hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
e213749b77d191808c8d741cf75cf8e041640c18
1,336
py
Python
config/schema.py
creimers/knowd-backend
189a8bf28ae9b1e22fd2ac9542d5130fa8b550ca
[ "MIT" ]
null
null
null
config/schema.py
creimers/knowd-backend
189a8bf28ae9b1e22fd2ac9542d5130fa8b550ca
[ "MIT" ]
2
2020-05-05T20:37:52.000Z
2020-05-05T21:01:49.000Z
config/schema.py
creimers/knowd-backend
189a8bf28ae9b1e22fd2ac9542d5130fa8b550ca
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model import graphene import graphql_jwt from graphene_django.types import DjangoObjectType from graphene_django.filter import DjangoFilterConnectionField from apps.custom_user.mutations import ( Register, ConfirmEmail, ResetPassword, ResetPasswordConfirm, ) USER = get_user_model() class UserType(DjangoObjectType): class Meta: model = USER exclude = ("password", "is_superuser") class ViewerType(graphene.ObjectType): user = graphene.Field(UserType) def resolve_user(self, info, **kwargs): return info.context.user class RootQuery(graphene.ObjectType): viewer = graphene.Field(ViewerType) def resolve_viewer(self, info, **kwargs): if info.context.user.is_authenticated: return info.context.user return None class Mutation(graphene.ObjectType): token_auth = graphql_jwt.ObtainJSONWebToken.Field() verify_token = graphql_jwt.Verify.Field() refresh_token = graphql_jwt.Refresh.Field() revoke_token = graphql_jwt.Revoke.Field() # account register = Register.Field() confirm_email = ConfirmEmail.Field() reset_password = ResetPassword.Field() reset_password_confirm = ResetPasswordConfirm.Field() schema = graphene.Schema(query=RootQuery, mutation=Mutation)
24.740741
62
0.737275
18baa1bd20f36df40379f243a933db3fd91aec9c
1,672
py
Python
openaerostruct/structures/non_intersecting_thickness.py
carlosferpereira/OpenAeroStruct
35e1ff8aac5c67e40b1925829cfbc203ba1b2f2d
[ "Apache-2.0" ]
null
null
null
openaerostruct/structures/non_intersecting_thickness.py
carlosferpereira/OpenAeroStruct
35e1ff8aac5c67e40b1925829cfbc203ba1b2f2d
[ "Apache-2.0" ]
null
null
null
openaerostruct/structures/non_intersecting_thickness.py
carlosferpereira/OpenAeroStruct
35e1ff8aac5c67e40b1925829cfbc203ba1b2f2d
[ "Apache-2.0" ]
1
2021-04-09T16:45:27.000Z
2021-04-09T16:45:27.000Z
import numpy as np import openmdao.api as om class NonIntersectingThickness(om.ExplicitComponent): """ Create a constraint so the thickness of the spar does not intersect itself in the center of the spar. Basically, the thickness must be less than or equal to the radius. parameters ---------- thickness[ny-1] : numpy array Thickness of each element of the FEM spar. radius[ny-1] : numpy array Radius of each element of the FEM spar. Returns ------- thickness_intersects[ny-1] : numpy array If all the values are negative, each element does not intersect itself. If a value is positive, then the thickness within the hollow spar intersects itself and presents an impossible design. Add a constraint as `OASProblem.add_constraint('thickness_intersects', upper=0.)` """ def initialize(self): self.options.declare('surface', types=dict) def setup(self): self.surface = surface = self.options['surface'] self.ny = surface['mesh'].shape[1] self.add_input('thickness', val=np.zeros((self.ny-1)), units='m') self.add_input('radius', val=np.zeros((self.ny-1)), units='m') self.add_output('thickness_intersects', val=np.zeros((self.ny-1)), units='m') arange = np.arange(self.ny-1) self.declare_partials('thickness_intersects', 'thickness', rows=arange, cols=arange, val=1.) self.declare_partials('thickness_intersects', 'radius', rows=arange, cols=arange, val=-1.) def compute(self, inputs, outputs): outputs['thickness_intersects'] = inputs['thickness'] - inputs['radius']
35.574468
100
0.662679
b897d387a7fd88708f4561b2c3d036a725b273f0
1,648
py
Python
Scalable-NLP-with-Apache-Spark/Solutions/Includes/Classroom-Setup.py
databricks-academy/natural-language-processing
e4cae957cf0513c2d23eee658961a422cd38ed1c
[ "CC0-1.0" ]
null
null
null
Scalable-NLP-with-Apache-Spark/Solutions/Includes/Classroom-Setup.py
databricks-academy/natural-language-processing
e4cae957cf0513c2d23eee658961a422cd38ed1c
[ "CC0-1.0" ]
null
null
null
Scalable-NLP-with-Apache-Spark/Solutions/Includes/Classroom-Setup.py
databricks-academy/natural-language-processing
e4cae957cf0513c2d23eee658961a422cd38ed1c
[ "CC0-1.0" ]
1
2022-02-22T13:40:19.000Z
2022-02-22T13:40:19.000Z
# Databricks notebook source import sys # Suggested fix from Jason Kim & Ka-Hing Cheung # https://databricks.atlassian.net/browse/ES-176458 wsfsPaths = list(filter(lambda p : p.startswith("/Workspace"), sys.path)) defaultPaths = list(filter(lambda p : not p.startswith("/Workspace"), sys.path)) sys.path = defaultPaths + wsfsPaths spark.conf.set("com.databricks.training.module-name", "nlp") # filter out warnings from python # issue: https://github.com/RaRe-Technologies/smart_open/issues/319 import warnings warnings.filterwarnings("ignore") displayHTML("Preparing the learning environment...") # COMMAND ---------- # MAGIC %run "./Class-Utility-Methods" # COMMAND ---------- # MAGIC %run "./Dataset-Mounts" # COMMAND ---------- def init_mlflow_as_job(): import mlflow job_experiment_id = sc._jvm.scala.collection.JavaConversions.mapAsJavaMap( dbutils.entry_point.getDbutils().notebook().getContext().tags() )["jobId"] if job_experiment_id: mlflow.set_experiment(f"/Curriculum/Test Results/Experiments/{job_experiment_id}") init_mlflow_as_job() # COMMAND ---------- courseType = "il" username = getUsername() userhome = getUserhome() workingDir = getWorkingDir(courseType).replace("_pil", "") # COMMAND ---------- courseAdvertisements = dict() courseAdvertisements["username"] = ( "v", username, "No additional information was provided.", ) courseAdvertisements["userhome"] = ( "v", userhome, "No additional information was provided.", ) courseAdvertisements["workingDir"] = ( "v", workingDir, "No additional information was provided.", ) allDone(courseAdvertisements)
24.597015
86
0.707524
184c5c33efc5773d0cbede5980c691722e8e914f
66
py
Python
run_examples.py
akabos/NearPy
485ee37952fe68fd7fed85f4bf8f47e2076e9e36
[ "MIT" ]
2
2015-06-04T03:18:13.000Z
2016-01-12T08:01:36.000Z
run_examples.py
akabos/NearPy
485ee37952fe68fd7fed85f4bf8f47e2076e9e36
[ "MIT" ]
null
null
null
run_examples.py
akabos/NearPy
485ee37952fe68fd7fed85f4bf8f47e2076e9e36
[ "MIT" ]
null
null
null
import unittest from nearpy.examples import example2 example2()
11
36
0.818182
64b18ffabe63390ccaf825a15e918b1723b0d0bf
5,281
py
Python
pontoon/base/signals.py
julen/pontoon
872496bd2cd148a2e5a60d669d5be538166f75e7
[ "BSD-3-Clause" ]
null
null
null
pontoon/base/signals.py
julen/pontoon
872496bd2cd148a2e5a60d669d5be538166f75e7
[ "BSD-3-Clause" ]
null
null
null
pontoon/base/signals.py
julen/pontoon
872496bd2cd148a2e5a60d669d5be538166f75e7
[ "BSD-3-Clause" ]
null
null
null
from guardian.models import GroupObjectPermission from django.contrib.auth.models import User, Group, Permission from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ObjectDoesNotExist from django.db.models.signals import post_save, pre_save, post_delete, pre_delete from django.dispatch import receiver from pontoon.base import errors from pontoon.base.models import ( Locale, Project, ProjectLocale, TranslatedResource, UserProfile, ) @receiver(post_delete, sender=ProjectLocale) def project_locale_removed(sender, **kwargs): """ When locale is removed from a project, delete TranslatedResources and aggregate project and locale stats. """ project_locale = kwargs.get('instance', None) if project_locale is not None: project = project_locale.project locale = project_locale.locale TranslatedResource.objects.filter(resource__project=project, locale=locale).delete() project.aggregate_stats() locale.aggregate_stats() @receiver(pre_delete, sender=Locale) def locale_deleted(sender, **kwargs): """ Before locale is deleted, aggregate stats for all locale projects. """ locale = kwargs.get('instance', None) if locale is not None: for project in locale.project_set.all(): project.aggregate_stats() @receiver(pre_delete, sender=Project) def project_deleted(sender, **kwargs): """ Before project is deleted, aggregate stats for all project locales. """ project = kwargs.get('instance', None) if project is not None: for locale in project.locales.all(): locale.aggregate_stats() def create_group(instance, group_name, perms, name_prefix): """ Create all objects related to a group of users, e.g. translators, managers. """ ct = ContentType.objects.get(app_label='base', model=instance.__class__.__name__.lower()) group, _ = Group.objects.get_or_create(name='{} {}'.format(name_prefix, group_name)) for perm_name in perms: perm = Permission.objects.get(content_type=ct, codename=perm_name) group.permissions.add(perm) setattr(instance, '{}_group'.format(group_name), group) def assign_group_permissions(instance, group_name, perms): """ Create group object permissions. """ ct = ContentType.objects.get(app_label='base', model=instance.__class__.__name__.lower()) for perm_name in perms: perm = Permission.objects.get(content_type=ct, codename=perm_name) group = getattr(instance, '{}_group'.format(group_name)) GroupObjectPermission.objects.get_or_create(object_pk=instance.pk, content_type=ct, group=group, permission=perm) @receiver(pre_save, sender=Locale) def create_locale_permissions_groups(sender, **kwargs): """ Creates translators and managers groups for a given Locale. """ instance = kwargs['instance'] if kwargs['raw'] or instance.managers_group is not None: return try: create_group(instance, 'translators', ['can_translate_locale'], '{} translators'.format(instance.code)) create_group(instance, 'managers', ['can_translate_locale', 'can_manage_locale'], '{} managers'.format(instance.code)) # noqa except ObjectDoesNotExist as e: errors.send_exception(e) @receiver(pre_save, sender=ProjectLocale) def create_project_locale_permissions_groups(sender, **kwargs): """ Creates translators group for a given ProjectLocale. """ instance = kwargs['instance'] if kwargs['raw'] or instance.translators_group is not None: return try: create_group(instance, 'translators', ['can_translate_project_locale'], '{}/{} translators'.format( instance.project.slug, instance.locale.code, )) except ObjectDoesNotExist as e: errors.send_exception(e) @receiver(post_save, sender=Locale) def assign_locale_group_permissions(sender, **kwargs): """ After creation of locale, we have to assign translation and management permissions to groups of translators and managers assigned to locale. """ if kwargs['raw'] or not kwargs['created']: return instance = kwargs['instance'] try: assign_group_permissions(instance, 'translators', ['can_translate_locale']) assign_group_permissions(instance, 'managers', ['can_translate_locale', 'can_manage_locale']) except ObjectDoesNotExist as e: errors.send_exception(e) @receiver(post_save, sender=ProjectLocale) def assign_project_locale_group_permissions(sender, **kwargs): """ Assign permissions group to a given ProjectLocale. """ if kwargs['raw'] or not kwargs['created']: return instance = kwargs['instance'] try: assign_group_permissions(instance, 'translators', ['can_translate_project_locale']) except ObjectDoesNotExist as e: errors.send_exception(e) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: UserProfile.objects.create(user=instance)
33.213836
134
0.689074
2a7f1fbd51b6af61a284e2968e3214332ae5067d
2,857
py
Python
tests/cli/web/test_capture.py
EasyPost/biggraphite
d4f8b0ed76605c41d982a572c7462dea5b79de70
[ "Apache-2.0" ]
125
2016-05-02T17:10:32.000Z
2022-02-12T17:23:27.000Z
tests/cli/web/test_capture.py
EasyPost/biggraphite
d4f8b0ed76605c41d982a572c7462dea5b79de70
[ "Apache-2.0" ]
515
2016-05-03T13:23:02.000Z
2022-03-31T23:21:38.000Z
tests/cli/web/test_capture.py
EasyPost/biggraphite
d4f8b0ed76605c41d982a572c7462dea5b79de70
[ "Apache-2.0" ]
43
2016-05-03T17:46:48.000Z
2022-02-21T10:57:57.000Z
#!/usr/bin/env python # Copyright 2018 Criteo # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Capture.""" import logging import sys from unittest import TestCase from biggraphite.cli.web.capture import Capture class TestCapture(TestCase): def test_capture_should_get_stdout_content_from_outside_context(self): content = "foo" with Capture() as capture: sys.stdout.write(content) self.assertEqual(capture.get_content(), content) def test_capture_should_get_stdout_content_from_inside_context(self): content = "foo" with Capture() as capture: sys.stdout.write(content) self.assertEqual(capture.get_content(), content) def test_capture_should_get_stderr_content_from_outside_context(self): content = "foo" with Capture() as capture: sys.stderr.write(content) self.assertEqual(capture.get_content(), content) def test_capture_should_get_stderr_content_from_inside_context(self): content = "foo" with Capture() as capture: sys.stderr.write(content) self.assertEqual(capture.get_content(), content) def test_capture_should_get_stdout_content_only_from_context(self): unexpected_content = "foo" expected_content = "bar" sys.stdout.write(unexpected_content) with Capture() as capture: sys.stdout.write(expected_content) self.assertEqual(capture.get_content(), expected_content) def test_capture_should_get_logger_content_with_line_break(self): content = "foo" logger = logging.getLogger("test-logger") with Capture() as capture: logger.info(content) self.assertEqual(capture.get_content(), content + "\n") def test_capture_should_get_print_content(self): content = "Hello" with Capture() as capture: print(content) self.assertEqual(capture.get_content(), content + "\n") def test_capture_should_handle_line_breaks(self): content_line_1 = "Hello" content_line_2 = "World" expected_result = "%s\n%s\n" % (content_line_1, content_line_2) with Capture() as capture: print(content_line_1) print(content_line_2) self.assertEqual(capture.get_content(), expected_result)
36.628205
74
0.694435
b390f2da7094dd273de91f73944bec5b33564fdf
870
py
Python
stanCode_Projects/boggle_game_solver_recursion/largest_digit.py
b911533/sc-projects
5841706113161f6aa49b001a47335eca45d0ae2e
[ "MIT" ]
null
null
null
stanCode_Projects/boggle_game_solver_recursion/largest_digit.py
b911533/sc-projects
5841706113161f6aa49b001a47335eca45d0ae2e
[ "MIT" ]
null
null
null
stanCode_Projects/boggle_game_solver_recursion/largest_digit.py
b911533/sc-projects
5841706113161f6aa49b001a47335eca45d0ae2e
[ "MIT" ]
null
null
null
""" File: largest_digit.py Name: Jim Chan ---------------------------------- This file recursively prints the biggest digit in 5 different integers, 12345, 281, 6, -111, -9453 If your implementation is correct, you should see 5, 8, 6, 1, 9 on Console. """ def main(): print(find_largest_digit(12345)) # 5 print(find_largest_digit(281)) # 8 print(find_largest_digit(6)) # 6 print(find_largest_digit(-111)) # 1 print(find_largest_digit(-9453)) # 9 def find_largest_digit(n): """ :param n: int. :return: bool. """ highest = -float('inf') if n < 0: n = -n return find_largest_digit_helper(n, highest) def find_largest_digit_helper(n, highest): if n < 1: return highest else: last_num = n % 10 highest = max(highest, last_num) return find_largest_digit_helper(n//10, highest) if __name__ == '__main__': main()
20.714286
50
0.644828
4034c62da57e762f8d6673ffbb0a84c272f28aa3
1,240
py
Python
altair/vegalite/tests/test_common.py
hydrosquall/altair
ded897b0967a88a467828b1e2c133bd92862de23
[ "BSD-3-Clause" ]
null
null
null
altair/vegalite/tests/test_common.py
hydrosquall/altair
ded897b0967a88a467828b1e2c133bd92862de23
[ "BSD-3-Clause" ]
null
null
null
altair/vegalite/tests/test_common.py
hydrosquall/altair
ded897b0967a88a467828b1e2c133bd92862de23
[ "BSD-3-Clause" ]
null
null
null
"""Tests of functionality that should work in all vegalite versions""" import pytest from .. import v1, v2 @pytest.fixture def basic_spec(): return { 'data': {'url': 'data.csv'}, 'mark': 'line', 'encoding': { 'color': {'type': 'nominal', 'field': 'color'}, 'x': {'type': 'quantitative', 'field': 'xval'}, 'y': {'type': 'ordinal', 'field': 'yval'} }, 'height': 300, 'width': 400 } @pytest.mark.parametrize('alt', [v1, v2]) def test_basic_chart_to_dict(alt, basic_spec): chart = alt.Chart('data.csv').mark_line().encode( alt.X('xval:Q'), y = alt.Y('yval:O'), color = 'color:N' ) dct = chart.to_dict() # schema should be in the top level assert dct.pop('$schema').startswith('http') # remainder of spec should match the basic spec assert dct == basic_spec @pytest.mark.parametrize('alt', [v1, v2]) def test_basic_chart_from_dict(alt, basic_spec): chart = alt.Chart.from_dict(basic_spec) dct = chart.to_dict() # schema should be in the top level assert dct.pop('$schema').startswith('http') # remainder of spec should match the basic spec assert dct == basic_spec
25.306122
70
0.58871
a1f6d9897310e5d5f8e648a7bf2b5a643c0fccb2
4,448
py
Python
adept_envs/components/robot/robot_test.py
isabella232/DBAP-simulation
bdba0b58c4a01e0742e97299ce3bd1587ad2aa25
[ "Apache-2.0" ]
2
2021-08-09T23:45:17.000Z
2021-11-05T15:28:41.000Z
adept_envs/components/robot/robot_test.py
google-research/DBAP-simulation
bdba0b58c4a01e0742e97299ce3bd1587ad2aa25
[ "Apache-2.0" ]
1
2022-01-16T14:03:20.000Z
2022-01-16T14:03:20.000Z
adept_envs/components/robot/robot_test.py
isabella232/DBAP-simulation
bdba0b58c4a01e0742e97299ce3bd1587ad2aa25
[ "Apache-2.0" ]
2
2021-11-05T15:28:31.000Z
2022-01-16T12:00:17.000Z
""" Copyright 2021 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """Unit tests for RobotComponent and RobotGroupConfig.""" from typing import Any from absl.testing import absltest import numpy as np from adept_envs.components.robot.robot import ControlMode, RobotComponent from adept_envs.utils.testing.mock_sim_scene import MockSimScene class RobotComponentTest(absltest.TestCase): """Unit test class for RobotComponent.""" def test_get_state(self): """Tests querying the state of multiple groups.""" sim_scene = MockSimScene(nq=10) # type: Any sim_scene.data.qpos[:] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sim_scene.data.qvel[:] = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] robot = RobotComponent( sim_scene, groups={ 'a': { 'qpos_indices': [0, 1, 3, 5], }, 'b': { 'qpos_indices': [2, 6], 'qvel_indices': [7, 8, 9], }, }) a_state, b_state = robot.get_state(['a', 'b']) np.testing.assert_array_equal(a_state.qpos, [1, 2, 4, 6]) np.testing.assert_array_equal(a_state.qvel, [11, 12, 14, 16]) np.testing.assert_array_equal(b_state.qpos, [3, 7]) np.testing.assert_array_equal(b_state.qvel, [18, 19, 20]) def test_step(self): """Tests stepping with an action for multiple groups.""" sim_scene = MockSimScene(nq=10, ctrl_range=[-1, 1]) # type: Any robot = RobotComponent( sim_scene, groups={ 'a': { 'qpos_indices': [0, 1, 3, 5], }, 'b': { 'actuator_indices': [7, 8, 9], }, }) robot.step({ 'a': np.array([.2, .4, .6, .8]), 'b': np.array([.1, .3, .5]) }) np.testing.assert_allclose(sim_scene.data.ctrl, [.2, .4, 0, .6, 0, .8, 0, .1, .3, .5]) self.assertEqual(sim_scene.advance.call_count, 1) def test_step_denormalize(self): """Tests denormalizing the actions to the sim control range.""" sim_scene = MockSimScene(nq=5, ctrl_range=[0, 10]) # type: Any robot = RobotComponent( sim_scene, groups={'a': { 'qpos_indices': [0, 1, 2, 3, 4], }}) robot.step({ 'a': np.array([-1, 1, -0.5, 0.5, 0]), }) np.testing.assert_allclose(sim_scene.data.ctrl, [0, 10, 2.5, 7.5, 5]) def test_step_position_control_bounds(self): """Tests action clamping when doing position control.""" sim_scene = MockSimScene(nq=5, ctrl_range=[-1, 1]) # type: Any sim_scene.data.qpos[:] = [-0.4, -0.2, 0, 0.2, 0.4] robot = RobotComponent( sim_scene, groups={ 'a': { 'qpos_indices': [0, 1, 2, 3, 4], 'qpos_range': [(-0.5, 0.5)] * 5, 'qvel_range': [(-0.2, 0.2)] * 5, } }) robot.step({'a': np.array([-1, -1, 0.2, 1, 1])}) np.testing.assert_allclose(sim_scene.data.ctrl, [-0.5, -0.4, 0.1, 0.4, 0.5]) def test_step_velocity_control_bounds(self): """Tests action clamping when doing velocity control.""" sim_scene = MockSimScene(nq=3, ctrl_range=[-10, 10]) # type: Any robot = RobotComponent( sim_scene, groups={ 'a': { 'control_mode': ControlMode.JOINT_VELOCITY, 'qpos_indices': [0, 1, 2], 'qvel_range': [(-2, 2), (-1, 5), (-7, -4)], } }) robot.step({'a': np.array([-0.5, 1, -1])}) np.testing.assert_allclose(sim_scene.data.ctrl, [-1, 5, -7]) if __name__ == '__main__': absltest.main()
36.459016
77
0.529227
670a59845030135169434f76d06f791ea8665fb6
381
py
Python
fdw/wsgi.py
nautilebleu/django-fdw
e31690bb9a0dd27b5ea5cacbab51c2b087f63c18
[ "BSD-2-Clause" ]
5
2015-03-20T09:27:18.000Z
2021-05-06T02:17:50.000Z
fdw/wsgi.py
nautilebleu/django-fdw
e31690bb9a0dd27b5ea5cacbab51c2b087f63c18
[ "BSD-2-Clause" ]
null
null
null
fdw/wsgi.py
nautilebleu/django-fdw
e31690bb9a0dd27b5ea5cacbab51c2b087f63c18
[ "BSD-2-Clause" ]
null
null
null
""" WSGI config for fdw project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "fdw.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
25.4
78
0.784777
141fa60e49bcea970a5f9cc8960a39a8127709cc
1,889
py
Python
tools/harness-automation/cases_R140/commissioner_8_1_6.py
AdityaHPatwardhan/openthread
a201e9d5d0273bb51fa20efc8758be20a725018e
[ "BSD-3-Clause" ]
2,962
2016-05-11T15:06:06.000Z
2022-03-27T20:06:16.000Z
tools/harness-automation/cases_R140/commissioner_8_1_6.py
AdityaHPatwardhan/openthread
a201e9d5d0273bb51fa20efc8758be20a725018e
[ "BSD-3-Clause" ]
5,899
2016-05-11T19:21:49.000Z
2022-03-31T18:17:20.000Z
tools/harness-automation/cases_R140/commissioner_8_1_6.py
AdityaHPatwardhan/openthread
a201e9d5d0273bb51fa20efc8758be20a725018e
[ "BSD-3-Clause" ]
1,113
2016-05-11T15:37:42.000Z
2022-03-31T09:37:04.000Z
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest from autothreadharness.harness_case import HarnessCase class Commissioner_8_1_6(HarnessCase): role = HarnessCase.ROLE_COMMISSIONER case = '8 1 6' golden_devices_required = 1 def on_dialog(self, dialog, title): pass if __name__ == '__main__': unittest.main()
41.065217
77
0.771837
c5cd57f9ffeb41ad7af77770fca2ea31325ec2c6
906
py
Python
savepointradio/core/querysets.py
RecursiveGreen/spradio-django2
ef7c6e535fdf4bf096b0a1669005600fa8e5ac92
[ "MIT" ]
null
null
null
savepointradio/core/querysets.py
RecursiveGreen/spradio-django2
ef7c6e535fdf4bf096b0a1669005600fa8e5ac92
[ "MIT" ]
null
null
null
savepointradio/core/querysets.py
RecursiveGreen/spradio-django2
ef7c6e535fdf4bf096b0a1669005600fa8e5ac92
[ "MIT" ]
null
null
null
from django.db import models from django.utils import timezone class EnabledQuerySet(models.QuerySet): """ Queryset to select all objects that are enabled or not. """ def enabled(self): return self.filter(disabled=False) def disabled(self): return self.filter(disabled=True) class PublishedQuerySet(models.QuerySet): """ Queryset to select all objects that have been published or not. """ def published(self): results = self.filter( models.Q(published_date__isnull=False) & models.Q(published_date__lte=timezone.now()) ) return results def unpublished(self): results = self.filter( models.Q(published_date__isnull=True) | models.Q(published_date__gte=timezone.now()) ) return results
27.454545
67
0.59713
f8f3a9eb4c0dafe4ca2d6c3addab9cc54492a44f
2,567
py
Python
Lib/objc/_SetupAssistant.py
snazari/Pyto
bcea7bbef35cab21ce73087b1a0c00a07d07ec72
[ "MIT" ]
701
2018-10-22T11:54:09.000Z
2022-03-31T14:39:30.000Z
Lib/objc/_SetupAssistant.py
snazari/Pyto
bcea7bbef35cab21ce73087b1a0c00a07d07ec72
[ "MIT" ]
229
2018-10-24T09:15:31.000Z
2021-12-24T16:51:37.000Z
Lib/objc/_SetupAssistant.py
snazari/Pyto
bcea7bbef35cab21ce73087b1a0c00a07d07ec72
[ "MIT" ]
131
2018-11-25T18:33:03.000Z
2022-03-24T03:18:07.000Z
""" Classes from the 'SetupAssistant' framework. """ try: from rubicon.objc import ObjCClass except ValueError: def ObjCClass(name): return None def _Class(name): try: return ObjCClass(name) except NameError: return None BYAnalyticsExpressRestore = _Class("BYAnalyticsExpressRestore") BYAnalyticsEventRecommendedLocale = _Class("BYAnalyticsEventRecommendedLocale") BYBuddyDaemonMigrationSourceClient = _Class("BYBuddyDaemonMigrationSourceClient") BYAnalyticsManager = _Class("BYAnalyticsManager") BYLicenseAgreement = _Class("BYLicenseAgreement") BYSetupStateNotifier = _Class("BYSetupStateNotifier") BYAnalyticsEvent = _Class("BYAnalyticsEvent") BYNetworkMonitor = _Class("BYNetworkMonitor") BYTelephonyStateNotifier = _Class("BYTelephonyStateNotifier") BYBuddyDaemonProximitySourceClient = _Class("BYBuddyDaemonProximitySourceClient") BYBuddyDaemonProximityTargetClient = _Class("BYBuddyDaemonProximityTargetClient") BYAnalyticsLazyEvent = _Class("BYAnalyticsLazyEvent") BYDeviceSetupSourceSession = _Class("BYDeviceSetupSourceSession") BYRunState = _Class("BYRunState") BYPaneAnalyticsManager = _Class("BYPaneAnalyticsManager") BYSettingsManagerClient = _Class("BYSettingsManagerClient") BYLocationController = _Class("BYLocationController") BYDeviceConfiguration = _Class("BYDeviceConfiguration") BFFSettingsManager = _Class("BFFSettingsManager") BYDeviceMigrationManager = _Class("BYDeviceMigrationManager") BYSourceDeviceMigration = _Class("BYSourceDeviceMigration") BYAppleIDAccountsManager = _Class("BYAppleIDAccountsManager") BYFlowSkipController = _Class("BYFlowSkipController") BYChronicle = _Class("BYChronicle") BYChronicleEntry = _Class("BYChronicleEntry") BYPreferencesController = _Class("BYPreferencesController") BYMigrationSourceController = _Class("BYMigrationSourceController") BYBuddyDaemonGeneralClient = _Class("BYBuddyDaemonGeneralClient") BYLocaleCountry = _Class("BYLocaleCountry") BYSilentLoginUpgradeGuarantor = _Class("BYSilentLoginUpgradeGuarantor") BYManagedAppleIDBootstrap = _Class("BYManagedAppleIDBootstrap") BYDevice = _Class("BYDevice") BYDeviceForTest = _Class("BYDeviceForTest") BYLocaleDataSource = _Class("BYLocaleDataSource") BYCapabilities = _Class("BYCapabilities") BYXPCActivity = _Class("BYXPCActivity") BYXPCActivityRegistrar = _Class("BYXPCActivityRegistrar") BYSetupStateManager = _Class("BYSetupStateManager") BYBuddyDaemonCloudSyncClient = _Class("BYBuddyDaemonCloudSyncClient") BYSiriUtilities = _Class("BYSiriUtilities") BYBackupMetadata = _Class("BYBackupMetadata")
42.081967
81
0.835216
a009a0ffab5f3e1f1d48fb55b4f1d86564bb5d8c
991
py
Python
sorting/selection_sort.py
okebinda/algorithms.python
b62d69a09fac4ca4e4b02ba99e4aae986e766e89
[ "MIT" ]
null
null
null
sorting/selection_sort.py
okebinda/algorithms.python
b62d69a09fac4ca4e4b02ba99e4aae986e766e89
[ "MIT" ]
null
null
null
sorting/selection_sort.py
okebinda/algorithms.python
b62d69a09fac4ca4e4b02ba99e4aae986e766e89
[ "MIT" ]
null
null
null
"""Sorting Algorithm: Selection Sort""" def selection_sort(a): """Selection Sort Time complexity: O(n^2) Space complexity: O(1) :param a: A list to be sorted :type a: list :return: A new sorted list :rtype: list """ b = [*a] n = len(b) for i in range(n): min = i for j in range(i+1, n): if b[j] < b[min]: min = j b[i], b[min] = b[min], b[i] return b if __name__ == "__main__": import unittest from random import shuffle class TestSelectionSort(unittest.TestCase): def setUp(self): self.ordered = [x for x in range(20)] self.shuffled = [*self.ordered] while self.ordered == self.shuffled: shuffle(self.shuffled) def test_selection_sort(self): self.assertEqual(self.ordered, selection_sort(self.shuffled)) self.assertNotEqual(self.ordered, self.shuffled) unittest.main()
21.085106
73
0.557013
d8feea50e76a4f5d528073470f376ec77eb11b58
6,496
py
Python
grappelli/templatetags/grp_tags.py
browniebroke/django-grappelli
0de7e9c7937b28b6f7181e26d9e4d21e59ff5681
[ "BSD-3-Clause" ]
2,210
2015-01-01T09:44:32.000Z
2022-03-31T19:57:35.000Z
grappelli/templatetags/grp_tags.py
browniebroke/django-grappelli
0de7e9c7937b28b6f7181e26d9e4d21e59ff5681
[ "BSD-3-Clause" ]
416
2015-01-02T11:39:49.000Z
2022-02-23T16:26:30.000Z
grappelli/templatetags/grp_tags.py
browniebroke/django-grappelli
0de7e9c7937b28b6f7181e26d9e4d21e59ff5681
[ "BSD-3-Clause" ]
532
2015-01-06T09:38:25.000Z
2022-03-28T04:23:14.000Z
# coding: utf-8 import json from functools import wraps from django import template from django.contrib.contenttypes.models import ContentType from django.template.loader import get_template from django.utils.formats import get_format from django.utils.safestring import mark_safe from django.utils.translation import get_language from django.utils.translation import gettext as _ from grappelli.settings import (ADMIN_TITLE, ADMIN_URL, CLEAN_INPUT_TYPES, SWITCH_USER, SWITCH_USER_ORIGINAL, SWITCH_USER_TARGET) try: from django.contrib.auth import get_user_model User = get_user_model() except ImportError: from django.contrib.auth.models import User register = template.Library() # GENERIC OBJECTS class do_get_generic_objects(template.Node): def __init__(self): pass def render(self, context): objects = {} for c in ContentType.objects.all().order_by('id'): objects[c.id] = {'pk': c.id, 'app': c.app_label, 'model': c.model} return json.dumps(objects) @register.tag def get_content_types(parser, token): """ Returns a list of installed applications and models. Needed for lookup of generic relationships. """ return do_get_generic_objects() # ADMIN_TITLE @register.simple_tag def get_admin_title(): """ Returns the Title for the Admin-Interface. """ return ADMIN_TITLE # SITE_TITLE @register.simple_tag def get_site_title(): """ Returns the Title for the Admin-Interface. """ return ADMIN_TITLE or _("Django site admin") # RETURNS CURRENT LANGUAGE @register.simple_tag def get_lang(): return get_language() # ADMIN_URL @register.simple_tag def get_admin_url(): """ Returns the URL for the Admin-Interface. """ return ADMIN_URL @register.simple_tag def get_date_format(): return get_format('DATE_INPUT_FORMATS')[0] @register.simple_tag def get_time_format(): return get_format('TIME_INPUT_FORMATS')[0] @register.simple_tag def get_datetime_format(): return get_format('DATETIME_INPUT_FORMATS')[0] @register.simple_tag def grappelli_admin_title(): return ADMIN_TITLE @register.simple_tag def grappelli_clean_input_types(): return CLEAN_INPUT_TYPES @register.filter def classname(obj, arg=None): classname = obj.__class__.__name__.lower() if arg: if arg.lower() == classname: return True return False return classname @register.filter def classpath(obj): module = obj.__module__ classname = obj.__class__.__name__ return "%s,%s" % (module, classname) # FORMSETSORT FOR SORTABLE INLINES @register.filter def formsetsort(formset, arg): """ Takes a list of formset dicts, returns that list sorted by the sortable field. """ if arg: sorted_list = [] unsorted_list = [] for item in formset: position = item.form[arg].value() if isinstance(position, int) and item.original: # normal view sorted_list.append((position, item)) elif position and hasattr(item.form, 'cleaned_data'): # error validation sorted_list.append((int(position), item)) else: unsorted_list.append(item) sorted_list.sort(key=lambda i: i[0]) sorted_list = [item[1] for item in sorted_list] + unsorted_list else: sorted_list = formset return sorted_list # RELATED LOOKUPS def safe_json_else_list_tag(f): """ Decorator. Registers function as a simple_tag. Try: Return value of the decorated function marked safe and json encoded. Except: Return [] """ @wraps(f) def inner(model_admin): try: return mark_safe(json.dumps(f(model_admin))) except: return [] return register.simple_tag(inner) @safe_json_else_list_tag def get_related_lookup_fields_fk(model_admin): return model_admin.related_lookup_fields.get("fk", []) @safe_json_else_list_tag def get_related_lookup_fields_m2m(model_admin): return model_admin.related_lookup_fields.get("m2m", []) @safe_json_else_list_tag def get_related_lookup_fields_generic(model_admin): return model_admin.related_lookup_fields.get("generic", []) # AUTOCOMPLETES @safe_json_else_list_tag def get_autocomplete_lookup_fields_fk(model_admin): return model_admin.autocomplete_lookup_fields.get("fk", []) @safe_json_else_list_tag def get_autocomplete_lookup_fields_m2m(model_admin): return model_admin.autocomplete_lookup_fields.get("m2m", []) @safe_json_else_list_tag def get_autocomplete_lookup_fields_generic(model_admin): return model_admin.autocomplete_lookup_fields.get("generic", []) # SORTABLE EXCLUDES @safe_json_else_list_tag def get_sortable_excludes(model_admin): return model_admin.sortable_excludes @register.filter def prettylabel(value): return mark_safe(value.replace(":</label>", "</label>")) # CUSTOM ADMIN LIST FILTER # WITH TEMPLATE DEFINITION @register.simple_tag def admin_list_filter(cl, spec): field_name = getattr(spec, "field", None) parameter_name = getattr(spec, "parameter_name", None) if field_name is not None: field_name = spec.field.name elif parameter_name is not None: field_name = spec.parameter_name try: tpl = get_template(cl.model_admin.change_list_filter_template) except: # noqa tpl = get_template(spec.template) return tpl.render({ 'title': spec.title, 'choices': list(spec.choices(cl)), 'field_name': field_name, 'spec': spec, }) @register.simple_tag(takes_context=True) def switch_user_dropdown(context): if SWITCH_USER: tpl = get_template("admin/includes_grappelli/switch_user_dropdown.html") request = context["request"] session_user = request.session.get("original_user", {"id": request.user.id, "username": request.user.get_username()}) try: original_user = User.objects.get(pk=session_user["id"], is_staff=True) except User.DoesNotExist: return "" if SWITCH_USER_ORIGINAL(original_user): object_list = [user for user in User.objects.filter(is_staff=True).exclude(pk=original_user.pk) if SWITCH_USER_TARGET(original_user, user)] return tpl.render({ 'request': request, 'object_list': object_list }) return ""
26.299595
151
0.694889
d724d6681e94f02813aad7e7e6ee44cb22e662c7
86,765
py
Python
ibm_platform_services/iam_identity_v1.py
zachsirotto/platform-services-python-sdk
32a080b7a93567f9528867a31bd0b47423297bab
[ "Apache-2.0" ]
null
null
null
ibm_platform_services/iam_identity_v1.py
zachsirotto/platform-services-python-sdk
32a080b7a93567f9528867a31bd0b47423297bab
[ "Apache-2.0" ]
null
null
null
ibm_platform_services/iam_identity_v1.py
zachsirotto/platform-services-python-sdk
32a080b7a93567f9528867a31bd0b47423297bab
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # (C) Copyright IBM Corp. 2020. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # IBM OpenAPI SDK Code Generator Version: 99-SNAPSHOT-8d569e8f-20201030-111043 """ The IAM Identity Service API allows for the management of Identities (Service IDs, ApiKeys). """ from enum import Enum from typing import Dict, List import json from ibm_cloud_sdk_core import BaseService, DetailedResponse from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment from ibm_cloud_sdk_core.utils import convert_model from .common import get_sdk_headers ############################################################################## # Service ############################################################################## class IamIdentityV1(BaseService): """The iam_identity V1 service.""" DEFAULT_SERVICE_URL = 'https://iam.cloud.ibm.com' DEFAULT_SERVICE_NAME = 'iam_identity' @classmethod def new_instance(cls, service_name: str = DEFAULT_SERVICE_NAME, ) -> 'IamIdentityV1': """ Return a new client for the iam_identity service using the specified parameters and external configuration. """ authenticator = get_authenticator_from_environment(service_name) service = cls( authenticator ) service.configure_service(service_name) return service def __init__(self, authenticator: Authenticator = None, ) -> None: """ Construct a new client for the iam_identity service. :param Authenticator authenticator: The authenticator specifies the authentication mechanism. Get up to date information from https://github.com/IBM/python-sdk-core/blob/master/README.md about initializing the authenticator of your choice. """ BaseService.__init__(self, service_url=self.DEFAULT_SERVICE_URL, authenticator=authenticator) ######################### # Identity Operations ######################### def list_api_keys(self, *, account_id: str = None, iam_id: str = None, pagesize: int = None, pagetoken: str = None, scope: str = None, type: str = None, sort: str = None, order: str = None, include_history: bool = None, **kwargs ) -> DetailedResponse: """ Get API keys for a given service or user IAM ID and account ID. Returns the list of API key details for a given service or user IAM ID and account ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. In case of service IDs and their API keys, a user must be either an account owner, a IBM Cloud org manager or IBM Cloud space developer in order to manage service IDs of the entity. :param str account_id: (optional) Account ID of the API keys(s) to query. If a service IAM ID is specified in iam_id then account_id must match the account of the IAM ID. If a user IAM ID is specified in iam_id then then account_id must match the account of the Authorization token. :param str iam_id: (optional) IAM ID of the API key(s) to be queried. The IAM ID may be that of a user or a service. For a user IAM ID iam_id must match the Authorization token. :param int pagesize: (optional) Optional size of a single page. Default is 20 items per page. Valid range is 1 to 100. :param str pagetoken: (optional) Optional Prev or Next page token returned from a previous query execution. Default is start with first page. :param str scope: (optional) Optional parameter to define the scope of the queried API Keys. Can be 'entity' (default) or 'account'. :param str type: (optional) Optional parameter to filter the type of the queried API Keys. Can be 'user' or 'serviceid'. :param str sort: (optional) Optional sort property, valid values are name, description, created_at and created_by. If specified, the items are sorted by the value of this property. :param str order: (optional) Optional sort order, valid values are asc and desc. Default: asc. :param bool include_history: (optional) Defines if the entity history is included in the response. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ApiKeyList` object """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='list_api_keys') headers.update(sdk_headers) params = { 'account_id': account_id, 'iam_id': iam_id, 'pagesize': pagesize, 'pagetoken': pagetoken, 'scope': scope, 'type': type, 'sort': sort, 'order': order, 'include_history': include_history } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/v1/apikeys' request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def create_api_key(self, name: str, iam_id: str, *, description: str = None, account_id: str = None, apikey: str = None, store_value: bool = None, entity_lock: str = None, **kwargs ) -> DetailedResponse: """ Create an API key. Creates an API key for a UserID or service ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str name: Name of the API key. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the API key. :param str iam_id: The iam_id that this API key authenticates. :param str description: (optional) The optional description of the API key. The 'description' property is only available if a description was provided during a create of an API key. :param str account_id: (optional) The account ID of the API key. :param str apikey: (optional) You can optionally passthrough the API key value for this API key. If passed, NO validation of that apiKey value is done, i.e. the value can be non-URL safe. If omitted, the API key management will create an URL safe opaque API key value. The value of the API key is checked for uniqueness. Please ensure enough variations when passing in this value. :param bool store_value: (optional) Send true or false to set whether the API key value is retrievable in the future by using the Get details of an API key request. If you create an API key for a user, you must specify `false` or omit the value. We don't allow storing of API keys for users. :param str entity_lock: (optional) Indicates if the API key is locked for further write operations. False by default. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ApiKey` object """ if name is None: raise ValueError('name must be provided') if iam_id is None: raise ValueError('iam_id must be provided') headers = { 'Entity-Lock': entity_lock } sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='create_api_key') headers.update(sdk_headers) data = { 'name': name, 'iam_id': iam_id, 'description': description, 'account_id': account_id, 'apikey': apikey, 'store_value': store_value } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/v1/apikeys' request = self.prepare_request(method='POST', url=url, headers=headers, data=data) response = self.send(request) return response def get_api_keys_details(self, *, iam_api_key: str = None, include_history: bool = None, **kwargs ) -> DetailedResponse: """ Get details of an API key by its value. Returns the details of an API key by its value. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str iam_api_key: (optional) API key value. :param bool include_history: (optional) Defines if the entity history is included in the response. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ApiKey` object """ headers = { 'IAM-ApiKey': iam_api_key } sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_api_keys_details') headers.update(sdk_headers) params = { 'include_history': include_history } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/v1/apikeys/details' request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def get_api_key(self, id: str, *, include_history: bool = None, **kwargs ) -> DetailedResponse: """ Get details of an API key. Returns the details of an API key. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. In case of service IDs and their API keys, a user must be either an account owner, a IBM Cloud org manager or IBM Cloud space developer in order to manage service IDs of the entity. :param str id: Unique ID of the API key. :param bool include_history: (optional) Defines if the entity history is included in the response. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ApiKey` object """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_api_key') headers.update(sdk_headers) params = { 'include_history': include_history } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/apikeys/{id}'.format(**path_param_dict) request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def update_api_key(self, id: str, if_match: str, *, name: str = None, description: str = None, **kwargs ) -> DetailedResponse: """ Updates an API key. Updates properties of an API key. This does NOT affect existing access tokens. Their token content will stay unchanged until the access token is refreshed. To update an API key, pass the property to be modified. To delete one property's value, pass the property with an empty value "".Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str id: Unique ID of the API key to be updated. :param str if_match: Version of the API key to be updated. Specify the version that you retrieved when reading the API key. This value helps identifying parallel usage of this API. Pass * to indicate to update any version available. This might result in stale updates. :param str name: (optional) The name of the API key to update. If specified in the request the parameter must not be empty. The name is not checked for uniqueness. Failure to this will result in an Error condition. :param str description: (optional) The description of the API key to update. If specified an empty description will clear the description of the API key. If a non empty value is provided the API key will be updated. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ApiKey` object """ if id is None: raise ValueError('id must be provided') if if_match is None: raise ValueError('if_match must be provided') headers = { 'If-Match': if_match } sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='update_api_key') headers.update(sdk_headers) data = { 'name': name, 'description': description } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/apikeys/{id}'.format(**path_param_dict) request = self.prepare_request(method='PUT', url=url, headers=headers, data=data) response = self.send(request) return response def delete_api_key(self, id: str, **kwargs ) -> DetailedResponse: """ Deletes an API key. Deletes an API key. Existing tokens will remain valid until expired. Refresh tokens will not work any more for this API key. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str id: Unique ID of the API key. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='delete_api_key') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/apikeys/{id}'.format(**path_param_dict) request = self.prepare_request(method='DELETE', url=url, headers=headers) response = self.send(request) return response def lock_api_key(self, id: str, **kwargs ) -> DetailedResponse: """ Lock the API key. Locks an API key by ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. In case of service IDs and their API keys, a user must be either an account owner, a IBM Cloud org manager or IBM Cloud space developer in order to manage service IDs of the entity. :param str id: Unique ID of the API key. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='lock_api_key') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/apikeys/{id}/lock'.format(**path_param_dict) request = self.prepare_request(method='POST', url=url, headers=headers) response = self.send(request) return response def unlock_api_key(self, id: str, **kwargs ) -> DetailedResponse: """ Unlock the API key. Unlocks an API key by ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. In case of service IDs and their API keys, a user must be either an account owner, a IBM Cloud org manager or IBM Cloud space developer in order to manage service IDs of the entity. :param str id: Unique ID of the API key. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='unlock_api_key') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/apikeys/{id}/lock'.format(**path_param_dict) request = self.prepare_request(method='DELETE', url=url, headers=headers) response = self.send(request) return response def list_service_ids(self, *, account_id: str = None, name: str = None, pagesize: int = None, pagetoken: str = None, sort: str = None, order: str = None, include_history: bool = None, **kwargs ) -> DetailedResponse: """ List service IDs. Returns a list of service IDs. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str account_id: (optional) Account ID of the service ID(s) to query. This parameter is required (unless using a pagetoken). :param str name: (optional) Name of the service ID(s) to query. Optional.20 items per page. Valid range is 1 to 100. :param int pagesize: (optional) Optional size of a single page. Default is 20 items per page. Valid range is 1 to 100. :param str pagetoken: (optional) Optional Prev or Next page token returned from a previous query execution. Default is start with first page. :param str sort: (optional) Optional sort property, valid values are name, description, created_at and modified_at. If specified, the items are sorted by the value of this property. :param str order: (optional) Optional sort order, valid values are asc and desc. Default: asc. :param bool include_history: (optional) Defines if the entity history is included in the response. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ServiceIdList` object """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='list_service_ids') headers.update(sdk_headers) params = { 'account_id': account_id, 'name': name, 'pagesize': pagesize, 'pagetoken': pagetoken, 'sort': sort, 'order': order, 'include_history': include_history } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/v1/serviceids/' request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def create_service_id(self, account_id: str, name: str, *, description: str = None, unique_instance_crns: List[str] = None, apikey: 'CreateApiKeyRequest' = None, entity_lock: str = None, **kwargs ) -> DetailedResponse: """ Create a service ID. Creates a service ID for an IBM Cloud account. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str account_id: ID of the account the service ID belongs to. :param str name: Name of the Service Id. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the Service Id. :param str description: (optional) The optional description of the Service Id. The 'description' property is only available if a description was provided during a create of a Service Id. :param List[str] unique_instance_crns: (optional) Optional list of CRNs (string array) which point to the services connected to the service ID. :param CreateApiKeyRequest apikey: (optional) Input body parameters for the Create API key V1 REST request. :param str entity_lock: (optional) Indicates if the service ID is locked for further write operations. False by default. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ServiceId` object """ if account_id is None: raise ValueError('account_id must be provided') if name is None: raise ValueError('name must be provided') if apikey is not None: apikey = convert_model(apikey) headers = { 'Entity-Lock': entity_lock } sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='create_service_id') headers.update(sdk_headers) data = { 'account_id': account_id, 'name': name, 'description': description, 'unique_instance_crns': unique_instance_crns, 'apikey': apikey } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/v1/serviceids/' request = self.prepare_request(method='POST', url=url, headers=headers, data=data) response = self.send(request) return response def get_service_id(self, id: str, *, include_history: bool = None, **kwargs ) -> DetailedResponse: """ Get details of a service ID. Returns the details of a service ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str id: Unique ID of the service ID. :param bool include_history: (optional) Defines if the entity history is included in the response. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ServiceId` object """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_service_id') headers.update(sdk_headers) params = { 'include_history': include_history } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/serviceids/{id}'.format(**path_param_dict) request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def update_service_id(self, id: str, if_match: str, *, name: str = None, description: str = None, unique_instance_crns: List[str] = None, **kwargs ) -> DetailedResponse: """ Update service ID. Updates properties of a service ID. This does NOT affect existing access tokens. Their token content will stay unchanged until the access token is refreshed. To update a service ID, pass the property to be modified. To delete one property's value, pass the property with an empty value "".Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str id: Unique ID of the service ID to be updated. :param str if_match: Version of the service ID to be updated. Specify the version that you retrieved as entity_tag (ETag header) when reading the service ID. This value helps identifying parallel usage of this API. Pass * to indicate to update any version available. This might result in stale updates. :param str name: (optional) The name of the service ID to update. If specified in the request the parameter must not be empty. The name is not checked for uniqueness. Failure to this will result in an Error condition. :param str description: (optional) The description of the service ID to update. If specified an empty description will clear the description of the service ID. If an non empty value is provided the service ID will be updated. :param List[str] unique_instance_crns: (optional) List of CRNs which point to the services connected to this service ID. If specified an empty list will clear all existing unique instance crns of the service ID. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ServiceId` object """ if id is None: raise ValueError('id must be provided') if if_match is None: raise ValueError('if_match must be provided') headers = { 'If-Match': if_match } sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='update_service_id') headers.update(sdk_headers) data = { 'name': name, 'description': description, 'unique_instance_crns': unique_instance_crns } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/serviceids/{id}'.format(**path_param_dict) request = self.prepare_request(method='PUT', url=url, headers=headers, data=data) response = self.send(request) return response def delete_service_id(self, id: str, **kwargs ) -> DetailedResponse: """ Deletes a service ID and associated API keys. Deletes a service ID and all API keys associated to it. Before deleting the service ID, all associated API keys are deleted. In case a Delete Conflict (status code 409) a retry of the request may help as the service ID is only deleted if the associated API keys were successfully deleted before. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. :param str id: Unique ID of the service ID. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='delete_service_id') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/serviceids/{id}'.format(**path_param_dict) request = self.prepare_request(method='DELETE', url=url, headers=headers) response = self.send(request) return response def lock_service_id(self, id: str, **kwargs ) -> DetailedResponse: """ Lock the service ID. Locks a service ID by ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. In case of service IDs and their API keys, a user must be either an account owner, a IBM Cloud org manager or IBM Cloud space developer in order to manage service IDs of the entity. :param str id: Unique ID of the service ID. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='lock_service_id') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/serviceids/{id}/lock'.format(**path_param_dict) request = self.prepare_request(method='POST', url=url, headers=headers) response = self.send(request) return response def unlock_service_id(self, id: str, **kwargs ) -> DetailedResponse: """ Unlock the service ID. Unlocks a service ID by ID. Users can manage user API keys for themself, or service ID API keys for service IDs that are bound to an entity they have access to. In case of service IDs and their API keys, a user must be either an account owner, a IBM Cloud org manager or IBM Cloud space developer in order to manage service IDs of the entity. :param str id: Unique ID of the service ID. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if id is None: raise ValueError('id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='unlock_service_id') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) path_param_keys = ['id'] path_param_values = self.encode_path_vars(id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v1/serviceids/{id}/lock'.format(**path_param_dict) request = self.prepare_request(method='DELETE', url=url, headers=headers) response = self.send(request) return response class ListApiKeysEnums: """ Enums for list_api_keys parameters. """ class Scope(str, Enum): """ Optional parameter to define the scope of the queried API Keys. Can be 'entity' (default) or 'account'. """ ENTITY = 'entity' ACCOUNT = 'account' class Type(str, Enum): """ Optional parameter to filter the type of the queried API Keys. Can be 'user' or 'serviceid'. """ USER = 'user' SERVICEID = 'serviceid' class Order(str, Enum): """ Optional sort order, valid values are asc and desc. Default: asc. """ ASC = 'asc' DESC = 'desc' class ListServiceIdsEnums: """ Enums for list_service_ids parameters. """ class Order(str, Enum): """ Optional sort order, valid values are asc and desc. Default: asc. """ ASC = 'asc' DESC = 'desc' ############################################################################## # Models ############################################################################## class ApiKey(): """ Response body format for API key V1 REST requests. :attr ResponseContext context: (optional) Context with key properties for problem determination. :attr str id: Unique identifier of this API Key. :attr str entity_tag: (optional) Version of the API Key details object. You need to specify this value when updating the API key to avoid stale updates. :attr str crn: Cloud Resource Name of the item. Example Cloud Resource Name: 'crn:v1:bluemix:public:iam-identity:us-south:a/myaccount::apikey:1234-9012-5678'. :attr bool locked: The API key cannot be changed if set to true. :attr str created_at: (optional) If set contains a date time string of the creation date in ISO format. :attr str created_by: IAM ID of the user or service which created the API key. :attr str modified_at: (optional) If set contains a date time string of the last modification date in ISO format. :attr str name: Name of the API key. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the API key. :attr str description: (optional) The optional description of the API key. The 'description' property is only available if a description was provided during a create of an API key. :attr str iam_id: The iam_id that this API key authenticates. :attr str account_id: ID of the account that this API key authenticates for. :attr str apikey: The API key value. This property only contains the API key value for the following cases: create an API key, update a service ID API key that stores the API key value as retrievable, or get a service ID API key that stores the API key value as retrievable. All other operations don't return the API key value, for example all user API key related operations, except for create, don't contain the API key value. :attr List[EnityHistoryRecord] history: (optional) History of the API key. """ def __init__(self, id: str, crn: str, locked: bool, created_by: str, name: str, iam_id: str, account_id: str, apikey: str, *, context: 'ResponseContext' = None, entity_tag: str = None, created_at: str = None, modified_at: str = None, description: str = None, history: List['EnityHistoryRecord'] = None) -> None: """ Initialize a ApiKey object. :param str id: Unique identifier of this API Key. :param str crn: Cloud Resource Name of the item. Example Cloud Resource Name: 'crn:v1:bluemix:public:iam-identity:us-south:a/myaccount::apikey:1234-9012-5678'. :param bool locked: The API key cannot be changed if set to true. :param str created_by: IAM ID of the user or service which created the API key. :param str name: Name of the API key. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the API key. :param str iam_id: The iam_id that this API key authenticates. :param str account_id: ID of the account that this API key authenticates for. :param str apikey: The API key value. This property only contains the API key value for the following cases: create an API key, update a service ID API key that stores the API key value as retrievable, or get a service ID API key that stores the API key value as retrievable. All other operations don't return the API key value, for example all user API key related operations, except for create, don't contain the API key value. :param ResponseContext context: (optional) Context with key properties for problem determination. :param str entity_tag: (optional) Version of the API Key details object. You need to specify this value when updating the API key to avoid stale updates. :param str created_at: (optional) If set contains a date time string of the creation date in ISO format. :param str modified_at: (optional) If set contains a date time string of the last modification date in ISO format. :param str description: (optional) The optional description of the API key. The 'description' property is only available if a description was provided during a create of an API key. :param List[EnityHistoryRecord] history: (optional) History of the API key. """ self.context = context self.id = id self.entity_tag = entity_tag self.crn = crn self.locked = locked self.created_at = created_at self.created_by = created_by self.modified_at = modified_at self.name = name self.description = description self.iam_id = iam_id self.account_id = account_id self.apikey = apikey self.history = history @classmethod def from_dict(cls, _dict: Dict) -> 'ApiKey': """Initialize a ApiKey object from a json dictionary.""" args = {} if 'context' in _dict: args['context'] = ResponseContext.from_dict(_dict.get('context')) if 'id' in _dict: args['id'] = _dict.get('id') else: raise ValueError('Required property \'id\' not present in ApiKey JSON') if 'entity_tag' in _dict: args['entity_tag'] = _dict.get('entity_tag') if 'crn' in _dict: args['crn'] = _dict.get('crn') else: raise ValueError('Required property \'crn\' not present in ApiKey JSON') if 'locked' in _dict: args['locked'] = _dict.get('locked') else: raise ValueError('Required property \'locked\' not present in ApiKey JSON') if 'created_at' in _dict: args['created_at'] = _dict.get('created_at') if 'created_by' in _dict: args['created_by'] = _dict.get('created_by') else: raise ValueError('Required property \'created_by\' not present in ApiKey JSON') if 'modified_at' in _dict: args['modified_at'] = _dict.get('modified_at') if 'name' in _dict: args['name'] = _dict.get('name') else: raise ValueError('Required property \'name\' not present in ApiKey JSON') if 'description' in _dict: args['description'] = _dict.get('description') if 'iam_id' in _dict: args['iam_id'] = _dict.get('iam_id') else: raise ValueError('Required property \'iam_id\' not present in ApiKey JSON') if 'account_id' in _dict: args['account_id'] = _dict.get('account_id') else: raise ValueError('Required property \'account_id\' not present in ApiKey JSON') if 'apikey' in _dict: args['apikey'] = _dict.get('apikey') else: raise ValueError('Required property \'apikey\' not present in ApiKey JSON') if 'history' in _dict: args['history'] = [EnityHistoryRecord.from_dict(x) for x in _dict.get('history')] return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ApiKey object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'context') and self.context is not None: _dict['context'] = self.context.to_dict() if hasattr(self, 'id') and self.id is not None: _dict['id'] = self.id if hasattr(self, 'entity_tag') and self.entity_tag is not None: _dict['entity_tag'] = self.entity_tag if hasattr(self, 'crn') and self.crn is not None: _dict['crn'] = self.crn if hasattr(self, 'locked') and self.locked is not None: _dict['locked'] = self.locked if hasattr(self, 'created_at') and self.created_at is not None: _dict['created_at'] = self.created_at if hasattr(self, 'created_by') and self.created_by is not None: _dict['created_by'] = self.created_by if hasattr(self, 'modified_at') and self.modified_at is not None: _dict['modified_at'] = self.modified_at if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'description') and self.description is not None: _dict['description'] = self.description if hasattr(self, 'iam_id') and self.iam_id is not None: _dict['iam_id'] = self.iam_id if hasattr(self, 'account_id') and self.account_id is not None: _dict['account_id'] = self.account_id if hasattr(self, 'apikey') and self.apikey is not None: _dict['apikey'] = self.apikey if hasattr(self, 'history') and self.history is not None: _dict['history'] = [x.to_dict() for x in self.history] return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ApiKey object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ApiKey') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ApiKey') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ApiKeyList(): """ Response body format for the List API keys V1 REST request. :attr ResponseContext context: (optional) Context with key properties for problem determination. :attr int offset: (optional) The offset of the current page. :attr int limit: (optional) Optional size of a single page. Default is 20 items per page. Valid range is 1 to 100. :attr str first: (optional) Link to the first page. :attr str previous: (optional) Link to the previous available page. If 'previous' property is not part of the response no previous page is available. :attr str next: (optional) Link to the next available page. If 'next' property is not part of the response no next page is available. :attr List[ApiKey] apikeys: List of API keys based on the query paramters and the page size. The apikeys array is always part of the response but might be empty depending on the query parameters values provided. """ def __init__(self, apikeys: List['ApiKey'], *, context: 'ResponseContext' = None, offset: int = None, limit: int = None, first: str = None, previous: str = None, next: str = None) -> None: """ Initialize a ApiKeyList object. :param List[ApiKey] apikeys: List of API keys based on the query paramters and the page size. The apikeys array is always part of the response but might be empty depending on the query parameters values provided. :param ResponseContext context: (optional) Context with key properties for problem determination. :param int offset: (optional) The offset of the current page. :param int limit: (optional) Optional size of a single page. Default is 20 items per page. Valid range is 1 to 100. :param str first: (optional) Link to the first page. :param str previous: (optional) Link to the previous available page. If 'previous' property is not part of the response no previous page is available. :param str next: (optional) Link to the next available page. If 'next' property is not part of the response no next page is available. """ self.context = context self.offset = offset self.limit = limit self.first = first self.previous = previous self.next = next self.apikeys = apikeys @classmethod def from_dict(cls, _dict: Dict) -> 'ApiKeyList': """Initialize a ApiKeyList object from a json dictionary.""" args = {} if 'context' in _dict: args['context'] = ResponseContext.from_dict(_dict.get('context')) if 'offset' in _dict: args['offset'] = _dict.get('offset') if 'limit' in _dict: args['limit'] = _dict.get('limit') if 'first' in _dict: args['first'] = _dict.get('first') if 'previous' in _dict: args['previous'] = _dict.get('previous') if 'next' in _dict: args['next'] = _dict.get('next') if 'apikeys' in _dict: args['apikeys'] = [ApiKey.from_dict(x) for x in _dict.get('apikeys')] else: raise ValueError('Required property \'apikeys\' not present in ApiKeyList JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ApiKeyList object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'context') and self.context is not None: _dict['context'] = self.context.to_dict() if hasattr(self, 'offset') and self.offset is not None: _dict['offset'] = self.offset if hasattr(self, 'limit') and self.limit is not None: _dict['limit'] = self.limit if hasattr(self, 'first') and self.first is not None: _dict['first'] = self.first if hasattr(self, 'previous') and self.previous is not None: _dict['previous'] = self.previous if hasattr(self, 'next') and self.next is not None: _dict['next'] = self.next if hasattr(self, 'apikeys') and self.apikeys is not None: _dict['apikeys'] = [x.to_dict() for x in self.apikeys] return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ApiKeyList object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ApiKeyList') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ApiKeyList') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class CreateApiKeyRequest(): """ Input body parameters for the Create API key V1 REST request. :attr str name: Name of the API key. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the API key. :attr str description: (optional) The optional description of the API key. The 'description' property is only available if a description was provided during a create of an API key. :attr str iam_id: The iam_id that this API key authenticates. :attr str account_id: (optional) The account ID of the API key. :attr str apikey: (optional) You can optionally passthrough the API key value for this API key. If passed, NO validation of that apiKey value is done, i.e. the value can be non-URL safe. If omitted, the API key management will create an URL safe opaque API key value. The value of the API key is checked for uniqueness. Please ensure enough variations when passing in this value. :attr bool store_value: (optional) Send true or false to set whether the API key value is retrievable in the future by using the Get details of an API key request. If you create an API key for a user, you must specify `false` or omit the value. We don't allow storing of API keys for users. """ def __init__(self, name: str, iam_id: str, *, description: str = None, account_id: str = None, apikey: str = None, store_value: bool = None) -> None: """ Initialize a CreateApiKeyRequest object. :param str name: Name of the API key. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the API key. :param str iam_id: The iam_id that this API key authenticates. :param str description: (optional) The optional description of the API key. The 'description' property is only available if a description was provided during a create of an API key. :param str account_id: (optional) The account ID of the API key. :param str apikey: (optional) You can optionally passthrough the API key value for this API key. If passed, NO validation of that apiKey value is done, i.e. the value can be non-URL safe. If omitted, the API key management will create an URL safe opaque API key value. The value of the API key is checked for uniqueness. Please ensure enough variations when passing in this value. :param bool store_value: (optional) Send true or false to set whether the API key value is retrievable in the future by using the Get details of an API key request. If you create an API key for a user, you must specify `false` or omit the value. We don't allow storing of API keys for users. """ self.name = name self.description = description self.iam_id = iam_id self.account_id = account_id self.apikey = apikey self.store_value = store_value @classmethod def from_dict(cls, _dict: Dict) -> 'CreateApiKeyRequest': """Initialize a CreateApiKeyRequest object from a json dictionary.""" args = {} if 'name' in _dict: args['name'] = _dict.get('name') else: raise ValueError('Required property \'name\' not present in CreateApiKeyRequest JSON') if 'description' in _dict: args['description'] = _dict.get('description') if 'iam_id' in _dict: args['iam_id'] = _dict.get('iam_id') else: raise ValueError('Required property \'iam_id\' not present in CreateApiKeyRequest JSON') if 'account_id' in _dict: args['account_id'] = _dict.get('account_id') if 'apikey' in _dict: args['apikey'] = _dict.get('apikey') if 'store_value' in _dict: args['store_value'] = _dict.get('store_value') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a CreateApiKeyRequest object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'description') and self.description is not None: _dict['description'] = self.description if hasattr(self, 'iam_id') and self.iam_id is not None: _dict['iam_id'] = self.iam_id if hasattr(self, 'account_id') and self.account_id is not None: _dict['account_id'] = self.account_id if hasattr(self, 'apikey') and self.apikey is not None: _dict['apikey'] = self.apikey if hasattr(self, 'store_value') and self.store_value is not None: _dict['store_value'] = self.store_value return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this CreateApiKeyRequest object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'CreateApiKeyRequest') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'CreateApiKeyRequest') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class EnityHistoryRecord(): """ Response body format for an entity history record. :attr str timestamp: Timestamp when the action was triggered. :attr str iam_id: IAM ID of the identity which triggered the action. :attr str iam_id_account: Account of the identity which triggered the action. :attr str action: Action of the history entry. :attr List[str] params: Params of the history entry. :attr str message: Message which summarizes the executed action. """ def __init__(self, timestamp: str, iam_id: str, iam_id_account: str, action: str, params: List[str], message: str) -> None: """ Initialize a EnityHistoryRecord object. :param str timestamp: Timestamp when the action was triggered. :param str iam_id: IAM ID of the identity which triggered the action. :param str iam_id_account: Account of the identity which triggered the action. :param str action: Action of the history entry. :param List[str] params: Params of the history entry. :param str message: Message which summarizes the executed action. """ self.timestamp = timestamp self.iam_id = iam_id self.iam_id_account = iam_id_account self.action = action self.params = params self.message = message @classmethod def from_dict(cls, _dict: Dict) -> 'EnityHistoryRecord': """Initialize a EnityHistoryRecord object from a json dictionary.""" args = {} if 'timestamp' in _dict: args['timestamp'] = _dict.get('timestamp') else: raise ValueError('Required property \'timestamp\' not present in EnityHistoryRecord JSON') if 'iam_id' in _dict: args['iam_id'] = _dict.get('iam_id') else: raise ValueError('Required property \'iam_id\' not present in EnityHistoryRecord JSON') if 'iam_id_account' in _dict: args['iam_id_account'] = _dict.get('iam_id_account') else: raise ValueError('Required property \'iam_id_account\' not present in EnityHistoryRecord JSON') if 'action' in _dict: args['action'] = _dict.get('action') else: raise ValueError('Required property \'action\' not present in EnityHistoryRecord JSON') if 'params' in _dict: args['params'] = _dict.get('params') else: raise ValueError('Required property \'params\' not present in EnityHistoryRecord JSON') if 'message' in _dict: args['message'] = _dict.get('message') else: raise ValueError('Required property \'message\' not present in EnityHistoryRecord JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a EnityHistoryRecord object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'timestamp') and self.timestamp is not None: _dict['timestamp'] = self.timestamp if hasattr(self, 'iam_id') and self.iam_id is not None: _dict['iam_id'] = self.iam_id if hasattr(self, 'iam_id_account') and self.iam_id_account is not None: _dict['iam_id_account'] = self.iam_id_account if hasattr(self, 'action') and self.action is not None: _dict['action'] = self.action if hasattr(self, 'params') and self.params is not None: _dict['params'] = self.params if hasattr(self, 'message') and self.message is not None: _dict['message'] = self.message return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this EnityHistoryRecord object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'EnityHistoryRecord') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'EnityHistoryRecord') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ResponseContext(): """ Context with key properties for problem determination. :attr str transaction_id: (optional) The transaction ID of the inbound REST request. :attr str operation: (optional) The operation of the inbound REST request. :attr str user_agent: (optional) The user agent of the inbound REST request. :attr str url: (optional) The URL of that cluster. :attr str instance_id: (optional) The instance ID of the server instance processing the request. :attr str thread_id: (optional) The thread ID of the server instance processing the request. :attr str host: (optional) The host of the server instance processing the request. :attr str start_time: (optional) The start time of the request. :attr str end_time: (optional) The finish time of the request. :attr str elapsed_time: (optional) The elapsed time in msec. :attr str cluster_name: (optional) The cluster name. """ def __init__(self, *, transaction_id: str = None, operation: str = None, user_agent: str = None, url: str = None, instance_id: str = None, thread_id: str = None, host: str = None, start_time: str = None, end_time: str = None, elapsed_time: str = None, cluster_name: str = None) -> None: """ Initialize a ResponseContext object. :param str transaction_id: (optional) The transaction ID of the inbound REST request. :param str operation: (optional) The operation of the inbound REST request. :param str user_agent: (optional) The user agent of the inbound REST request. :param str url: (optional) The URL of that cluster. :param str instance_id: (optional) The instance ID of the server instance processing the request. :param str thread_id: (optional) The thread ID of the server instance processing the request. :param str host: (optional) The host of the server instance processing the request. :param str start_time: (optional) The start time of the request. :param str end_time: (optional) The finish time of the request. :param str elapsed_time: (optional) The elapsed time in msec. :param str cluster_name: (optional) The cluster name. """ self.transaction_id = transaction_id self.operation = operation self.user_agent = user_agent self.url = url self.instance_id = instance_id self.thread_id = thread_id self.host = host self.start_time = start_time self.end_time = end_time self.elapsed_time = elapsed_time self.cluster_name = cluster_name @classmethod def from_dict(cls, _dict: Dict) -> 'ResponseContext': """Initialize a ResponseContext object from a json dictionary.""" args = {} if 'transaction_id' in _dict: args['transaction_id'] = _dict.get('transaction_id') if 'operation' in _dict: args['operation'] = _dict.get('operation') if 'user_agent' in _dict: args['user_agent'] = _dict.get('user_agent') if 'url' in _dict: args['url'] = _dict.get('url') if 'instance_id' in _dict: args['instance_id'] = _dict.get('instance_id') if 'thread_id' in _dict: args['thread_id'] = _dict.get('thread_id') if 'host' in _dict: args['host'] = _dict.get('host') if 'start_time' in _dict: args['start_time'] = _dict.get('start_time') if 'end_time' in _dict: args['end_time'] = _dict.get('end_time') if 'elapsed_time' in _dict: args['elapsed_time'] = _dict.get('elapsed_time') if 'cluster_name' in _dict: args['cluster_name'] = _dict.get('cluster_name') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ResponseContext object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'transaction_id') and self.transaction_id is not None: _dict['transaction_id'] = self.transaction_id if hasattr(self, 'operation') and self.operation is not None: _dict['operation'] = self.operation if hasattr(self, 'user_agent') and self.user_agent is not None: _dict['user_agent'] = self.user_agent if hasattr(self, 'url') and self.url is not None: _dict['url'] = self.url if hasattr(self, 'instance_id') and self.instance_id is not None: _dict['instance_id'] = self.instance_id if hasattr(self, 'thread_id') and self.thread_id is not None: _dict['thread_id'] = self.thread_id if hasattr(self, 'host') and self.host is not None: _dict['host'] = self.host if hasattr(self, 'start_time') and self.start_time is not None: _dict['start_time'] = self.start_time if hasattr(self, 'end_time') and self.end_time is not None: _dict['end_time'] = self.end_time if hasattr(self, 'elapsed_time') and self.elapsed_time is not None: _dict['elapsed_time'] = self.elapsed_time if hasattr(self, 'cluster_name') and self.cluster_name is not None: _dict['cluster_name'] = self.cluster_name return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ResponseContext object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ResponseContext') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ResponseContext') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ServiceId(): """ Response body format for service ID V1 REST requests. :attr ResponseContext context: (optional) Context with key properties for problem determination. :attr str id: Unique identifier of this Service Id. :attr str iam_id: Cloud wide identifier for identities of this service ID. :attr str entity_tag: (optional) Version of the service ID details object. You need to specify this value when updating the service ID to avoid stale updates. :attr str crn: Cloud Resource Name of the item. Example Cloud Resource Name: 'crn:v1:bluemix:public:iam-identity:us-south:a/myaccount::serviceid:1234-5678-9012'. :attr bool locked: The service ID cannot be changed if set to true. :attr str created_at: (optional) If set contains a date time string of the creation date in ISO format. :attr str modified_at: (optional) If set contains a date time string of the last modification date in ISO format. :attr str account_id: ID of the account the service ID belongs to. :attr str name: Name of the Service Id. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the Service Id. :attr str description: (optional) The optional description of the Service Id. The 'description' property is only available if a description was provided during a create of a Service Id. :attr List[str] unique_instance_crns: (optional) Optional list of CRNs (string array) which point to the services connected to the service ID. :attr List[EnityHistoryRecord] history: (optional) History of the Service ID. :attr ApiKey apikey: Response body format for API key V1 REST requests. """ def __init__(self, id: str, iam_id: str, crn: str, locked: bool, account_id: str, name: str, apikey: 'ApiKey', *, context: 'ResponseContext' = None, entity_tag: str = None, created_at: str = None, modified_at: str = None, description: str = None, unique_instance_crns: List[str] = None, history: List['EnityHistoryRecord'] = None) -> None: """ Initialize a ServiceId object. :param str id: Unique identifier of this Service Id. :param str iam_id: Cloud wide identifier for identities of this service ID. :param str crn: Cloud Resource Name of the item. Example Cloud Resource Name: 'crn:v1:bluemix:public:iam-identity:us-south:a/myaccount::serviceid:1234-5678-9012'. :param bool locked: The service ID cannot be changed if set to true. :param str account_id: ID of the account the service ID belongs to. :param str name: Name of the Service Id. The name is not checked for uniqueness. Therefore multiple names with the same value can exist. Access is done via the UUID of the Service Id. :param ApiKey apikey: Response body format for API key V1 REST requests. :param ResponseContext context: (optional) Context with key properties for problem determination. :param str entity_tag: (optional) Version of the service ID details object. You need to specify this value when updating the service ID to avoid stale updates. :param str created_at: (optional) If set contains a date time string of the creation date in ISO format. :param str modified_at: (optional) If set contains a date time string of the last modification date in ISO format. :param str description: (optional) The optional description of the Service Id. The 'description' property is only available if a description was provided during a create of a Service Id. :param List[str] unique_instance_crns: (optional) Optional list of CRNs (string array) which point to the services connected to the service ID. :param List[EnityHistoryRecord] history: (optional) History of the Service ID. """ self.context = context self.id = id self.iam_id = iam_id self.entity_tag = entity_tag self.crn = crn self.locked = locked self.created_at = created_at self.modified_at = modified_at self.account_id = account_id self.name = name self.description = description self.unique_instance_crns = unique_instance_crns self.history = history self.apikey = apikey @classmethod def from_dict(cls, _dict: Dict) -> 'ServiceId': """Initialize a ServiceId object from a json dictionary.""" args = {} if 'context' in _dict: args['context'] = ResponseContext.from_dict(_dict.get('context')) if 'id' in _dict: args['id'] = _dict.get('id') else: raise ValueError('Required property \'id\' not present in ServiceId JSON') if 'iam_id' in _dict: args['iam_id'] = _dict.get('iam_id') else: raise ValueError('Required property \'iam_id\' not present in ServiceId JSON') if 'entity_tag' in _dict: args['entity_tag'] = _dict.get('entity_tag') if 'crn' in _dict: args['crn'] = _dict.get('crn') else: raise ValueError('Required property \'crn\' not present in ServiceId JSON') if 'locked' in _dict: args['locked'] = _dict.get('locked') else: raise ValueError('Required property \'locked\' not present in ServiceId JSON') if 'created_at' in _dict: args['created_at'] = _dict.get('created_at') if 'modified_at' in _dict: args['modified_at'] = _dict.get('modified_at') if 'account_id' in _dict: args['account_id'] = _dict.get('account_id') else: raise ValueError('Required property \'account_id\' not present in ServiceId JSON') if 'name' in _dict: args['name'] = _dict.get('name') else: raise ValueError('Required property \'name\' not present in ServiceId JSON') if 'description' in _dict: args['description'] = _dict.get('description') if 'unique_instance_crns' in _dict: args['unique_instance_crns'] = _dict.get('unique_instance_crns') if 'history' in _dict: args['history'] = [EnityHistoryRecord.from_dict(x) for x in _dict.get('history')] if 'apikey' in _dict: args['apikey'] = ApiKey.from_dict(_dict.get('apikey')) else: raise ValueError('Required property \'apikey\' not present in ServiceId JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ServiceId object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'context') and self.context is not None: _dict['context'] = self.context.to_dict() if hasattr(self, 'id') and self.id is not None: _dict['id'] = self.id if hasattr(self, 'iam_id') and self.iam_id is not None: _dict['iam_id'] = self.iam_id if hasattr(self, 'entity_tag') and self.entity_tag is not None: _dict['entity_tag'] = self.entity_tag if hasattr(self, 'crn') and self.crn is not None: _dict['crn'] = self.crn if hasattr(self, 'locked') and self.locked is not None: _dict['locked'] = self.locked if hasattr(self, 'created_at') and self.created_at is not None: _dict['created_at'] = self.created_at if hasattr(self, 'modified_at') and self.modified_at is not None: _dict['modified_at'] = self.modified_at if hasattr(self, 'account_id') and self.account_id is not None: _dict['account_id'] = self.account_id if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'description') and self.description is not None: _dict['description'] = self.description if hasattr(self, 'unique_instance_crns') and self.unique_instance_crns is not None: _dict['unique_instance_crns'] = self.unique_instance_crns if hasattr(self, 'history') and self.history is not None: _dict['history'] = [x.to_dict() for x in self.history] if hasattr(self, 'apikey') and self.apikey is not None: _dict['apikey'] = self.apikey.to_dict() return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ServiceId object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ServiceId') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ServiceId') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ServiceIdList(): """ Response body format for the list service ID V1 REST request. :attr ResponseContext context: (optional) Context with key properties for problem determination. :attr int offset: (optional) The offset of the current page. :attr int limit: (optional) Optional size of a single page. Default is 20 items per page. Valid range is 1 to 100. :attr str first: (optional) Link to the first page. :attr str previous: (optional) Link to the previous available page. If 'previous' property is not part of the response no previous page is available. :attr str next: (optional) Link to the next available page. If 'next' property is not part of the response no next page is available. :attr List[ServiceId] serviceids: List of service IDs based on the query paramters and the page size. The service IDs array is always part of the response but might be empty depending on the query parameter values provided. """ def __init__(self, serviceids: List['ServiceId'], *, context: 'ResponseContext' = None, offset: int = None, limit: int = None, first: str = None, previous: str = None, next: str = None) -> None: """ Initialize a ServiceIdList object. :param List[ServiceId] serviceids: List of service IDs based on the query paramters and the page size. The service IDs array is always part of the response but might be empty depending on the query parameter values provided. :param ResponseContext context: (optional) Context with key properties for problem determination. :param int offset: (optional) The offset of the current page. :param int limit: (optional) Optional size of a single page. Default is 20 items per page. Valid range is 1 to 100. :param str first: (optional) Link to the first page. :param str previous: (optional) Link to the previous available page. If 'previous' property is not part of the response no previous page is available. :param str next: (optional) Link to the next available page. If 'next' property is not part of the response no next page is available. """ self.context = context self.offset = offset self.limit = limit self.first = first self.previous = previous self.next = next self.serviceids = serviceids @classmethod def from_dict(cls, _dict: Dict) -> 'ServiceIdList': """Initialize a ServiceIdList object from a json dictionary.""" args = {} if 'context' in _dict: args['context'] = ResponseContext.from_dict(_dict.get('context')) if 'offset' in _dict: args['offset'] = _dict.get('offset') if 'limit' in _dict: args['limit'] = _dict.get('limit') if 'first' in _dict: args['first'] = _dict.get('first') if 'previous' in _dict: args['previous'] = _dict.get('previous') if 'next' in _dict: args['next'] = _dict.get('next') if 'serviceids' in _dict: args['serviceids'] = [ServiceId.from_dict(x) for x in _dict.get('serviceids')] else: raise ValueError('Required property \'serviceids\' not present in ServiceIdList JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ServiceIdList object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'context') and self.context is not None: _dict['context'] = self.context.to_dict() if hasattr(self, 'offset') and self.offset is not None: _dict['offset'] = self.offset if hasattr(self, 'limit') and self.limit is not None: _dict['limit'] = self.limit if hasattr(self, 'first') and self.first is not None: _dict['first'] = self.first if hasattr(self, 'previous') and self.previous is not None: _dict['previous'] = self.previous if hasattr(self, 'next') and self.next is not None: _dict['next'] = self.next if hasattr(self, 'serviceids') and self.serviceids is not None: _dict['serviceids'] = [x.to_dict() for x in self.serviceids] return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ServiceIdList object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ServiceIdList') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ServiceIdList') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other
43.556727
107
0.601222
89a3b041ce03407ff6b0ccc891c0b5d75236cb51
10,868
py
Python
synapse/http/federation/well_known_resolver.py
ThiefMaster/synapse
f2af3e4fc550e7e93be1b0f425c3e9c484b96293
[ "Apache-2.0" ]
1
2020-07-21T17:51:02.000Z
2020-07-21T17:51:02.000Z
synapse/http/federation/well_known_resolver.py
mjvaldez/synapse
de119063f248981510e961e83f1515a3add19a21
[ "Apache-2.0" ]
null
null
null
synapse/http/federation/well_known_resolver.py
mjvaldez/synapse
de119063f248981510e961e83f1515a3add19a21
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import random import time import attr from twisted.internet import defer from twisted.web.client import RedirectAgent, readBody from twisted.web.http import stringToDatetime from twisted.web.http_headers import Headers from synapse.logging.context import make_deferred_yieldable from synapse.util import Clock from synapse.util.caches.ttlcache import TTLCache from synapse.util.metrics import Measure # period to cache .well-known results for by default WELL_KNOWN_DEFAULT_CACHE_PERIOD = 24 * 3600 # jitter factor to add to the .well-known default cache ttls WELL_KNOWN_DEFAULT_CACHE_PERIOD_JITTER = 0.1 # period to cache failure to fetch .well-known for WELL_KNOWN_INVALID_CACHE_PERIOD = 1 * 3600 # period to cache failure to fetch .well-known if there has recently been a # valid well-known for that domain. WELL_KNOWN_DOWN_CACHE_PERIOD = 2 * 60 # period to remember there was a valid well-known after valid record expires WELL_KNOWN_REMEMBER_DOMAIN_HAD_VALID = 2 * 3600 # cap for .well-known cache period WELL_KNOWN_MAX_CACHE_PERIOD = 48 * 3600 # lower bound for .well-known cache period WELL_KNOWN_MIN_CACHE_PERIOD = 5 * 60 # Attempt to refetch a cached well-known N% of the TTL before it expires. # e.g. if set to 0.2 and we have a cached entry with a TTL of 5mins, then # we'll start trying to refetch 1 minute before it expires. WELL_KNOWN_GRACE_PERIOD_FACTOR = 0.2 # Number of times we retry fetching a well-known for a domain we know recently # had a valid entry. WELL_KNOWN_RETRY_ATTEMPTS = 3 logger = logging.getLogger(__name__) _well_known_cache = TTLCache("well-known") _had_valid_well_known_cache = TTLCache("had-valid-well-known") @attr.s(slots=True, frozen=True) class WellKnownLookupResult(object): delegated_server = attr.ib() class WellKnownResolver(object): """Handles well-known lookups for matrix servers. """ def __init__( self, reactor, agent, user_agent, well_known_cache=None, had_well_known_cache=None, ): self._reactor = reactor self._clock = Clock(reactor) if well_known_cache is None: well_known_cache = _well_known_cache if had_well_known_cache is None: had_well_known_cache = _had_valid_well_known_cache self._well_known_cache = well_known_cache self._had_valid_well_known_cache = had_well_known_cache self._well_known_agent = RedirectAgent(agent) self.user_agent = user_agent @defer.inlineCallbacks def get_well_known(self, server_name): """Attempt to fetch and parse a .well-known file for the given server Args: server_name (bytes): name of the server, from the requested url Returns: Deferred[WellKnownLookupResult]: The result of the lookup """ try: prev_result, expiry, ttl = self._well_known_cache.get_with_expiry( server_name ) now = self._clock.time() if now < expiry - WELL_KNOWN_GRACE_PERIOD_FACTOR * ttl: return WellKnownLookupResult(delegated_server=prev_result) except KeyError: prev_result = None # TODO: should we linearise so that we don't end up doing two .well-known # requests for the same server in parallel? try: with Measure(self._clock, "get_well_known"): result, cache_period = yield self._fetch_well_known(server_name) except _FetchWellKnownFailure as e: if prev_result and e.temporary: # This is a temporary failure and we have a still valid cached # result, so lets return that. Hopefully the next time we ask # the remote will be back up again. return WellKnownLookupResult(delegated_server=prev_result) result = None if self._had_valid_well_known_cache.get(server_name, False): # We have recently seen a valid well-known record for this # server, so we cache the lack of well-known for a shorter time. cache_period = WELL_KNOWN_DOWN_CACHE_PERIOD else: cache_period = WELL_KNOWN_INVALID_CACHE_PERIOD # add some randomness to the TTL to avoid a stampeding herd cache_period *= random.uniform( 1 - WELL_KNOWN_DEFAULT_CACHE_PERIOD_JITTER, 1 + WELL_KNOWN_DEFAULT_CACHE_PERIOD_JITTER, ) if cache_period > 0: self._well_known_cache.set(server_name, result, cache_period) return WellKnownLookupResult(delegated_server=result) @defer.inlineCallbacks def _fetch_well_known(self, server_name): """Actually fetch and parse a .well-known, without checking the cache Args: server_name (bytes): name of the server, from the requested url Raises: _FetchWellKnownFailure if we fail to lookup a result Returns: Deferred[Tuple[bytes,int]]: The lookup result and cache period. """ had_valid_well_known = self._had_valid_well_known_cache.get(server_name, False) # We do this in two steps to differentiate between possibly transient # errors (e.g. can't connect to host, 503 response) and more permenant # errors (such as getting a 404 response). response, body = yield self._make_well_known_request( server_name, retry=had_valid_well_known ) try: if response.code != 200: raise Exception("Non-200 response %s" % (response.code,)) parsed_body = json.loads(body.decode("utf-8")) logger.info("Response from .well-known: %s", parsed_body) result = parsed_body["m.server"].encode("ascii") except defer.CancelledError: # Bail if we've been cancelled raise except Exception as e: logger.info("Error parsing well-known for %s: %s", server_name, e) raise _FetchWellKnownFailure(temporary=False) cache_period = _cache_period_from_headers( response.headers, time_now=self._reactor.seconds ) if cache_period is None: cache_period = WELL_KNOWN_DEFAULT_CACHE_PERIOD # add some randomness to the TTL to avoid a stampeding herd every 24 hours # after startup cache_period *= random.uniform( 1 - WELL_KNOWN_DEFAULT_CACHE_PERIOD_JITTER, 1 + WELL_KNOWN_DEFAULT_CACHE_PERIOD_JITTER, ) else: cache_period = min(cache_period, WELL_KNOWN_MAX_CACHE_PERIOD) cache_period = max(cache_period, WELL_KNOWN_MIN_CACHE_PERIOD) # We got a success, mark as such in the cache self._had_valid_well_known_cache.set( server_name, bool(result), cache_period + WELL_KNOWN_REMEMBER_DOMAIN_HAD_VALID, ) return result, cache_period @defer.inlineCallbacks def _make_well_known_request(self, server_name, retry): """Make the well known request. This will retry the request if requested and it fails (with unable to connect or receives a 5xx error). Args: server_name (bytes) retry (bool): Whether to retry the request if it fails. Returns: Deferred[tuple[IResponse, bytes]] Returns the response object and body. Response may be a non-200 response. """ uri = b"https://%s/.well-known/matrix/server" % (server_name,) uri_str = uri.decode("ascii") headers = { b"User-Agent": [self.user_agent], } i = 0 while True: i += 1 logger.info("Fetching %s", uri_str) try: response = yield make_deferred_yieldable( self._well_known_agent.request( b"GET", uri, headers=Headers(headers) ) ) body = yield make_deferred_yieldable(readBody(response)) if 500 <= response.code < 600: raise Exception("Non-200 response %s" % (response.code,)) return response, body except defer.CancelledError: # Bail if we've been cancelled raise except Exception as e: if not retry or i >= WELL_KNOWN_RETRY_ATTEMPTS: logger.info("Error fetching %s: %s", uri_str, e) raise _FetchWellKnownFailure(temporary=True) logger.info("Error fetching %s: %s. Retrying", uri_str, e) # Sleep briefly in the hopes that they come back up yield self._clock.sleep(0.5) def _cache_period_from_headers(headers, time_now=time.time): cache_controls = _parse_cache_control(headers) if b"no-store" in cache_controls: return 0 if b"max-age" in cache_controls: try: max_age = int(cache_controls[b"max-age"]) return max_age except ValueError: pass expires = headers.getRawHeaders(b"expires") if expires is not None: try: expires_date = stringToDatetime(expires[-1]) return expires_date - time_now() except ValueError: # RFC7234 says 'A cache recipient MUST interpret invalid date formats, # especially the value "0", as representing a time in the past (i.e., # "already expired"). return 0 return None def _parse_cache_control(headers): cache_controls = {} for hdr in headers.getRawHeaders(b"cache-control", []): for directive in hdr.split(b","): splits = [x.strip() for x in directive.split(b"=", 1)] k = splits[0].lower() v = splits[1] if len(splits) > 1 else None cache_controls[k] = v return cache_controls @attr.s() class _FetchWellKnownFailure(Exception): # True if we didn't get a non-5xx HTTP response, i.e. this may or may not be # a temporary failure. temporary = attr.ib()
34.501587
87
0.644829
7b4b2e719e4365fccccc1bf88e377a57146c67f6
74
py
Python
tests/asp/gringo/choice.006.test.py
bernardocuteri/wasp
05c8f961776dbdbf7afbf905ee00fc262eba51ad
[ "Apache-2.0" ]
19
2015-12-03T08:53:45.000Z
2022-03-31T02:09:43.000Z
tests/asp/gringo/choice.006.test.py
bernardocuteri/wasp
05c8f961776dbdbf7afbf905ee00fc262eba51ad
[ "Apache-2.0" ]
80
2017-11-25T07:57:32.000Z
2018-06-10T19:03:30.000Z
tests/asp/gringo/choice.006.test.py
bernardocuteri/wasp
05c8f961776dbdbf7afbf905ee00fc262eba51ad
[ "Apache-2.0" ]
6
2015-01-15T07:51:48.000Z
2020-06-18T14:47:48.000Z
input = """ {a,b} :- c. c | d. :- a. """ output = """ {c} {c, b} {d} """
6.166667
12
0.283784
3741f46a8f86b3be6bfaa8cc31fef2fd51039a7c
4,253
py
Python
elliot/evaluation/metrics/fairness/MAD/ItemMADrating.py
gategill/elliot
113763ba6d595976e14ead2e3d460d9705cd882e
[ "Apache-2.0" ]
175
2021-03-04T15:46:25.000Z
2022-03-31T05:56:58.000Z
elliot/evaluation/metrics/fairness/MAD/ItemMADrating.py
gategill/elliot
113763ba6d595976e14ead2e3d460d9705cd882e
[ "Apache-2.0" ]
15
2021-03-06T17:53:56.000Z
2022-03-24T17:02:07.000Z
elliot/evaluation/metrics/fairness/MAD/ItemMADrating.py
gategill/elliot
113763ba6d595976e14ead2e3d460d9705cd882e
[ "Apache-2.0" ]
39
2021-03-04T15:46:26.000Z
2022-03-09T15:37:12.000Z
""" This is the implementation of the Item MAD rating metric. It proceeds from a user-wise computation, and average the values over the users. """ __version__ = '0.3.1' __author__ = 'Vito Walter Anelli, Claudio Pomo' __email__ = 'vitowalter.anelli@poliba.it, claudio.pomo@poliba.it' import numpy as np import pandas as pd from elliot.evaluation.metrics.base_metric import BaseMetric class ItemMADrating(BaseMetric): r""" Item MAD Rating-based This class represents the implementation of the Item MAD rating recommendation metric. For further details, please refer to the `paper <https://dl.acm.org/doi/abs/10.1145/3269206.3271795>`_ .. math:: \mathrm {MAD}={avg}_{i, j}({MAD}(R^{(i)}, R^{(j)})) To compute the metric, add it to the config file adopting the following pattern: .. code:: yaml complex_metrics: - metric: ItemMADrating clustering_name: ItemPopularity clustering_file: ../data/movielens_1m/i_pop.tsv """ def __init__(self, recommendations, config, params, eval_objects, additional_data): """ Constructor :param recommendations: list of recommendations in the form {user: [(item1,value1),...]} :param config: SimpleNameSpace that represents the configuration of the experiment :param params: Parameters of the model :param eval_objects: list of objects that may be useful for the computation of the different metrics """ super().__init__(recommendations, config, params, eval_objects, additional_data) self._cutoff = self._evaluation_objects.cutoff self._relevance = self._evaluation_objects.relevance.binary_relevance self._item_clustering_path = self._additional_data.get("clustering_file", False) self._item_clustering_name = self._additional_data.get("clustering_name", "") if self._item_clustering_path: self._item_clustering = pd.read_csv(self._additional_data["clustering_file"], sep="\t", header=None) self._n_clusters = self._item_clustering[1].nunique() self._item_clustering = dict(zip(self._item_clustering[0], self._item_clustering[1])) else: self._n_clusters = 1 self._item_clustering = {} self._sum = np.zeros(self._n_clusters) self._n_items = np.zeros(self._n_clusters) self._item_count = {} self._item_gain = {} def name(self): """ Metric Name Getter :return: returns the public name of the metric """ return f"ItemMADrating_{self._item_clustering_name}" def __item_mad(self, user_recommendations, cutoff, user_relevant_items): """ Per User Item MAD rating :param user_recommendations: list of user recommendation in the form [(item1,value1),...] :param cutoff: numerical threshold to limit the recommendation list :param user_relevant_items: list of user relevant items in the form [item1,...] :return: the value of the Precision metric for the specific user """ for i, r in user_recommendations[:cutoff]: self._item_count[i] = self._item_count.get(i, 0) + 1 self._item_gain[i] = self._item_gain.get(i, 0) + (r if i in user_relevant_items else 0) def eval(self): """ Evaluation function :return: the overall averaged value of Item MAD rating """ for u, u_r in self._recommendations.items(): if len(self._relevance.get_user_rel(u)): self.__item_mad(u_r, self._cutoff, self._relevance.get_user_rel(u)) for item, gain in self._item_gain.items(): v = gain/self._item_count[item] cluster = self._item_clustering.get(item, None) if cluster is not None: self._sum[cluster] += v self._n_items[cluster] += 1 avg = [self._sum[i]/self._n_items[i] for i in range(self._n_clusters)] differences = [] for i in range(self._n_clusters): for j in range(i+1, self._n_clusters): differences.append(abs(avg[i] - avg[j])) return np.average(differences) def get(self): return [self]
38.315315
112
0.653186
b681b2b2bfe0a3ad29a927cd8edcfead858ae53f
17,659
py
Python
pynars/utils/_trash/sparse_lut_v2/branch_list.py
AIxer/PyNARS
443b6a5e1c9779a1b861df1ca51ce5a190998d2e
[ "MIT" ]
null
null
null
pynars/utils/_trash/sparse_lut_v2/branch_list.py
AIxer/PyNARS
443b6a5e1c9779a1b861df1ca51ce5a190998d2e
[ "MIT" ]
null
null
null
pynars/utils/_trash/sparse_lut_v2/branch_list.py
AIxer/PyNARS
443b6a5e1c9779a1b861df1ca51ce5a190998d2e
[ "MIT" ]
null
null
null
from ctypes import Union from typing import Any, Callable, Dict, List, Tuple, Type, Set import typing from collections import OrderedDict from copy import deepcopy, copy import marshal # import matplotlib import networkx as nx import matplotlib.pyplot as plt from ordered_set import OrderedSet import sty import cython # deepcopy = lambda x: marshal.loads(marshal.dumps(x)) deepcopy2 = lambda x: marshal.loads(marshal.dumps(x)) class Node: next_nodes: Union[typing.OrderedDict[tuple, 'Node'], Set] last_nodes: typing.OrderedDict[tuple, 'Node'] is_end: bool def __init__(self, index: set, is_end=False, depth: int=-1, next_nodes: typing.OrderedDict[tuple, 'Node']=None, last_nodes: typing.OrderedDict[tuple, 'Node']=None) -> None: self.index = index self.is_end = is_end self.next_nodes = next_nodes or (None if is_end else OrderedDict()) self.last_nodes= last_nodes or OrderedDict() self.depth = depth pass def append(self, node: Type['Node']): self.next_nodes[tuple(node.index)] = node node.last_nodes[(tuple(self.index), id(self))] = self def duplicate_shallow(self, index: set=None): node = Node(index or self.index, self.is_end, self.depth) for next_node in self.next_nodes_list: node.append(next_node) return node def duplicate_deep(self, index:set=None): node = Node(index or self.index, self.is_end, self.depth) for next_node in self.next_nodes_list: next_node = next_node.duplicate_deep() node.append(next_node) return node def remove_next(self, node: Type['Node']): '''''' self.next_nodes.pop(tuple(node.index), None) node.last_nodes.pop((tuple(self.index), id(self)), None) def remove_last(self, node: Type['Node']): '''''' self.last_nodes.pop((tuple(node.index), id(node)), None) node.next_nodes.pop(tuple(self.index), None) def reset_index(self, index): '''''' # index_old = tuple(self.index) next_nodes: List[Node] = self.next_nodes_list last_nodes: List[Node] = self.last_nodes_list for node in next_nodes: node.remove_last(self) for node in last_nodes: node.remove_next(self) self.index = index for node in next_nodes: self.append(node) for node in last_nodes: node.append(self) @property def is_fan_in(self): return (self.last_nodes is not None) and (len(self.last_nodes) > 1) @property def next_nodes_list(self): return list(self.next_nodes.values()) if self.next_nodes is not None else [] @property def last_nodes_list(self): return list(self.last_nodes.values()) if self.last_nodes is not None else [] def __getitem__(self, i): if i == 0: return self.index elif i == 1: return self.next_nodes else: return None def __setitem__(self, i, value): if i == 0: self.index = value elif i == 1: self.next_nodes = value else: raise "Invalid case." def __repr__(self) -> str: return f'<Node: {repr(self.index)} {repr(self.next_nodes)}>' class BranchList: blists: Node def __init__(self, shape: tuple) -> None: self.shape = tuple(shape) self.blists = Node({}) self.lists = [] self.depth = len(self.shape) - 1 def _normalize(self, indices: list): indices_norm = [] for i, index in enumerate(indices): if isinstance(index, int): indices_norm.append(set((index,))) elif isinstance(index, list) or isinstance(index, tuple): indices_norm.append(set(index)) elif index is Any or index is None: indices_norm.append(set((*range(self.shape[i]), None))) else: raise "Invalid case." return indices_norm def _merge(self, blists: List[Node], blist_in: List[Node], blist_last: Node=None, blist_in_last: Node=None, is_new_blist: bool=False, depth=0): '''merge the new indices into `self.blist` blists: all the blist under the current depth. blist_in: the new blist. Non-branch should be ensured. depth: the current depth. ''' if depth == 0: # OK if len(blist_in) > 0: blist_in: Node = blist_in[0] else: return index_new = blist_in.index index_new_diff = index_new - set().union(*(blist[0] for blist in blists)) if len(index_new_diff) > 0: blist_new_diff = blist_in.duplicate_deep(index_new_diff) blist_last.append(blist_new_diff) _is_new_blist = is_new_blist for blist in blists: '''''' is_new_blist = _is_new_blist # get index_common and index_old_diff. index_old = blist[0] # e.g. index_old = {0, 1} index_common = index_new & index_old index_old_diff = index_old - index_new index_new_diff = index_new - index_old index_new = index_new_diff if len(index_old_diff) > 0: # keep the old one blist.reset_index(index_old_diff) # build the new one if len(index_common) > 0: # BUG # since the indexes of son-nodes of `blist_last` are all different (orthogonal), the `index_common`s of the `blist`s are also different. blist_in_common = blist_in.duplicate_deep(index_common) # blist_in_common = Node(blist_in.index, blist_in.is_end, blist_in.depth) blist_last.append(blist_in_common) self._merge(blist.next_nodes_list, blist_in_common.next_nodes_list, blist, blist_in_common, True, depth+1) else: if len(index_common) > 0: # needn't to build a new link self._merge(blist.next_nodes_list, blist_in.next_nodes_list, blist, blist_in, False, depth+1) pass elif 0 < depth <= self.depth: # if len(blist_in) > 0: blist_in: Node = blist_in[0] # else: return blist_in: Node = blist_in[0] # blist_in_last.next_nodes = OrderedDict() # TODO: modify the edges. index_new = blist_in.index index_new_diff = index_new - set().union(*(blist[0] for blist in blists)) if len(index_new_diff) > 0: # the new one to be add blist_new = blist_in.duplicate_deep(index_new_diff) if not is_new_blist: blist_last.append(blist_new) else: blist_in_last.append(blist_new) _is_new_blist = is_new_blist for blist in blists: '''''' is_new_blist = _is_new_blist # get index_common and index_old_diff. index_old = blist[0] # e.g. index_old = {0, 1} index_common = index_new & index_old index_old_diff = index_old - index_new index_new_diff = index_new - index_old index_new = index_new_diff if blist.is_fan_in: # there are multiple input nodes. # remove the blist from fan-in, and add a copied one. if len(index_common) > 0: blist_last.remove_next(blist) blist = blist.duplicate_shallow() blist_last.append(blist) if len(index_old_diff) > 0: # keep the old one blist_old_diff = blist blist_old_diff.reset_index(index_old_diff) if is_new_blist: blist_in_last.append(blist_old_diff) # build the new one if len(index_common) > 0: # since the indexes of son-nodes of `blist_last` are all different (orthogonal), the `index_common`s of the `blist`s are also different. blist_old_common = blist.duplicate_shallow(index_common) blist_last.append(blist_old_common) # blist_in_common = blist_in.duplicate_deep(index_common) blist_in_common = Node(blist_in.index, blist_in.is_end, blist_in.depth) if is_new_blist: # TODO: check here blist_in_last.append(blist_in_common) # or blist_last.append(blist_in_common)? else: blist_last.append(blist_in_common) self._merge(blist_old_common.next_nodes_list, blist_in.next_nodes_list, blist_old_common, blist_in_common, True, depth+1) else: # len(index_old_diff) == 0 # BUG if len(index_common) > 0: # needn't to build a new link # blist_in_common = blist_in.duplicate_shallow() blist_in_common = blist_in if is_new_blist: blist_in_last.append(blist_in_common) self._merge(blist.next_nodes_list, blist_in.next_nodes_list, blist, blist_in_common, True, depth+1) pass pass else: # not fan_in if len(index_old_diff) > 0: # keep the old one blist.reset_index(index_old_diff) if is_new_blist: blist_in_last.append(blist) # build the new one if len(index_common) > 0: # since the indexes of son-nodes of `blist_last` are all different (orthogonal), the `index_common`s of the `blist`s are also different. blist_old_common = blist.duplicate_shallow(index_common) blist_last.append(blist_old_common) # blist_in_common = blist_in.duplicate_deep(index_common) blist_in_common = Node(blist_in.index, blist_in.is_end, blist_in.depth) blist_in_last.append(blist_in_common) self._merge(blist.next_nodes_list, blist_in.next_nodes_list, blist_old_common, blist_in_common, True, depth+1) else: # BUG if len(index_common) > 0: # needn't to build a new link blist_in_common = blist_in.duplicate_shallow() if is_new_blist: blist_in_last.append(blist_in_common) # if is_new_blist: # # blist_in_common = blist_in.duplicate_deep(index_common) # blist_in_common = Node(index_common, blist_in.index, blist_in.depth) # blist_in_last.append(blist_in_common) # else: # blist_in_common = blist_in # # blist_in_last.append(blist_in_common) self._merge(blist.next_nodes_list, blist_in.next_nodes_list, blist, blist_in_common, is_new_blist, depth+1) pass pass elif depth == self.depth: pass else: pass # @cython.cfunc def _make_blist(self, indices): blist_original = blist = Node(indices[0], False, 0) if self.depth == 0: return blist_original for i_depth, index in enumerate(indices[1:], 1): if i_depth == self.depth: blist.append(Node(index, True, i_depth)) else: blist_new = Node(index, False, i_depth) blist.append(blist_new) blist = blist_new return blist_original def add(self, indices: list, value): indices = self._normalize(indices) self.lists.append((indices, value)) if len(self.blists.next_nodes) == 0: self.blists.append(self._make_blist(indices)) return # Now, `self.blist` is not None blist_index = self._make_blist(indices) self._merge(self.blists.next_nodes_list, [blist_index], self.blists) pass def build(self, value_func: Callable=OrderedSet, add_func: Callable=OrderedSet.add): # list, OrderedSet, etc. # @cython.cfunc # @cython.returns(cython.void) # @cython.locals() def set_value_by_func(blists: List[Node], indices, value_func: Callable, depth=0): '''it should be ensured that `indices` is in `blists`''' index: set = indices[depth] for blist in blists: if index.issuperset(blist[0]): if depth < self.depth: set_value_by_func(list(blist[1].values()), indices, value_func, depth+1) else: blist[1] = value_func() # @cython.cfunc # @cython.returns() # @cython.locals() def get_value(blists, indices, depth=0, ret=None): '''it should be ensured that `indices` is in `blists`''' ret = [] if ret is None else ret index: set = indices[depth] for blist in blists: if index.issuperset(blist[0]): if depth < self.depth: get_value(list(blist[1].values()), indices, depth+1, ret) else: ret.append(blist[1]) return ret blists = list(self.blists[1].values()) for indices, _ in self.lists: set_value_by_func(blists, indices, value_func) for indices, value in self.lists: list_values = get_value(blists, indices) for values in list_values: assert values is not None add_func(values, value) def clear(self): '''''' blists = list(self.blists[1].values()) if len(self.blists[1]) == 0: return for blist in blists: del blist del blists self.blists[1] = None def draw(self, blists: List[Node]=None, show_labels=True): '''''' # from matplotlib.text import Text blists = list(self.blists[1].values()) if len(blists) == 0: print('None BranchList.') return g = nx.DiGraph() def add_nodes(g: nx.DiGraph, node_current, label_node_current, blists_next: List[Node], i_layer=0): n_node = g.number_of_nodes() args_next = [] if node_current not in g: g.add_node(node_current, label=label_node_current, layer=i_layer) n_node += 1 if i_layer <= self.depth: # for node, blist_next in enumerate(blists_next, n_node): for blist_next in blists_next: label = blist_next[0] node = id(blist_next) g.add_node(node, label=label, layer=i_layer+1) g.add_edge(node_current, node) if blist_next[1] is not None and len(blist_next[1]) > 0: args_next.append((node, label, (list(blist_next[1].values()) if i_layer < self.depth else blist_next[1]), i_layer+1)) for arg_next in args_next: add_nodes(g, *arg_next) else: node = id(blists_next) g.add_node(node, label=blists_next, layer=i_layer+1) g.add_edge(node_current, node) pass add_nodes(g, "root", "root", blists) plt.clf() labels = {node: attr['label'] for node, attr in g.nodes.items()} pos = nx.multipartite_layout(g, subset_key="layer") if show_labels: labels = nx.draw_networkx_labels(g,pos, labels) for t in labels.values(): t.set_rotation(30) nx.draw(g, pos, with_labels=False, node_size=5) # nx.draw(g) plt.show() pass if __name__ == '__main__': blist = BranchList((4, 4, 4, 4)) blist.add([0, 0, 0, 1], "A") blist.add([0, [1,2], 0, 1], "B") blist.add([0, 3, 0, 1], "C") blist.add([0, [0,1,2,3], 0, [1,2]], "D") blist.draw() blist.build() blist.draw() # blist = BranchList((3,3,3,4,3,3)) # blist.add([0, 0, 1, 0, 2, 3]) # blist.add([0, 0, 1, 2, 0, 1]) # blist.add([0, 0, 2, 0, 2, 3]) # blist.add([0, 0, [1,2], 0, [0,2], 3]) # blist.add([0,0,0,Any,0,0]) # blist.add([0,0,Any,[1,2],0,0]) # all = [] # bl = blist.blist # for _ in range(blist.depth): # all.append(bl[0]) # bl = bl[1][0] pass # if cython.compiled: # print(f"{sty.fg.blue}[BranchList]Info{sty.fg.rs}: {sty.fg.green}Cython{sty.fg.rs} version.") # else: # print(f"{sty.fg.cyan}[BranchList]Warning{sty.fg.cyan}: {sty.fg.red}Python{sty.fg.red} version.")
