hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
6e2c2c7b7815793a7f95c3b44334d1d26f04fcb1
219
py
Python
ex11.py
EiEiKyaw/python-exercise
63dcc073f55f125de784eb61aa7c82a50ca706ed
[ "MIT" ]
null
null
null
ex11.py
EiEiKyaw/python-exercise
63dcc073f55f125de784eb61aa7c82a50ca706ed
[ "MIT" ]
null
null
null
ex11.py
EiEiKyaw/python-exercise
63dcc073f55f125de784eb61aa7c82a50ca706ed
[ "MIT" ]
null
null
null
print("How old are you?", end='') age=input() print("How tall are you?", end='') height=input() print("How much do you weigh?", end='') weight=input() print(f"So, you're {age} old, {height} tall and {weight} heavy.")
21.9
65
0.634703
c8a88c03f8c023b08a5d043032d47ea9703409ed
1,414
py
Python
tests/rules/test_fab_command_not_found.py
benmonro/therandy
b7c7c4ffc8f82b27f284ba90621a47baa5dfcb03
[ "MIT" ]
null
null
null
tests/rules/test_fab_command_not_found.py
benmonro/therandy
b7c7c4ffc8f82b27f284ba90621a47baa5dfcb03
[ "MIT" ]
null
null
null
tests/rules/test_fab_command_not_found.py
benmonro/therandy
b7c7c4ffc8f82b27f284ba90621a47baa5dfcb03
[ "MIT" ]
null
null
null
import pytest from therandy.rules.fab_command_not_found import match, get_new_command from therandy.types import Command output = ''' Warning: Command(s) not found: extenson deloyp Available commands: update_config prepare_extension Template A string class for supporting $-substitutions. deploy glob Return a list of paths matching a pathname pattern. install_web set_version ''' @pytest.mark.parametrize('command', [ Command('fab extenson', output), Command('fab deloyp', output), Command('fab extenson deloyp', output)]) def test_match(command): assert match(command) @pytest.mark.parametrize('command', [ Command('gulp extenson', output), Command('fab deloyp', '')]) def test_not_match(command): assert not match(command) @pytest.mark.parametrize('script, result', [ ('fab extenson', 'fab prepare_extension'), ('fab extenson:version=2016', 'fab prepare_extension:version=2016'), ('fab extenson:version=2016 install_web set_version:val=0.5.0', 'fab prepare_extension:version=2016 install_web set_version:val=0.5.0'), ('fab extenson:version=2016 deloyp:beta=true -H the.randy', 'fab prepare_extension:version=2016 deploy:beta=true -H the.randy'), ]) def test_get_new_command(script, result): command = Command(script, output) assert get_new_command(command) == result
28.857143
78
0.701556
fd881fda86582169d7365e1513f0cd66a317951b
12,622
py
Python
src/train_new.py
AlexHeffner/DropEdge
d981b779be330d5ff4dd557d6db1615391bfc249
[ "MIT" ]
380
2019-10-09T16:18:52.000Z
2022-03-23T11:47:18.000Z
src/train_new.py
AlexHeffner/DropEdge
d981b779be330d5ff4dd557d6db1615391bfc249
[ "MIT" ]
16
2019-10-17T16:47:50.000Z
2022-03-04T13:02:32.000Z
src/train_new.py
AlexHeffner/DropEdge
d981b779be330d5ff4dd557d6db1615391bfc249
[ "MIT" ]
72
2019-10-13T08:03:37.000Z
2022-03-24T21:42:24.000Z
from __future__ import division from __future__ import print_function import time import argparse import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from tensorboardX import SummaryWriter from earlystopping import EarlyStopping from sample import Sampler from metric import accuracy, roc_auc_compute_fn # from deepgcn.utils import load_data, accuracy # from deepgcn.models import GCN from metric import accuracy from utils import load_citation, load_reddit_data from models import * from earlystopping import EarlyStopping from sample import Sampler # Training settings parser = argparse.ArgumentParser() # Training parameter parser.add_argument('--no_cuda', action='store_true', default=False, help='Disables CUDA training.') parser.add_argument('--fastmode', action='store_true', default=False, help='Disable validation during training.') parser.add_argument('--seed', type=int, default=42, help='Random seed.') parser.add_argument('--epochs', type=int, default=800, help='Number of epochs to train.') parser.add_argument('--lr', type=float, default=0.02, help='Initial learning rate.') parser.add_argument('--lradjust', action='store_true', default=False, help='Enable leraning rate adjust.(ReduceLROnPlateau or Linear Reduce)') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument("--mixmode", action="store_true", default=False, help="Enable CPU GPU mixing mode.") parser.add_argument("--warm_start", default="", help="The model name to be loaded for warm start.") parser.add_argument('--debug', action='store_true', default=False, help="Enable the detialed training output.") parser.add_argument('--dataset', default="cora", help="The data set") parser.add_argument('--datapath', default="data/", help="The data path.") parser.add_argument("--early_stopping", type=int, default=0, help="The patience of earlystopping. Do not adopt the earlystopping when it equals 0.") parser.add_argument("--no_tensorboard", default=False, help="Disable writing logs to tensorboard") # Model parameter parser.add_argument('--type', help="Choose the model to be trained.(mutigcn, resgcn, densegcn, inceptiongcn)") parser.add_argument('--inputlayer', default='gcn', help="The input layer of the model.") parser.add_argument('--outputlayer', default='gcn', help="The output layer of the model.") parser.add_argument('--hidden', type=int, default=128, help='Number of hidden units.') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate (1 - keep probability).') parser.add_argument('--withbn', action='store_true', default=False, help='Enable Bath Norm GCN') parser.add_argument('--withloop', action="store_true", default=False, help="Enable loop layer GCN") parser.add_argument('--nhiddenlayer', type=int, default=1, help='The number of hidden layers.') parser.add_argument("--normalization", default="AugNormAdj", help="The normalization on the adj matrix.") parser.add_argument("--sampling_percent", type=float, default=1.0, help="The percent of the preserve edges. If it equals 1, no sampling is done on adj matrix.") # parser.add_argument("--baseblock", default="res", help="The base building block (resgcn, densegcn, mutigcn, inceptiongcn).") parser.add_argument("--nbaseblocklayer", type=int, default=1, help="The number of layers in each baseblock") parser.add_argument("--aggrmethod", default="default", help="The aggrmethod for the layer aggreation. The options includes add and concat. Only valid in resgcn, densegcn and inecptiongcn") parser.add_argument("--task_type", default="full", help="The node classification task type (full and semi). Only valid for cora, citeseer and pubmed dataset.") args = parser.parse_args() if args.debug: print(args) # pre setting args.cuda = not args.no_cuda and torch.cuda.is_available() args.mixmode = args.no_cuda and args.mixmode and torch.cuda.is_available() if args.aggrmethod == "default": if args.type == "resgcn": args.aggrmethod = "add" else: args.aggrmethod = "concat" if args.fastmode and args.early_stopping > 0: args.early_stopping = 0 print("In the fast mode, early_stopping is not valid option. Setting early_stopping = 0.") if args.type == "mutigcn": print("For the multi-layer gcn model, the aggrmethod is fixed to nores and nhiddenlayers = 1.") args.nhiddenlayer = 1 args.aggrmethod = "nores" # random seed setting np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda or args.mixmode: torch.cuda.manual_seed(args.seed) # should we need fix random seed here? sampler = Sampler(args.dataset, args.datapath, args.task_type) # get labels and indexes labels, idx_train, idx_val, idx_test = sampler.get_label_and_idxes(args.cuda) nfeat = sampler.nfeat nclass = sampler.nclass print("nclass: %d\tnfea:%d" % (nclass, nfeat)) # The model model = GCNModel(nfeat=nfeat, nhid=args.hidden, nclass=nclass, nhidlayer=args.nhiddenlayer, dropout=args.dropout, baseblock=args.type, inputlayer=args.inputlayer, outputlayer=args.outputlayer, nbaselayer=args.nbaseblocklayer, activation=F.relu, withbn=args.withbn, withloop=args.withloop, aggrmethod=args.aggrmethod, mixmode=args.mixmode) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=50, factor=0.618) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[200, 300, 400, 500, 600, 700], gamma=0.5) # convert to cuda if args.cuda: model.cuda() # For the mix mode, lables and indexes are in cuda. if args.cuda or args.mixmode: labels = labels.cuda() idx_train = idx_train.cuda() idx_val = idx_val.cuda() idx_test = idx_test.cuda() if args.warm_start is not None and args.warm_start != "": early_stopping = EarlyStopping(fname=args.warm_start, verbose=False) print("Restore checkpoint from %s" % (early_stopping.fname)) model.load_state_dict(early_stopping.load_checkpoint()) # set early_stopping if args.early_stopping > 0: early_stopping = EarlyStopping(patience=args.early_stopping, verbose=False) print("Model is saving to: %s" % (early_stopping.fname)) if args.no_tensorboard is False: tb_writer = SummaryWriter( comment=f"-dataset_{args.dataset}-type_{args.type}" ) def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] # define the training function. def train(epoch, train_adj, train_fea, idx_train, val_adj=None, val_fea=None): if val_adj is None: val_adj = train_adj val_fea = train_fea t = time.time() model.train() optimizer.zero_grad() output = model(train_fea, train_adj) # special for reddit if sampler.learning_type == "inductive": loss_train = F.nll_loss(output, labels[idx_train]) acc_train = accuracy(output, labels[idx_train]) else: loss_train = F.nll_loss(output[idx_train], labels[idx_train]) acc_train = accuracy(output[idx_train], labels[idx_train]) loss_train.backward() optimizer.step() train_t = time.time() - t val_t = time.time() # We can not apply the fastmode for the reddit dataset. # if sampler.learning_type == "inductive" or not args.fastmode: if args.early_stopping > 0 and sampler.dataset != "reddit": loss_val = F.nll_loss(output[idx_val], labels[idx_val]).item() early_stopping(loss_val, model) if not args.fastmode: # # Evaluate validation set performance separately, # # deactivates dropout during validation run. model.eval() output = model(val_fea, val_adj) loss_val = F.nll_loss(output[idx_val], labels[idx_val]).item() acc_val = accuracy(output[idx_val], labels[idx_val]).item() if sampler.dataset == "reddit": early_stopping(loss_val, model) else: loss_val = 0 acc_val = 0 if args.lradjust: scheduler.step() val_t = time.time() - val_t return (loss_train.item(), acc_train.item(), loss_val, acc_val, get_lr(optimizer), train_t, val_t) def test(test_adj, test_fea): model.eval() output = model(test_fea, test_adj) loss_test = F.nll_loss(output[idx_test], labels[idx_test]) acc_test = accuracy(output[idx_test], labels[idx_test]) auc_test = roc_auc_compute_fn(output[idx_test], labels[idx_test]) if args.debug: print("Test set results:", "loss= {:.4f}".format(loss_test.item()), "auc= {:.4f}".format(auc_test), "accuracy= {:.4f}".format(acc_test.item())) print("accuracy=%.5f" % (acc_test.item())) return (loss_test.item(), acc_test.item()) # Train model t_total = time.time() loss_train = np.zeros((args.epochs,)) acc_train = np.zeros((args.epochs,)) loss_val = np.zeros((args.epochs,)) acc_val = np.zeros((args.epochs,)) sampling_t = 0 for epoch in range(args.epochs): input_idx_train = idx_train sampling_t = time.time() # no sampling # randomedge sampling if args.sampling_percent >= 1.0, it behaves the same as stub_sampler. (train_adj, train_fea) = sampler.randomedge_sampler(percent=args.sampling_percent, normalization=args.normalization, cuda=args.cuda) if args.mixmode: train_adj = train_adj.cuda() sampling_t = time.time() - sampling_t # The validation set is controlled by idx_val # if sampler.learning_type == "transductive": if False: outputs = train(epoch, train_adj, train_fea, input_idx_train) else: (val_adj, val_fea) = sampler.get_test_set(normalization=args.normalization, cuda=args.cuda) if args.mixmode: val_adj = val_adj.cuda() outputs = train(epoch, train_adj, train_fea, input_idx_train, val_adj, val_fea) if args.debug and epoch % 1 == 0: print('Epoch: {:04d}'.format(epoch + 1), 'loss_train: {:.4f}'.format(outputs[0]), 'acc_train: {:.4f}'.format(outputs[1]), 'loss_val: {:.4f}'.format(outputs[2]), 'acc_val: {:.4f}'.format(outputs[3]), 'cur_lr: {:.5f}'.format(outputs[4]), 's_time: {:.4f}s'.format(sampling_t), 't_time: {:.4f}s'.format(outputs[5]), 'v_time: {:.4f}s'.format(outputs[6])) if args.no_tensorboard is False: tb_writer.add_scalars('Loss', {'train': outputs[0], 'val': outputs[2]}, epoch) tb_writer.add_scalars('Accuracy', {'train': outputs[1], 'val': outputs[3]}, epoch) tb_writer.add_scalar('lr', outputs[4], epoch) tb_writer.add_scalars('Time', {'train': outputs[5], 'val': outputs[6]}, epoch) loss_train[epoch], acc_train[epoch], loss_val[epoch], acc_val[epoch] = outputs[0], outputs[1], outputs[2], outputs[ 3] if args.early_stopping > 0 and early_stopping.early_stop: print("Early stopping.") model.load_state_dict(early_stopping.load_checkpoint()) break if args.early_stopping > 0: model.load_state_dict(early_stopping.load_checkpoint()) if args.debug: print("Optimization Finished!") print("Total time elapsed: {:.4f}s".format(time.time() - t_total)) # Testing (test_adj, test_fea) = sampler.get_test_set(normalization=args.normalization, cuda=args.cuda) if args.mixmode: test_adj = test_adj.cuda() (loss_test, acc_test) = test(test_adj, test_fea) print("%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f" % ( loss_train[-1], loss_val[-1], loss_test, acc_train[-1], acc_val[-1], acc_test))
41.794702
160
0.647599
37e6d298051012d51666f79b2be000c3221dd38b
815
py
Python
root/os/DSAA/DataStructuresAndAlgorithms/python/chutils/chutils/chsocket/__init__.py
chyidl/chyidlTutorial
a033e0a57abf84fdbb61e57736822f9126db6ff7
[ "MIT" ]
5
2018-10-17T05:57:39.000Z
2021-07-05T15:38:24.000Z
root/os/DSAA/DataStructuresAndAlgorithms/python/chutils/chutils/chsocket/__init__.py
chyidl/chyidlTutorial
a033e0a57abf84fdbb61e57736822f9126db6ff7
[ "MIT" ]
2
2021-04-14T00:48:43.000Z
2021-04-14T02:20:50.000Z
root/os/DSAA/DataStructuresAndAlgorithms/python/chutils/chutils/chsocket/__init__.py
chyidl/chyidlTutorial
a033e0a57abf84fdbb61e57736822f9126db6ff7
[ "MIT" ]
3
2019-03-02T14:36:19.000Z
2022-03-18T10:12:09.000Z
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # # __init__.py # chsocket # # 🎂"Here's to the crazy ones. The misfits. The rebels. # The troublemakers. The round pegs in the square holes. # The ones who see things differently. They're not found # of rules. And they have no respect for the status quo. # You can quote them, disagree with them, glority or vilify # them. About the only thing you can't do is ignore them. # Because they change things. They push the human race forward. # And while some may see them as the creazy ones, we see genius. # Because the poeple who are crazy enough to think thay can change # the world, are the ones who do." # # Created by Chyi Yaqing on 03/06/19 09:48. # Copyright © 2019. Chyi Yaqing. # All rights reserved. # # Distributed under terms of the # MIT """ 网络socket编程 """
29.107143
66
0.716564
6e3a434dba5b6c794fe419e74c035a1677db95b6
287
py
Python
ex011 - area parede.py
fblaz/Python-ex---curso-em-video
794d1f7b9fa0803b168aaf973007906b66a02e2d
[ "MIT" ]
null
null
null
ex011 - area parede.py
fblaz/Python-ex---curso-em-video
794d1f7b9fa0803b168aaf973007906b66a02e2d
[ "MIT" ]
null
null
null
ex011 - area parede.py
fblaz/Python-ex---curso-em-video
794d1f7b9fa0803b168aaf973007906b66a02e2d
[ "MIT" ]
null
null
null
larg = float(input('largura da parede em metros: ')) alt = float(input('altura da parde em metros ')) rend = 2 # rendimento de 2m2 por litro de tinta area = larg*alt tinta = area/rend print(f'a area é de {area} m2 \n' f'será necessário comprar {tinta:.2f} litros de tinta')
41
61
0.672474
0414778e36eb738ff3c83eb64b793b974e632049
21,642
py
Python
libopenzwave/_global.py
Julian/libopenzwave-cffi
7683e5e4e08270dd7d780ab6a0ccd048343b08e1
[ "MIT" ]
1
2018-03-17T18:44:11.000Z
2018-03-17T18:44:11.000Z
libopenzwave/_global.py
Julian/libopenzwave-cffi
7683e5e4e08270dd7d780ab6a0ccd048343b08e1
[ "MIT" ]
null
null
null
libopenzwave/_global.py
Julian/libopenzwave-cffi
7683e5e4e08270dd7d780ab6a0ccd048343b08e1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ .. module:: libopenzwave This file is part of **python-openzwave** project https://github.com/OpenZWave/python-openzwave. :platform: Unix, Windows, MacOS X :sinopsis: openzwave C++ .. moduleauthor: bibi21000 aka Sebastien GALLET <bibi21000@gmail.com> .. moduleauthor: Maarten Damen <m.damen@gmail.com> License : GPL(v3) **python-openzwave** is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. **python-openzwave** is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with python-openzwave. If not, see http://www.gnu.org/licenses. """ class PyOptions(object): """ Manage options manager """ def __init__(self, config_path=None, user_path=".", cmd_line=""): """ Create an option object and check that parameters are valid. :param device: The device to use :type device: str :param config_path: The openzwave config directory. If None, try to configure automatically. :type config_path: str :param user_path: The user directory :type user_path: str :param cmd_line: The "command line" options of the openzwave library :type cmd_line: str """ if config_path is None: config_path = self.getConfigPath() if config_path is None: raise LibZWaveException("Can't autoconfigure path to config") self._config_path = config_path if user_path is None: user_path = "." self._user_path = user_path if cmd_line is None: cmd_line="" self._cmd_line = cmd_line self.create(self._config_path, self._user_path, self._cmd_line) def create(self, a, b, c): """ .. _createoptions: Create an option object used to start the manager :param a: The path of the config directory :type a: str :param b: The path of the user directory :type b: str :param c: The "command line" options of the openzwave library :type c: str :see: destroyoptions_ """ self.options = CreateOptions( str_to_cppstr(a), str_to_cppstr(b), str_to_cppstr(c)) return True def destroy(self): """ .. _destroyoptions: Deletes the Options and cleans up any associated objects. The application is responsible for destroying the Options object, but this must not be done until after the Manager object has been destroyed. :return: The result of the operation. :rtype: bool :see: createoptions_ """ return self.options.Destroy() def lock(self): """ .. _lock: Lock the options. Needed to start the manager :return: The result of the operation. :rtype: bool :see: areLocked_ """ return self.options.Lock() def areLocked(self): ''' .. _areLocked: Test whether the options have been locked. :return: true if the options have been locked. :rtype: boolean :see: lock_ ''' return self.options.AreLocked() def addOptionBool(self, name, value): """ .. _addOptionBool: Add a boolean option. :param name: The name of the option. :type name: str :param value: The value of the option. :type value: boolean :return: The result of the operation. :rtype: bool :see: addOption_, addOptionInt_, addOptionString_ """ return self.options.AddOptionBool(str_to_cppstr(name), value) def addOptionInt(self, name, value): """ .. _addOptionInt: Add an integer option. :param name: The name of the option. :type name: str :param value: The value of the option. :type value: boolean :return: The result of the operation. :rtype: bool :see: addOption_, addOptionBool_, addOptionString_ """ return self.options.AddOptionInt(str_to_cppstr(name), value) def addOptionString(self, name, value, append=False): """ .. _addOptionString: Add a string option. :param name: The name of the option. Option names are case insensitive and must be unique. :type name: str :param value: The value of the option. :type value: str :param append: Setting append to true will cause values read from the command line or XML file to be concatenated into a comma delimited set. If _append is false, newer values will overwrite older ones. :type append: boolean :return: The result of the operation. :rtype: bool :see: addOption_, addOptionBool_, addOptionInt_ """ return self.options.AddOptionString( str_to_cppstr(name), str_to_cppstr(value), append) def addOption(self, name, value): """ .. _addOption: Add an option. :param name: The name of the option. :type name: string :param value: The value of the option. :type value: boolean, integer, string :return: The result of the operation. :rtype: bool :see: addOptionBool_, addOptionInt_, addOptionString_ """ if name not in PyOptionList: return False if PyOptionList[name]['type'] == "String": return self.addOptionString(name, value) elif PyOptionList[name]['type'] == "Bool": return self.addOptionBool(name, value) elif PyOptionList[name]['type'] == "Int": return self.addOptionInt(name, value) return False def getOption(self, name): """ .. _getOption: Retrieve option of a value. :param name: The name of the option. :type name: string :return: The value :rtype: boolean, integer, string or None :see: getOptionAsBool_, getOptionAsInt_, getOptionAsString_ """ if name not in PyOptionList: return None if PyOptionList[name]['type'] == "String": return self.getOptionAsString(name) elif PyOptionList[name]['type'] == "Bool": return self.getOptionAsBool(name) elif PyOptionList[name]['type'] == "Int": return self.getOptionAsInt(name) return False # def getOptionAsBool(self, name): # """ # .. _getOptionAsBool: # # Retrieve boolean value of an option. # # :param name: The name of the option. # :type name: string # :return: The value or None # :rtype: boolean or None # # :see: getOption_, getOptionAsInt_, getOptionAsString_ # # """ # cdef bool type_bool # cret = self.options.GetOptionAsBool(str_to_cppstr(name), &type_bool) # ret = type_bool if cret==True else None # return ret # # def getOptionAsInt(self, name): # """ # .. _getOptionAsInt: # # Retrieve integer value of an option. # # :param name: The name of the option. # :type name: string # :return: The value or None # :rtype: Integer or None # # :see: getOption_, getOptionAsBool_, getOptionAsString_ # # """ # cdef int32_t type_int # cret = self.options.GetOptionAsInt(str_to_cppstr(name), &type_int) # ret = type_int if cret==True else None # return ret # # def getOptionAsString(self, name): # """ # .. _getOptionAsString: # # Retrieve string value of an option. # # :param name: The name of the option. # :type name: string # :return: The value or None # :rtype: String or None # # :see: getOption_, getOptionAsBool_, getOptionAsInt_ # # """ # cdef string type_string # cret = self.options.GetOptionAsString(str_to_cppstr(name), &type_string) # ret = cstr_to_str(type_string.c_str()) if cret==True else None # return ret def getConfigPath(self): ''' .. _getConfigPath: Retrieve the config path. This directory hold the xml files. :return: A string containing the library config path or None. :rtype: str ''' return configPath() PyStatDriver = { 'SOFCnt' : "Number of SOF bytes received", 'ACKWaiting' : "Number of unsolicited messages while waiting for an ACK", 'readAborts' : "Number of times read were aborted due to timeouts", 'badChecksum' : "Number of bad checksums", 'readCnt' : "Number of messages successfully read", 'writeCnt' : "Number of messages successfully sent", 'CANCnt' : "Number of CAN bytes received", 'NAKCnt' : "Number of NAK bytes received", 'ACKCnt' : "Number of ACK bytes received", 'OOFCnt' : "Number of bytes out of framing", 'dropped' : "Number of messages dropped & not delivered", 'retries' : "Number of messages retransmitted", 'callbacks' : "Number of unexpected callbacks", 'badroutes' : "Number of failed messages due to bad route response", 'noack' : "Number of no ACK returned errors", 'netbusy' : "Number of network busy/failure messages", 'nondelivery' : "Number of messages not delivered to network", 'routedbusy' : "Number of messages received with routed busy status", 'broadcastReadCnt' : "Number of broadcasts read", 'broadcastWriteCnt' : "Number of broadcasts sent", } PyLogLevels = { 'Invalid' : {'doc':'Invalid Log Status', 'value':0}, 'None' : {'doc':'Disable all logging', 'value':1}, 'Always' : {'doc':'These messages should always be shown', 'value':2}, 'Fatal' : {'doc':'A likely fatal issue in the library', 'value':3}, 'Error' : {'doc':'A serious issue with the library or the network', 'value':4}, 'Warning' : {'doc':'A minor issue from which the library should be able to recover', 'value':5}, 'Alert' : {'doc':'Something unexpected by the library about which the controlling application should be aware', 'value':6}, 'Info' : {'doc':"Everything's working fine...these messages provide streamlined feedback on each message", 'value':7}, 'Detail' : {'doc':'Detailed information on the progress of each message', 'value':8}, 'Debug' : {'doc':'Very detailed information on progress that will create a huge log file quickly but this level (as others) can be queued and sent to the log only on an error or warning', 'value':9}, 'StreamDetail' : {'doc':'Will include low-level byte transfers from controller to buffer to application and back', 'value':10}, 'Internal' : {'doc':'Used only within the log class (uses existing timestamp, etc', 'value':11}, } class EnumWithDoc(str): """Enum helper""" def setDoc(self, doc): self.doc = doc return self PyControllerState = [ EnumWithDoc('Normal').setDoc("No command in progress."), EnumWithDoc('Starting').setDoc("The command is starting."), EnumWithDoc('Cancel').setDoc("The command was cancelled."), EnumWithDoc('Error').setDoc("Command invocation had error(s) and was aborted."), EnumWithDoc('Waiting').setDoc("Controller is waiting for a user action."), EnumWithDoc('Sleeping').setDoc("Controller command is on a sleep queue wait for device."), EnumWithDoc('InProgress').setDoc("The controller is communicating with the other device to carry out the command."), EnumWithDoc('Completed').setDoc("The command has completed successfully."), EnumWithDoc('Failed').setDoc("The command has failed."), EnumWithDoc('NodeOK').setDoc("Used only with ControllerCommand_HasNodeFailed to indicate that the controller thinks the node is OK."), EnumWithDoc('NodeFailed').setDoc("Used only with ControllerCommand_HasNodeFailed to indicate that the controller thinks the node has failed."), ] PyNotifications = [ EnumWithDoc('ValueAdded').setDoc("A new node value has been added to OpenZWave's set. These notifications occur after a node has been discovered, and details of its command classes have been received. Each command class may generate one or more values depending on the complexity of the item being represented."), EnumWithDoc('ValueRemoved').setDoc("A node value has been removed from OpenZWave's set. This only occurs when a node is removed."), EnumWithDoc('ValueChanged').setDoc("A node value has been updated from the Z-Wave network and it is different from the previous value."), EnumWithDoc('ValueRefreshed').setDoc("A node value has been updated from the Z-Wave network."), EnumWithDoc('Group').setDoc("The associations for the node have changed. The application should rebuild any group information it holds about the node."), EnumWithDoc('NodeNew').setDoc("A new node has been found (not already stored in zwcfg*.xml file)."), EnumWithDoc('NodeAdded').setDoc("A new node has been added to OpenZWave's set. This may be due to a device being added to the Z-Wave network, or because the application is initializing itself."), EnumWithDoc('NodeRemoved').setDoc("A node has been removed from OpenZWave's set. This may be due to a device being removed from the Z-Wave network, or because the application is closing."), EnumWithDoc('NodeProtocolInfo').setDoc("Basic node information has been receievd, such as whether the node is a setening device, a routing device and its baud rate and basic, generic and specific types. It is after this notification that you can call Manager::GetNodeType to obtain a label containing the device description."), EnumWithDoc('NodeNaming').setDoc("One of the node names has changed (name, manufacturer, product)."), EnumWithDoc('NodeEvent').setDoc("A node has triggered an event. This is commonly caused when a node sends a Basic_Set command to the controller. The event value is stored in the notification."), EnumWithDoc('PollingDisabled').setDoc("Polling of a node has been successfully turned off by a call to Manager::DisablePoll."), EnumWithDoc('PollingEnabled').setDoc("Polling of a node has been successfully turned on by a call to Manager::EnablePoll."), EnumWithDoc('SceneEvent').setDoc("Scene Activation Set received."), EnumWithDoc('CreateButton').setDoc("Handheld controller button event created."), EnumWithDoc('DeleteButton').setDoc("Handheld controller button event deleted."), EnumWithDoc('ButtonOn').setDoc("Handheld controller button on pressed event."), EnumWithDoc('ButtonOff').setDoc("Handheld controller button off pressed event."), EnumWithDoc('DriverReady').setDoc("A driver for a PC Z-Wave controller has been added and is ready to use. The notification will contain the controller's Home ID, which is needed to call most of the Manager methods."), EnumWithDoc('DriverFailed').setDoc("Driver failed to load."), EnumWithDoc('DriverReset').setDoc("All nodes and values for this driver have been removed. This is sent instead of potentially hundreds of individual node and value notifications."), EnumWithDoc('EssentialNodeQueriesComplete').setDoc("The queries on a node that are essential to its operation have been completed. The node can now handle incoming messages."), EnumWithDoc('NodeQueriesComplete').setDoc("All the initialisation queries on a node have been completed."), EnumWithDoc('AwakeNodesQueried').setDoc("All awake nodes have been queried, so client application can expected complete data for these nodes."), EnumWithDoc('AllNodesQueriedSomeDead').setDoc("All nodes have been queried but some dead nodes found."), EnumWithDoc('AllNodesQueried').setDoc("All nodes have been queried, so client application can expected complete data."), EnumWithDoc('Notification').setDoc("A manager notification report."), EnumWithDoc('DriverRemoved').setDoc("The Driver is being removed."), EnumWithDoc('ControllerCommand').setDoc("When Controller Commands are executed, Notifications of Success/Failure etc are communicated via this Notification."), ] PyStatDriver = { 'SOFCnt' : "Number of SOF bytes received", 'ACKWaiting' : "Number of unsolicited messages while waiting for an ACK", 'readAborts' : "Number of times read were aborted due to timeouts", 'badChecksum' : "Number of bad checksums", 'readCnt' : "Number of messages successfully read", 'writeCnt' : "Number of messages successfully sent", 'CANCnt' : "Number of CAN bytes received", 'NAKCnt' : "Number of NAK bytes received", 'ACKCnt' : "Number of ACK bytes received", 'OOFCnt' : "Number of bytes out of framing", 'dropped' : "Number of messages dropped & not delivered", 'retries' : "Number of messages retransmitted", 'callbacks' : "Number of unexpected callbacks", 'badroutes' : "Number of failed messages due to bad route response", 'noack' : "Number of no ACK returned errors", 'netbusy' : "Number of network busy/failure messages", 'nondelivery' : "Number of messages not delivered to network", 'routedbusy' : "Number of messages received with routed busy status", 'broadcastReadCnt' : "Number of broadcasts read", 'broadcastWriteCnt' : "Number of broadcasts sent", } COMMAND_CLASS_DESC = { 0x00: 'COMMAND_CLASS_NO_OPERATION', 0x20: 'COMMAND_CLASS_BASIC', 0x21: 'COMMAND_CLASS_CONTROLLER_REPLICATION', 0x22: 'COMMAND_CLASS_APPLICATION_STATUS', 0x23: 'COMMAND_CLASS_ZIP_SERVICES', 0x24: 'COMMAND_CLASS_ZIP_SERVER', 0x25: 'COMMAND_CLASS_SWITCH_BINARY', 0x26: 'COMMAND_CLASS_SWITCH_MULTILEVEL', 0x27: 'COMMAND_CLASS_SWITCH_ALL', 0x28: 'COMMAND_CLASS_SWITCH_TOGGLE_BINARY', 0x29: 'COMMAND_CLASS_SWITCH_TOGGLE_MULTILEVEL', 0x2A: 'COMMAND_CLASS_CHIMNEY_FAN', 0x2B: 'COMMAND_CLASS_SCENE_ACTIVATION', 0x2C: 'COMMAND_CLASS_SCENE_ACTUATOR_CONF', 0x2D: 'COMMAND_CLASS_SCENE_CONTROLLER_CONF', 0x2E: 'COMMAND_CLASS_ZIP_CLIENT', 0x2F: 'COMMAND_CLASS_ZIP_ADV_SERVICES', 0x30: 'COMMAND_CLASS_SENSOR_BINARY', 0x31: 'COMMAND_CLASS_SENSOR_MULTILEVEL', 0x32: 'COMMAND_CLASS_METER', 0x33: 'COMMAND_CLASS_COLOR', 0x34: 'COMMAND_CLASS_ZIP_ADV_CLIENT', 0x35: 'COMMAND_CLASS_METER_PULSE', 0x3C: 'COMMAND_CLASS_METER_TBL_CONFIG', 0x3D: 'COMMAND_CLASS_METER_TBL_MONITOR', 0x3E: 'COMMAND_CLASS_METER_TBL_PUSH', 0x38: 'COMMAND_CLASS_THERMOSTAT_HEATING', 0x40: 'COMMAND_CLASS_THERMOSTAT_MODE', 0x42: 'COMMAND_CLASS_THERMOSTAT_OPERATING_STATE', 0x43: 'COMMAND_CLASS_THERMOSTAT_SETPOINT', 0x44: 'COMMAND_CLASS_THERMOSTAT_FAN_MODE', 0x45: 'COMMAND_CLASS_THERMOSTAT_FAN_STATE', 0x46: 'COMMAND_CLASS_CLIMATE_CONTROL_SCHEDULE', 0x47: 'COMMAND_CLASS_THERMOSTAT_SETBACK', 0x4c: 'COMMAND_CLASS_DOOR_LOCK_LOGGING', 0x4E: 'COMMAND_CLASS_SCHEDULE_ENTRY_LOCK', 0x50: 'COMMAND_CLASS_BASIC_WINDOW_COVERING', 0x51: 'COMMAND_CLASS_MTP_WINDOW_COVERING', 0x56: 'COMMAND_CLASS_CRC_16_ENCAP', 0x5A: 'COMMAND_CLASS_DEVICE_RESET_LOCALLY', 0x5E: 'COMMAND_CLASS_ZWAVE_PLUS_INFO', 0x60: 'COMMAND_CLASS_MULTI_CHANNEL_V2', 0x61: 'COMMAND_CLASS_DISPLAY', 0x62: 'COMMAND_CLASS_DOOR_LOCK', 0x63: 'COMMAND_CLASS_USER_CODE', 0x64: 'COMMAND_CLASS_GARAGE_DOOR', 0x70: 'COMMAND_CLASS_CONFIGURATION', 0x71: 'COMMAND_CLASS_ALARM', 0x72: 'COMMAND_CLASS_MANUFACTURER_SPECIFIC', 0x73: 'COMMAND_CLASS_POWERLEVEL', 0x75: 'COMMAND_CLASS_PROTECTION', 0x76: 'COMMAND_CLASS_LOCK', 0x77: 'COMMAND_CLASS_NODE_NAMING', 0x78: 'COMMAND_CLASS_ACTUATOR_MULTILEVEL', 0x79: 'COMMAND_CLASS_KICK', 0x7A: 'COMMAND_CLASS_FIRMWARE_UPDATE_MD', 0x7B: 'COMMAND_CLASS_GROUPING_NAME', 0x7C: 'COMMAND_CLASS_REMOTE_ASSOCIATION_ACTIVATE', 0x7D: 'COMMAND_CLASS_REMOTE_ASSOCIATION', 0x80: 'COMMAND_CLASS_BATTERY', 0x81: 'COMMAND_CLASS_CLOCK', 0x82: 'COMMAND_CLASS_HAIL', 0x83: 'COMMAND_CLASS_NETWORK_STAT', 0x84: 'COMMAND_CLASS_WAKE_UP', 0x85: 'COMMAND_CLASS_ASSOCIATION', 0x86: 'COMMAND_CLASS_VERSION', 0x87: 'COMMAND_CLASS_INDICATOR', 0x88: 'COMMAND_CLASS_PROPRIETARY', 0x89: 'COMMAND_CLASS_LANGUAGE', 0x8A: 'COMMAND_CLASS_TIME', 0x8B: 'COMMAND_CLASS_TIME_PARAMETERS', 0x8C: 'COMMAND_CLASS_GEOGRAPHIC_LOCATION', 0x8D: 'COMMAND_CLASS_COMPOSITE', 0x8E: 'COMMAND_CLASS_MULTI_INSTANCE_ASSOCIATION', 0x8F: 'COMMAND_CLASS_MULTI_CMD', 0x90: 'COMMAND_CLASS_ENERGY_PRODUCTION', 0x91: 'COMMAND_CLASS_MANUFACTURER_PROPRIETARY', 0x92: 'COMMAND_CLASS_SCREEN_MD', 0x93: 'COMMAND_CLASS_SCREEN_ATTRIBUTES', 0x94: 'COMMAND_CLASS_SIMPLE_AV_CONTROL', 0x95: 'COMMAND_CLASS_AV_CONTENT_DIRECTORY_MD', 0x96: 'COMMAND_CLASS_AV_RENDERER_STATUS', 0x97: 'COMMAND_CLASS_AV_CONTENT_SEARCH_MD', 0x98: 'COMMAND_CLASS_SECURITY', 0x99: 'COMMAND_CLASS_AV_TAGGING_MD', 0x9A: 'COMMAND_CLASS_IP_CONFIGURATION', 0x9B: 'COMMAND_CLASS_ASSOCIATION_COMMAND_CONFIGURATION', 0x9C: 'COMMAND_CLASS_SENSOR_ALARM', 0x9D: 'COMMAND_CLASS_SILENCE_ALARM', 0x9E: 'COMMAND_CLASS_SENSOR_CONFIGURATION', 0xEF: 'COMMAND_CLASS_MARK', 0xF0: 'COMMAND_CLASS_NON_INTEROPERABLE' }
41.860735
331
0.681776
a600d7c8d8c6f43756f0cea6f0b34463826860e7
2,671
py
Python
tests/test_agent.py
DavidSlayback/gym-gridverse
b8916576a92489c030fb2c2060598c7f473f19f2
[ "MIT" ]
6
2020-10-15T14:45:11.000Z
2021-02-20T12:11:32.000Z
tests/test_agent.py
DavidSlayback/gym-gridverse
b8916576a92489c030fb2c2060598c7f473f19f2
[ "MIT" ]
5
2021-01-20T15:34:29.000Z
2022-03-18T18:52:53.000Z
tests/test_agent.py
DavidSlayback/gym-gridverse
b8916576a92489c030fb2c2060598c7f473f19f2
[ "MIT" ]
2
2021-01-11T18:48:49.000Z
2021-01-26T15:45:38.000Z
"""Tests agent related functionality""" import pytest from gym_gridverse.agent import Agent from gym_gridverse.geometry import Area, Orientation, Position @pytest.mark.parametrize( 'position,orientation,expected', [ (Position(0, 0), Orientation.N, Area((-6, 0), (-3, 3))), (Position(0, 0), Orientation.S, Area((0, 6), (-3, 3))), (Position(0, 0), Orientation.E, Area((-3, 3), (0, 6))), (Position(0, 0), Orientation.W, Area((-3, 3), (-6, 0))), (Position(1, 2), Orientation.N, Area((-5, 1), (-1, 5))), (Position(1, 2), Orientation.S, Area((1, 7), (-1, 5))), (Position(1, 2), Orientation.E, Area((-2, 4), (2, 8))), (Position(1, 2), Orientation.W, Area((-2, 4), (-4, 2))), ], ) def test_get_pov_area( position: Position, orientation: Orientation, expected: Area ): relative_area = Area((-6, 0), (-3, 3)) agent = Agent(position, orientation) assert agent.get_pov_area(relative_area) == expected @pytest.mark.parametrize( 'position,orientation,delta_position,expected', [ (Position(0, 0), Orientation.N, Position(1, -1), Position(1, -1)), (Position(0, 0), Orientation.S, Position(1, -1), Position(-1, 1)), (Position(0, 0), Orientation.E, Position(1, -1), Position(-1, -1)), (Position(0, 0), Orientation.W, Position(1, -1), Position(1, 1)), (Position(1, 2), Orientation.N, Position(2, -2), Position(3, 0)), (Position(1, 2), Orientation.S, Position(2, -2), Position(-1, 4)), (Position(1, 2), Orientation.E, Position(2, -2), Position(-1, 0)), (Position(1, 2), Orientation.W, Position(2, -2), Position(3, 4)), ], ) def test_agent_position_relative( position: Position, orientation: Orientation, delta_position: Position, expected: Position, ): agent = Agent(position, orientation) assert agent.position_relative(delta_position) == expected @pytest.mark.parametrize( 'position,orientation,expected', [ (Position(0, 0), Orientation.N, Position(-1, 0)), (Position(0, 0), Orientation.S, Position(1, 0)), (Position(0, 0), Orientation.E, Position(0, 1)), (Position(0, 0), Orientation.W, Position(0, -1)), (Position(1, 2), Orientation.N, Position(0, 2)), (Position(1, 2), Orientation.S, Position(2, 2)), (Position(1, 2), Orientation.E, Position(1, 3)), (Position(1, 2), Orientation.W, Position(1, 1)), ], ) def test_agent_position_in_front( position: Position, orientation: Orientation, expected: Position, ): agent = Agent(position, orientation) assert agent.position_in_front() == expected
36.094595
75
0.60614
53ece3482bd612b9e86dd34ddffbfb2623d7f344
710
py
Python
rest_api/config/urls.py
Razz21/Nuxt-Django-E-Commerce-Demo
24834007f7554f9e59758b611c73ea0da85c841e
[ "MIT" ]
1
2020-10-31T12:46:17.000Z
2020-10-31T12:46:17.000Z
rest_api/config/urls.py
Razz21/Nuxt-Django-E-Commerce-Demo
24834007f7554f9e59758b611c73ea0da85c841e
[ "MIT" ]
2
2020-07-25T11:01:46.000Z
2022-01-22T10:39:02.000Z
rest_api/config/urls.py
Razz21/Nuxt-Django-E-Commerce-Demo
24834007f7554f9e59758b611c73ea0da85c841e
[ "MIT" ]
null
null
null
from django.urls import path, include from django.contrib import admin from django.conf import settings from django.conf.urls.static import static # todo api-root-url urlpatterns = [ path("admin/", admin.site.urls), path("api/auth/", include("project.users.urls")), path("api/", include("project.core.urls")), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: from django.conf.urls.static import static urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) if "debug_toolbar" in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [path("__debug__/", include(debug_toolbar.urls))] + urlpatterns
29.583333
85
0.735211
b25e8d05359813a7e9389c5bf5860101614a2bc0
9,413
py
Python
guild/op_cmd.py
timt51/guildai
8d3aa9b902e29eb60ebbb408b3a1cbd3f40fcaec
[ "Apache-2.0" ]
694
2018-11-30T01:06:30.000Z
2022-03-31T14:46:26.000Z
guild/op_cmd.py
timt51/guildai
8d3aa9b902e29eb60ebbb408b3a1cbd3f40fcaec
[ "Apache-2.0" ]
323
2018-11-05T17:44:34.000Z
2022-03-31T16:56:41.000Z
guild/op_cmd.py
timt51/guildai
8d3aa9b902e29eb60ebbb408b3a1cbd3f40fcaec
[ "Apache-2.0" ]
68
2019-04-01T04:24:47.000Z
2022-02-24T17:22:04.000Z
# Copyright 2017-2021 TensorHub, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division import logging import pprint import six from guild import flag_util from guild import util from guild import yaml_util log = logging.getLogger("guild") ################################################################### # State ################################################################### class OpCmd(object): def __init__(self, cmd_args, cmd_env, cmd_flags, flags_dest): self.cmd_args = cmd_args self.cmd_env = cmd_env self.cmd_flags = cmd_flags self.flags_dest = flags_dest class CmdFlag(object): def __init__( self, arg_name=None, arg_skip=False, arg_switch=None, arg_split=None, env_name=None, ): self.arg_name = arg_name self.arg_skip = arg_skip self.arg_switch = arg_switch self.arg_split = arg_split self.env_name = env_name ################################################################### # Generate command ################################################################### def generate(op_cmd, flag_vals, resolve_params): return (_gen_args(op_cmd, flag_vals, resolve_params), _gen_env(op_cmd, flag_vals)) def _gen_args(op_cmd, flag_vals, resolve_params): encoded_resolve_params = _encode_arg_params(resolve_params) args = [] for arg in op_cmd.cmd_args: if arg == "__flag_args__": args.extend( _flag_args(flag_vals, op_cmd.flags_dest, op_cmd.cmd_flags, args) ) else: args.append(util.resolve_refs(arg, encoded_resolve_params)) return args def _encode_arg_params(params): return {name: _encode_general_arg(val) for name, val in params.items()} def _encode_general_arg(val): # Use same encoding used for env vals. return _encode_env_val(val, arg_split=None) def _flag_args(flag_vals, flag_dest, cmd_flags, cmd_args): args = [] for name, val in sorted(flag_vals.items()): cmd_flag = cmd_flags.get(name) args.extend(_args_for_flag(name, val, cmd_flag, flag_dest, cmd_args)) return args def _args_for_flag(name, val, cmd_flag, flag_dest, cmd_args): cmd_flag = cmd_flag or CmdFlag() if cmd_flag.arg_skip: return [] arg_name = cmd_flag.arg_name or name if "--%s" % arg_name in cmd_args: log.warning( "ignoring flag '%s=%s' because it's shadowed " "in the operation cmd as --%s", name, flag_util.encode_flag_val(val), arg_name, ) return [] elif cmd_flag.arg_switch is not None: if cmd_flag.arg_switch == val: return ["--%s" % arg_name] else: return [] elif val is not None: if _splittable(val, cmd_flag): encoded = _encode_split_args(val, flag_dest, cmd_flag.arg_split) return ["--%s" % arg_name] + encoded if encoded else [] else: return [ "--%s" % arg_name, _encode_flag_arg(val, flag_dest, cmd_flag.arg_split), ] else: return [] def _splittable(val, cmd_flag): return not isinstance(val, list) and cmd_flag.arg_split is not None def _encode_split_args(val, dest, arg_split): encoded = _encode_flag_val_for_split(val, dest, arg_split) parts = flag_util.split_encoded_flag_val(encoded, arg_split) return _split_args_for_dest(parts, dest) def _encode_flag_val_for_split(val, dest, arg_split): if isinstance(val, six.string_types): return val return _encode_flag_arg(val, dest, arg_split) def _split_args_for_dest(parts, dest): if dest == "globals": return [_encode_yaml_list_for_globals_arg(parts)] return parts def _encode_yaml_list_for_globals_arg(parts): return yaml_util.encode_yaml( [yaml_util.decode_yaml(part) for part in parts], default_flow_style=True, ) def _encode_flag_arg(val, dest, arg_split): if ( dest == "globals" or dest.startswith("global:") or dest.startswith("dict:") or dest.startswith("namespace:") ): return _encode_flag_arg_for_globals(val) else: return _encode_flag_arg_for_argparse(val, arg_split) def _encode_flag_arg_for_globals(val): """Returns an encoded flag value for Python globals interface. Flags destined for globals within a Python module are encoded using standard YAML encoding. Decoding must be handled using standard YAML decoding. """ return yaml_util.encode_yaml(val, default_flow_style=True) def _encode_flag_arg_for_argparse(val, arg_split): """Returns an encoded flag val for use by Python argparse. argparse generally uses type functions (e.g. int, float, etc.) to decode string args. We use `pprint.pformat` to encode here with exceptions for boolean values. Boolean values decode any non-empty string as True so we encode here accordingly using the arbitrarily chose non-empty string '1' to represent True along with the empty string '' to represent False. `arg_split` is used to encode lists of values to a single string argument. """ if val is True: return "1" elif val is False or val is None: return "" elif isinstance(val, six.string_types): return val elif isinstance(val, list): return flag_util.join_splittable_flag_vals(val, arg_split) else: return pprint.pformat(val) def _gen_env(op_cmd, flag_vals): env = _encoded_cmd_env(op_cmd) _resolve_env_flag_refs(flag_vals, env) _apply_flag_env(flag_vals, op_cmd, env) return env def _encoded_cmd_env(op_cmd): return {name: _encode_env_val(val) for name, val in op_cmd.cmd_env.items()} def _encode_env_val(val, arg_split=None): """Returns an encoded flag val for use as env values. Uses the same encoding scheme as _encode_flag_arg_for_argparse under the assumption that the same logic is used to decode env values as as command arguments. """ return _encode_flag_arg_for_argparse(val, arg_split) def _resolve_env_flag_refs(flag_vals, env): for env_name, env_val in env.items(): env[env_name] = util.resolve_refs(env_val, flag_vals) def _apply_flag_env(flag_vals, op_cmd, env): env.update( { _flag_env_name(name, op_cmd): _encode_env_val(val) for name, val in flag_vals.items() } ) def _flag_env_name(flag_name, op_cmd): cmd_flag = op_cmd.cmd_flags.get(flag_name) if cmd_flag and cmd_flag.env_name: return cmd_flag.env_name return _default_flag_env_name(flag_name) def _default_flag_env_name(flag_name): return "FLAG_%s" % util.env_var_name(flag_name) ################################################################### # Data IO ################################################################### def for_data(data): cmd_args = data.get("cmd-args") or [] cmd_env = data.get("cmd-env") or {} cmd_flags = _cmd_flags_for_data(data.get("cmd-flags")) flags_dest = data.get("flags-dest") return OpCmd(cmd_args, cmd_env, cmd_flags, flags_dest) def _cmd_flags_for_data(data): if not data: return {} if not isinstance(data, dict): raise ValueError(data) return { flag_name: _cmd_flag_for_data(cmd_flag_data) for flag_name, cmd_flag_data in data.items() } def _cmd_flag_for_data(data): if not isinstance(data, dict): raise ValueError(data) return CmdFlag( arg_name=data.get("arg-name"), arg_skip=data.get("arg-skip"), arg_switch=data.get("arg-switch"), arg_split=data.get("arg-split"), env_name=data.get("env-name"), ) def as_data(op_cmd): data = { "cmd-args": op_cmd.cmd_args, } if op_cmd.cmd_env: data["cmd-env"] = op_cmd.cmd_env cmd_flags_data = _cmd_flags_as_data(op_cmd.cmd_flags) if cmd_flags_data: data["cmd-flags"] = cmd_flags_data if op_cmd.flags_dest: data["flags-dest"] = op_cmd.flags_dest return data def _cmd_flags_as_data(cmd_flags): data = {} for flag_name, cmd_flag in cmd_flags.items(): cmd_flag_data = _cmd_flag_as_data(cmd_flag) if cmd_flag_data: data[flag_name] = cmd_flag_data return data def _cmd_flag_as_data(cmd_flag): data = {} if cmd_flag.arg_name: data["arg-name"] = cmd_flag.arg_name if cmd_flag.arg_skip: data["arg-skip"] = cmd_flag.arg_skip if cmd_flag.arg_switch: data["arg-switch"] = cmd_flag.arg_switch if cmd_flag.arg_split is not None: data["arg-split"] = cmd_flag.arg_split if cmd_flag.env_name: data["env-name"] = cmd_flag.env_name return data
29.142415
86
0.645065
039b76ad98bd636c2b42ba7b44acbd5d4c85d682
1,649
py
Python
dkist/utils/sysinfo.py
DKISTDC/dkist
3b97d7c0db144a717cfbe648b7402b8b8f9f2da2
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
21
2018-05-18T13:43:59.000Z
2022-03-16T21:17:39.000Z
dkist/utils/sysinfo.py
Cadair/dkist
2f4d930ea0e002db40e8ef17a79b0b4fb2e6d3f3
[ "BSD-3-Clause" ]
134
2017-12-07T16:09:24.000Z
2022-03-17T16:13:55.000Z
dkist/utils/sysinfo.py
Cadair/dkist
2f4d930ea0e002db40e8ef17a79b0b4fb2e6d3f3
[ "BSD-3-Clause" ]
4
2017-12-04T10:49:49.000Z
2022-01-10T12:20:46.000Z
import platform from pkg_resources import get_distribution from sunpy.extern.distro import linux_distribution from sunpy.util.sysinfo import find_dependencies __all__ = ['system_info'] def system_info(): """ Display information about your system for submitting bug reports. """ base_reqs = get_distribution("dkist").requires() base_reqs = {base_req.name.lower() for base_req in base_reqs} missing_packages, installed_packages = find_dependencies(package="dkist") extra_prop = {"System": platform.system(), "Arch": f"{platform.architecture()[0]}, ({platform.processor()})", "Python": platform.python_version(), "SunPy": get_distribution("dkist").version} sys_prop = {**installed_packages, **missing_packages, **extra_prop} print("==============================") print("DKIST Installation Information") print("==============================") print() print("General") print("#######") if sys_prop['System'] == "Linux": distro = " ".join(linux_distribution()) print(f"OS: {distro} (Linux {platform.release()})") elif sys_prop['System'] == "Darwin": print(f"OS: Mac OS {platform.mac_ver()[0]}") elif sys_prop['System'] == "Windows": print(f"OS: Windows {platform.release()} {platform.version()}") else: print("Unknown OS") for sys_info in ['Arch', 'SunPy']: print('{} : {}'.format(sys_info, sys_prop[sys_info])) print() print("Required Dependices") print("###################") for req in base_reqs: print('{}: {}'.format(req, sys_prop[req]))
35.085106
84
0.597332
5b8932362dae9cb287b2a635972f66f141fcf3fd
3,541
py
Python
python/oneflow/test/modules/test_nonzero.py
butterluo/oneflow
cf2ce575d80f89642b71bee2248e69b09213007d
[ "Apache-2.0" ]
null
null
null
python/oneflow/test/modules/test_nonzero.py
butterluo/oneflow
cf2ce575d80f89642b71bee2248e69b09213007d
[ "Apache-2.0" ]
null
null
null
python/oneflow/test/modules/test_nonzero.py
butterluo/oneflow
cf2ce575d80f89642b71bee2248e69b09213007d
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from collections import OrderedDict import numpy as np from test_util import GenArgList import oneflow as flow import oneflow.unittest from oneflow.test_utils.automated_test_util import * def np_nonzero(input, as_tuple): if as_tuple: return np.nonzero(input) else: return np.transpose(np.nonzero(input)) def _test_nonzero(test_case, shape, as_tuple, device): np_input = np.random.randn(*shape) input = flow.tensor(np_input, dtype=flow.float32, device=flow.device(device)) of_out = flow.nonzero(input, as_tuple) np_out = np_nonzero(np_input, as_tuple) if as_tuple: test_case.assertTrue( np.allclose(tuple(x.numpy() for x in of_out), np_out, 0.0001, 0.0001) ) else: test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001)) @flow.unittest.skip_unless_1n1d() class TestNonzero(flow.unittest.TestCase): def test_nonzero(test_case): arg_dict = OrderedDict() arg_dict["test_fun"] = [_test_nonzero] arg_dict["shape"] = [(2, 3), (2, 3, 4), (2, 4, 5, 6), (2, 3, 0, 4)] arg_dict["as_tuple"] = [True, False] arg_dict["device"] = ["cpu", "cuda"] for arg in GenArgList(arg_dict): arg[0](test_case, *arg[1:]) # Not check graph because of one reason: # Reason 1, lazy tensor cannot call .numpy(). tensor.numpy() is not allowed to called in nn.Graph.build(*args) or called by lazy tensor. # Please refer to File "python/oneflow/nn/modules/nonzero.py", line 29, in nonzero_op. @autotest(auto_backward=False, check_graph="ValidatedFlase") def test_nonzero_with_random_data(test_case): device = random_device() x = random_tensor(ndim=random(2, 5).to(int)).to(device) y = torch.nonzero(x) return y # Not check graph because of one reason: # Reason 1, lazy tensor cannot call .numpy(). tensor.numpy() is not allowed to called in nn.Graph.build(*args) or called by lazy tensor. # Please refer to File "python/oneflow/nn/modules/nonzero.py", line 29, in nonzero_op. @autotest(auto_backward=False, check_graph="ValidatedFlase") def test_nonzero_bool_with_random_data(test_case): device = random_device() x = random_tensor(ndim=random(2, 5).to(int)).to(device=device, dtype=torch.bool) y = torch.nonzero(x) return y # Not check graph because of one reason: # Reason 1, lazy tensor cannot call .numpy(). tensor.numpy() is not allowed to called in nn.Graph.build(*args) or called by lazy tensor. # Please refer to File "python/oneflow/nn/modules/nonzero.py", line 29, in nonzero_op. @autotest(auto_backward=False, check_graph="ValidatedFlase") def test_nonzero_with_0dim_data(test_case): device = random_device() x = random_tensor(ndim=0).to(device) y = torch.nonzero(x) return y if __name__ == "__main__": unittest.main()
38.075269
140
0.694719
228161ea7cc2cf2d04f4dbe753d2c23160c414ee
3,096
py
Python
main.py
CuteFwan/b_test
8aca45673b0c95238a72a14c466b77a06458a887
[ "MIT" ]
null
null
null
main.py
CuteFwan/b_test
8aca45673b0c95238a72a14c466b77a06458a887
[ "MIT" ]
null
null
null
main.py
CuteFwan/b_test
8aca45673b0c95238a72a14c466b77a06458a887
[ "MIT" ]
null
null
null
from b_test import * import random def setupgamerandomly(game): """ Randomly places boats on a game's board. Keeps trying until all boats fit. Need to add a timeout if the board gets into a configuration where no more boats can fit, but this isn't necessary for standard battleships. Parameters ---------- game: :class:`Battleship` The game to populate ships upon. Returns ------- :class:`Battleship` The populated game. """ for boat, size in boats.items(): coords = None while coords is None: rotated = bool(random.randint(0,1)) pos = (random.randint(0, (9 - size) if not rotated else 9), random.randint(0, (9 - size) if rotated else 9)) #print(f'trying to place {boat} on {pos}') coords = game.placeboat(boat, pos, rotated) return game def setupgame(game): """ Manually calls input() to populate a given game's board. Parameters ---------- game: :class:`Battleship` The game to populate ships upon. Returns ------- :class:`Battleship` The populated game. """ for boat, size in boats.items(): coords = None while coords is None: res = input(f"Where to put {boat}? (A4... etc) ") pos = lettertonum(res[0]), int(res[1:]) - 1 rotated = bool(int(input("Rotated? (0 or 1) "))) coords = game.placeboat(boat, pos, rotated) print(game.drawboard()) return game def main(): """ Human vs AI battleships game. Human game is set up manually and AI game is set up randomly. Could be improved with a better system to select which AI to use. """ mygame = setupgame(Battleship()) AIgame = setupgamerandomly(Battleship()) me = manually(mygame) AI = history(AIgame) myturn = True while True: if myturn: myturn = False spot = me.nextturn(AI.game) print(f"You attack {numtoletter(spot[0][0])}{spot[0][1]+1}{f' and hit opponent {spot[1]}' if spot[1] != ' ' else ''}") if AI.game.checkwin(): print("You win!") break else: spot = AI.nextturn(me.game) myturn = True print(f"Opponent attacks {numtoletter(spot[0][0])}{spot[0][1]+1}{f' and hit your {spot[1]}' if spot[1] != ' ' else ''}") if me.game.checkwin(): print("You lose!") break AI.save() def aigame(): """ Purely AI vs AI battleships game. """ AI1game = setupgamerandomly(Battleship()) AI2game = setupgamerandomly(Battleship()) AI1 = stats(AI1game) AI2 = history(AI2game) players = [AI1, AI2] turn = False while True: players[turn].nextturn(players[not turn].game) turn = not turn if players[not turn].game.checkwin(): print(f'AI{int(turn)+1} wins') break print(AI1.game.drawboard()) print(AI2.game.drawboard()) AI1.save() AI2.save() main()
29.207547
132
0.561047
282073aa1c4c6bed4139f59d2344df6d9bf53642
785
py
Python
main.py
barthap/BPMN
43dae78ba9e47015267b382d596cb2afbe7d6a35
[ "MIT" ]
null
null
null
main.py
barthap/BPMN
43dae78ba9e47015267b382d596cb2afbe7d6a35
[ "MIT" ]
null
null
null
main.py
barthap/BPMN
43dae78ba9e47015267b382d596cb2afbe7d6a35
[ "MIT" ]
null
null
null
import examples import matplotlib.pyplot as plt if __name__ == '__main__': print('Hello!') # examples.lab1_repair_example() # OK # examples.lab2_example() # OK # examples.lab2_ex1() # OK # examples.lab2_ex2() # OK for i in range(1, 10): # examples.lab2_setA(i) examples.lab3_setB(i) examples.lab3_setB_nofilter(i) # examples.loop1() # examples.loop2() # examples.loop3() """ Zestaw A: 1 - OK 2 - OK 3 - dwie bramy obok siebie 4 - podobno OK 5 - OK 6 - OK 7 - totanla porazka 8 - OK 9 - OK """ """ Zestaw B: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - """ plt.show()
16.354167
48
0.464968
e5ead09d1ff6100d64e6861f41eb66b0f5e4b482
10,561
py
Python
Thirdparty/libuv/build.py
stinvi/dava.engine
2b396ca49cdf10cdc98ad8a9ffcf7768a05e285e
[ "BSD-3-Clause" ]
26
2018-09-03T08:48:22.000Z
2022-02-14T05:14:50.000Z
Thirdparty/libuv/build.py
ANHELL-blitz/dava.engine
ed83624326f000866e29166c7f4cccfed1bb41d4
[ "BSD-3-Clause" ]
null
null
null
Thirdparty/libuv/build.py
ANHELL-blitz/dava.engine
ed83624326f000866e29166c7f4cccfed1bb41d4
[ "BSD-3-Clause" ]
45
2018-05-11T06:47:17.000Z
2022-02-03T11:30:55.000Z
import os import shutil import build_utils import build_config def get_supported_targets(platform): if platform == 'win32': return ['win32'] elif platform == 'darwin': return ['macos', 'ios', 'android'] elif platform == 'linux': return ['android', 'linux'] else: return [] def get_dependencies_for_target(target): return [] def build_for_target(target, working_directory_path, root_project_path): if target == 'win32': _build_win32(working_directory_path, root_project_path) elif target == 'macos': _build_macos(working_directory_path, root_project_path) elif target == 'ios': _build_ios(working_directory_path, root_project_path) elif target == 'android': _build_android(working_directory_path, root_project_path) elif target == 'linux': _build_linux(working_directory_path, root_project_path) def get_download_info(): return 'https://github.com/kkdaemon/libuv.git' def _download(working_directory_path): source_folder_path = os.path.join(working_directory_path, 'libuv') build_utils.run_process( ['git', 'clone', '-b', 'winuap_support', get_download_info()], process_cwd=working_directory_path, shell=True) return source_folder_path def _build_win32(working_directory_path, root_project_path): source_folder_path = _download(working_directory_path) build_folder_path = os.path.join(working_directory_path, 'gen/build_win32') build_folder_path_x86 = os.path.join(build_folder_path, 'x86') build_folder_path_x86_debug = os.path.join(build_folder_path_x86, 'Debug') build_folder_path_x86_release = os.path.join(build_folder_path_x86, 'Release') build_folder_path_x64 = os.path.join(build_folder_path, 'x64') build_folder_path_x64_debug = os.path.join(build_folder_path_x64, 'Debug') build_folder_path_x64_release = os.path.join(build_folder_path_x64, 'Release') os.makedirs(build_folder_path_x86_debug) os.makedirs(build_folder_path_x86_release) os.makedirs(build_folder_path_x64_debug) os.makedirs(build_folder_path_x64_release) vc_solution_file=os.path.join(source_folder_path, 'uv.sln') override_props_file=os.path.abspath('override_win32.props') toolset=build_config.get_msvc_toolset_ver_win32() msbuild_args=[ "/p:ForceImportBeforeCppTargets={}".format(override_props_file), "/p:WindowsTargetPlatformVersion={}".format(build_config.get_msvc_sdk_version_win32()) ] # x86 x86_env = build_utils.get_win32_vs_x86_env() x86_env['GYP_MSVS_VERSION'] = build_config.get_gyp_msvs_version() build_utils.run_process( ['vcbuild.bat', 'x86', 'nobuild'], process_cwd=source_folder_path, environment=x86_env, shell=True) build_utils.build_vs(vc_solution_file, 'Debug', 'Win32', 'libuv', toolset, msbuild_args=msbuild_args) build_utils.build_vs(vc_solution_file, 'Release', 'Win32', 'libuv', toolset, msbuild_args=msbuild_args) lib_path_x86_debug = os.path.join(build_folder_path_x86_debug, 'libuv.lib') lib_path_x86_release = os.path.join(build_folder_path_x86_release, 'libuv.lib') shutil.copyfile( os.path.join(source_folder_path, 'Debug/lib/libuv.lib'), lib_path_x86_debug) shutil.copyfile( os.path.join(source_folder_path, 'Release/lib/libuv.lib'), lib_path_x86_release) build_utils.run_process( ['vcbuild.bat', 'clean'], process_cwd=source_folder_path, environment=x86_env, shell=True) # x64 x64_env = build_utils.get_win32_vs_x64_env() x64_env['GYP_MSVS_VERSION'] = build_config.get_gyp_msvs_version() build_utils.run_process( ['vcbuild.bat', 'x64', 'nobuild'], process_cwd=source_folder_path, environment=x64_env, shell=True) build_utils.build_vs(vc_solution_file, 'Debug', 'x64', 'libuv', toolset, msbuild_args=msbuild_args) build_utils.build_vs(vc_solution_file, 'Release', 'x64', 'libuv', toolset, msbuild_args=msbuild_args) lib_path_x64_debug = os.path.join(build_folder_path_x64_debug, 'libuv.lib') lib_path_x64_release = os.path.join(build_folder_path_x64_release, 'libuv.lib') shutil.copyfile( os.path.join(source_folder_path, 'Debug/lib/libuv.lib'), lib_path_x64_debug) shutil.copyfile( os.path.join(source_folder_path, 'Release/lib/libuv.lib'), lib_path_x64_release) # copy libs libs_win_root = os.path.join(root_project_path, 'Libs/lib_CMake/win') shutil.copyfile( lib_path_x86_debug, os.path.join(libs_win_root, 'x86/Debug/libuv.lib')) shutil.copyfile( lib_path_x86_release, os.path.join(libs_win_root, 'x86/Release/libuv.lib')) shutil.copyfile( lib_path_x64_debug, os.path.join(libs_win_root, 'x64/Debug/libuv.lib')) shutil.copyfile( lib_path_x64_release, os.path.join(libs_win_root, 'x64/Release/libuv.lib')) _copy_headers(source_folder_path, root_project_path) def _build_macos(working_directory_path, root_project_path): source_folder_path = _download_and_extract(working_directory_path) env = build_utils.get_autotools_macos_env() install_dir_macos = os.path.join( working_directory_path, 'gen/install_macos') build_utils.run_process( ['sh', 'autogen.sh'], process_cwd=source_folder_path, environment=env) build_utils.build_with_autotools( source_folder_path, ['--host=x86_64-apple-darwin', '--disable-shared', '--enable-static'], install_dir_macos, env=env) lib_path = os.path.join(install_dir_macos, 'lib/libuv.a') shutil.copyfile( lib_path, os.path.join(root_project_path, 'Libs/lib_CMake/mac/libuv_macos.a')) _copy_headers_from_install(install_dir_macos, root_project_path) def _build_ios(working_directory_path, root_project_path): source_folder_path = _download_and_extract(working_directory_path) env = build_utils.get_autotools_ios_env() install_dir_ios = os.path.join(working_directory_path, 'gen/install_ios') build_utils.run_process( ['sh', 'autogen.sh'], process_cwd=source_folder_path, environment=env) build_utils.build_with_autotools( source_folder_path, ['--host=armv7-apple-darwin', '--disable-shared', '--enable-static'], install_dir_ios, env=env) lib_path = os.path.join(install_dir_ios, 'lib/libuv.a') shutil.copyfile( lib_path, os.path.join(root_project_path, 'Libs/lib_CMake/ios/libuv_ios.a')) _copy_headers_from_install(install_dir_ios, root_project_path) def _build_android(working_directory_path, root_project_path): source_folder_path = _download_and_extract(working_directory_path) additional_defines = ' -D__ANDROID__ -DHAVE_PTHREAD_COND_TIMEDWAIT_MONOTONIC=1' # ARM toolchain_path_arm = build_utils.android_ndk_get_toolchain_arm() env_arm = build_utils.get_autotools_android_arm_env(toolchain_path_arm) env_arm['CFLAGS'] = env_arm['CFLAGS'] + additional_defines env_arm['CPPFLAGS'] = env_arm['CPPFLAGS'] + additional_defines install_dir_android_arm = os.path.join( working_directory_path, 'gen/install_android_arm') build_utils.run_process( ['sh', 'autogen.sh'], process_cwd=source_folder_path, environment=env_arm) build_utils.build_with_autotools( source_folder_path, ['--host=arm-linux-androideabi', '--disable-shared', '--enable-static'], install_dir_android_arm, env=env_arm) # x86 toolchain_path_x86 = build_utils.android_ndk_get_toolchain_x86() env_x86 = build_utils.get_autotools_android_x86_env(toolchain_path_x86) env_x86['CFLAGS'] = env_x86['CFLAGS'] + additional_defines env_x86['CPPFLAGS'] = env_x86['CPPFLAGS'] + additional_defines install_dir_android_x86 = os.path.join( working_directory_path, 'gen/install_android_x86') build_utils.run_process( ['sh', 'autogen.sh'], process_cwd=source_folder_path, environment=env_x86) build_utils.build_with_autotools( source_folder_path, ['--host=i686-linux-android', '--disable-shared', '--enable-static'], install_dir_android_x86, env=env_x86) libs_android_root = os.path.join(root_project_path, 'Libs/lib_CMake/android') lib_path_arm = os.path.join(install_dir_android_arm, 'lib/libuv.a') shutil.copyfile( lib_path_arm, os.path.join(libs_android_root, 'armeabi-v7a/libuv.a')) lib_path_x86 = os.path.join(install_dir_android_x86, 'lib/libuv.a') shutil.copyfile( lib_path_x86, os.path.join(libs_android_root, 'x86/libuv.a')) _copy_headers_from_install(install_dir_android_arm, root_project_path) def _build_linux(working_directory_path, root_project_path): source_folder_path = _download_and_extract(working_directory_path) # Clone gyp build_utils.run_process( ['git clone https://chromium.googlesource.com/external/gyp.git build/gyp'], process_cwd=source_folder_path, shell=True) # Generate makefile using gyp env = build_utils.get_autotools_linux_env() build_utils.run_process( ['./gyp_uv.py -f make'], process_cwd=source_folder_path, environment=env, shell=True) # Build release library: only libuv.a, skipping tests build_utils.run_process( ['BUILDTYPE=Release make libuv -C out'], process_cwd=source_folder_path, environment=env, shell=True) # Copy binary files to dava.engine's library folder source_dir = os.path.join(source_folder_path, 'out/Release') target_dir = os.path.join(root_project_path, 'Libs/lib_CMake/linux') shutil.copyfile(os.path.join(source_dir, 'libuv.a'), os.path.join(target_dir, 'libuv.a')) # Copy headers to dava.engine's include folder _copy_headers_from_install(source_folder_path, root_project_path) def _copy_headers_from_install(install_folder_path, root_project_path): include_path = os.path.join(root_project_path, 'Libs/include/libuv') build_utils.copy_folder_recursive( os.path.join(install_folder_path, 'include'), include_path) def _copy_headers(source_folder_path, root_project_path): include_path = os.path.join(root_project_path, 'Libs/include/libuv') build_utils.copy_files( os.path.join(source_folder_path, 'include'), include_path, '*.h')
37.05614
107
0.719061
01d39ab22e2a89bb3379226cd92c2224a127080f
462
py
Python
openapi_schema_validator/__init__.py
jparise/openapi-schema-validator
a1e3459d2013b622b10fcdcd743fff01f0b67fad
[ "BSD-3-Clause" ]
1
2021-05-20T12:52:56.000Z
2021-05-20T12:52:56.000Z
openapi_schema_validator/__init__.py
jparise/openapi-schema-validator
a1e3459d2013b622b10fcdcd743fff01f0b67fad
[ "BSD-3-Clause" ]
3
2021-08-30T16:30:50.000Z
2022-03-01T23:15:44.000Z
openapi_schema_validator/__init__.py
jparise/openapi-schema-validator
a1e3459d2013b622b10fcdcd743fff01f0b67fad
[ "BSD-3-Clause" ]
3
2021-05-21T21:26:34.000Z
2021-10-05T16:57:57.000Z
# -*- coding: utf-8 -*- from openapi_schema_validator._format import oas30_format_checker from openapi_schema_validator.shortcuts import validate from openapi_schema_validator.validators import OAS30Validator __author__ = 'Artur Maciag' __email__ = 'maciag.artur@gmail.com' __version__ = '0.1.4' __url__ = 'https://github.com/p1c2u/openapi-schema-validator' __license__ = 'BSD 3-Clause License' __all__ = ['validate', 'OAS30Validator', 'oas30_format_checker']
35.538462
65
0.796537
24fe389318d44980ad45b766875022a99635b325
614
py
Python
src/main.py
Yasushi-Shinohara/CrystalLewenstein
5dde921f067269b41fbef31f2422c92eb8e2301b
[ "MIT" ]
null
null
null
src/main.py
Yasushi-Shinohara/CrystalLewenstein
5dde921f067269b41fbef31f2422c92eb8e2301b
[ "MIT" ]
null
null
null
src/main.py
Yasushi-Shinohara/CrystalLewenstein
5dde921f067269b41fbef31f2422c92eb8e2301b
[ "MIT" ]
null
null
null
#!/usr/bin/python # coding: UTF-8 # This is created 2020/06/08 by Y. Shinohara # This is lastly modified 2020/06/08 by Y. Shinohara #This part is highly doubtable because of my lazyness import time ts = time.time() from modules.print_funcs import print_header, print_footer, print_midtime, print_endtime from modules.functions import * from modules.parameters import parameter_class print_header() import sys import numpy as np import math import ctypes as ct from modules.constants import * tt = time.time() print_midtime(ts,tt) te = time.time() #print_endtime(ts,tt,te,param.Nt) print_footer() sys.exit()
21.928571
106
0.773616
33a85dc564074ead71cba7fa188bd0cc3b6cc96f
669
py
Python
examples/discover.py
nilsbeck/pytheos
de4f3a03330ddb28e68ddcaa7b4888ea9a25e238
[ "MIT" ]
null
null
null
examples/discover.py
nilsbeck/pytheos
de4f3a03330ddb28e68ddcaa7b4888ea9a25e238
[ "MIT" ]
1
2021-10-30T16:31:41.000Z
2021-10-30T16:31:41.000Z
examples/discover.py
nilsbeck/pytheos
de4f3a03330ddb28e68ddcaa7b4888ea9a25e238
[ "MIT" ]
1
2021-10-30T14:24:58.000Z
2021-10-30T14:24:58.000Z
#!/usr/bin/env python """ This example demonstrates how to use SSDP to discover HEOS devices on your network. """ import os import sys import asyncio sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import pytheos import pytheos.utils DISCOVERY_TIMEOUT = 3 async def main(): services = await pytheos.discover(DISCOVERY_TIMEOUT) if services: print("Discovered these HEOS services:") for svc in services: print(f'- {pytheos.utils.extract_host(svc.location)}') else: print("No HEOS services detected!") if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
21.580645
83
0.692078
e8967d6e439b1daa3735932ea5fc72c0d3652bd5
3,817
py
Python
Source/Python/imuDataManipulator.py
JonathanSolvesProblems/Motion-Capture-Hand
b4352d23196d5eabb3df0e97cd0b03eb0fe093ad
[ "MIT" ]
null
null
null
Source/Python/imuDataManipulator.py
JonathanSolvesProblems/Motion-Capture-Hand
b4352d23196d5eabb3df0e97cd0b03eb0fe093ad
[ "MIT" ]
null
null
null
Source/Python/imuDataManipulator.py
JonathanSolvesProblems/Motion-Capture-Hand
b4352d23196d5eabb3df0e97cd0b03eb0fe093ad
[ "MIT" ]
null
null
null
import serial import bpy import mathutils from time import * class ImuDataManipulator: def __init__(self, port = 'com3', baud = 115200, scene_mode = '', rot_mode = '', armatureName = '', boneName = '', boneFingerNames = []): self.port = port self.baud = baud self.scene_mode = scene_mode self.rot_mode = rot_mode self.armatureName = armatureName self.boneName = boneName self.boneFingerNames = boneFingerNames self.setModes() self.setBone() def readSerial(self): imuData = serial.Serial(self.port, self.baud) sleep(1) # give time to read serial port return imuData def setModes(self): # enter pose mode bpy.ops.object.mode_set(mode = self.scene_mode) # set rotation mode bpy.ops.pose.rotation_mode_set(type = self.rot_mode) def setBone(self): # accesses the armature for the hand armature = bpy.data.objects[self.armatureName] # gets the quaternion values for the middle joint bone called hand targetBone = armature.pose.bones[self.boneName].rotation_quaternion pinkyBone = armature.pose.bones[self.boneFingerNames[0]].rotation_quaternion ringBone = armature.pose.bones[self.boneFingerNames[1]].rotation_quaternion middleFingerBone = armature.pose.bones[self.boneFingerNames[2]].rotation_quaternion indexFingerBone = armature.pose.bones[self.boneFingerNames[3]].rotation_quaternion thumbFingerBone = armature.pose.bones[self.boneFingerNames[4]].rotation_quaternion # armature = bpy.data.objects[self.armatureName] # armatureWorld = armature.matrix_world # targetBone = armatureWorld.to_quaternion() # self.targetBone = aramatureWorldQuaternion self.targetBone = targetBone self.pinkyBone = pinkyBone self.ringBone = ringBone self.middleFingerBone = middleFingerBone self.indexFingerBone = indexFingerBone self.thumbFingerBone = thumbFingerBone def retargetQuaternionData(self, q0, q1, q2, q3): self.targetBone[0] = q0 self.targetBone[1] = -q2 self.targetBone[2] = q1 self.targetBone[3] = q3 def retargetFingerBones(self, fingerAngles): quatDownScale = -100 # to get it suitable range for quaternion rotation. pinkyFingerBend = fingerAngles[0] / quatDownScale # get the angle in a corresponding quaternion representation. ringFingerBend = fingerAngles[1] / quatDownScale middleFingerBend = fingerAngles[2] / quatDownScale indexFingerBone = fingerAngles[3] / quatDownScale thumbFingerBone = fingerAngles[4] / quatDownScale self.pinkyBone[1] = pinkyFingerBend self.ringBone[1] = ringFingerBend self.middleFingerBone[1] = middleFingerBend self.indexFingerBone[1] = indexFingerBone self.thumbFingerBone[1] = thumbFingerBone def readAndTargetQuaternionData(self): imuData = self.readSerial() while True: # continuously read data from IMU while (imuData.inWaiting() == 0): # do nothing if no data being read pass packet = imuData.readline() packet = str(packet,'utf-8') packet = packet.split(',') self.retargetQuaternionData(float(packet[5]), float(packet[6]), float(packet[7]), float(packet[8])) self.retargetFingerBones([float(packet[0]), float(packet[1]), float(packet[2]), float(packet[3]), float(packet[4])]) # allows for live viewing of the updating scene, while reading the data bpy.ops.wm.redraw_timer(type = 'DRAW_WIN_SWAP', iterations = 1)
43.375
141
0.650511
4a32fe4a0fe811b44e915b06de1a8de6ca673b16
2,108
py
Python
test_lib/pseudo_files_db.py
amotus/oe-pseudo-test-env
b9ae7f7ceb265f33b4f70938389a11bf2af41aed
[ "Apache-2.0" ]
null
null
null
test_lib/pseudo_files_db.py
amotus/oe-pseudo-test-env
b9ae7f7ceb265f33b4f70938389a11bf2af41aed
[ "Apache-2.0" ]
null
null
null
test_lib/pseudo_files_db.py
amotus/oe-pseudo-test-env
b9ae7f7ceb265f33b4f70938389a11bf2af41aed
[ "Apache-2.0" ]
null
null
null
import sqlite3 from contextlib import closing from dataclasses import dataclass from typing import Iterator, Tuple, Any, Optional from pathlib import Path @dataclass class PseudoFilesDbRow: id: int path: Path dev: int ino: int uid: int gid: int mode: int rdev: int deleting: int class PseudoFilesDbError(Exception): pass class PseudoFilesDbRowParseError(PseudoFilesDbError): pass def _parse_db_int(db_v: Any) -> int: if not isinstance(db_v, int): raise PseudoFilesDbRowParseError( f"Unexpected db value '{db_v}' of type " f"'{db_v.__class__.__name__}'. Expected an 'int'." ) return db_v def _parse_db_str(db_v: Any) -> str: if not isinstance(db_v, str): raise PseudoFilesDbRowParseError( f"Unexpected db value '{db_v}' of type " f"'{db_v.__class__.__name__}'. Expected a 'str'." ) return db_v def _parse_db_path(db_v: Any) -> Path: return Path(_parse_db_str(db_v)) def _parse_files_db_row(row: Tuple[Any, ...]) -> PseudoFilesDbRow: try: return PseudoFilesDbRow( id=_parse_db_int(row[0]), path=_parse_db_path(row[1]), dev=_parse_db_int(row[2]), ino=_parse_db_int(row[3]), uid=_parse_db_int(row[4]), gid=_parse_db_int(row[5]), mode=_parse_db_int(row[6]), rdev=_parse_db_int(row[7]), deleting=_parse_db_int(row[8]) ) except IndexError as e: raise PseudoFilesDbRowParseError( f"Unexpected db row size. Original error: {str(e)}" ) def iter_pseudo_files_db_rows( db_path: Path, timeout_s: Optional[float] = None ) -> Iterator[PseudoFilesDbRow]: if timeout_s is None: timeout_s = 5.0 with closing(sqlite3.connect( str(db_path), timeout=timeout_s )) as con: with closing(con.cursor()) as cur: for row in cur.execute( "SELECT * FROM files ORDER BY id"): yield _parse_files_db_row(row)
23.954545
66
0.610057
ebb5f52b866500805274837d4adcf73883b69e8c
613
py
Python
torch/_C/CudaDoubleStorageBase.py
binh-vu/pytorch-stub
2067c75457c66fd4fd40fde091b5da971f8ea838
