hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
1a8585d262994990f5f747b5ea6d114f365aef34
116
py
Python
ahmed-package/functions.py
gokcelahmed/ahmed-package
a6c34fb2d85105ad33063b840c84f70ff7a0aa4d
[ "MIT" ]
null
null
null
ahmed-package/functions.py
gokcelahmed/ahmed-package
a6c34fb2d85105ad33063b840c84f70ff7a0aa4d
[ "MIT" ]
null
null
null
ahmed-package/functions.py
gokcelahmed/ahmed-package
a6c34fb2d85105ad33063b840c84f70ff7a0aa4d
[ "MIT" ]
null
null
null
if __name__ == "__main__": def printName(): name = input("Please enter your name: ") print(name)
29
48
0.577586
18368c68efada810dc75011eacd391e1d6bdcf1d
7,935
py
Python
snakeai/gameplay/entities.py
robertomatheuspp/snake-ai-reinforcement
a94197472335f1ac348aa9f6a0f224569d667755
[ "MIT" ]
null
null
null
snakeai/gameplay/entities.py
robertomatheuspp/snake-ai-reinforcement
a94197472335f1ac348aa9f6a0f224569d667755
[ "MIT" ]
null
null
null
snakeai/gameplay/entities.py
robertomatheuspp/snake-ai-reinforcement
a94197472335f1ac348aa9f6a0f224569d667755
[ "MIT" ]
1
2018-10-21T01:16:52.000Z
2018-10-21T01:16:52.000Z
import itertools import random import numpy as np from collections import deque, namedtuple class Point(namedtuple('PointTuple', ['x', 'y'])): """ Represents a 2D point with named axes. """ def __add__(self, other): """ Add two points coordinate-wise. """ return Point(self.x + other.x, self.y + other.y) def __sub__(self, other): """ Subtract two points coordinate-wise. """ return Point(self.x - other.x, self.y - other.y) def clone(self): return self + Point(0, 0) class CellType(object): """ Defines all types of cells that can be found in the game. """ EMPTY = 0 FRUIT = 1 SNAKE_HEAD = 2 SNAKE_BODY = 3 WALL = 4 class SnakeDirection(object): """ Defines all possible directions the snake can take, as well as the corresponding offsets. """ NORTH = Point(0, -1) EAST = Point(1, 0) SOUTH = Point(0, 1) WEST = Point(-1, 0) ALL_SNAKE_DIRECTIONS = [ SnakeDirection.NORTH, SnakeDirection.EAST, SnakeDirection.SOUTH, SnakeDirection.WEST, ] class SnakeAction(object): """ Defines all possible actions the agent can take in the environment. """ MAINTAIN_DIRECTION = 0 TURN_LEFT = 1 TURN_RIGHT = 2 ALL_SNAKE_ACTIONS = [ SnakeAction.MAINTAIN_DIRECTION, SnakeAction.TURN_LEFT, SnakeAction.TURN_RIGHT, ] class Snake(object): """ Represents the snake that has a position, can move, and change directions. """ def __init__(self, start_coord, length=3): """ Create a new snake. Args: start_coord: A point representing the initial position of the snake. length: An integer specifying the initial length of the snake. """ # Place the snake vertically, heading north. if start_coord: self.body = deque([ Point(start_coord.x, start_coord.y + i) for i in range(length) ]) self.direction = SnakeDirection.NORTH self.directions = ALL_SNAKE_DIRECTIONS @property def head(self): """ Get the position of the snake's head. """ return self.body[0] @property def tail(self): """ Get the position of the snake's tail. """ return self.body[-1] @property def length(self): """ Get the current length of the snake. """ return len(self.body) def peek_next_move(self): """ Get the point the snake will move to at its next step. """ return self.head + self.direction def turn_left(self): """ At the next step, take a left turn relative to the current direction. """ direction_idx = self.directions.index(self.direction) self.direction = self.directions[direction_idx - 1] def turn_right(self): """ At the next step, take a right turn relative to the current direction. """ direction_idx = self.directions.index(self.direction) self.direction = self.directions[(direction_idx + 1) % len(self.directions)] def grow(self): """ Grow the snake by 1 block from the head. """ self.body.appendleft(self.peek_next_move()) def move(self): """ Move the snake 1 step forward, taking the current direction into account. """ self.body.appendleft(self.peek_next_move()) self.body.pop() def clone(self): cp = Snake( None, 10) cp.body = deque(list(self.body)) cp.direction = self.direction cp.directions = self.directions return cp class Field(object): """ Represents the playing field for the Snake game. """ def __init__(self, level_map=None): """ Create a new Snake field. Args: level_map: a list of strings representing the field objects (1 string per row). """ self.level_map = level_map self._cells = None self._empty_cells = set() self._level_map_to_cell_type = { 'S': CellType.SNAKE_HEAD, 's': CellType.SNAKE_BODY, '#': CellType.WALL, 'O': CellType.FRUIT, '.': CellType.EMPTY, } self._cell_type_to_level_map = { cell_type: symbol for symbol, cell_type in self._level_map_to_cell_type.items() } def __getitem__(self, point): """ Get the type of cell at the given point. """ x, y = point return self._cells[y, x] def __setitem__(self, point, cell_type): """ Update the type of cell at the given point. """ x, y = point self._cells[y, x] = cell_type # Do some internal bookkeeping to not rely on random selection of blank cells. if cell_type == CellType.EMPTY: self._empty_cells.add(point) else: if point in self._empty_cells: self._empty_cells.remove(point) def __str__(self): return '\n'.join( ''.join(self._cell_type_to_level_map[cell] for cell in row) for row in self._cells ) @property def size(self): """ Get the size of the field (size == width == height). """ return len(self.level_map) def create_level(self): """ Create a new field based on the level map. """ try: self._cells = np.array([ [self._level_map_to_cell_type[symbol] for symbol in line] for line in self.level_map ]) self._empty_cells = { Point(x, y) for y in range(self.size) for x in range(self.size) if self[(x, y)] == CellType.EMPTY } except KeyError as err: raise ValueError(f'Unknown level map symbol: "{err.args[0]}"') def find_snake_head(self): """ Find the snake's head on the field. """ for y in range(self.size): for x in range(self.size): if self[(x, y)] == CellType.SNAKE_HEAD: return Point(x, y) raise ValueError('Initial snake position not specified on the level map') def get_random_empty_cell(self): """ Get the coordinates of a random empty cell. """ return random.choice(list(self._empty_cells)) def place_snake(self, snake): """ Put the snake on the field and fill the cells with its body. """ self[snake.head] = CellType.SNAKE_HEAD for snake_cell in itertools.islice(snake.body, 1, len(snake.body)): self[snake_cell] = CellType.SNAKE_BODY def update_snake_footprint(self, old_head, old_tail, new_head): """ Update field cells according to the new snake position. Environment must be as fast as possible to speed up agent training. Therefore, we'll sacrifice some duplication of information between the snake body and the field just to execute timesteps faster. Args: old_head: position of the head before the move. old_tail: position of the tail before the move. new_head: position of the head after the move. """ self[old_head] = CellType.SNAKE_BODY # If we've grown at this step, the tail cell shouldn't move. if old_tail: self[old_tail] = CellType.EMPTY # Support the case when we're chasing own tail. if self[new_head] not in (CellType.WALL, CellType.SNAKE_BODY) or new_head == old_tail: self[new_head] = CellType.SNAKE_HEAD def clone(self): cp = Field(level_map=self.level_map) cp.level_map = self.level_map # if self._cells: cp._cells = self._cells #+ Point(0, 0) cp._empty_cells = set(self._empty_cells) cp._level_map_to_cell_type = self._level_map_to_cell_type cp._cell_type_to_level_map = self._cell_type_to_level_map return cp
31.74
101
0.600378
9ca9a64f8e2d05a8ffc4301ad082af79edc0dd8b
51,171
py
Python
samples/openapi3/client/petstore/python-experimental/petstore_api/api/pet_api.py
nitoqq/openapi-generator
d5ea62f9669b2f669065b02b701eedc816d9d3cd
[ "Apache-2.0" ]
1
2020-08-07T08:38:39.000Z
2020-08-07T08:38:39.000Z
samples/openapi3/client/petstore/python-experimental/petstore_api/api/pet_api.py
nitoqq/openapi-generator
d5ea62f9669b2f669065b02b701eedc816d9d3cd
[ "Apache-2.0" ]
null
null
null
samples/openapi3/client/petstore/python-experimental/petstore_api/api/pet_api.py
nitoqq/openapi-generator
d5ea62f9669b2f669065b02b701eedc816d9d3cd
[ "Apache-2.0" ]
1
2019-10-06T12:57:47.000Z
2019-10-06T12:57:47.000Z
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 # python 2 and python 3 compatibility library import six from petstore_api.api_client import ApiClient from petstore_api.exceptions import ( ApiTypeError, ApiValueError ) from petstore_api.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, int, none_type, str, validate_and_convert_types ) from petstore_api.model import pet from petstore_api.model import api_response class PetApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __add_pet( self, pet_pet, **kwargs ): """Add a new pet to the store # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.add_pet(pet_pet, async_req=True) >>> result = thread.get() Args: pet_pet (pet.Pet): Pet object that needs to be added to the store Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_pet'] = \ pet_pet return self.call_with_http_info(**kwargs) self.add_pet = Endpoint( settings={ 'response_type': None, 'auth': [ 'http_signature_test', 'petstore_auth' ], 'endpoint_path': '/pet', 'operation_id': 'add_pet', 'http_method': 'POST', 'servers': [ 'http://petstore.swagger.io/v2', 'http://path-server-test.petstore.local/v2' ] }, params_map={ 'all': [ 'pet_pet', ], 'required': [ 'pet_pet', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_pet': (pet.Pet,), }, 'attribute_map': { }, 'location_map': { 'pet_pet': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [], 'content_type': [ 'application/json', 'application/xml' ] }, api_client=api_client, callable=__add_pet ) def __delete_pet( self, pet_id, **kwargs ): """Deletes a pet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_pet(pet_id, async_req=True) >>> result = thread.get() Args: pet_id (int): Pet id to delete Keyword Args: api_key (str): [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_id'] = \ pet_id return self.call_with_http_info(**kwargs) self.delete_pet = Endpoint( settings={ 'response_type': None, 'auth': [ 'petstore_auth' ], 'endpoint_path': '/pet/{petId}', 'operation_id': 'delete_pet', 'http_method': 'DELETE', 'servers': [], }, params_map={ 'all': [ 'pet_id', 'api_key', ], 'required': [ 'pet_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_id': (int,), 'api_key': (str,), }, 'attribute_map': { 'pet_id': 'petId', 'api_key': 'api_key', }, 'location_map': { 'pet_id': 'path', 'api_key': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [], 'content_type': [], }, api_client=api_client, callable=__delete_pet ) def __find_pets_by_status( self, status, **kwargs ): """Finds Pets by status # noqa: E501 Multiple status values can be provided with comma separated strings # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.find_pets_by_status(status, async_req=True) >>> result = thread.get() Args: status ([str]): Status values that need to be considered for filter Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: [pet.Pet] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['status'] = \ status return self.call_with_http_info(**kwargs) self.find_pets_by_status = Endpoint( settings={ 'response_type': ([pet.Pet],), 'auth': [ 'http_signature_test', 'petstore_auth' ], 'endpoint_path': '/pet/findByStatus', 'operation_id': 'find_pets_by_status', 'http_method': 'GET', 'servers': [], }, params_map={ 'all': [ 'status', ], 'required': [ 'status', ], 'nullable': [ ], 'enum': [ 'status', ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { ('status',): { "AVAILABLE": "available", "PENDING": "pending", "SOLD": "sold" }, }, 'openapi_types': { 'status': ([str],), }, 'attribute_map': { 'status': 'status', }, 'location_map': { 'status': 'query', }, 'collection_format_map': { 'status': 'csv', } }, headers_map={ 'accept': [ 'application/xml', 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__find_pets_by_status ) def __find_pets_by_tags( self, tags, **kwargs ): """Finds Pets by tags # noqa: E501 Multiple tags can be provided with comma separated strings. Use tag1, tag2, tag3 for testing. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.find_pets_by_tags(tags, async_req=True) >>> result = thread.get() Args: tags ([str]): Tags to filter by Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: [pet.Pet] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['tags'] = \ tags return self.call_with_http_info(**kwargs) self.find_pets_by_tags = Endpoint( settings={ 'response_type': ([pet.Pet],), 'auth': [ 'http_signature_test', 'petstore_auth' ], 'endpoint_path': '/pet/findByTags', 'operation_id': 'find_pets_by_tags', 'http_method': 'GET', 'servers': [], }, params_map={ 'all': [ 'tags', ], 'required': [ 'tags', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'tags': ([str],), }, 'attribute_map': { 'tags': 'tags', }, 'location_map': { 'tags': 'query', }, 'collection_format_map': { 'tags': 'csv', } }, headers_map={ 'accept': [ 'application/xml', 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__find_pets_by_tags ) def __get_pet_by_id( self, pet_id, **kwargs ): """Find pet by ID # noqa: E501 Returns a single pet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_pet_by_id(pet_id, async_req=True) >>> result = thread.get() Args: pet_id (int): ID of pet to return Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: pet.Pet If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_id'] = \ pet_id return self.call_with_http_info(**kwargs) self.get_pet_by_id = Endpoint( settings={ 'response_type': (pet.Pet,), 'auth': [ 'api_key' ], 'endpoint_path': '/pet/{petId}', 'operation_id': 'get_pet_by_id', 'http_method': 'GET', 'servers': [], }, params_map={ 'all': [ 'pet_id', ], 'required': [ 'pet_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_id': (int,), }, 'attribute_map': { 'pet_id': 'petId', }, 'location_map': { 'pet_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/xml', 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__get_pet_by_id ) def __update_pet( self, pet_pet, **kwargs ): """Update an existing pet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_pet(pet_pet, async_req=True) >>> result = thread.get() Args: pet_pet (pet.Pet): Pet object that needs to be added to the store Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_pet'] = \ pet_pet return self.call_with_http_info(**kwargs) self.update_pet = Endpoint( settings={ 'response_type': None, 'auth': [ 'http_signature_test', 'petstore_auth' ], 'endpoint_path': '/pet', 'operation_id': 'update_pet', 'http_method': 'PUT', 'servers': [ 'http://petstore.swagger.io/v2', 'http://path-server-test.petstore.local/v2' ] }, params_map={ 'all': [ 'pet_pet', ], 'required': [ 'pet_pet', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_pet': (pet.Pet,), }, 'attribute_map': { }, 'location_map': { 'pet_pet': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [], 'content_type': [ 'application/json', 'application/xml' ] }, api_client=api_client, callable=__update_pet ) def __update_pet_with_form( self, pet_id, **kwargs ): """Updates a pet in the store with form data # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_pet_with_form(pet_id, async_req=True) >>> result = thread.get() Args: pet_id (int): ID of pet that needs to be updated Keyword Args: name (str): Updated name of the pet. [optional] status (str): Updated status of the pet. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_id'] = \ pet_id return self.call_with_http_info(**kwargs) self.update_pet_with_form = Endpoint( settings={ 'response_type': None, 'auth': [ 'petstore_auth' ], 'endpoint_path': '/pet/{petId}', 'operation_id': 'update_pet_with_form', 'http_method': 'POST', 'servers': [], }, params_map={ 'all': [ 'pet_id', 'name', 'status', ], 'required': [ 'pet_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_id': (int,), 'name': (str,), 'status': (str,), }, 'attribute_map': { 'pet_id': 'petId', 'name': 'name', 'status': 'status', }, 'location_map': { 'pet_id': 'path', 'name': 'form', 'status': 'form', }, 'collection_format_map': { } }, headers_map={ 'accept': [], 'content_type': [ 'application/x-www-form-urlencoded' ] }, api_client=api_client, callable=__update_pet_with_form ) def __upload_file( self, pet_id, **kwargs ): """uploads an image # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.upload_file(pet_id, async_req=True) >>> result = thread.get() Args: pet_id (int): ID of pet to update Keyword Args: additional_metadata (str): Additional data to pass to server. [optional] file (file_type): file to upload. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: api_response.ApiResponse If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_id'] = \ pet_id return self.call_with_http_info(**kwargs) self.upload_file = Endpoint( settings={ 'response_type': (api_response.ApiResponse,), 'auth': [ 'petstore_auth' ], 'endpoint_path': '/pet/{petId}/uploadImage', 'operation_id': 'upload_file', 'http_method': 'POST', 'servers': [], }, params_map={ 'all': [ 'pet_id', 'additional_metadata', 'file', ], 'required': [ 'pet_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_id': (int,), 'additional_metadata': (str,), 'file': (file_type,), }, 'attribute_map': { 'pet_id': 'petId', 'additional_metadata': 'additionalMetadata', 'file': 'file', }, 'location_map': { 'pet_id': 'path', 'additional_metadata': 'form', 'file': 'form', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'multipart/form-data' ] }, api_client=api_client, callable=__upload_file ) def __upload_file_with_required_file( self, pet_id, required_file, **kwargs ): """uploads an image (required) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.upload_file_with_required_file(pet_id, required_file, async_req=True) >>> result = thread.get() Args: pet_id (int): ID of pet to update required_file (file_type): file to upload Keyword Args: additional_metadata (str): Additional data to pass to server. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int): specifies the index of the server that we want to use. Default is 0. async_req (bool): execute request asynchronously Returns: api_response.ApiResponse If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index', 0) kwargs['pet_id'] = \ pet_id kwargs['required_file'] = \ required_file return self.call_with_http_info(**kwargs) self.upload_file_with_required_file = Endpoint( settings={ 'response_type': (api_response.ApiResponse,), 'auth': [ 'petstore_auth' ], 'endpoint_path': '/fake/{petId}/uploadImageWithRequiredFile', 'operation_id': 'upload_file_with_required_file', 'http_method': 'POST', 'servers': [], }, params_map={ 'all': [ 'pet_id', 'required_file', 'additional_metadata', ], 'required': [ 'pet_id', 'required_file', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pet_id': (int,), 'required_file': (file_type,), 'additional_metadata': (str,), }, 'attribute_map': { 'pet_id': 'petId', 'required_file': 'requiredFile', 'additional_metadata': 'additionalMetadata', }, 'location_map': { 'pet_id': 'path', 'required_file': 'form', 'additional_metadata': 'form', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'multipart/form-data' ] }, api_client=api_client, callable=__upload_file_with_required_file ) class Endpoint(object): def __init__(self, settings=None, params_map=None, root_map=None, headers_map=None, api_client=None, callable=None): """Creates an endpoint Args: settings (dict): see below key value pairs 'response_type' (tuple/None): response type 'auth' (list): a list of auth type keys 'endpoint_path' (str): the endpoint path 'operation_id' (str): endpoint string identifier 'http_method' (str): POST/PUT/PATCH/GET etc 'servers' (list): list of str servers that this endpoint is at params_map (dict): see below key value pairs 'all' (list): list of str endpoint parameter names 'required' (list): list of required parameter names 'nullable' (list): list of nullable parameter names 'enum' (list): list of parameters with enum values 'validation' (list): list of parameters with validations root_map 'validations' (dict): the dict mapping endpoint parameter tuple paths to their validation dictionaries 'allowed_values' (dict): the dict mapping endpoint parameter tuple paths to their allowed_values (enum) dictionaries 'openapi_types' (dict): param_name to openapi type 'attribute_map' (dict): param_name to camelCase name 'location_map' (dict): param_name to 'body', 'file', 'form', 'header', 'path', 'query' collection_format_map (dict): param_name to `csv` etc. headers_map (dict): see below key value pairs 'accept' (list): list of Accept header strings 'content_type' (list): list of Content-Type header strings api_client (ApiClient) api client instance callable (function): the function which is invoked when the Endpoint is called """ self.settings = settings self.params_map = params_map self.params_map['all'].extend([ 'async_req', '_host_index', '_preload_content', '_request_timeout', '_return_http_data_only', '_check_input_type', '_check_return_type' ]) self.params_map['nullable'].extend(['_request_timeout']) self.validations = root_map['validations'] self.allowed_values = root_map['allowed_values'] self.openapi_types = root_map['openapi_types'] extra_types = { 'async_req': (bool,), '_host_index': (int,), '_preload_content': (bool,), '_request_timeout': (none_type, int, (int,), [int]), '_return_http_data_only': (bool,), '_check_input_type': (bool,), '_check_return_type': (bool,) } self.openapi_types.update(extra_types) self.attribute_map = root_map['attribute_map'] self.location_map = root_map['location_map'] self.collection_format_map = root_map['collection_format_map'] self.headers_map = headers_map self.api_client = api_client self.callable = callable def __validate_inputs(self, kwargs): for param in self.params_map['enum']: if param in kwargs: check_allowed_values( self.allowed_values, (param,), kwargs[param] ) for param in self.params_map['validation']: if param in kwargs: check_validations( self.validations, (param,), kwargs[param], configuration=self.api_client.configuration ) if kwargs['_check_input_type'] is False: return for key, value in six.iteritems(kwargs): fixed_val = validate_and_convert_types( value, self.openapi_types[key], [key], False, kwargs['_check_input_type'], configuration=self.api_client.configuration ) kwargs[key] = fixed_val def __gather_params(self, kwargs): params = { 'body': None, 'collection_format': {}, 'file': {}, 'form': [], 'header': {}, 'path': {}, 'query': [] } for param_name, param_value in six.iteritems(kwargs): param_location = self.location_map.get(param_name) if param_location is None: continue if param_location: if param_location == 'body': params['body'] = param_value continue base_name = self.attribute_map[param_name] if (param_location == 'form' and self.openapi_types[param_name] == (file_type,)): params['file'][param_name] = [param_value] elif (param_location == 'form' and self.openapi_types[param_name] == ([file_type],)): # param_value is already a list params['file'][param_name] = param_value elif param_location in {'form', 'query'}: param_value_full = (base_name, param_value) params[param_location].append(param_value_full) if param_location not in {'form', 'query'}: params[param_location][base_name] = param_value collection_format = self.collection_format_map.get(param_name) if collection_format: params['collection_format'][base_name] = collection_format return params def __call__(self, *args, **kwargs): """ This method is invoked when endpoints are called Example: pet_api = PetApi() pet_api.add_pet # this is an instance of the class Endpoint pet_api.add_pet() # this invokes pet_api.add_pet.__call__() which then invokes the callable functions stored in that endpoint at pet_api.add_pet.callable or self.callable in this class """ return self.callable(self, *args, **kwargs) def call_with_http_info(self, **kwargs): try: _host = self.settings['servers'][kwargs['_host_index']] except IndexError: if self.settings['servers']: raise ApiValueError( "Invalid host index. Must be 0 <= index < %s" % len(self.settings['servers']) ) _host = None for key, value in six.iteritems(kwargs): if key not in self.params_map['all']: raise ApiTypeError( "Got an unexpected parameter '%s'" " to method `%s`" % (key, self.settings['operation_id']) ) # only throw this nullable ApiValueError if _check_input_type # is False, if _check_input_type==True we catch this case # in self.__validate_inputs if (key not in self.params_map['nullable'] and value is None and kwargs['_check_input_type'] is False): raise ApiValueError( "Value may not be None for non-nullable parameter `%s`" " when calling `%s`" % (key, self.settings['operation_id']) ) for key in self.params_map['required']: if key not in kwargs.keys(): raise ApiValueError( "Missing the required parameter `%s` when calling " "`%s`" % (key, self.settings['operation_id']) ) self.__validate_inputs(kwargs) params = self.__gather_params(kwargs) accept_headers_list = self.headers_map['accept'] if accept_headers_list: params['header']['Accept'] = self.api_client.select_header_accept( accept_headers_list) content_type_headers_list = self.headers_map['content_type'] if content_type_headers_list: header_list = self.api_client.select_header_content_type( content_type_headers_list) params['header']['Content-Type'] = header_list return self.api_client.call_api( self.settings['endpoint_path'], self.settings['http_method'], params['path'], params['query'], params['header'], body=params['body'], post_params=params['form'], files=params['file'], response_type=self.settings['response_type'], auth_settings=self.settings['auth'], async_req=kwargs['async_req'], _check_type=kwargs['_check_return_type'], _return_http_data_only=kwargs['_return_http_data_only'], _preload_content=kwargs['_preload_content'], _request_timeout=kwargs['_request_timeout'], _host=_host, collection_formats=params['collection_format'])
36.36887
174
0.461824
ab6b647a401389f015c1e0901a213f9b87bc8081
23,111
py
Python
hyperopt/tests/test_spark.py
michaelmior/hyperopt
63b5b9bf379fc55f6a158e17c400c1d8bb780fff
[ "BSD-3-Clause" ]
1
2021-01-25T13:43:35.000Z
2021-01-25T13:43:35.000Z
hyperopt/tests/test_spark.py
bugrabuga/hyperopt
63b5b9bf379fc55f6a158e17c400c1d8bb780fff
[ "BSD-3-Clause" ]
null
null
null
hyperopt/tests/test_spark.py
bugrabuga/hyperopt
63b5b9bf379fc55f6a158e17c400c1d8bb780fff
[ "BSD-3-Clause" ]
null
null
null
import contextlib import logging import os import shutil import tempfile import time import timeit import unittest import numpy as np from pyspark.sql import SparkSession from six import StringIO from hyperopt import SparkTrials, anneal, base, fmin, hp from .test_fmin import test_quadratic1_tpe @contextlib.contextmanager def patch_logger(name, level=logging.INFO): """patch logger and give an output""" io_out = StringIO() log = logging.getLogger(name) log.setLevel(level) log.handlers = [] handler = logging.StreamHandler(io_out) log.addHandler(handler) try: yield io_out finally: log.removeHandler(handler) class TestTempDir: @classmethod def make_tempdir(cls, dir="/tmp"): """ :param dir: Root directory in which to create the temp directory """ cls.tempdir = tempfile.mkdtemp(prefix="hyperopt_tests_", dir=dir) @classmethod def remove_tempdir(cls): shutil.rmtree(cls.tempdir) class BaseSparkContext: """ Mixin which sets up a SparkContext for tests """ NUM_SPARK_EXECUTORS = 4 @classmethod def setup_spark(cls): cls._spark = ( SparkSession.builder.master( f"local[{BaseSparkContext.NUM_SPARK_EXECUTORS}]" ) .appName(cls.__name__) .getOrCreate() ) cls._sc = cls._spark.sparkContext cls.checkpointDir = tempfile.mkdtemp() cls._sc.setCheckpointDir(cls.checkpointDir) # Small tests run much faster with spark.sql.shuffle.partitions=4 cls._spark.conf.set("spark.sql.shuffle.partitions", "4") @classmethod def teardown_spark(cls): cls._spark.stop() cls._sc = None shutil.rmtree(cls.checkpointDir) @property def spark(self): return self._spark @property def sc(self): return self._sc class TestSparkContext(unittest.TestCase, BaseSparkContext): @classmethod def setUpClass(cls): cls.setup_spark() @classmethod def tearDownClass(cls): cls.teardown_spark() def test_spark_context(self): rdd1 = self.sc.parallelize(range(10), 10) rdd2 = rdd1.map(lambda x: x + 1) sum2 = rdd2.sum() assert sum2 == 55 def fn_succeed_within_range(x): """ Test function to test the handling failures for `fmin`. When run `fmin` with `max_evals=8`, it has 7 successful trial runs and 1 failed run. :param x: :return: 1 when -3 < x < 3, and RuntimeError otherwise """ if -3 < x < 3: return 1 else: raise RuntimeError class FMinTestCase(unittest.TestCase, BaseSparkContext): @classmethod def setUpClass(cls): cls.setup_spark() cls._sc.setLogLevel("OFF") @classmethod def tearDownClass(cls): cls.teardown_spark() def sparkSupportsJobCancelling(self): return hasattr(self.sc.parallelize([1]), "collectWithJobGroup") def check_run_status( self, spark_trials, output, num_total, num_success, num_failure ): self.assertEqual( spark_trials.count_total_trials(), num_total, "Wrong number of total trial runs: Expected {e} but got {r}.".format( e=num_total, r=spark_trials.count_total_trials() ), ) self.assertEqual( spark_trials.count_successful_trials(), num_success, "Wrong number of successful trial runs: Expected {e} but got {r}.".format( e=num_success, r=spark_trials.count_successful_trials() ), ) self.assertEqual( spark_trials.count_failed_trials(), num_failure, "Wrong number of failed trial runs: Expected {e} but got {r}.".format( e=num_failure, r=spark_trials.count_failed_trials() ), ) log_output = output.getvalue().strip() self.assertIn( "Total Trials: " + str(num_total), log_output, """Logging "Total Trials: {num}" missing from the log: {log}""".format( num=str(num_total), log=log_output ), ) self.assertIn( str(num_success) + " succeeded", log_output, """Logging "{num} succeeded " missing from the log: {log}""".format( num=str(num_success), log=log_output ), ) self.assertIn( str(num_failure) + " failed", log_output, """ Logging "{num} failed " missing from the log: {log}""".format( num=str(num_failure), log=log_output ), ) def assert_task_succeeded(self, log_output, task): self.assertIn( f"trial {task} task thread exits normally", log_output, """Debug info "trial {task} task thread exits normally" missing from log: {log_output}""".format( task=task, log_output=log_output ), ) def assert_task_failed(self, log_output, task): self.assertIn( f"trial {task} task thread catches an exception", log_output, """Debug info "trial {task} task thread catches an exception" missing from log: {log_output}""".format( task=task, log_output=log_output ), ) def test_quadratic1_tpe(self): # TODO: Speed this up or remove it since it is slow (1 minute on laptop) spark_trials = SparkTrials(parallelism=4) test_quadratic1_tpe(spark_trials) def test_trial_run_info(self): spark_trials = SparkTrials(parallelism=4) with patch_logger("hyperopt-spark") as output: fmin( fn=fn_succeed_within_range, space=hp.uniform("x", -5, 5), algo=anneal.suggest, max_evals=8, return_argmin=False, trials=spark_trials, rstate=np.random.RandomState(99), ) self.check_run_status( spark_trials, output, num_total=8, num_success=7, num_failure=1 ) expected_result = {"loss": 1.0, "status": "ok"} for trial in spark_trials._dynamic_trials: if trial["state"] == base.JOB_STATE_DONE: self.assertEqual( trial["result"], expected_result, "Wrong result has been saved: Expected {e} but got {r}.".format( e=expected_result, r=trial["result"] ), ) elif trial["state"] == base.JOB_STATE_ERROR: err_message = trial["misc"]["error"][1] self.assertIn( "RuntimeError", err_message, "Missing {e} in {r}.".format(e="RuntimeError", r=err_message), ) self.assertIn( "Traceback (most recent call last)", err_message, "Missing {e} in {r}.".format(e="Traceback", r=err_message), ) num_success = spark_trials.count_by_state_unsynced(base.JOB_STATE_DONE) self.assertEqual( num_success, 7, "Wrong number of successful trial runs: Expected {e} but got {r}.".format( e=7, r=num_success ), ) num_failure = spark_trials.count_by_state_unsynced(base.JOB_STATE_ERROR) self.assertEqual( num_failure, 1, "Wrong number of failed trial runs: Expected {e} but got {r}.".format( e=1, r=num_failure ), ) def test_accepting_sparksession(self): spark_trials = SparkTrials( parallelism=2, spark_session=SparkSession.builder.getOrCreate() ) fmin( fn=lambda x: x + 1, space=hp.uniform("x", 5, 8), algo=anneal.suggest, max_evals=2, trials=spark_trials, ) def test_parallelism_arg(self): # Computing max_num_concurrent_tasks max_num_concurrent_tasks = self.sc._jsc.sc().maxNumConcurrentTasks() self.assertEqual( max_num_concurrent_tasks, BaseSparkContext.NUM_SPARK_EXECUTORS, "max_num_concurrent_tasks ({c}) did not equal " "BaseSparkContext.NUM_SPARK_EXECUTORS ({e})".format( c=max_num_concurrent_tasks, e=BaseSparkContext.NUM_SPARK_EXECUTORS ), ) for spark_default_parallelism, max_num_concurrent_tasks in [(2, 4), (2, 0)]: default_parallelism = max( spark_default_parallelism, max_num_concurrent_tasks ) # Test requested_parallelism is None or negative values. for requested_parallelism in [None, -1]: with patch_logger("hyperopt-spark") as output: parallelism = SparkTrials._decide_parallelism( requested_parallelism=requested_parallelism, spark_default_parallelism=spark_default_parallelism, max_num_concurrent_tasks=max_num_concurrent_tasks, ) self.assertEqual( parallelism, default_parallelism, "Failed to set parallelism to be default parallelism ({p})" " ({e})".format(p=parallelism, e=default_parallelism), ) log_output = output.getvalue().strip() self.assertIn( "Because the requested parallelism was None or a non-positive value, " "parallelism will be set to ({d})".format( d=default_parallelism ), log_output, """set to default parallelism missing from log: {log_output}""".format( log_output=log_output ), ) # Test requested_parallelism which will trigger spark executor dynamic allocation. with patch_logger("hyperopt-spark") as output: parallelism = SparkTrials._decide_parallelism( requested_parallelism=max_num_concurrent_tasks + 1, spark_default_parallelism=spark_default_parallelism, max_num_concurrent_tasks=max_num_concurrent_tasks, ) self.assertEqual( parallelism, max_num_concurrent_tasks + 1, "Expect parallelism to be ({e}) but get ({p})".format( p=parallelism, e=max_num_concurrent_tasks + 1 ), ) log_output = output.getvalue().strip() self.assertIn( "Parallelism ({p}) is greater".format( p=max_num_concurrent_tasks + 1 ), log_output, """Parallelism ({p}) missing from log: {log_output}""".format( p=max_num_concurrent_tasks + 1, log_output=log_output ), ) # Test requested_parallelism exceeds hard cap with patch_logger("hyperopt-spark") as output: parallelism = SparkTrials._decide_parallelism( requested_parallelism=SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED + 1, spark_default_parallelism=spark_default_parallelism, max_num_concurrent_tasks=max_num_concurrent_tasks, ) self.assertEqual( parallelism, SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED, "Failed to limit parallelism ({p}) to MAX_CONCURRENT_JOBS_ALLOWED ({e})".format( p=parallelism, e=SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ), ) log_output = output.getvalue().strip() self.assertIn( "SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ({c})".format( c=SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ), log_output, """MAX_CONCURRENT_JOBS_ALLOWED value missing from log: {log_output}""".format( log_output=log_output ), ) def test_all_successful_trials(self): spark_trials = SparkTrials(parallelism=1) with patch_logger("hyperopt-spark", logging.DEBUG) as output: fmin( fn=fn_succeed_within_range, space=hp.uniform("x", -1, 1), algo=anneal.suggest, max_evals=1, trials=spark_trials, ) log_output = output.getvalue().strip() self.assertEqual(spark_trials.count_successful_trials(), 1) self.assertIn( "fmin thread exits normally", log_output, """Debug info "fmin thread exits normally" missing from log: {log_output}""".format( log_output=log_output ), ) self.assert_task_succeeded(log_output, 0) def test_all_failed_trials(self): spark_trials = SparkTrials(parallelism=1) with patch_logger("hyperopt-spark", logging.DEBUG) as output: fmin( fn=fn_succeed_within_range, space=hp.uniform("x", 5, 10), algo=anneal.suggest, max_evals=1, trials=spark_trials, return_argmin=False, ) log_output = output.getvalue().strip() self.assertEqual(spark_trials.count_failed_trials(), 1) self.assert_task_failed(log_output, 0) spark_trials = SparkTrials(parallelism=4) # Here return_argmin is True (by default) and an exception should be thrown with self.assertRaisesRegexp(Exception, "There are no evaluation tasks"): fmin( fn=fn_succeed_within_range, space=hp.uniform("x", 5, 8), algo=anneal.suggest, max_evals=2, trials=spark_trials, ) def test_timeout_without_job_cancellation(self): timeout = 4 spark_trials = SparkTrials(parallelism=1, timeout=timeout) spark_trials._spark_supports_job_cancelling = False def fn(x): time.sleep(0.5) return x with patch_logger("hyperopt-spark", logging.DEBUG) as output: fmin( fn=fn, space=hp.uniform("x", -1, 1), algo=anneal.suggest, max_evals=10, trials=spark_trials, max_queue_len=1, show_progressbar=False, return_argmin=False, ) log_output = output.getvalue().strip() self.assertTrue(spark_trials._fmin_cancelled) self.assertEqual(spark_trials._fmin_cancelled_reason, "fmin run timeout") self.assertGreater(spark_trials.count_successful_trials(), 0) self.assertGreater(spark_trials.count_cancelled_trials(), 0) self.assertIn( "fmin is cancelled, so new trials will not be launched", log_output, """ "fmin is cancelled, so new trials will not be launched" missing from log: {log_output}""".format( log_output=log_output ), ) self.assertIn( "SparkTrials will block", log_output, """ "SparkTrials will block" missing from log: {log_output}""".format( log_output=log_output ), ) self.assert_task_succeeded(log_output, 0) def test_timeout_without_job_cancellation_fmin_timeout(self): timeout = 4 spark_trials = SparkTrials(parallelism=1) spark_trials._spark_supports_job_cancelling = False def fn(x): time.sleep(0.5) return x with patch_logger("hyperopt-spark", logging.DEBUG) as output: fmin( fn=fn, space=hp.uniform("x", -1, 1), algo=anneal.suggest, max_evals=10, timeout=timeout, trials=spark_trials, max_queue_len=1, show_progressbar=False, return_argmin=False, rstate=np.random.RandomState(99), ) log_output = output.getvalue().strip() self.assertTrue(spark_trials._fmin_cancelled) self.assertEqual(spark_trials._fmin_cancelled_reason, "fmin run timeout") self.assertGreater(spark_trials.count_successful_trials(), 0) self.assertGreater(spark_trials.count_cancelled_trials(), 0) self.assertIn( "fmin is cancelled, so new trials will not be launched", log_output, """ "fmin is cancelled, so new trials will not be launched" missing from log: {log_output}""".format( log_output=log_output ), ) self.assertIn( "SparkTrials will block", log_output, """ "SparkTrials will block" missing from log: {log_output}""".format( log_output=log_output ), ) self.assert_task_succeeded(log_output, 0) def test_timeout_with_job_cancellation(self): if not self.sparkSupportsJobCancelling(): print( "Skipping timeout test since this Apache PySpark version does not " "support cancelling jobs by job group ID." ) return timeout = 2 spark_trials = SparkTrials(parallelism=4, timeout=timeout) def fn(x): if x < 0: time.sleep(timeout + 20) raise Exception("Task should have been cancelled") else: time.sleep(1) return x # Test 1 cancelled trial. Examine logs. with patch_logger("hyperopt-spark", logging.DEBUG) as output: fmin( fn=fn, space=hp.uniform("x", -2, 0), algo=anneal.suggest, max_evals=1, trials=spark_trials, max_queue_len=1, show_progressbar=False, return_argmin=False, rstate=np.random.RandomState(4), ) log_output = output.getvalue().strip() self.assertTrue(spark_trials._fmin_cancelled) self.assertEqual(spark_trials._fmin_cancelled_reason, "fmin run timeout") self.assertEqual(spark_trials.count_cancelled_trials(), 1) self.assertIn( "Cancelling all running jobs", log_output, """ "Cancelling all running jobs" missing from log: {log_output}""".format( log_output=log_output ), ) self.assertIn( "trial task 0 cancelled", log_output, """ "trial task 0 cancelled" missing from log: {log_output}""".format( log_output=log_output ), ) self.assertNotIn( "Task should have been cancelled", log_output, """ "Task should have been cancelled" should not in log: {log_output}""".format( log_output=log_output ), ) self.assert_task_failed(log_output, 0) # Test mix of successful and cancelled trials. spark_trials = SparkTrials(parallelism=4, timeout=4) fmin( fn=fn, space=hp.uniform("x", -0.25, 5), algo=anneal.suggest, max_evals=6, trials=spark_trials, max_queue_len=1, show_progressbar=False, return_argmin=True, rstate=np.random.RandomState(4), ) time.sleep(2) self.assertTrue(spark_trials._fmin_cancelled) self.assertEqual(spark_trials._fmin_cancelled_reason, "fmin run timeout") # There are 2 finished trials, 1 cancelled running trial and 1 cancelled # new trial. We do not need to check the new trial since it is not started yet. self.assertGreaterEqual( spark_trials.count_successful_trials(), 1, "Expected at least 1 successful trial but found none.", ) self.assertGreaterEqual( spark_trials.count_cancelled_trials(), 1, "Expected at least 1 cancelled trial but found none.", ) def test_invalid_timeout(self): with self.assertRaisesRegexp( Exception, "timeout argument should be None or a positive value. Given value: -1", ): SparkTrials(parallelism=4, timeout=-1) with self.assertRaisesRegexp( Exception, "timeout argument should be None or a positive value. Given value: True", ): SparkTrials(parallelism=4, timeout=True) def test_exception_when_spark_not_available(self): import hyperopt orig_have_spark = hyperopt.spark._have_spark hyperopt.spark._have_spark = False try: with self.assertRaisesRegexp(Exception, "cannot import pyspark"): SparkTrials(parallelism=4) finally: hyperopt.spark._have_spark = orig_have_spark def test_no_retry_for_long_tasks(self): NUM_TRIALS = 2 output_dir = tempfile.mkdtemp() def fn(_): with open(os.path.join(output_dir, str(timeit.default_timer())), "w") as f: f.write("1") raise Exception("Failed!") spark_trials = SparkTrials(parallelism=2) try: fmin( fn=fn, space=hp.uniform("x", 0, 1), algo=anneal.suggest, max_evals=NUM_TRIALS, trials=spark_trials, show_progressbar=False, return_argmin=False, ) except BaseException as e: self.assertEqual( "There are no evaluation tasks, cannot return argmin of task losses.", str(e), ) call_count = len(os.listdir(output_dir)) self.assertEqual(NUM_TRIALS, call_count)
35.998442
100
0.54831
d2890a22a8e305c48018fa4f1e44c3435a9116d1
2,437
py
Python
cleastsq.py
cbbing/stock
6bde95c447544b719094f045817690c54c6e730f
[ "Apache-2.0" ]
31
2015-10-25T05:31:49.000Z
2022-01-11T19:07:16.000Z
cleastsq.py
cbbing/stock
6bde95c447544b719094f045817690c54c6e730f
[ "Apache-2.0" ]
null
null
null
cleastsq.py
cbbing/stock
6bde95c447544b719094f045817690c54c6e730f
[ "Apache-2.0" ]
21
2015-07-17T10:11:18.000Z
2020-06-08T07:23:03.000Z
# coding=utf-8 ''' ไฝœ่€…:Jairus Chan ็จ‹ๅบ:ๅคš้กนๅผๆ›ฒ็บฟๆ‹Ÿๅˆ็ฎ—ๆณ• ''' import matplotlib.pyplot as plt import math import numpy import random #้˜ถๆ•ฐไธบ9้˜ถ order=9 #่ฟ›่กŒๆ›ฒ็บฟๆ‹Ÿๅˆ def getMatA(xa): matA=[] for i in range(0,order+1): matA1=[] for j in range(0,order+1): tx=0.0 for k in range(0,len(xa)): dx=1.0 for l in range(0,j+i): dx=dx*xa[k] tx+=dx matA1.append(tx) matA.append(matA1) matA=numpy.array(matA) return matA def getMatB(xa,ya): matB=[] for i in range(0,order+1): ty=0.0 for k in range(0,len(xa)): dy=1.0 for l in range(0,i): dy=dy*xa[k] ty+=ya[k]*dy matB.append(ty) matB=numpy.array(matB) return matB def getMatAA(xa, ya): matAA=numpy.linalg.solve(getMatA(xa),getMatB(xa, ya)) return matAA #่ฎพ็ฝฎ้˜ถๆ•ฐ๏ผˆ้ป˜่ฎคไธบ9 def setOrder(newOrder): order = newOrder #่Žทๅ–ๆ‹ŸๅˆๅŽ็š„ๆ–ฐๅบๅˆ— def getFitYValues(xValues, yValues, xNewValues): matAA_get = getMatAA(xValues, yValues) yya=[] for i in range(0,len(xNewValues)): yy=0.0 for j in range(0,order+1): dy=1.0 for k in range(0,j): dy*=xNewValues[i] dy*=matAA_get[j] yy+=dy yya.append(yy) return yya #็”ปๅ‡บๆ‹ŸๅˆๅŽ็š„ๆ›ฒ็บฟ #print(matAA) if __name__ == "__main__": fig = plt.figure() ax = fig.add_subplot(111) #็”Ÿๆˆๆ›ฒ็บฟไธŠ็š„ๅ„ไธช็‚น x = numpy.arange(-1,1,0.02) y = [((a*a-1)*(a*a-1)*(a*a-1)+0.5)*numpy.sin(a*2) for a in x] #ax.plot(x,y,color='r',linestyle='-',marker='') #,label="(a*a-1)*(a*a-1)*(a*a-1)+0.5" #็”Ÿๆˆ็š„ๆ›ฒ็บฟไธŠ็š„ๅ„ไธช็‚นๅ็งปไธ€ไธ‹๏ผŒๅนถๆ”พๅ…ฅๅˆฐxa,yaไธญๅŽป i=0 xa=[] ya=[] for xx in x: yy=y[i] d=float(random.randint(60,140))/100 #ax.plot([xx*d],[yy*d],color='m',linestyle='',marker='.') i+=1 xa.append(xx*d) ya.append(yy*d) '''for i in range(0,5): xx=float(random.randint(-100,100))/100 yy=float(random.randint(-60,60))/100 xa.append(xx) ya.append(yy)''' ax.plot(xa,ya,color='m',linestyle='',marker='.') matAA_n = getMatAA(xa,ya) print len(matAA_n) xxa= numpy.arange(-1,1.2,0.01) yya= getFitYValues(xa, ya, xxa) ax.plot(xxa,yya,color='g',linestyle='-',marker='') ax.legend() plt.show()
21.191304
65
0.509643
0fb8c40448957368380a81d9c6c096b42f3608c5
3,444
py
Python
trainer.py
ouldevloper/sign-language-recognition
f056238b005c3b5dec99605e799aef28f6e50861
[ "MIT" ]
null
null
null
trainer.py
ouldevloper/sign-language-recognition
f056238b005c3b5dec99605e799aef28f6e50861
[ "MIT" ]
null
null
null
trainer.py
ouldevloper/sign-language-recognition
f056238b005c3b5dec99605e799aef28f6e50861
[ "MIT" ]
null
null
null
# @Author: ะะฑะดะตะปะปะฐั… ะฃะปะฐั…ะธัะฝะต # @Date: 2021-04-17 23:54:50 # @Last Modified by: ะะฑะดะตะปะปะฐั… ะฃะปะฐั…ะธัะฝะต # @Last Modified time: 2021-04-18 06:47:44 # Importing the Keras libraries and packages import tensorflow as tf from tensorflow import keras import keras from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator from keras.layers import Convolution2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense import sys import os from config import * #chaeck if data are already collected or not if not os.path.isdir("data") or \ not os.path.isdir("data/training") or \ not os.path.isdir("data/testing") or \ not os.path.isdir("data/validation") : print("Exiting : ExCollect Data first") exit(1) # 1 - Building the CNN #------------------------------ # Initializing the CNN classifier = Sequential() # First convolution layer and pooling classifier.add(Convolution2D(32, (3, 3), input_shape=(image_size[0], image_size[1], 1), activation='relu')) classifier.add(MaxPooling2D(pool_size=(2, 2))) # Second convolution layer and pooling classifier.add(Convolution2D(32, (3, 3), activation='relu')) # input_shape is going to be the pooled feature maps from the previous convolution layer classifier.add(MaxPooling2D(pool_size=(2, 2))) # Flattening the layers classifier.add(Flatten()) # Adding a fully connected layer classifier.add(Dense(units=128, activation='relu')) # softmax for more than 2 class's classifier.add(Dense(units=len(os.listdir('./data/training/')), activation='softmax')) # Compiling the CNN # categorical_crossentropy for more than 2 class's classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 2 - Preparing the train/test data and training the model train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) training_set = train_datagen.flow_from_directory('data/training', target_size=image_size, batch_size=batch_size, color_mode='grayscale', class_mode='categorical') test_set = test_datagen.flow_from_directory('data/testing', target_size=image_size, batch_size=batch_size, color_mode='grayscale', class_mode='categorical') #.fit_generator will be dupricated in next version of keras classifier.fit(#_generator( training_set, # No of images in training set steps_per_epoch=3, epochs=epochs, validation_data=test_set, # No of images in test set validation_steps=30) #check if model foler exist or not and make it if does not exist if not os.path.isdir("modeles"): os.mkdir("modeles") # Saving the model as json model_json = classifier.to_json() with open("modeles/model.json", "w") as json_file: json_file.write(model_json) #saving model weights classifier.save_weights('modeles/model.h5')
40.046512
107
0.63734
d5147774a7e8900bafcafc7464a6c7e71f642e9f
10,537
py
Python
lib/datasets/imdb.py
yjy941124/PPR-FCN
1eba5515b37e7b32413efdf14bb0c22a2e46fee9
[ "MIT" ]
20
2017-10-16T18:12:51.000Z
2021-12-23T02:34:20.000Z
lib/datasets/imdb.py
yjy941124/PPR-FCN
1eba5515b37e7b32413efdf14bb0c22a2e46fee9
[ "MIT" ]
1
2018-11-10T04:59:48.000Z
2021-01-21T04:51:31.000Z
lib/datasets/imdb.py
yjy941124/PPR-FCN
1eba5515b37e7b32413efdf14bb0c22a2e46fee9
[ "MIT" ]
5
2017-10-17T00:54:42.000Z
2018-04-08T15:09:40.000Z
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import os import os.path as osp import PIL from utils.cython_bbox import bbox_overlaps import numpy as np import scipy.sparse from fast_rcnn.config import cfg import glog class imdb(object): """Image database.""" def __init__(self, name): self._name = name self._num_classes = 0 self._classes = [] self._image_index = [] self._obj_proposer = 'selective_search' self._roidb = None self._roidb_handler = self.default_roidb # Use this dict for storing dataset specific config options self.config = {} @property def name(self): return self._name @property def num_classes(self): return len(self._classes) @property def classes(self): return self._classes @property def image_index(self): return self._image_index @property def roidb_handler(self): return self._roidb_handler @roidb_handler.setter def roidb_handler(self, val): self._roidb_handler = val def set_proposal_method(self, method): method = eval('self.' + method + '_roidb') self.roidb_handler = method @property def roidb(self): # A roidb is a list of dictionaries, each with the following keys: # boxes # gt_overlaps # gt_classes # flipped if self._roidb is not None: return self._roidb self._roidb = self.roidb_handler() self._roidb[0]['db_name'] = self.name self._roidb[0]['cache_path'] = self.cache_path return self._roidb @property def cache_path(self): cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache')) if not os.path.exists(cache_path): os.makedirs(cache_path) return cache_path @property def num_images(self): return len(self.image_index) def image_path_at(self, i): raise NotImplementedError def default_roidb(self): raise NotImplementedError def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ raise NotImplementedError def _get_widths(self): return [PIL.Image.open(self.image_path_at(i)).size[0] for i in xrange(self.num_images)] def append_flipped_images(self): num_images = self.num_images widths = self._get_widths() for i in xrange(num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = widths[i] - oldx2 #- 1 boxes[:, 2] = widths[i] - oldx1 #- 1 for j in xrange(boxes.shape[0]): if boxes[j, 2] < boxes[j, 0]: glog.info('%f %f %d %s %s' % (boxes[j, 2], boxes[j, 0], i, widths[i], self.image_path_at(i))) # print boxes[:, 2], boxes[:, 0] if not (boxes[:,2]>=boxes[:,0]).all(): pass assert (boxes[:, 2] >= boxes[:, 0]).all() entry = {'boxes' : boxes, 'gt_overlaps' : self.roidb[i]['gt_overlaps'], 'gt_classes' : self.roidb[i]['gt_classes'], 'flipped' : True} self.roidb.append(entry) self._image_index = self._image_index * 2 def evaluate_recall(self, candidate_boxes=None, thresholds=None, area='all', limit=None): """Evaluate detection proposal recall metrics. Returns: results: dictionary of results with keys 'ar': average recall 'recalls': vector recalls at each IoU overlap threshold 'thresholds': vector of IoU overlap thresholds 'gt_overlaps': vector of all ground-truth overlaps """ # Record max overlap value for each gt box # Return vector of overlap values areas = { 'all': 0, 'small': 1, 'medium': 2, 'large': 3, '96-128': 4, '128-256': 5, '256-512': 6, '512-inf': 7} area_ranges = [ [0**2, 1e5**2], # all [0**2, 32**2], # small [32**2, 96**2], # medium [96**2, 1e5**2], # large [96**2, 128**2], # 96-128 [128**2, 256**2], # 128-256 [256**2, 512**2], # 256-512 [512**2, 1e5**2], # 512-inf ] assert areas.has_key(area), 'unknown area range: {}'.format(area) area_range = area_ranges[areas[area]] gt_overlaps = np.zeros(0) num_pos = 0 for i in xrange(self.num_images): # Checking for max_overlaps == 1 avoids including crowd annotations # (...pretty hacking :/) max_gt_overlaps = self.roidb[i]['gt_overlaps'].toarray().max(axis=1) gt_inds = np.where((self.roidb[i]['gt_classes'] > 0) & (max_gt_overlaps == 1))[0] gt_boxes = self.roidb[i]['boxes'][gt_inds, :] gt_areas = self.roidb[i]['seg_areas'][gt_inds] valid_gt_inds = np.where((gt_areas >= area_range[0]) & (gt_areas <= area_range[1]))[0] gt_boxes = gt_boxes[valid_gt_inds, :] num_pos += len(valid_gt_inds) if candidate_boxes is None: # If candidate_boxes is not supplied, the default is to use the # non-ground-truth boxes from this roidb non_gt_inds = np.where(self.roidb[i]['gt_classes'] == 0)[0] boxes = self.roidb[i]['boxes'][non_gt_inds, :] else: boxes = candidate_boxes[i] if boxes.shape[0] == 0: continue if limit is not None and boxes.shape[0] > limit: boxes = boxes[:limit, :] overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) _gt_overlaps = np.zeros((gt_boxes.shape[0])) for j in xrange(gt_boxes.shape[0]): # find which proposal box maximally covers each gt box argmax_overlaps = overlaps.argmax(axis=0) # and get the iou amount of coverage for each gt box max_overlaps = overlaps.max(axis=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ind = max_overlaps.argmax() gt_ovr = max_overlaps.max() assert(gt_ovr >= 0) # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert(_gt_overlaps[j] == gt_ovr) # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps)) gt_overlaps = np.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = np.arange(0.5, 0.95 + 1e-5, step) recalls = np.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return {'ar': ar, 'recalls': recalls, 'thresholds': thresholds, 'gt_overlaps': gt_overlaps} @staticmethod def vstack(blocks): """As spipy.sparse.vstack, but allowing for the lack of gt overlaps""" blocks = [[block] for block in blocks if block.shape[0]] return scipy.sparse.bmat(blocks) def create_roidb_from_box_list(self, box_list, gt_roidb): assert len(box_list) == self.num_images, \ 'Number of boxes must match number of ground-truth images' roidb = [] for i in xrange(self.num_images): boxes = box_list[i] num_boxes = boxes.shape[0] overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32) if gt_roidb is not None: gt_boxes = gt_roidb[i]['boxes'] #Need at least one box for argmax if gt_boxes.shape[0] > 0: gt_classes = gt_roidb[i]['gt_classes'] gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) argmaxes = gt_overlaps.argmax(axis=1) maxes = gt_overlaps.max(axis=1) I = np.where(maxes > 0)[0] overlaps[I, gt_classes[argmaxes[I]]] = maxes[I] overlaps = scipy.sparse.csr_matrix(overlaps) roidb.append({ 'boxes' : boxes, 'gt_classes' : np.zeros((num_boxes,), dtype=np.int32), 'gt_overlaps' : overlaps, 'flipped' : False, 'seg_areas' : np.zeros((num_boxes,), dtype=np.float32), }) return roidb @staticmethod def merge_roidbs(a, b): assert len(a) == len(b) for i in xrange(len(a)): a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes'])) a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'], b[i]['gt_classes'])) a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'], b[i]['gt_overlaps']]) a[i]['seg_areas'] = np.hstack((a[i]['seg_areas'], b[i]['seg_areas'])) return a def competition_mode(self, on): """Turn competition mode on or off.""" pass
39.025926
113
0.528898
1e8710f83f1a9c0a30788461fc485c3054796397
23,303
py
Python
packaging/test_irods_resource_plugin_s3_for_cloudian.py
murlock/irods_resource_plugin_s3
5b7fa3f3cf373900828454147226a225791e97a5
[ "BSD-3-Clause" ]
null
null
null
packaging/test_irods_resource_plugin_s3_for_cloudian.py
murlock/irods_resource_plugin_s3
5b7fa3f3cf373900828454147226a225791e97a5
[ "BSD-3-Clause" ]
null
null
null
packaging/test_irods_resource_plugin_s3_for_cloudian.py
murlock/irods_resource_plugin_s3
5b7fa3f3cf373900828454147226a225791e97a5
[ "BSD-3-Clause" ]
null
null
null
try: from minio import Minio except ImportError: print('This test requires minio: perhaps try pip install minio') exit() import commands import datetime import os import platform import random import re import shutil import string import subprocess import sys if sys.version_info >= (2,7): import unittest else: import unittest2 as unittest from .. import lib from . import session from ..configuration import IrodsConfig from .resource_suite import ResourceSuite from .test_chunkydevtest import ChunkyDevTest class Test_Compound_With_S3_Resource(ResourceSuite, ChunkyDevTest, unittest.TestCase): def __init__(self, *args, **kwargs): self.keypairfile='/etc/irods/cloudian_credentials.keypair' self.archive_naming_policy='decoupled' self.s3stsdate='' self.s3region='demoreg1' self.s3endPoint='s3.cloudianhyperstore.com' self.s3signature_version=2 self.s3sse = 0 # server side encryption super(Test_Compound_With_S3_Resource, self).__init__(*args, **kwargs) def setUp(self): # skip ssl tests on ub12 distro_str = ''.join(platform.linux_distribution()[:2]).replace(' ','') if self._testMethodName.startswith('test_ssl') and distro_str.lower().startswith('ubuntu12'): self.skipTest("skipping ssl tests on ubuntu 12") # set up aws configuration self.read_aws_keys() # set up s3 bucket #s3 = boto3.resource('s3', region_name=self.s3region) s3_client = Minio('http://' + self.s3endPoint, access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key) self.s3bucketname = 'irods-ci-' + distro_str + datetime.datetime.utcnow().strftime('-%Y-%m-%d.%H-%M-%S-%f-') self.s3bucketname += ''.join(random.choice(string.letters) for i in xrange(10)) self.s3bucketname = self.s3bucketname[:63].lower() # bucket names can be no more than 63 characters long s3_client.make_bucket(self.s3bucketname, location=self.s3region) # set up resources hostname = lib.get_hostname() s3params = 'S3_RETRY_COUNT=15;S3_WAIT_TIME_SEC=1;S3_PROTO=HTTPS;S3_MPU_CHUNK=10;S3_MPU_THREADS=4;S3_ENABLE_MD5=1' s3params += ';S3_STSDATE=' + self.s3stsdate s3params += ';S3_DEFAULT_HOSTNAME=' + self.s3endPoint s3params += ';S3_AUTH_FILE=' + self.keypairfile s3params += ';S3_REGIONNAME=' + self.s3region s3params += ';S3_SIGNATURE_VERSION=' + str(self.s3signature_version) s3params += ';ARCHIVE_NAMING_POLICY=' + self.archive_naming_policy try: s3params += ';S3_SERVER_ENCRYPT=' + str(self.s3sse) except AttributeError: pass s3params=os.environ.get('S3PARAMS', s3params); with session.make_session_for_existing_admin() as admin_session: irods_config = IrodsConfig() admin_session.assert_icommand("iadmin modresc demoResc name origResc", 'STDOUT_SINGLELINE', 'rename', input='yes\n') admin_session.assert_icommand("iadmin mkresc demoResc compound", 'STDOUT_SINGLELINE', 'compound') admin_session.assert_icommand("iadmin mkresc cacheResc 'unixfilesystem' " + hostname + ":" + irods_config.irods_directory + "/cacheRescVault", 'STDOUT_SINGLELINE', 'cacheResc') admin_session.assert_icommand('iadmin mkresc archiveResc s3 '+hostname+':/'+self.s3bucketname+'/irods/Vault "'+s3params+'"', 'STDOUT_SINGLELINE', 'archiveResc') admin_session.assert_icommand("iadmin addchildtoresc demoResc cacheResc cache") admin_session.assert_icommand("iadmin addchildtoresc demoResc archiveResc archive") super(Test_Compound_With_S3_Resource, self).setUp() def tearDown(self): super(Test_Compound_With_S3_Resource, self).tearDown() print(self.bucket) # delete s3 bucket s3_client = Minio('http://' + self.s3endPoint, access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key) objects = s3_client.list_objects_v2(self.s3bucketname, recursive=True) s3_client.remove_objects(self.s3bucketname, objects) s3_client.remove_bucket(self.s3bucketname) # tear down resources with session.make_session_for_existing_admin() as admin_session: admin_session.assert_icommand("iadmin rmchildfromresc demoResc archiveResc") admin_session.assert_icommand("iadmin rmchildfromresc demoResc cacheResc") admin_session.assert_icommand("iadmin rmresc archiveResc") admin_session.assert_icommand("iadmin rmresc cacheResc") admin_session.assert_icommand("iadmin rmresc demoResc") admin_session.assert_icommand("iadmin modresc origResc name demoResc", 'STDOUT_SINGLELINE', 'rename', input='yes\n') shutil.rmtree(IrodsConfig().irods_directory + "/cacheRescVault", ignore_errors=True) def read_aws_keys(self): # read access keys from keypair file with open(self.keypairfile) as f: self.aws_access_key_id = f.readline().rstrip() self.aws_secret_access_key = f.readline().rstrip() def test_irm_specific_replica(self): self.admin.assert_icommand("ils -L "+self.testfile,'STDOUT_SINGLELINE',self.testfile) # should be listed self.admin.assert_icommand("irepl -R "+self.testresc+" "+self.testfile) # creates replica self.admin.assert_icommand("ils -L "+self.testfile,'STDOUT_SINGLELINE',self.testfile) # should be listed twice self.admin.assert_icommand("irm -n 0 "+self.testfile, 'STDOUT_SINGLELINE','deprecated') # remove original from cacheResc only self.admin.assert_icommand("ils -L "+self.testfile,'STDOUT_SINGLELINE',["2 "+self.testresc,self.testfile]) # replica 2 should still be there self.admin.assert_icommand_fail("ils -L "+self.testfile,'STDOUT_SINGLELINE',["0 "+self.admin.default_resource,self.testfile]) # replica 0 should be gone trashpath = self.admin.session_collection_trash self.admin.assert_icommand_fail("ils -L "+trashpath+"/"+self.testfile,'STDOUT_SINGLELINE',["0 "+self.admin.default_resource,self.testfile]) # replica should not be in trash @unittest.skip("--wlock has possible race condition due to Compound/Replication PDMO") def test_local_iput_collision_with_wlock(self): pass @unittest.skip("NOTSURE / FIXME ... -K not supported, perhaps") def test_local_iput_checksum(self): pass @unittest.skip("EMPTY_RESC_PATH - no vault path for coordinating resources") def test_ireg_as_rodsuser_in_vault(self): pass @unittest.skip("No Vault for S3 archive resource") def test_iput_overwrite_others_file__ticket_2086(self): pass def test_local_iput_with_force_and_destination_resource__ticket_1706(self): # local setup filename = "iputwithforceanddestination.txt" filepath = lib.create_local_testfile(filename) doublefile = "doublefile.txt" os.system("cat %s %s > %s" % (filename, filename, doublefile)) doublesize = str(os.stat(doublefile).st_size) # assertions self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # self.admin.assert_icommand("iput -f -R %s %s %s" % (self.testresc, doublefile, filename) ) # overwrite test repl with different data self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," "+filename]) # default resource cache should have dirty copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," "+filename]) # default resource archive should have dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," "+doublesize+" "," "+filename]) # default resource cache should not have doublesize file self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," "+doublesize+" "," "+filename]) # default resource archive should not have doublesize file self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," "+doublesize+" ","& "+filename]) # targeted resource should have new double clean copy # local cleanup os.remove(filepath) os.remove(doublefile) ################### # irepl ################### def test_irepl_update_replicas(self): # local setup filename = "updatereplicasfile.txt" filepath = lib.create_local_testfile(filename) hostname = lib.get_hostname() doublefile = "doublefile.txt" os.system("cat %s %s > %s" % (filename, filename, doublefile)) doublesize = str(os.stat(doublefile).st_size) # assertions self.admin.assert_icommand("iadmin mkresc thirdresc unixfilesystem %s:/tmp/thirdrescVault" % hostname, 'STDOUT_SINGLELINE', "Creating") # create third resource self.admin.assert_icommand("iadmin mkresc fourthresc unixfilesystem %s:/tmp/fourthrescVault" % hostname, 'STDOUT_SINGLELINE', "Creating") # create fourth resource self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("irepl -R thirdresc "+filename) # replicate to third resource self.admin.assert_icommand("irepl -R fourthresc "+filename) # replicate to fourth resource self.admin.assert_icommand("iput -f -R "+self.testresc+" "+doublefile+" "+filename) # repave overtop test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," & "+filename]) # should have a clean copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand("irepl -U "+filename) # update last replica self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," & "+filename]) # should have a clean copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("irepl -aU "+filename) # update all replicas self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("irm -f "+filename) # cleanup file self.admin.assert_icommand("iadmin rmresc thirdresc") # remove third resource self.admin.assert_icommand("iadmin rmresc fourthresc") # remove third resource # local cleanup os.remove(filepath) os.remove(doublefile) def test_irepl_over_existing_second_replica__ticket_1705(self): # local setup filename = "secondreplicatest.txt" filepath = lib.create_local_testfile(filename) # assertions self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput -R "+self.testresc+" "+filename) # put file self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("irepl "+filename) # replicate to default resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("irepl "+filename) # replicate overtop default resource self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should not have a replica 3 self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate overtop test resource self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should not have a replica 3 # local cleanup os.remove(filepath) def test_irepl_over_existing_third_replica__ticket_1705(self): # local setup filename = "thirdreplicatest.txt" filepath = lib.create_local_testfile(filename) hostname = lib.get_hostname() # assertions self.admin.assert_icommand("iadmin mkresc thirdresc unixfilesystem %s:/tmp/thirdrescVault" % hostname, 'STDOUT_SINGLELINE', "Creating") # create third resource self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("irepl -R thirdresc "+filename) # replicate to third resource self.admin.assert_icommand("irepl "+filename) # replicate overtop default resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate overtop test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("irepl -R thirdresc "+filename) # replicate overtop third resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should not have a replica 4 self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 5 "," & "+filename]) # should not have a replica 5 self.admin.assert_icommand("irm -f "+filename) # cleanup file self.admin.assert_icommand("iadmin rmresc thirdresc") # remove third resource # local cleanup os.remove(filepath) def test_irepl_over_existing_bad_replica__ticket_1705(self): # local setup filename = "reploverwritebad.txt" filepath = lib.create_local_testfile(filename) doublefile = "doublefile.txt" os.system("cat %s %s > %s" % (filename, filename, doublefile)) doublesize = str(os.stat(doublefile).st_size) # assertions self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("iput -f %s %s" % (doublefile, filename) ) # overwrite default repl with different data self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # default resource cache should have clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," "+doublesize+" "," & "+filename]) # default resource cache should have new double clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # default resource archive should have clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," "+doublesize+" "," & "+filename]) # default resource archive should have new double clean copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "+self.testresc," "+doublesize+" "," "+filename]) # test resource should not have doublesize file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate back onto test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "+self.testresc," "+doublesize+" "," & "+filename]) # test resource should have new clean doublesize file self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should not have a replica 3 # local cleanup os.remove(filepath) os.remove(doublefile) def test_iput_with_purgec(self): # local setup filename = "purgecfile.txt" filepath = os.path.abspath(filename) f = open(filepath,'wb') f.write("TESTFILE -- ["+filepath+"]") f.close() # assertions self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed self.admin.assert_icommand("iput --purgec "+filename) # put file self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 ",filename]) # should not be listed (trimmed) self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 ",filename]) # should be listed once - replica 1 self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 ",filename]) # should be listed only once # local cleanup output = commands.getstatusoutput( 'rm '+filepath ) def test_iget_with_purgec(self): # local setup filename = "purgecgetfile.txt" filepath = os.path.abspath(filename) f = open(filepath,'wb') f.write("TESTFILE -- ["+filepath+"]") f.close() # assertions self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("iget -f --purgec "+filename) # get file and purge 'cached' replica self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 ",filename]) # should not be listed (trimmed) self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 ",filename]) # should be listed once self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 ",filename]) # should not be listed # local cleanup output = commands.getstatusoutput( 'rm '+filepath ) def test_irepl_with_purgec(self): # local setup filename = "purgecreplfile.txt" filepath = os.path.abspath(filename) f = open(filepath,'wb') f.write("TESTFILE -- ["+filepath+"]") f.close() # assertions self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" --purgec "+filename) # replicate to test resource self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 ",filename]) # should not be listed (trimmed) self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 ",filename]) # should be listed twice - 2 of 3 self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 ",filename]) # should be listed twice - 1 of 3 # local cleanup output = commands.getstatusoutput( 'rm '+filepath ) def test_decoupled_naming_policy(self): if self.archive_naming_policy != 'decoupled': self.skipTest("Archive naming policy is not set to 'decoupled'") # local setup filename = self.testfile # run as regular user session = self.user0 collection = session.session_collection # iquest to get the object id of the replica on the S3 archive id_query = ( "select DATA_ID where COLL_NAME =" + "'" + collection + "'" + " and DATA_NAME =" + "'" + filename + "'" + " and DATA_REPL_NUM ='1'" ) # iquest to get the pysical path of the replica on the S3 archive path_query = ( "select DATA_PATH where COLL_NAME =" + "'" + collection + "'" + " and DATA_NAME =" + "'" + filename + "'" + " and DATA_REPL_NUM ='1'" ) # assertions session.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed session.assert_icommand("iput "+filename) # put file # get object id object_id = session.run_icommand('iquest "%s" ' + '"' + id_query + '"')[0].strip() # physical path we expect to see: /{bucket_name}/{reversed_id}/{obj_name} target_path = '/' + self.s3bucketname + '/' + object_id[::-1] + '/' + filename # get object path physical_path = session.run_icommand('iquest "%s" ' + '"' + path_query + '"')[0].strip() # verify object path self.assertEqual(target_path, physical_path) # cleanup session.run_icommand('irm -f ' + filename)
61.648148
188
0.653564
f9ba05f91fc985d298e7f760945f111e5b1349e9
1,901
py
Python
gitseries/cmds/create.py
4383/git-series
8fff0da84ac3f3302459808aa154c1d2d2264c44
[ "Apache-2.0" ]
null
null
null
gitseries/cmds/create.py
4383/git-series
8fff0da84ac3f3302459808aa154c1d2d2264c44
[ "Apache-2.0" ]
null
null
null
gitseries/cmds/create.py
4383/git-series
8fff0da84ac3f3302459808aa154c1d2d2264c44
[ "Apache-2.0" ]
null
null
null
import uuid import os import logging import shlex import stat import sys import tempfile from gitseries import opts from gitseries import executor from gitseries import git from gitseries.cmds import base as base_cmd class Create(base_cmd.BaseCommand): "Create a new serie." log = logging.getLogger(__name__) def take_action(self, parsed_args): self.cfg = opts.cfg self.cfg.CONF(sys.argv[2:]) exec_dir = os.path.join(tempfile.gettempdir(), str(uuid.uuid4())) self.app.stdout.write(f"Execution path: {exec_dir}\n") if not os.path.isfile(self.cfg.CONF.serie.commands): self.app.stdout.write( f"Commands file not found {self.cfg.CONF.serie.commands}") current_dir = os.getcwd() os.chmod(self.cfg.CONF.serie.commands, stat.S_IRWXU) os.mkdir(exec_dir) commit_msg = os.path.join(exec_dir, 'commit_msg') with open(commit_msg, 'w+') as fp: lines = str(self.cfg.CONF.serie.commit_msg).replace('\n', 'n').split("\n") print(lines) for line in lines: fp.write(line) os.chdir(exec_dir) for project in self.cfg.CONF.serie.projects: repo = git.clone(project) self.app.stdout.write(f"Running on {repo}\n") os.chdir(repo) executor.execute( [os.path.join(current_dir, self.cfg.CONF.serie.commands)]) if self.cfg.CONF.serie.commit: git.add('.') git.commit(commit_msg) #if self.cfg.CONF.serie.review: # git.review() os.chdir(exec_dir) class Error(base_cmd.BaseCommand): "Always raises an error" log = logging.getLogger(__name__) def take_action(self, parsed_args): self.log.info('causing error') raise RuntimeError('this is the expected exception')
31.683333
86
0.617044
2892b12bede371f6d5a7ae8272072544c312cd65
2,569
py
Python
cdrc.py
PeterWurmsdobler/energy-balance-uk
3eccbf10d395d04bbd6cb855a8bb878ede130141
[ "MIT" ]
null
null
null
cdrc.py
PeterWurmsdobler/energy-balance-uk
3eccbf10d395d04bbd6cb855a8bb878ede130141
[ "MIT" ]
null
null
null
cdrc.py
PeterWurmsdobler/energy-balance-uk
3eccbf10d395d04bbd6cb855a8bb878ede130141
[ "MIT" ]
null
null
null
from datetime import datetime import numpy as np from csv import reader from constants import T_s def load_domestic_data(filepath: str) -> None: """Load CDRC data, aggregate over post code areas and meters, then save to file.""" # path = 'data/cdrc/DomesticEnergyProviderDataset/DEP2015_SF_CDRC.csv' num_meters = 0 natural_gas_consumption = np.zeros([365,48]) electricity_consumption = np.zeros([365,48]) # open file in read mode with open(filepath, 'r') as source: # pass the file object to reader() to get the reader object csv_reader = reader(source) # Iterate over each row in the csv using reader object header = next(csv_reader) # Check file as empty if header != None: # Iterate over each row after the header in the csv for row in csv_reader: # row variable is a list that represents a row in csv # dataset contains 31st September if row[1] == "20150931": continue date = datetime.strptime(row[1], "%Y%m%d") data = row[5:] if not "NA" in data: pc = row[2] t = row[3] num_meters += int(row[4]) day = int(date.timetuple().tm_yday) print(f"{date} = {day}: {t}, pc = {pc}") x = np.array(data) y = x.astype(np.float) z = np.nan_to_num(y) if (t == 'G'): natural_gas_consumption[day-1,:] += z if (t == 'E'): electricity_consumption[day-1,:] += z natural_gas_energy = natural_gas_consumption.ravel() electricity_energy = electricity_consumption.ravel() # energy is measured every T_s in kWh, convert to power in GW: kWh_p_sample_to_P_GW = 3600 * 1000 / T_s / 1E9 natural_gas_power = natural_gas_energy * kWh_p_sample_to_P_GW electricity_power = electricity_energy * kWh_p_sample_to_P_GW print(f"Total number of meters: {num_meters/365}") print(f"Total natural gas energy: {np.sum(natural_gas_energy)/1E9} TWh") print(f"Total electricity energy: {np.sum(electricity_energy)/1E9} TWh") basename = filepath[:-3] with open(basename + 'natural_gas.npy', 'wb') as f: np.save(f, natural_gas_power) with open(basename + 'electricity.npy', 'wb') as f: np.save(f, electricity_power)
38.924242
87
0.569482
114a489a7f1947a532a584a57cbd6d6d8604fc08
1,543
py
Python
tests/conftest.py
brossboth/cryptocom-exchange
b4862187fc28bcb99e0df92cf8a651bd28b1f2c0
[ "MIT" ]
null
null
null
tests/conftest.py
brossboth/cryptocom-exchange
b4862187fc28bcb99e0df92cf8a651bd28b1f2c0
[ "MIT" ]
null
null
null
tests/conftest.py
brossboth/cryptocom-exchange
b4862187fc28bcb99e0df92cf8a651bd28b1f2c0
[ "MIT" ]
null
null
null
import asyncio import pytest import cryptocom.exchange as cro @pytest.fixture async def exchange() -> cro.Exchange: ex = cro.Exchange() await ex.sync_pairs() return ex @pytest.fixture async def account() -> cro.Account: acc = cro.Account(from_env=True) await acc.sync_pairs() yield acc await acc.cancel_open_orders(cro.pairs.CRO_USDT) @pytest.fixture def event_loop(request): """Create an instance of the default event loop for each test case.""" loop = asyncio.events.new_event_loop() try: asyncio.events.set_event_loop(loop) yield loop finally: try: _cancel_all_tasks(loop) loop.run_until_complete(loop.shutdown_asyncgens()) if hasattr(loop, 'shutdown_default_executor'): loop.run_until_complete(loop.shutdown_default_executor()) finally: asyncio.events.set_event_loop(None) loop.close() def _cancel_all_tasks(loop): to_cancel = asyncio.tasks.all_tasks(loop) if not to_cancel: return for task in to_cancel: task.cancel() loop.run_until_complete( asyncio.tasks.gather(*to_cancel, return_exceptions=True)) for task in to_cancel: if task.cancelled(): continue if task.exception() is not None: loop.call_exception_handler({ 'message': 'unhandled exception during asyncio.run() shutdown', 'exception': task.exception(), 'task': task, })
25.716667
79
0.63383
1a4591d0cab685cbf9c22e2bbb7acbcec083d876
6,489
py
Python
python/_impl.py
gglin001/poptorch
61f38ed2d8c6b672e023862eb698865fa7f4724e
[ "MIT" ]
128
2020-12-08T22:22:46.000Z
2022-03-23T10:54:26.000Z
python/_impl.py
gglin001/poptorch
61f38ed2d8c6b672e023862eb698865fa7f4724e
[ "MIT" ]
4
2021-06-22T14:26:28.000Z
2022-02-15T11:25:05.000Z
python/_impl.py
gglin001/poptorch
61f38ed2d8c6b672e023862eb698865fa7f4724e
[ "MIT" ]
7
2020-12-09T20:32:56.000Z
2022-01-18T16:12:24.000Z
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. from contextlib import contextmanager import copy import fcntl import hashlib import os from typing import Dict, Any import torch # Do not import any poptorch.* here: it will break the poptorch module from ._logging import logger from . import poptorch_core # A flag to tell the user if the current target is IPU. This is to allow # divergent IPU/CPU codepaths within one model. _is_ipu_context = False def createPoptorchError(msg): type = "poptorch_py_error" error = poptorch_core.Error(f"'{type}': {msg}") error.type = type error.message = msg error.location = "" return error def isRunningOnIpu() -> bool: """ This function returns `True` when executing on IPU and `False` when executing the model outside IPU scope. This allows for separate codepaths to be marked in the model simply by using: >>> if poptorch.isRunningOnIpu(): >>> # IPU path >>> else: >>> # CPU path Note this will only apply to code during execution. During model creation it will always return `False`. :returns: True if running on IPU, otherwise False. """ global _is_ipu_context return _is_ipu_context def setIpuContext(val: bool): global _is_ipu_context _is_ipu_context = val def internal_cast(tensor, dtype): if dtype in [torch.float, torch.float32]: return torch.ops.poptorch.internal_cast(tensor, "FLOAT") if dtype in [torch.half, torch.float16]: return torch.ops.poptorch.internal_cast(tensor, "FLOAT16") raise ValueError( 'Invalid poptorch.cast target type. Expecting torch.float or torch.half' ) def applyOptimizer(optimizer): num_groups = len(optimizer.param_groups) for index in range(0, num_groups): torch.ops.poptorch.optimizer_group( index, optimizer.param_groups[index]["params"]) # To understand which variable groups the user wants to apply the # optimizer to we need to mark them via a wrapper. We do this because # when we reference the variables in the context of the operation we # get the corresponding IR value for "free" as part of the trace. # Otherwise we would need a system to map the variable in the optimizer # to the variable in the model to the variable in the IR. class OptimizerWrapper(torch.nn.Module): def __init__(self, model, optimizer): super().__init__() self.model = model self.optimizer = optimizer def forward(self, *args, **kwargs): out = self.model(*args, **kwargs) applyOptimizer(self.optimizer) return out @contextmanager def distributedCacheLock(model, opts): """In a distributed environment we only want the model to be compiled once. If there is only one process or if the cache is not enabled: no need for a lock, early return. Otherwise: The first process to reach the lock takes it and compiles the model. The model will be added to the PopART cache. After the first process releases the lock the other ones will grab it one at the time and compile the model too (Except that they will now all hit the cache). The last process to grab / release the lock will delete the file. (Each process append a character to the file, so the position in the file when acquiring the lock indicates how many processes have already successfully compiled the model). """ filename = None if opts.Distributed.numProcesses > 1: cache = opts._popart.options.get("cachePath", "") # pylint: disable=protected-access if not cache: logger.warning( "Use poptorch.Options.enableExecutableCaching() to avoid " "compiling the model once per process") else: os.makedirs(cache, exist_ok=True) assert os.access(cache, os.W_OK), (f"Cache folder {cache}" " is not writable") filename = os.path.join( cache, "%s.lock" % hashlib.md5(repr(model).encode("utf-8")).hexdigest()) # Not distributed mode or the cache is not enabled: do nothing. if not filename: yield False return delete_file = False try: with open(filename, "a+") as f: try: fcntl.flock(f, fcntl.LOCK_EX) # Add a character to the file f.write("0") logger.debug( "Executable cache file locked by process %s (pos %d/%d)", opts.Distributed.processId, f.tell(), opts.Distributed.numProcesses) delete_file = f.tell() == opts.Distributed.numProcesses # Only the first process should compile yield f.tell() == 1 finally: logger.debug("Process %s released the cache lock", opts.Distributed.processId) fcntl.flock(f, fcntl.LOCK_UN) finally: if delete_file: os.remove(filename) # The pickle handlers are called in two cases: when an object is copied # (i.e copy.copy(obj)) or when an object is pickled / serialised. # In both cases the object is first dumped using pickleUnwrapModel and then # in the copy case _pickleRestoreWrapperIfPossible() is called immediately after # to create the new object. # # The _wrapper_registry keeps track of the mapping between user model, parameter, # buffer types and their corresponding wrapper. # When an object is copied we want to preserve the Wrapper type: the PopTorch # wrapper doesn't contain any attribute so it's just a question of updating # the __class__attribute. # # When an object is loaded from file: the wrapper type doesn't exist anymore # therefore we keep the object unwrapped. (It will be wrapped again when passed # to poptorch.trainingModel anyway) _wrapper_registry: Dict[int, Any] = {} def _pickleRestoreWrapperIfPossible(obj): wrapperType = _wrapper_registry.get(id(obj)) if wrapperType: obj.__class__ = wrapperType return obj def pickleUnwrapObject(obj): global _wrapper_registry wrapperType = obj.__class__ obj.__class__ = obj.__class__.__bases__[0] other = copy.copy(obj) _wrapper_registry[id(other)] = wrapperType obj.__class__ = wrapperType return _pickleRestoreWrapperIfPossible, (other, )
35.266304
93
0.664355
3a10756f1821c368bbef4e2e7e7120b78cfc8c61
785
py
Python
core/authentication.py
blumug/texapi
3caf1dd3f0c641a06964a33f7d3046bdace24eeb
[ "MIT" ]
null
null
null
core/authentication.py
blumug/texapi
3caf1dd3f0c641a06964a33f7d3046bdace24eeb
[ "MIT" ]
null
null
null
core/authentication.py
blumug/texapi
3caf1dd3f0c641a06964a33f7d3046bdace24eeb
[ "MIT" ]
null
null
null
import datetime from django.utils.timezone import utc from rest_framework.authentication import TokenAuthentication from rest_framework import exceptions class ExpiringTokenAuthentication(TokenAuthentication): def authenticate_credentials(self, key): try: token = self.model.objects.get(key=key) except self.model.DoesNotExist: raise exceptions.AuthenticationFailed('Invalid token') if not token.user.is_active: raise exceptions.AuthenticationFailed('User inactive or deleted') utc_now = datetime.datetime.utcnow().replace(tzinfo=utc) if token.created < utc_now - datetime.timedelta(days=5): raise exceptions.AuthenticationFailed('Token has expired') return (token.user, token)
32.708333
77
0.721019
0232b76bc623fd926087d4c08b8b623394779db5
12,614
bzl
Python
asylo/bazel/asylo.bzl
Hasimir/asylo
ac598c5266e36312d18fcdaa55efbc780af88975
[ "Apache-2.0" ]
1
2019-06-27T12:44:36.000Z
2019-06-27T12:44:36.000Z
asylo/bazel/asylo.bzl
Hasimir/asylo
ac598c5266e36312d18fcdaa55efbc780af88975
[ "Apache-2.0" ]
null
null
null
asylo/bazel/asylo.bzl
Hasimir/asylo
ac598c5266e36312d18fcdaa55efbc780af88975
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018 Asylo authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Macro definitions for Asylo testing.""" load("@com_google_asylo_backend_provider//:enclave_info.bzl", "enclave_info") load("@linux_sgx//:sgx_sdk.bzl", "sgx_enclave") def _parse_label(label): """Parse a label into (package, name). Args: label: string in relative or absolute form. Returns: Pair of strings: package, relative_name """ if label.startswith("//"): # Absolute label. label = label[2:] # drop the leading // colon_split = label.split(":") if len(colon_split) == 1: # no ":" in label pkg = label _, _, target = label.rpartition("/") else: pkg, target = colon_split # fails if len(colon_split) != 2 else: colon_split = label.split(":") if len(colon_split) == 1: # no ":" in label pkg, target = native.package_name(), label else: pkg2, target = colon_split # fails if len(colon_split) != 2 pkg = native.package_name() + ("/" + pkg2 if pkg2 else "") return pkg, target def _ensure_static_manual(args): """Set linkopts and tags keys of args for static linking and manual testing. Args: args: A map representing the arguments to either cc_binary or cc_test. Returns: The given args modified for linking and tagging. """ # Fully static so the test can move and still operate args["linkstatic"] = 1 args["copts"] = ["-g0"] + args.get("copts", []) return args def copy_from_host(target, output, name = ""): """Genrule that builds target with host CROSSTOOL.""" _, local_name = _parse_label(target) name = name if name else local_name + "_as_host" native.genrule( name = name, srcs = [], outs = [output], cmd = "cp $(location %s) $@" % target, executable = 1, output_to_bindir = 1, tools = [target], testonly = 1, ) def _enclave_args(enclaves): """Collects enclave dependencies' paths with formatted argument string. Arguments: enclaves: depset of enclave dependencies. Returns: string: If 1 enclave, "--enclave_path=<path>", otherwise for each enclave, "--<enclave_name>=<path>" ... """ for enclave in enclaves: if enclave_info not in enclave: fail("Expected all arguments to have the enclave_info provider: " + enclave.label.name) enclave_args = [] if len(enclaves) == 1: enclave_args.append("--enclave_path=\"{path}\"".format( path = enclaves[0].files.to_list()[0].short_path, )) else: for data in enclaves: runpath = data.files.to_list()[0].path enclave_args.append("--{name}={path}".format( name = data.label.name, path = runpath, )) return " ".join(enclave_args) def _enclave_binary_wrapper_impl(ctx): """Generates a runnable wrapper script around an enclave driver. Given a binary and its data dependencies, call the binary with flags that provide enclave dependencies' paths. A single enclave is given as the flag --enclave_path=<path>. Multiple enclaves are disambiguated with their label name as the flag. For example, given data dependencies on both //pkg0:enclave0 //pkg1:enclave1, the arguments passed are --enclave0=path/to/pkg0/enclave0.so and --enclave1=path/to/pkg1/enclave1.so. Arguments: ctx: A blaze rule context Returns: The rule's providers. Indicates the data dependencies as runfiles. """ ctx.actions.write( content = "#!/bin/bash\n" + "\n" + "exec \"./{bin}\" {args} \"$@\"\n".format( bin = ctx.executable.binary.short_path, args = _enclave_args(ctx.attr.enclaves), ), is_executable = True, output = ctx.outputs.executable, ) return [DefaultInfo(runfiles = ctx.runfiles(files = [ctx.executable.binary] + ctx.files.data + ctx.files.enclaves))] _enclave_binary_wrapper = rule( implementation = _enclave_binary_wrapper_impl, executable = True, attrs = { "binary": attr.label( mandatory = True, executable = True, cfg = "host", allow_single_file = True, ), "data": attr.label_list(allow_files = True), "enclaves": attr.label_list(allow_files = True, providers = [enclave_info]), }, ) _enclave_script_test = rule( implementation = _enclave_binary_wrapper_impl, test = True, attrs = { "binary": attr.label( cfg = "host", executable = True, mandatory = True, allow_single_file = True, ), "data": attr.label_list(allow_files = True), "enclaves": attr.label_list(allow_files = True, providers = [enclave_info]), }, ) def debug_enclave_driver(name, enclaves, **kwargs): """Wraps cc_binary with dependency on enclave availability at runtime. Creates a cc_binary for a given enclave. The cc_binary will be passed '--enclave_path=<path to instance of |enclave|>' for 1 enclave, or '--<enclave_name>=<path to instance of |enclave_name.so|>' for many enclaves. Args: name: Name for build target. enclaves: Enclave target dependencies. **kwargs: cc_binary arguments. This macro creates three build targets: 1) name: shell script that runs the debug_enclave_driver. 2) name_driver: cc_binary used as driver in name. This is a normal native cc_binary. It cannot be directly run because there is an undeclared dependency on the enclaves. 3) name_host_driver: genrule that builds name_driver with host crosstool. """ binary_name = name + "_driver" host_binary_name = name + "_host_driver" native.cc_binary(name = binary_name, **_ensure_static_manual(kwargs)) copy_from_host(target = binary_name, output = host_binary_name) _enclave_binary_wrapper( name = name, binary = host_binary_name, data = kwargs.get("data", []), enclaves = enclaves, ) def sim_enclave(name, **kwargs): """Build rule for creating simulated enclave object files signed for testing. The enclave simulation backend currently makes use of the SGX simulator. However, this is subject to change and users of this rule should not make assumptions about it being related to SGX. Args: name: The name of the signed enclave object file. **kwargs: cc_binary arguments. """ sgx_enclave(name, **kwargs) def enclave_test(name, enclave = False, enclaves = [], tags = [], **kwargs): """Build target for testing one or more instances of 'sgx_enclave'. Creates a cc_test for a given enclave. The cc_test will be passed '--enclave_path=<path to instance of |enclave|>' for 1 enclave, or '--<enclave_name>=<path to instance of |enclave_name.so|>' for many enclaves. Args: name: Name for build target. enclave: [deprecated, use enclaves] The sgx_enclave target to test against. enclaves: The sgx_enclave targets to test against. tags: Label attached to this test to allow for querying. **kwargs: cc_test arguments. This macro creates three build targets: 1) name: sh_test that runs the enclave_test. 2) name_driver: cc_test used as test driver in name. This is a normal native cc_test. It cannot be directly run because there is an undeclared dependency on enclave. 3) name_host_driver: genrule that builds name_driver with host crosstool. """ test_name = name + "_driver" host_test_name = name + "_host_driver" native.cc_test( name = test_name, **_ensure_static_manual(kwargs) ) copy_from_host(target = test_name, output = host_test_name) _enclave_script_test( name = name, data = kwargs.get("data", []), enclaves = enclaves + ([enclave] if enclave else []), binary = host_test_name, testonly = 1, tags = ["enclave_test"] + tags, ) def cc_test(name, enclave_test_name = "", srcs = [], deps = [], **kwargs): """Build macro that creates a cc_test target and a cc_enclave_test target. This macro generates a cc_test target, which will run a gtest test suite normally, and optionally a cc_enclave_test, which will run the test suite inside of an enclave. Args: name: Same as native cc_test name. enclave_test_name: Name for the generated cc_enclave_test. Optional. srcs: Same as native cc_test srcs. deps: Same as native cc_test deps. **kwargs: cc_test arguments. """ native.cc_test( name = name, srcs = srcs, deps = deps, **kwargs ) if enclave_test_name: cc_enclave_test( name = enclave_test_name, srcs = srcs, deps = deps, **kwargs ) def cc_test_and_cc_enclave_test(name, enclave_test_name = "", srcs = [], deps = [], **kwargs): """An alias for cc_test with a default enclave_test_name. This macro is identical to cc_test, except it passes in an enclave test name automatically. It is provided for convenience of overriding the default definition of cc_test without having to specify enclave test names. If this behavior is not desired, use cc_test instead, which will not create and enclave test unless given an enclave test name. This is most useful if imported as load( "//asylo/bazel:asylo.bzl", cc_test = "cc_test_and_cc_enclave_test", ) so any cc_test defined in the BUILD file will generate both native and enclave tests. Args: name: See documentation for name in native cc_test rule. enclave_test_name: See documentation for enclave_test_name in cc_test above. If not provided and name ends with "_test", then defaults to name with "_test" replaced with "_enclave_test". If not provided and name does not end with "_test", then defaults to name appended with "_enclave". srcs: See documentation for srcs in native cc_test rule. deps: See documentation for deps in native cc_test rule. **kwargs: See documentation for **kwargs in native cc_test rule. """ if not enclave_test_name: if name.endswith("_test"): enclave_test_name = "_enclave_test".join(name.rsplit("_test", 1)) else: enclave_test_name = name + "_enclave" cc_test( name = name, enclave_test_name = enclave_test_name, srcs = srcs, deps = deps, **kwargs ) def cc_enclave_test(name, srcs, tags = [], deps = [], **kwargs): """Build target that runs a cc_test srcs inside of an enclave. This macro creates two targets, one sgx_enclave target with the test source. And another test runner application to launch the test enclave. Args: name: Target name for will be <name>_enclave. srcs: Same as cc_test srcs. tags: Same as cc_test tags. deps: Same as cc_test deps. **kwargs: cc_test arguments. """ # Create a copy of the gtest enclave runner host_test_name = name + "_host_driver" copy_from_host( target = "//asylo/bazel:enclave_runner", output = host_test_name, name = name + "_as_host", ) # Build the gtest enclave using the test file and gtest "main" enclave shim enclave_name = name + ".so" enclave_target = ":" + enclave_name sgx_enclave( name = enclave_name, srcs = srcs, deps = deps + ["//asylo/bazel:enclave_test_shim"], testonly = 1, ) # Execute the gtest enclave using the gtest enclave runner _enclave_script_test( name = name, data = kwargs.get("data", []), enclaves = [enclave_target], binary = host_test_name, testonly = 1, tags = ["enclave_test"] + tags, )
35.13649
94
0.641747
bd2339f31d520d24782e4b2522c6978f32ae852e
5,263
py
Python
tensorflow/python/kernel_tests/broadcast_to_ops_test.py
yanzhiwei1990/tensorflow
28ede9ed7caee0ce2731d95cc0eb9aff7f360105
[ "Apache-2.0" ]
1
2020-02-04T06:39:30.000Z
2020-02-04T06:39:30.000Z