39.952489
176
0.541027
55a42e169dc80decca130737ef595fa32abc559e
17,254
py
Python
crabageprediction/venv/Lib/site-packages/setuptools/_distutils/sysconfig.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
3
2022-02-21T11:40:21.000Z
2022-02-27T07:37:31.000Z
crabageprediction/venv/Lib/site-packages/setuptools/_distutils/sysconfig.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
9
2022-02-21T11:44:01.000Z
2022-03-14T15:36:08.000Z
crabageprediction/venv/Lib/site-packages/setuptools/_distutils/sysconfig.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
1
2022-01-05T08:56:59.000Z
2022-01-05T08:56:59.000Z
"""Provide access to Python's configuration information. The specific configuration variables available depend heavily on the platform and configuration. The values may be retrieved using get_config_var(name), and the list of variables is available via get_config_vars().keys(). Additional convenience functions are also available. Written by: Fred L. Drake, Jr. Email: <fdrake@acm.org> """ import os import re import sys import sysconfig from .errors import DistutilsPlatformError from . import py39compat IS_PYPY = '__pypy__' in sys.builtin_module_names # These are needed in a couple of spots, so just compute them once. PREFIX = os.path.normpath(sys.prefix) EXEC_PREFIX = os.path.normpath(sys.exec_prefix) BASE_PREFIX = os.path.normpath(sys.base_prefix) BASE_EXEC_PREFIX = os.path.normpath(sys.base_exec_prefix) # Path to the base directory of the project. On Windows the binary may # live in project/PCbuild/win32 or project/PCbuild/amd64. # set for cross builds if "_PYTHON_PROJECT_BASE" in os.environ: project_base = os.path.abspath(os.environ["_PYTHON_PROJECT_BASE"]) else: if sys.executable: project_base = os.path.dirname(os.path.abspath(sys.executable)) else: # sys.executable can be empty if argv[0] has been changed and Python is # unable to retrieve the real program name project_base = os.getcwd() # python_build: (Boolean) if true, we're either building Python or # building an extension with an un-installed Python, so we use # different (hard-wired) directories. def _is_python_source_dir(d): for fn in ("Setup", "Setup.local"): if os.path.isfile(os.path.join(d, "Modules", fn)): return True return False _sys_home = getattr(sys, '_home', None) if os.name == 'nt': def _fix_pcbuild(d): if d and os.path.normcase(d).startswith( os.path.normcase(os.path.join(PREFIX, "PCbuild"))): return PREFIX return d project_base = _fix_pcbuild(project_base) _sys_home = _fix_pcbuild(_sys_home) def _python_build(): if _sys_home: return _is_python_source_dir(_sys_home) return _is_python_source_dir(project_base) python_build = _python_build() # Calculate the build qualifier flags if they are defined. Adding the flags # to the include and lib directories only makes sense for an installation, not # an in-source build. build_flags = '' try: if not python_build: build_flags = sys.abiflags except AttributeError: # It's not a configure-based build, so the sys module doesn't have # this attribute, which is fine. pass def get_python_version(): """Return a string containing the major and minor Python version, leaving off the patchlevel. Sample return values could be '1.5' or '2.2'. """ return '%d.%d' % sys.version_info[:2] def get_python_inc(plat_specific=0, prefix=None): """Return the directory containing installed Python header files. If 'plat_specific' is false (the default), this is the path to the non-platform-specific header files, i.e. Python.h and so on; otherwise, this is the path to platform-specific header files (namely pyconfig.h). If 'prefix' is supplied, use it instead of sys.base_prefix or sys.base_exec_prefix -- i.e., ignore 'plat_specific'. """ if prefix is None: prefix = plat_specific and BASE_EXEC_PREFIX or BASE_PREFIX if os.name == "posix": if IS_PYPY and sys.version_info < (3, 8): return os.path.join(prefix, 'include') if python_build: # Assume the executable is in the build directory. The # pyconfig.h file should be in the same directory. Since # the build directory may not be the source directory, we # must use "srcdir" from the makefile to find the "Include" # directory. if plat_specific: return _sys_home or project_base else: incdir = os.path.join(get_config_var('srcdir'), 'Include') return os.path.normpath(incdir) implementation = 'pypy' if IS_PYPY else 'python' python_dir = implementation + get_python_version() + build_flags return os.path.join(prefix, "include", python_dir) elif os.name == "nt": if python_build: # Include both the include and PC dir to ensure we can find # pyconfig.h return (os.path.join(prefix, "include") + os.path.pathsep + os.path.join(prefix, "PC")) return os.path.join(prefix, "include") else: raise DistutilsPlatformError( "I don't know where Python installs its C header files " "on platform '%s'" % os.name) # allow this behavior to be monkey-patched. Ref pypa/distutils#2. def _posix_lib(standard_lib, libpython, early_prefix, prefix): if standard_lib: return libpython else: return os.path.join(libpython, "site-packages") def get_python_lib(plat_specific=0, standard_lib=0, prefix=None): """Return the directory containing the Python library (standard or site additions). If 'plat_specific' is true, return the directory containing platform-specific modules, i.e. any module from a non-pure-Python module distribution; otherwise, return the platform-shared library directory. If 'standard_lib' is true, return the directory containing standard Python library modules; otherwise, return the directory for site-specific modules. If 'prefix' is supplied, use it instead of sys.base_prefix or sys.base_exec_prefix -- i.e., ignore 'plat_specific'. """ if IS_PYPY and sys.version_info < (3, 8): # PyPy-specific schema if prefix is None: prefix = PREFIX if standard_lib: return os.path.join(prefix, "lib-python", sys.version[0]) return os.path.join(prefix, 'site-packages') early_prefix = prefix if prefix is None: if standard_lib: prefix = plat_specific and BASE_EXEC_PREFIX or BASE_PREFIX else: prefix = plat_specific and EXEC_PREFIX or PREFIX if os.name == "posix": if plat_specific or standard_lib: # Platform-specific modules (any module from a non-pure-Python # module distribution) or standard Python library modules. libdir = getattr(sys, "platlibdir", "lib") else: # Pure Python libdir = "lib" implementation = 'pypy' if IS_PYPY else 'python' libpython = os.path.join(prefix, libdir, implementation + get_python_version()) return _posix_lib(standard_lib, libpython, early_prefix, prefix) elif os.name == "nt": if standard_lib: return os.path.join(prefix, "Lib") else: return os.path.join(prefix, "Lib", "site-packages") else: raise DistutilsPlatformError( "I don't know where Python installs its library " "on platform '%s'" % os.name) def customize_compiler(compiler): """Do any platform-specific customization of a CCompiler instance. Mainly needed on Unix, so we can plug in the information that varies across Unices and is stored in Python's Makefile. """ if compiler.compiler_type == "unix": if sys.platform == "darwin": # Perform first-time customization of compiler-related # config vars on OS X now that we know we need a compiler. # This is primarily to support Pythons from binary # installers. The kind and paths to build tools on # the user system may vary significantly from the system # that Python itself was built on. Also the user OS # version and build tools may not support the same set # of CPU architectures for universal builds. global _config_vars # Use get_config_var() to ensure _config_vars is initialized. if not get_config_var('CUSTOMIZED_OSX_COMPILER'): import _osx_support _osx_support.customize_compiler(_config_vars) _config_vars['CUSTOMIZED_OSX_COMPILER'] = 'True' (cc, cxx, cflags, ccshared, ldshared, shlib_suffix, ar, ar_flags) = \ get_config_vars( 'CC', 'CXX', 'CFLAGS', 'CCSHARED', 'LDSHARED', 'SHLIB_SUFFIX', 'AR', 'ARFLAGS') if 'CC' in os.environ: newcc = os.environ['CC'] if('LDSHARED' not in os.environ and ldshared.startswith(cc)): # If CC is overridden, use that as the default # command for LDSHARED as well ldshared = newcc + ldshared[len(cc):] cc = newcc if 'CXX' in os.environ: cxx = os.environ['CXX'] if 'LDSHARED' in os.environ: ldshared = os.environ['LDSHARED'] if 'CPP' in os.environ: cpp = os.environ['CPP'] else: cpp = cc + " -E" # not always if 'LDFLAGS' in os.environ: ldshared = ldshared + ' ' + os.environ['LDFLAGS'] if 'CFLAGS' in os.environ: cflags = cflags + ' ' + os.environ['CFLAGS'] ldshared = ldshared + ' ' + os.environ['CFLAGS'] if 'CPPFLAGS' in os.environ: cpp = cpp + ' ' + os.environ['CPPFLAGS'] cflags = cflags + ' ' + os.environ['CPPFLAGS'] ldshared = ldshared + ' ' + os.environ['CPPFLAGS'] if 'AR' in os.environ: ar = os.environ['AR'] if 'ARFLAGS' in os.environ: archiver = ar + ' ' + os.environ['ARFLAGS'] else: archiver = ar + ' ' + ar_flags cc_cmd = cc + ' ' + cflags compiler.set_executables( preprocessor=cpp, compiler=cc_cmd, compiler_so=cc_cmd + ' ' + ccshared, compiler_cxx=cxx, linker_so=ldshared, linker_exe=cc, archiver=archiver) if 'RANLIB' in os.environ and compiler.executables.get('ranlib', None): compiler.set_executables(ranlib=os.environ['RANLIB']) compiler.shared_lib_extension = shlib_suffix def get_config_h_filename(): """Return full pathname of installed pyconfig.h file.""" if python_build: if os.name == "nt": inc_dir = os.path.join(_sys_home or project_base, "PC") else: inc_dir = _sys_home or project_base return os.path.join(inc_dir, 'pyconfig.h') else: return sysconfig.get_config_h_filename() def get_makefile_filename(): """Return full pathname of installed Makefile from the Python build.""" return sysconfig.get_makefile_filename() def parse_config_h(fp, g=None): """Parse a config.h-style file. A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the second argument, it is used instead of a new dictionary. """ return sysconfig.parse_config_h(fp, vars=g) # Regexes needed for parsing Makefile (and similar syntaxes, # like old-style Setup files). _variable_rx = re.compile(r"([a-zA-Z][a-zA-Z0-9_]+)\s*=\s*(.*)") _findvar1_rx = re.compile(r"\$\(([A-Za-z][A-Za-z0-9_]*)\)") _findvar2_rx = re.compile(r"\${([A-Za-z][A-Za-z0-9_]*)}") def parse_makefile(fn, g=None): """Parse a Makefile-style file. A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the second argument, it is used instead of a new dictionary. """ from distutils.text_file import TextFile fp = TextFile( fn, strip_comments=1, skip_blanks=1, join_lines=1, errors="surrogateescape") if g is None: g = {} done = {} notdone = {} while True: line = fp.readline() if line is None: # eof break m = _variable_rx.match(line) if m: n, v = m.group(1, 2) v = v.strip() # `$$' is a literal `$' in make tmpv = v.replace('$$', '') if "$" in tmpv: notdone[n] = v else: try: v = int(v) except ValueError: # insert literal `$' done[n] = v.replace('$$', '$') else: done[n] = v # Variables with a 'PY_' prefix in the makefile. These need to # be made available without that prefix through sysconfig. # Special care is needed to ensure that variable expansion works, even # if the expansion uses the name without a prefix. renamed_variables = ('CFLAGS', 'LDFLAGS', 'CPPFLAGS') # do variable interpolation here while notdone: for name in list(notdone): value = notdone[name] m = _findvar1_rx.search(value) or _findvar2_rx.search(value) if m: n = m.group(1) found = True if n in done: item = str(done[n]) elif n in notdone: # get it on a subsequent round found = False elif n in os.environ: # do it like make: fall back to environment item = os.environ[n] elif n in renamed_variables: if name.startswith('PY_') and \ name[3:] in renamed_variables: item = "" elif 'PY_' + n in notdone: found = False else: item = str(done['PY_' + n]) else: done[n] = item = "" if found: after = value[m.end():] value = value[:m.start()] + item + after if "$" in after: notdone[name] = value else: try: value = int(value) except ValueError: done[name] = value.strip() else: done[name] = value del notdone[name] if name.startswith('PY_') \ and name[3:] in renamed_variables: name = name[3:] if name not in done: done[name] = value else: # bogus variable reference; just drop it since we can't deal del notdone[name] fp.close() # strip spurious spaces for k, v in done.items(): if isinstance(v, str): done[k] = v.strip() # save the results in the global dictionary g.update(done) return g def expand_makefile_vars(s, vars): """Expand Makefile-style variables -- "${foo}" or "$(foo)" -- in 'string' according to 'vars' (a dictionary mapping variable names to values). Variables not present in 'vars' are silently expanded to the empty string. The variable values in 'vars' should not contain further variable expansions; if 'vars' is the output of 'parse_makefile()', you're fine. Returns a variable-expanded version of 's'. """ # This algorithm does multiple expansion, so if vars['foo'] contains # "${bar}", it will expand ${foo} to ${bar}, and then expand # ${bar}... and so forth. This is fine as long as 'vars' comes from # 'parse_makefile()', which takes care of such expansions eagerly, # according to make's variable expansion semantics. while True: m = _findvar1_rx.search(s) or _findvar2_rx.search(s) if m: (beg, end) = m.span() s = s[0:beg] + vars.get(m.group(1)) + s[end:] else: break return s _config_vars = None def get_config_vars(*args): """With no arguments, return a dictionary of all configuration variables relevant for the current platform. Generally this includes everything needed to build extensions and install both pure modules and extensions. On Unix, this means every variable defined in Python's installed Makefile; on Windows it's a much smaller set. With arguments, return a list of values that result from looking up each argument in the configuration variable dictionary. """ global _config_vars if _config_vars is None: _config_vars = sysconfig.get_config_vars().copy() py39compat.add_ext_suffix(_config_vars) if args: vals = [] for name in args: vals.append(_config_vars.get(name)) return vals else: return _config_vars def get_config_var(name): """Return the value of a single variable using the dictionary returned by 'get_config_vars()'. Equivalent to get_config_vars().get(name) """ if name == 'SO': import warnings warnings.warn( 'SO is deprecated, use EXT_SUFFIX', DeprecationWarning, 2) return get_config_vars().get(name)
35.871102
79
0.598818
160aef27d6e6330e7a8bdafe4096cecf8927a1d0
2,551
py
Python
withings_api/const.py
ronaldheft/python_withings_api
bb23e973c351808e2287056bad4a900c325f178f
[ "MIT" ]
86
2019-10-06T17:20:21.000Z
2022-03-28T09:57:35.000Z
withings_api/const.py
ronaldheft/python_withings_api
bb23e973c351808e2287056bad4a900c325f178f
[ "MIT" ]
59
2019-10-19T21:14:26.000Z
2022-03-31T19:16:33.000Z
withings_api/const.py
ronaldheft/python_withings_api
bb23e973c351808e2287056bad4a900c325f178f
[ "MIT" ]
29
2019-10-11T13:55:42.000Z
2022-03-23T10:25:52.000Z
"""Constant values.""" from typing_extensions import Final LOG_NAMESPACE: Final = "python_withings_api" STATUS_SUCCESS: Final = (0,) STATUS_AUTH_FAILED: Final = (100, 101, 102, 200, 401) STATUS_INVALID_PARAMS: Final = ( 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 216, 217, 218, 220, 221, 223, 225, 227, 228, 229, 230, 234, 235, 236, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 260, 261, 262, 263, 264, 265, 266, 267, 271, 272, 275, 276, 283, 284, 285, 286, 287, 288, 290, 293, 294, 295, 297, 300, 301, 302, 303, 304, 321, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 380, 381, 382, 400, 501, 502, 503, 504, 505, 506, 509, 510, 511, 523, 532, 3017, 3018, 3019, ) STATUS_UNAUTHORIZED: Final = (214, 277, 2553, 2554, 2555) STATUS_ERROR_OCCURRED: Final = ( 215, 219, 222, 224, 226, 231, 233, 237, 253, 255, 256, 257, 258, 259, 268, 269, 270, 273, 274, 278, 279, 280, 281, 282, 289, 291, 292, 296, 298, 305, 306, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 370, 371, 372, 373, 374, 375, 383, 391, 402, 516, 517, 518, 519, 520, 521, 525, 526, 527, 528, 529, 530, 531, 533, 602, 700, 1051, 1052, 1053, 1054, 2551, 2552, 2556, 2557, 2558, 2559, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3020, 3021, 3022, 3023, 3024, 5000, 5001, 5005, 5006, 6000, 6010, 6011, 9000, 10000, ) STATUS_TIMEOUT: Final = (522,) STATUS_BAD_STATE: Final = (524,) STATUS_TOO_MANY_REQUESTS: Final = (601,)
10.123016
57
0.411995
582894324dfcc54a57b923f6f86dfa483050d0f3
6,461
py
Python
qmcpack_fs_reader.py
Paul-St-Young/solid_hydrogen
dd218cd431a283dc1a371a0af5696074d63b8c6c
[ "MIT" ]
2
2020-08-13T23:32:03.000Z
2021-03-28T01:14:06.000Z
qmcpack_fs_reader.py
Paul-St-Young/solid_hydrogen
dd218cd431a283dc1a371a0af5696074d63b8c6c
[ "MIT" ]
null
null
null
qmcpack_fs_reader.py
Paul-St-Young/solid_hydrogen
dd218cd431a283dc1a371a0af5696074d63b8c6c
[ "MIT" ]
null
null
null
#!/usr/bin/env python import numpy as np import scipy.interpolate as interp from qharv.reel import ascii_out def get_dsk_amat(floc): """ extract A matrix from qmcfinitesize output k->0 behavior of 3D structure factor S(k) is fitted to a Gaussian S(k) = k^T A k Args: floc (str): location of qmcfinitesize output Returns: np.array: A matrix (3x3) """ mm = ascii_out.read(floc) amat = np.zeros([3,3]) # step 1: fill upper triangular part of amat xyzm = {'x':0,'y':1,'z':2} # map x,y,z to index keyl = ['a_xx','a_yy','a_zz','a_xy','a_xz','a_yz'] for key in keyl: # order of key matters! val = ascii_out.name_sep_val(mm,key) xyz_xyz = key.split('_')[-1] idx = tuple([xyzm[xyz] for xyz in xyz_xyz]) amat[idx] = val # end for # step 2: symmetrize amat amat[(1,0)] = amat[(0,1)] amat[(2,1)] = amat[(1,2)] amat[(2,0)] = amat[(0,2)] return amat # end def get_dsk_amat def get_volume(fout): mm = ascii_out.read(fout) omega = ascii_out.name_sep_val(mm, 'Vol', pos=1) return omega def get_data_block(floc, name, nhead=0): start_tag = '#'+name + '_START#' stop_tag = '#'+name + '_STOP#' mm = ascii_out.read(floc) text = ascii_out.block_text(mm,start_tag,stop_tag) lines= text.split('\n')[nhead:-1] # empty after the last \n data = np.array( [map(float,line.split()) for line in lines] ,dtype=float) return data # end def get_data_block def add_mixed_vint(df2): """ add mixed vint (\int vk Sk) column to extrapolated entries df2 must have columns ['timestep','vint'], there must be a timestep=0 entry, and a timestep > 0 entry. Args: df2 (pd.DataFrame): DMC database Returns: None """ df2['vmixed'] = np.nan for subdir in df2.subdir.unique(): sel = (df2.subdir==subdir) ts0_sel = (df2.timestep==0) # !!!! assume smallest non-zero timestep is best DMC min_ts = df2.loc[sel&(~ts0_sel),'timestep'].min() ts1_sel = (df2.timestep==min_ts) # get mixed vint entry entry = df2.loc[sel&(ts1_sel),'vint'] assert len(entry) == 1 vmixed = entry.values[0] # transfer to pure entry df2.loc[ts0_sel,'vmixed'] = vmixed # end for # end def add_mixed_vint # ================= reproduce QMCPACK implementation ================= # # step 1: get long-range Coulomb pair potential vk def get_vk(fout): """ long-range coulomb pair potential """ data = get_data_block(fout, 'VK') vkx, vky = data.T # QMCPACK vk is divided by volume, undo! omega = get_volume(fout) vky *= omega return vkx, vky def get_fvk(fout): """ interpolated long-range coulomb pair potential """ vkx, vky = get_vk(fout) tck = interp.splrep(vkx, vky) fvk = lambda k:interp.splev(k, tck) return fvk # step 2: get raw static structure factor S(k) def get_dsk(fjson, obs='dsk'): """ raw structure factor """ import pandas as pd df = pd.read_json(fjson) kvecs = np.array(df.loc[0,'kvecs']) skm = np.array(df.loc[0,'%s_mean'%obs]) ske = np.array(df.loc[0,'%s_error'%obs]) return kvecs, skm, ske # step 3: get sum def get_vsum(vk, skm, omega): """ skm should contain S(k) values at ALL supercell reciprocal vectors used vk should be the same length as skm and NOT divided by volume omega """ summand = 0.5*vk*skm vsum = 1/omega* summand.sum() return vsum def get_qmcpack_vsum(fjson, fout): kvecs, skm, ske = get_dsk(fjson) kmags = np.linalg.norm(kvecs, axis=1) fvk = get_fvk(fout) vk = fvk(kmags) omega = get_volume(fout) vsum = get_vsum(vk, skm, omega) return vsum # step 4: get sphericall averaged Savg(k) spline def get_fsk(fout): """ interpolated spherically-averaged structure factor """ data = get_data_block(fout, 'SK_SPLINE') skx, sky = data.T tck = interp.splrep(skx, sky) fsk = lambda k:interp.splev(k, tck) return fsk # step 4: get 1D integrand def get_intx_inty(fout): fsk = get_fsk(fout) vkx, vky = get_vk(fout) myinty = 0.5*vkx**2*vky*fsk(vkx) return vkx, myinty # step 5: interpolate 1D integrand def get_fint(fout): intx, inty = get_intx_inty(fout) padx = np.array([0.0]) pady = np.array([0.0]*len(padx)) myx = np.concatenate([padx, intx]) myy = np.concatenate([pady, inty]) tck = interp.splrep(myx, myy) fint = lambda k:interp.splev(k, tck) return fint # step 6: get integral def get_vint(fout): from scipy.integrate import quad vkx, vky = get_vk(fout) fint = get_fint(fout) intnorm = 1./(2*np.pi**2) intval = quad(fint,0,max(vkx))[0] vint = intnorm * intval return vint
35.894444
80
0.456895
62e57492647caf43307cfad6671891bbb2b33cd4
679
py
Python
smartroads/forms.py
30Meridian/RozumneMistoSnapshot
67a83b3908674d01992561dfb37596e395b4d482
[ "BSD-3-Clause" ]
null
null
null
smartroads/forms.py
30Meridian/RozumneMistoSnapshot
67a83b3908674d01992561dfb37596e395b4d482
[ "BSD-3-Clause" ]
null
null
null
smartroads/forms.py
30Meridian/RozumneMistoSnapshot
67a83b3908674d01992561dfb37596e395b4d482
[ "BSD-3-Clause" ]
null
null
null
from .models import SmartroadsIssues,SmartroadsStatuses from django import forms from ckeditor_uploader.widgets import CKEditorUploadingWidget class Add(forms.ModelForm): class Meta: model = SmartroadsIssues fields = ['title','description','resolution', 'what_to_do', 'cost', 'done_date','lon','lat'] widgets = { 'title': forms.TextInput(attrs={'placeholder': 'Введіть назву зони. Не більше 150 символів. Напр. "Зона 51. Вул. Сагайдачного - набережна Челночна"', 'class': 'form-control input-lg'}, ), 'text': CKEditorUploadingWidget(), 'lon': forms.HiddenInput(), 'lat': forms.HiddenInput() }
42.4375
199
0.659794
039f826fa2fe1ab5573356f2c19c31d4f8aa3022
2,628
py
Python
src/wechaty_puppet_itchat/config.py
wj-Mcat/python-wechaty-puppet-itchat
f53071cef855c10e521b79ef9ae9931a1626948d
[ "Apache-2.0" ]
13
2021-09-20T12:11:09.000Z
2022-02-05T06:04:01.000Z
src/wechaty_puppet_itchat/config.py
wj-Mcat/python-wechaty-puppet-itchat
f53071cef855c10e521b79ef9ae9931a1626948d
[ "Apache-2.0" ]
33
2021-11-01T20:23:55.000Z
2022-03-31T20:31:50.000Z
src/wechaty_puppet_itchat/config.py
fangjiyuan/python-wechaty-puppet-itchat
b1435e4725645579d562df6fc4717330b6bac901
[ "Apache-2.0" ]
4
2021-09-20T10:16:03.000Z
2022-03-09T09:44:59.000Z
""" Python Wechaty - https://github.com/wechaty/python-wechaty Authors: Huan LI (李卓桓) <https://github.com/huan> Jingjing WU (吴京京) <https://github.com/wj-Mcat> 2020-now @ Copyright Wechaty Licensed under the Apache License, Version 2.0 (the 'License'); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import platform from wechaty_puppet import get_logger # type: ignore VERSION = '1.4.1' BASE_URL = 'https://login.weixin.qq.com' OS = platform.system() # Windows, Linux, Darwin DIR = os.getcwd() DEFAULT_QR = 'QR.png' TIMEOUT = (10, 60) USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36' UOS_PATCH_CLIENT_VERSION = '2.0.0' UOS_PATCH_EXTSPAM = 'Gp8ICJkIEpkICggwMDAwMDAwMRAGGoAI1GiJSIpeO1RZTq9QBKsRbPJdi84ropi16EYI10WB6g74sGmRwSNXjPQnYUKYotKkvLGpshucCaeWZMOylnc6o2AgDX9grhQQx7fm2DJRTyuNhUlwmEoWhjoG3F0ySAWUsEbH3bJMsEBwoB//0qmFJob74ffdaslqL+IrSy7LJ76/G5TkvNC+J0VQkpH1u3iJJs0uUYyLDzdBIQ6Ogd8LDQ3VKnJLm4g/uDLe+G7zzzkOPzCjXL+70naaQ9medzqmh+/SmaQ6uFWLDQLcRln++wBwoEibNpG4uOJvqXy+ql50DjlNchSuqLmeadFoo9/mDT0q3G7o/80P15ostktjb7h9bfNc+nZVSnUEJXbCjTeqS5UYuxn+HTS5nZsPVxJA2O5GdKCYK4x8lTTKShRstqPfbQpplfllx2fwXcSljuYi3YipPyS3GCAqf5A7aYYwJ7AvGqUiR2SsVQ9Nbp8MGHET1GxhifC692APj6SJxZD3i1drSYZPMMsS9rKAJTGz2FEupohtpf2tgXm6c16nDk/cw+C7K7me5j5PLHv55DFCS84b06AytZPdkFZLj7FHOkcFGJXitHkX5cgww7vuf6F3p0yM/W73SoXTx6GX4G6Hg2rYx3O/9VU2Uq8lvURB4qIbD9XQpzmyiFMaytMnqxcZJcoXCtfkTJ6pI7a92JpRUvdSitg967VUDUAQnCXCM/m0snRkR9LtoXAO1FUGpwlp1EfIdCZFPKNnXMeqev0j9W9ZrkEs9ZWcUEexSj5z+dKYQBhIICviYUQHVqBTZSNy22PlUIeDeIs11j7q4t8rD8LPvzAKWVqXE+5lS1JPZkjg4y5hfX1Dod3t96clFfwsvDP6xBSe1NBcoKbkyGxYK0UvPGtKQEE0Se2zAymYDv41klYE9s+rxp8e94/H8XhrL9oGm8KWb2RmYnAE7ry9gd6e8ZuBRIsISlJAE/e8y8xFmP031S6Lnaet6YXPsFpuFsdQs535IjcFd75hh6DNMBYhSfjv456cvhsb99+fRw/KVZLC3yzNSCbLSyo9d9BI45Plma6V8akURQA/qsaAzU0VyTIqZJkPDTzhuCl92vD2AD/QOhx6iwRSVPAxcRFZcWjgc2wCKh+uCYkTVbNQpB9B90YlNmI3fWTuUOUjwOzQRxJZj11NsimjOJ50qQwTTFj6qQvQ1a/I+MkTx5UO+yNHl718JWcR3AXGmv/aa9rD1eNP8ioTGlOZwPgmr2sor2iBpKTOrB83QgZXP+xRYkb4zVC+LoAXEoIa1+zArywlgREer7DLePukkU6wHTkuSaF+ge5Of1bXuU4i938WJHj0t3D8uQxkJvoFi/EYN/7u2P1zGRLV4dHVUsZMGCCtnO6BBigFMAA=' CACHE_DIR = '.wechaty' LOGIN_TIMEOUT = 60
69.157895
1,434
0.865677
58e42161d06dab838e684dc420109713afabc229
5,878
py
Python
hs_file_types/utils.py
ResearchSoftwareInstitute/MyHPOM
2d48fe5ac8d21173b1685eb33059bb391fe24414
[ "BSD-3-Clause" ]
1
2018-09-17T13:07:29.000Z
2018-09-17T13:07:29.000Z
hs_file_types/utils.py
ResearchSoftwareInstitute/MyHPOM
2d48fe5ac8d21173b1685eb33059bb391fe24414
[ "BSD-3-Clause" ]
100
2017-08-01T23:48:04.000Z
2018-04-03T13:17:27.000Z
hs_file_types/utils.py
ResearchSoftwareInstitute/MyHPOM
2d48fe5ac8d21173b1685eb33059bb391fe24414
[ "BSD-3-Clause" ]
1
2018-06-28T13:19:58.000Z
2018-06-28T13:19:58.000Z
import json from dateutil import parser from operator import lt, gt def update_resource_coverage_element(resource): # update resource spatial coverage based on coverage metadata from the # logical files in the resource spatial_coverages = [lf.metadata.spatial_coverage for lf in resource.logical_files if lf.metadata.spatial_coverage is not None] bbox_limits = {'box': {'northlimit': 'northlimit', 'southlimit': 'southlimit', 'eastlimit': 'eastlimit', 'westlimit': 'westlimit'}, 'point': {'northlimit': 'north', 'southlimit': 'north', 'eastlimit': 'east', 'westlimit': 'east'} } def set_coverage_data(res_coverage_value, lfo_coverage_element, box_limits): comparison_operator = {'northlimit': lt, 'southlimit': gt, 'eastlimit': lt, 'westlimit': gt} for key in comparison_operator.keys(): if comparison_operator[key](res_coverage_value[key], lfo_coverage_element.value[box_limits[key]]): res_coverage_value[key] = lfo_coverage_element.value[box_limits[key]] cov_type = "point" bbox_value = {'northlimit': -90, 'southlimit': 90, 'eastlimit': -180, 'westlimit': 180, 'projection': 'WGS 84 EPSG:4326', 'units': "Decimal degrees"} if len(spatial_coverages) > 1: # check if one of the coverage is of type box if any(sp_cov.type == 'box' for sp_cov in spatial_coverages): cov_type = 'box' else: # check if the coverages represent different locations unique_lats = set([sp_cov.value['north'] for sp_cov in spatial_coverages]) unique_lons = set([sp_cov.value['east'] for sp_cov in spatial_coverages]) if len(unique_lats) == 1 and len(unique_lons) == 1: cov_type = 'point' else: cov_type = 'box' if cov_type == 'point': sp_cov = spatial_coverages[0] bbox_value = dict() bbox_value['projection'] = 'WGS 84 EPSG:4326' bbox_value['units'] = 'Decimal degrees' bbox_value['north'] = sp_cov.value['north'] bbox_value['east'] = sp_cov.value['east'] else: for sp_cov in spatial_coverages: if sp_cov.type == "box": box_limits = bbox_limits['box'] set_coverage_data(bbox_value, sp_cov, box_limits) else: # point type coverage box_limits = bbox_limits['point'] set_coverage_data(bbox_value, sp_cov, box_limits) elif len(spatial_coverages) == 1: sp_cov = spatial_coverages[0] if sp_cov.type == "box": cov_type = 'box' bbox_value['projection'] = 'WGS 84 EPSG:4326' bbox_value['units'] = 'Decimal degrees' bbox_value['northlimit'] = sp_cov.value['northlimit'] bbox_value['eastlimit'] = sp_cov.value['eastlimit'] bbox_value['southlimit'] = sp_cov.value['southlimit'] bbox_value['westlimit'] = sp_cov.value['westlimit'] else: # point type coverage cov_type = "point" bbox_value = dict() bbox_value['projection'] = 'WGS 84 EPSG:4326' bbox_value['units'] = 'Decimal degrees' bbox_value['north'] = sp_cov.value['north'] bbox_value['east'] = sp_cov.value['east'] spatial_cov = resource.metadata.coverages.all().exclude(type='period').first() if len(spatial_coverages) > 0: if spatial_cov: spatial_cov.type = cov_type place_name = spatial_cov.value.get('name', None) if place_name is not None: bbox_value['name'] = place_name spatial_cov._value = json.dumps(bbox_value) spatial_cov.save() else: resource.metadata.create_element("coverage", type=cov_type, value=bbox_value) else: # delete spatial coverage element for the resource since the content files don't have any # spatial coverage if spatial_cov: spatial_cov.delete() # update resource temporal coverage temporal_coverages = [lf.metadata.temporal_coverage for lf in resource.logical_files if lf.metadata.temporal_coverage is not None] date_data = {'start': None, 'end': None} def set_date_value(date_data, coverage_element, key): comparison_operator = gt if key == 'start' else lt if date_data[key] is None: date_data[key] = coverage_element.value[key] else: if comparison_operator(parser.parse(date_data[key]), parser.parse(coverage_element.value[key])): date_data[key] = coverage_element.value[key] for temp_cov in temporal_coverages: start_date = parser.parse(temp_cov.value['start']) end_date = parser.parse(temp_cov.value['end']) temp_cov.value['start'] = start_date.strftime('%m/%d/%Y') temp_cov.value['end'] = end_date.strftime('%m/%d/%Y') set_date_value(date_data, temp_cov, 'start') set_date_value(date_data, temp_cov, 'end') temp_cov = resource.metadata.coverages.all().filter(type='period').first() if date_data['start'] is not None and date_data['end'] is not None: if temp_cov: temp_cov._value = json.dumps(date_data) temp_cov.save() else: resource.metadata.create_element("coverage", type='period', value=date_data) elif temp_cov: # delete the temporal coverage for the resource since the content files don't have # temporal coverage temp_cov.delete()
45.565891
97
0.595441
0a02680988c8e42a4508d6fdc23e52b1377bbae7
715
py
Python
projects/migrations/0005_auto_20190907_1750.py
TriedAngle/project_planner
2d2ce91bad111ff1f2c192f060099cb7036ee86d
[ "Apache-2.0" ]
null
null
null
projects/migrations/0005_auto_20190907_1750.py
TriedAngle/project_planner
2d2ce91bad111ff1f2c192f060099cb7036ee86d
[ "Apache-2.0" ]
9
2021-03-09T16:58:51.000Z
2022-03-02T05:29:41.000Z
projects/migrations/0005_auto_20190907_1750.py
strobl-net/project_planner
2d2ce91bad111ff1f2c192f060099cb7036ee86d
[ "Apache-2.0" ]
1
2020-04-07T05:56:06.000Z
2020-04-07T05:56:06.000Z
# Generated by Django 2.2.5 on 2019-09-07 17:50 import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0004_project_members2'), ] operations = [ migrations.RemoveField( model_name='project', name='members', ), migrations.RemoveField( model_name='project', name='members2', ), migrations.AddField( model_name='project', name='member_ids', field=django.contrib.postgres.fields.ArrayField(base_field=models.IntegerField(), blank=True, null=True, size=None), ), ]
25.535714
128
0.598601
7c8dc0e930700a03e71ece7eb9646df36c18b9d8
44
py
Python
lgbn/__init__.py
DavideA/lgbn
0b2a78da954c5726887759249dbf8be21f5154ea
[ "MIT" ]
1
2019-10-05T14:34:54.000Z
2019-10-05T14:34:54.000Z
lgbn/__init__.py
DavideA/lgbn
0b2a78da954c5726887759249dbf8be21f5154ea
[ "MIT" ]
1
2019-10-07T17:11:51.000Z
2019-10-07T17:11:51.000Z
lgbn/__init__.py
DavideA/lgbn
0b2a78da954c5726887759249dbf8be21f5154ea
[ "MIT" ]
1
2019-10-07T17:12:21.000Z
2019-10-07T17:12:21.000Z
from bayesian_network import BayesianNetwork
44
44
0.931818
9c5fa63809d198eb0cb8b8c67833c5fde4771dfc
5,777
py
Python
iaws/yolov5/hubconf.py
nowage/ImgAugWithSR
eed90d462d1171f0be809eaf4d54a78fc2cd3893
[ "MIT" ]
null
null
null
iaws/yolov5/hubconf.py
nowage/ImgAugWithSR
eed90d462d1171f0be809eaf4d54a78fc2cd3893
[ "MIT" ]
null
null
null
iaws/yolov5/hubconf.py
nowage/ImgAugWithSR
eed90d462d1171f0be809eaf4d54a78fc2cd3893
[ "MIT" ]
null
null
null
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ Usage: import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s') """ import torch def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes autoshape (bool): apply YOLOv5 .autoshape() wrapper to model verbose (bool): print all information to screen device (str, torch.device, None): device to use for model parameters Returns: YOLOv5 pytorch model """ from pathlib import Path from models.yolo import Model from models.experimental import attempt_load from utils.general import check_requirements, set_logging from utils.downloads import attempt_download from utils.torch_utils import select_device file = Path(__file__).resolve() check_requirements(requirements=file.parent / 'requirements.txt', exclude=('tensorboard', 'thop', 'opencv-python')) set_logging(verbose=verbose) save_dir = Path('') if str(name).endswith('.pt') else file.parent path = (save_dir / name).with_suffix('.pt') # checkpoint path try: device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device) if pretrained and channels == 3 and classes == 80: model = attempt_load(path, map_location=device) # download/load FP32 model else: cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path model = Model(cfg, channels, classes) # create model if pretrained: ckpt = torch.load(attempt_download(path), map_location=device) # load msd = model.state_dict() # model state_dict csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter model.load_state_dict(csd, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute if autoshape: model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS return model.to(device) except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url raise Exception(s) from e def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None): # YOLOv5 custom or local model return _create(path, autoshape=autoshape, verbose=verbose, device=device) def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-small model https://github.com/ultralytics/yolov5 return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device) def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-medium model https://github.com/ultralytics/yolov5 return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device) def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-large model https://github.com/ultralytics/yolov5 return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device) def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device) def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device) def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device) def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device) def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device) if __name__ == '__main__': model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained # model = custom(path='path/to/model.pt') # custom # Verify inference import cv2 import numpy as np from PIL import Image from pathlib import Path imgs = ['data/images/zidane.jpg', # filename Path('data/images/zidane.jpg'), # Path 'https://ultralytics.com/images/zidane.jpg', # URI cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV Image.open('data/images/bus.jpg'), # PIL np.zeros((320, 640, 3))] # numpy results = model(imgs) # batched inference results.print() results.save()
43.43609
120
0.682707
d2528507e624eff864aa4e531c0a5132e1f1261a
5,301
py
Python
tests/commands/gc_test.py
katrinleinweber/pre-commit
a889f0bfd5d39042db9f834c6259ef57df1807b2
[ "MIT" ]
null
null
null
tests/commands/gc_test.py
katrinleinweber/pre-commit
a889f0bfd5d39042db9f834c6259ef57df1807b2
[ "MIT" ]
null
null
null
tests/commands/gc_test.py
katrinleinweber/pre-commit
a889f0bfd5d39042db9f834c6259ef57df1807b2
[ "MIT" ]
null
null
null
import os import pre_commit.constants as C from pre_commit import git from pre_commit.clientlib import load_config from pre_commit.commands.autoupdate import autoupdate from pre_commit.commands.gc import gc from pre_commit.repository import all_hooks from testing.fixtures import make_config_from_repo from testing.fixtures import make_repo from testing.fixtures import modify_config from testing.fixtures import sample_local_config from testing.fixtures import sample_meta_config from testing.fixtures import write_config from testing.util import git_commit def _repo_count(store): return len(store.select_all_repos()) def _config_count(store): return len(store.select_all_configs()) def _remove_config_assert_cleared(store, cap_out): os.remove(C.CONFIG_FILE) assert not gc(store) assert _config_count(store) == 0 assert _repo_count(store) == 0 assert cap_out.get().splitlines()[-1] == '1 repo(s) removed.' def test_gc(tempdir_factory, store, in_git_dir, cap_out): path = make_repo(tempdir_factory, 'script_hooks_repo') old_rev = git.head_rev(path) git_commit(cwd=path) write_config('.', make_config_from_repo(path, rev=old_rev)) store.mark_config_used(C.CONFIG_FILE) # update will clone both the old and new repo, making the old one gc-able assert not autoupdate(C.CONFIG_FILE, store, tags_only=False) assert _config_count(store) == 1 assert _repo_count(store) == 2 assert not gc(store) assert _config_count(store) == 1 assert _repo_count(store) == 1 assert cap_out.get().splitlines()[-1] == '1 repo(s) removed.' _remove_config_assert_cleared(store, cap_out) def test_gc_repo_not_cloned(tempdir_factory, store, in_git_dir, cap_out): path = make_repo(tempdir_factory, 'script_hooks_repo') write_config('.', make_config_from_repo(path)) store.mark_config_used(C.CONFIG_FILE) assert _config_count(store) == 1 assert _repo_count(store) == 0 assert not gc(store) assert _config_count(store) == 1 assert _repo_count(store) == 0 assert cap_out.get().splitlines()[-1] == '0 repo(s) removed.' def test_gc_meta_repo_does_not_crash(store, in_git_dir, cap_out): write_config('.', sample_meta_config()) store.mark_config_used(C.CONFIG_FILE) assert not gc(store) assert cap_out.get().splitlines()[-1] == '0 repo(s) removed.' def test_gc_local_repo_does_not_crash(store, in_git_dir, cap_out): write_config('.', sample_local_config()) store.mark_config_used(C.CONFIG_FILE) assert not gc(store) assert cap_out.get().splitlines()[-1] == '0 repo(s) removed.' def test_gc_unused_local_repo_with_env(store, in_git_dir, cap_out): config = { 'repo': 'local', 'hooks': [{ 'id': 'flake8', 'name': 'flake8', 'entry': 'flake8', # a `language: python` local hook will create an environment 'types': ['python'], 'language': 'python', }], } write_config('.', config) store.mark_config_used(C.CONFIG_FILE) # this causes the repositories to be created all_hooks(load_config(C.CONFIG_FILE), store) assert _config_count(store) == 1 assert _repo_count(store) == 1 assert not gc(store) assert _config_count(store) == 1 assert _repo_count(store) == 1 assert cap_out.get().splitlines()[-1] == '0 repo(s) removed.' _remove_config_assert_cleared(store, cap_out) def test_gc_config_with_missing_hook( tempdir_factory, store, in_git_dir, cap_out, ): path = make_repo(tempdir_factory, 'script_hooks_repo') write_config('.', make_config_from_repo(path)) store.mark_config_used(C.CONFIG_FILE) # to trigger a clone all_hooks(load_config(C.CONFIG_FILE), store) with modify_config() as config: # add a hook which does not exist, make sure we don't crash config['repos'][0]['hooks'].append({'id': 'does-not-exist'}) assert _config_count(store) == 1 assert _repo_count(store) == 1 assert not gc(store) assert _config_count(store) == 1 assert _repo_count(store) == 1 assert cap_out.get().splitlines()[-1] == '0 repo(s) removed.' _remove_config_assert_cleared(store, cap_out) def test_gc_deletes_invalid_configs(store, in_git_dir, cap_out): config = {'i am': 'invalid'} write_config('.', config) store.mark_config_used(C.CONFIG_FILE) assert _config_count(store) == 1 assert not gc(store) assert _config_count(store) == 0 assert cap_out.get().splitlines()[-1] == '0 repo(s) removed.' def test_invalid_manifest_gcd(tempdir_factory, store, in_git_dir, cap_out): # clean up repos from old pre-commit versions path = make_repo(tempdir_factory, 'script_hooks_repo') write_config('.', make_config_from_repo(path)) store.mark_config_used(C.CONFIG_FILE) # trigger a clone assert not autoupdate(C.CONFIG_FILE, store, tags_only=False) # we'll "break" the manifest to simulate an old version clone (_, _, path), = store.select_all_repos() os.remove(os.path.join(path, C.MANIFEST_FILE)) assert _config_count(store) == 1 assert _repo_count(store) == 1 assert not gc(store) assert _config_count(store) == 1 assert _repo_count(store) == 0 assert cap_out.get().splitlines()[-1] == '1 repo(s) removed.'
33.13125
77
0.7093
3a7b84f6ada759868ecdb5da7f273822bd3c445a
23,109
py
Python
nuitka/plugins/PluginBase.py
timgates42/Nuitka
536f39e37d8657ec750304bb1a93ccb19d1942af
[ "Apache-2.0" ]
1
2020-12-20T19:01:50.000Z
2020-12-20T19:01:50.000Z
nuitka/plugins/PluginBase.py
timgates42/Nuitka
536f39e37d8657ec750304bb1a93ccb19d1942af
[ "Apache-2.0" ]
1
2021-01-05T09:01:31.000Z
2021-01-05T09:01:31.000Z
nuitka/plugins/PluginBase.py
timgates42/Nuitka
536f39e37d8657ec750304bb1a93ccb19d1942af
[ "Apache-2.0" ]
null
null
null
# Copyright 2020, Kay Hayen, mailto:kay.hayen@gmail.com # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Plugins: Welcome to Nuitka! This is your shortest way to become part of it. This is to provide the base class for all plug-ins. Some of which are part of proper Nuitka, and some of which are waiting to be created and submitted for inclusion by you. The base class will serve as documentation. And it will point to examples of it being used. """ import os import shutil import sys from nuitka import Options, OutputDirectories from nuitka.Errors import NuitkaPluginError from nuitka.ModuleRegistry import addUsedModule from nuitka.SourceCodeReferences import fromFilename from nuitka.Tracing import plugins_logger from nuitka.utils.FileOperations import putTextFileContents, relpath from nuitka.utils.ModuleNames import ModuleName pre_modules = {} post_modules = {} warned_unused_plugins = set() class NuitkaPluginBase(object): """Nuitka base class for all plug-ins. Derive your plugin from "NuitkaPluginBase" please. For instructions, see https://github.com/Nuitka/Nuitka/blob/orsiris/UserPlugin-Creation.rst Plugins allow to adapt Nuitka's behaviour in a number of ways as explained below at the individual methods. It is used to deal with special requirements some packages may have (e.g. PyQt and tkinter), data files to be included (e.g. certifi), inserting hidden code, coping with otherwise undetectable needs, or issuing messages in certain situations. A plugin in general must be enabled to be used by Nuitka. This happens by specifying "--plugin-enable" (standard plugins) or by "--user-plugin" (user plugins) in the Nuitka command line. However, some plugins are always enabled and invisible to the user. Nuitka comes with a number of "standard" plugins to be enabled as needed. What they are can be displayed using "nuitka --plugin-list file.py" (filename required but ignored). User plugins may be specified (and implicitly enabled) using their Python script pathname. """ # Standard plugins must provide this as a unique string which Nuitka # then uses to identify them. # # User plugins are identified by their path and implicitly activated. # They however still need to specify some arbitrary non-blank string here, # which does not equal the name of an inactivated standard plugin. # For working with options, user plugins must set this variable to # the script's path (use __file__, __module__ or __name__). plugin_name = None @staticmethod def isAlwaysEnabled(): """Request to be always enabled. Notes: Setting this to true is only applicable to standard plugins. In this case, the plugin will be enabled upon Nuitka start-up. Any plugin detector class will then be ignored. Method isRelevant() may also be present and can be used to fine-control enabling the plugin: A to-be-enabled, but irrelevant plugin will still not be activated. Returns: True or False """ return False @classmethod def isRelevant(cls): """Consider if the plugin is relevant. Notes: A plugin may only be a needed on a certain OS, or with some options, but this is only a class method, so you will not have much run time information. Returns: True or False """ return True @classmethod def addPluginCommandLineOptions(cls, group): # Call group.add_option() here. pass @classmethod def getPluginDefaultOptionValues(cls): """This method is used to get a values to use as defaults. Since the defaults are in the command line options, we call that and extract them. """ from optparse import OptionGroup, OptionParser parser = OptionParser() group = OptionGroup(parser, "Pseudo Target") cls.addPluginCommandLineOptions(group) result = {} for option in group.option_list: result[option.dest] = option.default return result def considerImplicitImports(self, module, signal_change): """Provide additional modules to import implicitly when encountering the module. Notes: Better do not overload this method. The standard plugin 'ImplicitImports.py' already contains MANY of these. If you do have a new candidate, consider a PR to get it included there. Args: module: the module object signal_change: bool Returns: None """ from nuitka.importing.Importing import getModuleNameAndKindFromFilename for full_name in self.getImplicitImports(module): if type(full_name) in (tuple, list): raise NuitkaPluginError( "Plugin %s needs to be change to only return modules names, not %r" % (self, full_name) ) full_name = ModuleName(full_name) try: module_filename = self.locateModule( importing=module, module_name=full_name ) except Exception: self.warning( "Problem locating '%s' implicit imports '%s'." % (module.getFullName(), full_name) ) raise if module_filename is None: if Options.isShowInclusion(): self.info( "Implicit module '%s' suggested by '%s' not found." % (full_name, module.getFullName()) ) continue _module_name2, module_kind = getModuleNameAndKindFromFilename( module_filename ) # TODO: This should get back to plug-ins, they should be allowed to # preempt or override the decision. decision, reason = self.decideRecursion( module_filename=module_filename, module_name=full_name, module_kind=module_kind, ) if decision: self.recurseTo( module_package=full_name.getPackageName(), module_filename=module_filename, module_kind=module_kind, reason=reason, signal_change=signal_change, ) def isRequiredImplicitImport(self, module, full_name): """Indicate whether an implicitly imported module should be accepted. Notes: You may negate importing a module specified as "implicit import", although this is an unexpected event. Args: module: the module object full_name: of the implicitly import module Returns: True or False """ # Virtual method, pylint: disable=no-self-use,unused-argument return True def getImplicitImports(self, module): """Return the implicit imports for a given module (iterator). Args: module: the module object Yields: implicit imports for the module """ # Virtual method, pylint: disable=no-self-use,unused-argument return () # Provide fall-back for failed imports here. module_aliases = {} def considerFailedImportReferrals(self, module_name): """Provide a dictionary of fallback imports for modules that failed to import. Args: module_name: name of module Returns: dict """ return self.module_aliases.get(module_name, None) def onModuleSourceCode(self, module_name, source_code): """Inspect or modify source code. Args: module_name: (str) name of module source_code: (str) its source code Returns: source_code (str) Notes: Default implementation forwards to `checkModuleSourceCode` which is going to allow simply checking the source code without the need to pass it back. """ self.checkModuleSourceCode(module_name, source_code) return source_code def checkModuleSourceCode(self, module_name, source_code): """Inspect source code. Args: module_name: (str) name of module source_code: (str) its source code Returns: None """ def onFrozenModuleSourceCode(self, module_name, is_package, source_code): """Inspect or modify frozen module source code. Args: module_name: (str) full name of module is_package: (bool) True indicates a package source_code: (str) its source code Returns: source_code (str) """ # Virtual method, pylint: disable=no-self-use,unused-argument return source_code def onFrozenModuleBytecode(self, module_name, is_package, bytecode): """Inspect or modify frozen module byte code. Args: module_name: (str) name of module is_package: (bool) True indicates a package bytecode: (bytes) byte code Returns: bytecode (bytes) """ # Virtual method, pylint: disable=no-self-use,unused-argument return bytecode @staticmethod def _createTriggerLoadedModule(module, trigger_name, code): """Create a "trigger" for a module to be imported. Notes: The trigger will incorpaorate the code to be prepended / appended. Called by @onModuleDiscovered. Args: module: the module object (serves as dict key) trigger_name: string ("-preload"/"-postload") code: the code string Returns trigger_module """ from nuitka.nodes.ModuleNodes import CompiledPythonModule from nuitka.tree.Building import createModuleTree from .Plugins import Plugins module_name = ModuleName(module.getFullName() + trigger_name) source_ref = fromFilename(module.getCompileTimeFilename() + trigger_name) mode = Plugins.decideCompilation(module_name, source_ref) trigger_module = CompiledPythonModule( module_name=module_name, is_top=False, mode=mode, future_spec=None, source_ref=source_ref, ) createModuleTree( module=trigger_module, source_ref=module.getSourceReference(), source_code=code, is_main=False, ) if mode == "bytecode": trigger_module.setSourceCode(code) if Options.is_debug: source_path = os.path.join( OutputDirectories.getSourceDirectoryPath(), module_name + ".py" ) putTextFileContents(filename=source_path, contents=code) return trigger_module @staticmethod def createPreModuleLoadCode(module): """Create code to prepend to a module. Notes: Called by @onModuleDiscovered. Args: module: the module object Returns: tuple (code, documentary string) """ # Virtual method, pylint: disable=unused-argument return None, None @staticmethod def createPostModuleLoadCode(module): """Create code to append to a module. Notes: Called by @onModuleDiscovered. Args: module: the module object Returns: tuple (code, documentary string) """ # Virtual method, pylint: disable=unused-argument return None, None def onModuleDiscovered(self, module): """Called with a module to be loaded. Notes: We may specify code to be prepended and/or appended to this module. This code is stored in the appropriate dict. For every imported module and each of these two options, only one plugin may do this. We check this condition here. Args: module: the module object Returns: None """ full_name = module.getFullName() pre_code, reason = self.createPreModuleLoadCode(module) if pre_code: # Note: We could find a way to handle this if needed. if full_name in pre_modules: sys.exit("Error, conflicting plug-ins for %s" % full_name) self.info("Injecting pre-module load code for module '%s':" % full_name) for line in reason.split("\n"): self.info(" " + line) pre_modules[full_name] = self._createTriggerLoadedModule( module=module, trigger_name="-preLoad", code=pre_code ) post_code, reason = self.createPostModuleLoadCode(module) if post_code: # Note: We could find a way to handle this if needed. if full_name is post_modules: sys.exit("Error, conflicting plug-ins for %s" % full_name) self.info("Injecting post-module load code for module '%s':" % full_name) for line in reason.split("\n"): self.info(" " + line) post_modules[full_name] = self._createTriggerLoadedModule( module=module, trigger_name="-postLoad", code=post_code ) def onModuleEncounter(self, module_filename, module_name, module_kind): """Help decide whether to include a module. Args: module_filename: filename module_name: full module name module_kind: one of "py", "shlib" (shared library) Returns: True or False """ # Virtual method, pylint: disable=no-self-use,unused-argument return None def onModuleInitialSet(self): """Provide extra modules to the initial root module set. Args: None Returns: Iterable of modules, may yield. """ # Virtual method, pylint: disable=no-self-use return () @staticmethod def locateModule(importing, module_name): """Provide a filename / -path for a to-be-imported module. Args: importing: module object module_name: (str or ModuleName) full name of module warn: (bool) True if required module Returns: filename for module """ from nuitka.importing import Importing _module_package, module_filename, _finding = Importing.findModule( importing=importing, module_name=ModuleName(module_name), parent_package=None, level=-1, warn=False, ) return module_filename @staticmethod def decideRecursion(module_filename, module_name, module_kind): """Decide whether Nuitka should recurse down to a given module. Args: module_filename: filename module_name: full module name module_kind: one of "py" or "shlib" (shared library) Returns: (decision, reason) where decision is either a bool or None, and reason is a string message. """ from nuitka.importing import Recursion decision, reason = Recursion.decideRecursion( module_filename=module_filename, module_name=module_name, module_kind=module_kind, ) return decision, reason @staticmethod def recurseTo(module_package, module_filename, module_kind, reason, signal_change): from nuitka.importing import Recursion imported_module, added_flag = Recursion.recurseTo( module_package=module_package, module_filename=module_filename, module_relpath=relpath(module_filename), module_kind=module_kind, reason=reason, ) addUsedModule(imported_module) if added_flag: signal_change( "new_code", imported_module.getSourceReference(), "Recursed to module." ) def considerExtraDlls(self, dist_dir, module): """Provide a tuple of names of binaries to be included. Args: dist_dir: the distribution folder module: the module object needing the binaries Returns: tuple """ # TODO: This should no longer be here, as this API is obsolete, pylint: disable=unused-argument for included_entry_point in self.getExtraDlls(module): # Copy to the dist directory. target_path = (included_entry_point.dest_path,) shutil.copyfile(included_entry_point.source_path, target_path) yield included_entry_point def getExtraDlls(self, module): """Provide IncludedEntryPoint named tuples describing extra needs of the module. Args: module: the module object needing the binaries Returns: yields IncludedEntryPoint objects """ # Virtual method, pylint: disable=no-self-use,unused-argument return () def removeDllDependencies(self, dll_filename, dll_filenames): """Yield any DLLs / shared libraries not to be included in distribution. Args: dll_filename: DLL name dll_filenames: list of DLLs Yields: yielded filenames to exclude """ # Virtual method, pylint: disable=no-self-use,unused-argument return () def considerDataFiles(self, module): """Yield data file names (source|func, target) for inclusion (iterator). Args: module: module object that may need extra data files Yields: Data file description pairs, either (source, dest) or (func, dest) where the func will be called to create the content dynamically. """ # Virtual method, pylint: disable=no-self-use,unused-argument return () def onStandaloneDistributionFinished(self, dist_dir): """Called after successfully finishing a standalone compile. Note: It is up to the plugin to take subsequent action. Examples are: insert additional information (license, copyright, company or application description), create installation material, further folder clean-up, start downstream applications etc. Args: dist_dir: the created distribution folder Returns: None """ # Virtual method, pylint: disable=no-self-use,unused-argument return None def suppressUnknownImportWarning(self, importing, module_name, source_ref): """Suppress import warnings for unknown modules. Args: importing: the module object module_name: name of module source_ref: ??? Returns: True or False """ # Virtual method, pylint: disable=no-self-use,unused-argument return False def decideCompilation(self, module_name, source_ref): """Decide whether to compile a module (or just use its bytecode). Notes: The first plugin not returning None makes the decision. Thereafter, no other plugins will be checked. If all plugins return None, the module will be compiled. Args: module_name: name of module source_ref: ??? Returns: "compiled" or "bytecode" or None (default) """ # Virtual method, pylint: disable=no-self-use,unused-argument return None def getPreprocessorSymbols(self): """Decide which C defines to be used in compilation. Notes: The plugins can each contribute, but are hopefully using a namespace for their defines. Returns: None for no defines, otherwise dictionary of key to be defined, and non-None values if any, i.e. no "-Dkey" only """ # Virtual method, pylint: disable=no-self-use return None def getExtraCodeFiles(self): """Add extra code files to the compilation. Notes: This is generally a bad idea to use unless you absolutely know what you are doing. Returns: None for no extra codes, otherwise dictionary of key to be filename, and value to be source code. """ # Virtual method, pylint: disable=no-self-use return None def getExtraLinkLibraries(self): """Decide which link library should be added. Notes: Names provided multiple times, e.g. by multiple plugins are only added once. Returns: None for no extra link library, otherwise the name as a **str** or an iterable of names of link libraries. """ # Virtual method, pylint: disable=no-self-use return None def warnUnusedPlugin(self, message): """An inactive plugin may issue a warning if it believes this may be wrong. Returns: None """ if self.plugin_name not in warned_unused_plugins: warned_unused_plugins.add(self.plugin_name) plugins_logger.warning( "Use '--plugin-enable=%s' for: %s" % (self.plugin_name, message) ) @classmethod def warning(cls, message): plugins_logger.warning(cls.plugin_name + ": " + message) @classmethod def info(cls, message): plugins_logger.info(cls.plugin_name + ": " + message) def isTriggerModule(module): return module in pre_modules.values() or module in post_modules.values() def replaceTriggerModule(old, new): found = None for key, value in pre_modules.items(): if value is old: found = key break if found is not None: pre_modules[found] = new found = None for key, value in post_modules.items(): if value is old: found = key break if found is not None: post_modules[found] = new
32.593794
103
0.616167
d6c1f635ac83a9b0d67e76c1de9103c7ed000f73
3,041
py
Python
btrsync/cli.py
zeroxoneb/arch-mirror-archive
b94f311876d8bff8524a4bce6acd0c5d33c602c1
[ "MIT" ]
2
2017-04-18T09:05:27.000Z
2018-01-06T02:43:21.000Z
btrsync/cli.py
zeroxoneb/arch-mirror-archive
