hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
478976b6b9fddc675865d02a0c625bea73288ea2
110,682
py
Python
tensorflow/python/frozen_keras/engine/legacy_base_layer.py
tanzhenyu/tensorflow
78b09356f5c1a17d869a2fbc571bd720b3450d9b
[ "Apache-2.0" ]
1
2021-06-11T08:28:08.000Z
2021-06-11T08:28:08.000Z
tensorflow/python/frozen_keras/engine/legacy_base_layer.py
jimbobbennett/tensorflow
988ba54e96aa1c0254c00823049cf46109d4335c
[ "Apache-2.0" ]
null
null
null
tensorflow/python/frozen_keras/engine/legacy_base_layer.py
jimbobbennett/tensorflow
988ba54e96aa1c0254c00823049cf46109d4335c
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Contains the legacy base Layer class. This is intended to be used by legacy TF v1 layers that is deprecated, but still using Keras Layer as base class. This copy of the Layer will stay unchanged, which ensure the stability of v1 functionality not to be affected by the active development of Keras Layer. """ # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import itertools import threading import weakref import numpy as np import six from six.moves import zip # pylint: disable=redefined-builtin from google.protobuf import json_format from tensorflow.core.framework import node_def_pb2 from tensorflow.python.autograph.core import ag_ctx from tensorflow.python.autograph.impl import api as autograph from tensorflow.python.distribute import distribution_strategy_context as ds_context from tensorflow.python.eager import context from tensorflow.python.eager import execute from tensorflow.python.eager import function from tensorflow.python.framework import auto_control_deps from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import func_graph from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.frozen_keras import backend from tensorflow.python.frozen_keras import constraints from tensorflow.python.frozen_keras import initializers from tensorflow.python.frozen_keras import regularizers from tensorflow.python.frozen_keras.engine import base_layer_utils from tensorflow.python.frozen_keras.engine import input_spec from tensorflow.python.frozen_keras.engine import node as node_module from tensorflow.python.frozen_keras.utils import generic_utils from tensorflow.python.frozen_keras.utils import layer_utils from tensorflow.python.frozen_keras.utils import tf_utils # A module that only depends on `keras.layers` import these from here. from tensorflow.python.frozen_keras.utils.generic_utils import to_snake_case # pylint: disable=unused-import from tensorflow.python.frozen_keras.utils.tf_utils import is_tensor_or_tensor_list # pylint: disable=unused-import from tensorflow.python.module import module from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables as tf_variables from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.training.tracking import base as trackable from tensorflow.python.training.tracking import data_structures from tensorflow.python.training.tracking import layer_utils as trackable_layer_utils from tensorflow.python.training.tracking import tracking from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util import object_identity from tensorflow.python.util import tf_inspect from tensorflow.tools.docs import doc_controls # Prefix that is added to the TF op layer names. _TF_OP_LAYER_NAME_PREFIX = 'tf_op_layer_' class LegacyBaseLayer(module.Module): """This is the class from which all layers inherit. A layer is a callable object that takes as input one or more tensors and that outputs one or more tensors. It involves *computation*, defined in the `call()` method, and a *state* (weight variables), defined either in the constructor `__init__()` or in the `build()` method. Users will just instantiate a layer and then treat it as a callable. We recommend that descendants of `Layer` implement the following methods: * `__init__()`: Defines custom layer attributes, and creates layer state variables that do not depend on input shapes, using `add_weight()`. * `build(self, input_shape)`: This method can be used to create weights that depend on the shape(s) of the input(s), using `add_weight()`. `__call__()` will automatically build the layer (if it has not been built yet) by calling `build()`. * `call(self, *args, **kwargs)`: Called in `__call__` after making sure `build()` has been called. `call()` performs the logic of applying the layer to the input tensors (which should be passed in as argument). Two reserved keyword arguments you can optionally use in `call()` are: - `training` (boolean, whether the call is in inference mode or training mode) - `mask` (boolean tensor encoding masked timesteps in the input, used in RNN layers) * `get_config(self)`: Returns a dictionary containing the configuration used to initialize this layer. If the keys differ from the arguments in `__init__`, then override `from_config(self)` as well. This method is used when saving the layer or a model that contains this layer. Examples: Here's a basic example: a layer with two variables, `w` and `b`, that returns `y = w . x + b`. It shows how to implement `build()` and `call()`. Variables set as attributes of a layer are tracked as weights of the layers (in `layer.weights`). ```python class SimpleDense(Layer): def __init__(self, units=32): super(SimpleDense, self).__init__() self.units = units def build(self, input_shape): # Create the state of the layer (weights) w_init = tf.random_normal_initializer() self.w = tf.Variable( initial_value=w_init(shape=(input_shape[-1], self.units), dtype='float32'), trainable=True) b_init = tf.zeros_initializer() self.b = tf.Variable( initial_value=b_init(shape=(self.units,), dtype='float32'), trainable=True) def call(self, inputs): # Defines the computation from inputs to outputs return tf.matmul(inputs, self.w) + self.b # Instantiates the layer. linear_layer = SimpleDense(4) # This will also call `build(input_shape)` and create the weights. y = linear_layer(tf.ones((2, 2))) assert len(linear_layer.weights) == 2 # These weights are trainable, so they're listed in `trainable_weights`: assert len(linear_layer.trainable_weights) == 2 ``` Note that the method `add_weight()` offers a shortcut to create weights: ```python class SimpleDense(Layer): def __init__(self, units=32): super(SimpleDense, self).__init__() self.units = units def build(self, input_shape): self.w = self.add_weight(shape=(input_shape[-1], self.units), initializer='random_normal', trainable=True) self.b = self.add_weight(shape=(self.units,), initializer='random_normal', trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b ``` Besides trainable weights, updated via backpropagation during training, layers can also have non-trainable weights. These weights are meant to be updated manually during `call()`. Here's a example layer that computes the running sum of its inputs: ```python class ComputeSum(Layer): def __init__(self, input_dim): super(ComputeSum, self).__init__() # Create a non-trainable weight. self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False) def call(self, inputs): self.total.assign_add(tf.reduce_sum(inputs, axis=0)) return self.total my_sum = ComputeSum(2) x = tf.ones((2, 2)) y = my_sum(x) print(y.numpy()) # [2. 2.] y = my_sum(x) print(y.numpy()) # [4. 4.] assert my_sum.weights == [my_sum.total] assert my_sum.non_trainable_weights == [my_sum.total] assert my_sum.trainable_weights == [] ``` For more information about creating layers, see the guide [Writing custom layers and models with Keras]( https://www.tensorflow.org/guide/keras/custom_layers_and_models) Arguments: trainable: Boolean, whether the layer's variables should be trainable. name: String name of the layer. dtype: The dtype of the layer's computations and weights (default of `None` means use `tf.keras.backend.floatx` in TensorFlow 2, or the type of the first input in TensorFlow 1). dynamic: Set this to `True` if your layer should only be run eagerly, and should not be used to generate a static computation graph. This would be the case for a Tree-RNN or a recursive network, for example, or generally for any layer that manipulates tensors using Python control flow. If `False`, we assume that the layer can safely be used to generate a static computation graph. Attributes: name: The name of the layer (string). dtype: The dtype of the layer's computations and weights. updates: List of update ops of this layer. losses: List of losses added by this layer. trainable_weights: List of variables to be included in backprop. non_trainable_weights: List of variables that should not be included in backprop. weights: The concatenation of the lists trainable_weights and non_trainable_weights (in this order). trainable: Whether the layer should be trained (boolean). input_spec: Optional (list of) `InputSpec` object(s) specifying the constraints on inputs that can be accepted by the layer. Each layer has a dtype, which is typically the dtype of the layer's computations and variables. A layer's dtype can be queried via the `Layer.dtype` property. The dtype is specified with the `dtype` constructor argument. In TensorFlow 2, the dtype defaults to `tf.keras.backend.floatx()` if no dtype is passed. `floatx()` itself defaults to "float32". """ # See tf.Module for the usage of this property. # The key for _obj_reference_counts_dict is a Trackable, which could be a # variable or layer etc. tf.Module._flatten will fail to flatten the key # since it is trying to convert Trackable to a string. This attribute can be # ignored even after the fix of nest lib, since the trackable object should # already been available as individual attributes. _obj_reference_counts_dict # just contains a copy of them. _TF_MODULE_IGNORED_PROPERTIES = frozenset(itertools.chain( ('_obj_reference_counts_dict',), module.Module._TF_MODULE_IGNORED_PROPERTIES )) @trackable.no_automatic_dependency_tracking def __init__(self, trainable=True, name=None, dtype=None, dynamic=False, **kwargs): # These properties should be set by the user via keyword arguments. # note that 'dtype', 'input_shape' and 'batch_input_shape' # are only applicable to input layers: do not pass these keywords # to non-input layers. allowed_kwargs = { 'input_shape', 'batch_input_shape', 'batch_size', 'weights', 'activity_regularizer', } # Validate optional keyword arguments. generic_utils.validate_kwargs(kwargs, allowed_kwargs) # Mutable properties # Indicates whether the layer's weights are updated during training # and whether the layer's updates are run during training. self._trainable = trainable # A stateful layer is a layer whose updates are run during inference too, # for instance stateful RNNs. self._stateful = False # Indicates whether `build` needs to be called upon layer call, to create # the layer's weights. self.built = False # Record the build input shape for loading purposes. # TODO(kathywu): Move this to Layer._set_save_spec once cl/290121460 is # submitted. self._build_input_shape = None # Provides information about which inputs are compatible with the layer. self._input_spec = None self.supports_masking = False self._supports_ragged_inputs = False self._init_set_name(name) self._activity_regularizer = kwargs.pop('activity_regularizer', None) self._maybe_create_attribute('_trainable_weights', []) self._maybe_create_attribute('_non_trainable_weights', []) self._updates = [] # Object to store all thread local layer properties. self._thread_local = threading.local() # A list of zero-argument lambdas which return Tensors, used for variable # regularizers. self._callable_losses = [] # A list of symbolic Tensors containing activity regularizers and losses # manually added through `add_loss` in graph-building mode. self._losses = [] # A list of metric instances corresponding to the symbolic metric tensors # added using the `add_metric` API. self._metrics = [] # Ensures the same metric is not added multiple times in `MirroredStrategy`. self._metrics_lock = threading.Lock() self._dtype = None if dtype is None else dtypes.as_dtype(dtype).name # Dependencies tracked via attribute assignment. # All layers in order of horizontal graph traversal. # Entries are unique. For models includes input and output layers. self._maybe_create_attribute('_layers', []) # These lists will be filled via successive calls # to self._add_inbound_node(). # Used in symbolic mode only, only in conjunction with graph-networks self._inbound_nodes = [] self._outbound_nodes = [] self._init_call_fn_args() # Whether the `call` method can be used to build a TF graph without issues. # This attribute has no effect if the model is created using the Functional # API. Instead, `model.dynamic` is determined based on the internal layers. self._dynamic = dynamic # Manage input shape information if passed. if 'input_shape' in kwargs or 'batch_input_shape' in kwargs: # In this case we will later create an input layer # to insert before the current layer if 'batch_input_shape' in kwargs: batch_input_shape = tuple(kwargs['batch_input_shape']) elif 'input_shape' in kwargs: if 'batch_size' in kwargs: batch_size = kwargs['batch_size'] else: batch_size = None batch_input_shape = (batch_size,) + tuple(kwargs['input_shape']) self._batch_input_shape = batch_input_shape # Manage initial weight values if passed. self._initial_weights = kwargs.get('weights', None) # Whether the layer will track any layers that is set as attribute on itself # as sub-layers, the weights from the sub-layers will be included in the # parent layer's variables() as well. # Default to True, which means auto tracking is turned on. Certain subclass # might want to turn it off, like Sequential model. self._auto_track_sub_layers = True @trackable.no_automatic_dependency_tracking @generic_utils.default def build(self, input_shape): """Creates the variables of the layer (optional, for subclass implementers). This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. This is typically used to create the weights of `Layer` subclasses. Arguments: input_shape: Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input). """ # Only record the build input shapes of overridden the build methods. if not hasattr(self.build, '_is_default'): self._build_input_shape = input_shape self.built = True @doc_controls.for_subclass_implementers def call(self, inputs, **kwargs): # pylint: disable=unused-argument """This is where the layer's logic lives. Arguments: inputs: Input tensor, or list/tuple of input tensors. **kwargs: Additional keyword arguments. Returns: A tensor or list/tuple of tensors. """ return inputs @doc_controls.for_subclass_implementers def _add_trackable(self, trackable_object, trainable): """Adds a Trackable object to this layer's state. Arguments: trackable_object: The tf.tracking.Trackable object to add. trainable: Boolean, whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean and variance). Returns: The TrackableWeightHandler used to track this object. """ handler = base_layer_utils.TrackableWeightHandler(trackable_object) if trainable: self._trainable_weights.append(handler) else: self._non_trainable_weights.append(handler) return handler @doc_controls.for_subclass_implementers def add_weight(self, name=None, shape=None, dtype=None, initializer=None, regularizer=None, trainable=None, constraint=None, partitioner=None, use_resource=None, synchronization=tf_variables.VariableSynchronization.AUTO, aggregation=tf_variables.VariableAggregation.NONE, **kwargs): """Adds a new variable to the layer. Arguments: name: Variable name. shape: Variable shape. Defaults to scalar if unspecified. dtype: The type of the variable. Defaults to `self.dtype` or `float32`. initializer: Initializer instance (callable). regularizer: Regularizer instance (callable). trainable: Boolean, whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean and variance). Note that `trainable` cannot be `True` if `synchronization` is set to `ON_READ`. constraint: Constraint instance (callable). partitioner: Partitioner to be passed to the `Trackable` API. use_resource: Whether to use `ResourceVariable`. synchronization: Indicates when a distributed a variable will be aggregated. Accepted values are constants defined in the class `tf.VariableSynchronization`. By default the synchronization is set to `AUTO` and the current `DistributionStrategy` chooses when to synchronize. If `synchronization` is set to `ON_READ`, `trainable` must not be set to `True`. aggregation: Indicates how a distributed variable will be aggregated. Accepted values are constants defined in the class `tf.VariableAggregation`. **kwargs: Additional keyword arguments. Accepted values are `getter`, `collections` and `caching_device`. Returns: The created variable. Usually either a `Variable` or `ResourceVariable` instance. If `partitioner` is not `None`, a `PartitionedVariable` instance is returned. Raises: RuntimeError: If called with partitioned variable regularization and eager execution is enabled. ValueError: When giving unsupported dtype and no initializer or when trainable has been set to True with synchronization set as `ON_READ`. """ if shape is None: shape = () # Validate optional keyword arguments. for kwarg in kwargs: if kwarg not in ['getter', 'collections', 'caching_device']: raise TypeError('Unknown keyword argument:', kwarg) getter = kwargs.pop('getter', base_layer_utils.make_variable) collections_arg = kwargs.pop('collections', None) # See the docstring for tf.Variable about the details for caching_device. caching_device = kwargs.pop('caching_device', None) if dtype is None: dtype = self.dtype or backend.floatx() dtype = dtypes.as_dtype(dtype) initializer = initializers.get(initializer) regularizer = regularizers.get(regularizer) constraint = constraints.get(constraint) if synchronization == tf_variables.VariableSynchronization.ON_READ: if trainable: raise ValueError( 'Synchronization value can be set to ' 'VariableSynchronization.ON_READ only for non-trainable variables. ' 'You have specified trainable=True and ' 'synchronization=VariableSynchronization.ON_READ.') else: # Set trainable to be false when variable is to be synced on read. trainable = False elif trainable is None: trainable = True # Initialize variable when no initializer provided if initializer is None: # If dtype is DT_FLOAT, provide a uniform unit scaling initializer if dtype.is_floating: initializer = initializers.glorot_uniform() # If dtype is DT_INT/DT_UINT, provide a default value `zero` # If dtype is DT_BOOL, provide a default value `FALSE` elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool: initializer = initializers.zeros() # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX here? else: raise ValueError('An initializer for variable %s of type %s is required' ' for layer %s' % (name, dtype.base_dtype, self.name)) variable = self._add_variable_with_custom_getter( name=name, shape=shape, # TODO(allenl): a `make_variable` equivalent should be added as a # `Trackable` method. getter=getter, # Manage errors in Layer rather than Trackable. overwrite=True, initializer=initializer, dtype=dtype, constraint=constraint, trainable=trainable, partitioner=partitioner, use_resource=use_resource, collections=collections_arg, synchronization=synchronization, aggregation=aggregation, caching_device=caching_device) if regularizer is not None: # TODO(fchollet): in the future, this should be handled at the # level of variable creation, and weight regularization losses # should be variable attributes. name_in_scope = variable.name[:variable.name.find(':')] self._handle_weight_regularization(name_in_scope, variable, regularizer) if isinstance(variable, tf_variables.PartitionedVariable): for v in variable: backend.track_variable(v) if trainable: self._trainable_weights.append(v) else: self._non_trainable_weights.append(v) else: backend.track_variable(variable) if trainable: self._trainable_weights.append(variable) else: self._non_trainable_weights.append(variable) return variable @generic_utils.default def get_config(self): """Returns the config of the layer. A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration. The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above). Returns: Python dictionary. """ all_args = tf_inspect.getfullargspec(self.__init__).args config = {'name': self.name, 'trainable': self.trainable} if hasattr(self, '_batch_input_shape'): config['batch_input_shape'] = self._batch_input_shape config['dtype'] = self.dtype if hasattr(self, 'dynamic'): # Only include `dynamic` in the `config` if it is `True` if self.dynamic: config['dynamic'] = self.dynamic elif 'dynamic' in all_args: all_args.remove('dynamic') expected_args = config.keys() # Finds all arguments in the `__init__` that are not in the config: extra_args = [arg for arg in all_args if arg not in expected_args] # Check that either the only argument in the `__init__` is `self`, # or that `get_config` has been overridden: if len(extra_args) > 1 and hasattr(self.get_config, '_is_default'): raise NotImplementedError('Layer %s has arguments in `__init__` and ' 'therefore must override `get_config`.' % self.__class__.__name__) return config @classmethod def from_config(cls, config): """Creates a layer from its config. This method is the reverse of `get_config`, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by `set_weights`). Arguments: config: A Python dictionary, typically the output of get_config. Returns: A layer instance. """ return cls(**config) def compute_output_shape(self, input_shape): """Computes the output shape of the layer. If the layer has not been built, this method will call `build` on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here. Arguments: input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. Returns: An input shape tuple. """ if context.executing_eagerly(): # In this case we build the model first in order to do shape inference. # This is acceptable because the framework only calls # `compute_output_shape` on shape values that the layer would later be # built for. It would however cause issues in case a user attempts to # use `compute_output_shape` manually with shapes that are incompatible # with the shape the Layer will be called on (these users will have to # implement `compute_output_shape` themselves). self._maybe_build(input_shape) with func_graph.FuncGraph('graph').as_default(): input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) def _make_placeholder_like(shape): ph = backend.placeholder(shape=shape, dtype=self.dtype) ph._keras_mask = None return ph inputs = nest.map_structure(_make_placeholder_like, input_shape) try: outputs = self(inputs, training=False) except TypeError as e: six.raise_from( NotImplementedError( 'We could not automatically infer the static shape of the ' 'layer\'s output. Please implement the ' '`compute_output_shape` method on your layer (%s).' % self.__class__.__name__), e) return nest.map_structure(lambda t: t.shape, outputs) raise NotImplementedError @doc_controls.for_subclass_implementers def compute_output_signature(self, input_signature): """Compute the output tensor signature of the layer based on the inputs. Unlike a TensorShape object, a TensorSpec object contains both shape and dtype information for a tensor. This method allows layers to provide output dtype information if it is different from the input dtype. For any layer that doesn't implement this function, the framework will fall back to use `compute_output_shape`, and will assume that the output dtype matches the input dtype. Args: input_signature: Single TensorSpec or nested structure of TensorSpec objects, describing a candidate input for the layer. Returns: Single TensorSpec or nested structure of TensorSpec objects, describing how the layer would transform the provided input. Raises: TypeError: If input_signature contains a non-TensorSpec object. """ def check_type_return_shape(s): if not isinstance(s, tensor_spec.TensorSpec): raise TypeError( 'Only TensorSpec signature types are supported, ' 'but saw signature signature entry: {}.'.format(s)) return s.shape input_shape = nest.map_structure(check_type_return_shape, input_signature) output_shape = self.compute_output_shape(input_shape) dtype = self._compute_dtype if dtype is None: input_dtypes = [s.dtype for s in nest.flatten(input_signature)] # Default behavior when self.dtype is None, is to use the first input's # dtype. dtype = input_dtypes[0] return nest.map_structure( lambda s: tensor_spec.TensorSpec(dtype=dtype, shape=s), output_shape) @generic_utils.default def compute_mask(self, inputs, mask=None): # pylint: disable=unused-argument """Computes an output mask tensor. Arguments: inputs: Tensor or list of tensors. mask: Tensor or list of tensors. Returns: None or a tensor (or list of tensors, one per output tensor of the layer). """ if not self.supports_masking: if any(m is not None for m in nest.flatten(mask)): raise TypeError('Layer ' + self.name + ' does not support masking, ' 'but was passed an input_mask: ' + str(mask)) # masking not explicitly supported: return None as mask. return None # if masking is explicitly supported, by default # carry over the input mask return mask def __call__(self, *args, **kwargs): """Wraps `call`, applying pre- and post-processing steps. Arguments: *args: Positional arguments to be passed to `self.call`. **kwargs: Keyword arguments to be passed to `self.call`. Returns: Output tensor(s). Note: - The following optional keyword arguments are reserved for specific uses: * `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference. * `mask`: Boolean input mask. - If the layer's `call` method takes a `mask` argument (as some Keras layers do), its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support. Raises: ValueError: if the layer's `call` method returns None (an invalid value). RuntimeError: if `super().__init__()` was not called in the constructor. """ if not hasattr(self, '_thread_local'): raise RuntimeError( 'You must call `super().__init__()` in the layer constructor.') # Grab the first positional or keyword argument. if args: inputs = args[0] args = args[1:] elif self._call_fn_args[0] in kwargs: inputs = kwargs.pop(self._call_fn_args[0]) else: raise ValueError( 'The first argument to `Layer.call` must always be passed.') call_context = base_layer_utils.call_context() input_list = nest.flatten(inputs) # We will attempt to build a TF graph if & only if all inputs are symbolic. # This is always the case in graph mode. It can also be the case in eager # mode when all inputs can be traced back to `keras.Input()` (when building # models using the functional API). build_graph = tf_utils.are_all_symbolic_tensors(input_list) # Accept NumPy and scalar inputs by converting to Tensors. if any(isinstance(x, (np.ndarray, float, int)) for x in input_list): def _convert_non_tensor(x): # Don't call `ops.convert_to_tensor_v2` on all `inputs` because # `SparseTensors` can't be converted to `Tensor`. if isinstance(x, (np.ndarray, float, int)): return ops.convert_to_tensor_v2(x) return x inputs = nest.map_structure(_convert_non_tensor, inputs) input_list = nest.flatten(inputs) # Handle `mask` propagation from previous layer to current layer. Masks can # be propagated explicitly via the `mask` argument, or implicitly via # setting the `_keras_mask` attribute on the inputs to a Layer. Masks passed # explicitly take priority. mask_arg_passed_by_framework = False input_masks = self._collect_input_masks(inputs, args, kwargs) if (self._expects_mask_arg and input_masks is not None and not self._call_arg_was_passed('mask', args, kwargs)): mask_arg_passed_by_framework = True kwargs['mask'] = input_masks # If `training` argument was not explicitly passed, propagate `training` # value from this layer's calling layer. training_arg_passed_by_framework = False # Priority 1: `training` was explicitly passed. if self._call_arg_was_passed('training', args, kwargs): training_value = self._get_call_arg_value('training', args, kwargs) if not self._expects_training_arg: kwargs.pop('training') else: training_value = None # Priority 2: `training` was passed to a parent layer. if call_context.training is not None: training_value = call_context.training # Priority 3a: `learning_phase()` has been set. elif backend.global_learning_phase_is_set(): training_value = backend.learning_phase() # Priority 3b: Pass the `learning_phase()` if in the Keras FuncGraph. elif build_graph: with backend.get_graph().as_default(): if base_layer_utils.is_in_keras_graph(): training_value = backend.learning_phase() if self._expects_training_arg and training_value is not None: # Force the training_value to be bool type which matches to the contract # for layer/model call args. if tensor_util.is_tensor(training_value): training_value = math_ops.cast(training_value, dtypes.bool) else: training_value = bool(training_value) kwargs['training'] = training_value training_arg_passed_by_framework = True # Only create Keras history if at least one tensor originates from a # `keras.Input`. Otherwise this Layer may be being used outside the Keras # framework. if build_graph and base_layer_utils.needs_keras_history(inputs): base_layer_utils.create_keras_history(inputs) # Clear eager losses on top level model call. # We are clearing the losses only on the top level model call and not on # every layer/model call because layer/model may be reused. if (base_layer_utils.is_in_eager_or_tf_function() and not call_context.in_call): self._clear_losses() with call_context.enter(self, inputs, build_graph, training_value): # Check input assumptions set after layer building, e.g. input shape. if build_graph: # Symbolic execution on symbolic tensors. We will attempt to build # the corresponding TF subgraph inside `backend.get_graph()` # TODO(reedwm): We should assert input compatibility after the inputs # are casted, not before. input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) if (any(isinstance(x, ragged_tensor.RaggedTensor) for x in input_list) and self._supports_ragged_inputs is False): # pylint: disable=g-bool-id-comparison raise ValueError('Layer %s does not support RaggedTensors as input. ' 'Inputs received: %s. You can try converting your ' 'input to an uniform tensor.' % (self.name, inputs)) graph = backend.get_graph() with graph.as_default(), backend.name_scope(self._name_scope()): # Build layer if applicable (if the `build` method has been # overridden). self._maybe_build(inputs) if not self.dynamic: # Wrapping `call` function in autograph to allow for dynamic control # flow and control dependencies in call. We are limiting this to # subclassed layers as autograph is strictly needed only for # subclassed layers and models. # tf_convert will respect the value of autograph setting in the # enclosing tf.function, if any. if (base_layer_utils.is_subclassed(self) and not base_layer_utils.from_saved_model(self)): call_fn = autograph.tf_convert( self.call, ag_ctx.control_status_ctx()) else: call_fn = self.call try: # Add auto_control_deps in V2 when they are not already added by # a `tf.function`. if (ops.executing_eagerly_outside_functions() and not base_layer_utils.is_in_eager_or_tf_function()): with auto_control_deps.AutomaticControlDependencies() as acd: outputs = call_fn(inputs, *args, **kwargs) # Wrap Tensors in `outputs` in `tf.identity` to avoid # circular dependencies. outputs = base_layer_utils.mark_as_return(outputs, acd) else: outputs = call_fn(inputs, *args, **kwargs) except errors.OperatorNotAllowedInGraphError as e: raise TypeError('You are attempting to use Python control ' 'flow in a layer that was not declared to be ' 'dynamic. Pass `dynamic=True` to the class ' 'constructor.\nEncountered error:\n"""\n' + str(e) + '\n"""') else: # We will use static shape inference to return symbolic tensors # matching the specifications of the layer outputs. # Since `self.dynamic` is True, we will never attempt to # run the underlying TF graph (which is disconnected). # TODO(fchollet): consider py_func as an alternative, which # would enable us to run the underlying graph if needed. outputs = self._symbolic_call(inputs) if outputs is None: raise ValueError('A layer\'s `call` method should return a ' 'Tensor or a list of Tensors, not None ' '(layer: ' + self.name + ').') if base_layer_utils.have_all_keras_metadata(inputs): if training_arg_passed_by_framework: kwargs.pop('training') if mask_arg_passed_by_framework: kwargs.pop('mask') inputs, outputs = self._set_connectivity_metadata_( inputs, outputs, args, kwargs) self._handle_activity_regularization(inputs, outputs) self._set_mask_metadata(inputs, outputs, input_masks) if hasattr(self, '_set_inputs') and not self.inputs: # Subclassed network: explicitly set metadata normally set by # a call to self._set_inputs(). self._set_inputs(inputs, outputs) else: # Eager execution on data tensors. with backend.name_scope(self._name_scope()): self._maybe_build(inputs) outputs = self.call(inputs, *args, **kwargs) self._handle_activity_regularization(inputs, outputs) self._set_mask_metadata(inputs, outputs, input_masks) if hasattr(self, '_set_save_spec'): self._set_save_spec(inputs) return outputs @property def dtype(self): """Dtype used by the weights of the layer, set in the constructor.""" return self._dtype @property def name(self): """Name of the layer (string), set in the constructor.""" return self._name @property @trackable_layer_utils.cache_recursive_attribute('dynamic') def dynamic(self): """Whether the layer is dynamic (eager-only); set in the constructor.""" # NOTE(taylorrobie): Currently self._dynamic is read-only. If that changes # then this cache logic must be updated. return self._dynamic @property @doc_controls.do_not_doc_inheritable @trackable_layer_utils.cache_recursive_attribute('stateful') def stateful(self): return self._stateful @stateful.setter @trackable_layer_utils.invalidate_recursive_cache('stateful') def stateful(self, value): self._stateful = value @property def trainable(self): return self._trainable @trainable.setter def trainable(self, value): self._trainable = value for layer in getattr(self, '_layers', []): layer.trainable = value @property def activity_regularizer(self): """Optional regularizer function for the output of this layer.""" return self._activity_regularizer @activity_regularizer.setter def activity_regularizer(self, regularizer): """Optional regularizer function for the output of this layer.""" self._activity_regularizer = regularizer @property def input_spec(self): """`InputSpec` instance(s) describing the input format for this layer. When you create a layer subclass, you can set `self.input_spec` to enable the layer to run input compatibility checks when it is called. Consider a `Conv2D` layer: it can only be called on a single input tensor of rank 4. As such, you can set, in `__init__()`: ```python self.input_spec = tf.keras.layers.InputSpec(ndim=4) ``` Now, if you try to call the layer on an input that isn't rank 4 (for instance, an input of shape `(2,)`, it will raise a nicely-formatted error: ``` ValueError: Input 0 of layer conv2d is incompatible with the layer: expected ndim=4, found ndim=1. Full shape received: [2] ``` Input checks that can be specified via `input_spec` include: - Structure (e.g. a single input, a list of 2 inputs, etc) - Shape - Rank (ndim) - Dtype For more information, see `tf.keras.layers.InputSpec`. Returns: A `tf.keras.layers.InputSpec` instance, or nested structure thereof. """ return self._input_spec @input_spec.setter # Must be decorated to prevent tracking, since the input_spec can be nested # InputSpec objects. @trackable.no_automatic_dependency_tracking def input_spec(self, value): for v in nest.flatten(value): if v is not None and not isinstance(v, input_spec.InputSpec): raise TypeError('Layer input_spec must be an instance of InputSpec. ' 'Got: {}'.format(v)) self._input_spec = value @property def trainable_weights(self): """List of all trainable weights tracked by this layer. Trainable weights are updated via gradient descent during training. Returns: A list of trainable variables. """ if self.trainable: children_weights = self._gather_children_attribute('trainable_weights') return self._dedup_weights(self._trainable_weights + children_weights) else: return [] @property def non_trainable_weights(self): """List of all non-trainable weights tracked by this layer. Non-trainable weights are *not* updated during training. They are expected to be updated manually in `call()`. Returns: A list of non-trainable variables. """ if self.trainable: children_weights = self._gather_children_attribute( 'non_trainable_weights') non_trainable_weights = self._non_trainable_weights + children_weights else: children_weights = self._gather_children_attribute('weights') non_trainable_weights = ( self._trainable_weights + self._non_trainable_weights + children_weights) return self._dedup_weights(non_trainable_weights) @property def weights(self): """Returns the list of all layer variables/weights. Returns: A list of variables. """ return self.trainable_weights + self.non_trainable_weights @property @doc_controls.do_not_doc_inheritable def updates(self): collected_updates = [] all_layers = self._gather_unique_layers() with backend.get_graph().as_default(): for layer in all_layers: if not layer.trainable and not layer.stateful: continue for u in layer._updates: if callable(u): try: u = u() except errors.InaccessibleTensorError: base_layer_utils.check_graph_consistency( method='add_update', force_raise=True) raise # check_graph_consistency may not always raise. base_layer_utils.check_graph_consistency(u, method='add_update') collected_updates.append(u) return collected_updates @property def losses(self): """Losses which are associated with this `Layer`. Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing `losses` under a `tf.GradientTape` will propagate gradients back to the corresponding variables. Returns: A list of tensors. """ collected_losses = [] all_layers = self._gather_unique_layers() for layer in all_layers: # If any eager losses are present, we assume the model to be part of an # eager training loop (either a custom one or the one used when # `run_eagerly=True`) and so we always return just the eager losses. if layer._eager_losses: # Filter placeholder losses that may have been added by revived layers. # (see base_layer_utils for details). if (layer._eager_losses[0] is not base_layer_utils.REVIVED_LOSS_PLACEHOLDER): collected_losses.extend(layer._eager_losses) else: collected_losses.extend(layer._losses) for regularizer in layer._callable_losses: loss_tensor = regularizer() if loss_tensor is not None: collected_losses.append(loss_tensor) return collected_losses def add_loss(self, losses, inputs=None): """Add loss tensor(s), potentially dependent on layer inputs. Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs `a` and `b`, some entries in `layer.losses` may be dependent on `a` and some on `b`. This method automatically keeps track of dependencies. This method can be used inside a subclassed layer or model's `call` function, in which case `losses` should be a Tensor or list of Tensors. Example: ```python class MyLayer(tf.keras.layers.Layer): def call(inputs, self): self.add_loss(tf.abs(tf.reduce_mean(inputs)), inputs=True) return inputs ``` This method can also be called directly on a Functional Model during construction. In this case, any loss Tensors passed to this Model must be symbolic and be able to be traced back to the model's `Input`s. These losses become part of the model's topology and are tracked in `get_config`. Example: ```python inputs = tf.keras.Input(shape=(10,)) x = tf.keras.layers.Dense(10)(inputs) outputs = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(inputs, outputs) # Activity regularization. model.add_loss(tf.abs(tf.reduce_mean(x))) ``` If this is not the case for your loss (if, for example, your loss references a `Variable` of one of the model's layers), you can wrap your loss in a zero-argument lambda. These losses are not tracked as part of the model's topology since they can't be serialized. Example: ```python inputs = tf.keras.Input(shape=(10,)) x = tf.keras.layers.Dense(10)(inputs) outputs = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(inputs, outputs) # Weight regularization. model.add_loss(lambda: tf.reduce_mean(x.kernel)) ``` The `get_losses_for` method allows to retrieve the losses relevant to a specific set of inputs. Arguments: losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor. inputs: Ignored when executing eagerly. If anything other than None is passed, it signals the losses are conditional on some of the layer's inputs, and thus they should only be run where these inputs are available. This is the case for activity regularization losses, for instance. If `None` is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses). """ def _tag_unconditional(loss): """Process the loss and tag it by setting loss._unconditional_loss.""" if callable(loss): # We run the loss without autocasting, as regularizers are often # numerically unstable in float16. with base_layer_utils.autocast_context_manager(None): loss = loss() if loss is None: return None # Will be filtered out when computing the .losses property if not tensor_util.is_tensor(loss): loss = ops.convert_to_tensor_v2(loss, dtype=backend.floatx()) loss._unconditional_loss = (inputs is None) # pylint: disable=protected-access return loss losses = nest.flatten(losses) callable_losses = [] eager_losses = [] symbolic_losses = [] for loss in losses: if callable(loss): callable_losses.append(functools.partial(_tag_unconditional, loss)) continue if loss is None: continue if not tensor_util.is_tensor(loss): loss = ops.convert_to_tensor_v2(loss, dtype=backend.floatx()) # TF Functions should take the eager path. if (tf_utils.is_symbolic_tensor(loss) and not base_layer_utils.is_in_tf_function()): symbolic_losses.append(_tag_unconditional(loss)) base_layer_utils.check_graph_consistency(loss, method='add_loss') elif tensor_util.is_tensor(loss): eager_losses.append(_tag_unconditional(loss)) self._callable_losses.extend(callable_losses) in_call_context = base_layer_utils.call_context().in_call if eager_losses and not in_call_context: raise ValueError( 'Expected a symbolic Tensors or a callable for the loss value. ' 'Please wrap your loss computation in a zero argument `lambda`.') self._eager_losses.extend(eager_losses) if in_call_context: for symbolic_loss in symbolic_losses: self._losses.append(symbolic_loss) else: for symbolic_loss in symbolic_losses: if getattr(self, '_is_graph_network', False): self._graph_network_add_loss(symbolic_loss) else: # Possible a loss was added in a Layer's `build`. self._losses.append(symbolic_loss) @trackable.no_automatic_dependency_tracking def _clear_losses(self): """Used every step in eager to reset losses.""" self._eager_losses = [] if hasattr(self, '_layers'): for layer in trackable_layer_utils.filter_empty_layer_containers( self._layers): layer._clear_losses() @property def metrics(self): """List of `tf.keras.metrics.Metric` instances tracked by the layer.""" collected_metrics = [] all_layers = self._gather_unique_layers() for layer in all_layers: with layer._metrics_lock: collected_metrics.extend(layer._metrics) return collected_metrics def add_metric(self, value, aggregation=None, name=None): """Adds metric tensor to the layer. Args: value: Metric tensor. aggregation: Sample-wise metric reduction function. If `aggregation=None`, it indicates that the metric tensor provided has been aggregated already. eg, `bin_acc = BinaryAccuracy(name='acc')` followed by `model.add_metric(bin_acc(y_true, y_pred))`. If aggregation='mean', the given metric tensor will be sample-wise reduced using `mean` function. eg, `model.add_metric(tf.reduce_sum(outputs), name='output_mean', aggregation='mean')`. name: String metric name. Raises: ValueError: If `aggregation` is anything other than None or `mean`. """ if aggregation is not None and aggregation != 'mean': raise ValueError( 'We currently support only `mean` sample-wise metric aggregation. ' 'You provided aggregation=`%s`' % aggregation) from_metric_obj = hasattr(value, '_metric_obj') is_symbolic = tf_utils.is_symbolic_tensor(value) in_call_context = base_layer_utils.call_context().in_call if name is None and not from_metric_obj: # Eg. `self.add_metric(math_ops.reduce_sum(x), aggregation='mean')` # In eager mode, we use metric name to lookup a metric. Without a name, # a new Mean metric wrapper will be created on every model/layer call. # So, we raise an error when no name is provided. # We will do the same for symbolic mode for consistency although a name # will be generated if no name is provided. # We will not raise this error in the foll use case for the sake of # consistency as name in provided in the metric constructor. # mean = metrics.Mean(name='my_metric') # model.add_metric(mean(outputs)) raise ValueError('Please provide a name for your metric like ' '`self.add_metric(tf.reduce_sum(inputs), ' 'name=\'mean_activation\', aggregation=\'mean\')`') elif from_metric_obj: name = value._metric_obj.name if in_call_context: # TF Function path should take the eager path. if is_symbolic and not base_layer_utils.is_in_tf_function(): self._symbolic_add_metric(value, aggregation, name) else: self._eager_add_metric(value, aggregation, name) else: if not is_symbolic: raise ValueError('Expected a symbolic Tensor for the metric value, ' 'received: ' + str(value)) # Possible a metric was added in a Layer's `build`. if not getattr(self, '_is_graph_network', False): with backend.get_graph().as_default(): self._symbolic_add_metric(value, aggregation, name) return if from_metric_obj: raise ValueError('Using the result of calling a `Metric` object ' 'when calling `add_metric` on a Functional ' 'Model is not supported. Please pass the ' 'Tensor to monitor directly.') # Insert layers into the Keras Graph Network. self._graph_network_add_metric(value, aggregation, name) @deprecation.deprecated_args(None, '`inputs` is now automatically inferred', 'inputs') @doc_controls.do_not_doc_inheritable def add_update(self, updates, inputs=None): """Add update op(s), potentially dependent on layer inputs. Weight updates (for instance, the updates of the moving mean and variance in a BatchNormalization layer) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs `a` and `b`, some entries in `layer.updates` may be dependent on `a` and some on `b`. This method automatically keeps track of dependencies. The `get_updates_for` method allows to retrieve the updates relevant to a specific set of inputs. This call is ignored when eager execution is enabled (in that case, variable updates are run on the fly and thus do not need to be tracked for later execution). Arguments: updates: Update op, or list/tuple of update ops, or zero-arg callable that returns an update op. A zero-arg callable should be passed in order to disable running the updates by setting `trainable=False` on this Layer, when executing in Eager mode. inputs: Deprecated, will be automatically inferred. """ call_context = base_layer_utils.call_context() if (ds_context.has_strategy() and ds_context.in_cross_replica_context() and # When saving the model, the distribution strategy context should be # ignored, following the default path for adding updates. not call_context.saving): # Updates don't need to be run in a cross-replica context. return updates = generic_utils.to_list(updates) # All updates can be run immediately in Eager or in a tf.function. if base_layer_utils.is_in_eager_or_tf_function(): if not call_context.frozen: for update in updates: if callable(update): update() return if call_context.in_call: relevant_inputs = call_context.inputs else: inbound_nodes = getattr(self, '_inbound_nodes', []) relevant_inputs = [node.input_tensors for node in inbound_nodes] def process_update(x): """Standardize update ops. Arguments: x: Tensor, op, or callable. Returns: An update op. """ if callable(x): update = lambda: process_update(x()) if not ops.executing_eagerly_outside_functions(): # In V1 mode, call the callable right away and process. This is needed # for TPU strategy. return update() elif isinstance(x, ops.Operation): update = x elif hasattr(x, 'op'): update = x.op else: update = ops.convert_to_tensor_v2(x) reachable = tf_utils.get_reachable_from_inputs(relevant_inputs, [update]) update._unconditional_update = update not in reachable return update updates = [process_update(x) for x in updates] # Non-callable Updates are run automatically inside `call` in V2, so # they do not need to be tracked later. if ops.executing_eagerly_outside_functions() and call_context.in_call: updates = [u for u in updates if callable(u)] self._updates.extend(updates) def set_weights(self, weights): """Sets the weights of the layer, from Numpy arrays. The weights of a layer represent the state of the layer. This function sets the weight values from numpy arrays. The weight values should be passed in the order they are created by the layer. Note that the layer's weights must be instantiated before calling this function by calling the layer. For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer: >>> a = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(1.)) >>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]])) >>> a.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] >>> b = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(2.)) >>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]])) >>> b.get_weights() [array([[2.], [2.], [2.]], dtype=float32), array([0.], dtype=float32)] >>> b.set_weights(a.get_weights()) >>> b.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] Arguments: weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of `get_weights`). Raises: ValueError: If the provided weights list does not match the layer's specifications. """ params = self.weights expected_num_weights = 0 for param in params: if isinstance(param, base_layer_utils.TrackableWeightHandler): expected_num_weights += param.num_tensors else: expected_num_weights += 1 if expected_num_weights != len(weights): raise ValueError( 'You called `set_weights(weights)` on layer "%s" ' 'with a weight list of length %s, but the layer was ' 'expecting %s weights. Provided weights: %s...' % (self.name, len(weights), expected_num_weights, str(weights)[:50])) weight_index = 0 weight_value_tuples = [] for param in params: if isinstance(param, base_layer_utils.TrackableWeightHandler): num_tensors = param.num_tensors tensors = weights[weight_index:weight_index + num_tensors] param.set_weights(tensors) weight_index += num_tensors else: weight = weights[weight_index] ref_shape = param.shape if not ref_shape.is_compatible_with(weight.shape): raise ValueError( 'Layer weight shape %s not compatible with provided weight ' 'shape %s' % (ref_shape, weight.shape)) weight_value_tuples.append((param, weight)) weight_index += 1 backend.batch_set_value(weight_value_tuples) def get_weights(self): """Returns the current weights of the layer. The weights of a layer represent the state of the layer. This function returns both trainable and non-trainable weight values associated with this layer as a list of Numpy arrays, which can in turn be used to load state into similarly parameterized layers. For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer: >>> a = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(1.)) >>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]])) >>> a.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] >>> b = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(2.)) >>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]])) >>> b.get_weights() [array([[2.], [2.], [2.]], dtype=float32), array([0.], dtype=float32)] >>> b.set_weights(a.get_weights()) >>> b.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] Returns: Weights values as a list of numpy arrays. """ weights = self.weights output_weights = [] for weight in weights: if isinstance(weight, base_layer_utils.TrackableWeightHandler): output_weights.extend(weight.get_tensors()) else: output_weights.append(weight) return backend.batch_get_value(output_weights) @doc_controls.do_not_generate_docs def get_updates_for(self, inputs): """Retrieves updates relevant to a specific set of inputs. Arguments: inputs: Input tensor or list/tuple of input tensors. Returns: List of update ops of the layer that depend on `inputs`. """ if inputs is None: # Requesting unconditional updates. return [u for u in self.updates if u._unconditional_update] # Requesting input-conditional updates. updates = [u for u in self.updates if not u._unconditional_update] inputs = nest.flatten(inputs) reachable = tf_utils.get_reachable_from_inputs(inputs, updates) return [u for u in updates if u in reachable] @doc_controls.do_not_doc_inheritable def get_losses_for(self, inputs): """Retrieves losses relevant to a specific set of inputs. Arguments: inputs: Input tensor or list/tuple of input tensors. Returns: List of loss tensors of the layer that depend on `inputs`. """ if inputs is None: # Requesting unconditional losses. return [l for l in self.losses if l._unconditional_loss] # Requesting input-conditional losses. losses = [l for l in self.losses if not l._unconditional_loss] inputs = nest.flatten(inputs) reachable = tf_utils.get_reachable_from_inputs(inputs, losses) return [l for l in losses if l in reachable] @doc_controls.do_not_doc_inheritable def get_input_mask_at(self, node_index): """Retrieves the input mask tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple inputs). """ inputs = self.get_input_at(node_index) if isinstance(inputs, list): return [getattr(x, '_keras_mask', None) for x in inputs] else: return getattr(inputs, '_keras_mask', None) @doc_controls.do_not_doc_inheritable def get_output_mask_at(self, node_index): """Retrieves the output mask tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple outputs). """ output = self.get_output_at(node_index) if isinstance(output, list): return [getattr(x, '_keras_mask', None) for x in output] else: return getattr(output, '_keras_mask', None) @property @doc_controls.do_not_doc_inheritable def input_mask(self): """Retrieves the input mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Input mask tensor (potentially None) or list of input mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ inputs = self.input if isinstance(inputs, list): return [getattr(x, '_keras_mask', None) for x in inputs] else: return getattr(inputs, '_keras_mask', None) @property @doc_controls.do_not_doc_inheritable def output_mask(self): """Retrieves the output mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Output mask tensor (potentially None) or list of output mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ output = self.output if isinstance(output, list): return [getattr(x, '_keras_mask', None) for x in output] else: return getattr(output, '_keras_mask', None) @doc_controls.do_not_doc_inheritable def get_input_shape_at(self, node_index): """Retrieves the input shape(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A shape tuple (or list of shape tuples if the layer has multiple inputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'input_shapes', 'input shape') @doc_controls.do_not_doc_inheritable def get_output_shape_at(self, node_index): """Retrieves the output shape(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A shape tuple (or list of shape tuples if the layer has multiple outputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'output_shapes', 'output shape') @doc_controls.do_not_doc_inheritable def get_input_at(self, node_index): """Retrieves the input tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A tensor (or list of tensors if the layer has multiple inputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'input_tensors', 'input') @doc_controls.do_not_doc_inheritable def get_output_at(self, node_index): """Retrieves the output tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A tensor (or list of tensors if the layer has multiple outputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'output_tensors', 'output') @property def input(self): """Retrieves the input tensor(s) of a layer. Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer. Returns: Input tensor or list of input tensors. Raises: RuntimeError: If called in Eager mode. AttributeError: If no inbound nodes are found. """ if not self._inbound_nodes: raise AttributeError('Layer ' + self.name + ' is not connected, no input to return.') return self._get_node_attribute_at_index(0, 'input_tensors', 'input') @property def output(self): """Retrieves the output tensor(s) of a layer. Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer. Returns: Output tensor or list of output tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError('Layer ' + self.name + ' has no inbound nodes.') return self._get_node_attribute_at_index(0, 'output_tensors', 'output') @property @doc_controls.do_not_doc_inheritable def input_shape(self): """Retrieves the input shape(s) of a layer. Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape. Returns: Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor). Raises: AttributeError: if the layer has no defined input_shape. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError('The layer has never been called ' 'and thus has no defined input shape.') all_input_shapes = set( [str(node.input_shapes) for node in self._inbound_nodes]) if len(all_input_shapes) == 1: return self._inbound_nodes[0].input_shapes else: raise AttributeError('The layer "' + str(self.name) + ' has multiple inbound nodes, ' 'with different input shapes. Hence ' 'the notion of "input shape" is ' 'ill-defined for the layer. ' 'Use `get_input_shape_at(node_index)` ' 'instead.') def count_params(self): """Count the total number of scalars composing the weights. Returns: An integer count. Raises: ValueError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if getattr(self, '_is_graph_network', False): with tf_utils.maybe_init_scope(self): self._maybe_build(self.inputs) else: raise ValueError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return layer_utils.count_params(self.weights) @property @doc_controls.do_not_doc_inheritable def output_shape(self): """Retrieves the output shape(s) of a layer. Only applicable if the layer has one output, or if all outputs have the same shape. Returns: Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor). Raises: AttributeError: if the layer has no defined output shape. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError('The layer has never been called ' 'and thus has no defined output shape.') all_output_shapes = set( [str(node.output_shapes) for node in self._inbound_nodes]) if len(all_output_shapes) == 1: return self._inbound_nodes[0].output_shapes else: raise AttributeError('The layer "%s"' ' has multiple inbound nodes, ' 'with different output shapes. Hence ' 'the notion of "output shape" is ' 'ill-defined for the layer. ' 'Use `get_output_shape_at(node_index)` ' 'instead.' % self.name) @property @doc_controls.do_not_doc_inheritable def inbound_nodes(self): """Deprecated, do NOT use! Only for compatibility with external Keras.""" return self._inbound_nodes @property @doc_controls.do_not_doc_inheritable def outbound_nodes(self): """Deprecated, do NOT use! Only for compatibility with external Keras.""" return self._outbound_nodes ############################################################################## # Methods & attributes below are public aliases of other methods. # ############################################################################## @deprecation.deprecated( date=None, instructions='Please use `layer.__call__` method instead.') @doc_controls.do_not_doc_inheritable def apply(self, inputs, *args, **kwargs): """Deprecated, do NOT use! This is an alias of `self.__call__`. Arguments: inputs: Input tensor(s). *args: additional positional arguments to be passed to `self.call`. **kwargs: additional keyword arguments to be passed to `self.call`. Returns: Output tensor(s). """ return self.__call__(inputs, *args, **kwargs) @deprecation.deprecated( date=None, instructions='Please use `layer.add_weight` method instead.') @doc_controls.do_not_doc_inheritable def add_variable(self, *args, **kwargs): """Deprecated, do NOT use! Alias for `add_weight`.""" return self.add_weight(*args, **kwargs) @property @doc_controls.do_not_generate_docs def variables(self): """Returns the list of all layer variables/weights. Alias of `self.weights`. Returns: A list of variables. """ return self.weights @property @doc_controls.do_not_generate_docs def trainable_variables(self): return self.trainable_weights @property @doc_controls.do_not_generate_docs def non_trainable_variables(self): return self.non_trainable_weights ############################################################################## # Methods & attributes below are all private and only used by the framework. # ############################################################################## # TODO(scottzhu): Remove this? @property def _compute_dtype(self): """The layer's compute dtype. Unless mixed-precision is used, this is the same as `Layer.dtype`. If self._autocast is True, layer's will cast floating-point inputs to this. Returns: The layer's compute dtype. """ return self.dtype def _name_scope(self): return self.name def _init_set_name(self, name, zero_based=True): if not name: self._name = backend.unique_object_name( generic_utils.to_snake_case(self.__class__.__name__), zero_based=zero_based) else: self._name = name def _get_existing_metric(self, name=None): match = [m for m in self._metrics if m.name == name] if not match: return if len(match) > 1: raise ValueError( 'Please provide different names for the metrics you have added. ' 'We found {} metrics with the name: "{}"'.format(len(match), name)) return match[0] def _eager_add_metric(self, value, aggregation=None, name=None): # If the given metric is available in `metrics` list we just update state # on it, otherwise we create a new metric instance and # add it to the `metrics` list. metric_obj = getattr(value, '_metric_obj', None) # Tensors that come from a Metric object already updated the Metric state. should_update_state = not metric_obj name = metric_obj.name if metric_obj else name with self._metrics_lock: match = self._get_existing_metric(name) if match: metric_obj = match elif metric_obj: self._metrics.append(metric_obj) else: from tensorflow.python.keras import metrics as metrics_mod # pylint:disable=g-import-not-at-top if aggregation is None: raise ValueError( '`aggregation` must be specified when passing a `Tensor` ' 'to `add_metric`.') assert aggregation is not None metric_obj = metrics_mod.Mean(name=name, dtype=value.dtype) self._metrics.append(metric_obj) if should_update_state: metric_obj(value) return def _symbolic_add_metric(self, value, aggregation=None, name=None): base_layer_utils.check_graph_consistency(value, method='add_metric') match = self._get_existing_metric(name) if aggregation is None: # Iterate over the metrics and check if the given metric exists already. # This can happen when a metric instance is created in subclassed model # layer `__init__` and we have tracked that instance already in # model.__setattr__. if match: result_tensor = value metric_obj = match elif hasattr(value, '_metric_obj'): # We track the instance using the metadata on the result tensor. result_tensor = value metric_obj = result_tensor._metric_obj self._metrics.append(metric_obj) else: raise ValueError( 'We do not support adding an aggregated metric result tensor that ' 'is not the output of a `tf.keras.metrics.Metric` metric instance. ' 'Without having access to the metric instance we cannot reset the ' 'state of a metric after every epoch during training. You can ' 'create a `tf.keras.metrics.Metric` instance and pass the result ' 'here or pass an un-aggregated result with `aggregation` parameter ' 'set as `mean`. For example: `self.add_metric(tf.reduce_sum(inputs)' ', name=\'mean_activation\', aggregation=\'mean\')`') else: # If a non-aggregated tensor is given as input (ie. `aggregation` is # explicitly set to `mean`), we wrap the tensor in `Mean` metric. if match: result_tensor = match(value) metric_obj = match else: metric_obj, result_tensor = base_layer_utils.create_mean_metric( value, name) self._metrics.append(metric_obj) def _handle_weight_regularization(self, name, variable, regularizer): """Create lambdas which compute regularization losses.""" def _loss_for_variable(v): """Creates a regularization loss `Tensor` for variable `v`.""" with backend.name_scope(name + '/Regularizer'): regularization = regularizer(v) return regularization if isinstance(variable, tf_variables.PartitionedVariable): for v in variable: self.add_loss(functools.partial(_loss_for_variable, v)) else: self.add_loss(functools.partial(_loss_for_variable, variable)) def _handle_activity_regularization(self, inputs, outputs): # Apply activity regularization. # Note that it should be applied every time the layer creates a new # output, since it is output-specific. if self._activity_regularizer: output_list = nest.flatten(outputs) with backend.name_scope('ActivityRegularizer'): for output in output_list: activity_loss = self._activity_regularizer(output) batch_size = math_ops.cast( array_ops.shape(output)[0], activity_loss.dtype) # Make activity regularization strength batch-agnostic. mean_activity_loss = activity_loss / batch_size base_layer_utils.check_graph_consistency( mean_activity_loss, method='activity_regularizer') self.add_loss(mean_activity_loss, inputs=inputs) def _set_mask_metadata(self, inputs, outputs, previous_mask): flat_outputs = nest.flatten(outputs) mask_already_computed = ( getattr(self, '_compute_output_and_mask_jointly', False) or all(getattr(x, '_keras_mask', None) is not None for x in flat_outputs)) # Only compute the mask if the Layer explicitly supports masking or has # overridden `compute_mask`. should_compute_mask = ( hasattr(self, 'compute_mask') and (self.supports_masking or not getattr(self.compute_mask, '_is_default', False))) if mask_already_computed: flat_masks = [getattr(x, '_keras_mask', None) for x in flat_outputs] elif not should_compute_mask: flat_masks = [None for _ in flat_outputs] else: output_masks = self.compute_mask(inputs, previous_mask) # `compute_mask` can return a single `None` even when a Layer # has multiple outputs. if output_masks is None: flat_masks = [None for _ in flat_outputs] else: flat_masks = nest.flatten(output_masks) for output, mask in zip(flat_outputs, flat_masks): try: output._keras_mask = mask except AttributeError: # C Type such as np.ndarray. pass if tf_utils.are_all_symbolic_tensors(flat_outputs): for output in flat_outputs: if getattr(output, '_keras_mask', None) is not None: # Do not track masks for `TensorFlowOpLayer` construction. output._keras_mask._keras_history_checked = True def _collect_input_masks(self, inputs, args, kwargs): """Checks if `mask` argument was passed, else gathers mask from inputs.""" if self._call_arg_was_passed('mask', args, kwargs): return self._get_call_arg_value('mask', args, kwargs) if not self._should_compute_mask: return None input_masks = nest.map_structure(lambda t: getattr(t, '_keras_mask', None), inputs) if generic_utils.is_all_none(input_masks): return None return input_masks def _call_arg_was_passed(self, arg_name, args, kwargs, inputs_in_args=False): if arg_name in kwargs: return True call_fn_args = self._call_fn_args if not inputs_in_args: # Ignore `inputs` arg. call_fn_args = call_fn_args[1:] if arg_name in dict(zip(call_fn_args, args)): return True return False def _get_call_arg_value(self, arg_name, args, kwargs, inputs_in_args=False): if arg_name in kwargs: return kwargs[arg_name] call_fn_args = self._call_fn_args if not inputs_in_args: # Ignore `inputs` arg. call_fn_args = call_fn_args[1:] args_dict = dict(zip(call_fn_args, args)) return args_dict[arg_name] def _set_connectivity_metadata_(self, inputs, outputs, args, kwargs): # If the layer returns tensors from its inputs, unmodified, # we copy them to avoid loss of tensor metadata. output_ls = nest.flatten(outputs) inputs_ls = object_identity.ObjectIdentitySet(nest.flatten(inputs)) output_ls_copy = [] for x in output_ls: if x in inputs_ls: with backend.name_scope(self.name): x = array_ops.identity(x) output_ls_copy.append(x) outputs = nest.pack_sequence_as(outputs, output_ls_copy) # Ignore `inputs` arg. arguments = dict(zip(self._call_fn_args[1:], args)) arguments.update(kwargs) # Add an inbound node to the layer, so it can keep track of this call. # This updates the layer history of the output tensor(s). self._add_inbound_node( input_tensors=inputs, output_tensors=outputs, arguments=arguments) return inputs, outputs def _add_inbound_node(self, input_tensors, output_tensors, arguments=None): """Internal method to create an inbound node for the layer. Arguments: input_tensors: list of input tensors. output_tensors: list of output tensors. arguments: dictionary of keyword arguments that were passed to the `call` method of the layer at the call that created the node. """ inbound_layers = nest.map_structure(lambda t: t._keras_history.layer, input_tensors) node_indices = nest.map_structure(lambda t: t._keras_history.node_index, input_tensors) tensor_indices = nest.map_structure(lambda t: t._keras_history.tensor_index, input_tensors) # Create node, add it to inbound nodes. node_module.Node( self, inbound_layers=inbound_layers, node_indices=node_indices, tensor_indices=tensor_indices, input_tensors=input_tensors, output_tensors=output_tensors, arguments=arguments) # Update tensor history metadata. # The metadata attribute consists of # 1) a layer instance # 2) a node index for the layer # 3) a tensor index for the node. # The allows layer reuse (multiple nodes per layer) and multi-output # or multi-input layers (e.g. a layer can return multiple tensors, # and each can be sent to a different layer). for i, tensor in enumerate(nest.flatten(output_tensors)): tensor._keras_history = KerasHistory(self, len(self._inbound_nodes) - 1, i) # pylint: disable=protected-access def _get_node_attribute_at_index(self, node_index, attr, attr_name): """Private utility to retrieves an attribute (e.g. inputs) from a node. This is used to implement the methods: - get_input_shape_at - get_output_shape_at - get_input_at etc... Arguments: node_index: Integer index of the node from which to retrieve the attribute. attr: Exact node attribute name. attr_name: Human-readable attribute name, for error messages. Returns: The layer's attribute `attr` at the node of index `node_index`. Raises: RuntimeError: If the layer has no inbound nodes, or if called in Eager mode. ValueError: If the index provided does not match any node. """ if not self._inbound_nodes: raise RuntimeError('The layer has never been called ' 'and thus has no defined ' + attr_name + '.') if not len(self._inbound_nodes) > node_index: raise ValueError('Asked to get ' + attr_name + ' at node ' + str(node_index) + ', but the layer has only ' + str(len(self._inbound_nodes)) + ' inbound nodes.') values = getattr(self._inbound_nodes[node_index], attr) if isinstance(values, list) and len(values) == 1: return values[0] else: return values def _maybe_build(self, inputs): # Check input assumptions set before layer building, e.g. input rank. if not self.built: input_spec.assert_input_compatibility( self.input_spec, inputs, self.name) input_list = nest.flatten(inputs) if input_list and self._dtype is None: try: self._dtype = input_list[0].dtype.base_dtype.name except AttributeError: pass input_shapes = None if all(hasattr(x, 'shape') for x in input_list): input_shapes = nest.map_structure(lambda x: x.shape, inputs) # Only call `build` if the user has manually overridden the build method. if not hasattr(self.build, '_is_default'): # Any setup work performed only once should happen in an `init_scope` # to avoid creating symbolic Tensors that will later pollute any eager # operations. with tf_utils.maybe_init_scope(self): self.build(input_shapes) # pylint:disable=not-callable # We must set also ensure that the layer is marked as built, and the build # shape is stored since user defined build functions may not be calling # `super.build()` LegacyBaseLayer.build(self, input_shapes) # Optionally load weight values specified at layer instantiation. if self._initial_weights is not None: if ops.executing_eagerly_outside_functions(): with ops.init_scope(): # Using `init_scope` since we want variable assignment in # `set_weights` to be treated like variable initialization. self.set_weights(self._initial_weights) else: self.set_weights(self._initial_weights) self._initial_weights = None def _symbolic_call(self, inputs): input_shapes = nest.map_structure(lambda x: x.shape, inputs) output_shapes = self.compute_output_shape(input_shapes) # Convert to TensorShape so that nest.map_structure will not map into # individual dim of the shape. output_shapes = tf_utils.convert_shapes(output_shapes, to_tuples=False) def _make_placeholder_like(shape): ph = backend.placeholder(shape=shape, dtype=self.dtype) ph._keras_mask = None return ph return nest.map_structure(_make_placeholder_like, output_shapes) def _get_trainable_state(self): """Get the `trainable` state of each sublayer. Returns: A dict mapping all sublayers to their `trainable` value. """ layers = trackable_layer_utils.filter_empty_layer_containers(self._layers) # Keep track of each top-level layers' `trainable` as well as the # state of all of its sublayers. trainable_state = weakref.WeakKeyDictionary() trainable_state[self] = self.trainable for layer in layers: trainable_state.update(layer._get_trainable_state()) return trainable_state def _set_trainable_state(self, trainable_state): """Set `trainable` state for each sublayer.""" layers = trackable_layer_utils.filter_empty_layer_containers(self._layers) if self in trainable_state: self.trainable = trainable_state[self] for layer in layers: layer._set_trainable_state(trainable_state) @property def _obj_reference_counts(self): """A dictionary counting the number of attributes referencing an object.""" self._maybe_create_attribute('_obj_reference_counts_dict', object_identity.ObjectIdentityDictionary()) return self._obj_reference_counts_dict @trackable.no_automatic_dependency_tracking def _maybe_create_attribute(self, name, default_value): """Create the attribute with the default value if it hasn't been created. This is useful for fields that is used for tracking purpose, _trainable_weights, or _layers. Note that user could create a layer subclass and assign an internal field before invoking the Layer.