tensorflow/python/kernel_tests/broadcast_to_ops_test.py
yanzhiwei1990/tensorflow
28ede9ed7caee0ce2731d95cc0eb9aff7f360105
[ "Apache-2.0" ]
1
2018-09-17T19:30:27.000Z
2018-09-17T19:30:27.000Z
tensorflow/python/kernel_tests/broadcast_to_ops_test.py
yanzhiwei1990/tensorflow
28ede9ed7caee0ce2731d95cc0eb9aff7f360105
[ "Apache-2.0" ]
1
2019-10-21T10:37:57.000Z
2019-10-21T10:37:57.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for broadcast_to ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.platform import test as test_lib class BroadcastToTest(test_util.TensorFlowTestCase): def testBroadcastToBasic(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16, np.int32, np.int64]: with self.test_session(use_gpu=True): x = np.array([1, 2, 3], dtype=dtype) v_tf = array_ops.broadcast_to(constant_op.constant(x), [3, 3]) v_np = np.broadcast_to(x, [3, 3]) self.assertAllEqual(v_tf.eval(), v_np) def testBroadcastToString(self): with self.test_session(use_gpu=True): x = np.array([b"1", b"2", b"3"]) v_tf = array_ops.broadcast_to(constant_op.constant(x), [3, 3]) v_np = np.broadcast_to(x, [3, 3]) self.assertAllEqual(v_tf.eval(), v_np) def testBroadcastToBool(self): with self.test_session(use_gpu=True): x = np.array([True, False, True], dtype=np.bool) v_tf = array_ops.broadcast_to(constant_op.constant(x), [3, 3]) v_np = np.broadcast_to(x, [3, 3]) self.assertAllEqual(v_tf.eval(), v_np) def testBroadcastToShape(self): for input_dim in range(1, 6): for output_dim in range(input_dim, 6): with self.test_session(use_gpu=True): input_shape = [2] * input_dim output_shape = [2] * output_dim x = np.array(np.random.randint(5, size=input_shape), dtype=np.int32) v_tf = array_ops.broadcast_to(constant_op.constant(x), output_shape) v_np = np.broadcast_to(x, output_shape) self.assertAllEqual(v_tf.eval(), v_np) def testBroadcastToScalar(self): with self.test_session(use_gpu=True): x = np.array(1, dtype=np.int32) v_tf = array_ops.broadcast_to(constant_op.constant(x), [3, 3]) v_np = np.broadcast_to(x, [3, 3]) self.assertAllEqual(v_tf.eval(), v_np) def testBroadcastToShapeTypeAndInference(self): for dtype in [dtypes.int32, dtypes.int64]: with self.test_session(use_gpu=True): x = np.array([1, 2, 3]) v_tf = array_ops.broadcast_to( constant_op.constant(x), constant_op.constant([3, 3], dtype=dtype)) shape = v_tf.get_shape().as_list() v_np = np.broadcast_to(x, [3, 3]) self.assertAllEqual(v_tf.eval(), v_np) # check shape inference when shape input is constant self.assertAllEqual(shape, v_np.shape) def testGradientForScalar(self): # TODO(alextp): There is a bug with broadcast_to on GPU from scalars, # hence we make this test cpu-only. with ops.device("cpu:0"): x = constant_op.constant(1, dtype=dtypes.float32) v = array_ops.broadcast_to(x, [2, 4, 3]) out = 2 * v with self.test_session(): err = gradient_checker.compute_gradient_error(x, x.get_shape(), out, out.get_shape()) self.assertLess(err, 1e-4) def testGradientWithSameRank(self): x = constant_op.constant(np.reshape(np.arange(6), (2, 1, 3)), dtype=dtypes.float32) v = array_ops.broadcast_to(x, [2, 5, 3]) out = 2 * v with self.test_session(): err = gradient_checker.compute_gradient_error(x, x.get_shape(), out, out.get_shape()) self.assertLess(err, 1e-4) def testGradientWithIncreasingRank(self): x = constant_op.constant([[1], [2]], dtype=dtypes.float32) v = array_ops.broadcast_to(x, [5, 2, 3]) out = 2 * v with self.test_session(): err = gradient_checker.compute_gradient_error(x, x.get_shape(), out, out.get_shape()) self.assertLess(err, 1e-4) def testGradientWithBroadcastAllDimensions(self): x = constant_op.constant([[1, 2, 3], [4, 5, 6]], dtype=dtypes.float32) v = array_ops.broadcast_to(x, [5, 4, 6]) out = 2 * v with self.test_session(): err = gradient_checker.compute_gradient_error(x, x.get_shape(), out, out.get_shape()) self.assertLess(err, 1e-4) if __name__ == "__main__": test_lib.main()
40.484615
80
0.642219
e9f7c6f9e8ac4b058c6578568604e9c180b9100e
2,379
py
Python
.ranger/commands.py
xhlar/configs
fd12ab668a6f2cb18582623c820333eec393a09c
[ "CC0-1.0" ]
null
null
null
.ranger/commands.py
xhlar/configs
fd12ab668a6f2cb18582623c820333eec393a09c
[ "CC0-1.0" ]
null
null
null
.ranger/commands.py
xhlar/configs
fd12ab668a6f2cb18582623c820333eec393a09c
[ "CC0-1.0" ]
null
null
null
from ranger.api.commands import Command class fzf_select(Command): """ :fzf_select Find a file using fzf. With a prefix argument to select only directories. See: https://github.com/junegunn/fzf """ def execute(self): import subprocess import os from ranger.ext.get_executables import get_executables if 'fzf' not in get_executables(): self.fm.notify('Could not find fzf in the PATH.', bad=True) return fd = None if 'fdfind' in get_executables(): fd = 'fdfind' elif 'fd' in get_executables(): fd = 'fd' if fd is not None: hidden = ('--hidden' if self.fm.settings.show_hidden else '') exclude = "--no-ignore-vcs --exclude '.git' --exclude '*.py[co]' --exclude '__pycache__'" only_directories = ('--type directory' if self.quantifier else '') fzf_default_command = '{} --follow {} {} {} --color=always'.format( fd, hidden, exclude, only_directories ) else: hidden = ('-false' if self.fm.settings.show_hidden else r"-path '*/\.*' -prune") exclude = r"\( -name '\.git' -o -iname '\.*py[co]' -o -fstype 'dev' -o -fstype 'proc' \) -prune" only_directories = ('-type d' if self.quantifier else '') fzf_default_command = 'find -L . -mindepth 1 {} -o {} -o {} -print | cut -b3-'.format( hidden, exclude, only_directories ) env = os.environ.copy() env['FZF_DEFAULT_COMMAND'] = fzf_default_command env['FZF_DEFAULT_OPTS'] = '--height=40% --layout=reverse --ansi --preview="{}"'.format(''' ( batcat --color=always {} || bat --color=always {} || cat {} || tree -ahpCL 3 -I '.git' -I '*.py[co]' -I '__pycache__' {} ) 2>/dev/null | head -n 100 ''') fzf = self.fm.execute_command('fzf --no-multi', env=env, universal_newlines=True, stdout=subprocess.PIPE) stdout, _ = fzf.communicate() if fzf.returncode == 0: selected = os.path.abspath(stdout.strip()) if os.path.isdir(selected): self.fm.cd(selected) else: self.fm.select_file(selected)
38.370968
108
0.527533
e3b31dd35fec5d30447f50b6e1b6ef3ac6a8a474
7,045
py
Python
tests/test_serde.py
NervanaSystems/ngraph-python
ac032c83c7152b615a9ad129d54d350f9d6a2986
[ "Apache-2.0" ]
18
2018-03-19T04:16:49.000Z
2021-02-08T14:44:58.000Z
tests/test_serde.py
rsumner31/ngraph
5e5c9bb9f24d95aee190b914dd2d44122fc3be53
[ "Apache-2.0" ]
2
2019-04-16T06:41:49.000Z
2019-05-06T14:08:13.000Z
tests/test_serde.py
rsumner31/ngraph
5e5c9bb9f24d95aee190b914dd2d44122fc3be53
[ "Apache-2.0" ]
11
2018-06-16T15:59:08.000Z
2021-03-06T00:45:30.000Z
# ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import os from copy import deepcopy import numpy as np import ngraph as ng from ngraph.op_graph.op_graph import Op import ngraph.op_graph.serde.serde as ser from ngraph.op_graph.serde.serde_pass import SerializationPass from ngraph.testing.hetr_utils import create_send_recv_graph def get_simple_graph(): ax = ng.make_axes([ng.make_axis(name='C', length=1)]) base_op = ng.constant(5.0, ax) simple_graph = ng.log(ng.exp(base_op)) return base_op, simple_graph def strip_dict(d): """ For equality testing we need to remove attributes of dicts that are either unique to each instance or need more complex equality handling """ keys = ('_NameableValue__name', '_axes', '_args', 'valfun', 'dtype', 'scale', '_tensor', '_send_node') for key in keys: if key in d: del d[key] def assert_object_equality(obj1, obj2): if hasattr(obj1, '_args'): for arg1, arg2 in zip(obj1._args, obj2._args): assert_object_equality(arg1, arg2) d1 = deepcopy(obj1.__dict__) strip_dict(d1) d2 = deepcopy(obj2.__dict__) strip_dict(d2) assert d1 == d2 def test_flattenedaxis_serialization(): # We do a round robin serialization run with an axis and make sure that they match c = ng.make_axis(name='C', length=2) h = ng.make_axis(name='H', length=3) orig_axis = ng.make_axes([c, h]).flatten() pb_axis = ser.axis_to_protobuf(orig_axis) py_axis = ser.pb_to_axis(pb_axis) assert py_axis.length == orig_axis.length # NameableValue name counter is different # assert orig_axis.name == py_axis.name assert type(py_axis) == type(orig_axis) assert orig_axis == py_axis def test_axis_serialization(): # We do a round robin serialization run with an axis and make sure that they match axis = ng.make_axis(name='C', length=2) pb_axis = ser.axis_to_protobuf(axis) py_axis = ser.pb_to_axis(pb_axis) assert axis.length == py_axis.length assert axis.name == py_axis.name assert axis == py_axis def test_tensor_to_protobuf(): orig_tensor = np.arange(12, dtype=np.float32).reshape(3, 4) pb_tensor = ser.tensor_to_protobuf(orig_tensor) py_tensor = ser.pb_to_tensor(pb_tensor) np.testing.assert_allclose(orig_tensor, py_tensor) def test_scalar_to_protobuf(): orig_tensor = np.float32(12) pb_tensor = ser.tensor_to_protobuf(orig_tensor) py_tensor = ser.pb_to_tensor(pb_tensor) np.testing.assert_allclose(orig_tensor, py_tensor) def test_op_to_protobuf(): axis = ng.make_axis(name='C', length=2) axes = ng.make_axes([axis]) orig_op = ng.placeholder(axes) # Test attributes orig_op.test0 = 'stringval_attr' orig_op.test1 = [-1.0, 4] orig_op.test2 = dict(foo=2, you='bar') orig_op.test3 = dict() orig_op.test4 = slice(1, 3, 5) orig_op.test5 = slice(1, 3) orig_op.test6 = slice(1, None, 3) orig_op.test7 = axis orig_op.test8 = axes # Test metadata orig_op.metadata['test0'] = 'stringval' orig_op.metadata['test1'] = [1, 4.0] orig_op.metadata['test2'] = dict(hey=1, you=4.0) orig_op.metadata['test4'] = dict() orig_op.metadata['test5'] = slice(1, 3, 5) orig_op.metadata['test6'] = slice(1, 3) orig_op.metadata['test7'] = slice(1, None, 5) orig_op.metadata['test8'] = axis orig_op.metadata['test9'] = axes pb_op = ser.op_to_protobuf(orig_op) py_op = ser.protobuf_to_op(pb_op) assert_object_equality(py_op, orig_op) def test_op_references(): # test op references in arbitrary attributes orig_op = ng.placeholder(()) other_op = ng.placeholder(()).named("foo") orig_op.op_ref = other_op orig_op.many_op_refs = [other_op] ser_string = ser.serialize_graph([orig_op], only_return_handle_ops=True) py_op = ser.deserialize_graph(ser_string)[0] assert py_op.op_ref.name.startswith('foo') assert py_op.many_op_refs[0].name.startswith('foo') def test_full_graph_serialization_endtoend(): base_op, simple_graph = get_simple_graph() ser_string = ser.serialize_graph([simple_graph]) py_graph = ser.deserialize_graph(ser_string) orig_graph = Op.all_op_references([simple_graph]) # This is actually overkill since the checks of the leaf nodes will recursively # check equality up the graph, but we also want to make sure the full set of nodes # returned is equal for o1, o2 in zip(sorted(py_graph, key=lambda x: x.uuid), sorted(orig_graph, key=lambda x: x.uuid)): assert_object_equality(o1, o2) def test_op_handle_selection(): """ When serializing graphs, we can optionally add metadata to those nodes we pass in, and return only those nodes when deserializing. This is useful for ngraph transparent testing since it is common in ngraph to use the final op as the 'handle' to the entire graph. """ base_op, simple_graph = get_simple_graph() ser_string = ser.serialize_graph([simple_graph], only_return_handle_ops=True) py_graph = ser.deserialize_graph(ser_string) assert len(py_graph) == 1 assert_object_equality(simple_graph, py_graph[0]) def test_ser_pass(): _, graph = get_simple_graph() ser_pass = SerializationPass('mypass_token') fname = ser_pass.tmpfile.name ser_pass.do_pass(ops=[graph]) assert os.path.getsize(fname) > 0 os.unlink(fname) def test_hetr_send_recv_graph_serialization(): """ test serializing send/recv ops defined in comm_nodes for hetr communication """ z, recv_x, recv_x_plus_one, send_x, x_plus_one, from_node, send_x_plus_one = \ create_send_recv_graph() ser_string = ser.serialize_graph([z]) py_graph = ser.deserialize_graph(ser_string) orig_graph = Op.all_op_references([z]) for o1, o2 in zip(sorted(py_graph, key=lambda x: x.uuid), sorted(orig_graph, key=lambda x: x.uuid)): assert_object_equality(o1, o2) def test_all_op_references(): base_op, simple_graph = get_simple_graph() leaf_all_ops = Op.all_op_references([simple_graph]) assert base_op in leaf_all_ops assert simple_graph in leaf_all_ops base_all_ops = Op.all_op_references([base_op]) assert base_op in base_all_ops assert simple_graph not in base_all_ops
34.704433
93
0.690277
c672aef23bbfc0d5ba55d84917d192681a65c318
589
py
Python
manti_by/apps/blog/migrations/0014_auto_20180619_1106.py
manti-by/m2
ee2d2bad412c265962675c94dbfd29cdec07910c
[ "BSD-3-Clause" ]
2
2017-09-07T09:28:29.000Z
2018-04-10T03:03:32.000Z
manti_by/apps/blog/migrations/0014_auto_20180619_1106.py
manti-by/m2
ee2d2bad412c265962675c94dbfd29cdec07910c
[ "BSD-3-Clause" ]
11
2021-03-23T13:59:39.000Z
2022-02-02T10:16:58.000Z
manti_by/apps/blog/migrations/0014_auto_20180619_1106.py
manti-by/Manti.by
ee2d2bad412c265962675c94dbfd29cdec07910c
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 1.11.13 on 2018-06-19 11:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("blog", "0013_auto_20180525_1219")] operations = [ migrations.AddField( model_name="post", name="updated", field=models.DateTimeField(auto_now=True, verbose_name="Updated, UTC"), ), migrations.AlterField( model_name="post", name="created", field=models.DateTimeField(auto_now_add=True, verbose_name="Created, UTC"), ), ]
26.772727
87
0.611205
d7d4c7ad012e3b43e9009c14cb452f44156e6b61
2,007
py
Python
LogOX/main.py
MrEluzium/LogOX
fb1242be0bab223efa7837e9d319232f7a0cd80e
[ "Apache-2.0" ]
3
2022-01-22T18:41:39.000Z
2022-02-05T13:52:11.000Z
LogOX/main.py
MrEluzium/LogOX
fb1242be0bab223efa7837e9d319232f7a0cd80e
[ "Apache-2.0" ]
null
null
null
LogOX/main.py
MrEluzium/LogOX
fb1242be0bab223efa7837e9d319232f7a0cd80e
[ "Apache-2.0" ]
1
2022-02-23T09:41:06.000Z
2022-02-23T09:41:06.000Z
""" Copyright 2022 Artem Voronov <mreluzium@mail.ru> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys import logging from logging import handlers from datetime import datetime from pathlib import Path from LogOX.formatter import FormatterOX _FORMATTER = FormatterOX() def _get_console_handler(): console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(_FORMATTER) return console_handler def _get_file_handler(): try: Path("log").mkdir(exist_ok=True) except OSError: raise else: file_handler = handlers.TimedRotatingFileHandler(r'log\{:%Y-%m-%d}.log'.format(datetime.now()), when='D') file_handler.setFormatter(_FORMATTER) return file_handler def get_logger(name=None, level=logging.INFO): if not name: # Getting name of module which the logger is being created # __import__('inspect').stack()[1].filename returns caller's full file path # .split("\\")[-1] returns module's filename # [:-3] removes .py at the end of filename name = __import__('inspect').stack()[1].filename.split("\\")[-1][:-3] logger = logging.getLogger(name) logger.setLevel(level) logger.addHandler(_get_console_handler()) try: logger.addHandler(_get_file_handler()) except OSError: logger.exception("Can't create log file. Console-only logging.") logger.propagate = False # Give access to multiply handlers logging return logger
31.857143
113
0.709018
bd9b1bf39d0b5c82f80912c43597a171e265792b
509
py
Python
docs_src/async_methods/query_single/example.py
samnimoh/pydapper
28e02a82339c4373aae043483868c84946e4aca9
[ "MIT" ]
19
2022-01-19T15:30:57.000Z
2022-03-10T15:15:56.000Z
docs_src/async_methods/query_single/example.py
samnimoh/pydapper
28e02a82339c4373aae043483868c84946e4aca9
[ "MIT" ]
17
2022-01-19T06:23:35.000Z
2022-03-06T17:09:25.000Z
docs_src/async_methods/query_single/example.py
samnimoh/pydapper
28e02a82339c4373aae043483868c84946e4aca9
[ "MIT" ]
2
2022-02-05T02:18:02.000Z
2022-02-17T08:39:54.000Z
import asyncio import datetime from dataclasses import dataclass from pydapper import connect_async @dataclass class Task: id: int description: str due_date: datetime.date owner_id: int async def main(): async with connect_async() as commands: task = await commands.query_single_async("select * from task where id = 1", model=Task) print(task) # Task(id=1, description='Set up a test database', due_date=datetime.date(2021, 12, 31), owner_id=1) asyncio.run(main())
20.36
104
0.711198
c9d9d70a62c52580b221ccfbcf8cb99754d78f51
6,296
py
Python
locobot/test/test_interpreter_mock.py
Dhiraj100892/droidlet
e4ea578672531524552b6ff021165fc9371b0ec8
[ "MIT" ]
null
null
null
locobot/test/test_interpreter_mock.py
Dhiraj100892/droidlet
e4ea578672531524552b6ff021165fc9371b0ec8
[ "MIT" ]
null
null
null
locobot/test/test_interpreter_mock.py
Dhiraj100892/droidlet
e4ea578672531524552b6ff021165fc9371b0ec8
[ "MIT" ]
null
null
null
""" Copyright (c) Facebook, Inc. and its affiliates. """ import unittest import sys import os BASE_DIR = os.path.join(os.path.dirname(__file__), "../../") sys.path.append(BASE_DIR) import numpy as np from base_fakeagent_test_case import BaseFakeAgentTestCase import rotation from all_test_commands import MOVE_COMMANDS, GROUND_TRUTH_PARSES from test_utils import assert_turn_degree CUBE1 = (9, 0, 4) CUBE2 = (9, 0, 10) TOY = (2, 0, 4) CAMERA_HEIGHT = 1.0 def add_two_cubes(test): test.agent.add_object(CUBE1, tags=["cube", "_physical_object"]) test.agent.add_object(CUBE2, tags=["cube", "_physical_object"]) def add_a_toy(test): test.agent.add_object(TOY, tags=["toy", "_physical_object"]) # test.set_looking_at(test.cube_right[0][0]) class MoveAbsoluteTest(BaseFakeAgentTestCase): """Test for Move.""" def assert_move(self, reldir, steps, changes): old_pos = changes[0]["agent"]["pos"] new_pos = changes[1]["agent"]["pos"] start_base_yaw = changes[0]["agent"]["base_yaw"] reldir_vec = rotation.DIRECTIONS[reldir] dir_vec = rotation.transform(reldir_vec, start_base_yaw, 0, inverted=True) dir_vec = np.array([dir_vec[0], dir_vec[2]], dtype="float32") tocheck_pos = np.around(old_pos + steps * dir_vec, 2) self.assertEqual(new_pos[0], tocheck_pos[0]) self.assertEqual(new_pos[1], tocheck_pos[1]) def setUp(self): super().setUp() def test_move_forward(self): d = MOVE_COMMANDS["move_forward"] changes = self.handle_logical_form(d) self.assert_move("FRONT", 1, changes) def test_move_right(self): d = GROUND_TRUTH_PARSES["go right 3 feet"] changes = self.handle_logical_form(d) self.assert_move("RIGHT", 3, changes) def test_move_left(self): d = GROUND_TRUTH_PARSES["go left 4 feet"] changes = self.handle_logical_form(d) self.assert_move("LEFT", 4, changes) def test_move_coordinates(self): d = MOVE_COMMANDS["move to -7 0 -8"] target = np.array((-7, -8)) self.handle_logical_form(d) # check that agent moved self.assertLessEqual(np.linalg.norm(self.agent.pos - target), 1) def test_action_sequence_order(self): d = MOVE_COMMANDS["move to 3 0 2 then 7 0 7"] target = np.array((7, 7)) print(d) self.handle_logical_form(d) print(self.agent.pos) self.assertLessEqual(np.linalg.norm(self.agent.pos - target), 1) def test_stop(self): # start moving target = np.array((-7, -8)) d = MOVE_COMMANDS["move to -7 0 -8"] self.handle_logical_form(d, max_steps=5) # stop d = MOVE_COMMANDS["stop"] self.handle_logical_form(d) # assert that move did not complete self.assertGreater(np.linalg.norm(self.agent.pos - target), 1) class MoveRefObjectsTest(BaseFakeAgentTestCase): def setUp(self): super().setUp() add_two_cubes(self) # do this one after we have players # def test_move_here(self): # d = MOVE_COMMANDS["move here"] # self.handle_logical_form(d) # # # check that agent moved # self.assertLessEqual(euclid_dist(self.agent.pos, self.get_speaker_pos()), 1) def test_go_to_the_cube(self): d = MOVE_COMMANDS["go to the cube"] self.handle_logical_form(d) assert np.abs(self.agent.pos[1] - CUBE1[2]) < 1 or np.abs(self.agent.pos[1] - CUBE2[2]) < 1 def test_between_cubes(self): d = MOVE_COMMANDS["go between the cubes"] self.handle_logical_form(d) print(self.agent.pos) assert self.agent.pos[1] > CUBE1[2] and self.agent.pos[1] < CUBE2[2] class GetBringTest(BaseFakeAgentTestCase): def setUp(self): super().setUp() add_a_toy(self) def test_get_toy(self): d = MOVE_COMMANDS["get the toy"] self.handle_logical_form(d) d = MOVE_COMMANDS["move to -7 0 -8"] self.handle_logical_form(d) p = self.agent.world.objects[0]["pos"] ap = self.agent.pos assert (np.abs(ap[0] - p[0]) + np.abs(ap[1] - p[2])) < 1 class TurnTest(BaseFakeAgentTestCase): """Tests turn. Left turn is positive yaw, right turn is negative yaw. """ def setUp(self): super().setUp() def test_turn_right(self): d = GROUND_TRUTH_PARSES["turn right 90 degrees"] changes = self.handle_logical_form(d) old_yaw = changes[0]["agent"]["base_yaw"] new_yaw = changes[1]["agent"]["base_yaw"] assert_turn_degree(old_yaw, new_yaw, -90) def test_turn_left(self): d = GROUND_TRUTH_PARSES["turn left 90 degrees"] changes = self.handle_logical_form(d) old_yaw = changes[0]["agent"]["base_yaw"] new_yaw = changes[1]["agent"]["base_yaw"] assert_turn_degree(old_yaw, new_yaw, 90) class DanceTest(BaseFakeAgentTestCase): """Tests for dance.""" def setUp(self): super().setUp() self.agent.add_object(CUBE1, tags=["cube"]) self.agent.world.players = [] def test_dance(self): # just checks for exceptions d = GROUND_TRUTH_PARSES["wave"] self.handle_logical_form(d) def test_look_at_cube(self): d = MOVE_COMMANDS["look at the cube"] self.handle_logical_form(d) camera_pos = [self.agent.pos[0], CAMERA_HEIGHT, self.agent.pos[1]] loc = self.agent.world.get_line_of_sight( camera_pos, self.agent.base_yaw + self.agent.pan, self.agent.pitch ) self.assertLessEqual( np.linalg.norm(loc - np.array(self.agent.world.objects[0]["pos"])), 0.01 ) d = MOVE_COMMANDS["move to -7 0 -8"] self.handle_logical_form(d) d = MOVE_COMMANDS["look at the cube"] self.handle_logical_form(d) camera_pos = [self.agent.pos[0], CAMERA_HEIGHT, self.agent.pos[1]] loc = self.agent.world.get_line_of_sight( camera_pos, self.agent.base_yaw + self.agent.pan, self.agent.pitch ) self.assertLessEqual( np.linalg.norm(loc - np.array(self.agent.world.objects[0]["pos"])), 0.01 ) if __name__ == "__main__": unittest.main()
30.563107
99
0.629447
47b2c4864606d4566c19f7b41f90b7937c7127b5
374
py
Python
apps/asset/serializer/idc.py
plsof/tabops_api
39f5d2fd5158ae0c22e43ab6ff7e2b07a68a62d8
[ "MIT" ]
1
2019-07-31T07:34:38.000Z
2019-07-31T07:34:38.000Z
apps/asset/serializer/idc.py
plsof/tabops_api
39f5d2fd5158ae0c22e43ab6ff7e2b07a68a62d8
[ "MIT" ]
9
2019-12-05T00:39:29.000Z
2022-02-10T14:13:29.000Z
apps/asset/serializer/idc.py
plsof/tabops_api
39f5d2fd5158ae0c22e43ab6ff7e2b07a68a62d8
[ "MIT" ]
null
null
null
from rest_framework import serializers from ..models import Idc class IdcSerializer(serializers.ModelSerializer): isp_name = serializers.SerializerMethodField() class Meta: model = Idc fields = ['id', 'name', 'address', 'isp', 'bandwidth', 'ip_range', 'comment', 'isp_name'] def get_isp_name(self, obj): return obj.get_isp_display()
24.933333
97
0.681818
fc1cd0da6bddf183b034db63f73a3ae6d2bcb57e
261
py
Python
Leetcode/0078. Subsets/0078.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
Leetcode/0078. Subsets/0078.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
Leetcode/0078. Subsets/0078.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: ans = [] def dfs(s: int, path: List[int]) -> None: ans.append(path) for i in range(s, len(nums)): dfs(i + 1, path + [nums[i]]) dfs(0, []) return ans
20.076923
56
0.521073
63690e89fc7c44fce7014ed4d889f0d77ae5360c
7,457
py
Python
tests/unit_tests/test_simulator.py
larioandr/pydesim
4b04c07ddff71be0771270301c90cffb91886083
[ "MIT" ]
1
2020-09-08T11:28:21.000Z
2020-09-08T11:28:21.000Z
tests/unit_tests/test_simulator.py
larioandr/pydesim
4b04c07ddff71be0771270301c90cffb91886083
[ "MIT" ]
null
null
null
tests/unit_tests/test_simulator.py
larioandr/pydesim
4b04c07ddff71be0771270301c90cffb91886083
[ "MIT" ]
null
null
null
from unittest.mock import patch, ANY, Mock import pytest from pydesim import simulate, Model def test_simulate_signature(): ret = simulate({}, init=None, fin=None, handlers={}, stime_limit=1) assert ret.stime == 0 assert ret.data == {} def test_simulate_executes_init_and_fin(): """In this test we validate that `simulate()` calls init and fin methods. """ data = [] def init(sim): sim.data.append(1) def fin(sim): sim.data.append('A') ret = simulate(data, init=init, fin=fin, handlers={}, stime_limit=1) assert ret.stime == 0 assert ret.data == [1, 'A'] def test_simulate_accepts_classes_with_create_method(): class ModelData: default_value = 'correct value' def __init__(self, value='incorrect value'): self.value = value @classmethod def create(cls): return ModelData(cls.default_value) ret_for_default_value = simulate(ModelData) ModelData.default_value = 'some new value' ret_for_updated_value = simulate(ModelData) assert ret_for_default_value.data.value == 'correct value' assert ret_for_updated_value.data.value == 'some new value' def test_simulate_accept_classes_without_create(): class ModelData: default_value = 'default value' def __init__(self): self.value = ModelData.default_value ret_for_default_value = simulate(ModelData) ModelData.default_value = 'new value' ret_for_updated_value = simulate(ModelData) assert ret_for_default_value.data.value == 'default value' assert ret_for_updated_value.data.value == 'new value' def test_scheduled_methods_are_called_in_chain(): def write_some_data(sim, value='first'): sim.data.append(value) if value == 'first': sim.schedule(3, write_some_data, args=('second',)) elif value == 'second': sim.schedule(10, write_some_data, kwargs={'value': 'third'}) def init(sim): sim.schedule(1, write_some_data) ret = simulate([], init=init) assert ret.stime == 14 assert ret.data == ['first', 'second', 'third'] def test_handlers_can_be_passed_and_accessed_via_sim_handlers_field(): def f1(sim): sim.data.append(1) sim.schedule(0, sim.handlers.get('second')) def f2(sim): sim.data.append(2) sim.schedule(0, sim.handlers.third) def f3(sim): sim.data.append(3) def init(sim): sim.schedule(0, sim.handlers['first']) ret = simulate([], init=init, handlers=dict(first=f1, second=f2, third=f3)) assert ret.data == [1, 2, 3] def test_schedule_multiple_events(): def handler(sim): sim.data.append(sim.stime) def init(sim): sim.schedule(1, handler) sim.schedule(2, handler) ret = simulate([], init=init) assert ret.data == [1, 2] def test_schedule_orders_events_by_time(): def f(sim): sim.data.append(f'{int(sim.stime)}F') sim.schedule(1.0, g) def g(sim): sim.data.append(f'{int(sim.stime)}G') def h(sim): sim.data.append(f'{int(sim.stime)}H') def init(sim): sim.schedule(1.0, f) sim.schedule(4.0, f) sim.schedule(3.0, h) ret = simulate([], init) assert ret.data == ['1F', '2G', '3H', '4F', '5G'] def test_schedule_accept_none_handler_by_changing_only_time(): def init(sim): sim.schedule(5) ret = simulate([], init=init) assert ret.stime == 5 def test_schedule_negative_delays_not_allowed(): def invalid_init(sim): sim.schedule(-1) def invalid_handler(sim): sim.schedule(-0.1) def valid_init(sim): sim.schedule(10, invalid_handler) with pytest.raises(ValueError) as excinfo1: simulate([], init=invalid_init) with pytest.raises(ValueError) as excinfo2: simulate([], init=valid_init) assert "negative delay" in str(excinfo1.value).lower() assert "negative delay" in str(excinfo2.value).lower() def test_stime_is_readonly(): def valid_handler(sim): sim.data.append('OK') def valid_init(sim): sim.schedule(1, sim.handlers.handler) with pytest.raises(AttributeError) as excinfo1: def invalid_init(sim): sim.stime = 10 simulate([], init=invalid_init) with pytest.raises(AttributeError) as excinfo2: def invalid_handler(sim): sim.stime += 1 simulate([], init=valid_init, handlers={'handler': invalid_handler}) with pytest.raises(AttributeError) as excinfo3: def invalid_fin(sim): sim.stime -= 1 simulate([], init=valid_init, fin=invalid_fin, handlers={ 'handler': valid_handler }) assert 'set attribute' in str(excinfo1.value) assert 'set attribute' in str(excinfo2.value) assert 'set attribute' in str(excinfo3.value) def test_sim_provide_cancel_operation(): def init(sim): eid = sim.schedule(1) sim.cancel(eid) ret = simulate([], init) assert ret.stime == 0 assert ret.num_events == 0 def test_simulate_with_stime_limit(): def f(sim): sim.data.append('f') sim.schedule(2, g) def g(sim): sim.data.append('g') def init(sim): sim.schedule(1, f) sim.data.append('init') ret1 = simulate([], init, stime_limit=0.5) ret2 = simulate([], init, stime_limit=1) ret3 = simulate([], init, stime_limit=2) ret4 = simulate([], init, stime_limit=3) assert ret1.data == ['init'] assert ret2.data == ['init', 'f'] assert ret3.data == ['init', 'f'] assert ret4.data == ['init', 'f', 'g'] assert ret1.num_events == 0 assert ret2.num_events == 1 assert ret3.num_events == 1 assert ret4.num_events == 2 assert ret1.stime == 1 assert ret2.stime == 3 assert ret3.stime == 3 assert ret4.stime == 3 def test_simulate_accepts_params(): params = {'x': 10, 'y': 'hello'} with patch('pydesim.simulator.Simulator') as SimulatorMock: simulate([], params=params) SimulatorMock.assert_called_with(ANY, [], ANY, params, ANY) def test_params_accessible_via_getattr_and_getitem(): params = {'x': 10, 'y': 'hello'} def init(sim): assert sim.params.x == 10 assert sim.params['x'] == 10 assert sim.params.y == 'hello' simulate([], init=init, params=params) def test_array_returned_when_params_are_given_in_array(): params = [{'x': 1}, {'x': 2}] data_class = Mock() result = simulate(data_class, params=params) assert result[0].params.as_dict() == {'x': 1} assert result[1].params.as_dict() == {'x': 2} def test_simulate_calls_constructor_without_parameters_but_with_sim(): with patch('pydesim.simulator.Simulator') as SimulatorMock: class SomeModel(Model): def __init__(self, sim): assert isinstance(sim, SimulatorMock) super().__init__(self, sim) assert sim.params.x == 10 assert sim.params.y == 'hello' result = simulate(SomeModel, params={'x': 10, 'y': 'hello'})
26.727599
80
0.603326
f88d87f82450aa8525f098a1687cfb94ccc080d3
275
py
Python
bstnode.py
Vlada04/bst
bda30f5e5bf55426c996b49f018aed5e9919e169
[ "MIT" ]
null
null
null
bstnode.py
Vlada04/bst
bda30f5e5bf55426c996b49f018aed5e9919e169
[ "MIT" ]
null
null
null
bstnode.py
Vlada04/bst
bda30f5e5bf55426c996b49f018aed5e9919e169
[ "MIT" ]
null
null
null
""" File: bstnode.py Author: Ken Lambert """ class BSTNode(object): """Represents a node for a linked binary search tree.""" def __init__(self, data, left = None, right = None): self.data = data self.left = left self.right = right
22.916667
61
0.589091
f22e11f52ab9d95b91cc4fb8d4ea20a8c6e39356
272
py
Python
tests/prime_number/sieve_of_eratosthenes/std.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
tests/prime_number/sieve_of_eratosthenes/std.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
tests/prime_number/sieve_of_eratosthenes/std.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
from kgmk.dsa.number_theory.sieve_of_eratosthenes import ( SieveOfEratosthenes, ) def test(): fn = SieveOfEratosthenes() a = fn(1000000) print(a[:10]) a = fn.gpf(10000) print(a[:10]) a = fn.lpf(10000) print(a[:10]) if __name__ == '__main__': test()
14.315789
58
0.647059
3edae763099237eefaba2e1b52f56533c2013a1d
304
py
Python
modules/2.79/bpy/types/BevelModifier.py
cmbasnett/fake-bpy-module
acb8b0f102751a9563e5b5e5c7cd69a4e8aa2a55
[ "MIT" ]
null
null
null
modules/2.79/bpy/types/BevelModifier.py
cmbasnett/fake-bpy-module
acb8b0f102751a9563e5b5e5c7cd69a4e8aa2a55
[ "MIT" ]
null
null
null
modules/2.79/bpy/types/BevelModifier.py
cmbasnett/fake-bpy-module
acb8b0f102751a9563e5b5e5c7cd69a4e8aa2a55
[ "MIT" ]
null
null
null
class BevelModifier: angle_limit = None edge_weight_method = None limit_method = None loop_slide = None material = None offset_type = None profile = None segments = None use_clamp_overlap = None use_only_vertices = None vertex_group = None width = None
17.882353
29
0.664474
7d4376004027f161aa144bd29483c01cbea342bb
25,412
py
Python
test/test_post_flag_scheduled_changes_input.py
launchdarkly/api-client-python
b72bd94fb65ac57bd95df5767aebcdaff50e5cb6
[ "Apache-2.0" ]
6
2020-02-06T20:17:25.000Z
2021-12-28T20:13:34.000Z
test/test_post_flag_scheduled_changes_input.py
launchdarkly/api-client-python
b72bd94fb65ac57bd95df5767aebcdaff50e5cb6
[ "Apache-2.0" ]
7
2019-02-18T21:51:47.000Z
2021-09-03T17:49:33.000Z
test/test_post_flag_scheduled_changes_input.py
launchdarkly/api-client-python
b72bd94fb65ac57bd95df5767aebcdaff50e5cb6
[ "Apache-2.0" ]
6
2019-08-02T16:10:31.000Z
2021-05-23T17:47:03.000Z
# -*- coding: utf-8 -*- """ LaunchDarkly REST API # Overview ## Authentication All REST API resources are authenticated with either [personal or service access tokens](https://docs.launchdarkly.com/home/account-security/api-access-tokens), or session cookies. Other authentication mechanisms are not supported. You can manage personal access tokens on your [Account settings](https://app.launchdarkly.com/settings/tokens) page. LaunchDarkly also has SDK keys, mobile keys, and client-side IDs that are used by our server-side SDKs, mobile SDKs, and client-side SDKs, respectively. **These keys cannot be used to access our REST API**. These keys are environment-specific, and can only perform read-only operations (fetching feature flag settings). | Auth mechanism | Allowed resources | Use cases | | ----------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------- | -------------------------------------------------- | | [Personal access tokens](https://docs.launchdarkly.com/home/account-security/api-access-tokens) | Can be customized on a per-token basis | Building scripts, custom integrations, data export | | SDK keys | Can only access read-only SDK-specific resources and the firehose, restricted to a single environment | Server-side SDKs, Firehose API | | Mobile keys | Can only access read-only mobile SDK-specific resources, restricted to a single environment | Mobile SDKs | | Client-side ID | Single environment, only flags marked available to client-side | Client-side JavaScript | > #### Keep your access tokens and SDK keys private > > Access tokens should _never_ be exposed in untrusted contexts. Never put an access token in client-side JavaScript, or embed it in a mobile application. LaunchDarkly has special mobile keys that you can embed in mobile apps. If you accidentally expose an access token or SDK key, you can reset it from your [Account Settings](https://app.launchdarkly.com/settings#/tokens) page. > > The client-side ID is safe to embed in untrusted contexts. It's designed for use in client-side JavaScript. ### Via request header The preferred way to authenticate with the API is by adding an `Authorization` header containing your access token to your requests. The value of the `Authorization` header must be your access token. Manage personal access tokens from the [Account Settings](https://app.launchdarkly.com/settings/tokens) page. ### Via session cookie For testing purposes, you can make API calls directly from your web browser. If you're logged in to the application, the API will use your existing session to authenticate calls. If you have a [role](https://docs.launchdarkly.com/home/team/built-in-roles) other than Admin, or have a [custom role](https://docs.launchdarkly.com/home/team/custom-roles) defined, you may not have permission to perform some API calls. You will receive a `401` response code in that case. > ### Modifying the Origin header causes an error > > LaunchDarkly validates that the Origin header for any API request authenticated by a session cookie matches the expected Origin header. The expected Origin header is `https://app.launchdarkly.com`. > > If the Origin header does not match what's expected, LaunchDarkly returns an error. This error can prevent the LaunchDarkly app from working correctly. > > Any browser extension that intentionally changes the Origin header can cause this problem. For example, the `Allow-Control-Allow-Origin: *` Chrome extension changes the Origin header to `http://evil.com` and causes the app to fail. > > To prevent this error, do not modify your Origin header. > > LaunchDarkly does not require origin matching when authenticating with an access token, so this issue does not affect normal API usage. ## Representations All resources expect and return JSON response bodies. Error responses will also send a JSON body. Read [Errors](#section/Errors) for a more detailed description of the error format used by the API. In practice this means that you always get a response with a `Content-Type` header set to `application/json`. In addition, request bodies for `PUT`, `POST`, `REPORT` and `PATCH` requests must be encoded as JSON with a `Content-Type` header set to `application/json`. ### Summary and detailed representations When you fetch a list of resources, the response includes only the most important attributes of each resource. This is a _summary representation_ of the resource. When you fetch an individual resource (for example, a single feature flag), you receive a _detailed representation_ containing all of the attributes of the resource. The best way to find a detailed representation is to follow links. Every summary representation includes a link to its detailed representation. ### Links and addressability The best way to navigate the API is by following links. These are attributes in representations that link to other resources. The API always uses the same format for links: - Links to other resources within the API are encapsulated in a `_links` object. - If the resource has a corresponding link to HTML content on the site, it is stored in a special `_site` link. Each link has two attributes: an href (the URL) and a type (the content type). For example, a feature resource might return the following: ```json { \"_links\": { \"parent\": { \"href\": \"/api/features\", \"type\": \"application/json\" }, \"self\": { \"href\": \"/api/features/sort.order\", \"type\": \"application/json\" } }, \"_site\": { \"href\": \"/features/sort.order\", \"type\": \"text/html\" } } ``` From this, you can navigate to the parent collection of features by following the `parent` link, or navigate to the site page for the feature by following the `_site` link. Collections are always represented as a JSON object with an `items` attribute containing an array of representations. Like all other representations, collections have `_links` defined at the top level. Paginated collections include `first`, `last`, `next`, and `prev` links containing a URL with the respective set of elements in the collection. ## Updates Resources that accept partial updates use the `PATCH` verb, and support the [JSON Patch](https://datatracker.ietf.org/doc/html/rfc6902) format. Some resources also support the [JSON Merge Patch](https://datatracker.ietf.org/doc/html/rfc7386) format. In addition, some resources support optional comments that can be submitted with updates. Comments appear in outgoing webhooks, the audit log, and other integrations. ### Updates via JSON Patch [JSON Patch](https://datatracker.ietf.org/doc/html/rfc6902) is a way to specify the modifications to perform on a resource. For example, in this feature flag representation: ```json { \"name\": \"New recommendations engine\", \"key\": \"engine.enable\", \"description\": \"This is the description\", ... } ``` You can change the feature flag's description with the following patch document: ```json [{ \"op\": \"replace\", \"path\": \"/description\", \"value\": \"This is the new description\" }] ``` JSON Patch documents are always arrays. You can specify multiple modifications to perform in a single request. You can also test that certain preconditions are met before applying the patch: ```json [ { \"op\": \"test\", \"path\": \"/version\", \"value\": 10 }, { \"op\": \"replace\", \"path\": \"/description\", \"value\": \"The new description\" } ] ``` The above patch request tests whether the feature flag's `version` is `10`, and if so, changes the feature flag's description. Attributes that aren't editable, like a resource's `_links`, have names that start with an underscore. ### Updates via JSON Merge Patch The API also supports the [JSON Merge Patch](https://datatracker.ietf.org/doc/html/rfc7386) format, as well as the [Update feature flag](/tag/Feature-flags#operation/patchFeatureFlag) resource. JSON Merge Patch is less expressive than JSON Patch but in many cases, it is simpler to construct a merge patch document. For example, you can change a feature flag's description with the following merge patch document: ```json { \"description\": \"New flag description\" } ``` ### Updates with comments You can submit optional comments with `PATCH` changes. The [Update feature flag](/tag/Feature-flags#operation/patchFeatureFlag) resource supports comments. To submit a comment along with a JSON Patch document, use the following format: ```json { \"comment\": \"This is a comment string\", \"patch\": [{ \"op\": \"replace\", \"path\": \"/description\", \"value\": \"The new description\" }] } ``` To submit a comment along with a JSON Merge Patch document, use the following format: ```json { \"comment\": \"This is a comment string\", \"merge\": { \"description\": \"New flag description\" } } ``` ### Updates via semantic patches The API also supports the Semantic patch format. A semantic `PATCH` is a way to specify the modifications to perform on a resource as a set of executable instructions. JSON Patch uses paths and a limited set of operations to describe how to transform the current state of the resource into a new state. Semantic patch allows you to be explicit about intent using precise, custom instructions. In many cases, semantic patch instructions can also be defined independently of the current state of the resource. This can be useful when defining a change that may be applied at a future date. For example, in this feature flag configuration in environment Production: ```json { \"name\": \"Alternate sort order\", \"kind\": \"boolean\", \"key\": \"sort.order\", ... \"environments\": { \"production\": { \"on\": true, \"archived\": false, \"salt\": \"c29ydC5vcmRlcg==\", \"sel\": \"8de1085cb7354b0ab41c0e778376dfd3\", \"lastModified\": 1469131558260, \"version\": 81, \"targets\": [ { \"values\": [ \"Gerhard.Little@yahoo.com\" ], \"variation\": 0 }, { \"values\": [ \"1461797806429-33-861961230\", \"438580d8-02ee-418d-9eec-0085cab2bdf0\" ], \"variation\": 1 } ], \"rules\": [], \"fallthrough\": { \"variation\": 0 }, \"offVariation\": 1, \"prerequisites\": [], \"_site\": { \"href\": \"/default/production/features/sort.order\", \"type\": \"text/html\" } } } } ``` You can add a date you want a user to be removed from the feature flag's user targets. For example, โ€œremove user 1461797806429-33-861961230 from the user target for variation 0 on the Alternate sort order flag in the production environment on Wed Jul 08 2020 at 15:27:41 pmโ€. This is done using the following: ```json { \"comment\": \"update expiring user targets\", \"instructions\": [ { \"kind\": \"removeExpireUserTargetDate\", \"userKey\": \"userKey\", \"variationId\": \"978d53f9-7fe3-4a63-992d-97bcb4535dc8\" }, { \"kind\": \"updateExpireUserTargetDate\", \"userKey\": \"userKey2\", \"variationId\": \"978d53f9-7fe3-4a63-992d-97bcb4535dc8\", \"value\": 1587582000000 }, { \"kind\": \"addExpireUserTargetDate\", \"userKey\": \"userKey3\", \"variationId\": \"978d53f9-7fe3-4a63-992d-97bcb4535dc8\", \"value\": 1594247266386 } ] } ``` Here is another example. In this feature flag configuration: ```json { \"name\": \"New recommendations engine\", \"key\": \"engine.enable\", \"environments\": { \"test\": { \"on\": true } } } ``` You can change the feature flag's description with the following patch document as a set of executable instructions. For example, โ€œadd user X to targets for variation Y and remove user A from targets for variation B for test flagโ€: ```json { \"comment\": \"\", \"instructions\": [ { \"kind\": \"removeUserTargets\", \"values\": [\"438580d8-02ee-418d-9eec-0085cab2bdf0\"], \"variationId\": \"852cb784-54ff-46b9-8c35-5498d2e4f270\" }, { \"kind\": \"addUserTargets\", \"values\": [\"438580d8-02ee-418d-9eec-0085cab2bdf0\"], \"variationId\": \"1bb18465-33b6-49aa-a3bd-eeb6650b33ad\" } ] } ``` > ### Supported semantic patch API endpoints > > - [Update feature flag](/tag/Feature-flags#operation/patchFeatureFlag) > - [Update expiring user targets on feature flag](/tag/Feature-flags#operation/patchExpiringUserTargets) > - [Update expiring user target for flags](/tag/User-settings#operation/patchExpiringFlagsForUser) > - [Update expiring user targets on segment](/tag/Segments#operation/patchExpiringUserTargetsForSegment) ## Errors The API always returns errors in a common format. Here's an example: ```json { \"code\": \"invalid_request\", \"message\": \"A feature with that key already exists\", \"id\": \"30ce6058-87da-11e4-b116-123b93f75cba\" } ``` The general class of error is indicated by the `code`. The `message` is a human-readable explanation of what went wrong. The `id` is a unique identifier. Use it when you're working with LaunchDarkly support to debug a problem with a specific API call. ### HTTP Status - Error Response Codes | Code | Definition | Desc. | Possible Solution | | ---- | ----------------- | ------------------------------------------------------------------------------------------- | ---------------------------------------------------------------- | | 400 | Bad Request | A request that fails may return this HTTP response code. | Ensure JSON syntax in request body is correct. | | 401 | Unauthorized | User doesn't have permission to an API call. | Ensure your SDK key is good. | | 403 | Forbidden | User does not have permission for operation. | Ensure that the user or access token has proper permissions set. | | 409 | Conflict | The API request could not be completed because it conflicted with a concurrent API request. | Retry your request. | | 429 | Too many requests | See [Rate limiting](/#section/Rate-limiting). | Wait and try again later. | ## CORS The LaunchDarkly API supports Cross Origin Resource Sharing (CORS) for AJAX requests from any origin. If an `Origin` header is given in a request, it will be echoed as an explicitly allowed origin. Otherwise, a wildcard is returned: `Access-Control-Allow-Origin: *`. For more information on CORS, see the [CORS W3C Recommendation](http://www.w3.org/TR/cors). Example CORS headers might look like: ```http Access-Control-Allow-Headers: Accept, Content-Type, Content-Length, Accept-Encoding, Authorization Access-Control-Allow-Methods: OPTIONS, GET, DELETE, PATCH Access-Control-Allow-Origin: * Access-Control-Max-Age: 300 ``` You can make authenticated CORS calls just as you would make same-origin calls, using either [token or session-based authentication](#section/Authentication). If youโ€™re using session auth, you should set the `withCredentials` property for your `xhr` request to `true`. You should never expose your access tokens to untrusted users. ## Rate limiting We use several rate limiting strategies to ensure the availability of our APIs. Rate-limited calls to our APIs will return a `429` status code. Calls to our APIs will include headers indicating the current rate limit status. The specific headers returned depend on the API route being called. The limits differ based on the route, authentication mechanism, and other factors. Routes that are not rate limited may not contain any of the headers described below. > ### Rate limiting and SDKs > > LaunchDarkly SDKs are never rate limited and do not use the API endpoints defined here. LaunchDarkly uses a different set of approaches, including streaming/server-sent events and a global CDN, to ensure availability to the routes used by LaunchDarkly SDKs. > > The client-side ID is safe to embed in untrusted contexts. It's designed for use in client-side JavaScript. ### Global rate limits Authenticated requests are subject to a global limit. This is the maximum number of calls that can be made to the API per ten seconds. All personal access tokens on the account share this limit, so exceeding the limit with one access token will impact other tokens. Calls that are subject to global rate limits will return the headers below: | Header name | Description | | ------------------------------ | -------------------------------------------------------------------------------- | | `X-Ratelimit-Global-Remaining` | The maximum number of requests the account is permitted to make per ten seconds. | | `X-Ratelimit-Reset` | The time at which the current rate limit window resets in epoch milliseconds. | We do not publicly document the specific number of calls that can be made globally. This limit may change, and we encourage clients to program against the specification, relying on the two headers defined above, rather than hardcoding to the current limit. ### Route-level rate limits Some authenticated routes have custom rate limits. These also reset every ten seconds. Any access tokens hitting the same route share this limit, so exceeding the limit with one access token may impact other tokens. Calls that are subject to route-level rate limits will return the headers below: | Header name | Description | | ----------------------------- | ----------------------------------------------------------------------------------------------------- | | `X-Ratelimit-Route-Remaining` | The maximum number of requests to the current route the account is permitted to make per ten seconds. | | `X-Ratelimit-Reset` | The time at which the current rate limit window resets in epoch milliseconds. | A _route_ represents a specific URL pattern and verb. For example, the [Delete environment](/tag/Environments#operation/deleteEnvironment) endpoint is considered a single route, and each call to delete an environment counts against your route-level rate limit for that route. We do not publicly document the specific number of calls that can be made to each endpoint per ten seconds. These limits may change, and we encourage clients to program against the specification, relying on the two headers defined above, rather than hardcoding to the current limits. ### IP-based rate limiting We also employ IP-based rate limiting on some API routes. If you hit an IP-based rate limit, your API response will include a `Retry-After` header indicating how long to wait before re-trying the call. Clients must wait at least `Retry-After` seconds before making additional calls to our API, and should employ jitter and backoff strategies to avoid triggering rate limits again. ## OpenAPI (Swagger) We have a [complete OpenAPI (Swagger) specification](https://app.launchdarkly.com/api/v2/openapi.json) for our API. You can use this specification to generate client libraries to interact with our REST API in your language of choice. This specification is supported by several API-based tools such as Postman and Insomnia. In many cases, you can directly import our specification to ease use in navigating the APIs in the tooling. ## Client libraries We auto-generate multiple client libraries based on our OpenAPI specification. To learn more, visit [GitHub](https://github.com/search?q=topic%3Alaunchdarkly-api+org%3Alaunchdarkly&type=Repositories). ## Method Overriding Some firewalls and HTTP clients restrict the use of verbs other than `GET` and `POST`. In those environments, our API endpoints that use `PUT`, `PATCH`, and `DELETE` verbs will be inaccessible. To avoid this issue, our API supports the `X-HTTP-Method-Override` header, allowing clients to \"tunnel\" `PUT`, `PATCH`, and `DELETE` requests via a `POST` request. For example, if you wish to call one of our `PATCH` resources via a `POST` request, you can include `X-HTTP-Method-Override:PATCH` as a header. ## Beta resources We sometimes release new API resources in **beta** status before we release them with general availability. Resources that are in beta are still undergoing testing and development. They may change without notice, including becoming backwards incompatible. We try to promote resources into general availability as quickly as possible. This happens after sufficient testing and when we're satisfied that we no longer need to make backwards-incompatible changes. We mark beta resources with a \"Beta\" callout in our documentation, pictured below: > ### This feature is in beta > > To use this feature, pass in a header including the `LD-API-Version` key with value set to `beta`. Use this header with each call. To learn more, read [Beta resources](/#section/Beta-resources). ### Using beta resources To use a beta resource, you must include a header in the request. If you call a beta resource without this header, you'll receive a `403` response. Use this header: ``` LD-API-Version: beta ``` ## Versioning We try hard to keep our REST API backwards compatible, but we occasionally have to make backwards-incompatible changes in the process of shipping new features. These breaking changes can cause unexpected behavior if you don't prepare for them accordingly. Updates to our REST API include support for the latest features in LaunchDarkly. We also release a new version of our REST API every time we make a breaking change. We provide simultaneous support for multiple API versions so you can migrate from your current API version to a new version at your own pace. ### Setting the API version per request You can set the API version on a specific request by sending an `LD-API-Version` header, as shown in the example below: ``` LD-API-Version: 20191212 ``` The header value is the version number of the API version you'd like to request. The number for each version corresponds to the date the version was released. In the example above the version `20191212` corresponds to December 12, 2019. ### Setting the API version per access token When creating an access token, you must specify a specific version of the API to use. This ensures that integrations using this token cannot be broken by version changes. Tokens created before versioning was released have their version set to `20160426` (the version of the API that existed before versioning) so that they continue working the same way they did before versioning. If you would like to upgrade your integration to use a new API version, you can explicitly set the header described above. > ### Best practice: Set the header for every client or integration > > We recommend that you set the API version header explicitly in any client or integration you build. > > Only rely on the access token API version during manual testing. # noqa: E501 The version of the OpenAPI document: 2.0 Contact: support@launchdarkly.com Generated by: https://openapi-generator.tech """ import sys import unittest import launchdarkly_api from launchdarkly_api.model.instructions import Instructions globals()['Instructions'] = Instructions from launchdarkly_api.model.post_flag_scheduled_changes_input import PostFlagScheduledChangesInput class TestPostFlagScheduledChangesInput(unittest.TestCase): """PostFlagScheduledChangesInput unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPostFlagScheduledChangesInput(self): """Test PostFlagScheduledChangesInput""" # FIXME: construct object with mandatory attributes with example values # model = PostFlagScheduledChangesInput() # noqa: E501 pass if __name__ == '__main__': unittest.main()
619.804878
24,467
0.670549
dbd970b555c1e21de460bb8d0a973a4aefe96a28
135,629
py
Python
python/cudf/cudf/core/column/string.py
mingwandroid/cudf
6a406ba8ca9918ef0757ac25c0a6acd383edc905
[ "Apache-2.0" ]
null
null
null
python/cudf/cudf/core/column/string.py
mingwandroid/cudf
6a406ba8ca9918ef0757ac25c0a6acd383edc905
[ "Apache-2.0" ]
null
null
null
python/cudf/cudf/core/column/string.py
mingwandroid/cudf
6a406ba8ca9918ef0757ac25c0a6acd383edc905
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import pickle import warnings import cupy import numpy as np import pandas as pd import pyarrow as pa import cudf from cudf import _lib as libcudf from cudf._lib import string_casting as str_cast from cudf._lib.column import Column from cudf._lib.nvtext.generate_ngrams import ( generate_character_ngrams as cpp_generate_character_ngrams, generate_ngrams as cpp_generate_ngrams, ) from cudf._lib.nvtext.ngrams_tokenize import ( ngrams_tokenize as cpp_ngrams_tokenize, ) from cudf._lib.nvtext.normalize import normalize_spaces as cpp_normalize_spaces from cudf._lib.nvtext.replace import replace_tokens as cpp_replace_tokens from cudf._lib.nvtext.subword_tokenize import ( subword_tokenize as cpp_subword_tokenize, ) from cudf._lib.nvtext.tokenize import ( character_tokenize as cpp_character_tokenize, count_tokens as cpp_count_tokens, tokenize as cpp_tokenize, ) from cudf._lib.nvtx import annotate from cudf._lib.scalar import Scalar, as_scalar from cudf._lib.strings.attributes import ( code_points as cpp_code_points, count_bytes as cpp_count_bytes, count_characters as cpp_count_characters, ) from cudf._lib.strings.capitalize import ( capitalize as cpp_capitalize, title as cpp_title, ) from cudf._lib.strings.case import ( swapcase as cpp_swapcase, to_lower as cpp_to_lower, to_upper as cpp_to_upper, ) from cudf._lib.strings.char_types import ( is_alnum as cpp_is_alnum, is_alpha as cpp_is_alpha, is_decimal as cpp_is_decimal, is_digit as cpp_is_digit, is_float as cpp_is_float, is_integer as cpp_is_integer, is_lower as cpp_is_lower, is_numeric as cpp_is_numeric, is_space as cpp_isspace, is_upper as cpp_is_upper, ) from cudf._lib.strings.combine import ( concatenate as cpp_concatenate, join as cpp_join, ) from cudf._lib.strings.contains import ( contains_re as cpp_contains_re, count_re as cpp_count_re, match_re as cpp_match_re, ) from cudf._lib.strings.convert.convert_urls import ( url_decode as cpp_url_decode, url_encode as cpp_url_encode, ) from cudf._lib.strings.extract import extract as cpp_extract from cudf._lib.strings.find import ( contains as cpp_contains, endswith as cpp_endswith, endswith_multiple as cpp_endswith_multiple, find as cpp_find, rfind as cpp_rfind, startswith as cpp_startswith, startswith_multiple as cpp_startswith_multiple, ) from cudf._lib.strings.findall import findall as cpp_findall from cudf._lib.strings.padding import ( PadSide, center as cpp_center, ljust as cpp_ljust, pad as cpp_pad, rjust as cpp_rjust, zfill as cpp_zfill, ) from cudf._lib.strings.replace import ( insert as cpp_string_insert, replace as cpp_replace, replace_multi as cpp_replace_multi, slice_replace as cpp_slice_replace, ) from cudf._lib.strings.replace_re import ( replace_multi_re as cpp_replace_multi_re, replace_re as cpp_replace_re, replace_with_backrefs as cpp_replace_with_backrefs, ) from cudf._lib.strings.split.partition import ( partition as cpp_partition, rpartition as cpp_rpartition, ) from cudf._lib.strings.split.split import ( rsplit as cpp_rsplit, split as cpp_split, ) from cudf._lib.strings.strip import ( lstrip as cpp_lstrip, rstrip as cpp_rstrip, strip as cpp_strip, ) from cudf._lib.strings.substring import ( get as cpp_string_get, slice_from as cpp_slice_from, slice_strings as cpp_slice_strings, ) from cudf._lib.strings.translate import translate as cpp_translate from cudf._lib.strings.wrap import wrap as cpp_wrap from cudf.core.buffer import Buffer from cudf.core.column import column, datetime from cudf.utils import utils from cudf.utils.docutils import copy_docstring from cudf.utils.dtypes import can_convert_to_column, is_scalar, is_string_dtype _str_to_numeric_typecast_functions = { np.dtype("int8"): str_cast.stoi8, np.dtype("int16"): str_cast.stoi16, np.dtype("int32"): str_cast.stoi, np.dtype("int64"): str_cast.stol, np.dtype("uint8"): str_cast.stoui8, np.dtype("uint16"): str_cast.stoui16, np.dtype("uint32"): str_cast.stoui, np.dtype("uint64"): str_cast.stoul, np.dtype("float32"): str_cast.stof, np.dtype("float64"): str_cast.stod, np.dtype("bool"): str_cast.to_booleans, # TODO: support Date32 UNIX days # np.dtype("datetime64[D]"): str_cast.timestamp2int, np.dtype("datetime64[s]"): str_cast.timestamp2int, np.dtype("datetime64[ms]"): str_cast.timestamp2int, np.dtype("datetime64[us]"): str_cast.timestamp2int, np.dtype("datetime64[ns]"): str_cast.timestamp2int, } _numeric_to_str_typecast_functions = { np.dtype("int8"): str_cast.i8tos, np.dtype("int16"): str_cast.i16tos, np.dtype("int32"): str_cast.itos, np.dtype("int64"): str_cast.ltos, np.dtype("uint8"): str_cast.ui8tos, np.dtype("uint16"): str_cast.ui16tos, np.dtype("uint32"): str_cast.uitos, np.dtype("uint64"): str_cast.ultos, np.dtype("float32"): str_cast.ftos, np.dtype("float64"): str_cast.dtos, np.dtype("bool"): str_cast.from_booleans, # TODO: support Date32 UNIX days # np.dtype("datetime64[D]"): str_cast.int2timestamp, np.dtype("datetime64[s]"): str_cast.int2timestamp, np.dtype("datetime64[ms]"): str_cast.int2timestamp, np.dtype("datetime64[us]"): str_cast.int2timestamp, np.dtype("datetime64[ns]"): str_cast.int2timestamp, } class StringMethods(object): def __init__(self, column, parent=None): """ Vectorized string functions for Series and Index. This mimics pandas ``df.str`` interface. nulls stay null unless handled otherwise by a particular method. Patterned after Pythonโ€™s string methods, with some inspiration from Rโ€™s stringr package. """ self._column = column self._parent = parent def htoi(self): """ Returns integer value represented by each hex string. String is interpretted to have hex (base-16) characters. Returns ------- Series/Index of str dtype Examples -------- >>> import cudf >>> s = cudf.Series(["1234", "ABCDEF", "1A2", "cafe"]) >>> s.str.htoi() 0 4660 1 11259375 2 418 3 51966 dtype: int64 """ out = str_cast.htoi(self._column) return self._return_or_inplace(out, inplace=False) def ip2int(self): """ This converts ip strings to integers Returns ------- Series/Index of str dtype Examples -------- >>> import cudf >>> s = cudf.Series(["12.168.1.1", "10.0.0.1"]) >>> s.str.ip2int() 0 212336897 1 167772161 dtype: int64 Returns 0's if any string is not an IP. >>> s = cudf.Series(["12.168.1.1", "10.0.0.1", "abc"]) >>> s.str.ip2int() 0 212336897 1 167772161 2 0 dtype: int64 """ out = str_cast.ip2int(self._column) return self._return_or_inplace(out, inplace=False) def _return_or_inplace(self, new_col, **kwargs): """ Returns an object of the type of the column owner or updates the column of the owner (Series or Index) to mimic an inplace operation """ inplace = kwargs.get("inplace", False) if inplace: self._parent._mimic_inplace(new_col, inplace=True) else: expand = kwargs.get("expand", False) if expand or isinstance( self._parent, (cudf.DataFrame, cudf.MultiIndex) ): # This branch indicates the passed as new_col # is actually a table-like data table = new_col from cudf._lib.table import Table if isinstance(table, Table): if isinstance(self._parent, cudf.Index): idx = self._parent._constructor_expanddim._from_table( table=table ) idx.names = None return idx else: return self._parent._constructor_expanddim( data=table._data, index=self._parent.index ) else: return self._parent._constructor_expanddim( {index: value for index, value in enumerate(table)}, index=self._parent.index, ) elif isinstance(self._parent, cudf.Series): retain_index = kwargs.get("retain_index", True) if retain_index: return cudf.Series( new_col, name=self._parent.name, index=self._parent.index, ) else: return cudf.Series(new_col, name=self._parent.name) elif isinstance(self._parent, cudf.Index): return cudf.core.index.as_index( new_col, name=self._parent.name ) else: if self._parent is None: return new_col else: return self._parent._mimic_inplace(new_col, inplace=False) def __getitem__(self, key): if isinstance(key, slice): return self.slice(start=key.start, stop=key.stop, step=key.step) else: return self.get(key) def len(self, **kwargs): """ Computes the length of each element in the Series/Index. Returns : Series or Index of int A Series or Index of integer values indicating the length of each element in the Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(["dog", "", "\\n", None]) >>> s.str.len() 0 3 1 0 2 1 3 null dtype: int32 """ return self._return_or_inplace( cpp_count_characters(self._column), **kwargs, ) def byte_count(self, **kwargs): """ Computes the number of bytes of each string in the Series/Index. Returns : Series or Index of int A Series or Index of integer values indicating the number of bytes of each strings in the Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(["abc","d","ef"]) >>> s.str.byte_count() 0 3 1 1 2 2 dtype: int32 >>> s = cudf.Series(["Hello", "Bye", "Thanks ๐Ÿ˜Š"]) >>> s.str.byte_count() 0 5 1 3 2 11 dtype: int32 """ return self._return_or_inplace( cpp_count_bytes(self._column), **kwargs, ) def cat(self, others=None, sep=None, na_rep=None, **kwargs): """ Concatenate strings in the Series/Index with given separator. If ``others`` is specified, this function concatenates the Series/Index and elements of others element-wise. If others is not passed, then all values in the Series/Index are concatenated into a single string with a given sep. Parameters ---------- others : Series or List of str Strings to be appended. The number of strings must match ``size()`` of this instance. This must be either a Series of string dtype or a Python list of strings. sep : str If specified, this separator will be appended to each string before appending the others. na_rep : str This character will take the place of any null strings (not empty strings) in either list. - If ``na_rep`` is ``None``, and ``others`` is ``None``, missing values in the Series/Index are omitted from the result. - If ``na_rep`` is ``None``, and ``others`` is not ``None``, a row containing a missing value in any of the columns (before concatenation) will have a missing value in the result. Returns ------- concat : str or Series/Index of str dtype If ``others`` is ``None``, ``str`` is returned, otherwise a ``Series/Index`` (same type as caller) of str dtype is returned. Examples -------- >>> import cudf >>> s = cudf.Series(['a', 'b', None, 'd']) >>> s.str.cat(sep=' ') 'a b d' By default, NA values in the Series are ignored. Using na_rep, they can be given a representation: >>> s.str.cat(sep=' ', na_rep='?') 'a b ? d' If others is specified, corresponding values are concatenated with the separator. Result will be a Series of strings. >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',') 0 a,A 1 b,B 2 None 3 d,D dtype: object Missing values will remain missing in the result, but can again be represented using na_rep >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-') 0 a,A 1 b,B 2 -,C 3 d,D dtype: object If sep is not specified, the values are concatenated without separation. >>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-') 0 aA 1 bB 2 -C 3 dD dtype: object """ if sep is None: sep = "" if others is None: data = cpp_join( self._column, as_scalar(sep), as_scalar(na_rep, "str") ) else: other_cols = _get_cols_list(others) all_cols = [self._column] + other_cols data = cpp_concatenate( cudf.DataFrame( {index: value for index, value in enumerate(all_cols)} ), as_scalar(sep), as_scalar(na_rep, "str"), ) if len(data) == 1 and data.null_count == 1: data = [""] out = self._return_or_inplace(data, **kwargs) if len(out) == 1 and others is None: if isinstance(out, StringColumn): out = out[0] else: out = out.iloc[0] return out def join(self, sep): """ Join lists contained as elements in the Series/Index with passed delimiter. Raises : NotImplementedError Columns of arrays / lists are not yet supported. """ raise NotImplementedError( "Columns of arrays / lists are not yet " "supported" ) def extract(self, pat, flags=0, expand=True, **kwargs): """ Extract capture groups in the regex `pat` as columns in a DataFrame. For each subject string in the Series, extract groups from the first match of regular expression `pat`. Parameters ---------- pat : str Regular expression pattern with capturing groups. expand : bool, default True If True, return DataFrame with on column per capture group. If False, return a Series/Index if there is one capture group or DataFrame if there are multiple capture groups. Returns ------- DataFrame or Series/Index A DataFrame with one row for each subject string, and one column for each group. If `expand=False` and `pat` has only one capture group, then return a Series/Index. Notes ----- The `flags` parameter is not yet supported and will raise a NotImplementedError if anything other than the default value is passed. Examples -------- >>> import cudf >>> s = cudf.Series(['a1', 'b2', 'c3']) >>> s.str.extract(r'([ab])(\d)') # noqa W605 0 1 0 a 1 1 b 2 2 None None A pattern with one group will return a DataFrame with one column if expand=True. >>> s.str.extract(r'[ab](\d)', expand=True) # noqa W605 0 0 1 1 2 2 None A pattern with one group will return a Series if expand=False. >>> s.str.extract(r'[ab](\d)', expand=False) # noqa W605 0 1 1 2 2 None dtype: object """ if flags != 0: raise NotImplementedError("`flags` parameter is not yet supported") out = cpp_extract(self._column, pat) if out._num_columns == 1 and expand is False: return self._return_or_inplace(out._columns[0], **kwargs) else: kwargs.setdefault("expand", expand) return self._return_or_inplace(out, **kwargs) def contains( self, pat, case=True, flags=0, na=np.nan, regex=True, **kwargs ): """ Test if pattern or regex is contained within a string of a Series or Index. Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series or Index. Parameters ---------- pat : str Character sequence or regular expression. regex : bool, default True If True, assumes the pattern is a regular expression. If False, treats the pattern as a literal string. Returns ------- Series/Index of bool dtype A Series/Index of boolean dtype indicating whether the given pattern is contained within the string of each element of the Series/Index. Notes ----- The parameters `case`, `flags`, and `na` are not yet supported and will raise a NotImplementedError if anything other than the default value is set. Examples -------- >>> import cudf >>> s1 = cudf.Series(['Mouse', 'dog', 'house and parrot', '23', None]) >>> s1 0 Mouse 1 dog 2 house and parrot 3 23 4 None dtype: object >>> s1.str.contains('og', regex=False) 0 False 1 True 2 False 3 False 4 null dtype: bool Returning an Index of booleans using only a literal pattern. >>> data = ['Mouse', 'dog', 'house and parrot', '23.0', np.NaN] >>> ind = cudf.core.index.StringIndex(data) >>> ind.str.contains('23', regex=False) Index(['False', 'False', 'False', 'True', 'null'], dtype='object') Returning โ€˜houseโ€™ or โ€˜dogโ€™ when either expression occurs in a string. >>> s1.str.contains('house|dog', regex=True) 0 False 1 True 2 True 3 False 4 null dtype: bool Returning any digit using regular expression. >>> s1.str.contains('\d', regex=True) # noqa W605 0 False 1 False 2 False 3 True 4 null dtype: bool Ensure ``pat`` is a not a literal pattern when ``regex`` is set to True. Note in the following example one might expect only `s2[1]` and `s2[3]` to return True. However, โ€˜.0โ€™ as a regex matches any character followed by a 0. >>> s2 = cudf.Series(['40', '40.0', '41', '41.0', '35']) >>> s2.str.contains('.0', regex=True) 0 True 1 True 2 False 3 True 4 False dtype: bool """ if case is not True: raise NotImplementedError("`case` parameter is not yet supported") elif flags != 0: raise NotImplementedError("`flags` parameter is not yet supported") elif na is not np.nan: raise NotImplementedError("`na` parameter is not yet supported") return self._return_or_inplace( cpp_contains_re(self._column, pat) if regex is True else cpp_contains(self._column, as_scalar(pat, "str")), **kwargs, ) def replace( self, pat, repl, n=-1, case=None, flags=0, regex=True, **kwargs ): """ Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to `str.replace() <https://docs.python.org/3/library/stdtypes.html#str.replace>`_ or `re.sub() <https://docs.python.org/3/library/re.html#re.sub>`_. Parameters ---------- pat : str or list-like String(s) to be replaced as a character sequence or regular expression. repl : str or list-like String(s) to be used as replacement. n : int, default -1 (all) Number of replacements to make from the start. regex : bool, default True If True, assumes the pattern is a regular expression. If False, treats the pattern as a literal string. Returns ------- Series/Index of str dtype A copy of the object with all matching occurrences of pat replaced by repl. Notes ----- The parameters `case` and `flags` are not yet supported and will raise a `NotImplementedError` if anything other than the default value is set. Examples -------- >>> import cudf >>> s = cudf.Series(['foo', 'fuz', None]) >>> s 0 foo 1 fuz 2 None dtype: object When pat is a string and regex is True (the default), the given pat is compiled as a regex. When repl is a string, it replaces matching regex patterns as with ``re.sub()``. NaN value(s) in the Series are left as is: >>> s.str.replace('f.', 'ba', regex=True) 0 bao 1 baz 2 None dtype: object When pat is a string and `regex` is False, every pat is replaced with repl as with ``str.replace()``: >>> s.str.replace('f.', 'ba', regex=False) 0 foo 1 fuz 2 None dtype: object """ if case is not None: raise NotImplementedError("`case` parameter is not yet supported") if flags != 0: raise NotImplementedError("`flags` parameter is not yet supported") if can_convert_to_column(pat) and can_convert_to_column(repl): warnings.warn( "`n` parameter is not supported when \ `pat` and `repl` are list-like inputs" ) return self._return_or_inplace( cpp_replace_multi_re( self._column, pat, column.as_column(repl, dtype="str") ) if regex else cpp_replace_multi( self._column, column.as_column(pat, dtype="str"), column.as_column(repl, dtype="str"), ), **kwargs, ) # Pandas treats 0 as all if n == 0: n = -1 # Pandas forces non-regex replace when pat is a single-character return self._return_or_inplace( cpp_replace_re(self._column, pat, as_scalar(repl, "str"), n) if regex is True and len(pat) > 1 else cpp_replace( self._column, as_scalar(pat, "str"), as_scalar(repl, "str"), n ), **kwargs, ) def replace_with_backrefs(self, pat, repl, **kwargs): """ Use the ``repl`` back-ref template to create a new string with the extracted elements found using the ``pat`` expression. Parameters ---------- pat : str Regex with groupings to identify extract sections. This should not be a compiled regex. repl : str String template containing back-reference indicators. Returns ------- Series/Index of str dtype Examples -------- >>> import cudf >>> s = cudf.Series(["A543","Z756"]) >>> s.str.replace_with_backrefs('(\\d)(\\d)', 'V\\2\\1') 0 AV453 1 ZV576 dtype: object """ return self._return_or_inplace( cpp_replace_with_backrefs(self._column, pat, repl), **kwargs ) def slice(self, start=None, stop=None, step=None, **kwargs): """ Slice substrings from each element in the Series or Index. Parameters ---------- start : int, optional Start position for slice operation. stop : int, optional Stop position for slice operation. step : int, optional Step size for slice operation. Returns ------- Series/Index of str dtype Series or Index from sliced substring from original string object. See also -------- slice_replace Replace a slice with a string. get Return element at position. Equivalent to ``Series.str.slice(start=i, stop=i+1)`` with ``i`` being the position. Examples -------- >>> import cudf >>> s = cudf.Series(["koala", "fox", "chameleon"]) >>> s 0 koala 1 fox 2 chameleon dtype: object >>> s.str.slice(start=1) 0 oala 1 ox 2 hameleon dtype: object >>> s.str.slice(start=-1) 0 a 1 x 2 n dtype: object >>> s.str.slice(stop=2) 0 ko 1 fo 2 ch dtype: object >>> s.str.slice(step=2) 0 kaa 1 fx 2 caeen dtype: object >>> s.str.slice(start=0, stop=5, step=3) 0 kl 1 f 2 cm dtype: object """ return self._return_or_inplace( cpp_slice_strings(self._column, start, stop, step), **kwargs, ) def isinteger(self, **kwargs): """ Check whether all characters in each string form integer. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s = cudf.Series(["1", "0.1", "+100", "-15", "abc"]) >>> s.str.isinteger() 0 True 1 False 2 True 3 True 4 False dtype: bool >>> s = cudf.Series(["this is plan text", "", "10 10"]) >>> s.str.isinteger() 0 False 1 False 2 False dtype: bool """ return self._return_or_inplace(cpp_is_integer(self._column), **kwargs) def ishex(self, **kwargs): """ Check whether all characters in each string form a hex integer. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. Examples -------- >>> import cudf >>> s = cudf.Series(["", "123DEF", "0x2D3", "-15", "abc"]) >>> s.str.ishex() 0 False 1 True 2 True 3 False 4 True dtype: bool """ return self._return_or_inplace(str_cast.is_hex(self._column), **kwargs) def isfloat(self, **kwargs): """ Check whether all characters in each string form floating value. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s = cudf.Series(["1.1", "0.123213", "+0.123", "-100.0001", "234", ... "3-"]) >>> s.str.isfloat() 0 True 1 True 2 True 3 True 4 True 5 False dtype: bool >>> s = cudf.Series(["this is plain text", "\t\n", "9.9", "9.9.9"]) >>> s.str.isfloat() 0 False 1 False 2 True 3 False dtype: bool """ return self._return_or_inplace(cpp_is_float(self._column), **kwargs) def isdecimal(self, **kwargs): """ Check whether all characters in each string are decimal. This is equivalent to running the Python string method `str.isdecimal() <https://docs.python.org/3/library/stdtypes.html#str.isdecimal>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s3 = cudf.Series(['23', 'ยณ', 'โ…•', '']) The s3.str.isdecimal method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool """ return self._return_or_inplace(cpp_is_decimal(self._column), **kwargs) def isalnum(self, **kwargs): """ Check whether all characters in each string are alphanumeric. This is equivalent to running the Python string method `str.isalnum() <https://docs.python.org/3/library/stdtypes.html#str.isalnum>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Equivalent to: ``isalpha() or isdigit() or isnumeric() or isdecimal()`` Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s1 = cudf.Series(['one', 'one1', '1', '']) >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = cudf.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool """ return self._return_or_inplace(cpp_is_alnum(self._column), **kwargs) def isalpha(self, **kwargs): """ Check whether all characters in each string are alphabetic. This is equivalent to running the Python string method `str.isalpha() <https://docs.python.org/3/library/stdtypes.html#str.isalpha>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s1 = cudf.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool """ return self._return_or_inplace(cpp_is_alpha(self._column), **kwargs) def isdigit(self, **kwargs): """ Check whether all characters in each string are digits. This is equivalent to running the Python string method `str.isdigit() <https://docs.python.org/3/library/stdtypes.html#str.isdigit>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s = cudf.Series(['23', 'ยณ', 'โ…•', '']) The ``s.str.isdigit`` method is the same as ``s.str.isdecimal`` but also includes special digits, like superscripted and subscripted digits in unicode. >>> s.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool """ return self._return_or_inplace(cpp_is_digit(self._column), **kwargs) def isnumeric(self, **kwargs): """ Check whether all characters in each string are numeric. This is equivalent to running the Python string method `str.isnumeric() <https://docs.python.org/3/library/stdtypes.html#str.isnumeric>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s1 = cudf.Series(['one', 'one1', '1', '']) >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool The ``s1.str.isnumeric`` method is the same as ``s2.str.isdigit`` but also includes other characters that can represent quantities such as unicode fractions. >>> s2 = pd.Series(['23', 'ยณ', 'โ…•', '']) >>> s2.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool """ return self._return_or_inplace(cpp_is_numeric(self._column), **kwargs) def isupper(self, **kwargs): """ Check whether all characters in each string are uppercase. This is equivalent to running the Python string method `str.isupper() <https://docs.python.org/3/library/stdtypes.html#str.isupper>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isspace Check whether all characters are whitespace. Examples -------- >>> import cudf >>> s = cudf.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s.str.isupper() 0 False 1 False 2 True 3 False dtype: bool """ return self._return_or_inplace(cpp_is_upper(self._column), **kwargs) def islower(self, **kwargs): """ Check whether all characters in each string are lowercase. This is equivalent to running the Python string method `str.islower() <https://docs.python.org/3/library/stdtypes.html#str.islower>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. isspace Check whether all characters are whitespace. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s = cudf.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s.str.islower() 0 True 1 False 2 False 3 False dtype: bool """ return self._return_or_inplace(cpp_is_lower(self._column), **kwargs) def isipv4(self, **kwargs): """ Check whether all characters in each string form an IPv4 address. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. Examples -------- >>> import cudf >>> s = cudf.Series(["", "127.0.0.1", "255.255.255.255", "123.456"]) >>> s.str.isipv4() 0 False 1 True 2 True 3 False dtype: bool """ return self._return_or_inplace( str_cast.is_ipv4(self._column), **kwargs ) def lower(self, **kwargs): """ Converts all characters to lowercase. Equivalent to `str.lower() <https://docs.python.org/3/library/stdtypes.html#str.lower>`_. Returns : Series or Index of object A copy of the object with all strings converted to lowercase. See also -------- upper Converts all characters to uppercase. title Converts first character of each word to uppercase and remaining to lowercase. capitalize Converts first character to uppercase and remaining to lowercase. swapcase Converts uppercase to lowercase and lowercase to uppercase. Examples -------- >>> import cudf >>> data = ['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'] >>> s = cudf.Series(data) >>> s.str.lower() 0 lower 1 capitals 2 this is a sentence 3 swapcase dtype: object """ return self._return_or_inplace(cpp_to_lower(self._column), **kwargs) def upper(self, **kwargs): """ Convert each string to uppercase. This only applies to ASCII characters at this time. Equivalent to `str.upper() <https://docs.python.org/3/library/stdtypes.html#str.upper>`_. Returns : Series or Index of object See also -------- lower Converts all characters to lowercase. upper Converts all characters to uppercase. title Converts first character of each word to uppercase and remaining to lowercase. capitalize Converts first character to uppercase and remaining to lowercase. swapcase Converts uppercase to lowercase and lowercase to uppercase. Examples -------- >>> import cudf >>> data = ['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'] >>> s = cudf.Series(data) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.upper() 0 LOWER 1 CAPITALS 2 THIS IS A SENTENCE 3 SWAPCASE dtype: object """ return self._return_or_inplace(cpp_to_upper(self._column), **kwargs) def capitalize(self, **kwargs): """ Convert strings in the Series/Index to be capitalized. This only applies to ASCII characters at this time. Returns ------- Series or Index of object Examples -------- >>> import cudf >>> data = ['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'] >>> s = cudf.Series(data) >>> s.str.capitalize() 0 Lower 1 Capitals 2 This is a sentence 3 Swapcase dtype: object >>> s = cudf.Series(["hello, friend","goodbye, friend"]) >>> s.str.capitalize() 0 Hello, friend 1 Goodbye, friend dtype: object """ return self._return_or_inplace(cpp_capitalize(self._column), **kwargs) def swapcase(self, **kwargs): """ Change each lowercase character to uppercase and vice versa. This only applies to ASCII characters at this time. Equivalent to `str.swapcase() <https://docs.python.org/3/library/stdtypes.html#str.swapcase>`_. Returns : Series or Index of object See also -------- lower Converts all characters to lowercase. upper Converts all characters to uppercase. title Converts first character of each word to uppercase and remaining to lowercase. capitalize Converts first character to uppercase and remaining to lowercase. Examples -------- >>> import cudf >>> data = ['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'] >>> s = cudf.Series(data) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.swapcase() 0 LOWER 1 capitals 2 THIS IS A SENTENCE 3 sWaPcAsE dtype: object """ return self._return_or_inplace(cpp_swapcase(self._column), **kwargs) def title(self, **kwargs): """ Uppercase the first letter of each letter after a space and lowercase the rest. This only applies to ASCII characters at this time. Equivalent to `str.title() <https://docs.python.org/3/library/stdtypes.html#str.title>`_. Returns : Series or Index of object See also -------- lower Converts all characters to lowercase. upper Converts all characters to uppercase. capitalize Converts first character to uppercase and remaining to lowercase. swapcase Converts uppercase to lowercase and lowercase to uppercase. Examples -------- >>> import cudf >>> data = ['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s = cudf.Series(data) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.title() 0 Lower 1 Capitals 2 This Is A Sentence 3 Swapcase dtype: object """ return self._return_or_inplace(cpp_title(self._column), **kwargs) def slice_from(self, starts, stops, **kwargs): """ Return substring of each string using positions for each string. The starts and stops parameters are of Column type. Parameters ---------- starts : Series Beginning position of each the string to extract. Default is beginning of the each string. stops : Series Ending position of the each string to extract. Default is end of each string. Use -1 to specify to the end of that string. Returns ------- Series/Index of str dtype A substring of each string using positions for each string. Examples -------- >>> import cudf >>> s = cudf.Series(["hello","there"]) >>> s 0 hello 1 there dtype: object >>> starts = cudf.Series([1, 3]) >>> stops = cudf.Series([5, 5]) >>> s.str.slice_from(starts, stops) 0 ello 1 re dtype: object """ return self._return_or_inplace( cpp_slice_from( self._column, column.as_column(starts), column.as_column(stops) ), **kwargs, ) def slice_replace(self, start=None, stop=None, repl=None, **kwargs): """ Replace the specified section of each string with a new string. Parameters ---------- start : int, optional Beginning position of the string to replace. Default is beginning of the each string. stop : int, optional Ending position of the string to replace. Default is end of each string. repl : str, optional String to insert into the specified position values. Returns ------- Series/Index of str dtype A new string with the specified section of the string replaced with `repl` string. See also -------- slice Just slicing without replacement. Examples -------- >>> import cudf >>> s = cudf.Series(['a', 'ab', 'abc', 'abdc', 'abcde']) >>> s 0 a 1 ab 2 abc 3 abdc 4 abcde dtype: object Specify just `start`, meaning replace `start` until the `end` of the string with `repl`. >>> s.str.slice_replace(1, repl='X') 0 aX 1 aX 2 aX 3 aX 4 aX dtype: object Specify just `stop`, meaning the `start` of the string to `stop` is replaced with `repl`, and the rest of the string is included. >>> s.str.slice_replace(stop=2, repl='X') 0 X 1 X 2 Xc 3 Xdc 4 Xcde dtype: object Specify `start` and `stop`, meaning the slice from `start` to `stop` is replaced with `repl`. Everything before or after `start` and `stop` is included as is. >>> s.str.slice_replace(start=1, stop=3, repl='X') 0 aX 1 aX 2 aX 3 aXc 4 aXde dtype: object """ if start is None: start = 0 if stop is None: stop = -1 if repl is None: repl = "" return self._return_or_inplace( cpp_slice_replace(self._column, start, stop, as_scalar(repl)), **kwargs, ) def insert(self, start=0, repl=None, **kwargs): """ Insert the specified string into each string in the specified position. Parameters ---------- start : int Beginning position of the string to replace. Default is beginning of the each string. Specify -1 to insert at the end of each string. repl : str String to insert into the specified position value. Returns ------- Series/Index of str dtype A new string series with the specified string inserted at the specified position. Examples -------- >>> import cudf >>> s = cudf.Series(["abcdefghij", "0123456789"]) >>> s.str.insert(2, '_') 0 ab_cdefghij 1 01_23456789 dtype: object When no `repl` is passed, nothing is inserted. >>> s.str.insert(2) 0 abcdefghij 1 0123456789 dtype: object Negative values are also supported for `start`. >>> s.str.insert(-1,'_') 0 abcdefghij_ 1 0123456789_ dtype: object """ if repl is None: repl = "" return self._return_or_inplace( cpp_string_insert(self._column, start, as_scalar(repl)), **kwargs ) def get(self, i=0, **kwargs): """ Extract element from each component at specified position. Parameters ---------- i : int Position of element to extract. Returns ------- Series/Index of str dtype Examples -------- >>> import cudf >>> s = cudf.Series(["hello world", "rapids", "cudf"]) >>> s 0 hello world 1 rapids 2 cudf dtype: object >>> s.str.get(10) 0 d 1 2 dtype: object >>> s.str.get(1) 0 e 1 a 2 u dtype: object ``get`` also accepts negative index number. >>> s.str.get(-1) 0 d 1 s 2 f dtype: object """ return self._return_or_inplace( cpp_string_get(self._column, i), **kwargs ) def split(self, pat=None, n=-1, expand=None, **kwargs): """ Split strings around given separator/delimiter. Splits the string in the Series/Index from the beginning, at the specified delimiter string. Equivalent to `str.split() <https://docs.python.org/3/library/stdtypes.html#str.split>`_. Parameters ---------- pat : str, default ' ' (space) String to split on, does not yet support regular expressions. n : int, default -1 (all) Limit number of splits in output. `None`, 0, and -1 will all be interpreted as "all splits". Returns ------- DataFrame Returns a DataFrame with each split as a column. See also -------- rsplit Splits string around given separator/delimiter, starting from the right. str.split Standard library version for split. str.rsplit Standard library version for rsplit. Notes ----- The parameter `expand` is not yet supported and will raise a NotImplementedError if anything other than the default value is set. The handling of the n keyword depends on the number of found splits: - If found splits > n, make first n splits only - If found splits <= n, make all splits - If for a certain row the number of found splits < n, append None for padding up to n Examples -------- >>> import cudf >>> data = ["this is a regular sentence", "https://docs.python.org/index.html", None] # noqa E501 >>> s = cudf.Series(data) >>> s 0 this is a regular sentence 1 https://docs.python.org/index.html 2 None dtype: object The `n` parameter can be used to limit the number of splits on the delimiter. >>> s.str.split(n=2) 0 1 2 0 this is a regular sentence 1 https://docs.python.org/index.html None None 2 None None None The `pat` parameter can be used to split by other characters. >>> s.str.split(pat = "/") 0 1 2 3 0 this is a regular sentence None None None 1 https: docs.python.org index.html 2 None None None None """ if expand is None: expand = True warnings.warn("`expand` parameter defatults to True.") elif expand is not True: raise NotImplementedError( "`expand=False` setting is not supported yet" ) # Pandas treats 0 as all if n == 0: n = -1 kwargs.setdefault("expand", expand) if pat is None: pat = "" result_table = cpp_split(self._column, as_scalar(pat, "str"), n) if len(result_table._data) == 1: if result_table._data[0].null_count == len(self._column): result_table = [] elif self._column.null_count == len(self._column): result_table = [self._column.copy()] return self._return_or_inplace(result_table, **kwargs,) def rsplit(self, pat=None, n=-1, expand=None, **kwargs): """ Split strings around given separator/delimiter. Splits the string in the Series/Index from the end, at the specified delimiter string. Equivalent to `str.rsplit() <https://docs.python.org/3/library/stdtypes.html#str.rsplit>`_. Parameters ---------- pat : str, default ' ' (space) String to split on, does not yet support regular expressions. n : int, default -1 (all) Limit number of splits in output. `None`, 0, and -1 will all be interpreted as "all splits". Returns ------- DataFrame or MultiIndex Returns a DataFrame/MultiIndex with each split as a column. See also -------- split Split strings around given separator/delimiter. str.split Standard library version for split. str.rsplit Standard library version for rsplit. Notes ----- The parameter `expand` is not yet supported and will raise a `NotImplementedError` if anything other than the default value is set. The handling of the n keyword depends on the number of found splits: - If found splits > n, make first n splits only - If found splits <= n, make all splits - If for a certain row the number of found splits < n, append None for padding up to n. Examples -------- >>> import cudf >>> data = ["this is a regular sentence","https://docs.python.org/3/tutorial/index.html",None] # noqa E501 >>> s = cudf.Series(data) >>> s.str.rsplit(n=2) 0 1 2 0 this is a regular sentence 1 https://docs.python.org/3/tutorial/index.html None None 2 None None None For slightly more complex use cases like splitting the html document name from a url, a combination of parameter settings can be used. >>> s.str.rsplit("/", n=1, expand=True) 0 1 0 this is a regular sentence None 1 https://docs.python.org/3/tutorial index.html 2 None None """ if expand is None: expand = True warnings.warn("`expand` parameter defatults to True.") elif expand is not True: raise NotImplementedError( "`expand=False` setting is not supported yet" ) # Pandas treats 0 as all if n == 0: n = -1 kwargs.setdefault("expand", expand) if pat is None: pat = "" result_table = cpp_rsplit(self._column, as_scalar(pat), n) if len(result_table._data) == 1: if result_table._data[0].null_count == len(self._parent): result_table = [] elif self._parent.null_count == len(self._parent): result_table = [self._column.copy()] return self._return_or_inplace(result_table, **kwargs) def partition(self, sep=" ", expand=True, **kwargs): """ Split the string at the first occurrence of sep. This method splits the string at the first occurrence of sep, and returns 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing the string itself, followed by two empty strings. Parameters ---------- sep : str, default ' ' (whitespace) String to split on. Returns ------- DataFrame or MultiIndex Returns a DataFrame / MultiIndex Notes ----- The parameter `expand` is not yet supported and will raise a `NotImplementedError` if anything other than the default value is set. See also -------- rpartition Split the string at the last occurrence of sep. split Split strings around given separators. Examples -------- >>> import cudf >>> s = cudf.Series(['Linda van der Berg', 'George Pitt-Rivers']) >>> s 0 Linda van der Berg 1 George Pitt-Rivers dtype: object >>> s.str.partition() 0 1 2 0 Linda van der Berg 1 George Pitt-Rivers To partition by something different than a space: >>> s.str.partition('-') 0 1 2 0 Linda van der Berg 1 George Pitt - Rivers Also available on indices: >>> idx = cudf.core.index.StringIndex(['X 123', 'Y 999']) >>> idx StringIndex(['X 123' 'Y 999'], dtype='object') Which will create a MultiIndex: >>> idx.str.partition() MultiIndex(levels=[0 X 1 Y dtype: object, 0 dtype: object, 0 123 1 999 dtype: object], codes= 0 1 2 0 0 0 0 1 1 0 1) """ if expand is not True: raise NotImplementedError( "`expand=False` is currently not supported" ) kwargs.setdefault("expand", expand) if sep is None: sep = " " return self._return_or_inplace( cpp_partition(self._column, as_scalar(sep)), **kwargs ) def rpartition(self, sep=" ", expand=True, **kwargs): """ Split the string at the last occurrence of sep. This method splits the string at the last occurrence of sep, and returns 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing two empty strings, followed by the string itself. Parameters ---------- sep : str, default ' ' (whitespace) String to split on. Returns ------- DataFrame or MultiIndex Returns a DataFrame / MultiIndex Notes ----- The parameter `expand` is not yet supported and will raise a `NotImplementedError` if anything other than the default value is set. Examples -------- >>> import cudf >>> s = cudf.Series(['Linda van der Berg', 'George Pitt-Rivers']) >>> s 0 Linda van der Berg 1 George Pitt-Rivers dtype: object >>> s.str.rpartition() 0 1 2 0 Linda van der Berg 1 George Pitt-Rivers Also available on indices: >>> idx = cudf.core.index.StringIndex(['X 123', 'Y 999']) >>> idx StringIndex(['X 123' 'Y 999'], dtype='object') Which will create a MultiIndex: >>> idx.str.rpartition() MultiIndex(levels=[0 X 1 Y dtype: object, 0 dtype: object, 0 123 1 999 dtype: object], codes= 0 1 2 0 0 0 0 1 1 0 1) """ if expand is not True: raise NotImplementedError( "`expand=False` is currently not supported" ) kwargs.setdefault("expand", expand) if sep is None: sep = " " return self._return_or_inplace( cpp_rpartition(self._column, as_scalar(sep)), **kwargs ) def pad(self, width, side="left", fillchar=" ", **kwargs): """ Pad strings in the Series/Index up to width. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with character defined in fillchar. side : {โ€˜leftโ€™, โ€˜rightโ€™, โ€˜bothโ€™}, default โ€˜leftโ€™ Side from which to fill resulting string. fillchar : str, default ' ' (whitespace) Additional character for filling, default is whitespace. Returns ------- Series/Index of object Returns Series or Index with minimum number of char in object. See also -------- rjust Fills the left side of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='left')``. ljust Fills the right side of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='right')``. center Fills boths sides of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='both')``. zfill Pad strings in the Series/Index by prepending โ€˜0โ€™ character. Equivalent to ``Series.str.pad(side='left', fillchar='0')``. Examples -------- >>> import cudf >>> s = cudf.Series(["caribou", "tiger"]) >>> s.str.pad(width=10) 0 caribou 1 tiger dtype: object >>> s.str.pad(width=10, side='right', fillchar='-') 0 caribou--- 1 tiger----- dtype: object >>> s.str.pad(width=10, side='both', fillchar='-') 0 -caribou-- 1 --tiger--- dtype: object """ if not isinstance(fillchar, str): msg = ( f"fillchar must be a character, not {type(fillchar).__name__}" ) raise TypeError(msg) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if not pd.api.types.is_integer(width): msg = f"width must be of integer type, not {type(width).__name__}" raise TypeError(msg) try: side = PadSide[side.upper()] except KeyError: raise ValueError( "side has to be either one of {โ€˜leftโ€™, โ€˜rightโ€™, โ€˜bothโ€™}" ) return self._return_or_inplace( cpp_pad(self._column, width, fillchar, side), **kwargs ) def zfill(self, width, **kwargs): """ Pad strings in the Series/Index by prepending โ€˜0โ€™ characters. Strings in the Series/Index are padded with โ€˜0โ€™ characters on the left of the string to reach a total string length width. Strings in the Series/Index with length greater or equal to width are unchanged. Parameters ---------- width : int Minimum length of resulting string; strings with length less than width be prepended with โ€˜0โ€™ characters. Returns ------- Series/Index of str dtype Returns Series or Index with prepended โ€˜0โ€™ characters. See also -------- rjust Fills the left side of strings with an arbitrary character. ljust Fills the right side of strings with an arbitrary character. pad Fills the specified sides of strings with an arbitrary character. center Fills boths sides of strings with an arbitrary character. Notes ----- Differs from `str.zfill() <https://docs.python.org/3/library/stdtypes.html#str.zfill>`_ which has special handling for โ€˜+โ€™/โ€™-โ€˜ in the string. Examples -------- >>> import cudf >>> s = cudf.Series(['-1', '1', '1000', None]) >>> s 0 -1 1 1 2 1000 3 None dtype: object Note that ``None`` is not string, therefore it is converted to ``None``. The minus sign in ``'-1'`` is treated as a regular character and the zero is added to the left of it (`str.zfill() <https://docs.python.org/3/library/stdtypes.html#str.zfill>`_ would have moved it to the left). ``1000`` remains unchanged as it is longer than width. >>> s.str.zfill(3) 0 0-1 1 001 2 1000 3 None dtype: object """ if not pd.api.types.is_integer(width): msg = f"width must be of integer type, not {type(width).__name__}" raise TypeError(msg) return self._return_or_inplace( cpp_zfill(self._column, width), **kwargs ) def center(self, width, fillchar=" ", **kwargs): """ Filling left and right side of strings in the Series/Index with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with fillchar. fillchar : str, default is ' ' (whitespace) Additional character for filling. Returns ------- Series/Index of str dtype Returns Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(['a', 'b', None, 'd']) >>> s.str.center(1) 0 a 1 b 2 None 3 d dtype: object >>> s.str.center(1, fillchar='-') 0 a 1 b 2 None 3 d dtype: object >>> s.str.center(2, fillchar='-') 0 a- 1 b- 2 None 3 d- dtype: object >>> s.str.center(5, fillchar='-') 0 --a-- 1 --b-- 2 None 3 --d-- dtype: object >>> s.str.center(6, fillchar='-') 0 --a--- 1 --b--- 2 None 3 --d--- dtype: object """ if not isinstance(fillchar, str): msg = ( f"fillchar must be a character, not {type(fillchar).__name__}" ) raise TypeError(msg) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if not pd.api.types.is_integer(width): msg = f"width must be of integer type, not {type(width).__name__}" raise TypeError(msg) return self._return_or_inplace( cpp_center(self._column, width, fillchar), **kwargs ) def ljust(self, width, fillchar=" ", **kwargs): """ Filling right side of strings in the Series/Index with an additional character. Equivalent to `str.ljust() <https://docs.python.org/3/library/stdtypes.html#str.ljust>`_. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar``. fillchar : str, default ' ' (whitespace) Additional character for filling, default is whitespace. Returns ------- Series/Index of str dtype Returns Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(["hello world", "rapids ai"]) >>> s.str.ljust(10, fillchar="_") 0 hello world 1 rapids ai_ dtype: object >>> s = cudf.Series(["a", "", "ab", "__"]) >>> s.str.ljust(1, fillchar="-") 0 a 1 - 2 ab 3 __ dtype: object """ if not isinstance(fillchar, str): msg = ( f"fillchar must be a character, not {type(fillchar).__name__}" ) raise TypeError(msg) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if not pd.api.types.is_integer(width): msg = f"width must be of integer type, not {type(width).__name__}" raise TypeError(msg) return self._return_or_inplace( cpp_ljust(self._column, width, fillchar), **kwargs ) def rjust(self, width, fillchar=" ", **kwargs): """ Filling left side of strings in the Series/Index with an additional character. Equivalent to `str.rjust() <https://docs.python.org/3/library/stdtypes.html#str.rjust>`_. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with fillchar. fillchar : str, default ' ' (whitespace) Additional character for filling, default is whitespace. Returns ------- Series/Index of str dtype Returns Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(["hello world", "rapids ai"]) >>> s.str.rjust(20, fillchar="_") 0 _________hello world 1 ___________rapids ai dtype: object >>> s = cudf.Series(["a", "", "ab", "__"]) >>> s.str.rjust(1, fillchar="-") 0 a 1 - 2 ab 3 __ dtype: object """ if not isinstance(fillchar, str): msg = ( f"fillchar must be a character, not {type(fillchar).__name__}" ) raise TypeError(msg) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if not pd.api.types.is_integer(width): msg = f"width must be of integer type, not {type(width).__name__}" raise TypeError(msg) return self._return_or_inplace( cpp_rjust(self._column, width, fillchar), **kwargs ) def strip(self, to_strip=None, **kwargs): """ Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from left and right sides. Equivalent to `str.strip() <https://docs.python.org/3/library/stdtypes.html#str.strip>`_. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- Series/Index of str dtype Returns Series or Index. See also -------- lstrip Remove leading characters in Series/Index. rstrip Remove trailing characters in Series/Index. Examples -------- >>> import cudf >>> s = cudf.Series(['1. Ant. ', '2. Bee!\\n', '3. Cat?\\t', None]) >>> s 0 1. Ant. 1 2. Bee!\\n 2 3. Cat?\\t 3 None dtype: object >>> s.str.strip() 0 1. Ant. 1 2. Bee! 2 3. Cat? 3 None dtype: object >>> s.str.strip('123.!? \\n\\t') 0 Ant 1 Bee 2 Cat 3 None dtype: object """ if to_strip is None: to_strip = "" return self._return_or_inplace( cpp_strip(self._column, as_scalar(to_strip)), **kwargs ) def lstrip(self, to_strip=None, **kwargs): """ Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from left side. Equivalent to `str.lstrip() <https://docs.python.org/3/library/stdtypes.html#str.lstrip>`_. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- Series or Index of object See also -------- strip Remove leading and trailing characters in Series/Index. rstrip Remove trailing characters in Series/Index. Examples -------- >>> import cudf >>> s = cudf.Series(['1. Ant. ', '2. Bee!\\n', '3. Cat?\\t', None]) >>> s.str.lstrip('123.') 0 Ant. 1 Bee!\\n 2 Cat?\\t 3 None dtype: object """ if to_strip is None: to_strip = "" return self._return_or_inplace( cpp_lstrip(self._column, as_scalar(to_strip)), **kwargs ) def rstrip(self, to_strip=None, **kwargs): """ Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from right side. Equivalent to `str.rstrip() <https://docs.python.org/3/library/stdtypes.html#str.rstrip>`_. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- Series/Index of str dtype Returns Series or Index. See also -------- strip Remove leading and trailing characters in Series/Index. lstrip Remove leading characters in Series/Index. Examples -------- >>> import cudf >>> s = cudf.Series(['1. Ant. ', '2. Bee!\\n', '3. Cat?\\t', None]) >>> s 0 1. Ant. 1 2. Bee!\\n 2 3. Cat?\\t 3 None dtype: object >>> s.str.rstrip('.!? \\n\\t') 0 1. Ant 1 2. Bee 2 3. Cat 3 None dtype: object """ if to_strip is None: to_strip = "" return self._return_or_inplace( cpp_rstrip(self._column, as_scalar(to_strip)), **kwargs ) def wrap(self, width, **kwargs): """ Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. Parameters ---------- width : int Maximum line width. Returns ------- Series or Index Notes ----- The parameters `expand_tabsbool`, `replace_whitespace`, `drop_whitespace`, `break_long_words`, `break_on_hyphens`, `expand_tabsbool` are not yet supported and will raise a NotImplementedError if they are set to any value. This method currently achieves behavior matching Rโ€™s stringr library ``str_wrap`` function, the equivalent pandas implementation can be obtained using the following parameter setting: expand_tabs = False replace_whitespace = True drop_whitespace = True break_long_words = False break_on_hyphens = False Examples -------- >>> import cudf >>> data = ['line to be wrapped', 'another line to be wrapped'] >>> s = cudf.Series(data) >>> s.str.wrap(12) 0 line to be\\nwrapped 1 another line\\nto be\\nwrapped dtype: object """ if not pd.api.types.is_integer(width): msg = f"width must be of integer type, not {type(width).__name__}" raise TypeError(msg) expand_tabs = kwargs.get("expand_tabs", None) if expand_tabs is True: raise NotImplementedError("`expand_tabs=True` is not supported") elif expand_tabs is None: warnings.warn( "wrap current implementation defaults to `expand_tabs`=False" ) replace_whitespace = kwargs.get("replace_whitespace", True) if not replace_whitespace: raise NotImplementedError( "`replace_whitespace=False` is not supported" ) drop_whitespace = kwargs.get("drop_whitespace", True) if not drop_whitespace: raise NotImplementedError( "`drop_whitespace=False` is not supported" ) break_long_words = kwargs.get("break_long_words", None) if break_long_words is True: raise NotImplementedError( "`break_long_words=True` is not supported" ) elif break_long_words is None: warnings.warn( "wrap current implementation defaults to \ `break_long_words`=False" ) break_on_hyphens = kwargs.get("break_on_hyphens", None) if break_long_words is True: raise NotImplementedError( "`break_on_hyphens=True` is not supported" ) elif break_on_hyphens is None: warnings.warn( "wrap current implementation defaults to \ `break_on_hyphens`=False" ) return self._return_or_inplace(cpp_wrap(self._column, width), **kwargs) def count(self, pat, flags=0, **kwargs): """ Count occurrences of pattern in each string of the Series/Index. This function is used to count the number of times a particular regex pattern is repeated in each of the string elements of the Series. Parameters ---------- pat : str Valid regular expression. Returns ------- Series or Index Notes ----- - `flags` parameter is currently not supported. - Some characters need to be escaped when passing in pat. eg. ``'$'`` has a special meaning in regex and must be escaped when finding this literal character. Examples -------- >>> import cudf >>> s = cudf.Series(['A', 'B', 'Aaba', 'Baca', None, 'CABA', 'cat']) >>> s.str.count('a') 0 0 1 0 2 2 3 2 4 null 5 0 6 1 dtype: int32 Escape ``'$'`` to find the literal dollar sign. >>> s = cudf.Series(['$', 'B', 'Aab$', '$$ca', 'C$B$', 'cat']) >>> s.str.count('\$') # noqa W605 0 1 1 0 2 1 3 2 4 2 5 0 dtype: int32 This is also available on Index. >>> index = cudf.core.index.StringIndex(['A', 'A', 'Aaba', 'cat']) >>> index.str.count('a') Int64Index([0, 0, 2, 1], dtype='int64') """ if flags != 0: raise NotImplementedError("`flags` parameter is not yet supported") return self._return_or_inplace( cpp_count_re(self._column, pat), **kwargs ) def findall(self, pat, flags=0, **kwargs): """ Find all occurrences of pattern or regular expression in the Series/Index. Parameters ---------- pat : str Pattern or regular expression. Returns ------- DataFrame All non-overlapping matches of pattern or regular expression in each string of this Series/Index. Notes ----- `flags` parameter is currently not supported. Examples -------- >>> import cudf >>> s = cudf.Series(['Lion', 'Monkey', 'Rabbit']) The search for the pattern โ€˜Monkeyโ€™ returns one match: >>> s.str.findall('Monkey') 0 0 None 1 Monkey 2 None When the pattern matches more than one string in the Series, all matches are returned: >>> s.str.findall('on') 0 0 on 1 on 2 None Regular expressions are supported too. For instance, the search for all the strings ending with the word โ€˜onโ€™ is shown next: >>> s.str.findall('on$') 0 0 on 1 None 2 None If the pattern is found more than once in the same string, then multiple strings are returned as columns: >>> s.str.findall('b') 0 1 0 None None 1 None None 2 b b """ if flags != 0: raise NotImplementedError("`flags` parameter is not yet supported") kwargs.setdefault("expand", True) return self._return_or_inplace( cpp_findall(self._column, pat), **kwargs ) def isempty(self, **kwargs): """ Check whether each string is an empty string. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. Examples -------- >>> import cudf >>> s = cudf.Series(["1", "abc", "", " ", None]) >>> s.str.isempty() 0 False 1 False 2 True 3 False 4 False dtype: bool """ return self._return_or_inplace( (self._parent == "").fillna(False), **kwargs ) def isspace(self, **kwargs): """ Check whether all characters in each string are whitespace. This is equivalent to running the Python string method `str.isspace() <https://docs.python.org/3/library/stdtypes.html#str.isspace>`_ for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns : Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See also -------- isalnum Check whether all characters are alphanumeric. isalpha Check whether all characters are alphabetic. isdecimal Check whether all characters are decimal. isdigit Check whether all characters are digits. isinteger Check whether all characters are integer. isnumeric Check whether all characters are numeric. isfloat Check whether all characters are float. islower Check whether all characters are lowercase. isupper Check whether all characters are uppercase. Examples -------- >>> import cudf >>> s = cudf.Series([' ', '\\t\\r\\n ', '']) >>> s.str.isspace() 0 True 1 True 2 False dtype: bool """ return self._return_or_inplace(cpp_isspace(self._column), **kwargs) def endswith(self, pat, **kwargs): """ Test if the end of each string element matches a pattern. Parameters ---------- pat : str or list-like If `str` is an `str`, evaluates whether each string of series ends with `pat`. If `pat` is a list-like, evaluates whether `self[i]` ends with `pat[i]`. Regular expressions are not accepted. Returns ------- Series or Index of bool A Series of booleans indicating whether the given pattern matches the end of each string element. Notes ----- `na` parameter is not yet supported, as cudf uses native strings instead of Python objects. Examples -------- >>> import cudf >>> s = cudf.Series(['bat', 'bear', 'caT', None]) >>> s 0 bat 1 bear 2 caT 3 None dtype: object >>> s.str.endswith('t') 0 True 1 False 2 False 3 null dtype: bool """ if "na" in kwargs: warnings.warn( "`na` parameter is not yet supported, \ as cudf uses native strings instead of Python objects" ) if pat is None: result_col = column.column_empty( len(self._column), dtype="bool", masked=True ) elif is_scalar(pat): result_col = cpp_endswith(self._column, as_scalar(pat, "str")) else: result_col = cpp_endswith_multiple( self._column, column.as_column(pat, dtype="str") ) return self._return_or_inplace(result_col, **kwargs) def startswith(self, pat, **kwargs): """ Test if the start of each string element matches a pattern. Equivalent to `str.startswith() <https://docs.python.org/3/library/stdtypes.html#str.startswith>`_. Parameters ---------- pat : str or list-like If `str` is an `str`, evaluates whether each string of series starts with `pat`. If `pat` is a list-like, evaluates whether `self[i]` starts with `pat[i]`. Regular expressions are not accepted. Returns ------- Series or Index of bool A Series of booleans indicating whether the given pattern matches the start of each string element. See also -------- endswith Same as startswith, but tests the end of string. contains Tests if string element contains a pattern. Examples -------- >>> import cudf >>> s 0 bat 1 Bear 2 cat 3 None dtype: object >>> s.str.startswith('b') 0 True 1 False 2 False 3 null dtype: bool """ if "na" in kwargs: warnings.warn( "`na` parameter is not yet supported, \ as cudf uses native strings instead of Python objects" ) if pat is None: result_col = column.column_empty( len(self._column), dtype="bool", masked=True ) elif is_scalar(pat): result_col = cpp_startswith(self._column, as_scalar(pat, "str")) else: result_col = cpp_startswith_multiple( self._column, column.as_column(pat, dtype="str") ) return self._return_or_inplace(result_col, **kwargs) def find(self, sub, start=0, end=None, **kwargs): """ Return lowest indexes in each strings in the Series/Index where the substring is fully contained between ``[start:end]``. Return -1 on failure. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of int Examples -------- >>> import cudf >>> s = cudf.Series(['abc', 'a','b' ,'ddb']) >>> s.str.find('b') 0 1 1 -1 2 0 3 2 dtype: int32 Parameters such as `start` and `end` can also be used. >>> s.str.find('b', start=1, end=5) 0 1 1 -1 2 -1 3 2 dtype: int32 """ if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if end is None: end = -1 result_col = cpp_find(self._column, as_scalar(sub, "str"), start, end) return self._return_or_inplace(result_col, **kwargs) def rfind(self, sub, start=0, end=None, **kwargs): """ Return highest indexes in each strings in the Series/Index where the substring is fully contained between ``[start:end]``. Return -1 on failure. Equivalent to standard `str.rfind() <https://docs.python.org/3/library/stdtypes.html#str.rfind>`_. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of int See also -------- find Return lowest indexes in each strings. Examples -------- >>> import cudf >>> s = cudf.Series(["abc", "hello world", "rapids ai"]) >>> s.str.rfind('a') 0 0 1 -1 2 7 dtype: int32 Using `start` and `end` parameters. >>> s.str.rfind('a', start=2, end=5) 0 -1 1 -1 2 -1 dtype: int32 """ if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if end is None: end = -1 result_col = cpp_rfind(self._column, as_scalar(sub, "str"), start, end) return self._return_or_inplace(result_col, **kwargs) def index(self, sub, start=0, end=None, **kwargs): """ Return lowest indexes in each strings where the substring is fully contained between ``[start:end]``. This is the same as str.find except instead of returning -1, it raises a ValueError when the substring is not found. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of object Examples -------- >>> import cudf >>> s = cudf.Series(['abc', 'a','b' ,'ddb']) >>> s.str.index('b') Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: substring not found Parameters such as `start` and `end` can also be used. >>> s = cudf.Series(['abc', 'abb','ab' ,'ddb']) >>> s.str.index('b', start=1, end=5) 0 1 1 1 2 1 3 2 dtype: int32 """ if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if end is None: end = -1 result_col = cpp_find(self._column, as_scalar(sub, "str"), start, end) result = self._return_or_inplace(result_col, **kwargs) if (result == -1).any(): raise ValueError("substring not found") else: return result def rindex(self, sub, start=0, end=None, **kwargs): """ Return highest indexes in each strings where the substring is fully contained between ``[start:end]``. This is the same as ``str.rfind`` except instead of returning -1, it raises a ``ValueError`` when the substring is not found. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of object Examples -------- >>> import cudf >>> s = cudf.Series(['abc', 'a','b' ,'ddb']) >>> s.str.rindex('b') Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: substring not found Parameters such as `start` and `end` can also be used. >>> s = cudf.Series(['abc', 'abb','ab' ,'ddb']) >>> s.str.rindex('b', start=1, end=5) 0 1 1 2 2 1 3 2 dtype: int32 """ if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if end is None: end = -1 result_col = cpp_rfind(self._column, as_scalar(sub, "str"), start, end) result = self._return_or_inplace(result_col, **kwargs) if (result == -1).any(): raise ValueError("substring not found") else: return result def match(self, pat, case=True, flags=0, **kwargs): """ Determine if each string matches a regular expression. Parameters ---------- pat : str Character sequence or regular expression. Returns ------- Series or Index of boolean values. Notes ----- Parameters currently not supported are: `case`, `flags` and `na`. Examples -------- >>> import cudf >>> s = cudf.Series(["rapids", "ai", "cudf"]) Checking for strings starting with `a`. >>> s.str.match('a') 0 False 1 True 2 False dtype: bool Checking for strings starting with any of `a` or `c`. >>> s.str.match('[ac]') 0 False 1 True 2 True dtype: bool """ if case is not True: raise NotImplementedError("`case` parameter is not yet supported") if flags != 0: raise NotImplementedError("`flags` parameter is not yet supported") if "na" in kwargs: warnings.warn( "`na` parameter is not yet supported, \ as cudf uses native strings instead of Python objects" ) return self._return_or_inplace( cpp_match_re(self._column, pat), **kwargs ) def url_decode(self, **kwargs): """ Returns a URL-decoded format of each string. No format checking is performed. All characters are expected to be encoded as UTF-8 hex values. Returns ------- Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(['A%2FB-C%2FD', 'e%20f.g', '4-5%2C6']) >>> s.str.url_decode() 0 A/B-C/D 1 e f.g 2 4-5,6 dtype: object >>> data = ["https%3A%2F%2Frapids.ai%2Fstart.html", "https%3A%2F%2Fmedium.com%2Frapids-ai"] # noqa E501 >>> s = cudf.Series(data) >>> s.str.url_decode() 0 https://rapids.ai/start.html 1 https://medium.com/rapids-ai dtype: object """ return self._return_or_inplace(cpp_url_decode(self._column), **kwargs) def url_encode(self, **kwargs): """ Returns a URL-encoded format of each string. No format checking is performed. All characters are encoded except for ASCII letters, digits, and these characters: ``โ€˜.โ€™,โ€™_โ€™,โ€™-โ€˜,โ€™~โ€™``. Encoding converts to hex using UTF-8 encoded bytes. Returns ------- Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(['A/B-C/D', 'e f.g', '4-5,6']) >>> s.str.url_encode() 0 A%2FB-C%2FD 1 e%20f.g 2 4-5%2C6 dtype: object >>> data = ["https://rapids.ai/start.html", "https://medium.com/rapids-ai"] # noqa E501 >>> s = cudf.Series(data) >>> s.str.url_encode() 0 https%3A%2F%2Frapids.ai%2Fstart.html 1 https%3A%2F%2Fmedium.com%2Frapids-ai dtype: object """ return self._return_or_inplace(cpp_url_encode(self._column), **kwargs) def code_points(self, **kwargs): """ Returns an array by filling it with the UTF-8 code point values for each character of each string. This function uses the ``len()`` method to determine the size of each sub-array of integers. Returns ------- Series or Index. Examples -------- >>> import cudf >>> s = cudf.Series(["a","xyz", "รฉee"]) >>> s.str.code_points() 0 97 1 120 2 121 3 122 4 50089 5 101 6 101 dtype: int32 >>> s = cudf.Series(["abc"]) >>> s.str.code_points() 0 97 1 98 2 99 dtype: int32 """ new_col = cpp_code_points(self._column) if self._parent is None: return new_col elif isinstance(self._parent, cudf.Series): return cudf.Series(new_col, name=self._parent.name) elif isinstance(self._parent, cudf.Index): return cudf.core.index.as_index(new_col, name=self._parent.name) def translate(self, table, **kwargs): """ Map all characters in the string through the given mapping table. Equivalent to standard `str.translate() <https://docs.python.org/3/library/stdtypes.html#str.translate>`_. Parameters ---------- table : dict Table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. `str.maketrans() <https://docs.python.org/3/library/stdtypes.html#str.maketrans>`_ is a helper function for making translation tables. Returns ------- Series or Index. Examples -------- >>> import cudf >>> data = ['lower', 'CAPITALS', 'this is a sentence','SwApCaSe'] >>> s = cudf.Series(data) >>> s.str.translate({'a': "1"}) 0 lower 1 CAPITALS 2 this is 1 sentence 3 SwApC1Se dtype: object >>> s.str.translate({'a': "1", "e":"#"}) 0 low#r 1 CAPITALS 2 this is 1 s#nt#nc# 3 SwApC1S# dtype: object """ table = str.maketrans(table) return self._return_or_inplace( cpp_translate(self._column, table), **kwargs ) def normalize_spaces(self, **kwargs): """ Remove extra whitespace between tokens and trim whitespace from the beginning and the end of each string. Returns ------- Series or Index of object. Examples -------- >>> import cudf >>> ser = cudf.Series(["hello \\t world"," test string "]) >>> ser.str.normalize_spaces() 0 hello world 1 test string dtype: object """ return self._return_or_inplace( cpp_normalize_spaces(self._column), **kwargs ) def tokenize(self, delimiter=" ", **kwargs): """ Each string is split into tokens using the provided delimiter(s). The sequence returned contains the tokens in the order they were found. Parameters ---------- delimiter : str or list of strs, Default is whitespace. The string used to locate the split points of each string. Returns ------- Series or Index of object. Examples -------- >>> import cudf >>> data = ["hello world", "goodbye world", "hello goodbye"] >>> ser = cudf.Series(data) >>> ser.str.tokenize() 0 hello 1 world 2 goodbye 3 world 4 hello 5 goodbye dtype: object """ delimiter = _massage_string_arg(delimiter, "delimiter", allow_col=True) kwargs.setdefault("retain_index", False) return self._return_or_inplace( cpp_tokenize(self._column, delimiter), **kwargs ) def character_tokenize(self, **kwargs): """ Each string is split into individual characters. The sequence returned contains each character as an individual string. Returns ------- Series or Index of object. Examples -------- >>> import cudf >>> data = ["hello world", None, "goodbye, thank you."] >>> ser = cudf.Series(data) >>> ser.str.character_tokenize() 0 h 1 e 2 l 3 l 4 o 5 6 w 7 o 8 r 9 l 10 d 11 g 12 o 13 o 14 d 15 b 16 y 17 e 18 , 19 20 t 21 h 22 a 23 n 24 k 25 26 y 27 o 28 u 29 . dtype: object """ result_col = cpp_character_tokenize(self._column) if self._parent is None: return result_col elif isinstance(self._parent, cudf.Series): return cudf.Series(result_col, name=self._parent.name) elif isinstance(self._parent, cudf.Index): return cudf.core.index.as_index(result_col, name=self._parent.name) def token_count(self, delimiter=" ", **kwargs): """ Each string is split into tokens using the provided delimiter. The returned integer sequence is the number of tokens in each string. Parameters ---------- delimiter : str or list of strs, Default is whitespace. The characters or strings used to locate the split points of each string. Returns ------- Series or Index. Examples -------- >>> import cudf >>> ser = cudf.Series(["hello world","goodbye",""]) >>> ser.str.token_count() 0 2 1 1 2 0 dtype: int32 """ delimiter = _massage_string_arg(delimiter, "delimiter", allow_col=True) return self._return_or_inplace( cpp_count_tokens(self._column, delimiter), **kwargs ) def ngrams(self, n=2, separator="_", **kwargs): """ Generate the n-grams from a set of tokens, each record in series is treated a token. You can generate tokens from a Series instance using the ``Series.str.tokenize()`` function. Parameters ---------- n : int The degree of the n-gram (number of consecutive tokens). Default of 2 for bigrams. separator : str The separator to use between within an n-gram. Default is '_'. Examples -------- >>> import cudf >>> str_series = cudf.Series(['this is my', 'favorite book']) >>> str_series = cudf.Series(['this is my', 'favorite book']) >>> str_series.str.ngrams(2, "_") 0 this is my_favorite book dtype: object >>> str_series = cudf.Series(['abc','def','xyz','hhh']) >>> str_series.str.ngrams(2, "_") 0 abc_def 1 def_xyz 2 xyz_hhh dtype: object """ separator = _massage_string_arg(separator, "separator") kwargs.setdefault("retain_index", False) return self._return_or_inplace( cpp_generate_ngrams(self._column, n, separator), **kwargs ) def character_ngrams(self, n=2, **kwargs): """ Generate the n-grams from characters in a column of strings. Parameters ---------- n : int The degree of the n-gram (number of consecutive characters). Default of 2 for bigrams. Examples -------- >>> import cudf >>> str_series = cudf.Series(['abcd','efgh','xyz']) >>> str_series.str.character_ngrams(2) 0 ab 1 bc 2 cd 3 ef 4 fg 5 gh 6 xy 7 yz dtype: object >>> str_series.str.character_ngrams(3) 0 abc 1 bcd 2 efg 3 fgh 4 xyz dtype: object """ kwargs.setdefault("retain_index", False) return self._return_or_inplace( cpp_generate_character_ngrams(self._column, n), **kwargs ) def ngrams_tokenize(self, n=2, delimiter=" ", separator="_", **kwargs): """ Generate the n-grams using tokens from each string. This will tokenize each string and then generate ngrams for each string. Parameters ---------- n : int, Default 2. The degree of the n-gram (number of consecutive tokens). delimiter : str, Default is white-space. The character used to locate the split points of each string. sep : str, Default is '_'. The separator to use between tokens within an n-gram. Returns ------- Series or Index of object. Examples -------- >>> import cudf >>> ser = cudf.Series(['this is the', 'best book']) >>> ser.str.ngrams_tokenize(n=2, sep='_') 0 this_is 1 is_the 2 best_book dtype: object """ delimiter = _massage_string_arg(delimiter, "delimiter") separator = _massage_string_arg(separator, "separator") kwargs.setdefault("retain_index", False) return self._return_or_inplace( cpp_ngrams_tokenize(self._column, n, delimiter, separator), **kwargs, ) def replace_tokens(self, targets, replacements, delimiter=None, **kwargs): """ The targets tokens are searched for within each string in the series and replaced with the corresponding replacements if found. Tokens are identified by the delimiter character provided. Parameters ---------- targets : array-like, Sequence or Series The tokens to search for inside each string. replacements : array-like, Sequence, Series or str The strings to replace for each found target token found. Alternately, this can be a single str instance and would be used as replacement for each string found. delimiter : str The character used to locate the tokens of each string. Default is whitespace. Returns ------- Series or Index of object. Examples -------- >>> import cudf >>> sr = cudf.Series(["this is me", "theme music", ""]) >>> targets = cudf.Series(["is", "me"]) >>> sr.str.replace_tokens(targets=targets, replacements="_") 0 this _ _ 1 theme music 2 dtype: object >>> sr = cudf.Series(["this;is;me", "theme;music", ""]) >>> sr.str.replace_tokens(targets=targets, replacements=":") 0 this;is;me 1 theme;music 2 dtype: object """ if can_convert_to_column(targets): targets_column = column.as_column(targets) else: raise TypeError( f"targets should be an array-like or a Series object, " f"found {type(targets)}" ) if is_scalar(replacements): replacements_column = column.as_column([replacements]) elif can_convert_to_column(replacements): replacements_column = column.as_column(replacements) if len(targets_column) != len(replacements_column): raise ValueError( "targets and replacements should be same size" " sequences unless replacements is a string." ) else: raise TypeError( f"replacements should be an str, array-like or Series object, " f"found {type(replacements)}" ) if delimiter is None: delimiter = "" elif not is_scalar(delimiter): raise TypeError( f"Type of delimiter should be a string," f" found {type(delimiter)}" ) return self._return_or_inplace( cpp_replace_tokens( self._column, targets_column, replacements_column, as_scalar(delimiter, dtype="str"), ), **kwargs, ) def subword_tokenize( self, hash_file, max_length=64, stride=48, do_lower=True, do_truncate=False, max_num_strings=100, max_num_chars=100000, max_rows_tensor=500, **kwargs, ): """ Run CUDA BERT subword tokenizer on cuDF strings column. Encodes words to token ids using vocabulary from a pretrained tokenizer. Parameters ---------- hash_file : str Path to hash file containing vocabulary of words with token-ids. max_length : int, Default is 64 Limits the length of the sequence returned. If tokenized string is shorter than max_length, output will be padded with 0s. If the tokenized string is longer than max_length and do_truncate == False, there will be multiple returned sequences containing the overflowing token-ids. stride : int, Default is 48 If do_truncate == False and the tokenized string is larger than max_length, the sequences containing the overflowing token-ids can contain duplicated token-ids from the main sequence. If max_length is equal to stride there are no duplicated-id tokens. If stride is 80% of max_length, 20% of the first sequence will be repeated on the second sequence and so on until the entire sentence is encoded. do_lower : bool, Default is True If set to true, original text will be lowercased before encoding. do_truncate : bool, Default is False If set to true, strings will be truncated and padded to max_length. Each input string will result in exactly one output sequence. If set to false, there may be multiple output sequences when the max_length is smaller than generated tokens. max_num_strings : int, Default is 100 The maximum number of strings to be encoded. max_num_chars : int, Default is 100000 The maximum number of characters in the input strings column. max_rows_tensor : int, Default is 500 The maximum number of rows in the output Returns ------- token-ids : Column The token-ids for each string padded with 0s to max_length. attention-mask : Column The mask for token-ids result where corresponding positions identify valid token-id values. metadata : Column Each row contains the index id of the original string and the first and last index of the token-ids that are non-padded and non-overlapping. Examples -------- >>> import cudf >>> ser = cudf.Series(['this is the', 'best book']) >>> tokens, masks, metadata = ser.str.subword_tokenize("bert_hash_table.txt") """ tokens, masks, metadata = cpp_subword_tokenize( self._column, hash_file, max_length, stride, do_lower, do_truncate, max_num_strings, max_num_chars, max_rows_tensor, ) return ( cupy.asarray(tokens), cupy.asarray(masks), cupy.asarray(metadata), ) def _massage_string_arg(value, name, allow_col=False): if isinstance(value, str): return as_scalar(value, dtype="str") if isinstance(value, Scalar) and is_string_dtype(value.dtype): return value allowed_types = ["Scalar"] if allow_col: if isinstance(value, list): return column.as_column(value, dtype="str") if isinstance(value, Column) and is_string_dtype(value.dtype): return value allowed_types.append("Column") raise ValueError( "Expected {} for {} but got {}".format( _expected_types_format(allowed_types), name, type(value) ) ) def _expected_types_format(types): if len(types) == 1: return types[0] return ", ".join(types[:-1]) + ", or " + types[-1] class StringColumn(column.ColumnBase): """Implements operations for Columns of String type """ def __init__( self, mask=None, size=None, offset=0, null_count=None, children=() ): """ Parameters ---------- mask : Buffer The validity mask offset : int Data offset children : Tuple[Column] Two non-null columns containing the string data and offsets respectively """ dtype = np.dtype("object") if size is None: for child in children: assert child.offset == 0 if len(children) == 0: size = 0 elif children[0].size == 0: size = 0 else: # one less because the last element of offsets is the number of # bytes in the data buffer size = children[0].size - 1 size = size - offset super().__init__( None, size, dtype, mask=mask, offset=offset, null_count=null_count, children=children, ) @property def base_size(self): if len(self.base_children) == 0: return 0 else: return int( (self.base_children[0].size - 1) / self.base_children[0].dtype.itemsize ) def sum(self, dtype=None): return self.str().cat() def product(self, dtype=None): raise TypeError("can't multiply sequence by non-int of type 'object'") def mean(self, dtype=np.float64): raise NotImplementedError( "mean for Series of type 'object' is not yet implemented." ) def var(self, ddof=1, dtype=np.float64): raise TypeError("unsupported operation for object of type 'object'") def std(self, ddof=1, dtype=np.float64): raise TypeError("unsupported operation for object of type 'object'") def set_base_data(self, value): if value is not None: raise RuntimeError( "StringColumns do not use data attribute of Column, use " "`set_base_children` instead" ) else: super().set_base_data(value) def set_base_mask(self, value): super().set_base_mask(value) def set_base_children(self, value): # TODO: Implement dtype validation of the children here somehow super().set_base_children(value) @property def children(self): if self._children is None: if len(self.base_children) == 0: self._children = () elif self.offset == 0 and self.base_children[0].size == ( self.size + 1 ): self._children = self.base_children else: # First get the base columns for chars and offsets chars_column = self.base_children[1] offsets_column = self.base_children[0] # Shift offsets column by the parent offset. offsets_column = column.build_column( data=offsets_column.base_data, dtype=offsets_column.dtype, mask=offsets_column.base_mask, size=self.size + 1, offset=self.offset, ) # Now run a subtraction binary op to shift all of the offsets # by the respective number of characters relative to the # parent offset chars_offset = libcudf.copying.get_element(offsets_column, 0) offsets_column = offsets_column.binary_operator( "sub", chars_offset ) # Shift the chars offset by the new first element of the # offsets column chars_size = libcudf.copying.get_element( offsets_column, self.size ) chars_column = column.build_column( data=chars_column.base_data, dtype=chars_column.dtype, mask=chars_column.base_mask, size=chars_size.value, offset=chars_offset.value, ) self._children = (offsets_column, chars_column) return self._children def __contains__(self, item): return True in self.str().contains(f"^{item}$") def str(self, parent=None): return StringMethods(self, parent=parent) def __sizeof__(self): n = 0 if len(self.base_children) == 2: n += ( self.base_children[0].__sizeof__() + self.base_children[1].__sizeof__() ) if self.base_mask is not None: n += self.base_mask.size return n def _memory_usage(self, **kwargs): return self.__sizeof__() def unary_operator(self, unaryop): raise TypeError( f"Series of dtype `str` cannot perform the operation: " f"{unaryop}" ) def __len__(self): return self.size def _set_mask(self, value): super()._set_mask(value) @property def _nbytes(self): if self.size == 0: return 0 else: return self.children[1].size def as_numerical_column(self, dtype, **kwargs): out_dtype = np.dtype(dtype) kwargs.update(dtype=out_dtype) if out_dtype.type is np.datetime64: if "format" not in kwargs: if len(self) > 0: # infer on host from the first not na element fmt = datetime.infer_format(self[self.notna()][0]) kwargs.update(format=fmt) # Check for None strings if len(self) > 0 and self.binary_operator("eq", "None").any(): raise ValueError("Could not convert `None` value to datetime") boolean_match = self.binary_operator("eq", "NaT") elif out_dtype.kind in {"i", "u"}: if not cpp_is_integer(self).all(): raise ValueError( "Could not convert strings to integer \ type due to presence of non-integer values." ) elif out_dtype.kind == "f": if not cpp_is_float(self).all(): raise ValueError( "Could not convert strings to float \ type due to presence of non-floating values." ) result_col = _str_to_numeric_typecast_functions[out_dtype]( self, **kwargs ) if (out_dtype.type is np.datetime64) and boolean_match.any(): result_col[boolean_match] = None return result_col def as_datetime_column(self, dtype, **kwargs): return self.as_numerical_column(dtype, **kwargs) def as_string_column(self, dtype, **kwargs): return self def to_arrow(self): if len(self) == 0: sbuf = np.empty(0, dtype="int8") obuf = np.empty(0, dtype="int32") nbuf = None else: sbuf = self.children[1].data.to_host_array().view("int8") obuf = self.children[0].data.to_host_array().view("int32") nbuf = None if self.null_count > 0: nbuf = self.mask.to_host_array().view("int8") nbuf = pa.py_buffer(nbuf) sbuf = pa.py_buffer(sbuf) obuf = pa.py_buffer(obuf) if self.null_count == len(self): return pa.NullArray.from_buffers( pa.null(), len(self), [pa.py_buffer((b""))], self.null_count ) else: return pa.StringArray.from_buffers( len(self), obuf, sbuf, nbuf, self.null_count ) def to_pandas(self, index=None): pd_series = self.to_arrow().to_pandas() if index is not None: pd_series.index = index return pd_series def to_array(self, fillna=None): """Get a dense numpy array for the data. Notes ----- if ``fillna`` is ``None``, null values are skipped. Therefore, the output size could be smaller. Raises ------ ``NotImplementedError`` if there are nulls """ if fillna is not None: warnings.warn("fillna parameter not supported for string arrays") return self.to_arrow().to_pandas().values def __array__(self, dtype=None): raise TypeError( "Implicit conversion to a host NumPy array via __array__ is not " "allowed, Conversion to GPU array in strings is not yet " "supported.\nTo explicitly construct a host array, " "consider using .to_array()" ) def __arrow_array__(self, type=None): raise TypeError( "Implicit conversion to a host PyArrow Array via __arrow_array__ " "is not allowed, To explicitly construct a PyArrow Array, " "consider using .to_arrow()" ) def serialize(self): header = {"null_count": self.null_count} header["type-serialized"] = pickle.dumps(type(self)) frames = [] sub_headers = [] for item in self.children: sheader, sframes = item.serialize() sub_headers.append(sheader) frames.extend(sframes) if self.null_count > 0: frames.append(self.mask) header["subheaders"] = sub_headers header["frame_count"] = len(frames) return header, frames @classmethod def deserialize(cls, header, frames): # Deserialize the mask, value, and offset frames buffers = [Buffer(each_frame) for each_frame in frames] if header["null_count"] > 0: nbuf = buffers[2] else: nbuf = None children = [] for h, b in zip(header["subheaders"], buffers[:2]): column_type = pickle.loads(h["type-serialized"]) children.append(column_type.deserialize(h, [b])) col = column.build_column( data=None, dtype="str", mask=nbuf, children=tuple(children) ) return col def can_cast_safely(self, to_dtype): to_dtype = np.dtype(to_dtype) if self.dtype == to_dtype: return True elif to_dtype.kind in {"i", "u"} and not cpp_is_integer(self).all(): return False elif to_dtype.kind == "f" and not cpp_is_float(self).all(): return False else: return True def find_and_replace(self, to_replace, replacement, all_nan): """ Return col with *to_replace* replaced with *value* """ to_replace = column.as_column(to_replace, dtype=self.dtype) replacement = column.as_column(replacement, dtype=self.dtype) return libcudf.replace.replace(self, to_replace, replacement) def fillna(self, fill_value): if not is_scalar(fill_value): fill_value = column.as_column(fill_value, dtype=self.dtype) return libcudf.replace.replace_nulls(self, fill_value, dtype="object") def _find_first_and_last(self, value): found_indices = self.str().contains(f"^{value}$") found_indices = libcudf.unary.cast(found_indices, dtype=np.int32) first = column.as_column(found_indices).find_first_value(1) last = column.as_column(found_indices).find_last_value(1) return first, last def find_first_value(self, value, closest=False): return self._find_first_and_last(value)[0] def find_last_value(self, value, closest=False): return self._find_first_and_last(value)[1] def normalize_binop_value(self, other): if isinstance(other, column.Column): return other.astype(self.dtype) elif isinstance(other, str) or other is None: col = utils.scalar_broadcast_to( other, size=len(self), dtype="object" ) return col else: raise TypeError("cannot broadcast {}".format(type(other))) def default_na_value(self): return None def binary_operator(self, op, rhs, reflect=False): lhs = self if reflect: lhs, rhs = rhs, lhs if isinstance(rhs, StringColumn) and op == "add": return lhs.str().cat(others=rhs) elif op in ("eq", "ne", "gt", "lt", "ge", "le"): return _string_column_binop(self, rhs, op=op, out_dtype="bool") else: msg = "{!r} operator not supported between {} and {}" raise TypeError(msg.format(op, type(self), type(rhs))) @property def is_unique(self): return len(self.unique()) == len(self) @property def __cuda_array_interface__(self): raise NotImplementedError( "Strings are not yet supported via `__cuda_array_interface__`" ) def _mimic_inplace(self, other_col, inplace=False): out = super()._mimic_inplace(other_col, inplace=inplace) return out @copy_docstring(column.ColumnBase.view) def view(self, dtype): if self.null_count > 0: raise ValueError( "Can not produce a view of a string column with nulls" ) dtype = np.dtype(dtype) str_byte_offset = self.base_children[0][self.offset] str_end_byte_offset = self.base_children[0][self.offset + self.size] char_dtype_size = self.base_children[1].dtype.itemsize n_bytes_to_view = ( str_end_byte_offset - str_byte_offset ) * char_dtype_size to_view = column.build_column( self.base_children[1].data, dtype=self.base_children[1].dtype, offset=str_byte_offset, size=n_bytes_to_view, ) return to_view.view(dtype) @annotate("BINARY_OP", color="orange", domain="cudf_python") def _string_column_binop(lhs, rhs, op, out_dtype): out = libcudf.binaryop.binaryop(lhs=lhs, rhs=rhs, op=op, dtype=out_dtype) return out def _get_cols_list(others): if ( can_convert_to_column(others) and len(others) > 0 and ( can_convert_to_column( others.iloc[0] if isinstance(others, cudf.Series) else others[0] ) ) ): """ If others is a list-like object (in our case lists & tuples) just another Series/Index, great go ahead with concatenation. """ cols_list = [column.as_column(frame, dtype="str") for frame in others] return cols_list elif others is not None: return [column.as_column(others, dtype="str")] else: raise TypeError( "others must be Series, Index, DataFrame, np.ndarrary " "or list-like (either containing only strings or " "containing only objects of type Series/Index/" "np.ndarray[1-dim])" )
30.086291
119
0.534075
6e8cc35961241be2a921d45cead66fa77614f1ea
3,987
py
Python
layers/layer1_python3/0200_mflog/mflog/__init__.py
thefab/mfcom-1
f6a209edb22a782dfb0cf63cc0f62433b1b6e961
[ "BSD-3-Clause" ]
null
null
null
layers/layer1_python3/0200_mflog/mflog/__init__.py
thefab/mfcom-1
f6a209edb22a782dfb0cf63cc0f62433b1b6e961
[ "BSD-3-Clause" ]
null
null
null
layers/layer1_python3/0200_mflog/mflog/__init__.py
thefab/mfcom-1
f6a209edb22a782dfb0cf63cc0f62433b1b6e961
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import os import logging import logging.config import json from jinja2 import Template MFLOG_DEFAULT_CONFIG_PATH = \ os.path.join(os.environ.get('MFCOM_HOME', ''), "config", "python_default_logging.json") MFLOG_CONFIG_PATH = \ os.path.join(os.environ.get('MODULE_HOME', ''), "config", "python_logging.json") MODULE = os.environ.get('MODULE') MODULE_LOG_DEFAULT_LEVEL_VAR = "%s_LOG_DEFAULT_LEVEL" % MODULE MODULE_LOG_STDOUT_VAR = "%s_LOG_STDOUT" % MODULE MODULE_LOG_STDERR_VAR = "%s_LOG_STDERR" % MODULE MODULE_LOG_EXTERNAL_MONITORING_FILE_VAR = \ "%s_LOG_EXTERNAL_MONITORING_FILE" % MODULE MODULE_LOG_EXTERNAL_MONITORING_LEVEL_VAR = \ "%s_LOG_EXTERNAL_MONITORING_LEVEL" % MODULE MODULE_LOG_EXTERNAL_MONITORING_FORMATTER_VAR = \ "%s_LOG_EXTERNAL_MONITORING_FORMATTER" % MODULE def __get_jinja2_env(): module_log_default_level = \ os.environ.get(MODULE_LOG_DEFAULT_LEVEL_VAR, 'NOTSET') module_log_stdout = os.environ.get(MODULE_LOG_STDOUT_VAR, 'ext://sys.stdout') module_log_stderr = os.environ.get(MODULE_LOG_STDERR_VAR, 'ext://sys.stderr') module_log_em_file = \ os.environ.get(MODULE_LOG_EXTERNAL_MONITORING_FILE_VAR, "null") module_log_em_level = \ os.environ.get(MODULE_LOG_EXTERNAL_MONITORING_LEVEL_VAR, "CRITICAL") module_log_em_formatter = \ os.environ.get(MODULE_LOG_EXTERNAL_MONITORING_FORMATTER_VAR, "metwork") jinja2_env = { 'MODULE_LOG_DEFAULT_LEVEL': module_log_default_level, 'MODULE_LOG_STDOUT': module_log_stdout, 'MODULE_LOG_STDERR': module_log_stderr, 'MODULE_LOG_EXTERNAL_MONITORING_FILE': module_log_em_file, 'MODULE_LOG_EXTERNAL_MONITORING_LEVEL': module_log_em_level, 'MODULE_LOG_EXTERNAL_MONITORING_FORMATTER': module_log_em_formatter } jinja2_env.update(os.environ) return jinja2_env def set_logging_config(): """Set the metwork logging config. If the env var MFLOG_DEBUG_CONFIGURATION is set to 1, you have a debug output on stdout on the full configuration applied with logging.config.dictConfig. """ with open(MFLOG_DEFAULT_CONFIG_PATH, 'r') as f: default_config_content = f.read() template = Template(default_config_content) jinja2_env = __get_jinja2_env() default_config_content = template.render(jinja2_env) overriden_config_content = '{}' try: with open(MFLOG_CONFIG_PATH, 'r') as f: overriden_config_content = f.read() template = Template(overriden_config_content) overriden_config_content = template.render(jinja2_env) except IOError: pass try: config_dict = json.loads(default_config_content) except ValueError: print("BAD DEFAULT LOGGING CONFIG") os._exit(3) try: overriden_config = json.loads(overriden_config_content) except ValueError: print("BAD LOGGING CONFIG") os._exit(3) for key in ('formatters', 'handlers', 'loggers', 'filters'): try: config_dict[key].update(overriden_config[key]) except Exception: pass if int(os.environ.get('MFLOG_DEBUG_CONFIGURATION', '0')) == 1: print("WE ARE GOING TO SET PYTHON LOGGING CONFIGURATION:") print("=================================================") print(json.dumps(config_dict, indent=4)) print("=================================================") logging.config.dictConfig(config_dict) # IMPORTANT LINE : set logging config at import set_logging_config() def getLogger(*args, **kwargs): """Return a python logging logger. This function is just a wrapper. But by importing and using this one (and not directly logging.getLogger), you are sure that the logging config is set. """ return logging.getLogger(*args, **kwargs)
36.577982
79
0.672686
f9a4f680b0d07eeb51492fe707dbb2cdf25367fc
8,281
py
Python
plot_helper.py
nadanai263/MCMC_emcee_intro
a0664ad39dff46bdb660b355abe7ec19b92134d7
[ "MIT" ]
1
2019-03-01T08:05:43.000Z
2019-03-01T08:05:43.000Z
plot_helper.py
nadanai263/MCMC_emcee_intro
a0664ad39dff46bdb660b355abe7ec19b92134d7
[ "MIT" ]
null
null
null
plot_helper.py
nadanai263/MCMC_emcee_intro
a0664ad39dff46bdb660b355abe7ec19b92134d7
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator from matplotlib.ticker import MaxNLocator import cycler as cycler def plot1(x,y,xlabel='x',ylabel='y',legend=False,title=False): plt.close("all") my_dpi=150 figure_options={'figsize':(8.27,5.83)} #figure size in inches. A4=11.7x8.3, A5=8.27x5.83 font_options={'size':'20','family':'sans-serif','sans-serif':'Arial'} plt.rc('figure', **figure_options) plt.rc('font', **font_options) # get colormap cmap=plt.cm.Set1 # build cycler with 5 equally spaced colors from that colormap,supply cycler to the rcParam plt.rcParams["axes.prop_cycle"] = cycler.cycler('color', cmap(np.linspace(0,1,9)) ) f, axarr=plt.subplots() axarr.plot(x,y,'-') formatplot(axarr,xlabel,ylabel,legend,False,False,False,False,False,title) plt.title(title) plt.show() def plot2(x,y,xobs,yobs,yerr,xlabel='x',ylabel='y',legend=False,title=False): plt.close("all") my_dpi=150 figure_options={'figsize':(8.27,5.83)} #figure size in inches. A4=11.7x8.3, A5=8.27x5.83 font_options={'size':'20','family':'sans-serif','sans-serif':'Arial'} plt.rc('figure', **figure_options) plt.rc('font', **font_options) # get colormap cmap=plt.cm.Set1 # build cycler with 5 equally spaced colors from that colormap,supply cycler to the rcParam plt.rcParams["axes.prop_cycle"] = cycler.cycler('color', cmap(np.linspace(0,1,9)) ) f, axarr=plt.subplots() axarr.plot(x,y,'-') axarr.errorbar(xobs,yobs,yerr=yerr,fmt='o') formatplot(axarr,xlabel,ylabel,legend,False,False,False,False,False,title) plt.show() def plot3(x1,y1,x2,y2,xlabel='x',ylabel='y',legend=False,title=False): plt.close("all") my_dpi=150 figure_options={'figsize':(18,5.83)} #figure size in inches. A4=11.7x8.3, A5=8.27x5.83 font_options={'size':'20','family':'sans-serif','sans-serif':'Arial'} plt.rc('figure', **figure_options) plt.rc('font', **font_options) # get colormap cmap=plt.cm.Set1 # build cycler with 5 equally spaced colors from that colormap,supply cycler to the rcParam plt.rcParams["axes.prop_cycle"] = cycler.cycler('color', cmap(np.linspace(0,1,9)) ) f, axarr=plt.subplots(1,2) axarr[0].plot(x1,y1,'-') axarr[1].plot(x2,y2,'-') formatplot(axarr[0],'$y_{max}$',ylabel,legend,False,False,False,False,False,title) formatplot(axarr[1],'$K$',ylabel,legend,False,False,False,False,False,title) plt.show() def plot4(x1,y1,x2,y2,samples,xlabel='x',ylabel='y',legend=False,title=False): plt.close("all") my_dpi=150 figure_options={'figsize':(18,5.83)} #figure size in inches. A4=11.7x8.3, A5=8.27x5.83 font_options={'size':'20','family':'sans-serif','sans-serif':'Arial'} plt.rc('figure', **figure_options) plt.rc('font', **font_options) # get colormap cmap=plt.cm.Set1 # build cycler with 5 equally spaced colors from that colormap,supply cycler to the rcParam plt.rcParams["axes.prop_cycle"] = cycler.cycler('color', cmap(np.linspace(0,1,9)) ) f, axarr=plt.subplots(1,2) axarrt1=axarr[0].twinx() axarrt2=axarr[1].twinx() axarr[0].plot(x1,y1,'-') axarrt1.hist(samples[:,0],bins=200,color='#0d76e8') #f55f4e red #0d76e8 blue axarr[1].plot(x2,y2,'-') axarrt2.hist(samples[:,1],bins=200,color='#0d76e8') formatplot(axarr[0],'$y_{max}$',ylabel,legend,False,False,False,False,False,title) formatplot(axarr[1],'$K$',False,legend,False,False,False,False,False,title) plt.show() def plot5(x,y,xobs,yobs,yerr,samples,xlabel='x',ylabel='y',legend=False,title=False): plt.close("all") my_dpi=150 figure_options={'figsize':(8.27,5.83)} #figure size in inches. A4=11.7x8.3, A5=8.27x5.83 font_options={'size':'20','family':'sans-serif','sans-serif':'Arial'} plt.rc('figure', **figure_options) plt.rc('font', **font_options) # get colormap cmap=plt.cm.Set1 # build cycler with 5 equally spaced colors from that colormap,supply cycler to the rcParam plt.rcParams["axes.prop_cycle"] = cycler.cycler('color', cmap(np.linspace(0,1,9)) ) f, axarr=plt.subplots() axarr.plot(x,y,'-') axarr.errorbar(xobs,yobs,yerr=yerr,fmt='o') xmod=np.linspace(0,10,50) for ymax,K in samples[np.random.randint(len(samples), size=20)]: ymod=ymax*xmod/(xmod+K) axarr.plot(xmod,ymod,'k-',label='_nolegend_',alpha=0.1) formatplot(axarr,xlabel,ylabel,legend,False,False,False,False,False,title) plt.show() def formatplot(ax,xlabel,ylabel,legend,xlim,ylim,logx,logy,logxy,title): my_dpi=150 ######### SET AXES LIMITS ######### if xlim!=False: ax.set_xlim([0,35]) if ylim!=False: ax.set_ylim([0.05,25]) ######### SET TICK VALUES ######### ax.tick_params(axis='both',pad=10) # ax.set_xticks([0,2e-5,4e-5,6e-5]) # ax.set_yticks([0,2,4,6,8]) ######### SET TITLES AND LABLES ######### if title!=False: ax.set_title(title) if xlabel!=False: ax.set_xlabel(xlabel, labelpad=12) if ylabel!=False: ax.set_ylabel(ylabel, labelpad=12) ######### SET LINE THICKNESSES ######### # ax.xaxis.set_major_formatter(mpl.ticker.FormatStrFormatter("%1.e")) # ax.axhline(linewidth=2, color='k') # ax.axvline(linewidth=2, color='k') ax.spines['bottom'].set_linewidth(2) ax.spines['top'].set_linewidth(2) ax.spines['left'].set_linewidth(2) ax.spines['right'].set_linewidth(2) ######### SET TICKS ######### if logx==True: ax.set_xscale("log") elif logy==True: ax.set_yscale("log") elif logxy==True: ax.set_xscale("log") ax.set_yscale("log") else: minorLocatorx=AutoMinorLocator(2) # Number of minor intervals per major interval minorLocatory=AutoMinorLocator(2) ax.xaxis.set_minor_locator(minorLocatorx) ax.yaxis.set_minor_locator(minorLocatory) ax.tick_params(which='major', width=2, length=8, pad=9, direction='in') ax.tick_params(which='minor', width=2, length=4, pad=9, direction='in') ######### CALL LEGEND ######### if legend==True: ax.legend(loc='best', fontsize=22,numpoints=1) def plottraces(data,parameternames,parametertruths,nwalkers,niterations,save=1): numberofplots=data.shape[1] plt.close("all") my_dpi=150 figure_options={'figsize':(11.7,8.3)} #figure size in inches. A4=11.7x8.3. font_options={'size':'6','family':'sans-serif','sans-serif':'Arial'} plt.rc('figure', **figure_options) plt.rc('font', **font_options) # fig=plt.figure(); ax=fig.add_subplot(1,1,1) ######### CALL PLOTS ######### if numberofplots>1: f, axarr=plt.subplots(numberofplots) for i in range(0,numberofplots): for j in range(1,nwalkers+1): axarr[i].plot(np.arange(niterations),data[niterations*j-niterations:niterations*j,i],'k-',lw=0.5) if parametertruths!=[]: axarr[i].axhline(parametertruths[i], color="#888888", lw=2) formatplottrace(axarr[i],parameternames[i]) else: f, axarr=plt.subplots() for i in range(1,nwalkers+1): axarr.plot(np.arange(niterations),data[niterations*i-niterations:niterations*i],'k-',lw=0.5) if parametertruths!=[]: axarr.axhline(parametertruths[0], color="#888888", lw=2) formatplottrace(axarr,parameternames[0]) ######### SAVE PLOT ######### if save==True: print() print('Saving file...') print() plt.savefig('plots/trace.png',dpi=my_dpi,bbox_inches='tight') else: plt.show() def formatplottrace(ax,parametername): ######### SET TICK VALUES ######### ax.tick_params(axis='both',pad=10) # ax.set_xticks([0,2e-5,4e-5,6e-5]) # ax.set_yticks([0,2,4,6,8]) ######### SET TITLES AND LABLES ######### #ax.set_title('Plot title') # ax.set_xlabel('x', labelpad=12) ax.set_ylabel(parametername, labelpad=12) ######### SET LINE THICKNESSES ######### # ax.xaxis.set_major_formatter(mpl.ticker.FormatStrFormatter("%1.e")) # ax.axhline(linewidth=2, color='k') # ax.axvline(linewidth=2, color='k') ax.spines['bottom'].set_linewidth(1) ax.spines['top'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(1) ######### SET TICKS ######### minorLocatorx=AutoMinorLocator(2) # Number of minor intervals per major interval minorLocatory=AutoMinorLocator(2) ax.xaxis.set_minor_locator(minorLocatorx) ax.yaxis.set_minor_locator(minorLocatory) ax.tick_params(which='major', width=1, length=8, pad=9) ax.tick_params(which='minor', width=1, length=4, pad=9) ######### CALL LEGEND ######### # ax.legend(loc='best', fontsize=22,numpoints=1)
28.653979
101
0.689168
a8954abba24f193f27a2cfc877c344130ea80b21
5,035
py
Python
plasmapy/plasma/sources/plasmablob.py
Quettle/PlasmaPy
9689c83b991832c32158cca8b3f94525b59bde18
[ "BSD-2-Clause", "MIT", "BSD-2-Clause-Patent", "BSD-1-Clause", "BSD-3-Clause" ]
2
2020-09-16T08:53:45.000Z
2022-01-29T18:00:10.000Z
plasmapy/plasma/sources/plasmablob.py
RAJAGOPALAN-GANGADHARAN/PlasmaPy
6df9583cc47375687a07300c0aa11ba31634d770
[ "BSD-2-Clause", "MIT", "BSD-2-Clause-Patent", "BSD-1-Clause", "BSD-3-Clause" ]
null
null
null
plasmapy/plasma/sources/plasmablob.py
RAJAGOPALAN-GANGADHARAN/PlasmaPy
6df9583cc47375687a07300c0aa11ba31634d770
[ "BSD-2-Clause", "MIT", "BSD-2-Clause-Patent", "BSD-1-Clause", "BSD-3-Clause" ]
null
null
null
""" Defines the core Plasma class used by PlasmaPy to represent plasma properties. """ __all__ = ["PlasmaBlob"] import astropy.units as u import warnings from plasmapy.formulary.collisions import coupling_parameter from plasmapy.formulary.dimensionless import quantum_theta from plasmapy.formulary.parameters import _grab_charge from plasmapy.particles import particle_mass from plasmapy.plasma.plasma_base import GenericPlasma from plasmapy.utils import code_repr from plasmapy.utils.decorators import validate_quantities from plasmapy.utils.exceptions import CouplingWarning class PlasmaBlob(GenericPlasma): """ Class for describing and calculating plasma parameters without spatial/temporal description. """ @validate_quantities(T_e=u.K, n_e=u.m ** -3) def __init__(self, T_e, n_e, Z=None, particle="p"): """ Initialize plasma parameters. The most basic description is composition (ion), temperature, density, and ionization. """ self.T_e = T_e self.n_e = n_e self.particle = particle self.Z = _grab_charge(particle, Z) # extract mass from particle self.ionMass = particle_mass(self.particle) def __str__(self): """ Fetch regimes for easy printing. Examples -------- >>> print(PlasmaBlob(1e4*u.K, 1e20/u.m**3, particle='p')) PlasmaBlob(T_e=10000.0*u.K, n_e=1e+20*u.m**-3, particle='p', Z=1) Intermediate coupling regime: Gamma = 0.01250283... Thermal kinetic energy dominant: Theta = 109690.5... """ return self.__repr__() + "\n" + "\n".join(self.regimes()) def __repr__(self): """ Return a string representation of this instance. Returns ------- str Examples -------- >>> from astropy import units as u >>> PlasmaBlob(1e4*u.K, 1e20/u.m**3, particle='p') PlasmaBlob(T_e=10000.0*u.K, n_e=1e+20*u.m**-3, particle='p', Z=1) """ argument_dict = { "T_e": self.T_e, "n_e": self.n_e, "particle": self.particle, "Z": self.Z, } return code_repr.call_string(PlasmaBlob, (), argument_dict) @property def electron_temperature(self): return self.T_e @property def electron_density(self): return self.n_e @property def ionization(self): return self.Z @property def composition(self): return self.particle def regimes(self): """ Generate a comprehensive description of the plasma regimes based on plasma properties and consequent plasma parameters. """ # getting dimensionless parameters coupling = self.coupling() quantum_theta = self.quantum_theta() # determining regimes based off dimensionless parameters # coupling if coupling <= 0.01: # weakly coupled coupling_str = f"Weakly coupled regime: Gamma = {coupling}." elif coupling >= 100: # strongly coupled coupling_str = f"Strongly coupled regime: Gamma = {coupling}." else: # intermediate regime coupling_str = f"Intermediate coupling regime: Gamma = {coupling}." # quantum_theta if quantum_theta <= 0.01: # Fermi energy dominant quantum_theta_str = ( f"Fermi quantum energy dominant: Theta = {quantum_theta}" ) elif quantum_theta >= 100: # thermal kinetic energy dominant quantum_theta_str = ( f"Thermal kinetic energy dominant: Theta = {quantum_theta}" ) else: # intermediate regime quantum_theta_str = ( f"Both Fermi and thermal energy important: Theta = {quantum_theta}" ) # summarizing and printing/returning regimes aggregateStrs = [coupling_str, quantum_theta_str] return aggregateStrs def coupling(self): """ Ion-ion coupling parameter to determine if quantum/coupling effects are important. This compares Coulomb potential energy to thermal kinetic energy. """ couple = coupling_parameter( self.T_e, self.n_e, (self.particle, self.particle), self.Z ) if couple < 0.01: warnings.warn( f"Coupling parameter is {couple}, you might have strong coupling effects", CouplingWarning, ) return couple def quantum_theta(self): """ Quantum theta parameter, which compares Fermi kinetic energy to thermal kinetic energy to check if quantum effects are important. """ theta = quantum_theta(self.T_e, self.n_e) return theta @classmethod def is_datasource_for(cls, **kwargs): match = "T_e" in kwargs.keys() and "n_e" in kwargs.keys() return match
31.080247
90
0.606356
320fccff94a8fef884c43348112506dff6e93e45
2,614
py
Python
omniapp/screens/mainScreen/mainScreen.py
omniaura/omnisynth-gui
a14c6fdeff6e10d65cbbd46f3c9d6929fc6231a2
[ "Apache-2.0" ]
null
null
null
omniapp/screens/mainScreen/mainScreen.py
omniaura/omnisynth-gui
a14c6fdeff6e10d65cbbd46f3c9d6929fc6231a2
[ "Apache-2.0" ]
1
2022-01-04T20:32:26.000Z
2022-01-04T20:32:26.000Z
omniapp/screens/mainScreen/mainScreen.py
omniaura/omnisynth-gui
a14c6fdeff6e10d65cbbd46f3c9d6929fc6231a2
[ "Apache-2.0" ]
null
null
null
# Defining all the screens for ScreenManager from omniapp.constants import OMNISYNTH_PATH from kivy.uix.boxlayout import BoxLayout from kivy.uix.anchorlayout import AnchorLayout from kivy.uix.screenmanager import Screen from kivy.properties import BooleanProperty from kivy.lang import Builder from kivy.uix.widget import WidgetException import os import time # The main, landing screen of the app class MainScreen(Screen): def on_pre_enter(self): omni = self.manager.omni_instance omni.numPatch = len(self.manager.patch_list) patch_select_list_layout = self.ids['patch_select_list_layout'] # make sure patch index is initialized, default to 0 omni.patchIndex = omni.patchIndex or 0 # call omni#synth_sel on our current patch self.__omni_select_patch() # set slot text self.__set_slot_text() # add slots # handle exception if slots have already been added # and bail out with a noop try: patch_select_list_layout.add_widget(self.manager.slots[0]) patch_select_list_layout.add_widget(self.manager.slots[1]) patch_select_list_layout.add_widget(self.manager.slots[2]) except WidgetException: pass def handle_up_button_release(self): if self.manager.omni_instance.patchIndex == 0: return self.manager.omni_instance.patchIndex -= 1 self.__omni_select_patch() self.__set_slot_text() def handle_down_button_release(self): if self.manager.omni_instance.patchIndex == (self.manager.omni_instance.numPatch-1): return self.manager.omni_instance.patchIndex += 1 self.__omni_select_patch() self.__set_slot_text() def __get_slot_text(self, patch_index): if patch_index >= 0 and patch_index < self.manager.omni_instance.numPatch: return str(self.manager.patch_list[patch_index]) else: return '' def __set_slot_text(self): self.manager.slots[0].text = self.__get_slot_text( self.manager.omni_instance.patchIndex - 1) self.manager.slots[1].text = self.__get_slot_text( self.manager.omni_instance.patchIndex) self.manager.slots[2].text = self.__get_slot_text( self.manager.omni_instance.patchIndex + 1) def __omni_select_patch(self): self.manager.omni_instance.synth_sel( self.manager.patch_list[self.manager.omni_instance.patchIndex], OMNISYNTH_PATH)
35.324324
93
0.672915
15fecb3563eadd04bbf44a444340fd01ba16267a
675
py
Python
pyopendds/Subscriber.py
iguessthislldo/pyopendds
edc8f698f24728d1faca20c8039024739d7c2972
[ "MIT" ]
5
2018-11-04T21:16:29.000Z
2019-12-24T02:24:43.000Z
pyopendds/Subscriber.py
iguessthislldo/pyopendds
edc8f698f24728d1faca20c8039024739d7c2972
[ "MIT" ]
9
2019-07-19T05:39:30.000Z
2020-02-06T02:39:58.000Z
pyopendds/Subscriber.py
iguessthislldo/pyopendds
edc8f698f24728d1faca20c8039024739d7c2972
[ "MIT" ]
2
2019-07-18T07:22:37.000Z
2019-07-26T03:13:41.000Z
from __future__ import annotations from typing import TYPE_CHECKING, List from .DataReader import DataReader from .Topic import Topic if TYPE_CHECKING: from .DomainParticipant import DomainParticipant class Subscriber: def __init__(self, participant: DomainParticipant, qos=None, listener=None): participant.subscribers.append(self) self.qos = qos self.listener = listener self.readers: List[DataReader] = [] from _pyopendds import create_subscriber create_subscriber(self, participant) def create_datareader(self, topic: Topic, qos=None, listener=None): return DataReader(self, topic, qos, listener)
29.347826
80
0.733333
529709ad6dc4bc319b8cdf0356178a48a56a805d
735
py
Python
care/base/context_processors.py
tobast/care
03dd4a5095b5f7c53e53fc771a31b149876e4b50
[ "MIT" ]
1
2021-11-06T12:59:07.000Z
2021-11-06T12:59:07.000Z
care/base/context_processors.py
tobast/care
03dd4a5095b5f7c53e53fc771a31b149876e4b50
[ "MIT" ]
null
null
null
care/base/context_processors.py
tobast/care
03dd4a5095b5f7c53e53fc771a31b149876e4b50
[ "MIT" ]
null
null
null
from care.userprofile.models import UserProfile from care.groupaccountinvite.models import GroupAccountInvite def base_context(request): """ Add some basic context to every page """ context = {} if request.user.is_authenticated: user_profile = UserProfile.objects.get(user=request.user) invites = GroupAccountInvite.objects.filter( invitee=user_profile, isAccepted=False, isDeclined=False ) context["user"] = request.user context["userprofile"] = user_profile context["hasInvites"] = invites.exists() context["nInvites"] = invites.count() context["displayname"] = user_profile.displayname context["isLoggedin"] = True return context
36.75
68
0.687075
f74f31c008764067d236e426a04117c1f847fea3
22,768
py
Python
tests/test_macsec.py
superchild/sonic-swss
0f069108215ec5cb456e87554309ee99febb302d
[ "Apache-2.0" ]
null
null
null
tests/test_macsec.py
superchild/sonic-swss
0f069108215ec5cb456e87554309ee99febb302d
[ "Apache-2.0" ]
1
2022-01-21T20:05:43.000Z
2022-01-25T19:17:40.000Z
tests/test_macsec.py
superchild/sonic-swss
0f069108215ec5cb456e87554309ee99febb302d
[ "Apache-2.0" ]
null
null
null
from swsscommon import swsscommon import conftest import sys import functools import typing import re import time def to_string(value): if isinstance(value, bool): return "true" if value else "false" return str(value) class Table(object): def __init__(self, database: conftest.DVSDatabase, table_name: str): self.db = database self.table_name = table_name def convert_key(self, key: str): return key def __setitem__(self, key: str, pairs: dict): pairs_str = {} for k, v in pairs.items(): pairs_str[to_string(k)] = to_string(v) key = self.convert_key(key) if self.__getitem__(key) is None: self.db.create_entry(self.table_name, key, pairs_str) else: self.db.update_entry(self.table_name, key, pairs_str) def __getitem__(self, key: str): key = self.convert_key(key) return self.db.get_entry(self.table_name, key) def __delitem__(self, key: str): key = self.convert_key(key) self.db.delete_entry(self.table_name, key) def wait(self, key: str): key = self.convert_key(key) # return True return self.db.wait_for_entry(self.table_name, key) def wait_delete(self, key: str): key = self.convert_key(key) # return True return self.db.wait_for_deleted_entry(self.table_name, key) class ProduceStateTable(object): def __init__(self, database: conftest.DVSDatabase, table_name: str): self.table = swsscommon.ProducerStateTable( database.db_connection, table_name) def __setitem__(self, key: str, pairs: typing.Union[dict, list, tuple]): pairs_str = [] if isinstance(pairs, dict): pairs = pairs.items() for k, v in pairs: pairs_str.append((to_string(k), to_string(v))) self.table.set(key, pairs_str) def __delitem__(self, key: str): self.table.delete(key) class AppDBTable(ProduceStateTable): SEPARATOR = ":" def __init__(self, dvs: conftest.DockerVirtualSwitch, table_name: str): super(AppDBTable, self).__init__(dvs.get_app_db(), table_name) class StateDBTable(Table): SEPARATOR = "|" def __init__(self, dvs: conftest.DockerVirtualSwitch, table_name: str): super(StateDBTable, self).__init__(dvs.get_state_db(), table_name) def convert_key(self, key: str): return key.translate( str.maketrans( AppDBTable.SEPARATOR, StateDBTable.SEPARATOR)) def gen_sci(macsec_system_identifier: str, macsec_port_identifier: int) -> str: macsec_system_identifier = macsec_system_identifier.translate( str.maketrans("", "", ":.-")) sci = "{}{}".format( macsec_system_identifier, str(macsec_port_identifier).zfill(4)) sci = int(sci, 16) if sys.byteorder == "little": sci = int.from_bytes(sci.to_bytes(8, 'big'), 'little', signed=False) return str(sci) def gen_sc_key( separator: str, port_name: str, macsec_system_identifier: str, macsec_port_identifier: int) -> str: sci = gen_sci(macsec_system_identifier, macsec_port_identifier) key = "{}{}{}".format( port_name, separator, sci) return key def gen_sa_key( separator: str, port_name: str, macsec_system_identifier: str, macsec_port_identifier: int, an: int): sc_key = gen_sc_key( separator, port_name, macsec_system_identifier, macsec_port_identifier) key = "{}{}{}".format(sc_key, separator, an) return key def macsec_sc(separator: str = AppDBTable.SEPARATOR): def inner(func: typing.Callable) -> typing.Callable: @functools.wraps(func) def wrap_func( self, port_name: str, macsec_system_identifier: str, macsec_port_identifier: int, *args, **kwargs) -> typing.Any: key = gen_sc_key( separator, port_name, macsec_system_identifier, macsec_port_identifier) return func(self, key, *args, **kwargs) return wrap_func return inner def macsec_sa(separator: str = AppDBTable.SEPARATOR): def inner(func: typing.Callable) -> typing.Callable: @functools.wraps(func) def wrap_func( self, port_name: str, macsec_system_identifier: str, macsec_port_identifier: int, an: int, *args, **kwargs) -> typing.Any: key = gen_sa_key( separator, port_name, macsec_system_identifier, macsec_port_identifier, an) return func(self, key, *args, **kwargs) return wrap_func return inner class WPASupplicantMock(object): def __init__(self, dvs: conftest.DockerVirtualSwitch): self.dvs = dvs self.app_port_table = AppDBTable( self.dvs, swsscommon.APP_MACSEC_PORT_TABLE_NAME) self.app_receive_sc_table = AppDBTable( self.dvs, swsscommon.APP_MACSEC_INGRESS_SC_TABLE_NAME) self.app_transmit_sc_table = AppDBTable( self.dvs, swsscommon.APP_MACSEC_EGRESS_SC_TABLE_NAME) self.app_receive_sa_table = AppDBTable( self.dvs, swsscommon.APP_MACSEC_INGRESS_SA_TABLE_NAME) self.app_transmit_sa_table = AppDBTable( self.dvs, swsscommon.APP_MACSEC_EGRESS_SA_TABLE_NAME) self.state_port_table = StateDBTable( self.dvs, swsscommon.STATE_MACSEC_PORT_TABLE_NAME) self.state_receive_sc_table = StateDBTable( self.dvs, swsscommon.STATE_MACSEC_INGRESS_SC_TABLE_NAME) self.state_transmit_sc_table = StateDBTable( self.dvs, swsscommon.STATE_MACSEC_EGRESS_SC_TABLE_NAME) self.state_receive_sa_table = StateDBTable( self.dvs, swsscommon.STATE_MACSEC_INGRESS_SA_TABLE_NAME) self.state_transmit_sa_table = StateDBTable( self.dvs, swsscommon.STATE_MACSEC_EGRESS_SA_TABLE_NAME) def init_macsec_port(self, port_name: str): self.app_port_table[port_name] = { "enable": False, "cipher_suite": "GCM-AES-128", } self.state_port_table.wait(port_name) def deinit_macsec_port(self, port_name: str): del self.app_port_table[port_name] self.state_port_table.wait_delete(port_name) def config_macsec_port( self, port_name: str, config: typing.Dict[str, typing.Any]): self.app_port_table[port_name] = config def set_macsec_control(self, port_name: str, enable: bool): self.app_port_table[port_name] = {"enable": True} @macsec_sc() def create_receive_sc(self, sci: str): self.app_receive_sc_table[sci] = {"NULL": "NULL"} self.state_receive_sc_table.wait(sci) @macsec_sc() def delete_receive_sc(self, sci: str): del self.app_receive_sc_table[sci] self.state_receive_sc_table.wait_delete(sci) @macsec_sc() def create_transmit_sc(self, sci: str): self.app_transmit_sc_table[sci] = {"encoding_an": 0} self.state_transmit_sc_table.wait(sci) @macsec_sc() def delete_transmit_sc(self, sci: str): del self.app_transmit_sc_table[sci] self.state_transmit_sc_table.wait_delete(sci) def check_valid_sa_parameter( self, sak: str, auth_key: str, lowest_acceptable_pn: int, ssci: int, salt: str) -> bool: # Check SAK is hex string int(sak, 16) assert( len(sak) == 32 or len(sak) == 64, "Wrong length {} sak {}".format( len(sak), sak)) # Check auth_key is valid int(auth_key, 16) assert( len(auth_key) == 32, "Wrong length {} auth_key {}".format( len(auth_key), auth_key)) # Check lowest acceptable packet number is valid assert( lowest_acceptable_pn > 0, "Wrong packet number {}".format(lowest_acceptable_pn)) return True @macsec_sa() def create_receive_sa( self, sai: str, sak: str, auth_key: str, lowest_acceptable_pn: int, ssci: int, salt: str): assert( self.check_valid_sa_parameter( sak, auth_key, lowest_acceptable_pn, ssci, salt), "Wrong parameter to MACsec receive SA") self.app_receive_sa_table[sai] = { "active": False, "sak": sak, "auth_key": auth_key, "lowest_acceptable_pn": lowest_acceptable_pn, "ssci": ssci, "salt": salt} @macsec_sa() def delete_receive_sa(self, sai: str): del self.app_receive_sa_table[sai] self.state_receive_sa_table.wait_delete(sai) @macsec_sa() def set_enable_receive_sa(self, sai: str, enable: bool): self.app_receive_sa_table[sai] = {"active": enable} if enable: self.state_receive_sa_table.wait(sai) @macsec_sa() def create_transmit_sa( self, sai: str, sak: str, auth_key: str, init_pn: int, ssci: int, salt: str): assert( self.check_valid_sa_parameter( sak, auth_key, init_pn, ssci, salt), "Wrong parameter to MACsec receive SA") self.app_transmit_sa_table[sai] = { "sak": sak, "auth_key": auth_key, "next_pn": init_pn, "ssci": ssci, "salt": salt} @macsec_sa() def delete_transmit_sa(self, sai: str): del self.app_transmit_sa_table[sai] self.state_transmit_sa_table.wait_delete(sai) @macsec_sc() def set_enable_transmit_sa(self, sci: str, an: int, enable: bool): if enable: self.app_transmit_sc_table[sci] = {"encoding_an": an} assert( self.state_transmit_sa_table.wait( "{}{}{}".format( sci, StateDBTable.SEPARATOR, an))) class MACsecInspector(object): def __init__(self, dvs: conftest.DockerVirtualSwitch): self.dvs = dvs def __load_macsec_info(self, port_name: str) -> (bool, str): return self.dvs.runcmd("ip macsec show {}".format(port_name)) def get_macsec_port(self, port_name: str) -> str: exitcode, info = self.__load_macsec_info(port_name) if exitcode != 0 or not info: return "" print(info) return info def get_macsec_sc( self, port_name: str, macsec_system_identifier: str, macsec_port_identifier: int) -> str: info = self.get_macsec_port(port_name) if not info: return "" macsec_system_identifier = macsec_system_identifier.translate( str.maketrans("", "", ":.-")) sci = "{}{}".format( macsec_system_identifier, str(macsec_port_identifier).zfill(4)) sc_pattern = r"(TXSC|RXSC):\s*{}[ \w,]+\n?(?:\s*\d:[,\w ]+\n?)*".format( sci) info = re.search(sc_pattern, info, re.IGNORECASE) if not info: return "" print(info.group(0)) return info.group(0) def get_macsec_sa( self, port_name: str, macsec_system_identifier: str, macsec_port_identifier: str, an: int) -> str: info = self.get_macsec_sc( port_name, macsec_system_identifier, macsec_port_identifier) if not info: return "" sa_pattern = r"\s*{}:\s*PN\s*\d+[,\w ]+\n?".format(an) info = re.search(sa_pattern, info, re.IGNORECASE) if not info: return "" print(info.group(0)) return info.group(0) class TestMACsec(object): def init_macsec( self, wpa: WPASupplicantMock, port_name: str, local_mac_address: str, macsec_port_identifier: int): wpa.init_macsec_port(port_name) wpa.config_macsec_port(port_name, {"enable_protect": True}) wpa.config_macsec_port(port_name, {"enable_encrypt": True}) wpa.config_macsec_port( port_name, { "enable_replay_protect": True, "replay_window": 0 }) wpa.set_macsec_control(port_name, False) wpa.create_transmit_sc( port_name, local_mac_address, macsec_port_identifier) def establish_macsec( self, wpa: WPASupplicantMock, port_name: str, local_mac_address: str, peer_mac_address: str, macsec_port_identifier: int, an: int, sak: str, packet_number: int, auth_key: str, ssci: int, salt: str): wpa.create_receive_sc( port_name, peer_mac_address, macsec_port_identifier) wpa.create_receive_sa( port_name, peer_mac_address, macsec_port_identifier, an, sak, auth_key, packet_number, ssci, salt) wpa.create_transmit_sa( port_name, local_mac_address, macsec_port_identifier, an, sak, auth_key, packet_number, ssci, salt) wpa.set_enable_receive_sa( port_name, peer_mac_address, macsec_port_identifier, an, True) wpa.set_macsec_control(port_name, True) wpa.set_enable_transmit_sa( port_name, local_mac_address, macsec_port_identifier, an, True) def rekey_macsec( self, wpa: WPASupplicantMock, port_name: str, local_mac_address: str, peer_mac_address: str, macsec_port_identifier: int, an: int, last_an: int, sak: str, packet_number: int, auth_key: str, ssci: int, salt: str): wpa.create_receive_sa( port_name, peer_mac_address, macsec_port_identifier, an, sak, auth_key, packet_number, ssci, salt) wpa.create_transmit_sa( port_name, local_mac_address, macsec_port_identifier, an, sak, auth_key, packet_number, ssci, salt) wpa.set_enable_receive_sa( port_name, peer_mac_address, macsec_port_identifier, an, True) wpa.set_macsec_control(port_name, True) wpa.set_enable_transmit_sa( port_name, local_mac_address, macsec_port_identifier, an, True) wpa.set_enable_transmit_sa( port_name, local_mac_address, macsec_port_identifier, last_an, False) wpa.delete_transmit_sa( port_name, local_mac_address, macsec_port_identifier, last_an) wpa.set_enable_receive_sa( port_name, peer_mac_address, macsec_port_identifier, last_an, False) wpa.delete_receive_sa( port_name, peer_mac_address, macsec_port_identifier, last_an) def deinit_macsec( self, wpa: WPASupplicantMock, inspector: MACsecInspector, port_name: str, macsec_port: str, local_mac_address: str, peer_mac_address: str, macsec_port_identifier: int, last_an: int): wpa.set_enable_receive_sa( port_name, peer_mac_address, macsec_port_identifier, last_an, False) wpa.delete_receive_sa( port_name, peer_mac_address, macsec_port_identifier, last_an) assert( not inspector.get_macsec_sa( macsec_port, peer_mac_address, macsec_port_identifier, last_an)) wpa.delete_receive_sc( port_name, peer_mac_address, macsec_port_identifier) assert( not inspector.get_macsec_sc( macsec_port, peer_mac_address, macsec_port_identifier)) wpa.set_enable_transmit_sa( port_name, local_mac_address, macsec_port_identifier, last_an, False) wpa.delete_transmit_sa( port_name, local_mac_address, macsec_port_identifier, last_an) assert( not inspector.get_macsec_sa( macsec_port, local_mac_address, macsec_port_identifier, last_an)) wpa.delete_transmit_sc( port_name, local_mac_address, macsec_port_identifier) assert( not inspector.get_macsec_sc( macsec_port, local_mac_address, macsec_port_identifier)) wpa.deinit_macsec_port(port_name) def test_macsec_term_orch(self, dvs: conftest.DockerVirtualSwitch, testlog): port_name = "Ethernet0" local_mac_address = "00-15-5D-78-FF-C1" peer_mac_address = "00-15-5D-78-FF-C2" macsec_port_identifier = 1 macsec_port = "macsec_eth1" sak = "0" * 32 auth_key = "0" * 32 packet_number = 1 ssci = 1 salt = "0" * 24 wpa = WPASupplicantMock(dvs) inspector = MACsecInspector(dvs) self.init_macsec( wpa, port_name, local_mac_address, macsec_port_identifier) self.establish_macsec( wpa, port_name, local_mac_address, peer_mac_address, macsec_port_identifier, 0, sak, packet_number, auth_key, ssci, salt) assert(inspector.get_macsec_port(macsec_port)) assert( inspector.get_macsec_sc( macsec_port, local_mac_address, macsec_port_identifier)) assert( inspector.get_macsec_sc( macsec_port, peer_mac_address, macsec_port_identifier)) assert( inspector.get_macsec_sa( macsec_port, local_mac_address, macsec_port_identifier, 0)) assert( inspector.get_macsec_sa( macsec_port, peer_mac_address, macsec_port_identifier, 0)) self.rekey_macsec( wpa, port_name, local_mac_address, peer_mac_address, macsec_port_identifier, 1, 0, sak, packet_number, auth_key, ssci, salt) assert( inspector.get_macsec_sa( macsec_port, local_mac_address, macsec_port_identifier, 1)) assert( inspector.get_macsec_sa( macsec_port, peer_mac_address, macsec_port_identifier, 1)) assert( not inspector.get_macsec_sa( macsec_port, local_mac_address, macsec_port_identifier, 0)) assert( not inspector.get_macsec_sa( macsec_port, peer_mac_address, macsec_port_identifier, 0)) # Exit MACsec port self.deinit_macsec( wpa, inspector, port_name, macsec_port, local_mac_address, peer_mac_address, macsec_port_identifier, 1) assert(not inspector.get_macsec_port(macsec_port)) def test_macsec_attribute_change(self, dvs: conftest.DockerVirtualSwitch, testlog): port_name = "Ethernet0" local_mac_address = "00-15-5D-78-FF-C1" peer_mac_address = "00-15-5D-78-FF-C2" macsec_port_identifier = 1 macsec_port = "macsec_eth1" sak = "0" * 32 auth_key = "0" * 32 packet_number = 1 ssci = 1 salt = "0" * 24 wpa = WPASupplicantMock(dvs) inspector = MACsecInspector(dvs) self.init_macsec( wpa, port_name, local_mac_address, macsec_port_identifier) wpa.set_macsec_control(port_name, True) wpa.config_macsec_port(port_name, {"enable_encrypt": False}) wpa.config_macsec_port(port_name, {"cipher_suite": "GCM-AES-256"}) self.establish_macsec( wpa, port_name, local_mac_address, peer_mac_address, macsec_port_identifier, 0, sak, packet_number, auth_key, ssci, salt) macsec_info = inspector.get_macsec_port(macsec_port) assert("encrypt off" in macsec_info) assert("GCM-AES-256" in macsec_info) self.deinit_macsec( wpa, inspector, port_name, macsec_port, local_mac_address, peer_mac_address, macsec_port_identifier, 0) # Add Dummy always-pass test at end as workaroud # for issue when Flaky fail on final test it invokes module tear-down # before retrying def test_nonflaky_dummy(): pass
30.116402
87
0.549895
b3eea5a37c4caa9d2daf7f971c1ca72c6887b18d
3,583
py
Python
geomesa-spark/geomesa_pyspark/src/test/python/test_types.py
khobbs-ccri/geomesa
09b5c503c55be11b343f3a6e559b9a3cfb7f76d7
[ "Apache-2.0" ]
1,197
2015-01-08T18:50:52.000Z
2022-03-31T04:10:26.000Z
geomesa-spark/geomesa_pyspark/src/test/python/test_types.py
khobbs-ccri/geomesa
09b5c503c55be11b343f3a6e559b9a3cfb7f76d7
[ "Apache-2.0" ]
1,307
2015-01-05T21:25:30.000Z
2022-03-30T17:00:49.000Z
geomesa-spark/geomesa_pyspark/src/test/python/test_types.py
khobbs-ccri/geomesa
09b5c503c55be11b343f3a6e559b9a3cfb7f76d7
[ "Apache-2.0" ]
436
2015-01-26T15:44:18.000Z
2022-03-14T18:50:04.000Z
from geomesa_pyspark.types import * from shapely.wkt import loads from unittest import TestCase, main class PointUDTTest(TestCase): udt = Point.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, PointUDT) def test_udt_roundtrip(self): wkt = "POINT (30 10)" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class LineStringUDTTest(TestCase): udt = LineString.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, LineStringUDT) def test_udt_roundtrip(self): wkt = "LINESTRING (30 10, 10 30, 40 40)" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class PolygonUDTTest(TestCase): udt = Polygon.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, PolygonUDT) def test_roundtrip(self): wkt = "POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) def test_roundtrip2(self): wkt = "POLYGON ((35 10, 45 45, 15 40, 10 20, 35 10), (20 30, 35 35, 30 20, 20 30))" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class MultiPointUDTTest(TestCase): udt = MultiPoint.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, MultiPointUDT) def test_udt_roundtrip(self): wkt = "MULTIPOINT ((10 40), (40 30), (20 20), (30 10))" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) def test_udt_roundtrip2(self): wkt = "MULTIPOINT (10 40, 40 30, 20 20, 30 10)" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class MultiLineStringUDTTest(TestCase): udt = MultiLineString.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, MultiLineStringUDT) def test_udt_roundtrip(self): wkt = "MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class MultiPolygonUDTTest(TestCase): udt = MultiPolygon.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, MultiPolygonUDT) def test_udt_roundtrip(self): wkt = "MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) def test_udt_roundtrip2(self): wkt = """MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)), ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20)))""" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class MultiGeometryCollectionUDTTest(TestCase): udt = GeometryCollection.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, GeometryCollectionUDT) def test_udt_roundtrip(self): wkt = "GEOMETRYCOLLECTION(POINT(4 6),LINESTRING(4 6,7 10))" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) class GeometryUDTTest(TestCase): udt = BaseGeometry.__UDT__ def test_udt(self): self.assertIsInstance(self.udt, GeometryUDT) def test_udt_rouundtrip(self): wkt = "POINT (0 0)" g = loads(wkt) self.assertEqual(self.udt.deserialize(self.udt.serialize(g)), g) if __name__ == '__main__': main()
27.992188
97
0.639129
398b3adc68edb142da84c3453af098d6c61526a8
7,195
py
Python
service_matcher_app/service_matcher/utils.py
City-of-Turku/PaohServiceMatchEngine
39f580003f9c0d10708acd93644f796f764ec2f0
[ "MIT" ]
null
null
null
service_matcher_app/service_matcher/utils.py
City-of-Turku/PaohServiceMatchEngine
39f580003f9c0d10708acd93644f796f764ec2f0
[ "MIT" ]
null
null
null
service_matcher_app/service_matcher/utils.py
City-of-Turku/PaohServiceMatchEngine
39f580003f9c0d10708acd93644f796f764ec2f0
[ "MIT" ]
null
null
null
import logging import re import numpy as np from typing import Optional from .models import * PROVINCE_CODES = ["02"] class ServiceMatcherUtils(): """ A class for various auxillary functions related to service matching """ def __init__(self) -> None: pass def _filter_service_data_by_municipality(self, service: Service, municipality_ids: list) -> list: languages = ['en', 'fi', 'sv'] service_filtered = service.copy(deep=True) for language in languages: service_areas = service_filtered.areas[language] if len(service_areas) > 0: area_municipalities = [area for area in service_areas if area.get( 'type') == 'Municipality' and area.get('code') in municipality_ids] area_provinces = [area for area in service_areas if (area.get( 'type') == 'Province' or area.get('type') == 'Region') and area.get('code') in PROVINCE_CODES] other_area_elements = [area for area in service_areas if area.get( 'type') != 'Province' and area.get('type') != 'Municipality' and area.get('type') != 'Region'] filtered_areas = area_municipalities + area_provinces + other_area_elements service_filtered.areas[language] = filtered_areas return(service_filtered) def _filter_service_channel_data_by_municipality(self, channel: ServiceChannel, municipality_ids: list) -> list: languages = ['en', 'fi', 'sv'] channel_filtered = channel.copy(deep=True) for language in languages: channel_areas = channel_filtered.areas[language] channel_addresses = channel_filtered.addresses[language] if len(channel_areas) > 0: area_municipalities = [area for area in channel_areas if area.get( 'type') == 'Municipality' and area.get('code') in municipality_ids] area_provinces = [area for area in channel_areas if (area.get( 'type') == 'Province' or area.get('type') == 'Region') and area.get('code') in PROVINCE_CODES] other_area_elements = [area for area in channel_areas if area.get( 'type') != 'Province' and area.get('type') != 'Municipality' and area.get('type') != 'Region'] filtered_areas = area_municipalities + area_provinces + other_area_elements channel_filtered.areas[language] = filtered_areas if len(channel_addresses) > 0: filtered_addresses = [add for add in channel_addresses if add.get( 'municipalityCode') is None or add.get('municipalityCode') in municipality_ids] channel_filtered.addresses[language] = filtered_addresses return(channel_filtered) def _nest_form_events(self, events: list) -> list: nested_events = [] form_on = False start_events = 0 for event in events: event = event.copy() is_form_starting_event = ('parse_data' in event.keys() and re.search('service_search$', event['parse_data']['intent']['name']) is not None) or (event.get('name') is not None and re.search('_form$', event.get('name')) is not None) is_form_ending_event = (event.get('event') == 'active_loop' and event.get('name') is None) or event.get('event') == 'action_execution_rejected' if is_form_starting_event and not form_on: form_on = True start_events = start_events + 1 event['form_events'] = [] nested_events.append(event) elif form_on: nested_events[-1]['form_events'].append(event) if is_form_ending_event: form_on = False elif not form_on: nested_events.append(event) else: raise Exception("Something went wrong, event has not type") return(nested_events) def _get_municipality_ids_by_names(self, municipality_names: list, all_municipalities: list) -> list: matching_municipality_ids = [] if municipality_names is not None and len(municipality_names) > 0: input_names_lower = [mun_name.lower() for mun_name in municipality_names] for municipality in all_municipalities: municipality_real_names_lower = [ mun_name_l.lower() for mun_name_l in list(municipality.get('name').values())] is_match = any( [True for input_name_lower in input_names_lower if input_name_lower in municipality_real_names_lower]) if is_match: matching_municipality_ids.append(municipality.get('id')) # If no info, don't limit by municipalities if len(matching_municipality_ids) == 0: for municipality in all_municipalities: matching_municipality_ids.append(municipality.get('id')) return(matching_municipality_ids) def _check_life_events(self, life_events: list, all_life_events: list) -> list: filtered_life_events = [ le for le in life_events if le in all_life_events] # If no info, don't limit by life events if len(filtered_life_events) == 0: filtered_life_events = all_life_events return(filtered_life_events) def _check_service_classes(self, service_classes: list, all_service_classes: list) -> list: all_service_classes = [sc.code for sc in all_service_classes] filtered_service_classes = [ sc for sc in service_classes if sc in all_service_classes] # If no info, don't limit by service classes if len(filtered_service_classes) == 0: filtered_service_classes = all_service_classes return(filtered_service_classes) def _swap(self, list_1: list, i: int, j: int) -> list: list_1[i], list_1[j] = list_1[j], list_1[i] return(list_1) def _get_service_classes_from_intent_name(self, intent: Optional[str]) -> list: if intent is not None: service_class_regex = re.compile( 'p\d{1,2}(?:[.]\d{1,2}){0,1}', re.IGNORECASE) found_service_classes = re.findall(service_class_regex, intent) if len(found_service_classes) > 0: found_service_classes = list(set([found_service_class.upper( ) for found_service_class in found_service_classes])) return (found_service_classes) else: return([]) def _get_life_events_from_intent_name(self, intent: Optional[str]) -> list: if intent is not None: life_event_regex = re.compile( 'ke\d{1,2}(?:[.]\d{1,2}){0,1}', re.IGNORECASE) found_life_events = re.findall(life_event_regex, intent) if len(found_life_events) > 0: found_life_events = list(set([found_life_event.upper() for found_life_event in found_life_events])) return (found_life_events) else: return([])