b94f311876d8bff8524a4bce6acd0c5d33c602c1
[ "MIT" ]
null
null
null
btrsync/cli.py
zeroxoneb/arch-mirror-archive
b94f311876d8bff8524a4bce6acd0c5d33c602c1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ btrsync.cli -------------- Main `btrsync.cli` CLI. """ import click import contextlib import logging import os from datetime import datetime log = logging.getLogger('btrsync') @contextlib.contextmanager def cd(path): old_path = os.getcwd() os.chdir(path) try: yield finally: os.chdir(old_path) def make_snapshot(data_dir, version): """ Make a snapshot of the previous version to sync against. """ log.debug('Finding last sync') versions = [ path for path in os.listdir(data_dir) if ( os.path.isdir(os.path.join(data_dir, path)) and not os.path.islink(os.path.join(data_dir, path)) and not version == path ) ] versions.sort() if len(versions): latest = os.path.join(data_dir, versions[-1]) log.debug('latest: {0}'.format(latest)) new_version = os.path.join(data_dir, version) if not os.path.exists(new_version): cmd = "btrfs subvol snapshot {} {}".format(latest, new_version) log.debug(cmd) os.system(cmd) else: log.info('Version {} already exists: {}'.format(version, new_version)) def repo_sync(sync_url, data_dir, version, excludes, delete): log.info( 'repo_sync(pkg_sync_url: {}, data_dir: {}, version: {}, excludes: {}, delete: {})'.format( sync_url, data_dir, version, excludes, delete ) ) target = '{}/'.format( os.path.join(data_dir, version) ) log.debug('target: {}'.format(target)) if not os.path.exists(target): raise RuntimeError('Target directory {} does not exist'.format(target)) cmd = ( "rsync -rltvH " "{delete} " "{excludes} " "{url} " "{target} ".format( delete='--delete' if delete else '', excludes=''.join([" --exclude '{}' ".format(exclude) for exclude in excludes]), url=sync_url, target=target ) ) log.debug(cmd) os.system(cmd) def make_current(data_dir, version): """ Link the new version as the current """ current = os.path.join(data_dir, 'current') if os.path.exists(current) and os.path.islink(current): os.remove(current) os.symlink(os.path.join(data_dir, version), current) @click.command() @click.option('--sync-url', required=True) @click.option('--data-dir', required=True) @click.option('--version', default=datetime.now().strftime('%Y.%m.%d'), show_default=True) @click.option('--exclude', multiple=True) @click.option('--delete/--no-delete', default=True, show_default=True) @click.option('--debug', is_flag=True, show_default=True) def sync(sync_url, data_dir, version, exclude, delete, debug): if debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) make_snapshot(data_dir, version) repo_sync(sync_url, data_dir, version, exclude, delete) make_current(data_dir, version)
26.675439
98
0.616573
32312b0040e93c1dd011a49368700b03bca1fe3a
1,450
py
Python
examples/flow_routing/test_script_for_route_flow_dn.py
cctrunz/landlab
4e4ef12f4bae82bc5194f1dcc9af8ff1a7c20939
[ "MIT" ]
null
null
null
examples/flow_routing/test_script_for_route_flow_dn.py
cctrunz/landlab
4e4ef12f4bae82bc5194f1dcc9af8ff1a7c20939
[ "MIT" ]
1
2016-03-16T02:34:08.000Z
2016-04-20T19:31:30.000Z
examples/flow_routing/test_script_for_route_flow_dn.py
cctrunz/landlab
4e4ef12f4bae82bc5194f1dcc9af8ff1a7c20939
[ "MIT" ]
null
null
null
#! /usr/env/python """ test_script_for_route_flow_dn.py: Tests and illustrates use of route_flow_dn component. """ import os import pylab from landlab.components import FlowAccumulator from landlab.io import read_esri_ascii dem_name = "../../../io/tests/data/west_bijou_gully.asc" outlet_row = 82 outlet_column = 38 # Read in a DEM and set its boundaries DATA_FILE = os.path.join(os.path.dirname(__file__), dem_name) (grid, z) = read_esri_ascii(DATA_FILE) grid.set_nodata_nodes_to_inactive(z, 0) # set nodata nodes to inactive bounds outlet_node = grid.grid_coords_to_node_id(outlet_row, outlet_column) # Route flow flow_router = FlowAccumulator(grid, flow_director="D8") flow_router.route_flow() # Get a 2D array version of the elevations ar = grid.node_vector_to_raster(grid["node"]["drainage_area"]) numcols = grid.number_of_node_columns numrows = grid.number_of_node_rows dx = grid.dx # Create a shaded image pylab.close() # clear any pre-existing plot im = pylab.imshow(ar, cmap=pylab.cm.RdBu, extent=[0, numcols * dx, 0, numrows * dx]) # add contour lines with labels cset = pylab.contour(ar, extent=[0, numcols * dx, numrows * dx, 0]) pylab.clabel(cset, inline=True, fmt="%1.1f", fontsize=10) # add a color bar on the side cb = pylab.colorbar(im) cb.set_label("Drainage area, sq meters") # add a title and axis labels pylab.title("DEM") pylab.xlabel("Distance (m)") pylab.ylabel("Distance (m)") # Display the plot pylab.show()
26.363636
84
0.751724
bc2540f717328e30d1afd92dc2f211fbc106ea37
1,320
py
Python
test/modules/core/conftest.py
Beeee11/httpd
547873051555fc0d4faf1a38daaa850a830401f6
[ "Apache-2.0" ]
null
null
null
test/modules/core/conftest.py
Beeee11/httpd
547873051555fc0d4faf1a38daaa850a830401f6
[ "Apache-2.0" ]
null
null
null
test/modules/core/conftest.py
Beeee11/httpd
547873051555fc0d4faf1a38daaa850a830401f6
[ "Apache-2.0" ]
null
null
null
import logging import os import pytest import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) from .env import CoreTestEnv def pytest_report_header(config, startdir): env = CoreTestEnv(setup_dirs=False) return f"core [apache: {env.get_httpd_version()}, mpm: {env.mpm_module}, {env.prefix}]" @pytest.fixture(scope="package") def env(pytestconfig) -> CoreTestEnv: level = logging.INFO console = logging.StreamHandler() console.setLevel(level) console.setFormatter(logging.Formatter('%(levelname)s: %(message)s')) logging.getLogger('').addHandler(console) logging.getLogger('').setLevel(level=level) env = CoreTestEnv(pytestconfig=pytestconfig) env.apache_access_log_clear() env.httpd_error_log.clear_log() return env @pytest.fixture(autouse=True, scope="package") def _session_scope(env): env.httpd_error_log.set_ignored_lognos([ 'AH10244', # core: invalid URI path 'AH01264', # mod_cgid script not found ]) yield assert env.apache_stop() == 0 errors, warnings = env.httpd_error_log.get_missed() assert (len(errors), len(warnings)) == (0, 0),\ f"apache logged {len(errors)} errors and {len(warnings)} warnings: \n"\ "{0}\n{1}\n".format("\n".join(errors), "\n".join(warnings))
30
91
0.683333
b00156ccc10fdbf098c90cd2cb124cebb1206893
4,208
py
Python
nipyapi/nifi/models/banner_dto.py
iMajna/nipyapi
5480af8fe8c6b470249837835cb1a067abb6678e
[ "Apache-2.0" ]
null
null
null
nipyapi/nifi/models/banner_dto.py
iMajna/nipyapi
5480af8fe8c6b470249837835cb1a067abb6678e
[ "Apache-2.0" ]
1
2020-03-16T10:02:46.000Z
2020-03-16T13:37:42.000Z
nipyapi/nifi/models/banner_dto.py
iMajna/nipyapi
5480af8fe8c6b470249837835cb1a067abb6678e
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ NiFi Rest Api The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service. OpenAPI spec version: 1.12.1 Contact: dev@nifi.apache.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class BannerDTO(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'header_text': 'str', 'footer_text': 'str' } attribute_map = { 'header_text': 'headerText', 'footer_text': 'footerText' } def __init__(self, header_text=None, footer_text=None): """ BannerDTO - a model defined in Swagger """ self._header_text = None self._footer_text = None if header_text is not None: self.header_text = header_text if footer_text is not None: self.footer_text = footer_text @property def header_text(self): """ Gets the header_text of this BannerDTO. The header text. :return: The header_text of this BannerDTO. :rtype: str """ return self._header_text @header_text.setter def header_text(self, header_text): """ Sets the header_text of this BannerDTO. The header text. :param header_text: The header_text of this BannerDTO. :type: str """ self._header_text = header_text @property def footer_text(self): """ Gets the footer_text of this BannerDTO. The footer text. :return: The footer_text of this BannerDTO. :rtype: str """ return self._footer_text @footer_text.setter def footer_text(self, footer_text): """ Sets the footer_text of this BannerDTO. The footer text. :param footer_text: The footer_text of this BannerDTO. :type: str """ self._footer_text = footer_text def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, BannerDTO): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
27.324675
479
0.549905
3e52626411b01ff2d4c5e1e06d593a7e285c8b6f
539
py
Python
csm_web/scheduler/migrations/0009_course_section_start.py
shadaj/csm_web
aab7920987bf3212b6da7fa26bac24cca77c6d03
[ "MIT" ]
8
2019-08-18T16:04:01.000Z
2022-02-09T05:01:49.000Z
csm_web/scheduler/migrations/0009_course_section_start.py
shadaj/csm_web
aab7920987bf3212b6da7fa26bac24cca77c6d03
[ "MIT" ]
69
2019-03-20T00:20:04.000Z
2022-03-27T11:21:55.000Z
csm_web/scheduler/migrations/0009_course_section_start.py
shadaj/csm_web
aab7920987bf3212b6da7fa26bac24cca77c6d03
[ "MIT" ]
12
2019-03-17T18:31:06.000Z
2021-12-28T21:27:00.000Z
# Generated by Django 3.0.3 on 2020-02-20 01:40 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('scheduler', '0008_auto_20200112_2051'), ] operations = [ migrations.AddField( model_name='course', name='section_start', field=models.DateField(default=datetime.datetime(2020, 2, 20, 1, 40, 43, 642165, tzinfo=utc)), preserve_default=False, ), ]
24.5
106
0.636364
e22e4d8bf2116d8f4311fde9412a20fbc31fac5c
3,041
py
Python
Filters/General/Testing/Python/TestGroupTimeStepsFilter.py
cclauss/VTK
f62a52cce9044159efb4adb7cc0cfd7ec0bc8b6d
[ "BSD-3-Clause" ]
1,755
2015-01-03T06:55:00.000Z
2022-03-29T05:23:26.000Z
Filters/General/Testing/Python/TestGroupTimeStepsFilter.py
cclauss/VTK
f62a52cce9044159efb4adb7cc0cfd7ec0bc8b6d
[ "BSD-3-Clause" ]
29
2015-04-23T20:58:30.000Z
2022-03-02T16:16:42.000Z
Filters/General/Testing/Python/TestGroupTimeStepsFilter.py
cclauss/VTK
f62a52cce9044159efb4adb7cc0cfd7ec0bc8b6d
[ "BSD-3-Clause" ]
1,044
2015-01-05T22:48:27.000Z
2022-03-31T02:38:26.000Z
import vtk from vtk.util.vtkAlgorithm import VTKPythonAlgorithmBase class MovingSphereSource(VTKPythonAlgorithmBase): def __init__(self): VTKPythonAlgorithmBase.__init__(self, nInputPorts=0, nOutputPorts=1, outputType='vtkPolyData') def RequestInformation(self, request, inInfo, outInfo): info = outInfo.GetInformationObject(0) t = range(0, 10) info.Set(vtk.vtkStreamingDemandDrivenPipeline.TIME_STEPS(), t, len(t)) info.Set(vtk.vtkStreamingDemandDrivenPipeline.TIME_RANGE(), [t[0], t[-1]], 2) return 1 def RequestData(self, request, inInfo, outInfo): info = outInfo.GetInformationObject(0) output = vtk.vtkPolyData.GetData(outInfo) t = info.Get(vtk.vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP()) sphere = vtk.vtkSphereSource() sphere.SetCenter(0, t * 2, 0) sphere.Update() output.ShallowCopy(sphere.GetOutput()) return 1 class MovingPDC(VTKPythonAlgorithmBase): def __init__(self): VTKPythonAlgorithmBase.__init__(self, nInputPorts=0, nOutputPorts=1, outputType='vtkPartitionedDataSetCollection') def RequestInformation(self, request, inInfo, outInfo): info = outInfo.GetInformationObject(0) t = range(0, 10) info.Set(vtk.vtkStreamingDemandDrivenPipeline.TIME_STEPS(), t, len(t)) info.Set(vtk.vtkStreamingDemandDrivenPipeline.TIME_RANGE(), [t[0], t[-1]], 2) return 1 def RequestData(self, request, inInfo, outInfo): info = outInfo.GetInformationObject(0) output = vtk.vtkDataObject.GetData(outInfo) t = info.Get(vtk.vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP()) source = vtk.vtkPartitionedDataSetCollectionSource() source.SetNumberOfShapes(int(1 + t % 3)) transform = vtk.vtkTransform() transform.Identity() transform.Translate(2, t*2, 0) xform = vtk.vtkTransformPolyDataFilter() xform.SetTransform(transform) xform.SetInputConnection(source.GetOutputPort()) xform.Update() output.ShallowCopy(xform.GetOutputDataObject(0)) return 1 source1 = MovingSphereSource() group1 = vtk.vtkGroupTimeStepsFilter() group1.SetInputConnection(source1.GetOutputPort()) mapper1 = vtk.vtkCompositePolyDataMapper2() mapper1.SetInputConnection(group1.GetOutputPort()) actor1 = vtk.vtkActor() actor1.SetMapper(mapper1) source2 = MovingPDC() group2 = vtk.vtkGroupTimeStepsFilter() group2.SetInputConnection(source2.GetOutputPort()) mapper2 = vtk.vtkCompositePolyDataMapper2() mapper2.SetInputConnection(group2.GetOutputPort()) actor2 = vtk.vtkActor() actor2.SetMapper(mapper2) ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) ren1.AddActor(actor1) ren1.AddActor(actor2) ren1.ResetCamera() renWin.SetSize(300, 300) renWin.Render() # render the image # iren.Initialize() # iren.Start()
31.030612
85
0.709964
35ac67adeee27bb97ba364dcd0dde85c503fea5c
319
py
Python
filters/filter_news_text.py
ircashem/iem-telegram-bot
512a9502dbd53b6b1e5f41f57b6df05797ba4932
[ "MIT" ]
1
2020-07-27T06:54:42.000Z
2020-07-27T06:54:42.000Z
filters/filter_news_text.py
ircashem/iem-telegram-bot
512a9502dbd53b6b1e5f41f57b6df05797ba4932
[ "MIT" ]
null
null
null
filters/filter_news_text.py
ircashem/iem-telegram-bot
512a9502dbd53b6b1e5f41f57b6df05797ba4932
[ "MIT" ]
null
null
null
import re def extract_news_text(text): text = re.sub('<a.*">', "", text) text = re.sub('</a>', '', text) text = re.sub('</h1>', '', text) text = re.sub('<hr/>', '', text) text = re.sub('</p>', '</b>', text) text = re.sub('<p>', '<b>', text) text = re.sub('</div>', '', text) return text
29
39
0.45768
87e3d0c93bdd5437ae1c14ca69105a6081987587
5,581
py
Python
dashboard/dashboard/main.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
1
2019-05-18T02:43:02.000Z
2019-05-18T02:43:02.000Z
dashboard/dashboard/main.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
6
2020-07-19T21:51:44.000Z
2022-02-13T08:22:58.000Z
dashboard/dashboard/main.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
1
2020-07-24T18:22:03.000Z
2020-07-24T18:22:03.000Z
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """URL endpoint for the main page which lists recent anomalies.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import datetime import logging from google.appengine.ext import ndb from dashboard import email_template from dashboard.common import request_handler from dashboard.common import utils from dashboard.models import anomaly _ANOMALY_FETCH_LIMIT = 1000 _DEFAULT_DAYS_TO_SHOW = 7 _DEFAULT_CHANGES_TO_SHOW = 10 _DEFAULT_SHERIFF_NAME = 'Chromium Perf Sheriff' class MainHandler(request_handler.RequestHandler): """Displays the main overview page.""" def get(self): """Renders the UI for the main overview page. Request parameters: days: Number of days to show anomalies for (optional). sheriff: Sheriff to show anomalies for (optional) num_changes: The number of improvements/regressions to list. Outputs: A HTML page that shows recent regressions, improvements. """ days = int(self.request.get('days', _DEFAULT_DAYS_TO_SHOW)) num_changes = int(self.request.get('num_changes', _DEFAULT_CHANGES_TO_SHOW)) sheriff_name = self.request.get('sheriff', _DEFAULT_SHERIFF_NAME) sheriff = ndb.Key('Sheriff', sheriff_name) anomalies = _GetRecentAnomalies(days, sheriff) top_improvements = _TopImprovements(anomalies, num_changes) top_regressions = _TopRegressions(anomalies, num_changes) tests = _GetKeyToTestDict(top_improvements + top_regressions) template_dict = { 'num_days': days, 'num_changes': num_changes, 'sheriff_name': sheriff_name, 'improvements': _AnomalyInfoDicts(top_improvements, tests), 'regressions': _AnomalyInfoDicts(top_regressions, tests), } self.RenderHtml('main.html', template_dict) def _GetRecentAnomalies(days, sheriff): """Fetches recent Anomalies from the datastore. Args: days: Number of days old of the oldest Anomalies to fetch. sheriff: The ndb.Key of the Sheriff to fetch Anomalies for. Returns: A list of Anomaly entities sorted from large to small relative change. """ anomalies, _, _ = anomaly.Anomaly.QueryAsync( min_timestamp=datetime.datetime.now() - datetime.timedelta(days=days), sheriff=sheriff.id(), limit=_ANOMALY_FETCH_LIMIT).get_result() # We only want to list alerts that aren't marked invalid or ignored. anomalies = [a for a in anomalies if a.bug_id is None or a.bug_id > 0] anomalies.sort(key=lambda a: abs(a.percent_changed), reverse=True) return anomalies def _GetKeyToTestDict(anomalies): """Returns a map of TestMetadata keys to entities for the given anomalies.""" test_keys = {a.GetTestMetadataKey() for a in anomalies} tests = utils.GetMulti(test_keys) return {t.key: t for t in tests} def _GetColorClass(percent_changed): """Returns a CSS class name for the anomaly, based on percent changed.""" if percent_changed > 50: return 'over-50' if percent_changed > 40: return 'over-40' if percent_changed > 30: return 'over-30' if percent_changed > 20: return 'over-20' if percent_changed > 10: return 'over-10' return 'under-10' def _AnomalyInfoDicts(anomalies, tests): """Returns information info about the given anomalies. Args: anomalies: A list of anomalies. tests: A dictionary mapping TestMetadata keys to TestMetadata entities. Returns: A list of dictionaries with information about the given anomalies. """ anomaly_list = [] for anomaly_entity in anomalies: test = tests.get(anomaly_entity.GetTestMetadataKey()) if not test: logging.warning( 'No TestMetadata entity for key: %s.', anomaly_entity.GetTestMetadataKey()) continue subtest_path = '/'.join(test.test_path.split('/')[3:]) graph_link = email_template.GetGroupReportPageLink(anomaly_entity) anomaly_list.append({ 'key': anomaly_entity.key.urlsafe(), 'bug_id': anomaly_entity.bug_id or '', 'start_revision': anomaly_entity.start_revision, 'end_revision': anomaly_entity.end_revision, 'master': test.master_name, 'bot': test.bot_name, 'testsuite': test.suite_name, 'test': subtest_path, 'percent_changed': anomaly_entity.GetDisplayPercentChanged(), 'color_class': _GetColorClass(abs(anomaly_entity.percent_changed)), 'improvement': anomaly_entity.is_improvement, 'dashboard_link': graph_link, }) return anomaly_list def _TopImprovements(recent_anomalies, num_to_show): """Fills in the given template dictionary with top improvements. Args: recent_anomalies: A list of Anomaly entities sorted from large to small. num_to_show: The number of improvements to return. Returns: A list of top improvement Anomaly entities, in decreasing order. """ improvements = [a for a in recent_anomalies if a.is_improvement] return improvements[:num_to_show] def _TopRegressions(recent_anomalies, num_to_show): """Fills in the given template dictionary with top regressions. Args: recent_anomalies: A list of Anomaly entities sorted from large to small. num_to_show: The number of regressions to return. Returns: A list of top regression Anomaly entities, in decreasing order. """ regressions = [a for a in recent_anomalies if not a.is_improvement] return regressions[:num_to_show]
33.620482
80
0.730514
5b1146de770536640fce31ff52a7a1c355a59fed
1,369
py
Python
vnftest/tests/unit/core/test_testcase.py
onap/vnfsdk-dovetail-integration
2720441e7c03bdb57aefba16a262f1eef1ce2cbd
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
vnftest/tests/unit/core/test_testcase.py
onap/vnfsdk-dovetail-integration
2720441e7c03bdb57aefba16a262f1eef1ce2cbd
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
vnftest/tests/unit/core/test_testcase.py
onap/vnfsdk-dovetail-integration
2720441e7c03bdb57aefba16a262f1eef1ce2cbd
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
############################################################################## # Copyright 2018 EuropeanSoftwareMarketingLtd. # =================================================================== # Licensed under the ApacheLicense, Version2.0 (the"License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and limitations under # the License ############################################################################## # vnftest comment: this is a modified copy of # yardstick/tests/unit/benchmark/core/test_testcase.py from __future__ import absolute_import import unittest from vnftest.core import testcase class Arg(object): def __init__(self): self.casename = ('onap_vnftest_onboard-v1',) class TestcaseUT(unittest.TestCase): def test_list_all(self): t = testcase.Testcase() result = t.list_all("") self.assertIsInstance(result, list) def test_show(self): t = testcase.Testcase() casename = Arg() result = t.show(casename) self.assertTrue(result)
33.390244
87
0.604091
bf43284b9d02e8df9b1b5cfbef3b1bb27b1b63b4
12,190
py
Python
utils/AmazonDataset/sequentially_split_train_test_data_with_random_query.py
ronaldseoh/Explainable-Product-Search-with-a-Dynamic-Relation-Embedding-Model
aef67aa8ebc085ed2c673da4a5d451e68136eebf
[ "Apache-2.0" ]
null
null
null
utils/AmazonDataset/sequentially_split_train_test_data_with_random_query.py
ronaldseoh/Explainable-Product-Search-with-a-Dynamic-Relation-Embedding-Model
aef67aa8ebc085ed2c673da4a5d451e68136eebf
[ "Apache-2.0" ]
null
null
null
utils/AmazonDataset/sequentially_split_train_test_data_with_random_query.py
ronaldseoh/Explainable-Product-Search-with-a-Dynamic-Relation-Embedding-Model
aef67aa8ebc085ed2c673da4a5d451e68136eebf
[ "Apache-2.0" ]
null
null
null
import os,sys import gzip import random import numpy as np import json data_path = sys.argv[1] review_sample_rate = float(sys.argv[2]) # Percentage of reviews used for test+valid for each user #query_sample_rate = float(sys.argv[3]) # Percetage of queries that are unique in testing+validation output_path = data_path + 'seq_query_split/' if not os.path.exists(output_path): os.makedirs(output_path) # Read all queries product_query_idxs = [] query_level_count = [] all_queries = {} all_query_idx = [] with gzip.open(data_path + 'product_query.txt.gz', 'rt') as cat_fin: for line in cat_fin: query_arr = line.strip().split(';') product_query_idxs.append([]) for query_line in query_arr: if len(query_line) < 1: continue arr = query_line.split('\t') cat_num = int(arr[0][1:]) cat_query = arr[1] if cat_query not in all_queries: all_queries[cat_query] = len(all_queries) all_query_idx.append(cat_query) query_level_count.append(cat_num) product_query_idxs[-1].append(all_queries[cat_query]) # Build user-review map user_review_map = {} review_product_list = [] with gzip.open(data_path + 'review_u_p.txt.gz', 'rt') as fin: index = 0 for line in fin: arr = line.strip().split(' ') user = arr[0] product = int(arr[1]) if user not in user_review_map: user_review_map[user] = [] user_review_map[user].append(index) review_product_list.append(product) index += 1 # Read user-review sequence user_review_seq = [] with gzip.open(data_path + 'u_r_seq.txt.gz', 'rt') as fin: for line in fin: arr = line.strip().split(' ') user_review_seq.append([int(x) for x in arr]) # Generate train/test sets test_review_idx = set() test_product_set = set() valid_review_idx = set() valid_product_set = set() for review_seq in user_review_seq: sample_num = round(review_sample_rate * len(review_seq)) test_sample_num = int(sample_num / 2.0 + random.random()) valid_sample_num = sample_num - test_sample_num for i in range(test_sample_num): test_review_idx.add(review_seq[-1-i]) test_product_set.add(review_product_list[review_seq[-1-i]]) for i in range(valid_sample_num): valid_review_idx.add(review_seq[-1-test_sample_num-i]) valid_product_set.add(review_product_list[review_seq[-1-test_sample_num-i]]) test_query_idx = set() valid_query_idx = set() train_query_idx = set() ''' additional_train_query_idx = set() #sample_number = int(len(all_query_idx) * query_sample_rate) #test_query_idx = set(np.random.choice([i for i in range(len(all_query_idx))], sample_number , replace=False)) # refine the train query set so that every item has at least one query for product_id in test_product_set: query_idxs = product_query_idxs[product_id] tmp_test = random.choices(query_idxs, k=int(max(1, len(query_idxs) * query_sample_rate/2))) tmp_valid = random.choices(query_idxs, k=int(max(1, len(query_idxs) * query_sample_rate/2))) for q in query_idxs: if q in tmp_test: test_query_idx.add(q) elif q in tmp_valid: valid_query_idx.add(q) else: additional_train_query_idx.add(q) unique_test_query = test_query_idx.union(valid_query_idx) - additional_train_query_idx for product_id in test_product_set: query_idxs = product_query_idxs[product_id] tmp = set(query_idxs) - unique_test_query if len(tmp) < 1: pick_i = int(random.random()*len(query_idxs)) additional_train_query_idx.add(pick_i) #for query_idxs in product_query_idxs: # tmp = set(query_idxs) - test_query_idx # if len(tmp) < 1: # pick_i = int(random.random()*len(query_idxs)) # test_query_idx.remove(query_idxs[pick_i]) ''' #output train/test review data train_user_product_map = {} test_user_product_map = {} valid_user_product_map = {} with gzip.open(output_path + 'train.txt.gz', 'wt') as train_fout, gzip.open(output_path + 'test.txt.gz', 'wt') as test_fout, gzip.open(output_path + 'valid.txt.gz', 'wt') as valid_fout: with gzip.open(data_path + 'review_u_p.txt.gz', 'rt') as info_fin, gzip.open(data_path + 'review_text.txt.gz', 'rt') as text_fin: info_line = info_fin.readline() text_line = text_fin.readline() index = 0 while info_line: arr = info_line.strip().split(' ') if index in test_review_idx: test_fout.write(arr[0] + '\t' + arr[1] + '\t' + text_line.strip() + '\n') if int(arr[0]) not in test_user_product_map: test_user_product_map[int(arr[0])] = set() test_user_product_map[int(arr[0])].add(int(arr[1])) elif index in valid_review_idx: valid_fout.write(arr[0] + '\t' + arr[1] + '\t' + text_line.strip() + '\n') if int(arr[0]) not in valid_user_product_map: valid_user_product_map[int(arr[0])] = set() valid_user_product_map[int(arr[0])].add(int(arr[1])) else: train_fout.write(arr[0] + '\t' + arr[1] + '\t' + text_line.strip() + '\n') if int(arr[0]) not in train_user_product_map: train_user_product_map[int(arr[0])] = set() train_user_product_map[int(arr[0])].add(int(arr[1])) index += 1 info_line = info_fin.readline() text_line = text_fin.readline() #read review_u_p and construct train/test id sets with gzip.open(output_path + 'train_id.txt.gz', 'wt') as train_fout, gzip.open(output_path + 'test_id.txt.gz', 'wt') as test_fout, gzip.open(output_path + 'valid_id.txt.gz', 'wt') as valid_fout: with gzip.open(data_path + 'review_u_p.txt.gz', 'rt') as info_fin, gzip.open(data_path + 'review_id.txt.gz', 'rt') as id_fin: info_line = info_fin.readline() id_line = id_fin.readline() index = 0 while info_line: arr = info_line.strip().split(' ') user_idx = int(arr[0]) product_idx = int(arr[1]) query_idx = random.choice(product_query_idxs[product_idx]) if index in test_review_idx: test_fout.write(arr[0] + '\t' + arr[1] + '\t' + str(id_line.strip()) + '\t' + str(query_idx) + '\t' + str(index) + '\n') test_query_idx.add(query_idx) elif index in valid_review_idx: valid_fout.write(arr[0] + '\t' + arr[1] + '\t' + str(id_line.strip()) + '\t' + str(query_idx) + '\t' + str(index) + '\n') valid_query_idx.add(query_idx) else: train_fout.write(arr[0] + '\t' + arr[1] + '\t' + str(id_line.strip()) + '\t' + str(query_idx) + '\t' + str(index) + '\n') train_query_idx.add(query_idx) index += 1 info_line = info_fin.readline() id_line = id_fin.readline() #output train/test queries query_max_length = 0 with gzip.open(output_path + 'query.txt.gz', 'wt' ) as query_fout: for cat_query in all_query_idx: query_fout.write(cat_query + '\n') query_length = len(cat_query.strip().split(' ')) if query_length > query_max_length: query_max_length = query_length train_product_query_idxs = [] test_product_query_idxs = [] valid_product_query_idxs = [] #mentioned_query_idx = test_query_idx.union(valid_query_idx).union(additional_train_query_idx) with gzip.open(output_path + 'train_query_idx.txt.gz', 'wt') as train_fout, gzip.open(output_path + 'test_query_idx.txt.gz','wt') as test_fout, gzip.open(output_path + 'valid_query_idx.txt.gz','wt') as valid_fout: for query_idxs in product_query_idxs: train_product_query_idxs.append([]) valid_product_query_idxs.append([]) test_product_query_idxs.append([]) for q_idx in query_idxs: # All queries could appear in the test set if q_idx in test_query_idx: test_fout.write(str(q_idx) + ' ') test_product_query_idxs[-1].append(q_idx) if q_idx in valid_query_idx: valid_fout.write(str(q_idx) + ' ') valid_product_query_idxs[-1].append(q_idx) # Output training query if q_idx in train_query_idx: train_fout.write(str(q_idx) + ' ') train_product_query_idxs[-1].append(q_idx) #if q_idx not in mentioned_query_idx: # train_fout.write(str(q_idx) + ' ') # train_product_query_idxs[-1].append(q_idx) # There are also some queries unique in the test set #if q_idx not in test_query_idx: # train_fout.write(str(q_idx) + ' ') # train_product_query_idxs[-1].append(q_idx) valid_fout.write('\n') train_fout.write('\n') test_fout.write('\n') #generate qrels and json queries product_ids = [] with gzip.open(data_path + 'product.txt.gz', 'rt') as fin: for line in fin: product_ids.append(line.strip()) user_ids = [] with gzip.open(data_path + 'users.txt.gz', 'rt') as fin: for line in fin: user_ids.append(line.strip()) vocab = [] with gzip.open(data_path + 'vocab.txt.gz', 'rt') as fin: for line in fin: vocab.append(line.strip()) def output_qrels_jsonQuery(user_product_map, product_query, qrel_file, jsonQuery_file): json_queries = [] appeared_qrels = {} with open(qrel_file, 'wt') as fout: for u_idx in user_product_map: user_id = user_ids[u_idx] if user_id not in appeared_qrels: appeared_qrels[user_id] = {} for product_idx in user_product_map[u_idx]: product_id = product_ids[product_idx] if product_id not in appeared_qrels[user_id]: appeared_qrels[user_id][product_id] = set() #check if has query for q_idx in product_query[product_idx]: if q_idx in appeared_qrels[user_id][product_id]: continue appeared_qrels[user_id][product_id].add(q_idx) fout.write(user_id + '_' + str(q_idx) + ' 0 ' + product_id + ' 1 ' + '\n') json_q = {'number' : user_id + '_' + str(q_idx), 'text' : []} json_q['text'].append('#combine(') for v_i in all_query_idx[q_idx].strip().split(' '): if len(v_i) > 0: json_q['text'].append(vocab[int(v_i)]) json_q['text'].append(')') json_q['text'] = ' '.join(json_q['text']) json_queries.append(json_q) with open(jsonQuery_file,'wt') as fout: output_json = {'mu' : 1000, 'queries' : json_queries} json.dump(output_json, fout, sort_keys = True, indent = 4) output_qrels_jsonQuery(test_user_product_map, test_product_query_idxs, output_path + 'test.qrels', output_path + 'test_query.json') output_qrels_jsonQuery(train_user_product_map, train_product_query_idxs, output_path + 'train.qrels', output_path + 'train_query.json') output_qrels_jsonQuery(valid_user_product_map, valid_product_query_idxs, output_path + 'valid.qrels', output_path + 'valid_query.json') # output statisitc with open(output_path + 'statistic.txt', 'wt') as fout: fout.write('Total User ' + str(len(user_ids)) + '\n') fout.write('Total Product ' + str(len(product_ids)) + '\n') fout.write('Total Review ' + str(len(review_product_list)) + '\n') fout.write('Total Vocab ' + str(len(vocab)) + '\n') fout.write('Total Queries ' + str(len(all_query_idx)) + '\n') fout.write('Max Query Length ' + str(query_max_length) + '\n') fout.write('Test Review ' + str(len(test_review_idx)) + '\n') fout.write('Test Queries ' + str(len(test_query_idx)) + '\n') fout.write('Valid Review ' + str(len(valid_review_idx)) + '\n') fout.write('Valid Queries ' + str(len(valid_query_idx)) + '\n')
45.148148
213
0.622395
871c385280ade3328e27b0fc3a4d24dd3458f20b
3,333
py
Python
scripts/tar2db.py
rzswh/FirmAE
a590e11a63eb5bec5a0568ec298538daf0ba1816
[ "MIT" ]
null
null
null
scripts/tar2db.py
rzswh/FirmAE
a590e11a63eb5bec5a0568ec298538daf0ba1816
[ "MIT" ]
null
null
null
scripts/tar2db.py
rzswh/FirmAE
a590e11a63eb5bec5a0568ec298538daf0ba1816
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import tarfile import getopt import sys import re import hashlib import psycopg2 psql_ip = '127.0.0.1' def getFileHashes(infile): t = tarfile.open(infile) files = list() links = list() for f in t.getmembers(): if f.isfile(): # we use f.name[1:] to get rid of the . at the beginning of the path files.append((f.name[1:], hashlib.md5(t.extractfile(f).read()).hexdigest(), f.uid, f.gid, f.mode)) elif f.issym(): links.append((f.name[1:], f.linkpath)) return (files, links) def getOids(objs, cur): # hashes ... all the hashes in the tar file hashes = [x[1] for x in objs] hashes_str = ",".join(["""'%s'""" % x for x in hashes]) query = """SELECT id,hash FROM object WHERE hash IN (%s)""" cur.execute(query % hashes_str) res = [(int(x), y) for (x, y) in cur.fetchall()] existingHashes = [x[1] for x in res] missingHashes = set(hashes).difference(set(existingHashes)) newObjs = createObjects(missingHashes, cur) res += newObjs result = dict([(y, x) for (x, y) in res]) return result def createObjects(hashes, cur): query = """INSERT INTO object (hash) VALUES (%(hash)s) RETURNING id""" res = list() for h in set(hashes): try: cur.execute(query, {'hash':h}) oid = int(cur.fetchone()[0]) res.append((oid, h)) except: continue return res def insertObjectToImage(iid, files2oids, links, cur): query = """INSERT INTO object_to_image (iid, oid, filename, regular_file, uid, gid, permissions) VALUES (%(iid)s, %(oid)s, %(filename)s, %(regular_file)s, %(uid)s, %(gid)s, %(mode)s)""" try: cur.executemany(query, [{'iid': iid, 'oid' : x[1], 'filename' : x[0][0], 'regular_file' : True, 'uid' : x[0][1], 'gid' : x[0][2], 'mode' : x[0][3]} \ for x in files2oids]) cur.executemany(query, [{'iid': iid, 'oid' : 1, 'filename' : x[0], 'regular_file' : False, 'uid' : None, 'gid' : None, 'mode' : None} \ for x in links]) except: return def process(iid, infile): global psql_ip dbh = psycopg2.connect(database="firmware", user="firmadyne", password="firmadyne", host=psql_ip) cur = dbh.cursor() (files, links) = getFileHashes(infile) oids = getOids(files, cur) fdict = dict([(h, (filename, uid, gid, mode)) \ for (filename, h, uid, gid, mode) in files]) file2oid = [(fdict[h], oid) for (h, oid) in oids.items()] insertObjectToImage(iid, file2oid, links, cur) dbh.commit() dbh.close() def main(): global psql_ip infile = iid = None opts, argv = getopt.getopt(sys.argv[1:], "f:i:h:") for k, v in opts: if k == '-i': iid = int(v) if k == '-f': infile = v if k == '-h': psql_ip = v if infile and not iid: m = re.search(r"(\d+)\.tar\.gz", infile) if m: iid = int(m.groups(1)) process(iid, infile) if __name__ == "__main__": main()
28.982609
189
0.519952
3086cf016589ffa49ed24ae16f0882f788d4ca40
5,724
py
Python
airflow/config_templates/airflow_local_settings.py
MAliNaqvi/incubator-airflow
63e761614869bd7cb93106f6235c50899ace3013
[ "Apache-2.0" ]
null
null
null
airflow/config_templates/airflow_local_settings.py
MAliNaqvi/incubator-airflow
63e761614869bd7cb93106f6235c50899ace3013
[ "Apache-2.0" ]
null
null
null
airflow/config_templates/airflow_local_settings.py
MAliNaqvi/incubator-airflow
63e761614869bd7cb93106f6235c50899ace3013
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from airflow import configuration as conf # TODO: Logging format and level should be configured # in this file instead of from airflow.cfg. Currently # there are other log format and level configurations in # settings.py and cli.py. Please see AIRFLOW-1455. LOG_LEVEL = conf.get('core', 'LOGGING_LEVEL').upper() # Flask appbuilder's info level log is very verbose, # so it's set to 'WARN' by default. FAB_LOG_LEVEL = 'WARN' LOG_FORMAT = conf.get('core', 'LOG_FORMAT') BASE_LOG_FOLDER = conf.get('core', 'BASE_LOG_FOLDER') PROCESSOR_LOG_FOLDER = conf.get('scheduler', 'CHILD_PROCESS_LOG_DIRECTORY') FILENAME_TEMPLATE = '{{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log' PROCESSOR_FILENAME_TEMPLATE = '{{ filename }}.log' # Storage bucket url for remote logging # s3 buckets should start with "s3://" # gcs buckets should start with "gs://" # wasb buckets should start with "wasb" just to help Airflow select correct handler REMOTE_BASE_LOG_FOLDER = conf.get('core', 'REMOTE_BASE_LOG_FOLDER') DEFAULT_LOGGING_CONFIG = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'airflow': { 'format': LOG_FORMAT, }, }, 'handlers': { 'console': { 'class': 'airflow.utils.log.logging_mixin.RedirectStdHandler', 'formatter': 'airflow', 'stream': 'sys.stdout' }, 'task': { 'class': 'airflow.utils.log.file_task_handler.FileTaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(BASE_LOG_FOLDER), 'filename_template': FILENAME_TEMPLATE, }, 'processor': { 'class': 'airflow.utils.log.file_processor_handler.FileProcessorHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(PROCESSOR_LOG_FOLDER), 'filename_template': PROCESSOR_FILENAME_TEMPLATE, }, }, 'loggers': { 'airflow.processor': { 'handlers': ['processor'], 'level': LOG_LEVEL, 'propagate': False, }, 'airflow.task': { 'handlers': ['task'], 'level': LOG_LEVEL, 'propagate': False, }, 'flask_appbuilder': { 'handler': ['console'], 'level': FAB_LOG_LEVEL, 'propagate': True, } }, 'root': { 'handlers': ['console'], 'level': LOG_LEVEL, } } REMOTE_HANDLERS = { 's3': { 'task': { 'class': 'airflow.utils.log.s3_task_handler.S3TaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(BASE_LOG_FOLDER), 's3_log_folder': REMOTE_BASE_LOG_FOLDER, 'filename_template': FILENAME_TEMPLATE, }, 'processor': { 'class': 'airflow.utils.log.s3_task_handler.S3TaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(PROCESSOR_LOG_FOLDER), 's3_log_folder': REMOTE_BASE_LOG_FOLDER, 'filename_template': PROCESSOR_FILENAME_TEMPLATE, }, }, 'gcs': { 'task': { 'class': 'airflow.utils.log.gcs_task_handler.GCSTaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(BASE_LOG_FOLDER), 'gcs_log_folder': REMOTE_BASE_LOG_FOLDER, 'filename_template': FILENAME_TEMPLATE, }, 'processor': { 'class': 'airflow.utils.log.gcs_task_handler.GCSTaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(PROCESSOR_LOG_FOLDER), 'gcs_log_folder': REMOTE_BASE_LOG_FOLDER, 'filename_template': PROCESSOR_FILENAME_TEMPLATE, }, }, 'wasb': { 'task': { 'class': 'airflow.utils.log.wasb_task_handler.WasbTaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(BASE_LOG_FOLDER), 'wasb_log_folder': REMOTE_BASE_LOG_FOLDER, 'wasb_container': 'airflow-logs', 'filename_template': FILENAME_TEMPLATE, 'delete_local_copy': False, }, 'processor': { 'class': 'airflow.utils.log.wasb_task_handler.WasbTaskHandler', 'formatter': 'airflow', 'base_log_folder': os.path.expanduser(PROCESSOR_LOG_FOLDER), 'wasb_log_folder': REMOTE_BASE_LOG_FOLDER, 'wasb_container': 'airflow-logs', 'filename_template': PROCESSOR_FILENAME_TEMPLATE, 'delete_local_copy': False, }, } } REMOTE_LOGGING = conf.get('core', 'remote_logging') if REMOTE_LOGGING and REMOTE_BASE_LOG_FOLDER.startswith('s3://'): DEFAULT_LOGGING_CONFIG['handlers'].update(REMOTE_HANDLERS['s3']) elif REMOTE_LOGGING and REMOTE_BASE_LOG_FOLDER.startswith('gs://'): DEFAULT_LOGGING_CONFIG['handlers'].update(REMOTE_HANDLERS['gcs']) elif REMOTE_LOGGING and REMOTE_BASE_LOG_FOLDER.startswith('wasb'): DEFAULT_LOGGING_CONFIG['handlers'].update(REMOTE_HANDLERS['wasb'])
36
85
0.625961
b64bf3da0f469c08e0d10f3e9e8e450dc036c4fc
619
py
Python
unit_tests/lib/test_etcd_lib.py
hemanthnakkina/layer-etcd
ab21eb62984c0f84088f11881e5ad2783388557b
[ "ECL-2.0", "Apache-2.0" ]
4
2016-05-30T02:58:43.000Z
2019-03-07T09:55:04.000Z
unit_tests/lib/test_etcd_lib.py
hemanthnakkina/layer-etcd
ab21eb62984c0f84088f11881e5ad2783388557b
[ "ECL-2.0", "Apache-2.0" ]
122
2016-04-18T15:31:24.000Z
2019-01-29T14:00:58.000Z
unit_tests/lib/test_etcd_lib.py
hemanthnakkina/layer-etcd
ab21eb62984c0f84088f11881e5ad2783388557b
[ "ECL-2.0", "Apache-2.0" ]
15
2016-03-21T10:32:15.000Z
2019-01-29T08:03:00.000Z
from charmhelpers.contrib.templating import jinja from etcd_lib import render_grafana_dashboard def test_render_grafana_dashboard(): """Test loading of Grafana dashboard.""" datasource = "prometheus" raw_template = ( '{{"panels": [{{"datasource": "{} - ' 'Juju generated source"}}]}}'.format(datasource) ) expected_dashboard = { "panels": [{"datasource": "{} - Juju generated source".format(datasource)}] } jinja.render.return_value = raw_template rendered_dashboard = render_grafana_dashboard(datasource) assert rendered_dashboard == expected_dashboard
29.47619
83
0.691438
857600d2eb41422c26da1e62da3f99f5e01a3e87
973
py
Python
zipkin/api.py
MoiTux/python-zipkin
4c69a28a43176fe24a2aeac932c153258ff7e60a
[ "Apache-2.0" ]
null
null
null
zipkin/api.py
MoiTux/python-zipkin
4c69a28a43176fe24a2aeac932c153258ff7e60a
[ "Apache-2.0" ]
null
null
null
zipkin/api.py
MoiTux/python-zipkin
4c69a28a43176fe24a2aeac932c153258ff7e60a
[ "Apache-2.0" ]
null
null
null
from .models import Annotation from .thread import local __all__ = ['trace', 'get_current_trace'] def trace(name): """ A decorator that trace the decorated function """ if hasattr(name, '__call__'): return trace(name.__name__)(name) def func_decorator(func): def wrapper(*args, **kwargs): try: try: recording = True trace = local().child(name) annotation = Annotation.server_recv() trace.record(annotation) except Exception: recording = False return func(*args, **kwargs) finally: if recording: trace.record(Annotation.server_send()) local().pop() return wrapper return func_decorator def get_current_trace(): return local().current def stack_trace(trace): return local().append(trace)
24.325
58
0.539568
1b13b423c3dfa188fbbcd18d322fdde56b91c9b9
9,476
py
Python
stumpy/aamp.py
tylerwmarrs/stumpy
150d8e2af00dd199821179ca6a7d71f7adbaf726
[ "BSD-3-Clause" ]
null
null
null
stumpy/aamp.py
tylerwmarrs/stumpy
150d8e2af00dd199821179ca6a7d71f7adbaf726
[ "BSD-3-Clause" ]
null
null
null
stumpy/aamp.py
tylerwmarrs/stumpy
150d8e2af00dd199821179ca6a7d71f7adbaf726
[ "BSD-3-Clause" ]
null
null
null
# STUMPY # Copyright 2019 TD Ameritrade. Released under the terms of the 3-Clause BSD license. # STUMPY is a trademark of TD Ameritrade IP Company, Inc. All rights reserved. import logging import numpy as np from numba import njit, prange, config from . import core from stumpy.config import STUMPY_D_SQUARED_THRESHOLD logger = logging.getLogger(__name__) @njit(fastmath=True) def _compute_diagonal( T_A, T_B, m, T_A_subseq_isfinite, T_B_subseq_isfinite, diags, diags_start_idx, diags_stop_idx, thread_idx, P, I, ignore_trivial, ): """ Compute (Numba JIT-compiled) and update P, I along a single diagonal using a single thread and avoiding race conditions Parameters ---------- T_A : ndarray The time series or sequence for which to compute the matrix profile T_B : ndarray The time series or sequence that will be used to annotate T_A. For every subsequence in T_A, its nearest neighbor in T_B will be recorded. m : int Window size P : ndarray Matrix profile I : ndarray Matrix profile indices T_A_subseq_isfinite : ndarray A boolean array that indicates whether a subsequence in `T_A` contains a `np.nan`/`np.inf` value (False) T_B_subseq_isfinite : ndarray A boolean array that indicates whether a subsequence in `T_B` contains a `np.nan`/`np.inf` value (False) diags : ndarray The diag of diagonals to process and compute diags_start_idx : int The start index for a range of diagonal diag to process and compute diags_stop_idx : int The (exclusive) stop index for a range of diagonal diag to process and compute thread_idx : int The thread index ignore_trivial : bool Set to `True` if this is a self-join. Otherwise, for AB-join, set this to `False`. Default is `True`. Returns ------- None """ n_A = T_A.shape[0] n_B = T_B.shape[0] for diag_idx in range(diags_start_idx, diags_stop_idx): k = diags[diag_idx] if k >= 0: iter_range = range(0, min(n_A - m + 1, n_B - m + 1 - k)) else: iter_range = range(-k, min(n_A - m + 1, n_B - m + 1 - k)) for i in iter_range: if i == 0 or i == k or (k < 0 and i == -k): D_squared = np.linalg.norm(T_B[i + k : i + k + m] - T_A[i : i + m]) ** 2 else: D_squared = np.abs( D_squared - (T_B[i + k - 1] - T_A[i - 1]) ** 2 + (T_B[i + k + m - 1] - T_A[i + m - 1]) ** 2 ) if D_squared < STUMPY_D_SQUARED_THRESHOLD: D_squared = 0.0 if T_A_subseq_isfinite[i] and T_B_subseq_isfinite[i + k]: # Neither subsequence contains NaNs if D_squared < P[thread_idx, i, 0]: P[thread_idx, i, 0] = D_squared I[thread_idx, i, 0] = i + k if ignore_trivial: if D_squared < P[thread_idx, i + k, 0]: P[thread_idx, i + k, 0] = D_squared I[thread_idx, i + k, 0] = i if i < i + k: # left matrix profile and left matrix profile index if D_squared < P[thread_idx, i + k, 1]: P[thread_idx, i + k, 1] = D_squared I[thread_idx, i + k, 1] = i # right matrix profile and right matrix profile index if D_squared < P[thread_idx, i, 2]: P[thread_idx, i, 2] = D_squared I[thread_idx, i, 2] = i + k return @njit(parallel=True, fastmath=True) def _aamp( T_A, T_B, m, T_A_subseq_isfinite, T_B_subseq_isfinite, diags, ignore_trivial, ): """ A Numba JIT-compiled version of AAMP for parallel computation of the matrix profile and matrix profile indices. Parameters ---------- T_A : ndarray The time series or sequence for which to compute the matrix profile T_B : ndarray The time series or sequence that will be used to annotate T_A. For every subsequence in T_A, its nearest neighbor in T_B will be recorded. m : int Window size T_A_subseq_isfinite : ndarray A boolean array that indicates whether a subsequence in `T_A` contains a `np.nan`/`np.inf` value (False) T_B_subseq_isfinite : ndarray A boolean array that indicates whether a subsequence in `T_B` contains a `np.nan`/`np.inf` value (False) diags : ndarray The diag of diagonals to process and compute ignore_trivial : bool Set to `True` if this is a self-join. Otherwise, for AB-join, set this to `False`. Default is `True`. Returns ------- P : ndarray Matrix profile I : ndarray Matrix profile indices Notes ----- `DOI: 10.1109/ICDM.2018.00099 \ <https://www.cs.ucr.edu/~eamonn/SCRIMP_ICDM_camera_ready_updated.pdf>`__ See Algorithm 1 """ n_A = T_A.shape[0] n_B = T_B.shape[0] l = n_A - m + 1 n_threads = config.NUMBA_NUM_THREADS P = np.full((n_threads, l, 3), np.inf) I = np.full((n_threads, l, 3), -1, np.int64) ndist_counts = core._count_diagonal_ndist(diags, m, n_A, n_B) diags_ranges = core._get_array_ranges(ndist_counts, n_threads) for thread_idx in prange(n_threads): # Compute and update P, I within a single thread while avoiding race conditions _compute_diagonal( T_A, T_B, m, T_A_subseq_isfinite, T_B_subseq_isfinite, diags, diags_ranges[thread_idx, 0], diags_ranges[thread_idx, 1], thread_idx, P, I, ignore_trivial, ) # Reduction of results from all threads for thread_idx in range(1, n_threads): for i in prange(l): if P[0, i, 0] > P[thread_idx, i, 0]: P[0, i, 0] = P[thread_idx, i, 0] I[0, i, 0] = I[thread_idx, i, 0] # left matrix profile and left matrix profile indices if P[0, i, 1] > P[thread_idx, i, 1]: P[0, i, 1] = P[thread_idx, i, 1] I[0, i, 1] = I[thread_idx, i, 1] # right matrix profile and right matrix profile indices if P[0, i, 2] > P[thread_idx, i, 2]: P[0, i, 2] = P[thread_idx, i, 2] I[0, i, 2] = I[thread_idx, i, 2] return np.sqrt(P[0, :, :]), I[0, :, :] def aamp(T_A, m, T_B=None, ignore_trivial=True): """ Compute the non-normalized (i.e., without z-normalization) matrix profile This is a convenience wrapper around the Numba JIT-compiled parallelized `_aamp` function which computes the matrix profile according to AAMP. Parameters ---------- T_A : ndarray The time series or sequence for which to compute the matrix profile m : int Window size T_B : ndarray, default None The time series or sequence that will be used to annotate T_A. For every subsequence in T_A, its nearest neighbor in T_B will be recorded. Default is `None` which corresponds to a self-join. ignore_trivial : bool, default True Set to `True` if this is a self-join. Otherwise, for AB-join, set this to `False`. Default is `True`. Returns ------- out : ndarray The first column consists of the matrix profile, the second column consists of the matrix profile indices. Notes ----- `arXiv:1901.05708 \ <https://arxiv.org/pdf/1901.05708.pdf>`__ See Algorithm 1 Note that we have extended this algorithm for AB-joins as well. """ if T_B is None: T_B = T_A.copy() ignore_trivial = True T_A, T_A_subseq_isfinite = core.preprocess_non_normalized(T_A, m) T_B, T_B_subseq_isfinite = core.preprocess_non_normalized(T_B, m) if T_A.ndim != 1: # pragma: no cover raise ValueError(f"T_A is {T_A.ndim}-dimensional and must be 1-dimensional. ") if T_B.ndim != 1: # pragma: no cover raise ValueError(f"T_B is {T_B.ndim}-dimensional and must be 1-dimensional. ") core.check_window_size(m) if ignore_trivial is False and core.are_arrays_equal(T_A, T_B): # pragma: no cover logger.warning("Arrays T_A, T_B are equal, which implies a self-join.") logger.warning("Try setting `ignore_trivial = True`.") if ignore_trivial and core.are_arrays_equal(T_A, T_B) is False: # pragma: no cover logger.warning("Arrays T_A, T_B are not equal, which implies an AB-join.") logger.warning("Try setting `ignore_trivial = False`.") n_A = T_A.shape[0] n_B = T_B.shape[0] l = n_A - m + 1 excl_zone = int(np.ceil(m / 4)) out = np.empty((l, 4), dtype=object) if ignore_trivial: diags = np.arange(excl_zone + 1, n_A - m + 1) else: diags = np.arange(-(n_A - m + 1) + 1, n_B - m + 1) P, I = _aamp( T_A, T_B, m, T_A_subseq_isfinite, T_B_subseq_isfinite, diags, ignore_trivial, ) out[:, 0] = P[:, 0] out[:, 1:] = I[:, :] return out
29.705329
88
0.576931
4dd541e9bdbb57b9f73aaa5803c4999b63d00302
11,947
py
Python
python/tvm/tir/ir_builder.py
retamia/tvm
5d25dc54d874bf2ddf0e8cf34c4748e9e2656fd8
[ "Apache-2.0" ]
5
2020-06-19T03:22:24.000Z
2021-03-17T22:16:48.000Z
python/tvm/tir/ir_builder.py
retamia/tvm
5d25dc54d874bf2ddf0e8cf34c4748e9e2656fd8
[ "Apache-2.0" ]
2
2020-07-08T12:34:59.000Z
2020-07-11T15:54:47.000Z
python/tvm/tir/ir_builder.py
retamia/tvm
5d25dc54d874bf2ddf0e8cf34c4748e9e2656fd8
[ "Apache-2.0" ]
1
2020-03-10T17:11:57.000Z
2020-03-10T17:11:57.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Developer API of IR node builder make function.""" from tvm._ffi.base import string_types from tvm.runtime import ObjectGeneric, DataType, convert, const from tvm.ir import container as _container from . import stmt as _stmt from . import expr as _expr class WithScope(object): """Auxiliary scope with""" def __init__(self, enter_value, exit_cb): self._enter_value = enter_value self._exit_cb = exit_cb def __enter__(self): return self._enter_value def __exit__(self, ptype, value, trace): self._exit_cb() class BufferVar(ObjectGeneric): """Buffer variable with content type, makes load store easily. Do not create it directly, create use IRBuilder. Examples -------- In the follow example, x is BufferVar. :code:`x[0] = ...` directly emit a store to the IRBuilder, :code:`x[10]` translates to Load. .. code-block:: python # The following code generate IR for x[0] = x[ ib = tvm.tir.ir_builder.create() x = ib.pointer("float32") x[0] = x[10] + 1 See Also -------- IRBuilder.pointer IRBuilder.buffer_ptr IRBuilder.allocate """ def __init__(self, builder, buffer_var, content_type): self._builder = builder self._buffer_var = buffer_var self._content_type = content_type def asobject(self): return self._buffer_var @property def dtype(self): return self._content_type def __getitem__(self, index): t = DataType(self._content_type) if t.lanes > 1: base = index * t.lanes index = _expr.Ramp(base, const(1, base.dtype), t.lanes) return _expr.Load(self._content_type, self._buffer_var, index) def __setitem__(self, index, value): value = convert(value) if value.dtype != self._content_type: raise ValueError( "data type does not match content type %s vs %s" % ( value.dtype, self._content_type)) t = DataType(self._content_type) if t.lanes > 1: base = index * t.lanes index = _expr.Ramp(base, const(1, base.dtype), t.lanes) self._builder.emit(_stmt.Store(self._buffer_var, value, index)) class IRBuilder(object): """Auxiliary builder to build IR for testing and dev. Examples -------- .. code-block:: python ib = tvm.tir.ir_builder.create() n = te.var("n") A = ib.allocate("float32", n, name="A") with ib.for_range(0, n, name="i") as i: with ib.if_scope((i % 2) == 0): A[i] = A[i] + 1 # The result stmt. stmt = ib.get() """ def __init__(self): self._seq_stack = [[]] self.nidx = 0 def _pop_seq(self): """Pop sequence from stack""" seq = self._seq_stack.pop() if not seq or callable(seq[-1]): seq.append(_stmt.Evaluate(0)) seqwrap = lambda x: x[0] if len(x) == 1 else _stmt.SeqStmt(list(reversed(x))) ret_seq = [seq[-1]] for s in reversed(seq[:-1]): if callable(s): ret_seq = [s(seqwrap(ret_seq))] else: assert isinstance(s, _stmt.Stmt) ret_seq.append(s) return seqwrap(ret_seq) def emit(self, stmt): """Emit a statement to the end of current scope. Parameters ---------- stmt : Stmt or callable. The statement to be emitted or callable that build stmt given body. """ if isinstance(stmt, _expr.Call): stmt = _stmt.Evaluate(stmt) assert isinstance(stmt, _stmt.Stmt) or callable(stmt) self._seq_stack[-1].append(stmt) def scope_attr(self, node, attr_key, value): """Create an AttrStmt at current scope. Parameters ---------- attr_key : str The key of the attribute type. node : Node The attribute node to annottate on. value : Expr Attribute value. Examples -------- .. code-block:: python ib = tvm.tir.ir_builder.create() i = te.var("i") x = ib.pointer("float32") ib.scope_attr(x, "storage_scope", "global") x[i] = x[i - 1] + 1 """ if isinstance(node, string_types): node = _expr.StringImm(node) if isinstance(value, string_types): value = _expr.StringImm(value) self.emit(lambda x: _stmt.AttrStmt(node, attr_key, value, x)) def for_range(self, begin, end, name="i", dtype="int32", for_type="serial"): """Create a for iteration scope. Parameters ---------- begin : Expr The min iteration scope. end : Expr The end iteration scope name : str, optional The name of iteration variable, if no input names, using typical index names i, j, k, then i_nidx dtype : str, optional The data type of iteration variable. for_type : str, optional The special tag on the for loop. Returns ------- loop_scope : With.Scope of Var The for scope, when enters returns loop_var Examples -------- .. code-block:: python ib = tvm.tir.ir_builder.create() x = ib.pointer("float32") with ib.for_range(1, 10, name="i") as i: x[i] = x[i - 1] + 1 """ if name == 'i': name = chr(ord(name) + self.nidx) if self.nidx < 3 else name + "_" + str(self.nidx - 3) self.nidx += 1 self._seq_stack.append([]) loop_var = _expr.Var(name, dtype=dtype) extent = end if begin == 0 else (end - begin) def _exit_cb(): if for_type == "serial": for_type_id = 0 elif for_type == "parallel": for_type_id = 1 elif for_type == "vectorize": for_type_id = 2 elif for_type == "unroll": for_type_id = 3 else: raise ValueError("Unknown for_type") self.emit(_stmt.For( loop_var, begin, extent, for_type_id, 0, self._pop_seq())) return WithScope(loop_var, _exit_cb) def if_scope(self, cond): """Create an if scope. Parameters ---------- cond : Expr The condition. Returns ------- if_scope : WithScope The result if scope. Examples -------- .. code-block:: python ib = tvm.tir.ir_builder.create() i = te.var("i") x = ib.pointer("float32") with ib.if_scope((i % 2) == 0): x[i] = x[i - 1] + 1 """ self._seq_stack.append([]) def _exit_cb(): self.emit(_stmt.IfThenElse(cond, self._pop_seq(), None)) return WithScope(None, _exit_cb) def else_scope(self): """Create an else scope. This can only be used right after an if scope. Returns ------- else_scope : WithScope The result else scope. Examples -------- .. code-block:: python ib = tvm.tir.ir_builder.create() i = te.var("i") x = ib.pointer("float32") with ib.if_scope((i % 2) == 0): x[i] = x[i - 1] + 1 with ib.else_scope(): x[i] = x[i - 1] + 2 """ if not self._seq_stack[-1]: raise RuntimeError("else_scope can only follow an if_scope") prev = self._seq_stack[-1][-1] if not isinstance(prev, _stmt.IfThenElse) or prev.else_case: raise RuntimeError("else_scope can only follow an if_scope") self._seq_stack[-1].pop() self._seq_stack.append([]) def _exit_cb(): self.emit(_stmt.IfThenElse(prev.condition, prev.then_case, self._pop_seq())) return WithScope(None, _exit_cb) def new_scope(self): """Create new scope, this is useful to set boundary of attr and allocate. Returns ------- new_scope : WithScope The result new scope. """ self._seq_stack.append([]) def _exit_cb(): self.emit(self._pop_seq()) return WithScope(None, _exit_cb) def allocate(self, dtype, shape, name="buf", scope=None): """Create a allocate statement. Parameters ---------- dtype : str The content data type. shape : tuple of Expr The shape of array to be allocated. name : str, optional The name of the buffer. scope : str, optional The scope of the buffer. Returns ------- buffer : BufferVar The buffer var representing the buffer. """ buffer_var = _expr.Var(name, dtype="handle") if not isinstance(shape, (list, tuple, _container.Array)): shape = [shape] if scope: self.scope_attr(buffer_var, "storage_scope", scope) self.emit(lambda x: _stmt.Allocate( buffer_var, dtype, shape, const(1, dtype="uint1"), x)) return BufferVar(self, buffer_var, dtype) def pointer(self, content_type, name="ptr"): """Create pointer variable with content type. Parameters ---------- content_type : str The content data type. name : str, optional The name of the pointer. Returns ------- ptr : BufferVar The buffer var representing the buffer. """ buffer_var = _expr.Var(name, dtype="handle") return BufferVar(self, buffer_var, content_type) def buffer_ptr(self, buf): """Create pointer variable corresponds to buffer ptr. Parameters ---------- buf : Buffer The buffer to be extracted. Returns ------- ptr : BufferVar The buffer var representing the buffer. """ return BufferVar(self, buf.data, buf.dtype) def likely(self, expr): """Add likely tag for expression. Parameters ---------- expr : Expr The expression. Usually a condition expression. Returns ------- expr : Expr The expression will likely tag. """ return _expr.Call(expr.dtype, "likely", [expr], _expr.Call.PureIntrinsic, None, 0) def get(self): """Return the builded IR. Returns ------- stmt : Stmt The result statement. """ seq = self._pop_seq() if self._seq_stack: raise RuntimeError("cannot call get inside construction scope") return seq def create(): """Create a new IRBuilder Returns ------- builder : IRBuilder The created IRBuilder """ return IRBuilder()
29.281863
99
0.549929
f578098550e6f794fc9125c46f5c1258931ac891
1,073
py
Python
sample_code/Python_NLP/nlp-6-1-context.py
ice-melt/python-lib
345e34fff7386d91acbb03a01fd4127c5dfed037
[ "MIT" ]
null
null
null
sample_code/Python_NLP/nlp-6-1-context.py
ice-melt/python-lib
345e34fff7386d91acbb03a01fd4127c5dfed037
[ "MIT" ]
null
null
null
sample_code/Python_NLP/nlp-6-1-context.py
ice-melt/python-lib
345e34fff7386d91acbb03a01fd4127c5dfed037
