugin references to the client. When # the client is mocked for testing, such references can # prevent the plugin from being deallocated. client.ignore_http_not_found( lambda: safe_reference.client.delete_network(net_id)) client.ignore_http_not_found( lambda: safe_reference.tun_client.delete_tunnel_key(net_id)) def create_network(self, context, network): session = context.session with session.begin(subtransactions=True): #set up default security groups tenant_id = self._get_tenant_id_for_create( context, network['network']) self._ensure_default_security_group(context, tenant_id) net = super(RyuNeutronPluginV2, self).create_network(context, network) self._process_l3_create(context, net, network['network']) tunnel_key = self.tunnel_key.allocate(session, net['id']) try: self._client_create_network(net['id'], tunnel_key) except Exception: with excutils.save_and_reraise_exception(): self._client_delete_network(net['id']) return net def update_network(self, context, id, network): session = context.session with session.begin(subtransactions=True): net = super(RyuNeutronPluginV2, self).update_network(context, id, network) self._process_l3_update(context, net, network['network']) return net def delete_network(self, context, id): self._client_delete_network(id) session = context.session with session.begin(subtransactions=True): self.tunnel_key.delete(session, id) self._process_l3_delete(context, id) super(RyuNeutronPluginV2, self).delete_network(context, id) def create_port(self, context, port): session = context.session port_data = port['port'] with session.begin(subtransactions=True): self._ensure_default_security_group_on_port(context, port) sgids = self._get_security_groups_on_port(context, port) port = super(RyuNeutronPluginV2, self).create_port(context, port) self._process_portbindings_create_and_update(context, port_data, port) self._process_port_create_security_group( context, port, sgids) self.notify_security_groups_member_updated(context, port) self.iface_client.create_network_id(port['id'], port['network_id']) return port def delete_port(self, context, id, l3_port_check=True): # if needed, check to see if this is a port owned by # and l3-router. If so, we should prevent deletion. if l3_port_check: self.prevent_l3_port_deletion(context, id) with context.session.begin(subtransactions=True): router_ids = self.disassociate_floatingips( context, id, do_notify=False) port = self.get_port(context, id) self._delete_port_security_group_bindings(context, id) super(RyuNeutronPluginV2, self).delete_port(context, id) # now that we've left db transaction, we are safe to notify self.notify_routers_updated(context, router_ids) self.notify_security_groups_member_updated(context, port) def update_port(self, context, id, port): deleted = port['port'].get('deleted', False) session = context.session need_port_update_notify = False with session.begin(subtransactions=True): original_port = super(RyuNeutronPluginV2, self).get_port( context, id) updated_port = super(RyuNeutronPluginV2, self).update_port( context, id, port) self._process_portbindings_create_and_update(context, port['port'], updated_port) need_port_update_notify = self.update_security_group_on_port( context, id, port, original_port, updated_port) need_port_update_notify |= self.is_security_group_member_updated( context, original_port, updated_port) need_port_update_notify |= (original_port['admin_state_up'] != updated_port['admin_state_up']) if need_port_update_notify: self.notifier.port_update(context, updated_port) if deleted: db_api_v2.set_port_status(session, id, q_const.PORT_STATUS_DOWN) return updated_port
42.974265
78
0.646847
a64435095a3e11aec5d41248ddb8076e5b876baf
367
py
Python
ruleta_app/migrations/0002_alter_round_fecha.py
Franco1605/ruleta-app
93ac27039b5a502aa03683ec2991aefda65bbf41
[ "MIT" ]
null
null
null
ruleta_app/migrations/0002_alter_round_fecha.py
Franco1605/ruleta-app
93ac27039b5a502aa03683ec2991aefda65bbf41
[ "MIT" ]
null
null
null
ruleta_app/migrations/0002_alter_round_fecha.py
Franco1605/ruleta-app
93ac27039b5a502aa03683ec2991aefda65bbf41
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2021-11-21 04:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ruleta_app', '0001_initial'), ] operations = [ migrations.AlterField( model_name='round', name='fecha', field=models.DateTimeField(), ), ]
19.315789
47
0.580381
e5f7a58c76e9583e4981b9dc644beb9712b5354f
1,252
py
Python
manilaclient/v1/contrib/list_extensions.py
Murray-LIANG/python-manilaclient
e3652b9c1c36c825d07dce741802930ad0ec1a12
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
manilaclient/v1/contrib/list_extensions.py
Murray-LIANG/python-manilaclient
e3652b9c1c36c825d07dce741802930ad0ec1a12
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
manilaclient/v1/contrib/list_extensions.py
Murray-LIANG/python-manilaclient
e3652b9c1c36c825d07dce741802930ad0ec1a12
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys import warnings from manilaclient.v2.contrib import list_extensions warnings.warn( "Module manilaclient.v1.contrib.list_extensions is deprecated " "(taken as a basis for manilaclient.v2.contrib.list_extensions). " "The preferable way to get a client class or object is to use " "the manilaclient.client module.") class MovedModule(object): def __init__(self, new_module): self.new_module = new_module def __getattr__(self, attr): return getattr(self.new_module, attr) sys.modules["manilaclient.v1.contrib.list_extensions"] = MovedModule( list_extensions)
33.837838
78
0.73722
37b246fbbf6f2b8aa286b7c9935d8865cd4d9bcd
1,874
py
Python
pydiscordbio/models/user.py
awersli99/pydiscordbio
adbe6853594f1ee700043f9520dfd9a893fa44f0
[ "MIT" ]
7
2020-08-29T15:56:24.000Z
2021-02-21T22:30:37.000Z
pydiscordbio/models/user.py
awersli99/pydiscordbio
adbe6853594f1ee700043f9520dfd9a893fa44f0
[ "MIT" ]
null
null
null
pydiscordbio/models/user.py
awersli99/pydiscordbio
adbe6853594f1ee700043f9520dfd9a893fa44f0
[ "MIT" ]
null
null
null
from datetime import datetime import dateutil.parser from typing import Optional GENDER = { 0: "Male", 1: "Female" } def from_datetime(x: str) -> Optional[datetime]: """Returns a parsed datetime object.""" try: return dateutil.parser.parse(x) except ValueError: return None class User: """A discord.bio user object""" slug: str user_id: int flags: int verified: bool premium_type: int created_at: datetime description: str location: str gender: Optional[str] birthday: Optional[datetime] email: Optional[str] occupation: Optional[str] banner: Optional[str] premium: bool staff: bool likes: int def __init__(self, obj: dict) -> 'None': assert isinstance( obj, dict), 'Received malformed payload from discord.bio API' self.slug = obj.get("slug") self.user_id = int(obj.get("user_id")) self.flags = int(obj.get("flags")) self.verified = bool(obj.get('verified', 0)) self.premium_type = int(obj.get("premium_type")) self.created_at = from_datetime(obj.get("created_at")) self.description = obj.get("description") self.location = obj.get("location") self.gender = GENDER.get(obj.get("gender"), None) self.birthday = None if obj.get("birthday", None): self.birthday = from_datetime(obj.get("birthday")) if obj.get("email") == "": self.email = None else: self.email = obj.get("email") if obj.get("occupation") == "": self.occupation = None else: self.occupation = obj.get("occupation") self.banner = obj.get("banner", None) self.premium = obj.get('premium', False) self.staff = obj.get('staff', False) self.likes = obj.get('likes', 0)
28.830769
73
0.593917
58ddccc226cee1a0915ab31e3cfff1c5815c70b1
253
py
Python
Python3/0347-Top-K-Frequent-Elements/soln-1.py
wyaadarsh/LeetCode-Solutions
3719f5cb059eefd66b83eb8ae990652f4b7fd124
[ "MIT" ]
5
2020-07-24T17:48:59.000Z
2020-12-21T05:56:00.000Z
Python3/0347-Top-K-Frequent-Elements/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
null
null
null
Python3/0347-Top-K-Frequent-Elements/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
2
2020-07-24T17:49:01.000Z
2020-08-31T19:57:35.000Z
class Solution: def topKFrequent(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ counts = collections.Counter(nums) return heapq.nlargest(k, counts, key=counts.get)
28.111111
56
0.545455
8561aa27d25ae11242c3f136bb5101a785606dc8
54
py
Python
src/Stele/processing/processing_hsg/__init__.py
SherwinGroup/Stele
9bb7da0b406a801975e21c9f7ce05d369ae661e5
[ "MIT" ]
null
null
null
src/Stele/processing/processing_hsg/__init__.py
SherwinGroup/Stele
9bb7da0b406a801975e21c9f7ce05d369ae661e5
[ "MIT" ]
null
null
null
src/Stele/processing/processing_hsg/__init__.py
SherwinGroup/Stele
9bb7da0b406a801975e21c9f7ce05d369ae661e5
[ "MIT" ]
null
null
null
__author__ = 'Sphinx' from . import helper_functions
13.5
30
0.777778
6d24ed469f3ab5d151cc76ac7ba1ce734e7256f4
23,705
py
Python
deepspeed/runtime/pipe/module.py
ConnollyLeon/DeepSpeed
2d84d1c185ef0345eaf43a7240d61b33eda43497
[ "MIT" ]
2
2021-07-01T15:00:50.000Z
2022-03-27T15:35:49.000Z
deepspeed/runtime/pipe/module.py
ConnollyLeon/DeepSpeed
2d84d1c185ef0345eaf43a7240d61b33eda43497
[ "MIT" ]
2
2020-05-28T01:37:24.000Z
2022-02-26T06:51:48.000Z
deepspeed/runtime/pipe/module.py
ConnollyLeon/DeepSpeed
2d84d1c185ef0345eaf43a7240d61b33eda43497
[ "MIT" ]
1
2021-01-23T16:07:54.000Z
2021-01-23T16:07:54.000Z
import os import enum import re as regex from collections import defaultdict from functools import partial import torch import torch.nn as nn import torch.distributed as dist from deepspeed.utils import logger from .. import utils as ds_utils from ..activation_checkpointing import checkpointing from .topology import PipeDataParallelTopology, PipelineParallelGrid class PipelineError(Exception): """Errors related to the use of deepspeed.PipelineModule """ class LayerSpec: """Building block for specifying pipeline-parallel modules. LayerSpec stores the type information and parameters for each stage in a PipelineModule. For example: .. code-block:: python nn.Sequence( torch.nn.Linear(self.in_dim, self.hidden_dim, bias=False), torch.nn.Linear(self.hidden_hidden, self.out_dim) ) becomes .. code-block:: python layer_specs = [ LayerSpec(torch.nn.Linear, self.in_dim, self.hidden_dim, bias=False), LayerSpec(torch.nn.Linear, self.hidden_hidden, self.out_dim)] ] """ def __init__(self, typename, *module_args, **module_kwargs): self.typename = typename self.module_args = module_args self.module_kwargs = module_kwargs if not issubclass(typename, nn.Module): raise RuntimeError('LayerSpec only supports torch.nn.Module types.') if dist.is_initialized(): self.global_rank = dist.get_rank() else: self.global_rank = -1 def __repr__(self): return ds_utils.call_to_str(self.typename.__name__, self.module_args, self.module_kwargs) def build(self, log=False): """Build the stored specification.""" if log: logger.info(f'RANK={self.global_rank} building {repr(self)}') return self.typename(*self.module_args, **self.module_kwargs) class TiedLayerSpec(LayerSpec): def __init__(self, key, typename, *module_args, forward_fn=None, tied_weight_attr='weight', **module_kwargs): super().__init__(typename, *module_args, **module_kwargs) self.key = key self.forward_fn = forward_fn self.tied_weight_attr = tied_weight_attr class PipelineModule(nn.Module): def __init__(self, layers, num_stages=None, topology=None, loss_fn=None, seed_layers=False, seed_fn=None, base_seed=1234, partition_method='parameters', activation_checkpoint_interval=0, activation_checkpoint_func=checkpointing.checkpoint): """Modules to be parallelized with pipeline parallelism. The key constraint that enables pipeline parallelism is the representation of the forward pass as a sequence of layers and the enforcement of a simple interface between them. The forward pass is implicitly defined by the module ``layers``. The key assumption is that the output of each layer can be directly fed as input to the next, like a ``torch.nn.Sequence``. The forward pass is implicitly: .. code-block:: python def forward(self, inputs): x = inputs for layer in self.layers: x = layer(x) return x Args: layers (Iterable): A sequence of layers defining pipeline structure. Can be a ``torch.nn.Sequential`` module. num_stages (int, optional): The degree of pipeline parallelism. If not specified, ``topology`` must be provided. topology (``deepseed.pipe.ProcessTopology``, optional): Defines the axes of parallelism axes for training. Must be provided if ``num_stages`` is ``None``. loss_fn (callable, optional): Loss is computed ``loss = loss_fn(outputs, label)`` base_seed (int, optional): [description]. Defaults to 1234. partition_method (str, optional): [description]. Defaults to 'parameters'. activation_checkpoint_interval (int, optional): The granularity activation checkpointing in terms of number of layers. 0 disables activation checkpointing. activation_checkpoint_func (callable, optional): The function to use for activation checkpointing. Defaults to ``deepspeed.checkpointing.checkpoint``. """ super().__init__() if num_stages is None and topology is None: raise RuntimeError('must provide num_stages or topology') self.micro_offset = 0 self.loss_fn = loss_fn self.seed_layers = seed_layers self.seed_fn = seed_fn self.base_seed = base_seed if dist.get_rank() == 0: try: seed_str = self.seed_fn.__name__ except AttributeError: seed_str = None print( f'SEED_LAYERS={self.seed_layers} BASE_SEED={self.base_seed} SEED_FN={seed_str}' ) # Setup world info self.world_group = dist.new_group(ranks=range(dist.get_world_size())) self.global_rank = dist.get_rank(group=self.world_group) self.world_size = dist.get_world_size(group=self.world_group) if topology: self._topo = topology self.num_stages = self._topo.get_dim('pipe') else: self.num_stages = num_stages if topology is None: if self.world_size % self.num_stages != 0: raise RuntimeError( f'num_stages ({self.num_stages}) must divide distributed world size ({self.world_size})' ) dp = self.world_size // num_stages topology = PipeDataParallelTopology(num_pp=num_stages, num_dp=dp) self._topo = topology # Contruct communicators for pipeline topology self._grid = PipelineParallelGrid(process_group=self.world_group, topology=self._topo) self.stage_id = self._topo.get_coord(self.global_rank).pipe # Initialize partition information self._layer_specs = list(layers) self._num_layers = len(self._layer_specs) self._local_start = 0 self._local_stop = None self._partition_layers(method=partition_method) self.forward_funcs = [] self.tied_modules = nn.ModuleDict() self.tied_weight_attrs = {} # Offset the random seed by the stage ID. #newseed = torch.cuda.initial_seed() + self._grid.get_stage_id() #ds_utils.set_random_seed(newseed) #with torch.random.fork_rng(devices=[torch.cuda.current_device()]): self._build() self.to('cuda') self.tied_comms = self._index_tied_modules() self._synchronize_tied_weights() self.activation_checkpoint_interval = activation_checkpoint_interval self.activation_checkpoint_func = activation_checkpoint_func def _build(self): specs = self._layer_specs for local_idx, layer in enumerate(specs[self._local_start:self._local_stop]): layer_idx = local_idx + self._local_start if self.seed_layers: if self.seed_fn: self.seed_fn(self.base_seed + layer_idx) else: ds_utils.set_random_seed(self.base_seed + layer_idx) # Recursively build PipelineModule objects if isinstance(layer, PipelineModule): raise NotImplementedError('RECURSIVE BUILD NOT YET IMPLEMENTED') # LayerSpec objects contain an nn.Module that should be allocated now. elif isinstance(layer, nn.Module): name = str(layer_idx) self.forward_funcs.append(layer) self.add_module(name, layer) # TiedLayerSpec objects contain an nn.Module that should be allocated now. elif isinstance(layer, TiedLayerSpec): # Build and register the module if we haven't seen it before. if layer.key not in self.tied_modules: self.tied_modules[layer.key] = layer.build() self.tied_weight_attrs[layer.key] = layer.tied_weight_attr if layer.forward_fn is None: # Just use forward() self.forward_funcs.append(self.tied_modules[layer.key]) else: # User specified fn with args (module, input) self.forward_funcs.append( partial(layer.forward_fn, self.tied_modules[layer.key])) # LayerSpec objects contain an nn.Module that should be allocated now. elif isinstance(layer, LayerSpec): module = layer.build() name = str(layer_idx) self.forward_funcs.append(module) self.add_module(name, module) # Last option: layer may be a functional (e.g., lambda). We do nothing in # that case and just use it in forward() else: self.forward_funcs.append(layer) # All pipeline parameters should be considered as model parallel in the context # of our FP16 optimizer for p in self.parameters(): p.model_parallel = True def _count_layer_params(self): """Count the trainable parameters in individual layers. This routine will only build one layer at a time. Returns: A list of the number of parameters in each layer. """ param_counts = [0] * len(self._layer_specs) for idx, layer in enumerate(self._layer_specs): if isinstance(layer, LayerSpec): l = layer.build() params = filter(lambda p: p.requires_grad, l.parameters()) param_counts[idx] = sum(p.numel() for p in params) elif isinstance(layer, nn.Module): params = filter(lambda p: p.requires_grad, layer.parameters()) param_counts[idx] = sum(p.numel() for p in params) return param_counts def _find_layer_type(self, layername): idxs = [] typeregex = regex.compile(layername, regex.IGNORECASE) for idx, layer in enumerate(self._layer_specs): name = None if isinstance(layer, LayerSpec): name = layer.typename.__name__ elif isinstance(layer, nn.Module): name = layer.__class__.__name__ else: try: name = layer.__name__ except AttributeError: continue if typeregex.search(name): idxs.append(idx) if len(idxs) == 0: raise RuntimeError( f"Partitioning '{layername}' found no valid layers to partition.") return idxs def forward(self, forward_input): # We need to offset the seed by the microbatch ID. Save it in a local var to # ensure it is preserved in the closure. Otherwise checkpointed forward funcs # will see a different offset. self.micro_offset += 1 def exec_range_func(start, end): ''' Helper function to be used with checkpoint() Adapted from torch.utils.checkpoint:checkpoint_sequential() ''' local_micro_offset = self.micro_offset + 1 def exec_func(*inputs): # Single tensor inputs need to be unwrapped if len(inputs) == 1: inputs = inputs[0] for idx, layer in enumerate(self.forward_funcs[start:end]): self.curr_layer = idx + self._local_start if self.seed_layers: new_seed = (self.base_seed * local_micro_offset) + self.curr_layer if self.seed_fn: self.seed_fn(new_seed) else: ds_utils.set_random_seed(new_seed) inputs = layer(inputs) return inputs return exec_func if self.activation_checkpoint_interval == 0: func = exec_range_func(0, len(self.forward_funcs)) x = func(forward_input) else: num_layers = len(self.forward_funcs) x = forward_input for start_idx in range(0, num_layers, self.activation_checkpoint_interval): end_idx = min(start_idx + self.activation_checkpoint_interval, num_layers) funcs = self.forward_funcs[start_idx:end_idx] # Since we either pass tensors or tuples of tensors without unpacking, we # need to be careful not to double-wrap tensors with tuple. if not isinstance(x, tuple): x = (x, ) if self._is_checkpointable(funcs): x = self.activation_checkpoint_func( exec_range_func(start_idx, end_idx), *x) else: x = exec_range_func(start_idx, end_idx)(*x) return x def _partition_layers(self, method='uniform'): num_stages = self._topo.get_dim('pipe') stage_id = self._topo.get_coord(self.global_rank).pipe if self.global_rank == 0: logger.info(f'Partitioning pipeline stages with method {method}') method = method.lower() # Each stage gets a simple uniform number of layers. if method == 'uniform': num_layers = len(self._layer_specs) self.parts = ds_utils.partition_uniform(num_items=num_layers, num_parts=num_stages) elif method == 'parameters': param_counts = self._count_layer_params() self.parts = ds_utils.partition_balanced(weights=param_counts, num_parts=num_stages) elif method.startswith('type:'): layertype = method.split(':')[1] binary_weights = [0] * len(self._layer_specs) for idx in self._find_layer_type(layertype): binary_weights[idx] = 1 else: self.parts = ds_utils.partition_balanced(weights=binary_weights, num_parts=num_stages) elif method == 'profile': raise NotImplementedError(f'Partitioning method {method} not implemented.') else: raise NotImplementedError(f'Partitioning method {method} not implemented.') # Print some information on the partitioning. if self.global_rank == 0: for stage in range(num_stages): start = self.parts[stage] stop = self.parts[stage + 1] print(f'stage={stage} layers={stop - start}') for idx, layer in enumerate(self._layer_specs[start:stop]): name = str(layer) if isinstance(layer, LayerSpec): name = layer.typename.__name__ if isinstance(layer, nn.Module): name = layer.__class__.__name__ else: try: name = layer.__name__ except AttributeError: pass print(f' {idx+start:2d}: {name}') if self.loss_fn: try: print(f' loss: {self.loss_fn.__name__}') except AttributeError: print(f' loss: {self.loss_fn.__class__.__name__}') self._set_bounds(start=self.parts[stage_id], stop=self.parts[stage_id + 1]) def allreduce_tied_weight_gradients(self): '''All reduce the gradients of the tied weights between tied stages''' for key, comm in self.tied_comms.items(): weight = getattr(self.tied_modules[key], comm['weight_attr']) dist.all_reduce(weight.grad, group=comm['group']) def _synchronize_tied_weights(self): for key, comm in self.tied_comms.items(): dist.broadcast( getattr(comm['module'], comm['weight_attr']), src=min(comm['ranks']), group=comm['group'], ) def _index_tied_modules(self): ''' Build communication structures for tied modules. ''' tied_comms = {} if self._topo.get_dim('pipe') == 1: return tied_comms specs = self._layer_specs tie_keys = set(s.key for s in specs if isinstance(s, TiedLayerSpec)) for key in tie_keys: # Find the layers that the tied module appears in tied_layers = [] for idx, layer in enumerate(specs): if isinstance(layer, TiedLayerSpec) and layer.key == key: tied_layers.append(idx) # Find all stages with this tied module # TODO: Would be nice to remove the nested data/model parallelism loops and # TODO: instead generalize in some way, since we really just care about the # TODO: stage that owns the tied layer. Then loop over each (dp, mp, ...) # TODO: fiber to generate process groups. tied_stages = set(self.stage_owner(idx) for idx in tied_layers) for dp in range(self._grid.data_parallel_size): for mp in range(self._grid.model_parallel_size): tied_ranks = [] for s in sorted(tied_stages): if self._grid.model_parallel_size > 1: tied_ranks.append( self._grid.stage_to_global(stage_id=s, data=dp, model=mp)) else: tied_ranks.append( self._grid.stage_to_global(stage_id=s, data=dp)) group = dist.new_group(ranks=tied_ranks) # Record this tied module if we own a local copy of it. if self.global_rank in tied_ranks: assert key in self.tied_modules if key in self.tied_modules: tied_comms[key] = { 'ranks': tied_ranks, 'group': group, 'weight_attr': self.tied_weight_attrs[key], 'module': self.tied_modules[key], } # Only count the tied module once in the eyes of the FP16 optimizer if self.global_rank != tied_ranks[0]: for p in self.tied_modules[key].parameters(): p.model_parallel = False ''' if len(tied_comms) > 0: print(f'RANK={self.global_rank} tied_comms={tied_comms}') ''' return tied_comms def partitions(self): return self.parts def stage_owner(self, layer_idx): assert 0 <= layer_idx < self._num_layers for stage in range(self._topo.get_dim('pipe')): if self.parts[stage] <= layer_idx < self.parts[stage + 1]: return stage raise RuntimeError(f'Layer {layer_idx} not owned? parts={self.parts}') def _set_bounds(self, start=None, stop=None): """Manually define the range of layers that will be built on this process. These boundaries are treated as list slices and so start is inclusive and stop is exclusive. The default of None for both results in all layers being built locally. """ self._local_start = start self._local_stop = stop def set_checkpoint_interval(self, interval): assert interval >= 0 self.checkpoint_interval = interval def topology(self): """ ProcessTopology object to query process mappings. """ return self._topo def mpu(self): return self._grid def num_pipeline_stages(self): return self._topo.get_dim('pipe') def ckpt_prefix(self, checkpoints_path, tag): """Build a prefix for all checkpoint files written by this module. """ # All checkpoint files start with this rank_name = 'module' # Data parallelism is omitted from the naming convention because we are agnostic # to this in the checkpoint. omit_dims = frozenset(['data']) axes = [a for a in self._grid._topo.get_axis_names() if a not in omit_dims] for dim in axes: rank = getattr(self._grid._topo.get_coord(rank=self.global_rank), dim) rank_name += f'-{dim}_{rank:02d}' ckpt_name = os.path.join(checkpoints_path, str(tag), rank_name) return ckpt_name def ckpt_layer_path(self, ckpt_dir, local_layer_idx): """Customize a prefix for a specific pipeline module layer. """ idx = local_layer_idx + self._local_start layer_ckpt_path = os.path.join(ckpt_dir, f'layer_{idx:02d}') rank_repr = self._grid._topo.get_rank_repr(rank=self.global_rank) if rank_repr is not '': layer_ckpt_path += f'-{rank_repr}' layer_ckpt_path += '-model_states.pt' return layer_ckpt_path def save_state_dict(self, save_dir): if self._grid.data_parallel_id != 0: return os.makedirs(save_dir, exist_ok=True) layer_offset = self._local_start for idx, layer in enumerate(self.forward_funcs): model_ckpt_path = self.ckpt_layer_path(save_dir, idx) if not hasattr(layer, 'state_dict'): continue torch.save(layer.state_dict(), model_ckpt_path) def load_state_dir(self, load_dir, strict=True): rank = dist.get_rank() layer_offset = self._local_start for idx, layer in enumerate(self.forward_funcs): # Functions, etc. will not have state_dicts if not hasattr(layer, 'load_state_dict'): continue model_ckpt_path = self.ckpt_layer_path(load_dir, idx) layer.load_state_dict(torch.load(model_ckpt_path, map_location=lambda storage, loc: storage), strict=strict) if self._grid.data_parallel_id == 0: logger.info( f'RANK={self.global_rank} Loaded layer={idx+layer_offset} file={model_ckpt_path}' ) self._synchronize_tied_weights() def _is_checkpointable(self, funcs): if self.__class__.__name__ == 'GPT2ModelPipe': return all('ParallelTransformerLayerPipe' in f.__class__.__name__ for f in funcs) params = [f.parameters() for f in funcs if isinstance(f, torch.nn.Module)] return any(len(list(p)) > 0 for p in params)
41.154514
167
0.571989
20c2930c5056f8a60868e0e954c5a69ae6bdfc80
3,583
py
Python
python/seldon/cli/zk_utils.py
gigliovale/seldon-server
64f04bc8c47bdc53d4f1e58f454b9aa82d957b9a
[ "Apache-2.0" ]
null
null
null
python/seldon/cli/zk_utils.py
gigliovale/seldon-server
64f04bc8c47bdc53d4f1e58f454b9aa82d957b9a
[ "Apache-2.0" ]
null
null
null
python/seldon/cli/zk_utils.py
gigliovale/seldon-server
64f04bc8c47bdc53d4f1e58f454b9aa82d957b9a
[ "Apache-2.0" ]
1
2018-08-07T14:40:53.000Z
2018-08-07T14:40:53.000Z
import json from os import walk import os import sys import errno def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def is_json_data(data): if (data != None) and (len(data)>0): return data[0] == '{' or data[0] == '[' else: return False def push_all_nodes(zk_client,zkroot): for (dirpath, dirnames, filenames) in walk(zkroot): for filename in filenames: file_path = dirpath + "/" + filename f = open(file_path) data = f.read() f.close() node_path = file_path.replace(zkroot,"").replace("/_data_","") node_set(zk_client,node_path,data) def get_all_nodes_list(zk_client, start_node, all_nodes_list): #print "processing: {}".format(start_node) try: children = zk_client.get_children(start_node) for child in children: child = str(child) node_path = start_node+"/"+child if start_node != '/' else "/"+child all_nodes_list.add(node_path) get_all_nodes_list(zk_client, node_path, all_nodes_list) except kazoo.exceptions.NoNodeError: pass def write_data_to_file(data_fpath, data): json = dict_to_json(data, True) if isinstance(data,dict) else str(data) mkdir_p(os.path.dirname(data_fpath)) f = open(data_fpath,'w') f.write(json) f.write('\n') f.close() print "Writing data to file[{data_fpath}]".format(**locals()) def dict_to_json(d, expand=False): return json.dumps(d, sort_keys=True, indent=4, separators=(',', ': ')) if expand else json.dumps(d, sort_keys=True, separators=(',',':')) def json_to_dict(json_data): return json.loads(json_data) def pull_all_nodes(zk_client,zkroot): all_nodes_list = set() nodes = ["/config","/all_clients"] for node in nodes: start_node = node get_all_nodes_list(zk_client, start_node, all_nodes_list) all_nodes_list = list(all_nodes_list) for node_path in all_nodes_list: print "trying to sync ",node_path node_value = node_get(zk_client,node_path) if not node_value is None: node_value = node_value.strip() if is_json_data(node_value): data = json_to_dict(node_value) if node_value != None and len(node_value)>0 else "" else: data = str(node_value) data_fpath = zkroot + node_path + "/_data_" write_data_to_file(data_fpath, data) def json_compress(json_data): d = json.loads(json_data) return json.dumps(d, sort_keys=True, separators=(',',':')) def node_set(zk_client, node_path, node_value): if is_json_data(node_value): node_value = json_compress(node_value) node_value = node_value.strip() if node_value != None else node_value if zk_client.exists(node_path): retVal = zk_client.set(node_path,node_value) else: retVal = zk_client.create(node_path,node_value,makepath=True) print "updated zk node[{node_path}]".format(node_path=node_path) def node_get(zk_client, node_path): theValue = None if zk_client.exists(node_path): theValue = zk_client.get(node_path) theValue = theValue[0] return theValue.strip() if theValue != None else theValue def node_delete(zk_client, node_path): if zk_client.exists(node_path): retVal = zk_client.delete(node_path) print "deleted zk node[{node_path}]".format(node_path=node_path)
34.451923
141
0.650293
7e6f2612dfebd53dd0a64c00606594f22a8b14ad
1,900
py
Python
tacker/tests/unit/test_hacking.py
K-OpenNet/OPNFV-Alarm
453d5dc0e01999fd23cf6b62671468f11c0dd2e2
[ "Apache-2.0" ]
3
2016-03-01T12:26:07.000Z
2016-08-03T06:24:59.000Z
tacker/tests/unit/test_hacking.py
K-OpenNet/OPNFV-Alarm
453d5dc0e01999fd23cf6b62671468f11c0dd2e2
[ "Apache-2.0" ]
24
2015-10-21T19:09:02.000Z
2021-08-02T11:27:26.000Z
tacker/tests/unit/test_hacking.py
K-OpenNet/OPNFV-Alarm
453d5dc0e01999fd23cf6b62671468f11c0dd2e2
[ "Apache-2.0" ]
12
2016-02-16T15:01:46.000Z
2017-03-13T10:01:16.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tacker.hacking import checks from tacker.tests import base class HackingTestCase(base.BaseTestCase): def test_log_translations(self): logs = ['audit', 'error', 'info', 'warn', 'warning', 'critical', 'exception'] levels = ['_LI', '_LW', '_LE', '_LC'] debug = "LOG.debug('OK')" self.assertEqual( 0, len(list(checks.validate_log_translations(debug, debug, 'f')))) for log in logs: bad = 'LOG.%s("Bad")' % log self.assertEqual( 1, len(list(checks.validate_log_translations(bad, bad, 'f')))) ok = "LOG.%s(_('OK'))" % log self.assertEqual( 0, len(list(checks.validate_log_translations(ok, ok, 'f')))) ok = "LOG.%s('OK') # noqa" % log self.assertEqual( 0, len(list(checks.validate_log_translations(ok, ok, 'f')))) ok = "LOG.%s(variable)" % log self.assertEqual( 0, len(list(checks.validate_log_translations(ok, ok, 'f')))) for level in levels: ok = "LOG.%s(%s('OK'))" % (log, level) self.assertEqual( 0, len(list(checks.validate_log_translations(ok, ok, 'f'))))
43.181818
78
0.566842
1173141c6f08f3b6eab66438331ee4f49f329d03
3,529
py
Python
lwganrt/holo/data_struct.py
darkAlert/impersonator-rt
8a2b879cf60f2094944a0104592d460fee3bda6a
[ "MIT" ]
6
2020-04-17T08:47:58.000Z
2021-07-02T10:58:52.000Z
lwganrt/holo/data_struct.py
darkAlert/impersonator-rt
8a2b879cf60f2094944a0104592d460fee3bda6a
[ "MIT" ]
null
null
null
lwganrt/holo/data_struct.py
darkAlert/impersonator-rt
8a2b879cf60f2094944a0104592d460fee3bda6a
[ "MIT" ]
1
2020-05-24T23:46:54.000Z
2020-05-24T23:46:54.000Z
import os class DSNode(): def __init__(self, nodes, idx_start, idx_stop, leaf=False): # self.nodes = nodes self._idx_start = idx_start self._idx_stop = idx_stop self._leaf = leaf @property def idx_start(self): return self._idx_start @property def idx_stop(self): return self._idx_stop @property def is_leaf(self): return self._leaf class DSLeaf(): def __init__(self, root, name, sub_dir): self._root = root self._name = name self._dir = sub_dir @property def name(self): return self._name @property def dir(self): return self._dir @property def filename(self): return self.name + self._root.ext @property def path(self): return os.path.join(self.dir,self.filename) @property def abs_dir(self): return os.path.join(self._root.root_dir,self.dir) @property def abs_path(self): return os.path.join(self.abs_dir,self.filename) class DataStruct(): def __init__(self): self._root_dir = None self._ext = None self._level_names = None self._levels = None self._tree = None self._items = None def parse(self, root, levels, ext='.mp4'): assert os.path.exists(root) self._root_dir = root self._ext = ext if ext[0] == '.' else '.' + ext if levels[0] == '/': levels = levels[1:] if levels[-1] == '/': levels = levels[:-1] self._level_names = levels.split('/') self._levels = {l:[] for l in self._level_names} self._items = [] self._tree = self.__parse__() return self @property def root_dir(self): return self._root_dir @property def ext(self): return self._ext def __len__(self): return len(self._items) def __parse__(self, path='', level=0): abs_path = os.path.join(self.root_dir, path) # Create leafs: if level == len(self._level_names): names = [] for file in os.listdir(abs_path): if file.endswith(self.ext): names.append(file.split('.')[0]) names.sort() idx = len(self._items) for name in names: self._items.append(DSLeaf(root=self, name=name, sub_dir=path)) return DSNode(None, idx_start=idx, idx_stop=len(self._items), leaf=True) # Or go dipper in subdirs: subdirs = [p.name for p in os.scandir(abs_path) if p.is_dir()] subdirs.sort() nodes = {} idx = len(self._items) for dir_name in subdirs: sub_path = os.path.join(path,dir_name) node = self.__parse__(sub_path, level=level+1) nodes[dir_name] = node self._levels[self._level_names[level]].append((nodes[dir_name],sub_path)) return DSNode(nodes, idx_start=idx, idx_stop=len(self._items)) def items(self, start=0, stop=None, step=1): if isinstance(start, tuple): assert len(start)==2 start, stop = start[0], start[1] elif isinstance(start, DSNode): start, stop = start.idx_start, start.idx_stop if stop is None: stop = len(self._items) for idx in range(start, stop, step): yield self._items[idx] def levels(self,name=None): if name is None: name = self._level_names[0] level = self._levels[name] for node,path in level: yield (node.idx_start, node.idx_stop),path def nodes(self, name): level = self._levels[name] for node,path in level: yield node, path if __name__ == "__main__": root_dir = '/home/darkalert/KazendiJob/Data/HoloVideo/Data/mp4' data = DataStruct().parse(root_dir, levels='subject/light/garment/scene', ext='mp4') # for item in data.items(): # print (item.abs_path) for idx_range,path in data.levels('scene'): print ('====================:',path) for item in data.items(idx_range): print (item.abs_path)
22.335443
85
0.677529
9e273fcd8092bba96961c330fb011ea4507d2212
23,923
py
Python
SuperSonic/utils/engine/config_search.py
HuantWang/SUPERSONIC
bea7090e8bc4a54ed52495dd910ef946c88bec67
[ "CC-BY-4.0" ]
78
2022-02-02T00:23:02.000Z
2022-03-15T11:44:02.000Z
SuperSonic/utils/engine/config_search.py
HuantWang/SUPERSONIC
bea7090e8bc4a54ed52495dd910ef946c88bec67
[ "CC-BY-4.0" ]
null
null
null
SuperSonic/utils/engine/config_search.py
HuantWang/SUPERSONIC
bea7090e8bc4a54ed52495dd910ef946c88bec67
[ "CC-BY-4.0" ]
3
2022-01-30T05:10:14.000Z
2022-03-04T21:18:44.000Z
from ray.tune.schedulers import ASHAScheduler, MedianStoppingRule, PopulationBasedTraining from ray.tune import CLIReporter import ray from ray.rllib.models.catalog import ModelCatalog from ray import tune import subprocess import third_party.contrib.alpha_zero.models.custom_torch_models from ray.rllib import _register_all _register_all() class ConfigSearch: """:class: SuperSonic currently supports 23 RL algorithms from RLLib, covering a wide range of established RL algorithms. """ # cleanpid("50055") # if ray.is_initialized(): # ray.shutdown() def __init__(self): self.num_workers = 0 self.training_iteration = 1 self.ray_num_cpus = 10 self.num_samples = 1 self.sched = ASHAScheduler('time_total_s', metric="episode_reward_mean", mode="max", max_t=10) self.reporter = CLIReporter() import os os.environ['http_proxy'] = '' os.environ['https_proxy'] = '' def Algorithms(self, policy_algorithm, task_config, environment_path, iterations): """ Algorithms, using to call different RL algorithms :param policy_algorithm: :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ reward_list = [] config_list = [] best_config ='' reward = 0 for i in range(iterations): try: if policy_algorithm == "MCTS": best_config, reward = ConfigSearch().MCTS(task_config, environment_path) if policy_algorithm == "PPO": best_config, reward = ConfigSearch().PPO(task_config, environment_path) if policy_algorithm == "DQN": best_config, reward = ConfigSearch().DQN(task_config, environment_path) if policy_algorithm == "QLearning": best_config, reward = ConfigSearch().QLearning(task_config, environment_path) if policy_algorithm == "APPO": best_config, reward = ConfigSearch().APPO(task_config, environment_path) if policy_algorithm == "A2C": best_config, reward = ConfigSearch().A2C(task_config, environment_path) if policy_algorithm == "A3C": best_config, reward = ConfigSearch().A3C(task_config, environment_path) if policy_algorithm == "ARS": best_config, reward = ConfigSearch().ARS(task_config, environment_path) if policy_algorithm == "ES": best_config, reward = ConfigSearch().ES(task_config, environment_path) if policy_algorithm == "MARWIL": best_config, reward = ConfigSearch().MARWIL(task_config, environment_path) if policy_algorithm == "PG": best_config, reward = ConfigSearch().PG(task_config, environment_path) if policy_algorithm == "SimpleQ": best_config, reward = ConfigSearch().SimpleQ(task_config, environment_path) except: pass config_list.append(best_config) reward_list.append(reward) index = reward_list.index(max(reward_list)) best_config = config_list[index] return best_config def PPO(self, task_config, environment_path): self.lamda = 0.95 self.kl_coeff = 0.2 self.vf_clip_param = 10.0 self.entropy_coeff = 0.01 self.model = {"fcnet_hiddens": [128, 128]} self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) # start search config analysis = tune.run("PPO", scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, reuse_actors=True, checkpoint_at_end=True, config={"env": environment_path, "env_config": task_config, "num_workers": 0, "lr": tune.uniform(0.001, 1.0), "kl_coeff" : tune.uniform(0.2,0.5), } ) ray.shutdown(exiting_interpreter=False) # get the best config best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def MCTS(self, task_config, environment_path): """ MCTS, An interface to start RL agent with MCTS algorithm. MCTS is an RL agent originally designed for two-player games. This version adapts it to handle single player games. The code can be sscaled to any number of workers. It also implements the ranked rewards (R2) strategy to enable self-play even in the one-player setting. The code is mainly purposed to be used for combinatorial optimization. :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.mcts_config = { "puct_coefficient": 1.5, "num_simulations": 5, "temperature": 1.0, "dirichlet_epsilon": 0.20, "dirichlet_noise": 0.03, "argmax_tree_policy": False, "add_dirichlet_noise": True, } self.ranked_rewards = { "enable": True, } self.model = { "custom_model": "dense_model", } ModelCatalog.register_custom_model( "dense_model", third_party.contrib.alpha_zero.models.custom_torch_models.DenseModel, ) print(f"init {task_config}") self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": try: self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) except: print("subprocess error") analysis=tune.run( "contrib/MCTS", stop=task_config.get("stop"), max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, config={ "env": environment_path, "env_config": task_config, "num_workers": self.num_workers, "lr": tune.uniform(0.001, 1.0), "mcts_config": self.mcts_config, "ranked_rewards": self.ranked_rewards, "model": self.model, }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def APPO(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "APPO", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def DQN(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "DQN", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def QLearning(self, task_config, environment_path): """ Q-networks, An interface to start RL agent with Q-networks algorithm. Use two Q-networks (instead of one) for action-value estimation. Each Q-network will have its own target network. :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "SAC", stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "num_workers": self.num_workers, "timesteps_per_iteration": 1, "learning_starts": tune.uniform(0.1, 1.0), "normalize_actions": False, # "model": self.model, }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def A2C(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "A2C", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def A3C(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "A3C", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def ARS(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "ARS", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def ES(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "ES", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def MARWIL(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "MARWIL", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def PG(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "PG", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score def SimpleQ(self, task_config, environment_path): """ PPO, An interface to start RL agent with PPO algorithm. PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. Paper (https://arxiv.org/abs/1707.06347) :param task_config: The task_config, parameters passed to RL agent. :param environment_path: The environment_path, tasks' environment path that RL agent called. """ self.local_dir = task_config.get("local_dir") if task_config.get("experiment") == "stoke": self.child = subprocess.Popen( f"cd {task_config.get('stoke_path')} && python run_synch.py {task_config.get('stoke_path')} {task_config.get('obs_file')}", shell=True, ) analysis=tune.run( "SimpleQ", # 内置算法PPO scheduler=self.sched, progress_reporter=self.reporter, num_samples=self.num_samples, stop={"training_iteration": self.training_iteration}, max_failures=0, reuse_actors=True, checkpoint_at_end=True, local_dir=self.local_dir, config={ "env": environment_path, "env_config": task_config, "lr": tune.uniform(0.001, 1.0), }, ) ray.shutdown(exiting_interpreter=False) best_config,best_metric_score = analysis.get_best_config(metric="episode_reward_mean", mode="max") return best_config,best_metric_score
41.317789
143
0.583413
88c172d7a08545446f6b16cb49d29f6a5c999084
1,268
py
Python
apps/jobsub/setup.py