49.965278
241
0.620014
b2cf74795375349ffe6dbe785252fe83e6b3d14e
10,087
py
Python
ilm/distill_classic.py
asappresearch/neural-ilm
fd7e09960525391f4084a5753429deabd7ff00aa
[ "MIT" ]
null
null
null
ilm/distill_classic.py
asappresearch/neural-ilm
fd7e09960525391f4084a5753429deabd7ff00aa
[ "MIT" ]
null
null
null
ilm/distill_classic.py
asappresearch/neural-ilm
fd7e09960525391f4084a5753429deabd7ff00aa
[ "MIT" ]
2
2021-02-25T04:42:14.000Z
2021-02-25T04:43:06.000Z
""" run a classic distillation, from deep model to shallow model forked from ilm_distill.py, 5 apr 2019 """ import torch from torch import nn, optim, autograd import torch.nn.functional as F import numpy as np import argparse import math from os.path import expanduser as expand from torchvision import datasets, transforms from ulfs import tensor_utils # Dataset = datasets.MNIST Dataset = datasets.CIFAR10 input_units = 3072 import torch import torch.nn as nn def kl(p, q, eps=1e-6): kl = - (p * (((q + eps) / (p + eps)).log())).sum() return kl class DeepModel2(nn.Module): def __init__(self, size=28): super().__init__() last_channels = 3 # size = 28 layers = [] # 28 layers.append(nn.Conv2d(3, 16, kernel_size=3)) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 14 layers.append(nn.Conv2d(16, 32, kernel_size=3)) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 7 self.conv = nn.Sequential(*layers) self.h1 = nn.Linear(6 * 6 * 32, 50) self.h2 = nn.Linear(50, 10) self.drop = nn.Dropout(0.5) def forward(self, x): N = x.size(0) x = self.conv(x) x = x.view(N, 6 * 6 * 32) x = self.h1(x) x = self.drop(x) x = self.h2(x) return x class DeepModel(nn.Module): def __init__(self, input_units): super().__init__() self.h1 = nn.Linear(input_units, 1200) self.h2 = nn.Linear(1200, 1200) self.h3 = nn.Linear(1200, 10) self.drop = nn.Dropout(0.5) def forward(self, x): N = x.size(0) x = x.view(N, -1) x = self.h1(x) x = F.relu(x) x = self.h2(x) x = F.relu(x) x = self.drop(x) x = self.h3(x) return x class Model(nn.Module): def __init__(self, input_units=input_units): super().__init__() print('input_units', input_units) self.h1 = nn.Linear(input_units, 800) self.h2 = nn.Linear(800, 800) self.h3 = nn.Linear(800, 10) self.drop = nn.Dropout(0.5) def forward(self, x): N = x.size(0) x = x.view(N, -1) x = self.h1(x) x = F.relu(x) x = self.h2(x) x = F.relu(x) x = self.drop(x) x = self.h3(x) return x def run(enable_cuda, lr, num_epochs, clip_grad_norm, teacher_model, batch_size, load_cached, soft_alpha, soft_alpha_decay, tau): def distill(teacher_logits_all, train_inputs, train_targets, student, soft_alpha): N = teacher_logits_all.size(0) print('N', N) perm_idx = torch.from_numpy(np.random.choice(N, N, replace=False)) print('=========== distill =================') opt = optim.Adam(lr=lr, params=student.parameters()) epoch = 0 crit = nn.CrossEntropyLoss() for epoch in range(num_epochs): # while True: epoch_loss = 0 epoch_cnt = 0 student.train() # for b, (in_batch, tgt_batch) in enumerate(batches): num_batches = (N + batch_size - 1) // batch_size for b in range(num_batches): batch_idx = perm_idx[b * batch_size:(b + 1) * batch_size] in_batch = train_inputs[batch_idx] tgt_batch = train_targets[batch_idx] if enable_cuda: in_batch = in_batch.cuda() tgt_batch = tgt_batch.cuda() logits_student = student(in_batch) if teacher_logits_all is not None: teacher_logits_batch = teacher_logits_all[batch_idx] if enable_cuda: teacher_logits_batch = teacher_logits_batch.cuda() loss_soft = kl(p=tensor_utils.softmax(teacher_logits_batch, tau=tau).detach(), q=F.softmax(logits_student, dim=-1)) loss_hard = crit(logits_student, tgt_batch) if soft_alpha == 0: loss = loss_hard else: assert teacher_logits_all is not None loss = soft_alpha * loss_soft + (1 - soft_alpha) * loss_hard opt.zero_grad() loss.backward() if clip_grad_norm is not None: nn.utils.clip_grad_norm_(student.parameters(), clip_grad_norm) opt.step() epoch_loss += loss.item() epoch_cnt += in_batch.size(0) soft_alpha = max(0, soft_alpha - soft_alpha_decay) eval_acc_sum = 0 eval_cnt = 0 student.eval() for in_batch, tgt_batch in test: if enable_cuda: in_batch = in_batch.cuda() tgt_batch = tgt_batch.cuda() with autograd.no_grad(): logits = student(in_batch) _, argmax = logits.max(dim=-1) correct = (argmax == tgt_batch) acc = correct.float().mean().item() eval_cnt += in_batch.size(0) eval_acc_sum += acc * in_batch.size(0) eval_acc = eval_acc_sum / eval_cnt eval_err = eval_cnt - int(eval_acc_sum) print('e=%i' % epoch, 'l=%.3f' % epoch_loss, 'eval acc %.3f' % eval_acc, 'eval err %i' % eval_err, 'soft_alpha %.3f' % soft_alpha) # epoch += 1 # if epoch >= num_epochs: print('finished epochs') return eval_acc # break kwargs = {'num_workers': 1, 'pin_memory': True} train = torch.utils.data.DataLoader( Dataset(expand('~/data'), train=True, download=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=64, shuffle=False, **kwargs) test = torch.utils.data.DataLoader( Dataset(expand('~/data'), train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=64, shuffle=True, **kwargs) train_inputs = [] train_targets = [] for inputs, targets in train: train_inputs.append(inputs) train_targets.append(targets) train_inputs = torch.cat(train_inputs) train_targets = torch.cat(train_targets) train = None Teacher = globals()[teacher_model] # if load_model: # with open(load_model, 'rb') as f: # state = torch.load(f) # import pretrain_model # Teacher = getattr(pretrain_model, state['meta']['teacher_model']) # student = Teacher() # enable_cuda = state['meta']['enable_cuda'] # if enable_cuda: # student = student.cuda() # student.load_state_dict(state['model_state']) # print('loaded model') teacher_logits_all = None student = None if load_cached: state = torch.load(load_cached) teacher_logits_all = state['cached'] print('loaded teacher_logits_all', teacher_logits_all.size()) else: asdfasdf() # else: # student = Teacher() # if enable_cuda: # student = student.cuda() # print('created new model, of class', teacher_model) # distill(teacher=None, student=student, soft_alpha=0) # print('trained teacher') distill_epoch = 0 final_distill_eval_by_distill_epoch = [] # final_eval_by_distill_epoch = [] while True: print('distill_epoch %i' % distill_epoch) teacher = student student = Model(input_units=input_units) if enable_cuda: student = student.cuda() # batches = list(train) if teacher is not None and teacher_logits_all is None: print('running teacher...') teacher_logits_all = [] N = train_inputs.size(0) idx = list(range(N)) num_batches = (N + batch_size - 1) // batch_size for b in range(num_batches): # for in_batch, tgt_batch in batches: batch_idx = perm_idx[b * batch_size:(b + 1) * batch_size] in_batch = train_inputs[batch_idx] if enable_cuda: in_batch = in_batch.cuda() with autograd.no_grad(): logits_teacher = teacher(in_batch) teacher_logits_all.append(logits_teacher.detach().cpu()) print('finished running teacher') distill_eval = distill(teacher_logits_all=teacher_logits_all, train_inputs=train_inputs, train_targets=train_targets, student=student, soft_alpha=soft_alpha) final_distill_eval_by_distill_epoch.append(distill_eval) # final_eval = train_model(student) # final_eval_by_distill_epoch.append(final_eval) for i, eval in enumerate(final_distill_eval_by_distill_epoch): print(' ', i, eval) teacher_logits_all = None distill_epoch += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--enable-cuda', action='store_true') parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--tau', type=float, default=2) parser.add_argument('--num-epochs', type=int, default=10) parser.add_argument('--clip-grad-norm', type=float) parser.add_argument('--batch-size', type=int, default=64) # parser.add_argument('--load-model', type=str, help='overrides --teacher-model') parser.add_argument('--load-cached', type=str, help='overrides --teacher-model') parser.add_argument('--teacher-model', type=str, default='DeepModel') parser.add_argument('--soft-alpha', type=float, default=0.5, help='how much weight to give the soft targets') parser.add_argument('--soft-alpha-decay', type=float, default=0, help='how much to decrease soft-alpha each epoch') args = parser.parse_args() run(**args.__dict__)
36.284173
165
0.575592
19582785128ccb31df4c48c417ca54a649adc73e
5,864
py
Python
pysync.py
plinecom/pysync
c0b5c5ccb38b214be2b5cf5d4686eabdbadd8553
[ "MIT" ]
1
2020-05-04T02:22:15.000Z
2020-05-04T02:22:15.000Z
pysync.py
plinecom/pysync
c0b5c5ccb38b214be2b5cf5d4686eabdbadd8553
[ "MIT" ]
null
null
null
pysync.py
plinecom/pysync
c0b5c5ccb38b214be2b5cf5d4686eabdbadd8553
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import os import os.path import time import shutil def listup(srcRoot, destRoot, oldRoot, relativePath): srcPath = os.path.join(srcRoot, relativePath) destPath = os.path.join(destRoot, relativePath) oldPath = os.path.join(oldRoot, relativePath) # System::String ^ srcPath = System::IO::Path::Combine(srcRoot, relativePath); # array < System::String ^ > ^ srcDirItems = System::IO::Directory::GetDirectories(srcPath); items = os.listdir(srcPath) dir_list=[] symlink_list=[] file_list=[] for item in items: item_path = os.path.join(srcPath, item) if os.path.isdir(item_path): dir_list.append(item) elif os.path.islink(item_path): symlink_list.append(item) elif os.path.isfile(item_path): file_list.append(item) # print dir_list # print file_list for directory in dir_list: src_dir = os.path.join(srcPath, directory) dest_dir = os.path.join(destPath, directory) print src_dir print u"->"+dest_dir # exception? os.makedirs(dest_dir) listup(srcRoot, destRoot, oldRoot, os.path.join(relativePath, directory)) for file_item in file_list: hardlinked = False src_file = os.path.join(srcPath, file_item) dest_file = os.path.join(destPath, file_item) old_file = os.path.join(oldPath, file_item) print src_file print u"->" + dest_file if os.path.exists(old_file): old_file_size = os.path.getsize(old_file) src_file_size = os.path.getsize(src_file) # ๅคใ„Destใจๆ—ฅไป˜ใŒใปใผไธ€็ท’ใงใ€ใ‚ตใ‚คใ‚บใŒๅŒใ˜ if old_file_size == src_file_size: old_file_last_write_time = time.gmtime(os.path.getmtime(old_file)) src_file_last_write_time = time.gmtime(os.path.getmtime(src_file)) # print old_file_last_write_time # print src_file_last_write_time if old_file_last_write_time.tm_year == src_file_last_write_time.tm_year \ and old_file_last_write_time.tm_mon == src_file_last_write_time.tm_mon \ and old_file_last_write_time.tm_mday == src_file_last_write_time.tm_mday \ and old_file_last_write_time.tm_hour == src_file_last_write_time.tm_hour \ and old_file_last_write_time.tm_min == src_file_last_write_time.tm_min \ and old_file_last_write_time.tm_sec == src_file_last_write_time.tm_sec: success = True try: os.link(old_file, dest_file) except IOError: success = False if success: print "HLinked" hardlinked = True if not hardlinked: shutil.copy2(src_file, dest_file) """ array < System::String ^ > ^ srcFileItems = System::IO::Directory::GetFiles(srcPath); for (int i = 0; i < srcFileItems->Length; i + +){ System::String ^ srcItem = srcFileItems[i]; System::String ^ filename = System::IO::Path::GetFileName(srcItem); System::String ^ destItem = System::IO::Path::Combine(destRoot, relativePath, filename); System::String ^ oldItem = System::IO::Path::Combine(oldRoot, relativePath, filename); // ใƒ•ใ‚กใ‚คใƒซใ ใ€‚ใƒใƒผใƒ‰ใƒชใƒณใ‚ฏๅฟ…่ฆใ‹่ชฟในใฆใ€ใƒ€ใƒกใชใ‚‰ใ‚ณใƒ”ใƒผใ ใ€‚ bool hardlinked = false; if (System: :IO::File::Exists(oldItem)){ if (System: : IO::File::Exists(oldItem)){ // ๅคใ„Destใจๆ—ฅไป˜ใŒใปใผไธ€็ท’ใงใ€ใ‚ตใ‚คใ‚บใŒๅŒใ˜ System::IO::FileInfo ^ oldfi = gcnew System::IO::FileInfo(oldItem); System::IO::FileInfo ^ srcfi = gcnew System::IO::FileInfo(srcItem); if (oldfi->Length == srcfi->Length){ if (oldfi->LastWriteTime.Year == srcfi->LastWriteTime.Year & & oldfi->LastWriteTime.Month == srcfi->LastWriteTime.Month & & oldfi->LastWriteTime.Day == srcfi->LastWriteTime.Day & & oldfi->LastWriteTime.Hour == srcfi->LastWriteTime.Hour & & oldfi->LastWriteTime.Minute == srcfi->LastWriteTime.Minute & & oldfi->LastWriteTime.Second == srcfi->LastWriteTime.Secon) { ATL::CString atlOldItem(oldItem); ATL::CString atlDestItem(destItem); BOOL success =::CreateHardLink(atlDestItem, atlOldItem, NULL); if (success){ hardlinked = true; // System::Console::WriteLine(L"HLinked"); } else{ System::Console::WriteLine(L"Error:HLink"); System::Console::WriteLine(destItem); } } } } } if (!hardlinked){ // System::Console::WriteLine(L"Copy"); try{ System::IO::File::Copy(srcItem, destItem, true); }catch(System::Exception ^ e){ System::Console::WriteLine(L"An error occurred: '{0}'", e); } } } } """ if __name__ == "__main__": srcRoot = sys.argv[1] # ใƒใƒƒใ‚ฏใ‚ขใƒƒใƒ—ๅ…ƒ oldRoot = sys.argv[2] # ใƒใƒƒใ‚ฏใ‚ขใƒƒใƒ—๏ผˆใตใ‚‹ใ„ใฎ๏ผ‰ destRoot = sys.argv[3] # ใƒใƒƒใ‚ฏใ‚ขใƒƒใƒ—ๅ…ˆ listup(srcRoot, destRoot, oldRoot, u"")
29.32
100
0.527115
b8a3551a0c50ea5a4a86670c980f7278187316b2
554
py
Python
orb_simulator/lexer/regex_ast/__init__.py
dmguezjaviersnet/IA-Sim-Comp-Project
8165b9546efc45f98091a3774e2dae4f45942048
[ "MIT" ]
1
2022-01-19T22:49:09.000Z
2022-01-19T22:49:09.000Z
orb_simulator/lexer/regex_ast/__init__.py
dmguezjaviersnet/IA-Sim-Comp-Project
8165b9546efc45f98091a3774e2dae4f45942048
[ "MIT" ]
15
2021-11-10T14:25:02.000Z
2022-02-12T19:17:11.000Z
orb_simulator/lexer/regex_ast/__init__.py
dmguezjaviersnet/IA-Sim-Comp-Project
8165b9546efc45f98091a3774e2dae4f45942048
[ "MIT" ]
null
null
null
from lexer.regex_ast.regex_node import Node from lexer.regex_ast.regex_atomic_node import AtomicNode from lexer.regex_ast.regex_binary_node import BinaryNode from lexer.regex_ast.regex_concat_node import ConcatNode from lexer.regex_ast.regex_closure_node import ClosureNode from lexer.regex_ast.regex_epsilon_node import EpsilonNode from lexer.regex_ast.regex_range_node import RangeNode from lexer.regex_ast.regex_symbol_node import SymbolNode from lexer.regex_ast.regex_unary_node import UnaryNode from lexer.regex_ast.regex_union_node import UnionNode
55.4
58
0.893502
e336bc89d334aa97eb29ace99e033e12f6422129
1,742
py
Python
src/figures/multi_instrument_analysis.py
LauraOlivera/gammapy-v1.0-paper
212b87975575347e0249746c9e5a490e1bc549a5
[ "MIT" ]
1
2022-02-14T22:42:34.000Z
2022-02-14T22:42:34.000Z
src/figures/multi_instrument_analysis.py
LauraOlivera/gammapy-v1.0-paper
212b87975575347e0249746c9e5a490e1bc549a5
[ "MIT" ]
24
2022-02-07T15:04:27.000Z
2022-03-31T20:12:56.000Z
src/figures/multi_instrument_analysis.py
LauraOlivera/gammapy-v1.0-paper
212b87975575347e0249746c9e5a490e1bc549a5
[ "MIT" ]
10
2022-01-27T20:22:15.000Z
2022-03-08T17:17:18.000Z
import config import astropy.units as u from gammapy.estimators import FluxPoints from gammapy.modeling.models import Models import matplotlib.pyplot as plt sed_x_label = r"$E\,/\,{\rm TeV}$" sed_y_label = ( r"$E^2\,{\rm d}\phi/{\rm d}\phi\,/\,({\rm erg}\,{\rm cm}^{-2}\,{\rm s}^{-1})$" ) figsize = config.FigureSizeAA(aspect_ratio=1.618, width_aa="intermediate") fig = plt.figure(figsize=figsize.inch) ax = fig.add_axes([0.1, 0.1, 0.9, 0.9]) # load the flux points and plot them fermi_flux_points = FluxPoints.read( "../data/multi-instrument/datasets/flux_points/crab_fermi_flux_points.fits" ) magic_flux_points = FluxPoints.read( "../data/multi-instrument/datasets/flux_points/crab_magic_flux_points.fits" ) hawc_flux_points = FluxPoints.read( "../data/multi-instrument/input/hawc/HAWC19_flux_points.fits" ) # load the best-fit model models = Models.read("../data/multi-instrument/results/crab_multi_instrument_fit.yaml") crab_lp = models["Crab Nebula"].spectral_model plot_kwargs = { "energy_bounds": [0.01, 300] * u.TeV, "sed_type": "e2dnde", "yunits": u.Unit("erg cm-2 s-1"), "xunits": u.TeV, } crab_lp.plot(ax=ax, ls="-", lw=1.5, color="crimson", label="joint fit", **plot_kwargs) crab_lp.plot_error(ax=ax, facecolor="crimson", alpha=0.4, **plot_kwargs) fermi_flux_points.plot(ax=ax, sed_type="e2dnde", color="k", label="Fermi-LAT") magic_flux_points.plot(ax=ax, sed_type="e2dnde", color="dodgerblue", label="MAGIC") hawc_flux_points.plot(ax=ax, sed_type="e2dnde", color="goldenrod", label="HAWC") ax.set_xlim(plot_kwargs["energy_bounds"]) ax.set_xlabel(sed_x_label) ax.set_ylabel(sed_y_label) ax.legend() fig.savefig("multi_instrument_analysis.pdf") fig.savefig("multi_instrument_analysis.png")
34.156863
87
0.726177
0a8b6b139ab38b2c90c026e58ebfa8a15b6c6fb7
1,844
py
Python
src/179.largest-number/179.largest-number.py
AnestLarry/LeetCodeAnswer
ca06a9cabe72879812f4b41d68ec882139974d84
[ "MIT" ]
null
null
null
src/179.largest-number/179.largest-number.py
AnestLarry/LeetCodeAnswer
ca06a9cabe72879812f4b41d68ec882139974d84
[ "MIT" ]
null
null
null
src/179.largest-number/179.largest-number.py
AnestLarry/LeetCodeAnswer
ca06a9cabe72879812f4b41d68ec882139974d84
[ "MIT" ]
null
null
null
# # @lc app=leetcode id=179 lang=python3 # # [179] Largest Number # # Given a list of non negative integers, arrange them such that they form the largest number. # Example 1: # Input: [10,2] # Output: "210" # Example 2: # Input: [3,30,34,5,9] # Output: "9534330" # Note: The result may be very large, so you need to return a string instead of an integer. import functools class Solution: def largestNumber1(self, nums: List[int]) -> str: # Accepted # 222/222 cases passed (40 ms) # Your runtime beats 93.96 % of python3 submissions # Your memory usage beats 20 % of python3 submissions (13.7 MB) if not nums or nums.count(0) == len(nums): return "0" lists = [] numsl = len(nums) for i in range(numsl): nums_i_str = str(nums[i]) if lists: inserted = False for j in range(len(lists)): if lists[j]+nums_i_str < nums_i_str+lists[j]: lists.insert(j, nums_i_str) inserted = True break if not inserted: lists.append(nums_i_str) else: lists.append(nums_i_str) return "".join(lists) def largestNumber(self, nums: List[int]) -> str: # Accepted # 222/222 cases passed (40 ms) # Your runtime beats 93.96 % of python3 submissions # Your memory usage beats 20 % of python3 submissions (13.7 MB) if not any(nums): return "0" return "".join( sorted( map(str, nums), key=functools.cmp_to_key( lambda n1, n2: -1 if n1 + n2 > n2 + n1 else (1 if n1+n2 < n2+n1 else 0) ) ) )
30.229508
93
0.517896
2ab3c0e970125048471e9cfab721c1292b4aa723
185,657
py
Python
src/azure-cli/azure/cli/command_modules/appservice/tests/latest/test_webapp_commands.py
GaneshaThirumurthi/azure-cli
72850c4a1ca0f2d36ad6dce319bd22e59ad387e1
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/appservice/tests/latest/test_webapp_commands.py
GaneshaThirumurthi/azure-cli
72850c4a1ca0f2d36ad6dce319bd22e59ad387e1
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/appservice/tests/latest/test_webapp_commands.py
GaneshaThirumurthi/azure-cli
72850c4a1ca0f2d36ad6dce319bd22e59ad387e1
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import json import unittest import mock import os import time import tempfile import requests import datetime from azure_devtools.scenario_tests import AllowLargeResponse, record_only from azure.cli.testsdk import (ScenarioTest, LocalContextScenarioTest, LiveScenarioTest, ResourceGroupPreparer, StorageAccountPreparer, JMESPathCheck, live_only) TEST_DIR = os.path.abspath(os.path.join(os.path.abspath(__file__), '..')) # pylint: disable=line-too-long # In the future, for any reasons the repository get removed, the source code is under "sample-repo-for-deployment-test" # you can use to rebuild the repository TEST_REPO_URL = 'https://github.com/yugangw-msft/azure-site-test.git' WINDOWS_ASP_LOCATION_WEBAPP = 'japanwest' WINDOWS_ASP_LOCATION_FUNCTIONAPP = 'francecentral' LINUX_ASP_LOCATION_WEBAPP = 'eastus2' LINUX_ASP_LOCATION_FUNCTIONAPP = 'ukwest' class WebappBasicE2ETest(ScenarioTest): @AllowLargeResponse() @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_e2e(self, resource_group): webapp_name = self.create_random_name(prefix='webapp-e2e', length=24) plan = self.create_random_name(prefix='webapp-e2e-plan', length=24) self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) self.cmd('appservice plan list -g {}'.format(resource_group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', plan), JMESPathCheck('[0].perSiteScaling', False) ]) # test idempotency self.cmd( 'appservice plan create -g {} -n {} --per-site-scaling'.format(resource_group, plan)) self.cmd('appservice plan list -g {}'.format(resource_group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', plan), JMESPathCheck('[0].sku.tier', 'Basic'), JMESPathCheck('[0].sku.name', 'B1'), JMESPathCheck('[0].perSiteScaling', True) ]) self.cmd('appservice plan list -g {}'.format(resource_group), checks=[ JMESPathCheck("length([?name=='{}' && resourceGroup=='{}'])".format( plan, resource_group), 1) ]) self.cmd('appservice plan show -g {} -n {}'.format(resource_group, plan), checks=[ JMESPathCheck('name', plan) ]) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan), checks=[ JMESPathCheck('state', 'Running'), JMESPathCheck('name', webapp_name), JMESPathCheck('hostNames[0]', webapp_name + '.azurewebsites.net') ]) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) # test idempotency self.cmd('webapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', webapp_name), JMESPathCheck('[0].hostNames[0]', webapp_name + '.azurewebsites.net') ]) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('name', webapp_name), JMESPathCheck('hostNames[0]', webapp_name + '.azurewebsites.net') ]) result = self.cmd('webapp deployment source config-local-git -g {} -n {}'.format( resource_group, webapp_name)).get_output_in_json() self.assertTrue(result['url'].endswith(webapp_name + '.git')) self.cmd('webapp deployment source show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck( 'repoUrl', 'https://{}.scm.azurewebsites.net'.format(webapp_name)) ]) # turn on diagnostics test_cmd = ('webapp log config -g {} -n {} --level verbose'.format(resource_group, webapp_name) + ' ' '--application-logging filesystem --detailed-error-messages true --failed-request-tracing true --web-server-logging filesystem') self.cmd(test_cmd) self.cmd('webapp log show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('detailedErrorMessages.enabled', True), JMESPathCheck('failedRequestsTracing.enabled', True) ]) self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('detailedErrorLoggingEnabled', True), JMESPathCheck('httpLoggingEnabled', True), JMESPathCheck('scmType', 'LocalGit'), JMESPathCheck('requestTracingEnabled', True) # TODO: contact webapp team for where to retrieve 'level' ]) # show publish profile info result = self.cmd('webapp deployment list-publishing-profiles -g {} -n {}'.format( resource_group, webapp_name)).get_output_in_json() self.assertTrue(result[1]['publishUrl'].startswith('ftp://')) self.cmd('webapp stop -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('state', 'Stopped'), JMESPathCheck('name', webapp_name) ]) self.cmd('webapp start -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('state', 'Running'), JMESPathCheck('name', webapp_name) ]) # show publishing credentials result = self.cmd('webapp deployment list-publishing-credentials -g {} -n {}'.format( resource_group, webapp_name)).get_output_in_json() self.assertTrue('scm' in result['scmUri']) # verify httpsOnly is false self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('httpsOnly', False), ]) # verify creating an non node app using --runtime self.cmd( 'webapp create -g {} -n {} --plan {} -r "php|7.3"'.format(resource_group, webapp_name, plan)) self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('phpVersion', '7.3') ]) def test_webapp_runtimes(self): self.cmd('webapp list-runtimes') class WebappQuickCreateTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_win_webapp_quick_create(self, resource_group): webapp_name = self.create_random_name(prefix='webapp-quick', length=24) plan = self.create_random_name(prefix='plan-quick', length=24) self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) r = self.cmd('webapp create -g {} -n {} --plan {} --deployment-local-git'.format( resource_group, webapp_name, plan)).get_output_in_json() self.assertTrue(r['ftpPublishingUrl'].startswith('ftp://')) self.cmd('webapp config appsettings list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('[0].name', 'WEBSITE_NODE_DEFAULT_VERSION'), JMESPathCheck('[0].value', '10.14'), ]) @ResourceGroupPreparer(name_prefix="clitest", random_name_length=24, location=WINDOWS_ASP_LOCATION_WEBAPP) def test_win_webapp_quick_create_runtime(self, resource_group): webapp_name = self.create_random_name(prefix='webapp-quick', length=24) webapp_name_2 = self.create_random_name(prefix='webapp-quick', length=24) plan = self.create_random_name(prefix='plan-quick', length=24) self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) r = self.cmd('webapp create -g {} -n {} --plan {} --deployment-local-git -r "node|10.14"'.format( resource_group, webapp_name, plan)).get_output_in_json() self.assertTrue(r['ftpPublishingUrl'].startswith('ftp://')) self.cmd('webapp config appsettings list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('[0].name', 'WEBSITE_NODE_DEFAULT_VERSION'), JMESPathCheck('[0].value', '10.14'), ]) r = self.cmd('webapp create -g {} -n {} --plan {} --deployment-local-git -r "DOTNETCORE|3.1"'.format( resource_group, webapp_name_2, plan)).get_output_in_json() self.assertTrue(r['ftpPublishingUrl'].startswith('ftp://')) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_win_webapp_quick_create_cd(self, resource_group): webapp_name = self.create_random_name(prefix='webapp-quick-cd', length=24) plan = self.create_random_name(prefix='plan-quick', length=24) self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} --deployment-source-url {} -r "node|10.14"'.format( resource_group, webapp_name, plan, TEST_REPO_URL)) # 30 seconds should be enough for the deployment finished(Skipped under playback mode) time.sleep(30) r = requests.get('http://{}.azurewebsites.net'.format(webapp_name)) # verify the web page self.assertTrue('Hello world' in str(r.content)) @ResourceGroupPreparer(location='canadacentral') def test_linux_webapp_quick_create(self, resource_group): webapp_name = self.create_random_name( prefix='webapp-quick-linux', length=24) plan = self.create_random_name(prefix='plan-quick-linux', length=24) self.cmd( 'appservice plan create -g {} -n {} --is-linux'.format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} -i patle/ruby-hello'.format( resource_group, webapp_name, plan)) r = requests.get( 'http://{}.azurewebsites.net'.format(webapp_name), timeout=240) # verify the web page self.assertTrue('Ruby on Rails in Web Apps on Linux' in str(r.content)) # verify app settings self.cmd('webapp config appsettings list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('[0].name', 'WEBSITES_ENABLE_APP_SERVICE_STORAGE'), JMESPathCheck('[0].value', 'false'), ]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp_multicontainer_create(self, resource_group): webapp_name = self.create_random_name( prefix='webapp-linux-multi', length=24) plan = self.create_random_name(prefix='plan-linux-multi', length=24) config_file = os.path.join(TEST_DIR, 'sample-compose.yml') self.cmd( 'appservice plan create -g {} -n {} --is-linux'.format(resource_group, plan)) self.cmd("webapp create -g {} -n {} --plan {} --multicontainer-config-file \"{}\" " "--multicontainer-config-type COMPOSE".format(resource_group, webapp_name, plan, config_file)) self.cmd("webapp show -g {} -n {}".format(resource_group, webapp_name))\ .assert_with_checks([JMESPathCheck('kind', "app,linux,container")]) r = requests.get('http://{}.azurewebsites.net'.format(webapp_name), timeout=400) self.assertTrue('Hello World! I have been' in str(r.content)) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp_quick_create_cd(self, resource_group): webapp_name = self.create_random_name( prefix='webapp-linux-cd', length=24) plan = 'plan-quick-linux-cd' self.cmd( 'appservice plan create -g {} -n {} --is-linux'.format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} -u {} -r "node|10.14"'.format(resource_group, webapp_name, plan, TEST_REPO_URL)) # 45 seconds should be enough for the deployment finished(Skipped under playback mode) time.sleep(45) r = requests.get( 'http://{}.azurewebsites.net'.format(webapp_name), timeout=500) # verify the web page if 'Hello world' not in str(r.content): # dump out more info for diagnose self.fail( "'Hello world' is not found in the web page. We get instead:" + str(r.content)) @ResourceGroupPreparer(parameter_name='resource_group', parameter_name_for_location='resource_group_location', location=WINDOWS_ASP_LOCATION_WEBAPP) @ResourceGroupPreparer(parameter_name='resource_group2', parameter_name_for_location='resource_group_location2', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_create_in_different_group(self, resource_group, resource_group_location, resource_group2, resource_group_location2): plan = 'planInOneRG' self.cmd('group create -n {} -l {}'.format(resource_group2, resource_group_location)) plan_id = self.cmd('appservice plan create -g {} -n {}'.format( resource_group, plan)).get_output_in_json()['id'] self.cmd('webapp create -g {} -n webInOtherRG --plan {}'.format(resource_group2, plan_id), checks=[ JMESPathCheck('name', 'webInOtherRG') ]) @AllowLargeResponse() @ResourceGroupPreparer(parameter_name="resource_group_one", name_prefix="clitest", random_name_length=24, location=WINDOWS_ASP_LOCATION_WEBAPP) @ResourceGroupPreparer(parameter_name="resource_group_two", name_prefix="clitest", random_name_length=24, location=WINDOWS_ASP_LOCATION_WEBAPP) def test_create_names_are_substrings(self, resource_group_one, resource_group_two): webapp_name_one = "test-webapp-name-on" webapp_name_two = "test-webapp-name-one" webapp_name_three = "test-webapp-nam" plan_name_one = "webapp-plan-one" plan_name_two = "webapp-plan-two" plan_id_one = self.cmd('appservice plan create -g {} -n {}'.format( resource_group_one, plan_name_one)).get_output_in_json()['id'] plan_id_two = self.cmd('appservice plan create -g {} -n {}'.format( resource_group_two, plan_name_two)).get_output_in_json()['id'] self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group_one, webapp_name_one, plan_id_one), checks=[ JMESPathCheck('name', webapp_name_one) ]) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group_two, webapp_name_two, plan_id_two), checks=[ JMESPathCheck('name', webapp_name_two) ]) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group_one, webapp_name_three, plan_id_one), checks=[ JMESPathCheck('name', webapp_name_three) ]) # Re running webapp create to make sure there are no mix ups with existing apps that have names that are substrings of each other. self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group_one, webapp_name_one, plan_id_one), checks=[ JMESPathCheck('name', webapp_name_one) ]) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group_two, webapp_name_two, plan_id_two), checks=[ JMESPathCheck('name', webapp_name_two) ]) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group_one, webapp_name_three, plan_id_one), checks=[ JMESPathCheck('name', webapp_name_three) ]) class BackupWithName(ScenarioTest): @AllowLargeResponse() @ResourceGroupPreparer(parameter_name='resource_group', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_backup_with_name(self, resource_group): plan = self.create_random_name(prefix='plan-backup', length=24) self.cmd('appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan)) webapp = self.create_random_name(prefix='backup-webapp', length=24) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp, plan)) storage_Account = self.create_random_name(prefix='backup', length=24) self.cmd('storage account create -n {} -g {} --location {}'.format(storage_Account, resource_group, WINDOWS_ASP_LOCATION_WEBAPP)) container = self.create_random_name(prefix='backupcontainer', length=24) self.cmd('storage container create --account-name {} --name {}'.format(storage_Account, container)) expirydate = (datetime.datetime.now() + datetime.timedelta(days=1, hours=3)).strftime("\"%Y-%m-%dT%H:%MZ\"") sastoken = self.cmd('storage container generate-sas --account-name {} --name {} --expiry {} --permissions rwdl'.format(storage_Account, container, expirydate)) sasurl = '\"https://{}.blob.core.windows.net/{}?{}\"'.format(storage_Account, container, sastoken) backup_name = self.create_random_name(prefix='backup-name', length=24) self.cmd('webapp config backup create -g {} --webapp-name {} --backup-name {} --container-url {}'.format(resource_group, webapp, backup_name, sasurl), checks=[ JMESPathCheck('backupItemName', backup_name) ]) # Test Framework is not able to handle binary file format, hence, only run live class AppServiceLogTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_download_win_web_log(self, resource_group): import zipfile webapp_name = self.create_random_name( prefix='webapp-win-log', length=24) plan = self.create_random_name(prefix='win-log', length=24) self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} --deployment-source-url {} -r "node|10.14"'.format( resource_group, webapp_name, plan, TEST_REPO_URL)) # 30 seconds should be enough for the deployment finished(Skipped under playback mode) time.sleep(30) # sanity check the traces _, log_file = tempfile.mkstemp() log_dir = log_file + '-dir' self.cmd('webapp log download -g {} -n {} --log-file "{}"'.format( resource_group, webapp_name, log_file)) zip_ref = zipfile.ZipFile(log_file, 'r') zip_ref.extractall(log_dir) self.assertTrue(os.path.isdir(os.path.join( log_dir, 'LogFiles', 'kudu', 'trace'))) class AppServicePlanScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_retain_plan(self, resource_group): webapp_name = self.create_random_name('web', 24) plan = self.create_random_name('web-plan', 24) self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd('webapp delete -g {} -n {} --keep-dns-registration --keep-empty-plan --keep-metrics'.format(resource_group, webapp_name)) self.cmd('appservice plan list -g {}'.format(resource_group), checks=[ JMESPathCheck('[0].name', plan) ]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_auto_delete_plan(self, resource_group): webapp_name = self.create_random_name('web-del-test', 24) plan = self.create_random_name('web-del-plan', 24) self.cmd( 'appservice plan create -g {} -n {} -l {}'.format(resource_group, plan, WINDOWS_ASP_LOCATION_WEBAPP)) self.cmd('appservice plan update -g {} -n {} --sku S1'.format(resource_group, plan), checks=[JMESPathCheck('name', plan), JMESPathCheck('sku.tier', 'Standard'), JMESPathCheck('sku.name', 'S1')]) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd('webapp delete -g {} -n {}'.format(resource_group, webapp_name)) # test empty service plan should be automatically deleted. self.cmd('appservice plan list -g {}'.format(resource_group), checks=[JMESPathCheck('length(@)', 0)]) class WebappConfigureTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_webapp_config', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_config(self, resource_group): webapp_name = self.create_random_name('webapp-config-test', 40) plan_name = self.create_random_name('webapp-config-plan', 40) self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) # verify the baseline self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck('alwaysOn', True), JMESPathCheck('autoHealEnabled', False), JMESPathCheck('phpVersion', '5.6'), JMESPathCheck('netFrameworkVersion', 'v4.0'), JMESPathCheck('pythonVersion', ''), JMESPathCheck('use32BitWorkerProcess', True), JMESPathCheck('webSocketsEnabled', False), JMESPathCheck('minTlsVersion', '1.2'), JMESPathCheck('ftpsState', 'AllAllowed')]) # update and verify checks = [ JMESPathCheck('alwaysOn', True), JMESPathCheck('autoHealEnabled', True), JMESPathCheck('phpVersion', '7.2'), JMESPathCheck('netFrameworkVersion', 'v3.0'), JMESPathCheck('pythonVersion', '3.4'), JMESPathCheck('use32BitWorkerProcess', False), JMESPathCheck('webSocketsEnabled', True), JMESPathCheck('minTlsVersion', '1.0'), JMESPathCheck('http20Enabled', True), JMESPathCheck('ftpsState', 'Disabled')] self.cmd('webapp config set -g {} -n {} --always-on true --auto-heal-enabled true --php-version 7.2 ' '--net-framework-version v3.5 --python-version 3.4 --use-32bit-worker-process=false ' '--web-sockets-enabled=true --http20-enabled true --min-tls-version 1.0 --ftps-state Disabled'.format(resource_group, webapp_name)).assert_with_checks(checks) self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name)) \ .assert_with_checks(checks) # site appsettings testing # update through key value pairs self.cmd('webapp config appsettings set -g {} -n {} --settings s1=foo s2=bar s3=bar2'.format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck("length([?name=='s1'])", 1), JMESPathCheck("length([?name=='s2'])", 1), JMESPathCheck("length([?name=='s3'])", 1), JMESPathCheck("length([?value=='foo'])", 1), JMESPathCheck("length([?value=='bar'])", 1), JMESPathCheck("length([?value=='bar2'])", 1) ]) # show result = self.cmd('webapp config appsettings list -g {} -n {}'.format( resource_group, webapp_name)).get_output_in_json() s2 = next((x for x in result if x['name'] == 's2')) self.assertEqual(s2['name'], 's2') self.assertEqual(s2['slotSetting'], False) self.assertEqual(s2['value'], 'bar') self.assertEqual(set([x['name'] for x in result]), set( ['s1', 's2', 's3', 'WEBSITE_NODE_DEFAULT_VERSION'])) # delete self.cmd('webapp config appsettings delete -g {} -n {} --setting-names s1 s2' .format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck("length([?name=='s3'])", 1), JMESPathCheck("length([?name=='s1'])", 0), JMESPathCheck("length([?name=='s2'])", 0)]) # hostnames self.cmd('webapp config hostname list -g {} --webapp-name {}' .format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', '{0}.azurewebsites.net'.format(webapp_name))]) # site azure storage account configurations tests runtime = 'node|10.14' linux_plan = self.create_random_name( prefix='webapp-linux-plan', length=24) linux_webapp = self.create_random_name( prefix='webapp-linux', length=24) self.cmd('appservice plan create -g {} -n {} -l eastus2 --sku S1 --is-linux'.format(resource_group, linux_plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('webapp create -g {} -n {} --plan {} --runtime {}'.format(resource_group, linux_webapp, linux_plan, runtime), checks=[ JMESPathCheck('name', linux_webapp), ]) # add self.cmd(('webapp config storage-account add -g {} -n {} --custom-id Id --storage-type AzureFiles --account-name name ' '--share-name sharename --access-key key --mount-path /path/to/mount').format(resource_group, linux_webapp)) self.cmd('webapp config storage-account list -g {} -n {}'.format(resource_group, linux_webapp)).assert_with_checks([ JMESPathCheck('length(@)', 1), JMESPathCheck("[?name=='Id']|[0].value.type", "AzureFiles"), JMESPathCheck("[?name=='Id']|[0].value.accountName", "name"), JMESPathCheck("[?name=='Id']|[0].value.shareName", "sharename"), JMESPathCheck("[?name=='Id']|[0].value.accessKey", "key"), JMESPathCheck("[?name=='Id']|[0].value.mountPath", "/path/to/mount")]) # update self.cmd('webapp config storage-account update -g {} -n {} --custom-id Id --mount-path /different/path' .format(resource_group, linux_webapp)) self.cmd('webapp config storage-account list -g {} -n {}'.format(resource_group, linux_webapp)).assert_with_checks([ JMESPathCheck("length(@)", 1), JMESPathCheck("[?name=='Id']|[0].value.type", "AzureFiles"), JMESPathCheck("[?name=='Id']|[0].value.accountName", "name"), JMESPathCheck("[?name=='Id']|[0].value.shareName", "sharename"), JMESPathCheck("[?name=='Id']|[0].value.accessKey", "key"), JMESPathCheck("[?name=='Id']|[0].value.mountPath", "/different/path")]) # list self.cmd('webapp config storage-account list -g {} -n {}'.format(resource_group, linux_webapp)).assert_with_checks([ JMESPathCheck("length(@)", 1), JMESPathCheck('[0].name', 'Id')]) # delete self.cmd('webapp config storage-account delete -g {} -n {} --custom-id Id'.format(resource_group, linux_webapp)).assert_with_checks([ JMESPathCheck("length(@)", 0)]) # site connection string tests self.cmd('webapp config connection-string set -t mysql -g {} -n {} --settings c1="conn1" c2=conn2 ' '--slot-settings c3=conn3'.format(resource_group, linux_webapp)) self.cmd('webapp config connection-string list -g {} -n {}' .format(resource_group, linux_webapp)).assert_with_checks([ JMESPathCheck('length([])', 3), JMESPathCheck("[?name=='c1']|[0].slotSetting", False), JMESPathCheck("[?name=='c1']|[0].type", 'MySql'), JMESPathCheck("[?name=='c1']|[0].value", 'conn1'), JMESPathCheck("[?name=='c2']|[0].slotSetting", False), JMESPathCheck("[?name=='c3']|[0].slotSetting", True)]) self.cmd('webapp config connection-string delete -g {} -n {} --setting-names c1 c3' .format(resource_group, linux_webapp)) self.cmd('webapp config connection-string list -g {} -n {}' .format(resource_group, linux_webapp)).assert_with_checks([ JMESPathCheck('length([])', 1), JMESPathCheck('[0].slotSetting', False), JMESPathCheck('[0].name', 'c2')]) # see deployment user; just make sure the command does return something self.assertTrue( self.cmd('webapp deployment user show').get_output_in_json()['type']) @AllowLargeResponse() @ResourceGroupPreparer(name_prefix='cli_test_webapp_config_appsettings', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_config_appsettings(self, resource_group): webapp_name = self.create_random_name('webapp-config-appsettings-test', 40) plan_name = self.create_random_name('webapp-config-appsettings-plan', 40) self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) # site appsettings testing # update through key value pairs self.cmd('webapp config appsettings set -g {} -n {} --settings s1=foo s2=bar s3=bar2'.format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck("length([?name=='s1'])", 1), JMESPathCheck("length([?name=='s2'])", 1), JMESPathCheck("length([?name=='s3'])", 1), JMESPathCheck("length([?value=='foo'])", 1), JMESPathCheck("length([?value=='bar'])", 1), JMESPathCheck("length([?value=='bar2'])", 1) ]) # show result = self.cmd('webapp config appsettings list -g {} -n {}'.format( resource_group, webapp_name)).get_output_in_json() s2 = next((x for x in result if x['name'] == 's2')) self.assertEqual(s2['name'], 's2') self.assertEqual(s2['slotSetting'], False) self.assertEqual(s2['value'], 'bar') self.assertEqual(set([x['name'] for x in result]), set( ['s1', 's2', 's3', 'WEBSITE_NODE_DEFAULT_VERSION'])) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) # show result = self.cmd('webapp config appsettings list -g {} -n {}'.format( resource_group, webapp_name)).get_output_in_json() s2 = next((x for x in result if x['name'] == 's2')) self.assertEqual(s2['name'], 's2') self.assertEqual(s2['slotSetting'], False) self.assertEqual(s2['value'], 'bar') self.assertEqual(set([x['name'] for x in result]), set( ['s1', 's2', 's3', 'WEBSITE_NODE_DEFAULT_VERSION'])) @ResourceGroupPreparer(name_prefix='cli_test_webapp_json', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_update_webapp_settings_thru_json(self, resource_group): webapp_name = self.create_random_name('webapp-config-test', 40) plan_name = self.create_random_name('webapp-config-plan', 40) # update through a json file with key value pair _, settings_file = tempfile.mkstemp() with open(settings_file, 'w+') as file: file.write(json.dumps({'s2': 'value2'})) self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) output = self.cmd('webapp config appsettings set -g {} -n {} --settings s=value "@{}"'.format( resource_group, webapp_name, settings_file)).get_output_in_json() output = [s for s in output if s['name'] in ['s', 's2']] output.sort(key=lambda s: s['name']) self.assertEqual(output[0], { 'name': 's', 'value': 'value', 'slotSetting': False }) self.assertEqual(output[1], { 'name': 's2', 'value': 'value2', 'slotSetting': False }) # output using the output of the set/list command output.append({ 'name': 's3', 'value': 'value3', 'slotSetting': True }) with open(settings_file, 'w') as file: file.write(json.dumps(output)) output = self.cmd('webapp config appsettings set -g {} -n {} --settings "@{}"'.format( resource_group, webapp_name, settings_file)).get_output_in_json() output = [s for s in output if s['name'] in ['s', 's2', 's3']] output.sort(key=lambda s: s['name']) self.assertEqual(output[0], { 'name': 's', 'value': 'value', 'slotSetting': False }) self.assertEqual(output[1], { 'name': 's2', 'value': 'value2', 'slotSetting': False }) self.assertEqual(output[2], { 'name': 's3', 'value': 'value3', 'slotSetting': True }) # update site config site_configs = { "requestTracingEnabled": True, "alwaysOn": True } with open(settings_file, 'w') as file: file.write(json.dumps(site_configs)) self.cmd('webapp config set -g {} -n {} --generic-configurations "@{}"'.format(resource_group, webapp_name, settings_file)).assert_with_checks([ JMESPathCheck("requestTracingEnabled", True), JMESPathCheck("alwaysOn", True), ]) class WebappScaleTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_scale(self, resource_group): plan = self.create_random_name(prefix='scale-plan', length=24) # start with shared sku self.cmd('appservice plan create -g {} -n {} --sku SHARED'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'D1'), JMESPathCheck('sku.tier', 'Shared'), JMESPathCheck('sku.size', 'D1'), JMESPathCheck('sku.family', 'D'), # 0 means the default value: 1 instance JMESPathCheck('sku.capacity', 0) ]) # scale up self.cmd( 'appservice plan update -g {} -n {} --sku S2'.format(resource_group, plan)) self.cmd('appservice plan show -g {} -n {}'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'S2'), JMESPathCheck('sku.tier', 'Standard'), JMESPathCheck('sku.size', 'S2'), JMESPathCheck('sku.family', 'S') ]) # scale down self.cmd( 'appservice plan update -g {} -n {} --sku B1'.format(resource_group, plan)) self.cmd('appservice plan show -g {} -n {}'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'B1'), JMESPathCheck('sku.tier', 'Basic'), JMESPathCheck('sku.size', 'B1'), JMESPathCheck('sku.family', 'B') ]) # scale out self.cmd( 'appservice plan update -g {} -n {} --number-of-workers 2'.format(resource_group, plan)) self.cmd('appservice plan show -g {} -n {}'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'B1'), JMESPathCheck('sku.tier', 'Basic'), JMESPathCheck('sku.size', 'B1'), JMESPathCheck('sku.family', 'B'), JMESPathCheck('sku.capacity', 2) ]) class AppServiceBadErrorPolishTest(ScenarioTest): @ResourceGroupPreparer(parameter_name='resource_group', location=WINDOWS_ASP_LOCATION_WEBAPP) @ResourceGroupPreparer(parameter_name='resource_group2', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_appservice_error_polish(self, resource_group, resource_group2): plan = self.create_random_name(prefix='web-error-plan', length=24) webapp_name = self.create_random_name(prefix='web-error', length=24) self.cmd('group create -n {} -l {}'.format(resource_group2, WINDOWS_ASP_LOCATION_WEBAPP)) self.cmd( 'appservice plan create -g {} -n {} --sku b1'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd( 'appservice plan create -g {} -n {} --sku b1'.format(resource_group2, plan)) # we will try to produce an error by try creating 2 webapp with same name in different groups self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group2, webapp_name, plan), expect_failure=True) # TODO: ensure test fx can capture error details for us to verify # allowed_exceptions='Website with given name {} already exists'.format(webapp_name) # this test doesn't contain the ultimate verification which you need to manually load the frontpage in a browser class LinuxWebappScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp(self, resource_group): runtime = 'node|10.14' plan = self.create_random_name(prefix='webapp-linux-plan', length=24) webapp = self.create_random_name(prefix='webapp-linux', length=24) self.cmd('appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('webapp create -g {} -n {} --plan {} --runtime {}'.format(resource_group, webapp, plan, runtime), checks=[ JMESPathCheck('name', webapp), ]) self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp), checks=[ JMESPathCheck('windowsFxVersion', None) ]) # workaround the fact that a new linux web's "kind" won't be settled instantatest_linux_webapp_remote_sshneously time.sleep(30) self.cmd('webapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length([])', 1), JMESPathCheck('[0].name', webapp), JMESPathCheck('[0].kind', 'app,linux') ]) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp), checks=[ JMESPathCheck('name', webapp), JMESPathCheck('kind', 'app,linux') ]) self.cmd('webapp config set -g {} -n {} --startup-file {}'.format(resource_group, webapp, 'process.json'), checks=[ JMESPathCheck('appCommandLine', 'process.json') ]) result = self.cmd('webapp deployment container config -g {} -n {} --enable-cd true'.format( resource_group, webapp)).get_output_in_json() self.assertTrue(result['CI_CD_URL'].startswith('https://')) self.assertTrue(result['CI_CD_URL'].endswith( '.scm.azurewebsites.net/docker/hook')) result = self.cmd('webapp config container set -g {} -n {} --docker-custom-image-name {} --docker-registry-server-password {} --docker-registry-server-user {} --docker-registry-server-url {} --enable-app-service-storage {}'.format( resource_group, webapp, 'foo-image', 'foo-password', 'foo-user', 'foo-url', 'false')).get_output_in_json() self.assertEqual(set(x['value'] for x in result if x['name'] == 'DOCKER_REGISTRY_SERVER_PASSWORD'), set([None])) # we mask the password result = self.cmd('webapp config container show -g {} -n {} '.format( resource_group, webapp)).get_output_in_json() self.assertEqual(set(x['name'] for x in result), set(['DOCKER_REGISTRY_SERVER_URL', 'DOCKER_REGISTRY_SERVER_USERNAME', 'DOCKER_CUSTOM_IMAGE_NAME', 'DOCKER_REGISTRY_SERVER_PASSWORD', 'WEBSITES_ENABLE_APP_SERVICE_STORAGE'])) self.assertEqual(set(x['value'] for x in result if x['name'] == 'DOCKER_REGISTRY_SERVER_PASSWORD'), set([None])) # we mask the password sample = next( (x for x in result if x['name'] == 'DOCKER_REGISTRY_SERVER_URL')) self.assertEqual(sample, { 'name': 'DOCKER_REGISTRY_SERVER_URL', 'slotSetting': False, 'value': 'foo-url'}) sample = next( (x for x in result if x['name'] == 'WEBSITES_ENABLE_APP_SERVICE_STORAGE')) self.assertEqual(sample, { 'name': 'WEBSITES_ENABLE_APP_SERVICE_STORAGE', 'slotSetting': False, 'value': 'false'}) self.cmd( 'webapp config container delete -g {} -n {}'.format(resource_group, webapp)) result2 = self.cmd('webapp config container show -g {} -n {} '.format( resource_group, webapp)).get_output_in_json() self.assertEqual(result2, []) class LinuxWebappSSHScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp_ssh(self, resource_group): # On Windows, test 'webapp ssh' throws error import platform if platform.system() == "Windows": from azure.cli.core.util import CLIError with self.assertRaises(CLIError): self.cmd('webapp ssh -g {} -n {} --timeout 5'.format("foo", "bar")) return runtime = 'node|12-lts' plan = self.create_random_name(prefix='webapp-ssh-plan', length=24) webapp = self.create_random_name(prefix='webapp-ssh', length=24) self.cmd( 'appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} --runtime {}'.format( resource_group, webapp, plan, runtime)) time.sleep(30) requests.get('http://{}.azurewebsites.net'.format(webapp), timeout=240) time.sleep(30) self.cmd('webapp ssh -g {} -n {} --timeout 5'.format(resource_group, webapp)) time.sleep(30) class LinuxWebappRemoteSSHScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp_remote_ssh(self, resource_group): runtime = 'node|12-lts' plan = self.create_random_name( prefix='webapp-remote-ssh-plan', length=40) webapp = self.create_random_name(prefix='webapp-remote-ssh', length=40) self.cmd( 'appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} --runtime {}'.format( resource_group, webapp, plan, runtime)) time.sleep(30) requests.get('http://{}.azurewebsites.net'.format(webapp), timeout=240) time.sleep(30) self.cmd( 'webapp create-remote-connection -g {} -n {} --timeout 5'.format(resource_group, webapp)) time.sleep(30) @unittest.skip("Remote connection feature is a preview feature that doesn't work on Linux, need to get update from Linux team") class LinuxWebappRemoteDebugScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp_remote_debug(self, resource_group): runtime = 'node|12-lts' plan = self.create_random_name( prefix='webapp-remote-debug-plan', length=40) webapp = self.create_random_name( prefix='webapp-remote-debug', length=40) self.cmd( 'appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} --runtime {}'.format( resource_group, webapp, plan, runtime)) time.sleep(30) requests.get('http://{}.azurewebsites.net'.format(webapp), timeout=240) self.cmd( 'webapp config set --remote-debugging-enabled true -g {} -n {}'.format(resource_group, webapp))\ .assert_with_checks(JMESPathCheck('remoteDebuggingEnabled', True)) self.cmd('webapp create-remote-connection -g {} -n {} --timeout 5 &'.format(resource_group, webapp)) class LinuxWebappMulticontainerSlotScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_linux_webapp_multicontainer_slot(self, resource_group): webapp_name = self.create_random_name( prefix='webapp-linux-multi', length=24) plan = self.create_random_name(prefix='plan-linux-multi', length=24) config_file = os.path.join(TEST_DIR, 'sample-compose.yml') slot = "stage" slot_webapp_name = "{}-{}".format(webapp_name, slot) slot_config_file = os.path.join(TEST_DIR, 'sample-compose-slot.yml') self.cmd( 'appservice plan create -g {} -n {} --is-linux --sku S1'.format(resource_group, plan)) self.cmd("webapp create -g {} -n {} --plan {} --multicontainer-config-file \"{}\" " "--multicontainer-config-type COMPOSE".format(resource_group, webapp_name, plan, config_file)) last_number_seen = 99999999 for x in range(0, 10): r = requests.get( 'http://{}.azurewebsites.net'.format(webapp_name), timeout=240) # verify the web page self.assertTrue('Hello World! I have been seen' in str(r.content)) current_number = [int(s) for s in r.content.split() if s.isdigit()][0] self.assertNotEqual(current_number, last_number_seen) last_number_seen = current_number self.cmd('webapp deployment slot create -g {} -n {} --slot {}'.format( resource_group, webapp_name, slot)) self.cmd("webapp config container set -g {} -n {} --slot {} --multicontainer-config-file \"{}\" " "--multicontainer-config-type COMPOSE".format(resource_group, webapp_name, slot, slot_config_file)) last_number_seen = 99999999 for x in range(0, 10): r = requests.get( 'http://{}.azurewebsites.net'.format(slot_webapp_name), timeout=240) # verify the web page self.assertTrue( 'Hello from a slot! I have been seen' in str(r.content)) current_number = [int(s) for s in r.content.split() if s.isdigit()][0] self.assertNotEqual(current_number, last_number_seen) last_number_seen = current_number class WebappACRScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_WEBAPP) def test_acr_integration(self, resource_group): plan = self.create_random_name(prefix='acrtestplan', length=24) webapp = self.create_random_name(prefix='webappacrtest', length=24) runtime = 'node|10.14' acr_registry_name = webapp self.cmd('acr create --admin-enabled -g {} -n {} --sku Basic'.format( resource_group, acr_registry_name)) self.cmd( 'appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan)) self.cmd('webapp create -g {} -n {} --plan {} --runtime {}'.format( resource_group, webapp, plan, runtime)) creds = self.cmd('acr credential show -n {} -g {}'.format( acr_registry_name, resource_group)).get_output_in_json() self.cmd('webapp config container set -g {0} -n {1} --docker-custom-image-name {2}.azurecr.io/image-name:latest --docker-registry-server-url https://{2}.azurecr.io'.format( resource_group, webapp, acr_registry_name), checks=[ JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME']|[0].value", creds['username']) ]) class FunctionappACRScenarioTest(ScenarioTest): @ResourceGroupPreparer(location='northeurope') @StorageAccountPreparer() @AllowLargeResponse() def test_acr_integration_function_app(self, resource_group, storage_account): plan = self.create_random_name(prefix='acrtestplanfunction', length=24) functionapp = self.create_random_name( prefix='functionappacrtest', length=24) runtime = 'node' acr_registry_name = functionapp self.cmd('acr create --admin-enabled -g {} -n {} --sku Basic'.format( resource_group, acr_registry_name)) self.cmd( 'appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan)) self.cmd('functionapp create -g {} -n {} -s {} --plan {} --runtime {}'.format( resource_group, functionapp, storage_account, plan, runtime)) creds = self.cmd('acr credential show -n {} -g {}'.format( acr_registry_name, resource_group)).get_output_in_json() self.cmd('functionapp config container set -g {0} -n {1} --docker-custom-image-name {2}.azurecr.io/image-name:latest --docker-registry-server-url https://{2}.azurecr.io'.format( resource_group, functionapp, acr_registry_name), checks=[ JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME']|[0].value", creds['username']) ]) self.cmd('functionapp config container show -g {} -n {} '.format(resource_group, functionapp), checks=[ JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME']|[0].value", creds['username']), JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_URL']|[0].name", 'DOCKER_REGISTRY_SERVER_URL') ]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck( "[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'node'), JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME'].value|[0]", creds['username']) ]) self.cmd( 'functionapp config container delete -g {} -n {} '.format(resource_group, functionapp)) json_result = self.cmd('functionapp config appsettings list -g {} -n {}'.format( resource_group, functionapp)).get_output_in_json() all_settings = [setting['name'] for setting in json_result] # Make sure the related settings are deleted self.assertNotIn('DOCKER_REGISTRY_SERVER_USERNAME', all_settings) self.assertNotIn('DOCKER_REGISTRY_SERVER_URL', all_settings) self.assertNotIn('DOCKER_REGISTRY_SERVER_PASSWORD', all_settings) self.assertIn('FUNCTIONS_WORKER_RUNTIME', all_settings) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, functionapp)) class FunctionAppCreateUsingACR(ScenarioTest): @ResourceGroupPreparer(location='brazilsouth') @StorageAccountPreparer(name_prefix='clitestacr') @AllowLargeResponse() def test_acr_create_function_app(self, resource_group, storage_account): plan = self.create_random_name(prefix='acrtestplanfunction', length=24) functionapp = self.create_random_name( prefix='functionappacrtest', length=24) runtime = 'node' acr_registry_name = functionapp self.cmd('acr create --admin-enabled -g {} -n {} --sku Basic'.format( resource_group, acr_registry_name)) acr_creds = self.cmd('acr credential show -n {} -g {}'.format( acr_registry_name, resource_group)).get_output_in_json() username = acr_creds['username'] password = acr_creds['passwords'][0]['value'] self.cmd( 'functionapp plan create -g {} -n {} --sku S1 --is-linux'.format(resource_group, plan)) self.cmd('functionapp create -g {} -n {} -s {} --plan {} --runtime {}' ' --deployment-container-image-name {}.azurecr.io/image-name:latest --docker-registry-server-user {}' ' --docker-registry-server-password {}'.format(resource_group, functionapp, storage_account, plan, runtime, acr_registry_name, username, password)) self.cmd('functionapp config container show -g {} -n {} '.format(resource_group, functionapp), checks=[ JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME']|[0].value", username), JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_URL']|[0].name", 'DOCKER_REGISTRY_SERVER_URL') ]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck( "[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", None), JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME'].value|[0]", username) ]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'DOCKER|{}.azurecr.io/image-name:latest'.format(acr_registry_name))]) self.cmd( 'functionapp config container delete -g {} -n {} '.format(resource_group, functionapp)) json_result = self.cmd( 'functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp)).get_output_in_json() all_settings = [setting['name'] for setting in json_result] # Make sure the related settings are deleted self.assertNotIn('DOCKER_REGISTRY_SERVER_USERNAME', all_settings) self.assertNotIn('DOCKER_REGISTRY_SERVER_URL', all_settings) self.assertNotIn('DOCKER_REGISTRY_SERVER_PASSWORD', all_settings) self.assertNotIn('FUNCTIONS_WORKER_RUNTIME', all_settings) class FunctionappACRDeploymentScenarioTest(ScenarioTest): @ResourceGroupPreparer(location='brazilsouth') @StorageAccountPreparer(name_prefix='clitestacrdeploy') def test_acr_deployment_function_app(self, resource_group, storage_account): plan = self.create_random_name(prefix='acrtestplanfunction', length=24) functionapp = self.create_random_name( prefix='functionappacrtest', length=24) runtime = 'node' acr_registry_name = functionapp self.cmd('acr create --admin-enabled -g {} -n {} --sku Basic'.format( resource_group, acr_registry_name)) self.cmd( 'appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan)) self.cmd('functionapp create -g {} -n {} -s {} --plan {} --runtime {}'.format( resource_group, functionapp, storage_account, plan, runtime)) creds = self.cmd('acr credential show -g {} -n {}'.format( resource_group, acr_registry_name)).get_output_in_json() self.cmd('functionapp config container set -g {0} -n {1} --docker-custom-image-name {2}.azurecr.io/image-name:latest --docker-registry-server-url https://{2}.azurecr.io'.format( resource_group, functionapp, acr_registry_name), checks=[ JMESPathCheck( "[?name=='DOCKER_REGISTRY_SERVER_USERNAME']|[0].value", creds['username']) ]) result = self.cmd('functionapp deployment container config -g {} -n {} --enable-cd true'.format(resource_group, functionapp)).get_output_in_json() self.assertTrue(result['CI_CD_URL'].startswith('https://')) self.assertTrue(result['CI_CD_URL'].endswith( '.scm.azurewebsites.net/docker/hook')) # verify that show-cd-url works the same way show_result = self.cmd('functionapp deployment container show-cd-url -g {} -n {}'.format(resource_group, functionapp)).get_output_in_json() self.assertTrue(show_result['CI_CD_URL'].startswith('https://')) self.assertTrue(show_result['CI_CD_URL'].endswith( '.scm.azurewebsites.net/docker/hook')) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, functionapp)) class FunctionAppReservedInstanceTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_reserved_instance(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwithreservedinstance', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config set -g {} -n {} --prewarmed-instance-count 4' .format(resource_group, functionapp_name)).assert_with_checks([ JMESPathCheck('preWarmedInstanceCount', 4)]) self.cmd( 'functionapp delete -g {} -n {}'.format(resource_group, functionapp_name)) class WebappGitScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_git(self, resource_group): plan = self.create_random_name(prefix='webapp-git-plan5', length=24) webapp = self.create_random_name(prefix='web-git-test2', length=24) # You can create and use any repros with the 3 files under "./sample_web" test_git_repo = 'https://github.com/yugangw-msft/azure-site-test' self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp, plan)) self.cmd('webapp deployment source config -g {} -n {} --repo-url {} --branch {} --manual-integration'.format(resource_group, webapp, test_git_repo, 'master'), checks=[ JMESPathCheck('repoUrl', test_git_repo), JMESPathCheck('isMercurial', False), JMESPathCheck('branch', 'master') ]) self.cmd('webapp deployment source show -g {} -n {}'.format(resource_group, webapp), checks=[ JMESPathCheck('repoUrl', test_git_repo), JMESPathCheck('isMercurial', False), JMESPathCheck('branch', 'master') ]) self.cmd( 'webapp deployment source delete -g {} -n {}'.format(resource_group, webapp)) self.cmd('webapp deployment source show -g {} -n {}'.format(resource_group, webapp), checks=JMESPathCheck('repoUrl', None)) class WebappSlotScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_slot(self, resource_group): plan = self.create_random_name(prefix='slot-test-plan', length=24) webapp = self.create_random_name(prefix='slot-test-web', length=24) plan_result = self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan)).get_output_in_json() self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp, plan_result['name'])) # You can create and use any repros with the 3 files under "./sample_web" and with a 'staging 'branch slot = 'staging' slot2 = 'dev' test_git_repo = 'https://github.com/yugangw-msft/azure-site-test' test_php_version = '5.6' # create a few app-settings to test they can be cloned self.cmd('webapp config appsettings set -g {} -n {} --settings s1=v1 --slot-settings s2=v2'.format(resource_group, webapp)) # create an empty slot self.cmd('webapp deployment slot create -g {} -n {} --slot {}'.format(resource_group, webapp, slot), checks=[ JMESPathCheck('name', slot) ]) self.cmd('webapp deployment source config -g {} -n {} --repo-url {} --branch {} -s {} --manual-integration'.format(resource_group, webapp, test_git_repo, slot, slot), checks=[ JMESPathCheck('repoUrl', test_git_repo), JMESPathCheck('branch', slot) ]) # swap with prod and verify the git branch also switched self.cmd( 'webapp deployment slot swap -g {} -n {} -s {}'.format(resource_group, webapp, slot)) result = self.cmd('webapp config appsettings list -g {} -n {} -s {}'.format( resource_group, webapp, slot)).get_output_in_json() self.assertEqual(set([x['name'] for x in result]), set( ['s1', 'WEBSITE_NODE_DEFAULT_VERSION'])) # create a new slot by cloning from prod slot self.cmd('webapp config set -g {} -n {} --php-version {}'.format( resource_group, webapp, test_php_version)) self.cmd('webapp deployment slot create -g {} -n {} --slot {} --configuration-source {}'.format( resource_group, webapp, slot2, webapp)) self.cmd('webapp config show -g {} -n {} --slot {}'.format(resource_group, webapp, slot2), checks=[ JMESPathCheck("phpVersion", test_php_version), ]) self.cmd('webapp config appsettings set -g {} -n {} --slot {} --settings s3=v3 --slot-settings s4=v4'.format(resource_group, webapp, slot2), checks=[ JMESPathCheck("[?name=='s4']|[0].slotSetting", True), JMESPathCheck("[?name=='s3']|[0].slotSetting", False), ]) self.cmd('webapp config connection-string set -g {} -n {} -t mysql --slot {} --settings c1=connection1 --slot-settings c2=connection2'.format(resource_group, webapp, slot2)) # verify we can swap with non production slot self.cmd('webapp deployment slot swap -g {} -n {} --slot {} --target-slot {}'.format( resource_group, webapp, slot, slot2)) result = self.cmd('webapp config appsettings list -g {} -n {} --slot {}'.format( resource_group, webapp, slot2)).get_output_in_json() self.assertEqual(set([x['name'] for x in result]), set( ['s1', 's4', 'WEBSITE_NODE_DEFAULT_VERSION'])) result = self.cmd('webapp config connection-string list -g {} -n {} --slot {}'.format( resource_group, webapp, slot2)).get_output_in_json() self.assertEqual(set([x['name'] for x in result]), set(['c2'])) result = self.cmd('webapp config appsettings list -g {} -n {} --slot {}'.format( resource_group, webapp, slot)).get_output_in_json() self.assertTrue(set(['s3']).issubset(set([x['name'] for x in result]))) result = self.cmd('webapp config connection-string list -g {} -n {} --slot {}'.format( resource_group, webapp, slot)).get_output_in_json() self.assertEqual(set([x['name'] for x in result]), set(['c1'])) self.cmd('webapp deployment slot list -g {} -n {}'.format(resource_group, webapp), checks=[ JMESPathCheck("length([])", 2), JMESPathCheck("length([?name=='{}'])".format(slot2), 1), JMESPathCheck("length([?name=='{}'])".format(slot), 1), ]) self.cmd( 'webapp deployment slot delete -g {} -n {} --slot {}'.format(resource_group, webapp, slot)) # try another way to delete a slot and exercise all options self.cmd('webapp delete -g {} -n {} --slot {} --keep-dns-registration --keep-empty-plan --keep-metrics'.format(resource_group, webapp, slot2)) class WebappSlotTrafficRouting(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_traffic_routing(self, resource_group): plan = self.create_random_name(prefix='slot-traffic-plan', length=24) webapp = self.create_random_name(prefix='slot-traffic-web', length=24) plan_result = self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan)).get_output_in_json() self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp, plan_result['name'])) # You can create and use any repros with the 3 files under "./sample_web" and with a 'staging 'branch slot = 'staging' # create an empty slot self.cmd( 'webapp deployment slot create -g {} -n {} --slot {}'.format(resource_group, webapp, slot)) self.cmd('webapp traffic-routing set -g {} -n {} -d {}=15'.format(resource_group, webapp, slot), checks=[ JMESPathCheck("[0].actionHostName", webapp + '-' + slot + '.azurewebsites.net'), JMESPathCheck("[0].reroutePercentage", 15.0) ]) self.cmd('webapp traffic-routing show -g {} -n {}'.format(resource_group, webapp), checks=[ JMESPathCheck("[0].actionHostName", webapp + '-' + slot + '.azurewebsites.net'), JMESPathCheck("[0].reroutePercentage", 15.0) ]) self.cmd( 'webapp traffic-routing clear -g {} -n {}'.format(resource_group, webapp)) class AppServiceCors(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_cors(self, resource_group): self.kwargs.update({ 'plan': self.create_random_name(prefix='slot-traffic-plan', length=24), 'web': self.create_random_name(prefix='slot-traffic-web', length=24), 'slot': 'slot1' }) self.cmd('appservice plan create -g {rg} -n {plan} --sku S1') self.cmd('webapp create -g {rg} -n {web} --plan {plan}') self.cmd( 'webapp cors add -g {rg} -n {web} --allowed-origins https://msdn.com https://msn.com') self.cmd('webapp cors show -g {rg} -n {web}', checks=self.check('allowedOrigins', ['https://msdn.com', 'https://msn.com'])) self.cmd( 'webapp cors remove -g {rg} -n {web} --allowed-origins https://msn.com') self.cmd('webapp cors show -g {rg} -n {web}', checks=self.check('allowedOrigins', ['https://msdn.com'])) self.cmd( 'webapp deployment slot create -g {rg} -n {web} --slot {slot}') self.cmd( 'webapp cors add -g {rg} -n {web} --slot {slot} --allowed-origins https://foo.com') self.cmd('webapp cors show -g {rg} -n {web} --slot {slot}', checks=self.check('allowedOrigins', ['https://foo.com'])) self.cmd( 'webapp cors remove -g {rg} -n {web} --slot {slot} --allowed-origins https://foo.com') self.cmd('webapp cors show -g {rg} -n {web} --slot {slot}', checks=self.check('allowedOrigins', [])) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) @StorageAccountPreparer() def test_functionapp_cors(self, resource_group, storage_account): self.kwargs.update({ 'plan': self.create_random_name(prefix='slot-traffic-plan', length=24), 'function': self.create_random_name(prefix='slot-traffic-web', length=24), 'storage': self.create_random_name(prefix='storage', length=24) }) self.cmd('appservice plan create -g {rg} -n {plan} --sku S1') self.cmd( 'storage account create --name {storage} -g {rg} --sku Standard_LRS') self.cmd( 'functionapp create -g {rg} -n {function} --plan {plan} -s {storage}') self.cmd( 'functionapp cors add -g {rg} -n {function} --allowed-origins https://msdn.com https://msn.com') result = self.cmd( 'functionapp cors show -g {rg} -n {function}').get_output_in_json()['allowedOrigins'] # functionapp has pre-defined cors. We verify the ones we added are in the list self.assertTrue( set(['https://msdn.com', 'https://msn.com']).issubset(set(result))) class WebappSlotSwapScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_slot_swap(self, resource_group): plan = self.create_random_name(prefix='slot-swap-plan', length=24) webapp = self.create_random_name(prefix='slot-swap-web', length=24) plan_result = self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan)).get_output_in_json() self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp, plan_result['name'])) # You can create and use any repros with the 3 files under "./sample_web" and with a 'staging 'branch slot = 'staging' self.cmd( 'webapp config appsettings set -g {} -n {} --slot-settings s1=prod'.format(resource_group, webapp)) # create an empty slot self.cmd( 'webapp deployment slot create -g {} -n {} --slot {}'.format(resource_group, webapp, slot)) self.cmd('webapp config appsettings set -g {} -n {} --slot-settings s1=slot --slot {}'.format( resource_group, webapp, slot)) # swap with preview self.cmd('webapp deployment slot swap -g {} -n {} -s {} --action preview'.format( resource_group, webapp, slot)) self.cmd('webapp config appsettings list -g {} -n {} --slot {}'.format(resource_group, webapp, slot), checks=[ JMESPathCheck("[?name=='s1']|[0].value", 'prod') ]) # complete the swap self.cmd( 'webapp deployment slot swap -g {} -n {} -s {}'.format(resource_group, webapp, slot)) self.cmd('webapp config appsettings list -g {} -n {} --slot {}'.format(resource_group, webapp, slot), checks=[ JMESPathCheck("[?name=='s1']|[0].value", 'slot') ]) # reset self.cmd('webapp deployment slot swap -g {} -n {} -s {} --action reset'.format( resource_group, webapp, slot)) self.cmd('webapp config appsettings list -g {} -n {} --slot {}'.format(resource_group, webapp, slot), checks=[ JMESPathCheck("[?name=='s1']|[0].value", 'slot') ]) class WebappSSLCertTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_ssl(self, resource_group, resource_group_location): plan = self.create_random_name(prefix='ssl-test-plan', length=24) webapp_name = self.create_random_name(prefix='web-ssl-test', length=20) slot_name = self.create_random_name(prefix='slot-ssl-test', length=20) # Cert Generated using # https://docs.microsoft.com/azure/app-service-web/web-sites-configure-ssl-certificate#bkmk_ssopenssl pfx_file = os.path.join(TEST_DIR, 'server.pfx') cert_password = 'test' cert_thumbprint = '9E9735C45C792B03B3FFCCA614852B32EE71AD6B' # we configure tags here in a hope to capture a repro for https://github.com/Azure/azure-cli/issues/6929 self.cmd( 'appservice plan create -g {} -n {} --sku S1 --tags plan=plan1'.format(resource_group, plan)) self.cmd('appservice plan show -g {} -n {}'.format(resource_group, plan), self.check('tags.plan', 'plan1')) self.cmd('webapp create -g {} -n {} --plan {} --tags web=web1'.format( resource_group, webapp_name, plan)) self.cmd('webapp config ssl upload -g {} -n {} --certificate-file "{}" --certificate-password {}'.format(resource_group, webapp_name, pfx_file, cert_password), checks=[ JMESPathCheck('thumbprint', cert_thumbprint) ]) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), self.check('tags.web', 'web1')) self.cmd('webapp config ssl bind -g {} -n {} --certificate-thumbprint {} --ssl-type {}'.format(resource_group, webapp_name, cert_thumbprint, 'SNI'), checks=[ JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].sslState".format( webapp_name), 'SniEnabled'), JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].thumbprint".format( webapp_name), cert_thumbprint) ]) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), self.check('tags.web', 'web1')) self.cmd('webapp config ssl unbind -g {} -n {} --certificate-thumbprint {}'.format(resource_group, webapp_name, cert_thumbprint), checks=[ JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].sslState".format( webapp_name), 'Disabled'), ]) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), self.check('tags.web', 'web1')) self.cmd('webapp config ssl delete -g {} --certificate-thumbprint {}'.format( resource_group, cert_thumbprint)) self.cmd('webapp show -g {} -n {}'.format(resource_group, webapp_name), self.check('tags.web', 'web1')) # test with slot self.cmd('webapp deployment slot create -g {} -n {} --slot {}'.format( resource_group, webapp_name, slot_name)) self.cmd('webapp config ssl upload -g {} -n {} --certificate-file "{}" --certificate-password {} -s {}'.format(resource_group, webapp_name, pfx_file, cert_password, slot_name), checks=[ JMESPathCheck('thumbprint', cert_thumbprint) ]) self.cmd( 'webapp show -g {} -n {} -s {}'.format(resource_group, webapp_name, slot_name)) self.cmd('webapp config ssl bind -g {} -n {} --certificate-thumbprint {} --ssl-type {} -s {}'.format(resource_group, webapp_name, cert_thumbprint, 'SNI', slot_name), checks=[ JMESPathCheck("hostNameSslStates|[?name=='{}-{}.azurewebsites.net']|[0].sslState".format( webapp_name, slot_name), 'SniEnabled'), JMESPathCheck("hostNameSslStates|[?name=='{}-{}.azurewebsites.net']|[0].thumbprint".format( webapp_name, slot_name), cert_thumbprint) ]) self.cmd( 'webapp show -g {} -n {} -s {}'.format(resource_group, webapp_name, slot_name)) self.cmd('webapp config ssl unbind -g {} -n {} --certificate-thumbprint {} -s {}'.format(resource_group, webapp_name, cert_thumbprint, slot_name), checks=[ JMESPathCheck("hostNameSslStates|[?name=='{}-{}.azurewebsites.net']|[0].sslState".format( webapp_name, slot_name), 'Disabled'), ]) self.cmd( 'webapp show -g {} -n {} -s {}'.format(resource_group, webapp_name, slot_name)) self.cmd('webapp config ssl delete -g {} --certificate-thumbprint {}'.format( resource_group, cert_thumbprint)) self.cmd( 'webapp show -g {} -n {} -s {}'.format(resource_group, webapp_name, slot_name)) self.cmd('webapp delete -g {} -n {}'.format(resource_group, webapp_name)) class WebappSSLImportCertTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_ssl_import(self, resource_group): plan_name = self.create_random_name(prefix='ssl-test-plan', length=24) webapp_name = self.create_random_name(prefix='web-ssl-test', length=20) kv_name = self.create_random_name(prefix='kv-ssl-test', length=20) # Cert Generated using # https://docs.microsoft.com/azure/app-service-web/web-sites-configure-ssl-certificate#bkmk_ssopenssl pfx_file = os.path.join(TEST_DIR, 'server.pfx') cert_password = 'test' cert_thumbprint = '9E9735C45C792B03B3FFCCA614852B32EE71AD6B' cert_name = 'test-cert' # we configure tags here in a hope to capture a repro for https://github.com/Azure/azure-cli/issues/6929 self.cmd( 'appservice plan create -g {} -n {} --sku B1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) self.cmd('keyvault create -g {} -n {}'.format(resource_group, kv_name)) self.cmd('keyvault set-policy -g {} --name {} --spn {} --secret-permissions get'.format( resource_group, kv_name, 'Microsoft.Azure.WebSites')) self.cmd('keyvault certificate import --name {} --vault-name {} --file "{}" --password {}'.format( cert_name, kv_name, pfx_file, cert_password)) self.cmd('webapp config ssl import --resource-group {} --name {} --key-vault {} --key-vault-certificate-name {}'.format(resource_group, webapp_name, kv_name, cert_name), checks=[ JMESPathCheck('thumbprint', cert_thumbprint) ]) self.cmd('webapp config ssl bind -g {} -n {} --certificate-thumbprint {} --ssl-type {}'.format(resource_group, webapp_name, cert_thumbprint, 'SNI'), checks=[ JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].sslState".format( webapp_name), 'SniEnabled'), JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].thumbprint".format( webapp_name), cert_thumbprint) ]) @ResourceGroupPreparer(parameter_name='kv_resource_group', location=WINDOWS_ASP_LOCATION_WEBAPP) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_ssl_import_crossrg(self, resource_group, kv_resource_group): plan_name = self.create_random_name(prefix='ssl-test-plan', length=24) webapp_name = self.create_random_name(prefix='web-ssl-test', length=20) kv_name = self.create_random_name(prefix='kv-ssl-test', length=20) # Cert Generated using # https://docs.microsoft.com/azure/app-service-web/web-sites-configure-ssl-certificate#bkmk_ssopenssl pfx_file = os.path.join(TEST_DIR, 'server.pfx') cert_password = 'test' cert_thumbprint = '9E9735C45C792B03B3FFCCA614852B32EE71AD6B' cert_name = 'test-cert' # we configure tags here in a hope to capture a repro for https://github.com/Azure/azure-cli/issues/6929 self.cmd( 'appservice plan create -g {} -n {} --sku B1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) kv_id = self.cmd('keyvault create -g {} -n {}'.format(kv_resource_group, kv_name)).get_output_in_json()['id'] self.cmd('keyvault set-policy -g {} --name {} --spn {} --secret-permissions get'.format( kv_resource_group, kv_name, 'Microsoft.Azure.WebSites')) self.cmd('keyvault certificate import --name {} --vault-name {} --file "{}" --password {}'.format( cert_name, kv_name, pfx_file, cert_password)) self.cmd('webapp config ssl import --resource-group {} --name {} --key-vault {} --key-vault-certificate-name {}'.format(resource_group, webapp_name, kv_id, cert_name), checks=[ JMESPathCheck('thumbprint', cert_thumbprint) ]) self.cmd('webapp config ssl bind -g {} -n {} --certificate-thumbprint {} --ssl-type {}'.format(resource_group, webapp_name, cert_thumbprint, 'SNI'), checks=[ JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].sslState".format( webapp_name), 'SniEnabled'), JMESPathCheck("hostNameSslStates|[?name=='{}.azurewebsites.net']|[0].thumbprint".format( webapp_name), cert_thumbprint) ]) class WebappUndeleteTest(ScenarioTest): @AllowLargeResponse(8192) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_deleted_list(self, resource_group): plan = self.create_random_name(prefix='delete-me-plan', length=24) webapp_name = self.create_random_name( prefix='delete-me-web', length=24) self.cmd( 'appservice plan create -g {} -n {} --sku B1 --tags plan=plan1'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd('webapp delete -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp deleted list -g {}'.format(resource_group), checks=[ JMESPathCheck('[0].deletedSiteName', webapp_name) ]) class FunctionAppWithPlanE2ETest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @ResourceGroupPreparer(parameter_name='resource_group2', location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) def test_functionapp_e2e(self, resource_group, resource_group2): functionapp_name, functionapp_name2 = self.create_random_name( 'func-e2e', 24), self.create_random_name('func-e2e', 24) plan = self.create_random_name('func-e2e-plan', 24) storage, storage2 = 'functionappplanstorage', 'functionappplanstorage2' plan_id = self.cmd('appservice plan create -g {} -n {}'.format( resource_group, plan)).get_output_in_json()['id'] self.cmd('appservice plan list -g {}'.format(resource_group)) self.cmd( 'storage account create --name {} -g {} -l {} --sku Standard_LRS'.format(storage, resource_group, WINDOWS_ASP_LOCATION_FUNCTIONAPP)) storage_account_id2 = self.cmd('storage account create --name {} -g {} -l {} --sku Standard_LRS'.format( storage2, resource_group2, WINDOWS_ASP_LOCATION_FUNCTIONAPP)).get_output_in_json()['id'] self.cmd('functionapp create -g {} -n {} -p {} -s {}'.format(resource_group, functionapp_name, plan, storage), checks=[ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net') ]) self.cmd('functionapp create -g {} -n {} -p {} -s {}'.format(resource_group2, functionapp_name2, plan_id, storage_account_id2)) self.cmd( 'functionapp delete -g {} -n {}'.format(resource_group, functionapp_name)) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_app_service_java(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1 --is-linux'.format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime java --functions-version 3' .format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) result = self.cmd('functionapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length([])', 1), JMESPathCheck('[0].name', functionapp) ]).get_output_in_json() self.assertTrue('functionapp,linux' in result[0]['kind']) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Java|8')]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_app_service_java_with_runtime_version(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1 --is-linux'.format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime java --runtime-version 11 --functions-version 3' .format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) result = self.cmd('functionapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length([])', 1), JMESPathCheck('[0].name', functionapp) ]).get_output_in_json() self.assertTrue('functionapp,linux' in result[0]['kind']) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Java|11')]) class FunctionUpdatePlan(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_move_plan_to_elastic(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappelastic', 40) ep_plan_name = self.create_random_name('somerandomplan', 40) second_plan_name = self.create_random_name('secondplan', 40) s1_plan_name = self.create_random_name('ab1planname', 40) plan_result = self.cmd('functionapp plan create -g {} -n {} --sku EP1'.format(resource_group, ep_plan_name), checks=[ JMESPathCheck('sku.name', 'EP1') ]).get_output_in_json() self.cmd('functionapp plan create -g {} -n {} --sku EP1'.format(resource_group, second_plan_name), checks=[ JMESPathCheck('sku.name', 'EP1') ]).get_output_in_json() self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, s1_plan_name), checks=[ JMESPathCheck('sku.name', 'S1') ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {}' .format(resource_group, functionapp_name, second_plan_name, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp update -g {} -n {} --plan {}' .format(resource_group, functionapp_name, ep_plan_name)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('serverFarmId', plan_result['id']), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) # Moving to and from an App Service plan (not Elastic Premium) is not allowed right now self.cmd('functionapp update -g {} -n {} --plan {}' .format(resource_group, functionapp_name, s1_plan_name), expect_failure=True) class FunctionAppWithConsumptionPlanE2ETest(ScenarioTest): @ResourceGroupPreparer(name_prefix='azurecli-functionapp-c-e2e', location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_consumption_e2e(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappconsumption', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('[0].kind', 'functionapp'), JMESPathCheck('[0].name', functionapp_name) ]) self.cmd('functionapp show -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('kind', 'functionapp'), JMESPathCheck('name', functionapp_name) ]) self.cmd('functionapp update -g {} -n {} --set clientAffinityEnabled=true'.format(resource_group, functionapp_name), checks=[self.check('clientAffinityEnabled', True)] ) self.cmd( 'functionapp delete -g {} -n {}'.format(resource_group, functionapp_name)) @ResourceGroupPreparer(name_prefix='azurecli-functionapp-c-e2e-ragrs', location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer(sku='Standard_RAGRS') def test_functionapp_consumption_ragrs_storage_e2e(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappconsumption', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp show -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('kind', 'functionapp'), JMESPathCheck('name', functionapp_name) ]) class FunctionAppWithLinuxConsumptionPlanTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='azurecli-functionapp-linux', location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_consumption_linux(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionapplinuxconsumption', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Linux --runtime node' .format(resource_group, functionapp_name, LINUX_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('reserved', True), JMESPathCheck('kind', 'functionapp,linux'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'node')]) @ResourceGroupPreparer(name_prefix='azurecli-functionapp-linux', location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_consumption_linux_java(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionapplinuxconsumption', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Linux --runtime java --functions-version 3' .format(resource_group, functionapp_name, LINUX_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('reserved', True), JMESPathCheck('kind', 'functionapp,linux'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'java')]) class FunctionAppOnWindowsWithRuntime(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows --runtime node' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'node')]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime_java(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows --runtime java' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'java')]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('javaVersion', '1.8')]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime_powershell(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows --runtime powershell' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'powershell')]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('powerShellVersion', '~6')]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime_version(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows --runtime node --runtime-version 8' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck( "[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'node'), JMESPathCheck("[?name=='WEBSITE_NODE_DEFAULT_VERSION'].value|[0]", '~8')]) self.cmd( 'functionapp delete -g {} -n {}'.format(resource_group, functionapp_name)) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime_version_invalid(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} ' '--os-type Windows --runtime node --runtime-version 8.2' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account), expect_failure=True) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime_functions_version(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --functions-version 3 --os-type Windows --runtime node' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck( "[?name=='FUNCTIONS_EXTENSION_VERSION'].value|[0]", '~3'), JMESPathCheck("[?name=='WEBSITE_NODE_DEFAULT_VERSION'].value|[0]", '~12')]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_runtime_custom_handler(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowsruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --functions-version 3 --os-type Windows --runtime custom' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck("[?name=='FUNCTIONS_EXTENSION_VERSION'].value|[0]", '~3'), JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'custom')]) class FunctionAppOnWindowsWithoutRuntime(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_windows_without_runtime(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwindowswithoutruntime', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd( 'functionapp delete -g {} -n {}'.format(resource_group, functionapp_name)) class FunctionAppWithAppInsightsKey(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_with_app_insights_key(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwithappinsights', 40) app_insights_key = '00000000-0000-0000-0000-123456789123' self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows' ' --app-insights-key {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account, app_insights_key)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name)).assert_with_checks([ JMESPathCheck( "[?name=='APPINSIGHTS_INSTRUMENTATIONKEY'].value|[0]", app_insights_key) ]) self.cmd( 'functionapp delete -g {} -n {}'.format(resource_group, functionapp_name)) class FunctionAppWithAppInsightsDefault(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_with_default_app_insights(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwithappinsights', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) app_set = self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name)).get_output_in_json() self.assertTrue('APPINSIGHTS_INSTRUMENTATIONKEY' in [ kp['name'] for kp in app_set]) self.assertTrue('AzureWebJobsDashboard' not in [ kp['name'] for kp in app_set]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_with_no_default_app_insights(self, resource_group, storage_account): functionapp_name = self.create_random_name( 'functionappwithappinsights', 40) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type Windows --disable-app-insights' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) app_set = self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp_name)).get_output_in_json() self.assertTrue('APPINSIGHTS_INSTRUMENTATIONKEY' not in [ kp['name'] for kp in app_set]) self.assertTrue('AzureWebJobsDashboard' in [ kp['name'] for kp in app_set]) class FunctionAppOnLinux(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime node'.format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) result = self.cmd('functionapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length([])', 1), JMESPathCheck('[0].name', functionapp) ]).get_output_in_json() self.assertTrue('functionapp,linux' in result[0]['kind']) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Node|10')]) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, functionapp)) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_version(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1 --is-linux'.format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime node --runtime-version 10' .format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) result = self.cmd('functionapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length([])', 1), JMESPathCheck('[0].name', functionapp) ]).get_output_in_json() self.assertTrue('functionapp,linux' in result[0]['kind']) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Node|10')]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_version_consumption(self, resource_group, storage_account): functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp create -g {} -n {} -c {} -s {} --os-type linux --runtime python --runtime-version 3.7' .format(resource_group, functionapp, LINUX_ASP_LOCATION_FUNCTIONAPP, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Python|3.7')]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_version_error(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1 --is-linux'.format(resource_group, plan), checks=[ JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime python --runtime-version 3.8' .format(resource_group, functionapp, plan, storage_account), expect_failure=True) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_functions_version(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1') ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --functions-version 3 --runtime node' .format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Node|12') ]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp)).assert_with_checks([ JMESPathCheck( "[?name=='FUNCTIONS_EXTENSION_VERSION'].value|[0]", '~3') ]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_custom_handler(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcapplinplan', length=24) functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('appservice plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'S1') ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --functions-version 3 --runtime custom' .format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp)).assert_with_checks([ JMESPathCheck("[?name=='FUNCTIONS_WORKER_RUNTIME'].value|[0]", 'custom')]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_functions_version_consumption(self, resource_group, storage_account): functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp create -g {} -n {} -c {} -s {} --functions-version 3 --runtime node --os-type linux' .format(resource_group, functionapp, LINUX_ASP_LOCATION_FUNCTIONAPP, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'Node|12') ]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp)).assert_with_checks([ JMESPathCheck( "[?name=='FUNCTIONS_EXTENSION_VERSION'].value|[0]", '~3') ]) @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_on_linux_dotnet_consumption(self, resource_group, storage_account): functionapp = self.create_random_name( prefix='functionapp-linux', length=24) self.cmd('functionapp create -g {} -n {} -c {} -s {} --functions-version 3 --runtime dotnet --os-type linux' .format(resource_group, functionapp, LINUX_ASP_LOCATION_FUNCTIONAPP, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp config show -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck('linuxFxVersion', 'dotnet|3.1') ]) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp)).assert_with_checks([ JMESPathCheck( "[?name=='FUNCTIONS_EXTENSION_VERSION'].value|[0]", '~3') ]) class FunctionAppServicePlan(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) def test_functionapp_app_service_plan(self, resource_group): plan = self.create_random_name(prefix='funcappplan', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1' .format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'S1') ]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) def test_functionapp_elastic_plan(self, resource_group): plan = self.create_random_name(prefix='funcappplan', length=24) self.cmd('functionapp plan create -g {} -n {} --sku EP1 --min-instances 4 --max-burst 12' .format(resource_group, plan), checks=[ JMESPathCheck('maximumElasticWorkerCount', 12), JMESPathCheck('sku.name', 'EP1'), JMESPathCheck('sku.capacity', 4) ]) self.cmd('functionapp plan update -g {} -n {} --min-instances 5 --max-burst 11' .format(resource_group, plan), checks=[ JMESPathCheck('maximumElasticWorkerCount', 11), JMESPathCheck('sku.name', 'EP1'), JMESPathCheck('sku.capacity', 5) ]) self.cmd('functionapp plan show -g {} -n {} '.format(resource_group, plan), checks=[ JMESPathCheck('maximumElasticWorkerCount', 11), JMESPathCheck('sku.name', 'EP1'), JMESPathCheck('sku.capacity', 5) ]) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, plan)) class FunctionAppServicePlanLinux(ScenarioTest): @ResourceGroupPreparer(location=LINUX_ASP_LOCATION_FUNCTIONAPP) def test_functionapp_app_service_plan_linux(self, resource_group): plan = self.create_random_name(prefix='funcappplan', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1 --is-linux' .format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'S1'), JMESPathCheck('kind', 'linux') ]) class FunctionAppSlotTests(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_slot_creation(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcappplan', length=24) functionapp = self.create_random_name( prefix='functionapp-slot', length=24) slotname = self.create_random_name(prefix='slotname', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime node'.format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}'.format(resource_group, functionapp, slotname), checks=[ JMESPathCheck('name', slotname), JMESPathCheck('type', 'Microsoft.Web/sites/slots'), ]) pre_slot_list = self.cmd('functionapp deployment slot list -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck("[?name=='{}'].type|[0]".format( slotname), 'Microsoft.Web/sites/slots') ]).get_output_in_json() self.assertEqual(len(pre_slot_list), 1) self.cmd('functionapp deployment slot delete -g {} -n {} --slot {}'.format( resource_group, functionapp, slotname)) deleted_slot_list = self.cmd('functionapp deployment slot list -g {} -n {}'.format( resource_group, functionapp)).get_output_in_json() self.assertEqual(len(deleted_slot_list), 0) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, functionapp)) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_slot_appsetting_update(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcappplan', length=24) functionapp = self.create_random_name( prefix='functionapp-slot', length=24) slotname = self.create_random_name(prefix='slotname', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime node'.format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}'.format(resource_group, functionapp, slotname), checks=[ JMESPathCheck('name', slotname) ]) self.cmd('functionapp config appsettings set -g {} -n {} --slot {} --slot-settings FOO=BAR'.format(resource_group, functionapp, slotname), checks=[ JMESPathCheck("[?name=='FOO'].value|[0]", 'BAR'), JMESPathCheck("[?name=='FOO'].slotSetting|[0]", True) ]) self.cmd('functionapp config appsettings list -g {} -n {} --slot {}'.format(resource_group, functionapp, slotname), checks=[ JMESPathCheck("[?name=='FOO'].value|[0]", 'BAR'), JMESPathCheck("[?name=='FOO'].slotSetting|[0]", True) ]) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, functionapp)) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_slot_swap(self, resource_group, storage_account): plan = self.create_random_name(prefix='funcappplan', length=24) functionapp = self.create_random_name( prefix='functionapp-slot', length=24) slotname = self.create_random_name(prefix='slotname', length=24) self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan), checks=[ JMESPathCheck('sku.name', 'S1'), ]) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime node'.format(resource_group, functionapp, plan, storage_account), checks=[ JMESPathCheck('name', functionapp) ]) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}'.format(resource_group, functionapp, slotname), checks=[ JMESPathCheck('name', slotname) ]) self.cmd('functionapp config appsettings set -g {} -n {} --slot {} --settings FOO=BAR'.format(resource_group, functionapp, slotname), checks=[ JMESPathCheck("[?name=='FOO'].value|[0]", 'BAR') ]) self.cmd('functionapp deployment slot swap -g {} -n {} --slot {} --action swap'.format( resource_group, functionapp, slotname)) self.cmd('functionapp config appsettings list -g {} -n {}'.format(resource_group, functionapp), checks=[ JMESPathCheck("[?name=='FOO'].value|[0]", 'BAR') ]) self.cmd('functionapp delete -g {} -n {}'.format(resource_group, functionapp)) class FunctionAppKeysTests(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_keys_set(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappkeys', 40) key_name = "keyname1" key_value = "keyvalue1" key_type = "functionKeys" self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp keys set -g {} -n {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) key_value = "keyvalue1_changed" self.cmd('functionapp keys set -g {} -n {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_keys_list(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappkeys', 40) key_name = "keyname1" key_value = "keyvalue1" key_type = "functionKeys" self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp keys set -g {} -n {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) self.cmd('functionapp keys list -g {} -n {}' .format(resource_group, functionapp_name)).assert_with_checks([ JMESPathCheck('functionKeys.