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- """ @Author : ice-melt@outlook.com @File : nlp-6-1-context.py @Time : 2019/5/6 18:17 @Version : 1.0 @Desc : None """ from nltk.corpus import brown import nltk def pos_features(sentence, i): features = {'suffix(1)': sentence[i][-1:], 'suffix(2)': sentence[i][-2:], 'suffix(3)': sentence[i][-3:]} if i == 0: features["prev-word"] = "<START>" else: features['prev-word'] = sentence[i - 1] return features print(brown.sents()[0]) pos_features(brown.sents()[0], 8) tagged_sents = brown.tagged_sents(categories='news') featuresets = [] for tagged_sent in tagged_sents: untagged_sent = nltk.tag.untag(tagged_sent) for i, (word, tag) in enumerate(tagged_sent): featuresets.append((pos_features(untagged_sent, i), tag)) size = int(len(featuresets) * 0.1) train_set, test_set = featuresets[size:], featuresets[:size] classifier = nltk.NaiveBayesClassifier.train(train_set) print(nltk.classify.accuracy(classifier, test_set))
27.512821
65
0.635601
00df1d5e3b22c14ae453468eff5b8dfe62853639
1,745
py
Python
setup.py
amane-katagiri/maruberu
dec81e6ac97022e0f99090a0b9919c60736e2445
[ "MIT" ]
null
null
null
setup.py
amane-katagiri/maruberu
dec81e6ac97022e0f99090a0b9919c60736e2445
[ "MIT" ]
1
2019-10-04T02:13:04.000Z
2019-10-04T02:13:04.000Z
setup.py
amane-katagiri/maruberu
dec81e6ac97022e0f99090a0b9919c60736e2445
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Setup file for Distutils.""" from logging import DEBUG from logging import getLogger from logging import StreamHandler import os import maruberu logger = getLogger(__name__) handler = StreamHandler() handler.setLevel(DEBUG) logger.setLevel(DEBUG) logger.addHandler(handler) try: from setuptools import find_packages from setuptools import setup except ImportError: logger.critical("Please install setuptools.") def main() -> None: """Setup package after read meta information from files.""" long_description = "You can ring my round bell." if os.path.exists("README.rst"): with open("README.rst") as f: long_description = f.read() install_requires = [] if os.path.exists("requirements.txt"): with open("requirements.txt") as f: install_requires = f.read().split() setup(name="maruberu", version=maruberu.__version__, description="You can ring my round bell.", long_description=long_description, license="MIT", author="Amane Katagiri", author_email="amane@ama.ne.jp", url="https://github.com/amane-katagiri/maruberu", keywords="server bell alert", install_requires=[ ] + install_requires, classifiers=[ "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.7", "Framework :: Tornado", ], packages=find_packages(), entry_points=""" [console_scripts] maruberu = maruberu.main:main """, ) if __name__ == "__main__": main()
27.698413
63
0.6149
e608727db0b7328d763feb5a9b9ef1db828b6a99
898
py
Python
tests/conftest.py
pylucknow/open-community-api
cf7cbdb977bfdd4ca047f7efc6eb895c22417146
[ "MIT" ]
null
null
null
tests/conftest.py
pylucknow/open-community-api
cf7cbdb977bfdd4ca047f7efc6eb895c22417146
[ "MIT" ]
null
null
null
tests/conftest.py
pylucknow/open-community-api
cf7cbdb977bfdd4ca047f7efc6eb895c22417146
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Defines fixtures available to all tests.""" import pytest from webtest import TestApp from oca.app import create_app from oca.database import db as _db from .factories import UserFactory @pytest.fixture def app(): """Create application for the tests.""" _app = create_app("tests.settings") ctx = _app.test_request_context() ctx.push() yield _app ctx.pop() @pytest.fixture def testapp(app): """Create Webtest app.""" return TestApp(app) @pytest.fixture def db(app): """Create database for the tests.""" _db.app = app with app.app_context(): _db.create_all() yield _db # Explicitly close DB connection _db.session.close() _db.drop_all() @pytest.fixture def user(db): """Create user for the tests.""" user = UserFactory(password="myprecious") db.session.commit() return user
17.607843
46
0.660356
7eba8235654766e7076e934e38b5ab73627887e1
219
py
Python
tests/test_day13.py
TobiasRoeding/advent-of-code-2021
3db16d52ad9f4f04ac7f43087f6f504dca41cc43
[ "Unlicense" ]
null
null
null
tests/test_day13.py
TobiasRoeding/advent-of-code-2021
3db16d52ad9f4f04ac7f43087f6f504dca41cc43
[ "Unlicense" ]
null
null
null
tests/test_day13.py
TobiasRoeding/advent-of-code-2021
3db16d52ad9f4f04ac7f43087f6f504dca41cc43
[ "Unlicense" ]
null
null
null
from src.day13 import Day13 as DayX INPUT = "tests/inputs/day13.txt" def test_init(): DayX(INPUT) def test_part1(): assert DayX(INPUT).part1() == 17 def test_part2(): assert DayX(INPUT).part2() == 16
13.6875
36
0.657534
0229e86d0b082143909d65d92b8fa8623c88bb08
2,295
py
Python
python/test/test_shuttle_api.py
openlattice/api-clients
1d5be9861785b295089b732f37464e31bf80c8ca
[ "Apache-2.0" ]
null
null
null
python/test/test_shuttle_api.py
openlattice/api-clients
1d5be9861785b295089b732f37464e31bf80c8ca
[ "Apache-2.0" ]
1
2021-01-20T00:20:01.000Z
2021-01-20T00:20:01.000Z
python/test/test_shuttle_api.py
openlattice/api-clients
1d5be9861785b295089b732f37464e31bf80c8ca
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ OpenLattice API OpenLattice API # noqa: E501 The version of the OpenAPI document: 0.0.1 Contact: support@openlattice.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import openlattice from openlattice.api.shuttle_api import ShuttleApi # noqa: E501 from openlattice.rest import ApiException class TestShuttleApi(unittest.TestCase): """ShuttleApi unit test stubs""" def setUp(self): self.api = openlattice.api.shuttle_api.ShuttleApi() # noqa: E501 def tearDown(self): pass def test_create_integration_definition(self): """Test case for create_integration_definition Creates a new integration definition for running recurring integrations # noqa: E501 """ pass def test_delete_integration_definition(self): """Test case for delete_integration_definition Replaces any number of fields within an existing integration definition # noqa: E501 """ pass def test_delete_integration_job_status(self): """Test case for delete_integration_job_status Deletes an integration job status from the integrationJobs map # noqa: E501 """ pass def test_enqueue_integration(self): """Test case for enqueue_integration Enqueues an integration on Shuttle Server for a given integration # noqa: E501 """ pass def test_poll_all_integrations(self): """Test case for poll_all_integrations Polls the statuses of all running integrations # noqa: E501 """ pass def test_poll_integration(self): """Test case for poll_integration Polls the status of an integration # noqa: E501 """ pass def test_read_integration_definition(self): """Test case for read_integration_definition Gets an existing integration definition # noqa: E501 """ pass def test_update_integration_definition(self): """Test case for update_integration_definition Replaces any number of fields within an existing integration definition # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
25.21978
93
0.674074
d9a9afa2e7bed21f15be6d08d662ef312cb77aa2
2,669
py
Python
runtime/databricks/automl_runtime/forecast/utils.py
wenfeiy-db/automl
f63e259b0db0a19ca87c3ea851ab749e3ab57c3b
[ "Apache-2.0" ]
null
null
null
runtime/databricks/automl_runtime/forecast/utils.py
wenfeiy-db/automl
f63e259b0db0a19ca87c3ea851ab749e3ab57c3b
[ "Apache-2.0" ]
null
null
null
runtime/databricks/automl_runtime/forecast/utils.py
wenfeiy-db/automl
f63e259b0db0a19ca87c3ea851ab749e3ab57c3b
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) 2022 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List import pandas as pd def generate_cutoffs(df: pd.DataFrame, horizon: int, unit: str, seasonal_period: int, num_folds: int) -> List[pd.Timestamp]: """ Generate cutoff times for cross validation with the control of number of folds. :param df: pd.DataFrame of the historical data :param horizon: int number of time into the future for forecasting. :param unit: frequency of the timeseries, which must be a pandas offset alias. :param seasonal_period: length of the seasonality period in days :param num_folds: int number of cutoffs for cross validation. :return: list of pd.Timestamp cutoffs for corss-validation. """ period = max(0.5 * horizon, 1) # avoid empty cutoff buckets period_timedelta = pd.to_timedelta(period, unit=unit) horizon_timedelta = pd.to_timedelta(horizon, unit=unit) seasonality_timedelta = pd.to_timedelta(seasonal_period, unit=unit) initial = max(3 * horizon_timedelta, seasonality_timedelta) # Last cutoff is "latest date in data - horizon_timedelta" date cutoff = df["ds"].max() - horizon_timedelta if cutoff < df["ds"].min(): raise ValueError("Less data than horizon.") result = [cutoff] while result[-1] >= min(df["ds"]) + initial and len(result) < num_folds: cutoff -= period_timedelta # If data does not exist in data range (cutoff, cutoff + horizon_timedelta] if not (((df["ds"] > cutoff) & (df["ds"] <= cutoff + horizon_timedelta)).any()): # Next cutoff point is "last date before cutoff in data - horizon_timedelta" if cutoff > df["ds"].min(): closest_date = df[df["ds"] <= cutoff].max()["ds"] cutoff = closest_date - horizon_timedelta # else no data left, leave cutoff as is, it will be dropped. result.append(cutoff) result = result[:-1] if len(result) == 0: raise ValueError( "Less data than horizon after initial window. Make horizon shorter." ) return list(reversed(result))
43.048387
88
0.68003
5a5e41a0281c6ca8c88f6aff71a3165575ba152b
2,159
py
Python
Aggregation-Network/models/AttentionModel/rnn.py
King-HAW/DC-MT
16678dd8284d074527fe1f7ddd042739aece4ed1
[ "MIT" ]
1
2022-02-17T07:26:18.000Z
2022-02-17T07:26:18.000Z
Aggregation-Network/models/AttentionModel/rnn.py
King-HAW/DC-MT
16678dd8284d074527fe1f7ddd042739aece4ed1
[ "MIT" ]
null
null
null
Aggregation-Network/models/AttentionModel/rnn.py
King-HAW/DC-MT
16678dd8284d074527fe1f7ddd042739aece4ed1
[ "MIT" ]
null
null
null
import torch.nn as nn class SimpleRNN(nn.Module): def __init__(self, in_dim=128, hidden_dim=96, n_layers=2, drop_out=0.5, num_classes=1000): super(SimpleRNN, self).__init__() self.n_layers = n_layers self.hidden_dim = hidden_dim self.fea_conv = nn.Sequential(nn.Dropout2d(drop_out), nn.Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Dropout2d(drop_out), nn.Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Dropout2d(drop_out), ) self.fea_lstm = nn.GRU(in_dim, hidden_dim, num_layers=self.n_layers, batch_first=True, bidirectional=True) self.fea_first_final = nn.Sequential(nn.Conv2d(128, hidden_dim * 2, kernel_size=(24, 1), stride=(1, 1), padding=(0, 0), bias=True)) self.fea_secon_final = nn.Sequential(nn.Conv2d(hidden_dim * 2, hidden_dim * 2, kernel_size=(24, 1), stride=(1, 1), padding=(0, 0), bias=True)) self.classifier = nn.Linear(hidden_dim * 2, num_classes, bias=False) def forward(self, data): x, pro = data bs, seq_len, fea_len = x.shape x = x.permute(0, 2, 1).contiguous() x = x.view(bs, fea_len, seq_len, 1).contiguous() x_out = self.fea_conv(x) x0 = self.fea_first_final(x_out) x0 = x0.view(bs, -1).contiguous() x_out = x_out.view(bs, 128, seq_len).contiguous() x1 = x_out.permute(0, 2, 1).contiguous() x1, _ = self.fea_lstm(x1) x1 = x1.view(bs, 1, seq_len, self.hidden_dim * 2).contiguous() x1 = x1.permute(0, 3, 2, 1).contiguous() x1 = self.fea_secon_final(x1) x1 = x1.view(bs, -1).contiguous() out0 = x0 + x1 out = self.classifier(out0) return out
46.934783
150
0.528022
1bc8ea4dcddcc42e46c1ddf066dc0565212b4cd1
1,398
py
Python
oarepo_sitemaps/version.py
Alzpeta/oarepo-sitemaps
9dbf119c1cd12d3f1ff707a411bf0a601a4a4ff6
[ "MIT" ]
null
null
null
oarepo_sitemaps/version.py
Alzpeta/oarepo-sitemaps
9dbf119c1cd12d3f1ff707a411bf0a601a4a4ff6
[ "MIT" ]
null
null
null
oarepo_sitemaps/version.py
Alzpeta/oarepo-sitemaps
9dbf119c1cd12d3f1ff707a411bf0a601a4a4ff6
[ "MIT" ]
1
2021-05-24T08:11:07.000Z
2021-05-24T08:11:07.000Z
# # Copyright (c) 2020 CESNET Prague. # # version.py is part of OAREPO repository # (see https://github.com/oarepo). # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """Version information for oarepo_sitemaps repository. This file is imported by ``oarepo_sitemaps.__init__``, and parsed by ``setup.py``. """ from __future__ import absolute_import, print_function __version__ = '1.0.0'
41.117647
80
0.771102
fc2db3d58b50ef884bf24935a50e47ec56962536
11,550
py
Python
ebs_clone_decrypted/cli.py
koiker/ebs-clone-decrypted
0bfe25f56743ac4ee31a6ef3f12b1a742a9a8637
[ "Apache-2.0" ]
null
null
null
ebs_clone_decrypted/cli.py
koiker/ebs-clone-decrypted
0bfe25f56743ac4ee31a6ef3f12b1a742a9a8637
[ "Apache-2.0" ]
null
null
null
ebs_clone_decrypted/cli.py
koiker/ebs-clone-decrypted
0bfe25f56743ac4ee31a6ef3f12b1a742a9a8637
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Amazon AWS Clone an Encrypted EBS to a Decrypted one Inputs: - instance-id - vol-id 1 - Start aux instance => Lambda 2 - Stop source instance => OK 3 - Snapshot source EBS => OK 4 - Mount source EBS => OK 5 - Create new EBS => OK 6 - Mount new EBS => OK 7 - Prepare source EBS to be copied 8 - Copy data 9 - Unmount source EBS 10 - Delete source EBS 11 - Unmount new EBS 12 - Attach new EBS to source instance 13 - Start source instance 14 - Stop aux instance """ import subprocess import boto3 import click import requests class CloneEbsDecrypted: def __init__(self, source_instance_id, source_volume_id, new_size): # This class is a refactor of the original procedural code # TODO: pass _snapshotON, _snapshot and other properties as parameters # Main variables self.source_instance_id = source_instance_id self.source_volume_id = source_volume_id self.new_size = new_size self.local_instance_id = None # Initialize Boto3 AWS self.ec2_client = boto3.client('ec2') self.ec2_resource = boto3.resource('ec2') # Turn on/off backups self._snapshotON = False # Devices to be attached on this AUX instance self.aux_source_device = '/dev/sds' self.aux_target_device = '/dev/sdt' # Generated snapshot self._snapshot = None self.source_device = None self.new_volume_id = None # Stop instance def stop_instance(self, instance_id): print("Instance %s Stopping..." % instance_id) self.ec2_client.stop_instances(InstanceIds=[instance_id]) stop_waiter = self.ec2_client.get_waiter('instance_stopped') stop_waiter.wait(InstanceIds=[instance_id]) print("Instance %s Stopped." % instance_id) # Generate Snapshot for source volume def snapshot(self, volume_id): source_volume = self.ec2_resource.Volume(volume_id) if self._snapshotON: print("Snapshot started... %s" % source_volume) self._snapshot = source_volume.create_snapshot( Description='EBS-CLONE', TagSpecifications=[ {'ResourceType': 'snapshot', 'Tags': [{'Key': 'EBS-CLONE', 'Value': 'EBS-CLONE-BKP'}]} ] ) snapshot_waiter = self.ec2_client.get_waiter('snapshot_completed') snapshot_waiter.wait(Filters=[{'Name': 'volume-id', 'Values': [volume_id]}]) print("Snapshot completed: %s" % self._snapshot.id) # Detach source EBS from source Instance def detach_volume(self, detach_volume_id, detach_instance_id): source_volume = self.ec2_resource.Volume(detach_volume_id) attached_volumes = filter( lambda attach: attach['State'] == 'attached' and attach['InstanceId'] == detach_instance_id, source_volume.attachments) if len(attached_volumes) > 0: source_device = attached_volumes.pop()['Device'] print("Volume %s is being detached..." % detach_volume_id) source_volume.detach_from_instance(Device=source_device, InstanceId=detach_instance_id) waiter_detach = self.ec2_client.get_waiter('volume_available') waiter_detach.wait(VolumeIds=[detach_volume_id]) print("Volume %s detached." % detach_volume_id) return source_device # Attach source EBS to Instance def attach_volume(self, attach_volume_id, attach_instance_id, attach_device): source_volume = self.ec2_resource.Volume(attach_volume_id) attached_volumes = filter(lambda attach: attach['State'] == 'attached', source_volume.attachments) if len(attached_volumes) == 0: print("Volume %s is being attached to instance %s at device %s..." % ( attach_volume_id, attach_instance_id, attach_device)) response_attach = source_volume.attach_to_instance(Device=attach_device, InstanceId=attach_instance_id) waiter_attach = self.ec2_client.get_waiter('volume_in_use') waiter_attach.wait(VolumeIds=[attach_volume_id], Filters=[{'Name': 'attachment.status', 'Values': ['attached']}]) print("Volume %s attached to instance %s at device %s." % ( attach_volume_id, attach_instance_id, attach_device)) # Create EBS From Volume or Snapshot def create_volume_from_existing_volume(self, volume_id, new_size=None, snapshot_id=None): source_volume = self.ec2_resource.Volume(volume_id) if new_size is None: new_size = source_volume.size # ST1 and SC1 min size is 500 if source_volume.volume_type in ('sc1', 'st1') and new_size < 500: new_size = 500 new_volume_dict = { 'AvailabilityZone': source_volume.availability_zone, 'Encrypted': None, 'Iops': source_volume.iops, 'KmsKeyId': None, 'Size': new_size, 'VolumeType': source_volume.volume_type, 'TagSpecifications': [{'ResourceType': 'volume', 'Tags': self.create_tag_specifications(volume_id)}] } # Remove None attributes new_volume_dict = dict(filter(lambda item: item[1] is not None, new_volume_dict.items())) # Remove iops attribute if creating GP2 is_gp2 = False if source_volume.volume_type == 'gp2': is_gp2 = True new_volume_dict = dict((k, v) for k, v in new_volume_dict.iteritems() if k != 'Iops' or not is_gp2) # Remove Size and add Snapshot if from snapshot if snapshot_id is not None: del new_volume_dict['Size'] new_volume_dict['SnapshotId'] = snapshot_id print("Creating new EBS volume... %s" % new_volume_dict) response_create_volume = self.ec2_client.create_volume(**new_volume_dict) new_volume_id = response_create_volume['VolumeId'] waiter_create_volume = self.ec2_client.get_waiter('volume_available') waiter_create_volume.wait(VolumeIds=[new_volume_id]) print("New EBS created: \n%s" % response_create_volume) return new_volume_id # Delete source Volume def delete_volume(self, volume_id): print("Volume %s is being deleted..." % volume_id) response_delete_volume = self.ec2_client.delete_volume(VolumeId=volume_id) print("Volume %s deleted." % volume_id) # Create new TAG set for volume with EBS-CLONE as key def create_tag_specifications(self, local_source_volume_id, new_tag_value="EBS-CLONE-CREATED"): local_source_volume = self.ec2_resource.Volume(local_source_volume_id) local_new_tags = None # Add a new tag if local_source_volume.tags is not None and any(d['Key'] == 'EBS-CLONE' for d in local_source_volume.tags): local_new_tags = local_source_volume.tags else: local_new_tags = [{'Value': new_tag_value, 'Key': 'EBS-CLONE'}] if local_source_volume.tags: local_new_tags = local_source_volume.tags + local_new_tags return local_new_tags # Prepare and Copy source volume def prepare_and_copy_volume(self, source_device, target_device): output = None # Copy the volume (clone partitions) try: print("Start to copy device %s to %s ..." % (source_device, target_device)) output = subprocess.check_output(["sudo", "dd", "bs=16M", "if=" + source_device, "of=" + target_device, "status=progress", "oflag=direct"]) print(output) output = subprocess.check_output(["sync"]) print(output) except subprocess.CalledProcessError as e: output = e.output print(output) self.rollback() exit(-1) # Start source instance def start_instance(self, instance_id): print("Source instance %s Starting..." % instance_id) self.ec2_client.start_instances(InstanceIds=[instance_id]) stop_waiter = self.ec2_client.get_waiter('instance_running') stop_waiter.wait(InstanceIds=[instance_id]) print("Source instance %s Started." % instance_id) # Rollback: recover snapshot and start instance def rollback(self): print("Rollback started...") source_volume = self.ec2_resource.Volume(self.source_volume_id) # Create new EBS volume from backup # newVolumeId = create_volume_from_existing_volume(volumeId = _source_volume_id, snapshotId = self._snapshot.id) # Detach and attach source_volume if self.source_volume_id: self.detach_volume(self.source_volume_id, self.local_instance_id) # Attach new EBS to original Instance self.attach_volume(attach_volume_id=self.source_volume_id, attach_instance_id=self.source_instance_id, attach_device=self.source_device) self.start_instance(self.source_instance_id) # Detach and delete generated volume if self.new_volume_id: self.detach_volume(self.new_volume_id, self.local_instance_id) self.delete_volume(self.new_volume_id) print("Rollback finished.") exit(-1) def run(self): # Retrieve AUX instance info local_instance_id = requests.get('http://169.254.169.254/latest/meta-data/instance-id').text # Stop source instance self.stop_instance(instance_id=self.source_instance_id) # Generate Snapshot for source volume self.snapshot(self.source_volume_id) # Detach source EBS from source Instance source_device = self.detach_volume(self.source_volume_id, self.source_instance_id) # Attach source EBS to AUX Instance self.attach_volume(self.source_volume_id, local_instance_id, self.aux_source_device) # Create new reduced EBS volume new_volume_id = self.create_volume_from_existing_volume(volume_id=self.source_volume_id) # Attach new EBS to AUX Instance self.attach_volume(new_volume_id, local_instance_id, self.aux_target_device) # Prepare and Copy source volume to new reduced one self.prepare_and_copy_volume(self.aux_source_device, self.aux_target_device) # Detach new EBS from AUX Instance self.detach_volume(new_volume_id, local_instance_id) # Attach new EBS to original Instance self.attach_volume(new_volume_id, self.source_instance_id, source_device) # Start source instance self.start_instance(self.source_instance_id) # Detach source EBS from AUX Instance self.detach_volume(self.source_volume_id, local_instance_id) # Delete source Volume self.delete_volume(self.source_volume_id) # Inputs @click.command() @click.option('-si', '--instance-id', help='Source Instance Id. Ex: i-095c3fa3d1688eaa3 ') @click.option('-sv', '--volume-id', help='Source Volume Id. Ex: vol-0a49b7a908e747385') @click.option('-ns', '--new-size', help='New Size. Default will use the source size') def main(**kwargs): source_instance_id = kwargs.pop('instance_id') source_volume_id = kwargs.pop('volume_id') new_size = kwargs.pop('new_size') decrypt_ebs = CloneEbsDecrypted(source_instance_id, source_volume_id, new_size) decrypt_ebs.run() if __name__ == "__main__": main()
39.827586
120
0.661385
72185f288a9ad15f18fb64a38bcde4ec58ea0fd1
13,476
py
Python
neutron/services/network_segment_range/plugin.py
knodir/neutron
ac4e28478ac8a8a0c9f5c5785f6a6bcf532c66b8
[ "Apache-2.0" ]
null
null
null
neutron/services/network_segment_range/plugin.py
knodir/neutron
ac4e28478ac8a8a0c9f5c5785f6a6bcf532c66b8
[ "Apache-2.0" ]
null
null
null
neutron/services/network_segment_range/plugin.py
knodir/neutron
ac4e28478ac8a8a0c9f5c5785f6a6bcf532c66b8
[ "Apache-2.0" ]
1
2019-03-13T17:05:02.000Z
2019-03-13T17:05:02.000Z
# Copyright (c) 2019 Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.api.definitions import network_segment_range as range_def from neutron_lib import constants as const from neutron_lib.db import api as db_api from neutron_lib import exceptions as lib_exc from neutron_lib.exceptions import network_segment_range as range_exc from neutron_lib.plugins import directory from neutron_lib.plugins import utils as plugin_utils from oslo_config import cfg from oslo_log import helpers as log_helpers from oslo_log import log import six from neutron._i18n import _ from neutron.db import segments_db from neutron.extensions import network_segment_range as ext_range from neutron.objects import base as base_obj from neutron.objects import network_segment_range as obj_network_segment_range LOG = log.getLogger(__name__) def is_network_segment_range_enabled(): network_segment_range_class = ('neutron.services.network_segment_range.' 'plugin.NetworkSegmentRangePlugin') return any(p in cfg.CONF.service_plugins for p in ['network_segment_range', network_segment_range_class]) class NetworkSegmentRangePlugin(ext_range.NetworkSegmentRangePluginBase): """Implements Neutron Network Segment Range Service plugin.""" supported_extension_aliases = [range_def.ALIAS] __native_pagination_support = True __native_sorting_support = True __filter_validation_support = True def __init__(self): super(NetworkSegmentRangePlugin, self).__init__() self.type_manager = directory.get_plugin().type_manager self.type_manager.initialize_network_segment_range_support() def _get_network_segment_range(self, context, id): obj = obj_network_segment_range.NetworkSegmentRange.get_object( context, id=id) if obj is None: raise range_exc.NetworkSegmentRangeNotFound(range_id=id) return obj def _validate_network_segment_range_eligible(self, network_segment_range): range_data = (network_segment_range.get('minimum'), network_segment_range.get('maximum')) # Currently, network segment range only supports VLAN, VxLAN, # GRE and Geneve. if network_segment_range.get('network_type') == const.TYPE_VLAN: plugin_utils.verify_vlan_range(range_data) else: plugin_utils.verify_tunnel_range( range_data, network_segment_range.get('network_type')) def _validate_network_segment_range_overlap(self, context, network_segment_range): filters = { 'default': False, 'network_type': network_segment_range['network_type'], 'physical_network': (network_segment_range['physical_network'] if network_segment_range['network_type'] == const.TYPE_VLAN else None), } range_objs = obj_network_segment_range.NetworkSegmentRange.get_objects( context, **filters) overlapped_range_id = [ obj.id for obj in range_objs if (network_segment_range['minimum'] <= obj.maximum and network_segment_range['maximum'] >= obj.minimum)] if overlapped_range_id: raise range_exc.NetworkSegmentRangeOverlaps( range_id=', '.join(overlapped_range_id)) def _add_unchanged_range_attributes(self, updates, existing): """Adds data for unspecified fields on incoming update requests.""" for key, value in six.iteritems(existing): updates.setdefault(key, value) return updates def _is_network_segment_range_referenced(self, context, network_segment_range): return segments_db.network_segments_exist_in_range( context, network_segment_range['network_type'], network_segment_range.get('physical_network'), network_segment_range) def _is_network_segment_range_type_supported(self, network_type): if not (self.type_manager.network_type_supported(network_type) and network_type in const.NETWORK_SEGMENT_RANGE_TYPES): # TODO(kailun): To use # range_exc.NetworkSegmentRangeNetTypeNotSupported when the # neutron-lib patch https://review.openstack.org/640777 is merged # and released. message = _("Network type %s does not support " "network segment ranges.") % network_type raise lib_exc.BadRequest(resource=range_def.RESOURCE_NAME, msg=message) return True def _are_allocated_segments_in_range_impacted(self, context, existing_range, updated_range): updated_range_min = updated_range.get('minimum', existing_range['minimum']) updated_range_max = updated_range.get('maximum', existing_range['maximum']) existing_range_min, existing_range_max = ( segments_db.min_max_actual_segments_in_range( context, existing_range['network_type'], existing_range.get('physical_network'), existing_range)) if existing_range_min and existing_range_max: return bool(updated_range_min >= existing_range_min or updated_range_max <= existing_range_max) return False @log_helpers.log_method_call def create_network_segment_range(self, context, network_segment_range): """Check network types supported on network segment range creation.""" range_data = network_segment_range['network_segment_range'] if self._is_network_segment_range_type_supported( range_data['network_type']): with db_api.CONTEXT_WRITER.using(context): self._validate_network_segment_range_eligible(range_data) self._validate_network_segment_range_overlap(context, range_data) network_segment_range = ( obj_network_segment_range.NetworkSegmentRange( context, name=range_data['name'], description=range_data.get('description'), default=False, shared=range_data['shared'], project_id=(range_data['project_id'] if not range_data['shared'] else None), network_type=range_data['network_type'], physical_network=(range_data['physical_network'] if range_data['network_type'] == const.TYPE_VLAN else None), minimum=range_data['minimum'], maximum=range_data['maximum']) ) network_segment_range.create() self.type_manager.update_network_segment_range_allocations( network_segment_range['network_type']) return network_segment_range.to_dict() @log_helpers.log_method_call def get_network_segment_range(self, context, id, fields=None): network_segment_range = self._get_network_segment_range( context, id) return network_segment_range.to_dict(fields=fields) @log_helpers.log_method_call def get_network_segment_ranges(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): # TODO(kailun): Based on the current spec: # https://review.openstack.org/599980, this method call may # possibly return a large amount of data since ``available`` # segment list and ``used`` segment/project mapping will be also # returned and they can be large sometimes. Considering that this # API is admin-only and list operations won't be called often based # on the use cases, we'll keep this open for now and evaluate the # potential impacts. An alternative is to return the ``available`` # and ``used`` segment number or percentage. pager = base_obj.Pager(sorts, limit, page_reverse, marker) filters = filters or {} network_segment_ranges = ( obj_network_segment_range.NetworkSegmentRange.get_objects( context, _pager=pager, **filters)) return [ network_segment_range.to_dict(fields=fields) for network_segment_range in network_segment_ranges ] @log_helpers.log_method_call def update_network_segment_range(self, context, id, network_segment_range): """Check existing network segment range impact on range updates.""" updated_range_data = network_segment_range['network_segment_range'] with db_api.CONTEXT_WRITER.using(context): network_segment_range = self._get_network_segment_range(context, id) existing_range_data = network_segment_range.to_dict() if existing_range_data['default']: # TODO(kailun): To use # range_exc.NetworkSegmentRangeDefaultReadOnly when the # neutron-lib patch https://review.openstack.org/640777 is # merged and released. message = _("Network Segment Range %s is a " "default segment range which could not be " "updated or deleted.") % id raise lib_exc.BadRequest(resource=range_def.RESOURCE_NAME, msg=message) if self._are_allocated_segments_in_range_impacted( context, existing_range=existing_range_data, updated_range=updated_range_data): # TODO(kailun): To use # range_exc.NetworkSegmentRangeReferencedByProject when the # neutron-lib patch https://review.openstack.org/640777 is # merged and released. message = _("Network Segment Range %s is referenced by " "one or more tenant networks.") % id raise lib_exc.InUse(resource=range_def.RESOURCE_NAME, msg=message) new_range_data = self._add_unchanged_range_attributes( updated_range_data, existing_range_data) self._validate_network_segment_range_eligible(new_range_data) network_segment_range.update_fields(new_range_data) network_segment_range.update() self.type_manager.update_network_segment_range_allocations( network_segment_range['network_type']) return network_segment_range.to_dict() @log_helpers.log_method_call def delete_network_segment_range(self, context, id): """Check segment reference on network segment range deletion.""" with db_api.CONTEXT_WRITER.using(context): network_segment_range = self._get_network_segment_range(context, id) range_data = network_segment_range.to_dict() if range_data['default']: # TODO(kailun): To use # range_exc.NetworkSegmentRangeDefaultReadOnly when the # neutron-lib patch https://review.openstack.org/640777 is # merged and released. message = _("Network Segment Range %s is a " "default segment range which could not be " "updated or deleted.") % id raise lib_exc.BadRequest(resource=range_def.RESOURCE_NAME, msg=message) if self._is_network_segment_range_referenced( context, range_data): # TODO(kailun): To use # range_exc.NetworkSegmentRangeReferencedByProject when the # neutron-lib patch https://review.openstack.org/640777 is # merged and released. message = _("Network Segment Range %s is referenced by " "one or more tenant networks.") % id raise lib_exc.InUse(resource=range_def.RESOURCE_NAME, msg=message) network_segment_range.delete() self.type_manager.update_network_segment_range_allocations( network_segment_range['network_type'])
49.003636
79
0.625631
f9768c5539f99760bf4d518402a5f499011f22f6
153
py
Python
problemsets/Codeforces/Python/A1252.py
juarezpaulino/coderemite
a4649d3f3a89d234457032d14a6646b3af339ac1
[ "Apache-2.0" ]
null
null
null
problemsets/Codeforces/Python/A1252.py
juarezpaulino/coderemite
a4649d3f3a89d234457032d14a6646b3af339ac1
[ "Apache-2.0" ]
null
null
null
problemsets/Codeforces/Python/A1252.py
juarezpaulino/coderemite
a4649d3f3a89d234457032d14a6646b3af339ac1
[ "Apache-2.0" ]
null
null
null
""" * * Author: Juarez Paulino(coderemite) * Email: juarez.paulino@gmail.com * """ n=int(input()) print(*[x%n+1 for x in map(int,input().split())])
19.125
49
0.614379
128ac6788d9ce7c632a2da841258015e89838f0e
13,417
py
Python
main.py
bknyaz/s
4a4a0e651856625e730e8fe83ffe5c15edacc3fa
[ "MIT" ]
65
2020-05-19T01:45:52.000Z
2022-03-26T09:22:15.000Z
main.py
bknyaz/s
4a4a0e651856625e730e8fe83ffe5c15edacc3fa
[ "MIT" ]
7
2020-05-25T21:50:17.000Z
2021-06-29T07:32:46.000Z
main.py
bknyaz/s
4a4a0e651856625e730e8fe83ffe5c15edacc3fa
[ "MIT" ]
12
2020-05-22T01:51:25.000Z
2021-11-21T19:53:45.000Z
""" Training script for Scene Graph Generation (or Scene Graph Prediction). The script allows to reproduce the main experiments from our two papers: [1] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W. Taylor, Aaron Courville, Eugene Belilovsky. Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation. BMVC 2020. https://arxiv.org/abs/2005.08230 [2] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W. Taylor, Aaron Courville, Eugene Belilovsky. Generative Compositional Augmentations for Scene Graph Prediction. ICCV 2021. https://arxiv.org/abs/2007.05756 A large portion of this repo is based on https://github.com/rowanz/neural-motifs (MIT License). For the paper [2], some GAN layers are based on https://github.com/google/sg2im (Apache-2.0 License). Example to train IMP++ with GAN and GraphN scene graph perturbations: python main.py -ckpt ./data/VG/vg-faster-rcnn.tar -gan -largeD -loss dnorm -perturb graphn -vis_cond ./data/VG/features.hdf5 """ from config import * from dataloaders.visual_genome import VGDataLoader, VG conf = ModelConfig() VG.split = conf.split # set VG, GQA or VTE split here to use as a global variable from os.path import join import pandas as pd import time import pickle from sgg_models.rel_model_stanford import RelModelStanford from lib.pytorch_misc import * from lib.losses import node_losses, edge_losses from lib.eval import val_epoch from augment.gan import GAN from augment.sg_perturb import SceneGraphPerturb # Load VG data train_loader, eval_loaders = VGDataLoader.splits(data_dir=conf.data, batch_size=conf.batch_size, num_workers=conf.num_workers, num_gpus=conf.num_gpus, is_cuda=conf.device=='cuda', backbone=conf.backbone, square_pad=True, num_val_im=conf.val_size, filter_non_overlap=conf.mode=='sgdet', exclude_left_right=conf.exclude_left_right, min_graph_size=conf.min_graph_size, max_graph_size=conf.max_graph_size) # Define SGG model sgg_model = RelModelStanford(train_data=train_loader.dataset, mode=conf.mode, use_bias=conf.use_bias, test_bias=conf.test_bias, backbone=conf.backbone, RELS_PER_IMG=conf.rels_per_img, edge_model=conf.edge_model) # Freeze the detector for n, param in sgg_model.detector.named_parameters(): param.requires_grad = False gan = GAN(train_loader.dataset.ind_to_classes, train_loader.dataset.ind_to_predicates, n_ch=sgg_model.edge_dim, pool_sz=sgg_model.pool_sz, fmap_sz=sgg_model.fmap_sz, vis_cond=conf.vis_cond, losses=conf.ganlosses, init_embed=conf.init_embed, largeD=conf.largeD, device=conf.device, data_dir=train_loader.dataset.root) if conf.gan else None checkpoint_path = None if conf.save_dir is None else join(conf.save_dir, 'vgrel.pth') start_epoch, ckpt = load_checkpoint(conf, sgg_model, checkpoint_path, gan) sgg_model.to(conf.device) if conf.gan: gan.to(conf.device) if conf.perturb: set_seed(start_epoch + 1) # to avoid repeating the same perturbations when reloaded from the checkpoint sgp = SceneGraphPerturb(method=conf.perturb, embed_objs=gan.embed_objs, subj_pred_obj_pairs=(train_loader.dataset.subj_pred_pairs, train_loader.dataset.pred_obj_pairs), obj_classes=train_loader.dataset.ind_to_classes, triplet2str=train_loader.dataset.triplet2str, L=conf.L, topk=conf.topk, alpha=conf.graphn_a, uniform=conf.uniform, degree_smoothing=conf.degree_smoothing) if conf.wandb_log: wandb.watch(gan, log="all", log_freq=100 if conf.debug else 2000) if conf.wandb_log: wandb.watch(sgg_model, log="all", log_freq=100 if conf.debug else 2000) def train_batch(batch, verbose=False): set_mode(sgg_model, mode=conf.mode, is_train=True) res = sgg_model(batch.scatter()) # forward pass through an object detector and an SGG model # 1. Main SGG model object and relationship classification losses (L_cls)---------------------------------------------- losses = node_losses(res.rm_obj_dists, # predicted node labels (objects) res.rm_obj_labels) # predicted node labels (objects) loss, edges_fg, edges_bg = edge_losses(res.rel_dists, # predicted edge labels (predicates) res.rel_labels[:, -1], # ground truth edge labels (predicates) conf.loss, return_idx=True, loss_weights=(conf.alpha, conf.beta, conf.gamma)) losses.update(loss) optimizer.zero_grad() loss = sum(losses.values()) loss.backward() grad_clip(sgg_model, conf.clip, verbose) optimizer.step() # ------------------------------------------------------------------------------------------------------------------ # 2. GAN-based updates---------------------------------------------------------------------------------------------- if conf.gan: gan.train() # assume a single gpu! gt_boxes, gt_objects, gt_rels = batch[0][3].clone(), batch[0][4].clone(), batch[0][5].clone() if conf.perturb: # Scene Graph perturbations gt_objects_fake = sgp.perturb(gt_objects.clone(), gt_rels.clone()).clone() else: gt_objects_fake = gt_objects.clone() # Generate visual features conditioned on the SG fmaps = gan(gt_objects_fake, sgg_model.get_scaled_boxes(gt_boxes, res.im_inds, res.im_sizes_org), gt_rels) # Extract node,edge features from fmaps nodes_fake, edges_fake = sgg_model.node_edge_features(fmaps, res.rois, res.rel_inds[:, 1:], res.im_sizes) # Make SGG predictions for the node,edge features # In case of G update, detach generated features to avoid collaboration between the SGG model and G obj_dists_fake, rel_dists_fake = sgg_model.predict(nodes_fake if conf.attachG else nodes_fake.detach(), edges_fake if conf.attachG else edges_fake.detach(), res.rel_inds, rois=res.rois, im_sizes=res.im_sizes) # 2.1. Generator losses optimizer.zero_grad() G_optimizer.zero_grad() losses_G = {} losses_G.update(gan.loss(features_fake=nodes_fake, is_nodes=True, labels_fake=gt_objects_fake[:, -1])) losses_G.update(gan.loss(features_fake=edges_fake, labels_fake=res.rel_labels[:, -1])) losses_G.update(gan.loss(features_fake=fmaps, is_fmaps=True)) for key in losses_G: losses_G[key] = conf.ganw * losses_G[key] if 'rec' in conf.ganlosses: sfx = '_rec' losses_G.update(node_losses(obj_dists_fake, gt_objects_fake[:, -1], sfx=sfx)) losses_G.update(edge_losses(rel_dists_fake, res.rel_labels[:, -1], conf.loss, edges_fg, edges_bg, loss_weights=(conf.alpha, conf.beta, conf.gamma), sfx=sfx)) if len(losses_G) > 0: loss = sum(losses_G.values()) loss.backward() if 'rec' in conf.ganlosses: grad_clip(sgg_model, conf.clip, verbose) optimizer.step() G_optimizer.step() losses.update(losses_G) # 2.1. Discriminator losses D_optimizer.zero_grad() losses_D = {} losses_D.update(gan.loss(res.node_feat, nodes_fake, is_nodes=True, updateD=True, labels_fake=gt_objects_fake[:, -1], labels_real=gt_objects[:, -1])) losses_D.update(gan.loss(res.edge_feat, edges_fake, updateD=True, labels_fake=res.rel_labels[:, -1])) losses_D.update(gan.loss(res.fmap, fmaps, updateD=True, is_fmaps=True)) for key in losses_D: losses_D[key] = conf.ganw * losses_D[key] if len(losses_D) > 0: loss = sum(losses_D.values()) loss.backward() D_optimizer.step() losses.update(losses_D) # ------------------------------------------------------------------------------------------------------------------ # Compute for debugging purpose (not used for backprop) losses['total'] = sum(losses.values()).detach().data return pd.Series({x: tensor_item(y) for x, y in losses.items()}) def train_epoch(epoch_num): print('\nepoch %d, smallest lr %.3e\n' % (epoch_num, get_smallest_lr(optimizer))) sgg_model.train() tr = [] start = time.time() for b, batch in enumerate(train_loader): tr.append(train_batch(batch, verbose=False)) if conf.wandb_log: conf.wandb_log(tr[-1], step=sgg_model.global_batch_iter, prefix='loss/') if b % conf.print_interval == 0 and b >= conf.print_interval: mn = pd.concat(tr[-conf.print_interval:], axis=1, sort=True).mean(1) time_per_batch = (time.time() - start) / conf.print_interval print(mn) time_eval_batch = time_per_batch print("\ne{:2d}b{:5d}/{:5d} {:.3f}s/batch, {:.1f}m/epoch ({:.1f}m/epoch including eval)\n". format(epoch_num, b, len(train_loader), time_per_batch, len(train_loader) * time_per_batch / 60, len(train_loader) * time_eval_batch / 60)) print('-----------', flush=True) start = time.time() sgg_model.global_batch_iter += 1 return optimizer, scheduler = get_optim(sgg_model, conf.lr * conf.num_gpus * conf.batch_size, conf, start_epoch, ckpt) if conf.gan: G_optimizer, D_optimizer = get_optim_gan(gan, conf, start_epoch, ckpt) print("\nTraining %s starts now!" % conf.mode.upper()) for epoch in range(start_epoch + 1, conf.num_epochs): scheduler.step(epoch) # keep here for consistency with the paper train_epoch(epoch) other_states = {'epoch': epoch, 'global_batch_iter': sgg_model.global_batch_iter} if conf.gan: other_states.update({'gan': gan.state_dict(), 'G_optimizer': G_optimizer.state_dict(), 'D_optimizer': D_optimizer.state_dict() }) save_checkpoint(sgg_model, optimizer, checkpoint_path, other_states) if epoch == start_epoch + 1 or (epoch % 5 == 0 and epoch < start_epoch + conf.num_epochs - 1): # evaluate only once in every 5 epochs since it's time consuming and evaluation is noisy for name, loader in eval_loaders.items(): if name.startswith('val_'): val_epoch(conf.mode, sgg_model, loader, name, train_loader.dataset.triplet_counts, train_loader.dataset.triplet2str, save_scores=conf.save_scores, predicate_weight=conf.pred_weight, train=train_loader.dataset, wandb_log=conf.wandb_log) # Evaluation on the test set here to make the pipeline complete if conf.notest: print('evaluation on the test set is skipped due to the notest flag') else: all_pred_entries = {} for name, loader in eval_loaders.items(): if name.startswith('test_'): all_pred_entries[name] = val_epoch(conf.mode, sgg_model, loader, name, train_loader.dataset.triplet_counts, train_loader.dataset.triplet2str, is_test=True, save_scores=conf.save_scores, predicate_weight=conf.pred_weight, train=train_loader.dataset, wandb_log=conf.wandb_log) if conf.save_scores and conf.save_dir is not None: test_pred_f = join(conf.save_dir, 'test_predictions_%s.pkl' % conf.mode) print('saving test predictions to %s' % test_pred_f) with open(test_pred_f, 'wb') as f: pickle.dump(all_pred_entries, f) print('done!')
46.106529
128
0.56488
877ea0647b455af403bbb9ac9c239f8a5d263a87
35,375
py
Python
Smart Cab RL/Smart Cab SARSA/smart_cab_adapted.py
MohammadWasil/Flappy-Bird-with-Qlearning-and-SARSA
abd57a0617b54ef491cff31ec899ba866995cc63
[ "MIT" ]
null
null
null
Smart Cab RL/Smart Cab SARSA/smart_cab_adapted.py
MohammadWasil/Flappy-Bird-with-Qlearning-and-SARSA
abd57a0617b54ef491cff31ec899ba866995cc63
[ "MIT" ]
null
null
null
Smart Cab RL/Smart Cab SARSA/smart_cab_adapted.py
MohammadWasil/Flappy-Bird-with-Qlearning-and-SARSA
abd57a0617b54ef491cff31ec899ba866995cc63
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jun 22 21:00:43 2021 @author: wasil """ # Import the pygame library and initialise the game engine import pygame from pygame.locals import * import random import pickle pygame.init() # to diplay the text font = pygame.font.Font(pygame.font.get_default_font(), 36) font2 = pygame.font.Font(pygame.font.get_default_font(), 18) IMAGE = pygame.image.load('car4.png') IMAGE = pygame.transform.scale(IMAGE, (60, 60)) PASSENGER = pygame.image.load('passenger.png') PASSENGER = pygame.transform.scale(PASSENGER, (60, 60)) DROPOFF = pygame.image.load('loca.png') DROPOFF = pygame.transform.scale(DROPOFF, (60, 60)) GRAY = (192, 192, 192) RED = (255, 0, 0) WHITE = (255, 255, 255) BLACK = (0, 0, 0) LIGHT_BLUE = (173, 216, 230 ) DARK_GRAY = (88,88,88) LIGHT_GRAY = (169,169,169) # spaces around the board SPACING = 20 # spaces between the lines LINE_SPACING = 92 # The clock will be used to control how fast the screen updates clock = pygame.time.Clock() # Open a new window size = (500, 700) screen = pygame.display.set_mode(size) pygame.display.set_caption("Smart Cab") PASSENGER_POS = [[0, 0], [4, 0], [0, 4], [4, 3]] PASSENGER_PICKED = False PASSENGER_DROPPED = False pickup_position = 0 dropoff_position = 0 REWARD = 0 NEW_GAME = False ACTION = None CUMULATIVE_REWARD = 0 CUMULATIVE_REWARD_LIST = [] # COUNTER TO SAVE CUMULATIVE_REWARD_LIST C = 0 C_limit = 10_000 def GameBoard(I=None, J=None): # Display the Actions / coordinates. # x=0, y=500, w=500, h=200 action_rect = Rect(0, 500, 500, 200) # Lower rectangle. pygame.draw.rect(screen, GRAY, action_rect) # The main screen # For game screen # x=0, y=0, w=500, h=500 game_rect = Rect(0, 0, 500, 500) # uppper rectangle. pygame.draw.rect(screen, DARK_GRAY, game_rect) # The Game Board # For game screen # x=0, y=0, w=500, h=500 game_rect = Rect(SPACING, SPACING, 500-(SPACING*2), 500-(SPACING*2)) # game rectangle. pygame.draw.rect(screen, LIGHT_GRAY, game_rect) # RED BOUNDARY pygame.draw.rect(screen, RED, game_rect, 3) # drop off and pick up location. # with color light blue x_imd_point = (LINE_SPACING*(1-1))+20 + ((LINE_SPACING*1)+20 - (LINE_SPACING*(1-1))+20 )/2 y_imd_point = (LINE_SPACING*(5-1))+20 + ((LINE_SPACING*5)+20 - (LINE_SPACING*(5-1))+20 )/2 pygame.draw.rect(screen, LIGHT_BLUE, (x_imd_point-65, y_imd_point-65, 90, 90) ) x_imd_point = (LINE_SPACING*(1-1))+20 + ((LINE_SPACING*1)+20 - (LINE_SPACING*(1-1))+20 )/2 y_imd_point = (LINE_SPACING*(1-1))+20 + ((LINE_SPACING*1)+20 - (LINE_SPACING*(1-1))+20 )/2 pygame.draw.rect(screen, LIGHT_BLUE, (x_imd_point-65, y_imd_point-65, 90, 90) ) x_imd_point = (LINE_SPACING*(5-1))+20 + ((LINE_SPACING*5)+20 - (LINE_SPACING*(5-1))+20 )/2 y_imd_point = (LINE_SPACING*(1-1))+20 + ((LINE_SPACING*1)+20 - (LINE_SPACING*(1-1))+20 )/2 pygame.draw.rect(screen, LIGHT_BLUE, (x_imd_point-65, y_imd_point-65, 90, 90) ) x_imd_point = (LINE_SPACING*(4-1))+20 + ((LINE_SPACING*4)+20 - (LINE_SPACING*(4-1))+20 )/2 y_imd_point = (LINE_SPACING*(5-1))+20 + ((LINE_SPACING*5)+20 - (LINE_SPACING*(5-1))+20 )/2 pygame.draw.rect(screen, LIGHT_BLUE, (x_imd_point-65, y_imd_point-65, 90, 90) ) # lines for i in range(1,5): pygame.draw.line(screen, WHITE, ((LINE_SPACING*i)+20, 20), ( (LINE_SPACING*i)+20, 480), 3) pygame.draw.line(screen, WHITE, (20, (LINE_SPACING*i)+20), ( 480, (LINE_SPACING*i)+20), 3) # create Walls pygame.draw.line(screen, RED, ((LINE_SPACING*1)+20, 296), ( (LINE_SPACING*1)+20, 480), 10) pygame.draw.line(screen, RED, ((LINE_SPACING*3)+20, 296), ( (LINE_SPACING*3)+20, 480), 10) pygame.draw.line(screen, RED, ((LINE_SPACING*2)+20, 20), ( (LINE_SPACING*2)+20, (LINE_SPACING*1)+20), 10) if(I != None and J != None): x, y = coordinate(I, J) screen.blit(IMAGE, (x-30, y-30) ) def states(x, y): """ Input states. Output coordinates. """ # i here represent column for i in range(1, 6): #if(x > (i*20) and x < (LINE_SPACING*i)+20): firstline_vertical = (LINE_SPACING*(i-1))+20 secondline_vertical = (LINE_SPACING*i)+20 if(x > firstline_vertical and x < secondline_vertical): # j here represent row for j in range(1, 6): firstline_horizontal = (LINE_SPACING*(j-1))+20 secondline_horizontal = (LINE_SPACING*j)+20 if (y > firstline_horizontal and y < secondline_horizontal): return j-1, i-1 def coordinate(I, J): """ Input coordinates. Output states. """ cumulative_linespacing_Y = 0 cumulative_linespacing_X = 0 for i in range(1, 6): cumulative_linespacing_Y += LINE_SPACING if (i-1 == I): # here, 26 is hardoded number # Changes the position Left or Right. y = (cumulative_linespacing_Y)-26#+(LINE_SPACING*(i-1)) for j in range(1, 6): cumulative_linespacing_X += LINE_SPACING if (j-1 == J): x = (cumulative_linespacing_X)-26#+(LINE_SPACING*(i-1)) return x, y def rot_center(image, angle): """rotate an image while keeping its center and size""" orig_rect = image.get_rect() rot_image = pygame.transform.rotate(image, angle) rot_rect = orig_rect.copy() rot_rect.center = rot_image.get_rect().center rot_image = rot_image.subsurface(rot_rect).copy() return rot_image def cell_position_key(action, x, y): if action == "RIGHT": x = x+92 rot_image = rot_center(IMAGE, -90) screen.blit(rot_image, (x-30, y-30)) if action == "LEFT": x = x-92 rot_image = rot_center(IMAGE, 90) screen.blit(rot_image, (x-30, y-30)) if action == "UP": y = y-92 screen.blit(IMAGE, (x-30, y-30)) if action == "DOWN": y = y+92 rot_image = rot_center(IMAGE, 180) screen.blit(rot_image, (x-30, y-30)) return int(x), int(y) def passenger_update(pickup_position): global PASSENGER_PICKED if(PASSENGER_PICKED == False): # get the passenger states passenger_states = PASSENGER_POS[pickup_position] # display the sprite passenger_sprite(passenger_states) def dropoff_update(dropoff_position): global PASSENGER_DROPPED if PASSENGER_DROPPED == False: # dropoff location dropoff_states = PASSENGER_POS[dropoff_position] # display the sprite dropoff_sprite(dropoff_states) def passenger_sprite(passenger_states): """ To display the passenger sprite """ # converts states into coordinates x, y = coordinate(passenger_states[0], passenger_states[1]) screen.blit(PASSENGER, ((x-30, y-30))) def dropoff_sprite(dropoff_states): """ To display the dropoff sprite """ # converts states into coordinates x, y = coordinate(dropoff_states[0], dropoff_states[1]) screen.blit(DROPOFF, ((x-30, y-30))) def game_logic(I, J, p_I, p_J, pickup_position, dropoff_position): global PASSENGER_PICKED global PASSENGER_DROPPED global REWARD global ACTION global CUMULATIVE_REWARD # dropoff location, I and J d_I = PASSENGER_POS[dropoff_position][0] d_J = PASSENGER_POS[dropoff_position][1] # and then update the text text_surface = font2.render(f'Drop off location - {d_I}{d_J}'.format(d_I, d_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,625)) # if we havent pick up the passenger yet if PASSENGER_PICKED == False: # at every step REWARD = -1 # if the cab tries to pick the passenger from wrong location. wrong_pick_up = [i for i in [0, 1, 2, 3] if i != pickup_position] if ( (PASSENGER_POS[wrong_pick_up[0]][0] == I) and (PASSENGER_POS[wrong_pick_up[0]][1] == J)): REWARD = -10 elif ( (PASSENGER_POS[wrong_pick_up[1]][0] == I) and (PASSENGER_POS[wrong_pick_up[1]][1] == J)): REWARD = -10 elif ( (PASSENGER_POS[wrong_pick_up[2]][0] == I) and (PASSENGER_POS[wrong_pick_up[2]][1] == J)): REWARD = -10 # first check the car and the passenger positions elif( I == p_I and J == p_J): p_I = I p_J = J REWARD = 30 PASSENGER_PICKED = True # now the passenger location is same as car's location return p_I, p_J, REWARD, PASSENGER_PICKED # if the pssenger is picked, then the passenger's location is same as cab's location. if(PASSENGER_PICKED == True): # the cab's location is now same as passenger's location. p_I = I p_J = J # if the cab tries to DROP OFF the passenger TO wrong location. wrong_drop_off = [i for i in [0, 1, 2, 3] if (i != dropoff_position) ] # and (i != pickup_position) if ( (PASSENGER_POS[wrong_drop_off[0]][0] == I) and (PASSENGER_POS[wrong_drop_off[0]][1] == J)): REWARD = -10 elif ( (PASSENGER_POS[wrong_drop_off[1]][0] == I) and (PASSENGER_POS[wrong_drop_off[1]][1] == J)): REWARD = -10 elif ( (PASSENGER_POS[wrong_drop_off[2]][0] == I) and (PASSENGER_POS[wrong_drop_off[2]][1] == J)): REWARD = -10 else: REWARD = -1 return p_I, p_J, REWARD, PASSENGER_PICKED def restart(I, J, p_I, p_J): global PASSENGER_PICKED global PASSENGER_DROPPED global pickup_position global dropoff_position global NEW_GAME # pickup location of the passenger, a new location pickup_position = random.randint(0, 3) # new p_I and p_J p_I = PASSENGER_POS[pickup_position][0] p_J = PASSENGER_POS[pickup_position][1] # dropoff position shuuld be different from pickoff location dropoff_position = k = random.choice([i for i in [0, 1, 2, 3] if i != pickup_position]) PASSENGER_PICKED = False NEW_GAME = False passenger_update(pickup_position) dropoff_update(dropoff_position) # again check th game logic, # becoz there might p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) return NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED def mainGame(get_actions, counter, run, input_): global pickup_position global dropoff_position global PASSENGER_PICKED global ACTION global CUMULATIVE_REWARD global REWARD global NEW_GAME global CUMULATIVE_REWARD_LIST, C GameBoard() # place the car # To find the mid point initial_x = 2 initial_y = 5 x = x_imd_point = ((LINE_SPACING*(initial_x-1))+20) + (((LINE_SPACING*initial_x)+20) - ((LINE_SPACING*(initial_x-1))+20) )/2 y = y_imd_point = ((LINE_SPACING*(initial_y-1))+20) + (((LINE_SPACING*initial_y)+20) - ((LINE_SPACING*(initial_y-1))+20) )/2 screen.blit(IMAGE, (x_imd_point-30, y_imd_point-30)) I, J = states(x, y) # pickup location of the passenger pickup_position = random.randint(0, 3) # dropoff position shuuld be different from pickoff location dropoff_position = k = random.choice([i for i in [0, 1, 2, 3] if i != pickup_position]) passenger_update(pickup_position) dropoff_update(dropoff_position) p_I = PASSENGER_POS[pickup_position][0] p_J = PASSENGER_POS[pickup_position][1] # to display the States # lower rectangle. # --- Go ahead and update the screen with what we've drawn. text_surface = font.render(f'State: {I}, {J}'.format(I, J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,550)) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) # and then update the text d_I = PASSENGER_POS[dropoff_position][0] d_J = PASSENGER_POS[dropoff_position][1] text_surface = font2.render(f'Drop off location - {d_I}{d_J}'.format(d_I, d_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,625)) # random initial policy ACTION = "UP" # -------- Main Program Loop ----------- game = True while game: for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close game = False # Flag that we are done so we exit this loop """ elif event.type == pygame.KEYDOWN : if event.key == pygame.K_RIGHT: if (J < 4): if ( (I != 3 or J != 2) and (I != 4 or J != 2) and (I != 3 or J != 0) and (I != 4 or J != 0) and (I != 0 or J != 1) ): GameBoard() x, y = cell_position_key("RIGHT", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True print(REWARD) CUMULATIVE_REWARD += REWARD #ACTION = #get_actions(I, J, p_I, p_J, dropoff_position, REWARD) #ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward #print("the cumulative reward is: ", CUMULATIVE_REWARD) text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,650)) if(NEW_GAME == True): print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 else: REWARD = -1 if event.key == pygame.K_LEFT: if (J > 0): if ( (I != 4 or J != 1) and (I != 3 or J != 1) and (I != 3 or J != 3) and (I != 4 or J != 3) and (I != 0 or J != 2) ): GameBoard() x, y = cell_position_key("LEFT", x, y) #print("Coordinate:", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True print(REWARD) CUMULATIVE_REWARD += REWARD #ACTION = #get_actions(I, J, p_I, p_J, dropoff_position, REWARD) #ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward #print("the cumulative reward is: ", CUMULATIVE_REWARD) text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,650)) if(NEW_GAME == True): print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 else: REWARD = -1 if event.key == pygame.K_UP: if (I > 0): GameBoard() x, y = cell_position_key("UP", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True print(REWARD) CUMULATIVE_REWARD += REWARD #ACTION = #get_actions(I, J, p_I, p_J, dropoff_position, REWARD) #ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward #print("the cumulative reward is: ", CUMULATIVE_REWARD) text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,650)) if(NEW_GAME == True): print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 if event.key == pygame.K_DOWN: if(I < 4): GameBoard() x, y = cell_position_key("DOWN", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True print(REWARD) CUMULATIVE_REWARD += REWARD #ACTION = #get_actions(I, J, p_I, p_J, dropoff_position, REWARD) #ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward #print("the cumulative reward is: ", CUMULATIVE_REWARD) text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,650)) if(NEW_GAME == True): print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 """ # from RL task if ACTION == "RIGHT": if (J < 4): if ( (I != 3 or J != 2) and (I != 4 or J != 2) and (I != 3 or J != 0) and (I != 4 or J != 0) and (I != 0 or J != 1) ): GameBoard() x, y = cell_position_key("RIGHT", x, y) I, J = states(x, y) # check If we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True CUMULATIVE_REWARD += REWARD if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,670)) if(NEW_GAME == True): CUMULATIVE_REWARD_LIST.append(CUMULATIVE_REWARD) C+=1 if C % C_limit == 0: with open(f"cumulative_reward_{C}.txt".format(C), "wb") as fp: #Pickling pickle.dump(CUMULATIVE_REWARD_LIST, fp) CUMULATIVE_REWARD_LIST=[] print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) else: REWARD = -1 if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) if ACTION == "LEFT": if (J > 0): if ( (I != 4 or J != 1) and (I != 3 or J != 1) and (I != 3 or J != 3) and (I != 4 or J != 3) and (I != 0 or J != 2) ): GameBoard() x, y = cell_position_key("LEFT", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True CUMULATIVE_REWARD += REWARD if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,670)) if(NEW_GAME == True): CUMULATIVE_REWARD_LIST.append(CUMULATIVE_REWARD) C+=1 if C % C_limit == 0: with open(f"cumulative_reward_{C}.txt".format(C), "wb") as fp: #Pickling pickle.dump(CUMULATIVE_REWARD_LIST, fp) CUMULATIVE_REWARD_LIST=[] print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) else: REWARD = -1 if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) if ACTION == "UP": if (I > 0): GameBoard() x, y = cell_position_key("UP", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True CUMULATIVE_REWARD += REWARD if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,670)) if(NEW_GAME == True): CUMULATIVE_REWARD_LIST.append(CUMULATIVE_REWARD) C+=1 if C % C_limit == 0: with open(f"cumulative_reward_{C}.txt".format(C), "wb") as fp: #Pickling pickle.dump(CUMULATIVE_REWARD_LIST, fp) CUMULATIVE_REWARD_LIST=[] print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) if ACTION == "DOWN": if(I < 4): GameBoard() x, y = cell_position_key("DOWN", x, y) I, J = states(x, y) # check of we dropped the passenger or not. p_I, p_J, REWARD, PASSENGER_PICKED = game_logic(I, J, p_I, p_J, pickup_position, dropoff_position) # only drop off when you are at drop off location and already picked up the passenger. if((I == PASSENGER_POS[dropoff_position][0] and J == PASSENGER_POS[dropoff_position][1]) and (PASSENGER_PICKED == True)): REWARD = 20 NEW_GAME = True CUMULATIVE_REWARD += REWARD if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) # display reward text_surface = font2.render(f'Reward-> {REWARD}'.format(REWARD), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,670)) if(NEW_GAME == True): CUMULATIVE_REWARD_LIST.append(CUMULATIVE_REWARD) C+=1 if C % C_limit == 0: with open(f"cumulative_reward_{C}.txt".format(C), "wb") as fp: #Pickling pickle.dump(CUMULATIVE_REWARD_LIST, fp) CUMULATIVE_REWARD_LIST=[] print("the cumulative reward is: ", CUMULATIVE_REWARD) counter(input_) # first remove the previous dropped location # cumulation of rewards at each episode. CUMULATIVE_REWARD = 0 GameBoard(I, J) NEW_GAME, p_I, p_J, REWARD, PASSENGER_PICKED = restart(I, J, p_I, p_J) # update cab's location text_surface = font2.render(f'Passenger location - {p_I}{p_J}'.format(p_I, p_J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,600)) else: REWARD = -1 if input_ == "TRAIN": ACTION = get_actions(I, J, p_I, p_J, dropoff_position, REWARD) elif input_ == "RUN": ACTION = run(I, J, p_I, p_J, dropoff_position) # pick from here passenger_update(pickup_position) # drop here dropoff_update(dropoff_position) # to display the States # lower rectangle. # --- Go ahead and update the screen with what we've drawn. text_surface = font.render(f'State: {I}, {J}'.format(I, J), False, (255, 255, 255)) screen.blit(text_surface, dest=(150,550)) # --- Limit to 60 frames per second if input_ == "TRAIN": clock.tick(0) #pygame.display.update() elif input_ == "RUN": clock.tick(10) pygame.display.update() #Once we have exited the main program loop we can stop the game engine: pygame.quit() #if __name__ == "__main__": # create the board #mainGame()