civascu/hue
82f2de44789ff5a981ed725175bae7944832d1e9
[ "Apache-2.0" ]
null
null
null
apps/jobsub/setup.py
civascu/hue
82f2de44789ff5a981ed725175bae7944832d1e9
[ "Apache-2.0" ]
null
null
null
apps/jobsub/setup.py
civascu/hue
82f2de44789ff5a981ed725175bae7944832d1e9
[ "Apache-2.0" ]
null
null
null
# Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup, find_packages setup( name = "jobsub", version = "0.9.1", url = 'http://github.com/cloudera/hue', author = "Hue", description = "Hadoop Job Submission", packages = find_packages('src'), package_dir = {'': 'src'}, install_requires = ['setuptools', 'desktop'], entry_points = { 'desktop.supervisor.specs': [ 'jobsubd = jobsub:SUPERVISOR_SPEC' ], 'desktop.sdk.application': 'jobsub=jobsub' }, )
42.266667
90
0.700315
f164abe52975ad29749e06e1ebc4d49e947af51b
42,702
py
Python
homeassistant/components/mqtt/light/schema_basic.py
mag1024/core
f3a89de71f6fa693016a41397b051bd48c86f841
[ "Apache-2.0" ]
null
null
null
homeassistant/components/mqtt/light/schema_basic.py
mag1024/core
f3a89de71f6fa693016a41397b051bd48c86f841
[ "Apache-2.0" ]
null
null
null
homeassistant/components/mqtt/light/schema_basic.py
mag1024/core
f3a89de71f6fa693016a41397b051bd48c86f841
[ "Apache-2.0" ]
null
null
null
"""Support for MQTT lights.""" import logging import voluptuous as vol from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_MODE, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_EFFECT_LIST, ATTR_HS_COLOR, ATTR_MAX_MIREDS, ATTR_MIN_MIREDS, ATTR_RGB_COLOR, ATTR_RGBW_COLOR, ATTR_RGBWW_COLOR, ATTR_SUPPORTED_COLOR_MODES, ATTR_WHITE, ATTR_WHITE_VALUE, ATTR_XY_COLOR, COLOR_MODE_BRIGHTNESS, COLOR_MODE_COLOR_TEMP, COLOR_MODE_HS, COLOR_MODE_ONOFF, COLOR_MODE_RGB, COLOR_MODE_RGBW, COLOR_MODE_RGBWW, COLOR_MODE_UNKNOWN, COLOR_MODE_WHITE, COLOR_MODE_XY, ENTITY_ID_FORMAT, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_WHITE_VALUE, LightEntity, valid_supported_color_modes, ) from homeassistant.const import ( CONF_NAME, CONF_OPTIMISTIC, CONF_PAYLOAD_OFF, CONF_PAYLOAD_ON, CONF_VALUE_TEMPLATE, STATE_ON, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.restore_state import RestoreEntity import homeassistant.util.color as color_util from .. import MqttCommandTemplate, MqttValueTemplate, subscription from ... import mqtt from ..const import ( CONF_COMMAND_TOPIC, CONF_ENCODING, CONF_QOS, CONF_RETAIN, CONF_STATE_TOPIC, ) from ..debug_info import log_messages from ..mixins import MQTT_ENTITY_COMMON_SCHEMA, MqttEntity from .schema import MQTT_LIGHT_SCHEMA_SCHEMA _LOGGER = logging.getLogger(__name__) CONF_BRIGHTNESS_COMMAND_TOPIC = "brightness_command_topic" CONF_BRIGHTNESS_SCALE = "brightness_scale" CONF_BRIGHTNESS_STATE_TOPIC = "brightness_state_topic" CONF_BRIGHTNESS_VALUE_TEMPLATE = "brightness_value_template" CONF_COLOR_MODE_STATE_TOPIC = "color_mode_state_topic" CONF_COLOR_MODE_VALUE_TEMPLATE = "color_mode_value_template" CONF_COLOR_TEMP_COMMAND_TEMPLATE = "color_temp_command_template" CONF_COLOR_TEMP_COMMAND_TOPIC = "color_temp_command_topic" CONF_COLOR_TEMP_STATE_TOPIC = "color_temp_state_topic" CONF_COLOR_TEMP_VALUE_TEMPLATE = "color_temp_value_template" CONF_EFFECT_COMMAND_TOPIC = "effect_command_topic" CONF_EFFECT_LIST = "effect_list" CONF_EFFECT_STATE_TOPIC = "effect_state_topic" CONF_EFFECT_VALUE_TEMPLATE = "effect_value_template" CONF_HS_COMMAND_TOPIC = "hs_command_topic" CONF_HS_STATE_TOPIC = "hs_state_topic" CONF_HS_VALUE_TEMPLATE = "hs_value_template" CONF_MAX_MIREDS = "max_mireds" CONF_MIN_MIREDS = "min_mireds" CONF_RGB_COMMAND_TEMPLATE = "rgb_command_template" CONF_RGB_COMMAND_TOPIC = "rgb_command_topic" CONF_RGB_STATE_TOPIC = "rgb_state_topic" CONF_RGB_VALUE_TEMPLATE = "rgb_value_template" CONF_RGBW_COMMAND_TEMPLATE = "rgbw_command_template" CONF_RGBW_COMMAND_TOPIC = "rgbw_command_topic" CONF_RGBW_STATE_TOPIC = "rgbw_state_topic" CONF_RGBW_VALUE_TEMPLATE = "rgbw_value_template" CONF_RGBWW_COMMAND_TEMPLATE = "rgbww_command_template" CONF_RGBWW_COMMAND_TOPIC = "rgbww_command_topic" CONF_RGBWW_STATE_TOPIC = "rgbww_state_topic" CONF_RGBWW_VALUE_TEMPLATE = "rgbww_value_template" CONF_STATE_VALUE_TEMPLATE = "state_value_template" CONF_XY_COMMAND_TOPIC = "xy_command_topic" CONF_XY_STATE_TOPIC = "xy_state_topic" CONF_XY_VALUE_TEMPLATE = "xy_value_template" CONF_WHITE_COMMAND_TOPIC = "white_command_topic" CONF_WHITE_SCALE = "white_scale" CONF_WHITE_VALUE_COMMAND_TOPIC = "white_value_command_topic" CONF_WHITE_VALUE_SCALE = "white_value_scale" CONF_WHITE_VALUE_STATE_TOPIC = "white_value_state_topic" CONF_WHITE_VALUE_TEMPLATE = "white_value_template" CONF_ON_COMMAND_TYPE = "on_command_type" MQTT_LIGHT_ATTRIBUTES_BLOCKED = frozenset( { ATTR_COLOR_MODE, ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_EFFECT_LIST, ATTR_HS_COLOR, ATTR_MAX_MIREDS, ATTR_MIN_MIREDS, ATTR_RGB_COLOR, ATTR_RGBW_COLOR, ATTR_RGBWW_COLOR, ATTR_SUPPORTED_COLOR_MODES, ATTR_WHITE_VALUE, ATTR_XY_COLOR, } ) DEFAULT_BRIGHTNESS_SCALE = 255 DEFAULT_NAME = "MQTT LightEntity" DEFAULT_OPTIMISTIC = False DEFAULT_PAYLOAD_OFF = "OFF" DEFAULT_PAYLOAD_ON = "ON" DEFAULT_WHITE_VALUE_SCALE = 255 DEFAULT_WHITE_SCALE = 255 DEFAULT_ON_COMMAND_TYPE = "last" VALUES_ON_COMMAND_TYPE = ["first", "last", "brightness"] COMMAND_TEMPLATE_KEYS = [ CONF_COLOR_TEMP_COMMAND_TEMPLATE, CONF_RGB_COMMAND_TEMPLATE, CONF_RGBW_COMMAND_TEMPLATE, CONF_RGBWW_COMMAND_TEMPLATE, ] VALUE_TEMPLATE_KEYS = [ CONF_BRIGHTNESS_VALUE_TEMPLATE, CONF_COLOR_MODE_VALUE_TEMPLATE, CONF_COLOR_TEMP_VALUE_TEMPLATE, CONF_EFFECT_VALUE_TEMPLATE, CONF_HS_VALUE_TEMPLATE, CONF_RGB_VALUE_TEMPLATE, CONF_RGBW_VALUE_TEMPLATE, CONF_RGBWW_VALUE_TEMPLATE, CONF_STATE_VALUE_TEMPLATE, CONF_WHITE_VALUE_TEMPLATE, CONF_XY_VALUE_TEMPLATE, ] _PLATFORM_SCHEMA_BASE = ( mqtt.MQTT_RW_PLATFORM_SCHEMA.extend( { vol.Optional(CONF_BRIGHTNESS_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional( CONF_BRIGHTNESS_SCALE, default=DEFAULT_BRIGHTNESS_SCALE ): vol.All(vol.Coerce(int), vol.Range(min=1)), vol.Optional(CONF_BRIGHTNESS_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_BRIGHTNESS_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_MODE_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_COLOR_MODE_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_TEMP_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_TEMP_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_COLOR_TEMP_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_COLOR_TEMP_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_EFFECT_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_EFFECT_LIST): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_EFFECT_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_EFFECT_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_HS_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_HS_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_HS_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_MAX_MIREDS): cv.positive_int, vol.Optional(CONF_MIN_MIREDS): cv.positive_int, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_ON_COMMAND_TYPE, default=DEFAULT_ON_COMMAND_TYPE): vol.In( VALUES_ON_COMMAND_TYPE ), vol.Optional(CONF_OPTIMISTIC, default=DEFAULT_OPTIMISTIC): cv.boolean, vol.Optional(CONF_PAYLOAD_OFF, default=DEFAULT_PAYLOAD_OFF): cv.string, vol.Optional(CONF_PAYLOAD_ON, default=DEFAULT_PAYLOAD_ON): cv.string, vol.Optional(CONF_RGB_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_RGB_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_RGB_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_RGB_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_RGBW_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_RGBW_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_RGBW_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_RGBW_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_RGBWW_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_RGBWW_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_RGBWW_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_RGBWW_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_STATE_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_WHITE_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_WHITE_SCALE, default=DEFAULT_WHITE_SCALE): vol.All( vol.Coerce(int), vol.Range(min=1) ), vol.Optional(CONF_WHITE_VALUE_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional( CONF_WHITE_VALUE_SCALE, default=DEFAULT_WHITE_VALUE_SCALE ): vol.All(vol.Coerce(int), vol.Range(min=1)), vol.Optional(CONF_WHITE_VALUE_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_WHITE_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_XY_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_XY_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_XY_VALUE_TEMPLATE): cv.template, }, ) .extend(MQTT_ENTITY_COMMON_SCHEMA.schema) .extend(MQTT_LIGHT_SCHEMA_SCHEMA.schema) ) PLATFORM_SCHEMA_BASIC = vol.All( _PLATFORM_SCHEMA_BASE, ) DISCOVERY_SCHEMA_BASIC = vol.All( # CONF_VALUE_TEMPLATE is no longer supported, support was removed in 2022.2 cv.removed(CONF_VALUE_TEMPLATE), _PLATFORM_SCHEMA_BASE.extend({}, extra=vol.REMOVE_EXTRA), ) async def async_setup_entity_basic( hass, config, async_add_entities, config_entry, discovery_data=None ): """Set up a MQTT Light.""" async_add_entities([MqttLight(hass, config, config_entry, discovery_data)]) class MqttLight(MqttEntity, LightEntity, RestoreEntity): """Representation of a MQTT light.""" _entity_id_format = ENTITY_ID_FORMAT _attributes_extra_blocked = MQTT_LIGHT_ATTRIBUTES_BLOCKED def __init__(self, hass, config, config_entry, discovery_data): """Initialize MQTT light.""" self._brightness = None self._color_mode = None self._color_temp = None self._effect = None self._hs_color = None self._legacy_mode = False self._rgb_color = None self._rgbw_color = None self._rgbww_color = None self._state = False self._supported_color_modes = None self._white_value = None self._xy_color = None self._topic = None self._payload = None self._command_templates = None self._value_templates = None self._optimistic = False self._optimistic_brightness = False self._optimistic_color_mode = False self._optimistic_color_temp = False self._optimistic_effect = False self._optimistic_hs_color = False self._optimistic_rgb_color = False self._optimistic_rgbw_color = False self._optimistic_rgbww_color = False self._optimistic_white_value = False self._optimistic_xy_color = False MqttEntity.__init__(self, hass, config, config_entry, discovery_data) @staticmethod def config_schema(): """Return the config schema.""" return DISCOVERY_SCHEMA_BASIC def _setup_from_config(self, config): """(Re)Setup the entity.""" if CONF_STATE_VALUE_TEMPLATE not in config and CONF_VALUE_TEMPLATE in config: config[CONF_STATE_VALUE_TEMPLATE] = config[CONF_VALUE_TEMPLATE] topic = { key: config.get(key) for key in ( CONF_BRIGHTNESS_COMMAND_TOPIC, CONF_BRIGHTNESS_STATE_TOPIC, CONF_COLOR_MODE_STATE_TOPIC, CONF_COLOR_TEMP_COMMAND_TOPIC, CONF_COLOR_TEMP_STATE_TOPIC, CONF_COMMAND_TOPIC, CONF_EFFECT_COMMAND_TOPIC, CONF_EFFECT_STATE_TOPIC, CONF_HS_COMMAND_TOPIC, CONF_HS_STATE_TOPIC, CONF_RGB_COMMAND_TOPIC, CONF_RGB_STATE_TOPIC, CONF_RGBW_COMMAND_TOPIC, CONF_RGBW_STATE_TOPIC, CONF_RGBWW_COMMAND_TOPIC, CONF_RGBWW_STATE_TOPIC, CONF_STATE_TOPIC, CONF_WHITE_COMMAND_TOPIC, CONF_WHITE_VALUE_COMMAND_TOPIC, CONF_WHITE_VALUE_STATE_TOPIC, CONF_XY_COMMAND_TOPIC, CONF_XY_STATE_TOPIC, ) } self._topic = topic self._payload = {"on": config[CONF_PAYLOAD_ON], "off": config[CONF_PAYLOAD_OFF]} value_templates = {} for key in VALUE_TEMPLATE_KEYS: value_templates[key] = None if CONF_VALUE_TEMPLATE in config: value_templates = { key: config.get(CONF_VALUE_TEMPLATE) for key in VALUE_TEMPLATE_KEYS } for key in VALUE_TEMPLATE_KEYS & config.keys(): value_templates[key] = config[key] self._value_templates = { key: MqttValueTemplate( template, entity=self ).async_render_with_possible_json_value for key, template in value_templates.items() } command_templates = {} for key in COMMAND_TEMPLATE_KEYS: command_templates[key] = None for key in COMMAND_TEMPLATE_KEYS & config.keys(): command_templates[key] = MqttCommandTemplate( config[key], entity=self ).async_render self._command_templates = command_templates optimistic = config[CONF_OPTIMISTIC] self._optimistic_color_mode = ( optimistic or topic[CONF_COLOR_MODE_STATE_TOPIC] is None ) self._optimistic = optimistic or topic[CONF_STATE_TOPIC] is None self._optimistic_rgb_color = optimistic or topic[CONF_RGB_STATE_TOPIC] is None self._optimistic_rgbw_color = optimistic or topic[CONF_RGBW_STATE_TOPIC] is None self._optimistic_rgbww_color = ( optimistic or topic[CONF_RGBWW_STATE_TOPIC] is None ) self._optimistic_brightness = ( optimistic or ( topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None and topic[CONF_BRIGHTNESS_STATE_TOPIC] is None ) or ( topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is None and topic[CONF_RGB_STATE_TOPIC] is None ) ) self._optimistic_color_temp = ( optimistic or topic[CONF_COLOR_TEMP_STATE_TOPIC] is None ) self._optimistic_effect = optimistic or topic[CONF_EFFECT_STATE_TOPIC] is None self._optimistic_hs_color = optimistic or topic[CONF_HS_STATE_TOPIC] is None self._optimistic_white_value = ( optimistic or topic[CONF_WHITE_VALUE_STATE_TOPIC] is None ) self._optimistic_xy_color = optimistic or topic[CONF_XY_STATE_TOPIC] is None supported_color_modes = set() if topic[CONF_COLOR_TEMP_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_COLOR_TEMP) self._color_mode = COLOR_MODE_COLOR_TEMP if topic[CONF_HS_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_HS) self._color_mode = COLOR_MODE_HS if topic[CONF_RGB_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_RGB) self._color_mode = COLOR_MODE_RGB if topic[CONF_RGBW_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_RGBW) self._color_mode = COLOR_MODE_RGBW if topic[CONF_RGBWW_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_RGBWW) self._color_mode = COLOR_MODE_RGBWW if topic[CONF_WHITE_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_WHITE) if topic[CONF_XY_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_XY) self._color_mode = COLOR_MODE_XY if len(supported_color_modes) > 1: self._color_mode = COLOR_MODE_UNKNOWN if not supported_color_modes: if topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None: self._color_mode = COLOR_MODE_BRIGHTNESS supported_color_modes.add(COLOR_MODE_BRIGHTNESS) else: self._color_mode = COLOR_MODE_ONOFF supported_color_modes.add(COLOR_MODE_ONOFF) # Validate the color_modes configuration self._supported_color_modes = valid_supported_color_modes(supported_color_modes) if topic[CONF_WHITE_VALUE_COMMAND_TOPIC] is not None: self._legacy_mode = True def _is_optimistic(self, attribute): """Return True if the attribute is optimistically updated.""" return getattr(self, f"_optimistic_{attribute}") def _prepare_subscribe_topics(self): # noqa: C901 """(Re)Subscribe to topics.""" topics = {} def add_topic(topic, msg_callback): """Add a topic.""" if self._topic[topic] is not None: topics[topic] = { "topic": self._topic[topic], "msg_callback": msg_callback, "qos": self._config[CONF_QOS], "encoding": self._config[CONF_ENCODING] or None, } @callback @log_messages(self.hass, self.entity_id) def state_received(msg): """Handle new MQTT messages.""" payload = self._value_templates[CONF_STATE_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty state message from '%s'", msg.topic) return if payload == self._payload["on"]: self._state = True elif payload == self._payload["off"]: self._state = False self.async_write_ha_state() if self._topic[CONF_STATE_TOPIC] is not None: topics[CONF_STATE_TOPIC] = { "topic": self._topic[CONF_STATE_TOPIC], "msg_callback": state_received, "qos": self._config[CONF_QOS], "encoding": self._config[CONF_ENCODING] or None, } @callback @log_messages(self.hass, self.entity_id) def brightness_received(msg): """Handle new MQTT messages for the brightness.""" payload = self._value_templates[CONF_BRIGHTNESS_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty brightness message from '%s'", msg.topic) return device_value = float(payload) percent_bright = device_value / self._config[CONF_BRIGHTNESS_SCALE] self._brightness = percent_bright * 255 self.async_write_ha_state() add_topic(CONF_BRIGHTNESS_STATE_TOPIC, brightness_received) def _rgbx_received(msg, template, color_mode, convert_color): """Handle new MQTT messages for RGBW and RGBWW.""" payload = self._value_templates[template](msg.payload, None) if not payload: _LOGGER.debug( "Ignoring empty %s message from '%s'", color_mode, msg.topic ) return None color = tuple(int(val) for val in payload.split(",")) if self._optimistic_color_mode: self._color_mode = color_mode if self._topic[CONF_BRIGHTNESS_STATE_TOPIC] is None: rgb = convert_color(*color) percent_bright = float(color_util.color_RGB_to_hsv(*rgb)[2]) / 100.0 self._brightness = percent_bright * 255 return color @callback @log_messages(self.hass, self.entity_id) def rgb_received(msg): """Handle new MQTT messages for RGB.""" rgb = _rgbx_received( msg, CONF_RGB_VALUE_TEMPLATE, COLOR_MODE_RGB, lambda *x: x ) if not rgb: return if self._legacy_mode: self._hs_color = color_util.color_RGB_to_hs(*rgb) else: self._rgb_color = rgb self.async_write_ha_state() add_topic(CONF_RGB_STATE_TOPIC, rgb_received) @callback @log_messages(self.hass, self.entity_id) def rgbw_received(msg): """Handle new MQTT messages for RGBW.""" rgbw = _rgbx_received( msg, CONF_RGBW_VALUE_TEMPLATE, COLOR_MODE_RGBW, color_util.color_rgbw_to_rgb, ) if not rgbw: return self._rgbw_color = rgbw self.async_write_ha_state() add_topic(CONF_RGBW_STATE_TOPIC, rgbw_received) @callback @log_messages(self.hass, self.entity_id) def rgbww_received(msg): """Handle new MQTT messages for RGBWW.""" rgbww = _rgbx_received( msg, CONF_RGBWW_VALUE_TEMPLATE, COLOR_MODE_RGBWW, color_util.color_rgbww_to_rgb, ) if not rgbww: return self._rgbww_color = rgbww self.async_write_ha_state() add_topic(CONF_RGBWW_STATE_TOPIC, rgbww_received) @callback @log_messages(self.hass, self.entity_id) def color_mode_received(msg): """Handle new MQTT messages for color mode.""" payload = self._value_templates[CONF_COLOR_MODE_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty color mode message from '%s'", msg.topic) return self._color_mode = payload self.async_write_ha_state() add_topic(CONF_COLOR_MODE_STATE_TOPIC, color_mode_received) @callback @log_messages(self.hass, self.entity_id) def color_temp_received(msg): """Handle new MQTT messages for color temperature.""" payload = self._value_templates[CONF_COLOR_TEMP_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty color temp message from '%s'", msg.topic) return if self._optimistic_color_mode: self._color_mode = COLOR_MODE_COLOR_TEMP self._color_temp = int(payload) self.async_write_ha_state() add_topic(CONF_COLOR_TEMP_STATE_TOPIC, color_temp_received) @callback @log_messages(self.hass, self.entity_id) def effect_received(msg): """Handle new MQTT messages for effect.""" payload = self._value_templates[CONF_EFFECT_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty effect message from '%s'", msg.topic) return self._effect = payload self.async_write_ha_state() add_topic(CONF_EFFECT_STATE_TOPIC, effect_received) @callback @log_messages(self.hass, self.entity_id) def hs_received(msg): """Handle new MQTT messages for hs color.""" payload = self._value_templates[CONF_HS_VALUE_TEMPLATE](msg.payload, None) if not payload: _LOGGER.debug("Ignoring empty hs message from '%s'", msg.topic) return try: hs_color = tuple(float(val) for val in payload.split(",", 2)) if self._optimistic_color_mode: self._color_mode = COLOR_MODE_HS self._hs_color = hs_color self.async_write_ha_state() except ValueError: _LOGGER.debug("Failed to parse hs state update: '%s'", payload) add_topic(CONF_HS_STATE_TOPIC, hs_received) @callback @log_messages(self.hass, self.entity_id) def white_value_received(msg): """Handle new MQTT messages for white value.""" payload = self._value_templates[CONF_WHITE_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty white value message from '%s'", msg.topic) return device_value = float(payload) percent_white = device_value / self._config[CONF_WHITE_VALUE_SCALE] self._white_value = percent_white * 255 self.async_write_ha_state() add_topic(CONF_WHITE_VALUE_STATE_TOPIC, white_value_received) @callback @log_messages(self.hass, self.entity_id) def xy_received(msg): """Handle new MQTT messages for xy color.""" payload = self._value_templates[CONF_XY_VALUE_TEMPLATE](msg.payload, None) if not payload: _LOGGER.debug("Ignoring empty xy-color message from '%s'", msg.topic) return xy_color = tuple(float(val) for val in payload.split(",")) if self._optimistic_color_mode: self._color_mode = COLOR_MODE_XY if self._legacy_mode: self._hs_color = color_util.color_xy_to_hs(*xy_color) else: self._xy_color = xy_color self.async_write_ha_state() add_topic(CONF_XY_STATE_TOPIC, xy_received) self._sub_state = subscription.async_prepare_subscribe_topics( self.hass, self._sub_state, topics ) async def _subscribe_topics(self): """(Re)Subscribe to topics.""" await subscription.async_subscribe_topics(self.hass, self._sub_state) last_state = await self.async_get_last_state() def restore_state(attribute, condition_attribute=None): """Restore a state attribute.""" if condition_attribute is None: condition_attribute = attribute optimistic = self._is_optimistic(condition_attribute) if optimistic and last_state and last_state.attributes.get(attribute): setattr(self, f"_{attribute}", last_state.attributes[attribute]) if self._topic[CONF_STATE_TOPIC] is None and self._optimistic and last_state: self._state = last_state.state == STATE_ON restore_state(ATTR_BRIGHTNESS) restore_state(ATTR_RGB_COLOR) restore_state(ATTR_HS_COLOR, ATTR_RGB_COLOR) restore_state(ATTR_RGBW_COLOR) restore_state(ATTR_RGBWW_COLOR) restore_state(ATTR_COLOR_MODE) restore_state(ATTR_COLOR_TEMP) restore_state(ATTR_EFFECT) restore_state(ATTR_HS_COLOR) restore_state(ATTR_WHITE_VALUE) restore_state(ATTR_XY_COLOR) restore_state(ATTR_HS_COLOR, ATTR_XY_COLOR) @property def brightness(self): """Return the brightness of this light between 0..255.""" if brightness := self._brightness: brightness = min(round(brightness), 255) return brightness @property def color_mode(self): """Return current color mode.""" if self._legacy_mode: return None return self._color_mode @property def hs_color(self): """Return the hs color value.""" if not self._legacy_mode: return self._hs_color # Legacy mode, gate color_temp with white_value == 0 if self._white_value: return None return self._hs_color @property def rgb_color(self): """Return the rgb color value.""" return self._rgb_color @property def rgbw_color(self): """Return the rgbw color value.""" return self._rgbw_color @property def rgbww_color(self): """Return the rgbww color value.""" return self._rgbww_color @property def xy_color(self): """Return the xy color value.""" return self._xy_color @property def color_temp(self): """Return the color temperature in mired.""" if not self._legacy_mode: return self._color_temp # Legacy mode, gate color_temp with white_value > 0 supports_color = ( self._topic[CONF_RGB_COMMAND_TOPIC] or self._topic[CONF_HS_COMMAND_TOPIC] or self._topic[CONF_XY_COMMAND_TOPIC] ) if self._white_value or not supports_color: return self._color_temp return None @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return self._config.get(CONF_MIN_MIREDS, super().min_mireds) @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return self._config.get(CONF_MAX_MIREDS, super().max_mireds) @property def white_value(self): """Return the white property.""" if white_value := self._white_value: return min(round(white_value), 255) return None @property def is_on(self): """Return true if device is on.""" return self._state @property def assumed_state(self): """Return true if we do optimistic updates.""" return self._optimistic @property def effect_list(self): """Return the list of supported effects.""" return self._config.get(CONF_EFFECT_LIST) @property def effect(self): """Return the current effect.""" return self._effect @property def supported_color_modes(self): """Flag supported color modes.""" if self._legacy_mode: return None return self._supported_color_modes @property def supported_features(self): """Flag supported features.""" supported_features = 0 supported_features |= ( self._topic[CONF_EFFECT_COMMAND_TOPIC] is not None and SUPPORT_EFFECT ) if not self._legacy_mode: return supported_features # Legacy mode supported_features |= self._topic[CONF_RGB_COMMAND_TOPIC] is not None and ( SUPPORT_COLOR | SUPPORT_BRIGHTNESS ) supported_features |= ( self._topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None and SUPPORT_BRIGHTNESS ) supported_features |= ( self._topic[CONF_COLOR_TEMP_COMMAND_TOPIC] is not None and SUPPORT_COLOR_TEMP ) supported_features |= ( self._topic[CONF_HS_COMMAND_TOPIC] is not None and SUPPORT_COLOR ) supported_features |= ( self._topic[CONF_WHITE_VALUE_COMMAND_TOPIC] is not None and SUPPORT_WHITE_VALUE ) supported_features |= ( self._topic[CONF_XY_COMMAND_TOPIC] is not None and SUPPORT_COLOR ) return supported_features async def async_turn_on(self, **kwargs): # noqa: C901 """Turn the device on. This method is a coroutine. """ should_update = False on_command_type = self._config[CONF_ON_COMMAND_TYPE] async def publish(topic, payload): """Publish an MQTT message.""" await mqtt.async_publish( self.hass, self._topic[topic], payload, self._config[CONF_QOS], self._config[CONF_RETAIN], self._config[CONF_ENCODING], ) def scale_rgbx(color, brightness=None): """Scale RGBx for brightness.""" if brightness is None: # If there's a brightness topic set, we don't want to scale the RGBx # values given using the brightness. if self._topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None: brightness = 255 else: brightness = kwargs.get( ATTR_BRIGHTNESS, self._brightness if self._brightness else 255 ) return tuple(int(channel * brightness / 255) for channel in color) def render_rgbx(color, template, color_mode): """Render RGBx payload.""" if tpl := self._command_templates[template]: keys = ["red", "green", "blue"] if color_mode == COLOR_MODE_RGBW: keys.append("white") elif color_mode == COLOR_MODE_RGBWW: keys.extend(["cold_white", "warm_white"]) rgb_color_str = tpl(variables=zip(keys, color)) else: rgb_color_str = ",".join(str(channel) for channel in color) return rgb_color_str def set_optimistic(attribute, value, color_mode=None, condition_attribute=None): """Optimistically update a state attribute.""" if condition_attribute is None: condition_attribute = attribute if not self._is_optimistic(condition_attribute): return False if color_mode and self._optimistic_color_mode: self._color_mode = color_mode setattr(self, f"_{attribute}", value) return True if on_command_type == "first": await publish(CONF_COMMAND_TOPIC, self._payload["on"]) should_update = True # If brightness is being used instead of an on command, make sure # there is a brightness input. Either set the brightness to our # saved value or the maximum value if this is the first call elif ( on_command_type == "brightness" and ATTR_BRIGHTNESS not in kwargs and ATTR_WHITE not in kwargs ): kwargs[ATTR_BRIGHTNESS] = self._brightness if self._brightness else 255 hs_color = kwargs.get(ATTR_HS_COLOR) if ( hs_color and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and self._legacy_mode ): # Legacy mode: Convert HS to RGB rgb = scale_rgbx(color_util.color_hsv_to_RGB(*hs_color, 100)) rgb_s = render_rgbx(rgb, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) await publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic( ATTR_HS_COLOR, hs_color, condition_attribute=ATTR_RGB_COLOR ) if hs_color and self._topic[CONF_HS_COMMAND_TOPIC] is not None: await publish(CONF_HS_COMMAND_TOPIC, f"{hs_color[0]},{hs_color[1]}") should_update |= set_optimistic(ATTR_HS_COLOR, hs_color, COLOR_MODE_HS) if ( hs_color and self._topic[CONF_XY_COMMAND_TOPIC] is not None and self._legacy_mode ): # Legacy mode: Convert HS to XY xy_color = color_util.color_hs_to_xy(*hs_color) await publish(CONF_XY_COMMAND_TOPIC, f"{xy_color[0]},{xy_color[1]}") should_update |= set_optimistic( ATTR_HS_COLOR, hs_color, condition_attribute=ATTR_XY_COLOR ) if ( (rgb := kwargs.get(ATTR_RGB_COLOR)) and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and not self._legacy_mode ): scaled = scale_rgbx(rgb) rgb_s = render_rgbx(scaled, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) await publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic(ATTR_RGB_COLOR, rgb, COLOR_MODE_RGB) if ( (rgbw := kwargs.get(ATTR_RGBW_COLOR)) and self._topic[CONF_RGBW_COMMAND_TOPIC] is not None and not self._legacy_mode ): scaled = scale_rgbx(rgbw) rgbw_s = render_rgbx(scaled, CONF_RGBW_COMMAND_TEMPLATE, COLOR_MODE_RGBW) await publish(CONF_RGBW_COMMAND_TOPIC, rgbw_s) should_update |= set_optimistic(ATTR_RGBW_COLOR, rgbw, COLOR_MODE_RGBW) if ( (rgbww := kwargs.get(ATTR_RGBWW_COLOR)) and self._topic[CONF_RGBWW_COMMAND_TOPIC] is not None and not self._legacy_mode ): scaled = scale_rgbx(rgbww) rgbww_s = render_rgbx(scaled, CONF_RGBWW_COMMAND_TEMPLATE, COLOR_MODE_RGBWW) await publish(CONF_RGBWW_COMMAND_TOPIC, rgbww_s) should_update |= set_optimistic(ATTR_RGBWW_COLOR, rgbww, COLOR_MODE_RGBWW) if ( (xy_color := kwargs.get(ATTR_XY_COLOR)) and self._topic[CONF_XY_COMMAND_TOPIC] is not None and not self._legacy_mode ): await publish(CONF_XY_COMMAND_TOPIC, f"{xy_color[0]},{xy_color[1]}") should_update |= set_optimistic(ATTR_XY_COLOR, xy_color, COLOR_MODE_XY) if ( ATTR_BRIGHTNESS in kwargs and self._topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None ): brightness_normalized = kwargs[ATTR_BRIGHTNESS] / 255 brightness_scale = self._config[CONF_BRIGHTNESS_SCALE] device_brightness = min( round(brightness_normalized * brightness_scale), brightness_scale ) # Make sure the brightness is not rounded down to 0 device_brightness = max(device_brightness, 1) await publish(CONF_BRIGHTNESS_COMMAND_TOPIC, device_brightness) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_HS_COLOR not in kwargs and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and self._legacy_mode ): # Legacy mode hs_color = self._hs_color if self._hs_color is not None else (0, 0) brightness = kwargs[ATTR_BRIGHTNESS] rgb = scale_rgbx(color_util.color_hsv_to_RGB(*hs_color, 100), brightness) rgb_s = render_rgbx(rgb, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) await publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_RGB_COLOR not in kwargs and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and not self._legacy_mode ): rgb_color = self._rgb_color if self._rgb_color is not None else (255,) * 3 rgb = scale_rgbx(rgb_color, kwargs[ATTR_BRIGHTNESS]) rgb_s = render_rgbx(rgb, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) await publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_RGBW_COLOR not in kwargs and self._topic[CONF_RGBW_COMMAND_TOPIC] is not None and not self._legacy_mode ): rgbw_color = ( self._rgbw_color if self._rgbw_color is not None else (255,) * 4 ) rgbw = scale_rgbx(rgbw_color, kwargs[ATTR_BRIGHTNESS]) rgbw_s = render_rgbx(rgbw, CONF_RGBW_COMMAND_TEMPLATE, COLOR_MODE_RGBW) await publish(CONF_RGBW_COMMAND_TOPIC, rgbw_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_RGBWW_COLOR not in kwargs and self._topic[CONF_RGBWW_COMMAND_TOPIC] is not None and not self._legacy_mode ): rgbww_color = ( self._rgbww_color if self._rgbww_color is not None else (255,) * 5 ) rgbww = scale_rgbx(rgbww_color, kwargs[ATTR_BRIGHTNESS]) rgbww_s = render_rgbx(rgbww, CONF_RGBWW_COMMAND_TEMPLATE, COLOR_MODE_RGBWW) await publish(CONF_RGBWW_COMMAND_TOPIC, rgbww_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) if ( ATTR_COLOR_TEMP in kwargs and self._topic[CONF_COLOR_TEMP_COMMAND_TOPIC] is not None ): color_temp = int(kwargs[ATTR_COLOR_TEMP]) if tpl := self._command_templates[CONF_COLOR_TEMP_COMMAND_TEMPLATE]: color_temp = tpl(variables={"value": color_temp}) await publish(CONF_COLOR_TEMP_COMMAND_TOPIC, color_temp) should_update |= set_optimistic( ATTR_COLOR_TEMP, kwargs[ATTR_COLOR_TEMP], COLOR_MODE_COLOR_TEMP ) if ATTR_EFFECT in kwargs and self._topic[CONF_EFFECT_COMMAND_TOPIC] is not None: effect = kwargs[ATTR_EFFECT] if effect in self._config.get(CONF_EFFECT_LIST): await publish(CONF_EFFECT_COMMAND_TOPIC, effect) should_update |= set_optimistic(ATTR_EFFECT, effect) if ATTR_WHITE in kwargs and self._topic[CONF_WHITE_COMMAND_TOPIC] is not None: percent_white = float(kwargs[ATTR_WHITE]) / 255 white_scale = self._config[CONF_WHITE_SCALE] device_white_value = min(round(percent_white * white_scale), white_scale) await publish(CONF_WHITE_COMMAND_TOPIC, device_white_value) should_update |= set_optimistic( ATTR_BRIGHTNESS, kwargs[ATTR_WHITE], COLOR_MODE_WHITE, ) if ( ATTR_WHITE_VALUE in kwargs and self._topic[CONF_WHITE_VALUE_COMMAND_TOPIC] is not None ): percent_white = float(kwargs[ATTR_WHITE_VALUE]) / 255 white_scale = self._config[CONF_WHITE_VALUE_SCALE] device_white_value = min(round(percent_white * white_scale), white_scale) await publish(CONF_WHITE_VALUE_COMMAND_TOPIC, device_white_value) should_update |= set_optimistic(ATTR_WHITE_VALUE, kwargs[ATTR_WHITE_VALUE]) if on_command_type == "last": await publish(CONF_COMMAND_TOPIC, self._payload["on"]) should_update = True if self._optimistic: # Optimistically assume that the light has changed state. self._state = True should_update = True if should_update: self.async_write_ha_state() async def async_turn_off(self, **kwargs): """Turn the device off. This method is a coroutine. """ await mqtt.async_publish( self.hass, self._topic[CONF_COMMAND_TOPIC], self._payload["off"], self._config[CONF_QOS], self._config[CONF_RETAIN], self._config[CONF_ENCODING], ) if self._optimistic: # Optimistically assume that the light has changed state. self._state = False self.async_write_ha_state()
38.99726
88
0.642171
82b65ecfcea1ac640d719ab52e4b930e160afadd
855
py
Python
interfaces/python/tests/conftest.py
iotile/baBLE-linux
faedca2c70b7fe91ea8ae0c3d8aff6bf843bd9db
[ "MIT" ]
13
2018-07-04T16:35:37.000Z
2021-03-03T10:41:07.000Z
interfaces/python/tests/conftest.py
iotile/baBLE
faedca2c70b7fe91ea8ae0c3d8aff6bf843bd9db
[ "MIT" ]
11
2018-06-01T20:32:32.000Z
2019-01-21T17:03:47.000Z
interfaces/python/tests/conftest.py
iotile/baBLE-linux
faedca2c70b7fe91ea8ae0c3d8aff6bf843bd9db
[ "MIT" ]
null
null
null
# Pytest configuration file: will be run before tests to define fixtures import pytest import subprocess import uuid from tests.mocks.mock_subprocess import MockSubprocess @pytest.fixture(scope='function') def bridge_subprocess(monkeypatch): """ Mock the subprocess.Popen() function to run a class representing the bable bridge instead. """ mocked_subprocess = MockSubprocess() def on_popen(cmd, *args, **kwargs): mocked_subprocess.start() return mocked_subprocess monkeypatch.setattr(subprocess, 'Popen', on_popen) return mocked_subprocess @pytest.fixture(scope='function') def mock_uuid(monkeypatch, request): """ Mock the uuid.uuid4() function to return a known and constant value (given as parameter) """ value = request.param monkeypatch.setattr(uuid, 'uuid4', lambda: value) return value
28.5
102
0.740351
ca9bfab914fde2d498e2ebb051ad7c1b281e433f
3,409
py
Python
fizzsite/fizzsite/settings.py
hurhurhurt/Fizzle
53d780d501966f4a4010b0e395bd9f87bf67a489
[ "MIT" ]
null
null
null
fizzsite/fizzsite/settings.py
hurhurhurt/Fizzle
53d780d501966f4a4010b0e395bd9f87bf67a489
[ "MIT" ]
null
null
null
fizzsite/fizzsite/settings.py
hurhurhurt/Fizzle
53d780d501966f4a4010b0e395bd9f87bf67a489
[ "MIT" ]
null
null
null
""" Django settings for fizzsite project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '^2hypu+6col-9ck4if37g2ynafa_gpy^y=dyrl5^z3k_cj1kgi' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'crispy_forms', 'users', 'blog.apps.BlogConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'accounts.apps.AccountsConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'fizzsite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'fizzsite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' CRISPY_TEMPLATE_PACK = 'bootstrap4' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' LOGIN_REDIRECT_URL = 'Fizzle-Home' LOGOUT_REDIRECT_URL = 'Fizzle-Home'
25.825758
91
0.699032
73a8097729953b5856d2317bc0969261ecc7c3c4
488
py
Python
backend/projectx/users/migrations/0006_user_anonymous.py
mmcardle/projectx
058935273834c683de8db8bb2d720b1ddcd433e8
[ "MIT" ]
4
2021-04-22T08:55:13.000Z
2022-03-23T12:58:43.000Z
backend/projectx/users/migrations/0006_user_anonymous.py
mmcardle/projectx
058935273834c683de8db8bb2d720b1ddcd433e8
[ "MIT" ]
3
2021-05-12T11:05:58.000Z
2021-09-12T16:40:31.000Z
backend/projectx/users/migrations/0006_user_anonymous.py
mmcardle/projectx
058935273834c683de8db8bb2d720b1ddcd433e8
[ "MIT" ]
1
2021-04-18T08:33:02.000Z
2021-04-18T08:33:02.000Z
# Generated by Django 3.2.7 on 2021-11-09 22:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("users", "0005_alter_user_id"), ] operations = [ migrations.AddField( model_name="user", name="anonymous", field=models.BooleanField( default=False, help_text="Whether the user is anonymous.", verbose_name="anonymous status" ), ), ]
23.238095
106
0.588115
378b5cbe013b7e8d7287b94974b44c782b853d22
7,975
py
Python
detect/sort/sort.py
bdkiran/openObserver
2c9b71f2e7fa021887d7fa760920dea06e67ba72
[ "MIT" ]
null
null
null
detect/sort/sort.py
bdkiran/openObserver
2c9b71f2e7fa021887d7fa760920dea06e67ba72
[ "MIT" ]
null
null
null
detect/sort/sort.py
bdkiran/openObserver
2c9b71f2e7fa021887d7fa760920dea06e67ba72
[ "MIT" ]
null
null
null
""" SORT: A Simple, Online and Realtime Tracker Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import print_function import numpy as np from .kalman_filter import KalmanFilter from scipy.optimize import linear_sum_assignment np.random.seed(0) def linear_assignment(cost_matrix): x, y = linear_sum_assignment(cost_matrix) return np.array(list(zip(x, y))) def iou_batch(bb_test, bb_gt): """ From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] """ bb_gt = np.expand_dims(bb_gt, 0) bb_test = np.expand_dims(bb_test, 1) xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) return(o) def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w/2. y = bbox[1] + h/2. s = w * h #scale is just area r = w / float(h) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x,score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if(score==None): return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) else: return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) class KalmanBoxTracker(object): """ This class represents the internal state of individual tracked objects observed as bbox. """ count = 0 def __init__(self,bbox): """ Initialises a tracker using initial bounding box. """ #define constant velocity model self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) self.kf.R[2:,2:] *= 10. self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1,-1] *= 0.01 self.kf.Q[4:,4:] *= 0.01 self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 def update(self,bbox): """ Updates the state vector with observed bbox. """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if((self.kf.x[6]+self.kf.x[2])<=0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if(self.time_since_update>0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate. """ return convert_x_to_bbox(self.kf.x) def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): """ Assigns detections to tracked object (both represented as bounding boxes) Returns 3 lists of matches, unmatched_detections and unmatched_trackers """ if(len(trackers)==0): return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) iou_matrix = iou_batch(detections, trackers) if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() == 1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(-iou_matrix) else: matched_indices = np.empty(shape=(0,2)) unmatched_detections = [] for d, det in enumerate(detections): if(d not in matched_indices[:,0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if(t not in matched_indices[:,1]): unmatched_trackers.append(t) #filter out matched with low IOU matches = [] for m in matched_indices: if(iou_matrix[m[0], m[1]]<iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1,2)) if(len(matches)==0): matches = np.empty((0,2),dtype=int) else: matches = np.concatenate(matches,axis=0) return matches, np.array(unmatched_detections), np.array(unmatched_trackers) class Sort(object): def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): """ Sets key parameters for SORT """ self.max_age = max_age self.min_hits = min_hits self.iou_threshold = iou_threshold self.trackers = [] self.frame_count = 0 def update(self, dets=np.empty((0, 5))): """ Params: dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections). Returns the a similar array, where the last column is the object ID. NOTE: The number of objects returned may differ from the number of detections provided. """ self.frame_count += 1 # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold) # update matched trackers with assigned detections for m in matched: self.trackers[m[1]].update(dets[m[0], :]) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i,:]) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): d = trk.get_state()[0] if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive i -= 1 # remove dead tracklet if(trk.time_since_update > self.max_age): self.trackers.pop(i) if(len(ret)>0): return np.concatenate(ret) return np.empty((0,5))
33.792373
141
0.633981
3a421696c12248fe7fb454763c8cbf1bb29e2b65
15,814
py
Python
avalanche/benchmarks/utils/data_loader.py
TomVeniat/avalanche
6e89f9945cf40c14471406a4cf4830a8d95c5705
[ "MIT" ]
810
2018-10-08T15:49:05.000Z
2022-03-31T15:28:09.000Z
avalanche/benchmarks/utils/data_loader.py
TomVeniat/avalanche
6e89f9945cf40c14471406a4cf4830a8d95c5705
[ "MIT" ]
477
2021-03-01T17:50:51.000Z
2022-03-31T14:51:23.000Z
avalanche/benchmarks/utils/data_loader.py
TomVeniat/avalanche
6e89f9945cf40c14471406a4cf4830a8d95c5705
[ "MIT" ]
147
2018-10-08T15:49:18.000Z
2022-03-31T04:08:45.000Z