{}'.format(key_name), key_value)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_keys_delete(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappkeys', 40) key_name = "keyname1" key_value = "keyvalue1" key_type = "functionKeys" self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp keys set -g {} -n {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) self.cmd('functionapp keys delete -g {} -n {} --key-name {} --key-type {}' .format(resource_group, functionapp_name, key_name, key_type)) self.cmd('functionapp keys list -g {} -n {}' .format(resource_group, functionapp_name)).assert_with_checks([ JMESPathCheck('functionKeys.{}'.format(key_name), None)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_keys_set_slot(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappkeys', 40) slot_name = self.create_random_name(prefix='slotname', length=24) key_name = "keyname1" key_value = "keyvalue1" key_type = "functionKeys" self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('name', slot_name), JMESPathCheck('type', 'Microsoft.Web/sites/slots')]) self.cmd('functionapp keys set -g {} -n {} -s {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, slot_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) key_value = "keyvalue1_changed" self.cmd('functionapp keys set -g {} -n {} -s {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, slot_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_keys_list_slot(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappkeys', 40) slot_name = self.create_random_name(prefix='slotname', length=24) key_name = "keyname1" key_value = "keyvalue1" key_type = "functionKeys" self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('name', slot_name), JMESPathCheck('type', 'Microsoft.Web/sites/slots')]) self.cmd('functionapp keys set -g {} -n {} -s {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, slot_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) self.cmd('functionapp keys list -g {} -n {} -s {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('functionKeys.{}'.format(key_name), key_value)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_keys_delete_slot(self, resource_group, storage_account): functionapp_name = self.create_random_name('functionappkeys', 40) slot_name = self.create_random_name(prefix='slotname', length=24) key_name = "keyname1" key_value = "keyvalue1" key_type = "functionKeys" self.cmd('functionapp create -g {} -n {} -c {} -s {}' .format(resource_group, functionapp_name, WINDOWS_ASP_LOCATION_FUNCTIONAPP, storage_account)).assert_with_checks([ JMESPathCheck('state', 'Running'), JMESPathCheck('name', functionapp_name), JMESPathCheck('kind', 'functionapp'), JMESPathCheck('hostNames[0]', functionapp_name + '.azurewebsites.net')]) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('name', slot_name), JMESPathCheck('type', 'Microsoft.Web/sites/slots')]) self.cmd('functionapp keys set -g {} -n {} -s {} --key-name {} --key-value {} --key-type {}' .format(resource_group, functionapp_name, slot_name, key_name, key_value, key_type)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value), JMESPathCheck('type', 'Microsoft.Web/sites/host/functionKeys')]) self.cmd('functionapp keys delete -g {} -n {} -s {} --key-name {} --key-type {}' .format(resource_group, functionapp_name, slot_name, key_name, key_type)) self.cmd('functionapp keys list -g {} -n {} -s {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('functionKeys.{}'.format(key_name), None)]) # LiveScenarioTest due to issue https://github.com/Azure/azure-cli/issues/10705 class FunctionAppFunctionKeysTests(LiveScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_keys_set(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) function_name = "HttpTrigger" key_name = "keyname1" key_value = "keyvalue1" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) # ping function so you know it's ready requests.get('http://{}.azurewebsites.net/api/{}'.format(functionapp_name, function_name), timeout=240) time.sleep(30) self.cmd('functionapp function keys set -g {} -n {} --function-name {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) key_value = "keyvalue1_changed" self.cmd('functionapp function keys set -g {} -n {} --function-name {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_keys_list(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) function_name = "HttpTrigger" key_name = "keyname1" key_value = "keyvalue1" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) # ping function so you know it's ready requests.get('http://{}.azurewebsites.net/api/{}'.format(functionapp_name, function_name), timeout=240) time.sleep(30) self.cmd('functionapp function keys set -g {} -n {} --function-name {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) self.cmd('functionapp function keys list -g {} -n {} --function-name {}' .format(resource_group, functionapp_name, function_name)).assert_with_checks([ JMESPathCheck('{}'.format(key_name), key_value)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_keys_delete(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) function_name = "HttpTrigger" key_name = "keyname1" key_value = "keyvalue1" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) # ping function so you know it's ready requests.get('http://{}.azurewebsites.net/api/{}'.format(functionapp_name, function_name), timeout=240) time.sleep(30) self.cmd('functionapp function keys set -g {} -n {} --function-name {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) self.cmd('functionapp function keys delete -g {} -n {} --function-name {} --key-name {}' .format(resource_group, functionapp_name, function_name, key_name)) self.cmd('functionapp function keys list -g {} -n {} --function-name {}' .format(resource_group, functionapp_name, function_name)).assert_with_checks([ JMESPathCheck('{}'.format(key_name), None)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_keys_set_slot(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) slot_name = self.create_random_name(prefix='slotname', length=24) function_name = "HttpTrigger" key_name = "keyname1" key_value = "keyvalue1" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('name', slot_name), JMESPathCheck('type', 'Microsoft.Web/sites/slots')]) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} -s {} --src "{}"'.format(resource_group, functionapp_name, slot_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) # ping function so you know it's ready requests.get('http://{}.azurewebsites.net/api/{}'.format(functionapp_name, function_name), timeout=240) time.sleep(30) self.cmd('functionapp function keys set -g {} -n {} --function-name {} -s {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, slot_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) key_value = "keyvalue1_changed" self.cmd('functionapp function keys set -g {} -n {} --function-name {} -s {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, slot_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_keys_list_slot(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) slot_name = self.create_random_name(prefix='slotname', length=24) function_name = "HttpTrigger" key_name = "keyname1" key_value = "keyvalue1" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('name', slot_name), JMESPathCheck('type', 'Microsoft.Web/sites/slots')]) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} -s {} --src "{}"'.format(resource_group, functionapp_name, slot_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) # ping function so you know it's ready requests.get('http://{}.azurewebsites.net/api/{}'.format(functionapp_name, function_name), timeout=240) time.sleep(30) self.cmd('functionapp function keys set -g {} -n {} --function-name {} -s {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, slot_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) self.cmd('functionapp function keys list -g {} -n {} --function-name {} -s {}' .format(resource_group, functionapp_name, function_name, slot_name)).assert_with_checks([ JMESPathCheck('{}'.format(key_name), key_value)]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_keys_delete_slot(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) slot_name = self.create_random_name(prefix='slotname', length=24) function_name = "HttpTrigger" key_name = "keyname1" key_value = "keyvalue1" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) self.cmd('functionapp deployment slot create -g {} -n {} --slot {}' .format(resource_group, functionapp_name, slot_name)).assert_with_checks([ JMESPathCheck('name', slot_name), JMESPathCheck('type', 'Microsoft.Web/sites/slots')]) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} -s {} --src "{}"'.format(resource_group, functionapp_name, slot_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) # ping function so you know it's ready requests.get('http://{}.azurewebsites.net/api/{}'.format(functionapp_name, function_name), timeout=240) time.sleep(30) self.cmd('functionapp function keys set -g {} -n {} --function-name {} -s {} --key-name {} --key-value {}' .format(resource_group, functionapp_name, function_name, slot_name, key_name, key_value)).assert_with_checks([ JMESPathCheck('name', key_name), JMESPathCheck('value', key_value)]) self.cmd('functionapp function keys delete -g {} -n {} --function-name {} -s {} --key-name {}' .format(resource_group, functionapp_name, function_name, slot_name, key_name)) self.cmd('functionapp function keys list -g {} -n {} --function-name {} -s {}' .format(resource_group, functionapp_name, function_name, slot_name)).assert_with_checks([ JMESPathCheck('{}'.format(key_name), None)]) # LiveScenarioTest due to issue https://github.com/Azure/azure-cli/issues/10705 class FunctionAppFunctionTests(LiveScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_show(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) function_name = "HttpTrigger" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) self.cmd('functionapp function show -g {} -n {} --function-name {}'.format(resource_group, functionapp_name, function_name)).assert_with_checks([ JMESPathCheck('name', '{}/{}'.format(functionapp_name, function_name)), JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('scriptHref', 'https://{}.azurewebsites.net/admin/vfs/site/wwwroot/{}/run.csx'.format(functionapp_name, function_name))]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_function_delete(self, resource_group, storage_account): zip_file = os.path.join(TEST_DIR, 'sample_csx_function_httptrigger/sample_csx_function_httptrigger.zip') functionapp_name = self.create_random_name('functionappkeys', 40) plan_name = self.create_random_name(prefix='functionappkeysplan', length=40) function_name = "HttpTrigger" self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True)]) self.cmd('functionapp function delete -g {} -n {} --function-name {}'.format(resource_group, functionapp_name, function_name)) self.cmd('functionapp function show -g {} -n {} --function-name {}'.format(resource_group, functionapp_name, function_name)).assert_with_checks([ JMESPathCheck('config', {})]) class WebappAuthenticationTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_webapp_authentication', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_authentication(self, resource_group): webapp_name = self.create_random_name('webapp-authentication-test', 40) plan_name = self.create_random_name('webapp-authentication-plan', 40) self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) # testing show command for newly created app and initial fields self.cmd('webapp auth show -g {} -n {}'.format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck('unauthenticatedClientAction', None), JMESPathCheck('defaultProvider', None), JMESPathCheck('enabled', False), JMESPathCheck('tokenStoreEnabled', None), JMESPathCheck('allowedExternalRedirectUrls', None), JMESPathCheck('tokenRefreshExtensionHours', None), JMESPathCheck('runtimeVersion', None), JMESPathCheck('clientId', None), JMESPathCheck('clientSecret', None), JMESPathCheck('clientSecretCertificateThumbprint', None), JMESPathCheck('allowedAudiences', None), JMESPathCheck('issuer', None), JMESPathCheck('facebookAppId', None), JMESPathCheck('facebookAppSecret', None), JMESPathCheck('facebookOauthScopes', None) ]) # update and verify result = self.cmd('webapp auth update -g {} -n {} --enabled true --action LoginWithFacebook ' '--token-store false --token-refresh-extension-hours 7.2 --runtime-version 1.2.8 ' '--aad-client-id aad_client_id --aad-client-secret aad_secret --aad-client-secret-certificate-thumbprint aad_thumbprint ' '--aad-allowed-token-audiences https://audience1 --aad-token-issuer-url https://issuer_url ' '--facebook-app-id facebook_id --facebook-app-secret facebook_secret ' '--facebook-oauth-scopes public_profile email' .format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck( 'unauthenticatedClientAction', 'RedirectToLoginPage'), JMESPathCheck('defaultProvider', 'Facebook'), JMESPathCheck('enabled', True), JMESPathCheck('tokenStoreEnabled', False), JMESPathCheck('tokenRefreshExtensionHours', 7.2), JMESPathCheck('runtimeVersion', '1.2.8'), JMESPathCheck('clientId', 'aad_client_id'), JMESPathCheck('clientSecret', 'aad_secret'), JMESPathCheck('clientSecretCertificateThumbprint', 'aad_thumbprint'), JMESPathCheck('issuer', 'https://issuer_url'), JMESPathCheck('facebookAppId', 'facebook_id'), JMESPathCheck('facebookAppSecret', 'facebook_secret')]).get_output_in_json() self.assertIn('https://audience1', result['allowedAudiences']) self.assertIn('email', result['facebookOauthScopes']) self.assertIn('public_profile', result['facebookOauthScopes']) class WebappUpdateTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_update(self, resource_group): webapp_name = self.create_random_name('webapp-update-test', 40) plan_name = self.create_random_name('webapp-update-plan', 40) self.cmd('appservice plan create -g {} -n {} --sku S1' .format(resource_group, plan_name)) self.cmd('webapp create -g {} -n {} --plan {}' .format(resource_group, webapp_name, plan_name)).assert_with_checks([ JMESPathCheck('clientAffinityEnabled', True)]) # testing update command with --set self.cmd('webapp update -g {} -n {} --client-affinity-enabled false --set tags.foo=bar' .format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck('name', webapp_name), JMESPathCheck('tags.foo', 'bar'), JMESPathCheck('clientAffinityEnabled', False)]) # try out on slots self.cmd( 'webapp deployment slot create -g {} -n {} -s s1'.format(resource_group, webapp_name)) self.cmd('webapp update -g {} -n {} -s s1 --client-affinity-enabled true'.format(resource_group, webapp_name), checks=[ self.check('clientAffinityEnabled', True) ]) class WebappZipDeployScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_webapp_zipDeploy', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_deploy_zip(self, resource_group): webapp_name = self.create_random_name('webapp-zipDeploy-test', 40) plan_name = self.create_random_name('webapp-zipDeploy-plan', 40) zip_file = os.path.join(TEST_DIR, 'test.zip') self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) self.cmd('webapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, webapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('message', 'Created via a push deployment'), JMESPathCheck('complete', True) ]) class WebappImplictIdentityTest(ScenarioTest): @AllowLargeResponse(8192) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_assign_system_identity(self, resource_group): scope = '/subscriptions/{}/resourcegroups/{}'.format( self.get_subscription_id(), resource_group) role = 'Reader' plan_name = self.create_random_name('web-msi-plan', 20) webapp_name = self.create_random_name('web-msi', 20) self.cmd( 'appservice plan create -g {} -n {}'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) with mock.patch('azure.cli.core.commands.arm._gen_guid', side_effect=self.create_guid): result = self.cmd('webapp identity assign -g {} -n {} --role {} --scope {}'.format( resource_group, webapp_name, role, scope)).get_output_in_json() self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=[ self.check('principalId', result['principalId']) ]) self.cmd('role assignment list -g {} --assignee {}'.format(resource_group, result['principalId']), checks=[ JMESPathCheck('length([])', 1), JMESPathCheck('[0].roleDefinitionName', role) ]) self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=self.check('principalId', result['principalId'])) self.cmd( 'webapp identity remove -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=self.is_empty()) @AllowLargeResponse(8192) @ResourceGroupPreparer(random_name_length=24) def test_webapp_assign_user_identity(self, resource_group): plan_name = self.create_random_name('web-msi-plan', 20) webapp_name = self.create_random_name('web-msi', 20) identity_name = self.create_random_name('id1', 8) msi_result = self.cmd('identity create -g {} -n {}'.format(resource_group, identity_name), checks=[ self.check('name', identity_name)]).get_output_in_json() self.cmd( 'appservice plan create -g {} -n {}'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) self.cmd('webapp identity assign -g {} -n {}'.format(resource_group, webapp_name)) result = self.cmd('webapp identity assign -g {} -n {} --identities {}'.format( resource_group, webapp_name, msi_result['id'])).get_output_in_json() self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=[ self.check('principalId', result['principalId']), self.check('userAssignedIdentities."{}".clientId'.format(msi_result['id']), msi_result['clientId']), ]) self.cmd('webapp identity remove -g {} -n {} --identities {}'.format( resource_group, webapp_name, msi_result['id'])) self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=[ self.check('principalId', result['principalId']), self.check('userAssignedIdentities', None), ]) @AllowLargeResponse(8192) @ResourceGroupPreparer(random_name_length=24) def test_webapp_remove_identity(self, resource_group): plan_name = self.create_random_name('web-msi-plan', 20) webapp_name = self.create_random_name('web-msi', 20) identity_name = self.create_random_name('id1', 8) identity2_name = self.create_random_name('id1', 8) msi_result = self.cmd('identity create -g {} -n {}'.format(resource_group, identity_name), checks=[ self.check('name', identity_name)]).get_output_in_json() msi2_result = self.cmd('identity create -g {} -n {}'.format( resource_group, identity2_name)).get_output_in_json() self.cmd( 'appservice plan create -g {} -n {}'.format(resource_group, plan_name)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) self.cmd('webapp identity assign -g {} -n {} --identities [system] {} {}'.format( resource_group, webapp_name, msi_result['id'], msi2_result['id'])) result = self.cmd('webapp identity remove -g {} -n {} --identities {}'.format( resource_group, webapp_name, msi2_result['id'])).get_output_in_json() self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=[ self.check('principalId', result['principalId']), self.check('userAssignedIdentities."{}".clientId'.format(msi_result['id']), msi_result['clientId']), ]) self.cmd('webapp identity remove -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=[ self.check('principalId', None), self.check('userAssignedIdentities."{}".clientId'.format(msi_result['id']), msi_result['clientId']), ]) self.cmd('webapp identity remove -g {} -n {} --identities [system] {}'.format( resource_group, webapp_name, msi_result['id'])) self.cmd('webapp identity show -g {} -n {}'.format( resource_group, webapp_name), checks=self.is_empty()) class WebappListLocationsFreeSKUTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_webapp_list-locations-free-sku-test') def test_webapp_list_locations_free_sku(self, resource_group): asp_F1 = self.cmd( 'appservice list-locations --sku F1').get_output_in_json() result = self.cmd( 'appservice list-locations --sku Free').get_output_in_json() self.assertEqual(asp_F1, result) class WebappTriggeredWebJobListTest(ScenarioTest): @record_only() @ResourceGroupPreparer(random_name_length=24) def test_webapp_triggeredWebjob_list(self, resource_group): # testing this using a webjob already created # given there is no create command inorder to re-record please create a webjob before # recording this. Once the create command is available, please remove the "record_only" flag resource_group_name = 'cliTestApp' webapp_name = 'cliTestApp' webjob_name = 'test-triggered' # list test self.cmd('webapp webjob triggered list -g {} -n {}' .format(resource_group_name, webapp_name)).assert_with_checks([ JMESPathCheck('length(@)', 1), JMESPathCheck( '[0].name', '{}/{}'.format(webapp_name, webjob_name)), JMESPathCheck('[0].type', 'Microsoft.Web/sites/triggeredwebjobs')]) class WebappContinuousWebJobE2ETest(ScenarioTest): @ResourceGroupPreparer(random_name_length=24) @record_only() def test_webapp_continuousWebjob_e2e(self, resource_group): # testing this using a webjob already created # given there is no create command inorder to re-record please create a webjob before # recording this. Once the create command is available, please remove the "record_only" flag resource_group_name = 'cliTestApp' webapp_name = 'cliTestApp' webjob_name = 'test-continuous' # list test self.cmd('webapp webjob continuous list -g {} -n {}' .format(resource_group_name, webapp_name)).assert_with_checks([ JMESPathCheck('length(@)', 1), JMESPathCheck( '[0].name', '{}/{}'.format(webapp_name, webjob_name)), JMESPathCheck('[0].type', 'Microsoft.Web/sites/continuouswebjobs')]) # start self.cmd('webapp webjob continuous start -g {} -n {} -w {}' .format(resource_group_name, webapp_name, webjob_name)).assert_with_checks([ JMESPathCheck('status', 'Running')]) # stop self.cmd('webapp webjob continuous stop -g {} -n {} -w {}' .format(resource_group_name, webapp_name, webjob_name)).assert_with_checks([ JMESPathCheck('status', 'Disabling')]) class WebappWindowsContainerBasicE2ETest(ScenarioTest): @AllowLargeResponse() @ResourceGroupPreparer(name_prefix='webapp_hyperv_e2e', location='westus2') def test_webapp_hyperv_e2e(self, resource_group): webapp_name = self.create_random_name( prefix='webapp-hyperv-e2e', length=24) plan = self.create_random_name(prefix='webapp-hyperv-plan', length=24) self.cmd('appservice plan create -g {} -n {} --hyper-v --sku P1V3'.format(resource_group, plan)) self.cmd('appservice plan list -g {}'.format(resource_group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', plan), JMESPathCheck('[0].sku.tier', 'PremiumV3'), JMESPathCheck('[0].sku.name', 'P1v3') ]) self.cmd('appservice plan list -g {}'.format(resource_group), checks=[ JMESPathCheck("length([?name=='{}' && resourceGroup=='{}'])".format( plan, resource_group), 1) ]) self.cmd('appservice plan show -g {} -n {}'.format(resource_group, plan), checks=[ JMESPathCheck('name', plan) ]) self.cmd('webapp create -g {} -n {} --plan {} --deployment-container-image-name "DOCKER|microsoft/iis:nanoserver-sac2016"'.format(resource_group, webapp_name, plan), checks=[ JMESPathCheck('state', 'Running'), JMESPathCheck('name', webapp_name), JMESPathCheck('hostNames[0]', webapp_name + '.azurewebsites.net') ]) self.cmd('webapp list -g {}'.format(resource_group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', webapp_name), JMESPathCheck('[0].hostNames[0]', webapp_name + '.azurewebsites.net') ]) self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('windowsFxVersion', "DOCKER|microsoft/iis:nanoserver-sac2016"), JMESPathCheck('linuxFxVersion', "") ]) self.cmd('webapp config set -g {} -n {} --windows-fx-version "DOCKER|microsoft/iis"'.format( resource_group, webapp_name)) self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('windowsFxVersion', "DOCKER|microsoft/iis"), JMESPathCheck('linuxFxVersion', "") ]) # Always on is not supported on all SKUs this is to test that we don't fail create trying to enable AlwaysOn @ResourceGroupPreparer(name_prefix='cli_test_webapp_alwaysOn', location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_create_noAlwaysOn(self, resource_group): webapp_name = self.create_random_name('webapp-create-alwaysOn-e2e', 44) plan = self.create_random_name('plan-create-alwaysOn-e2e', 44) self.cmd( 'appservice plan create -g {} -n {} --sku SHARED'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) # verify alwaysOn self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck('alwaysOn', False)]) @ResourceGroupPreparer(name_prefix='cli_test_webapp_linux_free', location=LINUX_ASP_LOCATION_WEBAPP) def test_webapp_create_linux_free(self, resource_group): webapp_name = self.create_random_name('webapp-linux-free', 24) plan = self.create_random_name('plan-linux-free', 24) self.cmd('appservice plan create -g {} -n {} --sku F1 --is-linux'.format(resource_group, plan), checks=[ # this weird field means it is a linux JMESPathCheck('reserved', True), JMESPathCheck('sku.name', 'F1')]) self.cmd('webapp create -g {} -n {} --plan {} -u {} -r "node|10.14"'.format(resource_group, webapp_name, plan, TEST_REPO_URL)) # verify alwaysOn self.cmd('webapp config show -g {} -n {}'.format(resource_group, webapp_name)).assert_with_checks([ JMESPathCheck('alwaysOn', False)]) @AllowLargeResponse() @ResourceGroupPreparer(name_prefix='rg', random_name_length=6) def test_webapp_create_with_msi(self, resource_group): scope = '/subscriptions/{}/resourcegroups/{}'.format( self.get_subscription_id(), resource_group) role = 'Reader' webapp_name = self.create_random_name('webapp-with-msi', 26) plan = self.create_random_name('plan-create-with-msi', 26) identity_name = self.create_random_name('app-create', 16) msi_result = self.cmd('identity create -g {} -n {}'.format( resource_group, identity_name)).get_output_in_json() self.cmd('appservice plan create -g {} -n {}'.format(resource_group, plan)) with mock.patch('azure.cli.core.commands.arm._gen_guid', side_effect=self.create_guid): result = self.cmd('webapp create -g {} -n {} --plan {} --assign-identity [system] {} --role {} --scope {}'.format( resource_group, webapp_name, plan, msi_result['id'], role, scope)).get_output_in_json() self.cmd('webapp identity show -g {} -n {}'.format(resource_group, webapp_name), checks=[ self.check('principalId', result['identity']['principalId']), self.check('userAssignedIdentities."{}".clientId'.format(msi_result['id']), msi_result['clientId']), ]) self.cmd('role assignment list -g {} --assignee {}'.format(resource_group, result['identity']['principalId']), checks=[ self.check('length([])', 1), self.check('[0].roleDefinitionName', role) ]) class WebappNetworkConnectionTests(ScenarioTest): @AllowLargeResponse() @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_hybridconnectionE2E(self, resource_group): webapp_name = self.create_random_name('hcwebapp', 24) plan = self.create_random_name('hcplan', 24) namespace_name = self.create_random_name('hcnamespace', 24) hyco_name = self.create_random_name('hcname', 24) um = "[{{\\\"key\\\":\\\"endpoint\\\",\\\"value\\\":\\\"vmsq1:80\\\"}}]" self.cmd( 'appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd( 'relay namespace create -g {} --name {}'.format(resource_group, namespace_name)) self.cmd('relay hyco create -g {} --namespace-name {} --name {} --user-metadata {}'.format( resource_group, namespace_name, hyco_name, um)) self.cmd('webapp hybrid-connection add -g {} -n {} --namespace {} --hybrid-connection {}'.format( resource_group, webapp_name, namespace_name, hyco_name)) self.cmd('webapp hybrid-connection list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', hyco_name) ]) self.cmd('webapp hybrid-connection remove -g {} -n {} --namespace {} --hybrid-connection {}'.format( resource_group, webapp_name, namespace_name, hyco_name)) self.cmd('webapp hybrid-connection list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) @AllowLargeResponse() @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_vnetE2E(self, resource_group): webapp_name = self.create_random_name('swiftwebapp', 24) plan = self.create_random_name('swiftplan', 24) subnet_name = self.create_random_name('swiftsubnet', 24) vnet_name = self.create_random_name('swiftname', 24) self.cmd('network vnet create -g {} -n {} --address-prefix 10.0.0.0/16 --subnet-name {} --subnet-prefix 10.0.0.0/24'.format( resource_group, vnet_name, subnet_name)) self.cmd( 'appservice plan create -g {} -n {} --sku P1V2'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd('webapp vnet-integration add -g {} -n {} --vnet {} --subnet {}'.format( resource_group, webapp_name, vnet_name, subnet_name)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', subnet_name) ]) self.cmd( 'webapp vnet-integration remove -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) @AllowLargeResponse() @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_vnetDelegation(self, resource_group): webapp_name = self.create_random_name('swiftwebapp', 24) plan = self.create_random_name('swiftplan', 24) subnet_name = self.create_random_name('swiftsubnet', 24) vnet_name = self.create_random_name('swiftname', 24) self.cmd('network vnet create -g {} -n {} --address-prefix 10.0.0.0/16 --subnet-name {} --subnet-prefix 10.0.0.0/24'.format( resource_group, vnet_name, subnet_name)) self.cmd('network vnet subnet update -g {} --vnet {} --name {} --delegations Microsoft.Web/serverfarms --service-endpoints Microsoft.Storage'.format( resource_group, vnet_name, subnet_name)) self.cmd( 'appservice plan create -g {} -n {} --sku P1V2'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) self.cmd('webapp vnet-integration add -g {} -n {} --vnet {} --subnet {}'.format( resource_group, webapp_name, vnet_name, subnet_name)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', subnet_name) ]) self.cmd(' network vnet subnet show -g {} -n {} --vnet-name {}'.format(resource_group, subnet_name, vnet_name), checks=[ JMESPathCheck('serviceEndpoints[0].service', "Microsoft.Storage") ]) self.cmd( 'webapp vnet-integration remove -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) @AllowLargeResponse() @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_vnetSameName(self, resource_group): resource_group_2 = self.create_random_name('swiftwebapp', 24) webapp_name = self.create_random_name('swiftwebapp', 24) plan = self.create_random_name('swiftplan', 24) subnet_name = self.create_random_name('swiftsubnet', 24) subnet_name_2 = self.create_random_name('swiftsubnet', 24) vnet_name = self.create_random_name('swiftname', 24) self.cmd('network vnet create -g {} -n {} --address-prefix 10.0.0.0/16 --subnet-name {} --subnet-prefix 10.0.0.0/24'.format( resource_group, vnet_name, subnet_name)) self.cmd('group create -n {} -l {}'.format(resource_group_2, WINDOWS_ASP_LOCATION_WEBAPP)) vnet = self.cmd('network vnet create -g {} -n {} --address-prefix 10.0.0.0/16 --subnet-name {} --subnet-prefix 10.0.0.0/24'.format( resource_group_2, vnet_name, subnet_name_2)).get_output_in_json() self.cmd( 'appservice plan create -g {} -n {} --sku P1V2'.format(resource_group, plan)) self.cmd( 'webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan)) # Add vnet integration where theres two vnets of the same name. Chosen vnet should default to the one in the same RG self.cmd('webapp vnet-integration add -g {} -n {} --vnet {} --subnet {}'.format( resource_group, webapp_name, vnet_name, subnet_name)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', subnet_name) ]) self.cmd( 'webapp vnet-integration remove -g {} -n {}'.format(resource_group, webapp_name)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) # Add vnet integration using vnet resource ID self.cmd('webapp vnet-integration add -g {} -n {} --vnet {} --subnet {}'.format( resource_group, webapp_name, vnet['newVNet']['id'], subnet_name_2)) self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', subnet_name_2) ]) # self.cmd( # 'webapp vnet-integration remove -g {} -n {}'.format(resource_group, webapp_name)) # self.cmd('webapp vnet-integration list -g {} -n {}'.format(resource_group, webapp_name), checks=[ # JMESPathCheck('length(@)', 0) # ]) # LiveScenarioTest due to issue https://github.com/Azure/azure-cli/issues/10705 class FunctionappDeploymentLogsScenarioTest(LiveScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_show_deployment_logs(self, resource_group, storage_account): functionapp_name = self.create_random_name(prefix='show-deployment-functionapp', length=40) plan_name = self.create_random_name(prefix='show-deployment-functionapp', length=40) zip_file = os.path.join(TEST_DIR, 'sample_dotnet_function/sample_dotnet_function.zip') self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) self.cmd('functionapp log deployment show -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) deployment_1 = self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True) ]).get_output_in_json() self.cmd('functionapp log deployment show -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('length(@) > `0`', True) ]) self.cmd('functionapp log deployment show -g {} -n {} --deployment-id={}'.format(resource_group, functionapp_name, deployment_1['id']), checks=[ JMESPathCheck('length(@) > `0`', True) ]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_list_deployment_logs(self, resource_group, storage_account): functionapp_name = self.create_random_name(prefix='show-deployment-funcapp', length=40) plan_name = self.create_random_name(prefix='show-deployment-funcapp', length=40) zip_file = os.path.join(TEST_DIR, 'sample_dotnet_function/sample_dotnet_function.zip') self.cmd('functionapp plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('functionapp create -g {} -n {} --plan {} -s {} --runtime dotnet'.format(resource_group, functionapp_name, plan_name, storage_account)) self.cmd('functionapp log deployment list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) deployment_1 = self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True) ]).get_output_in_json() self.cmd('functionapp log deployment list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].id', deployment_1['id']), ]) requests.get('http://{}.scm.azurewebsites.net'.format(functionapp_name), timeout=240) time.sleep(30) self.cmd('functionapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, functionapp_name, zip_file)).assert_with_checks([ JMESPathCheck('status', 4), JMESPathCheck('deployer', 'ZipDeploy'), JMESPathCheck('complete', True) ]).get_output_in_json() self.cmd('functionapp log deployment list -g {} -n {}'.format(resource_group, functionapp_name), checks=[ JMESPathCheck('length(@)', 2) ]) class WebappDeploymentLogsScenarioTest(ScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_show_deployment_logs(self, resource_group): webapp_name = self.create_random_name('show-deployment-webapp', 40) plan_name = self.create_random_name('show-deployment-plan', 40) zip_file = os.path.join(TEST_DIR, 'test.zip') self.cmd('appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) self.cmd('webapp log deployment show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) deployment_1 = self.cmd('webapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, webapp_name, zip_file)).get_output_in_json() self.cmd('webapp log deployment show -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@) > `0`', True), ]) self.cmd('webapp log deployment show -g {} -n {} --deployment-id={}'.format(resource_group, webapp_name, deployment_1['id']), checks=[ JMESPathCheck('length(@) > `0`', True), ]) @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_list_deployment_logs(self, resource_group): webapp_name = self.create_random_name('list-deployment-webapp', 40) plan_name = self.create_random_name('list-deployment-plan', 40) zip_file = os.path.join(TEST_DIR, 'test.zip') self.cmd('appservice plan create -g {} -n {} --sku S1'.format(resource_group, plan_name)) self.cmd('webapp create -g {} -n {} --plan {}'.format(resource_group, webapp_name, plan_name)) self.cmd('webapp log deployment list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 0) ]) deployment_1 = self.cmd('webapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, webapp_name, zip_file)).get_output_in_json() self.cmd('webapp log deployment list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].id', deployment_1['id']), ]) self.cmd('webapp deployment source config-zip -g {} -n {} --src "{}"'.format(resource_group, webapp_name, zip_file)).get_output_in_json() self.cmd('webapp log deployment list -g {} -n {}'.format(resource_group, webapp_name), checks=[ JMESPathCheck('length(@)', 2) ]) class WebappLocalContextScenarioTest(LocalContextScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_WEBAPP) def test_webapp_local_context(self, resource_group): from knack.util import CLIError self.kwargs.update({ 'plan_name': self.create_random_name(prefix='webapp-plan-', length=24), 'webapp_name': self.create_random_name(prefix='webapp-', length=24) }) self.cmd('appservice plan create -g {rg} -n {plan_name}') self.cmd('appservice plan show') with self.assertRaises(CLIError): self.cmd('appservice plan delete') self.cmd('webapp create -n {webapp_name}') self.cmd('webapp show') with self.assertRaises(CLIError): self.cmd('webapp delete') self.cmd('webapp delete -n {webapp_name}') self.cmd('appservice plan delete -n {plan_name} -y') class FunctionappLocalContextScenarioTest(LocalContextScenarioTest): @ResourceGroupPreparer(location=WINDOWS_ASP_LOCATION_FUNCTIONAPP) @StorageAccountPreparer() def test_functionapp_local_context(self, resource_group, storage_account): from knack.util import CLIError self.kwargs.update({ 'plan_name': self.create_random_name(prefix='functionapp-plan-', length=24), 'functionapp_name': self.create_random_name(prefix='functionapp-', length=24), 'storage_account': storage_account }) self.cmd('functionapp plan create -g {rg} -n {plan_name} --sku B2') self.cmd('functionapp plan show') with self.assertRaises(CLIError): self.cmd('functionapp plan delete') self.cmd('functionapp create -n {functionapp_name} --storage-account {storage_account}') self.cmd('functionapp show') with self.assertRaises(CLIError): self.cmd('functionapp delete') self.cmd('functionapp delete -n {functionapp_name}') self.cmd('functionapp plan delete -n {plan_name} -y') if __name__ == '__main__': unittest.main()
57.639553
239
0.628223
02fc56f292604959ff994c67f2d8d154db9bc21c
1,217
py
Python
flask_blog_api/public/forms.py
dannydabbles/flask_blog_api
a2eda67d8ea1b35a3a1263ec288565b6254af34c
[ "MIT" ]
1
2020-03-04T16:02:47.000Z
2020-03-04T16:02:47.000Z
flask_blog_api/public/forms.py
dannydabbles/flask_blog_api
a2eda67d8ea1b35a3a1263ec288565b6254af34c
[ "MIT" ]
null
null
null
flask_blog_api/public/forms.py
dannydabbles/flask_blog_api
a2eda67d8ea1b35a3a1263ec288565b6254af34c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Public forms.""" from flask_wtf import FlaskForm from wtforms import PasswordField, StringField from wtforms.validators import DataRequired from flask_blog_api.user.models import User class LoginForm(FlaskForm): """Login form.""" username = StringField("Username", validators=[DataRequired()]) password = PasswordField("Password", validators=[DataRequired()]) def __init__(self, *args, **kwargs): """Create instance.""" super(LoginForm, self).__init__(*args, **kwargs) self.user = None def validate(self): """Validate the form.""" initial_validation = super(LoginForm, self).validate() if not initial_validation: return False self.user = User.query.filter_by(username=self.username.data).first() if not self.user: self.username.errors.append("Unknown username") return False if not self.user.check_password(self.password.data): self.password.errors.append("Invalid password") return False if not self.user.active: self.username.errors.append("User not activated") return False return True
30.425
77
0.645029
c17e589c7bbba1061575d4168defde78e2c7a042
7,077
py
Python
Question_model/answers/vgg19_chainer.py
KuKuXia/DeepLearningMugenKnock
979cf05e65e352da36453337380a418a2a2fdccb
[ "MIT" ]
null
null
null
Question_model/answers/vgg19_chainer.py
KuKuXia/DeepLearningMugenKnock
979cf05e65e352da36453337380a418a2a2fdccb
[ "MIT" ]
null
null
null
Question_model/answers/vgg19_chainer.py
KuKuXia/DeepLearningMugenKnock
979cf05e65e352da36453337380a418a2a2fdccb
[ "MIT" ]
null
null
null
import chainer import chainer.links as L import chainer.functions as F import argparse import cv2 import numpy as np from glob import glob num_classes = 2 img_height, img_width = 224, 224 GPU = -1 class Mynet(chainer.Chain): def __init__(self, train=True): self.train = train super(Mynet, self).__init__() with self.init_scope(): self.conv1_1 = L.Convolution2D(None, 64, ksize=3, pad=1, stride=1, nobias=False) self.conv1_2 = L.Convolution2D(None, 64, ksize=3, pad=1, stride=1, nobias=False) self.conv2_1 = L.Convolution2D(None, 128, ksize=3, pad=1, stride=1, nobias=False) self.conv2_2 = L.Convolution2D(None, 128, ksize=3, pad=1, stride=1, nobias=False) self.conv3_1 = L.Convolution2D(None, 256, ksize=3, pad=1, stride=1, nobias=False) self.conv3_2 = L.Convolution2D(None, 256, ksize=3, pad=1, stride=1, nobias=False) self.conv3_3 = L.Convolution2D(None, 256, ksize=3, pad=1, stride=1, nobias=False) self.conv3_4 = L.Convolution2D(None, 256, ksize=3, pad=1, stride=1, nobias=False) self.conv4_1 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv4_2 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv4_3 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv4_4 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv5_1 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv5_2 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv5_3 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.conv5_4 = L.Convolution2D(None, 512, ksize=3, pad=1, stride=1, nobias=False) self.fc1 = L.Linear(None, 4096, nobias=False) self.fc2 = L.Linear(None, 4096, nobias=False) self.fc_out = L.Linear(None, num_classes, nobias=False) def __call__(self, x): x = F.relu(self.conv1_1(x)) x = F.relu(self.conv1_2(x)) x = F.max_pooling_2d(x, ksize=2, stride=2) x = F.relu(self.conv2_1(x)) x = F.relu(self.conv2_2(x)) x = F.max_pooling_2d(x, ksize=2, stride=2) x = F.relu(self.conv3_1(x)) x = F.relu(self.conv3_2(x)) x = F.relu(self.conv3_3(x)) x = F.relu(self.conv3_4(x)) x = F.max_pooling_2d(x, ksize=2, stride=2) x = F.relu(self.conv4_1(x)) x = F.relu(self.conv4_2(x)) x = F.relu(self.conv4_3(x)) x = F.relu(self.conv4_4(x)) x = F.max_pooling_2d(x, ksize=2, stride=2) x = F.relu(self.conv5_1(x)) x = F.relu(self.conv5_2(x)) x = F.relu(self.conv5_3(x)) x = F.relu(self.conv5_4(x)) x = F.max_pooling_2d(x, ksize=2, stride=2) x = F.relu(self.fc1(x)) x = F.dropout(x) x = F.relu(self.fc2(x)) x = F.dropout(x) x = self.fc_out(x) return x CLS = ['akahara', 'madara'] # get train data def data_load(path, hf=False, vf=False): xs = [] ts = [] paths = [] for dir_path in glob(path + '/*'): for path in glob(dir_path + '/*'): x = cv2.imread(path) x = cv2.resize(x, (img_width, img_height)).astype(np.float32) x /= 255. xs.append(x) for i, cls in enumerate(CLS): if cls in path: t = i ts.append(t) paths.append(path) if hf: xs.append(x[:, ::-1]) ts.append(t) paths.append(path) if vf: xs.append(x[::-1]) ts.append(t) paths.append(path) if hf and vf: xs.append(x[::-1, ::-1]) ts.append(t) paths.append(path) xs = np.array(xs, dtype=np.float32) ts = np.array(ts, dtype=np.int) xs = xs.transpose(0,3,1,2) return xs, ts, paths # train def train(): # model model = Mynet(train=True) if GPU >= 0: chainer.cuda.get_device(GPU).use() model.to_gpu() opt = chainer.optimizers.MomentumSGD(0.01, momentum=0.9) opt.setup(model) opt.add_hook(chainer.optimizer.WeightDecay(0.0005)) xs, ts, _ = data_load('../Dataset/train/images/', hf=True, vf=True) # training mb = 8 mbi = 0 train_ind = np.arange(len(xs)) np.random.seed(0) np.random.shuffle(train_ind) for i in range(500): if mbi + mb > len(xs): mb_ind = train_ind[mbi:] np.random.shuffle(train_ind) mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))])) mbi = mb - (len(xs) - mbi) else: mb_ind = train_ind[mbi: mbi+mb] mbi += mb x = xs[mb_ind] t = ts[mb_ind] if GPU >= 0: x = chainer.cuda.to_gpu(x) t = chainer.cuda.to_gpu(t) #else: # x = chainer.Variable(x) # t = chainer.Variable(t) y = model(x) loss = F.softmax_cross_entropy(y, t) accu = F.accuracy(y, t) model.cleargrads() loss.backward() opt.update() loss = loss.data accu = accu.data if GPU >= 0: loss = chainer.cuda.to_cpu(loss) accu = chainer.cuda.to_cpu(accu) print("iter >>", i+1, ',loss >>', loss.item(), ',accuracy >>', accu) chainer.serializers.save_npz('cnn.npz', model) # test def test(): model = Mynet(train=False) if GPU >= 0: chainer.cuda.get_device_from_id(cf.GPU).use() model.to_gpu() ## Load pretrained parameters chainer.serializers.load_npz('cnn.npz', model) xs, ts, paths = data_load('../Dataset/test/images/') for i in range(len(paths)): x = xs[i] t = ts[i] path = paths[i] x = np.expand_dims(x, axis=0) if GPU >= 0: x = chainer.cuda.to_gpu(x) pred = model(x).data pred = F.softmax(pred) if GPU >= 0: pred = chainer.cuda.to_cpu(pred) pred = pred[0].data print("in {}, predicted probabilities >> {}".format(path, pred)) def arg_parse(): parser = argparse.ArgumentParser(description='CNN implemented with Keras') parser.add_argument('--train', dest='train', action='store_true') parser.add_argument('--test', dest='test', action='store_true') args = parser.parse_args() return args # main if __name__ == '__main__': args = arg_parse() if args.train: train() if args.test: test() if not (args.train or args.test): print("please select train or test flag") print("train: python main.py --train") print("test: python main.py --test") print("both: python main.py --train --test")
30.769565
93
0.544157
de950c9ef18c999d8c40fac9c83b8e707cbae9dc
668
py
Python
trees/symmetric_tree/recursion.py
sweeneyngo/algo
9c63cef40b97d51e018fbbf537c8f59b811b2d19
[ "MIT" ]
null
null
null
trees/symmetric_tree/recursion.py
sweeneyngo/algo
9c63cef40b97d51e018fbbf537c8f59b811b2d19
[ "MIT" ]
null
null
null
trees/symmetric_tree/recursion.py
sweeneyngo/algo
9c63cef40b97d51e018fbbf537c8f59b811b2d19
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isSymmetric(self, root: TreeNode) -> bool: return self.checkMirror(root, root) def checkMirror(self, root1: TreeNode, root2: TreeNode): if not root1 and not root2: return True if not root1 or not root2: return False return ( (root1.val == root2.val) and self.checkMirror(root1.left, root2.right) and self.checkMirror(root1.right, root2.left) )
27.833333
60
0.585329
b5bad4b74e54e4fbe1dee121b6aff88cb68e4039
2,738
py
Python
tests/api_resources/abstract/test_api_resource.py
timvisher/stripe-python
ae953fd0aa531f5b500e5e86eee5859df95a255d
[ "MIT" ]
null
null
null
tests/api_resources/abstract/test_api_resource.py
timvisher/stripe-python
ae953fd0aa531f5b500e5e86eee5859df95a255d
[ "MIT" ]
null
null
null
tests/api_resources/abstract/test_api_resource.py
timvisher/stripe-python
ae953fd0aa531f5b500e5e86eee5859df95a255d
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function import pytest import stripe class TestAPIResource(object): class MyResource(stripe.api_resources.abstract.APIResource): OBJECT_NAME = 'myresource' def test_retrieve_and_refresh(self, request_mock): url = '/v1/myresources/foo%2A' request_mock.stub_request( 'get', url, { 'id': 'foo2', 'bobble': 'scrobble', }, rheaders={'request-id': 'req_id'} ) res = self.MyResource.retrieve('foo*', myparam=5) request_mock.assert_requested( 'get', url, { 'myparam': 5, }, None ) assert res.bobble == 'scrobble' assert res.id == 'foo2' assert res.api_key == 'sk_test_123' assert res.last_response is not None assert res.last_response.request_id == 'req_id' url = '/v1/myresources/foo2' request_mock.stub_request( 'get', url, { 'frobble': 5, } ) res = res.refresh() request_mock.assert_requested( 'get', url, { 'myparam': 5, }, None ) assert res.frobble == 5 with pytest.raises(KeyError): res['bobble'] def test_convert_to_stripe_object(self): sample = { 'foo': 'bar', 'adict': { 'object': 'charge', 'id': 42, 'amount': 7, }, 'alist': [ { 'object': 'customer', 'name': 'chilango' } ] } converted = stripe.util.convert_to_stripe_object( sample, 'akey', None, None) # Types assert isinstance(converted, stripe.stripe_object.StripeObject) assert isinstance(converted.adict, stripe.Charge) assert len(converted.alist) == 1 assert isinstance(converted.alist[0], stripe.Customer) # Values assert converted.foo == 'bar' assert converted.adict.id == 42 assert converted.alist[0].name == 'chilango' # Stripping # TODO: We should probably be stripping out this property # self.assertRaises(AttributeError, getattr, converted.adict, 'object') def test_raise_on_incorrect_id_type(self): for obj in [None, 1, 3.14, dict(), list(), set(), tuple(), object()]: with pytest.raises(stripe.error.InvalidRequestError): self.MyResource.retrieve(obj)
26.843137
79
0.505844
37476b032f552d5fd4f43e57d4f5ab303374c7c4
2,180
py
Python
je_auto_control/windows/record/win32_record.py
JE-Chen/Python_JEAutoControl
477bf9612e28e9ab6d0a8e269db2f699e50a3744
[ "MIT" ]
9
2020-10-12T06:33:36.000Z
2021-09-13T07:07:36.000Z
je_auto_control/windows/record/win32_record.py
JE-Chen/Python_JEAutoControl
477bf9612e28e9ab6d0a8e269db2f699e50a3744
[ "MIT" ]
2
2021-11-19T13:45:37.000Z
2021-12-03T12:25:28.000Z
je_auto_control/windows/record/win32_record.py
JE-Chen/Python_JEAutoControl
477bf9612e28e9ab6d0a8e269db2f699e50a3744
[ "MIT" ]
null
null
null
import sys from je_auto_control.utils.exception.exception_tag import windows_import_error from je_auto_control.utils.exception.exceptions import AutoControlException if sys.platform not in ["win32", "cygwin", "msys"]: raise AutoControlException(windows_import_error) from je_auto_control.windows.listener.win32_keyboard_listener import Win32KeyboardListener from je_auto_control.windows.listener.win32_mouse_listener import Win32MouseListener from queue import Queue class Win32Recorder(object): def __init__(self): self.mouse_record_listener = None self.keyboard_record_listener = None self.record_queue = None self.result_queue = None def record(self): self.mouse_record_listener = Win32MouseListener() self.keyboard_record_listener = Win32KeyboardListener() self.record_queue = Queue() self.mouse_record_listener.record(self.record_queue) self.keyboard_record_listener.record(self.record_queue) def stop_record(self): self.result_queue = self.mouse_record_listener.stop_record() self.result_queue = self.keyboard_record_listener.stop_record() self.record_queue = None return self.result_queue def record_mouse(self): self.mouse_record_listener = Win32MouseListener() self.record_queue = Queue() self.mouse_record_listener.record(self.record_queue) def stop_record_mouse(self): self.result_queue = self.mouse_record_listener.stop_record() self.record_queue = None return self.result_queue def record_keyboard(self): self.keyboard_record_listener = Win32KeyboardListener() self.record_queue = Queue() self.keyboard_record_listener.record(record_queue) def stop_record_keyboard(self): self.result_queue = self.keyboard_record_listener.stop_record() self.record_queue = None return self.result_queue win32_recorder = Win32Recorder() if __name__ == "__main__": win32_recorder = Win32Recorder() win32_recorder.record() from time import sleep sleep(10) for i in win32_recorder.stop_record().queue: print(i)
32.537313
90
0.738532
d6474dc035ca8af63f2e1b7bbbbaae9a48656db7
99,712
py
Python
Dive-into-DL-paddlepaddle/docs/d2l/paddle.py
skywalk163/awesome-DeepLearning
277d796fc5e7d9b31431160c5652a8319885f908
[ "Apache-2.0" ]
1
2022-03-14T09:03:15.000Z
2022-03-14T09:03:15.000Z
Dive-into-DL-paddlepaddle/docs/d2l/paddle.py
jameszhang-236/awesome-DeepLearning
422128eab5cff9c41b618280cbc1c0e064f45874
[ "Apache-2.0" ]
null
null
null
Dive-into-DL-paddlepaddle/docs/d2l/paddle.py
jameszhang-236/awesome-DeepLearning
422128eab5cff9c41b618280cbc1c0e064f45874
[ "Apache-2.0" ]
null
null
null
################# WARNING ################ # The below part is generated automatically through: # d2lbook build lib # Don't edit it directly import collections import hashlib import math import os import random import re import shutil import sys import tarfile import time import zipfile from collections import defaultdict import pandas as pd import requests from IPython import display from matplotlib import pyplot as plt d2l = sys.modules[__name__] import numpy as np import paddle from PIL import Image from paddle import nn from paddle.nn import functional as F from paddle.vision import transforms, image_load from paddle.io import Dataset, DataLoader """2.4""" def use_svg_display(): """ไฝฟ็”จsvgๆ ผๅผๅœจJupyterไธญๆ˜พ็คบ็ป˜ๅ›พ Defined in :numref:`sec_calculus`""" display.set_matplotlib_formats('svg') def set_figsize(figsize=(3.5, 2.5)): """่ฎพ็ฝฎmatplotlib็š„ๅ›พ่กจๅคงๅฐ Defined in :numref:`sec_calculus`""" use_svg_display() d2l.plt.rcParams['figure.figsize'] = figsize def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend): """่ฎพ็ฝฎmatplotlib็š„่ฝด Defined in :numref:`sec_calculus`""" axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) axes.set_xscale(xscale) axes.set_yscale(yscale) axes.set_xlim(xlim) axes.set_ylim(ylim) if legend: axes.legend(legend) axes.grid() def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear', fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None): """็ป˜ๅˆถๆ•ฐๆฎ็‚น Defined in :numref:`sec_calculus`""" if legend is None: legend = [] set_figsize(figsize) axes = axes if axes else d2l.plt.gca() # ๅฆ‚ๆžœXๆœ‰ไธ€ไธช่ฝด๏ผŒ่พ“ๅ‡บTrue def has_one_axis(X): return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list) and not hasattr(X[0], "__len__")) if has_one_axis(X): X = [X] if Y is None: X, Y = [[]] * len(X), X elif has_one_axis(Y): Y = [Y] if len(X) != len(Y): X = X * len(Y) axes.cla() for x, y, fmt in zip(X, Y, fmts): if len(x): axes.plot(x, y, fmt) else: axes.plot(y, fmt) set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)# Alias defined in config.ini """3.1""" class Timer: #@save """่ฎฐๅฝ•ๅคšๆฌก่ฟ่กŒๆ—ถ้—ด""" def __init__(self): self.times = [] self.start() def start(self): """ๅฏๅŠจ่ฎกๆ—ถๅ™จ""" self.tik = time.time() def stop(self): """ๅœๆญข่ฎกๆ—ถๅ™จๅนถๅฐ†ๆ—ถ้—ด่ฎฐๅฝ•ๅœจๅˆ—่กจไธญ""" self.times.append(time.time() - self.tik) return self.times[-1] def avg(self): """่ฟ”ๅ›žๅนณๅ‡ๆ—ถ้—ด""" return sum(self.times) / len(self.times) def sum(self): """่ฟ”ๅ›žๆ—ถ้—ดๆ€ปๅ’Œ""" return sum(self.times) def cumsum(self): """่ฟ”ๅ›ž็ดฏ่ฎกๆ—ถ้—ด""" return np.array(self.times).cumsum().tolist() """3.2""" def synthetic_data(w, b, num_examples): #@save """็”Ÿๆˆy=Xw+b+ๅ™ชๅฃฐ""" X = paddle.normal(0, 1, (num_examples, len(w))) y = paddle.matmul(X, w) + b y += paddle.normal(0, 0.01, y.shape) return X, y.reshape((-1, 1)) def linreg(X, w, b): #@save """็บฟๆ€งๅ›žๅฝ’ๆจกๅž‹""" return paddle.matmul(X, w) + b def squared_loss(y_hat, y): """ๅ‡ๆ–นๆŸๅคฑใ€‚""" return (y_hat - y.reshape(y_hat.shape))**2 / 2 def sgd(params, lr, batch_size): #@save """ๅฐๆ‰น้‡้šๆœบๆขฏๅบฆไธ‹้™""" a=[] with paddle.no_grad(): for params in params: params -= lr * params.grad/ batch_size params.stop_gradient = False a.append(params) return a """3.3""" def load_array(data_arrays, batch_size, is_train=True): """ๆž„้€ ไธ€ไธชPaddleๆ•ฐๆฎ่ฟญไปฃๅ™จใ€‚""" dataset = paddle.io.TensorDataset(data_arrays) return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train) """3.5""" def get_fashion_mnist_labels(labels): #@save """่ฟ”ๅ›žFashion-MNISTๆ•ฐๆฎ้›†็š„ๆ–‡ๆœฌๆ ‡็ญพ""" text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'] return [text_labels[int(i)] for i in labels] def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): """Plot a list of images.""" figsize = (num_cols * scale, num_rows * scale) _, axes = plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): if paddle.is_tensor(img): # ๅ›พ็‰‡ๅผ ้‡ ax.imshow(img.numpy()) else: # PILๅ›พ็‰‡ ax.imshow(img) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes def get_dataloader_workers(): """ไฝฟ็”จ4ไธช่ฟ›็จ‹ๆฅ่ฏปๅ–ๆ•ฐๆฎใ€‚""" return 4 def load_data_fashion_mnist(batch_size, resize=None): #@save """ไธ‹่ฝฝFashion-MNISTๆ•ฐๆฎ้›†๏ผŒ็„ถๅŽๅฐ†ๅ…ถๅŠ ่ฝฝๅˆฐๅ†…ๅญ˜ไธญ""" trans = [transforms.ToTensor()] if resize: trans.insert(0, transforms.Resize(resize)) trans = transforms.Compose(trans) mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans) mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans) return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, num_workers=get_dataloader_workers()), paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, shuffle=True, num_workers=get_dataloader_workers())) """3.6""" def accuracy(y_hat, y): #@save """่ฎก็ฎ—้ข„ๆต‹ๆญฃ็กฎ็š„ๆ•ฐ้‡""" if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: y_hat = y_hat.argmax(axis=1) """ ไธบไบ†้˜ฒๆญขๅ‡บ็Žฐy_hat.shape=[batch_size]่€Œy.shape=[batch_size,1]็š„้—ฎ้ข˜ๅฏผ่‡ดๅˆคๆ–ญ็›ธ็ญ‰้”™่ฏฏ """ if len(y_hat.shape) < len(y.shape): cmp = y_hat.astype(y.dtype) == y.squeeze() else: cmp = y_hat.astype(y.dtype) == y return float(cmp.astype(y.dtype).sum()) def evaluate_accuracy(net, data_iter): #@save """่ฎก็ฎ—ๅœจๆŒ‡ๅฎšๆ•ฐๆฎ้›†ไธŠๆจกๅž‹็š„็ฒพๅบฆ""" if isinstance(net, paddle.nn.Layer): net.eval() # ๅฐ†ๆจกๅž‹่ฎพ็ฝฎไธบ่ฏ„ไผฐๆจกๅผ metric = Accumulator(2) # ๆญฃ็กฎ้ข„ๆต‹ๆ•ฐใ€้ข„ๆต‹ๆ€ปๆ•ฐ with paddle.no_grad(): for X, y in data_iter: metric.add(accuracy(net(X), y), y.numel()) return metric[0] / metric[1] class Accumulator: #@save """ๅœจnไธชๅ˜้‡ไธŠ็ดฏๅŠ """ def __init__(self, n): self.data = [0.0] * n def add(self, *args): self.data = [a + float(b) for a, b in zip(self.data, args)] def reset(self): self.data = [0.0] * len(self.data) def __getitem__(self, idx): return self.data[idx] def train_epoch_ch3(net, train_iter, loss, updater): # @save """่ฎญ็ปƒๆจกๅž‹ไธ€ไธช่ฟญไปฃๅ‘จๆœŸ๏ผˆๅฎšไน‰่ง็ฌฌ3็ซ ๏ผ‰""" # ๅฐ†ๆจกๅž‹่ฎพ็ฝฎไธบ่ฎญ็ปƒๆจกๅผ if isinstance(net, paddle.nn.Layer): net.train() # ่ฎญ็ปƒๆŸๅคฑๆ€ปๅ’Œใ€่ฎญ็ปƒๅ‡†็กฎๅบฆๆ€ปๅ’Œใ€ๆ ทๆœฌๆ•ฐ metric = Accumulator(3) for X, y in train_iter(): # ่ฎก็ฎ—ๆขฏๅบฆๅนถๆ›ดๆ–ฐๅ‚ๆ•ฐ y_hat = net(X) l = loss(y_hat, y) if isinstance(updater, paddle.optimizer.Optimizer): # ไฝฟ็”จpaddleๅ†…็ฝฎ็š„ไผ˜ๅŒ–ๅ™จๅ’ŒๆŸๅคฑๅ‡ฝๆ•ฐ updater.clear_grad() l.mean().backward() updater.step() else: # ไฝฟ็”จๅฎšๅˆถ็š„ไผ˜ๅŒ–ๅ™จๅ’ŒๆŸๅคฑๅ‡ฝๆ•ฐ l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) return metric[0] / metric[2], metric[1] / metric[2] class Animator: #@save """ๅœจๅŠจ็”ปไธญ็ป˜ๅˆถๆ•ฐๆฎ""" def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear', fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)): # ๅขž้‡ๅœฐ็ป˜ๅˆถๅคšๆก็บฟ if legend is None: legend = [] d2l.use_svg_display() self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize) if nrows * ncols == 1: self.axes = [self.axes, ] # ไฝฟ็”จlambdaๅ‡ฝๆ•ฐๆ•่Žทๅ‚ๆ•ฐ self.config_axes = lambda: d2l.set_axes( self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend) self.X, self.Y, self.fmts = None, None, fmts def add(self, x, y): # ๅ‘ๅ›พ่กจไธญๆทปๅŠ ๅคšไธชๆ•ฐๆฎ็‚น if not hasattr(y, "__len__"): y = [y] n = len(y) if not hasattr(x, "__len__"): x = [x] * n if not self.X: self.X = [[] for _ in range(n)] if not self.Y: self.Y = [[] for _ in range(n)] for i, (a, b) in enumerate(zip(x, y)): if a is not None and b is not None: self.X[i].append(a) self.Y[i].append(b) self.axes[0].cla() for x, y, fmt in zip(self.X, self.Y, self.fmts): self.axes[0].plot(x, y, fmt) self.config_axes() display.display(self.fig) display.clear_output(wait=True) def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save """่ฎญ็ปƒๆจกๅž‹๏ผˆๅฎšไน‰่ง็ฌฌ3็ซ ๏ผ‰""" animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9], legend=['train loss', 'train acc', 'test acc']) for epoch in range(num_epochs): train_metrics = train_epoch_ch3(net, train_iter, loss, updater) test_acc = evaluate_accuracy(net, test_iter) animator.add(epoch + 1, train_metrics + (test_acc,)) train_loss, train_acc = train_metrics assert train_loss < 0.5, train_loss assert train_acc <= 1 and train_acc > 0.7, train_acc assert test_acc <= 1 and test_acc > 0.7, test_acc def predict_ch3(net, test_iter, n=6): #@save """้ข„ๆต‹ๆ ‡็ญพ๏ผˆๅฎšไน‰่ง็ฌฌ3็ซ ๏ผ‰""" for X, y in test_iter: break trues = d2l.get_fashion_mnist_labels(y) preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1)) titles = [true +'\n' + pred for true, pred in zip(trues, preds)] d2l.show_images( X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n]) """4.4""" def evaluate_loss(net, data_iter, loss): #@save """่ฏ„ไผฐ็ป™ๅฎšๆ•ฐๆฎ้›†ไธŠๆจกๅž‹็š„ๆŸๅคฑใ€‚""" metric = d2l.Accumulator(2) # ๆŸๅคฑ็š„ๆ€ปๅ’Œ, ๆ ทๆœฌๆ•ฐ้‡ for X, y in data_iter: out = net(X) y = y.reshape(out.shape) l = loss(out, y) metric.add(l.sum(), l.numel()) return metric[0] / metric[1] """4.10""" DATA_HUB = dict() DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' def download(name, cache_dir=os.path.join('./', 'data')): #@save """ไธ‹่ฝฝไธ€ไธชDATA_HUBไธญ็š„ๆ–‡ไปถ๏ผŒ่ฟ”ๅ›žๆœฌๅœฐๆ–‡ไปถๅ""" assert name in DATA_HUB, f"{name} ไธๅญ˜ๅœจไบŽ {DATA_HUB}" url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if sha1.hexdigest() == sha1_hash: return fname # ๅ‘ฝไธญ็ผ“ๅญ˜ print(f'ๆญฃๅœจไปŽ{url}ไธ‹่ฝฝ{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname def download_extract(name, folder=None): #@save """ไธ‹่ฝฝๅนถ่งฃๅŽ‹zip/tarๆ–‡ไปถ""" fname = download(name) base_dir = os.path.dirname(fname) data_dir, ext = os.path.splitext(fname) if ext == '.zip': fp = zipfile.ZipFile(fname, 'r') elif ext in ('.tar', '.gz'): fp = tarfile.open(fname, 'r') else: assert False, 'ๅชๆœ‰zip/tarๆ–‡ไปถๅฏไปฅ่ขซ่งฃๅŽ‹็ผฉ' fp.extractall(base_dir) return os.path.join(base_dir, folder) if folder else data_dir def download_all(): #@save """ไธ‹่ฝฝDATA_HUBไธญ็š„ๆ‰€ๆœ‰ๆ–‡ไปถ""" for name in DATA_HUB: download(name) DATA_HUB['kaggle_house_train'] = ( #@save DATA_URL + 'kaggle_house_pred_train.csv', '585e9cc93e70b39160e7921475f9bcd7d31219ce') DATA_HUB['kaggle_house_test'] = ( #@save DATA_URL + 'kaggle_house_pred_test.csv', 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90') """5.6""" #ไฟฎๆ”น5.6ๅ‡ฝๆ•ฐ๏ผˆ2022.1.21ๆ—ฅ๏ผ‰ ๆš‚ๆ—ถๅฏ่ƒฝๅช่ƒฝๅค„็†ๆŒ‰้กบๅบ็š„ๅคšGPUๅกๆƒ…ๅ†ต๏ผˆๆฏ”ๅฆ‚gpu:0 gpu:1 gpu:2 ......๏ผ‰ def try_gpu(i=0): #@save """ๅฆ‚ๆžœๅญ˜ๅœจ๏ผŒๅˆ™่ฟ”ๅ›žgpu(i)๏ผŒๅฆๅˆ™่ฟ”ๅ›žcpu()ใ€‚""" if paddle.device.cuda.device_count() >= i + 1: return paddle.CUDAPlace(i) return paddle.CPUPlace() def try_all_gpus(): #@save """่ฟ”ๅ›žๆ‰€ๆœ‰ๅฏ็”จ็š„GPU๏ผŒๅฆ‚ๆžœๆฒกๆœ‰GPU๏ผŒๅˆ™่ฟ”ๅ›ž[cpu(),]ใ€‚""" devices = [paddle.CUDAPlace(i) for i in range(paddle.device.cuda.device_count()) ] return devices if devices else paddle.CPUPlace() """6.2""" def corr2d(X, K): """่ฎก็ฎ—ไบŒ็ปดไบ’็›ธๅ…ณ่ฟ็ฎ—ใ€‚""" h, w = K.shape Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j] = (X[i:i + h, j:j + w] * K).sum() return Y """6.6""" def evaluate_accuracy_gpu(net, data_iter, device=None): #@save """ไฝฟ็”จGPU่ฎก็ฎ—ๆจกๅž‹ๅœจๆ•ฐๆฎ้›†ไธŠ็š„็ฒพๅบฆ Defined in :numref:`sec_lenet`""" if isinstance(net, nn.Layer): net.eval() # ่ฎพ็ฝฎไธบ่ฏ„ไผฐๆจกๅผ if not device: device = next(iter(net.parameters())).place # ๆญฃ็กฎ้ข„ๆต‹็š„ๆ•ฐ้‡๏ผŒๆ€ป้ข„ๆต‹็š„ๆ•ฐ้‡ metric = d2l.Accumulator(2) with paddle.no_grad(): for X, y in data_iter: if isinstance(X, list): # BERTๅพฎ่ฐƒๆ‰€้œ€็š„๏ผˆไน‹ๅŽๅฐ†ไป‹็ป๏ผ‰ X = [paddle.to_tensor(x, place=device) for x in X] else: X = paddle.to_tensor(X, place=device) y = paddle.to_tensor(y, place=device) metric.add(d2l.accuracy(net(X), y), d2l.size(y)) return metric[0] / metric[1] def train_ch6(net, train_iter, test_iter, batch_size, optimi, num_epochs): loss = nn.CrossEntropyLoss() batch_count = 0 for epoch in range(num_epochs): train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time() for idx, (X, y) in enumerate(train_iter): y_hat = net(X) l = loss(y_hat, y) optimi.clear_grad() l.backward() optimi.step() train_l_sum += l.numpy()[0] train_acc_sum += (y_hat.argmax(axis=1) == y.flatten()).astype('float32').sum().numpy()[0] n += y.shape[0] batch_count += 1 test_acc = evaluate_accuracy(test_iter, net) print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start)) """7.6""" class Residual(nn.Layer): def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1): super(Residual, self).__init__() self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides) self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides) else: self.conv3 = None self.bn1 = nn.BatchNorm2D(num_channels) self.bn2 = nn.BatchNorm2D(num_channels) self.relu = nn.ReLU() def forward(self, X): Y = F.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) Y += X return F.relu(Y) """8.2""" d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt', '090b5e7e70c295757f55df93cb0a180b9691891a') def read_time_machine(): """ๅฐ†ๆ—ถ้—ดๆœบๅ™จๆ•ฐๆฎ้›†ๅŠ ่ฝฝๅˆฐๆ–‡ๆœฌ่กŒ็š„ๅˆ—่กจไธญ Defined in :numref:`sec_text_preprocessing`""" with open(d2l.download('time_machine'), 'r') as f: lines = f.readlines() return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines] def tokenize(lines, token='word'): """ๅฐ†ๆ–‡ๆœฌ่กŒๆ‹†ๅˆ†ไธบๅ•่ฏๆˆ–ๅญ—็ฌฆ่ฏๅ…ƒ Defined in :numref:`sec_text_preprocessing`""" if token == 'word': return [line.split() for line in lines] elif token == 'char': return [list(line) for line in lines] else: print('้”™่ฏฏ๏ผšๆœช็Ÿฅ่ฏๅ…ƒ็ฑปๅž‹๏ผš' + token) class Vocab: """ๆ–‡ๆœฌ่ฏ่กจ""" def __init__(self, tokens=None, min_freq=0, reserved_tokens=None): """Defined in :numref:`sec_text_preprocessing`""" if tokens is None: tokens = [] if reserved_tokens is None: reserved_tokens = [] # ๆŒ‰ๅ‡บ็Žฐ้ข‘็އๆŽ’ๅบ counter = count_corpus(tokens) self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True) # ๆœช็Ÿฅ่ฏๅ…ƒ็š„็ดขๅผ•ไธบ0 self.idx_to_token = ['<unk>'] + reserved_tokens self.token_to_idx = {token: idx for idx, token in enumerate(self.idx_to_token)} for token, freq in self._token_freqs: if freq < min_freq: break if token not in self.token_to_idx: self.idx_to_token.append(token) self.token_to_idx[token] = len(self.idx_to_token) - 1 def __len__(self): return len(self.idx_to_token) def __getitem__(self, tokens): if not isinstance(tokens, (list, tuple)): return self.token_to_idx.get(tokens, self.unk) return [self.__getitem__(token) for token in tokens] def to_tokens(self, indices): if not isinstance(indices, (list, tuple)): return self.idx_to_token[indices] return [self.idx_to_token[index] for index in indices] @property def unk(self): # ๆœช็Ÿฅ่ฏๅ…ƒ็š„็ดขๅผ•ไธบ0 return 0 @property def token_freqs(self): return self._token_freqs def count_corpus(tokens): """็ปŸ่ฎก่ฏๅ…ƒ็š„้ข‘็އ Defined in :numref:`sec_text_preprocessing`""" # ่ฟ™้‡Œ็š„`tokens`ๆ˜ฏ1Dๅˆ—่กจๆˆ–2Dๅˆ—่กจ if len(tokens) == 0 or isinstance(tokens[0], list): # ๅฐ†่ฏๅ…ƒๅˆ—่กจๅฑ•ๅนณๆˆไธ€ไธชๅˆ—่กจ tokens = [token for line in tokens for token in line] return collections.Counter(tokens) def load_corpus_time_machine(max_tokens=-1): """่ฟ”ๅ›žๆ—ถๅ…‰ๆœบๅ™จๆ•ฐๆฎ้›†็š„่ฏๅ…ƒ็ดขๅผ•ๅˆ—่กจๅ’Œ่ฏ่กจ Defined in :numref:`sec_text_preprocessing`""" lines = read_time_machine() tokens = tokenize(lines, 'char') vocab = Vocab(tokens) # ๅ› ไธบๆ—ถๅ…‰ๆœบๅ™จๆ•ฐๆฎ้›†ไธญ็š„ๆฏไธชๆ–‡ๆœฌ่กŒไธไธ€ๅฎšๆ˜ฏไธ€ไธชๅฅๅญๆˆ–ไธ€ไธชๆฎต่ฝ๏ผŒ # ๆ‰€ไปฅๅฐ†ๆ‰€ๆœ‰ๆ–‡ๆœฌ่กŒๅฑ•ๅนณๅˆฐไธ€ไธชๅˆ—่กจไธญ corpus = [vocab[token] for line in tokens for token in line] if max_tokens > 0: corpus = corpus[:max_tokens] return corpus, vocab """8.3""" def seq_data_iter_random(corpus, batch_size, num_steps): """ไฝฟ็”จ้šๆœบๆŠฝๆ ท็”Ÿๆˆไธ€ไธชๅฐๆ‰น้‡ๅญๅบๅˆ— Defined in :numref:`sec_language_model`""" # ไปŽ้šๆœบๅ็งป้‡ๅผ€ๅง‹ๅฏนๅบๅˆ—่ฟ›่กŒๅˆ†ๅŒบ๏ผŒ้šๆœบ่Œƒๅ›ดๅŒ…ๆ‹ฌ`num_steps-1` corpus = corpus[random.randint(0, num_steps - 1):] # ๅ‡ๅŽป1๏ผŒๆ˜ฏๅ› ไธบๆˆ‘ไปฌ้œ€่ฆ่€ƒ่™‘ๆ ‡็ญพ num_subseqs = (len(corpus) - 1) // num_steps # ้•ฟๅบฆไธบ`num_steps`็š„ๅญๅบๅˆ—็š„่ตทๅง‹็ดขๅผ• initial_indices = list(range(0, num_subseqs * num_steps, num_steps)) # ๅœจ้šๆœบๆŠฝๆ ท็š„่ฟญไปฃ่ฟ‡็จ‹ไธญ๏ผŒ # ๆฅ่‡ชไธคไธช็›ธ้‚ป็š„ใ€้šๆœบ็š„ใ€ๅฐๆ‰น้‡ไธญ็š„ๅญๅบๅˆ—ไธไธ€ๅฎšๅœจๅŽŸๅง‹ๅบๅˆ—ไธŠ็›ธ้‚ป random.shuffle(initial_indices) def data(pos): # ่ฟ”ๅ›žไปŽ`pos`ไฝ็ฝฎๅผ€ๅง‹็š„้•ฟๅบฆไธบ`num_steps`็š„ๅบๅˆ— return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): # ๅœจ่ฟ™้‡Œ๏ผŒ`initial_indices`ๅŒ…ๅซๅญๅบๅˆ—็š„้šๆœบ่ตทๅง‹็ดขๅผ• initial_indices_per_batch = initial_indices[i: i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield d2l.tensor(X), d2l.tensor(Y) def seq_data_iter_sequential(corpus, batch_size, num_steps): """ไฝฟ็”จ้กบๅบๅˆ†ๅŒบ็”Ÿๆˆไธ€ไธชๅฐๆ‰น้‡ๅญๅบๅˆ— Defined in :numref:`sec_language_model`""" # ไปŽ้šๆœบๅ็งป้‡ๅผ€ๅง‹ๅˆ’ๅˆ†ๅบๅˆ— offset = random.randint(0, num_steps) num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size Xs = d2l.tensor(corpus[offset: offset + num_tokens]) Ys = d2l.tensor(corpus[offset + 1: offset + 1 + num_tokens]) Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1)) num_batches = Xs.shape[1] // num_steps for i in range(0, num_steps * num_batches, num_steps): X = Xs[:, i: i + num_steps] Y = Ys[:, i: i + num_steps] yield X, Y class SeqDataLoader: """ๅŠ ่ฝฝๅบๅˆ—ๆ•ฐๆฎ็š„่ฟญไปฃๅ™จ""" def __init__(self, batch_size, num_steps, use_random_iter, max_tokens): """Defined in :numref:`sec_language_model`""" if use_random_iter: self.data_iter_fn = d2l.seq_data_iter_random else: self.data_iter_fn = d2l.seq_data_iter_sequential self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens) self.batch_size, self.num_steps = batch_size, num_steps def __iter__(self): return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps) def load_data_time_machine(batch_size, num_steps, use_random_iter=False, max_tokens=10000): """่ฟ”ๅ›žๆ—ถๅ…‰ๆœบๅ™จๆ•ฐๆฎ้›†็š„่ฟญไปฃๅ™จๅ’Œ่ฏ่กจ Defined in :numref:`sec_language_model`""" data_iter = SeqDataLoader( batch_size, num_steps, use_random_iter, max_tokens) return data_iter, data_iter.vocab """8.5""" class RNNModelScratch: #@save """ไปŽ้›ถๅผ€ๅง‹ๅฎž็Žฐ็š„ๅพช็Žฏ็ฅž็ป็ฝ‘็ปœๆจกๅž‹""" def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.params = get_params(vocab_size, num_hiddens) self.init_state, self.forward_fn = init_state, forward_fn def __call__(self, X, state): X = F.one_hot(X.T, self.vocab_size) return self.forward_fn(X, state, self.params) def begin_state(self, batch_size): return self.init_state(batch_size, self.num_hiddens) def grad_clipping(net, theta):#@save """่ฃๅ‰ชๆขฏๅบฆ Defined in :numref:`sec_rnn_scratch`""" if isinstance(net, nn.Layer): params = [p for p in net.parameters() if not p.stop_gradient] else: params = net.params norm = paddle.sqrt(sum(paddle.sum((p.grad ** 2)) for p in params)) if norm > theta: for param in params: param.grad.set_value(param.grad * theta / norm) def predict_ch8(prefix, num_preds, net, vocab, device): #@save """ๅœจprefixๅŽ้ข็”Ÿๆˆๆ–ฐๅญ—็ฌฆ""" state = net.begin_state(batch_size=1) outputs = [vocab[prefix[0]]] get_input = lambda: d2l.reshape(d2l.tensor(outputs[-1], place=device), (1, 1)) for y in prefix[1:]: # ้ข„็ƒญๆœŸ _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): # ้ข„ๆต‹num_predsๆญฅ y, state = net(get_input(), state) outputs.append(int(paddle.reshape(paddle.argmax(y, axis=1), shape=[1]))) return ''.join([vocab.idx_to_token[i] for i in outputs]) #@save def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter): """่ฎญ็ปƒ็ฝ‘็ปœไธ€ไธช่ฟญไปฃๅ‘จๆœŸ๏ผˆๅฎšไน‰่ง็ฌฌ8็ซ ๏ผ‰ Defined in :numref:`sec_rnn_scratch`""" state, timer = None, d2l.Timer() metric = d2l.Accumulator(2) # ่ฎญ็ปƒๆŸๅคฑไน‹ๅ’Œ,่ฏๅ…ƒๆ•ฐ้‡ for X, Y in train_iter: if state is None or use_random_iter: # ๅœจ็ฌฌไธ€ๆฌก่ฟญไปฃๆˆ–ไฝฟ็”จ้šๆœบๆŠฝๆ ทๆ—ถๅˆๅง‹ๅŒ–`state` state = net.begin_state(batch_size=X.shape[0]) else: if isinstance(net, nn.Layer) and not isinstance(state, tuple): # `state`ๅฏนไบŽ`nn.GRU`ๆ˜ฏไธชๅผ ้‡ state.stop_gradient=True else: # `state`ๅฏนไบŽ`nn.LSTM`ๆˆ–ๅฏนไบŽๆˆ‘ไปฌไปŽ้›ถๅผ€ๅง‹ๅฎž็Žฐ็š„ๆจกๅž‹ๆ˜ฏไธชๅผ ้‡ for s in state: s.stop_gradient=True y = paddle.reshape(Y.T, shape=[-1]) X = paddle.to_tensor(X, place=device) y = paddle.to_tensor(y, place=device) y_hat, state = net(X, state) l = loss(y_hat, y).mean() if isinstance(updater, paddle.optimizer.Optimizer): updater.clear_grad() l.backward() updater.step() else: l.backward() grad_clipping(net, 1) # ๅ› ไธบๅทฒ็ป่ฐƒ็”จไบ†`mean`ๅ‡ฝๆ•ฐ net.params = updater(batch_size=1) metric.add(l * d2l.size(y), d2l.size(y)) return math.exp(metric[0] / metric[1]), metric[1] / timer.stop() #@save def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False): """่ฎญ็ปƒๆจกๅž‹๏ผˆๅฎšไน‰่ง็ฌฌ8็ซ ๏ผ‰""" loss = nn.CrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs]) # ๅˆๅง‹ๅŒ– if isinstance(net, nn.Layer): clip = paddle.nn.ClipGradByNorm(clip_norm=1.0) updater = paddle.optimizer.SGD( learning_rate=lr, parameters=net.parameters(), grad_clip=clip) else: updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device) # ่ฎญ็ปƒๅ’Œ้ข„ๆต‹ for epoch in range(num_epochs): ppl, speed = train_epoch_ch8( net, train_iter, loss, updater, device, use_random_iter) if (epoch + 1) % 10 == 0: print(predict('time traveller')) animator.add(epoch + 1, [ppl]) print(f'ๅ›ฐๆƒ‘ๅบฆ {ppl:.1f}, {speed:.1f} ่ฏๅ…ƒ/็ง’ {str(device)}') print(predict('time traveller')) print(predict('traveller')) """8.6""" class RNNModel(nn.Layer): #@save """ๅพช็Žฏ็ฅž็ป็ฝ‘็ปœๆจกๅž‹""" def __init__(self, rnn_layer, vocab_size, **kwargs): super(RNNModel, self).__init__(**kwargs) self.rnn = rnn_layer self.vocab_size = vocab_size self.num_hiddens = self.rnn.hidden_size # ๅฆ‚ๆžœRNNๆ˜ฏๅŒๅ‘็š„๏ผˆไน‹ๅŽๅฐ†ไป‹็ป๏ผ‰๏ผŒnum_directionsๅบ”่ฏฅๆ˜ฏ2๏ผŒๅฆๅˆ™ๅบ”่ฏฅๆ˜ฏ1 if self.rnn.num_directions==1: self.num_directions = 1 self.linear = nn.Linear(self.num_hiddens, self.vocab_size) else: self.num_directions = 2 self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size) def forward(self, inputs, state): X = F.one_hot(inputs.T, self.vocab_size) # paddle็›ธๆฏ”torch๏ผŒ่ฟ™้‡Œๆ— ้œ€ๅ†็ฑปๅž‹่ฝฌๆข Y, state = self.rnn(X, state) # ๅ…จ่ฟžๆŽฅๅฑ‚้ฆ–ๅ…ˆๅฐ†Y็š„ๅฝข็Šถๆ”นไธบ(ๆ—ถ้—ดๆญฅๆ•ฐ*ๆ‰น้‡ๅคงๅฐ,้š่—ๅ•ๅ…ƒๆ•ฐ) # ๅฎƒ็š„่พ“ๅ‡บๅฝข็Šถๆ˜ฏ(ๆ—ถ้—ดๆญฅๆ•ฐ*ๆ‰น้‡ๅคงๅฐ,่ฏ่กจๅคงๅฐ)ใ€‚ output = self.linear(Y.reshape((-1, Y.shape[-1]))) return output, state def begin_state(self, batch_size=1): if not isinstance(self.rnn, nn.LSTM): # nn.GRUไปฅๅผ ้‡ไฝœไธบ้š็Šถๆ€ return paddle.to_tensor(paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])) else: # nn.LSTMไปฅๅ…ƒ็ป„ไฝœไธบ้š็Šถๆ€ return (paddle.to_tensor(paddle.zeros( shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])), paddle.to_tensor(paddle.zeros( shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]))) """9.5""" d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip', '94646ad1522d915e7b0f9296181140edcf86a4f5') def read_data_nmt(): """่ฝฝๅ…ฅโ€œ่‹ฑ่ฏญ๏ผๆณ•่ฏญโ€ๆ•ฐๆฎ้›†""" data_dir = d2l.download_extract('fra-eng') with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f: return f.read() def preprocess_nmt(text): """้ข„ๅค„็†โ€œ่‹ฑ่ฏญ๏ผๆณ•่ฏญโ€ๆ•ฐๆฎ้›†""" def no_space(char, prev_char): return char in set(',.!?') and prev_char != ' ' # ไฝฟ็”จ็ฉบๆ ผๆ›ฟๆขไธ้—ดๆ–ญ็ฉบๆ ผ # ไฝฟ็”จๅฐๅ†™ๅญ—ๆฏๆ›ฟๆขๅคงๅ†™ๅญ—ๆฏ text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower() # ๅœจๅ•่ฏๅ’Œๆ ‡็‚น็ฌฆๅทไน‹้—ดๆ’ๅ…ฅ็ฉบๆ ผ out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char for i, char in enumerate(text)] return ''.join(out) def tokenize_nmt(text, num_examples=None): """่ฏๅ…ƒๅŒ–โ€œ่‹ฑ่ฏญ๏ผๆณ•่ฏญโ€ๆ•ฐๆฎๆ•ฐๆฎ้›†""" source, target = [], [] for i, line in enumerate(text.split('\n')): if num_examples and i > num_examples: break parts = line.split('\t') if len(parts) == 2: source.append(parts[0].split(' ')) target.append(parts[1].split(' ')) return source, target def truncate_pad(line, num_steps, padding_token): """ๆˆชๆ–ญๆˆ–ๅกซๅ……ๆ–‡ๆœฌๅบๅˆ—""" if len(line) > num_steps: return line[:num_steps] # ๆˆชๆ–ญ return line + [padding_token] * (num_steps - len(line)) # ๅกซๅ…… def build_array_nmt(lines, vocab, num_steps): """ๅฐ†ๆœบๅ™จ็ฟป่ฏ‘็š„ๆ–‡ๆœฌๅบๅˆ—่ฝฌๆขๆˆๅฐๆ‰น้‡""" lines = [vocab[l] for l in lines] lines = [l + [vocab['<eos>']] for l in lines] array = paddle.to_tensor([truncate_pad( l, num_steps, vocab['<pad>']) for l in lines]) valid_len = (array != vocab['<pad>']).astype(paddle.int32).sum(1) return array, valid_len def load_data_nmt(batch_size, num_steps, num_examples=600): """่ฟ”ๅ›ž็ฟป่ฏ‘ๆ•ฐๆฎ้›†็š„่ฟญไปฃๅ™จๅ’Œ่ฏ่กจ""" text = preprocess_nmt(read_data_nmt()) source, target = tokenize_nmt(text, num_examples) src_vocab = d2l.Vocab(source, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>']) tgt_vocab = d2l.Vocab(target, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>']) src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps) tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps) data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len) data_iter = d2l.load_array(data_arrays, batch_size) return data_iter, src_vocab, tgt_vocab """9.6""" class Encoder(nn.Layer): """็ผ–็ ๅ™จ-่งฃ็ ๅ™จๆžถๆž„็š„ๅŸบๆœฌ็ผ–็ ๅ™จๆŽฅๅฃ""" def __init__(self, **kwargs): super(Encoder, self).__init__(**kwargs) def forward(self, X, *args): raise NotImplementedError class Decoder(nn.Layer): """็ผ–็ ๅ™จ-่งฃ็ ๅ™จๆžถๆž„็š„ๅŸบๆœฌ่งฃ็ ๅ™จๆŽฅๅฃ""" def __init__(self, **kwargs): super(Decoder, self).__init__(**kwargs) def init_state(self, enc_outputs, *args): raise NotImplementedError def forward(self, X, state): raise NotImplementedError class EncoderDecoder(nn.Layer): """็ผ–็ ๅ™จ-่งฃ็ ๅ™จๆžถๆž„็š„ๅŸบ็ฑป""" def __init__(self, encoder, decoder, **kwargs): super(EncoderDecoder, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder def forward(self, enc_X, dec_X, *args): enc_outputs = self.encoder(enc_X, *args) dec_state = self.decoder.init_state(enc_outputs, *args) return self.decoder(dec_X, dec_state) """9.7""" class Seq2SeqEncoder(d2l.Encoder): """็”จไบŽๅบๅˆ—ๅˆฐๅบๅˆ—ๅญฆไน ็š„ๅพช็Žฏ็ฅž็ป็ฝ‘็ปœ็ผ–็ ๅ™จ""" def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqEncoder, self).__init__(**kwargs) weight_ih_attr = paddle.ParamAttr(initializer=nn.initializer.XavierUniform()) weight_hh_attr = paddle.ParamAttr(initializer=nn.initializer.XavierUniform()) # ๅตŒๅ…ฅๅฑ‚ self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=dropout, time_major=True, weight_ih_attr=weight_ih_attr, weight_hh_attr=weight_hh_attr) def forward(self, X, *args): # ่พ“ๅ‡บ'X'็š„ๅฝข็Šถ๏ผš(batch_size,num_steps,embed_size) X = self.embedding(X) # ๅœจๅพช็Žฏ็ฅž็ป็ฝ‘็ปœๆจกๅž‹ไธญ๏ผŒ็ฌฌไธ€ไธช่ฝดๅฏนๅบ”ไบŽๆ—ถ้—ดๆญฅ X = X.transpose([1, 0, 2]) # ๅฆ‚ๆžœๆœชๆๅŠ็Šถๆ€๏ผŒๅˆ™้ป˜่ฎคไธบ0 output, state = self.rnn(X) # PaddlePaddle็š„GRUๅฑ‚output็š„ๅฝข็Šถ:(batch_size,time_steps,num_directions * num_hiddens), # ้œ€่ฎพๅฎštime_major=True,ๆŒ‡ๅฎšinput็š„็ฌฌไธ€ไธช็ปดๅบฆไธบtime_steps # state[0]็š„ๅฝข็Šถ:(num_layers,batch_size,num_hiddens) return output, state def sequence_mask(X, valid_len, value=0):#@save """ๅœจๅบๅˆ—ไธญๅฑ่”ฝไธ็›ธๅ…ณ็š„้กน""" maxlen = X.shape[1] mask = paddle.arange((maxlen), dtype=paddle.float32)[None, :] < valid_len[:, None] Xtype = X.dtype X=X.astype(paddle.float32) X[~mask] = float(value) return X.astype(Xtype) class MaskedSoftmaxCELoss(nn.CrossEntropyLoss): """ๅธฆ้ฎ่”ฝ็š„softmaxไบคๅ‰็†ตๆŸๅคฑๅ‡ฝๆ•ฐ""" # pred็š„ๅฝข็Šถ๏ผš(batch_size,num_steps,vocab_size) # label็š„ๅฝข็Šถ๏ผš(batch_size,num_steps) # valid_len็š„ๅฝข็Šถ๏ผš(batch_size,) def forward(self, pred, label, valid_len): weights = paddle.ones_like(label) weights = sequence_mask(weights, valid_len) self.reduction='none' unweighted_loss = super(MaskedSoftmaxCELoss, self).forward( pred, label) weighted_loss = (unweighted_loss * weights).mean(axis=1) return weighted_loss def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device): """่ฎญ็ปƒๅบๅˆ—ๅˆฐๅบๅˆ—ๆจกๅž‹""" optimizer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters()) loss = MaskedSoftmaxCELoss() net.train() animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[10, num_epochs]) for epoch in range(num_epochs): timer = d2l.Timer() metric = d2l.Accumulator(2) # ่ฎญ็ปƒๆŸๅคฑๆ€ปๅ’Œ๏ผŒ่ฏๅ…ƒๆ•ฐ้‡ for batch in data_iter: optimizer.clear_grad() X, X_valid_len, Y, Y_valid_len = [paddle.to_tensor(x, place=device) for x in batch] bos = paddle.to_tensor([tgt_vocab['<bos>']] * Y.shape[0]).reshape([-1, 1]) dec_input = paddle.concat([bos, Y[:, :-1]], 1) # ๅผบๅˆถๆ•™ๅญฆ Y_hat, _ = net(X, dec_input, X_valid_len) l = loss(Y_hat, Y, Y_valid_len.squeeze()) l.backward() # ๆŸๅคฑๅ‡ฝๆ•ฐ็š„ๆ ‡้‡่ฟ›่กŒโ€œๅๅ‘ไผ ๆ’ญโ€ d2l.grad_clipping(net, 1) num_tokens = Y_valid_len.sum() optimizer.step() with paddle.no_grad(): metric.add(l.sum(), num_tokens) if (epoch + 1) % 10 == 0: animator.add(epoch + 1, (metric[0] / metric[1],)) print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} ' f'tokens/sec on {str(device)}') def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps, device, save_attention_weights=False): """ๅบๅˆ—ๅˆฐๅบๅˆ—ๆจกๅž‹็š„้ข„ๆต‹""" # ๅœจ้ข„ๆต‹ๆ—ถๅฐ†net่ฎพ็ฝฎไธบ่ฏ„ไผฐๆจกๅผ net.eval() src_tokens = src_vocab[src_sentence.lower().split(' ')] + [ src_vocab['<eos>']] enc_valid_len = paddle.to_tensor([len(src_tokens)], place=device) src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>']) # ๆทปๅŠ ๆ‰น้‡่ฝด enc_X = paddle.unsqueeze( paddle.to_tensor(src_tokens, dtype=paddle.int64, place=device), axis=0) enc_outputs = net.encoder(enc_X, enc_valid_len) dec_state = net.decoder.init_state(enc_outputs, enc_valid_len) # ๆทปๅŠ ๆ‰น้‡่ฝด dec_X = paddle.unsqueeze(paddle.to_tensor( [tgt_vocab['<bos>']], dtype=paddle.int64, place=device), axis=0) output_seq, attention_weight_seq = [], [] for _ in range(num_steps): Y, dec_state = net.decoder(dec_X, dec_state) # ๆˆ‘ไปฌไฝฟ็”จๅ…ทๆœ‰้ข„ๆต‹ๆœ€้ซ˜ๅฏ่ƒฝๆ€ง็š„่ฏๅ…ƒ๏ผŒไฝœไธบ่งฃ็ ๅ™จๅœจไธ‹ไธ€ๆ—ถ้—ดๆญฅ็š„่พ“ๅ…ฅ dec_X = Y.argmax(axis=2) pred = dec_X.squeeze(axis=0).astype(paddle.int32).item() # ไฟๅญ˜ๆณจๆ„ๅŠ›ๆƒ้‡๏ผˆ็จๅŽ่ฎจ่ฎบ๏ผ‰ if save_attention_weights: attention_weight_seq.append(net.decoder.attention_weights) # ไธ€ๆ—ฆๅบๅˆ—็ป“ๆŸ่ฏๅ…ƒ่ขซ้ข„ๆต‹๏ผŒ่พ“ๅ‡บๅบๅˆ—็š„็”ŸๆˆๅฐฑๅฎŒๆˆไบ† if pred == tgt_vocab['<eos>']: break output_seq.append(pred) return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq def bleu(pred_seq, label_seq, k): #@save """่ฎก็ฎ—BLEU""" pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ') len_pred, len_label = len(pred_tokens), len(label_tokens) score = math.exp(min(0, 1 - len_label / len_pred)) for n in range(1, k + 1): num_matches, label_subs = 0, collections.defaultdict(int) for i in range(len_label - n + 1): label_subs[' '.join(label_tokens[i: i + n])] += 1 for i in range(len_pred - n + 1): if label_subs[' '.join(pred_tokens[i: i + n])] > 0: num_matches += 1 label_subs[' '.join(pred_tokens[i: i + n])] -= 1 score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n)) return score """10.1""" #@save def show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5), cmap='Reds'): """ๆ˜พ็คบ็Ÿฉ้˜ต็ƒญๅ›พ""" d2l.use_svg_display() num_rows, num_cols = matrices.shape[0], matrices.shape[1] fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize, sharex=True, sharey=True, squeeze=False) for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)): for j, (ax,matrix) in enumerate(zip(row_axes, row_matrices)): pcm = ax.imshow(matrix.detach().numpy(), cmap=cmap) if i == num_rows - 1: ax.set_xlabel(xlabel) if j == 0: ax.set_ylabel(ylabel) if titles: ax.set_title(titles[j]) fig.colorbar(pcm, ax=axes, shrink=0.6); """10.3""" #@save def masked_softmax(X, valid_lens): """้€š่ฟ‡ๅœจๆœ€ๅŽไธ€ไธช่ฝดไธŠๆŽฉ่”ฝๅ…ƒ็ด ๆฅๆ‰ง่กŒsoftmaxๆ“ไฝœ""" # X:3Dๅผ ้‡๏ผŒvalid_lens:1Dๆˆ–2Dๅผ ้‡ if valid_lens is None: return nn.functional.softmax(X, axis=-1) else: shape = X.shape if (valid_lens.dim() == 1) or (valid_lens.dim() == 2 and (valid_lens.shape)[1] == 1): valid_lens = paddle.tile(valid_lens.reshape((valid_lens.shape[0], -1)), [shape[1]]).reshape((-1,)) else: valid_lens = valid_lens.reshape((-1,)) # # ๆœ€ๅŽไธ€่ฝดไธŠ่ขซๆŽฉ่”ฝ็š„ๅ…ƒ็ด ไฝฟ็”จไธ€ไธช้žๅธธๅคง็š„่ดŸๅ€ผๆ›ฟๆข๏ผŒไปŽ่€Œๅ…ถsoftmax่พ“ๅ‡บไธบ0 X = d2l.sequence_mask(X.reshape((-1, shape[-1])), valid_lens, value=-1e6) return nn.functional.softmax(X.reshape(shape), axis=-1) #@save class AdditiveAttention(nn.Layer): """ๅŠ ๆ€งๆณจๆ„ๅŠ›""" def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs): super(AdditiveAttention, self).__init__(**kwargs) self.W_k = nn.Linear(key_size, num_hiddens, bias_attr=False) self.W_q = nn.Linear(query_size, num_hiddens, bias_attr=False) self.w_v = nn.Linear(num_hiddens, 1, bias_attr=False) self.dropout = nn.Dropout(dropout) def forward(self, queries, keys, values, valid_lens): queries, keys = self.W_q(queries), self.W_k(keys) # ๅœจ็ปดๅบฆๆ‰ฉๅฑ•ๅŽ๏ผŒ # queries็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ๏ผŒ1๏ผŒnum_hidden) # key็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒ1๏ผŒโ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒnum_hiddens) # ไฝฟ็”จๅนฟๆ’ญๆ–นๅผ่ฟ›่กŒๆฑ‚ๅ’Œ features = queries.unsqueeze(2) + keys.unsqueeze(1) features = paddle.tanh(features) # self.w_vไป…ๆœ‰ไธ€ไธช่พ“ๅ‡บ๏ผŒๅ› ๆญคไปŽๅฝข็Šถไธญ็งป้™คๆœ€ๅŽ้‚ฃไธช็ปดๅบฆใ€‚ # scores็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ๏ผŒโ€œ้”ฎ-ๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ) scores = self.w_v(features).squeeze(-1) self.attention_weights = masked_softmax(scores, valid_lens) # values็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒโ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒๅ€ผ็š„็ปดๅบฆ) return paddle.bmm(self.dropout(self.attention_weights), values) #@save class DotProductAttention(nn.Layer): """็ผฉๆ”พ็‚น็งฏๆณจๆ„ๅŠ›""" def __init__(self, dropout, **kwargs): super(DotProductAttention, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) # queries็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ๏ผŒd) # keys็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒโ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒd) # values็š„ๅฝข็Šถ๏ผš(batch_size๏ผŒโ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒๅ€ผ็š„็ปดๅบฆ) # valid_lens็š„ๅฝข็Šถ:(batch_size๏ผŒ)ๆˆ–่€…(batch_size๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ) def forward(self, queries, keys, values, valid_lens=None): d = queries.shape[-1] # ่ฎพ็ฝฎtranspose_b=Trueไธบไบ†ไบคๆขkeys็š„ๆœ€ๅŽไธคไธช็ปดๅบฆ scores = paddle.bmm(queries, keys.transpose((0, 2, 1))) / math.sqrt(d) self.attention_weights = masked_softmax(scores, valid_lens) return paddle.bmm(self.dropout(self.attention_weights), values) """10.4""" #@save class AttentionDecoder(d2l.Decoder): """ๅธฆๆœ‰ๆณจๆ„ๅŠ›ๆœบๅˆถ่งฃ็ ๅ™จ็š„ๅŸบๆœฌๆŽฅๅฃ""" def __init__(self, **kwargs): super(AttentionDecoder, self).__init__(**kwargs) @property def attention_weights(self): raise NotImplementedError """10.5""" #@save class MultiHeadAttention(nn.Layer): def __init__(self, key_size, query_size, value_size, num_hiddens, num_heads, dropout, bias=False, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size, num_hiddens, bias_attr=bias) self.W_k = nn.Linear(key_size, num_hiddens, bias_attr=bias) self.W_v = nn.Linear(value_size, num_hiddens, bias_attr=bias) self.W_o = nn.Linear(num_hiddens, num_hiddens, bias_attr=bias) def forward(self, queries, keys, values, valid_lens): # queries๏ผŒkeys๏ผŒvalues็š„ๅฝข็Šถ: # (batch_size๏ผŒๆŸฅ่ฏขๆˆ–่€…โ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒnum_hiddens) # valid_lensใ€€็š„ๅฝข็Šถ: # (batch_size๏ผŒ)ๆˆ–(batch_size๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ) # ็ป่ฟ‡ๅ˜ๆขๅŽ๏ผŒ่พ“ๅ‡บ็š„queries๏ผŒkeys๏ผŒvaluesใ€€็š„ๅฝข็Šถ: # (batch_size*num_heads๏ผŒๆŸฅ่ฏขๆˆ–่€…โ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒ # num_hiddens/num_heads) queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: # ๅœจ่ฝด0๏ผŒๅฐ†็ฌฌไธ€้กน๏ผˆๆ ‡้‡ๆˆ–่€…็Ÿข้‡๏ผ‰ๅคๅˆถnum_headsๆฌก๏ผŒ # ็„ถๅŽๅฆ‚ๆญคๅคๅˆถ็ฌฌไบŒ้กน๏ผŒ็„ถๅŽ่ฏธๅฆ‚ๆญค็ฑปใ€‚ valid_lens_np = valid_lens.numpy() valid_lens_np = np.repeat(valid_lens_np, self.num_heads, axis=0) valid_lens = paddle.to_tensor(valid_lens_np) # output็š„ๅฝข็Šถ:(batch_size*num_heads๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ๏ผŒ # num_hiddens/num_heads) output = self.attention(queries, keys, values, valid_lens) # output_concat็š„ๅฝข็Šถ:(batch_size๏ผŒๆŸฅ่ฏข็š„ไธชๆ•ฐ๏ผŒnum_hiddens) output_concat = transpose_output(output, self.num_heads) return self.W_o(output_concat) #@save def transpose_qkv(X, num_heads): """ไธบไบ†ๅคšๆณจๆ„ๅŠ›ๅคด็š„ๅนถ่กŒ่ฎก็ฎ—่€Œๅ˜ๆขๅฝข็Šถ""" # ่พ“ๅ…ฅX็š„ๅฝข็Šถ:(batch_size๏ผŒๆŸฅ่ฏขๆˆ–่€…โ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒnum_hiddens) # ่พ“ๅ‡บX็š„ๅฝข็Šถ:(batch_size๏ผŒๆŸฅ่ฏขๆˆ–่€…โ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ๏ผŒnum_heads๏ผŒ # num_hiddens/num_heads) X = X.reshape((X.shape[0], X.shape[1], num_heads, -1)) # ่พ“ๅ‡บX็š„ๅฝข็Šถ:(batch_size๏ผŒnum_heads๏ผŒๆŸฅ่ฏขๆˆ–่€…โ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ, # num_hiddens/num_heads) X = X.transpose((0, 2, 1, 3)) # ๆœ€็ปˆ่พ“ๅ‡บ็š„ๅฝข็Šถ:(batch_size*num_heads,ๆŸฅ่ฏขๆˆ–่€…โ€œ้”ฎ๏ผๅ€ผโ€ๅฏน็š„ไธชๆ•ฐ, # num_hiddens/num_heads) return X.reshape((-1, X.shape[2], X.shape[3])) #@save def transpose_output(X, num_heads): """้€†่ฝฌtranspose_qkvๅ‡ฝๆ•ฐ็š„ๆ“ไฝœ""" X = X.reshape((-1, num_heads, X.shape[1], X.shape[2])) X = X.transpose((0, 2, 1, 3)) return X.reshape((X.shape[0], X.shape[1], -1)) """10.6""" #@save class PositionalEncoding(nn.Layer): """ไฝ็ฝฎ็ผ–็ """ def __init__(self, num_hiddens, dropout, max_len=1000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(dropout) # ๅˆ›ๅปบไธ€ไธช่ถณๅคŸ้•ฟ็š„P self.P = paddle.zeros((1, max_len, num_hiddens)) X = paddle.arange(max_len, dtype=paddle.float32).reshape( (-1, 1)) / paddle.pow(paddle.to_tensor([10000.0]), paddle.arange( 0, num_hiddens, 2, dtype=paddle.float32) / num_hiddens) self.P[:, :, 0::2] = paddle.sin(X) self.P[:, :, 1::2] = paddle.cos(X) def forward(self, X): X = X + self.P[:, :X.shape[1], :] return self.dropout(X) """10.7""" #@save class PositionWiseFFN(nn.Layer): """ๅŸบไบŽไฝ็ฝฎ็š„ๅ‰้ฆˆ็ฝ‘็ปœ""" def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs, **kwargs): super(PositionWiseFFN, self).