__init__(), the __setattr__() need to create the tracking fields and __init__() need to not override them. Args: name: String, the name of the attribute. default_value: Object, the default value of the attribute. """ if not hasattr(self, name): super(LegacyBaseLayer, self).__setattr__(name, default_value) def __delattr__(self, name): # For any super.__delattr__() call, we will directly use the implementation # in Trackable and skip the behavior in AutoTrackable. The Layer was # originally use Trackable as base class, the change of using Module as base # class forced us to have AutoTrackable in the class hierarchy. Skipping # the __delattr__ and __setattr__ in AutoTrackable will keep the status quo. existing_value = getattr(self, name, None) # If this value is replacing an existing object assigned to an attribute, we # should clean it out to avoid leaking memory. First we check if there are # other attributes referencing it. reference_counts = self._obj_reference_counts if existing_value not in reference_counts: super(tracking.AutoTrackable, self).__delattr__(name) return reference_count = reference_counts[existing_value] if reference_count > 1: # There are other remaining references. We can't remove this object from # _layers etc. reference_counts[existing_value] = reference_count - 1 super(tracking.AutoTrackable, self).__delattr__(name) return else: # This is the last remaining reference. del reference_counts[existing_value] super(tracking.AutoTrackable, self).__delattr__(name) if (isinstance(existing_value, LegacyBaseLayer) or trackable_layer_utils.has_weights(existing_value)): super(tracking.AutoTrackable, self).__setattr__( '_layers', [l for l in self._layers if l is not existing_value]) self._attribute_sentinel.invalidate_all() if isinstance(existing_value, tf_variables.Variable): super(tracking.AutoTrackable, self).__setattr__( '_trainable_weights', [w for w in self._trainable_weights if w is not existing_value]) super(tracking.AutoTrackable, self).__setattr__( '_non_trainable_weights', [w for w in self._non_trainable_weights if w is not existing_value]) # Any time we change `_layers` (either by deleting the attribute or by # reassigning it which will call __delattr__ from __setattr__) the topology # of the subgraph of Layers may change. In that case we will need to # recompute any attribute which depends on that subgraph. if name == '_layers': self._attribute_sentinel.invalidate_all() def __setattr__(self, name, value): if (name == '_self_setattr_tracking' or not getattr(self, '_self_setattr_tracking', True) or # Exclude @property.setters from tracking hasattr(self.__class__, name)): try: super(tracking.AutoTrackable, self).__setattr__(name, value) except AttributeError: raise AttributeError( ('Can\'t set the attribute "{}", likely because it conflicts with ' 'an existing read-only @property of the object. Please choose a ' 'different name.').format(name)) return # Keep track of trackable objects, for the needs of `Network.save_weights`. value = data_structures.sticky_attribute_assignment( trackable=self, value=value, name=name) reference_counts = self._obj_reference_counts reference_counts[value] = reference_counts.get(value, 0) + 1 # Clean out the old attribute, which clears _layers and _trainable_weights # if necessary. try: self.__delattr__(name) except AttributeError: pass # TODO(scottzhu): Need to track Module object as well for weight tracking. # Be careful about metric if it becomes a Module in future. # Append value to self._layers if relevant if (getattr(self, '_auto_track_sub_layers', True) and (isinstance(value, LegacyBaseLayer) or trackable_layer_utils.has_weights(value))): self._maybe_create_attribute('_layers', []) # We need to check object identity to avoid de-duplicating empty # container types which compare equal. if not any((layer is value for layer in self._layers)): self._layers.append(value) if hasattr(value, '_attribute_sentinel'): value._attribute_sentinel.add_parent(self._attribute_sentinel) if hasattr(value, '_use_resource_variables'): # Legacy layers (V1 tf.layers) must always use # resource variables. value._use_resource_variables = True # Append value to list of trainable / non-trainable weights if relevant # TODO(b/125122625): This won't pick up on any variables added to a # list/dict after creation. for val in nest.flatten(value): # TODO(b/126450014): Remove `_UnreadVariable` check here when assign ops # no longer return True for isinstance Variable checks. if not isinstance(val, tf_variables.Variable): continue if isinstance(val, resource_variable_ops._UnreadVariable): # pylint: disable=protected-access continue # Users may add extra weights/variables # simply by assigning them to attributes (invalid for graph networks) self._maybe_create_attribute('_trainable_weights', []) self._maybe_create_attribute('_non_trainable_weights', []) if val.trainable: if any(val is w for w in self._trainable_weights): continue self._trainable_weights.append(val) else: if any(val is w for w in self._non_trainable_weights): continue self._non_trainable_weights.append(val) backend.track_variable(val) # Skip the auto trackable from tf.Module to keep status quo. See the comment # at __delattr__. super(tracking.AutoTrackable, self).__setattr__(name, value) def _gather_children_attribute(self, attribute): assert attribute in { 'weights', 'trainable_weights', 'non_trainable_weights' } if hasattr(self, '_layers'): nested_layers = trackable_layer_utils.filter_empty_layer_containers( self._layers) return list( itertools.chain.from_iterable( getattr(layer, attribute) for layer in nested_layers)) return [] def _gather_unique_layers(self): """Returns the current layer and all its children depth first deduped. We are deduping after getting the layers to maintain the order. """ all_layers = self._gather_layers() unique_layers, seen_layers = [], object_identity.ObjectIdentitySet() for layer in all_layers: if layer not in seen_layers: unique_layers.append(layer) # Track the Variable's identity to avoid __eq__ issues. seen_layers.add(layer) return unique_layers def _gather_layers(self): """Returns the current layer and all its children depth first.""" all_layers = [self] if hasattr(self, '_layers'): child_layers = trackable_layer_utils.filter_empty_layer_containers( self._layers) for child_layer in child_layers: all_layers.extend(child_layer._gather_layers()) return all_layers @property @tracking.cached_per_instance def _attribute_sentinel(self): return trackable_layer_utils.AttributeSentinel() # This is a hack so that the is_layer (within # training/trackable/layer_utils.py) check doesn't get the weights attr. # TODO(b/110718070): Remove when fixed. def _is_layer(self): return True def _init_call_fn_args(self): # Clear cached call function arguments. self.__class__._call_full_argspec.fget.cache.pop(self, None) self.__class__._call_fn_args.fget.cache.pop(self, None) self.__class__._call_accepts_kwargs.fget.cache.pop(self, None) call_fn_args = self._call_fn_args self._expects_training_arg = ('training' in call_fn_args or self._call_accepts_kwargs) self._expects_mask_arg = ('mask' in call_fn_args or self._call_accepts_kwargs) @property @tracking.cached_per_instance def _call_full_argspec(self): # Argspec inspection is expensive and the call spec is used often, so it # makes sense to cache the result. return tf_inspect.getfullargspec(self.call) @property @tracking.cached_per_instance def _call_fn_args(self): all_args = self._call_full_argspec.args # Scrub `self` that appears if a decorator was applied. if all_args and all_args[0] == 'self': return all_args[1:] return all_args @property @tracking.cached_per_instance def _call_accepts_kwargs(self): return self._call_full_argspec.varkw is not None @property @tracking.cached_per_instance def _should_compute_mask(self): return ('mask' in self._call_fn_args or getattr(self, 'compute_mask', None) is not None) @property def _eager_losses(self): # A list of loss values containing activity regularizers and losses # manually added through `add_loss` during eager execution. It is cleared # after every batch. # Because we plan on eventually allowing a same model instance to be trained # in eager mode or graph mode alternatively, we need to keep track of # eager losses and symbolic losses via separate attributes. if not hasattr(self._thread_local, '_eager_losses'): self._thread_local._eager_losses = [] return self._thread_local._eager_losses @_eager_losses.setter def _eager_losses(self, losses): self._thread_local._eager_losses = losses def _dedup_weights(self, weights): """Dedupe weights while maintaining order as much as possible.""" output, seen_weights = [], object_identity.ObjectIdentitySet() for w in weights: if w not in seen_weights: output.append(w) # Track the Variable's identity to avoid __eq__ issues. seen_weights.add(w) return output # SavedModel properties. Please see keras/saving/saved_model for details. def __getstate__(self): # Override to support `copy.deepcopy` and pickling. # Thread-local objects cannot be copied in Python 3, so pop these. # Thread-local objects are used to cache losses in MirroredStrategy, and # so shouldn't be copied. state = self.__dict__.copy() state.pop('_thread_local', None) state.pop('_metrics_lock', None) return state def __setstate__(self, state): state['_thread_local'] = threading.local() state['_metrics_lock'] = threading.Lock() # Bypass Trackable logic as `__dict__` already contains this info. object.__setattr__(self, '__dict__', state) class TensorFlowOpLayer(LegacyBaseLayer): """Wraps a TensorFlow Operation in a Layer. This class is used internally by the Functional API. When a user uses a raw TensorFlow Operation on symbolic tensors originating from an `Input` Layer, the resultant operation will be wrapped with this Layer object in order to make the operation compatible with the Keras API. This Layer will create a new, identical operation (except for inputs and outputs) every time it is called. If `run_eagerly` is `True`, the op creation and calculation will happen inside an Eager function. Instances of this Layer are created when `autolambda` is called, which is whenever a Layer's `__call__` encounters symbolic inputs that do not have Keras metadata, or when a Network's `__init__` encounters outputs that do not have Keras metadata. Attributes: node_def: String, the serialized NodeDef of the Op this layer will wrap. name: String, the name of the Layer. constants: Dict of NumPy arrays, the values of any Tensors needed for this Operation that do not originate from a Keras `Input` Layer. Since all placeholders must come from Keras `Input` Layers, these Tensors must be treated as constant in the Functional API. trainable: Bool, whether this Layer is trainable. Currently Variables are not supported, and so this parameter has no effect. dtype: The default dtype of this Layer. Inherited from `Layer` and has no effect on this class, however is used in `get_config`. """ @trackable.no_automatic_dependency_tracking def __init__(self, node_def, name, constants=None, trainable=True, dtype=None): # Pass autocast=False, as if inputs are cast, input types might not match # Operation type. super(TensorFlowOpLayer, self).__init__( name=_TF_OP_LAYER_NAME_PREFIX + name, trainable=trainable, dtype=dtype, autocast=False) if isinstance(node_def, dict): self.node_def = json_format.ParseDict(node_def, node_def_pb2.NodeDef()) else: if not isinstance(node_def, bytes): node_def = node_def.encode('utf-8') self.node_def = node_def_pb2.NodeDef.FromString(node_def) # JSON serialization stringifies keys which are integer input indices. self.constants = ({ int(index): constant for index, constant in constants.items() } if constants is not None else {}) # Layer uses original op unless it is called on new inputs. # This means `built` is not set in `__call__`. self.built = True def call(self, inputs): if context.executing_eagerly(): return self._defun_call(inputs) return self._make_op(inputs) def _make_node_def(self, graph): node_def = node_def_pb2.NodeDef() node_def.CopyFrom(self.node_def) # Used in TPUReplicateContext to indicate whether this node has been cloned # and to not add TPU attributes. node_def.attr['_cloned'].b = True node_def.name = graph.unique_name(node_def.name) return node_def def _make_op(self, inputs): inputs = nest.flatten(inputs) graph = inputs[0].graph node_def = self._make_node_def(graph) with graph.as_default(): for index, constant in self.constants.items(): # Recreate constant in graph to add distribution context. value = tensor_util.constant_value(constant) if value is not None: constant = constant_op.constant(value, name=node_def.input[index]) inputs.insert(index, constant) c_op = ops._create_c_op(graph, node_def, inputs, control_inputs=[]) op = graph._create_op_from_tf_operation(c_op) op._control_flow_post_processing() # Record the gradient because custom-made ops don't go through the # code-gen'd eager call path op_type = compat.as_str(op.op_def.name) attr_names = [compat.as_str(attr.name) for attr in op.op_def.attr] attrs = [] for attr_name in attr_names: attrs.append(attr_name) attrs.append(op.get_attr(attr_name)) attrs = tuple(attrs) execute.record_gradient(op_type, op.inputs, attrs, op.outputs) if len(op.outputs) == 1: return op.outputs[0] return op.outputs @function.defun def _defun_call(self, inputs): """Wraps the op creation method in an Eager function for `run_eagerly`.""" return self._make_op(inputs) def get_config(self): config = super(TensorFlowOpLayer, self).get_config() config.update({ # `__init__` prefixes the name. Revert to the constructor argument. 'name': config['name'][len(_TF_OP_LAYER_NAME_PREFIX):], 'node_def': json_format.MessageToDict(self.node_def), 'constants': { i: backend.get_value(c) for i, c in self.constants.items() } }) return config class AddLoss(LegacyBaseLayer): """Adds its inputs as a loss. Attributes: unconditional: Whether or not the loss should be conditioned on the inputs. """ def __init__(self, unconditional, **kwargs): # Pass autocast=False, as there is no reason to cast loss to a different # dtype. kwargs['autocast'] = False super(AddLoss, self).__init__(**kwargs) self.unconditional = unconditional def call(self, inputs): self.add_loss(inputs, inputs=(not self.unconditional)) return inputs def get_config(self): config = super(AddLoss, self).get_config() config.update({'unconditional': self.unconditional}) return config class AddMetric(LegacyBaseLayer): """Adds its inputs as a metric. Attributes: aggregation: 'mean' or None. How the inputs should be aggregated. metric_name: The name to use for this metric. """ def __init__(self, aggregation=None, metric_name=None, **kwargs): super(AddMetric, self).__init__(**kwargs) self.aggregation = aggregation self.metric_name = metric_name def call(self, inputs): self.add_metric(inputs, self.aggregation, self.metric_name) return inputs def get_config(self): config = super(AddMetric, self).get_config() config.update({ 'aggregation': self.aggregation, 'metric_name': self.metric_name }) return config class KerasHistory( collections.namedtuple('KerasHistory', ['layer', 'node_index', 'tensor_index'])): """Tracks the Layer call that created a Tensor, for Keras Graph Networks. During construction of Keras Graph Networks, this metadata is added to each Tensor produced as the output of a Layer, starting with an `InputLayer`. This allows Keras to track how each Tensor was produced, and this information is later retraced by the `keras.engine.Network` class to reconstruct the Keras Graph Network. Attributes: layer: The Layer that produced the Tensor. node_index: The specific call to the Layer that produced this Tensor. Layers can be called multiple times in order to share weights. A new node is created every time a Layer is called. tensor_index: The output index for this Tensor. Always zero if the Layer that produced this Tensor only has one output. Nested structures of Tensors are deterministically assigned an index via `nest.flatten`. """ # Added to maintain memory and performance characteristics of `namedtuple` # while subclassing. __slots__ = ()
39.74219
115
0.679433
b2ea526e2e39ab0533c5f463ff094c54814cb304
5,613
py
Python
release/scripts/addons/io_scene_3ds/__init__.py
noorbeast/BlenderSource
65ebecc5108388965678b04b43463b85f6c69c1d
[ "Naumen", "Condor-1.1", "MS-PL" ]
2
2019-03-20T13:10:46.000Z
2019-05-15T20:00:31.000Z
engine/2.80/scripts/addons/io_scene_3ds/__init__.py
byteinc/Phasor
f7d23a489c2b4bcc3c1961ac955926484ff8b8d9
[ "Unlicense" ]
null
null
null
engine/2.80/scripts/addons/io_scene_3ds/__init__.py
byteinc/Phasor
f7d23a489c2b4bcc3c1961ac955926484ff8b8d9
[ "Unlicense" ]
null
null
null
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8-80 compliant> bl_info = { "name": "Autodesk 3DS format", "author": "Bob Holcomb, Campbell Barton", "version": (1, 0, 0), "blender": (2, 74, 0), "location": "File > Import-Export", "description": "Import-Export 3DS, meshes, uvs, materials, textures, " "cameras & lamps", "warning": "", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/Import-Export/Autodesk_3DS", "support": 'OFFICIAL', "category": "Import-Export"} if "bpy" in locals(): import importlib if "import_3ds" in locals(): importlib.reload(import_3ds) if "export_3ds" in locals(): importlib.reload(export_3ds) import bpy from bpy.props import ( BoolProperty, EnumProperty, FloatProperty, StringProperty, ) from bpy_extras.io_utils import ( ImportHelper, ExportHelper, orientation_helper, axis_conversion, ) @orientation_helper(axis_forward='Y', axis_up='Z') class Import3DS(bpy.types.Operator, ImportHelper): """Import from 3DS file format (.3ds)""" bl_idname = "import_scene.autodesk_3ds" bl_label = 'Import 3DS' bl_options = {'UNDO'} filename_ext = ".3ds" filter_glob: StringProperty(default="*.3ds", options={'HIDDEN'}) constrain_size: FloatProperty( name="Size Constraint", description="Scale the model by 10 until it reaches the " "size constraint (0 to disable)", min=0.0, max=1000.0, soft_min=0.0, soft_max=1000.0, default=10.0, ) use_image_search: BoolProperty( name="Image Search", description="Search subdirectories for any associated images " "(Warning, may be slow)", default=True, ) use_apply_transform: BoolProperty( name="Apply Transform", description="Workaround for object transformations " "importing incorrectly", default=True, ) def execute(self, context): from . import import_3ds keywords = self.as_keywords(ignore=("axis_forward", "axis_up", "filter_glob", )) global_matrix = axis_conversion(from_forward=self.axis_forward, from_up=self.axis_up, ).to_4x4() keywords["global_matrix"] = global_matrix return import_3ds.load(self, context, **keywords) @orientation_helper(axis_forward='Y', axis_up='Z') class Export3DS(bpy.types.Operator, ExportHelper): """Export to 3DS file format (.3ds)""" bl_idname = "export_scene.autodesk_3ds" bl_label = 'Export 3DS' filename_ext = ".3ds" filter_glob: StringProperty( default="*.3ds", options={'HIDDEN'}, ) use_selection: BoolProperty( name="Selection Only", description="Export selected objects only", default=False, ) def execute(self, context): from . import export_3ds keywords = self.as_keywords(ignore=("axis_forward", "axis_up", "filter_glob", "check_existing", )) global_matrix = axis_conversion(to_forward=self.axis_forward, to_up=self.axis_up, ).to_4x4() keywords["global_matrix"] = global_matrix return export_3ds.save(self, context, **keywords) # Add to a menu def menu_func_export(self, context): self.layout.operator(Export3DS.bl_idname, text="3D Studio (.3ds)") def menu_func_import(self, context): self.layout.operator(Import3DS.bl_idname, text="3D Studio (.3ds)") def register(): bpy.utils.register_module(__name__) bpy.types.TOPBAR_MT_file_import.append(menu_func_import) bpy.types.TOPBAR_MT_file_export.append(menu_func_export) def unregister(): bpy.utils.unregister_module(__name__) bpy.types.TOPBAR_MT_file_import.remove(menu_func_import) bpy.types.TOPBAR_MT_file_export.remove(menu_func_export) # NOTES: # why add 1 extra vertex? and remove it when done? - # "Answer - eekadoodle - would need to re-order UV's without this since face # order isnt always what we give blender, BMesh will solve :D" # # disabled scaling to size, this requires exposing bb (easy) and understanding # how it works (needs some time) if __name__ == "__main__": register()
32.824561
78
0.597363
4400d3348fb2784826efc89e17d2b7f7a21aef0d
8,080
py
Python
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/distanceNode.py
t-triobox/gQuant
6ee3ba104ce4c6f17a5755e7782298902d125563
[ "Apache-2.0" ]
null
null
null
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/distanceNode.py
t-triobox/gQuant
6ee3ba104ce4c6f17a5755e7782298902d125563
[ "Apache-2.0" ]
null
null
null
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/distanceNode.py
t-triobox/gQuant
6ee3ba104ce4c6f17a5755e7782298902d125563
[ "Apache-2.0" ]
null
null
null
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node from .kernels import compute_cov_distance import cupy import cudf class DistanceNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.INPUT_PORT_NAME = 'in' self.COV_DF = 'cov_df' self.MEAN_DF = 'mean_df' self.STD_DF = 'std_df' self.CORR_DF = 'corr_df' self.DISTANCE_DF = 'distance_df' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.MEAN_DF: { port_type: "${port:in}" }, self.STD_DF: { port_type: "${port:in}" }, self.COV_DF: { port_type: "${port:in}" }, self.CORR_DF: { port_type: "${port:in}" }, self.DISTANCE_DF: { port_type: "${port:in}" } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports sub_dict = { 'year': 'int16', 'month': 'int16', 'sample_id': 'int64', } required = { "date": "datetime64[ns]", } required.update(sub_dict) meta_inports[self.INPUT_PORT_NAME] = required json_cov = {} json_dis = {} json_mean = {} json_corr = {} json_std = {} input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: assets = len(input_meta[self.INPUT_PORT_NAME]) - 4 for i in range(assets*assets): json_cov[i] = 'float64' for i in range(assets): json_mean[i] = 'float64' json_std[i] = 'float64' for i in range(assets*(assets-1)//2): json_dis[i] = 'float64' json_corr[i] = 'float64' json_cov.update(sub_dict) json_dis.update(sub_dict) json_mean.update(sub_dict) json_std.update(sub_dict) json_corr.update(sub_dict) meta_outports[self.MEAN_DF] = json_mean meta_outports[self.STD_DF] = json_std meta_outports[self.COV_DF] = json_cov meta_outports[self.CORR_DF] = json_corr meta_outports[self.DISTANCE_DF] = json_dis self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Compute the Distance Matrix and Cov df", "type": "object", "properties": { "window": { 'type': "integer", "title": "Window size", "description": """the number of months used to compute the distance and vairance""" } }, "required": ["window"], } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) window = self.conf['window'] means, cov, distance, all_dates = compute_cov_distance(total_samples, df, window=window) total_samples, num_months, assets, assets = cov.shape months_id = all_dates.dt.year*12 + (all_dates.dt.month-1) months_id = months_id - months_id.min() mid = (cupy.arange(months_id.max() + 1) + (all_dates.dt.month - 1)[0])[window:] minyear = all_dates.dt.year.min() if len(mid) == 0: mid = cupy.array([0]) months = mid % 12 years = mid // 12 + minyear output = {} # print(num_months, len(mid)) if self.outport_connected(self.MEAN_DF): df_mean = cudf.DataFrame( means.reshape(total_samples*num_months, -1)) df_mean['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_mean['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_mean['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.MEAN_DF: df_mean}) if self.outport_connected(self.STD_DF): data_ma = cov.reshape(total_samples*num_months, assets, assets) diagonzied = cupy.diagonal(data_ma, 0, 1, 2) # get var diagonzied = cupy.sqrt(diagonzied) # get std df_std = cudf.DataFrame(diagonzied) df_std['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_std['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_std['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.STD_DF: df_std}) if self.outport_connected(self.COV_DF): df_cov = cudf.DataFrame(cov.reshape(total_samples*num_months, -1)) df_cov['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_cov['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_cov['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.COV_DF: df_cov}) if self.outport_connected(self.CORR_DF): dis_ma = distance.reshape(total_samples*num_months, -1) dis_ma = 1 - 2.0 * dis_ma df_corr = cudf.DataFrame(dis_ma) df_corr['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_corr['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_corr['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.CORR_DF: df_corr}) if self.outport_connected(self.DISTANCE_DF): df_dis = cudf.DataFrame(distance.reshape(total_samples*num_months, -1)) df_dis['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_dis['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_dis['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.DISTANCE_DF: df_dis}) return output
39.223301
78
0.541337
09c357f445613cc7901f50edb7a22d6b13b263f1
2,694
py
Python
tests/test_aws.py
procore/patroni
70bae1b267db4cf76d3ade299a3bef6741ec2b89
[ "MIT" ]
null
null
null
tests/test_aws.py
procore/patroni
70bae1b267db4cf76d3ade299a3bef6741ec2b89
[ "MIT" ]
null
null
null
tests/test_aws.py
procore/patroni
70bae1b267db4cf76d3ade299a3bef6741ec2b89
[ "MIT" ]
null
null
null
import unittest import requests import boto.ec2 from collections import namedtuple from patroni.scripts.aws import AWSConnection from requests.exceptions import RequestException class MockEc2Connection: def __init__(self, error=False): self.error = error def get_all_volumes(self, filters): if self.error: raise Exception("get_all_volumes") oid = namedtuple('Volume', 'id') return [oid(id='a'), oid(id='b')] def create_tags(self, objects, tags): if self.error or len(objects) == 0: raise Exception("create_tags") return True class MockResponse: def __init__(self, content): self.content = content self.ok = True def json(self): return self.content class TestAWSConnection(unittest.TestCase): def __init__(self, method_name='runTest'): super(TestAWSConnection, self).__init__(method_name) def set_error(self): self.error = True def set_json_error(self): self.json_error = True def boto_ec2_connect_to_region(self, region): return MockEc2Connection(self.error) def requests_get(self, url, **kwargs): if self.error: raise RequestException("foo") result = namedtuple('Request', 'ok content') result.ok = True if url.split('/')[-1] == 'document' and not self.json_error: result = {"instanceId": "012345", "region": "eu-west-1"} else: result = 'foo' return MockResponse(result) def setUp(self): self.error = False self.json_error = False requests.get = self.requests_get boto.ec2.connect_to_region = self.boto_ec2_connect_to_region self.conn = AWSConnection('test') def test_aws_available(self): self.assertTrue(self.conn.aws_available()) def test_on_role_change(self): self.assertTrue(self.conn._tag_ebs('master')) self.assertTrue(self.conn._tag_ec2('master')) self.assertTrue(self.conn.on_role_change('master')) def test_non_aws(self): self.set_error() conn = AWSConnection('test') self.assertFalse(conn.aws_available()) self.assertFalse(conn._tag_ebs('master')) self.assertFalse(conn._tag_ec2('master')) def test_aws_bizare_response(self): self.set_json_error() conn = AWSConnection('test') self.assertFalse(conn.aws_available()) def test_aws_tag_ebs_error(self): self.set_error() self.assertFalse(self.conn._tag_ebs("master")) def test_aws_tag_ec2_error(self): self.set_error() self.assertFalse(self.conn._tag_ec2("master"))
28.357895
68
0.646993
23463df23fe604082778cc1f1d2d07bde5e8c012
992
py
Python
acshaproxy/registry/events.py
cncolder/acs-haproxy-src
11631299110aef4db4929d29442c8a5744b3be41
[ "Apache-2.0" ]
null
null
null
acshaproxy/registry/events.py
cncolder/acs-haproxy-src
11631299110aef4db4929d29442c8a5744b3be41
[ "Apache-2.0" ]
null
null
null
acshaproxy/registry/events.py
cncolder/acs-haproxy-src
11631299110aef4db4929d29442c8a5744b3be41
[ "Apache-2.0" ]
null
null
null
import etcd_info import logging import sys logger = logging.getLogger("haproxy") class Events(object): def __init__(self): self.message_handler = None def on_message(self, handler): self.message_handler = handler def run_forever(self, *args, **kwargs): etcd_client = etcd_info.get_etcd_client() wait_index = 0 while True: logger.info("watch with index: %s" % wait_index) result, wait_index = etcd_info.watch_prefix(etcd_client, etcd_info.get_services_base_uri(), wait_index) logger.info("got result") if result is not None: # read the info try: services_info_reg, _ = etcd_info.get_services_info(etcd_client) except Exception: logger.warn("Unexpected error: %s" % sys.exc_info()[0]) else: # find the etcd action and log it self.message_handler(services_info_reg)
33.066667
115
0.604839
4f50d8638289f72d2945505f1ea94028a24506f3
3,308
py
Python
tests/test_parsing.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
1
2018-11-25T03:10:22.000Z
2018-11-25T03:10:22.000Z
tests/test_parsing.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
null
null
null
tests/test_parsing.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
1
2020-07-24T17:37:18.000Z
2020-07-24T17:37:18.000Z
import pendulum from .conftest import assert_datetime, assert_date, assert_time, assert_duration def test_parse(): text = "2016-10-16T12:34:56.123456+01:30" dt = pendulum.parse(text) assert isinstance(dt, pendulum.DateTime) assert_datetime(dt, 2016, 10, 16, 12, 34, 56, 123456) assert "+01:30" == dt.tz.name assert 5400 == dt.offset text = "2016-10-16" dt = pendulum.parse(text) assert isinstance(dt, pendulum.DateTime) assert_datetime(dt, 2016, 10, 16, 0, 0, 0, 0) assert 0 == dt.offset with pendulum.test(pendulum.datetime(2015, 11, 12)): text = "12:34:56.123456" dt = pendulum.parse(text) assert isinstance(dt, pendulum.DateTime) assert_datetime(dt, 2015, 11, 12, 12, 34, 56, 123456) assert 0 == dt.offset def test_parse_with_timezone(): text = "2016-10-16T12:34:56.123456" dt = pendulum.parse(text, tz="Europe/Paris") assert_datetime(dt, 2016, 10, 16, 12, 34, 56, 123456) assert "Europe/Paris" == dt.tz.name assert 7200 == dt.offset def test_parse_exact(): text = "2016-10-16T12:34:56.123456+01:30" dt = pendulum.parse(text, exact=True) assert isinstance(dt, pendulum.DateTime) assert_datetime(dt, 2016, 10, 16, 12, 34, 56, 123456) assert 5400 == dt.offset text = "2016-10-16" dt = pendulum.parse(text, exact=True) assert isinstance(dt, pendulum.Date) assert_date(dt, 2016, 10, 16) text = "12:34:56.123456" dt = pendulum.parse(text, exact=True) assert isinstance(dt, pendulum.Time) assert_time(dt, 12, 34, 56, 123456) text = "13:00" dt = pendulum.parse(text, exact=True) assert isinstance(dt, pendulum.Time) assert_time(dt, 13, 0, 0) def test_parse_duration(): text = "P2Y3M4DT5H6M7S" duration = pendulum.parse(text) assert isinstance(duration, pendulum.Duration) assert_duration(duration, 2, 3, 0, 4, 5, 6, 7) text = "P2W" duration = pendulum.parse(text) assert isinstance(duration, pendulum.Duration) assert_duration(duration, 0, 0, 2, 0, 0, 0, 0) def test_parse_interval(): text = "2008-05-11T15:30:00Z/P1Y2M10DT2H30M" period = pendulum.parse(text) assert isinstance(period, pendulum.Period) assert_datetime(period.start, 2008, 5, 11, 15, 30, 0, 0) assert period.start.offset == 0 assert_datetime(period.end, 2009, 7, 21, 18, 0, 0, 0) assert period.end.offset == 0 text = "P1Y2M10DT2H30M/2008-05-11T15:30:00Z" period = pendulum.parse(text) assert isinstance(period, pendulum.Period) assert_datetime(period.start, 2007, 3, 1, 13, 0, 0, 0) assert period.start.offset == 0 assert_datetime(period.end, 2008, 5, 11, 15, 30, 0, 0) assert period.end.offset == 0 text = "2007-03-01T13:00:00Z/2008-05-11T15:30:00Z" period = pendulum.parse(text) assert isinstance(period, pendulum.Period) assert_datetime(period.start, 2007, 3, 1, 13, 0, 0, 0) assert period.start.offset == 0 assert_datetime(period.end, 2008, 5, 11, 15, 30, 0, 0) assert period.end.offset == 0 def test_parse_now(): dt = pendulum.parse("now") assert dt.timezone_name == "America/Toronto" mock_now = pendulum.yesterday() with pendulum.test(mock_now): assert pendulum.parse("now") == mock_now
25.251908
80
0.657195
89edce94017f16c10255d0376d77c40812c9b29d
2,258
py
Python
micro_ros_diagnostic_bridge/launch/diagnostic_bridge.launch.py
Kannut/micro_ros_diagnostics
d57343e8d6a937eb4ba597f0d3872a1fd0037bb7
[ "Apache-2.0" ]
null
null
null
micro_ros_diagnostic_bridge/launch/diagnostic_bridge.launch.py
Kannut/micro_ros_diagnostics
d57343e8d6a937eb4ba597f0d3872a1fd0037bb7
[ "Apache-2.0" ]
null
null
null
micro_ros_diagnostic_bridge/launch/diagnostic_bridge.launch.py
Kannut/micro_ros_diagnostics
d57343e8d6a937eb4ba597f0d3872a1fd0037bb7
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository https://github.com/micro-ROS/system_modes. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import launch import launch.actions from launch.substitutions import LaunchConfiguration import launch_ros.actions logger = launch.substitutions.LaunchConfiguration('log_level') def generate_launch_description(): return launch.LaunchDescription([ launch.actions.DeclareLaunchArgument( 'lookup_table', description='Path to lookup table'), launch.actions.DeclareLaunchArgument( 'log_level', default_value=['info'], description='Logging level'), launch.actions.DeclareLaunchArgument( 'input_topic', default_value=['diagnostics_uros'], description='Remap for input topic'), launch.actions.DeclareLaunchArgument( 'output_topic', default_value=['diagnostics'], description='Remap for output topic'), launch.actions.DeclareLaunchArgument( 'namespace', default_value=[''], description='Namespace'), launch_ros.actions.Node( package='micro_ros_diagnostic_bridge', executable='diagnostic_bridge', namespace=LaunchConfiguration('namespace'), parameters=[{'lookup_table': LaunchConfiguration('lookup_table')}], remappings=[ ('diagnostics_uros', LaunchConfiguration('input_topic')), ('diagnostics', LaunchConfiguration('output_topic')) ], output='screen', arguments=['--ros-args', '--log-level', logger]) ])
38.931034
86
0.665633
6f2db62368d53484c84a67d93065296c22ed1ef6
1,055
py
Python
src/storages/memory.py
evestidor/svc-stock-manager
56cea7f49e735df565e4a90d31e210b74160a73e
[ "MIT" ]
null
null
null
src/storages/memory.py
evestidor/svc-stock-manager
56cea7f49e735df565e4a90d31e210b74160a73e
[ "MIT" ]
9
2019-12-04T23:17:07.000Z
2022-02-10T09:44:02.000Z
src/storages/memory.py
evestidor/svc-stock-manager
56cea7f49e735df565e4a90d31e210b74160a73e
[ "MIT" ]
null
null
null
from typing import List from src.domain import Stock from src.exceptions import ( StockAlreadyExists, StockDoesNotExist, ) from src.interfaces import StockStorage class StockMemoryStorage(StockStorage): AlreadyExists = StockAlreadyExists DoesNotExist = StockDoesNotExist def __init__(self): self._db = {} def add(self, stock: Stock) -> Stock: stock = self._clone_stock(stock) if self._does_stock_exist(stock): raise self.AlreadyExists self._db[stock.symbol] = stock return stock def list(self) -> List[Stock]: return list(self._db.values()) def update_price(self, stock: Stock) -> Stock: try: self._db[stock.symbol].price = stock.price except KeyError as e: raise self.DoesNotExist from e return self._db[stock.symbol] def _clone_stock(self, stock: Stock) -> Stock: return Stock(**stock.__dict__) def _does_stock_exist(self, stock: Stock) -> bool: return stock.symbol in self._db
25.119048
54
0.654976
922834be1b3b25e3b0c48b078ab247cfea39ef28
422
py
Python
tests/protected/A.py
LLNL/PYB11Generator
ca4714eabf4591dc9bc49327aa20e159d8ea4b94
[ "BSD-3-Clause" ]
7
2020-10-12T21:31:12.000Z
2022-01-05T16:56:20.000Z
tests/protected/A.py
LLNL/PYB11Generator
ca4714eabf4591dc9bc49327aa20e159d8ea4b94
[ "BSD-3-Clause" ]
1
2019-06-30T05:19:07.000Z
2019-06-30T05:19:07.000Z
tests/protected/A.py
jmikeowen/PYB11Generator
ca4714eabf4591dc9bc49327aa20e159d8ea4b94
[ "BSD-3-Clause" ]
1
2021-08-03T01:26:04.000Z
2021-08-03T01:26:04.000Z
from PYB11Generator import * @PYB11template("T1", "T2") class A: def pyinit(self): "A default constructor" return @PYB11pure_virtual @PYB11protected def func(self, val1 = "const %(T1)s", val2 = "const %(T2)s"): return "void" x = PYB11readwrite() y = PYB11readwrite() A_int_double = PYB11TemplateClass(A, template_parameters=("int", "double"))
20.095238
75
0.592417
6a3678abdbe3fbf5bc7c1433d0cde86974cf32e7
2,683
py
Python
3rdparty/pytorch/caffe2/python/operator_test/index_hash_ops_test.py
WoodoLee/TorchCraft
999f68aab9e7d50ed3ae138297226dc95fefc458
[ "MIT" ]
15
2019-08-10T02:36:38.000Z
2021-07-14T13:45:32.000Z
3rdparty/pytorch/caffe2/python/operator_test/index_hash_ops_test.py
WoodoLee/TorchCraft
999f68aab9e7d50ed3ae138297226dc95fefc458
[ "MIT" ]
7
2019-10-21T03:08:51.000Z
2022-03-11T23:54:28.000Z
pytorch/caffe2/python/operator_test/index_hash_ops_test.py
raghavnauhria/whatmt
c20483a437c82936cb0fb8080925e37b9c4bba87
[ "MIT" ]
6
2020-10-16T13:28:31.000Z
2021-08-25T12:08:34.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, workspace from hypothesis import given import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestIndexHashOps(serial.SerializedTestCase): @serial.given( indices=st.sampled_from([ np.int32, np.int64 ]).flatmap(lambda dtype: hu.tensor(min_dim=1, max_dim=1, dtype=dtype)), seed=st.integers(min_value=0, max_value=10), modulo=st.integers(min_value=100000, max_value=200000), **hu.gcs_cpu_only ) def test_index_hash_ops(self, indices, seed, modulo, gc, dc): op = core.CreateOperator("IndexHash", ["indices"], ["hashed_indices"], seed=seed, modulo=modulo) def index_hash(indices): dtype = np.array(indices).dtype assert dtype == np.int32 or dtype == np.int64 hashed_indices = [] for index in indices: hashed = dtype.type(0xDEADBEEF * seed) indices_bytes = np.array([index], dtype).view(np.int8) for b in indices_bytes: hashed = dtype.type(hashed * 65537 + b) hashed = (modulo + hashed % modulo) % modulo hashed_indices.append(hashed) return [hashed_indices] self.assertDeviceChecks(dc, op, [indices], [0]) self.assertReferenceChecks(gc, op, [indices], index_hash) def test_shape_and_type_inference(self): with hu.temp_workspace("shape_type_inf_int64"): net = core.Net('test_net') net.ConstantFill( [], "values", shape=[64], dtype=core.DataType.INT64, ) net.IndexHash(['values'], ['values_output']) (shapes, types) = workspace.InferShapesAndTypes([net], {}) self.assertEqual(shapes["values_output"], [64]) self.assertEqual(types["values_output"], core.DataType.INT64) with hu.temp_workspace("shape_type_inf_int32"): net = core.Net('test_net') net.ConstantFill( [], "values", shape=[2, 32], dtype=core.DataType.INT32, ) net.IndexHash(['values'], ['values_output']) (shapes, types) = workspace.InferShapesAndTypes([net], {}) self.assertEqual(shapes["values_output"], [2, 32]) self.assertEqual(types["values_output"], core.DataType.INT32)
40.651515
79
0.613492
8a0d2f1017f244421162550f476db5d9a4274ed7
23,813
py
Python
src/pruning_layers/layers.py
ivclab/PackExpander
81b8e832018f60fc678883f3025c39cb1d289e27
[ "MIT" ]
25
2019-03-28T09:02:44.000Z
2022-02-11T15:30:50.000Z
src/pruning_layers/layers.py
ivclab/PackExpander
81b8e832018f60fc678883f3025c39cb1d289e27
[ "MIT" ]
2
2020-10-29T06:16:16.000Z
2021-01-04T02:23:04.000Z
src/pruning_layers/layers.py
ivclab/PackExpander
81b8e832018f60fc678883f3025c39cb1d289e27
[ "MIT" ]
7
2020-03-26T05:39:30.000Z
2021-07-30T09:12:42.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tensorflow layers with added variables for parameter masking. Branched from tensorflow/contrib/layers/python/layers/layers.py """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import utils import sys, os sys.path.append(os.path.dirname(__file__)) # from core_layers import MaskedConv2D, MaskedSeparableConv2D, MaskedFullyConnected from core_layers import MaskedConv2D, MaskedSeparableConv2D, MaskedFullyConnected from tensorflow.python.framework import ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as tf_variables import tensorflow as tf from tensorflow.python.layers import core as core_layers def _model_variable_getter(getter, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, rename=None, use_resource=None, **_): """Getter that uses model_variable for compatibility with core layers.""" short_name = name.split('/')[-1] if rename and short_name in rename: name_components = name.split('/') name_components[-1] = rename[short_name] name = '/'.join(name_components) return variables.model_variable( name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, collections=collections, trainable=trainable, caching_device=caching_device, partitioner=partitioner, custom_getter=getter, use_resource=use_resource) def _build_variable_getter(rename=None): """Build a model variable getter that respects scope getter and renames.""" # VariableScope will nest the getters def layer_variable_getter(getter, *args, **kwargs): kwargs['rename'] = rename return _model_variable_getter(getter, *args, **kwargs) return layer_variable_getter def _add_variable_to_collections(variable, collections_set, collections_name): """Adds variable (or all its parts) to all collections with that name.""" collections = utils.get_variable_collections(collections_set, collections_name) or [] variables_list = [variable] if isinstance(variable, tf_variables.PartitionedVariable): variables_list = [v for v in variable] for collection in collections: for var in variables_list: if var not in ops.get_collection(collection): ops.add_to_collection(collection, var) @add_arg_scope def masked_convolution(inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=None, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None, task_id=1): """Adds an 2D convolution followed by an optional batch_norm layer. The layer creates a mask variable on top of the weight variable. The input to the convolution operation is the elementwise multiplication of the mask variable and the weigh It is required that 1 <= N <= 3. `convolution` creates a variable called `weights`, representing the convolutional kernel, that is convolved (actually cross-correlated) with the `inputs` to produce a `Tensor` of activations. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the activations. Finally, if `activation_fn` is not `None`, it is applied to the activations as well. Performs atrous convolution with input stride/dilation rate equal to `rate` if a value > 1 for any dimension of `rate` is specified. In this case `stride` values != 1 are not supported. Args: inputs: A Tensor of rank N+2 of shape `[batch_size] + input_spatial_shape + [in_channels]` if data_format does not start with "NC" (default), or `[batch_size, in_channels] + input_spatial_shape` if data_format starts with "NC". num_outputs: Integer, the number of output filters. kernel_size: A sequence of N positive integers specifying the spatial dimensions of of the filters. Can be a single integer to specify the same value for all spatial dimensions. stride: A sequence of N positive integers specifying the stride at which to compute output. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `rate` value != 1. padding: One of `"VALID"` or `"SAME"`. data_format: A string or None. Specifies whether the channel dimension of the `input` and output is the last dimension (default, or if `data_format` does not start with "NC"), or the second dimension (if `data_format` starts with "NC"). For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW". For N=3, the valid values are "NDHWC" (default) and "NCDHW". rate: A sequence of N positive integers specifying the dilation rate to use for atrous convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `rate` value != 1 is incompatible with specifying any `stride` value != 1. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for `variable_scope`. Returns: A tensor representing the output of the operation. Raises: ValueError: If `data_format` is invalid. ValueError: Both 'rate' and `stride` are not uniformly 1. """ if data_format not in [None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW']: raise ValueError('Invalid data_format: %r' % (data_format,)) layer_variable_getter = _build_variable_getter({ 'bias': 'biases', 'kernel': 'weights' }) with variable_scope.variable_scope(scope, 'Conv', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) input_rank = inputs.get_shape().ndims if input_rank == 3: raise ValueError('Sparse Convolution not supported for input with rank', input_rank) elif input_rank == 4: layer_class = MaskedConv2D elif input_rank == 5: raise ValueError('Sparse Convolution not supported for input with rank', input_rank) else: raise ValueError('Sparse Convolution not supported for input with rank', input_rank) if data_format is None or data_format == 'NHWC': df = 'channels_last' elif data_format == 'NCHW': df = 'channels_first' else: raise ValueError('Unsupported data format', data_format) layer = layer_class( filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, dilation_rate=rate, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, task_id=task_id, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.use_bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} with tf.variable_scope('task_{}'.format(task_id)): # Because there are multi-task problems outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def masked_separable_convolution2d( inputs, num_outputs, kernel_size, depth_multiplier, stride=1, padding='SAME', data_format=None, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None, task_id=1): if data_format not in [None, 'NHWC', 'NCHW']: raise ValueError('Invalid data_format: %r' % (data_format,)) layer_variable_getter = _build_variable_getter({ 'bias': 'biases', 'depthwise_kernel': 'depthwise_weights', 'pointwise_kernel': 'pointwise_weights' }) with variable_scope.variable_scope( scope, 'SeparableConv2d', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) if data_format is None or data_format == 'NHWC': df = 'channels_last' elif data_format == 'NCHW': df = 'channels_first' else: raise ValueError('Unsupported data format', data_format) if num_outputs is not None: layer = MaskedSeparableConv2D( filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, dilation_rate=utils.two_element_tuple(rate), activation=None, depth_multiplier=depth_multiplier, use_bias=not normalizer_fn and biases_initializer, depthwise_initializer=weights_initializer, pointwise_initializer=weights_initializer, depthwise_regularizer=weights_regularizer, pointwise_regularizer=weights_regularizer, bias_initializer=biases_initializer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, task_id=task_id, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. # Add variables to collections. _add_variable_to_collections(layer.depthwise_kernel, variables_collections, 'weights') _add_variable_to_collections(layer.pointwise_kernel, variables_collections, 'weights') if layer.use_bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} with tf.variable_scope('task_{}'.format(task_id)): # Because there are multi-task problems outputs = normalizer_fn(outputs, **normalizer_params) else: raise ValueError('Num Outputs is None, Need to apply depthwise conv2d') if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) masked_conv2d = masked_convolution masked_separable_conv2d = masked_separable_convolution2d @add_arg_scope def masked_fully_connected( inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None, task_id=1): """Adds a sparse fully connected layer. The weight matrix is masked. `fully_connected` creates a variable called `weights`, representing a fully connected weight matrix, which is multiplied by the `inputs` to produce a `Tensor` of hidden units. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the hidden units. Finally, if `activation_fn` is not `None`, it is applied to the hidden units as well. Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened prior to the initial matrix multiply by `weights`. Args: inputs: A tensor of at least rank 2 and static value for the last dimension; i.e. `[batch_size, depth]`, `[None, None, None, channels]`. num_outputs: Integer or long, the number of output units in the layer. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collections per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: The tensor variable representing the result of the series of operations. Raises: ValueError: If x has rank less than 2 or if its last dimension is not set. """ if not isinstance(num_outputs, six.integer_types): raise ValueError('num_outputs should be int or long, got %s.' % (num_outputs,)) layer_variable_getter = _build_variable_getter({ 'bias': 'biases', 'kernel': 'weights' }) with variable_scope.variable_scope( scope, 'FC', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) layer = MaskedFullyConnected( units=num_outputs, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, task_id=task_id, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.bias is not None: _add_variable_to_collections(layer.bias, variables_collections, 'biases') # Apply normalizer function / layer. if normalizer_fn is not None: if not normalizer_params: normalizer_params = {} with tf.variable_scope('task_{}'.format(task_id)): # Because there are multi-task problems outputs = normalizer_fn(outputs, **normalizer_params) # outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def customized_slim_fully_connected( inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None, task_id=1): """Adds a sparse fully connected layer. The weight matrix is masked. `fully_connected` creates a variable called `weights`, representing a fully connected weight matrix, which is multiplied by the `inputs` to produce a `Tensor` of hidden units. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the hidden units. Finally, if `activation_fn` is not `None`, it is applied to the hidden units as well. Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened prior to the initial matrix multiply by `weights`. Args: inputs: A tensor of at least rank 2 and static value for the last dimension; i.e. `[batch_size, depth]`, `[None, None, None, channels]`. num_outputs: Integer or long, the number of output units in the layer. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collections per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: The tensor variable representing the result of the series of operations. Raises: ValueError: If x has rank less than 2 or if its last dimension is not set. """ if not isinstance(num_outputs, six.integer_types): raise ValueError('num_outputs should be int or long, got %s.' % (num_outputs,)) layer_variable_getter = _build_variable_getter({ 'bias': 'biases', 'kernel': 'weights' }) with variable_scope.variable_scope( scope, 'FC', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) layer = core_layers.Dense( units=num_outputs, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.bias is not None: _add_variable_to_collections(layer.bias, variables_collections, 'biases') # Apply normalizer function / layer. if normalizer_fn is not None: if not normalizer_params: normalizer_params = {} with tf.variable_scope('task_{}'.format(task_id)): # Because there are multi-task problems outputs = normalizer_fn(outputs, **normalizer_params) # outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs)
40.705983
98
0.693571
5ab135d7a54e1f290b344fb5f89ff7ffe33a4fa4
2,410
py
Python
src/db-up/azext_db_up/vendored_sdks/azure_mgmt_rdbms/postgresql/models/server_properties_for_create.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/db-up/azext_db_up/vendored_sdks/azure_mgmt_rdbms/postgresql/models/server_properties_for_create.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/db-up/azext_db_up/vendored_sdks/azure_mgmt_rdbms/postgresql/models/server_properties_for_create.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ServerPropertiesForCreate(Model): """The properties used to create a new server. You probably want to use the sub-classes and not this class directly. Known sub-classes are: ServerPropertiesForDefaultCreate, ServerPropertiesForRestore, ServerPropertiesForGeoRestore All required parameters must be populated in order to send to Azure. :param version: Server version. Possible values include: '9.5', '9.6', '10', '10.0', '10.2' :type version: str or ~azure.mgmt.rdbms.postgresql.models.ServerVersion :param ssl_enforcement: Enable ssl enforcement or not when connect to server. Possible values include: 'Enabled', 'Disabled' :type ssl_enforcement: str or ~azure.mgmt.rdbms.postgresql.models.SslEnforcementEnum :param storage_profile: Storage profile of a server. :type storage_profile: ~azure.mgmt.rdbms.postgresql.models.StorageProfile :param create_mode: Required. Constant filled by server. :type create_mode: str """ _validation = { 'create_mode': {'required': True}, } _attribute_map = { 'version': {'key': 'version', 'type': 'str'}, 'ssl_enforcement': {'key': 'sslEnforcement', 'type': 'SslEnforcementEnum'}, 'storage_profile': {'key': 'storageProfile', 'type': 'StorageProfile'}, 'create_mode': {'key': 'createMode', 'type': 'str'}, } _subtype_map = { 'create_mode': {'Default': 'ServerPropertiesForDefaultCreate', 'PointInTimeRestore': 'ServerPropertiesForRestore', 'GeoRestore': 'ServerPropertiesForGeoRestore'} } def __init__(self, **kwargs): super(ServerPropertiesForCreate, self).__init__(**kwargs) self.version = kwargs.get('version', None) self.ssl_enforcement = kwargs.get('ssl_enforcement', None) self.storage_profile = kwargs.get('storage_profile', None) self.create_mode = None
41.551724
169
0.660166
0466350039a51495a96dad604cc3828f2127b41f
152
py
Python
feeder/api/models/__init__.py
jordan-hamilton/petnet-feeder-service
66c3192b0e66f4eefb5fd55cceb1219fa1ddb914
[ "MIT" ]
47
2020-04-23T20:28:27.000Z
2020-10-07T19:49:10.000Z
feeder/api/models/__init__.py
jordan-hamilton/petnet-feeder-service
66c3192b0e66f4eefb5fd55cceb1219fa1ddb914
[ "MIT" ]
101
2021-01-23T05:23:33.000Z
2022-03-28T13:38:13.000Z
feeder/api/models/__init__.py
ericchapman80/petnet-api-hacking
23cff84317d7380d7d1c0a2718cc153e83920906
[ "MIT" ]
9
2020-04-25T17:22:44.000Z
2020-10-07T04:36:56.000Z
from pydantic import BaseModel class BasePaginatedList(BaseModel): size: int = 0 page: int = 0 totalSize: int = 0 totalPages: int = 1
16.888889
35
0.664474
8661420fa46026edb9d594ae0fb58b437eae34d4
254
py
Python
python/12p1.py
dsumike/adventofcode
cd5e484fa162bada67625c3779580d77e87d1daa
[ "MIT" ]
null
null
null
python/12p1.py
dsumike/adventofcode
cd5e484fa162bada67625c3779580d77e87d1daa
[ "MIT" ]
null
null
null
python/12p1.py
dsumike/adventofcode
cd5e484fa162bada67625c3779580d77e87d1daa
[ "MIT" ]
null
null
null
#!/usr/bin/env python import re # Part 1 # ignore that this is JSON, look for all ints and add them together with open('../input/12.txt') as fileobj: json = fileobj.readline() total = sum([int(x) for x in re.findall(r'-?[0-9]+', json)]) print total
19.538462
67
0.669291
f3747ad21d103d033483025376c35ddb48b4a17b
8,228
py
Python
official/nlp/gpt/src/gpt.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/nlp/gpt/src/gpt.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/nlp/gpt/src/gpt.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GPT model""" import numpy as np import mindspore.nn as nn from mindspore.common.parameter import Parameter import mindspore.common.dtype as mstype from mindspore.common.initializer import TruncatedNormal, initializer from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.nn.transformer.layers import _LayerNorm from mindspore.nn.transformer.transformer import AttentionMask, TransformerEncoder class EmbeddingLookup(nn.Cell): """ The embedding lookup table for vocabulary Args: config(GPTConfig): the config of network Inputs: input_ids: the tokenized inputs with datatype int32 Returns: output: Tensor, the embedding vector for the input with shape (batch_size, seq_length, embedding_size) self.embedding_table: Tensor, the embedding table for the vocabulary """ def __init__(self, config): super(EmbeddingLookup, self).__init__() self.vocab_size = config.vocab_size self.embedding_size = config.embedding_size self.embedding_table = Parameter(initializer(TruncatedNormal(0.02), [self.vocab_size, self.embedding_size])) self.gather = P.Gather() self.shape = (-1, config.seq_length, config.embedding_size) def construct(self, input_ids): output = self.gather(self.embedding_table, input_ids, 0) return output, self.embedding_table class GPT_Model(nn.Cell): """ The backbone of GPT network Args: config(GPTConfig): the config of network Inputs: input_ids: the tokenized inputs with datatype int32 input_mask: the mask indicating whether each position is a valid input layer_past: the previous feature map Returns: output_state: Tensor, the output logit of backbone present_layer: Tensor, the current feature map embedding_table: Tensor, the embedding table for the vocabulary """ def __init__(self, config): super(GPT_Model, self).__init__() self.get_attention_mask = AttentionMask(seq_length=config.seq_length) self.word_embedding = EmbeddingLookup(config) self.position_embedding = nn.Embedding(config.seq_length, config.embedding_size, embedding_table=TruncatedNormal(0.02)) self.blocks = nn.CellList() self.encoder = TransformerEncoder(batch_size=config.batch_size, num_layers=config.num_layers, hidden_size=config.embedding_size, ffn_hidden_size=config.embedding_size * 4, seq_length=config.seq_length, num_heads=config.num_heads,) self.layernorm = _LayerNorm((config.embedding_size,)).to_float(config.compute_dtype) self.use_past = config.use_past self.past = tuple([None]*config.num_layers) self.num_layers = config.num_layers def construct(self, input_ids, input_mask, layer_past=None): """GPT model""" if not self.use_past: layer_past = self.past input_embedding, embedding_table = self.word_embedding(input_ids) batch_size, seq_length = F.shape(input_ids) input_position = F.tuple_to_array(F.make_range(seq_length)) input_position = P.Tile()(input_position, (batch_size, 1)) position_embedding = self.position_embedding(input_position) hidden_states = input_embedding + position_embedding hidden_states = P.Cast()(hidden_states, mstype.float16) attention_mask = self.get_attention_mask(input_mask) hidden_states, present_layer = self.encoder(hidden_states, attention_mask) output_state = self.layernorm(hidden_states) return output_state, present_layer, embedding_table class GPT_Head(nn.Cell): """ Head for GPT to get the logits of each token in the vocab Args: config(GPTConfig): the config of network Inputs: state: the output of the backbone embedding_table: the embedding table of the vocabulary Returns: logits: Tensor, the logits of the corresponding inputs """ def __init__(self, config): super(GPT_Head, self).__init__() self.matmul = P.MatMul(transpose_b=True) self.embedding_size = config.embedding_size self.log_softmax = P.LogSoftmax(axis=-1) self.dtype = config.compute_dtype self.cast = P.Cast() def construct(self, state, embedding_table): state = P.Reshape()(state, (-1, self.embedding_size)) logits = self.matmul(state, self.cast(embedding_table, self.dtype)) return logits class GPT(nn.Cell): """ The GPT network consisting of two parts the backbone and the head Args: config(GPTConfig): the config of network Inputs: input_ids: the tokenized inputs input_mask: the mask indicating whether each position is a valid input past: the previous feature map Returns: logits: Tensor: the logits of the corresponding inputs with shape (batch_size, seq_length, vocab_size) """ def __init__(self, config): super(GPT, self).__init__() self.backbone = GPT_Model(config) self.head = GPT_Head(config) def construct(self, input_ids, input_mask, past=None): output_states, _, embedding_table = self.backbone(input_ids, input_mask, past) logits = self.head(output_states, embedding_table) return logits class GPTWithLoss(nn.Cell): """ GPT training loss Args: network: backbone network of GPT2/3 loss: loss function, e.g., crossentropy eos_token: the end_of_sentence token Inputs: input_ids: the tokenized inputs past: the previous feature map Returns: output: Tensor, the loss of the network """ def __init__(self, network, loss, eos_token=50256): super(GPTWithLoss, self).__init__(auto_prefix=False) self.network = network self.loss = loss self.eos_token = eos_token def construct(self, input_ids, past=None): tokens = input_ids[:, :-1] input_mask = F.cast(F.not_equal(tokens, self.eos_token), mstype.float32) logits = self.network(tokens, input_mask, past) labels = input_ids[:, 1:] labels = P.Reshape()(labels, (-1,)) input_mask = P.Reshape()(input_mask, (-1,)) output = self.loss(logits, labels, input_mask) return output class EvalNet(nn.Cell): """ GPT evaluation net Args: backbone: backbone network of GPT2/3 generate: enable generate mode Inputs: input_ids: the tokenized inpus Returns: outputs: Tensor, corresponding output for different tasks """ def __init__(self, backbone, generate=False): super(EvalNet, self).__init__(auto_prefix=False) self.backbone = backbone self.argmax = P.Argmax() self.generate = generate self.cast = P.Cast() def construct(self, input_ids, input_mask): """evaluation net""" input_mask = self.cast(input_mask, mstype.float32) logits = self.backbone(input_ids, input_mask) outputs = None if self.generate: outputs = nn.LogSoftmax()(logits) outputs = F.tensor_pow(np.e, outputs) else: outputs = self.argmax(logits) return outputs
36.087719
116
0.658605
a4139b1a0de6890a85e78e3da3d7aaee35ed43ad
16,523
py
Python
code/python/FactSetEstimates/v2/fds/sdk/FactSetEstimates/model/rolling_detail_request.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
6
2022-02-07T16:34:18.000Z
2022-03-30T08:04:57.000Z
code/python/FactSetEstimates/v2/fds/sdk/FactSetEstimates/model/rolling_detail_request.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
2
2022-02-07T05:25:57.000Z
2022-03-07T14:18:04.000Z
code/python/FactSetEstimates/v2/fds/sdk/FactSetEstimates/model/rolling_detail_request.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
null
null
null
""" FactSet Estimates Gain access to 20+ years of comprehensive estimates and statistics of over 250+ estimated metrics, including financial statement items, product segments, geosegments, and industry metrics. FactSet's consensus estimates are aggregated from a wide base of over 800+ contributors and cover over 19,000 active companies across 90+ countries. Data returned can be accessed on the data frequencies based on quarterly, fiscal years, and calendar years. FactSet Estimates updates on a real time basis intraday (every 5 minutes). Updating times vary based on earning season vs. non-earning season but the goal is to have the data available to the client within a few hours that FactSet receives updated information. Often times updates times can be much faster as FactSet has always been known as one of the fastest estimate providers in the market. # noqa: E501 The version of the OpenAPI document: 2.3.0 Contact: api@factset.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.FactSetEstimates.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.FactSetEstimates.exceptions import ApiAttributeError def lazy_import(): from fds.sdk.FactSetEstimates.model.frequency import Frequency from fds.sdk.FactSetEstimates.model.ids import Ids from fds.sdk.FactSetEstimates.model.metrics import Metrics from fds.sdk.FactSetEstimates.model.periodicity_detail import PeriodicityDetail globals()['Frequency'] = Frequency globals()['Ids'] = Ids globals()['Metrics'] = Metrics globals()['PeriodicityDetail'] = PeriodicityDetail class RollingDetailRequest(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'ids': (Ids,), # noqa: E501 'metrics': (Metrics,), # noqa: E501 'start_date': (str,), # noqa: E501 'end_date': (str,), # noqa: E501 'frequency': (Frequency,), # noqa: E501 'include_all': (bool,), # noqa: E501 'relative_fiscal_start': (int,), # noqa: E501 'relative_fiscal_end': (int,), # noqa: E501 'periodicity': (PeriodicityDetail,), # noqa: E501 'currency': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'ids': 'ids', # noqa: E501 'metrics': 'metrics', # noqa: E501 'start_date': 'startDate', # noqa: E501 'end_date': 'endDate', # noqa: E501 'frequency': 'frequency', # noqa: E501 'include_all': 'includeAll', # noqa: E501 'relative_fiscal_start': 'relativeFiscalStart', # noqa: E501 'relative_fiscal_end': 'relativeFiscalEnd', # noqa: E501 'periodicity': 'periodicity', # noqa: E501 'currency': 'currency', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, ids, metrics, *args, **kwargs): # noqa: E501 """RollingDetailRequest - a model defined in OpenAPI Args: ids (Ids): metrics (Metrics): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) start_date (str): The start date requested for a given date range in **YYYY-MM-DD** format. If left blank, the API will default to previous close. Future dates (T+1) are not accepted in this #endpoint. . [optional] # noqa: E501 end_date (str): The end date requested for a given date range in **YYYY-MM-DD** format. If left blank, the API will default to previous close. Future dates (T+1) are not accepted in this endpoint. . [optional] # noqa: E501 frequency (Frequency): [optional] # noqa: E501 include_all (bool): Include All filter is used to identify included and excluded broker details from the consensus By default the service would return only the brokers included in the consensus- * **TRUE** = Returns all the brokers included and excluded in the consensus * **FALSE** = Returns only the broker details included in the consensus . [optional] if omitted the server will use the default value of False # noqa: E501 relative_fiscal_start (int): Relative fiscal period, expressed as an integer, used to filter results.. [optional] # noqa: E501 relative_fiscal_end (int): Relative fiscal period, expressed as an integer, used to filter results.. [optional] # noqa: E501 periodicity (PeriodicityDetail): [optional] # noqa: E501 currency (str): Currency code for adjusting the data. For a list of currency ISO codes, visit [Online Assistant Page #1470](https://oa.apps.factset.com/pages/1470).. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.ids = ids self.metrics = metrics for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, ids, metrics, *args, **kwargs): # noqa: E501 """RollingDetailRequest - a model defined in OpenAPI Args: ids (Ids): metrics (Metrics): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) start_date (str): The start date requested for a given date range in **YYYY-MM-DD** format. If left blank, the API will default to previous close. Future dates (T+1) are not accepted in this #endpoint. . [optional] # noqa: E501 end_date (str): The end date requested for a given date range in **YYYY-MM-DD** format. If left blank, the API will default to previous close. Future dates (T+1) are not accepted in this endpoint. . [optional] # noqa: E501 frequency (Frequency): [optional] # noqa: E501 include_all (bool): Include All filter is used to identify included and excluded broker details from the consensus By default the service would return only the brokers included in the consensus- * **TRUE** = Returns all the brokers included and excluded in the consensus * **FALSE** = Returns only the broker details included in the consensus . [optional] if omitted the server will use the default value of False # noqa: E501 relative_fiscal_start (int): Relative fiscal period, expressed as an integer, used to filter results.. [optional] # noqa: E501 relative_fiscal_end (int): Relative fiscal period, expressed as an integer, used to filter results.. [optional] # noqa: E501 periodicity (PeriodicityDetail): [optional] # noqa: E501 currency (str): Currency code for adjusting the data. For a list of currency ISO codes, visit [Online Assistant Page #1470](https://oa.apps.factset.com/pages/1470).. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.ids = ids self.metrics = metrics for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
52.789137
859
0.60794
1daadd23d0fdab21106af0d26bb81a3cdcd1ae26
3,308
py
Python
tests/parser/syntax/test_list.py
williamremor/vyper
4d33dc4140f7d0c339876afb6af7b417bd0ed8e0
[ "MIT" ]
1
2018-08-31T02:32:57.000Z
2018-08-31T02:32:57.000Z
tests/parser/syntax/test_list.py
williamremor/vyper
4d33dc4140f7d0c339876afb6af7b417bd0ed8e0
[ "MIT" ]
null
null
null
tests/parser/syntax/test_list.py
williamremor/vyper
4d33dc4140f7d0c339876afb6af7b417bd0ed8e0
[ "MIT" ]
null
null
null
import pytest from pytest import raises from vyper import compiler from vyper.exceptions import TypeMismatchException, StructureException fail_list = [ """ @public def foo(): x: num[3] = [1, 2, 3] x = 4 """, """ @public def foo(): x: num[3] = [1, 2, 3] x = [4, 5, 6, 7] """, """ @public def foo() -> num[2]: return [3, 5, 7] """, """ @public def foo() -> num[2]: return [3] """, """ y: num[3] @public def foo(x: num[3]): self.y = x[0] """, """ y: num[3] @public def foo(x: num[3]): self.y[0] = x """, """ y: num[4] @public def foo(x: num[3]): self.y = x """, """ bar: num[3] @public def foo(): self.bar = [1, 2, 0x1234567890123456789012345678901234567890] """, (""" bar: num[3] @public def foo(): self.bar = [] """, StructureException), """ b: num[5] @public def foo(): x = self.b[0][1] """, """ bar: num[3] @public def foo(): self.bar = [1, [2], 3] """, """ bar: num[3][3] @public def foo(): self.bar = 5 """, """ bar: num[3][3] @public def foo(): self.bar = [2, 5] """, """ bar: num[3] @public def foo(): self.bar = [1, 2, 3, 4] """, """ bar: num[3] @public def foo(): self.bar = [1, 2] """, """ b: num[5] @public def foo(): self.b[0] = 7.5 """, """ b: num[5] @public def foo(): x = self.b[0].cow """, """ @public def foo()->bool[2]: a: decimal[2] a[0] = 1 return a """, """ @public def foo()->bool[2]: a: bool[1000] a[0] = 1 return a """, """ @public def test() -> num: a = [1, 2, 3.0] return a[0] """, """ @public def test() -> num: a = [1, 2, true] return a[0] """ ] @pytest.mark.parametrize('bad_code', fail_list) def test_block_fail(bad_code): if isinstance(bad_code, tuple): with raises(bad_code[1]): compiler.compile(bad_code[0]) else: with raises(TypeMismatchException): compiler.compile(bad_code) valid_list = [ """ @public def foo(): x: num[3] = [1, 2, 3] x = [4, 5, 6] """, """ @public def foo() -> num[2][2]: return [[1,2],[3,4]] """, """ @public def foo() -> decimal[2][2]: return [[1,2],[3,4]] """, """ @public def foo() -> decimal[2][2]: return [[1.0, 2.0], [3.5, 4.0]] """, """ @public def foo(x: num[3]) -> num: return x[0] """, """ y: num[3] @public def foo(x: num[3]): self.y = x """, """ y: decimal[3] @public def foo(x: num[3]): self.y = x """, """ y: decimal[2][2] @public def foo(x: num[2][2]): self.y = x """, """ y: decimal[2] @public def foo(x: num[2][2]): self.y = x[1] """, """ @public def foo() -> num[2]: return [3,5] """, """ bar: decimal[3] @public def foo(): self.bar = [1.0, 2.1, 3.0] """, """ x: num[1][2][3][4][5] """, """ bar: num[3] @public def foo(): self.bar = [1, 2, 3] """, """ b: num[5] @public def foo(): a: num[5] self.b[0] = a[0] """, """ b: decimal[5] @public def foo(): self.b[0] = 7 """ ] @pytest.mark.parametrize('good_code', valid_list) def test_list_success(good_code): assert compiler.compile(good_code) is not None
13.447154
70
0.457981
b73e87fa77f0eac281ca110683c746fa70efc4d1
1,059
py
Python
importers/pnc.py
dumbbillyhardy/beancount-importers
d1d250cfa8484ed42416eaef10e13f0510f035c7
[ "MIT" ]
1
2020-08-05T22:53:58.000Z
2020-08-05T22:53:58.000Z
importers/pnc.py
dumbbillyhardy/beancount-importers
d1d250cfa8484ed42416eaef10e13f0510f035c7
[ "MIT" ]
null
null
null
importers/pnc.py
dumbbillyhardy/beancount-importers
d1d250cfa8484ed42416eaef10e13f0510f035c7
[ "MIT" ]
1
2020-08-05T22:04:58.000Z
2020-08-05T22:04:58.000Z