[ "MIT" ]
21
2019-01-25T08:53:51.000Z
2021-05-29T05:19:57.000Z
torch/_C/CudaDoubleStorageBase.py
binh-vu/pytorch-stub
2067c75457c66fd4fd40fde091b5da971f8ea838
[ "MIT" ]
1
2020-11-19T03:22:24.000Z
2021-03-22T14:48:55.000Z
torch/_C/CudaDoubleStorageBase.py
binh-vu/pytorch-stub
2067c75457c66fd4fd40fde091b5da971f8ea838
[ "MIT" ]
4
2019-03-02T05:59:19.000Z
2019-10-05T11:38:55.000Z
# encoding: utf-8 # module torch._C # from /Users/rook/anaconda/lib/python3.6/site-packages/torch/_C.cpython-36m-darwin.so # by generator 1.145 # no doc # imports import torch._C._functions as _functions # <module 'torch._C._functions'> from .object import object class CudaDoubleStorageBase(object): # no doc def __init__(self): # reliably restored by inspect # no doc pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is ''
24.52
101
0.686786
757cec314b6d3d1bf5d7c19eed131a52116ed2aa
482
py
Python
algernon/keyboard.py
ZeroMaxinumXZ/albert
ac6eca4a9422a87d0a09c0d2a51278cf51949b90
[ "MIT" ]
7
2019-03-03T14:41:44.000Z
2019-03-06T18:37:50.000Z
algernon/keyboard.py
ZeroMaxinumXZ/reinfinity-mouse
ac6eca4a9422a87d0a09c0d2a51278cf51949b90
[ "MIT" ]
5
2019-03-03T17:55:39.000Z
2019-03-06T05:37:01.000Z
algernon/keyboard.py
ZeroMaxinumXZ/albert
ac6eca4a9422a87d0a09c0d2a51278cf51949b90
[ "MIT" ]
null
null
null
def keys(): keys = ['\t', '\n', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e','f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', 'alt', 'ctrl', 'down', 'enter', 'left','right', 'shift', 'space', 'tab', 'up'] return keys
53.555556
78
0.209544
92cc8d487f67cd5889ea41187f4b62de90cf9838
486
py
Python
extra_tests/cffi_tests/embedding/add3.py
nanjekyejoannah/pypy
e80079fe13c29eda7b2a6b4cd4557051f975a2d9
[ "Apache-2.0", "OpenSSL" ]
381
2018-08-18T03:37:22.000Z
2022-02-06T23:57:36.000Z
extra_tests/cffi_tests/embedding/add3.py
nanjekyejoannah/pypy
e80079fe13c29eda7b2a6b4cd4557051f975a2d9
[ "Apache-2.0", "OpenSSL" ]
16
2018-09-22T18:12:47.000Z
2022-02-22T20:03:59.000Z
extra_tests/cffi_tests/embedding/add3.py
nanjekyejoannah/pypy
e80079fe13c29eda7b2a6b4cd4557051f975a2d9
[ "Apache-2.0", "OpenSSL" ]
55
2015-08-16T02:41:30.000Z
2022-03-20T20:33:35.000Z
# Generated by pypy/tool/import_cffi.py import cffi ffi = cffi.FFI() ffi.embedding_api(""" int add3(int, int, int, int); """) ffi.embedding_init_code(r""" from _add3_cffi import ffi import sys @ffi.def_extern() def add3(x, y, z, t): sys.stdout.write("adding %d, %d, %d, %d\n" % (x, y, z, t)) sys.stdout.flush() return x + y + z + t """) ffi.set_source("_add3_cffi", """ """) fn = ffi.compile(verbose=True) print('FILENAME: %s' % (fn,))
18.692308
66
0.578189
1f722dce6800b64deeaa36e4f51a706ac5ad0b14
2,042
py
Python
fastapi_contrib/permissions.py
mumtozvalijonov/fastapi_contrib
e35b4fd7c135380f885c364e4d4b992fb55f687e
[ "MIT" ]
504
2019-08-26T18:14:03.000Z
2022-03-25T13:49:50.000Z
fastapi_contrib/permissions.py
mumtozvalijonov/fastapi_contrib
e35b4fd7c135380f885c364e4d4b992fb55f687e
[ "MIT" ]
100
2019-08-23T07:52:30.000Z
2022-03-20T06:13:10.000Z
fastapi_contrib/permissions.py
mumtozvalijonov/fastapi_contrib
e35b4fd7c135380f885c364e4d4b992fb55f687e
[ "MIT" ]
32
2019-10-01T12:46:14.000Z
2022-02-01T13:44:53.000Z
from abc import ABC, abstractmethod from starlette import status from starlette.requests import Request from fastapi_contrib.exceptions import HTTPException class BasePermission(ABC): """ Abstract permission that all other Permissions must be inherited from. Defines basic error message, status & error codes. Upon initialization, calls abstract method `has_required_permissions` which will be specific to concrete implementation of Permission class. You would write your permissions like this: .. code-block:: python class TeapotUserAgentPermission(BasePermission): def has_required_permissions(self, request: Request) -> bool: return request.headers.get('User-Agent') == "Teapot v1.0" """ error_msg = "Forbidden." status_code = status.HTTP_403_FORBIDDEN error_code = status.HTTP_403_FORBIDDEN @abstractmethod def has_required_permissions(self, request: Request) -> bool: ... def __init__(self, request: Request): if not self.has_required_permissions(request): raise HTTPException( status_code=self.status_code, detail=self.error_msg, error_code=self.error_code ) class PermissionsDependency(object): """ Permission dependency that is used to define and check all the permission classes from one place inside route definition. Use it as an argument to FastAPI's `Depends` as follows: .. code-block:: python app = FastAPI() @app.get( "/teapot/", dependencies=[Depends( PermissionsDependency([TeapotUserAgentPermission]))] ) async def teapot() -> dict: return {"teapot": True} """ def __init__(self, permissions_classes: list): self.permissions_classes = permissions_classes def __call__(self, request: Request): for permission_class in self.permissions_classes: permission_class(request=request)
28.760563
77
0.669442
191c403529a93807d0ec4731a43ab31cfe53ccca
17,286
py
Python
tests/test_loader.py
vergeml/VergeML
3dc30ba4e0f3d038743b6d468860cbcf3681acc6
[ "MIT" ]
324
2018-10-28T19:29:47.000Z
2020-01-24T20:22:07.000Z
tests/test_loader.py
mme/vergeml
3dc30ba4e0f3d038743b6d468860cbcf3681acc6
[ "MIT" ]
8
2018-10-30T10:57:19.000Z
2019-06-05T10:21:30.000Z
tests/test_loader.py
mme/vergeml
3dc30ba4e0f3d038743b6d468860cbcf3681acc6
[ "MIT" ]
19
2018-10-29T18:43:03.000Z
2019-02-21T15:08:41.000Z
""" Tests data loading (cached + direct). """ import random from pathlib import Path from vergeml.loader import MemoryCachedLoader, LiveLoader, FileCachedLoader from vergeml.io import SourcePlugin, source, Sample from vergeml.operation import OperationPlugin, operation from vergeml.operations.augment import AugmentOperation # pylint: disable=C0111 # ------------------------------------------------- def test_live_loader_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = LiveLoader(cache_dir, src) _test_loader_meta(loader) def test_mem_loader_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = MemoryCachedLoader(cache_dir, src) _test_loader_meta(loader) def test_disk_loader_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = FileCachedLoader(cache_dir, src) _test_loader_meta(loader) # ------------------------------------------------- def test_live_loader_with_ops_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = LiveLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_meta(loader) def test_mem_out_loader_with_ops_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = MemoryCachedLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_meta(loader) def test_disk_out_loader_with_ops_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = FileCachedLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_meta(loader) def test_mem_loader_with_ops_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = MemoryCachedLoader(cache_dir, src) loader2 = LiveLoader(cache_dir, loader, ops=[AppendStringOperation()], output=src) _test_loader_meta(loader2) def test_disk_loader_with_ops_meta(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = FileCachedLoader(cache_dir, src) loader2 = LiveLoader(cache_dir, loader, ops=[AppendStringOperation()], output=src) _test_loader_meta(loader2) # ------------------------------------------------- def test_live_loader_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = LiveLoader(cache_dir, src) _test_loader_num_samples(loader) def test_mem_loader_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = MemoryCachedLoader(cache_dir, src) _test_loader_num_samples(loader) def test_disk_loader_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = FileCachedLoader(cache_dir, src) _test_loader_num_samples(loader) # ------------------------------------------------- def test_live_loader_ops_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = LiveLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_num_samples(loader) def test_mem_out_loader_ops_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = MemoryCachedLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_num_samples(loader) def test_disk_out_loader_ops_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = FileCachedLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_num_samples(loader) def test_mem_loader_ops_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = MemoryCachedLoader(cache_dir, src) loader2 = LiveLoader(cache_dir, loader, ops=[AppendStringOperation()], output=src) _test_loader_num_samples(loader2) def test_disk_loader_ops_num_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir)}) loader = FileCachedLoader(cache_dir, src) loader2 = LiveLoader(cache_dir, loader, ops=[AppendStringOperation()], output=src) _test_loader_num_samples(loader2) # -------------------------------------------------- def test_mem_loader_read_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = MemoryCachedLoader(cache_dir, src) _test_loader_read_samples(loader) def test_live_loader_read_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = LiveLoader(cache_dir, src) _test_loader_read_samples(loader) def test_disk_loader_read_samples(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = FileCachedLoader(cache_dir, src) _test_loader_read_samples(loader) # -------------------------------------------------- def test_live_loader_with_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = LiveLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_read_samples_transformed(loader) def test_mem_loader_with_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = MemoryCachedLoader(cache_dir, src) loader2 = LiveLoader(cache_dir, loader, ops=[AppendStringOperation()], output=src) _test_loader_read_samples_transformed(loader2) def test_mem_out_loader_with_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = MemoryCachedLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_read_samples_transformed(loader) def test_disk_loader_with_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = FileCachedLoader(cache_dir, src) loader2 = LiveLoader(cache_dir, loader, ops=[AppendStringOperation()], output=src) _test_loader_read_samples_transformed(loader2) def test_disk_out_loader_with_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = FileCachedLoader(cache_dir, src, ops=[AppendStringOperation()], output=src) _test_loader_read_samples_transformed(loader) # -------------------------------------------------- def test_live_loader_with_multiplier_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader = LiveLoader(cache_dir, src, ops=ops, output=src) _test_loader_read_samples_x2(loader) def test_mem_out_loader_with_multiplier_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader = MemoryCachedLoader(cache_dir, src, ops=ops, output=src) _test_loader_read_samples_x2(loader) def test_disk_out_loader_with_multiplier_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader = FileCachedLoader(cache_dir, src, ops=ops, output=src) _test_loader_read_samples_x2(loader) def test_mem_loader_with_multiplier_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = MemoryCachedLoader(cache_dir, src) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader2 = LiveLoader(cache_dir, loader, ops=ops, output=src) _test_loader_read_samples_x2(loader2) def test_disk_loader_with_multiplier_ops(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = FileCachedLoader(cache_dir, src) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader2 = LiveLoader(cache_dir, loader, ops=ops, output=src) _test_loader_read_samples_x2(loader2) # -------------------------------------------------- def test_live_loader_with_multiplier_ops_between(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader = LiveLoader(cache_dir, src, ops=ops, output=src) _test_loader_read_samples_x2_between(loader) def test_mem_out_loader_with_multiplier_ops_between(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader = MemoryCachedLoader(cache_dir, src, ops=ops, output=src) _test_loader_read_samples_x2_between(loader) def test_disk_out_loader_with_multiplier_ops_between(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader = FileCachedLoader(cache_dir, src, ops=ops, output=src) _test_loader_read_samples_x2_between(loader) def test_mem_loader_with_multiplier_ops_between(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = MemoryCachedLoader(cache_dir, src) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader2 = LiveLoader(cache_dir, loader, ops=ops, output=src) _test_loader_read_samples_x2_between(loader2) def test_disk_loader_with_multiplier_ops_between(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = FileCachedLoader(cache_dir, src) ops = [AugmentOperation(variants=2), AppendStringOperation()] loader2 = LiveLoader(cache_dir, loader, ops=ops, output=src) _test_loader_read_samples_x2_between(loader2) # -------------------------------------------------- def test_mem_loader_with_rng_no_reset(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = MemoryCachedLoader(cache_dir, src) _test_loader_with_rng_no_reset(loader) def test_live_loader_with_rng_no_reset(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = LiveLoader(cache_dir, src) _test_loader_with_rng_no_reset(loader) def test_disk_loader_with_rng_no_reset(tmpdir): cache_dir = _prepare_dir(tmpdir) src = SourceTest({'samples-dir': str(tmpdir), 'test-split': 2, 'val-split': 2}) loader = FileCachedLoader(cache_dir, src) _test_loader_with_rng_no_reset(loader) # --------------------------------------------------------------------------------- def _test_loader_meta(loader): loader.begin_read_samples() assert loader.meta['some-meta'] == 'meta-value' loader.end_read_samples() def _test_loader_num_samples(loader): loader.begin_read_samples() assert loader.num_samples('train') == 8 assert loader.num_samples('test') == 1 assert loader.num_samples('val') == 1 loader.end_read_samples() def _test_loader_read_samples(loader): loader.begin_read_samples() train_samples = loader.read_samples('train', 0, loader.num_samples('train')) assert list(map(lambda s: s.x, train_samples)) == \ ['content8', 'content2', 'content9', 'content3', 'content5', 'content7'] assert len(train_samples) == 6 val_samples = loader.read_samples('val', 0, loader.num_samples('val')) assert list(map(lambda s: s.x, val_samples)) == \ ['content0', 'content1'] assert len(val_samples) == 2 test_samples = loader.read_samples('test', 0, loader.num_samples('test')) assert list(map(lambda s: s.x, test_samples)) == \ ['content4', 'content6'] assert len(test_samples) == 2 loader.end_read_samples() def _test_loader_read_samples_transformed(loader): loader.begin_read_samples() train_samples = loader.read_samples('train', 0, loader.num_samples('train')) assert list(map(lambda s: s.x, train_samples)) == \ ['content8-hello-transformed', 'content2-hello-transformed', 'content9-hello-transformed', 'content3-hello-transformed', 'content5-hello-transformed', 'content7-hello-transformed'] assert len(train_samples) == 6 val_samples = loader.read_samples('val', 0, loader.num_samples('val')) assert list(map(lambda s: s.x, val_samples)) == \ ['content0-hello-transformed', 'content1-hello-transformed'] assert len(val_samples) == 2 test_samples = loader.read_samples('test', 0, loader.num_samples('test')) assert list(map(lambda s: s.x, test_samples)) == \ ['content4-hello-transformed', 'content6-hello-transformed'] assert len(test_samples) == 2 loader.end_read_samples() def _test_loader_read_samples_x2(loader): loader.begin_read_samples() train_samples = loader.read_samples('train', 0, loader.num_samples('train')) assert list(map(lambda s: s.x, train_samples)) == \ ['content8-hello-transformed', 'content8-hello-transformed', 'content2-hello-transformed', 'content2-hello-transformed', 'content9-hello-transformed', 'content9-hello-transformed', 'content3-hello-transformed', 'content3-hello-transformed', 'content5-hello-transformed', 'content5-hello-transformed', 'content7-hello-transformed', 'content7-hello-transformed', ] assert len(train_samples) == 12 val_samples = loader.read_samples('val', 0, loader.num_samples('val')) assert list(map(lambda s: s.x, val_samples)) == \ ['content0-hello-transformed', 'content0-hello-transformed', 'content1-hello-transformed', 'content1-hello-transformed'] assert len(val_samples) == 4 test_samples = loader.read_samples('test', 0, loader.num_samples('test')) assert list(map(lambda s: s.x, test_samples)) == \ ['content4-hello-transformed', 'content4-hello-transformed', 'content6-hello-transformed', 'content6-hello-transformed'] assert len(test_samples) == 4 loader.end_read_samples() def _test_loader_read_samples_x2_between(loader): loader.begin_read_samples() train_samples = loader.read_samples('train', 1, 6) assert list(map(lambda s: s.x, train_samples)) == \ ['content8-hello-transformed', 'content2-hello-transformed', 'content2-hello-transformed', 'content9-hello-transformed', 'content9-hello-transformed', 'content3-hello-transformed'] def _test_loader_with_rng_no_reset(loader): loader.begin_read_samples() sample = loader.read_samples('train', 0)[0] rnum = sample.rng.randint(1, 1000000) sample = loader.read_samples('train', 0)[0] assert rnum != sample.rng.randint(1, 1000000) loader.end_read_samples() def _prepare_dir(tmpdir): for i in range(0, 10): path = tmpdir.join(f"file{i}.test") path.write("content" + str(i)) cache_dir = tmpdir.mkdir('.cache') return str(cache_dir) @source('test-source', 'A test source.', input_patterns="**/*.test") # pylint: disable=W0223 class SourceTest(SourcePlugin): def __init__(self, args=None): self.files = None super().__init__(args or {}) def begin_read_samples(self): if self.files: return self.meta['some-meta'] = 'meta-value' self.files = self.scan_and_split_files() def num_samples(self, split: str) -> int: return len(self.files[split]) def read_samples(self, split, index, n=1): items = self.files[split][index:index+n] items = [(Path(filename).read_text(), meta) for filename, meta in items] res = [] for item, meta in items: rng = random.Random(str(self.random_seed) + meta['filename']) res.append(Sample(item, None, meta.copy(), rng)) return res def transform(self, sample): sample.x = sample.x + '-transformed' sample.y = None return sample def hash(self, state: str) -> str: return super().hash(state + self.hash_files(self.files)) @operation('append') class AppendStringOperation(OperationPlugin): type = str def transform(self, data, rng): return data + "-hello"
40.672941
98
0.695476
be16002996752adf86c45119f92a9f2237354d26
15,626
py
Python
django_backend/backend/apps.py
holg/django_backend
6cef76a378664e6621619862e6db476788a58992
[ "BSD-3-Clause" ]
null
null
null
django_backend/backend/apps.py
holg/django_backend
6cef76a378664e6621619862e6db476788a58992
[ "BSD-3-Clause" ]
null
null
null
django_backend/backend/apps.py
holg/django_backend
6cef76a378664e6621619862e6db476788a58992
[ "BSD-3-Clause" ]
null
null
null
from collections import OrderedDict from django.conf.urls import include, url from django.contrib.auth import get_permission_codename try: # htr dj3 fix from django.urls import reverse except Exception: from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from django_viewset import ViewSet, ModelViewSet from floppyforms.__future__.models import ModelForm, modelform_factory from ..forms import formfield_callback from ..group import Group from .preview import Preview from .inline_related import InlineRelatedObject from .columns import BackendColumn from .forms import ActionForm, SortForm from .urlname_helper import URLNames from .utils import TemplateHintProvider DEFAULT_REGISTRY = 'default' class BaseBackend(TemplateHintProvider, ViewSet): # Import the branch and language globals here to make them available as # class attributes. This is useful, so that view instances that have a # ``self.backend`` variable attached don't need to import from django_backend. # This is needed in some circumstances to prevent circular imports. from django_backend.state import language from django_backend.state import site namespace = 'django_backend' verbose_name = None verbose_name_plural = None template_hint = None def __init__(self, id, verbose_name=None, verbose_name_plural=None, parent=None, registry=DEFAULT_REGISTRY, group=None): self.id = id if verbose_name: self.verbose_name = verbose_name if verbose_name_plural: self.verbose_name_plural = verbose_name_plural self.parent = parent self.registry = registry self.group = group self._registries = {} self._groups = {} self.base = self while self.base and self.base.parent: self.base = self.base.parent urlname_prefix = self.get_urlname_prefix() super(BaseBackend, self).__init__(urlname_prefix=urlname_prefix) def __repr__(self): id = self.id parent = self.parent while parent: id = parent.id + '.' + id parent = parent.parent return '<{0}: {1}>'.format( self.__class__.__name__, id) def reverse(self, viewname, urlconf=None, args=None, kwargs=None, prefix=None, current_app=None): from django.contrib.sites.models import Site if kwargs is None: kwargs = {} kwargs.setdefault('site', Site.objects.get_current().pk) kwargs.setdefault('language', self.language.active) return reverse(viewname, urlconf=urlconf, args=args, kwargs=kwargs, prefix=prefix, current_app=current_app) def get_template_hints(self, name_provider, hint_providers): return [self.template_hint] + self.FEATURES.keys() def register(self, backend_class, registry=DEFAULT_REGISTRY, group=None, **kwargs): """ Enables nested backends. There are two different registries in use. The argument `registry` is refering to a internal categorization. Usually a backend goes into the 'default' registry, but there are special cases like backends only used for inline-edit modals. Those should have a extra registry, so that they live in a extra url-namespace etc. The other registry is the called `group`. This is only used in the frontend to categorize backends by there relations. It's for example used to group the backends into the different boxes in the sidebar. """ backend = backend_class( parent=self, registry=registry, group=group, **kwargs) self._registries.setdefault(registry, []).append(backend) if group is not None: group = self.get_group(group) group.append(backend) return backend def get_group(self, id): """ Get a registered group by id. If it is not yet registered, it will create a new group with the given ID and register this. If a existing group is given, it will be reused and registered if it is not yet already. """ if isinstance(id, Group): group = id elif id in self._groups: group = self._groups[id] else: group = Group(id) if group.id not in self._groups: self._groups[group.id] = group return group def get_registered(self, registry=DEFAULT_REGISTRY, include_children=True): backends = [] if registry in self._registries: backends.extend(self._registries[registry]) if include_children: for child in self._registries.get(registry, []): backends.extend( child.get_registered(registry, include_children=include_children)) return backends def find(self, id=None, model=None, registry=DEFAULT_REGISTRY): """ Find a backend with the given ``id`` which is registered in ``registry``. The logic is to look inside the backend you call this method on if there is a backend that matches. If that's not the case than go up to the parent and try on this level. """ assert id or model, 'Either provide ``id`` or ``model``.' if registry in self._registries: backend_list = self._registries[registry] for backend in backend_list: id_matches = id and backend.id == id backend_model = getattr(backend, 'model', None) model_matches = model and backend_model == model if id_matches or model_matches: return backend if self.parent: try: return self.parent.find( id=id, model=model, registry=registry) except ValueError: pass raise ValueError( 'Cannot find a backend with id `{0}` or model `{1}` in the ' 'registry `{2}`'.format( id, model, registry)) def __getitem__(self, key): ''' Allow lookups by backend id: >>> backend['menu'] <MenuBackend: menu> ''' try: return self.find(id=key) except ValueError as e: raise KeyError(e.args[0]) @property def urlnames(self): return URLNames(self) def get_urlname_prefix(self): prefix = self.id if self.registry != DEFAULT_REGISTRY: prefix = ( self.registry + self.urlname_separator + prefix) if self.parent and self.parent.urlname_prefix: prefix = ( self.parent.urlname_prefix + self.urlname_separator + prefix) return prefix def get_view_kwargs(self, viewset_view): kwargs = super(BaseBackend, self).get_view_kwargs(viewset_view) if hasattr(viewset_view.view, 'backend'): kwargs['backend'] = self return kwargs @property def groups(self): return sorted( self._groups.values(), key=lambda g: g.position) def get_children_urls(self): ''' Return the urls of all registered backends. ''' urls = [] for registry, backends in self._registries.items(): for backend in backends: regex = r'^{0}{1}/'.format( registry + '/' if registry != DEFAULT_REGISTRY else '', backend.id) urls.append( url(regex, include(backend.get_urls()))) return urls def get_urls(self): viewset_urls = super(BaseBackend, self).get_urls() urls = viewset_urls + self.get_children_urls() return urls def get_features(self): return {} # none (so far) @property def FEATURES(self): try: return self._FEATURES except AttributeError: self._FEATURES = self.get_features() return self._FEATURES def has_perm(self, user, perm, obj=None): # If it does not have a '.' in the permission name (like 'list'), it # wants to check for a model permission. So we user the access_backend # instead since the index has no 'list' permission assigned. if '.' not in perm: return user.has_perm('django_backend.access_backend') else: return user.has_perm(perm, obj) class BaseModelBackend(ModelViewSet, BaseBackend): form_class = ModelForm filter_form_class = None action_form_class = ActionForm sort_form_class = SortForm paginate_by = 12 order_by = None readonly_fields = () preview = Preview() inline_related_object = InlineRelatedObject() def __init__(self, *args, **kwargs): ModelViewSet.__init__(self, model=kwargs.pop('model')) BaseBackend.__init__(self, *args, **kwargs) self.model_opts = self.model._meta if not self.verbose_name: self.verbose_name = self.model._meta.verbose_name if not self.verbose_name_plural: self.verbose_name_plural = self.model._meta.verbose_name_plural def get_queryset(self): return self.model._default_manager.all() def prepare_origin(self, origin): return origin def prepare_object(self, origin, object): return object def save_object(self, origin, object): object.save() return object def dismiss_object(self, origin, object): return object def delete_object(self, object): object.delete() def get_to_be_deleted_objects(self, objects, user): # Most of this code is ripped of # ``django.contrib.admin.util.get_deleted_objects`` with some changes # to better integrate it with django_backend. from django_backend.compat import NestedObjects using = 'default' collector = NestedObjects(using=using) collector.collect(objects) perms_needed = set() backend = self def format_callback(obj): try: obj_backend = backend.find(model=obj.__class__) except ValueError: obj_backend = None if obj_backend: if not obj_backend.has_perm(user=user, perm='delete', obj=obj): perms_needed.add(obj._meta.verbose_name) return { 'backend': obj_backend, 'object': obj, 'user': user } to_delete = collector.nested(format_callback) protected = [format_callback(obj) for obj in collector.protected] return to_delete, perms_needed, protected def has_perm(self, user, perm, obj=None): if '.' not in perm: perm = '{app_label}.{permission_name}'.format( app_label=self.model_opts.app_label, permission_name=get_permission_codename(perm, self.model_opts)) return user.has_perm(perm, obj) def get_form_initial(self, object): return {} def get_form_class(self, object=None, form_class=None): return modelform_factory( self.model, form=form_class or self.form_class, formfield_callback=formfield_callback) def get_preview(self, object): from django.utils import translation with translation.override(self.language.active): return self.preview.render({'object': object}) def get_list_actions(self): return {} def get_available_list_actions(self, user): ''' Returns the actions defined by ``get_list_actions``, sorted by position and filtered by permission. ''' available_actions = [] for name, action in self.get_list_actions().items(): if action.check_permission(backend=self, user=user): available_actions.append((name, action)) return OrderedDict( list(sorted( available_actions, key=lambda action_tuple: action_tuple[1].position))) def get_action_form_class(self): return self.action_form_class def get_filter_form_class(self): return self.filter_form_class def get_sort_form_class(self): return self.sort_form_class def get_list_columns(self): return { 'name': BackendColumn( _('Name'), 'django_backend/columns/_name.html', position=0), 'buttons': BackendColumn( '', 'django_backend/columns/_buttons.html', position=1000), } @property def list_columns(self): return OrderedDict(list(sorted(self.get_list_columns().items(), cmp=lambda x,y: cmp(x[1].position, y[1].position)))) def get_select_columns(self): return { 'name': BackendColumn( _('Name'), 'django_backend/columns/_plain_name.html', position=0), 'select': BackendColumn( '', 'django_backend/columns/_select.html', position=1000), } @property def select_columns(self): return OrderedDict(list(sorted(self.get_select_columns().items(), cmp=lambda x,y: cmp(x[1].position, y[1].position)))) def get_form_tab_definition(self): return {} def get_form_tabs(self, form): tab_definition = self.get_form_tab_definition() self.add_fallback_form_fields(tab_definition, form) tab_definition_tuples = ( (key, tab) for key, tab in tab_definition.items() if tab.rows) return OrderedDict( sorted( tab_definition_tuples, key=lambda t: t[1].position)) def add_fallback_form_fields(self, tab_definition, form): from .form_tabs import FormTab if not 'content' in tab_definition: tab_definition['content'] = FormTab( _('Content'), []) self.add_fallback_form_fields_to_tab(tab_definition['content'], tab_definition, form) def add_fallback_form_fields_to_tab(self, tab, tab_definition, form): from .form_tabs import FormRow, FormField tabs_fields = [] for _tab in tab_definition.values(): tabs_fields = tabs_fields + _tab.fields tabs_fieldnames = [f.field for f in tabs_fields if hasattr(f, 'field')] for form_fieldname, form_field in form.fields.items() + form.composite_fields.items(): if form_fieldname in tabs_fieldnames: continue if form_field.widget.is_hidden: continue tab._rows.append(FormRow(form_field.label, [ FormField(form_fieldname) ])) tabs_fieldnames.append(form_fieldname) def get_readonly_fields(self, form, object): """ Return the readonly fields. You can override this to mark some fields as readonly depending on the form or object. By default it returns the list given in the ``readonly_fields`` attribute. For example you can use it to make fields only editable during creation. Those that are then edited can then marked as readonly. """ return list(self.readonly_fields)
34.801782
126
0.614233
955bc47138927807e0f96a4bf22c1e0aa2c664f6
7,916
py
Python
kubernetes_asyncio/client/models/apps_v1beta1_deployment_rollback.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/apps_v1beta1_deployment_rollback.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/apps_v1beta1_deployment_rollback.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.14.7 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class AppsV1beta1DeploymentRollback(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_version': 'str', 'kind': 'str', 'name': 'str', 'rollback_to': 'AppsV1beta1RollbackConfig', 'updated_annotations': 'dict(str, str)' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'name': 'name', 'rollback_to': 'rollbackTo', 'updated_annotations': 'updatedAnnotations' } def __init__(self, api_version=None, kind=None, name=None, rollback_to=None, updated_annotations=None): # noqa: E501 """AppsV1beta1DeploymentRollback - a model defined in OpenAPI""" # noqa: E501 self._api_version = None self._kind = None self._name = None self._rollback_to = None self._updated_annotations = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind self.name = name self.rollback_to = rollback_to if updated_annotations is not None: self.updated_annotations = updated_annotations @property def api_version(self): """Gets the api_version of this AppsV1beta1DeploymentRollback. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources # noqa: E501 :return: The api_version of this AppsV1beta1DeploymentRollback. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this AppsV1beta1DeploymentRollback. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this AppsV1beta1DeploymentRollback. # noqa: E501 :type: str """ self._api_version = api_version @property def kind(self): """Gets the kind of this AppsV1beta1DeploymentRollback. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this AppsV1beta1DeploymentRollback. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this AppsV1beta1DeploymentRollback. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this AppsV1beta1DeploymentRollback. # noqa: E501 :type: str """ self._kind = kind @property def name(self): """Gets the name of this AppsV1beta1DeploymentRollback. # noqa: E501 Required: This must match the Name of a deployment. # noqa: E501 :return: The name of this AppsV1beta1DeploymentRollback. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this AppsV1beta1DeploymentRollback. Required: This must match the Name of a deployment. # noqa: E501 :param name: The name of this AppsV1beta1DeploymentRollback. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def rollback_to(self): """Gets the rollback_to of this AppsV1beta1DeploymentRollback. # noqa: E501 :return: The rollback_to of this AppsV1beta1DeploymentRollback. # noqa: E501 :rtype: AppsV1beta1RollbackConfig """ return self._rollback_to @rollback_to.setter def rollback_to(self, rollback_to): """Sets the rollback_to of this AppsV1beta1DeploymentRollback. :param rollback_to: The rollback_to of this AppsV1beta1DeploymentRollback. # noqa: E501 :type: AppsV1beta1RollbackConfig """ if rollback_to is None: raise ValueError("Invalid value for `rollback_to`, must not be `None`") # noqa: E501 self._rollback_to = rollback_to @property def updated_annotations(self): """Gets the updated_annotations of this AppsV1beta1DeploymentRollback. # noqa: E501 The annotations to be updated to a deployment # noqa: E501 :return: The updated_annotations of this AppsV1beta1DeploymentRollback. # noqa: E501 :rtype: dict(str, str) """ return self._updated_annotations @updated_annotations.setter def updated_annotations(self, updated_annotations): """Sets the updated_annotations of this AppsV1beta1DeploymentRollback. The annotations to be updated to a deployment # noqa: E501 :param updated_annotations: The updated_annotations of this AppsV1beta1DeploymentRollback. # noqa: E501 :type: dict(str, str) """ self._updated_annotations = updated_annotations def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AppsV1beta1DeploymentRollback): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
34.872247
295
0.640222
b1d70f829e2394c3e3accf2c7dab8d2b55a06f92
1,524
py
Python
insynth/perturbators/__init__.py
mlxyz/insynth
0d2ad6d6177944978e6d85990b9991a614d75b68
[ "MIT" ]
null
null
null
insynth/perturbators/__init__.py
mlxyz/insynth
0d2ad6d6177944978e6d85990b9991a614d75b68
[ "MIT" ]
1
2021-12-06T20:46:20.000Z
2021-12-06T20:48:37.000Z
insynth/__init__.py
mlxyz/insynth
0d2ad6d6177944978e6d85990b9991a614d75b68
[ "MIT" ]
1
2021-12-06T20:45:50.000Z
2021-12-06T20:45:50.000Z
# Copyright (c) 2022, Chair of Software Technology # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # # - Neither the name of the University Mannheim nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
117.230769
758
0.803806
ccfac00df7279754dbbd869e46e7c2d840fa8dc8
1,717
py
Python
pos-directory.py
lothelanor/actib
c19ba559f2d5810e505ce39abf31e21ba212c8e9
[ "MIT" ]
7
2021-03-23T12:28:59.000Z
2022-03-02T18:03:34.000Z
pos-directory.py
lothelanor/actib
c19ba559f2d5810e505ce39abf31e21ba212c8e9
[ "MIT" ]
2
2021-01-08T13:08:47.000Z
2021-01-12T20:19:07.000Z
pos-directory.py
lothelanor/actib
c19ba559f2d5810e505ce39abf31e21ba212c8e9
[ "MIT" ]
null
null
null
import pathlib from datetime import datetime import glob import os import sys import actibpos from multiprocessing import Pool if len(sys.argv) < 2: print("error: you must pass a directory as argument to the script") sys.exit(1) indir = sys.argv[1] now = datetime.now() dt = now.strftime("%Y%m%d_%H-%M-%S") segoutpath = pathlib.Path("output-"+dt+"/seg/") posoutpath = pathlib.Path("output-"+dt+"/pos/") segoutpath.mkdir(parents=True, exist_ok=True) posoutpath.mkdir(parents=True, exist_ok=True) POOL = Pool(processes=3) def main(): filenames = pathlib.Path(indir).rglob('*.xml') for filename in sorted(filenames, key=lambda fn: str(fn)): print("treating %s" % filename) basename = os.path.basename(filename) if basename.startswith("_"): continue noext = os.path.splitext(basename)[0] posoutfilename = os.path.join(posoutpath, noext+".txt") segoutfilename = os.path.join(segoutpath, noext+".txt") print("apply_async") POOL.apply_async(actibpos.processfiles, args=(filename, segoutfilename, posoutfilename, "seg:pos", "bdrc-tei")) filenames = pathlib.Path(indir).rglob('*.txt') for filename in sorted(filenames, key=lambda fn: str(fn)): print("treating %s" % filename) basename = os.path.basename(filename) if basename.startswith("_"): continue noext = os.path.splitext(basename)[0] posoutfilename = os.path.join(posoutpath, noext+".txt") segoutfilename = os.path.join(segoutpath, noext+".txt") POOL.apply_async(actibpos.processfiles, args=(filename, segoutfilename, posoutfilename, "seg:pos", "txt")) POOL.close() POOL.join() main()
33.666667
119
0.665696
dfb88ca196f51ff6ce1e08080069487f8855b315
393
py
Python
hitchike/wsgi.py
tgy/hitchike
b73c8714f584eeeb432c7c8df706dd8b944d632c
[ "MIT" ]
4
2016-02-17T21:30:23.000Z
2016-02-20T11:10:05.000Z
hitchike/wsgi.py
tgy/hitchike
b73c8714f584eeeb432c7c8df706dd8b944d632c
[ "MIT" ]
10
2020-09-14T07:56:53.000Z
2020-09-14T07:56:55.000Z
hitchike/wsgi.py
tgy/hitchike
b73c8714f584eeeb432c7c8df706dd8b944d632c
[ "MIT" ]
null
null
null
""" WSGI config for hitchike project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "hitchike.settings") application = get_wsgi_application()
23.117647
78
0.78626
04b07f507d1328bfdb06f27e0620cacfebeadc2d
1,478
py
Python
test/knxip_tests/connectionstate_request_test.py
Trance-Paradox/xknx
d5603361080f96aafd19c14d17fb1ff391064b3f
[ "MIT" ]
null
null
null
test/knxip_tests/connectionstate_request_test.py
Trance-Paradox/xknx
d5603361080f96aafd19c14d17fb1ff391064b3f
[ "MIT" ]
null
null
null
test/knxip_tests/connectionstate_request_test.py
Trance-Paradox/xknx
d5603361080f96aafd19c14d17fb1ff391064b3f
[ "MIT" ]
null
null
null
"""Unit test for KNX/IP ConnectionStateRequests.""" import pytest from xknx import XKNX from xknx.exceptions import CouldNotParseKNXIP from xknx.knxip import HPAI, ConnectionStateRequest, KNXIPFrame class TestKNXIPConnectionStateRequest: """Test class for KNX/IP ConnectionStateRequests.""" def test_connection_state_request(self): """Test parsing and streaming connection state request KNX/IP packet.""" raw = bytes.fromhex("06 10 02 07 00 10 15 00 08 01 C0 A8 C8 0C C3 B4") xknx = XKNX() knxipframe = KNXIPFrame(xknx) knxipframe.from_knx(raw) assert isinstance(knxipframe.body, ConnectionStateRequest) assert knxipframe.body.communication_channel_id == 21 assert knxipframe.body.control_endpoint == HPAI( ip_addr="192.168.200.12", port=50100 ) connectionstate_request = ConnectionStateRequest( xknx, communication_channel_id=21, control_endpoint=HPAI(ip_addr="192.168.200.12", port=50100), ) knxipframe2 = KNXIPFrame.init_from_body(connectionstate_request) assert knxipframe2.to_knx() == raw def test_from_knx_wrong_info(self): """Test parsing and streaming wrong ConnectionStateRequest.""" raw = bytes((0x06, 0x10, 0x02, 0x07, 0x00, 0x010)) xknx = XKNX() knxipframe = KNXIPFrame(xknx) with pytest.raises(CouldNotParseKNXIP): knxipframe.from_knx(raw)
35.190476
80
0.68065
8d224c8754b6b73fd7030601793c536af6b05063
1,251
py
Python
activitysim/abm/models/summarize.py
mxndrwgrdnr/activitysim
722d6e36b2210d5d24dfa2ac4a3504c1e8f75336
[ "BSD-3-Clause" ]
85
2018-02-16T15:08:13.000Z
2022-03-23T15:08:08.000Z
activitysim/abm/models/summarize.py
mxndrwgrdnr/activitysim
722d6e36b2210d5d24dfa2ac4a3504c1e8f75336
[ "BSD-3-Clause" ]
311
2018-01-16T01:59:47.000Z
2022-03-29T00:46:40.000Z
activitysim/abm/models/summarize.py
mxndrwgrdnr/activitysim
722d6e36b2210d5d24dfa2ac4a3504c1e8f75336
[ "BSD-3-Clause" ]
63
2018-02-05T15:27:51.000Z
2022-03-04T20:36:33.000Z
# ActivitySim # See full license in LICENSE.txt. import logging import sys import pandas as pd from activitysim.core import pipeline from activitysim.core import inject from activitysim.core import config from activitysim.core.config import setting logger = logging.getLogger(__name__) @inject.step() def write_summaries(output_dir): summary_settings_name = 'output_summaries' summary_file_name = 'summaries.txt' summary_settings = setting(summary_settings_name) if summary_settings is None: logger.info("No {summary_settings_name} specified in settings file. Nothing to write.") return summary_dict = summary_settings mode = 'wb' if sys.version_info < (3,) else 'w' with open(config.output_file_path(summary_file_name), mode) as output_file: for table_name, column_names in summary_dict.items(): df = pipeline.get_table(table_name) for c in column_names: n = 100 empty = (df[c] == '') | df[c].isnull() print(f"\n### {table_name}.{c} type: {df.dtypes[c]} rows: {len(df)} ({empty.sum()} empty)\n\n", file=output_file) print(df[c].value_counts().nlargest(n), file=output_file)
28.431818
111
0.665867
99d7abd44129a6ae699dc943bb9e0c88fa7866a6
1,219
py
Python
examples/holoclean_repair_example.py
cgebest/holoclean
f3032819d5c5353cfcd340fab9d94f1a0cf63913
[ "Apache-2.0" ]
null
null
null
examples/holoclean_repair_example.py
cgebest/holoclean
f3032819d5c5353cfcd340fab9d94f1a0cf63913
[ "Apache-2.0" ]
null
null
null
examples/holoclean_repair_example.py
cgebest/holoclean
f3032819d5c5353cfcd340fab9d94f1a0cf63913
[ "Apache-2.0" ]
null
null
null
import holoclean from detect import * from repair.featurize import * # 1. Setup a HoloClean session. hc = holoclean.HoloClean( db_name='holo', domain_thresh_1=0.0, domain_thresh_2=0.0, weak_label_thresh=0.99, max_domain=10000, cor_strength=0.6, nb_cor_strength=0.8, weight_decay=0.01, learning_rate=0.001, threads=1, batch_size=1, verbose=True, timeout=3 * 60000, print_fw=True, ).session # 2. Load training data and denial constraints. hc.load_data('hospital', '../testdata/hospital/hospital.csv') hc.load_dcs('../testdata/hospital/hospital_constraints.txt') hc.ds.set_constraints(hc.get_dcs()) # 3. Detect erroneous cells using these two detectors. detectors = [NullDetector(), ViolationDetector()] hc.detect_errors(detectors) # 4. Repair errors utilizing the defined features. hc.generate_domain() hc.run_estimator() featurizers = [ OccurAttrFeaturizer(), FreqFeaturizer(), ConstraintFeaturizer(), ] hc.repair_errors(featurizers) # 5. Evaluate the correctness of the results. report = hc.evaluate(fpath='../testdata/hospital/hospital_clean.csv', tid_col='tid', attr_col='attribute', val_col='correct_val')
25.395833
69
0.709598
72d4c064d32319798f10ed1ce27829fa13c0611f
11,482
py
Python
models.py
kovrov/wakebreaker
cc9b38351dad5b71d0be913a31202d031e3ff65b
[ "BSD-3-Clause" ]
null
null
null
models.py
kovrov/wakebreaker
cc9b38351dad5b71d0be913a31202d031e3ff65b
[ "BSD-3-Clause" ]
null
null
null
models.py
kovrov/wakebreaker
cc9b38351dad5b71d0be913a31202d031e3ff65b
[ "BSD-3-Clause" ]
null
null
null
import math import random import pyglet from pyglet.gl import * from util import Vector3 import renderer import scene import fx WORLD_WIDTH = 175 WORLD_HEIGHT = 175 MAX_SPEED = 1.0 # boat's maximum speed MAX_CHECKPOINTS = 16 class Racer: def __init__(self, model_manager, model): # get the 3d model data if model == scene.BOAT1: self.ri = renderer.RenderInstance(model_manager.getBoat1()) else: # model == BOAT2: self.ri = renderer.RenderInstance(model_manager.getBoat2()) # rotate so he's always right side up self.ri.rotation[:] = -90.0, 0.0, 90.0 self.ri.scale[:] = 0.5, 0.5, 0.5 self.ri.position[:] = WORLD_WIDTH / 2.0, 0.0, WORLD_HEIGHT / 2.0 # update his rotation and direction rad = math.radians(self.ri.rotation.y) self.dir = Vector3(math.cos(rad), 0.0, math.sin(rad)) self.nextCPPos = Vector3() self.up = True # used in making the boat bob slight self.finished = False # whether or not we are done with the race self.speed = 0 # ship's current speed self.nextCheckPoint = 0 # which check point he's aiming for self.currLap = 0 # which lap he's on self.hasRotated = True # for rotation optimization # the water spray that shoots out behind the boat self.spray = fx.ParticleSystem(200, 15, self.ri.position, Vector3(0.0, 1.0, 0.0)) # Keeps the racer inside the seascape def boundsCheck(self): # check the player against each part fo the world, slow him down if he hit pos = self.ri.position.copy() if pos.x > WORLD_WIDTH: pos.x = WORLD_WIDTH self.speed = self.speed * 0.5 if pos.x < 0: pos.x = 0 self.speed = self.speed * 0.5 if pos.z > WORLD_HEIGHT: pos.z = WORLD_HEIGHT self.speed = self.speed * 0.5 if pos.z < 0: pos.z = 0 self.speed = self.speed * 0.5 # make the racer bob up and down if self.up and self.speed > 0: pos.y += 0.02 * self.speed elif self.speed > 0: pos.y -= 0.02 * self.speed if pos.y >= 0.2: self.up = False if pos.y < -0.05: self.up = True self.ri.position[:] = pos def rotate(self, r): self.hasRotated = True # this makes sure the rotation doesn't exceed 360 degrees if self.ri.rotation.y + r > 360.0 or self.ri.rotation.y + r < -360.0: self.ri.rotation.y = 0 self.ri.rotation.y += r def update(self): if self.hasRotated: # rotate the ship if needed rad = math.radians(self.ri.rotation.y) self.dir.x = math.cos(rad) self.dir.z = math.sin(rad) self.hasRotated = False # move him in self.ri.translate((self.speed * self.dir.x, 0, -self.dir.z * self.speed)) # Bounds check him against the world self.boundsCheck() # slow him down if self.speed - 0.01474 > 0: self.speed -= 0.01474 elif self.speed - 0.01474 < 0: self.speed += 0.03 # halt him if too slow if self.speed <= 0.04 and self.speed >= -0.04: self.speed = 0 # keep the particles with us self.updateSpray() def updateAI(self, player): # we hit an island, this on most cases, corrects the problem if self.speed < 0.3: self.increaseSpeed(0.025) # go around it self.dir.x = math.cos(math.radians(90.0)) self.dir.z = math.sin(math.radians(90.0)) self.hasRotated = False # move him in self.ri.translate((self.speed * self.dir.x, 0.0, -self.dir.z * self.speed)) else: self.increaseSpeed(0.025) # build a normalized direction vector desiredDir = self.ri.position - self.nextCPPos desiredDir.y = 0.0 mag = math.sqrt(desiredDir.x * desiredDir.x + desiredDir.z * desiredDir.z) n = 1.0 / mag desiredDir.x *= n desiredDir.z *= n # slow the AI down a little randFac = (8.0 + random.uniform(0.0, 0.00005)) / 10.0 finalX = -desiredDir.x * self.speed * randFac finalZ = -desiredDir.z * self.speed * randFac # make the boat "look" forward!! if finalZ < 0: k = 90.0 else: k = -90.0 self.ri.rotation.y = math.degrees(math.atan(finalX / finalZ)) + k # move the boat self.ri.translate((finalX, 0.0, finalZ)) # keep him in the water self.boundsCheck() # move the spray trail with him self.updateSpray() def updateSpray(self): # keep it the spray trail right with the boat self.spray.move(self.ri.position) # also keep it spraying in the right direction if self.speed > 0: newDir = Vector3(self.dir.x, 0.1, -self.dir.z) else: newDir = Vector3(0.0, 0.0, 0.0) self.spray.redirect(newDir) self.spray.update() def increaseSpeed(self, s): if self.speed < MAX_SPEED: self.speed += s if self.speed > MAX_SPEED: self.speed = MAX_SPEED # Renders the ship def render(self, renderer): # draw the ship renderer.render(self.ri) # draw the spray trail self.spray.render() class RaceCourse: # 1. Generates a random race course within the donut described by min and # max radius # 2. Adds racers to the race course and sets up the race course def __init__(self, center, minRadius, maxRadius, racers, model_manager): self.checkPoints = [renderer.RenderInstance(model_manager.getCheckPoint()) for i in xrange(MAX_CHECKPOINTS)] # calculate the angle apart each checkpoint has to be interval = math.pi * 2.0 / MAX_CHECKPOINTS angle = 0.0 for cp in self.checkPoints: x = math.cos(angle) * random.uniform(minRadius, maxRadius) + center.x z = math.sin(angle) * random.uniform(minRadius, maxRadius) + center.z cp.position[:] = x, 1.0, z cp.scale[:] = 1.0, 1.0, 1.0 cp.rotation[:] = -90.0, 0.0, 0.0 # advance the angle angle -= interval # set the racers and the amount of them self.racers = racers # place all the racers at the first checkpoint, each racer a bit behind # the one before him for racer in self.racers: # set everyone at the starting checkpoint racer.nextCheckPoint = 0 racer.CurrLap = 0 racer.ri.position[:] = self.checkPoints[0].position racer.nextCPPos[:] = self.checkPoints[0].position self.racers[0].rotate(90.0) # load the textures for the checkpoints self.cpOnTex = pyglet.image.load('checkpointon.png').get_texture() self.cpOffTex = pyglet.image.load('checkpointoff.png').get_texture() self.playerNextCP = 0 def render(self, ri): glPushMatrix() self.checkPoints[self.playerNextCP].renderData.texture = self.cpOnTex ri.render(self.checkPoints[self.playerNextCP]) self.checkPoints[self.playerNextCP].renderData.texture = None if self.playerNextCP + 1 == MAX_CHECKPOINTS: self.checkPoints[0].renderData.texture = self.cpOffTex ri.render(self.checkPoints[0]) self.checkPoints[0].renderData.texture = None else: self.checkPoints[self.playerNextCP + 1].renderData.texture = self.cpOffTex ri.render(self.checkPoints[self.playerNextCP + 1]) self.checkPoints[self.playerNextCP + 1].renderData.texture = None glPopMatrix() # Updates the racers, returns 1 if player won, -1 if player lost, and 0 # if race is still in progress def update(self): # loop through each racer for racer in self.racers: # see if he has collided with the next checkpoint nextCP = self.checkPoints[racer.nextCheckPoint].position pos = racer.ri.position dist = (nextCP.x - pos.x) * (nextCP.x - pos.x) + (nextCP.z - pos.z) * (nextCP.z - pos.z) radii = 3.0 * 3.0 if dist < radii: # the player has reached the next checkpoint # assign him to the next checkpoint CP = racer.nextCheckPoint + 1 # he has reached the last checkpoint if CP == MAX_CHECKPOINTS: # increment his lap count racer.currLap += 1 if racer.currLap == 3: # we have a winner racer.finished = True CP = 0 # assign him his new checkpoint racer.nextCheckPoint = CP racer.nextCPPos[:] = self.checkPoints[CP].position if self.racers[0] is racer: self.playerNextCP = CP return 1 class Seascape: def __init__(self, mm): # used in water animation self.texTranslate = 0 self.waterMoved = True self.models = [renderer.RenderInstance(mm.getRandomSeascapeModel()) for i in xrange(15)] for model in self.models: # generate a random x and z model.position[:] = random.uniform(0.0, WORLD_WIDTH), 0.0, random.uniform(0.0, WORLD_HEIGHT) # generate a random rotation model.rotation[:] = -90.0, random.uniform(0.0, 360.0), 0.0 # set up the renderInstance # Set up the sea floor vertices = ( (-2, 0.0, -2.0), (-2, 0.0, WORLD_HEIGHT / 2.0 + 2.0), (WORLD_WIDTH / 2.0 + 2.0, 0.0, -2.0), (WORLD_WIDTH / 2.0 + 2.0, 0.0, WORLD_HEIGHT / 2.0 + 2.0)) indices = (0, 1, 2, 2, 1, 3) uvmap = ((0.0, 0.0), (15.0, 0.0), (0.0, 15.0), (15.0, 15.0)) texture = pyglet.image.load('watertex.png').get_texture() self.sea = renderer.RenderInstance(renderer.RenderData(vertices, indices, uvmap, texture)) self.sea.position[:] = 0.0, 0.0, 0.0 # checks if anything collided with the islands def collided(self, pos, radius): for model in self.models: # if the distance between the two points is more than the two radii, # no collision calculate the distance squared dist = (model.position.x - pos.x) * (model.position.x - pos.x) + (model.position.z - pos.z) * (model.position.z - pos.z) radii = (radius + 1.5) * (radius + 1.5) if dist < radii: return True return False # renders the seascape def render(self, renderer): # render all the models first for model in self.models: renderer.render(model) # draw reflection model.scale[:] = 2.0, -2.0, 2.0 renderer.render(model) model.scale[:] = 2.0, 2.0, 2.0 # make sure the m_texTranslate never goes out of bounds if self.waterMoved: self.texTranslate -= 0.005 else: self.texTranslate += 0.005 if self.texTranslate > 15.0: self.waterMoved = True if self.texTranslate < -15.0: self.waterMoved = False # Now render the water plane # We render it 4 times, so that it forms a giant block glPushMatrix() # set up blending glEnable(GL_BLEND) glColor4f(1.0, 1.0, 1.0, 0.6) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) self.renderWater(renderer) glTranslatef(0.0, 0.0, WORLD_HEIGHT / 2 + 4) self.renderWater(renderer) glTranslatef(WORLD_HEIGHT / 2.0 + 4.0, 0.0, 0.0) self.renderWater(renderer) glTranslatef(0.0, 0.0, -(WORLD_HEIGHT / 2.0 + 4.0)) self.renderWater(renderer) # turn of blending and restore the original color glDisable(GL_BLEND) glColor4f(1.0, 1.0, 1.0, 1.0) glPopMatrix() # Renders the water def renderWater(self, renderer): glMatrixMode(GL_TEXTURE) # shift the texture coords to simulate motion glTranslatef(self.texTranslate, self.texTranslate, 0.0) glRotatef(35.0, 0.0, 0.0, 1.0) glColor4f(1.0, 1.0, 1.0, 0.6) # render the first sea quad renderer.render(self.sea) # reset the texture matrix glLoadIdentity() # now scale and move the tex coords glScalef(0.7, 0.7, 0.7) glTranslatef(-self.texTranslate, 0.0, 0.0) # change the transparency glColor4f(1.0, 1.0, 1.0, 0.35) # render another water quad just slightly above the previous one glMatrixMode(GL_MODELVIEW) self.sea.translate((0.0, 0.1, 0.0)) renderer.render(self.sea) self.sea.translate((0.0 ,-0.1, 0.0)) glMatrixMode(GL_TEXTURE) # reset the texture matrix again glLoadIdentity() # change back to modelview glMatrixMode(GL_MODELVIEW)
33.770588
124
0.657986
c49547479022ec05e10bc4631bee5db686a7a732
1,922
py
Python
benchmark/startPyquil2694.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2694.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2694.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=43 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(3) # number=16 prog += CZ(0,3) # number=17 prog += RX(-0.5686282702997527,3) # number=32 prog += H(3) # number=18 prog += H(3) # number=26 prog += CZ(0,3) # number=27 prog += H(3) # number=28 prog += X(3) # number=21 prog += RX(0.4241150082346221,2) # number=33 prog += CNOT(0,3) # number=22 prog += CNOT(0,3) # number=12 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += H(0) # number=5 prog += H(1) # number=6 prog += H(2) # number=23 prog += CZ(1,2) # number=24 prog += H(2) # number=25 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=34 prog += CZ(2,0) # number=35 prog += H(0) # number=36 prog += H(0) # number=40 prog += CZ(2,0) # number=41 prog += H(0) # number=42 prog += Z(2) # number=38 prog += CNOT(2,0) # number=39 prog += CNOT(2,0) # number=31 prog += H(0) # number=9 prog += Y(0) # number=14 prog += Y(0) # number=15 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2694.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
25.626667
64
0.566077
2d2d5197872f08ac2a198546d6ea64299b7664e0
605
py
Python
users/models.py
DeepinSC/Pikachu-Housing
453201e19812e356106c071bbf9a306931d14fa7
[ "Apache-2.0" ]
1
2019-03-23T18:49:31.000Z
2019-03-23T18:49:31.000Z
users/models.py
DeepinSC/Pikachu-Housing
453201e19812e356106c071bbf9a306931d14fa7
[ "Apache-2.0" ]
null
null
null
users/models.py
DeepinSC/Pikachu-Housing
453201e19812e356106c071bbf9a306931d14fa7
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from department.models import Department from housing.models import House class UserProfile(models.Model): user = models.OneToOneField(User, related_name="profile") department = models.ForeignKey(Department, null=True, blank=True, related_name="user") viewed_houses = models.ManyToManyField(House, blank=True, related_name="viewed_user") def __str__(self): if self.user.first_name or self.user.last_name: return self.user.first_name + " " + self.user.last_name return self.user.email
35.588235
90
0.745455
8b40b3b3cefebdbae9f6ed0d96c7e32cb8b862a8
5,667
py
Python
samples/sample_kinesis_wordputter.py
rconroy293/amazon-kinesis-client-python
66659655e31cec25ca0cc76c397478bdd5bcfcc8
[ "Apache-2.0" ]
338
2015-01-08T00:39:31.000Z
2022-03-28T07:17:27.000Z
samples/sample_kinesis_wordputter.py
rconroy293/amazon-kinesis-client-python
66659655e31cec25ca0cc76c397478bdd5bcfcc8
[ "Apache-2.0" ]
110
2015-01-06T01:22:16.000Z
2022-03-28T07:26:07.000Z
samples/sample_kinesis_wordputter.py
rconroy293/amazon-kinesis-client-python
66659655e31cec25ca0cc76c397478bdd5bcfcc8
[ "Apache-2.0" ]
221
2015-01-05T10:56:45.000Z
2022-02-23T15:40:21.000Z
#!env python ''' Copyright 2014-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: Apache-2.0 ''' from __future__ import print_function import sys, random, time, argparse from boto import kinesis def get_stream_status(conn, stream_name): ''' Query this provided connection object for the provided stream's status. :type conn: boto.kinesis.layer1.KinesisConnection :param conn: A connection to Amazon Kinesis :type stream_name: str :param stream_name: The name of a stream. :rtype: str :return: The stream's status ''' r = conn.describe_stream(stream_name) description = r.get('StreamDescription') return description.get('StreamStatus') def wait_for_stream(conn, stream_name): ''' Wait for the provided stream to become active. :type conn: boto.kinesis.layer1.KinesisConnection :param conn: A connection to Amazon Kinesis :type stream_name: str :param stream_name: The name of a stream. ''' SLEEP_TIME_SECONDS = 3 status = get_stream_status(conn, stream_name) while status != 'ACTIVE': print('{stream_name} has status: {status}, sleeping for {secs} seconds'.format( stream_name = stream_name, status = status, secs = SLEEP_TIME_SECONDS)) time.sleep(SLEEP_TIME_SECONDS) # sleep for 3 seconds status = get_stream_status(conn, stream_name) def put_words_in_stream(conn, stream_name, words): ''' Put each word in the provided list of words into the stream. :type conn: boto.kinesis.layer1.KinesisConnection :param conn: A connection to Amazon Kinesis :type stream_name: str :param stream_name: The name of a stream. :type words: list :param words: A list of strings to put into the stream. ''' for w in words: try: conn.put_record(stream_name, w, w) print("Put word: " + w + " into stream: " + stream_name) except Exception as e: sys.stderr.write("Encountered an exception while trying to put a word: " + w + " into stream: " + stream_name + " exception was: " + str(e)) def put_words_in_stream_periodically(conn, stream_name, words, period_seconds): ''' Puts words into a stream, then waits for the period to elapse then puts the words in again. There is no strict guarantee about how frequently we put each word into the stream, just that we will wait between iterations. :type conn: boto.kinesis.layer1.KinesisConnection :param conn: A connection to Amazon Kinesis :type stream_name: str :param stream_name: The name of a stream. :type words: list :param words: A list of strings to put into the stream. :type period_seconds: int :param period_seconds: How long to wait, in seconds, between iterations over the list of words. ''' while True: put_words_in_stream(conn, stream_name, words) print("Sleeping for {period_seconds} seconds".format(period_seconds=period_seconds)) time.sleep(period_seconds) if __name__ == '__main__': parser = argparse.ArgumentParser(''' Puts words into a stream. # Using the -w option multiple times sample_wordputter.py -s STREAM_NAME -w WORD1 -w WORD2 -w WORD3 -p 3 # Passing input from STDIN echo "WORD1\\nWORD2\\nWORD3" | sample_wordputter.py -s STREAM_NAME -p 3 ''') parser.add_argument("-s", "--stream", dest="stream_name", required=True, help="The stream you'd like to create.", metavar="STREAM_NAME",) parser.add_argument("-r", "--regionName", "--region", dest="region", default="us-east-1", help="The region you'd like to make this stream in. Default is 'us-east-1'", metavar="REGION_NAME",) parser.add_argument("-w", "--word", dest="words", default=[], action="append", help="A word to add to the stream. Can be specified multiple times to add multiple words.", metavar="WORD",) parser.add_argument("-p", "--period", dest="period", type=int, help="If you'd like to repeatedly put words into the stream, this option provides the period for putting " + "words into the stream in SECONDS. If no period is given then the words are put once.", metavar="SECONDS",) args = parser.parse_args() stream_name = args.stream_name ''' Getting a connection to Amazon Kinesis will require that you have your credentials available to one of the standard credentials providers. ''' print("Connecting to stream: {s} in {r}".format(s=stream_name, r=args.region)) conn = kinesis.connect_to_region(region_name = args.region) try: status = get_stream_status(conn, stream_name) if 'DELETING' == status: print('The stream: {s} is being deleted, please rerun the script.'.format(s=stream_name)) sys.exit(1) elif 'ACTIVE' != status: wait_for_stream(conn, stream_name) except: # We'll assume the stream didn't exist so we will try to create it with just one shard conn.create_stream(stream_name, 1) wait_for_stream(conn, stream_name) # Now the stream should exist if len(args.words) == 0: print('No -w options provided. Waiting on input from STDIN') words = [l.strip() for l in sys.stdin.readlines() if l.strip() != ''] else: words = args.words if args.period != None: put_words_in_stream_periodically(conn, stream_name, words, args.period) else: put_words_in_stream(conn, stream_name, words)
40.478571
130
0.662079
fe81645ece5b67fbe9c2c30f88db9128d4da2172
1,614
py
Python
buffer.py
Casperinous/Lena
202ed791ecf8e632b00fea8373d81df9b1f54d2c
[ "MIT" ]
2
2021-06-04T07:32:35.000Z
2021-06-07T01:41:37.000Z
buffer.py
Casperinous/Lena
202ed791ecf8e632b00fea8373d81df9b1f54d2c
[ "MIT" ]
null
null
null
buffer.py
Casperinous/Lena
202ed791ecf8e632b00fea8373d81df9b1f54d2c
[ "MIT" ]
null
null
null
''' Code originally used by Androguard in https://github.com/androguard/androguard/blob/master/androguard/core/bytecode.py#L714 representing a different entity. Due to our simplier logic, we combine these 3 classes into one ''' class Buffer: def __init__(self, buff): """ Badly, the stable version of Androguard is v2.0 which was published 2-3 years ago. That being said, the source code of the stable version is different of the one in the master branch. --------------------------------------------------------- if isinstance(buff,bytearray): self.__buff = buff else: self.__buff = bytearray(buff) """ self.__buff = buff self.__idx = 0 def __getitem__(self, item): return self.__buff[item] def __len__(self): return len(self.__buff) def read(self, size): buff = self.__buff[self.__idx:self.__idx + size] self.__idx += size return buff def readat(self, off): return self.__buff[off:] def read_b(self, size): return self.__buff[self.__idx:self.__idx + size] def set_idx(self, idx): self.__idx = idx def get_idx(self): return self.__idx def add_idx(self, idx): self.__idx += idx def get_buff(self): return self.__buff def length_buff(self): return len(self.__buff) def set_buff(self, buff): self.__buff = buff def save(self, filename): buff = self._save() with open(filename, "wb") as fd: fd.write(buff)
25.619048
123
0.581784
50770a815b4fd42fc50087cdb288930a12ecc702
1,274
py
Python
data/migrations/versions/eafdeadcebc7_remove_blob_index_from_manifestblob_.py
dongboyan77/quay
8018e5bd80f17e6d855b58b7d5f2792d92675905
[ "Apache-2.0" ]
null
null
null
data/migrations/versions/eafdeadcebc7_remove_blob_index_from_manifestblob_.py
dongboyan77/quay
8018e5bd80f17e6d855b58b7d5f2792d92675905
[ "Apache-2.0" ]
null
null
null
data/migrations/versions/eafdeadcebc7_remove_blob_index_from_manifestblob_.py
dongboyan77/quay
8018e5bd80f17e6d855b58b7d5f2792d92675905
[ "Apache-2.0" ]
null
null
null
"""Remove blob_index from ManifestBlob table Revision ID: eafdeadcebc7 Revises: 9093adccc784 Create Date: 2018-08-07 15:57:54.001225 """ # revision identifiers, used by Alembic. revision = "eafdeadcebc7" down_revision = "9093adccc784" from alembic import op as original_op from data.migrations.progress import ProgressWrapper import sqlalchemy as sa from sqlalchemy.dialects import mysql def upgrade(tables, tester, progress_reporter): op = ProgressWrapper(original_op, progress_reporter) # ### commands auto generated by Alembic - please adjust! ### op.drop_index("manifestblob_manifest_id_blob_index", table_name="manifestblob") op.drop_column("manifestblob", "blob_index") # ### end Alembic commands ### def downgrade(tables, tester, progress_reporter): op = ProgressWrapper(original_op, progress_reporter) # ### commands auto generated by Alembic - please adjust! ### op.add_column( "manifestblob", sa.Column( "blob_index", mysql.INTEGER(display_width=11), autoincrement=False, nullable=True ), ) op.create_index( "manifestblob_manifest_id_blob_index", "manifestblob", ["manifest_id", "blob_index"], unique=True, ) # ### end Alembic commands ###
29.627907
93
0.708006
ace97fc8f70b4eb93ae272c5575e89074715483c
2,586
py
Python
nipype/interfaces/camino/tests/test_auto_TrackDT.py
vferat/nipype
536c57da150d157dcb5c121af43aaeab71cdbd5f
[ "Apache-2.0" ]
null
null
null
nipype/interfaces/camino/tests/test_auto_TrackDT.py
vferat/nipype
536c57da150d157dcb5c121af43aaeab71cdbd5f
[ "Apache-2.0" ]
2
2018-04-17T19:18:16.000Z
2020-03-04T22:05:02.000Z
nipype/interfaces/camino/tests/test_auto_TrackDT.py
oesteban/nipype
c14f24eba1da08711bbb894e049ee858ed740096
[ "Apache-2.0" ]
null
null
null
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..dti import TrackDT def test_TrackDT_inputs(): input_map = dict( anisfile=dict( argstr='-anisfile %s', extensions=None, ), anisthresh=dict(argstr='-anisthresh %f', ), args=dict(argstr='%s', ), curveinterval=dict( argstr='-curveinterval %f', requires=['curvethresh'], ), curvethresh=dict(argstr='-curvethresh %f', ), data_dims=dict( argstr='-datadims %s', units='voxels', ), environ=dict( nohash=True, usedefault=True, ), gzip=dict(argstr='-gzip', ), in_file=dict( argstr='-inputfile %s', extensions=None, position=1, ), inputdatatype=dict(argstr='-inputdatatype %s', ), inputmodel=dict( argstr='-inputmodel %s', usedefault=True, ), interpolator=dict(argstr='-interpolator %s', ), ipthresh=dict(argstr='-ipthresh %f', ), maxcomponents=dict( argstr='-maxcomponents %d', units='NA', ), numpds=dict( argstr='-numpds %d', units='NA', ), out_file=dict( argstr='-outputfile %s', extensions=None, genfile=True, position=-1, ), output_root=dict( argstr='-outputroot %s', extensions=None, position=-1, ), outputtracts=dict(argstr='-outputtracts %s', ), seed_file=dict( argstr='-seedfile %s', extensions=None, position=2, ), stepsize=dict( argstr='-stepsize %f', requires=['tracker'], ), tracker=dict( argstr='-tracker %s', usedefault=True, ), voxel_dims=dict( argstr='-voxeldims %s', units='mm', ), ) inputs = TrackDT.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_TrackDT_outputs(): output_map = dict(tracked=dict(extensions=None, ), ) outputs = TrackDT.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
28.733333
67
0.509667
bddef33302092b39deffbbf8e304e62f2f161184
5,695
py
Python
invenio_requests/customizations/base/request_types.py
Pineirin/invenio-requests
7eb85365128e4189e4c81d154e8918b09aae033d
[ "MIT" ]
null
null
null
invenio_requests/customizations/base/request_types.py
Pineirin/invenio-requests
7eb85365128e4189e4c81d154e8918b09aae033d
[ "MIT" ]
null
null
null
invenio_requests/customizations/base/request_types.py
Pineirin/invenio-requests
7eb85365128e4189e4c81d154e8918b09aae033d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2021 TU Wien. # Copyright (C) 2021 CERN. # # Invenio-Requests is free software; you can redistribute it and/or modify # it under the terms of the MIT License; see LICENSE file for more details. """Base class for creating custom types of requests. The `RequestType` classes are the most important part in the customization/extension mechanism for custom types of requests. TODO explain what can be done here, and how! """ import base32_lib as base32 import marshmallow as ma from ...proxies import current_requests class RequestType: """Base class for custom request types.""" type_id = "base-request" """The unique and constant identifier for this type of requests. Since this property is used to map generic chunks of data from the database (i.e. the request model entries) to their correct `RequestType`, this should be a globally unique value. By convention, this would be the name of the package in which the custom `RequestType` is defined as prefix, together with a suffix related to the `RequestType`. Further, it should be constant after the first release of the package (otherwise, requests created with the old value will no longer be able to be mapped to their `RequestType`). """ name = "Base Request" """The human-readable name for this type of requests.""" available_statuses = {} """Available statuses for the Request. The keys in this dictionary is the set of available statuses, and their values are indicators whether this Request is still considered to be "open" in this state. """ default_status = None """The default status for new requests of this type. This must be set to one of the available statuses for the custom request type. """ available_actions = {} """Available actions for this Request. The keys are the internal identifiers for the actions, the values are the actual RequestAction classes (not objects). Whenever an action is looked up, a new object of the registered RequestAction class is instantiated with the current Request object as argument. """ creator_can_be_none = True """Determines if the ``created_by`` reference accepts ``None``.""" receiver_can_be_none = False """Determines if the ``receiver`` reference accepts ``None``.""" topic_can_be_none = True """Determines if the ``topic`` reference accepts ``None``.""" allowed_creator_ref_types = ["user"] """A list of allowed TYPE keys for ``created_by`` reference dicts.""" allowed_receiver_ref_types = ["user"] """A list of allowed TYPE keys for ``receiver`` reference dicts.""" allowed_topic_ref_types = [] """A list of allowed TYPE keys for ``topic`` reference dicts.""" payload_schema = None """Schema for supported payload fields. Define it as a dictionary of fields mapping: .. code-block:: python payload_schema = { "content": fields.String(), # ... } """ @classmethod def _create_marshmallow_schema(cls): """Create a marshmallow schema for this request type.""" # Avoid circular imports from invenio_requests.services.schemas import ( EntityReferenceBaseSchema as RefBaseSchema, ) from invenio_requests.services.schemas import RequestSchema # The reference fields always need to be added additional_fields = { "created_by": ma.fields.Nested( RefBaseSchema.create_from_dict(cls.allowed_creator_ref_types), allow_none=cls.creator_can_be_none, ), "receiver": ma.fields.Nested( RefBaseSchema.create_from_dict(cls.allowed_receiver_ref_types), allow_none=cls.receiver_can_be_none, ), "topic": ma.fields.Nested( RefBaseSchema.create_from_dict(cls.allowed_topic_ref_types), allow_none=cls.topic_can_be_none, ), } # Raise on invalid payload keys class PayloadBaseSchema(ma.Schema): class Meta: unknown = ma.RAISE # If a payload schema is defined, add it to the request schema if cls.payload_schema is not None: additional_fields["payload"] = ma.fields.Nested( PayloadBaseSchema.from_dict(cls.payload_schema), ) # Dynamically create a schema from the fields defined # by the payload schema dict. return RequestSchema.from_dict(additional_fields) @classmethod def marshmallow_schema(cls): """Create a schema for the entire request including payload.""" type_id = cls.type_id if type_id not in current_requests._schema_cache: current_requests._schema_cache[type_id] = cls._create_marshmallow_schema() return current_requests._schema_cache[type_id] def generate_request_number(self, request, **kwargs): """Generate a new request number identifier. This method can be overridden in subclasses to create external identifiers according to a custom schema, using the information associated with the request (e.g. topic, receiver, creator). """ from invenio_requests.records.models import RequestNumber return base32.encode(RequestNumber.next()) def __str__(self): """Return str(self).""" # Value used by marshmallow schemas to represent the type. return self.type_id def __repr__(self): """Return repr(self).""" return f"<RequestType '{self.type_id}'>"
34.515152
87
0.668832
05ef8120697688582671622a511c15e2bccef1cd
6,570
py
Python
src/garage/torch/policies/categorical_cnn_policy.py
blacksph3re/garage
b4abe07f0fa9bac2cb70e4a3e315c2e7e5b08507
[ "MIT" ]
1,500
2018-06-11T20:36:24.000Z
2022-03-31T08:29:01.000Z
src/garage/torch/policies/categorical_cnn_policy.py
blacksph3re/garage
b4abe07f0fa9bac2cb70e4a3e315c2e7e5b08507
[ "MIT" ]
2,111
2018-06-11T04:10:29.000Z
2022-03-26T14:41:32.000Z
src/garage/torch/policies/categorical_cnn_policy.py
blacksph3re/garage
b4abe07f0fa9bac2cb70e4a3e315c2e7e5b08507
[ "MIT" ]
309
2018-07-24T11:18:48.000Z
2022-03-30T16:19:48.000Z