__init__(**kwargs) self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens) self.relu = nn.ReLU() self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs) def forward(self, X): return self.dense2(self.relu(self.dense1(X))) #@save class AddNorm(nn.Layer): """ๆฎ‹ๅทฎ่ฟžๆŽฅๅŽ่ฟ›่กŒๅฑ‚่ง„่ŒƒๅŒ–""" def __init__(self, normalized_shape, dropout, **kwargs): super(AddNorm, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(normalized_shape) def forward(self, X, Y): return self.ln(self.dropout(Y) + X) #@save class EncoderBlock(nn.Layer): """transformer็ผ–็ ๅ™จๅ—""" def __init__(self, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias=False, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = d2l.MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias) self.addnorm1 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN( ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm2 = AddNorm(norm_shape, dropout) def forward(self, X, valid_lens): Y = self.addnorm1(X, self.attention(X, X, X, valid_lens)) return self.addnorm2(Y, self.ffn(Y)) #@save class TransformerEncoder(d2l.Encoder): """transformer็ผ–็ ๅ™จ""" def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, use_bias=False, **kwargs): super(TransformerEncoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_sublayer(str(i), EncoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias)) def forward(self, X, valid_lens, *args): # ๅ› ไธบไฝ็ฝฎ็ผ–็ ๅ€ผๅœจ-1ๅ’Œ1ไน‹้—ด๏ผŒ # ๅ› ๆญคๅตŒๅ…ฅๅ€ผไน˜ไปฅๅตŒๅ…ฅ็ปดๅบฆ็š„ๅนณๆ–นๆ น่ฟ›่กŒ็ผฉๆ”พ๏ผŒ # ็„ถๅŽๅ†ไธŽไฝ็ฝฎ็ผ–็ ็›ธๅŠ ใ€‚ X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self.attention_weights = [None] * len(self.blks) for i, blk in enumerate(self.blks): print(blk) X = blk(X, valid_lens) self.attention_weights[ i] = blk.attention.attention.attention_weights return X """11.1""" def annotate(text, xy, xytext): #@save d2l.plt.gca().annotate(text, xy=xy, xytext=xytext, arrowprops=dict(arrowstyle='->')) """11.3""" def train_2d(trainer, steps=20, f_grad=None): # @save """็”จๅฎšๅˆถ็š„่ฎญ็ปƒๆœบไผ˜ๅŒ–2D็›ฎๆ ‡ๅ‡ฝๆ•ฐ""" # s1ๅ’Œs2ๆ˜ฏ็จๅŽๅฐ†ไฝฟ็”จ็š„ๅ†…้ƒจ็Šถๆ€ๅ˜้‡ x1, x2, s1, s2 = -5, -2, 0, 0 results = [(x1, x2)] for i in range(steps): if f_grad: x1, x2, s1, s2 = trainer(x1, x2, s1, s2, f_grad) else: x1, x2, s1, s2 = trainer(x1, x2, s1, s2) results.append((x1, x2)) print(f'epoch {i + 1}, x1: {float(x1):f}, x2: {float(x2):f}') return results def show_trace_2d(f, results): # @save """ๆ˜พ็คบไผ˜ๅŒ–่ฟ‡็จ‹ไธญ2Dๅ˜้‡็š„่ฝจ่ฟน""" d2l.set_figsize() d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = paddle.meshgrid( paddle.arange(-5.5, 1.0, 0.1, dtype='float32'), paddle.arange(-3.0, 1.0, 0.1, dtype='float32')) d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4') d2l.plt.xlabel('x1') d2l.plt.ylabel('x2') """11.5""" #@save d2l.DATA_HUB['airfoil'] = (d2l.DATA_URL + 'airfoil_self_noise.dat', '76e5be1548fd8222e5074cf0faae75edff8cf93f') #@save def get_data_ch11(batch_size=10, n=1500): data = np.genfromtxt(d2l.download('airfoil'), dtype=np.float32, delimiter='\t') data = d2l.tensor((data - data.mean(axis=0)) / data.std(axis=0)) data_iter = d2l.load_array((data[:n, :-1], data[:n, -1]), batch_size, is_train=True) return data_iter, data.shape[1]-1 #@save def train_ch11(trainer_fn, states, hyperparams, data_iter, feature_dim, num_epochs=2): # ๅˆๅง‹ๅŒ–ๆจกๅž‹ w = d2l.tensor(d2l.normal(mean=0.0, std=0.01, shape=(feature_dim, 1),),stop_gradient=False) b = d2l.tensor(d2l.zeros((1,)), stop_gradient=False) net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss # ่ฎญ็ปƒๆจกๅž‹ animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs], ylim=[0.22, 0.35]) n, timer = 0, d2l.Timer() for _ in range(num_epochs): for X, y in data_iter: l = loss(net(X), y).mean() l.backward() w, b = trainer_fn([w, b], states, hyperparams) n += X.shape[0] if n % 200 == 0: timer.stop() animator.add(n/X.shape[0]/len(data_iter), (d2l.evaluate_loss(net, data_iter, loss),)) timer.start() print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch') return timer.cumsum(), animator.Y[0] #@save def train_concise_ch11(trainer_fn, hyperparams, data_iter, num_epochs=4): # ๅˆๅง‹ๅŒ–ๆจกๅž‹ net = nn.Sequential(nn.Linear(5, 1)) def init_weights(m): if type(m) == nn.Linear: paddle.nn.initializer.Normal(m.weight, std=0.01) net.apply(init_weights) optimizer = trainer_fn(parameters=net.parameters(), **hyperparams) loss = nn.MSELoss(reduction='none') animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs], ylim=[0.22, 0.35]) n, timer = 0, d2l.Timer() for _ in range(num_epochs): for X, y in data_iter: optimizer.clear_grad() out = net(X) y = y.reshape(out.shape) l = loss(out, y) l.mean().backward() optimizer.step() n += X.shape[0] if n % 200 == 0: timer.stop() # MSELoss่ฎก็ฎ—ๅนณๆ–น่ฏฏๅทฎๆ—ถไธๅธฆ็ณปๆ•ฐ1/2 animator.add(n/X.shape[0]/len(data_iter), (d2l.evaluate_loss(net, data_iter, loss) / 2,)) timer.start() print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch') """12.1""" #@save class Benchmark: """็”จไบŽๆต‹้‡่ฟ่กŒๆ—ถ้—ด""" def __init__(self, description='Done'): self.description = description def __enter__(self): self.timer = d2l.Timer() return self def __exit__(self, *args): print(f'{self.description}: {self.timer.stop():.4f} sec') '''12.5''' # ๅฎšไน‰้ฃžๆกจๅˆ†ๅ‘ๅ‡ฝๆ•ฐ๏ผŒๅฐ†ๆ•ฐๆฎๅˆ†ๅ—ๅŽๅˆ†ๅ‘็ป™ๆ‰€ๆœ‰GPU def paddlescatter(XY, devices): xy = int(XY.shape[0]/len(devices)) # ๆ นๆฎGPUๆ•ฐ็›ฎ่ฎก็ฎ—ๅˆ†ๅ—ๅคงๅฐ return [paddle.to_tensor(XY[i * xy:(i + 1) * xy], place=device) for i, device in enumerate(devices)] #@save # ๅฐ†Xๅ’Œyๆ‹†ๅˆ†ๅˆฐๅคšไธช่ฎพๅค‡ไธŠ def split_batch(X, y, devices): """ๅฐ†Xๅ’Œyๆ‹†ๅˆ†ๅˆฐๅคšไธช่ฎพๅค‡ไธŠ""" assert X.shape[0] == y.shape[0] return (paddlescatter(X, devices), paddlescatter(y, devices)) '''12.6''' #@save def resnet18(num_classes, in_channels=1): """็จๅŠ ไฟฎๆ”น็š„ResNet-18ๆจกๅž‹""" def resnet_block(in_channels, out_channels, num_residuals, first_block=False): blk = [] for i in range(num_residuals): if i == 0 and not first_block: blk.append(d2l.Residual(in_channels, out_channels, use_1x1conv=True, strides=2)) else: blk.append(d2l.Residual(out_channels, out_channels)) return nn.Sequential(*blk) # ่ฏฅๆจกๅž‹ไฝฟ็”จไบ†ๆ›ดๅฐ็š„ๅท็งฏๆ ธใ€ๆญฅ้•ฟๅ’Œๅกซๅ……๏ผŒ่€Œไธ”ๅˆ ้™คไบ†ๆœ€ๅคงๆฑ‡่šๅฑ‚ net = nn.Sequential( nn.Conv2D(in_channels, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2D(64), nn.ReLU()) net.add_sublayer("resnet_block1", resnet_block( 64, 64, 2, first_block=True)) net.add_sublayer("resnet_block2", resnet_block(64, 128, 2)) net.add_sublayer("resnet_block3", resnet_block(128, 256, 2)) net.add_sublayer("resnet_block4", resnet_block(256, 512, 2)) net.add_sublayer("global_avg_pool", nn.AdaptiveAvgPool2D((1, 1))) net.add_sublayer("fc", nn.Sequential(nn.Flatten(), nn.Linear(512, num_classes))) return net """13.1""" def train_batch_ch13(net, X, y, loss, trainer, devices): """็”จๅคšGPU่ฟ›่กŒๅฐๆ‰น้‡่ฎญ็ปƒ Defined in :numref:`sec_image_augmentation`""" if isinstance(X, list): # ๅพฎ่ฐƒBERTไธญๆ‰€้œ€๏ผˆ็จๅŽ่ฎจ่ฎบ๏ผ‰ X = [paddle.to_tensor(x, place=devices[0]) for x in X] else: X = paddle.to_tensor(X, place=devices[0]) y = paddle.to_tensor(y, place=devices[0]) net.train() trainer.clear_grad() pred = net(X) l = loss(pred, y) l.sum().backward() trainer.step() train_loss_sum = l.sum() train_acc_sum = d2l.accuracy(pred, y) return train_loss_sum, train_acc_sum def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices=d2l.try_all_gpus()): """็”จๅคšGPU่ฟ›่กŒๆจกๅž‹่ฎญ็ปƒ Defined in :numref:`sec_image_augmentation`""" timer, num_batches = d2l.Timer(), len(train_iter) animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1], legend=['train loss', 'train acc', 'test acc']) net = paddle.DataParallel(net) for epoch in range(num_epochs): # 4ไธช็ปดๅบฆ๏ผšๅ‚จๅญ˜่ฎญ็ปƒๆŸๅคฑ๏ผŒ่ฎญ็ปƒๅ‡†็กฎๅบฆ๏ผŒๅฎžไพ‹ๆ•ฐ๏ผŒ็‰น็‚นๆ•ฐ metric = d2l.Accumulator(4) for i, (features, labels) in enumerate(train_iter): timer.start() l, acc = train_batch_ch13( net, features, labels, loss, trainer, devices) metric.add(l, acc, labels.shape[0], labels.numel()) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[2], metric[1] / metric[3], None)) test_acc = d2l.evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc)) print(f'loss {metric[0] / metric[2]:.3f}, train acc ' f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}') print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on ' f'{str(devices)}') """13.2""" #@save d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip', 'fba480ffa8aa7e0febbb511d181409f899b9baa5') """13.3""" #@save def bbox_to_rect(bbox, color): """Defined in :numref:`sec_bbox`""" # ๅฐ†่พน็•Œๆก†(ๅทฆไธŠx,ๅทฆไธŠy,ๅณไธ‹x,ๅณไธ‹y)ๆ ผๅผ่ฝฌๆขๆˆmatplotlibๆ ผๅผ๏ผš # ((ๅทฆไธŠx,ๅทฆไธŠy),ๅฎฝ,้ซ˜) return d2l.plt.Rectangle( xy=(bbox[0], bbox[1]), width=bbox[2] - bbox[0], height=bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=2) #@save def box_corner_to_center(boxes): """ไปŽ๏ผˆๅทฆไธŠ๏ผŒๅณไธ‹๏ผ‰่ฝฌๆขๅˆฐ๏ผˆไธญ้—ด๏ผŒๅฎฝๅบฆ๏ผŒ้ซ˜ๅบฆ๏ผ‰""" x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 boxes = paddle.stack((cx, cy, w, h), axis=-1) return boxes #@save def box_center_to_corner(boxes): """ไปŽ๏ผˆไธญ้—ด๏ผŒๅฎฝๅบฆ๏ผŒ้ซ˜ๅบฆ๏ผ‰่ฝฌๆขๅˆฐ๏ผˆๅทฆไธŠ๏ผŒๅณไธ‹๏ผ‰""" cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] x1 = cx - 0.5 * w y1 = cy - 0.5 * h x2 = cx + 0.5 * w y2 = cy + 0.5 * h boxes = paddle.stack((x1, y1, x2, y2), axis=-1) return boxes """13.4""" #@save def multibox_prior(data, sizes, ratios): """็”Ÿๆˆไปฅๆฏไธชๅƒ็ด ไธบไธญๅฟƒๅ…ทๆœ‰ไธๅŒๅฝข็Šถ็š„้”šๆก† Defined in :numref:`sec_anchor`""" in_height, in_width = data.shape[-2:] device, num_sizes, num_ratios = data.place, len(sizes), len(ratios) boxes_per_pixel = (num_sizes + num_ratios - 1) size_tensor = d2l.tensor(sizes, place=device) ratio_tensor = d2l.tensor(ratios, place=device) # ไธบไบ†ๅฐ†้”š็‚น็งปๅŠจๅˆฐๅƒ็ด ็š„ไธญๅฟƒ๏ผŒ้œ€่ฆ่ฎพ็ฝฎๅ็งป้‡ใ€‚ # ๅ› ไธบไธ€ไธชๅƒ็ด ็š„็š„้ซ˜ไธบ1ไธ”ๅฎฝไธบ1๏ผŒๆˆ‘ไปฌ้€‰ๆ‹ฉๅ็งปๆˆ‘ไปฌ็š„ไธญๅฟƒ0.5 offset_h, offset_w = 0.5, 0.5 steps_h = 1.0 / in_height # ๅœจy่ฝดไธŠ็ผฉๆ”พๆญฅ้•ฟ steps_w = 1.0 / in_width # ๅœจx่ฝดไธŠ็ผฉๆ”พๆญฅ้•ฟ # ็”Ÿๆˆ้”šๆก†็š„ๆ‰€ๆœ‰ไธญๅฟƒ็‚น center_h = (paddle.arange(in_height) + offset_h) * steps_h center_w = (paddle.arange(in_width) + offset_w) * steps_w shift_y, shift_x = paddle.meshgrid(center_h, center_w) shift_y, shift_x = paddle.reshape(shift_y, [-1]), paddle.reshape(shift_x, [-1]) # ็”Ÿๆˆโ€œboxes_per_pixelโ€ไธช้ซ˜ๅ’Œๅฎฝ๏ผŒ # ไน‹ๅŽ็”จไบŽๅˆ›ๅปบ้”šๆก†็š„ๅ››่ง’ๅๆ ‡(xmin,xmax,ymin,ymax) w = paddle.concat((size_tensor * paddle.sqrt(ratio_tensor[0]), sizes[0] * paddle.sqrt(ratio_tensor[1:]))) \ * in_height / in_width # ๅค„็†็Ÿฉๅฝข่พ“ๅ…ฅ h = paddle.concat((size_tensor / paddle.sqrt(ratio_tensor[0]), sizes[0] / paddle.sqrt(ratio_tensor[1:]))) # ้™คไปฅ2ๆฅ่Žทๅพ—ๅŠ้ซ˜ๅ’ŒๅŠๅฎฝ anchor_manipulations = paddle.tile(paddle.stack((-w, -h, w, h)).T, repeat_times=[in_height * in_width, 1]) / 2 # ๆฏไธชไธญๅฟƒ็‚น้ƒฝๅฐ†ๆœ‰โ€œboxes_per_pixelโ€ไธช้”šๆก†๏ผŒ # ๆ‰€ไปฅ็”Ÿๆˆๅซๆ‰€ๆœ‰้”šๆก†ไธญๅฟƒ็š„็ฝ‘ๆ ผ๏ผŒ้‡ๅคไบ†โ€œboxes_per_pixelโ€ๆฌก out_grid = paddle.stack([shift_x, shift_y, shift_x, shift_y], axis=1) out_grid = paddle.tile(out_grid, repeat_times=[boxes_per_pixel]).reshape((-1, out_grid.shape[1])) output = out_grid + anchor_manipulations return output.unsqueeze(0) def show_bboxes(axes, bboxes, labels=None, colors=None): """ๆ˜พ็คบๆ‰€ๆœ‰่พน็•Œๆก† Defined in :numref:`sec_anchor`""" def _make_list(obj, default_values=None): if obj is None: obj = default_values elif not isinstance(obj, (list, tuple)): obj = [obj] return obj labels = _make_list(labels) colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c']) for i, bbox in enumerate(bboxes): color = colors[i % len(colors)] rect = d2l.bbox_to_rect(d2l.numpy(bbox), color) axes.add_patch(rect) if labels and len(labels) > i: text_color = 'k' if color == 'w' else 'w' axes.text(rect.xy[0], rect.xy[1], labels[i], va='center', ha='center', fontsize=9, color=text_color, bbox=dict(facecolor=color, lw=0)) #@save def box_iou(boxes1, boxes2): """่ฎก็ฎ—ไธคไธช้”šๆก†ๆˆ–่พน็•Œๆก†ๅˆ—่กจไธญๆˆๅฏน็š„ไบคๅนถๆฏ”""" box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])) # boxes1,boxes2,areas1,areas2็š„ๅฝข็Šถ: # boxes1๏ผš(boxes1็š„ๆ•ฐ้‡,4), # boxes2๏ผš(boxes2็š„ๆ•ฐ้‡,4), # areas1๏ผš(boxes1็š„ๆ•ฐ้‡,), # areas2๏ผš(boxes2็š„ๆ•ฐ้‡,) areas1 = box_area(boxes1) areas2 = box_area(boxes2) # inter_upperlefts,inter_lowerrights,inters็š„ๅฝข็Šถ: # (boxes1็š„ๆ•ฐ้‡,boxes2็š„ๆ•ฐ้‡,2) inter_upperlefts = paddle.maximum(boxes1[:, None, :2], boxes2[:, :2]) inter_lowerrights = paddle.minimum(boxes1[:, None, 2:], boxes2[:, 2:]) inters = (inter_lowerrights - inter_upperlefts).clip(min=0) # inter_areasandunion_areas็š„ๅฝข็Šถ:(boxes1็š„ๆ•ฐ้‡,boxes2็š„ๆ•ฐ้‡) inter_areas = inters[:, :, 0] * inters[:, :, 1] union_areas = areas1[:, None] + areas2 - inter_areas return inter_areas / union_areas #@save def assign_anchor_to_bbox(ground_truth, anchors, iou_threshold=0.5): """ๅฐ†ๆœ€ๆŽฅ่ฟ‘็š„็œŸๅฎž่พน็•Œๆก†ๅˆ†้…็ป™้”šๆก†""" num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0] # ไฝไบŽ็ฌฌi่กŒๅ’Œ็ฌฌjๅˆ—็š„ๅ…ƒ็ด x_ijๆ˜ฏ้”šๆก†iๅ’Œ็œŸๅฎž่พน็•Œๆก†j็š„IoU jaccard = box_iou(anchors, ground_truth) # ๅฏนไบŽๆฏไธช้”šๆก†๏ผŒๅˆ†้…็š„็œŸๅฎž่พน็•Œๆก†็š„ๅผ ้‡ anchors_bbox_map = paddle.full((num_anchors,), -1, dtype=paddle.int64) # ๆ นๆฎ้˜ˆๅ€ผ๏ผŒๅ†ณๅฎšๆ˜ฏๅฆๅˆ†้…็œŸๅฎž่พน็•Œๆก† indices = paddle.argmax(jaccard, axis=1) max_ious = paddle.max(jaccard, axis=1) anc_i = paddle.nonzero(max_ious >= 0.5).reshape([-1]) box_j = indices[max_ious >= 0.5] anchors_bbox_map[anc_i] = box_j col_discard = paddle.full((num_anchors,), -1) row_discard = paddle.full((num_gt_boxes,), -1) for _ in range(num_gt_boxes): max_idx = paddle.argmax(jaccard) box_idx = (max_idx % num_gt_boxes).astype(paddle.int64) anc_idx = (max_idx / num_gt_boxes).astype(paddle.int64) anchors_bbox_map[anc_idx] = box_idx jaccard[:, box_idx] = col_discard jaccard[anc_idx, :] = row_discard return anchors_bbox_map #@save def offset_boxes(anchors, assigned_bb, eps=1e-6): """ๅฏน้”šๆก†ๅ็งป้‡็š„่ฝฌๆข""" c_anc = d2l.box_corner_to_center(anchors) c_assigned_bb = d2l.box_corner_to_center(assigned_bb) offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:] offset_wh = 5 * paddle.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:]) offset = paddle.concat([offset_xy, offset_wh], axis=1) return offset #@save def multibox_target(anchors, labels): """ไฝฟ็”จ็œŸๅฎž่พน็•Œๆก†ๆ ‡่ฎฐ้”šๆก†""" batch_size, anchors = labels.shape[0], anchors.squeeze(0) batch_offset, batch_mask, batch_class_labels = [], [], [] num_anchors = anchors.shape[0] for i in range(batch_size): label = labels[i, :, :] anchors_bbox_map = assign_anchor_to_bbox( label[:, 1:], anchors) bbox_mask = ((anchors_bbox_map >= 0).astype(paddle.float32).unsqueeze(-1)).tile( [1, 4]) # ๅฐ†็ฑปๆ ‡็ญพๅ’Œๅˆ†้…็š„่พน็•Œๆก†ๅๆ ‡ๅˆๅง‹ๅŒ–ไธบ้›ถ class_labels = paddle.zeros([num_anchors], dtype=paddle.int64) assigned_bb = paddle.zeros((num_anchors, 4), dtype=paddle.float32) # ไฝฟ็”จ็œŸๅฎž่พน็•Œๆก†ๆฅๆ ‡่ฎฐ้”šๆก†็š„็ฑปๅˆซใ€‚ # ๅฆ‚ๆžœไธ€ไธช้”šๆก†ๆฒกๆœ‰่ขซๅˆ†้…๏ผŒๆˆ‘ไปฌๆ ‡่ฎฐๅ…ถไธบ่ƒŒๆ™ฏ๏ผˆๅ€ผไธบ้›ถ๏ผ‰ indices_true = paddle.nonzero(anchors_bbox_map >= 0) bb_idx = anchors_bbox_map[indices_true] class_labels[indices_true] = label[:, 0][bb_idx].astype(paddle.int64) + 1 assigned_bb[indices_true] = label[:, 1:][bb_idx] # ๅ็งป้‡่ฝฌๆข offset = offset_boxes(anchors, assigned_bb) * bbox_mask batch_offset.append(offset.reshape([-1])) batch_mask.append(bbox_mask.reshape([-1])) batch_class_labels.append(class_labels) bbox_offset = paddle.stack(batch_offset) bbox_mask = paddle.stack(batch_mask) class_labels = paddle.stack(batch_class_labels) return (bbox_offset, bbox_mask, class_labels) #@save def offset_inverse(anchors, offset_preds): """ๆ นๆฎๅธฆๆœ‰้ข„ๆต‹ๅ็งป้‡็š„้”šๆก†ๆฅ้ข„ๆต‹่พน็•Œๆก†""" anc = d2l.box_corner_to_center(anchors) pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2] pred_bbox_wh = paddle.exp(offset_preds[:, 2:] / 5) * anc[:, 2:] pred_bbox = paddle.concat((pred_bbox_xy, pred_bbox_wh), axis=1) predicted_bbox = d2l.box_center_to_corner(pred_bbox) return predicted_bbox #@save def nms(boxes, scores, iou_threshold): """ๅฏน้ข„ๆต‹่พน็•Œๆก†็š„็ฝฎไฟกๅบฆ่ฟ›่กŒๆŽ’ๅบ""" B = paddle.argsort(scores, axis=-1, descending=True) keep = [] # ไฟ็•™้ข„ๆต‹่พน็•Œๆก†็š„ๆŒ‡ๆ ‡ while B.numel() > 0: i = B.numpy()[0] keep.append(i) if B.numel() == 1: break iou = box_iou(boxes[i].reshape([-1, 4]), boxes[B[1:]].reshape([-1, 4])).reshape([-1]) inds = paddle.nonzero(iou <= iou_threshold).reshape([-1]) B = B[inds + 1] return paddle.to_tensor(keep) #@save def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5, pos_threshold=0.009999999): """ไฝฟ็”จ้žๆžๅคงๅ€ผๆŠ‘ๅˆถๆฅ้ข„ๆต‹่พน็•Œๆก†""" place, batch_size = cls_probs.place, cls_probs.shape[0] anchors = anchors.squeeze(0) num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2] out = [] for i in range(batch_size): cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape([-1, 4]) conf = paddle.max(cls_prob[1:], 0) class_id = paddle.argmax(cls_prob[1:], 0).numpy() predicted_bb = offset_inverse(anchors, offset_pred) keep = nms(predicted_bb, conf, nms_threshold) # ๆ‰พๅˆฐๆ‰€ๆœ‰็š„non_keep็ดขๅผ•๏ผŒๅนถๅฐ†็ฑป่ฎพ็ฝฎไธบ่ƒŒๆ™ฏ all_idx = paddle.arange(num_anchors, dtype='int64') combined = paddle.concat((keep, all_idx)) uniques, counts = combined.unique(return_counts=True) non_keep = uniques[counts == 1] all_id_sorted = paddle.concat([keep, non_keep]) class_id[non_keep] = -1 class_id = class_id[all_id_sorted] conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted] # pos_thresholdๆ˜ฏไธ€ไธช็”จไบŽ้ž่ƒŒๆ™ฏ้ข„ๆต‹็š„้˜ˆๅ€ผ below_min_idx = (conf < pos_threshold) conf = conf.numpy() class_id[below_min_idx.numpy()] = -1 conf[below_min_idx.numpy()] = 1 - conf[below_min_idx.numpy()] pred_info = paddle.concat((paddle.to_tensor(class_id, dtype='float32').unsqueeze(1), paddle.to_tensor(conf, dtype='float32').unsqueeze(1), predicted_bb), axis=1) out.append(pred_info) return paddle.stack(out) """13.6""" #@save d2l.DATA_HUB['banana-detection'] = ( d2l.DATA_URL + 'banana-detection.zip', '5de26c8fce5ccdea9f91267273464dc968d20d72') #@save def read_data_bananas(is_train=True): """่ฏปๅ–้ฆ™่•‰ๆฃ€ๆต‹ๆ•ฐๆฎ้›†ไธญ็š„ๅ›พๅƒๅ’Œๆ ‡็ญพ""" data_dir = d2l.download_extract('banana-detection') csv_fname = os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'label.csv') csv_data = pd.read_csv(csv_fname) csv_data = csv_data.set_index('img_name') images, targets = [], [] for img_name, target in csv_data.iterrows(): paddle.vision.set_image_backend('cv2') images.append(paddlevision.image_load(os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'images', f'{img_name}'))[..., ::-1]) # ่ฟ™้‡Œ็š„targetๅŒ…ๅซ๏ผˆ็ฑปๅˆซ๏ผŒๅทฆไธŠ่ง’x๏ผŒๅทฆไธŠ่ง’y๏ผŒๅณไธ‹่ง’x๏ผŒๅณไธ‹่ง’y๏ผ‰ # ๅ…ถไธญๆ‰€ๆœ‰ๅ›พๅƒ้ƒฝๅ…ทๆœ‰็›ธๅŒ็š„้ฆ™่•‰็ฑป๏ผˆ็ดขๅผ•ไธบ0๏ผ‰ targets.append(list(target)) return images, paddle.to_tensor(targets).unsqueeze(1) / 256 #@save class BananasDataset(paddle.io.Dataset): """ไธ€ไธช็”จไบŽๅŠ ่ฝฝ้ฆ™่•‰ๆฃ€ๆต‹ๆ•ฐๆฎ้›†็š„่‡ชๅฎšไน‰ๆ•ฐๆฎ้›†""" def __init__(self, is_train): self.features, self.labels = read_data_bananas(is_train) print('read ' + str(len(self.features)) + (f' training examples' if is_train else f' validation examples')) def __getitem__(self, idx): return (paddle.to_tensor(self.features[idx], dtype='float32').transpose([2, 0, 1]), self.labels[idx]) def __len__(self): return len(self.features) #@save def load_data_bananas(batch_size): """ๅŠ ่ฝฝ้ฆ™่•‰ๆฃ€ๆต‹ๆ•ฐๆฎ้›†""" train_iter = paddle.io.DataLoader(BananasDataset(is_train=True), batch_size=batch_size, shuffle=True) val_iter = paddle.io.DataLoader(BananasDataset(is_train=False), batch_size=batch_size) return train_iter, val_iter """13.9""" d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar', '4e443f8a2eca6b1dac8a6c57641b67dd40621a49') def read_voc_images(voc_dir, is_train=True): """่ฏปๅ–ๆ‰€ๆœ‰VOCๅ›พๅƒๅนถๆ ‡ๆณจ Defined in :numref:`sec_semantic_segmentation`""" txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation', 'train.txt' if is_train else 'val.txt') with open(txt_fname, 'r') as f: images = f.read().split() features, labels = [], [] for i, fname in enumerate(images): features.append(paddle.to_tensor(paddle.vision.image.image_load(os.path.join( voc_dir, 'JPEGImages', f'{fname}.jpg'), backend='cv2')[..., ::-1], dtype=paddle.float32).transpose( [2, 0, 1])) labels.append(paddle.to_tensor(paddle.vision.image.image_load(os.path.join( voc_dir, 'SegmentationClass', f'{fname}.png'), backend='cv2')[..., ::-1], dtype=paddle.float32).transpose( [2, 0, 1])) return features, labels VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor'] def voc_colormap2label(): """ๆž„ๅปบไปŽRGBๅˆฐVOC็ฑปๅˆซ็ดขๅผ•็š„ๆ˜ ๅฐ„ Defined in :numref:`sec_semantic_segmentation`""" colormap2label = paddle.zeros([256 ** 3], dtype=paddle.int64) for i, colormap in enumerate(VOC_COLORMAP): colormap2label[ (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i return colormap2label def voc_label_indices(colormap, colormap2label): """ๅฐ†VOCๆ ‡็ญพไธญ็š„RGBๅ€ผๆ˜ ๅฐ„ๅˆฐๅฎƒไปฌ็š„็ฑปๅˆซ็ดขๅผ• Defined in :numref:`sec_semantic_segmentation`""" colormap = colormap.transpose([1, 2, 0]).astype('int32') idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256 + colormap[:, :, 2]) return colormap2label[idx] def voc_rand_crop(feature, label, height, width): """้šๆœบ่ฃๅ‰ช็‰นๅพๅ’Œๆ ‡็ญพๅ›พๅƒ Defined in :numref:`sec_semantic_segmentation`""" rect = paddle.vision.transforms.RandomCrop((height, width))._get_param( img=feature, output_size=(height, width)) feature = paddle.vision.transforms.crop(feature, *rect) label = paddle.vision.transforms.crop(label, *rect) return feature, label class VOCSegDataset(paddle.io.Dataset): """ไธ€ไธช็”จไบŽๅŠ ่ฝฝVOCๆ•ฐๆฎ้›†็š„่‡ชๅฎšไน‰ๆ•ฐๆฎ้›† Defined in :numref:`sec_semantic_segmentation`""" def __init__(self, is_train, crop_size, voc_dir): self.transform = paddle.vision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.crop_size = crop_size features, labels = read_voc_images(voc_dir, is_train=is_train) self.features = [self.normalize_image(feature) for feature in self.filter(features)] self.labels = self.filter(labels) self.colormap2label = voc_colormap2label() print('read ' + str(len(self.features)) + ' examples') def normalize_image(self, img): return self.transform(img.astype(paddle.float32) / 255) def filter(self, imgs): return [img for img in imgs if ( img.shape[1] >= self.crop_size[0] and img.shape[2] >= self.crop_size[1])] def __getitem__(self, idx): feature, label = voc_rand_crop(self.features[idx], self.labels[idx], *self.crop_size) return (feature, voc_label_indices(label, self.colormap2label)) def __len__(self): return len(self.features) def load_data_voc(batch_size, crop_size): """ๅŠ ่ฝฝVOC่ฏญไน‰ๅˆ†ๅ‰ฒๆ•ฐๆฎ้›† Defined in :numref:`sec_semantic_segmentation`""" voc_dir = d2l.download_extract('voc2012', os.path.join( 'VOCdevkit', 'VOC2012')) num_workers = d2l.get_dataloader_workers() train_iter = paddle.io.DataLoader( VOCSegDataset(True, crop_size, voc_dir), batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers) test_iter = paddle.io.DataLoader( VOCSegDataset(False, crop_size, voc_dir), batch_size=batch_size, drop_last=True, num_workers=num_workers) return train_iter, test_iter """13.13""" d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip', '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd') def read_csv_labels(fname): """่ฏปๅ–fnameๆฅ็ป™ๆ ‡็ญพๅญ—ๅ…ธ่ฟ”ๅ›žไธ€ไธชๆ–‡ไปถๅ""" with open(fname, 'r') as f: # ่ทณ่ฟ‡ๆ–‡ไปถๅคด่กŒ(ๅˆ—ๅ) lines = f.readlines()[1:] tokens = [l.rstrip().split(',') for l in lines] return dict(((name, label) for name, label in tokens)) def copyfile(filename, target_dir): """ๅฐ†ๆ–‡ไปถๅคๅˆถๅˆฐ็›ฎๆ ‡็›ฎๅฝ•""" os.makedirs(target_dir, exist_ok=True) shutil.copy(filename, target_dir) def reorg_train_valid(data_dir, labels, valid_ratio): """ๅฐ†้ชŒ่ฏ้›†ไปŽๅŽŸๅง‹็š„่ฎญ็ปƒ้›†ไธญๆ‹†ๅˆ†ๅ‡บๆฅ""" # ่ฎญ็ปƒๆ•ฐๆฎ้›†ไธญๆ ทๆœฌๆœ€ๅฐ‘็š„็ฑปๅˆซไธญ็š„ๆ ทๆœฌๆ•ฐ n = collections.Counter(labels.values()).most_common()[-1][1] # ้ชŒ่ฏ้›†ไธญๆฏไธช็ฑปๅˆซ็š„ๆ ทๆœฌๆ•ฐ n_valid_per_label = max(1, math.floor(n * valid_ratio)) label_count = {} for train_file in os.listdir(os.path.join(data_dir, 'train')): label = labels[train_file.split('.')[0]] fname = os.path.join(data_dir, 'train', train_file) copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train_valid', label)) if label not in label_count or label_count[label] < n_valid_per_label: copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'valid', label)) label_count[label] = label_count.get(label, 0) + 1 else: copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train', label)) return n_valid_per_label def reorg_test(data_dir): """ๅœจ้ข„ๆต‹ๆœŸ้—ดๆ•ด็†ๆต‹่ฏ•้›†๏ผŒไปฅๆ–นไพฟ่ฏปๅ–""" for test_file in os.listdir(os.path.join(data_dir, 'test')): copyfile(os.path.join(data_dir, 'test', test_file), os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')) """13.14""" d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip', '0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d') """14.3""" d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip', '319d85e578af0cdc590547f26231e4e31cdf1e42') def read_ptb(): """ๅฐ†PTBๆ•ฐๆฎ้›†ๅŠ ่ฝฝๅˆฐๆ–‡ๆœฌ่กŒ็š„ๅˆ—่กจไธญ""" data_dir = d2l.download_extract('ptb') # Readthetrainingset. with open(os.path.join(data_dir, 'ptb.train.txt')) as f: raw_text = f.read() return [line.split() for line in raw_text.split('\n')] def subsample(sentences, vocab): """ไธ‹้‡‡ๆ ท้ซ˜้ข‘่ฏ""" # ๆŽ’้™คๆœช็Ÿฅ่ฏๅ…ƒ'<unk>' sentences = [[token for token in line if vocab[token] != vocab.unk] for line in sentences] counter = d2l.count_corpus(sentences) num_tokens = sum(counter.values()) # ๅฆ‚ๆžœๅœจไธ‹้‡‡ๆ ทๆœŸ้—ดไฟ็•™่ฏๅ…ƒ๏ผŒๅˆ™่ฟ”ๅ›žTrue def keep(token): return(random.uniform(0, 1) < math.sqrt(1e-4 / counter[token] * num_tokens)) return ([[token for token in line if keep(token)] for line in sentences], counter) def get_centers_and_contexts(corpus, max_window_size): """่ฟ”ๅ›ž่ทณๅ…ƒๆจกๅž‹ไธญ็š„ไธญๅฟƒ่ฏๅ’ŒไธŠไธ‹ๆ–‡่ฏ""" centers, contexts = [], [] for line in corpus: # ่ฆๅฝขๆˆโ€œไธญๅฟƒ่ฏ-ไธŠไธ‹ๆ–‡่ฏโ€ๅฏน๏ผŒๆฏไธชๅฅๅญ่‡ณๅฐ‘้œ€่ฆๆœ‰2ไธช่ฏ if len(line) < 2: continue centers += line for i in range(len(line)): # ไธŠไธ‹ๆ–‡็ช—ๅฃไธญ้—ดi window_size = random.randint(1, max_window_size) indices = list(range(max(0, i - window_size), min(len(line), i + 1 + window_size))) # ไปŽไธŠไธ‹ๆ–‡่ฏไธญๆŽ’้™คไธญๅฟƒ่ฏ indices.remove(i) contexts.append([line[idx] for idx in indices]) return centers, contexts class RandomGenerator: """ๆ นๆฎnไธช้‡‡ๆ ทๆƒ้‡ๅœจ{1,...,n}ไธญ้šๆœบๆŠฝๅ–""" def __init__(self, sampling_weights): # Exclude self.population = list(range(1, len(sampling_weights) + 1)) self.sampling_weights = sampling_weights self.candidates = [] self.i = 0 def draw(self): if self.i == len(self.candidates): # ็ผ“ๅญ˜kไธช้šๆœบ้‡‡ๆ ท็ป“ๆžœ self.candidates = random.choices( self.population, self.sampling_weights, k=10000) self.i = 0 self.i += 1 return self.candidates[self.i - 1] def get_negatives(all_contexts, vocab, counter, K): """่ฟ”ๅ›ž่ดŸ้‡‡ๆ ทไธญ็š„ๅ™ชๅฃฐ่ฏ""" # ็ดขๅผ•ไธบ1ใ€2ใ€...๏ผˆ็ดขๅผ•0ๆ˜ฏ่ฏ่กจไธญๆŽ’้™ค็š„ๆœช็Ÿฅๆ ‡่ฎฐ๏ผ‰ sampling_weights = [counter[vocab.to_tokens(i)]**0.75 for i in range(1, len(vocab))] all_negatives, generator = [], RandomGenerator(sampling_weights) for contexts in all_contexts: negatives = [] while len(negatives) < len(contexts) * K: neg = generator.draw() # ๅ™ชๅฃฐ่ฏไธ่ƒฝๆ˜ฏไธŠไธ‹ๆ–‡่ฏ if neg not in contexts: negatives.append(neg) all_negatives.append(negatives) return all_negatives def batchify(data): """่ฟ”ๅ›žๅธฆๆœ‰่ดŸ้‡‡ๆ ท็š„่ทณๅ…ƒๆจกๅž‹็š„ๅฐๆ‰น้‡ๆ ทๆœฌ""" max_len = max(len(c) + len(n) for _, c, n in data) centers, contexts_negatives, masks, labels = [], [], [], [] for center, context, negative in data: cur_len = len(context) + len(negative) centers += [center] contexts_negatives += \ [context + negative + [0] * (max_len - cur_len)] masks += [[1] * cur_len + [0] * (max_len - cur_len)] labels += [[1] * len(context) + [0] * (max_len - len(context))] return (paddle.to_tensor(centers).reshape((-1, 1)), paddle.to_tensor( contexts_negatives), paddle.to_tensor(masks), paddle.to_tensor(labels)) def load_data_ptb(batch_size, max_window_size, num_noise_words): """ไธ‹่ฝฝPTBๆ•ฐๆฎ้›†๏ผŒ็„ถๅŽๅฐ†ๅ…ถๅŠ ่ฝฝๅˆฐๅ†…ๅญ˜ไธญ""" num_workers = d2l.get_dataloader_workers() sentences = read_ptb() vocab = d2l.Vocab(sentences, min_freq=10) subsampled, counter = subsample(sentences, vocab) corpus = [vocab[line] for line in subsampled] all_centers, all_contexts = get_centers_and_contexts( corpus, max_window_size) all_negatives = get_negatives( all_contexts, vocab, counter, num_noise_words) class PTBDataset(paddle.io.Dataset): def __init__(self, centers, contexts, negatives): assert len(centers) == len(contexts) == len(negatives) self.centers = centers self.contexts = contexts self.negatives = negatives def __getitem__(self, index): return (self.centers[index], self.contexts[index], self.negatives[index]) def __len__(self): return len(self.centers) dataset = PTBDataset(all_centers, all_contexts, all_negatives) data_iter = paddle.io.DataLoader( dataset, batch_size=batch_size, shuffle=True, collate_fn=batchify, num_workers=num_workers) return data_iter, vocab generator = RandomGenerator([2, 3, 4]) [generator.draw() for _ in range(10)] """14.7""" d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip', '0b8703943ccdb6eb788e6f091b8946e82231bc4d') d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip', 'cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a') d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip', 'b5116e234e9eb9076672cfeabf5469f3eec904fa') d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip', 'c1816da3821ae9f43899be655002f6c723e91b88') class TokenEmbedding: """GloVeๅตŒๅ…ฅ""" def __init__(self, embedding_name): """Defined in :numref:`sec_synonyms`""" self.idx_to_token, self.idx_to_vec = self._load_embedding( embedding_name) self.unknown_idx = 0 self.token_to_idx = {token: idx for idx, token in enumerate(self.idx_to_token)} def _load_embedding(self, embedding_name): idx_to_token, idx_to_vec = ['<unk>'], [] data_dir = d2l.download_extract(embedding_name) # GloVe็ฝ‘็ซ™๏ผšhttps://nlp.stanford.edu/projects/glove/ # fastText็ฝ‘็ซ™๏ผšhttps://fasttext.cc/ with open(os.path.join(data_dir, 'vec.txt'), 'r') as f: for line in f: elems = line.rstrip().split(' ') token, elems = elems[0], [float(elem) for elem in elems[1:]] # ่ทณ่ฟ‡ๆ ‡้ข˜ไฟกๆฏ๏ผŒไพ‹ๅฆ‚fastTextไธญ็š„้ฆ–่กŒ if len(elems) > 1: idx_to_token.append(token) idx_to_vec.append(elems) idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec return idx_to_token, d2l.tensor(idx_to_vec) def __getitem__(self, tokens): indices = [self.token_to_idx.get(token, self.unknown_idx) for token in tokens] vecs = self.idx_to_vec[d2l.tensor(indices)] return vecs def __len__(self): return len(self.idx_to_token) """14.8""" def get_tokens_and_segments(tokens_a, tokens_b=None): """่Žทๅ–่พ“ๅ…ฅๅบๅˆ—็š„่ฏๅ…ƒๅŠๅ…ถ็‰‡ๆฎต็ดขๅผ•""" tokens = ['<cls>'] + tokens_a + ['<sep>'] # 0ๅ’Œ1ๅˆ†ๅˆซๆ ‡่ฎฐ็‰‡ๆฎตAๅ’ŒB segments = [0] * (len(tokens_a) + 2) if tokens_b is not None: tokens += tokens_b + ['<sep>'] segments += [1] * (len(tokens_b) + 1) return tokens, segments #@save class BERTEncoder(nn.Layer): """BERT็ผ–็ ๅ™จ""" def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, max_len=1000, key_size=768, query_size=768, value_size=768, **kwargs): super(BERTEncoder, self).__init__(**kwargs) self.token_embedding = nn.Embedding(vocab_size, num_hiddens) self.segment_embedding = nn.Embedding(2, num_hiddens) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_sublayer(f"{i}", d2l.EncoderBlock( key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, True)) # ๅœจBERTไธญ๏ผŒไฝ็ฝฎๅตŒๅ…ฅๆ˜ฏๅฏๅญฆไน ็š„๏ผŒๅ› ๆญคๆˆ‘ไปฌๅˆ›ๅปบไธ€ไธช่ถณๅคŸ้•ฟ็š„ไฝ็ฝฎๅตŒๅ…ฅๅ‚ๆ•ฐ x = paddle.randn([1, max_len, num_hiddens]) self.pos_embedding = paddle.create_parameter(shape=x.shape, dtype=str(x.numpy().dtype), default_initializer=paddle.nn.initializer.Assign(x)) def forward(self, tokens, segments, valid_lens): # ๅœจไปฅไธ‹ไปฃ็ ๆฎตไธญ๏ผŒX็š„ๅฝข็ŠถไฟๆŒไธๅ˜๏ผš๏ผˆๆ‰น้‡ๅคงๅฐ๏ผŒๆœ€ๅคงๅบๅˆ—้•ฟๅบฆ๏ผŒnum_hiddens๏ผ‰ X = self.token_embedding(tokens) + self.segment_embedding(segments) X = X + self.pos_embedding[:, :X.shape[1], :] for blk in self.blks: X = blk(X, valid_lens) return X #@save def paddletile(x, n) : # ๅ†™ไธ€ไธช้ฃžๆกจ็š„ไปฃ็ ๏ผŒๅค็Žฐtorch.repeat_interleaveๅ‘ฝไปคใ€‚ๅช้’ˆๅฏน1Dๆ•ฐๆฎใ€‚ x = x.reshape([-1, 1]) out = paddle.tile(x, repeat_times=n) return out.reshape([-1]) #@save class MaskLM(nn.Layer): """BERT็š„ๆŽฉ่”ฝ่ฏญ่จ€ๆจกๅž‹ไปปๅŠก""" def __init__(self, vocab_size, num_hiddens, num_inputs=768, **kwargs): super(MaskLM, self).__init__(**kwargs) self.mlp = nn.Sequential(nn.Linear(num_inputs, num_hiddens), nn.ReLU(), nn.LayerNorm(num_hiddens), nn.Linear(num_hiddens, vocab_size)) def forward(self, X, pred_positions): num_pred_positions = pred_positions.shape[1] pred_positions = pred_positions.reshape([-1]) batch_size = X.shape[0] batch_idx = paddle.arange(0, batch_size) # torch.arange() # ๅ‡่ฎพbatch_size=2๏ผŒnum_pred_positions=3 # ้‚ฃไนˆbatch_idxๆ˜ฏnp.array๏ผˆ[0,0,0,1,1]๏ผ‰ batch_idx = paddletile(batch_idx, [num_pred_positions]) masked_X = X[batch_idx, pred_positions] masked_X = masked_X.reshape((batch_size, num_pred_positions, -1)) mlm_Y_hat = self.mlp(masked_X) return mlm_Y_hat #@save class NextSentencePred(nn.Layer): """BERT็š„ไธ‹ไธ€ๅฅ้ข„ๆต‹ไปปๅŠก""" def __init__(self, num_inputs, **kwargs): super(NextSentencePred, self).__init__(**kwargs) self.output = nn.Linear(num_inputs, 2) def forward(self, X): # X็š„ๅฝข็Šถ๏ผš(batchsize,num_hiddens) return self.output(X) #@save class BERTModel(nn.Layer): """BERTๆจกๅž‹""" def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, max_len=1000, key_size=768, query_size=768, value_size=768, hid_in_features=768, mlm_in_features=768, nsp_in_features=768): super(BERTModel, self).__init__() self.encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, max_len=max_len, key_size=key_size, query_size=query_size, value_size=value_size) self.hidden = nn.Sequential(nn.Linear(hid_in_features, num_hiddens), nn.Tanh()) self.mlm = MaskLM(vocab_size, num_hiddens, mlm_in_features) self.nsp = NextSentencePred(nsp_in_features) def forward(self, tokens, segments, valid_lens=None, pred_positions=None): encoded_X = self.encoder(tokens, segments, valid_lens) if pred_positions is not None: mlm_Y_hat = self.mlm(encoded_X, pred_positions) else: mlm_Y_hat = None # ็”จไบŽไธ‹ไธ€ๅฅ้ข„ๆต‹็š„ๅคšๅฑ‚ๆ„Ÿ็Ÿฅๆœบๅˆ†็ฑปๅ™จ็š„้š่—ๅฑ‚๏ผŒ0ๆ˜ฏโ€œ<cls>โ€ๆ ‡่ฎฐ็š„็ดขๅผ• nsp_Y_hat = self.nsp(self.hidden(encoded_X[:, 0, :])) return encoded_X, mlm_Y_hat, nsp_Y_hat """14.9""" #@save d2l.DATA_HUB['wikitext-2'] = ( 'https://s3.amazonaws.com/research.metamind.io/wikitext/' 'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe') #@save def _read_wiki(data_dir): file_name = os.path.join(data_dir, 'wiki.train.tokens') with open(file_name, 'r') as f: lines = f.readlines() # ๅคงๅ†™ๅญ—ๆฏ่ฝฌๆขไธบๅฐๅ†™ๅญ—ๆฏ paragraphs = [line.strip().lower().split(' . ') for line in lines if len(line.split(' . ')) >= 2] random.shuffle(paragraphs) return paragraphs #@save def _get_next_sentence(sentence, next_sentence, paragraphs): if random.random() < 0.5: is_next = True else: # paragraphsๆ˜ฏไธ‰้‡ๅˆ—่กจ็š„ๅตŒๅฅ— next_sentence = random.choice(random.choice(paragraphs)) is_next = False return sentence, next_sentence, is_next #@save def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len): nsp_data_from_paragraph = [] for i in range(len(paragraph) - 1): tokens_a, tokens_b, is_next = _get_next_sentence( paragraph[i], paragraph[i + 1], paragraphs) # ่€ƒ่™‘1ไธช'<cls>'่ฏๅ…ƒๅ’Œ2ไธช'<sep>'่ฏๅ…ƒ if len(tokens_a) + len(tokens_b) + 3 > max_len: continue tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b) nsp_data_from_paragraph.append((tokens, segments, is_next)) return nsp_data_from_paragraph #@save def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab): # ไธบ้ฎ่”ฝ่ฏญ่จ€ๆจกๅž‹็š„่พ“ๅ…ฅๅˆ›ๅปบๆ–ฐ็š„่ฏๅ…ƒๅ‰ฏๆœฌ๏ผŒๅ…ถไธญ่พ“ๅ…ฅๅฏ่ƒฝๅŒ…ๅซๆ›ฟๆข็š„โ€œ<mask>โ€ๆˆ–้šๆœบ่ฏๅ…ƒ mlm_input_tokens = [token for token in tokens] pred_positions_and_labels = [] # ๆ‰“ไนฑๅŽ็”จไบŽๅœจ้ฎ่”ฝ่ฏญ่จ€ๆจกๅž‹ไปปๅŠกไธญ่Žทๅ–15%็š„้šๆœบ่ฏๅ…ƒ่ฟ›่กŒ้ข„ๆต‹ random.shuffle(candidate_pred_positions) for mlm_pred_position in candidate_pred_positions: if len(pred_positions_and_labels) >= num_mlm_preds: break masked_token = None # 80%็š„ๆ—ถ้—ด๏ผšๅฐ†่ฏๆ›ฟๆขไธบโ€œ<mask>โ€่ฏๅ…ƒ if random.random() < 0.8: masked_token = '<mask>' else: # 10%็š„ๆ—ถ้—ด๏ผšไฟๆŒ่ฏไธๅ˜ if random.random() < 0.5: masked_token = tokens[mlm_pred_position] # 10%็š„ๆ—ถ้—ด๏ผš็”จ้šๆœบ่ฏๆ›ฟๆข่ฏฅ่ฏ else: masked_token = random.choice(vocab.idx_to_token) mlm_input_tokens[mlm_pred_position] = masked_token pred_positions_and_labels.append( (mlm_pred_position, tokens[mlm_pred_position])) return mlm_input_tokens, pred_positions_and_labels #@save def _get_mlm_data_from_tokens(tokens, vocab): candidate_pred_positions = [] # tokensๆ˜ฏไธ€ไธชๅญ—็ฌฆไธฒๅˆ—่กจ for i, token in enumerate(tokens): # ๅœจ้ฎ่”ฝ่ฏญ่จ€ๆจกๅž‹ไปปๅŠกไธญไธไผš้ข„ๆต‹็‰นๆฎŠ่ฏๅ…ƒ if token in ['<cls>', '<sep>']: continue candidate_pred_positions.append(i) # ้ฎ่”ฝ่ฏญ่จ€ๆจกๅž‹ไปปๅŠกไธญ้ข„ๆต‹15%็š„้šๆœบ่ฏๅ…ƒ num_mlm_preds = max(1, round(len(tokens) * 0.15)) mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens( tokens, candidate_pred_positions, num_mlm_preds, vocab) pred_positions_and_labels = sorted(pred_positions_and_labels, key=lambda x: x[0]) pred_positions = [v[0] for v in pred_positions_and_labels] mlm_pred_labels = [v[1] for v in pred_positions_and_labels] return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels] #@save def _pad_bert_inputs(examples, max_len, vocab): max_num_mlm_preds = round(max_len * 0.15) all_token_ids, all_segments, valid_lens, = [], [], [] all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], [] nsp_labels = [] for (token_ids, pred_positions, mlm_pred_label_ids, segments, is_next) in examples: all_token_ids.append(paddle.to_tensor(token_ids + [vocab['<pad>']] * ( max_len - len(token_ids)), dtype=paddle.int64)) all_segments.append(paddle.to_tensor(segments + [0] * ( max_len - len(segments)), dtype=paddle.int64)) # valid_lensไธๅŒ…ๆ‹ฌ'<pad>'็š„่ฎกๆ•ฐ valid_lens.append(paddle.to_tensor(len(token_ids), dtype=paddle.float32)) all_pred_positions.append(paddle.to_tensor(pred_positions + [0] * ( max_num_mlm_preds - len(pred_positions)), dtype=paddle.int64)) # ๅกซๅ……่ฏๅ…ƒ็š„้ข„ๆต‹ๅฐ†้€š่ฟ‡ไน˜ไปฅ0ๆƒ้‡ๅœจๆŸๅคฑไธญ่ฟ‡ๆปคๆމ all_mlm_weights.append( paddle.to_tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * ( max_num_mlm_preds - len(pred_positions)), dtype=paddle.float32)) all_mlm_labels.append(paddle.to_tensor(mlm_pred_label_ids + [0] * ( max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=paddle.int64)) nsp_labels.append(paddle.to_tensor(is_next, dtype=paddle.int64)) return (all_token_ids, all_segments, valid_lens, all_pred_positions, all_mlm_weights, all_mlm_labels, nsp_labels) #@save class _WikiTextDataset(paddle.io.Dataset): def __init__(self, paragraphs, max_len): # ่พ“ๅ…ฅparagraphs[i]ๆ˜ฏไปฃ่กจๆฎต่ฝ็š„ๅฅๅญๅญ—็ฌฆไธฒๅˆ—่กจ๏ผ› # ่€Œ่พ“ๅ‡บparagraphs[i]ๆ˜ฏไปฃ่กจๆฎต่ฝ็š„ๅฅๅญๅˆ—่กจ๏ผŒๅ…ถไธญๆฏไธชๅฅๅญ้ƒฝๆ˜ฏ่ฏๅ…ƒๅˆ—่กจ paragraphs = [d2l.tokenize( paragraph, token='word') for paragraph in paragraphs] sentences = [sentence for paragraph in paragraphs for sentence in paragraph] self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[ '<pad>', '<mask>', '<cls>', '<sep>']) # ่Žทๅ–ไธ‹ไธ€ๅฅๅญ้ข„ๆต‹ไปปๅŠก็š„ๆ•ฐๆฎ examples = [] for paragraph in paragraphs: examples.extend(_get_nsp_data_from_paragraph( paragraph, paragraphs, self.vocab, max_len)) # ่Žทๅ–้ฎ่”ฝ่ฏญ่จ€ๆจกๅž‹ไปปๅŠก็š„ๆ•ฐๆฎ examples = [(_get_mlm_data_from_tokens(tokens, self.vocab) + (segments, is_next)) for tokens, segments, is_next in examples] # ๅกซๅ……่พ“ๅ…ฅ (self.all_token_ids, self.all_segments, self.valid_lens, self.all_pred_positions, self.all_mlm_weights, self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs( examples, max_len, self.vocab) def __getitem__(self, idx): return (self.all_token_ids[idx], self.all_segments[idx], self.valid_lens[idx], self.all_pred_positions[idx], self.all_mlm_weights[idx], self.all_mlm_labels[idx], self.nsp_labels[idx]) def __len__(self): return len(self.all_token_ids) #@save def load_data_wiki(batch_size, max_len): """ๅŠ ่ฝฝWikiText-2ๆ•ฐๆฎ้›†""" num_workers = d2l.get_dataloader_workers() num_workers = 0 data_dir = d2l.download_extract('wikitext-2', 'wikitext-2') paragraphs = _read_wiki(data_dir) train_set = _WikiTextDataset(paragraphs, max_len) train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers) return train_iter, train_set.vocab '''14.10''' #@save def _get_batch_loss_bert(net, loss, vocab_size, tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X, mlm_Y, nsp_y): # ๅ‰ๅ‘ไผ ๆ’ญ _, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X, valid_lens_x.reshape([-1]), # reshape ๅŽ้ข่ฆ่ทŸๅˆ—่กจๆˆ–ๅ…ƒ็ป„ pred_positions_X) # ่ฎก็ฎ—้ฎ่”ฝ่ฏญ่จ€ๆจกๅž‹ๆŸๅคฑ mlm_l = loss(mlm_Y_hat.reshape([-1, vocab_size]), mlm_Y.reshape([-1])) *\ mlm_weights_X.reshape([-1, 1]) mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8) # ่ฎก็ฎ—ไธ‹ไธ€ๅฅๅญ้ข„ๆต‹ไปปๅŠก็š„ๆŸๅคฑ nsp_l = loss(nsp_Y_hat, nsp_y) l = mlm_l + nsp_l return mlm_l, nsp_l, l """15.1""" d2l.DATA_HUB['aclImdb'] = ( 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz', '01ada507287d82875905620988597833ad4e0903') def read_imdb(data_dir, is_train): """่ฏปๅ–IMDb่ฏ„่ฎบๆ•ฐๆฎ้›†ๆ–‡ๆœฌๅบๅˆ—ๅ’Œๆ ‡็ญพ""" data, labels = [], [] for label in ('pos', 'neg'): folder_name = os.path.join(data_dir, 'train' if is_train else 'test', label) for file in os.listdir(folder_name): with open(os.path.join(folder_name, file), 'rb') as f: review = f.read().decode('utf-8').replace('\n', '') data.append(review) labels.append(1 if label == 'pos' else 0) return data, labels def load_data_imdb(batch_size, num_steps=500): """่ฟ”ๅ›žๆ•ฐๆฎ่ฟญไปฃๅ™จๅ’ŒIMDb่ฏ„่ฎบๆ•ฐๆฎ้›†็š„่ฏ่กจ""" data_dir = d2l.download_extract('aclImdb', 'aclImdb') train_data = read_imdb(data_dir, True) test_data = read_imdb(data_dir, False) train_tokens = d2l.tokenize(train_data[0], token='word') test_tokens = d2l.tokenize(test_data[0], token='word') vocab = d2l.Vocab(train_tokens, min_freq=5) train_features = d2l.tensor([d2l.truncate_pad( vocab[line], num_steps, vocab['<pad>']) for line in train_tokens]) test_features = d2l.tensor([d2l.truncate_pad( vocab[line], num_steps, vocab['<pad>']) for line in test_tokens]) train_iter = d2l.load_array((train_features, d2l.tensor(train_data[1])), batch_size) test_iter = d2l.load_array((test_features, d2l.tensor(test_data[1])), batch_size, is_train=False) return train_iter, test_iter, vocab """15.2""" def predict_sentiment(net, vocab, sequence): """้ข„ๆต‹ๆ–‡ๆœฌๅบๅˆ—็š„ๆƒ…ๆ„Ÿ""" sequence = paddle.to_tensor(vocab[sequence.split()], place=d2l.try_gpu()) label = paddle.argmax(net(sequence.reshape((1, -1))), axis=1) return 'positive' if label == 1 else 'negative' """15.4""" d2l.DATA_HUB['SNLI'] = ( 'https://nlp.stanford.edu/projects/snli/snli_1.0.zip', '9fcde07509c7e87ec61c640c1b2753d9041758e4') def read_snli(data_dir, is_train): """ๅฐ†SNLIๆ•ฐๆฎ้›†่งฃๆžไธบๅ‰ๆใ€ๅ‡่ฎพๅ’Œๆ ‡็ญพ""" def extract_text(s): # ๅˆ ้™คๆˆ‘ไปฌไธไผšไฝฟ็”จ็š„ไฟกๆฏ s = re.sub('\\(', '', s) s = re.sub('\\)', '', s) # ็”จไธ€ไธช็ฉบๆ ผๆ›ฟๆขไธคไธชๆˆ–ๅคšไธช่ฟž็ปญ็š„็ฉบๆ ผ s = re.sub('\\s{2,}', ' ', s) return s.strip() label_set = {'entailment': 0, 'contradiction': 1, 'neutral': 2} file_name = os.path.join(data_dir, 'snli_1.0_train.txt' if is_train else 'snli_1.0_test.txt') with open(file_name, 'r') as f: rows = [row.split('\t') for row in f.readlines()[1:]] premises = [extract_text(row[1]) for row in rows if row[0] in label_set] hypotheses = [extract_text(row[2]) for row in rows if row[0] \ in label_set] labels = [label_set[row[0]] for row in rows if row[0] in label_set] return premises, hypotheses, labels class SNLIDataset(paddle.io.Dataset): """็”จไบŽๅŠ ่ฝฝSNLIๆ•ฐๆฎ้›†็š„่‡ชๅฎšไน‰ๆ•ฐๆฎ้›†""" def __init__(self, dataset, num_steps, vocab=None): self.num_steps = num_steps all_premise_tokens = d2l.tokenize(dataset[0]) all_hypothesis_tokens = d2l.tokenize(dataset[1]) if vocab is None: self.vocab = d2l.Vocab(all_premise_tokens + \ all_hypothesis_tokens, min_freq=5, reserved_tokens=['<pad>']) else: self.vocab = vocab self.premises = self._pad(all_premise_tokens) self.hypotheses = self._pad(all_hypothesis_tokens) self.labels = paddle.to_tensor(dataset[2]) print('read ' + str(len(self.premises)) + ' examples') def _pad(self, lines): return paddle.to_tensor([d2l.truncate_pad( self.vocab[line], self.num_steps, self.vocab['<pad>']) for line in lines]) def __getitem__(self, idx): return (self.premises[idx], self.hypotheses[idx]), self.labels[idx] def __len__(self): return len(self.premises) def load_data_snli(batch_size, num_steps=50): """ไธ‹่ฝฝSNLIๆ•ฐๆฎ้›†ๅนถ่ฟ”ๅ›žๆ•ฐๆฎ่ฟญไปฃๅ™จๅ’Œ่ฏ่กจ""" num_workers = d2l.get_dataloader_workers() data_dir = d2l.download_extract('SNLI') train_data = read_snli(data_dir, True) test_data = read_snli(data_dir, False) train_set = SNLIDataset(train_data, num_steps) test_set = SNLIDataset(test_data, num_steps, train_set.vocab) train_iter = paddle.io.DataLoader(train_set, batch_size=batch_size, shuffle=True, return_list=True ) test_iter = paddle.io.DataLoader(test_set, batch_size=batch_size, shuffle=False, return_list=True ) return train_iter, test_iter, train_set.vocab """15.5""" def predict_snli(net, vocab, premise, hypothesis): """้ข„ๆต‹ๅ‰ๆๅ’Œๅ‡่ฎพไน‹้—ด็š„้€ป่พ‘ๅ…ณ็ณป""" net.eval() premise = paddle.to_tensor(vocab[premise], place=d2l.try_gpu()) hypothesis = paddle.to_tensor(vocab[hypothesis], place=d2l.try_gpu()) label = paddle.argmax(net([premise.reshape((1, -1)), hypothesis.reshape((1, -1))]), axis=1) return 'entailment' if label == 0 else 'contradiction' if label == 1 \ else 'neutral' ones = paddle.ones zeros = paddle.zeros tensor = paddle.to_tensor arange = paddle.arange meshgrid = paddle.meshgrid sin = paddle.sin sinh = paddle.sinh cos = paddle.cos cosh = paddle.cosh tanh = paddle.tanh linspace = paddle.linspace exp = paddle.exp log = paddle.log normal = paddle.normal rand = paddle.rand randn = paddle.randn matmul = paddle.matmul int32 = paddle.int32 float32 = paddle.float32 concat = paddle.concat stack = paddle.stack abs = paddle.abs eye = paddle.eye numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs) size = lambda x, *args, **kwargs: x.numel(*args, **kwargs) reshape = lambda x, *args, **kwargs: x.reshape(*args, **kwargs) to = lambda x, *args, **kwargs: x.to(*args, **kwargs) reduce_sum = lambda x, *args, **kwargs: x.sum(*args, **kwargs) argmax = lambda x, *args, **kwargs: x.argmax(*args, **kwargs) astype = lambda x, *args, **kwargs: x.type(*args, **kwargs) transpose = lambda x, *args, **kwargs: x.t(*args, **kwargs) reduce_mean = lambda x, *args, **kwargs: x.mean(*args, **kwargs) """่กฅๅ……ๅ‡ฝๆ•ฐ14.3้œ€่ฆ็”จๅˆฐ""" def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist): """Plot the histogram for list length pairs. Defined in :numref:`sec_machine_translation`""" d2l.set_figsize() _, _, patches = d2l.plt.hist( [[len(l) for l in xlist], [len(l) for l in ylist]]) d2l.plt.xlabel(xlabel) d2l.plt.ylabel(ylabel) for patch in patches[1].patches: patch.set_hatch('/') d2l.plt.legend(legend) """bert้ฃžๆกจ้ข„่ฎญ็ปƒๆจกๅž‹""" d2l.DATA_HUB['bert_small'] = ('https://paddlenlp.bj.bcebos.com/models/bert.small.paddle.zip', '9fcde07509c7e87ec61c640c1b277509c7e87ec6153d9041758e4') d2l.DATA_HUB['bert_base'] = ('https://paddlenlp.bj.bcebos.com/models/bert.base.paddle.zip', '9fcde07509c7e87ec61c640c1b27509c7e87ec61753d9041758e4')
39.041504
151
0.596177
a9206e5af5513cdc862300ca5b3cde2e68b2dd51
1,794
py
Python
backend/server/apps/ml/tests.py
BlooAM/ML-WebService
f331ad24b5b43bccfcdd062aedcd9413f31d9097
[ "MIT" ]
null
null
null
backend/server/apps/ml/tests.py
BlooAM/ML-WebService
f331ad24b5b43bccfcdd062aedcd9413f31d9097
[ "MIT" ]
null
null
null
backend/server/apps/ml/tests.py
BlooAM/ML-WebService
f331ad24b5b43bccfcdd062aedcd9413f31d9097
[ "MIT" ]
null
null
null
import inspect from django.test import TestCase from apps.ml.registry import MLRegistry from apps.ml.income_classifier.random_forest import RandomForestClassifier class MLTests(TestCase): def test_rf_algorithm(self): input_data = { "age": 37, "workclass": "Private", "fnlwgt": 34146, "education": 'HS-grad', "education-num": 9, "marital-status": "Married-civ-spouse", "occupation": "Craft-repair", "relationship": "Husband", "race": "White", "sex": "Male", "capital-gain": 0, "capital-loss": 0, "hours-per-week": 68, "native-country": "United-States" } my_alg = RandomForestClassifier() response = my_alg.compute_prediction(input_data) self.assertEqual('OK', response['status']) self.assertTrue('label' in response) self.assertEqual('<=50K', response['label']) def test_registry(self): registry = MLRegistry() self.assertEqual(len(registry.endpoints), 0) endpoint_name = "income_classifier" algorithm_object = RandomForestClassifier() algorithm_name = "random forest" algorithm_status = "production" algorithm_version = "0.0.1" algorithm_owner = "Piotr" algorithm_description = "Random Forest with simple pre- and post-processing" algorithm_code = inspect.getsource(RandomForestClassifier) registry.add_algorithm(endpoint_name, algorithm_object, algorithm_name, algorithm_status, algorithm_version, algorithm_owner, algorithm_description, algorithm_code) self.assertEqual(len(registry.endpoints), 1)
38.170213
97
0.61204
842cf6109379393d11e4922ae6f2a723a613c55b
942
py
Python
problem solutions/error_calc.py
suhailnajeeb/numerical-methods
b5f6189e5072407004e97d37edc83356e43449e9
[ "MIT" ]
null
null
null
problem solutions/error_calc.py
suhailnajeeb/numerical-methods
b5f6189e5072407004e97d37edc83356e43449e9
[ "MIT" ]
null
null
null
problem solutions/error_calc.py
suhailnajeeb/numerical-methods
b5f6189e5072407004e97d37edc83356e43449e9
[ "MIT" ]
1
2020-02-12T09:12:50.000Z
2020-02-12T09:12:50.000Z
import numpy as np a0 = 3.56 a1 = 1.4859 a2 = 2.025 x = np.array([1,2,3,4,5]) y = np.array([7.7, 14.5, 26, 40, 62]) xm = np.mean(x).round(4) ym = np.mean(y).round(4) print('mean of x: ' + str(xm)) print('mean of y: ' + str(ym)) st = lambda yi : np.square(yi - ym).round(4) sr = lambda xi,yi : np.square(yi-a0-a1*xi-a2*np.square(xi)).round(4) def printline(): print('----------------------------------------------------------------------') ST = 0 SR = 0 printline() print('xi\t\tyi\t\t(yi-ym)^2\t(yi-a0-a1xi-a2xi^2)^2') printline() for i in range(len(x)): St = st(y[i]) Sr = sr(x[i],y[i]) ST = ST + St SR = SR + Sr print(str(x[i]) + '\t\t' + str(y[i]) + '\t\t' + str(St) + '\t\t' + str(Sr)) printline() print('\t\t\t\t' + str(ST) + '\t\t' + str(SR)) n = len(x) #S_yx = np.sqrt((SR/(n-2))) S_y = np.sqrt((SR/(n-3))) r2 = (ST-SR)/ST print('Standard error: %f' %S_y) print('Co-efficient of determination: %f' %r2)
20.933333
96
0.504246
1b0c11892ef3aa133d021c6ddd9006dc0cf33060
2,367
py
Python
Knil Dungeon/Dialog.py
WexyR/KNIL
b81c5d4025d1f4e1607b0e948c4611cff0fdbc2e
[ "MIT" ]
null
null
null
Knil Dungeon/Dialog.py
WexyR/KNIL
b81c5d4025d1f4e1607b0e948c4611cff0fdbc2e
[ "MIT" ]
null
null
null
Knil Dungeon/Dialog.py
WexyR/KNIL
b81c5d4025d1f4e1607b0e948c4611cff0fdbc2e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import Menu import Game import Tools def dialog_box_create(ROWS, COLS, percent_size_rows=0.25): """Initialise une boite de dialogue""" assert isinstance(percent_size_rows, float) and 0 <= percent_size_rows d = dict() x = 1 y = int((ROWS-1) * (1-percent_size_rows))+1 d["ylen"] = int((ROWS-1)*percent_size_rows) d["xlen"] = COLS - 4 d["COLS"] = COLS d["ROWS"] = ROWS d["x"], d["y"] = x, y return d def run_dialog(d, txt, speaker=''): """Lance un texte dans la boite de dialogue, en tenant compte de sa taille ( ajoute des retours ร  la ligne si elle est trop longue, et des pages si il y a trop de lignes)""" ROWS, COLS = d["ROWS"], d["COLS"] pages = txt.split('\n\n') # Sรฉpare tout d'abord les pages for page in pages: resized_txt_lst = [resized_line for line in page.splitlines() for resized_line in resize_line(line, d["xlen"], '\n')] for t in range(0, len(resized_txt_lst), d["ylen"]-int(bool(speaker))): text = "".join(resized_txt_lst[t:t+d["ylen"]-int(bool(speaker))]) if speaker: text = Tools.reformat('<bold><underlined>{0} :</>\n'.format(speaker) + text) # Si l'รฉmรฉteur est prรฉcisรฉ, on l'affiche en haut de chaque page en gras soulignรฉ m = Menu.create([[(text, lambda: None)]], d["x"], d["y"], COLS, d['ylen']+2, text_align="left") # On utilise un menu d'une seule case pour afficher chaque page Menu.run(m) def resize_line(line, size, carac='', pile=None): """Fonction rรฉcursive qui sรฉpare une chaรฎne de caractรจre en blocs de taille donnรฉe, en ajoutant un caractรจre entre chaque bloc si besoin""" if pile is None: pile = [] # Can not put a list as default value for a function assert isinstance(line, (str, unicode)) assert isinstance(size, int) and size > 3 assert isinstance(pile, list) if len(line) > size: line1, space, remainder = line[:size+1].rpartition(' ') if space: line1 += carac pile.append(line1) line2 = remainder + line[size+1:] else: line1 = line[:size-1] + "-" + carac pile.append(line1) line2 = "-" + line[size-1:] resize_line(line2, size, carac, pile) else: pile.append(line + carac) return pile return pile
38.177419
173
0.606253
ad3130808f810af7366ef698ce92654fa1e16855
524
py
Python
zinc/migrations/0004_zone_cached_ns_records.py
PressLabs/zinc
9e1dc852f31f9897e7759962cf0f3e6d42fbe637
[ "Apache-2.0" ]
29
2017-06-29T15:03:49.000Z
2018-01-30T14:07:26.000Z
zinc/migrations/0004_zone_cached_ns_records.py
presslabs/zinc
94146e5203fc93ee0e8bb011a4db0ffcd4b0096e
[ "Apache-2.0" ]
9
2019-01-11T09:07:17.000Z
2022-02-03T12:50:21.000Z
zinc/migrations/0004_zone_cached_ns_records.py
PressLabs/zinc
9e1dc852f31f9897e7759962cf0f3e6d42fbe637
[ "Apache-2.0" ]
1
2020-08-09T18:17:25.000Z
2020-08-09T18:17:25.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-15 16:27 from __future__ import unicode_literals from django.db import migrations, models import zinc.models class Migration(migrations.Migration): dependencies = [ ('zinc', '0003_zone_ns_propagated'), ] operations = [ migrations.AddField( model_name='zone', name='cached_ns_records', field=models.TextField(default=None, null=True, validators=[zinc.models.validate_json]), ), ]
23.818182
100
0.645038
e5c3b0c077867dca9511022145c9dbbd6a137532
2,406
py
Python
sheets/snippets/sheets_batch_update.py
himanshupr2627/python-samples
4a04e3aee1068dc1f1402e9e9c90044ff101a6c8
[ "Apache-2.0" ]
479
2018-03-16T16:45:11.000Z
2020-10-13T11:32:02.000Z
sheets/snippets/sheets_batch_update.py
himanshupr2627/python-samples
4a04e3aee1068dc1f1402e9e9c90044ff101a6c8
[ "Apache-2.0" ]
159
2018-03-28T20:03:56.000Z
2020-10-13T06:00:08.000Z
sheets/snippets/sheets_batch_update.py
himanshupr2627/python-samples
4a04e3aee1068dc1f1402e9e9c90044ff101a6c8
[ "Apache-2.0" ]
493
2018-03-21T01:07:21.000Z
2020-10-14T10:31:00.000Z
""" Copyright 2022 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # [START sheets_batch_update] from __future__ import print_function import google.auth from googleapiclient.discovery import build from googleapiclient.errors import HttpError def sheets_batch_update(spreadsheet_id, title, find, replacement): """ Update the sheet details in batch, the user has access to. Load pre-authorized user credentials from the environment. TODO(developer) - See https://developers.google.com/identity for guides on implementing OAuth2 for the application. """ creds, _ = google.auth.default() # pylint: disable=maybe-no-member try: service = build('classroom', 'v1', credentials=creds) requests = [] # Change the spreadsheet's title. requests.append({ 'updateSpreadsheetProperties': { 'properties': { 'title': title }, 'fields': 'title' } }) # Find and replace text requests.append({ 'findReplace': { 'find': find, 'replacement': replacement, 'allSheets': True } }) # Add additional requests (operations) ... body = { 'requests': requests } response = service.spreadsheets().batchUpdate( spreadsheetId=spreadsheet_id, body=body).execute() find_replace_response = response.get('replies')[1].get('findReplace') print('{0} replacements made.'.format( find_replace_response.get('occurrencesChanged'))) return response except HttpError as error: print(f"An error occurred: {error}") return error if __name__ == '__main__': sheets_batch_update('spreadsheet_id', 'title', 'find', 'replacement') # [END sheets_batch_update]
29.703704
77
0.640482
7fd2dd25859ec86ed4da264c4dfe89e82882c723
5,841
py
Python
Processor/diode.py
george200150/Licenta
9c3f7d86abf3cc5d90204db0acc956eb8bee26dc
[ "MIT" ]
null
null
null
Processor/diode.py
george200150/Licenta
9c3f7d86abf3cc5d90204db0acc956eb8bee26dc
[ "MIT" ]
null
null
null
Processor/diode.py
george200150/Licenta
9c3f7d86abf3cc5d90204db0acc956eb8bee26dc
[ "MIT" ]
null
null
null
import os.path as osp from itertools import chain import json from torch.utils.data import Dataset import numpy as np from PIL import Image import random import matplotlib.pyplot as plt ''' The json metadata for DIODE is laid out as follows: train: outdoor: scene_000xx: scan_00yyy: - 000xx_00yyy_indoors_300_010 - 000xx_00yyy_indoors_300_020 - 000xx_00yyy_indoors_300_030 scene_000kk: _analogous_ val: _analogous_ test: _analogous_ ''' _VALID_SPLITS = ('train', 'val', 'test') _VALID_SCENE_TYPES = ('indoors', 'outdoor') def check_and_tuplize_tokens(tokens, valid_tokens): if not isinstance(tokens, (tuple, list)): tokens = (tokens,) for split in tokens: assert split in valid_tokens return tokens def enumerate_paths(src): """flatten out a nested dictionary into an iterable DIODE metadata is a nested dictionary; One could easily query a particular scene and scan, but sequentially enumerating files in a nested dictionary is troublesome. This function recursively traces out and aggregates the leaves of a tree. """ if isinstance(src, list): return src elif isinstance(src, dict): acc = [] for k, v in src.items(): _sub_paths = enumerate_paths(v) _sub_paths = list(map(lambda x: osp.join(k, x), _sub_paths)) acc.append(_sub_paths) return list(chain.from_iterable(acc)) else: raise ValueError('do not accept data type {}'.format(type(src))) def save_plot_dm(dm, validity_mask): validity_mask = validity_mask > 0 MIN_DEPTH = 0.5 MAX_DEPTH = min(300, np.percentile(dm, 99)) dm = np.clip(dm, MIN_DEPTH, MAX_DEPTH) dm = np.log(dm, where=validity_mask) dm = np.ma.masked_where(~validity_mask, dm) cmap = plt.cm.jet cmap.set_bad(color='black') plt.gca().set_axis_off() plt.imshow(dm, cmap=cmap, vmax=np.log(MAX_DEPTH)) # plt.savefig("AAA.png", bbox_inches='tight', pad_inches=0, format='png', dpi=1200) plt.savefig("AAA.png", bbox_inches='tight', pad_inches=0, format='png', dpi=200) def plot_depth_map(dm, validity_mask): validity_mask = validity_mask > 0 MIN_DEPTH = 0.5 MAX_DEPTH = min(300, np.percentile(dm, 99)) dm = np.clip(dm, MIN_DEPTH, MAX_DEPTH) dm = np.log(dm, where=validity_mask) dm = np.ma.masked_where(~validity_mask, dm) cmap = plt.cm.jet cmap.set_bad(color='black') plt.gca().set_axis_off() plt.imshow(dm, cmap=cmap, vmax=np.log(MAX_DEPTH)) # fig = plt.figure(figsize=(10.24, 7.68)) # plt.savefig("AAA", bbox_inches='tight', pad_inches=0, format='eps') # plt.savefig("AAA.png", bbox_inches='tight', pad_inches=0, format='png', dpi=1200) plt.show() def plot_normal_map(normal_map): normal_viz = normal_map[:, ::, :] normal_viz = normal_viz + np.equal(np.sum(normal_viz, 2, keepdims=True), 0.).astype(np.float32) * np.min(normal_viz) normal_viz = (normal_viz - np.min(normal_viz)) / 2. plt.axis('off') plt.imshow(normal_viz) class DIODE(Dataset): def __init__(self, meta_fname, data_root, splits, scene_types, num_images): self.data_root = data_root self.splits = check_and_tuplize_tokens( splits, _VALID_SPLITS ) self.scene_types = check_and_tuplize_tokens( scene_types, _VALID_SCENE_TYPES ) with open(meta_fname, 'r') as f: self.meta = json.load(f) imgs = [] for split in self.splits: for scene_type in self.scene_types: _curr = enumerate_paths(self.meta[split][scene_type]) _curr = map(lambda x: osp.join(split, scene_type, x), _curr) imgs.extend(list(_curr)) self.imgs = imgs # ----------------------------------------------------------------------------- num_images = min(num_images, len(self.imgs)) self.imgs = random.sample(self.imgs, num_images) # only use num_images images self.classes = list(set([x.split("\\")[3] for x in self.imgs])) # ----------------------------------------------------------------------------- def __len__(self): return len(self.imgs) def __getitem__(self, index): im = self.imgs[index] im_fname = osp.join(self.data_root, '{}.png'.format(im)) de_fname = osp.join(self.data_root, '{}_depth.npy'.format(im)) de_mask_fname = osp.join(self.data_root, '{}_depth_mask.npy'.format(im)) # ----------------------------------------------------------------------------- image_path = osp.join(self.data_root, im_fname) im = Image.open(image_path) # cls = image_path.split("\\")[3] # get scene name from image path cls = image_path.split("\\")[1] # get indoors / outdoors newsize = (384, 512) # newsize = (192, 256) # newsize = (3, 4) im = im.resize(newsize) # limited GPU resources im = np.array(im) # ----------------------------------------------------------------------------- # im = np.array(Image.open(osp.join(self.data_root, im_fname))) de = np.load(de_fname).squeeze() de_mask = np.load(de_mask_fname) # return im, de, de_mask return image_path, cls, im, de, de_mask # TODO: this is for t-SNE only # (instead of returning a dict, we return a tuple) # # """ # The intrinsic parameters of the camera are: # [fx, fy, cx, cy] = [886.81, 927.06, 512, 384] # These are the parameters of the computational camera used to generate RGBD crops from the scans as described in Section # 3.2 of the paper; please note that fx and fy are slightly different. # """
33.568966
121
0.594248
ca4dd67ec0aed2f8bf00d6183e24f2e58f704b39
8,639
py
Python
far_ws/src/follow_ahead_rl/scripts/move_test.py
alik604/ra
6058a9adb47db93bb86bcb2c224930c5731d663d
[ "Unlicense" ]
null
null
null
far_ws/src/follow_ahead_rl/scripts/move_test.py
alik604/ra
6058a9adb47db93bb86bcb2c224930c5731d663d
[ "Unlicense" ]
5
2021-03-26T01:30:13.000Z
2021-04-22T22:19:03.000Z
far_ws/src/follow_ahead_rl/scripts/move_test.py
alik604/ra
6058a9adb47db93bb86bcb2c224930c5731d663d
[ "Unlicense" ]
1
2021-05-05T00:57:43.000Z
2021-05-05T00:57:43.000Z
<<<<<<< HEAD import gym import gym_gazeboros_ac from time import sleep ======= import pickle import math import gym import gym_gazeboros_ac import numpy as np import matplotlib.pyplot as plt from time import sleep import cv2 as cv >>>>>>> MCTS ENV_NAME = 'gazeborosAC-v0' EPISODE_LEN = 15 # Robot Chase Simulator 2021 # How to use: # Terminal 1: Launch turtlebot.launch # Terminal 2: run `python tf_node.py in old_scripts` # Terminal 3: Launch navigation.launch # Terminal 4: run this file # # * DON'T FORGET TO SOURCE THE WORKSPACE IN EACH FILE <3 # ie: cd .../far_ws && source devel/setup.bash if __name__ == '__main__': print('START Move Test') <<<<<<< HEAD env = gym.make(ENV_NAME).unwrapped env.set_agent(0) mode = 4 while True: env.set_person_mode(mode % 5) mode += 1 state = env.reset() # Prints out x y position of person # print(f"person pose = {env.get_person_pos()}") c = 0 for i in range(EPISODE_LEN): action = [0.5, 0] state, reward, done, _ = env.step(action) # print(state) sleep(1) # if done: # break c += 1 print("END") ======= # between pose and pose. where pose is position and orientation, and the 2nd pose is the "center" def get_relative_pose(pos_goal, orientation_goal, pos_center, orientation_center): center_pos = np.asarray(pos_center) center_orientation = orientation_center relative_pos = np.asarray(pos_goal) relative_pos2 = np.asarray([relative_pos[0] + math.cos(orientation_goal), relative_pos[1] + math.sin(orientation_goal)]).T # transform the relative to center coordinat rotation_matrix = np.array([[np.cos(center_orientation), np.sin(center_orientation)], # TODO Try both with viz. Ali: I think this is a bug. it should be -center_orientation, like in other `rotation_matrix`s [-np.sin(center_orientation), np.cos(center_orientation)]]) relative_pos = np.matmul(relative_pos, rotation_matrix) relative_pos2 = np.matmul(relative_pos2, rotation_matrix) global_pos = np.asarray(relative_pos + center_pos) global_pos2 = np.asarray(relative_pos2 + center_pos) new_orientation = np.arctan2(global_pos2[1]-global_pos[1], global_pos2[0]-global_pos[0]) return global_pos[0], global_pos[1], new_orientation # def compute_action_set(orientation_rad): # pi = np.pi # numb_tickers = 16 # phase_shift = 2*pi/numb_tickers # velocity_ratios = [1/(1.6*1.6), 1/1.6, 1] # 1.66 or 1.625 or 1.6 # action_set = [] # action_set.append([0, 0]) # do nothing # for velocity_ratio in velocity_ratios: # angle = orientation_rad - phase_shift # for i in range(3): # 3 is hardcoded, if changed, reorientation & plot will be needed # # (velocity_ratio*np.cos(angle), velocity_ratio*np.sin(angle)) # action_set.append([velocity_ratio, angle]) # [linear_velocity, angular_velocity] # angle += phase_shift # TODO was angle += phase_shift # return action_set # 10 actions def compute_action_set_from_TEB(): trajectories = [] with open('discrete_action_space.pickle', 'rb') as handle: x = pickle.load(handle) x, y, theta = list(zip(*x)) for i in range(len(x)): # print(f'\t{x[i]}, {y[i]}') # plt.plot(x[i], y[i]) trajectories.extend([[x[i], y[i], theta[i]]]) return trajectories # action_set = compute_action_set(0) trajectories = compute_action_set_from_TEB() trajectories = trajectories[:10] # for i in range(len(trajectories)): # look like the first elem is indeed the first (meaning its not flipped) # for ii in range(len(trajectories[i])): # print(f'trajectories[i][0] {trajectories[i][0]}\n') # print(f' {abs(trajectories[i][0][0]) < abs(trajectories[i][0][-1])}') # exit() mode = 4 env = gym.make(ENV_NAME).unwrapped env.set_agent(0) action = [0.5, 0] # linear_velocity, angular_velocity. from 0 to 1, a % of the max_linear_vel (0.8) & max_angular_vel (1.8) counter = 0 # while False: while True: # env.set_person_mode(mode % 5) mode += 1 state = env.reset() # env.person.pause() # weird side effect for ending episode (path finished) # env.person.resume() counter += 1 # counter = counter % 10 print(f'counter is {counter}') images = [] for i in range(len(trajectories)):# EPISODE_LEN # dx_dt, dy_dt, da_dt = env.get_system_velocities() # best to see code. (dx_dt, dy_dt, da_dt) # print(f'X: {dx_dt} | Y: {dy_dt} | Angular V: {da_dt}') # Prints out x y heading position of person # person_state = env.get_person_pos() # [xy[0], xy[1], theta] where theta is orientation # print(f'Person state is {person_state}') # print(f'State is {state}') # shape is 47 # print(f"Robot state \n\t position is {env.robot.state_['position']} \n\t orientation is {env.robot.state_['orientation']} \n\t velocity lin & angular is {env.robot.state_['velocity']}") # print(f'Person state\n\t position is {env.person.state_["position"]}\n\t orientation is {env.person.state_["orientation"]}\n\t velocity lin & angular is {env.person.state_["velocity"]}') rel_pos = env.get_relative_position(env.person.get_pos(), env.robot) distance = np.hypot(rel_pos[0], rel_pos[1]) # print(f'get relative position. person.pos()-robot.pos(): {rel_pos} | with a distance of {distance}') rel_heading = env.get_relative_heading_position(env.robot, env.person)[1] orientation_rad = np.arctan2(rel_heading[1], rel_heading[0]) orientation = np.rad2deg(orientation_rad) # print(f'get relative heading: {rel_heading} | orientation_rad {orientation_rad} | orientation {orientation}') # i is from range(len(trajectories)) recommended_move = i # np.random.choice(len(trajectories)) print(f'will plot {recommended_move}') path_to_simulate = trajectories[recommended_move].copy() current_robot_pos = env.robot.state_['position'] # print(f'path_to_simulate is {path_to_simulate[:2]}') for idx in range(len(path_to_simulate[0])): # TODO this is wrong path_to_simulate[0][idx] += current_robot_pos[0] path_to_simulate[1][idx] += current_robot_pos[1] path_to_simulate = np.around(path_to_simulate, 2) print(f'current_robot_pos is {current_robot_pos}\npath_to_simulate is {path_to_simulate[:2]}') # exit() #### option a Direct ##### cords = path_to_simulate[-1] x, y = cords[0], cords[1] # x, y, theta = get_relative_pose([x, y], cords[2], [current_robot_pos[0], current_robot_pos[1]], env.robot.state_['orientation']) state_rel_person, reward, done, _ = env.step([x, y]) #### option b Micto steps ##### # NUMBER_SUB_STEPS = len(path_to_simulate) # for idx in range(NUMBER_SUB_STEPS): # robot_state = {} # x, y, theta = path_to_simulate[0][idx], path_to_simulate[1][idx], path_to_simulate[2][idx] # last_x, last_y, last_theta = current_robot_pos[0], current_robot_pos[1], env.robot.state_['orientation'] # x, y, theta = get_relative_pose([x, y], theta, [last_x, last_y], last_theta) # state_rel_person, reward, done, _ = env.step([x, y]) # state, reward, done, _ = env.step(action) # action_set = compute_action_set(orientation_rad) # print(f'action_set {action_set}') # action = action_set[c] # image = env.get_current_observation_image() # images.append(image) # image images.append((x, y)) # points sleep(0.5) # if done: # break # c += 1 print(images) # exit() for img in images: # plt.imshow(img, cmap='gray') # image plt.plot(img, 'ro') # points plt.show() print("END") >>>>>>> MCTS
39.447489
214
0.593008
c89b2a10e803867fa6cc6af293cb6128f9e950fd
7,220
py
Python
hubspot/crm/extensions/calling/models/error_detail.py
cclauss/hubspot-api-python
7c60c0f572b98c73e1f1816bf5981396a42735f6
[ "Apache-2.0" ]
null
null
null
hubspot/crm/extensions/calling/models/error_detail.py
cclauss/hubspot-api-python
7c60c0f572b98c73e1f1816bf5981396a42735f6
[ "Apache-2.0" ]
null
null
null
hubspot/crm/extensions/calling/models/error_detail.py
cclauss/hubspot-api-python
7c60c0f572b98c73e1f1816bf5981396a42735f6
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Calling Extensions API Provides a way for apps to add custom calling options to a contact record. This works in conjunction with the [Calling SDK](#), which is used to build your phone/calling UI. The endpoints here allow your service to appear as an option to HubSpot users when they access the *Call* action on a contact record. Once accessed, your custom phone/calling UI will be displayed in an iframe at the specified URL with the specified dimensions on that record. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.extensions.calling.configuration import Configuration class ErrorDetail(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'message': 'str', '_in': 'str', 'code': 'str', 'sub_category': 'str', 'context': 'dict(str, list[str])' } attribute_map = { 'message': 'message', '_in': 'in', 'code': 'code', 'sub_category': 'subCategory', 'context': 'context' } def __init__(self, message=None, _in=None, code=None, sub_category=None, context=None, local_vars_configuration=None): # noqa: E501 """ErrorDetail - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._message = None self.__in = None self._code = None self._sub_category = None self._context = None self.discriminator = None self.message = message if _in is not None: self._in = _in if code is not None: self.code = code if sub_category is not None: self.sub_category = sub_category if context is not None: self.context = context @property def message(self): """Gets the message of this ErrorDetail. # noqa: E501 A human readable message describing the error along with remediation steps where appropriate # noqa: E501 :return: The message of this ErrorDetail. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this ErrorDetail. A human readable message describing the error along with remediation steps where appropriate # noqa: E501 :param message: The message of this ErrorDetail. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and message is None: # noqa: E501 raise ValueError("Invalid value for `message`, must not be `None`") # noqa: E501 self._message = message @property def _in(self): """Gets the _in of this ErrorDetail. # noqa: E501 The name of the field or parameter in which the error was found. # noqa: E501 :return: The _in of this ErrorDetail. # noqa: E501 :rtype: str """ return self.__in @_in.setter def _in(self, _in): """Sets the _in of this ErrorDetail. The name of the field or parameter in which the error was found. # noqa: E501 :param _in: The _in of this ErrorDetail. # noqa: E501 :type: str """ self.__in = _in @property def code(self): """Gets the code of this ErrorDetail. # noqa: E501 The status code associated with the error detail # noqa: E501 :return: The code of this ErrorDetail. # noqa: E501 :rtype: str """ return self._code @code.setter def code(self, code): """Sets the code of this ErrorDetail. The status code associated with the error detail # noqa: E501 :param code: The code of this ErrorDetail. # noqa: E501 :type: str """ self._code = code @property def sub_category(self): """Gets the sub_category of this ErrorDetail. # noqa: E501 A specific category that contains more specific detail about the error # noqa: E501 :return: The sub_category of this ErrorDetail. # noqa: E501 :rtype: str """ return self._sub_category @sub_category.setter def sub_category(self, sub_category): """Sets the sub_category of this ErrorDetail. A specific category that contains more specific detail about the error # noqa: E501 :param sub_category: The sub_category of this ErrorDetail. # noqa: E501 :type: str """ self._sub_category = sub_category @property def context(self): """Gets the context of this ErrorDetail. # noqa: E501 Context about the error condition # noqa: E501 :return: The context of this ErrorDetail. # noqa: E501 :rtype: dict(str, list[str]) """ return self._context @context.setter def context(self, context): """Sets the context of this ErrorDetail. Context about the error condition # noqa: E501 :param context: The context of this ErrorDetail. # noqa: E501 :type: dict(str, list[str]) """ self._context = context def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ErrorDetail): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ErrorDetail): return True return self.to_dict() != other.to_dict()
30.59322
467
0.597091
300ac6b1f8141c26ff68562048669d787c7fd579
74,952
py
Python
theano/tensor/subtensor.py
mrgloom/Theano
018c7fa9a292858486b92e03a5d0a36cb3e45e1f
[ "BSD-3-Clause" ]
1
2020-12-27T13:50:59.000Z
2020-12-27T13:50:59.000Z
theano/tensor/subtensor.py
ynd/Theano
5c89596df9e5d8ecafa7d4c0aa8f0f4eb393cd57
[ "BSD-3-Clause" ]
null
null
null
theano/tensor/subtensor.py
ynd/Theano
5c89596df9e5d8ecafa7d4c0aa8f0f4eb393cd57
[ "BSD-3-Clause" ]
null
null
null
from copy import copy from itertools import izip import sys from textwrap import dedent import warnings import logging _logger = logging.getLogger("theano.tensor.subtensor") import numpy import theano from theano.gradient import DisconnectedType from theano import gof from theano.gof import Apply, Constant, hashtype, Op, Type, MethodNotDefined from theano.gof.python25 import maxsize from theano.printing import pprint from theano import scalar as scal from theano.tensor.basic import (addbroadcast, clip, get_scalar_constant_value, ARange, TensorType) from theano.tensor.elemwise import DimShuffle from theano.tensor.type_other import NoneConst, SliceType, make_slice from theano import config inplace_increment = None if config.cxx: import theano.gof.cutils # needed to import cutils_ext try: from cutils_ext.cutils_ext import inplace_increment except ImportError: pass # Do a lazy import of the sparse module sparse_module_ref = None class AdvancedIndexingError(TypeError): """ Raised when Subtensor is asked to perform advanced indexing. """ def __init__(self, *args): TypeError.__init__(self, *args) ########## # Helpful functions to deal with Subtensor and IncSubtensor ########## def make_constant(args): """ Convert python litterals to theano constants in subtensor arguments. """ def conv(a): if a is None: return a elif isinstance(a, slice): return slice(conv(a.start), conv(a.stop), conv(a.step)) elif isinstance(a, (int, long, numpy.integer)): return scal.ScalarConstant(scal.int64, a) else: return a return tuple(map(conv, args)) def get_idx_list(inputs, idx_list): ''' Given a list of inputs to the subtensor and its idx_list reorders the inputs according to the idx list to get the right values ''' # The subtensor (or idx_list) does not depend on the inputs. if len(inputs) == 1: return tuple(idx_list) indices = list(reversed(list(inputs[1:]))) # General case def convert(entry): if isinstance(entry, gof.Type): return indices.pop() elif isinstance(entry, slice): return slice(convert(entry.start), convert(entry.stop), convert(entry.step)) else: return entry cdata = tuple(map(convert, idx_list)) return cdata def get_canonical_form_slice(theslice, length): ''' Given a slice [start:stop:step] transform it into a canonical form that respects the conventions imposed by python and numpy. In a canonical form a slice is represented by a canonical form slice, in which 0 <= start <= stop <= length and step > 0, and a flag which says if the resulting set of numbers needs to be reversed or not. ''' from theano.tensor import switch, lt, ge, sgn if isinstance(theslice, slice): def analyze(x): try: x_constant = get_scalar_constant_value(x) is_constant = True except theano.tensor.NotScalarConstantError: x_constant = theano.tensor.extract_constant(x) is_constant = False return x_constant, is_constant start, is_start_constant = analyze(theslice.start) stop, is_stop_constant = analyze(theslice.stop) step, is_step_constant = analyze(theslice.step) length, is_length_constant = analyze(length) if step is None: step = 1 is_step_constant = True # First handle the easier and common case where `step` is 1 and # either `start` or `stop` is a range boundary. More specializations # could be added later. This makes the resulting graph smaller than # in the generic case below. if step == 1: is_start_0 = ( start in [None, 0] or (is_start_constant and is_length_constant and start < 0 and start + length <= 0)) is_stop_length = ( stop in [None, length, maxsize] or (is_stop_constant and is_length_constant and stop >= length)) if is_start_0: # 0:stop:1 if is_stop_length: # Full slice. return slice(0, length, 1), 1 if is_stop_constant and stop >= 0: return (slice(0, switch(lt(stop, length), stop, length), 1), 1) stop_plus_len = stop + length stop = switch( lt(stop, 0), # stop < 0 switch( lt(stop_plus_len, 0), # stop + len < 0 0, # stop + len >= 0 stop_plus_len), # stop >= 0: use min(stop, length) switch(lt(stop, length), stop, length)) return slice(0, stop, 1), 1 elif is_stop_length: # start:length:1 if is_start_constant and start >= 0: return slice(switch(lt(start, length), start, length), length, 1), 1 start_plus_len = start + length start = switch( lt(start, 0), # start < 0 switch( lt(start_plus_len, 0), # start + len < 0 0, # start + len >= 0 start_plus_len), # start >= 0: use min(start, length) switch(lt(start, length), start, length)) return slice(start, length, 1), 1 # This is the generic case. if is_step_constant: # When we know the sign of `step`, the graph can be made simpler. assert step != 0 if step > 0: def switch_neg_step(a, b): return b abs_step = step sgn_step = 1 else: def switch_neg_step(a, b): return a abs_step = -step sgn_step = -1 else: is_step_neg = lt(step, 0) def switch_neg_step(a, b): return switch(is_step_neg, a, b) abs_step = abs(step) sgn_step = sgn(step) defstart = switch_neg_step(length - 1, 0) defstop = switch_neg_step(-1, length) if start is None: start = defstart else: start = switch(lt(start, 0), start + length, start) start = switch(lt(start, 0), switch_neg_step(-1, 0), start) start = switch(ge(start, length), switch_neg_step(length - 1, length), start) if stop in [None, maxsize]: # The special "maxsize" case is probably not needed here, # as slices containing maxsize are not generated by # __getslice__ anymore. stop = defstop else: stop = switch(lt(stop, 0), stop + length, stop) stop = switch(lt(stop, 0), -1, stop) stop = switch(ge(stop, length), length, stop) nw_stop = switch_neg_step(start + 1, stop) slice_len = (start - stop - 1) // abs_step + 1 slice_len = switch(lt(slice_len, 0), 0, slice_len) neg_start = nw_stop - (slice_len - 1) * abs_step - 1 neg_start = switch(lt(neg_start, 0), (nw_stop - 1), neg_start) nw_start = switch_neg_step(neg_start, start) nw_start = switch(lt(nw_start, 0), 0, nw_start) nw_stop = switch(lt(nw_stop, 0), 0, nw_stop) # Ensure start <= stop. nw_start = switch(lt(nw_start, nw_stop), nw_start, nw_stop) nw_step = abs_step if step != 1: reverse = sgn_step return slice(nw_start, nw_stop, nw_step), reverse else: return slice(nw_start, nw_stop, nw_step), 1 else: value = theano.tensor.extract_constant(theslice) value = switch(lt(value, 0), (value + length), value) return value, 1 class Subtensor(Op): """Return a subtensor view The inputs array is the tensor x, followed by scalar integer types. TODO: WRITEME: how are the scalar integer variables formatted? This class uses a relatively complex internal representation of the inputs to remember how the input tensor x should be sliced. idx_list: instance variable TODO: WRITEME: is this a list or a tuple? (old docstring gives two conflicting descriptions) elements are either integers, theano scalar types, or slices. one element per "explicitly named dimension" TODO: WRITEME: what is an "explicitly named dimension" ? if integer: indexes into the inputs array if slice: start/stop/step members of each slice are integer indices into the inputs array or None integer indices be actual integers or theano scalar types Note that the idx_list defines the Op, so two Subtensor instances are considered to be different Ops if they have different idx_list fields. This means that the entries in it are theano Types, not theano Variables. @todo: add support for advanced tensor indexing (in Subtensor_dx too). """ e_invalid = ('The index list is longer (size %d) than the number of ' 'dimensions of the tensor(namely %d). You are asking for ' 'a dimension of the tensor that does not exist! You might ' 'need to use dimshuffle to add extra dimension to your ' 'tensor.') e_subslice = 'nested slicing is not supported' e_indextype = "Invalid index type or slice for Subtensor" debug = 0 view_map = {0: [0]} @staticmethod def collapse(idxs, cond): """ idxs: a list of indices or slices. cond: a callable that returns a bool returns: idxs, with the slices flattened out into a list. if cond is true for an entry, does not flatten it. """ ret = [] def helper(entry): if cond(entry): ret.append(entry) elif isinstance(entry, slice): helper(entry.start) helper(entry.stop) helper(entry.step) for idx in idxs: helper(idx) return ret @staticmethod def convert(entry, slice_ok=True): """ The "idx_list" field is unique to each Subtensor instance. It is not unique to each Apply node, so it should not refer to specific Variables. This method changes references to Variables into references to Types. TODO: WRITEME: This method also accepts "entry" already being a Type; when would that happen? """ invalid_scal_types = [scal.float64, scal.float32] scal_types = [scal.int64, scal.int32, scal.int16, scal.int8] tensor_types = [theano.tensor.lscalar, theano.tensor.iscalar, theano.tensor.wscalar, theano.tensor.bscalar] invalid_tensor_types = [theano.tensor.fscalar, theano.tensor.dscalar, theano.tensor.cscalar, theano.tensor.zscalar] if (isinstance(entry, gof.Variable) and (entry.type in invalid_scal_types or entry.type in invalid_tensor_types)): raise TypeError("Expected an integer") if isinstance(entry, gof.Variable) and entry.type in scal_types: return entry.type elif isinstance(entry, gof.Type) and entry in scal_types: return entry if (isinstance(entry, gof.Variable) and entry.type in tensor_types and numpy.all(entry.type.broadcastable)): return scal.get_scalar_type(entry.type.dtype) elif (isinstance(entry, gof.Type) and entry in tensor_types and numpy.all(entry.broadcastable)): return scal.get_scalar_type(entry.dtype) elif slice_ok and isinstance(entry, slice): a = entry.start b = entry.stop c = entry.step if a is not None: slice_a = Subtensor.convert(a, False) else: slice_a = None if b is not None and b != maxsize: # The special "maxsize" case is probably not needed here, # as slices containing maxsize are not generated by # __getslice__ anymore. slice_b = Subtensor.convert(b, False) else: slice_b = None if c is not None: slice_c = Subtensor.convert(c, False) else: slice_c = None return slice(slice_a, slice_b, slice_c) elif isinstance(entry, (int, long, numpy.integer)): # Disallow the use of python scalars in idx_list raise TypeError("Python scalar in idx_list." "Please report this error to theano-dev.") else: raise AdvancedIndexingError(Subtensor.e_indextype, entry) def get_constant_idx(self, inputs, allow_partial=False): """ Return the idx_list with constant inputs replaced by their python scalar equivalent. May raise `theano.tensor.NotScalarConstantError` if the idx contains non-constant entries. If allow_partial is True, then entries that are not constant will stay as their input variable rather than raising an exception. None entries are always left as-is. Example usage (where v, a are appropriately typed theano variables): >>> b = a[v, 1:3] >>> b.owner.op.idx_list (Scalar(int64), slice(Scalar(int64), Scalar(int64), None)) >>> b.owner.op.get_constant_idx(b.owner.inputs, allow_partial=True) [v, slice(1, 3, None)] >>> b.owner.op.get_constant_idx(b.owner.inputs) NotScalarConstantError: v """ real_idx = get_idx_list(inputs, self.idx_list) def conv(val): if val is None: return None elif isinstance(val, slice): return slice(conv(val.start), conv(val.stop), conv(val.step)) else: try: return get_scalar_constant_value(val) except theano.tensor.NotScalarConstantError: if allow_partial: return val else: raise return map(conv, real_idx) def __init__(self, idx_list): self.idx_list = tuple(map(self.convert, idx_list)) @staticmethod def my_as_scalar(a): # Since scal.as_scalar does not know about tensor types (it would # create a circular import) , this method converts either a # TensorVariable or a ScalarVariable to a scalar. if isinstance(a, gof.Variable) and isinstance(a.type, TensorType): return theano.tensor.scalar_from_tensor(a) else: return scal.as_scalar(a) def make_node(self, x, *inputs): """ x: the tensor to take a subtensor of inputs: a list of theano Scalars """ x = theano.tensor.as_tensor_variable(x) inputs = tuple(self.my_as_scalar(a) for a in inputs) idx_list = list(self.idx_list) if len(idx_list) > x.type.ndim: exception = ValueError(Subtensor.e_invalid % ( len(idx_list), x.type.ndim)) exception.subtensor_invalid = True raise exception input_types = Subtensor.collapse(idx_list, lambda entry: isinstance(entry, gof.Type)) if len(inputs) != len(input_types): raise IndexError( "Not enough inputs to fill in the Subtensor template.", inputs, idx_list) for input, expected_type in izip(inputs, input_types): if input.type != expected_type: raise TypeError( "Wrong type for Subtensor template. Expected %s, got %s." % (input.type, expected_type)) # infer the broadcasting pattern padded = (self.get_constant_idx((None,)+inputs, allow_partial=True) + [slice(None, None, None)] * (x.type.ndim - len(idx_list))) broadcastable = [] for i, (p, bc) in enumerate(izip(padded, x.type.broadcastable)): if isinstance(p, slice): if bc and p.start in [None, 0]: start = p.start if start is None: start = 0 if (p.stop is None or (isinstance(p.stop, (int, numpy.integer)) and p.stop > start)): broadcastable.append(True) continue broadcastable.append(False) return gof.Apply(self, (x, ) + inputs, [theano.tensor.tensor(dtype=x.type.dtype, broadcastable=broadcastable)]) def perform(self, node, inputs, out_): out, = out_ x = inputs[0] cdata = get_idx_list(inputs, self.idx_list) if len(cdata) == 1: cdata = cdata[0] out[0] = numpy.asarray(x.__getitem__(cdata)) def infer_shape(self, node, shapes): xshp = shapes[0] assert len(xshp) == node.inputs[0].ndim outshp = [] actual_idx_list = list(get_idx_list(node.inputs, self.idx_list)) padded = (actual_idx_list + [slice(None, None, None)] * (len(xshp) - len(self.idx_list))) i = 0 for idx, xl in izip(padded, xshp): if isinstance(idx, slice): # If it is the default (None, None, None) slice, or a variant, # the shape will be xl if ((idx.start in [None, 0]) and (idx.stop in [None, maxsize]) and (idx.step is None or idx.step == 1)): outshp.append(xl) else: cnf = get_canonical_form_slice(idx, xl)[0] if cnf.step == 1: length = cnf.stop - cnf.start else: length = (cnf.stop - cnf.start - 1) // cnf.step + 1 outshp.append(length) i += 1 else: # That dimension is dropped pass assert i == node.outputs[0].ndim assert len(outshp) == node.outputs[0].ndim return [outshp] def grad(self, inputs, grads): gz, = grads x = inputs[0] rest = inputs[1:] output = self(*inputs) if output.dtype.find('int') != -1: first = x.zeros_like().astype(theano.config.floatX) else: first = IncSubtensor(self.idx_list)(x.zeros_like(), gz, *rest) return ([first] + [DisconnectedType()()] * len(rest)) def connection_pattern(self, node): rval = [[True]] for ipt in node.inputs[1:]: rval.append([False]) return rval def __eq__(self, other): return type(self) == type(other) and self.idx_list == other.idx_list def __hash__(self): # TODO: optimize by cache this hash value msg = [] for entry in self.idx_list: if isinstance(entry, slice): msg += [(entry.start, entry.stop, entry.step)] else: msg += [entry] idx_list = tuple(msg) # backport # idx_list = tuple((entry.start, entry.stop, entry.step) # if isinstance(entry, slice) # else entry # for entry in self.idx_list) return hash(idx_list) @staticmethod def str_from_slice(entry): msg = [] for x in [entry.start, entry.stop, entry.step]: if x is None: msg.append("") else: msg.append(str(x)) return ":".join(msg) def __str__(self): indices = [] for entry in self.idx_list: if isinstance(entry, slice): indices.append(self.str_from_slice(entry)) else: indices.append(str(entry)) return "%s{%s}" % (self.__class__.