from .baseAccount import BaseAccount from dateutil.parser import parse from titlecase import titlecase class CashBuilderImporter(BaseAccount): def getDate(self, row): return parse(row['Date']).date() def getDesc(self, row): return titlecase(row['Description']) def getAmt(self, row): return '-'+row['Amount'][2:] if row['Amount'][0] == '-' else row['Amount'][1:] def isPayment(self, row): return row['Description'].find("ONLINE CREDIT CARD PMT") != -1 class VirtualWalletImporter(BaseAccount): def skip(self, row): if 'Skip' in row and row['Skip'] == 'true': return True pncCat = row['Category'] return pncCat == "Paychecks" or pncCat == "Credit Card Payments" def getDate(self, row): return parse(row['Date']).date() def getDesc(self, row): return titlecase(row['Description']) def getAmt(self, row): withdrawal = row['Withdrawals'][1:] deposit = row['Deposits'][1:] return '-'+deposit if deposit else withdrawal
33.09375
86
0.624174
1caae31a7efdcdfb0dab427173604d72c98a998a
584
py
Python
src/manipulation_dreambed/PySMACROSInterface.py
kth-ros-pkg/manipulation_dreambed
0551762dba4d1b142053785692967548d06a9582
[ "BSD-3-Clause" ]
null
null
null
src/manipulation_dreambed/PySMACROSInterface.py
kth-ros-pkg/manipulation_dreambed
0551762dba4d1b142053785692967548d06a9582
[ "BSD-3-Clause" ]
null
null
null
src/manipulation_dreambed/PySMACROSInterface.py
kth-ros-pkg/manipulation_dreambed
0551762dba4d1b142053785692967548d06a9582
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ This file is part of the RobDREAM (http://robdream.eu/) deliverable D4.2. @author: Silvia Cruciani (cruciani@kth.se) """ import rospy import yaml from manipulation_dreambed.srv import DreamBedEvaluation def func(**kwargs): rospy.wait_for_service('dream_bed_evaluation') try: dream_bed_evaluation = rospy.ServiceProxy('dream_bed_evaluation', DreamBedEvaluation) resp1 = dream_bed_evaluation(yaml.dump(kwargs)) return resp1.value except rospy.ServiceException, e: print "Service call failed: %s" % repr(e)
30.736842
93
0.717466
99be556e67d5d6c9b6324ba18b2d0ee395a04e83
605
py
Python
examples/7_tessy_as_script.py
K4rian/tessy
c7e63818238f03a10efa24ebeb1cb0c032598a63
[ "MIT" ]
null
null
null
examples/7_tessy_as_script.py
K4rian/tessy
c7e63818238f03a10efa24ebeb1cb0c032598a63
[ "MIT" ]
null
null
null
examples/7_tessy_as_script.py
K4rian/tessy
c7e63818238f03a10efa24ebeb1cb0c032598a63
[ "MIT" ]
null
null
null
import sys import tessy """ 7. Tessy as a invokable script This example demonstrates how to write a simple invokable script using tessy and the "image_to_string" function. """ if __name__ == "__main__": lang = None image_file = None if len(sys.argv) == 2: image_file = sys.argv[1] elif len(sys.argv) == 4 and sys.argv[1] == "-l": lang = sys.argv[2] image_file = sys.argv[3] else: sys.stderr.write("Usage: python 7_tessy_as_script.py [-l lang] image_file") exit(0) tessy.init() print(tessy.image_to_string(image_file, lang=lang))
21.607143
83
0.638017
18ed0c84f2ef518167b3b2f5462b250989838ac1
4,988
py
Python
setup.py
kamakiri01/qulacs
1e3e6ac26390abdfe5abe7f4d52349bcfd68e20c
[ "MIT" ]
260
2018-10-13T15:58:26.000Z
2022-03-17T11:03:58.000Z
setup.py
kamakiri01/qulacs
1e3e6ac26390abdfe5abe7f4d52349bcfd68e20c
[ "MIT" ]
182
2018-10-14T02:29:27.000Z
2022-03-06T20:23:18.000Z
setup.py
kamakiri01/qulacs
1e3e6ac26390abdfe5abe7f4d52349bcfd68e20c
[ "MIT" ]
88
2018-10-10T03:46:29.000Z
2022-02-27T21:56:05.000Z
import os import re import sys import platform import subprocess from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext from distutils.version import LooseVersion _VERSION = '0.3.0' project_name = 'Qulacs' def _is_valid_compiler(cmd): try: out = subprocess.check_output([cmd, '-dumpfullversion', '-dumpversion']).decode() version = LooseVersion(out) return version >= LooseVersion('7.0.0') except: return False class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): user_options = build_ext.user_options + [ ('opt-flags=', 'o', 'optimization flags for compiler') ] def initialize_options(self): build_ext.initialize_options(self) self.opt_flags = None def finalize_options(self): build_ext.finalize_options(self) def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError("CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1)) for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DCMAKE_RUNTIME_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable, '-DPYTHON_SETUP_FLAG:STR=Yes'] cfg = 'Debug' if self.debug else 'Release' build_args = ['--config', cfg] if platform.system() == "Windows": cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)] cmake_args += ['-DCMAKE_RUNTIME_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)] if sys.maxsize > 2**32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: env_gcc = os.getenv('C_COMPILER') if env_gcc: gcc_candidates = [env_gcc] else: gcc_candidates = ['gcc', 'gcc-9', 'gcc-8', 'gcc-7'] gcc = next(iter(filter(_is_valid_compiler, gcc_candidates)), None) env_gxx = os.getenv('CXX_COMPILER') if env_gxx: gxx_candidates = [env_gxx] else: gxx_candidates = ['g++', 'g++-9', 'g++-8', 'g++-7'] gxx = next(iter(filter(_is_valid_compiler, gxx_candidates)), None) if gcc is None or gxx is None: raise RuntimeError("gcc/g++ >= 7.0.0 must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) cmake_args += ['-DCMAKE_C_COMPILER=' + gcc] cmake_args += ['-DCMAKE_CXX_COMPILER=' + gxx] cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] build_args += ['--', '-j2'] if self.opt_flags is not None: opt_flags = self.opt_flags elif os.getenv('QULACS_OPT_FLAGS'): opt_flags = os.getenv('QULACS_OPT_FLAGS') else: opt_flags = None if opt_flags: cmake_args += ['-DOPT_FLAGS=' + opt_flags] env = os.environ.copy() env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format(env.get('CXXFLAGS', ''), self.distribution.get_version()) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.', '--target', 'python'] + build_args, cwd=self.build_temp) setup( name=project_name, version=_VERSION, author='QunaSys', author_email='qulacs@qunasys.com', url='http://www.qulacs.org', description='Quantum circuit simulator for research', long_description='', packages=find_packages(exclude=['test*']), include_package_data=True, ext_modules=[CMakeExtension('qulacs')], cmdclass=dict(build_ext=CMakeBuild), zip_safe=False, test_suite = 'test', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Programming Language :: Python', 'Topic :: Communications :: Email', ], )
36.676471
112
0.584603
93095c13380d9e4a486d692c3e5463f04d54a037
1,076
py
Python
SpiMediaGallery/main/importers/project_application_importer.py
Swiss-Polar-Institute/spi-media-gallery
2f66f938cbe1a7a25a5971d42abb1b0b5deca31e
[ "MIT" ]
5
2020-02-21T20:38:50.000Z
2022-02-19T11:00:46.000Z
SpiMediaGallery/main/importers/project_application_importer.py
Swiss-Polar-Institute/spi-media-gallery
2f66f938cbe1a7a25a5971d42abb1b0b5deca31e
[ "MIT" ]
23
2019-10-01T17:13:39.000Z
2022-01-21T20:02:26.000Z
SpiMediaGallery/main/importers/project_application_importer.py
Swiss-Polar-Institute/spi-media-gallery
2f66f938cbe1a7a25a5971d42abb1b0b5deca31e
[ "MIT" ]
2
2022-02-03T08:52:51.000Z
2022-02-03T08:58:00.000Z
from django.core.cache import cache from .project_application_api_client import ProjectApplicationApiClient from ..management.commands.generate_virtual_tags import GenerateTags from ..management.commands.resize_media import Resizer def import_resize_update_tags_from_project_application(): # Creates the new Medium objects media_importer = ProjectApplicationApiClient() imported_media = media_importer.import_new_media() tags_deleted_media = media_importer.delete_deleted_media() # Resizes the photos bucket_name_resized = 'processed' sizes_type = ['T', 'S', 'L'] media_type = 'Photos' resizer = Resizer(bucket_name_resized, sizes_type, media_type) resizer.resize_media() # Resizes the videos sizes_type = ['S', 'L'] media_type = 'Videos' resizer = Resizer(bucket_name_resized, sizes_type, media_type) resizer.resize_media() # Tags cleanup generator = GenerateTags() generator.delete_tags_if_orphaned(tags_deleted_media) # Clears the cache: so the homepage tags are updated cache.clear()
31.647059
71
0.757435
a3aef05533ea82fbc26faf81c1c2d882740c3f89
181
py
Python
appmon/forms.py
jboegeholz/flask_appmon
6a3ae2c7c889f8212293ef9e1cfc5c9e9efe6cf6
[ "MIT" ]
null
null
null
appmon/forms.py
jboegeholz/flask_appmon
6a3ae2c7c889f8212293ef9e1cfc5c9e9efe6cf6
[ "MIT" ]
1
2016-10-02T20:16:21.000Z
2016-10-02T20:16:21.000Z
appmon/forms.py
jboegeholz/flask_appmon
6a3ae2c7c889f8212293ef9e1cfc5c9e9efe6cf6
[ "MIT" ]
null
null
null
from wtforms import Form, StringField class ApplicationForm(Form): app_name = StringField("Application Name") client = StringField("Client") port = StringField("Port")
25.857143
46
0.729282
598b957e807ca223c54b16b5e82a5f66f9e9f541
12,898
py
Python
google/cloud/dataflow/__init__.py
LaudateCorpus1/python-dataflow-client
888664b70baefe7acb7e46c82a06c24e7ba06af2
[ "Apache-2.0" ]
7
2021-11-04T03:22:01.000Z
2022-02-05T14:28:50.000Z
google/cloud/dataflow/__init__.py
LaudateCorpus1/python-dataflow-client
888664b70baefe7acb7e46c82a06c24e7ba06af2
[ "Apache-2.0" ]
31
2021-06-26T01:14:50.000Z
2022-03-17T03:01:49.000Z
google/cloud/dataflow/__init__.py
LaudateCorpus1/python-dataflow-client
888664b70baefe7acb7e46c82a06c24e7ba06af2
[ "Apache-2.0" ]
4
2021-08-31T11:41:16.000Z
2022-01-29T08:09:21.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from google.cloud.dataflow_v1beta3.services.flex_templates_service.client import ( FlexTemplatesServiceClient, ) from google.cloud.dataflow_v1beta3.services.flex_templates_service.async_client import ( FlexTemplatesServiceAsyncClient, ) from google.cloud.dataflow_v1beta3.services.jobs_v1_beta3.client import ( JobsV1Beta3Client, ) from google.cloud.dataflow_v1beta3.services.jobs_v1_beta3.async_client import ( JobsV1Beta3AsyncClient, ) from google.cloud.dataflow_v1beta3.services.messages_v1_beta3.client import ( MessagesV1Beta3Client, ) from google.cloud.dataflow_v1beta3.services.messages_v1_beta3.async_client import ( MessagesV1Beta3AsyncClient, ) from google.cloud.dataflow_v1beta3.services.metrics_v1_beta3.client import ( MetricsV1Beta3Client, ) from google.cloud.dataflow_v1beta3.services.metrics_v1_beta3.async_client import ( MetricsV1Beta3AsyncClient, ) from google.cloud.dataflow_v1beta3.services.snapshots_v1_beta3.client import ( SnapshotsV1Beta3Client, ) from google.cloud.dataflow_v1beta3.services.snapshots_v1_beta3.async_client import ( SnapshotsV1Beta3AsyncClient, ) from google.cloud.dataflow_v1beta3.services.templates_service.client import ( TemplatesServiceClient, ) from google.cloud.dataflow_v1beta3.services.templates_service.async_client import ( TemplatesServiceAsyncClient, ) from google.cloud.dataflow_v1beta3.types.environment import AutoscalingSettings from google.cloud.dataflow_v1beta3.types.environment import DebugOptions from google.cloud.dataflow_v1beta3.types.environment import Disk from google.cloud.dataflow_v1beta3.types.environment import Environment from google.cloud.dataflow_v1beta3.types.environment import Package from google.cloud.dataflow_v1beta3.types.environment import SdkHarnessContainerImage from google.cloud.dataflow_v1beta3.types.environment import TaskRunnerSettings from google.cloud.dataflow_v1beta3.types.environment import WorkerPool from google.cloud.dataflow_v1beta3.types.environment import WorkerSettings from google.cloud.dataflow_v1beta3.types.environment import AutoscalingAlgorithm from google.cloud.dataflow_v1beta3.types.environment import DefaultPackageSet from google.cloud.dataflow_v1beta3.types.environment import FlexResourceSchedulingGoal from google.cloud.dataflow_v1beta3.types.environment import JobType from google.cloud.dataflow_v1beta3.types.environment import ShuffleMode from google.cloud.dataflow_v1beta3.types.environment import TeardownPolicy from google.cloud.dataflow_v1beta3.types.environment import WorkerIPAddressConfiguration from google.cloud.dataflow_v1beta3.types.jobs import BigQueryIODetails from google.cloud.dataflow_v1beta3.types.jobs import BigTableIODetails from google.cloud.dataflow_v1beta3.types.jobs import CheckActiveJobsRequest from google.cloud.dataflow_v1beta3.types.jobs import CheckActiveJobsResponse from google.cloud.dataflow_v1beta3.types.jobs import CreateJobRequest from google.cloud.dataflow_v1beta3.types.jobs import DatastoreIODetails from google.cloud.dataflow_v1beta3.types.jobs import DisplayData from google.cloud.dataflow_v1beta3.types.jobs import ExecutionStageState from google.cloud.dataflow_v1beta3.types.jobs import ExecutionStageSummary from google.cloud.dataflow_v1beta3.types.jobs import FailedLocation from google.cloud.dataflow_v1beta3.types.jobs import FileIODetails from google.cloud.dataflow_v1beta3.types.jobs import GetJobRequest from google.cloud.dataflow_v1beta3.types.jobs import Job from google.cloud.dataflow_v1beta3.types.jobs import JobExecutionInfo from google.cloud.dataflow_v1beta3.types.jobs import JobExecutionStageInfo from google.cloud.dataflow_v1beta3.types.jobs import JobMetadata from google.cloud.dataflow_v1beta3.types.jobs import ListJobsRequest from google.cloud.dataflow_v1beta3.types.jobs import ListJobsResponse from google.cloud.dataflow_v1beta3.types.jobs import PipelineDescription from google.cloud.dataflow_v1beta3.types.jobs import PubSubIODetails from google.cloud.dataflow_v1beta3.types.jobs import SdkVersion from google.cloud.dataflow_v1beta3.types.jobs import SnapshotJobRequest from google.cloud.dataflow_v1beta3.types.jobs import SpannerIODetails from google.cloud.dataflow_v1beta3.types.jobs import Step from google.cloud.dataflow_v1beta3.types.jobs import TransformSummary from google.cloud.dataflow_v1beta3.types.jobs import UpdateJobRequest from google.cloud.dataflow_v1beta3.types.jobs import JobState from google.cloud.dataflow_v1beta3.types.jobs import JobView from google.cloud.dataflow_v1beta3.types.jobs import KindType from google.cloud.dataflow_v1beta3.types.messages import AutoscalingEvent from google.cloud.dataflow_v1beta3.types.messages import JobMessage from google.cloud.dataflow_v1beta3.types.messages import ListJobMessagesRequest from google.cloud.dataflow_v1beta3.types.messages import ListJobMessagesResponse from google.cloud.dataflow_v1beta3.types.messages import StructuredMessage from google.cloud.dataflow_v1beta3.types.messages import JobMessageImportance from google.cloud.dataflow_v1beta3.types.metrics import GetJobExecutionDetailsRequest from google.cloud.dataflow_v1beta3.types.metrics import GetJobMetricsRequest from google.cloud.dataflow_v1beta3.types.metrics import GetStageExecutionDetailsRequest from google.cloud.dataflow_v1beta3.types.metrics import JobExecutionDetails from google.cloud.dataflow_v1beta3.types.metrics import JobMetrics from google.cloud.dataflow_v1beta3.types.metrics import MetricStructuredName from google.cloud.dataflow_v1beta3.types.metrics import MetricUpdate from google.cloud.dataflow_v1beta3.types.metrics import ProgressTimeseries from google.cloud.dataflow_v1beta3.types.metrics import StageExecutionDetails from google.cloud.dataflow_v1beta3.types.metrics import StageSummary from google.cloud.dataflow_v1beta3.types.metrics import WorkerDetails from google.cloud.dataflow_v1beta3.types.metrics import WorkItemDetails from google.cloud.dataflow_v1beta3.types.metrics import ExecutionState from google.cloud.dataflow_v1beta3.types.snapshots import DeleteSnapshotRequest from google.cloud.dataflow_v1beta3.types.snapshots import DeleteSnapshotResponse from google.cloud.dataflow_v1beta3.types.snapshots import GetSnapshotRequest from google.cloud.dataflow_v1beta3.types.snapshots import ListSnapshotsRequest from google.cloud.dataflow_v1beta3.types.snapshots import ListSnapshotsResponse from google.cloud.dataflow_v1beta3.types.snapshots import PubsubSnapshotMetadata from google.cloud.dataflow_v1beta3.types.snapshots import Snapshot from google.cloud.dataflow_v1beta3.types.snapshots import SnapshotState from google.cloud.dataflow_v1beta3.types.streaming import ComputationTopology from google.cloud.dataflow_v1beta3.types.streaming import CustomSourceLocation from google.cloud.dataflow_v1beta3.types.streaming import DataDiskAssignment from google.cloud.dataflow_v1beta3.types.streaming import KeyRangeDataDiskAssignment from google.cloud.dataflow_v1beta3.types.streaming import KeyRangeLocation from google.cloud.dataflow_v1beta3.types.streaming import MountedDataDisk from google.cloud.dataflow_v1beta3.types.streaming import PubsubLocation from google.cloud.dataflow_v1beta3.types.streaming import StateFamilyConfig from google.cloud.dataflow_v1beta3.types.streaming import ( StreamingApplianceSnapshotConfig, ) from google.cloud.dataflow_v1beta3.types.streaming import StreamingComputationRanges from google.cloud.dataflow_v1beta3.types.streaming import StreamingSideInputLocation from google.cloud.dataflow_v1beta3.types.streaming import StreamingStageLocation from google.cloud.dataflow_v1beta3.types.streaming import StreamLocation from google.cloud.dataflow_v1beta3.types.streaming import TopologyConfig from google.cloud.dataflow_v1beta3.types.templates import ContainerSpec from google.cloud.dataflow_v1beta3.types.templates import CreateJobFromTemplateRequest from google.cloud.dataflow_v1beta3.types.templates import DynamicTemplateLaunchParams from google.cloud.dataflow_v1beta3.types.templates import FlexTemplateRuntimeEnvironment from google.cloud.dataflow_v1beta3.types.templates import GetTemplateRequest from google.cloud.dataflow_v1beta3.types.templates import GetTemplateResponse from google.cloud.dataflow_v1beta3.types.templates import InvalidTemplateParameters from google.cloud.dataflow_v1beta3.types.templates import LaunchFlexTemplateParameter from google.cloud.dataflow_v1beta3.types.templates import LaunchFlexTemplateRequest from google.cloud.dataflow_v1beta3.types.templates import LaunchFlexTemplateResponse from google.cloud.dataflow_v1beta3.types.templates import LaunchTemplateParameters from google.cloud.dataflow_v1beta3.types.templates import LaunchTemplateRequest from google.cloud.dataflow_v1beta3.types.templates import LaunchTemplateResponse from google.cloud.dataflow_v1beta3.types.templates import ParameterMetadata from google.cloud.dataflow_v1beta3.types.templates import RuntimeEnvironment from google.cloud.dataflow_v1beta3.types.templates import RuntimeMetadata from google.cloud.dataflow_v1beta3.types.templates import SDKInfo from google.cloud.dataflow_v1beta3.types.templates import TemplateMetadata from google.cloud.dataflow_v1beta3.types.templates import ParameterType __all__ = ( "FlexTemplatesServiceClient", "FlexTemplatesServiceAsyncClient", "JobsV1Beta3Client", "JobsV1Beta3AsyncClient", "MessagesV1Beta3Client", "MessagesV1Beta3AsyncClient", "MetricsV1Beta3Client", "MetricsV1Beta3AsyncClient", "SnapshotsV1Beta3Client", "SnapshotsV1Beta3AsyncClient", "TemplatesServiceClient", "TemplatesServiceAsyncClient", "AutoscalingSettings", "DebugOptions", "Disk", "Environment", "Package", "SdkHarnessContainerImage", "TaskRunnerSettings", "WorkerPool", "WorkerSettings", "AutoscalingAlgorithm", "DefaultPackageSet", "FlexResourceSchedulingGoal", "JobType", "ShuffleMode", "TeardownPolicy", "WorkerIPAddressConfiguration", "BigQueryIODetails", "BigTableIODetails", "CheckActiveJobsRequest", "CheckActiveJobsResponse", "CreateJobRequest", "DatastoreIODetails", "DisplayData", "ExecutionStageState", "ExecutionStageSummary", "FailedLocation", "FileIODetails", "GetJobRequest", "Job", "JobExecutionInfo", "JobExecutionStageInfo", "JobMetadata", "ListJobsRequest", "ListJobsResponse", "PipelineDescription", "PubSubIODetails", "SdkVersion", "SnapshotJobRequest", "SpannerIODetails", "Step", "TransformSummary", "UpdateJobRequest", "JobState", "JobView", "KindType", "AutoscalingEvent", "JobMessage", "ListJobMessagesRequest", "ListJobMessagesResponse", "StructuredMessage", "JobMessageImportance", "GetJobExecutionDetailsRequest", "GetJobMetricsRequest", "GetStageExecutionDetailsRequest", "JobExecutionDetails", "JobMetrics", "MetricStructuredName", "MetricUpdate", "ProgressTimeseries", "StageExecutionDetails", "StageSummary", "WorkerDetails", "WorkItemDetails", "ExecutionState", "DeleteSnapshotRequest", "DeleteSnapshotResponse", "GetSnapshotRequest", "ListSnapshotsRequest", "ListSnapshotsResponse", "PubsubSnapshotMetadata", "Snapshot", "SnapshotState", "ComputationTopology", "CustomSourceLocation", "DataDiskAssignment", "KeyRangeDataDiskAssignment", "KeyRangeLocation", "MountedDataDisk", "PubsubLocation", "StateFamilyConfig", "StreamingApplianceSnapshotConfig", "StreamingComputationRanges", "StreamingSideInputLocation", "StreamingStageLocation", "StreamLocation", "TopologyConfig", "ContainerSpec", "CreateJobFromTemplateRequest", "DynamicTemplateLaunchParams", "FlexTemplateRuntimeEnvironment", "GetTemplateRequest", "GetTemplateResponse", "InvalidTemplateParameters", "LaunchFlexTemplateParameter", "LaunchFlexTemplateRequest", "LaunchFlexTemplateResponse", "LaunchTemplateParameters", "LaunchTemplateRequest", "LaunchTemplateResponse", "ParameterMetadata", "RuntimeEnvironment", "RuntimeMetadata", "SDKInfo", "TemplateMetadata", "ParameterType", )
45.900356
88
0.8323
b3fcab36690d67eed49f78b55179704187a10b42
3,316
py
Python
golden_ratio.py
HLee2020/Phys250_Final_Project
f09eeb66668db9cf407b780901ad995e1567a75a
[ "MIT" ]
null
null
null
golden_ratio.py
HLee2020/Phys250_Final_Project
f09eeb66668db9cf407b780901ad995e1567a75a
[ "MIT" ]
null
null
null
golden_ratio.py
HLee2020/Phys250_Final_Project
f09eeb66668db9cf407b780901ad995e1567a75a
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from numpy import random as rng from ant_walks import * from ant_measurements import * def golden_ratio(lattice, x_init, y_init, steps, state, orient): x = x_init y = y_init x_list = [x] y_list = [y] lattice_y = len(lattice) lattice_x =len(lattice[0]) edge = True count = 0 while count <= steps and edge == True: if state == 0: if lattice[y][x] == -1: lattice[y][x] *= -1 if orient == 0: orient = 3 else: orient -= 1 edge = edge_check(lattice, x, y, orient) x, y = orientated_step(orient, x, y) x_list.append(x) y_list.append(y) state = 1 else: if orient == 0: orient = 3 else: orient -= 1 edge = edge_check(lattice, x, y, orient) x, y = orientated_step(orient, x, y) x_list.append(x) y_list.append(y) state = 1 else: if lattice[y][x] == -1: lattice[y][x] *= -1 if orient == 3: orient = 0 else: orient += 1 edge = edge_check(lattice, x, y, orient) x, y = orientated_step(orient, x, y) x_list.append(x) y_list.append(y) state = 1 else: lattice[y][x] *= -1 edge = edge_check(lattice, x, y, orient) x, y = orientated_step(orient, x, y) x_list.append(x) y_list.append(y) state = 0 # plt.imshow(lattice) # plt.pause(0.00001) # plt.clf() count += 1 return (lattice, x, y, count, state, x_list, y_list) def plotlattice_golden(lattice, x, y, count, state): plt.imshow(lattice, origin="lower", cmap='Blues', vmin=-1, vmax=1) plt.xlabel("X Coordinate") plt.ylabel("Y Coordinate") plt.title("Golden Ratio Variation of Langton's Ant, Iteration Number: {}".format(count)) plt.colorbar() plt.savefig("ant_walk_golden_"+str(count)+".svg") plt.show() lattice = normal_lattice(90, 90, -1) lattice, x, y, count, state, x_list, y_list = golden_ratio(lattice, 40, 40, 5000, 0, 0) plotlattice_golden(lattice, x, y, count, state) # # lattice = normal_lattice(350, 350, -1) # lattice, x, y, count, state, x_list, y_list = golden_ratio(lattice, 150, 150, 4000, 0, 0) # plotlattice_golden(lattice, x, y, count, state) # lattice, x, y, count, state, x_list, y_list = spiral(lattice, 25, 25, 1000, 0, 0) # plotlattice_spiral(lattice, x, y, count, state) # lattice, x, y, count, state, x_list, y_list = spiral(lattice, 101, 101, 2000, 0, 0) # plotlattice_spiral(lattice, x, y, count, state) # distance_list = [distance(150, 150, i, j) for i,j in zip(x_list, y_list)] # plt.plot(range(len(distance_list)), distance_list) # plt.title("Distance to Number of Steps, Golden Ratio Pattern with "+str(count)+" Steps") # plt.ylabel("Distance") # plt.xlabel("Number of Steps") # plt.savefig("golden_ratio_distance_"+str(count)+".svg") # plt.show()
35.276596
92
0.535887
07495119d70118d8a2b0b7cfe7a99b7e37690c1b
3,714
py
Python
sahara/service/edp/oozie.py
hortonworksqe/sahara
b8edeaf2b6a475728bf9fd2ddc3a860dc6c23270
[ "Apache-2.0" ]
1
2016-04-13T17:07:05.000Z
2016-04-13T17:07:05.000Z
sahara/service/edp/oozie.py
hortonworksqe/sahara
b8edeaf2b6a475728bf9fd2ddc3a860dc6c23270
[ "Apache-2.0" ]
null
null
null
sahara/service/edp/oozie.py
hortonworksqe/sahara
b8edeaf2b6a475728bf9fd2ddc3a860dc6c23270
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import json import re from six.moves.urllib import parse as urlparse import sahara.exceptions as ex class OozieClient(object): def __init__(self, url, oozie_server): self.job_url = url + "/v1/job/%s" self.jobs_url = url + "/v1/jobs" self.oozie_server = oozie_server self.port = urlparse.urlparse(url).port def _get_http_session(self, info=None): return self.oozie_server.remote().get_http_client(self.port, info=info) def add_job(self, job_config, job_execution): session = self._get_http_session(job_execution.extra.get('neutron')) resp = session.post(self.jobs_url, data=job_config, headers={ "Content-Type": "application/xml;charset=UTF-8" }) _check_status_code(resp, 201) return get_json(resp)['id'] def run_job(self, job_execution, job_id): session = self._get_http_session(job_execution.extra.get('neutron')) resp = session.put(self.job_url % job_id + "?action=start") _check_status_code(resp, 200) def kill_job(self, job_execution): session = self._get_http_session(job_execution.extra.get('neutron')) resp = session.put(self.job_url % job_execution.oozie_job_id + "?action=kill") _check_status_code(resp, 200) def get_job_status(self, job_execution): session = self._get_http_session(job_execution.extra.get('neutron')) resp = session.get(self.job_url % job_execution.oozie_job_id + "?show=info") _check_status_code(resp, 200) return get_json(resp) def get_job_logs(self, job_execution): session = self._get_http_session(job_execution.extra.get('neutron')) resp = session.get(self.job_url % job_execution.oozie_job_id + "?show=log") _check_status_code(resp, 200) return resp.text def get_jobs(self, offset, size, **filter): url = self.jobs_url + "?offset=%s&len=%s" % (offset, size) if len(filter) > 0: f = ";".join([k + "=" + v for k, v in filter.items()]) url += "&filter=" + urlparse.quote(f) session = self._get_http_session() resp = session.get(url) _check_status_code(resp, 200) return get_json(resp) def _check_status_code(resp, expected_code): if resp.status_code != expected_code: resp_text = resp.text # cleaning tomcat error message message = resp_text.split("<HR size=\"1\" noshade=\"noshade\">")[1] message = message.replace("</p><p>", "\n") message = re.sub('<[^<]+?>', ' ', message) raise OozieException(message) def get_json(response): """Provides backward compatibility for old versions of requests library.""" json_field_or_function = getattr(response, 'json', None) if callable(json_field_or_function): return response.json() else: return json.loads(response.content) class OozieException(ex.SaharaException): def __init__(self, message): self.message = message self.code = "OOZIE_EXCEPTION"
36.058252
79
0.655358
4706269e1cfa50e3bfcc7d8304e8cc1aa022e702
3,137
py
Python
homeassistant/components/evohome/water_heater.py
deporpeps/home-assistant
797196dce97d1418e1217fbe645e7da1c94ce6c5
[ "Apache-2.0" ]
1
2022-01-15T18:27:59.000Z
2022-01-15T18:27:59.000Z
homeassistant/components/evohome/water_heater.py
deporpeps/home-assistant
797196dce97d1418e1217fbe645e7da1c94ce6c5
[ "Apache-2.0" ]
null
null
null
homeassistant/components/evohome/water_heater.py
deporpeps/home-assistant
797196dce97d1418e1217fbe645e7da1c94ce6c5
[ "Apache-2.0" ]
null
null
null
"""Support for WaterHeater devices of (EMEA/EU) Honeywell TCC systems.""" import logging from typing import List import requests.exceptions import evohomeclient2 from homeassistant.components.water_heater import ( SUPPORT_OPERATION_MODE, WaterHeaterDevice) from homeassistant.const import PRECISION_WHOLE, STATE_OFF, STATE_ON from homeassistant.util.dt import parse_datetime from . import _handle_exception, EvoDevice from .const import DOMAIN, EVO_STRFTIME, EVO_FOLLOW, EVO_TEMPOVER, EVO_PERMOVER _LOGGER = logging.getLogger(__name__) HA_STATE_TO_EVO = {STATE_ON: 'On', STATE_OFF: 'Off'} EVO_STATE_TO_HA = {v: k for k, v in HA_STATE_TO_EVO.items()} HA_OPMODE_TO_DHW = {STATE_ON: EVO_FOLLOW, STATE_OFF: EVO_PERMOVER} def setup_platform(hass, hass_config, add_entities, discovery_info=None) -> None: """Create the DHW controller.""" broker = hass.data[DOMAIN]['broker'] _LOGGER.debug( "Found %s, id: %s", broker.tcs.hotwater.zone_type, broker.tcs.hotwater.zoneId) evo_dhw = EvoDHW(broker, broker.tcs.hotwater) add_entities([evo_dhw], update_before_add=True) class EvoDHW(EvoDevice, WaterHeaterDevice): """Base for a Honeywell evohome DHW controller (aka boiler).""" def __init__(self, evo_broker, evo_device) -> None: """Initialize the evohome DHW controller.""" super().__init__(evo_broker, evo_device) self._name = 'DHW controller' self._icon = 'mdi:thermometer-lines' self._precision = PRECISION_WHOLE self._state_attributes = [ 'dhwId', 'activeFaults', 'stateStatus', 'temperatureStatus', 'setpoints'] self._supported_features = SUPPORT_OPERATION_MODE self._operation_list = list(HA_OPMODE_TO_DHW) @property def current_operation(self) -> str: """Return the current operating mode (On, or Off).""" return EVO_STATE_TO_HA[self._evo_device.stateStatus['state']] @property def operation_list(self) -> List[str]: """Return the list of available operations.""" return self._operation_list @property def current_temperature(self) -> float: """Return the current temperature.""" return self._evo_device.temperatureStatus['temperature'] def set_operation_mode(self, operation_mode: str) -> None: """Set new operation mode for a DHW controller.""" op_mode = HA_OPMODE_TO_DHW[operation_mode] state = '' if op_mode == EVO_FOLLOW else HA_STATE_TO_EVO[STATE_OFF] until = None # EVO_FOLLOW, EVO_PERMOVER if op_mode == EVO_TEMPOVER: self._setpoints = self.get_setpoints() if self._setpoints: until = parse_datetime(self._setpoints['next']['from']) until = until.strftime(EVO_STRFTIME) data = {'Mode': op_mode, 'State': state, 'UntilTime': until} try: self._evo_device._set_dhw(data) # pylint: disable=protected-access except (requests.exceptions.RequestException, evohomeclient2.AuthenticationError) as err: _handle_exception(err)
34.472527
79
0.683456
9b57a65c36677d25905724d3e79650ca56c1c076
374
py
Python
dirmon/setup.py
ytreister/stoq-plugins-public
1325ba0f61a313a1b9dbb71f2843ee698fb7ab9d
[ "Apache-2.0" ]
72
2015-11-20T12:52:10.000Z
2021-06-08T16:57:53.000Z
dirmon/setup.py
ytreister/stoq-plugins-public
1325ba0f61a313a1b9dbb71f2843ee698fb7ab9d
[ "Apache-2.0" ]
87
2016-08-25T15:09:59.000Z
2022-02-07T14:34:45.000Z
dirmon/setup.py
ytreister/stoq-plugins-public
1325ba0f61a313a1b9dbb71f2843ee698fb7ab9d
[ "Apache-2.0" ]
37
2015-11-20T12:51:59.000Z
2021-12-13T18:13:32.000Z
from setuptools import setup, find_packages setup( name="dirmon", version="3.0.0", author="Marcus LaFerrera (@mlaferrera)", url="https://github.com/PUNCH-Cyber/stoq-plugins-public", license="Apache License 2.0", description="Monitor a directory for newly created files for processing", packages=find_packages(), include_package_data=True, )
28.769231
77
0.71123
f009d2a98c3be5c7a2718d4552d8c8b8976b1af4
4,548
py
Python
benchmarks/Evolution/both/evo_json/convert_py_json/convert_trait.py
nuprl/retic_performance
621211c2f40251ce5364c33e72e4067e34a32013
[ "MIT" ]
3
2018-08-03T02:41:29.000Z
2021-03-19T03:18:47.000Z
benchmarks/Evolution/both/evo_json/convert_py_json/convert_trait.py
nuprl/retic_performance
621211c2f40251ce5364c33e72e4067e34a32013
[ "MIT" ]
3
2018-02-04T17:53:56.000Z
2018-11-10T17:06:57.000Z
benchmarks/Evolution/both/evo_json/convert_py_json/convert_trait.py
nuprl/retic_performance
621211c2f40251ce5364c33e72e4067e34a32013
[ "MIT" ]
1
2018-08-04T00:14:12.000Z
2018-08-04T00:14:12.000Z
from evo_json.data_def import * from evo_json.constants import * from evolution.data_defs import is_list_of_valid_elem, is_list_of from evolution.constants import CARNIVORE_MIN_FOOD_TOKENS, \ CARNIVORE_MAX_FOOD_TOKENS __author__ = 'Edwin Cowart, Kevin McDonough' """----------- PyJSON Trait <-> TraitCard -----------""" def is_pj_trait(value): """ Is the given value a PJ_Trait? :param value: The value being checked :type value: Any :return: True if value is a PJ_TRAIT, False otherwise :rtype: Boolean """ return isinstance(value, str) and (value in trait_dictionary.keys()) def convert_from_py_trait(pj_trait): """ Convert the given PyJSON Trait to a TraitCard :param pj_trait: The PyJSON Trait being converted :type pj_trait: PJ_Trait :return: The resulting TraitCard :rtype: TraitCard """ if not is_pj_trait(pj_trait): raise ValueError( "convert_from_py_trait: Invalid PyJSON Trait: " + repr(pj_trait)) return trait_dictionary[pj_trait]() def convert_to_py_trait(trait_card): """ Convert the given TraitCard to a PyJSON Trait :param trait_card: The TraitCard being converted :type trait_card: TraitCard :return: The resulting PyJSON Trait :rtype: PJ_Trait """ if not isinstance(trait_card, TraitCard): raise ValueError("convert_to_py_trait: Invalid TraitCard") for key, trait_card_subtype in trait_dictionary.items(): if isinstance(trait_card, trait_card_subtype): return key # Should not be Reached raise ValueError( "convert_to_py_trait: Invalid TraitCard, must be subtype which is one of:" + "\"" + "\", \"".join(trait_dictionary.values()) + "\"") def convert_from_pj_card(py_json): """ Convertes the given PJ Card to a TraitCard :param py_json: The Card to be converted :type py_json: PyJSON :return: The equivalent TraitCard :rtype: TraitCard """ if not isinstance(py_json, list) or len(py_json) != 2: raise ValueError("Invalid food card.") if not (CARNIVORE_MIN_FOOD_TOKENS <= py_json[0] <= CARNIVORE_MAX_FOOD_TOKENS): raise ValueError("Food value out of range.") base_card = convert_from_py_trait(py_json[1]) base_card.num_tokens_as_food_card = py_json[0] return base_card def convert_to_pj_card(trait_card): """ Convert the given TraitCard to a PyJSON Card :param trait_card: The TraitCard to be converted :type trait_card: TraitCard :return: Card :rtype: PyJSON """ return [trait_card.num_tokens_as_food_card, convert_to_py_trait(trait_card)] """----------- PyJSON LOT <-> List[TraitCard] -----------""" """ PJ_LOT = List[PJ_Trait] """ def is_pj_lot(value): """ Is the given value a Py_LOT :param value: The value being checked :type value: Any :return: True if the value is a Py_LOT, False otherwise :rtype: Boolean """ return isinstance(value, list) def convert_from_pj_lot(py_lot): """ Convert the given PyJSON LOT to a List of TraitCard :param py_lot: The PyJSON LOT being converted :type py_lot: PJ_LOT :return: The resulting List of TraitCard :rtype: [TraitCard, ...] """ if not is_pj_lot(py_lot): raise ValueError("convert_from_lot: Invalid PyJSON LOT") return [convert_from_py_trait(py_trait) for py_trait in py_lot] def convert_to_pj_lot(trait_card_list): """ Convert the given List of TraitCard to a :param trait_card_list: The List of TraitCard being converted :type trait_card_list: [TraitCard, ...] :return: The resulting LOT :rtype: PJ_LOT """ if not is_list_of(trait_card_list, TraitCard): raise ValueError("convert_to_py_lot: Invalid List[TraitCard]") return [convert_to_py_trait(trait_card) for trait_card in trait_card_list] def convert_from_pj_loc(pj_loc): """ Convert the given LOC to a list of TraitCards :param pj_loc: List of Cards to convert to TraitCards :type pj_loc: PyJSON :return: the list of trait cards :rtype: [TraitCard, ...] """ if not isinstance(pj_loc, list): raise ValueError("List of cards must be a list") return [convert_from_pj_card(card) for card in pj_loc] def convert_to_pj_loc(lotc): """ Convert the given list of TraitCards to an LOC :param lotc: The TraitCards to be converted :type lotc: [TraitCard, ...] :return: The LOC :rtype: PyJSON """ return [convert_to_pj_card(tc) for tc in lotc]
29.72549
84
0.684257
0d2376884ec0b7ce93579203037e71c319d40689
993
py
Python
v2.5.7/toontown/pets/PetManager.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-01T15:46:43.000Z
2021-07-23T16:26:48.000Z
v1.0.0.test/toontown/pets/PetManager.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
1
2019-06-29T03:40:05.000Z
2021-06-13T01:15:16.000Z
v1.0.0.test/toontown/pets/PetManager.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-28T21:18:46.000Z
2021-02-25T06:37:25.000Z
from panda3d.core import * from toontown.toonbase import ToontownGlobals from direct.task import Task def acquirePetManager(): if not hasattr(base, 'petManager'): PetManager() base.petManager.incRefCount() def releasePetManager(): base.petManager.decRefCount() class PetManager: CollTaskName = 'petFloorCollisions' def __init__(self): base.petManager = self self.refCount = 0 self.cTrav = CollisionTraverser('petFloorCollisions') taskMgr.add(self._doCollisions, PetManager.CollTaskName, priority=ToontownGlobals.PetFloorCollPriority) def _destroy(self): taskMgr.remove(PetManager.CollTaskName) del self.cTrav def _doCollisions(self, task): self.cTrav.traverse(render) return Task.cont def incRefCount(self): self.refCount += 1 def decRefCount(self): self.refCount -= 1 if self.refCount == 0: self._destroy() del base.petManager
25.461538
111
0.673716
7ade9cd63dfc275197fcba50fb864a9154cd20b6
410
py
Python
apps/core/migrations/0003_longer_service_name.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
18
2015-07-06T06:20:14.000Z
2022-03-20T23:45:40.000Z
apps/core/migrations/0003_longer_service_name.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
170
2015-07-07T08:42:03.000Z
2022-03-24T17:31:17.000Z
apps/core/migrations/0003_longer_service_name.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
11
2015-07-07T20:42:19.000Z
2022-01-12T22:39:59.000Z
# Generated by Django 2.1.8 on 2021-03-07 14:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0002_emaildomain'), ] operations = [ migrations.AlterField( model_name='service', name='name', field=models.CharField(max_length=40, primary_key=True, serialize=False), ), ]
21.578947
85
0.607317
5c8bc7233d38d4519b8bea2f6b1a7f8902e217ec
8,773
py
Python
snake.py
LemonPi314/terminal-snake
ee7d875bf3f2e97b685cc0bf21340b2109b39162
[ "MIT" ]
null
null
null
snake.py
LemonPi314/terminal-snake
ee7d875bf3f2e97b685cc0bf21340b2109b39162
[ "MIT" ]
null
null
null
snake.py
LemonPi314/terminal-snake
ee7d875bf3f2e97b685cc0bf21340b2109b39162
[ "MIT" ]
null
null
null
import time import json from random import choice from dataclasses import dataclass from pyco import terminal, cursor from pyco.color import Fore, Back, RESET from pyco.utils import getch, kbhit ESC = '\x1b' @dataclass class XYPair: x: int y: int def copy(self): obj = type(self).__new__(self.__class__) obj.__dict__.update(self.__dict__) return obj def __iter__(self): for attr in [attr for attr in dir(self) if not callable(getattr(self, attr)) and not attr.startswith("__")]: yield getattr(self, attr) class Point(XYPair): pass class Dimensions(XYPair): pass class Field: def __init__(self, game, config: dict): self.game = game self.config = config self.snake = Snake(game, self, config) self.scaling = self.config['field']['scaling'] self.size = Dimensions(self.config['field']['width'], self.config['field']['height']) self.real_size = Dimensions(self.size.x * self.scaling * 2, self.size.y * self.scaling) self.enable_border = self.config['field']['enable_border'] self.snake_coords: list[Point] = [] self.field = [[{} for y in range(self.size.y)] for x in range(self.size.x)] self.create_food() self.clear() print(f'{ESC}[8;{self.real_size.y};{self.real_size.x}t', end='') terminal.set_window_title("Terminal Snake Game") terminal.clear_screen() cursor.hide() def clear(self): for y in range(self.size.y): for x in range(self.size.x): if x == self.food_pos.x and y == self.food_pos.y: continue else: self.field[x][y] = self.config['field']['empty'] if self.enable_border: if (x == 0 and y == 0) or (x == 0 and y == self.size.y - 1) or (x == self.size.x - 1 and y == 0) or (x == self.size.x - 1 and y == self.size.y - 1): self.field[x][y] = self.config['field']['border']['corner'] elif x == 0 or x == self.size.x - 1: self.field[x][y] = self.config['field']['border']['vertical'] elif y == 0 or y == self.size.y - 1: self.field[x][y] = self.config['field']['border']['horizontal'] def update(self): self.clear() for x, y in self.snake_coords: self.field[x][y] = self.config['snake']['body'] head = self.snake_coords[-1] self.field[head.x][head.y] = self.config['snake']['head'] tail = self.snake_coords[0] self.field[tail.x][tail.y] = self.config['snake']['tail'] for y in range(self.size.y): row = '' for x in range(self.size.x): row += (getattr(Fore, self.field[x][y]['fore_color']) + getattr(Back, self.field[x][y]['back_color']) + self.field[x][y]['char'] + RESET) * 2 * self.scaling for i in range(1, self.scaling + 1): self.game.add_string((0, (y * self.scaling) + i), row) terminal.set_window_title(f"Terminal Snake Game - Score: {self.snake.length}") def create_food(self): xr = list(range(self.size.x)) yr = list(range(self.size.y)) while xr and yr: point = Point(choice(xr), choice(yr)) if point not in self.snake_coords: self.food_pos = point self.field[self.food_pos.x][self.food_pos.y] = self.config['field']['food'] return xr.remove(point.x) yr.remove(point.y) class Snake: def __init__(self, game, field: Field, config: dict): self.game = game self.field = field self.config = config['snake'] self.pos = Point(self.config['pos']['x'], self.config['pos']['y']) self.length = self.config['length'] self.direction = self.config['direction'].upper() self.speed = 1 / self.config['speed'] self.is_alive = True self.last_move_time = -self.speed self.last_direction_time = 0 if self.direction == 'R' or self.direction == 'L': self.coords = [Point(self.pos.x + i if self.direction == 'R' else -i, self.pos.y) for i in range(self.length)] elif self.direction == 'U' or self.direction == 'D': self.coords = [Point(self.pos.x, self.pos.y + i if self.direction == 'D' else -i) for i in range(self.length)] def change_direction(self, direction: str): if direction == 'R' and self.direction == 'L': return if direction == 'L' and self.direction == 'R': return if direction == 'U' and self.direction == 'D': return if direction == 'D' and self.direction == 'U': return if self.last_direction_time > self.last_move_time: return self.last_direction_time = time.perf_counter() self.direction = direction def loop(self, point: Point): looped = True if point.x > self.field.size.x - 1: point.x = 0 elif point.x < 0: point.x = self.field.size.x - 1 elif point.y > self.field.size.y - 1: point.y = 0 elif point.y < 0: point.y = self.field.size.y - 1 else: looped = False if looped and self.config['walls_kill']: self.is_alive = False return point def grow(self): self.length += 1 a = self.coords[0] b = self.coords[1] tail = a.copy() if a.x < b.x: tail.x -= 1 elif a.y < b.y: tail.y -= 1 elif a.x > b.x: tail.x += 1 elif a.y > b.y: tail.y += 1 tail = self.loop(tail) self.coords.insert(0, tail) def move(self): if time.perf_counter() - self.last_move_time >= self.speed: head = self.coords[-1].copy() if self.direction == 'R': head.x += 1 elif self.direction == 'L': head.x -= 1 elif self.direction == 'U': head.y -= 1 elif self.direction == 'D': head.y += 1 body = self.coords[:-1] self.is_alive = head not in body self.coords.append(self.loop(head)) self.coords.pop(0) self.field.snake_coords = self.coords if not self.is_alive: self.game.end(Fore.BRIGHT_RED + "GAME OVER", Fore.WHITE + "PRESS 'ESC' TO EXIT OR ANY OTHER KEY TO PLAY AGAIN") if self.field.food_pos in self.coords: self.grow() self.field.create_food() if self.length >= self.field.size.x * self.field.size.y: self.game.end(Fore.BRIGHT_GREEN + "YOU WIN", Fore.WHITE + "PRESS 'ESC' TO EXIT OR ANY OTHER KEY TO PLAY AGAIN") self.last_move_time = time.perf_counter() class Game: def __init__(self, config_path: str = 'config.json'): with open(config_path, 'r') as config_file: self.config = json.load(config_file) self.keybinds = self.config['keybinds'] self.running = True def play(self): self.running = True while self.running: self.field = Field(self, self.config) while self.field.snake.is_alive and self.running: key = self.get_key() if key is not None: key = key.upper() # key = self.keybinds.get(key, key) if key in self.keybinds.values(): if key == self.keybinds.get('exit'): self.exit() elif key == self.keybinds.get('pause'): getch() else: self.field.snake.change_direction(key) self.field.snake.move() self.field.update() def end(self, *messages: str): # terminal.bell() for i, message in enumerate(messages): self.add_string(((self.field.real_size.x - len(message)) // 2, ((self.field.real_size.y - len(messages)) // 2) + i), message + RESET) key = getch().upper() if key == '\x1b': self.exit() else: self.play() def exit(self): terminal.clear_screen() self.running = False def add_string(self, pos: tuple[int], string: str): cursor.set_position(*pos) print(string, end='') def get_key(self) -> str: if kbhit(): key = getch() if key in ['\000', '\x00', '\xe0']: key = getch() return key if __name__ == '__main__': game = Game() game.play()
37.173729
172
0.531175
410a610700d1d69201cead69cfc85774d2359403
8,386
py
Python
fcos_core/modeling/rpn/rpn.py
Hwang64/CrabNet
bf414e2d51f433ab3560a973feff104907779d21
[ "BSD-2-Clause" ]
2
2021-03-17T01:52:44.000Z
2021-03-18T02:41:32.000Z
fcos_core/modeling/rpn/rpn.py
Hwang64/CrabNet
bf414e2d51f433ab3560a973feff104907779d21
[ "BSD-2-Clause" ]
null
null
null
fcos_core/modeling/rpn/rpn.py
Hwang64/CrabNet
bf414e2d51f433ab3560a973feff104907779d21
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torch.nn.functional as F from torch import nn from fcos_core.modeling import registry from fcos_core.modeling.box_coder import BoxCoder from fcos_core.modeling.rpn.retinanet.retinanet import build_retinanet from fcos_core.modeling.rpn.fcos.fcos import build_fcos from fcos_core.modeling.rpn.atss.atss import build_atss from fcos_core.modeling.rpn.retinanet.retinanet_reg import build_retinanet_reg from fcos_core.modeling.rpn.fcos.fcos_reg import build_fcos_reg from fcos_core.modeling.rpn.atss.atss_reg import build_atss_reg from .loss import make_rpn_loss_evaluator from .anchor_generator import make_anchor_generator from .inference import make_rpn_postprocessor class RPNHeadConvRegressor(nn.Module): """ A simple RPN Head for classification and bbox regression """ def __init__(self, cfg, in_channels, num_anchors): """ Arguments: cfg : config in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted """ super(RPNHeadConvRegressor, self).__init__() self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) self.bbox_pred = nn.Conv2d( in_channels, num_anchors * 4, kernel_size=1, stride=1 ) for l in [self.cls_logits, self.bbox_pred]: torch.nn.init.normal_(l.weight, std=0.01) torch.nn.init.constant_(l.bias, 0) def forward(self, x): assert isinstance(x, (list, tuple)) logits = [self.cls_logits(y) for y in x] bbox_reg = [self.bbox_pred(y) for y in x] return logits, bbox_reg class RPNHeadFeatureSingleConv(nn.Module): """ Adds a simple RPN Head with one conv to extract the feature """ def __init__(self, cfg, in_channels): """ Arguments: cfg : config in_channels (int): number of channels of the input feature """ super(RPNHeadFeatureSingleConv, self).__init__() self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) for l in [self.conv]: torch.nn.init.normal_(l.weight, std=0.01) torch.nn.init.constant_(l.bias, 0) self.out_channels = in_channels def forward(self, x): assert isinstance(x, (list, tuple)) x = [F.relu(self.conv(z)) for z in x] return x @registry.RPN_HEADS.register("SingleConvRPNHead") class RPNHead(nn.Module): """ Adds a simple RPN Head with classification and regression heads """ def __init__(self, cfg, in_channels, num_anchors): """ Arguments: cfg : config in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted """ super(RPNHead, self).__init__() self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) self.bbox_pred = nn.Conv2d( in_channels, num_anchors * 4, kernel_size=1, stride=1 ) for l in [self.conv, self.cls_logits, self.bbox_pred]: torch.nn.init.normal_(l.weight, std=0.01) torch.nn.init.constant_(l.bias, 0) def forward(self, x): logits = [] bbox_reg = [] for feature in x: t = F.relu(self.conv(feature)) logits.append(self.cls_logits(t)) bbox_reg.append(self.bbox_pred(t)) return logits, bbox_reg class RPNModule(torch.nn.Module): """ Module for RPN computation. Takes feature maps from the backbone and RPN proposals and losses. Works for both FPN and non-FPN. """ def __init__(self, cfg, in_channels): super(RPNModule, self).__init__() self.cfg = cfg.clone() anchor_generator = make_anchor_generator(cfg) rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD] head = rpn_head( cfg, in_channels, anchor_generator.num_anchors_per_location()[0] ) rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True) box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False) loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder) self.anchor_generator = anchor_generator self.head = head self.box_selector_train = box_selector_train self.box_selector_test = box_selector_test self.loss_evaluator = loss_evaluator def forward(self, images, features, targets=None): """ Arguments: images (ImageList): images for which we want to compute the predictions features (list[Tensor]): features computed from the images that are used for computing the predictions. Each tensor in the list correspond to different feature levels targets (list[BoxList): ground-truth boxes present in the image (optional) Returns: boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per image. losses (dict[Tensor]): the losses for the model during training. During testing, it is an empty dict. """ objectness, rpn_box_regression = self.head(features) anchors = self.anchor_generator(images, features) if self.training: return self._forward_train(anchors, objectness, rpn_box_regression, targets) else: return self._forward_test(anchors, objectness, rpn_box_regression) def _forward_train(self, anchors, objectness, rpn_box_regression, targets): if self.cfg.MODEL.RPN_ONLY: # When training an RPN-only model, the loss is determined by the # predicted objectness and rpn_box_regression values and there is # no need to transform the anchors into predicted boxes; this is an # optimization that avoids the unnecessary transformation. boxes = anchors else: # For end-to-end models, anchors must be transformed into boxes and # sampled into a training batch. with torch.no_grad(): boxes = self.box_selector_train( anchors, objectness, rpn_box_regression, targets ) loss_objectness, loss_rpn_box_reg = self.loss_evaluator( anchors, objectness, rpn_box_regression, targets ) losses = { "loss_objectness": loss_objectness, "loss_rpn_box_reg": loss_rpn_box_reg, } return boxes, losses def _forward_test(self, anchors, objectness, rpn_box_regression): boxes = self.box_selector_test(anchors, objectness, rpn_box_regression) if self.cfg.MODEL.RPN_ONLY: # For end-to-end models, the RPN proposals are an intermediate state # and don't bother to sort them in decreasing score order. For RPN-only # models, the proposals are the final output and we return them in # high-to-low confidence order. inds = [ box.get_field("objectness").sort(descending=True)[1] for box in boxes ] boxes = [box[ind] for box, ind in zip(boxes, inds)] return boxes, {} def build_rpn(cfg, in_channels, extra=False): """ This gives the gist of it. Not super important because it doesn't change as much """ if cfg.MODEL.ATSS_ON: if extra == False: return build_atss(cfg, in_channels) if extra == True: return build_atss(cfg, in_channels), build_atss_reg(cfg, in_channels) if cfg.MODEL.FCOS_ON: if extra == False: return build_fcos(cfg, in_channels) if extra == True: return build_fcos(cfg, in_channels), build_fcos_reg(cfg, in_channels) #if extra == True: return build_fcos(cfg, in_channels), build_retinanet_reg(cfg, in_channels) if cfg.MODEL.RETINANET_ON: return build_retinanet(cfg, in_channels) return RPNModule(cfg, in_channels)
38.118182
101
0.646196
393063e704a04acdf7cc87444883a69d9559bae2
14,052
py
Python
test/python/WMCore_t/Services_t/DBS_t/DBSReader_t.py
haozturk/WMCore
b34e8c89b4a30de78b7d0cf4730d4c70af5830b4
[ "Apache-2.0" ]
null
null
null
test/python/WMCore_t/Services_t/DBS_t/DBSReader_t.py
haozturk/WMCore
b34e8c89b4a30de78b7d0cf4730d4c70af5830b4
[ "Apache-2.0" ]
null
null
null
test/python/WMCore_t/Services_t/DBS_t/DBSReader_t.py
haozturk/WMCore
b34e8c89b4a30de78b7d0cf4730d4c70af5830b4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ _DBSReader_t_ Unit test for the DBS helper class. """ import unittest from WMCore.Services.DBS.DBS3Reader import getDataTiers, DBS3Reader as DBSReader from WMCore.Services.DBS.DBSErrors import DBSReaderError from WMQuality.Emulators.EmulatedUnitTestCase import EmulatedUnitTestCase # A small dataset that should always exist DATASET = '/HighPileUp/Run2011A-v1/RAW' BLOCK = '/HighPileUp/Run2011A-v1/RAW#fabf118a-cbbf-11e0-80a9-003048caaace' FILE = '/store/data/Run2011A/HighPileUp/RAW/v1/000/173/657/B293AF24-BFCB-E011-8F85-BCAEC5329701.root' # A RECO dataset that has parents (also small) DATASET_WITH_PARENTS = '/Cosmics/ComissioningHI-PromptReco-v1/RECO' BLOCK_WITH_PARENTS = DATASET_WITH_PARENTS + '#7020873e-0dcd-11e1-9b6c-003048caaace' PARENT_DATASET = '/Cosmics/ComissioningHI-v1/RAW' PARENT_BLOCK = PARENT_DATASET + '#929366bc-0c31-11e1-b764-003048caaace' PARENT_FILE = '/store/data/ComissioningHI/Cosmics/RAW/v1/000/181/369/662EAD44-300C-E111-A709-BCAEC518FF62.root' class DBSReaderTest(EmulatedUnitTestCase): def setUp(self): """ _setUp_ Initialize the PhEDEx API to point at the test server. """ self.endpoint = 'https://cmsweb.cern.ch/dbs/prod/global/DBSReader' self.dbs = None super(DBSReaderTest, self).setUp() return def tearDown(self): """ _tearDown_ """ super(DBSReaderTest, self).tearDown() return def testListDatatiers(self): """ listDatatiers returns all datatiers available """ self.dbs = DBSReader(self.endpoint) results = self.dbs.listDatatiers() self.assertTrue('RAW' in results) self.assertTrue('GEN-SIM-RECO' in results) self.assertTrue('GEN-SIM' in results) self.assertFalse('RAW-ALAN' in results) return def testGetDataTiers(self): """ Test the getDataTiers function """ results = getDataTiers(self.endpoint) self.assertTrue('RAW' in results) self.assertTrue('GEN-SIM-RECO' in results) self.assertTrue('GEN-SIM' in results) self.assertFalse('RAW-ALAN' in results) # dbsUrl is mandatory with self.assertRaises(TypeError): _ = getDataTiers() return def testListPrimaryDatasets(self): """ listPrimaryDatasets returns known primary datasets """ self.dbs = DBSReader(self.endpoint) results = self.dbs.listPrimaryDatasets('Jet*') self.assertTrue('Jet' in results) self.assertTrue('JetMET' in results) self.assertTrue('JetMETTau' in results) self.assertFalse(self.dbs.listPrimaryDatasets('DoesntExist')) return def testMatchProcessedDatasets(self): """ matchProcessedDatasets returns known processed datasets """ self.dbs = DBSReader(self.endpoint) dataset = self.dbs.matchProcessedDatasets('Jet', 'RAW', 'Run2011A-v1') self.assertEqual(1, len(dataset)) self.assertEqual(['/Jet/Run2011A-v1/RAW'], dataset[0]['PathList']) self.assertEqual('Run2011A-v1', dataset[0]['Name']) self.assertFalse(self.dbs.matchProcessedDatasets('Jet', 'RAW', 'Run2011A-v666')) def testlistRuns(self): """listRuns returns known runs""" self.dbs = DBSReader(self.endpoint) runs = self.dbs.listRuns(dataset=DATASET) self.assertEqual(46, len(runs)) self.assertTrue(174074 in runs) runs = self.dbs.listRuns(block=BLOCK) self.assertEqual(1, len(runs)) self.assertEqual([173657], runs) def testlistRunLumis(self): """listRunLumis returns known runs and lumicounts (None for DBS3)""" self.dbs = DBSReader(self.endpoint) runs = self.dbs.listRunLumis(dataset=DATASET) self.assertEqual(46, len(runs)) self.assertTrue(173692 in runs) self.assertEqual(runs[173692], None) runs = self.dbs.listRunLumis(block=BLOCK) self.assertEqual(1, len(runs)) self.assertTrue(173657 in runs) self.assertEqual(runs[173657], None) def testListProcessedDatasets(self): """listProcessedDatasets returns known processed datasets""" self.dbs = DBSReader(self.endpoint) datasets = self.dbs.listProcessedDatasets('Jet', 'RAW') self.assertTrue('Run2011A-v1' in datasets) self.assertTrue('Run2011B-v1' in datasets) self.assertFalse(self.dbs.listProcessedDatasets('Jet', 'blah')) self.assertFalse(self.dbs.listProcessedDatasets('blah', 'RAW')) def testlistDatasetFiles(self): """listDatasetFiles returns files in dataset""" self.dbs = DBSReader(self.endpoint) files = self.dbs.listDatasetFiles(DATASET) self.assertEqual(49, len(files)) self.assertTrue(FILE in files) def testlistDatasetFileDetails(self): """testlistDatasetFilesDetails returns lumis, events, and parents of a dataset""" TESTFILE = '/store/data/Run2011A/HighPileUp/RAW/v1/000/173/658/56484BAB-CBCB-E011-AF00-BCAEC518FF56.root' self.dbs = DBSReader(self.endpoint) details = self.dbs.listDatasetFileDetails(DATASET) self.assertEqual(len(details), 49) self.assertTrue(TESTFILE in details) self.assertEqual(details[TESTFILE]['NumberOfEvents'], 545) self.assertEqual(details[TESTFILE]['file_size'], 286021145) self.assertEqual(details[TESTFILE]['BlockName'], '/HighPileUp/Run2011A-v1/RAW#dd6e0796-cbcc-11e0-80a9-003048caaace') self.assertEqual(details[TESTFILE]['Md5'], 'NOTSET') self.assertEqual(details[TESTFILE]['md5'], 'NOTSET') self.assertEqual(details[TESTFILE]['Adler32'], 'a41a1446') self.assertEqual(details[TESTFILE]['adler32'], 'a41a1446') self.assertEqual(details[TESTFILE]['Checksum'], '22218315') self.assertEqual(details[TESTFILE]['check_sum'], '22218315') self.assertTrue(173658 in details[TESTFILE]['Lumis']) self.assertEqual(sorted(details[TESTFILE]['Lumis'][173658]), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111]) def testGetDBSSummaryInfo(self): """getDBSSummaryInfo returns summary of dataset and block""" self.dbs = DBSReader(self.endpoint) dataset = self.dbs.getDBSSummaryInfo(DATASET) self.assertEqual(dataset['path'], DATASET) self.assertEqual(dataset['block'], '') self.assertEqual(dataset['NumberOfEvents'], 22075) self.assertEqual(dataset['NumberOfBlocks'], 46) self.assertEqual(dataset['FileSize'], 4001680824) self.assertEqual(dataset['file_size'], 4001680824) self.assertEqual(dataset['NumberOfFiles'], 49) self.assertEqual(dataset['NumberOfLumis'], 7223) block = self.dbs.getDBSSummaryInfo(DATASET, BLOCK) self.assertEqual(block['path'], DATASET) self.assertEqual(block['block'], BLOCK) self.assertEqual(block['NumberOfEvents'], 377) self.assertEqual(block['NumberOfBlocks'], 1) self.assertEqual(block['FileSize'], 150780132) self.assertEqual(block['file_size'], 150780132) self.assertEqual(block['NumberOfFiles'], 2) self.assertEqual(block['NumberOfLumis'], 94) with self.assertRaises(DBSReaderError): self.dbs.getDBSSummaryInfo(DATASET + 'blah') with self.assertRaises(DBSReaderError): self.dbs.getDBSSummaryInfo(DATASET, BLOCK + 'asas') def testListFileBlocks(self): """listFileBlocks returns block names in dataset""" self.dbs = DBSReader(self.endpoint) blocks = self.dbs.listFileBlocks(DATASET) self.assertTrue(BLOCK in blocks) # block is closed block = self.dbs.listFileBlocks(DATASET, blockName=BLOCK, onlyClosedBlocks=True)[0] self.assertEqual(block, BLOCK) self.assertTrue(BLOCK in block) def testListOpenFileBlocks(self): """listOpenFileBlocks finds open blocks""" # hard to find a dataset with open blocks, so don't bother self.dbs = DBSReader(self.endpoint) self.assertFalse(self.dbs.listOpenFileBlocks(DATASET)) def testBlockExists(self): """blockExists returns existence of blocks""" self.dbs = DBSReader(self.endpoint) self.assertTrue(self.dbs.blockExists(BLOCK)) self.assertRaises(DBSReaderError, self.dbs.blockExists, DATASET + '#somethingelse') def testListFilesInBlock(self): """listFilesInBlock returns files in block""" self.dbs = DBSReader(self.endpoint) self.assertTrue(FILE in [x['LogicalFileName'] for x in self.dbs.listFilesInBlock(BLOCK)]) self.assertRaises(DBSReaderError, self.dbs.listFilesInBlock, DATASET + '#blah') def testListFilesInBlockWithParents(self): """listFilesInBlockWithParents gets files with parents for a block""" self.dbs = DBSReader(self.endpoint) files = self.dbs.listFilesInBlockWithParents( '/Cosmics/Commissioning2015-PromptReco-v1/RECO#004ac3ba-d09e-11e4-afad-001e67ac06a0') self.assertEqual(4, len(files)) self.assertEqual('/Cosmics/Commissioning2015-PromptReco-v1/RECO#004ac3ba-d09e-11e4-afad-001e67ac06a0', files[0]['block_name']) self.assertEqual('/Cosmics/Commissioning2015-PromptReco-v1/RECO#004ac3ba-d09e-11e4-afad-001e67ac06a0', files[0]['BlockName']) self.assertEqual( '/store/data/Commissioning2015/Cosmics/RAW/v1/000/238/545/00000/1043E89F-2DCF-E411-9CAE-02163E013751.root', files[0]['ParentList'][0]['LogicalFileName']) self.assertRaises(DBSReaderError, self.dbs.listFilesInBlockWithParents, BLOCK + 'asas') def testLfnsInBlock(self): """lfnsInBlock returns lfns in block""" self.dbs = DBSReader(self.endpoint) self.assertTrue(FILE in [x['logical_file_name'] for x in self.dbs.lfnsInBlock(BLOCK)]) self.assertRaises(DBSReaderError, self.dbs.lfnsInBlock, BLOCK + 'asas') def testListFileBlockLocation(self): """listFileBlockLocation returns block location""" WRONG_BLOCK = BLOCK[:-4] + 'abcd' BLOCK2 = '/HighPileUp/Run2011A-v1/RAW#6021175e-cbfb-11e0-80a9-003048caaace' DBS_BLOCK = '/GenericTTbar/hernan-140317_231446_crab_JH_ASO_test_T2_ES_CIEMAT_5000_100_140318_0014-' + \ 'ea0972193530f531086947d06eb0f121/USER#fb978442-a61b-413a-b4f4-526e6cdb142e' DBS_BLOCK2 = '/GenericTTbar/hernan-140317_231446_crab_JH_ASO_test_T2_ES_CIEMAT_5000_100_140318_0014-' + \ 'ea0972193530f531086947d06eb0f121/USER#0b04d417-d734-4ef2-88b0-392c48254dab' self.dbs = DBSReader('https://cmsweb.cern.ch/dbs/prod/phys03/DBSReader/') self.assertEqual(self.dbs.listFileBlockLocation(BLOCK), []) # This block is only found on DBS self.assertItemsEqual(self.dbs.listFileBlockLocation(DBS_BLOCK), [u'T2_ES_CIEMAT']) # doesn't raise on non-existant block self.assertEqual(self.dbs.listFileBlockLocation(WRONG_BLOCK), []) # test bulk call: ## two blocks in phedex self.assertEqual(2, len(self.dbs.listFileBlockLocation([BLOCK, BLOCK2]))) ## one block in phedex one does not exist self.assertEqual(2, len(self.dbs.listFileBlockLocation([BLOCK, WRONG_BLOCK]))) ## one in phedex one in dbs self.assertEqual(2, len(self.dbs.listFileBlockLocation([BLOCK, DBS_BLOCK]))) ## two in dbs self.assertEqual(2, len(self.dbs.listFileBlockLocation([DBS_BLOCK, DBS_BLOCK2]))) ## one in DBS and one does not exist self.assertEqual(2, len(self.dbs.listFileBlockLocation([DBS_BLOCK, WRONG_BLOCK]))) def testGetFileBlock(self): """getFileBlock returns block""" self.dbs = DBSReader(self.endpoint) block = self.dbs.getFileBlock(BLOCK) self.assertEqual(len(block), 3) self.assertEqual(2, len(block['Files'])) self.assertRaises(DBSReaderError, self.dbs.getFileBlock, BLOCK + 'asas') def testGetFileBlockWithParents(self): """getFileBlockWithParents returns block and parents""" self.dbs = DBSReader(self.endpoint) block = self.dbs.getFileBlockWithParents(BLOCK_WITH_PARENTS) self.assertEqual(len(block), 3) self.assertEqual(PARENT_FILE, block['Files'][0]['ParentList'][0]['LogicalFileName']) self.assertRaises(DBSReaderError, self.dbs.getFileBlockWithParents, BLOCK + 'asas') def testListBlockParents(self): """listBlockParents returns block parents""" self.dbs = DBSReader(self.endpoint) parents = self.dbs.listBlockParents(BLOCK_WITH_PARENTS) self.assertItemsEqual([PARENT_BLOCK], parents) self.assertFalse(self.dbs.listBlockParents(PARENT_BLOCK)) def testBlockIsOpen(self): """blockIsOpen checks if a block is open""" self.dbs = DBSReader(self.endpoint) self.assertFalse(self.dbs.blockIsOpen(BLOCK)) def testBlockToDatasetPath(self): """blockToDatasetPath extracts path from block name""" self.dbs = DBSReader(self.endpoint) self.assertEqual(self.dbs.blockToDatasetPath(BLOCK), DATASET) self.assertRaises(DBSReaderError, self.dbs.blockToDatasetPath, BLOCK + 'asas') if __name__ == '__main__': unittest.main()
45.329032
123
0.661472
44e84d57cb44e3b582fd702ffb12e3ff7bbf30eb
3,170
py
Python
asn/neuronModel.py
lynnsoerensen/Arousal_DCNN
0f4ae01dac06722fa5fecfd43e13b722cdf09199
[ "MIT" ]
2
2020-12-30T00:38:14.000Z
2021-07-01T18:30:13.000Z
asn/neuronModel.py
lynnsoerensen/Arousal_DCNN
0f4ae01dac06722fa5fecfd43e13b722cdf09199
[ "MIT" ]
null
null
null
asn/neuronModel.py
lynnsoerensen/Arousal_DCNN
0f4ae01dac06722fa5fecfd43e13b722cdf09199
[ "MIT" ]
1
2021-10-03T08:49:35.000Z
2021-10-03T08:49:35.000Z
import numpy as np class ASN: """ Adaptive spiking neuron class, double-checked on Jan 24, 2018 """ def __init__(self, mf=0.1, bias=0): # Params # membrane filter self.tau_phi = 2.5 self.dPhi = np.exp(-1 / self.tau_phi) # threshold decay filter self.tau_gamma = 15.0 self.dGamma = np.exp(-1 / self.tau_gamma) # refractory decay filter self.tau_eta = 50.0 self.dEta = np.exp(-1 / self.tau_eta) self.dBeta = self.dEta self.m_f = mf # **2 would be the old matlab code self.theta0 = self.m_f # Resting threshold self.S_bias = bias self.S = self.S_bias # filtered activation, initialized with bias self.S_dyn = 0 self.theta = self.theta0 # Start value of threshold self.theta_dyn = 0 # dynamic part of the threshold self.S_hat = 0 # refractory response, internal approximation self.current_next = 0 # incoming current in next neuron self.S_next = 0 # and filtered by the membrane potential. self.I = 0 self.spike = 0 def update(self, current, spike_train=True): """inject current for one moment at a time""" # Membrane filter if spike_train: self.I = self.I * self.dBeta + current else: self.I = current self.S_dyn = (1 - self.dPhi) * self.I + self.dPhi * self.S_dyn self.S = self.S_bias + self.S_dyn # Decay self.S_hat = self.S_hat * self.dEta self.current_next = self.current_next * self.dEta # Spike? if self.S - self.S_hat > 0.5 * self.theta: self.spike = 1 # Code spike # Update refractory response self.S_hat = self.S_hat + self.theta # Update threshold # self.theta_dyn = self.theta_dyn + self.m_f*self.theta/self.theta0 #based on the matlab code self.theta_dyn = self.theta_dyn + self.m_f * self.theta # adaptive part based on the paper self.current_next = self.current_next + 1 else: self.spike = 0 # Decay self.theta_dyn = self.theta_dyn * self.dGamma self.theta = self.theta0 + self.theta_dyn # Signal in next neuron self.S_next = (1 - self.dPhi) * self.current_next + self.dPhi * self.S_next def call(self, input, spike_train=True, mf=0.1, bias=0): timesteps = input.shape[1] batch_size = input.shape[0] S = np.zeros(input.shape) S_next = np.zeros(input.shape) spikes = np.zeros(input.shape) S_hat = np.zeros(input.shape) theta = np.zeros(input.shape) for b in range(batch_size): self.__init__(mf=mf, bias=bias) for t in range(timesteps): # loop over timesteps self.update(input[b, t, :], spike_train=spike_train) S[b, t, 0] = self.S S_next[b, t, 0] = self.S_next spikes[b, t, 0] = self.spike S_hat[b, t, 0] = self.S_hat theta[b, t, 0] = self.theta return S_next, spikes, S, S_hat, theta
35.617978
105
0.570978
aba4244b7274b765aa0af9774b2318ce20e75f22
201
py
Python
AtCoder/ABC/B/page-13/088B.py
Nishi05/Competitive-programming
e59a6755b706d9d5c1f359f4511d92c114e6a94e
[ "MIT" ]
null
null
null
AtCoder/ABC/B/page-13/088B.py
Nishi05/Competitive-programming
e59a6755b706d9d5c1f359f4511d92c114e6a94e
[ "MIT" ]
null
null
null
AtCoder/ABC/B/page-13/088B.py
Nishi05/Competitive-programming
e59a6755b706d9d5c1f359f4511d92c114e6a94e
[ "MIT" ]
null
null
null
n = int(input()) lst = list(map(int, input().split())) lst.sort(reverse=True) a = 0 b = 0 for i in range(1, n+1): if i % 2 == 0: b += lst[i-1] else: a += lst[i-1] print(a-b)
13.4
37
0.477612
a6fb653b8551c87c741d8c6d6cac5633b1d54c9a
11,644
py
Python
tests/test_cli.py
mdengler/pipgrip
03f5b9df70d8035b26d35e1dfa5bae6857fc240d
[ "BSD-3-Clause" ]
null
null
null
tests/test_cli.py
mdengler/pipgrip
03f5b9df70d8035b26d35e1dfa5bae6857fc240d
[ "BSD-3-Clause" ]
null
null
null
tests/test_cli.py
mdengler/pipgrip
03f5b9df70d8035b26d35e1dfa5bae6857fc240d
[ "BSD-3-Clause" ]
null
null
null
import pytest from click.testing import CliRunner import pipgrip.pipper from pipgrip.cli import flatten, main from pipgrip.pipper import _download_wheel self_wheel = _download_wheel(".", None, None, None, "./tests/assets") # fmt: off def mock_download_wheel(package, *args, **kwargs): wheelhouse = { ".": self_wheel, "setuptools>=38.3": "./tests/assets/setuptools-44.0.0-py2.py3-none-any.whl", "pkginfo>=1.4.2": "./tests/assets/pkginfo-1.5.0.1-py2.py3-none-any.whl", "packaging>=17": "./tests/assets/packaging-20.0-py2.py3-none-any.whl", "click": "./tests/assets/Click-7.0-py2.py3-none-any.whl", "anytree": "./tests/assets/anytree-2.7.3-py2.py3-none-any.whl", "six": "./tests/assets/six-1.13.0-py2.py3-none-any.whl", "wheel": "./tests/assets/wheel-0.33.6-py2.py3-none-any.whl", "pyparsing>=2.0.2": "./tests/assets/pyparsing-2.4.6-py2.py3-none-any.whl", "requests==2.22.0": "./tests/assets/requests-2.22.0-py2.py3-none-any.whl", "urllib3<1.25.0|>1.25.0,<1.25.1|>1.25.1,<1.26,>=1.21.1": "./tests/assets/urllib3-1.25-py2.py3-none-any.whl", "urllib3==1.25.7": "./tests/assets/urllib3-1.25.7-py2.py3-none-any.whl", "idna<2.9,>=2.5": "./tests/assets/idna-2.8-py2.py3-none-any.whl", "chardet<3.1.0,>=3.0.2": "./tests/assets/chardet-3.0.4-py2.py3-none-any.whl", "certifi>=2017.4.17": "./tests/assets/certifi-2019.11.28-py2.py3-none-any.whl", "keras==2.2.2": "./tests/assets/Keras-2.2.2-py2.py3-none-any.whl", "six>=1.9.0": "./tests/assets/six-1.13.0-py2.py3-none-any.whl", "scipy>=0.14": "./tests/assets/scipy-1.2.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", "pyyaml": "./tests/assets/PyYAML-5.3-cp27-cp27m-macosx_10_14_x86_64.whl", "numpy>=1.9.1": "./tests/assets/numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl", "keras-preprocessing==1.0.2": "./tests/assets/Keras_Preprocessing-1.0.2-py2.py3-none-any.whl", "keras-preprocessing": "./tests/assets/Keras_Preprocessing-1.1.0-py2.py3-none-any.whl", "keras-applications==1.0.4": "./tests/assets/Keras_Applications-1.0.4-py2.py3-none-any.whl", "h5py": "./tests/assets/h5py-2.10.0-cp27-cp27m-macosx_10_6_intel.whl", "pip>=7.1.0": "./tests/assets/pip-20.0.2-py2.py3-none-any.whl", } return wheelhouse[package] def mock_get_available_versions(package, *args, **kwargs): versions = { "setuptools": ["44.0.0"], "pkginfo": ["1.5.0.1"], "packaging": ["20.0"], "click": ["7.0"], "anytree": ["2.7.3"], "six": ["1.13.0"], "wheel": ["0.33.6"], "pyparsing": ["2.4.6"], "requests": ["2.22.0"], "urllib3": ["1.25.7"], "idna": ["2.8"], "chardet": ["3.0.4"], "certifi": ["2019.11.28"], "keras": ["2.2.2", "2.2.3", "2.2.4", "2.2.5", "2.3.0", "2.3.1"], "scipy": ["1.2.2"], "pyyaml": ["5.3"], "numpy": ["1.16.6"], "keras-preprocessing": ["1.0.0", "1.0.1", "1.0.2", "1.0.3", "1.0.4", "1.0.5", "1.0.6", "1.0.8", "1.0.9", "1.1.0"], "keras-applications": ["1.0.0", "1.0.1", "1.0.2", "1.0.4", "1.0.5", "1.0.6", "1.0.7", "1.0.8"], "h5py": ["2.10.0"], "pip": ["20.0.2"], } return versions[package] # fmt: on def invoke_patched(func, arguments, monkeypatch): def default_environment(): return { "implementation_name": "cpython", "implementation_version": "3.7.5", "os_name": "posix", "platform_machine": "x86_64", "platform_release": "5.0.0-1027-azure", "platform_system": "Linux", "platform_version": "#29~18.04.1-Ubuntu SMP Mon Nov 25 21:18:57 UTC 2019", "python_full_version": "3.7.5", "platform_python_implementation": "CPython", "python_version": "3.7", "sys_platform": "linux", } monkeypatch.setattr( pipgrip.pipper, "_download_wheel", mock_download_wheel, ) monkeypatch.setattr( pipgrip.pipper, "_get_available_versions", mock_get_available_versions, ) monkeypatch.setattr( pipgrip.pipper, "default_environment", default_environment, ) runner = CliRunner() return runner.invoke(main, arguments) @pytest.mark.parametrize( "arguments, expected", [ ( ["."], [ ".", "anytree==2.7.3", "six==1.13.0", "click==7.0", "packaging==20.0", "pyparsing==2.4.6", "pkginfo==1.5.0.1", "setuptools==44.0.0", "wheel==0.33.6", "pip==20.0.2", ], ), ( ["requests==2.22.0"], [ "requests==2.22.0", "chardet==3.0.4", "idna==2.8", "urllib3==1.25.7", "certifi==2019.11.28", ], ), ( # cyclic ["keras==2.2.2"], [ "keras==2.2.2", "h5py==2.10.0", "numpy==1.16.6", "six==1.13.0", "keras-applications==1.0.4", "keras-preprocessing==1.0.2", "scipy==1.2.2", "pyyaml==5.3", ], ), ( ["--tree", "keras==2.2.2"], [ # generated on py2.7 - ipython - %paste a - print a u"keras==2.2.2 (2.2.2)", u"\u251c\u2500\u2500 h5py (2.10.0)", u"\u2502 \u251c\u2500\u2500 numpy>=1.7 (1.16.6)", u"\u2502 \u2514\u2500\u2500 six (1.13.0)", u"\u251c\u2500\u2500 keras-applications==1.0.4 (1.0.4)", u"\u2502 \u251c\u2500\u2500 h5py (2.10.0)", u"\u2502 \u2502 \u251c\u2500\u2500 numpy>=1.7 (1.16.6)", u"\u2502 \u2502 \u2514\u2500\u2500 six (1.13.0)", u"\u2502 \u251c\u2500\u2500 keras>=2.1.6 (2.2.2, cyclic)", u"\u2502 \u2514\u2500\u2500 numpy>=1.9.1 (1.16.6)", u"\u251c\u2500\u2500 keras-preprocessing==1.0.2 (1.0.2)", u"\u2502 \u251c\u2500\u2500 keras>=2.1.6 (2.2.2, cyclic)", u"\u2502 \u251c\u2500\u2500 numpy>=1.9.1 (1.16.6)", u"\u2502 \u251c\u2500\u2500 scipy>=0.14 (1.2.2)", u"\u2502 \u2502 \u2514\u2500\u2500 numpy>=1.8.2 (1.16.6)", u"\u2502 \u2514\u2500\u2500 six>=1.9.0 (1.13.0)", u"\u251c\u2500\u2500 numpy>=1.9.1 (1.16.6)", u"\u251c\u2500\u2500 pyyaml (5.3)", u"\u251c\u2500\u2500 scipy>=0.14 (1.2.2)", u"\u2502 \u2514\u2500\u2500 numpy>=1.8.2 (1.16.6)", u"\u2514\u2500\u2500 six>=1.9.0 (1.13.0)", ], ), ( ["keras_preprocessing"], ["keras-preprocessing==1.1.0", "six==1.13.0", "numpy==1.16.6"], ), ( ["-r", "tests/test_reqs.txt"], ["keras-preprocessing==1.1.0", "six==1.13.0", "numpy==1.16.6"], ), ], ids=( "pipgrip pipgrip", "requests", "keras (cyclic)", "--tree keras (cyclic)", "keras_preprocessing (underscore)", "-r", ), ) def test_solutions(arguments, expected, monkeypatch): result = invoke_patched(main, arguments, monkeypatch) if result.exit_code: raise result.exception assert set(result.output.strip().split("\n")) == set(expected) @pytest.mark.parametrize( "arguments", [ (["-h"]), (["-v", "click"]), (["-vv", "click"]), ( [ "-vvv", "--json", "click", "--index-url=https://pypi.org/simple", "--extra-index-url=https://pypi.org/simple", ] ), (["--no-cache-dir", "--lock", "--pipe", "click"]), ( [ "--lock", "--tree", "--max-depth=1", "--pre", "--cache-dir=/tmp/abc", "keras==2.2.2", ] ), (["-r", "tests/test_reqs.txt"]), (["-r", "tests/test_reqs.txt", "-r", "tests/test_reqs.txt"]), (["urllib3==1.25.7", "urllib3<1.25.0|>1.25.0,<1.25.1|>1.25.1,<1.26,>=1.21.1"]), # (["keras-preprocessing==1.0.2", "keras==2.2.2"]), # fix RecursionError ], ) def test_correct_options(arguments, monkeypatch): result = invoke_patched(main, arguments, monkeypatch) if result.exit_code: raise result.exception @pytest.mark.parametrize( "arguments", [ (["--json", "--pipe", "click"]), (["click", "--tree", "--max-depth=-2"]), (["click", "--max-depth=1"]), (["-e", "click"]), (["--reverse-tree", "click"]), (["click", "-r", "tests/test_reqs.txt"]), (["../."]), ], ) def test_incorrect_options(arguments, monkeypatch): result = invoke_patched(main, arguments, monkeypatch) if not result.exit_code: raise RuntimeError("Unexpected result:\n{}".format(result.stdout)) def test_flatten(): a = { ("aiobotocore", "0.11.1"): { ("aiohttp", "3.6.2"): { ("async-timeout", "3.0.1"): {}, ("attrs", "19.3.0"): {}, ("chardet", "3.0.4"): {}, ("multidict", "4.7.3"): {}, ("yarl", "1.4.2"): {("idna", "2.8"): {}, ("multidict", "4.7.3"): {}}, }, ("async-generator", "1.10"): {}, ("awscli", "1.16.278"): { ("pyyaml", "5.1.2"): {}, ("botocore", "1.13.14"): { ("docutils", "0.15.2"): {}, ("jmespath", "0.9.4"): {}, ("python-dateutil", "2.8.0"): {("six", "1.13.0"): {}}, ("urllib3", "1.25.7"): {}, }, ("colorama", "0.4.1"): {}, ("docutils", "0.15.2"): {}, ("rsa", "3.4.2"): {("pyasn1", "0.4.8"): {}}, ("s3transfer", "0.2.1"): { ("botocore", "1.13.14"): { ("docutils", "0.15.2"): {}, ("jmespath", "0.9.4"): {}, ("python-dateutil", "2.8.0"): {("six", "1.13.0"): {}}, ("urllib3", "1.25.7"): {}, } }, }, ("botocore", "1.13.14"): { ("docutils", "0.15.2"): {}, ("jmespath", "0.9.4"): {}, ("python-dateutil", "2.8.0"): {("six", "1.13.0"): {}}, ("urllib3", "1.25.7"): {}, }, ("wrapt", "1.11.2"): {}, } } assert flatten(a) == { "aiobotocore": "0.11.1", "aiohttp": "3.6.2", "async-generator": "1.10", "async-timeout": "3.0.1", "attrs": "19.3.0", "awscli": "1.16.278", "botocore": "1.13.14", "chardet": "3.0.4", "colorama": "0.4.1", "docutils": "0.15.2", "idna": "2.8", "jmespath": "0.9.4", "multidict": "4.7.3", "pyasn1": "0.4.8", "python-dateutil": "2.8.0", "pyyaml": "5.1.2", "rsa": "3.4.2", "s3transfer": "0.2.1", "six": "1.13.0", "urllib3": "1.25.7", "wrapt": "1.11.2", "yarl": "1.4.2", }