43.67284
149
0.498544
8408087ad7f3f74405e025aba03814d25db3d6b4
4,754
py
Python
sources/VS/ThirdParty/wxWidgets/misc/gdb/print.py
Sasha7b9Work/S8-53M2
fdc9cb5e3feb8055fd3f7885a6f6362f62ff6b6e
[ "MIT" ]
86
2015-08-06T11:30:01.000Z
2022-02-28T04:50:22.000Z
sources/VS/ThirdParty/wxWidgets/misc/gdb/print.py
Sasha7b9Work/S8-53M2
fdc9cb5e3feb8055fd3f7885a6f6362f62ff6b6e
[ "MIT" ]
6
2016-01-04T19:36:22.000Z
2021-08-08T02:43:48.000Z
sources/VS/ThirdParty/wxWidgets/misc/gdb/print.py
Sasha7b9Work/S8-53M2
fdc9cb5e3feb8055fd3f7885a6f6362f62ff6b6e
[ "MIT" ]
22
2015-11-04T04:04:54.000Z
2022-02-28T04:50:24.000Z
############################################################################### # Name: misc/gdb/print.py # Purpose: pretty-printers for wx data structures: this file is meant to # be sourced from gdb using "source -p" (or, better, autoloaded # in the future...) # Author: Vadim Zeitlin # Created: 2009-01-04 # Copyright: (c) 2009 Vadim Zeitlin # Licence: wxWindows licence ############################################################################### # Define wxFooPrinter class implementing (at least) to_string() method for each # wxFoo class we want to pretty print. Then just add wxFoo to the types array # in wxLookupFunction at the bottom of this file. import datetime import gdb import itertools import sys if sys.version_info[0] > 2: # Python 3 Iterator = object long = int else: # Python 2, we need to make an adaptor, so we can use Python 3 iterator implementations. class Iterator: def next(self): return self.__next__() # shamelessly stolen from std::string example class wxStringPrinter: def __init__(self, val): self.val = val def to_string(self): return self.val['m_impl']['_M_dataplus']['_M_p'] def display_hint(self): return 'string' class wxArrayStringPrinter: class _iterator(Iterator): def __init__ (self, firstItem, count): self.item = firstItem self.count = count self.current = 0 def __iter__(self): return self def __next__(self): current = self.current self.current = self.current + 1 if current == self.count: raise StopIteration elt = self.item.dereference() self.item = self.item + 1 return ('[%d]' % current, elt) def __init__(self, val): self.val = val def children(self): return self._iterator(self.val['m_pItems'], self.val['m_nCount']) def to_string(self): count = self.val['m_nCount'] capacity = self.val['m_nSize'] return ('length %d, capacity %d' % (int (count), int (capacity))) def display_hint(self): return 'array' class wxDateTimePrinter: def __init__(self, val): self.val = val def to_string(self): # A value of type wxLongLong can't be used in Python arithmetic # expressions directly so we need to convert it to long long first and # then cast to int explicitly to be able to use it as a timestamp. msec = self.val['m_time'].cast(gdb.lookup_type('long long')) if msec == 0x8000000000000000: return 'NONE' sec = int(msec / 1000) return datetime.datetime.fromtimestamp(sec).isoformat(' ') class wxFileNamePrinter: def __init__(self, val): self.val = val def to_string(self): # It is simpler to just call the internal function here than to iterate # over m_dirs array ourselves. The disadvantage of this approach is # that it requires a live inferior process and so doesn't work when # debugging using only a core file. If this ever becomes a serious # problem, this should be rewritten to use m_dirs and m_name and m_ext. return gdb.parse_and_eval('((wxFileName*)%s)->GetFullPath(0)' % self.val.address) class wxXYPrinterBase: def __init__(self, val): self.x = val['x'] self.y = val['y'] class wxPointPrinter(wxXYPrinterBase): def to_string(self): return '(%d, %d)' % (self.x, self.y) class wxSizePrinter(wxXYPrinterBase): def to_string(self): return '%d*%d' % (self.x, self.y) class wxRectPrinter(wxXYPrinterBase): def __init__(self, val): wxXYPrinterBase.__init__(self, val) self.width = val['width'] self.height = val['height'] def to_string(self): return '(%d, %d) %d*%d' % (self.x, self.y, self.width, self.height) # The function looking up the pretty-printer to use for the given value. def wxLookupFunction(val): # Using a list is probably ok for so few items but consider switching to a # set (or a dict and cache class types as the keys in it?) if needed later. types = ['wxString', 'wxArrayString', 'wxDateTime', 'wxFileName', 'wxPoint', 'wxSize', 'wxRect'] for t in types: if val.type.tag == t: # Not sure if this is the best name to create the object of a class # by name but at least it beats eval() return globals()[t + 'Printer'](val) return None gdb.pretty_printers.append(wxLookupFunction)
31.90604
92
0.592764
b61b484e7a4f4718a67610e441dd3bf9848e942e
899
py
Python
Trie.py
simonluoUW/boggle-solver-flask
d6d533fea6ded670e6496b9f64790e2e9149223e
[ "MIT" ]
null
null
null
Trie.py
simonluoUW/boggle-solver-flask
d6d533fea6ded670e6496b9f64790e2e9149223e
[ "MIT" ]
null
null
null
Trie.py
simonluoUW/boggle-solver-flask
d6d533fea6ded670e6496b9f64790e2e9149223e
[ "MIT" ]
null
null
null
''' represents a Trie at root - contains method to add words to the trie ''' class Trie: def __init__(self): self.root = TrieNode() def add_word(self,word): cur = self.root for character in word: if character not in cur.children: cur.children[character] = TrieNode() cur = cur.children[character] cur.word = word ''' node in Trie - word is not None if node represents a word - children dictionary key is next letter in word value is the next TrieNode for that letter ''' class TrieNode: def __init__(self): self.word = None self.children = dict() # Returns a trie of words in boggle_dict.txt def build_trie(): trie = Trie() with open("boggle_dict.txt", "r") as file: for line in file: word = line.rstrip('\n') trie.add_word(word) return trie
23.051282
52
0.605117
f7b55829eac409b58b4bffb4985438a8dc55689e
455
py
Python
model/project.py
OIGurev/python_training_mantis
0f410fc046185e6f8372a2eaeccee2b9397df107
[ "Apache-2.0" ]
null
null
null
model/project.py
OIGurev/python_training_mantis
0f410fc046185e6f8372a2eaeccee2b9397df107
[ "Apache-2.0" ]
null
null
null
model/project.py
OIGurev/python_training_mantis
0f410fc046185e6f8372a2eaeccee2b9397df107
[ "Apache-2.0" ]
null
null
null
from sys import maxsize class Project: def __init__(self, id=None, name=None): self.id = id self.name = name def __repr__(self): return "%s:%s" % (self.id, self.name) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.name == other.name def id_or_max(self): if self.id: return int(self.id) else: return maxsize
22.75
103
0.571429
582d38d9b838eea540019de571fc733f8833b9e7
123
py
Python
archive/apps.py
n2o/dpb
9e44ef91dc25782a12150e1001983aeee62bc566
[ "MIT" ]
3
2020-11-05T10:09:04.000Z
2021-03-13T11:27:05.000Z
archive/apps.py
n2o/dpb
9e44ef91dc25782a12150e1001983aeee62bc566
[ "MIT" ]
31
2015-07-26T13:53:26.000Z
2020-09-28T06:08:03.000Z
archive/apps.py
n2o/dpb
9e44ef91dc25782a12150e1001983aeee62bc566
[ "MIT" ]
null
null
null
from django.apps import AppConfig class ArchiveConfig(AppConfig): name = "archive" verbose_name = "Bundesarchiv"
17.571429
33
0.739837
e695a3a6a818a524d4d7a18acf73826635bafd22
8,363
py
Python
infra/build/functions/project_sync.py
xuri/oss-fuzz
be9a96b09cac719f0fd43a2ff7dfee09ae27c849
[ "Apache-2.0" ]
null
null
null
infra/build/functions/project_sync.py
xuri/oss-fuzz
be9a96b09cac719f0fd43a2ff7dfee09ae27c849
[ "Apache-2.0" ]
null
null
null
infra/build/functions/project_sync.py
xuri/oss-fuzz
be9a96b09cac719f0fd43a2ff7dfee09ae27c849
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ """Cloud functions for build scheduling.""" from collections import namedtuple import logging import os import re import yaml from github import Github from google.api_core import exceptions from google.cloud import ndb from google.cloud import scheduler_v1 import build_and_run_coverage import build_project from datastore_entities import GithubCreds from datastore_entities import Project VALID_PROJECT_NAME = re.compile(r'^[a-zA-Z0-9_-]+$') DEFAULT_BUILDS_PER_DAY = 1 MAX_BUILDS_PER_DAY = 4 COVERAGE_SCHEDULE = '0 6 * * *' FUZZING_BUILD_TOPIC = 'request-build' COVERAGE_BUILD_TOPIC = 'request-coverage-build' ProjectMetadata = namedtuple( 'ProjectMetadata', 'schedule project_yaml_contents dockerfile_contents') class ProjectYamlError(Exception): """Error in project.yaml format.""" def create_scheduler(cloud_scheduler_client, project_name, schedule, tag, topic): """Creates schedulers for new projects.""" project_id = os.environ.get('GCP_PROJECT') location_id = os.environ.get('FUNCTION_REGION') parent = cloud_scheduler_client.location_path(project_id, location_id) job = { 'name': parent + '/jobs/' + project_name + '-scheduler-' + tag, 'pubsub_target': { 'topic_name': 'projects/' + project_id + '/topics/' + topic, 'data': project_name.encode() }, 'schedule': schedule } cloud_scheduler_client.create_job(parent, job) def delete_scheduler(cloud_scheduler_client, project_name): """Deletes schedulers for projects that were removed.""" project_id = os.environ.get('GCP_PROJECT') location_id = os.environ.get('FUNCTION_REGION') name = cloud_scheduler_client.job_path(project_id, location_id, project_name + '-scheduler') cloud_scheduler_client.delete_job(name) def update_scheduler(cloud_scheduler_client, project, schedule): """Updates schedule in case schedule was changed.""" project_id = os.environ.get('GCP_PROJECT') location_id = os.environ.get('FUNCTION_REGION') parent = cloud_scheduler_client.location_path(project_id, location_id) job = { 'name': parent + '/jobs/' + project.name + '-scheduler', 'pubsub_target': { 'topic_name': 'projects/' + project_id + '/topics/request-build', 'data': project.name.encode() }, 'schedule': project.schedule } update_mask = {'schedule': schedule} cloud_scheduler_client.update(job, update_mask) # pylint: disable=too-many-branches def sync_projects(cloud_scheduler_client, projects): """Sync projects with cloud datastore.""" for project in Project.query(): if project.name in projects: continue logging.info('Deleting project %s', project.name) try: delete_scheduler(cloud_scheduler_client, project.name) project.key.delete() except exceptions.GoogleAPICallError as error: logging.error('Scheduler deletion for %s failed with %s', project.name, error) existing_projects = {project.name for project in Project.query()} for project_name in projects: if project_name in existing_projects: continue try: create_scheduler(cloud_scheduler_client, project_name, projects[project_name].schedule, build_project.FUZZING_BUILD_TAG, FUZZING_BUILD_TOPIC) create_scheduler(cloud_scheduler_client, project_name, COVERAGE_SCHEDULE, build_and_run_coverage.COVERAGE_BUILD_TAG, COVERAGE_BUILD_TOPIC) project_metadata = projects[project_name] Project(name=project_name, schedule=project_metadata.schedule, project_yaml_contents=project_metadata.project_yaml_contents, dockerfile_contents=project_metadata.dockerfile_contents).put() except exceptions.GoogleAPICallError as error: logging.error('Scheduler creation for %s failed with %s', project_name, error) for project in Project.query(): if project.name not in projects: continue logging.info('Setting up project %s', project.name) project_metadata = projects[project.name] project_changed = False if project.schedule != project_metadata.schedule: try: logging.info('Schedule changed.') update_scheduler(cloud_scheduler_client, project, projects[project.name].schedule) project.schedule = project_metadata.schedule project_changed = True except exceptions.GoogleAPICallError as error: logging.error('Updating scheduler for %s failed with %s', project.name, error) if project.project_yaml_contents != project_metadata.project_yaml_contents: project.project_yaml_contents = project_metadata.project_yaml_contents project_changed = True if project.dockerfile_contents != project_metadata.dockerfile_contents: project.dockerfile_contents = project_metadata.dockerfile_contents project_changed = True if project_changed: project.put() def _has_docker_file(project_contents): """Checks if project has a Dockerfile.""" return any( content_file.name == 'Dockerfile' for content_file in project_contents) def get_project_metadata(project_contents): """Checks for schedule parameter in yaml file else uses DEFAULT_SCHEDULE.""" for content_file in project_contents: if content_file.name == 'project.yaml': project_yaml_contents = content_file.decoded_content.decode('utf-8') if content_file.name == 'Dockerfile': dockerfile_contents = content_file.decoded_content.decode('utf-8') project_yaml = yaml.safe_load(project_yaml_contents) builds_per_day = project_yaml.get('builds_per_day', DEFAULT_BUILDS_PER_DAY) if not isinstance(builds_per_day, int) or builds_per_day not in range( 1, MAX_BUILDS_PER_DAY + 1): raise ProjectYamlError('Parameter is not an integer in range [1-4]') # Starting at 6:00 am, next build schedules are added at 'interval' slots # Example for interval 2, hours = [6, 18] and schedule = '0 6,18 * * *' interval = 24 // builds_per_day hours = [] for hour in range(6, 30, interval): hours.append(hour % 24) schedule = '0 ' + ','.join(str(hour) for hour in hours) + ' * * *' return ProjectMetadata(schedule, project_yaml_contents, dockerfile_contents) def get_projects(repo): """Get project list from git repository.""" projects = {} contents = repo.get_contents('projects') for content_file in contents: if content_file.type != 'dir' or not VALID_PROJECT_NAME.match( content_file.name): continue project_contents = repo.get_contents(content_file.path) if not _has_docker_file(project_contents): continue try: projects[content_file.name] = get_project_metadata(project_contents) except ProjectYamlError as error: logging.error( 'Incorrect format for project.yaml file of %s with error %s', content_file.name, error) return projects def get_github_creds(): """Retrieves GitHub client credentials.""" git_creds = GithubCreds.query().get() if git_creds is None: raise RuntimeError('Git credentials not available.') return git_creds def sync(event, context): """Sync projects with cloud datastore.""" del event, context #unused with ndb.Client().context(): git_creds = get_github_creds() github_client = Github(git_creds.client_id, git_creds.client_secret) repo = github_client.get_repo('google/oss-fuzz') projects = get_projects(repo) cloud_scheduler_client = scheduler_v1.CloudSchedulerClient() sync_projects(cloud_scheduler_client, projects)
35.892704
80
0.708956
70fe581de4ea704b057b8cdbe2c6196bc21ac832
7,765
py
Python
status/views.py
riptano/statuspage
eb5b3c983f2e23b9ec2e1f30c8cfe5cc624699d4
[ "BSD-3-Clause" ]
null
null
null
status/views.py
riptano/statuspage
eb5b3c983f2e23b9ec2e1f30c8cfe5cc624699d4
[ "BSD-3-Clause" ]
null
null
null
status/views.py
riptano/statuspage
eb5b3c983f2e23b9ec2e1f30c8cfe5cc624699d4
[ "BSD-3-Clause" ]
null
null
null
from datetime import date, timedelta from django.conf import settings from django.contrib.sites.shortcuts import get_current_site from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render from django.template import RequestContext, Template from django.template.loader import get_template from django.utils.decorators import method_decorator from django.views.generic import ( MonthArchiveView, YearArchiveView, CreateView, DeleteView, DetailView, ListView, TemplateView ) from stronghold.decorators import public from status.models import Incident, IncidentUpdate from status.forms import IncidentCreateForm, IncidentUpdateCreateForm import slack import slack.chat import logging logger = logging.getLogger(__name__) def send_to_slack(message, channel='engineering', username='statusbot', emoji=':statusbot:', override_debug=False): slack.api_token = settings.SLACK_TOKEN if settings.DEBUG and not override_debug: logger.info('Diverting from %s to dev while in debug mode as %s: %s' % (channel, username, message)) slack.chat.post_message('dev', 'DEBUG: ' + message, username=username, icon_emoji=emoji) else: logger.info('Sending to channel %s as %s: %s' % (channel, username, message)) slack.chat.post_message(channel, message, username=username, icon_emoji=emoji) def create_incident(request): if request.method == 'POST': form = IncidentCreateForm(request.POST) form2 = IncidentUpdateCreateForm(request.POST) if form.is_valid() and form2.is_valid(): i = form.save(commit=False) i.user = request.user print i i.save() f = form2.save(commit=False) f.incident = i f.user = request.user f.save() if settings.SLACK_CHANNEL and settings.SLACK_TOKEN: if len(f.description) > 50: description = f.description[:50] + '...' else: description = f.description try: message = "<https://%s%s|%s> (%s): %s" % ( get_current_site(request), reverse('status:incident_detail', args=[i.pk, ]), i.name, f.status.name, description ) send_to_slack(message, username=settings.SLACK_USERNAME, channel=settings.SLACK_CHANNEL) except Exception as e: logger.warn('Unable to send to slack: %s' % (e)) return HttpResponseRedirect('/') else: form = IncidentCreateForm() form2 = IncidentUpdateCreateForm() request_context = RequestContext(request) request_context.push({'form': form, 'form2': form2}) t = get_template('status/incident_create_form.html') rendered_template = t.render(request_context.flatten(), request) return HttpResponse(rendered_template) #return get_template('status/incident_create_form.html').render(request_context.flatten(), request) #return render(request, template_name='status/incident_create_form.html', context=request_context) class DashboardView(ListView): model = Incident def get_queryset(self): return Incident.objects.exclude(hidden=True) class HiddenDashboardView(ListView): model = Incident class IncidentHideView(DeleteView): model = Incident template_name = 'status/incident_hide.html' def delete(self, request, *args, **kwargs): self.object = self.get_object() self.object.hidden = True self.object.save() return HttpResponseRedirect(self.get_success_url()) def get_success_url(self): return reverse('status:dashboard') class IncidentDeleteView(DeleteView): model = Incident def get_success_url(self): return reverse('status:dashboard') class IncidentUpdateUpdateView(CreateView): model = IncidentUpdate form_class = IncidentUpdateCreateForm template_name = 'status/incident_form.html' def get_success_url(self): return reverse('status:incident_detail', args=[self.kwargs['pk']]) def form_valid(self, form): iu = form.save(commit=False) i = Incident.objects.get(pk=self.kwargs['pk']) i.hidden = False i.save() iu.incident = i iu.incident.hidden = False iu.incident.save() iu.user = self.request.user iu.save() return HttpResponseRedirect(self.get_success_url()) class IncidentDetailView(DetailView): model = Incident @method_decorator(public) def dispatch(self, *args, **kwargs): return super(IncidentDetailView, self).dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(IncidentDetailView, self).get_context_data(**kwargs) context.update({ 'form': IncidentUpdateCreateForm(), }) return context class IncidentArchiveYearView(YearArchiveView): make_object_list = True queryset = Incident.objects.all() date_field = 'updated' @method_decorator(public) def dispatch(self, *args, **kwargs): return super(IncidentArchiveYearView, self).dispatch(*args, **kwargs) class IncidentArchiveMonthView(MonthArchiveView): make_object_list = True queryset = Incident.objects.all() date_field = 'updated' month_format = '%m' @method_decorator(public) def dispatch(self, *args, **kwargs): return super(IncidentArchiveMonthView, self).dispatch(*args, **kwargs) class HomeView(TemplateView): http_method_names = ['get', ] template_name = 'status/home.html' @method_decorator(public) def dispatch(self, *args, **kwargs): return super(HomeView, self).dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(HomeView, self).get_context_data(**kwargs) incident_list = Incident.objects.filter(hidden=False).order_by('-updated') context.update({ 'incident_list': incident_list }) if hasattr(settings, 'STATUS_TICKET_URL'): context.update({'STATUS_TICKET_URL': settings.STATUS_TICKET_URL}) if hasattr(settings, 'STATUS_LOGO_URL'): context.update({'STATUS_LOGO_URL': settings.STATUS_LOGO_URL}) if hasattr(settings, 'STATUS_TITLE'): context.update({'STATUS_TITLE': settings.STATUS_TITLE}) status_level = 'success' active_list = [] completed_list = [] for incident in incident_list: try: if incident.get_latest_update().status.type == 'danger': status_level = 'danger' active_list.append(incident) elif incident.get_latest_update().status.type == 'warning': if status_level != 'danger': status_level = 'warning' active_list.append(incident) elif incident.get_latest_update().status.type == 'info': if status_level not in ('warning', 'danger'): status_level = 'info' active_list.append(incident) elif incident.get_latest_update().status.type == 'success': completed_list.append(incident) except AttributeError: # Unable to get_latest_update(), 'None' has no .status pass context.update({ 'status_level': status_level, 'active_list': active_list, 'completed_list': completed_list, }) return context
35.135747
115
0.642112
1d946e3243fa8ec71be0b4cf173afac4faccb4bc
429
py
Python
twisted/plugins/lala_plugin.py
mineo/lala
dc5b516c6817187135b0371e45bd8e14bca0f6fc
[ "MIT" ]
null
null
null
twisted/plugins/lala_plugin.py
mineo/lala
dc5b516c6817187135b0371e45bd8e14bca0f6fc
[ "MIT" ]
5
2015-04-21T11:29:26.000Z
2018-08-08T21:07:38.000Z
twisted/plugins/lala_plugin.py
mineo/lala
dc5b516c6817187135b0371e45bd8e14bca0f6fc
[ "MIT" ]
null
null
null
from zope.interface import implementer from twisted.plugin import IPlugin from twisted.application.service import IServiceMaker from lala.main import LalaOptions, getService @implementer(IServiceMaker, IPlugin) class LalaServiceMaker(object): tapname = "lala" description = "IRC Bot" options = LalaOptions def makeService(self, options): return getService(options) serviceMaker = LalaServiceMaker()
22.578947
53
0.771562
de4b4efd6f4531f204ea573bbf2bbeb6743e8432
14,174
py
Python
src/gluonts/model/wavenet/_estimator.py
RingoIngo/gluon-ts
62fb20c36025fc969653accaffaa783671709564
[ "Apache-2.0" ]
7
2021-07-20T21:46:28.000Z
2022-01-12T04:18:14.000Z
src/gluonts/model/wavenet/_estimator.py
RingoIngo/gluon-ts
62fb20c36025fc969653accaffaa783671709564
[ "Apache-2.0" ]
null
null
null
src/gluonts/model/wavenet/_estimator.py
RingoIngo/gluon-ts
62fb20c36025fc969653accaffaa783671709564
[ "Apache-2.0" ]
3
2021-08-28T06:01:27.000Z
2022-01-12T04:18:13.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging from functools import partial from typing import List, Optional import mxnet as mx import numpy as np from gluonts import transform from gluonts.core.component import validated from gluonts.dataset.common import DataEntry, Dataset from gluonts.dataset.field_names import FieldName from gluonts.dataset.loader import ( DataLoader, TrainDataLoader, ValidationDataLoader, ) from gluonts.env import env from gluonts.model.predictor import Predictor from gluonts.model.wavenet._network import ( WaveNet, WaveNetSampler, WaveNetTraining, ) from gluonts.mx.batchify import as_in_context, batchify from gluonts.mx.model.estimator import GluonEstimator from gluonts.mx.model.predictor import RepresentableBlockPredictor from gluonts.mx.trainer import Trainer from gluonts.mx.util import copy_parameters, get_hybrid_forward_input_names from gluonts.itertools import maybe_len from gluonts.time_feature import ( get_seasonality, time_features_from_frequency_str, ) from gluonts.transform import ( AddAgeFeature, AddObservedValuesIndicator, AddTimeFeatures, AsNumpyArray, Chain, ExpectedNumInstanceSampler, InstanceSampler, InstanceSplitter, SelectFields, SetFieldIfNotPresent, SimpleTransformation, TestSplitSampler, ValidationSplitSampler, VstackFeatures, ) class QuantizeScaled(SimpleTransformation): """ Rescale and quantize the target variable. Requires past_target and future_target fields. The mean absolute value of the past_target is used to rescale past_target and future_target. Then the bin_edges are used to quantize the rescaled target. The calculated scale is included as a new field "scale" """ @validated() def __init__( self, bin_edges: List[float], past_target: str, future_target: str, scale: str = "scale", ): self.bin_edges = np.array(bin_edges) self.future_target = future_target self.past_target = past_target self.scale = scale def transform(self, data: DataEntry) -> DataEntry: p = data[self.past_target] m = np.mean(np.abs(p)) scale = m if m > 0 else 1.0 data[self.future_target] = np.digitize( data[self.future_target] / scale, bins=self.bin_edges, right=False ) data[self.past_target] = np.digitize( data[self.past_target] / scale, bins=self.bin_edges, right=False ) data[self.scale] = np.array([scale]) return data class WaveNetEstimator(GluonEstimator): """ Model with Wavenet architecture and quantized target. Parameters ---------- freq Frequency of the data to train on and predict prediction_length Length of the prediction horizon trainer Trainer object to be used (default: Trainer()) cardinality Number of values of the each categorical feature (default: [1]) embedding_dimension Dimension of the embeddings for categorical features (the same dimension is used for all embeddings, default: 5) num_bins Number of bins used for quantization of signal (default: 1024) hybridize_prediction_net Boolean (default: False) n_residue Number of residual channels in wavenet architecture (default: 24) n_skip Number of skip channels in wavenet architecture (default: 32) dilation_depth Number of dilation layers in wavenet architecture. If set to None (default), dialation_depth is set such that the receptive length is at least as long as typical seasonality for the frequency and at least 2 * prediction_length. n_stacks Number of dilation stacks in wavenet architecture (default: 1) temperature Temparature used for sampling from softmax distribution. For temperature = 1.0 (default) sampling is according to estimated probability. act_type Activation type used after before output layer (default: "elu"). Can be any of 'elu', 'relu', 'sigmoid', 'tanh', 'softrelu', 'softsign'. num_parallel_samples Number of evaluation samples per time series to increase parallelism during inference. This is a model optimization that does not affect the accuracy (default: 200) train_sampler Controls the sampling of windows during training. validation_sampler Controls the sampling of windows during validation. batch_size The size of the batches to be used training and prediction. """ @validated() def __init__( self, freq: str, prediction_length: int, trainer: Trainer = Trainer( learning_rate=0.01, epochs=200, num_batches_per_epoch=50, hybridize=False, ), cardinality: List[int] = [1], seasonality: Optional[int] = None, embedding_dimension: int = 5, num_bins: int = 1024, hybridize_prediction_net: bool = False, n_residue=24, n_skip=32, dilation_depth: Optional[int] = None, n_stacks: int = 1, train_window_length: Optional[int] = None, temperature: float = 1.0, act_type: str = "elu", num_parallel_samples: int = 200, train_sampler: Optional[InstanceSampler] = None, validation_sampler: Optional[InstanceSampler] = None, batch_size: int = 32, negative_data: bool = False, ) -> None: super().__init__(trainer=trainer, batch_size=batch_size) self.freq = freq self.prediction_length = prediction_length self.cardinality = cardinality self.embedding_dimension = embedding_dimension self.num_bins = num_bins self.hybridize_prediction_net = hybridize_prediction_net self.n_residue = n_residue self.n_skip = n_skip self.n_stacks = n_stacks self.train_window_length = ( train_window_length if train_window_length is not None else prediction_length ) self.temperature = temperature self.act_type = act_type self.num_parallel_samples = num_parallel_samples self.train_sampler = ( train_sampler if train_sampler is not None else ExpectedNumInstanceSampler( num_instances=1.0, min_future=self.train_window_length ) ) self.validation_sampler = ( validation_sampler if validation_sampler is not None else ValidationSplitSampler(min_future=self.train_window_length) ) self.negative_data = negative_data low = -10.0 if self.negative_data else 0 high = 10.0 bin_centers = np.linspace(low, high, self.num_bins) bin_edges = np.concatenate( [[-1e20], (bin_centers[1:] + bin_centers[:-1]) / 2.0, [1e20]] ) self.bin_centers = bin_centers.tolist() self.bin_edges = bin_edges.tolist() seasonality = ( get_seasonality( self.freq, { "H": 7 * 24, "D": 7, "W": 52, "M": 12, "B": 7 * 5, "min": 24 * 60, }, ) if seasonality is None else seasonality ) goal_receptive_length = max( 2 * seasonality, 2 * self.prediction_length ) if dilation_depth is None: d = 1 while ( WaveNet.get_receptive_field( dilation_depth=d, n_stacks=n_stacks ) < goal_receptive_length ): d += 1 self.dilation_depth = d else: self.dilation_depth = dilation_depth self.context_length = WaveNet.get_receptive_field( dilation_depth=self.dilation_depth, n_stacks=n_stacks ) self.logger = logging.getLogger(__name__) self.logger.info( "Using dilation depth %d and receptive field length %d", self.dilation_depth, self.context_length, ) def create_transformation(self) -> transform.Transformation: return Chain( [ AsNumpyArray(field=FieldName.TARGET, expected_ndim=1), AddObservedValuesIndicator( target_field=FieldName.TARGET, output_field=FieldName.OBSERVED_VALUES, ), AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field=FieldName.FEAT_TIME, time_features=time_features_from_frequency_str(self.freq), pred_length=self.prediction_length, ), AddAgeFeature( target_field=FieldName.TARGET, output_field=FieldName.FEAT_AGE, pred_length=self.prediction_length, ), VstackFeatures( output_field=FieldName.FEAT_TIME, input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE], ), SetFieldIfNotPresent( field=FieldName.FEAT_STATIC_CAT, value=[0.0] ), AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1), ] ) def _create_instance_splitter(self, mode: str): assert mode in ["training", "validation", "test"] instance_sampler = { "training": self.train_sampler, "validation": self.validation_sampler, "test": TestSplitSampler(), }[mode] return InstanceSplitter( target_field=FieldName.TARGET, is_pad_field=FieldName.IS_PAD, start_field=FieldName.START, forecast_start_field=FieldName.FORECAST_START, instance_sampler=instance_sampler, past_length=self.context_length, future_length=self.prediction_length if mode == "test" else self.train_window_length, output_NTC=False, time_series_fields=[ FieldName.FEAT_TIME, FieldName.OBSERVED_VALUES, ], ) + QuantizeScaled( bin_edges=self.bin_edges, future_target="future_target", past_target="past_target", ) def create_training_data_loader( self, data: Dataset, **kwargs, ) -> DataLoader: input_names = get_hybrid_forward_input_names(WaveNetTraining) with env._let(max_idle_transforms=maybe_len(data) or 0): instance_splitter = self._create_instance_splitter("training") return TrainDataLoader( dataset=data, transform=instance_splitter + SelectFields(input_names), batch_size=self.batch_size, stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype), decode_fn=partial(as_in_context, ctx=self.trainer.ctx), **kwargs, ) def create_validation_data_loader( self, data: Dataset, **kwargs, ) -> DataLoader: input_names = get_hybrid_forward_input_names(WaveNetTraining) with env._let(max_idle_transforms=maybe_len(data) or 0): instance_splitter = self._create_instance_splitter("validation") return ValidationDataLoader( dataset=data, transform=instance_splitter + SelectFields(input_names), batch_size=self.batch_size, stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype), ) def _get_wavenet_args(self): return dict( n_residue=self.n_residue, n_skip=self.n_skip, dilation_depth=self.dilation_depth, n_stacks=self.n_stacks, act_type=self.act_type, cardinality=self.cardinality, embedding_dimension=self.embedding_dimension, bin_values=self.bin_centers, pred_length=self.prediction_length, ) def create_training_network(self) -> WaveNetTraining: params = self._get_wavenet_args() params.update(pred_length=self.train_window_length) return WaveNetTraining(**params) def create_predictor( self, transformation: transform.Transformation, trained_network: mx.gluon.HybridBlock, ) -> Predictor: prediction_splitter = self._create_instance_splitter("test") prediction_network = WaveNetSampler( num_samples=self.num_parallel_samples, temperature=self.temperature, **self._get_wavenet_args(), ) # The lookup layer is specific to the sampling network here # we make sure it is initialized. prediction_network.initialize() copy_parameters( net_source=trained_network, net_dest=prediction_network, allow_missing=True, ) return RepresentableBlockPredictor( input_transform=transformation + prediction_splitter, prediction_net=prediction_network, batch_size=self.batch_size, freq=self.freq, prediction_length=self.prediction_length, ctx=self.trainer.ctx, )
34.740196
99
0.627487
648c6e19f5538a069ce1143f6b7732db580f9fd3
12,900
py
Python
vase/insilico_filter.py
gantzgraf/vape
f939cb527d72d852cb0919a57332110c15c5fd4a
[ "MIT" ]
4
2020-03-25T06:09:39.000Z
2021-03-23T11:22:00.000Z
vase/insilico_filter.py
gantzgraf/vape
f939cb527d72d852cb0919a57332110c15c5fd4a
[ "MIT" ]
1
2020-10-02T14:50:30.000Z
2020-10-12T15:24:24.000Z
vase/insilico_filter.py
gantzgraf/vape
f939cb527d72d852cb0919a57332110c15c5fd4a
[ "MIT" ]
1
2021-02-20T11:32:34.000Z
2021-02-20T11:32:34.000Z
import re import os vep_internal_pred_re = re.compile(r'\(\d(\.\d+)?\)') # for removing numbers in brackets at end of PolyPhen, SIFT and Condel VEP # annotations class InSilicoFilter(object): ''' Stores in silico prediction formats for VEP and indicates whether a given variant consequence should be filtered on the basis of the options provided on initialization. Data on the in silico formats recognised are stored in the text file "data/vep_insilico_pred.tsv" ''' def __init__(self, programs, filter_unpredicted=False, keep_if_any_damaging=False, pred_file=None): ''' Initialize with a list of program names to use as filters. Args: programs: A list of in silico prediction programs to use for filtering. These must be present in the VEP annotations of a VcfRecord as added either directly by VEP or via a VEP plugin such as dbNSFP. You may also optionally specify score criteria for filtering as in the the following examples: FATHMM_pred=D MutationTaster_pred=A MetaSVM_rankscore=0.8 Or you may just provide the program names and the default 'damaging' prediction values will be used, as listed in the prediction data file (see pred_file argument). The filter() function, which must be provided with dict of VEP consequences to values, will return False if ALL of the programs provided here contain appropriate prediction values or have no prediction. This behaviour can be modified with the keep_if_any_damaging/filter_unpredicted arguments. filter_unpredicted: The default behaviour is to ignore a program if there is no prediction given (i.e. the score/pred is empty). That is, if there are no predictions for any of the programs filter() will return False, while if predictions are missing for only some, filtering will proceed as normal, ignoring those programs with missing predictions. If this argument is set to True, filter() will return True if any program does not have a prediction/score. keep_if_any_damaging: If set to True, filter() will return False if ANY of the given programs has a matching prediction/score unless 'filter_unpredicted' is True and a prediction/score is missing for any program. pred_file: TSV file with a column for prediction program names, valid/default filtering values and type. Type can be 'valid', 'default' or 'regex' to indicate acceptable and default filtering values for string based comparisons or 'score' to indicate that values are numeric (in this case an optional fourth column may specify 'lower=damaging' if lower values are more damaging than higher values). The 'regex' type can be used to indicate acceptable patterns but not default patterns. See the default file for examples. A default value for any annotation should always be provided. Default="data/vep_insilico_pred.tsv". ''' self.filter_unpredicted = filter_unpredicted self.keep_if_any_damaging = keep_if_any_damaging self.pred_filters = {} self.score_filters = {} default_progs = {} case_insensitive = {} self.lower_more_damaging = set() if pred_file is None: pred_file = os.path.join(os.path.dirname(__file__), "data", "vep_insilico_pred.tsv") with open(pred_file, encoding='UTF-8') as insilico_d: for line in insilico_d: if line.startswith('#'): continue cols = line.rstrip().split('\t') case_insensitive[cols[0].lower()] = cols[0] if cols[0] in default_progs: if cols[2] == 'regex': value = re.compile(cols[1]) if 'valid' not in default_progs[cols[0]]: default_progs[cols[0]]['valid'] = [] else: value = cols[1] if cols[2] not in default_progs[cols[0]]: default_progs[cols[0]][cols[2]] = [value] elif cols[2] != 'score' : default_progs[cols[0]][cols[2]].append(value) else: raise RuntimeError("Error in {}:".format(pred_file) + " Should only have one entry for " + "score prediction '{}'" .format(cols[0])) else: if cols[2] == 'score': default_progs[cols[0]] = {'type' : 'score', 'default' : float(cols[1])} else: default_progs[cols[0]] = {'type' : 'pred'} if cols[2] == 'regex': default_progs[cols[0]]['regex'] = re.compile( cols[2]) if 'valid' not in default_progs[cols[0]]: default_progs[cols[0]]['valid'] = [] else: default_progs[cols[0]][cols[2]] = [cols[1]] if len(cols) >= 4: if cols[3] == 'lower=damaging': self.lower_more_damaging.add(cols[0]) for prog in programs: split = prog.split('=') pred = None if len(split) > 1: prog = split[0] pred = split[1] if prog.lower() in case_insensitive: prog = case_insensitive[prog.lower()] else: raise RuntimeError("ERROR: in silico prediction program '{}' " .format(prog) + "not recognised.") if pred is not None: if default_progs[prog]['type'] == 'score': try: score = float(pred) self.score_filters[prog] = score except ValueError: raise RuntimeError("ERROR: {} score must be numeric. " .format(prog) + "Could not " + "convert value '{}' to a number." .format(pred)) elif (pred in default_progs[prog]['default'] or pred in default_progs[prog]['valid']): if prog in self.pred_filters: self.pred_filters[prog].add(pred) else: self.pred_filters[prog] = set([pred]) elif 'regex' in default_progs[prog]: re_matched = False for regex in default_progs[prog]['regex']: if regex.match(pred): if prog in self.pred_filters: self.pred_filters[prog].add(pred) else: self.pred_filters[prog] = set([pred]) re_matched = True break if not re_matched: raise RuntimeError("ERROR: score '{}' ".format(pred) + "not recognised as valid for in " + "silico prediction program '{}' " .format(prog)) else: raise RuntimeError("ERROR: score '{}' not " .format(pred) + "recognised as valid for in silico " + "prediction program '{}' ".format(prog)) else: if default_progs[prog]['type'] == 'score': score = float(default_progs[prog]['default']) self.score_filters[prog] = score else: self.pred_filters[prog] = default_progs[prog]['default'] self._n_prog = len(self.pred_filters) + len(self.score_filters) def filter(self, csq): ''' Returns False if prediction matches filters for given consequence, otherwise returns True. Args: csq: dict of VEP consequence fields to values, as provided by the CSQ property of a VcfRecord object. ''' unpredicted = 0 for prog in self.pred_filters: try: if csq[prog] != '': do_filter = True for p in csq[prog].split('&'): p = vep_internal_pred_re.sub('', p) if p in self.pred_filters[prog]: #matches, don't filter do_filter = False break if self.keep_if_any_damaging: if not do_filter: #matched return False elif do_filter: #haven't matched - filter return True else: if self.filter_unpredicted: return True unpredicted += 1 except KeyError: raise RuntimeError(self._get_prog_missing_string(prog)) for prog in self.score_filters: try: if csq[prog] == '': if self.filter_unpredicted: return True unpredicted += 1 else: do_filter = True for p in csq[prog].split('&'): try: score = float(p) except ValueError: continue if prog in self.lower_more_damaging: if score <= self.score_filters[prog]: # do_filter = False break else: if score >= self.score_filters[prog]: # do_filter = False break if self.keep_if_any_damaging: if not do_filter: return False elif do_filter: return True #score not over threshold - filter except KeyError: raise RuntimeError(self._get_prog_missing_string(prog)) if self.keep_if_any_damaging: #would have already returned False if anything passed filters if not self.filter_unpredicted and unpredicted == self._n_prog: #everything unpredicted - do not filter return False #filter - no damaging pred & at least 1 prog with non-missing score return True return False def _get_prog_missing_string(self, prog): return ("'{}' in silico filter program is not present in".format(prog) + " CSQ field of input VCF - please ensure your input was " + "annotated with the relevant program by VEP.")
48.679245
80
0.445349
0d73993b1bcb99b2fed97a72827c53886cc2c7a2
596
py
Python
discord_bot_eternal_dice/discord_bot_eternal_dice/model/discord_member.py
lesteenman/discord-bot-eternal-dice
717d7ac10b8dbc3bef5d96dec417fd74154241e3
[ "MIT" ]
null
null
null
discord_bot_eternal_dice/discord_bot_eternal_dice/model/discord_member.py
lesteenman/discord-bot-eternal-dice
717d7ac10b8dbc3bef5d96dec417fd74154241e3
[ "MIT" ]
null
null
null
discord_bot_eternal_dice/discord_bot_eternal_dice/model/discord_member.py
lesteenman/discord-bot-eternal-dice
717d7ac10b8dbc3bef5d96dec417fd74154241e3
[ "MIT" ]
null
null
null
from typing import Dict class DiscordMember: def __init__(self, username: str = None, user_id: int = None, nickname: str = None): self.username = username self.user_id = user_id self.nickname = nickname @property def name(self): if self.nickname is not None: return self.nickname return self.username def member_from_data(member_data: Dict) -> DiscordMember: return DiscordMember( username=member_data['user']['username'], user_id=int(member_data['user']['id']), nickname=member_data['nick'], )
25.913043
88
0.637584
96a610116a38c1c36fadc724ab01898fe2887136
1,088
py
Python
tensor__cpu/matplot/try_fft.py
Zhang-O/small
bfb41b2267159bd5e408dba524713d3bc0b28074
[ "MIT" ]
1
2017-09-25T03:16:00.000Z
2017-09-25T03:16:00.000Z
tensor__cpu/matplot/try_fft.py
Zhang-O/small
bfb41b2267159bd5e408dba524713d3bc0b28074
[ "MIT" ]
null
null
null
tensor__cpu/matplot/try_fft.py
Zhang-O/small
bfb41b2267159bd5e408dba524713d3bc0b28074
[ "MIT" ]
null
null
null
import numpy as np from scipy.fftpack import fft,ifft import matplotlib.pyplot as plt import seaborn #采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400赫兹(即一秒内有1400个采样点,一样意思的) x=np.linspace(0,1,1400) #设置需要采样的信号,频率分量有180,390和600 y=7*np.sin(2*np.pi*180*x) + 2.8*np.sin(2*np.pi*390*x)+5.1*np.sin(2*np.pi*600*x) yy=fft(y) #快速傅里叶变换 yreal = yy.real # 获取实数部分 yimag = yy.imag # 获取虚数部分 yf=abs(fft(y)) # 取绝对值 yf1=abs(fft(y))/len(x) #归一化处理 yf2 = yf1[range(int(len(x)/2))] #由于对称性,只取一半区间 xf = np.arange(len(y)) # 频率 xf1 = xf xf2 = xf[range(int(len(x)/2))] #取一半区间 plt.subplot(221) plt.plot(x[0:50],y[0:50]) plt.title('Original wave') plt.subplot(222) plt.plot(xf,yf,'r') plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表 plt.subplot(223) plt.plot(xf1,yf1,'g') plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r') plt.subplot(224) plt.plot(xf2,yf2,'b') plt.title('FFT of Mixed wave)',fontsize=10,color='#F08080') plt.show()
25.302326
103
0.659007
c45558c6b4bd35a8045ab10b61397e634b5497f5
790
py
Python
backend/images/migrations/0012_auto_20180412_2155.py
vframeio/vcat
554e94a819818131ddf5ec3db9f0ca4d2795313e
[ "MIT" ]
5
2018-11-26T07:43:39.000Z
2020-03-09T08:01:39.000Z
backend/images/migrations/0012_auto_20180412_2155.py
vframeio/_vcat_archived
554e94a819818131ddf5ec3db9f0ca4d2795313e
[ "MIT" ]
null
null
null
backend/images/migrations/0012_auto_20180412_2155.py
vframeio/_vcat_archived
554e94a819818131ddf5ec3db9f0ca4d2795313e
[ "MIT" ]
1
2020-04-30T11:16:04.000Z
2020-04-30T11:16:04.000Z
# Generated by Django 2.0.1 on 2018-04-12 19:55 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('images', '0011_auto_20180409_1811'), ] operations = [ migrations.AlterField( model_name='image', name='image_group', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='images', to='images.ImageGroup'), ), migrations.AlterField( model_name='imagegroup', name='assigned_to', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL), ), ]
30.384615
139
0.655696
188144d9a7c99fdd8c528c63524feb1c027d83da
11,909
py
Python
manim/utils/color.py
janLuke/manim
18bab2075f7c9987cbba7b173c3b02971b78a560
[ "MIT" ]
1
2021-07-03T14:18:38.000Z
2021-07-03T14:18:38.000Z
manim/utils/color.py
janLuke/manim
18bab2075f7c9987cbba7b173c3b02971b78a560
[ "MIT" ]
3
2020-07-14T02:46:11.000Z
2020-09-09T15:15:55.000Z
manim/utils/color.py
janLuke/manim
18bab2075f7c9987cbba7b173c3b02971b78a560
[ "MIT" ]
null
null
null
"""Colors and utility functions for conversion between different color models.""" __all__ = [ "color_to_rgb", "color_to_rgba", "rgb_to_color", "rgba_to_color", "rgb_to_hex", "hex_to_rgb", "invert_color", "color_to_int_rgb", "color_to_int_rgba", "color_gradient", "interpolate_color", "average_color", "random_bright_color", "random_color", "get_shaded_rgb", ] import random from enum import Enum from typing import Iterable, List, Union import numpy as np from colour import Color from ..utils.bezier import interpolate from ..utils.simple_functions import clip_in_place from ..utils.space_ops import normalize class Colors(Enum): """A list of pre-defined colors. Examples -------- .. manim:: ColorsOverview :save_last_frame: :hide_source: from manim.utils.color import Colors class ColorsOverview(Scene): def construct(self): def color_group(color): group = VGroup( *[ Line(ORIGIN, RIGHT * 1.5, stroke_width=35, color=Colors[name].value) for name in subnames(color) ] ).arrange_submobjects(buff=0.4, direction=DOWN) name = Text(color).scale(0.6).next_to(group, UP, buff=0.3) if any(decender in color for decender in "gjpqy"): name.shift(DOWN * 0.08) group.add(name) return group def subnames(name): return [name + "_" + char for char in "abcde"] color_groups = VGroup( *[ color_group(color) for color in [ "blue", "teal", "green", "yellow", "gold", "red", "maroon", "purple", ] ] ).arrange_submobjects(buff=0.2, aligned_edge=DOWN) for line, char in zip(color_groups[0], "abcde"): color_groups.add(Text(char).scale(0.6).next_to(line, LEFT, buff=0.2)) def named_lines_group(length, colors, names, text_colors, align_to_block): lines = VGroup( *[ Line( ORIGIN, RIGHT * length, stroke_width=55, color=Colors[color].value, ) for color in colors ] ).arrange_submobjects(buff=0.6, direction=DOWN) for line, name, color in zip(lines, names, text_colors): line.add(Text(name, color=color).scale(0.6).move_to(line)) lines.next_to(color_groups, DOWN, buff=0.5).align_to( color_groups[align_to_block], LEFT ) return lines other_colors = ( "pink", "light_pink", "orange", "light_brown", "dark_brown", "gray_brown", ) other_lines = named_lines_group( 3.2, other_colors, other_colors, [BLACK] * 4 + [WHITE] * 2, 0, ) gray_lines = named_lines_group( 6.6, ["white"] + subnames("gray") + ["black"], [ "white", "lighter_gray / gray_a", "light_gray / gray_b", "gray / gray_c", "dark_gray / gray_d", "darker_gray / gray_e", "black", ], [BLACK] * 3 + [WHITE] * 4, 2, ) pure_colors = ( "pure_red", "pure_green", "pure_blue", ) pure_lines = named_lines_group( 3.2, pure_colors, pure_colors, [BLACK, BLACK, WHITE], 6, ) self.add(color_groups, other_lines, gray_lines, pure_lines) VGroup(*self.mobjects).move_to(ORIGIN) The preferred way of using these colors is by importing their constants from manim: .. code-block:: pycon >>> from manim import RED, GREEN, BLUE >>> RED '#FC6255' Note this way uses the name of the colors in UPPERCASE. Alternatively, you can also import this Enum directly and use its members directly, through the use of :code:`color.value`. Note this way uses the name of the colors in lowercase. .. code-block:: pycon >>> from manim.utils.color import Colors >>> Colors.red.value '#FC6255' .. note:: The colors of type "C" have an alias equal to the colorname without a letter, e.g. GREEN = GREEN_C """ white = "#FFFFFF" gray_a = "#DDDDDD" gray_b = "#BBBBBB" gray_c = "#888888" gray_d = "#444444" gray_e = "#222222" black = "#000000" lighter_gray = gray_a light_gray = gray_b gray = gray_c dark_gray = gray_d darker_gray = gray_e blue_a = "#C7E9F1" blue_b = "#9CDCEB" blue_c = "#58C4DD" blue_d = "#29ABCA" blue_e = "#236B8E" pure_blue = "#0000FF" blue = blue_c teal_a = "#ACEAD7" teal_b = "#76DDC0" teal_c = "#5CD0B3" teal_d = "#55C1A7" teal_e = "#49A88F" teal = teal_c green_a = "#C9E2AE" green_b = "#A6CF8C" green_c = "#83C167" green_d = "#77B05D" green_e = "#699C52" pure_green = "#00FF00" green = green_c yellow_a = "#FFF1B6" yellow_b = "#FFEA94" yellow_c = "#FFFF00" yellow_d = "#F4D345" yellow_e = "#E8C11C" yellow = yellow_c gold_a = "#F7C797" gold_b = "#F9B775" gold_c = "#F0AC5F" gold_d = "#E1A158" gold_e = "#C78D46" gold = gold_c red_a = "#F7A1A3" red_b = "#FF8080" red_c = "#FC6255" red_d = "#E65A4C" red_e = "#CF5044" pure_red = "#FF0000" red = red_c maroon_a = "#ECABC1" maroon_b = "#EC92AB" maroon_c = "#C55F73" maroon_d = "#A24D61" maroon_e = "#94424F" maroon = maroon_c purple_a = "#CAA3E8" purple_b = "#B189C6" purple_c = "#9A72AC" purple_d = "#715582" purple_e = "#644172" purple = purple_c pink = "#D147BD" light_pink = "#DC75CD" orange = "#FF862F" light_brown = "#CD853F" dark_brown = "#8B4513" gray_brown = "#736357" # Create constants from Colors enum constants_names = [] for name, value in Colors.__members__.items(): name = name.upper() value = value.value constants_names.append(name) locals()[name] = value if "GRAY" in name: name = name.replace("GRAY", "GREY") locals()[name] = value constants_names.append(name) # Add constants to module exports. Simply adding constants_names would work fine, but # would make it hard for IDEs to understand that colors are exported. Therefor the # result of the following print statement is added instead. # print(constants_names) __all__ += [ # noqa: F822 # used to stop flake8 from complaining about undefined vars "WHITE", "GRAY_A", "GREY_A", "GRAY_B", "GREY_B", "GRAY_C", "GREY_C", "GRAY_D", "GREY_D", "GRAY_E", "GREY_E", "BLACK", "LIGHTER_GRAY", "LIGHTER_GREY", "LIGHT_GRAY", "LIGHT_GREY", "GRAY", "GREY", "DARK_GRAY", "DARK_GREY", "DARKER_GRAY", "DARKER_GREY", "BLUE_A", "BLUE_B", "BLUE_C", "BLUE_D", "BLUE_E", "PURE_BLUE", "BLUE", "TEAL_A", "TEAL_B", "TEAL_C", "TEAL_D", "TEAL_E", "TEAL", "GREEN_A", "GREEN_B", "GREEN_C", "GREEN_D", "GREEN_E", "PURE_GREEN", "GREEN", "YELLOW_A", "YELLOW_B", "YELLOW_C", "YELLOW_E", "YELLOW_D", "YELLOW", "GOLD_A", "GOLD_B", "GOLD_C", "GOLD_D", "GOLD_E", "GOLD", "RED_A", "RED_B", "RED_C", "RED_D", "RED_E", "PURE_RED", "RED", "MAROON_A", "MAROON_B", "MAROON_C", "MAROON_D", "MAROON_E", "MAROON", "PURPLE_A", "PURPLE_B", "PURPLE_C", "PURPLE_D", "PURPLE_E", "PURPLE", "PINK", "LIGHT_PINK", "ORANGE", "LIGHT_BROWN", "DARK_BROWN", "GRAY_BROWN", "GREY_BROWN", ] def color_to_rgb(color: Union[Color, str]) -> np.ndarray: if isinstance(color, str): return hex_to_rgb(color) elif isinstance(color, Color): return np.array(color.get_rgb()) else: raise ValueError("Invalid color type") def color_to_rgba(color: Union[Color, str], alpha: float = 1) -> np.ndarray: return np.array([*color_to_rgb(color), alpha]) def rgb_to_color(rgb: Iterable[float]) -> Color: return Color(rgb=rgb) def rgba_to_color(rgba: Iterable[float]) -> Color: return rgb_to_color(rgba[:3]) def rgb_to_hex(rgb: Iterable[float]) -> str: return "#" + "".join("%02x" % int(255 * x) for x in rgb) def hex_to_rgb(hex_code: str) -> np.ndarray: hex_part = hex_code[1:] if len(hex_part) == 3: hex_part = "".join([2 * c for c in hex_part]) return np.array([int(hex_part[i : i + 2], 16) / 255 for i in range(0, 6, 2)]) def invert_color(color: Color) -> Color: return rgb_to_color(1.0 - color_to_rgb(color)) def color_to_int_rgb(color: Color) -> np.ndarray: return (255 * color_to_rgb(color)).astype("uint8") def color_to_int_rgba(color: Color, opacity: float = 1.0) -> np.ndarray: alpha = int(255 * opacity) return np.append(color_to_int_rgb(color), alpha) def color_gradient( reference_colors: Iterable[Color], length_of_output: int ) -> List[Color]: if length_of_output == 0: return reference_colors[0] rgbs = list(map(color_to_rgb, reference_colors)) alphas = np.linspace(0, (len(rgbs) - 1), length_of_output) floors = alphas.astype("int") alphas_mod1 = alphas % 1 # End edge case alphas_mod1[-1] = 1 floors[-1] = len(rgbs) - 2 return [ rgb_to_color(interpolate(rgbs[i], rgbs[i + 1], alpha)) for i, alpha in zip(floors, alphas_mod1) ] def interpolate_color(color1: Color, color2: Color, alpha: float) -> Color: rgb = interpolate(color_to_rgb(color1), color_to_rgb(color2), alpha) return rgb_to_color(rgb) def average_color(*colors: Color) -> Color: rgbs = np.array(list(map(color_to_rgb, colors))) mean_rgb = np.apply_along_axis(np.mean, 0, rgbs) return rgb_to_color(mean_rgb) def random_bright_color() -> Color: color = random_color() curr_rgb = color_to_rgb(color) new_rgb = interpolate(curr_rgb, np.ones(len(curr_rgb)), 0.5) return Color(rgb=new_rgb) def random_color() -> Color: return random.choice([c.value for c in list(Colors)]) def get_shaded_rgb( rgb: np.ndarray, point: np.ndarray, unit_normal_vect: np.ndarray, light_source: np.ndarray, ) -> np.ndarray: to_sun = normalize(light_source - point) factor = 0.5 * np.dot(unit_normal_vect, to_sun) ** 3 if factor < 0: factor *= 0.5 result = rgb + factor clip_in_place(rgb + factor, 0, 1) return result
25.777056
96
0.522882
d81ef189225a2b4c6ac29b0b4b10a9863dd869d4
2,833
py
Python
lex_parser.py
hanshiyi/POSBERT
4d290945371b0043b3370459b9436364311320f8
[ "MIT" ]
3
2019-12-24T20:06:17.000Z
2020-01-15T19:13:29.000Z
lex_parser.py
hanshiyi/POSBERT
4d290945371b0043b3370459b9436364311320f8
[ "MIT" ]
null
null
null
lex_parser.py
hanshiyi/POSBERT
4d290945371b0043b3370459b9436364311320f8
[ "MIT" ]
null
null
null
from nltk.parse.stanford import StanfordParser # parser = StanfordParser() from nltk.parse.corenlp import CoreNLPParser from bert_tokenization import BasicTokenizer # If you want to parse the id # open terminal and # cd POSBERT/ # wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip # unzip stanford-corenlp-full-2018-10-05.zip # cd stanford-corenlp-full-2018-10-05 # java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -preload tokenize,ssplit,pos,lemma,ner,parse,depparse -status_port 9000 -port 9000 -timeout 15000 & # Then run this scipt from typing import Union class Lex_parser: def __init__(self, tag_id_initialized=False, tag_id=None, uncased=True): self.uncased=uncased self.tag_id_initialized = tag_id_initialized if tag_id_initialized: self.tag_to_id = tag_id else: self.tag_to_id = {"CLSSEP": 0, "UNKNOWN": 1} self.parser = CoreNLPParser(url='http://localhost:9000', tagtype='pos') self.basic_tokenizer = BasicTokenizer() def tokenize(self, sentence): return list(self.parser.tokenize(sentence)) def convert_sentence_to_tags(self, sentence: Union[str, list]): if type(sentence) == str: if self.uncased: sentence = sentence.lower() else: sentence = " ".join(sentence) if self.uncased: sentence = sentence.lower() sentence = self.basic_tokenizer.tokenize(sentence) # print("sentence here,", sentence) sentence = list(map(lambda x: x.upper() if x == 'i' else x, sentence)) tags = self.parser.tag(sentence) # print("sentence here,", sentence) # print("tags here", tags) # exit(-2) if not self.tag_id_initialized: for tag in tags: if tag[1] not in self.tag_to_id: self.tag_to_id[tag[1]] = len(self.tag_to_id) return tags def convert_tags_to_ids(self, tags): res = list(map(lambda x: self.tag_to_id[x[1]], tags)) # print("to ids ==") # print(len(tags), tags) # print(len(res), res) return res def convert_sentence_to_ids(self, sentence: Union[str, list]): if not self.parser: self.parser = CoreNLPParser(url='http://localhost:9000', tagtype='pos') tags = self.convert_sentence_to_tags(sentence) ids = self.convert_tags_to_ids(tags) print(type(sentence), len(sentence), len(tags), len(ids)) return list(ids) if __name__ == "__main__": lex_parser = Lex_parser() print(list(lex_parser.convert_sentence_to_tags("The price of car is N, "" which is unaffordable. <eos>"))) print(list(lex_parser.convert_sentence_to_ids("The price of car is N, which is unaffordable.")))