"""CategoricalCNNPolicy.""" import akro import torch from torch import nn from garage import InOutSpec from garage.torch.modules import CNNModule, MultiHeadedMLPModule from garage.torch.policies.stochastic_policy import StochasticPolicy class CategoricalCNNPolicy(StochasticPolicy): """CategoricalCNNPolicy. A policy that contains a CNN and a MLP to make prediction based on a categorical distribution. It only works with akro.Discrete action space. Args: env_spec (garage.EnvSpec): Environment specification. image_format (str): Either 'NCHW' or 'NHWC'. Should match env_spec. Gym uses NHWC by default, but PyTorch uses NCHW by default. kernel_sizes (tuple[int]): Dimension of the conv filters. For example, (3, 5) means there are two convolutional layers. The filter for first layer is of dimension (3 x 3) and the second one is of dimension (5 x 5). strides (tuple[int]): The stride of the sliding window. For example, (1, 2) means there are two convolutional layers. The stride of the filter for first layer is 1 and that of the second layer is 2. hidden_channels (tuple[int]): Number of output channels for CNN. For example, (3, 32) means there are two convolutional layers. The filter for the first conv layer outputs 3 channels hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for mean. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a torch.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a torch.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a torch.Tensor. paddings (tuple[int]): Zero-padding added to both sides of the input padding_mode (str): The type of padding algorithm to use, either 'SAME' or 'VALID'. max_pool (bool): Bool for using max-pooling or not. pool_shape (tuple[int]): Dimension of the pooling layer(s). For example, (2, 2) means that all the pooling layers have shape (2, 2). pool_stride (tuple[int]): The strides of the pooling layer(s). For example, (2, 2) means that all the pooling layers have strides (2, 2). output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a torch.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a torch.Tensor. layer_normalization (bool): Bool for using layer normalization or not. name (str): Name of policy. """ def __init__(self, env_spec, image_format, kernel_sizes, *, hidden_channels, strides=1, hidden_sizes=(32, 32), hidden_nonlinearity=torch.tanh, hidden_w_init=nn.init.xavier_uniform_, hidden_b_init=nn.init.zeros_, paddings=0, padding_mode='zeros', max_pool=False, pool_shape=None, pool_stride=1, output_w_init=nn.init.xavier_uniform_, output_b_init=nn.init.zeros_, layer_normalization=False, name='CategoricalCNNPolicy'): if not isinstance(env_spec.action_space, akro.Discrete): raise ValueError('CategoricalMLPPolicy only works ' 'with akro.Discrete action space.') if isinstance(env_spec.observation_space, akro.Dict): raise ValueError('CNN policies do not support ' 'with akro.Dict observation spaces.') super().__init__(env_spec, name) self._cnn_module = CNNModule(InOutSpec( self._env_spec.observation_space, None), image_format=image_format, kernel_sizes=kernel_sizes, strides=strides, hidden_channels=hidden_channels, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, hidden_nonlinearity=hidden_nonlinearity, paddings=paddings, padding_mode=padding_mode, max_pool=max_pool, pool_shape=pool_shape, pool_stride=pool_stride, layer_normalization=layer_normalization) self._mlp_module = MultiHeadedMLPModule( n_heads=1, input_dim=self._cnn_module.spec.output_space.flat_dim, output_dims=[self._env_spec.action_space.flat_dim], hidden_sizes=hidden_sizes, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, hidden_nonlinearity=hidden_nonlinearity, output_w_inits=output_w_init, output_b_inits=output_b_init) def forward(self, observations): """Compute the action distributions from the observations. Args: observations (torch.Tensor): Observations to act on. Returns: torch.distributions.Distribution: Batch distribution of actions. dict[str, torch.Tensor]: Additional agent_info, as torch Tensors. Do not need to be detached, and can be on any device. """ # We're given flattened observations. observations = observations.reshape( -1, *self._env_spec.observation_space.shape) cnn_output = self._cnn_module(observations) mlp_output = self._mlp_module(cnn_output)[0] logits = torch.softmax(mlp_output, axis=1) dist = torch.distributions.Categorical(logits=logits) return dist, {}
46.595745
79
0.598021
50f2cff4c54720f8d305a83ec151cc2473cd0de0
2,825
py
Python
demo.py
iallabs/inception-web
ace76bbffe4dba242eb7b61fe9ce36ad0fb5fee7
[ "Apache-2.0" ]
null
null
null
demo.py
iallabs/inception-web
ace76bbffe4dba242eb7b61fe9ce36ad0fb5fee7
[ "Apache-2.0" ]
null
null
null
demo.py
iallabs/inception-web
ace76bbffe4dba242eb7b61fe9ce36ad0fb5fee7
[ "Apache-2.0" ]
null
null
null
import os from flask import ( Flask, redirect, url_for, render_template, request, session, make_response, jsonify, ) from inception import ( create_graph, download_and_extract, run_inference_on_image, ) from shutil import copyfile from werkzeug.utils import secure_filename # Constants UPLOAD_FOLDER = './static/images' ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg']) # Flask app app = Flask(__name__, static_url_path='/static') app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER progInterface = [ {"ID": 1, "Str": "one"}, {"ID": 2, "Str": "two"}, {"ID": 3, "Str": "3"}, {"ID": 4, "Str": "4"}, {"ID": 5, "Str": "5"}, ] def uploadedImage(image): return os.path.join(UPLOAD_FOLDER, image) def sendJSON(obj): return make_response(jsonify(obj)) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/run_inference/<image>', methods=["POST", "GET"]) def api_run_inference(image): try: # Create graph create_graph() result = run_inference_on_image(uploadedImage(image), 5) return sendJSON({ "success" : True, "response" : result, }), 200 except: return sendJSON({ "success" : False, "error_code" : 500, }), 200 @app.route('/upload_image', methods=["post"]) def form_upload_image(): if 'file' not in request.files: return redirect('upload') file = request.files['file'] if file.filename == '': return redirect('upload') if file and allowed_file(file.filename): if request.form['name']: s = secure_filename(file.filename).split('.') filename = request.form['name'] + '.' + s[1] else: filename = secure_filename(file.filename) file.save(os.path.join(uploadedImage(filename))) return redirect('upload') @app.route('/delete_image/<image>', methods=["post"]) def delete_image(image): if image == '' or not os.path.exists(uploadedImage(image)) : return sendJSON({ "success" : False, "error": "file not found", }); os.remove(uploadedImage(image)) return sendJSON({ "success" : True, }) @app.route('/upload') def upload(): return render_template("upload.html") @app.route('/demo') def demo(): ls=[] for file in os.listdir(UPLOAD_FOLDER): r={ "Name" : file, "Namebase" : file.split('.')[0], } ls.append(r) return render_template("demo.html", uploads=ls, proginterface=progInterface) if __name__ == "__main__": # Download inception model download_and_extract() # Run server app.run(port=8002, debug=True)
24.780702
80
0.593628
16eddc1eab8628eec7e38d27b1f18df13dd480d7
4,283
py
Python
contrib/ACE2P/infer.py
LielinJiang/PaddleSeg
7c4d39da3d0ff635cac066aeb61e23dfada5d0d7
[ "Apache-2.0" ]
null
null
null
contrib/ACE2P/infer.py
LielinJiang/PaddleSeg
7c4d39da3d0ff635cac066aeb61e23dfada5d0d7
[ "Apache-2.0" ]
null
null
null
contrib/ACE2P/infer.py
LielinJiang/PaddleSeg
7c4d39da3d0ff635cac066aeb61e23dfada5d0d7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import cv2 import numpy as np from utils.util import get_arguments from utils.palette import get_palette from PIL import Image as PILImage import importlib args = get_arguments() config = importlib.import_module('config') cfg = getattr(config, 'cfg') # paddle垃圾回收策略FLAG,ACE2P模型较大,当显存不够时建议开启 os.environ['FLAGS_eager_delete_tensor_gb']='0.0' import paddle.fluid as fluid # 预测数据集类 class TestDataSet(): def __init__(self): self.data_dir = cfg.data_dir self.data_list_file = cfg.data_list_file self.data_list = self.get_data_list() self.data_num = len(self.data_list) def get_data_list(self): # 获取预测图像路径列表 data_list = [] data_file_handler = open(self.data_list_file, 'r') for line in data_file_handler: img_name = line.strip() name_prefix = img_name.split('.')[0] if len(img_name.split('.')) == 1: img_name = img_name + '.jpg' img_path = os.path.join(self.data_dir, img_name) data_list.append(img_path) return data_list def preprocess(self, img): # 图像预处理 if cfg.example == 'ACE2P': reader = importlib.import_module('reader') ACE2P_preprocess = getattr(reader, 'preprocess') img = ACE2P_preprocess(img) else: img = cv2.resize(img, cfg.input_size).astype(np.float32) img -= np.array(cfg.MEAN) img /= np.array(cfg.STD) img = img.transpose((2, 0, 1)) img = np.expand_dims(img, axis=0) return img def get_data(self, index): # 获取图像信息 img_path = self.data_list[index] img = cv2.imread(img_path, cv2.IMREAD_COLOR) if img is None: return img, img,img_path, None img_name = img_path.split(os.sep)[-1] name_prefix = img_name.replace('.'+img_name.split('.')[-1],'') img_shape = img.shape[:2] img_process = self.preprocess(img) return img, img_process, name_prefix, img_shape def infer(): if not os.path.exists(cfg.vis_dir): os.makedirs(cfg.vis_dir) palette = get_palette(cfg.class_num) # 人像分割结果显示阈值 thresh = 120 place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # 加载预测模型 test_prog, feed_name, fetch_list = fluid.io.load_inference_model( dirname=cfg.model_path, executor=exe, params_filename='__params__') #加载预测数据集 test_dataset = TestDataSet() data_num = test_dataset.data_num for idx in range(data_num): # 数据获取 ori_img, image, im_name, im_shape = test_dataset.get_data(idx) if image is None: print(im_name, 'is None') continue # 预测 if cfg.example == 'ACE2P': # ACE2P模型使用多尺度预测 reader = importlib.import_module('reader') multi_scale_test = getattr(reader, 'multi_scale_test') parsing, logits = multi_scale_test(exe, test_prog, feed_name, fetch_list, image, im_shape) else: # HumanSeg,RoadLine模型单尺度预测 result = exe.run(program=test_prog, feed={feed_name[0]: image}, fetch_list=fetch_list) parsing = np.argmax(result[0][0], axis=0) parsing = cv2.resize(parsing.astype(np.uint8), im_shape[::-1]) # 预测结果保存 result_path = os.path.join(cfg.vis_dir, im_name + '.png') if cfg.example == 'HumanSeg': logits = result[0][0][1]*255 logits = cv2.resize(logits, im_shape[::-1]) ret, logits = cv2.threshold(logits, thresh, 0, cv2.THRESH_TOZERO) logits = 255 *(logits - thresh)/(255 - thresh) # 将分割结果添加到alpha通道 rgba = np.concatenate((ori_img, np.expand_dims(logits, axis=2)), axis=2) cv2.imwrite(result_path, rgba) else: output_im = PILImage.fromarray(np.asarray(parsing, dtype=np.uint8)) output_im.putpalette(palette) output_im.save(result_path) if (idx + 1) % 100 == 0: print('%d processd' % (idx + 1)) print('%d processd done' % (idx + 1)) return 0 if __name__ == "__main__": infer()
32.694656
102
0.599113
64646d3bb53ccafdad1561309c2f0be1e0ecca6c
3,996
py
Python
sysID/fix_gearing.py
Team2470/FRC-2022-robot
bbc6d6277000be1929f4b746c73d06ca8afe926f
[ "BSD-3-Clause", "MIT" ]
1
2022-01-24T02:16:28.000Z
2022-01-24T02:16:28.000Z
sysID/fix_gearing.py
Team2470/2022-robot
bbc6d6277000be1929f4b746c73d06ca8afe926f
[ "BSD-3-Clause", "MIT" ]
6
2022-01-24T05:06:39.000Z
2022-02-19T23:44:29.000Z
sysID/fix_gearing.py
Team2470/FRC-2022-robot
bbc6d6277000be1929f4b746c73d06ca8afe926f
[ "BSD-3-Clause", "MIT" ]
null
null
null
#! /usr/bin/env python3 import json import sys from pathlib import Path if len(sys.argv) == 1: print("Usage: {} sysid_data.json".format(sys.argv[0])) sys.exit(1) # Load in SysID data print(f"sysid data file correct: {sys.argv[1]}") sysid_data = None with open(sys.argv[1]) as f: sysid_data = json.load(f) # Data format: https://github.com/wpilibsuite/sysid/blob/main/docs/data-collection.md#drivetrain # | Index | Value | # | ----- | ------------ | # | 0 | timestamp | # | 1 | l voltage | # | 2 | r voltage | # | 3 | l position | # | 4 | r position | # | 5 | l velocity | # | 6 | r velocity | # | 7 | angle | # | 8 | angular rate | # # Note that all positions and velocities should be in rotations of the output and rotations/sec of the output # respectively. If there is a gearing between the encoder and the output, that should be taken into account. SYSID_TIMESTAMP = 0 SYSID_L_VOLTAGE = 1 SYSID_R_VOLTAGE = 2 SYSID_L_POSITION = 3 SYSID_R_POSITION = 4 SYSID_L_VELOCITY = 5 SYSID_R_VELOCITY = 6 SYSID_L_ANGLE = 7 SYSID_R_ANGLE = 8 # This is how SysID processes # https://github.com/wpilibsuite/sysid/blob/main/sysid-projects/drive/src/main/cpp/Robot.cpp#L50-L53 # double cpr = m_json.at("counts per rotation").get<double>(); # double gearingNumerator = m_json.at("gearing numerator").get<double>(); # double gearingDenominator = m_json.at("gearing denominator").get<double>(); # double gearing = gearingNumerator / gearingDenominator; # This is how we configured our encoder gearing # 1:26.04 # From config.json # { # ... # "gearing denominator": 26.04, # "gearing numerator": 1, # ... # } # When encoders are setup this is how the overall CPR (counters per revolution) is calculated: # https://github.com/wpilibsuite/sysid/blob/main/sysid-library/src/main/cpp/generation/SysIdSetup.cpp#L167 # double combinedCPR = cpr * gearing; # With the gearing ratio flipped, it reduced how many encoder counters occur for each turn of the wheel. # When in reality for 1 wheel revolution the encoder turns 26.04 times, so the combinedCPR needs to be # 2048 * (26.04/1) = 53,329.92, and not 2048 * (1/26.04) = 78.65. # Position is measured in rotations # Velocity is measured in rotations per second # This is how the SysID converts the encoder value to rotations # https://github.com/wpilibsuite/sysid/blob/main/sysid-library/src/main/cpp/generation/SysIdSetup.cpp#L144 # position = [=] { return talonController->GetSelectedSensorPosition() / cpr; }; # rate = [=] { # return talonController->GetSelectedSensorVelocity() / cpr / # 0.1; // Conversion factor from 100 ms to seconds # }; # What the calculation should be: # cpr = 2048 * (26.04/1) = 53,329.92 # rotations = position / (53,329.92) # What we ended up with the incorrect gear ratio: # cpr = 2048 * (1/26.04) = 53,329.92 # rotations = position / (78.65) # So, in order to correct the incorrect gearing we need to divide the gearing by 26.04 twice. Basically we want to make # the denominator 78.65 turn into 53,329.92. # 1. The first divide gets our position/velocity measurements in reference to the builtin Falcon encoder # 2. The second divide gets our position/velocity measures in reference to the rotations of the robot wheels. gearing = 26.04 for test_name in ["fast-backward", "fast-forward", "slow-backward", "slow-forward"]: for datapoint in sysid_data[test_name]: # Fix up the metrics from this datapoint for metric in [SYSID_L_POSITION, SYSID_R_POSITION, SYSID_L_VELOCITY, SYSID_R_VELOCITY]: datapoint[metric] = datapoint[metric] / gearing / gearing # Write out correct sysid data file output_file_path = Path(sys.argv[1]) output_file_path = output_file_path.with_stem(f"{output_file_path.stem}-fixed") print(f"Writing fixed sysid data file to {output_file_path}") with open(output_file_path, 'w') as f: json.dump(sysid_data, f, indent=4, sort_keys=True)
37.698113
119
0.698699
c0fd5e8f1435d8f36ee39f0b50e54a2a5717b107
471
py
Python
api-rest/apps/core/migrations/0003_auto_20200921_1323.py
zomars/koopers
57208f936926bd9e8b08947495d62c25f1168939
[ "MIT" ]
null
null
null
api-rest/apps/core/migrations/0003_auto_20200921_1323.py
zomars/koopers
57208f936926bd9e8b08947495d62c25f1168939
[ "MIT" ]
8
2021-04-08T20:06:41.000Z
2022-03-12T00:49:28.000Z
api-rest/apps/core/migrations/0003_auto_20200921_1323.py
zomars/koopers
57208f936926bd9e8b08947495d62c25f1168939
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2020-09-21 18:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0002_auto_20200921_1135'), ] operations = [ migrations.AlterField( model_name='screenshot', name='screen_size', field=models.CharField(choices=[('Mobile', 'Mobile'), ('Tablet', 'Tablet'), ('Desktop', 'Desktop')], max_length=200), ), ]
24.789474
129
0.600849
7d7e0daea4887832a0e84bfe81ad6858af5710ba
236
py
Python
src/backend/web/handlers/eventwizard.py
bovlb/the-blue-alliance
29389649d96fe060688f218d463e642dcebfd6cc
[ "MIT" ]
null
null
null
src/backend/web/handlers/eventwizard.py
bovlb/the-blue-alliance
29389649d96fe060688f218d463e642dcebfd6cc
[ "MIT" ]
null
null
null
src/backend/web/handlers/eventwizard.py
bovlb/the-blue-alliance
29389649d96fe060688f218d463e642dcebfd6cc
[ "MIT" ]
null
null
null
from datetime import timedelta from flask import render_template from backend.common.decorators import cached_public @cached_public(ttl=timedelta(seconds=61)) def eventwizard() -> str: return render_template("eventwizard.html")
21.454545
51
0.805085
ceb9cb1e1e812869675cc399d00fec56b869fc8e
241
py
Python
cablegate/urls.py
h3/django-cablegate
bffa2970a1fb21717a48cfce76b8a24f909acab0
[ "BSD-3-Clause" ]
1
2016-04-03T03:15:48.000Z
2016-04-03T03:15:48.000Z
cablegate/urls.py
h3/django-cablegate
bffa2970a1fb21717a48cfce76b8a24f909acab0
[ "BSD-3-Clause" ]
null
null
null
cablegate/urls.py
h3/django-cablegate
bffa2970a1fb21717a48cfce76b8a24f909acab0
[ "BSD-3-Clause" ]
1
2019-07-31T06:02:12.000Z
2019-07-31T06:02:12.000Z
from django.conf.urls.defaults import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^', include('cablegate.cable.urls')), url(r'^admin/', include(admin.site.urls)), )
24.1
60
0.713693
447d7d6ece6feb5623c6e671da630aa4560e19aa
7,355
py
Python
server.py
miuho/Blockchain-Query-API
ba027081b16e9a9fdfc8493feae3f9ab28a970f9
[ "MIT" ]
null
null
null
server.py
miuho/Blockchain-Query-API
ba027081b16e9a9fdfc8493feae3f9ab28a970f9
[ "MIT" ]
null
null
null
server.py
miuho/Blockchain-Query-API
ba027081b16e9a9fdfc8493feae3f9ab28a970f9
[ "MIT" ]
null
null
null
# server.py # Run http server for Bitcoin blockchain Query API # # HingOn Miu # https://docs.python.org/3/library/http.server.html import io import random import string import json import time import socket import threading from SocketServer import ThreadingMixIn from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler from urlparse import urlparse import blockchain # sample http GET url for blockchain query request # http://127.0.0.1:9000/blockheight?000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f # http://127.0.0.1:9000/blockheader?0000000082b5015589a3fdf2d4baff403e6f0be035a5d9742c1cae6295464449 # http://127.0.0.1:9000/latestheight # API endpoint to get block height of the block blockheight_endpoint = "/blockheight" # API endpoint to check if block is in main chain mainchain_endpoint = "/mainchain" # API endpoint to get block header of the block blockheader_endpoint = "/blockheader" # API endpoint to get latest block latestblock_endpoint = "/latestblock" # API endpoint to get latest block height latestheight_endpoint = "/latestheight" # API endpoint to get transactions of the block blocktransactions_endpoint = "/blocktransactions" # API endpoint to get information of the transaction transactioninfo_endpoint = "/transactioninfo" # API endpoint to get input transactions of the transaction transactioninputs_endpoint = "/transactioninputs" # API endpoint to get output transactions of the transaction transactionoutputs_endpoint = "/transactionoutputs" API_endpoints = { blockheight_endpoint, mainchain_endpoint, blockheader_endpoint, latestblock_endpoint, latestheight_endpoint, blocktransactions_endpoint, transactioninfo_endpoint, transactioninputs_endpoint, transactionoutputs_endpoint } class Handler(BaseHTTPRequestHandler): # handle http GET requests def do_GET(self): print("GET: " + self.path) # parse url path parsed_path = urlparse(self.path) # check if API endpoint correct endpoint = parsed_path.path if endpoint not in API_endpoints: self.send_error(404) return # parse query hash_big_endian = parsed_path.query # check if hash has proper format if (endpoint == blockheight_endpoint or endpoint == mainchain_endpoint or endpoint == blockheader_endpoint or endpoint == blocktransactions_endpoint or endpoint == transactioninfo_endpoint or endpoint == transactioninputs_endpoint or endpoint == transactionoutputs_endpoint): # check if string length is 64 if len(hash_big_endian) != 64: self.send_error(400) return # check if it is proper hex string try: int(hash_big_endian, 16) except ValueError: self.send_error(400) return else: # other endpoints do not have parameter if hash_big_endian != "": self.send_error(400) return if endpoint == blockheight_endpoint: # get block height blockheight = blockchain.get_block_height(hash_big_endian) # check if block hash is invalid if blockheight == -1: message = json.dumps({"error": "Invalid Block Hash"}) else: message = json.dumps({"height": blockheight}) elif endpoint == mainchain_endpoint: # check if block is in main chain (longest blockchain) mainchain = blockchain.get_main_chain(hash_big_endian) message = json.dumps({"main_chain": mainchain}) elif endpoint == blockheader_endpoint: # get block header fields ver_num, prev_hash, merk_hash, start_time, nBits, nonce = \ blockchain.get_block_header(hash_big_endian) # check if block hash is invalid if ver_num == -1: message = json.dumps({"error": "Invalid Block Hash"}) else: message = json.dumps({"version": ver_num, "prev_block": prev_hash, "mrkl_root": merk_hash, "time": start_time, "bits": nBits, "nonce": nonce}) elif endpoint == latestblock_endpoint: # get the latest block of main chain latestblock = blockchain.get_latest_block() message = json.dumps({"hash": latestblock}) elif endpoint == latestheight_endpoint: # get the latest block height of main chain latestheight = blockchain.get_latest_height() message = json.dumps({"height": latestheight}) elif endpoint == blocktransactions_endpoint: # get block transactions count, transactions = blockchain.get_block_transactions(hash_big_endian) # check if block hash is invalid if count == -1: message = json.dumps({"error": "Invalid Block Hash"}) else: txs = [] # traverse all transactions for i in range(0, count): txid, btc_amount = transactions[i] txs += [{"tx_hash": txid, "value": btc_amount}] message = json.dumps({"tx_count": count, "transactions": txs}) elif endpoint == transactioninfo_endpoint: # get transaction info block_hash, ver, input_count, output_count, btc_amount, locktime = \ blockchain.get_transaction_info(hash_big_endian) # check if tx hash is invalid if ver == -1: message = json.dumps({"error": "Invalid Transaction Hash"}) else: message = json.dumps({"block_hash": block_hash, "version": ver, "input_tx_count": input_count, "output_tx_count": output_count, "value": btc_amount, "lock_time": locktime}) elif endpoint == transactioninputs_endpoint: # get input transactions count, input_transactions = blockchain.get_transaction_inputs(hash_big_endian) # check if tx hash is invalid if count == -1: message = json.dumps({"error": "Invalid Transaction Hash"}) else: input_txs = [] # traverse all input transactions for i in range(0, count): prev_txid, script, seq = input_transactions[i] input_txs += [{"prev_hash": prev_txid, "sig_script": script, "seq_num": seq}] message = json.dumps({"input_tx_count": count, "input_transactions": input_txs}) elif endpoint == transactionoutputs_endpoint: # get output transactions count, output_transactions = blockchain.get_transaction_outputs(hash_big_endian) # check if tx hash is invalid if count == -1: message = json.dumps({"error": "Invalid Transaction Hash"}) else: output_txs = [] # traverse all input transactions for i in range(0, count): satoshi, script = output_transactions[i] output_txs += [{"value": satoshi, "sig_script": script}] message = json.dumps({"output_tx_count": count, "output_transactions": output_txs}) else: # should not get here message = json.dumps({"error": "Invalid Request"}) self.send_response(200) self.send_header("Content-Type", "text/plain; charset=utf-8") self.end_headers() self.wfile.write(message.encode('utf-8')) self.wfile.write(b'\n') class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): pass if __name__ == "__main__": HOST, PORT = "localhost", 9000 # create server server = ThreadedHTTPServer((HOST, PORT), Handler) # start server thread to handle requests and server thread starts new thread for each new request server_thread = threading.Thread(target=server.serve_forever) server_thread.daemon = True server_thread.start() print("Server thread ready to handle http requests...") # parse blockchain files #blockchain.setup("Bitcoin/blocks/") blockchain.setup("") print("Blockchain setup done.") # hang to wait for connections while True: continue # clean up server server.shutdown() server.server_close()
30.26749
100
0.729436
c342ee22145631cc6b7285c012b4d51c5c032051
19,647
py
Python
up42/viztools.py
andher1802/dummy_0532
fb953c2785652c583d1147a2b688997e260e6afa
[ "MIT" ]
72
2020-04-06T16:36:36.000Z
2022-03-30T23:39:14.000Z
up42/viztools.py
j-tr/up42-py
163b5a324775998987fc646afe8d5c257dd559ee
[ "MIT" ]
59
2020-04-08T14:50:40.000Z
2022-03-23T22:14:46.000Z
up42/viztools.py
j-tr/up42-py
163b5a324775998987fc646afe8d5c257dd559ee
[ "MIT" ]
40
2020-04-07T22:34:05.000Z
2022-03-23T10:57:15.000Z
""" Visualization tools available in various objects """ # pylint: disable=dangerous-default-value from typing import Tuple, List, Union, Optional import math from pathlib import Path import warnings import numpy as np from shapely.geometry import box import geopandas as gpd from geopandas import GeoDataFrame import matplotlib.pyplot as plt import rasterio from rasterio.plot import show from rasterio.vrt import WarpedVRT import folium from folium.plugins import Draw from up42.utils import ( get_logger, ) # Folium map styling constants VECTOR_STYLE = { "fillColor": "#5288c4", "color": "blue", "weight": 2.5, "dashArray": "5, 5", } HIGHLIGHT_STYLE = { "fillColor": "#ffaf00", "color": "red", "weight": 3.5, "dashArray": "5, 5", } # ignore warnings warnings.filterwarnings("ignore", category=rasterio.errors.NotGeoreferencedWarning) try: from IPython import get_ipython get_ipython().run_line_magic("matplotlib", "inline") except (ImportError, AttributeError): # No Ipython installed, Installed but run in shell pass logger = get_logger(__name__) # pylint: disable=no-member, duplicate-code class VizTools: def __init__(self): """ Visualization functionality """ self.quicklooks = None self.results: Union[list, dict, None] = None def plot_results( self, figsize: Tuple[int, int] = (14, 8), bands: List[int] = [1, 2, 3], titles: Optional[List[str]] = None, filepaths: Union[List[Union[str, Path]], dict, None] = None, plot_file_format: List[str] = [".tif"], **kwargs, ) -> None: # pylint: disable=line-too-long """ Plots image data (quicklooks or results) Args: figsize: matplotlib figure size. bands: Image bands and order to plot, default [1,2,3]. First band is 1. titles: Optional list of titles for the subplots. filepaths: Paths to images to plot. Optional, by default picks up the last downloaded results. plot_file_format: List of accepted image file formats e.g. [".tif"] kwargs: Accepts any additional args and kwargs of [rasterio.plot.show](https://rasterio.readthedocs.io/en/latest/api/rasterio.plot.html#rasterio.plot.show), e.g. matplotlib cmap etc. """ if filepaths is None: if self.results is None: raise ValueError("You first need to download the results!") filepaths = self.results # Unpack results path dict in case of jobcollection. if isinstance(filepaths, dict): filepaths_lists = list(filepaths.values()) filepaths = [item for sublist in filepaths_lists for item in sublist] if not isinstance(filepaths, list): filepaths = [filepaths] # type: ignore filepaths = [Path(path) for path in filepaths] imagepaths = [ path for path in filepaths if str(path.suffix) in plot_file_format # type: ignore ] if not imagepaths: raise ValueError( f"This function only plots files of format {plot_file_format}." ) if not titles: titles = [Path(fp).stem for fp in imagepaths] if not isinstance(titles, list): titles = [titles] # type: ignore if len(imagepaths) < 2: nrows, ncols = 1, 1 else: ncols = 3 nrows = int(math.ceil(len(imagepaths) / float(ncols))) _, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize) if len(imagepaths) > 1: axs = axs.ravel() else: axs = [axs] if len(bands) != 3: if len(bands) == 1: if "cmap" not in kwargs: kwargs["cmap"] = "gray" else: raise ValueError("Parameter bands can only contain one or three bands.") for idx, (fp, title) in enumerate(zip(imagepaths, titles)): with rasterio.open(fp) as src: img_array = src.read(bands) show( img_array, transform=src.transform, title=title, ax=axs[idx], aspect="auto", **kwargs, ) axs[idx].set_axis_off() plt.axis("off") plt.tight_layout() plt.show() def plot_quicklooks( self, figsize: Tuple[int, int] = (8, 8), titles: Optional[List[str]] = None, filepaths: Optional[list] = None, ) -> None: """ Plots the downloaded quicklooks (filepaths saved to self.quicklooks of the respective object, e.g. job, catalog). Args: figsize: matplotlib figure size. filepaths: Paths to images to plot. Optional, by default picks up the last downloaded results. titles: List of titles for the subplots, optional. """ if filepaths is None: if self.quicklooks is None: raise ValueError("You first need to download the quicklooks!") filepaths = self.quicklooks self.plot_results( plot_file_format=[".jpg", ".jpeg", ".png"], figsize=figsize, filepaths=filepaths, titles=titles, ) @staticmethod def _map_images( plot_file_format: List[str], result_df: GeoDataFrame, filepaths: List[Union[str, Path]], bands: List[int] = [1, 2, 3], aoi: Optional[GeoDataFrame] = None, show_images=True, show_features=False, name_column: str = "id", save_html: Optional[Path] = None, ) -> folium.Map: """ Displays data.json, and if available, one or multiple results geotiffs. Args: plot_file_format: List of accepted image file formats e.g. [".png"] result_df: GeoDataFrame with scene geometries. aoi: GeoDataFrame of aoi. filepaths: Paths to images to plot. Optional, by default picks up the last downloaded results. show_images: Shows images if True (default). show_features: Show features if True. For quicklooks maps is set to False. name_column: Name of the feature property that provides the Feature/Layer name. save_html: The path for saving folium map as html file. With default None, no file is saved. """ if result_df.shape[0] > 100: result_df = result_df.iloc[:100] logger.info( "Only the first 100 results will be displayed to avoid memory " "issues." ) centroid = box(*result_df.total_bounds).centroid m = folium_base_map( lat=centroid.y, lon=centroid.x, ) df_bounds = result_df.bounds list_bounds = df_bounds.values.tolist() raster_filepaths = [ path for path in filepaths if Path(path).suffix in plot_file_format ] try: feature_names = result_df[name_column].to_list() except KeyError: feature_names = [""] * len(result_df.index) if aoi is not None: aoi_style = VECTOR_STYLE.copy() aoi_style["color"] = "red" folium.GeoJson( aoi, name="aoi", style_function=lambda x: aoi_style, highlight_function=lambda x: HIGHLIGHT_STYLE, ).add_to(m) if show_features: for idx, row in result_df.iterrows(): # type: ignore try: feature_name = row.loc[name_column] except KeyError: feature_name = "" layer_name = f"Feature {idx + 1} - {feature_name}" f = folium.GeoJson( row["geometry"], name=layer_name, style_function=lambda x: VECTOR_STYLE, highlight_function=lambda x: HIGHLIGHT_STYLE, ) folium.Popup( f"{layer_name}: {row.drop('geometry', axis=0).to_json()}" ).add_to(f) f.add_to(m) if show_images and raster_filepaths: if len(bands) != 3: if len(bands) == 1: bands = bands * 3 # plot as grayband else: raise ValueError( "Parameter bands can only contain one or three bands." ) for idx, (raster_fp, feature_name) in enumerate( zip(raster_filepaths, feature_names) ): with rasterio.open(raster_fp) as src: if src.meta["crs"] is None: dst_array = src.read(bands) minx, miny, maxx, maxy = list_bounds[idx] else: # Folium requires 4326, streaming blocks are 3857 with WarpedVRT(src, crs="EPSG:4326") as vrt: dst_array = vrt.read(bands) minx, miny, maxx, maxy = vrt.bounds m.add_child( folium.raster_layers.ImageOverlay( np.moveaxis(np.stack(dst_array), 0, 2), bounds=[[miny, minx], [maxy, maxx]], # different order. name=f"Image {idx + 1} - {feature_name}", ) ) # Collapse layer control with too many features. collapsed = bool(result_df.shape[0] > 4) folium.LayerControl(position="bottomleft", collapsed=collapsed).add_to(m) if save_html: save_html = Path(save_html) if not save_html.exists(): save_html.mkdir(parents=True, exist_ok=True) filepath = save_html / "final_map.html" with filepath.open("w") as f: f.write(m._repr_html_()) return m def map_results( self, bands=[1, 2, 3], aoi: GeoDataFrame = None, show_images: bool = True, show_features: bool = True, name_column: str = "uid", save_html: Path = None, ) -> folium.Map: """ Displays data.json, and if available, one or multiple results geotiffs. Args: bands: Image bands and order to plot, default [1,2,3]. First band is 1. aoi: Optional visualization of aoi boundaries when given GeoDataFrame of aoi. show_images: Shows images if True (default). show_features: Shows features if True (default). name_column: Name of the feature property that provides the Feature/Layer name. save_html: The path for saving folium map as html file. With default None, no file is saved. """ # TODO: Surface optional filepaths? or remove option alltogether? if self.results is None: raise ValueError( "You first need to download the results via job.download_results()!" ) f_paths = [] if isinstance(self.results, list): # Add features to map. # Some blocks store vector results in an additional geojson file. # pylint: disable=not-an-iterable json_fp = [fp for fp in self.results if fp.endswith(".geojson")] if json_fp: json_fp = json_fp[0] # why only one element is selected? else: # pylint: disable=not-an-iterable json_fp = [fp for fp in self.results if fp.endswith(".json")][0] f_paths = self.results elif isinstance(self.results, dict): # pylint: disable=unsubscriptable-object json_fp = self.results["merged_result"][0] f_paths = [] for k, v in self.results.items(): if k != "merged_result": f_paths.append([i for i in v if i.endswith(".tif")][0]) df: GeoDataFrame = gpd.read_file(json_fp) # Add image to map. m = self._map_images( bands=bands, plot_file_format=[".tif"], result_df=df, filepaths=f_paths, aoi=aoi, show_images=show_images, show_features=show_features, name_column=name_column, save_html=save_html, ) return m def map_quicklooks( self, scenes: GeoDataFrame, aoi: Optional[GeoDataFrame] = None, show_images: bool = True, show_features: bool = False, filepaths: Optional[list] = None, name_column: str = "id", save_html: Optional[Path] = None, ) -> folium.Map: """ TODO: Currently only implemented for catalog! Plots the downloaded quicklooks (filepaths saved to self.quicklooks of the respective object, e.g. job, catalog). Args: scenes: GeoDataFrame of scenes, results of catalog.search() aoi: GeoDataFrame of aoi. show_images: Shows images if True (default). show_features: Shows no features if False (default). filepaths: Paths to images to plot. Optional, by default picks up the last downloaded results. name_column: Name of the feature property that provides the Feature/Layer name. save_html: The path for saving folium map as html file. With default None, no file is saved. """ if filepaths is None: if self.quicklooks is None: raise ValueError("You first need to download the quicklooks!") filepaths = self.quicklooks m = self._map_images( plot_file_format=[".jpg", ".jpeg", ".png"], result_df=scenes, filepaths=filepaths, aoi=aoi, show_images=show_images, show_features=show_features, name_column=name_column, save_html=save_html, ) return m @staticmethod def plot_coverage( scenes: GeoDataFrame, aoi: Optional[GeoDataFrame] = None, legend_column: str = "sceneId", figsize=(12, 16), ) -> None: """ Plots a coverage map of a dataframe with geometries e.g. the results of catalog.search()) Args: scenes: GeoDataFrame of scenes, results of catalog.search() aoi: GeoDataFrame of aoi. legend_column: Dataframe column set to legend, default is "sceneId". Legend entries are sorted and this determines plotting order. figsize: Matplotlib figure size. """ if legend_column not in scenes.columns: legend_column = None # type: ignore logger.info( "Given legend_column name not in scene dataframe, " "plotting without legend." ) try: ax = scenes.plot( legend_column, categorical=True, figsize=figsize, cmap="Set3", legend=True, alpha=0.7, legend_kwds=dict(loc="upper left", bbox_to_anchor=(1, 1)), ) if aoi is not None: aoi.plot(color="r", ax=ax, fc="None", edgecolor="r", lw=1) except AttributeError as e: raise TypeError( "'scenes' and 'aoi' (optional) have to be a GeoDataFrame." ) from e ax.set_axis_off() plt.show() def folium_base_map( lat: float = 52.49190032214706, lon: float = 13.39117252959244, zoom_start: int = 14, width_percent: str = "95%", layer_control: bool = False, ) -> folium.Map: """Provides a folium map with basic features and UP42 logo.""" mapfigure = folium.Figure(width=width_percent) m = folium.Map(location=[lat, lon], zoom_start=zoom_start, crs="EPSG3857").add_to( mapfigure ) tiles = ( "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery" "/MapServer/tile/{z}/{y}/{x}.png" ) attr = ( "Tiles &copy; Esri &mdash; Source: Esri, i-cubed, USDA, USGS, " "AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the " "GIS User Community" ) folium.TileLayer(tiles=tiles, attr=attr, name="Satellite - ESRI").add_to(m) formatter = "function(num) {return L.Util.formatNum(num, 4) + ' ';};" folium.plugins.MousePosition( position="bottomright", separator=" | ", empty_string="NaN", lng_first=True, num_digits=20, prefix="lon/lat:", lat_formatter=formatter, lng_formatter=formatter, ).add_to(m) folium.plugins.MiniMap( tile_layer="OpenStreetMap", position="bottomright", zoom_level_offset=-6 ).add_to(m) folium.plugins.Fullscreen().add_to(m) folium.plugins.FloatImage( image="https://cdn-images-1.medium.com/max/140/1*XJ_B7ur_c8bYKniXpKVpWg@2x.png", bottom=90, left=88, ).add_to(m) if layer_control: folium.LayerControl(position="bottomleft", collapsed=False, zindex=100).add_to( m ) # If adding additional layers outside of the folium base map function, don't # use this one here. Causes an empty map. return m class DrawFoliumOverride(Draw): def render(self, **kwargs): # pylint: disable=import-outside-toplevel from branca.element import CssLink, Element, Figure, JavascriptLink super().render(**kwargs) figure = self.get_root() assert isinstance(figure, Figure), ( "You cannot render this Element " "if it is not in a Figure." ) figure.header.add_child( JavascriptLink( "https://cdnjs.cloudflare.com/ajax/libs/leaflet.draw/1.0.2/" "leaflet.draw.js" ) ) # noqa figure.header.add_child( CssLink( "https://cdnjs.cloudflare.com/ajax/libs/leaflet.draw/1.0.2/" "leaflet.draw.css" ) ) # noqa export_style = """ <style> #export { position: absolute; top: 270px; left: 11px; z-index: 999; padding: 6px; border-radius: 3px; box-sizing: border-box; color: #333; background-color: #fff; border: 2px solid rgba(0,0,0,0.5); box-shadow: None; font-family: 'Helvetica Neue'; cursor: pointer; font-size: 17px; text-decoration: none; text-align: center; font-weight: bold; } </style> """ # TODO: How to change hover color? export_button = """<a href='#' id='export'>Export as<br/>GeoJson</a>""" if self.export: figure.header.add_child(Element(export_style), name="export") figure.html.add_child(Element(export_button), name="export_button")
35.209677
122
0.548226
d79692f2207a4efd11ce732e5f576391cb3195fa
4,416
py
Python
nova/api/openstack/compute/image_metadata.py
bopopescu/trusted-nova
b440afb89f6f170c0831f5d6318a08ec41bc8c0a
[ "Apache-2.0" ]
1
2015-07-15T08:51:16.000Z
2015-07-15T08:51:16.000Z
nova/api/openstack/compute/image_metadata.py
bopopescu/trusted-nova
b440afb89f6f170c0831f5d6318a08ec41bc8c0a
[ "Apache-2.0" ]
null
null
null
nova/api/openstack/compute/image_metadata.py
bopopescu/trusted-nova
b440afb89f6f170c0831f5d6318a08ec41bc8c0a
[ "Apache-2.0" ]
2
2019-06-12T00:52:15.000Z
2020-07-24T10:35:29.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from webob import exc from nova.api.openstack import common from nova.api.openstack import wsgi from nova import exception from nova import flags from nova import image FLAGS = flags.FLAGS class Controller(object): """The image metadata API controller for the OpenStack API""" def __init__(self): self.image_service = image.get_default_image_service() def _get_image(self, context, image_id): try: return self.image_service.show(context, image_id) except exception.NotFound: msg = _("Image not found.") raise exc.HTTPNotFound(explanation=msg) @wsgi.serializers(xml=common.MetadataTemplate) def index(self, req, image_id): """Returns the list of metadata for a given instance""" context = req.environ['nova.context'] metadata = self._get_image(context, image_id)['properties'] return dict(metadata=metadata) @wsgi.serializers(xml=common.MetaItemTemplate) def show(self, req, image_id, id): context = req.environ['nova.context'] metadata = self._get_image(context, image_id)['properties'] if id in metadata: return {'meta': {id: metadata[id]}} else: raise exc.HTTPNotFound() @wsgi.serializers(xml=common.MetadataTemplate) @wsgi.deserializers(xml=common.MetadataDeserializer) def create(self, req, image_id, body): context = req.environ['nova.context'] image = self._get_image(context, image_id) if 'metadata' in body: for key, value in body['metadata'].iteritems(): image['properties'][key] = value common.check_img_metadata_quota_limit(context, image['properties']) self.image_service.update(context, image_id, image, None) return dict(metadata=image['properties']) @wsgi.serializers(xml=common.MetaItemTemplate) @wsgi.deserializers(xml=common.MetaItemDeserializer) def update(self, req, image_id, id, body): context = req.environ['nova.context'] try: meta = body['meta'] except KeyError: expl = _('Incorrect request body format') raise exc.HTTPBadRequest(explanation=expl) if not id in meta: expl = _('Request body and URI mismatch') raise exc.HTTPBadRequest(explanation=expl) if len(meta) > 1: expl = _('Request body contains too many items') raise exc.HTTPBadRequest(explanation=expl) image = self._get_image(context, image_id) image['properties'][id] = meta[id] common.check_img_metadata_quota_limit(context, image['properties']) self.image_service.update(context, image_id, image, None) return dict(meta=meta) @wsgi.serializers(xml=common.MetadataTemplate) @wsgi.deserializers(xml=common.MetadataDeserializer) def update_all(self, req, image_id, body): context = req.environ['nova.context'] image = self._get_image(context, image_id) metadata = body.get('metadata', {}) common.check_img_metadata_quota_limit(context, metadata) image['properties'] = metadata self.image_service.update(context, image_id, image, None) return dict(metadata=metadata) @wsgi.response(204) def delete(self, req, image_id, id): context = req.environ['nova.context'] image = self._get_image(context, image_id) if not id in image['properties']: msg = _("Invalid metadata key") raise exc.HTTPNotFound(explanation=msg) image['properties'].pop(id) self.image_service.update(context, image_id, image, None) def create_resource(): return wsgi.Resource(Controller())
37.109244
78
0.668025
e3635627346d8e7dde0a425f155ab70ec59e7d90
12,414
py
Python
sdk/python/pulumi_azure_native/web/v20150801/list_site_backup_status_secrets.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/web/v20150801/list_site_backup_status_secrets.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/web/v20150801/list_site_backup_status_secrets.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = [ 'ListSiteBackupStatusSecretsResult', 'AwaitableListSiteBackupStatusSecretsResult', 'list_site_backup_status_secrets', ] @pulumi.output_type class ListSiteBackupStatusSecretsResult: """ Backup description """ def __init__(__self__, blob_name=None, correlation_id=None, created=None, databases=None, finished_time_stamp=None, id=None, kind=None, last_restore_time_stamp=None, location=None, log=None, name=None, scheduled=None, size_in_bytes=None, status=None, storage_account_url=None, tags=None, type=None, website_size_in_bytes=None): if blob_name and not isinstance(blob_name, str): raise TypeError("Expected argument 'blob_name' to be a str") pulumi.set(__self__, "blob_name", blob_name) if correlation_id and not isinstance(correlation_id, str): raise TypeError("Expected argument 'correlation_id' to be a str") pulumi.set(__self__, "correlation_id", correlation_id) if created and not isinstance(created, str): raise TypeError("Expected argument 'created' to be a str") pulumi.set(__self__, "created", created) if databases and not isinstance(databases, list): raise TypeError("Expected argument 'databases' to be a list") pulumi.set(__self__, "databases", databases) if finished_time_stamp and not isinstance(finished_time_stamp, str): raise TypeError("Expected argument 'finished_time_stamp' to be a str") pulumi.set(__self__, "finished_time_stamp", finished_time_stamp) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if last_restore_time_stamp and not isinstance(last_restore_time_stamp, str): raise TypeError("Expected argument 'last_restore_time_stamp' to be a str") pulumi.set(__self__, "last_restore_time_stamp", last_restore_time_stamp) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if log and not isinstance(log, str): raise TypeError("Expected argument 'log' to be a str") pulumi.set(__self__, "log", log) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if scheduled and not isinstance(scheduled, bool): raise TypeError("Expected argument 'scheduled' to be a bool") pulumi.set(__self__, "scheduled", scheduled) if size_in_bytes and not isinstance(size_in_bytes, float): raise TypeError("Expected argument 'size_in_bytes' to be a float") pulumi.set(__self__, "size_in_bytes", size_in_bytes) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) if storage_account_url and not isinstance(storage_account_url, str): raise TypeError("Expected argument 'storage_account_url' to be a str") pulumi.set(__self__, "storage_account_url", storage_account_url) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if website_size_in_bytes and not isinstance(website_size_in_bytes, float): raise TypeError("Expected argument 'website_size_in_bytes' to be a float") pulumi.set(__self__, "website_size_in_bytes", website_size_in_bytes) @property @pulumi.getter(name="blobName") def blob_name(self) -> Optional[str]: """ Name of the blob which contains data for this backup """ return pulumi.get(self, "blob_name") @property @pulumi.getter(name="correlationId") def correlation_id(self) -> Optional[str]: """ Unique correlation identifier. Please use this along with the timestamp while communicating with Azure support. """ return pulumi.get(self, "correlation_id") @property @pulumi.getter def created(self) -> Optional[str]: """ Timestamp of the backup creation """ return pulumi.get(self, "created") @property @pulumi.getter def databases(self) -> Optional[Sequence['outputs.DatabaseBackupSettingResponse']]: """ List of databases included in the backup """ return pulumi.get(self, "databases") @property @pulumi.getter(name="finishedTimeStamp") def finished_time_stamp(self) -> Optional[str]: """ Timestamp when this backup finished. """ return pulumi.get(self, "finished_time_stamp") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource Id """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> Optional[str]: """ Kind of resource """ return pulumi.get(self, "kind") @property @pulumi.getter(name="lastRestoreTimeStamp") def last_restore_time_stamp(self) -> Optional[str]: """ Timestamp of a last restore operation which used this backup. """ return pulumi.get(self, "last_restore_time_stamp") @property @pulumi.getter def location(self) -> str: """ Resource Location """ return pulumi.get(self, "location") @property @pulumi.getter def log(self) -> Optional[str]: """ Details regarding this backup. Might contain an error message. """ return pulumi.get(self, "log") @property @pulumi.getter def name(self) -> Optional[str]: """ Resource Name """ return pulumi.get(self, "name") @property @pulumi.getter def scheduled(self) -> Optional[bool]: """ True if this backup has been created due to a schedule being triggered. """ return pulumi.get(self, "scheduled") @property @pulumi.getter(name="sizeInBytes") def size_in_bytes(self) -> Optional[float]: """ Size of the backup in bytes """ return pulumi.get(self, "size_in_bytes") @property @pulumi.getter def status(self) -> str: """ Backup status """ return pulumi.get(self, "status") @property @pulumi.getter(name="storageAccountUrl") def storage_account_url(self) -> Optional[str]: """ SAS URL for the storage account container which contains this backup """ return pulumi.get(self, "storage_account_url") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> Optional[str]: """ Resource type """ return pulumi.get(self, "type") @property @pulumi.getter(name="websiteSizeInBytes") def website_size_in_bytes(self) -> Optional[float]: """ Size of the original web app which has been backed up """ return pulumi.get(self, "website_size_in_bytes") class AwaitableListSiteBackupStatusSecretsResult(ListSiteBackupStatusSecretsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListSiteBackupStatusSecretsResult( blob_name=self.blob_name, correlation_id=self.correlation_id, created=self.created, databases=self.databases, finished_time_stamp=self.finished_time_stamp, id=self.id, kind=self.kind, last_restore_time_stamp=self.last_restore_time_stamp, location=self.location, log=self.log, name=self.name, scheduled=self.scheduled, size_in_bytes=self.size_in_bytes, status=self.status, storage_account_url=self.storage_account_url, tags=self.tags, type=self.type, website_size_in_bytes=self.website_size_in_bytes) def list_site_backup_status_secrets(backup_id: Optional[str] = None, backup_schedule: Optional[pulumi.InputType['BackupScheduleArgs']] = None, databases: Optional[Sequence[pulumi.InputType['DatabaseBackupSettingArgs']]] = None, enabled: Optional[bool] = None, id: Optional[str] = None, kind: Optional[str] = None, location: Optional[str] = None, name: Optional[str] = None, resource_group_name: Optional[str] = None, storage_account_url: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, type: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListSiteBackupStatusSecretsResult: """ Backup description :param str backup_id: Id of backup :param pulumi.InputType['BackupScheduleArgs'] backup_schedule: Schedule for the backup if it is executed periodically :param Sequence[pulumi.InputType['DatabaseBackupSettingArgs']] databases: Databases included in the backup :param bool enabled: True if the backup schedule is enabled (must be included in that case), false if the backup schedule should be disabled :param str id: Resource Id :param str kind: Kind of resource :param str location: Resource Location :param str name: Resource Name :param str resource_group_name: Name of resource group :param str storage_account_url: SAS URL to the container :param Mapping[str, str] tags: Resource tags :param str type: Resource type """ __args__ = dict() __args__['backupId'] = backup_id __args__['backupSchedule'] = backup_schedule __args__['databases'] = databases __args__['enabled'] = enabled __args__['id'] = id __args__['kind'] = kind __args__['location'] = location __args__['name'] = name __args__['resourceGroupName'] = resource_group_name __args__['storageAccountUrl'] = storage_account_url __args__['tags'] = tags __args__['type'] = type if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:web/v20150801:listSiteBackupStatusSecrets', __args__, opts=opts, typ=ListSiteBackupStatusSecretsResult).value return AwaitableListSiteBackupStatusSecretsResult( blob_name=__ret__.blob_name, correlation_id=__ret__.correlation_id, created=__ret__.created, databases=__ret__.databases, finished_time_stamp=__ret__.finished_time_stamp, id=__ret__.id, kind=__ret__.kind, last_restore_time_stamp=__ret__.last_restore_time_stamp, location=__ret__.location, log=__ret__.log, name=__ret__.name, scheduled=__ret__.scheduled, size_in_bytes=__ret__.size_in_bytes, status=__ret__.status, storage_account_url=__ret__.storage_account_url, tags=__ret__.tags, type=__ret__.type, website_size_in_bytes=__ret__.website_size_in_bytes)
38.79375
331
0.637506
4ace6a685e6d4b0452b5ef260810b53a2b01e6a1
399
py
Python
python/django/experiments/experiments/wsgi.py
romanthekat/experiments
b37125e54e846cfa6027319d724f4028e81b0ad6
[ "MIT" ]
null
null
null
python/django/experiments/experiments/wsgi.py
romanthekat/experiments
b37125e54e846cfa6027319d724f4028e81b0ad6
[ "MIT" ]
null
null
null
python/django/experiments/experiments/wsgi.py
romanthekat/experiments
b37125e54e846cfa6027319d724f4028e81b0ad6
[ "MIT" ]
null
null
null
""" WSGI config for experiments project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'experiments.settings') application = get_wsgi_application()
23.470588
78
0.789474
fab3409b42334a3025712e9728e5a5095f090cb9
9,673
py
Python
scripts/reduce_sql.py
hannes/duckdb
4a24d71edecc7c0018eb3860d2e104cfe90462b6
[ "MIT" ]
null
null
null
scripts/reduce_sql.py
hannes/duckdb
4a24d71edecc7c0018eb3860d2e104cfe90462b6
[ "MIT" ]
null
null
null
scripts/reduce_sql.py
hannes/duckdb
4a24d71edecc7c0018eb3860d2e104cfe90462b6
[ "MIT" ]
null
null
null
import re import subprocess import time import os import fuzzer_helper import multiprocessing import sqlite3 multiprocessing.set_start_method('fork') get_reduced_query = ''' SELECT * FROM reduce_sql_statement('${QUERY}'); ''' def sanitize_error(err): err = re.sub('Error: near line \d+: ', '', err) err = err.replace(os.getcwd() + '/', '') err = err.replace(os.getcwd(), '') return err def run_shell_command(shell, cmd): command = [shell, '-csv', '--batch', '-init', '/dev/null'] res = subprocess.run(command, input=bytearray(cmd, 'utf8'), stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = res.stdout.decode('utf8').strip() stderr = res.stderr.decode('utf8').strip() return (stdout, stderr, res.returncode) def get_reduced_sql(shell, sql_query): reduce_query = get_reduced_query.replace('${QUERY}', sql_query.replace("'", "''")) (stdout, stderr, returncode) = run_shell_command(shell, reduce_query) if returncode != 0: print(stdout) print(stderr) raise Exception("Failed to reduce query") reduce_candidates = [] for line in stdout.split('\n'): reduce_candidates.append(line.strip('"').replace('""', '"')) return reduce_candidates[1:] def reduce(sql_query, data_load, shell, error_msg, max_time_seconds=300): start = time.time() while True: found_new_candidate = False reduce_candidates = get_reduced_sql(shell, sql_query) for reduce_candidate in reduce_candidates: if reduce_candidate == sql_query: continue current_time = time.time() if current_time - start > max_time_seconds: break (stdout, stderr, returncode) = run_shell_command(shell, data_load + reduce_candidate) new_error = sanitize_error(stderr) if new_error == error_msg: sql_query = reduce_candidate found_new_candidate = True print("Found new reduced query") print("=======================") print(sql_query) print("=======================") break if not found_new_candidate: break return sql_query def is_ddl_query(query): query = query.lower() if 'create' in query or 'insert' in query or 'update' in query or 'delete' in query: return True return False def initial_cleanup(query_log): query_log = query_log.replace('SELECT * FROM pragma_version()\n', '') return query_log def run_queries_until_crash_mp(queries, result_file): import duckdb con = duckdb.connect() sqlite_con = sqlite3.connect(result_file) sqlite_con.execute('CREATE TABLE queries(id INT, text VARCHAR)') sqlite_con.execute('CREATE TABLE result(text VARCHAR)') sqlite_con.execute("INSERT INTO result VALUES ('__CRASH__')") id = 1 is_internal_error = False for q in queries: # insert the current query into the database # we do this pre-emptively in case the program crashes sqlite_con.execute('INSERT INTO queries VALUES (?, ?)', (id, q)) sqlite_con.commit() keep_query = False try: con.execute(q) keep_query = is_ddl_query(q) except Exception as e: exception_error = str(e) is_internal_error = fuzzer_helper.is_internal_error(exception_error) if is_internal_error: keep_query = True sqlite_con.execute('UPDATE result SET text=?', (exception_error,)) if not keep_query: sqlite_con.execute('DELETE FROM queries WHERE id=?', (id, )) if is_internal_error: # found internal error: no need to try further queries break id += 1 if not is_internal_error: # failed to reproduce: delete result sqlite_con.execute('DELETE FROM result') sqlite_con.commit() sqlite_con.close() def run_queries_until_crash(queries): sqlite_file = 'cleaned_queries.db' if os.path.isfile(sqlite_file): os.remove(sqlite_file) # run the queries in a separate process because it might crash p = multiprocessing.Process(target=run_queries_until_crash_mp, args=(queries, sqlite_file)) p.start() p.join() # read the queries back from the file sqlite_con = sqlite3.connect(sqlite_file) queries = sqlite_con.execute('SELECT text FROM queries ORDER BY id').fetchall() results = sqlite_con.execute('SELECT text FROM result').fetchall() sqlite_con.close() if len(results) == 0: # no internal error or crash found return (None, None) assert len(results) == 1 return ([x[0] for x in queries], results[0][0]) def cleanup_irrelevant_queries(query_log): query_log = initial_cleanup(query_log) queries = [x for x in query_log.split(';\n') if len(x) > 0] return run_queries_until_crash(queries) # def reduce_internal(start, sql_query, data_load, queries_final, shell, error_msg, max_time_seconds=300): def reduce_query_log_query(start, shell, queries, query_index, max_time_seconds): new_query_list = queries[:] sql_query = queries[query_index] while True: found_new_candidate = False reduce_candidates = get_reduced_sql(shell, sql_query) for reduce_candidate in reduce_candidates: if reduce_candidate == sql_query: continue current_time = time.time() if current_time - start > max_time_seconds: break new_query_list[query_index] = reduce_candidate (_, error) = run_queries_until_crash(new_query_list) if error is not None: sql_query = reduce_candidate found_new_candidate = True print("Found new reduced query") print("=======================") print(sql_query) print("========ERROR==========") print(error) print("=======================") print("") break if not found_new_candidate: break return sql_query def reduce_query_log(queries, shell, max_time_seconds=300): start = time.time() current_index = 0 # first try to remove as many queries as possible while current_index < len(queries): print("Attempting to remove query at position %d (of %d total queries)" % (current_index, len(queries))) current_time = time.time() if current_time - start > max_time_seconds: break # remove the query at "current_index" new_queries = queries[:current_index] + queries[current_index + 1:] # try to run the queries and check if we still get the same error (new_queries_x, current_error) = run_queries_until_crash(new_queries) if current_error is None: # cannot remove this query without invalidating the test case current_index += 1 else: # we can remove this query queries = new_queries # now try to reduce individual queries for i in range(len(queries)): if is_ddl_query(queries[i]): continue current_time = time.time() if current_time - start > max_time_seconds: break queries[i] = reduce_query_log_query(start, shell, queries, i, max_time_seconds) return queries # Example usage: # error_msg = 'INTERNAL Error: Assertion triggered in file "/Users/myth/Programs/duckdb-bugfix/src/common/types/data_chunk.cpp" on line 41: !types.empty()' # shell = 'build/debug/duckdb' # data_load = 'create table all_types as select * from test_all_types();' # sql_query = ''' # select # subq_0.c0 as c0, # contains( # cast(cast(nullif( # argmax( # cast(case when 0 then (select varchar from main.all_types limit 1 offset 5) # else (select varchar from main.all_types limit 1 offset 5) # end # as varchar), # cast(decode( # cast(cast(null as blob) as blob)) as varchar)) over (partition by subq_0.c1 order by subq_0.c1), # current_schema()) as varchar) as varchar), # cast(cast(nullif(cast(null as varchar), # cast(null as varchar)) as varchar) as varchar)) as c1, # (select min(time) from main.all_types) # as c2, # subq_0.c1 as c3, # subq_0.c1 as c4, # cast(nullif(subq_0.c1, # subq_0.c1) as decimal(4,1)) as c5 # from # (select # ref_0.timestamp_ns as c0, # case when (EXISTS ( # select # ref_0.timestamp_ns as c0, # ref_0.timestamp_ns as c1, # (select timestamp_tz from main.all_types limit 1 offset 4) # as c2, # ref_1.int_array as c3, # ref_1.dec_4_1 as c4, # ref_0.utinyint as c5, # ref_1.int as c6, # ref_0.double as c7, # ref_0.medium_enum as c8, # ref_1.array_of_structs as c9, # ref_1.varchar as c10 # from # main.all_types as ref_1 # where ref_1.varchar ~~~ ref_1.varchar # limit 28)) # or (ref_0.varchar ~~~ ref_0.varchar) then ref_0.dec_4_1 else ref_0.dec_4_1 end # as c1 # from # main.all_types as ref_0 # where (0) # and (ref_0.varchar ~~ ref_0.varchar)) as subq_0 # where writefile() !~~* writefile() # limit 88 # ''' # # print(reduce(sql_query, data_load, shell, error_msg))
37.203846
155
0.608808
a2edcee42da1b4e0eda75acfa762ce38acac522e
608
py
Python
vault_cli/metadata.py
irvansemestanya/vault-cli
220989a336e999ba770761fcdc4e6d829d644230
[ "Apache-2.0" ]
52
2018-04-11T12:51:42.000Z
2022-03-29T12:51:54.000Z
vault_cli/metadata.py
irvansemestanya/vault-cli
220989a336e999ba770761fcdc4e6d829d644230
[ "Apache-2.0" ]
186
2018-04-19T13:12:43.000Z
2022-01-27T08:39:45.000Z
vault_cli/metadata.py
irvansemestanya/vault-cli
220989a336e999ba770761fcdc4e6d829d644230
[ "Apache-2.0" ]
15
2018-04-19T09:40:48.000Z
2021-08-24T14:42:36.000Z
import io from distutils import dist from typing import Mapping, Optional import pkg_resources def extract_metadata() -> Mapping[str, Optional[str]]: distribution = pkg_resources.get_distribution("vault-cli") metadata_str = distribution.get_metadata(distribution.PKG_INFO) metadata_obj = dist.DistributionMetadata() metadata_obj.read_pkg_file(io.StringIO(metadata_str)) return { "author": metadata_obj.author, "email": metadata_obj.author_email, "license": metadata_obj.license, "url": metadata_obj.url, "version": metadata_obj.version, }
27.636364
67
0.720395
4ae42e4f3b92e40f20f44c3232ebf4a1e8e6989b
149,145
py
Python
solver.py
LigninTools/lignet2.0
62ebc786b2a4c85cf60f59b1e3347d170fa5081a
[ "BSD-2-Clause" ]
null
null
null
solver.py
LigninTools/lignet2.0
62ebc786b2a4c85cf60f59b1e3347d170fa5081a
[ "BSD-2-Clause" ]
null
null
null
solver.py
LigninTools/lignet2.0
62ebc786b2a4c85cf60f59b1e3347d170fa5081a
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 import argparse parser = argparse.ArgumentParser() parser.add_argument("-C", "--PLIGC", type=float, help="mol number of C in input", required=True) parser.add_argument("-H", "--PLIGH", type=float, help="mol number of H in input", required=True) parser.add_argument("-O", "--PLIGO", type=float, help="mol number of O in input", required=True) parser.add_argument("-t", "--T0", type=float, default=298.15, help="starting temperature", required=False) parser.add_argument("-m", "--max_temperature", type=float, help="maximum pyrolysis temperature", default=float('nan')) parser.add_argument("-r", "--heating_rate", type=float, default=2.7, help="heating rate in K/s") parser.add_argument("-s", "--end_time", type=float, default=600, help="end_time in seconds") args = parser.parse_args() print("Solver arguments are:") print("\tPLIGC\t%f" % args.PLIGC) print("\tPLIGH\t%f" % args.PLIGH) print("\tPLIGO\t%f" % args.PLIGO) print("\ttemperature\t%f" % args.T0) print("\tmax temperature\t%f" % args.max_temperature) print("\theating rate\t%f" % args.heating_rate) print("\tend time (s)\t%f\n" % args.end_time) T0 = args.T0 PLIGC = args.PLIGC PLIGH = args.PLIGH PLIGO = args.PLIGO alpha = args.heating_rate T_max = args.max_temperature end_time = args.end_time stoptime = min((args.max_temperature-args.T0)/args.heating_rate,600) from scipy.integrate import odeint import time import numpy as np def ODEs(y, t, p): T, ADIO, ADIOM2, ALD3, C10H2, C10H2M2, C10H2M4, C2H6, C3H4O, C3H4O2, C3H6, C3H6O2, C3H8O2, CH2CO, CH3CHO, CH3OH, CH4, CHAR, CO, CO2, COUMARYL, ETOH, H2, H2O, KET, KETD, KETDM2, KETM2, LIG, LIGC, LIGH, LIGM2, LIGO, MGUAI, OH, PADIO, PADIOM2, PC2H2, PCH2OH, PCH2P, PCH3, PCHO, PCHOHP, PCHP2, PCOH, PCOHP2, PCOS, PFET3, PFET3M2, PH2, PHENOL, PKETM2, PLIG, PLIGC, PLIGH, PLIGM2, PLIGO, PRADIO, PRADIOM2, PRFET3, PRFET3M2, PRKETM2, PRLIGH, PRLIGH2, PRLIGM2A, RADIO, RADIOM2, RC3H3O, RC3H5O2, RC3H7O2, RCH3, RCH3O, RKET, RKETM2, RLIGA, RLIGB, RLIGH, RLIGM2A, RLIGM2B, RMGUAI, RPHENOL, RPHENOX, RPHENOXM2, SYNAPYL, VADIO, VADIOM2, VCOUMARYL, VKET, VKETD, VKETDM2, VKETM2, VMGUAI, VPHENOL, VSYNAPYL = y alpha, R, A0, n0, E0, A1, n1, E1, A2, n2, E2, A3, n3, E3, A4, n4, E4, A5, n5, E5, A6, n6, E6, A7, n7, E7, A8, n8, E8, A9, n9, E9, A10, n10, E10, A11, n11, E11, A12, n12, E12, A13, n13, E13, A14, n14, E14, A15, n15, E15, A16, n16, E16, A17, n17, E17, A18, n18, E18, A19, n19, E19, A20, n20, E20, A21, n21, E21, A22, n22, E22, A23, n23, E23, A24, n24, E24, A25, n25, E25, A26, n26, E26, A27, n27, E27, A28, n28, E28, A29, n29, E29, A30, n30, E30, A31, n31, E31, A32, n32, E32, A33, n33, E33, A34, n34, E34, A35, n35, E35, A36, n36, E36, A37, n37, E37, A38, n38, E38, A39, n39, E39, A40, n40, E40, A41, n41, E41, A42, n42, E42, A43, n43, E43, A44, n44, E44, A45, n45, E45, A46, n46, E46, A47, n47, E47, A48, n48, E48, A49, n49, E49, A50, n50, E50, A51, n51, E51, A52, n52, E52, A53, n53, E53, A54, n54, E54, A55, n55, E55, A56, n56, E56, A57, n57, E57, A58, n58, E58, A59, n59, E59, A60, n60, E60, A61, n61, E61, A62, n62, E62, A63, n63, E63, A64, n64, E64, A65, n65, E65, A66, n66, E66, A67, n67, E67, A68, n68, E68, A69, n69, E69, A70, n70, E70, A71, n71, E71, A72, n72, E72, A73, n73, E73, A74, n74, E74, A75, n75, E75, A76, n76, E76, A77, n77, E77, A78, n78, E78, A79, n79, E79, A80, n80, E80, A81, n81, E81, A82, n82, E82, A83, n83, E83, A84, n84, E84, A85, n85, E85, A86, n86, E86, A87, n87, E87, A88, n88, E88, A89, n89, E89, A90, n90, E90, A91, n91, E91, A92, n92, E92, A93, n93, E93, A94, n94, E94, A95, n95, E95, A96, n96, E96, A97, n97, E97, A98, n98, E98, A99, n99, E99, A100, n100, E100, A101, n101, E101, A102, n102, E102, A103, n103, E103, A104, n104, E104, A105, n105, E105, A106, n106, E106, A107, n107, E107, A108, n108, E108, A109, n109, E109, A110, n110, E110, A111, n111, E111, A112, n112, E112, A113, n113, E113, A114, n114, E114, A115, n115, E115, A116, n116, E116, A117, n117, E117, A118, n118, E118, A119, n119, E119, A120, n120, E120, A121, n121, E121, A122, n122, E122, A123, n123, E123, A124, n124, E124, A125, n125, E125, A126, n126, E126, A127, n127, E127, A128, n128, E128, A129, n129, E129, A130, n130, E130, A131, n131, E131, A132, n132, E132, A133, n133, E133, A134, n134, E134, A135, n135, E135, A136, n136, E136, A137, n137, E137, A138, n138, E138, A139, n139, E139, A140, n140, E140, A141, n141, E141, A142, n142, E142, A143, n143, E143, A144, n144, E144, A145, n145, E145, A146, n146, E146, A147, n147, E147, A148, n148, E148, A149, n149, E149, A150, n150, E150, A151, n151, E151, A152, n152, E152, A153, n153, E153, A154, n154, E154, A155, n155, E155, A156, n156, E156, A157, n157, E157, A158, n158, E158, A159, n159, E159, A160, n160, E160, A161, n161, E161, A162, n162, E162, A163, n163, E163, A164, n164, E164, A165, n165, E165, A166, n166, E166, A167, n167, E167, A168, n168, E168, A169, n169, E169, A170, n170, E170, A171, n171, E171, A172, n172, E172, A173, n173, E173, A174, n174, E174, A175, n175, E175, A176, n176, E176, A177, n177, E177, A178, n178, E178, A179, n179, E179, A180, n180, E180, A181, n181, E181, A182, n182, E182, A183, n183, E183, A184, n184, E184, A185, n185, E185, A186, n186, E186, A187, n187, E187, A188, n188, E188, A189, n189, E189, A190, n190, E190, A191, n191, E191, A192, n192, E192, A193, n193, E193, A194, n194, E194, A195, n195, E195, A196, n196, E196, A197, n197, E197, A198, n198, E198, A199, n199, E199, A200, n200, E200, A201, n201, E201, A202, n202, E202, A203, n203, E203, A204, n204, E204, A205, n205, E205, A206, n206, E206, A207, n207, E207, A208, n208, E208, A209, n209, E209, A210, n210, E210, A211, n211, E211, A212, n212, E212, A213, n213, E213, A214, n214, E214, A215, n215, E215, A216, n216, E216, A217, n217, E217, A218, n218, E218, A219, n219, E219, A220, n220, E220, A221, n221, E221, A222, n222, E222, A223, n223, E223, A224, n224, E224, A225, n225, E225, A226, n226, E226, A227, n227, E227, A228, n228, E228, A229, n229, E229, A230, n230, E230, A231, n231, E231, A232, n232, E232, A233, n233, E233, A234, n234, E234, A235, n235, E235, A236, n236, E236, A237, n237, E237, A238, n238, E238, A239, n239, E239, A240, n240, E240, A241, n241, E241, A242, n242, E242, A243, n243, E243, A244, n244, E244, A245, n245, E245, A246, n246, E246, A247, n247, E247, A248, n248, E248, A249, n249, E249, A250, n250, E250, A251, n251, E251, A252, n252, E252, A253, n253, E253, A254, n254, E254, A255, n255, E255, A256, n256, E256, A257, n257, E257, A258, n258, E258, A259, n259, E259, A260, n260, E260, A261, n261, E261, A262, n262, E262, A263, n263, E263, A264, n264, E264, A265, n265, E265, A266, n266, E266, A267, n267, E267, A268, n268, E268, A269, n269, E269, A270, n270, E270, A271, n271, E271, A272, n272, E272, A273, n273, E273, A274, n274, E274, A275, n275, E275, A276, n276, E276, A277, n277, E277, A278, n278, E278, A279, n279, E279, A280, n280, E280, A281, n281, E281, A282, n282, E282, A283, n283, E283, A284, n284, E284, A285, n285, E285, A286, n286, E286, A287, n287, E287, A288, n288, E288, A289, n289, E289, A290, n290, E290, A291, n291, E291, A292, n292, E292, A293, n293, E293, A294, n294, E294, A295, n295, E295, A296, n296, E296, A297, n297, E297, A298, n298, E298, A299, n299, E299, A300, n300, E300, A301, n301, E301, A302, n302, E302, A303, n303, E303, A304, n304, E304, A305, n305, E305, A306, n306, E306, A307, n307, E307, A308, n308, E308, A309, n309, E309, A310, n310, E310, A311, n311, E311, A312, n312, E312, A313, n313, E313, A314, n314, E314, A315, n315, E315, A316, n316, E316, A317, n317, E317, A318, n318, E318, A319, n319, E319, A320, n320, E320, A321, n321, E321, A322, n322, E322, A323, n323, E323, A324, n324, E324, A325, n325, E325, A326, n326, E326, A327, n327, E327, A328, n328, E328, A329, n329, E329, A330, n330, E330, A331, n331, E331, A332, n332, E332, A333, n333, E333, A334, n334, E334, A335, n335, E335, A336, n336, E336, A337, n337, E337, A338, n338, E338, A339, n339, E339, A340, n340, E340, A341, n341, E341, A342, n342, E342, A343, n343, E343, A344, n344, E344, A345, n345, E345, A346, n346, E346, A347, n347, E347, A348, n348, E348, A349, n349, E349, A350, n350, E350, A351, n351, E351, A352, n352, E352, A353, n353, E353, A354, n354, E354, A355, n355, E355, A356, n356, E356, A357, n357, E357, A358, n358, E358, A359, n359, E359, A360, n360, E360, A361, n361, E361, A362, n362, E362, A363, n363, E363, A364, n364, E364, A365, n365, E365, A366, n366, E366, A367, n367, E367, A368, n368, E368, A369, n369, E369, A370, n370, E370, A371, n371, E371, A372, n372, E372, A373, n373, E373, A374, n374, E374, A375, n375, E375, A376, n376, E376, A377, n377, E377, A378, n378, E378, A379, n379, E379, A380, n380, E380, A381, n381, E381, A382, n382, E382, A383, n383, E383, A384, n384, E384, A385, n385, E385, A386, n386, E386, A387, n387, E387, A388, n388, E388, A389, n389, E389, A390, n390, E390, A391, n391, E391, A392, n392, E392, A393, n393, E393, A394, n394, E394, A395, n395, E395, A396, n396, E396, A397, n397, E397, A398, n398, E398, A399, n399, E399, A400, n400, E400, A401, n401, E401, A402, n402, E402, A403, n403, E403, A404, n404, E404, A405, n405, E405 = p dydt = [alpha, -1*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 -1*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 -1*A90 * T**n90 * np.exp(-1*E90/R/T) * ADIO**1.0 +1*A132 * T**n132 * np.exp(-1*E132/R/T) * RADIO**1.0 * LIGH**1.0 +1*A153 * T**n153 * np.exp(-1*E153/R/T) * RADIO**1.0 * PLIGH**1.0 +1*A174 * T**n174 * np.exp(-1*E174/R/T) * RADIO**1.0 * PLIGM2**1.0 +1*A195 * T**n195 * np.exp(-1*E195/R/T) * RADIO**1.0 * LIGM2**1.0 +1*A216 * T**n216 * np.exp(-1*E216/R/T) * RADIO**1.0 * LIGM2**1.0 +1*A237 * T**n237 * np.exp(-1*E237/R/T) * RADIO**1.0 * PFET3M2**1.0 +1*A258 * T**n258 * np.exp(-1*E258/R/T) * RADIO**1.0 * ADIOM2**1.0 +1*A279 * T**n279 * np.exp(-1*E279/R/T) * RADIO**1.0 * KETM2**1.0 +1*A300 * T**n300 * np.exp(-1*E300/R/T) * RADIO**1.0 * C10H2**1.0 +1*A321 * T**n321 * np.exp(-1*E321/R/T) * RADIO**1.0 * LIG**1.0 +1*A342 * T**n342 * np.exp(-1*E342/R/T) * RADIO**1.0 * LIG**1.0 +1*A363 * T**n363 * np.exp(-1*E363/R/T) * RADIO**1.0 * PFET3**1.0 -1*A364 * T**n364 * np.exp(-1*E364/R/T) * RC3H5O2**1.0 * ADIO**1.0 -1*A365 * T**n365 * np.exp(-1*E365/R/T) * PRFET3**1.0 * ADIO**1.0 -1*A366 * T**n366 * np.exp(-1*E366/R/T) * RC3H7O2**1.0 * ADIO**1.0 -1*A367 * T**n367 * np.exp(-1*E367/R/T) * RADIOM2**1.0 * ADIO**1.0 -1*A368 * T**n368 * np.exp(-1*E368/R/T) * PRFET3M2**1.0 * ADIO**1.0 -1*A369 * T**n369 * np.exp(-1*E369/R/T) * PRLIGH**1.0 * ADIO**1.0 -1*A370 * T**n370 * np.exp(-1*E370/R/T) * RLIGM2B**1.0 * ADIO**1.0 -1*A371 * T**n371 * np.exp(-1*E371/R/T) * RLIGM2A**1.0 * ADIO**1.0 -1*A372 * T**n372 * np.exp(-1*E372/R/T) * RCH3**1.0 * ADIO**1.0 -1*A373 * T**n373 * np.exp(-1*E373/R/T) * PRKETM2**1.0 * ADIO**1.0 -1*A374 * T**n374 * np.exp(-1*E374/R/T) * RKET**1.0 * ADIO**1.0 -1*A375 * T**n375 * np.exp(-1*E375/R/T) * PRADIO**1.0 * ADIO**1.0 -1*A376 * T**n376 * np.exp(-1*E376/R/T) * RC3H3O**1.0 * ADIO**1.0 -1*A377 * T**n377 * np.exp(-1*E377/R/T) * RLIGB**1.0 * ADIO**1.0 -1*A378 * T**n378 * np.exp(-1*E378/R/T) * RLIGA**1.0 * ADIO**1.0 -1*A379 * T**n379 * np.exp(-1*E379/R/T) * PRADIOM2**1.0 * ADIO**1.0 -1*A380 * T**n380 * np.exp(-1*E380/R/T) * RMGUAI**1.0 * ADIO**1.0 -1*A381 * T**n381 * np.exp(-1*E381/R/T) * OH**1.0 * ADIO**1.0 -1*A382 * T**n382 * np.exp(-1*E382/R/T) * RCH3O**1.0 * ADIO**1.0 -1*A383 * T**n383 * np.exp(-1*E383/R/T) * RPHENOL**1.0 * ADIO**1.0 -1*A384 * T**n384 * np.exp(-1*E384/R/T) * RADIO**1.0 * ADIO**1.0 +1*A384 * T**n384 * np.exp(-1*E384/R/T) * RADIO**1.0 * ADIO**1.0 +1*A405 * T**n405 * np.exp(-1*E405/R/T) * RADIO**1.0 * KET**1.0, -1*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 -1*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 -1*A84 * T**n84 * np.exp(-1*E84/R/T) * ADIOM2**1.0 +1*A115 * T**n115 * np.exp(-1*E115/R/T) * RADIOM2**1.0 * LIGH**1.0 +1*A136 * T**n136 * np.exp(-1*E136/R/T) * RADIOM2**1.0 * PLIGH**1.0 +1*A157 * T**n157 * np.exp(-1*E157/R/T) * RADIOM2**1.0 * PLIGM2**1.0 +1*A178 * T**n178 * np.exp(-1*E178/R/T) * RADIOM2**1.0 * LIGM2**1.0 +1*A199 * T**n199 * np.exp(-1*E199/R/T) * RADIOM2**1.0 * LIGM2**1.0 +1*A220 * T**n220 * np.exp(-1*E220/R/T) * RADIOM2**1.0 * PFET3M2**1.0 -1*A238 * T**n238 * np.exp(-1*E238/R/T) * RC3H5O2**1.0 * ADIOM2**1.0 -1*A239 * T**n239 * np.exp(-1*E239/R/T) * PRFET3**1.0 * ADIOM2**1.0 -1*A240 * T**n240 * np.exp(-1*E240/R/T) * RC3H7O2**1.0 * ADIOM2**1.0 -1*A241 * T**n241 * np.exp(-1*E241/R/T) * RADIOM2**1.0 * ADIOM2**1.0 +1*A241 * T**n241 * np.exp(-1*E241/R/T) * RADIOM2**1.0 * ADIOM2**1.0 -1*A242 * T**n242 * np.exp(-1*E242/R/T) * PRFET3M2**1.0 * ADIOM2**1.0 -1*A243 * T**n243 * np.exp(-1*E243/R/T) * PRLIGH**1.0 * ADIOM2**1.0 -1*A244 * T**n244 * np.exp(-1*E244/R/T) * RLIGM2B**1.0 * ADIOM2**1.0 -1*A245 * T**n245 * np.exp(-1*E245/R/T) * RLIGM2A**1.0 * ADIOM2**1.0 -1*A246 * T**n246 * np.exp(-1*E246/R/T) * RCH3**1.0 * ADIOM2**1.0 -1*A247 * T**n247 * np.exp(-1*E247/R/T) * PRKETM2**1.0 * ADIOM2**1.0 -1*A248 * T**n248 * np.exp(-1*E248/R/T) * RKET**1.0 * ADIOM2**1.0 -1*A249 * T**n249 * np.exp(-1*E249/R/T) * PRADIO**1.0 * ADIOM2**1.0 -1*A250 * T**n250 * np.exp(-1*E250/R/T) * RC3H3O**1.0 * ADIOM2**1.0 -1*A251 * T**n251 * np.exp(-1*E251/R/T) * RLIGB**1.0 * ADIOM2**1.0 -1*A252 * T**n252 * np.exp(-1*E252/R/T) * RLIGA**1.0 * ADIOM2**1.0 -1*A253 * T**n253 * np.exp(-1*E253/R/T) * PRADIOM2**1.0 * ADIOM2**1.0 -1*A254 * T**n254 * np.exp(-1*E254/R/T) * RMGUAI**1.0 * ADIOM2**1.0 -1*A255 * T**n255 * np.exp(-1*E255/R/T) * OH**1.0 * ADIOM2**1.0 -1*A256 * T**n256 * np.exp(-1*E256/R/T) * RCH3O**1.0 * ADIOM2**1.0 -1*A257 * T**n257 * np.exp(-1*E257/R/T) * RPHENOL**1.0 * ADIOM2**1.0 -1*A258 * T**n258 * np.exp(-1*E258/R/T) * RADIO**1.0 * ADIOM2**1.0 +1*A262 * T**n262 * np.exp(-1*E262/R/T) * RADIOM2**1.0 * KETM2**1.0 +1*A283 * T**n283 * np.exp(-1*E283/R/T) * RADIOM2**1.0 * C10H2**1.0 +1*A304 * T**n304 * np.exp(-1*E304/R/T) * RADIOM2**1.0 * LIG**1.0 +1*A325 * T**n325 * np.exp(-1*E325/R/T) * RADIOM2**1.0 * LIG**1.0 +1*A346 * T**n346 * np.exp(-1*E346/R/T) * RADIOM2**1.0 * PFET3**1.0 +1*A367 * T**n367 * np.exp(-1*E367/R/T) * RADIOM2**1.0 * ADIO**1.0 +1*A388 * T**n388 * np.exp(-1*E388/R/T) * RADIOM2**1.0 * KET**1.0, +1*A12 * T**n12 * np.exp(-1*E12/R/T) * RLIGH**1.0 +1*A13 * T**n13 * np.exp(-1*E13/R/T) * PRLIGH2**1.0, +0.5*A11 * T**n11 * np.exp(-1*E11/R/T) * RPHENOX**1.0 +0.5*A29 * T**n29 * np.exp(-1*E29/R/T) * C10H2M2**1.0 +0.5*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 +0.5*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 +0.5*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +0.5*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +1*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 +1*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 +1*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 +1*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 +0.5*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 +0.5*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 +0.5*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +0.5*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 +0.5*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 +0.5*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 +1*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0 +0.5*A52 * T**n52 * np.exp(-1*E52/R/T) * RCH3O**1.0 * RPHENOX**1.0 +0.5*A55 * T**n55 * np.exp(-1*E55/R/T) * RPHENOX**1.0 * RCH3**1.0 +1.5*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +1*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +2*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +2*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +1*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 +1*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 +1*A80 * T**n80 * np.exp(-1*E80/R/T) * RPHENOX**1.0 * RPHENOL**1.0 +0.5*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 +0.5*A82 * T**n82 * np.exp(-1*E82/R/T) * RPHENOX**1.0 * CHAR**1.0 +1*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 -1*A280 * T**n280 * np.exp(-1*E280/R/T) * RC3H5O2**1.0 * C10H2**1.0 +0.5*A280 * T**n280 * np.exp(-1*E280/R/T) * RC3H5O2**1.0 * C10H2**1.0 -1*A281 * T**n281 * np.exp(-1*E281/R/T) * PRFET3**1.0 * C10H2**1.0 +0.5*A281 * T**n281 * np.exp(-1*E281/R/T) * PRFET3**1.0 * C10H2**1.0 -1*A282 * T**n282 * np.exp(-1*E282/R/T) * RC3H7O2**1.0 * C10H2**1.0 +0.5*A282 * T**n282 * np.exp(-1*E282/R/T) * RC3H7O2**1.0 * C10H2**1.0 -1*A283 * T**n283 * np.exp(-1*E283/R/T) * RADIOM2**1.0 * C10H2**1.0 +0.5*A283 * T**n283 * np.exp(-1*E283/R/T) * RADIOM2**1.0 * C10H2**1.0 -1*A284 * T**n284 * np.exp(-1*E284/R/T) * PRFET3M2**1.0 * C10H2**1.0 +0.5*A284 * T**n284 * np.exp(-1*E284/R/T) * PRFET3M2**1.0 * C10H2**1.0 -1*A285 * T**n285 * np.exp(-1*E285/R/T) * PRLIGH**1.0 * C10H2**1.0 +0.5*A285 * T**n285 * np.exp(-1*E285/R/T) * PRLIGH**1.0 * C10H2**1.0 -1*A286 * T**n286 * np.exp(-1*E286/R/T) * RLIGM2B**1.0 * C10H2**1.0 +0.5*A286 * T**n286 * np.exp(-1*E286/R/T) * RLIGM2B**1.0 * C10H2**1.0 -1*A287 * T**n287 * np.exp(-1*E287/R/T) * RLIGM2A**1.0 * C10H2**1.0 +0.5*A287 * T**n287 * np.exp(-1*E287/R/T) * RLIGM2A**1.0 * C10H2**1.0 -1*A288 * T**n288 * np.exp(-1*E288/R/T) * RCH3**1.0 * C10H2**1.0 +0.5*A288 * T**n288 * np.exp(-1*E288/R/T) * RCH3**1.0 * C10H2**1.0 -1*A289 * T**n289 * np.exp(-1*E289/R/T) * PRKETM2**1.0 * C10H2**1.0 +0.5*A289 * T**n289 * np.exp(-1*E289/R/T) * PRKETM2**1.0 * C10H2**1.0 -1*A290 * T**n290 * np.exp(-1*E290/R/T) * RKET**1.0 * C10H2**1.0 +0.5*A290 * T**n290 * np.exp(-1*E290/R/T) * RKET**1.0 * C10H2**1.0 -1*A291 * T**n291 * np.exp(-1*E291/R/T) * PRADIO**1.0 * C10H2**1.0 +0.5*A291 * T**n291 * np.exp(-1*E291/R/T) * PRADIO**1.0 * C10H2**1.0 -1*A292 * T**n292 * np.exp(-1*E292/R/T) * RC3H3O**1.0 * C10H2**1.0 +0.5*A292 * T**n292 * np.exp(-1*E292/R/T) * RC3H3O**1.0 * C10H2**1.0 -1*A293 * T**n293 * np.exp(-1*E293/R/T) * RLIGB**1.0 * C10H2**1.0 +0.5*A293 * T**n293 * np.exp(-1*E293/R/T) * RLIGB**1.0 * C10H2**1.0 -1*A294 * T**n294 * np.exp(-1*E294/R/T) * RLIGA**1.0 * C10H2**1.0 +0.5*A294 * T**n294 * np.exp(-1*E294/R/T) * RLIGA**1.0 * C10H2**1.0 -1*A295 * T**n295 * np.exp(-1*E295/R/T) * PRADIOM2**1.0 * C10H2**1.0 +0.5*A295 * T**n295 * np.exp(-1*E295/R/T) * PRADIOM2**1.0 * C10H2**1.0 -1*A296 * T**n296 * np.exp(-1*E296/R/T) * RMGUAI**1.0 * C10H2**1.0 +0.5*A296 * T**n296 * np.exp(-1*E296/R/T) * RMGUAI**1.0 * C10H2**1.0 -1*A297 * T**n297 * np.exp(-1*E297/R/T) * OH**1.0 * C10H2**1.0 +0.5*A297 * T**n297 * np.exp(-1*E297/R/T) * OH**1.0 * C10H2**1.0 -1*A298 * T**n298 * np.exp(-1*E298/R/T) * RCH3O**1.0 * C10H2**1.0 +0.5*A298 * T**n298 * np.exp(-1*E298/R/T) * RCH3O**1.0 * C10H2**1.0 -1*A299 * T**n299 * np.exp(-1*E299/R/T) * RPHENOL**1.0 * C10H2**1.0 +0.5*A299 * T**n299 * np.exp(-1*E299/R/T) * RPHENOL**1.0 * C10H2**1.0 -1*A300 * T**n300 * np.exp(-1*E300/R/T) * RADIO**1.0 * C10H2**1.0 +0.5*A300 * T**n300 * np.exp(-1*E300/R/T) * RADIO**1.0 * C10H2**1.0, -1*A29 * T**n29 * np.exp(-1*E29/R/T) * C10H2M2**1.0 +0.5*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 -1*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 +0.5*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 +0.5*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 -1*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0 +0.5*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0, +0.5*A10 * T**n10 * np.exp(-1*E10/R/T) * RPHENOXM2**1.0 -1*A28 * T**n28 * np.exp(-1*E28/R/T) * C10H2M4**1.0 +0.5*A28 * T**n28 * np.exp(-1*E28/R/T) * C10H2M4**1.0 +1*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 +1*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 +1*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 +1*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 +0.5*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 +0.5*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 +0.5*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +0.5*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +0.5*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 +0.5*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 +0.5*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +0.5*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 -1*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 +1*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 +0.5*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 -1*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 +0.5*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 +0.5*A53 * T**n53 * np.exp(-1*E53/R/T) * RCH3O**1.0 * RPHENOXM2**1.0 +0.5*A54 * T**n54 * np.exp(-1*E54/R/T) * RPHENOXM2**1.0 * RCH3**1.0 +1*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 +2*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 +2*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 +1*A63 * T**n63 * np.exp(-1*E63/R/T) * RMGUAI**2.0 +1*A64 * T**n64 * np.exp(-1*E64/R/T) * RKETM2**2.0 +1*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 +2*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +0.5*A83 * T**n83 * np.exp(-1*E83/R/T) * RPHENOXM2**1.0 * CHAR**1.0 +1*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0, +1*A70 * T**n70 * np.exp(-1*E70/R/T) * RCH3**2.0, +1*A124 * T**n124 * np.exp(-1*E124/R/T) * RC3H3O**1.0 * LIGH**1.0 +1*A145 * T**n145 * np.exp(-1*E145/R/T) * RC3H3O**1.0 * PLIGH**1.0 +1*A166 * T**n166 * np.exp(-1*E166/R/T) * RC3H3O**1.0 * PLIGM2**1.0 +1*A187 * T**n187 * np.exp(-1*E187/R/T) * RC3H3O**1.0 * LIGM2**1.0 +1*A208 * T**n208 * np.exp(-1*E208/R/T) * RC3H3O**1.0 * LIGM2**1.0 +1*A229 * T**n229 * np.exp(-1*E229/R/T) * RC3H3O**1.0 * PFET3M2**1.0 +1*A250 * T**n250 * np.exp(-1*E250/R/T) * RC3H3O**1.0 * ADIOM2**1.0 +1*A271 * T**n271 * np.exp(-1*E271/R/T) * RC3H3O**1.0 * KETM2**1.0 +1*A292 * T**n292 * np.exp(-1*E292/R/T) * RC3H3O**1.0 * C10H2**1.0 +1*A313 * T**n313 * np.exp(-1*E313/R/T) * RC3H3O**1.0 * LIG**1.0 +1*A334 * T**n334 * np.exp(-1*E334/R/T) * RC3H3O**1.0 * LIG**1.0 +1*A355 * T**n355 * np.exp(-1*E355/R/T) * RC3H3O**1.0 * PFET3**1.0 +1*A376 * T**n376 * np.exp(-1*E376/R/T) * RC3H3O**1.0 * ADIO**1.0 +1*A397 * T**n397 * np.exp(-1*E397/R/T) * RC3H3O**1.0 * KET**1.0, +1*A18 * T**n18 * np.exp(-1*E18/R/T) * PRFET3M2**1.0 +1*A22 * T**n22 * np.exp(-1*E22/R/T) * PRFET3**1.0, +1*A1 * T**n1 * np.exp(-1*E1/R/T) * LIGH**1.0, +1*A14 * T**n14 * np.exp(-1*E14/R/T) * RADIOM2**1.0 +1*A19 * T**n19 * np.exp(-1*E19/R/T) * RADIO**1.0 +1*A112 * T**n112 * np.exp(-1*E112/R/T) * RC3H5O2**1.0 * LIGH**1.0 +1*A133 * T**n133 * np.exp(-1*E133/R/T) * RC3H5O2**1.0 * PLIGH**1.0 +1*A154 * T**n154 * np.exp(-1*E154/R/T) * RC3H5O2**1.0 * PLIGM2**1.0 +1*A175 * T**n175 * np.exp(-1*E175/R/T) * RC3H5O2**1.0 * LIGM2**1.0 +1*A196 * T**n196 * np.exp(-1*E196/R/T) * RC3H5O2**1.0 * LIGM2**1.0 +1*A217 * T**n217 * np.exp(-1*E217/R/T) * RC3H5O2**1.0 * PFET3M2**1.0 +1*A238 * T**n238 * np.exp(-1*E238/R/T) * RC3H5O2**1.0 * ADIOM2**1.0 +1*A259 * T**n259 * np.exp(-1*E259/R/T) * RC3H5O2**1.0 * KETM2**1.0 +1*A280 * T**n280 * np.exp(-1*E280/R/T) * RC3H5O2**1.0 * C10H2**1.0 +1*A301 * T**n301 * np.exp(-1*E301/R/T) * RC3H5O2**1.0 * LIG**1.0 +1*A322 * T**n322 * np.exp(-1*E322/R/T) * RC3H5O2**1.0 * LIG**1.0 +1*A343 * T**n343 * np.exp(-1*E343/R/T) * RC3H5O2**1.0 * PFET3**1.0 +1*A364 * T**n364 * np.exp(-1*E364/R/T) * RC3H5O2**1.0 * ADIO**1.0 +1*A385 * T**n385 * np.exp(-1*E385/R/T) * RC3H5O2**1.0 * KET**1.0, +1*A114 * T**n114 * np.exp(-1*E114/R/T) * RC3H7O2**1.0 * LIGH**1.0 +1*A135 * T**n135 * np.exp(-1*E135/R/T) * RC3H7O2**1.0 * PLIGH**1.0 +1*A156 * T**n156 * np.exp(-1*E156/R/T) * RC3H7O2**1.0 * PLIGM2**1.0 +1*A177 * T**n177 * np.exp(-1*E177/R/T) * RC3H7O2**1.0 * LIGM2**1.0 +1*A198 * T**n198 * np.exp(-1*E198/R/T) * RC3H7O2**1.0 * LIGM2**1.0 +1*A219 * T**n219 * np.exp(-1*E219/R/T) * RC3H7O2**1.0 * PFET3M2**1.0 +1*A240 * T**n240 * np.exp(-1*E240/R/T) * RC3H7O2**1.0 * ADIOM2**1.0 +1*A261 * T**n261 * np.exp(-1*E261/R/T) * RC3H7O2**1.0 * KETM2**1.0 +1*A282 * T**n282 * np.exp(-1*E282/R/T) * RC3H7O2**1.0 * C10H2**1.0 +1*A303 * T**n303 * np.exp(-1*E303/R/T) * RC3H7O2**1.0 * LIG**1.0 +1*A324 * T**n324 * np.exp(-1*E324/R/T) * RC3H7O2**1.0 * LIG**1.0 +1*A345 * T**n345 * np.exp(-1*E345/R/T) * RC3H7O2**1.0 * PFET3**1.0 +1*A366 * T**n366 * np.exp(-1*E366/R/T) * RC3H7O2**1.0 * ADIO**1.0 +1*A387 * T**n387 * np.exp(-1*E387/R/T) * RC3H7O2**1.0 * KET**1.0, +1*A30 * T**n30 * np.exp(-1*E30/R/T) * PLIGC**1.0 +1*A108 * T**n108 * np.exp(-1*E108/R/T) * LIGC**1.0, +1*A27 * T**n27 * np.exp(-1*E27/R/T) * RC3H7O2**1.0 +1*A57 * T**n57 * np.exp(-1*E57/R/T) * RCH3O**2.0, +1*A69 * T**n69 * np.exp(-1*E69/R/T) * OH**1.0 * RCH3**1.0 +1*A130 * T**n130 * np.exp(-1*E130/R/T) * RCH3O**1.0 * LIGH**1.0 +1*A151 * T**n151 * np.exp(-1*E151/R/T) * RCH3O**1.0 * PLIGH**1.0 +1*A172 * T**n172 * np.exp(-1*E172/R/T) * RCH3O**1.0 * PLIGM2**1.0 +1*A193 * T**n193 * np.exp(-1*E193/R/T) * RCH3O**1.0 * LIGM2**1.0 +1*A214 * T**n214 * np.exp(-1*E214/R/T) * RCH3O**1.0 * LIGM2**1.0 +1*A235 * T**n235 * np.exp(-1*E235/R/T) * RCH3O**1.0 * PFET3M2**1.0 +1*A256 * T**n256 * np.exp(-1*E256/R/T) * RCH3O**1.0 * ADIOM2**1.0 +1*A277 * T**n277 * np.exp(-1*E277/R/T) * RCH3O**1.0 * KETM2**1.0 +1*A298 * T**n298 * np.exp(-1*E298/R/T) * RCH3O**1.0 * C10H2**1.0 +1*A319 * T**n319 * np.exp(-1*E319/R/T) * RCH3O**1.0 * LIG**1.0 +1*A340 * T**n340 * np.exp(-1*E340/R/T) * RCH3O**1.0 * LIG**1.0 +1*A361 * T**n361 * np.exp(-1*E361/R/T) * RCH3O**1.0 * PFET3**1.0 +1*A382 * T**n382 * np.exp(-1*E382/R/T) * RCH3O**1.0 * ADIO**1.0 +1*A403 * T**n403 * np.exp(-1*E403/R/T) * RCH3O**1.0 * KET**1.0, +1*A120 * T**n120 * np.exp(-1*E120/R/T) * RCH3**1.0 * LIGH**1.0 +1*A141 * T**n141 * np.exp(-1*E141/R/T) * RCH3**1.0 * PLIGH**1.0 +1*A162 * T**n162 * np.exp(-1*E162/R/T) * RCH3**1.0 * PLIGM2**1.0 +1*A183 * T**n183 * np.exp(-1*E183/R/T) * RCH3**1.0 * LIGM2**1.0 +1*A204 * T**n204 * np.exp(-1*E204/R/T) * RCH3**1.0 * LIGM2**1.0 +1*A225 * T**n225 * np.exp(-1*E225/R/T) * RCH3**1.0 * PFET3M2**1.0 +1*A246 * T**n246 * np.exp(-1*E246/R/T) * RCH3**1.0 * ADIOM2**1.0 +1*A267 * T**n267 * np.exp(-1*E267/R/T) * RCH3**1.0 * KETM2**1.0 +1*A288 * T**n288 * np.exp(-1*E288/R/T) * RCH3**1.0 * C10H2**1.0 +1*A309 * T**n309 * np.exp(-1*E309/R/T) * RCH3**1.0 * LIG**1.0 +1*A330 * T**n330 * np.exp(-1*E330/R/T) * RCH3**1.0 * LIG**1.0 +1*A351 * T**n351 * np.exp(-1*E351/R/T) * RCH3**1.0 * PFET3**1.0 +1*A372 * T**n372 * np.exp(-1*E372/R/T) * RCH3**1.0 * ADIO**1.0 +1*A393 * T**n393 * np.exp(-1*E393/R/T) * RCH3**1.0 * KET**1.0, +0.2*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 +0.2*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 -1*A82 * T**n82 * np.exp(-1*E82/R/T) * RPHENOX**1.0 * CHAR**1.0 +1*A82 * T**n82 * np.exp(-1*E82/R/T) * RPHENOX**1.0 * CHAR**1.0 -1*A83 * T**n83 * np.exp(-1*E83/R/T) * RPHENOXM2**1.0 * CHAR**1.0 +1*A83 * T**n83 * np.exp(-1*E83/R/T) * RPHENOXM2**1.0 * CHAR**1.0 +0.2*A97 * T**n97 * np.exp(-1*E97/R/T) * PC2H2**1.0 +0.1*A100 * T**n100 * np.exp(-1*E100/R/T) * PCOHP2**1.0 +0.1*A103 * T**n103 * np.exp(-1*E103/R/T) * PCHP2**1.0 +0.5*A280 * T**n280 * np.exp(-1*E280/R/T) * RC3H5O2**1.0 * C10H2**1.0 +0.5*A281 * T**n281 * np.exp(-1*E281/R/T) * PRFET3**1.0 * C10H2**1.0 +0.5*A282 * T**n282 * np.exp(-1*E282/R/T) * RC3H7O2**1.0 * C10H2**1.0 +0.5*A283 * T**n283 * np.exp(-1*E283/R/T) * RADIOM2**1.0 * C10H2**1.0 +0.5*A284 * T**n284 * np.exp(-1*E284/R/T) * PRFET3M2**1.0 * C10H2**1.0 +0.5*A285 * T**n285 * np.exp(-1*E285/R/T) * PRLIGH**1.0 * C10H2**1.0 +0.5*A286 * T**n286 * np.exp(-1*E286/R/T) * RLIGM2B**1.0 * C10H2**1.0 +0.5*A287 * T**n287 * np.exp(-1*E287/R/T) * RLIGM2A**1.0 * C10H2**1.0 +0.5*A288 * T**n288 * np.exp(-1*E288/R/T) * RCH3**1.0 * C10H2**1.0 +0.5*A289 * T**n289 * np.exp(-1*E289/R/T) * PRKETM2**1.0 * C10H2**1.0 +0.5*A290 * T**n290 * np.exp(-1*E290/R/T) * RKET**1.0 * C10H2**1.0 +0.5*A291 * T**n291 * np.exp(-1*E291/R/T) * PRADIO**1.0 * C10H2**1.0 +0.5*A292 * T**n292 * np.exp(-1*E292/R/T) * RC3H3O**1.0 * C10H2**1.0 +0.5*A293 * T**n293 * np.exp(-1*E293/R/T) * RLIGB**1.0 * C10H2**1.0 +0.5*A294 * T**n294 * np.exp(-1*E294/R/T) * RLIGA**1.0 * C10H2**1.0 +0.5*A295 * T**n295 * np.exp(-1*E295/R/T) * PRADIOM2**1.0 * C10H2**1.0 +0.5*A296 * T**n296 * np.exp(-1*E296/R/T) * RMGUAI**1.0 * C10H2**1.0 +0.5*A297 * T**n297 * np.exp(-1*E297/R/T) * OH**1.0 * C10H2**1.0 +0.5*A298 * T**n298 * np.exp(-1*E298/R/T) * RCH3O**1.0 * C10H2**1.0 +0.5*A299 * T**n299 * np.exp(-1*E299/R/T) * RPHENOL**1.0 * C10H2**1.0 +0.5*A300 * T**n300 * np.exp(-1*E300/R/T) * RADIO**1.0 * C10H2**1.0, +1*A10 * T**n10 * np.exp(-1*E10/R/T) * RPHENOXM2**1.0 +1*A11 * T**n11 * np.exp(-1*E11/R/T) * RPHENOX**1.0 +1*A94 * T**n94 * np.exp(-1*E94/R/T) * PCOS**1.0 +1*A95 * T**n95 * np.exp(-1*E95/R/T) * PCOH**1.0 +1*A111 * T**n111 * np.exp(-1*E111/R/T) * PCHO**1.0, +1*A31 * T**n31 * np.exp(-1*E31/R/T) * PLIGO**1.0 +1*A52 * T**n52 * np.exp(-1*E52/R/T) * RCH3O**1.0 * RPHENOX**1.0 +1*A53 * T**n53 * np.exp(-1*E53/R/T) * RCH3O**1.0 * RPHENOXM2**1.0 +1*A107 * T**n107 * np.exp(-1*E107/R/T) * LIGO**1.0, +1*A25 * T**n25 * np.exp(-1*E25/R/T) * RADIO**1.0 -1*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 -1*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 -1*A89 * T**n89 * np.exp(-1*E89/R/T) * COUMARYL**1.0, +1*A56 * T**n56 * np.exp(-1*E56/R/T) * RCH3O**1.0 * RCH3**1.0, +0.5*A10 * T**n10 * np.exp(-1*E10/R/T) * RPHENOXM2**1.0 +1.5*A11 * T**n11 * np.exp(-1*E11/R/T) * RPHENOX**1.0 +0.5*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 +0.5*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 +0.5*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 +1*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 +0.5*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 +0.5*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +1.5*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +1.5*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 +1.5*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 +1.5*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 +2.5*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 +1.5*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 +1.5*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 +1.5*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +1.5*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 +0.5*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 +0.5*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 +1.5*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 +1.5*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0 +1.5*A52 * T**n52 * np.exp(-1*E52/R/T) * RCH3O**1.0 * RPHENOX**1.0 +0.5*A53 * T**n53 * np.exp(-1*E53/R/T) * RCH3O**1.0 * RPHENOXM2**1.0 +2*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +1*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +2*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +2*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +2*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 +1*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 +1*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1.5*A80 * T**n80 * np.exp(-1*E80/R/T) * RPHENOX**1.0 * RPHENOL**1.0 +1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 +1.5*A82 * T**n82 * np.exp(-1*E82/R/T) * RPHENOX**1.0 * CHAR**1.0 +0.5*A83 * T**n83 * np.exp(-1*E83/R/T) * RPHENOXM2**1.0 * CHAR**1.0 +1*A96 * T**n96 * np.exp(-1*E96/R/T) * PH2**1.0 +1*A97 * T**n97 * np.exp(-1*E97/R/T) * PC2H2**1.0 +0.5*A102 * T**n102 * np.exp(-1*E102/R/T) * PCH2P**1.0 +0.5*A103 * T**n103 * np.exp(-1*E103/R/T) * PCHP2**1.0 +1*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0, +1*A57 * T**n57 * np.exp(-1*E57/R/T) * RCH3O**2.0 +2*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 +2*A66 * T**n66 * np.exp(-1*E66/R/T) * RC3H7O2**2.0 +2*A67 * T**n67 * np.exp(-1*E67/R/T) * RC3H5O2**2.0 +1*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +2*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +4*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1*A129 * T**n129 * np.exp(-1*E129/R/T) * OH**1.0 * LIGH**1.0 +1*A150 * T**n150 * np.exp(-1*E150/R/T) * OH**1.0 * PLIGH**1.0 +1*A171 * T**n171 * np.exp(-1*E171/R/T) * OH**1.0 * PLIGM2**1.0 +1*A192 * T**n192 * np.exp(-1*E192/R/T) * OH**1.0 * LIGM2**1.0 +1*A213 * T**n213 * np.exp(-1*E213/R/T) * OH**1.0 * LIGM2**1.0 +1*A234 * T**n234 * np.exp(-1*E234/R/T) * OH**1.0 * PFET3M2**1.0 +1*A255 * T**n255 * np.exp(-1*E255/R/T) * OH**1.0 * ADIOM2**1.0 +1*A276 * T**n276 * np.exp(-1*E276/R/T) * OH**1.0 * KETM2**1.0 +1*A297 * T**n297 * np.exp(-1*E297/R/T) * OH**1.0 * C10H2**1.0 +1*A318 * T**n318 * np.exp(-1*E318/R/T) * OH**1.0 * LIG**1.0 +1*A339 * T**n339 * np.exp(-1*E339/R/T) * OH**1.0 * LIG**1.0 +1*A360 * T**n360 * np.exp(-1*E360/R/T) * OH**1.0 * PFET3**1.0 +1*A381 * T**n381 * np.exp(-1*E381/R/T) * OH**1.0 * ADIO**1.0 +1*A402 * T**n402 * np.exp(-1*E402/R/T) * OH**1.0 * KET**1.0, +1*A20 * T**n20 * np.exp(-1*E20/R/T) * RLIGA**1.0 -1*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 -1*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 -1*A91 * T**n91 * np.exp(-1*E91/R/T) * KET**1.0 +1*A122 * T**n122 * np.exp(-1*E122/R/T) * RKET**1.0 * LIGH**1.0 +1*A143 * T**n143 * np.exp(-1*E143/R/T) * RKET**1.0 * PLIGH**1.0 +1*A164 * T**n164 * np.exp(-1*E164/R/T) * RKET**1.0 * PLIGM2**1.0 +1*A185 * T**n185 * np.exp(-1*E185/R/T) * RKET**1.0 * LIGM2**1.0 +1*A206 * T**n206 * np.exp(-1*E206/R/T) * RKET**1.0 * LIGM2**1.0 +1*A227 * T**n227 * np.exp(-1*E227/R/T) * RKET**1.0 * PFET3M2**1.0 +1*A248 * T**n248 * np.exp(-1*E248/R/T) * RKET**1.0 * ADIOM2**1.0 +1*A269 * T**n269 * np.exp(-1*E269/R/T) * RKET**1.0 * KETM2**1.0 +1*A290 * T**n290 * np.exp(-1*E290/R/T) * RKET**1.0 * C10H2**1.0 +1*A311 * T**n311 * np.exp(-1*E311/R/T) * RKET**1.0 * LIG**1.0 +1*A332 * T**n332 * np.exp(-1*E332/R/T) * RKET**1.0 * LIG**1.0 +1*A353 * T**n353 * np.exp(-1*E353/R/T) * RKET**1.0 * PFET3**1.0 +1*A374 * T**n374 * np.exp(-1*E374/R/T) * RKET**1.0 * ADIO**1.0 -1*A385 * T**n385 * np.exp(-1*E385/R/T) * RC3H5O2**1.0 * KET**1.0 -1*A386 * T**n386 * np.exp(-1*E386/R/T) * PRFET3**1.0 * KET**1.0 -1*A387 * T**n387 * np.exp(-1*E387/R/T) * RC3H7O2**1.0 * KET**1.0 -1*A388 * T**n388 * np.exp(-1*E388/R/T) * RADIOM2**1.0 * KET**1.0 -1*A389 * T**n389 * np.exp(-1*E389/R/T) * PRFET3M2**1.0 * KET**1.0 -1*A390 * T**n390 * np.exp(-1*E390/R/T) * PRLIGH**1.0 * KET**1.0 -1*A391 * T**n391 * np.exp(-1*E391/R/T) * RLIGM2B**1.0 * KET**1.0 -1*A392 * T**n392 * np.exp(-1*E392/R/T) * RLIGM2A**1.0 * KET**1.0 -1*A393 * T**n393 * np.exp(-1*E393/R/T) * RCH3**1.0 * KET**1.0 -1*A394 * T**n394 * np.exp(-1*E394/R/T) * PRKETM2**1.0 * KET**1.0 -1*A395 * T**n395 * np.exp(-1*E395/R/T) * RKET**1.0 * KET**1.0 +1*A395 * T**n395 * np.exp(-1*E395/R/T) * RKET**1.0 * KET**1.0 -1*A396 * T**n396 * np.exp(-1*E396/R/T) * PRADIO**1.0 * KET**1.0 -1*A397 * T**n397 * np.exp(-1*E397/R/T) * RC3H3O**1.0 * KET**1.0 -1*A398 * T**n398 * np.exp(-1*E398/R/T) * RLIGB**1.0 * KET**1.0 -1*A399 * T**n399 * np.exp(-1*E399/R/T) * RLIGA**1.0 * KET**1.0 -1*A400 * T**n400 * np.exp(-1*E400/R/T) * PRADIOM2**1.0 * KET**1.0 -1*A401 * T**n401 * np.exp(-1*E401/R/T) * RMGUAI**1.0 * KET**1.0 -1*A402 * T**n402 * np.exp(-1*E402/R/T) * OH**1.0 * KET**1.0 -1*A403 * T**n403 * np.exp(-1*E403/R/T) * RCH3O**1.0 * KET**1.0 -1*A404 * T**n404 * np.exp(-1*E404/R/T) * RPHENOL**1.0 * KET**1.0 -1*A405 * T**n405 * np.exp(-1*E405/R/T) * RADIO**1.0 * KET**1.0, +1*A26 * T**n26 * np.exp(-1*E26/R/T) * RKET**1.0 -1*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 -1*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 -1*A92 * T**n92 * np.exp(-1*E92/R/T) * KETD**1.0, +1*A9 * T**n9 * np.exp(-1*E9/R/T) * PRKETM2**1.0 +1*A24 * T**n24 * np.exp(-1*E24/R/T) * RKETM2**1.0 -1*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 -1*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 -1*A86 * T**n86 * np.exp(-1*E86/R/T) * KETDM2**1.0, +1*A15 * T**n15 * np.exp(-1*E15/R/T) * RLIGM2A**1.0 -1*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 -1*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 -1*A85 * T**n85 * np.exp(-1*E85/R/T) * KETM2**1.0 -1*A259 * T**n259 * np.exp(-1*E259/R/T) * RC3H5O2**1.0 * KETM2**1.0 -1*A260 * T**n260 * np.exp(-1*E260/R/T) * PRFET3**1.0 * KETM2**1.0 -1*A261 * T**n261 * np.exp(-1*E261/R/T) * RC3H7O2**1.0 * KETM2**1.0 -1*A262 * T**n262 * np.exp(-1*E262/R/T) * RADIOM2**1.0 * KETM2**1.0 -1*A263 * T**n263 * np.exp(-1*E263/R/T) * PRFET3M2**1.0 * KETM2**1.0 -1*A264 * T**n264 * np.exp(-1*E264/R/T) * PRLIGH**1.0 * KETM2**1.0 -1*A265 * T**n265 * np.exp(-1*E265/R/T) * RLIGM2B**1.0 * KETM2**1.0 -1*A266 * T**n266 * np.exp(-1*E266/R/T) * RLIGM2A**1.0 * KETM2**1.0 -1*A267 * T**n267 * np.exp(-1*E267/R/T) * RCH3**1.0 * KETM2**1.0 -1*A268 * T**n268 * np.exp(-1*E268/R/T) * PRKETM2**1.0 * KETM2**1.0 -1*A269 * T**n269 * np.exp(-1*E269/R/T) * RKET**1.0 * KETM2**1.0 -1*A270 * T**n270 * np.exp(-1*E270/R/T) * PRADIO**1.0 * KETM2**1.0 -1*A271 * T**n271 * np.exp(-1*E271/R/T) * RC3H3O**1.0 * KETM2**1.0 -1*A272 * T**n272 * np.exp(-1*E272/R/T) * RLIGB**1.0 * KETM2**1.0 -1*A273 * T**n273 * np.exp(-1*E273/R/T) * RLIGA**1.0 * KETM2**1.0 -1*A274 * T**n274 * np.exp(-1*E274/R/T) * PRADIOM2**1.0 * KETM2**1.0 -1*A275 * T**n275 * np.exp(-1*E275/R/T) * RMGUAI**1.0 * KETM2**1.0 -1*A276 * T**n276 * np.exp(-1*E276/R/T) * OH**1.0 * KETM2**1.0 -1*A277 * T**n277 * np.exp(-1*E277/R/T) * RCH3O**1.0 * KETM2**1.0 -1*A278 * T**n278 * np.exp(-1*E278/R/T) * RPHENOL**1.0 * KETM2**1.0 -1*A279 * T**n279 * np.exp(-1*E279/R/T) * RADIO**1.0 * KETM2**1.0, -1*A4 * T**n4 * np.exp(-1*E4/R/T) * LIG**1.0 +1*A108 * T**n108 * np.exp(-1*E108/R/T) * LIGC**1.0 +1*A125 * T**n125 * np.exp(-1*E125/R/T) * RLIGB**1.0 * LIGH**1.0 +1*A126 * T**n126 * np.exp(-1*E126/R/T) * RLIGA**1.0 * LIGH**1.0 +1*A146 * T**n146 * np.exp(-1*E146/R/T) * RLIGB**1.0 * PLIGH**1.0 +1*A147 * T**n147 * np.exp(-1*E147/R/T) * RLIGA**1.0 * PLIGH**1.0 +1*A167 * T**n167 * np.exp(-1*E167/R/T) * RLIGB**1.0 * PLIGM2**1.0 +1*A168 * T**n168 * np.exp(-1*E168/R/T) * RLIGA**1.0 * PLIGM2**1.0 +1*A188 * T**n188 * np.exp(-1*E188/R/T) * RLIGB**1.0 * LIGM2**1.0 +1*A189 * T**n189 * np.exp(-1*E189/R/T) * RLIGA**1.0 * LIGM2**1.0 +1*A209 * T**n209 * np.exp(-1*E209/R/T) * RLIGB**1.0 * LIGM2**1.0 +1*A210 * T**n210 * np.exp(-1*E210/R/T) * RLIGA**1.0 * LIGM2**1.0 +1*A230 * T**n230 * np.exp(-1*E230/R/T) * RLIGB**1.0 * PFET3M2**1.0 +1*A231 * T**n231 * np.exp(-1*E231/R/T) * RLIGA**1.0 * PFET3M2**1.0 +1*A251 * T**n251 * np.exp(-1*E251/R/T) * RLIGB**1.0 * ADIOM2**1.0 +1*A252 * T**n252 * np.exp(-1*E252/R/T) * RLIGA**1.0 * ADIOM2**1.0 +1*A272 * T**n272 * np.exp(-1*E272/R/T) * RLIGB**1.0 * KETM2**1.0 +1*A273 * T**n273 * np.exp(-1*E273/R/T) * RLIGA**1.0 * KETM2**1.0 +1*A293 * T**n293 * np.exp(-1*E293/R/T) * RLIGB**1.0 * C10H2**1.0 +1*A294 * T**n294 * np.exp(-1*E294/R/T) * RLIGA**1.0 * C10H2**1.0 -1*A301 * T**n301 * np.exp(-1*E301/R/T) * RC3H5O2**1.0 * LIG**1.0 -1*A302 * T**n302 * np.exp(-1*E302/R/T) * PRFET3**1.0 * LIG**1.0 -1*A303 * T**n303 * np.exp(-1*E303/R/T) * RC3H7O2**1.0 * LIG**1.0 -1*A304 * T**n304 * np.exp(-1*E304/R/T) * RADIOM2**1.0 * LIG**1.0 -1*A305 * T**n305 * np.exp(-1*E305/R/T) * PRFET3M2**1.0 * LIG**1.0 -1*A306 * T**n306 * np.exp(-1*E306/R/T) * PRLIGH**1.0 * LIG**1.0 -1*A307 * T**n307 * np.exp(-1*E307/R/T) * RLIGM2B**1.0 * LIG**1.0 -1*A308 * T**n308 * np.exp(-1*E308/R/T) * RLIGM2A**1.0 * LIG**1.0 -1*A309 * T**n309 * np.exp(-1*E309/R/T) * RCH3**1.0 * LIG**1.0 -1*A310 * T**n310 * np.exp(-1*E310/R/T) * PRKETM2**1.0 * LIG**1.0 -1*A311 * T**n311 * np.exp(-1*E311/R/T) * RKET**1.0 * LIG**1.0 -1*A312 * T**n312 * np.exp(-1*E312/R/T) * PRADIO**1.0 * LIG**1.0 -1*A313 * T**n313 * np.exp(-1*E313/R/T) * RC3H3O**1.0 * LIG**1.0 -1*A314 * T**n314 * np.exp(-1*E314/R/T) * RLIGB**1.0 * LIG**1.0 +1*A314 * T**n314 * np.exp(-1*E314/R/T) * RLIGB**1.0 * LIG**1.0 -1*A315 * T**n315 * np.exp(-1*E315/R/T) * RLIGA**1.0 * LIG**1.0 +1*A315 * T**n315 * np.exp(-1*E315/R/T) * RLIGA**1.0 * LIG**1.0 -1*A316 * T**n316 * np.exp(-1*E316/R/T) * PRADIOM2**1.0 * LIG**1.0 -1*A317 * T**n317 * np.exp(-1*E317/R/T) * RMGUAI**1.0 * LIG**1.0 -1*A318 * T**n318 * np.exp(-1*E318/R/T) * OH**1.0 * LIG**1.0 -1*A319 * T**n319 * np.exp(-1*E319/R/T) * RCH3O**1.0 * LIG**1.0 -1*A320 * T**n320 * np.exp(-1*E320/R/T) * RPHENOL**1.0 * LIG**1.0 -1*A321 * T**n321 * np.exp(-1*E321/R/T) * RADIO**1.0 * LIG**1.0 -1*A322 * T**n322 * np.exp(-1*E322/R/T) * RC3H5O2**1.0 * LIG**1.0 -1*A323 * T**n323 * np.exp(-1*E323/R/T) * PRFET3**1.0 * LIG**1.0 -1*A324 * T**n324 * np.exp(-1*E324/R/T) * RC3H7O2**1.0 * LIG**1.0 -1*A325 * T**n325 * np.exp(-1*E325/R/T) * RADIOM2**1.0 * LIG**1.0 -1*A326 * T**n326 * np.exp(-1*E326/R/T) * PRFET3M2**1.0 * LIG**1.0 -1*A327 * T**n327 * np.exp(-1*E327/R/T) * PRLIGH**1.0 * LIG**1.0 -1*A328 * T**n328 * np.exp(-1*E328/R/T) * RLIGM2B**1.0 * LIG**1.0 -1*A329 * T**n329 * np.exp(-1*E329/R/T) * RLIGM2A**1.0 * LIG**1.0 -1*A330 * T**n330 * np.exp(-1*E330/R/T) * RCH3**1.0 * LIG**1.0 -1*A331 * T**n331 * np.exp(-1*E331/R/T) * PRKETM2**1.0 * LIG**1.0 -1*A332 * T**n332 * np.exp(-1*E332/R/T) * RKET**1.0 * LIG**1.0 -1*A333 * T**n333 * np.exp(-1*E333/R/T) * PRADIO**1.0 * LIG**1.0 -1*A334 * T**n334 * np.exp(-1*E334/R/T) * RC3H3O**1.0 * LIG**1.0 -1*A335 * T**n335 * np.exp(-1*E335/R/T) * RLIGB**1.0 * LIG**1.0 +1*A335 * T**n335 * np.exp(-1*E335/R/T) * RLIGB**1.0 * LIG**1.0 -1*A336 * T**n336 * np.exp(-1*E336/R/T) * RLIGA**1.0 * LIG**1.0 +1*A336 * T**n336 * np.exp(-1*E336/R/T) * RLIGA**1.0 * LIG**1.0 -1*A337 * T**n337 * np.exp(-1*E337/R/T) * PRADIOM2**1.0 * LIG**1.0 -1*A338 * T**n338 * np.exp(-1*E338/R/T) * RMGUAI**1.0 * LIG**1.0 -1*A339 * T**n339 * np.exp(-1*E339/R/T) * OH**1.0 * LIG**1.0 -1*A340 * T**n340 * np.exp(-1*E340/R/T) * RCH3O**1.0 * LIG**1.0 -1*A341 * T**n341 * np.exp(-1*E341/R/T) * RPHENOL**1.0 * LIG**1.0 -1*A342 * T**n342 * np.exp(-1*E342/R/T) * RADIO**1.0 * LIG**1.0 +1*A356 * T**n356 * np.exp(-1*E356/R/T) * RLIGB**1.0 * PFET3**1.0 +1*A357 * T**n357 * np.exp(-1*E357/R/T) * RLIGA**1.0 * PFET3**1.0 +1*A377 * T**n377 * np.exp(-1*E377/R/T) * RLIGB**1.0 * ADIO**1.0 +1*A378 * T**n378 * np.exp(-1*E378/R/T) * RLIGA**1.0 * ADIO**1.0 +1*A398 * T**n398 * np.exp(-1*E398/R/T) * RLIGB**1.0 * KET**1.0 +1*A399 * T**n399 * np.exp(-1*E399/R/T) * RLIGA**1.0 * KET**1.0, +1*A105 * T**n105 * np.exp(-1*E105/R/T) * PLIGC**1.0 -1*A108 * T**n108 * np.exp(-1*E108/R/T) * LIGC**1.0, -1*A1 * T**n1 * np.exp(-1*E1/R/T) * LIGH**1.0 +1*A104 * T**n104 * np.exp(-1*E104/R/T) * PLIGH**1.0 -1*A112 * T**n112 * np.exp(-1*E112/R/T) * RC3H5O2**1.0 * LIGH**1.0 -1*A113 * T**n113 * np.exp(-1*E113/R/T) * PRFET3**1.0 * LIGH**1.0 -1*A114 * T**n114 * np.exp(-1*E114/R/T) * RC3H7O2**1.0 * LIGH**1.0 -1*A115 * T**n115 * np.exp(-1*E115/R/T) * RADIOM2**1.0 * LIGH**1.0 -1*A116 * T**n116 * np.exp(-1*E116/R/T) * PRFET3M2**1.0 * LIGH**1.0 -1*A117 * T**n117 * np.exp(-1*E117/R/T) * PRLIGH**1.0 * LIGH**1.0 -1*A118 * T**n118 * np.exp(-1*E118/R/T) * RLIGM2B**1.0 * LIGH**1.0 -1*A119 * T**n119 * np.exp(-1*E119/R/T) * RLIGM2A**1.0 * LIGH**1.0 -1*A120 * T**n120 * np.exp(-1*E120/R/T) * RCH3**1.0 * LIGH**1.0 -1*A121 * T**n121 * np.exp(-1*E121/R/T) * PRKETM2**1.0 * LIGH**1.0 -1*A122 * T**n122 * np.exp(-1*E122/R/T) * RKET**1.0 * LIGH**1.0 -1*A123 * T**n123 * np.exp(-1*E123/R/T) * PRADIO**1.0 * LIGH**1.0 -1*A124 * T**n124 * np.exp(-1*E124/R/T) * RC3H3O**1.0 * LIGH**1.0 -1*A125 * T**n125 * np.exp(-1*E125/R/T) * RLIGB**1.0 * LIGH**1.0 -1*A126 * T**n126 * np.exp(-1*E126/R/T) * RLIGA**1.0 * LIGH**1.0 -1*A127 * T**n127 * np.exp(-1*E127/R/T) * PRADIOM2**1.0 * LIGH**1.0 -1*A128 * T**n128 * np.exp(-1*E128/R/T) * RMGUAI**1.0 * LIGH**1.0 -1*A129 * T**n129 * np.exp(-1*E129/R/T) * OH**1.0 * LIGH**1.0 -1*A130 * T**n130 * np.exp(-1*E130/R/T) * RCH3O**1.0 * LIGH**1.0 -1*A131 * T**n131 * np.exp(-1*E131/R/T) * RPHENOL**1.0 * LIGH**1.0 -1*A132 * T**n132 * np.exp(-1*E132/R/T) * RADIO**1.0 * LIGH**1.0, -1*A2 * T**n2 * np.exp(-1*E2/R/T) * LIGM2**1.0 +1*A107 * T**n107 * np.exp(-1*E107/R/T) * LIGO**1.0 +1*A118 * T**n118 * np.exp(-1*E118/R/T) * RLIGM2B**1.0 * LIGH**1.0 +1*A119 * T**n119 * np.exp(-1*E119/R/T) * RLIGM2A**1.0 * LIGH**1.0 +1*A139 * T**n139 * np.exp(-1*E139/R/T) * RLIGM2B**1.0 * PLIGH**1.0 +1*A140 * T**n140 * np.exp(-1*E140/R/T) * RLIGM2A**1.0 * PLIGH**1.0 +1*A160 * T**n160 * np.exp(-1*E160/R/T) * RLIGM2B**1.0 * PLIGM2**1.0 +1*A161 * T**n161 * np.exp(-1*E161/R/T) * RLIGM2A**1.0 * PLIGM2**1.0 -1*A175 * T**n175 * np.exp(-1*E175/R/T) * RC3H5O2**1.0 * LIGM2**1.0 -1*A176 * T**n176 * np.exp(-1*E176/R/T) * PRFET3**1.0 * LIGM2**1.0 -1*A177 * T**n177 * np.exp(-1*E177/R/T) * RC3H7O2**1.0 * LIGM2**1.0 -1*A178 * T**n178 * np.exp(-1*E178/R/T) * RADIOM2**1.0 * LIGM2**1.0 -1*A179 * T**n179 * np.exp(-1*E179/R/T) * PRFET3M2**1.0 * LIGM2**1.0 -1*A180 * T**n180 * np.exp(-1*E180/R/T) * PRLIGH**1.0 * LIGM2**1.0 -1*A181 * T**n181 * np.exp(-1*E181/R/T) * RLIGM2B**1.0 * LIGM2**1.0 +1*A181 * T**n181 * np.exp(-1*E181/R/T) * RLIGM2B**1.0 * LIGM2**1.0 -1*A182 * T**n182 * np.exp(-1*E182/R/T) * RLIGM2A**1.0 * LIGM2**1.0 +1*A182 * T**n182 * np.exp(-1*E182/R/T) * RLIGM2A**1.0 * LIGM2**1.0 -1*A183 * T**n183 * np.exp(-1*E183/R/T) * RCH3**1.0 * LIGM2**1.0 -1*A184 * T**n184 * np.exp(-1*E184/R/T) * PRKETM2**1.0 * LIGM2**1.0 -1*A185 * T**n185 * np.exp(-1*E185/R/T) * RKET**1.0 * LIGM2**1.0 -1*A186 * T**n186 * np.exp(-1*E186/R/T) * PRADIO**1.0 * LIGM2**1.0 -1*A187 * T**n187 * np.exp(-1*E187/R/T) * RC3H3O**1.0 * LIGM2**1.0 -1*A188 * T**n188 * np.exp(-1*E188/R/T) * RLIGB**1.0 * LIGM2**1.0 -1*A189 * T**n189 * np.exp(-1*E189/R/T) * RLIGA**1.0 * LIGM2**1.0 -1*A190 * T**n190 * np.exp(-1*E190/R/T) * PRADIOM2**1.0 * LIGM2**1.0 -1*A191 * T**n191 * np.exp(-1*E191/R/T) * RMGUAI**1.0 * LIGM2**1.0 -1*A192 * T**n192 * np.exp(-1*E192/R/T) * OH**1.0 * LIGM2**1.0 -1*A193 * T**n193 * np.exp(-1*E193/R/T) * RCH3O**1.0 * LIGM2**1.0 -1*A194 * T**n194 * np.exp(-1*E194/R/T) * RPHENOL**1.0 * LIGM2**1.0 -1*A195 * T**n195 * np.exp(-1*E195/R/T) * RADIO**1.0 * LIGM2**1.0 -1*A196 * T**n196 * np.exp(-1*E196/R/T) * RC3H5O2**1.0 * LIGM2**1.0 -1*A197 * T**n197 * np.exp(-1*E197/R/T) * PRFET3**1.0 * LIGM2**1.0 -1*A198 * T**n198 * np.exp(-1*E198/R/T) * RC3H7O2**1.0 * LIGM2**1.0 -1*A199 * T**n199 * np.exp(-1*E199/R/T) * RADIOM2**1.0 * LIGM2**1.0 -1*A200 * T**n200 * np.exp(-1*E200/R/T) * PRFET3M2**1.0 * LIGM2**1.0 -1*A201 * T**n201 * np.exp(-1*E201/R/T) * PRLIGH**1.0 * LIGM2**1.0 -1*A202 * T**n202 * np.exp(-1*E202/R/T) * RLIGM2B**1.0 * LIGM2**1.0 +1*A202 * T**n202 * np.exp(-1*E202/R/T) * RLIGM2B**1.0 * LIGM2**1.0 -1*A203 * T**n203 * np.exp(-1*E203/R/T) * RLIGM2A**1.0 * LIGM2**1.0 +1*A203 * T**n203 * np.exp(-1*E203/R/T) * RLIGM2A**1.0 * LIGM2**1.0 -1*A204 * T**n204 * np.exp(-1*E204/R/T) * RCH3**1.0 * LIGM2**1.0 -1*A205 * T**n205 * np.exp(-1*E205/R/T) * PRKETM2**1.0 * LIGM2**1.0 -1*A206 * T**n206 * np.exp(-1*E206/R/T) * RKET**1.0 * LIGM2**1.0 -1*A207 * T**n207 * np.exp(-1*E207/R/T) * PRADIO**1.0 * LIGM2**1.0 -1*A208 * T**n208 * np.exp(-1*E208/R/T) * RC3H3O**1.0 * LIGM2**1.0 -1*A209 * T**n209 * np.exp(-1*E209/R/T) * RLIGB**1.0 * LIGM2**1.0 -1*A210 * T**n210 * np.exp(-1*E210/R/T) * RLIGA**1.0 * LIGM2**1.0 -1*A211 * T**n211 * np.exp(-1*E211/R/T) * PRADIOM2**1.0 * LIGM2**1.0 -1*A212 * T**n212 * np.exp(-1*E212/R/T) * RMGUAI**1.0 * LIGM2**1.0 -1*A213 * T**n213 * np.exp(-1*E213/R/T) * OH**1.0 * LIGM2**1.0 -1*A214 * T**n214 * np.exp(-1*E214/R/T) * RCH3O**1.0 * LIGM2**1.0 -1*A215 * T**n215 * np.exp(-1*E215/R/T) * RPHENOL**1.0 * LIGM2**1.0 -1*A216 * T**n216 * np.exp(-1*E216/R/T) * RADIO**1.0 * LIGM2**1.0 +1*A223 * T**n223 * np.exp(-1*E223/R/T) * RLIGM2B**1.0 * PFET3M2**1.0 +1*A224 * T**n224 * np.exp(-1*E224/R/T) * RLIGM2A**1.0 * PFET3M2**1.0 +1*A244 * T**n244 * np.exp(-1*E244/R/T) * RLIGM2B**1.0 * ADIOM2**1.0 +1*A245 * T**n245 * np.exp(-1*E245/R/T) * RLIGM2A**1.0 * ADIOM2**1.0 +1*A265 * T**n265 * np.exp(-1*E265/R/T) * RLIGM2B**1.0 * KETM2**1.0 +1*A266 * T**n266 * np.exp(-1*E266/R/T) * RLIGM2A**1.0 * KETM2**1.0 +1*A286 * T**n286 * np.exp(-1*E286/R/T) * RLIGM2B**1.0 * C10H2**1.0 +1*A287 * T**n287 * np.exp(-1*E287/R/T) * RLIGM2A**1.0 * C10H2**1.0 +1*A307 * T**n307 * np.exp(-1*E307/R/T) * RLIGM2B**1.0 * LIG**1.0 +1*A308 * T**n308 * np.exp(-1*E308/R/T) * RLIGM2A**1.0 * LIG**1.0 +1*A328 * T**n328 * np.exp(-1*E328/R/T) * RLIGM2B**1.0 * LIG**1.0 +1*A329 * T**n329 * np.exp(-1*E329/R/T) * RLIGM2A**1.0 * LIG**1.0 +1*A349 * T**n349 * np.exp(-1*E349/R/T) * RLIGM2B**1.0 * PFET3**1.0 +1*A350 * T**n350 * np.exp(-1*E350/R/T) * RLIGM2A**1.0 * PFET3**1.0 +1*A370 * T**n370 * np.exp(-1*E370/R/T) * RLIGM2B**1.0 * ADIO**1.0 +1*A371 * T**n371 * np.exp(-1*E371/R/T) * RLIGM2A**1.0 * ADIO**1.0 +1*A391 * T**n391 * np.exp(-1*E391/R/T) * RLIGM2B**1.0 * KET**1.0 +1*A392 * T**n392 * np.exp(-1*E392/R/T) * RLIGM2A**1.0 * KET**1.0, +1*A106 * T**n106 * np.exp(-1*E106/R/T) * PLIGO**1.0 -1*A107 * T**n107 * np.exp(-1*E107/R/T) * LIGO**1.0, -1*A88 * T**n88 * np.exp(-1*E88/R/T) * MGUAI**1.0 +1*A128 * T**n128 * np.exp(-1*E128/R/T) * RMGUAI**1.0 * LIGH**1.0 +1*A149 * T**n149 * np.exp(-1*E149/R/T) * RMGUAI**1.0 * PLIGH**1.0 +1*A170 * T**n170 * np.exp(-1*E170/R/T) * RMGUAI**1.0 * PLIGM2**1.0 +1*A191 * T**n191 * np.exp(-1*E191/R/T) * RMGUAI**1.0 * LIGM2**1.0 +1*A212 * T**n212 * np.exp(-1*E212/R/T) * RMGUAI**1.0 * LIGM2**1.0 +1*A233 * T**n233 * np.exp(-1*E233/R/T) * RMGUAI**1.0 * PFET3M2**1.0 +1*A254 * T**n254 * np.exp(-1*E254/R/T) * RMGUAI**1.0 * ADIOM2**1.0 +1*A275 * T**n275 * np.exp(-1*E275/R/T) * RMGUAI**1.0 * KETM2**1.0 +1*A296 * T**n296 * np.exp(-1*E296/R/T) * RMGUAI**1.0 * C10H2**1.0 +1*A317 * T**n317 * np.exp(-1*E317/R/T) * RMGUAI**1.0 * LIG**1.0 +1*A338 * T**n338 * np.exp(-1*E338/R/T) * RMGUAI**1.0 * LIG**1.0 +1*A359 * T**n359 * np.exp(-1*E359/R/T) * RMGUAI**1.0 * PFET3**1.0 +1*A380 * T**n380 * np.exp(-1*E380/R/T) * RMGUAI**1.0 * ADIO**1.0 +1*A401 * T**n401 * np.exp(-1*E401/R/T) * RMGUAI**1.0 * KET**1.0, +1*A1 * T**n1 * np.exp(-1*E1/R/T) * LIGH**1.0 +1*A9 * T**n9 * np.exp(-1*E9/R/T) * PRKETM2**1.0 +1*A23 * T**n23 * np.exp(-1*E23/R/T) * RADIOM2**1.0 +1*A24 * T**n24 * np.exp(-1*E24/R/T) * RKETM2**1.0 +1*A25 * T**n25 * np.exp(-1*E25/R/T) * RADIO**1.0 +1*A26 * T**n26 * np.exp(-1*E26/R/T) * RKET**1.0 -1*A69 * T**n69 * np.exp(-1*E69/R/T) * OH**1.0 * RCH3**1.0 +1*A98 * T**n98 * np.exp(-1*E98/R/T) * PCH2OH**1.0 +1*A99 * T**n99 * np.exp(-1*E99/R/T) * PCHOHP**1.0 +1*A100 * T**n100 * np.exp(-1*E100/R/T) * PCOHP2**1.0 -1*A129 * T**n129 * np.exp(-1*E129/R/T) * OH**1.0 * LIGH**1.0 -1*A150 * T**n150 * np.exp(-1*E150/R/T) * OH**1.0 * PLIGH**1.0 -1*A171 * T**n171 * np.exp(-1*E171/R/T) * OH**1.0 * PLIGM2**1.0 -1*A192 * T**n192 * np.exp(-1*E192/R/T) * OH**1.0 * LIGM2**1.0 -1*A213 * T**n213 * np.exp(-1*E213/R/T) * OH**1.0 * LIGM2**1.0 -1*A234 * T**n234 * np.exp(-1*E234/R/T) * OH**1.0 * PFET3M2**1.0 -1*A255 * T**n255 * np.exp(-1*E255/R/T) * OH**1.0 * ADIOM2**1.0 -1*A276 * T**n276 * np.exp(-1*E276/R/T) * OH**1.0 * KETM2**1.0 -1*A297 * T**n297 * np.exp(-1*E297/R/T) * OH**1.0 * C10H2**1.0 -1*A318 * T**n318 * np.exp(-1*E318/R/T) * OH**1.0 * LIG**1.0 -1*A339 * T**n339 * np.exp(-1*E339/R/T) * OH**1.0 * LIG**1.0 -1*A360 * T**n360 * np.exp(-1*E360/R/T) * OH**1.0 * PFET3**1.0 -1*A381 * T**n381 * np.exp(-1*E381/R/T) * OH**1.0 * ADIO**1.0 -1*A402 * T**n402 * np.exp(-1*E402/R/T) * OH**1.0 * KET**1.0, -1*A7 * T**n7 * np.exp(-1*E7/R/T) * PADIO**1.0 +1*A123 * T**n123 * np.exp(-1*E123/R/T) * PRADIO**1.0 * LIGH**1.0 +1*A144 * T**n144 * np.exp(-1*E144/R/T) * PRADIO**1.0 * PLIGH**1.0 +1*A165 * T**n165 * np.exp(-1*E165/R/T) * PRADIO**1.0 * PLIGM2**1.0 +1*A186 * T**n186 * np.exp(-1*E186/R/T) * PRADIO**1.0 * LIGM2**1.0 +1*A207 * T**n207 * np.exp(-1*E207/R/T) * PRADIO**1.0 * LIGM2**1.0 +1*A228 * T**n228 * np.exp(-1*E228/R/T) * PRADIO**1.0 * PFET3M2**1.0 +1*A249 * T**n249 * np.exp(-1*E249/R/T) * PRADIO**1.0 * ADIOM2**1.0 +1*A270 * T**n270 * np.exp(-1*E270/R/T) * PRADIO**1.0 * KETM2**1.0 +1*A291 * T**n291 * np.exp(-1*E291/R/T) * PRADIO**1.0 * C10H2**1.0 +1*A312 * T**n312 * np.exp(-1*E312/R/T) * PRADIO**1.0 * LIG**1.0 +1*A333 * T**n333 * np.exp(-1*E333/R/T) * PRADIO**1.0 * LIG**1.0 +1*A354 * T**n354 * np.exp(-1*E354/R/T) * PRADIO**1.0 * PFET3**1.0 +1*A375 * T**n375 * np.exp(-1*E375/R/T) * PRADIO**1.0 * ADIO**1.0 +1*A396 * T**n396 * np.exp(-1*E396/R/T) * PRADIO**1.0 * KET**1.0, -1*A6 * T**n6 * np.exp(-1*E6/R/T) * PADIOM2**1.0 +1*A58 * T**n58 * np.exp(-1*E58/R/T) * RCH3O**1.0 * PRADIOM2**1.0 +1*A71 * T**n71 * np.exp(-1*E71/R/T) * RCH3**1.0 * PRADIOM2**1.0 +1*A127 * T**n127 * np.exp(-1*E127/R/T) * PRADIOM2**1.0 * LIGH**1.0 +1*A148 * T**n148 * np.exp(-1*E148/R/T) * PRADIOM2**1.0 * PLIGH**1.0 +1*A169 * T**n169 * np.exp(-1*E169/R/T) * PRADIOM2**1.0 * PLIGM2**1.0 +1*A190 * T**n190 * np.exp(-1*E190/R/T) * PRADIOM2**1.0 * LIGM2**1.0 +1*A211 * T**n211 * np.exp(-1*E211/R/T) * PRADIOM2**1.0 * LIGM2**1.0 +1*A232 * T**n232 * np.exp(-1*E232/R/T) * PRADIOM2**1.0 * PFET3M2**1.0 +1*A253 * T**n253 * np.exp(-1*E253/R/T) * PRADIOM2**1.0 * ADIOM2**1.0 +1*A274 * T**n274 * np.exp(-1*E274/R/T) * PRADIOM2**1.0 * KETM2**1.0 +1*A295 * T**n295 * np.exp(-1*E295/R/T) * PRADIOM2**1.0 * C10H2**1.0 +1*A316 * T**n316 * np.exp(-1*E316/R/T) * PRADIOM2**1.0 * LIG**1.0 +1*A337 * T**n337 * np.exp(-1*E337/R/T) * PRADIOM2**1.0 * LIG**1.0 +1*A358 * T**n358 * np.exp(-1*E358/R/T) * PRADIOM2**1.0 * PFET3**1.0 +1*A379 * T**n379 * np.exp(-1*E379/R/T) * PRADIOM2**1.0 * ADIO**1.0 +1*A400 * T**n400 * np.exp(-1*E400/R/T) * PRADIOM2**1.0 * KET**1.0, +2*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 +2*A66 * T**n66 * np.exp(-1*E66/R/T) * RC3H7O2**2.0 +2*A67 * T**n67 * np.exp(-1*E67/R/T) * RC3H5O2**2.0 +2*A68 * T**n68 * np.exp(-1*E68/R/T) * RC3H3O**2.0 +1*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +2*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +2*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 -1*A97 * T**n97 * np.exp(-1*E97/R/T) * PC2H2**1.0 +0.5*A99 * T**n99 * np.exp(-1*E99/R/T) * PCHOHP**1.0, +1*A58 * T**n58 * np.exp(-1*E58/R/T) * RCH3O**1.0 * PRADIOM2**1.0 +1*A59 * T**n59 * np.exp(-1*E59/R/T) * RCH3O**1.0 * PRKETM2**1.0 +2*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 +2*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 +2*A64 * T**n64 * np.exp(-1*E64/R/T) * RKETM2**2.0 +2*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +2*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +2*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 -1*A98 * T**n98 * np.exp(-1*E98/R/T) * PCH2OH**1.0 +2*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 +2*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0, +2*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1*A98 * T**n98 * np.exp(-1*E98/R/T) * PCH2OH**1.0 -1*A102 * T**n102 * np.exp(-1*E102/R/T) * PCH2P**1.0, +1*A54 * T**n54 * np.exp(-1*E54/R/T) * RPHENOXM2**1.0 * RCH3**1.0 +1*A55 * T**n55 * np.exp(-1*E55/R/T) * RPHENOX**1.0 * RCH3**1.0 +1*A71 * T**n71 * np.exp(-1*E71/R/T) * RCH3**1.0 * PRADIOM2**1.0 +1*A72 * T**n72 * np.exp(-1*E72/R/T) * RCH3**1.0 * PRKETM2**1.0 +2*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 -1*A101 * T**n101 * np.exp(-1*E101/R/T) * PCH3**1.0, +2*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 +2*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 -1*A111 * T**n111 * np.exp(-1*E111/R/T) * PCHO**1.0, +2*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 +2*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 +2*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 +2*A66 * T**n66 * np.exp(-1*E66/R/T) * RC3H7O2**2.0 +2*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +2*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +2*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 -1*A99 * T**n99 * np.exp(-1*E99/R/T) * PCHOHP**1.0 +2*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 +2*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0, +2*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 +2*A64 * T**n64 * np.exp(-1*E64/R/T) * RKETM2**2.0 +2*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 +2*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +2*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 +2*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 +2*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1*A102 * T**n102 * np.exp(-1*E102/R/T) * PCH2P**1.0 -1*A103 * T**n103 * np.exp(-1*E103/R/T) * PCHP2**1.0 +2*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 +2*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0, +2*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 +2*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 +2*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 +2*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 +1*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 +1*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +1*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +1*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 +1*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 +1*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +1*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 +1*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 +1*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 +1*A54 * T**n54 * np.exp(-1*E54/R/T) * RPHENOXM2**1.0 * RCH3**1.0 +1*A55 * T**n55 * np.exp(-1*E55/R/T) * RPHENOX**1.0 * RCH3**1.0 +2*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 +4*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 +4*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 +2*A63 * T**n63 * np.exp(-1*E63/R/T) * RMGUAI**2.0 +4*A64 * T**n64 * np.exp(-1*E64/R/T) * RKETM2**2.0 +2*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 +2*A67 * T**n67 * np.exp(-1*E67/R/T) * RC3H5O2**2.0 +2*A68 * T**n68 * np.exp(-1*E68/R/T) * RC3H3O**2.0 +1*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +3*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 +4*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 -1*A95 * T**n95 * np.exp(-1*E95/R/T) * PCOH**1.0 +1*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 +2*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0, +2*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 +1*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +2*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +2*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 -1*A100 * T**n100 * np.exp(-1*E100/R/T) * PCOHP2**1.0, +1*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 +2*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 +1*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +1*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +2*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 +2*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 +2*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 +2*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 +1*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 +1*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 +1*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +1*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 +1*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 +1*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0 +3*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +1*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +1*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +3*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +4*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +1*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 +2*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 +2*A80 * T**n80 * np.exp(-1*E80/R/T) * RPHENOX**1.0 * RPHENOL**1.0 +1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 +1*A82 * T**n82 * np.exp(-1*E82/R/T) * RPHENOX**1.0 * CHAR**1.0 +1*A83 * T**n83 * np.exp(-1*E83/R/T) * RPHENOXM2**1.0 * CHAR**1.0 -1*A94 * T**n94 * np.exp(-1*E94/R/T) * PCOS**1.0 +1*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0, +1*A21 * T**n21 * np.exp(-1*E21/R/T) * RLIGB**1.0 +1*A113 * T**n113 * np.exp(-1*E113/R/T) * PRFET3**1.0 * LIGH**1.0 +1*A134 * T**n134 * np.exp(-1*E134/R/T) * PRFET3**1.0 * PLIGH**1.0 +1*A155 * T**n155 * np.exp(-1*E155/R/T) * PRFET3**1.0 * PLIGM2**1.0 +1*A176 * T**n176 * np.exp(-1*E176/R/T) * PRFET3**1.0 * LIGM2**1.0 +1*A197 * T**n197 * np.exp(-1*E197/R/T) * PRFET3**1.0 * LIGM2**1.0 +1*A218 * T**n218 * np.exp(-1*E218/R/T) * PRFET3**1.0 * PFET3M2**1.0 +1*A239 * T**n239 * np.exp(-1*E239/R/T) * PRFET3**1.0 * ADIOM2**1.0 +1*A260 * T**n260 * np.exp(-1*E260/R/T) * PRFET3**1.0 * KETM2**1.0 +1*A281 * T**n281 * np.exp(-1*E281/R/T) * PRFET3**1.0 * C10H2**1.0 +1*A302 * T**n302 * np.exp(-1*E302/R/T) * PRFET3**1.0 * LIG**1.0 +1*A323 * T**n323 * np.exp(-1*E323/R/T) * PRFET3**1.0 * LIG**1.0 -1*A343 * T**n343 * np.exp(-1*E343/R/T) * RC3H5O2**1.0 * PFET3**1.0 -1*A344 * T**n344 * np.exp(-1*E344/R/T) * PRFET3**1.0 * PFET3**1.0 +1*A344 * T**n344 * np.exp(-1*E344/R/T) * PRFET3**1.0 * PFET3**1.0 -1*A345 * T**n345 * np.exp(-1*E345/R/T) * RC3H7O2**1.0 * PFET3**1.0 -1*A346 * T**n346 * np.exp(-1*E346/R/T) * RADIOM2**1.0 * PFET3**1.0 -1*A347 * T**n347 * np.exp(-1*E347/R/T) * PRFET3M2**1.0 * PFET3**1.0 -1*A348 * T**n348 * np.exp(-1*E348/R/T) * PRLIGH**1.0 * PFET3**1.0 -1*A349 * T**n349 * np.exp(-1*E349/R/T) * RLIGM2B**1.0 * PFET3**1.0 -1*A350 * T**n350 * np.exp(-1*E350/R/T) * RLIGM2A**1.0 * PFET3**1.0 -1*A351 * T**n351 * np.exp(-1*E351/R/T) * RCH3**1.0 * PFET3**1.0 -1*A352 * T**n352 * np.exp(-1*E352/R/T) * PRKETM2**1.0 * PFET3**1.0 -1*A353 * T**n353 * np.exp(-1*E353/R/T) * RKET**1.0 * PFET3**1.0 -1*A354 * T**n354 * np.exp(-1*E354/R/T) * PRADIO**1.0 * PFET3**1.0 -1*A355 * T**n355 * np.exp(-1*E355/R/T) * RC3H3O**1.0 * PFET3**1.0 -1*A356 * T**n356 * np.exp(-1*E356/R/T) * RLIGB**1.0 * PFET3**1.0 -1*A357 * T**n357 * np.exp(-1*E357/R/T) * RLIGA**1.0 * PFET3**1.0 -1*A358 * T**n358 * np.exp(-1*E358/R/T) * PRADIOM2**1.0 * PFET3**1.0 -1*A359 * T**n359 * np.exp(-1*E359/R/T) * RMGUAI**1.0 * PFET3**1.0 -1*A360 * T**n360 * np.exp(-1*E360/R/T) * OH**1.0 * PFET3**1.0 -1*A361 * T**n361 * np.exp(-1*E361/R/T) * RCH3O**1.0 * PFET3**1.0 -1*A362 * T**n362 * np.exp(-1*E362/R/T) * RPHENOL**1.0 * PFET3**1.0 -1*A363 * T**n363 * np.exp(-1*E363/R/T) * RADIO**1.0 * PFET3**1.0 +1*A365 * T**n365 * np.exp(-1*E365/R/T) * PRFET3**1.0 * ADIO**1.0 +1*A386 * T**n386 * np.exp(-1*E386/R/T) * PRFET3**1.0 * KET**1.0, +1*A17 * T**n17 * np.exp(-1*E17/R/T) * RLIGM2B**1.0 +1*A116 * T**n116 * np.exp(-1*E116/R/T) * PRFET3M2**1.0 * LIGH**1.0 +1*A137 * T**n137 * np.exp(-1*E137/R/T) * PRFET3M2**1.0 * PLIGH**1.0 +1*A158 * T**n158 * np.exp(-1*E158/R/T) * PRFET3M2**1.0 * PLIGM2**1.0 +1*A179 * T**n179 * np.exp(-1*E179/R/T) * PRFET3M2**1.0 * LIGM2**1.0 +1*A200 * T**n200 * np.exp(-1*E200/R/T) * PRFET3M2**1.0 * LIGM2**1.0 -1*A217 * T**n217 * np.exp(-1*E217/R/T) * RC3H5O2**1.0 * PFET3M2**1.0 -1*A218 * T**n218 * np.exp(-1*E218/R/T) * PRFET3**1.0 * PFET3M2**1.0 -1*A219 * T**n219 * np.exp(-1*E219/R/T) * RC3H7O2**1.0 * PFET3M2**1.0 -1*A220 * T**n220 * np.exp(-1*E220/R/T) * RADIOM2**1.0 * PFET3M2**1.0 -1*A221 * T**n221 * np.exp(-1*E221/R/T) * PRFET3M2**1.0 * PFET3M2**1.0 +1*A221 * T**n221 * np.exp(-1*E221/R/T) * PRFET3M2**1.0 * PFET3M2**1.0 -1*A222 * T**n222 * np.exp(-1*E222/R/T) * PRLIGH**1.0 * PFET3M2**1.0 -1*A223 * T**n223 * np.exp(-1*E223/R/T) * RLIGM2B**1.0 * PFET3M2**1.0 -1*A224 * T**n224 * np.exp(-1*E224/R/T) * RLIGM2A**1.0 * PFET3M2**1.0 -1*A225 * T**n225 * np.exp(-1*E225/R/T) * RCH3**1.0 * PFET3M2**1.0 -1*A226 * T**n226 * np.exp(-1*E226/R/T) * PRKETM2**1.0 * PFET3M2**1.0 -1*A227 * T**n227 * np.exp(-1*E227/R/T) * RKET**1.0 * PFET3M2**1.0 -1*A228 * T**n228 * np.exp(-1*E228/R/T) * PRADIO**1.0 * PFET3M2**1.0 -1*A229 * T**n229 * np.exp(-1*E229/R/T) * RC3H3O**1.0 * PFET3M2**1.0 -1*A230 * T**n230 * np.exp(-1*E230/R/T) * RLIGB**1.0 * PFET3M2**1.0 -1*A231 * T**n231 * np.exp(-1*E231/R/T) * RLIGA**1.0 * PFET3M2**1.0 -1*A232 * T**n232 * np.exp(-1*E232/R/T) * PRADIOM2**1.0 * PFET3M2**1.0 -1*A233 * T**n233 * np.exp(-1*E233/R/T) * RMGUAI**1.0 * PFET3M2**1.0 -1*A234 * T**n234 * np.exp(-1*E234/R/T) * OH**1.0 * PFET3M2**1.0 -1*A235 * T**n235 * np.exp(-1*E235/R/T) * RCH3O**1.0 * PFET3M2**1.0 -1*A236 * T**n236 * np.exp(-1*E236/R/T) * RPHENOL**1.0 * PFET3M2**1.0 -1*A237 * T**n237 * np.exp(-1*E237/R/T) * RADIO**1.0 * PFET3M2**1.0 +1*A242 * T**n242 * np.exp(-1*E242/R/T) * PRFET3M2**1.0 * ADIOM2**1.0 +1*A263 * T**n263 * np.exp(-1*E263/R/T) * PRFET3M2**1.0 * KETM2**1.0 +1*A284 * T**n284 * np.exp(-1*E284/R/T) * PRFET3M2**1.0 * C10H2**1.0 +1*A305 * T**n305 * np.exp(-1*E305/R/T) * PRFET3M2**1.0 * LIG**1.0 +1*A326 * T**n326 * np.exp(-1*E326/R/T) * PRFET3M2**1.0 * LIG**1.0 +1*A347 * T**n347 * np.exp(-1*E347/R/T) * PRFET3M2**1.0 * PFET3**1.0 +1*A368 * T**n368 * np.exp(-1*E368/R/T) * PRFET3M2**1.0 * ADIO**1.0 +1*A389 * T**n389 * np.exp(-1*E389/R/T) * PRFET3M2**1.0 * KET**1.0, +1*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 +1*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 +1*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 +1.5*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 +1*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 +2*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 +2*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +2*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +2*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 +2*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 +2*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 +2*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 +1*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 +1*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 +1*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +2*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 +0.5*A54 * T**n54 * np.exp(-1*E54/R/T) * RPHENOXM2**1.0 * RCH3**1.0 +1.5*A55 * T**n55 * np.exp(-1*E55/R/T) * RPHENOX**1.0 * RCH3**1.0 +2*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 +3*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 +3*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 +2*A63 * T**n63 * np.exp(-1*E63/R/T) * RMGUAI**2.0 +2*A64 * T**n64 * np.exp(-1*E64/R/T) * RKETM2**2.0 +1*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 +1*A66 * T**n66 * np.exp(-1*E66/R/T) * RC3H7O2**2.0 +1*A67 * T**n67 * np.exp(-1*E67/R/T) * RC3H5O2**2.0 +1*A68 * T**n68 * np.exp(-1*E68/R/T) * RC3H3O**2.0 +3*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 +3*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 +5*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 +5*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 +2*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 +2*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 +2*A80 * T**n80 * np.exp(-1*E80/R/T) * RPHENOX**1.0 * RPHENOL**1.0 +1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 -1*A96 * T**n96 * np.exp(-1*E96/R/T) * PH2**1.0 +2*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 +1*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0, -1*A93 * T**n93 * np.exp(-1*E93/R/T) * PHENOL**1.0 +1*A131 * T**n131 * np.exp(-1*E131/R/T) * RPHENOL**1.0 * LIGH**1.0 +1*A152 * T**n152 * np.exp(-1*E152/R/T) * RPHENOL**1.0 * PLIGH**1.0 +1*A173 * T**n173 * np.exp(-1*E173/R/T) * RPHENOL**1.0 * PLIGM2**1.0 +1*A194 * T**n194 * np.exp(-1*E194/R/T) * RPHENOL**1.0 * LIGM2**1.0 +1*A215 * T**n215 * np.exp(-1*E215/R/T) * RPHENOL**1.0 * LIGM2**1.0 +1*A236 * T**n236 * np.exp(-1*E236/R/T) * RPHENOL**1.0 * PFET3M2**1.0 +1*A257 * T**n257 * np.exp(-1*E257/R/T) * RPHENOL**1.0 * ADIOM2**1.0 +1*A278 * T**n278 * np.exp(-1*E278/R/T) * RPHENOL**1.0 * KETM2**1.0 +1*A299 * T**n299 * np.exp(-1*E299/R/T) * RPHENOL**1.0 * C10H2**1.0 +1*A320 * T**n320 * np.exp(-1*E320/R/T) * RPHENOL**1.0 * LIG**1.0 +1*A341 * T**n341 * np.exp(-1*E341/R/T) * RPHENOL**1.0 * LIG**1.0 +1*A362 * T**n362 * np.exp(-1*E362/R/T) * RPHENOL**1.0 * PFET3**1.0 +1*A383 * T**n383 * np.exp(-1*E383/R/T) * RPHENOL**1.0 * ADIO**1.0 +1*A404 * T**n404 * np.exp(-1*E404/R/T) * RPHENOL**1.0 * KET**1.0, -1*A8 * T**n8 * np.exp(-1*E8/R/T) * PKETM2**1.0 +1*A16 * T**n16 * np.exp(-1*E16/R/T) * PRLIGM2A**1.0 +1*A59 * T**n59 * np.exp(-1*E59/R/T) * RCH3O**1.0 * PRKETM2**1.0 +1*A72 * T**n72 * np.exp(-1*E72/R/T) * RCH3**1.0 * PRKETM2**1.0 +1*A121 * T**n121 * np.exp(-1*E121/R/T) * PRKETM2**1.0 * LIGH**1.0 +1*A142 * T**n142 * np.exp(-1*E142/R/T) * PRKETM2**1.0 * PLIGH**1.0 +1*A163 * T**n163 * np.exp(-1*E163/R/T) * PRKETM2**1.0 * PLIGM2**1.0 +1*A184 * T**n184 * np.exp(-1*E184/R/T) * PRKETM2**1.0 * LIGM2**1.0 +1*A205 * T**n205 * np.exp(-1*E205/R/T) * PRKETM2**1.0 * LIGM2**1.0 +1*A226 * T**n226 * np.exp(-1*E226/R/T) * PRKETM2**1.0 * PFET3M2**1.0 +1*A247 * T**n247 * np.exp(-1*E247/R/T) * PRKETM2**1.0 * ADIOM2**1.0 +1*A268 * T**n268 * np.exp(-1*E268/R/T) * PRKETM2**1.0 * KETM2**1.0 +1*A289 * T**n289 * np.exp(-1*E289/R/T) * PRKETM2**1.0 * C10H2**1.0 +1*A310 * T**n310 * np.exp(-1*E310/R/T) * PRKETM2**1.0 * LIG**1.0 +1*A331 * T**n331 * np.exp(-1*E331/R/T) * PRKETM2**1.0 * LIG**1.0 +1*A352 * T**n352 * np.exp(-1*E352/R/T) * PRKETM2**1.0 * PFET3**1.0 +1*A373 * T**n373 * np.exp(-1*E373/R/T) * PRKETM2**1.0 * ADIO**1.0 +1*A394 * T**n394 * np.exp(-1*E394/R/T) * PRKETM2**1.0 * KET**1.0, -1*A5 * T**n5 * np.exp(-1*E5/R/T) * PLIG**1.0 +1*A30 * T**n30 * np.exp(-1*E30/R/T) * PLIGC**1.0, -1*A30 * T**n30 * np.exp(-1*E30/R/T) * PLIGC**1.0 -1*A105 * T**n105 * np.exp(-1*E105/R/T) * PLIGC**1.0, -1*A0 * T**n0 * np.exp(-1*E0/R/T) * PLIGH**1.0 -1*A104 * T**n104 * np.exp(-1*E104/R/T) * PLIGH**1.0 +1*A117 * T**n117 * np.exp(-1*E117/R/T) * PRLIGH**1.0 * LIGH**1.0 -1*A133 * T**n133 * np.exp(-1*E133/R/T) * RC3H5O2**1.0 * PLIGH**1.0 -1*A134 * T**n134 * np.exp(-1*E134/R/T) * PRFET3**1.0 * PLIGH**1.0 -1*A135 * T**n135 * np.exp(-1*E135/R/T) * RC3H7O2**1.0 * PLIGH**1.0 -1*A136 * T**n136 * np.exp(-1*E136/R/T) * RADIOM2**1.0 * PLIGH**1.0 -1*A137 * T**n137 * np.exp(-1*E137/R/T) * PRFET3M2**1.0 * PLIGH**1.0 -1*A138 * T**n138 * np.exp(-1*E138/R/T) * PRLIGH**1.0 * PLIGH**1.0 +1*A138 * T**n138 * np.exp(-1*E138/R/T) * PRLIGH**1.0 * PLIGH**1.0 -1*A139 * T**n139 * np.exp(-1*E139/R/T) * RLIGM2B**1.0 * PLIGH**1.0 -1*A140 * T**n140 * np.exp(-1*E140/R/T) * RLIGM2A**1.0 * PLIGH**1.0 -1*A141 * T**n141 * np.exp(-1*E141/R/T) * RCH3**1.0 * PLIGH**1.0 -1*A142 * T**n142 * np.exp(-1*E142/R/T) * PRKETM2**1.0 * PLIGH**1.0 -1*A143 * T**n143 * np.exp(-1*E143/R/T) * RKET**1.0 * PLIGH**1.0 -1*A144 * T**n144 * np.exp(-1*E144/R/T) * PRADIO**1.0 * PLIGH**1.0 -1*A145 * T**n145 * np.exp(-1*E145/R/T) * RC3H3O**1.0 * PLIGH**1.0 -1*A146 * T**n146 * np.exp(-1*E146/R/T) * RLIGB**1.0 * PLIGH**1.0 -1*A147 * T**n147 * np.exp(-1*E147/R/T) * RLIGA**1.0 * PLIGH**1.0 -1*A148 * T**n148 * np.exp(-1*E148/R/T) * PRADIOM2**1.0 * PLIGH**1.0 -1*A149 * T**n149 * np.exp(-1*E149/R/T) * RMGUAI**1.0 * PLIGH**1.0 -1*A150 * T**n150 * np.exp(-1*E150/R/T) * OH**1.0 * PLIGH**1.0 -1*A151 * T**n151 * np.exp(-1*E151/R/T) * RCH3O**1.0 * PLIGH**1.0 -1*A152 * T**n152 * np.exp(-1*E152/R/T) * RPHENOL**1.0 * PLIGH**1.0 -1*A153 * T**n153 * np.exp(-1*E153/R/T) * RADIO**1.0 * PLIGH**1.0 +1*A159 * T**n159 * np.exp(-1*E159/R/T) * PRLIGH**1.0 * PLIGM2**1.0 +1*A180 * T**n180 * np.exp(-1*E180/R/T) * PRLIGH**1.0 * LIGM2**1.0 +1*A201 * T**n201 * np.exp(-1*E201/R/T) * PRLIGH**1.0 * LIGM2**1.0 +1*A222 * T**n222 * np.exp(-1*E222/R/T) * PRLIGH**1.0 * PFET3M2**1.0 +1*A243 * T**n243 * np.exp(-1*E243/R/T) * PRLIGH**1.0 * ADIOM2**1.0 +1*A264 * T**n264 * np.exp(-1*E264/R/T) * PRLIGH**1.0 * KETM2**1.0 +1*A285 * T**n285 * np.exp(-1*E285/R/T) * PRLIGH**1.0 * C10H2**1.0 +1*A306 * T**n306 * np.exp(-1*E306/R/T) * PRLIGH**1.0 * LIG**1.0 +1*A327 * T**n327 * np.exp(-1*E327/R/T) * PRLIGH**1.0 * LIG**1.0 +1*A348 * T**n348 * np.exp(-1*E348/R/T) * PRLIGH**1.0 * PFET3**1.0 +1*A369 * T**n369 * np.exp(-1*E369/R/T) * PRLIGH**1.0 * ADIO**1.0 +1*A390 * T**n390 * np.exp(-1*E390/R/T) * PRLIGH**1.0 * KET**1.0, -1*A3 * T**n3 * np.exp(-1*E3/R/T) * PLIGM2**1.0 +1*A31 * T**n31 * np.exp(-1*E31/R/T) * PLIGO**1.0 -1*A154 * T**n154 * np.exp(-1*E154/R/T) * RC3H5O2**1.0 * PLIGM2**1.0 -1*A155 * T**n155 * np.exp(-1*E155/R/T) * PRFET3**1.0 * PLIGM2**1.0 -1*A156 * T**n156 * np.exp(-1*E156/R/T) * RC3H7O2**1.0 * PLIGM2**1.0 -1*A157 * T**n157 * np.exp(-1*E157/R/T) * RADIOM2**1.0 * PLIGM2**1.0 -1*A158 * T**n158 * np.exp(-1*E158/R/T) * PRFET3M2**1.0 * PLIGM2**1.0 -1*A159 * T**n159 * np.exp(-1*E159/R/T) * PRLIGH**1.0 * PLIGM2**1.0 -1*A160 * T**n160 * np.exp(-1*E160/R/T) * RLIGM2B**1.0 * PLIGM2**1.0 -1*A161 * T**n161 * np.exp(-1*E161/R/T) * RLIGM2A**1.0 * PLIGM2**1.0 -1*A162 * T**n162 * np.exp(-1*E162/R/T) * RCH3**1.0 * PLIGM2**1.0 -1*A163 * T**n163 * np.exp(-1*E163/R/T) * PRKETM2**1.0 * PLIGM2**1.0 -1*A164 * T**n164 * np.exp(-1*E164/R/T) * RKET**1.0 * PLIGM2**1.0 -1*A165 * T**n165 * np.exp(-1*E165/R/T) * PRADIO**1.0 * PLIGM2**1.0 -1*A166 * T**n166 * np.exp(-1*E166/R/T) * RC3H3O**1.0 * PLIGM2**1.0 -1*A167 * T**n167 * np.exp(-1*E167/R/T) * RLIGB**1.0 * PLIGM2**1.0 -1*A168 * T**n168 * np.exp(-1*E168/R/T) * RLIGA**1.0 * PLIGM2**1.0 -1*A169 * T**n169 * np.exp(-1*E169/R/T) * PRADIOM2**1.0 * PLIGM2**1.0 -1*A170 * T**n170 * np.exp(-1*E170/R/T) * RMGUAI**1.0 * PLIGM2**1.0 -1*A171 * T**n171 * np.exp(-1*E171/R/T) * OH**1.0 * PLIGM2**1.0 -1*A172 * T**n172 * np.exp(-1*E172/R/T) * RCH3O**1.0 * PLIGM2**1.0 -1*A173 * T**n173 * np.exp(-1*E173/R/T) * RPHENOL**1.0 * PLIGM2**1.0 -1*A174 * T**n174 * np.exp(-1*E174/R/T) * RADIO**1.0 * PLIGM2**1.0, -1*A31 * T**n31 * np.exp(-1*E31/R/T) * PLIGO**1.0 -1*A106 * T**n106 * np.exp(-1*E106/R/T) * PLIGO**1.0, +1*A5 * T**n5 * np.exp(-1*E5/R/T) * PLIG**1.0 +1*A7 * T**n7 * np.exp(-1*E7/R/T) * PADIO**1.0 -2*A109 * T**n109 * np.exp(-1*E109/R/T) * PRADIO**2.0 -1*A123 * T**n123 * np.exp(-1*E123/R/T) * PRADIO**1.0 * LIGH**1.0 -1*A144 * T**n144 * np.exp(-1*E144/R/T) * PRADIO**1.0 * PLIGH**1.0 -1*A165 * T**n165 * np.exp(-1*E165/R/T) * PRADIO**1.0 * PLIGM2**1.0 -1*A186 * T**n186 * np.exp(-1*E186/R/T) * PRADIO**1.0 * LIGM2**1.0 -1*A207 * T**n207 * np.exp(-1*E207/R/T) * PRADIO**1.0 * LIGM2**1.0 -1*A228 * T**n228 * np.exp(-1*E228/R/T) * PRADIO**1.0 * PFET3M2**1.0 -1*A249 * T**n249 * np.exp(-1*E249/R/T) * PRADIO**1.0 * ADIOM2**1.0 -1*A270 * T**n270 * np.exp(-1*E270/R/T) * PRADIO**1.0 * KETM2**1.0 -1*A291 * T**n291 * np.exp(-1*E291/R/T) * PRADIO**1.0 * C10H2**1.0 -1*A312 * T**n312 * np.exp(-1*E312/R/T) * PRADIO**1.0 * LIG**1.0 -1*A333 * T**n333 * np.exp(-1*E333/R/T) * PRADIO**1.0 * LIG**1.0 -1*A354 * T**n354 * np.exp(-1*E354/R/T) * PRADIO**1.0 * PFET3**1.0 -1*A375 * T**n375 * np.exp(-1*E375/R/T) * PRADIO**1.0 * ADIO**1.0 -1*A396 * T**n396 * np.exp(-1*E396/R/T) * PRADIO**1.0 * KET**1.0, +1*A3 * T**n3 * np.exp(-1*E3/R/T) * PLIGM2**1.0 +1*A6 * T**n6 * np.exp(-1*E6/R/T) * PADIOM2**1.0 -1*A58 * T**n58 * np.exp(-1*E58/R/T) * RCH3O**1.0 * PRADIOM2**1.0 -1*A71 * T**n71 * np.exp(-1*E71/R/T) * RCH3**1.0 * PRADIOM2**1.0 -2*A110 * T**n110 * np.exp(-1*E110/R/T) * PRADIOM2**2.0 -1*A127 * T**n127 * np.exp(-1*E127/R/T) * PRADIOM2**1.0 * LIGH**1.0 -1*A148 * T**n148 * np.exp(-1*E148/R/T) * PRADIOM2**1.0 * PLIGH**1.0 -1*A169 * T**n169 * np.exp(-1*E169/R/T) * PRADIOM2**1.0 * PLIGM2**1.0 -1*A190 * T**n190 * np.exp(-1*E190/R/T) * PRADIOM2**1.0 * LIGM2**1.0 -1*A211 * T**n211 * np.exp(-1*E211/R/T) * PRADIOM2**1.0 * LIGM2**1.0 -1*A232 * T**n232 * np.exp(-1*E232/R/T) * PRADIOM2**1.0 * PFET3M2**1.0 -1*A253 * T**n253 * np.exp(-1*E253/R/T) * PRADIOM2**1.0 * ADIOM2**1.0 -1*A274 * T**n274 * np.exp(-1*E274/R/T) * PRADIOM2**1.0 * KETM2**1.0 -1*A295 * T**n295 * np.exp(-1*E295/R/T) * PRADIOM2**1.0 * C10H2**1.0 -1*A316 * T**n316 * np.exp(-1*E316/R/T) * PRADIOM2**1.0 * LIG**1.0 -1*A337 * T**n337 * np.exp(-1*E337/R/T) * PRADIOM2**1.0 * LIG**1.0 -1*A358 * T**n358 * np.exp(-1*E358/R/T) * PRADIOM2**1.0 * PFET3**1.0 -1*A379 * T**n379 * np.exp(-1*E379/R/T) * PRADIOM2**1.0 * ADIO**1.0 -1*A400 * T**n400 * np.exp(-1*E400/R/T) * PRADIOM2**1.0 * KET**1.0, -1*A22 * T**n22 * np.exp(-1*E22/R/T) * PRFET3**1.0 -1*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 -1*A78 * T**n78 * np.exp(-1*E78/R/T) * PRFET3**1.0 * PRFET3**1.0 -1*A113 * T**n113 * np.exp(-1*E113/R/T) * PRFET3**1.0 * LIGH**1.0 -1*A134 * T**n134 * np.exp(-1*E134/R/T) * PRFET3**1.0 * PLIGH**1.0 -1*A155 * T**n155 * np.exp(-1*E155/R/T) * PRFET3**1.0 * PLIGM2**1.0 -1*A176 * T**n176 * np.exp(-1*E176/R/T) * PRFET3**1.0 * LIGM2**1.0 -1*A197 * T**n197 * np.exp(-1*E197/R/T) * PRFET3**1.0 * LIGM2**1.0 -1*A218 * T**n218 * np.exp(-1*E218/R/T) * PRFET3**1.0 * PFET3M2**1.0 -1*A239 * T**n239 * np.exp(-1*E239/R/T) * PRFET3**1.0 * ADIOM2**1.0 -1*A260 * T**n260 * np.exp(-1*E260/R/T) * PRFET3**1.0 * KETM2**1.0 -1*A281 * T**n281 * np.exp(-1*E281/R/T) * PRFET3**1.0 * C10H2**1.0 -1*A302 * T**n302 * np.exp(-1*E302/R/T) * PRFET3**1.0 * LIG**1.0 -1*A323 * T**n323 * np.exp(-1*E323/R/T) * PRFET3**1.0 * LIG**1.0 +1*A343 * T**n343 * np.exp(-1*E343/R/T) * RC3H5O2**1.0 * PFET3**1.0 -1*A344 * T**n344 * np.exp(-1*E344/R/T) * PRFET3**1.0 * PFET3**1.0 +1*A344 * T**n344 * np.exp(-1*E344/R/T) * PRFET3**1.0 * PFET3**1.0 +1*A345 * T**n345 * np.exp(-1*E345/R/T) * RC3H7O2**1.0 * PFET3**1.0 +1*A346 * T**n346 * np.exp(-1*E346/R/T) * RADIOM2**1.0 * PFET3**1.0 +1*A347 * T**n347 * np.exp(-1*E347/R/T) * PRFET3M2**1.0 * PFET3**1.0 +1*A348 * T**n348 * np.exp(-1*E348/R/T) * PRLIGH**1.0 * PFET3**1.0 +1*A349 * T**n349 * np.exp(-1*E349/R/T) * RLIGM2B**1.0 * PFET3**1.0 +1*A350 * T**n350 * np.exp(-1*E350/R/T) * RLIGM2A**1.0 * PFET3**1.0 +1*A351 * T**n351 * np.exp(-1*E351/R/T) * RCH3**1.0 * PFET3**1.0 +1*A352 * T**n352 * np.exp(-1*E352/R/T) * PRKETM2**1.0 * PFET3**1.0 +1*A353 * T**n353 * np.exp(-1*E353/R/T) * RKET**1.0 * PFET3**1.0 +1*A354 * T**n354 * np.exp(-1*E354/R/T) * PRADIO**1.0 * PFET3**1.0 +1*A355 * T**n355 * np.exp(-1*E355/R/T) * RC3H3O**1.0 * PFET3**1.0 +1*A356 * T**n356 * np.exp(-1*E356/R/T) * RLIGB**1.0 * PFET3**1.0 +1*A357 * T**n357 * np.exp(-1*E357/R/T) * RLIGA**1.0 * PFET3**1.0 +1*A358 * T**n358 * np.exp(-1*E358/R/T) * PRADIOM2**1.0 * PFET3**1.0 +1*A359 * T**n359 * np.exp(-1*E359/R/T) * RMGUAI**1.0 * PFET3**1.0 +1*A360 * T**n360 * np.exp(-1*E360/R/T) * OH**1.0 * PFET3**1.0 +1*A361 * T**n361 * np.exp(-1*E361/R/T) * RCH3O**1.0 * PFET3**1.0 +1*A362 * T**n362 * np.exp(-1*E362/R/T) * RPHENOL**1.0 * PFET3**1.0 +1*A363 * T**n363 * np.exp(-1*E363/R/T) * RADIO**1.0 * PFET3**1.0 -1*A365 * T**n365 * np.exp(-1*E365/R/T) * PRFET3**1.0 * ADIO**1.0 -1*A386 * T**n386 * np.exp(-1*E386/R/T) * PRFET3**1.0 * KET**1.0, -1*A18 * T**n18 * np.exp(-1*E18/R/T) * PRFET3M2**1.0 -1*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 -1*A65 * T**n65 * np.exp(-1*E65/R/T) * PRFET3M2**1.0 * PRFET3M2**1.0 -1*A116 * T**n116 * np.exp(-1*E116/R/T) * PRFET3M2**1.0 * LIGH**1.0 -1*A137 * T**n137 * np.exp(-1*E137/R/T) * PRFET3M2**1.0 * PLIGH**1.0 -1*A158 * T**n158 * np.exp(-1*E158/R/T) * PRFET3M2**1.0 * PLIGM2**1.0 -1*A179 * T**n179 * np.exp(-1*E179/R/T) * PRFET3M2**1.0 * LIGM2**1.0 -1*A200 * T**n200 * np.exp(-1*E200/R/T) * PRFET3M2**1.0 * LIGM2**1.0 +1*A217 * T**n217 * np.exp(-1*E217/R/T) * RC3H5O2**1.0 * PFET3M2**1.0 +1*A218 * T**n218 * np.exp(-1*E218/R/T) * PRFET3**1.0 * PFET3M2**1.0 +1*A219 * T**n219 * np.exp(-1*E219/R/T) * RC3H7O2**1.0 * PFET3M2**1.0 +1*A220 * T**n220 * np.exp(-1*E220/R/T) * RADIOM2**1.0 * PFET3M2**1.0 -1*A221 * T**n221 * np.exp(-1*E221/R/T) * PRFET3M2**1.0 * PFET3M2**1.0 +1*A221 * T**n221 * np.exp(-1*E221/R/T) * PRFET3M2**1.0 * PFET3M2**1.0 +1*A222 * T**n222 * np.exp(-1*E222/R/T) * PRLIGH**1.0 * PFET3M2**1.0 +1*A223 * T**n223 * np.exp(-1*E223/R/T) * RLIGM2B**1.0 * PFET3M2**1.0 +1*A224 * T**n224 * np.exp(-1*E224/R/T) * RLIGM2A**1.0 * PFET3M2**1.0 +1*A225 * T**n225 * np.exp(-1*E225/R/T) * RCH3**1.0 * PFET3M2**1.0 +1*A226 * T**n226 * np.exp(-1*E226/R/T) * PRKETM2**1.0 * PFET3M2**1.0 +1*A227 * T**n227 * np.exp(-1*E227/R/T) * RKET**1.0 * PFET3M2**1.0 +1*A228 * T**n228 * np.exp(-1*E228/R/T) * PRADIO**1.0 * PFET3M2**1.0 +1*A229 * T**n229 * np.exp(-1*E229/R/T) * RC3H3O**1.0 * PFET3M2**1.0 +1*A230 * T**n230 * np.exp(-1*E230/R/T) * RLIGB**1.0 * PFET3M2**1.0 +1*A231 * T**n231 * np.exp(-1*E231/R/T) * RLIGA**1.0 * PFET3M2**1.0 +1*A232 * T**n232 * np.exp(-1*E232/R/T) * PRADIOM2**1.0 * PFET3M2**1.0 +1*A233 * T**n233 * np.exp(-1*E233/R/T) * RMGUAI**1.0 * PFET3M2**1.0 +1*A234 * T**n234 * np.exp(-1*E234/R/T) * OH**1.0 * PFET3M2**1.0 +1*A235 * T**n235 * np.exp(-1*E235/R/T) * RCH3O**1.0 * PFET3M2**1.0 +1*A236 * T**n236 * np.exp(-1*E236/R/T) * RPHENOL**1.0 * PFET3M2**1.0 +1*A237 * T**n237 * np.exp(-1*E237/R/T) * RADIO**1.0 * PFET3M2**1.0 -1*A242 * T**n242 * np.exp(-1*E242/R/T) * PRFET3M2**1.0 * ADIOM2**1.0 -1*A263 * T**n263 * np.exp(-1*E263/R/T) * PRFET3M2**1.0 * KETM2**1.0 -1*A284 * T**n284 * np.exp(-1*E284/R/T) * PRFET3M2**1.0 * C10H2**1.0 -1*A305 * T**n305 * np.exp(-1*E305/R/T) * PRFET3M2**1.0 * LIG**1.0 -1*A326 * T**n326 * np.exp(-1*E326/R/T) * PRFET3M2**1.0 * LIG**1.0 -1*A347 * T**n347 * np.exp(-1*E347/R/T) * PRFET3M2**1.0 * PFET3**1.0 -1*A368 * T**n368 * np.exp(-1*E368/R/T) * PRFET3M2**1.0 * ADIO**1.0 -1*A389 * T**n389 * np.exp(-1*E389/R/T) * PRFET3M2**1.0 * KET**1.0, +1*A8 * T**n8 * np.exp(-1*E8/R/T) * PKETM2**1.0 -1*A9 * T**n9 * np.exp(-1*E9/R/T) * PRKETM2**1.0 -1*A59 * T**n59 * np.exp(-1*E59/R/T) * RCH3O**1.0 * PRKETM2**1.0 -1*A72 * T**n72 * np.exp(-1*E72/R/T) * RCH3**1.0 * PRKETM2**1.0 -1*A121 * T**n121 * np.exp(-1*E121/R/T) * PRKETM2**1.0 * LIGH**1.0 -1*A142 * T**n142 * np.exp(-1*E142/R/T) * PRKETM2**1.0 * PLIGH**1.0 -1*A163 * T**n163 * np.exp(-1*E163/R/T) * PRKETM2**1.0 * PLIGM2**1.0 -1*A184 * T**n184 * np.exp(-1*E184/R/T) * PRKETM2**1.0 * LIGM2**1.0 -1*A205 * T**n205 * np.exp(-1*E205/R/T) * PRKETM2**1.0 * LIGM2**1.0 -1*A226 * T**n226 * np.exp(-1*E226/R/T) * PRKETM2**1.0 * PFET3M2**1.0 -1*A247 * T**n247 * np.exp(-1*E247/R/T) * PRKETM2**1.0 * ADIOM2**1.0 -1*A268 * T**n268 * np.exp(-1*E268/R/T) * PRKETM2**1.0 * KETM2**1.0 -1*A289 * T**n289 * np.exp(-1*E289/R/T) * PRKETM2**1.0 * C10H2**1.0 -1*A310 * T**n310 * np.exp(-1*E310/R/T) * PRKETM2**1.0 * LIG**1.0 -1*A331 * T**n331 * np.exp(-1*E331/R/T) * PRKETM2**1.0 * LIG**1.0 -1*A352 * T**n352 * np.exp(-1*E352/R/T) * PRKETM2**1.0 * PFET3**1.0 -1*A373 * T**n373 * np.exp(-1*E373/R/T) * PRKETM2**1.0 * ADIO**1.0 -1*A394 * T**n394 * np.exp(-1*E394/R/T) * PRKETM2**1.0 * KET**1.0, +1*A0 * T**n0 * np.exp(-1*E0/R/T) * PLIGH**1.0 -1*A117 * T**n117 * np.exp(-1*E117/R/T) * PRLIGH**1.0 * LIGH**1.0 -1*A138 * T**n138 * np.exp(-1*E138/R/T) * PRLIGH**1.0 * PLIGH**1.0 -1*A159 * T**n159 * np.exp(-1*E159/R/T) * PRLIGH**1.0 * PLIGM2**1.0 -1*A180 * T**n180 * np.exp(-1*E180/R/T) * PRLIGH**1.0 * LIGM2**1.0 -1*A201 * T**n201 * np.exp(-1*E201/R/T) * PRLIGH**1.0 * LIGM2**1.0 -1*A222 * T**n222 * np.exp(-1*E222/R/T) * PRLIGH**1.0 * PFET3M2**1.0 -1*A243 * T**n243 * np.exp(-1*E243/R/T) * PRLIGH**1.0 * ADIOM2**1.0 -1*A264 * T**n264 * np.exp(-1*E264/R/T) * PRLIGH**1.0 * KETM2**1.0 -1*A285 * T**n285 * np.exp(-1*E285/R/T) * PRLIGH**1.0 * C10H2**1.0 -1*A306 * T**n306 * np.exp(-1*E306/R/T) * PRLIGH**1.0 * LIG**1.0 -1*A327 * T**n327 * np.exp(-1*E327/R/T) * PRLIGH**1.0 * LIG**1.0 -1*A348 * T**n348 * np.exp(-1*E348/R/T) * PRLIGH**1.0 * PFET3**1.0 -1*A369 * T**n369 * np.exp(-1*E369/R/T) * PRLIGH**1.0 * ADIO**1.0 -1*A390 * T**n390 * np.exp(-1*E390/R/T) * PRLIGH**1.0 * KET**1.0, -1*A13 * T**n13 * np.exp(-1*E13/R/T) * PRLIGH2**1.0 +1*A133 * T**n133 * np.exp(-1*E133/R/T) * RC3H5O2**1.0 * PLIGH**1.0 +1*A134 * T**n134 * np.exp(-1*E134/R/T) * PRFET3**1.0 * PLIGH**1.0 +1*A135 * T**n135 * np.exp(-1*E135/R/T) * RC3H7O2**1.0 * PLIGH**1.0 +1*A136 * T**n136 * np.exp(-1*E136/R/T) * RADIOM2**1.0 * PLIGH**1.0 +1*A137 * T**n137 * np.exp(-1*E137/R/T) * PRFET3M2**1.0 * PLIGH**1.0 +1*A138 * T**n138 * np.exp(-1*E138/R/T) * PRLIGH**1.0 * PLIGH**1.0 +1*A139 * T**n139 * np.exp(-1*E139/R/T) * RLIGM2B**1.0 * PLIGH**1.0 +1*A140 * T**n140 * np.exp(-1*E140/R/T) * RLIGM2A**1.0 * PLIGH**1.0 +1*A141 * T**n141 * np.exp(-1*E141/R/T) * RCH3**1.0 * PLIGH**1.0 +1*A142 * T**n142 * np.exp(-1*E142/R/T) * PRKETM2**1.0 * PLIGH**1.0 +1*A143 * T**n143 * np.exp(-1*E143/R/T) * RKET**1.0 * PLIGH**1.0 +1*A144 * T**n144 * np.exp(-1*E144/R/T) * PRADIO**1.0 * PLIGH**1.0 +1*A145 * T**n145 * np.exp(-1*E145/R/T) * RC3H3O**1.0 * PLIGH**1.0 +1*A146 * T**n146 * np.exp(-1*E146/R/T) * RLIGB**1.0 * PLIGH**1.0 +1*A147 * T**n147 * np.exp(-1*E147/R/T) * RLIGA**1.0 * PLIGH**1.0 +1*A148 * T**n148 * np.exp(-1*E148/R/T) * PRADIOM2**1.0 * PLIGH**1.0 +1*A149 * T**n149 * np.exp(-1*E149/R/T) * RMGUAI**1.0 * PLIGH**1.0 +1*A150 * T**n150 * np.exp(-1*E150/R/T) * OH**1.0 * PLIGH**1.0 +1*A151 * T**n151 * np.exp(-1*E151/R/T) * RCH3O**1.0 * PLIGH**1.0 +1*A152 * T**n152 * np.exp(-1*E152/R/T) * RPHENOL**1.0 * PLIGH**1.0 +1*A153 * T**n153 * np.exp(-1*E153/R/T) * RADIO**1.0 * PLIGH**1.0, +1*A13 * T**n13 * np.exp(-1*E13/R/T) * PRLIGH2**1.0 -1*A16 * T**n16 * np.exp(-1*E16/R/T) * PRLIGM2A**1.0 +1*A154 * T**n154 * np.exp(-1*E154/R/T) * RC3H5O2**1.0 * PLIGM2**1.0 +1*A155 * T**n155 * np.exp(-1*E155/R/T) * PRFET3**1.0 * PLIGM2**1.0 +1*A156 * T**n156 * np.exp(-1*E156/R/T) * RC3H7O2**1.0 * PLIGM2**1.0 +1*A157 * T**n157 * np.exp(-1*E157/R/T) * RADIOM2**1.0 * PLIGM2**1.0 +1*A158 * T**n158 * np.exp(-1*E158/R/T) * PRFET3M2**1.0 * PLIGM2**1.0 +1*A159 * T**n159 * np.exp(-1*E159/R/T) * PRLIGH**1.0 * PLIGM2**1.0 +1*A160 * T**n160 * np.exp(-1*E160/R/T) * RLIGM2B**1.0 * PLIGM2**1.0 +1*A161 * T**n161 * np.exp(-1*E161/R/T) * RLIGM2A**1.0 * PLIGM2**1.0 +1*A162 * T**n162 * np.exp(-1*E162/R/T) * RCH3**1.0 * PLIGM2**1.0 +1*A163 * T**n163 * np.exp(-1*E163/R/T) * PRKETM2**1.0 * PLIGM2**1.0 +1*A164 * T**n164 * np.exp(-1*E164/R/T) * RKET**1.0 * PLIGM2**1.0 +1*A165 * T**n165 * np.exp(-1*E165/R/T) * PRADIO**1.0 * PLIGM2**1.0 +1*A166 * T**n166 * np.exp(-1*E166/R/T) * RC3H3O**1.0 * PLIGM2**1.0 +1*A167 * T**n167 * np.exp(-1*E167/R/T) * RLIGB**1.0 * PLIGM2**1.0 +1*A168 * T**n168 * np.exp(-1*E168/R/T) * RLIGA**1.0 * PLIGM2**1.0 +1*A169 * T**n169 * np.exp(-1*E169/R/T) * PRADIOM2**1.0 * PLIGM2**1.0 +1*A170 * T**n170 * np.exp(-1*E170/R/T) * RMGUAI**1.0 * PLIGM2**1.0 +1*A171 * T**n171 * np.exp(-1*E171/R/T) * OH**1.0 * PLIGM2**1.0 +1*A172 * T**n172 * np.exp(-1*E172/R/T) * RCH3O**1.0 * PLIGM2**1.0 +1*A173 * T**n173 * np.exp(-1*E173/R/T) * RPHENOL**1.0 * PLIGM2**1.0 +1*A174 * T**n174 * np.exp(-1*E174/R/T) * RADIO**1.0 * PLIGM2**1.0, +1*A4 * T**n4 * np.exp(-1*E4/R/T) * LIG**1.0 -1*A19 * T**n19 * np.exp(-1*E19/R/T) * RADIO**1.0 -1*A25 * T**n25 * np.exp(-1*E25/R/T) * RADIO**1.0 -2*A74 * T**n74 * np.exp(-1*E74/R/T) * RADIO**2.0 -1*A132 * T**n132 * np.exp(-1*E132/R/T) * RADIO**1.0 * LIGH**1.0 -1*A153 * T**n153 * np.exp(-1*E153/R/T) * RADIO**1.0 * PLIGH**1.0 -1*A174 * T**n174 * np.exp(-1*E174/R/T) * RADIO**1.0 * PLIGM2**1.0 -1*A195 * T**n195 * np.exp(-1*E195/R/T) * RADIO**1.0 * LIGM2**1.0 -1*A216 * T**n216 * np.exp(-1*E216/R/T) * RADIO**1.0 * LIGM2**1.0 -1*A237 * T**n237 * np.exp(-1*E237/R/T) * RADIO**1.0 * PFET3M2**1.0 -1*A258 * T**n258 * np.exp(-1*E258/R/T) * RADIO**1.0 * ADIOM2**1.0 -1*A279 * T**n279 * np.exp(-1*E279/R/T) * RADIO**1.0 * KETM2**1.0 -1*A300 * T**n300 * np.exp(-1*E300/R/T) * RADIO**1.0 * C10H2**1.0 -1*A321 * T**n321 * np.exp(-1*E321/R/T) * RADIO**1.0 * LIG**1.0 -1*A342 * T**n342 * np.exp(-1*E342/R/T) * RADIO**1.0 * LIG**1.0 -1*A363 * T**n363 * np.exp(-1*E363/R/T) * RADIO**1.0 * PFET3**1.0 +1*A364 * T**n364 * np.exp(-1*E364/R/T) * RC3H5O2**1.0 * ADIO**1.0 +1*A365 * T**n365 * np.exp(-1*E365/R/T) * PRFET3**1.0 * ADIO**1.0 +1*A366 * T**n366 * np.exp(-1*E366/R/T) * RC3H7O2**1.0 * ADIO**1.0 +1*A367 * T**n367 * np.exp(-1*E367/R/T) * RADIOM2**1.0 * ADIO**1.0 +1*A368 * T**n368 * np.exp(-1*E368/R/T) * PRFET3M2**1.0 * ADIO**1.0 +1*A369 * T**n369 * np.exp(-1*E369/R/T) * PRLIGH**1.0 * ADIO**1.0 +1*A370 * T**n370 * np.exp(-1*E370/R/T) * RLIGM2B**1.0 * ADIO**1.0 +1*A371 * T**n371 * np.exp(-1*E371/R/T) * RLIGM2A**1.0 * ADIO**1.0 +1*A372 * T**n372 * np.exp(-1*E372/R/T) * RCH3**1.0 * ADIO**1.0 +1*A373 * T**n373 * np.exp(-1*E373/R/T) * PRKETM2**1.0 * ADIO**1.0 +1*A374 * T**n374 * np.exp(-1*E374/R/T) * RKET**1.0 * ADIO**1.0 +1*A375 * T**n375 * np.exp(-1*E375/R/T) * PRADIO**1.0 * ADIO**1.0 +1*A376 * T**n376 * np.exp(-1*E376/R/T) * RC3H3O**1.0 * ADIO**1.0 +1*A377 * T**n377 * np.exp(-1*E377/R/T) * RLIGB**1.0 * ADIO**1.0 +1*A378 * T**n378 * np.exp(-1*E378/R/T) * RLIGA**1.0 * ADIO**1.0 +1*A379 * T**n379 * np.exp(-1*E379/R/T) * PRADIOM2**1.0 * ADIO**1.0 +1*A380 * T**n380 * np.exp(-1*E380/R/T) * RMGUAI**1.0 * ADIO**1.0 +1*A381 * T**n381 * np.exp(-1*E381/R/T) * OH**1.0 * ADIO**1.0 +1*A382 * T**n382 * np.exp(-1*E382/R/T) * RCH3O**1.0 * ADIO**1.0 +1*A383 * T**n383 * np.exp(-1*E383/R/T) * RPHENOL**1.0 * ADIO**1.0 -1*A384 * T**n384 * np.exp(-1*E384/R/T) * RADIO**1.0 * ADIO**1.0 +1*A384 * T**n384 * np.exp(-1*E384/R/T) * RADIO**1.0 * ADIO**1.0 -1*A405 * T**n405 * np.exp(-1*E405/R/T) * RADIO**1.0 * KET**1.0, +1*A2 * T**n2 * np.exp(-1*E2/R/T) * LIGM2**1.0 -1*A14 * T**n14 * np.exp(-1*E14/R/T) * RADIOM2**1.0 -1*A23 * T**n23 * np.exp(-1*E23/R/T) * RADIOM2**1.0 -2*A60 * T**n60 * np.exp(-1*E60/R/T) * RADIOM2**2.0 -1*A115 * T**n115 * np.exp(-1*E115/R/T) * RADIOM2**1.0 * LIGH**1.0 -1*A136 * T**n136 * np.exp(-1*E136/R/T) * RADIOM2**1.0 * PLIGH**1.0 -1*A157 * T**n157 * np.exp(-1*E157/R/T) * RADIOM2**1.0 * PLIGM2**1.0 -1*A178 * T**n178 * np.exp(-1*E178/R/T) * RADIOM2**1.0 * LIGM2**1.0 -1*A199 * T**n199 * np.exp(-1*E199/R/T) * RADIOM2**1.0 * LIGM2**1.0 -1*A220 * T**n220 * np.exp(-1*E220/R/T) * RADIOM2**1.0 * PFET3M2**1.0 +1*A238 * T**n238 * np.exp(-1*E238/R/T) * RC3H5O2**1.0 * ADIOM2**1.0 +1*A239 * T**n239 * np.exp(-1*E239/R/T) * PRFET3**1.0 * ADIOM2**1.0 +1*A240 * T**n240 * np.exp(-1*E240/R/T) * RC3H7O2**1.0 * ADIOM2**1.0 -1*A241 * T**n241 * np.exp(-1*E241/R/T) * RADIOM2**1.0 * ADIOM2**1.0 +1*A241 * T**n241 * np.exp(-1*E241/R/T) * RADIOM2**1.0 * ADIOM2**1.0 +1*A242 * T**n242 * np.exp(-1*E242/R/T) * PRFET3M2**1.0 * ADIOM2**1.0 +1*A243 * T**n243 * np.exp(-1*E243/R/T) * PRLIGH**1.0 * ADIOM2**1.0 +1*A244 * T**n244 * np.exp(-1*E244/R/T) * RLIGM2B**1.0 * ADIOM2**1.0 +1*A245 * T**n245 * np.exp(-1*E245/R/T) * RLIGM2A**1.0 * ADIOM2**1.0 +1*A246 * T**n246 * np.exp(-1*E246/R/T) * RCH3**1.0 * ADIOM2**1.0 +1*A247 * T**n247 * np.exp(-1*E247/R/T) * PRKETM2**1.0 * ADIOM2**1.0 +1*A248 * T**n248 * np.exp(-1*E248/R/T) * RKET**1.0 * ADIOM2**1.0 +1*A249 * T**n249 * np.exp(-1*E249/R/T) * PRADIO**1.0 * ADIOM2**1.0 +1*A250 * T**n250 * np.exp(-1*E250/R/T) * RC3H3O**1.0 * ADIOM2**1.0 +1*A251 * T**n251 * np.exp(-1*E251/R/T) * RLIGB**1.0 * ADIOM2**1.0 +1*A252 * T**n252 * np.exp(-1*E252/R/T) * RLIGA**1.0 * ADIOM2**1.0 +1*A253 * T**n253 * np.exp(-1*E253/R/T) * PRADIOM2**1.0 * ADIOM2**1.0 +1*A254 * T**n254 * np.exp(-1*E254/R/T) * RMGUAI**1.0 * ADIOM2**1.0 +1*A255 * T**n255 * np.exp(-1*E255/R/T) * OH**1.0 * ADIOM2**1.0 +1*A256 * T**n256 * np.exp(-1*E256/R/T) * RCH3O**1.0 * ADIOM2**1.0 +1*A257 * T**n257 * np.exp(-1*E257/R/T) * RPHENOL**1.0 * ADIOM2**1.0 +1*A258 * T**n258 * np.exp(-1*E258/R/T) * RADIO**1.0 * ADIOM2**1.0 -1*A262 * T**n262 * np.exp(-1*E262/R/T) * RADIOM2**1.0 * KETM2**1.0 -1*A283 * T**n283 * np.exp(-1*E283/R/T) * RADIOM2**1.0 * C10H2**1.0 -1*A304 * T**n304 * np.exp(-1*E304/R/T) * RADIOM2**1.0 * LIG**1.0 -1*A325 * T**n325 * np.exp(-1*E325/R/T) * RADIOM2**1.0 * LIG**1.0 -1*A346 * T**n346 * np.exp(-1*E346/R/T) * RADIOM2**1.0 * PFET3**1.0 -1*A367 * T**n367 * np.exp(-1*E367/R/T) * RADIOM2**1.0 * ADIO**1.0 -1*A388 * T**n388 * np.exp(-1*E388/R/T) * RADIOM2**1.0 * KET**1.0, +1*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 +1*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 +1*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 +1*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 +1*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 +1*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 +1*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 +1*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 -2*A68 * T**n68 * np.exp(-1*E68/R/T) * RC3H3O**2.0 -1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 -1*A124 * T**n124 * np.exp(-1*E124/R/T) * RC3H3O**1.0 * LIGH**1.0 -1*A145 * T**n145 * np.exp(-1*E145/R/T) * RC3H3O**1.0 * PLIGH**1.0 -1*A166 * T**n166 * np.exp(-1*E166/R/T) * RC3H3O**1.0 * PLIGM2**1.0 -1*A187 * T**n187 * np.exp(-1*E187/R/T) * RC3H3O**1.0 * LIGM2**1.0 -1*A208 * T**n208 * np.exp(-1*E208/R/T) * RC3H3O**1.0 * LIGM2**1.0 -1*A229 * T**n229 * np.exp(-1*E229/R/T) * RC3H3O**1.0 * PFET3M2**1.0 -1*A250 * T**n250 * np.exp(-1*E250/R/T) * RC3H3O**1.0 * ADIOM2**1.0 -1*A271 * T**n271 * np.exp(-1*E271/R/T) * RC3H3O**1.0 * KETM2**1.0 -1*A292 * T**n292 * np.exp(-1*E292/R/T) * RC3H3O**1.0 * C10H2**1.0 -1*A313 * T**n313 * np.exp(-1*E313/R/T) * RC3H3O**1.0 * LIG**1.0 -1*A334 * T**n334 * np.exp(-1*E334/R/T) * RC3H3O**1.0 * LIG**1.0 -1*A355 * T**n355 * np.exp(-1*E355/R/T) * RC3H3O**1.0 * PFET3**1.0 -1*A376 * T**n376 * np.exp(-1*E376/R/T) * RC3H3O**1.0 * ADIO**1.0 -1*A397 * T**n397 * np.exp(-1*E397/R/T) * RC3H3O**1.0 * KET**1.0, +1*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 +1*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 +1*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 +1*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 -2*A67 * T**n67 * np.exp(-1*E67/R/T) * RC3H5O2**2.0 -1*A112 * T**n112 * np.exp(-1*E112/R/T) * RC3H5O2**1.0 * LIGH**1.0 -1*A133 * T**n133 * np.exp(-1*E133/R/T) * RC3H5O2**1.0 * PLIGH**1.0 -1*A154 * T**n154 * np.exp(-1*E154/R/T) * RC3H5O2**1.0 * PLIGM2**1.0 -1*A175 * T**n175 * np.exp(-1*E175/R/T) * RC3H5O2**1.0 * LIGM2**1.0 -1*A196 * T**n196 * np.exp(-1*E196/R/T) * RC3H5O2**1.0 * LIGM2**1.0 -1*A217 * T**n217 * np.exp(-1*E217/R/T) * RC3H5O2**1.0 * PFET3M2**1.0 -1*A238 * T**n238 * np.exp(-1*E238/R/T) * RC3H5O2**1.0 * ADIOM2**1.0 -1*A259 * T**n259 * np.exp(-1*E259/R/T) * RC3H5O2**1.0 * KETM2**1.0 -1*A280 * T**n280 * np.exp(-1*E280/R/T) * RC3H5O2**1.0 * C10H2**1.0 -1*A301 * T**n301 * np.exp(-1*E301/R/T) * RC3H5O2**1.0 * LIG**1.0 -1*A322 * T**n322 * np.exp(-1*E322/R/T) * RC3H5O2**1.0 * LIG**1.0 -1*A343 * T**n343 * np.exp(-1*E343/R/T) * RC3H5O2**1.0 * PFET3**1.0 -1*A364 * T**n364 * np.exp(-1*E364/R/T) * RC3H5O2**1.0 * ADIO**1.0 -1*A385 * T**n385 * np.exp(-1*E385/R/T) * RC3H5O2**1.0 * KET**1.0, -1*A27 * T**n27 * np.exp(-1*E27/R/T) * RC3H7O2**1.0 +1*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 +1*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 +1*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 +1*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 -2*A66 * T**n66 * np.exp(-1*E66/R/T) * RC3H7O2**2.0 -1*A114 * T**n114 * np.exp(-1*E114/R/T) * RC3H7O2**1.0 * LIGH**1.0 -1*A135 * T**n135 * np.exp(-1*E135/R/T) * RC3H7O2**1.0 * PLIGH**1.0 -1*A156 * T**n156 * np.exp(-1*E156/R/T) * RC3H7O2**1.0 * PLIGM2**1.0 -1*A177 * T**n177 * np.exp(-1*E177/R/T) * RC3H7O2**1.0 * LIGM2**1.0 -1*A198 * T**n198 * np.exp(-1*E198/R/T) * RC3H7O2**1.0 * LIGM2**1.0 -1*A219 * T**n219 * np.exp(-1*E219/R/T) * RC3H7O2**1.0 * PFET3M2**1.0 -1*A240 * T**n240 * np.exp(-1*E240/R/T) * RC3H7O2**1.0 * ADIOM2**1.0 -1*A261 * T**n261 * np.exp(-1*E261/R/T) * RC3H7O2**1.0 * KETM2**1.0 -1*A282 * T**n282 * np.exp(-1*E282/R/T) * RC3H7O2**1.0 * C10H2**1.0 -1*A303 * T**n303 * np.exp(-1*E303/R/T) * RC3H7O2**1.0 * LIG**1.0 -1*A324 * T**n324 * np.exp(-1*E324/R/T) * RC3H7O2**1.0 * LIG**1.0 -1*A345 * T**n345 * np.exp(-1*E345/R/T) * RC3H7O2**1.0 * PFET3**1.0 -1*A366 * T**n366 * np.exp(-1*E366/R/T) * RC3H7O2**1.0 * ADIO**1.0 -1*A387 * T**n387 * np.exp(-1*E387/R/T) * RC3H7O2**1.0 * KET**1.0, +1*A52 * T**n52 * np.exp(-1*E52/R/T) * RCH3O**1.0 * RPHENOX**1.0 +1*A53 * T**n53 * np.exp(-1*E53/R/T) * RCH3O**1.0 * RPHENOXM2**1.0 -1*A54 * T**n54 * np.exp(-1*E54/R/T) * RPHENOXM2**1.0 * RCH3**1.0 -1*A55 * T**n55 * np.exp(-1*E55/R/T) * RPHENOX**1.0 * RCH3**1.0 -1*A56 * T**n56 * np.exp(-1*E56/R/T) * RCH3O**1.0 * RCH3**1.0 -1*A69 * T**n69 * np.exp(-1*E69/R/T) * OH**1.0 * RCH3**1.0 -2*A70 * T**n70 * np.exp(-1*E70/R/T) * RCH3**2.0 -1*A71 * T**n71 * np.exp(-1*E71/R/T) * RCH3**1.0 * PRADIOM2**1.0 -1*A72 * T**n72 * np.exp(-1*E72/R/T) * RCH3**1.0 * PRKETM2**1.0 +1*A101 * T**n101 * np.exp(-1*E101/R/T) * PCH3**1.0 -1*A120 * T**n120 * np.exp(-1*E120/R/T) * RCH3**1.0 * LIGH**1.0 -1*A141 * T**n141 * np.exp(-1*E141/R/T) * RCH3**1.0 * PLIGH**1.0 -1*A162 * T**n162 * np.exp(-1*E162/R/T) * RCH3**1.0 * PLIGM2**1.0 -1*A183 * T**n183 * np.exp(-1*E183/R/T) * RCH3**1.0 * LIGM2**1.0 -1*A204 * T**n204 * np.exp(-1*E204/R/T) * RCH3**1.0 * LIGM2**1.0 -1*A225 * T**n225 * np.exp(-1*E225/R/T) * RCH3**1.0 * PFET3M2**1.0 -1*A246 * T**n246 * np.exp(-1*E246/R/T) * RCH3**1.0 * ADIOM2**1.0 -1*A267 * T**n267 * np.exp(-1*E267/R/T) * RCH3**1.0 * KETM2**1.0 -1*A288 * T**n288 * np.exp(-1*E288/R/T) * RCH3**1.0 * C10H2**1.0 -1*A309 * T**n309 * np.exp(-1*E309/R/T) * RCH3**1.0 * LIG**1.0 -1*A330 * T**n330 * np.exp(-1*E330/R/T) * RCH3**1.0 * LIG**1.0 -1*A351 * T**n351 * np.exp(-1*E351/R/T) * RCH3**1.0 * PFET3**1.0 -1*A372 * T**n372 * np.exp(-1*E372/R/T) * RCH3**1.0 * ADIO**1.0 -1*A393 * T**n393 * np.exp(-1*E393/R/T) * RCH3**1.0 * KET**1.0, +1*A27 * T**n27 * np.exp(-1*E27/R/T) * RC3H7O2**1.0 +1*A28 * T**n28 * np.exp(-1*E28/R/T) * C10H2M4**1.0 +1*A29 * T**n29 * np.exp(-1*E29/R/T) * C10H2M2**1.0 +1*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 +1*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 +1*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 +1*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0 -1*A52 * T**n52 * np.exp(-1*E52/R/T) * RCH3O**1.0 * RPHENOX**1.0 -1*A53 * T**n53 * np.exp(-1*E53/R/T) * RCH3O**1.0 * RPHENOXM2**1.0 -1*A56 * T**n56 * np.exp(-1*E56/R/T) * RCH3O**1.0 * RCH3**1.0 -2*A57 * T**n57 * np.exp(-1*E57/R/T) * RCH3O**2.0 -1*A58 * T**n58 * np.exp(-1*E58/R/T) * RCH3O**1.0 * PRADIOM2**1.0 -1*A59 * T**n59 * np.exp(-1*E59/R/T) * RCH3O**1.0 * PRKETM2**1.0 -1*A130 * T**n130 * np.exp(-1*E130/R/T) * RCH3O**1.0 * LIGH**1.0 -1*A151 * T**n151 * np.exp(-1*E151/R/T) * RCH3O**1.0 * PLIGH**1.0 -1*A172 * T**n172 * np.exp(-1*E172/R/T) * RCH3O**1.0 * PLIGM2**1.0 -1*A193 * T**n193 * np.exp(-1*E193/R/T) * RCH3O**1.0 * LIGM2**1.0 -1*A214 * T**n214 * np.exp(-1*E214/R/T) * RCH3O**1.0 * LIGM2**1.0 -1*A235 * T**n235 * np.exp(-1*E235/R/T) * RCH3O**1.0 * PFET3M2**1.0 -1*A256 * T**n256 * np.exp(-1*E256/R/T) * RCH3O**1.0 * ADIOM2**1.0 -1*A277 * T**n277 * np.exp(-1*E277/R/T) * RCH3O**1.0 * KETM2**1.0 -1*A298 * T**n298 * np.exp(-1*E298/R/T) * RCH3O**1.0 * C10H2**1.0 -1*A319 * T**n319 * np.exp(-1*E319/R/T) * RCH3O**1.0 * LIG**1.0 -1*A340 * T**n340 * np.exp(-1*E340/R/T) * RCH3O**1.0 * LIG**1.0 -1*A361 * T**n361 * np.exp(-1*E361/R/T) * RCH3O**1.0 * PFET3**1.0 -1*A382 * T**n382 * np.exp(-1*E382/R/T) * RCH3O**1.0 * ADIO**1.0 -1*A403 * T**n403 * np.exp(-1*E403/R/T) * RCH3O**1.0 * KET**1.0, -1*A26 * T**n26 * np.exp(-1*E26/R/T) * RKET**1.0 -2*A77 * T**n77 * np.exp(-1*E77/R/T) * RKET**2.0 -1*A122 * T**n122 * np.exp(-1*E122/R/T) * RKET**1.0 * LIGH**1.0 -1*A143 * T**n143 * np.exp(-1*E143/R/T) * RKET**1.0 * PLIGH**1.0 -1*A164 * T**n164 * np.exp(-1*E164/R/T) * RKET**1.0 * PLIGM2**1.0 -1*A185 * T**n185 * np.exp(-1*E185/R/T) * RKET**1.0 * LIGM2**1.0 -1*A206 * T**n206 * np.exp(-1*E206/R/T) * RKET**1.0 * LIGM2**1.0 -1*A227 * T**n227 * np.exp(-1*E227/R/T) * RKET**1.0 * PFET3M2**1.0 -1*A248 * T**n248 * np.exp(-1*E248/R/T) * RKET**1.0 * ADIOM2**1.0 -1*A269 * T**n269 * np.exp(-1*E269/R/T) * RKET**1.0 * KETM2**1.0 -1*A290 * T**n290 * np.exp(-1*E290/R/T) * RKET**1.0 * C10H2**1.0 -1*A311 * T**n311 * np.exp(-1*E311/R/T) * RKET**1.0 * LIG**1.0 -1*A332 * T**n332 * np.exp(-1*E332/R/T) * RKET**1.0 * LIG**1.0 -1*A353 * T**n353 * np.exp(-1*E353/R/T) * RKET**1.0 * PFET3**1.0 -1*A374 * T**n374 * np.exp(-1*E374/R/T) * RKET**1.0 * ADIO**1.0 +1*A385 * T**n385 * np.exp(-1*E385/R/T) * RC3H5O2**1.0 * KET**1.0 +1*A386 * T**n386 * np.exp(-1*E386/R/T) * PRFET3**1.0 * KET**1.0 +1*A387 * T**n387 * np.exp(-1*E387/R/T) * RC3H7O2**1.0 * KET**1.0 +1*A388 * T**n388 * np.exp(-1*E388/R/T) * RADIOM2**1.0 * KET**1.0 +1*A389 * T**n389 * np.exp(-1*E389/R/T) * PRFET3M2**1.0 * KET**1.0 +1*A390 * T**n390 * np.exp(-1*E390/R/T) * PRLIGH**1.0 * KET**1.0 +1*A391 * T**n391 * np.exp(-1*E391/R/T) * RLIGM2B**1.0 * KET**1.0 +1*A392 * T**n392 * np.exp(-1*E392/R/T) * RLIGM2A**1.0 * KET**1.0 +1*A393 * T**n393 * np.exp(-1*E393/R/T) * RCH3**1.0 * KET**1.0 +1*A394 * T**n394 * np.exp(-1*E394/R/T) * PRKETM2**1.0 * KET**1.0 -1*A395 * T**n395 * np.exp(-1*E395/R/T) * RKET**1.0 * KET**1.0 +1*A395 * T**n395 * np.exp(-1*E395/R/T) * RKET**1.0 * KET**1.0 +1*A396 * T**n396 * np.exp(-1*E396/R/T) * PRADIO**1.0 * KET**1.0 +1*A397 * T**n397 * np.exp(-1*E397/R/T) * RC3H3O**1.0 * KET**1.0 +1*A398 * T**n398 * np.exp(-1*E398/R/T) * RLIGB**1.0 * KET**1.0 +1*A399 * T**n399 * np.exp(-1*E399/R/T) * RLIGA**1.0 * KET**1.0 +1*A400 * T**n400 * np.exp(-1*E400/R/T) * PRADIOM2**1.0 * KET**1.0 +1*A401 * T**n401 * np.exp(-1*E401/R/T) * RMGUAI**1.0 * KET**1.0 +1*A402 * T**n402 * np.exp(-1*E402/R/T) * OH**1.0 * KET**1.0 +1*A403 * T**n403 * np.exp(-1*E403/R/T) * RCH3O**1.0 * KET**1.0 +1*A404 * T**n404 * np.exp(-1*E404/R/T) * RPHENOL**1.0 * KET**1.0 +1*A405 * T**n405 * np.exp(-1*E405/R/T) * RADIO**1.0 * KET**1.0, -1*A24 * T**n24 * np.exp(-1*E24/R/T) * RKETM2**1.0 -2*A64 * T**n64 * np.exp(-1*E64/R/T) * RKETM2**2.0 +1*A259 * T**n259 * np.exp(-1*E259/R/T) * RC3H5O2**1.0 * KETM2**1.0 +1*A260 * T**n260 * np.exp(-1*E260/R/T) * PRFET3**1.0 * KETM2**1.0 +1*A261 * T**n261 * np.exp(-1*E261/R/T) * RC3H7O2**1.0 * KETM2**1.0 +1*A262 * T**n262 * np.exp(-1*E262/R/T) * RADIOM2**1.0 * KETM2**1.0 +1*A263 * T**n263 * np.exp(-1*E263/R/T) * PRFET3M2**1.0 * KETM2**1.0 +1*A264 * T**n264 * np.exp(-1*E264/R/T) * PRLIGH**1.0 * KETM2**1.0 +1*A265 * T**n265 * np.exp(-1*E265/R/T) * RLIGM2B**1.0 * KETM2**1.0 +1*A266 * T**n266 * np.exp(-1*E266/R/T) * RLIGM2A**1.0 * KETM2**1.0 +1*A267 * T**n267 * np.exp(-1*E267/R/T) * RCH3**1.0 * KETM2**1.0 +1*A268 * T**n268 * np.exp(-1*E268/R/T) * PRKETM2**1.0 * KETM2**1.0 +1*A269 * T**n269 * np.exp(-1*E269/R/T) * RKET**1.0 * KETM2**1.0 +1*A270 * T**n270 * np.exp(-1*E270/R/T) * PRADIO**1.0 * KETM2**1.0 +1*A271 * T**n271 * np.exp(-1*E271/R/T) * RC3H3O**1.0 * KETM2**1.0 +1*A272 * T**n272 * np.exp(-1*E272/R/T) * RLIGB**1.0 * KETM2**1.0 +1*A273 * T**n273 * np.exp(-1*E273/R/T) * RLIGA**1.0 * KETM2**1.0 +1*A274 * T**n274 * np.exp(-1*E274/R/T) * PRADIOM2**1.0 * KETM2**1.0 +1*A275 * T**n275 * np.exp(-1*E275/R/T) * RMGUAI**1.0 * KETM2**1.0 +1*A276 * T**n276 * np.exp(-1*E276/R/T) * OH**1.0 * KETM2**1.0 +1*A277 * T**n277 * np.exp(-1*E277/R/T) * RCH3O**1.0 * KETM2**1.0 +1*A278 * T**n278 * np.exp(-1*E278/R/T) * RPHENOL**1.0 * KETM2**1.0 +1*A279 * T**n279 * np.exp(-1*E279/R/T) * RADIO**1.0 * KETM2**1.0, -1*A20 * T**n20 * np.exp(-1*E20/R/T) * RLIGA**1.0 -2*A76 * T**n76 * np.exp(-1*E76/R/T) * RLIGA**2.0 -1*A126 * T**n126 * np.exp(-1*E126/R/T) * RLIGA**1.0 * LIGH**1.0 -1*A147 * T**n147 * np.exp(-1*E147/R/T) * RLIGA**1.0 * PLIGH**1.0 -1*A168 * T**n168 * np.exp(-1*E168/R/T) * RLIGA**1.0 * PLIGM2**1.0 -1*A189 * T**n189 * np.exp(-1*E189/R/T) * RLIGA**1.0 * LIGM2**1.0 -1*A210 * T**n210 * np.exp(-1*E210/R/T) * RLIGA**1.0 * LIGM2**1.0 -1*A231 * T**n231 * np.exp(-1*E231/R/T) * RLIGA**1.0 * PFET3M2**1.0 -1*A252 * T**n252 * np.exp(-1*E252/R/T) * RLIGA**1.0 * ADIOM2**1.0 -1*A273 * T**n273 * np.exp(-1*E273/R/T) * RLIGA**1.0 * KETM2**1.0 -1*A294 * T**n294 * np.exp(-1*E294/R/T) * RLIGA**1.0 * C10H2**1.0 +1*A301 * T**n301 * np.exp(-1*E301/R/T) * RC3H5O2**1.0 * LIG**1.0 +1*A302 * T**n302 * np.exp(-1*E302/R/T) * PRFET3**1.0 * LIG**1.0 +1*A303 * T**n303 * np.exp(-1*E303/R/T) * RC3H7O2**1.0 * LIG**1.0 +1*A304 * T**n304 * np.exp(-1*E304/R/T) * RADIOM2**1.0 * LIG**1.0 +1*A305 * T**n305 * np.exp(-1*E305/R/T) * PRFET3M2**1.0 * LIG**1.0 +1*A306 * T**n306 * np.exp(-1*E306/R/T) * PRLIGH**1.0 * LIG**1.0 +1*A307 * T**n307 * np.exp(-1*E307/R/T) * RLIGM2B**1.0 * LIG**1.0 +1*A308 * T**n308 * np.exp(-1*E308/R/T) * RLIGM2A**1.0 * LIG**1.0 +1*A309 * T**n309 * np.exp(-1*E309/R/T) * RCH3**1.0 * LIG**1.0 +1*A310 * T**n310 * np.exp(-1*E310/R/T) * PRKETM2**1.0 * LIG**1.0 +1*A311 * T**n311 * np.exp(-1*E311/R/T) * RKET**1.0 * LIG**1.0 +1*A312 * T**n312 * np.exp(-1*E312/R/T) * PRADIO**1.0 * LIG**1.0 +1*A313 * T**n313 * np.exp(-1*E313/R/T) * RC3H3O**1.0 * LIG**1.0 +1*A314 * T**n314 * np.exp(-1*E314/R/T) * RLIGB**1.0 * LIG**1.0 -1*A315 * T**n315 * np.exp(-1*E315/R/T) * RLIGA**1.0 * LIG**1.0 +1*A315 * T**n315 * np.exp(-1*E315/R/T) * RLIGA**1.0 * LIG**1.0 +1*A316 * T**n316 * np.exp(-1*E316/R/T) * PRADIOM2**1.0 * LIG**1.0 +1*A317 * T**n317 * np.exp(-1*E317/R/T) * RMGUAI**1.0 * LIG**1.0 +1*A318 * T**n318 * np.exp(-1*E318/R/T) * OH**1.0 * LIG**1.0 +1*A319 * T**n319 * np.exp(-1*E319/R/T) * RCH3O**1.0 * LIG**1.0 +1*A320 * T**n320 * np.exp(-1*E320/R/T) * RPHENOL**1.0 * LIG**1.0 +1*A321 * T**n321 * np.exp(-1*E321/R/T) * RADIO**1.0 * LIG**1.0 -1*A336 * T**n336 * np.exp(-1*E336/R/T) * RLIGA**1.0 * LIG**1.0 -1*A357 * T**n357 * np.exp(-1*E357/R/T) * RLIGA**1.0 * PFET3**1.0 -1*A378 * T**n378 * np.exp(-1*E378/R/T) * RLIGA**1.0 * ADIO**1.0 -1*A399 * T**n399 * np.exp(-1*E399/R/T) * RLIGA**1.0 * KET**1.0, -1*A21 * T**n21 * np.exp(-1*E21/R/T) * RLIGB**1.0 -1*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 -1*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 -1*A75 * T**n75 * np.exp(-1*E75/R/T) * RLIGB**1.0 * RLIGB**1.0 -1*A125 * T**n125 * np.exp(-1*E125/R/T) * RLIGB**1.0 * LIGH**1.0 -1*A146 * T**n146 * np.exp(-1*E146/R/T) * RLIGB**1.0 * PLIGH**1.0 -1*A167 * T**n167 * np.exp(-1*E167/R/T) * RLIGB**1.0 * PLIGM2**1.0 -1*A188 * T**n188 * np.exp(-1*E188/R/T) * RLIGB**1.0 * LIGM2**1.0 -1*A209 * T**n209 * np.exp(-1*E209/R/T) * RLIGB**1.0 * LIGM2**1.0 -1*A230 * T**n230 * np.exp(-1*E230/R/T) * RLIGB**1.0 * PFET3M2**1.0 -1*A251 * T**n251 * np.exp(-1*E251/R/T) * RLIGB**1.0 * ADIOM2**1.0 -1*A272 * T**n272 * np.exp(-1*E272/R/T) * RLIGB**1.0 * KETM2**1.0 -1*A293 * T**n293 * np.exp(-1*E293/R/T) * RLIGB**1.0 * C10H2**1.0 -1*A314 * T**n314 * np.exp(-1*E314/R/T) * RLIGB**1.0 * LIG**1.0 +1*A322 * T**n322 * np.exp(-1*E322/R/T) * RC3H5O2**1.0 * LIG**1.0 +1*A323 * T**n323 * np.exp(-1*E323/R/T) * PRFET3**1.0 * LIG**1.0 +1*A324 * T**n324 * np.exp(-1*E324/R/T) * RC3H7O2**1.0 * LIG**1.0 +1*A325 * T**n325 * np.exp(-1*E325/R/T) * RADIOM2**1.0 * LIG**1.0 +1*A326 * T**n326 * np.exp(-1*E326/R/T) * PRFET3M2**1.0 * LIG**1.0 +1*A327 * T**n327 * np.exp(-1*E327/R/T) * PRLIGH**1.0 * LIG**1.0 +1*A328 * T**n328 * np.exp(-1*E328/R/T) * RLIGM2B**1.0 * LIG**1.0 +1*A329 * T**n329 * np.exp(-1*E329/R/T) * RLIGM2A**1.0 * LIG**1.0 +1*A330 * T**n330 * np.exp(-1*E330/R/T) * RCH3**1.0 * LIG**1.0 +1*A331 * T**n331 * np.exp(-1*E331/R/T) * PRKETM2**1.0 * LIG**1.0 +1*A332 * T**n332 * np.exp(-1*E332/R/T) * RKET**1.0 * LIG**1.0 +1*A333 * T**n333 * np.exp(-1*E333/R/T) * PRADIO**1.0 * LIG**1.0 +1*A334 * T**n334 * np.exp(-1*E334/R/T) * RC3H3O**1.0 * LIG**1.0 -1*A335 * T**n335 * np.exp(-1*E335/R/T) * RLIGB**1.0 * LIG**1.0 +1*A335 * T**n335 * np.exp(-1*E335/R/T) * RLIGB**1.0 * LIG**1.0 +1*A336 * T**n336 * np.exp(-1*E336/R/T) * RLIGA**1.0 * LIG**1.0 +1*A337 * T**n337 * np.exp(-1*E337/R/T) * PRADIOM2**1.0 * LIG**1.0 +1*A338 * T**n338 * np.exp(-1*E338/R/T) * RMGUAI**1.0 * LIG**1.0 +1*A339 * T**n339 * np.exp(-1*E339/R/T) * OH**1.0 * LIG**1.0 +1*A340 * T**n340 * np.exp(-1*E340/R/T) * RCH3O**1.0 * LIG**1.0 +1*A341 * T**n341 * np.exp(-1*E341/R/T) * RPHENOL**1.0 * LIG**1.0 +1*A342 * T**n342 * np.exp(-1*E342/R/T) * RADIO**1.0 * LIG**1.0 -1*A356 * T**n356 * np.exp(-1*E356/R/T) * RLIGB**1.0 * PFET3**1.0 -1*A377 * T**n377 * np.exp(-1*E377/R/T) * RLIGB**1.0 * ADIO**1.0 -1*A398 * T**n398 * np.exp(-1*E398/R/T) * RLIGB**1.0 * KET**1.0, -1*A12 * T**n12 * np.exp(-1*E12/R/T) * RLIGH**1.0 -1*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 -1*A79 * T**n79 * np.exp(-1*E79/R/T) * RLIGH**1.0 * RLIGH**1.0 +1*A112 * T**n112 * np.exp(-1*E112/R/T) * RC3H5O2**1.0 * LIGH**1.0 +1*A113 * T**n113 * np.exp(-1*E113/R/T) * PRFET3**1.0 * LIGH**1.0 +1*A114 * T**n114 * np.exp(-1*E114/R/T) * RC3H7O2**1.0 * LIGH**1.0 +1*A115 * T**n115 * np.exp(-1*E115/R/T) * RADIOM2**1.0 * LIGH**1.0 +1*A116 * T**n116 * np.exp(-1*E116/R/T) * PRFET3M2**1.0 * LIGH**1.0 +1*A117 * T**n117 * np.exp(-1*E117/R/T) * PRLIGH**1.0 * LIGH**1.0 +1*A118 * T**n118 * np.exp(-1*E118/R/T) * RLIGM2B**1.0 * LIGH**1.0 +1*A119 * T**n119 * np.exp(-1*E119/R/T) * RLIGM2A**1.0 * LIGH**1.0 +1*A120 * T**n120 * np.exp(-1*E120/R/T) * RCH3**1.0 * LIGH**1.0 +1*A121 * T**n121 * np.exp(-1*E121/R/T) * PRKETM2**1.0 * LIGH**1.0 +1*A122 * T**n122 * np.exp(-1*E122/R/T) * RKET**1.0 * LIGH**1.0 +1*A123 * T**n123 * np.exp(-1*E123/R/T) * PRADIO**1.0 * LIGH**1.0 +1*A124 * T**n124 * np.exp(-1*E124/R/T) * RC3H3O**1.0 * LIGH**1.0 +1*A125 * T**n125 * np.exp(-1*E125/R/T) * RLIGB**1.0 * LIGH**1.0 +1*A126 * T**n126 * np.exp(-1*E126/R/T) * RLIGA**1.0 * LIGH**1.0 +1*A127 * T**n127 * np.exp(-1*E127/R/T) * PRADIOM2**1.0 * LIGH**1.0 +1*A128 * T**n128 * np.exp(-1*E128/R/T) * RMGUAI**1.0 * LIGH**1.0 +1*A129 * T**n129 * np.exp(-1*E129/R/T) * OH**1.0 * LIGH**1.0 +1*A130 * T**n130 * np.exp(-1*E130/R/T) * RCH3O**1.0 * LIGH**1.0 +1*A131 * T**n131 * np.exp(-1*E131/R/T) * RPHENOL**1.0 * LIGH**1.0 +1*A132 * T**n132 * np.exp(-1*E132/R/T) * RADIO**1.0 * LIGH**1.0, +1*A1 * T**n1 * np.exp(-1*E1/R/T) * LIGH**1.0 +1*A12 * T**n12 * np.exp(-1*E12/R/T) * RLIGH**1.0 -1*A15 * T**n15 * np.exp(-1*E15/R/T) * RLIGM2A**1.0 -2*A62 * T**n62 * np.exp(-1*E62/R/T) * RLIGM2A**2.0 -1*A119 * T**n119 * np.exp(-1*E119/R/T) * RLIGM2A**1.0 * LIGH**1.0 -1*A140 * T**n140 * np.exp(-1*E140/R/T) * RLIGM2A**1.0 * PLIGH**1.0 -1*A161 * T**n161 * np.exp(-1*E161/R/T) * RLIGM2A**1.0 * PLIGM2**1.0 +1*A175 * T**n175 * np.exp(-1*E175/R/T) * RC3H5O2**1.0 * LIGM2**1.0 +1*A176 * T**n176 * np.exp(-1*E176/R/T) * PRFET3**1.0 * LIGM2**1.0 +1*A177 * T**n177 * np.exp(-1*E177/R/T) * RC3H7O2**1.0 * LIGM2**1.0 +1*A178 * T**n178 * np.exp(-1*E178/R/T) * RADIOM2**1.0 * LIGM2**1.0 +1*A179 * T**n179 * np.exp(-1*E179/R/T) * PRFET3M2**1.0 * LIGM2**1.0 +1*A180 * T**n180 * np.exp(-1*E180/R/T) * PRLIGH**1.0 * LIGM2**1.0 +1*A181 * T**n181 * np.exp(-1*E181/R/T) * RLIGM2B**1.0 * LIGM2**1.0 -1*A182 * T**n182 * np.exp(-1*E182/R/T) * RLIGM2A**1.0 * LIGM2**1.0 +1*A182 * T**n182 * np.exp(-1*E182/R/T) * RLIGM2A**1.0 * LIGM2**1.0 +1*A183 * T**n183 * np.exp(-1*E183/R/T) * RCH3**1.0 * LIGM2**1.0 +1*A184 * T**n184 * np.exp(-1*E184/R/T) * PRKETM2**1.0 * LIGM2**1.0 +1*A185 * T**n185 * np.exp(-1*E185/R/T) * RKET**1.0 * LIGM2**1.0 +1*A186 * T**n186 * np.exp(-1*E186/R/T) * PRADIO**1.0 * LIGM2**1.0 +1*A187 * T**n187 * np.exp(-1*E187/R/T) * RC3H3O**1.0 * LIGM2**1.0 +1*A188 * T**n188 * np.exp(-1*E188/R/T) * RLIGB**1.0 * LIGM2**1.0 +1*A189 * T**n189 * np.exp(-1*E189/R/T) * RLIGA**1.0 * LIGM2**1.0 +1*A190 * T**n190 * np.exp(-1*E190/R/T) * PRADIOM2**1.0 * LIGM2**1.0 +1*A191 * T**n191 * np.exp(-1*E191/R/T) * RMGUAI**1.0 * LIGM2**1.0 +1*A192 * T**n192 * np.exp(-1*E192/R/T) * OH**1.0 * LIGM2**1.0 +1*A193 * T**n193 * np.exp(-1*E193/R/T) * RCH3O**1.0 * LIGM2**1.0 +1*A194 * T**n194 * np.exp(-1*E194/R/T) * RPHENOL**1.0 * LIGM2**1.0 +1*A195 * T**n195 * np.exp(-1*E195/R/T) * RADIO**1.0 * LIGM2**1.0 -1*A203 * T**n203 * np.exp(-1*E203/R/T) * RLIGM2A**1.0 * LIGM2**1.0 -1*A224 * T**n224 * np.exp(-1*E224/R/T) * RLIGM2A**1.0 * PFET3M2**1.0 -1*A245 * T**n245 * np.exp(-1*E245/R/T) * RLIGM2A**1.0 * ADIOM2**1.0 -1*A266 * T**n266 * np.exp(-1*E266/R/T) * RLIGM2A**1.0 * KETM2**1.0 -1*A287 * T**n287 * np.exp(-1*E287/R/T) * RLIGM2A**1.0 * C10H2**1.0 -1*A308 * T**n308 * np.exp(-1*E308/R/T) * RLIGM2A**1.0 * LIG**1.0 -1*A329 * T**n329 * np.exp(-1*E329/R/T) * RLIGM2A**1.0 * LIG**1.0 -1*A350 * T**n350 * np.exp(-1*E350/R/T) * RLIGM2A**1.0 * PFET3**1.0 -1*A371 * T**n371 * np.exp(-1*E371/R/T) * RLIGM2A**1.0 * ADIO**1.0 -1*A392 * T**n392 * np.exp(-1*E392/R/T) * RLIGM2A**1.0 * KET**1.0, -1*A17 * T**n17 * np.exp(-1*E17/R/T) * RLIGM2B**1.0 -2*A61 * T**n61 * np.exp(-1*E61/R/T) * RLIGM2B**2.0 -1*A118 * T**n118 * np.exp(-1*E118/R/T) * RLIGM2B**1.0 * LIGH**1.0 -1*A139 * T**n139 * np.exp(-1*E139/R/T) * RLIGM2B**1.0 * PLIGH**1.0 -1*A160 * T**n160 * np.exp(-1*E160/R/T) * RLIGM2B**1.0 * PLIGM2**1.0 -1*A181 * T**n181 * np.exp(-1*E181/R/T) * RLIGM2B**1.0 * LIGM2**1.0 +1*A196 * T**n196 * np.exp(-1*E196/R/T) * RC3H5O2**1.0 * LIGM2**1.0 +1*A197 * T**n197 * np.exp(-1*E197/R/T) * PRFET3**1.0 * LIGM2**1.0 +1*A198 * T**n198 * np.exp(-1*E198/R/T) * RC3H7O2**1.0 * LIGM2**1.0 +1*A199 * T**n199 * np.exp(-1*E199/R/T) * RADIOM2**1.0 * LIGM2**1.0 +1*A200 * T**n200 * np.exp(-1*E200/R/T) * PRFET3M2**1.0 * LIGM2**1.0 +1*A201 * T**n201 * np.exp(-1*E201/R/T) * PRLIGH**1.0 * LIGM2**1.0 -1*A202 * T**n202 * np.exp(-1*E202/R/T) * RLIGM2B**1.0 * LIGM2**1.0 +1*A202 * T**n202 * np.exp(-1*E202/R/T) * RLIGM2B**1.0 * LIGM2**1.0 +1*A203 * T**n203 * np.exp(-1*E203/R/T) * RLIGM2A**1.0 * LIGM2**1.0 +1*A204 * T**n204 * np.exp(-1*E204/R/T) * RCH3**1.0 * LIGM2**1.0 +1*A205 * T**n205 * np.exp(-1*E205/R/T) * PRKETM2**1.0 * LIGM2**1.0 +1*A206 * T**n206 * np.exp(-1*E206/R/T) * RKET**1.0 * LIGM2**1.0 +1*A207 * T**n207 * np.exp(-1*E207/R/T) * PRADIO**1.0 * LIGM2**1.0 +1*A208 * T**n208 * np.exp(-1*E208/R/T) * RC3H3O**1.0 * LIGM2**1.0 +1*A209 * T**n209 * np.exp(-1*E209/R/T) * RLIGB**1.0 * LIGM2**1.0 +1*A210 * T**n210 * np.exp(-1*E210/R/T) * RLIGA**1.0 * LIGM2**1.0 +1*A211 * T**n211 * np.exp(-1*E211/R/T) * PRADIOM2**1.0 * LIGM2**1.0 +1*A212 * T**n212 * np.exp(-1*E212/R/T) * RMGUAI**1.0 * LIGM2**1.0 +1*A213 * T**n213 * np.exp(-1*E213/R/T) * OH**1.0 * LIGM2**1.0 +1*A214 * T**n214 * np.exp(-1*E214/R/T) * RCH3O**1.0 * LIGM2**1.0 +1*A215 * T**n215 * np.exp(-1*E215/R/T) * RPHENOL**1.0 * LIGM2**1.0 +1*A216 * T**n216 * np.exp(-1*E216/R/T) * RADIO**1.0 * LIGM2**1.0 -1*A223 * T**n223 * np.exp(-1*E223/R/T) * RLIGM2B**1.0 * PFET3M2**1.0 -1*A244 * T**n244 * np.exp(-1*E244/R/T) * RLIGM2B**1.0 * ADIOM2**1.0 -1*A265 * T**n265 * np.exp(-1*E265/R/T) * RLIGM2B**1.0 * KETM2**1.0 -1*A286 * T**n286 * np.exp(-1*E286/R/T) * RLIGM2B**1.0 * C10H2**1.0 -1*A307 * T**n307 * np.exp(-1*E307/R/T) * RLIGM2B**1.0 * LIG**1.0 -1*A328 * T**n328 * np.exp(-1*E328/R/T) * RLIGM2B**1.0 * LIG**1.0 -1*A349 * T**n349 * np.exp(-1*E349/R/T) * RLIGM2B**1.0 * PFET3**1.0 -1*A370 * T**n370 * np.exp(-1*E370/R/T) * RLIGM2B**1.0 * ADIO**1.0 -1*A391 * T**n391 * np.exp(-1*E391/R/T) * RLIGM2B**1.0 * KET**1.0, +1*A14 * T**n14 * np.exp(-1*E14/R/T) * RADIOM2**1.0 +1*A17 * T**n17 * np.exp(-1*E17/R/T) * RLIGM2B**1.0 -2*A63 * T**n63 * np.exp(-1*E63/R/T) * RMGUAI**2.0 -1*A128 * T**n128 * np.exp(-1*E128/R/T) * RMGUAI**1.0 * LIGH**1.0 -1*A149 * T**n149 * np.exp(-1*E149/R/T) * RMGUAI**1.0 * PLIGH**1.0 -1*A170 * T**n170 * np.exp(-1*E170/R/T) * RMGUAI**1.0 * PLIGM2**1.0 -1*A191 * T**n191 * np.exp(-1*E191/R/T) * RMGUAI**1.0 * LIGM2**1.0 -1*A212 * T**n212 * np.exp(-1*E212/R/T) * RMGUAI**1.0 * LIGM2**1.0 -1*A233 * T**n233 * np.exp(-1*E233/R/T) * RMGUAI**1.0 * PFET3M2**1.0 -1*A254 * T**n254 * np.exp(-1*E254/R/T) * RMGUAI**1.0 * ADIOM2**1.0 -1*A275 * T**n275 * np.exp(-1*E275/R/T) * RMGUAI**1.0 * KETM2**1.0 -1*A296 * T**n296 * np.exp(-1*E296/R/T) * RMGUAI**1.0 * C10H2**1.0 -1*A317 * T**n317 * np.exp(-1*E317/R/T) * RMGUAI**1.0 * LIG**1.0 -1*A338 * T**n338 * np.exp(-1*E338/R/T) * RMGUAI**1.0 * LIG**1.0 -1*A359 * T**n359 * np.exp(-1*E359/R/T) * RMGUAI**1.0 * PFET3**1.0 -1*A380 * T**n380 * np.exp(-1*E380/R/T) * RMGUAI**1.0 * ADIO**1.0 -1*A401 * T**n401 * np.exp(-1*E401/R/T) * RMGUAI**1.0 * KET**1.0, +1*A19 * T**n19 * np.exp(-1*E19/R/T) * RADIO**1.0 +1*A21 * T**n21 * np.exp(-1*E21/R/T) * RLIGB**1.0 -1*A80 * T**n80 * np.exp(-1*E80/R/T) * RPHENOX**1.0 * RPHENOL**1.0 -1*A131 * T**n131 * np.exp(-1*E131/R/T) * RPHENOL**1.0 * LIGH**1.0 -1*A152 * T**n152 * np.exp(-1*E152/R/T) * RPHENOL**1.0 * PLIGH**1.0 -1*A173 * T**n173 * np.exp(-1*E173/R/T) * RPHENOL**1.0 * PLIGM2**1.0 -1*A194 * T**n194 * np.exp(-1*E194/R/T) * RPHENOL**1.0 * LIGM2**1.0 -1*A215 * T**n215 * np.exp(-1*E215/R/T) * RPHENOL**1.0 * LIGM2**1.0 -1*A236 * T**n236 * np.exp(-1*E236/R/T) * RPHENOL**1.0 * PFET3M2**1.0 -1*A257 * T**n257 * np.exp(-1*E257/R/T) * RPHENOL**1.0 * ADIOM2**1.0 -1*A278 * T**n278 * np.exp(-1*E278/R/T) * RPHENOL**1.0 * KETM2**1.0 -1*A299 * T**n299 * np.exp(-1*E299/R/T) * RPHENOL**1.0 * C10H2**1.0 -1*A320 * T**n320 * np.exp(-1*E320/R/T) * RPHENOL**1.0 * LIG**1.0 -1*A341 * T**n341 * np.exp(-1*E341/R/T) * RPHENOL**1.0 * LIG**1.0 -1*A362 * T**n362 * np.exp(-1*E362/R/T) * RPHENOL**1.0 * PFET3**1.0 -1*A383 * T**n383 * np.exp(-1*E383/R/T) * RPHENOL**1.0 * ADIO**1.0 -1*A404 * T**n404 * np.exp(-1*E404/R/T) * RPHENOL**1.0 * KET**1.0, +1*A4 * T**n4 * np.exp(-1*E4/R/T) * LIG**1.0 +1*A5 * T**n5 * np.exp(-1*E5/R/T) * PLIG**1.0 -1*A11 * T**n11 * np.exp(-1*E11/R/T) * RPHENOX**1.0 +1*A20 * T**n20 * np.exp(-1*E20/R/T) * RLIGA**1.0 +1*A22 * T**n22 * np.exp(-1*E22/R/T) * PRFET3**1.0 +1*A28 * T**n28 * np.exp(-1*E28/R/T) * C10H2M4**1.0 +1*A29 * T**n29 * np.exp(-1*E29/R/T) * C10H2M2**1.0 -1*A36 * T**n36 * np.exp(-1*E36/R/T) * ADIOM2**1.0 * RPHENOX**1.0 -1*A37 * T**n37 * np.exp(-1*E37/R/T) * KETM2**1.0 * RPHENOX**1.0 -1*A38 * T**n38 * np.exp(-1*E38/R/T) * KETDM2**1.0 * RPHENOX**1.0 -1*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 -1*A40 * T**n40 * np.exp(-1*E40/R/T) * ADIO**1.0 * RPHENOX**1.0 -1*A41 * T**n41 * np.exp(-1*E41/R/T) * KET**1.0 * RPHENOX**1.0 -1*A42 * T**n42 * np.exp(-1*E42/R/T) * KETD**1.0 * RPHENOX**1.0 -1*A43 * T**n43 * np.exp(-1*E43/R/T) * COUMARYL**1.0 * RPHENOX**1.0 -1*A50 * T**n50 * np.exp(-1*E50/R/T) * C10H2M4**1.0 * RPHENOX**1.0 -1*A51 * T**n51 * np.exp(-1*E51/R/T) * C10H2M2**1.0 * RPHENOX**1.0 -1*A52 * T**n52 * np.exp(-1*E52/R/T) * RCH3O**1.0 * RPHENOX**1.0 -1*A55 * T**n55 * np.exp(-1*E55/R/T) * RPHENOX**1.0 * RCH3**1.0 -1*A73 * T**n73 * np.exp(-1*E73/R/T) * RPHENOX**1.0 * RLIGB**1.0 -1*A80 * T**n80 * np.exp(-1*E80/R/T) * RPHENOX**1.0 * RPHENOL**1.0 -1*A81 * T**n81 * np.exp(-1*E81/R/T) * RPHENOX**1.0 * RC3H3O**1.0 -1*A82 * T**n82 * np.exp(-1*E82/R/T) * RPHENOX**1.0 * CHAR**1.0, +1*A2 * T**n2 * np.exp(-1*E2/R/T) * LIGM2**1.0 +1*A3 * T**n3 * np.exp(-1*E3/R/T) * PLIGM2**1.0 -1*A10 * T**n10 * np.exp(-1*E10/R/T) * RPHENOXM2**1.0 +1*A15 * T**n15 * np.exp(-1*E15/R/T) * RLIGM2A**1.0 +1*A16 * T**n16 * np.exp(-1*E16/R/T) * PRLIGM2A**1.0 +1*A18 * T**n18 * np.exp(-1*E18/R/T) * PRFET3M2**1.0 -1*A32 * T**n32 * np.exp(-1*E32/R/T) * ADIOM2**1.0 * RPHENOXM2**1.0 -1*A33 * T**n33 * np.exp(-1*E33/R/T) * KETM2**1.0 * RPHENOXM2**1.0 -1*A34 * T**n34 * np.exp(-1*E34/R/T) * KETDM2**1.0 * RPHENOXM2**1.0 -1*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 -1*A44 * T**n44 * np.exp(-1*E44/R/T) * ADIO**1.0 * RPHENOXM2**1.0 -1*A45 * T**n45 * np.exp(-1*E45/R/T) * KET**1.0 * RPHENOXM2**1.0 -1*A46 * T**n46 * np.exp(-1*E46/R/T) * KETD**1.0 * RPHENOXM2**1.0 -1*A47 * T**n47 * np.exp(-1*E47/R/T) * COUMARYL**1.0 * RPHENOXM2**1.0 -1*A48 * T**n48 * np.exp(-1*E48/R/T) * C10H2M4**1.0 * RPHENOXM2**1.0 -1*A49 * T**n49 * np.exp(-1*E49/R/T) * C10H2M2**1.0 * RPHENOXM2**1.0 -1*A53 * T**n53 * np.exp(-1*E53/R/T) * RCH3O**1.0 * RPHENOXM2**1.0 -1*A54 * T**n54 * np.exp(-1*E54/R/T) * RPHENOXM2**1.0 * RCH3**1.0 -1*A83 * T**n83 * np.exp(-1*E83/R/T) * RPHENOXM2**1.0 * CHAR**1.0, +1*A23 * T**n23 * np.exp(-1*E23/R/T) * RADIOM2**1.0 -1*A35 * T**n35 * np.exp(-1*E35/R/T) * SYNAPYL**1.0 * RPHENOXM2**1.0 -1*A39 * T**n39 * np.exp(-1*E39/R/T) * SYNAPYL**1.0 * RPHENOX**1.0 -1*A87 * T**n87 * np.exp(-1*E87/R/T) * SYNAPYL**1.0, +1*A90 * T**n90 * np.exp(-1*E90/R/T) * ADIO**1.0, +1*A84 * T**n84 * np.exp(-1*E84/R/T) * ADIOM2**1.0, +1*A89 * T**n89 * np.exp(-1*E89/R/T) * COUMARYL**1.0, +1*A91 * T**n91 * np.exp(-1*E91/R/T) * KET**1.0, +1*A92 * T**n92 * np.exp(-1*E92/R/T) * KETD**1.0, +1*A86 * T**n86 * np.exp(-1*E86/R/T) * KETDM2**1.0, +1*A85 * T**n85 * np.exp(-1*E85/R/T) * KETM2**1.0, +1*A88 * T**n88 * np.exp(-1*E88/R/T) * MGUAI**1.0, +1*A93 * T**n93 * np.exp(-1*E93/R/T) * PHENOL**1.0, +1*A87 * T**n87 * np.exp(-1*E87/R/T) * SYNAPYL**1.0] return dydt def run(): start = time.time() R = 8.314 # A, n, E values A0 = 1.00E+13 n0 = 0 E0 = 163254 A1 = 1.00E+13 n1 = 0 E1 = 163254 A2 = 1.00E+13 n2 = 0 E2 = 163254 A3 = 1.00E+13 n3 = 0 E3 = 163254 A4 = 1.00E+13 n4 = 0 E4 = 184184 A5 = 1.00E+13 n5 = 0 E5 = 188370 A6 = 1.00E+13 n6 = 0 E6 = 171626 A7 = 1.00E+13 n7 = 0 E7 = 179998 A8 = 1.00E+13 n8 = 0 E8 = 167440 A9 = 1.00E+13 n9 = 0 E9 = 121394 A10 = 4.00E+10 n10 = 0 E10 = 209300 A11 = 4.00E+10 n11 = 0 E11 = 209300 A12 = 1.00E+13 n12 = 0 E12 = 133952 A13 = 1.00E+13 n13 = 0 E13 = 133952 A14 = 1.00E+13 n14 = 0 E14 = 133952 A15 = 5.00E+12 n15 = 0 E15 = 133952 A16 = 5.00E+12 n16 = 0 E16 = 133952 A17 = 1.00E+13 n17 = 0 E17 = 163254 A18 = 1.00E+13 n18 = 0 E18 = 133952 A19 = 1.00E+13 n19 = 0 E19 = 163254 A20 = 1.00E+13 n20 = 0 E20 = 138138 A21 = 1.00E+13 n21 = 0 E21 = 163254 A22 = 1.00E+13 n22 = 0 E22 = 138138 A23 = 3.00E+11 n23 = 0 E23 = 104650 A24 = 3.00E+11 n24 = 0 E24 = 104650 A25 = 3.00E+11 n25 = 0 E25 = 104650 A26 = 3.00E+11 n26 = 0 E26 = 113022 A27 = 1.00E+13 n27 = 0 E27 = 129766 A28 = 1.00E+13 n28 = 0 E28 = 196742 A29 = 1.00E+13 n29 = 0 E29 = 196742 A30 = 1.00E+08 n30 = 0 E30 = 121394 A31 = 1.00E+09 n31 = 0 E31 = 108836 A32 = 1.00E+09 n32 = 0 E32 = 121394 A33 = 1.00E+09 n33 = 0 E33 = 121394 A34 = 1.00E+09 n34 = 0 E34 = 121394 A35 = 1.00E+09 n35 = 0 E35 = 121394 A36 = 1.00E+09 n36 = 0 E36 = 121394 A37 = 1.00E+09 n37 = 0 E37 = 121394 A38 = 1.00E+09 n38 = 0 E38 = 121394 A39 = 1.00E+09 n39 = 0 E39 = 121394 A40 = 1.00E+09 n40 = 0 E40 = 121394 A41 = 1.00E+09 n41 = 0 E41 = 121394 A42 = 1.00E+09 n42 = 0 E42 = 121394 A43 = 1.00E+09 n43 = 0 E43 = 121394 A44 = 1.00E+09 n44 = 0 E44 = 121394 A45 = 1.00E+09 n45 = 0 E45 = 121394 A46 = 1.00E+09 n46 = 0 E46 = 121394 A47 = 1.00E+09 n47 = 0 E47 = 121394 A48 = 1.00E+09 n48 = 0 E48 = 115115 A49 = 1.00E+09 n49 = 0 E49 = 115115 A50 = 1.00E+09 n50 = 0 E50 = 117208 A51 = 1.00E+09 n51 = 0 E51 = 117208 A52 = 1.00E+08 n52 = 0 E52 = 54418 A53 = 1.00E+08 n53 = 0 E53 = 54418 A54 = 1.00E+08 n54 = 0 E54 = 48139 A55 = 1.00E+08 n55 = 0 E55 = 48139 A56 = 1.00E+08 n56 = 0 E56 = 12558 A57 = 1.00E+08 n57 = 0 E57 = 12558 A58 = 1.00E+08 n58 = 0 E58 = 52325 A59 = 1.00E+08 n59 = 0 E59 = 52325 A60 = 3.16E+07 n60 = 0 E60 = 83720 A61 = 3.16E+07 n61 = 0 E61 = 83720 A62 = 3.16E+07 n62 = 0 E62 = 83720 A63 = 3.16E+07 n63 = 0 E63 = 83720 A64 = 3.16E+07 n64 = 0 E64 = 83720 A65 = 3.16E+07 n65 = 0 E65 = 83720 A66 = 1.00E+08 n66 = 0 E66 = 12558 A67 = 1.00E+08 n67 = 0 E67 = 12558 A68 = 1.00E+08 n68 = 0 E68 = 12558 A69 = 1.00E+08 n69 = 0 E69 = 12558 A70 = 1.00E+08 n70 = 0 E70 = 12558 A71 = 1.00E+08 n71 = 0 E71 = 48139 A72 = 1.00E+08 n72 = 0 E72 = 48139 A73 = 3.16E+07 n73 = 0 E73 = 83720 A74 = 3.16E+07 n74 = 0 E74 = 92092 A75 = 3.16E+07 n75 = 0 E75 = 83720 A76 = 3.16E+07 n76 = 0 E76 = 83720 A77 = 3.16E+07 n77 = 0 E77 = 83720 A78 = 3.16E+07 n78 = 0 E78 = 83720 A79 = 3.16E+07 n79 = 0 E79 = 83720 A80 = 5.00E+07 n80 = 0 E80 = 83720 A81 = 1.00E+08 n81 = 0 E81 = 48139 A82 = 3.00E+07 n82 = 0 E82 = 104650 A83 = 3.00E+07 n83 = 0 E83 = 104650 A84 = 1 n84 = 1 E84 = 62790 A85 = 1 n85 = 1 E85 = 62790 A86 = 1 n86 = 1 E86 = 58604 A87 = 1 n87 = 1 E87 = 62790 A88 = 1 n88 = 1 E88 = 66976 A89 = 1 n89 = 1 E89 = 83720 A90 = 1 n90 = 1 E90 = 66976 A91 = 1 n91 = 1 E91 = 66976 A92 = 1 n92 = 1 E92 = 83720 A93 = 1 n93 = 1 E93 = 58604 A94 = 2.00E+08 n94 = 0 E94 = 209300 A95 = 1.00E+07 n95 = 0 E95 = 138138 A96 = 1.00E+10 n96 = 0 E96 = 209300 A97 = 5.00E+08 n97 = 0 E97 = 205114 A98 = 5.00E+08 n98 = 0 E98 = 0 A99 = 5.00E+08 n99 = 0 E99 = 0 A100 = 5.00E+08 n100 = 0 E100 = 0 A101 = 1.00E+13 n101 = 0 E101 = 125580 A102 = 5.00E+08 n102 = 0 E102 = 209300 A103 = 5.00E+08 n103 = 0 E103 = 209300 A104 = 1E13 n104 = 0 E104 = 154812 A105 = 1E13 n105 = 0 E105 = 168458 A106 = 1E13 n106 = 0 E106 = 154812 A107 = 1E9 n107 = 0 E107 = 108836 A108 = 1E8 n108 = 0 E108 = 121394 A109 = 3.16E7 n109 = 0 E109 = 92092 A110 = 3.16E7 n110 = 0 E110 = 83720 A111 = 1E7 n111 = 0 E111 = 138138 A112 = 2*10**8 n112 = 0 E112 = 71162-4186 A113 = 2*10**8 n113 = 0 E113 = 54418-4186 A114 = 2*10**8 n114 = 0 E114 = 62790-4186 A115 = 2*10**8 n115 = 0 E115 = 54418-4186 A116 = 2*10**8 n116 = 0 E116 = 54418-4186 A117 = 2*10**8.5 n117 = 0 E117 = 41860-4186 A118 = 2*10**8 n118 = 0 E118 = 54418-4186 A119 = 2*10**8 n119 = 0 E119 = 54418-4186 A120 = 2*10**8.5 n120 = 0 E120 = 48139-4186 A121 = 2*10**8 n121 = 0 E121 = 54418-4186 A122 = 2*10**8.5 n122 = 0 E122 = 54418-4186 A123 = 2*10**8 n123 = 0 E123 = 46046-4186 A124 = 2*10**8 n124 = 0 E124 = 83720-4186 A125 = 2*10**8 n125 = 0 E125 = 56511-4186 A126 = 2*10**8 n126 = 0 E126 = 56511-4186 A127 = 2*10**8.5 n127 = 0 E127 = 41860-4186 A128 = 2*10**8 n128 = 0 E128 = 54418-4186 A129 = 2*10**9.5 n129 = 0 E129 = 14651-4186 A130 = 2*10**8.5 n130 = 0 E130 = 33069-4186 A131 = 2*10**8.5 n131 = 0 E131 = 54418-4186 A132 = 2*10**8 n132 = 0 E132 = 54418-4186 A133 = 2*10**8 n133 = 0 E133 = 71162-4186 A134 = 2*10**8 n134 = 0 E134 = 54418-4186 A135 = 2*10**8 n135 = 0 E135 = 62790-4186 A136 = 2*10**8 n136 = 0 E136 = 54418-4186 A137 = 2*10**8 n137 = 0 E137 = 54418-4186 A138 = 2*10**8.5 n138 = 0 E138 = 41860-4186 A139 = 2*10**8 n139 = 0 E139 = 54418-4186 A140 = 2*10**8 n140 = 0 E140 = 54418-4186 A141 = 2*10**8.5 n141 = 0 E141 = 48139-4186 A142 = 2*10**8 n142 = 0 E142 = 54418-4186 A143 = 2*10**8.5 n143 = 0 E143 = 54418-4186 A144 = 2*10**8 n144 = 0 E144 = 46046-4186 A145 = 2*10**8 n145 = 0 E145 = 83720-4186 A146 = 2*10**8 n146 = 0 E146 = 56511-4186 A147 = 2*10**8 n147 = 0 E147 = 56511-4186 A148 = 2*10**8.5 n148 = 0 E148 = 41860-4186 A149 = 2*10**8 n149 = 0 E149 = 54418-4186 A150 = 2*10**9.5 n150 = 0 E150 = 14651-4186 A151 = 2*10**8.5 n151 = 0 E151 = 33069-4186 A152 = 2*10**8.5 n152 = 0 E152 = 54418-4186 A153 = 2*10**8 n153 = 0 E153 = 54418-4186 A154 = 2*10**8 n154 = 0 E154 = 71162-4186 A155 = 2*10**8 n155 = 0 E155 = 54418-4186 A156 = 2*10**8 n156 = 0 E156 = 62790-4186 A157 = 2*10**8 n157 = 0 E157 = 54418-4186 A158 = 2*10**8 n158 = 0 E158 = 54418-4186 A159 = 2*10**8.5 n159 = 0 E159 = 41860-4186 A160 = 2*10**8 n160 = 0 E160 = 54418-4186 A161 = 2*10**8 n161 = 0 E161 = 54418-4186 A162 = 2*10**8.5 n162 = 0 E162 = 48139-4186 A163 = 2*10**8 n163 = 0 E163 = 54418-4186 A164 = 2*10**8.5 n164 = 0 E164 = 54418-4186 A165 = 2*10**8 n165 = 0 E165 = 46046-4186 A166 = 2*10**8 n166 = 0 E166 = 83720-4186 A167 = 2*10**8 n167 = 0 E167 = 56511-4186 A168 = 2*10**8 n168 = 0 E168 = 56511-4186 A169 = 2*10**8.5 n169 = 0 E169 = 41860-4186 A170 = 2*10**8 n170 = 0 E170 = 54418-4186 A171 = 2*10**9.5 n171 = 0 E171 = 14651-4186 A172 = 2*10**8.5 n172 = 0 E172 = 33069-4186 A173 = 2*10**8.5 n173 = 0 E173 = 54418-4186 A174 = 2*10**8 n174 = 0 E174 = 54418-4186 A175 = 1*10**8 n175 = 0 E175 = 71162-4186 A176 = 1*10**8 n176 = 0 E176 = 54418-4186 A177 = 1*10**8 n177 = 0 E177 = 62790-4186 A178 = 1*10**8 n178 = 0 E178 = 54418-4186 A179 = 1*10**8 n179 = 0 E179 = 54418-4186 A180 = 1*10**8.5 n180 = 0 E180 = 41860-4186 A181 = 1*10**8 n181 = 0 E181 = 54418-4186 A182 = 1*10**8 n182 = 0 E182 = 54418-4186 A183 = 1*10**8.5 n183 = 0 E183 = 48139-4186 A184 = 1*10**8 n184 = 0 E184 = 54418-4186 A185 = 1*10**8.5 n185 = 0 E185 = 54418-4186 A186 = 1*10**8 n186 = 0 E186 = 46046-4186 A187 = 1*10**8 n187 = 0 E187 = 83720-4186 A188 = 1*10**8 n188 = 0 E188 = 56511-4186 A189 = 1*10**8 n189 = 0 E189 = 56511-4186 A190 = 1*10**8.5 n190 = 0 E190 = 41860-4186 A191 = 1*10**8 n191 = 0 E191 = 54418-4186 A192 = 1*10**9.5 n192 = 0 E192 = 14651-4186 A193 = 1*10**8.5 n193 = 0 E193 = 33069-4186 A194 = 1*10**8.5 n194 = 0 E194 = 54418-4186 A195 = 1*10**8 n195 = 0 E195 = 54418-4186 A196 = 1*10**8 n196 = 0 E196 = 71162-4186 A197 = 1*10**8 n197 = 0 E197 = 54418-4186 A198 = 1*10**8 n198 = 0 E198 = 62790-4186 A199 = 1*10**8 n199 = 0 E199 = 54418-4186 A200 = 1*10**8 n200 = 0 E200 = 54418-4186 A201 = 1*10**8.5 n201 = 0 E201 = 41860-4186 A202 = 1*10**8 n202 = 0 E202 = 54418-4186 A203 = 1*10**8 n203 = 0 E203 = 54418-4186 A204 = 1*10**8.5 n204 = 0 E204 = 48139-4186 A205 = 1*10**8 n205 = 0 E205 = 54418-4186 A206 = 1*10**8.5 n206 = 0 E206 = 54418-4186 A207 = 1*10**8 n207 = 0 E207 = 46046-4186 A208 = 1*10**8 n208 = 0 E208 = 83720-4186 A209 = 1*10**8 n209 = 0 E209 = 56511-4186 A210 = 1*10**8 n210 = 0 E210 = 56511-4186 A211 = 1*10**8.5 n211 = 0 E211 = 41860-4186 A212 = 1*10**8 n212 = 0 E212 = 54418-4186 A213 = 1*10**9.5 n213 = 0 E213 = 14651-4186 A214 = 1*10**8.5 n214 = 0 E214 = 33069-4186 A215 = 1*10**8.5 n215 = 0 E215 = 54418-4186 A216 = 1*10**8 n216 = 0 E216 = 54418-4186 A217 = 2*10**8 n217 = 0 E217 = 71162-4186 A218 = 2*10**8 n218 = 0 E218 = 54418-4186 A219 = 2*10**8 n219 = 0 E219 = 62790-4186 A220 = 2*10**8 n220 = 0 E220 = 54418-4186 A221 = 2*10**8 n221 = 0 E221 = 54418-4186 A222 = 2*10**8.5 n222 = 0 E222 = 41860-4186 A223 = 2*10**8 n223 = 0 E223 = 54418-4186 A224 = 2*10**8 n224 = 0 E224 = 54418-4186 A225 = 2*10**8.5 n225 = 0 E225 = 48139-4186 A226 = 2*10**8 n226 = 0 E226 = 54418-4186 A227 = 2*10**8.5 n227 = 0 E227 = 54418-4186 A228 = 2*10**8 n228 = 0 E228 = 46046-4186 A229 = 2*10**8 n229 = 0 E229 = 83720-4186 A230 = 2*10**8 n230 = 0 E230 = 56511-4186 A231 = 2*10**8 n231 = 0 E231 = 56511-4186 A232 = 2*10**8.5 n232 = 0 E232 = 41860-4186 A233 = 2*10**8 n233 = 0 E233 = 54418-4186 A234 = 2*10**9.5 n234 = 0 E234 = 14651-4186 A235 = 2*10**8.5 n235 = 0 E235 = 33069-4186 A236 = 2*10**8.5 n236 = 0 E236 = 54418-4186 A237 = 2*10**8 n237 = 0 E237 = 54418-4186 A238 = 1*10**8 n238 = 0 E238 = 71162-4186 A239 = 1*10**8 n239 = 0 E239 = 54418-4186 A240 = 1*10**8 n240 = 0 E240 = 62790-4186 A241 = 1*10**8 n241 = 0 E241 = 54418-4186 A242 = 1*10**8 n242 = 0 E242 = 54418-4186 A243 = 1*10**8.5 n243 = 0 E243 = 41860-4186 A244 = 1*10**8 n244 = 0 E244 = 54418-4186 A245 = 1*10**8 n245 = 0 E245 = 54418-4186 A246 = 1*10**8.5 n246 = 0 E246 = 48139-4186 A247 = 1*10**8 n247 = 0 E247 = 54418-4186 A248 = 1*10**8.5 n248 = 0 E248 = 54418-4186 A249 = 1*10**8 n249 = 0 E249 = 46046-4186 A250 = 1*10**8 n250 = 0 E250 = 83720-4186 A251 = 1*10**8 n251 = 0 E251 = 56511-4186 A252 = 1*10**8 n252 = 0 E252 = 56511-4186 A253 = 1*10**8.5 n253 = 0 E253 = 41860-4186 A254 = 1*10**8 n254 = 0 E254 = 54418-4186 A255 = 1*10**9.5 n255 = 0 E255 = 14651-4186 A256 = 1*10**8.5 n256 = 0 E256 = 33069-4186 A257 = 1*10**8.5 n257 = 0 E257 = 54418-4186 A258 = 1*10**8 n258 = 0 E258 = 54418-4186 A259 = 1*10**8 n259 = 0 E259 = 71162-4186 A260 = 1*10**8 n260 = 0 E260 = 54418-4186 A261 = 1*10**8 n261 = 0 E261 = 62790-4186 A262 = 1*10**8 n262 = 0 E262 = 54418-4186 A263 = 1*10**8 n263 = 0 E263 = 54418-4186 A264 = 1*10**8.5 n264 = 0 E264 = 41860-4186 A265 = 1*10**8 n265 = 0 E265 = 54418-4186 A266 = 1*10**8 n266 = 0 E266 = 54418-4186 A267 = 1*10**8.5 n267 = 0 E267 = 48139-4186 A268 = 1*10**8 n268 = 0 E268 = 54418-4186 A269 = 1*10**8.5 n269 = 0 E269 = 54418-4186 A270 = 1*10**8 n270 = 0 E270 = 46046-4186 A271 = 1*10**8 n271 = 0 E271 = 83720-4186 A272 = 1*10**8 n272 = 0 E272 = 56511-4186 A273 = 1*10**8 n273 = 0 E273 = 56511-4186 A274 = 1*10**8.5 n274 = 0 E274 = 41860-4186 A275 = 1*10**8 n275 = 0 E275 = 54418-4186 A276 = 1*10**9.5 n276 = 0 E276 = 14651-4186 A277 = 1*10**8.5 n277 = 0 E277 = 33069-4186 A278 = 1*10**8.5 n278 = 0 E278 = 54418-4186 A279 = 1*10**8 n279 = 0 E279 = 54418-4186 A280 = 1*10**8 n280 = 0 E280 = 71162--20930 A281 = 1*10**8 n281 = 0 E281 = 54418--20930 A282 = 1*10**8 n282 = 0 E282 = 62790--20930 A283 = 1*10**8 n283 = 0 E283 = 54418--20930 A284 = 1*10**8 n284 = 0 E284 = 54418--20930 A285 = 1*10**8.5 n285 = 0 E285 = 41860--20930 A286 = 1*10**8 n286 = 0 E286 = 54418--20930 A287 = 1*10**8 n287 = 0 E287 = 54418--20930 A288 = 1*10**8.5 n288 = 0 E288 = 48139--20930 A289 = 1*10**8 n289 = 0 E289 = 54418--20930 A290 = 1*10**8.5 n290 = 0 E290 = 54418--20930 A291 = 1*10**8 n291 = 0 E291 = 46046--20930 A292 = 1*10**8 n292 = 0 E292 = 83720--20930 A293 = 1*10**8 n293 = 0 E293 = 56511--20930 A294 = 1*10**8 n294 = 0 E294 = 56511--20930 A295 = 1*10**8.5 n295 = 0 E295 = 41860--20930 A296 = 1*10**8 n296 = 0 E296 = 54418--20930 A297 = 1*10**9.5 n297 = 0 E297 = 14651--20930 A298 = 1*10**8.5 n298 = 0 E298 = 33069--20930 A299 = 1*10**8.5 n299 = 0 E299 = 54418--20930 A300 = 1*10**8 n300 = 0 E300 = 54418--20930 A301 = 1*10**8 n301 = 0 E301 = 71162-4186 A302 = 1*10**8 n302 = 0 E302 = 54418-4186 A303 = 1*10**8 n303 = 0 E303 = 62790-4186 A304 = 1*10**8 n304 = 0 E304 = 54418-4186 A305 = 1*10**8 n305 = 0 E305 = 54418-4186 A306 = 1*10**8.5 n306 = 0 E306 = 41860-4186 A307 = 1*10**8 n307 = 0 E307 = 54418-4186 A308 = 1*10**8 n308 = 0 E308 = 54418-4186 A309 = 1*10**8.5 n309 = 0 E309 = 48139-4186 A310 = 1*10**8 n310 = 0 E310 = 54418-4186 A311 = 1*10**8.5 n311 = 0 E311 = 54418-4186 A312 = 1*10**8 n312 = 0 E312 = 46046-4186 A313 = 1*10**8 n313 = 0 E313 = 83720-4186 A314 = 1*10**8 n314 = 0 E314 = 56511-4186 A315 = 1*10**8 n315 = 0 E315 = 56511-4186 A316 = 1*10**8.5 n316 = 0 E316 = 41860-4186 A317 = 1*10**8 n317 = 0 E317 = 54418-4186 A318 = 1*10**9.5 n318 = 0 E318 = 14651-4186 A319 = 1*10**8.5 n319 = 0 E319 = 33069-4186 A320 = 1*10**8.5 n320 = 0 E320 = 54418-4186 A321 = 1*10**8 n321 = 0 E321 = 54418-4186 A322 = 1*10**8 n322 = 0 E322 = 71162-4186 A323 = 1*10**8 n323 = 0 E323 = 54418-4186 A324 = 1*10**8 n324 = 0 E324 = 62790-4186 A325 = 1*10**8 n325 = 0 E325 = 54418-4186 A326 = 1*10**8 n326 = 0 E326 = 54418-4186 A327 = 1*10**8.5 n327 = 0 E327 = 41860-4186 A328 = 1*10**8 n328 = 0 E328 = 54418-4186 A329 = 1*10**8 n329 = 0 E329 = 54418-4186 A330 = 1*10**8.5 n330 = 0 E330 = 48139-4186 A331 = 1*10**8 n331 = 0 E331 = 54418-4186 A332 = 1*10**8.5 n332 = 0 E332 = 54418-4186 A333 = 1*10**8 n333 = 0 E333 = 46046-4186 A334 = 1*10**8 n334 = 0 E334 = 83720-4186 A335 = 1*10**8 n335 = 0 E335 = 56511-4186 A336 = 1*10**8 n336 = 0 E336 = 56511-4186 A337 = 1*10**8.5 n337 = 0 E337 = 41860-4186 A338 = 1*10**8 n338 = 0 E338 = 54418-4186 A339 = 1*10**9.5 n339 = 0 E339 = 14651-4186 A340 = 1*10**8.5 n340 = 0 E340 = 33069-4186 A341 = 1*10**8.5 n341 = 0 E341 = 54418-4186 A342 = 1*10**8 n342 = 0 E342 = 54418-4186 A343 = 2*10**8 n343 = 0 E343 = 71162-4186 A344 = 2*10**8 n344 = 0 E344 = 54418-4186 A345 = 2*10**8 n345 = 0 E345 = 62790-4186 A346 = 2*10**8 n346 = 0 E346 = 54418-4186 A347 = 2*10**8 n347 = 0 E347 = 54418-4186 A348 = 2*10**8.5 n348 = 0 E348 = 41860-4186 A349 = 2*10**8 n349 = 0 E349 = 54418-4186 A350 = 2*10**8 n350 = 0 E350 = 54418-4186 A351 = 2*10**8.5 n351 = 0 E351 = 48139-4186 A352 = 2*10**8 n352 = 0 E352 = 54418-4186 A353 = 2*10**8.5 n353 = 0 E353 = 54418-4186 A354 = 2*10**8 n354 = 0 E354 = 46046-4186 A355 = 2*10**8 n355 = 0 E355 = 83720-4186 A356 = 2*10**8 n356 = 0 E356 = 56511-4186 A357 = 2*10**8 n357 = 0 E357 = 56511-4186 A358 = 2*10**8.5 n358 = 0 E358 = 41860-4186 A359 = 2*10**8 n359 = 0 E359 = 54418-4186 A360 = 2*10**9.5 n360 = 0 E360 = 14651-4186 A361 = 2*10**8.5 n361 = 0 E361 = 33069-4186 A362 = 2*10**8.5 n362 = 0 E362 = 54418-4186 A363 = 2*10**8 n363 = 0 E363 = 54418-4186 A364 = 1*10**8 n364 = 0 E364 = 71162-4186 A365 = 1*10**8 n365 = 0 E365 = 54418-4186 A366 = 1*10**8 n366 = 0 E366 = 62790-4186 A367 = 1*10**8 n367 = 0 E367 = 54418-4186 A368 = 1*10**8 n368 = 0 E368 = 54418-4186 A369 = 1*10**8.5 n369 = 0 E369 = 41860-4186 A370 = 1*10**8 n370 = 0 E370 = 54418-4186 A371 = 1*10**8 n371 = 0 E371 = 54418-4186 A372 = 1*10**8.5 n372 = 0 E372 = 48139-4186 A373 = 1*10**8 n373 = 0 E373 = 54418-4186 A374 = 1*10**8.5 n374 = 0 E374 = 54418-4186 A375 = 1*10**8 n375 = 0 E375 = 46046-4186 A376 = 1*10**8 n376 = 0 E376 = 83720-4186 A377 = 1*10**8 n377 = 0 E377 = 56511-4186 A378 = 1*10**8 n378 = 0 E378 = 56511-4186 A379 = 1*10**8.5 n379 = 0 E379 = 41860-4186 A380 = 1*10**8 n380 = 0 E380 = 54418-4186 A381 = 1*10**9.5 n381 = 0 E381 = 14651-4186 A382 = 1*10**8.5 n382 = 0 E382 = 33069-4186 A383 = 1*10**8.5 n383 = 0 E383 = 54418-4186 A384 = 1*10**8 n384 = 0 E384 = 54418-4186 A385 = 1*10**8 n385 = 0 E385 = 71162-4186 A386 = 1*10**8 n386 = 0 E386 = 54418-4186 A387 = 1*10**8 n387 = 0 E387 = 62790-4186 A388 = 1*10**8 n388 = 0 E388 = 54418-4186 A389 = 1*10**8 n389 = 0 E389 = 54418-4186 A390 = 1*10**8.5 n390 = 0 E390 = 41860-4186 A391 = 1*10**8 n391 = 0 E391 = 54418-4186 A392 = 1*10**8 n392 = 0 E392 = 54418-4186 A393 = 1*10**8.5 n393 = 0 E393 = 48139-4186 A394 = 1*10**8 n394 = 0 E394 = 54418-4186 A395 = 1*10**8.5 n395 = 0 E395 = 54418-4186 A396 = 1*10**8 n396 = 0 E396 = 46046-4186 A397 = 1*10**8 n397 = 0 E397 = 83720-4186 A398 = 1*10**8 n398 = 0 E398 = 56511-4186 A399 = 1*10**8 n399 = 0 E399 = 56511-4186 A400 = 1*10**8.5 n400 = 0 E400 = 41860-4186 A401 = 1*10**8 n401 = 0 E401 = 54418-4186 A402 = 1*10**9.5 n402 = 0 E402 = 14651-4186 A403 = 1*10**8.5 n403 = 0 E403 = 33069-4186 A404 = 1*10**8.5 n404 = 0 E404 = 54418-4186 A405 = 1*10**8 n405 = 0 E405 = 54418-4186 # Initial conditions ADIO = ADIOM2 = ALD3 = C10H2 = C10H2M2 = C10H2M4 = C2H6 = C3H4O = C3H4O2 = C3H6 = C3H6O2 = C3H8O2 = CH2CO = CH3CHO = CH3OH = CH4 = CHAR = CO = CO2 = COUMARYL = ETOH = H2 = H2O = KET = KETD = KETDM2 = KETM2 = LIG = LIGC = LIGH = LIGM2 = LIGO = MGUAI = OH = PADIO = PADIOM2 = PC2H2 = PCH2OH = PCH2P = PCH3 = PCHO = PCHOHP = PCHP2 = PCOH = PCOHP2 = PCOS = PFET3 = PFET3M2 = PH2 = PHENOL = PKETM2 = PLIG = PLIGM2 = PRADIO = PRADIOM2 = PRFET3 = PRFET3M2 = PRKETM2 = PRLIGH = PRLIGH2 = PRLIGM2A = RADIO = RADIOM2 = RC3H3O = RC3H5O2 = RC3H7O2 = RCH3 = RCH3O = RKET = RKETM2 = RLIGA = RLIGB = RLIGH = RLIGM2A = RLIGM2B = RMGUAI = RPHENOL = RPHENOX = RPHENOXM2 = SYNAPYL = VADIO = VADIOM2 = VCOUMARYL = VKET = VKETD = VKETDM2 = VKETM2 = VMGUAI = VPHENOL = VSYNAPYL = 0 # ODE solver parameters abserr = 1e-11 relerr = 1e-09 numpoints = int(np.ceil(stoptime))+1 t = [stoptime * int(i) / (numpoints - 1) for i in range(numpoints)] y0 = [T0, ADIO, ADIOM2, ALD3, C10H2, C10H2M2, C10H2M4, C2H6, C3H4O, C3H4O2, C3H6, C3H6O2, C3H8O2, CH2CO, CH3CHO, CH3OH, CH4, CHAR, CO, CO2, COUMARYL, ETOH, H2, H2O, KET, KETD, KETDM2, KETM2, LIG, LIGC, LIGH, LIGM2, LIGO, MGUAI, OH, PADIO, PADIOM2, PC2H2, PCH2OH, PCH2P, PCH3, PCHO, PCHOHP, PCHP2, PCOH, PCOHP2, PCOS, PFET3, PFET3M2, PH2, PHENOL, PKETM2, PLIG, PLIGC, PLIGH, PLIGM2, PLIGO, PRADIO, PRADIOM2, PRFET3, PRFET3M2, PRKETM2, PRLIGH, PRLIGH2, PRLIGM2A, RADIO, RADIOM2, RC3H3O, RC3H5O2, RC3H7O2, RCH3, RCH3O, RKET, RKETM2, RLIGA, RLIGB, RLIGH, RLIGM2A, RLIGM2B, RMGUAI, RPHENOL, RPHENOX, RPHENOXM2, SYNAPYL, VADIO, VADIOM2, VCOUMARYL, VKET, VKETD, VKETDM2, VKETM2, VMGUAI, VPHENOL, VSYNAPYL] p = [alpha, R, A0, n0, E0, A1, n1, E1, A2, n2, E2, A3, n3, E3, A4, n4, E4, A5, n5, E5, A6, n6, E6, A7, n7, E7, A8, n8, E8, A9, n9, E9, A10, n10, E10, A11, n11, E11, A12, n12, E12, A13, n13, E13, A14, n14, E14, A15, n15, E15, A16, n16, E16, A17, n17, E17, A18, n18, E18, A19, n19, E19, A20, n20, E20, A21, n21, E21, A22, n22, E22, A23, n23, E23, A24, n24, E24, A25, n25, E25, A26, n26, E26, A27, n27, E27, A28, n28, E28, A29, n29, E29, A30, n30, E30, A31, n31, E31, A32, n32, E32, A33, n33, E33, A34, n34, E34, A35, n35, E35, A36, n36, E36, A37, n37, E37, A38, n38, E38, A39, n39, E39, A40, n40, E40, A41, n41, E41, A42, n42, E42, A43, n43, E43, A44, n44, E44, A45, n45, E45, A46, n46, E46, A47, n47, E47, A48, n48, E48, A49, n49, E49, A50, n50, E50, A51, n51, E51, A52, n52, E52, A53, n53, E53, A54, n54, E54, A55, n55, E55, A56, n56, E56, A57, n57, E57, A58, n58, E58, A59, n59, E59, A60, n60, E60, A61, n61, E61, A62, n62, E62, A63, n63, E63, A64, n64, E64, A65, n65, E65, A66, n66, E66, A67, n67, E67, A68, n68, E68, A69, n69, E69, A70, n70, E70, A71, n71, E71, A72, n72, E72, A73, n73, E73, A74, n74, E74, A75, n75, E75, A76, n76, E76, A77, n77, E77, A78, n78, E78, A79, n79, E79, A80, n80, E80, A81, n81, E81, A82, n82, E82, A83, n83, E83, A84, n84, E84, A85, n85, E85, A86, n86, E86, A87, n87, E87, A88, n88, E88, A89, n89, E89, A90, n90, E90, A91, n91, E91, A92, n92, E92, A93, n93, E93, A94, n94, E94, A95, n95, E95, A96, n96, E96, A97, n97, E97, A98, n98, E98, A99, n99, E99, A100, n100, E100, A101, n101, E101, A102, n102, E102, A103, n103, E103, A104, n104, E104, A105, n105, E105, A106, n106, E106, A107, n107, E107, A108, n108, E108, A109, n109, E109, A110, n110, E110, A111, n111, E111, A112, n112, E112, A113, n113, E113, A114, n114, E114, A115, n115, E115, A116, n116, E116, A117, n117, E117, A118, n118, E118, A119, n119, E119, A120, n120, E120, A121, n121, E121, A122, n122, E122, A123, n123, E123, A124, n124, E124, A125, n125, E125, A126, n126, E126, A127, n127, E127, A128, n128, E128, A129, n129, E129, A130, n130, E130, A131, n131, E131, A132, n132, E132, A133, n133, E133, A134, n134, E134, A135, n135, E135, A136, n136, E136, A137, n137, E137, A138, n138, E138, A139, n139, E139, A140, n140, E140, A141, n141, E141, A142, n142, E142, A143, n143, E143, A144, n144, E144, A145, n145, E145, A146, n146, E146, A147, n147, E147, A148, n148, E148, A149, n149, E149, A150, n150, E150, A151, n151, E151, A152, n152, E152, A153, n153, E153, A154, n154, E154, A155, n155, E155, A156, n156, E156, A157, n157, E157, A158, n158, E158, A159, n159, E159, A160, n160, E160, A161, n161, E161, A162, n162, E162, A163, n163, E163, A164, n164, E164, A165, n165, E165, A166, n166, E166, A167, n167, E167, A168, n168, E168, A169, n169, E169, A170, n170, E170, A171, n171, E171, A172, n172, E172, A173, n173, E173, A174, n174, E174, A175, n175, E175, A176, n176, E176, A177, n177, E177, A178, n178, E178, A179, n179, E179, A180, n180, E180, A181, n181, E181, A182, n182, E182, A183, n183, E183, A184, n184, E184, A185, n185, E185, A186, n186, E186, A187, n187, E187, A188, n188, E188, A189, n189, E189, A190, n190, E190, A191, n191, E191, A192, n192, E192, A193, n193, E193, A194, n194, E194, A195, n195, E195, A196, n196, E196, A197, n197, E197, A198, n198, E198, A199, n199, E199, A200, n200, E200, A201, n201, E201, A202, n202, E202, A203, n203, E203, A204, n204, E204, A205, n205, E205, A206, n206, E206, A207, n207, E207, A208, n208, E208, A209, n209, E209, A210, n210, E210, A211, n211, E211, A212, n212, E212, A213, n213, E213, A214, n214, E214, A215, n215, E215, A216, n216, E216, A217, n217, E217, A218, n218, E218, A219, n219, E219, A220, n220, E220, A221, n221, E221, A222, n222, E222, A223, n223, E223, A224, n224, E224, A225, n225, E225, A226, n226, E226, A227, n227, E227, A228, n228, E228, A229, n229, E229, A230, n230, E230, A231, n231, E231, A232, n232, E232, A233, n233, E233, A234, n234, E234, A235, n235, E235, A236, n236, E236, A237, n237, E237, A238, n238, E238, A239, n239, E239, A240, n240, E240, A241, n241, E241, A242, n242, E242, A243, n243, E243, A244, n244, E244, A245, n245, E245, A246, n246, E246, A247, n247, E247, A248, n248, E248, A249, n249, E249, A250, n250, E250, A251, n251, E251, A252, n252, E252, A253, n253, E253, A254, n254, E254, A255, n255, E255, A256, n256, E256, A257, n257, E257, A258, n258, E258, A259, n259, E259, A260, n260, E260, A261, n261, E261, A262, n262, E262, A263, n263, E263, A264, n264, E264, A265, n265, E265, A266, n266, E266, A267, n267, E267, A268, n268, E268, A269, n269, E269, A270, n270, E270, A271, n271, E271, A272, n272, E272, A273, n273, E273, A274, n274, E274, A275, n275, E275, A276, n276, E276, A277, n277, E277, A278, n278, E278, A279, n279, E279, A280, n280, E280, A281, n281, E281, A282, n282, E282, A283, n283, E283, A284, n284, E284, A285, n285, E285, A286, n286, E286, A287, n287, E287, A288, n288, E288, A289, n289, E289, A290, n290, E290, A291, n291, E291, A292, n292, E292, A293, n293, E293, A294, n294, E294, A295, n295, E295, A296, n296, E296, A297, n297, E297, A298, n298, E298, A299, n299, E299, A300, n300, E300, A301, n301, E301, A302, n302, E302, A303, n303, E303, A304, n304, E304, A305, n305, E305, A306, n306, E306, A307, n307, E307, A308, n308, E308, A309, n309, E309, A310, n310, E310, A311, n311, E311, A312, n312, E312, A313, n313, E313, A314, n314, E314, A315, n315, E315, A316, n316, E316, A317, n317, E317, A318, n318, E318, A319, n319, E319, A320, n320, E320, A321, n321, E321, A322, n322, E322, A323, n323, E323, A324, n324, E324, A325, n325, E325, A326, n326, E326, A327, n327, E327, A328, n328, E328, A329, n329, E329, A330, n330, E330, A331, n331, E331, A332, n332, E332, A333, n333, E333, A334, n334, E334, A335, n335, E335, A336, n336, E336, A337, n337, E337, A338, n338, E338, A339, n339, E339, A340, n340, E340, A341, n341, E341, A342, n342, E342, A343, n343, E343, A344, n344, E344, A345, n345, E345, A346, n346, E346, A347, n347, E347, A348, n348, E348, A349, n349, E349, A350, n350, E350, A351, n351, E351, A352, n352, E352, A353, n353, E353, A354, n354, E354, A355, n355, E355, A356, n356, E356, A357, n357, E357, A358, n358, E358, A359, n359, E359, A360, n360, E360, A361, n361, E361, A362, n362, E362, A363, n363, E363, A364, n364, E364, A365, n365, E365, A366, n366, E366, A367, n367, E367, A368, n368, E368, A369, n369, E369, A370, n370, E370, A371, n371, E371, A372, n372, E372, A373, n373, E373, A374, n374, E374, A375, n375, E375, A376, n376, E376, A377, n377, E377, A378, n378, E378, A379, n379, E379, A380, n380, E380, A381, n381, E381, A382, n382, E382, A383, n383, E383, A384, n384, E384, A385, n385, E385, A386, n386, E386, A387, n387, E387, A388, n388, E388, A389, n389, E389, A390, n390, E390, A391, n391, E391, A392, n392, E392, A393, n393, E393, A394, n394, E394, A395, n395, E395, A396, n396, E396, A397, n397, E397, A398, n398, E398, A399, n399, E399, A400, n400, E400, A401, n401, E401, A402, n402, E402, A403, n403, E403, A404, n404, E404, A405, n405, E405] ysol = odeint(ODEs, y0, t, args=(p,), atol=abserr, rtol=relerr, mxstep=5000) with open('sol_check.dat', 'a+') as f: #data_format = '{:15.10f}' * 95 a = list(zip(t, ysol)) b = len(a) result = str(a[b-1]) f.write(result) #b = list(map(int, a)) #for tt, yy in a: #print(data_format.format(tt, *yy), file=f) #print(result) #end = time.time() #run_time = end - start #data_format = '{:15d}' * 95 #col = list(range(0, 95)) #print(data_format.format(*col), file=f) #print(run_time, file=f) if __name__ == '__main__': run()
106.456103
6,993
0.555366
ca04b72a3d017ae8c18ff0a576282d95ee324e79
1,946
py
Python
digproj/persona/views.py
mans-18/digest
2c62ab33b8647b6e3da93a714da614ff201eee67
[ "MIT" ]
null
null
null
digproj/persona/views.py
mans-18/digest
2c62ab33b8647b6e3da93a714da614ff201eee67
[ "MIT" ]
null
null
null
digproj/persona/views.py
mans-18/digest
2c62ab33b8647b6e3da93a714da614ff201eee67
[ "MIT" ]
null
null
null
from rest_framework import viewsets, mixins from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from core.models import Kollege, Event, Persona from persona import serializers class BasePersonaAttrViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, mixins.CreateModelMixin): """Base viewset for user owned persona attr""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) def perform_create(self, serializer): """Create a new object""" serializer.save(user=self.request.user) # Gone use only list mixin. There are update, delete mixins ... class KollegeViewSet(BasePersonaAttrViewSet): """Manage kollegen in the db""" # ListModeMixin requires a queryset set queryset = Kollege.objects.all() serializer_class = serializers.KollegeSerializer def get_queryset(self): """Return objects for current auth user only""" return self.queryset.filter(user=self.request.user).order_by('-name') class EventViewSet(BasePersonaAttrViewSet): """Manage events in the db""" queryset = Event.objects.all() serializer_class = serializers.EventSerializer def get_queryset(self): """Return objects for the current authenticated user""" return self.queryset.filter(user=self.request.user).order_by('title') # Gonna implement more functionalities here not only list class PersonaViewSet(viewsets.ModelViewSet): """Manage persona in the db""" serializer_class = serializers.PersonaSerializer queryset = Persona.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) def get_queryset(self): """Retrieve the personas for the auth user""" return self.queryset.filter(user=self.request.user).order_by('name')
35.381818
77
0.723535
d3cc9d444271665a2b443ba7670d10a3209623a5
1,929
py
Python
src/mpd_reader.py
dlesz/recsyschallenge2018
4f06333412c1146d1f3d0784e55c776cfd657a98
[ "Apache-2.0" ]
null
null
null
src/mpd_reader.py
dlesz/recsyschallenge2018
4f06333412c1146d1f3d0784e55c776cfd657a98
[ "Apache-2.0" ]
null
null
null
src/mpd_reader.py
dlesz/recsyschallenge2018
4f06333412c1146d1f3d0784e55c776cfd657a98
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import argparse import codecs import logging import time import numpy import pandas as pd from pandas.io.json import json_normalize import os import json def read_data(folderpath): start = time.time() logging.debug("reading data from %s", folderpath) # creating empty df tracks_df = pd.DataFrame(columns=['pid','track_uri']) path_to_json = folderpath json_files = [pos_json for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')] json_files.sort() # we need both the json and an index number so use enumerate() for index, js in enumerate(json_files): s = time.time() with open(os.path.join(path_to_json, js)) as json_file: j = json.load(json_file) # extracting tracks from playlists in each slice tracks = json_normalize(j['playlists'], record_path='tracks', meta=['pid']) # append tracks to tracks_df tracks = tracks[['pid', 'track_uri']] tracks_df = tracks_df.append(tracks) #print('reading slice #'+ str(index) + ' in : '+ str(s-time.time())) logging.debug("read data file in %s", time.time() - start) start = time.time() logging.debug("writing data to file") tracks_df.to_csv('../my_data/mpd.tsv', sep='\t', index=False) logging.debug("wrote data file in %s", time.time() - start) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Reads the MPD, trims and saves it to a .tsv file", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input', type=str, dest='folderpath', help='specify path to folder with spotify-mpd json slices', required=True) args = parser.parse_args() logging.basicConfig(level=logging.DEBUG) read_data(args.folderpath)
32.694915
117
0.648004
006fe43e33f4db4cfe4f891db82071b43879bfe4
2,142
py
Python
toyota_na/vehicle/entity_types/ToyotaRemoteStart.py
MrReBot/toyota-na
4afd28660c1f964ce52d3c3bc5b985221b89534e
[ "MIT" ]
8
2021-09-21T16:53:58.000Z
2022-01-19T02:01:24.000Z
toyota_na/vehicle/entity_types/ToyotaRemoteStart.py
MrReBot/toyota-na
4afd28660c1f964ce52d3c3bc5b985221b89534e
[ "MIT" ]
7
2022-01-30T03:08:57.000Z
2022-03-21T19:04:48.000Z
toyota_na/vehicle/entity_types/ToyotaRemoteStart.py
MrReBot/toyota-na
4afd28660c1f964ce52d3c3bc5b985221b89534e
[ "MIT" ]
3
2022-01-19T08:03:56.000Z
2022-01-22T03:47:29.000Z
from datetime import datetime, timedelta from typing import Optional import pytz class ToyotaRemoteStart: _on: bool _start_time: Optional[datetime] _timer: Optional[float] def __init__(self, date: Optional[str], on: bool, timer: Optional[float]): if date is not None: self._start_time = datetime.strptime( f"{date}", "%Y-%m-%dT%H:%M:%SZ" ).replace(tzinfo=pytz.UTC) else: self._start_time = None self._on = on self._timer = timer @property def end_time(self) -> Optional[datetime]: if self._start_time is not None and self._timer is not None: return self._start_time.__add__(timedelta(minutes=self._timer)) @property def on(self) -> bool: """Returns whether or not the vehicle is remote started""" return self._on @property def start_time(self) -> Optional[datetime]: return self._start_time @property def time_left(self) -> Optional[float]: """Returns the time left in minutes if the vehicle is on""" if self.end_time is not None and self._timer is not None: # do it this way to get the convenience of a `timedelta` object for grabbing the seconds return ( self.end_time.__sub__( # bit of a hack to get the tz to match but it works datetime.utcnow().replace(tzinfo=pytz.UTC) ).total_seconds() / 60 ) @property def timer(self) -> Optional[float]: """Returns the total time the vehicle will run in minutes when remote started""" return self._timer @on.setter def on(self, value: bool) -> None: self._on = value @start_time.setter def start_time(self, value: Optional[datetime]): self._start_time = value @timer.setter def timer(self, value: float): self._timer = value def __repr__(self) -> str: return f"{self.__class__.__name__}(end_time={self.end_time}, on={self._on}, start_time={self.start_time}, time_left={self.time_left})"
31.5
142
0.609711
aeb7d83c5bd7c98070696fd4899386de6bcd1e1e
7,099
py
Python
dymos/transcriptions/common/timeseries_output_comp.py
Kenneth-T-Moore/dymos
0ae11aab9cb69ac9dd1d784616d1dfe35a6e5b11
[ "Apache-2.0" ]
null
null
null
dymos/transcriptions/common/timeseries_output_comp.py
Kenneth-T-Moore/dymos
0ae11aab9cb69ac9dd1d784616d1dfe35a6e5b11
[ "Apache-2.0" ]
null
null
null
dymos/transcriptions/common/timeseries_output_comp.py
Kenneth-T-Moore/dymos
0ae11aab9cb69ac9dd1d784616d1dfe35a6e5b11
[ "Apache-2.0" ]
null
null
null
import numpy as np import openmdao.api as om from scipy.linalg import block_diag from dymos.transcriptions.grid_data import GridData from dymos.utils.lagrange import lagrange_matrices class TimeseriesOutputCompBase(om.ExplicitComponent): """ TimeseriesOutputComp collects variable values from the phase and provides them in chronological order as outputs. Some phase types don't internally have access to a contiguous array of all values of a given variable in the phase. For instance, the GaussLobatto pseudospectral has separate arrays of variable values at discretization and collocation nodes. These values need to be interleaved to provide a time series. Pseudospectral techniques provide timeseries data at 'all' nodes, while ExplicitPhase provides values at the step boundaries. """ def initialize(self): self._timeseries_outputs = [] self._vars = [] self.options.declare('input_grid_data', types=GridData, desc='Container object for grid on which inputs are provided.') self.options.declare('output_grid_data', types=GridData, allow_none=True, default=None, desc='Container object for grid on which outputs are interpolated.') self.options.declare('output_subset', types=str, default='all', desc='Name of the node subset at which outputs are desired.') def _add_timeseries_output(self, name, var_class, shape=(1,), units=None, desc='', distributed=False): """ Add a final constraint to this component Parameters ---------- name : str name of the variable in this component's namespace. var_class : str The 'class' of the variable as given by phase.classify_var. One of 'time', 'state', 'indep_control', 'input_control', 'design_parameter', 'input_parameter', 'control_rate', 'control_rate2', or 'ode'. shape : int or tuple or list or None Shape of this variable, only required if val is not an array. Default is None. units : str or None Units in which the output variables will be provided to the component during execution. Default is None, which means it has no units. desc : str description of the timeseries output variable. distributed : bool If True, this variable is distributed across multiple processes. """ src_all = var_class in ['time', 'time_phase', 'indep_control', 'input_control', 'control_rate', 'control_rate2', 'indep_polynomial_control', 'input_polynomial_control', 'polynomial_control_rate', 'polynomial_control_rate2', 'design_parameter', 'input_parameter'] kwargs = {'shape': shape, 'units': units, 'desc': desc, 'src_all': src_all, 'distributed': distributed} self._timeseries_outputs.append((name, kwargs)) class PseudospectralTimeseriesOutputComp(TimeseriesOutputCompBase): def setup(self): """ Define the independent variables as output variables. """ igd = self.options['input_grid_data'] ogd = self.options['output_grid_data'] output_subset = self.options['output_subset'] if ogd is None: ogd = igd input_num_nodes = igd.num_nodes output_num_nodes = ogd.subset_num_nodes[output_subset] # Build the interpolation matrix which maps from the input grid to the output grid. # Rather than a single phase-wide interpolating polynomial, map each segment. # To do this, find the nodes in the output grid which fall in each segment of the input # grid. Then build a Lagrange interpolating polynomial for that segment L_blocks = [] output_nodes_ptau = ogd.node_ptau[ogd.subset_node_indices[output_subset]].tolist() for iseg in range(igd.num_segments): i1, i2 = igd.segment_indices[iseg] iptau_segi = igd.node_ptau[i1:i2] istau_segi = igd.node_stau[i1:i2] # The indices of the output grid that fall within this segment of the input grid if ogd is igd: optau_segi = iptau_segi else: ptau_hi = igd.segment_ends[iseg+1] if iseg < igd.num_segments - 1: idxs_in_iseg = np.where(output_nodes_ptau <= ptau_hi)[0] else: idxs_in_iseg = np.arange(len(output_nodes_ptau)) optau_segi = np.asarray(output_nodes_ptau)[idxs_in_iseg] # Remove the captured nodes so we don't accidentally include them again output_nodes_ptau = output_nodes_ptau[len(idxs_in_iseg):] # # Now get the output nodes which fall in iseg in iseg's segment tau space. ostau_segi = 2.0 * (optau_segi - iptau_segi[0]) / (iptau_segi[-1] - iptau_segi[0]) - 1 # Create the interpolation matrix and add it to the blocks L, _ = lagrange_matrices(istau_segi, ostau_segi) L_blocks.append(L) self.interpolation_matrix = block_diag(*L_blocks) for (name, kwargs) in self._timeseries_outputs: input_kwargs = {k: kwargs[k] for k in ('units', 'desc')} input_name = 'input_values:{0}'.format(name) shape = kwargs['shape'] self.add_input(input_name, shape=(input_num_nodes,) + shape, **input_kwargs) output_name = name output_kwargs = {k: kwargs[k] for k in ('units', 'desc')} output_kwargs['shape'] = (output_num_nodes,) + kwargs['shape'] self.add_output(output_name, **output_kwargs) self._vars.append((input_name, output_name, shape)) size = np.prod(shape) val_jac = np.zeros((output_num_nodes, size, input_num_nodes, size)) for i in range(size): val_jac[:, i, :, i] = self.interpolation_matrix val_jac = val_jac.reshape((output_num_nodes * size, input_num_nodes * size), order='C') val_jac_rows, val_jac_cols = np.where(val_jac != 0) rs, cs = val_jac_rows, val_jac_cols self.declare_partials(of=output_name, wrt=input_name, rows=rs, cols=cs, val=val_jac[rs, cs]) def compute(self, inputs, outputs, discrete_inputs=None, discrete_outputs=None): for (input_name, output_name, _) in self._vars: outputs[output_name] = np.tensordot(self.interpolation_matrix, inputs[input_name], axes=(1, 0))
44.647799
99
0.599239
c42f51519e649b5edeffc6cc4ceac5299b064c4c
2,238
py
Python
Python/Sonstige_Uebungen/create_and_parse_ip_adresses.py
Apop85/Scripts
e71e1c18539e67543e3509c424c7f2d6528da654
[ "MIT" ]
null
null
null
Python/Sonstige_Uebungen/create_and_parse_ip_adresses.py
Apop85/Scripts
e71e1c18539e67543e3509c424c7f2d6528da654
[ "MIT" ]
6
2020-12-24T15:15:09.000Z
2022-01-13T01:58:35.000Z
Python/Sonstige_Uebungen/create_and_parse_ip_adresses.py
Apop85/Scripts
1d8dad316c55e1f1343526eac9e4b3d0909e4873
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # #### # File: create_and_parse_ip_adresses.py # Project: Sonstige_Uebungen #----- # Created Date: Saturday 16.01.2021, 16:54 # Author: Apop85 #----- # Last Modified: Saturday 16.01.2021, 19:10 #----- # Copyright (c) 2021 Apop85 # This software is published under the MIT license. # Check http://www.opensource.org/licenses/MIT for further informations #----- # Description: Parsing string numbers to ip-addresses #### def generateIp(startValue = 0): # Function to generate IPs out of integers for i in range(startValue, 255**4): o1 = i // 2 ** 24 % 256 o2 = i // 2 ** 16 % 256 o3 = i // 2 ** 8 % 256 o4 = i % 256 % 256 yield f"{o1}.{o2}.{o3}.{o4}" def parseIp(ip, ips=[]): # Recursive function to generate valid IPs from strings with no pointations # Input: # ip = string | example: 1921681125 # Output # returnArray = Array | example: 192.168.112.5, 192.168.11.25, 192.168.1.125, 192.16.81.125, 19.216.81.125 returnArray = [] if len(ips) == 4: if ip != "": # Return empty array if there are numbers left return [] # return IP-Address return [".".join(ips)] if not ip: # return empty array if ip is not set return [] # Check the first 3 values and check if the value is between 100 and 2^8 if len(ip) > 2 and 99 < int(ip[:3]) < 256: # Analyze reduced ip returnArray += parseIp(ip[3:], ips + [ip[:3]]) # Check the first 2 values and check if the value is between 9 and 100 if len(ip) > 1 and int(ip[:2]) > 9: # Analyze reduced ip returnArray += parseIp(ip[2:], ips + [ip[:2]]) # Analyze reduced ip returnArray += parseIp(ip[1:], ips + [ip[0]]) return returnArray startValue = 3232235776 # 3232235776 equals to 192.168.1.0 ipAmount = 5 ipAddrGenerator = generateIp(startValue) for i in range(ipAmount): ip = next(ipAddrGenerator) stringToParse = ip.split(".") stringToParse = "".join(ip.split(".")) parsed = parseIp(stringToParse) print("█" * (len(parsed[0]) + 4)) for ip in parsed: print(f"█ {ip} █") print("█" * (len(parsed[0]) + 4))
29.447368
112
0.592046
5ccb6aa7133da67aa99b774d5129cd85b05853af
2,319
py
Python
tests/test_util.py
AFCYBER-DREAM/piedpiper-gman
fb4c36b0bdf17161c52e5b37c3216139fe40a99a
[ "MIT" ]
null
null
null
tests/test_util.py
AFCYBER-DREAM/piedpiper-gman
fb4c36b0bdf17161c52e5b37c3216139fe40a99a
[ "MIT" ]
3
2019-05-23T02:04:47.000Z
2019-06-10T20:30:21.000Z
tests/test_util.py
AFCYBER-DREAM/piperci-gman
fb4c36b0bdf17161c52e5b37c3216139fe40a99a
[ "MIT" ]
3
2019-06-04T19:29:49.000Z
2019-06-24T14:21:14.000Z
import uuid import json import pytest from piperci import sri from piperci_gman.util import (GManJSONEncoder, Api) from piperci_gman.gman import GMan from piperci_gman.artman import ArtMan from pytest import raises def test_jsonencoder_uuid(): json.dumps({'uuid': uuid.uuid4()}, cls=GManJSONEncoder) def test_jsonencoder_default_encoder(): j = json.dumps({'uuid': 'stringxyz'}, cls=GManJSONEncoder) assert json.loads(j)['uuid'] == 'stringxyz' def test_jsonencoder_hash(): j = json.dumps( {'uuid': sri.sri_to_hash('sha256-sCDaaxdshXhK4sA/v4dMHiMWhtGyQwA1fP8PgrN0O5g=')}, cls=GManJSONEncoder) assert 'sha256-sCDaaxdshXhK4sA/v4dMHiMWhtGyQwA1fP8PgrN0O5g=' in j def test_jsonencoder_not_uuid(): class SomethingNotSupported(object): propx = None with raises(TypeError): json.dumps({'notsupported': SomethingNotSupported()}, cls=GManJSONEncoder) def test_handle_error_404(client): resp = client.get('/artifact/sri/mal-formedsri') assert resp.status_code == 404 def test_handle_error_500(monkeypatch, client): class DumbyError(Exception): def __init__(self, *args, **kwargs): self.code = 500 err = Api.handle_error def error_wrapper(self, e): return err(self, DumbyError()) monkeypatch.setattr(Api, 'handle_error', error_wrapper) assert client.get('/artifact/sri/mal-formedsri').status_code == 500 hashes = [ sri.sri_to_hash('sha256-vFatceyWaE9Aks3N9ouRUtba1mwrIHdEVLti88atIvc='), 'sha256-vFatceyWaE9Aks3N9ouRUtba1mwrIHdEVLti88atIvc=' ] @pytest.mark.parametrize('hash', hashes) def test_to_url_sri(client, api, hash): url = api.url_for(ArtMan, sri=hash) assert 'c2hhMjU2LXZGYXRjZXlXYUU5QWtzM045b3VSVXRiYTFtd3JJSGRFVkx0aTg4YXRJdmM9' in url def test_to_url_sri_error(client, api): url = api.url_for(ArtMan, sri={'asdfasdfsad'}) assert 'sri=' in url def test_unhandled_error(client, api, monkeypatch): h_errors = Api.handle_error def handle_error_stub(self, e): e = ValueError('testing a non .status_code error that is not TypeError') return h_errors(self, e) monkeypatch.setattr('piperci_gman.util.Api.handle_error', handle_error_stub) resp = client.put(api.url_for(GMan)) assert resp.status_code == 500
24.15625
88
0.721432
bd1cd41bfcc4a0f457fefb0da410f63d438a15bb
13,851
py
Python
PySide2/QtQml.py
arjun-namdeo/py_stubs
605bb167e239978f5417f3f1fc1f5c12e2a243cc
[ "MIT" ]
null
null
null
PySide2/QtQml.py
arjun-namdeo/py_stubs
605bb167e239978f5417f3f1fc1f5c12e2a243cc
[ "MIT" ]
null
null
null
PySide2/QtQml.py
arjun-namdeo/py_stubs
605bb167e239978f5417f3f1fc1f5c12e2a243cc
[ "MIT" ]
null
null
null