36.965079
161
0.455514
bda21e067273d2e1c5db8dc65fdb916b20107941
111,879
py
Python
telethon/telegram_client.py
islam-200555/Telethon
85103bcf6de8024c902ede98f0b9bf0f7f47a0aa
[ "MIT" ]
null
null
null
telethon/telegram_client.py
islam-200555/Telethon
85103bcf6de8024c902ede98f0b9bf0f7f47a0aa
[ "MIT" ]
null
null
null
telethon/telegram_client.py
islam-200555/Telethon
85103bcf6de8024c902ede98f0b9bf0f7f47a0aa
[ "MIT" ]
null
null
null
import asyncio import getpass import hashlib import io import itertools import logging import os import re import sys import time import warnings from collections import UserList from datetime import datetime, timedelta from io import BytesIO from mimetypes import guess_type from async_generator import async_generator, yield_ from .crypto import CdnDecrypter from .tl import TLObject from .tl.custom import InputSizedFile from .tl.functions.updates import GetDifferenceRequest from .tl.functions.upload import ( SaveBigFilePartRequest, SaveFilePartRequest, GetFileRequest ) from .tl.types.updates import ( DifferenceSlice, DifferenceEmpty, Difference, DifferenceTooLong ) from .tl.types.upload import FileCdnRedirect try: import socks except ImportError: socks = None try: import hachoir import hachoir.metadata import hachoir.parser except ImportError: hachoir = None from . import TelegramBareClient from . import helpers, utils, events from .errors import ( RPCError, UnauthorizedError, PhoneCodeEmptyError, PhoneCodeExpiredError, PhoneCodeHashEmptyError, PhoneCodeInvalidError, LocationInvalidError, SessionPasswordNeededError, FileMigrateError, PhoneNumberUnoccupiedError, PhoneNumberOccupiedError, UsernameNotOccupiedError ) from .network import ConnectionTcpFull from .tl.custom import Draft, Dialog from .tl.functions.account import ( GetPasswordRequest, UpdatePasswordSettingsRequest ) from .tl.functions.auth import ( CheckPasswordRequest, LogOutRequest, SendCodeRequest, SignInRequest, SignUpRequest, ResendCodeRequest, ImportBotAuthorizationRequest ) from .tl.functions.contacts import ( GetContactsRequest, ResolveUsernameRequest ) from .tl.functions.messages import ( GetDialogsRequest, GetHistoryRequest, SendMediaRequest, SendMessageRequest, GetChatsRequest, GetAllDraftsRequest, CheckChatInviteRequest, ReadMentionsRequest, SendMultiMediaRequest, UploadMediaRequest, EditMessageRequest, GetFullChatRequest, ForwardMessagesRequest, SearchRequest ) from .tl.functions import channels from .tl.functions import messages from .tl.functions.users import ( GetUsersRequest ) from .tl.functions.channels import ( GetChannelsRequest, GetFullChannelRequest, GetParticipantsRequest ) from .tl.types import ( DocumentAttributeAudio, DocumentAttributeFilename, InputMediaUploadedDocument, InputMediaUploadedPhoto, InputPeerEmpty, Message, MessageMediaContact, MessageMediaDocument, MessageMediaPhoto, InputUserSelf, UserProfilePhoto, ChatPhoto, UpdateMessageID, UpdateNewChannelMessage, UpdateNewMessage, UpdateShortSentMessage, PeerUser, InputPeerUser, InputPeerChat, InputPeerChannel, MessageEmpty, ChatInvite, ChatInviteAlready, PeerChannel, Photo, InputPeerSelf, InputSingleMedia, InputMediaPhoto, InputPhoto, InputFile, InputFileBig, InputDocument, InputMediaDocument, Document, MessageEntityTextUrl, InputMessageEntityMentionName, DocumentAttributeVideo, UpdateEditMessage, UpdateEditChannelMessage, UpdateShort, Updates, MessageMediaWebPage, ChannelParticipantsSearch, PhotoSize, PhotoCachedSize, PhotoSizeEmpty, MessageService, ChatParticipants, User, WebPage, ChannelParticipantsBanned, ChannelParticipantsKicked, InputMessagesFilterEmpty ) from .tl.types.messages import DialogsSlice from .tl.types.account import PasswordInputSettings, NoPassword from .extensions import markdown, html __log__ = logging.getLogger(__name__) class TelegramClient(TelegramBareClient): """ Initializes the Telegram client with the specified API ID and Hash. Args: session (`str` | `telethon.sessions.abstract.Session`, `None`): The file name of the session file to be used if a string is given (it may be a full path), or the Session instance to be used otherwise. If it's ``None``, the session will not be saved, and you should call :meth:`.log_out()` when you're done. Note that if you pass a string it will be a file in the current working directory, although you can also pass absolute paths. The session file contains enough information for you to login without re-sending the code, so if you have to enter the code more than once, maybe you're changing the working directory, renaming or removing the file, or using random names. api_id (`int` | `str`): The API ID you obtained from https://my.telegram.org. api_hash (`str`): The API ID you obtained from https://my.telegram.org. connection (`telethon.network.connection.common.Connection`, optional): The connection instance to be used when creating a new connection to the servers. If it's a type, the `proxy` argument will be used. Defaults to `telethon.network.connection.tcpfull.ConnectionTcpFull`. use_ipv6 (`bool`, optional): Whether to connect to the servers through IPv6 or not. By default this is ``False`` as IPv6 support is not too widespread yet. proxy (`tuple` | `dict`, optional): A tuple consisting of ``(socks.SOCKS5, 'host', port)``. See https://github.com/Anorov/PySocks#usage-1 for more. update_workers (`int`, optional): If specified, represents how many extra threads should be spawned to handle incoming updates, and updates will be kept in memory until they are processed. Note that you must set this to at least ``0`` if you want to be able to process updates through :meth:`updates.poll()`. timeout (`int` | `float` | `timedelta`, optional): The timeout to be used when receiving responses from the network. Defaults to 5 seconds. spawn_read_thread (`bool`, optional): Whether to use an extra background thread or not. Defaults to ``True`` so receiving items from the network happens instantly, as soon as they arrive. Can still be disabled if you want to run the library without any additional thread. report_errors (`bool`, optional): Whether to report RPC errors or not. Defaults to ``True``, see :ref:`api-status` for more information. Kwargs: Some extra parameters are required when establishing the first connection. These are are (along with their default values): .. code-block:: python device_model = platform.node() system_version = platform.system() app_version = TelegramClient.__version__ lang_code = 'en' system_lang_code = lang_code """ # region Initialization def __init__(self, session, api_id, api_hash, *, connection=ConnectionTcpFull, use_ipv6=False, proxy=None, timeout=timedelta(seconds=10), loop=None, report_errors=True, **kwargs): super().__init__( session, api_id, api_hash, connection=connection, use_ipv6=use_ipv6, proxy=proxy, timeout=timeout, loop=loop, report_errors=report_errors, **kwargs ) self._event_builders = [] self._events_pending_resolve = [] # Some fields to easy signing in. Let {phone: hash} be # a dictionary because the user may change their mind. self._phone_code_hash = {} self._phone = None # Sometimes we need to know who we are, cache the self peer self._self_input_peer = None # endregion # region Telegram requests functions # region Authorization requests async def send_code_request(self, phone, force_sms=False): """ Sends a code request to the specified phone number. Args: phone (`str` | `int`): The phone to which the code will be sent. force_sms (`bool`, optional): Whether to force sending as SMS. Returns: An instance of :tl:`SentCode`. """ phone = utils.parse_phone(phone) or self._phone phone_hash = self._phone_code_hash.get(phone) if not phone_hash: result = await self(SendCodeRequest(phone, self.api_id, self.api_hash)) self._phone_code_hash[phone] = phone_hash = result.phone_code_hash else: force_sms = True self._phone = phone if force_sms: result = await self(ResendCodeRequest(phone, phone_hash)) self._phone_code_hash[phone] = result.phone_code_hash return result async def start(self, phone=lambda: input('Please enter your phone: '), password=lambda: getpass.getpass( 'Please enter your password: '), bot_token=None, force_sms=False, code_callback=None, first_name='New User', last_name=''): """ Convenience method to interactively connect and sign in if required, also taking into consideration that 2FA may be enabled in the account. Example usage: >>> import asyncio >>> rc = asyncio.get_event_loop().run_until_complete >>> client = rc(TelegramClient(session, api_id, api_hash).start(phone)) Please enter the code you received: 12345 Please enter your password: ******* (You are now logged in) Args: phone (`str` | `int` | `callable`): The phone (or callable without arguments to get it) to which the code will be sent. password (`callable`, optional): The password for 2 Factor Authentication (2FA). This is only required if it is enabled in your account. bot_token (`str`): Bot Token obtained by `@BotFather <https://t.me/BotFather>`_ to log in as a bot. Cannot be specified with ``phone`` (only one of either allowed). force_sms (`bool`, optional): Whether to force sending the code request as SMS. This only makes sense when signing in with a `phone`. code_callback (`callable`, optional): A callable that will be used to retrieve the Telegram login code. Defaults to `input()`. first_name (`str`, optional): The first name to be used if signing up. This has no effect if the account already exists and you sign in. last_name (`str`, optional): Similar to the first name, but for the last. Optional. Returns: This `TelegramClient`, so initialization can be chained with ``.start()``. """ if code_callback is None: def code_callback(): return input('Please enter the code you received: ') elif not callable(code_callback): raise ValueError( 'The code_callback parameter needs to be a callable ' 'function that returns the code you received by Telegram.' ) if not phone and not bot_token: raise ValueError('No phone number or bot token provided.') if phone and bot_token and not callable(phone): raise ValueError('Both a phone and a bot token provided, ' 'must only provide one of either') if not self.is_connected(): await self.connect() if self.is_user_authorized(): await self._check_events_pending_resolve() return self if bot_token: await self.sign_in(bot_token=bot_token) return self # Turn the callable into a valid phone number while callable(phone): phone = utils.parse_phone(phone()) or phone me = None attempts = 0 max_attempts = 3 two_step_detected = False sent_code = await self.send_code_request(phone, force_sms=force_sms) sign_up = not sent_code.phone_registered while attempts < max_attempts: try: if sign_up: me = await self.sign_up(code_callback(), first_name, last_name) else: # Raises SessionPasswordNeededError if 2FA enabled me = await self.sign_in(phone, code_callback()) break except SessionPasswordNeededError: two_step_detected = True break except PhoneNumberOccupiedError: sign_up = False except PhoneNumberUnoccupiedError: sign_up = True except (PhoneCodeEmptyError, PhoneCodeExpiredError, PhoneCodeHashEmptyError, PhoneCodeInvalidError): print('Invalid code. Please try again.', file=sys.stderr) attempts += 1 else: raise RuntimeError( '{} consecutive sign-in attempts failed. Aborting' .format(max_attempts) ) if two_step_detected: if not password: raise ValueError( "Two-step verification is enabled for this account. " "Please provide the 'password' argument to 'start()'." ) # TODO If callable given make it retry on invalid if callable(password): password = password() me = await self.sign_in(phone=phone, password=password) # We won't reach here if any step failed (exit by exception) signed, name = 'Signed in successfully as', utils.get_display_name(me) try: print(signed, name) except UnicodeEncodeError: # Some terminals don't support certain characters print(signed, name.encode('utf-8', errors='ignore') .decode('ascii', errors='ignore')) await self._check_events_pending_resolve() return self async def sign_in(self, phone=None, code=None, password=None, bot_token=None, phone_code_hash=None): """ Starts or completes the sign in process with the given phone number or code that Telegram sent. Args: phone (`str` | `int`): The phone to send the code to if no code was provided, or to override the phone that was previously used with these requests. code (`str` | `int`): The code that Telegram sent. Note that if you have sent this code through the application itself it will immediately expire. If you want to send the code, obfuscate it somehow. If you're not doing any of this you can ignore this note. password (`str`): 2FA password, should be used if a previous call raised SessionPasswordNeededError. bot_token (`str`): Used to sign in as a bot. Not all requests will be available. This should be the hash the @BotFather gave you. phone_code_hash (`str`): The hash returned by .send_code_request. This can be set to None to use the last hash known. Returns: The signed in user, or the information about :meth:`send_code_request`. """ if self.is_user_authorized(): await self._check_events_pending_resolve() return self.get_me() if phone and not code and not password: return await self.send_code_request(phone) elif code: phone = utils.parse_phone(phone) or self._phone phone_code_hash = \ phone_code_hash or self._phone_code_hash.get(phone, None) if not phone: raise ValueError( 'Please make sure to call send_code_request first.' ) if not phone_code_hash: raise ValueError('You also need to provide a phone_code_hash.') # May raise PhoneCodeEmptyError, PhoneCodeExpiredError, # PhoneCodeHashEmptyError or PhoneCodeInvalidError. result = await self(SignInRequest(phone, phone_code_hash, str(code))) elif password: salt = (await self(GetPasswordRequest())).current_salt result = await self(CheckPasswordRequest( helpers.get_password_hash(password, salt) )) elif bot_token: result = await self(ImportBotAuthorizationRequest( flags=0, bot_auth_token=bot_token, api_id=self.api_id, api_hash=self.api_hash )) else: raise ValueError( 'You must provide a phone and a code the first time, ' 'and a password only if an RPCError was raised before.' ) self._self_input_peer = utils.get_input_peer( result.user, allow_self=False ) await self._set_connected_and_authorized() return result.user async def sign_up(self, code, first_name, last_name=''): """ Signs up to Telegram if you don't have an account yet. You must call .send_code_request(phone) first. Args: code (`str` | `int`): The code sent by Telegram first_name (`str`): The first name to be used by the new account. last_name (`str`, optional) Optional last name. Returns: The new created :tl:`User`. """ if self.is_user_authorized(): await self._check_events_pending_resolve() return await self.get_me() result = await self(SignUpRequest( phone_number=self._phone, phone_code_hash=self._phone_code_hash.get(self._phone, ''), phone_code=str(code), first_name=first_name, last_name=last_name )) self._self_input_peer = utils.get_input_peer( result.user, allow_self=False ) await self._set_connected_and_authorized() return result.user async def log_out(self): """ Logs out Telegram and deletes the current ``*.session`` file. Returns: ``True`` if the operation was successful. """ try: await self(LogOutRequest()) except RPCError: return False self.disconnect() await self.session.delete() self._authorized = False return True async def get_me(self, input_peer=False): """ Gets "me" (the self user) which is currently authenticated, or None if the request fails (hence, not authenticated). Args: input_peer (`bool`, optional): Whether to return the :tl:`InputPeerUser` version or the normal :tl:`User`. This can be useful if you just need to know the ID of yourself. Returns: Your own :tl:`User`. """ if input_peer and self._self_input_peer: return self._self_input_peer try: me = (await self(GetUsersRequest([InputUserSelf()])))[0] if not self._self_input_peer: self._self_input_peer = utils.get_input_peer( me, allow_self=False ) return self._self_input_peer if input_peer else me except UnauthorizedError: return None # endregion # region Dialogs ("chats") requests @async_generator async def iter_dialogs(self, limit=None, offset_date=None, offset_id=0, offset_peer=InputPeerEmpty(), _total=None): """ Returns an iterator over the dialogs, yielding 'limit' at most. Dialogs are the open "chats" or conversations with other people, groups you have joined, or channels you are subscribed to. Args: limit (`int` | `None`): How many dialogs to be retrieved as maximum. Can be set to ``None`` to retrieve all dialogs. Note that this may take whole minutes if you have hundreds of dialogs, as Telegram will tell the library to slow down through a ``FloodWaitError``. offset_date (`datetime`, optional): The offset date to be used. offset_id (`int`, optional): The message ID to be used as an offset. offset_peer (:tl:`InputPeer`, optional): The peer to be used as an offset. _total (`list`, optional): A single-item list to pass the total parameter by reference. Yields: Instances of `telethon.tl.custom.dialog.Dialog`. """ limit = float('inf') if limit is None else int(limit) if limit == 0: if not _total: return # Special case, get a single dialog and determine count dialogs = await self(GetDialogsRequest( offset_date=offset_date, offset_id=offset_id, offset_peer=offset_peer, limit=1 )) _total[0] = getattr(dialogs, 'count', len(dialogs.dialogs)) return seen = set() req = GetDialogsRequest( offset_date=offset_date, offset_id=offset_id, offset_peer=offset_peer, limit=0 ) while len(seen) < limit: req.limit = min(limit - len(seen), 100) r = await self(req) if _total: _total[0] = getattr(r, 'count', len(r.dialogs)) messages = {m.id: m for m in r.messages} entities = {utils.get_peer_id(x): x for x in itertools.chain(r.users, r.chats)} # Happens when there are pinned dialogs if len(r.dialogs) > limit: r.dialogs = r.dialogs[:limit] for d in r.dialogs: peer_id = utils.get_peer_id(d.peer) if peer_id not in seen: seen.add(peer_id) await yield_(Dialog(self, d, entities, messages)) if len(r.dialogs) < req.limit or not isinstance(r, DialogsSlice): # Less than we requested means we reached the end, or # we didn't get a DialogsSlice which means we got all. break req.offset_date = r.messages[-1].date req.offset_peer = entities[utils.get_peer_id(r.dialogs[-1].peer)] req.offset_id = r.messages[-1].id req.exclude_pinned = True async def get_dialogs(self, *args, **kwargs): """ Same as :meth:`iter_dialogs`, but returns a list instead with an additional ``.total`` attribute on the list. """ total = [0] kwargs['_total'] = total dialogs = UserList() async for dialog in self.iter_dialogs(*args, **kwargs): dialogs.append(dialog) dialogs.total = total[0] return dialogs @async_generator async def iter_drafts(self): # TODO: Ability to provide a `filter` """ Iterator over all open draft messages. Instances of `telethon.tl.custom.draft.Draft` are yielded. You can call `telethon.tl.custom.draft.Draft.set_message` to change the message or `telethon.tl.custom.draft.Draft.delete` among other things. """ for update in (await self(GetAllDraftsRequest())).updates: await yield_(Draft._from_update(self, update)) async def get_drafts(self): """ Same as :meth:`iter_drafts`, but returns a list instead. """ return list(await self.iter_drafts()) @staticmethod def _get_response_message(request, result): """ Extracts the response message known a request and Update result. The request may also be the ID of the message to match. """ # Telegram seems to send updateMessageID first, then updateNewMessage, # however let's not rely on that just in case. if isinstance(request, int): msg_id = request else: msg_id = None for update in result.updates: if isinstance(update, UpdateMessageID): if update.random_id == request.random_id: msg_id = update.id break if isinstance(result, UpdateShort): updates = [result.update] elif isinstance(result, Updates): updates = result.updates else: return for update in updates: if isinstance(update, (UpdateNewChannelMessage, UpdateNewMessage)): if update.message.id == msg_id: return update.message elif (isinstance(update, UpdateEditMessage) and not isinstance(request.peer, InputPeerChannel)): if request.id == update.message.id: return update.message elif (isinstance(update, UpdateEditChannelMessage) and utils.get_peer_id(request.peer) == utils.get_peer_id(update.message.to_id)): if request.id == update.message.id: return update.message async def _parse_message_text(self, message, parse_mode): """ Returns a (parsed message, entities) tuple depending on ``parse_mode``. """ if not parse_mode: return message, [] if isinstance(parse_mode, str): parse_mode = parse_mode.lower() if parse_mode in {'md', 'markdown'}: message, msg_entities = markdown.parse(message) elif parse_mode.startswith('htm'): message, msg_entities = html.parse(message) else: raise ValueError('Unknown parsing mode: {}'.format(parse_mode)) elif callable(parse_mode): message, msg_entities = parse_mode(message) else: raise TypeError('Invalid parsing mode type: {}'.format(parse_mode)) for i, e in enumerate(msg_entities): if isinstance(e, MessageEntityTextUrl): m = re.match(r'^@|\+|tg://user\?id=(\d+)', e.url) if m: try: msg_entities[i] = InputMessageEntityMentionName( e.offset, e.length, await self.get_input_entity( int(m.group(1)) if m.group(1) else e.url ) ) except (ValueError, TypeError): # Make no replacement pass return message, msg_entities async def send_message(self, entity, message='', reply_to=None, parse_mode='md', link_preview=True, file=None, force_document=False, clear_draft=False): """ Sends the given message to the specified entity (user/chat/channel). The default parse mode is the same as the official applications (a custom flavour of markdown). ``**bold**, `code` or __italic__`` are available. In addition you can send ``[links](https://example.com)`` and ``[mentions](@username)`` (or using IDs like in the Bot API: ``[mention](tg://user?id=123456789)``) and ``pre`` blocks with three backticks. Sending a ``/start`` command with a parameter (like ``?start=data``) is also done through this method. Simply send ``'/start data'`` to the bot. Args: entity (`entity`): To who will it be sent. message (`str` | :tl:`Message`): The message to be sent, or another message object to resend. The maximum length for a message is 35,000 bytes or 4,096 characters. Longer messages will not be sliced automatically, and you should slice them manually if the text to send is longer than said length. reply_to (`int` | :tl:`Message`, optional): Whether to reply to a message or not. If an integer is provided, it should be the ID of the message that it should reply to. parse_mode (`str`, optional): Can be 'md' or 'markdown' for markdown-like parsing (default), or 'htm' or 'html' for HTML-like parsing. If ``None`` or any other false-y value is provided, the message will be sent with no formatting. If a ``callable`` is passed, it should be a function accepting a `str` as an input and return as output a tuple consisting of ``(parsed message str, [MessageEntity instances])``. See :tl:`MessageEntity` for allowed message entities. link_preview (`bool`, optional): Should the link preview be shown? file (`file`, optional): Sends a message with a file attached (e.g. a photo, video, audio or document). The ``message`` may be empty. force_document (`bool`, optional): Whether to send the given file as a document or not. clear_draft (`bool`, optional): Whether the existing draft should be cleared or not. Has no effect when sending a file. Returns: The sent :tl:`Message`. """ if file is not None: return await self.send_file( entity, file, caption=message, reply_to=reply_to, parse_mode=parse_mode, force_document=force_document ) elif not message: raise ValueError( 'The message cannot be empty unless a file is provided' ) entity = await self.get_input_entity(entity) if isinstance(message, Message): if (message.media and not isinstance(message.media, MessageMediaWebPage)): return await self.send_file(entity, message.media, caption=message.message, entities=message.entities) if reply_to is not None: reply_id = self._get_message_id(reply_to) elif utils.get_peer_id(entity) == utils.get_peer_id(message.to_id): reply_id = message.reply_to_msg_id else: reply_id = None request = SendMessageRequest( peer=entity, message=message.message or '', silent=message.silent, reply_to_msg_id=reply_id, reply_markup=message.reply_markup, entities=message.entities, no_webpage=not isinstance(message.media, MessageMediaWebPage), clear_draft=clear_draft ) message = message.message else: message, msg_ent =\ await self._parse_message_text(message, parse_mode) request = SendMessageRequest( peer=entity, message=message, entities=msg_ent, no_webpage=not link_preview, reply_to_msg_id=self._get_message_id(reply_to), clear_draft=clear_draft ) result = await self(request) if isinstance(result, UpdateShortSentMessage): return Message( id=result.id, to_id=entity, message=message, date=result.date, out=result.out, media=result.media, entities=result.entities ) return self._get_response_message(request, result) async def forward_messages(self, entity, messages, from_peer=None): """ Forwards the given message(s) to the specified entity. Args: entity (`entity`): To which entity the message(s) will be forwarded. messages (`list` | `int` | :tl:`Message`): The message(s) to forward, or their integer IDs. from_peer (`entity`): If the given messages are integer IDs and not instances of the ``Message`` class, this *must* be specified in order for the forward to work. Returns: The list of forwarded :tl:`Message`, or a single one if a list wasn't provided as input. """ single = not utils.is_list_like(messages) if single: messages = (messages,) if not from_peer: try: # On private chats (to_id = PeerUser), if the message is # not outgoing, we actually need to use "from_id" to get # the conversation on which the message was sent. from_peer = next( m.from_id if not m.out and isinstance(m.to_id, PeerUser) else m.to_id for m in messages if isinstance(m, Message) ) except StopIteration: raise ValueError( 'from_chat must be given if integer IDs are used' ) req = ForwardMessagesRequest( from_peer=from_peer, id=[m if isinstance(m, int) else m.id for m in messages], to_peer=entity ) result = await self(req) random_to_id = {} id_to_message = {} for update in result.updates: if isinstance(update, UpdateMessageID): random_to_id[update.random_id] = update.id elif isinstance(update, (UpdateNewMessage, UpdateNewChannelMessage)): id_to_message[update.message.id] = update.message result = [id_to_message[random_to_id[rnd]] for rnd in req.random_id] return result[0] if single else result async def edit_message(self, entity, message=None, text=None, parse_mode='md', link_preview=True): """ Edits the given message ID (to change its contents or disable preview). Args: entity (`entity` | :tl:`Message`): From which chat to edit the message. This can also be the message to be edited, and the entity will be inferred from it, so the next parameter will be assumed to be the message text. message (`int` | :tl:`Message` | `str`): The ID of the message (or :tl:`Message` itself) to be edited. If the `entity` was a :tl:`Message`, then this message will be treated as the new text. text (`str`, optional): The new text of the message. Does nothing if the `entity` was a :tl:`Message`. parse_mode (`str`, optional): Can be 'md' or 'markdown' for markdown-like parsing (default), or 'htm' or 'html' for HTML-like parsing. If ``None`` or any other false-y value is provided, the message will be sent with no formatting. link_preview (`bool`, optional): Should the link preview be shown? Examples: >>> import asyncio >>> async def main(): ... client = await TelegramClient(...).start() ... message = await client.send_message('username', 'hello') ... ... await client.edit_message('username', message, 'hello!') ... # or ... await client.edit_message('username', message.id, 'Hello') ... # or ... await client.edit_message(message, 'Hello!') ... >>> loop = asyncio.get_event_loop() >>> loop.run_until_complete(main()) Raises: ``MessageAuthorRequiredError`` if you're not the author of the message but tried editing it anyway. ``MessageNotModifiedError`` if the contents of the message were not modified at all. Returns: The edited :tl:`Message`. """ if isinstance(entity, Message): text = message # Shift the parameters to the right message = entity entity = entity.to_id text, msg_entities = await self._parse_message_text(text, parse_mode) request = EditMessageRequest( peer=await self.get_input_entity(entity), id=self._get_message_id(message), message=text, no_webpage=not link_preview, entities=msg_entities ) result = await self(request) return self._get_response_message(request, result) async def delete_messages(self, entity, message_ids, revoke=True): """ Deletes a message from a chat, optionally "for everyone". Args: entity (`entity`): From who the message will be deleted. This can actually be ``None`` for normal chats, but **must** be present for channels and megagroups. message_ids (`list` | `int` | :tl:`Message`): The IDs (or ID) or messages to be deleted. revoke (`bool`, optional): Whether the message should be deleted for everyone or not. By default it has the opposite behaviour of official clients, and it will delete the message for everyone. This has no effect on channels or megagroups. Returns: The :tl:`AffectedMessages`. """ if not utils.is_list_like(message_ids): message_ids = (message_ids,) message_ids = [ m.id if isinstance(m, (Message, MessageService, MessageEmpty)) else int(m) for m in message_ids ] if entity is None: return await self(messages.DeleteMessagesRequest(message_ids, revoke=revoke)) entity = await self.get_input_entity(entity) if isinstance(entity, InputPeerChannel): return await self(channels.DeleteMessagesRequest(entity, message_ids)) else: return await self(messages.DeleteMessagesRequest(message_ids, revoke=revoke)) @async_generator async def iter_messages(self, entity, limit=20, offset_date=None, offset_id=0, max_id=0, min_id=0, add_offset=0, search=None, filter=None, from_user=None, batch_size=100, wait_time=None, ids=None, _total=None): """ Iterator over the message history for the specified entity. If either `search`, `filter` or `from_user` are provided, :tl:`messages.Search` will be used instead of :tl:`messages.getHistory`. Args: entity (`entity`): The entity from whom to retrieve the message history. limit (`int` | `None`, optional): Number of messages to be retrieved. Due to limitations with the API retrieving more than 3000 messages will take longer than half a minute (or even more based on previous calls). The limit may also be ``None``, which would eventually return the whole history. offset_date (`datetime`): Offset date (messages *previous* to this date will be retrieved). Exclusive. offset_id (`int`): Offset message ID (only messages *previous* to the given ID will be retrieved). Exclusive. max_id (`int`): All the messages with a higher (newer) ID or equal to this will be excluded. min_id (`int`): All the messages with a lower (older) ID or equal to this will be excluded. add_offset (`int`): Additional message offset (all of the specified offsets + this offset = older messages). search (`str`): The string to be used as a search query. filter (:tl:`MessagesFilter` | `type`): The filter to use when returning messages. For instance, :tl:`InputMessagesFilterPhotos` would yield only messages containing photos. from_user (`entity`): Only messages from this user will be returned. batch_size (`int`): Messages will be returned in chunks of this size (100 is the maximum). While it makes no sense to modify this value, you are still free to do so. wait_time (`int`): Wait time between different :tl:`GetHistoryRequest`. Use this parameter to avoid hitting the ``FloodWaitError`` as needed. If left to ``None``, it will default to 1 second only if the limit is higher than 3000. ids (`int`, `list`): A single integer ID (or several IDs) for the message that should be returned. This parameter takes precedence over the rest (which will be ignored if this is set). This can for instance be used to get the message with ID 123 from a channel. Note that if the message doesn't exist, ``None`` will appear in its place, so that zipping the list of IDs with the messages can match one-to-one. _total (`list`, optional): A single-item list to pass the total parameter by reference. Yields: Instances of :tl:`Message` with extra attributes: * ``.sender`` = entity of the sender. * ``.fwd_from.sender`` = if fwd_from, who sent it originally. * ``.fwd_from.channel`` = if fwd_from, original channel. * ``.to`` = entity to which the message was sent. Notes: Telegram's flood wait limit for :tl:`GetHistoryRequest` seems to be around 30 seconds per 3000 messages, therefore a sleep of 1 second is the default for this limit (or above). You may need an higher limit, so you're free to set the ``batch_size`` that you think may be good. """ entity = await self.get_input_entity(entity) if ids: if not utils.is_list_like(ids): ids = (ids,) async for x in self._iter_ids(entity, ids, total=_total): await yield_(x) return # Telegram doesn't like min_id/max_id. If these IDs are low enough # (starting from last_id - 100), the request will return nothing. # # We can emulate their behaviour locally by setting offset = max_id # and simply stopping once we hit a message with ID <= min_id. offset_id = max(offset_id, max_id) if offset_id and min_id: if offset_id - min_id <= 1: return limit = float('inf') if limit is None else int(limit) if search is not None or filter or from_user: if filter is None: filter = InputMessagesFilterEmpty() request = SearchRequest( peer=entity, q=search or '', filter=filter() if isinstance(filter, type) else filter, min_date=None, max_date=offset_date, offset_id=offset_id, add_offset=add_offset, limit=1, max_id=0, min_id=0, hash=0, from_id=self.get_input_entity(from_user) if from_user else None ) else: request = GetHistoryRequest( peer=entity, limit=1, offset_date=offset_date, offset_id=offset_id, min_id=0, max_id=0, add_offset=add_offset, hash=0 ) if limit == 0: if not _total: return # No messages, but we still need to know the total message count result = await self(request) _total[0] = getattr(result, 'count', len(result.messages)) return if wait_time is None: wait_time = 1 if limit > 3000 else 0 have = 0 last_id = float('inf') batch_size = min(max(batch_size, 1), 100) while have < limit: start = time.time() # Telegram has a hard limit of 100 request.limit = min(limit - have, batch_size) r = await self(request) if _total: _total[0] = getattr(r, 'count', len(r.messages)) entities = {utils.get_peer_id(x): x for x in itertools.chain(r.users, r.chats)} for message in r.messages: if message.id <= min_id: return if isinstance(message, MessageEmpty) or message.id >= last_id: continue # There has been reports that on bad connections this method # was returning duplicated IDs sometimes. Using ``last_id`` # is an attempt to avoid these duplicates, since the message # IDs are returned in descending order. last_id = message.id self._make_message_friendly(message, entities) await yield_(message) have += 1 if len(r.messages) < request.limit: break request.offset_id = r.messages[-1].id if isinstance(request, GetHistoryRequest): request.offset_date = r.messages[-1].date else: request.max_date = r.messages[-1].date await asyncio.sleep(max(wait_time - (time.time() - start), 0)) @staticmethod def _make_message_friendly(message, entities): """ Add a few extra attributes to the :tl:`Message` to be friendlier. To make messages more friendly, always add message to service messages, and action to normal messages. """ # TODO Create an actual friendlier class message.message = getattr(message, 'message', None) message.action = getattr(message, 'action', None) message.to = entities[utils.get_peer_id(message.to_id)] message.sender = ( None if not message.from_id else entities[utils.get_peer_id(message.from_id)] ) if getattr(message, 'fwd_from', None): message.fwd_from.sender = ( None if not message.fwd_from.from_id else entities[utils.get_peer_id(message.fwd_from.from_id)] ) message.fwd_from.channel = ( None if not message.fwd_from.channel_id else entities[utils.get_peer_id( PeerChannel(message.fwd_from.channel_id) )] ) @async_generator async def _iter_ids(self, entity, ids, total): """ Special case for `iter_messages` when it should only fetch some IDs. """ if total: total[0] = len(ids) if isinstance(entity, InputPeerChannel): r = await self(channels.GetMessagesRequest(entity, ids)) else: r = await self(messages.GetMessagesRequest(ids)) entities = {utils.get_peer_id(x): x for x in itertools.chain(r.users, r.chats)} # Telegram seems to return the messages in the order in which # we asked them for, so we don't need to check it ourselves. for message in r.messages: if isinstance(message, MessageEmpty): await yield_(None) else: self._make_message_friendly(message, entities) await yield_(message) async def get_messages(self, *args, **kwargs): """ Same as :meth:`iter_messages`, but returns a list instead with an additional ``.total`` attribute on the list. If the `limit` is not set, it will be 1 by default unless both `min_id` **and** `max_id` are set (as *named* arguments), in which case the entire range will be returned. This is so because any integer limit would be rather arbitrary and it's common to only want to fetch one message, but if a range is specified it makes sense that it should return the entirety of it. If `ids` is present in the *named* arguments and is not a list, a single :tl:`Message` will be returned for convenience instead of a list. """ total = [0] kwargs['_total'] = total if len(args) == 1 and 'limit' not in kwargs: if 'min_id' in kwargs and 'max_id' in kwargs: kwargs['limit'] = None else: kwargs['limit'] = 1 msgs = UserList() async for msg in self.iter_messages(*args, **kwargs): msgs.append(msg) msgs.total = total[0] if 'ids' in kwargs and not utils.is_list_like(kwargs['ids']): return msgs[0] return msgs async def get_message_history(self, *args, **kwargs): """Deprecated, see :meth:`get_messages`.""" warnings.warn( 'get_message_history is deprecated, use get_messages instead' ) return await self.get_messages(*args, **kwargs) async def send_read_acknowledge(self, entity, message=None, max_id=None, clear_mentions=False): """ Sends a "read acknowledge" (i.e., notifying the given peer that we've read their messages, also known as the "double check"). This effectively marks a message as read (or more than one) in the given conversation. Args: entity (`entity`): The chat where these messages are located. message (`list` | :tl:`Message`): Either a list of messages or a single message. max_id (`int`): Overrides messages, until which message should the acknowledge should be sent. clear_mentions (`bool`): Whether the mention badge should be cleared (so that there are no more mentions) or not for the given entity. If no message is provided, this will be the only action taken. """ if max_id is None: if message: if utils.is_list_like(message): max_id = max(msg.id for msg in message) else: max_id = message.id elif not clear_mentions: raise ValueError( 'Either a message list or a max_id must be provided.') entity = await self.get_input_entity(entity) if clear_mentions: await self(ReadMentionsRequest(entity)) if max_id is None: return True if max_id is not None: if isinstance(entity, InputPeerChannel): return await self(channels.ReadHistoryRequest(entity, max_id=max_id)) else: return await self(messages.ReadHistoryRequest(entity, max_id=max_id)) return False @staticmethod def _get_message_id(message): """Sanitizes the 'reply_to' parameter a user may send""" if message is None: return None if isinstance(message, int): return message try: if message.SUBCLASS_OF_ID == 0x790009e3: # hex(crc32(b'Message')) = 0x790009e3 return message.id except AttributeError: pass raise TypeError('Invalid message type: {}'.format(type(message))) @async_generator async def iter_participants(self, entity, limit=None, search='', filter=None, aggressive=False, _total=None): """ Iterator over the participants belonging to the specified chat. Args: entity (`entity`): The entity from which to retrieve the participants list. limit (`int`): Limits amount of participants fetched. search (`str`, optional): Look for participants with this string in name/username. filter (:tl:`ChannelParticipantsFilter`, optional): The filter to be used, if you want e.g. only admins Note that you might not have permissions for some filter. This has no effect for normal chats or users. aggressive (`bool`, optional): Aggressively looks for all participants in the chat in order to get more than 10,000 members (a hard limit imposed by Telegram). Note that this might take a long time (over 5 minutes), but is able to return over 90,000 participants on groups with 100,000 members. This has no effect for groups or channels with less than 10,000 members, or if a ``filter`` is given. _total (`list`, optional): A single-item list to pass the total parameter by reference. Yields: The :tl:`User` objects returned by :tl:`GetParticipantsRequest` with an additional ``.participant`` attribute which is the matched :tl:`ChannelParticipant` type for channels/megagroups or :tl:`ChatParticipants` for normal chats. """ if isinstance(filter, type): if filter in (ChannelParticipantsBanned, ChannelParticipantsKicked, ChannelParticipantsSearch): # These require a `q` parameter (support types for convenience) filter = filter('') else: filter = filter() entity = await self.get_input_entity(entity) if search and (filter or not isinstance(entity, InputPeerChannel)): # We need to 'search' ourselves unless we have a PeerChannel search = search.lower() def filter_entity(ent): return search in utils.get_display_name(ent).lower() or\ search in (getattr(ent, 'username', '') or None).lower() else: def filter_entity(ent): return True limit = float('inf') if limit is None else int(limit) if isinstance(entity, InputPeerChannel): if _total or (aggressive and not filter): total = (await self(GetFullChannelRequest( entity ))).full_chat.participants_count if _total: _total[0] = total else: total = 0 if limit == 0: return seen = set() if total > 10000 and aggressive and not filter: requests = [GetParticipantsRequest( channel=entity, filter=ChannelParticipantsSearch(search + chr(x)), offset=0, limit=200, hash=0 ) for x in range(ord('a'), ord('z') + 1)] else: requests = [GetParticipantsRequest( channel=entity, filter=filter or ChannelParticipantsSearch(search), offset=0, limit=200, hash=0 )] while requests: # Only care about the limit for the first request # (small amount of people, won't be aggressive). # # Most people won't care about getting exactly 12,345 # members so it doesn't really matter not to be 100% # precise with being out of the offset/limit here. requests[0].limit = min(limit - requests[0].offset, 200) if requests[0].offset > limit: break results = await self(requests) for i in reversed(range(len(requests))): participants = results[i] if not participants.users: requests.pop(i) else: requests[i].offset += len(participants.participants) users = {user.id: user for user in participants.users} for participant in participants.participants: user = users[participant.user_id] if not filter_entity(user) or user.id in seen: continue seen.add(participant.user_id) user = users[participant.user_id] user.participant = participant await yield_(user) if len(seen) >= limit: return elif isinstance(entity, InputPeerChat): # TODO We *could* apply the `filter` here ourselves full = await self(GetFullChatRequest(entity.chat_id)) if not isinstance(full.full_chat.participants, ChatParticipants): # ChatParticipantsForbidden won't have ``.participants`` _total[0] = 0 return if _total: _total[0] = len(full.full_chat.participants.participants) have = 0 users = {user.id: user for user in full.users} for participant in full.full_chat.participants.participants: user = users[participant.user_id] if not filter_entity(user): continue have += 1 if have > limit: break else: user = users[participant.user_id] user.participant = participant await yield_(user) else: if _total: _total[0] = 1 if limit != 0: user = await self.get_entity(entity) if filter_entity(user): user.participant = None await yield_(user) async def get_participants(self, *args, **kwargs): """ Same as :meth:`iter_participants`, but returns a list instead with an additional ``.total`` attribute on the list. """ total = [0] kwargs['_total'] = total participants = UserList() async for participant in self.iter_participants(*args, **kwargs): participants.append(participant) participants.total = total[0] return participants # endregion # region Uploading files async def send_file(self, entity, file, caption='', force_document=False, progress_callback=None, reply_to=None, attributes=None, thumb=None, allow_cache=True, parse_mode='md', voice_note=False, video_note=False, **kwargs): """ Sends a file to the specified entity. Args: entity (`entity`): Who will receive the file. file (`str` | `bytes` | `file` | `media`): The path of the file, byte array, or stream that will be sent. Note that if a byte array or a stream is given, a filename or its type won't be inferred, and it will be sent as an "unnamed application/octet-stream". Furthermore the file may be any media (a message, document, photo or similar) so that it can be resent without the need to download and re-upload it again. If a list or similar is provided, the files in it will be sent as an album in the order in which they appear, sliced in chunks of 10 if more than 10 are given. caption (`str`, optional): Optional caption for the sent media message. force_document (`bool`, optional): If left to ``False`` and the file is a path that ends with the extension of an image file or a video file, it will be sent as such. Otherwise always as a document. progress_callback (`callable`, optional): A callback function accepting two parameters: ``(sent bytes, total)``. reply_to (`int` | :tl:`Message`): Same as `reply_to` from `send_message`. attributes (`list`, optional): Optional attributes that override the inferred ones, like :tl:`DocumentAttributeFilename` and so on. thumb (`str` | `bytes` | `file`, optional): Optional thumbnail (for videos). allow_cache (`bool`, optional): Whether to allow using the cached version stored in the database or not. Defaults to ``True`` to avoid re-uploads. Must be ``False`` if you wish to use different attributes or thumb than those that were used when the file was cached. parse_mode (`str`, optional): The parse mode for the caption message. voice_note (`bool`, optional): If ``True`` the audio will be sent as a voice note. Set `allow_cache` to ``False`` if you sent the same file without this setting before for it to work. video_note (`bool`, optional): If ``True`` the video will be sent as a video note, also known as a round video message. Set `allow_cache` to ``False`` if you sent the same file without this setting before for it to work. Notes: If the ``hachoir3`` package (``hachoir`` module) is installed, it will be used to determine metadata from audio and video files. Returns: The :tl:`Message` (or messages) containing the sent file, or messages if a list of them was passed. """ # First check if the user passed an iterable, in which case # we may want to send as an album if all are photo files. if utils.is_list_like(file): # TODO Fix progress_callback images = [] if force_document: documents = file else: documents = [] for x in file: if utils.is_image(x): images.append(x) else: documents.append(x) result = [] while images: result += await self._send_album( entity, images[:10], caption=caption, progress_callback=progress_callback, reply_to=reply_to, parse_mode=parse_mode ) images = images[10:] for x in documents: result.append(await self.send_file( entity, x, allow_cache=allow_cache, caption=caption, force_document=force_document, progress_callback=progress_callback, reply_to=reply_to, attributes=attributes, thumb=thumb, voice_note=voice_note, video_note=video_note, **kwargs )) return result entity = await self.get_input_entity(entity) reply_to = self._get_message_id(reply_to) # Not document since it's subject to change. # Needed when a Message is passed to send_message and it has media. if 'entities' in kwargs: msg_entities = kwargs['entities'] else: caption, msg_entities =\ await self._parse_message_text(caption, parse_mode) if not isinstance(file, (str, bytes, io.IOBase)): # The user may pass a Message containing media (or the media, # or anything similar) that should be treated as a file. Try # getting the input media for whatever they passed and send it. try: media = utils.get_input_media(file) except TypeError: pass # Can't turn whatever was given into media else: request = SendMediaRequest(entity, media, reply_to_msg_id=reply_to, message=caption, entities=msg_entities) return self._get_response_message(request, await self(request)) as_image = utils.is_image(file) and not force_document use_cache = InputPhoto if as_image else InputDocument file_handle = await self.upload_file( file, progress_callback=progress_callback, use_cache=use_cache if allow_cache else None ) if isinstance(file_handle, use_cache): # File was cached, so an instance of use_cache was returned if as_image: media = InputMediaPhoto(file_handle) else: media = InputMediaDocument(file_handle) elif as_image: media = InputMediaUploadedPhoto(file_handle) else: mime_type = None if isinstance(file, str): # Determine mime-type and attributes # Take the first element by using [0] since it returns a tuple mime_type = guess_type(file)[0] attr_dict = { DocumentAttributeFilename: DocumentAttributeFilename(os.path.basename(file)) } if utils.is_audio(file) and hachoir: m = hachoir.metadata.extractMetadata( hachoir.parser.createParser(file) ) attr_dict[DocumentAttributeAudio] = DocumentAttributeAudio( voice=voice_note, title=m.get('title') if m.has('title') else None, performer=m.get('author') if m.has('author') else None, duration=int(m.get('duration').seconds if m.has('duration') else 0) ) if not force_document and utils.is_video(file): if hachoir: m = hachoir.metadata.extractMetadata( hachoir.parser.createParser(file) ) doc = DocumentAttributeVideo( round_message=video_note, w=m.get('width') if m.has('width') else 0, h=m.get('height') if m.has('height') else 0, duration=int(m.get('duration').seconds if m.has('duration') else 0) ) else: doc = DocumentAttributeVideo(0, 1, 1, round_message=video_note) attr_dict[DocumentAttributeVideo] = doc else: attr_dict = { DocumentAttributeFilename: DocumentAttributeFilename( os.path.basename( getattr(file, 'name', None) or 'unnamed')) } if voice_note: if DocumentAttributeAudio in attr_dict: attr_dict[DocumentAttributeAudio].voice = True else: attr_dict[DocumentAttributeAudio] = \ DocumentAttributeAudio(0, voice=True) # Now override the attributes if any. As we have a dict of # {cls: instance}, we can override any class with the list # of attributes provided by the user easily. if attributes: for a in attributes: attr_dict[type(a)] = a # Ensure we have a mime type, any; but it cannot be None # 'The "octet-stream" subtype is used to indicate that a body # contains arbitrary binary data.' if not mime_type: mime_type = 'application/octet-stream' input_kw = {} if thumb: input_kw['thumb'] = await self.upload_file(thumb) media = InputMediaUploadedDocument( file=file_handle, mime_type=mime_type, attributes=list(attr_dict.values()), **input_kw ) # Once the media type is properly specified and the file uploaded, # send the media message to the desired entity. request = SendMediaRequest(entity, media, reply_to_msg_id=reply_to, message=caption, entities=msg_entities) msg = self._get_response_message(request, await self(request)) if msg and isinstance(file_handle, InputSizedFile): # There was a response message and we didn't use cached # version, so cache whatever we just sent to the database. md5, size = file_handle.md5, file_handle.size if as_image: to_cache = utils.get_input_photo(msg.media.photo) else: to_cache = utils.get_input_document(msg.media.document) await self.session.cache_file(md5, size, to_cache) return msg def send_voice_note(self, *args, **kwargs): """Deprecated, see :meth:`send_file`.""" warnings.warn('send_voice_note is deprecated, use ' 'send_file(..., voice_note=True) instead') kwargs['is_voice_note'] = True return self.send_file(*args, **kwargs) async def _send_album(self, entity, files, caption='', progress_callback=None, reply_to=None, parse_mode='md'): """Specialized version of .send_file for albums""" # We don't care if the user wants to avoid cache, we will use it # anyway. Why? The cached version will be exactly the same thing # we need to produce right now to send albums (uploadMedia), and # cache only makes a difference for documents where the user may # want the attributes used on them to change. # # In theory documents can be sent inside the albums but they appear # as different messages (not inside the album), and the logic to set # the attributes/avoid cache is already written in .send_file(). entity = await self.get_input_entity(entity) if not utils.is_list_like(caption): caption = (caption,) captions = [] for caption in reversed(caption): # Pop from the end (so reverse) captions.append(await self._parse_message_text(caption or '', parse_mode)) reply_to = self._get_message_id(reply_to) # Need to upload the media first, but only if they're not cached yet media = [] for file in files: # fh will either be InputPhoto or a modified InputFile fh = await self.upload_file(file, use_cache=InputPhoto) if not isinstance(fh, InputPhoto): input_photo = utils.get_input_photo((await self(UploadMediaRequest( entity, media=InputMediaUploadedPhoto(fh) ))).photo) await self.session.cache_file(fh.md5, fh.size, input_photo) fh = input_photo if captions: caption, msg_entities = captions.pop() else: caption, msg_entities = '', None media.append(InputSingleMedia(InputMediaPhoto(fh), message=caption, entities=msg_entities)) # Now we can construct the multi-media request result = await self(SendMultiMediaRequest( entity, reply_to_msg_id=reply_to, multi_media=media )) return [ self._get_response_message(update.id, result) for update in result.updates if isinstance(update, UpdateMessageID) ] async def upload_file(self, file, part_size_kb=None, file_name=None, use_cache=None, progress_callback=None): """ Uploads the specified file and returns a handle (an instance of :tl:`InputFile` or :tl:`InputFileBig`, as required) which can be later used before it expires (they are usable during less than a day). Uploading a file will simply return a "handle" to the file stored remotely in the Telegram servers, which can be later used on. This will **not** upload the file to your own chat or any chat at all. Args: file (`str` | `bytes` | `file`): The path of the file, byte array, or stream that will be sent. Note that if a byte array or a stream is given, a filename or its type won't be inferred, and it will be sent as an "unnamed application/octet-stream". part_size_kb (`int`, optional): Chunk size when uploading files. The larger, the less requests will be made (up to 512KB maximum). file_name (`str`, optional): The file name which will be used on the resulting InputFile. If not specified, the name will be taken from the ``file`` and if this is not a ``str``, it will be ``"unnamed"``. use_cache (`type`, optional): The type of cache to use (currently either :tl:`InputDocument` or :tl:`InputPhoto`). If present and the file is small enough to need the MD5, it will be checked against the database, and if a match is found, the upload won't be made. Instead, an instance of type ``use_cache`` will be returned. progress_callback (`callable`, optional): A callback function accepting two parameters: ``(sent bytes, total)``. Returns: :tl:`InputFileBig` if the file size is larger than 10MB, `telethon.tl.custom.input_sized_file.InputSizedFile` (subclass of :tl:`InputFile`) otherwise. """ if isinstance(file, (InputFile, InputFileBig)): return file # Already uploaded if isinstance(file, str): file_size = os.path.getsize(file) elif isinstance(file, bytes): file_size = len(file) else: file = file.read() file_size = len(file) # File will now either be a string or bytes if not part_size_kb: part_size_kb = utils.get_appropriated_part_size(file_size) if part_size_kb > 512: raise ValueError('The part size must be less or equal to 512KB') part_size = int(part_size_kb * 1024) if part_size % 1024 != 0: raise ValueError( 'The part size must be evenly divisible by 1024') # Set a default file name if None was specified file_id = helpers.generate_random_long() if not file_name: if isinstance(file, str): file_name = os.path.basename(file) else: file_name = str(file_id) # Determine whether the file is too big (over 10MB) or not # Telegram does make a distinction between smaller or larger files is_large = file_size > 10 * 1024 * 1024 hash_md5 = hashlib.md5() if not is_large: # Calculate the MD5 hash before anything else. # As this needs to be done always for small files, # might as well do it before anything else and # check the cache. if isinstance(file, str): with open(file, 'rb') as stream: file = stream.read() hash_md5.update(file) if use_cache: cached = await self.session.get_file( hash_md5.digest(), file_size, cls=use_cache ) if cached: return cached part_count = (file_size + part_size - 1) // part_size __log__.info('Uploading file of %d bytes in %d chunks of %d', file_size, part_count, part_size) with open(file, 'rb') if isinstance(file, str) else BytesIO(file) \ as stream: for part_index in range(part_count): # Read the file by in chunks of size part_size part = stream.read(part_size) # The SavePartRequest is different depending on whether # the file is too large or not (over or less than 10MB) if is_large: request = SaveBigFilePartRequest(file_id, part_index, part_count, part) else: request = SaveFilePartRequest(file_id, part_index, part) result = await self(request) if result: __log__.debug('Uploaded %d/%d', part_index + 1, part_count) if progress_callback: progress_callback(stream.tell(), file_size) else: raise RuntimeError( 'Failed to upload file part {}.'.format(part_index)) if is_large: return InputFileBig(file_id, part_count, file_name) else: return InputSizedFile( file_id, part_count, file_name, md5=hash_md5, size=file_size ) # endregion # region Downloading media requests async def download_profile_photo(self, entity, file=None, download_big=True): """ Downloads the profile photo of the given entity (user/chat/channel). Args: entity (`entity`): From who the photo will be downloaded. file (`str` | `file`, optional): The output file path, directory, or stream-like object. If the path exists and is a file, it will be overwritten. download_big (`bool`, optional): Whether to use the big version of the available photos. Returns: ``None`` if no photo was provided, or if it was Empty. On success the file path is returned since it may differ from the one given. """ # hex(crc32(x.encode('ascii'))) for x in # ('User', 'Chat', 'UserFull', 'ChatFull') ENTITIES = (0x2da17977, 0xc5af5d94, 0x1f4661b9, 0xd49a2697) # ('InputPeer', 'InputUser', 'InputChannel') INPUTS = (0xc91c90b6, 0xe669bf46, 0x40f202fd) if not isinstance(entity, TLObject) or entity.SUBCLASS_OF_ID in INPUTS: entity = await self.get_entity(entity) possible_names = [] if entity.SUBCLASS_OF_ID not in ENTITIES: photo = entity else: if not hasattr(entity, 'photo'): # Special case: may be a ChatFull with photo:Photo # This is different from a normal UserProfilePhoto and Chat if not hasattr(entity, 'chat_photo'): return None return await self._download_photo( entity.chat_photo, file, date=None, progress_callback=None) for attr in ('username', 'first_name', 'title'): possible_names.append(getattr(entity, attr, None)) photo = entity.photo if isinstance(photo, (UserProfilePhoto, ChatPhoto)): loc = photo.photo_big if download_big else photo.photo_small else: try: loc = utils.get_input_location(photo) except TypeError: return None file = self._get_proper_filename( file, 'profile_photo', '.jpg', possible_names=possible_names ) try: await self.download_file(loc, file) return file except LocationInvalidError: # See issue #500, Android app fails as of v4.6.0 (1155). # The fix seems to be using the full channel chat photo. ie = await self.get_input_entity(entity) if isinstance(ie, InputPeerChannel): full = await self(GetFullChannelRequest(ie)) return await self._download_photo( full.full_chat.chat_photo, file, date=None, progress_callback=None ) else: # Until there's a report for chats, no need to. return None async def download_media(self, message, file=None, progress_callback=None): """ Downloads the given media, or the media from a specified Message. Note that if the download is too slow, you should consider installing ``cryptg`` (through ``pip install cryptg``) so that decrypting the received data is done in C instead of Python (much faster). message (:tl:`Message` | :tl:`Media`): The media or message containing the media that will be downloaded. file (`str` | `file`, optional): The output file path, directory, or stream-like object. If the path exists and is a file, it will be overwritten. progress_callback (`callable`, optional): A callback function accepting two parameters: ``(received bytes, total)``. Returns: ``None`` if no media was provided, or if it was Empty. On success the file path is returned since it may differ from the one given. """ # TODO This won't work for messageService if isinstance(message, Message): date = message.date media = message.media else: date = datetime.now() media = message if isinstance(media, MessageMediaWebPage): if isinstance(media.webpage, WebPage): media = media.webpage.document or media.webpage.photo if isinstance(media, (MessageMediaPhoto, Photo, PhotoSize, PhotoCachedSize)): return await self._download_photo( media, file, date, progress_callback ) elif isinstance(media, (MessageMediaDocument, Document)): return await self._download_document( media, file, date, progress_callback ) elif isinstance(media, MessageMediaContact): return self._download_contact( media, file ) async def _download_photo(self, photo, file, date, progress_callback): """Specialized version of .download_media() for photos""" # Determine the photo and its largest size if isinstance(photo, MessageMediaPhoto): photo = photo.photo if isinstance(photo, Photo): for size in reversed(photo.sizes): if not isinstance(size, PhotoSizeEmpty): photo = size break else: return if not isinstance(photo, (PhotoSize, PhotoCachedSize)): return file = self._get_proper_filename(file, 'photo', '.jpg', date=date) if isinstance(photo, PhotoCachedSize): # No need to download anything, simply write the bytes if isinstance(file, str): helpers.ensure_parent_dir_exists(file) f = open(file, 'wb') else: f = file try: f.write(photo.bytes) finally: if isinstance(file, str): f.close() return file await self.download_file(photo.location, file, file_size=photo.size, progress_callback=progress_callback) return file async def _download_document(self, document, file, date, progress_callback): """Specialized version of .download_media() for documents.""" if isinstance(document, MessageMediaDocument): document = document.document if not isinstance(document, Document): return file_size = document.size kind = 'document' possible_names = [] for attr in document.attributes: if isinstance(attr, DocumentAttributeFilename): possible_names.insert(0, attr.file_name) elif isinstance(attr, DocumentAttributeAudio): kind = 'audio' if attr.performer and attr.title: possible_names.append('{} - {}'.format( attr.performer, attr.title )) elif attr.performer: possible_names.append(attr.performer) elif attr.title: possible_names.append(attr.title) elif attr.voice: kind = 'voice' file = self._get_proper_filename( file, kind, utils.get_extension(document), date=date, possible_names=possible_names ) await self.download_file(document, file, file_size=file_size, progress_callback=progress_callback) return file @staticmethod def _download_contact(mm_contact, file): """Specialized version of .download_media() for contacts. Will make use of the vCard 4.0 format. """ first_name = mm_contact.first_name last_name = mm_contact.last_name phone_number = mm_contact.phone_number if isinstance(file, str): file = TelegramClient._get_proper_filename( file, 'contact', '.vcard', possible_names=[first_name, phone_number, last_name] ) f = open(file, 'w', encoding='utf-8') else: f = file try: # Remove these pesky characters first_name = first_name.replace(';', '') last_name = (last_name or '').replace(';', '') f.write('BEGIN:VCARD\n') f.write('VERSION:4.0\n') f.write('N:{};{};;;\n'.format(first_name, last_name)) f.write('FN:{} {}\n'.format(first_name, last_name)) f.write('TEL;TYPE=cell;VALUE=uri:tel:+{}\n'.format(phone_number)) f.write('END:VCARD\n') finally: # Only close the stream if we opened it if isinstance(file, str): f.close() return file @staticmethod def _get_proper_filename(file, kind, extension, date=None, possible_names=None): """Gets a proper filename for 'file', if this is a path. 'kind' should be the kind of the output file (photo, document...) 'extension' should be the extension to be added to the file if the filename doesn't have any yet 'date' should be when this file was originally sent, if known 'possible_names' should be an ordered list of possible names If no modification is made to the path, any existing file will be overwritten. If any modification is made to the path, this method will ensure that no existing file will be overwritten. """ if file is not None and not isinstance(file, str): # Probably a stream-like object, we cannot set a filename here return file if file is None: file = '' elif os.path.isfile(file): # Make no modifications to valid existing paths return file if os.path.isdir(file) or not file: try: name = None if possible_names is None else next( x for x in possible_names if x ) except StopIteration: name = None if not name: if not date: date = datetime.now() name = '{}_{}-{:02}-{:02}_{:02}-{:02}-{:02}'.format( kind, date.year, date.month, date.day, date.hour, date.minute, date.second, ) file = os.path.join(file, name) directory, name = os.path.split(file) name, ext = os.path.splitext(name) if not ext: ext = extension result = os.path.join(directory, name + ext) if not os.path.isfile(result): return result i = 1 while True: result = os.path.join(directory, '{} ({}){}'.format(name, i, ext)) if not os.path.isfile(result): return result i += 1 async def download_file(self, input_location, file=None, part_size_kb=None, file_size=None, progress_callback=None): """ Downloads the given input location to a file. Args: input_location (:tl:`FileLocation` | :tl:`InputFileLocation`): The file location from which the file will be downloaded. See `telethon.utils.get_input_location` source for a complete list of supported types. file (`str` | `file`, optional): The output file path, directory, or stream-like object. If the path exists and is a file, it will be overwritten. If the file path is ``None``, then the result will be saved in memory and returned as `bytes`. part_size_kb (`int`, optional): Chunk size when downloading files. The larger, the less requests will be made (up to 512KB maximum). file_size (`int`, optional): The file size that is about to be downloaded, if known. Only used if ``progress_callback`` is specified. progress_callback (`callable`, optional): A callback function accepting two parameters: ``(downloaded bytes, total)``. Note that the ``total`` is the provided ``file_size``. """ if not part_size_kb: if not file_size: part_size_kb = 64 # Reasonable default else: part_size_kb = utils.get_appropriated_part_size(file_size) part_size = int(part_size_kb * 1024) # https://core.telegram.org/api/files says: # > part_size % 1024 = 0 (divisible by 1KB) # # But https://core.telegram.org/cdn (more recent) says: # > limit must be divisible by 4096 bytes # So we just stick to the 4096 limit. if part_size % 4096 != 0: raise ValueError( 'The part size must be evenly divisible by 4096.') in_memory = file is None if in_memory: f = io.BytesIO() elif isinstance(file, str): # Ensure that we'll be able to download the media helpers.ensure_parent_dir_exists(file) f = open(file, 'wb') else: f = file # The used client will change if FileMigrateError occurs client = self cdn_decrypter = None input_location = utils.get_input_location(input_location) __log__.info('Downloading file in chunks of %d bytes', part_size) try: offset = 0 while True: try: if cdn_decrypter: result = await cdn_decrypter.get_file() else: result = await client(GetFileRequest( input_location, offset, part_size )) if isinstance(result, FileCdnRedirect): __log__.info('File lives in a CDN') cdn_decrypter, result = \ await CdnDecrypter.prepare_decrypter( client, await self._get_cdn_client(result), result ) except FileMigrateError as e: __log__.info('File lives in another DC') client = await self._get_exported_client(e.new_dc) continue offset += part_size # If we have received no data (0 bytes), the file is over # So there is nothing left to download and write if not result.bytes: # Return some extra information, unless it's a CDN file if in_memory: f.flush() return f.getvalue() else: return getattr(result, 'type', '') f.write(result.bytes) __log__.debug('Saved %d more bytes', len(result.bytes)) if progress_callback: progress_callback(f.tell(), file_size) finally: if client != self: client.disconnect() if cdn_decrypter: try: cdn_decrypter.client.disconnect() except: pass if isinstance(file, str) or in_memory: f.close() # endregion # endregion # region Event handling def on(self, event): """ Decorator helper method around add_event_handler(). Args: event (`_EventBuilder` | `type`): The event builder class or instance to be used, for instance ``events.NewMessage``. """ def decorator(f): if self._loop.is_running(): asyncio.ensure_future(self.add_event_handler(f, event)) else: self._loop.run_until_complete(self.add_event_handler(f, event)) return f return decorator async def _check_events_pending_resolve(self): if self._events_pending_resolve: for event in self._events_pending_resolve: await event.resolve(self) self._events_pending_resolve.clear() async def _on_handler(self, update): for builder, callback in self._event_builders: event = builder.build(update) if event: event._client = self event.original_update = update try: await callback(event) except events.StopPropagation: __log__.debug( "Event handler '{}' stopped chain of " "propagation for event {}." .format(callback.