35.4125
168
0.646664
ee0d15d52aec93278d38c8a20d55f26676463221
1,708
py
Python
Multitask-CNN-RNN/torchsampler/imbalanced_VA.py
wtomin/Multitask-Emotion-Recognition-with-Incomplete-Labels
e6df7ffc9b0318fdce405e40993c79785b47c785
[ "MIT" ]
74
2020-03-08T15:29:00.000Z
2022-03-05T14:57:33.000Z
Multitask-CNN/torchsampler/imbalanced_VA.py
HKUST-NISL/Multitask-Emotion-Recognition-with-Incomplete-Labels
ac5152b7a4b9c6c54d13c06c9302270350e8ce3f
[ "MIT" ]
19
2020-03-06T08:56:51.000Z
2022-03-27T05:07:35.000Z
Multitask-CNN/torchsampler/imbalanced_VA.py
wtomin/Multitask-Emotion-Recognition-with-Incomplete-Labels
e6df7ffc9b0318fdce405e40993c79785b47c785
[ "MIT" ]
23
2020-03-20T08:19:55.000Z
2022-03-16T17:40:09.000Z
import torch import torch.utils.data import torchvision from tqdm import tqdm import numpy as np import random class ImbalancedDatasetSampler_VA(torch.utils.data.sampler.Sampler): """Samples elements randomly from a given list of indices for imbalanced dataset Arguments: indices (list, optional): a list of indices num_samples (int, optional): number of samples to draw callback_get_label func: a callback-like function which takes two arguments - dataset and index """ def __init__(self, dataset, indices=None, num_samples=None): # if indices is not provided, # all elements in the dataset will be considered self.indices = list(range(len(dataset))) \ if indices is None else indices # if num_samples is not provided, # draw `len(indices)` samples in each iteration self.num_samples = len(self.indices) \ if num_samples is None else num_samples all_labels = dataset._get_all_label() N, C = all_labels.shape assert C == 2 hist, x_edges, y_edges = np.histogram2d(all_labels[:, 0], all_labels[:, 1], bins=[20, 20]) x_bin_id = np.digitize( all_labels[:, 0], bins = x_edges) - 1 y_bin_id = np.digitize( all_labels[:, 1], bins = y_edges) - 1 # for value beyond the edges, the function returns len(digitize_num), but it needs to be replaced by len(edges)-1 x_bin_id[x_bin_id==20] = 20-1 y_bin_id[y_bin_id==20] = 20-1 weights = [] for x, y in zip(x_bin_id, y_bin_id): assert hist[x, y]!=0 weights += [1 / hist[x, y]] self.weights = torch.DoubleTensor(weights) def __iter__(self): return (self.indices[i] for i in torch.multinomial( self.weights, self.num_samples, replacement=True)) def __len__(self): return self.num_samples
33.490196
115
0.719555
00ce4c4cc328216664fa63037689900cd2646d55
9,328
py
Python
tensorflow_probability/python/bijectors/gev_cdf.py
gisilvs/probability
fd8be3ca1243f956578bf1b1280f9d3ed13541f0
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/bijectors/gev_cdf.py
gisilvs/probability
fd8be3ca1243f956578bf1b1280f9d3ed13541f0
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/bijectors/gev_cdf.py
gisilvs/probability
fd8be3ca1243f956578bf1b1280f9d3ed13541f0
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GeneralizedExtremeValue bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import bijector from tensorflow_probability.python.bijectors import softplus as softplus_bijector from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import tensor_util __all__ = [ 'GeneralizedExtremeValueCDF', ] @bijector.auto_composite_tensor_bijector class GeneralizedExtremeValueCDF(bijector.AutoCompositeTensorBijector): """Compute the GeneralizedExtremeValue CDF. Compute `Y = g(X) = exp(-t(X))`, where `t(x)` is defined to be: *`(1 + conc * (x - loc) / scale) ) ** (-1 / conc)` when `conc != 0`; *`exp(-(x - loc) / scale)` when `conc = 0`. This bijector maps inputs from the domain to `[0, 1]`, where the domain is * [loc - scale/conc, inf) when conc > 0; * (-inf, loc - scale/conc] when conc < 0; * (-inf, inf) when conc = 0; The inverse of the bijector applied to a uniform random variable `X ~ U(0, 1)` gives back a random variable with the [Generalized extreme value distribution]( https://https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution): When `concentration -> +-inf`, the probability mass concentrates near `loc`. ```none Y ~ GeneralizedExtremeValueCDF(loc, scale, conc) pdf(y; loc, scale, conc) = t(y; loc, scale, conc) ** (1 + conc) * exp( - t(y; loc, scale, conc) ) / scale where t(x) = * (1 + conc * (x - loc) / scale) ) ** (-1 / conc) when conc != 0; * exp(-(x - loc) / scale) when conc = 0. ``` """ def __init__(self, loc=0., scale=1., concentration=0, validate_args=False, name='generalizedextremevalue_cdf'): """Instantiates the `GeneralizedExtremeValueCDF` bijector. Args: loc: Float-like `Tensor` that is the same dtype and is broadcastable with `scale` and `concentration`. scale: Positive Float-like `Tensor` that is the same dtype and is broadcastable with `loc` and `concentration`. concentration: Nonzero float-like `Tensor` that is the same dtype and is broadcastable with `loc` and `scale`. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str` name given to ops managed by this object. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([loc, scale, concentration], dtype_hint=tf.float32) self._loc = tensor_util.convert_nonref_to_tensor( loc, dtype=dtype, name='loc') self._scale = tensor_util.convert_nonref_to_tensor( scale, dtype=dtype, name='scale') self._concentration = tensor_util.convert_nonref_to_tensor( concentration, dtype=dtype, name='concentration') super(GeneralizedExtremeValueCDF, self).__init__( validate_args=validate_args, forward_min_event_ndims=0, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype): return dict( loc=parameter_properties.ParameterProperties(), scale=parameter_properties.ParameterProperties( default_constraining_bijector_fn=( lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype)))), concentration=parameter_properties.ParameterProperties( default_constraining_bijector_fn=( lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype))))) @property def loc(self): """The location parameter in the Generalized Extreme Value CDF.""" return self._loc @property def scale(self): """The scale parameter in the Generalized Extreme Value CDF.""" return self._scale @property def concentration(self): """The concentration parameter in the Generalized Extreme Value CDF.""" return self._concentration @classmethod def _is_increasing(cls): return True def _forward(self, x): loc = tf.convert_to_tensor(self.loc) scale = tf.convert_to_tensor(self.scale) conc = tf.convert_to_tensor(self.concentration) with tf.control_dependencies( self._maybe_assert_valid_x( x, loc=loc, scale=scale, concentration=conc)): z = (x - loc) / scale equal_zero = tf.equal(conc, 0.) # deal with case that gradient is N/A when conc = 0 safe_conc = tf.where(equal_zero, tf.ones_like(conc), conc) t = tf.where( equal_zero, tf.math.exp(-z), tf.math.exp(-tf.math.log1p(z * safe_conc) / safe_conc)) return tf.exp(-t) def _inverse(self, y): with tf.control_dependencies(self._maybe_assert_valid_y(y)): t = -tf.math.log(y) conc = tf.convert_to_tensor(self.concentration) equal_zero = tf.equal(conc, 0.) # deal with case that gradient is N/A when conc = 0 safe_conc = tf.where(equal_zero, tf.ones_like(conc), conc) z = tf.where( equal_zero, -tf.math.log(t), tf.math.expm1(-tf.math.log(t) * safe_conc) / safe_conc) return self.loc + self.scale * z def _forward_log_det_jacobian(self, x): loc = tf.convert_to_tensor(self.loc) scale = tf.convert_to_tensor(self.scale) conc = tf.convert_to_tensor(self.concentration) with tf.control_dependencies( self._maybe_assert_valid_x( x, loc=loc, scale=scale, concentration=conc)): z = (x - loc) / scale equal_zero = tf.equal(conc, 0.) # deal with case that gradient is N/A when conc = 0 safe_conc = tf.where(equal_zero, tf.ones_like(conc), conc) log_t = tf.where( equal_zero, -z, -tf.math.log1p(z * safe_conc) / safe_conc) return (tf.math.multiply_no_nan(conc + 1., log_t) - tf.math.exp(log_t) - tf.math.log(scale)) def _inverse_log_det_jacobian(self, y): with tf.control_dependencies(self._maybe_assert_valid_y(y)): t = -tf.math.log(y) log_dt = tf.math.xlogy(-self.concentration - 1., t) return tf.math.log(self.scale / y) + log_dt def _maybe_assert_valid_x(self, x, loc=None, scale=None, concentration=None): if not self.validate_args: return [] loc = tf.convert_to_tensor(self.loc) if loc is None else loc scale = tf.convert_to_tensor(self.scale) if scale is None else scale concentration = ( tf.convert_to_tensor(self.concentration) if concentration is None else concentration) # We intentionally compute the boundary with (1.0 / concentration) * scale # instead of just scale / concentration. # Why? The sampler returns loc + (foo / concentration) * scale, # and at high-ish values of concentration, foo has a decent # probability of being numerically exactly -1. We therefore mimic # the pattern of round-off that occurs in the sampler to make sure # that samples emitted from this distribution will pass its own # validations. This is sometimes necessary: in TF's float32, # 0.69314826 / 37.50019 < (1.0 / 37.50019) * 0.69314826 boundary = loc - (1.0 / concentration) * scale # The support of this bijector depends on the sign of concentration. is_in_bounds = tf.where(concentration > 0., x >= boundary, x <= boundary) # For concentration 0, the domain is the whole line. is_in_bounds = is_in_bounds | tf.math.equal(concentration, 0.) return [ assert_util.assert_equal( is_in_bounds, True, message='Forward transformation input must be inside domain.') ] def _maybe_assert_valid_y(self, y): if not self.validate_args: return [] is_positive = assert_util.assert_non_negative( y, message='Inverse transformation input must be greater than 0.') less_than_one = assert_util.assert_less_equal( y, tf.constant(1., y.dtype), message='Inverse transformation input must be less than or equal to 1.') return [is_positive, less_than_one] def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self.scale): assertions.append( assert_util.assert_positive( self.scale, message='Argument `scale` must be positive.')) return assertions
38.386831
81
0.671741
5e073be4f36a531e88a4d01b213cc1e5cb4fe8d6
2,347
py
Python
gpx_csv_converter/__init__.py
oth-aw/gpx-csv-converter
b340eb7f4837ae277481b0f1b17f2190545a813a
[ "MIT" ]
null
null
null
gpx_csv_converter/__init__.py
oth-aw/gpx-csv-converter
b340eb7f4837ae277481b0f1b17f2190545a813a
[ "MIT" ]
null
null
null
gpx_csv_converter/__init__.py
oth-aw/gpx-csv-converter
b340eb7f4837ae277481b0f1b17f2190545a813a
[ "MIT" ]
null
null
null
from xml.dom import minidom import calendar import dateutil.parser import pandas as pd test = "gpx_csv_converter" def iso_to_epoch(iso_time): return calendar.timegm(dateutil.parser.parse(iso_time).timetuple()) class Converter: def __init__(self, string, name): if name[-4:] != '.csv': name = name + '.csv' # parse an xml file by name mydoc = minidom.parseString(string) trkpt = mydoc.getElementsByTagName('trkpt') time = mydoc.getElementsByTagName('time') ele = mydoc.getElementsByTagName('ele') #hr = mydoc.getElementsByTagName('gpxtpx:hr') hr = mydoc.getElementsByTagName('ns3:hr') cad = mydoc.getElementsByTagName('ns3:cad') lats = [] longs = [] times = [] eles = [] hrs = [] dates = [] parsed_times = [] cads = [] for elem in trkpt: lats.append(elem.attributes['lat'].value) longs.append(elem.attributes['lon'].value) for elem in time: times.append(elem.firstChild.data) for elem in hr: hrs.append(elem.firstChild.data) times.pop(0) base_time = iso_to_epoch(times[0]) time_differences = [] for item in times: time_differences.append(iso_to_epoch(item) - base_time) date_obj = (dateutil.parser.parse(item)) dates.append(str(date_obj.year) + "-" + str(date_obj.month) + "-" + str(date_obj.day)) parsed_times.append(str(date_obj.hour) + ":" + str(date_obj.minute) + ":" + str(date_obj.second)) for elem in ele: eles.append(elem.firstChild.data) for elem in cad: cads.append(elem.firstChild.data) hrs.append(0) data = {'date': dates, 'time': parsed_times, 'latitude': lats, 'longitude': longs, 'elevation': eles, 'heart_rate': hrs, 'cadence': cads} print(len(dates), len(parsed_times), len(lats), len(longs), len(eles), len(hrs), len(cads)) df = pd.DataFrame(data=data) df = df[['date', 'time', 'latitude', 'longitude', 'elevation', 'heart_rate', 'cadence']] df.to_csv(name, encoding='utf-8', index=False) print("Done!")
27.290698
109
0.559864
e8555181c464dc40c908dbe2e39c325747e6b04a
30,770
py
Python
test/unit/test_objectstore.py
Tomasz69/galaxy
ee7e632ed677bf7d8a8de57745fce6ddc373dc3e
[ "CC-BY-3.0" ]
1
2021-02-28T18:59:16.000Z
2021-02-28T18:59:16.000Z
test/unit/test_objectstore.py
Tomasz69/galaxy
ee7e632ed677bf7d8a8de57745fce6ddc373dc3e
[ "CC-BY-3.0" ]
12
2020-07-24T23:55:19.000Z
2021-12-19T11:40:06.000Z
test/unit/test_objectstore.py
Tomasz69/galaxy
ee7e632ed677bf7d8a8de57745fce6ddc373dc3e
[ "CC-BY-3.0" ]
1
2021-09-02T03:44:15.000Z
2021-09-02T03:44:15.000Z
import os from contextlib import contextmanager from shutil import rmtree from string import Template from tempfile import mkdtemp from uuid import uuid4 import yaml from six import StringIO from galaxy import objectstore from galaxy.exceptions import ObjectInvalid from galaxy.objectstore.azure_blob import AzureBlobObjectStore from galaxy.objectstore.cloud import Cloud from galaxy.objectstore.pithos import PithosObjectStore from galaxy.objectstore.s3 import S3ObjectStore from galaxy.util import ( directory_hash_id, XML, ) DISK_TEST_CONFIG = """<?xml version="1.0"?> <object_store type="disk"> <files_dir path="${temp_directory}/files1"/> <extra_dir type="temp" path="${temp_directory}/tmp1"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory1"/> </object_store> """ DISK_TEST_CONFIG_YAML = """ type: disk files_dir: "${temp_directory}/files1" extra_dirs: - type: temp path: "${temp_directory}/tmp1" - type: job_work path: "${temp_directory}/job_working_directory1" """ def test_disk_store(): for config_str in [DISK_TEST_CONFIG, DISK_TEST_CONFIG_YAML]: with TestConfig(config_str) as (directory, object_store): # Test no dataset with id 1 exists. absent_dataset = MockDataset(1) assert not object_store.exists(absent_dataset) # Write empty dataset 2 in second backend, ensure it is empty and # exists. empty_dataset = MockDataset(2) directory.write("", "files1/000/dataset_2.dat") assert object_store.exists(empty_dataset) assert object_store.empty(empty_dataset) # Write non-empty dataset in backend 1, test it is not emtpy & exists. hello_world_dataset = MockDataset(3) directory.write("Hello World!", "files1/000/dataset_3.dat") assert object_store.exists(hello_world_dataset) assert not object_store.empty(hello_world_dataset) # Test get_data data = object_store.get_data(hello_world_dataset) assert data == "Hello World!" data = object_store.get_data(hello_world_dataset, start=1, count=6) assert data == "ello W" # Test Size # Test absent and empty datasets yield size of 0. assert object_store.size(absent_dataset) == 0 assert object_store.size(empty_dataset) == 0 # Elsewise assert object_store.size(hello_world_dataset) > 0 # Should this always be the number of bytes? # Test percent used (to some degree) percent_store_used = object_store.get_store_usage_percent() assert percent_store_used > 0.0 assert percent_store_used < 100.0 # Test update_from_file test output_dataset = MockDataset(4) output_real_path = os.path.join(directory.temp_directory, "files1", "000", "dataset_4.dat") assert not os.path.exists(output_real_path) output_working_path = directory.write("NEW CONTENTS", "job_working_directory1/example_output") object_store.update_from_file(output_dataset, file_name=output_working_path, create=True) assert os.path.exists(output_real_path) # Test delete to_delete_dataset = MockDataset(5) to_delete_real_path = directory.write("content to be deleted!", "files1/000/dataset_5.dat") assert object_store.exists(to_delete_dataset) assert object_store.delete(to_delete_dataset) assert not object_store.exists(to_delete_dataset) assert not os.path.exists(to_delete_real_path) DISK_TEST_CONFIG_BY_UUID_YAML = """ type: disk files_dir: "${temp_directory}/files1" store_by: uuid extra_dirs: - type: temp path: "${temp_directory}/tmp1" - type: job_work path: "${temp_directory}/job_working_directory1" """ def test_disk_store_by_uuid(): for config_str in [DISK_TEST_CONFIG_BY_UUID_YAML]: with TestConfig(config_str) as (directory, object_store): # Test no dataset with id 1 exists. absent_dataset = MockDataset(1) assert not object_store.exists(absent_dataset) # Write empty dataset 2 in second backend, ensure it is empty and # exists. empty_dataset = MockDataset(2) directory.write("", "files1/%s/dataset_%s.dat" % (empty_dataset.rel_path_for_uuid_test(), empty_dataset.uuid)) assert object_store.exists(empty_dataset) assert object_store.empty(empty_dataset) # Write non-empty dataset in backend 1, test it is not emtpy & exists. hello_world_dataset = MockDataset(3) directory.write("Hello World!", "files1/%s/dataset_%s.dat" % (hello_world_dataset.rel_path_for_uuid_test(), hello_world_dataset.uuid)) assert object_store.exists(hello_world_dataset) assert not object_store.empty(hello_world_dataset) # Test get_data data = object_store.get_data(hello_world_dataset) assert data == "Hello World!" data = object_store.get_data(hello_world_dataset, start=1, count=6) assert data == "ello W" # Test Size # Test absent and empty datasets yield size of 0. assert object_store.size(absent_dataset) == 0 assert object_store.size(empty_dataset) == 0 # Elsewise assert object_store.size(hello_world_dataset) > 0 # Should this always be the number of bytes? # Test percent used (to some degree) percent_store_used = object_store.get_store_usage_percent() assert percent_store_used > 0.0 assert percent_store_used < 100.0 # Test update_from_file test output_dataset = MockDataset(4) output_real_path = os.path.join(directory.temp_directory, "files1", output_dataset.rel_path_for_uuid_test(), "dataset_%s.dat" % output_dataset.uuid) assert not os.path.exists(output_real_path) output_working_path = directory.write("NEW CONTENTS", "job_working_directory1/example_output") object_store.update_from_file(output_dataset, file_name=output_working_path, create=True) assert os.path.exists(output_real_path) # Test delete to_delete_dataset = MockDataset(5) to_delete_real_path = directory.write("content to be deleted!", "files1/%s/dataset_%s.dat" % (to_delete_dataset.rel_path_for_uuid_test(), to_delete_dataset.uuid)) assert object_store.exists(to_delete_dataset) assert object_store.delete(to_delete_dataset) assert not object_store.exists(to_delete_dataset) assert not os.path.exists(to_delete_real_path) def test_disk_store_alt_name_relpath(): """ Test that alt_name cannot be used to access arbitrary paths using a relative path """ with TestConfig(DISK_TEST_CONFIG) as (directory, object_store): empty_dataset = MockDataset(1) directory.write("", "files1/000/dataset_1.dat") directory.write("foo", "foo.txt") try: assert object_store.get_data( empty_dataset, extra_dir='dataset_1_files', alt_name='../../../foo.txt') != 'foo' except ObjectInvalid: pass def test_disk_store_alt_name_abspath(): """ Test that alt_name cannot be used to access arbitrary paths using a absolute path """ with TestConfig(DISK_TEST_CONFIG) as (directory, object_store): empty_dataset = MockDataset(1) directory.write("", "files1/000/dataset_1.dat") absfoo = os.path.abspath(os.path.join(directory.temp_directory, "foo.txt")) with open(absfoo, 'w') as f: f.write("foo") try: assert object_store.get_data( empty_dataset, extra_dir='dataset_1_files', alt_name=absfoo) != 'foo' except ObjectInvalid: pass MIXED_STORE_BY_HIERARCHICAL_TEST_CONFIG = """<?xml version="1.0"?> <object_store type="hierarchical"> <backends> <backend id="files1" type="disk" weight="1" order="0" store_by="id"> <files_dir path="${temp_directory}/files1"/> <extra_dir type="temp" path="${temp_directory}/tmp1"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory1"/> </backend> <backend id="files2" type="disk" weight="1" order="1" store_by="uuid"> <files_dir path="${temp_directory}/files2"/> <extra_dir type="temp" path="${temp_directory}/tmp2"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory2"/> </backend> </backends> </object_store> """ HIERARCHICAL_TEST_CONFIG = """<?xml version="1.0"?> <object_store type="hierarchical"> <backends> <backend id="files1" type="disk" weight="1" order="0"> <files_dir path="${temp_directory}/files1"/> <extra_dir type="temp" path="${temp_directory}/tmp1"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory1"/> </backend> <backend id="files2" type="disk" weight="1" order="1"> <files_dir path="${temp_directory}/files2"/> <extra_dir type="temp" path="${temp_directory}/tmp2"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory2"/> </backend> </backends> </object_store> """ HIERARCHICAL_TEST_CONFIG_YAML = """ type: hierarchical backends: - id: files1 type: disk weight: 1 files_dir: "${temp_directory}/files1" extra_dirs: - type: temp path: "${temp_directory}/tmp1" - type: job_work path: "${temp_directory}/job_working_directory1" - id: files2 type: disk weight: 1 files_dir: "${temp_directory}/files2" extra_dirs: - type: temp path: "${temp_directory}/tmp2" - type: job_work path: "${temp_directory}/job_working_directory2" """ def test_hierarchical_store(): for config_str in [HIERARCHICAL_TEST_CONFIG, HIERARCHICAL_TEST_CONFIG_YAML]: with TestConfig(config_str) as (directory, object_store): # Test no dataset with id 1 exists. assert not object_store.exists(MockDataset(1)) # Write empty dataset 2 in second backend, ensure it is empty and # exists. directory.write("", "files2/000/dataset_2.dat") assert object_store.exists(MockDataset(2)) assert object_store.empty(MockDataset(2)) # Write non-empty dataset in backend 1, test it is not emtpy & exists. directory.write("Hello World!", "files1/000/dataset_3.dat") assert object_store.exists(MockDataset(3)) assert not object_store.empty(MockDataset(3)) # Assert creation always happens in first backend. for i in range(100): dataset = MockDataset(100 + i) object_store.create(dataset) assert object_store.get_filename(dataset).find("files1") > 0 as_dict = object_store.to_dict() _assert_has_keys(as_dict, ["backends", "extra_dirs", "type"]) _assert_key_has_value(as_dict, "type", "hierarchical") def test_mixed_store_by(): with TestConfig(MIXED_STORE_BY_HIERARCHICAL_TEST_CONFIG) as (directory, object_store): as_dict = object_store.to_dict() assert as_dict["backends"][0]["store_by"] == "id" assert as_dict["backends"][1]["store_by"] == "uuid" DISTRIBUTED_TEST_CONFIG = """<?xml version="1.0"?> <object_store type="distributed"> <backends> <backend id="files1" type="disk" weight="2"> <files_dir path="${temp_directory}/files1"/> <extra_dir type="temp" path="${temp_directory}/tmp1"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory1"/> </backend> <backend id="files2" type="disk" weight="1"> <files_dir path="${temp_directory}/files2"/> <extra_dir type="temp" path="${temp_directory}/tmp2"/> <extra_dir type="job_work" path="${temp_directory}/job_working_directory2"/> </backend> </backends> </object_store> """ DISTRIBUTED_TEST_CONFIG_YAML = """ type: distributed backends: - id: files1 type: disk weight: 2 files_dir: "${temp_directory}/files1" extra_dirs: - type: temp path: "${temp_directory}/tmp1" - type: job_work path: "${temp_directory}/job_working_directory1" - id: files2 type: disk weight: 1 files_dir: "${temp_directory}/files2" extra_dirs: - type: temp path: "${temp_directory}/tmp2" - type: job_work path: "${temp_directory}/job_working_directory2" """ def test_distributed_store(): for config_str in [DISTRIBUTED_TEST_CONFIG, DISTRIBUTED_TEST_CONFIG_YAML]: with TestConfig(config_str) as (directory, object_store): with __stubbed_persistence() as persisted_ids: for i in range(100): dataset = MockDataset(100 + i) object_store.create(dataset) # Test distributes datasets between backends according to weights backend_1_count = len([v for v in persisted_ids.values() if v == "files1"]) backend_2_count = len([v for v in persisted_ids.values() if v == "files2"]) assert backend_1_count > 0 assert backend_2_count > 0 assert backend_1_count > backend_2_count as_dict = object_store.to_dict() _assert_has_keys(as_dict, ["backends", "extra_dirs", "type"]) _assert_key_has_value(as_dict, "type", "distributed") extra_dirs = as_dict["extra_dirs"] assert len(extra_dirs) == 2 # Unit testing the cloud and advanced infrastructure object stores is difficult, but # we can at least stub out initializing and test the configuration of these things from # XML and dicts. class UnitializedPithosObjectStore(PithosObjectStore): def _initialize(self): pass class UnitializeS3ObjectStore(S3ObjectStore): def _initialize(self): pass class UnitializedAzureBlobObjectStore(AzureBlobObjectStore): def _initialize(self): pass class UnitializedCloudObjectStore(Cloud): def _initialize(self): pass PITHOS_TEST_CONFIG = """<?xml version="1.0"?> <object_store type="pithos"> <auth url="http://example.org/" token="extoken123" /> <container name="foo" project="cow" /> <extra_dir type="temp" path="database/tmp_pithos"/> <extra_dir type="job_work" path="database/working_pithos"/> </object_store> """ PITHOS_TEST_CONFIG_YAML = """ type: pithos auth: url: http://example.org/ token: extoken123 container: name: foo project: cow extra_dirs: - type: temp path: database/tmp_pithos - type: job_work path: database/working_pithos """ def test_config_parse_pithos(): for config_str in [PITHOS_TEST_CONFIG, PITHOS_TEST_CONFIG_YAML]: with TestConfig(config_str, clazz=UnitializedPithosObjectStore) as (directory, object_store): configured_config_dict = object_store.config_dict _assert_has_keys(configured_config_dict, ["auth", "container", "extra_dirs"]) auth_dict = configured_config_dict["auth"] _assert_key_has_value(auth_dict, "url", "http://example.org/") _assert_key_has_value(auth_dict, "token", "extoken123") container_dict = configured_config_dict["container"] _assert_key_has_value(container_dict, "name", "foo") _assert_key_has_value(container_dict, "project", "cow") assert object_store.extra_dirs["job_work"] == "database/working_pithos" assert object_store.extra_dirs["temp"] == "database/tmp_pithos" as_dict = object_store.to_dict() _assert_has_keys(as_dict, ["auth", "container", "extra_dirs", "type"]) _assert_key_has_value(as_dict, "type", "pithos") auth_dict = as_dict["auth"] _assert_key_has_value(auth_dict, "url", "http://example.org/") _assert_key_has_value(auth_dict, "token", "extoken123") container_dict = as_dict["container"] _assert_key_has_value(container_dict, "name", "foo") _assert_key_has_value(container_dict, "project", "cow") extra_dirs = as_dict["extra_dirs"] assert len(extra_dirs) == 2 S3_TEST_CONFIG = """<object_store type="s3"> <auth access_key="access_moo" secret_key="secret_cow" /> <bucket name="unique_bucket_name_all_lowercase" use_reduced_redundancy="False" /> <cache path="database/object_store_cache" size="1000" /> <extra_dir type="job_work" path="database/job_working_directory_s3"/> <extra_dir type="temp" path="database/tmp_s3"/> </object_store> """ S3_TEST_CONFIG_YAML = """ type: s3 auth: access_key: access_moo secret_key: secret_cow bucket: name: unique_bucket_name_all_lowercase use_reduced_redundancy: false cache: path: database/object_store_cache size: 1000 extra_dirs: - type: job_work path: database/job_working_directory_s3 - type: temp path: database/tmp_s3 """ def test_config_parse_s3(): for config_str in [S3_TEST_CONFIG, S3_TEST_CONFIG_YAML]: with TestConfig(config_str, clazz=UnitializeS3ObjectStore) as (directory, object_store): assert object_store.access_key == "access_moo" assert object_store.secret_key == "secret_cow" assert object_store.bucket == "unique_bucket_name_all_lowercase" assert object_store.use_rr is False assert object_store.host is None assert object_store.port == 6000 assert object_store.multipart is True assert object_store.is_secure is True assert object_store.conn_path == "/" assert object_store.cache_size == 1000 assert object_store.staging_path == "database/object_store_cache" assert object_store.extra_dirs["job_work"] == "database/job_working_directory_s3" assert object_store.extra_dirs["temp"] == "database/tmp_s3" as_dict = object_store.to_dict() _assert_has_keys(as_dict, ["auth", "bucket", "connection", "cache", "extra_dirs", "type"]) _assert_key_has_value(as_dict, "type", "s3") auth_dict = as_dict["auth"] bucket_dict = as_dict["bucket"] connection_dict = as_dict["connection"] cache_dict = as_dict["cache"] _assert_key_has_value(auth_dict, "access_key", "access_moo") _assert_key_has_value(auth_dict, "secret_key", "secret_cow") _assert_key_has_value(bucket_dict, "name", "unique_bucket_name_all_lowercase") _assert_key_has_value(bucket_dict, "use_reduced_redundancy", False) _assert_key_has_value(connection_dict, "host", None) _assert_key_has_value(connection_dict, "port", 6000) _assert_key_has_value(connection_dict, "multipart", True) _assert_key_has_value(connection_dict, "is_secure", True) _assert_key_has_value(cache_dict, "size", 1000) _assert_key_has_value(cache_dict, "path", "database/object_store_cache") extra_dirs = as_dict["extra_dirs"] assert len(extra_dirs) == 2 CLOUD_AWS_TEST_CONFIG = """<object_store type="cloud" provider="aws"> <auth access_key="access_moo" secret_key="secret_cow" /> <bucket name="unique_bucket_name_all_lowercase" use_reduced_redundancy="False" /> <cache path="database/object_store_cache" size="1000" /> <extra_dir type="job_work" path="database/job_working_directory_cloud"/> <extra_dir type="temp" path="database/tmp_cloud"/> </object_store> """ CLOUD_AWS_TEST_CONFIG_YAML = """ type: cloud provider: aws auth: access_key: access_moo secret_key: secret_cow bucket: name: unique_bucket_name_all_lowercase use_reduced_redundancy: false cache: path: database/object_store_cache size: 1000 extra_dirs: - type: job_work path: database/job_working_directory_cloud - type: temp path: database/tmp_cloud """ CLOUD_AZURE_TEST_CONFIG = """<object_store type="cloud" provider="azure"> <auth subscription_id="a_sub_id" client_id="and_a_client_id" secret="and_a_secret_key" tenant="and_some_tenant_info" /> <bucket name="unique_bucket_name_all_lowercase" use_reduced_redundancy="False" /> <cache path="database/object_store_cache" size="1000" /> <extra_dir type="job_work" path="database/job_working_directory_cloud"/> <extra_dir type="temp" path="database/tmp_cloud"/> </object_store> """ CLOUD_AZURE_TEST_CONFIG_YAML = """ type: cloud provider: azure auth: subscription_id: a_sub_id client_id: and_a_client_id secret: and_a_secret_key tenant: and_some_tenant_info bucket: name: unique_bucket_name_all_lowercase use_reduced_redundancy: false cache: path: database/object_store_cache size: 1000 extra_dirs: - type: job_work path: database/job_working_directory_cloud - type: temp path: database/tmp_cloud """ CLOUD_GOOGLE_TEST_CONFIG = """<object_store type="cloud" provider="google"> <auth credentials_file="gcp.config" /> <bucket name="unique_bucket_name_all_lowercase" use_reduced_redundancy="False" /> <cache path="database/object_store_cache" size="1000" /> <extra_dir type="job_work" path="database/job_working_directory_cloud"/> <extra_dir type="temp" path="database/tmp_cloud"/> </object_store> """ CLOUD_GOOGLE_TEST_CONFIG_YAML = """ type: cloud provider: google auth: credentials_file: gcp.config bucket: name: unique_bucket_name_all_lowercase use_reduced_redundancy: false cache: path: database/object_store_cache size: 1000 extra_dirs: - type: job_work path: database/job_working_directory_cloud - type: temp path: database/tmp_cloud """ def test_config_parse_cloud(): for config_str in [CLOUD_AWS_TEST_CONFIG, CLOUD_AWS_TEST_CONFIG_YAML, CLOUD_AZURE_TEST_CONFIG, CLOUD_AZURE_TEST_CONFIG_YAML, CLOUD_GOOGLE_TEST_CONFIG, CLOUD_GOOGLE_TEST_CONFIG_YAML]: if "google" in config_str: tmpdir = mkdtemp() if not os.path.exists(tmpdir): os.makedirs(tmpdir) path = os.path.join(tmpdir, "gcp.config") open(path, "w").write("some_gcp_config") config_str = config_str.replace("gcp.config", path) with TestConfig(config_str, clazz=UnitializedCloudObjectStore) as (directory, object_store): assert object_store.bucket_name == "unique_bucket_name_all_lowercase" assert object_store.use_rr is False assert object_store.host is None assert object_store.port == 6000 assert object_store.multipart is True assert object_store.is_secure is True assert object_store.conn_path == "/" assert object_store.cache_size == 1000.0 assert object_store.staging_path == "database/object_store_cache" assert object_store.extra_dirs["job_work"] == "database/job_working_directory_cloud" assert object_store.extra_dirs["temp"] == "database/tmp_cloud" as_dict = object_store.to_dict() _assert_has_keys(as_dict, ["provider", "auth", "bucket", "connection", "cache", "extra_dirs", "type"]) _assert_key_has_value(as_dict, "type", "cloud") auth_dict = as_dict["auth"] bucket_dict = as_dict["bucket"] connection_dict = as_dict["connection"] cache_dict = as_dict["cache"] provider = as_dict["provider"] if provider == "aws": _assert_key_has_value(auth_dict, "access_key", "access_moo") _assert_key_has_value(auth_dict, "secret_key", "secret_cow") elif provider == "azure": _assert_key_has_value(auth_dict, "subscription_id", "a_sub_id") _assert_key_has_value(auth_dict, "client_id", "and_a_client_id") _assert_key_has_value(auth_dict, "secret", "and_a_secret_key") _assert_key_has_value(auth_dict, "tenant", "and_some_tenant_info") elif provider == "google": _assert_key_has_value(auth_dict, "credentials_file", path) _assert_key_has_value(bucket_dict, "name", "unique_bucket_name_all_lowercase") _assert_key_has_value(bucket_dict, "use_reduced_redundancy", False) _assert_key_has_value(connection_dict, "host", None) _assert_key_has_value(connection_dict, "port", 6000) _assert_key_has_value(connection_dict, "multipart", True) _assert_key_has_value(connection_dict, "is_secure", True) _assert_key_has_value(cache_dict, "size", 1000.0) _assert_key_has_value(cache_dict, "path", "database/object_store_cache") extra_dirs = as_dict["extra_dirs"] assert len(extra_dirs) == 2 AZURE_BLOB_TEST_CONFIG = """<object_store type="azure_blob"> <auth account_name="azureact" account_key="password123" /> <container name="unique_container_name" max_chunk_size="250"/> <cache path="database/object_store_cache" size="100" /> <extra_dir type="job_work" path="database/job_working_directory_azure"/> <extra_dir type="temp" path="database/tmp_azure"/> </object_store> """ AZURE_BLOB_TEST_CONFIG_YAML = """ type: azure_blob auth: account_name: azureact account_key: password123 container: name: unique_container_name max_chunk_size: 250 cache: path: database/object_store_cache size: 100 extra_dirs: - type: job_work path: database/job_working_directory_azure - type: temp path: database/tmp_azure """ def test_config_parse_azure(): for config_str in [AZURE_BLOB_TEST_CONFIG, AZURE_BLOB_TEST_CONFIG_YAML]: with TestConfig(config_str, clazz=UnitializedAzureBlobObjectStore) as (directory, object_store): assert object_store.account_name == "azureact" assert object_store.account_key == "password123" assert object_store.container_name == "unique_container_name" assert object_store.max_chunk_size == 250 assert object_store.cache_size == 100 assert object_store.staging_path == "database/object_store_cache" assert object_store.extra_dirs["job_work"] == "database/job_working_directory_azure" assert object_store.extra_dirs["temp"] == "database/tmp_azure" as_dict = object_store.to_dict() _assert_has_keys(as_dict, ["auth", "container", "cache", "extra_dirs", "type"]) _assert_key_has_value(as_dict, "type", "azure_blob") auth_dict = as_dict["auth"] container_dict = as_dict["container"] cache_dict = as_dict["cache"] _assert_key_has_value(auth_dict, "account_name", "azureact") _assert_key_has_value(auth_dict, "account_key", "password123") _assert_key_has_value(container_dict, "name", "unique_container_name") _assert_key_has_value(container_dict, "max_chunk_size", 250) _assert_key_has_value(cache_dict, "size", 100) _assert_key_has_value(cache_dict, "path", "database/object_store_cache") extra_dirs = as_dict["extra_dirs"] assert len(extra_dirs) == 2 class TestConfig(object): def __init__(self, config_str=DISK_TEST_CONFIG, clazz=None, store_by="id"): self.temp_directory = mkdtemp() if config_str.startswith("<"): config_file = "store.xml" else: config_file = "store.yaml" self.write(config_str, config_file) config = MockConfig(self.temp_directory, config_file, store_by=store_by) if clazz is None: self.object_store = objectstore.build_object_store_from_config(config) elif config_file == "store.xml": self.object_store = clazz.from_xml(config, XML(config_str)) else: self.object_store = clazz(config, yaml.safe_load(StringIO(config_str))) def __enter__(self): return self, self.object_store def __exit__(self, type, value, tb): rmtree(self.temp_directory) def write(self, contents, name): path = os.path.join(self.temp_directory, name) directory = os.path.dirname(path) if not os.path.exists(directory): os.makedirs(directory) contents_template = Template(contents) expanded_contents = contents_template.safe_substitute(temp_directory=self.temp_directory) open(path, "w").write(expanded_contents) return path class MockConfig(object): def __init__(self, temp_directory, config_file, store_by="id"): self.file_path = temp_directory self.object_store_config_file = os.path.join(temp_directory, config_file) self.object_store_check_old_style = False self.object_store_cache_path = os.path.join(temp_directory, "staging") self.object_store_store_by = store_by self.jobs_directory = temp_directory self.new_file_path = temp_directory self.umask = 0000 self.gid = 1000 class MockDataset(object): def __init__(self, id): self.id = id self.object_store_id = None self.uuid = uuid4() self.tags = [] def rel_path_for_uuid_test(self): rel_path = os.path.join(*directory_hash_id(self.uuid)) return rel_path # Poor man's mocking. Need to get a real mocking library as real Galaxy development # dependnecy. PERSIST_METHOD_NAME = "_create_object_in_session" @contextmanager def __stubbed_persistence(): real_method = getattr(objectstore, PERSIST_METHOD_NAME) try: persisted_ids = {} def persist(object): persisted_ids[object.id] = object.object_store_id setattr(objectstore, PERSIST_METHOD_NAME, persist) yield persisted_ids finally: setattr(objectstore, PERSIST_METHOD_NAME, real_method) def _assert_has_keys(the_dict, keys): for key in keys: assert key in the_dict, "key [%s] not in [%s]" % (key, the_dict) def _assert_key_has_value(the_dict, key, value): assert key in the_dict, "dict [%s] doesn't container expected key [%s]" % (key, the_dict) assert the_dict[key] == value, "%s != %s" % (the_dict[key], value)
35.988304
174
0.667436
f05f1f9077cbc912b5172ebb4245c2a91830ff3e
8,572
py
Python
src/server_agent.py
cletusajibade/PrivacyFL
59de52d985ef972d66af6c3ff8f1a3e8612cca0e
[ "MIT" ]
null
null
null
src/server_agent.py
cletusajibade/PrivacyFL
59de52d985ef972d66af6c3ff8f1a3e8612cca0e
[ "MIT" ]
null
null
null
src/server_agent.py
cletusajibade/PrivacyFL
59de52d985ef972d66af6c3ff8f1a3e8612cca0e
[ "MIT" ]
null
null
null
import sys sys.path.append('..') import numpy as np import config from datetime import datetime import multiprocessing from multiprocessing.pool import ThreadPool from utils.latency_helper import find_slowest_time from agent import Agent from message import Message def client_computation_caller(inp): client_instance, message = inp return_message = client_instance.produce_weights(message=message) return return_message def client_weights_returner(inp): client_instance, message = inp converged = client_instance.receive_weights(message) return converged def client_agent_dropout_caller(inp): client_instance, message = inp __ = client_instance.remove_active_clients(message) return None class ServerAgent(Agent): """ Server agent that averages (federated) weights and returns them to clients""" def __init__(self, agent_number, simulation_output_view): super(ServerAgent, self).__init__(agent_number=agent_number, agent_type='server_agent') self.averaged_weights = {} self.averaged_intercepts = {} self.simulation_output_view = simulation_output_view def request_values(self, num_iterations): """ Method invoked to start simulation. Prints out what clients have converged on what iteration. Also prints out accuracy for each client on each iteration (what weights would be if not for the simulation) and federated accuaracy. :param iters: number of iterations to run """ converged = {} # maps client names to iteration of convergence. Contains all inactive clients active_clients = set(self.directory.clients.keys()) for i in range(1, num_iterations + 1): weights = {} intercepts = {} m = multiprocessing.Manager() lock = m.Lock() with ThreadPool(len(active_clients)) as calling_pool: args = [] for client_name in active_clients: client_instance = self.directory.clients[client_name] body = {'iteration': i, 'lock': lock, 'simulated_time': config.LATENCY_DICT[self.name][client_name]} arg = Message(sender_name=self.name, recipient_name=client_name, body=body) args.append((client_instance, arg)) messages = calling_pool.map(client_computation_caller, args) server_logic_start = datetime.now() vals = {message.sender: (message.body['weights'], message.body['intercepts']) for message in messages} simulated_time = find_slowest_time(messages) # add them to the weights_dictionary for client_name, return_vals in vals.items(): client_weights, client_intercepts = return_vals weights[client_name] = np.array(client_weights) intercepts[client_name] = np.array(client_intercepts) weights_np = list(weights.values()) # the weights for this iteration! intercepts_np = list(intercepts.values()) try: averaged_weights = np.average(weights_np, axis=0) # gets rid of security offsets except: raise ValueError('''DATA INSUFFICIENT: Some client does not have a sample from each class so dimension of weights is incorrect. Make train length per iteration larger for each client to avoid this issue''') averaged_intercepts = np.average(intercepts_np, axis=0) self.averaged_weights[i] = averaged_weights ## averaged weights for this iteration!! self.averaged_intercepts[i] = averaged_intercepts # add time server logic takes server_logic_end = datetime.now() server_logic_time = server_logic_end - server_logic_start simulated_time += server_logic_time with ThreadPool(len(active_clients)) as returning_pool: args = [] for client_name in active_clients: client_instance = self.directory.clients[client_name] body = {'iteration': i, 'return_weights': averaged_weights, 'return_intercepts': averaged_intercepts, 'simulated_time': simulated_time + config.LATENCY_DICT[self.name][client_name]} message = Message(sender_name=self.name, recipient_name=client_name, body=body) args.append((client_instance, message)) return_messages = returning_pool.map(client_weights_returner, args) simulated_time = find_slowest_time(return_messages) server_logic_start = datetime.now() clients_to_remove = set() for message in return_messages: if message.body['converged'] == True and message.sender not in converged: # converging converged[message.sender] = i # iteration of convergence clients_to_remove.add(message.sender) server_logic_end = datetime.now() server_logic_time = server_logic_end - server_logic_start simulated_time += server_logic_time if config.CLIENT_DROPOUT: # tell the clients which other clients have dropped out active_clients -= clients_to_remove if len(active_clients) < 2: # no point in continuing if don't have at least 2 clients self.print_convergences(converged) return with ThreadPool(len(active_clients)) as calling_pool: args = [] for client_name in active_clients: client_instance = self.directory.clients[client_name] body = {'clients_to_remove': clients_to_remove, 'simulated_time': simulated_time + config.LATENCY_DICT[self.name][client_name], 'iteration': i} message = Message(sender_name=self.name, recipient_name=client_name, body=body) args.append((client_instance, message)) __ = calling_pool.map(client_agent_dropout_caller, args) # at end of all iterations self.print_convergences(converged) def print_convergences(self, converged): """ Used to print out all the clients that have converged at the end of request values :param converged: dict of converged clients containing iteration of convergence :type converged: dict """ for client_name in self.directory.clients.keys(): if client_name in converged: print('Client {} converged on iteration {}'.format(client_name, converged[client_name])) self.simulation_output_view.appendPlainText( 'Client {} converged on iteration {}'.format(client_name, converged[client_name])) if client_name not in converged: print('Client {} never converged'.format(client_name)) self.simulation_output_view.appendPlainText('Client {} never converged'.format(client_name)) self.simulation_output_view.appendPlainText('\n') def final_statistics(self, simulation_output_view): """ USED FOR RESEARCH PURPOSES. """ # for research purposes client_accs = [] fed_acc = [] for client_name, client_instance in self.directory.clients.items(): fed_acc.append(list(client_instance.federated_accuracy.values())) client_accs.append(list(client_instance.personal_accuracy.values())) if config.CLIENT_DROPOUT: print('Federated accuracies are {}'.format(dict(zip(self.directory.clients, fed_acc)))) simulation_output_view.appendPlainText( 'Federated accuracies are {}'.format(dict(zip(self.directory.clients, fed_acc)))) else: client_accs = list(np.mean(client_accs, axis=0)) fed_acc = list(np.mean(fed_acc, axis=0)) print('Personal accuracy on final iteration is {}'.format(client_accs)) print('Federated accuracy on final iteration is {}'.format(fed_acc)) # should all be the same if no dropout simulation_output_view.appendPlainText('Personal accuracy on final iteration is {}'.format(client_accs)) simulation_output_view.appendPlainText('Federated accuracy on final iteration is {}'.format(fed_acc))
47.888268
148
0.64314
409b055e52d98f372aadf020af9209ac8e6aa733
339
py
Python
src/app/profile/mixins.py
serious-notreally/cappa
993a8df35ca6c3b22f3ca811937fd29c07fc71aa
[ "MIT" ]
9
2020-04-05T07:35:55.000Z
2021-08-03T05:50:05.000Z
src/app/profile/mixins.py
serious-notreally/cappa
993a8df35ca6c3b22f3ca811937fd29c07fc71aa
[ "MIT" ]
89
2020-01-26T11:50:06.000Z
2022-03-31T07:14:18.000Z
src/app/profile/mixins.py
serious-notreally/cappa
993a8df35ca6c3b22f3ca811937fd29c07fc71aa
[ "MIT" ]
13
2020-03-10T14:45:07.000Z
2021-07-31T02:43:40.000Z
from urllib import parse class NextPathMixin: HOME_PATH = '/' def _get_next_path(self, request) -> str: next_path = request.GET.get('next') if next_path is None: next_path = parse.urlparse( request.META.get('HTTP_REFERER', self.HOME_PATH) ).path return next_path
22.6
64
0.59587
06881951773d444e59f24d31f2f6cd0c8b718852
10,832
py
Python
ib_tws_server/codegen/graphql_schema_generator.py
ajmal017/ib_tws_server_py
768dfb77432ed83700066e1720ff71129b4b7fd6
[ "MIT" ]
null
null
null
ib_tws_server/codegen/graphql_schema_generator.py
ajmal017/ib_tws_server_py
768dfb77432ed83700066e1720ff71129b4b7fd6
[ "MIT" ]
null
null
null
ib_tws_server/codegen/graphql_schema_generator.py
ajmal017/ib_tws_server_py
768dfb77432ed83700066e1720ff71129b4b7fd6
[ "MIT" ]
null
null
null
from typing import Generator from ib_tws_server.api_definition import * from ib_tws_server.codegen.generator_utils import * from ib_tws_server.ib_imports import * from ib_tws_server.util.type_util import * from inspect import * import logging import os import re logger = logging.getLogger() class GraphQLSchemaGenerator: @staticmethod def generate(filename): builtin_type_mappings = { 'str': 'String', 'bool': 'Boolean', 'int': "Int", 'float': 'Float' } callback_types: Set[str] = set() unprocessed_types: Set[(str,bool)] = set() processed_types: Dict[str, str] = {} scalars: Set[str] = set() enums: Set[str] = set() union_types: Set[str] = set() container_re = re.compile("(?:typing\.)?(Set|List)\[([^\]]+)\]") dict_re = re.compile("(?:typing\.)?Dict\[[\s]*([a-zA-Z\.]+)[\s]*,[\s]*([a-zA-Z\.]+)\]") # TODO: revisit enums.add('ibapi.order_condition.OrderCondition') def graphql_type_name(s:str, is_input: bool): return f"{GeneratorUtils.unqualified_type_name(s)}{'Input' if is_input else ''}" def check_if_processed(s:str, is_input: bool): u = graphql_type_name(s, is_input) if u in processed_types: if processed_types[u] != s: if (not s.startswith('ibapi')) or (not processed_types[u].startswith('ibapi')): raise RuntimeError(f"Duplicate unqualified type {processed_types[u]} != {s}") return True return False def add_type_for_processing(s: str, is_input: bool): if s in builtin_type_mappings or s in callback_types or s in union_types or check_if_processed(s, is_input) or (s,is_input) in unprocessed_types: return m = container_re.match(s) if m is not None: type_to_add = m.group(2) else: type_to_add = s logger.log(logging.DEBUG, f"Adding {type_to_add}") unprocessed_types.add((type_to_add, is_input)) def add_scalar(s: str, reason: str, warn: bool): if s in scalars: return logger.log(logging.WARN if warn else logging.DEBUG, f"Adding scalar {s} because {reason}") if (s == 'str'): raise if s in builtin_type_mappings: raise RuntimeError(f"Should not have added {s} as scalar") scalars.add(s) def add_enum(e: str): if e in enums: return logger.log(logging.DEBUG, f"Adding enum {e}") enums.add(e) def graphql_type(t: str, is_input: bool): m = container_re.match(t) if m is not None and len(m.groups()) == 2: return f"[{graphql_type(m.group(2), is_input)}]" elif t in builtin_type_mappings: return builtin_type_mappings[t] elif t in callback_types or t in union_types: return t elif t in ENUM_ALIASES: return graphql_type(ENUM_ALIASES[t], is_input) else: dict_m = dict_re.match(t) if dict_m is not None: type_name = f"{GeneratorUtils.unqualified_type_name(dict_m.group(2))}Map" add_scalar(type_name, "Dictionary", False) return type_name resolved_type = find_sym_from_full_name_or_module(t, ibapi) ret_type_str = GeneratorUtils.unqualified_type_name(t) if resolved_type is not None: if isinstance(resolved_type, ibapi.common.Enum): add_enum(t) return ret_type_str elif t in scalars or t in enums: return ret_type_str else: add_type_for_processing(t, is_input) return graphql_type_name(t, is_input) else: raise RuntimeError(f"Could not determine type for {t}") def object_member_type(obj:object, member_name: str, val: any, is_input: bool): if obj.__class__.__name__ in OVERRIDDEN_MEMBER_TYPE_HINTS : hints = OVERRIDDEN_MEMBER_TYPE_HINTS[obj.__class__.__name__] if member_name in hints: return graphql_type(hints[member_name], is_input) if val is not None: return graphql_type(full_class_name(type(val)), is_input) else: raise RuntimeError(f"Could not determine type {obj.__class__.__name__} for member {member_name}") def generate_global_type(type_name: str, is_input: bool): if check_if_processed(type_name, is_input) or type_name in enums: return "" logger.log(logging.DEBUG, f"Generating {type_name}") unqualified_name = graphql_type_name(type_name, is_input) cls = find_sym_from_full_name_or_module(type_name, ibapi) if cls is None: raise RuntimeError(f"Could not find symbol for {type_name}") cls_dict = cls.__dict__ processed_types[unqualified_name] = type_name if ('__annotations__' in cls_dict): members = [ (k,graphql_type(v)) for k,v in cls_dict['__annotations__'] ] else: obj = cls() members = [ (n, object_member_type(obj, n, t, is_input)) for n,t in inspect.getmembers(obj) if not n.startswith("__") ] for m,t in members: if t is None: add_scalar(cls.__name__, f"Could not find type for member '{m}'' for class '{cls.__name__}'", True) return "" code = f""" {'input' if is_input else 'type'} {unqualified_name} {{""" for p,t in members: code += f""" {p}: {t}""" code = code + """ }""" return code def generate_callback_type(d: ApiDefinition, m: Callable): type_name,is_wrapper = GeneratorUtils.callback_type(d, m) if not is_wrapper: return "" if type_name in processed_types: return "" callback_types.add(type_name) logger.log(logging.DEBUG, f"Generating {type_name}") params = GeneratorUtils.data_class_members(d, [m], d.is_subscription) for m in params: f = graphql_type(m.annotation, False) if f is None: add_scalar(type_name, f"Could not find type for {m.annotation}", True) return "" processed_types[type_name] = type_name code = f""" type {type_name} {{""" for p in params: code += f""" {p.name}: {graphql_type(p.annotation, False)}""" code += """ }""" return code def generate_enum(e: str): resolved_type = find_sym_from_full_name(e) short_name = GeneratorUtils.unqualified_type_name(resolved_type.__name__) code = f""" enum {short_name} {{""" for k,v in inspect.getmembers(resolved_type): if isinstance(v, int): code += f""" {k.replace("/", "")}""" code += """ }""" return code def generate_union_type(d: ApiDefinition): if not GeneratorUtils.query_return_item_type_is_union(d): return "" else: union_type = GeneratorUtils.query_return_item_type(d) union_types.add(union_type) if union_type in processed_types: raise RuntimeError(f"Union type {union_type} already processed") processed_types[union_type] = union_type return f""" union {union_type} = {"|".join([graphql_type(c, False) for c in callback_types])} """ def generate_query_or_subscription(d: ApiDefinition, is_subscription: bool): name = d.request_method.__name__ members = list(GeneratorUtils.request_signature(d, False).parameters.values()) del members[0] # remove 'self' annotations = [] for m in members: gql = graphql_type(m.annotation, True) annotations.append(gql) members = [ f"{m.name}: {a}" for (m,a) in zip(members,annotations) ] member_str = ",".join(members) member_sig = "" if len(member_str) == 0 else f"({member_str})" query_return_type = graphql_type(GeneratorUtils.query_return_item_type(d), False) if GeneratorUtils.response_is_list(d) and not is_subscription: query_return_type = f"[{query_return_type}]" return f""" {name}{member_sig}: {query_return_type}""" with open(filename, "w") as f: for d in REQUEST_DEFINITIONS: if d.request_method is None or d.callback_methods is None: continue for c in d.callback_methods: f.write(generate_callback_type(d, c)) f.write(generate_union_type(d)) while len(unprocessed_types) != 0: s,is_input = unprocessed_types.pop() ret = generate_global_type(s, is_input) if len(ret) > 0: f.write(ret) f.write(os.linesep) f.write(""" type Query {""") for d in REQUEST_DEFINITIONS: if d.request_method is not None and not d.is_subscription and d.callback_methods is not None: f.write(generate_query_or_subscription(d, False)) f.write(""" } type Subscription {""") for d in REQUEST_DEFINITIONS: if d.request_method is not None and (d.is_subscription or d.subscription_flag_name is not None) and d.callback_methods is not None: f.write(generate_query_or_subscription(d, True)) f.write(""" }""") f.write(os.linesep) while len(unprocessed_types) != 0: s,is_input = unprocessed_types.pop() ret = generate_global_type(s, is_input) if len(ret) > 0: f.write(ret) f.write(os.linesep) for e in enums: f.write(generate_enum(e)) f.write(os.linesep) for s in scalars: f.write(os.linesep) f.write(f"scalar {s}") f.write(os.linesep) f.write(""" schema { query: Query subscription: Subscription } """)
40.267658
157
0.551791
df9b1f34ec0ce6283391a2be27e63cb1f484f2e5
201
py
Python
ccal/get_gff3_attribute.py
alex-wenzel/ccal
74dfc604d93e6ce9e12f34a828b601618df51faa
[ "MIT" ]
null
null
null
ccal/get_gff3_attribute.py
alex-wenzel/ccal
74dfc604d93e6ce9e12f34a828b601618df51faa
[ "MIT" ]
null
null
null
ccal/get_gff3_attribute.py
alex-wenzel/ccal
74dfc604d93e6ce9e12f34a828b601618df51faa
[ "MIT" ]
null
null
null
def get_gff3_attribute(attributes, field): for field_value in attributes.split(sep=";"): field_, value = field_value.split(sep="=") if field == field_: return value
20.1
50
0.616915
fa1978e2140f7b136f62b1b79d45b0067d99b176
2,893
py
Python
examples/generation/docking_generation/guacamol_tdc/guacamol_baselines/smiles_lstm_hc/train_smiles_lstm_model.py
Shicheng-Guo/TDC
36e2863aca5abe3147e34f59d20fd77112945242
[ "MIT" ]
577
2020-11-17T01:09:15.000Z
2022-03-31T22:45:34.000Z
examples/generation/docking_generation/guacamol_tdc/guacamol_baselines/smiles_lstm_hc/train_smiles_lstm_model.py
Shicheng-Guo/TDC
36e2863aca5abe3147e34f59d20fd77112945242
[ "MIT" ]
70
2020-11-18T09:35:33.000Z
2022-03-25T11:28:38.000Z
examples/generation/docking_generation/guacamol_tdc/guacamol_baselines/smiles_lstm_hc/train_smiles_lstm_model.py
Shicheng-Guo/TDC
36e2863aca5abe3147e34f59d20fd77112945242
[ "MIT" ]
106
2020-11-17T01:47:02.000Z
2022-03-25T03:34:46.000Z
import argparse import os from guacamol.utils.helpers import setup_default_logger from .smiles_rnn_distribution_learner import SmilesRnnDistributionLearner if __name__ == '__main__': setup_default_logger() parser = argparse.ArgumentParser(description='Distribution learning benchmark for SMILES RNN', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--train_data', default='data/guacamol_v1_train.smiles', help='Full path to SMILES file containing training data') parser.add_argument('--valid_data', default='data/guacamol_v1_valid.smiles', help='Full path to SMILES file containing validation data') parser.add_argument('--batch_size', default=512, type=int, help='Size of a mini-batch for gradient descent') parser.add_argument('--valid_every', default=1000, type=int, help='Validate every so many batches') parser.add_argument('--print_every', default=10, type=int, help='Report every so many batches') parser.add_argument('--n_epochs', default=10, type=int, help='Number of training epochs') parser.add_argument('--max_len', default=100, type=int, help='Max length of a SMILES string') parser.add_argument('--hidden_size', default=512, type=int, help='Size of hidden layer') parser.add_argument('--n_layers', default=3, type=int, help='Number of layers for training') parser.add_argument('--rnn_dropout', default=0.2, type=float, help='Dropout value for RNN') parser.add_argument('--lr', default=1e-3, type=float, help='RNN learning rate') parser.add_argument('--seed', default=42, type=int, help='Random seed') parser.add_argument('--output_dir', default=None, help='Output directory') args = parser.parse_args() if args.output_dir is None: args.output_dir = os.path.dirname(os.path.realpath(__file__)) trainer = SmilesRnnDistributionLearner(output_dir=args.output_dir, n_epochs=args.n_epochs, hidden_size=args.hidden_size, n_layers=args.n_layers, max_len=args.max_len, batch_size=args.batch_size, rnn_dropout=args.rnn_dropout, lr=args.lr, valid_every=args.valid_every) training_set_file = args.train_data validation_set_file = args.valid_data with open(training_set_file) as f: train_list = f.readlines() with open(validation_set_file) as f: valid_list = f.readlines() trainer.train(training_set=train_list, validation_set=valid_list) print(f'All done, your trained model is in {args.output_dir}')
51.660714
112
0.642586
558408c7e0b7cd2ac41670f3e21f301b8c1198b7
7,918
py
Python
qmpy/materials/formation_energy.py
bbadass/qmpy
e2fd0015e4f2786e1cca185b616e679c3dcb2114
[ "MIT" ]
null
null
null
qmpy/materials/formation_energy.py
bbadass/qmpy
e2fd0015e4f2786e1cca185b616e679c3dcb2114
[ "MIT" ]
null
null
null
qmpy/materials/formation_energy.py
bbadass/qmpy
e2fd0015e4f2786e1cca185b616e679c3dcb2114
[ "MIT" ]
null
null
null