################################################################################ # Copyright (c) 2021 ContinualAI. # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 01-12-2020 # # Author(s): Antonio Carta # # E-mail: contact@continualai.org # # Website: avalanche.continualai.org # ################################################################################ """ Avalanche supports data loading using pytorch's dataloaders. This module provides custom dataloaders for continual learning such as support for balanced dataloading between different tasks or balancing between the current data and the replay memory. """ from itertools import chain from typing import Dict, Sequence import torch from torch.utils.data import RandomSampler from torch.utils.data.dataloader import DataLoader from avalanche.benchmarks.utils import AvalancheDataset def _default_collate_mbatches_fn(mbatches): """ Combines multiple mini-batches together. Concatenates each tensor in the mini-batches along dimension 0 (usually this is the batch size). :param mbatches: sequence of mini-batches. :return: a single mini-batch """ batch = [] for i in range(len(mbatches[0])): t = torch.cat([el[i] for el in mbatches], dim=0) batch.append(t) return batch class TaskBalancedDataLoader: """ Task-balanced data loader for Avalanche's datasets.""" def __init__(self, data: AvalancheDataset, oversample_small_tasks: bool = False, collate_mbatches=_default_collate_mbatches_fn, **kwargs): """ Task-balanced data loader for Avalanche's datasets. The iterator returns a mini-batch balanced across each task, which makes it useful when training in multi-task scenarios whenever data is highly unbalanced. If `oversample_small_tasks == True` smaller tasks are oversampled to match the largest task. Otherwise, once the data for a specific task is terminated, that task will not be present in the subsequent mini-batches. :param data: an instance of `AvalancheDataset`. :param oversample_small_tasks: whether smaller tasks should be oversampled to match the largest one. :param collate_mbatches: function that given a sequence of mini-batches (one for each task) combines them into a single mini-batch. Used to combine the mini-batches obtained separately from each task. :param kwargs: data loader arguments used to instantiate the loader for each task separately. See pytorch :class:`DataLoader`. """ self.data = data self.dataloaders: Dict[int, DataLoader] = {} self.oversample_small_tasks = oversample_small_tasks self.collate_mbatches = collate_mbatches # split data by task. task_datasets = [] for task_label in self.data.task_set: tdata = self.data.task_set[task_label] task_datasets.append(tdata) # the iteration logic is implemented by GroupBalancedDataLoader. # we use kwargs to pass the arguments to avoid passing the same # arguments multiple times. if 'data' in kwargs: del kwargs['data'] # needed if they are passed as positional arguments kwargs['oversample_small_groups'] = oversample_small_tasks kwargs['collate_mbatches'] = collate_mbatches self._dl = GroupBalancedDataLoader(datasets=task_datasets, **kwargs) def __iter__(self): for el in self._dl.__iter__(): yield el def __len__(self): return self._dl.__len__() class GroupBalancedDataLoader: """ Data loader that balances data from multiple datasets.""" def __init__(self, datasets: Sequence[AvalancheDataset], oversample_small_groups: bool = False, collate_mbatches=_default_collate_mbatches_fn, **kwargs): """ Data loader that balances data from multiple datasets. Mini-batches emitted by this dataloader are created by collating together mini-batches from each group. It may be used to balance data among classes, experiences, tasks, and so on. If `oversample_small_groups == True` smaller groups are oversampled to match the largest group. Otherwise, once data from a group is completely iterated, the group will be skipped. :param datasets: an instance of `AvalancheDataset`. :param oversample_small_groups: whether smaller groups should be oversampled to match the largest one. :param collate_mbatches: function that given a sequence of mini-batches (one for each task) combines them into a single mini-batch. Used to combine the mini-batches obtained separately from each task. :param kwargs: data loader arguments used to instantiate the loader for each group separately. See pytorch :class:`DataLoader`. """ self.datasets = datasets self.dataloaders = [] self.oversample_small_groups = oversample_small_groups self.collate_mbatches = collate_mbatches for data in self.datasets: self.dataloaders.append(DataLoader(data, **kwargs)) self.max_len = max([len(d) for d in self.dataloaders]) def __iter__(self): iter_dataloaders = [] for dl in self.dataloaders: iter_dataloaders.append(iter(dl)) max_num_mbatches = max([len(d) for d in iter_dataloaders]) for it in range(max_num_mbatches): mb_curr = [] is_removed_dataloader = False # copy() is necessary because we may remove keys from the # dictionary. This would break the generator. for tid, t_loader in enumerate(iter_dataloaders): try: batch = next(t_loader) except StopIteration: # StopIteration is thrown if dataset ends. if self.oversample_small_groups: # reinitialize data loader iter_dataloaders[tid] = iter(self.dataloaders[tid]) batch = next(iter_dataloaders[tid]) else: # We iteratated over all the data from this group # and we don't need the iterator anymore. iter_dataloaders[tid] = None is_removed_dataloader = True continue mb_curr.append(batch) yield self.collate_mbatches(mb_curr) # clear empty data-loaders if is_removed_dataloader: while None in iter_dataloaders: iter_dataloaders.remove(None) def __len__(self): return self.max_len class GroupBalancedInfiniteDataLoader: """ Data loader that balances data from multiple datasets emitting an infinite stream.""" def __init__(self, datasets: Sequence[AvalancheDataset], collate_mbatches=_default_collate_mbatches_fn, **kwargs): """ Data loader that balances data from multiple datasets emitting an infinite stream. Mini-batches emitted by this dataloader are created by collating together mini-batches from each group. It may be used to balance data among classes, experiences, tasks, and so on. :param datasets: an instance of `AvalancheDataset`. :param collate_mbatches: function that given a sequence of mini-batches (one for each task) combines them into a single mini-batch. Used to combine the mini-batches obtained separately from each task. :param kwargs: data loader arguments used to instantiate the loader for each group separately. See pytorch :class:`DataLoader`. """ self.datasets = datasets self.dataloaders = [] self.collate_mbatches = collate_mbatches for data in self.datasets: infinite_sampler = RandomSampler(data, replacement=True, num_samples=10 ** 10) dl = DataLoader( data, sampler=infinite_sampler, **kwargs) self.dataloaders.append(dl) self.max_len = 10 ** 10 def __iter__(self): iter_dataloaders = [] for dl in self.dataloaders: iter_dataloaders.append(iter(dl)) while True: mb_curr = [] for tid, t_loader in enumerate(iter_dataloaders): batch = next(t_loader) mb_curr.append(batch) yield self.collate_mbatches(mb_curr) def __len__(self): return self.max_len class ReplayDataLoader: """ Custom data loader for rehearsal/replay strategies.""" def __init__(self, data: AvalancheDataset, memory: AvalancheDataset = None, oversample_small_tasks: bool = False, collate_mbatches=_default_collate_mbatches_fn, batch_size: int = 32, force_data_batch_size: int = None, **kwargs): """ Custom data loader for rehearsal strategies. The iterates in parallel two datasets, the current `data` and the rehearsal `memory`, which are used to create mini-batches by concatenating their data together. Mini-batches from both of them are balanced using the task label (i.e. each mini-batch contains a balanced number of examples from all the tasks in the `data` and `memory`). If `oversample_small_tasks == True` smaller tasks are oversampled to match the largest task. :param data: AvalancheDataset. :param memory: AvalancheDataset. :param oversample_small_tasks: whether smaller tasks should be oversampled to match the largest one. :param collate_mbatches: function that given a sequence of mini-batches (one for each task) combines them into a single mini-batch. Used to combine the mini-batches obtained separately from each task. :param batch_size: the size of the batch. It must be greater than or equal to the number of tasks. :param ratio_data_mem: How many of the samples should be from :param kwargs: data loader arguments used to instantiate the loader for each task separately. See pytorch :class:`DataLoader`. """ self.data = data self.memory = memory self.loader_data: Sequence[DataLoader] = {} self.loader_memory: Sequence[DataLoader] = {} self.oversample_small_tasks = oversample_small_tasks self.collate_mbatches = collate_mbatches if force_data_batch_size is not None: assert force_data_batch_size <= batch_size, \ "Forced batch size of data must be <= entire batch size" mem_batch_size = batch_size - force_data_batch_size remaining_example = 0 mem_keys = len(self.memory.task_set) assert mem_batch_size >= mem_keys, \ "Batch size must be greator or equal " \ "to the number of tasks in the memory." self.loader_data, _ = self._create_dataloaders( data, force_data_batch_size, remaining_example, **kwargs) self.loader_memory, _ = self._create_dataloaders( memory, mem_batch_size, remaining_example, **kwargs) else: num_keys = len(self.data.task_set) + len(self.memory.task_set) assert batch_size >= num_keys, \ "Batch size must be greator or equal " \ "to the number of tasks in the memory " \ "and current data." single_group_batch_size = batch_size // num_keys remaining_example = batch_size % num_keys self.loader_data, remaining_example = self._create_dataloaders( data, single_group_batch_size, remaining_example, **kwargs) self.loader_memory, remaining_example = self._create_dataloaders( memory, single_group_batch_size, remaining_example, **kwargs) self.max_len = max([len(d) for d in chain( self.loader_data.values(), self.loader_memory.values())] ) def __iter__(self): iter_data_dataloaders = {} iter_buffer_dataloaders = {} for t in self.loader_data.keys(): iter_data_dataloaders[t] = iter(self.loader_data[t]) for t in self.loader_memory.keys(): iter_buffer_dataloaders[t] = iter(self.loader_memory[t]) max_len = max([len(d) for d in chain(iter_data_dataloaders.values(), iter_buffer_dataloaders.values())]) try: for it in range(max_len): mb_curr = [] self._get_mini_batch_from_data_dict( self.data, iter_data_dataloaders, self.loader_data, self.oversample_small_tasks, mb_curr) self._get_mini_batch_from_data_dict( self.memory, iter_buffer_dataloaders, self.loader_memory, self.oversample_small_tasks, mb_curr) yield self.collate_mbatches(mb_curr) except StopIteration: return def __len__(self): return self.max_len def _get_mini_batch_from_data_dict(self, data, iter_dataloaders, loaders_dict, oversample_small_tasks, mb_curr): # list() is necessary because we may remove keys from the # dictionary. This would break the generator. for t in list(iter_dataloaders.keys()): t_loader = iter_dataloaders[t] try: tbatch = next(t_loader) except StopIteration: # StopIteration is thrown if dataset ends. # reinitialize data loader if oversample_small_tasks: # reinitialize data loader iter_dataloaders[t] = iter(loaders_dict[t]) tbatch = next(iter_dataloaders[t]) else: del iter_dataloaders[t] continue mb_curr.append(tbatch) def _create_dataloaders(self, data_dict, single_exp_batch_size, remaining_example, **kwargs): loaders_dict: Dict[int, DataLoader] = {} for task_id in data_dict.task_set: data = data_dict.task_set[task_id] current_batch_size = single_exp_batch_size if remaining_example > 0: current_batch_size += 1 remaining_example -= 1 loaders_dict[task_id] = DataLoader( data, batch_size=current_batch_size, **kwargs) return loaders_dict, remaining_example __all__ = [ 'TaskBalancedDataLoader', 'GroupBalancedDataLoader', 'ReplayDataLoader', 'GroupBalancedInfiniteDataLoader' ]
42.283422
80
0.601303
ecacb892c48f4112d6eabf6856474712378bf6b7
8,800
py
Python
env/lib/python3.7/site-packages/docusign_admin/models/new_user_response.py
davidgacc/docusign
e63167101656d0066d481844576ce687ea80eb91
[ "MIT" ]
null
null
null
env/lib/python3.7/site-packages/docusign_admin/models/new_user_response.py
davidgacc/docusign
e63167101656d0066d481844576ce687ea80eb91
[ "MIT" ]
null
null
null
env/lib/python3.7/site-packages/docusign_admin/models/new_user_response.py
davidgacc/docusign
e63167101656d0066d481844576ce687ea80eb91
[ "MIT" ]
null
null
null
# coding: utf-8 """ DocuSign Admin API An API for an organization administrator to manage organizations, accounts and users # noqa: E501 OpenAPI spec version: v2 Contact: devcenter@docusign.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class NewUserResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'site_id': 'int', 'user_name': 'str', 'first_name': 'str', 'last_name': 'str', 'email': 'str', 'language_culture': 'str', 'federated_status': 'str', 'accounts': 'list[NewUserResponseAccountProperties]' } attribute_map = { 'id': 'id', 'site_id': 'site_id', 'user_name': 'user_name', 'first_name': 'first_name', 'last_name': 'last_name', 'email': 'email', 'language_culture': 'language_culture', 'federated_status': 'federated_status', 'accounts': 'accounts' } def __init__(self, id=None, site_id=None, user_name=None, first_name=None, last_name=None, email=None, language_culture=None, federated_status=None, accounts=None): # noqa: E501 """NewUserResponse - a model defined in Swagger""" # noqa: E501 self._id = None self._site_id = None self._user_name = None self._first_name = None self._last_name = None self._email = None self._language_culture = None self._federated_status = None self._accounts = None self.discriminator = None if id is not None: self.id = id if site_id is not None: self.site_id = site_id if user_name is not None: self.user_name = user_name if first_name is not None: self.first_name = first_name if last_name is not None: self.last_name = last_name if email is not None: self.email = email if language_culture is not None: self.language_culture = language_culture if federated_status is not None: self.federated_status = federated_status if accounts is not None: self.accounts = accounts @property def id(self): """Gets the id of this NewUserResponse. # noqa: E501 :return: The id of this NewUserResponse. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this NewUserResponse. :param id: The id of this NewUserResponse. # noqa: E501 :type: str """ self._id = id @property def site_id(self): """Gets the site_id of this NewUserResponse. # noqa: E501 :return: The site_id of this NewUserResponse. # noqa: E501 :rtype: int """ return self._site_id @site_id.setter def site_id(self, site_id): """Sets the site_id of this NewUserResponse. :param site_id: The site_id of this NewUserResponse. # noqa: E501 :type: int """ self._site_id = site_id @property def user_name(self): """Gets the user_name of this NewUserResponse. # noqa: E501 :return: The user_name of this NewUserResponse. # noqa: E501 :rtype: str """ return self._user_name @user_name.setter def user_name(self, user_name): """Sets the user_name of this NewUserResponse. :param user_name: The user_name of this NewUserResponse. # noqa: E501 :type: str """ self._user_name = user_name @property def first_name(self): """Gets the first_name of this NewUserResponse. # noqa: E501 :return: The first_name of this NewUserResponse. # noqa: E501 :rtype: str """ return self._first_name @first_name.setter def first_name(self, first_name): """Sets the first_name of this NewUserResponse. :param first_name: The first_name of this NewUserResponse. # noqa: E501 :type: str """ self._first_name = first_name @property def last_name(self): """Gets the last_name of this NewUserResponse. # noqa: E501 :return: The last_name of this NewUserResponse. # noqa: E501 :rtype: str """ return self._last_name @last_name.setter def last_name(self, last_name): """Sets the last_name of this NewUserResponse. :param last_name: The last_name of this NewUserResponse. # noqa: E501 :type: str """ self._last_name = last_name @property def email(self): """Gets the email of this NewUserResponse. # noqa: E501 :return: The email of this NewUserResponse. # noqa: E501 :rtype: str """ return self._email @email.setter def email(self, email): """Sets the email of this NewUserResponse. :param email: The email of this NewUserResponse. # noqa: E501 :type: str """ self._email = email @property def language_culture(self): """Gets the language_culture of this NewUserResponse. # noqa: E501 :return: The language_culture of this NewUserResponse. # noqa: E501 :rtype: str """ return self._language_culture @language_culture.setter def language_culture(self, language_culture): """Sets the language_culture of this NewUserResponse. :param language_culture: The language_culture of this NewUserResponse. # noqa: E501 :type: str """ self._language_culture = language_culture @property def federated_status(self): """Gets the federated_status of this NewUserResponse. # noqa: E501 :return: The federated_status of this NewUserResponse. # noqa: E501 :rtype: str """ return self._federated_status @federated_status.setter def federated_status(self, federated_status): """Sets the federated_status of this NewUserResponse. :param federated_status: The federated_status of this NewUserResponse. # noqa: E501 :type: str """ self._federated_status = federated_status @property def accounts(self): """Gets the accounts of this NewUserResponse. # noqa: E501 :return: The accounts of this NewUserResponse. # noqa: E501 :rtype: list[NewUserResponseAccountProperties] """ return self._accounts @accounts.setter def accounts(self, accounts): """Sets the accounts of this NewUserResponse. :param accounts: The accounts of this NewUserResponse. # noqa: E501 :type: list[NewUserResponseAccountProperties] """ self._accounts = accounts def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(NewUserResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NewUserResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.160494
182
0.58875
8ad7f8531a41e71c4af98b93764a1ec45dfe2915
4,853
py
Python
core/general.py
yaakiyu/rt-bot
f68bca95c516e08c31ecc846524dcea4c8ba1503
[ "BSD-4-Clause" ]
null
null
null
core/general.py
yaakiyu/rt-bot
f68bca95c516e08c31ecc846524dcea4c8ba1503
[ "BSD-4-Clause" ]
null
null
null
core/general.py
yaakiyu/rt-bot
f68bca95c516e08c31ecc846524dcea4c8ba1503
[ "BSD-4-Clause" ]
null
null
null
# RT - General from __future__ import annotations from typing import TYPE_CHECKING, TypeVar, Optional, Any from discord.ext import commands from discord.ext.fslash import is_fslash import discord from rtlib.common.utils import make_error_message, code_block, text_format from .utils import get_fsparent, gettext from .types_ import NameIdObj, MentionIdObj from .bot import RT from data import Colors if TYPE_CHECKING: from .rtevent import EventContext from .help import Help, HelpCommand, Text __all__ = ("RT", "Cog", "t", "cast", "Embed") class Embed(discord.Embed): "Botのテーマカラーをデフォルトで設定するようにした`Embed`です。" def __init__(self, title: str, *args, **kwargs): kwargs["title"] = title kwargs.setdefault("color", Colors.normal) super().__init__(*args, **kwargs) def _get_client(obj): return obj._state._get_client() def t(text: Text, ctx: Any, ignore_key_error: bool = False, **kwargs) -> str: """Extracts strings in the correct language from a dictionary of language code keys and their corresponding strings, based on information such as the `ctx` guild passed in. You can use keyword arguments to exchange strings like f-string.""" # Extract client client: Optional[RT] = kwargs.pop("client", None) user, gu = False, False if isinstance(ctx, (discord.User, discord.Member, discord.Object)): client = _get_client(ctx) # type: ignore user = True elif getattr(ctx, "message", None) and not is_fslash(ctx): client = _get_client(ctx.message) elif getattr(ctx, "guild", None): client = _get_client(ctx.guild) elif getattr(ctx, "channel", None): client = _get_client(ctx.channel) elif getattr(ctx, "user", None): client = _get_client(ctx.user) elif gu := isinstance(ctx, (discord.Guild, discord.User)): client = _get_client(ctx) # type: ignore # Extract correct text if client is None: text = gettext(text, "en") # type: ignore elif isinstance(ctx, int): text = gettext(text, client.language.user.get(ctx) # type: ignore or client.language.guild.get(ctx)) else: language = None if user: language = client.language.user.get(ctx.id) else: if getattr(ctx, "user", None): language = client.language.user.get(ctx.user.id) # type: ignore if language is None and getattr(ctx, "author", None): language = client.language.user.get(ctx.author.id) # type: ignore if language is None and getattr(ctx, "guild", None): language = client.language.guild.get(ctx.guild.id) # type: ignore if language is None and gu: language = client.language.guild.get(ctx.id) if language is None: language = "en" text = gettext(text, "en") if language is None else gettext(text, language) # type: ignore try: return text.format(**kwargs) # type: ignore except KeyError: if ignore_key_error: return text # type: ignore else: raise class BadRequest(Exception): "400エラーを発生させます。" UCReT = TypeVar("UCReT") class Cog(commands.Cog): "Extended cog" text_format = staticmethod(text_format) detail_or = staticmethod(lambda detail: "ERROR" if detail else "SUCCESS") BadRequest = BadRequest get_fsparent = staticmethod(get_fsparent) Help: type[Help] HelpCommand: type[HelpCommand] Embed = Embed ERRORS = { "WRONG_WAY": lambda ctx: t(dict( ja="使い方が違います。", en="This is wrong way to use this command." ), ctx) } t = staticmethod(t) EventContext: type[EventContext] bot: RT async def group_index(self, ctx: commands.Context) -> None: "グループコマンドが実行された際に「使用方法が違います」と返信します。" if not ctx.invoked_subcommand: await ctx.reply(t({ "ja": "使用方法が違います。", "en": "It is wrong way to use this command." }, ctx)) @staticmethod def mention_and_id(obj: MentionIdObj) -> str: return f"{obj.mention} (`{obj.id}`)" @staticmethod def name_and_id(obj: NameIdObj) -> str: return f"{obj.name} (`{obj.id}`)" def embed(self, **kwargs) -> Embed: "Make embed and set title to the cog name." return Embed(self.__cog_name__, **kwargs) CONSTANT_FOR_EXCEPTION_TO_TEXT = { "ja": "内部エラーが発生しました。", "en": "An internal error has occurred." } @staticmethod def error_to_text(error: Exception) -> Text: error = code_block(make_error_message(error), "python") # type: ignore return { key: f"{Cog.CONSTANT_FOR_EXCEPTION_TO_TEXT[key]}\n{error}" for key in ("ja", "en") } def cast(**kwargs: dict[str, str]) -> str: return kwargs # type: ignore
33.239726
176
0.636101
39d25398c127a2e46f91b8f38662ad1f1c94e25f
3,592
py
Python
api/tests/integration/slack/test_slack_environment_viewset.py
mevinbabuc/flagsmith
751bd6cb4a34bd2f80af5a9c547559da9c2fa010
[ "BSD-3-Clause" ]
1,259
2021-06-10T11:24:09.000Z
2022-03-31T10:30:44.000Z
api/tests/integration/slack/test_slack_environment_viewset.py
mevinbabuc/flagsmith
751bd6cb4a34bd2f80af5a9c547559da9c2fa010
[ "BSD-3-Clause" ]
392
2021-06-10T11:12:29.000Z
2022-03-31T10:13:53.000Z
api/tests/integration/slack/test_slack_environment_viewset.py
mevinbabuc/flagsmith
751bd6cb4a34bd2f80af5a9c547559da9c2fa010
[ "BSD-3-Clause" ]
58
2021-06-11T03:18:07.000Z
2022-03-31T14:39:10.000Z
import json from django.urls import reverse from rest_framework import status def test_posting_env_config_return_400_when_slack_project_config_does_not_exist( admin_client, environment, environment_api_key ): # Given url = reverse( "api-v1:environments:integrations-slack-list", args=[environment_api_key], ) # When response = admin_client.post( url, data=json.dumps({"channel_id": "test_id", "enabled": True}), content_type="application/json", ) # Then assert response.status_code == status.HTTP_400_BAD_REQUEST assert "Slack api token not found" in response.json()[0] def test_posting_env_config_calls_join_channel( mocker, admin_client, environment, environment_api_key, slack_project_config, slack_bot_token, ): # Given url = reverse( "api-v1:environments:integrations-slack-list", args=[environment_api_key], ) env_config = {"channel_id": "channel_id1", "enabled": True} mocked_slack_wrapper = mocker.patch("integrations.slack.models.SlackWrapper") # When response = admin_client.post( url, data=json.dumps(env_config), content_type="application/json", ) # Then mocked_slack_wrapper.assert_called_with( api_token=slack_bot_token, channel_id=env_config["channel_id"] ) mocked_slack_wrapper.return_value.join_channel.assert_called_with() assert response.status_code == status.HTTP_201_CREATED assert response.json()["enabled"] == env_config["enabled"] assert response.json()["channel_id"] == env_config["channel_id"] def test_update_environment_config_calls_join_channel( mocker, admin_client, environment, environment_api_key, slack_environment_config, slack_bot_token, ): # Given url = reverse( "api-v1:environments:integrations-slack-detail", args=[environment_api_key, slack_environment_config], ) env_config = {"channel_id": "channel_id2", "enabled": True} mocked_slack_wrapper = mocker.patch("integrations.slack.models.SlackWrapper") # When response = admin_client.put( url, data=json.dumps(env_config), content_type="application/json", ) # Then mocked_slack_wrapper.assert_called_with( api_token=slack_bot_token, channel_id=env_config["channel_id"] ) mocked_slack_wrapper.return_value.join_channel.assert_called_with() assert response.status_code == status.HTTP_200_OK assert response.json()["enabled"] == env_config["enabled"] assert response.json()["channel_id"] == env_config["channel_id"] def test_get_environment_config_list_returns_200( admin_client, environment, environment_api_key, slack_environment_config ): # Given url = reverse( "api-v1:environments:integrations-slack-list", args=[environment_api_key], ) # When response = admin_client.get(url) # Then assert response.status_code == status.HTTP_200_OK assert len(response.json()) == 1 assert response.json()[0]["id"] == slack_environment_config def test_get_environment_config_returns_200( admin_client, environment, environment_api_key, slack_environment_config ): # Given url = reverse( "api-v1:environments:integrations-slack-detail", args=[environment_api_key, slack_environment_config], ) # When response = admin_client.get(url) # Then assert response.status_code == status.HTTP_200_OK assert response.json()["id"] == slack_environment_config
28.967742
81
0.703786
9853480e0035f1d8213c5f3fc6625e5497ce16e6
180
py
Python
mongo_folder/1.mongo.py
relax-space/python-learning
22987e20a4b0a741e1c5ed8603a952a0fc8dd4bd
[ "Apache-2.0" ]
null
null
null
mongo_folder/1.mongo.py
relax-space/python-learning
22987e20a4b0a741e1c5ed8603a952a0fc8dd4bd
[ "Apache-2.0" ]
null
null
null
mongo_folder/1.mongo.py
relax-space/python-learning
22987e20a4b0a741e1c5ed8603a952a0fc8dd4bd
[ "Apache-2.0" ]
null
null
null
""" python.exe .\mongo_folder\1.mongo.py """ import pymongo myclient = pymongo.MongoClient('mongodb://localhost:27017/') dblist = myclient.list_database_names() print(dblist)
16.363636
60
0.738889
8924e30450682cfa4df8e1c864e2c6ff41b4777c
842
py
Python
hackerrank/queues-and-stacks/queue_with_two_stacks.py
peoplenarthax/code-challenges
557a9d309d9a1602b5a0410a758d6342ec42c445
[ "MIT" ]
null
null
null
hackerrank/queues-and-stacks/queue_with_two_stacks.py
peoplenarthax/code-challenges
557a9d309d9a1602b5a0410a758d6342ec42c445
[ "MIT" ]
null
null
null
hackerrank/queues-and-stacks/queue_with_two_stacks.py
peoplenarthax/code-challenges
557a9d309d9a1602b5a0410a758d6342ec42c445
[ "MIT" ]
null
null
null
class MyQueue(object): def __init__(self): self.inbox = [] self.outbox = [] def __refill_outbox__(self): for i in range(len(self.inbox)): self.outbox.append(self.inbox.pop()) def peek(self): if len(self.outbox) == 0: self.__refill_outbox__() return self.outbox[-1] def pop(self): if len(self.outbox) == 0: self.__refill_outbox__() return self.outbox.pop() def put(self, value): self.inbox.append(value) queue = MyQueue() t = int(input()) for line in range(t): values = map(int, input().split()) values = list(values) if values[0] == 1: queue.put(values[1]) elif values[0] == 2: queue.pop() else: print(queue.peek())
24.057143
52
0.510689
0d141e9da67f23721799a9686a643581cf38f9cd
1,765
py
Python
mwparserfromhell/nodes/comment.py
hperala/kontuwikibot
f409e6fb45adf4e553dc326d9fb3c0d29eda6373
[ "MIT" ]
2
2019-03-14T09:30:13.000Z
2021-01-07T16:59:27.000Z
mwparserfromhell/nodes/comment.py
hperala/kontuwikibot
f409e6fb45adf4e553dc326d9fb3c0d29eda6373
[ "MIT" ]
null
null
null
mwparserfromhell/nodes/comment.py
hperala/kontuwikibot
f409e6fb45adf4e553dc326d9fb3c0d29eda6373
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2012-2016 Ben Kurtovic <ben.kurtovic@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import unicode_literals from . import Node from ..compat import str __all__ = ["Comment"] class Comment(Node): """Represents a hidden HTML comment, like ``<!-- foobar -->``.""" def __init__(self, contents): super(Comment, self).__init__() self._contents = contents def __unicode__(self): return "<!--" + str(self.contents) + "-->" @property def contents(self): """The hidden text contained between ``<!--`` and ``-->``.""" return self._contents @contents.setter def contents(self, value): self._contents = str(value)
36.770833
79
0.712181
c60a6503122c77858d678a23a8c8105071dc5433
56,404
py
Python
pymatgen/io/abinitio/pseudos.py
NadezhdaBzhilyanskaya/pymatgen
fae11a8142d457a649fa84ff9781eb2b39334bdc
[ "MIT" ]
1
2022-02-28T04:24:46.000Z
2022-02-28T04:24:46.000Z
pymatgen/io/abinitio/pseudos.py
NadezhdaBzhilyanskaya/pymatgen
fae11a8142d457a649fa84ff9781eb2b39334bdc
[ "MIT" ]
null
null
null
pymatgen/io/abinitio/pseudos.py
NadezhdaBzhilyanskaya/pymatgen
fae11a8142d457a649fa84ff9781eb2b39334bdc
[ "MIT" ]
null
null
null
""" This module provides objects describing the basic parameters of the pseudopotentials used in Abinit, and a parser to instantiate pseudopotential objects.. """ from __future__ import division, print_function import sys import os import abc import collections import json import warnings import numpy as np from pymatgen.core.design_patterns import FrozenDict, AttrDict from pymatgen.core.periodic_table import PeriodicTable from pymatgen.util.num_utils import iterator_from_slice from pymatgen.util.string_utils import list_strings, is_string __all__ = [ "Pseudo", "PseudoTable", ] __author__ = "Matteo Giantomassi" __version__ = "0.1" __maintainer__ = "Matteo Giantomassi" # Tools and helper functions. def straceback(): """Returns a string with the traceback.""" import traceback return traceback.format_exc() def _read_nlines(filename, nlines): """ Read at most nlines lines from file filename. If nlines is < 0, the entire file is read. """ if nlines < 0: with open(filename, 'r') as fh: return fh.readlines() lines = [] with open(filename, 'r') as fh: for (lineno, line) in enumerate(fh): if lineno == nlines: break lines.append(line) return lines _l2str = { 0: "s", 1: "p", 2: "d", 3: "f", 4: "g", 5: "h", 6: "i", } _str2l = {v: k for k, v in _l2str.items()} def l2str(l): """Convert the angular momentum l (int) to string.""" try: return _l2str[l] except KeyError: return "Unknown angular momentum, received l = %s" % l def str2l(s): """Convert a string to the angular momentum l (int)""" return _str2l[s] def read_dojo_report(filename): """Helper function to read the DOJO_REPORT from file.""" with open(filename, "r") as fh: lines = fh.readlines() try: start = lines.index("<DOJO_REPORT>\n") except ValueError: return {} stop = lines.index("</DOJO_REPORT>\n") return json.loads("".join(lines[start+1:stop])) #class DojoReport(dict): # _LATEST_VERSION = 1.0 # _START_LINE = "<DOJO_REPORT>\n" # _END_LINE = "</DOJO_REPORT>\n" # # @classmethod # def from_file(cls, path): # new = read_dojo_report(path) # new.__class__ = cls # return new # # #def to_file(self, path): _PTABLE = PeriodicTable() class Pseudo(object): """ Abstract base class defining the methods that must be implemented by the concrete pseudopotential classes. """ __metaclass__ = abc.ABCMeta #def __init__(self, filepath): # self.filepath = os.path.abspath(filepath) # self._dojo_report = {} @classmethod def aspseudo(cls, obj): """ Convert obj into a pseudo. Accepts: * Pseudo object. * string defining a valid path. """ if isinstance(obj, cls): return obj else: # Assumes path. return cls.from_file(obj) @staticmethod def from_file(filename): """ Return a pseudopotential object from filename. Note: the parser knows the concrete class that should be instanciated """ return PseudoParser().parse(filename) def __repr__(self): return "<%s at %s, name = %s>" % ( self.__class__.__name__, id(self), self.name) def __str__(self): """String representation.""" lines = [] app = lines.append app("<%s: %s>" % (self.__class__.__name__, self.name)) app(" summary: " + self.summary.strip()) app(" number of valence electrons: %s" % self.Z_val) #FIXME: rewrite the treatment of xc, use XML specs as starting point #app(" XC correlation (ixc): %s" % self._pspxc) #FIXME app(" maximum angular momentum: %s" % l2str(self.l_max)) app(" angular momentum for local part: %s" % l2str(self.l_local)) if self.isnc: app(" radius for non-linear core correction: %s" % self.nlcc_radius) app("") hint_normal = self.hint_for_accuracy() if hint_normal is not None: app(" hint for normal accuracy: %s" % str(hint_normal)) return "\n".join(lines) @abc.abstractproperty def summary(self): """String summarizing the most important properties.""" @property def filepath(self): return os.path.abspath(self.path) @property def name(self): """File basename.""" return os.path.basename(self.filepath) @abc.abstractproperty def Z(self): """The atomic number of the atom.""" @abc.abstractproperty def Z_val(self): """Valence charge""" @property def element(self): """Pymatgen `Element`.""" try: return _PTABLE[self.Z] except (KeyError, IndexError): return _PTABLE[int(self.Z)] @property def type(self): return self.__class__.__name__ @property def symbol(self): """Element symbol.""" return self.element.symbol @abc.abstractproperty def l_max(self): """Maximum angular momentum.""" @abc.abstractproperty def l_local(self): """Angular momentum used for the local part.""" @property def isnc(self): """True if norm-conserving pseudopotential.""" return isinstance(self, NcPseudo) @property def ispaw(self): """True if PAW pseudopotential.""" return isinstance(self, PawPseudo) #@abc.abstractproperty #def xc_type(self): # """XC family e.g LDA, GGA, MGGA.""" #@abc.abstractproperty #def xc_flavor(self): # """XC flavor e.g PW, PW91, PBE.""" #@property #def xc_functional(self): # """XC identifier e.g LDA-PW91, GGA-PBE, GGA-revPBE.""" # return "-".join([self.xc_type, self.xc_flavor]) #@abc.abstractproperty #def has_soc(self): # """True if pseudo contains spin-orbit coupling.""" #@abc.abstractmethod #def num_of_projectors(self, l='s'): # """Number of projectors for the angular channel l""" #@abc.abstractmethod #def generation_mode # """scalar scalar-relativistic, relativistic.""" @property def has_dojo_report(self): """True if self contains the DOJO_REPORT section.""" return bool(self.dojo_report) def delta_factor(self, accuracy="normal"): """ Returns the deltafactor [meV/natom] computed with the given accuracy. None if self does not have info on the deltafactor. """ if not self.has_dojo_report: return None try: return self.dojo_report["delta_factor"][accuracy]["dfact"] except KeyError: return None def read_dojo_report(self): """Read the DOJO_REPORT section, returns {} if section is not present.""" return read_dojo_report(self.path) def write_dojo_report(self, report): """Write a new DOJO_REPORT section to the pseudopotential file.""" path = self.path # Create JSON string from report. jstring = json.dumps(report, indent=4, sort_keys=True) + "\n" # Read lines from file and insert jstring between the tags. with open(path, "r") as fh: lines = fh.readlines() try: start = lines.index("<DOJO_REPORT>\n") except ValueError: start = -1 if start == -1: # DOJO_REPORT was not present. lines += ["\n", "<DOJO_REPORT>\n", jstring , "</DOJO_REPORT>\n",] else: stop = lines.index("</DOJO_REPORT>\n") lines.insert(stop, jstring) del lines[start+1:stop] # Write new file. with open(path, "w") as fh: fh.writelines(lines) def remove_dojo_report(self): """Remove the DOJO_REPORT section from the pseudopotential file.""" # Read lines from file and insert jstring between the tags. path = self.path with open(path, "r") as fh: lines = fh.readlines() try: start = lines.index("<DOJO_REPORT>\n") except ValueError: start = -1 if start == -1: return stop = lines.index("</DOJO_REPORT>\n") if stop == -1: return del lines[start+1:stop] # Write new file. with open(path, "w") as fh: fh.writelines(lines) def hint_for_accuracy(self, accuracy="normal"): """ Returns an hint object with parameters such as ecut [Ha] and aug_ratio for given accuracy. Returns None if no hint is available. Args: accuracy: ["low", "normal", "high"] """ if self.has_dojo_report: return Hint.from_dict(self.dojo_report["hints"][accuracy]) else: return None @property def has_hints(self): """True if self provides hints on the cutoff energy.""" for acc in ["low", "normal", "high"]: if self.hint_for_accuracy(acc) is None: return False return True #@property #def md5(self): # """ # Return the checksum of the pseudopotential file. # """ # import hashlib # hasher = hashlib.md5() # with open(self.filepath, "r") as fh: # hasher.update(fh.read()) # return hasher.hexdigest() class NcPseudo(object): """ Abstract class defining the methods that must be implemented by the concrete classes representing norm-conserving pseudopotentials. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def nlcc_radius(self): """ Radius at which the core charge vanish (i.e. cut-off in a.u.). Returns 0.0 if nlcc is not used. """ @property def has_nlcc(self): """True if the pseudo is generated with non-linear core correction.""" return self.nlcc_radius > 0.0 @property def rcore(self): """Radius of the pseudization sphere in a.u.""" try: return self._core except AttributeError: return None class PawPseudo(object): """ Abstract class that defines the methods that must be implemented by the concrete classes representing PAW pseudopotentials. """ __metaclass__ = abc.ABCMeta #def nlcc_radius(self): # """ # Radius at which the core charge vanish (i.e. cut-off in a.u.). # Returns 0.0 if nlcc is not used. # """ # return 0.0 # #@property #def has_nlcc(self): # """True if the pseudo is generated with non-linear core correction.""" # return True @abc.abstractproperty def paw_radius(self): """Radius of the PAW sphere in a.u.""" @property def rcore(self): """Alias of paw_radius.""" return self.paw_radius class AbinitPseudo(Pseudo): """ An AbinitPseudo is a pseudopotential whose file contains an abinit header. """ def __init__(self, path, header): """ Args: path: Filename. header: `AbinitHeader` instance. """ self.path = path self._summary = header.summary if hasattr(self, "dojo_report"): self.dojo_report = header.dojo_report else: self.dojo_report = {} #self.pspcod = header.pspcod for (attr_name, desc) in header.items(): value = header.get(attr_name, None) # Hide these attributes since one should always use the public interface. setattr(self, "_" + attr_name, value) @property def summary(self): """Summary line reported in the ABINIT header.""" return self._summary.strip() @property def Z(self): return self._zatom @property def Z_val(self): return self._zion @property def l_max(self): return self._lmax @property def l_local(self): return self._lloc class NcAbinitPseudo(NcPseudo, AbinitPseudo): """ Norm-conserving pseudopotential in the Abinit format. """ @property def summary(self): return self._summary.strip() @property def Z(self): return self._zatom @property def Z_val(self): """Number of valence electrons.""" return self._zion @property def l_max(self): return self._lmax @property def l_local(self): return self._lloc @property def nlcc_radius(self): return self._rchrg class PawAbinitPseudo(PawPseudo, AbinitPseudo): """Paw pseudopotential in the Abinit format.""" @property def paw_radius(self): return self._r_cut #def orbitals(self): class Hint(collections.namedtuple("Hint", "ecut aug_ratio")): """ Suggested value for the cutoff energy [Hartree units] and the augmentation ratio (PAW pseudo) """ @property def to_dict(self): return {f: getattr(self, f) for f in self._fields} @classmethod def from_dict(cls, d): return cls(**{k: v for k,v in d.items() if not k.startswith("@")}) def _dict_from_lines(lines, key_nums, sep=None): """ Helper function to parse formatted text structured like: value1 value2 ... sep key1, key2 ... key_nums is a list giving the number of keys for each line. 0 if line should be skipped. sep is a string denoting the character that separates the keys from the value (None if no separator is present). Returns: dict{key1 : value1, key2 : value2, ...} Raises: ValueError if parsing fails. """ if is_string(lines): lines = [lines] if not isinstance(key_nums, collections.Iterable): key_nums = list(key_nums) if len(lines) != len(key_nums): err_msg = "lines = %s\n key_num = %s" % (str(lines), str(key_nums)) raise ValueError(err_msg) kwargs = FrozenDict() for (i, nk) in enumerate(key_nums): if nk == 0: continue line = lines[i] tokens = [t.strip() for t in line.split()] values, keys = tokens[:nk], "".join(tokens[nk:]) # Sanitize keys: In some case we might string in for foo[,bar] keys.replace("[", "").replace("]", "") keys = keys.split(",") if sep is not None: check = keys[0][0] if check != sep: raise ValueError("Expecting separator %s, got %s" % (sep, check)) keys[0] = keys[0][1:] if len(values) != len(keys): msg = "line: %s\n len(keys) != len(value)\nkeys: %s\n values: %s" % (line, keys, values) warnings.warn(msg) #raise ValueError(msg) kwargs.update(zip(keys, values)) return kwargs class AbinitHeader(dict): """Dictionary whose keys can be also accessed as attributes.""" def __getattr__(self, name): try: # Default behaviour return super(AbinitHeader, self).__getattribute__(name) except AttributeError: try: # Try in the dictionary. return self[name] except KeyError as exc: raise AttributeError(str(exc)) def _int_from_str(string): """ Convert string into integer Raise: TypeError if string is not a valid integer """ float_num = float(string) int_num = int(float_num) if float_num == int_num: return int_num else: raise TypeError("Cannot convert string %s to int" % string) class NcAbinitHeader(AbinitHeader): """ The abinit header found in the NC pseudopotential files. """ _attr_desc = collections.namedtuple("att", "default astype") _VARS = { # Mandatory "zatom" : _attr_desc(None, _int_from_str), "zion" : _attr_desc(None, float), "pspdat" : _attr_desc(None, float), "pspcod" : _attr_desc(None, int), "pspxc" : _attr_desc(None, int), "lmax" : _attr_desc(None, int), "lloc" : _attr_desc(None, int), "r2well" : _attr_desc(None, float), "mmax" : _attr_desc(None, float), # Optional variables for non linear-core correction. HGH does not have it. "rchrg" : _attr_desc(0.0, float), # radius at which the core charge vanish (i.e. cut-off in a.u.) "fchrg" : _attr_desc(0.0, float), "qchrg" : _attr_desc(0.0, float), } del _attr_desc def __init__(self, summary, **kwargs): super(NcAbinitHeader, self).__init__() # APE uses llocal instead of lloc. if "llocal" in kwargs: kwargs["lloc"] = kwargs.pop("llocal") self.summary = summary.strip() for (key, desc) in NcAbinitHeader._VARS.items(): default, astype = desc.default, desc.astype value = kwargs.pop(key, None) if value is None: value = default if default is None: raise RuntimeError("Attribute %s must be specified" % key) else: try: value = astype(value) except: raise RuntimeError("Conversion Error for key, value %s" % (key, value)) self[key] = value # Add dojo_report self["dojo_report"] = kwargs.pop("dojo_report", {}) #if kwargs: # raise RuntimeError("kwargs should be empty but got %s" % str(kwargs)) @staticmethod def fhi_header(filename, ppdesc): """Parse the FHI abinit header.""" # Example: # Troullier-Martins psp for element Sc Thu Oct 27 17:33:22 EDT 1994 # 21.00000 3.00000 940714 zatom, zion, pspdat # 1 1 2 0 2001 .00000 pspcod,pspxc,lmax,lloc,mmax,r2well # 1.80626423934776 .22824404341771 1.17378968127746 rchrg,fchrg,qchrg lines = _read_nlines(filename, -1) try: header = _dict_from_lines(lines[:4], [0, 3, 6, 3]) except ValueError: # The last record with rchrg ... seems to be optional. header = _dict_from_lines(lines[:3], [0, 3, 6]) summary = lines[0] header["dojo_report"] = read_dojo_report(filename) #print(header) return NcAbinitHeader(summary, **header) @staticmethod def hgh_header(filename, ppdesc): """Parse the HGH abinit header.""" # Example: #Hartwigsen-Goedecker-Hutter psp for Ne, from PRB58, 3641 (1998) # 10 8 010605 zatom,zion,pspdat # 3 1 1 0 2001 0 pspcod,pspxc,lmax,lloc,mmax,r2well lines = _read_nlines(filename, -1) header = _dict_from_lines(lines[:3], [0, 3, 6]) summary = lines[0] header["dojo_report"] = read_dojo_report(filename) return NcAbinitHeader(summary, **header) @staticmethod def tm_header(filename, ppdesc): """Parse the TM abinit header.""" # Example: #Troullier-Martins psp for element Fm Thu Oct 27 17:28:39 EDT 1994 #100.00000 14.00000 940714 zatom, zion, pspdat # 1 1 3 0 2001 .00000 pspcod,pspxc,lmax,lloc,mmax,r2well # 0 4.085 6.246 0 2.8786493 l,e99.0,e99.9,nproj,rcpsp # .