__name__, type(event).__name__) ) break async def add_event_handler(self, callback, event=None): """ Registers the given callback to be called on the specified event. Args: callback (`callable`): The callable function accepting one parameter to be used. event (`_EventBuilder` | `type`, optional): The event builder class or instance to be used, for instance ``events.NewMessage``. If left unspecified, `telethon.events.raw.Raw` (the :tl:`Update` objects with no further processing) will be passed instead. """ self.update_handler = self._on_handler if isinstance(event, type): event = event() elif not event: event = events.Raw() if self.is_user_authorized(): await event.resolve(self) await self._check_events_pending_resolve() else: self._events_pending_resolve.append(event) self._event_builders.append((event, callback)) def remove_event_handler(self, callback, event=None): """ Inverse operation of :meth:`add_event_handler`. If no event is given, all events for this callback are removed. Returns how many callbacks were removed. """ found = 0 if event and not isinstance(event, type): event = type(event) i = len(self._event_builders) while i: i -= 1 ev, cb = self._event_builders[i] if cb == callback and (not event or isinstance(ev, event)): del self._event_builders[i] found += 1 return found def list_event_handlers(self): """ Lists all added event handlers, returning a list of pairs consisting of (callback, event). """ return [(callback, event) for event, callback in self._event_builders] async def add_update_handler(self, handler): """Deprecated, see :meth:`add_event_handler`.""" warnings.warn( 'add_update_handler is deprecated, use the @client.on syntax ' 'or add_event_handler(callback, events.Raw) instead (see ' 'https://telethon.rtfd.io/en/latest/extra/basic/working-' 'with-updates.html)' ) return await self.add_event_handler(handler, events.Raw) def remove_update_handler(self, handler): return self.remove_event_handler(handler) def list_update_handlers(self): return [callback for callback, _ in self.list_event_handlers()] async def catch_up(self): state = self.session.get_update_state(0) if not state or not state.pts: return self.session.catching_up = True try: while True: d = await self(GetDifferenceRequest(state.pts, state.date, state.qts)) if isinstance(d, DifferenceEmpty): state.date = d.date state.seq = d.seq break elif isinstance(d, (DifferenceSlice, Difference)): if isinstance(d, Difference): state = d.state elif d.intermediate_state.pts > state.pts: state = d.intermediate_state else: # TODO Figure out why other applications can rely on # using always the intermediate_state to eventually # reach a DifferenceEmpty, but that leads to an # infinite loop here (so check against old pts to stop) break self._updates_handler(Updates( users=d.users, chats=d.chats, date=state.date, seq=state.seq, updates=d.other_updates + [UpdateNewMessage(m, 0, 0) for m in d.new_messages] )) elif isinstance(d, DifferenceTooLong): break finally: self.session.set_update_state(0, state) self.session.catching_up = False # endregion # region Small utilities to make users' life easier async def get_entity(self, entity): """ Turns the given entity into a valid Telegram user or chat. entity (`str` | `int` | :tl:`Peer` | :tl:`InputPeer`): The entity (or iterable of entities) to be transformed. If it's a string which can be converted to an integer or starts with '+' it will be resolved as if it were a phone number. If it doesn't start with '+' or starts with a '@' it will be be resolved from the username. If no exact match is returned, an error will be raised. If the entity is an integer or a Peer, its information will be returned through a call to self.get_input_peer(entity). If the entity is neither, and it's not a TLObject, an error will be raised. Returns: :tl:`User`, :tl:`Chat` or :tl:`Channel` corresponding to the input entity. A list will be returned if more than one was given. """ single = not utils.is_list_like(entity) if single: entity = (entity,) # Group input entities by string (resolve username), # input users (get users), input chat (get chats) and # input channels (get channels) to get the most entities # in the less amount of calls possible. inputs = [] for x in entity: inputs.append(x if isinstance(x, str) else await self.get_input_entity(x)) users = [x for x in inputs if isinstance(x, (InputPeerUser, InputPeerSelf))] chats = [x.chat_id for x in inputs if isinstance(x, InputPeerChat)] channels = [x for x in inputs if isinstance(x, InputPeerChannel)] if users: # GetUsersRequest has a limit of 200 per call tmp = [] while users: curr, users = users[:200], users[200:] tmp.extend(await self(GetUsersRequest(curr))) users = tmp if chats: # TODO Handle chats slice? chats = (await self(GetChatsRequest(chats))).chats if channels: channels = (await self(GetChannelsRequest(channels))).chats # Merge users, chats and channels into a single dictionary id_entity = { utils.get_peer_id(x): x for x in itertools.chain(users, chats, channels) } # We could check saved usernames and put them into the users, # chats and channels list from before. While this would reduce # the amount of ResolveUsername calls, it would fail to catch # username changes. result = [] for x in inputs: if isinstance(x, str): result.append(await self._get_entity_from_string(x)) elif not isinstance(x, InputPeerSelf): result.append(id_entity[utils.get_peer_id(x)]) else: result.append(next(u for u in id_entity.values() if isinstance(u, User) and u.is_self)) return result[0] if single else result async def _get_entity_from_string(self, string): """ Gets a full entity from the given string, which may be a phone or an username, and processes all the found entities on the session. The string may also be a user link, or a channel/chat invite link. This method has the side effect of adding the found users to the session database, so it can be queried later without API calls, if this option is enabled on the session. Returns the found entity, or raises TypeError if not found. """ phone = utils.parse_phone(string) if phone: for user in (await self(GetContactsRequest(0))).users: if user.phone == phone: return user else: username, is_join_chat = utils.parse_username(string) if is_join_chat: invite = await self(CheckChatInviteRequest(username)) if isinstance(invite, ChatInvite): raise ValueError( 'Cannot get entity from a channel (or group) ' 'that you are not part of. Join the group and retry' ) elif isinstance(invite, ChatInviteAlready): return invite.chat elif username: if username in ('me', 'self'): return await self.get_me() try: result = await self(ResolveUsernameRequest(username)) except UsernameNotOccupiedError as e: raise ValueError('No user has "{}" as username' .format(username)) from e for entity in itertools.chain(result.users, result.chats): if getattr(entity, 'username', None) or ''\ .lower() == username: return entity try: # Nobody with this username, maybe it's an exact name/title return await self.get_entity( await self.session.get_input_entity(string)) except ValueError: pass raise ValueError( 'Cannot find any entity corresponding to "{}"'.format(string) ) async def get_input_entity(self, peer): """ Turns the given peer into its input entity version. Most requests use this kind of InputUser, InputChat and so on, so this is the most suitable call to make for those cases. entity (`str` | `int` | :tl:`Peer` | :tl:`InputPeer`): The integer ID of an user or otherwise either of a :tl:`PeerUser`, :tl:`PeerChat` or :tl:`PeerChannel`, for which to get its ``Input*`` version. If this ``Peer`` hasn't been seen before by the library, the top dialogs will be loaded and their entities saved to the session file (unless this feature was disabled explicitly). If in the end the access hash required for the peer was not found, a ValueError will be raised. Returns: :tl:`InputPeerUser`, :tl:`InputPeerChat` or :tl:`InputPeerChannel` or :tl:`InputPeerSelf` if the parameter is ``'me'`` or ``'self'``. If you need to get the ID of yourself, you should use `get_me` with ``input_peer=True``) instead. """ if peer in ('me', 'self'): return InputPeerSelf() try: # First try to get the entity from cache, otherwise figure it out return await self.session.get_input_entity(peer) except ValueError: pass if isinstance(peer, str): return utils.get_input_peer(await self._get_entity_from_string(peer)) if not isinstance(peer, int) and (not isinstance(peer, TLObject) or peer.SUBCLASS_OF_ID != 0x2d45687): # Try casting the object into an input peer. Might TypeError. # Don't do it if a not-found ID was given (instead ValueError). # Also ignore Peer (0x2d45687 == crc32(b'Peer'))'s, lacking hash. return utils.get_input_peer(peer) raise ValueError( 'Could not find the input entity for "{}". Please read https://' 'telethon.readthedocs.io/en/latest/extra/basic/entities.html to' ' find out more details.' .format(peer) ) async def edit_2fa(self, current_password=None, new_password=None, hint='', email=None): """ Changes the 2FA settings of the logged in user, according to the passed parameters. Take note of the parameter explanations. Has no effect if both current and new password are omitted. current_password (`str`, optional): The current password, to authorize changing to ``new_password``. Must be set if changing existing 2FA settings. Must **not** be set if 2FA is currently disabled. Passing this by itself will remove 2FA (if correct). new_password (`str`, optional): The password to set as 2FA. If 2FA was already enabled, ``current_password`` **must** be set. Leaving this blank or ``None`` will remove the password. hint (`str`, optional): Hint to be displayed by Telegram when it asks for 2FA. Leaving unspecified is highly discouraged. Has no effect if ``new_password`` is not set. email (`str`, optional): Recovery and verification email. Raises ``EmailUnconfirmedError`` if value differs from current one, and has no effect if ``new_password`` is not set. Returns: ``True`` if successful, ``False`` otherwise. """ if new_password is None and current_password is None: return False pass_result = await self(GetPasswordRequest()) if isinstance(pass_result, NoPassword) and current_password: current_password = None salt_random = os.urandom(8) salt = pass_result.new_salt + salt_random if not current_password: current_password_hash = salt else: current_password = pass_result.current_salt +\ current_password.encode() + pass_result.current_salt current_password_hash = hashlib.sha256(current_password).digest() if new_password: # Setting new password new_password = salt + new_password.encode('utf-8') + salt new_password_hash = hashlib.sha256(new_password).digest() new_settings = PasswordInputSettings( new_salt=salt, new_password_hash=new_password_hash, hint=hint ) if email: # If enabling 2FA or changing email new_settings.email = email # TG counts empty string as None return await self(UpdatePasswordSettingsRequest( current_password_hash, new_settings=new_settings )) else: # Removing existing password return await self(UpdatePasswordSettingsRequest( current_password_hash, new_settings=PasswordInputSettings( new_salt=bytes(), new_password_hash=bytes(), hint=hint ) )) # endregion
39.659341
89
0.560418
205bc91dab311149173a0d90819b22ef604f45bc
3,500
py
Python
tempest/api/object_storage/test_container_acl.py
afaheem88/tempest_neutron
20276dbee68087e576f4977633380fc6cd3fc1cd
[ "Apache-2.0" ]
null
null
null
tempest/api/object_storage/test_container_acl.py
afaheem88/tempest_neutron
20276dbee68087e576f4977633380fc6cd3fc1cd
[ "Apache-2.0" ]
null
null
null
tempest/api/object_storage/test_container_acl.py
afaheem88/tempest_neutron
20276dbee68087e576f4977633380fc6cd3fc1cd
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.api.object_storage import base from tempest import clients from tempest.common.utils import data_utils from tempest import test class ObjectTestACLs(base.BaseObjectTest): @classmethod def resource_setup(cls): super(ObjectTestACLs, cls).resource_setup() cls.data.setup_test_user() test_os = clients.Manager(cls.data.test_credentials) cls.test_auth_data = test_os.auth_provider.auth_data def setUp(self): super(ObjectTestACLs, self).setUp() self.container_name = data_utils.rand_name(name='TestContainer') self.container_client.create_container(self.container_name) def tearDown(self): self.delete_containers([self.container_name]) super(ObjectTestACLs, self).tearDown() @test.attr(type='smoke') def test_read_object_with_rights(self): # attempt to read object using authorized user # update X-Container-Read metadata ACL cont_headers = {'X-Container-Read': self.data.test_tenant + ':' + self.data.test_user} resp_meta, body = self.container_client.update_container_metadata( self.container_name, metadata=cont_headers, metadata_prefix='') self.assertHeaders(resp_meta, 'Container', 'POST') # create object object_name = data_utils.rand_name(name='Object') resp, _ = self.object_client.create_object(self.container_name, object_name, 'data') self.assertHeaders(resp, 'Object', 'PUT') # Trying to read the object with rights self.object_client.auth_provider.set_alt_auth_data( request_part='headers', auth_data=self.test_auth_data ) resp, _ = self.object_client.get_object( self.container_name, object_name) self.assertHeaders(resp, 'Object', 'GET') @test.attr(type='smoke') def test_write_object_with_rights(self): # attempt to write object using authorized user # update X-Container-Write metadata ACL cont_headers = {'X-Container-Write': self.data.test_tenant + ':' + self.data.test_user} resp_meta, body = self.container_client.update_container_metadata( self.container_name, metadata=cont_headers, metadata_prefix='') self.assertHeaders(resp_meta, 'Container', 'POST') # Trying to write the object with rights self.object_client.auth_provider.set_alt_auth_data( request_part='headers', auth_data=self.test_auth_data ) object_name = data_utils.rand_name(name='Object') resp, _ = self.object_client.create_object( self.container_name, object_name, 'data', headers={}) self.assertHeaders(resp, 'Object', 'PUT')
42.168675
78
0.668571
b11cb699166972e5702315de3e7c144262951e55
1,406
py
Python
cogdl/wrappers/data_wrapper/graph_classification/patchy_san_dw.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
6
2020-07-09T02:48:41.000Z
2021-06-16T09:04:14.000Z
cogdl/wrappers/data_wrapper/graph_classification/patchy_san_dw.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
null
null
null
cogdl/wrappers/data_wrapper/graph_classification/patchy_san_dw.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
1
2020-05-19T11:45:45.000Z
2020-05-19T11:45:45.000Z
import torch from .graph_classification_dw import GraphClassificationDataWrapper from cogdl.models.nn.patchy_san import get_single_feature class PATCHY_SAN_DataWrapper(GraphClassificationDataWrapper): @staticmethod def add_args(parser): GraphClassificationDataWrapper.add_args(parser) parser.add_argument("--num-sample", default=30, type=int, help="Number of chosen vertexes") parser.add_argument("--num-neighbor", default=10, type=int, help="Number of neighbor in constructing features") parser.add_argument("--stride", default=1, type=int, help="Stride of chosen vertexes") def __init__(self, dataset, num_sample, num_neighbor, stride, *args, **kwargs): super(PATCHY_SAN_DataWrapper, self).__init__(dataset, *args, **kwargs) self.sample = num_sample self.dataset = dataset self.neighbor = num_neighbor self.stride = stride def pre_transform(self): dataset = self.dataset num_features = dataset.num_features num_classes = dataset.num_classes for i, data in enumerate(dataset): new_feature = get_single_feature( dataset[i], num_features, num_classes, self.sample, self.neighbor, self.stride ) dataset[i].x = torch.from_numpy(new_feature) self.dataset = dataset super(PATCHY_SAN_DataWrapper, self).pre_transform()
42.606061
119
0.699147
6df51b54b0413191306c4392bb2186dd4add5d9d
7,425
py
Python
vietnam_thor/app.py
vishalbelsare/teaching
dc1f7d6b259ff13ea4747e12ece0b2c66982532b
[ "MIT" ]
26
2019-07-24T16:54:19.000Z
2022-03-24T13:32:51.000Z
vietnam_thor/app.py
vishalbelsare/teaching
dc1f7d6b259ff13ea4747e12ece0b2c66982532b
[ "MIT" ]
1
2020-07-28T22:52:23.000Z
2020-07-28T22:52:23.000Z
vietnam_thor/app.py
vishalbelsare/teaching
dc1f7d6b259ff13ea4747e12ece0b2c66982532b
[ "MIT" ]
26
2020-04-16T14:57:16.000Z
2021-11-23T00:24:12.000Z
""" Web app with Panel for THOR data. Created May 2021 Copyright (C) Damien Farrell This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ import os, io, random import string import numpy as np import pandas as pd import pylab as plt import seaborn as sns from collections import OrderedDict import datetime as dt import geopandas as gpd from bokeh.layouts import column from bokeh.models import ColumnDataSource, Slider, CustomJS, DatePicker from bokeh.plotting import figure from bokeh.themes import Theme from bokeh.io import show, output_notebook from bokeh.models import (DataTable, GeoJSONDataSource, ColumnDataSource, HoverTool, renderers, Label, LabelSet, CustomJS, MultiSelect, Dropdown, Div) from bokeh.tile_providers import CARTODBPOSITRON, get_provider import panel as pn import panel.widgets as pnw pn.extension() def wgs84_to_web_mercator(df, lon="LON", lat="LAT"): """convert mat long to web mercartor""" k = 6378137 df.loc[:,"x"] = df[lon] * (k * np.pi/180.0) df.loc[:,"y"] = np.log(np.tan((90 + df[lat]) * np.pi/360.0)) * k return df s=pd.read_csv('thor_data_vietnam_small.csv', low_memory=False,index_col=0) s['MSNDATE'] = pd.to_datetime(s.MSNDATE, format='%Y/%m/%d',errors='coerce') s['YEAR'] = s.MSNDATE.dt.year.fillna(0).astype(int) s=s[s.YEAR>0] s = wgs84_to_web_mercator(s, lon="TGTLONDDD_DDD_WGS84", lat="TGTLATDD_DDD_WGS84") x = s[~s.TGTLATDD_DDD_WGS84.isnull()].copy() x = x[~x.TGTCOUNTRY.isin(['PHILLIPINES','UNKNOWN','WESTPAC WATERS'])] colormap={'NORTH VIETNAM':'brown','SOUTH VIETNAM':'orange','LAOS':'red', 'CAMBODIA':'green','THAILAND':'blue','UNKNOWN':'gray'} providers = ['CARTODBPOSITRON','STAMEN_TERRAIN','OSM','ESRI_IMAGERY'] cats = ['TGTCOUNTRY','WEAPONTYPE','MFUNC_DESC'] def draw_map(df=None, long=None, lat=None, height=500, colorby='TGTCOUNTRY', point_size=5, tile_provider='CARTODBPOSITRON'): tile_provider = get_provider(tile_provider) tools = "pan,wheel_zoom,box_zoom,hover,tap,lasso_select,reset,save" sizing_mode='stretch_both' # range bounds supplied in web mercator coordinates k = 6378137 pad = 700000 if lat == None: lat = 16 if long == None: long = 108 x = long * (k * np.pi/180.0) y = np.log(np.tan((90 + lat) * np.pi/360.0)) * k p = figure(x_range=(x-pad, x+pad), y_range=(y-pad, y+pad), x_axis_type="mercator", y_axis_type="mercator", tools=tools, plot_width=height, plot_height=height, sizing_mode=sizing_mode) p.add_tile(tile_provider) if df is None: return df.loc[:,'color'] = [colormap[i] if i in colormap else 'gray' for i in df[colorby]] #df['size'] = 10 source = ColumnDataSource(df) p.circle(x='x', y='y', size=point_size, alpha=0.7, color='color', source=source)#, legend_group=colorby) p.toolbar.logo = None p.title.text = "date" hover = p.select(dict(type=HoverTool)) hover.tooltips = OrderedDict([ ("TGTCOUNTRY", "@TGTCOUNTRY"), ("MSNDATE", "@MSNDATE{%F}"), ("TAKEOFFLOCATION", "@TAKEOFFLOCATION"), ("WEAPONTYPE", "@WEAPONTYPE"), ("MFUNC_DESC", "@MFUNC_DESC") ]) hover.formatters={'@MSNDATE': 'datetime'} return p def dashboard(): cols = list(x.columns) colorby='TGTCOUNTRY' map_pane=pn.pane.Bokeh(width=700) df_pane = pn.pane.DataFrame(width=600,height=600) date_picker = pnw.DatePicker(name='Pick Date',width=200) from datetime import date date_picker.value=date(1965, 1, 1) date_slider = pnw.DateSlider(name='Date', start=dt.datetime(1965, 1, 1), end=dt.datetime(1973, 10, 31), value=dt.datetime(1968, 1, 1)) tile_select = pnw.Select(name='tile layer',options=providers,width=200) filterby_select = pnw.Select(name='filter by',value='',options=['']+cols[1:4],width=200) value_select = pnw.Select(name='value',value='',options=[],width=200) find_btn = pnw.Button(name='find in region',button_type='primary',width=200) def update_tile(event=None): p = map_pane.object p.renderers = [x for x in p.renderers if not str(x).startswith('TileRenderer')] rend = renderers.TileRenderer(tile_source= get_provider(tile_select.value)) p.renderers.insert(0, rend) def update_filter(event): col=filterby_select.value if col=='': value_select.options = [] else: value_select.options = sorted(list(x[col].dropna().unique())) def find_in_region(event): #get points in selected map area p = map_pane.object source = p.renderers[1].data_source d = x[(x.x>p.x_range.start) & (x.x<p.x_range.end) & (x.y>p.y_range.start) & (x.y<p.y_range.end)] #add any filter d = do_filter(d) if len(d)==0: return elif len(d)>25000: p.title.text = 'too many points!' else: d.loc[:,'color'] = [colormap[i] if i in colormap else 'gray' for i in d[colorby]] source.data = dict(d) p.title.text = 'selected %s points' %len(d) map_pane.param.trigger('object') return def do_filter(d): col = filterby_select.value val = value_select.value if col != '': d = d[d[col]==val] return d def update_date(event): date_slider.value = date_picker.value def update_map(event=None, date=None): p = map_pane.object source = p.renderers[1].data_source if date == None: date = str(date_slider.value) d = x[x.MSNDATE==date] d = do_filter(d) if len(d)==0: return d.loc[:,'color'] = [colormap[i] if i in colormap else 'gray' for i in d[colorby]] source.data = dict(d) p.title.text = date sdate='1968-01-01' d = x[x.MSNDATE==sdate] map_pane.object=draw_map(d) date_slider.param.watch(update_map,'value') date_picker.param.watch(update_date,'value') tile_select.param.watch(update_tile,'value') filterby_select.param.watch(update_filter,'value') value_select.param.watch(update_map,'value') find_btn.on_click(find_in_region) dashboard = pn.Column(date_slider,pn.Row(pn.Column(date_picker,tile_select,filterby_select,value_select,find_btn),map_pane)) return dashboard app=dashboard() bootstrap = pn.template.BootstrapTemplate(title='THOR SE ASIA data view', header_color='blue') #favicon='static/logo.png' pn.config.sizing_mode = 'stretch_width' app=dashboard() bootstrap.main.append(app) bootstrap.servable()
37.690355
128
0.646465
5d4bdac389bb1f270d74efb6c876258d46077110
79
py
Python
torch/utils/model_dump/__main__.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
60,067
2017-01-18T17:21:31.000Z
2022-03-31T21:37:45.000Z
torch/utils/model_dump/__main__.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
66,955
2017-01-18T17:21:38.000Z
2022-03-31T23:56:11.000Z
torch/utils/model_dump/__main__.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
19,210
2017-01-18T17:45:04.000Z
2022-03-31T23:51:56.000Z
#!/usr/bin/env python3 import sys from . import main sys.exit(main(sys.argv))
13.166667
24
0.721519
10e1dd9832c0c616596400be1c0d10e07f0034e9
2,535
py
Python
django_tricks/utils/decorators.py
mariocesar/django-tricks
4653d663bc489aa8b30375b41b6adb0f73720b74
[ "0BSD" ]
2
2017-07-31T19:52:34.000Z
2021-07-26T02:45:23.000Z
django_tricks/utils/decorators.py
mariocesar/django-tricks
4653d663bc489aa8b30375b41b6adb0f73720b74
[ "0BSD" ]
1
2021-03-25T21:43:16.000Z
2021-03-25T21:43:16.000Z
django_tricks/utils/decorators.py
mariocesar/django-tricks
4653d663bc489aa8b30375b41b6adb0f73720b74
[ "0BSD" ]
null
null
null
import sys from django.core.cache import cache from django.utils.six import wraps class ServiceReturn: def __init__(self, name, ret_value, err=None, exc_info=None): self.name = name self.ret_value = ret_value self.exc_info = exc_info self.err = err def __repr__(self): return '<ServiceReturn %s [%s]>' % (self.name, 'success' if self.successful else 'failed') def __nonzero__(self): return self.successful def __bool__(self): return self.successful def __iter__(self): return iter(self.ret_value) def __getattr__(self, item): return getattr(self.ret_value, item) @property def successful(self): return self.err is None @property def failed(self): return self.exc_info is not None def raise_for_status(self): if self.exc_info: raise self.err def service(func): """wrap functions'return value with ServiceReturn, catching exceptions and storing the return value and successful status.""" name = func.__qualname__ @wraps(func) def inner(*args, **kwargs) -> ServiceReturn: # Do argument validation if annotations are available annotations = func.__annotations__ if annotations: for argname, argtype in annotations.items(): if argtype in kwargs and type(kwargs[argname]) is not argtype: raise ValueError('"%s" argument has the wrong type.' 'Expected %s, found %s' % (name, argtype, type(kwargs[argname]))) try: ret = func(*args, **kwargs) except Exception as err: exc_info = sys.exc_info() return ServiceReturn(name, ret_value=None, err=err, exc_info=exc_info) return ServiceReturn(name, ret_value=ret) return inner def cacheresult(func, prefix=None, keyname=None): """Saves up in the cache the function's return value each time it is called. Uses the name of the method and their arguments to build the cache key name.""" keyname = '%s%s' % (prefix, keyname or func.__qualname__) @wraps(func) def inner(this, *args, **kwargs): if args or kwargs: cachekey = '%s%s%s' % (keyname, hash(args), hash(kwargs)) else: cachekey = keyname res = cache.get(cachekey) if res is None: res = func(this, *args, **kwargs) cache.set(cachekey, res) return res return inner
27.258065
102
0.61499
45f1ececed2f95831172490cdfaeef9c086369c0
9,630
py
Python
runway/cfngin/lookups/handlers/file.py
avosper-intellaegis/runway
757d4e7db269ec16479b044ac82a69f25fa2a450
[ "Apache-2.0" ]
null
null
null
runway/cfngin/lookups/handlers/file.py
avosper-intellaegis/runway
757d4e7db269ec16479b044ac82a69f25fa2a450
[ "Apache-2.0" ]
null
null
null
runway/cfngin/lookups/handlers/file.py
avosper-intellaegis/runway
757d4e7db269ec16479b044ac82a69f25fa2a450
[ "Apache-2.0" ]
null
null
null
"""File lookup.""" # pylint: disable=arguments-differ # pyright: reportIncompatibleMethodOverride=none from __future__ import annotations import base64 import collections.abc import json import re from typing import Any, Callable, Dict, List, Mapping, Sequence, Union, overload import yaml from troposphere import Base64, GenericHelperFn from typing_extensions import Literal from ....lookups.handlers.base import LookupHandler from ...utils import read_value_from_path TYPE_NAME = "file" _PARAMETER_PATTERN = re.compile(r"{{([::|\w]+)}}") ParameterizedObjectTypeDef = Union[bytes, str, Mapping[str, Any], Sequence[Any], Any] ParameterizedObjectReturnTypeDef = Union[ Dict[str, "ParameterizedObjectReturnTypeDef"], GenericHelperFn, List["ParameterizedObjectReturnTypeDef"], ] class FileLookup(LookupHandler): """File lookup.""" @classmethod def handle(cls, value: str, **_: Any) -> Any: r"""Translate a filename into the file contents. Args: value: Parameter(s) given to this lookup. Fields should use the following format:: <codec>:<path> Example:: # We've written a file to /some/path: $ echo "hello there" > /some/path # With CFNgin we would reference the contents of this file with the # following conf_key: ${file plain:file://some/path} # The above would resolve to conf_key: hello there # Or, if we used wanted a base64 encoded copy of the file data conf_key: ${file base64:file://some/path} # The above would resolve to conf_key: aGVsbG8gdGhlcmUK Supported codecs: **plain** Plain Text **base64** Encode the plain text file at the given path with base64 prior to returning it. **parameterized** The same as plain, but additionally supports referencing template parameters to create userdata that's supplemented with information from the template, as is commonly needed in EC2 UserData. For example, given a template parameter of BucketName, the file could contain the following text:: #!/bin/sh aws s3 sync s3://{{BucketName}}/somepath /somepath Then you could use something like this in the YAML config file:: UserData: ${file parameterized:/path/to/file} Resulting in the UserData parameter being defined as:: { "Fn::Join" : ["", [ "#!/bin/sh\\naws s3 sync s3://", {"Ref" : "BucketName"}, "/somepath /somepath" ]] } **parameterized-b64** The same as parameterized, with the results additionally wrapped in ``{ "Fn::Base64": ... }`` , which is what you actually need for EC2 UserData. When using parameterized-b64 for UserData, you should use a variable defined as such: .. code-block:: python from troposphere import AWSHelperFn "UserData": { "type": AWSHelperFn, "description": "Instance user data", "default": Ref("AWS::NoValue") } Then assign UserData in a LaunchConfiguration or Instance to ``self.variables["UserData"]``. Note that we use AWSHelperFn as the type because the parameterized-b64 codec returns either a Base64 or a GenericHelperFn troposphere object. **json** Decode the file as JSON and return the resulting object **json-parameterized** Same as ``json``, but applying templating rules from ``parameterized`` to every object *value*. Note that object *keys* are not modified. Example (an external PolicyDocument):: { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "some:Action" ], "Resource": "{{MyResource}}" } ] } **yaml** Decode the file as YAML and return the resulting object. All strings are returned as ``unicode`` even in Python 2. **yaml-parameterized** Same as ``json-parameterized``, but using YAML. Example:: Version: 2012-10-17 Statement: - Effect: Allow Action: - "some:Action" Resource: "{{MyResource}}" """ try: codec, path = value.split(":", 1) except ValueError: raise TypeError( 'File value must be of the format "<codec>:<path>" (got %s)' % (value) ) from None return CODECS[codec](read_value_from_path(path)) def _parameterize_string(raw: str) -> GenericHelperFn: """Substitute placeholders in a string using CloudFormation references. Args: raw: String to be processed. Byte strings are not supported; decode them before passing them to this function. Returns: An expression with placeholders from the input replaced, suitable to be passed to Troposphere to be included in CloudFormation template. This will be the input string without modification if no substitutions are found, and a composition of CloudFormation calls otherwise. """ parts: List[Any] = [] s_index = 0 for match in _PARAMETER_PATTERN.finditer(raw): parts.append(raw[s_index : match.start()]) parts.append({"Ref": match.group(1)}) s_index = match.end() if not parts: return GenericHelperFn(raw) parts.append(raw[s_index:]) return GenericHelperFn({"Fn::Join": ["", parts]}) @overload def parameterized_codec( raw: Union[bytes, str], b64: Literal[False] = ... ) -> GenericHelperFn: ... @overload def parameterized_codec(raw: Union[bytes, str], b64: Literal[True] = ...) -> Base64: ... def parameterized_codec(raw: Union[bytes, str], b64: bool = False) -> Any: """Parameterize a string, possibly encoding it as Base64 afterwards. Args: raw: String to be processed. Byte strings will be interpreted as UTF-8. b64: Whether to wrap the output in a Base64 CloudFormation call. Returns: :class:`troposphere.AWSHelperFn`: Output to be included in a CloudFormation template. """ if isinstance(raw, bytes): raw = raw.decode("utf-8") result = _parameterize_string(raw) # Note, since we want a raw JSON object (not a string) output in the # template, we wrap the result in GenericHelperFn (not needed if we're # using Base64) return Base64(result.data) if b64 else result @overload def _parameterize_obj(obj: Union[bytes, str]) -> GenericHelperFn: ... @overload def _parameterize_obj(obj: Mapping[str, Any]) -> ParameterizedObjectReturnTypeDef: ... @overload def _parameterize_obj(obj: List[Any]) -> ParameterizedObjectReturnTypeDef: ... def _parameterize_obj( obj: ParameterizedObjectTypeDef, ) -> ParameterizedObjectReturnTypeDef: """Recursively parameterize all strings contained in an object. Parametrizes all values of a Mapping, all items of a Sequence, an unicode string, or pass other objects through unmodified. Byte strings will be interpreted as UTF-8. Args: obj: Data to parameterize. Return: A parameterized object to be included in a CloudFormation template. Mappings are converted to `dict`, Sequences are converted to `list`, and strings possibly replaced by compositions of function calls. """ if isinstance(obj, bytes): return _parameterize_string(obj.decode("utf8")) if isinstance(obj, str): return _parameterize_string(obj) if isinstance(obj, collections.abc.Mapping): return {key: _parameterize_obj(value) for key, value in obj.items()} if isinstance(obj, collections.abc.Sequence): return [_parameterize_obj(item) for item in obj] return obj class SafeUnicodeLoader(yaml.SafeLoader): """Safe unicode loader.""" def construct_yaml_str(self, node: Any) -> Any: """Construct yaml str.""" return self.construct_scalar(node) def yaml_codec(raw: str, parameterized: bool = False) -> Any: """YAML codec.""" data = yaml.load(raw, Loader=SafeUnicodeLoader) return _parameterize_obj(data) if parameterized else data def json_codec(raw: str, parameterized: bool = False) -> Any: """JSON codec.""" data = json.loads(raw) return _parameterize_obj(data) if parameterized else data CODECS: Dict[str, Callable[..., Any]] = { "plain": lambda x: x, "base64": lambda x: base64.b64encode(x.encode("utf8")).decode("utf-8"), "parameterized": lambda x: parameterized_codec(x, False), "parameterized-b64": lambda x: parameterized_codec(x, True), "yaml": lambda x: yaml_codec(x, parameterized=False), "yaml-parameterized": lambda x: yaml_codec(x, parameterized=True), "json": lambda x: json_codec(x, parameterized=False), "json-parameterized": lambda x: json_codec(x, parameterized=True), }
31.782178
86
0.607269
99723e54d9d16e1e81a0e906336f7675d8545697
2,237
py
Python
tests/unit/ui/test_utils.py
varuntiwari27/rally
948fba0e8fe8214dd3716451d2a52e014a4115be
[ "Apache-2.0" ]
1
2021-09-29T02:16:09.000Z
2021-09-29T02:16:09.000Z
tests/unit/ui/test_utils.py
noah8713/rally-ovs
2434787c2cf4ca267108966c4ddc55ded3c333d9
[ "Apache-2.0" ]
1
2020-07-14T11:29:31.000Z
2020-07-14T11:29:31.000Z
tests/unit/ui/test_utils.py
noah8713/rally-ovs
2434787c2cf4ca267108966c4ddc55ded3c333d9
[ "Apache-2.0" ]
1
2020-07-02T01:33:48.000Z
2020-07-02T01:33:48.000Z
# Copyright 2014: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import jinja2 import mock from rally.ui import utils from tests.unit import test class ModuleTestCase(test.TestCase): def test_get_mako_template(self): try: import mako except ImportError: self.skip("No mako module. Skipping test.") template = utils.get_mako_template("ci/index.mako") self.assertIsInstance(template, mako.template.Template) def test_get_jinja_template(self): template = utils.get_jinja_template("base.html") self.assertIsInstance(template, jinja2.environment.Template) self.assertEqual("base.html", template.name) self.assertIn("include_raw_file", template.globals) def test_get_jinja_template_raises(self): self.assertRaises(jinja2.exceptions.TemplateNotFound, utils.get_jinja_template, "nonexistent") @mock.patch("rally.ui.utils.get_mako_template") def test_get_template_mako(self, mock_get_mako_template): mock_get_mako_template.return_value = "fake_template" template = utils.get_template("template.mako") self.assertEqual("fake_template", template) mock_get_mako_template.assert_called_once_with("template.mako") @mock.patch("rally.ui.utils.get_jinja_template") def test_get_template_jinja(self, mock_get_jinja_template): mock_get_jinja_template.return_value = "fake_template" template = utils.get_template("template.html") self.assertEqual("fake_template", template) mock_get_jinja_template.assert_called_once_with("template.html")
39.245614
78
0.71122
f74d3cd803994be5b0ec6f093a396dab53fd0640
2,594
py
Python
f_d_c.py
ashu2004a/face_recognition
a0585d81daa7f0588e6269df8e26fdf7f18c27be
[ "CC0-1.0" ]
1
2021-04-25T14:48:23.000Z
2021-04-25T14:48:23.000Z
f_d_c.py
ashu2004a/face_recognition
a0585d81daa7f0588e6269df8e26fdf7f18c27be
[ "CC0-1.0" ]
null
null
null
f_d_c.py
ashu2004a/face_recognition
a0585d81daa7f0588e6269df8e26fdf7f18c27be
[ "CC0-1.0" ]
null
null
null
''' Author: Ashutosh Panigrahi Year: 2021 Version: 0.0.1 ''' #This piece of code detect the face (image in png/jpg or else given) given. import __future__ import click import os import re import face_recognition.api as fcrec import multiprocessing import sys import itertools def print_result(filename, location): top, right, bottom, left = location print("{},{},{},{},{}".format(filename, top, right, bottom, left)) def test_image(image_to_check, model, upsample): unknown_image = fcrec.load_image_file(image_to_check) face_locations = fcrec.face_locations(unknown_image, number_of_times_to_upsample=upsample, model=model) for face_location in face_locations: print_result(image_to_check, face_location) def image_files_in_folder(folder): return [os.path.join(folder, f) for f in os.listdir(folder) if re.match(r'.*\.(jpg|jpeg|png)', f, flags=re.I)] def process_images_in_process_pool(images_to_check, number_of_cpus, model, upsample): if number_of_cpus == -1: processes = None else: processes = number_of_cpus context = multiprocessing if "forkserver" in multiprocessing.get_all_start_methods(): context = multiprocessing.get_context("forkserver") pool = context.Pool(processes=processes) function_parameters = zip( images_to_check, itertools.repeat(model), itertools.repeat(upsample), ) pool.starmap(test_image, function_parameters) @click.command() @click.argument('image_to_check') @click.option('--cpus', default=1, help='number of CPU cores to use in parallel. -1 means "use all in system"') @click.option('--model', default="hog", help='Which face detection model to use. Options are "hog" or "cnn".') @click.option('--upsample', default=0, help='How many times to upsample the image looking for faces. Higher numbers find smaller faces.') def main(image_to_check, cpus, model, upsample): # Multi-core processing only supported on Python 3.4 or greater if (sys.version_info < (3, 4)) and cpus != 1: click.echo("WARNING: Multi-processing support requires Python 3.4 or greater. Falling back to single-threaded processing!") cpus = 1 if os.path.isdir(image_to_check): if cpus == 1: [test_image(image_file, model, upsample) for image_file in image_files_in_folder(image_to_check)] else: process_images_in_process_pool(image_files_in_folder(image_to_check), cpus, model, upsample) else: test_image(image_to_check, model, upsample) if __name__ == "__main__": main()
32.835443
137
0.712799
a6abdd5461a47150ac3bec97bfdc07a72023f47d
3,886
py
Python
tests/test_observable/test_takewithtime.py
christiansandberg/RxPY
036027d2858ea6c9d45839c863bd791e5bb50c36
[ "MIT" ]
null
null
null
tests/test_observable/test_takewithtime.py
christiansandberg/RxPY
036027d2858ea6c9d45839c863bd791e5bb50c36
[ "MIT" ]
null
null
null
tests/test_observable/test_takewithtime.py
christiansandberg/RxPY
036027d2858ea6c9d45839c863bd791e5bb50c36
[ "MIT" ]
null
null
null
import unittest from reactivex import operators as ops from reactivex.testing import ReactiveTest, TestScheduler on_next = ReactiveTest.on_next on_completed = ReactiveTest.on_completed on_error = ReactiveTest.on_error subscribe = ReactiveTest.subscribe subscribed = ReactiveTest.subscribed disposed = ReactiveTest.disposed created = ReactiveTest.created class TestTakeWithTime(unittest.TestCase): def test_take_zero(self): scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(210, 1), on_next(220, 2), on_completed(230) ) def create(): return xs.pipe(ops.take_with_time(0)) res = scheduler.start(create) assert res.messages == [on_completed(200)] assert xs.subscriptions == [subscribe(200, 200)] def test_take_some(self): scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(210, 1), on_next(220, 2), on_next(230, 3), on_completed(240) ) def create(): return xs.pipe(ops.take_with_time(25)) res = scheduler.start(create) assert res.messages == [on_next(210, 1), on_next(220, 2), on_completed(225)] assert xs.subscriptions == [subscribe(200, 225)] def test_take_late(self): scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(210, 1), on_next(220, 2), on_completed(230) ) def create(): return xs.pipe(ops.take_with_time(50)) res = scheduler.start(create) assert res.messages == [on_next(210, 1), on_next(220, 2), on_completed(230)] assert xs.subscriptions == [subscribe(200, 230)] def test_take_Error(self): scheduler = TestScheduler() ex = "ex" xs = scheduler.create_hot_observable(on_error(210, ex)) def create(): return xs.pipe(ops.take_with_time(50)) res = scheduler.start(create) assert res.messages == [on_error(210, ex)] assert xs.subscriptions == [subscribe(200, 210)] def test_take_never(self): scheduler = TestScheduler() xs = scheduler.create_hot_observable() def create(): return xs.pipe(ops.take_with_time(50)) res = scheduler.start(create) assert res.messages == [on_completed(250)] assert xs.subscriptions == [subscribe(200, 250)] def test_take_twice1(self): scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(210, 1), on_next(220, 2), on_next(230, 3), on_next(240, 4), on_next(250, 5), on_next(260, 6), on_completed(270), ) def create(): return xs.pipe( ops.take_with_time(55), ops.take_with_time(35), ) res = scheduler.start(create) assert res.messages == [ on_next(210, 1), on_next(220, 2), on_next(230, 3), on_completed(235), ] assert xs.subscriptions == [subscribe(200, 235)] def test_take_twice2(self): scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(210, 1), on_next(220, 2), on_next(230, 3), on_next(240, 4), on_next(250, 5), on_next(260, 6), on_completed(270), ) def create(): return xs.pipe( ops.take_with_time(35), ops.take_with_time(55), ) res = scheduler.start(create) assert res.messages == [ on_next(210, 1), on_next(220, 2), on_next(230, 3), on_completed(235), ] assert xs.subscriptions == [subscribe(200, 235)]
28.15942
84
0.575142
0c5d8b3b1bb500a47d6a92d1b54714dfde7b4220
1,339
py
Python
Codewars/7kyu/ranking-position/Python/test.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
7
2017-09-20T16:40:39.000Z
2021-08-31T18:15:08.000Z
Codewars/7kyu/ranking-position/Python/test.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
null
null
null
Codewars/7kyu/ranking-position/Python/test.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
null
null
null
# Python - 3.6.0 input_ = [ { 'name': 'John', 'points': 100 }, { 'name': 'Bob', 'points': 130 }, { 'name': 'Mary', 'points': 120 }, { 'name': 'Kate', 'points': 120 } ] output = [ { 'name': 'Bob', 'points': 130, 'position': 1 }, { 'name': 'Kate', 'points': 120, 'position': 2 }, { 'name': 'Mary', 'points': 120, 'position': 2 }, { 'name': 'John', 'points': 100, 'position': 4 } ] Test.assert_equals(ranking(input_), output) input_ = [ { 'name': 'Bob', 'points': 130 }, { 'name': 'Mary', 'points': 120 }, { 'name': 'John', 'points': 100 } ] output = [ { 'name': 'Bob', 'points': 130, 'position': 1 }, { 'name': 'Mary', 'points': 120, 'position': 2 }, { 'name': 'John', 'points': 100, 'position': 3 } ] Test.assert_equals(ranking(input_), output) input_ = [ { 'name': 'Bob', 'points': 100 }, { 'name': 'Mary', 'points': 100 }, { 'name': 'John', 'points': 100 } ] output = [ { 'name': 'Bob', 'points': 100, 'position': 1 }, { 'name': 'John', 'points': 100, 'position': 1 }, { 'name': 'Mary', 'points': 100, 'position': 1 } ] Test.assert_equals(ranking(input_), output) input_ = [{ 'name': 'Joe', 'points': 100 }] output = [{ 'name': 'Joe', 'points': 100, 'position': 1 }] Test.assert_equals(ranking(input_), output) Test.assert_equals(ranking([]), [])
29.108696
58
0.51531
0d4017a0c2d13cddc203b9f5d163e6c518c35565
10,597
py
Python
src/python/pants/engine/build_files.py
lgirault/pants
7731c9783d8011089f59d47c41d49fdd6433bb4f
[ "Apache-2.0" ]
94
2015-01-15T21:24:20.000Z
2022-02-16T16:55:43.000Z
src/python/pants/engine/build_files.py
lgirault/pants
7731c9783d8011089f59d47c41d49fdd6433bb4f
[ "Apache-2.0" ]
5
2020-07-18T01:04:43.000Z
2021-05-10T08:40:56.000Z
src/python/pants/engine/build_files.py
lgirault/pants
7731c9783d8011089f59d47c41d49fdd6433bb4f
[ "Apache-2.0" ]
47
2015-02-25T02:20:07.000Z
2022-03-21T00:59:16.000Z
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import logging from builtins import next from os.path import dirname, join import six from future.utils import raise_from from twitter.common.collections import OrderedSet from pants.base.project_tree import Dir from pants.base.specs import SingleAddress, Spec, Specs from pants.build_graph.address import Address, BuildFileAddress from pants.build_graph.address_lookup_error import AddressLookupError from pants.engine.addressable import AddressableDescriptor, BuildFileAddresses from pants.engine.fs import Digest, FilesContent, PathGlobs, Snapshot from pants.engine.mapper import AddressFamily, AddressMap, AddressMapper, ResolveError from pants.engine.objects import Locatable, SerializableFactory, Validatable from pants.engine.parser import HydratedStruct from pants.engine.rules import RootRule, rule from pants.engine.selectors import Get from pants.engine.struct import Struct from pants.util.collections_abc_backport import MutableMapping, MutableSequence from pants.util.objects import TypeConstraintError logger = logging.getLogger(__name__) class ResolvedTypeMismatchError(ResolveError): """Indicates a resolved object was not of the expected type.""" def _key_func(entry): key, value = entry return key @rule(AddressFamily, [AddressMapper, Dir]) def parse_address_family(address_mapper, directory): """Given an AddressMapper and a directory, return an AddressFamily. The AddressFamily may be empty, but it will not be None. """ patterns = tuple(join(directory.path, p) for p in address_mapper.build_patterns) path_globs = PathGlobs(include=patterns, exclude=address_mapper.build_ignore_patterns) snapshot = yield Get(Snapshot, PathGlobs, path_globs) files_content = yield Get(FilesContent, Digest, snapshot.directory_digest) if not files_content: raise ResolveError('Directory "{}" does not contain any BUILD files.'.format(directory.path)) address_maps = [] for filecontent_product in files_content: address_maps.append(AddressMap.parse(filecontent_product.path, filecontent_product.content, address_mapper.parser)) yield AddressFamily.create(directory.path, address_maps) def _raise_did_you_mean(address_family, name, source=None): names = [a.target_name for a in address_family.addressables] possibilities = '\n '.join(':{}'.format(target_name) for target_name in sorted(names)) resolve_error = ResolveError('"{}" was not found in namespace "{}". ' 'Did you mean one of:\n {}' .format(name, address_family.namespace, possibilities)) if source: raise_from(resolve_error, source) else: raise resolve_error @rule(HydratedStruct, [AddressMapper, Address]) def hydrate_struct(address_mapper, address): """Given an AddressMapper and an Address, resolve a Struct from a BUILD file. Recursively collects any embedded addressables within the Struct, but will not walk into a dependencies field, since those should be requested explicitly by rules. """ address_family = yield Get(AddressFamily, Dir(address.spec_path)) struct = address_family.addressables.get(address) addresses = address_family.addressables if not struct or address not in addresses: _raise_did_you_mean(address_family, address.target_name) # TODO: This is effectively: "get the BuildFileAddress for this Address". # see https://github.com/pantsbuild/pants/issues/6657 address = next(build_address for build_address in addresses if build_address == address) inline_dependencies = [] def maybe_append(outer_key, value): if isinstance(value, six.string_types): if outer_key != 'dependencies': inline_dependencies.append(Address.parse(value, relative_to=address.spec_path, subproject_roots=address_mapper.subproject_roots)) elif isinstance(value, Struct): collect_inline_dependencies(value) def collect_inline_dependencies(item): for key, value in sorted(item._asdict().items(), key=_key_func): if not AddressableDescriptor.is_addressable(item, key): continue if isinstance(value, MutableMapping): for _, v in sorted(value.items(), key=_key_func): maybe_append(key, v) elif isinstance(value, MutableSequence): for v in value: maybe_append(key, v) else: maybe_append(key, value) # Recursively collect inline dependencies from the fields of the struct into `inline_dependencies`. collect_inline_dependencies(struct) # And then hydrate the inline dependencies. hydrated_inline_dependencies = yield [Get(HydratedStruct, Address, a) for a in inline_dependencies] dependencies = [d.value for d in hydrated_inline_dependencies] def maybe_consume(outer_key, value): if isinstance(value, six.string_types): if outer_key == 'dependencies': # Don't recurse into the dependencies field of a Struct, since those will be explicitly # requested by tasks. But do ensure that their addresses are absolute, since we're # about to lose the context in which they were declared. value = Address.parse(value, relative_to=address.spec_path, subproject_roots=address_mapper.subproject_roots) else: value = dependencies[maybe_consume.idx] maybe_consume.idx += 1 elif isinstance(value, Struct): value = consume_dependencies(value) return value # NB: Some pythons throw an UnboundLocalError for `idx` if it is a simple local variable. maybe_consume.idx = 0 # 'zip' the previously-requested dependencies back together as struct fields. def consume_dependencies(item, args=None): hydrated_args = args or {} for key, value in sorted(item._asdict().items(), key=_key_func): if not AddressableDescriptor.is_addressable(item, key): hydrated_args[key] = value continue if isinstance(value, MutableMapping): container_type = type(value) hydrated_args[key] = container_type((k, maybe_consume(key, v)) for k, v in sorted(value.items(), key=_key_func)) elif isinstance(value, MutableSequence): container_type = type(value) hydrated_args[key] = container_type(maybe_consume(key, v) for v in value) else: hydrated_args[key] = maybe_consume(key, value) return _hydrate(type(item), address.spec_path, **hydrated_args) yield HydratedStruct(consume_dependencies(struct, args={'address': address})) def _hydrate(item_type, spec_path, **kwargs): # If the item will be Locatable, inject the spec_path. if issubclass(item_type, Locatable): kwargs['spec_path'] = spec_path try: item = item_type(**kwargs) except TypeConstraintError as e: raise ResolvedTypeMismatchError(e) # Let factories replace the hydrated object. if isinstance(item, SerializableFactory): item = item.create() # Finally make sure objects that can self-validate get a chance to do so. if isinstance(item, Validatable): item.validate() return item @rule(BuildFileAddresses, [AddressMapper, Specs]) def addresses_from_address_families(address_mapper, specs): """Given an AddressMapper and list of Specs, return matching BuildFileAddresses. :raises: :class:`ResolveError` if: - there were no matching AddressFamilies, or - the Spec matches no addresses for SingleAddresses. :raises: :class:`AddressLookupError` if no targets are matched for non-SingleAddress specs. """ # Capture a Snapshot covering all paths for these Specs, then group by directory. snapshot = yield Get(Snapshot, PathGlobs, _spec_to_globs(address_mapper, specs)) dirnames = {dirname(f) for f in snapshot.files} address_families = yield [Get(AddressFamily, Dir(d)) for d in dirnames] address_family_by_directory = {af.namespace: af for af in address_families} matched_addresses = OrderedSet() for spec in specs: # NB: if a spec is provided which expands to some number of targets, but those targets match # --exclude-target-regexp, we do NOT fail! This is why we wait to apply the tag and exclude # patterns until we gather all the targets the spec would have matched without them. try: addr_families_for_spec = spec.matching_address_families(address_family_by_directory) except Spec.AddressFamilyResolutionError as e: raise raise_from(ResolveError(e), e) try: all_addr_tgt_pairs = spec.address_target_pairs_from_address_families(addr_families_for_spec) except Spec.AddressResolutionError as e: raise raise_from(AddressLookupError(e), e) except SingleAddress._SingleAddressResolutionError as e: _raise_did_you_mean(e.single_address_family, e.name, source=e) matched_addresses.update( addr for (addr, tgt) in all_addr_tgt_pairs if specs.matcher.matches_target_address_pair(addr, tgt) ) # NB: This may be empty, as the result of filtering by tag and exclude patterns! yield BuildFileAddresses(tuple(matched_addresses)) def _spec_to_globs(address_mapper, specs): """Given a Specs object, return a PathGlobs object for the build files that it matches.""" patterns = set() for spec in specs: patterns.update(spec.make_glob_patterns(address_mapper)) return PathGlobs(include=patterns, exclude=address_mapper.build_ignore_patterns) def create_graph_rules(address_mapper): """Creates tasks used to parse Structs from BUILD files. :param address_mapper_key: The subject key for an AddressMapper instance. :param symbol_table: A SymbolTable instance to provide symbols for Address lookups. """ @rule(AddressMapper, []) def address_mapper_singleton(): return address_mapper return [ address_mapper_singleton, # BUILD file parsing. hydrate_struct, parse_address_family, # Spec handling: locate directories that contain build files, and request # AddressFamilies for each of them. addresses_from_address_families, # Root rules representing parameters that might be provided via root subjects. RootRule(Address), RootRule(BuildFileAddress), RootRule(BuildFileAddresses), RootRule(Specs), ]
40.446565
101
0.733038
efd5dd58e7f9cef8933ebf8f712c7a6e44637acc
3,247
py
Python
test/test_TimeseriesStats.py
gunny26/datalogger4
ab1b6bd295e41f57530a9f1c0977f5dcd1eabf2a
[ "Apache-2.0" ]
null
null
null
test/test_TimeseriesStats.py
gunny26/datalogger4
ab1b6bd295e41f57530a9f1c0977f5dcd1eabf2a
[ "Apache-2.0" ]
null
null
null
test/test_TimeseriesStats.py
gunny26/datalogger4
ab1b6bd295e41f57530a9f1c0977f5dcd1eabf2a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 import unittest import logging import datetime import gzip import os import json # own modules from datalogger4.Timeseries import Timeseries from datalogger4.TimeseriesStats import TimeseriesStats class Test(unittest.TestCase): def setUp(self): self.basedir = "/var/rrd" self.datestring = "2015-11-30" self.testfile = "testdata/ts_KHUnc3J2d2Vic3FsMi50aWxhay5jYycsKQ==.csv.gz" with gzip.open(self.testfile, "rt") as infile: ts = Timeseries.load(infile) self.tsstat = TimeseriesStats(ts) def test__eq__(self): with gzip.open(self.testfile, "rt") as infile: ts = Timeseries.load(infile) tsstat = TimeseriesStats(ts) assert tsstat == self.tsstat def test__getitem__(self): assert self.tsstat[("opened_tables", "min")] == 3581.000000 assert self.tsstat["opened_tables"] == {'min': 3581.0, 'max': 3601.0, 'avg': 3594.0, 'sum': 1035072.0, 'std': 7.340905181848413, 'median': 3599.0, 'count': 288, 'first': 3581.0, 'last': 3601.0, 'mean': 3594.0, 'inc': 20.0, 'dec': 0.0, 'diff': 20.0} def test__str__(self): print(self.tsstat) def test_keys(self): assert list(self.tsstat.keys()) == ['com_select', 'uptime', 'com_insert', 'slow_queries', 'bytes_sent', 'com_update', 'connections', 'com_delete', 'qcache_hits', 'questions', 'opened_tables', 'aborted_connects', 'bytes_received', 'created_tmp_tables', 'created_tmp_disk_tables', 'aborted_clients'] def test_values(self): assert list(self.tsstat.values())[0]["min"] == 89169365.0 def test_items(self): for key, value in self.tsstat.items(): assert isinstance(key, str) assert isinstance(value, dict) def test_stats(self): assert isinstance(self.tsstat.stats, dict) def test_funcnames(self): assert list(self.tsstat.funcnames) == ['avg', 'count', 'dec', 'diff', 'first', 'inc', 'last', 'max', 'mean', 'median', 'min', 'std', 'sum'] def test_get_stats(self): assert isinstance(self.tsstat.get_stats(), dict) def test_get_stat(self): assert self.tsstat.get_stat("min")['com_select'] == 89169365.0 def test_dump(self): with open("testdata/tsstat_testdump.json", "wt") as outfile: self.tsstat.dump(outfile) with open("testdata/tsstat_testdump.json", "rt") as infile: tsstat = TimeseriesStats.load(infile) assert self.tsstat == tsstat def test_load(self): with open("testdata/tsstat_KHUnc3J2d2Vic3FsMi50aWxhay5jYycsKQ==.json", "rt") as infile: tsstat = TimeseriesStats.load(infile) assert tsstat[("com_select", "min")] == 0.000000 def test_to_json(self): assert "\"diff\": 10961584.0" in self.tsstat.to_json() def test_to_data(self): data = self.tsstat.to_data() assert data["aborted_clients"]["count"] == 288 data_str = json.dumps(data, indent=4) assert isinstance(data_str, str) def test_from_json(self): tsstat = TimeseriesStats.from_json(self.tsstat.to_json()) assert tsstat == self.tsstat if __name__ == "__main__": logging.basicConfig(level=logging.INFO) unittest.main()
36.483146
305
0.647367
6a2fa229c6af2e24d45c083bcab9df06b3111d70
23,985
py
Python
tests/reflectometry/data_test.py
arm61/ess
f3d3fd47d334420b0b838aec720efc38c186a420
[ "BSD-3-Clause" ]
null
null
null
tests/reflectometry/data_test.py
arm61/ess
f3d3fd47d334420b0b838aec720efc38c186a420
[ "BSD-3-Clause" ]
null
null
null
tests/reflectometry/data_test.py
arm61/ess
f3d3fd47d334420b0b838aec720efc38c186a420
[ "BSD-3-Clause" ]
null
null
null
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 Scipp contributors (https://github.com/scipp) # flake8: noqa: E501 """ Tests for data module """ # author: Andrew R. McCluskey (arm61) import os import unittest import numpy as np from numpy.testing import assert_almost_equal, assert_equal import scipp as sc from ess.reflectometry import data from ..tools.io import file_location np.random.seed(1) N = 9 VALUES = np.ones(N) DETECTORS = np.random.randint(1, 5, size=(N)) DATA = sc.DataArray( data=sc.Variable( dims=["event"], unit=sc.units.counts, values=VALUES, dtype=sc.dtype.float32, ), coords={ "detector_id": sc.Variable(dims=["event"], values=DETECTORS, dtype=sc.dtype.int32) }, ) DETECTOR_ID = sc.Variable(dims=["detector_id"], values=np.arange(1, 5), dtype=sc.dtype.int32) BINNED = sc.bin(DATA, groups=[DETECTOR_ID]) PIXELS = np.array([[1, 1, 1], [1, 2, 1], [2, 1, 1], [2, 2, 1]]) X = sc.Variable( dims=["detector_id"], values=PIXELS[:, 0], dtype=sc.dtype.float64, unit=sc.units.m, ) Y = sc.Variable( dims=["detector_id"], values=PIXELS[:, 1], dtype=sc.dtype.float64, unit=sc.units.m, ) Z = sc.Variable( dims=["detector_id"], values=PIXELS[:, 2], dtype=sc.dtype.float64, unit=sc.units.m, ) BINNED.coords["position"] = sc.geometry.position(X, Y, Z) BINNED.attrs['instrument_name'] = sc.scalar(value='AMOR') BINNED.attrs['experiment_title'] = sc.scalar(value='test') class TestData(unittest.TestCase): # Commented out until the sample.nxs file has a home # def test_refldata_file(self): # file_path = (os.path.dirname(os.path.realpath(__file__)) + # os.path.sep + "sample.nxs") # p = data.ReflData(file_path) # assert_equal(isinstance(p.data, sc._scipp.core.DataArray), True) # assert_equal(p.data_file, file_path) def test_refldata_init(self): """ Testing the default initialisation of the ReflData objects. """ p = data.ReflData(BINNED.copy()) assert_equal(isinstance(p.data, sc._scipp.core.DataArray), True) assert_equal(isinstance(p.data.data, sc._scipp.core.Variable), True) assert_almost_equal(p.data.coords["position"].fields.x.values, X.values) assert_almost_equal(p.data.coords["position"].fields.y.values, Y.values) assert_almost_equal(p.data.coords["position"].fields.z.values, Z.values) assert_almost_equal( np.sort( p.data.bins.constituents["data"].coords["detector_id"].values), np.sort(DETECTORS), ) assert_almost_equal( np.sort(p.data.bins.constituents["data"].values), np.sort(VALUES), decimal=5, ) assert_almost_equal( np.sort(p.data.bins.constituents["data"].variances), np.sort(np.ones_like(VALUES)), decimal=5, ) assert_almost_equal(p.sample_angle_offset.values, 0) assert_equal(p.sample_angle_offset.unit, sc.units.deg) def test_refldata_init_sample_angle_offset(self): """ Testing the ReflData initialisation with a non-default sample_angle_offset. """ p = data.ReflData(BINNED.copy(), sample_angle_offset=2 * sc.units.deg) assert_almost_equal(p.sample_angle_offset.values, 2) assert_equal(p.sample_angle_offset.unit, sc.units.deg) def test_refldata_event(self): p = data.ReflData(BINNED.copy()) assert_equal(isinstance(p.event, sc._scipp.core.DataArray), True) assert_almost_equal(np.sort(p.event.coords["detector_id"].values), np.sort(DETECTORS)) assert_almost_equal(np.sort(p.event.values), np.sort(VALUES), decimal=5) assert_almost_equal( np.sort(p.event.variances), np.sort(np.ones_like(VALUES)), decimal=5, ) def test_q_bin(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=sc.Unit('1/angstrom'), ) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=sc.Unit('1/angstrom'), dtype=sc.dtype.float64, ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) bins = np.linspace(0, 11, 4) b = p.q_bin(bins) assert_almost_equal(b.coords["qz"].values, bins) assert_almost_equal(b.coords["sigma_qz_by_qz"].values, np.linspace(0.325, 1.0, 3)) assert_almost_equal(b.data.values, np.array([3.0, 3.0, 3.]) / 9.) assert_almost_equal(b.data.variances, np.array([3.0, 3.0, 3.]) / 81.) def test_q_bin_None(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=sc.Unit('1/angstrom'), ) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=sc.Unit('1/angstrom'), dtype=sc.dtype.float64, ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) b = p.q_bin() assert_equal(b.shape, [199]) def test_q_bin_different_unit(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=(1 / sc.units.m).unit, ) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=(1 / sc.units.m).unit, dtype=sc.dtype.float64, ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) bins = np.linspace(0, 11, 4) b = p.q_bin(bins, unit=(1 / sc.units.m).unit) assert_almost_equal(b.coords["qz"].values, bins) assert_almost_equal(b.coords["sigma_qz_by_qz"].values, np.linspace(0.325, 1.0, 3)) assert_almost_equal(b.data.values, np.array([3.0, 3.0, 3.]) / 9.) assert_almost_equal(b.data.variances, np.array([3.0, 3.0, 3.]) / 81.) def test_q_bin_no_qz(self): p = data.ReflData(BINNED.copy()) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=(1 / sc.units.m).unit, dtype=sc.dtype.float64, ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) bins = np.linspace(0, 11, 4) with self.assertRaises(sc.NotFoundError): _ = p.q_bin(bins) def test_q_bin_no_qzresolution(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=sc.Unit('1/angstrom'), ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) bins = np.linspace(0, 11, 4) b = p.q_bin(bins) assert_almost_equal(b.coords["qz"].values, bins) assert_almost_equal(b.data.values, np.array([3.0, 3.0, 3.]) / 9.) assert_almost_equal(b.data.variances, np.array([3.0, 3.0, 3.]) / 81.) def test_q_bin_no_tof(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=sc.Unit('1/angstrom'), ) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=sc.Unit('1/angstrom'), dtype=sc.dtype.float64, ) bins = np.linspace(0, 11, 4) with self.assertRaises(sc.NotFoundError): _ = p.q_bin(bins) def test_wavelength_theta_bin(self): p = data.ReflData(BINNED.copy()) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) binned = p.wavelength_theta_bin() assert_equal(binned.shape, [49, 49]) def test_q_theta_bin(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.Unit('1/angstrom'), ) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) binned = p.q_theta_bin() assert_equal(binned.shape, [49, 49]) def test_wavelength_q_bin(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.Unit('1/angstrom'), ) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) binned = p.wavelength_q_bin() assert_equal(binned.shape, [49, 49]) def test_tof_to_wavelength(self): p = data.ReflData(BINNED.copy()) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS, dtype=sc.dtype.float64) p.data.attrs["source_position"] = sc.geometry.position( 0.0 * sc.units.m, 0.0 * sc.units.m, -15.0 * sc.units.m) p.data.attrs["sample_position"] = sc.geometry.position( 0.0 * sc.units.m, 0.0 * sc.units.m, 0.0 * sc.units.m) p.find_wavelength() assert_almost_equal( p.event.coords["wavelength"].values, [ 0.0004729, 0.0009457, 0.0002267, 0.0002267, 0.0009069, 0.0004396, 0.0008791, 0.0004396, 0.0008791, ], ) def test_find_theta_gravity(self): p = data.ReflData(BINNED.copy()) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.data.attrs["sample_position"] = sc.geometry.position( 0.0 * sc.units.m, 0.0 * sc.units.m, 0.0 * sc.units.m) p.find_theta() assert_almost_equal( p.event.coords["theta"].values, [ 44.9999641, 44.9998564, 63.4349452, 63.4349452, 63.4348914, 63.4349345, 63.4348914, 63.4349345, 63.4348914 ], ) assert_almost_equal( p.event.coords["sigma_theta_by_theta"].values, [ 0.0013517, 0.0013517, 0.0009589, 0.0009589, 0.0009589, 0.0009589, 0.0009589, 0.0009589, 0.0009589, ], ) assert_almost_equal( p.data.attrs["sigma_gamma"].values, [0.0608281, 0.0608281, 0.0608281, 0.0608281], ) def test_find_theta_no_gravity(self): p = data.ReflData(BINNED.copy(), gravity=False) with self.assertRaises(NotImplementedError): p.find_theta() def test_find_qz(self): p = data.ReflData(BINNED.copy()) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.find_qz() assert_almost_equal( p.event.coords["qz"].values, [ 0.21928, 0.21914643, 0.21931341, 0.21931341, 0.21914643, 0.21928, 0.21914643, 0.21928, 0.21914643, ], ) assert_almost_equal(p.event.coords["sigma_qz_by_qz"].values, np.zeros(9)) def test_find_qz_with_resolution(self): p = data.ReflData(BINNED.copy()) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.event.coords["sigma_theta_by_theta"] = sc.Variable( dims=["event"], values=DETECTORS * 0.1, dtype=sc.dtype.float64) p.data.coords["sigma_lambda_by_lamdba"] = sc.Variable( dims=["detector_id"], values=np.arange(1, 5) * 0.1, dtype=sc.dtype.float64, ) p.find_qz() assert_almost_equal( p.event.coords["qz"].values, [ 0.21928, 0.21914643, 0.21931341, 0.21931341, 0.21914643, 0.21928, 0.21914643, 0.21928, 0.21914643, ], ) assert_almost_equal( p.event.coords["sigma_qz_by_qz"].values, [ 0.2236068, 0.4123106, 0.2236068, 0.2236068, 0.4472136, 0.4472136, 0.5656854, 0.4472136, 0.5656854, ], ) def test_illumination(self): p = data.ReflData(BINNED.copy()) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS * 0.1, dtype=sc.dtype.float64, unit=sc.units.deg, ) p.beam_width = 50e-3 * sc.units.m p.sample_size = 0.10 * sc.units.m p.illumination() assert_almost_equal( p.event.coords["illumination"].values, [ 0.7549526, 0.9799233, 0.4389162, 0.4389162, 0.9799233, 0.7549526, 0.9799233, 0.7549526, 0.9799233, ], ) assert_almost_equal( p.event.data.values, 1 / np.array( [ 0.7549526, 0.9799233, 0.4389162, 0.4389162, 0.9799233, 0.7549526, 0.9799233, 0.7549526, 0.9799233, ], dtype=np.float32, ), ) assert_almost_equal( p.event.data.variances, 1 / np.array( [ 0.7549526, 0.9799233, 0.4389162, 0.4389162, 0.9799233, 0.7549526, 0.9799233, 0.7549526, 0.9799233, ], dtype=np.float32, )**2, decimal=6, ) def test_detector_masking_defaults(self): p = data.ReflData(BINNED.copy()) p.detector_masking() assert_equal(p.data.masks["x_mask"].values, [False] * 4) assert_equal(p.data.masks["y_mask"].values, [False] * 4) assert_equal(p.data.masks["z_mask"].values, [False] * 4) def test_detector_masking_x_min(self): p = data.ReflData(BINNED.copy()) p.detector_masking(x_min=2 * sc.units.m) assert_equal(p.data.masks["x_mask"].values, [True, True, False, False]) assert_equal(p.data.masks["y_mask"].values, [False] * 4) assert_equal(p.data.masks["z_mask"].values, [False] * 4) def test_detector_masking_x_max(self): p = data.ReflData(BINNED.copy()) p.detector_masking(x_max=1 * sc.units.m) assert_equal(p.data.masks["x_mask"].values, [False, False, True, True]) assert_equal(p.data.masks["y_mask"].values, [False] * 4) assert_equal(p.data.masks["z_mask"].values, [False] * 4) def test_detector_masking_y_min(self): p = data.ReflData(BINNED.copy()) p.detector_masking(y_min=2 * sc.units.m) assert_equal(p.data.masks["y_mask"].values, [True, False, True, False]) assert_equal(p.data.masks["x_mask"].values, [False] * 4) assert_equal(p.data.masks["z_mask"].values, [False] * 4) def test_detector_masking_y_max(self): p = data.ReflData(BINNED.copy()) p.detector_masking(y_max=1 * sc.units.m) assert_equal(p.data.masks["y_mask"].values, [False, True, False, True]) assert_equal(p.data.masks["x_mask"].values, [False] * 4) assert_equal(p.data.masks["z_mask"].values, [False] * 4) def test_detector_masking_z_min(self): p = data.ReflData(BINNED.copy()) p.detector_masking(z_min=2 * sc.units.m) assert_equal(p.data.masks["z_mask"].values, [True, True, True, True]) assert_equal(p.data.masks["y_mask"].values, [False] * 4) assert_equal(p.data.masks["x_mask"].values, [False] * 4) def test_detector_masking_z_max(self): p = data.ReflData(BINNED.copy()) p.detector_masking(z_max=1 * sc.units.m) assert_equal(p.data.masks["z_mask"].values, [False, False, False, False]) assert_equal(p.data.masks["y_mask"].values, [False] * 4) assert_equal(p.data.masks["x_mask"].values, [False] * 4) def test_theta_masking(self): p = data.ReflData(BINNED.copy()) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) p.theta_masking(theta_min=2 * sc.units.deg, theta_max=4 * sc.units.deg) assert_equal( p.data.masks["theta"].values, [True, False, True], ) def test_theta_masking_no_min(self): p = data.ReflData(BINNED.copy()) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) p.theta_masking(theta_max=4 * sc.units.deg) assert_equal( p.data.masks["theta"].values, [True, False, True], ) def test_theta_masking_no_max(self): p = data.ReflData(BINNED.copy()) p.event.coords["theta"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.deg, ) p.theta_masking(theta_min=2 * sc.units.deg) assert_equal( p.data.masks["theta"].values, [True, False, True], ) def test_wavelength_masking(self): p = data.ReflData(BINNED.copy()) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.wavelength_masking( wavelength_min=2 * sc.units.angstrom, wavelength_max=4 * sc.units.angstrom, ) assert_equal( p.data.masks["wavelength"].values, [True, False, True], ) def test_wavelength_masking_no_min(self): p = data.ReflData(BINNED.copy()) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.wavelength_masking(wavelength_max=4 * sc.units.angstrom) assert_equal( p.data.masks["wavelength"].values, [True, False, True], ) def test_wavelength_masking_no_max(self): p = data.ReflData(BINNED.copy()) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS, dtype=sc.dtype.float64, unit=sc.units.angstrom, ) p.wavelength_masking(wavelength_min=2 * sc.units.angstrom) assert_equal( p.data.masks["wavelength"].values, [True, False, True], ) def test_write(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=sc.Unit('1/angstrom'), ) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=sc.Unit('1/angstrom'), dtype=sc.dtype.float64, ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) with file_location("test1.txt") as file_path: p.write_reflectometry(file_path) written_data = np.loadtxt(file_path, unpack=True) assert_equal(written_data.shape, (4, 199)) def test_write_bins(self): p = data.ReflData(BINNED.copy()) p.event.coords["qz"] = sc.Variable( dims=["event"], values=np.linspace(1, 10, N), unit=sc.Unit('1/angstrom'), ) p.event.coords["sigma_qz_by_qz"] = sc.Variable( dims=["event"], values=np.linspace(0.1, 1.0, N), unit=sc.Unit('1/angstrom'), dtype=sc.dtype.float64, ) p.event.coords["tof"] = sc.Variable(dims=["event"], values=DETECTORS) bins = np.linspace(0, 11, 4) with file_location("test2.txt") as file_path: p.write_reflectometry(file_path, {"bins": bins}) written_data = np.loadtxt(file_path, unpack=True) assert_almost_equal(written_data[0], bins[:-1] + np.diff(bins)) assert_almost_equal(written_data[1], np.array([3, 3, 3]) / 9) assert_almost_equal(written_data[2], np.sqrt(np.array([3, 3, 3]) / 81)) assert_almost_equal(written_data[3], np.linspace(0.325, 1.0, 3)) def test_write_wavelength_theta(self): p = data.ReflData(BINNED.copy()) p.event.coords["wavelength"] = sc.Variable( dims=["event"], values=DETECTORS.astype(float), unit=sc.units.angstrom) p.event.coords["theta"] = sc.Variable(dims=["event"], values=DETECTORS.astype(float), unit=sc.units.deg) bins = np.linspace(0, 100, 10) with file_location("test1.txt") as file_path: p.write_wavelength_theta(file_path, (bins, bins)) written_data = np.loadtxt(file_path, unpack=True) assert_equal(written_data.shape, (11, 9))
34.76087
83
0.525578
2481d3cf96dc57e73f536d5817da17eef8b9dfa2
8,607
py
Python
src/external/elf-loader/extract-system-config.py
Tiamat-Tech/shadow
482458a2ff0573d4b5eec0c588852af46aead24a