__name__, ", ".join(indices)) @staticmethod def default_helper_c_code_args(): """ Returns a dictionary of default arguments to helper_c_code """ return { "c_prefix": "PyArray", "strides_mul": 1, } @staticmethod def helper_c_code(node, name, inputs, outputs, sub, idx_list, view_ndim, c_prefix=None, strides_mul=None, ): """ The parameters c_prefix are there to allow reusing this function on PyArray and CudaNdarray object. This fct take as input the x, """ default_args = Subtensor.default_helper_c_code_args() if strides_mul is None: strides_mul = default_args['strides_mul'] if c_prefix is None: c_prefix = default_args['c_prefix'] # # two arrays are created in C code: # is_slice: len == ndim, 0 means int, 1 means slice # subtensor_spec: len = n_ints + 3 * n_slices # fail = sub['fail'] init_cmds = [] # initialization for subtensor_spec is_slice = [] # TODO: change that, it might lead to unexpected results, # see assembla-#767 NONE_CODE = maxsize - 1 pos = [0, 1] # annoying version of global variable for init_entry def inc_spec_pos(amt): pos[0] += amt def inc_input_pos(amt): pos[1] += amt def spec_pos(): return pos[0] def input_pos(): return pos[1] def init_entry(entry, depth=0): if isinstance(entry, (numpy.integer, int)): init_cmds.append( "subtensor_spec[%i] = %i;" % (spec_pos(), entry)) inc_spec_pos(1) if depth == 0: is_slice.append(0) elif isinstance(entry, Type): init_cmds.append( "subtensor_spec[%i] = %s;" % (spec_pos(), inputs[input_pos()])) inc_spec_pos(1) inc_input_pos(1) if depth == 0: is_slice.append(0) elif entry is None: init_cmds.append( "subtensor_spec[%i] = %i;" % (spec_pos(), NONE_CODE)) inc_spec_pos(1) if depth == 0: is_slice.append(0) elif depth == 0 and isinstance(entry, slice): init_entry(entry.start, depth + 1) init_entry(entry.stop, depth + 1) init_entry(entry.step, depth + 1) is_slice.append(1) else: assert 0, entry for entry in idx_list: init_entry(entry) # make sure we used all inputs assert input_pos() == len(inputs), input_pos() assert len(is_slice) <= node.inputs[0].ndim, node.inputs[0].ndim len_is_slice = len(is_slice) len_subtensor_spec = spec_pos() subensor_spec = "npy_intp subtensor_spec[%(len_subtensor_spec)s];" % locals() if len_subtensor_spec == 0: subensor_spec = "npy_intp * subtensor_spec = NULL;" if is_slice: is_slice_init = "int is_slice[] = {" + ",".join([str(s) for s in is_slice]) + "};" else: is_slice_init = "int* is_slice = NULL;" subtensor_init = "\n".join(init_cmds) x, = inputs[:1] z, = outputs if view_ndim: rval = """ // Argument of the view npy_intp xview_dims[%(view_ndim)s]; npy_intp xview_strides[%(view_ndim)s]; """% locals() else: rval = """ // Argument of the view npy_intp* xview_dims = NULL; npy_intp* xview_strides = NULL; """ rval += """ // One more argument of the view npy_intp xview_offset = 0; // The subtensor is created by iterating over the dimensions // and updating stride, shape, and data pointers %(is_slice_init)s %(subensor_spec)s %(subtensor_init)s; int spec_pos = 0; //position in subtensor_spec int inner_ii = 0; // the current dimension of zview int outer_ii = 0; // current dimension of z for (; outer_ii < %(len_is_slice)s; ++outer_ii) { if (is_slice[outer_ii]) { npy_intp length = %(c_prefix)s_DIMS(%(x)s)[outer_ii]; npy_intp slicelength; npy_intp start = subtensor_spec[spec_pos+0]; npy_intp stop = subtensor_spec[spec_pos+1]; npy_intp step = subtensor_spec[spec_pos+2]; if (step == %(NONE_CODE)s) step = 1; npy_intp defstart = step < 0 ? length-1 : 0; npy_intp defstop = step < 0 ? -1 : length; // logic adapted from // PySlice_GetIndicesEx in python source if (!step) { PyErr_Format(PyExc_ValueError, "slice step cannot be zero"); %(fail)s; } if (start == %(NONE_CODE)s) { start = defstart; } else { if (start < 0) start += length; if (start < 0) start = (step < 0) ? -1 : 0; if (start >= length) start = (step < 0) ? length - 1 : length; } if (stop == %(NONE_CODE)s) { stop = defstop; } else { if (stop < 0) stop += length; if (stop < 0) stop = (step < 0) ? -1 : 0; if (stop >= length) stop = (step < 0) ? length - 1 : length; } if ((step < 0 && stop >= start) || (step > 0 && start >= stop)) { slicelength = 0; } else if (step < 0) { slicelength = (stop-start+1)/step+1; } else { slicelength = (stop-start-1)/step+1; } if (0){ fprintf(stdout, "start %%zi\\n", start); fprintf(stdout, "stop %%zi\\n", stop); fprintf(stdout, "step %%zi\\n", step); fprintf(stdout, "length %%zi\\n", length); fprintf(stdout, "slicelength %%zi\\n", slicelength); } assert (slicelength <= length); xview_offset += %(c_prefix)s_STRIDES(%(x)s)[outer_ii] * start * %(strides_mul)s; xview_dims[inner_ii] = slicelength; xview_strides[inner_ii] = %(c_prefix)s_STRIDES(%(x)s)[outer_ii] * step; inner_ii += 1; spec_pos += 3; } else // tuple coord `outer_ii` is an int { int idx = subtensor_spec[spec_pos]; if (idx < 0) idx += %(c_prefix)s_DIMS(%(x)s)[outer_ii]; if (idx >= 0) { if (idx < %(c_prefix)s_DIMS(%(x)s)[outer_ii]) { xview_offset += %(c_prefix)s_STRIDES(%(x)s)[outer_ii] * idx * %(strides_mul)s; } else { PyErr_Format(PyExc_IndexError,"index out of bounds"); %(fail)s; } } else { PyErr_Format(PyExc_IndexError,"index out of bounds"); %(fail)s; } spec_pos += 1; } } assert (inner_ii <= %(view_ndim)s); while (inner_ii < %(view_ndim)s) { assert (outer_ii < %(c_prefix)s_NDIM(%(x)s)); xview_dims[inner_ii] = %(c_prefix)s_DIMS(%(x)s)[outer_ii]; xview_strides[inner_ii] = %(c_prefix)s_STRIDES(%(x)s)[outer_ii]; inner_ii += 1; outer_ii += 1; } """ % locals() # print rval return rval @staticmethod def helper_c_code_cache_version(): return (8,) def c_code(self, node, name, inputs, outputs, sub): # DEBUG if not isinstance(node.inputs[0].type, theano.tensor.TensorType): raise NotImplementedError() x = inputs[0] z, = outputs view_ndim = node.outputs[0].ndim fail = sub['fail'] decl = "PyArrayObject * xview = NULL;" get_xview = self.helper_c_code(node, name, inputs, outputs, sub, self.idx_list, view_ndim) build_view = """ //TODO: give this Op a second output so that this view can be cached //TODO: alternatively, fix the memory leak on failure Py_INCREF(PyArray_DESCR(%(x)s)); xview = (PyArrayObject*)PyArray_NewFromDescr( &PyArray_Type, PyArray_DESCR(%(x)s), %(view_ndim)s, xview_dims, xview_strides, PyArray_BYTES(%(x)s) + xview_offset, PyArray_FLAGS(%(x)s), NULL); assert (PyArray_NDIM(xview) == %(view_ndim)s); if (!xview) { %(fail)s; } """ % locals() finish_view = """ //This is needed for NumPy 1.5, but not 1.7.2 PyArray_UpdateFlags(xview, NPY_ARRAY_C_CONTIGUOUS| NPY_ARRAY_F_CONTIGUOUS); Py_XDECREF(%(z)s); Py_INCREF(py_%(x)s); #if NPY_API_VERSION < 0x00000007 PyArray_BASE(xview) = py_%(x)s; #else PyArray_SetBaseObject(xview, py_%(x)s); #endif assert(py_%(x)s == (PyObject*)%(x)s); %(z)s = xview; """ % locals() return decl + get_xview + build_view + finish_view def c_code_cache_version(self): hv = self.helper_c_code_cache_version() # If `helper_c_code_cache_version` is not versioned we do not want to # have a versioned version of this op's C code. if len(hv) == 0: return () return (2, hv) def R_op(self, inputs, eval_points): # Subtensor is not differentiable wrt to its indices, therefore we # do not even need to consider the eval_points provided for those # (they should be defaulted to zeros_like by the global R_op) if eval_points[0] is None: return [None] return self(eval_points[0], *inputs[1:], **dict(return_list=True)) class SubtensorPrinter: def process(self, r, pstate): if r.owner is None: raise TypeError("Can only print Subtensor.") elif isinstance(r.owner.op, Subtensor): idxs = r.owner.op.idx_list inputs = list(r.owner.inputs) input = inputs.pop() sidxs = [] inbrack_pstate = pstate.clone(precedence=-1000) for entry in idxs: if isinstance(entry, int): sidxs.append(str(entry)) elif isinstance(entry, scal.Scalar): sidxs.append(inbrack_pstate.pprinter.process(inputs.pop())) elif isinstance(entry, slice): if entry.start is None or entry.start == 0: msg1 = "" else: msg1 = entry.start if entry.stop is None or entry.stop == maxsize: msg2 = "" else: msg2 = entry.stop if entry.step is None: msg3 = "" else: msg3 = ":%s" % entry.step sidxs.append("%s:%s%s" % (msg1, msg2, msg3)) return "%s[%s]" % (pstate.pprinter.process( input, pstate.clone(precedence=1000)), ", ".join(sidxs)) else: raise TypeError("Can only print Subtensor.") pprint.assign(lambda pstate, r: r.owner and isinstance(r.owner.op, Subtensor), SubtensorPrinter()) def set_subtensor(x, y, inplace=False, tolerate_inplace_aliasing=False): """Return x with the given subtensor overwritten by y. Example: To replicate the numpy expression "r[10:] = 5", type >>> new_r = set_subtensor(r[10:], 5) :param x: symbolic variable for the lvalue of = operation :param y: symbolic variable for the rvalue of = operation :param tolerate_inplace_aliasing: see inc_subtensor for documentation. """ return inc_subtensor(x, y, inplace, set_instead_of_inc=True, tolerate_inplace_aliasing=tolerate_inplace_aliasing) def inc_subtensor(x, y, inplace=False, set_instead_of_inc=False, tolerate_inplace_aliasing=False): """Return x with the given subtensor incremented by y. :param x: the symbolic result of a Subtensor operation. :param y: the amount by which to increment ths subtensor in question :param tolerate_inplace_aliasing: allow x and y to be views of a single underlying array even while working inplace. For correct results, x and y must not be overlapping views; if they overlap, the result of this Op will generally be incorrect. This value has no effect if inplace=False. Example: To replicate the numpy expression "r[10:] += 5", type >>> new_r = inc_subtensor(r[10:], 5) """ # First of all, y cannot have a higher dimension than x, # nor have non-broadcastable dimensions where x is broadcastable. x = theano.tensor.as_tensor_variable(x) y = theano.tensor.as_tensor_variable(y) if y.ndim > x.ndim: raise TypeError(("Trying to increment a %d-dimensional " "subtensor with a %d-dimensional value.") % (x.ndim, y.ndim)) for dim in range(y.ndim): dim_offset = x.ndim - y.ndim if (x.broadcastable[dim + dim_offset] and not y.broadcastable[dim]): # It is acceptable to try to increment a subtensor with a # broadcastable dim with a tensor that is not broadcastable # on that dimension. However, its length must then be 1. # We insert a Rebroadcast Op to make sure it is the case. y = addbroadcast(y, dim) if not x.owner: raise TypeError('x must be the result of a subtensor operation') # retrieve idx_list from x.owner if isinstance(x.owner.op, Subtensor): if tolerate_inplace_aliasing: destroyhandler_tolerate_aliased = [[0, 1]] else: destroyhandler_tolerate_aliased = [] the_op = IncSubtensor(x.owner.op.idx_list, inplace, set_instead_of_inc, destroyhandler_tolerate_aliased=destroyhandler_tolerate_aliased ) real_x = x.owner.inputs[0] real_idxargs = x.owner.inputs[1:] return the_op(real_x, y, *real_idxargs) elif isinstance(x.owner.op, AdvancedSubtensor1): real_x = x.owner.inputs[0] ilist = x.owner.inputs[1] the_op = AdvancedIncSubtensor1(inplace, set_instead_of_inc=set_instead_of_inc) return the_op(real_x, y, ilist) elif isinstance(x.owner.op, AdvancedSubtensor): real_x = x.owner.inputs[0] ilist = x.owner.inputs[1:] the_op = AdvancedIncSubtensor(inplace, set_instead_of_inc=set_instead_of_inc) return the_op(real_x, y, *ilist) elif isinstance(x.owner.op, DimShuffle): inner_x = x.owner.inputs[0] # In the dimshuffle case, there are in fact two dimshuffles: # one to make the indexed dimension the last one, # and one to put it back where it was. So, in the case where we have # inc_subtensor(x[:,i], y), the graph is actually # inc_subtensor((x.T)[i].T, y). # We could get all the way to x, and then get rid of the dimshuffles # completely, but the problem is that advanced_inc_subtensor1 can only # work on the first (outer-most, left-most) dimension of x, # just like advanced_subtensor1. # So we call advanced_inc_subtensor1(x.T, i, y), but then we need to # return something that has the same shape as x, not as x.T (inner_x). # So re-apply the outer dimshuffle on the new inc_subtensor, # and return advanced_inc_subtensor1(x.T, i, y).T. inner_incsubtensor = inc_subtensor(inner_x, y, inplace=inplace, set_instead_of_inc=set_instead_of_inc, tolerate_inplace_aliasing=tolerate_inplace_aliasing) return x.owner.op(inner_incsubtensor, *x.owner.inputs[1:]) elif isinstance(x.owner.op, theano.tensor.Reshape): inner_x = x.owner.inputs[0] # Try to apply inc_subtensor on inner_x. # If it works, there is no need to reshape, as the inc_subtensor # will have the same shape as inner_x, which is what we want. inner_incsubtensor = inc_subtensor(inner_x, y.flatten(), inplace=inplace, set_instead_of_inc=set_instead_of_inc, tolerate_inplace_aliasing=tolerate_inplace_aliasing) return inner_incsubtensor else: raise TypeError('x must be the result of a subtensor operation') class IncSubtensor(Op): """Increment a subtensor. This is like numpy's x[i,j,k] += y It is used internally to implement the gradient on SubTensor. :param set_instead_of_inc: if True set the subtensor to the value instead of incrementing it by that value. """ def __init__(self, idx_list, inplace=False, set_instead_of_inc=False, destroyhandler_tolerate_aliased=None): if destroyhandler_tolerate_aliased is None: destroyhandler_tolerate_aliased = [] self.idx_list = map(Subtensor.convert, idx_list) self.inplace = inplace if inplace: self.destroy_map = {0: [0]} self.destroyhandler_tolerate_aliased = list( destroyhandler_tolerate_aliased) self.set_instead_of_inc = set_instead_of_inc def __eq__(self, other): return type(self) == type(other) \ and self.idx_list == other.idx_list \ and self.inplace == other.inplace \ and self.set_instead_of_inc == other.set_instead_of_inc def __hash__(self): msg = [] for entry in self.idx_list: if isinstance(entry, slice): msg += [(entry.start, entry.stop, entry.step)] else: msg += [entry] idx_list = tuple(msg) # backport #idx_list = tuple((entry.start, entry.stop, entry.step) # if isinstance(entry, slice) # else entry # for entry in self.idx_list) return hashtype(self) ^ hash(idx_list) ^ hash(self.inplace) \ ^ hash(self.set_instead_of_inc) def __str__(self): indices = [] for entry in self.idx_list: if isinstance(entry, slice): indices.append(Subtensor.str_from_slice(entry)) else: indices.append(str(entry)) if self.inplace: msg = 'Inplace' else: msg = '' if not self.set_instead_of_inc: msg += 'Inc' else: msg += 'Set' return "%s{%s;%s}" % ( self.__class__.__name__, msg, ", ".join(indices)) def make_node(self, x, y, *inputs): """ x: the tensor to increment y: the value to increment by inputs: TODO WRITEME """ x, y = map(theano.tensor.as_tensor_variable, [x, y]) if y.ndim > x.ndim: raise ValueError(("Trying to increment a %d-dimensional " "subtensor with a %d-dimensional value.") % (x.ndim, y.ndim)) inputs = tuple(map(Subtensor.my_as_scalar, inputs)) idx_list = list(self.idx_list) if len(idx_list) > x.type.ndim: exception = ValueError( Subtensor.e_invalid % ( len(idx_list), x.type.ndim)) exception.subtensor_invalid = True raise exception input_types = Subtensor.collapse(idx_list, lambda entry: isinstance(entry, gof.Type)) if len(inputs) != len(input_types): raise IndexError( "Not enough inputs to fill in the Subtensor template.", inputs, idx_list) for input, expected_type in izip(inputs, input_types): if input.type != expected_type: raise TypeError( "Wrong type for Subtensor template. Expected %s, got %s." % (input.type, expected_type)) return gof.Apply(self, (x, y) + inputs, [x.type()]) def decl_view(self): return "PyArrayObject * zview = NULL;" def perform(self, node, inputs, out_): out, = out_ x, y = inputs[:2] indices = list(reversed(inputs[2:])) def convert(entry): if isinstance(entry, gof.Type): rval = indices.pop() if sys.version_info < (2, 5): # Before Python 2.5, PySlice_GetIndicesEx requires # Python int to be passed. rval_ = int(rval) if rval_ != rval: raise IndexError(( "Invalid value for indexing: %s. " "That value may be too big.") % rval) return rval_ return rval elif isinstance(entry, slice): return slice(convert(entry.start), convert(entry.stop), convert(entry.step)) else: return entry cdata = tuple(map(convert, self.idx_list)) if len(cdata) == 1: cdata = cdata[0] if not self.inplace: x = x.copy() sub_x = x.__getitem__(cdata) if sub_x.shape: # we've sliced out an N-D tensor with N > 0 if not self.set_instead_of_inc: sub_x += y else: #sub_x += -sub_x + y x.__setitem__(cdata, y) else: # scalar case if not self.set_instead_of_inc: x.__setitem__(cdata, sub_x + y) else: x.__setitem__(cdata, y) out[0] = x def c_code(self, node, name, inputs, outputs, sub): # This method delegates much of the work to helper # methods. This method implements the main logic # but subclasses may override the helper methods # to change the particulars, e.g. GpuIncSubtensor # turns the view/copy operations on numpy arrays # into the same operations on cuda arrays. self.do_type_checking(node) if self.inplace: # convert bool to int inplace = 1 else: inplace = 0 x = inputs[0] y = inputs[1] z, = outputs if self.set_instead_of_inc: # convert bool to int op_is_set = 1 else: op_is_set = 0 fail = sub['fail'] view_ndim = (node.inputs[0].ndim - numpy.sum([not isinstance(idx, slice) for idx in self.idx_list])) copy_of_x = self.copy_of_x(x) copy_input_if_necessary = """ if (%(inplace)s) { if (%(x)s != %(z)s) { Py_XDECREF(%(z)s); Py_INCREF(%(x)s); %(z)s = %(x)s; } } else { Py_XDECREF(%(z)s); %(z)s = %(copy_of_x)s; } """ % locals() # get info needed to make zview: a view of %(z)s helper_args = self.get_helper_c_code_args() get_zview = Subtensor.helper_c_code( node=node, name=name, inputs=outputs[:1] + inputs[2:], outputs=outputs, sub=sub, idx_list=self.idx_list, view_ndim=view_ndim, ** helper_args ) #Make a view on the output, as we will write into it. alloc_zview = self.make_view_array(z, view_ndim) build_view = """ //TODO: give this Op a second output so that this view can be cached //TODO: alternatively, fix the memory leak on failure %(alloc_zview)s; if (!zview) { %(fail)s; } """ % locals() copy_into = self.copy_into("zview", y) add_to_zview = self.add_to_zview(name, y, fail) make_modification = """ if (%(op_is_set)s) { if (%(copy_into)s) // does broadcasting { Py_DECREF(zview); %(fail)s; } } else { %(add_to_zview)s } """ % locals() return (self.decl_view() + copy_input_if_necessary + get_zview + build_view + make_modification + "Py_DECREF(zview);" ) def do_type_checking(self, node): """ Should raise NotImplementedError if c_code does not support the types involved in this node. """ if not isinstance(node.inputs[0].type, theano.tensor.TensorType): raise NotImplementedError() def c_code_cache_version(self): hv = Subtensor.helper_c_code_cache_version() if hv: return (1, hv) else: return () def copy_of_x(self, x): """ :param x: a string giving the name of a C variable pointing to an array :return: C code expression to make a copy of x Base class uses PyArrayObject *, subclasses may override for different types of arrays. """ # Parameters of PyArrary_FromAny are: # array # dtype: we pass NULL to say any dtype is acceptable, so the existing # dtype will be copied # min_depth: we pass 0 to have this parameter ignored # max_depth: we pass 0 to have this parameter ignored # requirements: here we pass NPY_ARRAY_ENSURECOPY to force a copy # context: this is almost always NULL, I'm not sure what it's used for return """(PyArrayObject*)PyArray_FromAny(py_%(x)s, NULL, 0, 0, NPY_ARRAY_ENSURECOPY, NULL)""" % locals() def make_view_array(self, x, view_ndim): """ :param x: a string identifying an array to be viewed :param view_ndim: a string specifying the number of dimensions to have in the view This doesn't need to actually set up the view with the right indexing; we'll do that manually later. """ return """Py_INCREF(PyArray_DESCR(%(x)s)); zview = (PyArrayObject*)PyArray_NewFromDescr( &PyArray_Type, PyArray_DESCR(%(x)s), %(view_ndim)s, xview_dims, //PyArray_DIMS(%(x)s), xview_strides, //PyArray_STRIDES(%(x)s), PyArray_BYTES(%(x)s) + xview_offset, //PyArray_DATA(%(x)s), PyArray_FLAGS(%(x)s), NULL); //This is needed for NumPy 1.5, but not 1.7.2 PyArray_UpdateFlags(zview, NPY_ARRAY_C_CONTIGUOUS| NPY_ARRAY_F_CONTIGUOUS); """ % locals() def get_helper_c_code_args(self): """ Return a dictionary of arguments to pass to helper_c_code.""" return Subtensor.default_helper_c_code_args() def copy_into(self, view, source): """ view: string, C code expression for an array source: string, C code expression for an array returns a C code expression to copy source into view, and return 0 on success """ return """PyArray_CopyInto(%(view)s, %(source)s)""" % locals() def add_to_zview(self, name, x, fail): """ Return C code to add x to zview. Should DECREF zview if the add fails.""" return """ PyArrayObject * add_rval = (PyArrayObject*)PyNumber_InPlaceAdd( (PyObject*)zview, py_%(x)s); if (add_rval) { assert (PyArray_Check((PyObject*)add_rval)); assert (PyArray_DATA(add_rval) == PyArray_DATA(zview)); Py_DECREF(add_rval); } else { Py_DECREF(zview); %(fail)s; }""" % locals() def infer_shape(self, node, shapes): return [shapes[0]] def R_op(self, inputs, eval_points): if eval_points[0] is None or eval_points[1] is None: return [None] # Again we ignore eval points for indices because incsubtensor is # not differentiable wrt to those return self(eval_points[0], eval_points[1], *inputs[2:], **dict(return_list=True)) def connection_pattern(self, node): rval = [[True], [True]] for ipt in node.inputs[2:]: rval.append([False]) return rval def grad(self, inputs, grads): g_output, = grads x, y = inputs[:2] idx_list = inputs[2:] if self.set_instead_of_inc: gx = set_subtensor( Subtensor(idx_list=self.idx_list)(g_output, *idx_list), theano.tensor.zeros_like(y)) else: gx = g_output gy = Subtensor(idx_list=self.idx_list)(g_output, *idx_list) return [gx, gy] + [DisconnectedType()()] * len(idx_list) ######################### # Advanced indexing ######################### # # Should reproduce numpy's behaviour, see url: # docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing class AdvancedSubtensor1(Op): """Implement x[ilist] where ilist is a vector of integers.""" def __init__(self, sparse_grad=False): self.sparse_grad = sparse_grad def __hash__(self): return hash(type(self)) def __eq__(self, other): # Don't check the sparse_grad attribute as # This don't change the output of this op # So we want the merge optimier to merge two op # that differ from there sparse_grad attribute. return type(self) == type(other) def __str__(self): return self.__class__.__name__ def make_node(self, x, ilist): x_ = theano.tensor.as_tensor_variable(x) ilist_ = theano.tensor.as_tensor_variable(ilist) if ilist_.type.dtype[:3] not in ('int', 'uin'): raise TypeError('index must be integers') if ilist_.type.ndim != 1: raise TypeError('index must be vector') if x_.type.ndim == 0: raise TypeError('cannot index into a scalar') return Apply(self, [x_, ilist_], [x_.type()]) def perform(self, node, inp, out_): x, i = inp out, = out_ # Copy always implied by numpy advanced indexing semantic. if out[0] is not None and out[0].shape == (len(i),) + x.shape[1:]: o = out[0] else: o = None # If i.dtype is more precise than numpy.intp (int32 on 32-bit machines, # int64 on 64-bit machines), numpy may raise the following error: # TypeError: array cannot be safely cast to required type. # We need to check if values in i can fit in numpy.intp, because # if they don't, that should be an error (no array can have that # many elements on a 32-bit arch). if i.dtype != numpy.intp: i_ = theano._asarray(i, dtype=numpy.intp) if not numpy.can_cast(i.dtype, numpy.intp): # Check if there was actually an incorrect conversion if numpy.any(i != i_): raise IndexError('index contains values that are bigger ' 'than the maximum array size on this system.', i) i = i_ out[0] = x.take(i, axis=0, out=o) def connection_pattern(self, node): rval = [[True]] for ipt in node.inputs[1:]: rval.append([False]) return rval def grad(self, inputs, grads): global sparse_module_ref x, ilist = inputs gz, = grads assert len(inputs) == 2 sparse = False if getattr(x.type, 'sparse_grad', False): sparse = True warnings.warn( "DEPRECATION WARNING: AdvancedSubtensor1, you are using" " an old interface to the sparse grad. You should use" " theano.sparse_grad(a_tensor[an_int_vector]). ") if sparse or self.sparse_grad: if x.type.ndim != 2: raise TypeError( "AdvancedSubtensor1: you can't take the sparse grad" " from a tensor with ndim != 2. ndim is " + str(x.type.ndim)) if sparse_module_ref is None: import theano.sparse as sparse_module_ref rval1 = [sparse_module_ref.construct_sparse_from_list(x, gz, ilist)] else: rval1 = [advanced_inc_subtensor1(x.zeros_like(), gz, ilist)] return rval1 + [DisconnectedType()()] * (len(inputs) - 1) def R_op(self, inputs, eval_points): if eval_points[0] is None: return [None] return self.make_node(eval_points[0], *inputs[1:]).outputs def infer_shape(self, node, ishapes): x, ilist = ishapes return [ilist + x[1:]] def c_support_code(self): # In some versions of numpy, NPY_MIN_INTP is defined as MIN_LONG, # which is not defined. It should be NPY_MIN_LONG instead in that case. return dedent("""\ #ifndef MIN_LONG #define MIN_LONG NPY_MIN_LONG #endif""") def c_code(self, node, name, input_names, output_names, sub): if self.__class__ is not AdvancedSubtensor1: raise MethodNotDefined( "c_code defined for AdvancedSubtensor1," " not for child class", type(self)) a_name, i_name = input_names[0], input_names[1] output_name = output_names[0] fail = sub['fail'] return """ PyArrayObject *indices; int i_type = PyArray_TYPE(%(i_name)s); if (i_type != NPY_INTP) { // Cast %(i_name)s to NPY_INTP (expected by PyArray_TakeFrom), // if all values fit. if (!PyArray_CanCastSafely(i_type, NPY_INTP)) { npy_int64 min_val, max_val; PyObject* py_min_val = PyArray_Min(%(i_name)s, NPY_MAXDIMS, NULL); if (py_min_val == NULL) { %(fail)s; } min_val = PyLong_AsLongLong(py_min_val); Py_DECREF(py_min_val); if (min_val == -1 && PyErr_Occurred()) { %(fail)s; } PyObject* py_max_val = PyArray_Max(%(i_name)s, NPY_MAXDIMS, NULL); if (py_max_val == NULL) { %(fail)s; } max_val = PyLong_AsLongLong(py_max_val); Py_DECREF(py_max_val); if (max_val == -1 && PyErr_Occurred()) { %(fail)s; } if (min_val < NPY_MIN_INTP || max_val > NPY_MAX_INTP) { PyErr_SetString(PyExc_IndexError, "Index contains values " "that are bigger than the maximum array " "size on this system."); %(fail)s; } } indices = (PyArrayObject*) PyArray_Cast(%(i_name)s, NPY_INTP); if (indices == NULL) { %(fail)s; } } else { indices = %(i_name)s; Py_INCREF(indices); } if (%(output_name)s != NULL) { npy_intp nd, i, *shape; nd = PyArray_NDIM(%(a_name)s) + PyArray_NDIM(indices) - 1; if (PyArray_NDIM(%(output_name)s) != nd) { Py_CLEAR(%(output_name)s); } else { shape = PyArray_DIMS(%(output_name)s); for (i = 0; i < PyArray_NDIM(indices); i++) { if (shape[i] != PyArray_DIMS(indices)[i]) { Py_CLEAR(%(output_name)s); break; } } if (%(output_name)s != NULL) { for (; i < nd; i++) { if (shape[i] != PyArray_DIMS(%(a_name)s)[ i-PyArray_NDIM(indices)+1]) { Py_CLEAR(%(output_name)s); break; } } } } } %(output_name)s = (PyArrayObject*)PyArray_TakeFrom( %(a_name)s, (PyObject*)indices, 0, %(output_name)s, NPY_RAISE); Py_DECREF(indices); if (%(output_name)s == NULL) %(fail)s; """ % locals() def c_code_cache_version(self): return (0, 1, 1) advanced_subtensor1 = AdvancedSubtensor1() class AdvancedIncSubtensor1(Op): """Increments a subtensor using advanced slicing (list of index)""" def __init__(self, inplace=False, set_instead_of_inc=False): self.inplace = inplace self.set_instead_of_inc = set_instead_of_inc if inplace: self.destroy_map = {0: [0]} def __hash__(self): return hash((type(self), self.inplace, self.set_instead_of_inc)) def __eq__(self, other): return (type(self) == type(other) and self.inplace == other.inplace and self.set_instead_of_inc == other.set_instead_of_inc) def __str__(self): if self.inplace: msg = "inplace" else: msg = "no_inplace" if self.set_instead_of_inc: msg += ",set" else: msg += ",inc" return self.__class__.__name__ + "{%s}" % msg def make_node(self, x, y, ilist): x_ = theano.tensor.as_tensor_variable(x) y_ = theano.tensor.as_tensor_variable(y) ilist_ = theano.tensor.as_tensor_variable(ilist) if ilist_.type.dtype[:3] not in ('int', 'uin'): raise TypeError('index must be integers') if ilist_.type.ndim != 1: raise TypeError('index must be vector') if x_.type.ndim == 0: raise TypeError('cannot index into a scalar') if y_.type.ndim > x_.type.ndim: if self.set_instead_of_inc: opname = 'set' else: opname = 'increment' raise TypeError('cannot %s x subtensor with ndim=%s' ' by y with ndim=%s to x subtensor with ndim=%s ' % ( opname, x_.type.ndim, y_.type.ndim)) return Apply(self, [x_, y_, ilist_], [x_.type()]) def perform(self, node, inp, out_): # TODO opt to make this inplace x, y, idx = inp out, = out_ if not self.inplace: x = x.copy() # In Numpy, x[idx] += y doesn't work if the same index is present # many times: it does it only once. Is it a bug? In any case, for # this reason we implement our own 'inc' iteration. if self.set_instead_of_inc: x[idx] = y else: increment = inplace_increment if increment is None: increment = self.inplace_increment1d_slow increment(x, idx, y) out[0] = x def inplace_increment1d_slow(self, x, idx, y): # If `y` has as many dimensions as `x`, then we want to iterate # jointly on `x` and `y`. Otherwise, it means `y` should be # broadcasted to fill all relevant rows of `x`. assert y.ndim <= x.ndim # Should be guaranteed by `make_node` if y.ndim == x.ndim: assert len(y) == len(idx) for (j, i) in enumerate(idx): x[i] += y[j] else: for i in idx: x[i] += y def infer_shape(self, node, ishapes): x, y, ilist = ishapes return [x] def R_op(self, inputs, eval_points): if None in eval_points[:2]: return [None] return self.make_node(eval_points[0], eval_points[1], *inputs[2:]).outputs def connection_pattern(self, node): rval = [[True], [True], [False]] return rval def grad(self, inputs, grads): g_output, = grads x, y = inputs[:2] idx_list = inputs[2:] gx = g_output gy = advanced_subtensor1(g_output, *idx_list) return [gx, gy] + [DisconnectedType()()] * len(idx_list) advanced_inc_subtensor1 = AdvancedIncSubtensor1() def as_index_variable(idx): if idx is None: return NoneConst.clone() if isinstance(idx, slice): return make_slice(idx) idx = theano.tensor.as_tensor_variable(idx) if idx.type.dtype[:3] not in ('int', 'uin'): raise TypeError('index must be integers') return idx def adv_index_broadcastable_pattern(a, idx): """ This function is only used to determine the broadcast pattern for AdvancedSubtensor output variable. For this, we make a fake ndarray and a fake idx and call use ask numpy the output. From this, we find the output broadcast pattern. """ def replace_slice(v): if isinstance(v, gof.Apply): if len(v.outputs) != 1: raise ValueError( "It is ambiguous which output of a multi-output Op has" " to be fetched.", v) else: v = v.outputs[0] if NoneConst.equals(v): return None if isinstance(v.type, SliceType): return slice(None, None) return numpy.zeros((2,) * v.ndim, int) newidx = tuple(map(replace_slice, idx)) #2 - True = 1; 2 - False = 2 fakeshape = [2 - bc for bc in a.broadcastable] retshape = numpy.empty(fakeshape)[newidx].shape return tuple([dim == 1 for dim in retshape]) class AdvancedSubtensor(Op): """Return a subtensor copy, using advanced indexing. """ # Should be used by __getitem__ and __getslice__, as follow: # AdvancedSubtensor()(self, *args), # if args contains and advanced indexing pattern def __eq__(self, other): return self.__class__ == other.__class__ def __hash__(self): return hash(self.__class__) def __str__(self): return self.__class__.__name__ def make_node(self, x, *index): x = theano.tensor.as_tensor_variable(x) index = tuple(map(as_index_variable, index)) bcast = adv_index_broadcastable_pattern(x, index) return gof.Apply(self, (x,) + index, [theano.tensor.tensor(dtype=x.type.dtype, broadcastable=bcast)]) def R_op(self, inputs, eval_points): if eval_points[0] is None: return [None] return self.make_node(eval_points[0], *inputs[1:]).outputs def infer_shape(self, node, ishapes): # Really special case if len(ishapes) == 3: xshp, ind1shp, ind2shp = ishapes if len(xshp) == 2 and len(ind1shp) == 1 and len(ind2shp) == 1: # if the graph is correct, we can assume ind1shp[0] and # ind2shp[0] will have the same value. # Try to return the one closest to the graph input. if node.inputs[2].owner is None: return [ind2shp] else: return [ind1shp] # Default case, we don't know return node.fgraph.shape_feature.default_infer_shape(node, ishapes) def perform(self, node, inputs, out_): out, = out_ # TODO: in general, we need to re-pack the inputs into a valid # index, just like subtensor out[0] = inputs[0].__getitem__(inputs[1:]) if (numpy.__version__ <= '1.6.1' and out[0].size != numpy.uint32(out[0].size)): warnings.warn( 'Numpy versions 1.6.1 and below have a bug preventing ' 'advanced indexing from correctly filling arrays that ' 'are too big (>= 2^32 elements). It is possible that ' 'out[0] (%s), with shape %s, is not correctly filled.' % (out[0], out[0].shape)) # return #raise NotImplementedError() def connection_pattern(self, node): rval = [[True]] for ipt in node.inputs[1:]: rval.append([False]) return rval def grad(self, inputs, grads): gz, = grads x = inputs[0] rest = inputs[1:] return [advanced_inc_subtensor(theano.tensor.zeros_like(x), gz, *rest)] + \ [DisconnectedType()()] * len(rest) advanced_subtensor = AdvancedSubtensor() class AdvancedIncSubtensor(Op): """Increments a subtensor using advanced indexing. :note: We need the numpy.inplace_increment() function currently numpy's PR 326 to be able to make an inplace version of this op. """ def __init__(self, inplace=False, set_instead_of_inc=False): self.inplace = inplace self.set_instead_of_inc = set_instead_of_inc # The assert is needed as in the pass the first argument was # something else that was not used. assert isinstance(inplace, bool) if self.inplace: raise NotImplementedError('In place computation is not' ' implemented') self.allow_legacy_perform = False def __hash__(self): return hash((type(self), self.inplace, self.set_instead_of_inc)) def __eq__(self, other): return (type(self) == type(other) and self.inplace == other.inplace and self.set_instead_of_inc == other.set_instead_of_inc) def __str__(self): return "%s{%s, %s}" % (self.__class__.__name__, "inplace=" + str(self.inplace), " set_instead_of_inc=" + str(self. set_instead_of_inc)) def make_node(self, x, y, *inputs): x = theano.tensor.as_tensor_variable(x) y = theano.tensor.as_tensor_variable(y) op = self # If we are incrementing, but the increment compiled function is not # available, we need to support legacy cases. if not self.set_instead_of_inc and inplace_increment is None: legacy_conditions = False if x.ndim == 2 and y.ndim == 1 and len(inputs) == 2: ind1 = theano.tensor.as_tensor_variable(inputs[0]) ind2 = theano.tensor.as_tensor_variable(inputs[1]) if ind1.ndim == 1 and ind2.ndim == 1: if ind1.owner and isinstance(ind1.owner.op, ARange): legacy_conditions = True elif isinstance(ind1, Constant): # Make sure no index is duplicated val = ind1.value if numpy.unique(val).size == val.size: legacy_conditions = True elif ind2.owner and isinstance(ind2.owner.op, ARange): legacy_conditions = True elif isinstance(ind2, Constant): # Make sure no index is duplicated val = ind2.value if numpy.unique(val).size == val.size: legacy_conditions = True if legacy_conditions: op = copy(self) op.allow_legacy_perform = True else: raise NotImplementedError( 'Could not import inplace_increment, so some advanced ' 'indexing features are disabled. They will be ' 'available if you update NumPy to version 1.8 or ' 'later, or to the latest development version. ' 'You may need to clear the cache (theano-cache clear) ' 'afterwards.') return gof.Apply(op, (x, y) + inputs, [theano.tensor.tensor(dtype=x.type.dtype, broadcastable=x.type.broadcastable)]) def perform(self, node, inputs, out_): # TODO: 1. opt to make this in place 2. generalize as described in # AdvancedSubtensor's perform TODO out, = out_ if not self.inplace: out[0] = inputs[0].copy() else: out[0] = inputs[0] if self.set_instead_of_inc: out[0][inputs[2:]] = inputs[1] elif inplace_increment is not None: inplace_increment(out[0], tuple(inputs[2:]), inputs[1]) elif self.allow_legacy_perform: out[0][inputs[2:]] += inputs[1] else: raise NotImplementedError( 'Could not import inplace_increment, so some advanced ' 'indexing features are disabled. They will be ' 'available if you update NumPy to version 1.8 or ' 'later, or to the latest development version. ' 'You may need to clear the cache (theano-cache clear) ' 'afterwards.') if (numpy.__version__ <= '1.6.1' and out[0].size != numpy.uint32(out[0].size)): warnings.warn( 'Numpy versions 1.6.1 and below have a bug preventing ' 'advanced indexing from correctly filling arrays that ' 'are too big (>= 2^32 elements). It is possible that ' 'out[0] (%s), with shape %s, is not correctly filled.' % (out[0], out[0].shape)) def infer_shape(self, node, ishapes): return [ishapes[0]] def connection_pattern(self, node): rval = [[True], [True]] for ipt in node.inputs[2:]: rval.append([False]) return rval def grad(self, inpt, output_gradients): x, y = inpt[:2] idxs = inpt[2:] outgrad, = output_gradients d_x_wrt_C = outgrad d_y_wrt_C = AdvancedSubtensor()(outgrad, *idxs) return [d_x_wrt_C, d_y_wrt_C] + \ [DisconnectedType()() for _ in idxs] def R_op(self, inputs, eval_points): if None in eval_points[:2]: return [None] return self.make_node(eval_points[0], eval_points[1], *inputs[2:]).outputs advanced_inc_subtensor = AdvancedIncSubtensor() def take(a, indices, axis=None, mode='raise'): a = theano.tensor.as_tensor_variable(a) indices = theano.tensor.as_tensor_variable(indices) # Reuse advanced_subtensor1 if indices is a vector if indices.ndim == 1: if mode == 'clip': indices = clip(indices, 0, a.shape[axis] - 1) elif mode == 'wrap': indices = indices % a.shape[axis] if axis is None: return advanced_subtensor1(a.flatten(), indices) elif axis == 0: return advanced_subtensor1(a, indices) else: if axis < 0: axis += a.ndim assert axis >= 0 shuffle = range(a.ndim) shuffle[0] = axis shuffle[axis] = 0 return advanced_subtensor1( a.dimshuffle(shuffle), indices).dimshuffle(shuffle) if axis is None: shape = indices.shape ndim = indices.ndim else: shape = theano.tensor.concatenate( [a.shape[:axis], indices.shape, a.shape[axis + 1:]]) ndim = a.ndim + indices.ndim - 1 return take(a, indices.flatten(), axis, mode).reshape(shape, ndim)
36.384466
94
0.5305
79052816aec8b76957540d72b3609cbf4bb76b0c
1,528
py
Python
src/commercetools/platform/client/matching_cart/by_project_key_shipping_methods_matching_cart_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
1
2021-04-07T20:01:30.000Z
2021-04-07T20:01:30.000Z
src/commercetools/platform/client/matching_cart/by_project_key_shipping_methods_matching_cart_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
null
null
null
src/commercetools/platform/client/matching_cart/by_project_key_shipping_methods_matching_cart_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
null
null
null
# Generated file, please do not change!!! import typing from ...models.error import ErrorResponse from ...models.shipping_method import ShippingMethodPagedQueryResponse if typing.TYPE_CHECKING: from ...base_client import BaseClient class ByProjectKeyShippingMethodsMatchingCartRequestBuilder: _client: "BaseClient" _project_key: str def __init__( self, project_key: str, client: "BaseClient", ): self._project_key = project_key self._client = client def get( self, *, cart_id: str, expand: typing.List["str"] = None, headers: typing.Dict[str, str] = None, options: typing.Dict[str, typing.Any] = None, ) -> typing.Optional["ShippingMethodPagedQueryResponse"]: headers = {} if headers is None else headers response = self._client._get( endpoint=f"/{self._project_key}/shipping-methods/matching-cart", params={"cartId": cart_id, "expand": expand}, headers=headers, options=options, ) if response.status_code == 200: return ShippingMethodPagedQueryResponse.deserialize(response.json()) elif response.status_code in (400, 401, 403, 500, 503): obj = ErrorResponse.deserialize(response.json()) raise self._client._create_exception(obj, response) elif response.status_code == 404: return None raise ValueError("Unhandled status code %s", response.status_code)
32.510638
80
0.643979
f426afc0fcdbe383d46815ade7f64023f4dfe6ce
1,917
py
Python
test/test_get_transaction_details_by_transaction_id_from_callback_ribsl.py
Crypto-APIs/Crypto_APIs_2.0_SDK_Python
c59ebd914850622b2c6500c4c30af31fb9cecf0e
[ "MIT" ]
5
2021-05-17T04:45:03.000Z
2022-03-23T12:51:46.000Z
test/test_get_transaction_details_by_transaction_id_from_callback_ribsl.py
Crypto-APIs/Crypto_APIs_2.0_SDK_Python
c59ebd914850622b2c6500c4c30af31fb9cecf0e
[ "MIT" ]
null
null
null
test/test_get_transaction_details_by_transaction_id_from_callback_ribsl.py
Crypto-APIs/Crypto_APIs_2.0_SDK_Python
c59ebd914850622b2c6500c4c30af31fb9cecf0e
[ "MIT" ]
2
2021-06-02T07:32:26.000Z
2022-02-12T02:36:23.000Z
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: developers@cryptoapis.io Generated by: https://openapi-generator.tech """ import sys import unittest import cryptoapis from cryptoapis.model.get_transaction_details_by_transaction_idribsl_vin import GetTransactionDetailsByTransactionIDRIBSLVin from cryptoapis.model.get_transaction_details_by_transaction_idribsl_vout import GetTransactionDetailsByTransactionIDRIBSLVout globals()['GetTransactionDetailsByTransactionIDRIBSLVin'] = GetTransactionDetailsByTransactionIDRIBSLVin globals()['GetTransactionDetailsByTransactionIDRIBSLVout'] = GetTransactionDetailsByTransactionIDRIBSLVout from cryptoapis.model.get_transaction_details_by_transaction_id_from_callback_ribsl import GetTransactionDetailsByTransactionIDFromCallbackRIBSL class TestGetTransactionDetailsByTransactionIDFromCallbackRIBSL(unittest.TestCase): """GetTransactionDetailsByTransactionIDFromCallbackRIBSL unit test stubs""" def setUp(self): pass def tearDown(self): pass def testGetTransactionDetailsByTransactionIDFromCallbackRIBSL(self): """Test GetTransactionDetailsByTransactionIDFromCallbackRIBSL""" # FIXME: construct object with mandatory attributes with example values # model = GetTransactionDetailsByTransactionIDFromCallbackRIBSL() # noqa: E501 pass if __name__ == '__main__': unittest.main()
46.756098
484
0.82264
f7977280429846a6a1a24bb202ae2f2a6ce767dd
17,415
py
Python
dvc/repo/experiments/executor/base.py
Sayanta66/dvc
0d484d45f710b39c6baf541ac4d23aa983792aae
[ "Apache-2.0" ]
1
2021-07-20T05:33:18.000Z
2021-07-20T05:33:18.000Z
dvc/repo/experiments/executor/base.py
Sayanta66/dvc
0d484d45f710b39c6baf541ac4d23aa983792aae
[ "Apache-2.0" ]
null
null
null
dvc/repo/experiments/executor/base.py
Sayanta66/dvc
0d484d45f710b39c6baf541ac4d23aa983792aae
[ "Apache-2.0" ]
1
2021-08-05T07:15:30.000Z
2021-08-05T07:15:30.000Z
import logging import os import pickle from abc import ABC, abstractmethod from contextlib import contextmanager from dataclasses import dataclass from functools import partial from typing import ( TYPE_CHECKING, Callable, Iterable, NamedTuple, Optional, Union, ) from funcy import cached_property from dvc.exceptions import DvcException from dvc.path_info import PathInfo from dvc.repo.experiments.base import ( EXEC_BASELINE, EXEC_BRANCH, EXEC_CHECKPOINT, EXEC_HEAD, EXEC_MERGE, EXEC_NAMESPACE, EXPS_NAMESPACE, EXPS_STASH, CheckpointExistsError, ExperimentExistsError, ExpRefInfo, UnchangedExperimentError, ) from dvc.scm import SCM from dvc.stage import PipelineStage from dvc.stage.monitor import CheckpointKilledError from dvc.stage.serialize import to_lockfile from dvc.utils import dict_sha256 from dvc.utils.fs import remove if TYPE_CHECKING: from multiprocessing import Queue from dvc.scm.git import Git logger = logging.getLogger(__name__) class ExecutorResult(NamedTuple): exp_hash: Optional[str] ref_info: Optional["ExpRefInfo"] force: bool @dataclass class ExecutorInfo: PARAM_PID = "pid" PARAM_GIT_URL = "git" PARAM_BASELINE_REV = "baseline" PARAM_LOCATION = "location" pid: Optional[int] git_url: Optional[str] baseline_rev: Optional[str] location: Optional[str] @classmethod def from_dict(cls, d): return cls( d.get(cls.PARAM_PID), d.get(cls.PARAM_GIT_URL), d.get(cls.PARAM_BASELINE_REV), d.get(cls.PARAM_LOCATION), ) def to_dict(self): return { self.PARAM_PID: self.pid, self.PARAM_GIT_URL: self.git_url, self.PARAM_BASELINE_REV: self.baseline_rev, self.PARAM_LOCATION: self.location, } class BaseExecutor(ABC): """Base class for executing experiments in parallel. Args: src: source Git SCM instance. dvc_dir: relpath to DVC root from SCM root. Optional keyword args: branch: Existing git branch for this experiment. """ PACKED_ARGS_FILE = "repro.dat" WARN_UNTRACKED = False QUIET = False PIDFILE_EXT = ".run" DEFAULT_LOCATION: Optional[str] = "workspace" def __init__( self, src: "Git", dvc_dir: str, root_dir: Optional[Union[str, PathInfo]] = None, branch: Optional[str] = None, name: Optional[str] = None, **kwargs, ): assert root_dir is not None self._dvc_dir = dvc_dir self.root_dir = root_dir self._init_git(src, branch) self.name = name def _init_git(self, scm: "Git", branch: Optional[str] = None): """Init git repo and collect executor refs from the specified SCM.""" from dulwich.repo import Repo as DulwichRepo DulwichRepo.init(os.fspath(self.root_dir)) cwd = os.getcwd() os.chdir(self.root_dir) try: refspec = f"{EXEC_NAMESPACE}/" scm.push_refspec(self.git_url, refspec, refspec) if branch: scm.push_refspec(self.git_url, branch, branch) self.scm.set_ref(EXEC_BRANCH, branch, symbolic=True) elif self.scm.get_ref(EXEC_BRANCH): self.scm.remove_ref(EXEC_BRANCH) if self.scm.get_ref(EXEC_CHECKPOINT): self.scm.remove_ref(EXEC_CHECKPOINT) # checkout EXEC_HEAD and apply EXEC_MERGE on top of it without # committing head = EXEC_BRANCH if branch else EXEC_HEAD self.scm.checkout(head, detach=True) merge_rev = self.scm.get_ref(EXEC_MERGE) self.scm.merge(merge_rev, squash=True, commit=False) finally: os.chdir(cwd) @cached_property def scm(self): return SCM(self.root_dir) @property @abstractmethod def git_url(self) -> str: pass @property def dvc_dir(self) -> str: return os.path.join(self.root_dir, self._dvc_dir) @staticmethod def hash_exp(stages: Iterable["PipelineStage"]) -> str: exp_data = {} for stage in stages: if isinstance(stage, PipelineStage): exp_data.update(to_lockfile(stage)) return dict_sha256(exp_data) def cleanup(self): self.scm.close() del self.scm # TODO: come up with better way to stash repro arguments @staticmethod def pack_repro_args(path, *args, fs=None, extra=None, **kwargs): dpath = os.path.dirname(path) if fs: open_func = fs.open fs.makedirs(dpath) else: from dvc.utils.fs import makedirs open_func = open makedirs(dpath, exist_ok=True) data = {"args": args, "kwargs": kwargs} if extra is not None: data["extra"] = extra with open_func(path, "wb") as fobj: pickle.dump(data, fobj) @staticmethod def unpack_repro_args(path): with open(path, "rb") as fobj: data = pickle.load(fobj) return data["args"], data["kwargs"] @classmethod def fetch_exps( cls, dest_scm: "Git", url: str, force: bool = False, on_diverged: Callable[[str, bool], None] = None, ) -> Iterable[str]: """Fetch reproduced experiments into the specified SCM. Args: dest_scm: Destination Git instance. url: Git remote URL to fetch from. force: If True, diverged refs will be overwritten on_diverged: Callback in the form on_diverged(ref, is_checkpoint) to be called when an experiment ref has diverged. """ refs = [] has_checkpoint = False for ref in dest_scm.iter_remote_refs(url, base=EXPS_NAMESPACE): if ref == EXEC_CHECKPOINT: has_checkpoint = True elif not ref.startswith(EXEC_NAMESPACE) and ref != EXPS_STASH: refs.append(ref) def on_diverged_ref(orig_ref: str, new_rev: str): if force: logger.debug("Replacing existing experiment '%s'", orig_ref) return True cls._raise_ref_conflict( dest_scm, orig_ref, new_rev, has_checkpoint ) if on_diverged: on_diverged(orig_ref, has_checkpoint) logger.debug("Reproduced existing experiment '%s'", orig_ref) return False # fetch experiments dest_scm.fetch_refspecs( url, [f"{ref}:{ref}" for ref in refs], on_diverged=on_diverged_ref, force=force, ) # update last run checkpoint (if it exists) if has_checkpoint: dest_scm.fetch_refspecs( url, [f"{EXEC_CHECKPOINT}:{EXEC_CHECKPOINT}"], force=True, ) return refs @classmethod def reproduce( cls, dvc_dir: Optional[str], rev: str, queue: Optional["Queue"] = None, rel_cwd: Optional[str] = None, name: Optional[str] = None, log_errors: bool = True, log_level: Optional[int] = None, **kwargs, ) -> "ExecutorResult": """Run dvc repro and return the result. Returns tuple of (exp_hash, exp_ref, force) where exp_hash is the experiment hash (or None on error), exp_ref is the experiment ref, and force is a bool specifying whether or not this experiment should force overwrite any existing duplicates. """ from dvc.repo.checkout import checkout as dvc_checkout from dvc.repo.reproduce import reproduce as dvc_reproduce unchanged = [] if queue is not None: queue.put((rev, os.getpid())) if log_errors and log_level is not None: cls._set_log_level(log_level) def filter_pipeline(stages): unchanged.extend( [stage for stage in stages if isinstance(stage, PipelineStage)] ) exp_hash: Optional[str] = None exp_ref: Optional["ExpRefInfo"] = None repro_force: bool = False with cls._repro_dvc( dvc_dir, rel_cwd, log_errors, **kwargs, ) as dvc: args, kwargs = cls._repro_args(dvc) if args: targets: Optional[Union[list, str]] = args[0] else: targets = kwargs.get("targets") repro_force = kwargs.get("force", False) logger.trace( # type: ignore[attr-defined] "Executor repro with force = '%s'", str(repro_force) ) repro_dry = kwargs.get("dry") # NOTE: checkpoint outs are handled as a special type of persist # out: # # - checkpoint out may not yet exist if this is the first time this # experiment has been run, this is not an error condition for # experiments # - if experiment was run with --reset, the checkpoint out will be # removed at the start of the experiment (regardless of any # dvc.lock entry for the checkpoint out) # - if run without --reset, the checkpoint out will be checked out # using any hash present in dvc.lock (or removed if no entry # exists in dvc.lock) checkpoint_reset: bool = kwargs.pop("reset", False) if not repro_dry: dvc_checkout( dvc, targets=targets, with_deps=targets is not None, force=True, quiet=True, allow_missing=True, checkpoint_reset=checkpoint_reset, ) checkpoint_func = partial( cls.checkpoint_callback, dvc.scm, name, repro_force or checkpoint_reset, ) stages = dvc_reproduce( dvc, *args, on_unchanged=filter_pipeline, checkpoint_func=checkpoint_func, **kwargs, ) exp_hash = cls.hash_exp(stages) if not repro_dry: try: is_checkpoint = any( stage.is_checkpoint for stage in stages ) if is_checkpoint and checkpoint_reset: # For reset checkpoint stages, we need to force # overwriting existing checkpoint refs even though # repro may not have actually been run with --force repro_force = True cls.commit( dvc.scm, exp_hash, exp_name=name, force=repro_force, checkpoint=is_checkpoint, ) except UnchangedExperimentError: pass ref = dvc.scm.get_ref(EXEC_BRANCH, follow=False) if ref: exp_ref = ExpRefInfo.from_ref(ref) if cls.WARN_UNTRACKED: untracked = dvc.scm.untracked_files() if untracked: logger.warning( "The following untracked files were present in " "the experiment directory after reproduction but " "will not be included in experiment commits:\n" "\t%s", ", ".join(untracked), ) # ideally we would return stages here like a normal repro() call, but # stages is not currently picklable and cannot be returned across # multiprocessing calls return ExecutorResult(exp_hash, exp_ref, repro_force) @classmethod @contextmanager def _repro_dvc( cls, dvc_dir: Optional[str], rel_cwd: Optional[str], log_errors: bool, pidfile: Optional[str] = None, git_url: Optional[str] = None, **kwargs, ): from dvc.repo import Repo from dvc.utils.serialize import modify_yaml dvc = Repo(dvc_dir) if cls.QUIET: dvc.scm.quiet = cls.QUIET if dvc_dir is not None: old_cwd: Optional[str] = os.getcwd() if rel_cwd: os.chdir(os.path.join(dvc.root_dir, rel_cwd)) else: os.chdir(dvc.root_dir) else: old_cwd = None if pidfile is not None: info = ExecutorInfo( os.getpid(), git_url, dvc.scm.get_rev(), cls.DEFAULT_LOCATION, ) with modify_yaml(pidfile) as d: d.update(info.to_dict()) logger.debug("Running repro in '%s'", os.getcwd()) try: yield dvc except CheckpointKilledError: raise except DvcException: if log_errors: logger.exception("") raise except Exception: if log_errors: logger.exception("unexpected error") raise finally: if pidfile is not None: remove(pidfile) dvc.close() if old_cwd: os.chdir(old_cwd) @classmethod def _repro_args(cls, dvc): args_path = os.path.join(dvc.tmp_dir, cls.PACKED_ARGS_FILE) if os.path.exists(args_path): args, kwargs = cls.unpack_repro_args(args_path) remove(args_path) # explicitly git rm/unstage the args file dvc.scm.add([args_path]) else: args = [] kwargs = {} return args, kwargs @classmethod def checkpoint_callback( cls, scm: "Git", name: Optional[str], force: bool, unchanged: Iterable["PipelineStage"], stages: Iterable["PipelineStage"], ): try: exp_hash = cls.hash_exp(list(stages) + list(unchanged)) exp_rev = cls.commit( scm, exp_hash, exp_name=name, force=force, checkpoint=True ) logger.info("Checkpoint experiment iteration '%s'.", exp_rev[:7]) except UnchangedExperimentError: pass @classmethod def commit( cls, scm: "Git", exp_hash: str, exp_name: Optional[str] = None, force: bool = False, checkpoint: bool = False, ): """Commit stages as an experiment and return the commit SHA.""" rev = scm.get_rev() if not scm.is_dirty(): logger.debug("No changes to commit") raise UnchangedExperimentError(rev) check_conflict = False branch = scm.get_ref(EXEC_BRANCH, follow=False) if branch: old_ref = rev logger.debug("Commit to current experiment branch '%s'", branch) else: baseline_rev = scm.get_ref(EXEC_BASELINE) name = exp_name if exp_name else f"exp-{exp_hash[:5]}" ref_info = ExpRefInfo(baseline_rev, name) branch = str(ref_info) old_ref = None if scm.get_ref(branch): if not force: check_conflict = True logger.debug( "%s existing experiment branch '%s'", "Replace" if force else "Reuse", branch, ) else: logger.debug("Commit to new experiment branch '%s'", branch) scm.add([], update=True) scm.commit(f"dvc: commit experiment {exp_hash}", no_verify=True) new_rev = scm.get_rev() if check_conflict: new_rev = cls._raise_ref_conflict(scm, branch, new_rev, checkpoint) else: scm.set_ref(branch, new_rev, old_ref=old_ref) scm.set_ref(EXEC_BRANCH, branch, symbolic=True) if checkpoint: scm.set_ref(EXEC_CHECKPOINT, new_rev) return new_rev @staticmethod def _raise_ref_conflict(scm, ref, new_rev, checkpoint): # If this commit is a duplicate of the existing commit at 'ref', return # the existing commit. Otherwise, error out and require user to re-run # with --force as needed orig_rev = scm.get_ref(ref) if scm.diff(orig_rev, new_rev): if checkpoint: raise CheckpointExistsError(ref) raise ExperimentExistsError(ref) return orig_rev @staticmethod def _set_log_level(level): from dvc.logger import disable_other_loggers # When executor.reproduce is run in a multiprocessing child process, # dvc.main will not be called for that child process so we need to # setup logging ourselves dvc_logger = logging.getLogger("dvc") disable_other_loggers() if level is not None: dvc_logger.setLevel(level)
32.071823
79
0.558599
75b99fb192196d9b6bf4f8907baf56184748d30b
6,334
py
Python
gooey/tests/test_integration.py
jwaschkau/Gooey
57b4f2e79b9d1e72325ee02179ead4a46b1d97a6
[ "MIT" ]
null
null
null
gooey/tests/test_integration.py
jwaschkau/Gooey
57b4f2e79b9d1e72325ee02179ead4a46b1d97a6
[ "MIT" ]
null
null
null
gooey/tests/test_integration.py
jwaschkau/Gooey
57b4f2e79b9d1e72325ee02179ead4a46b1d97a6
[ "MIT" ]
null
null
null
import json import time import unittest from concurrent import futures from gooey.gui import application from gooey.gui.lang.i18n import _ class TestGooeyIntegration(unittest.TestCase): """ A few quick integration tests that exercise Gooey's various run modes WX Python needs to control the main thread. So, in order to simulate a user running through the system, we have to execute the actual assertions in a different thread """ def performTest(self, configPath, assertionFunction): """ Primary test harness. Instantiates the WX App, and spawns the threads required to make assertions against it """ with open(configPath, 'r') as f: build_spec = json.loads(f.read()) try: assert 0 except AssertionError as e: print('wtf') print(e) app = application.build_app(build_spec=build_spec) executor = futures.ThreadPoolExecutor(max_workers=1) testResult = executor.submit(assertionFunction, app, build_spec) app.MainLoop() testResult.result() # some extra padding time between starting/stopping the wx App app.Destroy() time.sleep(1) def test_gooeyNormalRun(self): """ Tests the happy path through the default run mode of Gooey """ self.performTest('./gooey/tests/gooey_config__normal.json', self.gooeySanityTest) def test_gooeySubparserMode(self): """ Tests the happy path through the subparser run mode of Gooey """ self.performTest('./gooey/tests/gooey_config__subparser.json', self.gooeySanityTest) def test__gooeyAutoStart(self): """Verifies that issue #201 doesn't regress and auto_start skips the config screen and hops right into the client's program""" self.performTest('./gooey/tests/gooey_config__autostart.json', self.verifyAutoStart) def test__gooeyValidation(self): """Verifies that custom validation routines supplied via gooey_options prevents the user from advancing past the configuration page when they fail""" self.performTest('./gooey/tests/gooey_config__autostart.json', self.verifyValidators) def verifyValidators(self, app, buildSpec): time.sleep(1) try: app.TopWindow.onStart() # we should still be on the configuration page due to a validation fail title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertNotEqual(title, buildSpec['program_name']) self.assertNotEqual(subtitle, buildSpec['program_description']) except: app.TopWindow.Destroy() raise else: app.TopWindow.Destroy() return None def verifyAutoStart(self, app, buildSpec): """ When the auto_start flag == True Gooey should skip the configuration screen """ time.sleep(1) try: # Gooey should NOT be showing the name/description headers # present on the config page title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertNotEqual(title, buildSpec['program_name']) self.assertNotEqual(subtitle, buildSpec['program_description']) # Gooey should be showing the console messages straight away # without manually starting the program title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertEqual(title,_("running_title")) self.assertEqual(subtitle, _('running_msg')) # Wait for Gooey to swap the header to the final screen while app.TopWindow.header._header.GetLabel() == _("running_title"): time.sleep(.1) # verify that we've landed on the success screen title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertEqual(title, _("finished_title")) self.assertEqual(subtitle, _('finished_msg')) # and that output was actually written to the console self.assertIn("Success", app.TopWindow.console.textbox.GetValue()) except: app.TopWindow.Destroy() raise else: app.TopWindow.Destroy() return None def gooeySanityTest(self, app, buildSpec): time.sleep(1) try: # Check out header is present and showing data title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertEqual(title, buildSpec['program_name']) self.assertEqual(subtitle, buildSpec['program_description']) # switch to the run screen app.TopWindow.onStart() # Should find the expected test in the header title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertEqual(title,_("running_title")) self.assertEqual(subtitle, _('running_msg')) # Wait for Gooey to swap the header to the final screen while app.TopWindow.header._header.GetLabel() == _("running_title"): time.sleep(.1) # verify that we've landed on the success screen title = app.TopWindow.header._header.GetLabel() subtitle = app.TopWindow.header._subheader.GetLabel() self.assertEqual(title, _("finished_title")) self.assertEqual(subtitle, _('finished_msg')) # and that output was actually written to the console self.assertIn("Success", app.TopWindow.console.textbox.GetValue()) except: app.TopWindow.Destroy() raise else: app.TopWindow.Destroy() return None if __name__ == '__main__': unittest.main()
37.47929
94
0.618251
800199a38d8cf1c5886f8347e4eb868d640f1b93
2,553
py
Python
tests/test_indicator.py
alexcwyu/python-trading
a494f602411a3ebfdecae002a16a5ea93fc7a046
[ "Apache-2.0" ]
17
2016-03-30T21:52:30.000Z
2021-05-01T18:21:48.000Z
tests/test_indicator.py
ajmal017/python-trading
a494f602411a3ebfdecae002a16a5ea93fc7a046
[ "Apache-2.0" ]
2
2016-10-04T19:29:05.000Z
2017-02-01T19:24:39.000Z
tests/test_indicator.py
ajmal017/python-trading
a494f602411a3ebfdecae002a16a5ea93fc7a046
[ "Apache-2.0" ]
9
2016-04-24T05:05:26.000Z
2020-05-03T13:01:34.000Z
from unittest import TestCase from algotrader.trading.context import ApplicationContext from algotrader.utils.indicator import parse_series, get_or_create_indicator from algotrader.technical.ma import SMA class IndicatorTest(TestCase): def setUp(self): self.app_context = ApplicationContext() def test_reuse(self): close = self.app_context.inst_data_mgr.get_series("bar") close.start(self.app_context) sma1 = get_or_create_indicator(self.app_context.inst_data_mgr, cls=SMA, inputs='bar', input_keys='close', length=3) sma1.start(self.app_context) sma2 = get_or_create_indicator(self.app_context.inst_data_mgr, cls=SMA, inputs='bar', input_keys='close', length=3) sma2.start(self.app_context) sma3 = get_or_create_indicator(self.app_context.inst_data_mgr, cls=SMA, inputs='bar', input_keys='close', length=10) sma3.start(self.app_context) self.assertEquals(sma1, sma2) self.assertNotEquals(sma2, sma3) self.assertNotEquals(sma1, sma3) sma4 = get_or_create_indicator(self.app_context.inst_data_mgr, cls=SMA, inputs=sma3, length=10) sma4.start(self.app_context) self.assertEquals(sma4.input_series[0], sma3) # def test_parse(self): # bar = parse_series(self.app_context.inst_data_mgr, "bar") # bar.start(self.app_context) # # sma1 = parse_series(self.app_context.inst_data_mgr, "SMA(bar[close],length=3)") # sma1.start(self.app_context) # # sma2 = parse_series(self.app_context.inst_data_mgr, "SMA(SMA(bar[close],length=3)[value],length=10)") # sma2.start(self.app_context) # # rsi = parse_series(self.app_context.inst_data_mgr, "RSI(SMA(SMA('bar',close,3),value,10),value,14, 9)") # rsi.start(self.app_context) # # self.assertEquals(sma1.input, bar) # self.assertEquals(3, sma1.length) # # self.assertEquals(sma2.input, sma1) # self.assertEquals(10, sma2.length) # # self.assertEquals(rsi.input, sma2) # self.assertEquals(14, rsi.length) # # def test_fail_parse(self): # with self.assertRaises(AssertionError): # parse_series(self.app_context.inst_data_mgr, "SMA('Bar.Close',3") # # with self.assertRaises(AssertionError): # parse_series(self.app_context.inst_data_mgr, "RSI(SMA(SMA('Bar.Close',3,10),14)")
39.276923
113
0.64669
232db6b8d3e673ec4e8d04319bbcaec1fad1c5d5
8,918
py
Python
cryptoapis/model/list_transactions_by_block_height_response_item_blockchain_specific_dash_vin.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
null
null
null
cryptoapis/model/list_transactions_by_block_height_response_item_blockchain_specific_dash_vin.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
null
null
null
cryptoapis/model/list_transactions_by_block_height_response_item_blockchain_specific_dash_vin.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
1
2021-07-21T03:35:18.000Z
2021-07-21T03:35:18.000Z
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: developers@cryptoapis.io Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from cryptoapis.model.list_transactions_by_block_height_response_item_blockchain_specific_dash_script_sig import ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashScriptSig globals()['ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashScriptSig'] = ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashScriptSig class ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashVin(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'addresses': ([str],), # noqa: E501 'coinbase': (str,), # noqa: E501 'script_sig': (ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashScriptSig,), # noqa: E501 'sequence': (str,), # noqa: E501 'txinwitness': ([str],), # noqa: E501 'vout': (int,), # noqa: E501 'txid': (str,), # noqa: E501 'value': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'addresses': 'addresses', # noqa: E501 'coinbase': 'coinbase', # noqa: E501 'script_sig': 'scriptSig', # noqa: E501 'sequence': 'sequence', # noqa: E501 'txinwitness': 'txinwitness', # noqa: E501 'vout': 'vout', # noqa: E501 'txid': 'txid', # noqa: E501 'value': 'value', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, addresses, coinbase, script_sig, sequence, txinwitness, vout, *args, **kwargs): # noqa: E501 """ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashVin - a model defined in OpenAPI Args: addresses ([str]): coinbase (str): Represents the coinbase hex. script_sig (ListTransactionsByBlockHeightResponseItemBlockchainSpecificDashScriptSig): sequence (str): Represents the script sequence number. txinwitness ([str]): vout (int): It refers to the index of the output address of this transaction. The index starts from 0. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) txid (str): Represents the reference transaction identifier.. [optional] # noqa: E501 value (str): Represents the sent/received amount.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.addresses = addresses self.coinbase = coinbase self.script_sig = script_sig self.sequence = sequence self.txinwitness = txinwitness self.vout = vout for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
44.148515
484
0.6146
7ea4878b4ff0813016985329087ff75c6805e2cc
2,371
py
Python
Solutions/VMX2-VoicemailExpress/Code/sub_other.py
cbgandhi-code/amazon-connect-salesforce-scv
fc5da5445b01295e530b50aa774598e91087c57a
[ "Apache-2.0", "CC0-1.0" ]
null
null
null
Solutions/VMX2-VoicemailExpress/Code/sub_other.py
cbgandhi-code/amazon-connect-salesforce-scv
fc5da5445b01295e530b50aa774598e91087c57a
[ "Apache-2.0", "CC0-1.0" ]
null
null
null
Solutions/VMX2-VoicemailExpress/Code/sub_other.py
cbgandhi-code/amazon-connect-salesforce-scv
fc5da5445b01295e530b50aa774598e91087c57a
[ "Apache-2.0", "CC0-1.0" ]
null
null
null
# Version: 2022.03.23 """ ********************************************************************************************************************** * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated * * documentation files (the "Software"), to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and * * to permit persons to whom the Software is furnished to do so. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO * * THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * * IN THE SOFTWARE. * ********************************************************************************************************************** """ # Import the necessary modules for this flow to work import json import os import logging import boto3 logger = logging.getLogger() logger.setLevel(logging.getLevelName(os.getenv('lambda_logging_level', 'DEBUG'))) def vm_to_other(writer_payload): logger.info('Beginning Voicemail to other') logger.debug(writer_payload) try: # TODO Implement logger.error('Record {0} Successfully executed.'.format(writer_payload['loop_counter'])) return 'success' except Exception as e: logger.error(e) logger.error('Record {0} Failed to execute other.'.format(writer_payload['loop_counter'])) return 'fail'
56.452381
119
0.518768
bc9d84411558123a05436a09a0577c76e61e4e5b
140
py
Python
scorecard/templatetags/jsonify.py
desafinadude/municipal-data
1c86c55bbb59f9c8087f6920fae3585dd90d5d43
[ "MIT" ]
19
2018-01-09T10:54:15.000Z
2022-01-25T13:10:55.000Z
wazimap/templatetags/jsonify.py
ChrisAchinga/wazimap
a66a1524030a8b98e7ea0dfb270d1946ca75b3b2
[ "MIT" ]
66
2016-02-15T08:59:29.000Z
2017-09-21T14:00:43.000Z
wazimap/templatetags/jsonify.py
ChrisAchinga/wazimap
a66a1524030a8b98e7ea0dfb270d1946ca75b3b2
[ "MIT" ]
18
2017-10-06T12:26:37.000Z
2021-08-30T01:38:37.000Z
import json from django import template register = template.Library() @register.filter def jsonify(value): return json.dumps(value)
12.727273
29
0.757143
7fb03a28b0bb7be23f9ae112637c66d6ec603515
2,539
py
Python
src/tox/session/commands/show_config.py
snsnlou/tox
036dfaca03a8202be77ccc3ce70e1f1f17ece57c
[ "MIT" ]
1
2021-07-07T01:46:02.000Z
2021-07-07T01:46:02.000Z
src/tox/session/commands/show_config.py
snsnlou/tox
036dfaca03a8202be77ccc3ce70e1f1f17ece57c
[ "MIT" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
src/tox/session/commands/show_config.py
snsnlou/tox
036dfaca03a8202be77ccc3ce70e1f1f17ece57c
[ "MIT" ]
3
2021-04-15T06:17:40.000Z
2021-09-14T04:17:59.000Z
import sys from collections import OrderedDict from packaging.requirements import Requirement from packaging.utils import canonicalize_name from six import StringIO from six.moves import configparser from tox import reporter from tox.util.stdlib import importlib_metadata DO_NOT_SHOW_CONFIG_ATTRIBUTES = ( "interpreters", "envconfigs", "envlist", "pluginmanager", "envlist_explicit", ) def show_config(config): parser = configparser.RawConfigParser() if not config.envlist_explicit or reporter.verbosity() >= reporter.Verbosity.INFO: tox_info(config, parser) version_info(parser) tox_envs_info(config, parser) content = StringIO() parser.write(content) value = content.getvalue().rstrip() reporter.verbosity0(value) def tox_envs_info(config, parser): if config.envlist_explicit: env_list = config.envlist elif config.option.listenvs: env_list = config.envlist_default else: env_list = list(config.envconfigs.keys()) for name in env_list: env_config = config.envconfigs[name] values = OrderedDict( (attr.name, str(getattr(env_config, attr.name))) for attr in config._parser._testenv_attr ) section = "testenv:{}".format(name) set_section(parser, section, values) def tox_info(config, parser): info = OrderedDict( (i, str(getattr(config, i))) for i in sorted(dir(config)) if not i.startswith("_") and i not in DO_NOT_SHOW_CONFIG_ATTRIBUTES ) info["host_python"] = sys.executable set_section(parser, "tox", info) def version_info(parser): versions = OrderedDict() to_visit = {"tox"} while to_visit: current = to_visit.pop() current_dist = importlib_metadata.distribution(current) current_name = canonicalize_name(current_dist.metadata["name"]) versions[current_name] = current_dist.version if current_dist.requires is not None: for require in current_dist.requires: pkg = Requirement(require) pkg_name = canonicalize_name(pkg.name) if ( pkg.marker is None or pkg.marker.evaluate({"extra": ""}) ) and pkg_name not in versions: to_visit.add(pkg_name) set_section(parser, "tox:versions", versions) def set_section(parser, section, values): parser.add_section(section) for key, value in values.items(): parser.set(section, key, value)
29.870588
86
0.664829
01fb516c83f0e4393acb7127cb904fddb3bd860a
770
py
Python
Raspberry_Pi_Pico/button_test.py
jckantor/cbe61622
bdc08e6c4f0674c5e991617945cafd1b121d6b4b
[ "MIT" ]
2
2021-11-22T20:36:35.000Z
2021-12-07T07:52:10.000Z
Raspberry_Pi_Pico/button_test.py
jckantor/cbe-virtual-laboratory
bdc08e6c4f0674c5e991617945cafd1b121d6b4b
[ "MIT" ]
null
null
null
Raspberry_Pi_Pico/button_test.py
jckantor/cbe-virtual-laboratory
bdc08e6c4f0674c5e991617945cafd1b121d6b4b
[ "MIT" ]
1
2021-12-11T20:39:32.000Z
2021-12-11T20:39:32.000Z
from machine import Pin from rp2 import PIO, StateMachine, asm_pio from time import sleep import sys @asm_pio(set_init=(PIO.OUT_LOW,) * 4) def prog(): wrap_target() set(pins, 8) [31] # 8 nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] set(pins, 4) [31] # 4 nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] set(pins, 2) [31] # 2 nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] set(pins, 1) [31] # 1 nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] nop() [31] wrap() sm = StateMachine(0, prog, freq=100000, set_base=Pin(2)) sm.active(1) sleep(10) sm.active(0) sm.exec("set(pins,0)")
16.041667
56
0.487013
8b2d760e2abd047fba953c34620f1f66ae437ef9
263
py
Python
tests/artificial/transf_Fisher/trend_MovingMedian/cycle_7/ar_/test_artificial_128_Fisher_MovingMedian_7__0.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/artificial/transf_Fisher/trend_MovingMedian/cycle_7/ar_/test_artificial_128_Fisher_MovingMedian_7__0.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/artificial/transf_Fisher/trend_MovingMedian/cycle_7/ar_/test_artificial_128_Fisher_MovingMedian_7__0.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 7, transform = "Fisher", sigma = 0.0, exog_count = 0, ar_order = 0);
37.571429
163
0.730038
34d7fa6a9721c48429b22da3bbfef67aa499bb5a
9,282
py
Python
pims/formats/utils/abstract.py
Cytomine-ULiege/pims
3c13f054be3ce9b6755428ccd9c5e0c1a8fb02d4
[ "Apache-2.0" ]
2
2022-01-19T08:58:12.000Z
2022-01-28T14:40:41.000Z
pims/formats/utils/abstract.py
Cytomine-ULiege/pims
3c13f054be3ce9b6755428ccd9c5e0c1a8fb02d4
[ "Apache-2.0" ]
18
2021-09-20T08:47:11.000Z
2022-03-14T15:51:37.000Z
pims/formats/utils/abstract.py
Cytomine-ULiege/pims
3c13f054be3ce9b6755428ccd9c5e0c1a8fb02d4
[ "Apache-2.0" ]
null
null
null
# * Copyright (c) 2020-2021. Authors: see NOTICE file. # * # * Licensed under the Apache License, Version 2.0 (the "License"); # * you may not use this file except in compliance with the License. # * You may obtain a copy of the License at # * # * http://www.apache.org/licenses/LICENSE-2.0 # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. from __future__ import annotations import logging import re from abc import ABC from functools import cached_property from typing import Any, Dict, List, Optional, TYPE_CHECKING, Type from pims.cache import SimpleDataCache from pims.formats.utils.checker import AbstractChecker from pims.formats.utils.convertor import AbstractConvertor from pims.formats.utils.histogram import AbstractHistogramReader from pims.formats.utils.parser import AbstractParser from pims.formats.utils.reader import AbstractReader from pims.formats.utils.structures.annotations import ParsedMetadataAnnotation from pims.formats.utils.structures.metadata import ImageMetadata, MetadataStore from pims.formats.utils.structures.planes import PlanesInfo from pims.formats.utils.structures.pyramid import Pyramid if TYPE_CHECKING: from pims.files.file import Path log = logging.getLogger("pims.formats") _CAMEL_TO_SPACE_PATTERN = re.compile(r'((?<=[a-z])[A-Z]|(?<!\A)[A-Z](?=[a-z]))') class CachedDataPath(SimpleDataCache): """ A cache associated to a path. Technical details: It would be more meaningful to have `CachedDataPath` inheriting from `SimpleDataCache` and `Path` as Python allows multiple inheritance. Other meaningful implementation could be to have `CachedDataPath` that extends `Path` and have an attribute `cache`. However, both solutions are impossible because they cause circular imports. """ def __init__(self, path: Path): super().__init__() self.path = path class AbstractFormat(ABC, SimpleDataCache): """ Base format. All image formats must extend this class. """ checker_class: Type[AbstractChecker] = None parser_class: Type[AbstractParser] = None reader_class: Type[AbstractReader] = None convertor_class: Type[AbstractConvertor] = None histogram_reader_class: Type[AbstractHistogramReader] = None def __init__(self, path: Path, existing_cache: Dict[str, Any] = None): """ Initialize an image in this format. It does nothing until some parsing or reading methods are called. Parameters ---------- path The image path existing_cache A cache of data related to the image that have been previously computed and that could be used again in the future. In practice, it is used to collect data computed during matching (format identification) that can be used again in parser or reader. """ self._path = path super(AbstractFormat, self).__init__(existing_cache) self._enabled = False self.parser = self.parser_class(self) self.reader = self.reader_class(self) self.convertor = self.convertor_class(self) if self.convertor_class else None self.histogram_reader = self.histogram_reader_class(self) @classmethod def init(cls): """ Initialize the format, such that all third-party libs are ready. """ pass @classmethod def _get_identifier(cls): """ Get the format identifier. It must be unique across all formats. """ return cls.__name__.replace('Format', '') @classmethod def get_identifier(cls, uppercase: bool = True) -> str: """ Get the format identifier. It must be unique across all formats. Parameters ---------- uppercase: bool If the format must be returned in uppercase. In practice, comparisons are always done using the uppercase identifier Returns ------- identifier: str The format identifier """ identifier = cls._get_identifier() if uppercase: return identifier.upper() return identifier @classmethod def get_name(cls) -> str: """Get the format name in a human-readable way.""" return re.sub(_CAMEL_TO_SPACE_PATTERN, r' \1', cls.get_identifier(False)) @classmethod def get_remarks(cls) -> str: """Get format remarks in a human-readable way.""" return str() @classmethod def get_plugin_name(cls) -> str: """Get PIMS format plugin name adding this format.""" return '.'.join(cls.__module__.split('.')[:-1]) @classmethod def is_readable(cls) -> bool: """Whether PIMS can read images in this format.""" return cls.reader_class is not None @classmethod def is_writable(cls): # TODO return False @classmethod def is_convertible(cls) -> bool: """Whether PIMS can convert images in this format into another one.""" return cls.convertor_class is not None @classmethod def is_spatial(cls) -> bool: """Whether this format is adapted for spatial data requests.""" return False @classmethod def is_spectral(cls) -> bool: """Whether this format is adapted for spectral data requests.""" return False @classmethod def match(cls, cached_path: CachedDataPath) -> bool: """ Identify if it is this format or not. Parameters ---------- cached_path : CachedDataPath The path, proxied with some useful results across formats. Returns ------- match: boolean Whether it is this format """ if cls.checker_class: return cls.checker_class.match(cached_path) return False @classmethod def from_proxy(cls, cached_path: CachedDataPath) -> AbstractFormat: return cls(path=cached_path.path, existing_cache=cached_path.cache) @classmethod def from_path(cls, path: Path) -> AbstractFormat: return cls(path=path) @property def enabled(self): return self._enabled @enabled.setter def enabled(self, value): self._enabled = value @property def path(self) -> Path: return self._path @property def media_type(self) -> str: return "image" # Conversion @cached_property def need_conversion(self) -> bool: """ Whether the image in this format needs to be converted to another one. Decision can be made based on the format metadata. """ return True def conversion_format(self) -> Optional[Type[AbstractFormat]]: """ Get the format to which the image in this format will be converted, if needed. """ if self.convertor: return self.convertor.conversion_format() else: return None def convert(self, dest_path: Path) -> bool: """ Convert the image in this format to another one at a given destination path. Returns ------- result Whether the conversion succeeded or not """ if self.convertor: return self.convertor.convert(dest_path) else: raise NotImplementedError() # Metadata parsing @cached_property def main_imd(self) -> ImageMetadata: """ Get main image metadata, that is, required metadata to process any request. It is possible that other non-required metadata have been populated. """ return self.parser.parse_main_metadata() @cached_property def full_imd(self) -> ImageMetadata: """ Get full image metadata, that is, all known and standardised metadata. `self.full_imd.is_complete` should be true. """ return self.parser.parse_known_metadata() @cached_property def raw_metadata(self) -> MetadataStore: """ Get all raw metadata in a generic store. Raw metadata are not standardised and highly depend on underlying parsed format. Raw metadata MUST NOT be used by PIMS for processing. """ return self.parser.parse_raw_metadata() @cached_property def pyramid(self) -> Pyramid: """ Get image format pyramid. There is always at least one tier (the pyramid basis). """ return self.parser.parse_pyramid() @cached_property def planes_info(self) -> PlanesInfo: """ Information about each plane. """ return self.parser.parse_planes() @cached_property def annotations(self) -> List[ParsedMetadataAnnotation]: """ Get annotations stored in image format metadata. """ return self.parser.parse_annotations() @cached_property def histogram(self): return self.histogram_reader
30.94
87
0.648028
01c9e895234998512a96bc9e6a171dae8990d6ad
12,240
py
Python
beastbot/utility/vec.py
NicEastvillage/RLBot-Beast
1d178cd79a22a4d2d9b22341906bb810c3f8659b
[ "MIT" ]
8
2019-04-24T12:16:30.000Z
2021-12-23T14:35:57.000Z
beastbot/utility/vec.py
NicEastvillage/RLBot-Beast
1d178cd79a22a4d2d9b22341906bb810c3f8659b
[ "MIT" ]
null
null
null
beastbot/utility/vec.py
NicEastvillage/RLBot-Beast
1d178cd79a22a4d2d9b22341906bb810c3f8659b
[ "MIT" ]
2
2018-12-16T16:59:00.000Z
2021-12-23T14:36:04.000Z
import math from utility.rlmath import clip class Vec3: def __init__(self, x: float or 'Vec3'=0.0, y: float=0.0, z: float=0.0): if hasattr(x, 'x'): # We have been given a vector. Copy it self.x = float(x.x) self.y = float(x.y) if hasattr(x, 'y') else 0 self.z = float(x.z) if hasattr(x, 'z') else 0 else: self.x = float(x) self.y = float(y) self.z = float(z) def __getitem__(self, item: int): return (self.x, self.y, self.z)[item] def __add__(self, other: 'Vec3') -> 'Vec3': return Vec3(self.x + other.x, self.y + other.y, self.z + other.z) def __sub__(self, other: 'Vec3') -> 'Vec3': return Vec3(self.x - other.x, self.y - other.y, self.z - other.z) def __neg__(self) -> 'Vec3': return Vec3(-self.x, -self.y, -self.z) def __mul__(self, scale: float) -> 'Vec3': return Vec3(self.x * scale, self.y * scale, self.z * scale) def __rmul__(self, scale: float) -> 'Vec3': return self * scale def __truediv__(self, scale: float) -> 'Vec3': scale = 1 / float(scale) return self * scale def __abs__(self) -> 'Vec3': return Vec3(abs(self.x), abs(self.y), abs(self.z)) def __str__(self): return "Vec3(" + str(self.x) + ", " + str(self.y) + ", " + str(self.z) + ")" class Mat33: def __init__(self, xx: float or Vec3 or 'Mat33'=0.0, xy: float or Vec3=0.0, xz: float or Vec3=0.0, yx: float=0.0, yy: float=0.0, yz: float=0.0, zx: float=0.0, zy: float=0.0, zz: float=0.0): """ Mat33(xx, xy, xz, yx, yy, yz, zx, zy, zz) Mat33(mat) """ if hasattr(xx, "data"): self.data = xx.data.copy() else: self.data = [xx, xy, xz, yx, yy, yz, zx, zy, zz] xx = property(lambda self: self.get(0, 0), lambda self: self.set(0, 0), None) xy = property(lambda self: self.get(0, 1), lambda self: self.set(0, 1), None) xz = property(lambda self: self.get(0, 2), lambda self: self.set(0, 2), None) yx = property(lambda self: self.get(1, 0), lambda self: self.set(1, 0), None) yy = property(lambda self: self.get(1, 1), lambda self: self.set(1, 1), None) yz = property(lambda self: self.get(1, 2), lambda self: self.set(1, 2), None) zx = property(lambda self: self.get(2, 0), lambda self: self.set(2, 0), None) zy = property(lambda self: self.get(2, 1), lambda self: self.set(2, 1), None) zz = property(lambda self: self.get(2, 2), lambda self: self.set(2, 2), None) def __getitem__(self, item: int): return self.data[item] def __setitem__(self, key: int, value: float): self.data[key] = value def get(self, row: int, col: int) -> float: return self.data[row * 3 + col] def set(self, row: int, col: int, val: float): self.data[row * 3 + col] = val def __add__(self, other: 'Mat33') -> 'Mat33': mat = Mat33() for i in range(9): mat[i] = self[i] + other[i] return mat def __sub__(self, other: 'Mat33') -> 'Mat33': mat = Mat33() for i in range(9): mat[i] = self[i] - other[i] return mat def __neg__(self): mat = Mat33() for i in range(9): mat[i] = -self[i] return mat def __mul__(self, scale: float or 'Mat33') -> 'Mat33': mat = Mat33() if hasattr(scale, "data"): for i in range(9): mat[i] = self[i] * scale[i] else: for i in range(9): mat[i] = self[i] * scale return mat def __rmul__(self, scale): return self * scale def __truediv__(self, scale: float) -> 'Mat33': scale = 1 / float(scale) return self * scale def __str__(self): return "Mat33(" + str(self.xx) + ", " + str(self.xy) + ", " + str(self.xz) + ", " \ + str(self.yx) + ", " + str(self.yy) + ", " + str(self.yz) + ", " \ + str(self.zx) + ", " + str(self.zy) + ", " + str(self.zz) + ")" def col(self, n: int) -> Vec3: return Vec3(self.get(0, n), self.get(1, n), self.get(2, n)) def row(self, n: int) -> Vec3: return Vec3(self.get(n, 0), self.get(n, 1), self.get(n, 2)) @staticmethod def of(v: float) -> 'Mat33': return Mat33(v, v, v, v, v, v, v, v, v) @staticmethod def from_rows(row_a: Vec3, row_b: Vec3, row_c: Vec3) -> 'Mat33': return Mat33( row_a.x, row_a.y, row_a.z, row_b.x, row_b.y, row_b.z, row_c.x, row_c.y, row_c.z ) @staticmethod def from_columns(col_a: Vec3, col_b: Vec3, col_c: Vec3) -> 'Mat33': return Mat33( col_a.x, col_b.x, col_c.x, col_a.y, col_b.y, col_c.y, col_a.z, col_b.z, col_c.z ) @staticmethod def identity(): return Mat33(1, 0, 0, 0, 1, 0, 0, 0, 1) def xy(vec: Vec3) -> Vec3: return Vec3(vec.x, vec.y, 0.0) def norm(vec: Vec3) -> float: return math.sqrt(vec.x**2 + vec.y**2 + vec.z**2) def normalize(vec: Vec3) -> Vec3: return vec / norm(vec) def dot(mat1: Vec3 or Mat33, mat2: Vec3 or Mat33) -> float or Vec3 or Mat33: if hasattr(mat1, "data") and hasattr(mat2, "data"): # Mat dot Mat -> Mat res = Mat33() for i in range(3): for j in range(3): for k in range(3): v = res.get(i, j) + mat1.get(i, k) * mat2.get(k, j) res.set(i, j, v) return res elif hasattr(mat1, "data") and hasattr(mat2, "x"): # Mat dot Vec -> Vec return Vec3( mat1.xx * mat2.x + mat1.xy * mat2.y + mat1.xz * mat2.z, mat1.yx * mat2.x + mat1.yy * mat2.y + mat1.yz * mat2.z, mat1.zx * mat2.x + mat1.zy * mat2.y + mat1.zz * mat2.z ) elif hasattr(mat1, "x") and hasattr(mat2, "data"): # Vec dot Mat -> Vec return Vec3( mat1.x * mat2.xx + mat1.y * mat2.yx + mat1.z * mat2.zx, mat1.x * mat2.xy + mat1.y * mat2.yy + mat1.z * mat2.zy, mat1.x * mat2.xz + mat1.y * mat2.yz + mat1.z * mat2.zz ) else: # Vec dot Vec return mat1.x * mat2.x + mat1.y * mat2.y + mat1.z * mat2.z def cross(vecA: Vec3, vecB: Vec3) -> Vec3: return Vec3( vecA.y * vecB.z - vecA.z * vecB.y, vecA.z * vecB.x - vecA.x * vecB.z, vecA.x * vecB.y - vecA.y * vecB.x ) def transpose(mat: Mat33) -> Mat33: matT = Mat33() for i in range(3): for j in range(3): matT.set(j, i, mat.get(i, j)) return matT def fnorm(mat: Mat33) -> float: sum = 0.0 for i in range(9): sum += mat[i] return math.sqrt(sum) def tr(mat: Mat33) -> float: return mat.xx + mat.yy + mat.zz def det(mat: Mat33) -> float: return mat.get(0, 0) * mat.get(1, 1) * mat.get(2, 2) + mat.get(0, 1) * mat.get(1, 2) * mat.get(2, 0) + \ mat.get(0, 2) * mat.get(1, 0) * mat.get(2, 1) - mat.get(0, 0) * mat.get(1, 2) * mat.get(2, 1) - \ mat.get(0, 1) * mat.get(1, 0) * mat.get(2, 2) - mat.get(0, 2) * mat.get(1, 1) * mat.get(2, 0) def inv(mat: Mat33) -> Mat33: invm = Mat33() invdet = 1.0 / det(mat) invm.set(0, 0, (mat.get(1, 1) * mat.get(2, 2) - mat.get(1, 2) * mat.get(2, 1)) * invdet) invm.set(0, 1, (mat.get(0, 2) * mat.get(2, 1) - mat.get(0, 1) * mat.get(2, 2)) * invdet) invm.set(0, 2, (mat.get(0, 1) * mat.get(1, 2) - mat.get(0, 2) * mat.get(1, 1)) * invdet) invm.set(1, 0, (mat.get(1, 2) * mat.get(2, 0) - mat.get(1, 0) * mat.get(2, 2)) * invdet) invm.set(1, 1, (mat.get(0, 0) * mat.get(2, 2) - mat.get(0, 2) * mat.get(2, 0)) * invdet) invm.set(1, 2, (mat.get(0, 2) * mat.get(1, 0) - mat.get(0, 0) * mat.get(1, 2)) * invdet) invm.set(2, 0, (mat.get(1, 0) * mat.get(2, 1) - mat.get(1, 1) * mat.get(2, 0)) * invdet) invm.set(2, 1, (mat.get(0, 1) * mat.get(2, 0) - mat.get(0, 0) * mat.get(2, 1)) * invdet) invm.set(2, 2, (mat.get(0, 0) * mat.get(1, 1) - mat.get(0, 1) * mat.get(1, 0)) * invdet) return invm def vec_max(a: Vec3, b: Vec3) -> Vec3: return Vec3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z)) def max_comp(vec: Vec3) -> float: return max(vec.x, vec.y, vec.z) def angle_between(v: Vec3, u: Vec3) -> float: return math.acos(dot(normalize(v), normalize(u))) def axis_to_rotation(axis: Vec3) -> Mat33: radians = norm(axis) if abs(radians) < 0.000001: return Mat33.identity() else: axis = normalize(axis) K = Mat33( 0.0, -axis[2], axis[1], axis[2], 0.0, -axis[0], -axis[1], axis[0], 0.0 ) return Mat33.identity() + math.sin(radians) * K + (1.0 - math.cos(radians)) * dot(K, K) """ u = axis / radians c = math.cos(radians) s = math.sin(radians) return Mat33( u[0] * u[0] * (1.0 - c) + c, u[0] * u[1] * (1.0 - c) - u[2] * s, u[0] * u[2] * (1.0 - c) + u[1] * s, u[1] * u[0] * (1.0 - c) + u[2] * s, u[1] * u[1] * (1.0 - c) + c, u[1] * u[2] * (1.0 - c) - u[0] * s, u[2] * u[0] * (1.0 - c) - u[1] * s, u[2] * u[1] * (1.0 - c) + u[0] * s, u[2] * u[2] * (1.0 - c) + c ) """ def rotation_to_axis(rot: Mat33) -> Vec3: ang = math.acos(clip(0.5 * (tr(rot) - 1.0), -1.0, 1.0)) # For small angles, prefer series expansion to division by sin(theta) ~ 0 if abs(ang) < 0.00001: scale = 0.5 + ang * ang / 12.0 else: scale = 0.5 * ang / math.sin(ang) return Vec3( rot.get(2, 1) - rot.get(1, 2), rot.get(0, 2) - rot.get(2, 0), rot.get(1, 0) - rot.get(0, 1) ) * scale def euler_to_rotation(pitch_yaw_roll: Vec3) -> Mat33: cp = math.cos(pitch_yaw_roll[0]) sp = math.sin(pitch_yaw_roll[0]) cy = math.cos(pitch_yaw_roll[1]) sy = math.sin(pitch_yaw_roll[1]) cr = math.cos(pitch_yaw_roll[2]) sr = math.sin(pitch_yaw_roll[2]) rotation = Mat33() # front direction rotation.set(0, 0, cp * cy) rotation.set(1, 0, cp * sy) rotation.set(2, 0, sp) # left direction rotation.set(0, 1, cy * sp * sr - cr * sy) rotation.set(1, 1, sy * sp * sr + cr * cy) rotation.set(2, 1, -cp * sr) # up direction rotation.set(0, 2, -cr * cy * sp - sr * sy) rotation.set(1, 2, -cr * sy * sp + sr * cy) rotation.set(2, 2, cp * cr) return rotation def rotation_to_euler(rotation: Mat33) -> Vec3: return Vec3( math.atan2(rotation.get(2, 0), norm(Vec3(rotation.get(0, 0), rotation.get(1, 0)))), math.atan2(rotation.get(1, 0), rotation.get(0, 0)), math.atan2(-rotation.get(2, 1), rotation.get(2, 2)) ) def rotate2d(vec: Vec3, ang: float) -> Vec3: c = math.cos(ang) s = math.sin(ang) return Vec3(c * vec.x - s * vec.y, s * vec.x + c * vec.y) def proj_onto(src: Vec3, dir: Vec3) -> Vec3: """ Returns the vector component of src that is parallel with dir, i.e. the projection of src onto dir. """ try: return (dot(src, dir) / dot(dir, dir)) * dir except ZeroDivisionError: return Vec3() def proj_onto_size(src: Vec3, dir: Vec3) -> float: """ Returns the size of the vector that is the project of src onto dir """ try: dir_n = normalize(dir) return dot(src, dir_n) / dot(dir_n, dir_n) # can be negative! except ZeroDivisionError: return norm(src) # Unit tests if __name__ == "__main__": assert angle_between(Vec3(x=1), Vec3(y=1)) == math.pi / 2 assert angle_between(Vec3(y=1), Vec3(y=-1, z=1)) == 0.75 * math.pi assert norm(dot(axis_to_rotation(Vec3(x=-math.pi)), Vec3(y=1)) - Vec3(y=-1)) < 0.000001 assert norm(dot(axis_to_rotation(Vec3(y=0.5*math.pi)), Vec3(z=1)) - Vec3(x=-1)) < 0.000001 assert norm(dot(axis_to_rotation(Vec3(z=math.pi)), Vec3(x=1)) - Vec3(x=-1)) < 0.000001 pyr = Vec3(0.5, 0.2, -0.4) assert norm(rotation_to_euler(euler_to_rotation(pyr)) - pyr) < 0.000001
31.465296
109
0.51781
d257e5f3201f4d6c4cb8b2ce8869459c6f1d8b63
1,030
py
Python
paprika/repositories/SilverpopMailingRepository.py
thunder-/paprika
af262407ec9c195dbb5a7c205510e6ad2fb65f36
[ "MIT" ]
null
null
null
paprika/repositories/SilverpopMailingRepository.py
thunder-/paprika
af262407ec9c195dbb5a7c205510e6ad2fb65f36
[ "MIT" ]
null
null
null
paprika/repositories/SilverpopMailingRepository.py
thunder-/paprika
af262407ec9c195dbb5a7c205510e6ad2fb65f36
[ "MIT" ]
null
null
null
from paprika.repositories.Repository import Repository class SilverpopMailingRepository(Repository): def __init__(self, connector): Repository.__init__(self, connector) def insert(self, silverpop_mailing): connection = self.get_connection() cursor = connection.cursor() params = dict() params['mailing_id'] = silverpop_mailing['mailing_id'] params['mailing_name'] = silverpop_mailing['mailing_name'] statement = "insert into silverpop_mailings(mailing_id, mailing_name) values (:mailing_id, :mailing_name)" statement, parameters = self.statement(statement, params) cursor.execute(statement, parameters) if self.has_lastrowid(): silverpop_mailing['id'] = cursor.lastrowid connection.commit() return silverpop_mailing def clean(self): connection = self.get_connection() cursor = connection.cursor() statement = "delete from silverpop_mailings" cursor.execute(statement)
31.212121
114
0.683495
59e71258eec76674dd2b21f097643b0f9f9ab2ff
38,105
py
Python
test/test_fapi.py
niooss-ledger/tpm2-pytss
f748de7993ff6b39900ba4a0332f893eba19194f
[ "BSD-2-Clause" ]
null
null
null
test/test_fapi.py
niooss-ledger/tpm2-pytss
f748de7993ff6b39900ba4a0332f893eba19194f
[ "BSD-2-Clause" ]
null
null
null
test/test_fapi.py
niooss-ledger/tpm2-pytss
f748de7993ff6b39900ba4a0332f893eba19194f