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm # 1 3.116 4.632 1 3.4291849 l,e99.0,e99.9,nproj,rcpsp # .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm # 2 4.557 6.308 1 2.1865358 l,e99.0,e99.9,nproj,rcpsp # .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm # 3 23.251 29.387 1 2.4776730 l,e99.0,e99.9,nproj,rcpsp # .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm # 3.62474762267880 .07409391739104 3.07937699839200 rchrg,fchrg,qchrg lines = _read_nlines(filename, -1) header = [] for (lineno, line) in enumerate(lines): header.append(line) if lineno == 2: # Read lmax. tokens = line.split() pspcod, pspxc, lmax, lloc = map(int, tokens[:4]) mmax, r2well = map(float, tokens[4:6]) #if tokens[-1].strip() != "pspcod,pspxc,lmax,lloc,mmax,r2well": # raise RuntimeError("%s: Invalid line\n %s" % (filename, line)) lines = lines[3:] break # TODO # Parse the section with the projectors. #0 4.085 6.246 0 2.8786493 l,e99.0,e99.9,nproj,rcpsp #.00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm projectors = collections.OrderedDict() for idx in range(2*(lmax+1)): line = lines[idx] if idx % 2 == 0: proj_info = [line,] if idx % 2 == 1: proj_info.append(line) d = _dict_from_lines(proj_info, [5,4]) projectors[int(d["l"])] = d # Add the last line with info on nlcc. header.append(lines[idx+1]) summary = header[0] header = _dict_from_lines(header, [0,3,6,3]) header["dojo_report"] = read_dojo_report(filename) return NcAbinitHeader(summary, **header) class PawAbinitHeader(AbinitHeader): """ The abinit header found in the PAW pseudopotential files. """ _attr_desc = collections.namedtuple("att", "default astype") _VARS = { "zatom" : _attr_desc(None, _int_from_str), "zion" : _attr_desc(None, float), "pspdat" : _attr_desc(None, float), "pspcod" : _attr_desc(None, int), "pspxc" : _attr_desc(None, int), "lmax" : _attr_desc(None, int), "lloc" : _attr_desc(None, int), "mmax" : _attr_desc(None, int), "r2well" : _attr_desc(None, float), "pspfmt" : _attr_desc(None, str), "creatorID" : _attr_desc(None, int), "basis_size" : _attr_desc(None, int), "lmn_size" : _attr_desc(None, int), "orbitals" : _attr_desc(None, list), "number_of_meshes": _attr_desc(None, int), "r_cut" : _attr_desc(None, float), # r_cut(PAW) in the header "shape_type" : _attr_desc(None, int), "rshape" : _attr_desc(None, float), } del _attr_desc def __init__(self, summary, **kwargs): super(PawAbinitHeader, self).__init__() self.summary = summary.strip() for (key, desc) in self._VARS.items(): default, astype = desc.default, desc.astype value = kwargs.pop(key, None) if value is None: value = default if default is None: raise RuntimeError("Attribute %s must be specified" % key) else: try: value = astype(value) except: raise RuntimeError("Conversion Error for key %s, with value %s" % (key, value)) self[key] = value if kwargs: raise RuntimeError("kwargs should be empty but got %s" % str(kwargs)) @staticmethod def paw_header(filename, ppdesc): """Parse the PAW abinit header.""" #Paw atomic data for element Ni - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.0.5 # 28.000 18.000 20061204 : zatom,zion,pspdat # 7 7 2 0 350 0. : pspcod,pspxc,lmax,lloc,mmax,r2well # paw3 1305 : pspfmt,creatorID # 5 13 : basis_size,lmn_size # 0 0 1 1 2 : orbitals # 3 : number_of_meshes # 1 3 350 1.1803778368E-05 3.5000000000E-02 : mesh 1, type,size,rad_step[,log_step] # 2 1 921 2.500000000000E-03 : mesh 2, type,size,rad_step[,log_step] # 3 3 391 1.1803778368E-05 3.5000000000E-02 : mesh 3, type,size,rad_step[,log_step] # 2.3000000000 : r_cut(SPH) # 2 0. # Example #C (US d-loc) - PAW data extracted from US-psp (D.Vanderbilt) - generated by USpp2Abinit v2.3.0 # 6.000 4.000 20090106 : zatom,zion,pspdat # 7 11 1 0 560 0. : pspcod,pspxc,lmax,lloc,mmax,r2well # paw4 2230 : pspfmt,creatorID # 4 8 : basis_size,lmn_size # 0 0 1 1 : orbitals # 5 : number_of_meshes # 1 2 560 1.5198032759E-04 1.6666666667E-02 : mesh 1, type,size,rad_step[,log_step] # 2 2 556 1.5198032759E-04 1.6666666667E-02 : mesh 2, type,size,rad_step[,log_step] # 3 2 576 1.5198032759E-04 1.6666666667E-02 : mesh 3, type,size,rad_step[,log_step] # 4 2 666 1.5198032759E-04 1.6666666667E-02 : mesh 4, type,size,rad_step[,log_step] # 5 2 673 1.5198032759E-04 1.6666666667E-02 : mesh 5, type,size,rad_step[,log_step] # 1.5550009124 : r_cut(PAW) # 3 0. : shape_type,rshape #Paw atomic data for element Si - Generated by atompaw v3.0.1.3 & AtomPAW2Abinit v3.3.1 # 14.000 4.000 20120814 : zatom,zion,pspdat # 7 11 1 0 663 0. : pspcod,pspxc,lmax,lloc,mmax,r2well # paw5 1331 : pspfmt,creatorID # 4 8 : basis_size,lmn_size # 0 0 1 1 : orbitals # 5 : number_of_meshes # 1 2 663 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 1, type,size,rad_step[,log_step] # 2 2 658 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 2, type,size,rad_step[,log_step] # 3 2 740 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 3, type,size,rad_step[,log_step] # 4 2 819 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 4, type,size,rad_step[,log_step] # 5 2 870 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 5, type,size,rad_step[,log_step] # 1.5669671236 : r_cut(PAW) # 2 0. : shape_type,rshape supported_formats = ["paw3", "paw4", "paw5"] if ppdesc.format not in supported_formats: raise NotImplementedError("format %s not in %s" % (ppdesc.format, supported_formats)) lines = _read_nlines(filename, -1) summary = lines[0] header = _dict_from_lines(lines[:5], [0, 3, 6, 2, 2], sep=":") lines = lines[5:] # TODO # Parse orbitals and number of meshes. header["orbitals"] = [int(t) for t in lines[0].split(":")[0].split()] header["number_of_meshes"] = num_meshes = int(lines[1].split(":")[0]) #print filename, header # Skip meshes = lines = lines[2+num_meshes:] #for midx in range(num_meshes): # l = midx + 1 #print lines[0] header["r_cut"] = float(lines[0].split(":")[0]) #print lines[1] header.update(_dict_from_lines(lines[1], [2], sep=":")) report = read_dojo_report(filename) if report: header["dojo_report"] = report #print("PAW header\n", header) return PawAbinitHeader(summary, **header) class PseudoParserError(Exception): """Base Error class for the exceptions raised by `PseudoParser`""" class PseudoParser(object): """ Responsible for parsing pseudopotential files and returning pseudopotential objects. Usage:: pseudo = PseudoParser().parse("filename") """ Error = PseudoParserError # Supported values of pspcod ppdesc = collections.namedtuple("ppdesc", "pspcod name psp_type format") # TODO Recheck _PSPCODES = collections.OrderedDict( { 1 : ppdesc(1, "TM", "NC", None), 3 : ppdesc(3, "HGH", "NC", None), #4 : ppdesc(4, "NC", , None), #5 : ppdesc(5, "NC", , None), 6 : ppdesc(6, "FHI", "NC", None), 7 : ppdesc(6, "PAW_abinit_text", "PAW", None), #8 : ppdesc(8, "NC", None), 10 : ppdesc(10, "HGHK", "NC", None), }) del ppdesc def __init__(self): # List of files that have been parsed succesfully. self._parsed_paths = [] # List of files that could not been parsed. self._wrong_paths = [] def scan_directory(self, dirname, exclude_exts=(), exclude_fnames=()): """ Analyze the files contained in directory dirname. Args: dirname: directory path exclude_exts: list of file extensions that should be skipped. exclude_fnames: list of file names that should be skipped. returns: List of pseudopotential objects. """ for (i, ext) in enumerate(exclude_exts): if not ext.strip().startswith("."): exclude_exts[i] = "." + ext.strip() # Exclude files depending on the extension. paths = [] for fname in os.listdir(dirname): root, ext = os.path.splitext(fname) path = os.path.join(dirname, fname) if (ext in exclude_exts or fname in exclude_fnames or fname.startswith(".") or not os.path.isfile(path)): continue paths.append(path) pseudos = [] for path in paths: # Parse the file and generate the pseudo. try: pseudo = self.parse(path) except: pseudo = None if pseudo is not None: pseudos.append(pseudo) self._parsed_paths.extend(path) else: self._wrong_paths.extend(path) return pseudos def read_ppdesc(self, filename): """ Read the pseudopotential descriptor from file filename. Returns: Pseudopotential descriptor. None if filename is not a valid pseudopotential file. Raises: `PseudoParserError` if fileformat is not supported. """ if filename.endswith(".xml"): raise self.Error("XML pseudo not supported yet") else: # Assume file with the abinit header. lines = _read_nlines(filename, -1) for (lineno, line) in enumerate(lines): if lineno == 2: try: tokens = line.split() pspcod, pspxc = map(int, tokens[:2]) except: msg = "%s: Cannot parse pspcod, pspxc in line\n %s" % (filename, line) sys.stderr.write(msg) return None #if tokens[-1].strip().replace(" ","") not in ["pspcod,pspxc,lmax,lloc,mmax,r2well", # "pspcod,pspxc,lmax,llocal,mmax,r2well"]: # raise self.Error("%s: Invalid line\n %s" % (filename, line)) # return None if pspcod not in self._PSPCODES: raise self.Error("%s: Don't know how to handle pspcod %s\n" % (filename, pspcod)) ppdesc = self._PSPCODES[pspcod] if pspcod == 7: # PAW -> need to know the format pspfmt tokens = lines[lineno+1].split() pspfmt, creatorID = tokens[:2] #if tokens[-1].strip() != "pspfmt,creatorID": # raise self.Error("%s: Invalid line\n %s" % (filename, line)) # return None ppdesc = ppdesc._replace(format = pspfmt) return ppdesc return None def parse(self, filename): """ Read and parse a pseudopotential file. Main entry point for client code. Returns: pseudopotential object or None if filename is not a valid pseudopotential file. """ path = os.path.abspath(filename) # Only PAW supports XML at present. if filename.endswith(".xml"): return PawXmlSetup(path) ppdesc = self.read_ppdesc(path) if ppdesc is None: return None psp_type = ppdesc.psp_type parsers = { "FHI" : NcAbinitHeader.fhi_header, "TM" : NcAbinitHeader.tm_header, "HGH" : NcAbinitHeader.hgh_header, "HGHK" : NcAbinitHeader.hgh_header, "PAW_abinit_text": PawAbinitHeader.paw_header, } try: header = parsers[ppdesc.name](path, ppdesc) except Exception as exc: raise self.Error(path + ":\n" + straceback()) root, ext = os.path.splitext(path) # Add the content of input file (if present). # The name of the input is name + ".ini" #input = None #input_path = root + ".ini" #if os.path.exists(input_path): # with open(input_path, 'r') as fh: # input = fh.read() if psp_type == "NC": pseudo = NcAbinitPseudo(path, header) elif psp_type == "PAW": pseudo = PawAbinitPseudo(path, header) else: raise NotImplementedError("psp_type not in [NC, PAW]") return pseudo #TODO use RadialFunction from pseudo_dojo. class RadialFunction(collections.namedtuple("RadialFunction", "mesh values")): pass class PawXmlSetup(Pseudo, PawPseudo): def __init__(self, filepath): # FIXME self.dojo_report = {} self.path = os.path.abspath(filepath) # Get the XML root (this trick is used to that the object is pickleable). root = self.root # Get the version of the XML format self.paw_setup_version = root.get("version") # Info on the atom. atom_attrib = root.find("atom").attrib #self._symbol = atom_attrib["symbol"] self._zatom = int(float(atom_attrib["Z"])) self.core, self.valence = map(float, [atom_attrib["core"], atom_attrib["valence"]]) #xc_info = root.find("atom").attrib #self.xc_type, self.xc_name = xc_info["type"], xc_info["name"] #self.ae_energy = {k: float(v) for k,v in root.find("ae_energy").attrib.items()} # Old XML files do not define this field! # In this case we set the PAW radius to None. #self._paw_radius = float(root.find("PAW_radius").attrib["rpaw"]) pawr_element = root.find("PAW_radius") self._paw_radius = None if pawr_element is not None: self._paw_radius = float(pawr_element.attrib["rpaw"]) #<valence_states> # <state n="2" l="0" f="2" rc="1.10" e="-0.6766" id="N-2s"/> # <state n="2" l="1" f="3" rc="1.10" e="-0.2660" id="N-2p"/> # <state l="0" rc="1.10" e=" 0.3234" id="N-s1"/> # <state l="1" rc="1.10" e=" 0.7340" id="N-p1"/> # <state l="2" rc="1.10" e=" 0.0000" id="N-d1"/> #</valence_states> # # The valence_states element contains several state elements. # For this setup, the first two lines describe bound eigenstates # with occupation numbers and principal quantum numbers. # Notice, that the three additional unbound states should have no f and n attributes. # In this way, we know that only the first two bound states (with f and n attributes) # should be used for constructing an initial guess for the wave functions. self.valence_states = {} for node in root.find("valence_states"): attrib = AttrDict(node.attrib) assert attrib.id not in self.valence_states self.valence_states[attrib.id] = attrib #print(self.valence_states) # Parse the radial grids self.rad_grids = {} for node in root.findall("radial_grid"): grid_params = node.attrib id = grid_params["id"] assert id not in self.rad_grids self.rad_grids[id] = self._eval_grid(grid_params) def __getstate__(self): """ Return state is pickled as the contents for the instance. In this case we just remove the XML root element process since Element object cannot be pickled. """ return {k:v for k,v in self.__dict__.items() if k not in ["_root",]} @property def root(self): try: return self._root except AttributeError: from xml.etree import cElementTree as ET tree = ET.parse(self.filepath) self._root = tree.getroot() return self._root @property def Z(self): return self._zatom @property def Z_val(self): """Number of valence electrons.""" return self.valence # FIXME @property def l_max(self): """Maximum angular momentum.""" return None @property def l_local(self): """Angular momentum used for the local part.""" return None @property def summary(self): """String summarizing the most important properties.""" return "" @property def paw_radius(self): return self._paw_radius @staticmethod def _eval_grid(grid_params): """ This function receives a dictionary with the parameters defining the radial mesh and returns a `ndarray` with the mesh """ eq = grid_params.get("eq").replace(" " ,"") istart, iend = int(grid_params.get("istart")), int(grid_params.get("iend")) indices = range(istart, iend+1) if eq == 'r=a*exp(d*i)': a, d = float(grid_params['a']), float(grid_params['d']) mesh = [a * np.exp(d * i) for i in indices] elif eq == 'r=a*i/(n-i)': a, n = float(grid_params['a']), float(grid_params['n']) mesh = [a * i / (n - i) for i in indices] elif eq == 'r=a*(exp(d*i)-1)': a, d = float(grid_params['a']), float(grid_params['d']) mesh = [a * (np.exp(d * i) - 1.0) for i in indices] elif eq == 'r=d*i': d = float(grid_params['d']) mesh = [d * i for i in indices] elif eq == 'r=(i/n+a)^5/a-a^4': a, n = float(grid_params['a']), float(grid_params['n']) mesh = [(i / n + a)**5 / a - a**4 for i in indices] else: raise ValueError('Unknown grid type: %s' % eq) return np.array(mesh) def _parse_radfunc(self, func_name): """Parse the first occurence of func_name in the XML file.""" node = self.root.find(func_name) grid = node.attrib["grid"] values = np.array([float(s) for s in node.text.split()]) return self.rad_grids[grid], values, node.attrib def _parse_all_radfuncs(self, func_name): """Parse all the nodes with tag func_name in the XML file.""" for node in self.root.findall(func_name): grid = node.attrib["grid"] values = np.array([float(s) for s in node.text.split()]) yield self.rad_grids[grid], values, node.attrib @property def ae_core_density(self): """The all-electron radial density.""" try: return self._ae_core_density except AttributeError: mesh, values, attrib = self._parse_radfunc("ae_core_density") self._ae_core_density = RadialFunction(mesh, values) return self._ae_core_density @property def pseudo_core_density(self): """The pseudized radial density.""" try: return self._pseudo_core_density except AttributeError: mesh, values, attrib = self._parse_radfunc("pseudo_core_density") self._pseudo_core_density = RadialFunction(mesh, values) return self._pseudo_core_density @property def ae_partial_waves(self): """Dictionary with the AE partial waves indexed by state.""" try: return self._ae_partial_waves except AttributeError: self._ae_partial_waves = {} for (mesh, values, attrib) in self._parse_all_radfuncs("ae_partial_wave"): state = attrib["state"] val_state = self.valence_states[state] self._ae_partial_waves[state] = RadialFunction(mesh, values) #print("val_state", val_state) return self._ae_partial_waves @property def pseudo_partial_waves(self): """Dictionary with the pseudo partial waves indexed by state.""" try: return self._pseudo_partial_waves except AttributeError: self._pseudo_partial_waves = {} for (mesh, values, attrib) in self._parse_all_radfuncs("pseudo_partial_wave"): state = attrib["state"] val_state = self.valence_states[state] self._pseudo_partial_waves[state] = RadialFunction(mesh, values) return self._pseudo_partial_waves @property def projector_functions(self): """Dictionary with the PAW projectors indexed by state.""" try: return self._projector_functions except AttributeError: self._projector_functions = {} for (mesh, values, attrib) in self._parse_all_radfuncs("projector_function"): state = attrib["state"] val_state = self.valence_states[state] self._projector_functions[state] = RadialFunction(mesh, values) return self._projector_functions def plot_densities(self, **kwargs): """ Plot the PAW densities. ================ ============================================================== kwargs Meaning ================ ============================================================== title Title of the plot (Default: "Densities"). show True to show the figure (Default). savefig 'abc.png' or 'abc.eps' to save the figure to a file. ================ ============================================================== Returns: `matplotlib` figure """ title = kwargs.pop("title", "Densities") show = kwargs.pop("show", True) savefig = kwargs.pop("savefig", None) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.grid(True) ax.set_xlabel('r [Bohr]') #ax.set_ylabel('density') for i, den_name in enumerate(["ae_core_density", "pseudo_core_density"]): rden = getattr(self, den_name) label = "$n_c$" if i == 1 else "$\\tilde{n}_c$" ax.plot(rden.mesh, rden.mesh * rden.values, label=label, lw=2) plt.legend(loc="best") if title is not None: fig.suptitle(title) if show: plt.show() if savefig: fig.savefig(savefig) return fig def plot_waves(self, **kwargs): """ Plot the AE and the pseudo partial waves. ================ ============================================================== kwargs Meaning ================ ============================================================== title Title of the plot (Default: "Partial Waves"). show True to show the figure (Default). savefig 'abc.png' or 'abc.eps' to save the figure to a file. ================ ============================================================== Returns: `matplotlib` figure """ title = kwargs.pop("title", "Partial Waves") show = kwargs.pop("show", True) savefig = kwargs.pop("savefig", None) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.grid(True) ax.set_xlabel("r [Bohr]") ax.set_ylabel("$r\phi,\\, r\\tilde\phi\, [Bohr]^{-\\frac{1}{2}}$") ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--") #ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1)) for state, rfunc in self.pseudo_partial_waves.items(): ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, lw=2, label="PS-WAVE: " + state) for state, rfunc in self.ae_partial_waves.items(): ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, lw=2, label="AE-WAVE: " + state) plt.legend(loc="best") if title is not None: fig.suptitle(title) if show: plt.show() if savefig: fig.savefig(savefig) return fig def plot_projectors(self, **kwargs): """ Plot the PAW projectors. ================ ============================================================== kwargs Meaning ================ ============================================================== title Title of the plot (Default: "Projectors"). show True to show the figure (Default). savefig 'abc.png' or 'abc.eps' to save the figure to a file. ================ ============================================================== Returns: `matplotlib` figure """ title = kwargs.pop("title", "Projectors") show = kwargs.pop("show", True) savefig = kwargs.pop("savefig", None) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.grid(True) ax.set_xlabel('r [Bohr]') ax.set_ylabel("$r\\tilde p\, [Bohr]^{-\\frac{1}{2}}$") ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--") #ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1)) for state, rfunc in self.projector_functions.items(): ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, label="TPROJ: " + state) plt.legend(loc="best") if title is not None: fig.suptitle(title) if show: plt.show() if savefig: fig.savefig(savefig) return fig #def plot_potentials(self, **kwargs): # """ # ================ ============================================================== # kwargs Meaning # ================ ============================================================== # title Title of the plot (Default: None). # show True to show the figure (Default). # savefig 'abc.png' or 'abc.eps' to save the figure to a file. # ================ ============================================================== # Returns: # `matplotlib` figure # """ # title = kwargs.pop("title", "Potentials") # show = kwargs.pop("show", True) # savefig = kwargs.pop("savefig", None) # import matplotlib.pyplot as plt # fig = plt.figure() # ax = fig.add_subplot(1,1,1) # ax.grid(True) # ax.set_xlabel('r [Bohr]') # ax.set_ylabel('density') # ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--") # ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1)) # for state, rfunc in self.potentials.items(): # ax.plot(rfunc.mesh, rfunc.values, label="TPROJ: " + state) # plt.legend(loc="best") # if title is not None: # fig.suptitle(title) # if show: # plt.show() # if savefig: # fig.savefig(savefig) # return fig class PseudoTable(collections.Sequence): """ Define the pseudopotentials from the element table. Individidual elements are accessed by name, symbol or atomic number. For example, the following all retrieve iron: print elements[26] Fe print elements.Fe Fe print elements.symbol('Fe') Fe print elements.name('iron') Fe print elements.isotope('Fe') Fe """ @classmethod def astable(cls, items): """ Return an instance of `PseudoTable` from the iterable items. """ if isinstance(items, cls): return items return cls(items) def __init__(self, pseudos): """ Args: pseudos: List of pseudopotentials or filepaths """ # Store pseudos in a default dictionary with z as key. # Note that we can have more than one pseudo for given z. # hence the values are lists of pseudos. if not isinstance(pseudos, collections.Iterable): pseudos = [pseudos] if is_string(pseudos[0]): pseudos = list_strings(pseudos) self._pseudos_with_z = collections.defaultdict(list) for pseudo in pseudos: p = pseudo if not isinstance(pseudo, Pseudo): p = Pseudo.from_file(pseudo) self._pseudos_with_z[p.Z].append(p) for z in self.zlist: pseudo_list = self._pseudos_with_z[z] symbols = [p.symbol for p in pseudo_list] symbol = symbols[0] if any(symb != symbol for symb in symbols): raise ValueError("All symbols must be equal while they are: %s" % str(symbols)) setattr(self, symbol, pseudo_list) def __getitem__(self, Z): """ Retrieve pseudos for the atomic number z. Accepts both int and slice objects. """ if isinstance(Z, slice): assert Z.stop is not None pseudos = [] for znum in iterator_from_slice(Z): pseudos.extend(self._pseudos_with_z[znum]) return pseudos else: return self._pseudos_with_z[Z] def __len__(self): return len(list(self.__iter__())) def __iter__(self): """Process the elements in Z order.""" for z in self.zlist: for pseudo in self._pseudos_with_z[z]: yield pseudo def __repr__(self): return "<%s at %s>" % (self.__class__.__name__, id(self)) def __str__(self): lines = [] app = lines.append app("<%s, len=%d>" % (self.__class__.__name__, len(self))) for pseudo in self: app(str(pseudo)) return "\n".join(lines) @property def allnc(self): """True if all pseudos are norm-conserving.""" return all(p.isnc for p in self) @property def allpaw(self): """True if all pseudos are PAW.""" return all(p.ispaw for p in self) @property def zlist(self): """Ordered list with the atomic numbers available in the table.""" zlist = list(self._pseudos_with_z.keys()) zlist.sort() return zlist def iscomplete(self, zmax=118): """ True if table is complete i.e. all elements with Z < zmax have at least on pseudopotential """ for z in range(1, zmax): if not self[z]: return False return True def pseudos_with_symbol(self, symbol): """ Return the list of pseudopotentials in the table the with given symbol. Return an empty list if no pseudo is avaiable """ try: return getattr(self, str(symbol)) except AttributeError: #raise return [] def pseudo_from_name(self, name): """Return the pseudo in the table with the given name""" for pseudo in self: if pseudo.name == name: return pseudo return None def list_properties(self, *props, **kw): """ Print a list of elements with the given set of properties. Args: *prop1*, *prop2*, ... : string Name of the properties to print *format*: string Template for displaying the element properties, with one % for each property. For example, print a table of mass and density. from periodictable import elements elements.list_properties('symbol','mass','density', format="%-2s: %6.2f u %5.2f g/cm^3") H : 1.01 u 0.07 g/cm^3 He: 4.00 u 0.12 g/cm^3 Li: 6.94 u 0.53 g/cm^3 ... Bk: 247.00 u 14.00 g/cm^3 """ format = kw.pop('format',None) assert len(kw) == 0 for pseudo in self: try: values = tuple(getattr(pseudo, p) for p in props) except AttributeError: # Skip elements which don't define all the attributes continue # Skip elements with a value of None if any(v is None for v in values): continue if format is None: print(" ".join(str(p) for p in values)) else: try: print(format % values) except: print("format",format,"args",values) raise #def print_table(self, stream=sys.stdout, filter_function=None): # """ # A pretty ASCII printer for the periodic table, based on some filter_function. # Args: # filter_function: # A filtering function that take a Pseudo as input and returns a boolean. # For example, setting filter_function = lambda el: el.Z_val > 2 will print # a periodic table containing only pseudos with Z_val > 2. # """ # for row in range(1, 10): # rowstr = [] # for group in range(1, 19): # el = Element.from_row_and_group(row, group) # if el and ((not filter_function) or filter_function(el)): # rowstr.append("{:3s}".format(el.symbol)) # else: # rowstr.append(" ") # print(" ".join(rowstr)) def sorted(self, attrname, reverse=False): """Sort the table according to the value of attribute attrname.""" attrs = [] for i, pseudo in self: try: a = getattr(pseudo, attrname) except AttributeError: a = np.inf attrs.append((i, a)) # Sort attrs, and build new table with sorted pseudos. attrs = sorted(attrs, key=lambda t:t[1], reverse=reverse) return PseudoTable([self[a[0]] for a in attrs]) def select(self, condition): """ Select only those pseudopotentials for which condition is True. Args: condition: Function that accepts a `Pseudo` object and returns True or False. """ return PseudoTable([p for p in self if condition(p)]) def with_dojo_report(self): """Select pseudos containing the DOJO_REPORT section.""" return self.select(condition=lambda p : p.has_dojo_report)
32.88863
113
0.541806
cc7322687d6018880116c480548346284f3eed55
279
py
Python
optic_store/optic_store/doctype/optical_store_hr_settings_salary_component/optical_store_hr_settings_salary_component.py
iptelephony/optic_store
9c5e6e2f7170d18ecac8dd53133a62a3250cd834
[ "MIT" ]
14
2019-05-14T09:33:58.000Z
2022-03-19T14:43:36.000Z
optic_store/optic_store/doctype/optical_store_hr_settings_salary_component/optical_store_hr_settings_salary_component.py
iptelephony/optic_store
9c5e6e2f7170d18ecac8dd53133a62a3250cd834
[ "MIT" ]
18
2019-03-22T19:51:22.000Z
2020-08-04T13:57:27.000Z
optic_store/optic_store/doctype/optical_store_hr_settings_salary_component/optical_store_hr_settings_salary_component.py
iptelephony/optic_store
9c5e6e2f7170d18ecac8dd53133a62a3250cd834
[ "MIT" ]
25
2019-05-15T08:31:17.000Z
2022-02-25T07:21:18.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2020, 9T9IT and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class OpticalStoreHRSettingsSalaryComponent(Document): pass
25.363636
54
0.799283
9f41bdda690f5e5f880e2c54515d8fac05de1606
4,114
py
Python
example/views.py
jouve/django-oauth-toolkit-example
44e8958a7e962ef3450a5562240c59e66db05bc4
[ "BSD-2-Clause" ]
18
2015-03-31T08:08:16.000Z
2021-07-17T02:01:17.000Z
example/views.py
jouve/django-oauth-toolkit-example
44e8958a7e962ef3450a5562240c59e66db05bc4
[ "BSD-2-Clause" ]
1
2017-11-04T01:06:54.000Z
2017-11-04T01:06:54.000Z
example/views.py
jouve/django-oauth-toolkit-example
44e8958a7e962ef3450a5562240c59e66db05bc4
[ "BSD-2-Clause" ]
12
2015-03-31T05:32:39.000Z
2021-07-17T02:01:28.000Z
from django.http import HttpResponse from django.core.urlresolvers import reverse from django.views.generic import FormView, TemplateView, View from oauth2_provider.compat import urlencode from oauth2_provider.views.generic import ProtectedResourceView from .forms import ConsumerForm, ConsumerExchangeForm, AccessTokenDataForm import json from collections import namedtuple ApiUrl = namedtuple('ApiUrl', 'name, url') class ConsumerExchangeView(FormView): """ The exchange view shows a form to manually perform the auth token swap """ form_class = ConsumerExchangeForm template_name = 'example/consumer-exchange.html' def get(self, request, *args, **kwargs): try: self.initial = { 'code': request.GET['code'], 'state': request.GET['state'], 'redirect_url': request.build_absolute_uri(reverse('consumer-exchange')) } except KeyError: kwargs['noparams'] = True form_class = self.get_form_class() form = self.get_form(form_class) return self.render_to_response(self.get_context_data(form=form, **kwargs)) class ConsumerView(FormView): """ The homepage to access Consumer's functionalities in the case of Authorization Code flow. It offers a form useful for building "authorization links" """ form_class = ConsumerForm success_url = '/consumer/' template_name = 'example/consumer.html' def __init__(self, **kwargs): self.authorization_link = None super(ConsumerView, self).__init__(**kwargs) def get_success_url(self): url = super(ConsumerView, self).get_success_url() return '{url}?{qs}'.format(url=url, qs=urlencode({'authorization_link': self.authorization_link})) def get(self, request, *args, **kwargs): kwargs['authorization_link'] = request.GET.get('authorization_link', None) form_class = self.get_form_class() form = self.get_form(form_class) return self.render_to_response(self.get_context_data(form=form, **kwargs)) def post(self, request, *args, **kwargs): self.request = request return super(ConsumerView, self).post(request, *args, **kwargs) def form_valid(self, form): qs = urlencode({ 'client_id': form.cleaned_data['client_id'], 'response_type': 'code', 'state': 'random_state_string', }) self.authorization_link = "{url}?{qs}".format(url=form.cleaned_data['authorization_url'], qs=qs) return super(ConsumerView, self).form_valid(form) class ConsumerDoneView(TemplateView): """ If exchange succeeded, come here, show a token and let users use the refresh token """ template_name = 'example/consumer-done.html' def get(self, request, *args, **kwargs): # do not show form when url is accessed without paramters if 'access_token' in request.GET: form = AccessTokenDataForm(initial={ 'access_token': request.GET.get('access_token', None), 'token_type': request.GET.get('token_type', None), 'expires_in': request.GET.get('expires_in', None), 'refresh_token': request.GET.get('refresh_token', None), }) kwargs['form'] = form return super(ConsumerDoneView, self).get(request, *args, **kwargs) class ApiClientView(TemplateView): """ TODO """ template_name = 'example/api-client.html' def get(self, request, *args, **kwargs): from .urls import urlpatterns endpoints = [] for u in urlpatterns: if 'api/' in u.regex.pattern: endpoints.append(ApiUrl(name=u.name, url=reverse(u.name, args=u.regex.groupindex.keys()))) kwargs['endpoints'] = endpoints return super(ApiClientView, self).get(request, *args, **kwargs) class ApiEndpoint(ProtectedResourceView): def get(self, request, *args, **kwargs): return HttpResponse('Hello, OAuth2!')
35.162393
106
0.64317
5735cb7582c2890d61de88a602a720535f6e7a89
57,914
py
Python
thorsky/thorskyclasses3.py
onekiloparsec/thorsky
0c5d4440b0332b5aea75596943cfb1af30fe0956
[ "BSD-2-Clause" ]
18
2019-07-29T20:09:34.000Z
2021-06-25T18:57:19.000Z
thorsky/thorskyclasses3.py
onekiloparsec/thorsky
0c5d4440b0332b5aea75596943cfb1af30fe0956
[ "BSD-2-Clause" ]
4
2019-07-30T04:05:49.000Z
2020-07-12T11:06:31.000Z
thorsky/thorskyclasses3.py
onekiloparsec/thorsky
0c5d4440b0332b5aea75596943cfb1af30fe0956
[ "BSD-2-Clause" ]
1
2020-07-05T02:55:53.000Z
2020-07-05T02:55:53.000Z
#!/usr/bin/env python """thorskyclasses.py -- classes used for observational circumstances. """ import numpy as np import astropy.units as u from astropy.coordinates import SkyCoord, Angle, EarthLocation, CartesianRepresentation from astropy.coordinates import FK5, PrecessedGeocentric from astropy.coordinates import solar_system_ephemeris, get_body_barycentric from astropy.coordinates import get_body, get_moon, get_sun from astropy.time import Time, TimeDelta from datetime import datetime from pytz import timezone import pytz import time as ttime import dateutil.parser from thorsky.thorskyutil import altazparang,lpsidereal,lpmoon,lpsun,accumoon,min_max_alt,phase_descr from thorsky.thorskyutil import ha_alt, jd_sun_alt, jd_moon_alt, local_midnight_Time, hrs_up from thorsky.thorskyutil import ztwilight, lunskybright, true_airmass from thorsky.thorskyutil import currentgeocentframe, currentFK5frame, thorconsts from thorsky.thorskyutil import precessmatrix, cel2localmatrix, cel2xyz from thorsky.thorskyutil import getbrightest, skyproject, angle_between from thorsky.thorskyutil import time_rounded_to_minute # import matplotlib.pyplot as plt # for tests import sys # for tests import pkgutil # to get fixed data # import warnings # to filter ERFA warnings about dubious years # Don't have this working. # this is slightly modified cribbed code. #def fxn(): # warnings.warn("dubious", ErfaWarning) #with warnings.catch_warnings(): # warnings.simplefilter("ignore") # fxn() class obs_site : # defaults to MDM. Arguments are all keyworded. """ Site from which observations are taken. This initializes by default to Kitt Peak. In practice it is usually specified by using an abbreviation from the list of observatories distributed with the package, 'observatories_rev.dat'. Other arguments are keyworded. Notes ----- The core of this is an EarthLocation, but it also includes time zone information and a guess at the height of the observatory above surrounding terrain for adjusting rise and set times for the sun and moon. """ def __init__(self, name = "MDM Observatory [Kitt Peak]", loc = (-1996199., -5037542., 3356753.), tzstr = "America/Phoenix", tzstdabbr = "MST", tzdayabbr = "MDT", westheight = 700., eastheight = 0.) : """Initialize an obs_site. Parameters ---------- name : str, optional The full name of the observatory. Defaults to "MDM Observatory [Kitt Peak]" loc : tuple or list Geocentric cartesian location, in meters. Default (-1996199., -5037542., 3356753.) If you need to compute these for a new site, see the documentation for astropy.coordinates.EarthLocation, in particular the "from_geodetic" method. tzstr : str time zone name in format used by unix programs; default "America/Phoenix". tzstdabbr, tzdayabbr : str abbreviations for standard and daylight time in this zone; defaults "MST","MDT" westheight, eastheight : rough height of observatory above surrounding terrain, in meters: defaults 700. and 0. Attributes: name : str Name of observatory. location : EarthLocation EarthLocation of the observation site. localtz : timezone Local time zone. localtzabbrev, localtzdayabbrev : Abbreviations for standard and daylight time. risealt, setalt : Angle elevations at which the sun/moon rises or sets. axisdist : Quantity in distance units distance of site from earth's rotation axis diurnalspeed : Quantity in velocity units speed of diurnal rotation at this site, for use in velocity corrections. """ self.name = name if isinstance(loc, EarthLocation) : self.location = loc elif isinstance(loc,tuple) or isinstance(loc, list) : # geocentric xyz self.location = EarthLocation.from_geocentric(loc[0], loc[1], loc[2], unit = u.m) # MDM self.tzstr = tzstr self.localtz = timezone(tzstr) self.localtzabbrev = tzstdabbr # abbrevn for standard time zone self.localtzdayabbrev = tzdayabbr # abbrevn for daylight time zone self.height_above_west = westheight * u.m # height of obs over its west horizon self.height_above_east = eastheight * u.m # height of obs over its east horizon # compute the altitude at which sunrise and sunset occur, defined as the # top limb of the sun or moon coinciding with the horizon. In the # absence of terrain effects, this is conventionally at zenith dist # 90 degrees 50 minutes. In real life higher precision is not useful # because atmospheric refraction varies a great deal at such low # altitudes. Include in the calculation the possibility that the # observatory is above or below the terrain that forms its horizon, # using a simple approximation for the depression of the horizon. # These altitudes also serve for the moon. The angular diameter # variation is insignificant for this purpose, again because of # atmospheric refraction. self.risealt = None self.setalt = None west_depression = Angle(np.sqrt(2. * ( abs(self.height_above_west) / (thorconsts.EQUAT_RAD))) * u.rad) # print "west_depression",west_depression if self.height_above_west > 0. : self.setalt = Angle(-0.833,unit=u.deg) - west_depression # zd = 90 deg 50 arcmin elif self.height_above_west <= 0. : self.setalt = Angle(-0.833,unit=u.deg) + west_depression east_depression = Angle(np.sqrt(2. * (abs(self.height_above_east) / (thorconsts.EQUAT_RAD))) * u.rad) # print "east_depression",east_depression if self.height_above_east > 0. : self.risealt = Angle(-0.833 * u.deg) - east_depression # zd = 90 deg 50 arcmin elif self.height_above_east <= 0. : self.risealt = Angle(-0.833 * u.deg) + east_depression # print "self.risealt = ",self.risealt # compute and store the speed of diurnal rotation at this site # for later use in barycentric velocity correction. axisdist = np.sqrt(self.location.x ** 2 + self.location.y ** 2) axisdist = axisdist.to(u.km) # one sidereal day is about 86164.09 seconds. self.diurnalspeed = (2. * np.pi * axisdist) / (86164.09 * u.s) def get_sites() : # reads from a file of site names. """Creates a dictionary of obs_site instances from the file of site parameters provided in the package. Runs at import time and will probably never need to be called by a user """ # inf = open("observatories_rev.dat") # use pkgutil since I'm packaging this ... # https://stackoverflow.com/questions/6028000/how-to-read-a-static-file-from-inside-a-python-package # print('package name:',__name__) # was __package__, which broke in Python 3. bytestr = pkgutil.get_data(__name__, 'observatories_rev.dat') # this was just a file bu tis now a byte string containing the raw contents of the # file. Turn it into ASCII and cut into lines, and it'll read as if it were a file. inf = bytestr.decode('ASCII').splitlines() sitedict = {} for l in inf : # print("l = ",l) # diagnostic -- this took some doing! if l[0] != '#' : # allow commenting out of lines try : x = l.split('\t') y = x[2].split(",") # xyz coordinates in meters as characters loc = (float(y[0]),float(y[1]),float(y[2])) sitedict[x[0]] = obs_site(name = x[1], loc = loc, tzstr = x[3], tzstdabbr = x[4], tzdayabbr = x[5], eastheight = float(x[6]), westheight = float(x[7])) except : print("Bad input line in get_sites, may not be tab-separated:") print(l) return sitedict sitedict = get_sites() # reads site dictionary from package data file 'observatories_rev.dat' class Observation : """Circumstances of an observation at a given SkyCoord, obs_site, and time. This is the main class, used to compute time-and-the-sky information. A minimal use example :: import astropy.units as u import thorsky.thorskyutil as tsu import thorsky.thorskyclasses3 as tsc3 o = tsc3.Observation() # defaults to zenith at default site at present moment o.computesky() # hour angle, airmass, and more o.computesunmoon() # note that the order in which these are called is important o.computequickbary() o.setnightevents() o.computeplanets() o.printnow() # see what you have o.printnight() This class has a huge number of attributes. To avoid unneeded computation, these are mostly left blank unless computed explicitly using the methods provided. The order in which you call the methods that compute results is important since results are cumulative: In sum: * computesky needs to be first * computesunmoon, if needed, is second. * computequickbary depends on computesky but nothing else * setnightevents depends on both computesky and computesunmoon * hours_up depends on computesky, computesunmoon, and setnightevents * computeplanets depends on computsky and computesunmoon. These have been split out to save compute time. For example, if you only need airmass, all you need to run is computesky, but if you want to know if the moon is up you need to run computesunmoon as well. """ def __init__(self,celest = None, t = None, site = None, default_site = 'mdm', use_local_time = True, ra_unit = u.hourangle, dec_unit = u.deg) : """ Parameters : celest : SkyCoord, or string, or list, or tuple; optional Celestial location of the observation. Defaults to the zenith for the site and time. A wide variety of input formats are permissible; see 'setcelest' below. t : astropy Time, or string, or tuple, or float; optional Instant at which observation occurs. Default is time at which code is executed. Also accepts a wide variety of inputs. site : obs_site, or str; optional Site on earth from which observations are taken. Usually passed as a key from the builtin dictionary of sites, but can be a obs_site instance. Default is 'mdm'. use_local_time : boolean; optional Report results in local time; alternative is UT. Default is True. ra_unit : astropy.unit; optional unit for ra input; default is u.hourangle, which I wish they'd named something different since it's a term of art. dec_unit : astropy.unit; optional unit for dec input; default is u.deg Attributes : site : obs_site The observer's site. celest : astropy SkyCoord celestial position observed. t : astropy Time instant in time of the observation. julyear : float julian year corresponding to t. lst : astropy Angle local sidereal time, computed to about 1 sec bypassing slow astropy routines. nowfr : astropy coordinate frame FK5 frame for equinox of obsevation ('of date') hanow : astropy Angle hour angle (from meridian) airmass : float true airmass (not secant-z) cel_J2000 : astropy SkyCoord celestial location for J2000. icrs2now : numpy array rotation matrix to transform cartesian icrs to present equinox current2topoxyz : numpy array rotation matrix to transform current equinox to topocentric XYZ icrs2topoxyz : numpy array matrix product of icrs2now and current2topoxyz; tranforms icrs to topocentric XYZ constel : string IAU abbreviation of the constellation, e.g. 