[ "BSD-3-Clause" ]
1
2021-04-17T01:00:35.000Z
2021-04-17T01:00:35.000Z
src/external/elf-loader/extract-system-config.py
Tiamat-Tech/shadow
482458a2ff0573d4b5eec0c588852af46aead24a
[ "BSD-3-Clause" ]
18
2020-12-15T07:11:46.000Z
2022-02-15T00:07:52.000Z
src/external/elf-loader/extract-system-config.py
Tiamat-Tech/shadow
482458a2ff0573d4b5eec0c588852af46aead24a
[ "BSD-3-Clause" ]
1
2021-09-21T22:20:32.000Z
2021-09-21T22:20:32.000Z
#!/usr/bin/env python3 import sys import re import getopt import os import codecs from elftools.elf.elffile import ELFFile # Should be inheriting FileNotFoundError but we use Exception to ensure python2 compatibility class CouldNotFindFile(Exception): pass class DebugData: def __init__(self, debug_filename): with open(debug_filename, 'rb') as f: elffile = ELFFile(f) assert elffile.has_dwarf_info(), debug_filename + ' has no DWARF info' self.dwarfinfo = elffile.get_dwarf_info() def get_struct_size(self, struct_die, required=True): if struct_die is not None: return struct_die.attributes['DW_AT_byte_size'].value assert not required return None def get_member_offset (self, die, member_name, required=True): member = self._find_member_in_struct(die, member_name.encode('UTF-8')) if member is not None and 'DW_AT_data_member_location' in member.attributes: return member.attributes['DW_AT_data_member_location'].value assert not required return None def get_struct_die(self, struct_name): return self._get_X('DW_TAG_structure_type', struct_name) def get_type_die(self, type_name): typedef = self._get_X('DW_TAG_typedef', type_name) ref = typedef.attributes['DW_AT_type'].value for CU in self.dwarfinfo.iter_CUs(): for die in CU.iter_DIEs(): if die.offset == ref: return die return None def _find_in_DIE(self, die, tag_name, struct_name): if die.tag == tag_name and \ 'DW_AT_name' in die.attributes and \ die.attributes['DW_AT_name'].value == struct_name: return die if die.has_children: for child in die.iter_children(): result = self._find_in_DIE(child, tag_name, struct_name) if result is not None: return result return None def _get_X(self, tag_name, item_name): for CU in self.dwarfinfo.iter_CUs(): for die in CU.iter_DIEs(): item = self._find_in_DIE(die, tag_name, item_name.encode('UTF-8')) if item is not None: return item return None def _find_member_in_struct(self, struct, member_name): for die in struct.iter_children(): if die.tag == 'DW_TAG_member' and \ 'DW_AT_name' in die.attributes and \ die.attributes['DW_AT_name'].value == member_name: return die return None def find_build_id(path): if not os.path.exists(path): return None with open(path, 'rb') as f: elffile = ELFFile(f) section = elffile.get_section_by_name('.note.gnu.build-id') build_id = '' try: note = next(section.iter_notes()) build_id = note['n_desc'] except AttributeError: # older versions of pyelftools don't support notes, # so parse the section data directly build_id = codecs.getencoder('hex')(section.data()[-20:])[0].decode('UTF-8') return "/usr/lib/debug/.build-id/{}/{}.debug".format(build_id[0:2], build_id[2:]) def check_file_regex(directory, file_regex): if not os.path.exists(directory): return None lines = os.listdir(directory) regex = re.compile(file_regex) for line in lines: result = regex.search(line) if result: return directory + result.group() return None def search_debug_file(): debug_files = [ ('/usr/lib64/debug/lib64/', r'ld-[0-9.]+\.so.debug'), ('/usr/lib/debug/lib64/', r'ld-linux-x86-64\.so\.2\.debug'), ('/usr/lib/debug/', r'ld-linux-x86-64\.so\.2'), ('/usr/lib/debug/lib/', r'ld-linux\.so\.2\.debug'), ('/usr/lib/debug/', r'ld-linux\.so\.2'), # ubuntu 09.10-10.10 ('/usr/lib/debug/lib/', r'ld-[0-9.]+\.so'), # ubuntu 11.04/11.10 ('/usr/lib/debug/lib/i386-linux-gnu/', r'ld-[0-9.]+\.so'), ('/usr/lib/debug/lib/x86_64-linux-gnu/', r'ld-[0-9.]+\.so'), # ubuntu >12.04 ('/usr/lib/debug/lib/x86_64-linux-gnu/', r'ld-[0-9.]+\.so'), ('/usr/lib/debug/lib/i386-linux-gnu/', r'ld-[0-9.]+\.so'), # arch / manjaro ('/usr/lib/debug/usr/lib32/', r'ld-[0-9.]+\.so\.debug'), ('/usr/lib/debug/usr/lib/', r'ld-[0-9.]+\.so\.debug'), ] build_ids = [ # debian ('/lib/x86_64-linux-gnu/', r'ld-[0-9.]+\.so'), ('/lib/i386-linux-gnu/', r'ld-[0-9.]+\.so'), # solus ('/usr/lib/', r'ld-linux-x86-64\.so\.2'), ] for file_tuple in debug_files: file = check_file_regex(file_tuple[0], file_tuple[1]) if file and os.path.isfile(file): return file for file_tuple in build_ids: library = check_file_regex(file_tuple[0], file_tuple[1]) if not library: continue file = find_build_id(library) if file and os.path.isfile(file): return file raise CouldNotFindFile('Debug file not found') def list_lib_path(): paths = [] re_lib = re.compile ('(?<=^#)') if not os.path.isdir("/etc/ld.so.conf.d/"): return '' for filename in os.listdir("/etc/ld.so.conf.d/"): try: for line in open("/etc/ld.so.conf.d/" + filename, 'r'): if re_lib.search(line) is not None: continue paths.append(line.rstrip()) except: continue return ':'.join(paths) def define(outfile, name, value): if value is not None: outfile.write('#define {} {}\n'.format(name, value)) def usage(): print('''Usage: ./extract-system-config.py [OPTIONS] Options: \t-h, --help\tdisplay this help text \t-c, --config=[FILE]\twrite output to file (default: stdout) \t-d, --debug=[FILE]\tread debug symbols from file (default: search common locations) \t-b, --builddir=[DIR]\tbuild directory for inclusion in library path''') def main(argv): config_filename = '' debug_filename = '' build_dir = '' try: opts, args = getopt.getopt(argv, 'hc:d:b:', ['help', 'config=', 'debug=', 'builddir=']) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): usage() sys.exit() elif opt in ('-c', '--config'): config_filename = arg elif opt in ('-d', '--debug'): debug_filename = arg elif opt in ('-b', '--builddir'): build_dir = arg if config_filename != '': config = open(config_filename, 'w') else: config = sys.stdout if debug_filename == '': debug_filename = search_debug_file() find_build_id(debug_filename) debug = DebugData(debug_filename) rtld_global_die = debug.get_struct_die('rtld_global') rtld_global_ro_die = debug.get_struct_die('rtld_global_ro') tcb_die = debug.get_type_die('tcbhead_t') define(config, 'CONFIG_RTLD_GLOBAL_SIZE', debug.get_struct_size(rtld_global_die)) # field was removed in glibc 2.25 define(config, 'CONFIG_DL_ERROR_CATCH_TSD_OFFSET', debug.get_member_offset (rtld_global_die, '_dl_error_catch_tsd', False)) define(config, 'CONFIG_RTLD_GLOBAL_RO_SIZE', debug.get_struct_size(rtld_global_ro_die)) define(config, 'CONFIG_RTLD_DL_PAGESIZE_OFFSET', debug.get_member_offset(rtld_global_ro_die, '_dl_pagesize')) define(config, 'CONFIG_RTLD_DL_CLKTCK_OFFSET', debug.get_member_offset(rtld_global_ro_die, '_dl_clktck')) define(config, 'CONFIG_TCB_SIZE', debug.get_struct_size(debug.get_struct_die('pthread'))) define(config, 'CONFIG_TCB_TCB_OFFSET', debug.get_member_offset(tcb_die, 'tcb')) define(config, 'CONFIG_TCB_DTV_OFFSET', debug.get_member_offset(tcb_die, 'dtv')) define(config, 'CONFIG_TCB_SELF_OFFSET',debug.get_member_offset(tcb_die, 'self')) define(config, 'CONFIG_TCB_SYSINFO_OFFSET', debug.get_member_offset(tcb_die, 'sysinfo')) define(config, 'CONFIG_TCB_STACK_GUARD', debug.get_member_offset(tcb_die, 'stack_guard')) define(config, 'CONFIG_SYSTEM_LDSO_LIBRARY_PATH', '"' + list_lib_path() + ':' + build_dir + '\"') if __name__ == "__main__": main(sys.argv[1:])
41.781553
127
0.595562
c57a2422172ba631d7064511ac500f526f10b498
21,241
py
Python
dvc/repo/experiments/__init__.py
rfdickerson/dvc
54a48e3256ffc18f47e51fc23a5a3e1488d2b57e
[ "Apache-2.0" ]
1
2021-04-05T19:16:36.000Z
2021-04-05T19:16:36.000Z
dvc/repo/experiments/__init__.py
mgkwill/dvc
de768375ed72ce171daad91c38beb7af387c2cf2
[ "Apache-2.0" ]
null
null
null
dvc/repo/experiments/__init__.py
mgkwill/dvc
de768375ed72ce171daad91c38beb7af387c2cf2
[ "Apache-2.0" ]
null
null
null
import logging import os import re import tempfile from collections.abc import Mapping from concurrent.futures import ( ProcessPoolExecutor, ThreadPoolExecutor, as_completed, ) from contextlib import contextmanager from functools import partial, wraps from typing import Iterable, Optional from funcy import cached_property, first from dvc.exceptions import DownloadError, DvcException, UploadError from dvc.path_info import PathInfo from dvc.progress import Tqdm from dvc.repo.experiments.executor import ExperimentExecutor, LocalExecutor from dvc.scm.git import Git from dvc.stage.serialize import to_lockfile from dvc.tree.repo import RepoTree from dvc.utils import dict_sha256, env2bool, relpath from dvc.utils.fs import remove logger = logging.getLogger(__name__) def scm_locked(f): # Lock the experiments workspace so that we don't try to perform two # different sequences of git operations at once @wraps(f) def wrapper(exp, *args, **kwargs): with exp.scm_lock: return f(exp, *args, **kwargs) return wrapper def hash_exp(stages): exp_data = {} for stage in stages: exp_data.update(to_lockfile(stage)) return dict_sha256(exp_data) class UnchangedExperimentError(DvcException): def __init__(self, rev): super().__init__(f"Experiment identical to baseline '{rev[:7]}'.") self.rev = rev class BaselineMismatchError(DvcException): def __init__(self, rev, expected): if hasattr(rev, "hexsha"): rev = rev.hexsha rev_str = f"{rev[:7]}" if rev is not None else "dangling commit" super().__init__( f"Experiment derived from '{rev_str}', expected '{expected[:7]}'." ) self.rev = rev self.expected_rev = expected class Experiments: """Class that manages experiments in a DVC repo. Args: repo (dvc.repo.Repo): repo instance that these experiments belong to. """ EXPERIMENTS_DIR = "experiments" PACKED_ARGS_FILE = "repro.dat" STASH_MSG_PREFIX = "dvc-exp-" STASH_EXPERIMENT_RE = re.compile( r"(?:On \(.*\): )dvc-exp-(?P<baseline_rev>[0-9a-f]+)$" ) BRANCH_RE = re.compile( r"^(?P<baseline_rev>[a-f0-9]{7})-(?P<exp_sha>[a-f0-9]+)$" ) def __init__(self, repo): from dvc.lock import make_lock if not ( env2bool("DVC_TEST") or repo.config["core"].get("experiments", False) ): raise NotImplementedError self.repo = repo self.scm_lock = make_lock( os.path.join(self.repo.tmp_dir, "exp_scm_lock"), tmp_dir=self.repo.tmp_dir, ) @cached_property def exp_dir(self): return os.path.join(self.repo.dvc_dir, self.EXPERIMENTS_DIR) @cached_property def scm(self): """Experiments clone scm instance.""" if os.path.exists(self.exp_dir): return Git(self.exp_dir) return self._init_clone() @cached_property def dvc_dir(self): return relpath(self.repo.dvc_dir, self.repo.scm.root_dir) @cached_property def exp_dvc_dir(self): return os.path.join(self.exp_dir, self.dvc_dir) @cached_property def exp_dvc(self): """Return clone dvc Repo instance.""" from dvc.repo import Repo return Repo(self.exp_dvc_dir) @contextmanager def chdir(self): cwd = os.getcwd() os.chdir(self.exp_dvc.root_dir) yield self.exp_dvc.root_dir os.chdir(cwd) @cached_property def args_file(self): return os.path.join(self.exp_dvc.tmp_dir, self.PACKED_ARGS_FILE) @property def stash_reflog(self): if "refs/stash" in self.scm.repo.refs: return self.scm.repo.refs["refs/stash"].log() return [] @property def stash_revs(self): revs = {} for i, entry in enumerate(self.stash_reflog): m = self.STASH_EXPERIMENT_RE.match(entry.message) if m: revs[entry.newhexsha] = (i, m.group("baseline_rev")) return revs def _init_clone(self): src_dir = self.repo.scm.root_dir logger.debug("Initializing experiments clone") git = Git.clone(src_dir, self.exp_dir) self._config_clone() return git def _config_clone(self): dvc_dir = relpath(self.repo.dvc_dir, self.repo.scm.root_dir) local_config = os.path.join(self.exp_dir, dvc_dir, "config.local") cache_dir = self.repo.cache.local.cache_dir logger.debug("Writing experiments local config '%s'", local_config) with open(local_config, "w") as fobj: fobj.write(f"[cache]\n dir = {cache_dir}") def _scm_checkout(self, rev): self.scm.repo.git.reset(hard=True) if self.scm.repo.head.is_detached: self._checkout_default_branch() if not Git.is_sha(rev) or not self.scm.has_rev(rev): self.scm.pull() logger.debug("Checking out experiment commit '%s'", rev) self.scm.checkout(rev) def _checkout_default_branch(self): # switch to default branch git_repo = self.scm.repo origin_refs = git_repo.remotes["origin"].refs ref = origin_refs["HEAD"].reference branch_name = ref.name.split("/")[-1] if branch_name in git_repo.heads: branch = git_repo.heads[branch_name] else: branch = git_repo.create_head(branch_name, ref) branch.set_tracking_branch(ref) branch.checkout() def _stash_exp(self, *args, params: Optional[dict] = None, **kwargs): """Stash changes from the current (parent) workspace as an experiment. Args: params: Optional dictionary of parameter values to be used. Values take priority over any parameters specified in the user's workspace. """ rev = self.scm.get_rev() # patch user's workspace into experiments clone tmp = tempfile.NamedTemporaryFile(delete=False).name try: self.repo.scm.repo.git.diff( patch=True, full_index=True, binary=True, output=tmp ) if os.path.getsize(tmp): logger.debug("Patching experiment workspace") self.scm.repo.git.apply(tmp) elif not params: # experiment matches original baseline raise UnchangedExperimentError(rev) finally: remove(tmp) # update experiment params from command line if params: self._update_params(params) # save additional repro command line arguments self._pack_args(*args, **kwargs) # save experiment as a stash commit w/message containing baseline rev # (stash commits are merge commits and do not contain a parent commit # SHA) msg = f"{self.STASH_MSG_PREFIX}{rev}" self.scm.repo.git.stash("push", "-m", msg) return self.scm.resolve_rev("stash@{0}") def _pack_args(self, *args, **kwargs): ExperimentExecutor.pack_repro_args(self.args_file, *args, **kwargs) self.scm.add(self.args_file) def _unpack_args(self, tree=None): return ExperimentExecutor.unpack_repro_args(self.args_file, tree=tree) def _update_params(self, params: dict): """Update experiment params files with the specified values.""" from dvc.utils.serialize import MODIFIERS logger.debug("Using experiment params '%s'", params) # recursive dict update def _update(dict_, other): for key, value in other.items(): if isinstance(value, Mapping): dict_[key] = _update(dict_.get(key, {}), value) else: dict_[key] = value return dict_ for params_fname in params: path = PathInfo(self.exp_dvc.root_dir) / params_fname suffix = path.suffix.lower() modify_data = MODIFIERS[suffix] with modify_data(path, tree=self.exp_dvc.tree) as data: _update(data, params[params_fname]) def _commit(self, exp_hash, check_exists=True, branch=True): """Commit stages as an experiment and return the commit SHA.""" if not self.scm.is_dirty(): raise UnchangedExperimentError(self.scm.get_rev()) rev = self.scm.get_rev() exp_name = f"{rev[:7]}-{exp_hash}" if branch: if check_exists and exp_name in self.scm.list_branches(): logger.debug("Using existing experiment branch '%s'", exp_name) return self.scm.resolve_rev(exp_name) self.scm.checkout(exp_name, create_new=True) logger.debug("Commit new experiment branch '%s'", exp_name) self.scm.repo.git.add(A=True) self.scm.commit(f"Add experiment {exp_name}") return self.scm.get_rev() def reproduce_one(self, queue=False, **kwargs): """Reproduce and checkout a single experiment.""" stash_rev = self.new(**kwargs) if queue: logger.info( "Queued experiment '%s' for future execution.", stash_rev[:7] ) return [stash_rev] results = self.reproduce([stash_rev], keep_stash=False) exp_rev = first(results) if exp_rev is not None: self.checkout_exp(exp_rev) return results def reproduce_queued(self, **kwargs): results = self.reproduce(**kwargs) if results: revs = [f"{rev[:7]}" for rev in results] logger.info( "Successfully reproduced experiment(s) '%s'.\n" "Use `dvc exp checkout <exp_rev>` to apply the results of " "a specific experiment to your workspace.", ", ".join(revs), ) return results @scm_locked def new(self, *args, **kwargs): """Create a new experiment. Experiment will be reproduced and checked out into the user's workspace. """ rev = self.repo.scm.get_rev() self._scm_checkout(rev) try: stash_rev = self._stash_exp(*args, **kwargs) except UnchangedExperimentError as exc: logger.info("Reproducing existing experiment '%s'.", rev[:7]) raise exc logger.debug( "Stashed experiment '%s' for future execution.", stash_rev[:7] ) return stash_rev @scm_locked def reproduce( self, revs: Optional[Iterable] = None, keep_stash: Optional[bool] = True, **kwargs, ): """Reproduce the specified experiments. Args: revs: If revs is not specified, all stashed experiments will be reproduced. keep_stash: If True, stashed experiments will be preserved if they fail to reproduce successfully. """ stash_revs = self.stash_revs # to_run contains mapping of: # input_rev: (stash_index, baseline_rev) # where input_rev contains the changes to execute (usually a stash # commit) and baseline_rev is the baseline to compare output against. # The final experiment commit will be branched from baseline_rev. if revs is None: to_run = { rev: baseline_rev for rev, (_, baseline_rev) in stash_revs.items() } else: to_run = { rev: stash_revs[rev][1] if rev in stash_revs else rev for rev in revs } logger.debug( "Reproducing experiment revs '%s'", ", ".join((rev[:7] for rev in to_run)), ) # setup executors - unstash experiment, generate executor, upload # contents of (unstashed) exp workspace to the executor tree executors = {} for rev, baseline_rev in to_run.items(): self._scm_checkout(baseline_rev) self.scm.repo.git.stash("apply", rev) repro_args, repro_kwargs = self._unpack_args() executor = LocalExecutor( baseline_rev, repro_args=repro_args, repro_kwargs=repro_kwargs, dvc_dir=self.dvc_dir, cache_dir=self.repo.cache.local.cache_dir, ) self._collect_input(executor) executors[rev] = executor exec_results = self._reproduce(executors, **kwargs) if keep_stash: # only drop successfully run stashed experiments to_drop = sorted( ( stash_revs[rev][0] for rev in exec_results if rev in stash_revs ), reverse=True, ) else: # drop all stashed experiments to_drop = sorted( (stash_revs[rev][0] for rev in to_run if rev in stash_revs), reverse=True, ) for index in to_drop: self.scm.repo.git.stash("drop", index) result = {} for _, exp_result in exec_results.items(): result.update(exp_result) return result def _reproduce(self, executors: dict, jobs: Optional[int] = 1) -> dict: """Run dvc repro for the specified ExperimentExecutors in parallel. Returns dict containing successfully executed experiments. """ result = {} with ProcessPoolExecutor(max_workers=jobs) as workers: futures = {} for rev, executor in executors.items(): future = workers.submit( executor.reproduce, executor.dvc_dir, cwd=executor.dvc.root_dir, **executor.repro_kwargs, ) futures[future] = (rev, executor) for future in as_completed(futures): rev, executor = futures[future] exc = future.exception() if exc is None: exp_hash = future.result() self._scm_checkout(executor.baseline_rev) try: self._collect_output(executor) except DownloadError: logger.error( "Failed to collect output for experiment '%s'", rev, ) continue finally: if os.path.exists(self.args_file): remove(self.args_file) try: exp_rev = self._commit(exp_hash) except UnchangedExperimentError: logger.debug( "Experiment '%s' identical to baseline '%s'", rev, executor.baseline_rev, ) exp_rev = executor.baseline_rev logger.info("Reproduced experiment '%s'.", exp_rev[:7]) result[rev] = {exp_rev: exp_hash} else: logger.exception( "Failed to reproduce experiment '%s'", rev ) executor.cleanup() return result def _collect_input(self, executor: ExperimentExecutor): """Copy (upload) input from the experiments workspace to the executor tree. """ logger.debug("Collecting input for '%s'", executor.tmp_dir) repo_tree = RepoTree(self.exp_dvc) self._process( executor.tree, self.exp_dvc.tree, executor.collect_files(self.exp_dvc.tree, repo_tree), ) def _collect_output(self, executor: ExperimentExecutor): """Copy (download) output from the executor tree into experiments workspace. """ logger.debug("Collecting output from '%s'", executor.tmp_dir) self._process( self.exp_dvc.tree, executor.tree, executor.collect_output(), download=True, ) @staticmethod def _process(dest_tree, src_tree, collected_files, download=False): from dvc.cache.local import _log_exceptions from_infos = [] to_infos = [] names = [] for from_info in collected_files: from_infos.append(from_info) fname = from_info.relative_to(src_tree.path_info) names.append(str(fname)) to_infos.append(dest_tree.path_info / fname) total = len(from_infos) if download: func = partial( _log_exceptions(src_tree.download, "download"), dir_mode=dest_tree.dir_mode, file_mode=dest_tree.file_mode, ) desc = "Downloading" else: func = partial(_log_exceptions(dest_tree.upload, "upload")) desc = "Uploading" with Tqdm(total=total, unit="file", desc=desc) as pbar: func = pbar.wrap_fn(func) # TODO: parallelize this, currently --jobs for repro applies to # number of repro executors not download threads with ThreadPoolExecutor(max_workers=1) as dl_executor: fails = sum(dl_executor.map(func, from_infos, to_infos, names)) if fails: if download: raise DownloadError(fails) raise UploadError(fails) @scm_locked def checkout_exp(self, rev): """Checkout an experiment to the user's workspace.""" from git.exc import GitCommandError from dvc.repo.checkout import checkout as dvc_checkout self._check_baseline(rev) self._scm_checkout(rev) tmp = tempfile.NamedTemporaryFile(delete=False).name self.scm.repo.head.commit.diff( "HEAD~1", patch=True, full_index=True, binary=True, output=tmp ) dirty = self.repo.scm.is_dirty() if dirty: logger.debug("Stashing workspace changes.") self.repo.scm.repo.git.stash("push", "--include-untracked") try: if os.path.getsize(tmp): logger.debug("Patching local workspace") self.repo.scm.repo.git.apply(tmp, reverse=True) need_checkout = True else: need_checkout = False except GitCommandError: raise DvcException("failed to apply experiment changes.") finally: remove(tmp) if dirty: self._unstash_workspace() if need_checkout: dvc_checkout(self.repo) def _check_baseline(self, exp_rev): baseline_sha = self.repo.scm.get_rev() exp_commit = self.scm.repo.rev_parse(exp_rev) parent = first(exp_commit.parents) if parent is not None and parent.hexsha == baseline_sha: return raise BaselineMismatchError(parent, baseline_sha) def _unstash_workspace(self): # Essentially we want `git stash pop` with `-X ours` merge strategy # to prefer the applied experiment changes over stashed workspace # changes. git stash doesn't support merge strategy parameters, but we # can do it ourselves with checkout/reset. from git.exc import GitCommandError logger.debug("Unstashing workspace changes.") git_repo = self.repo.scm.repo.git # stage workspace changes, then apply stashed changes on top git_repo.add(A=True) try: git_repo.stash("apply", "stash@{0}") except GitCommandError: # stash apply will return error code on merge conflicts, # prefer workspace changes over stash changes git_repo.checkout("--ours", "--", ".") # unstage changes and drop the stash entry git_repo.reset("HEAD") git_repo.stash("drop", "stash@{0}") @scm_locked def get_baseline(self, rev): """Return the baseline rev for an experiment rev.""" from git.exc import GitCommandError rev = self.scm.resolve_rev(rev) try: name = self.scm.repo.git.name_rev(rev, name_only=True) except GitCommandError: return None if not name: return None if name in ("undefined", "stash"): _, baseline = self.stash_revs.get(rev, (None, None)) return baseline m = self.BRANCH_RE.match(name) if m: return self.scm.resolve_rev(m.group("baseline_rev")) return None def checkout(self, *args, **kwargs): from dvc.repo.experiments.checkout import checkout return checkout(self.repo, *args, **kwargs) def diff(self, *args, **kwargs): from dvc.repo.experiments.diff import diff return diff(self.repo, *args, **kwargs) def show(self, *args, **kwargs): from dvc.repo.experiments.show import show return show(self.repo, *args, **kwargs)
34.538211
79
0.583588
c6f2aeb530373c41986cc3d3272ba0215c659647
1,739
py
Python
IO/Xdmf3/Testing/Python/ManyFiles.py
satya-arjunan/vtk8
ee7ced57de6d382a2d12693c01e2fcdac350b25f
[ "BSD-3-Clause" ]
1,755
2015-01-03T06:55:00.000Z
2022-03-29T05:23:26.000Z
IO/Xdmf3/Testing/Python/ManyFiles.py
satya-arjunan/vtk8
ee7ced57de6d382a2d12693c01e2fcdac350b25f
[ "BSD-3-Clause" ]
29
2015-04-23T20:58:30.000Z
2022-03-02T16:16:42.000Z
IO/Xdmf3/Testing/Python/ManyFiles.py
satya-arjunan/vtk8
ee7ced57de6d382a2d12693c01e2fcdac350b25f
[ "BSD-3-Clause" ]
1,044
2015-01-05T22:48:27.000Z
2022-03-31T02:38:26.000Z
""" This test verifies that vtk's Xdmf reader will read a sampling of small to moderate size data files that cover a spectrum of file format features. """ from __future__ import print_function import sys import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() smallFiles = [ #from XDMF "2DCoRectMesh.xmf", "2DRectMesh.xmf", "2DSMesh.xmf", "3DCoRectMesh.xmf", "3DRectMesh.xmf", "3DSMesh.xmf", "Graph.xmf", "Hexahedron.xmf", "HexahedronTimestep.xmf", "Mixed.xmf", "Tetrahedron.xmf", "TetrahedronMultipleGrids.xmf", "TetrahedronSpatial.xmf", "TetrahedronSpatialTimestep.xmf", "TetrahedronTimestep.xmf", "Triangle.xmf", "corect.xmf", "hex20.xmf", "hexahedron_xy.xmf", "hexahedron_xyz.xmf", "output.xmf", "quadrilateral.xmf", "rectTest.xmf", "tensor.xmf", "set.xmf" ] largeFiles = [ #from ParaView "Iron/Iron_Protein.ImageData.xmf", "Iron/Iron_Protein.ImageData.Collection.xmf", "Iron/Iron_Protein.RectilinearGrid.xmf", "Iron/Iron_Protein.RectilinearGrid.Collection.xmf", "Iron/Iron_Protein.StructuredGrid.xmf", "Iron/Iron_Protein.StructuredGrid.Collection.xmf", "Big/Scenario1_p1.xmf", ] testfilenames = smallFiles import sys if "--do_big_files" in sys.argv: testfilenames = smallFiles + largeFiles if __name__ == "__main__": for fname in testfilenames: xr = vtk.vtkXdmf3Reader() afname = "" + str(VTK_DATA_ROOT) + "/Data/XDMF/" + fname print ("Trying %s" % afname) xr.CanReadFile(afname) xr.SetFileName(afname) xr.UpdateInformation() xr.Update() ds = xr.GetOutputDataObject(0) if not ds: print("Got zero output from known good file") sys.exit(vtk.VTK_ERROR) #if res != vtk.VTK_OK: # print "Could not read", afname # sys.exit(vtk.VTK_ERROR)
23.186667
74
0.72973
2a68e244183dd5212631b8456f9129348ec95876
914
py
Python
api/weather/WeatherServiceTest.py
Gabriel737/CadorsMap
2bca28b8bda79caad1149bcedd1dc4953c84e13b
[ "MIT" ]
1
2021-12-11T21:11:06.000Z
2021-12-11T21:11:06.000Z
api/weather/WeatherServiceTest.py
kaumil/cmpt_732
e753824d30fdc32c60f6699ac5b4d88d78f6fa33
[ "MIT" ]
null
null
null
api/weather/WeatherServiceTest.py
kaumil/cmpt_732
e753824d30fdc32c60f6699ac5b4d88d78f6fa33
[ "MIT" ]
1
2021-11-11T16:51:07.000Z
2021-11-11T16:51:07.000Z
from Weather import WeatherService def main(): ws = WeatherService() print('=== COORDS ===') coords = ws._locate_coordinates('Stave Lake, BC, Canada') print(coords.latitude, coords.longitude, '\n') print('=== CYVR === ') print(ws.retrieve_weather('2005-11-13', 'cyvr', 'richmond BC (CYVR)', 'BC', 'Canada'), '\n') print('=== WEMINDJI QC (CYNC) === ') print(ws.retrieve_weather('2019-11-13', 'cync', 'WEMINDJI QC (CYNC)', 'QC', 'Canada'), '\n') print('=== KANGIQSUALUJJUAQ (GEORGES RIVER) QC (CYLU) === ') print(ws.retrieve_weather('2018-11-13', 'cylu', 'KANGIQSUALUJJUAQ (GEORGES RIVER) QC', 'QC', 'Canada'), '\n') print('=== 15NM W QUÉBEC / JEAN LESAGE INTL QC (CYQB) === ') print(ws.retrieve_weather('2021-11-13', 'cyqb', '15NM W QUÉBEC / JEAN LESAGE INTL QC (CYQB)', 'QC', 'Canada'), '\n') if __name__ == '__main__': main()
38.083333
120
0.584245
caa7526d0b961c79b7aa3531481e0aec746aa73b
15,164
py
Python
temboardui/plugins/monitoring/__init__.py
l00ptr/temboard
f583d58e4d831f5395bc29e0a90634d38b0b4930
[ "PostgreSQL" ]
null
null
null
temboardui/plugins/monitoring/__init__.py
l00ptr/temboard
f583d58e4d831f5395bc29e0a90634d38b0b4930
[ "PostgreSQL" ]
null
null
null
temboardui/plugins/monitoring/__init__.py
l00ptr/temboard
f583d58e4d831f5395bc29e0a90634d38b0b4930
[ "PostgreSQL" ]
null
null
null
# -*- coding: utf-8 -*- import logging import os from textwrap import dedent import tornado.web import tornado.escape from sqlalchemy.orm import sessionmaker, scoped_session from sqlalchemy import create_engine from sqlalchemy.orm.exc import NoResultFound from sqlalchemy.exc import ProgrammingError, IntegrityError from sqlalchemy.sql import text from psycopg2.extensions import AsIs from temboardui.toolkit import taskmanager from temboardui.application import ( get_roles_by_instance, send_mail, send_sms, ) from temboardui.model.orm import ( Instances, ) from .model.orm import ( Check, CheckState, Host, Instance, ) from .alerting import ( check_specs, ) from .handlers import blueprint logger = logging.getLogger(__name__) workers = taskmanager.WorkerSet() def configuration(config): return {} def get_routes(config): plugin_path = os.path.dirname(os.path.realpath(__file__)) __import__(__name__ + '.handlers.alerting') __import__(__name__ + '.handlers.monitoring') routes = blueprint.rules + [ (r"/js/monitoring/(.*)", tornado.web.StaticFileHandler, {'path': plugin_path + "/static/js"}), ] return routes @workers.register(pool_size=1) def aggregate_data_worker(app): # Worker in charge of aggregate data try: dbconf = app.config.repository dburi = 'postgresql://{user}:{pwd}@:{p}/{db}?host={h}'.format( user=dbconf['user'], pwd=dbconf['password'], h=dbconf['host'], p=dbconf['port'], db=dbconf['dbname']) engine = create_engine(dburi) with engine.begin() as conn: conn.execute("SET search_path TO monitoring") logger.debug("Running SQL function monitoring.aggregate_data()") res = conn.execute("SELECT * FROM aggregate_data()") for row in res.fetchall(): logger.debug("table=%s insert=%s" % (row['tblname'], row['nb_rows'])) return except Exception as e: logger.error('Could not aggregate montitoring data') logger.exception(e) raise(e) @workers.register(pool_size=1) def history_tables_worker(app): # Worker in charge of history tables try: dbconf = app.config.repository dburi = 'postgresql://{user}:{pwd}@:{p}/{db}?host={h}'.format( user=dbconf['user'], pwd=dbconf['password'], h=dbconf['host'], p=dbconf['port'], db=dbconf['dbname']) engine = create_engine(dburi) with engine.connect() as conn: conn.execute("SET search_path TO monitoring") logger.debug("Running SQL function monitoring.history_tables()") res = conn.execute("SELECT * FROM history_tables()") for row in res.fetchall(): logger.debug("table=%s insert=%s" % (row['tblname'], row['nb_rows'])) conn.execute("COMMIT") return except Exception as e: logger.error('Could not history montitoring tables') logger.exception(e) try: conn.execute("ROLLBACK") except Exception: pass raise(e) @workers.register(pool_size=10) def check_data_worker(app, host_id, instance_id, data): # Worker in charge of checking preprocessed monitoring values specs = check_specs dbconf = app.config.repository dburi = 'postgresql://{user}:{pwd}@:{p}/{db}?host={h}'.format( user=dbconf['user'], pwd=dbconf['password'], h=dbconf['host'], p=dbconf['port'], db=dbconf['dbname'] ) engine = create_engine(dburi) session_factory = sessionmaker(bind=engine) Session = scoped_session(session_factory) worker_session = Session() keys = dict() for raw in data: datetime = raw.get('datetime') name = raw.get('name') key = raw.get('key') value = raw.get('value') warning = raw.get('warning') critical = raw.get('critical') # Proceed with thresholds comparison spec = specs.get(name) state = 'UNDEF' if not spec: continue if not (spec.get('operator')(value, warning) or spec.get('operator')(value, critical)): state = 'OK' if spec.get('operator')(value, warning): state = 'WARNING' if spec.get('operator')(value, critical): state = 'CRITICAL' # Try to find enabled check for this host_id with the same name try: c = worker_session.query(Check).filter( Check.name == unicode(name), Check.host_id == host_id, Check.instance_id == instance_id, Check.enabled == bool(True), ).one() except NoResultFound: continue # Update/insert check current state try: cs = worker_session.query(CheckState).filter( CheckState.check_id == c.check_id, CheckState.key == unicode(key) ).one() # State has changed since last time if cs.state != state: taskmanager.schedule_task( 'notify_state_change', listener_addr=os.path.join(app.config.temboard.home, '.tm.socket'), options={ 'check_id': c.check_id, 'key': key, 'value': value, 'state': state, 'prev_state': cs.state }, expire=0, ) cs.state = unicode(state) worker_session.merge(cs) except NoResultFound: cs = CheckState(check_id=c.check_id, key=unicode(key), state=unicode(state)) worker_session.add(cs) worker_session.flush() # Append state change if any to history worker_session.execute("SELECT monitoring.append_state_changes(:d, :i," ":s, :k, :v, :w, :c)", {'d': datetime, 'i': c.check_id, 's': cs.state, 'k': cs.key, 'v': value, 'w': warning, 'c': critical}) if c.check_id not in keys: keys[c.check_id] = list() keys[c.check_id].append(cs.key) worker_session.commit() worker_session.expunge_all() # Purge CheckState for check_id, ks in keys.items(): worker_session.execute("DELETE FROM monitoring.check_states WHERE " "check_id = :check_id AND NOT (key = ANY(:ks))", {'check_id': check_id, 'ks': ks}) worker_session.commit() # check_ids for the given instance req = worker_session.query(Check).filter(Check.instance_id == instance_id) check_ids = [check.check_id for check in req] # Set to UNDEF every unchecked check for the given instance # This may happen when postgres is unavailable for example worker_session.execute("UPDATE monitoring.check_states " "SET state = 'UNDEF' " "WHERE check_id = ANY(:all_check_ids) AND " "NOT check_id = ANY(:check_ids_to_keep)", { 'all_check_ids': check_ids, 'check_ids_to_keep': keys.keys() }) worker_session.commit() worker_session.close() @workers.register(pool_size=1) def purge_data_worker(app): """Background worker in charge of purging monitoring data. Purge policy is based on purge_after parameter from monitoring section. purger_after defines the number of day of data to keep, from now. Default value means there is no purge policy. """ logger.setLevel(app.config.logging.level) logger.info("Starting monitoring data purge worker.") if not app.config.monitoring.purge_after: logger.info("No purge policy, end.") return dburi = 'postgresql://{user}:{pwd}@:{p}/{db}?host={h}'.format( user=app.config.repository['user'], pwd=app.config.repository['password'], h=app.config.repository['host'], p=app.config.repository['port'], db=app.config.repository['dbname'], ) engine = create_engine(dburi) with engine.connect() as conn: # Get tablename list to purge from metric_tables_config() res = conn.execute( dedent(""" SELECT tablename FROM ( SELECT tablename_prefix||'_'||suffix AS tablename FROM json_object_keys(monitoring.metric_tables_config()) AS tablename_prefix, UNNEST(ARRAY['30m_current', '6h_current', 'current', 'history']) AS suffix ) AS q WHERE EXISTS ( SELECT 1 FROM pg_catalog.pg_tables AS pgt WHERE pgt.tablename=q.tablename AND pgt.schemaname = 'monitoring' ) ORDER BY tablename; """) # noqa ) tablenames = [r['tablename'] for r in res.fetchall()] tablenames.extend(['state_changes', 'check_changes']) purge_query_base = "DELETE FROM :tablename WHERE " for tablename in tablenames: # With history tables, we have to deal with tstzrange if tablename.endswith("_history"): query = purge_query_base + \ "NOT (history_range && tstzrange(NOW() " + \ "- ':nday days'::INTERVAL, NOW()))" else: query = purge_query_base + \ "datetime < (NOW() - ':nday days'::INTERVAL)" logger.debug("Purging table %s", tablename) t = conn.begin() try: res_delete = conn.execute( text(query), tablename=AsIs("monitoring.%s" % tablename), nday=app.config.monitoring.purge_after, ) t.commit() except (ProgrammingError, IntegrityError) as e: logger.exception(e) logger.error("Could not delete data from table %s", tablename) t.rollback() continue if res_delete.rowcount > 0: logger.info("Table %s purged, %s rows deleted", tablename, res_delete.rowcount) logger.info("End of monitoring data purge worker.") @workers.register(pool_size=1) def notify_state_change(app, check_id, key, value, state, prev_state): # check if at least one notifications transport is configured # if it's not the case pass notifications_conf = app.config.notifications smtp_host = notifications_conf.smtp_host smtp_port = notifications_conf.smtp_port smtp_tls = notifications_conf.smtp_tls smtp_login = notifications_conf.smtp_login smtp_password = notifications_conf.smtp_password smtp_from_addr = notifications_conf.smtp_from_addr if not smtp_host and \ not notifications_conf.get('twilio_account_sid', None): logger.info("No SMTP nor SMS service configured, " "notification not sent") return # Worker in charge of sending notifications dbconf = app.config.repository dburi = 'postgresql://{user}:{pwd}@:{p}/{db}?host={h}'.format( user=dbconf['user'], pwd=dbconf['password'], h=dbconf['host'], p=dbconf['port'], db=dbconf['dbname'] ) engine = create_engine(dburi) session_factory = sessionmaker(bind=engine) Session = scoped_session(session_factory) worker_session = Session() check = worker_session.query(Check).filter( Check.check_id == check_id, ).join(Instance).join(Host).one() port = check.instance.port hostname = check.instance.host.hostname instance = worker_session.query(Instances).filter( Instances.pg_port == port, Instances.hostname == hostname, ).one() # don't notify if notifications are disabled for this instance if not instance.notify: return specs = check_specs spec = specs.get(check.name) message = '' if state != 'OK': message = spec.get('message').format( key=key, check=check.name, value=value, threshold=getattr(check, state.lower()), ) description = spec.get('description') subject = '[temBoard] {state} {hostname} - {description}' \ .format(hostname=hostname, state=state, description=description) link = 'https://%s:%d/server/%s/%d/alerting/%s' % ( app.config.temboard.address, app.config.temboard.port, instance.agent_address, instance.agent_port, check.name) direction = '➚' if prev_state == 'OK' or state == 'CRITICAL' else '➘' body = ''' Instance: {hostname}:{port} Description: {description} Status: {direction} {state} (prev. {prev_state}) {message} {link} '''.format( hostname=hostname, port=instance.agent_port, description=description, direction=direction, state=state, prev_state=prev_state, message=message, link=link, ) roles = get_roles_by_instance(worker_session, instance.agent_address, instance.agent_port) emails = [role.role_email for role in roles if role.role_email] if len(emails): send_mail(smtp_host, smtp_port, subject, body, emails, smtp_tls, smtp_login, smtp_password, smtp_from_addr) phones = [role.role_phone for role in roles if role.role_phone] if len(phones): send_sms(app.config.notifications, body, phones) @taskmanager.bootstrap() def monitoring_bootstrap(context): yield taskmanager.Task( worker_name='aggregate_data_worker', id='aggregate_data', redo_interval=30 * 60, # Repeat each 30m, options={}, ) yield taskmanager.Task( worker_name='history_tables_worker', id='history_tables', redo_interval=3 * 60 * 60, # Repeat each 3h options={}, ) yield taskmanager.Task( worker_name='purge_data_worker', id='purge_data', redo_interval=24 * 60 * 60, # Repeat each 24h options={}, )
34.385488
98
0.558692
012a2c3dd63d7741689260ea0029462b87006cc9
150
py
Python
yatube/core/context_processors/year.py
LHLHLHE/yatube_project
8f0ee4f8715133dd8c268caa3f49f80a0648c859
[ "MIT" ]
null
null
null
yatube/core/context_processors/year.py
LHLHLHE/yatube_project
8f0ee4f8715133dd8c268caa3f49f80a0648c859
[ "MIT" ]
null
null
null
yatube/core/context_processors/year.py
LHLHLHE/yatube_project
8f0ee4f8715133dd8c268caa3f49f80a0648c859
[ "MIT" ]
null
null
null
import datetime def year(request): """Добавляет переменную с текущим годом.""" return { 'year': datetime.datetime.now().year, }
16.666667
47
0.62
b09070a26468a2b80936043135028accbe8c5000
171
py
Python
client/__init__.py
mycelium-ethereum/upshot-adapter
f4bed3f4c4e746062465f8e705bb3988044cf432
[ "MIT" ]
null
null
null
client/__init__.py
mycelium-ethereum/upshot-adapter
f4bed3f4c4e746062465f8e705bb3988044cf432
[ "MIT" ]
null
null
null
client/__init__.py
mycelium-ethereum/upshot-adapter
f4bed3f4c4e746062465f8e705bb3988044cf432
[ "MIT" ]
null
null
null
from dotenv import load_dotenv load_dotenv(); import os from client.Webhook import webhook from client.Upshot import Upshot upshot = Upshot(os.getenv("UPSHOT_API_KEY"))
19
44
0.807018
a71ee19552d1acd72fe1bd577ef83283c6936eec
49
py
Python
btd6_memory_info/generated/SteamNative/RemoteStorageFileWriteAsyncComplete_t/remote_storage_file_write_async_complete_t.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/SteamNative/RemoteStorageFileWriteAsyncComplete_t/remote_storage_file_write_async_complete_t.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/SteamNative/RemoteStorageFileWriteAsyncComplete_t/remote_storage_file_write_async_complete_t.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
class RemoteStorageFileWriteAsyncComplete_t: pass
49
49
0.938776
4d930c0f2ec564695065f9344177d99faa68824a
1,719
py
Python
fabfile.py
KunihikoKido/aws-lambda-es-dumpdata
40cb4f1852de0d7fc2c6e446d053fe50385f262f
[ "MIT" ]
3
2017-03-13T02:51:06.000Z
2017-09-01T08:03:53.000Z
fabfile.py
KunihikoKido/aws-lambda-es-suggest
f80fa289c0856e307622336a33ed5c1badfe75fb
[ "MIT" ]
null
null
null
fabfile.py
KunihikoKido/aws-lambda-es-suggest
f80fa289c0856e307622336a33ed5c1badfe75fb
[ "MIT" ]
2
2018-08-10T15:36:17.000Z
2019-11-13T20:09:11.000Z
# -*- coding: utf-8 -*- import os from fabric.api import local from fabric.api import task from fabric_aws_lambda import SetupTask from fabric_aws_lambda import InvokeTask from fabric_aws_lambda import MakeZipTask from fabric_aws_lambda import AWSLambdaInvokeTask from fabric_aws_lambda import AWSLambdaGetConfigTask from fabric_aws_lambda import AWSLambdaUpdateCodeTask BASE_PATH = os.path.dirname(__file__) LIB_PATH = os.path.join(BASE_PATH, 'lib') INSTALL_PREFIX = os.path.join(BASE_PATH, 'local') REQUIREMENTS_TXT = os.path.join(BASE_PATH, 'requirements.txt') LAMBDA_FUNCTION_NAME = os.path.basename(BASE_PATH) LAMBDA_HANDLER = 'lambda_handler' LAMBDA_FILE = os.path.join(BASE_PATH, 'lambda_function.py') EVENT_FILE = os.path.join(BASE_PATH, 'event.json') ZIP_FILE = os.path.join(BASE_PATH, 'lambda_function.zip') ZIP_EXCLUDE_FILE = os.path.join(BASE_PATH, 'exclude.lst') @task def clean(): for target in [ZIP_FILE, LIB_PATH, INSTALL_PREFIX]: local('rm -rf {}'.format(target)) task_setup = SetupTask( requirements=REQUIREMENTS_TXT, lib_path=LIB_PATH, install_prefix=INSTALL_PREFIX ) task_invoke = InvokeTask( lambda_file=LAMBDA_FILE, lambda_handler=LAMBDA_HANDLER, event_file=EVENT_FILE, lib_path=LIB_PATH ) task_makezip = MakeZipTask( zip_file=ZIP_FILE, exclude_file=ZIP_EXCLUDE_FILE, lib_path=LIB_PATH ) task_aws_invoke = AWSLambdaInvokeTask( function_name=LAMBDA_FUNCTION_NAME, payload='file://{}'.format(EVENT_FILE) ) task_aws_getconfig = AWSLambdaGetConfigTask( function_name=LAMBDA_FUNCTION_NAME, ) task_aws_updatecode = AWSLambdaUpdateCodeTask( function_name=LAMBDA_FUNCTION_NAME, zip_file='fileb://{}'.format(ZIP_FILE) )
26.045455
62
0.778941
a018d2d7818a31d1e835209f54a458acc22837b9
3,104
py
Python
clone/views.py
karobia001/Insta-clone
fc512c8f73776bd4df9fb518e628c8dd42e0fac4
[ "MIT" ]
null
null
null
clone/views.py
karobia001/Insta-clone
fc512c8f73776bd4df9fb518e628c8dd42e0fac4
[ "MIT" ]
3
2020-06-06T00:09:24.000Z
2021-06-10T22:17:03.000Z
clone/views.py
karobia001/Insta-clone
fc512c8f73776bd4df9fb518e628c8dd42e0fac4
[ "MIT" ]
null
null
null
from django.contrib.auth.decorators import login_required from .forms import NewStatusForm, NewCommentForm from django.shortcuts import render,redirect from .models import Image, Profile, Comment # Create your views here. @login_required(login_url='/accounts/register/') def timeline(request): current_user = request.user images = Image.objects.order_by('-pub_date') profiles = Profile.objects.order_by('-last_update') comment = Comment.objects.order_by('-date') return render(request, 'index.html', {"images":images, "profiles":profiles, "user_profile":user_profile, "comment":comment}) @login_required(login_url='/accounts/login/') def profile(request): current_user = request.user # profile = Profile.objects.get(user_id=current_user.id) images = Image.objects.filter(profile_id=current_user.id) return render(request, 'profile.html', {"images":images}) @login_required(login_url='/accounts/login/') def new_post(request, username): current_user = request.user p = Profile.objects.filter(id=current_user.id).first() if request.method == 'POST': form = NewStatusForm(request.POST,request.FILES) if form.is_valid(): post = form.save(commit=False) post.imageuploader_profile= p return redirect('/') else: form =NewStatusForm return render(request, 'new_status.html', {"form":form,'p':p}) #User Profile @login_required(login_url='/accounts/login/') def user_profile(request, user_id): profile = Profile.objects.get(id=user_id) images = Image.objects.all().filter(user_id=user_id) return render(request, "profile.html", {"[profile":profile, "images":images}) @login_required(login_url='/accounts/login/') def single_image(request, image_id): image = Image.objects.get(id = image_id) return render(request, "single_image.html",{"image":image}) def find_profile(request): if 'image' in request.GET and request.GET["image"]: search_term = request.GET.get("image") searched_images = Image.search_by_user(search_term) message = f"{search_term}" return render(request, 'user_profile.html',{"message":message,"image": searched_images}) else: message = "You haven't searched for any term yet" return render(request, 'single_image.html',{"message":message}) @login_required(login_url='/accounts/login/') def single_image_like(request, image_id): image = Image.objects.get(id=image_id) image.likes = image.likes + 1 image.save() return redirect('allTimelines') @login_required(login_url='/accounts/login/') def new_comment(request, username): current_user =request.user username = current_user.username if request.method =='POST': form = NewCommentForm(request.POST, request.FILES) if form.is_valid(): comment = form.save() comment.user = request.user comment.save() return redirect('allTimelines') else: form = NewCommentForm() return render(request, 'new_comment.html', {"form":form})
37.853659
128
0.692332
688dc9499ee05ec79a009558993ac6cb9864c9f0
1,793
py
Python
integration_tests/projects/002_jaffle_shop/fal_scripts/models/orders_forecast.py
emekdahl/fal
8a6670a2a1940cdd3e838073894d643e1050b654
[ "Apache-2.0" ]
360
2021-11-10T18:43:03.000Z
2022-03-31T14:57:19.000Z
integration_tests/projects/002_jaffle_shop/fal_scripts/models/orders_forecast.py
emekdahl/fal
8a6670a2a1940cdd3e838073894d643e1050b654
[ "Apache-2.0" ]
64
2021-11-11T22:05:53.000Z
2022-03-30T18:14:05.000Z
integration_tests/projects/002_jaffle_shop/fal_scripts/models/orders_forecast.py
emekdahl/fal
8a6670a2a1940cdd3e838073894d643e1050b654
[ "Apache-2.0" ]
9
2021-12-17T02:49:36.000Z
2022-03-31T14:57:21.000Z
"""Forecast and upload order data Packages: - prophet """ import pandas as pd from prophet import Prophet import sqlalchemy.types as types def make_forecast(dataframe: pd.DataFrame, periods: int = 30): """Make forecast on metric data.""" model = Prophet(daily_seasonality=False, yearly_seasonality=False) model.fit(dataframe) future = model.make_future_dataframe(periods=periods) prediction = model.predict(future) return model, prediction def plot_forecast(model: Prophet, forecast: pd.DataFrame, filename: str): from prophet.plot import plot_plotly fig = plot_plotly(model, forecast) fig.write_image(f"{context.current_model.name}_{filename}.jpg") df: pd.DataFrame = ref("orders_daily") print(df) df_count = df[["order_date", "order_count"]] df_count = df_count.rename(columns={"order_date": "ds", "order_count": "y"}) model_count, forecast_count = make_forecast(df_count, 50) # plot_forecast(model_count, forecast_count, "count") df_amount = df[["order_date", "order_amount"]] df_amount = df_amount.rename(columns={"order_date": "ds", "order_amount": "y"}) model_amount, forecast_amount = make_forecast(df_amount, 50) # plot_forecast(model_amount, forecast_amount, "amount") joined_forecast = forecast_count.join( forecast_amount.set_index("ds"), on="ds", lsuffix="_count", rsuffix="_amount", ) print(joined_forecast.dtypes) # HACK: have to figure out how to write dates (or datetimes) to the database # TODO: The types.DATE did not work when testing for `dtype={"ds": types.DATE}` joined_forecast["ds"] = joined_forecast["ds"].map(lambda x: x.strftime("%Y-%m-%d")) # Generates a table with a BUNCH of columns # It will use the current model as target, no need to pass it write_to_model(joined_forecast, mode="overwrite")
31.45614
83
0.737312
510e701e19f0d454f8cf705c6d49aca211a5ef13
7,386
py
Python
tests/test_branch_utils.py
QualiTorque/torque-cli
20ee82b4c68fd7e5b659209b72a686e76471ab52
[ "Apache-2.0" ]
null
null
null
tests/test_branch_utils.py
QualiTorque/torque-cli
20ee82b4c68fd7e5b659209b72a686e76471ab52
[ "Apache-2.0" ]
null
null
null
tests/test_branch_utils.py
QualiTorque/torque-cli
20ee82b4c68fd7e5b659209b72a686e76471ab52
[ "Apache-2.0" ]
null
null
null
import unittest from datetime import datetime from unittest.mock import Mock, patch import torque.commands.sb import torque.services.waiter from torque.branch import branch_utils from torque.commands.base import BaseCommand from torque.constants import DEFAULT_TIMEOUT, FINAL_SB_STATUSES, UNCOMMITTED_BRANCH_NAME from torque.exceptions import BadBlueprintRepo class TestStashLogicFunctions(unittest.TestCase): def setUp(self): self.switch = branch_utils.switch_to_temp_branch self.revert = branch_utils.revert_from_local_temp_branch self.check_repo_for_errors = branch_utils.check_repo_for_errors self.wait_before_delete = torque.services.waiter.Waiter.wait_for_sandbox_to_launch self.debug_output_about_repo_examination = branch_utils.debug_output_about_repo_examination self.command = BaseCommand([]) self.initialize_mock_vars() def initialize_mock_vars(self): self.repo = Mock() self.sb_manager = Mock() self.sandbox = Mock() self.sb_manager.get.return_value = self.sandbox self.sandbox_id = Mock() self.temp_branch = "mock_temp_branch" self.blueprint_name = "mock_blueprint_name" @patch.object(branch_utils, "create_remote_branch") @patch.object(branch_utils, "commit_to_local_temp_branch") @patch.object(branch_utils, "preserve_uncommitted_code") @patch.object(branch_utils, "create_local_temp_branch") @patch.object(branch_utils, "stash_local_changes") def test_switch_to_temp_branch_dirtyrepo( self, stash_local_changes, create_local_temp_branch, preserve_uncommitted_code, commit_to_local_temp_branch, create_remote_branch, ): # Arrange: self.repo = Mock() self.repo.is_dirty = Mock(return_value=True) defined_branch_in_file = "defined_branch_in_file" # Act: uncommitted_branch_name = self.switch(self.repo, defined_branch_in_file) # Assert: create_remote_branch.assert_called_once_with(self.repo, uncommitted_branch_name) commit_to_local_temp_branch.assert_called_once_with(self.repo) preserve_uncommitted_code.assert_called_once_with(self.repo) create_local_temp_branch.assert_called_once_with(self.repo, uncommitted_branch_name) stash_local_changes.assert_called_once_with(self.repo) self.assertTrue(uncommitted_branch_name.startswith(UNCOMMITTED_BRANCH_NAME)) @patch.object(branch_utils, "create_remote_branch") @patch.object(branch_utils, "commit_to_local_temp_branch") @patch.object(branch_utils, "preserve_uncommitted_code") @patch.object(branch_utils, "create_local_temp_branch") @patch.object(branch_utils, "stash_local_changes") def test_switch_to_temp_branch_cleanrepo( self, stash_local_changes, create_local_temp_branch, preserve_uncommitted_code, commit_to_local_temp_branch, create_remote_branch, ): # Arrange: self.repo = Mock() self.repo.is_dirty = Mock(return_value=False) self.repo.untracked_files = True defined_branch_in_file = "defined_branch_in_file" # Act: uncommitted_branch_name = self.switch(self.repo, defined_branch_in_file) # Assert: create_remote_branch.assert_called_once_with(self.repo, uncommitted_branch_name) commit_to_local_temp_branch.assert_called_once_with(self.repo) preserve_uncommitted_code.assert_called_once_with(self.repo) create_local_temp_branch.assert_called_once_with(self.repo, uncommitted_branch_name) stash_local_changes.assert_called_once_with(self.repo) self.assertTrue(uncommitted_branch_name.startswith(UNCOMMITTED_BRANCH_NAME)) @patch.object(branch_utils, "checkout_remote_branch") @patch.object(branch_utils, "revert_from_uncommitted_code") def test_revert_from_temp_branch(self, revert_from_uncommitted_code, checkout_remote_branch): # Arrange: self.repo = Mock() active_branch = "active_branch" # Act: self.revert(self.repo, active_branch, True) # Assert: checkout_remote_branch.assert_called_once_with( self.repo, active_branch, ) revert_from_uncommitted_code.assert_called_once_with(self.repo) def test_check_repo_for_errors(self): # Arrange: self.repo = Mock() self.repo.is_repo_detached = Mock(return_value=True) # Act & Assert: self.assertRaises(BadBlueprintRepo, self.check_repo_for_errors, self.repo) def test_debug_output_about_repo_examination(self): # Arrange: self.repo = Mock() mock_blueprint = Mock() self.repo.is_repo_detached = Mock(return_value=False) # Act: self.debug_output_about_repo_examination(self.repo, mock_blueprint) # Assert: self.repo.is_dirty.assert_called_once() self.repo.is_current_branch_exists_on_remote() self.repo.is_current_branch_synced() @patch("time.sleep", return_value=None) @patch("torque.services.waiter.can_temp_branch_be_deleted") def test_wait_for_sandbox_to_launch_final_stage(self, can_temp, time_sleep): # Arrange: self.initialize_mock_vars() can_temp.return_value = False context_branch = Mock() # Act & assert: for final_stage in FINAL_SB_STATUSES: self.sandbox.sandbox_status = final_stage start_time = datetime.now() self.wait_before_delete( self.command, self.sb_manager, self.sandbox_id, DEFAULT_TIMEOUT, context_branch, False, ) assert (datetime.now() - start_time).seconds < 1 @patch("time.sleep", return_value=None) @patch("torque.services.waiter.can_temp_branch_be_deleted") def test_wait_for_sandbox_to_launch_can_be_deleted(self, can_temp, time_sleep): # Arrange: self.initialize_mock_vars() mock_non_final_stage = "mock_non_final_stage" can_temp.return_value = True self.sandbox.sandbox_status = mock_non_final_stage context_branch = Mock() # Act: timeout_reached = self.wait_before_delete( self.command, self.sb_manager, self.sandbox_id, 1, context_branch, False, ) # Assert: self.assertFalse(timeout_reached) @patch("torque.services.waiter.DEFAULT_TIMEOUT", 0.01) @patch("time.sleep", return_value=None) @patch("torque.services.waiter.can_temp_branch_be_deleted") def test_wait_before_temp_branch_delete_cannot_be_deleted( self, can_temp, time_sleep, ): # Arrange: self.initialize_mock_vars() mock_non_final_stage = "mock_non_final_stage" can_temp.return_value = False self.sandbox.sandbox_status = mock_non_final_stage context_branch = Mock() # Act: timeout_reached = self.wait_before_delete( self.command, self.sb_manager, self.sandbox_id, 0, context_branch, False, ) # Assert: self.assertTrue(timeout_reached)
37.115578
99
0.691579
4adeaf7f937b4b5db8adb199cd10f9cb42174cec
2,254
py
Python
pennylane_aqt/api_client.py
XanaduAI/pennylane-aqt
1570a0cf422967dfe0d170f099a636a3024bd353
[ "Apache-2.0" ]
5
2020-06-01T05:13:23.000Z
2020-07-12T17:59:14.000Z
pennylane_aqt/api_client.py
XanaduAI/pennylane-aqt
1570a0cf422967dfe0d170f099a636a3024bd353
[ "Apache-2.0" ]
3
2020-06-03T12:52:44.000Z
2020-06-23T18:08:30.000Z
pennylane_aqt/api_client.py
XanaduAI/pennylane-aqt
1570a0cf422967dfe0d170f099a636a3024bd353
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ API Client ========== **Module name:** :mod:`pennylane_aqt.api_client` .. currentmodule:: pennylane_aqt.api_client Tools to interface with online APIs. Classes ------- .. autosummary:: submit verify_valid_status Code details ~~~~~~~~~~~~ """ import urllib import requests SUPPORTED_HTTP_REQUESTS = ["PUT", "POST"] VALID_STATUS_CODES = [200, 201, 202] DEFAULT_TIMEOUT = 1.0 def verify_valid_status(response): """ Check a HTTP response for valid status codes, and raise an exception if the code is invalid Args: response[requests.model.Response]: the response containing the error Returns: bool: whether the response has an acceptable HTTP status code Raises: requests.HTTPError: if the status is not valid """ if response.status_code not in VALID_STATUS_CODES: raise requests.HTTPError(response, response.text) def submit(request_type, url, request, headers): """Submit a request to AQT's API. Args: request_type (str): the type of HTTP request ("PUT" or "POST") url (str): the API's online URL request (str): JSON-formatted payload headers (dict): HTTP request header Returns: requests.models.Response: the response from the API """ if request_type not in SUPPORTED_HTTP_REQUESTS: raise ValueError("""Invalid HTTP request method provided. Options are "PUT" or "POST".""") if request_type == "PUT": return requests.put(url, request, headers=headers, timeout=DEFAULT_TIMEOUT) if request_type == "POST": return requests.post(url, request, headers=headers, timeout=DEFAULT_TIMEOUT)
28.531646
98
0.703194
13ff58be813f7ad399c32cc9d408f919ed019e38
1,153
py
Python
modules/signatures/windows/rat_rbot.py
Yuanmessi/Bold-Falcon
00fcaba0b3d9c462b9d20ecb256ff85db5d119e2
[ "BSD-3-Clause" ]
24
2021-06-21T07:35:37.000Z
2022-03-22T03:33:59.000Z
modules/signatures/windows/rat_rbot.py
Yuanmessi/Bold-Falcon
00fcaba0b3d9c462b9d20ecb256ff85db5d119e2
[ "BSD-3-Clause" ]
3
2021-07-01T08:09:05.000Z
2022-01-28T03:38:36.000Z
modules/signatures/windows/rat_rbot.py
Yuanmessi/Bold-Falcon
00fcaba0b3d9c462b9d20ecb256ff85db5d119e2
[ "BSD-3-Clause" ]
6
2021-06-22T05:32:57.000Z
2022-02-11T02:05:45.000Z
# Copyright (C) 2010-2015 Cuckoo Foundation. # This file is part of Cuckoo Sandbox - http://www.cuckoosandbox.org # This signature was contributed by RedSocks - http://redsocks.nl # See the file 'docs/LICENSE' for copying permission. from lib.cuckoo.common.abstracts import Signature class RBot(Signature): name = "rat_rbot" description = "Creates known RBot files, registry keys and/or mutexes" severity = 3 categories = ["rat"] families = ["rbot"] authors = ["RedSocks"] minimum = "2.0" mutexes_re = [ ".*\\[ri0t\\ v5\\]", ".*dRbot", ".*P3NBot", ".*WinServ", ".*bb1", ] files_re = [ "C:\\\\WINDOWS\\\\(system32|syswow64)\\\\sysfcg32.exe", ] def on_complete(self): for indicator in self.mutexes_re: match = self.check_mutex(pattern=indicator, regex=True) if match: self.mark_ioc("mutex", match) for indicator in self.files_re: match = self.check_file(pattern=indicator, regex=True) if match: self.mark_ioc("file", match) return self.has_marks()
28.121951
74
0.5915
d5580f9a74dce5251565eeff3abc57d2886c23fb
5,170
py
Python
highlighter_path.py
Phidica/sublime-fish
cd95616df5c73da5ce2dfe548892b4571040f9dd
[ "MIT" ]
31
2017-11-15T00:21:27.000Z
2022-03-22T16:01:34.000Z
highlighter_path.py
eugenesvk/sublime-fish
6697fdd7becc3e5991484d4365b036b9fbb1d99d
[ "MIT" ]
17
2017-11-11T15:07:27.000Z
2022-03-29T14:46:14.000Z
highlighter_path.py
eugenesvk/sublime-fish
6697fdd7becc3e5991484d4365b036b9fbb1d99d
[ "MIT" ]
2
2021-03-19T11:41:34.000Z
2021-09-19T14:37:13.000Z
import os.path import logging import re import sublime, sublime_plugin from fish.highlighter_base import BaseHighlighter class PathHighlighter(sublime_plugin.ViewEventListener, BaseHighlighter): def __init__(self, view): sublime_plugin.ViewEventListener.__init__(self, view) BaseHighlighter.__init__(self, view) self.viewDir = None # Override default properties of the template self.selectors = [ 'meta.function-call.parameter.argument.path.fish', 'meta.function-call.operator.redirection.path.fish', ] # def __del__(self): # BaseHighlighter.__del__(self) @classmethod def is_applicable(self, settings): try: return 'Packages/fish/fish' in settings.get('syntax') and 'path' in settings.get('enabled_highlighters') except TypeError: # In weird cases get() comes back NoneType return False @classmethod def applies_to_primary_view_only(self): return False # Using _async functions means regions may flash onscreen as they are changed, # however the advantage is that input is not blocked. In very big files # this is essential # Review full file at load def on_load_async(self): self.logger.debug("on_load") self._update_markup() # Review full file at save def on_post_save_async(self): self.logger.debug("on_post_save") self._update_markup() # Review current line after each modification # We still iterate over every currently drawn region to test if it should be # erased, however we only test new regions that are on the current line, # preventing a potentially large number of disk operations (testing if # files exist) def on_modified_async(self): self.logger.debug("on_modified") self._update_markup(local = True) def on_text_command(self, command_name, args): if command_name == 'run_highlighter_test_trigger' \ and self.view.find(r'^#! HIGHLIGHTER TEST PATH', 0).begin() == 0: self._run_test() def _should_markup(self): # If view is not backed by a file on disk then we have no directory reference filePath = self.view.file_name() if filePath is None: self.logger.info("Refusing to mark up unsaved buffer") return False # First time we have a file path, note the directory # Assumes directory cannot change while view is open (is this true?) if self.viewDir is None: self.viewDir = os.path.dirname(filePath) self.logger.info("Active directory = {}".format(self.viewDir)) return True def _test_draw_region(self, region, selector, regionID): text = self.view.substr(region) self.logger.debug("Region {} text = {}".format(region, text)) if text.startswith('~'): testPath = os.path.expanduser(text) else: # Attempt to extract the quoted text, but don't try anything smart # like stripping whitespace as the quotes are there to preserve it if '"' in text or "'" in text: try: # I think this is safe, because to get here the text can't contain spaces unless the whole thing is quoted, so there isn't any way to do anything malicious # Alternatively we could getFishOutput(['echo', text]), but that puts a dependency on fish being installed newText = eval(text) text = newText if text == "": return None except (SyntaxError, NameError): return None # Keep an absolute path, otherwise assume we have a relative one if text.startswith('/'): testPath = text elif sublime.platform() == 'windows': # Fish can handle native Windows paths, but we have to take a little care if re.match(r'([A-z]:)?(\\\\|/)', text): # This is an absolute path with an optional drive and double backslash or single slash. # If a drive wasn't given, os.path will insert the drive of the viewDir testPath = os.path.join(self.viewDir, text) elif re.match(r'\\', text): # This is only one backslash, which to fish looks like a character escape and not a path return None elif any(c in text for c in [':', '*', '?']): # True Windows files can't contain these symbols. In Cygwin/MSYS2 they could, but we're agnostic of those subsystems return None else: # Otherwise just a regular relative path testPath = os.path.join(self.viewDir, text) else: testPath = os.path.join(self.viewDir, text) self.logger.debug("Test path = {}".format(testPath)) if not os.path.exists(testPath): return None # We want the drawn region to be marked up like the actual text (eg, a # string, etc), so draw using the complete scope of the last character. # The only reason not to use the first character is that it might be a tilde drawScope = self.view.scope_name(region.end() - 1) # Whitespace will not be underlined, see https://github.com/SublimeTextIssues/Core/issues/137 drawStyle = sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE | sublime.DRAW_SOLID_UNDERLINE return ('path', drawScope, drawStyle) def _build_status(self): return None
37.737226
165
0.681431
72cb7bfb4edd5f8bfec073bf042c5b707fd9ed54
764
py
Python
docs/00.Python_Advanced/Django_note/mysite1/mysite1/urls.py
mheanng/PythonNote
e3e5ede07968fab0a45f6ac4db96e62092c17026
[ "Apache-2.0" ]
null
null
null
docs/00.Python_Advanced/Django_note/mysite1/mysite1/urls.py
mheanng/PythonNote
e3e5ede07968fab0a45f6ac4db96e62092c17026
[ "Apache-2.0" ]
null
null
null
docs/00.Python_Advanced/Django_note/mysite1/mysite1/urls.py
mheanng/PythonNote
e3e5ede07968fab0a45f6ac4db96e62092c17026
[ "Apache-2.0" ]
null
null
null
"""mysite1 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
34.727273
79
0.704188
7a59e65296759895caa2944c0a2902c1d12946b5
1,952
py
Python
setup.py
skterry/KAI
b8ccf003bf892692bdf00f4bd112e2a7a2938a5b
[ "BSD-3-Clause" ]
null
null
null
setup.py
skterry/KAI
b8ccf003bf892692bdf00f4bd112e2a7a2938a5b
[ "BSD-3-Clause" ]
null
null
null
setup.py
skterry/KAI
b8ccf003bf892692bdf00f4bd112e2a7a2938a5b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Licensed under a 3-clause BSD style license - see LICENSE.rst # NOTE: The configuration for the package, including the name, version, and # other information are set in the setup.cfg file. import os import sys from setuptools import setup # First provide helpful messages if contributors try and run legacy commands # for tests or docs. TEST_HELP = """ Note: running tests is no longer done using 'python setup.py test'. Instead you will need to run: tox -e test If you don't already have tox installed, you can install it with: pip install tox If you only want to run part of the test suite, you can also use pytest directly with:: pip install -e .[test] pytest For more information, see: http://docs.astropy.org/en/latest/development/testguide.html#running-tests """ if 'test' in sys.argv: print(TEST_HELP) sys.exit(1) DOCS_HELP = """ Note: building the documentation is no longer done using 'python setup.py build_docs'. Instead you will need to run: tox -e build_docs If you don't already have tox installed, you can install it with: pip install tox You can also build the documentation with Sphinx directly using:: pip install -e .[docs] cd docs make html For more information, see: http://docs.astropy.org/en/latest/install.html#builddocs """ if 'build_docs' in sys.argv or 'build_sphinx' in sys.argv: print(DOCS_HELP) sys.exit(1) VERSION_TEMPLATE = """ # Note that we need to fall back to the hard-coded version if either # setuptools_scm can't be imported or setuptools_scm can't determine the # version, so we catch the generic 'Exception'. try: from setuptools_scm import get_version version = get_version(root='..', relative_to=__file__) except Exception: version = '{version}' """.lstrip() setup(use_scm_version={'write_to': os.path.join('kai', 'version.py'), 'write_to_template': VERSION_TEMPLATE})
24.708861
76
0.71875
7088ea152946ef33d247df89e52221b9a94e8d5c
88
py
Python
odxtools/version.py
andlaus/odxtools
8c4d806d7d23b9f87e571edffb3e90b7005688f4
[ "MIT" ]
null
null
null
odxtools/version.py
andlaus/odxtools
8c4d806d7d23b9f87e571edffb3e90b7005688f4
[ "MIT" ]
null
null
null
odxtools/version.py
andlaus/odxtools
8c4d806d7d23b9f87e571edffb3e90b7005688f4
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # Copyright (c) 2022 MBition GmbH __version__ = '1.0.1'
17.6
33
0.715909
ba76eedca41d8c5534d97efdd5858bd369bc9d61
10,956
py
Python
sdk/python/pulumi_azure_native/web/v20210201/web_app_metadata_slot.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/web/v20210201/web_app_metadata_slot.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/web/v20210201/web_app_metadata_slot.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['WebAppMetadataSlotArgs', 'WebAppMetadataSlot'] @pulumi.input_type class WebAppMetadataSlotArgs: def __init__(__self__, *, name: pulumi.Input[str], resource_group_name: pulumi.Input[str], slot: pulumi.Input[str], kind: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a WebAppMetadataSlot resource. :param pulumi.Input[str] name: Name of the app. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] slot: Name of the deployment slot. If a slot is not specified, the API will update the metadata for the production slot. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: Settings. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "slot", slot) if kind is not None: pulumi.set(__self__, "kind", kind) if properties is not None: pulumi.set(__self__, "properties", properties) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ Name of the app. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group to which the resource belongs. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def slot(self) -> pulumi.Input[str]: """ Name of the deployment slot. If a slot is not specified, the API will update the metadata for the production slot. """ return pulumi.get(self, "slot") @slot.setter def slot(self, value: pulumi.Input[str]): pulumi.set(self, "slot", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter def properties(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Settings. """ return pulumi.get(self, "properties") @properties.setter def properties(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "properties", value) class WebAppMetadataSlot(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, slot: Optional[pulumi.Input[str]] = None, __props__=None): """ String dictionary resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] name: Name of the app. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: Settings. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] slot: Name of the deployment slot. If a slot is not specified, the API will update the metadata for the production slot. """ ... @overload def __init__(__self__, resource_name: str, args: WebAppMetadataSlotArgs, opts: Optional[pulumi.ResourceOptions] = None): """ String dictionary resource. :param str resource_name: The name of the resource. :param WebAppMetadataSlotArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(WebAppMetadataSlotArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, slot: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = WebAppMetadataSlotArgs.__new__(WebAppMetadataSlotArgs) __props__.__dict__["kind"] = kind if name is None and not opts.urn: raise TypeError("Missing required property 'name'") __props__.__dict__["name"] = name __props__.__dict__["properties"] = properties if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name if slot is None and not opts.urn: raise TypeError("Missing required property 'slot'") __props__.__dict__["slot"] = slot __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:web/v20210201:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20150801:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20150801:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20160801:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20160801:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20180201:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20180201:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20181101:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20181101:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20190801:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20190801:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20200601:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20200601:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20200901:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20200901:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20201001:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20201001:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20201201:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20201201:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20210101:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20210101:WebAppMetadataSlot"), pulumi.Alias(type_="azure-native:web/v20210115:WebAppMetadataSlot"), pulumi.Alias(type_="azure-nextgen:web/v20210115:WebAppMetadataSlot")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(WebAppMetadataSlot, __self__).__init__( 'azure-native:web/v20210201:WebAppMetadataSlot', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'WebAppMetadataSlot': """ Get an existing WebAppMetadataSlot resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = WebAppMetadataSlotArgs.__new__(WebAppMetadataSlotArgs) __props__.__dict__["kind"] = None __props__.__dict__["name"] = None __props__.__dict__["properties"] = None __props__.__dict__["type"] = None return WebAppMetadataSlot(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output[Mapping[str, str]]: """ Settings. """ return pulumi.get(self, "properties") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
46.621277
1,771
0.655988
799e473531e6a234ff4b1d9d7e665426aa1dff2e
1,295
py
Python
dataset/codesearchnet_feng/__init__.py
nashid/naturalcc
e9d9b4a296b61199fc35779b062db2205935a608
[ "MIT" ]
1
2021-12-21T05:52:37.000Z
2021-12-21T05:52:37.000Z
dataset/codesearchnet_feng/__init__.py
hrshy0629/naturalcc
9c3329dd8387c8242deb52bf590ebe3ac795f8de
[ "MIT" ]
null
null
null
dataset/codesearchnet_feng/__init__.py
hrshy0629/naturalcc
9c3329dd8387c8242deb52bf590ebe3ac795f8de