from PySide2.QtCore import QObject as _QObject class _Property(object): def __call__(*args, **kwargs): """ x.__call__(...) <==> x(...) """ pass def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def getter(*args, **kwargs): pass def read(*args, **kwargs): pass def setter(*args, **kwargs): pass def write(*args, **kwargs): pass __new__ = None class _Object(object): __dict__ = None class QQmlListReference(_Object): def __copy__(*args, **kwargs): pass def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def append(*args, **kwargs): pass def at(*args, **kwargs): pass def canAppend(*args, **kwargs): pass def canAt(*args, **kwargs): pass def canClear(*args, **kwargs): pass def canCount(*args, **kwargs): pass def clear(*args, **kwargs): pass def count(*args, **kwargs): pass def isManipulable(*args, **kwargs): pass def isReadable(*args, **kwargs): pass def isValid(*args, **kwargs): pass def listElementType(*args, **kwargs): pass def object(*args, **kwargs): pass __new__ = None class QJSEngine(_QObject): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def collectGarbage(*args, **kwargs): pass def evaluate(*args, **kwargs): pass def globalObject(*args, **kwargs): pass def installTranslatorFunctions(*args, **kwargs): pass def newArray(*args, **kwargs): pass def newObject(*args, **kwargs): pass def newQObject(*args, **kwargs): pass def toScriptValue(*args, **kwargs): pass __new__ = None staticMetaObject = None class QQmlFileSelector(_QObject): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def setExtraSelectors(*args, **kwargs): pass def get(*args, **kwargs): pass __new__ = None staticMetaObject = None class QJSValue(_Object): def __copy__(*args, **kwargs): pass def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def __nonzero__(*args, **kwargs): """ x.__nonzero__() <==> x != 0 """ pass def call(*args, **kwargs): pass def callAsConstructor(*args, **kwargs): pass def callWithInstance(*args, **kwargs): pass def deleteProperty(*args, **kwargs): pass def engine(*args, **kwargs): pass def equals(*args, **kwargs): pass def hasOwnProperty(*args, **kwargs): pass def hasProperty(*args, **kwargs): pass def isArray(*args, **kwargs): pass def isBool(*args, **kwargs): pass def isCallable(*args, **kwargs): pass def isDate(*args, **kwargs): pass def isError(*args, **kwargs): pass def isNull(*args, **kwargs): pass def isNumber(*args, **kwargs): pass def isObject(*args, **kwargs): pass def isQObject(*args, **kwargs): pass def isRegExp(*args, **kwargs): pass def isString(*args, **kwargs): pass def isUndefined(*args, **kwargs): pass def isVariant(*args, **kwargs): pass def property(*args, **kwargs): pass def prototype(*args, **kwargs): pass def setProperty(*args, **kwargs): pass def setPrototype(*args, **kwargs): pass def strictlyEquals(*args, **kwargs): pass def toBool(*args, **kwargs): pass def toDateTime(*args, **kwargs): pass def toInt(*args, **kwargs): pass def toNumber(*args, **kwargs): pass def toQObject(*args, **kwargs): pass def toString(*args, **kwargs): pass def toUInt(*args, **kwargs): pass def toVariant(*args, **kwargs): pass NullValue = None SpecialValue = None UndefinedValue = None __new__ = None class QQmlExpression(_QObject): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def clearError(*args, **kwargs): pass def columnNumber(*args, **kwargs): pass def context(*args, **kwargs): pass def engine(*args, **kwargs): pass def error(*args, **kwargs): pass def evaluate(*args, **kwargs): pass def expression(*args, **kwargs): pass def hasError(*args, **kwargs): pass def lineNumber(*args, **kwargs): pass def notifyOnValueChanged(*args, **kwargs): pass def scopeObject(*args, **kwargs): pass def setExpression(*args, **kwargs): pass def setNotifyOnValueChanged(*args, **kwargs): pass def setSourceLocation(*args, **kwargs): pass def sourceFile(*args, **kwargs): pass __new__ = None staticMetaObject = None valueChanged = None class ListProperty(_Property): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass class QQmlProperty(_Object): def __copy__(*args, **kwargs): pass def __eq__(*args, **kwargs): """ x.__eq__(y) <==> x==y """ pass def __ge__(*args, **kwargs): """ x.__ge__(y) <==> x>=y """ pass def __getattribute__(*args, **kwargs): """ x.__getattribute__('name') <==> x.name """ pass def __gt__(*args, **kwargs): """ x.__gt__(y) <==> x>y """ pass def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def __le__(*args, **kwargs): """ x.__le__(y) <==> x<=y """ pass def __lt__(*args, **kwargs): """ x.__lt__(y) <==> x<y """ pass def __ne__(*args, **kwargs): """ x.__ne__(y) <==> x!=y """ pass def connectNotifySignal(*args, **kwargs): pass def hasNotifySignal(*args, **kwargs): pass def index(*args, **kwargs): pass def isDesignable(*args, **kwargs): pass def isProperty(*args, **kwargs): pass def isResettable(*args, **kwargs): pass def isSignalProperty(*args, **kwargs): pass def isValid(*args, **kwargs): pass def isWritable(*args, **kwargs): pass def method(*args, **kwargs): pass def name(*args, **kwargs): pass def needsNotifySignal(*args, **kwargs): pass def object(*args, **kwargs): pass def property(*args, **kwargs): pass def propertyType(*args, **kwargs): pass def propertyTypeCategory(*args, **kwargs): pass def propertyTypeName(*args, **kwargs): pass def reset(*args, **kwargs): pass def type(*args, **kwargs): pass def read(*args, **kwargs): pass def write(*args, **kwargs): pass Invalid = None InvalidCategory = None List = None Normal = None Object = None Property = None PropertyTypeCategory = None SignalProperty = None Type = None __new__ = None class QQmlError(_Object): def __copy__(*args, **kwargs): pass def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def __repr__(*args, **kwargs): """ x.__repr__() <==> repr(x) """ pass def column(*args, **kwargs): pass def description(*args, **kwargs): pass def isValid(*args, **kwargs): pass def line(*args, **kwargs): pass def object(*args, **kwargs): pass def setColumn(*args, **kwargs): pass def setDescription(*args, **kwargs): pass def setLine(*args, **kwargs): pass def setObject(*args, **kwargs): pass def setUrl(*args, **kwargs): pass def toString(*args, **kwargs): pass def url(*args, **kwargs): pass __new__ = None class QQmlContext(_QObject): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def baseUrl(*args, **kwargs): pass def contextObject(*args, **kwargs): pass def contextProperty(*args, **kwargs): pass def engine(*args, **kwargs): pass def isValid(*args, **kwargs): pass def nameForObject(*args, **kwargs): pass def parentContext(*args, **kwargs): pass def resolvedUrl(*args, **kwargs): pass def setBaseUrl(*args, **kwargs): pass def setContextObject(*args, **kwargs): pass def setContextProperty(*args, **kwargs): pass __new__ = None staticMetaObject = None class QQmlEngine(QJSEngine): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def addImportPath(*args, **kwargs): pass def addNamedBundle(*args, **kwargs): pass def addPluginPath(*args, **kwargs): pass def baseUrl(*args, **kwargs): pass def clearComponentCache(*args, **kwargs): pass def event(*args, **kwargs): pass def importPathList(*args, **kwargs): pass def importPlugin(*args, **kwargs): pass def networkAccessManager(*args, **kwargs): pass def offlineStoragePath(*args, **kwargs): pass def outputWarningsToStandardError(*args, **kwargs): pass def pluginPathList(*args, **kwargs): pass def removeImageProvider(*args, **kwargs): pass def rootContext(*args, **kwargs): pass def setBaseUrl(*args, **kwargs): pass def setImportPathList(*args, **kwargs): pass def setOfflineStoragePath(*args, **kwargs): pass def setOutputWarningsToStandardError(*args, **kwargs): pass def setPluginPathList(*args, **kwargs): pass def trimComponentCache(*args, **kwargs): pass def contextForObject(*args, **kwargs): pass def objectOwnership(*args, **kwargs): pass def setContextForObject(*args, **kwargs): pass def setObjectOwnership(*args, **kwargs): pass CppOwnership = None JavaScriptOwnership = None ObjectOwnership = None __new__ = None quit = None staticMetaObject = None warnings = None class QQmlApplicationEngine(QQmlEngine): def __init__(*args, **kwargs): """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def load(*args, **kwargs): pass def loadData(*args, **kwargs): pass def rootObjects(*args, **kwargs): pass __new__ = None objectCreated = None staticMetaObject = None def qmlRegisterType(*args, **kwargs): pass QML_HAS_ATTACHED_PROPERTIES = 1
15.121179
70
0.456646
b65c93fa80afd8062496ebb369c4c5ad1020162f
405
py
Python
pygram/filters/sepia.py
achillesrasquinha/PyGram
2ca49c8ac3287cb0b722e1086f0c55418e197a28
[ "MIT" ]
18
2017-02-02T05:33:20.000Z
2022-02-11T05:31:44.000Z
pygram/filters/sepia.py
Rutvikbk/PyGram
2ca49c8ac3287cb0b722e1086f0c55418e197a28
[ "MIT" ]
null
null
null
pygram/filters/sepia.py
Rutvikbk/PyGram
2ca49c8ac3287cb0b722e1086f0c55418e197a28
[ "MIT" ]
11
2017-02-03T09:39:27.000Z
2018-03-26T18:59:37.000Z
import numpy as np from PIL import Image def sepia(image): arr = np.copy(image) r,g,b = arr[:,:,0], arr[:,:,1], arr[:,:,2] arr[:,:,0] = np.minimum(r * 0.393 + g * 0.769 + b * 0.189, 255) arr[:,:,1] = np.minimum(r * 0.349 + g * 0.686 + b * 0.168, 255) arr[:,:,2] = np.minimum(r * 0.272 + g * 0.534 + b * 0.131, 255) copy = Image.fromarray(arr) return copy
27
67
0.491358
894a701c0cd644b5e3e237e8bca282f76a92312b
153
py
Python
pyjac/__main__.py
stgeke/pyJac-v2
c2716a05df432efd8e5f6cc5cc3d46b72c24c019
[ "MIT" ]
9
2018-10-08T07:49:20.000Z
2021-06-26T15:28:30.000Z
pyjac/__main__.py
stgeke/pyJac-v2
c2716a05df432efd8e5f6cc5cc3d46b72c24c019
[ "MIT" ]
13
2018-09-01T14:17:51.000Z
2021-07-30T16:19:33.000Z
pyjac/__main__.py
arghdos/spyJac
bdd6940c27681e3b19ee41efb31abd20a89d1be8
[ "MIT" ]
7
2018-09-08T11:57:34.000Z
2022-02-14T13:57:20.000Z
import sys from pyjac import utils def main(args=None): if args is None: utils.create() if __name__ == '__main__': sys.exit(main())
11.769231
26
0.627451
9dbf3c44398528f585cb44329e01eb1173640b72
8,881
py
Python
office/outlook.py
ktr/office
27b502aae6875aca57a41adc8b3f63236c3cb2e0
[ "MIT" ]
null
null
null
office/outlook.py
ktr/office
27b502aae6875aca57a41adc8b3f63236c3cb2e0
[ "MIT" ]
null
null
null
office/outlook.py
ktr/office
27b502aae6875aca57a41adc8b3f63236c3cb2e0
[ "MIT" ]
null
null
null
""" outlook.py - utilities to help with Microsoft Outlook (TM) Example: outlook = Outlook() tbl = outlook.list_to_tbl([[1, 2, 3], [4, 5, 6]]) with open(r'H:\test1.png', 'rb') as io: img = outlook.inline_img(io) outlook.create_mail('test@example.com', 'Hello!', f'Hello!<br><br>{tbl}<br><br>{img}<br><br>Goodbye!', show=True) """ import base64 import datetime import logging import pytz from win32com.client import Dispatch import win32com.client class Outlook: def __init__(self): self.ns = self.outlook = self.inbox = None def _connect(self): # https://docs.microsoft.com/en-us/office/vba/api/outlook.oldefaultfolders if not self.outlook: self.outlook = Dispatch("Outlook.Application") self.ns = self.outlook.GetNamespace("MAPI") self.calendar = self.ns.GetDefaultFolder(9) self.inbox = self.ns.GetDefaultFolder(6) def create_mail(self, to: str, subject: str, body: str, cc: str='', attachments: list=[], show: bool=False, send: bool=False): self._connect() msg = self.outlook.CreateItem(0x0) msg.Subject = subject for path in attachments: msg.Attachments.Add(path) msg.To = to msg.CC = cc msg.HTMLBody = body if show: msg.Display() if send: msg.Send() def inline_img(self, io) -> str: """ Returns html snippet to embed an image in an email. `io` should be an open file (e.g., open(<path>, 'rb')). """ encoded_image = base64.b64encode(io.read()).decode("utf-8") return '<img src="data:image/png;base64,%s"/>' % encoded_image def tbl_style(self, styles={}): styles.setdefault('header-bg', '#1F77B4') styles.setdefault('header-fg', '#FFFFFF') styles.setdefault('th-border-color', '#222222') styles.setdefault('td-border-color', '#222222') return '''\ <style type="text/css"> table { border-collapse:collapse; border-spacing:0; } table td { font-family:Arial, sans-serif; font-size:14px; padding:5px 10px; border-style:solid; border-width:1px; overflow:hidden; word-break:normal; border-color: %(td-border-color)s; text-align: right; width: 100px; } table th { font-family:Arial, Helvetica, sans-serif !important; font-size:14px; font-weight:bold; padding:5px 10px; border-style:solid; border-width:1px; overflow:hidden; word-break:normal; background-color:%(header-bg)s; color:%(header-fg)s; vertical-align:top; border-color: %(th-border-color)s; width: 100px; } </style>''' % styles def list_to_tbl(self, lst: list, first_is_hdr: bool=True) -> str: """ Returns html table of `lst`. """ head = '<table class="tg">\n' rowg = lambda row, mk='td': '<tr>\n' + '\n'.join([f'<{mk}>{_}</{mk}>' for _ in row]) + '\n</tr>' row1 = rowg(lst[0], 'th') + '\n' rows = row1 + '\n'.join([rowg(_) for _ in lst[1:]]) foot = '\n</table>' return self.tbl_style() + head + rows + foot def find_open_slots(self, appts, duration=None): # appts should be list of start/end times start = appts[0][0] end = appts[-1][1] # find open slots between 9am–6pm utc = pytz.UTC hours = (utc.localize(datetime.datetime(start.year, start.month, start.day, 9)), utc.localize(datetime.datetime(end.year, end.month, end.day, 18))) if duration is None: duration = datetime.timedelta(minutes=30) slots = sorted([(hours[0], hours[0])] + appts + [(hours[1], hours[1])]) open_slots = [] for start, end in ((slots[i][1], slots[i+1][0]) for i in range(len(slots)-1)): while start + duration <= end: open_slots.append([start, start + duration]) start += duration this = open_slots[0] print(f'\n{this[0]:%Y-%m-%d}') for slot in open_slots[1:]: # only offer up times after default start time if slot[0].hour < hours[0].hour or slot[0].hour > hours[1].hour: continue # or before the default end time if slot[1].hour < hours[0].hour or slot[1].hour > hours[1].hour: continue # otherwise, check if we should combine consecutive time sequences if slot[0] <= this[1]: this[1] = slot[1] # if not, print them out and move on to the next one else: print(f' {this[0]:%I:%M %p} to {this[1]:%I:%M %p}') if this[0].day != slot[0].day: print(f'\n{this[0]:%Y-%m-%d}') this = slot print(f' {this[0]:%I:%M %p} to {this[1]:%I:%M %p}') def appointments(self, begin=None, end=None): self._connect() if begin is None: begin = datetime.date.today() + datetime.timedelta(days=1) # tomorrow if end is None: end = begin + datetime.timedelta(days=2) # duration of 1 day # http://msdn.microsoft.com/en-us/library/office/aa210899(v=office.11).aspx appts = self.calendar.Items appts.IncludeRecurrences = "True" # Need the following call to 'Sort', otherwise will include all # recurrences (whether they are in the list or not!) appts.Sort("[Start]") where = f"[Start] >= '{begin.strftime('%m/%d/%Y')}' AND [End] <= '{end.strftime('%m/%d/%Y')}'" return [_ for _ in appts.Restrict(where)] def show_appts(self, begin=None, end=None): self._connect() if begin is None: begin = datetime.date.today() + datetime.timedelta(days=1) # tomorrow if end is None: end = begin + datetime.timedelta(days=2) # duration of 1 day # http://msdn.microsoft.com/en-us/library/office/aa210899(v=office.11).aspx appts = self.calendar.Items appts.IncludeRecurrences = "True" # Need the following call to 'Sort', otherwise will include all # recurrences (whether they are in the list or not!) appts.Sort("[Start]") where = f"[Start] >= '{begin.strftime('%m/%d/%Y')}' AND [End] <= '{end.strftime('%m/%d/%Y')}'" msg = "{1:%H:%M}–{2:%H:%M}, {0} (Organizer: {3})" appt_lst = [] for item in appts.Restrict(where): print(msg.format(item.Subject, item.Start, item.End, item.Organizer)) appt_lst.append((item.Start, item.End,)) print("\nOpen Slots:") self.find_open_slots(appt_lst) def messages(self): """ Return all messages from the inbox sorted by ReceivedTime (descending). """ self._connect() inbox = self.ns.GetDefaultFolder(6) messages = inbox.Items messages.Sort("ReceivedTime", True) message = messages.GetFirst() while message: yield message message = messages.GetNext() def filter_messages(self, after=None, before=None, subject=None, done=None): """ Return pipeline reports in Outlook sent after `after` and before `before`. If `after` is None, return any pipeline report since the last one was downloaded (according to `last_time_downloaded`). If `before` is None (the default), any win report after `after` is extracted. subject, if provided, should be a function taking a message subject as its only argument and returning True if you want to keep the message, False otherwise. done, if provided, should be a function that takes a message object and returns True if you want to stop iterating over messages or False if you want to keep going. If not provided, this function will go through every message in your inbox. """ has_recd_time = lambda msg: hasattr(msg, 'ReceivedTime') always_true = lambda _: True before = before or always_true after = after or always_true subject = subject or always_true done = done or always_true for msg in self.messages(): if has_recd_time(msg) and before(msg.ReceivedTime) and after(msg.ReceivedTime) and subject(msg.Subject): yield msg if done(msg): break if __name__ == "__main__": outlook = Outlook() create_html_sample = 0 show_appts = 1 if create_html_sample: tbl = outlook.list_to_tbl([[1, 2, 3], [4, 5, 6]]) with open(r'C:\test1.png', 'rb') as io: img = outlook.inline_img(io) outlook.create_mail('test@example.com', 'Hello!', f'Hello!<br><br>{tbl}<br><br>{img}<br><br>Goodbye!', show=True) if show_appts: outlook.show_appts()
36.397541
130
0.581691
08008ca212f21a36d762e9da25b5d6dff0bff6ee
1,631
py
Python
resources/rides.py
mikenthiwa/Ride-My-Way
2ad702903f971e0cd474d9e7339174bbe37c47d8
[ "MIT" ]
null
null
null
resources/rides.py
mikenthiwa/Ride-My-Way
2ad702903f971e0cd474d9e7339174bbe37c47d8
[ "MIT" ]
2
2018-06-12T15:29:44.000Z
2018-07-04T09:59:12.000Z
resources/rides.py
mikenthiwa/Ride-My-Way
2ad702903f971e0cd474d9e7339174bbe37c47d8
[ "MIT" ]
4
2018-06-24T19:05:33.000Z
2018-10-17T15:05:43.000Z
from flask_restplus import Resource, Namespace, reqparse, fields from app.models import Rides from resources.auth import token_required rides = Rides() api = Namespace("Rides", description="Passenger related operations") request_model = api.model('Request Model', {'username': fields.String, "pickup_point": fields.String, "time": fields.String}) class RideList(Resource): """Contain GET methods""" @api.doc(security='apikey') @token_required def get(self): """Get all rides endpoint""" response = rides.get_rides() return response class Ride(Resource): """Contains GET method""" @api.doc(security='apikey') @token_required def get(self, ride_id): """get a ride(passenger)""" response = rides.get_ride(ride_id=ride_id) return response class RequestRide(Resource): """Contain PATCH method""" @api.expect(request_model) @api.doc(security='apikey') @token_required def post(self, ride_id): """Request ride""" parser = reqparse.RequestParser() parser.add_argument('pickup_point', required=True, type=str, help='Pickup_point is required', location=['json']) args = parser.parse_args() pickup_point = args['pickup_point'] res = rides.request_ride(ride_id=ride_id, pickup_point=pickup_point) return res api.add_resource(RideList, '/rides', endpoint='ridelist') api.add_resource(Ride, '/rides/<int:ride_id>') api.add_resource(RequestRide, '/users/rides/<int:ride_id>/request')
28.12069
120
0.642551
52a74e260824f9aea1b54ce683427d3a0b3ec4ed
7,709
py
Python
app/users/views.py
jingshu-fk/FXTest_copy
150012f87021b6b8204fd342c62538c10d8dfa85
[ "MIT" ]
null
null
null
app/users/views.py
jingshu-fk/FXTest_copy
150012f87021b6b8204fd342c62538c10d8dfa85
[ "MIT" ]
2
2021-03-26T00:24:28.000Z
2022-03-22T22:06:39.000Z
app/users/views.py
jingshu-fk/FXTest_copy
150012f87021b6b8204fd342c62538c10d8dfa85
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Author : lileilei # @File : views.py # @Time : 2017/12/7 12:25 from flask import Blueprint user = Blueprint('user', __name__) from flask import redirect, request, \ session, url_for, flash, jsonify from app.models import * from flask.views import View, MethodView from common.decorators import chckuserpermisson from flask_login import login_required from config import OneAdminCount from error_message import * class SetadView(View): # 设置管理员 methods = ['GET', "POST"] @login_required def dispatch_request(self): if chckuserpermisson() == False: return jsonify({'code': 13, 'msg': permiss_is_ness, 'data': ''}) projec = request.get_json() try: username = projec['username'] por = projec['url'] if por == '': return jsonify({'code': 14, 'msg': '请选择项目', 'data': ''}) pan_user = User.query.filter_by(username=username).first() if not pan_user: return jsonify({'code': 15, 'msg': login_user_not_exict_message, 'data': ''}) if pan_user.is_sper is True: return jsonify({'code': 16, 'msg': '超级管理员不用设置项目', 'data': ''}) pand_por = Project.query.filter_by(project_name=por).first() if not pand_por: return jsonify({'code': 17, 'msg': '设置的项目不存在', 'data': ''}) pro_per = Quanxian.query.filter_by(project=pand_por.id).all() oneadmin = [] for i in pro_per: if i.rose == 2: oneadmin.append(i.user.all()) if [pan_user] in oneadmin: return jsonify({'code': 18, 'msg': '你已经是项目管理员了,不需要再次设置'}) if (len(oneadmin)) > OneAdminCount: return jsonify({'code': 19, 'msg': '单个项目的管理员已经达到后台设置的个数限制'}) for roses in pan_user.quanxians: if roses.project == pand_por.id: roses.rose = 2 try: db.session.commit() return jsonify({'code': 200, 'msg': '设置管理成功'}) except: db.session.rollback() return jsonify({'code': 20, 'msg': '设置管理失败', 'data': ''}) except Exception as e: return jsonify({'code': 21, 'msg': '设置过程目前存在异常,原因是:%s' % e, 'data': ''}) class DeladView(View): # 取消管理员 methods = ['GET', "POST"] @login_required def dispatch_request(self, id): if chckuserpermisson() is False: flash(permiss_is_ness) return redirect(request.headers.get('Referer')) new_ad = User.query.filter_by(id=id, status=False).first() if not new_ad: flash(login_user_not_exict_message) return redirect(url_for('home.adminuser')) if new_ad == user: flash(admin_cannot_use) return redirect(url_for('home.adminuser')) return redirect(url_for('home.adminuser')) class FreadView(View): # 冻结 methods = ['GET', "POST"] @login_required def dispatch_request(self, id): if chckuserpermisson() == False: flash(permiss_is_ness) return redirect(request.headers.get('Referer')) user = User.query.filter_by(username=session.get('username')).first() if user.is_sper != 1: flash(permiss_is_ness) return redirect(request.headers.get('Referer')) new_ad = User.query.filter_by(id=id).first() if new_ad.status == True: flash(free_is_again) return redirect(url_for('home.adminuser')) if new_ad == user: flash(ower_cannot_free_me) return redirect(url_for('home.adminuser')) new_ad.status = True try: db.session.commit() flash(free_is_success) return redirect(url_for('home.adminuser')) except Exception as e: db.session.rollback() flash(free_user_error) return redirect(url_for('home.adminuser')) class FrereView(View): # 解冻 methods = ['GET', "POST"] @login_required def dispatch_request(self, id): if chckuserpermisson() == False: flash(permiss_is_ness) return redirect(request.headers.get('Referer')) user = User.query.filter_by(username=session.get('username')).first() new_ad = User.query.filter_by(id=id).first() if new_ad.status == False: flash(user_is_not_free) return redirect(url_for('home.adminuser')) if new_ad != user: new_ad.status = False try: db.session.commit() flash(user_is_un_free) return redirect(url_for('home.adminuser')) except Exception as e: db.session.rollback() flash(user_is_unfree_success) return redirect(url_for('home.adminuser')) flash(ower_not_free_me) return redirect(url_for('home.adminuser')) class Acivauserview(View): methods = ['GET', "POST"] @login_required def dispatch_request(self): if chckuserpermisson() == False: return jsonify({'code': 13, 'msg': permiss_is_ness, 'data': ''}) userjobnum = request.get_json() try: id = int(userjobnum['id']) job_num = int(userjobnum['jobnum']) except Exception as e: return jsonify({'code': 13, 'msg': activ_is_int}) user = User.query.filter_by(id=id, status=False).first() if not user: return jsonify({'code': 13, 'msg': login_user_not_exict_message}) try: user_job = User.query.filter_by(jobnum=job_num).first() if user_job: return jsonify({'code': 13, 'msg': activi_user_jobnum}) except Exception as e: pass if (user.jobnum == None or user.jobnum == "None"): user.jobnum = job_num db.session.add(user) db.session.commit() return jsonify({'code': 20, 'msg': '激活成功', 'data': ''}) return jsonify({'code': 13, 'msg': '激活失败', 'data': activi_user_jobnum_is}) class RedpassView(View): # 重置密码 methods = ['GET', "POST"] @login_required def dispatch_request(self, id): if chckuserpermisson() is False: flash(permiss_is_ness) return redirect(request.headers.get('Referer')) user = User.query.filter_by(username=session.get('username')).first() new_ad = User.query.filter_by(id=id).first() if new_ad != user: if user.is_sper == 1: new_ad.set_password('111111') try: db.session.commit() flash(reset_success_message) return redirect(url_for('home.adminuser')) except Exception as e: db.session.rollback() flash(user_reset_error) return redirect(url_for('home.adminuser')) flash(user_reset_isnot_amin) return redirect(url_for('home.adminuser')) flash(user_reset_owner) return redirect(url_for('home.adminuser')) class ChangePassword(MethodView): @login_required def post(self): password = request.data.decode('utf-8') user = User.query.filter_by(username=session.get('username')).first() user.set_password(password) try: db.session.commit() return jsonify({'code': 1, 'data': change_password_success}) except Exception as e: db.session.rollback() return jsonify({'code': 2, 'data': change_password_error})
37.604878
93
0.569983
f25d7fca5b5fdbeba8c9fb4be7f65eea5ff9cab5
154
py
Python
scrapers/AGY-isle-of-anglesey/councillors.py
DemocracyClub/LGSF
21c2a049db08575e03db2fb63a8bccc8de0c636b
[ "MIT" ]
4
2018-10-17T13:30:08.000Z
2021-06-22T13:29:43.000Z
scrapers/AGY-isle-of-anglesey/councillors.py
DemocracyClub/LGSF
21c2a049db08575e03db2fb63a8bccc8de0c636b
[ "MIT" ]
46
2018-10-15T13:47:48.000Z
2022-03-23T10:26:18.000Z
scrapers/AGY-isle-of-anglesey/councillors.py
DemocracyClub/LGSF
21c2a049db08575e03db2fb63a8bccc8de0c636b
[ "MIT" ]
1
2018-10-15T13:36:03.000Z
2018-10-15T13:36:03.000Z
from lgsf.councillors.scrapers import ModGovCouncillorScraper class Scraper(ModGovCouncillorScraper): base_url = "http://democracy.anglesey.gov.uk"
25.666667
61
0.811688
dd87e6475eab3d287734190ac09a3edb4c191ccd
47,888
py
Python
evaluate_3dpw_mine.py
akashsengupta1997/ProHMR
7015a3d070c79b4571d43abdf5e522468091a94d
[ "BSD-3-Clause" ]
null
null
null
evaluate_3dpw_mine.py
akashsengupta1997/ProHMR
7015a3d070c79b4571d43abdf5e522468091a94d
[ "BSD-3-Clause" ]
null
null
null
evaluate_3dpw_mine.py
akashsengupta1997/ProHMR
7015a3d070c79b4571d43abdf5e522468091a94d
[ "BSD-3-Clause" ]
null
null
null
import os import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from tqdm import tqdm import argparse import math import my_config from prohmr.datasets.pw3d_eval_dataset import PW3DEvalDataset from prohmr.configs import get_config, prohmr_config from prohmr.models import ProHMR from prohmr.models.smpl_mine import SMPL from prohmr.utils.pose_utils import compute_similarity_transform_batch_numpy, scale_and_translation_transform_batch from prohmr.utils.geometry import undo_keypoint_normalisation, orthographic_project_torch, convert_weak_perspective_to_camera_translation from prohmr.utils.renderer import Renderer from prohmr.utils.sampling_utils import compute_vertex_uncertainties_from_samples import subsets def evaluate_3dpw(model, model_cfg, eval_dataset, metrics_to_track, device, save_path, num_pred_samples, num_workers=4, pin_memory=True, vis_every_n_batches=1000, num_samples_to_visualise=10, save_per_frame_uncertainty=True): eval_dataloader = DataLoader(eval_dataset, batch_size=1, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=pin_memory) smpl_neutral = SMPL(my_config.SMPL_MODEL_DIR, batch_size=1).to(device) smpl_male = SMPL(my_config.SMPL_MODEL_DIR, batch_size=1, gender='male').to(device) smpl_female = SMPL(my_config.SMPL_MODEL_DIR, batch_size=1, gender='female').to(device) metric_sums = {'num_datapoints': 0} per_frame_metrics = {} for metric in metrics_to_track: metric_sums[metric] = 0. per_frame_metrics[metric] = [] if metric == 'joints3D_coco_invis_samples_dist_from_mean': metric_sums['num_invis_joints3Dsamples'] = 0 elif metric == 'hrnet_joints2D_l2es': metric_sums['num_vis_hrnet_joints2D'] = 0 elif metric == 'hrnet_joints2Dsamples_l2es': metric_sums['num_vis_hrnet_joints2Dsamples'] = 0 fname_per_frame = [] pose_per_frame = [] shape_per_frame = [] cam_per_frame = [] if save_per_frame_uncertainty: vertices_uncertainty_per_frame = [] renderer = Renderer(model_cfg, faces=model.smpl.faces) reposed_cam_wp = np.array([0.85, 0., -0.2]) reposed_cam_t = convert_weak_perspective_to_camera_translation(cam_wp=reposed_cam_wp, focal_length=model_cfg.EXTRA.FOCAL_LENGTH, resolution=model_cfg.MODEL.IMAGE_SIZE) model.eval() for batch_num, samples_batch in enumerate(tqdm(eval_dataloader)): # if batch_num == 2: # break # ------------------------------- TARGETS and INPUTS ------------------------------- input = samples_batch['input'].to(device) target_pose = samples_batch['pose'].to(device) target_shape = samples_batch['shape'].to(device) target_gender = samples_batch['gender'][0] hrnet_joints2D_coco = samples_batch['hrnet_kps'].cpu().detach().numpy() hrnet_joints2D_coco_vis = samples_batch['hrnet_kps_vis'].cpu().detach().numpy() fname = samples_batch['fname'] if target_gender == 'm': target_smpl_output = smpl_male(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_reposed_smpl_output = smpl_male(betas=target_shape) elif target_gender == 'f': target_smpl_output = smpl_female(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_reposed_smpl_output = smpl_female(betas=target_shape) target_vertices = target_smpl_output.vertices target_joints_h36mlsp = target_smpl_output.joints[:, my_config.ALL_JOINTS_TO_H36M_MAP, :][:, my_config.H36M_TO_J14, :] target_reposed_vertices = target_reposed_smpl_output.vertices # ------------------------------- PREDICTIONS ------------------------------- out = model({'img': input}) """ out is a dict with keys: - pred_cam: (1, num_samples, 3) tensor, camera is same for all samples - pred_cam_t: (1, num_samples, 3) tensor, camera is same for all samples - This is just pred_cam converted from weak-perspective (i.e. [s, tx, ty]) to full-perspective (i.e. [tx, ty, tz] and focal_length = 5000 --> this is basically just weak-perspective anyway) - pred_smpl_params: dict with keys: - global_orient: (1, num_samples, 1, 3, 3) tensor - body_pose: (1, num_samples, 23, 3, 3) tensor - betas: (1, num_samples, 10) tensor, betas are same for all samples - pred_pose_6d: (1, num_samples, 144) tensor - pred_vertices: (1, num_samples, 6890, 3) tensor - pred_keypoints_3d: (1, num_samples, 44, 3) tensor - pred_keypoints_2d: (1, num_samples, 44, 2) tensor - log_prob: (1, num_samples) tensor - conditioning_feats: (1, 2047) tensor """ pred_cam_wp = out['pred_cam'][:, 0, :] pred_pose_rotmats_mode = out['pred_smpl_params']['body_pose'][:, 0, :, :, :] pred_glob_rotmat_mode = out['pred_smpl_params']['global_orient'][:, 0, :, :, :] pred_shape_mode = out['pred_smpl_params']['betas'][:, 0, :] pred_pose_rotmats_samples = out['pred_smpl_params']['body_pose'][0, 1:, :, :, :] pred_glob_rotmat_samples = out['pred_smpl_params']['global_orient'][0, 1:, :, :, :] pred_shape_samples = out['pred_smpl_params']['betas'][0, 1:, :] assert pred_pose_rotmats_samples.shape[0] == num_pred_samples pred_smpl_output_mode = smpl_neutral(body_pose=pred_pose_rotmats_mode, global_orient=pred_glob_rotmat_mode, betas=pred_shape_mode, pose2rot=False) pred_vertices_mode = pred_smpl_output_mode.vertices # (1, 6890, 3) pred_joints_h36mlsp_mode = pred_smpl_output_mode.joints[:, my_config.ALL_JOINTS_TO_H36M_MAP, :][:, my_config.H36M_TO_J14, :] # (1, 14, 3) pred_joints_coco_mode = pred_smpl_output_mode.joints[:, my_config.ALL_JOINTS_TO_COCO_MAP, :] # (1, 17, 3) pred_vertices2D_mode = orthographic_project_torch(pred_vertices_mode, pred_cam_wp, scale_first=False) pred_vertices2D_mode = undo_keypoint_normalisation(pred_vertices2D_mode, input.shape[-1]) pred_joints2D_coco_mode = orthographic_project_torch(pred_joints_coco_mode, pred_cam_wp) # (1, 17, 2) pred_joints2D_coco_mode = undo_keypoint_normalisation(pred_joints2D_coco_mode, input.shape[-1]) pred_reposed_vertices_mean = smpl_neutral(betas=pred_shape_mode).vertices # (1, 6890, 3) pred_smpl_output_samples = smpl_neutral(body_pose=pred_pose_rotmats_samples, global_orient=pred_glob_rotmat_samples, betas=pred_shape_samples, pose2rot=False) pred_vertices_samples = pred_smpl_output_samples.vertices # (num_pred_samples, 6890, 3) pred_joints_h36mlsp_samples = pred_smpl_output_samples.joints[:, my_config.ALL_JOINTS_TO_H36M_MAP, :][:, my_config.H36M_TO_J14, :] # (num_samples, 14, 3) pred_joints_coco_samples = pred_smpl_output_samples.joints[:, my_config.ALL_JOINTS_TO_COCO_MAP, :] # (num_pred_samples, 17, 3) pred_joints2D_coco_samples = orthographic_project_torch(pred_joints_coco_samples, pred_cam_wp) # (num_pred_samples, 17, 2) pred_joints2D_coco_samples = undo_keypoint_normalisation(pred_joints2D_coco_samples, input.shape[-1]) pred_reposed_vertices_samples = smpl_neutral(body_pose=torch.zeros(num_pred_samples, 69, device=device, dtype=torch.float32), global_orient=torch.zeros(num_pred_samples, 3, device=device, dtype=torch.float32), betas=pred_shape_samples).vertices # (num_pred_samples, 6890, 3) # ------------------------------------------------ METRICS ------------------------------------------------ # Numpy-fying targets target_vertices = target_vertices.cpu().detach().numpy() target_joints_h36mlsp = target_joints_h36mlsp.cpu().detach().numpy() target_reposed_vertices = target_reposed_vertices.cpu().detach().numpy() # Numpy-fying preds pred_vertices_mode = pred_vertices_mode.cpu().detach().numpy() pred_joints_h36mlsp_mode = pred_joints_h36mlsp_mode.cpu().detach().numpy() pred_joints_coco_mode = pred_joints_coco_mode.cpu().detach().numpy() pred_vertices2D_mode = pred_vertices2D_mode.cpu().detach().numpy() pred_joints2D_coco_mode = pred_joints2D_coco_mode.cpu().detach().numpy() pred_reposed_vertices_mean = pred_reposed_vertices_mean.cpu().detach().numpy() pred_vertices_samples = pred_vertices_samples.cpu().detach().numpy() pred_joints_h36mlsp_samples = pred_joints_h36mlsp_samples.cpu().detach().numpy() pred_joints_coco_samples = pred_joints_coco_samples.cpu().detach().numpy() pred_joints2D_coco_samples = pred_joints2D_coco_samples.cpu().detach().numpy() pred_reposed_vertices_samples = pred_reposed_vertices_samples.cpu().detach().numpy() # -------------- 3D Metrics with Mode and Minimum Error Samples -------------- if 'pves' in metrics_to_track: pve_batch = np.linalg.norm(pred_vertices_mode - target_vertices, axis=-1) # (bs, 6890) metric_sums['pves'] += np.sum(pve_batch) # scalar per_frame_metrics['pves'].append(np.mean(pve_batch, axis=-1)) if 'pves_samples_min' in metrics_to_track: pve_per_sample = np.linalg.norm(pred_vertices_samples - target_vertices, axis=-1) # (num samples, 6890) min_pve_sample = np.argmin(np.mean(pve_per_sample, axis=-1)) pve_samples_min_batch = pve_per_sample[min_pve_sample] # (6890,) metric_sums['pves_samples_min'] += np.sum(pve_samples_min_batch) per_frame_metrics['pves_samples_min'].append(np.mean(pve_samples_min_batch, axis=-1, keepdims=True)) # (1,) # Scale and translation correction if 'pves_sc' in metrics_to_track: pred_vertices_sc = scale_and_translation_transform_batch( pred_vertices_mode, target_vertices) pve_sc_batch = np.linalg.norm( pred_vertices_sc - target_vertices, axis=-1) # (bs, 6890) metric_sums['pves_sc'] += np.sum(pve_sc_batch) # scalar per_frame_metrics['pves_sc'].append(np.mean(pve_sc_batch, axis=-1)) if 'pves_sc_samples_min' in metrics_to_track: target_vertices_tiled = np.tile(target_vertices, (num_pred_samples, 1, 1)) # (num samples, 6890, 3) pred_vertices_samples_sc = scale_and_translation_transform_batch( pred_vertices_samples, target_vertices_tiled) pve_sc_per_sample = np.linalg.norm(pred_vertices_samples_sc - target_vertices_tiled, axis=-1) # (num samples, 6890) min_pve_sc_sample = np.argmin(np.mean(pve_sc_per_sample, axis=-1)) pve_sc_samples_min_batch = pve_sc_per_sample[min_pve_sc_sample] # (6890,) metric_sums['pves_sc_samples_min'] += np.sum(pve_sc_samples_min_batch) per_frame_metrics['pves_sc_samples_min'].append(np.mean(pve_sc_samples_min_batch, axis=-1, keepdims=True)) # (1,) # Procrustes analysis if 'pves_pa' in metrics_to_track: pred_vertices_pa = compute_similarity_transform_batch_numpy(pred_vertices_mode, target_vertices) pve_pa_batch = np.linalg.norm(pred_vertices_pa - target_vertices, axis=-1) # (bs, 6890) metric_sums['pves_pa'] += np.sum(pve_pa_batch) # scalar per_frame_metrics['pves_pa'].append(np.mean(pve_pa_batch, axis=-1)) if 'pves_pa_samples_min' in metrics_to_track: target_vertices_tiled = np.tile(target_vertices, (num_pred_samples, 1, 1)) # (num samples, 6890, 3) pred_vertices_samples_pa = compute_similarity_transform_batch_numpy( pred_vertices_samples, target_vertices_tiled) pve_pa_per_sample = np.linalg.norm(pred_vertices_samples_pa - target_vertices_tiled, axis=-1) # (num samples, 6890) min_pve_pa_sample = np.argmin(np.mean(pve_pa_per_sample, axis=-1)) pve_pa_samples_min_batch = pve_pa_per_sample[min_pve_pa_sample] # (6890,) metric_sums['pves_pa_samples_min'] += np.sum(pve_pa_samples_min_batch) per_frame_metrics['pves_pa_samples_min'].append(np.mean(pve_pa_samples_min_batch, axis=-1, keepdims=True)) # (1,) if 'pve-ts' in metrics_to_track: pvet_batch = np.linalg.norm(pred_reposed_vertices_mean - target_reposed_vertices, axis=-1) metric_sums['pve-ts'] += np.sum(pvet_batch) # scalar per_frame_metrics['pve-ts'].append(np.mean(pvet_batch, axis=-1)) if 'pve-ts_samples_min' in metrics_to_track: pvet_per_sample = np.linalg.norm(pred_reposed_vertices_samples - target_reposed_vertices, axis=-1) # (num samples, 6890) min_pvet_sample = np.argmin(np.mean(pvet_per_sample, axis=-1)) pvet_samples_min_batch = pvet_per_sample[min_pvet_sample] # (6890,) metric_sums['pve-ts_samples_min'] += np.sum(pvet_samples_min_batch) per_frame_metrics['pve-ts_samples_min'].append(np.mean(pvet_samples_min_batch, axis=-1, keepdims=True)) # (1,) # Scale and translation correction if 'pve-ts_sc' in metrics_to_track: pred_reposed_vertices_sc = scale_and_translation_transform_batch( pred_reposed_vertices_mean, target_reposed_vertices) pvet_scale_corrected_batch = np.linalg.norm( pred_reposed_vertices_sc - target_reposed_vertices, axis=-1) # (bs, 6890) metric_sums['pve-ts_sc'] += np.sum(pvet_scale_corrected_batch) # scalar per_frame_metrics['pve-ts_sc'].append(np.mean(pvet_scale_corrected_batch, axis=-1)) if 'pve-ts_sc_samples_min' in metrics_to_track: target_reposed_vertices_tiled = np.tile(target_reposed_vertices, (num_pred_samples, 1, 1)) # (num samples, 6890, 3) pred_reposed_vertices_samples_sc = scale_and_translation_transform_batch( pred_reposed_vertices_samples, target_reposed_vertices_tiled) pvet_sc_per_sample = np.linalg.norm(pred_reposed_vertices_samples_sc - target_reposed_vertices_tiled, axis=-1) # (num samples, 6890) min_pvet_sc_sample = np.argmin(np.mean(pvet_sc_per_sample, axis=-1)) pvet_sc_samples_min_batch = pvet_sc_per_sample[min_pvet_sc_sample] # (6890,) metric_sums['pve-ts_sc_samples_min'] += np.sum(pvet_sc_samples_min_batch) per_frame_metrics['pve-ts_sc_samples_min'].append(np.mean(pvet_sc_samples_min_batch, axis=-1, keepdims=True)) # (1,) if 'mpjpes' in metrics_to_track: mpjpe_batch = np.linalg.norm(pred_joints_h36mlsp_mode - target_joints_h36mlsp, axis=-1) # (bs, 14) metric_sums['mpjpes'] += np.sum(mpjpe_batch) # scalar per_frame_metrics['mpjpes'].append(np.mean(mpjpe_batch, axis=-1)) if 'mpjpes_samples_min' in metrics_to_track: mpjpe_per_sample = np.linalg.norm(pred_joints_h36mlsp_samples - target_joints_h36mlsp, axis=-1) # (num samples, 14) min_mpjpe_sample = np.argmin(np.mean(mpjpe_per_sample, axis=-1)) mpjpe_samples_min_batch = mpjpe_per_sample[min_mpjpe_sample] # (14,) metric_sums['mpjpes_samples_min'] += np.sum(mpjpe_samples_min_batch) per_frame_metrics['mpjpes_samples_min'].append(np.mean(mpjpe_samples_min_batch, axis=-1, keepdims=True)) # (1,) # Scale and translation correction if 'mpjpes_sc' in metrics_to_track: pred_joints_h36mlsp_sc = scale_and_translation_transform_batch( pred_joints_h36mlsp_mode, target_joints_h36mlsp) mpjpe_sc_batch = np.linalg.norm( pred_joints_h36mlsp_sc - target_joints_h36mlsp, axis=-1) # (bs, 14) metric_sums['mpjpes_sc'] += np.sum(mpjpe_sc_batch) # scalar per_frame_metrics['mpjpes_sc'].append(np.mean(mpjpe_sc_batch, axis=-1)) if 'mpjpes_sc_samples_min' in metrics_to_track: target_joints_h36mlsp_tiled = np.tile(target_joints_h36mlsp, (num_pred_samples, 1, 1)) # (num samples, 14, 3) pred_joints_h36mlsp_samples_sc = scale_and_translation_transform_batch( pred_joints_h36mlsp_samples, target_joints_h36mlsp_tiled) mpjpe_sc_per_sample = np.linalg.norm(pred_joints_h36mlsp_samples_sc - target_joints_h36mlsp_tiled, axis=-1) # (num samples, 14) min_mpjpe_sc_sample = np.argmin(np.mean(mpjpe_sc_per_sample, axis=-1)) mpjpe_sc_samples_min_batch = mpjpe_sc_per_sample[min_mpjpe_sc_sample] # (14,) metric_sums['mpjpes_sc_samples_min'] += np.sum(mpjpe_sc_samples_min_batch) per_frame_metrics['mpjpes_sc_samples_min'].append(np.mean(mpjpe_sc_samples_min_batch, axis=-1, keepdims=True)) # (1,) # Procrustes analysis if 'mpjpes_pa' in metrics_to_track: pred_joints_h36mlsp_pa = compute_similarity_transform_batch_numpy(pred_joints_h36mlsp_mode, target_joints_h36mlsp) mpjpe_pa_batch = np.linalg.norm(pred_joints_h36mlsp_pa - target_joints_h36mlsp, axis=-1) # (bs, 14) metric_sums['mpjpes_pa'] += np.sum(mpjpe_pa_batch) # scalar per_frame_metrics['mpjpes_pa'].append(np.mean(mpjpe_pa_batch, axis=-1)) if 'mpjpes_pa_samples_min' in metrics_to_track: target_joints_h36mlsp_tiled = np.tile(target_joints_h36mlsp, (num_pred_samples, 1, 1)) # (num samples, 14, 3) pred_joints_h36mlsp_samples_pa = compute_similarity_transform_batch_numpy( pred_joints_h36mlsp_samples, target_joints_h36mlsp_tiled) mpjpe_pa_per_sample = np.linalg.norm(pred_joints_h36mlsp_samples_pa - target_joints_h36mlsp_tiled, axis=-1) # (num samples, 14) min_mpjpe_pa_sample = np.argmin(np.mean(mpjpe_pa_per_sample, axis=-1)) mpjpe_pa_samples_min_batch = mpjpe_pa_per_sample[min_mpjpe_pa_sample] # (14,) metric_sums['mpjpes_pa_samples_min'] += np.sum(mpjpe_pa_samples_min_batch) per_frame_metrics['mpjpes_pa_samples_min'].append(np.mean(mpjpe_pa_samples_min_batch, axis=-1, keepdims=True)) # (1,) # ---------------- 3D Sample Distance from Mean (i.e. Variance) Metrics ----------- if 'verts_samples_dist_from_mean' in metrics_to_track: verts_samples_mean = pred_vertices_samples.mean(axis=0) # (6890, 3) verts_samples_dist_from_mean = np.linalg.norm(pred_vertices_samples - verts_samples_mean, axis=-1) # (num samples, 6890) metric_sums['verts_samples_dist_from_mean'] += verts_samples_dist_from_mean.sum() per_frame_metrics['verts_samples_dist_from_mean'].append(verts_samples_dist_from_mean.mean()[None]) # (1,) if 'joints3D_coco_samples_dist_from_mean' in metrics_to_track: joints3D_coco_samples_mean = pred_joints_coco_samples.mean(axis=0) # (17, 3) joints3D_coco_samples_dist_from_mean = np.linalg.norm(pred_joints_coco_samples - joints3D_coco_samples_mean, axis=-1) # (num samples, 17) metric_sums['joints3D_coco_samples_dist_from_mean'] += joints3D_coco_samples_dist_from_mean.sum() # scalar per_frame_metrics['joints3D_coco_samples_dist_from_mean'].append(joints3D_coco_samples_dist_from_mean.mean()[None]) # (1,) if 'joints3D_coco_invis_samples_dist_from_mean' in metrics_to_track: # (In)visibility of specific joints determined by HRNet 2D joint predictions and confidence scores. hrnet_joints2D_coco_invis = np.logical_not(hrnet_joints2D_coco_vis[0]) # (17,) if np.any(hrnet_joints2D_coco_invis): joints3D_coco_invis_samples = pred_joints_coco_samples[:, hrnet_joints2D_coco_invis, :] # (num samples, num invis joints, 3) joints3D_coco_invis_samples_mean = joints3D_coco_invis_samples.mean(axis=0) # (num_invis_joints, 3) joints3D_coco_invis_samples_dist_from_mean = np.linalg.norm(joints3D_coco_invis_samples - joints3D_coco_invis_samples_mean, axis=-1) # (num samples, num_invis_joints) metric_sums['joints3D_coco_invis_samples_dist_from_mean'] += joints3D_coco_invis_samples_dist_from_mean.sum() # scalar metric_sums['num_invis_joints3Dsamples'] += np.prod(joints3D_coco_invis_samples_dist_from_mean.shape) per_frame_metrics['joints3D_coco_invis_samples_dist_from_mean'].append(joints3D_coco_invis_samples_dist_from_mean.mean()[None]) # (1,) else: per_frame_metrics['joints3D_coco_invis_samples_dist_from_mean'].append(np.zeros(1)) # -------------------------------- 2D Metrics --------------------------- # Using JRNet 2D joints as target, rather than GT if 'hrnet_joints2D_l2es' in metrics_to_track: hrnet_joints2D_l2e_batch = np.linalg.norm(pred_joints2D_coco_mode[:, hrnet_joints2D_coco_vis[0], :] - hrnet_joints2D_coco[:, hrnet_joints2D_coco_vis[0], :], axis=-1) # (1, num vis joints) assert hrnet_joints2D_l2e_batch.shape[1] == hrnet_joints2D_coco_vis.sum() metric_sums['hrnet_joints2D_l2es'] += np.sum(hrnet_joints2D_l2e_batch) # scalar metric_sums['num_vis_hrnet_joints2D'] += hrnet_joints2D_l2e_batch.shape[1] per_frame_metrics['hrnet_joints2D_l2es'].append(np.mean(hrnet_joints2D_l2e_batch, axis=-1)) # (1,) # -------------------------------- 2D Metrics after Averaging over Samples --------------------------- if 'hrnet_joints2Dsamples_l2es' in metrics_to_track: hrnet_joints2Dsamples_l2e_batch = np.linalg.norm(pred_joints2D_coco_samples[:, hrnet_joints2D_coco_vis[0], :] - hrnet_joints2D_coco[:, hrnet_joints2D_coco_vis[0], :], axis=-1) # (num_samples, num vis joints) assert hrnet_joints2Dsamples_l2e_batch.shape[1] == hrnet_joints2D_coco_vis.sum() metric_sums['hrnet_joints2Dsamples_l2es'] += np.sum(hrnet_joints2Dsamples_l2e_batch) # scalar metric_sums['num_vis_hrnet_joints2Dsamples'] += np.prod(hrnet_joints2Dsamples_l2e_batch.shape) per_frame_metrics['hrnet_joints2Dsamples_l2es'].append(np.mean(hrnet_joints2Dsamples_l2e_batch)[None]) # (1,) metric_sums['num_datapoints'] += target_pose.shape[0] fname_per_frame.append(fname) pose_per_frame.append(np.concatenate([pred_glob_rotmat_mode.cpu().detach().numpy(), pred_pose_rotmats_mode.cpu().detach().numpy()], axis=1)) shape_per_frame.append(pred_shape_mode.cpu().detach().numpy()) cam_per_frame.append(pred_cam_wp.cpu().detach().numpy()) # ------------------------------- VISUALISE ------------------------------- if vis_every_n_batches is not None and batch_num % vis_every_n_batches == 0: vis_img = samples_batch['vis_img'].numpy() vis_img = np.transpose(vis_img, [0, 2, 3, 1]) pred_cam_t = out['pred_cam_t'][0, 0, :].cpu().detach().numpy() # Uncertainty Computation # Uncertainty computed by sampling + average distance from mean avg_vertices_distance_from_mean, avg_vertices_sc_distance_from_mean = compute_vertex_uncertainties_from_samples( vertices_samples=pred_vertices_samples, target_vertices=target_vertices) if save_per_frame_uncertainty: vertices_uncertainty_per_frame.append(avg_vertices_distance_from_mean) # Render predicted meshes body_vis_rgb_mode = renderer(vertices=pred_vertices_mode[0], camera_translation=pred_cam_t.copy(), image=vis_img[0], unnormalise_img=False) body_vis_rgb_mode_rot = renderer(vertices=pred_vertices_mode[0], camera_translation=pred_cam_t.copy(), image=np.zeros_like(vis_img[0]), unnormalise_img=False, angle=np.pi/2., axis=[0., 1., 0.]) reposed_body_vis_rgb_mean = renderer(vertices=pred_reposed_vertices_mean[0], camera_translation=reposed_cam_t.copy(), image=np.zeros_like(vis_img[0]), unnormalise_img=False, flip_updown=False) reposed_body_vis_rgb_mean_rot = renderer(vertices=pred_reposed_vertices_mean[0], camera_translation=reposed_cam_t.copy(), image=np.zeros_like(vis_img[0]), unnormalise_img=False, angle=np.pi / 2., axis=[0., 1., 0.], flip_updown=False) body_vis_rgb_samples = [] body_vis_rgb_rot_samples = [] for i in range(num_samples_to_visualise): body_vis_rgb_samples.append(renderer(vertices=pred_vertices_samples[i], camera_translation=pred_cam_t.copy(), image=vis_img[0], unnormalise_img=False)) body_vis_rgb_rot_samples.append(renderer(vertices=pred_vertices_samples[i], camera_translation=pred_cam_t.copy(), image=np.zeros_like(vis_img[0]), unnormalise_img=False, angle=np.pi / 2., axis=[0., 1., 0.])) # Save samples samples_save_path = os.path.join(save_path, os.path.splitext(fname[0])[0] + '_samples.npy') np.save(samples_save_path, pred_vertices_samples) # ------------------ Model Prediction, Error and Uncertainty Figure ------------------ num_row = 5 num_col = 6 subplot_count = 1 plt.figure(figsize=(20, 20)) # Plot image and mask vis plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(vis_img[0]) subplot_count += 1 # Plot pred vertices 2D and body render overlaid over input plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(vis_img[0]) plt.scatter(pred_vertices2D_mode[0, :, 0], pred_vertices2D_mode[0, :, 1], c='r', s=0.01) subplot_count += 1 # Plot body render overlaid on vis image plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(body_vis_rgb_mode) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(body_vis_rgb_mode_rot) subplot_count += 1 # Plot reposed body render plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(reposed_body_vis_rgb_mean) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(reposed_body_vis_rgb_mean_rot) subplot_count += 1 if 'pves_sc' in metrics_to_track: # Plot PVE-SC pred vs target comparison plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.text(0.5, 0.5, s='PVE-SC') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.02, c='blue') plt.scatter(pred_vertices_sc[0, :, 0], pred_vertices_sc[0, :, 1], s=0.01, c='red') plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_sc[0, :, 0], pred_vertices_sc[0, :, 1], s=0.05, c=pve_sc_batch[0], cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') plt.text(-0.6, -0.9, s='PVE-SC: {:.4f}'.format(per_frame_metrics['pves_sc'][batch_num][0])) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_sc[0, :, 2], # Equivalent to Rotated 90° about y axis pred_vertices_sc[0, :, 1], s=0.05, c=pve_sc_batch[0], cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') plt.text(-0.6, -0.9, s='PVE-SC: {:.4f}'.format(per_frame_metrics['pves_sc'][batch_num][0])) subplot_count += 1 if 'pves_pa' in metrics_to_track: # Plot PVE-PA pred vs target comparison plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.text(0.5, 0.5, s='PVE-PA') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.02, c='blue') plt.scatter(pred_vertices_pa[0, :, 0], pred_vertices_pa[0, :, 1], s=0.01, c='red') plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_pa[0, :, 0], pred_vertices_pa[0, :, 1], s=0.05, c=pve_pa_batch[0], cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') plt.text(-0.6, -0.9, s='PVE-PA: {:.4f}'.format(per_frame_metrics['pves_pa'][batch_num][0])) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_pa[0, :, 2], # Equivalent to Rotated 90° about y axis pred_vertices_pa[0, :, 1], s=0.05, c=pve_pa_batch[0], cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') plt.text(-0.6, -0.9, s='PVE-PA: {:.4f}'.format(per_frame_metrics['pves_pa'][batch_num][0])) subplot_count += 1 if 'pve-ts_sc' in metrics_to_track: plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.text(0.5, 0.5, s='PVE-T-SC') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.scatter(target_reposed_vertices[0, :, 0], target_reposed_vertices[0, :, 1], s=0.02, c='blue') plt.scatter(pred_reposed_vertices_sc[0, :, 0], pred_reposed_vertices_sc[0, :, 1], s=0.01, c='red') plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') norm = plt.Normalize(vmin=0.0, vmax=0.03, clip=True) plt.scatter(pred_reposed_vertices_sc[0, :, 0], pred_reposed_vertices_sc[0, :, 1], s=0.05, c=pvet_scale_corrected_batch[0], cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') plt.text(-0.6, -0.9, s='PVE-T-SC: {:.4f}'.format(per_frame_metrics['pve-ts_sc'][batch_num][0])) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') norm = plt.Normalize(vmin=0.0, vmax=0.03, clip=True) plt.scatter(pred_reposed_vertices_sc[0, :, 2], # Equivalent to Rotated 90° about y axis pred_reposed_vertices_sc[0, :, 1], s=0.05, c=pvet_scale_corrected_batch[0], cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') plt.text(-0.6, -0.9, s='PVE-T-SC: {:.4f}'.format(per_frame_metrics['pve-ts_sc'][batch_num][0])) subplot_count += 1 # Plot per-vertex uncertainties plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.text(0.5, 0.5, s='Uncertainty for\nPVE') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_sc[0, :, 0], pred_vertices_sc[0, :, 1], s=0.05, c=avg_vertices_distance_from_mean, cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_sc[0, :, 2], pred_vertices_sc[0, :, 1], s=0.05, c=avg_vertices_sc_distance_from_mean, cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.text(0.5, 0.5, s='Uncertainty for\nPVE-SC') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_pa[0, :, 0], pred_vertices_pa[0, :, 1], s=0.05, c=avg_vertices_sc_distance_from_mean, cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.gca().invert_yaxis() norm = plt.Normalize(vmin=0.0, vmax=0.2, clip=True) plt.scatter(pred_vertices_pa[0, :, 2], # Equivalent to Rotated 90° about y axis pred_vertices_pa[0, :, 1], s=0.05, c=avg_vertices_sc_distance_from_mean, cmap='jet', norm=norm) plt.gca().set_aspect('equal', adjustable='box') subplot_count += 1 plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) save_fig_path = os.path.join(save_path, fname[0]) plt.savefig(save_fig_path, bbox_inches='tight') plt.close() # ------------------ Samples from Predicted Distribution Figure ------------------ num_subplots = num_samples_to_visualise * 2 + 2 num_row = 4 num_col = math.ceil(num_subplots / float(num_row)) subplot_count = 1 plt.figure(figsize=(20, 20)) # Plot mode prediction plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(body_vis_rgb_mode) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(body_vis_rgb_mode_rot) subplot_count += 1 # Plot samples from predicted distribution for i in range(num_samples_to_visualise): plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(body_vis_rgb_samples[i]) subplot_count += 1 plt.subplot(num_row, num_col, subplot_count) plt.gca().axis('off') plt.imshow(body_vis_rgb_rot_samples[i]) subplot_count += 1 plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) save_fig_path = os.path.join(save_path, os.path.splitext(fname[0])[0] + '_samples.png') plt.savefig(save_fig_path, bbox_inches='tight') plt.close() # ------------------------------- DISPLAY METRICS AND SAVE PER-FRAME METRICS ------------------------------- print('\n--- Check Pred save Shapes ---') fname_per_frame = np.concatenate(fname_per_frame, axis=0) np.save(os.path.join(save_path, 'fname_per_frame.npy'), fname_per_frame) print(fname_per_frame.shape) pose_per_frame = np.concatenate(pose_per_frame, axis=0) np.save(os.path.join(save_path, 'pose_per_frame.npy'), pose_per_frame) print(pose_per_frame.shape) shape_per_frame = np.concatenate(shape_per_frame, axis=0) np.save(os.path.join(save_path, 'shape_per_frame.npy'), shape_per_frame) print(shape_per_frame.shape) cam_per_frame = np.concatenate(cam_per_frame, axis=0) np.save(os.path.join(save_path, 'cam_per_frame.npy'), cam_per_frame) print(cam_per_frame.shape) if vis_every_n_batches is not None and save_per_frame_uncertainty: vertices_uncertainty_per_frame = np.stack(vertices_uncertainty_per_frame, axis=0) np.save(os.path.join(save_path, 'vertices_uncertainty_per_frame.npy'), vertices_uncertainty_per_frame) print(vertices_uncertainty_per_frame.shape) final_metrics = {} for metric_type in metrics_to_track: if metric_type == 'hrnet_joints2D_l2es': joints2D_l2e = metric_sums['hrnet_joints2D_l2es'] / metric_sums['num_vis_hrnet_joints2D'] final_metrics[metric_type] = joints2D_l2e print('Check total samples:', metric_type, metric_sums['num_vis_hrnet_joints2D']) elif metric_type == 'hrnet_joints2D_l2es_best_j2d_sample': joints2D_l2e_best_j2d_sample = metric_sums['hrnet_joints2D_l2es_best_j2d_sample'] / metric_sums['num_vis_hrnet_joints2D'] final_metrics[metric_type] = joints2D_l2e_best_j2d_sample elif metric_type == 'hrnet_joints2Dsamples_l2es': joints2Dsamples_l2e = metric_sums['hrnet_joints2Dsamples_l2es'] / metric_sums['num_vis_hrnet_joints2Dsamples'] final_metrics[metric_type] = joints2Dsamples_l2e print('Check total samples:', metric_type, metric_sums['num_vis_hrnet_joints2Dsamples']) elif metric_type == 'verts_samples_dist_from_mean': final_metrics[metric_type] = metric_sums[metric_type] / (metric_sums['num_datapoints'] * num_pred_samples * 6890) elif metric_type == 'joints3D_coco_samples_dist_from_mean': final_metrics[metric_type] = metric_sums[metric_type] / (metric_sums['num_datapoints'] * num_pred_samples * 17) elif metric_type == 'joints3D_coco_invis_samples_dist_from_mean': if metric_sums['num_invis_joints3Dsamples'] > 0: final_metrics[metric_type] = metric_sums[metric_type] / metric_sums['num_invis_joints3Dsamples'] else: print('No invisible 3D COCO joints!') else: if 'pves' in metric_type: num_per_sample = 6890 elif 'mpjpes' in metric_type: num_per_sample = 14 # print('Check total samples:', metric_type, num_per_sample, self.total_samples) final_metrics[metric_type] = metric_sums[metric_type] / (metric_sums['num_datapoints'] * num_per_sample) print('\n---- Metrics ----') for metric in final_metrics.keys(): if final_metrics[metric] > 0.3: mult = 1 else: mult = 1000 print(metric, '{:.2f}'.format(final_metrics[metric] * mult)) # Converting from metres to millimetres print('\n---- Check metric save shapes ----') for metric_type in metrics_to_track: per_frame = np.concatenate(per_frame_metrics[metric_type], axis=0) print(metric_type, per_frame.shape) np.save(os.path.join(save_path, metric_type + '_per_frame.npy'), per_frame) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='data/checkpoint.pt', help='Path to pretrained model checkpoint') parser.add_argument('--model_cfg', type=str, default=None, help='Path to config file. If not set use the default (prohmr/configs/prohmr.yaml)') parser.add_argument('--gpu', default='0', type=str, help='GPU') parser.add_argument('--num_samples', '-N', type=int, default=25, help='Number of test samples to evaluate with') parser.add_argument('--use_subset', '-S',action='store_true') args = parser.parse_args() # Set seeds np.random.seed(0) torch.manual_seed(0) # Device os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Model if args.model_cfg is None: model_cfg = prohmr_config() else: model_cfg = get_config(args.model_cfg) model = ProHMR.load_from_checkpoint(args.checkpoint, strict=False, cfg=model_cfg).to(device) model.eval() model_cfg.defrost() model_cfg.TRAIN.NUM_TEST_SAMPLES = args.num_samples + 1 model_cfg.freeze() # Setup evaluation dataset if args.use_subset: selected_fnames = subsets.PW3D_OCCLUDED_JOINTS vis_every_n_batches = 1 vis_joints_threshold = 0.8 else: selected_fnames = None vis_every_n_batches = 1000 vis_joints_threshold = 0.6 dataset_path = '/scratches/nazgul_2/as2562/datasets/3DPW/test' dataset = PW3DEvalDataset(dataset_path, img_wh=model_cfg.MODEL.IMAGE_SIZE, selected_fnames=selected_fnames, visible_joints_threshold=vis_joints_threshold) print("Eval examples found:", len(dataset)) # Metrics metrics = ['pves', 'pves_sc', 'pves_pa', 'pve-ts', 'pve-ts_sc', 'mpjpes', 'mpjpes_sc', 'mpjpes_pa'] metrics.extend([metric + '_samples_min' for metric in metrics ]) metrics.extend(['verts_samples_dist_from_mean', 'joints3D_coco_samples_dist_from_mean', 'joints3D_coco_invis_samples_dist_from_mean']) metrics.append('hrnet_joints2D_l2es') metrics.append('hrnet_joints2Dsamples_l2es') save_path = '/scratch/as2562/ProHMR/evaluations/3dpw_{}_samples'.format(args.num_samples) if args.use_subset: save_path += '_selected_fnames_occluded_joints' if not os.path.exists(save_path): os.makedirs(save_path) print("Saving to:", save_path) # Run evaluation evaluate_3dpw(model=model, model_cfg=model_cfg, eval_dataset=dataset, metrics_to_track=metrics, device=device, save_path=save_path, num_pred_samples=args.num_samples, num_workers=4, pin_memory=True, vis_every_n_batches=vis_every_n_batches, num_samples_to_visualise=10, save_per_frame_uncertainty=True)
53.927928
178
0.589187
1ab6542953d11f1d2d8d5391f55e0e28f9721d42
13,117
py
Python
adjutant/common/quota.py
CCI-MOC/adjutant
032db3124ea0b0632afdfc27afc60b6c66cf5f66
[ "Apache-2.0" ]
null
null
null
adjutant/common/quota.py
CCI-MOC/adjutant
032db3124ea0b0632afdfc27afc60b6c66cf5f66
[ "Apache-2.0" ]
null
null
null
adjutant/common/quota.py
CCI-MOC/adjutant
032db3124ea0b0632afdfc27afc60b6c66cf5f66
[ "Apache-2.0" ]
1
2019-04-18T12:21:59.000Z
2019-04-18T12:21:59.000Z
# Copyright (C) 2015 Catalyst IT Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from adjutant.common import openstack_clients from django.conf import settings class QuotaManager(object): """ A manager to allow easier updating and access to quota information across all services. """ default_size_diff_threshold = .2 class ServiceQuotaHelper(object): def set_quota(self, values): self.client.quotas.update(self.project_id, **values) class ServiceQuotaCinderHelper(ServiceQuotaHelper): def __init__(self, region_name, project_id): self.client = openstack_clients.get_cinderclient( region=region_name) self.project_id = project_id def get_quota(self): return self.client.quotas.get(self.project_id).to_dict() def get_usage(self): volumes = self.client.volumes.list( search_opts={'all_tenants': 1, 'project_id': self.project_id}) snapshots = self.client.volume_snapshots.list( search_opts={'all_tenants': 1, 'project_id': self.project_id}) # gigabytesUsed should be a total of volumes and snapshots gigabytes = sum([getattr(volume, 'size', 0) for volume in volumes]) gigabytes += sum([getattr(snap, 'size', 0) for snap in snapshots]) return {'gigabytes': gigabytes, 'volumes': len(volumes), 'snapshots': len(snapshots) } class ServiceQuotaNovaHelper(ServiceQuotaHelper): def __init__(self, region_name, project_id): self.client = openstack_clients.get_novaclient( region=region_name) self.project_id = project_id def get_quota(self): return self.client.quotas.get(self.project_id).to_dict() def get_usage(self): nova_usage = self.client.limits.get( tenant_id=self.project_id).to_dict()['absolute'] nova_usage_keys = [ ('instances', 'totalInstancesUsed'), ('floating_ips', 'totalFloatingIpsUsed'), ('ram', 'totalRAMUsed'), ('cores', 'totalCoresUsed'), ('secuirty_groups', 'totalSecurityGroupsUsed') ] nova_usage_dict = {} for key, usage_key in nova_usage_keys: nova_usage_dict[key] = nova_usage[usage_key] return nova_usage_dict class ServiceQuotaNeutronHelper(ServiceQuotaHelper): def __init__(self, region_name, project_id): self.client = openstack_clients.get_neutronclient( region=region_name) self.project_id = project_id def set_quota(self, values): body = { 'quota': values } self.client.update_quota(self.project_id, body) def get_usage(self): networks = self.client.list_networks( tenant_id=self.project_id)['networks'] routers = self.client.list_routers( tenant_id=self.project_id)['routers'] floatingips = self.client.list_floatingips( tenant_id=self.project_id)['floatingips'] ports = self.client.list_ports( tenant_id=self.project_id)['ports'] subnets = self.client.list_subnets( tenant_id=self.project_id)['subnets'] security_groups = self.client.list_security_groups( tenant_id=self.project_id)['security_groups'] security_group_rules = self.client.list_security_group_rules( tenant_id=self.project_id)['security_group_rules'] return {'network': len(networks), 'router': len(routers), 'floatingip': len(floatingips), 'port': len(ports), 'subnet': len(subnets), 'secuirty_group': len(security_groups), 'security_group_rule': len(security_group_rules) } def get_quota(self): return self.client.show_quota(self.project_id)['quota'] class ServiceQuotaOctaviaHelper(ServiceQuotaNeutronHelper): def __init__(self, region_name, project_id): self.client = openstack_clients.get_octaviaclient( region=region_name) self.project_id = project_id def get_quota(self): project_quota = self.client.quota_show( project_id=self.project_id) # NOTE(amelia): Instead of returning the default quota if ANY # of the quotas are the default, the endpoint # returns None default_quota = None for name, quota in project_quota.items(): if quota is None: if not default_quota: default_quota = self.client.quota_defaults_show()[ 'quota'] project_quota[name] = default_quota[name] return project_quota def set_quota(self, values): self.client.quota_set(self.project_id, json={'quota': values}) def get_usage(self): usage = {} usage['load_balancer'] = len(self.client.load_balancer_list( project_id=self.project_id)['loadbalancers']) usage['listener'] = len(self.client.listener_list( project_id=self.project_id)['listeners']) pools = self.client.pool_list( project_id=self.project_id)['pools'] usage['pool'] = len(pools) members = [] for pool in pools: members += pool['members'] usage['member'] = len(members) usage['health_monitor'] = len(self.client.health_monitor_list( project_id=self.project_id)['healthmonitors']) return usage _quota_updaters = { 'cinder': ServiceQuotaCinderHelper, 'nova': ServiceQuotaNovaHelper, 'neutron': ServiceQuotaNeutronHelper, 'octavia': ServiceQuotaOctaviaHelper, } def __init__(self, project_id, size_difference_threshold=None): # TODO(amelia): Try to find out which endpoints are available and get # the non enabled ones out of the list self.default_helpers = dict(self._quota_updaters) self.helpers = {} if settings.QUOTA_SERVICES: quota_services = dict(settings.QUOTA_SERVICES) all_regions = quota_services.pop('*', None) if all_regions: self.default_helpers = {} for service in all_regions: if service in self._quota_updaters: self.default_helpers[service] = \ self._quota_updaters[service] for region, services in quota_services.items(): self.helpers[region] = {} for service in services: if service in self._quota_updaters: self.helpers[region][service] = \ self._quota_updaters[service] self.project_id = project_id self.size_diff_threshold = (size_difference_threshold or self.default_size_diff_threshold) def get_current_region_quota(self, region_id): current_quota = {} region_helpers = self.helpers.get(region_id, self.default_helpers) for name, service in region_helpers.items(): helper = service(region_id, self.project_id) current_quota[name] = helper.get_quota() return current_quota def get_quota_differences(self, current_quota): """ Gets the closest matching quota size for a given quota """ quota_differences = {} for size, setting in settings.PROJECT_QUOTA_SIZES.items(): match_percentages = [] for service_name, values in setting.items(): if service_name not in current_quota: continue for name, value in values.items(): if name not in current_quota[service_name]: continue if value > 0: current = current_quota[service_name][name] dividend = float(min(current, value)) divisor = float(max(current, value)) match_percentages.append(dividend / divisor) elif value < 0: # NOTE(amelia): Sub-zero quota means unlimited if current_quota[service_name][name] < 0: match_percentages.append(1.0) else: match_percentages.append(0.0) elif current_quota[service_name][name] == 0: match_percentages.append(1.0) else: match_percentages.append(0.0) # Calculate the average of how much it matches the setting difference = abs( (sum(match_percentages) / float(len(match_percentages))) - 1) quota_differences[size] = difference return quota_differences def get_quota_size(self, current_quota, difference_threshold=None): """ Gets the closest matching quota size for a given quota """ quota_differences = self.get_quota_differences(current_quota) diff_threshold = difference_threshold or self.size_diff_threshold quota_differences_pruned = {} for size, difference in quota_differences.items(): if (difference <= diff_threshold): quota_differences_pruned[size] = difference if len(quota_differences_pruned) > 0: return min( quota_differences_pruned, key=quota_differences_pruned.get) # If we don't get a match return custom which means the project will # need admin approval for any change return 'custom' def get_quota_change_options(self, quota_size): """ Get's the pre-approved quota change options for a given size """ quota_list = settings.QUOTA_SIZES_ASC try: list_position = quota_list.index(quota_size) except ValueError: return [] quota_change_list = quota_list[:list_position] if list_position + 1 < len(quota_list): quota_change_list.append(quota_list[list_position + 1]) return quota_change_list def get_smaller_quota_options(self, quota_size): """ Get the quota sizes smaller than the current size.""" quota_list = settings.QUOTA_SIZES_ASC try: list_position = quota_list.index(quota_size) except ValueError: return [] return quota_list[:list_position] def get_region_quota_data(self, region_id, include_usage=True): current_quota = self.get_current_region_quota(region_id) current_quota_size = self.get_quota_size(current_quota) change_options = self.get_quota_change_options(current_quota_size) region_data = { 'region': region_id, "current_quota": current_quota, "current_quota_size": current_quota_size, "quota_change_options": change_options, } if include_usage: region_data['current_usage'] = self.get_current_usage(region_id) return region_data def get_current_usage(self, region_id): current_usage = {} region_helpers = self.helpers.get(region_id, self.default_helpers) for name, service in region_helpers.items(): helper = service(region_id, self.project_id) current_usage[name] = helper.get_usage() return current_usage def set_region_quota(self, region_id, quota_dict): notes = [] for service_name, values in quota_dict.items(): updater_class = self.helpers.get( region_id, self.default_helpers).get(service_name) if not updater_class: notes.append("No quota updater found for %s. Ignoring" % service_name) continue service_helper = updater_class(region_id, self.project_id) service_helper.set_quota(values) return notes
39.272455
78
0.593733
b1c9bd63ff9d9946a0583df2997c2d43c8e6f9a6
3,563
py
Python
drag5a.py
jwcraftsman/kivytest
e1271239560d6f81d18dc15ca8ba0ce08163b800
[ "MIT" ]
null
null
null
drag5a.py
jwcraftsman/kivytest
e1271239560d6f81d18dc15ca8ba0ce08163b800
[ "MIT" ]
null
null
null
drag5a.py
jwcraftsman/kivytest
e1271239560d6f81d18dc15ca8ba0ce08163b800
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Use touch events to drag a rectangle around the screen with borders, keeping the rectangle inside a specified widget and keeping the rectangle from sliding away from the touch position when going in and out of the specified widget's screen area. The rectangle is also only allowed to be dropped in the area of a specified widget. """ from kivy.properties import ListProperty, ObjectProperty from kivy.uix.label import Label from kivy.uix.floatlayout import FloatLayout from kivy.app import App from kivy.lang import Builder kv = """ <Rect>: canvas.before: Color: rgba: self.background_color Rectangle: size: self.size pos: self.x,self.y <DragRect>: drag_rectangle: self.x, self.y, self.width, self.height <MyLabel>: background_color: 0.5,0.5,0.5,1 color: 0,0,0,1 padding: 10, 10 <Box>: pos: 100, 100 size_hint: None, None size: 50,50 background_color: 0,1,0,0.5 BoxLayout: orientation: "horizontal" MyLabel: text: "Left" size_hint_x: None width: self.texture_size[0] BoxLayout: orientation: "vertical" BoxLayout: id: drag_area orientation: "vertical" MyLabel: text: "Drag over me" size_hint_y: None height: 100 background_color: 1.0,0,0,1 RelativeLayout: id: page Box: drag_area: drag_area pos: 100, 200 background_color: 0,0,1,0.5 MyLabel: text: "Bottom" size_hint_y: None height: self.texture_size[1] MyLabel: text: "Right" size_hint_x: None width: self.texture_size[0] """ # mixin class class Rect: background_color = ListProperty([1, 1, 1, 1]) # Similar to DragBehavior class DragRect(Rect, FloatLayout): drag_area = ObjectProperty(None) drop_area = ObjectProperty(None) def __init__(self, *args, **kw): super().__init__(*args, **kw) self._x_offset = 0 self._y_offset = 0 def on_touch_down(self, touch): if self.collide_point(*touch.pos): touch.grab(self) self._x_offset = self.x - touch.x self._y_offset = self.y - touch.y return True # Don't allow simultaneous grabs def on_touch_move(self, touch): if not touch.grab_current is self: return self.x = touch.x + self._x_offset self.y = touch.y + self._y_offset # Stay inside drag_area widget self.move_inside(self.drag_area) def on_touch_up(self, touch): if touch.grab_current is self: # Stay inside drop_area widget self.move_inside(self.drop_area) touch.ungrab(self) def move_inside(self, widget): if widget is None: widget = self.parent if self.x < 0: self.x = 0 elif self.right > widget.width: self.right = widget.width if self.y < 0: self.y = 0 elif self.top > widget.height: self.top = widget.height class RectLabel(Rect, Label): pass class MyLabel(RectLabel): pass class Box(DragRect): pass class TestApp(App): def build(self): root = Builder.load_string(kv) page = root.ids.page page.add_widget(Box()) return root TestApp().run()
25.45
70
0.580971
03c85b8b62da14c0d751ec7e388acf0ea092f514
6,146
py
Python
xmind2testlink/sharedparser.py
WinterDing/xmind2testlink
ae84ae173afd24dcd0519cd501506f2650fd337b
[ "MIT" ]
null
null
null
xmind2testlink/sharedparser.py
WinterDing/xmind2testlink
ae84ae173afd24dcd0519cd501506f2650fd337b
[ "MIT" ]
null
null
null
xmind2testlink/sharedparser.py
WinterDing/xmind2testlink
ae84ae173afd24dcd0519cd501506f2650fd337b
[ "MIT" ]
1
2020-12-14T06:00:25.000Z
2020-12-14T06:00:25.000Z