'UMa' previouslstmid : astropy Angle sidereal time of previous night's midnight moonpos : SkyCoord topocentric moon celestial position to about 10 arcsec precision in current equinox moonobjang : astropy Angle angle subtended by Observation's celest and the moon moonphasedescr : string human-readable description of the moon phase moonillumfrac : float fraction of moon's face that is illuminated (0. to 1.) moonaltit : astropy Angle elevation of moon above horizon lunskybrightness : float predicted sky brightness added by the moon in mag per square arcsec sunpos : astropy SkyCoord sun position to about 0.01 degrees sunobjang : astropy Angle angle subtended by sun and moon sunaltit : astropy Angle elevation of sun center above horizon (no refraction) sunaz : astropy Angle azimuth of sun twi : float rough zenight twilight brightness in blue mag per square arcsec lstmid : astropy Angle local sidereal time at midnight tsunset, tsunrise : astropy Time times of sunset and sunrise on present night tevetwi, tmorntwi : astropy Time end and start of astronomical (18-degr) twilight teve12,tmorn12 : astropy Time end and start of nautical (12-degr) twilight tnightcenter : astropy Time time of lower culmination of the sun uptime30, uptime20, uptime15 : astropy TimeDelta How long object has <3, <2, and <1.5 airmasses during night defined by 12-deg twilight. barytcorr : astropy TimeDelta Amount to add to Observation.t to get arrival time at barycenter baryvcorr : astropy Quantity velocity to add to shift velocity to solar system barycenter frame planetdict : Dictionary of astropy SkyCoords sky positions of planets, keyed by lowercase name planetmags : Dictionary of floats apparent magnitudes of planets """ # set up the site. self.setsite(site, default_site = default_site) # set up the time. if t == None : # set to system clock if no time specified. self.t = Time(ttime.time(),format='unix') else : self.settime(t,use_local_time = use_local_time) # set up the celestial coordinates. if celest != None and celest != 'ZENITH' : self.setcelest(celest) # many legal formats -- see below. else : # default to zenith self.lst = lpsidereal(self.t, self.site.location) # sidereal self.nowfr = currentFK5frame(self.t) self.celest = SkyCoord(self.lst,self.site.location.lat,frame=self.nowfr) # zenith self.cel_J2000 = self.celest.transform_to('icrs') # print("after xform, self.celest is",self.celest) self.constel = self.celest.get_constellation(short_name = True) self.previouslstmid = None self.moonpos = None # SkyCoord of moon self.moonobjang = None self.moonphasedescr = None self.moonillumfrac = None self.moonaltit = None self.moonaz = None self.lunskybright = None # approximate lunar contrib to sky # brightness at this location self.sunpos = None # SkyCoord of sun self.sunobjang = None self.sunaltit = None self.sunaz = None self.twi = None # rough magnitude difference between dark # night sky and present blue twilight contrib in zenith. self.lstmid = None self.tsunset = None self.tevetwi = None self.tnightcenter = None self.tmorntwi = None self.tsunrise = None # self.moonrise = None # self.sunrise = None self.barytcorr = None self.baryvcorr = None self.planetdict = {} # dictionary of planet SkyCoords by name. self.planetmags = {} # dictionary of planet visual mags by name. def setsite(self, site, default_site = 'mdm') : """Set the site on earth of the observation. Parameters ---------- site : obs_site instance or string if string, it is the key used for the site in the site dictionary. """ if isinstance(site, obs_site) : self.site = site else : # sitedict = get_sites() # print "got sites; ",sitedict.keys() if site == None : if default_site != None : self.site = sitedict[default_site] # 'backup default' is mdm else : self.site = sitedict['mdm'] else : self.site = sitedict[site] def settime(self, t, use_local_time = True) : """set Observation time t using the input 't' Note the instance variable 't' is always stored as in utc. If use_local_time, then the input is assumed to be local zone time (though if t is already a Time instance this is ignored). Input t can be an ISO string, or a tuple of at least yr, month, day, hour, and minute. Note also that if use_local_time is True (default) and the site switches back and forth from standard to daylight saving time, then one hour of clock time gets repeated in the autumn, and an hour gets skipped in the spring, which is tricky if localtime is input. For example, specifying 2:30 AM Eastern time on the 'spring forward' night sets to 3:30 AM Eastern Daylight time; 2:30 AM Eastern Standard does not happen on that night. When Daylight Saving ends, a time in the ambiguous hour reverts to standard, so there's an hour of time that you just can't specifiy using local time input. Parameters ---------- t : a Time, or a string, or a tuple time to which to set Observation attribute t. If not already a Time, * if a string, can be anything the dateutil parser accepts,e.g."2023-04-17 19:08:23" * if a tuple, must be (year, month, day, hour, minute, [sec]) as ints; seconds are optional. use_local_time : boolean whether input time is interpreted as local or not; default True. """ if isinstance(t, Time) : self.t = t elif isinstance(t,str) : # generally an ISO string like '2018-07-22 14:13:22' if use_local_time : localt = self.site.localtz.localize(dateutil.parser.parse((t))) self.t = Time(localt) else : self.t = Time(dateutil.parser.parse(t)) elif isinstance(t,tuple) or isinstance(t,list) : if len(t) == 5 : dtin = datetime(t[0],t[1],t[2],t[3],t[4]) else : dtin = datetime(t[0],t[1],t[2],t[3],t[4],t[5]) if use_local_time : # print "using local" localt = self.site.localtz.localize(dtin) self.t = Time(localt) else : # print "not using local" self.t = Time(dtin) elif isinstance(t, float) : self.t = Time(t,format = 'jd') # Keep a 'pure number' version of the julian epoch. self.julyear = 2000. + (self.t - thorconsts.J2000_Time).jd / 365.25 def advancetime(self, delta, forward = True) : """Advance Observation.t by the specified amount. Parameters ---------- delta : Amount to advance the time, as an astropy TimeDelta, or a string such as "143 s" or "5 d" (see below), or a float in sec. forward : boolean : if True, go forward; if False, go back. When specifying the interval with a string, the codes for units are * s - second * m - minute * h - hour * t - 1 sidereal day (transit-to-transit) * d - 1 solar day * w - one week of solar days * l - one lunation * y - one Julian year of 365.25 days """ # non-obvious: 't' for 'transit' is 1 sidereal day, # 'w' is a week, 'l' is exactly 30 days -- a very rough 'lunation' that # will land on the same time of night about one month later -- and # 'y' is a 365-day 'year', again because it's more likely you want to # land on the same time of night next year than keep track over many years. if isinstance(delta, TimeDelta) : if forward : self.t = self.t + delta else : self.t = self.t - delta elif isinstance(delta, str) : # e.g., "123. or 2. d" # codes for time delta intervals, and their values in seconds. # non-obvious: 't' for 'transit' is 1 sidereal day, # 'w' is a week, 'l' is exactly 30 days -- a very rough 'lunation' that # will land on the same time of night about one month later -- and # 'y' is a 365-day 'year', again because it's more likely you want to # land on the same time of night next year than keep track over many years. t_unit_dict = {'s' : 1., 'm' : 60., 'h' : 3600., 't' : 86164.0905352, 'd' : 86400, 'w' : 604800., 'l' : 2592000., 'y' : 31536000.} x = delta.split() try : deltafloat = float(x[0]) if len(x) > 1 : deltafloat = deltafloat * t_unit_dict[x[1][0]] dt = TimeDelta(deltafloat, format = 'sec') if forward : self.t = self.t + dt else : self.t = self.t - dt except : print("Bad time step string.") elif isinstance(delta, float) : # float defaults to seconds. dt = TimeDelta(delta, format = 'sec') if forward : self.t = self.t + dt else : self.t = self.t - dt else : print("Time step must be a float, an astropy TimeDelta or a string.") self.julyear = 2000. + (self.t - thorconsts.J2000_Time).jd / 365.25 def setcelest(self,celestin,ra_unit = u.hourangle, dec_unit = u.deg) : """Sets the celestial coords. Input can be a SkyCoord instance, a list or tuple of (ra,dec) or (ra,dec,equinox), or a character string. Parameters ---------- celestin : Skycoord, or list/tuple, or string. Celestial coordinates to set. See below. ra_unit : astropy unit; input unit for RA, defaults to u.hourangle (i.e, hrs min sec) dec_unit : astropy unit; input unit for dec, defaults to u.deg If celestin is a string, some permissible formats are * '18:22:22.3 -0:18:33' (defaults to ICRS or basically J2000) * '18:22:22.3 -0:18:33 2015' * '18 22 22.3 -0 18 33' * '18 22 22.3 -0 18 33 2015' Input units only apply if celestin is not already a SkyCoord. """ if isinstance(celestin, SkyCoord) : # if it's a SkyCoord, just copy it. self.celest = celestin elif isinstance(celestin, tuple) or isinstance(celestin, list) : # if len(celestin) == 2 : self.celest = SkyCoord(celestin[0],celestin[1], unit=(ra_unit, dec_unit)) # parse a tuple elif len(celestin) == 3 : # print("celestin[2] = ",celestin[2]) eq = float(celestin[2]) if eq == 2000. : self.celest = SkyCoord(celestin[0],celestin[1],unit = (ra_unit, dec_unit)) else : eq = "J%7.2f" % (eq) self.celest = SkyCoord(celestin[0],celestin[1],unit = (ra_unit, dec_unit),frame = FK5(equinox = eq)) elif isinstance(celestin, str) : # str includes unicode in python3. pieces = celestin.split() if len(pieces) >= 6 : # space-separated fields - glue back together. rastr = pieces[0] + ":" + pieces[1] + ":" + pieces[2] decstr = pieces[3] + ":" + pieces[4] + ":" + pieces[5] if len(pieces) == 7 : # if there's an equinox ... eqstr = pieces[6] else : eqstr = '2000.' else : # e.g. 21:29:36.2 so split gets ra and dec separately rastr = pieces[0] decstr = pieces[1] if len(pieces) > 2 : eqstr = pieces[2] # if there's an equinox ... else : eqstr = '2000.' # print "rastr decstr eqstr",rastr,decstr,eqstr if float(eqstr) == 2000. : # default to ICRS if 2000. self.celest = SkyCoord(rastr,decstr,unit = (ra_unit, dec_unit)) else : # or set in FK5 frame of date if not 2000. eq = "J"+eqstr self.celest = SkyCoord(rastr,decstr,unit = (ra_unit, dec_unit),frame = FK5(equinox = eq)) # print(" ************ IN SETCELEST ************ ") # print( "self.celest:",self.celest) # print( "frame.name:",self.celest.frame.name) if self.celest.frame.name == 'icrs' or self.celest.frame.name == 'gcrs' : self.cel_J2000 = self.celest elif self.celest.frame.name == 'precessedgeocentric' : self.cel_J2000 = self.celest.transform_to('gcrs') else : self.cel_J2000 = self.celest.transform_to('icrs') # print "self.cel_J2000:",self.cel_J2000 def computesky(self, redo_coords = True) : """Compute basic observational circumstances. Quantities computed include lst, current-equinox coords, hour angle, alt, az, parallactic angle, midhight, LST mid,. Precession to current equinox can be suppressed for speed. Parameters ---------- redo_coords : boolean, defaults to true. If False, turns off precession. """ # current equinox etc., useful for repeat calls tracing out a single # night # Also, if redo_coords is on, computes rotation matrices to # take celestial cartesian coords in ICRS directly into the # observer's topocentric frame. This speeds up such things # as the star display by a large factor. # print("entering computesksy: self.celest = ", self.celest) self.lst = lpsidereal(self.t, self.site.location) # sidereal # use these to test for 'this is the same night.' self.midnight = local_midnight_Time(self.t,self.site.localtz) self.lstmid = lpsidereal(self.midnight,self.site.location) if redo_coords : if self.celest.frame.name == 'gcrs' or self.celest.frame.name == 'precessedgeocentric' : self.nowfr = currentgeocentframe(self.t) else : self.nowfr = currentFK5frame(self.t) # print("self.nowfr = ",self.nowfr) self.celnow = self.celest.transform_to(self.nowfr) self.hanow = (self.lst - self.celnow.ra).wrap_at(12.*u.hour) # hour angle (self.altit, self.az, self.parang) = altazparang(self.celnow.dec, self.hanow, self.site.location.lat) self.airmass = true_airmass(self.altit) # polynomial expansion. if redo_coords : self.constel = self.celest.get_constellation(short_name = True) # compute some convenient rotation matrices: # compute matrix for precession from J2000 (i.e., icrs almost exactly) # to now, for later use. self.icrs2now = precessmatrix(thorconsts.J2000_Time,self.t) # and matrix to rotate a current-equinox celestial xyz into topocentric self.current2topoxyz = cel2localmatrix(self.lst, self.site.location.lat) # and matrix product to rotate icrs into topocentric xyz. self.icrs2topoxyz = self.current2topoxyz.dot(self.icrs2now) # matrix product # If we're in the south, rotate by 180 degrees around vertical axis # to invert display. Simply negate top two rows of the matrix. if self.site.location.lat < 0. * u.deg : self.icrs2topoxyz = np.array([[-1],[-1],[1]]) * self.icrs2topoxyz # print("leaving computesksy: self.celest = ", self.celest) def computebary(self) : # this is a bit expensive so split off. """computes and set bary corrections using astropy routines. Slow; nearly all users will want 'computequickbary'. """ self.baryvcorr = self.celest.radial_velocity_correction(obstime = self.t, location = self.site.location).to(u.km / u.second) # print "baryvcorr: ", self.baryvcorr.to(u.km/u.s) # print type(self.baryvcorr.to(u.km/u.s)) self.barytcorr = self.t.light_travel_time(self.celnow, kind='barycentric', location = self.site.location, ephemeris = 'builtin') self.tbary = self.t + self.barytcorr # print "barytcorr: ", self.barytcorr.to(u.s) # print type(self.barytcorr.to(u.s)) def computequickbary(self) : """compute and set barycentric corrections to 0.1s and 10m/s. Reasonably fast. """ # The call to computebary is very expensive in # order to get ultimate accuracy. When less precision is # required it should be possible to make it much faster by # computing the corrections directly. # The goal is to get something like 0.1 sec in light time, and # 10 meters per second in velocity. earthpos = get_body_barycentric('earth',self.t) # astropy doesn't seem to offer a velocity function. # For moderate precision, the simplest numerical derivative works: x1 = get_body_barycentric('earth', self.t - (500. * u.s)) x2 = get_body_barycentric('earth', self.t + (500. * u.s)) earthvel = (x2 - x1) / (1000. * u.s) # ignore geographic correction to light time delay -- it's # 21 msec for a source at the zenith. # nice to have a builtin dot product function for this! extra = earthpos.dot(self.cel_J2000.cartesian) # extra distance to barycenter tcorr = extra / ((299792.458 * u.km) / (1.0 * u.s)) self.barytcorr = TimeDelta(tcorr) # needs to be a TimeDelta self.tbary = self.t + self.barytcorr # this is the right sign! # earth-rotation part of velocity correction diurnalvel = CartesianRepresentation( -1. * self.site.diurnalspeed * np.sin(self.lst), self.site.diurnalspeed * np.cos(self.lst), self.site.diurnalspeed * 0.) # totalvel should be earth orbit + earth rotation velocity wrt barycenter totalvel = earthvel + diurnalvel self.baryvcorr = totalvel.dot(self.cel_J2000.cartesian).to(u.km/u.s) # print("self.barytcorr ",self.barytcorr,"self.baryvcorr",self.baryvcorr) def computesunmoon(self) : """Compute and set the many moon and sun quantities.""" self.lst = lpsidereal(self.t, self.site.location) self.moonpos, self.moondist = accumoon(self.t,self.site.location) self.moonha = self.lst - self.moonpos.ra (self.moonaltit, self.moonaz, parang) = altazparang(self.moonpos.dec, self.moonha, self.site.location.lat) self.sunpos = lpsun(self.t) self.sunha = self.lst - self.sunpos.ra (self.sunaltit, self.sunaz, parang) = altazparang(self.sunpos.dec, self.sunha, self.site.location.lat) self.twi = ztwilight(self.sunaltit) self.sunmoonang = self.sunpos.separation(self.moonpos) self.moonillumfrac = 0.5 * (1. - np.cos(self.sunmoonang)) self.moonobjang = self.celnow.separation(self.moonpos) (self.moonphasedescr, self.lunage, self.lunation) = phase_descr(self.t.jd) # print "age %f lunation %d" % (self.lunage, self.lunation) # print "moon illum frac:",self.moonillumfrac # print "moon-obj ang:", self.moonobjang # print "moon altit",self.moonaltit,"obj altit",self.altit self.lunsky = lunskybright(self.sunmoonang,self.moonobjang,thorconsts.KZEN,self.moonaltit, self.altit,self.moondist, self.sunaltit) # print "lunsky: ",self.lunsky # print "lst",self.lst # print "moon",self.moonpos # print "moon ha, alt, az", self.moonha, self.moonaltit, self.moonaz # print "sun",self.sunpos # print "sun ha, alt, az", self.sunha, self.sunaltit, self.sunaz # print "twilight diff: " , self.twi def computeplanets(self) : """compute and store planetary positions and magnitudes.""" # print "starting planets" planetlist = ['mercury','venus','mars','jupiter','saturn','uranus','neptune'] # to get magnitudes need to get sun and earth positions too sunbary = get_body_barycentric('sun',self.t) # print 'sunbary:' # print sunbary earthbary = get_body_barycentric('earth',self.t) # print 'earthbary:' # print earthbary for p in planetlist : # get celestial position of planet self.planetdict[p] = get_body(p,self.t) # print "get_body gives",p, self.planetdict[p] # This returns a position in "GCRS: which is earth-centered. # now get sun-centered location (slightly different from bary) to get # magnitude. pbary = get_body_barycentric(p,self.t) psun = sunbary - pbary # vector from sun to planet psundist = np.sqrt(psun.x ** 2 + psun.y ** 2 + psun.z ** 2) # modulus pearth = earthbary - pbary # vector from planet to earth pearthdist = np.sqrt(pearth.x ** 2 + pearth.y ** 2 + pearth.z ** 2) # for inner planets, use polynomials for the phase angle dependence, # which is not at all trivial. if p == 'mercury' or p == 'venus' or p == 'mars' : # angle between sun and earth as viewed from planet phaseang = angle_between(psun,pearth) # print "phaseang:",phaseang phasefac = np.polyval(thorconsts.PLANETPHASECOEFS[p],phaseang.value) # print "phasefac:",phasefac self.planetmags[p] = phasefac + 5. * np.log10(psundist.to(u.AU).value * pearthdist.to(u.AU).value) # print "mag:",self.planetmags[p] # outer planets are close enough to phase zero all the time to ignore the phase angle. else : phasefac = thorconsts.PLANETPHASECOEFS[p] self.planetmags[p] = phasefac + 5. * np.log10(psundist.to(u.AU).value * pearthdist.to(u.AU).value) # print "mag:",self.planetmags[p] # saturn will not be good because there's no ring-tilt dependence factored in. fr = currentgeocentframe(self.t) #print "frame attributes:",fr.get_frame_attr_names() # print """ #after transformation: # """ # we want these in equinox of date for plotting. They'll be # converted back to J2000 for the table when the coordinates are loaded # into the observation instance. for p in planetlist : self.planetdict[p] = self.planetdict[p].transform_to(fr) # print p, self.planetdict[p].to_string('hmsdms') # print "ending planets" def setnightevents(self) : """Compute the events (sunset etc) for a single night. """ # self.midnight also computed in computesky, but it's cheap. self.midnight = local_midnight_Time(self.t,self.site.localtz) self.lstmid = lpsidereal(self.midnight,self.site.location) # if you're looking at the same night, from the same site, # lst mid will be the same. Don't bother with the calculation if self.previouslstmid != None : if abs(self.previouslstmid - self.lstmid) < 0.001 * u.deg : # print "no night event calc'n -- same." return sunmid = lpsun(self.midnight) # sunrise and sunset altitudes are complicated and initialized # with the site for efficiency's sake. Twilight altitude is # fixed at -18 degrees, so not costly to set it here. twialt = Angle(-18.,unit=u.deg) twialt12 = Angle(-12.,unit=u.deg) # Compute sunset, sunrise, and twilight times. # Start by computing the approximate hour angles at which these # occur, for the dec that the sun has at midnight. # for this purpose, wrap hour angles at noon so that all for a given night # are positive # Find hour angle at which the dec of the sun (evaluated at # local midnight) rises or sets sunsetha = ha_alt(sunmid.dec,self.site.location.lat,self.site.setalt) # If the dec of the sun never rises or sets -- possible in the arctic -- set # flags for later use; "0" is normal, it rises and sets, "1" is it's always # up (midnight sun) and "-1" is it never rises. if sunsetha > (500. * u.rad) : self.sunsetflag = 1 # sun always up elif sunsetha < (-500. * u.rad) : self.sunsetflag = -1 # sun never rises or sets else : self.sunsetflag = 0 sunriseha = Angle(2. * np.pi, unit = u.rad) - ha_alt(sunmid.dec,self.site.location.lat,self.site.risealt) twilightha = ha_alt(sunmid.dec,self.site.location.lat,twialt) # positive, correct for evening # print "sunsetha, sunriseha, twilightha",sunsetha,sunriseha,twilightha # Again, set flag in case twilight never ends (high-latitude summer) or the sun doesn't get # higher than -18 degrees if twilightha > (500. * u.rad) : self.twilightflag = 1 # never gets dark elif twilightha < (-500. * u.rad) : self.twilightflag = -1 # fully dark all night (only happens near pole and solstice) else : self.twilightflag = 0 # do the same for 12-degree twilight; with the sun between 12 and 18 degrees below the horizon the # sky is fairly dark and one can work on brighter object, standard stars and so on. twilight12ha = ha_alt(sunmid.dec,self.site.location.lat,twialt12) # positive, correct for evening if twilight12ha > (500. * u.rad) : self.twilight12flag = 1 # never gets dark elif twilight12ha < (-500. * u.rad) : self.twilight12flag = -1 # fully dark all night (only happens near pole and solstice) else : self.twilight12flag = 0 hasunmid = (self.lstmid - sunmid.ra).wrap_at(24. * u.hour) #print "hasunmid:",hasunmid #print "midnight",self.midnight self.tnightcenter = self.midnight - TimeDelta(hasunmid.hour / 24. - 0.5, format = 'jd') #self.lstnightcenter = lpsidereal(self.tnightcenter,self.site.location) #print 'night center',self.nightcenter if self.sunsetflag == 0 : # if dec of sun is such that sunset and sunrise occur sunsetguess = hasunmid - sunsetha # hour angle difference from sun's posn at midnight sunriseguess = sunriseha - hasunmid if self.twilightflag == 0 : evetwiguess = hasunmid - twilightha morntwiguess = Angle(2.*np.pi, unit=u.rad) - twilightha - hasunmid if self.twilight12flag == 0 : evetwi12guess = hasunmid - twilight12ha morntwi12guess = Angle(2.*np.pi, unit=u.rad) - twilight12ha - hasunmid #print "sunsetguess, sunriseguess",sunsetguess,sunriseguess.hour #print "eve, morn",evetwiguess,morntwiguess.hour # convert to time differences if self.sunsetflag == 0 : TDsunset = TimeDelta(sunsetguess.hour / 24., format = 'jd') TDsunrise = TimeDelta(sunriseguess.hour / 24., format = 'jd') #print "tdsunset, tdsunrise",TDsunset,TDsunrise if self.twilightflag == 0 : TDevetwi = TimeDelta(evetwiguess.hour / 24., format = 'jd') TDmorntwi = TimeDelta(morntwiguess.hour / 24., format = 'jd') #print "TDeve, TDmorn",TDevetwi,TDmorntwi if self.twilight12flag == 0 : TDevetwi12 = TimeDelta(evetwi12guess.hour / 24., format = 'jd') TDmorntwi12 = TimeDelta(morntwi12guess.hour / 24., format = 'jd') # form into times and iterate to accurate answers. if self.sunsetflag == 0 : self.tsunset = self.midnight - TDsunset # first approx #print "first approx",self.tsunset self.tsunset = jd_sun_alt(self.site.setalt, self.tsunset, self.site.location) self.tsunrise = self.midnight + TDsunrise # first approx #print "first approx",self.tsunrise self.tsunrise = jd_sun_alt(self.site.risealt, self.tsunrise, self.site.location) if self.twilightflag == 0 : self.tevetwi = self.midnight - TDevetwi self.tevetwi = jd_sun_alt(twialt, self.tevetwi, self.site.location) self.tmorntwi = self.midnight + TDmorntwi self.tmorntwi = jd_sun_alt(twialt, self.tmorntwi, self.site.location) if self.twilight12flag == 0 : self.tevetwi12 = self.midnight - TDevetwi12 self.tevetwi12 = jd_sun_alt(twialt12, self.tevetwi12, self.site.location) #self.lsteve12 = lpsidereal(self.tevetwi12,self.site.location) self.tmorntwi12 = self.midnight + TDmorntwi12 self.tmorntwi12 = jd_sun_alt(twialt12, self.tmorntwi12, self.site.location) #self.lstmorn12 = lpsidereal(self.tmorntwi12,self.site.location) # and, moonrise and set times for that night. moonmid = lpmoon(self.midnight, self.site.location) hamoonmid = self.lstmid - moonmid.ra hamoonmid.wrap_at(12. * u.hour, inplace = True) #print "moon at midnight",moonmid #print "hamoonmid: ",hamoonmid.hour, 'hr' roughlunarday = TimeDelta(1.0366, format = 'jd') moonsetha = ha_alt(moonmid.dec,self.site.location.lat,self.site.setalt) # Using the midnight position of the moon to assess whether it actually # rises or sets in a 12-hour window around that time is problematic, # since the moon's dec can move pretty quickly. This is a rare 'corner # case' that only matters at very high latitudes so I'm not going to worry # about it too much. if moonsetha > (500. * u.rad) : self.moonsetflag = 1 # moon always up elif moonsetha < (-500. * u.rad) : self.moonsetflag = -1 # moon always below horizon else : self.moonsetflag = 0 moonsetdiff = moonsetha - hamoonmid # how far from setting at midnight # find nearest setting point if moonsetdiff.hour >= 12. : moonsetdiff = moonsetdiff - Angle(24. * u.hour) if moonsetdiff.hour < -12. : moonsetdiff = moonsetdiff + Angle(24. * u.hour) TDmoonset = TimeDelta(moonsetdiff.hour / 24., format = 'jd') self.tmoonset = self.midnight + TDmoonset #print "moonset first approx:",self.tmoonset #print "aiming for set alt = ",self.site.setalt self.tmoonset = jd_moon_alt(self.site.setalt, self.tmoonset, self.site.location) #print "moonset: ",self.tmoonset # .to_datetime(timezone = localtzone) moonriseha = -1. * ha_alt(moonmid.dec,self.site.location.lat,self.site.risealt) # signed moonrisediff = moonriseha - hamoonmid # how far from riseting point at midn. # find nearest riseing point if moonrisediff.hour >= 12. : moonrisediff = moonrisediff - Angle(24. * u.hour) if moonrisediff.hour < -12. : moonrisediff = moonrisediff + Angle(24. * u.hour) TDmoonrise = TimeDelta(moonrisediff.hour / 24., format = 'jd') self.tmoonrise = self.midnight + TDmoonrise #print "moonrise first approx:",self.tmoonrise #print "aiming for rise alt = ",self.site.risealt self.tmoonrise = jd_moon_alt(self.site.risealt, self.tmoonrise, self.site.location) #print "moonrise: ",self.tmoonrise # .to_datetime(timezone = localtzone) # Save this to avoid re-doing unnecessarily. If lstmid is exactly the same, # then the night and location are almost certainly unchanged. self.previouslstmid = self.lstmid def compute_hours_up(self) : # involves night events but is specific to this object. """compute how long an object is up during the night, defined by 12-degree (or nautical) twilight. This requires setnightevents to have been run previously. Computes how long the object is less that 3.0 airmass, 2.0 airmasses, and 1.5 airmasses.""" # this requires setnightevents to have been run for the same night. minalt, maxalt = min_max_alt(self.site.location.lat, self.celnow.dec) if self.twilight12flag == 0 : self.ha_mid = (self.lstmid - self.celnow.ra).wrap_at(12. * u.hour) #print("self.ha_mid.value",self.ha_mid.value) #print("self.ha_mid.hourangle",self.ha_mid.hourangle) deltattran = TimeDelta(self.ha_mid.hourangle / 24., format = 'jd') / 1.0027379093 self.ttransit = self.midnight - deltattran #print("self.midnight = ",self.midnight) #print("self.ttransit = ",self.ttransit) if minalt < thorconsts.ALT30 and maxalt > thorconsts.ALT30 : # if this dec passes through 3 airmasses ha30 = ha_alt(self.celnow.dec,self.site.location.lat,thorconsts.ALT30) dt30 = TimeDelta(ha30.hourangle / 24., format = 'jd') / 1.0027379093 jd30_1 = self.ttransit - dt30 # Time of rise through 3 airmasses jd30_2 = self.ttransit + dt30 # Time of set past 3 airmasses # print("jd30_1 = ",jd30_1) # print("jd30_2 = ",jd30_2) self.uptime30 = hrs_up(jd30_1,jd30_2,self.tevetwi12,self.tmorntwi12) elif minalt > thorconsts.ALT30 : self.uptime30 = (self.tmorntwi12 - self.tevetwi12) elif maxalt < thorconsts.ALT30 : self.uptime30 = thorconsts.ZERO_TIMEDELTA #print("time above 3 airm", self.uptime30) if minalt < thorconsts.ALT20 and maxalt > thorconsts.ALT20 : # if it passes through 2 airmass ha20 = ha_alt(self.celnow.dec,self.site.location.lat,thorconsts.ALT20) dt20 = TimeDelta(ha20.hourangle / 24., format = 'jd') / 1.0027379093 jd20_1 = self.ttransit - dt20 jd20_2 = self.ttransit + dt20 self.uptime20 = hrs_up(jd20_1,jd20_2,self.tevetwi12,self.tmorntwi12) elif minalt > thorconsts.ALT20 : self.uptime20 = (self.tmorntwi12 - self.tevetwi12) elif maxalt < thorconsts.ALT20 : self.uptime20 = thorconsts.ZERO_TIMEDELTA #print("time above 2 airm", self.uptime20) if minalt < thorconsts.ALT15 and maxalt > thorconsts.ALT15 : # if it passes through 1.5 airmasses ha15 = ha_alt(self.celnow.dec,self.site.location.lat,thorconsts.ALT15) dt15 = TimeDelta(ha15.hourangle / 24., format = 'jd') / 1.0027379093 jd15_1 = self.ttransit - dt15 jd15_2 = self.ttransit + dt15 self.uptime15 = hrs_up(jd15_1,jd15_2,self.tevetwi12,self.tmorntwi12) elif minalt > thorconsts.ALT15 : self.uptime15 = (self.tmorntwi12 - self.tevetwi12) elif maxalt < thorconsts.ALT15 : self.uptime15 = thorconsts.ZERO_TIMEDELTA #print("time above 1.5 airm", self.uptime15) def printnow(self, use_slow_bary = False) : """Compute the instantaneous circumstances to ensure they're current and print out a nicely formatted display.""" # first ensure that they're up to date ... self.computesky() self.computesunmoon() self.computeplanets() if use_slow_bary : self.computebary() else : self.computequickbary() print(" ") print("Site : %s; E longit = %s, lat = %s" % (self.site.name, self.site.location.lon.to_string(unit = u.deg, sep=' '), self.site.location.lat.to_string(unit = u.deg, sep=' '))) print(" ") print(" J2000: %s %s (in %s)" % (self.cel_J2000.ra.to_string(unit = u.hourangle, sep = ' ', precision=2, pad = True), self.cel_J2000.dec.to_string(sep = ' ',precision = 1, pad = True, alwayssign = True), self.constel)) eqout = self.t eqout.format = "jyear_str" print("%s : %s %s" % (eqout.value, self.celnow.ra.to_string(unit = u.hourangle, sep = ' ', precision=2, pad = True), self.celnow.dec.to_string(sep = ' ',precision = 1, pad = True, alwayssign = True))) print(" ") ut = self.t.to_datetime() local = self.t.to_datetime(timezone = self.site.localtz) # localdow = dows[datetime.weekday()] print("UT date and time : %s JD %s " % (ut.strftime("%a %Y-%m-%d %H:%M:%S"), self.t.jd)) print("local date and time : %s" % (local.strftime("%a %Y-%m-%d %H:%M:%S"))) print(" ") print("Local mean sidereal time: %s " % (self.lst.to_string(unit = u.hourangle, sep = ' ', precision = 0))) print(" ") parang_opposite = self.parang + Angle(180 * u.deg) parang_opposite.wrap_at(180. * u.deg) print("Hour angle: %s AltAz: %5.1f, %6.1f Parallactic: %4.1f [%4.1f]" % \ (self.hanow.to_string(unit = u.hourangle, sep = ' ', precision = 0, pad = True, alwayssign = True), self.altit.deg, self.az.deg, self.parang.deg, parang_opposite.deg)) if self.altit < 0. : print("Below horizon.") elif self.airmass > 10. : print("Airmass > 10.") else : print("Airmass: %6.3f" % (self.airmass)) print(" ") print("Moon: %s Alt,Az %4.1f, %4.1f" % (self.moonphasedescr, self.moonaltit.deg, self.moonaz.deg)) if self.moonaltit > 0. : # give more detail on the moon if it's up. print("Moon ra and dec: %s %s (%s)" % ( self.moonpos.ra.to_string(unit = u.hourangle, sep = ' ', precision=0,pad=True), self.moonpos.dec.to_string(sep = ' ',fields = 2, pad = True, alwayssign = True), eqout.value)) print("Illum. fract : %5.3f Moon-obj ang: %5.1f deg" % (self.moonillumfrac, self.moonobjang.deg)) if self.lunsky != 99. : print("Lunar sky brightness %4.1f mag/sq arcsec" % (self.lunsky)) else : print("The moon is down. ") print(" ") if self.sunaltit.deg < -18. : print("The sun is down; there is no twilight.") elif self.sunaltit.deg < 0. : print("In twilight; sky %4.1f mag brighter than dark sky." % self.twi) else : print("THE SUN IS UP.") print("Sun RA and dec: %s %s (%s); AltAz %4.1f, %5.1f" % ( self.sunpos.ra.to_string(unit = u.hourangle, sep = ' ', precision=1, pad = True), self.sunpos.dec.to_string(sep = ' ',precision = 0, pad = True, alwayssign = True), eqout.value, self.sunaltit.deg, self.sunaz.deg)) print(" ") print("Barycentric corrns: add %7.2f sec and %6.2f km/s to observed." % \ (self.barytcorr.to(u.s).value,self.baryvcorr.to(u.km/u.s).value)) print("Barycentric JD (UTC system): %14.5f." % (self.tbary.jd)) def printnight(self, use_local_time = True) : """Print a nicely formatted display of the rise/set times etc..""" self.setnightevents() if use_local_time : tz = self.site.localtz print("Night events; times listed are local.\n") else : tz = None print("Night events; times listed are UT.\n") sunset = self.tsunset.to_datetime(timezone = tz) print(" Sunset: %s" % (time_rounded_to_minute(sunset, incl_date = True, incl_day = True))) endtwi = self.tevetwi.to_datetime(timezone = tz) print(" Twilight Ends: %s" % (time_rounded_to_minute(endtwi, incl_date = True, incl_day = True))) nghtctr = self.tnightcenter.to_datetime(timezone = tz) print("Center of Night: %s" % (time_rounded_to_minute(nghtctr, incl_date = True, incl_day = True))) begtwi = self.tmorntwi.to_datetime(timezone = tz) print("Twilight Begins: %s" % (time_rounded_to_minute(begtwi, incl_date = True, incl_day = True))) sunrise = self.tsunrise.to_datetime(timezone = tz) print(" Sunrise: %s" % (time_rounded_to_minute(sunrise, incl_date = True, incl_day = True))) print(" ") moonrise = self.tmoonrise.to_datetime(timezone = tz) moonset = self.tmoonset.to_datetime(timezone = tz) if self.tmoonrise < self.tmoonset : print(" Moonrise: %s" % (time_rounded_to_minute(moonrise, incl_date = True, incl_day = True))) print(" Moonset: %s" % (time_rounded_to_minute(moonset, incl_date = True, incl_day = True))) else : print(" Moonset: %s" % (time_rounded_to_minute(moonset, incl_date = True, incl_day = True))) print(" Moonrise: %s" % (time_rounded_to_minute(moonrise, incl_date = True, incl_day = True))) if __name__ == "__main__" : # sitedict = get_sites() # obsite = sitedict['mdm'] # obgeo = obsite.location.to_geodetic() # print obgeo # cel = SkyCoord("21:29:36.2 -47:04:08",unit = (u.hourangle, u.deg), frame = 'icrs') # print "year, month, day, hr, min" # # x = raw_input().split() # year = int(x[0]) # month = int(x[1]) # day = int(x[2]) # hr = int(x[3]) # minute = int(x[4]) # # dt = obsite.localtz.localize(datetime(year,month,day,hr,minute,0)) # t = Time(dt) # print t.jd # # dt2 = obsite.localtz.localize(datetime(2000,1,1,0,0,0)) # t2 = Time(dt2) # print t2.jd # print("ra dec: ") x = raw_input() cel = SkyCoord(x,unit = (u.hourangle, u.deg), frame = 'icrs') o = Observation(celest = cel, t = "2018-07-22T23:00:00", use_local_time = True, site = None, default_site = 'keck') obgeo = o.site.location.to_geodetic() print(obgeo) print( o.celest) print( o.t) print( "lst: ",o.lst) print( "celnow: ",o.celnow) print( "hanow : ",o.hanow) print( "alt, az, parang ",o.altit, o.az, o.parang) o.setnightevents() print("sunset: ", o.tsunset.to_datetime(timezone = o.site.localtz)) print("eve twi: ",o.tevetwi.to_datetime(timezone = o.site.localtz)) print("night ctr:",o.tnightcenter.to_datetime(timezone = o.site.localtz)) print("morn twi:",o.tmorntwi.to_datetime(timezone = o.site.localtz)) print("sunrise: ",o.tsunrise.to_datetime(timezone = o.site.localtz)) print("moonset: ",o.tmoonset.to_datetime(timezone = o.site.localtz)) print("moonrise:",o.tmoonrise.to_datetime(timezone = o.site.localtz)) o.computesunmoon() o.computeplanets() #print "c21:" #print c2l celnowxyz = cel2xyz(o.celnow) #print "celnowxyz:" #print celnowxyz topoxyz = o.current2topoxyz.dot(celnowxyz) #print "topoxyz:" #print topoxyz # print "topoxyz[0]",topoxyz[0] #az = np.arctan2(topoxyz[0],topoxyz[1]) * thorconsts.DEG_IN_RADIAN #alt = np.arcsin(topoxyz[2]) * thorconsts.DEG_IN_RADIAN #print "alt az",alt,az #fullmat = c2l.dot(prec) # both! #celxyz = cel2xyz(o.celest) # icrs! #topo2 = fullmat.dot(celxyz) #print "topo2:" #print topo2 #az2 = np.arctan2(topo2[0],topo2[1]) * thorconsts.DEG_IN_RADIAN #alt2 = np.arcsin(topo2[2]) * thorconsts.DEG_IN_RADIAN #print "alt2 az2",alt2,az2 (bright2000, brightmags, brightcolors, brightnames) = getbrightest("cartesian_bright.dat") (projectedx,projectedy) = skyproject(o.icrs2topoxyz,bright2000) (objx,objy) = skyproject(o.current2topoxyz,celnowxyz) for i in range(0,len(brightmags)) : size = (5. - 0.9 * brightmags[i]) if size > 0.: plt.plot(projectedx[i],projectedy[i],'bo',markersize = size) plt.plot(objx,objy,'ro') plt.xlim(-1.,1.) plt.ylim(-1.,1.) plt.show()
42.615158
122
0.603498
990984ccc9482a76ec298237810a4864e32a7a79
4,257
py
Python
src/pytorch/torchdata.py
jeetsagar/turbojet
9b17edde0a7e01d0fa320261fbc2734ce53577d2
[ "MIT" ]
null
null
null
src/pytorch/torchdata.py
jeetsagar/turbojet
9b17edde0a7e01d0fa320261fbc2734ce53577d2
[ "MIT" ]
null
null
null
src/pytorch/torchdata.py
jeetsagar/turbojet
9b17edde0a7e01d0fa320261fbc2734ce53577d2
[ "MIT" ]
2
2021-05-20T05:47:59.000Z
2021-08-24T07:44:37.000Z
#!python3 """preparing the dataset for pytorch""" import h5py import torch import bisect import numpy as np from explore import print_keys from torch.utils.data import Dataset, DataLoader def normalize_data(x): x_max = np.max(x, axis=0) x_min = np.min(x, axis=0) x_denom = (x_max - x_min) x_denom[x_denom == 0] = 1 x_norm = -1 + (2 * (x - x_min) / x_denom) return x_norm def load_traindata(params): dataset = UnitDataset(params.traindata, params.units, 'dev', params.features_last) train_loader = DataLoader(dataset, batch_size=params.batch_size, shuffle=False, pin_memory=False) return train_loader def load_testdata(params): dataset = UnitDataset(params.testdata, params.units, 'test', params.features_last) test_loader = DataLoader(dataset, batch_size=params.batch_size, shuffle=False, pin_memory=False) return test_loader class UnitDataset(Dataset): def __init__(self, filepath, units, suffix='dev', features_last=False): self.window = 50 self.features_last = features_last with h5py.File(filepath, 'r') as hdf: W_array = np.array(hdf.get(f'W_{suffix}')) X_s_array = np.array(hdf.get(f'X_s_{suffix}')) A_array = np.array(hdf.get(f'A_{suffix}')) Y_array = np.array(hdf.get(f'Y_{suffix}')) unit_array = np.array(A_array[:, 0], dtype=np.int32) existing_units = list(np.unique(unit_array)) if units: units = units[0] self.units = list(set(units).intersection(set(existing_units))) self.units.sort() else: self.units = existing_units self.num_units = len(self.units) dev_data = np.concatenate((W_array, X_s_array), axis=1) dev_data = normalize_data(dev_data) self.data_list = [] self.target_list = [] self.length_list = [] self.total_length = 0 for unit in self.units: unit_ind = (unit_array == unit) unit_data = dev_data[unit_ind] unit_target = Y_array[unit_ind] unit_target = unit_target[self.window:] # using a subset of the data for testing # unit_data = unit_data[:1024+self.window] # unit_target = unit_target[:1024] # remove the transpose() call when using tensorflow # tensorflow uses channels last, but pytorch uses channels first # by default features/channels occupy the last axis, the transpose call moves the features/channels first if self.features_last: data_tensor = torch.Tensor(unit_data) else: data_tensor = torch.Tensor(unit_data).transpose(0, 1) self.data_list.append(data_tensor) target_tensor = torch.Tensor(unit_target) self.target_list.append(target_tensor) target_length = target_tensor.shape[0] self.total_length += target_length self.length_list.append(target_length) self.total_elem = list(np.cumsum(self.length_list)) def _get_index(self, n): n = n + 1 n = max(1, min(self.total_length, n)) i = bisect.bisect_left(self.total_elem, n) if i == 0: j = n - 1 else: m = self.total_elem[i-1] j = n - m - 1 return i, j def __len__(self): return self.total_length def __getitem__(self, index): i, j = self._get_index(index) if self.features_last: data = self.data_list[i][j:j+self.window, :] else: data = self.data_list[i][:, j:j + self.window] target = self.target_list[i][j] return data, target if __name__ == '__main__': fpath = '../../../data_set/N-CMAPSS_DS02-006.h5' ds = UnitDataset(fpath, [[14]], 'test', False) # a, b = ds[0] # print(a.shape, b.shape) # print(ds.units) # print(ds.num_units) # print(ds.length_list) # print(len(ds)) td = DataLoader(ds, batch_size=4, shuffle=False, pin_memory=False) for i, (j, k) in enumerate(td): if i > 1: break print(j.shape) print(j.dtype) print(k.shape) print(k.dtype)
29.978873
117
0.603946
b97280843ac0fe835c564113a953f45d49f68877
628
py
Python
manage.py
AviH0/coursist
3db05e8a168be33d2f03b9e082ee4779d80be7c7
[ "MIT" ]
6
2020-06-26T12:09:10.000Z
2021-12-18T11:44:55.000Z
manage.py
AviH0/coursist
3db05e8a168be33d2f03b9e082ee4779d80be7c7
[ "MIT" ]
89
2020-06-02T11:42:57.000Z
2021-06-10T19:09:09.000Z
manage.py
AviH0/coursist
3db05e8a168be33d2f03b9e082ee4779d80be7c7
[ "MIT" ]
14
2020-06-26T12:08:34.000Z
2021-04-20T10:59:45.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Coursist.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == "__main__": main()
28.545455
73
0.683121
b9cd7e2eb25c0a155806d20ff6255c2d5830bc05
1,915
py
Python
run_expts/06a2_tucodec.py
scheng1992/Data_Assimilation
b4d43895229205ee2cd16b15ee20beccb33b71d6
[ "MIT" ]
1
2021-11-25T12:46:48.000Z
2021-11-25T12:46:48.000Z
run_expts/06a2_tucodec.py
bugsuse/Data_Assimilation
2965ccf78951df11f8686282cd6814bae18afde5
[ "MIT" ]
null
null
null
run_expts/06a2_tucodec.py
bugsuse/Data_Assimilation
2965ccf78951df11f8686282cd6814bae18afde5
[ "MIT" ]
2
2021-03-02T13:29:34.000Z
2022-03-12T11:01:08.000Z
""" After success of first experiment (particularly with vanilla blocks) I want to investigate the effect of 1) Increasing the number of channels to [96, 128] 2) Increasing the amount of augmentation (as overfitting was a problem) i.e. I have removed the FieldJitter(0, 0) augmentation NOTE: 128 failed with a CUDA memory error """ from VarDACAE.settings.models.resNeXt import ResStack3 from VarDACAE.settings.models.CLIC import CLIC from VarDACAE import TrainAE, ML_utils, BatchDA from run_expts.expt_config import ExptConfigTest TEST = False GPU_DEVICE = 0 exp_base = "experiments/train/06a2/" #global variables for DA and training: class ExptConfig(): EPOCHS = 300 SMALL_DEBUG_DOM = False #For training calc_DA_MAE = True num_epochs_cv = 0 LR = 0.0002 print_every = 10 test_every = 10 def main(): blocks = ["vanilla"] channels = [96, 128] if TEST: expt = ExptConfigTest() else: expt = ExptConfig() idx = 0 for block in blocks: for Cstd in channels: kwargs = {"model_name": "Tucodec", "block_type": block, "Cstd": Cstd} idx += 1 for k, v in kwargs.items(): print("{}={}, ".format(k, v), end="") print() settings = CLIC(**kwargs) settings.GPU_DEVICE = GPU_DEVICE settings.export_env_vars() expdir = exp_base + str(idx - 1) + "/" trainer = TrainAE(settings, expdir, expt.calc_DA_MAE) expdir = trainer.expdir #get full path model = trainer.train(expt.EPOCHS, test_every=expt.test_every, num_epochs_cv=expt.num_epochs_cv, learning_rate = expt.LR, print_every=expt.print_every, small_debug=expt.SMALL_DEBUG_DOM) if __name__ == "__main__": main()