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os from ncc import ( __NCC_DIR__, __BPE_DIR__, __TREE_SITTER_LIBS_DIR__, ) from ncc.data.constants import ( RAW, ATTRIBUTES, MODES, ) DATASET_NAME = 'codesearchnet_feng' DATASET_DIR = os.path.join(__NCC_DIR__, DATASET_NAME) RAW_DIR = os.path.join(DATASET_DIR, RAW) ATTRIBUTES_DIR = os.path.join(DATASET_DIR, ATTRIBUTES) DEDUPE_DIR = os.path.join(DATASET_DIR, 'dedupe') BPE_DIR = __BPE_DIR__ LIBS_DIR = __TREE_SITTER_LIBS_DIR__ LANGUAGES = ['ruby', 'python', 'java', 'go', 'php', 'javascript'] RECURSION_DEPTH = 999 # dfs recursion limitation # path modality PATH_NUM = 300 # path modality number # sbt modality MAX_SUB_TOKEN_LEN = 5 # we only consider the first 5 sub-tokens from tokenizer NODE_TMP = 'TMP' MEANINGLESS_TOKENS = set(['(', ')', '[', ']', '{', '}', ';', '@', '#', ':', '()', '<>', '{}']) COMMENT_END_TOKENS = set(['{', '[', '(']) MAX_COMMENT_TOKEN_LIST_LEN = 25 MAX_CODE_TOKEN_LEN = 70 NO_METHOD = '<NO_METHOD>' __all__ = [ "DATASET_NAME", "RAW_DIR", "ATTRIBUTES_DIR", "DEDUPE_DIR", "BPE_DIR", "LIBS_DIR", "LANGUAGES", "MODES", "RECURSION_DEPTH", "PATH_NUM", "MAX_SUB_TOKEN_LEN", "MEANINGLESS_TOKENS", "COMMENT_END_TOKENS", "MAX_CODE_TOKEN_LEN", "MAX_COMMENT_TOKEN_LIST_LEN", "NO_METHOD", ]
26.979167
94
0.677992
9b2e58eb7277626552563a9421b74eadecb150db
1,064
py
Python
sampleConfigs/generateConfigFiles.py
pnnl/ARTS
4fbb49611a0efdfa94bddb510289206f7b0acd5d
[ "ECL-2.0", "Apache-2.0" ]
9
2019-05-16T23:07:05.000Z
2020-10-21T16:15:01.000Z
sampleConfigs/generateConfigFiles.py
pnnl/ARTS
4fbb49611a0efdfa94bddb510289206f7b0acd5d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sampleConfigs/generateConfigFiles.py
pnnl/ARTS
4fbb49611a0efdfa94bddb510289206f7b0acd5d
[ "ECL-2.0", "Apache-2.0" ]
4
2019-09-10T17:08:10.000Z
2021-03-15T18:27:00.000Z
#!/usr/bin/env python3 import configparser import itertools as it import sys if(len(sys.argv) == 1): print(sys.argv[0], "NUM_GPU LAUNCHER") exit(0) if(len(sys.argv) == 3): launcher = sys.argv[2] else: launcher = "ssh" r2 = [str(x) for x in range(2)] r3 = [str(x) for x in range(3)] options = {} options["freeDbAfterGpuRun"] = r2 options["runGpuGcIdle"] = r2 options["runGpuGcPreEdt"] = r2 options["deleteZerosGpuGc"] = r2 options["gpuFit"] = r3 options["gpuLocality"] = r3 options["gpuP2P"] = r2 config = configparser.ConfigParser() config.optionxform=str cfgTemplate = "arts.cfg" config.read(cfgTemplate) conf = config[config.sections()[0]] conf["scheduler"] = "3" conf["launcher"] = launcher conf["gpu"] = sys.argv[1] keys = sorted(options) combinations = list(it.product(*(options[key] for key in keys))) i = 1 for comb in combinations: cfgFile = "test"+str(i)+".cfg" for key, ith in zip(keys, list(range(len(comb)))): conf[key] = comb[ith] with open(cfgFile, 'w') as cFile: config.write(cFile) i += 1
20.862745
64
0.655075
b1818048f49d777e08e17b6d3ac0a3780b6917c1
1,260
py
Python
api/permissions.py
ferrumie/multi-pay
3e6a6fc63de823c10b5c52ade73b8357ed8bfd48
[ "MIT" ]
null
null
null
api/permissions.py
ferrumie/multi-pay
3e6a6fc63de823c10b5c52ade73b8357ed8bfd48
[ "MIT" ]
null
null
null
api/permissions.py
ferrumie/multi-pay
3e6a6fc63de823c10b5c52ade73b8357ed8bfd48
[ "MIT" ]
null
null
null
from rest_framework import permissions from django.core.cache import cache class IsOwner(permissions.BasePermission): """ Object-level permission to only allow owners to have access to the requests """ def has_permission(self, request, view): return request.user and request.user.is_authenticated def has_object_permission(self, request, view, obj): return obj.user == request.user class IsIdempotent(permissions.BasePermission): ''' Permission to ensure the idempotency of the post requests Raise an error if duplicate request is detected ''' message = 'Duplicate request detected.' # TODO: make this work # needed to ensure idempotency for the post requests def has_permission(self, request, view): if request.method != 'POST': return True ival = request.META.get('HTTP_X_IDEMPOTENCY_KEY') if ival is None: return True ival = ival[:128] key = 'idemp-{}-{}'.format(request.user.pk, ival) is_idempotent = bool(cache.add(key, 'yes', 1000)) # if not is_idempotent: # logger.info(u'Duplicate request (non-idempotent): %s', key) return is_idempotent
32.307692
79
0.644444
3be2a3d6fea6e7074d23cdd89e597457fde0f944
9,243
py
Python
huaweicloud-sdk-as/huaweicloudsdkas/v1/model/lifecycle_hook_list.py
githubmilesma/huaweicloud-sdk-python-v3
9d9449ed68a609ca65f0aa50b5b2a1c28445bf03
[ "Apache-2.0" ]
1
2021-04-16T07:59:28.000Z
2021-04-16T07:59:28.000Z
huaweicloud-sdk-as/huaweicloudsdkas/v1/model/lifecycle_hook_list.py
Lencof/huaweicloud-sdk-python-v3
d13dc4e2830a83e295be6e4de021999b3376e34e
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-as/huaweicloudsdkas/v1/model/lifecycle_hook_list.py
Lencof/huaweicloud-sdk-python-v3
d13dc4e2830a83e295be6e4de021999b3376e34e
[ "Apache-2.0" ]
1
2022-01-17T02:24:18.000Z
2022-01-17T02:24:18.000Z
# coding: utf-8 import pprint import re import six class LifecycleHookList: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'lifecycle_hook_name': 'str', 'lifecycle_hook_type': 'str', 'default_result': 'str', 'default_timeout': 'int', 'notification_topic_urn': 'str', 'notification_topic_name': 'str', 'notification_metadata': 'str', 'create_time': 'datetime' } attribute_map = { 'lifecycle_hook_name': 'lifecycle_hook_name', 'lifecycle_hook_type': 'lifecycle_hook_type', 'default_result': 'default_result', 'default_timeout': 'default_timeout', 'notification_topic_urn': 'notification_topic_urn', 'notification_topic_name': 'notification_topic_name', 'notification_metadata': 'notification_metadata', 'create_time': 'create_time' } def __init__(self, lifecycle_hook_name=None, lifecycle_hook_type=None, default_result=None, default_timeout=None, notification_topic_urn=None, notification_topic_name=None, notification_metadata=None, create_time=None): """LifecycleHookList - a model defined in huaweicloud sdk""" self._lifecycle_hook_name = None self._lifecycle_hook_type = None self._default_result = None self._default_timeout = None self._notification_topic_urn = None self._notification_topic_name = None self._notification_metadata = None self._create_time = None self.discriminator = None if lifecycle_hook_name is not None: self.lifecycle_hook_name = lifecycle_hook_name if lifecycle_hook_type is not None: self.lifecycle_hook_type = lifecycle_hook_type if default_result is not None: self.default_result = default_result if default_timeout is not None: self.default_timeout = default_timeout if notification_topic_urn is not None: self.notification_topic_urn = notification_topic_urn if notification_topic_name is not None: self.notification_topic_name = notification_topic_name if notification_metadata is not None: self.notification_metadata = notification_metadata if create_time is not None: self.create_time = create_time @property def lifecycle_hook_name(self): """Gets the lifecycle_hook_name of this LifecycleHookList. 生命周期挂钩名称。 :return: The lifecycle_hook_name of this LifecycleHookList. :rtype: str """ return self._lifecycle_hook_name @lifecycle_hook_name.setter def lifecycle_hook_name(self, lifecycle_hook_name): """Sets the lifecycle_hook_name of this LifecycleHookList. 生命周期挂钩名称。 :param lifecycle_hook_name: The lifecycle_hook_name of this LifecycleHookList. :type: str """ self._lifecycle_hook_name = lifecycle_hook_name @property def lifecycle_hook_type(self): """Gets the lifecycle_hook_type of this LifecycleHookList. 生命周期挂钩类型。INSTANCE_TERMINATING;INSTANCE_LAUNCHING。 :return: The lifecycle_hook_type of this LifecycleHookList. :rtype: str """ return self._lifecycle_hook_type @lifecycle_hook_type.setter def lifecycle_hook_type(self, lifecycle_hook_type): """Sets the lifecycle_hook_type of this LifecycleHookList. 生命周期挂钩类型。INSTANCE_TERMINATING;INSTANCE_LAUNCHING。 :param lifecycle_hook_type: The lifecycle_hook_type of this LifecycleHookList. :type: str """ self._lifecycle_hook_type = lifecycle_hook_type @property def default_result(self): """Gets the default_result of this LifecycleHookList. 生命周期挂钩默认回调操作。ABANDON;CONTINUE。 :return: The default_result of this LifecycleHookList. :rtype: str """ return self._default_result @default_result.setter def default_result(self, default_result): """Sets the default_result of this LifecycleHookList. 生命周期挂钩默认回调操作。ABANDON;CONTINUE。 :param default_result: The default_result of this LifecycleHookList. :type: str """ self._default_result = default_result @property def default_timeout(self): """Gets the default_timeout of this LifecycleHookList. 生命周期挂钩超时时间,单位秒。 :return: The default_timeout of this LifecycleHookList. :rtype: int """ return self._default_timeout @default_timeout.setter def default_timeout(self, default_timeout): """Sets the default_timeout of this LifecycleHookList. 生命周期挂钩超时时间,单位秒。 :param default_timeout: The default_timeout of this LifecycleHookList. :type: int """ self._default_timeout = default_timeout @property def notification_topic_urn(self): """Gets the notification_topic_urn of this LifecycleHookList. SMN服务中Topic的唯一的资源标识。 :return: The notification_topic_urn of this LifecycleHookList. :rtype: str """ return self._notification_topic_urn @notification_topic_urn.setter def notification_topic_urn(self, notification_topic_urn): """Sets the notification_topic_urn of this LifecycleHookList. SMN服务中Topic的唯一的资源标识。 :param notification_topic_urn: The notification_topic_urn of this LifecycleHookList. :type: str """ self._notification_topic_urn = notification_topic_urn @property def notification_topic_name(self): """Gets the notification_topic_name of this LifecycleHookList. SMN服务中Topic的资源名称。 :return: The notification_topic_name of this LifecycleHookList. :rtype: str """ return self._notification_topic_name @notification_topic_name.setter def notification_topic_name(self, notification_topic_name): """Sets the notification_topic_name of this LifecycleHookList. SMN服务中Topic的资源名称。 :param notification_topic_name: The notification_topic_name of this LifecycleHookList. :type: str """ self._notification_topic_name = notification_topic_name @property def notification_metadata(self): """Gets the notification_metadata of this LifecycleHookList. 自定义通知消息。 :return: The notification_metadata of this LifecycleHookList. :rtype: str """ return self._notification_metadata @notification_metadata.setter def notification_metadata(self, notification_metadata): """Sets the notification_metadata of this LifecycleHookList. 自定义通知消息。 :param notification_metadata: The notification_metadata of this LifecycleHookList. :type: str """ self._notification_metadata = notification_metadata @property def create_time(self): """Gets the create_time of this LifecycleHookList. 创建生命周期挂钩时间,遵循UTC时间。 :return: The create_time of this LifecycleHookList. :rtype: datetime """ return self._create_time @create_time.setter def create_time(self, create_time): """Sets the create_time of this LifecycleHookList. 创建生命周期挂钩时间,遵循UTC时间。 :param create_time: The create_time of this LifecycleHookList. :type: datetime """ self._create_time = create_time def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, LifecycleHookList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.81
223
0.646543
f0768f1af5082d30570467e49cdea80c2029a2b1
875
py
Python
astropy/stats/__init__.py
jayvdb/astropy
bc6d8f106dd5b60bf57a8e6e29c4e2ae2178991f
[ "BSD-3-Clause" ]
445
2019-01-26T13:50:26.000Z
2022-03-18T05:17:38.000Z
astropy/stats/__init__.py
jayvdb/astropy
bc6d8f106dd5b60bf57a8e6e29c4e2ae2178991f
[ "BSD-3-Clause" ]
242
2019-01-29T15:48:27.000Z
2022-03-31T22:09:21.000Z
astropy/stats/__init__.py
jayvdb/astropy
bc6d8f106dd5b60bf57a8e6e29c4e2ae2178991f
[ "BSD-3-Clause" ]
31
2019-03-10T09:51:27.000Z
2022-02-14T23:11:12.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This subpackage contains statistical tools provided for or used by Astropy. While the `scipy.stats` package contains a wide range of statistical tools, it is a general-purpose package, and is missing some that are particularly useful to astronomy or are used in an atypical way in astronomy. This package is intended to provide such functionality, but *not* to replace `scipy.stats` if its implementation satisfies astronomers' needs. """ from .funcs import * # noqa from .biweight import * # noqa from .sigma_clipping import * # noqa from .jackknife import * # noqa from .circstats import * # noqa from .bayesian_blocks import * # noqa from .histogram import * # noqa from .info_theory import * # noqa from .lombscargle import * # noqa from .spatial import * # noqa from .bls import * # noqa
35
75
0.752
9973462c7f138d73d5b5ea9d49ad48b85bca8d3e
280
py
Python
back/markdownchat/chat/models.py
ivanseibel/markdown-chat
3afe687183a49ba5426dc1636fe1f49de5b6f304
[ "MIT" ]
1
2022-01-20T17:50:03.000Z
2022-01-20T17:50:03.000Z
back/markdownchat/chat/models.py
ivanseibel/markdown-chat
3afe687183a49ba5426dc1636fe1f49de5b6f304
[ "MIT" ]
1
2021-09-06T22:38:10.000Z
2021-09-06T22:38:10.000Z
back/markdownchat/chat/models.py
ivanseibel/markdown-chat
3afe687183a49ba5426dc1636fe1f49de5b6f304
[ "MIT" ]
null
null
null
from django.db import models class SignedUser(models.Model): room = models.CharField(blank=False, null=False, max_length=50) username = models.CharField(blank=False, null=False, max_length=50) channel_name = models.CharField(blank=False, null=False, max_length=100)
35
76
0.760714
27171fbc12333917b03d104c4331137fe31e932d
2,173
py
Python
src/mfactcheck/pipelines/multi_sent.py
D-Roberts/multilingual_nli_ECIR
e7466f5e6c6b6246ae37c1c951003c13f56d84c8
[ "Apache-2.0" ]
2
2021-02-13T22:57:33.000Z
2021-03-29T09:41:08.000Z
src/mfactcheck/pipelines/multi_sent.py
D-Roberts/multilingual_nli_ECIR
e7466f5e6c6b6246ae37c1c951003c13f56d84c8
[ "Apache-2.0" ]
null
null
null
src/mfactcheck/pipelines/multi_sent.py
D-Roberts/multilingual_nli_ECIR
e7466f5e6c6b6246ae37c1c951003c13f56d84c8
[ "Apache-2.0" ]
null
null
null
"""Pipeline onnx client Sentence Selector cpu""" import collections import csv import json import os import numpy as np from mfactcheck.multi_retriever.sentences.data import ( SentenceProcessor, get_eval_data, get_topk_sentences_eval, ) from mfactcheck.multi_retriever.sentences.config_util import _get_sent_configs from .base import Pipeline from mfactcheck.utils.log_helper import LogHelper LogHelper.setup() logger = LogHelper.get_logger(os.path.splitext(os.path.basename(__file__))[0]) class MultiSentPipeline(Pipeline): def __init__(self, module="sent", args=None, args_parser=_get_sent_configs): super().__init__(module, args, args_parser) self.processor = SentenceProcessor() self.label_list = self.processor.get_labels() self.num_labels = len(self.label_list) self.label_verification_list = self.processor.get_labels_verification() def __call__(self): """Classify verification label given input claim-sentence pairs""" eval_features, self.num_eg = get_eval_data( logger, db_path=self.args.db_path, data_dir=self.args.data_dir, output_file_name=self.args.predict_sentence_file_name, processor=self.processor, tokenizer=self.tokenizer, output_mode="classification", label_list=self.label_list, label_verification_list=self.label_verification_list, max_seq_length=self.args.max_seq_length, dataset=self.args.dataset, do_doc_process=self.args.do_doc_process, add_ro=self.args.add_ro, doc_file=self.args.test_doc_file, ro_doc_file=self.args.dev_ro_doc_file, api=self.args.api, ) logits, _, new_guids, guids_map = super().__call__(eval_features, self.num_eg) # topk selector: get dataset for nli module (dev, test) get_topk_sentences_eval( zip(new_guids, logits), guids_map, os.path.join(self.args.data_dir, self.args.predict_sentence_file_name), self.args.predict_rte_file, self.args.sent_k, )
35.622951
86
0.684307
637ef0ff4fb778956845f201b2fc7d19c7351f75
7,714
py
Python
calm/dsl/config/config.py
opywan/calm-dsl
1d89436d039a39265a0ae806022be5b52e757ac0
[ "Apache-2.0" ]
null
null
null
calm/dsl/config/config.py
opywan/calm-dsl
1d89436d039a39265a0ae806022be5b52e757ac0
[ "Apache-2.0" ]
null
null
null
calm/dsl/config/config.py
opywan/calm-dsl
1d89436d039a39265a0ae806022be5b52e757ac0
[ "Apache-2.0" ]
1
2020-04-07T12:21:13.000Z
2020-04-07T12:21:13.000Z
import configparser import errno import os from jinja2 import Environment, PackageLoader from calm.dsl.tools import get_logging_handle from .schema import validate_config, validate_init_config LOG = get_logging_handle(__name__) _CONFIG = None _CONFIG_FILE = None _INIT = None def make_file_dir(path, is_dir=False): """creates the file directory if not present""" # Create parent directory if not present if not os.path.exists(os.path.dirname(os.path.realpath(path))): try: LOG.debug("Creating directory for file {}".format(path)) os.makedirs(os.path.dirname(os.path.realpath(path))) LOG.debug("Success") except OSError as exc: if exc.errno != errno.EEXIST: raise Exception("[{}] - {}".format(exc["code"], exc["error"])) if is_dir and (not os.path.exists(path)): os.makedirs(path) def get_init_file(): """Returns the init file location""" init_file = os.path.join(os.path.expanduser("~"), ".calm", "init.ini") make_file_dir(init_file) return init_file def get_default_config_file(): """Returns default location of config file""" user_config_file = os.path.join(os.path.expanduser("~"), ".calm", "config.ini") make_file_dir(user_config_file) return user_config_file def get_default_db_file(): """Returns default location of db file""" dsl_db_file = os.path.join(os.path.expanduser("~"), ".calm", "dsl.db") make_file_dir(dsl_db_file) return dsl_db_file def get_default_local_dir(): """Returns the default location for local dir""" local_dir = os.path.join(os.path.expanduser("~"), ".calm", ".local") make_file_dir(local_dir, is_dir=True) return local_dir def get_user_config_file(): """Returns the config file location""" global _CONFIG_FILE cwd = os.getcwd() if not _CONFIG_FILE: config_file = None if "config.ini" in os.listdir(cwd): config_file = os.path.join(cwd, "config.ini") elif os.path.exists(get_init_file()): init_obj = get_init_data() config_file = None if "CONFIG" in init_obj: config_file = init_obj["CONFIG"].get("location", None) _CONFIG_FILE = config_file or get_default_config_file() return _CONFIG_FILE def get_init_data(): """Returns the init config data""" global _INIT if not _INIT: update_init_obj() return _INIT def update_init_obj(): """updates the global init obj""" global _INIT config = configparser.ConfigParser() config.optionxform = str init_file = get_init_file() config.read(init_file) # Validate init config if not validate_init_config(config): raise ValueError( "Invalid init config file: {}. Please run: calm init dsl".format(init_file) ) _INIT = config def update_init_config(config_file, db_file, local_dir): """updates the init file data""" global _CONFIG_FILE # create required directories make_file_dir(config_file) make_file_dir(db_file) make_file_dir(local_dir, is_dir=True) init_file = get_init_file() LOG.debug("Rendering init template") text = _render_init_template(config_file, db_file, local_dir) LOG.debug("Success") # UPDATE global _CONFIG_FILE object _CONFIG_FILE = config_file # Write config LOG.debug("Writing configuration to '{}'".format(init_file)) with open(init_file, "w") as fd: fd.write(text) LOG.debug("Success") # Update existing init object update_init_obj() def _render_init_template( config_file, db_file, local_dir, schema_file="init.ini.jinja2" ): """renders the init template""" loader = PackageLoader(__name__, "") env = Environment(loader=loader) template = env.get_template(schema_file) text = template.render( config_file=config_file, db_file=db_file, local_dir=local_dir, ) return text.strip() + os.linesep def _render_config_template( ip, port, username, password, project_name, log_level, schema_file="config.ini.jinja2", ): """renders the config template""" loader = PackageLoader(__name__, "") env = Environment(loader=loader) template = env.get_template(schema_file) text = template.render( ip=ip, port=port, username=username, password=password, project_name=project_name, log_level=log_level, ) return text.strip() + os.linesep def init_config( ip, port, username, password, project_name, log_level, config_file=None ): """Writes the configuration to config file / default config file""" # Default user config file user_config_file = get_user_config_file() config_file = config_file or user_config_file # Render config template LOG.debug("Rendering configuration template") text = _render_config_template( ip, port, username, password, project_name, log_level ) LOG.debug("Success") # Write config LOG.debug("Writing configuration to '{}'".format(config_file)) with open(config_file, "w") as fd: fd.write(text) LOG.debug("Success") def get_config(config_file=None): """Returns the config object""" global _CONFIG, _CONFIG_FILE if config_file: _CONFIG_FILE = config_file if (not _CONFIG) or (config_file): # Create config object user_config_file = get_user_config_file() config = configparser.ConfigParser() config.optionxform = str # Maintaining case sensitivity for field names config.read(user_config_file) # Check presence of file if not os.path.exists(user_config_file): raise FileNotFoundError( "File {} not found. Please run: calm init dsl".format(user_config_file) ) # Validate the config file if not validate_config(config): raise ValueError( "Invalid config file: {}. Please run: calm init dsl".format( user_config_file ) ) _CONFIG = config return _CONFIG def set_config( host, port, username, password, project_name, db_location, log_level, config_file, local_dir, ): """writes the configuration to config file""" config = get_config() init_obj = get_init_data() host = host or config["SERVER"]["pc_ip"] username = username or config["SERVER"]["pc_username"] port = port or config["SERVER"]["pc_port"] password = password or config["SERVER"]["pc_password"] project_name = project_name or config["PROJECT"]["name"] log_level = log_level or config["LOG"]["level"] logging_levels = LOG.get_logging_levels() if log_level not in logging_levels: raise ValueError("Invalid log level. Select from {}".format(logging_levels)) make_file_dir(config_file) init_config( host, port, username, password, project_name, log_level, config_file=config_file, ) db_location = db_location or init_obj["DB"]["location"] local_dir = local_dir or init_obj["LOCAL_DIR"]["location"] config_file = config_file or init_obj["CONFIG"]["location"] # Update init config update_init_config( config_file=config_file, db_file=db_location, local_dir=local_dir ) def print_config(): """prints the configuration""" config_file = get_user_config_file() LOG.debug("Fetching configuration from '{}'".format(config_file)) print("") with open(config_file) as fd: print(fd.read())
25.627907
88
0.654913
f07b798ca8f38e3b115da93fe94db93857bce477
3,214
py
Python
mysite/settings.py
bheavner/django_girls
3456eea7c488584af98710aaec6411c965491d8a
[ "MIT" ]
null
null
null
mysite/settings.py
bheavner/django_girls
3456eea7c488584af98710aaec6411c965491d8a
[ "MIT" ]
null
null
null
mysite/settings.py
bheavner/django_girls
3456eea7c488584af98710aaec6411c965491d8a
[ "MIT" ]
null
null
null
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.2.24. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '1-hu_pe)vvw(a8!7x2h68o5r%vbp^wop8uz1=63alvav18cnaj' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog.apps.BlogConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Los_Angeles' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
26.130081
91
0.698818
3bb5a13ae7c2cea9ef71a4042839d87cd1925bb5
12,342
py
Python
docs/source/conf.py
tjb900/distributed
f6bf1b7105f508f7435df898ee3ac00a2edefd65
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
tjb900/distributed
f6bf1b7105f508f7435df898ee3ac00a2edefd65
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
tjb900/distributed
f6bf1b7105f508f7435df898ee3ac00a2edefd65
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Dask.distributed documentation build configuration file, created by # sphinx-quickstart on Tue Oct 6 14:42:44 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.extlinks', 'sphinx.ext.intersphinx', 'numpydoc', ] numpydoc_show_class_members = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Dask.distributed' copyright = u'2016, Anaconda, Inc.' author = u'Anaconda, Inc.' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import distributed version = distributed.__version__ # The full version, including alpha/beta/rc tags. release = distributed.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # Taken from docs.readthedocs.io: # on_rtd is whether we are on readthedocs.io on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'distributeddoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'distributed.tex', u'Dask.distributed Documentation', u'Matthew Rocklin', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'Dask.distributed', u'Dask.distributed Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Dask.distributed', u'Dask.distributed Documentation', author, 'Dask.distributed', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The basename for the epub file. It defaults to the project name. #epub_basename = project # The HTML theme for the epub output. Since the default themes are not optimized # for small screen space, using the same theme for HTML and epub output is # usually not wise. This defaults to 'epub', a theme designed to save visual # space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or 'en' if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the Pillow. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True # Link to GitHub issues and pull requests using :pr:`1234` and :issue:`1234` # syntax extlinks = { 'issue': ('https://github.com/dask/distributed/issues/%s', 'GH#'), 'pr': ('https://github.com/dask/distributed/pull/%s', 'GH#') } # Configuration for intersphinx: refer to the Python standard library # and the Numpy documentation. intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), } def setup(app): app.add_stylesheet("http://dask.pydata.org/en/latest/_static/style.css")
31.727506
80
0.718603
67dd463ce455c8bae0c5f475f6942f60905663cc
21,643
py
Python
sdk/python/pulumi_google_native/networkconnectivity/v1/policy_based_route_iam_policy.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
44
2021-04-18T23:00:48.000Z
2022-02-14T17:43:15.000Z
sdk/python/pulumi_google_native/networkconnectivity/v1/policy_based_route_iam_policy.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
354
2021-04-16T16:48:39.000Z
2022-03-31T17:16:39.000Z
sdk/python/pulumi_google_native/networkconnectivity/v1/policy_based_route_iam_policy.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
8
2021-04-24T17:46:51.000Z
2022-01-05T10:40:21.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['PolicyBasedRouteIamPolicyArgs', 'PolicyBasedRouteIamPolicy'] @pulumi.input_type class PolicyBasedRouteIamPolicyArgs: def __init__(__self__, *, policy_based_route_id: pulumi.Input[str], audit_configs: Optional[pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]]] = None, bindings: Optional[pulumi.Input[Sequence[pulumi.Input['BindingArgs']]]] = None, etag: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, update_mask: Optional[pulumi.Input[str]] = None, version: Optional[pulumi.Input[int]] = None): """ The set of arguments for constructing a PolicyBasedRouteIamPolicy resource. :param pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]] audit_configs: Specifies cloud audit logging configuration for this policy. :param pulumi.Input[Sequence[pulumi.Input['BindingArgs']]] bindings: Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. :param pulumi.Input[str] etag: `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. :param pulumi.Input[str] update_mask: OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only the fields in the mask will be modified. If no mask is provided, the following default mask is used: `paths: "bindings, etag"` :param pulumi.Input[int] version: Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ pulumi.set(__self__, "policy_based_route_id", policy_based_route_id) if audit_configs is not None: pulumi.set(__self__, "audit_configs", audit_configs) if bindings is not None: pulumi.set(__self__, "bindings", bindings) if etag is not None: pulumi.set(__self__, "etag", etag) if project is not None: pulumi.set(__self__, "project", project) if update_mask is not None: pulumi.set(__self__, "update_mask", update_mask) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter(name="policyBasedRouteId") def policy_based_route_id(self) -> pulumi.Input[str]: return pulumi.get(self, "policy_based_route_id") @policy_based_route_id.setter def policy_based_route_id(self, value: pulumi.Input[str]): pulumi.set(self, "policy_based_route_id", value) @property @pulumi.getter(name="auditConfigs") def audit_configs(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]]]: """ Specifies cloud audit logging configuration for this policy. """ return pulumi.get(self, "audit_configs") @audit_configs.setter def audit_configs(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]]]): pulumi.set(self, "audit_configs", value) @property @pulumi.getter def bindings(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['BindingArgs']]]]: """ Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. """ return pulumi.get(self, "bindings") @bindings.setter def bindings(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['BindingArgs']]]]): pulumi.set(self, "bindings", value) @property @pulumi.getter def etag(self) -> Optional[pulumi.Input[str]]: """ `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. """ return pulumi.get(self, "etag") @etag.setter def etag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "etag", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter(name="updateMask") def update_mask(self) -> Optional[pulumi.Input[str]]: """ OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only the fields in the mask will be modified. If no mask is provided, the following default mask is used: `paths: "bindings, etag"` """ return pulumi.get(self, "update_mask") @update_mask.setter def update_mask(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "update_mask", value) @property @pulumi.getter def version(self) -> Optional[pulumi.Input[int]]: """ Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ return pulumi.get(self, "version") @version.setter def version(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "version", value) class PolicyBasedRouteIamPolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, audit_configs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AuditConfigArgs']]]]] = None, bindings: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BindingArgs']]]]] = None, etag: Optional[pulumi.Input[str]] = None, policy_based_route_id: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, update_mask: Optional[pulumi.Input[str]] = None, version: Optional[pulumi.Input[int]] = None, __props__=None): """ Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors. Note - this resource's API doesn't support deletion. When deleted, the resource will persist on Google Cloud even though it will be deleted from Pulumi state. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AuditConfigArgs']]]] audit_configs: Specifies cloud audit logging configuration for this policy. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BindingArgs']]]] bindings: Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. :param pulumi.Input[str] etag: `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. :param pulumi.Input[str] update_mask: OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only the fields in the mask will be modified. If no mask is provided, the following default mask is used: `paths: "bindings, etag"` :param pulumi.Input[int] version: Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ ... @overload def __init__(__self__, resource_name: str, args: PolicyBasedRouteIamPolicyArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors. Note - this resource's API doesn't support deletion. When deleted, the resource will persist on Google Cloud even though it will be deleted from Pulumi state. :param str resource_name: The name of the resource. :param PolicyBasedRouteIamPolicyArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PolicyBasedRouteIamPolicyArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, audit_configs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AuditConfigArgs']]]]] = None, bindings: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BindingArgs']]]]] = None, etag: Optional[pulumi.Input[str]] = None, policy_based_route_id: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, update_mask: Optional[pulumi.Input[str]] = None, version: Optional[pulumi.Input[int]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PolicyBasedRouteIamPolicyArgs.__new__(PolicyBasedRouteIamPolicyArgs) __props__.__dict__["audit_configs"] = audit_configs __props__.__dict__["bindings"] = bindings __props__.__dict__["etag"] = etag if policy_based_route_id is None and not opts.urn: raise TypeError("Missing required property 'policy_based_route_id'") __props__.__dict__["policy_based_route_id"] = policy_based_route_id __props__.__dict__["project"] = project __props__.__dict__["update_mask"] = update_mask __props__.__dict__["version"] = version super(PolicyBasedRouteIamPolicy, __self__).__init__( 'google-native:networkconnectivity/v1:PolicyBasedRouteIamPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PolicyBasedRouteIamPolicy': """ Get an existing PolicyBasedRouteIamPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PolicyBasedRouteIamPolicyArgs.__new__(PolicyBasedRouteIamPolicyArgs) __props__.__dict__["audit_configs"] = None __props__.__dict__["bindings"] = None __props__.__dict__["etag"] = None __props__.__dict__["version"] = None return PolicyBasedRouteIamPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="auditConfigs") def audit_configs(self) -> pulumi.Output[Sequence['outputs.AuditConfigResponse']]: """ Specifies cloud audit logging configuration for this policy. """ return pulumi.get(self, "audit_configs") @property @pulumi.getter def bindings(self) -> pulumi.Output[Sequence['outputs.BindingResponse']]: """ Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. """ return pulumi.get(self, "bindings") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. """ return pulumi.get(self, "etag") @property @pulumi.getter def version(self) -> pulumi.Output[int]: """ Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ return pulumi.get(self, "version")
81.059925
1,118
0.711777
b0187997bf5c72498496acc700c720ed20fef4cf
124,922
py
Python
salt/minion.py
ahammond/salt
945b21b70dbe708716d7b009a2005ef0acf76e6b
[ "Apache-2.0" ]
null
null
null
salt/minion.py
ahammond/salt
945b21b70dbe708716d7b009a2005ef0acf76e6b
[ "Apache-2.0" ]
null
null
null
salt/minion.py
ahammond/salt
945b21b70dbe708716d7b009a2005ef0acf76e6b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Routines to set up a minion ''' # Import python libs from __future__ import absolute_import, print_function, with_statement import os import re import sys import copy import time import types import signal import fnmatch import logging import threading import traceback import contextlib import multiprocessing from random import randint, shuffle from stat import S_IMODE # Import Salt Libs # pylint: disable=import-error,no-name-in-module,redefined-builtin import salt.ext.six as six if six.PY3: import ipaddress else: import salt.ext.ipaddress as ipaddress from salt.ext.six.moves import range # pylint: enable=no-name-in-module,redefined-builtin # Import third party libs try: import zmq # TODO: cleanup import zmq.eventloop.ioloop # support pyzmq 13.0.x, TODO: remove once we force people to 14.0.x if not hasattr(zmq.eventloop.ioloop, 'ZMQIOLoop'): zmq.eventloop.ioloop.ZMQIOLoop = zmq.eventloop.ioloop.IOLoop LOOP_CLASS = zmq.eventloop.ioloop.ZMQIOLoop HAS_ZMQ = True except ImportError: import tornado.ioloop LOOP_CLASS = tornado.ioloop.IOLoop HAS_ZMQ = False HAS_RANGE = False try: import seco.range HAS_RANGE = True except ImportError: pass HAS_PSUTIL = False try: import salt.utils.psutil_compat as psutil HAS_PSUTIL = True except ImportError: pass HAS_RESOURCE = False try: import resource HAS_RESOURCE = True except ImportError: pass try: import zmq.utils.monitor HAS_ZMQ_MONITOR = True except ImportError: HAS_ZMQ_MONITOR = False # pylint: enable=import-error # Import salt libs import salt import salt.client import salt.crypt import salt.loader import salt.beacons import salt.engines import salt.payload import salt.syspaths import salt.utils import salt.utils.context import salt.utils.jid import salt.pillar import salt.utils.args import salt.utils.event import salt.utils.minion import salt.utils.minions import salt.utils.schedule import salt.utils.error import salt.utils.zeromq import salt.defaults.exitcodes import salt.cli.daemons import salt.log.setup from salt.config import DEFAULT_MINION_OPTS from salt.defaults import DEFAULT_TARGET_DELIM from salt.executors import FUNCTION_EXECUTORS from salt.utils.debug import enable_sigusr1_handler from salt.utils.event import tagify from salt.utils.odict import OrderedDict from salt.utils.process import (default_signals, SignalHandlingMultiprocessingProcess, ProcessManager) from salt.exceptions import ( CommandExecutionError, CommandNotFoundError, SaltInvocationError, SaltReqTimeoutError, SaltClientError, SaltSystemExit, SaltDaemonNotRunning, SaltException, ) import tornado.gen # pylint: disable=F0401 import tornado.ioloop # pylint: disable=F0401 log = logging.getLogger(__name__) # To set up a minion: # 1. Read in the configuration # 2. Generate the function mapping dict # 3. Authenticate with the master # 4. Store the AES key # 5. Connect to the publisher # 6. Handle publications def resolve_dns(opts, fallback=True): ''' Resolves the master_ip and master_uri options ''' ret = {} check_dns = True if (opts.get('file_client', 'remote') == 'local' and not opts.get('use_master_when_local', False)): check_dns = False if check_dns is True: # Because I import salt.log below I need to re-import salt.utils here import salt.utils try: if opts['master'] == '': raise SaltSystemExit ret['master_ip'] = \ salt.utils.dns_check(opts['master'], True, opts['ipv6']) except SaltClientError: if opts['retry_dns']: while True: import salt.log msg = ('Master hostname: \'{0}\' not found. Retrying in {1} ' 'seconds').format(opts['master'], opts['retry_dns']) if salt.log.setup.is_console_configured(): log.error(msg) else: print('WARNING: {0}'.format(msg)) time.sleep(opts['retry_dns']) try: ret['master_ip'] = salt.utils.dns_check( opts['master'], True, opts['ipv6'] ) break except SaltClientError: pass else: if fallback: ret['master_ip'] = '127.0.0.1' else: raise except SaltSystemExit: unknown_str = 'unknown address' master = opts.get('master', unknown_str) if master == '': master = unknown_str if opts.get('__role') == 'syndic': err = 'Master address: \'{0}\' could not be resolved. Invalid or unresolveable address. Set \'syndic_master\' value in minion config.'.format(master) else: err = 'Master address: \'{0}\' could not be resolved. Invalid or unresolveable address. Set \'master\' value in minion config.'.format(master) log.error(err) raise SaltSystemExit(code=42, msg=err) else: ret['master_ip'] = '127.0.0.1' if 'master_ip' in ret and 'master_ip' in opts: if ret['master_ip'] != opts['master_ip']: log.warning('Master ip address changed from {0} to {1}'.format(opts['master_ip'], ret['master_ip']) ) ret['master_uri'] = 'tcp://{ip}:{port}'.format(ip=ret['master_ip'], port=opts['master_port']) return ret def prep_ip_port(opts): ret = {} if opts['master_uri_format'] == 'ip_only': ret['master'] = opts['master'] else: ip_port = opts['master'].rsplit(":", 1) if len(ip_port) == 1: # e.g. master: mysaltmaster ret['master'] = ip_port[0] else: # e.g. master: localhost:1234 # e.g. master: 127.0.0.1:1234 # e.g. master: ::1:1234 ret['master'] = ip_port[0] ret['master_port'] = ip_port[1] return ret def get_proc_dir(cachedir, **kwargs): ''' Given the cache directory, return the directory that process data is stored in, creating it if it doesn't exist. The following optional Keyword Arguments are handled: mode: which is anything os.makedir would accept as mode. uid: the uid to set, if not set, or it is None or -1 no changes are made. Same applies if the directory is already owned by this uid. Must be int. Works only on unix/unix like systems. gid: the gid to set, if not set, or it is None or -1 no changes are made. Same applies if the directory is already owned by this gid. Must be int. Works only on unix/unix like systems. ''' fn_ = os.path.join(cachedir, 'proc') mode = kwargs.pop('mode', None) if mode is None: mode = {} else: mode = {'mode': mode} if not os.path.isdir(fn_): # proc_dir is not present, create it with mode settings os.makedirs(fn_, **mode) d_stat = os.stat(fn_) # if mode is not an empty dict then we have an explicit # dir mode. So lets check if mode needs to be changed. if mode: mode_part = S_IMODE(d_stat.st_mode) if mode_part != mode['mode']: os.chmod(fn_, (d_stat.st_mode ^ mode_part) | mode['mode']) if hasattr(os, 'chown'): # only on unix/unix like systems uid = kwargs.pop('uid', -1) gid = kwargs.pop('gid', -1) # if uid and gid are both -1 then go ahead with # no changes at all if (d_stat.st_uid != uid or d_stat.st_gid != gid) and \ [i for i in (uid, gid) if i != -1]: os.chown(fn_, uid, gid) return fn_ def parse_args_and_kwargs(func, args, data=None): ''' Wrap load_args_and_kwargs ''' salt.utils.warn_until( 'Carbon', 'salt.minion.parse_args_and_kwargs() has been renamed to ' 'salt.minion.load_args_and_kwargs(). Please change this function call ' 'before the Carbon release of Salt.' ) return load_args_and_kwargs(func, args, data=data) def load_args_and_kwargs(func, args, data=None, ignore_invalid=False): ''' Detect the args and kwargs that need to be passed to a function call, and check them against what was passed. ''' argspec = salt.utils.args.get_function_argspec(func) _args = [] _kwargs = {} invalid_kwargs = [] for arg in args: if isinstance(arg, six.string_types): string_arg, string_kwarg = salt.utils.args.parse_input([arg], condition=False) # pylint: disable=W0632 if string_arg: # Don't append the version that was just derived from parse_cli # above, that would result in a 2nd call to # salt.utils.cli.yamlify_arg(), which could mangle the input. _args.append(arg) elif string_kwarg: salt.utils.warn_until( 'Carbon', 'The list of function args and kwargs should be parsed ' 'by salt.utils.args.parse_input() before calling ' 'salt.minion.load_args_and_kwargs().' ) if argspec.keywords or next(six.iterkeys(string_kwarg)) in argspec.args: # Function supports **kwargs or is a positional argument to # the function. _kwargs.update(string_kwarg) else: # **kwargs not in argspec and parsed argument name not in # list of positional arguments. This keyword argument is # invalid. for key, val in six.iteritems(string_kwarg): invalid_kwargs.append('{0}={1}'.format(key, val)) continue # if the arg is a dict with __kwarg__ == True, then its a kwarg elif isinstance(arg, dict) and arg.pop('__kwarg__', False) is True: for key, val in six.iteritems(arg): if argspec.keywords or key in argspec.args: # Function supports **kwargs or is a positional argument to # the function. _kwargs[key] = val else: # **kwargs not in argspec and parsed argument name not in # list of positional arguments. This keyword argument is # invalid. invalid_kwargs.append('{0}={1}'.format(key, val)) continue else: _args.append(arg) if invalid_kwargs and not ignore_invalid: salt.utils.invalid_kwargs(invalid_kwargs) if argspec.keywords and isinstance(data, dict): # this function accepts **kwargs, pack in the publish data for key, val in six.iteritems(data): _kwargs['__pub_{0}'.format(key)] = val return _args, _kwargs def eval_master_func(opts): ''' Evaluate master function if master type is 'func' and save it result in opts['master'] ''' if '__master_func_evaluated' not in opts: # split module and function and try loading the module mod, fun = opts['master'].split('.') try: master_mod = salt.loader.raw_mod(opts, mod, fun) # we take whatever the module returns as master address opts['master'] = master_mod[mod + '.' + fun]() opts['__master_func_evaluated'] = True except TypeError: log.error("Failed to evaluate master address from module '{0}'".format( opts['master'])) sys.exit(salt.defaults.exitcodes.EX_GENERIC) log.info('Evaluated master from module: {0}'.format(master_mod)) class MinionBase(object): def __init__(self, opts): self.opts = opts @staticmethod def process_schedule(minion, loop_interval): try: if hasattr(minion, 'schedule'): minion.schedule.eval() else: log.error('Minion scheduler not initialized. Scheduled jobs will not be run.') return # Check if scheduler requires lower loop interval than # the loop_interval setting if minion.schedule.loop_interval < loop_interval: loop_interval = minion.schedule.loop_interval log.debug( 'Overriding loop_interval because of scheduled jobs.' ) except Exception as exc: log.error( 'Exception {0} occurred in scheduled job'.format(exc) ) return loop_interval def process_beacons(self, functions): ''' Evaluate all of the configured beacons, grab the config again in case the pillar or grains changed ''' if 'config.merge' in functions: b_conf = functions['config.merge']('beacons') if b_conf: return self.beacons.process(b_conf) # pylint: disable=no-member return [] @tornado.gen.coroutine def eval_master(self, opts, timeout=60, safe=True, failed=False): ''' Evaluates and returns a tuple of the current master address and the pub_channel. In standard mode, just creates a pub_channel with the given master address. With master_type=func evaluates the current master address from the given module and then creates a pub_channel. With master_type=failover takes the list of masters and loops through them. The first one that allows the minion to create a pub_channel is then returned. If this function is called outside the minions initialization phase (for example from the minions main event-loop when a master connection loss was detected), 'failed' should be set to True. The current (possibly failed) master will then be removed from the list of masters. ''' # return early if we are not connecting to a master if opts['master_type'] == 'disable': log.warning('Master is set to disable, skipping connection') self.connected = False raise tornado.gen.Return((None, None)) # check if master_type was altered from its default elif opts['master_type'] != 'str' and opts['__role'] != 'syndic': # check for a valid keyword if opts['master_type'] == 'func': eval_master_func(opts) # if failover is set, master has to be of type list elif opts['master_type'] == 'failover': if isinstance(opts['master'], list): log.info('Got list of available master addresses:' ' {0}'.format(opts['master'])) if opts['master_shuffle']: if opts['master_failback']: secondary_masters = opts['master'][1:] shuffle(secondary_masters) opts['master'][1:] = secondary_masters else: shuffle(opts['master']) opts['auth_tries'] = 0 if opts['master_failback'] and opts['master_failback_interval'] == 0: opts['master_failback_interval'] = opts['master_alive_interval'] # if opts['master'] is a str and we have never created opts['master_list'] elif isinstance(opts['master'], str) and ('master_list' not in opts): # We have a string, but a list was what was intended. Convert. # See issue 23611 for details opts['master'] = [opts['master']] elif opts['__role'] == 'syndic': log.info('Syndic setting master_syndic to \'{0}\''.format(opts['master'])) # if failed=True, the minion was previously connected # we're probably called from the minions main-event-loop # because a master connection loss was detected. remove # the possibly failed master from the list of masters. elif failed: log.info('Moving possibly failed master {0} to the end of' ' the list of masters'.format(opts['master'])) if opts['master'] in opts['master_list']: # create new list of master with the possibly failed # one moved to the end failed_master = opts['master'] opts['master'] = [x for x in opts['master_list'] if opts['master'] != x] opts['master'].append(failed_master) else: opts['master'] = opts['master_list'] else: msg = ('master_type set to \'failover\' but \'master\' ' 'is not of type list but of type ' '{0}'.format(type(opts['master']))) log.error(msg) sys.exit(salt.defaults.exitcodes.EX_GENERIC) # If failover is set, minion have to failover on DNS errors instead of retry DNS resolve. # See issue 21082 for details if opts['retry_dns']: msg = ('\'master_type\' set to \'failover\' but \'retry_dns\' is not 0. ' 'Setting \'retry_dns\' to 0 to failover to the next master on DNS errors.') log.critical(msg) opts['retry_dns'] = 0 else: msg = ('Invalid keyword \'{0}\' for variable ' '\'master_type\''.format(opts['master_type'])) log.error(msg) sys.exit(salt.defaults.exitcodes.EX_GENERIC) # FIXME: if SMinion don't define io_loop, it can't switch master see #29088 # Specify kwargs for the channel factory so that SMinion doesn't need to define an io_loop # (The channel factories will set a default if the kwarg isn't passed) factory_kwargs = {'timeout': timeout, 'safe': safe} if getattr(self, 'io_loop', None): factory_kwargs['io_loop'] = self.io_loop # pylint: disable=no-member tries = opts.get('master_tries', 1) attempts = 0 # if we have a list of masters, loop through them and be # happy with the first one that allows us to connect if isinstance(opts['master'], list): conn = False # shuffle the masters and then loop through them local_masters = copy.copy(opts['master']) last_exc = None while True: attempts += 1 if tries > 0: log.debug('Connecting to master. Attempt {0} ' 'of {1}'.format(attempts, tries) ) else: log.debug('Connecting to master. Attempt {0} ' '(infinite attempts)'.format(attempts) ) for master in local_masters: opts['master'] = master opts.update(prep_ip_port(opts)) opts.update(resolve_dns(opts)) self.opts = opts # on first run, update self.opts with the whole master list # to enable a minion to re-use old masters if they get fixed if 'master_list' not in opts: opts['master_list'] = local_masters try: pub_channel = salt.transport.client.AsyncPubChannel.factory(opts, **factory_kwargs) yield pub_channel.connect() conn = True break except SaltClientError as exc: last_exc = exc msg = ('Master {0} could not be reached, trying ' 'next master (if any)'.format(opts['master'])) log.info(msg) continue if not conn: if attempts == tries: # Exhausted all attempts. Return exception. self.connected = False msg = ('No master could be reached or all masters ' 'denied the minions connection attempt.') log.error(msg) # If the code reaches this point, 'last_exc' # should already be set. raise last_exc # pylint: disable=E0702 else: self.tok = pub_channel.auth.gen_token('salt') self.connected = True raise tornado.gen.Return((opts['master'], pub_channel)) # single master sign in else: while True: attempts += 1 if tries > 0: log.debug('Connecting to master. Attempt {0} ' 'of {1}'.format(attempts, tries) ) else: log.debug('Connecting to master. Attempt {0} ' '(infinite attempts)'.format(attempts) ) opts.update(prep_ip_port(opts)) opts.update(resolve_dns(opts)) try: pub_channel = salt.transport.client.AsyncPubChannel.factory(self.opts, **factory_kwargs) yield pub_channel.connect() self.tok = pub_channel.auth.gen_token('salt') self.connected = True raise tornado.gen.Return((opts['master'], pub_channel)) except SaltClientError as exc: if attempts == tries: # Exhausted all attempts. Return exception. self.connected = False raise exc class SMinion(MinionBase): ''' Create an object that has loaded all of the minion module functions, grains, modules, returners etc. The SMinion allows developers to generate all of the salt minion functions and present them with these functions for general use. ''' def __init__(self, opts): # Late setup of the opts grains, so we can log from the grains module opts['grains'] = salt.loader.grains(opts) super(SMinion, self).__init__(opts) # Clean out the proc directory (default /var/cache/salt/minion/proc) if (self.opts.get('file_client', 'remote') == 'remote' or self.opts.get('use_master_when_local', False)): if HAS_ZMQ: zmq.eventloop.ioloop.install() io_loop = LOOP_CLASS.current() io_loop.run_sync( lambda: self.eval_master(self.opts, failed=True) ) self.gen_modules(initial_load=True) # If configured, cache pillar data on the minion if self.opts['file_client'] == 'remote' and self.opts.get('minion_pillar_cache', False): import yaml pdir = os.path.join(self.opts['cachedir'], 'pillar') if not os.path.isdir(pdir): os.makedirs(pdir, 0o700) ptop = os.path.join(pdir, 'top.sls') if self.opts['environment'] is not None: penv = self.opts['environment'] else: penv = 'base' cache_top = {penv: {self.opts['id']: ['cache']}} with salt.utils.fopen(ptop, 'wb') as fp_: fp_.write(yaml.dump(cache_top)) os.chmod(ptop, 0o600) cache_sls = os.path.join(pdir, 'cache.sls') with salt.utils.fopen(cache_sls, 'wb') as fp_: fp_.write(yaml.dump(self.opts['pillar'])) os.chmod(cache_sls, 0o600) def gen_modules(self, initial_load=False): ''' Load all of the modules for the minion ''' if self.opts.get('master_type') != 'disable': self.opts['pillar'] = salt.pillar.get_pillar( self.opts, self.opts['grains'], self.opts['id'], self.opts['environment'], pillarenv=self.opts.get('pillarenv'), ).compile_pillar() self.utils = salt.loader.utils(self.opts) self.functions = salt.loader.minion_mods(self.opts, utils=self.utils, include_errors=True) self.serializers = salt.loader.serializers(self.opts) self.returners = salt.loader.returners(self.opts, self.functions) self.proxy = salt.loader.proxy(self.opts, self.functions, self.returners, None) # TODO: remove self.function_errors = {} # Keep the funcs clean self.states = salt.loader.states(self.opts, self.functions, self.utils, self.serializers) self.rend = salt.loader.render(self.opts, self.functions) self.matcher = Matcher(self.opts, self.functions) self.functions['sys.reload_modules'] = self.gen_modules self.executors = salt.loader.executors(self.opts) class MasterMinion(object): ''' Create a fully loaded minion function object for generic use on the master. What makes this class different is that the pillar is omitted, otherwise everything else is loaded cleanly. ''' def __init__( self, opts, returners=True, states=True, rend=True, matcher=True, whitelist=None): self.opts = salt.config.minion_config(opts['conf_file']) self.opts.update(opts) self.whitelist = whitelist self.opts['grains'] = salt.loader.grains(opts) self.opts['pillar'] = {} self.mk_returners = returners self.mk_states = states self.mk_rend = rend self.mk_matcher = matcher self.gen_modules(initial_load=True) def gen_modules(self, initial_load=False): ''' Load all of the modules for the minion ''' self.utils = salt.loader.utils(self.opts) self.functions = salt.loader.minion_mods( self.opts, utils=self.utils, whitelist=self.whitelist, initial_load=initial_load) self.serializers = salt.loader.serializers(self.opts) if self.mk_returners: self.returners = salt.loader.returners(self.opts, self.functions) if self.mk_states: self.states = salt.loader.states(self.opts, self.functions, self.utils, self.serializers) if self.mk_rend: self.rend = salt.loader.render(self.opts, self.functions) if self.mk_matcher: self.matcher = Matcher(self.opts, self.functions) self.functions['sys.reload_modules'] = self.gen_modules class MinionManager(MinionBase): ''' Create a multi minion interface, this creates as many minions as are defined in the master option and binds each minion object to a respective master. ''' # timeout for one of the minions to auth with a master MINION_CONNECT_TIMEOUT = 5 def __init__(self, opts): super(MinionManager, self).__init__(opts) self.auth_wait = self.opts['acceptance_wait_time'] self.max_auth_wait = self.opts['acceptance_wait_time_max'] self.minions = [] if HAS_ZMQ: zmq.eventloop.ioloop.install() self.io_loop = LOOP_CLASS.current() def _bind(self): # start up the event publisher, so we can see events during startup self.event_publisher = salt.utils.event.AsyncEventPublisher( self.opts, io_loop=self.io_loop, ) self.event = salt.utils.event.get_event('minion', opts=self.opts, io_loop=self.io_loop) self.event.subscribe('') self.event.set_event_handler(self.handle_event) @tornado.gen.coroutine def handle_event(self, package): yield [minion.handle_event(package) for minion in self.minions] def _spawn_minions(self): ''' Spawn all the coroutines which will sign in to masters ''' masters = self.opts['master'] if self.opts['master_type'] == 'failover' or not isinstance(self.opts['master'], list): masters = [masters] for master in masters: s_opts = copy.deepcopy(self.opts) s_opts['master'] = master s_opts['multimaster'] = True s_opts['auth_timeout'] = self.MINION_CONNECT_TIMEOUT minion = Minion(s_opts, self.MINION_CONNECT_TIMEOUT, False, io_loop=self.io_loop, loaded_base_name='salt.loader.{0}'.format(s_opts['master']), ) self.minions.append(minion) self.io_loop.spawn_callback(self._connect_minion, minion) @tornado.gen.coroutine def _connect_minion(self, minion): ''' Create a minion, and asynchronously connect it to a master ''' last = 0 # never have we signed in auth_wait = minion.opts['acceptance_wait_time'] while True: try: yield minion.connect_master() minion.tune_in(start=False) break except SaltClientError as exc: log.error('Error while bringing up minion for multi-master. Is master at {0} responding?'.format(minion.opts['master'])) last = time.time() if auth_wait < self.max_auth_wait: auth_wait += self.auth_wait yield tornado.gen.sleep(auth_wait) # TODO: log? except Exception as e: log.critical('Unexpected error while connecting to {0}'.format(minion.opts['master']), exc_info=True) # Multi Master Tune In def tune_in(self): ''' Bind to the masters This loop will attempt to create connections to masters it hasn't connected to yet, but once the initial connection is made it is up to ZMQ to do the reconnect (don't know of an API to get the state here in salt) ''' self._bind() # Fire off all the minion coroutines self._spawn_minions() # serve forever! self.io_loop.start() @property def restart(self): for minion in self.minions: if minion.restart: return True return False def stop(self, signum): for minion in self.minions: minion.process_manager.stop_restarting() minion.process_manager.send_signal_to_processes(signum) # kill any remaining processes minion.process_manager.kill_children() minion.destroy() def destroy(self): for minion in self.minions: minion.destroy() class Minion(MinionBase): ''' This class instantiates a minion, runs connections for a minion, and loads all of the functions into the minion ''' def __init__(self, opts, timeout=60, safe=True, loaded_base_name=None, io_loop=None): # pylint: disable=W0231 ''' Pass in the options dict ''' # this means that the parent class doesn't know *which* master we connect to super(Minion, self).__init__(opts) self.timeout = timeout self.safe = safe self._running = None self.win_proc = [] self.loaded_base_name = loaded_base_name self.connected = False self.restart = False # Flag meaning minion has finished initialization including first connect to the master. # True means the Minion is fully functional and ready to handle events. self.ready = False if io_loop is None: if HAS_ZMQ: zmq.eventloop.ioloop.install() self.io_loop = LOOP_CLASS.current() else: self.io_loop = io_loop # Warn if ZMQ < 3.2 if HAS_ZMQ: try: zmq_version_info = zmq.zmq_version_info() except AttributeError: # PyZMQ <= 2.1.9 does not have zmq_version_info, fall back to # using zmq.zmq_version() and build a version info tuple. zmq_version_info = tuple( [int(x) for x in zmq.zmq_version().split('.')] # pylint: disable=no-member ) if zmq_version_info < (3, 2): log.warning( 'You have a version of ZMQ less than ZMQ 3.2! There are ' 'known connection keep-alive issues with ZMQ < 3.2 which ' 'may result in loss of contact with minions. Please ' 'upgrade your ZMQ!' ) # Late setup the of the opts grains, so we can log from the grains # module. If this is a proxy, however, we need to init the proxymodule # before we can get the grains. We do this for proxies in the # post_master_init if not salt.utils.is_proxy(): self.opts['grains'] = salt.loader.grains(opts) log.info('Creating minion process manager') self.process_manager = ProcessManager(name='MinionProcessManager') self.io_loop.spawn_callback(self.process_manager.run, async=True) # We don't have the proxy setup yet, so we can't start engines # Engines need to be able to access __proxy__ if not salt.utils.is_proxy(): self.io_loop.spawn_callback(salt.engines.start_engines, self.opts, self.process_manager) # Install the SIGINT/SIGTERM handlers if not done so far if signal.getsignal(signal.SIGINT) is signal.SIG_DFL: # No custom signal handling was added, install our own signal.signal(signal.SIGINT, self._handle_signals) if signal.getsignal(signal.SIGTERM) is signal.SIG_DFL: # No custom signal handling was added, install our own signal.signal(signal.SIGINT, self._handle_signals) def _handle_signals(self, signum, sigframe): # pylint: disable=unused-argument self._running = False # escalate the signals to the process manager self.process_manager.stop_restarting() self.process_manager.send_signal_to_processes(signum) # kill any remaining processes self.process_manager.kill_children() sys.exit(0) def sync_connect_master(self, timeout=None): ''' Block until we are connected to a master ''' self._sync_connect_master_success = False log.debug("sync_connect_master") def on_connect_master_future_done(future): self._sync_connect_master_success = True self.io_loop.stop() self._connect_master_future = self.connect_master() # finish connecting to master self._connect_master_future.add_done_callback(on_connect_master_future_done) if timeout: self.io_loop.call_later(timeout, self.io_loop.stop) try: self.io_loop.start() except KeyboardInterrupt: self.destroy() # I made the following 3 line oddity to preserve traceback. # Please read PR #23978 before changing, hopefully avoiding regressions. # Good luck, we're all counting on you. Thanks. future_exception = self._connect_master_future.exc_info() if future_exception: # This needs to be re-raised to preserve restart_on_error behavior. raise six.reraise(*future_exception) if timeout and self._sync_connect_master_success is False: raise SaltDaemonNotRunning('Failed to connect to the salt-master') @tornado.gen.coroutine def connect_master(self): ''' Return a future which will complete when you are connected to a master ''' master, self.pub_channel = yield self.eval_master(self.opts, self.timeout, self.safe) yield self._post_master_init(master) # TODO: better name... @tornado.gen.coroutine def _post_master_init(self, master): ''' Function to finish init after connecting to a master This is primarily loading modules, pillars, etc. (since they need to know which master they connected to) ''' if self.connected: self.opts['master'] = master # Initialize pillar before loader to make pillar accessible in modules self.opts['pillar'] = yield salt.pillar.get_async_pillar( self.opts, self.opts['grains'], self.opts['id'], self.opts['environment'], pillarenv=self.opts.get('pillarenv') ).compile_pillar() self.functions, self.returners, self.function_errors, self.executors = self._load_modules() self.serial = salt.payload.Serial(self.opts) self.mod_opts = self._prep_mod_opts() self.matcher = Matcher(self.opts, self.functions) self.beacons = salt.beacons.Beacon(self.opts, self.functions) uid = salt.utils.get_uid(user=self.opts.get('user', None)) self.proc_dir = get_proc_dir(self.opts['cachedir'], uid=uid) self.schedule = salt.utils.schedule.Schedule( self.opts, self.functions, self.returners, cleanup=['__master_alive']) # add default scheduling jobs to the minions scheduler if self.opts['mine_enabled'] and 'mine.update' in self.functions: self.schedule.add_job({ '__mine_interval': { 'function': 'mine.update', 'minutes': self.opts['mine_interval'], 'jid_include': True, 'maxrunning': 2, 'return_job': self.opts.get('mine_return_job', False) } }, persist=True) log.info('Added mine.update to scheduler') else: self.schedule.delete_job('__mine_interval', persist=True) # add master_alive job if enabled if (self.opts['transport'] != 'tcp' and self.opts['master_alive_interval'] > 0 and self.connected): self.schedule.add_job({ '__master_alive_{0}'.format(self.opts['master']): { 'function': 'status.master', 'seconds': self.opts['master_alive_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master'], 'connected': True} } }, persist=True) if self.opts['master_failback'] and \ 'master_list' in self.opts and \ self.opts['master'] != self.opts['master_list'][0]: self.schedule.add_job({ '__master_failback': { 'function': 'status.ping_master', 'seconds': self.opts['master_failback_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master_list'][0]} } }, persist=True) else: self.schedule.delete_job('__master_failback', persist=True) else: self.schedule.delete_job('__master_alive_{0}'.format(self.opts['master']), persist=True) self.schedule.delete_job('__master_failback', persist=True) self.grains_cache = self.opts['grains'] self.ready = True def _return_retry_timer(self): ''' Based on the minion configuration, either return a randomized timer or just return the value of the return_retry_timer. ''' msg = 'Minion return retry timer set to {0} seconds' if self.opts.get('return_retry_timer_max'): try: random_retry = randint(self.opts['return_retry_timer'], self.opts['return_retry_timer_max']) log.debug(msg.format(random_retry) + ' (randomized)') return random_retry except ValueError: # Catch wiseguys using negative integers here log.error( 'Invalid value (return_retry_timer: {0} or return_retry_timer_max: {1})' 'both must be a positive integers'.format( self.opts['return_retry_timer'], self.opts['return_retry_timer_max'], ) ) log.debug(msg.format(DEFAULT_MINION_OPTS['return_retry_timer'])) return DEFAULT_MINION_OPTS['return_retry_timer'] else: log.debug(msg.format(self.opts.get('return_retry_timer'))) return self.opts.get('return_retry_timer') def _prep_mod_opts(self): ''' Returns a copy of the opts with key bits stripped out ''' mod_opts = {} for key, val in six.iteritems(self.opts): if key == 'logger': continue mod_opts[key] = val return mod_opts def _load_modules(self, force_refresh=False, notify=False, grains=None): ''' Return the functions and the returners loaded up from the loader module ''' # if this is a *nix system AND modules_max_memory is set, lets enforce # a memory limit on module imports # this feature ONLY works on *nix like OSs (resource module doesn't work on windows) modules_max_memory = False if self.opts.get('modules_max_memory', -1) > 0 and HAS_PSUTIL and HAS_RESOURCE: log.debug('modules_max_memory set, enforcing a maximum of {0}'.format(self.opts['modules_max_memory'])) modules_max_memory = True old_mem_limit = resource.getrlimit(resource.RLIMIT_AS) rss, vms = psutil.Process(os.getpid()).memory_info() mem_limit = rss + vms + self.opts['modules_max_memory'] resource.setrlimit(resource.RLIMIT_AS, (mem_limit, mem_limit)) elif self.opts.get('modules_max_memory', -1) > 0: if not HAS_PSUTIL: log.error('Unable to enforce modules_max_memory because psutil is missing') if not HAS_RESOURCE: log.error('Unable to enforce modules_max_memory because resource is missing') # This might be a proxy minion if hasattr(self, 'proxy'): proxy = self.proxy else: proxy = None if grains is None: self.opts['grains'] = salt.loader.grains(self.opts, force_refresh, proxy=proxy) self.utils = salt.loader.utils(self.opts) if self.opts.get('multimaster', False): s_opts = copy.deepcopy(self.opts) functions = salt.loader.minion_mods(s_opts, utils=self.utils, proxy=proxy, loaded_base_name=self.loaded_base_name, notify=notify) else: functions = salt.loader.minion_mods(self.opts, utils=self.utils, notify=notify, proxy=proxy) returners = salt.loader.returners(self.opts, functions) errors = {} if '_errors' in functions: errors = functions['_errors'] functions.pop('_errors') # we're done, reset the limits! if modules_max_memory is True: resource.setrlimit(resource.RLIMIT_AS, old_mem_limit) executors = salt.loader.executors(self.opts, functions) return functions, returners, errors, executors def _send_req_sync(self, load, timeout): channel = salt.transport.Channel.factory(self.opts) return channel.send(load, timeout=timeout) @tornado.gen.coroutine def _send_req_async(self, load, timeout): channel = salt.transport.client.AsyncReqChannel.factory(self.opts) ret = yield channel.send(load, timeout=timeout) raise tornado.gen.Return(ret) def _fire_master(self, data=None, tag=None, events=None, pretag=None, timeout=60, sync=True): ''' Fire an event on the master, or drop message if unable to send. ''' load = {'id': self.opts['id'], 'cmd': '_minion_event', 'pretag': pretag, 'tok': self.tok} if events: load['events'] = events elif data and tag: load['data'] = data load['tag'] = tag elif not data and tag: load['data'] = {} load['tag'] = tag else: return def timeout_handler(*_): log.info('fire_master failed: master could not be contacted. Request timed out.') return True if sync: try: self._send_req_sync(load, timeout) except salt.exceptions.SaltReqTimeoutError: log.info('fire_master failed: master could not be contacted. Request timed out.') except Exception: log.info('fire_master failed: {0}'.format(traceback.format_exc())) return False else: with tornado.stack_context.ExceptionStackContext(timeout_handler): self._send_req_async(load, timeout, callback=lambda f: None) # pylint: disable=unexpected-keyword-arg return True def _handle_decoded_payload(self, data): ''' Override this method if you wish to handle the decoded data differently. ''' if 'user' in data: log.info( 'User {0[user]} Executing command {0[fun]} with jid ' '{0[jid]}'.format(data) ) else: log.info( 'Executing command {0[fun]} with jid {0[jid]}'.format(data) ) log.debug('Command details {0}'.format(data)) if isinstance(data['fun'], six.string_types): if data['fun'] == 'sys.reload_modules': self.functions, self.returners, self.function_errors, self.executors = self._load_modules() self.schedule.functions = self.functions self.schedule.returners = self.returners # We stash an instance references to allow for the socket # communication in Windows. You can't pickle functions, and thus # python needs to be able to reconstruct the reference on the other # side. instance = self multiprocessing_enabled = self.opts.get('multiprocessing', True) if multiprocessing_enabled: if sys.platform.startswith('win'): # let python reconstruct the minion on the other side if we're # running on windows instance = None with default_signals(signal.SIGINT, signal.SIGTERM): process = SignalHandlingMultiprocessingProcess( target=self._target, args=(instance, self.opts, data, self.connected) ) else: process = threading.Thread( target=self._target, args=(instance, self.opts, data, self.connected), name=data['jid'] ) if multiprocessing_enabled: with default_signals(signal.SIGINT, signal.SIGTERM): # Reset current signals before starting the process in # order not to inherit the current signal handlers process.start() else: process.start() # TODO: remove the windows specific check? if multiprocessing_enabled and not salt.utils.is_windows(): # we only want to join() immediately if we are daemonizing a process process.join() else: self.win_proc.append(process) def ctx(self): '''Return a single context manager for the minion's data ''' if six.PY2: return contextlib.nested( self.functions.context_dict.clone(), self.returners.context_dict.clone(), self.executors.context_dict.clone(), ) else: exitstack = contextlib.ExitStack() exitstack.push(self.functions.context_dict.clone()) exitstack.push(self.returners.context_dict.clone()) exitstack.push(self.executors.context_dict.clone()) return exitstack @classmethod def _target(cls, minion_instance, opts, data, connected): if not minion_instance: minion_instance = cls(opts) minion_instance.connected = connected if not hasattr(minion_instance, 'functions'): functions, returners, function_errors, executors = ( minion_instance._load_modules(grains=opts['grains']) ) minion_instance.functions = functions minion_instance.returners = returners minion_instance.function_errors = function_errors minion_instance.executors = executors if not hasattr(minion_instance, 'serial'): minion_instance.serial = salt.payload.Serial(opts) if not hasattr(minion_instance, 'proc_dir'): uid = salt.utils.get_uid(user=opts.get('user', None)) minion_instance.proc_dir = ( get_proc_dir(opts['cachedir'], uid=uid) ) with tornado.stack_context.StackContext(minion_instance.ctx): if isinstance(data['fun'], tuple) or isinstance(data['fun'], list): Minion._thread_multi_return(minion_instance, opts, data) else: Minion._thread_return(minion_instance, opts, data) @classmethod def _thread_return(cls, minion_instance, opts, data): ''' This method should be used as a threading target, start the actual minion side execution. ''' # this seems awkward at first, but it's a workaround for Windows # multiprocessing communication. if sys.platform.startswith('win') and \ opts['multiprocessing'] and \ not salt.log.setup.is_logging_configured(): # We have to re-init the logging system for Windows salt.log.setup.setup_console_logger(log_level=opts.get('log_level', 'info')) if opts.get('log_file'): salt.log.setup.setup_logfile_logger(opts['log_file'], opts.get('log_level_logfile', 'info')) fn_ = os.path.join(minion_instance.proc_dir, data['jid']) if opts['multiprocessing'] and not salt.utils.is_windows(): # Shutdown the multiprocessing before daemonizing salt.log.setup.shutdown_multiprocessing_logging() salt.utils.daemonize_if(opts) # Reconfigure multiprocessing logging after daemonizing salt.log.setup.setup_multiprocessing_logging() salt.utils.appendproctitle('{0}._thread_return {1}'.format(cls.