from xmindparser import xmind_to_dict, config from .datatype import * config['hideEmptyValue'] = False _config = {'sep': ' ', 'valid_sep': '/>-+', 'precondition_sep': '\n----\n', 'summary_sep': '\n----\n'} def ignore_filter(topics): """filter topics starts with !""" result = [t for t in topics if t['title'] and not t['title'].startswith('!')] for topic in result: more_topics = topic.get('topics', []) topic['topics'] = ignore_filter(more_topics) return result def open_and_cache_xmind(xmind_file): if not cache: cache['sheet'] = xmind_to_dict(xmind_file) cache['root'] = get_default_sheet(cache['sheet'])['topic'] root_topics = cache['root'].get('topics', []) assert len(root_topics) > 0, "Invalid Xmind, should have at least 1 topic!" cache['root']['topics'] = ignore_filter(root_topics) cache['name'] = xmind_file get_logger().debug('Cached xmind: {}'.format(cache)) def get_default_sheet(sheets): """First sheet is the default sheet.""" assert len(sheets) >= 0, 'Invalid xmind: should have at least 1 sheet!' return sheets[0] def get_logger(): from xmindparser import logger return logger def flat_suite(suite): """Convert a suite object into flat testcase list.""" tests = [] for suite in suite.sub_suites: for test in suite.testcase_list: d = test.to_dict() d['suite'] = suite.name tests.append(d) return tests def is_v2_format(d): """v2 xmind root dict will have a star maker, or sub node of testcase marked with priority.""" if _is_v2_by_marker(d) or _is_v2_by_guess(d): _get_v2_sep(d) return True def _get_v2_sep(d): """v2 sep is this last char of title.""" last_char = d['title'][-1:] if last_char in _config['valid_sep']: cache['sep'] = last_char def _is_v2_by_marker(d, maker_prefix='star'): """check if a node have a star maker""" if isinstance(d['makers'], list): for m in d['makers']: if m.startswith(maker_prefix): return True def _is_v2_by_guess(d): """if any sub topic from testcase node mark with priority, this can be guessed as v2 xmind. """ for suite_node in d['topics']: for testcase_node in suite_node['topics']: sub_topics = testcase_node['topics'] while sub_topics: for _ in sub_topics: temp_topics = [] if _is_v2_by_marker(_, maker_prefix='priority'): return True else: temp_topics.extend(_['topics']) sub_topics = temp_topics def get_priority(d): if isinstance(d['makers'], list): for m in d['makers']: if m.startswith('priority'): return int(m[-1]) def get_execution_type(d): """ support testcase option automation/manual by using "flag-green" :param d: testcase topic :return: 2 is automation, 1 is manual """ #winter add to get automation flag "flag_green" if isinstance(d['makers'], list): if 'flag-green' in d['makers']: return 2 return 1 def _filter_empty_value(values): result = [v for v in values if v] for r in result: if not isinstance(r, str): get_logger().error('Expected string but not: {}'.format(r)) return [v.strip() for v in result] # remove blank char in leading and trailing def _filter_empty_comments(comment_values): """comment value like: [[{content:comment1},{content:comment2}],[...]]""" for comments in comment_values: for comment in comments: if comment.get('content'): yield comment['content'] def is_testcase_topic(d): priority = get_priority(d) if priority: return True child_node = d.get('topics', []) # if only one child topic and it is image or blank, consider parent is a test if len(child_node) == 1 and child_node[0]['title'] in ('[Image]', '[Blank]'): return True if child_node: return False return True def build_testcase_title(nodes): values = [n['title'] for n in nodes] values = _filter_empty_value(values) # when sep is not blank, will add space around sep, e.g. '/' will be changed to ' / ' sep = cache.get('sep', _config['sep']) if sep != ' ': sep = ' {} '.format(sep) return sep.join(values) def build_testcase_precondition(nodes): values = (n['comment'] for n in nodes if n.get('comment', None)) values = list(_filter_empty_comments(values)) if not values: # try to get from callout for n in nodes: for _ in n.get('callout', None) or []: values.append(_) comments = _filter_empty_value(values) return _config['precondition_sep'].join(comments) def build_testcase_summary(nodes): values = [n['note'] for n in nodes] values = _filter_empty_value(values) return _config['summary_sep'].join(values) def parse_step(step_dict): step = TestStep() step.action = step_dict['title'] expected_node = step_dict.get('topics', None) if expected_node: step.expected = expected_node[0]['title'] return step def parse_steps(steps_dict): steps = [] for step_number, step_node in enumerate(steps_dict, 1): step = parse_step(step_node) step.number = step_number steps.append(step) return steps def parse_testcase(testcase_dict, parent=None): testcase = TestCase() nodes = parent + [testcase_dict] if parent else [testcase_dict] testcase.name = build_testcase_title(nodes) testcase.summary = build_testcase_summary(nodes) testcase.preconditions = build_testcase_precondition(nodes) testcase.importance = get_priority(testcase_dict) testcase.execution_type = get_execution_type(testcase_dict) steps_node = testcase_dict.get('topics', None) if steps_node: testcase.steps = parse_steps(steps_node) return testcase
27.809955
99
0.622356
bd558656981b3f712358d03ca088cf37aacf0aae
565
py
Python
LeetCode/0452_Minimum_Number_of_Arrows_to_Burst_Balloons.py
Achyut-sudo/PythonAlgorithms
21fb6522510fde7a0877b19a8cedd4665938a4df
[ "MIT" ]
144
2020-09-13T22:54:57.000Z
2022-02-24T21:54:25.000Z
LeetCode/0452_Minimum_Number_of_Arrows_to_Burst_Balloons.py
Achyut-sudo/PythonAlgorithms
21fb6522510fde7a0877b19a8cedd4665938a4df
[ "MIT" ]
587
2020-05-06T18:55:07.000Z
2021-09-20T13:14:53.000Z
LeetCode/0452_Minimum_Number_of_Arrows_to_Burst_Balloons.py
Achyut-sudo/PythonAlgorithms
21fb6522510fde7a0877b19a8cedd4665938a4df
[ "MIT" ]
523
2020-09-09T12:07:13.000Z
2022-02-24T21:54:31.000Z
class Solution: def findMinArrowShots(self, points: List[List[int]]) -> int: if points == []: return 0 points.sort(key = lambda x: x[0]) start = points[0][0] end = points[0][1] ans = len(points) for i in range(1, len(points)): if start <= points[i][0] <= end: ans -= 1 if points[i][1] < end: end = points[i][1] else: start = points[i][0] end = points[i][1] return ans
29.736842
64
0.414159
86306a66bd617f64631f7112508129b41aaa7b54
570
py
Python
backend/home/api/v1/urls.py
crowdbotics-apps/virtual-match-29867
9c2a092e49db5aa5c09704c957d616390a4e5543
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/api/v1/urls.py
crowdbotics-apps/virtual-match-29867
9c2a092e49db5aa5c09704c957d616390a4e5543
[ "FTL", "AML", "RSA-MD" ]
15
2021-08-23T01:13:44.000Z
2022-03-13T17:38:13.000Z
backend/home/api/v1/urls.py
crowdbotics-apps/virtual-match-29867
9c2a092e49db5aa5c09704c957d616390a4e5543
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from django.urls import path, include from rest_framework.routers import DefaultRouter from .viewsets import MessageViewSet, CustomTextViewSet, HomePageViewSet from home.api.v1.viewsets import ( SignupViewSet, LoginViewSet, ) router = DefaultRouter() router.register("signup", SignupViewSet, basename="signup") router.register("login", LoginViewSet, basename="login") router.register("customtext", CustomTextViewSet) router.register("homepage", HomePageViewSet) router.register("message", MessageViewSet) urlpatterns = [ path("", include(router.urls)), ]
28.5
72
0.782456
aec598d37e499a71afb9ff4482b2213048230ba9
997
py
Python
sites/mysites/tools/checkers.py
cmwaura/Final_Red_Scrap
6b1b78de7d1129cda787e9f4688ddd409af39eb5
[ "MIT" ]
null
null
null
sites/mysites/tools/checkers.py
cmwaura/Final_Red_Scrap
6b1b78de7d1129cda787e9f4688ddd409af39eb5
[ "MIT" ]
null
null
null
sites/mysites/tools/checkers.py
cmwaura/Final_Red_Scrap
6b1b78de7d1129cda787e9f4688ddd409af39eb5
[ "MIT" ]
null
null
null
from dynamic_scraper.spiders.django_checker import DjangoChecker from mysites.models import JobAd class JobChecker(DjangoChecker): ''' The JobChecker class inherits from the DjangoChecker class in the Dynamic Django scraper module hence why we imported it. The main aim of this module is checking the objects that we scrape mainly through the ref_object.url and see if there is any recurrence in the process. If there is a recurrence the new object will be deleted to keep the integrity of the data. We will also configure a scheduler_runtime which will configure times at which the checker class will be run. This is important especially after scheduling various cron jobs at which the scraper will be run. ''' name = 'job_checker' def __init__(self, *args, **kwargs): self._set_ref_object(JobAd, **kwargs) self.scraper = self.ref_object.job_website.scraper self.scheduler_runtime = self.ref_object.checker_runtime super(JobChecker, self).__init__(self, *args, **kwargs)
47.47619
103
0.790371
dc41e0e960525b53a902f0f2949214041e8e4935
778
py
Python
Tests/test_Calculator.py
axisonoid/calculator
5eb63b6f0fb544feeb50ad596520eb6dbad62be8
[ "MIT" ]
1
2021-06-26T11:22:19.000Z
2021-06-26T11:22:19.000Z
Tests/test_Calculator.py
axisonoid/calculator
5eb63b6f0fb544feeb50ad596520eb6dbad62be8
[ "MIT" ]
null
null
null
Tests/test_Calculator.py
axisonoid/calculator
5eb63b6f0fb544feeb50ad596520eb6dbad62be8
[ "MIT" ]
null
null
null
import unittest from Calculator.Calculator import Calculator from CsvReader.CsvReader import CsvReader class MyTestCase(unittest.TestCase): def setUp(self) -> None: self.calculator = Calculator() def test_instantiate_calculator(self): self.assertIsInstance(self.calculator, Calculator) def test_subtraction(self): test_data = CsvReader("Tests/Data/subtraction.csv").data for row in test_data: result = float(row['Result']) self.assertEqual(self.calculator.subtract(row['Value 1'], row]['Value 2']), result) self.assertEqual(self.calculator.result, result) def test_results_property(self): self.assertEqual(self.calculator.result, 0) if __name__ == '__main__': unittest.main()
31.12
95
0.695373
1f14bab1dc1508f74fb790ff4c8b9e1a5119dfe0
2,125
py
Python
src/exif/_app1_create.py
TNThieding/exif
2e59701aec7416fbb3b2db76e7d090f166f1f132
[ "MIT" ]
51
2018-12-28T19:48:40.000Z
2021-12-10T00:35:41.000Z
src/exif/_app1_create.py
TNThieding/exif
2e59701aec7416fbb3b2db76e7d090f166f1f132
[ "MIT" ]
33
2019-02-08T10:15:25.000Z
2022-02-11T18:37:45.000Z
src/exif/_app1_create.py
TNThieding/exif
2e59701aec7416fbb3b2db76e7d090f166f1f132
[ "MIT" ]
11
2019-10-24T14:03:02.000Z
2020-12-10T04:07:20.000Z
"""Utility to create empty APP1 metadata bytes.""" from plum.bigendian import uint16 from exif._constants import ATTRIBUTE_ID_MAP, ExifMarkers from exif._datatypes import ExifType, Ifd, IfdTag, TiffByteOrder, TiffHeader HEADER_BYTES_EXCLUDED_FROM_LENGTH = ( 2 # IMPORTANT: APP1 marker is excluded from the length of field. ) def generate_empty_app1_bytes(): """Generate an empty APP1 segment with IFDs 0, EXIF, and GPS. :returns: big endian APP1 segment with 3 IFDs :rtype: bytes """ header_bytes = bytearray(ExifMarkers.APP1) header_bytes += b"\x00\x00" # APP1 length (touched up later at end) header_bytes += b"\x45\x78\x69\x66\x00\x00" # EXIF word, NULL, and padding tiff_header = TiffHeader( byte_order=TiffByteOrder.BIG, reserved=0x2A, ifd_offset=0x8 ) default_tags = [ # Note: These pointers are touched up later. IfdTag( tag_id=ATTRIBUTE_ID_MAP["_exif_ifd_pointer"], type=ExifType.LONG, value_count=1, value_offset=0, ), IfdTag( tag_id=ATTRIBUTE_ID_MAP["_gps_ifd_pointer"], type=ExifType.LONG, value_count=1, value_offset=0, ), ] ifd0 = Ifd( tags=default_tags, next=0 ) # leave pointer to IFD 1 as 0 since there isn't a thumbnail exif_ifd = Ifd(tags=[], next=0) gps_ifd = Ifd(tags=[], next=0) # pylint: disable=unsubscriptable-object ifd0.tags[0].value_offset = tiff_header.nbytes + ifd0.nbytes # IFD 0 --> EXIF ifd0.tags[1].value_offset = ( tiff_header.nbytes + ifd0.nbytes + exif_ifd.nbytes ) # IFD 0 --> GPS # pylint: enable=unsubscriptable-object body_bytes = bytearray(tiff_header.ipack()) body_bytes += ifd0.ipack() body_bytes += exif_ifd.ipack() body_bytes += gps_ifd.ipack() # Adjust the APP1 length (2 bytes into header). app1_length_view = uint16.view(header_bytes, offset=2) app1_length_view.set( len(header_bytes + body_bytes) - HEADER_BYTES_EXCLUDED_FROM_LENGTH ) return header_bytes + body_bytes
30.797101
82
0.657412
a37e8ce9569e2f9a3498fc7b5610383ba38d5a2b
17,615
py
Python
gm/rebaseline_server/imagediffdb.py
Acidburn0zzz/tampllate-skia
7d5d73cfaee397788788765238725a5058ee7f08
[ "BSD-3-Clause" ]
11
2015-01-19T22:09:14.000Z
2019-10-03T21:45:31.000Z
gm/rebaseline_server/imagediffdb.py
Acidburn0zzz/tampllate-skia
7d5d73cfaee397788788765238725a5058ee7f08
[ "BSD-3-Clause" ]
null
null
null
gm/rebaseline_server/imagediffdb.py
Acidburn0zzz/tampllate-skia
7d5d73cfaee397788788765238725a5058ee7f08
[ "BSD-3-Clause" ]
9
2015-02-23T12:59:43.000Z
2022-01-27T10:30:45.000Z
#!/usr/bin/python """ Copyright 2013 Google Inc. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. Calulate differences between image pairs, and store them in a database. """ import contextlib import csv import logging import os import re import shutil import sys import tempfile import urllib try: from PIL import Image, ImageChops except ImportError: raise ImportError('Requires PIL to be installed; see ' + 'http://www.pythonware.com/products/pil/') # Set the PYTHONPATH to include the tools directory. sys.path.append( os.path.join( os.path.dirname(os.path.realpath(__file__)), os.pardir, os.pardir, 'tools')) import find_run_binary SKPDIFF_BINARY = find_run_binary.find_path_to_program('skpdiff') DEFAULT_IMAGE_SUFFIX = '.png' DEFAULT_IMAGES_SUBDIR = 'images' DISALLOWED_FILEPATH_CHAR_REGEX = re.compile('[^\w\-]') DIFFS_SUBDIR = 'diffs' WHITEDIFFS_SUBDIR = 'whitediffs' VALUES_PER_BAND = 256 # Keys used within DiffRecord dictionary representations. # NOTE: Keep these in sync with static/constants.js KEY__DIFFERENCES__MAX_DIFF_PER_CHANNEL = 'maxDiffPerChannel' KEY__DIFFERENCES__NUM_DIFF_PIXELS = 'numDifferingPixels' KEY__DIFFERENCES__PERCENT_DIFF_PIXELS = 'percentDifferingPixels' KEY__DIFFERENCES__PERCEPTUAL_DIFF = 'perceptualDifference' KEY__DIFFERENCES__WEIGHTED_DIFF = 'weightedDiffMeasure' class DiffRecord(object): """ Record of differences between two images. """ def __init__(self, storage_root, expected_image_url, expected_image_locator, actual_image_url, actual_image_locator, expected_images_subdir=DEFAULT_IMAGES_SUBDIR, actual_images_subdir=DEFAULT_IMAGES_SUBDIR, image_suffix=DEFAULT_IMAGE_SUFFIX): """Download this pair of images (unless we already have them on local disk), and prepare a DiffRecord for them. TODO(epoger): Make this asynchronously download images, rather than blocking until the images have been downloaded and processed. Args: storage_root: root directory on local disk within which we store all images expected_image_url: file or HTTP url from which we will download the expected image expected_image_locator: a unique ID string under which we will store the expected image within storage_root (probably including a checksum to guarantee uniqueness) actual_image_url: file or HTTP url from which we will download the actual image actual_image_locator: a unique ID string under which we will store the actual image within storage_root (probably including a checksum to guarantee uniqueness) expected_images_subdir: the subdirectory expected images are stored in. actual_images_subdir: the subdirectory actual images are stored in. image_suffix: the suffix of images. """ expected_image_locator = _sanitize_locator(expected_image_locator) actual_image_locator = _sanitize_locator(actual_image_locator) # Download the expected/actual images, if we don't have them already. # TODO(rmistry): Add a parameter that makes _download_and_open_image raise # an exception if images are not found locally (instead of trying to # download them). expected_image_file = os.path.join( storage_root, expected_images_subdir, str(expected_image_locator) + image_suffix) actual_image_file = os.path.join( storage_root, actual_images_subdir, str(actual_image_locator) + image_suffix) try: expected_image = _download_and_open_image( expected_image_file, expected_image_url) except Exception: logging.exception('unable to download expected_image_url %s to file %s' % (expected_image_url, expected_image_file)) raise try: actual_image = _download_and_open_image( actual_image_file, actual_image_url) except Exception: logging.exception('unable to download actual_image_url %s to file %s' % (actual_image_url, actual_image_file)) raise # Generate the diff image (absolute diff at each pixel) and # max_diff_per_channel. diff_image = _generate_image_diff(actual_image, expected_image) diff_histogram = diff_image.histogram() (diff_width, diff_height) = diff_image.size self._weighted_diff_measure = _calculate_weighted_diff_metric( diff_histogram, diff_width * diff_height) self._max_diff_per_channel = _max_per_band(diff_histogram) # Generate the whitediff image (any differing pixels show as white). # This is tricky, because when you convert color images to grayscale or # black & white in PIL, it has its own ideas about thresholds. # We have to force it: if a pixel has any color at all, it's a '1'. bands = diff_image.split() graydiff_image = ImageChops.lighter(ImageChops.lighter( bands[0], bands[1]), bands[2]) whitediff_image = (graydiff_image.point(lambda p: p > 0 and VALUES_PER_BAND) .convert('1', dither=Image.NONE)) # Calculate the perceptual difference percentage. skpdiff_csv_dir = tempfile.mkdtemp() try: skpdiff_csv_output = os.path.join(skpdiff_csv_dir, 'skpdiff-output.csv') expected_img = os.path.join(storage_root, expected_images_subdir, str(expected_image_locator) + image_suffix) actual_img = os.path.join(storage_root, actual_images_subdir, str(actual_image_locator) + image_suffix) find_run_binary.run_command( [SKPDIFF_BINARY, '-p', expected_img, actual_img, '--csv', skpdiff_csv_output, '-d', 'perceptual']) with contextlib.closing(open(skpdiff_csv_output)) as csv_file: for row in csv.DictReader(csv_file): perceptual_similarity = float(row[' perceptual'].strip()) if not 0 <= perceptual_similarity <= 1: # skpdiff outputs -1 if the images are different sizes. Treat any # output that does not lie in [0, 1] as having 0% perceptual # similarity. perceptual_similarity = 0 # skpdiff returns the perceptual similarity, convert it to get the # perceptual difference percentage. self._perceptual_difference = 100 - (perceptual_similarity * 100) finally: shutil.rmtree(skpdiff_csv_dir) # Final touches on diff_image: use whitediff_image as an alpha mask. # Unchanged pixels are transparent; differing pixels are opaque. diff_image.putalpha(whitediff_image) # Store the diff and whitediff images generated above. diff_image_locator = _get_difference_locator( expected_image_locator=expected_image_locator, actual_image_locator=actual_image_locator) basename = str(diff_image_locator) + image_suffix _save_image(diff_image, os.path.join( storage_root, DIFFS_SUBDIR, basename)) _save_image(whitediff_image, os.path.join( storage_root, WHITEDIFFS_SUBDIR, basename)) # Calculate difference metrics. (self._width, self._height) = diff_image.size self._num_pixels_differing = ( whitediff_image.histogram()[VALUES_PER_BAND - 1]) def get_num_pixels_differing(self): """Returns the absolute number of pixels that differ.""" return self._num_pixels_differing def get_percent_pixels_differing(self): """Returns the percentage of pixels that differ, as a float between 0 and 100 (inclusive).""" return ((float(self._num_pixels_differing) * 100) / (self._width * self._height)) def get_perceptual_difference(self): """Returns the perceptual difference percentage.""" return self._perceptual_difference def get_weighted_diff_measure(self): """Returns a weighted measure of image diffs, as a float between 0 and 100 (inclusive). TODO(epoger): Delete this function, now that we have perceptual diff? """ return self._weighted_diff_measure def get_max_diff_per_channel(self): """Returns the maximum difference between the expected and actual images for each R/G/B channel, as a list.""" return self._max_diff_per_channel def as_dict(self): """Returns a dictionary representation of this DiffRecord, as needed when constructing the JSON representation.""" return { KEY__DIFFERENCES__NUM_DIFF_PIXELS: self._num_pixels_differing, KEY__DIFFERENCES__PERCENT_DIFF_PIXELS: self.get_percent_pixels_differing(), KEY__DIFFERENCES__WEIGHTED_DIFF: self.get_weighted_diff_measure(), KEY__DIFFERENCES__MAX_DIFF_PER_CHANNEL: self._max_diff_per_channel, KEY__DIFFERENCES__PERCEPTUAL_DIFF: self._perceptual_difference, } class ImageDiffDB(object): """ Calculates differences between image pairs, maintaining a database of them for download.""" def __init__(self, storage_root): """ Args: storage_root: string; root path within the DB will store all of its stuff """ self._storage_root = storage_root # Dictionary of DiffRecords, keyed by (expected_image_locator, # actual_image_locator) tuples. self._diff_dict = {} def add_image_pair(self, expected_image_url, expected_image_locator, actual_image_url, actual_image_locator): """Download this pair of images (unless we already have them on local disk), and prepare a DiffRecord for them. TODO(epoger): Make this asynchronously download images, rather than blocking until the images have been downloaded and processed. When we do that, we should probably add a new method that will block until all of the images have been downloaded and processed. Otherwise, we won't know when it's safe to start calling get_diff_record(). jcgregorio notes: maybe just make ImageDiffDB thread-safe and create a thread-pool/worker queue at a higher level that just uses ImageDiffDB? Args: expected_image_url: file or HTTP url from which we will download the expected image expected_image_locator: a unique ID string under which we will store the expected image within storage_root (probably including a checksum to guarantee uniqueness) actual_image_url: file or HTTP url from which we will download the actual image actual_image_locator: a unique ID string under which we will store the actual image within storage_root (probably including a checksum to guarantee uniqueness) """ expected_image_locator = _sanitize_locator(expected_image_locator) actual_image_locator = _sanitize_locator(actual_image_locator) key = (expected_image_locator, actual_image_locator) if not key in self._diff_dict: try: new_diff_record = DiffRecord( self._storage_root, expected_image_url=expected_image_url, expected_image_locator=expected_image_locator, actual_image_url=actual_image_url, actual_image_locator=actual_image_locator) except Exception: # If we can't create a real DiffRecord for this (expected, actual) pair, # store None and the UI will show whatever information we DO have. # Fixes http://skbug.com/2368 . logging.exception( 'got exception while creating a DiffRecord for ' 'expected_image_url=%s , actual_image_url=%s; returning None' % ( expected_image_url, actual_image_url)) new_diff_record = None self._diff_dict[key] = new_diff_record def get_diff_record(self, expected_image_locator, actual_image_locator): """Returns the DiffRecord for this image pair. Raises a KeyError if we don't have a DiffRecord for this image pair. """ key = (_sanitize_locator(expected_image_locator), _sanitize_locator(actual_image_locator)) return self._diff_dict[key] # Utility functions def _calculate_weighted_diff_metric(histogram, num_pixels): """Given the histogram of a diff image (per-channel diff at each pixel between two images), calculate the weighted diff metric (a stab at how different the two images really are). TODO(epoger): Delete this function, now that we have perceptual diff? Args: histogram: PIL histogram of a per-channel diff between two images num_pixels: integer; the total number of pixels in the diff image Returns: a weighted diff metric, as a float between 0 and 100 (inclusive). """ # TODO(epoger): As a wild guess at an appropriate metric, weight each # different pixel by the square of its delta value. (The more different # a pixel is from its expectation, the more we care about it.) assert(len(histogram) % VALUES_PER_BAND == 0) num_bands = len(histogram) / VALUES_PER_BAND max_diff = num_pixels * num_bands * (VALUES_PER_BAND - 1)**2 total_diff = 0 for index in xrange(len(histogram)): total_diff += histogram[index] * (index % VALUES_PER_BAND)**2 return float(100 * total_diff) / max_diff def _max_per_band(histogram): """Given the histogram of an image, return the maximum value of each band (a.k.a. "color channel", such as R/G/B) across the entire image. Args: histogram: PIL histogram Returns the maximum value of each band within the image histogram, as a list. """ max_per_band = [] assert(len(histogram) % VALUES_PER_BAND == 0) num_bands = len(histogram) / VALUES_PER_BAND for band in xrange(num_bands): # Assuming that VALUES_PER_BAND is 256... # the 'R' band makes up indices 0-255 in the histogram, # the 'G' band makes up indices 256-511 in the histogram, # etc. min_index = band * VALUES_PER_BAND index = min_index + VALUES_PER_BAND while index > min_index: index -= 1 if histogram[index] > 0: max_per_band.append(index - min_index) break return max_per_band def _generate_image_diff(image1, image2): """Wrapper for ImageChops.difference(image1, image2) that will handle some errors automatically, or at least yield more useful error messages. TODO(epoger): Currently, some of the images generated by the bots are RGBA and others are RGB. I'm not sure why that is. For now, to avoid confusion within the UI, convert all to RGB when diffing. Args: image1: a PIL image object image2: a PIL image object Returns: per-pixel diffs between image1 and image2, as a PIL image object """ try: return ImageChops.difference(image1.convert('RGB'), image2.convert('RGB')) except ValueError: logging.error('Error diffing image1 [%s] and image2 [%s].' % ( repr(image1), repr(image2))) raise def _download_and_open_image(local_filepath, url): """Open the image at local_filepath; if there is no file at that path, download it from url to that path and then open it. Args: local_filepath: path on local disk where the image should be stored url: URL from which we can download the image if we don't have it yet Returns: a PIL image object """ if not os.path.exists(local_filepath): _mkdir_unless_exists(os.path.dirname(local_filepath)) with contextlib.closing(urllib.urlopen(url)) as url_handle: with open(local_filepath, 'wb') as file_handle: shutil.copyfileobj(fsrc=url_handle, fdst=file_handle) return _open_image(local_filepath) def _open_image(filepath): """Wrapper for Image.open(filepath) that yields more useful error messages. Args: filepath: path on local disk to load image from Returns: a PIL image object """ try: return Image.open(filepath) except IOError: # If we are unable to load an image from the file, delete it from disk # and we will try to fetch it again next time. Fixes http://skbug.com/2247 logging.error('IOError loading image file %s ; deleting it.' % filepath) os.remove(filepath) raise def _save_image(image, filepath, format='PNG'): """Write an image to disk, creating any intermediate directories as needed. Args: image: a PIL image object filepath: path on local disk to write image to format: one of the PIL image formats, listed at http://effbot.org/imagingbook/formats.htm """ _mkdir_unless_exists(os.path.dirname(filepath)) image.save(filepath, format) def _mkdir_unless_exists(path): """Unless path refers to an already-existing directory, create it. Args: path: path on local disk """ if not os.path.isdir(path): os.makedirs(path) def _sanitize_locator(locator): """Returns a sanitized version of a locator (one in which we know none of the characters will have special meaning in filenames). Args: locator: string, or something that can be represented as a string """ return DISALLOWED_FILEPATH_CHAR_REGEX.sub('_', str(locator)) def _get_difference_locator(expected_image_locator, actual_image_locator): """Returns the locator string used to look up the diffs between expected_image and actual_image. We must keep this function in sync with getImageDiffRelativeUrl() in static/loader.js Args: expected_image_locator: locator string pointing at expected image actual_image_locator: locator string pointing at actual image Returns: already-sanitized locator where the diffs between expected and actual images can be found """ return "%s-vs-%s" % (_sanitize_locator(expected_image_locator), _sanitize_locator(actual_image_locator))
38.971239
80
0.71723
cfecba810e36331947d77c035996417aa2a118ab
8,617
py
Python
inkind/contribution.py
rubin-observatory/in-kind
af837ff8bfb9f5f643b0f11f92defeed58846958
[ "MIT" ]
null
null
null
inkind/contribution.py
rubin-observatory/in-kind
af837ff8bfb9f5f643b0f11f92defeed58846958
[ "MIT" ]
null
null
null
inkind/contribution.py
rubin-observatory/in-kind
af837ff8bfb9f5f643b0f11f92defeed58846958
[ "MIT" ]
null
null
null
import sys # ====================================================================== class Contribution(): def __init__(self, vb=False, program=None): self.vb = vb self.PROGRAM_CODE = program self.current = None self.ID = None self.URL = None self.TITLE = None self.EXCEPTION = None self.LOI_CODE = None self.LEAD = None self.EMAIL = None self.RECIPIENTS = None self.VALUE = None self.CATEGORY = None self.text = {} return def read(self, data): # Check the contribution ID: if "Statement of Work and Detailed Plan" in data: THIS_ID = data.split(".")[0].strip() if THIS_ID != self.ID[8:11]: print(" WARNING: Modifying contribution ID to match value in proposal "+self.PROGRAM_CODE+". Proposal value cf sequential ID: ", THIS_ID, self.ID[8:11],"New ID:",self.PROGRAM_CODE+"-"+THIS_ID, file=sys.stderr) self.ID = self.PROGRAM_CODE+"-"+THIS_ID return # Get the contribution title: if "TITLE:" in data[0:20]: if self.vb: print(" Data: ", data[0:20]) self.TITLE = ":".join(data.split(":")[1:])[1:].strip() if self.vb: print(" Contribution Title: ", self.TITLE) return # Check for exception requests. Format: "Exception requested: please begin review on November 6" if "Exception requested:" in data[0:20]: request = data.split(":")[1][1:] self.EXCEPTION = " ".join(request.split(" ")[-2:]).strip() if self.vb: print(" Contribution Due Date: ", self.EXCEPTION) return # Get the LOI Code: if "LOI Code:" in data[0:20]: self.LOI_CODE = data.split(":")[1][1:].strip() if self.vb: print(" Contribution LOI Code: ", self.LOI_CODE) return # Get the Contribution Lead: if "Contribution Lead:" in data[0:20]: self.LEAD = data.split(":")[1][1:].strip() if self.vb: print(" Contribution Lead: ", self.LEAD) return # Get the Contribution Recipients: if "Contribution Recipients:" in data[0:40]: self.RECIPIENTS = data.split(":")[1][1:].strip() if self.vb: print(" Contribution Recipients: ", self.RECIPIENTS) # The recipients are the last thing of interest in the section, so ignore everything else from here. self.current = None return # Ignore the main subsection headings: if "PLANNED ACTIVITIES" in data: return if "TECHNICAL OBJECTIVES" in data: return if "EXPECTED RIGHTS" in data: return if "KEY PERSONNEL" in data: return # Set the current subsection: if "Background: Description" in data: self.current = "BACKGROUND_DESCRIPTION" self.text[self.current] = "" return if "Background: One" in data: self.current = "BACKGROUND_SUMMARY" self.text[self.current] = "" return if "Activity: Description" in data: self.current = "ACTIVITY_DESCRIPTION" self.text[self.current] = "" return if "Activity: One" in data: self.current = "ACTIVITY_SUMMARY" self.text[self.current] = "" return if "Deliverables: Description" in data: self.current = "DELIVERABLES_DESCRIPTION" self.text[self.current] = "" return if "Deliverables: One" in data: self.current = "DELIVERABLES_SUMMARY" self.text[self.current] = "" return if "Deliverables: Timeline" in data: self.current = "DELIVERABLES_TIMELINE" self.text[self.current] = "" return if "Data Rights: Description" in data: self.current = "DATA_RIGHTS_DESCRIPTION" self.text[self.current] = "" return if "Data Rights: One" in data: self.current = "DATA_RIGHTS_SUMMARY" self.text[self.current] = "" return # Now append the data chunk: if self.current is not None: self.text[self.current] = self.text[self.current] + data.replace('"',"'") return def print_SOW(self): print("Title: "+self.TITLE) print("Background: "+self.text["BACKGROUND_SUMMARY"]) print("Activities: "+self.text["ACTIVITY_SUMMARY"]) print("Deliverables: "+self.text["DELIVERABLES_SUMMARY"]) print("Data Rights: "+self.text["DATA_RIGHTS_SUMMARY"]) print("Contribution Lead: "+str(self.LEAD)) print("Contribution Recipients: "+str(self.RECIPIENTS)) return def one_line_SOW(self): try: line = "Background: "+self.text["BACKGROUND_SUMMARY"] + \ " Activities: "+self.text["ACTIVITY_SUMMARY"] + \ " Deliverables: "+self.text["DELIVERABLES_SUMMARY"] + \ " Data Rights: "+self.text["DATA_RIGHTS_SUMMARY"] except: line = "Not yet available" return line def timeline(self): try: line = self.text["DELIVERABLES_TIMELINE"] except: line = "Not yet available" return line def extract_PI_value(self): try: N = [] for word in self.text["DATA_RIGHTS_SUMMARY"].split(): try: N.append(float(word)) except ValueError: pass # PJM 2021-03-29 Switched to non-integer floats for PI value # Return integer if possible: # if int(N[0]) == int(round(N[0]+0.01)): # self.VALUE = int(N[0]) # else: self.VALUE = N[0] except: self.VALUE = "Not yet available" return self.VALUE def estimate_category(self): try: self.CATEGORY = "Unknown" if "ataset" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "1.1 - Old complementary dataset" if "dded" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "1.2 - Reprocessed/analyzed LSST data" if "arget" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "1.3 - New complementary targeted data" if "urvey" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "1.4 - New complementary survey" if "IDAC" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "2.2 - Lite IDAC" if "Full IDAC" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "2.1 - Full IDAC" if "Scientific Processing Center" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "2.3 - Computing resources for SCs" if "elescope time" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "3.1 - Open telescope time" if "ollow-up" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "3.2 - Active Follow-up Program" if "directable" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "4.2 - Directable SW dev" if "non-directable" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "4.3 - Non-directable SW dev" if "eneral pool" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "4.1 - General pooled SW dev" if "onstruction" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "5.1 - Construction" if "ommissioning" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "5.2 - Commissioning" if "ffset" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "5.3 - Operations Cost Offset" if "nhancement" in self.text["ACTIVITY_SUMMARY"]: self.CATEGORY = "5.4 - Non-SW Facility Enhancement" except: self.CATEGORY = "Not yet available" return self.CATEGORY def match_email(self, directory): # print(directory.people) if self.LEAD is None: self.EMAIL = None else: # Attempt to extract their surname # print("self.LEAD = ",self.LEAD) surname = self.LEAD.split()[-1] for name in directory.people: if surname in name: self.EMAIL = directory.people[name]["EMAIL"] return self.EMAIL
42.448276
228
0.543577
c6900a2b165728df482de4a9373ac81b3fcfc3a0
3,020
py
Python
gtrxl.py
stefanosantaris/sar
c011089d81699c2950b005e4d7d7d86fc5a95667
[ "MIT" ]
3
2021-09-27T03:10:01.000Z
2021-12-29T07:18:06.000Z
gtrxl.py
stefanosantaris/sar
c011089d81699c2950b005e4d7d7d86fc5a95667
[ "MIT" ]
null
null
null
gtrxl.py
stefanosantaris/sar
c011089d81699c2950b005e4d7d7d86fc5a95667
[ "MIT" ]
null
null
null
import os import torch as T import torch.optim as optim import torch.nn.functional as F import torch.nn as nn from typing import Optional from torch.nn import TransformerEncoder, TransformerEncoderLayer from torch import Tensor import math ''' Positional Encoding : takes a 2d tensor --> 3d tensor Injects some information on the relevant position of the img in the sequence ''' class PositionalEncoding(nn.Module): def __init__(self, d_model,dropout=0.1, max_len=1024): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = T.zeros(max_len, d_model) position = T.arange(0, max_len, dtype=T.float).unsqueeze(1) div_term = T.exp(T.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = T.sin(position * div_term) pe[:, 1::2] = T.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0,1) self.register_buffer('pe',pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) ''' Recreate the transfomer layers done in the following paper https://arxiv.org/pdf/1910.06764.pdf ''' class TEL(TransformerEncoderLayer): def __init__(self, d_model, nhead, n_layers=1, dim_feedforward=256, activation="relu", dropout=0): super().__init__(d_model, nhead, dim_feedforward, dropout,activation) # 2 GRUs are needed - 1 for the beginning / 1 at the end self.gru_1 = nn.GRU(d_model, d_model, num_layers=n_layers, batch_first=True) self.gru_2 = nn.GRU(input_size=d_model, hidden_size=d_model, num_layers=n_layers, batch_first=True) def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor: h = (src).sum(dim=1).unsqueeze(dim=0) src = self.norm1(src) out = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] out,h = self.gru_1(out,h) out = self.norm2(out) out = self.activation(self.linear1(out)) out = self.activation(self.linear2(out)) out,h = self.gru_2(out,h) return out ''' Implementation of transfomer model using GRUs ''' class GTrXL(nn.Module): def __init__(self, d_model, nheads, transformer_layers,hidden_dims=256, n_layers=1 ,chkpt_dir="models",activation='relu',network_name='network.pt'): super(GTrXL, self).__init__() # Module layers self.embed = PositionalEncoding(d_model) encoded = TEL(d_model, nheads, n_layers, dim_feedforward = hidden_dims, activation=activation) self.transfomer = TransformerEncoder(encoded, transformer_layers) self.file = os.path.join(chkpt_dir, network_name) def forward(self, x): x = self.embed(x) x = self.transfomer(x) return x def save(self): T.save(self.state_dict() , self.file) def load(self): self.load_state_dict(T.load(self.file))
38.227848
153
0.664238
137837915daf470736bdad1def33eb5f5a3e04c4
7,529
py
Python
flumine/streams/historicalstream.py
betcode-org/flumine
b33d82b75175106b2de0d0c4f9851599b085e389
[ "MIT" ]
2
2022-03-21T11:42:56.000Z
2022-03-26T08:36:18.000Z
flumine/streams/historicalstream.py
betcode-org/flumine
b33d82b75175106b2de0d0c4f9851599b085e389
[ "MIT" ]
4
2022-03-25T09:49:37.000Z
2022-03-25T10:18:13.000Z
flumine/streams/historicalstream.py
betcode-org/flumine
b33d82b75175106b2de0d0c4f9851599b085e389
[ "MIT" ]
null
null
null
import logging import datetime from typing import Optional from betfairlightweight.streaming import StreamListener, HistoricalGeneratorStream from betfairlightweight.streaming.stream import MarketStream, RaceStream from betfairlightweight.streaming.cache import MarketBookCache, RaceCache from betfairlightweight.resources.baseresource import BaseResource from betfairlightweight.compat import json from .basestream import BaseStream from ..exceptions import ListenerError from ..utils import create_time logger = logging.getLogger(__name__) class FlumineMarketStream(MarketStream): """ Custom bflw stream to speed up processing by limiting to inplay/not inplay or limited seconds to start. `_process` updated to not call `on_process` which reduces some function calls. """ def _process(self, data: list, publish_time: int) -> bool: active = False for market_book in data: if "id" not in market_book: continue market_id = market_book["id"] full_image = market_book.get("img", False) market_book_cache = self._caches.get(market_id) if ( full_image or market_book_cache is None ): # historic data does not contain img if "marketDefinition" not in market_book: logger.warning( "[%s: %s]: Missing marketDefinition on market %s resulting " "in potential missing data in the MarketBook (make sure " "EX_MARKET_DEF is requested)" % (self, self.unique_id, market_id) ) market_book_cache = MarketBookCache( market_id, publish_time, self._lightweight, self._calculate_market_tv, self._cumulative_runner_tv, ) self._caches[market_id] = market_book_cache logger.info( "[%s: %s]: %s added, %s markets in cache" % (self, self.unique_id, market_id, len(self._caches)) ) # listener_kwargs filtering active = True if "marketDefinition" in market_book: _definition_status = market_book["marketDefinition"].get("status") _definition_in_play = market_book["marketDefinition"].get("inPlay") _definition_market_time = market_book["marketDefinition"].get( "marketTime" ) else: _definition_status = market_book_cache._definition_status _definition_in_play = market_book_cache._definition_in_play _definition_market_time = market_book_cache.market_definition[ "marketTime" ] # if market is not open (closed/suspended) process regardless if _definition_status == "OPEN": if self._listener.inplay: if not _definition_in_play: active = False elif self._listener.seconds_to_start: _now = datetime.datetime.utcfromtimestamp(publish_time / 1e3) _market_time = BaseResource.strip_datetime(_definition_market_time) seconds_to_start = (_market_time - _now).total_seconds() if seconds_to_start > self._listener.seconds_to_start: active = False if self._listener.inplay is False: if _definition_in_play: active = False # check if refresh required if active and not market_book_cache.active: market_book_cache.refresh_cache() market_book_cache.update_cache(market_book, publish_time, active=active) self._updates_processed += 1 return active class FlumineRaceStream(RaceStream): """ `_process` updated to not call `on_process` which reduces some function calls. """ def _process(self, race_updates: list, publish_time: int) -> bool: active = False for update in race_updates: market_id = update["mid"] race_cache = self._caches.get(market_id) if race_cache is None: race_id = update.get("id") race_cache = RaceCache( market_id, publish_time, race_id, self._lightweight ) race_cache.start_time = create_time(publish_time, race_id) self._caches[market_id] = race_cache logger.info( "[%s: %s]: %s added, %s markets in cache" % (self, self.unique_id, market_id, len(self._caches)) ) # filter after start time diff = ( race_cache.start_time - datetime.datetime.utcfromtimestamp(publish_time / 1e3) ).total_seconds() if diff <= 0: race_cache.update_cache(update, publish_time) self._updates_processed += 1 active = True return active class HistoricListener(StreamListener): """ Custom listener to restrict processing by inplay or seconds_to_start. """ def __init__(self, inplay: bool = None, seconds_to_start: float = None, **kwargs): super(HistoricListener, self).__init__(**kwargs) self.inplay = inplay self.seconds_to_start = seconds_to_start def _add_stream(self, unique_id: int, operation: str): if operation == "marketSubscription": return FlumineMarketStream(self, unique_id) elif operation == "orderSubscription": raise ListenerError("Unable to process order stream") elif operation == "raceSubscription": return FlumineRaceStream(self, unique_id) def on_data(self, raw_data: str) -> Optional[bool]: try: data = json.loads(raw_data) except ValueError: logger.error("value error: %s" % raw_data) return # remove error handler / operation check # skip on_change / on_update as we know it is always an update publish_time = data["pt"] return self.stream._process(data[self.stream._lookup], publish_time) class FlumineHistoricalGeneratorStream(HistoricalGeneratorStream): """Super fast historical stream""" def _read_loop(self) -> dict: self.listener.register_stream(self.unique_id, self.operation) listener_on_data = self.listener.on_data # cache functions stream_snap = self.listener.stream.snap with open(self.file_path, "r") as f: for update in f: if listener_on_data(update): yield stream_snap() class HistoricalStream(BaseStream): LISTENER = HistoricListener MAX_LATENCY = None def run(self) -> None: pass def handle_output(self) -> None: pass def create_generator(self): self._listener.update_clk = ( False # do not update clk on updates (not required when simulating) ) stream = FlumineHistoricalGeneratorStream( file_path=self.market_filter, listener=self._listener, operation=self.operation, unique_id=self.stream_id, ) return stream.get_generator()
37.834171
87
0.59822
768aaed0c43e30592ad75c47e47f304261cf7d97
38,011
py
Python
torcharrow/test/lib_test/test_column.py
Nayef211/torcharrow
28b8ca4bf1d91878daf087a0030790a8161b5f1f
[ "BSD-3-Clause" ]
null
null
null
torcharrow/test/lib_test/test_column.py
Nayef211/torcharrow
28b8ca4bf1d91878daf087a0030790a8161b5f1f
[ "BSD-3-Clause" ]
null
null
null
torcharrow/test/lib_test/test_column.py
Nayef211/torcharrow
28b8ca4bf1d91878daf087a0030790a8161b5f1f
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import unittest from dataclasses import dataclass from typing import Any, List, Union import pyarrow as pa # @manual=@/third-party:apache-arrow:apache-arrow-py import torcharrow._torcharrow as ta from pyarrow.cffi import ffi # @manual=@/third-party:python-cffi:python-cffi-py class BaseTestColumns(unittest.TestCase): # pyre-fixme[11]: Annotation `BaseColumn` is not defined as a type. def assert_Column(self, col: ta.BaseColumn, val: List[Any]) -> None: self.assertEqual(len(col), len(val)) self.assertEqual(col.get_null_count(), sum(x is None for x in val)) for i in range(len(val)): if val[i] is None: self.assertTrue(col.is_null_at(i)) else: self.assertFalse(col.is_null_at(i)) if isinstance(val[i], list): self.assert_Column(col[i], val[i]) elif isinstance(val[i], float): self.assertAlmostEqual(col[i], val[i], places=6) else: self.assertEqual(col[i], val[i]) class TestSimpleColumns(BaseTestColumns): def test_SimpleColumnInt64(self) -> None: data = [1, 2, None, 3, 4, None] col = infer_column(data) self.assertEqual(col[0], 1) self.assertEqual(col[1], 2) self.assertEqual(col[3], 3) self.assertEqual(col[4], 4) self.assertEqual(len(col), 6) with self.assertRaises(TypeError): # TypeError: an integer is required (got type NoneType) col.append(None) with self.assertRaises(TypeError): # TypeError: an integer is required (got type String) col.append("hello") self.assertEqual(col.is_null_at(0), False) self.assertEqual(col.is_null_at(1), False) self.assertEqual(col.is_null_at(2), True) self.assertEqual(col.is_null_at(3), False) self.assertEqual(col.is_null_at(4), False) self.assertEqual(col.is_null_at(5), True) self.assertEqual(col.get_null_count(), 2) sliced_col = col.slice(1, 3) self.assertEqual(len(sliced_col), 3) self.assertEqual(sliced_col[0], 2) self.assertEqual(sliced_col[2], 3) self.assertEqual(sliced_col.get_null_count(), 1) def test_SimpleColumnInt64_unary(self) -> None: data = [1, -2, None, 3, -4, None] col = infer_column(data) self.assertEqual(col.type().kind(), ta.TypeKind.BIGINT) neg_col = col.neg() self.assert_Column(neg_col, [-1, 2, None, -3, 4, None]) self.assertEqual(neg_col.type().kind(), ta.TypeKind.BIGINT) neg_col2 = neg_col.neg() self.assert_Column(neg_col2, [1, -2, None, 3, -4, None]) self.assertEqual(neg_col2.type().kind(), ta.TypeKind.BIGINT) neg_col3 = neg_col2.neg() self.assert_Column(neg_col3, [-1, 2, None, -3, 4, None]) self.assertEqual(neg_col3.type().kind(), ta.TypeKind.BIGINT) abs_col = col.abs() self.assert_Column(abs_col, [1, 2, None, 3, 4, None]) self.assertEqual(abs_col.type().kind(), ta.TypeKind.BIGINT) def test_SimpleColumnInt64_binary(self) -> None: data1 = [1, -2, None, 3, -4, None] col1 = infer_column(data1) data2 = [None, 1, 2, 3, 4, 5] col2 = infer_column(data2) # column ops sum_col = col1.add(col2) self.assert_Column(sum_col, [None, -1, None, 6, 0, None]) self.assertEqual(sum_col.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(col1.sub(col2), [None, -3, None, 0, -8, None]) self.assert_Column(col1.mul(col2), [None, -2, None, 9, -16, None]) self.assert_Column(col1.mod(col2), [None, 0, None, 0, 0, None]) # type promotion data3 = [None, 1.0, 2.0, 3.0, 4.0, 5.0] col3 = infer_column(data3) self.assertEqual(col3.type().kind(), ta.TypeKind.REAL) sum_col = col1.add(col3) self.assertEqual(sum_col.type().kind(), ta.TypeKind.REAL) self.assert_Column(sum_col, [None, -1.0, None, 6.0, 0.0, None]) sum_col2 = col3.add(col1) self.assertEqual(sum_col2.type().kind(), ta.TypeKind.REAL) self.assert_Column(sum_col2, [None, -1.0, None, 6.0, 0.0, None]) # scalar ops add_scalar = col1.add(1) self.assertEqual(add_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(add_scalar, [2, -1, None, 4, -3, None]) add_scalar = col1.add(0.1) self.assertEqual(add_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(add_scalar, [1.1, -1.9, None, 3.1, -3.9, None]) add_scalar = col1.radd(1) self.assertEqual(add_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(add_scalar, [2, -1, None, 4, -3, None]) add_scalar = col1.radd(0.1) self.assertEqual(add_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(add_scalar, [1.1, -1.9, None, 3.1, -3.9, None]) sub_scalar = col1.sub(2) self.assertEqual(sub_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(sub_scalar, [-1, -4, None, 1, -6, None]) sub_scalar = col1.sub(0.1) self.assertEqual(sub_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(sub_scalar, [0.9, -2.1, None, 2.9, -4.1, None]) sub_scalar = col1.rsub(2) self.assertEqual(sub_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(sub_scalar, [1, 4, None, -1, 6, None]) sub_scalar = col1.rsub(0.1) self.assertEqual(sub_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(sub_scalar, [-0.9, 2.1, None, -2.9, 4.1, None]) mul_scalar = col1.mul(2) self.assertEqual(mul_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(mul_scalar, [2, -4, None, 6, -8, None]) mul_scalar = col1.mul(-2.0) self.assertEqual(mul_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(mul_scalar, [-2.0, 4.0, None, -6.0, 8.0, None]) mul_scalar = col1.rmul(2) self.assertEqual(mul_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(mul_scalar, [2, -4, None, 6, -8, None]) mul_scalar = col1.rmul(-2.0) self.assertEqual(mul_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(mul_scalar, [-2.0, 4.0, None, -6.0, 8.0, None]) mod_scalar = col1.mod(3) self.assertEqual(mod_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(mod_scalar, [1, 1, None, 0, 2, None]) mod_scalar = col1.mod(-3.0) self.assertEqual(mod_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(mod_scalar, [-2.0, -2.0, None, 0.0, -1.0, None]) mod_scalar = col1.rmod(3) self.assertEqual(mod_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(mod_scalar, [0, -1, None, 0, -1, None]) mod_scalar = col1.rmod(-3.0) self.assertEqual(mod_scalar.type().kind(), ta.TypeKind.REAL) self.assert_Column(mod_scalar, [0.0, -1.0, None, 0.0, -3.0, None]) # It's debatable whether this (add BIGINT with BOOLEAN) should be supported. # But since PyTorch supports it for NumPy compatbility, TorchArrow also supports this. add_scalar = col1.add(True) self.assertEqual(add_scalar.type().kind(), ta.TypeKind.BIGINT) self.assert_Column(add_scalar, [2, -1, None, 4, -3, None]) def test_SimpleColumnFloat32_unary(self) -> None: data = [1.2, -2.3, None, 3.4, -4.6, None] col = infer_column(data) self.assertEqual(col.type().kind(), ta.TypeKind.REAL) neg_col = col.neg() self.assert_Column(neg_col, [-1.2, 2.3, None, -3.4, 4.6, None]) self.assertEqual(neg_col.type().kind(), ta.TypeKind.REAL) abs_col = col.abs() self.assert_Column(abs_col, [1.2, 2.3, None, 3.4, 4.6, None]) self.assertEqual(abs_col.type().kind(), ta.TypeKind.REAL) round_col = col.round() self.assert_Column(round_col, [1.0, -2.0, None, 3.0, -5.0, None]) self.assertEqual(round_col.type().kind(), ta.TypeKind.REAL) def test_SimpleColumnBoolean(self) -> None: data = [True, True, True, True] col = infer_column(data) for i in range(4): self.assertEqual(col[i], True) self.assertEqual(len(col), 4) with self.assertRaises(TypeError): # TypeError: a boolean is required (got type NoneType) col.append(None) with self.assertRaises(TypeError): # TypeError: a boolean is required (got type String) col.append("hello") col.append_null() self.assertEqual(col.is_null_at(0), False) self.assertEqual(col.is_null_at(1), False) self.assertEqual(col.is_null_at(2), False) self.assertEqual(col.is_null_at(3), False) self.assertEqual(col.is_null_at(4), True) def test_SimpleColumnBoolean_unary(self) -> None: data = [True, False, None, True, False, None] col = infer_column(data) self.assertEqual(col.type().kind(), ta.TypeKind.BOOLEAN) inv_col = col.invert() self.assertEqual(inv_col.type().kind(), ta.TypeKind.BOOLEAN) self.assert_Column(inv_col, [False, True, None, False, True, None]) def test_SimpleColumnString(self) -> None: data = ["0", "1", "2", "3"] col = infer_column(data) for i in range(4): self.assertEqual(col[i], str(i)) self.assertEqual(len(col), 4) with self.assertRaises(TypeError): # TypeError: a string is required (got type NoneType) col.append(None) with self.assertRaises(TypeError): # TypeError: a string is required (got type int) col.append(1) col.append_null() self.assertEqual(col.is_null_at(0), False) self.assertEqual(col.is_null_at(1), False) self.assertEqual(col.is_null_at(2), False) self.assertEqual(col.is_null_at(3), False) self.assertEqual(col.is_null_at(4), True) def test_SimpleColumnUTF(self) -> None: s = ["hello.this", "is.interesting.", "this.is_24", "paradise"] col = infer_column(s) for i in range(4): self.assertEqual(col[i], s[i]) self.assertEqual(len(col), 4) def test_ConstantColumn(self) -> None: # INTEGER col = ta.ConstantColumn(42, 6, ta.VeloxType_INTEGER()) self.assertTrue(isinstance(col.type(), ta.VeloxType_INTEGER)) self.assert_Column(col, [42] * 6) ########### # BIGINT col = ta.ConstantColumn(42, 6) self.assertTrue(isinstance(col.type(), ta.VeloxType_BIGINT)) self.assert_Column(col, [42] * 6) # Test use constant column for normal add data = [1, -2, None, 3, -4, None] num_column = infer_column(data) add_result = num_column.add(col) self.assertTrue(isinstance(add_result.type(), ta.VeloxType_BIGINT)) self.assert_Column(add_result, [43, 40, None, 45, 38, None]) add_result = col.add(num_column) self.assertTrue(isinstance(add_result.type(), ta.VeloxType_BIGINT)) self.assert_Column(add_result, [43, 40, None, 45, 38, None]) ########### # REAL col = ta.ConstantColumn(4.2, 6) self.assertTrue(isinstance(col.type(), ta.VeloxType_REAL)) self.assert_Column(col, [4.2] * 6) # Test use constant column for normal add data = [1.2, -2.3, None, 3.4, -4.6, None] num_column = infer_column(data) add_result = num_column.add(col) self.assertTrue(isinstance(add_result.type(), ta.VeloxType_REAL)) self.assert_Column(add_result, [5.4, 1.9, None, 7.6, -0.4, None]) add_result = col.add(num_column) self.assertTrue(isinstance(add_result.type(), ta.VeloxType_REAL)) self.assert_Column(add_result, [5.4, 1.9, None, 7.6, -0.4, None]) ########### # VARCHAR col = ta.ConstantColumn("abc", 6) self.assertTrue(isinstance(col.type(), ta.VeloxType_VARCHAR)) self.assert_Column(col, ["abc"] * 6) def test_FromPyList(self) -> None: # BIGINT col = ta.Column(ta.VeloxType_BIGINT(), [1, 2, None, 4]) self.assertTrue(isinstance(col.type(), ta.VeloxType_BIGINT)) self.assert_Column(col, [1, 2, None, 4]) # INTEGER col = ta.Column(ta.VeloxType_INTEGER(), [1, 2, None, 4]) self.assertTrue(isinstance(col.type(), ta.VeloxType_INTEGER)) self.assert_Column(col, [1, 2, None, 4]) # SMALLINT col = ta.Column(ta.VeloxType_SMALLINT(), [1, 2, None, 4]) self.assertTrue(isinstance(col.type(), ta.VeloxType_SMALLINT)) self.assert_Column(col, [1, 2, None, 4]) # TINYINT col = ta.Column(ta.VeloxType_TINYINT(), [1, 2, None, 4]) self.assertTrue(isinstance(col.type(), ta.VeloxType_TINYINT)) self.assert_Column(col, [1, 2, None, 4]) # REAL col = ta.Column(ta.VeloxType_REAL(), [1, 2, None, 4]) self.assertTrue(isinstance(col.type(), ta.VeloxType_REAL)) self.assert_Column(col, [1.0, 2.0, None, 4.0]) # DOUBLE col = ta.Column(ta.VeloxType_DOUBLE(), [1, 2, None, 4]) self.assertTrue(isinstance(col.type(), ta.VeloxType_DOUBLE)) self.assert_Column(col, [1.0, 2.0, None, 4.0]) # BOOLEAN col = ta.Column(ta.VeloxType_BOOLEAN(), [True, False, None, True]) self.assertTrue(isinstance(col.type(), ta.VeloxType_BOOLEAN)) self.assert_Column(col, [True, False, None, True]) # VARCHAR col = ta.Column(ta.VeloxType_VARCHAR(), ["foo", "bar", None, "abc"]) self.assertTrue(isinstance(col.type(), ta.VeloxType_VARCHAR)) self.assert_Column(col, ["foo", "bar", None, "abc"]) # ARRAY of scalar element col = ta.Column( ta.VeloxArrayType(ta.VeloxType_VARCHAR()), [["foo", "bar"], None, ["abc", None]], ) self.assertTrue(isinstance(col.type(), ta.VeloxArrayType)) self.assertTrue(isinstance(col.type().element_type(), ta.VeloxType_VARCHAR)) self.assert_Column(col, [["foo", "bar"], None, ["abc", None]]) # ARRAY of ROW element # col = ta.Column( # ta.VeloxArrayType( # ta.VeloxRowType( # ["f1", "f2"], [ta.VeloxType_VARCHAR(), ta.VeloxType_BIGINT()] # ) # ), # [[("foo", 1), ("bar", 2)], None, [("abc", 3), ("def", 4)]], # ) # self.assertTrue(isinstance(col.type(), ta.VeloxArrayType)) # self.assertTrue(isinstance(col.type().element_type(), ta.VeloxRowType)) # self.assert_Column( # col, [[("foo", 1), ("bar", 2)], None, [("abc", 3), ("def", 4)]] # ) def test_NullCount(self) -> None: col = infer_column([None, 1, 2, None]) self.assertEqual(col.get_null_count(), 2) colSlice = col.slice(col.offset, col.length) self.assertEqual(colSlice.get_null_count(), 2) colSlice = col.slice(1, col.length - 1) self.assertEqual(colSlice.get_null_count(), 1) self.assertEqual(col.get_null_count(), 2) colSlice = col.slice(1, 2) self.assertEqual(colSlice.get_null_count(), 0) self.assertEqual(col.get_null_count(), 2) def test_ToArrow_Numerical(self) -> None: c_array = ffi.new("struct ArrowArray*") ptr_array = int(ffi.cast("uintptr_t", c_array)) col = infer_column([None, 1, 2, None]) col._export_to_arrow(ptr_array) self.assertEqual(c_array.length, 4) self.assertEqual(c_array.null_count, 2) self.assertEqual(c_array.n_buffers, 2) vals = ffi.cast("int64_t*", c_array.buffers[1]) self.assertEqual(vals[1], 1) self.assertEqual(vals[2], 2) self.assertEqual(c_array.n_children, 0) self.assertNotEqual(c_array.release, ffi.NULL) c_array_slice = ffi.new("struct ArrowArray*") ptr_array_slice = int(ffi.cast("uintptr_t", c_array_slice)) col_slice = col.slice(1, 3) col_slice._export_to_arrow(ptr_array_slice) self.assertEqual(c_array_slice.length, 3) self.assertEqual(c_array_slice.null_count, 1) self.assertEqual(c_array_slice.n_buffers, 2) vals_slice = ffi.cast("int64_t*", c_array_slice.buffers[1]) self.assertEqual(vals_slice[0], 1) self.assertEqual(vals_slice[1], 2) self.assertEqual(c_array_slice.n_children, 0) self.assertNotEqual(c_array_slice.release, ffi.NULL) def test_ToArrow_Struct(self) -> None: c_array = ffi.new("struct ArrowArray*") ptr_array = int(ffi.cast("uintptr_t", c_array)) col = ta.Column( ta.VeloxRowType( ["f1", "f2"], [ta.VeloxType_INTEGER(), ta.VeloxType_INTEGER()], ) ) col.child_at(0).append(1) col.child_at(1).append(10) col.set_length(1) col.child_at(0).append(2) col.child_at(1).append(20) col.set_length(2) col._export_to_arrow(ptr_array) self.assertEqual(c_array.length, 2) self.assertEqual(c_array.null_count, 0) self.assertEqual(c_array.n_buffers, 1) self.assertEqual(c_array.n_children, 2) self.assertNotEqual(c_array.release, ffi.NULL) # pyre-fixme[16]: `pa.StructArray` has no attribute `_import_from_c`. s = pa.StructArray._import_from_c( ptr_array, pa.struct( [ pa.field("f1", pa.int32(), nullable=False), pa.field("f2", pa.int32(), nullable=False), ] ), ) self.assertTrue(isinstance(s, pa.StructArray)) self.assertEqual(len(s), len(col)) self.assertEqual(pa.StructArray.field(s, 0).to_pylist(), [1, 2]) self.assertEqual(pa.StructArray.field(s, 1).to_pylist(), [10, 20]) def test_FromArrow_Numerical(self) -> None: c_schema = ffi.new("struct ArrowSchema*") ptr_schema = int(ffi.cast("uintptr_t", c_schema)) c_array = ffi.new("struct ArrowArray*") ptr_array = int(ffi.cast("uintptr_t", c_array)) a = pa.array([None, 1, 2, None]) # pyre-fixme[16]: Item `Array` of `Union[Array[typing.Any], ChunkedArray]` # has no attribute `_export_to_c`. a._export_to_c(ptr_array, ptr_schema) col = ta._import_from_arrow(ta.VeloxType_BIGINT(), ptr_array, ptr_schema) self.assertEqual(len(col), 4) self.assertEqual(col.get_null_count(), 2) self.assertTrue(col.is_null_at(0)) self.assertEqual(col[1], 1) self.assertEqual(col[2], 2) self.assertTrue(col.is_null_at(3)) self.assertEqual(c_array.release, ffi.NULL) self.assertEqual(c_schema.release, ffi.NULL) def test_FromArrow_Struct(self) -> None: c_schema = ffi.new("struct ArrowSchema*") ptr_schema = int(ffi.cast("uintptr_t", c_schema)) c_array = ffi.new("struct ArrowArray*") ptr_array = int(ffi.cast("uintptr_t", c_array)) f1 = pa.array([1, 2, 3], type=pa.int64()) f2 = pa.array([True, False, None], type=pa.bool_()) s = pa.StructArray.from_arrays( # pyre-fixme[6]: In call `pa.StructArray.from_arrays`, for 1st positional only parameter expected `Iterable[Array[typing.Any]]` but got `Iterable[Union[Array[typing.Any], ChunkedArray]]` [f1, f2], fields=[ # pyre-fixme[16]: Item `pa.Array` of `typing.Union[pa.Array[typing.Any], pa.ChunkedArray]` has no attribute `type`. pa.field("f1", f1.type, nullable=False), # pyre-fixme[16]: Item `pa.Array` of `typing.Union[pa.Array[typing.Any], pa.ChunkedArray]` has no attribute `type`. pa.field("f2", f2.type, nullable=True), ], ) # pyre-fixme[16]: Item `Array` of `Union[Array[typing.Any], ChunkedArray]` # has no attribute `_export_to_c`. s._export_to_c(ptr_array, ptr_schema) col = ta._import_from_arrow( ta.VeloxRowType( ["f1", "f2"], [ta.VeloxType_INTEGER(), ta.VeloxType_BOOLEAN()], ), ptr_array, ptr_schema, ) self.assertEqual(len(col), 3) self.assertEqual(col.get_null_count(), 0) self.assertEqual(col.child_at(0).get_null_count(), 0) self.assertEqual(col.child_at(1).get_null_count(), 1) self.assertEqual(col.type().name_of(0), "f1") self.assertEqual(col.type().name_of(1), "f2") self.assert_Column(col.child_at(0), [1, 2, 3]) self.assert_Column(col.child_at(1), [True, False, None]) self.assertEqual(c_array.release, ffi.NULL) self.assertEqual(c_schema.release, ffi.NULL) def is_same_type(a, b) -> bool: if isinstance(a, ta.VeloxType_BIGINT): return isinstance(b, ta.VeloxType_BIGINT) if isinstance(a, ta.VeloxType_VARCHAR): return isinstance(b, ta.VeloxType_VARCHAR) if isinstance(a, ta.VeloxType_BOOLEAN): return isinstance(b, ta.VeloxType_BOOLEAN) if isinstance(a, ta.VeloxArrayType): return isinstance(b, ta.VeloxArrayType) and is_same_type( a.element_type(), b.element_type() ) raise NotImplementedError() # infer result @dataclass(frozen=True) class Unresolved: def union(self, other: Unresolved) -> Unresolved: return other @dataclass(frozen=True) class UnresolvedArray(Unresolved): element_type: Unresolved def infer_column(data) -> ta.BaseColumn: inferred_column = _infer_column(data) if isinstance(inferred_column, Unresolved): return resolve_column_with_arbitrary_type(inferred_column) else: return inferred_column def resolve_column_with_arbitrary_type(unresolved: Unresolved) -> ta.BaseColumn: if isinstance(unresolved, UnresolvedArray): element = resolve_column_with_arbitrary_type(unresolved.element_type) col = ta.Column(ta.VeloxArrayType(element.type())) col.append(element) return col else: return ta.Column(ta.VeloxType_BIGINT()) def get_union_type(inferred_columns: List[Union[ta.BaseColumn, Unresolved, None]]): unresolved_item_type = None resolved_item_type = None for item_col in inferred_columns: if item_col is None: pass elif isinstance(item_col, Unresolved): if unresolved_item_type is None: unresolved_item_type = item_col else: unresolved_item_type = unresolved_item_type.union(item_col) elif resolved_item_type is None: resolved_item_type = item_col.type() else: assert is_same_type(resolved_item_type, item_col.type()) if resolved_item_type is None: if unresolved_item_type is None: return None else: return unresolved_item_type else: return resolved_item_type def _infer_column(data) -> Union[ta.BaseColumn, Unresolved, None]: if data is None: return None assert isinstance(data, list) non_null_item = next((item for item in data if item is not None), None) if non_null_item is None: return Unresolved() else: if isinstance(non_null_item, list): inferred_columns = [_infer_column(item) for item in data] union_type = get_union_type(inferred_columns) if union_type is None: return Unresolved() elif isinstance(union_type, Unresolved): return UnresolvedArray(union_type) else: resolved_item_type = union_type col = ta.Column(ta.VeloxArrayType(resolved_item_type)) for item_col, item in zip(inferred_columns, data): if item is None: resolved_item_col = None elif isinstance(item_col, Unresolved): resolved_item_col = resolve_column(item, resolved_item_type) else: resolved_item_col = item_col if resolved_item_col is None: col.append_null() else: col.append(resolved_item_col) return col elif isinstance(non_null_item, dict): keys_array = [] values_array = [] for item in data: if item is None: keys_array.append(None) values_array.append(None) elif isinstance(item, dict): keys_array.append(list(item.keys())) values_array.append(list(item.values())) else: raise ValueError("non-dict item in dict list") inferred_keys_array_columns = _infer_column(keys_array) inferred_values_array_columns = _infer_column(values_array) keys_array_type = inferred_keys_array_columns.type() values_array_type = inferred_values_array_columns.type() if isinstance(keys_array_type, ta.VeloxArrayType) and isinstance( values_array_type, ta.VeloxArrayType, ): col = ta.Column( ta.VeloxMapType( keys_array_type.element_type(), values_array_type.element_type() ) ) for item in data: if item is None: col.append_null() else: key_col = ta.Column(keys_array_type.element_type()) value_col = ta.Column(values_array_type.element_type()) for key, value in item.items(): key_col.append(key) if value is None: value_col.append_null() else: value_col.append(value) col.append(key_col, value_col) return col else: raise NotImplementedError() else: type_ = { int: ta.VeloxType_BIGINT(), float: ta.VeloxType_REAL(), str: ta.VeloxType_VARCHAR(), bool: ta.VeloxType_BOOLEAN(), }.get(type(non_null_item)) if type_ is None: raise NotImplementedError(f"Cannot infer {type(non_null_item)}") else: col = ta.Column(type_) for item in data: if item is None: col.append_null() else: col.append(item) return col def resolve_column(item, type_) -> ta.BaseColumn: col = ta.Column(type_) for value in item: if value is None: col.append_null() else: if type(type_) in ( ta.VeloxType_INTEGER, ta.VeloxType_VARCHAR, ta.VeloxType_BOOLEAN, ): col.append(value) elif type(type_) == ta.VeloxArrayType: col.append(resolve_column(value, type_.element_type())) else: raise NotImplementedError(f"{type(type_)}") return col class TestInferColumn(unittest.TestCase): def test_infer_simple(self) -> None: data = [1, 2, 3] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxType_BIGINT())) def test_infer_array(self) -> None: data = [[1], [2], [3]] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxArrayType(ta.VeloxType_BIGINT()))) def test_infer_nested_array(self) -> None: data = [[[1]], [[2], [5]], [[3, 4]]] type_ = infer_column(data).type() self.assertTrue( is_same_type( type_, ta.VeloxArrayType(ta.VeloxArrayType(ta.VeloxType_BIGINT())), ) ) def test_unresolved(self) -> None: data = [] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxType_BIGINT())) def test_nested_unresolved1(self) -> None: data = [[]] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxArrayType(ta.VeloxType_BIGINT()))) def test_nested_unresolved2(self) -> None: data = [None] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxType_BIGINT())) def test_nested_unresolved3(self) -> None: data = [[None]] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxArrayType(ta.VeloxType_BIGINT()))) def test_propagate_unresolved(self) -> None: data = [None, [], [1], [1, None, 2], None] type_ = infer_column(data).type() self.assertTrue(is_same_type(type_, ta.VeloxArrayType(ta.VeloxType_BIGINT()))) class TestArrayColumns(BaseTestColumns): def test_ArrayColumnInt64(self) -> None: data = [None, [], [1], [1, None, 2], None] col = infer_column(data) self.assert_Column(col.elements(), [1, 1, None, 2]) for sliced_col, sliced_data in ( (col, data), (col.slice(2, 2), data[2:4]), (col.slice(1, 4), data[1:5]), ): self.assertEqual(len(sliced_col), len(sliced_data)) for i, item in enumerate(sliced_data): if item is None: self.assertTrue(sliced_col.is_null_at(i)) else: self.assertFalse(sliced_col.is_null_at(i)) self.assertEqual(len(sliced_col[i]), len(item)) for j, value in enumerate(item): if value is None: self.assertTrue(sliced_col[i].is_null_at(j)) else: self.assertFalse(sliced_col[i].is_null_at(j)) # pyre-fixme[16]: Item `None` of `Union[None, # List[typing.Any], List[int], # List[typing.Optional[int]]]` has no attribute # `__getitem__`. self.assertEqual(sliced_col[i][j], sliced_data[i][j]) def test_NestedArrayColumnInt64(self) -> None: data = [[[1, 2], None, [3, 4]], [[4], [5]]] col = infer_column(data) self.assertEqual(col[0][0][0], 1) self.assertEqual(col[0][0][1], 2) self.assertTrue(col[0].is_null_at(1)) self.assertEqual(col[0][2][0], 3) self.assertEqual(col[0][2][1], 4) self.assertEqual(col[1][0][0], 4) self.assertEqual(col[1][1][0], 5) def test_NestedArrayColumnString(self) -> None: data = [[], [[]], [["a"]], [["b", "c"], ["d", "e", "f"]]] col = infer_column(data) self.assertEqual(len(col[0]), 0) self.assertEqual(len(col[1]), 1) self.assertEqual(len(col[1][0]), 0) self.assertEqual(col[2][0][0], "a") self.assertEqual(col[3][0][0], "b") self.assertEqual(col[3][0][1], "c") self.assertEqual(col[3][1][0], "d") self.assertEqual(col[3][1][1], "e") self.assertEqual(col[3][1][2], "f") class TestMapColumns(unittest.TestCase): def test_MapColumnInt64(self) -> None: data = [{"a": 1, "b": 2}, {"c": 3, "d": 4, "e": 5}] col = infer_column(data) self.assertEqual(len(col), 2) keys = col.keys() self.assertEqual(len(keys), 2) self.assertEqual(len(keys[0]), 2) self.assertEqual(keys[0][0], "a") self.assertEqual(keys[0][1], "b") self.assertEqual(len(keys[1]), 3) self.assertEqual(keys[1][0], "c") self.assertEqual(keys[1][1], "d") self.assertEqual(keys[1][2], "e") values = col.values() self.assertEqual(len(values), 2) self.assertEqual(len(values[0]), 2) self.assertEqual(values[0][0], 1) self.assertEqual(values[0][1], 2) self.assertEqual(len(values[1]), 3) self.assertEqual(values[1][0], 3) self.assertEqual(values[1][1], 4) self.assertEqual(values[1][2], 5) sliced_col = col.slice(1, 1) self.assertEqual(len(sliced_col), 1) keys = sliced_col.keys() self.assertEqual(len(keys), 1) self.assertEqual(len(keys[0]), 3) self.assertEqual(keys[0][0], "c") self.assertEqual(keys[0][1], "d") self.assertEqual(keys[0][2], "e") values = sliced_col.values() self.assertEqual(len(values), 1) self.assertEqual(len(values[0]), 3) self.assertEqual(values[0][0], 3) self.assertEqual(values[0][1], 4) self.assertEqual(values[0][2], 5) def test_MapColumnInt64_with_none(self) -> None: data = [None, {"a": 1, "b": 2}, {"c": None, "d": 4, "e": 5}] col = infer_column(data) self.assertEqual(len(col), 3) self.assertTrue(col.is_null_at(0)) keys = col.keys() self.assertEqual(len(keys), 3) self.assertEqual(len(keys[1]), 2) self.assertEqual(keys[1][0], "a") self.assertEqual(keys[1][1], "b") self.assertEqual(len(keys[2]), 3) self.assertEqual(keys[2][0], "c") self.assertEqual(keys[2][1], "d") self.assertEqual(keys[2][2], "e") values = col.values() self.assertEqual(len(values), 3) self.assertEqual(len(values[1]), 2) self.assertEqual(values[1][0], 1) self.assertEqual(values[1][1], 2) self.assertEqual(len(values[2]), 3) self.assertTrue(values[2].is_null_at(0)) self.assertEqual(values[2][1], 4) self.assertEqual(values[2][2], 5) sliced_col = col.slice(1, 1) self.assertEqual(len(sliced_col), 1) keys = sliced_col.keys() self.assertEqual(len(keys), 1) self.assertEqual(len(keys[0]), 2) self.assertEqual(keys[0][0], "a") self.assertEqual(keys[0][1], "b") values = sliced_col.values() self.assertEqual(len(values), 1) self.assertEqual(len(values[0]), 2) self.assertEqual(values[0][0], 1) self.assertEqual(values[0][1], 2) class TestRowColumns(unittest.TestCase): def test_RowColumn1(self) -> None: col = ta.Column( ta.VeloxRowType( ["a", "b"], [ta.VeloxType_INTEGER(), ta.VeloxType_VARCHAR()], ) ) col.child_at(0).append(1) col.child_at(1).append("x") col.set_length(1) col.child_at(0).append(2) col.child_at(1).append("y") col.set_length(2) self.assertEqual(col.type().name_of(0), "a") self.assertEqual(col.type().name_of(1), "b") self.assertEqual(col.child_at(col.type().get_child_idx("a"))[0], 1) self.assertEqual(col.child_at(col.type().get_child_idx("b"))[0], "x") self.assertEqual(col.child_at(col.type().get_child_idx("a"))[1], 2) self.assertEqual(col.child_at(col.type().get_child_idx("b"))[1], "y") sliced_col = col.slice(1, 1) self.assertEqual( sliced_col.child_at(sliced_col.type().get_child_idx("a"))[0], 2 ) self.assertEqual( sliced_col.child_at(sliced_col.type().get_child_idx("b"))[0], "y" ) def test_set_child(self) -> None: col = ta.Column( ta.VeloxRowType( ["a", "b"], [ta.VeloxType_INTEGER(), ta.VeloxType_VARCHAR()], ) ) col.child_at(0).append(1) col.child_at(1).append("x") col.set_length(1) col.child_at(0).append(2) col.child_at(1).append("y") col.set_length(2) new_child = infer_column([3, 4]) col.set_child(0, new_child) self.assertEqual(col.type().name_of(0), "a") self.assertEqual(col.type().name_of(1), "b") self.assertEqual(col.child_at(col.type().get_child_idx("a"))[0], 3) self.assertEqual(col.child_at(col.type().get_child_idx("b"))[0], "x") self.assertEqual(col.child_at(col.type().get_child_idx("a"))[1], 4) self.assertEqual(col.child_at(col.type().get_child_idx("b"))[1], "y") def test_nested_row(self) -> None: col = ta.Column( ta.VeloxRowType( ["a", "b"], [ ta.VeloxType_INTEGER(), ta.VeloxRowType( ["b1", "b2"], [ta.VeloxType_VARCHAR(), ta.VeloxType_INTEGER()], ), ], ) ) col.child_at(0).append(1) col.child_at(1).child_at(0).append("21") col.child_at(1).child_at(1).append(22) self.assertEqual(col.type().get_child_idx("a"), 0) self.assertEqual(col.type().get_child_idx("b"), 1) self.assertEqual(col.child_at(1).type().get_child_idx("b1"), 0) self.assertEqual(col.child_at(1).type().get_child_idx("b2"), 1) self.assertEqual(col.child_at(0)[0], 1) self.assertEqual(col.child_at(1).child_at(0)[0], "21") self.assertEqual(col.child_at(1).child_at(1)[0], 22) if __name__ == "__main__": unittest.main()
38.985641
198
0.580122
53f978bd7c2f2f08ac846d0e0272334b6fb10bb0
4,019
py
Python
com.ppc.Bot/devices/lock/lock.py
slrobertson1/botlab
fef6005c57010a30ed8d1d599d15644dd7c870d8
[ "Apache-2.0" ]
null
null
null
com.ppc.Bot/devices/lock/lock.py
slrobertson1/botlab
fef6005c57010a30ed8d1d599d15644dd7c870d8
[ "Apache-2.0" ]
null
null
null
com.ppc.Bot/devices/lock/lock.py
slrobertson1/botlab
fef6005c57010a30ed8d1d599d15644dd7c870d8
[ "Apache-2.0" ]
null
null
null