# qmpy/materials/formation_energy.py from django.db import models from django.db.models import Min import json import pprint import logging from qmpy.db.custom import DictField import qmpy.materials.composition as Comp import qmpy.analysis as vasp import qmpy.materials.element as elt from qmpy.data import * from qmpy.utils import * logger = logging.getLogger(__name__) class ExptFormationEnergy(models.Model): """Experimentally measured formation energy. Any external formation energy should be entered as an ExptFormationEnergy object, rather than a FormationEnergy. If the external source is also computational, set the "dft" attribute to be True. Relationships: | :mod:`~qmpy.Composition` via composition | :mod:`~qmpy.Fit` via fit Attributes: | id: integer primary key. | delta_e: measured formation energy. | delta_g: measured free energy of formation. | dft: (bool) True if the formation energy is from a non-OQMD DFT | calculation. | source: (str) Identifier for the source. """ composition = models.ForeignKey( "Composition", null=True, blank=True, on_delete=models.PROTECT ) delta_e = models.FloatField(null=True) delta_g = models.FloatField(null=True) source = models.CharField(max_length=127, blank=True, null=True) dft = models.BooleanField(default=False) class Meta: app_label = "qmpy" db_table = "expt_formation_energies" def __str__(self): return "%s : %s" % (self.composition, self.delta_e) @classmethod def read_file(cls, filename, dft=False): source = filename.split(".")[0] expts = [] for line in open(filename, "r"): comp, energy = line.strip().split() expt, new = ExptFormationEnergy.objects.get_or_create( delta_e=energy, composition=Comp.Composition.get(comp), source=source, dft=dft, ) if new: expt.save() expts.append(expt) return expts class HubbardCorrection(models.Model): """ Energy correction for DFT+U energies. Relationships: | :mod:`~qmpy.Fit` via fit | :mod:`~qmpy.Element` via element | :mod:`~qmpy.Hubbard` via hubbard Attributes: | id | value: Correction energy (eV/atom) """ element = models.ForeignKey("Element", on_delete=models.CASCADE) hubbard = models.ForeignKey("Hubbard", on_delete=models.CASCADE) value = models.FloatField() fit = models.ForeignKey( "Fit", blank=True, null=True, on_delete=models.CASCADE, related_name="hubbard_correction_set", ) class Meta: app_label = "qmpy" db_table = "hubbard_corrections" class ReferenceEnergy(models.Model): """ Elemental reference energy for evaluating heats of formation. Relationships: | :mod:`~qmpy.Fit` via fit | :mod:`~qmpy.Element` via element Attributes: | id | value: Reference energy (eV/atom) """ element = models.ForeignKey("Element", on_delete=models.CASCADE) value = models.FloatField() fit = models.ForeignKey( "Fit", blank=True, null=True, on_delete=models.CASCADE, related_name="reference_energy_set", ) class Meta: app_label = "qmpy" db_table = "reference_energies" class FormationEnergy(models.Model): """ Base class for a formation energy. Relationships: | :mod:`~qmpy.Calculation` via calculation | :mod:`~qmpy.Composition` via composition | :mod:`~qmpy.Entry` via entry | :mod:`~qmpy.FormationEnergy` via equilibrium | :mod:`~qmpy.Fit` via fit Attributes: | id | delta_e: Formation energy (eV/atom) | description: A label of the source of the formation energy. | stability: Distance from the convex hull (eV/atom) """ composition = models.ForeignKey( "Composition", null=True, blank=True, on_delete=models.PROTECT ) entry = models.ForeignKey("Entry", null=True, blank=True, on_delete=models.CASCADE) calculation = models.ForeignKey( "Calculation", null=True, blank=True, on_delete=models.SET_NULL ) description = models.CharField(max_length=20, null=True, blank=True) fit = models.ForeignKey("Fit", null=True, on_delete=models.PROTECT) stability = models.FloatField(blank=True, null=True) delta_e = models.FloatField(null=True) equilibrium = models.ManyToManyField("self", blank=True) class Meta: app_label = "qmpy" db_table = "formation_energies" @classmethod def get(cls, calculation, fit="standard"): fit = Fit.get(fit) try: return FormationEnergy.objects.get(calculation=calculation, fit=fit) except FormationEnergy.DoesNotExist: return FormationEnergy(calculation=calculation, fit=fit) @staticmethod def search(bounds, fit="standard"): space = set() if isinstance(bounds, str): bounds = bounds.split("-") for b in bounds: bound = parse_comp(b) space |= set(bound.keys()) in_elts = elt.Element.objects.filter(symbol__in=space) out_elts = elt.Element.objects.exclude(symbol__in=space) forms = FormationEnergy.objects.filter(fit=fit) forms = forms.exclude(composition__element_set__in=out_elts) forms = forms.filter(composition__element_set__in=in_elts) forms = forms.filter(composition__ntypes__lte=len(space)) return forms.distinct() def __str__(self): return "%s : %s" % (self.composition, self.delta_e) def save(self, *args, **kwargs): self.composition = self.calculation.composition self.entry = self.calculation.entry super(FormationEnergy, self).save(*args, **kwargs) Formation = FormationEnergy class Fit(models.Model): """ The core model for a reference energy fitting scheme. The Fit model links to the experimental data (ExptFormationEnergy objects) that informed the fit, as well as the DFT calculations (Calculation objects) that were matched to each experimental formation energy. Once the fit is completed, it also stores a list of chemical potentials both as a relationship to ReferenceEnergy and HubbardCorrection objects. These correction energies can also be accessed by dictionaries at Fit.mus and Fit.hubbard_mus. Relationships: | :mod:`~qmpy.Calculation` via dft | :mod:`~qmpy.ExptFormationEnergy` via experiments | :mod:`~qmpy.FormationEnergy` via formationenergy_set | :mod:`~qmpy.HubbardCorrection` via hubbard_correction_set | :mod:`~qmpy.ReferenceEnergy` via reference_energy_set Attributes: | name: Name for the fitting Examples:: >>> f = Fit.get('standard') >>> f.experiments.count() >>> f.dft.count() >>> f.mus >>> f.hubbard_mus """ name = models.CharField(max_length=255, primary_key=True) elements = models.ManyToManyField("Element") experiments = models.ManyToManyField("ExptFormationEnergy") dft = models.ManyToManyField("Calculation") class Meta: app_label = "qmpy" db_table = "fits" @classmethod def get(cls, name): try: return Fit.objects.get(name=name) except Fit.DoesNotExist: return Fit(name=name) @property def mus(self): mus = self.reference_energy_set.values_list("element_id", "value") return dict(mus) @property def hubbard_mus(self): hm = self.hubbard_correction_set.all() return dict((h.hubbard.key, h.value) for h in hm)
29.879245
87
0.642208
d49b1a556c7aacfdb01bf24f1b4510ddfdf79530
2,604
py
Python
setup.py
abecode/sasa-tool
3007fc2e81a715457be9b55fd368e5d0e38c6aa5
[ "Apache-2.0" ]
1
2018-02-19T18:36:52.000Z
2018-02-19T18:36:52.000Z
setup.py
abecode/sasa-tool
3007fc2e81a715457be9b55fd368e5d0e38c6aa5
[ "Apache-2.0" ]
null
null
null
setup.py
abecode/sasa-tool
3007fc2e81a715457be9b55fd368e5d0e38c6aa5
[ "Apache-2.0" ]
null
null
null
from setuptools import setup setup(name='sasa', version='0.2.0', description='SAIL/AIL Sentiment Analyzer', author='Abe Kazemzadeh', author_email='kazemzad@usc.edu', url='https://code.google.com/p/sasa-tool/', packages=['sasa'], package_dir={'sasa':'sasa'}, package_data={'sasa': ['models/model.unigram.nb.bool.politics.unbiased', 'models/model.unigram.nb.bool.politics.positivebias', 'models/model.unigram.nb.bool.politics']}, install_requires=['nltk>=3.4'], #package_data={'sasa': ['models/*']}, license='apache 2.0', classifiers = [ "Development Status :: 2 - Pre-Alpha", "Environment :: Console", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Topic :: Communications", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Human Machine Interfaces", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Sociology", "Topic :: Text Processing :: Linguistic"], long_description=""" =============================================== SASA Sentiment Analysis Tool =============================================== This is a tool for doing sentiment analysis. The short-term goal of this project is to share the sentiment analysis research. The long-term goal of this project is to allow researchers the ability to demonstrate and test sentiment analysis tools, so that performance can be evaluated and compared. Currently, the models are trained on Twitter data from the 2012 US Presidential election. In the future we hope to have general models as well as models for other domains. This code was first released by the collaboration of two labs at the University of Southern California (USC), the Signal Analysis and Interpretation Laboratory (SAIL) and Annenberg Innovation Laboratory (AIL). The sentiment research at SAIL is supported by grants including NSF, NIH, and DARPA. The sentiment research at AIL is sponsored by the lab sponsors, especially IBM, an AIL founding sponsor, and Orange, the flagship brand of France Telecom. This work was made possible by using existing open source projects and code. NLTK (nltk.org) provides some of the basic classes of the SASA tool, e.g. frequency distributions and classifiers. Christopher Potts' twitter-specific tokenizer for sentiment analysis is used for tokenization. """, )
45.684211
82
0.673579
1fbc8cd146c82b07a2a6828a9698c2779bfbb67b
1,280
py
Python
dash-network-graph.py
oriolmirosa/dash-recipes
c01372292d60c3fd8c1f3a47bca6330c2b268ba4
[ "MIT" ]
932
2017-07-08T06:37:23.000Z
2022-03-31T11:10:07.000Z
dash-network-graph.py
oriolmirosa/dash-recipes
c01372292d60c3fd8c1f3a47bca6330c2b268ba4
[ "MIT" ]
29
2018-02-06T20:09:58.000Z
2021-08-24T06:01:11.000Z
dash-network-graph.py
oriolmirosa/dash-recipes
c01372292d60c3fd8c1f3a47bca6330c2b268ba4
[ "MIT" ]
301
2017-09-25T16:16:41.000Z
2022-03-24T23:48:59.000Z
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, Event, State import visdcc app = dash.Dash() app.layout = html.Div([ visdcc.Network(id='net', data={'nodes':[{'id': 1, 'label': 'Node 1', 'color':'#00ffff'}, {'id': 2, 'label': 'Node 2'}, {'id': 4, 'label': 'Node 4'}, {'id': 5, 'label': 'Node 5'}, {'id': 6, 'label': 'Node 6'}], 'edges':[{'id':'1-3', 'from': 1, 'to': 3}, {'id':'1-2', 'from': 1, 'to': 2}] }, options=dict(height='600px', width='100%')), dcc.RadioItems(id='color', options=[{'label': 'Red' , 'value': '#ff0000'}, {'label': 'Green', 'value': '#00ff00'}, {'label': 'Blue' , 'value': '#0000ff'}], value='Red') ]) @app.callback( Output('net', 'options'), [Input('color', 'value')]) def myfun(x): return {'nodes':{'color': x}} if __name__ == '__main__': app.run_server(debug=True)
35.555556
84
0.409375
72293c5db2ae28c08ff0e7d5006e6742e0b1a2d6
9,682
py
Python
max_ent/examples/orchestrator_exp.py
aloreggia/sofai
92694f9372985c0c3a23d695f1de4c4a1fb70728
[ "MIT" ]
null
null
null
max_ent/examples/orchestrator_exp.py
aloreggia/sofai
92694f9372985c0c3a23d695f1de4c4a1fb70728
[ "MIT" ]
1
2021-05-25T14:57:15.000Z
2021-05-25T14:57:15.000Z
max_ent/examples/orchestrator_exp.py
Rahgooy/soft_constraint_irl
259d4e7aff5ec8efe78cfbe8b84e9285d4645618
[ "MIT" ]
null
null
null
from max_ent.algorithms.gridworld_icrl import generate_optimal_trajectories import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvas import random import pickle from scipy import stats import max_ent.examples.grid_9_by_9 as G from max_ent.utility.support import generate_constraints from max_ent.gridworld import Directions colors = ['purple', 'red', 'orange', 'green', 'blue', 'yellow'] N_TRAJ = 100 def dist(demo): dist = np.ones((81, 8)) * 1e-6 for t in demo: for s, a, _ in t.transitions(): dist[s, a] += 1 return dist/dist.sum().reshape(-1, 1) def jsd(x, y): def kl(p, q): kl = p * np.log2(p/q) return kl.sum() p = dist(x) q = dist(y) m = (p + q) / 2 return (kl(p, m) + kl(q, m))/2 def create_world(blue, green, cs=[], ca=[], cc=[], start=0, goal=8): n_cfg = G.config_world(blue, green, cs, ca, cc, goal, start=start) n = n_cfg.mdp # Generate demonstrations and plot the world demo = G.generate_trajectories( n.world, n.reward, n.start, n.terminal, n_trajectories=1) if not demo: return None, None return n, n_cfg def learn_random_worlds(n_tests): results = [] while len(results) < n_tests: blue, green, cs, ca, start, goal = generate_constraints(9) n, _ = create_world(blue, green, start=start, goal=goal) cc = [1, 2] c, _ = create_world(blue, green, cs, ca, cc, start=start, goal=goal) # CHECK WHETHER STATE AND GOAL ARE REACHABLE - IF NOT SKIP THE GRID AND GENERATE A NEW ONE if c == None: continue print(f'Learning world #{len(results) + 1}') demo_n = G.generate_trajectories( n.world, n.reward, n.start, n.terminal, n_trajectories=N_TRAJ) demo_c = G.generate_trajectories( c.world, c.reward, c.start, c.terminal, n_trajectories=N_TRAJ) learned_params = G.learn_constraints( n.reward, c.world, c.terminal, demo_c.trajectories) demo_l = G.generate_trajectories( c.world, learned_params.reward, c.start, c.terminal, n_trajectories=N_TRAJ) results.append({ 'start': start, 'goal': goal, 'learned_params': learned_params, 'demo_n': demo_n.trajectories, 'demo_c': demo_c.trajectories, 'demo_l': demo_l.trajectories, 'constraints': {'blue': blue, 'green': green, 'cs': cs, 'ca_idx': [a.idx for a in ca], 'ca': ca} }) return results def get_worlds(d): const = d['constraints'] n, _ = create_world(const['blue'], const['green'], start=d['start'], goal=d['goal']) l = G.MDP(n.world, d['learned_params'].reward, n.terminal, n.start) return n, l def get_traj_stats(traj, reward, constraints): avg_length = 0 avg_pen = 0 cs, cc, ca = 0, 0, 0 n = len(traj) for t in traj: for s, a, s_ in t.transitions(): avg_length += 1 avg_pen += reward[s, a, s_] if s in constraints['cs']: cs += 1 if a in constraints['ca_idx']: ca += 1 if s in (constraints['blue'] + constraints['green']): cc += 1 avg_length /= n avg_pen /= n cs /= n ca /= n cc /= n violations = cs + ca + cc return avg_length, avg_pen, violations def get_stats(demo, traj, reward, constraints, len_baseline, pen_baseline,): avg_length, avg_pen, avg_vio = get_traj_stats(traj, reward, constraints) return avg_length / len_baseline, avg_pen / pen_baseline, avg_vio, jsd(demo, traj) def get_length_baselines(demo_n, demo_l): n_lens = [len(t.transitions()) for t in demo_n] c_lens = [len(t.transitions()) for t in demo_l] min_length = min(n_lens) avg_nominal_length = sum(n_lens) / len(n_lens) avg_constrained_length = sum(c_lens) / len(c_lens) return min_length, avg_nominal_length, avg_constrained_length def get_penalty_baselines(demo_n, demo_l, demo_g, reward): def r(t): return sum([reward[x] for x in t.transitions()]) p_n = sum([r(t) for t in demo_n]) / len(demo_n) p_l = sum([r(t) for t in demo_l]) / len(demo_l) p_g = sum([r(t) for t in demo_g]) / len(demo_g) return p_n, p_l, p_g def get_violation_baselines(demo_n, demo_l, demo_g, constraints): color_const = constraints['blue'].tolist() + constraints['green'].tolist() def v(t): cs, cc, ca = 0, 0, 0 for s, a, _ in t.transitions(): if s in constraints['cs']: cs += 1 if a in constraints['ca_idx']: ca += 1 if s in color_const: cc += 1 return cs + ca + cc v_n = sum([v(t) for t in demo_n]) / len(demo_n) v_l = sum([v(t) for t in demo_l]) / len(demo_l) v_g = sum([v(t) for t in demo_g]) / len(demo_g) return v_n, v_l, v_g def get_orchestrator_results(learned): wa = np.zeros((len(learned), 11, 4)) mdft = np.zeros((len(learned), 11, 4)) avg_min_len, avg_n_len, avg_c_len = 0, 0, 0 avg_n_pen, avg_c_pen, avg_g_pen = 0, 0, 0 avg_n_v, avg_c_v, avg_g_v = 0, 0, 0 n_tests = len(learned) for i, d in enumerate(learned): print(f'Processing world #{i+1} ...') n, l = get_worlds(d) demo = d['demo_c'] aml, anl, acl = get_length_baselines(d['demo_n'], d['demo_l']) avg_min_len += aml avg_n_len += anl / aml avg_c_len += acl / aml demo_g = G.generate_greedy_trajectories(n.world, n.reward, d['learned_params'].reward, n.start, n.terminal, n_trajectories=N_TRAJ).trajectories p_n, p_l, p_g = get_penalty_baselines( d['demo_n'], d['demo_l'], demo_g, l.reward) avg_n_pen += p_n / p_l avg_c_pen += p_l avg_g_pen += p_g / p_l v_n, v_l, v_g = get_violation_baselines( d['demo_n'], d['demo_l'], demo_g, d['constraints']) avg_n_v += v_n avg_c_v += v_l avg_g_v += v_g for j in range(11): w = [(j)/10, 1 - (j)/10] wa_traj = G.generate_weighted_average_trajectories(n.world, n.reward, d['learned_params'].reward, n.start, n.terminal, w, n_trajectories=N_TRAJ).trajectories wa[i, j] = get_stats(demo, wa_traj, l.reward, d['constraints'], aml, p_l) mdft_traj = G.generate_mdft_trajectories(n.world, n.reward, d['learned_params'].reward, n.start, n.terminal, w, n_trajectories=N_TRAJ).trajectories mdft[i, j] = get_stats(demo, mdft_traj, l.reward, d['constraints'], aml, p_l) avg_min_len /= n_tests avg_n_len /= n_tests avg_c_len /= n_tests avg_n_pen /= n_tests avg_c_pen /= n_tests avg_g_pen /= n_tests avg_n_v /= n_tests avg_c_v /= n_tests avg_g_v /= n_tests return wa, mdft, avg_min_len, avg_n_len, avg_c_len, avg_n_pen, \ avg_c_pen, avg_g_pen, avg_n_v, avg_c_v, avg_g_v def draw_metric(wa, mdft, lines, y_label, labels, filename): y = np.stack([wa.mean(0), mdft.mean(0)]) sem = np.stack([stats.sem(wa, 0), stats.sem(mdft, 0)]) x = list(range(1, 12)) plt.figure(figsize=(12, 7)) lwidth = 0.6 for i in range(y.shape[0]): plt.plot(x, y[i, :], 'k', color=colors[i], marker='o', fillstyle='none', linewidth=lwidth, markersize=5, markeredgewidth=lwidth, label=labels[i]) plt.fill_between(x, (y[i, :] - sem[i, :]), y[i, :] + sem[i, :], alpha=0.2, facecolor=colors[i], linewidth=lwidth, antialiased=True) i = y.shape[0] for l in lines: plt.axhline(y=l, color=colors[i], ls='--', label=labels[i], lw=1) i += 1 xlabels = [f'({w/10:0.1f}, {1 - w/10:0.1f})' for w in range(11)] plt.xticks(x, labels=xlabels) plt.legend(fontsize=14) plt.xlabel('$(\mathbf{w}_n, \mathbf{w}_c)$', fontsize=14) plt.ylabel(y_label, fontsize=14) plt.grid(axis='both', which='major', ls='--', lw=0.5) plt.savefig(f'./reports/orchestrator/orchestrator_{filename}.pdf') plt.close() def main(): n_tests = 100 learn = False random.seed(123) np.random.seed(123) if learn: learned = learn_random_worlds(n_tests) with open(f'results/orchestrator/learned_mdps_{n_tests}.pkl', 'wb') as f: pickle.dump(learned, f) else: with open(f'results/orchestrator/learned_mdps_{n_tests}.pkl', 'rb') as f: learned = pickle.load(f) wa, mdft, aml, anl, acl, anp, acp, agp, anv, acv, agv = get_orchestrator_results( learned) draw_metric(wa[:, :, 0], mdft[:, :, 0], [1, anl, acl], 'Avg Norm. Length', ['WA', 'MDFT', 'Shortest Path', 'Nominal', 'Constrained'], 'length') draw_metric(wa[:, :, 1], mdft[:, :, 1], [anp, 1, agp], 'Avg Norm. Penalty', ['WA', 'MDFT', 'Nominal', 'Constrained', 'Greedy'], 'penalty') draw_metric(wa[:, :, 2], mdft[:, :, 2], [anv, acv, agv], 'Avg Num Violated Constraints', ['WA', 'MDFT', 'Nominal', 'Constrained', 'Greedy'], 'violations') draw_metric(wa[:, :, 3], mdft[:, :, 3], [], 'Avg JS-Divergence', ['WA', 'MDFT'], 'jsd') print('.') if __name__ == "__main__": main()
33.50173
117
0.567032
5a9bbba2064b46020b52e63c970b4533375bb5d3
2,950
py
Python
tests/database_test.py
kpence/easy_db
fbe4c22a79336ec08980221405aca5c65bf02caf
[ "MIT" ]
null
null
null
tests/database_test.py
kpence/easy_db
fbe4c22a79336ec08980221405aca5c65bf02caf
[ "MIT" ]
null
null
null
tests/database_test.py
kpence/easy_db
fbe4c22a79336ec08980221405aca5c65bf02caf
[ "MIT" ]
null
null
null
import unittest import sys sys.path.insert(1, '..') import easy_db class TestSQLite(unittest.TestCase): def setUp(self): self.database = easy_db.DataBase('test_sqlite3_db.db') def test_dbtype(self): print(self.database.db_type) self.assertTrue(self.database.db_type == 'SQLITE3') def test_tablename_pull(self): tables = self.database.pull_all_table_names() print(tables) self.assertTrue(len(tables) == 3) self.assertTrue(tables == sorted(tables)) def test_full_table_pull(self): test_table_data = self.database.pull_table('TEST_TABLE') print(test_table_data[0]) self.assertTrue(type(test_table_data) == list) self.assertTrue(type(test_table_data[0]) == dict) self.assertTrue(len(test_table_data) == 31) def test_full_table_pull_specific_columns(self): test_table_data = self.database.pull_table('TEST_TABLE', columns=('row_id', 'value_1')) print(test_table_data[0]) self.assertTrue(type(test_table_data) == list) self.assertTrue(type(test_table_data[0]) == dict) self.assertTrue(len(test_table_data) == 31) self.assertTrue(len(test_table_data[0].keys()) == 2) def test_pull_where_id_in_list(self): test_pulled_data = self.database.pull_table_where_id_in_list('THIRD_TABLE', 'parameter', [0.66, 0.67], use_multip=False) self.assertTrue(len(test_pulled_data) == 116) self.assertTrue(all(d['parameter'] in [0.66, 0.67] for d in test_pulled_data)) def test_table_creation_and_deletion(self): self.database.create_table('TEST_TABLE_CREATION', {'col_1': str, 'col_2': float}) self.database.append_to_table('TEST_TABLE_CREATION', [{'col_1': 'row_A', 'col_2': 1.5}, {'col_1': 'row_B', 'col_2': 3.7}]) self.database.drop_table('TEST_TABLE_CREATION') self.assertTrue(True) def test_progress_callback(self): callback = lambda *args: print('Making progress...') data = self.database.pull_table('THIRD_TABLE', progress_handler=callback) class TestUtil(unittest.TestCase): def setUp(self): self.database = easy_db.DataBase('test_sqlite3_db.db') def test_name_clean(self): self.assertTrue(easy_db.util.name_clean('table')) self.assertFalse(easy_db.util.name_clean('Malic10s;--')) self.assertFalse(easy_db.util.name_clean('DROP TABLE;')) self.assertTrue(easy_db.util.name_clean('TABLE_1')) self.assertFalse(easy_db.util.name_clean('{email=dude@test.com}')) self.assertFalse(easy_db.util.name_clean('drop')) def test_malicious_query(self): data = self.database.pull_table('DROP TABLE TEST_TABLE') self.assertTrue(data is None) data = self.database.pull_table('TEST_TABLE', columns=('row_id;1=1;--', 'value_1')) self.assertTrue(data is None) if __name__ == '__main__': unittest.main(buffer=True)
37.820513
130
0.681017
d068f93cd9d42a38f12b53e71fb0be275ba8dcb5
16,319
py
Python
src/genie/libs/parser/iosxe/tests/ShowSdwanTunnelStatistics/cli/equal/pktdup_stats_golden_output_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxe/tests/ShowSdwanTunnelStatistics/cli/equal/pktdup_stats_golden_output_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxe/tests/ShowSdwanTunnelStatistics/cli/equal/pktdup_stats_golden_output_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
null
null
null
expected_output = { "tunnel": { "150.0.5.1": { "remote": { "150.0.0.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.1.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.2.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.3.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.4.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.6.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.7.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.8.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.10.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.40.4": { "src_port": 12346, "dst_port": 12366, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.0.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.1.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.2.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.3.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.4.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.6.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.7.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.40.4": { "src_port": 12346, "dst_port": 12366, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } } } }, "151.0.5.1": { "remote": { "150.0.0.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.1.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.2.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.3.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.4.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.6.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.7.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.8.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.10.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "150.0.40.4": { "src_port": 12346, "dst_port": 12366, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.0.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.1.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.2.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.3.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.4.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.6.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.7.1": { "src_port": 12346, "dst_port": 12346, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } }, "151.0.40.4": { "src_port": 12346, "dst_port": 12366, "pktdup": { "pktdup_rx": 0, "pktdup_rx_other": 0, "pktdup_rx_this": 0, "pktdup_tx": 0, "pktdup_tx_other": 0, "pktdup_capable": "true" } } } } } }
36.67191
48
0.274465
f0e528701f18e938d7bf9eea0c313be63eb90cc6
812
py
Python
djangoueditor/urls.py
it-ailen/django-ueditor
b3e242457169d71c1531259746b8b9f597e03e3a
[ "MIT" ]
null
null
null
djangoueditor/urls.py
it-ailen/django-ueditor
b3e242457169d71c1531259746b8b9f597e03e3a
[ "MIT" ]
null
null
null
djangoueditor/urls.py
it-ailen/django-ueditor
b3e242457169d71c1531259746b8b9f597e03e3a
[ "MIT" ]
null
null
null
"""djangoueditor URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin from .views import * urlpatterns = [ url(r'^upload/(?P<path>.*)$', ueditor_upload, name="ueditor_upload"), ]
33.833333
77
0.705665
6fa89d223418afe321392afbc356757ee97cefad
2,339
py
Python
dhnx/dhn_from_osm.py
rbv83/DHNx
e236d720c7ec3c0f400648b96141454557d35476
[ "MIT" ]
14
2020-06-25T14:03:21.000Z
2021-11-25T12:53:08.000Z
dhnx/dhn_from_osm.py
rbv83/DHNx
e236d720c7ec3c0f400648b96141454557d35476
[ "MIT" ]
51
2020-02-19T14:42:38.000Z
2022-03-23T08:30:31.000Z
dhnx/dhn_from_osm.py
oemof-heat/district_heating_simulation
edb5c9be17f74d7f200c1eb6a17000a26633bdc3
[ "MIT" ]
3
2020-10-23T15:54:11.000Z
2022-02-28T12:53:09.000Z
# -*- coding: utf-8 """ This module is designed to hold functions for importing networks and building footprints from openstreetmap. This file is part of project dhnx (). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location: SPDX-License-Identifier: MIT """ try: import geopandas as gpd except ImportError: print("Need to install geopandas to process osm data.") import pandas as pd try: from shapely.geometry import LineString from shapely.ops import nearest_points except ImportError: print("Need to install shapely to download from osm.") def connect_points_to_network(points, nodes, edges): r""" Parameter --------- points : geopandas.GeoDataFrame Points to connect to the network nodes : geopandas.GeoDataFrame Nodes of the network edges : geopandas.GeoDataFrame Edges of the network Returns ------- points : geopandas.GeoDataFrame Points connected to the network nodes : geopandas.GeoDataFrame Original nodes of the network and nearest connecting points on the network's edges. edges : geopandas.GeoDataFrame Edges of the network. """ edges_united = edges.unary_union len_nodes = len(nodes) len_points = len(points) # assign ids to new points n_points = [] n_nearest_points = [] n_edges = [] for i, point in enumerate(points.geometry): id_nearest_point = len_nodes + i id_point = len_nodes + len_points + i nearest_point = nearest_points(edges_united, point)[0] n_points.append([id_point, point]) n_nearest_points.append([id_nearest_point, nearest_point]) n_edges.append([id_point, id_nearest_point, LineString([point, nearest_point])]) n_points = gpd.GeoDataFrame( n_points, columns=['index', 'geometry']).set_index('index') n_nearest_points = gpd.GeoDataFrame( n_nearest_points, columns=['index', 'geometry']).set_index('index') n_edges = gpd.GeoDataFrame(n_edges, columns=['u', 'v', 'geometry']) joined_nodes = pd.concat([nodes, n_nearest_points], sort=True) joined_edges = pd.concat([edges, n_edges], sort=True) return n_points, joined_nodes, joined_edges
24.882979
88
0.68106
b8c863d14b010f5b9e22db407663bbb5ef59ed96
5,845
py
Python
WRAPPERS/corrmat_from_regionalmeasures.py
harshitjindal/BrainNetworksInPython
7b35d0693b5ea05f51a9b7b3e711f82e12c70a24
[ "MIT" ]
null
null
null
WRAPPERS/corrmat_from_regionalmeasures.py
harshitjindal/BrainNetworksInPython
7b35d0693b5ea05f51a9b7b3e711f82e12c70a24
[ "MIT" ]
null
null
null
WRAPPERS/corrmat_from_regionalmeasures.py
harshitjindal/BrainNetworksInPython
7b35d0693b5ea05f51a9b7b3e711f82e12c70a24
[ "MIT" ]
null
null
null
#!/usr/bin/env python #============================================================================= # Created by Kirstie Whitaker # at Hot Numbers coffee shop on Trumpington Road in Cambridge, September 2016 # Contact: kw401@cam.ac.uk #============================================================================= #============================================================================= # IMPORTS #============================================================================= from __future__ import print_function # Making code python 2 and 3 compatible import os import sys import argparse import textwrap import numpy as np import pandas as pd sys.path.append(os.path.join(os.path.dirname(__file__), '../SCRIPTS/')) import make_corr_matrices as mcm from useful_functions import read_in_data #============================================================================= # FUNCTIONS #============================================================================= def setup_argparser(): ''' Code to read in arguments from the command line Also allows you to change some settings ''' # Build a basic parser. help_text = (('Generate a structural correlation matrix from an input csv file,\n')+ ('a list of region names and (optional) covariates.')) sign_off = 'Author: Kirstie Whitaker <kw401@cam.ac.uk>' parser = argparse.ArgumentParser(description=help_text, epilog=sign_off, formatter_class=argparse.RawTextHelpFormatter) # Now add the arguments parser.add_argument(dest='regional_measures_file', type=str, metavar='regional_measures_file', help=textwrap.dedent(('CSV file that contains regional values for each participant.\n')+ ('Column labels should be the region names or covariate variable\n')+ ('names. All participants in the file will be included in the\n')+ ('correlation matrix.'))) parser.add_argument(dest='names_file', type=str, metavar='names_file', help=textwrap.dedent(('Text file that contains the names of each region to be included\n')+ ('in the correlation matrix. One region name on each line.'))) parser.add_argument(dest='output_name', type=str, metavar='output_name', help=textwrap.dedent(('File name of the output correlation matrix.\n')+ ('If the output directory does not yet exist it will be created.'))) parser.add_argument('--covars_file', type=str, metavar='covars_file', help=textwrap.dedent(('Text file that contains the names of variables that should be\n')+ ('covaried for each regional measure before the creation of the\n')+ ('correlation matrix. One variable name on each line.\n')+ (' Default: None')), default=None) parser.add_argument('--names_308_style', action='store_true', help=textwrap.dedent(('Include this flag if your names are in the NSPN 308\n')+ ('parcellation style (which means you have 41 subcortical regions)\n')+ ('that are still in the names files and that\n')+ ('the names are in <hemi>_<DK-region>_<part> format.\n')+ (' Default: False')), default=False) arguments = parser.parse_args() return arguments, parser def corrmat_from_regionalmeasures(regional_measures_file, names_file, output_name, covars_file=None, names_308_style=False): ''' This is the big function! It reads in the CSV file that contains the regional measures for each participant, the names file and the list of covariates. Then it creates the correlation matrix and writes it out to the output_dir as a txt file. ''' # Read in the data df, names, covars_list = read_in_data(regional_measures_file, names_file, covars_file=covars_file, names_308_style=names_308_style) # Make your correlation matrix correcting for all the covariates M = mcm.create_corrmat(df, names, covars_list) # Save the corrmat mcm.save_mat(M, output_name) if __name__ == "__main__": # Read in the command line arguments arg, parser = setup_argparser() # Now run the main function :) corrmat_from_regionalmeasures(arg.regional_measures_file, arg.names_file, arg.output_name, covars_file=arg.covars_file, names_308_style=arg.names_308_style) #============================================================================= # Wooo! All done :) #=============================================================================
45.310078
120
0.466039
fbdb16dacb533396fe23c9789778779913cae88e
2,634
py
Python
deepspeed/autotuning/tuner/base_tuner.py
ganik/DeepSpeed
788e1c40e83beacfc4901e7daa1e097d2efb82bb
[ "MIT" ]
1
2022-03-15T07:00:38.000Z
2022-03-15T07:00:38.000Z
deepspeed/autotuning/tuner/base_tuner.py
ganik/DeepSpeed
788e1c40e83beacfc4901e7daa1e097d2efb82bb
[ "MIT" ]
null
null
null
deepspeed/autotuning/tuner/base_tuner.py
ganik/DeepSpeed
788e1c40e83beacfc4901e7daa1e097d2efb82bb
[ "MIT" ]
null
null
null
import atexit import sys from deepspeed.autotuning.constants import * from deepspeed.autotuning.utils import write_experiments from deepspeed.utils import logger import json class BaseTuner: def __init__(self, exps, resource_manager, metric): self.all_exps = exps self.rm = resource_manager self.best_iter = 0 self.best_exp = None self.best_metric_val = None self.metric = metric if metric else AUTOTUNING_METRIC_DEFAULT logger.info(f"total number of exps = {len(self.all_exps)}") def has_next(self): """Whether there exists more configurations for evaluation""" if len(self.all_exps) > 0: return True else: return False def next_batch(self, sample_size): """Select the next batch of configurations for evaluation""" raise NotImplementedError def update(self): """"Update the tuner with what configurations have been evaluated and their performance results""" def tune(self, sample_size=1, n_trials=1000, early_stopping=None): i = 0 try: while i < n_trials and self.has_next(): # Select the next batch of configuratiosn for evaluation sampled_exps = self.next_batch(sample_size) # Generate experiments for measurement of performance exp_paths = write_experiments(sampled_exps, self.rm.exps_dir) self.rm.schedule_experiments(exp_paths) self.rm.run() exp, metric_val = self.rm.parse_results(self.metric) if self.best_exp == None or self.best_metric_val == None or ( metric_val and metric_val > self.best_metric_val): # logger.info(f"tuner finds better = {exp}") self.best_exp = exp self.best_metric_val = metric_val self.best_iter = i i += len(sampled_exps) # Update the tuner with evaluated performance results self.update() self.rm.clear() # Early stop if no more promising configurations are likely to be found if early_stopping and i >= self.best_iter + early_stopping: logger.info( f"Tuner early stopped at iteration {i}. Best iteration is {self.best_iter}. Early stopping threshold is {early_stopping}" ) break return i except: logger.info("Tunner Error:", sys.exc_info()[0]) return i
37.628571
145
0.596431
cf99c86fbf5d03234123496bd5b440ab7733b0db
1,308
py
Python
backend/benefit/users/utils.py
City-of-Helsinki/kesaseteli
964f801c2dba72c4105b6e436b12b821b199d6d2
[ "MIT" ]
2
2021-05-10T09:28:35.000Z
2021-05-17T12:15:34.000Z
backend/benefit/users/utils.py
City-of-Helsinki/yjdh
1c07576b456d2be9c3171363450ed46de2c1bbcb
[ "MIT" ]
931
2021-05-21T15:24:35.000Z
2022-03-31T20:07:40.000Z
backend/benefit/users/utils.py
City-of-Helsinki/yjdh
1c07576b456d2be9c3171363450ed46de2c1bbcb
[ "MIT" ]
6
2021-07-06T11:07:02.000Z
2022-02-07T12:42:21.000Z
from companies.models import Company from companies.services import get_or_create_organisation_with_business_id from django.conf import settings from shared.oidc.utils import get_organization_roles def get_request_user_from_context(serializer): request = serializer.context.get("request") if request: return request.user return None def get_business_id_from_request(request): if request.user.is_authenticated: organization_roles = get_organization_roles(request) return organization_roles.get("identifier") return None def get_company_from_request(request): if settings.DISABLE_AUTHENTICATION: return Company.objects.all().order_by("name").first() if business_id := get_business_id_from_request(request): try: return Company.objects.get( business_id=business_id ) # unique constraint ensures at most one is returned except Company.DoesNotExist: # In case we cannot find the Company in DB, try to query it from 3rd party source # This should cover the case when first applicant of company log in because his company # hasn't been created yet return get_or_create_organisation_with_business_id(business_id) else: return None
34.421053
99
0.722477
e13909f5bc704641a107b85dccbe5489209d8f27
165
py
Python
MN_lab_1/MN_lab1_zad_5.py
matbocz/kurs-mn-python-pwsz-elblag
629d778be7c5d3b6cc217b7ba48e2e0d55ccdf36
[ "MIT" ]
null
null
null
MN_lab_1/MN_lab1_zad_5.py
matbocz/kurs-mn-python-pwsz-elblag
629d778be7c5d3b6cc217b7ba48e2e0d55ccdf36
[ "MIT" ]
null
null
null
MN_lab_1/MN_lab1_zad_5.py
matbocz/kurs-mn-python-pwsz-elblag
629d778be7c5d3b6cc217b7ba48e2e0d55ccdf36
[ "MIT" ]
null
null
null
#ZADANIE 5 #Napisz program obliczajacy n! (silnia) dla z gory ustalonego n. N=5 wynik=1 for i in range(1,N+1): wynik=wynik*i print("Wynik to: %d" % wynik)
16.5
64
0.660606
23cca8ba297885bc44bb93ec869084464cd008b5
6,016
py
Python
nomadgram2/users/views.py
vanadis0929/nomadgram2
4a6aa88848bec25ee41a5afa9be4d7f6af515dc4
[ "MIT" ]
1
2020-07-27T19:56:24.000Z
2020-07-27T19:56:24.000Z
nomadgram2/users/views.py
vanadis0929/nomadgram2
4a6aa88848bec25ee41a5afa9be4d7f6af515dc4
[ "MIT" ]
28
2019-07-03T20:44:58.000Z
2022-03-15T19:35:20.000Z
nomadgram2/users/views.py
vanadis0929/nomadgram2
4a6aa88848bec25ee41a5afa9be4d7f6af515dc4
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from . import models, serializers from nomadgram2.notifications import views as notification_views from allauth.socialaccount.providers.facebook.views import FacebookOAuth2Adapter from rest_auth.registration.views import SocialLoginView class ExploreUsers(APIView): def get(self, request, format=None): last_five = models.User.objects.all().order_by('-date_joined')[:5] serializer = serializers.ListUserSerializer( last_five, many=True, context={"request": request}) return Response(data=serializer.data, status=status.HTTP_200_OK) class FollowUser(APIView): def post(self, request, user_id, format=None): user = request.user try: user_to_follow = models.User.objects.get(id=user_id) except models.User.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) user.following.add(user_to_follow) user.save() notification_views.create_notification(user, user_to_follow, 'follow') return Response(status=status.HTTP_200_OK) class UnFollowUser(APIView): def post(self, request, user_id, format=None): user = request.user try: user_to_follow = models.User.objects.get(id=user_id) except models.User.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) user.following.remove(user_to_follow) user.save() return Response(status=status.HTTP_200_OK) class UserProfile(APIView): def get_user(self, username): try: found_user = models.User.objects.get(username=username) return found_user except models.User.DoesNotExist: return None def get(self, request, username, format=None): found_user = self.get_user(username) if found_user is None: return Response(status=status.HTTP_404_NOT_FOUND) serializer = serializers.UserProfileSerializer( found_user, context={'request': request}) return Response(data=serializer.data, status=status.HTTP_200_OK) def put(self, request, username, format=None): user = request.user found_user = self.get_user(username) if found_user is None: return Response(status=status.HTTP_404_NOT_FOUND) elif found_user.username != user.username: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = serializers.UserProfileSerializer( found_user, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response(data=serializer.data, status=status.HTTP_200_OK) else: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserFollowers(APIView): def get(self, request, username, format=None): try: found_user = models.User.objects.get(username=username) except models.User.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) user_followers = found_user.followers.all() serializer = serializers.ListUserSerializer( user_followers, many=True, context={"request": request}) return Response(data=serializer.data, status=status.HTTP_200_OK) class UserFollowing(APIView): def get(self, request, username, format=None): try: found_user = models.User.objects.get(username=username) except models.User.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) user_following = found_user.following.all() serializer = serializers.ListUserSerializer( user_following, many=True, context={"request": request}) return Response(data=serializer.data, status=status.HTTP_200_OK) class Search(APIView): def get(self, request, format=None): username = request.query_params.get('username', None) if username is not None: users = models.User.objects.filter(username__istartswith=username) serializer = serializers.ListUserSerializer( users, many=True, context={"request": request}) return Response(data=serializer.data, status=status.HTTP_200_OK) else: return Response(status=status.HTTP_400_BAD_REQUEST) class ChangePassword(APIView): def put(self, request, username, format=None): user = request.user if user.username == username: current_password = request.data.get('current_password', None) if current_password is not None: passwords_match = user.check_password(current_password) if passwords_match: new_password = request.data.get('new_password', None) if new_password is not None: user.set_password(new_password) user.save() return Response(status=status.HTTP_200_OK) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: return Response(status=status.HTTP_400_BAD_REQUEST) class FacebookLogin(SocialLoginView): adapter_class = FacebookOAuth2Adapter class RegisterPush(APIView): def post(self, request): user = request.user token = request.data.get('token', None) if token is not None: user.push_token = token user.save() return Response(status=status.HTTP_200_OK) else: return Response(status=status.HTTP_400_BAD_REQUEST)
25.819742
91
0.651596
1454c279d4ca83c2171242a7a5f5177dcb97c548
22,971
py
Python
Janaagraha Bot/venv/Lib/site-packages/google/api/service_pb2.py
CFGIndia20/team-19
e2b27ad8009303d262c2dc60551d6fcc4645b3b5
[ "MIT" ]
11
2021-09-19T06:32:44.000Z
2022-03-14T19:09:46.000Z
Janaagraha Bot/venv/Lib/site-packages/google/api/service_pb2.py
CFGIndia20/team-19
e2b27ad8009303d262c2dc60551d6fcc4645b3b5
[ "MIT" ]
null
null
null
Janaagraha Bot/venv/Lib/site-packages/google/api/service_pb2.py
CFGIndia20/team-19
e2b27ad8009303d262c2dc60551d6fcc4645b3b5
[ "MIT" ]
2
2020-09-22T06:01:26.000Z
2020-09-22T18:23:49.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/api/service.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import auth_pb2 as google_dot_api_dot_auth__pb2 from google.api import backend_pb2 as google_dot_api_dot_backend__pb2 from google.api import billing_pb2 as google_dot_api_dot_billing__pb2 from google.api import context_pb2 as google_dot_api_dot_context__pb2 from google.api import control_pb2 as google_dot_api_dot_control__pb2 from google.api import documentation_pb2 as google_dot_api_dot_documentation__pb2 from google.api import endpoint_pb2 as google_dot_api_dot_endpoint__pb2 from google.api import http_pb2 as google_dot_api_dot_http__pb2 from google.api import log_pb2 as google_dot_api_dot_log__pb2 from google.api import logging_pb2 as google_dot_api_dot_logging__pb2 from google.api import metric_pb2 as google_dot_api_dot_metric__pb2 from google.api import ( monitored_resource_pb2 as google_dot_api_dot_monitored__resource__pb2, ) from google.api import monitoring_pb2 as google_dot_api_dot_monitoring__pb2 from google.api import quota_pb2 as google_dot_api_dot_quota__pb2 from google.api import source_info_pb2 as google_dot_api_dot_source__info__pb2 from google.api import system_parameter_pb2 as google_dot_api_dot_system__parameter__pb2 from google.api import usage_pb2 as google_dot_api_dot_usage__pb2 from google.protobuf import api_pb2 as google_dot_protobuf_dot_api__pb2 from google.protobuf import type_pb2 as google_dot_protobuf_dot_type__pb2 from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/api/service.proto", package="google.api", syntax="proto3", serialized_options=b"\n\016com.google.apiB\014ServiceProtoP\001ZEgoogle.golang.org/genproto/googleapis/api/serviceconfig;serviceconfig\242\002\004GAPI", serialized_pb=b"\n\x18google/api/service.proto\x12\ngoogle.api\x1a\x1cgoogle/api/annotations.proto\x1a\x15google/api/auth.proto\x1a\x18google/api/backend.proto\x1a\x18google/api/billing.proto\x1a\x18google/api/context.proto\x1a\x18google/api/control.proto\x1a\x1egoogle/api/documentation.proto\x1a\x19google/api/endpoint.proto\x1a\x15google/api/http.proto\x1a\x14google/api/log.proto\x1a\x18google/api/logging.proto\x1a\x17google/api/metric.proto\x1a#google/api/monitored_resource.proto\x1a\x1bgoogle/api/monitoring.proto\x1a\x16google/api/quota.proto\x1a\x1cgoogle/api/source_info.proto\x1a!google/api/system_parameter.proto\x1a\x16google/api/usage.proto\x1a\x19google/protobuf/api.proto\x1a\x1agoogle/protobuf/type.proto\x1a\x1egoogle/protobuf/wrappers.proto\"\xdc\x07\n\x07Service\x12\x34\n\x0e\x63onfig_version\x18\x14 \x01(\x0b\x32\x1c.google.protobuf.UInt32Value\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18! \x01(\t\x12\r\n\x05title\x18\x02 \x01(\t\x12\x1b\n\x13producer_project_id\x18\x16 \x01(\t\x12\"\n\x04\x61pis\x18\x03 \x03(\x0b\x32\x14.google.protobuf.Api\x12$\n\x05types\x18\x04 \x03(\x0b\x32\x15.google.protobuf.Type\x12$\n\x05\x65nums\x18\x05 \x03(\x0b\x32\x15.google.protobuf.Enum\x12\x30\n\rdocumentation\x18\x06 \x01(\x0b\x32\x19.google.api.Documentation\x12$\n\x07\x62\x61\x63kend\x18\x08 \x01(\x0b\x32\x13.google.api.Backend\x12\x1e\n\x04http\x18\t \x01(\x0b\x32\x10.google.api.Http\x12 \n\x05quota\x18\n \x01(\x0b\x32\x11.google.api.Quota\x12\x32\n\x0e\x61uthentication\x18\x0b \x01(\x0b\x32\x1a.google.api.Authentication\x12$\n\x07\x63ontext\x18\x0c \x01(\x0b\x32\x13.google.api.Context\x12 \n\x05usage\x18\x0f \x01(\x0b\x32\x11.google.api.Usage\x12'\n\tendpoints\x18\x12 \x03(\x0b\x32\x14.google.api.Endpoint\x12$\n\x07\x63ontrol\x18\x15 \x01(\x0b\x32\x13.google.api.Control\x12'\n\x04logs\x18\x17 \x03(\x0b\x32\x19.google.api.LogDescriptor\x12-\n\x07metrics\x18\x18 \x03(\x0b\x32\x1c.google.api.MetricDescriptor\x12\x44\n\x13monitored_resources\x18\x19 \x03(\x0b\x32'.google.api.MonitoredResourceDescriptor\x12$\n\x07\x62illing\x18\x1a \x01(\x0b\x32\x13.google.api.Billing\x12$\n\x07logging\x18\x1b \x01(\x0b\x32\x13.google.api.Logging\x12*\n\nmonitoring\x18\x1c \x01(\x0b\x32\x16.google.api.Monitoring\x12\x37\n\x11system_parameters\x18\x1d \x01(\x0b\x32\x1c.google.api.SystemParameters\x12+\n\x0bsource_info\x18% \x01(\x0b\x32\x16.google.api.SourceInfoJ\x04\x08\x65\x10\x66\x42n\n\x0e\x63om.google.apiB\x0cServiceProtoP\x01ZEgoogle.golang.org/genproto/googleapis/api/serviceconfig;serviceconfig\xa2\x02\x04GAPIb\x06proto3", dependencies=[ google_dot_api_dot_annotations__pb2.DESCRIPTOR, google_dot_api_dot_auth__pb2.DESCRIPTOR, google_dot_api_dot_backend__pb2.DESCRIPTOR, google_dot_api_dot_billing__pb2.DESCRIPTOR, google_dot_api_dot_context__pb2.DESCRIPTOR, google_dot_api_dot_control__pb2.DESCRIPTOR, google_dot_api_dot_documentation__pb2.DESCRIPTOR, google_dot_api_dot_endpoint__pb2.DESCRIPTOR, google_dot_api_dot_http__pb2.DESCRIPTOR, google_dot_api_dot_log__pb2.DESCRIPTOR, google_dot_api_dot_logging__pb2.DESCRIPTOR, google_dot_api_dot_metric__pb2.DESCRIPTOR, google_dot_api_dot_monitored__resource__pb2.DESCRIPTOR, google_dot_api_dot_monitoring__pb2.DESCRIPTOR, google_dot_api_dot_quota__pb2.DESCRIPTOR, google_dot_api_dot_source__info__pb2.DESCRIPTOR, google_dot_api_dot_system__parameter__pb2.DESCRIPTOR, google_dot_api_dot_usage__pb2.DESCRIPTOR, google_dot_protobuf_dot_api__pb2.DESCRIPTOR, google_dot_protobuf_dot_type__pb2.DESCRIPTOR, google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR, ], ) _SERVICE = _descriptor.Descriptor( name="Service", full_name="google.api.Service", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="config_version", full_name="google.api.Service.config_version", index=0, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="name", full_name="google.api.Service.name", index=1, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="id", full_name="google.api.Service.id", index=2, number=33, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="title", full_name="google.api.Service.title", index=3, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="producer_project_id", full_name="google.api.Service.producer_project_id", index=4, number=22, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="apis", full_name="google.api.Service.apis", index=5, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="types", full_name="google.api.Service.types", index=6, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="enums", full_name="google.api.Service.enums", index=7, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="documentation", full_name="google.api.Service.documentation", index=8, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="backend", full_name="google.api.Service.backend", index=9, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="http", full_name="google.api.Service.http", index=10, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="quota", full_name="google.api.Service.quota", index=11, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="authentication", full_name="google.api.Service.authentication", index=12, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="context", full_name="google.api.Service.context", index=13, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="usage", full_name="google.api.Service.usage", index=14, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="endpoints", full_name="google.api.Service.endpoints", index=15, number=18, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="control", full_name="google.api.Service.control", index=16, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="logs", full_name="google.api.Service.logs", index=17, number=23, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="metrics", full_name="google.api.Service.metrics", index=18, number=24, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="monitored_resources", full_name="google.api.Service.monitored_resources", index=19, number=25, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="billing", full_name="google.api.Service.billing", index=20, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="logging", full_name="google.api.Service.logging", index=21, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="monitoring", full_name="google.api.Service.monitoring", index=22, number=28, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="system_parameters", full_name="google.api.Service.system_parameters", index=23, number=29, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="source_info", full_name="google.api.Service.source_info", index=24, number=37, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=619, serialized_end=1607, ) _SERVICE.fields_by_name[ "config_version" ].message_type = google_dot_protobuf_dot_wrappers__pb2._UINT32VALUE _SERVICE.fields_by_name["apis"].message_type = google_dot_protobuf_dot_api__pb2._API _SERVICE.fields_by_name["types"].message_type = google_dot_protobuf_dot_type__pb2._TYPE _SERVICE.fields_by_name["enums"].message_type = google_dot_protobuf_dot_type__pb2._ENUM _SERVICE.fields_by_name[ "documentation" ].message_type = google_dot_api_dot_documentation__pb2._DOCUMENTATION _SERVICE.fields_by_name[ "backend" ].message_type = google_dot_api_dot_backend__pb2._BACKEND _SERVICE.fields_by_name["http"].message_type = google_dot_api_dot_http__pb2._HTTP _SERVICE.fields_by_name["quota"].message_type = google_dot_api_dot_quota__pb2._QUOTA _SERVICE.fields_by_name[ "authentication" ].message_type = google_dot_api_dot_auth__pb2._AUTHENTICATION _SERVICE.fields_by_name[ "context" ].message_type = google_dot_api_dot_context__pb2._CONTEXT _SERVICE.fields_by_name["usage"].message_type = google_dot_api_dot_usage__pb2._USAGE _SERVICE.fields_by_name[ "endpoints" ].message_type = google_dot_api_dot_endpoint__pb2._ENDPOINT _SERVICE.fields_by_name[ "control" ].message_type = google_dot_api_dot_control__pb2._CONTROL _SERVICE.fields_by_name[ "logs" ].message_type = google_dot_api_dot_log__pb2._LOGDESCRIPTOR _SERVICE.fields_by_name[ "metrics" ].message_type = google_dot_api_dot_metric__pb2._METRICDESCRIPTOR _SERVICE.fields_by_name[ "monitored_resources" ].message_type = ( google_dot_api_dot_monitored__resource__pb2._MONITOREDRESOURCEDESCRIPTOR ) _SERVICE.fields_by_name[ "billing" ].message_type = google_dot_api_dot_billing__pb2._BILLING _SERVICE.fields_by_name[ "logging" ].message_type = google_dot_api_dot_logging__pb2._LOGGING _SERVICE.fields_by_name[ "monitoring" ].message_type = google_dot_api_dot_monitoring__pb2._MONITORING _SERVICE.fields_by_name[ "system_parameters" ].message_type = google_dot_api_dot_system__parameter__pb2._SYSTEMPARAMETERS _SERVICE.fields_by_name[ "source_info" ].message_type = google_dot_api_dot_source__info__pb2._SOURCEINFO DESCRIPTOR.message_types_by_name["Service"] = _SERVICE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Service = _reflection.GeneratedProtocolMessageType( "Service", (_message.Message,), { "DESCRIPTOR": _SERVICE, "__module__": "google.api.service_pb2" # @@protoc_insertion_point(class_scope:google.api.Service) }, ) _sym_db.RegisterMessage(Service) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
36.636364
2,562
0.626747
33aa5f73efa4c55575a39b3acca528e546bdfb36
1,253
py
Python
python/Genetic Programming/Examples/pyevolve_ex6_dbadapter.py
josephlewis42/personal_codebase
aa0fff9a908ab90bc78d24aa69d1b91163c35314
[ "Unlicense" ]
3
2015-11-24T17:06:58.000Z
2018-05-01T14:03:57.000Z
python/Genetic Programming/Examples/pyevolve_ex6_dbadapter.py
josephlewis42/personal_codebase
aa0fff9a908ab90bc78d24aa69d1b91163c35314
[ "Unlicense" ]
null
null
null
python/Genetic Programming/Examples/pyevolve_ex6_dbadapter.py
josephlewis42/personal_codebase
aa0fff9a908ab90bc78d24aa69d1b91163c35314
[ "Unlicense" ]
null
null
null
from pyevolve import G1DList from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import DBAdapters from pyevolve import Statistics # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(chromosome): score = 0.0 # iterate over the chromosome for value in chromosome: if value==0: score += 0.5 return score # Genome instance genome = G1DList.G1DList(100) genome.setParams(rangemin=0, rangemax=10) # The evaluator function (objective function) genome.evaluator.set(eval_func) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome, 666) ga.setGenerations(80) ga.setMutationRate(0.2) # Create DB Adapter and set as adapter #sqlite_adapter = DBAdapters.DBSQLite(identify="ex6", resetDB=True) #ga.setDBAdapter(sqlite_adapter) # Using CSV Adapter #csvfile_adapter = DBAdapters.DBFileCSV() #ga.setDBAdapter(csvfile_adapter) # Using the URL Post Adapter # urlpost_adapter = DBAdapters.DBURLPost(url="http://whatismyip.oceanus.ro/server_variables.php", post=False) # ga.setDBAdapter(urlpost_adapter) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=10) # Best individual #print ga.bestIndividual()
26.104167
109
0.776536
1f072cd325f4e8217e7d49b241de359e79794902
7,173
py
Python
avalanche/training/templates/online_supervised.py
coreylowman/avalanche
9c1e7765f1577c400ec0c57260221bcffd9566a2
[ "MIT" ]
1
2021-09-15T13:57:27.000Z
2021-09-15T13:57:27.000Z
avalanche/training/templates/online_supervised.py
coreylowman/avalanche
9c1e7765f1577c400ec0c57260221bcffd9566a2
[ "MIT" ]
null
null
null
avalanche/training/templates/online_supervised.py
coreylowman/avalanche
9c1e7765f1577c400ec0c57260221bcffd9566a2
[ "MIT" ]
null
null
null
import copy import warnings from typing import Optional, List, Union, Sequence import torch from torch.nn import Module, CrossEntropyLoss from torch.optim import Optimizer from avalanche.benchmarks import Experience from avalanche.benchmarks.utils import AvalancheSubset from avalanche.models import DynamicModule from avalanche.training.plugins import SupervisedPlugin, EvaluationPlugin from avalanche.training.plugins.evaluation import default_evaluator from avalanche.training.templates.supervised import SupervisedTemplate class SupervisedOnlineTemplate(SupervisedTemplate): def __init__( self, model: Module, optimizer: Optimizer, criterion=CrossEntropyLoss(), num_passes: int = 1, train_mb_size: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[SupervisedPlugin]] = None, evaluator: EvaluationPlugin = default_evaluator, eval_every=-1, ): super().__init__( model, optimizer, criterion, train_mb_size=train_mb_size, train_epochs=1, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every, ) self.num_passes = num_passes warnings.warn( "This is an unstable experimental strategy." "Some plugins may not work properly." ) def create_sub_experience_list(self, experience): """Creates a list of sub-experiences from an experience. It returns a list of experiences, where each experience is a subset of the original experience. :param experience: single Experience. :return: list of Experience. """ # Shuffle the indices indices = torch.randperm(len(experience.dataset)) num_sub_exps = len(indices) // self.train_mb_size sub_experience_list = [] for subexp_id in range(num_sub_exps): subexp_indices = indices[ subexp_id * self.train_mb_size : (subexp_id + 1) * self.train_mb_size ] sub_experience = copy.copy(experience) subexp_ds = AvalancheSubset( sub_experience.dataset, indices=subexp_indices ) sub_experience.dataset = subexp_ds sub_experience_list.append(sub_experience) return sub_experience_list def train( self, experiences: Union[Experience, Sequence[Experience]], eval_streams: Optional[ Sequence[Union[Experience, Sequence[Experience]]] ] = None, **kwargs ): """Training loop. if experiences is a single element trains on it. If it is a sequence, trains the model on each experience in order. This is different from joint training on the entire stream. It returns a dictionary with last recorded value for each metric. :param experiences: single Experience or sequence. :param eval_streams: list of streams for evaluation. If None: use training experiences for evaluation. Use [] if you do not want to evaluate during training. :return: dictionary containing last recorded value for each metric name. """ self.is_training = True self._stop_training = False self.model.train() self.model.to(self.device) # Normalize training and eval data. if not isinstance(experiences, Sequence): experiences = [experiences] if eval_streams is None: eval_streams = [experiences] self._eval_streams = eval_streams self.num_sub_exps = len(experiences[0].dataset) // self.train_mb_size self._before_training(**kwargs) # Keep the (full) experience in self.full_experience # for model adaptation for self.full_experience in experiences: sub_experience_list = self.create_sub_experience_list( self.full_experience ) # Train for each sub-experience for i, sub_experience in enumerate(sub_experience_list): self.experience = sub_experience is_first_sub_exp = i == 0 is_last_sub_exp = i == len(sub_experience_list) - 1 self._train_exp( self.experience, eval_streams, is_first_sub_exp=is_first_sub_exp, is_last_sub_exp=is_last_sub_exp, **kwargs ) self._after_training(**kwargs) res = self.evaluator.get_last_metrics() return res def _train_exp( self, experience: Experience, eval_streams=None, is_first_sub_exp=False, is_last_sub_exp=False, **kwargs ): """Training loop over a single Experience object. :param experience: CL experience information. :param eval_streams: list of streams for evaluation. If None: use the training experience for evaluation. Use [] if you do not want to evaluate during training. :param is_first_sub_exp: whether the current sub-experience is the first sub-experience. :param is_last_sub_exp: whether the current sub-experience is the last sub-experience. :param kwargs: custom arguments. """ self.experience = experience self.model.train() if eval_streams is None: eval_streams = [experience] for i, exp in enumerate(eval_streams): if not isinstance(exp, Sequence): eval_streams[i] = [exp] # Data Adaptation (e.g. add new samples/data augmentation) self._before_train_dataset_adaptation(**kwargs) self.train_dataset_adaptation(**kwargs) self._after_train_dataset_adaptation(**kwargs) self.make_train_dataloader(**kwargs) # Model Adaptation (e.g. freeze/add new units) in the # first sub-experience if is_first_sub_exp: self.model = self.model_adaptation() self.make_optimizer() self._before_training_exp(**kwargs) self._before_training_epoch(**kwargs) # if self._stop_training: # Early stopping # self._stop_training = False # break for self.n_pass in range(self.num_passes): self.training_epoch(**kwargs) # if is_last_sub_exp: self._after_training_epoch(**kwargs) self._after_training_exp(**kwargs) def model_adaptation(self, model=None): """Adapts the model to the data from the current (full) experience. Calls the :class:`~avalanche.models.DynamicModule`s adaptation. """ if model is None: model = self.model for module in model.modules(): if isinstance(module, DynamicModule): module.adaptation(self.full_experience.dataset) return model.to(self.device)
34.157143
77
0.623728
172cf4f4a4ec2d13fb358b6969499b6e5f2ad5ab
1,428
py
Python
tests/test_auth_credential/test_cli.py
minos-framework/minos-auth-credential
66ccb83e330d5376aa263dbc447da2239b3261fd
[ "MIT" ]
5
2022-01-25T18:12:33.000Z
2022-02-05T11:02:00.000Z
tests/test_auth_credential/test_cli.py
minos-framework/minos-auth-credential
66ccb83e330d5376aa263dbc447da2239b3261fd
[ "MIT" ]
null
null
null
tests/test_auth_credential/test_cli.py
minos-framework/minos-auth-credential
66ccb83e330d5376aa263dbc447da2239b3261fd
[ "MIT" ]
null
null
null
"""tests.test_api_gateway.test_rest.test_cli module.""" import unittest from unittest.mock import ( PropertyMock, patch, ) from typer.testing import ( CliRunner, ) from minos.auth_credential import ( CredentialConfig, ) from minos.auth_credential.cli import ( app, ) from minos.auth_credential.launchers import ( EntrypointLauncher, ) from tests.utils import ( BASE_PATH, FakeEntrypoint, ) runner = CliRunner() class Foo: def __init__(self, **kwargs): self.kwargs = kwargs class TestCli(unittest.TestCase): CONFIG_FILE_PATH = BASE_PATH / "config.yml" def setUp(self): self.config = CredentialConfig(self.CONFIG_FILE_PATH) self.services = ["a", "b", Foo] self.launcher = EntrypointLauncher(config=self.config, services=self.services) def test_app_ko(self): path = f"{BASE_PATH}/non_existing_config.yml" result = runner.invoke(app, ["start", path]) self.assertEqual(result.exit_code, 1) self.assertTrue("Error loading config" in result.stdout) def test_launch(self): entrypoint = FakeEntrypoint() with patch("minos.auth_credential.launchers.EntrypointLauncher.entrypoint", new_callable=PropertyMock) as mock: mock.return_value = entrypoint self.launcher.launch() self.assertEqual(1, entrypoint.call_count) if __name__ == "__main__": unittest.main()
24.20339
119
0.687675