24.87013
90
0.608877
4bab2938eae96ffaf14d1b9aaeeaacc3860e9f1f
12,779
py
Python
jornadas/views.py
marthalilianamd/SIVORE
7f0d6c2c79aa909e6cecbf5f562ebe64f40a560d
[ "Apache-2.0" ]
1
2016-02-11T05:01:49.000Z
2016-02-11T05:01:49.000Z
jornadas/views.py
marthalilianamd/SIVORE
7f0d6c2c79aa909e6cecbf5f562ebe64f40a560d
[ "Apache-2.0" ]
89
2016-01-29T00:04:48.000Z
2016-07-05T15:52:30.000Z
jornadas/views.py
Jorgesolis1989/SIVORE
7f0d6c2c79aa909e6cecbf5f562ebe64f40a560d
[ "Apache-2.0" ]
2
2016-02-08T15:16:12.000Z
2016-05-14T02:33:06.000Z
from django.contrib.auth.decorators import permission_required from django.shortcuts import render_to_response, render, redirect from jornadas.forms import FormularioRegistroJornada, FormularioEditarJornada from planchas.models import Plancha from candidatos.models import Candidato from corporaciones.models import Corporacion from datetime import datetime from django.utils import timezone from django.utils.timezone import activate from django.conf import settings activate(settings.TIME_ZONE) from jornadas.models import Jornada , Jornada_Corporacion def ingresar_plancha_voto_blanco(jornada_corporacion): # Creando la plancha con el candidato voto en blanco para esa corporacion especifica plancha_voto_en_blanco = Plancha() plancha_voto_en_blanco.candidato_principal = None plancha_voto_en_blanco.is_active = True plancha_voto_en_blanco.jornada_corporacion = jornada_corporacion plancha_voto_en_blanco.numeroplancha = 0 try: plancha_voto_en_blanco.save() except Exception as e: print(e) @permission_required("usuarios.Administrador", login_url="/") def registro_jornada(request): #Verificación para crear una jornada if request.method == 'POST' and "btncreate" in request.POST: form = FormularioRegistroJornada(request.POST) #Si el formulario es valido if form.is_valid(): jornada = Jornada() jornada.nombrejornada = form.cleaned_data["nombre_jornada"] # Creando la jornada electoral y habilitando las corporaciones. corporaciones = form.cleaned_data["corporaciones"] hora_completa = form.cleaned_data["fecha_jornada"] + " "+ form.cleaned_data["hora_inicio"] jornada.fecha_inicio_jornada = datetime.strptime(hora_completa, "%m/%d/%Y %I:%M %p") jornada.fecha_inicio_jornada = timezone.make_aware(jornada.fecha_inicio_jornada, timezone.get_current_timezone()) hora_completa = form.cleaned_data["fecha_jornada"] + " "+ form.cleaned_data["hora_final"] jornada.fecha_final_jornada = datetime.strptime(hora_completa, "%m/%d/%Y %I:%M %p") jornada.fecha_final_jornada = timezone.make_aware(jornada.fecha_final_jornada, timezone.get_current_timezone()) try: jornada.save() except Exception as e: print(e) jornada.corporaciones = corporaciones try: jornada.save() except Exception as e: print(e) for corporacion in corporaciones: jornada_corporacion = Jornada_Corporacion() #guardamos jornada jornada_corporacion.jornada = jornada #guardamos corporacion jornada_corporacion.corporacion = corporacion try: jornada_corporacion.save() except Exception as e: print(e) # Ingresando candidato voto en blanco a la corporacion a elegir ingresar_plancha_voto_blanco(jornada_corporacion) mensaje = "Se creó la jornada "+jornada.nombrejornada+" exitosamente " llamarMensaje = "exito_usuario" request.session["mensaje"] = mensaje request.session["llamarMensaje"] = llamarMensaje return redirect(listar_jornadas) #si no es valido el formulario, crear else: mensaje = "Datos incompleto para crear la jornada" llamarMensaje = "fracaso_usuario" form = FormularioRegistroJornada() data = {'mensaje': mensaje, 'form': form, 'llamarMensaje':llamarMensaje} return render(request, 'registro_jornada.html', data) else: form = FormularioRegistroJornada() return render(request, 'registro_jornada.html', {'form': form}) # Vista para listar votantes @permission_required("usuarios.Administrador", login_url="/") def listar_jornadas(request): jornadas = Jornada.objects.filter(is_active=True) jornada_corporaciones = Jornada_Corporacion.objects.filter(jornada__is_active=True).values_list('corporacion_id', flat=True) llamarMensaje = request.session.pop('llamarMensaje', None) mensaje = request.session.pop('mensaje', None) return render(request, 'listar_jornadas.html', {'jornadas': jornadas, 'llamarMensaje': llamarMensaje,'mensaje': mensaje, 'jornada_corporaciones': jornada_corporaciones}) # funcion que permite la edición de la jornada seleccionada @permission_required("usuarios.Administrador", login_url="/") def editar_jornada(request, id): try: jornada = Jornada.objects.get(id = id) except Jornada.DoesNotExist: llamarmensaje = "fracaso_usuario" mensaje = "La jornada #" + str(id)+ " no existe en el sistema." request.session["llamarMensaje"] = llamarmensaje request.session["mensaje"] = mensaje return redirect("listar_jornadas") if request.method == 'POST' and "btncreate" in request.POST: form = FormularioEditarJornada(request.POST) #Si el formulario es valido if form.is_valid(): jornada.nombrejornada = form.cleaned_data["nombre_jornada"] hora_completa = form.cleaned_data["fecha_jornada"] + " " + form.cleaned_data["hora_inicio"] jornada.fecha_inicio_jornada = datetime.strptime(hora_completa, "%m/%d/%Y %I:%M %p") jornada.fecha_inicio_jornada = timezone.make_aware(jornada.fecha_inicio_jornada, timezone.get_current_timezone()) print(hora_completa) hora_completa = form.cleaned_data["fecha_jornada"] + " "+ form.cleaned_data["hora_final"] jornada.fecha_final_jornada = datetime.strptime(hora_completa, "%m/%d/%Y %I:%M %p") jornada.fecha_final_jornada = timezone.make_aware(jornada.fecha_final_jornada, timezone.get_current_timezone()) print(jornada.fecha_final_jornada) # Creando la jornada electoral y habilitando las corporaciones. corporaciones = form.cleaned_data["corporaciones"] try: jornada.save() except Exception as e: print(e) # Trabajar con las corporaciones jornadas_activas = Jornada_Corporacion.objects.filter(jornada_id = jornada.id , is_active=True) for jornada_activa in jornadas_activas: # Verificando las corporaciones de la lista de jornadas if jornada_activa.corporacion not in corporaciones: # Desactivamos los candidatos de esa jornada candidatos_a_desactivar = Candidato.objects.filter(jornada_corporacion__jornada_id=jornada_activa.jornada.id , jornada_corporacion__corporacion__id=jornada_activa.corporacion.id, is_active=True) #Guardando los candidatos for candidato in candidatos_a_desactivar: candidato.is_active = False candidato.save() # Desactivamos las planchas de la jornada planchas_a_desactivar = Plancha.objects.filter(jornada_corporacion__jornada_id=jornada_activa.jornada.id , jornada_corporacion__corporacion__id=jornada_activa.corporacion.id, is_active=True) #Guardando los planchas for plancha in planchas_a_desactivar: plancha.is_active = False plancha.save() # Desactivamos la jornada jornada_activa.is_active = False try: jornada_activa.save() except Exception as e: print(e) #Para agregar las corporaciones faltantes for corporacion in corporaciones: if corporacion.id not in jornadas_activas.values_list('corporacion__id' , flat=True): jornada_corporacion = Jornada_Corporacion(jornada=jornada , corporacion=corporacion , is_active=True) try: jornada_corporacion.save() except Exception as e: print(e) ingresar_plancha_voto_blanco(jornada_corporacion) jornada.corporaciones = corporaciones try: jornada.save() except Exception as e: print(e) mensaje = "Se editó la jornada " + jornada.nombrejornada + " exitosamente " llamarMensaje = "exito_usuario" request.session["mensaje"] = mensaje request.session["llamarMensaje"] = llamarMensaje return redirect(listar_jornadas) #si no es valido el formulario, crear else: mensaje = "Datos incompleto para editar la jornada" llamarMensaje = "fracaso_usuario" form = FormularioRegistroJornada() data = {'mensaje': mensaje, 'form': form, 'llamarMensaje':llamarMensaje} return render(request, 'editar_jornada.html', data) else: form = FormularioEditarJornada() # corporaciones de la jornada corporaciones_de_jornada = Corporacion.objects.filter(id__in=Jornada_Corporacion.objects.filter(jornada_id= jornada.id, is_active=True, ).values_list("corporacion__id" , flat=True)) print(corporaciones_de_jornada) # lista de ids Corporaciones ocupadas corporaciones_ocupadas = Corporacion.objects.filter(id__in=Jornada_Corporacion.objects.filter(jornada__is_active=True).values_list("corporacion__id", flat=True)) # Corporaciones libres corporaciones_libres= Corporacion.objects.all().exclude(id__in=corporaciones_ocupadas.exclude(id__in=corporaciones_de_jornada.values_list("id", flat=True)).values_list("id", flat=True)) # Agregando las corporaciones de la jornada porque aparecen ocupadas form.fields["corporaciones"].queryset = corporaciones_libres #envio de datos al formulario editar form.initial = {'nombre_jornada' : jornada.nombrejornada, "fecha_jornada" : jornada.fecha_inicio_jornada.date().strftime("%m/%d/%Y"), "hora_inicio" : timezone.localtime(jornada.fecha_inicio_jornada).strftime('%I:%M %p'), "hora_final" : timezone.localtime(jornada.fecha_final_jornada).strftime('%I:%M %p'), "corporaciones": [o for o in corporaciones_de_jornada]} return render(request, 'editar_jornada.html', {'form': form}) # Este metodo no elimina en la base de datos, sino que desactiva la jornada con sus dependencias (Planchas y Candidatos) @permission_required("usuarios.Administrador", login_url="/") def eliminar_jornada(request, idjornada=None): if request.method == 'POST': # Desactivando la jornada de la tabla jornada jornada=Jornada.objects.get(id=idjornada , is_active=True) jornada.is_active = False try: jornada.save() except Exception as e: print(e) # Desactivando las planchas de la tabla Jornada_Corporacion planchas_jornada = Plancha.objects.filter(jornada_corporacion__jornada_id=idjornada , is_active=True) for plancha_jornada in planchas_jornada: plancha_jornada.is_active = False try: plancha_jornada.save() except Exception as e: print(e) # Desactivando los candidatos candidatos_jornada = Candidato.objects.filter(jornada_corporacion__jornada_id=idjornada , is_active=True) for candidato_jornada in candidatos_jornada: candidato_jornada.is_active = False try: candidato_jornada.save() except Exception as e: print(e) llamarMensaje = "elimino_corporacion" mensaje = "Se eliminó la jornada electoral " + str(jornada.nombrejornada) +" con sus candidatos y corporaciones asociadas sactisfactoriamente" request.session['llamarMensaje'] = llamarMensaje request.session['mensaje'] = mensaje return redirect("listar_jornadas")
46.981618
193
0.631818
fc26f27ae39373971d43c803000d13051fd7bdec
984
py
Python
Python3/0695-Max-Area-of-Island/soln-1.py
wyaadarsh/LeetCode-Solutions
3719f5cb059eefd66b83eb8ae990652f4b7fd124
[ "MIT" ]
5
2020-07-24T17:48:59.000Z
2020-12-21T05:56:00.000Z
Python3/0695-Max-Area-of-Island/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
null
null
null
Python3/0695-Max-Area-of-Island/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
2
2020-07-24T17:49:01.000Z
2020-08-31T19:57:35.000Z
class Solution: def maxAreaOfIsland(self, grid): """ :type grid: List[List[int]] :rtype: int """ if not grid or not grid[0]: return 0 def dfs(r, c): m, n = len(grid), len(grid[0]) stack = [(r, c)] grid[r][c] = 0 ans = 0 while stack: i, j = stack.pop() ans += 1 for di, dj in ((-1, 0), (1, 0), (0, -1), (0, 1)): newi, newj = i + di, j + dj if 0 <= newi < m and 0 <= newj < n and grid[newi][newj] == 1: grid[newi][newj] = 0 stack.append((newi, newj)) return ans ans = 0 for i, row in enumerate(grid): for j, val in enumerate(row): if val == 1: area = dfs(i, j) if area > ans: ans = area return ans
31.741935
81
0.356707
7b0bd118fe332b41c113ce6ca994d83e9581d615
6,955
py
Python
lib/airflow/tests/contrib/jobs/test_scheduler_client.py
ideax-business/ai-flow
0a7797a093beddf827f68cad7a11e0babf1b5059
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
lib/airflow/tests/contrib/jobs/test_scheduler_client.py
ideax-business/ai-flow
0a7797a093beddf827f68cad7a11e0babf1b5059
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
lib/airflow/tests/contrib/jobs/test_scheduler_client.py
ideax-business/ai-flow
0a7797a093beddf827f68cad7a11e0babf1b5059
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from typing import List from notification_service.base_notification import EventWatcher, BaseEvent from notification_service.client import NotificationClient from notification_service.event_storage import MemoryEventStorage from notification_service.server import NotificationServer from notification_service.service import NotificationService from airflow.contrib.jobs.scheduler_client import EventSchedulerClient, ExecutionContext from airflow.events.scheduler_events import SchedulerInnerEventType from airflow.executors.scheduling_action import SchedulingAction PORT = 50053 class MockScheduler(object): def __init__(self): self.client = NotificationClient(server_uri="localhost:{}".format(PORT), default_namespace="scheduler") def start(self, watcher): self.client.start_listen_events(watcher=watcher) def stop(self): self.client.stop_listen_events() class PassWatcher(EventWatcher): def process(self, events: List[BaseEvent]): pass class TestSchedulerClient(unittest.TestCase): @classmethod def setUpClass(cls) -> None: cls.storage = MemoryEventStorage() cls.server = NotificationServer(NotificationService(cls.storage), PORT) cls.server.run() @classmethod def tearDownClass(cls) -> None: cls.server.stop() def setUp(self) -> None: self.client = EventSchedulerClient(ns_client=NotificationClient(server_uri="localhost:{}".format(PORT), default_namespace="test_namespace")) self.scheduler = MockScheduler() def tearDown(self) -> None: self.scheduler.stop() def test_parse_dag(self): class W(EventWatcher): def process(self, events: List[BaseEvent]): s_client = NotificationClient(server_uri="localhost:{}".format(PORT), default_namespace="scheduler") s_client.send_event(BaseEvent(key=events[0].key, value='', event_type=SchedulerInnerEventType.PARSE_DAG_RESPONSE.value, namespace='scheduler')) self.scheduler.start(watcher=W()) result = self.client.trigger_parse_dag(file_path='/test') self.assertTrue(result) def test_parse_dag_timeout(self): self.scheduler.start(watcher=PassWatcher()) with self.assertRaises(TimeoutError) as context: result = self.client.trigger_parse_dag(file_path='/test', timeout=1) self.assertTrue('Get response timeout' in str(context.exception)) def test_schedule_dag(self): class W(EventWatcher): def process(self, events: List[BaseEvent]): s_client = NotificationClient(server_uri="localhost:{}".format(PORT), default_namespace="scheduler") s_client.send_event(BaseEvent(key=events[0].key, value='1', event_type=SchedulerInnerEventType.RESPONSE.value, namespace='scheduler')) self.scheduler.start(watcher=W()) result = self.client.schedule_dag(dag_id='1', context='') self.assertEqual('1', result.dagrun_id) def test_schedule_dag_timeout(self): self.scheduler.start(watcher=PassWatcher()) with self.assertRaises(TimeoutError) as context: result = self.client.schedule_dag(dag_id='1', context='', timeout=1) self.assertTrue('Get response timeout' in str(context.exception)) def test_stop_dag_run(self): class W(EventWatcher): def process(self, events: List[BaseEvent]): s_client = NotificationClient(server_uri="localhost:{}".format(PORT), default_namespace="scheduler") s_client.send_event(BaseEvent(key=events[0].key, value='1', event_type=SchedulerInnerEventType.RESPONSE.value, namespace='scheduler')) self.scheduler.start(watcher=W()) result = self.client.stop_dag_run(dag_id='1', context=ExecutionContext(dagrun_id='1')) self.assertEqual('1', result.dagrun_id) def test_stop_dag_run_timeout(self): self.scheduler.start(watcher=PassWatcher()) with self.assertRaises(TimeoutError) as context: result = self.client.stop_dag_run(dag_id='1', context=ExecutionContext(dagrun_id='1'), timeout=1) self.assertTrue('Get response timeout' in str(context.exception)) def test_schedule_task(self): class W(EventWatcher): def process(self, events: List[BaseEvent]): s_client = NotificationClient(server_uri="localhost:{}".format(PORT), default_namespace="scheduler") s_client.send_event(BaseEvent(key=events[0].key, value='1', event_type=SchedulerInnerEventType.RESPONSE.value, namespace='scheduler')) self.scheduler.start(watcher=W()) result = self.client.schedule_task(dag_id='1', task_id='t_1', action=SchedulingAction.START, context=ExecutionContext(dagrun_id='1')) self.assertEqual('1', result.dagrun_id) def test_schedule_task_timeout(self): self.scheduler.start(watcher=PassWatcher()) with self.assertRaises(TimeoutError) as context: result = self.client.schedule_task(dag_id='1', task_id='t_1', action=SchedulingAction.START, context=ExecutionContext(dagrun_id='1'), timeout=1) self.assertTrue('Get response timeout' in str(context.exception)) if __name__ == '__main__': unittest.main()
45.162338
111
0.627606
c0e9d38c3ca514b85f6e8c40422e60096bd2227a
2,312
py
Python
dit/pid/tests/test_idep.py
volpatto/dit
a8b0ffd72e0829c4b239419e85b9e0cfd20085dd
[ "BSD-3-Clause" ]
1
2021-03-15T08:51:42.000Z
2021-03-15T08:51:42.000Z
dit/pid/tests/test_idep.py
volpatto/dit
a8b0ffd72e0829c4b239419e85b9e0cfd20085dd
[ "BSD-3-Clause" ]
null
null
null
dit/pid/tests/test_idep.py
volpatto/dit
a8b0ffd72e0829c4b239419e85b9e0cfd20085dd
[ "BSD-3-Clause" ]
null
null
null
""" Tests for dit.pid.idep. """ import pytest from dit.pid.ibroja import PID_BROJA from dit.pid.idep import PID_dep, PID_RA from dit.pid.distributions import bivariates, trivariates def test_pid_dep1(): """ Test idep on a generic distribution. """ d = bivariates['reduced or'] pid = PID_dep(d, ((0,), (1,)), (2,)) assert pid[((0,), (1,))] == pytest.approx(0.073761301440421256, abs=1e-4) assert pid[((0,),)] == pytest.approx(0.23751682301871169, abs=1e-4) assert pid[((1,),)] == pytest.approx(0.23751682301871169, abs=1e-4) assert pid[((0, 1),)] == pytest.approx(0.45120505252215537, abs=1e-4) def test_pid_dep2(): """ Test idep on another generic distribution. """ d = trivariates['anddup'] pid = PID_dep(d, [[0], [1], [2]], [3]) for atom in pid._lattice: if atom == ((0,), (1,), (2,)): assert pid[atom] == pytest.approx(0.081704409646414788, abs=1e-4) elif atom == ((0, 1), (1, 2)): assert pid[atom] == pytest.approx(0.27042624480113808, abs=1e-4) elif atom in [((0,), (2,)), ((1,),)]: assert pid[atom] == pytest.approx(0.22957374150893717, abs=1e-4) else: assert pid[atom] == pytest.approx(0.0, abs=1e-4) def test_pid_dep3(): """ Test that idep and ibroja differ on reduced or. """ d = bivariates['reduced or'] pid1 = PID_BROJA(d) pid2 = PID_dep(d) assert pid1 != pid2 def test_pid_dep4(): """ Test that anddup is complete. """ d = trivariates['anddup'] pid = PID_dep(d) assert pid.complete assert pid.nonnegative assert pid.consistent def test_pid_ra1(): """ """ d = bivariates['and'] pid = PID_RA(d, ((0,), (1,)), (2,)) assert pid[((0,), (1,))] == pytest.approx(-0.18872, abs=1e-4) assert pid[((0,),)] == pytest.approx(0.5, abs=1e-4) assert pid[((1,),)] == pytest.approx(0.5, abs=1e-4) assert pid[((0, 1),)] == pytest.approx(0.0, abs=1e-4) def test_pid_ra2(): """ """ d = trivariates['cat'] pid = PID_RA(d, ((0,), (1,), (2,)), (3,)) for atom in pid._lattice: if atom in (((0,),), ((1,),), ((2,),)): assert pid[atom] == pytest.approx(1.0, abs=1e-4) else: assert pid[atom] == pytest.approx(0.0, abs=1e-4)
28.54321
77
0.556661
6389ac77c43ecd4a95a843d1a40f83b191749021
4,385
py
Python
ops/nl/nonlocal_block.py
ancientmooner/CCNet
c914913ad523ec854f78c28f22044af204d4fbe6
[ "MIT" ]
null
null
null
ops/nl/nonlocal_block.py
ancientmooner/CCNet
c914913ad523ec854f78c28f22044af204d4fbe6
[ "MIT" ]
null
null
null
ops/nl/nonlocal_block.py
ancientmooner/CCNet
c914913ad523ec854f78c28f22044af204d4fbe6
[ "MIT" ]
null
null
null
import torch import torch.nn.functional as F from libs import InPlaceABN, InPlaceABNSync from torch import nn from torch.nn import init import math class _NonLocalNd(nn.Module): def __init__(self, dim, inplanes, planes, downsample, use_gn, lr_mult, use_out): assert dim in [1, 2, 3], "dim {} is not supported yet".format(dim) if dim == 3: conv_nd = nn.Conv3d if downsample: max_pool = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)) else: max_pool = None bn_nd = nn.BatchNorm3d elif dim == 2: conv_nd = nn.Conv2d if downsample: max_pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) else: max_pool = None bn_nd = nn.BatchNorm2d else: conv_nd = nn.Conv1d if downsample: max_pool = nn.MaxPool1d(kernel_size=2, stride=2) else: max_pool = None bn_nd = nn.BatchNorm1d super(_NonLocalNd, self).__init__() self.conv_query = conv_nd(inplanes, planes, kernel_size=1) self.conv_key = conv_nd(inplanes, planes, kernel_size=1) if use_out: self.conv_value = conv_nd(inplanes, planes, kernel_size=1) self.conv_out = conv_nd(planes, inplanes, kernel_size=1, bias=False) else: self.conv_value = conv_nd(inplanes, inplanes, kernel_size=1, bias=False) self.conv_out = None self.softmax = nn.Softmax(dim=2) self.downsample = max_pool # self.norm = nn.GroupNorm(num_groups=32, num_channels=inplanes) if use_gn else InPlaceABNSync(num_features=inplanes) self.gamma = nn.Parameter(torch.zeros(1)) self.scale = math.sqrt(planes) self.reset_parameters() self.reset_lr_mult(lr_mult) def reset_parameters(self): for m in self.modules(): if isinstance(m, nn.Conv3d) or isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): init.normal_(m.weight, 0, 0.01) if m.bias is not None: init.zeros_(m.bias) m.inited = True #init.constant_(self.norm.weight, 0) #init.constant_(self.norm.bias, 0) #self.norm.inited = True def reset_lr_mult(self, lr_mult): if lr_mult is not None: for m in self.modules(): m.lr_mult = lr_mult else: print('not change lr_mult') def forward(self, x): # [N, C, T, H, W] residual = x # [N, C, T, H', W'] if self.downsample is not None: input_x = self.downsample(x) else: input_x = x # [N, C', T, H, W] query = self.conv_query(x) # [N, C', T, H', W'] key = self.conv_key(input_x) value = self.conv_value(input_x) # [N, C', T x H x W] query = query.view(query.size(0), query.size(1), -1) # [N, C', T x H' x W'] key = key.view(key.size(0), key.size(1), -1) value = value.view(value.size(0), value.size(1), -1) # [N, T x H x W, T x H' x W'] sim_map = torch.bmm(query.transpose(1, 2), key) sim_map = sim_map/self.scale sim_map = self.softmax(sim_map) # [N, T x H x W, C'] out = torch.bmm(sim_map, value.transpose(1, 2)) # [N, C', T x H x W] out = out.transpose(1, 2) # [N, C', T, H, W] out = out.view(out.size(0), out.size(1), *x.size()[2:]) # [N, C, T, H, W] if self.conv_out is not None: out = self.conv_out(out) # if self.norm is not None: # out = self.norm(out) out = self.gamma * out out = residual + out return out class NonLocal2d(_NonLocalNd): def __init__(self, inplanes, planes, downsample=True, use_gn=False, lr_mult=None, use_out=False): super(NonLocal2d, self).__init__(dim=2, inplanes=inplanes, planes=planes, downsample=downsample, use_gn=use_gn, lr_mult=lr_mult, use_out=use_out) class NonLocal3d(_NonLocalNd): def __init__(self, inplanes, planes, downsample, use_gn, lr_mult, use_out): super(NonLocal3d, self).__init__(dim=3, inplanes=inplanes, planes=planes, downsample=downsample, use_gn=use_gn, lr_mult=lr_mult, use_out=use_out)
35.362903
153
0.566249
2bfd16b927d06d3900aa5c9d7c16ab9a7ec24963
5,142
py
Python
qa/rpc-tests/cfund-vote.py
oleksiilihai/Bitcoin-Oil
0c40c096fae0437adf8033e37a8a4f8e489551cb
[ "MIT" ]
null
null
null
qa/rpc-tests/cfund-vote.py
oleksiilihai/Bitcoin-Oil
0c40c096fae0437adf8033e37a8a4f8e489551cb
[ "MIT" ]
null
null
null
qa/rpc-tests/cfund-vote.py
oleksiilihai/Bitcoin-Oil
0c40c096fae0437adf8033e37a8a4f8e489551cb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoinoil Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import BitcoinOilTestFramework from test_framework.cfund_util import * import time class CommunityFundVotesTest(BitcoinOilTestFramework): """Tests the voting procedures of the Community fund.""" def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 1 def setup_network(self, split=False): self.nodes = self.setup_nodes() self.is_network_split = split def run_test(self): self.nodes[0].staking(False) activate_cfund(self.nodes[0]) self.nodes[0].donatefund(1000) proposalid0 = self.nodes[0].createproposal(self.nodes[0].getnewaddress(), 1, 3600, "test")["hash"] slow_gen(self.nodes[0], 1) # Verify the proposal is now in the proposals list assert(self.nodes[0].getproposal(proposalid0)["hash"] == proposalid0) self.nodes[0].proposalvote(proposalid0, "yes") blockhash_yes = slow_gen(self.nodes[0], 1)[0] # Verify the vote has been counted assert(self.nodes[0].getproposal(proposalid0)["votingCycle"] == 0) assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 1 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) self.nodes[0].proposalvote(proposalid0, "no") blockhash_no = slow_gen(self.nodes[0], 1)[0] # Verify the vote has been counted assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 1 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 1) self.nodes[0].invalidateblock(blockhash_no) # Verify the votes have been reseted assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 1 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) self.nodes[0].invalidateblock(blockhash_yes) # Verify the votes have been reseted assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 0 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) # Add dummy votes slow_gen(self.nodes[0], 5) self.nodes[0].proposalvote(proposalid0, "yes") slow_gen(self.nodes[0], 5) self.nodes[0].proposalvote(proposalid0, "remove") # Check votes are added assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 5 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 5) # Move to the end of the cycle slow_gen(self.nodes[0], self.nodes[0].cfundstats()["votingPeriod"]["ending"] - self.nodes[0].cfundstats()["votingPeriod"]["current"]) # Check we are still in the first cycle assert(self.nodes[0].getproposal(proposalid0)["votingCycle"] == 0) slow_gen(self.nodes[0], 1) # Check we are in a new cycle assert(self.nodes[0].getproposal(proposalid0)["votingCycle"] == 1) # Check the number of votes reseted and the proposal state assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 0 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) assert(self.nodes[0].getproposal(proposalid0)["status"] == "pending" and self.nodes[0].getproposal(proposalid0)["state"] == 0) slow_gen(self.nodes[0], self.nodes[0].cfundstats()["consensus"]["blocksPerVotingCycle"] - 10) self.nodes[0].proposalvote(proposalid0, "yes") # Vote in the limits of a cycle slow_gen(self.nodes[0], 9) # Check we are still in the same cycle assert(self.nodes[0].getproposal(proposalid0)["votingCycle"] == 1) # Check the number of votes reseted and the proposal state assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 9 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) assert(self.nodes[0].getproposal(proposalid0)["status"] == "pending" and self.nodes[0].getproposal(proposalid0)["state"] == 0) # Vote into the new cycle firstblockofcycle = slow_gen(self.nodes[0], 1)[0] # Check we are in the new cycle assert(self.nodes[0].getproposal(proposalid0)["votingCycle"] == 2) # Check the number of votes assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 0 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) assert(self.nodes[0].getproposal(proposalid0)["status"] == "pending" and self.nodes[0].getproposal(proposalid0)["state"] == 0) # Move back to the end of the previous cycle self.nodes[0].invalidateblock(firstblockofcycle) # Check we are again in the old cycle assert(self.nodes[0].getproposal(proposalid0)["votingCycle"] == 1) assert(self.nodes[0].getproposal(proposalid0)["votesYes"] == 9 and self.nodes[0].getproposal(proposalid0)["votesNo"] == 0) assert(self.nodes[0].getproposal(proposalid0)["status"] == "pending" and self.nodes[0].getproposal(proposalid0)["state"] == 0) if __name__ == '__main__': CommunityFundVotesTest().main()
44.713043
141
0.666472
23d2b844f1168ced1452fc210177de9c78d9d949
2,010
py
Python
src/models.py
Salah-Zair/openctt-assistant
490c224456cf6e22f8e336d5e1eeeac93ff7ce59
[ "MIT" ]
null
null
null
src/models.py
Salah-Zair/openctt-assistant
490c224456cf6e22f8e336d5e1eeeac93ff7ce59
[ "MIT" ]
null
null
null
src/models.py
Salah-Zair/openctt-assistant
490c224456cf6e22f8e336d5e1eeeac93ff7ce59
[ "MIT" ]
null
null
null
from datetime import datetime class Teacher: def __init__(self): self.teacher_id: int self.name: str self.last_name: str self.title: str self.edu_rank: str self.ext_id: int class Room: def __init__(self): self.room_id: int self.name: str self.capacity: int self.ext_id: int class Day: def __init__(self): self.day_id: int self.name: int self.day_index: int class Term: def __init__(self): self.term_id: int self.start_h: int self.start_min: int self.end_h: int self.end_min: int self.term_index class EducationProgrammeGroup: def __init__(self): self.epg_id: int self.name: int self.ext_id: int class EducationProgramme: def __init__(self): self.ep_id: int self.name: str self.code: str self.semester: str self.ext_id: int self.epg_id: int class TimeTableData: def __init__(self): self.tt_id: int self.type: int self.institution_name: str self.school_year: str self.last_change: str class Course: def __init__(self): self.course_id: int self.name: str self.short_name: str self.group_name: str self.course_type: str self.num_of_lesson_per_week: int self.ext_id: int self.ep_id: int self.teacher_id: int class AllocatedLesson: def __init__(self): self.allocless_id: int self.course_id: int self.room_id: int self.day_id: int self.term_id: int class Session: def __init__(self): self.key: str self.expired_date: datetime self.user_id: int class User: def __init__(self): self.user_id: int self.user_name: str self.email: str self.password: str self.is_logged_in: bool self.last_logged_in: datetime
19.705882
40
0.58806
c504f35fef8cabbf9fc91db1c8e7c1d067b619e7
885
py
Python
tests/test_modify_contact.py
elpinkypie/python_training
110b84fa108894a703f07734b4b5e77f038a54ec
[ "Apache-2.0" ]
null
null
null
tests/test_modify_contact.py
elpinkypie/python_training
110b84fa108894a703f07734b4b5e77f038a54ec
[ "Apache-2.0" ]
null
null
null
tests/test_modify_contact.py
elpinkypie/python_training
110b84fa108894a703f07734b4b5e77f038a54ec
[ "Apache-2.0" ]
null
null
null
from git.model.contact import ContactFormAttributes from random import randrange def test_modify_contact(fixt): if fixt.contact.count_contacts() == 0: fixt.contact.create(ContactFormAttributes(firstname="firstname", lastname="lastname")) old_contacts = fixt.contact.get_contact_list() # random choose contact index = randrange(len(old_contacts)) contact = ContactFormAttributes(firstname="modified") contact.id = old_contacts[index].id fixt.contact.modify_contact_by_index(index, contact) assert len(old_contacts) == fixt.contact.count_contacts() new_contacts = fixt.contact.get_contact_list() old_contacts[index] = contact assert sorted(old_contacts, key=ContactFormAttributes.id_or_max) == sorted(new_contacts, key=ContactFormAttributes.id_or_max)
42.142857
115
0.700565
6367d643d791a7ae23dfa0bb59986c3a07f5e4a3
3,707
py
Python
tests/test_execution_mode.py
ShellAddicted/pex
f1060b784fc9c4337a514ed21357ea9e8c2e4f41
[ "Apache-2.0" ]
2,160
2015-01-06T17:57:39.000Z
2022-03-30T19:59:01.000Z
tests/test_execution_mode.py
sthagen/pex
9bd4c178c93556faad3c8a1e75989c9288d09416
[ "Apache-2.0" ]
1,242
2015-01-22T14:56:46.000Z
2022-03-31T18:02:38.000Z
tests/test_execution_mode.py
Satertek/pex
64de1c4cf031118ef446ac98a8c164c91c23bb9b
[ "Apache-2.0" ]
248
2015-01-15T13:34:50.000Z
2022-03-26T01:24:18.000Z
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import import os.path import subprocess import sys from subprocess import CalledProcessError import pytest from pex.layout import Layout from pex.testing import run_pex_command from pex.typing import TYPE_CHECKING if TYPE_CHECKING: import attr # vendor:skip from typing import Any, Callable, Dict, Iterable, Tuple CreateColorsPex = Callable[[Iterable[str]], str] ExecuteColorsPex = Callable[[str, Dict[str, str]], Tuple[str, str]] else: from pex.third_party import attr @pytest.fixture def create_colors_pex(tmpdir): # type: (Any) -> CreateColorsPex def create(extra_args): pex_file = os.path.join(str(tmpdir), "colors.pex") results = run_pex_command(["ansicolors==1.1.8", "-o", pex_file] + list(extra_args)) results.assert_success() return pex_file return create @pytest.fixture def execute_colors_pex(tmpdir): # type: (Any) -> ExecuteColorsPex def execute(colors_pex, extra_env): pex_root = os.path.join(str(tmpdir), "pex_root") env = os.environ.copy() env.update(extra_env) env["PEX_ROOT"] = pex_root args = [colors_pex] if os.path.isfile(colors_pex) else [sys.executable, colors_pex] output = subprocess.check_output( args=args + ["-c", "import colors; print(colors.__file__)"], env=env ) return output.strip().decode("utf-8"), pex_root return execute @attr.s(frozen=True) class ExecutionMode(object): extra_args = attr.ib() # type: Iterable[str] isort_code_dir = attr.ib() # type: Callable[[Layout.Value], str] venv_exception_expected = attr.ib() # type: bool def installed_wheels_or_deps(layout): # type: (Layout.Value) -> str return "{app_root}/.deps/" if layout == Layout.LOOSE else "{pex_root}/installed_wheels/" @pytest.mark.parametrize( "execution_mode", [ pytest.param( ExecutionMode( extra_args=[], isort_code_dir=installed_wheels_or_deps, venv_exception_expected=True, ), id="PEX", ), pytest.param( ExecutionMode( extra_args=["--include-tools"], isort_code_dir=installed_wheels_or_deps, venv_exception_expected=False, ), id="PEX --include-tools", ), pytest.param( ExecutionMode( extra_args=["--venv"], isort_code_dir=lambda _: "{pex_root}/venvs/", venv_exception_expected=False, ), id="VENV", ), ], ) @pytest.mark.parametrize( "layout", [pytest.param(layout, id=layout.value) for layout in Layout.values()] ) def test_execution_mode( create_colors_pex, # type: CreateColorsPex execute_colors_pex, # type: ExecuteColorsPex execution_mode, # type: ExecutionMode layout, # type: Layout.Value ): # type: (...) -> None pex_app = create_colors_pex(list(execution_mode.extra_args) + ["--layout", layout.value]) output, pex_root = execute_colors_pex(pex_app, {}) assert output.startswith( execution_mode.isort_code_dir(layout).format(app_root=pex_app, pex_root=pex_root), ) if execution_mode.venv_exception_expected: with pytest.raises(CalledProcessError): execute_colors_pex(pex_app, {"PEX_VENV": "1"}) else: output, pex_root = execute_colors_pex(pex_app, {"PEX_VENV": "1"}) assert output.startswith(os.path.join(pex_root, "venvs"))
30.891667
93
0.643108
f098c89e089c920c13e89a2802b30dc5cac833b5
235
py
Python
guitarfan/scrapy/settings.py
timgates42/GuitarFan
1a6d6bcc7708cbb214648e7f5657728f6c27c48a
[ "MIT" ]
48
2015-02-02T02:25:07.000Z
2022-03-11T12:39:39.000Z
guitarfan/scrapy/settings.py
timgates42/GuitarFan
1a6d6bcc7708cbb214648e7f5657728f6c27c48a
[ "MIT" ]
2
2015-09-13T14:00:41.000Z
2021-08-04T16:28:25.000Z
guitarfan/scrapy/settings.py
timgates42/GuitarFan
1a6d6bcc7708cbb214648e7f5657728f6c27c48a
[ "MIT" ]
16
2015-01-09T08:15:13.000Z
2020-06-20T11:07:49.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- SPIDER_MODULES = ['guitarfan.spiders'] NEWSPIDER_MODULE = 'guitarfan.spiders' DEFAULT_ITEM_CLASS = 'guitarfan.items.Artist' # ITEM_PIPELINES = ['guitarfan.pipelines.FilterWordsPipeline']
26.111111
62
0.748936
8e3e1d5776999705797e2d801b590ebb2070b20c
3,459
py
Python
test/test_api_v2___ula_api.py
Fates-List/fateslist.py-autogen
0643434d9d0e71f781f99b2703a2ef52f49d8875
[ "MIT" ]
null
null
null
test/test_api_v2___ula_api.py
Fates-List/fateslist.py-autogen
0643434d9d0e71f781f99b2703a2ef52f49d8875
[ "MIT" ]
null
null
null
test/test_api_v2___ula_api.py
Fates-List/fateslist.py-autogen
0643434d9d0e71f781f99b2703a2ef52f49d8875
[ "MIT" ]
null
null
null
# coding: utf-8 """ Fates List Current API: v2 beta 3 Default API: v2 API Docs: https://apidocs.fateslist.xyz Enum Reference: https://apidocs.fateslist.xyz/structures/enums.autogen # noqa: E501 OpenAPI spec version: 0.3.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.api.api_v2___ula_api import APIV2ULAApi # noqa: E501 from swagger_client.rest import ApiException class TestAPIV2ULAApi(unittest.TestCase): """APIV2ULAApi unit test stubs""" def setUp(self): self.api = APIV2ULAApi() # noqa: E501 def tearDown(self): pass def test_delete_endpoint_api_v2_ula_user_id_list_url_endpoint_feature_delete(self): """Test case for delete_endpoint_api_v2_ula_user_id_list_url_endpoint_feature_delete Delete Endpoint # noqa: E501 """ pass def test_delete_list_api_v2_ula_user_id_list_url_delete(self): """Test case for delete_list_api_v2_ula_user_id_list_url_delete Delete List # noqa: E501 """ pass def test_edit_endpoint_api_v2_ula_user_id_list_url_endpoints_patch(self): """Test case for edit_endpoint_api_v2_ula_user_id_list_url_endpoints_patch Edit Endpoint # noqa: E501 """ pass def test_edit_list_api_v2_ula_user_id_list_url_patch(self): """Test case for edit_list_api_v2_ula_user_id_list_url_patch Edit List # noqa: E501 """ pass def test_get_all_lists_api_v2_ula_lists_get(self): """Test case for get_all_lists_api_v2_ula_lists_get Get All Lists # noqa: E501 """ pass def test_get_bot_api_v2_ula_bots_bot_id_get(self): """Test case for get_bot_api_v2_ula_bots_bot_id_get Get Bot # noqa: E501 """ pass def test_get_feature_by_id_api_v2_ula_feature_id_id_get(self): """Test case for get_feature_by_id_api_v2_ula_feature_id_id_get Get Feature By Id # noqa: E501 """ pass def test_get_feature_by_internal_name_api_v2_ula_feature_iname_iname_get(self): """Test case for get_feature_by_internal_name_api_v2_ula_feature_iname_iname_get Get Feature By Internal Name # noqa: E501 """ pass def test_get_list_api_v2_ula_list_url_get(self): """Test case for get_list_api_v2_ula_list_url_get Get List # noqa: E501 """ pass def test_get_user_voted_api_v2_ula_bots_bot_id_votes_check_post(self): """Test case for get_user_voted_api_v2_ula_bots_bot_id_votes_check_post Get User Voted # noqa: E501 """ pass def test_new_endpoint_api_v2_ula_user_id_list_url_endpoints_put(self): """Test case for new_endpoint_api_v2_ula_user_id_list_url_endpoints_put New Endpoint # noqa: E501 """ pass def test_new_list_api_v2_ula_user_id_lists_put(self): """Test case for new_list_api_v2_ula_user_id_lists_put New List # noqa: E501 """ pass def test_post_stats_api_v2_ula_bots_bot_id_stats_post(self): """Test case for post_stats_api_v2_ula_bots_bot_id_stats_post Post Stats # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
27.672
225
0.681989
a7c2bc4f5d4b4c072bfdec49461054deba30fe90
1,160
py
Python
euctr/crawl/base/config.py
jeekim/euctr-tracker-code
5a041bcd188ec089cfadf3e97b64013408177033
[ "MIT" ]
3
2018-09-11T11:35:48.000Z
2020-09-10T10:39:23.000Z
euctr/crawl/base/config.py
jeekim/euctr-tracker-code
5a041bcd188ec089cfadf3e97b64013408177033
[ "MIT" ]
61
2018-08-06T14:03:16.000Z
2022-03-17T12:30:42.000Z
euctr/crawl/base/config.py
jeekim/euctr-tracker-code
5a041bcd188ec089cfadf3e97b64013408177033
[ "MIT" ]
4
2018-09-11T11:35:53.000Z
2020-12-18T14:21:15.000Z
# -*- coding: utf-8 -*- import os import logging import logging.config # Environment EUCTR_DEBUG = os.environ.get('EUCTR_DEBUG', 'development') if EUCTR_DEBUG == "yes": ENV = 'testing' elif EUCTR_DEBUG == "no": ENV = 'production' else: assert False, "yes or no for debug" WAREHOUSE_URL = os.environ['EUCTR_OPENTRIALS_DB'] # Scrapy CRAWLERA_APIKEY = os.getenv('EUCTR_CRAWLERA_APIKEY', None) SCRAPY_SETTINGS = { 'SPIDER_MODULES': [ 'crawl.spider', ], # effectively unlimited delays, we use Autothrottle below to limit 'DOWNLOAD_DELAY': 0, # milliseconds 'CONCURRENT_REQUESTS_PER_DOMAIN': 32, 'CONCURRENT_REQUESTS': 32, 'AUTOTHROTTLE_ENABLED': True, 'AUTOTHROTTLE_TARGET_CONCURRENCY': 10, # our actual crawling constraint 'AUTOTHROTTLE_DEBUG': True, 'AUTOTHROTTLE_START_DELAY': 0.01, # 10 milliseconds 'RETRY_ENABLED': True, 'RETRY_TIMES': 24, 'ITEM_PIPELINES': { 'crawl.base.pipelines.Warehouse': 100, }, 'DOWNLOADER_MIDDLEWARES': {'scrapy_crawlera.CrawleraMiddleware': 600}, 'CRAWLERA_ENABLED': CRAWLERA_APIKEY or False, 'CRAWLERA_APIKEY': CRAWLERA_APIKEY }
26.363636
75
0.697414
73b1642a53228e3ec7f1652d046d497330ab2fa8
2,605
py
Python
coordinateparser.py
vkuhlmann/minecraft-proximity
34d2b867da308d7b8e4b2e4ea47ae82a0a88b84b
[ "MIT" ]
null
null
null
coordinateparser.py
vkuhlmann/minecraft-proximity
34d2b867da308d7b8e4b2e4ea47ae82a0a88b84b
[ "MIT" ]
null
null
null
coordinateparser.py
vkuhlmann/minecraft-proximity
34d2b867da308d7b8e4b2e4ea47ae82a0a88b84b
[ "MIT" ]
null
null
null
from PIL import Image, ImageGrab import positioner import fontdecoder import re import logging import threading import time # Dependency of coordinatereader.py WHITE_COLOR = (252, 252, 252) GRAY_COLOR = (221, 221, 221) class CoordinateParser: def __init__(self, snippeter): self.snippeter = snippeter self.debug = False self.regex = re.compile( r"\s*(Z:)?\s*(?P<x>[+-]?\d+(\.\d+)?)(\s|\s*/)\s*" + r"(?P<y>[+-]?\d+(\.\d+)?)(\s|\s*/)\s*" + r"(?P<z>[+-]?\d+(\.\d+)?).*") def readCharacter(self, im, pixels, scale): raster = [] nonZeroLength = 0 spaceLength = 0 for x in range(self.x, im.size[0] // scale): val = 0 count = 0 for y in range(0, im.size[1] // scale): col = pixels[x * scale, y * scale][:3] if col == WHITE_COLOR or col == GRAY_COLOR: count += 1 val += 2**y if val != 0 or nonZeroLength > 0: raster += [val] if count == 0: spaceLength += 1 if nonZeroLength != 0: while raster[0] == 0: raster = raster[1:] symb = fontdecoder.decodeSymbol(raster) raster = [] self.x = x + 1 return symb # if superVal in DECIPHER: # return DECIPHER[superVal] # else: # return f"[{superVal}]" # print(nonZeroLength) nonZeroLength = 0 if spaceLength > 3: self.x = x return " " else: nonZeroLength += 1 spaceLength = 0 return None def getCoordinates(self): im, pixels, scale = self.snippeter.snippet() return self.parseCoordinates(im, pixels, scale) def parseCoordinates(self, im, pixels, scale): if pixels == None: return None self.x = 0 outp = "" while True: ch = self.readCharacter(im, pixels, scale) if ch == None: break outp += ch if self.debug: logging.info(f"[{outp}]") match = self.regex.fullmatch(outp) if match != None: x = float(match.group("x")) y = float(match.group("y")) z = float(match.group("z")) return {"x": x, "y": y, "z": z} return None
28.944444
63
0.443762
30430ccd15fa515065e837890a8d8ca934172400
16,168
py
Python
sdks/python/apache_beam/transforms/window_test.py
dexterchan/beam
01e500c2dd0d699aea0434154b69fd59d824700f
[ "Apache-2.0" ]
2
2019-12-14T04:24:33.000Z
2020-02-21T07:17:40.000Z
sdks/python/apache_beam/transforms/window_test.py
dexterchan/beam
01e500c2dd0d699aea0434154b69fd59d824700f
[ "Apache-2.0" ]
6
2020-09-26T00:28:18.000Z
2022-02-10T01:07:25.000Z
sdks/python/apache_beam/transforms/window_test.py
dexterchan/beam
01e500c2dd0d699aea0434154b69fd59d824700f
[ "Apache-2.0" ]
1
2020-02-09T02:51:50.000Z