''' Created on February 8, 2018 This file is subject to the terms and conditions defined in the file 'LICENSE.txt', which is part of this source code package. @author: David Moss ''' from devices.device import Device class LockDevice(Device): """Lock Device""" # List of Device Types this class is compatible with DEVICE_TYPES = [9010] # Measurement name for the lock status MEASUREMENT_NAME_LOCK_STATUS = 'lockStatus' MEASUREMENT_PARAMETERS_LIST = [ MEASUREMENT_NAME_LOCK_STATUS ] # Possible lock states STATUS_PARTIALLY_LOCKED = 0 STATUS_LOCKED = 1 STATUS_UNLOCKED = 2 # Goals GOAL_INTELLIGENT_AUTO_LOCK = 101 GOAL_STATIC_AUTO_LOCK = 102 def get_device_type_name(self): """ :return: the name of this device type in the given language, for example, "Entry Sensor" """ # NOTE: Abstract device type name, doesn't show up in end user documentation return _("Lock") def get_image_name(self): """ :return: the font icon name of this device type """ return "lock" def did_unlock(self, botengine=None): """ Did the door just unlock :param botengine: :return: True if the door just unlocked """ if self.MEASUREMENT_NAME_LOCK_STATUS in self.last_updated_params: return self.is_unlocked(botengine) return False def did_lock(self, botengine=None): """ Did the door just lock :param botengine: :return: True if the door just locked """ if self.MEASUREMENT_NAME_LOCK_STATUS in self.last_updated_params: return self.is_fully_locked(botengine) return False def did_partially_lock(self, botengine=None): """ Did the door just partially lock :param botengine: :return: True if the door just locked """ if self.MEASUREMENT_NAME_LOCK_STATUS in self.last_updated_params: return self.is_partially_locked(botengine) return False def is_fully_locked(self, botengine=None): """ Note that just because a door is not fully locked doesn't mean it's actually unlocked. It could be partially locked. Test conditions explicitly. :param botengine: :return: True if the door is fully locked; None if the measurement doesn't exist """ if self.MEASUREMENT_NAME_LOCK_STATUS in self.measurements: return self.measurements[self.MEASUREMENT_NAME_LOCK_STATUS][0][0] == self.STATUS_LOCKED return None def is_partially_locked(self, botengine=None): """ :param botengine: :return: True if the door is partially but not fully locked; None if the measurement doesn't exist """ if self.MEASUREMENT_NAME_LOCK_STATUS in self.measurements: return self.measurements[self.MEASUREMENT_NAME_LOCK_STATUS][0][0] == self.STATUS_PARTIALLY_LOCKED return None def is_unlocked(self, botengine=None): """ Note that just because a door is not unlocked doesn't mean it is fully locked. It could be partially locked. Test conditions explicitly. :param botengine: :return: True if the door is unlocked; None if the measurement doesn't exist """ if self.MEASUREMENT_NAME_LOCK_STATUS in self.measurements: return self.measurements[self.MEASUREMENT_NAME_LOCK_STATUS][0][0] == self.STATUS_UNLOCKED return None def lock(self, botengine): """ Lock the door :param botengine: BotEngine environment """ botengine.send_command(self.device_id, self.MEASUREMENT_NAME_LOCK_STATUS, self.STATUS_LOCKED) def unlock(self, botengine): """ Unlock the door :param botengine: BotEngine environment """ botengine.send_command(self.device_id, self.MEASUREMENT_NAME_LOCK_STATUS, self.STATUS_UNLOCKED)
30.915385
124
0.657129
92dab6b800ffa79a99ab39d22c9202555d66fba6
93
py
Python
src/friendapp/apps.py
Darshee-m/Friend_Finder_WebApp
98c30386df9780b7fc0225f1df777aa0be704f3f
[ "bzip2-1.0.6" ]
15
2020-12-23T13:56:49.000Z
2021-12-10T11:04:23.000Z
src/friendapp/apps.py
Darshee-m/Friend_Finder_WebApp
98c30386df9780b7fc0225f1df777aa0be704f3f
[ "bzip2-1.0.6" ]
41
2021-03-19T07:51:48.000Z
2021-11-22T09:45:46.000Z
src/friendapp/apps.py
Darshee-m/Friend_Finder_WebApp
98c30386df9780b7fc0225f1df777aa0be704f3f
[ "bzip2-1.0.6" ]
3
2021-03-24T15:18:24.000Z
2021-09-11T14:51:35.000Z
from django.apps import AppConfig class FriendappConfig(AppConfig): name = 'friendapp'
15.5
33
0.763441
73f1ee0d5cd868e51b13a348211443fb5e4f8cbd
4,467
py
Python
learn_stem/python/utilities/pyprogrammer.py
wgong/open_source_learning
ccf819626bf17125abcee8edf66401e4a0d2dc20
[ "Apache-2.0" ]
1
2019-04-11T13:27:29.000Z
2019-04-11T13:27:29.000Z
learn_stem/python/utilities/pyprogrammer.py
wgong/open_source_learning
ccf819626bf17125abcee8edf66401e4a0d2dc20
[ "Apache-2.0" ]
4
2017-03-09T18:42:19.000Z
2017-03-19T21:06:23.000Z
learn_stem/python/utilities/pyprogrammer.py
wgong/open_source_learning
ccf819626bf17125abcee8edf66401e4a0d2dc20
[ "Apache-2.0" ]
null
null
null
# Evolution of a Python programmer.py #Newbie programmer def factorial_newbie(x): if x == 0: return 1 else: return x * factorial(x - 1) print factorial_newbie(6) #First year programmer, studied Pascal def factorial_pascal(x): result = 1 i = 2 while i <= x: result = result * i i = i + 1 return result print factorial_pascal(6) #First year programmer, studied C def factorial_c(x): result = i = 1; while (i <= x): result *= i; i += 1; return result; print(factorial_c(6)) #First year programmer, SICP @tailcall def factorial_sicp(x, acc=1): if (x > 1): return x*factorial_sicp(x - 1) else: return acc print(factorial_sicp(6)) #First year programmer, Python def factorial(x): res = 1 for i in xrange(2, x + 1): res *= i return res print factorial(6) #Lazy Python programmer def factorial_lazy(x): return x > 1 and x * fact(x - 1) or 1 print factorial_lazy(6) #Lazier Python programmer f = lambda x: x and x * f(x - 1) or 1 print f(6) #Python expert programmer # does not work using Canopy import operator as op import functional as f fact = lambda x: f.foldl(op.mul, 1, xrange(2, x + 1)) print fact(6) #Python hacker import sys #@tailcall def fact(x, acc=1): if x: return fact(x.__sub__(1), acc.__mul__(x)) return acc sys.stdout.write(str(fact(6)) + '\n') #EXPERT PROGRAMMER import c_math # ImportError: No module named c_math fact = c_math.fact print fact(6) #ENGLISH EXPERT PROGRAMMER import c_maths fact = c_maths.fact print fact(6) #Web designer def factorial(x): #------------------------------------------------- #--- Code snippet from The Math Vault --- #--- Calculate factorial (C) Arthur Smith 1999 --- #------------------------------------------------- result = str(1) i = 1 #Thanks Adam while i <= x: #result = result * i #It's faster to use *= #result = str(result * result + i) #result = int(result *= i) #?????? result str(int(result) * i) #result = int(str(result) * i) i = i + 1 return result print factorial(6) #Unix programmer # incomplete import os def fact(x): os.system('factorial ' + str(x)) fact(6) #Windows programmer NULL = None def CalculateAndPrintFactorialEx(dwNumber, hOutputDevice, lpLparam, lpWparam, lpsscSecurity, *dwReserved): if lpsscSecurity != NULL: return NULL #Not implemented dwResult = dwCounter = 1 while dwCounter <= dwNumber: dwResult *= dwCounter dwCounter += 1 hOutputDevice.write(str(dwResult)) hOutputDevice.write('\n') return 1 import sys CalculateAndPrintFactorialEx(6, sys.stdout, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) #Enterprise programmer def new(cls, *args, **kwargs): return cls(*args, **kwargs) class Number(object): pass class IntegralNumber(int, Number): def toInt(self): return new (int, self) class InternalBase(object): def __init__(self, base): self.base = base.toInt() def getBase(self): return new (IntegralNumber, self.base) class MathematicsSystem(object): def __init__(self, ibase): Abstract @classmethod def getInstance(cls, ibase): try: cls.__instance except AttributeError: cls.__instance = new (cls, ibase) return cls.__instance class StandardMathematicsSystem(MathematicsSystem): def __init__(self, ibase): if ibase.getBase() != new (IntegralNumber, 2): raise NotImplementedError self.base = ibase.getBase() def calculateFactorial(self, target): result = new (IntegralNumber, 1) i = new (IntegralNumber, 2) while i <= target: result = result * i i = i + new (IntegralNumber, 1) return result print StandardMathematicsSystem.getInstance(new (InternalBase, new (IntegralNumber, 2))).calculateFactorial(new (IntegralNumber, 6))
24.145946
140
0.565704
f8f212f258c8b009406970eb693d0b3788589c5a
384
py
Python
sign.py
abinash-boruah/Spam-SMS-classifier
4c57872c3c924fefad34c4d82fe7fa4122f6aa4a
[ "Unlicense" ]
null
null
null
sign.py
abinash-boruah/Spam-SMS-classifier
4c57872c3c924fefad34c4d82fe7fa4122f6aa4a
[ "Unlicense" ]
null
null
null
sign.py
abinash-boruah/Spam-SMS-classifier
4c57872c3c924fefad34c4d82fe7fa4122f6aa4a
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri May 3 10:06:08 2019 @author: abinash boruah """ import numpy as np import matplotlib.pyplot as plt def sign(x): l=[] for i in x: if i>0: l1=1 l.append(l1) else: l2=0 l.append(l2) return l x = np.arange(-8,8,1) y = sign(x) plt.plot(x,y)
15.36
36
0.466146
bad7b13c5c6da7879bb27515660990d401cec8b0
2,733
py
Python
src/mlpro/rl/pool/envs/multigeorobot/multigeorobot.py
fhswf/MLPro
e944b69bed9c2d5548677711270e4a4fe868aea9
[ "Apache-2.0" ]
5
2022-01-31T15:52:19.000Z
2022-03-21T18:34:27.000Z
src/mlpro/rl/pool/envs/multigeorobot/multigeorobot.py
fhswf/MLPro
e944b69bed9c2d5548677711270e4a4fe868aea9
[ "Apache-2.0" ]
61
2021-12-17T13:03:59.000Z
2022-03-31T10:24:37.000Z
src/mlpro/rl/pool/envs/multigeorobot/multigeorobot.py
fhswf/MLPro
e944b69bed9c2d5548677711270e4a4fe868aea9
[ "Apache-2.0" ]
null
null
null
## ------------------------------------------------------------------------------------------------- ## -- Project : MLPro - A Synoptic Framework for Standardized Machine Learning Tasks ## -- Package : mlpro ## -- Module : multigeorobot.py ## ------------------------------------------------------------------------------------------------- ## -- History : ## -- yyyy-mm-dd Ver. Auth. Description ## -- 2021-12-19 0.0.0 MRD Creation ## -- 2021-12-19 1.0.0 MRD Released first version ## -- 2022-02-25 1.0.1 SY Refactoring due to auto generated ID in class Dimension ## -- 2022-04-29 1.0.2 MRD Wrap the environment with WrEnvGYM2MLPro ## ------------------------------------------------------------------------------------------------- """ Ver. 1.0.2 (2022-04-29) This module provides an environment for multi geometry robot. """ from mlpro.rl.models import * import mlpro import rospy import subprocess from mlpro.wrappers.openai_gym import WrEnvGYM2MLPro from openai_ros.openai_ros_common import StartOpenAI_ROS_Environment from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest class MultiGeo(WrEnvGYM2MLPro): """ This module provides an environment for multi geometry robot. """ C_NAME = 'MultiGeo' C_LATENCY = timedelta(0,5,0) C_INFINITY = np.finfo(np.float32).max def __init__(self, p_seed=0, p_logging=True): roscore = subprocess.Popen('roscore') rospy.init_node('multi_geo_robot_training', anonymous=True, log_level=rospy.WARN) LoadYamlFileParamsTest(rospackage_name="multi_geo_robot_training", rel_path_from_package_to_file="config", yaml_file_name="multi_geo_robot.yaml") ros_ws_path = mlpro.rl.pool.envs.multigeorobot.__file__.replace("/__init__.py", "") rospy.set_param('ros_ws_path', ros_ws_path) # Init OpenAI_ROS ENV task_and_robot_environment_name = rospy.get_param( '/multi_geo_robot/task_and_robot_environment_name') max_step_episode = rospy.get_param( '/multi_geo_robot/max_iterations') env = StartOpenAI_ROS_Environment(task_and_robot_environment_name, max_step_episode) env.seed(p_seed) super().__init__(p_gym_env=env) ## ------------------------------------------------------------------------------------------------- def compute_success(self, p_state: State) -> bool: obs = p_state.get_values() close = np.allclose(a=obs[:3], b=obs[3:], atol=0.1) if close: self._state.set_terminal(True) return close
39.042857
100
0.555434
35a046f8d8366225d17fd3244dffb297cbc03c8f
337
py
Python
test/__init__.py
elwirth/cgavi
ceeba31bfc28ea3a32476677041c4b9e9ed59dbc
[ "MIT" ]
null
null
null
test/__init__.py
elwirth/cgavi
ceeba31bfc28ea3a32476677041c4b9e9ed59dbc
[ "MIT" ]
null
null
null
test/__init__.py
elwirth/cgavi
ceeba31bfc28ea3a32476677041c4b9e9ed59dbc
[ "MIT" ]
null
null
null
# To run all the tests, run: python -m unittest in the terminal in the project directory. from os.path import dirname, basename, isfile, join import glob # makes the modules easily loadable modules = glob.glob(join(dirname(__file__), "*.py")) __all__ = [basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
42.125
92
0.735905
e7d7cd028d97a95271462da815ef9d0eba6b3d7a
2,121
py
Python
pyqtgraph/graphicsItems/GraphicsWidget.py
hishizuka/pyqtgraph
4820625d93ffb41f324431d0d29b395cf91f339e
[ "MIT" ]
2,762
2015-01-02T14:34:10.000Z
2022-03-30T14:06:07.000Z
pyqtgraph/graphicsItems/GraphicsWidget.py
hishizuka/pyqtgraph
4820625d93ffb41f324431d0d29b395cf91f339e
[ "MIT" ]
1,901
2015-01-12T03:20:30.000Z
2022-03-31T16:33:36.000Z
pyqtgraph/graphicsItems/GraphicsWidget.py
hishizuka/pyqtgraph
4820625d93ffb41f324431d0d29b395cf91f339e
[ "MIT" ]
1,038
2015-01-01T04:05:49.000Z
2022-03-31T11:57:51.000Z
# -*- coding: utf-8 -*- from ..Qt import QtGui from .GraphicsItem import GraphicsItem __all__ = ['GraphicsWidget'] class GraphicsWidget(GraphicsItem, QtGui.QGraphicsWidget): _qtBaseClass = QtGui.QGraphicsWidget def __init__(self, *args, **kargs): """ **Bases:** :class:`GraphicsItem <pyqtgraph.GraphicsItem>`, :class:`QtGui.QGraphicsWidget` Extends QGraphicsWidget with several helpful methods and workarounds for PyQt bugs. Most of the extra functionality is inherited from :class:`GraphicsItem <pyqtgraph.GraphicsItem>`. """ QtGui.QGraphicsWidget.__init__(self, *args, **kargs) GraphicsItem.__init__(self) ## done by GraphicsItem init #GraphicsScene.registerObject(self) ## workaround for pyqt bug in graphicsscene.items() # Removed due to https://bugreports.qt-project.org/browse/PYSIDE-86 #def itemChange(self, change, value): ## BEWARE: Calling QGraphicsWidget.itemChange can lead to crashing! ##ret = QtGui.QGraphicsWidget.itemChange(self, change, value) ## segv occurs here ## The default behavior is just to return the value argument, so we'll do that ## without calling the original method. #ret = value #if change in [self.ItemParentHasChanged, self.ItemSceneHasChanged]: #self._updateView() #return ret def setFixedHeight(self, h): self.setMaximumHeight(h) self.setMinimumHeight(h) def setFixedWidth(self, h): self.setMaximumWidth(h) self.setMinimumWidth(h) def height(self): return self.geometry().height() def width(self): return self.geometry().width() def boundingRect(self): br = self.mapRectFromParent(self.geometry()).normalized() #print "bounds:", br return br def shape(self): ## No idea why this is necessary, but rotated items do not receive clicks otherwise. p = QtGui.QPainterPath() p.addRect(self.boundingRect()) #print "shape:", p.boundingRect() return p
36.568966
106
0.649222
e4841314effe514e33d22b8ba23cd0f37b1e78c6
301
py
Python
data/multilingual/Latn.YAO/Mono_8/pdf_to_json_test_Latn.YAO_Mono_8.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.YAO/Mono_8/pdf_to_json_test_Latn.YAO_Mono_8.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.YAO/Mono_8/pdf_to_json_test_Latn.YAO_Mono_8.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.YAO/Mono_8/udhr_Latn.YAO_Mono_8.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.1
71
0.810631
a09c741f358fcfeccbe544463ce71221fb5c298f
11,857
py
Python
vpc_core_infra/vpcx_cdk/vpc_stack.py
aws-samples/amz-vpc-provisioning-api-sls
d6779d24f8f0aa46e53cee17b7d94af401daeb18
[ "MIT-0" ]
null
null
null
vpc_core_infra/vpcx_cdk/vpc_stack.py
aws-samples/amz-vpc-provisioning-api-sls
d6779d24f8f0aa46e53cee17b7d94af401daeb18
[ "MIT-0" ]
null
null
null
vpc_core_infra/vpcx_cdk/vpc_stack.py
aws-samples/amz-vpc-provisioning-api-sls
d6779d24f8f0aa46e53cee17b7d94af401daeb18
[ "MIT-0" ]
null
null
null
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 # pylint: disable=line-too-long """Class to handle the Cloudformatiom stack template creation""" from aws_cdk import ( aws_ec2 as ec2, core ) from typing import List from .vpc_context import VpcContext, VpcType, VpcConnectivity class VpcStack(core.Stack): """ VPC generated using the CDK """ # These are used in Subnet / RouteTable names. This is the only way to determine # what the intended usage is other than inferring from configuration PRIVATE_TYPE_NAME = "Private" PUBLIC_TYPE_NAME = "Public" def __init__(self, scope: core.Construct, construct_id: str, vpc_context: VpcContext, external_configs: dict, **kwargs) -> None: # Initialize VPC super().__init__(scope, construct_id, **kwargs) # Collect input args self.net_config = external_configs["net_config"] self.vpc_context = vpc_context vpc = self.make_vpc() #self.make_vpc_flow_logs(vpc.ref) private_route_table, private_subnets = self.make_subnets(vpc.ref, vpc_context.vpc_private_subnet_cidrs, self.PRIVATE_TYPE_NAME) public_route_table, public_subnets = self.make_subnets(vpc.ref, vpc_context.vpc_public_subnet_cidrs, self.PUBLIC_TYPE_NAME, len(private_subnets)) self.make_s3_vpc_gateway_endpoint(vpc.ref, private_route_table.ref) #self.make_vpc_peering(vpc.ref, private_route_table, public_route_table) has_public_setup = (public_route_table and public_subnets) # Public Specific Config if has_public_setup: self.make_internet_gateway(vpc.ref, public_route_table.ref) # Non-HPC Specific Config if vpc_context.vpc_type != VpcType.hpc: self.add_dhcp_options(vpc.ref) # No provided connectivity will create a VGW in addition to explicit request if vpc_context.connectivity_type == VpcConnectivity.vgw: self.make_vgw(vpc.ref, private_route_table.ref) # HPC Specific Config (HPC should always have public set up) # if vpc_context.vpc_type == VpcType.hpc and has_public_setup: # self.make_nat_gateway(public_subnets[0].ref, private_route_table.ref) @classmethod def _get_subnet_id_per_az(cls, subnets: List[ec2.CfnSubnet]): """ Returns one subnet from each AZ that is in use Args: subnets: list of CfnSubnets Returns: of CfnSubnets ids by ref """ one_subnet_per_az = [] used_azs = [] for subnet in subnets: if subnet.availability_zone not in used_azs: one_subnet_per_az.append(subnet.ref) used_azs.append(subnet.availability_zone) return one_subnet_per_az def make_vgw(self, vpc_id, private_route_table_id): """ Generate VGW connection which will be manually connected elsewhere to a DCG Args: vpc_id: VPC CDK ID private_route_table_id: Private route table id Returns: nothing """ name = f"{self.vpc_context.vpcx_name}VGW" vgw = ec2.CfnVPNGateway(self, id=name, type="ipsec.1", tags=self.make_tags(("Name", name))) vgw_attach = ec2.CfnVPCGatewayAttachment(self, id=f"{name}Attachment", vpc_id=vpc_id, vpn_gateway_id=vgw.ref) vgw_route = ec2.CfnRoute(self, id=f"{name}Route", route_table_id=private_route_table_id, destination_cidr_block=self.net_config["global"]["InternetCidr"], gateway_id=vgw.ref) # Needs depends on or will be created prematurely in Cloudformation vgw_route.add_depends_on(target=vgw_attach) def make_s3_vpc_gateway_endpoint(self, vpc_id, private_route_table_id): """ Generate VPC endpoint Args: vpc_id: VPC CDK ID private_route_table_id: Private route table id Returns: nothing """ ec2.CfnVPCEndpoint(self, id=f"{self.vpc_context.vpcx_name}S3Gateway", vpc_id=vpc_id, route_table_ids=[private_route_table_id], service_name=f"com.amazonaws.{self.vpc_context.region}.s3") def make_internet_gateway(self, vpc_id, public_rt_id): """ Generate IGW resources Args: vpc_id: VPC CDK ID public_rt_id: public route table id to add IGW routes to Returns: nothing """ igw_name = f"{self.vpc_context.vpcx_name}IGW" igw = ec2.CfnInternetGateway(self, id=igw_name, tags=self.make_tags(("Name", igw_name))) ec2.CfnVPCGatewayAttachment(self, id=f"{igw_name}Attachment", vpc_id=vpc_id, internet_gateway_id=igw.ref) ec2.CfnRoute(self, id=f"{igw_name}Route", route_table_id=public_rt_id, destination_cidr_block=self.net_config["global"]["InternetCidr"], gateway_id=igw.ref) def make_nat_gateway(self, public_subnet_id, private_rt_id): """ Generate NAT GW resources Args: public_subnet_id: a public subnet id to use for hosting NAT private_rt_id: private route table id to add NAT routes to Returns: nothing """ nat_name = f"{self.vpc_context.vpcx_name}NatGW" eip_name = f"{nat_name}EIP" eip = ec2.CfnEIP(self, id=eip_name, domain="vpc", tags=self.make_tags(("Name", eip_name))) nat_gw = ec2.CfnNatGateway(self, id=nat_name, allocation_id=eip.attr_allocation_id, subnet_id=public_subnet_id, tags=self.make_tags(("Name", nat_name))) ec2.CfnRoute(self, id=f"{nat_name}Route", route_table_id=private_rt_id, destination_cidr_block=self.net_config["global"]["InternetCidr"], nat_gateway_id=nat_gw.ref) @staticmethod def make_tags(*specific_tags): """ Make tags Args: specific_tags: specific tags as tuples of key values to be added to resource Returns: cfnTag list containing all common tags plus any specific tags added """ common_tags = [] tags_all = list(specific_tags) + common_tags return [core.CfnTag(key=key, value=val) for key, val in tags_all] def make_vpc(self): """ Generate a VPC template Returns: CDK VPC object """ # Create initial VPC vpc = ec2.CfnVPC(self, id=self.vpc_context.vpcx_name, cidr_block=self.vpc_context.vpc_top_level_cidr[0], tags=self.make_tags(("Name", self.vpc_context.vpcx_name), ("vpcx", str(self.vpc_context.vpc_type))) ) # Extend VPC top-level CIDR if len(self.vpc_context.vpc_top_level_cidr) > 1: for i, additional_cidr in enumerate(self.vpc_context.vpc_top_level_cidr[1:]): name = f"{self.vpc_context.vpcx_name}AddtionalVpcCidr{i + 1}" ec2.CfnVPCCidrBlock(self, id=name, vpc_id=vpc.ref, cidr_block=additional_cidr) return vpc def make_subnets(self, vpc_id, subnet_cidrs, subnet_type, subnet_count_offset=0): """ Generate VPC subnets Args: vpc_id: VPC CDK ID subnet_cidrs: block of subnets cidrs to create subnet_type: type of subnet created (for naming, eg Private / Public) subnet_count_offset: number of subnets to offset during AZ allocation Returns: list of CDK subnet objects """ subnets = list() route_table = None # Grab AZs in region az_length = len(self.vpc_context.availability_zones) # Generate subnet in alternating AZs if subnet_cidrs: name = f"{self.vpc_context.vpcx_name}{subnet_type}RouteTable" route_table = ec2.CfnRouteTable(self, id=name, vpc_id=vpc_id, tags=self.make_tags(("Name", name))) for i, cidr in enumerate(subnet_cidrs): name = f"{self.vpc_context.vpcx_name}{subnet_type}Subnet{i + 1}" subnet = ec2.CfnSubnet(self, id=name, vpc_id=vpc_id, cidr_block=cidr, availability_zone=self.vpc_context.availability_zones[ (subnet_count_offset + i) % az_length], tags=self.make_tags(("Name", name))) # Associate route table ec2.CfnSubnetRouteTableAssociation(self, id=f"{name}RouteTableAssoc", route_table_id=route_table.ref, subnet_id=subnet.ref) subnets.append(subnet) return route_table, subnets def add_dhcp_options(self, vpc_id): """ Generate VPC DHCP options Args: vpc_id: VPC CDK ID Returns: CDK DHCP objects """ # Generate DHCP options dhcp_options = ec2.CfnDHCPOptions(self, id=f"{self.vpc_context.vpcx_name}DHCPOptions", domain_name=self.net_config["global"]["DomainName"], domain_name_servers=self.net_config["TopLevel"]["DomainNameServers"], netbios_name_servers=self.net_config["TopLevel"]["NetbiosNameServers"], netbios_node_type=8, ntp_servers=self.net_config["TopLevel"]["NetworkTimeServers"]) # Associate route table ec2.CfnVPCDHCPOptionsAssociation(self, id=f"{self.vpc_context.vpcx_name}DHCPOptionsAssoc", dhcp_options_id=dhcp_options.ref, vpc_id=vpc_id) def make_vpc_flow_logs(self, vpc_id): """ Generate VPC endpoint Args: vpc_id: vpc_id: VPC CDK ID Returns: nothing """ ec2.CfnFlowLog(self, id=f"{self.vpc_context.vpcx_name}FlowLog", resource_id=vpc_id, resource_type="VPC", traffic_type="ALL", log_destination=f"arn:aws:s3:::{self.vpc_context.log_bucket}/vpc-flow-log/{vpc_id}/", log_destination_type="s3")
41.313589
117
0.540609
4055cdfa21aa11ab634b64d4e57757b53359d115
4,038
py
Python
pysnmp/NETSCREEN-SMI.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/NETSCREEN-SMI.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/NETSCREEN-SMI.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module NETSCREEN-SMI (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/NETSCREEN-SMI # Produced by pysmi-0.3.4 at Mon Apr 29 20:10:13 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ModuleIdentity, NotificationType, Integer32, ObjectIdentity, MibIdentifier, Unsigned32, enterprises, TimeTicks, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, Gauge32, iso, Counter64, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "NotificationType", "Integer32", "ObjectIdentity", "MibIdentifier", "Unsigned32", "enterprises", "TimeTicks", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "Gauge32", "iso", "Counter64", "Bits") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") netscreen = ModuleIdentity((1, 3, 6, 1, 4, 1, 3224)) netscreen.setRevisions(('2004-08-31 00:00', '2004-05-03 00:00', '2004-03-03 00:00', '2001-09-28 00:00', '2000-08-02 00:00',)) if mibBuilder.loadTexts: netscreen.setLastUpdated('200408310000Z') if mibBuilder.loadTexts: netscreen.setOrganization('Juniper Networks, Inc.') netscreenTrap = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 0)) netscreenProducts = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 1)) netscreenTrapInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 2)) netscreenIDS = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 3)) netscreenVpn = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 4)) netscreenQos = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 5)) netscreenNsrp = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 6)) netscreenSetting = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 7)) netscreenZone = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 8)) netscreenInterface = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 9)) netscreenPolicy = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 10)) netscreenNAT = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 11)) netscreenAddr = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 12)) netscreenService = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 13)) netscreenSchedule = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 14)) netscreenVsys = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 15)) netscreenResource = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 16)) netscreenIp = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 17)) netscreenVR = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 18)) netscreenChassis = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 21)) netscreenSettingMibModule = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 7, 0)) netscreenVpnMibModule = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 4, 0)) mibBuilder.exportSymbols("NETSCREEN-SMI", netscreenIDS=netscreenIDS, netscreenSchedule=netscreenSchedule, netscreenResource=netscreenResource, netscreenVpn=netscreenVpn, netscreen=netscreen, PYSNMP_MODULE_ID=netscreen, netscreenVR=netscreenVR, netscreenProducts=netscreenProducts, netscreenIp=netscreenIp, netscreenVpnMibModule=netscreenVpnMibModule, netscreenTrapInfo=netscreenTrapInfo, netscreenAddr=netscreenAddr, netscreenSettingMibModule=netscreenSettingMibModule, netscreenNAT=netscreenNAT, netscreenQos=netscreenQos, netscreenChassis=netscreenChassis, netscreenPolicy=netscreenPolicy, netscreenNsrp=netscreenNsrp, netscreenService=netscreenService, netscreenVsys=netscreenVsys, netscreenSetting=netscreenSetting, netscreenTrap=netscreenTrap, netscreenInterface=netscreenInterface, netscreenZone=netscreenZone)
98.487805
816
0.757553
6edbedce54cf297b59ed831a082e27c67444f149
16,107
py
Python
xarray/coding/times.py
plogerais/xarray
0f70a876759197388d32d6d9f0317f0fe63e0336
[ "Apache-2.0" ]
2
2019-03-11T12:37:15.000Z
2021-07-16T15:09:41.000Z
xarray/coding/times.py
plogerais/xarray
0f70a876759197388d32d6d9f0317f0fe63e0336
[ "Apache-2.0" ]
2
2018-10-04T06:56:42.000Z
2018-10-04T07:11:13.000Z
xarray/coding/times.py
plogerais/xarray
0f70a876759197388d32d6d9f0317f0fe63e0336
[ "Apache-2.0" ]
1
2019-12-02T09:29:55.000Z
2019-12-02T09:29:55.000Z
from __future__ import absolute_import, division, print_function import re import traceback import warnings from datetime import datetime from functools import partial import numpy as np import pandas as pd from ..core.common import contains_cftime_datetimes from ..core import indexing from ..core.formatting import first_n_items, format_timestamp, last_item from ..core.options import OPTIONS from ..core.pycompat import PY3 from ..core.variable import Variable from .variables import ( SerializationWarning, VariableCoder, lazy_elemwise_func, pop_to, safe_setitem, unpack_for_decoding, unpack_for_encoding) try: from pandas.errors import OutOfBoundsDatetime except ImportError: # pandas < 0.20 from pandas.tslib import OutOfBoundsDatetime # standard calendars recognized by cftime _STANDARD_CALENDARS = set(['standard', 'gregorian', 'proleptic_gregorian']) _NS_PER_TIME_DELTA = {'us': int(1e3), 'ms': int(1e6), 's': int(1e9), 'm': int(1e9) * 60, 'h': int(1e9) * 60 * 60, 'D': int(1e9) * 60 * 60 * 24} TIME_UNITS = frozenset(['days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds']) def _import_cftime(): ''' helper function handle the transition to netcdftime/cftime as a stand-alone package ''' try: import cftime except ImportError: # in netCDF4 the num2date/date2num function are top-level api try: import netCDF4 as cftime except ImportError: raise ImportError("Failed to import cftime") return cftime def _require_standalone_cftime(): """Raises an ImportError if the standalone cftime is not found""" try: import cftime # noqa: F401 except ImportError: raise ImportError('Using a CFTimeIndex requires the standalone ' 'version of the cftime library.') def _netcdf_to_numpy_timeunit(units): units = units.lower() if not units.endswith('s'): units = '%ss' % units return {'microseconds': 'us', 'milliseconds': 'ms', 'seconds': 's', 'minutes': 'm', 'hours': 'h', 'days': 'D'}[units] def _unpack_netcdf_time_units(units): # CF datetime units follow the format: "UNIT since DATE" # this parses out the unit and date allowing for extraneous # whitespace. matches = re.match('(.+) since (.+)', units) if not matches: raise ValueError('invalid time units: %s' % units) delta_units, ref_date = [s.strip() for s in matches.groups()] return delta_units, ref_date def _decode_datetime_with_cftime(num_dates, units, calendar, enable_cftimeindex): cftime = _import_cftime() if enable_cftimeindex: _require_standalone_cftime() dates = np.asarray(cftime.num2date(num_dates, units, calendar, only_use_cftime_datetimes=True)) else: dates = np.asarray(cftime.num2date(num_dates, units, calendar)) if (dates[np.nanargmin(num_dates)].year < 1678 or dates[np.nanargmax(num_dates)].year >= 2262): if not enable_cftimeindex or calendar in _STANDARD_CALENDARS: warnings.warn( 'Unable to decode time axis into full ' 'numpy.datetime64 objects, continuing using dummy ' 'cftime.datetime objects instead, reason: dates out ' 'of range', SerializationWarning, stacklevel=3) else: if enable_cftimeindex: if calendar in _STANDARD_CALENDARS: dates = cftime_to_nptime(dates) else: try: dates = cftime_to_nptime(dates) except ValueError as e: warnings.warn( 'Unable to decode time axis into full ' 'numpy.datetime64 objects, continuing using ' 'dummy cftime.datetime objects instead, reason:' '{0}'.format(e), SerializationWarning, stacklevel=3) return dates def _decode_cf_datetime_dtype(data, units, calendar, enable_cftimeindex): # Verify that at least the first and last date can be decoded # successfully. Otherwise, tracebacks end up swallowed by # Dataset.__repr__ when users try to view their lazily decoded array. values = indexing.ImplicitToExplicitIndexingAdapter( indexing.as_indexable(data)) example_value = np.concatenate([first_n_items(values, 1) or [0], last_item(values) or [0]]) try: result = decode_cf_datetime(example_value, units, calendar, enable_cftimeindex) except Exception: calendar_msg = ('the default calendar' if calendar is None else 'calendar %r' % calendar) msg = ('unable to decode time units %r with %s. Try ' 'opening your dataset with decode_times=False.' % (units, calendar_msg)) if not PY3: msg += ' Full traceback:\n' + traceback.format_exc() raise ValueError(msg) else: dtype = getattr(result, 'dtype', np.dtype('object')) return dtype def decode_cf_datetime(num_dates, units, calendar=None, enable_cftimeindex=False): """Given an array of numeric dates in netCDF format, convert it into a numpy array of date time objects. For standard (Gregorian) calendars, this function uses vectorized operations, which makes it much faster than cftime.num2date. In such a case, the returned array will be of type np.datetime64. Note that time unit in `units` must not be smaller than microseconds and not larger than days. See also -------- cftime.num2date """ num_dates = np.asarray(num_dates) flat_num_dates = num_dates.ravel() if calendar is None: calendar = 'standard' delta, ref_date = _unpack_netcdf_time_units(units) try: if calendar not in _STANDARD_CALENDARS: raise OutOfBoundsDatetime delta = _netcdf_to_numpy_timeunit(delta) try: ref_date = pd.Timestamp(ref_date) except ValueError: # ValueError is raised by pd.Timestamp for non-ISO timestamp # strings, in which case we fall back to using cftime raise OutOfBoundsDatetime # fixes: https://github.com/pydata/pandas/issues/14068 # these lines check if the the lowest or the highest value in dates # cause an OutOfBoundsDatetime (Overflow) error with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'invalid value encountered', RuntimeWarning) pd.to_timedelta(flat_num_dates.min(), delta) + ref_date pd.to_timedelta(flat_num_dates.max(), delta) + ref_date # Cast input dates to integers of nanoseconds because `pd.to_datetime` # works much faster when dealing with integers # make _NS_PER_TIME_DELTA an array to ensure type upcasting flat_num_dates_ns_int = (flat_num_dates.astype(np.float64) * _NS_PER_TIME_DELTA[delta]).astype(np.int64) dates = (pd.to_timedelta(flat_num_dates_ns_int, 'ns') + ref_date).values except (OutOfBoundsDatetime, OverflowError): dates = _decode_datetime_with_cftime( flat_num_dates.astype(np.float), units, calendar, enable_cftimeindex) return dates.reshape(num_dates.shape) def decode_cf_timedelta(num_timedeltas, units): """Given an array of numeric timedeltas in netCDF format, convert it into a numpy timedelta64[ns] array. """ num_timedeltas = np.asarray(num_timedeltas) units = _netcdf_to_numpy_timeunit(units) shape = num_timedeltas.shape num_timedeltas = num_timedeltas.ravel() result = pd.to_timedelta(num_timedeltas, unit=units, box=False) # NaT is returned unboxed with wrong units; this should be fixed in pandas if result.dtype != 'timedelta64[ns]': result = result.astype('timedelta64[ns]') return result.reshape(shape) def _infer_time_units_from_diff(unique_timedeltas): for time_unit in ['days', 'hours', 'minutes', 'seconds']: delta_ns = _NS_PER_TIME_DELTA[_netcdf_to_numpy_timeunit(time_unit)] unit_delta = np.timedelta64(delta_ns, 'ns') diffs = unique_timedeltas / unit_delta if np.all(diffs == diffs.astype(int)): return time_unit return 'seconds' def infer_calendar_name(dates): """Given an array of datetimes, infer the CF calendar name""" if np.asarray(dates).dtype == 'datetime64[ns]': return 'proleptic_gregorian' else: return np.asarray(dates).ravel()[0].calendar def infer_datetime_units(dates): """Given an array of datetimes, returns a CF compatible time-unit string of the form "{time_unit} since {date[0]}", where `time_unit` is 'days', 'hours', 'minutes' or 'seconds' (the first one that can evenly divide all unique time deltas in `dates`) """ dates = np.asarray(dates).ravel() if np.asarray(dates).dtype == 'datetime64[ns]': dates = pd.to_datetime(dates, box=False) dates = dates[pd.notnull(dates)] reference_date = dates[0] if len(dates) > 0 else '1970-01-01' reference_date = pd.Timestamp(reference_date) else: reference_date = dates[0] if len(dates) > 0 else '1970-01-01' reference_date = format_cftime_datetime(reference_date) unique_timedeltas = np.unique(np.diff(dates)) if unique_timedeltas.dtype == np.dtype('O'): # Convert to np.timedelta64 objects using pandas to work around a # NumPy casting bug: https://github.com/numpy/numpy/issues/11096 unique_timedeltas = pd.to_timedelta(unique_timedeltas, box=False) units = _infer_time_units_from_diff(unique_timedeltas) return '%s since %s' % (units, reference_date) def format_cftime_datetime(date): """Converts a cftime.datetime object to a string with the format: YYYY-MM-DD HH:MM:SS.UUUUUU """ return '{:04d}-{:02d}-{:02d} {:02d}:{:02d}:{:02d}.{:06d}'.format( date.year, date.month, date.day, date.hour, date.minute, date.second, date.microsecond) def infer_timedelta_units(deltas): """Given an array of timedeltas, returns a CF compatible time-unit from {'days', 'hours', 'minutes' 'seconds'} (the first one that can evenly divide all unique time deltas in `deltas`) """ deltas = pd.to_timedelta(np.asarray(deltas).ravel(), box=False) unique_timedeltas = np.unique(deltas[pd.notnull(deltas)]) units = _infer_time_units_from_diff(unique_timedeltas) return units def cftime_to_nptime(times): """Given an array of cftime.datetime objects, return an array of numpy.datetime64 objects of the same size""" times = np.asarray(times) new = np.empty(times.shape, dtype='M8[ns]') for i, t in np.ndenumerate(times): dt = datetime(t.year, t.month, t.day, t.hour, t.minute, t.second) new[i] = np.datetime64(dt) return new def _cleanup_netcdf_time_units(units): delta, ref_date = _unpack_netcdf_time_units(units) try: units = '%s since %s' % (delta, format_timestamp(ref_date)) except OutOfBoundsDatetime: # don't worry about reifying the units if they're out of bounds pass return units def _encode_datetime_with_cftime(dates, units, calendar): """Fallback method for encoding dates using cftime. This method is more flexible than xarray's parsing using datetime64[ns] arrays but also slower because it loops over each element. """ cftime = _import_cftime() if np.issubdtype(dates.dtype, np.datetime64): # numpy's broken datetime conversion only works for us precision dates = dates.astype('M8[us]').astype(datetime) def encode_datetime(d): return np.nan if d is None else cftime.date2num(d, units, calendar) return np.vectorize(encode_datetime)(dates) def cast_to_int_if_safe(num): int_num = np.array(num, dtype=np.int64) if (num == int_num).all(): num = int_num return num def encode_cf_datetime(dates, units=None, calendar=None): """Given an array of datetime objects, returns the tuple `(num, units, calendar)` suitable for a CF compliant time variable. Unlike `date2num`, this function can handle datetime64 arrays. See also -------- cftime.date2num """ dates = np.asarray(dates) if units is None: units = infer_datetime_units(dates) else: units = _cleanup_netcdf_time_units(units) if calendar is None: calendar = infer_calendar_name(dates) delta, ref_date = _unpack_netcdf_time_units(units) try: if calendar not in _STANDARD_CALENDARS or dates.dtype.kind == 'O': # parse with cftime instead raise OutOfBoundsDatetime assert dates.dtype == 'datetime64[ns]' delta_units = _netcdf_to_numpy_timeunit(delta) time_delta = np.timedelta64(1, delta_units).astype('timedelta64[ns]') ref_date = np.datetime64(pd.Timestamp(ref_date)) num = (dates - ref_date) / time_delta except (OutOfBoundsDatetime, OverflowError): num = _encode_datetime_with_cftime(dates, units, calendar) num = cast_to_int_if_safe(num) return (num, units, calendar) def encode_cf_timedelta(timedeltas, units=None): if units is None: units = infer_timedelta_units(timedeltas) np_unit = _netcdf_to_numpy_timeunit(units) num = 1.0 * timedeltas / np.timedelta64(1, np_unit) num = np.where(pd.isnull(timedeltas), np.nan, num) num = cast_to_int_if_safe(num) return (num, units) class CFDatetimeCoder(VariableCoder): def encode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_encoding(variable) if (np.issubdtype(data.dtype, np.datetime64) or contains_cftime_datetimes(variable)): (data, units, calendar) = encode_cf_datetime( data, encoding.pop('units', None), encoding.pop('calendar', None)) safe_setitem(attrs, 'units', units, name=name) safe_setitem(attrs, 'calendar', calendar, name=name) return Variable(dims, data, attrs, encoding) def decode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_decoding(variable) enable_cftimeindex = OPTIONS['enable_cftimeindex'] if 'units' in attrs and 'since' in attrs['units']: units = pop_to(attrs, encoding, 'units') calendar = pop_to(attrs, encoding, 'calendar') dtype = _decode_cf_datetime_dtype( data, units, calendar, enable_cftimeindex) transform = partial( decode_cf_datetime, units=units, calendar=calendar, enable_cftimeindex=enable_cftimeindex) data = lazy_elemwise_func(data, transform, dtype) return Variable(dims, data, attrs, encoding) class CFTimedeltaCoder(VariableCoder): def encode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_encoding(variable) if np.issubdtype(data.dtype, np.timedelta64): data, units = encode_cf_timedelta( data, encoding.pop('units', None)) safe_setitem(attrs, 'units', units, name=name) return Variable(dims, data, attrs, encoding) def decode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_decoding(variable) if 'units' in attrs and attrs['units'] in TIME_UNITS: units = pop_to(attrs, encoding, 'units') transform = partial(decode_cf_timedelta, units=units) dtype = np.dtype('timedelta64[ns]') data = lazy_elemwise_func(data, transform, dtype=dtype) return Variable(dims, data, attrs, encoding)
36.773973
79
0.65276
28ee980144cf40d4b09a15d28fedf4bfd93fb3d4
5,201
py
Python
appGUI/VisPyPatches.py
DannyPol/flatcam
25a8634d0658e98b7fae31a095f8bef40c1b3067
[ "MIT" ]
1
2022-02-11T06:19:34.000Z
2022-02-11T06:19:34.000Z
appGUI/VisPyPatches.py
MRemy2/FlatCam
d4f941335ca8a8d5351aab23b396f99da06a9029
[ "MIT" ]
null
null
null
appGUI/VisPyPatches.py
MRemy2/FlatCam
d4f941335ca8a8d5351aab23b396f99da06a9029
[ "MIT" ]
null
null
null
# ########################################################## # FlatCAM: 2D Post-processing for Manufacturing # # http://flatcam.org # # File Author: Dennis Hayrullin # # Date: 2/5/2016 # # MIT Licence # # ########################################################## from vispy.visuals import markers, LineVisual, InfiniteLineVisual from vispy.visuals.axis import Ticker, _get_ticks_talbot from vispy.scene.widgets import Grid import numpy as np def apply_patches(): # Patch MarkersVisual to have crossed lines marker cross_lines = """ float cross(vec2 pointcoord, float size) { //vbar float r1 = abs(pointcoord.x - 0.5)*size; float r2 = abs(pointcoord.y - 0.5)*size - $v_size/2; float vbar = max(r1,r2); //hbar float r3 = abs(pointcoord.y - 0.5)*size; float r4 = abs(pointcoord.x - 0.5)*size - $v_size/2; float hbar = max(r3,r4); return min(vbar, hbar); } """ markers._marker_dict['++'] = cross_lines markers.marker_types = tuple(sorted(list(markers._marker_dict.copy().keys()))) # # Add clear_data method to LineVisual to have possibility of clearing data # def clear_data(self): # self._bounds = None # self._pos = None # self._changed['pos'] = True # self.update() # # LineVisual.clear_data = clear_data # Patch VisPy Grid to prevent updating layout on PaintGL, which cause low fps def _prepare_draw(self, view): pass def _update_clipper(self): super(Grid, self)._update_clipper() try: self._update_child_widget_dim() except Exception as e: print("VisPyPatches.apply_patches._update_clipper() -> %s" % str(e)) Grid._prepare_draw = _prepare_draw Grid._update_clipper = _update_clipper # Patch InfiniteLine visual to 1px width def _prepare_draw(self, view=None): """This method is called immediately before each draw. The *view* argument indicates which view is about to be drawn. """ GL = None from vispy.app._default_app import default_app if default_app is not None and \ default_app.backend_name != 'ipynb_webgl': try: import OpenGL.GL as GL except Exception: # can be other than ImportError sometimes pass if GL: GL.glDisable(GL.GL_LINE_SMOOTH) GL.glLineWidth(2.0) if self._changed['pos']: self.pos_buf.set_data(self._pos) self._changed['pos'] = False if self._changed['color']: self._program.vert['color'] = self._color self._changed['color'] = False InfiniteLineVisual._prepare_draw = _prepare_draw # Patch AxisVisual to have less axis labels def _get_tick_frac_labels(self): """Get the major ticks, minor ticks, and major labels""" minor_num = 4 # number of minor ticks per major division if self.axis.scale_type == 'linear': domain = self.axis.domain if domain[1] < domain[0]: flip = True domain = domain[::-1] else: flip = False offset = domain[0] scale = domain[1] - domain[0] transforms = self.axis.transforms length = self.axis.pos[1] - self.axis.pos[0] # in logical coords n_inches = np.sqrt(np.sum(length ** 2)) / transforms.dpi # major = np.linspace(domain[0], domain[1], num=11) # major = MaxNLocator(10).tick_values(*domain) major = _get_ticks_talbot(domain[0], domain[1], n_inches, 1) labels = ['%g' % x for x in major] majstep = major[1] - major[0] minor = [] minstep = majstep / (minor_num + 1) minstart = 0 if self.axis._stop_at_major[0] else -1 minstop = -1 if self.axis._stop_at_major[1] else 0 for i in range(minstart, len(major) + minstop): maj = major[0] + i * majstep minor.extend(np.linspace(maj + minstep, maj + majstep - minstep, minor_num)) major_frac = (major - offset) / scale major_frac = major_frac[::-1] if flip else major_frac use_mask = (major_frac > -0.0001) & (major_frac < 1.0001) major_frac = major_frac[use_mask] labels = [l for li, l in enumerate(labels) if use_mask[li]] minor_frac = (np.array(minor) - offset) / scale use_minor_mask = (minor_frac > -0.0001) & (minor_frac < 1.0001) minor_frac = minor_frac[use_minor_mask] return major_frac, minor_frac, labels elif self.axis.scale_type == 'logarithmic': return NotImplementedError elif self.axis.scale_type == 'power': return NotImplementedError Ticker._get_tick_frac_labels = _get_tick_frac_labels
37.688406
82
0.553355
bb7b326477a776068c3c1b9d08b2057ede1c776c
3,773
py
Python
test_ariac/test_example_node.py
ashfaqfarooqui/ariac
6f36a992bec947a9be1b91673969e3a1b3369fd8
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test_ariac/test_example_node.py
ashfaqfarooqui/ariac
6f36a992bec947a9be1b91673969e3a1b3369fd8
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test_ariac/test_example_node.py
ashfaqfarooqui/ariac
6f36a992bec947a9be1b91673969e3a1b3369fd8
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from __future__ import print_function import sys import time import unittest from ariac_example import ariac_example from std_msgs.msg import Float32 import rospy import rostest class ExampleNodeTester(unittest.TestCase): def comp_score_callback(self, msg): self.current_comp_score = msg.data def prepare_tester(self): self.comp_class = ariac_example.MyCompetitionClass() ariac_example.connect_callbacks(self.comp_class) self.current_comp_score = None self.comp_state_sub = rospy.Subscriber( "/ariac/current_score", Float32, self.comp_score_callback) # Pre-defined initial pose because sometimes the arm starts "droopy" self._send_arm_to_initial_pose() def test(self): self.prepare_tester() self._test_send_arm_to_zero_state() # Starting the competition will cause parts from the order to be spawned on AGV1 self._test_start_comp() time.sleep(1.0) self._test_order_reception() self._test_agv_control() time.sleep(5.0) self._test_comp_end() def _test_start_comp(self): success = ariac_example.start_competition() self.assertTrue(success, 'Failed to start the competition') time.sleep(0.5) self.assertTrue( self.comp_class.current_comp_state == 'go', 'Competition not in "go" state') def _test_order_reception(self): self.assertEqual(len(self.comp_class.received_orders), 1) def _send_arm_to_initial_pose(self): positions = [1.51, 0.0, -1.12, 3.14, 3.77, -1.51, 0.0] self.comp_class.send_arm_to_state(positions) time.sleep(1.0) def _test_send_arm_to_zero_state(self): self.comp_class.send_arm_to_state([0] * len(self.comp_class.arm_joint_names)) # This can be slow if there are a lot of models in the environment time.sleep(5.0) error = 0 for position in self.comp_class.current_joint_state.position: error += abs(position - 0.0) self.assertTrue(error < 0.5, 'Arm was not properly sent to zero state') def _test_agv_control(self, index=1, kit_id='order_0_kit_0'): success = ariac_example.control_agv(index, kit_id) self.assertTrue(success, 'Failed to control AGV') def _test_comp_end(self): num_received_orders = len(self.comp_class.received_orders) num_kits = len(self.comp_class.received_orders[0].kits) if num_received_orders == 1 and num_kits == 1: self.assertTrue( self.comp_class.current_comp_state == 'done', 'Competition not in "done" state') else: # If there were more kits expected, the order won't be done self.assertTrue( self.comp_class.current_comp_state == 'go', 'Competition not in "go" state') num_parts_in_order = len(self.comp_class.received_orders[0].kits[0].objects) self.assertTrue( # Expect to have a point for each part, the all parts bonus, and a point for each part's pose self.current_comp_score == 3 * num_parts_in_order, 'Something went wrong in the scoring. Current score: ' + str(self.current_comp_score)) if __name__ == '__main__': rospy.init_node('test_example_node', anonymous=True) # Wait until /clock is being published; this can take an unpredictable # amount of time when we're downloading models. while rospy.Time.now().to_sec() == 0.0: print('Waiting for Gazebo to start...') time.sleep(1.0) # Take an extra nap, to allow plugins to be loaded time.sleep(10.0) print('OK, starting test.') rostest.run('osrf_gear', 'test_example_node', ExampleNodeTester, sys.argv)
36.990196
105
0.67506
cee12bfb287aeefc4e9835fea35cdbc3322230a9
648
py
Python
backend/contest/views.py
cjc7373/hackergame
86971b4cf8a2761044d417b4c8bd934c3309d6fd
[ "MIT" ]
2
2020-07-12T13:11:43.000Z
2020-07-14T08:12:17.000Z
backend/contest/views.py
cjc7373/hackergame
86971b4cf8a2761044d417b4c8bd934c3309d6fd
[ "MIT" ]
1
2020-08-13T13:56:18.000Z
2020-09-29T12:39:08.000Z
backend/contest/views.py
cjc7373/hackergame
86971b4cf8a2761044d417b4c8bd934c3309d6fd
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from contest.models import Stage, Pause from contest.serializer import StageSerializer, PauseSerializer class StageAPI(APIView): def get(self, request): stage = Stage.objects.get() stage_serializer = StageSerializer(stage) pause_serializer = PauseSerializer(Pause.objects.all(), many=True) data = stage_serializer.data data['pause'] = pause_serializer.data return Response(data) class CurrentStageAPI(APIView): def get(self, request): return Response({"status": Stage.objects.current_status})
30.857143
74
0.731481
14bb8c23d430174e99292b327533383c8b25ea0b
20,476
py
Python
official/nlp/modeling/layers/transformer_scaffold_test.py
lorynebissuel/models
7f597cf851c793ce1b8db7a93a94894b04424d4c
[ "Apache-2.0" ]
2
2021-04-02T12:21:35.000Z
2021-12-14T07:29:38.000Z
official/nlp/modeling/layers/transformer_scaffold_test.py
lorynebissuel/models
7f597cf851c793ce1b8db7a93a94894b04424d4c
[ "Apache-2.0" ]
null
null
null
official/nlp/modeling/layers/transformer_scaffold_test.py
lorynebissuel/models
7f597cf851c793ce1b8db7a93a94894b04424d4c
[ "Apache-2.0" ]
3
2019-11-12T11:18:11.000Z
2021-12-29T09:14:37.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras-based transformer block layer.""" import numpy as np import tensorflow as tf from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import from official.nlp.modeling.layers import attention from official.nlp.modeling.layers import transformer_scaffold # Test class that wraps a standard attention layer. If this layer is called # at any point, the list passed to the config object will be filled with a # boolean 'True'. We register this class as a Keras serializable so we can # test serialization below. @tf.keras.utils.register_keras_serializable(package='TestOnlyAttention') class ValidatedAttentionLayer(attention.MultiHeadAttention): def __init__(self, call_list, **kwargs): super(ValidatedAttentionLayer, self).__init__(**kwargs) self.list = call_list def call(self, query, value, attention_mask=None): self.list.append(True) return super(ValidatedAttentionLayer, self).call( query, value, attention_mask=attention_mask) def get_config(self): config = super(ValidatedAttentionLayer, self).get_config() config['call_list'] = [] return config # Test class implements a simple feedforward layer. If this layer is called # at any point, the list passed to the config object will be filled with a # boolean 'True'. We register this class as a Keras serializable so we can # test serialization below. @tf.keras.utils.register_keras_serializable(package='TestOnlyFeedforward') class ValidatedFeedforwardLayer(tf.keras.layers.Layer): def __init__(self, call_list, activation, **kwargs): super(ValidatedFeedforwardLayer, self).__init__(**kwargs) self.list = call_list self.activation = activation def build(self, input_shape): hidden_size = input_shape.as_list()[-1] self._feedforward_dense = tf.keras.layers.experimental.EinsumDense( '...x,xy->...y', output_shape=hidden_size, bias_axes='y', activation=self.activation, name='feedforward') def call(self, inputs): self.list.append(True) return self._feedforward_dense(inputs) def get_config(self): config = super(ValidatedFeedforwardLayer, self).get_config() config['call_list'] = [] config['activation'] = self.activation return config # This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It # guarantees forward compatibility of this code for the V2 switchover. @keras_parameterized.run_all_keras_modes class TransformerLayerTest(keras_parameterized.TestCase): def tearDown(self): super(TransformerLayerTest, self).tearDown() tf.keras.mixed_precision.experimental.set_policy('float32') def test_layer_creation(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") def test_layer_creation_with_feedforward_cls(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } feedforward_call_list = [] feedforward_layer_cfg = { 'activation': 'relu', 'call_list': feedforward_call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, feedforward_cls=ValidatedFeedforwardLayer, feedforward_cfg=feedforward_layer_cfg, num_attention_heads=10, intermediate_size=None, intermediate_activation=None) # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") self.assertNotEmpty(feedforward_call_list) self.assertTrue(feedforward_call_list[0], "The passed layer class wasn't instantiated.") def test_layer_creation_with_mask(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") def test_layer_invocation(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # Create a model from the test layer. model = tf.keras.Model(data_tensor, output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) _ = model.predict(input_data) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") def test_layer_invocation_with_feedforward_cls(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } feedforward_call_list = [] feedforward_layer_cfg = { 'activation': 'relu', 'call_list': feedforward_call_list, } feedforward_layer = ValidatedFeedforwardLayer(**feedforward_layer_cfg) test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, feedforward_cls=feedforward_layer, num_attention_heads=10, intermediate_size=None, intermediate_activation=None) # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") self.assertNotEmpty(feedforward_call_list) self.assertTrue(feedforward_call_list[0], "The passed layer class wasn't instantiated.") def test_layer_invocation_with_mask(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") def test_layer_invocation_with_float16_dtype(self): tf.keras.mixed_precision.experimental.set_policy('mixed_float16') sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = (10 * np.random.random_sample( (batch_size, sequence_length, width))) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.") def test_transform_with_initializer(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu', kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list()) # If call_list[0] exists and is True, the passed layer class was # instantiated from the given config properly. self.assertNotEmpty(call_list) self.assertTrue(call_list[0]) def test_layer_restoration_from_config(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, 'name': 'test_layer', } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) pre_serialization_output = model.predict([input_data, mask_data]) # Serialize the model config. Pass the serialized data through json to # ensure that we can serialize this layer to disk. serialized_data = model.get_config() # Create a new model from the old config, and copy the weights. These models # should have identical outputs. new_model = tf.keras.Model.from_config(serialized_data) new_model.set_weights(model.get_weights()) output = new_model.predict([input_data, mask_data]) self.assertAllClose(pre_serialization_output, output) # If the layer was configured correctly, it should have a list attribute # (since it should have the custom class and config passed to it). new_model.summary() new_call_list = new_model.get_layer( name='transformer_scaffold')._attention_layer.list self.assertNotEmpty(new_call_list) self.assertTrue(new_call_list[0], "The passed layer class wasn't instantiated.") def test_layer_with_feedforward_cls_restoration_from_config(self): sequence_length = 21 width = 80 call_list = [] attention_layer_cfg = { 'num_heads': 10, 'key_dim': 8, 'call_list': call_list, 'name': 'test_layer', } feedforward_call_list = [] feedforward_layer_cfg = { 'activation': 'relu', 'call_list': feedforward_call_list, } test_layer = transformer_scaffold.TransformerScaffold( attention_cls=ValidatedAttentionLayer, attention_cfg=attention_layer_cfg, feedforward_cls=ValidatedFeedforwardLayer, feedforward_cfg=feedforward_layer_cfg, num_attention_heads=10, intermediate_size=None, intermediate_activation=None) # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) pre_serialization_output = model.predict([input_data, mask_data]) serialized_data = model.get_config() # Create a new model from the old config, and copy the weights. These models # should have identical outputs. new_model = tf.keras.Model.from_config(serialized_data) new_model.set_weights(model.get_weights()) output = new_model.predict([input_data, mask_data]) self.assertAllClose(pre_serialization_output, output) # If the layer was configured correctly, it should have a list attribute # (since it should have the custom class and config passed to it). new_model.summary() new_call_list = new_model.get_layer( name='transformer_scaffold')._attention_layer.list self.assertNotEmpty(new_call_list) self.assertTrue(new_call_list[0], "The passed layer class wasn't instantiated.") new_feedforward_call_list = new_model.get_layer( name='transformer_scaffold')._feedforward_block.list self.assertNotEmpty(new_feedforward_call_list) self.assertTrue(new_feedforward_call_list[0], "The passed layer class wasn't instantiated.") if __name__ == '__main__': tf.test.main()
40.14902
101
0.712883
c2c26ec98703599334d84658ce985159b5931b89
4,316
py
Python
data/split_data.py
MattAshman/pvi
74322ac23efd2674e46c953e5573d19d8d6bce4c
[ "MIT" ]
1
2022-03-17T00:41:27.000Z
2022-03-17T00:41:27.000Z
data/split_data.py
MattAshman/pvi
74322ac23efd2674e46c953e5573d19d8d6bce4c
[ "MIT" ]
null
null
null
data/split_data.py
MattAshman/pvi
74322ac23efd2674e46c953e5573d19d8d6bce4c
[ "MIT" ]
1
2022-03-17T10:53:03.000Z
2022-03-17T10:53:03.000Z
import numpy as np def homogenous(x, y, m, dataset_seed): """ Homogenous split of the data into m groups. """ random_state = np.random.get_state() if dataset_seed is not None: np.random.seed(dataset_seed) if m == 1: client_data = [{"x": x, "y": y}] return client_data perm = np.random.permutation(len(x)) client_data = [] for i in range(m): client_data.append({ "x": x[perm[i::m]], "y": y[perm[i::m]], }) np.random.set_state(random_state) return client_data def inhomogenous1(x, y, m, client_size_factor, class_balance_factor, dataset_seed): """ Splits the data into m groups, half of which are small clients and the other half are large clients. Split is based upon the output distribution. """ random_state = np.random.get_state() if dataset_seed is not None: np.random.seed(dataset_seed) if m == 1: client_data = [{"x": x, "y": y}] return client_data if m % 2 != 0: raise ValueError('Num clients should be even for nice maths') n = x.shape[0] small_client_size = int(np.floor((1 - client_size_factor) * n / m)) big_client_size = int(np.floor((1 + client_size_factor) * n / m)) class_balance = np.mean(y == 0) small_client_class_balance = class_balance + ( 1 - class_balance) * class_balance_factor small_client_negative_class_size = int( np.floor(small_client_size * small_client_class_balance)) small_client_positive_class_size = int( small_client_size - small_client_negative_class_size) if small_client_negative_class_size < 0: raise ValueError('Small_client_negative_class_size is negative, ' 'invalid settings.') if small_client_positive_class_size < 0: raise ValueError('Small_client_positive_class_size is negative, ' 'invalid settings.') if small_client_negative_class_size * m / 2 > class_balance * n: raise ValueError( f'Not enough negative class instances to fill the small clients. ' f'Client size factor:{client_size_factor}, class balance ' f'factor:{class_balance_factor}') if small_client_positive_class_size * m / 2 > (1 - class_balance) * n: raise ValueError( f'Not enough positive class instances to fill the small clients. ' f'Client size factor:{client_size_factor}, class balance ' f'factor:{class_balance_factor}') pos_inds = np.where(y > 0) zero_inds = np.where(y == 0) assert (len(pos_inds[0]) + len(zero_inds[0])) == len(y), \ "Some indeces missed." y_pos = y[pos_inds] y_neg = y[zero_inds] x_pos = x[pos_inds] x_neg = x[zero_inds] client_data = [] # Populate small classes. for i in range(int(m / 2)): client_x_pos = x_pos[:small_client_positive_class_size] x_pos = x_pos[small_client_positive_class_size:] client_y_pos = y_pos[:small_client_positive_class_size] y_pos = y_pos[small_client_positive_class_size:] client_x_neg = x_neg[:small_client_negative_class_size] x_neg = x_neg[small_client_negative_class_size:] client_y_neg = y_neg[:small_client_negative_class_size] y_neg = y_neg[small_client_negative_class_size:] client_x = np.concatenate([client_x_pos, client_x_neg]) client_y = np.concatenate([client_y_pos, client_y_neg]) shuffle_inds = np.random.permutation(client_x.shape[0]) client_x = client_x[shuffle_inds, :] client_y = client_y[shuffle_inds] client_data.append({'x': client_x, 'y': client_y}) # Recombine remaining data and shuffle. x = np.concatenate([x_pos, x_neg]) y = np.concatenate([y_pos, y_neg]) shuffle_inds = np.random.permutation(x.shape[0]) x = x[shuffle_inds] y = y[shuffle_inds] # Distribute among large clients. for i in range(int(m / 2)): client_x = x[:big_client_size] client_y = y[:big_client_size] x = x[big_client_size:] y = y[big_client_size:] client_data.append({'x': client_x, 'y': client_y}) np.random.set_state(random_state) return client_data
30.828571
78
0.641566
4e6877fc69eea22a5935206f580611d15b564930
149
py
Python
HackerRank/list2.py
SomuSysAdmin/python
7707a6ebe54d8ad73aabe64836ec898c5fd7725d
[ "MIT" ]
null
null
null
HackerRank/list2.py
SomuSysAdmin/python
7707a6ebe54d8ad73aabe64836ec898c5fd7725d
[ "MIT" ]
null
null
null
HackerRank/list2.py
SomuSysAdmin/python
7707a6ebe54d8ad73aabe64836ec898c5fd7725d
[ "MIT" ]
null
null
null
if __name__ == '__main__': n = int(input()) integer_list = map(int, input().split()) t = tuple(list(integer_list)[:n]) print(hash(t))
29.8
44
0.590604
844db8a8a3e7cc28f5862ac5b7855fc985e74af6
14,241
py
Python
src/borg/testsuite/__init__.py
alfredo08154711/borg
303c11f245e0a23e522a53aaad8cbeaaa2074551
[ "BSD-3-Clause" ]
1
2020-10-24T09:47:20.000Z
2020-10-24T09:47:20.000Z
src/borg/testsuite/__init__.py
alfredo08154711/borg
303c11f245e0a23e522a53aaad8cbeaaa2074551
[ "BSD-3-Clause" ]
1
2020-11-01T15:50:16.000Z
2020-11-01T15:50:16.000Z
src/borg/testsuite/__init__.py
alfredo08154711/borg
303c11f245e0a23e522a53aaad8cbeaaa2074551
[ "BSD-3-Clause" ]
null
null
null
from contextlib import contextmanager import filecmp import functools import os try: import posix except ImportError: posix = None import stat import sys import sysconfig import tempfile import time import uuid import unittest from ..xattr import get_all from ..platform import get_flags from ..helpers import umount from ..helpers import EXIT_SUCCESS, EXIT_WARNING, EXIT_ERROR from .. import platform # Note: this is used by borg.selftest, do not use or import py.test functionality here. try: import llfuse # Does this version of llfuse support ns precision? have_fuse_mtime_ns = hasattr(llfuse.EntryAttributes, 'st_mtime_ns') except ImportError: have_fuse_mtime_ns = False try: from pytest import raises except: # noqa raises = None has_lchflags = hasattr(os, 'lchflags') or sys.platform.startswith('linux') try: with tempfile.NamedTemporaryFile() as file: platform.set_flags(file.name, stat.UF_NODUMP) except OSError: has_lchflags = False try: import llfuse has_llfuse = True or llfuse # avoids "unused import" except ImportError: has_llfuse = False # The mtime get/set precision varies on different OS and Python versions if posix and 'HAVE_FUTIMENS' in getattr(posix, '_have_functions', []): st_mtime_ns_round = 0 elif 'HAVE_UTIMES' in sysconfig.get_config_vars(): st_mtime_ns_round = -6 else: st_mtime_ns_round = -9 if sys.platform.startswith('netbsd'): st_mtime_ns_round = -4 # only >1 microsecond resolution here? @contextmanager def unopened_tempfile(): with tempfile.TemporaryDirectory() as tempdir: yield os.path.join(tempdir, "file") @functools.lru_cache() def are_symlinks_supported(): with unopened_tempfile() as filepath: try: os.symlink('somewhere', filepath) if os.stat(filepath, follow_symlinks=False) and os.readlink(filepath) == 'somewhere': return True except OSError: pass return False @functools.lru_cache() def are_hardlinks_supported(): if not hasattr(os, 'link'): # some pythons do not have os.link return False with unopened_tempfile() as file1path, unopened_tempfile() as file2path: open(file1path, 'w').close() try: os.link(file1path, file2path) stat1 = os.stat(file1path) stat2 = os.stat(file2path) if stat1.st_nlink == stat2.st_nlink == 2 and stat1.st_ino == stat2.st_ino: return True except OSError: pass return False @functools.lru_cache() def are_fifos_supported(): with unopened_tempfile() as filepath: try: os.mkfifo(filepath) return True except OSError: pass except NotImplementedError: pass except AttributeError: pass return False @functools.lru_cache() def is_utime_fully_supported(): with unopened_tempfile() as filepath: # Some filesystems (such as SSHFS) don't support utime on symlinks if are_symlinks_supported(): os.symlink('something', filepath) else: open(filepath, 'w').close() try: os.utime(filepath, (1000, 2000), follow_symlinks=False) new_stats = os.stat(filepath, follow_symlinks=False) if new_stats.st_atime == 1000 and new_stats.st_mtime == 2000: return True except OSError: pass except NotImplementedError: pass return False @functools.lru_cache() def is_birthtime_fully_supported(): if not hasattr(os.stat_result, 'st_birthtime'): return False with unopened_tempfile() as filepath: # Some filesystems (such as SSHFS) don't support utime on symlinks if are_symlinks_supported(): os.symlink('something', filepath) else: open(filepath, 'w').close() try: birthtime, mtime, atime = 946598400, 946684800, 946771200 os.utime(filepath, (atime, birthtime), follow_symlinks=False) os.utime(filepath, (atime, mtime), follow_symlinks=False) new_stats = os.stat(filepath, follow_symlinks=False) if new_stats.st_birthtime == birthtime and new_stats.st_mtime == mtime and new_stats.st_atime == atime: return True except OSError: pass except NotImplementedError: pass return False def no_selinux(x): # selinux fails our FUSE tests, thus ignore selinux xattrs SELINUX_KEY = b'security.selinux' if isinstance(x, dict): return {k: v for k, v in x.items() if k != SELINUX_KEY} if isinstance(x, list): return [k for k in x if k != SELINUX_KEY] class BaseTestCase(unittest.TestCase): """ """ assert_in = unittest.TestCase.assertIn assert_not_in = unittest.TestCase.assertNotIn assert_equal = unittest.TestCase.assertEqual assert_not_equal = unittest.TestCase.assertNotEqual assert_true = unittest.TestCase.assertTrue if raises: assert_raises = staticmethod(raises) else: assert_raises = unittest.TestCase.assertRaises @contextmanager def assert_creates_file(self, path): self.assert_true(not os.path.exists(path), '{} should not exist'.format(path)) yield self.assert_true(os.path.exists(path), '{} should exist'.format(path)) def assert_dirs_equal(self, dir1, dir2, **kwargs): diff = filecmp.dircmp(dir1, dir2) self._assert_dirs_equal_cmp(diff, **kwargs) def _assert_dirs_equal_cmp(self, diff, ignore_flags=False, ignore_xattrs=False, ignore_ns=False): self.assert_equal(diff.left_only, []) self.assert_equal(diff.right_only, []) self.assert_equal(diff.diff_files, []) self.assert_equal(diff.funny_files, []) for filename in diff.common: path1 = os.path.join(diff.left, filename) path2 = os.path.join(diff.right, filename) s1 = os.stat(path1, follow_symlinks=False) s2 = os.stat(path2, follow_symlinks=False) # Assume path2 is on FUSE if st_dev is different fuse = s1.st_dev != s2.st_dev attrs = ['st_uid', 'st_gid', 'st_rdev'] if not fuse or not os.path.isdir(path1): # dir nlink is always 1 on our FUSE filesystem attrs.append('st_nlink') d1 = [filename] + [getattr(s1, a) for a in attrs] d2 = [filename] + [getattr(s2, a) for a in attrs] d1.insert(1, oct(s1.st_mode)) d2.insert(1, oct(s2.st_mode)) if not ignore_flags: d1.append(get_flags(path1, s1)) d2.append(get_flags(path2, s2)) # ignore st_rdev if file is not a block/char device, fixes #203 if not stat.S_ISCHR(s1.st_mode) and not stat.S_ISBLK(s1.st_mode): d1[4] = None if not stat.S_ISCHR(s2.st_mode) and not stat.S_ISBLK(s2.st_mode): d2[4] = None # If utime isn't fully supported, borg can't set mtime. # Therefore, we shouldn't test it in that case. if is_utime_fully_supported(): # Older versions of llfuse do not support ns precision properly if ignore_ns: d1.append(int(s1.st_mtime_ns / 1e9)) d2.append(int(s2.st_mtime_ns / 1e9)) elif fuse and not have_fuse_mtime_ns: d1.append(round(s1.st_mtime_ns, -4)) d2.append(round(s2.st_mtime_ns, -4)) else: d1.append(round(s1.st_mtime_ns, st_mtime_ns_round)) d2.append(round(s2.st_mtime_ns, st_mtime_ns_round)) if not ignore_xattrs: d1.append(no_selinux(get_all(path1, follow_symlinks=False))) d2.append(no_selinux(get_all(path2, follow_symlinks=False))) self.assert_equal(d1, d2) for sub_diff in diff.subdirs.values(): self._assert_dirs_equal_cmp(sub_diff, ignore_flags=ignore_flags, ignore_xattrs=ignore_xattrs, ignore_ns=ignore_ns) @contextmanager def fuse_mount(self, location, mountpoint=None, *options, fork=True, os_fork=False, **kwargs): # For a successful mount, `fork = True` is required for # the borg mount daemon to work properly or the tests # will just freeze. Therefore, if argument `fork` is not # specified, the default value is `True`, regardless of # `FORK_DEFAULT`. However, leaving the possibilty to run # the command with `fork = False` is still necessary for # testing for mount failures, for example attempting to # mount a read-only repo. # `os_fork = True` is needed for testing (the absence of) # a race condition of the Lock during lock migration when # borg mount (local repo) is daemonizing (#4953). This is another # example where we need `fork = False`, because the test case # needs an OS fork, not a spawning of the fuse mount. # `fork = False` is implied if `os_fork = True`. if mountpoint is None: mountpoint = tempfile.mkdtemp() else: os.mkdir(mountpoint) args = ['mount', location, mountpoint] + list(options) if os_fork: # Do not spawn, but actually (OS) fork. if os.fork() == 0: # The child process. # Decouple from parent and fork again. # Otherwise, it becomes a zombie and pretends to be alive. os.setsid() if os.fork() > 0: os._exit(0) # The grandchild process. try: self.cmd(*args, fork=False, **kwargs) # borg mount not spawning. finally: # This should never be reached, since it daemonizes, # and the grandchild process exits before cmd() returns. # However, just in case... print('Fatal: borg mount did not daemonize properly. Force exiting.', file=sys.stderr, flush=True) os._exit(0) else: self.cmd(*args, fork=fork, **kwargs) if kwargs.get('exit_code', EXIT_SUCCESS) == EXIT_ERROR: # If argument `exit_code = EXIT_ERROR`, then this call # is testing the behavior of an unsuccessful mount and # we must not continue, as there is no mount to work # with. The test itself has already failed or succeeded # with the call to `self.cmd`, above. yield return self.wait_for_mountstate(mountpoint, mounted=True) yield umount(mountpoint) self.wait_for_mountstate(mountpoint, mounted=False) os.rmdir(mountpoint) # Give the daemon some time to exit time.sleep(0.2) def wait_for_mountstate(self, mountpoint, *, mounted, timeout=5): """Wait until a path meets specified mount point status""" timeout += time.time() while timeout > time.time(): if os.path.ismount(mountpoint) == mounted: return time.sleep(0.1) message = 'Waiting for %s of %s' % ('mount' if mounted else 'umount', mountpoint) raise TimeoutError(message) @contextmanager def read_only(self, path): """Some paths need to be made read-only for testing If the tests are executed inside a fakeroot environment, the changes from chmod won't affect the real permissions of that folder. This issue is circumvented by temporarily disabling fakeroot with `LD_PRELOAD=`. Using chmod to remove write permissions is not enough if the tests are running with root privileges. Instead, the folder is rendered immutable with chattr or chflags, respectively. """ if sys.platform.startswith('linux'): cmd_immutable = 'chattr +i "%s"' % path cmd_mutable = 'chattr -i "%s"' % path elif sys.platform.startswith(('darwin', 'freebsd', 'netbsd', 'openbsd')): cmd_immutable = 'chflags uchg "%s"' % path cmd_mutable = 'chflags nouchg "%s"' % path elif sys.platform.startswith('sunos'): # openindiana cmd_immutable = 'chmod S+vimmutable "%s"' % path cmd_mutable = 'chmod S-vimmutable "%s"' % path else: message = 'Testing read-only repos is not supported on platform %s' % sys.platform self.skipTest(message) try: os.system('LD_PRELOAD= chmod -R ugo-w "%s"' % path) os.system(cmd_immutable) yield finally: # Restore permissions to ensure clean-up doesn't fail os.system(cmd_mutable) os.system('LD_PRELOAD= chmod -R ugo+w "%s"' % path) class changedir: def __init__(self, dir): self.dir = dir def __enter__(self): self.old = os.getcwd() os.chdir(self.dir) def __exit__(self, *args, **kw): os.chdir(self.old) class environment_variable: def __init__(self, **values): self.values = values self.old_values = {} def __enter__(self): for k, v in self.values.items(): self.old_values[k] = os.environ.get(k) if v is None: os.environ.pop(k, None) else: os.environ[k] = v def __exit__(self, *args, **kw): for k, v in self.old_values.items(): if v is None: os.environ.pop(k, None) else: os.environ[k] = v class FakeInputs: """Simulate multiple user inputs, can be used as input() replacement""" def __init__(self, inputs): self.inputs = inputs def __call__(self, prompt=None): if prompt is not None: print(prompt, end='') try: return self.inputs.pop(0) except IndexError: raise EOFError from None
36.703608
126
0.607261