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python3 -u """ SPDX-License-Identifier: BSD-2 """ import random import string import sys import pytest pytestmark = pytest.mark.skipif( "tpm2_pytss.FAPI" not in sys.modules, reason="FAPI Not Detected" ) from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import ec, padding from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric.padding import PSS from tpm2_pytss import * from tpm2_pytss.internal.utils import is_bug_fixed from .TSS2_BaseTest import TpmSimulator, TSS2_BaseTest @pytest.fixture(scope="module") def simulator(): tpm = TpmSimulator.getSimulator() tpm.start() yield tpm tpm.close() @pytest.fixture(scope="class") def fapi_config_ecc(simulator): with FAPIConfig( temp_dirs=True, tcti=simulator.tcti_name_conf, ek_cert_less="yes", profile_name="P_ECCP256SHA256", ) as fapi_config: yield fapi_config @pytest.fixture(scope="class") def fapi_config_rsa(simulator): with FAPIConfig( temp_dirs=True, tcti=simulator.tcti_name_conf, ek_cert_less="yes", profile_name="P_RSA2048SHA256", ) as fapi_config: yield fapi_config @pytest.fixture(scope="class") def fapi_ecc(fapi_config_ecc): with FAPI() as fapi: fapi.provision(is_provisioned_ok=False) yield fapi fapi.delete("/") @pytest.fixture(scope="class") def fapi_rsa(fapi_config_rsa): with FAPI() as fapi: fapi.provision(is_provisioned_ok=False) yield fapi fapi.delete("/") def random_uid() -> str: """Generate a random id which can be used e.g. for unique key names.""" return "".join(random.choices(string.digits, k=10)) def sha256(data: bytes) -> bytes: """Calculate the SHA256 digest of given data.""" digest = hashes.Hash(hashes.SHA256(), backend=default_backend()) digest.update(data) digest = digest.finalize() return digest # TODO unprovisioned tests @pytest.fixture(scope="class") def init_fapi_ecc(request, fapi_ecc): request.cls.fapi = fapi_ecc request.cls.profile_name = request.cls.fapi.config.profile_name yield request.cls.fapi @pytest.fixture(scope="class") def init_fapi_rsa(request, fapi_rsa): request.cls.fapi = fapi_rsa request.cls.profile_name = request.cls.fapi.config.profile_name yield request.cls.fapi class Common: @pytest.fixture def esys(self): with ESAPI(tcti=self.fapi.tcti) as esys: yield esys @pytest.fixture def cryptography_key(self): key = ec.generate_private_key(ec.SECP256R1(), backend=default_backend()) key_public_pem = ( key.public_key() .public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ) .decode() ) return key, key_public_pem @pytest.fixture def sign_key(self): profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, type_="sign, exportable") yield key_path self.fapi.delete(path=key_path) @pytest.fixture def decrypt_key(self): profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, type_="decrypt") yield key_path self.fapi.delete(path=key_path) @pytest.fixture def seal(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" seal_data = random_uid().encode() self.fapi.create_seal(path=seal_path, data=seal_data) yield seal_path, seal_data self.fapi.delete(path=seal_path) @pytest.fixture def ext_key(self, cryptography_key): key, key_public_pem = cryptography_key key_path = f"/ext/key_{random_uid()}" self.fapi.import_object(path=key_path, import_data=key_public_pem) yield key_path, key self.fapi.delete(path=key_path) @pytest.fixture def nv_ordinary(self): nv_path = f"/nv/Owner/nv_{random_uid()}" # TODO Owner should be case insensitive (fix upstream)? self.fapi.create_nv(path=nv_path, size=10) yield nv_path self.fapi.delete(path=nv_path) @pytest.fixture def nv_increment(self): nv_path = f"/nv/Owner/nv_{random_uid()}" self.fapi.create_nv(path=nv_path, size=10, type_="counter") yield nv_path self.fapi.delete(path=nv_path) @pytest.fixture def nv_pcr(self): nv_path = f"/nv/Owner/nv_{random_uid()}" self.fapi.create_nv(path=nv_path, size=32, type_="pcr") yield nv_path self.fapi.delete(path=nv_path) @pytest.fixture def nv_bitfield(self): nv_path = f"/nv/Owner/nv_{random_uid()}" self.fapi.create_nv(path=nv_path, size=32, type_="bitfield") yield nv_path self.fapi.delete(path=nv_path) def test_provision_ok(self): provisioned = self.fapi.provision() assert provisioned is False def test_provision_fail(self): with pytest.raises(TSS2_Exception): self.fapi.provision(is_provisioned_ok=False) def test_get_random(self): random_bytes = self.fapi.get_random(42) assert type(random_bytes) == bytes assert len(random_bytes) == 42 def test_get_random_zero(self): random_bytes = self.fapi.get_random(0) assert type(random_bytes) == bytes assert len(random_bytes) == 0 def test_get_random_large(self): with pytest.raises(OverflowError): self.fapi.get_random(0xFFFFFFFFFFFFFFFF + 1) def test_get_random_negative(self): with pytest.raises(OverflowError): self.fapi.get_random(-1) def test_get_info(self): info = self.fapi.get_info() assert type(info) is str json.loads(info) assert "capabilities" in info def test_list(self): profile_name = self.fapi.config.profile_name path_list = self.fapi.list() assert type(path_list) is list assert len(path_list) > 0 assert type(path_list[0]) is str assert f"/{profile_name}/HS" in path_list def test_list_search_path(self): profile_name = self.fapi.config.profile_name search_path = f"/{profile_name}/HE" path_list = self.fapi.list(search_path) assert type(path_list) is list assert len(path_list) > 0 assert type(path_list[0]) is str assert all(path.startswith(search_path) for path in path_list) def test_list_bad_search_path(self): with pytest.raises(TSS2_Exception): self.fapi.list("/nonexistent") def test_create_key(self): profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/key_{random_uid()}" created = self.fapi.create_key(path=key_path) assert created is True assert key_path in self.fapi.list() def test_create_key_double_ok(self): profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/key_{random_uid()}" created = self.fapi.create_key(path=key_path) assert created is True assert key_path in self.fapi.list() created = self.fapi.create_key(path=key_path, exists_ok=True) assert created is False def test_create_key_double_fail(self): profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/key_{random_uid()}" created = self.fapi.create_key(path=key_path) assert created is True assert key_path in self.fapi.list() with pytest.raises(TSS2_Exception): self.fapi.create_key(path=key_path) def test_get_esys_blob_contextload(self, esys, sign_key): blob_data, blob_type = self.fapi.get_esys_blob(path=sign_key) assert blob_type == lib.FAPI_ESYSBLOB_CONTEXTLOAD esys_handle = esys.load_blob(blob_data, blob_type) esys.read_public(esys_handle) esys.flush_context(esys_handle) def test_get_esys_blob_deserialize(self, esys, nv_ordinary): blob_data, blob_type = self.fapi.get_esys_blob(path=nv_ordinary) assert blob_type == lib.FAPI_ESYSBLOB_DESERIALIZE esys_handle = esys.load_blob(blob_data, blob_type) esys.nv_read_public(esys_handle) def test_verify(self, ext_key): # create signature externally key_path, key = ext_key message = b"Hello World" signature = key.sign(message, ec.ECDSA(hashes.SHA256())) # verify signature via fapi self.fapi.verify_signature(key_path, sha256(message), signature) def test_verify_fail(self, ext_key): key_path, key = ext_key with pytest.raises(TSS2_Exception): self.fapi.verify_signature( key_path, digest=b"A" * 32, signature=b"bad signature" ) # TODO test encrypt with RSA profile. Needs to be provisioned separately. @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2"), reason="tpm2-tss bug, see #2028" ) def test_import_key_double_ok(self, cryptography_key): key, key_public_pem = cryptography_key key_path = f"/ext/key_{random_uid()}" imported = self.fapi.import_object(path=key_path, import_data=key_public_pem) assert imported is True assert key_path in self.fapi.list() imported = self.fapi.import_object( path=key_path, import_data=key_public_pem, exists_ok=True ) assert imported is False @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2"), reason="tpm2-tss bug, see #2028" ) def test_import_key_double_fail(self, cryptography_key): key, key_public_pem = cryptography_key key_path = f"/ext/key_{random_uid()}" imported = self.fapi.import_object(path=key_path, import_data=key_public_pem) assert imported is True assert key_path in self.fapi.list() with pytest.raises(TSS2_Exception): self.fapi.import_object(path=key_path, import_data=key_public_pem) @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2"), reason="tpm2-tss bug, see #2028" ) def test_import_policy_double_ok(self): policy = """ { "description":"Description of this policy", "policy":[{"type": "POLICYAUTHVALUE"}] } """ policy_path = f"/policy/policy_{random_uid()}" imported = self.fapi.import_object(path=policy_path, import_data=policy) assert imported is True assert policy_path in self.fapi.list() imported = self.fapi.import_object( path=policy_path, import_data=policy, exists_ok=True ) assert imported is False @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2"), reason="tpm2-tss bug, see #2028" ) def test_import_policy_double_fail(self): policy = """ { "description":"Description of this policy", "policy":[{"type": "POLICYAUTHVALUE"}] } """ policy_path = f"/policy/policy_{random_uid()}" imported = self.fapi.import_object(path=policy_path, import_data=policy) assert imported is True assert policy_path in self.fapi.list() with pytest.raises(TSS2_Exception): self.fapi.import_object(path=policy_path, import_data=policy) def test_import_exported_key(self, sign_key): exported_data = self.fapi.export_key(path=sign_key) profile_name = self.fapi.config.profile_name new_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.import_object(path=new_path, import_data=exported_data) def test_export_imported_policy(self): policy = """ { "description":"Description of this policy", "policy":[{"type": "POLICYAUTHVALUE"}] } """ policy_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_path, import_data=policy) exported_policy = self.fapi.export_policy(path=policy_path) assert type(exported_policy) == str assert "Description of this policy" in exported_policy def test_create_seal(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" seal_data = "Hello World" created = self.fapi.create_seal(path=seal_path, data=seal_data) assert created is True assert seal_path in self.fapi.list() def test_create_seal_double_ok(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" seal_data = "Hello World" created = self.fapi.create_seal(path=seal_path, data=seal_data) assert created is True assert seal_path in self.fapi.list() created = self.fapi.create_seal(path=seal_path, data=seal_data, exists_ok=True) assert created is False def test_create_seal_double_fail(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" seal_data = "Hello World" created = self.fapi.create_seal(path=seal_path, data=seal_data) assert created is True assert seal_path in self.fapi.list() with pytest.raises(TSS2_Exception): self.fapi.create_seal(path=seal_path, data=seal_data) def test_create_seal_random(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" seal_len = 12 created = self.fapi.create_seal(path=seal_path, size=seal_len) assert created is True assert seal_path in self.fapi.list() unseal_data = self.fapi.unseal(path=seal_path) assert type(unseal_data) is bytes assert len(unseal_data) == seal_len def test_create_seal_both_data_and_size_fail(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" with pytest.raises(ValueError): self.fapi.create_seal(path=seal_path, data="Hello World", size=11) def test_create_seal_neither_data_nor_size_fail(self): profile_name = self.fapi.config.profile_name seal_path = f"/{profile_name}/HS/SRK/seal_{random_uid()}" with pytest.raises(ValueError): self.fapi.create_seal(path=seal_path) def test_unseal(self, seal): seal_path, seal_data = seal unseal_data = self.fapi.unseal(path=seal_path) assert type(unseal_data) is bytes assert seal_data == unseal_data def test_quote_verify(self, sign_key): info, signature, pcr_log, certificate = self.fapi.quote( path=sign_key, pcrs=[7, 9] ) info_json = json.loads(info) assert info_json["attest"]["type"] == "ATTEST_QUOTE" assert type(signature) is bytes pcr_log_json = json.loads(pcr_log) assert pcr_log_json == [] assert certificate == "" # TODO verify via openssl # exported_data = self.fapi.export_key(path=sign_key) # sign_key_public_pem = json.loads(exported_data)["pem_ext_public"].encode() # public_key = serialization.load_pem_public_key(sign_key_public_pem) # message = b"TODO" # public_key.verify(signature, message, ec.ECDSA(hashes.SHA256())) # signature via fapi self.fapi.verify_quote(path=sign_key, signature=signature, quote_info=info) def test_export_key(self, sign_key): exported_data = self.fapi.export_key(path=sign_key) assert type(exported_data) is str json.loads(exported_data) def test_delete_key(self): profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/key_{random_uid()}" self.fapi.create_key(path=key_path) assert key_path in self.fapi.list() self.fapi.delete(path=key_path) assert key_path not in self.fapi.list() def test_set_get_description(self, sign_key): description = "Nobody expects the Spanish Inquisition!" self.fapi.set_description(path=sign_key, description=description) returned_description = self.fapi.get_description(path=sign_key) assert description == returned_description def test_get_empty_description(self, sign_key): description = self.fapi.get_description(path=sign_key) assert description == "" def test_set_get_app_data(self, sign_key): app_data = b"\x00\xDE\xCA\xFB\xAD\x00" self.fapi.set_app_data(path=sign_key, app_data=app_data) returned_app_data = self.fapi.get_app_data(path=sign_key) assert app_data == returned_app_data def test_get_no_app_data(self, sign_key): app_data = self.fapi.get_app_data(path=sign_key) assert app_data is None def test_set_get_certificate(self, sign_key): certificate = "<PEM-encoded certificate (but FAPI does not really check)>" self.fapi.set_certificate(path=sign_key, certificate=certificate) returned_certificate = self.fapi.get_certificate(path=sign_key) assert certificate == returned_certificate def test_get_empty_certificate(self, sign_key): certificate = self.fapi.get_certificate(path=sign_key) assert certificate == "" def test_get_empty_platform_certificates_ok(self): certificates = self.fapi.get_platform_certificates(no_cert_ok=True) assert certificates == b"" def test_get_empty_platform_certificates_fail(self): with pytest.raises(TSS2_Exception): self.fapi.get_platform_certificates() def test_pcr_read(self): value, log = self.fapi.pcr_read(7) assert value == b"\0" * 32 assert log == "[\n]" def test_pcr_extend_read(self): index = 16 value_old, _ = self.fapi.pcr_read(index) data = b"\x11" * 100 log = '{"test":"myfile"}' self.fapi.pcr_extend(index, data, log) returned_value, returned_log = self.fapi.pcr_read(index) assert returned_value == sha256(value_old + sha256(data)) assert '"test":"myfile"' in returned_log def test_nv_write_read(self, nv_ordinary): data = b"ABCDEFGHIJ" # 10 bytes as defined in fixture self.fapi.nv_write(nv_ordinary, data) returned_data, log = self.fapi.nv_read(nv_ordinary) assert returned_data == data assert log == "" def test_nv_increment(self, nv_increment): # TODO initial increment should not be necessary, check in with upstream self.fapi.nv_increment(nv_increment) data_before, log = self.fapi.nv_read(nv_increment) assert len(data_before) == 8 assert log == "" self.fapi.nv_increment(nv_increment) data_after, log = self.fapi.nv_read(nv_increment) assert len(data_after) == 8 assert log == "" assert int.from_bytes(data_before, byteorder="big") + 1 == int.from_bytes( data_after, byteorder="big" ) def test_nv_pcr(self, nv_pcr): value_old = b"\x00" * 32 data = b"\x11" * 100 log = '{"test":"myfile"}' self.fapi.nv_extend(nv_pcr, data, log) returned_value, returned_log = self.fapi.nv_read(nv_pcr) assert returned_value == sha256(value_old + data) assert '"test":"myfile"' in returned_log def test_nv_set_bits(self, nv_bitfield): bitfield = 0x0000DECAFBAD0000 self.fapi.nv_set_bits(nv_bitfield, bitfield) returned_value, returned_log = self.fapi.nv_read(nv_bitfield) assert returned_value == bitfield.to_bytes(8, byteorder="big") assert returned_log == "" def test_set_auth_callback(self, sign_key): def callback(path, descr, user_data): print(f"Callback: path={path}, descr={descr}, user_data={user_data}") return user_data profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, auth_value=b"123456") self.fapi.set_auth_callback(callback, user_data=b"123456") self.fapi.sign(key_path, b"\x11" * 32) self.fapi.change_auth(path=key_path, auth_value=b"ABCDEF") self.fapi.set_auth_callback(callback, user_data=b"ABCDEF") self.fapi.sign(key_path, b"\x22" * 32) def test_unset_auth_callback(self, sign_key): def callback(path, descr, user_data): print(f"Callback: path={path}, descr={descr}, user_data={user_data}") return user_data profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, auth_value=b"123456") self.fapi.set_auth_callback(callback, user_data=b"123456") self.fapi.sign(key_path, b"\x11" * 32) self.fapi.change_auth(path=key_path, auth_value=None) self.fapi.set_auth_callback(callback=None) self.fapi.sign(key_path, b"\x22" * 32) @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2", backports=["2.4.7", "3.0.5", "3.1.1"]), reason="tpm2-tss bug, see #2084", ) def test_write_authorize_nv(self, esys): # write CommandCode policy for sign key into nv index nv_path = f"/nv/Owner/nv_policy_{random_uid()}" policy = """ { "description": "", "policy": [ { "type": "CommandCode", "code": "sign" } ] }""" policy_auth_nv_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_auth_nv_path, import_data=policy) self.fapi.create_nv(path=nv_path, size=34) self.fapi.write_authorize_nv(nv_path, policy_auth_nv_path) # create key with AuthorizeNV policy (which ties the above policy, stored in the nv index, to the key) policy_auth_nv = f""" {{ "description":"Description pol_authorize_nv", "policy":[ {{ "type": "AuthorizeNV", "nvPath": "{nv_path}", }} ] }} """ policy_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_path, import_data=policy_auth_nv) profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, type_="sign", policy_path=policy_path) # use key for signing: success self.fapi.sign(path=key_path, digest=b"\x11" * 32) # use key for quoting: fail with pytest.raises(TSS2_Exception): self.fapi.quote(path=key_path, pcrs=[7, 9]) @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2", backports=["2.4.7", "3.0.5", "3.1.1"]), reason="tpm2-tss bug, see #2084", ) def test_authorize_policy(self, sign_key): # create policy Authorize, which is satisfied via a signature by sign_key policy_authorize_path = f"/policy/policy_{random_uid()}" policy_authorize = f""" {{ "description": "Description pol_authorize", "policy": [ {{ "type": "Authorize", "policyRef": [1, 2, 3, 4, 5], "keyPath": "{sign_key}", }} ] }} """ self.fapi.import_object( path=policy_authorize_path, import_data=policy_authorize ) # create policy CommandCode policy = """ { "description": "", "policy": [ { "type": "CommandCode", "code": "sign" } ] }""" policy_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_path, import_data=policy) # create key which can only be used if policy Authorize is satisfied profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key( path=key_path, type_="sign", policy_path=policy_authorize_path ) # try to use key without satisfying policy Authorize: fail with pytest.raises(TSS2_Exception): self.fapi.sign(path=key_path, digest=b"\x11" * 32) # specify underlying policy CommandCode and use key: success self.fapi.authorize_policy( policy_path=policy_path, key_path=sign_key, policy_ref=b"\x01\x02\x03\x04\x05", ) self.fapi.sign(path=key_path, digest=b"\x11" * 32) # specify underlying policy CommandCode and use key: fail because policy CommandCode is not satisfied self.fapi.authorize_policy( policy_path=policy_path, key_path=sign_key, policy_ref=b"\x01\x02\x03\x04\x05", ) with pytest.raises(TSS2_Exception): self.fapi.quote(path=key_path, pcrs=[7, 9]) @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2"), reason="tpm2-tss bug, see #2080" ) def test_policy_signed(self, cryptography_key): # create external signing key used by the signing authority external to the TPM sign_key, sign_key_public_pem = cryptography_key # create policy Signed, which is satisfied via a signature by sign_key policy = f""" {{ "description": "Description pol_signed", "policy": [ {{ "type": "PolicySigned", "publicKeyHint": "Test key hint", "keyPEM": "{sign_key_public_pem}", }} ] }} """ policy_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_path, import_data=policy) # create key which can only be used if policy Signed is satisfied profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, type_="sign", policy_path=policy_path) # try to use key without satisfying policy Signed: fail with pytest.raises(TSS2_Exception): self.fapi.sign(path=key_path, digest=b"\x11" * 32) def sign_callback( path, description, public_key, public_key_hint, hash_alg, data_to_sign, user_data, ): assert key_path.endswith(path) assert description == "PolicySigned" assert public_key == sign_key_public_pem assert public_key_hint == "Test key hint" assert hash_alg == lib.TPM2_ALG_SHA256 assert user_data == b"123456" # signing authority signs external to TPM (via openssl) to authorize usage of key (policy Signed) return sign_key.sign(data_to_sign, ec.ECDSA(hashes.SHA256())) # set signing callback, will be called if policy Signed is to be satisfied self.fapi.set_sign_callback(callback=sign_callback, user_data=b"123456") # use key for signing: success self.fapi.sign(path=key_path, digest=b"\x11" * 32) def test_policy_branched(self): pcr_index = 15 pcr_data = b"ABCDEF" pcr_digest, _ = self.fapi.pcr_read(index=pcr_index) pcr_digest = sha256(pcr_digest + sha256(pcr_data)) # create policy Signed, which is satisfied via a signature by sign_key policy = f""" {{ "description": "Read, Password for write", "policy": [ {{ "type": "PolicyOR", "branches": [ {{ "name": "Read", "description": "des", "policy": [ {{ "type": "CommandCode", "code": "NV_READ" }} ] }}, {{ "name": "Write", "description": "dgf", "policy": [ {{ "type": "CommandCode", "code": "NV_WRITE" }}, {{ "type": "PolicyPCR", "pcrs":[ {{ "pcr": {pcr_index}, "hashAlg": "TPM2_ALG_SHA256", "digest": "{binascii.hexlify(pcr_digest).decode()}" }} ] }} ] }} ] }} ] }} """ policy_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_path, import_data=policy) # create key which can only be used if policy Signed is satisfied nv_path = f"/nv/Owner/nv_{random_uid()}" self.fapi.create_nv(path=nv_path, size=11, policy_path=policy_path) def branch_callback(path, description, branch_names, user_data): assert path == nv_path assert description == "PolicyOR" assert branch_names == ["Read", "Write"] assert user_data == b"123456" return policy_coice(branch_names) # set branch callback, will be called if the nv index is accessed self.fapi.set_branch_callback(callback=branch_callback, user_data=b"123456") # at first, we will choose the 'Write' branch policy_coice = lambda options: options.index("Write") # write to nv index: fail with pytest.raises(TSS2_Exception): self.fapi.nv_write(path=nv_path, data="Hello World") # satisfy policy PCR (and thus policy OR) self.fapi.pcr_extend(index=pcr_index, data=pcr_data) # write to nv index: success self.fapi.nv_write(path=nv_path, data="Hello World") # extend PCR so policy PCR cannot be satisfied anymore self.fapi.pcr_extend( index=pcr_index, data="nobody expects the spanish inquisition!" ) # secondly, we will choose the 'Read' branch policy_coice = lambda options: options.index("Read") # use the 'Read' branch (satisfied via policy CommandCode) nv_data, _ = self.fapi.nv_read(nv_path) assert nv_data == b"Hello World" policy_coice = None # thirdly, we set different branch callback function (here lambda) and read again self.fapi.set_branch_callback( callback=lambda _path, _description, branch_names, _user_data: branch_names.index( "Read" ) ) nv_data, _ = self.fapi.nv_read(nv_path) assert nv_data == b"Hello World" # clean up self.fapi.delete(path=nv_path) @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2", backports=["2.4.7", "3.0.5", "3.1.1"]), reason="tpm2-tss bug, see #2089", ) def test_policy_action(self): # create policy Action, which is satisfied via the callback policy = f""" {{ "description":"The description", "policy":[ {{ "type": "POLICYACTION", "action": "myaction" }} ] }} """ policy_path = f"/policy/policy_{random_uid()}" self.fapi.import_object(path=policy_path, import_data=policy) # create key which can only be used if policy Action is satisfied profile_name = self.fapi.config.profile_name key_path = f"/{profile_name}/HS/SRK/key_{random_uid()}" self.fapi.create_key(path=key_path, type_="sign", policy_path=policy_path) # try to use key without satisfying policy Action: fail with pytest.raises(TSS2_Exception): self.fapi.sign(path=key_path, digest=b"\x11" * 32) def policy_action_callback_error(path, action, user_data) -> None: assert f"/{path}" == key_path assert action == "myaction" assert user_data == b"123456" raise ValueError("Policy Action: Invalid action.") # set policy Action callback, will be called if policy Action is to be satisfied self.fapi.set_policy_action_callback( callback=policy_action_callback_error, user_data=b"123456" ) # try to use key with policy Action that raises an exception: fail with pytest.raises(TSS2_Exception): self.fapi.sign(path=key_path, digest=b"\x11" * 32) # set policy Action callback to lambda, returning success self.fapi.set_policy_action_callback(callback=lambda *_: None) # use key for signing: success self.fapi.sign(path=key_path, digest=b"\x11" * 32) @pytest.mark.usefixtures("init_fapi_ecc") class TestFapiECC(Common): def test_sign(self, sign_key): # create signature message = b"Hello World" digest = hashes.Hash(hashes.SHA256(), backend=default_backend()) digest.update(message) digest = digest.finalize() signature, key_public_pem, cert_pem = self.fapi.sign( path=sign_key, digest=digest ) assert type(signature) == bytes assert type(key_public_pem) == bytes assert type(cert_pem) == bytes # verify via fapi self.fapi.verify_signature(sign_key, digest, signature) # verify via openssl public_key = serialization.load_pem_public_key( key_public_pem, backend=default_backend() ) public_key.verify(signature, message, ec.ECDSA(hashes.SHA256())) def test_get_tpm_blobs(self, sign_key): tpm_2b_public, tpm_2b_private, policy = self.fapi.get_tpm_blobs(path=sign_key) assert tpm_2b_public.size == 0x56 assert tpm_2b_public.publicArea.type == lib.TPM2_ALG_ECC assert tpm_2b_public.publicArea.nameAlg == lib.TPM2_ALG_SHA256 assert ( tpm_2b_public.publicArea.objectAttributes == lib.TPMA_OBJECT_SIGN_ENCRYPT | lib.TPMA_OBJECT_USERWITHAUTH | lib.TPMA_OBJECT_SENSITIVEDATAORIGIN ) assert tpm_2b_public.publicArea.authPolicy.size == 0 assert ( tpm_2b_public.publicArea.parameters.eccDetail.symmetric.algorithm == lib.TPM2_ALG_NULL ) assert ( tpm_2b_public.publicArea.parameters.eccDetail.scheme.scheme == lib.TPM2_ALG_NULL ) assert ( tpm_2b_public.publicArea.parameters.eccDetail.curveID == lib.TPM2_ECC_NIST_P256 ) assert ( tpm_2b_public.publicArea.parameters.eccDetail.kdf.scheme == lib.TPM2_ALG_NULL ) assert tpm_2b_private.size == 0x7E assert policy == "" @pytest.mark.usefixtures("init_fapi_rsa") class TestFapiRSA(Common): def test_sign(self, sign_key): # create signature message = b"Hello World" digest = hashes.Hash(hashes.SHA256(), backend=default_backend()) digest.update(message) digest = digest.finalize() signature, key_public_pem, cert_pem = self.fapi.sign( path=sign_key, digest=digest ) assert type(signature) == bytes assert type(key_public_pem) == bytes assert type(cert_pem) == bytes # verify via fapi self.fapi.verify_signature(sign_key, digest, signature) # verify via openssl public_key = serialization.load_pem_public_key( key_public_pem, backend=default_backend() ) public_key.verify( signature, message, PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=32), hashes.SHA256(), ) def test_get_tpm_blobs(self, sign_key): tpm_2b_public, tpm_2b_private, policy = self.fapi.get_tpm_blobs(path=sign_key) assert tpm_2b_public.size == 0x116 assert tpm_2b_public.publicArea.type == lib.TPM2_ALG_RSA assert tpm_2b_public.publicArea.nameAlg == lib.TPM2_ALG_SHA256 assert ( tpm_2b_public.publicArea.objectAttributes == lib.TPMA_OBJECT_SIGN_ENCRYPT | lib.TPMA_OBJECT_USERWITHAUTH | lib.TPMA_OBJECT_SENSITIVEDATAORIGIN ) assert tpm_2b_public.publicArea.authPolicy.size == 0 assert ( tpm_2b_public.publicArea.parameters.rsaDetail.symmetric.algorithm == lib.TPM2_ALG_NULL ) assert ( tpm_2b_public.publicArea.parameters.rsaDetail.scheme.scheme == lib.TPM2_ALG_NULL ) assert tpm_2b_public.publicArea.parameters.rsaDetail.keyBits == 2048 assert tpm_2b_public.publicArea.parameters.rsaDetail.exponent == 0 assert tpm_2b_private.size == 0xDE assert policy == "" @pytest.mark.skipif( not is_bug_fixed(fixed_in="3.2", backports=["2.4.7", "3.0.5", "3.1.1"]), reason="tpm2-tss bug, see #2092", ) def test_encrypt_decrypt(self, decrypt_key): plaintext = b"Hello World!" ciphertext = self.fapi.encrypt(decrypt_key, plaintext) assert isinstance(ciphertext, bytes) decrypted = self.fapi.decrypt(decrypt_key, ciphertext) assert decrypted == plaintext if __name__ == "__main__": sys.exit(pytest.main(sys.argv))
35.982059
110
0.624747
53e6839d0e121b7f9b6f0927874f3de5ca965984
2,554
py
Python
tests/test_cli.py
91nunocosta/cookiecutterizer
fb450b3878a4d0af3400258e2b736dae2e4b65b0
[ "MIT" ]
null
null
null
tests/test_cli.py
91nunocosta/cookiecutterizer
fb450b3878a4d0af3400258e2b736dae2e4b65b0
[ "MIT" ]
null
null
null
tests/test_cli.py
91nunocosta/cookiecutterizer
fb450b3878a4d0af3400258e2b736dae2e4b65b0
[ "MIT" ]
null
null
null
"""Test Command Line Interface.""" import json import textwrap from pathlib import Path from click.testing import CliRunner from cookiecutterizer.cli import cookiecutterize from tests.helpers import create_text_file, load_text_file def test_cookiecutterize(tmp_path): """Test cookiecutterize command.""" runner = CliRunner() with runner.isolated_filesystem(temp_dir=tmp_path) as test_directory_path: test_directory = Path(test_directory_path) project = test_directory / "project" destination = test_directory / "destination" project.mkdir() destination.mkdir() substitutions = create_text_file( test_directory, "substitutions.json", json.dumps( { "cookiecutterizer": "cookiecutterizer", } ), ) create_text_file( project, "pyproject.toml", """ [tool.poetry] name = "cookiecutterizer" """, ) create_text_file( project / "cookiecutterizer", "__init__.py", """ __version__ = 0.1.0 """, ) create_text_file( project / "tests", "test_cookiecutterizer.py", """ from cookiecutterizer import __version__ def test_version(): assert __version__ == "0.1.0" """, ) result = runner.invoke( cookiecutterize, [ "--substitutions", str(substitutions), "--destination", str(destination), str(project), ], ) assert result.exit_code == 0 assert result.output == "" target_project = destination / "project" assert target_project.exists() assert load_text_file(target_project, "pyproject.toml") == textwrap.dedent( """ [tool.poetry] name = "cookiecutterizer" """ ) assert load_text_file( target_project / "cookiecutterizer", "__init__.py" ) == textwrap.dedent( """ __version__ = 0.1.0 """ ) assert load_text_file( target_project / "tests", "test_cookiecutterizer.py" ) == textwrap.dedent( """ from cookiecutterizer import __version__ def test_version(): assert __version__ == "0.1.0" """ )
24.09434
79
0.523884
8f3d509c21b86f44334315efaaeff8a048c71398
3,508
py
Python
Projects/3_Adversarial Search/agents/40_ab_negascout.py
rpaech/udacity-aind
58bafa6758465c03cc0723f27e781e9d8336c871
[ "MIT" ]
null
null
null
Projects/3_Adversarial Search/agents/40_ab_negascout.py
rpaech/udacity-aind
58bafa6758465c03cc0723f27e781e9d8336c871
[ "MIT" ]
null
null
null
Projects/3_Adversarial Search/agents/40_ab_negascout.py
rpaech/udacity-aind
58bafa6758465c03cc0723f27e781e9d8336c871
[ "MIT" ]
null
null
null
import random from sample_players import DataPlayer from isolation.isolation import Action, Isolation from typing import Optional, Tuple, Dict def liberty_difference(state: Isolation) -> int: def liberty_count(player_id: int) -> int: return len(state.liberties(state.locs[player_id])) this_player = state.player() next_player = 1 - this_player return liberty_count(this_player) - liberty_count(next_player) def log_stat(state: Isolation, search_depth: int, max_search_depth: int, best_score: int, action: Action) -> Dict: return {'round': state.ply_count, 'depth': search_depth, 'max depth': max_search_depth, 'score': best_score, 'action': action} class CustomPlayer(DataPlayer): def get_action(self, state: Isolation) -> None: if state.ply_count < 2: self.queue.put(random.choice(state.actions())) else: max_search_depth = len(state.liberties(None)) // 2 for search_depth in range(max_search_depth): alpha = float("-inf") beta = float("inf") best_score = float("-inf") best_action = None for action in state.actions(): score = self.scout(state.result(action), search_depth, -beta, -max(alpha, best_score)) if best_score < score or best_action is None: best_score = score best_action = action self.queue.put(best_action) self.context = log_stat(state, search_depth, max_search_depth, best_score, best_action) def scout(self, state: Isolation, search_depth: int, alpha: float, beta: float) -> float: if state.terminal_test(): result = state.utility(state.player()) elif search_depth == 0: result = liberty_difference(state) else: best_score = float('-inf') adaptive_beta = beta for action in state.actions(): new_state = state.result(action) score = self.search(new_state, search_depth - 1, -adaptive_beta, -max(alpha, best_score)) if best_score < score: if adaptive_beta == beta or search_depth <= 2: best_score = score else: best_score = self.scout(new_state, search_depth, -beta, -score) if best_score >= beta: break adaptive_beta = max(alpha, best_score) + 1 result = best_score return -result def search(self, state: Isolation, search_depth: int, alpha: float, beta: float) -> float: if state.terminal_test(): result = state.utility(state.player()) elif search_depth == 0: result = liberty_difference(state) else: score = float('-inf') for action in state.actions(): score = max(score, self.search(state.result(action), search_depth - 1, -beta, -max(alpha, score))) if score >= beta: break result = score return -result
31.321429
79
0.525371
2e4cf36b60b1f37901596e7e0b9a2842671afd7a
379
py
Python
Array/Medium_JumpGame_55_WYH.py
LinkWoong/LC-Solutions
98b2ce55f05f6acb672f20519f79ca9f4248961d
[ "MIT" ]
4
2019-05-15T10:40:34.000Z
2020-07-27T03:05:39.000Z
Array/Medium_JumpGame_55_WYH.py
LinkWoong/LC-Solutions
98b2ce55f05f6acb672f20519f79ca9f4248961d
[ "MIT" ]
2
2019-08-20T15:34:33.000Z
2019-09-20T19:41:27.000Z
Array/Medium_JumpGame_55_WYH.py
LinkWoong/LC-Solutions
98b2ce55f05f6acb672f20519f79ca9f4248961d
[ "MIT" ]
null
null
null
# coding: utf-8 # In[20]: #็ฎ—ๆณ•ๆ€่ทฏ๏ผš #ไปŽๅทฆๅ‘ๅณ้ๅކๆ•ดไธชarray #ๆฃ€ๆŸฅๅฝ“ๅ‰ๅฏไปฅๆœ€ๅคง่พพๅˆฐ็š„ๆ•ฐmax_reach,่ƒฝๅฆ่ทŸไธŠcurrent่„šๆญฅๆ•ฐi #ๅฆ‚ๆžœ่ทŸไธไธŠๅˆ™่ฟ”ๅ›žFalse,่ทŸๅพ—ไธŠๅนถไธ”่ถ…่ถŠไบ†็ปˆ็‚นๅˆ™่ฟ”ๅ›žTrue class Solution: def canJump(self, nums): max_reach, n = 0, len(nums) for i, x in enumerate(nums): if max_reach < i: return False if max_reach >= n - 1: return True max_reach = max(max_reach, i + x)
19.947368
46
0.620053
76f662228dcbe2be3bbbf288f5401e2235157f9a
689
py
Python
modules/ckanext-ytp_request/ckanext/ytp_request/logic/auth/create.py
eetumans/opendata
061f58550bcb820016a764cca4763ed0a5f627fe
[ "MIT" ]
16
2018-07-12T14:26:02.000Z
2022-02-24T12:10:00.000Z
modules/ckanext-ytp_request/ckanext/ytp_request/logic/auth/create.py
eetumans/opendata
061f58550bcb820016a764cca4763ed0a5f627fe
[ "MIT" ]
751
2017-09-28T07:47:50.000Z
2022-03-31T12:08:25.000Z
modules/ckanext-ytp_request/ckanext/ytp_request/logic/auth/create.py
vrk-kpa/opendata-ckan
8936e2d9e700b9e5534fe2a51eedc2d1ede8c10b
[ "MIT" ]
6
2017-10-31T07:47:07.000Z
2021-10-06T07:09:07.000Z
from ckanext.ytp_request.helper import get_user_member from ckan import authz import logging from ckan.common import _ log = logging.getLogger(__name__) def member_request_create(context, data_dict): """ Only allow to logged in users """ if not authz.auth_is_loggedin_user(): return {'success': False, 'msg': _('User is not logged in')} organization_id = None if not data_dict else data_dict.get( 'organization_id', None) if organization_id: member = get_user_member(organization_id) if member: return {'success': False, 'msg': _('The user has already a pending request or an active membership')} return {'success': True}
34.45
113
0.701016
5fb054455e669692a7c42e892a7c29942b31ede3
7,036
py
Python
Lib/site-packages/qutebrowser/commands/runners.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
null
null
null
Lib/site-packages/qutebrowser/commands/runners.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
Lib/site-packages/qutebrowser/commands/runners.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
null
null
null
# vim: ft=python fileencoding=utf-8 sts=4 sw=4 et: # Copyright 2014-2021 Florian Bruhin (The Compiler) <mail@qutebrowser.org> # # This file is part of qutebrowser. # # qutebrowser is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # qutebrowser is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with qutebrowser. If not, see <https://www.gnu.org/licenses/>. """Module containing command managers (SearchRunner and CommandRunner).""" import traceback import re import contextlib from typing import TYPE_CHECKING, Callable, Dict, Iterator, Mapping, MutableMapping from PyQt5.QtCore import pyqtSlot, QUrl, QObject from qutebrowser.api import cmdutils from qutebrowser.commands import cmdexc, parser from qutebrowser.utils import message, objreg, qtutils, usertypes, utils from qutebrowser.keyinput import macros, modeman if TYPE_CHECKING: from qutebrowser.mainwindow import tabbedbrowser _ReplacementFunction = Callable[['tabbedbrowser.TabbedBrowser'], str] last_command = {} def _url(tabbed_browser): """Convenience method to get the current url.""" try: return tabbed_browser.current_url() except qtutils.QtValueError as e: msg = "Current URL is invalid" if e.reason: msg += " ({})".format(e.reason) msg += "!" raise cmdutils.CommandError(msg) def _init_variable_replacements() -> Mapping[str, _ReplacementFunction]: """Return a dict from variable replacements to fns processing them.""" replacements: Dict[str, _ReplacementFunction] = { 'url': lambda tb: _url(tb).toString( QUrl.FullyEncoded | QUrl.RemovePassword), 'url:pretty': lambda tb: _url(tb).toString( QUrl.DecodeReserved | QUrl.RemovePassword), 'url:domain': lambda tb: "{}://{}{}".format( _url(tb).scheme(), _url(tb).host(), ":" + str(_url(tb).port()) if _url(tb).port() != -1 else ""), 'url:auth': lambda tb: "{}:{}@".format( _url(tb).userName(), _url(tb).password()) if _url(tb).userName() else "", 'url:scheme': lambda tb: _url(tb).scheme(), 'url:username': lambda tb: _url(tb).userName(), 'url:password': lambda tb: _url(tb).password(), 'url:host': lambda tb: _url(tb).host(), 'url:port': lambda tb: str( _url(tb).port()) if _url(tb).port() != -1 else "", 'url:path': lambda tb: _url(tb).path(), 'url:query': lambda tb: _url(tb).query(), 'title': lambda tb: tb.widget.page_title(tb.widget.currentIndex()), 'clipboard': lambda _: utils.get_clipboard(), 'primary': lambda _: utils.get_clipboard(selection=True), } for key in list(replacements): modified_key = '{' + key + '}' # x = modified_key is to avoid binding x as a closure replacements[modified_key] = ( lambda _, x=modified_key: x) # type: ignore[misc] return replacements VARIABLE_REPLACEMENTS = _init_variable_replacements() # A regex matching all variable replacements VARIABLE_REPLACEMENT_PATTERN = re.compile( "{(?P<var>" + "|".join(VARIABLE_REPLACEMENTS.keys()) + ")}") def replace_variables(win_id, arglist): """Utility function to replace variables like {url} in a list of args.""" tabbed_browser = objreg.get('tabbed-browser', scope='window', window=win_id) values: MutableMapping[str, str] = {} args = [] def repl_cb(matchobj): """Return replacement for given match.""" var = matchobj.group("var") if var not in values: values[var] = VARIABLE_REPLACEMENTS[var](tabbed_browser) return values[var] try: for arg in arglist: # using re.sub with callback function replaces all variables in a # single pass and avoids expansion of nested variables (e.g. # "{url}" from clipboard is not expanded) args.append(VARIABLE_REPLACEMENT_PATTERN.sub(repl_cb, arg)) except utils.ClipboardError as e: raise cmdutils.CommandError(e) return args class AbstractCommandRunner(QObject): """Abstract base class for CommandRunner.""" def run(self, text, count=None, *, safely=False): raise NotImplementedError @pyqtSlot(str, int) @pyqtSlot(str) def run_safely(self, text, count=None): """Run a command and display exceptions in the statusbar.""" self.run(text, count, safely=True) class CommandRunner(AbstractCommandRunner): """Parse and run qutebrowser commandline commands. Attributes: _win_id: The window this CommandRunner is associated with. """ def __init__(self, win_id, partial_match=False, parent=None): super().__init__(parent) self._parser = parser.CommandParser(partial_match=partial_match) self._win_id = win_id @contextlib.contextmanager def _handle_error(self, safely: bool) -> Iterator[None]: """Show exceptions as errors if safely=True is given.""" try: yield except cmdexc.Error as e: if safely: message.error(str(e), stack=traceback.format_exc()) else: raise def run(self, text, count=None, *, safely=False): """Parse a command from a line of text and run it. Args: text: The text to parse. count: The count to pass to the command. safely: Show CmdError exceptions as messages. """ record_last_command = True record_macro = True mode_manager = modeman.instance(self._win_id) cur_mode = mode_manager.mode parsed = None with self._handle_error(safely): parsed = self._parser.parse_all(text) if parsed is None: return # type: ignore[unreachable] for result in parsed: with self._handle_error(safely): if result.cmd.no_replace_variables: args = result.args else: args = replace_variables(self._win_id, result.args) result.cmd.run(self._win_id, args, count=count) if result.cmdline[0] == 'repeat-command': record_last_command = False if result.cmdline[0] in ['macro-record', 'macro-run', 'set-cmd-text']: record_macro = False if record_last_command: last_command[cur_mode] = (text, count) if record_macro and cur_mode == usertypes.KeyMode.normal: macros.macro_recorder.record_command(text, count)
35.535354
83
0.639568
84a0fbe31d9f60b314683e4f6aa6df933e0b1631
1,618
py
Python
rltools/domains/randomwalk.py
omtinez/rltools
ce60b906fbe109e96f7866ae98144c9c9988650b
[ "MIT" ]
null
null
null
rltools/domains/randomwalk.py
omtinez/rltools
ce60b906fbe109e96f7866ae98144c9c9988650b
[ "MIT" ]
null
null
null
rltools/domains/randomwalk.py
omtinez/rltools
ce60b906fbe109e96f7866ae98144c9c9988650b
[ "MIT" ]
null
null
null
import random class RandomWalk(object): ACTIONS = [0] def __init__(self): self.num_states = 7 self.current_state = 3 def take_action(self, action): if action > 0: raise ValueError('Only action "0" supported in this domain') if self.current_state == 0 or self.current_state == self.num_states: raise RuntimeError('Terminal state reached') roll = random.random() if roll > 0.5: self.current_state += 1 else: self.current_state -= 1 reward = 1 if self.current_state == self.num_states - 1 else 0 return action, reward, self.current_state def play(strategy, iterations=100, converge=False): strategy.valid_actions = RandomWalk.ACTIONS mydomain = RandomWalk() strategy.fit((0, 0, 0)) count = 0 while count < iterations: action = strategy.policy(mydomain.current_state) try: a, r, s = mydomain.take_action(action) strategy.fit((s, a, r)) except RuntimeError: count += 1 mydomain.current_state = 3 strategy.init_episode() strategy.fit((0, 0, 0)) if converge: strategy.converge(max_time=60) true_prob = [1./6, 1./3, 1./2, 2./3, 5./6] print('Estimated probabilities:', ['%.5f' % strategy.learner.val(i, 0) for i in range(1,6)]) print('Expected probabilities:', ['%.5f' % p for p in true_prob]) rmse = sum([(strategy.learner.val(i, 0) - true_prob[i-1]) ** 2 for i in range(1,6)]) / len(true_prob) print('RMSE:', rmse) return rmse
29.418182
105
0.590235
b45b37e4f82d040620a41ac216478942b28d2be9
3,377
py
Python
kornia/losses/psnr.py
ChristophReich1996/kornia
35f955b46e8015da1cb9faa28c6943ec2b09cc2a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kornia/losses/psnr.py
ChristophReich1996/kornia
35f955b46e8015da1cb9faa28c6943ec2b09cc2a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kornia/losses/psnr.py
ChristophReich1996/kornia
35f955b46e8015da1cb9faa28c6943ec2b09cc2a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn from torch.nn.functional import mse_loss as mse def psnr(input: torch.Tensor, target: torch.Tensor, max_val: float) -> torch.Tensor: r"""Creates a function that calculates the PSNR between 2 images. PSNR is Peek Signal to Noise Ratio, which is similar to mean squared error. Given an m x n image, the PSNR is: .. math:: \text{PSNR} = 10 \log_{10} \bigg(\frac{\text{MAX}_I^2}{MSE(I,T)}\bigg) where .. math:: \text{MSE}(I,T) = \frac{1}{mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\text{MAX}_I=1`). Args: input (torch.Tensor): the input image with arbitrary shape :math:`(*)`. labels (torch.Tensor): the labels image with arbitrary shape :math:`(*)`. max_val (float): The maximum value in the input tensor. Return: torch.Tensor: the computed loss as a scalar. Examples: >>> ones = torch.ones(1) >>> psnr(ones, 1.2 * ones, 2.) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(20.0000) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ if not isinstance(input, torch.Tensor): raise TypeError(f"Expected torch.Tensor but got {type(target)}.") if not isinstance(target, torch.Tensor): raise TypeError(f"Expected torch.Tensor but got {type(input)}.") if input.shape != target.shape: raise TypeError(f"Expected tensors of equal shapes, but got {input.shape} and {target.shape}") return 10. * torch.log10(max_val**2 / mse(input, target, reduction='mean')) def psnr_loss(input: torch.Tensor, target: torch.Tensor, max_val: float) -> torch.Tensor: r"""Function that computes the PSNR loss. The loss is computed as follows: .. math:: \text{loss} = -\text{psnr(x, y)} See :meth:`~kornia.losses.psnr` for details abut PSNR. Args: input (torch.Tensor): the input image with shape :math:`(*)`. labels (torch.Tensor): the labels image with shape :math:`(*)`. max_val (float): The maximum value in the input tensor. Return: torch.Tensor: the computed loss as a scalar. Examples: >>> ones = torch.ones(1) >>> psnr_loss(ones, 1.2 * ones, 2.) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(-20.0000) """ return -1. * psnr(input, target, max_val) class PSNRLoss(nn.Module): r"""Creates a criterion that calculates the PSNR loss. The loss is computed as follows: .. math:: \text{loss} = -\text{psnr(x, y)} See :meth:`~kornia.losses.psnr` for details abut PSNR. Shape: - Input: arbitrary dimensional tensor :math:`(*)`. - Target: arbitrary dimensional tensor :math:`(*)` same shape as input. - Output: a scalar. Examples: >>> ones = torch.ones(1) >>> criterion = PSNRLoss(2.) >>> criterion(ones, 1.2 * ones) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(-20.0000) """ def __init__(self, max_val: float) -> None: super(PSNRLoss, self).__init__() self.max_val: float = max_val def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return psnr_loss(input, target, self.max_val)
30.7
102
0.609417
cdc725c48f36c163104863e98d9da3e82b5cfd83
41
py
Python
flowbee/activities/__init__.py
blitzagency/flowbee
35e8977827eda34474aa5edc95bbfec86c61b33a
[ "MIT" ]
null
null
null
flowbee/activities/__init__.py
blitzagency/flowbee
35e8977827eda34474aa5edc95bbfec86c61b33a
[ "MIT" ]
null
null
null
flowbee/activities/__init__.py
blitzagency/flowbee
35e8977827eda34474aa5edc95bbfec86c61b33a
[ "MIT" ]
null
null
null
from .base import (Activities, Workflow)
20.5
40
0.780488
d8af71eb07aaaafa426f2c57304d5c7a4f4be85f
7,414
py
Python
tests/unit/modules/test_rpm.py
johnskopis/salt
86adb6b0fe40230b8be4c74229e897a7a08f81a6
[ "Apache-2.0" ]
1
2016-08-21T21:19:12.000Z
2016-08-21T21:19:12.000Z
tests/unit/modules/test_rpm.py
johnskopis/salt
86adb6b0fe40230b8be4c74229e897a7a08f81a6
[ "Apache-2.0" ]
2
2019-03-06T20:43:44.000Z
2019-04-10T23:56:02.000Z
tests/unit/modules/test_rpm.py
johnskopis/salt
86adb6b0fe40230b8be4c74229e897a7a08f81a6
[ "Apache-2.0" ]
1
2020-04-10T20:18:40.000Z
2020-04-10T20:18:40.000Z
# -*- coding: utf-8 -*- ''' :codeauthor: Jayesh Kariya <jayeshk@saltstack.com> ''' # Import Python Libs from __future__ import absolute_import # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase, skipIf from tests.support.mock import ( MagicMock, patch, NO_MOCK, NO_MOCK_REASON ) # Import Salt Libs import salt.modules.rpm as rpm def _called_with_root(mock): cmd = ' '.join(mock.call_args[0][0]) return cmd.startswith('rpm --root /') @skipIf(NO_MOCK, NO_MOCK_REASON) class RpmTestCase(TestCase, LoaderModuleMockMixin): ''' Test cases for salt.modules.rpm ''' def setup_loader_modules(self): return {rpm: {'rpm': MagicMock(return_value=MagicMock)}} # 'list_pkgs' function tests: 2 def test_list_pkgs(self): ''' Test if it list the packages currently installed in a dict ''' mock = MagicMock(return_value='') with patch.dict(rpm.__salt__, {'cmd.run': mock}): self.assertDictEqual(rpm.list_pkgs(), {}) self.assertFalse(_called_with_root(mock)) def test_list_pkgs_root(self): ''' Test if it list the packages currently installed in a dict, called with root parameter ''' mock = MagicMock(return_value='') with patch.dict(rpm.__salt__, {'cmd.run': mock}): rpm.list_pkgs(root='/') self.assertTrue(_called_with_root(mock)) # 'verify' function tests: 2 def test_verify(self): ''' Test if it runs an rpm -Va on a system, and returns the results in a dict ''' mock = MagicMock(return_value={'stdout': '', 'stderr': '', 'retcode': 0, 'pid': 12345}) with patch.dict(rpm.__salt__, {'cmd.run_all': mock}): self.assertDictEqual(rpm.verify('httpd'), {}) self.assertFalse(_called_with_root(mock)) def test_verify_root(self): ''' Test if it runs an rpm -Va on a system, and returns the results in a dict, called with root parameter ''' mock = MagicMock(return_value={'stdout': '', 'stderr': '', 'retcode': 0, 'pid': 12345}) with patch.dict(rpm.__salt__, {'cmd.run_all': mock}): rpm.verify('httpd', root='/') self.assertTrue(_called_with_root(mock)) # 'file_list' function tests: 2 def test_file_list(self): ''' Test if it list the files that belong to a package. ''' mock = MagicMock(return_value='') with patch.dict(rpm.__salt__, {'cmd.run': mock}): self.assertDictEqual(rpm.file_list('httpd'), {'errors': [], 'files': []}) self.assertFalse(_called_with_root(mock)) def test_file_list_root(self): ''' Test if it list the files that belong to a package, using the root parameter. ''' mock = MagicMock(return_value='') with patch.dict(rpm.__salt__, {'cmd.run': mock}): rpm.file_list('httpd', root='/') self.assertTrue(_called_with_root(mock)) # 'file_dict' function tests: 2 def test_file_dict(self): ''' Test if it list the files that belong to a package ''' mock = MagicMock(return_value='') with patch.dict(rpm.__salt__, {'cmd.run': mock}): self.assertDictEqual(rpm.file_dict('httpd'), {'errors': [], 'packages': {}}) self.assertFalse(_called_with_root(mock)) def test_file_dict_root(self): ''' Test if it list the files that belong to a package ''' mock = MagicMock(return_value='') with patch.dict(rpm.__salt__, {'cmd.run': mock}): rpm.file_dict('httpd', root='/') self.assertTrue(_called_with_root(mock)) # 'owner' function tests: 1 def test_owner(self): ''' Test if it return the name of the package that owns the file. ''' self.assertEqual(rpm.owner(), '') ret = 'file /usr/bin/salt-jenkins-build is not owned by any package' mock = MagicMock(return_value=ret) with patch.dict(rpm.__salt__, {'cmd.run_stdout': mock}): self.assertEqual(rpm.owner('/usr/bin/salt-jenkins-build'), '') self.assertFalse(_called_with_root(mock)) ret = {'/usr/bin/vim': 'vim-enhanced-7.4.160-1.e17.x86_64', '/usr/bin/python': 'python-2.7.5-16.e17.x86_64'} mock = MagicMock(side_effect=['python-2.7.5-16.e17.x86_64', 'vim-enhanced-7.4.160-1.e17.x86_64']) with patch.dict(rpm.__salt__, {'cmd.run_stdout': mock}): self.assertDictEqual(rpm.owner('/usr/bin/python', '/usr/bin/vim'), ret) self.assertFalse(_called_with_root(mock)) def test_owner_root(self): ''' Test if it return the name of the package that owns the file, using the parameter root. ''' self.assertEqual(rpm.owner(), '') ret = 'file /usr/bin/salt-jenkins-build is not owned by any package' mock = MagicMock(return_value=ret) with patch.dict(rpm.__salt__, {'cmd.run_stdout': mock}): rpm.owner('/usr/bin/salt-jenkins-build', root='/') self.assertTrue(_called_with_root(mock)) # 'checksum' function tests: 2 def test_checksum(self): ''' Test if checksum validate as expected ''' ret = { "file1.rpm": True, "file2.rpm": False, "file3.rpm": False, } mock = MagicMock(side_effect=[True, 0, True, 1, False, 0]) with patch.dict(rpm.__salt__, {'file.file_exists': mock, 'cmd.retcode': mock}): self.assertDictEqual(rpm.checksum("file1.rpm", "file2.rpm", "file3.rpm"), ret) self.assertFalse(_called_with_root(mock)) def test_checksum_root(self): ''' Test if checksum validate as expected, using the parameter root ''' mock = MagicMock(side_effect=[True, 0]) with patch.dict(rpm.__salt__, {'file.file_exists': mock, 'cmd.retcode': mock}): rpm.checksum("file1.rpm", root='/') self.assertTrue(_called_with_root(mock)) def test_version_cmp_rpm(self): ''' Test package version is called RPM version if RPM-Python is installed :return: ''' with patch('salt.modules.rpm.rpm.labelCompare', MagicMock(return_value=0)), \ patch('salt.modules.rpm.HAS_RPM', True): self.assertEqual(0, rpm.version_cmp('1', '2')) # mock returns 0, which means RPM was called def test_version_cmp_fallback(self): ''' Test package version is called RPM version if RPM-Python is installed :return: ''' with patch('salt.modules.rpm.rpm.labelCompare', MagicMock(return_value=0)), \ patch('salt.modules.rpm.HAS_RPM', False): self.assertEqual(-1, rpm.version_cmp('1', '2')) # mock returns -1, a python implementation was called
35.137441
114
0.570003
3bebd6fc5065620173f75c951d462600ad72abfd
9,793
py
Python
addition_module/face_lightning/KDF/train.py
xueyedamo521/FaceX-Zoo
aa3ecc8eb5471457d566889836cec5f138b92752
[ "Apache-2.0" ]
1
2021-03-31T04:43:49.000Z
2021-03-31T04:43:49.000Z
addition_module/face_lightning/KDF/train.py
xueyedamo521/FaceX-Zoo
aa3ecc8eb5471457d566889836cec5f138b92752
[ "Apache-2.0" ]
null
null
null
addition_module/face_lightning/KDF/train.py
xueyedamo521/FaceX-Zoo
aa3ecc8eb5471457d566889836cec5f138b92752
[ "Apache-2.0" ]
null
null
null
""" @author: Jun Wang @date: 20201019 @contact: jun21wangustc@gmail.com """ import os import sys import shutil import argparse import logging as logger import torch from torch import optim from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from backbone.backbone_def import BackboneFactory from loss.loss_def import KDLossFactory sys.path.append('../../../') from utils.AverageMeter import AverageMeter from data_processor.train_dataset import ImageDataset from head.head_def import HeadFactory logger.basicConfig(level=logger.INFO, format='%(levelname)s %(asctime)s %(filename)s: %(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') class FaceModel(torch.nn.Module): """Define a traditional face model which contains a backbone and a head. Attributes: backbone(object): the backbone of face model. head(object): the head of face model. """ def __init__(self, backbone_factory, backbone_type, head_factory): """Init face model by backbone factorcy and head factory. Args: backbone_factory(object): produce a backbone according to config files. head_factory(object): produce a head according to config files. """ super(FaceModel, self).__init__() self.backbone = backbone_factory.get_backbone(backbone_type) self.head = head_factory.get_head() def forward(self, data, label): feat = self.backbone.forward(data) pred = self.head.forward(feat, label) return feat, pred def get_lr(optimizer): """Get the current learning rate from optimizer. """ for param_group in optimizer.param_groups: return param_group['lr'] def train_one_epoch(data_loader, teacher_model, student_model, optimizer, criterion, criterion_kd, cur_epoch, loss_cls_meter, loss_kd_meter, conf): """Tain one epoch by traditional training. """ for batch_idx, (images, labels) in enumerate(data_loader): images = images.to(conf.device) labels = labels.to(conf.device) labels = labels.squeeze() feats_s, preds_s = student_model.forward(images, labels) loss_cls = criterion(preds_s, labels) with torch.no_grad(): feats_t, preds_t = teacher_model.forward(images, labels) if conf.loss_type == 'PKT': loss_kd = criterion_kd(feats_s, feats_t.detach()) * args.lambda_kd else: loss_kd = criterion_kd(preds_s, preds_t.detach()) * args.lambda_kd loss = loss_cls + loss_kd optimizer.zero_grad() loss.backward() optimizer.step() loss_cls_meter.update(loss_cls.item(), images.shape[0]) loss_kd_meter.update(loss_kd.item(), images.shape[0]) if batch_idx % conf.print_freq == 0: loss_cls_avg = loss_cls_meter.avg loss_kd_avg = loss_kd_meter.avg lr = get_lr(optimizer) logger.info('Epoch %d, iter %d/%d, lr %f, loss_cls %f, loss_kd %f.' % (cur_epoch, batch_idx, len(data_loader), lr, loss_cls_avg, loss_kd_avg)) global_batch_idx = cur_epoch * len(data_loader) + batch_idx conf.writer.add_scalar('Cls_loss', loss_cls_avg, global_batch_idx) conf.writer.add_scalar('KD_loss', loss_kd_avg, global_batch_idx) conf.writer.add_scalar('Train_lr', lr, global_batch_idx) loss_cls_meter.reset() loss_kd_meter.reset() if (batch_idx + 1) % conf.save_freq == 0: saved_name = 'Epoch_%d_batch_%d.pt' % (cur_epoch, batch_idx) state = { 'state_dict': student_model.module.state_dict(), 'epoch': cur_epoch, 'batch_id': batch_idx } torch.save(state, os.path.join(conf.out_dir, saved_name)) logger.info('Save checkpoint %s to disk.' % saved_name) saved_name = 'Epoch_%d.pt' % cur_epoch state = {'state_dict': student_model.module.state_dict(), 'epoch': cur_epoch, 'batch_id': batch_idx} torch.save(state, os.path.join(conf.out_dir, saved_name)) logger.info('Save checkpoint %s to disk...' % saved_name) def train(conf): """Total training procedure. """ data_loader = DataLoader(ImageDataset(conf.data_root, conf.train_file), conf.batch_size, True, num_workers = 4) conf.device = torch.device('cuda:0') criterion = torch.nn.CrossEntropyLoss().cuda(conf.device) backbone_factory = BackboneFactory(conf.backbone_conf_file) head_factory = HeadFactory(conf.head_type, conf.head_conf_file) kd_loss_factory = KDLossFactory(conf.loss_type, conf.loss_conf_file) criterion_kd = kd_loss_factory.get_kd_loss().cuda(conf.device) backbone_factory = BackboneFactory(conf.backbone_conf_file) teacher_model = FaceModel(backbone_factory, args.teacher_backbone_type, head_factory) state_dict = torch.load(args.pretrained_teacher)['state_dict'] teacher_model.load_state_dict(state_dict) teacher_model = torch.nn.DataParallel(teacher_model).cuda() student_model = FaceModel(backbone_factory, args.student_backbone_type, head_factory) ori_epoch = 0 if conf.resume: ori_epoch = torch.load(args.pretrain_model)['epoch'] + 1 state_dict = torch.load(args.pretrain_model)['state_dict'] student_model.load_state_dict(state_dict) student_model = torch.nn.DataParallel(student_model).cuda() parameters = [p for p in student_model.parameters() if p.requires_grad] optimizer = optim.SGD(parameters, lr = conf.lr, momentum = conf.momentum, weight_decay = 1e-4) lr_schedule = optim.lr_scheduler.MultiStepLR( optimizer, milestones = conf.milestones, gamma = 0.1) loss_cls_meter = AverageMeter() loss_kd_meter = AverageMeter() student_model.train() for epoch in range(ori_epoch, conf.epoches): train_one_epoch(data_loader, teacher_model, student_model, optimizer, criterion, criterion_kd, epoch, loss_cls_meter, loss_kd_meter, conf) lr_schedule.step() if __name__ == '__main__': conf = argparse.ArgumentParser(description='traditional_training for face recognition.') conf.add_argument("--data_root", type = str, help = "The root folder of training set.") conf.add_argument("--train_file", type = str, help = "The training file path.") conf.add_argument("--student_backbone_type", type = str, help = "Mobilefacenets, Resnet.") conf.add_argument("--teacher_backbone_type", type = str, help = "Mobilefacenets, Resnet.") conf.add_argument("--backbone_conf_file", type = str, help = "the path of backbone_conf.yaml.") conf.add_argument("--head_type", type = str, help = "mv-softmax, arcface, npc-face.") conf.add_argument("--head_conf_file", type = str, help = "the path of head_conf.yaml.") conf.add_argument("--loss_type", type = str, help = "Logits, PKT...") conf.add_argument("--loss_conf_file", type = str, help = "the path of loss_conf.yaml.") conf.add_argument('--lr', type = float, default = 0.1, help='The initial learning rate.') conf.add_argument('--lambda_kd', type = float, default = 1.0, help='The weight of kd loss.') conf.add_argument("--out_dir", type = str, help = "The folder to save models.") conf.add_argument('--epoches', type = int, default = 9, help = 'The training epoches.') conf.add_argument('--step', type = str, default = '2,5,7', help = 'Step for lr.') conf.add_argument('--print_freq', type = int, default = 10, help = 'The print frequency for training state.') conf.add_argument('--save_freq', type = int, default = 10, help = 'The save frequency for training state.') conf.add_argument('--batch_size', type = int, default = 128, help='The training batch size over all gpus.') conf.add_argument('--momentum', type = float, default = 0.9, help = 'The momentum for sgd.') conf.add_argument('--log_dir', type = str, default = 'log', help = 'The directory to save log.log') conf.add_argument('--tensorboardx_logdir', type = str, help = 'The directory to save tensorboardx logs') conf.add_argument('--pretrained_teacher', type = str, default = 'mv_epoch_8.pt', help = 'The path of pretrained teahcer model') conf.add_argument('--pretrained_model', type = str, default = 'mv_epoch_8.pt', help = 'The path of pretrained model') conf.add_argument('--resume', '-r', action = 'store_true', default = False, help = 'Whether to resume from a checkpoint.') args = conf.parse_args() args.milestones = [int(num) for num in args.step.split(',')] if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) if not os.path.exists(args.log_dir): os.makedirs(args.log_dir) tensorboardx_logdir = os.path.join(args.log_dir, args.tensorboardx_logdir) if os.path.exists(tensorboardx_logdir): shutil.rmtree(tensorboardx_logdir) writer = SummaryWriter(log_dir=tensorboardx_logdir) args.writer = writer logger.info('Start optimization.') logger.info(args) train(args) logger.info('Optimization done!')
47.081731
97
0.635045
35cd33ce20be49dde5ce55248f2ad047fc962fa8
13,305
py
Python
src/logistic/main_mimic.py
rathp/time_series_prediction
c776f988c633868c7106041ac91ab56ca9fd7968
[ "MIT" ]
null
null
null
src/logistic/main_mimic.py
rathp/time_series_prediction
c776f988c633868c7106041ac91ab56ca9fd7968
[ "MIT" ]
null
null
null
src/logistic/main_mimic.py
rathp/time_series_prediction
c776f988c633868c7106041ac91ab56ca9fd7968
[ "MIT" ]
null
null
null
import sys, os import argparse import numpy as np import pandas as pd import json import time import torch from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.metrics import (roc_curve, accuracy_score, log_loss, balanced_accuracy_score, confusion_matrix, roc_auc_score, make_scorer) from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from yattag import Doc import matplotlib.pyplot as plt def main(): parser = argparse.ArgumentParser(description='sklearn LogisticRegression') parser.add_argument('--train_vitals_csv', type=str, help='Location of vitals data for training') parser.add_argument('--test_vitals_csv', type=str, help='Location of vitals data for testing') parser.add_argument('--metadata_csv', type=str, help='Location of metadata for testing and training') parser.add_argument('--data_dict', type=str) parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--save', type=str, default='LRmodel.pt', help='path to save the final model') parser.add_argument('--report_dir', type=str, default='results', help='dir in which to save results report') parser.add_argument('--is_data_simulated', type=bool, default=False, help='boolean to check if data is simulated or from mimic') parser.add_argument('--output_filename_prefix', type=str, default='current_config', help='file to save the loss and validation over epochs') args = parser.parse_args() if not(args.is_data_simulated): # extract data train_vitals = pd.read_csv(args.train_vitals_csv) test_vitals = pd.read_csv(args.test_vitals_csv) metadata = pd.read_csv(args.metadata_csv) X_train, y_train = extract_labels(train_vitals, metadata, args.data_dict) X_test, y_test = extract_labels(test_vitals, metadata, args.data_dict) # remove subject_id and episode_id from the train and test features X_train = X_train.iloc[:,2:] X_test = X_test.iloc[:,2:] else: simulated_data_dir = 'simulated_data/' X_train = torch.load(simulated_data_dir + 'X_train.pt').numpy() X_test = torch.load(simulated_data_dir + 'X_test.pt').numpy() y_train = torch.load(simulated_data_dir + 'y_train.pt').long().numpy() y_test = torch.load(simulated_data_dir + 'y_test.pt').long().numpy() # build pipeline step_list = list() scaler_x = StandardScaler() step_list.append(('standardize', scaler_x)) #------------------------------------------- TRAIN ----------------------------# # initialize regressor logistic = LogisticRegression(solver='saga', max_iter=10000,\ class_weight = 'balanced',\ random_state = 42,\ tol = 1e-2) step_list.append(('regressor',logistic)) # hyperparameter space penalty = ['l1','l2'] C = [1e-5, 1e-4, \ 1e-3, 1e-2, 1e-1, 1e0, 1e2, 1e3, 1e4] hyperparameters = dict(C=C, penalty=penalty) param_grid = dict(regressor__C=hyperparameters['C'], regressor__penalty=hyperparameters['penalty']) # define a auc scorer function roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_proba=True) prediction_pipeline = Pipeline(step_list) # classifier = GridSearchCV(logistic, hyperparameters, cv=5, verbose=10, scoring = roc_auc_scorer) classifier = GridSearchCV(prediction_pipeline, param_grid, cv=5, verbose=10, scoring = roc_auc_scorer) t1=time.time() best_logistic = classifier.fit(X_train, y_train) #------------------------------------------- REPORT ----------------------------# # View best hyperparameters best_penalty = best_logistic.best_estimator_.get_params()['regressor__penalty'] best_C = best_logistic.best_estimator_.get_params()['regressor__C'] y_pred = best_logistic.predict(X_test) y_pred_proba = best_logistic.predict_proba(X_test) # check performance on training data to check for overfitting y_train_pred = best_logistic.predict(X_train) y_train_pred_proba = best_logistic.predict_proba(X_train) # Brief Summary print('Best Penalty:', best_penalty) print('Best C:', best_C) print('Accuracy:', accuracy_score(y_test, y_pred)) print('Balanced Accuracy:', balanced_accuracy_score(y_test, y_pred)) print('Log Loss:', log_loss(y_test, y_pred_proba)) conf_matrix = confusion_matrix(y_test, y_pred) conf_matrix_train = confusion_matrix(y_train, y_train_pred)# to check for overfitting true_neg = conf_matrix[0][0] true_pos = conf_matrix[1][1] false_neg = conf_matrix[1][0] false_pos = conf_matrix[0][1] true_neg_train = conf_matrix_train[0][0] true_pos_train = conf_matrix_train[1][1] false_neg_train = conf_matrix_train[1][0] false_pos_train = conf_matrix_train[0][1] print('True Positive Rate:', float(true_pos) / (true_pos + false_neg)) print('True Negative Rate:', float(true_neg) / (true_neg + false_pos)) print('Positive Predictive Value:', float(true_pos) / (true_pos + false_pos)) print('Negative Predictive Value', float(true_neg) / (true_neg + false_pos)) print('True Positive Rate on training data:', float(true_pos_train) / (true_pos_train + false_neg_train)) print('True Negative Rate on training data:', float(true_neg_train) / (true_neg_train + false_pos_train)) print('Positive Predictive Value on training data:', float(true_pos_train) / (true_pos_train + false_pos_train)) print('Negative Predictive Value on training data:', float(true_neg_train) / (true_neg_train + false_pos_train)) t2 = time.time() print('time taken to run classifier : {} seconds'.format(t2-t1)) create_html_report(args.report_dir, y_test, y_pred, y_pred_proba, y_train, y_train_pred, y_train_pred_proba, hyperparameters, best_penalty, best_C) def create_html_report(report_dir, y_test, y_pred, y_pred_proba, y_train, y_train_pred, y_train_pred_proba, hyperparameters, best_penalty, best_C): try: os.mkdir(report_dir) except OSError: pass # Set up HTML report doc, tag, text = Doc().tagtext() # Metadata with tag('h2'): text('Logistic Classifier Results') with tag('h3'): text('Hyperparameters searched:') with tag('p'): text('Penalty: ', str(hyperparameters['penalty'])) with tag('p'): text('C: ', str(hyperparameters['C'])) # Model with tag('h3'): text('Parameters of best model:') with tag('p'): text('Penalty: ', best_penalty) with tag('p'): text('C: ', best_C) # Performance with tag('h3'): text('Performance Metrics:') with tag('p'): text('Accuracy: ', accuracy_score(y_test, y_pred)) with tag('p'): text('Accuracy on training data: ', accuracy_score(y_train, y_train_pred)) with tag('p'): text('Balanced Accuracy: ', balanced_accuracy_score(y_test, y_pred)) with tag('p'): text('Log Loss: ', log_loss(y_test, y_pred_proba)) conf_matrix = confusion_matrix(y_test, y_pred) conf_matrix_norm = conf_matrix.astype('float') / conf_matrix.sum(axis=1)[:, np.newaxis] conf_matrix_train = confusion_matrix(y_train, y_train_pred)# to check for overfitting conf_matrix_norm_train = conf_matrix_train.astype('float') / conf_matrix_train.sum(axis=1)[:, np.newaxis] true_neg = conf_matrix[0][0] true_pos = conf_matrix[1][1] false_neg = conf_matrix[1][0] false_pos = conf_matrix[0][1] true_neg_train = conf_matrix_train[0][0] true_pos_train = conf_matrix_train[1][1] false_neg_train = conf_matrix_train[1][0] false_pos_train = conf_matrix_train[0][1] with tag('p'): text('True Positive Rate: ', float(true_pos) / (true_pos + false_neg)) with tag('p'): text('True Positive Rate on training data: ', float(true_pos_train) / (true_pos_train + false_neg_train)) with tag('p'): text('True Negative Rate: ', float(true_neg) / (true_neg + false_pos)) with tag('p'): text('True Negative Rate on training data: ', float(true_neg_train) / (true_neg_train + false_pos_train)) with tag('p'): text('Positive Predictive Value: ', float(true_pos) / (true_pos + false_pos)) with tag('p'): text('Positive Predictive Value on training data: ', float(true_pos_train) / (true_pos_train + false_pos_train)) with tag('p'): text('Negative Predictive Value: ', float(true_neg) / (true_neg + false_pos)) with tag('p'): text('Negative Predictive Value on training data: ', float(true_neg_train) / (true_neg_train + false_pos_train)) # Confusion Matrix columns = ['Predicted 0', 'Predicted 1'] rows = ['Actual 0', 'Actual 1'] cell_text = [] for cm_row, cm_norm_row in zip(conf_matrix, conf_matrix_norm): row_text = [] for i, i_norm in zip(cm_row, cm_norm_row): row_text.append('{} ({})'.format(i, i_norm)) cell_text.append(row_text) ax = plt.subplot(111, frame_on=False) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) confusion_table = ax.table(cellText=cell_text, rowLabels=rows, colLabels=columns, loc='center') plt.savefig(report_dir + '/confusion_matrix_test.png') plt.close() # save confusion matrix for training data cell_text_train = [] for cm_row, cm_norm_row in zip(conf_matrix_train, conf_matrix_norm_train): row_text = [] for i, i_norm in zip(cm_row, cm_norm_row): row_text.append('{} ({})'.format(i, i_norm)) cell_text_train.append(row_text) ax = plt.subplot(111, frame_on=False) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) confusion_table = ax.table(cellText=cell_text_train, rowLabels=rows, colLabels=columns, loc='center') plt.savefig(report_dir + '/confusion_matrix_train.png') plt.close() with tag('p'): text('Confusion Matrix on test data:') doc.stag('img', src=('confusion_matrix_test.png')) with tag('p'): text('Confusion Matrix on training data:') doc.stag('img', src=('confusion_matrix_train.png')) # ROC curve/area y_pred_proba_neg, y_pred_proba_pos = zip(*y_pred_proba) y_train_pred_proba_neg, y_train_pred_proba_pos = zip(*y_train_pred_proba) fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba_pos) fpr_train, tpr_train, thresholds_train = roc_curve(y_train, y_train_pred_proba_pos) roc_area = roc_auc_score(y_test, y_pred_proba_pos) roc_area_train = roc_auc_score(y_train, y_train_pred_proba_pos) print('train ROC : {}'.format(roc_area_train)) print('test ROC : {}'.format(roc_area)) plt.plot(fpr, tpr) plt.xlabel('FPR Test') plt.ylabel('TPR Test') plt.title('AUC : {}'.format(roc_area)) plt.savefig(report_dir + '/roc_curve_test.png') plt.close() # plot training ROC plt.plot(fpr_train, tpr_train) plt.xlabel('FPR Train') plt.ylabel('TPR Train') plt.title('AUC : {}'.format(roc_area_train)) plt.savefig(report_dir + '/roc_curve_train.png') plt.close() with tag('p'): text('ROC Curve for test data:') doc.stag('img', src=('roc_curve_test.png')) with tag('p'): text('ROC Area for test data: ', roc_area) with tag('p'): text('ROC Curve for training data:') doc.stag('img', src=('roc_curve_train.png')) with tag('p'): text('ROC Area for training data: ', roc_area_train) with open(report_dir + '/report.html', 'w') as f: f.write(doc.getvalue()) def extract_labels(vitals, metadata, data_dict): id_cols = parse_id_cols(data_dict) outcome = parse_outcome_col(data_dict) print(id_cols) df = pd.merge(vitals, metadata, on=id_cols, how='left') y = list(df[outcome]) if len(vitals) != len(y): raise Exception('Number of sequences did not match number of labels.') return vitals, y def parse_id_cols(data_dict_file): cols = [] with open(data_dict_file, 'r') as f: data_dict = json.load(f) f.close() for col in data_dict['fields']: if 'role' in col and col['role'] == 'id': cols.append(col['name']) return cols def parse_outcome_col(data_dict_file): cols = [] with open(data_dict_file, 'r') as f: data_dict = json.load(f) f.close() for col in data_dict['fields']: if 'role' in col and col['role'] == 'outcome': return col['name'] return '' if __name__ == '__main__': main()
39.247788
148
0.637956
6fd3b348d55ff4399b86550119d50aa866c0ae97
678
py
Python
office365api/mail/drafts.py
swimlane/python-office365
42c0c0cad0d92e4cd7f18fcf3e75153045a9ea0f
[ "MIT" ]
21
2016-10-27T10:39:25.000Z
2021-06-15T01:03:06.000Z
office365api/mail/drafts.py
swimlane/python-office365
42c0c0cad0d92e4cd7f18fcf3e75153045a9ea0f
[ "MIT" ]
6
2017-03-08T06:39:59.000Z
2021-07-12T01:35:05.000Z
office365api/mail/drafts.py
swimlane/python-office365
42c0c0cad0d92e4cd7f18fcf3e75153045a9ea0f
[ "MIT" ]
15
2016-12-11T22:33:56.000Z
2021-09-13T17:44:11.000Z
from office365api.mail.folders import Folder class Drafts(Folder): @property def folder_name(self): return 'Drafts' def reply(self, message, comment=None, to_all=False): """ Sends reply to sender and other recipients. :param message: Message to reply to, only Id is important. :param comment: Optional comment. :param to_all: If true reply to other recipients as well. :return: None """ url = (self.REPLY_ALL_URL if to_all else self.REPLY_URL).format(id=message.Id) self.connection.post(url=url, data={'Comment': comment or ''}) def create_message(self, message): pass
29.478261
86
0.643068
edf54ff64a79958d136e730469924c4025d22a08
796
py
Python
Problems/Depth-First Search/easy/MaxDepthNaryTree/max_depth_nary_tree.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
1
2021-08-16T14:52:05.000Z
2021-08-16T14:52:05.000Z
Problems/Depth-First Search/easy/MaxDepthNaryTree/max_depth_nary_tree.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
Problems/Depth-First Search/easy/MaxDepthNaryTree/max_depth_nary_tree.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
class Node: def __init__(self, val=None, children=None): self.val = val self.children = children # Recursive def maxDepth(root: 'Node') -> int: if not root: return 0 def search_max(cur_root: 'Node', depth: int): if not cur_root.children: return depth return max([search_max(child, depth + 1) for child in cur_root.children]) return search_max(root, 1) # Iterative # def maxDepth(root: 'Node') -> int: # if not root: # return 0 # # max_depth = 1 # stack = [(root, max_depth)] # while stack: # cur_node, cur_depth = stack.pop() # max_depth = max(max_depth, cur_depth) # for child in cur_node.children: # stack.append((child, cur_depth + 1)) # # return max_depth
24.875
81
0.589196
d49cbe8d7289e8f4355f59f8f794d5dcaa2b303b
2,366
bzl
Python
bazel/generate_cc.bzl
LuminateWireless/grpc
b21e8bfde50f6c895165b984f1d5dff58a4cc7b4
[ "BSD-3-Clause" ]
1
2021-04-27T20:09:23.000Z
2021-04-27T20:09:23.000Z
bazel/generate_cc.bzl
LuminateWireless/grpc
b21e8bfde50f6c895165b984f1d5dff58a4cc7b4
[ "BSD-3-Clause" ]
null
null
null
bazel/generate_cc.bzl
LuminateWireless/grpc
b21e8bfde50f6c895165b984f1d5dff58a4cc7b4
[ "BSD-3-Clause" ]
1
2019-06-03T16:02:06.000Z
2019-06-03T16:02:06.000Z
"""Generates C++ grpc stubs from proto_library rules. This is an internal rule used by cc_grpc_library, and shouldn't be used directly. """ def generate_cc_impl(ctx): """Implementation of the generate_cc rule.""" protos = [f for src in ctx.attr.srcs for f in src.proto.direct_sources] includes = [f for src in ctx.attr.srcs for f in src.proto.transitive_imports] outs = [] if ctx.executable.plugin: outs += [proto.basename[:-len(".proto")] + ".grpc.pb.h" for proto in protos] outs += [proto.basename[:-len(".proto")] + ".grpc.pb.cc" for proto in protos] else: outs += [proto.basename[:-len(".proto")] + ".pb.h" for proto in protos] outs += [proto.basename[:-len(".proto")] + ".pb.cc" for proto in protos] out_files = [ctx.new_file(out) for out in outs] # The following should be replaced with ctx.configuration.buildout # whenever this is added to Skylark. dir_out = out_files[0].dirname[:-len(protos[0].dirname)] arguments = [] if ctx.executable.plugin: arguments += ["--plugin=protoc-gen-PLUGIN=" + ctx.executable.plugin.path] arguments += ["--PLUGIN_out=" + ",".join(ctx.attr.flags) + ":" + dir_out] additional_input = [ctx.executable.plugin] else: arguments += ["--cpp_out=" + ",".join(ctx.attr.flags) + ":" + dir_out] additional_input = [] arguments += ["-I{0}={0}".format(include.path) for include in includes] arguments += [proto.path for proto in protos] ctx.action( inputs = protos + includes + additional_input, outputs = out_files, executable = ctx.executable._protoc, arguments = arguments, ) return struct(files=set(out_files)) generate_cc = rule( attrs = { "srcs": attr.label_list( mandatory = True, non_empty = True, providers = ["proto"], ), "plugin": attr.label( executable = True, providers = ["files_to_run"], cfg = "host", ), "flags": attr.string_list( mandatory = False, allow_empty = True, ), "_protoc": attr.label( default = Label("//external:protocol_compiler"), executable = True, cfg = "host", ), }, # We generate .h files, so we need to output to genfiles. output_to_genfiles = True, implementation = generate_cc_impl, )
34.289855
81
0.610313
4918ed56c140e3f0ce56defcfbed09d85cea59bc
958
py
Python
ops/convert_model_togroupmodel.py
wang3702/barlowtwins
6d1dc9d31f8f3c87fa4148b7dada0fe9e34805d1
[ "MIT" ]
null
null
null
ops/convert_model_togroupmodel.py
wang3702/barlowtwins
6d1dc9d31f8f3c87fa4148b7dada0fe9e34805d1
[ "MIT" ]
null
null
null
ops/convert_model_togroupmodel.py
wang3702/barlowtwins
6d1dc9d31f8f3c87fa4148b7dada0fe9e34805d1
[ "MIT" ]
null
null
null
def convert_model_to_group(world_size ,group_norm_size ,model): total_world_size = world_size print("total world size %d, group num %d" % (total_world_size, group_norm_size)) if total_world_size >= group_norm_size: cur_divide_group = 1 gpu_per_group = total_world_size // group_norm_size else: gpu_per_group = 1 cur_divide_group = group_norm_size // total_world_size print("groupBN %d gpu per group" % gpu_per_group) print("per gpu divided into %d groups" % cur_divide_group) import apex if cur_divide_group > 1: from ops.convert_syncbn_model import convert_groupbn_model model = convert_groupbn_model(model, cur_divide_group) else: process_group = apex.parallel.create_syncbn_process_group(gpu_per_group) print("current process group:", process_group) model = apex.parallel.convert_syncbn_model(model, process_group=process_group) return model
43.545455
86
0.727557
65f347dcfe331ca0d560958359f2aac4a912c99e
2,669
py
Python
scrapy/logformatter.py
subhipandey/scrapy
b5c552d17ff9e9629434712c3d0595c02853bcfc
[ "BSD-3-Clause" ]
9,953
2019-04-03T23:41:04.000Z
2022-03-31T11:54:44.000Z
stackoverflow/venv/lib/python3.6/site-packages/scrapy/logformatter.py
W4LKURE/learn_python3_spider
98dd354a41598b31302641f9a0ea49d1ecfa0fb1
[ "MIT" ]
44
2019-05-27T10:59:29.000Z
2022-03-31T14:14:29.000Z
stackoverflow/venv/lib/python3.6/site-packages/scrapy/logformatter.py
W4LKURE/learn_python3_spider
98dd354a41598b31302641f9a0ea49d1ecfa0fb1
[ "MIT" ]
2,803
2019-04-06T13:15:33.000Z
2022-03-31T07:42:01.000Z
import os import logging from twisted.python.failure import Failure from scrapy.utils.request import referer_str SCRAPEDMSG = u"Scraped from %(src)s" + os.linesep + "%(item)s" DROPPEDMSG = u"Dropped: %(exception)s" + os.linesep + "%(item)s" CRAWLEDMSG = u"Crawled (%(status)s) %(request)s%(request_flags)s (referer: %(referer)s)%(response_flags)s" class LogFormatter(object): """Class for generating log messages for different actions. All methods must return a dictionary listing the parameters ``level``, ``msg`` and ``args`` which are going to be used for constructing the log message when calling logging.log. Dictionary keys for the method outputs: * ``level`` should be the log level for that action, you can use those from the python logging library: logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR and logging.CRITICAL. * ``msg`` should be a string that can contain different formatting placeholders. This string, formatted with the provided ``args``, is going to be the log message for that action. * ``args`` should be a tuple or dict with the formatting placeholders for ``msg``. The final log message is computed as output['msg'] % output['args']. """ def crawled(self, request, response, spider): request_flags = ' %s' % str(request.flags) if request.flags else '' response_flags = ' %s' % str(response.flags) if response.flags else '' return { 'level': logging.DEBUG, 'msg': CRAWLEDMSG, 'args': { 'status': response.status, 'request': request, 'request_flags' : request_flags, 'referer': referer_str(request), 'response_flags': response_flags, # backward compatibility with Scrapy logformatter below 1.4 version 'flags': response_flags } } def scraped(self, item, response, spider): if isinstance(response, Failure): src = response.getErrorMessage() else: src = response return { 'level': logging.DEBUG, 'msg': SCRAPEDMSG, 'args': { 'src': src, 'item': item, } } def dropped(self, item, exception, response, spider): return { 'level': logging.WARNING, 'msg': DROPPEDMSG, 'args': { 'exception': exception, 'item': item, } } @classmethod def from_crawler(cls, crawler): return cls()
34.217949
106
0.58299
358d5ed4e40a7840fe0f2861abc52f73022aaad0
3,833
py
Python
etc/tidy.py
olsonjeffery/schemers
74a8a6cfbf7158e489fd82e0d0e678df81948b87
[ "BSD-3-Clause" ]
2
2015-03-10T02:30:25.000Z
2021-09-07T11:05:47.000Z
etc/tidy.py
olsonjeffery/schemers
74a8a6cfbf7158e489fd82e0d0e678df81948b87
[ "BSD-3-Clause" ]
null
null
null
etc/tidy.py
olsonjeffery/schemers
74a8a6cfbf7158e489fd82e0d0e678df81948b87
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2010-2014 The Rust Project Developers. See the COPYRIGHT # file at the top-level directory of this distribution and at # http://rust-lang.org/COPYRIGHT. # # Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or # http://www.apache.org/licenses/LICENSE-2.0> or the MIT license # <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your # option. This file may not be copied, modified, or distributed # except according to those terms. import sys, fileinput, subprocess, re, os from licenseck import * err=0 cols=100 cr_flag="ignore-tidy-cr" tab_flag="ignore-tidy-tab" linelength_flag="ignore-tidy-linelength" # Be careful to support Python 2.4, 2.6, and 3.x here! config_proc=subprocess.Popen([ "git", "config", "core.autocrlf" ], stdout=subprocess.PIPE) result=config_proc.communicate()[0] true="true".encode('utf8') autocrlf=result.strip() == true if result is not None else False def scrub(b): if sys.version_info >= (3,) and type(b) == bytes: return b.decode('ascii') else: return b licenseck_disabled = scrub(os.getenv("TIDY_NO_LICENSECK")) == "1" def report_error_name_no(name, no, s): global err print("%s:%d: %s" % (name, no, s)) err=1 def report_err(s): report_error_name_no(fileinput.filename(), fileinput.filelineno(), s) def report_warn(s): print("%s:%d: %s" % (fileinput.filename(), fileinput.filelineno(), s)) def do_license_check(name, contents): if not licenseck_disabled and not check_license(name, contents): report_error_name_no(name, 1, "incorrect license") file_names = [s for s in sys.argv[1:] if (not s.endswith("_gen.rs")) and (not ".#" in s)] current_name = "" current_contents = "" check_tab = True check_cr = True check_linelength = True try: for line in fileinput.input(file_names, openhook=fileinput.hook_encoded("utf-8")): if fileinput.filename().find("tidy.py") == -1: if line.find(cr_flag) != -1: check_cr = False if line.find(tab_flag) != -1: check_tab = False if line.find(linelength_flag) != -1: check_linelength = False if line.find("// XXX") != -1: report_err("XXX is no longer necessary, use FIXME") if line.find("TODO") != -1: report_err("TODO is deprecated; use FIXME") match = re.match(r'^.*//\s*(NOTE.*)$', line) if match: m = match.group(1) if "snap" in m.lower(): report_warn(match.group(1)) match = re.match(r'^.*//\s*SNAP\s+(\w+)', line) if check_tab and (line.find('\t') != -1 and fileinput.filename().find("Makefile") == -1): report_err("tab character") if check_cr and not autocrlf and line.find('\r') != -1: report_err("CR character") if line.endswith(" \n") or line.endswith("\t\n"): report_err("trailing whitespace") line_len = len(line)-2 if autocrlf else len(line)-1 if check_linelength and line_len > cols: report_err("line longer than %d chars" % cols) if fileinput.isfirstline() and current_name != "": do_license_check(current_name, current_contents) if fileinput.isfirstline(): current_name = fileinput.filename() current_contents = "" check_cr = True check_tab = True check_linelength = True current_contents += line if current_name != "": do_license_check(current_name, current_contents) except UnicodeDecodeError, e: report_err("UTF-8 decoding error " + str(e)) sys.exit(err)
32.760684
74
0.600313
c04e591f7c07799ba41d5beee76a127faa7fc2ec
2,751
py
Python
tests/parsers/text_parser.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
null
null
null
tests/parsers/text_parser.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
null
null
null
tests/parsers/text_parser.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """This file contains the tests for the generic text parser.""" import unittest import pyparsing from plaso.parsers import text_parser from tests.parsers import test_lib class PyparsingConstantsTest(test_lib.ParserTestCase): """Tests the PyparsingConstants text parser.""" def testConstants(self): """Tests parsing with constants.""" with self.assertRaises(pyparsing.ParseException): text_parser.PyparsingConstants.MONTH.parseString('MMo') with self.assertRaises(pyparsing.ParseException): text_parser.PyparsingConstants.MONTH.parseString('M') with self.assertRaises(pyparsing.ParseException): text_parser.PyparsingConstants.MONTH.parseString('March', parseAll=True) self.assertTrue(text_parser.PyparsingConstants.MONTH.parseString('Jan')) line = '# This is a comment.' parsed_line = text_parser.PyparsingConstants.COMMENT_LINE_HASH.parseString( line) self.assertEqual(parsed_line[-1], 'This is a comment.') self.assertEqual(len(parsed_line), 2) def testConstantIPv4(self): """Tests parsing with the IPV4_ADDRESS constant.""" self.assertTrue( text_parser.PyparsingConstants.IPV4_ADDRESS.parseString( '123.51.234.52')) self.assertTrue( text_parser.PyparsingConstants.IPV4_ADDRESS.parseString( '255.254.23.1')) self.assertTrue( text_parser.PyparsingConstants.IPV4_ADDRESS.parseString('1.1.34.2')) with self.assertRaises(pyparsing.ParseException): text_parser.PyparsingConstants.IPV4_ADDRESS.parseString('a.1.34.258') with self.assertRaises(pyparsing.ParseException): text_parser.PyparsingConstants.IPV4_ADDRESS.parseString('.34.258') with self.assertRaises(pyparsing.ParseException): text_parser.PyparsingConstants.IPV4_ADDRESS.parseString('34.258') class PyparsingSingleLineTextParserTest(unittest.TestCase): """Tests for the single line PyParsing-based text parser.""" # pylint: disable=protected-access def testIsText(self): """Tests the _IsText function.""" parser = text_parser.PyparsingSingleLineTextParser() bytes_in = b'this is My Weird ASCII and non whatever string.' self.assertTrue(parser._IsText(bytes_in)) bytes_in = 'Plaso Sรญar Og Raรฐar รžessu' self.assertTrue(parser._IsText(bytes_in)) bytes_in = b'\x01\\62LSO\xFF' self.assertFalse(parser._IsText(bytes_in)) bytes_in = b'T\x00h\x00i\x00s\x00\x20\x00' self.assertTrue(parser._IsText(bytes_in)) bytes_in = b'Ascii\x00' self.assertTrue(parser._IsText(bytes_in)) bytes_in = b'Ascii Open then...\x00\x99\x23' self.assertFalse(parser._IsText(bytes_in)) if __name__ == '__main__': unittest.main()
32.364706
79
0.733915
caa044a8c084467ddb400e9d7325af160045293b
1,664
py
Python
test/test_get_transaction_details_by_transaction_id_response_data.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
null
null
null
test/test_get_transaction_details_by_transaction_id_response_data.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
null
null
null
test/test_get_transaction_details_by_transaction_id_response_data.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
1
2021-07-21T03:35:18.000Z
2021-07-21T03:35:18.000Z
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: developers@cryptoapis.io Generated by: https://openapi-generator.tech """ import sys import unittest import cryptoapis from cryptoapis.model.get_transaction_details_by_transaction_id_response_item import GetTransactionDetailsByTransactionIDResponseItem globals()['GetTransactionDetailsByTransactionIDResponseItem'] = GetTransactionDetailsByTransactionIDResponseItem from cryptoapis.model.get_transaction_details_by_transaction_id_response_data import GetTransactionDetailsByTransactionIDResponseData class TestGetTransactionDetailsByTransactionIDResponseData(unittest.TestCase): """GetTransactionDetailsByTransactionIDResponseData unit test stubs""" def setUp(self): pass def tearDown(self): pass def testGetTransactionDetailsByTransactionIDResponseData(self): """Test GetTransactionDetailsByTransactionIDResponseData""" # FIXME: construct object with mandatory attributes with example values # model = GetTransactionDetailsByTransactionIDResponseData() # noqa: E501 pass if __name__ == '__main__': unittest.main()
42.666667
484
0.805288
d4c4d80736767a7fa72222f0139764b8abfcfdef
257
py
Python
python-package/exp_pb2_test.py
openmit/openmit
01e3262d69d47fbe38bad1ba95c7d1ade110d01e
[ "Apache-2.0" ]
15
2017-06-28T08:39:51.000Z
2019-03-27T14:08:45.000Z
python-package/exp_pb2_test.py
openmit/openmit
01e3262d69d47fbe38bad1ba95c7d1ade110d01e
[ "Apache-2.0" ]
null
null
null
python-package/exp_pb2_test.py
openmit/openmit
01e3262d69d47fbe38bad1ba95c7d1ade110d01e
[ "Apache-2.0" ]
3
2017-07-30T08:50:45.000Z
2017-10-24T14:41:30.000Z
#!/usr/bin/env python #-*- coding: utf-8 -*- import exp_pb2 as exp person = exp.Person() person.name = "zhouyong"; person.id = 29; person.xxxx = "xxxxx-yyyyy"; person.strs.append('strs0'); person.strs.append('strs1'); print('person:\n{}'.format(person))
18.357143
35
0.669261
0f595f9858043d8a23ee4fce130b33541ea622da
1,444
py
Python
Hello_Spirograph_1.py
TechnoTanuki/Python_BMP
d6f7e7a4b74f7d6e8761d618c156d37c97726038
[ "MIT" ]
3
2022-02-24T15:46:43.000Z
2022-03-30T13:17:03.000Z
Hello_Spirograph_1.py
TechnoTanuki/Python_BMP
d6f7e7a4b74f7d6e8761d618c156d37c97726038
[ "MIT" ]
null
null
null
Hello_Spirograph_1.py
TechnoTanuki/Python_BMP
d6f7e7a4b74f7d6e8761d618c156d37c97726038
[ "MIT" ]
null
null
null
notice = """ Hello Spirograph Demo ----------------------------------- | Copyright 2022 by Joel C. Alcarez | | [joelalcarez1975@gmail.com] | |-----------------------------------| | We make absolutely no warranty | | of any kind, expressed or implied | |-----------------------------------| | This graphics library outputs | | to a bitmap file. | ----------------------------------- """ from Python_BMP.BITMAPlib import( newBMP, pi, centercoord, plotlines, spirographvert, saveBMP ) import subprocess as proc from os import path def main(): print(notice) imgedt = 'mspaint' # replace with another editor if Unix rootdir = path.dirname(__file__) # get path of this script mx = my = 500 # bitmap size bmp = newBMP(mx, my, 4) # 16 color (x, y) = centercoord(bmp) # How to get center of the bitmap file = 'HelloSpirograph1.bmp' # file name d = 1/120 lim = pi * 10 + d color = 10 plotlines(bmp, spirographvert(x, y, 200, d , lim, 1, .3), color) # connect the dots with lines saveBMP(file, bmp) # save file print('Saved to %s in %s\nAll done close %s to finish' % \ (file, rootdir, imgedt)) # tell user we are done ret = proc.call(f'{imgedt} {file}') if __name__=="__main__": main()
29.469388
67
0.5
ffae89a1834d09b18c5a2a14295250989e1b402b
1,047
py
Python
gale/balance/request.py
lujinda/gale
d86ce7f691ac4a89ab491543e37476efdb1d7e59
[ "MIT" ]
4
2016-02-01T02:26:01.000Z
2021-06-01T08:43:05.000Z
gale/balance/request.py
lujinda/gale
d86ce7f691ac4a89ab491543e37476efdb1d7e59
[ "MIT" ]
null
null
null
gale/balance/request.py
lujinda/gale
d86ce7f691ac4a89ab491543e37476efdb1d7e59
[ "MIT" ]
1
2016-01-08T11:00:11.000Z
2016-01-08T11:00:11.000Z
#!/usr/bin/env python #coding:utf-8 # Author : tuxpy # Email : q8886888@qq.com.com # Last modified : 2015-11-27 15:01:54 # Filename : request.py # Description : from __future__ import print_function, unicode_literals import socket try: import httplib # py2 except ImportError: from http import client as httplib import gale import gevent import gevent.monkey __all__ = ['proxy_request'] gevent.monkey.patch_socket() def proxy_request(request, upstream): host, port = (upstream.split(':', 1) + [80])[:2] _conn = httplib.HTTPConnection(host = host, port = int(port)) request.headers['X-Forwarded-For'] = request.real_ip request.headers['X-Real-IP'] = request.real_ip request.headers['Host'] = upstream request.headers['Connection'] = 'close' try: _conn.request(request.method, request.uri, body = request.body, headers = request.headers) except socket.error: raise gale.e.WorkerOffline response = _conn.getresponse() return response
26.846154
71
0.674308
e1e662ece8f58983c9ce163402e660de08feafe3
2,105
py
Python
nifti_gridview/ngv_io/writer.py
alabamagan/NIfTI-gridview
79d6501f78374555b85d52248b380241db53d3ab
[ "MIT" ]
2
2020-11-26T06:49:13.000Z
2020-11-26T15:40:20.000Z
nifti_gridview/ngv_io/writer.py
alabamagan/NIfTI-gridview
79d6501f78374555b85d52248b380241db53d3ab
[ "MIT" ]
null
null
null
nifti_gridview/ngv_io/writer.py
alabamagan/NIfTI-gridview
79d6501f78374555b85d52248b380241db53d3ab
[ "MIT" ]
null
null
null
import numpy as np import os import cv2 import gc from ngv_model import draw_grid_wrapper, NGV_Logger class writer(object): def __init__(self, data_loader, seg_loaders, draw_worker, outdir, **kwargs): assert isinstance(draw_worker, draw_grid_wrapper), "Incorrect type." self._data_loader = data_loader self._seg_loaders = seg_loaders self._outdir = outdir self._draw_worker = draw_worker self._high_res = kwargs['high_res'] if 'high_res' in kwargs else False self._keys_to_write = kwargs['keys_to_write'] if 'keys_to_write' in kwargs else None def write(self): # check output dir avaialble if not os.path.isdir(self._outdir): os.makedirs(self._outdir, 0o755, exist_ok=True) extension = '.png' if self._high_res else '.jpg' for key, img in self._data_loader: # Skip files if its not in keys-to-write if it exists if not self._keys_to_write is None: if not key in self._keys_to_write: continue tmp_config = { 'target_im': img, 'segment': [] } for s_loader in self._seg_loaders: tmp_config['segment'].append(s_loader[key]) self._draw_worker.update_config(tmp_config) self._draw_worker.run() tmp_img = self._draw_worker.get_result() # if tmp_img.dtype == np.dtype('double') or tmp_img.dtype == np.dtype('float'): # tmp_img = writer._float_im_to_RGB(tmp_img) out_fnmae = os.path.join(self._outdir, key.replace('.nii', '').replace('.gz','') + extension) cv2.imwrite(out_fnmae, cv2.cvtColor(tmp_img, cv2.COLOR_RGB2BGR)) del tmp_config['segment'], tmp_config['target_im'], tmp_config, tmp_img, img gc.collect() pass @staticmethod def _float_im_to_RGB(image): if not isinstance(image, np.ndarray): image = np.array(image) image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) return image
33.951613
105
0.615202
fa25dd765e4e73154bacd109c7ff8183ec31e67e
3,150
py
Python
paraphrasing/word2vec_train_and_save.py
Keracorn/geulstagram
d7964abaece0e46c2bd4796fee2ba6d836140022
[ "MIT" ]
5
2020-04-08T01:38:31.000Z
2022-03-20T06:09:27.000Z
paraphrasing/word2vec_train_and_save.py
woodongk/geulstagram
ae375c136191774f03ac9f0f6bb8de86be9c44d3
[ "MIT" ]
null
null
null
paraphrasing/word2vec_train_and_save.py
woodongk/geulstagram
ae375c136191774f03ac9f0f6bb8de86be9c44d3
[ "MIT" ]
12
2019-09-28T05:05:30.000Z
2020-03-16T13:42:33.000Z
import pandas as pd import os from konlpy.tag import Okt ## word2vec import warnings warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') from gensim.models import word2vec # load data def load_data(PATH): data = pd.read_csv(PATH, index_col=1) data.columns = ['CONTENT_ID', 'USER_ID', 'Image_Content_txt', 'Image_Content_txt_result', 'Content_txt', 'Hashtags', 'Hashtags_result', 'Spell_Checked_Content'] data = data.dropna(axis=0) data = data.reset_index(drop=True) return data def tokenize_text(text): okt = Okt() malist = okt.pos(text,norm = True, stem = True) # [('์นซ์†”', 'Noun'), ('์€', 'Josa'), ('์ƒˆ๋‹ค', 'Verb'), ('์†”์งˆ', 'Noun')] r = [] tag = ["Noun","Verb" ] try: for word in malist: # ํ˜•ํƒœ์†Œ ๋ถ„์„ ๊ฒฐ๊ณผ if word[1] in tag: # tag ์— ์žˆ๋Š” ํ˜•ํƒœ์†Œ๋งŒ ๋ฐ›์•„๋‚ด๊ธฐ if not word[0] in r: # ์ค‘๋ณต์€ ๋„ฃ์ง€ ์•Š์Œ r.append(word[0]) return r except Exception as e: print (e) r.append(" ") def tokenize_all(list2d_data): data_tokens = [] for i, txt in enumerate(list2d_data): print("'\r{0}%".format(i/len(list2d_data)*100), end='') data_tokens.append(tokenize_text(txt)) print(data_tokens[:3], end='') return data_tokens # [['์นซ์†”', '์ƒˆ๋‹ค', '์†”์งˆ', '์ž‡๋ชธ', 'ํ”ผ', '๋‚˜๋‹ค', '์ €', '๋บ๋ปฃ', '๊ฒƒ', '๋ฒŒ์–ด์ง€๋‹ค', '์†”', '๋ฌธ์ง€๋ฅด๋‹ค', '์กฐ๋งŒ๊ฐ„', '๊ผด๋‹ค', 'ํ•˜๋‹ค', '์•Š๋‹ค'], # ['์•„๋ฌด', '์•Š๋‹ค', '์š”์ฆ˜', '๋ฏธ์šฐ๋‹ค', '๊ฒƒ', '๋ฒ—', '๋”', '์‚ฌ์ด'], # ['์–ด์ œ', '์ดˆ์Šน', '๊ฒƒ', '์˜ค๋Š˜', '๋ณด๋ฆ„', '์ด๊ฒ ๋‹ค', '๋งŒ', '๋„ˆ', '๋ฐคํ•˜๋Š˜', '๋น›', '๋‹ฌ', '๋ฒŒ์จ', '๊ฐ€๋“', '๋ณด๋‹ค', '๊ฐ€์žฅ', 'ํฌ๋‹ค']] def comment_count(token_data): unique_comment_tokenized = [list(i) for i in set(tuple(i) for i in token_data)] word_dic = {} # word count for words in unique_comment_tokenized: for word in words: if not (word in word_dic): word_dic[word] = 0 word_dic[word] += 1 keys = sorted(word_dic.items(), key=lambda x: x[1], reverse=True) for word, count in keys[:100]: # ์ƒ์œ„ ๋ฐฑ ๊ฐœ ๋ฝ‘๊ธฐ print("{0}({1}) ".format(word, count), end="") # [] ์—†์• ์ฃผ๋Š” ์ฝ”๋“œ from itertools import chain words = set(chain(*unique_comment_tokenized)) n_vocab = len(words) print("\n") print("Total Vocab: ", n_vocab) return keys, n_vocab if __name__ == '__main__': print("๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ") data = load_data('Final_Data_v2_Cleansing_v2_spell_checked.csv') print("๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ์™„๋ฃŒ") # tokenize total data print("๋ฐ์ดํ„ฐ ํ† ํฐํ™” ํ•˜๊ธฐ") data_tokens = tokenize_all(data['Spell_Checked_Content']) print("๋ฐ์ดํ„ฐ ํ† ํฐํ™” ์™„๋ฃŒ") # count unique token #K = comment_count(data_tokens) # train and save model config = { 'min_count': 2, # ๋“ฑ์žฅ ํšŸ์ˆ˜๊ฐ€ 2 ์ดํ•˜์ธ ๋‹จ์–ด๋Š” ๋ฌด์‹œ 'size': 300, # n์ฐจ์›์งœ๋ฆฌ ๋ฒกํ„ฐ์ŠคํŽ˜์ด์Šค์— embedding 'sg': 1, # 0์ด๋ฉด CBOW, 1์ด๋ฉด skip-gram์„ ์‚ฌ์šฉํ•œ๋‹ค 'batch_words': 10000, # ์‚ฌ์ „์„ ๊ตฌ์ถ•ํ• ๋•Œ ํ•œ๋ฒˆ์— ์ฝ์„ ๋‹จ์–ด ์ˆ˜ 'iter': 1000, # ๋ณดํ†ต ๋”ฅ๋Ÿฌ๋‹์—์„œ ๋งํ•˜๋Š” epoch๊ณผ ๋น„์Šทํ•œ, ๋ฐ˜๋ณต ํšŸ์ˆ˜ 'workers': 4, #cpu thread } print('word2vec ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ ํ•™์Šตํ•˜๊ธฐ') model = word2vec.Word2Vec(data_tokens, **config) # skip-gram model model.save("paraphrasing/gamsung_txt.model") print('word2vec ๋ชจ๋ธ ์ €์žฅ ์™„๋ฃŒ')
30
105
0.576825
71ab996580bd6c0266b7cedcba3e5442cc189578
346
py
Python
Getting_Started_With_Raspberry_Pi_Pico/built_in_led_on_off/code.py
claycooper/Adafruit_Learning_System_Guides
890431bd4b9df929bc601e5886c2a735d89814f9
[ "MIT" ]
null
null
null
Getting_Started_With_Raspberry_Pi_Pico/built_in_led_on_off/code.py
claycooper/Adafruit_Learning_System_Guides
890431bd4b9df929bc601e5886c2a735d89814f9
[ "MIT" ]
null
null
null
Getting_Started_With_Raspberry_Pi_Pico/built_in_led_on_off/code.py
claycooper/Adafruit_Learning_System_Guides
890431bd4b9df929bc601e5886c2a735d89814f9
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries # # SPDX-License-Identifier: MIT """Example for Pico. Turns the built-in LED on and off with no delay.""" import board import digitalio led = digitalio.DigitalInOut(board.LED) led.direction = digitalio.Direction.OUTPUT while True: led.value = True led.value = False
23.066667
72
0.754335
03cc049b4d3ef761b71dac17669c843a2e07a619
937
py
Python
config/parameters.py
disruptive-technologies/cold-storage-an
b6d740e4f90165ed0c771b83a2869e4c8793c09a
[ "MIT" ]
null
null
null
config/parameters.py
disruptive-technologies/cold-storage-an
b6d740e4f90165ed0c771b83a2869e4c8793c09a
[ "MIT" ]
null
null
null
config/parameters.py
disruptive-technologies/cold-storage-an
b6d740e4f90165ed0c771b83a2869e4c8793c09a
[ "MIT" ]
null
null
null
# delay H_DELAY = 3 # hours of historic data used in thresholds (rolling median halfwidth) S_DELAY = 60*60*H_DELAY # seconds of historic data used in thresholds # robust sampling S_ROBUST_CYCLE = 60*60*16 # period length for robust statistics calculation in seconds S_ROBUST_WIDTH = 60*60*24 # window width for robust statistics calculation in seconds N_ROBUST_DAYS = 5 # number of days back in time used for robust statistics calculation # bounds / threshold N_ROBUST_IN_BOUNDS = int(((60*60*24) / S_ROBUST_CYCLE) * N_ROBUST_DAYS) # number of robust windows when calculating bounds MMAD = 1 # mad modifier BOUND_MINVAL = 0 # minimum value allowed in bounds STORAGE_MAXTEMP = 4 # critical temperature
55.117647
126
0.589114