2020-02-09T02:51:50.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Unit tests for the windowing classes.""" from __future__ import absolute_import from __future__ import division import unittest from builtins import range import apache_beam as beam from apache_beam.coders import coders from apache_beam.runners import pipeline_context from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.transforms import CombinePerKey from apache_beam.transforms import Create from apache_beam.transforms import FlatMapTuple from apache_beam.transforms import GroupByKey from apache_beam.transforms import Map from apache_beam.transforms import MapTuple from apache_beam.transforms import WindowInto from apache_beam.transforms import combiners from apache_beam.transforms import core from apache_beam.transforms.core import Windowing from apache_beam.transforms.trigger import AccumulationMode from apache_beam.transforms.trigger import AfterCount from apache_beam.transforms.window import FixedWindows from apache_beam.transforms.window import GlobalWindow from apache_beam.transforms.window import GlobalWindows from apache_beam.transforms.window import IntervalWindow from apache_beam.transforms.window import NonMergingWindowFn from apache_beam.transforms.window import Sessions from apache_beam.transforms.window import SlidingWindows from apache_beam.transforms.window import TimestampCombiner from apache_beam.transforms.window import TimestampedValue from apache_beam.transforms.window import WindowedValue from apache_beam.transforms.window import WindowFn from apache_beam.utils.timestamp import MAX_TIMESTAMP from apache_beam.utils.timestamp import MIN_TIMESTAMP def context(element, timestamp): return WindowFn.AssignContext(timestamp, element) class ReifyWindowsFn(core.DoFn): def process(self, element, window=core.DoFn.WindowParam): key, values = element yield "%s @ %s" % (key, window), values reify_windows = core.ParDo(ReifyWindowsFn()) class TestCustomWindows(NonMergingWindowFn): """A custom non merging window fn which assigns elements into interval windows [0, 3), [3, 5) and [5, element timestamp) based on the element timestamps. """ def assign(self, context): timestamp = context.timestamp if timestamp < 3: return [IntervalWindow(0, 3)] elif timestamp < 5: return [IntervalWindow(3, 5)] else: return [IntervalWindow(5, timestamp)] def get_window_coder(self): return coders.IntervalWindowCoder() class WindowTest(unittest.TestCase): def test_timestamped_value_cmp(self): self.assertEqual(TimestampedValue('a', 2), TimestampedValue('a', 2)) self.assertEqual(TimestampedValue('a', 2), TimestampedValue('a', 2.0)) self.assertNotEqual(TimestampedValue('a', 2), TimestampedValue('a', 2.1)) self.assertNotEqual(TimestampedValue('a', 2), TimestampedValue('b', 2)) def test_global_window(self): self.assertEqual(GlobalWindow(), GlobalWindow()) self.assertNotEqual(GlobalWindow(), IntervalWindow(MIN_TIMESTAMP, MAX_TIMESTAMP)) self.assertNotEqual(IntervalWindow(MIN_TIMESTAMP, MAX_TIMESTAMP), GlobalWindow()) self.assertTrue(GlobalWindow().max_timestamp() < MAX_TIMESTAMP) def test_fixed_windows(self): # Test windows with offset: 2, 7, 12, 17, ... windowfn = FixedWindows(size=5, offset=2) self.assertEqual([IntervalWindow(7, 12)], windowfn.assign(context('v', 7))) self.assertEqual([IntervalWindow(7, 12)], windowfn.assign(context('v', 11))) self.assertEqual([IntervalWindow(12, 17)], windowfn.assign(context('v', 12))) # Test windows without offset: 0, 5, 10, 15, ... windowfn = FixedWindows(size=5) self.assertEqual([IntervalWindow(5, 10)], windowfn.assign(context('v', 5))) self.assertEqual([IntervalWindow(5, 10)], windowfn.assign(context('v', 9))) self.assertEqual([IntervalWindow(10, 15)], windowfn.assign(context('v', 10))) # Test windows with offset out of range. windowfn = FixedWindows(size=5, offset=12) self.assertEqual([IntervalWindow(7, 12)], windowfn.assign(context('v', 11))) def test_sliding_windows_assignment(self): windowfn = SlidingWindows(size=15, period=5, offset=2) expected = [IntervalWindow(7, 22), IntervalWindow(2, 17), IntervalWindow(-3, 12)] self.assertEqual(expected, windowfn.assign(context('v', 7))) self.assertEqual(expected, windowfn.assign(context('v', 8))) self.assertEqual(expected, windowfn.assign(context('v', 11))) def test_sliding_windows_assignment_fraction(self): windowfn = SlidingWindows(size=3.5, period=2.5, offset=1.5) self.assertEqual([IntervalWindow(1.5, 5.0), IntervalWindow(-1.0, 2.5)], windowfn.assign(context('v', 1.7))) self.assertEqual([IntervalWindow(1.5, 5.0)], windowfn.assign(context('v', 3))) def test_sliding_windows_assignment_fraction_large_offset(self): windowfn = SlidingWindows(size=3.5, period=2.5, offset=4.0) self.assertEqual([IntervalWindow(1.5, 5.0), IntervalWindow(-1.0, 2.5)], windowfn.assign(context('v', 1.7))) self.assertEqual([IntervalWindow(4.0, 7.5), IntervalWindow(1.5, 5.0)], windowfn.assign(context('v', 4.5))) def test_sessions_merging(self): windowfn = Sessions(10) def merge(*timestamps): windows = [windowfn.assign(context(None, t)) for t in timestamps] running = set() class TestMergeContext(WindowFn.MergeContext): def __init__(self): super(TestMergeContext, self).__init__(running) def merge(self, to_be_merged, merge_result): for w in to_be_merged: if w in running: running.remove(w) running.add(merge_result) for ws in windows: running.update(ws) windowfn.merge(TestMergeContext()) windowfn.merge(TestMergeContext()) return sorted(running) self.assertEqual([IntervalWindow(2, 12)], merge(2)) self.assertEqual([IntervalWindow(2, 12), IntervalWindow(19, 29)], merge(2, 19)) self.assertEqual([IntervalWindow(2, 19)], merge(2, 9)) self.assertEqual([IntervalWindow(2, 19)], merge(9, 2)) self.assertEqual([IntervalWindow(2, 19), IntervalWindow(19, 29)], merge(2, 9, 19)) self.assertEqual([IntervalWindow(2, 19), IntervalWindow(19, 29)], merge(19, 9, 2)) self.assertEqual([IntervalWindow(2, 25)], merge(2, 15, 10)) def timestamped_key_values(self, pipeline, key, *timestamps): return (pipeline | 'start' >> Create(timestamps) | Map(lambda x: WindowedValue((key, x), x, [GlobalWindow()]))) def test_sliding_windows(self): with TestPipeline() as p: pcoll = self.timestamped_key_values(p, 'key', 1, 2, 3) result = (pcoll | 'w' >> WindowInto(SlidingWindows(period=2, size=4)) | GroupByKey() | beam.MapTuple(lambda k, vs: (k, sorted(vs))) | reify_windows) expected = [('key @ [-2.0, 2.0)', [1]), ('key @ [0.0, 4.0)', [1, 2, 3]), ('key @ [2.0, 6.0)', [2, 3])] assert_that(result, equal_to(expected)) def test_sessions(self): with TestPipeline() as p: pcoll = self.timestamped_key_values(p, 'key', 1, 2, 3, 20, 35, 27) sort_values = Map(lambda k_vs: (k_vs[0], sorted(k_vs[1]))) result = (pcoll | 'w' >> WindowInto(Sessions(10)) | GroupByKey() | sort_values | reify_windows) expected = [('key @ [1.0, 13.0)', [1, 2, 3]), ('key @ [20.0, 45.0)', [20, 27, 35])] assert_that(result, equal_to(expected)) def test_timestamped_value(self): with TestPipeline() as p: result = (p | 'start' >> Create([(k, k) for k in range(10)]) | Map(lambda x_t: TimestampedValue(x_t[0], x_t[1])) | 'w' >> WindowInto(FixedWindows(5)) | Map(lambda v: ('key', v)) | GroupByKey() | beam.MapTuple(lambda k, vs: (k, sorted(vs)))) assert_that(result, equal_to([('key', [0, 1, 2, 3, 4]), ('key', [5, 6, 7, 8, 9])])) def test_rewindow(self): with TestPipeline() as p: result = (p | Create([(k, k) for k in range(10)]) | Map(lambda x_t1: TimestampedValue(x_t1[0], x_t1[1])) | 'window' >> WindowInto(SlidingWindows(period=2, size=6)) # Per the model, each element is now duplicated across # three windows. Rewindowing must preserve this duplication. | 'rewindow' >> WindowInto(FixedWindows(5)) | 'rewindow2' >> WindowInto(FixedWindows(5)) | Map(lambda v: ('key', v)) | GroupByKey() | beam.MapTuple(lambda k, vs: (k, sorted(vs)))) assert_that(result, equal_to([('key', sorted([0, 1, 2, 3, 4] * 3)), ('key', sorted([5, 6, 7, 8, 9] * 3))])) def test_rewindow_regroup(self): with TestPipeline() as p: grouped = (p | Create(range(5)) | Map(lambda t: TimestampedValue(('key', t), t)) | 'window' >> WindowInto(FixedWindows(5, offset=3)) | GroupByKey() | MapTuple(lambda k, vs: (k, sorted(vs)))) # Both of these group-and-ungroup sequences should be idempotent. regrouped1 = (grouped | 'w1' >> WindowInto(FixedWindows(5, offset=3)) | 'g1' >> GroupByKey() | FlatMapTuple(lambda k, vs: [(k, v) for v in vs])) regrouped2 = (grouped | FlatMapTuple(lambda k, vs: [(k, v) for v in vs]) | 'w2' >> WindowInto(FixedWindows(5, offset=3)) | 'g2' >> GroupByKey() | MapTuple(lambda k, vs: (k, sorted(vs)))) with_windows = Map(lambda e, w=beam.DoFn.WindowParam: (e, w)) expected = [(('key', [0, 1, 2]), IntervalWindow(-2, 3)), (('key', [3, 4]), IntervalWindow(3, 8))] assert_that(grouped | 'ww' >> with_windows, equal_to(expected)) assert_that( regrouped1 | 'ww1' >> with_windows, equal_to(expected), label='r1') assert_that( regrouped2 | 'ww2' >> with_windows, equal_to(expected), label='r2') def test_timestamped_with_combiners(self): with TestPipeline() as p: result = (p # Create some initial test values. | 'start' >> Create([(k, k) for k in range(10)]) # The purpose of the WindowInto transform is to establish a # FixedWindows windowing function for the PCollection. # It does not bucket elements into windows since the timestamps # from Create are not spaced 5 ms apart and very likely they all # fall into the same window. | 'w' >> WindowInto(FixedWindows(5)) # Generate timestamped values using the values as timestamps. # Now there are values 5 ms apart and since Map propagates the # windowing function from input to output the output PCollection # will have elements falling into different 5ms windows. | Map(lambda x_t2: TimestampedValue(x_t2[0], x_t2[1])) # We add a 'key' to each value representing the index of the # window. This is important since there is no guarantee of # order for the elements of a PCollection. | Map(lambda v: (v // 5, v))) # Sum all elements associated with a key and window. Although it # is called CombinePerKey it is really CombinePerKeyAndWindow the # same way GroupByKey is really GroupByKeyAndWindow. sum_per_window = result | CombinePerKey(sum) # Compute mean per key and window. mean_per_window = result | combiners.Mean.PerKey() assert_that(sum_per_window, equal_to([(0, 10), (1, 35)]), label='assert:sum') assert_that(mean_per_window, equal_to([(0, 2.0), (1, 7.0)]), label='assert:mean') def test_custom_windows(self): with TestPipeline() as p: pcoll = self.timestamped_key_values(p, 'key', 0, 1, 2, 3, 4, 5, 6) # pylint: disable=abstract-class-instantiated result = (pcoll | 'custom window' >> WindowInto(TestCustomWindows()) | GroupByKey() | 'sort values' >> MapTuple(lambda k, vs: (k, sorted(vs)))) assert_that(result, equal_to([('key', [0, 1, 2]), ('key', [3, 4]), ('key', [5]), ('key', [6])])) def test_window_assignment_idempotency(self): with TestPipeline() as p: pcoll = self.timestamped_key_values(p, 'key', 0, 2, 4) result = (pcoll | 'window' >> WindowInto(FixedWindows(2)) | 'same window' >> WindowInto(FixedWindows(2)) | 'same window again' >> WindowInto(FixedWindows(2)) | GroupByKey()) assert_that(result, equal_to([('key', [0]), ('key', [2]), ('key', [4])])) def test_window_assignment_through_multiple_gbk_idempotency(self): with TestPipeline() as p: pcoll = self.timestamped_key_values(p, 'key', 0, 2, 4) result = (pcoll | 'window' >> WindowInto(FixedWindows(2)) | 'gbk' >> GroupByKey() | 'same window' >> WindowInto(FixedWindows(2)) | 'another gbk' >> GroupByKey() | 'same window again' >> WindowInto(FixedWindows(2)) | 'gbk again' >> GroupByKey()) assert_that(result, equal_to([('key', [[[0]]]), ('key', [[[2]]]), ('key', [[[4]]])])) class RunnerApiTest(unittest.TestCase): def test_windowfn_encoding(self): for window_fn in (GlobalWindows(), FixedWindows(37), SlidingWindows(2, 389), Sessions(5077)): context = pipeline_context.PipelineContext() self.assertEqual( window_fn, WindowFn.from_runner_api(window_fn.to_runner_api(context), context)) def test_windowing_encoding(self): for windowing in ( Windowing(GlobalWindows()), Windowing(FixedWindows(1, 3), AfterCount(6), accumulation_mode=AccumulationMode.ACCUMULATING), Windowing(SlidingWindows(10, 15, 21), AfterCount(28), timestamp_combiner=TimestampCombiner.OUTPUT_AT_LATEST, accumulation_mode=AccumulationMode.DISCARDING)): context = pipeline_context.PipelineContext() self.assertEqual( windowing, Windowing.from_runner_api(windowing.to_runner_api(context), context)) if __name__ == '__main__': unittest.main()
43.114667
80
0.614485
1ec49dde5e99f895705294ef7166f8b72de0e292
1,556
py
Python
heisenbridge/appservice.py
pstn/heisenbridge
c01bb90315cb0fba8a439e40bbe076445e0b62b8
[ "MIT" ]
null
null
null
heisenbridge/appservice.py
pstn/heisenbridge
c01bb90315cb0fba8a439e40bbe076445e0b62b8
[ "MIT" ]
null
null
null
heisenbridge/appservice.py
pstn/heisenbridge
c01bb90315cb0fba8a439e40bbe076445e0b62b8
[ "MIT" ]
null
null
null
from abc import ABC from abc import abstractmethod from typing import List from heisenbridge.matrix import Matrix from heisenbridge.matrix import MatrixNotFound class Room: pass class AppService(ABC): api: Matrix user_id: str server_name: str config: dict async def load(self): try: self.config.update(await self.api.get_user_account_data(self.user_id, "irc")) except MatrixNotFound: await self.save() async def save(self): await self.api.put_user_account_data(self.user_id, "irc", self.config) async def create_room(self, name: str, topic: str, invite: List[str]) -> str: resp = await self.api.post_room_create( { "visibility": "private", "name": name, "topic": topic, "invite": invite, "is_direct": False, "power_level_content_override": { "users_default": 0, "invite": 100, "kick": 100, "redact": 100, "ban": 100, "events": { "m.room.name": 0, "m.room.avatar": 0, # these work as long as rooms are private }, }, } ) return resp["room_id"] @abstractmethod def register_room(self, room: Room): pass @abstractmethod def find_rooms(self, type, user_id: str = None) -> List[Room]: pass
26.372881
89
0.517352
c7f9df6f4ed5a889546007ca78f5afbc30b7a9f2
4,361
py
Python
app/app/settings/base.py
trevore23/tvr-23-gke
e16e9f0e8f734fee0b6a3a245de4ff9bab278b98
[ "MIT" ]
null
null
null
app/app/settings/base.py
trevore23/tvr-23-gke
e16e9f0e8f734fee0b6a3a245de4ff9bab278b98
[ "MIT" ]
null
null
null
app/app/settings/base.py
trevore23/tvr-23-gke
e16e9f0e8f734fee0b6a3a245de4ff9bab278b98
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # Application definition INSTALLED_APPS = [ 'core', 'home', 'search', 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'modelcluster', 'taggit', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'wagtail.core.middleware.SiteMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, 'static'), ] # ManifestStaticFilesStorage is recommended in production, to prevent outdated # Javascript / CSS assets being served from cache (e.g. after a Wagtail upgrade). # See https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#manifeststaticfilesstorage STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.ManifestStaticFilesStorage' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' # Wagtail settings WAGTAIL_SITE_NAME = "app" # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = 'http://example.com' # Use my custom user model AUTH_USER_MODEL = 'core.User'
25.958333
95
0.69961
7ed381e98fff28b3470088aed08c429eb5b66f41
194
py
Python
project/utils/mocks.py
iiii4966/django-test
b194bbedf86cb6e279558ab1647f3681f150a994
[ "BSD-3-Clause" ]
null
null
null
project/utils/mocks.py
iiii4966/django-test
b194bbedf86cb6e279558ab1647f3681f150a994
[ "BSD-3-Clause" ]
null
null
null
project/utils/mocks.py
iiii4966/django-test
b194bbedf86cb6e279558ab1647f3681f150a994
[ "BSD-3-Clause" ]
null
null
null
from django.http import HttpRequest class MockRequest(HttpRequest): def __init__(self, *args, **kwargs): super(MockRequest, self).__init__() self.META = kwargs.get('META')
24.25
43
0.680412
6c1d48fa504809b1ac0eca8c2aa205c352d7d4fd
8,035
py
Python
examples/workloads/wrapper/wrapper/wrapper_main.py
Rajpratik71/workload-collocation-agent
6cf7bdab97ff61d85c21c3effecea632a225c668
[ "Apache-2.0" ]
40
2019-05-16T16:42:33.000Z
2021-11-18T06:33:03.000Z
examples/workloads/wrapper/wrapper/wrapper_main.py
Rajpratik71/workload-collocation-agent
6cf7bdab97ff61d85c21c3effecea632a225c668
[ "Apache-2.0" ]
72
2019-05-09T02:30:25.000Z
2020-11-17T09:24:44.000Z
examples/workloads/wrapper/wrapper/wrapper_main.py
Rajpratik71/workload-collocation-agent
6cf7bdab97ff61d85c21c3effecea632a225c668
[ "Apache-2.0" ]
26
2019-05-20T09:13:38.000Z
2021-12-15T17:57:21.000Z
# Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import subprocess import shlex import threading from functools import partial from wca.storage import KafkaStorage, LogStorage from wca.logger import TRACE from wrapper.parser import (default_parse, parse_loop, DEFAULT_REGEXP, ParseFunc, ServiceLevelArgs, append_service_level_metrics) from wca.platforms import get_wca_version log = logging.getLogger(__name__) def main(parse: ParseFunc = default_parse): """ Launches workload and parser with processed arguments. Handles workload shutdown. """ arg_parser = prepare_argument_parser() # It is assumed that unknown arguments should be passed to workload. args = arg_parser.parse_args() # Additional argparse checks. if not ((args.load_metric_name is not None and args.peak_load is not None) or (args.load_metric_name is None and args.peak_load is None)): print("Both load_metric_name and peak_load have to be set, or none of them.") exit(1) # Needs to be passed to parse_loop service_level_args = ServiceLevelArgs(args.slo, args.sli_metric_name, args.inverse_sli_metric_value, args.peak_load, args.load_metric_name) # Configuring log logging.basicConfig( level=TRACE if args.log_level == 'TRACE' else args.log_level, format="%(asctime)-15s %(levelname)s %(module)s %(message)s") log.debug("Logger configured with {0}".format(args.log_level)) log.info("Starting wrapper version {}".format(get_wca_version())) command_splited = shlex.split(args.command) log.info("Running command: {}".format(command_splited)) workload_process = subprocess.Popen(command_splited, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, bufsize=1, shell=args.subprocess_shell, ) input = workload_process.stderr if args.stderr else workload_process.stdout labels = json.loads(args.labels) parse = partial(parse, regexp=args.regexp, separator=args.separator, labels=labels, input=input, metric_name_prefix=args.metric_name_prefix) append_service_level_metrics_func = partial( append_service_level_metrics, labels=labels, service_level_args=service_level_args) # create kafka storage with list of kafka brokers from arguments kafka_brokers_addresses = args.kafka_brokers.replace(" ", "").split(',') if kafka_brokers_addresses != [""]: log.info("KafkaStorage {}".format(kafka_brokers_addresses)) storage = KafkaStorage(brokers_ips=kafka_brokers_addresses, max_timeout_in_seconds=5.0, topic=args.kafka_topic) else: storage = LogStorage(args.storage_output_filename, overwrite=True, include_timestamp=False) t = threading.Thread(target=parse_loop, args=(parse, storage, append_service_level_metrics_func)) t.start() t.join() # terminate all spawned processes workload_process.terminate() def prepare_argument_parser(): parser = argparse.ArgumentParser( description='Wrapper that exposes APMs using Prometheus format.' ) parser.add_argument( '--command', help='Workload run command', dest='command', required=True, type=str ) parser.add_argument( '--stderr', help='If 0, parser will use stdout, if 1 stderr', dest='stderr', default=0, type=int ) parser.add_argument( '--regexp', help='regexp used for parsing with the default parsing function\n' 'Needs to contain 2 named groups "name" and "value"' 'Defaults to {0} that matches values in format "a=4.0"'.format(DEFAULT_REGEXP), dest='regexp', type=str, default=DEFAULT_REGEXP ) parser.add_argument( '--metric_name_prefix', help='metric name prefix (only relevant for default parse function)', default='' ) parser.add_argument( '--separator', help='String that separates workload outputs', dest='separator', type=str, default=None ) parser.add_argument( '--log_level', help='Logging level', dest='log_level', default='ERROR', choices=['ERROR', 'WARNING', 'INFO', 'DEBUG', 'TRACE'], type=str) parser.add_argument( '--labels', help="Prometheus labels. Provide them in a dict format." "Example: ""{'workload':'stress-ng','exper':'2'}""", dest='labels', type=str, default="{}" ) parser.add_argument( '--kafka_brokers', help='list of addresses with ports of kafka brokers (kafka nodes). Coma separated', dest='kafka_brokers', default="", type=str ) parser.add_argument( '--kafka_topic', help='Kafka messages topic, passed to KafkaStorage', dest='kafka_topic', default='wca_apms', type=str ) parser.add_argument( '--storage_output_filename', help='When Kafka storage is not used, allows to redirect metrics to file', dest='storage_output_filename', default=None, type=str ) parser.add_argument( '--peak_load', help='Expected maximum load.', default=None, type=int ) parser.add_argument( '--load_metric_name', help='Metric name parsed from the application stream ' 'used as load level indicator. If set to `const` ' 'the behaviour is slightly different: as real load were all the time ' 'equal to peak_load (then load_normalized == 1).', default=None, type=str ) parser.add_argument( '--slo', help='Service level objective. ' 'Must be expressed in the same units as SLI. ' 'Default value is +inf. ' 'Being used only if sli_metric_name also defined.', default=float("inf"), type=float ) parser.add_argument( '--sli_metric_name', help='Metric name parsed from the application stream ' 'used as service level indicator.', default=None, type=str ) parser.add_argument( '--inverse_sli_metric_value', help='Add this flag if value of a metric used to calculate service ' + 'level indicator should be inversed.', action='store_true', default=False, ) parser.add_argument( '--subprocess_shell', help='Run subprocess command with full shell support.', action='store_true', default=False, ) return parser def debug(): """Debug hook to allow entering debug mode in compiled pex. Run it as PEX_MODULE=wrapper.wrapper_main:debug """ import warnings try: import ipdb as pdb except ImportError: warnings.warn('ipdb not available, using pdb') import pdb pdb.set_trace() main() if __name__ == "__main__": main()
34.484979
99
0.619291
a0b15620180359fd9b42143ed2ec9e15860efe31
7,381
py
Python
dolphin/state_manager.py
Peachball/gym-dolphin
dedccd742079fa45cf0c5a8ca6e3a79d1529e324
[ "MIT" ]
60
2017-02-22T15:04:13.000Z
2021-08-14T19:15:30.000Z
dolphin/state_manager.py
Peachball/gym-dolphin
dedccd742079fa45cf0c5a8ca6e3a79d1529e324
[ "MIT" ]
1
2018-02-20T10:30:26.000Z
2018-02-20T10:30:26.000Z
dolphin/state_manager.py
Peachball/gym-dolphin
dedccd742079fa45cf0c5a8ca6e3a79d1529e324
[ "MIT" ]
15
2017-02-23T05:12:52.000Z
2020-12-21T22:47:29.000Z
import struct import attr from . import ssbm, fields def generic_wrapper(value, wrapper, default): if wrapper is not None: try: value = wrapper(value) except ValueError: value = default return value intStruct = struct.Struct('>i') byte_mask = 0xFF short_mask = 0xFFFF int_mask = 0xFFFFFFFF @attr.s class IntHandler: shift = attr.ib(default=0) mask = attr.ib(default=int_mask) wrapper = attr.ib(default=None) default = attr.ib(default=0) def __call__(self, value): transformed = (intStruct.unpack(value)[0] >> self.shift) & self.mask return generic_wrapper(transformed, self.wrapper, self.default) intHandler = IntHandler() byteHandler = IntHandler(shift=24, mask=byte_mask) shortHandler = IntHandler(shift=16, mask=short_mask) floatStruct = struct.Struct('>f') @attr.s class FloatHandler: wrapper = attr.ib(default=None) default = attr.ib(default=0.0) def __call__(self, value): as_float = floatStruct.unpack(value)[0] return generic_wrapper(as_float, self.wrapper, self.default) floatHandler = FloatHandler() @attr.s class Handler: path = attr.ib() handler = attr.ib() def __call__(self, obj, value): fields.setPath(obj, self.path, self.handler(value)) # TODO: use numbers instead of strings to hash addresses def add_address(x, y): """Returns a string representation of the sum of the two parameters. x is a hex string address that can be converted to an int. y is an int. """ return "{0:08X}".format(int(x, 16) + y) # see https://docs.google.com/spreadsheets/d/1JX2w-r2fuvWuNgGb6D3Cs4wHQKLFegZe2jhbBuIhCG8 global_addresses = {} global_addresses['80479D60'] = Handler(['frame'], intHandler) global_addresses['80479D30'] = Handler(['menu'], IntHandler(mask=byte_mask))#, Menu, Menu.Characters) global_addresses['804D6CAD'] = Handler(['stage'], shortHandler)#, Stage, Stage.Unselected) def playerAddresses(player_id, addresses=None): if addresses is None: addresses = {} player_path = ['players', player_id] def playerHandler(field, handler): return Handler(player_path + field.split('/'), handler) cursor_x_address = add_address('81118DEC', -0xB80 * player_id) cursor_y_address = add_address('81118DF0', -0xB80 * player_id) addresses[cursor_x_address] = playerHandler('cursor_x', floatHandler) addresses[cursor_y_address] = playerHandler('cursor_y', floatHandler) type_address = add_address('803F0E08', 0x24 * player_id) type_handler = playerHandler('type', byteHandler) #, PlayerType, PlayerType.Unselected) character_handler = playerHandler('character', IntHandler(8, byte_mask)) #, Character, Character.Unselected) addresses[type_address] = [character_handler]#, type_handler] button_address = add_address('0x804C1FAC', 0x44 * player_id) button_locs = dict( Z = 4, L = 5, R = 6, A = 8, B = 9, X = 10, Y = 11, START = 12 ).items() addresses[button_address] = [playerHandler('controller/button_%s' % b, IntHandler(mask=1<<i)) for b, i in button_locs] stick_address = 0x804C1FCC for stick in ['MAIN', 'C']: for axis in ['x', 'y']: address = "{0:08X}".format(stick_address + 0x44 * player_id) addresses[address] = playerHandler("controller/stick_%s/%s" % (stick, axis), floatHandler) stick_address += 4 static_pointer = 0x80453080 + 0xE90 * player_id def add_static_address(offset, name, handler): address = "{0:08X}".format(static_pointer + offset) handle = playerHandler(name, handler) if address not in addresses: addresses[address] = [handle] else: addresses[address].append(handle) add_static_address(0x60, 'percent', shortHandler) # add_static_address(0x1890, 'percent', floatHandler) add_static_address(0x8E, 'stock', byteHandler) # nametag positions add_static_address(0x10, 'x', floatHandler) add_static_address(0x14, 'y', floatHandler) add_static_address(0x18, 'z', floatHandler) """ TODO: figure out why these don't work #add_static_address(0x688, 'controller/stick_MAIN/x', floatHandler) #add_static_address(0x68C, 'controller/stick_MAIN/y', floatHandler) add_static_address(0x698, 'controller/stick_C/x', floatHandler) add_static_address(0x69C, 'controller/stick_C/y', floatHandler) add_static_address(0x6BC, 'controller/button_Z', IntHandler(mask=1<<4)) add_static_address(0x6BC, 'controller/button_L', IntHandler(mask=1<<5)) add_static_address(0x6BC, 'controller/button_R', IntHandler(mask=1<<6)) add_static_address(0x6BC, 'controller/button_A', IntHandler(mask=1<<8)) add_static_address(0x6BC, 'controller/button_B', IntHandler(mask=1<<9)) add_static_address(0x6BC, 'controller/button_X', IntHandler(mask=1<<10)) add_static_address(0x6BC, 'controller/button_Y', IntHandler(mask=1<<11)) """ # hitbox positions # add_static_address(0x18B4, 'x', floatHandler) # add_static_address(0x18B8, 'y', floatHandler) # add_static_address(0x18BC, 'z', floatHandler) data_pointer = add_address('80453130', 0xE90 * player_id) def add_data_address(offset, name, handler): address = data_pointer + ' ' + offset handle = playerHandler(name, handler) if address not in addresses: addresses[address] = [handle] else: addresses[address].append(handle) add_data_address('70', 'action_state', intHandler) add_data_address('20CC', 'action_counter', shortHandler) add_data_address('8F4', 'action_frame', floatHandler) add_data_address('19EC', 'invulnerable', intHandler) add_data_address('19BC', 'hitlag_frames_left', floatHandler) add_data_address('23A0', 'hitstun_frames_left', floatHandler) # TODO: make this an actal int # 2 = charging, 3 = attacking, 0 = otherwise add_data_address('2174', 'charging_smash', IntHandler(mask=0x2)) add_data_address('19F8', 'shield_size', floatHandler) add_data_address('19C8', 'jumps_used', byteHandler) add_data_address('140', 'in_air', intHandler) add_data_address('E0', 'speed_air_x_self', floatHandler) add_data_address('E4', 'speed_y_self', floatHandler) add_data_address('EC', 'speed_x_attack', floatHandler) add_data_address('F0', 'speed_y_attack', floatHandler) add_data_address('14C', 'speed_ground_x_self', floatHandler) add_data_address('8C', 'facing', floatHandler) # 1 is right, -1 is left #add_data_address('1E4', 'speed_fastfall_self', floatHandler) return addresses class StateManager: def __init__(self, player_ids=range(4)): self.addresses = global_addresses.copy() for player_id in player_ids: playerAddresses(player_id, self.addresses) def handle(self, obj, address, value): """Convert the raw address and value into changes in the State.""" assert address in self.addresses handlers = self.addresses[address] if isinstance(handlers, list): for handler in handlers: handler(obj, value) else: handlers(obj, value) def locations(self): """Returns a list of addresses for exporting to Locations.txt.""" return self.addresses.keys()
34.981043
122
0.686086
59a2a619406a60773e3713eac6495c7d6bc4ce55
20,517
py
Python
ProgettoLube/WebInspector/venv/Lib/site-packages/skimage/morphology/extrema.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
2
2022-03-19T09:45:18.000Z
2022-03-19T15:26:24.000Z
ProgettoLube/WebInspector/venv/Lib/site-packages/skimage/morphology/extrema.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
7
2021-06-08T21:46:24.000Z
2022-03-12T00:35:31.000Z
ProgettoLube/WebInspector/venv/Lib/site-packages/skimage/morphology/extrema.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
null
null
null
"""extrema.py - local minima and maxima This module provides functions to find local maxima and minima of an image. Here, local maxima (minima) are defined as connected sets of pixels with equal gray level which is strictly greater (smaller) than the gray level of all pixels in direct neighborhood of the connected set. In addition, the module provides the related functions h-maxima and h-minima. Soille, P. (2003). Morphological Image Analysis: Principles and Applications (2nd ed.), Chapter 6. Springer-Verlag New York, Inc. """ import numpy as np from ..util import dtype_limits, invert, crop from .._shared.utils import warn from . import greyreconstruct, _util from ._extrema_cy import _local_maxima def _add_constant_clip(image, const_value): """Add constant to the image while handling overflow issues gracefully. """ min_dtype, max_dtype = dtype_limits(image, clip_negative=False) if const_value > (max_dtype - min_dtype): raise ValueError("The added constant is not compatible" "with the image data type.") result = image + const_value result[image > max_dtype-const_value] = max_dtype return(result) def _subtract_constant_clip(image, const_value): """Subtract constant from image while handling underflow issues. """ min_dtype, max_dtype = dtype_limits(image, clip_negative=False) if const_value > (max_dtype-min_dtype): raise ValueError("The subtracted constant is not compatible" "with the image data type.") result = image - const_value result[image < (const_value + min_dtype)] = min_dtype return(result) def h_maxima(image, h, selem=None): """Determine all maxima of the image with height >= h. The local maxima are defined as connected sets of pixels with equal grey level strictly greater than the grey level of all pixels in direct neighborhood of the set. A local maximum M of height h is a local maximum for which there is at least one path joining M with a higher maximum on which the minimal value is f(M) - h (i.e. the values along the path are not decreasing by more than h with respect to the maximum's value) and no path for which the minimal value is greater. Parameters ---------- image : ndarray The input image for which the maxima are to be calculated. h : unsigned integer The minimal height of all extracted maxima. selem : ndarray, optional The neighborhood expressed as an n-D array of 1's and 0's. Default is the ball of radius 1 according to the maximum norm (i.e. a 3x3 square for 2D images, a 3x3x3 cube for 3D images, etc.) Returns ------- h_max : ndarray The maxima of height >= h. The resulting image is a binary image, where pixels belonging to the selected maxima take value 1, the others take value 0. See also -------- skimage.morphology.extrema.h_minima skimage.morphology.extrema.local_maxima skimage.morphology.extrema.local_minima References ---------- .. [1] Soille, P., "Morphological Image Analysis: Principles and Applications" (Chapter 6), 2nd edition (2003), ISBN 3540429883. Examples -------- >>> import numpy as np >>> from skimage.morphology import extrema We create an image (quadratic function with a maximum in the center and 4 additional constant maxima. The heights of the maxima are: 1, 21, 41, 61, 81 >>> w = 10 >>> x, y = np.mgrid[0:w,0:w] >>> f = 20 - 0.2*((x - w/2)**2 + (y-w/2)**2) >>> f[2:4,2:4] = 40; f[2:4,7:9] = 60; f[7:9,2:4] = 80; f[7:9,7:9] = 100 >>> f = f.astype(np.int) We can calculate all maxima with a height of at least 40: >>> maxima = extrema.h_maxima(f, 40) The resulting image will contain 3 local maxima. """ # Check for h value that is larger then range of the image. If this # is True then there are no h-maxima in the image. if h > np.ptp(image): return np.zeros(image.shape, dtype=np.uint8) # Check for floating point h value. For this to work properly # we need to explicitly convert image to float64. # # FIXME: This could give incorrect results if image is int64 and # has a very high dynamic range. The dtype of image is # changed to float64, and different integer values could # become the same float due to rounding. # # >>> ii64 = np.iinfo(np.int64) # >>> a = np.array([ii64.max, ii64.max - 2]) # >>> a[0] == a[1] # False # >>> b = a.astype(np.float64) # >>> b[0] == b[1] # True # if np.issubdtype(type(h), np.floating) and \ np.issubdtype(image.dtype, np.integer): if ((h % 1) != 0): warn('possible precision loss converting image to ' 'floating point. To silence this warning, ' 'ensure image and h have same data type.', stacklevel=2) image = image.astype(np.float_) else: h = image.dtype.type(h) if (h == 0): raise ValueError("h = 0 is ambiguous, use local_maxima() " "instead?") if np.issubdtype(image.dtype, np.floating): # The purpose of the resolution variable is to allow for the # small rounding errors that inevitably occur when doing # floating point arithmetic. We want shifted_img to be # guaranteed to be h less than image. If we only subtract h # there may be pixels were shifted_img ends up being # slightly greater than image - h. # # The resolution is scaled based on the pixel values in the # image because floating point precision is relative. A # very large value of 1.0e10 will have a large precision, # say +-1.0e4, and a very small value of 1.0e-10 will have # a very small precision, say +-1.0e-16. # resolution = 2 * np.finfo(image.dtype).resolution * np.abs(image) shifted_img = image - h - resolution else: shifted_img = _subtract_constant_clip(image, h) rec_img = greyreconstruct.reconstruction(shifted_img, image, method='dilation', selem=selem) residue_img = image - rec_img return (residue_img >= h).astype(np.uint8) def h_minima(image, h, selem=None): """Determine all minima of the image with depth >= h. The local minima are defined as connected sets of pixels with equal grey level strictly smaller than the grey levels of all pixels in direct neighborhood of the set. A local minimum M of depth h is a local minimum for which there is at least one path joining M with a deeper minimum on which the maximal value is f(M) + h (i.e. the values along the path are not increasing by more than h with respect to the minimum's value) and no path for which the maximal value is smaller. Parameters ---------- image : ndarray The input image for which the minima are to be calculated. h : unsigned integer The minimal depth of all extracted minima. selem : ndarray, optional The neighborhood expressed as an n-D array of 1's and 0's. Default is the ball of radius 1 according to the maximum norm (i.e. a 3x3 square for 2D images, a 3x3x3 cube for 3D images, etc.) Returns ------- h_min : ndarray The minima of depth >= h. The resulting image is a binary image, where pixels belonging to the selected minima take value 1, the other pixels take value 0. See also -------- skimage.morphology.extrema.h_maxima skimage.morphology.extrema.local_maxima skimage.morphology.extrema.local_minima References ---------- .. [1] Soille, P., "Morphological Image Analysis: Principles and Applications" (Chapter 6), 2nd edition (2003), ISBN 3540429883. Examples -------- >>> import numpy as np >>> from skimage.morphology import extrema We create an image (quadratic function with a minimum in the center and 4 additional constant maxima. The depth of the minima are: 1, 21, 41, 61, 81 >>> w = 10 >>> x, y = np.mgrid[0:w,0:w] >>> f = 180 + 0.2*((x - w/2)**2 + (y-w/2)**2) >>> f[2:4,2:4] = 160; f[2:4,7:9] = 140; f[7:9,2:4] = 120; f[7:9,7:9] = 100 >>> f = f.astype(np.int) We can calculate all minima with a depth of at least 40: >>> minima = extrema.h_minima(f, 40) The resulting image will contain 3 local minima. """ if h > np.ptp(image): return np.zeros(image.shape, dtype=np.uint8) if np.issubdtype(type(h), np.floating) and \ np.issubdtype(image.dtype, np.integer): if ((h % 1) != 0): warn('possible precision loss converting image to ' 'floating point. To silence this warning, ' 'ensure image and h have same data type.', stacklevel=2) image = image.astype(np.float_) else: h = image.dtype.type(h) if (h == 0): raise ValueError("h = 0 is ambiguous, use local_minima() " "instead?") if np.issubdtype(image.dtype, np.floating): resolution = 2 * np.finfo(image.dtype).resolution * np.abs(image) shifted_img = image + h + resolution else: shifted_img = _add_constant_clip(image, h) rec_img = greyreconstruct.reconstruction(shifted_img, image, method='erosion', selem=selem) residue_img = rec_img - image return (residue_img >= h).astype(np.uint8) def local_maxima(image, selem=None, connectivity=None, indices=False, allow_borders=True): """Find local maxima of n-dimensional array. The local maxima are defined as connected sets of pixels with equal gray level (plateaus) strictly greater than the gray levels of all pixels in the neighborhood. Parameters ---------- image : ndarray An n-dimensional array. selem : ndarray, optional A structuring element used to determine the neighborhood of each evaluated pixel (``True`` denotes a connected pixel). It must be a boolean array and have the same number of dimensions as `image`. If neither `selem` nor `connectivity` are given, all adjacent pixels are considered as part of the neighborhood. connectivity : int, optional A number used to determine the neighborhood of each evaluated pixel. Adjacent pixels whose squared distance from the center is less than or equal to `connectivity` are considered neighbors. Ignored if `selem` is not None. indices : bool, optional If True, the output will be a tuple of one-dimensional arrays representing the indices of local maxima in each dimension. If False, the output will be a boolean array with the same shape as `image`. allow_borders : bool, optional If true, plateaus that touch the image border are valid maxima. Returns ------- maxima : ndarray or tuple[ndarray] If `indices` is false, a boolean array with the same shape as `image` is returned with ``True`` indicating the position of local maxima (``False`` otherwise). If `indices` is true, a tuple of one-dimensional arrays containing the coordinates (indices) of all found maxima. Warns ----- UserWarning If `allow_borders` is false and any dimension of the given `image` is shorter than 3 samples, maxima can't exist and a warning is shown. See Also -------- skimage.morphology.local_minima skimage.morphology.h_maxima skimage.morphology.h_minima Notes ----- This function operates on the following ideas: 1. Make a first pass over the image's last dimension and flag candidates for local maxima by comparing pixels in only one direction. If the pixels aren't connected in the last dimension all pixels are flagged as candidates instead. For each candidate: 2. Perform a flood-fill to find all connected pixels that have the same gray value and are part of the plateau. 3. Consider the connected neighborhood of a plateau: if no bordering sample has a higher gray level, mark the plateau as a definite local maximum. Examples -------- >>> from skimage.morphology import local_maxima >>> image = np.zeros((4, 7), dtype=int) >>> image[1:3, 1:3] = 1 >>> image[3, 0] = 1 >>> image[1:3, 4:6] = 2 >>> image[3, 6] = 3 >>> image array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 2, 2, 0], [0, 1, 1, 0, 2, 2, 0], [1, 0, 0, 0, 0, 0, 3]]) Find local maxima by comparing to all neighboring pixels (maximal connectivity): >>> local_maxima(image) array([[False, False, False, False, False, False, False], [False, True, True, False, False, False, False], [False, True, True, False, False, False, False], [ True, False, False, False, False, False, True]]) >>> local_maxima(image, indices=True) (array([1, 1, 2, 2, 3, 3]), array([1, 2, 1, 2, 0, 6])) Find local maxima without comparing to diagonal pixels (connectivity 1): >>> local_maxima(image, connectivity=1) array([[False, False, False, False, False, False, False], [False, True, True, False, True, True, False], [False, True, True, False, True, True, False], [ True, False, False, False, False, False, True]]) and exclude maxima that border the image edge: >>> local_maxima(image, connectivity=1, allow_borders=False) array([[False, False, False, False, False, False, False], [False, True, True, False, True, True, False], [False, True, True, False, True, True, False], [False, False, False, False, False, False, False]]) """ image = np.asarray(image, order="C") if image.size == 0: # Return early for empty input if indices: # Make sure that output is a tuple of 1 empty array per dimension return np.nonzero(image) else: return np.zeros(image.shape, dtype=np.bool) if allow_borders: # Ensure that local maxima are always at least one smaller sample away # from the image border image = _util._fast_pad(image, image.min()) # Array of flags used to store the state of each pixel during evaluation. # See _extrema_cy.pyx for their meaning flags = np.zeros(image.shape, dtype=np.uint8) _util._set_border_values(flags, value=3) if any(s < 3 for s in image.shape): # Warn and skip if any dimension is smaller than 3 # -> no maxima can exist & structuring element can't be applied warn( "maxima can't exist for an image with any dimension smaller 3 " "if borders aren't allowed", stacklevel=3 ) else: selem = _util._resolve_neighborhood(selem, connectivity, image.ndim) neighbor_offsets = _util._offsets_to_raveled_neighbors( image.shape, selem, center=((1,) * image.ndim) ) try: _local_maxima(image.ravel(), flags.ravel(), neighbor_offsets) except TypeError: if image.dtype == np.float16: # Provide the user with clearer error message raise TypeError("dtype of `image` is float16 which is not " "supported, try upcasting to float32") else: raise # Otherwise raise original message if allow_borders: # Revert padding performed at the beginning of the function flags = crop(flags, 1) else: # No padding was performed but set edge values back to 0 _util._set_border_values(flags, value=0) if indices: return np.nonzero(flags) else: return flags.view(np.bool) def local_minima(image, selem=None, connectivity=None, indices=False, allow_borders=True): """Find local minima of n-dimensional array. The local minima are defined as connected sets of pixels with equal gray level (plateaus) strictly smaller than the gray levels of all pixels in the neighborhood. Parameters ---------- image : ndarray An n-dimensional array. selem : ndarray, optional A structuring element used to determine the neighborhood of each evaluated pixel (``True`` denotes a connected pixel). It must be a boolean array and have the same number of dimensions as `image`. If neither `selem` nor `connectivity` are given, all adjacent pixels are considered as part of the neighborhood. connectivity : int, optional A number used to determine the neighborhood of each evaluated pixel. Adjacent pixels whose squared distance from the center is less than or equal to `connectivity` are considered neighbors. Ignored if `selem` is not None. indices : bool, optional If True, the output will be a tuple of one-dimensional arrays representing the indices of local minima in each dimension. If False, the output will be a boolean array with the same shape as `image`. allow_borders : bool, optional If true, plateaus that touch the image border are valid minima. Returns ------- minima : ndarray or tuple[ndarray] If `indices` is false, a boolean array with the same shape as `image` is returned with ``True`` indicating the position of local minima (``False`` otherwise). If `indices` is true, a tuple of one-dimensional arrays containing the coordinates (indices) of all found minima. See Also -------- skimage.morphology.local_maxima skimage.morphology.h_maxima skimage.morphology.h_minima Notes ----- This function operates on the following ideas: 1. Make a first pass over the image's last dimension and flag candidates for local minima by comparing pixels in only one direction. If the pixels aren't connected in the last dimension all pixels are flagged as candidates instead. For each candidate: 2. Perform a flood-fill to find all connected pixels that have the same gray value and are part of the plateau. 3. Consider the connected neighborhood of a plateau: if no bordering sample has a smaller gray level, mark the plateau as a definite local minimum. Examples -------- >>> from skimage.morphology import local_minima >>> image = np.zeros((4, 7), dtype=int) >>> image[1:3, 1:3] = -1 >>> image[3, 0] = -1 >>> image[1:3, 4:6] = -2 >>> image[3, 6] = -3 >>> image array([[ 0, 0, 0, 0, 0, 0, 0], [ 0, -1, -1, 0, -2, -2, 0], [ 0, -1, -1, 0, -2, -2, 0], [-1, 0, 0, 0, 0, 0, -3]]) Find local minima by comparing to all neighboring pixels (maximal connectivity): >>> local_minima(image) array([[False, False, False, False, False, False, False], [False, True, True, False, False, False, False], [False, True, True, False, False, False, False], [ True, False, False, False, False, False, True]]) >>> local_minima(image, indices=True) (array([1, 1, 2, 2, 3, 3]), array([1, 2, 1, 2, 0, 6])) Find local minima without comparing to diagonal pixels (connectivity 1): >>> local_minima(image, connectivity=1) array([[False, False, False, False, False, False, False], [False, True, True, False, True, True, False], [False, True, True, False, True, True, False], [ True, False, False, False, False, False, True]]) and exclude minima that border the image edge: >>> local_minima(image, connectivity=1, allow_borders=False) array([[False, False, False, False, False, False, False], [False, True, True, False, True, True, False], [False, True, True, False, True, True, False], [False, False, False, False, False, False, False]]) """ return local_maxima( image=invert(image), selem=selem, connectivity=connectivity, indices=indices, allow_borders=allow_borders )
38.206704
79
0.63016
779d73aa539551bc4900c328c3c726df75c5ef72
6,259
py
Python
src/config.py
AlbertSuarez/3d-net
6b1be62e224030e8c1d9d4695b114a64e8948b02
[ "MIT" ]
1
2020-11-30T06:44:30.000Z
2020-11-30T06:44:30.000Z
src/config.py
AlbertSuarez/3d-net
6b1be62e224030e8c1d9d4695b114a64e8948b02
[ "MIT" ]
null
null
null
src/config.py
AlbertSuarez/3d-net
6b1be62e224030e8c1d9d4695b114a64e8948b02
[ "MIT" ]
null
null
null
import os THINGIVERSE_FLASK_PORT = 8080 THINGIVERSE_FLASK_WAIT_PRE = 3 THINGIVERSE_FLASK_WAIT_POST = 300 THINGIVERSE_FLASK_WAIT_ENABLE = False THINGIVERSE_FLASK_ENDPOINT = '/download' THINGIVERSE_API_NUMBER_PAGES = 1000 THINGIVERSE_API_PER_PAGE = 500 THINGIVERSE_API_CONCURRENCY = 10 THINGIVERSE_API_CONCURRENCY_DOWNLOAD = 50 THINGIVERSE_API_AUTH = 'https://www.thingiverse.com/login/oauth/authorize' THINGIVERSE_API_TOKEN = 'https://www.thingiverse.com/login/oauth/access_token' THINGIVERSE_API_DONE = 'https://asuarez.dev/3d-net/docs/images/done.jpeg' THINGIVERSE_API_PACKAGE = 'https://api.thingiverse.com/things/{}/package-url' THINGIVERSE_API_SEARCH = 'https://api.thingiverse.com/search/' \ '?page={}&per_page={}&sort=popular&category_id={}&type=things' DATASET_FOLDER = 'data' DATASET_FOLDER_DOWNLOADED = os.path.join(DATASET_FOLDER, 'downloaded') DATASET_FOLDER_STANDARDIZED = os.path.join(DATASET_FOLDER, 'standardized') DATASET_FOLDER_PREPROCESSED = os.path.join(DATASET_FOLDER, 'preprocessed') DATASET_FOLDER_WEIGHTS = os.path.join(DATASET_FOLDER, 'weights') DATASET_FOLDER_WEIGHTS_FINAL = 'weights' DATASET_SUB_FOLDER_TRAINING = 'training' DATASET_SUB_FOLDER_VALIDATION = 'validation' DATASET_CATEGORIES = { '3d__printer_accessories': {'category_id': 127, 'main_category': '3d'}, '3d__printer_extruders': {'category_id': 152, 'main_category': '3d'}, '3d__printer_parts': {'category_id': 128, 'main_category': '3d'}, '3d__printers': {'category_id': 126, 'main_category': '3d'}, '3d__printing_tests': {'category_id': 129, 'main_category': '3d'}, 'art__2d': {'category_id': 144, 'main_category': 'art'}, 'art__tools': {'category_id': 75, 'main_category': 'art'}, 'art__coins_badges': {'category_id': 143, 'main_category': 'art'}, 'art__interactive': {'category_id': 78, 'main_category': 'art'}, 'art__math': {'category_id': 79, 'main_category': 'art'}, 'art__scans_replicas': {'category_id': 145, 'main_category': 'art'}, 'art__sculptures': {'category_id': 80, 'main_category': 'art'}, 'art__signs_logos': {'category_id': 76, 'main_category': 'art'}, 'fashion__accessories': {'category_id': 81, 'main_category': 'fashion'}, 'fashion__bracelets': {'category_id': 82, 'main_category': 'fashion'}, 'fashion__costume': {'category_id': 142, 'main_category': 'fashion'}, 'fashion__earrings': {'category_id': 139, 'main_category': 'fashion'}, 'fashion__glasses': {'category_id': 83, 'main_category': 'fashion'}, 'fashion__jewelry': {'category_id': 84, 'main_category': 'fashion'}, 'fashion__keychains': {'category_id': 130, 'main_category': 'fashion'}, 'fashion__rings': {'category_id': 85, 'main_category': 'fashion'}, 'gadgets__audio': {'category_id': 141, 'main_category': 'gadgets'}, 'gadgets__camera': {'category_id': 86, 'main_category': 'gadgets'}, 'gadgets__computer': {'category_id': 87, 'main_category': 'gadgets'}, 'gadgets__mobile_phone': {'category_id': 88, 'main_category': 'gadgets'}, 'gadgets__tablet': {'category_id': 90, 'main_category': 'gadgets'}, 'gadgets__video_games': {'category_id': 91, 'main_category': 'gadgets'}, 'hobby__automotive': {'category_id': 155, 'main_category': 'hobby'}, 'hobby__diy': {'category_id': 93, 'main_category': 'hobby'}, 'hobby__electronics': {'category_id': 92, 'main_category': 'hobby'}, 'hobby__music': {'category_id': 94, 'main_category': 'hobby'}, 'hobby__rc_vehicles': {'category_id': 95, 'main_category': 'hobby'}, 'hobby__robotics': {'category_id': 96, 'main_category': 'hobby'}, 'hobby__sport_outdoors': {'category_id': 140, 'main_category': 'hobby'}, 'household__bathroom': {'category_id': 147, 'main_category': 'household'}, 'household__containers': {'category_id': 146, 'main_category': 'household'}, 'household__decor': {'category_id': 97, 'main_category': 'household'}, 'household__supplies': {'category_id': 99, 'main_category': 'household'}, 'household__kitchen_dining': {'category_id': 100, 'main_category': 'household'}, 'household__office_organization': {'category_id': 101, 'main_category': 'household'}, 'household__outdoor_garden': {'category_id': 98, 'main_category': 'household'}, 'household__pets': {'category_id': 103, 'main_category': 'household'}, 'learning__biology': {'category_id': 106, 'main_category': 'learning'}, 'learning__engineering': {'category_id': 104, 'main_category': 'learning'}, 'learning__math': {'category_id': 105, 'main_category': 'learning'}, 'learning__physics_astronomy': {'category_id': 148, 'main_category': 'learning'}, 'models__animals': {'category_id': 107, 'main_category': 'models'}, 'models__buildings_structures': {'category_id': 108, 'main_category': 'models'}, 'models__creatures': {'category_id': 109, 'main_category': 'models'}, 'models__food_drink': {'category_id': 110, 'main_category': 'models'}, 'models__furniture': {'category_id': 111, 'main_category': 'models'}, 'models__robots': {'category_id': 115, 'main_category': 'models'}, 'models__people': {'category_id': 112, 'main_category': 'models'}, 'models__props': {'category_id': 114, 'main_category': 'models'}, 'models__vehicles': {'category_id': 116, 'main_category': 'models'}, 'tools__hand': {'category_id': 118, 'main_category': 'tools'}, 'tools__machine': {'category_id': 117, 'main_category': 'tools'}, 'tools__holders_boxes': {'category_id': 120, 'main_category': 'tools'}, 'toys__chess': {'category_id': 151, 'main_category': 'toys'}, 'toys__construction': {'category_id': 121, 'main_category': 'toys'}, 'toys__dice': {'category_id': 122, 'main_category': 'toys'}, 'toys__games': {'category_id': 123, 'main_category': 'toys'}, 'toys__mechanical': {'category_id': 124, 'main_category': 'toys'}, 'toys__playsets': {'category_id': 113, 'main_category': 'toys'}, 'toys__puzzles': {'category_id': 125, 'main_category': 'toys'}, 'toys__accessories': {'category_id': 149, 'main_category': 'toys'} } REQUEST_TIMEOUT = 30 STANDARDIZE_CONCURRENCY = 30 TRAIN_EPOCHS = len(DATASET_CATEGORIES) TRAIN_INPUT_SIZE = 256 TRAIN_STRATEGY = 'sigmoid' # (relu, sigmoid) TRAIN_MODEL_FILE = 'model.h5'
59.609524
89
0.70155
ca4b595c1629e771acabdfff364656768cc081f3
7,323
py
Python
lib/python/treadmill/cli/ssh.py
ms-petrugarstea/treadmill
4c813baf8831918744b5af020938c8a51ed15c72
[ "Apache-2.0" ]
1
2019-04-14T20:17:07.000Z
2019-04-14T20:17:07.000Z
lib/python/treadmill/cli/ssh.py
crazyrex/treadmill
75be287a808a4cbdacab67b3f62a3cb3eb1eab67
[ "Apache-2.0" ]
null
null
null
lib/python/treadmill/cli/ssh.py
crazyrex/treadmill
75be287a808a4cbdacab67b3f62a3cb3eb1eab67
[ "Apache-2.0" ]
null
null
null
"""Trace treadmill application events. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import socket import subprocess import sys import click import gevent from gevent import queue as g_queue import six from six.moves import urllib_parse from treadmill import context from treadmill import cli from treadmill import restclient from treadmill import utils from treadmill.websocket import client as ws_client _LOGGER = logging.getLogger(__name__) if sys.platform == 'win32': _DEFAULT_SSH = 'putty.exe' else: _DEFAULT_SSH = 'ssh' def _connect(host, port): """Check host:port is up.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(1) try: sock.connect((host, int(port))) sock.close() return True except socket.error: return False def _check_handle(handle): """Checks if provided file handle is valid.""" return handle is not None and handle.fileno() >= 0 def run_ssh(host, port, ssh, command): """Runs ssh.""" if sys.platform == 'win32': run_putty(host, port, ssh, command) else: run_unix(host, port, ssh, command) def run_unix(host, port, ssh, command): """Runs standard ssh (non-windows).""" if not host or not port: return -2 if not utils.which(ssh): cli.bad_exit('{} cannot be found in the PATH'.format(ssh)) ssh = [ssh, '-o', 'UserKnownHostsFile=/dev/null', '-o', 'StrictHostKeyChecking=no', '-p', port, host] + command _LOGGER.debug('Starting ssh: %s', ssh) return utils.sane_execvp(ssh[0], ssh) def run_putty(host, port, sshcmd, command): """Runs plink/putty (windows).""" if not host or not port: return -2 # Trick putty into storing ssh key automatically. plink = os.path.join(os.path.dirname(sshcmd), 'plink.exe') if not utils.which(plink): cli.bad_exit('{} cannot be found in the PATH'.format(plink)) store_key_cmd = [plink, '-P', port, '%s@%s' % (os.environ['USERNAME'], host), 'exit'] _LOGGER.debug('Importing host key: %s', store_key_cmd) store_key_proc = subprocess.Popen(store_key_cmd, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) out, err = store_key_proc.communicate(input='y\n\n\n\n\n\n\n\n\n'.encode()) _LOGGER.debug('plink STDOUT: %s', out) _LOGGER.debug('plink STDERR: %s', err) if command: sshcmd = plink ssh = [sshcmd, '-P', port, '%s@%s' % (os.environ['USERNAME'], host)] if command: ssh.extend(command) devnull = {} def _get_devnull(): """Gets handle to the null device.""" if not devnull: devnull['fd'] = os.open(os.devnull, os.O_RDWR) return devnull['fd'] if not utils.which(sshcmd): cli.bad_exit('{} cannot be found in the PATH'.format(sshcmd)) _LOGGER.debug('Starting ssh: %s', ssh) try: if os.path.basename(sshcmd).lower() == 'putty.exe': utils.sane_execvp(ssh[0], ssh) else: # Call plink. Redirect to devnull if std streams are empty/invalid. subprocess.call( ssh, stdin=None if _check_handle(sys.stdin) else _get_devnull(), stdout=None if _check_handle(sys.stdout) else _get_devnull(), stderr=None if _check_handle(sys.stderr) else _get_devnull() ) except KeyboardInterrupt: sys.exit(0) finally: if devnull: os.close(devnull['fd']) def _wait_for_ssh(queue, ssh, command, timeout=1, attempts=40): """Wait until a successful connection to the ssh endpoint can be made.""" try: host, port = queue.get(timeout=timeout * attempts) except g_queue.Empty: cli.bad_exit('No SSH endpoint found.') for _ in six.moves.range(attempts): _LOGGER.debug('Checking SSH endpoint %s:%s', host, port) if _connect(host, port): run_ssh(host, port, ssh, list(command)) break # if run_ssh doesn't end with os.execvp()... try: host, port = queue.get(timeout=timeout) queue.task_done() except g_queue.Empty: pass # Either all the connection attempts failed or we're after run_ssh # (not resulting in os.execvp) so let's "clear the queue" so the thread # can join queue.task_done() def _wait_for_app(ssh, app, command, queue=None): """Use websockets to wait for the app to start""" # JoinableQueue is filled with a dummy item otherwise queue.join() unblocks # immediately wo/ actually letting the ws_loop and _wait_for_ssh to run. queue = queue or g_queue.JoinableQueue(items=[('dummy.host', 1234)]) def on_message(result, queue=queue): """Callback to process trace message.""" _LOGGER.debug('Endpoint trase msg: %r', result) queue.put((result['host'], result['port'])) return False def on_error(result): """Callback to process errors.""" click.echo('Error: %s' % result['_error'], err=True) try: gevent.spawn(_wait_for_ssh, queue, ssh, command) gevent.spawn(ws_client.ws_loop, context.GLOBAL.ws_api(), {'topic': '/endpoints', 'filter': app, 'proto': 'tcp', 'endpoint': 'ssh'}, False, on_message, on_error) queue.join() except ws_client.WSConnectionError: cli.bad_exit('Could not connect to any Websocket APIs') def init(): """Return top level command handler.""" @click.command() @click.option('--cell', required=True, envvar='TREADMILL_CELL', callback=cli.handle_context_opt, expose_value=False) @click.option('--wait', help='Wait until the app starts up', is_flag=True, default=False) @click.option('--ssh', help='SSH client to use.', type=click.Path(exists=True, readable=True)) @click.argument('app') @click.argument('command', nargs=-1) def ssh(ssh, app, command, wait): """SSH into Treadmill container.""" if ssh is None: ssh = _DEFAULT_SSH if wait: _wait_for_app(ssh, app, command) else: apis = context.GLOBAL.state_api() url = '/endpoint/{}/tcp/ssh'.format(urllib_parse.quote(app)) response = restclient.get(apis, url) endpoints = response.json() _LOGGER.debug('endpoints: %r', endpoints) if not endpoints: cli.bad_exit('No ssh endpoint(s) found for %s', app) # Take the first one, if there are more than one, then this is # consistent with when 1 is returned. endpoint = endpoints[0] run_ssh( endpoint['host'], str(endpoint['port']), ssh, list(command) ) return ssh
30.135802
79
0.592107
9ed3db48a9e81fcf7596c34d54d0d0a658820341
152
py
Python
hackerrank/warmup/01-SolveMeFirst.py
MrSquanchee/ProblemSolving
309160f6a2fb43ae7673210b01957ffca9247d0d
[ "MIT" ]
39
2020-09-27T05:32:05.000Z
2022-01-08T18:04:05.000Z
hackerrank/warmup/01-SolveMeFirst.py
MrSquanchee/ProblemSolving
309160f6a2fb43ae7673210b01957ffca9247d0d
[ "MIT" ]
5
2020-10-02T13:33:00.000Z
2021-03-01T14:06:08.000Z
hackerrank/warmup/01-SolveMeFirst.py
MrSquanchee/ProblemSolving
309160f6a2fb43ae7673210b01957ffca9247d0d
[ "MIT" ]
8
2021-01-31T10:31:12.000Z
2022-03-13T09:15:55.000Z
def solveMeFirst(a,b): # Hint: Type return a+b below return a+b num1 = int(input()) num2 = int(input()) res = solveMeFirst(num1,num2) print(res)
15.2
30
0.664474
40367478e6ecb717f451987758bce4df07736be3
4,076
py
Python
alipay/aop/api/request/AlipayOpenAppDeveloperCheckdevelopervalidQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayOpenAppDeveloperCheckdevelopervalidQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayOpenAppDeveloperCheckdevelopervalidQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayOpenAppDeveloperCheckdevelopervalidQueryModel import AlipayOpenAppDeveloperCheckdevelopervalidQueryModel class AlipayOpenAppDeveloperCheckdevelopervalidQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayOpenAppDeveloperCheckdevelopervalidQueryModel): self._biz_content = value else: self._biz_content = AlipayOpenAppDeveloperCheckdevelopervalidQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.open.app.developer.checkdevelopervalid.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
28.110345
148
0.653582
62e38d442a378acac4af22c599c5559181ba15b0
3,221
py
Python
Comparison.py
franreysaycon/BORKOV
238cf69d1e81bb522aacfc3bff48e63ff2a26f0a
[ "MIT" ]
1
2019-09-17T06:51:38.000Z
2019-09-17T06:51:38.000Z
Comparison.py
franreysaycon/BORKOV
238cf69d1e81bb522aacfc3bff48e63ff2a26f0a
[ "MIT" ]
null
null
null
Comparison.py
franreysaycon/BORKOV
238cf69d1e81bb522aacfc3bff48e63ff2a26f0a
[ "MIT" ]
null
null
null
from __future__ import division import os import shutil import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt import SimpleITK as sitk from tkFileDialog import askdirectory from tkFileDialog import askopenfilename from matplotlib import colors from Tkinter import Tk ### startslice = 290 endslice = 300 height = -1 width = -1 colormap = [] tp = 0 #true positive tn = 0 #true negative fp = 0 #false positive fn = 0 #false negative tani = 0 def compare(knnmrf, groundtruth): global colormap, tp, tn, fp, fn for i in range(height): for j in range(width): if knnmrf[i][j] != 0 and groundtruth[i][j] == 1: colormap[i][j] = 3 #white for common area tp += 1 elif groundtruth[i][j] == 1: colormap[i][j] = 2 #green for ground truth fn += 1 elif knnmrf[i][j] != 0: colormap[i][j] = 1 #cyan for knn mrf fp += 1 else: colormap[i][j] = 0 tn += 1 def openMRI(title): Tk().withdraw() filename = askopenfilename(title = title) image = sitk.ReadImage(str(filename)) return filename, sitk.GetArrayFromImage(image) def writeStats(folder): textfile = open(folder + "\\Stats.txt", "w") textfile.write("True positive: %s\n" % tp) textfile.write("True negative: %s\n" % tn) textfile.write("False positive: %s\n" % fp) textfile.write("False negative: %s\n" % fn) textfile.write("Tanimoto Coefficient: " + str(tani) + "\n") textfile.close() def computeTani(): return tp/(tp+fp+fn) if __name__ == "__main__" : print "> Load KNN-MRF segmented image." directory1, knnmrf = openMRI('Load KNN-MRF segmented image') print "\tLoaded ", directory1 print "> Load corresponding ground truth." directory2, groundtruth = openMRI('Load corresponding ground truth') groundtruth = groundtruth[startslice:endslice+1] print "\tLoaded ", directory2 height = len(groundtruth[0]) width = len(groundtruth[0][0]) folder = directory1.split("/") folder = folder[len(folder)-2] folder = "SegmentedMRI_Compared\\" + folder if os.path.exists(folder): shutil.rmtree(folder) try: os.makedirs(folder) except OSError as exc: raise print "> Start comparison. [ from slice", startslice, "to", endslice, "]" for i in range(len(knnmrf)): print "\tProcessing slice#", i+startslice, "...\r", colormap = [[0 for j in range(width)] for k in range(height)] compare(knnmrf[i], groundtruth[i]) fig, ax = plt.subplots() frame = plt.gca() frame.axes.get_xaxis().set_visible(False) frame.axes.get_yaxis().set_visible(False) cmap = colors.ListedColormap(['black', 'deepskyblue', 'gold', 'white']) cax = ax.imshow(np.array(colormap), cmap=cmap, vmin=0, vmax=3) bar = fig.colorbar(cax, ticks=[0, 1, 2, 3]) bar.ax.set_yticklabels(['Non-Lesion', 'KNN-MRF', 'Manual', 'Common']) filename = folder + "\\Slice" + str(i+startslice) + ".png" if os.path.isfile(filename): os.remove(filename) plt.savefig(filename) plt.close() print "\tProcessing slice#", endslice, "...", print "done" tani = computeTani() writeStats(folder) print "> Stats.txt created." print ">> Done! Your segmented MR image is compared."
26.841667
75
0.656628
4d1e17543772bf19d11e758410148cc5e5f17ca9
799
py
Python
test_autofit/database/query/internal/test_functionality.py
vishalbelsare/PyAutoFit
04b927419fa95c302e0eebab632fc7ebcdc3f06b
[ "MIT" ]
null
null
null
test_autofit/database/query/internal/test_functionality.py
vishalbelsare/PyAutoFit
04b927419fa95c302e0eebab632fc7ebcdc3f06b
[ "MIT" ]
null
null
null
test_autofit/database/query/internal/test_functionality.py
vishalbelsare/PyAutoFit
04b927419fa95c302e0eebab632fc7ebcdc3f06b
[ "MIT" ]
null
null
null
import pytest from autofit.database import query as q def test_trivial(): assert (q.Q("a") & q.Q("a")).query == q.Q("a").query def test_second(): assert (q.Q("a") & q.Q("a", q.Q("b"))).query == (q.Q("a", q.Q("b"))).query def test_and_commutativity(): a_and_b = q.And(q.Q("a"), q.Q("b")) combined = a_and_b & q.Q("c") assert combined == q.And(q.Q("a"), q.Q("b"), q.Q("c")) assert len(combined.conditions) == 3 def test_single_argument(): assert isinstance( q.And(q.Q("a")), q.Q ) def test_already_compared( aggregator ): with pytest.raises( AssertionError ): print((aggregator.centre == 1) == 1) with pytest.raises( AttributeError ): print((aggregator.centre == 1).intesity)
19.487805
78
0.550688
282bfdfe9601ca570e28bf74d992b0512979f5a9
3,422
py
Python
lib_youtube_cd_burner/cd.py
jfuruness/lib_youtube_cd_burner
30e0d19243a49a762f51cc58dddb691dea78fad0
[ "BSD-3-Clause" ]
null
null
null
lib_youtube_cd_burner/cd.py
jfuruness/lib_youtube_cd_burner
30e0d19243a49a762f51cc58dddb691dea78fad0
[ "BSD-3-Clause" ]
null
null
null
lib_youtube_cd_burner/cd.py
jfuruness/lib_youtube_cd_burner
30e0d19243a49a762f51cc58dddb691dea78fad0
[ "BSD-3-Clause" ]
null
null
null
import subprocess import time import fcntl import os from contextlib import contextmanager from .disk_values_enum import DiskValues from .song_holder import SongHolder class CDFullError(Exception): pass class CD(SongHolder): """CD class that adds songs and burns cds""" def __init__(self, max_seconds): """initializes cd and max seconds a cd can hold""" self.max_seconds = max_seconds self.total_seconds = 0 super(CD, self).__init__() def add_track(self, song): """Adds a song to a cd, returns false if over limit""" # If the song is not over the limit of seconds if self.total_seconds + song.seconds <= self.max_seconds: # Add the song self.songs.append(song) # Increase total seconds self.total_seconds += song.seconds # Song too long return false, cd full else: raise CDFullError def burn(self, times_to_burn=1): """Burns a cd times_to_burn times""" for i in range(times_to_burn): # Wait for disk insertion if self._get_disk(): # args for bash command args = [#"sudo", "wodim", "-v", "dev=/dev/sr0", "-dao", # sao????? same in wodim???? "-audio", "-pad", "speed=8" # for my cd player 10 is lowest ] # Adds all the songs to burn in order args.extend([x.path for x in self.songs]) # Actually burns the cd output = subprocess.run(args) logging.debug(output) logging.info("Just burned {}".format(self)) # Pops the new cd out CD.eject() else: logging.warning("Disk not inserted, exiting") def _get_disk(self): """Waits for disk insertion""" # Pops out cd CD.eject() logging.info("Insert cd!") while self._get_disk_val() == Disk_Values.OPEN.value: logging.info("Disk tray open\r") time.sleep(1) while self._get_disk_val() == Disk_Values.READING.value: logging.info("Reading in disk\r") time.sleep(1) if self._get_disk_val() == Disk_Values.NO_DISK.value: logging.warning("No disk inserted") return False elif self._get_disk_val() == Disk_Values.DISK_IN_TRAY.value: logging.info("Disk in tray and read") return True def _get_disk_val(self): # https://superuser.com/a/1367091 # 1 for no disk, 2 for open, 3 for reading, 4 for disk in tray with self._open_disk_fd() as fd: return fcntl.ioctl(fd, 0x5326) @contextmanager def _open_disk_fd(self): fd = os.open('/dev/sr0', os.O_RDONLY | os.O_NONBLOCK) yield fd os.close(fd) @staticmethod def eject(self): """Pops out CD""" subprocess.run(["eject"]) def __str__(self): """For when cd's are printed""" lines = ["cd is {} minutes".format(self.total_seconds/60), "songs:"] [lines.append(" " + x.__str__()) for x in self.songs] lines.append("\n") return "\n".join(lines)
31.394495
70
0.536821
6f70d91e2178389cf1cbba8aef9c6856c6e63081
642
py
Python
backend/ipproject/core/permissions/resources.py
FedotenkoM/ipsproject
f02ce8acd560b3e10e5357f0605e923396aaafa0
[ "MIT" ]
1
2021-07-28T22:16:53.000Z
2021-07-28T22:16:53.000Z
backend/ipproject/core/permissions/resources.py
FedotenkoM/ipsproject
f02ce8acd560b3e10e5357f0605e923396aaafa0
[ "MIT" ]
11
2021-05-14T12:34:18.000Z
2021-08-22T14:52:01.000Z
backend/ipproject/core/permissions/resources.py
FedotenkoM/ipsproject
f02ce8acd560b3e10e5357f0605e923396aaafa0
[ "MIT" ]
null
null
null
from starlette.responses import JSONResponse from ..utils import jwt_required from ..models import PermissionModel @jwt_required async def get_apps(request, user): sub = PermissionModel.alias() apps = await PermissionModel.outerjoin( sub, PermissionModel.id == sub.id ).select().where( PermissionModel.role_id == user.role_id ).gino.load( PermissionModel.distinct(PermissionModel.app_name).load( actions=sub.action ) ).all() result = {} for app in apps: _app = app.jsonify() result[_app['appName']] = _app['actions'] return JSONResponse(result)
24.692308
64
0.658879
dac5830b39ee5d68abbfe25be05adb74b482be71
2,375
py
Python
examples/model_fitting/plot_function_fit.py
maahn/meteo_si
821bf0e428f2d8793d30253cb41d71b7c621afef
[ "MIT" ]
null
null
null
examples/model_fitting/plot_function_fit.py
maahn/meteo_si
821bf0e428f2d8793d30253cb41d71b7c621afef
[ "MIT" ]
null
null
null
examples/model_fitting/plot_function_fit.py
maahn/meteo_si
821bf0e428f2d8793d30253cb41d71b7c621afef
[ "MIT" ]
null
null
null
""" ================================ Fitting a function with meteo_si ================================ Meteo SI contains a number of tools for fitting functions to data. This example shows us how to load data into python, fit a function to our datapoints with meteo_si, and then plot the result. This example is meant to demonstrate the functionality of sphinx-gallery, which allows you to generate narrative-style documents from python files. """ import os.path as op import numpy as np import matplotlib.pyplot as plt import meteo_si as sb plt.style.use('ggplot') ############################################################################### # Loading data # ------------ # # First, we'll load some data into meteo_si. data_path = op.join(sb.__path__[0], 'data') ortho_x, ortho_y, ortho_n = sb.transform_data(op.join(data_path, 'ortho.csv')) para_x, para_y, para_n = sb.transform_data(op.join(data_path, 'para.csv')) ############################################################################### # Fitting a model # --------------- # # With meteo_si, models are created with the :ref:Model class. # This class has a `fit` method that returns the coefficients for the given # input data. # Instantiate our model and fit it on two datasets model = sb.Model() ortho_fit = model.fit(ortho_x, ortho_y) para_fit = model.fit(para_x, para_y) # These are the parameters that our model has discovered print(ortho_fit.params) print(para_fit.params) ############################################################################### # Visualizing results # ------------------- # # Now we will visualize the results of our model fit. We'll generate # a vector of input points, and use them to determine the model's output # for each input. Then we'll plot what these curves look like. # Create figure and generate input points fig, ax = plt.subplots(1) x_predict = np.linspace(0, 1, 100) # Make the first plot for x, y, n in zip(ortho_x, ortho_y, ortho_n): ax.plot(x, y, 'bo', markersize=n) ax.plot(x_predict, ortho_fit.predict(x_predict), 'b') # Make the second plot for x, y, n in zip(para_x, para_y, para_n): ax.plot(x, y, 'go', markersize=n) ax.plot(x_predict, para_fit.predict(x_predict), 'g') ax.set_xlabel('Contrast in interval 1') ax.set_ylabel("Proportion answers '1'") ax.set_ylim([-0.1, 1.1]) ax.set_xlim([-0.1, 1.1]) fig.set_size_inches([8, 8])
31.25
79
0.626947
969403cac71be069946988ff305f6e5fa91e1b2c
5,639
py
Python
docs/conf.py
Sanjay-B/Pyblox-Docs
0ba8ec9515b799074b98d2abfd763abf4b23dd1a
[ "MIT" ]
null
null
null
docs/conf.py
Sanjay-B/Pyblox-Docs
0ba8ec9515b799074b98d2abfd763abf4b23dd1a
[ "MIT" ]
2
2018-02-01T10:56:25.000Z
2019-06-06T11:04:12.000Z
docs/conf.py
Sanjay-B/Pyblox-Docs
0ba8ec9515b799074b98d2abfd763abf4b23dd1a
[ "MIT" ]
1
2018-03-11T16:59:24.000Z
2018-03-11T16:59:24.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # pybloxdocs documentation build configuration file, created by # sphinx-quickstart on Sun Jul 16 10:17:27 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Pyblox' copyright = '2017, Sanjay-B(Sanjay Bhadra)' author = 'Sanjay-B(Sanjay Bhadra)' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.2' # The full version, including alpha/beta/rc tags. release = '0.0.2' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'about.html', 'navigation.html', 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', 'donate.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'pybloxdocsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Pyblox.tex', 'Pyblox Documentation', 'Sanjay-B(Sanjay Bhadra)', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'Pyblox', 'Pyblox Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Pyblox', 'Pyblox Documentation', author, 'Pyblox', 'One line description of project.', 'Miscellaneous'), ] # Source Parser from recommonmark.parser import CommonMarkParser source_parsers = { '.md': CommonMarkParser, } source_suffix = ['.rst', '.md'] # Themes import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
30.814208
80
0.659691
347afad0a6c92156f6b77ca2111749bd0171223d
1,795
py
Python
src/invdx.py
djamriska/project_light
69632023fee0f3164df5fef4dd204fd8f7ee7d34
[ "MIT" ]
null
null
null
src/invdx.py
djamriska/project_light
69632023fee0f3164df5fef4dd204fd8f7ee7d34
[ "MIT" ]
null
null
null
src/invdx.py
djamriska/project_light
69632023fee0f3164df5fef4dd204fd8f7ee7d34
[ "MIT" ]
null
null
null
#invdx.py # An inverted index __author__ = 'Nick Hirakawa' class InvertedIndex: def __init__(self): self.index = dict() def __contains__(self, item): return item in self.index def __getitem__(self, item): return self.index[item] def add(self, word, docid): if word in self.index: if docid in self.index[word]: self.index[word][docid] += 1 else: self.index[word][docid] = 1 else: d = dict() d[docid] = 1 self.index[word] = d # frequency of word in document def get_document_frequency(self, word, docid): if word in self.index: if docid in self.index[word]: return self.index[word][docid] else: raise LookupError('%s not in document %s' % (str(word), str(docid))) else: raise LookupError('%s not in index' % str(word)) # frequency of word in index, i.e. number of documents that contain word def get_index_frequency(self, word): if word in self.index: return len(self.index[word]) else: raise LookupError('%s not in index' % word) class DocumentLengthTable: def __init__(self): self.table = dict() def __len__(self): return len(self.table) def add(self, docid, length): self.table[docid] = length def get_length(self, docid): if docid in self.table: return self.table[docid] else: raise LookupError('%s not found in table' % str(docid)) def get_average_length(self): sum = 0 for length in self.table.items(): sum += length[1] return float(sum) / float(len(self.table)) def build_data_structures(corpus): idx = InvertedIndex() dlt = DocumentLengthTable() for docid in corpus: # build inverted index for word in corpus[docid]: idx.add(str(word), str(docid)) # build document length table length = len(corpus[str(docid)]) dlt.add(docid, length) return idx, dlt
21.369048
73
0.68078
8d20b6699a9e5d8891a10bdeb52e7332a15664c3
2,133
py
Python
checks/resolution/plot_resolution.py
ReynLieu/tf-pwa
f354b5036bc8c37ffba95849de5ec3367934eef8
[ "MIT" ]
4
2021-05-10T15:17:24.000Z
2021-08-16T07:40:06.000Z
checks/resolution/plot_resolution.py
ReynLieu/tf-pwa
f354b5036bc8c37ffba95849de5ec3367934eef8
[ "MIT" ]
45
2020-10-24T08:26:19.000Z
2022-03-20T06:14:58.000Z
checks/resolution/plot_resolution.py
ReynLieu/tf-pwa
f354b5036bc8c37ffba95849de5ec3367934eef8
[ "MIT" ]
8
2020-10-24T06:41:06.000Z
2022-01-03T01:29:49.000Z
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tf_pwa.config_loader import ConfigLoader from tf_pwa.data import data_index, data_split from tf_pwa.histogram import Hist1D def sum_resolution(amps, weights, size=1): amps = tf.reshape(amps * weights, (-1, size)) amps = tf.reduce_sum(amps, axis=-1).numpy() return amps def main(): config = ConfigLoader("config.yml") config.set_params("final_params.json") amp = config.get_amplitude() data = config.get_data("data_origin")[0] phsp = config.get_data("phsp_plot")[0] phsp_re = config.get_data("phsp_plot_re")[0] print("data loaded") amps = amp(phsp_re) pw = amp.partial_weight(phsp_re) re_weight = phsp_re["weight"] re_size = config.resolution_size amps = sum_resolution(amps, re_weight, re_size) pw = [sum_resolution(i, re_weight, re_size) for i in pw] m_idx = config.get_data_index("mass", "R_BC") m_phsp = data_index(phsp, m_idx).numpy() m_data = data_index(data, m_idx).numpy() m_min, m_max = np.min(m_phsp), np.max(m_phsp) scale = m_data.shape[0] / np.sum(amps) get_hist = lambda m, w: Hist1D.histogram( m, weights=w, range=(m_min, m_max), bins=100 ) data_hist = get_hist(m_data, None) phsp_hist = get_hist(m_phsp, scale * amps) pw_hist = [] for i in pw: pw_hist.append(get_hist(m_phsp, scale * i)) ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1) ax = plt.subplot2grid((4, 1), (0, 0), rowspan=3, sharex=ax2) data_hist.draw_error(ax, label="data") phsp_hist.draw(ax, label="fit") for i, j in zip(pw_hist, config.get_decay()): i.draw_kde(ax, label=str(j.inner[0])) (data_hist - phsp_hist).draw_pull(ax2) ax.set_ylim((1, None)) ax.legend() ax.set_yscale("log") ax.set_ylabel("Events/{:.1f} MeV".format((m_max - m_min) * 10)) ax2.set_xlabel("M( R_BC )") ax2.set_ylabel("pull") ax2.set_xlim((1.3, 1.7)) ax2.set_ylim((-5, 5)) plt.setp(ax.get_xticklabels(), visible=False) plt.savefig("m_R_BC_fit.png") if __name__ == "__main__": main()
28.44
67
0.652602
1a9ab6b6f68386d61327db7dc4bc2efb30f9a927
5,541
py
Python
rpython/translator/translator.py
microvm/pypy-mu
6b03fbe93052d0eb3a4c67152c987c16837b3484
[ "Apache-2.0", "OpenSSL" ]
null
null
null
rpython/translator/translator.py
microvm/pypy-mu
6b03fbe93052d0eb3a4c67152c987c16837b3484
[ "Apache-2.0", "OpenSSL" ]
null
null
null
rpython/translator/translator.py
microvm/pypy-mu
6b03fbe93052d0eb3a4c67152c987c16837b3484
[ "Apache-2.0", "OpenSSL" ]
null
null
null
"""PyPy Translator Frontend The Translator is a glue class putting together the various pieces of the translation-related code. It can be used for interactive testing of the translator; see pypy/bin/translatorshell.py. """ import sys import types from rpython.translator import simplify from rpython.flowspace.model import FunctionGraph, checkgraph, Block from rpython.flowspace.objspace import build_flow from rpython.tool.ansi_print import AnsiLogger from rpython.tool.sourcetools import nice_repr_for_func from rpython.config.translationoption import get_platform log = AnsiLogger("flowgraph") class TranslationContext(object): FLOWING_FLAGS = { 'verbose': False, 'list_comprehension_operations': False, # True, - not super-tested } def __init__(self, config=None, **flowing_flags): if config is None: from rpython.config.translationoption import get_combined_translation_config config = get_combined_translation_config(translating=True) # ZZZ should go away in the end for attr in ['verbose', 'list_comprehension_operations']: if attr in flowing_flags: setattr(config.translation, attr, flowing_flags[attr]) self.config = config self.platform = get_platform(config) self.annotator = None self.rtyper = None self.exceptiontransformer = None self.graphs = [] # [graph] self.callgraph = {} # {opaque_tag: (caller-graph, callee-graph)} self._prebuilt_graphs = {} # only used by the pygame viewer def buildflowgraph(self, func, mute_dot=False): """Get the flow graph for a function.""" if not isinstance(func, types.FunctionType): raise TypeError("buildflowgraph() expects a function, " "got %r" % (func,)) if func in self._prebuilt_graphs: graph = self._prebuilt_graphs.pop(func) else: if self.config.translation.verbose: log(nice_repr_for_func(func)) graph = build_flow(func) simplify.simplify_graph(graph) if self.config.translation.list_comprehension_operations: simplify.detect_list_comprehension(graph) if not self.config.translation.verbose and not mute_dot: log.dot() self.graphs.append(graph) # store the graph in our list return graph def update_call_graph(self, caller_graph, callee_graph, position_tag): # update the call graph key = caller_graph, callee_graph, position_tag self.callgraph[key] = caller_graph, callee_graph def buildannotator(self, policy=None): if self.annotator is not None: raise ValueError("we already have an annotator") from rpython.annotator.annrpython import RPythonAnnotator self.annotator = RPythonAnnotator(self, policy=policy) return self.annotator def buildrtyper(self): if self.annotator is None: raise ValueError("no annotator") if self.rtyper is not None: raise ValueError("we already have an rtyper") from rpython.rtyper.rtyper import RPythonTyper self.rtyper = RPythonTyper(self.annotator) return self.rtyper def getexceptiontransformer(self): if self.rtyper is None: raise ValueError("no rtyper") if self.exceptiontransformer is not None: return self.exceptiontransformer from rpython.translator.exceptiontransform import ExceptionTransformer self.exceptiontransformer = ExceptionTransformer(self) return self.exceptiontransformer def checkgraphs(self): for graph in self.graphs: checkgraph(graph) # debug aids def about(self, x, f=None): """Interactive debugging helper """ if f is None: f = sys.stdout if isinstance(x, Block): for graph in self.graphs: if x in graph.iterblocks(): print >>f, '%s is a %s' % (x, x.__class__) print >>f, 'in %s' % (graph,) break else: print >>f, '%s is a %s at some unknown location' % ( x, x.__class__.__name__) print >>f, 'containing the following operations:' for op in x.operations: print >>f, " ",op print >>f, '--end--' return raise TypeError("don't know about %r" % x) def view(self): """Shows the control flow graph with annotations if computed. Requires 'dot' and pygame.""" from rpython.translator.tool.graphpage import FlowGraphPage FlowGraphPage(self).display() show = view def viewcg(self, center_graph=None, huge=100): """Shows the whole call graph and the class hierarchy, based on the computed annotations.""" from rpython.translator.tool.graphpage import TranslatorPage TranslatorPage(self, center_graph=center_graph, huge=huge).display() showcg = viewcg # _______________________________________________________________ # testing helper def graphof(translator, func): if isinstance(func, FunctionGraph): return func result = [] for graph in translator.graphs: if getattr(graph, 'func', None) is func: result.append(graph) assert len(result) == 1 return result[0] TranslationContext._graphof = graphof
37.187919
88
0.642844
3660b861f9cec4e958e149883f21a01c033e9355
459
py
Python
Mundo 3 Estruturas Compostas/ex083.py
costa53/curso_em_video_python3
4f859641324f8b35be56d807f40457d7dddc451f
[ "MIT" ]
1
2022-02-17T16:23:52.000Z
2022-02-17T16:23:52.000Z
Mundo 3 Estruturas Compostas/ex083.py
costa53/curso_em_video_python3
4f859641324f8b35be56d807f40457d7dddc451f
[ "MIT" ]
null
null
null
Mundo 3 Estruturas Compostas/ex083.py
costa53/curso_em_video_python3
4f859641324f8b35be56d807f40457d7dddc451f
[ "MIT" ]
null
null
null
# DESAFIO 083 # Crie um programa onde o usuário digite uma expressão qualquer que use parênteses. Seu aplicativo # deverá analisar se a expressão passada está com os parênteses abertos e fechados na ordem correta. exp = list(str(input('Digite uma expressão: '))) cont = 0 for c in exp: if c == "(": cont += 1 elif c == ")": cont -= 1 if cont == 0: print('Sua expressão está válida!') else: print('Sua expressão está errada!')
28.6875
100
0.660131
88442930916a328776fdf1d4f234c1b41220a067
1,864
py
Python
GPyOpt/acquisitions/EI.py
zhenwendai/GPyOpt
fd96875e7ec0cb0f78014d96813ece400648827d
[ "BSD-3-Clause" ]
850
2015-05-31T21:12:41.000Z
2022-03-24T17:25:37.000Z
GPyOpt/acquisitions/EI.py
lakshaykc/GPyOpt
097ba66e81c7e22b5bf9fdbe64fd135753bc4a67
[ "BSD-3-Clause" ]
340
2015-09-10T14:08:06.000Z
2022-03-28T20:35:26.000Z
GPyOpt/acquisitions/EI.py
lakshaykc/GPyOpt
097ba66e81c7e22b5bf9fdbe64fd135753bc4a67
[ "BSD-3-Clause" ]
299
2015-07-30T13:18:37.000Z
2022-03-22T21:27:31.000Z
# Copyright (c) 2016, the GPyOpt Authors # Licensed under the BSD 3-clause license (see LICENSE.txt) from .base import AcquisitionBase from ..util.general import get_quantiles class AcquisitionEI(AcquisitionBase): """ Expected improvement acquisition function :param model: GPyOpt class of model :param space: GPyOpt class of domain :param optimizer: optimizer of the acquisition. Should be a GPyOpt optimizer :param cost_withGradients: function :param jitter: positive value to make the acquisition more explorative. .. Note:: allows to compute the Improvement per unit of cost """ analytical_gradient_prediction = True def __init__(self, model, space, optimizer=None, cost_withGradients=None, jitter=0.01): self.optimizer = optimizer super(AcquisitionEI, self).__init__(model, space, optimizer, cost_withGradients=cost_withGradients) self.jitter = jitter @staticmethod def fromConfig(model, space, optimizer, cost_withGradients, config): return AcquisitionEI(model, space, optimizer, cost_withGradients, jitter=config['jitter']) def _compute_acq(self, x): """ Computes the Expected Improvement per unit of cost """ m, s = self.model.predict(x) fmin = self.model.get_fmin() phi, Phi, u = get_quantiles(self.jitter, fmin, m, s) f_acqu = s * (u * Phi + phi) return f_acqu def _compute_acq_withGradients(self, x): """ Computes the Expected Improvement and its derivative (has a very easy derivative!) """ fmin = self.model.get_fmin() m, s, dmdx, dsdx = self.model.predict_withGradients(x) phi, Phi, u = get_quantiles(self.jitter, fmin, m, s) f_acqu = s * (u * Phi + phi) df_acqu = dsdx * phi - Phi * dmdx return f_acqu, df_acqu
35.846154
107
0.67221