__name__, data['jid'])) sdata = {'pid': os.getpid()} sdata.update(data) log.info('Starting a new job with PID {0}'.format(sdata['pid'])) with salt.utils.fopen(fn_, 'w+b') as fp_: fp_.write(minion_instance.serial.dumps(sdata)) ret = {'success': False} function_name = data['fun'] if function_name in minion_instance.functions: try: if minion_instance.connected and minion_instance.opts['pillar'].get('minion_blackout', False): # this minion is blacked out. Only allow saltutil.refresh_pillar if function_name != 'saltutil.refresh_pillar' and \ function_name not in minion_instance.opts['pillar'].get('minion_blackout_whitelist', []): raise SaltInvocationError('Minion in blackout mode. Set \'minion_blackout\' ' 'to False in pillar to resume operations. Only ' 'saltutil.refresh_pillar allowed in blackout mode.') func = minion_instance.functions[function_name] args, kwargs = load_args_and_kwargs( func, data['arg'], data) minion_instance.functions.pack['__context__']['retcode'] = 0 executors = data.get('module_executors') or opts.get('module_executors', ['direct_call.get']) if isinstance(executors, six.string_types): executors = [executors] elif not isinstance(executors, list) or not executors: raise SaltInvocationError("Wrong executors specification: {0}. String or non-empty list expected". format(executors)) if opts.get('sudo_user', '') and executors[-1] != 'sudo.get': if executors[-1] in FUNCTION_EXECUTORS: executors[-1] = 'sudo.get' # replace else: executors.append('sudo.get') # append log.trace('Executors list {0}'.format(executors)) # pylint: disable=no-member # Get executors def get_executor(name): executor_class = minion_instance.executors.get(name) if executor_class is None: raise SaltInvocationError("Executor '{0}' is not available".format(name)) return executor_class # Get the last one that is function executor executor = get_executor(executors.pop())(opts, data, func, args, kwargs) # Instantiate others from bottom to the top for executor_name in reversed(executors): executor = get_executor(executor_name)(opts, data, executor) return_data = executor.execute() if isinstance(return_data, types.GeneratorType): ind = 0 iret = {} for single in return_data: if isinstance(single, dict) and isinstance(iret, dict): iret.update(single) else: if not iret: iret = [] iret.append(single) tag = tagify([data['jid'], 'prog', opts['id'], str(ind)], 'job') event_data = {'return': single} minion_instance._fire_master(event_data, tag) ind += 1 ret['return'] = iret else: ret['return'] = return_data ret['retcode'] = minion_instance.functions.pack['__context__'].get( 'retcode', 0 ) ret['success'] = True except CommandNotFoundError as exc: msg = 'Command required for \'{0}\' not found'.format( function_name ) log.debug(msg, exc_info=True) ret['return'] = '{0}: {1}'.format(msg, exc) ret['out'] = 'nested' except CommandExecutionError as exc: log.error( 'A command in \'{0}\' had a problem: {1}'.format( function_name, exc ), exc_info_on_loglevel=logging.DEBUG ) ret['return'] = 'ERROR: {0}'.format(exc) ret['out'] = 'nested' except SaltInvocationError as exc: log.error( 'Problem executing \'{0}\': {1}'.format( function_name, exc ), exc_info_on_loglevel=logging.DEBUG ) ret['return'] = 'ERROR executing \'{0}\': {1}'.format( function_name, exc ) ret['out'] = 'nested' except TypeError as exc: msg = 'Passed invalid arguments to {0}: {1}\n{2}'.format(function_name, exc, func.__doc__, ) log.warning(msg, exc_info_on_loglevel=logging.DEBUG) ret['return'] = msg ret['out'] = 'nested' except Exception: msg = 'The minion function caused an exception' log.warning(msg, exc_info_on_loglevel=logging.DEBUG) salt.utils.error.fire_exception(salt.exceptions.MinionError(msg), opts, job=data) ret['return'] = '{0}: {1}'.format(msg, traceback.format_exc()) ret['out'] = 'nested' else: ret['return'] = minion_instance.functions.missing_fun_string(function_name) mod_name = function_name.split('.')[0] if mod_name in minion_instance.function_errors: ret['return'] += ' Possible reasons: \'{0}\''.format( minion_instance.function_errors[mod_name] ) ret['success'] = False ret['retcode'] = 254 ret['out'] = 'nested' ret['jid'] = data['jid'] ret['fun'] = data['fun'] ret['fun_args'] = data['arg'] if 'master_id' in data: ret['master_id'] = data['master_id'] if 'metadata' in data: if isinstance(data['metadata'], dict): ret['metadata'] = data['metadata'] else: log.warning('The metadata parameter must be a dictionary. Ignoring.') if minion_instance.connected: minion_instance._return_pub( ret, timeout=minion_instance._return_retry_timer() ) # TODO: make a list? Seems odd to split it this late :/ if data['ret'] and isinstance(data['ret'], six.string_types): if 'ret_config' in data: ret['ret_config'] = data['ret_config'] if 'ret_kwargs' in data: ret['ret_kwargs'] = data['ret_kwargs'] ret['id'] = opts['id'] for returner in set(data['ret'].split(',')): try: minion_instance.returners['{0}.returner'.format( returner )](ret) except Exception as exc: log.error( 'The return failed for job {0} {1}'.format( data['jid'], exc ) ) log.error(traceback.format_exc()) @classmethod def _thread_multi_return(cls, minion_instance, opts, data): ''' This method should be used as a threading target, start the actual minion side execution. ''' salt.utils.appendproctitle('{0}._thread_multi_return {1}'.format(cls.__name__, data['jid'])) # this seems awkward at first, but it's a workaround for Windows # multiprocessing communication. if sys.platform.startswith('win') and \ opts['multiprocessing'] and \ not salt.log.is_logging_configured(): # We have to re-init the logging system for Windows salt.log.setup_console_logger(log_level=opts.get('log_level', 'info')) if opts.get('log_file'): salt.log.setup_logfile_logger(opts['log_file'], opts.get('log_level_logfile', 'info')) ret = { 'return': {}, 'success': {}, } for ind in range(0, len(data['fun'])): ret['success'][data['fun'][ind]] = False try: if minion_instance.connected and minion_instance.opts['pillar'].get('minion_blackout', False): # this minion is blacked out. Only allow saltutil.refresh_pillar if data['fun'][ind] != 'saltutil.refresh_pillar' and \ data['fun'][ind] not in minion_instance.opts['pillar'].get('minion_blackout_whitelist', []): raise SaltInvocationError('Minion in blackout mode. Set \'minion_blackout\' ' 'to False in pillar to resume operations. Only ' 'saltutil.refresh_pillar allowed in blackout mode.') func = minion_instance.functions[data['fun'][ind]] args, kwargs = load_args_and_kwargs( func, data['arg'][ind], data) ret['return'][data['fun'][ind]] = func(*args, **kwargs) ret['success'][data['fun'][ind]] = True except Exception as exc: trb = traceback.format_exc() log.warning( 'The minion function caused an exception: {0}'.format( exc ) ) ret['return'][data['fun'][ind]] = trb ret['jid'] = data['jid'] ret['fun'] = data['fun'] ret['fun_args'] = data['arg'] if 'metadata' in data: ret['metadata'] = data['metadata'] if minion_instance.connected: minion_instance._return_pub( ret, timeout=minion_instance._return_retry_timer() ) if data['ret']: if 'ret_config' in data: ret['ret_config'] = data['ret_config'] if 'ret_kwargs' in data: ret['ret_kwargs'] = data['ret_kwargs'] for returner in set(data['ret'].split(',')): ret['id'] = opts['id'] try: minion_instance.returners['{0}.returner'.format( returner )](ret) except Exception as exc: log.error( 'The return failed for job {0} {1}'.format( data['jid'], exc ) ) def _return_pub(self, ret, ret_cmd='_return', timeout=60, sync=True): ''' Return the data from the executed command to the master server ''' jid = ret.get('jid', ret.get('__jid__')) fun = ret.get('fun', ret.get('__fun__')) if self.opts['multiprocessing']: fn_ = os.path.join(self.proc_dir, jid) if os.path.isfile(fn_): try: os.remove(fn_) except (OSError, IOError): # The file is gone already pass log.info('Returning information for job: {0}'.format(jid)) if ret_cmd == '_syndic_return': load = {'cmd': ret_cmd, 'id': self.opts['id'], 'jid': jid, 'fun': fun, 'arg': ret.get('arg'), 'tgt': ret.get('tgt'), 'tgt_type': ret.get('tgt_type'), 'load': ret.get('__load__')} if '__master_id__' in ret: load['master_id'] = ret['__master_id__'] load['return'] = {} for key, value in six.iteritems(ret): if key.startswith('__'): continue load['return'][key] = value else: load = {'cmd': ret_cmd, 'id': self.opts['id']} for key, value in six.iteritems(ret): load[key] = value if 'out' in ret: if isinstance(ret['out'], six.string_types): load['out'] = ret['out'] else: log.error('Invalid outputter {0}. This is likely a bug.' .format(ret['out'])) else: try: oput = self.functions[fun].__outputter__ except (KeyError, AttributeError, TypeError): pass else: if isinstance(oput, six.string_types): load['out'] = oput if self.opts['cache_jobs']: # Local job cache has been enabled salt.utils.minion.cache_jobs(self.opts, load['jid'], ret) if not self.opts['pub_ret']: return '' def timeout_handler(*_): msg = ('The minion failed to return the job information for job ' '{0}. This is often due to the master being shut down or ' 'overloaded. If the master is running consider increasing ' 'the worker_threads value.').format(jid) log.warning(msg) return True if sync: try: ret_val = self._send_req_sync(load, timeout=timeout) except SaltReqTimeoutError: timeout_handler() return '' else: with tornado.stack_context.ExceptionStackContext(timeout_handler): ret_val = self._send_req_async(load, timeout=timeout, callback=lambda f: None) # pylint: disable=unexpected-keyword-arg log.trace('ret_val = {0}'.format(ret_val)) # pylint: disable=no-member return ret_val def _state_run(self): ''' Execute a state run based on information set in the minion config file ''' if self.opts['startup_states']: if self.opts.get('master_type', 'str') == 'disable' and \ self.opts.get('file_client', 'remote') == 'remote': log.warning('Cannot run startup_states when \'master_type\' is ' 'set to \'disable\' and \'file_client\' is set to ' '\'remote\'. Skipping.') else: data = {'jid': 'req', 'ret': self.opts.get('ext_job_cache', '')} if self.opts['startup_states'] == 'sls': data['fun'] = 'state.sls' data['arg'] = [self.opts['sls_list']] elif self.opts['startup_states'] == 'top': data['fun'] = 'state.top' data['arg'] = [self.opts['top_file']] else: data['fun'] = 'state.highstate' data['arg'] = [] self._handle_decoded_payload(data) def _refresh_grains_watcher(self, refresh_interval_in_minutes): ''' Create a loop that will fire a pillar refresh to inform a master about a change in the grains of this minion :param refresh_interval_in_minutes: :return: None ''' if '__update_grains' not in self.opts.get('schedule', {}): if 'schedule' not in self.opts: self.opts['schedule'] = {} self.opts['schedule'].update({ '__update_grains': { 'function': 'event.fire', 'args': [{}, 'grains_refresh'], 'minutes': refresh_interval_in_minutes } }) def _fire_master_minion_start(self): # Send an event to the master that the minion is live self._fire_master( 'Minion {0} started at {1}'.format( self.opts['id'], time.asctime() ), 'minion_start' ) # dup name spaced event self._fire_master( 'Minion {0} started at {1}'.format( self.opts['id'], time.asctime() ), tagify([self.opts['id'], 'start'], 'minion'), ) def module_refresh(self, force_refresh=False, notify=False): ''' Refresh the functions and returners. ''' log.debug('Refreshing modules. Notify={0}'.format(notify)) self.functions, self.returners, _, self.executors = self._load_modules(force_refresh, notify=notify) self.schedule.functions = self.functions self.schedule.returners = self.returners # TODO: only allow one future in flight at a time? @tornado.gen.coroutine def pillar_refresh(self, force_refresh=False): ''' Refresh the pillar ''' log.debug('Refreshing pillar') try: self.opts['pillar'] = yield salt.pillar.get_async_pillar( self.opts, self.opts['grains'], self.opts['id'], self.opts['environment'], pillarenv=self.opts.get('pillarenv'), ).compile_pillar() except SaltClientError: # Do not exit if a pillar refresh fails. log.error('Pillar data could not be refreshed. ' 'One or more masters may be down!') self.module_refresh(force_refresh) def manage_schedule(self, tag, data): ''' Refresh the functions and returners. ''' func = data.get('func', None) name = data.get('name', None) schedule = data.get('schedule', None) where = data.get('where', None) persist = data.get('persist', None) if func == 'delete': self.schedule.delete_job(name, persist) elif func == 'add': self.schedule.add_job(schedule, persist) elif func == 'modify': self.schedule.modify_job(name, schedule, persist, where) elif func == 'enable': self.schedule.enable_schedule() elif func == 'disable': self.schedule.disable_schedule() elif func == 'enable_job': self.schedule.enable_job(name, persist, where) elif func == 'run_job': self.schedule.run_job(name) elif func == 'disable_job': self.schedule.disable_job(name, persist, where) elif func == 'reload': self.schedule.reload(schedule) elif func == 'list': self.schedule.list(where) elif func == 'save_schedule': self.schedule.save_schedule() def manage_beacons(self, tag, data): ''' Manage Beacons ''' func = data.get('func', None) name = data.get('name', None) beacon_data = data.get('beacon_data', None) if func == 'add': self.beacons.add_beacon(name, beacon_data) elif func == 'modify': self.beacons.modify_beacon(name, beacon_data) elif func == 'delete': self.beacons.delete_beacon(name) elif func == 'enable': self.beacons.enable_beacons() elif func == 'disable': self.beacons.disable_beacons() elif func == 'enable_beacon': self.beacons.enable_beacon(name) elif func == 'disable_beacon': self.beacons.disable_beacon(name) elif func == 'list': self.beacons.list_beacons() def environ_setenv(self, tag, data): ''' Set the salt-minion main process environment according to the data contained in the minion event data ''' environ = data.get('environ', None) if environ is None: return False false_unsets = data.get('false_unsets', False) clear_all = data.get('clear_all', False) import salt.modules.environ as mod_environ return mod_environ.setenv(environ, false_unsets, clear_all) def _pre_tune(self): ''' Set the minion running flag and issue the appropriate warnings if the minion cannot be started or is already running ''' if self._running is None: self._running = True elif self._running is False: log.error( 'This {0} was scheduled to stop. Not running ' '{0}.tune_in()'.format(self.__class__.__name__) ) return elif self._running is True: log.error( 'This {0} is already running. Not running ' '{0}.tune_in()'.format(self.__class__.__name__) ) return try: log.info( '{0} is starting as user \'{1}\''.format( self.__class__.__name__, salt.utils.get_user() ) ) except Exception as err: # Only windows is allowed to fail here. See #3189. Log as debug in # that case. Else, error. log.log( salt.utils.is_windows() and logging.DEBUG or logging.ERROR, 'Failed to get the user who is starting {0}'.format( self.__class__.__name__ ), exc_info=err ) def _mine_send(self, tag, data): ''' Send mine data to the master ''' channel = salt.transport.Channel.factory(self.opts) data['tok'] = self.tok try: ret = channel.send(data) return ret except SaltReqTimeoutError: log.warning('Unable to send mine data to master.') return None @tornado.gen.coroutine def handle_event(self, package): ''' Handle an event from the epull_sock (all local minion events) ''' if not self.ready: raise tornado.gen.Return() tag, data = salt.utils.event.SaltEvent.unpack(package) log.debug('Minion of "{0}" is handling event tag \'{1}\''.format(self.opts['master'], tag)) if tag.startswith('module_refresh'): self.module_refresh(notify=data.get('notify', False)) elif tag.startswith('pillar_refresh'): yield self.pillar_refresh() elif tag.startswith('manage_schedule'): self.manage_schedule(tag, data) elif tag.startswith('manage_beacons'): self.manage_beacons(tag, data) elif tag.startswith('grains_refresh'): if self.grains_cache != self.opts['grains']: self.pillar_refresh(force_refresh=True) self.grains_cache = self.opts['grains'] elif tag.startswith('environ_setenv'): self.environ_setenv(tag, data) elif tag.startswith('_minion_mine'): self._mine_send(tag, data) elif tag.startswith('fire_master'): log.debug('Forwarding master event tag={tag}'.format(tag=data['tag'])) self._fire_master(data['data'], data['tag'], data['events'], data['pretag']) elif tag.startswith('__master_disconnected') or tag.startswith('__master_failback'): # if the master disconnect event is for a different master, raise an exception if tag.startswith('__master_disconnected') and data['master'] != self.opts['master']: # not mine master, ignore return if tag.startswith('__master_failback'): # if the master failback event is not for the top master, raise an exception if data['master'] != self.opts['master_list'][0]: raise SaltException('Bad master \'{0}\' when mine failback is \'{1}\''.format( data['master'], self.opts['master'])) # if the master failback event is for the current master, raise an exception elif data['master'] == self.opts['master'][0]: raise SaltException('Already connected to \'{0}\''.format(data['master'])) if self.connected: # we are not connected anymore self.connected = False # modify the scheduled job to fire only on reconnect if self.opts['transport'] != 'tcp': schedule = { 'function': 'status.master', 'seconds': self.opts['master_alive_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master'], 'connected': False} } self.schedule.modify_job(name='__master_alive_{0}'.format(self.opts['master']), schedule=schedule) log.info('Connection to master {0} lost'.format(self.opts['master'])) if self.opts['master_type'] == 'failover': log.info('Trying to tune in to next master from master-list') if hasattr(self, 'pub_channel'): self.pub_channel.on_recv(None) if hasattr(self.pub_channel, 'auth'): self.pub_channel.auth.invalidate() if hasattr(self.pub_channel, 'close'): self.pub_channel.close() del self.pub_channel # if eval_master finds a new master for us, self.connected # will be True again on successful master authentication try: master, self.pub_channel = yield self.eval_master( opts=self.opts, failed=True) except SaltClientError: pass if self.connected: self.opts['master'] = master # re-init the subsystems to work with the new master log.info('Re-initialising subsystems for new ' 'master {0}'.format(self.opts['master'])) self.functions, self.returners, self.function_errors, self.executors = self._load_modules() self.pub_channel.on_recv(self._handle_payload) self._fire_master_minion_start() log.info('Minion is ready to receive requests!') # update scheduled job to run with the new master addr if self.opts['transport'] != 'tcp': schedule = { 'function': 'status.master', 'seconds': self.opts['master_alive_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master'], 'connected': True} } self.schedule.modify_job(name='__master_alive_{0}'.format(self.opts['master']), schedule=schedule) if self.opts['master_failback'] and 'master_list' in self.opts: if self.opts['master'] != self.opts['master_list'][0]: schedule = { 'function': 'status.ping_master', 'seconds': self.opts['master_failback_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master_list'][0]} } self.schedule.modify_job(name='__master_failback', schedule=schedule) else: self.schedule.delete_job(name='__master_failback', persist=True) else: self.restart = True self.io_loop.stop() elif tag.startswith('__master_connected'): # handle this event only once. otherwise it will pollute the log if not self.connected: log.info('Connection to master {0} re-established'.format(self.opts['master'])) self.connected = True # modify the __master_alive job to only fire, # if the connection is lost again if self.opts['transport'] != 'tcp': schedule = { 'function': 'status.master', 'seconds': self.opts['master_alive_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master'], 'connected': True} } self.schedule.modify_job(name='__master_alive_{0}'.format(self.opts['master']), schedule=schedule) elif tag.startswith('__schedule_return'): self._return_pub(data, ret_cmd='_return', sync=False) elif tag.startswith('_salt_error'): if self.connected: log.debug('Forwarding salt error event tag={tag}'.format(tag=tag)) self._fire_master(data, tag) def _fallback_cleanups(self): ''' Fallback cleanup routines, attempting to fix leaked processes, threads, etc. ''' # Add an extra fallback in case a forked process leaks through multiprocessing.active_children() # Cleanup Windows threads if not salt.utils.is_windows(): return for thread in self.win_proc: if not thread.is_alive(): thread.join() try: self.win_proc.remove(thread) del thread except (ValueError, NameError): pass # Main Minion Tune In def tune_in(self, start=True): ''' Lock onto the publisher. This is the main event loop for the minion :rtype : None ''' self._pre_tune() log.debug('Minion \'{0}\' trying to tune in'.format(self.opts['id'])) if start: self.sync_connect_master() if self.connected: self._fire_master_minion_start() log.info('Minion is ready to receive requests!') # Make sure to gracefully handle SIGUSR1 enable_sigusr1_handler() # Make sure to gracefully handle CTRL_LOGOFF_EVENT salt.utils.enable_ctrl_logoff_handler() # On first startup execute a state run if configured to do so self._state_run() loop_interval = self.opts['loop_interval'] try: if self.opts['grains_refresh_every']: # If exists and is not zero. In minutes, not seconds! if self.opts['grains_refresh_every'] > 1: log.debug( 'Enabling the grains refresher. Will run every {0} minutes.'.format( self.opts['grains_refresh_every']) ) else: # Clean up minute vs. minutes in log message log.debug( 'Enabling the grains refresher. Will run every {0} minute.'.format( self.opts['grains_refresh_every']) ) self._refresh_grains_watcher( abs(self.opts['grains_refresh_every']) ) except Exception as exc: log.error( 'Exception occurred in attempt to initialize grain refresh routine during minion tune-in: {0}'.format( exc) ) self.periodic_callbacks = {} # schedule the stuff that runs every interval ping_interval = self.opts.get('ping_interval', 0) * 60 if ping_interval > 0 and self.connected: def ping_master(): try: if not self._fire_master('ping', 'minion_ping'): if not self.opts.get('auth_safemode', True): log.error('** Master Ping failed. Attempting to restart minion**') delay = self.opts.get('random_reauth_delay', 5) log.info('delaying random_reauth_delay {0}s'.format(delay)) # regular sys.exit raises an exception -- which isn't sufficient in a thread os._exit(salt.defaults.exitcodes.SALT_KEEPALIVE) except Exception: log.warning('Attempt to ping master failed.', exc_on_loglevel=logging.DEBUG) self.periodic_callbacks['ping'] = tornado.ioloop.PeriodicCallback(ping_master, ping_interval * 1000, io_loop=self.io_loop) self.periodic_callbacks['cleanup'] = tornado.ioloop.PeriodicCallback(self._fallback_cleanups, loop_interval * 1000, io_loop=self.io_loop) def handle_beacons(): # Process Beacons beacons = None try: beacons = self.process_beacons(self.functions) except Exception: log.critical('The beacon errored: ', exc_info=True) if beacons and self.connected: self._fire_master(events=beacons) self.periodic_callbacks['beacons'] = tornado.ioloop.PeriodicCallback(handle_beacons, loop_interval * 1000, io_loop=self.io_loop) # TODO: actually listen to the return and change period def handle_schedule(): self.process_schedule(self, loop_interval) if hasattr(self, 'schedule'): self.periodic_callbacks['schedule'] = tornado.ioloop.PeriodicCallback(handle_schedule, 1000, io_loop=self.io_loop) # start all the other callbacks for periodic_cb in six.itervalues(self.periodic_callbacks): periodic_cb.start() # add handler to subscriber if hasattr(self, 'pub_channel') and self.pub_channel is not None: self.pub_channel.on_recv(self._handle_payload) elif self.opts.get('master_type') != 'disable': log.error('No connection to master found. Scheduled jobs will not run.') if start: try: self.io_loop.start() if self.restart: self.destroy() except (KeyboardInterrupt, RuntimeError): # A RuntimeError can be re-raised by Tornado on shutdown self.destroy() def _handle_payload(self, payload): if payload is not None and payload['enc'] == 'aes': if self._target_load(payload['load']): self._handle_decoded_payload(payload['load']) elif self.opts['zmq_filtering']: # In the filtering enabled case, we'd like to know when minion sees something it shouldnt log.trace('Broadcast message received not for this minion, Load: {0}'.format(payload['load'])) # If it's not AES, and thus has not been verified, we do nothing. # In the future, we could add support for some clearfuncs, but # the minion currently has no need. def _target_load(self, load): # Verify that the publication is valid if 'tgt' not in load or 'jid' not in load or 'fun' not in load \ or 'arg' not in load: return False # Verify that the publication applies to this minion # It's important to note that the master does some pre-processing # to determine which minions to send a request to. So for example, # a "salt -G 'grain_key:grain_val' test.ping" will invoke some # pre-processing on the master and this minion should not see the # publication if the master does not determine that it should. if 'tgt_type' in load: match_func = getattr(self.matcher, '{0}_match'.format(load['tgt_type']), None) if match_func is None: return False if load['tgt_type'] in ('grain', 'grain_pcre', 'pillar'): delimiter = load.get('delimiter', DEFAULT_TARGET_DELIM) if not match_func(load['tgt'], delimiter=delimiter): return False elif not match_func(load['tgt']): return False else: if not self.matcher.glob_match(load['tgt']): return False return True def destroy(self): ''' Tear down the minion ''' self._running = False if hasattr(self, 'schedule'): del self.schedule if hasattr(self, 'pub_channel') and self.pub_channel is not None: self.pub_channel.on_recv(None) if hasattr(self.pub_channel, 'close'): self.pub_channel.close() del self.pub_channel if hasattr(self, 'periodic_callbacks'): for cb in six.itervalues(self.periodic_callbacks): cb.stop() def __del__(self): self.destroy() class Syndic(Minion): ''' Make a Syndic minion, this minion will use the minion keys on the master to authenticate with a higher level master. ''' def __init__(self, opts, **kwargs): self._syndic_interface = opts.get('interface') self._syndic = True # force auth_safemode True because Syndic don't support autorestart opts['auth_safemode'] = True opts['loop_interval'] = 1 super(Syndic, self).__init__(opts, **kwargs) self.mminion = salt.minion.MasterMinion(opts) self.jid_forward_cache = set() self.jids = {} self.raw_events = [] self.pub_future = None def _handle_decoded_payload(self, data): ''' Override this method if you wish to handle the decoded data differently. ''' # TODO: even do this?? data['to'] = int(data.get('to', self.opts['timeout'])) - 1 # Only forward the command if it didn't originate from ourselves if data.get('master_id', 0) != self.opts.get('master_id', 1): self.syndic_cmd(data) def syndic_cmd(self, data): ''' Take the now clear load and forward it on to the client cmd ''' # Set up default tgt_type if 'tgt_type' not in data: data['tgt_type'] = 'glob' kwargs = {} # optionally add a few fields to the publish data for field in ('master_id', # which master the job came from 'user', # which user ran the job ): if field in data: kwargs[field] = data[field] def timeout_handler(*args): log.warning('Unable to forward pub data: {0}'.format(args[1])) return True with tornado.stack_context.ExceptionStackContext(timeout_handler): self.local.pub_async(data['tgt'], data['fun'], data['arg'], data['tgt_type'], data['ret'], data['jid'], data['to'], io_loop=self.io_loop, callback=lambda _: None, **kwargs) def fire_master_syndic_start(self): # Send an event to the master that the minion is live self._fire_master( 'Syndic {0} started at {1}'.format( self.opts['id'], time.asctime() ), 'syndic_start', sync=False, ) self._fire_master( 'Syndic {0} started at {1}'.format( self.opts['id'], time.asctime() ), tagify([self.opts['id'], 'start'], 'syndic'), sync=False, ) # TODO: clean up docs def tune_in_no_block(self): ''' Executes the tune_in sequence but omits extra logging and the management of the event bus assuming that these are handled outside the tune_in sequence ''' # Instantiate the local client self.local = salt.client.get_local_client( self.opts['_minion_conf_file'], io_loop=self.io_loop) # add handler to subscriber self.pub_channel.on_recv(self._process_cmd_socket) def _process_cmd_socket(self, payload): if payload is not None and payload['enc'] == 'aes': log.trace('Handling payload') self._handle_decoded_payload(payload['load']) # If it's not AES, and thus has not been verified, we do nothing. # In the future, we could add support for some clearfuncs, but # the syndic currently has no need. @tornado.gen.coroutine def _return_pub_multi(self, values): for value in values: yield self._return_pub(value, '_syndic_return', timeout=self._return_retry_timer(), sync=False) @tornado.gen.coroutine def reconnect(self): if hasattr(self, 'pub_channel'): self.pub_channel.on_recv(None) if hasattr(self.pub_channel, 'close'): self.pub_channel.close() del self.pub_channel # if eval_master finds a new master for us, self.connected # will be True again on successful master authentication master, self.pub_channel = yield self.eval_master(opts=self.opts) if self.connected: self.opts['master'] = master self.pub_channel.on_recv(self._process_cmd_socket) log.info('Minion is ready to receive requests!') raise tornado.gen.Return(self) def destroy(self): ''' Tear down the syndic minion ''' # We borrowed the local clients poller so give it back before # it's destroyed. Reset the local poller reference. super(Syndic, self).destroy() if hasattr(self, 'local'): del self.local if hasattr(self, 'forward_events'): self.forward_events.stop() # TODO: need a way of knowing if the syndic connection is busted class SyndicManager(MinionBase): ''' Make a MultiMaster syndic minion, this minion will handle relaying jobs and returns from all minions connected to it to the list of masters it is connected to. Modes (controlled by `syndic_mode`: sync: This mode will synchronize all events and publishes from higher level masters cluster: This mode will only sync job publishes and returns Note: jobs will be returned best-effort to the requesting master. This also means (since we are using zmq) that if a job was fired and the master disconnects between the publish and return, that the return will end up in a zmq buffer in this Syndic headed to that original master. In addition, since these classes all seem to use a mix of blocking and non-blocking calls (with varying timeouts along the way) this daemon does not handle failure well, it will (under most circumstances) stall the daemon for ~15s trying to forward events to the down master ''' # time to connect to upstream master SYNDIC_CONNECT_TIMEOUT = 5 SYNDIC_EVENT_TIMEOUT = 5 def __init__(self, opts, io_loop=None): opts['loop_interval'] = 1 super(SyndicManager, self).__init__(opts) self.mminion = salt.minion.MasterMinion(opts) # sync (old behavior), cluster (only returns and publishes) self.syndic_mode = self.opts.get('syndic_mode', 'sync') self.syndic_failover = self.opts.get('syndic_failover', 'random') self.auth_wait = self.opts['acceptance_wait_time'] self.max_auth_wait = self.opts['acceptance_wait_time_max'] self._has_master = threading.Event() self.jid_forward_cache = set() if io_loop is None: if HAS_ZMQ: zmq.eventloop.ioloop.install() self.io_loop = LOOP_CLASS.current() else: self.io_loop = io_loop # List of events self.raw_events = [] # Dict of rets: {master_id: {event_tag: job_ret, ...}, ...} self.job_rets = {} # List of delayed job_rets which was unable to send for some reason and will be resend to # any available master self.delayed = [] # Active pub futures: {master_id: (future, [job_ret, ...]), ...} self.pub_futures = {} def _spawn_syndics(self): ''' Spawn all the coroutines which will sign in the syndics ''' self._syndics = OrderedDict() # mapping of opts['master'] -> syndic masters = self.opts['master'] if not isinstance(masters, list): masters = [masters] for master in masters: s_opts = copy.copy(self.opts) s_opts['master'] = master self._syndics[master] = self._connect_syndic(s_opts) @tornado.gen.coroutine def _connect_syndic(self, opts): ''' Create a syndic, and asynchronously connect it to a master ''' last = 0 # never have we signed in auth_wait = opts['acceptance_wait_time'] while True: log.debug('Syndic attempting to connect to {0}'.format(opts['master'])) try: syndic = Syndic(opts, timeout=self.SYNDIC_CONNECT_TIMEOUT, safe=False, io_loop=self.io_loop, ) yield syndic.connect_master() # set up the syndic to handle publishes (specifically not event forwarding) syndic.tune_in_no_block() # Send an event to the master that the minion is live syndic.fire_master_syndic_start() log.info('Syndic successfully connected to {0}'.format(opts['master'])) break except SaltClientError as exc: log.error('Error while bringing up syndic for multi-syndic. Is master at {0} responding?'.format(opts['master'])) last = time.time() if auth_wait < self.max_auth_wait: auth_wait += self.auth_wait yield tornado.gen.sleep(auth_wait) # TODO: log? except KeyboardInterrupt: raise except: # pylint: disable=W0702 log.critical('Unexpected error while connecting to {0}'.format(opts['master']), exc_info=True) raise tornado.gen.Return(syndic) def _mark_master_dead(self, master): ''' Mark a master as dead. This will start the sign-in routine ''' # if its connected, mark it dead if self._syndics[master].done(): syndic = self._syndics[master].result() # pylint: disable=no-member self._syndics[master] = syndic.reconnect() else: log.info('Attempting to mark {0} as dead, although it is already marked dead'.format(master)) # TODO: debug? def _call_syndic(self, func, args=(), kwargs=None, master_id=None): ''' Wrapper to call a given func on a syndic, best effort to get the one you asked for ''' if kwargs is None: kwargs = {} for master, syndic_future in self.iter_master_options(master_id): if not syndic_future.done() or syndic_future.exception(): log.error('Unable to call {0} on {1}, that syndic is not connected'.format(func, master)) continue try: getattr(syndic_future.result(), func)(*args, **kwargs) return except SaltClientError: log.error('Unable to call {0} on {1}, trying another...'.format(func, master)) self._mark_master_dead(master) continue log.critical('Unable to call {0} on any masters!'.format(func)) def _return_pub_syndic(self, values, master_id=None): ''' Wrapper to call the '_return_pub_multi' a syndic, best effort to get the one you asked for ''' func = '_return_pub_multi' for master, syndic_future in self.iter_master_options(master_id): if not syndic_future.done() or syndic_future.exception(): log.error('Unable to call {0} on {1}, that syndic is not connected'.format(func, master)) continue future, data = self.pub_futures.get(master, (None, None)) if future is not None: if not future.done(): if master == master_id: # Targeted master previous send not done yet, call again later return False else: # Fallback master is busy, try the next one continue elif future.exception(): # Previous execution on this master returned an error log.error('Unable to call {0} on {1}, trying another...'.format(func, master)) self._mark_master_dead(master) del self.pub_futures[master] # Add not sent data to the delayed list and try the next master self.delayed.extend(data) continue future = getattr(syndic_future.result(), func)(values) self.pub_futures[master] = (future, values) return True # Loop done and didn't exit: wasn't sent, try again later return False def iter_master_options(self, master_id=None): ''' Iterate (in order) over your options for master ''' masters = list(self._syndics.keys()) if self.opts['syndic_failover'] == 'random': shuffle(masters) if master_id not in self._syndics: master_id = masters.pop(0) else: masters.remove(master_id) while True: yield master_id, self._syndics[master_id] if len(masters) == 0: break master_id = masters.pop(0) # Syndic Tune In def tune_in(self): ''' Lock onto the publisher. This is the main event loop for the syndic ''' self._spawn_syndics() # Instantiate the local client self.local = salt.client.get_local_client( self.opts['_minion_conf_file'], io_loop=self.io_loop) self.local.event.subscribe('') log.debug('SyndicManager \'{0}\' trying to tune in'.format(self.opts['id'])) # register the event sub to the poller self.job_rets = {} self.raw_events = [] self.local.event.set_event_handler(self._process_event) # forward events every syndic_event_forward_timeout self.forward_events = tornado.ioloop.PeriodicCallback(self._forward_events, self.opts['syndic_event_forward_timeout'] * 1000, io_loop=self.io_loop) self.forward_events.start() # Make sure to gracefully handle SIGUSR1 enable_sigusr1_handler() self.io_loop.start() def _process_event(self, raw): # TODO: cleanup: Move down into event class mtag, data = self.local.event.unpack(raw, self.local.event.serial) event = {'data': data, 'tag': mtag} log.trace('Got event {0}'.format(event['tag'])) # pylint: disable=no-member tag_parts = event['tag'].split('/') if len(tag_parts) >= 4 and tag_parts[1] == 'job' and \ salt.utils.jid.is_jid(tag_parts[2]) and tag_parts[3] == 'ret' and \ 'return' in event['data']: if 'jid' not in event['data']: # Not a job return return if self.syndic_mode == 'cluster' and event['data'].get('master_id', 0) == self.opts.get('master_id', 1): log.debug('Return received with matching master_id, not forwarding') return master = event['data'].get('master_id') jdict = self.job_rets.setdefault(master, {}).setdefault(event['tag'], {}) if not jdict: jdict['__fun__'] = event['data'].get('fun') jdict['__jid__'] = event['data']['jid'] jdict['__load__'] = {} fstr = '{0}.get_load'.format(self.opts['master_job_cache']) # Only need to forward each load once. Don't hit the disk # for every minion return! if event['data']['jid'] not in self.jid_forward_cache: jdict['__load__'].update( self.mminion.returners[fstr](event['data']['jid']) ) self.jid_forward_cache.add(event['data']['jid']) if len(self.jid_forward_cache) > self.opts['syndic_jid_forward_cache_hwm']: # Pop the oldest jid from the cache tmp = sorted(list(self.jid_forward_cache)) tmp.pop(0) self.jid_forward_cache = set(tmp) if master is not None: # __'s to make sure it doesn't print out on the master cli jdict['__master_id__'] = master jdict[event['data']['id']] = event['data']['return'] else: # TODO: config to forward these? If so we'll have to keep track of who # has seen them # if we are the top level masters-- don't forward all the minion events if self.syndic_mode == 'sync': # Add generic event aggregation here if 'retcode' not in event['data']: self.raw_events.append(event) def _forward_events(self): log.trace('Forwarding events') # pylint: disable=no-member if self.raw_events: events = self.raw_events self.raw_events = [] self._call_syndic('_fire_master', kwargs={'events': events, 'pretag': tagify(self.opts['id'], base='syndic'), 'timeout': self.SYNDIC_EVENT_TIMEOUT, 'sync': False, }, ) if self.delayed: res = self._return_pub_syndic(self.delayed) if res: self.delayed = [] for master in list(six.iterkeys(self.job_rets)): values = self.job_rets[master].values() res = self._return_pub_syndic(values, master_id=master) if res: del self.job_rets[master] class Matcher(object): ''' Use to return the value for matching calls from the master ''' def __init__(self, opts, functions=None): self.opts = opts self.functions = functions def confirm_top(self, match, data, nodegroups=None): ''' Takes the data passed to a top file environment and determines if the data matches this minion ''' matcher = 'compound' if not data: log.error('Received bad data when setting the match from the top ' 'file') return False for item in data: if isinstance(item, dict): if 'match' in item: matcher = item['match'] if hasattr(self, matcher + '_match'): funcname = '{0}_match'.format(matcher) if matcher == 'nodegroup': return getattr(self, funcname)(match, nodegroups) return getattr(self, funcname)(match) else: log.error('Attempting to match with unknown matcher: {0}'.format( matcher )) return False def glob_match(self, tgt): ''' Returns true if the passed glob matches the id ''' if not isinstance(tgt, six.string_types): return False return fnmatch.fnmatch(self.opts['id'], tgt) def pcre_match(self, tgt): ''' Returns true if the passed pcre regex matches ''' return bool(re.match(tgt, self.opts['id'])) def list_match(self, tgt): ''' Determines if this host is on the list ''' if isinstance(tgt, six.string_types): tgt = tgt.split(',') return bool(self.opts['id'] in tgt) def grain_match(self, tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Reads in the grains glob match ''' log.debug('grains target: {0}'.format(tgt)) if delimiter not in tgt: log.error('Got insufficient arguments for grains match ' 'statement from master') return False return salt.utils.subdict_match( self.opts['grains'], tgt, delimiter=delimiter ) def grain_pcre_match(self, tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Matches a grain based on regex ''' log.debug('grains pcre target: {0}'.format(tgt)) if delimiter not in tgt: log.error('Got insufficient arguments for grains pcre match ' 'statement from master') return False return salt.utils.subdict_match(self.opts['grains'], tgt, delimiter=delimiter, regex_match=True) def data_match(self, tgt): ''' Match based on the local data store on the minion ''' if self.functions is None: utils = salt.loader.utils(self.opts) self.functions = salt.loader.minion_mods(self.opts, utils=utils) comps = tgt.split(':') if len(comps) < 2: return False val = self.functions['data.getval'](comps[0]) if val is None: # The value is not defined return False if isinstance(val, list): # We are matching a single component to a single list member for member in val: if fnmatch.fnmatch(str(member).lower(), comps[1].lower()): return True return False if isinstance(val, dict): if comps[1] in val: return True return False return bool(fnmatch.fnmatch( val, comps[1], )) def pillar_match(self, tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Reads in the pillar glob match ''' log.debug('pillar target: {0}'.format(tgt)) if delimiter not in tgt: log.error('Got insufficient arguments for pillar match ' 'statement from master') return False return salt.utils.subdict_match( self.opts['pillar'], tgt, delimiter=delimiter ) def pillar_pcre_match(self, tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Reads in the pillar pcre match ''' log.debug('pillar PCRE target: {0}'.format(tgt)) if delimiter not in tgt: log.error('Got insufficient arguments for pillar PCRE match ' 'statement from master') return False return salt.utils.subdict_match( self.opts['pillar'], tgt, delimiter=delimiter, regex_match=True ) def pillar_exact_match(self, tgt, delimiter=':'): ''' Reads in the pillar match, no globbing, no PCRE ''' log.debug('pillar target: {0}'.format(tgt)) if delimiter not in tgt: log.error('Got insufficient arguments for pillar match ' 'statement from master') return False return salt.utils.subdict_match(self.opts['pillar'], tgt, delimiter=delimiter, exact_match=True) def ipcidr_match(self, tgt): ''' Matches based on IP address or CIDR notation ''' try: # Target is an address? tgt = ipaddress.ip_address(tgt) except: # pylint: disable=bare-except try: # Target is a network? tgt = ipaddress.ip_network(tgt) except: # pylint: disable=bare-except log.error('Invalid IP/CIDR target: {0}'.format(tgt)) return [] proto = 'ipv{0}'.format(tgt.version) grains = self.opts['grains'] if proto not in grains: match = False elif isinstance(tgt, (ipaddress.IPv4Address, ipaddress.IPv6Address)): match = str(tgt) in grains[proto] else: match = salt.utils.network.in_subnet(tgt, grains[proto]) return match def range_match(self, tgt): ''' Matches based on range cluster ''' if HAS_RANGE: range_ = seco.range.Range(self.opts['range_server']) try: return self.opts['grains']['fqdn'] in range_.expand(tgt) except seco.range.RangeException as exc: log.debug('Range exception in compound match: {0}'.format(exc)) return False return False def compound_match(self, tgt): ''' Runs the compound target check ''' if not isinstance(tgt, six.string_types) and not isinstance(tgt, (list, tuple)): log.error('Compound target received that is neither string, list nor tuple') return False log.debug('compound_match: {0} ? {1}'.format(self.opts['id'], tgt)) ref = {'G': 'grain', 'P': 'grain_pcre', 'I': 'pillar', 'J': 'pillar_pcre', 'L': 'list', 'N': None, # Nodegroups should already be expanded 'S': 'ipcidr', 'E': 'pcre'} if HAS_RANGE: ref['R'] = 'range' results = [] opers = ['and', 'or', 'not', '(', ')'] if isinstance(tgt, six.string_types): words = tgt.split() else: words = tgt for word in words: target_info = salt.utils.minions.parse_target(word) # Easy check first if word in opers: if results: if results[-1] == '(' and word in ('and', 'or'): log.error('Invalid beginning operator after "(": {0}'.format(word)) return False if word == 'not': if not results[-1] in ('and', 'or', '('): results.append('and') results.append(word) else: # seq start with binary oper, fail if word not in ['(', 'not']: log.error('Invalid beginning operator: {0}'.format(word)) return False results.append(word) elif target_info and target_info['engine']: if 'N' == target_info['engine']: # Nodegroups should already be expanded/resolved to other engines log.error('Detected nodegroup expansion failure of "{0}"'.format(word)) return False engine = ref.get(target_info['engine']) if not engine: # If an unknown engine is called at any time, fail out log.error('Unrecognized target engine "{0}" for' ' target expression "{1}"'.format( target_info['engine'], word, ) ) return False engine_args = [target_info['pattern']] engine_kwargs = {} if target_info['delimiter']: engine_kwargs['delimiter'] = target_info['delimiter'] results.append( str(getattr(self, '{0}_match'.format(engine))(*engine_args, **engine_kwargs)) ) else: # The match is not explicitly defined, evaluate it as a glob results.append(str(self.glob_match(word))) results = ' '.join(results) log.debug('compound_match {0} ? "{1}" => "{2}"'.format(self.opts['id'], tgt, results)) try: return eval(results) # pylint: disable=W0123 except Exception: log.error('Invalid compound target: {0} for results: {1}'.format(tgt, results)) return False return False def nodegroup_match(self, tgt, nodegroups): ''' This is a compatibility matcher and is NOT called when using nodegroups for remote execution, but is called when the nodegroups matcher is used in states ''' if tgt in nodegroups: return self.compound_match( salt.utils.minions.nodegroup_comp(tgt, nodegroups) ) return False class ProxyMinion(Minion): ''' This class instantiates a 'proxy' minion--a minion that does not manipulate the host it runs on, but instead manipulates a device that cannot run a minion. ''' # TODO: better name... @tornado.gen.coroutine def _post_master_init(self, master): ''' Function to finish init after connecting to a master This is primarily loading modules, pillars, etc. (since they need to know which master they connected to) ''' log.debug("subclassed _post_master_init") self.opts['master'] = master self.opts['pillar'] = yield salt.pillar.get_async_pillar( self.opts, self.opts['grains'], self.opts['id'], self.opts['environment'], pillarenv=self.opts.get('pillarenv'), ).compile_pillar() if 'proxy' not in self.opts['pillar'] and 'proxy' not in self.opts: log.error('No proxy key found in pillar or opts for id '+self.opts['id']+'.') log.error('Check your pillar configuration and contents. Salt-proxy aborted.') self._running = False raise SaltSystemExit(code=-1) if 'proxy' not in self.opts: self.opts['proxy'] = self.opts['pillar']['proxy'] fq_proxyname = self.opts['proxy']['proxytype'] # Need to load the modules so they get all the dunder variables self.functions, self.returners, self.function_errors, self.executors = self._load_modules() # we can then sync any proxymodules down from the master # we do a sync_all here in case proxy code was installed by # SPM or was manually placed in /srv/salt/_modules etc. self.functions['saltutil.sync_all'](saltenv='base') # Then load the proxy module self.proxy = salt.loader.proxy(self.opts) # Check config 'add_proxymodule_to_opts' Remove this in Carbon. if self.opts['add_proxymodule_to_opts']: self.opts['proxymodule'] = self.proxy # And re-load the modules so the __proxy__ variable gets injected self.functions, self.returners, self.function_errors, self.executors = self._load_modules() self.functions.pack['__proxy__'] = self.proxy self.proxy.pack['__salt__'] = self.functions self.proxy.pack['__ret__'] = self.returners self.proxy.pack['__pillar__'] = self.opts['pillar'] # Start engines here instead of in the Minion superclass __init__ # This is because we need to inject the __proxy__ variable but # it is not setup until now. self.io_loop.spawn_callback(salt.engines.start_engines, self.opts, self.process_manager, proxy=self.proxy) if ('{0}.init'.format(fq_proxyname) not in self.proxy or '{0}.shutdown'.format(fq_proxyname) not in self.proxy): log.error('Proxymodule {0} is missing an init() or a shutdown() or both.'.format(fq_proxyname)) log.error('Check your proxymodule. Salt-proxy aborted.') self._running = False raise SaltSystemExit(code=-1) proxy_init_fn = self.proxy[fq_proxyname+'.init'] proxy_init_fn(self.opts) self.opts['grains'] = salt.loader.grains(self.opts, proxy=self.proxy) self.serial = salt.payload.Serial(self.opts) self.mod_opts = self._prep_mod_opts() self.matcher = Matcher(self.opts, self.functions) self.beacons = salt.beacons.Beacon(self.opts, self.functions) uid = salt.utils.get_uid(user=self.opts.get('user', None)) self.proc_dir = get_proc_dir(self.opts['cachedir'], uid=uid) self.schedule = salt.utils.schedule.Schedule( self.opts, self.functions, self.returners) # add default scheduling jobs to the minions scheduler if self.opts['mine_enabled'] and 'mine.update' in self.functions: self.schedule.add_job({ '__mine_interval': { 'function': 'mine.update', 'minutes': self.opts['mine_interval'], 'jid_include': True, 'maxrunning': 2, 'return_job': self.opts.get('mine_return_job', False) } }, persist=True) log.info('Added mine.update to scheduler') else: self.schedule.delete_job('__mine_interval', persist=True) # add master_alive job if enabled if (self.opts['transport'] != 'tcp' and self.opts['master_alive_interval'] > 0): self.schedule.add_job({ '__master_alive_{0}'.format(self.opts['master']): { 'function': 'status.master', 'seconds': self.opts['master_alive_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master'], 'connected': True} } }, persist=True) if self.opts['master_failback'] and \ 'master_list' in self.opts and \ self.opts['master'] != self.opts['master_list'][0]: self.schedule.add_job({ '__master_failback': { 'function': 'status.ping_master', 'seconds': self.opts['master_failback_interval'], 'jid_include': True, 'maxrunning': 1, 'kwargs': {'master': self.opts['master_list'][0]} } }, persist=True) else: self.schedule.delete_job('__master_failback', persist=True) else: self.schedule.delete_job('__master_alive_{0}'.format(self.opts['master']), persist=True) self.schedule.delete_job('__master_failback', persist=True) # Sync the grains here so the proxy can communicate them to the master self.functions['saltutil.sync_grains'](saltenv='base') self.grains_cache = self.opts['grains']
41.52992
165
0.547542
92b826b9a5dc45ee8cb6d5a711e2282de26858a1
6,344
py
Python
venv/lib/python3.5/site-packages/awscli/paramfile.py
seancarnahan/CodeDeployGitHubDemo
464d25e3ed2ecf5b16ecc2f519190faf5f24b910
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.5/site-packages/awscli/paramfile.py
seancarnahan/CodeDeployGitHubDemo
464d25e3ed2ecf5b16ecc2f519190faf5f24b910
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.5/site-packages/awscli/paramfile.py
seancarnahan/CodeDeployGitHubDemo
464d25e3ed2ecf5b16ecc2f519190faf5f24b910
[ "Apache-2.0" ]
null
null
null
# Copyright 2012-2013 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging import os from botocore.vendored import requests from awscli.compat import six from awscli.compat import compat_open logger = logging.getLogger(__name__) # These are special cased arguments that do _not_ get the # special param file processing. This is typically because it # refers to an actual URI of some sort and we don't want to actually # download the content (i.e TemplateURL in cloudformation). PARAMFILE_DISABLED = set([ 'apigateway.put-integration.uri', 'appstream2.create-stack.redirect-url', 'appstream2.update-stack.redirect-url', 'cloudformation.create-stack.template-url', 'cloudformation.update-stack.template-url', 'cloudformation.create-stack-set.template-url', 'cloudformation.update-stack-set.template-url', 'cloudformation.create-change-set.template-url', 'cloudformation.validate-template.template-url', 'cloudformation.estimate-template-cost.template-url', 'cloudformation.get-template-summary.template-url', 'cloudformation.create-stack.stack-policy-url', 'cloudformation.update-stack.stack-policy-url', 'cloudformation.set-stack-policy.stack-policy-url', # aws cloudformation package --template-file 'custom.package.template-file', # aws cloudformation deploy --template-file 'custom.deploy.template-file', 'cloudformation.update-stack.stack-policy-during-update-url', # We will want to change the event name to ``s3`` as opposed to # custom in the near future along with ``s3`` to ``s3api``. 'custom.cp.website-redirect', 'custom.mv.website-redirect', 'custom.sync.website-redirect', 'guardduty.create-ip-set.location', 'guardduty.update-ip-set.location', 'guardduty.create-threat-intel-set.location', 'guardduty.update-threat-intel-set.location', 'comprehend.detect-dominant-language.text', 'comprehend.batch-detect-dominant-language.text-list', 'comprehend.detect-entities.text', 'comprehend.batch-detect-entities.text-list', 'comprehend.detect-key-phrases.text', 'comprehend.batch-detect-key-phrases.text-list', 'comprehend.detect-sentiment.text', 'comprehend.batch-detect-sentiment.text-list', 'iam.create-open-id-connect-provider.url', 'machinelearning.predict.predict-endpoint', 'rds.copy-db-cluster-snapshot.pre-signed-url', 'rds.create-db-cluster.pre-signed-url', 'rds.copy-db-snapshot.pre-signed-url', 'rds.create-db-instance-read-replica.pre-signed-url', 'sqs.add-permission.queue-url', 'sqs.change-message-visibility.queue-url', 'sqs.change-message-visibility-batch.queue-url', 'sqs.delete-message.queue-url', 'sqs.delete-message-batch.queue-url', 'sqs.delete-queue.queue-url', 'sqs.get-queue-attributes.queue-url', 'sqs.list-dead-letter-source-queues.queue-url', 'sqs.receive-message.queue-url', 'sqs.remove-permission.queue-url', 'sqs.send-message.queue-url', 'sqs.send-message-batch.queue-url', 'sqs.set-queue-attributes.queue-url', 'sqs.purge-queue.queue-url', 'sqs.list-queue-tags.queue-url', 'sqs.tag-queue.queue-url', 'sqs.untag-queue.queue-url', 's3.copy-object.website-redirect-location', 's3.create-multipart-upload.website-redirect-location', 's3.put-object.website-redirect-location', # Double check that this has been renamed! 'sns.subscribe.notification-endpoint', 'iot.create-job.document-source', 'translate.translate-text.text', 'workdocs.create-notification-subscription.notification-endpoint', ]) class ResourceLoadingError(Exception): pass def get_paramfile(path): """Load parameter based on a resource URI. It is possible to pass parameters to operations by referring to files or URI's. If such a reference is detected, this function attempts to retrieve the data from the file or URI and returns it. If there are any errors or if the ``path`` does not appear to refer to a file or URI, a ``None`` is returned. :type path: str :param path: The resource URI, e.g. file://foo.txt. This value may also be a non resource URI, in which case ``None`` is returned. :return: The loaded value associated with the resource URI. If the provided ``path`` is not a resource URI, then a value of ``None`` is returned. """ data = None if isinstance(path, six.string_types): for prefix, function_spec in PREFIX_MAP.items(): if path.startswith(prefix): function, kwargs = function_spec data = function(prefix, path, **kwargs) return data def get_file(prefix, path, mode): file_path = os.path.expandvars(os.path.expanduser(path[len(prefix):])) try: with compat_open(file_path, mode) as f: return f.read() except UnicodeDecodeError: raise ResourceLoadingError( 'Unable to load paramfile (%s), text contents could ' 'not be decoded. If this is a binary file, please use the ' 'fileb:// prefix instead of the file:// prefix.' % file_path) except (OSError, IOError) as e: raise ResourceLoadingError('Unable to load paramfile %s: %s' % ( path, e)) def get_uri(prefix, uri): try: r = requests.get(uri) if r.status_code == 200: return r.text else: raise ResourceLoadingError( "received non 200 status code of %s" % ( r.status_code)) except Exception as e: raise ResourceLoadingError('Unable to retrieve %s: %s' % (uri, e)) PREFIX_MAP = { 'file://': (get_file, {'mode': 'r'}), 'fileb://': (get_file, {'mode': 'rb'}), 'http://': (get_uri, {}), 'https://': (get_uri, {}), }
36.045455
78
0.684899
c8dad103de46f16ab2b864d45430a57e5a2b6ec1
512
py
Python
office365/onedrive/publicationFacet.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
544
2016-08-04T17:10:16.000Z
2022-03-31T07:17:20.000Z
office365/onedrive/publicationFacet.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
438
2016-10-11T12:24:22.000Z
2022-03-31T19:30:35.000Z
office365/onedrive/publicationFacet.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
202
2016-08-22T19:29:40.000Z
2022-03-30T20:26:15.000Z
from office365.runtime.client_value import ClientValue class PublicationFacet(ClientValue): def __init__(self, level=None, versionId=None): """ :param str level: The state of publication for this document. Either published or checkout. Read-only. :param str versionId: The unique identifier for the version that is visible to the current caller. Read-only. """ super(PublicationFacet, self).__init__() self.level = level self.versionId = versionId
34.133333
117
0.697266
bc3e8ee66802f3d83d0357198a79c98d5772455d
2,094
py
Python
test/vanilla/Expected/AcceptanceTests/Report/report/_configuration.py
Azure/autorest.azure-functions-python
b0896d8aec6b0fd6f0bcb12ea8e0489652dc2783
[ "MIT" ]
4
2020-10-22T20:35:38.000Z
2021-12-21T07:29:01.000Z
test/vanilla/Expected/AcceptanceTests/Report/report/_configuration.py
Azure/autorest.azure-functions-python
b0896d8aec6b0fd6f0bcb12ea8e0489652dc2783
[ "MIT" ]
3
2020-09-09T15:16:15.000Z
2021-12-20T15:25:18.000Z
test/vanilla/Expected/AcceptanceTests/Report/report/_configuration.py
Azure/autorest.azure-functions-python
b0896d8aec6b0fd6f0bcb12ea8e0489652dc2783
[ "MIT" ]
2
2020-11-10T07:16:23.000Z
2020-12-30T11:03:14.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any class AutoRestReportServiceConfiguration(Configuration): """Configuration for AutoRestReportService. Note that all parameters used to create this instance are saved as instance attributes. """ def __init__( self, **kwargs # type: Any ): # type: (...) -> None super(AutoRestReportServiceConfiguration, self).__init__(**kwargs) kwargs.setdefault('sdk_moniker', 'autorestreportservice/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy')
41.058824
106
0.666667
4b05e19162a5cc7888db88a7abe8158bf229a328
3,894
py
Python
src/sas/sasgui/guiframe/custom_pstats.py
andyfaff/sasview
c00a797ab9c4ddc60f0fa8a64ae8a2067c225921
[ "BSD-3-Clause" ]
null
null
null
src/sas/sasgui/guiframe/custom_pstats.py
andyfaff/sasview
c00a797ab9c4ddc60f0fa8a64ae8a2067c225921
[ "BSD-3-Clause" ]
null
null
null
src/sas/sasgui/guiframe/custom_pstats.py
andyfaff/sasview
c00a797ab9c4ddc60f0fa8a64ae8a2067c225921
[ "BSD-3-Clause" ]
null
null
null
import cProfile, pstats, os def func_std_string(func_name): # match what old profile produced if func_name[:2] == ('~', 0): # special case for built-in functions name = func_name[2] if name.startswith('<') and name.endswith('>'): return '{%s}' % name[1:-1] else: return name else: return "%s:%d(%s)" % func_name def f8(x): return "%8.3f" % x class CustomPstats(pstats.Stats): def __init__(self, *args, **kwds): pstats.Stats.__init__(self, *args, **kwds) def write_stats(self, *amount): msg = '' for filename in self.files: msg += str(filename) + '\n' #if self.files: msg += str(self.stream) + '\n' indent = ' ' * 8 for func in self.top_level: msg += str(indent)+ str(func_get_function_name(func))+"\n" msg += str(indent) + str(self.total_calls)+ "function calls" + '\n' if self.total_calls != self.prim_calls: msg += "(%d primitive calls)" % self.prim_calls + '\n' msg += "in %.3f CPU seconds" % self.total_tt + '\n' #msg += str(self.stream) + '\n' width = self.max_name_len if self.fcn_list: list = self.fcn_list[:] temp_msg = " Ordered by: " + self.sort_type + '\n' else: list = self.stats.keys() temp_msg = " Random listing order was used\n" for selection in amount: list, temp_msg = self.eval_print_amount(selection, list, temp_msg) count = len(list) if not list: width, list = 0, list else: msg += str(temp_msg) + '\n' if count < len(self.stats): width = 0 for func in list: if len(func_std_string(func)) > width: width = len(func_std_string(func)) width, list = width+2, list if list: msg += ' ncalls tottime percall cumtime percall' msg += ' filename:lineno(function)' + "\n" for func in list: cc, nc, tt, ct, callers = self.stats[func] c = str(nc) if nc != cc: c = c + '/' + str(cc) msg += str( c.rjust(9)) msg += str(f8(tt)) if nc == 0: msg += str(' '*8) else: msg += str(f8(tt/nc)) msg += str(f8(ct)) if cc == 0: msg += str( ' '*80) else: msg += str(f8(ct/cc)) msg += " " + str(func_std_string(func)) + '\n' msg += str(self.stream) + '\n' #msg += str(self.stream) + '\n' return self, msg def profile( fn, name='profile.txt',*args, **kw): import cProfile, pstats, os global call_result def call(): global call_result call_result = fn(*args, **kw) cProfile.runctx('call()', dict(call=call), {}, 'profile.txt') stats = CustomPstats('profile.txt') #sort by cumlative time stats.sort_stats('time') stats.print_stats(50) """ filename = 'profile_cum_' + name _, msg = stats.write_stats(50) f = file(filename, 'wb') f.write(msg) f.close() #sort by time stats.sort_stats('time') _, msg = stats.write_stats(50) filename = 'profile_time_' + name f = file(filename, 'wb') f.write(msg) f.close() # sort by number of calls stats.sort_stats('call') _, msg = stats.write_stats(50) filename = 'profile_call_' + name f = file(filename, 'wb') f.write(msg) f.close() os.unlink('profile.txt') """ return call_result
32.722689
78
0.479712
148f50dcdae20bfd954ff3ddba4a6b72597c8597
2,650
py
Python
utils/visualize_data.py
PointCloudYC/se-pseudogrid
65005d82fda1a31b8c945e02e378df102ba0fee0
[ "MIT" ]
2
2021-11-30T06:38:23.000Z
2021-12-17T01:38:32.000Z
utils/visualize_data.py
PointCloudYC/se-pseudogrid
65005d82fda1a31b8c945e02e378df102ba0fee0
[ "MIT" ]
null
null
null
utils/visualize_data.py
PointCloudYC/se-pseudogrid
65005d82fda1a31b8c945e02e378df102ba0fee0
[ "MIT" ]
null
null
null
""" Date: April 12, 2021 Author: YIN Chao Functionality: - read PSNet-5 dataset processed files (data/xxx/processed) - write each point cloud to ply files with xyzrgb and xyzLabel format - show each point cloud in open3d """ import sys import os import pickle import numpy as np import matplotlib.pyplot as plt import pandas as pd import matplotlib as mpl # mpl.rc('axes', labelsize=14) # mpl.rc('xtick', labelsize=12) # mpl.rc('ytick', labelsize=12) import seaborn as sns from util import write_ply from visualize import Plot BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(ROOT_DIR) VISUALIZE_IN_OPEN3D =True SAVE_PLY = False DATA_DIR='data/PSNet/PSNet_reduced_5/processed' point_clouds = ['Area_3'] # point_clouds = ['Area_1','Area_2','Area_3','Area_4'] # point_clouds = ['Area_1','Area_4'] # read pkl data for cloud_name in point_clouds: filename= os.path.join(DAntrol system for UNITA_DIR, f'{cloud_name}.pkl') with open(filename, 'rb') as f: (cloud_points, cloud_colors, cloud_classes) = pickle.load(f) print(f"{filename} loaded successfully") # save xyzrgb and xyzLabel to ply file if SAVE_PLY: xyzRgb_name = os.path.join(DATA_DIR, 'cloudcompare', f'{cloud_name}_xyzRgb.ply') xyzLabel_name = os.path.join(DATA_DIR, 'cloudcompare', f'{cloud_name}_xyzLabel.ply') # save xyz + rgb to ply write_ply(xyzRgb_name, [cloud_points, cloud_colors], ['x', 'y', 'z', 'r', 'g', 'b']) print(f"{cloud_name}_xyzRgb.ply saved successfully") # save xyz + label to ply write_ply(xyzLabel_name, [cloud_points, cloud_classes], ['x', 'y', 'z', 'gt']) print(f"{cloud_name}_xyzLabel.ply saved successfully") # HACK: to show the figure with same rendering style, add 1 tank point since area_1 and area_4 do not have tank points(semantic label class is 4) HACKING_RENDER_STYLE =True if VISUALIZE_IN_OPEN3D: xyzrgb = np.concatenate([cloud_points, cloud_colors], axis=-1) Plot.draw_pc(xyzrgb) # visualize raw point clouds if HACKING_RENDER_STYLE: cloud_points = np.vstack((cloud_points,cloud_points[0])) cloud_classes = np.vstack((cloud_classes,np.array(4))) # 4 is tank class's id Plot.draw_pc_sem_ins(cloud_points, cloud_classes) # visualize ground-truth # Plot.draw_pc_sem_ins(points, preds) # visualize prediction
37.323944
153
0.649434
3833a24c6865041f4357cf79429f866d000e22ef
10,528
py
Python
force_wfmanager/notifications/tests/test_ui_notification.py
force-h2020/force-wfmanager
bcd488cd37092cacd9d0c81b544ee8c1654d1d92
[ "BSD-2-Clause" ]
1
2019-08-19T16:02:20.000Z
2019-08-19T16:02:20.000Z
force_wfmanager/notifications/tests/test_ui_notification.py
force-h2020/force-wfmanager
bcd488cd37092cacd9d0c81b544ee8c1654d1d92
[ "BSD-2-Clause" ]
396
2017-07-18T15:19:55.000Z
2021-05-03T06:23:06.000Z
force_wfmanager/notifications/tests/test_ui_notification.py
force-h2020/force-wfmanager
bcd488cd37092cacd9d0c81b544ee8c1654d1d92
[ "BSD-2-Clause" ]
2
2019-03-05T16:23:10.000Z
2020-04-16T08:59:11.000Z
# (C) Copyright 2010-2020 Enthought, Inc., Austin, TX # All rights reserved. import unittest from testfixtures import LogCapture from threading import Event from force_bdss.api import ( BaseDriverEvent, MCOStartEvent, MCOProgressEvent, MCOFinishEvent, DataValue, ) from force_wfmanager.notifications.ui_notification import UINotification from force_wfmanager.notifications.ui_notification_factory import ( UINotificationFactory, ) from force_wfmanager.notifications.ui_notification_model import ( UINotificationModel, ) try: import mock except ImportError: from unittest import mock import zmq UI_MIXIN = ( "force_bdss.ui_hooks.ui_notification_mixins.UIEventNotificationMixin." ) class TestUINotification(unittest.TestCase): def setUp(self): factory = mock.Mock(spec=UINotificationFactory) self.model = UINotificationModel(factory) self.model.identifier = "an_id" listener = UINotification(factory) self.sync_socket = mock.Mock(spec=zmq.Socket) self.sync_socket.recv_multipart = mock.Mock() self.sync_socket.recv_multipart.side_effect = [ [x.encode("utf-8") for x in ["HELLO", "an_id", "1"]], [x.encode("utf-8") for x in ["GOODBYE", "an_id"]], ] self.pub_socket = mock.Mock(spec=zmq.Socket) self.sub_socket = mock.Mock(spec=zmq.Socket) self.sub_socket.recv_multipart.side_effect = [ [x.encode("utf-8") for x in ["MSG", "an_id", "1"]], [x.encode("utf-8") for x in ["MGS", "PAUSE_BDSS", "1"]], [x.encode("utf-8") for x in ["MGS", "PAUSE_BDSS", "1"]], [x.encode("utf-8") for x in ["MGS", "RESUME_BDSS", "1"]], [x.encode("utf-8") for x in ["MGS", "STOP_BDSS", "1"]], ] self.context = mock.Mock(spec=zmq.Context) self.context.socket.side_effect = [ self.pub_socket, self.sub_socket, self.sync_socket, ] listener.__class__._create_context = mock.Mock( return_value=self.context ) self.listener = listener def test_deliver(self): listener = self.listener listener.initialize(self.model) self.assertEqual( self.sync_socket.send_multipart.call_args[0][0], [x.encode("utf-8") for x in ["HELLO", "an_id", "1"]], ) listener.deliver(MCOStartEvent()) self.assertEqual( self.pub_socket.send_multipart.call_args[0][0][0:2], [x.encode("utf-8") for x in ["MESSAGE", "an_id"]], ) listener.deliver( MCOProgressEvent( optimal_point=[ DataValue(value=1), DataValue(value=2), DataValue(value=3), ], optimal_kpis=[DataValue(value=4), DataValue(value=5)], ) ) self.assertEqual( self.pub_socket.send_multipart.call_args[0][0][0:2], [x.encode("utf-8") for x in ["MESSAGE", "an_id"]], ) listener.deliver(MCOFinishEvent()) self.assertEqual( self.pub_socket.send_multipart.call_args[0][0][0:2], [x.encode("utf-8") for x in ["MESSAGE", "an_id"]], ) with self.assertRaisesRegex( TypeError, "Event is not a BaseDriverEvent" ): listener.deliver("not an event") with mock.patch.object( listener._pub_socket, "send_multipart" ) as mock_send: listener.deliver(BaseDriverEvent()) mock_send.assert_not_called() def test_finalize(self): self.listener.initialize(self.model) self.assertTrue(self.listener._poller_running) self.listener.finalize() self.assertTrue(self.context.term.called) self.assertTrue(self.sync_socket.close.called) self.assertTrue(self.pub_socket.close.called) self.assertIsNone(self.listener._context) self.assertIsNone(self.listener._sync_socket) self.assertIsNone(self.listener._pub_socket) self.assertFalse(self.listener._poller_running) def test_initialize(self): listener = self.listener listener.initialize(self.model) self.assertEqual( self.sync_socket.send_multipart.call_args[0][0], [x.encode("utf-8") for x in ["HELLO", "an_id", "1"]], ) def test_polling(self): self.sync_socket.poll.return_value = 0 listener = self.listener with LogCapture() as capture: listener.initialize(self.model) capture.check( ( "force_wfmanager.notifications.ui_notification", "INFO", "Could not connect to UI server after 1000 ms. " "Continuing without UI notification.", ) ) self.assertIsNone(listener._context) def test_wrong_init_recv(self): listener = self.listener self.sync_socket.recv_multipart.side_effect = [ [x.encode("utf-8") for x in ["HELLO", "not_the_right_id", "1"]], [x.encode("utf-8") for x in ["GOODBYE", "an_id"]], ] with LogCapture() as capture: listener.initialize(self.model) capture.check( ( "force_wfmanager.notifications.ui_notification", "ERROR", "Unexpected reply in sync negotiation with UI server. " "'['HELLO', 'not_the_right_id', '1']'", ) ) self.assertIsNone(listener._context) def test_deliver_without_context(self): self.listener.deliver(MCOStartEvent()) self.assertFalse(self.pub_socket.send_multipart.called) def test_finalize_without_context(self): self.listener.finalize() self.assertFalse(self.sync_socket.send_multipart.called) def test_finalize_no_response(self): self.sync_socket.poll.side_effect = [1, 0] listener = self.listener listener.initialize(self.model) with LogCapture() as capture: listener.finalize() capture.check( ( "force_wfmanager.notifications.ui_notification", "ERROR", "Could not close connection to UI server " "after 1000 ms.", ) ) self.assertIsNone(listener._context) def test_wrong_finalize_recv(self): listener = self.listener self.sync_socket.poll.side_effect = [1, 1] self.sync_socket.recv_multipart.side_effect = [ [x.encode("utf-8") for x in ["HELLO", "an_id", "1"]], [x.encode("utf-8") for x in ["GOODBYE", "not_the_right_id"]], ] listener.initialize(self.model) with LogCapture() as capture: listener.finalize() capture.check( ( "force_wfmanager.notifications.ui_notification", "ERROR", "Unexpected reply in goodbye sync " "negotiation with UI server. " "'['GOODBYE', 'not_the_right_id']'", ) ) self.assertIsNone(listener._context) def test_double_clear_sockets(self): listener = self.listener listener._close_and_clear_sockets() self.assertIsNone(listener._context) listener._close_and_clear_sockets() self.assertIsNone(listener._context) def test_run_poller(self): stop_event = Event() pause_event = Event() with mock.patch( "zmq.Poller.poll", return_value={self.sub_socket: None} ): with mock.patch(UI_MIXIN + "send_stop") as mock_stop, mock.patch( UI_MIXIN + "send_pause" ) as mock_pause, mock.patch( UI_MIXIN + "send_resume" ) as mock_resume: self.listener.set_stop_event(stop_event) self.listener.set_pause_event(pause_event) self.listener.run_poller(self.sub_socket) self.assertEqual(1, mock_stop.call_count) self.assertEqual(2, mock_pause.call_count) self.assertEqual(1, mock_resume.call_count) self.assertFalse(self.listener._poller_running) # Test for different socket poll pub_socket = self.pub_socket sub_socket = self.sub_socket class DummyPoller: def __init__(self): self.counter = 5 def poll(self): self.counter -= 1 if self.counter != 0: return {pub_socket: None} return {sub_socket: None} def register(self, socket): self.socket = socket self.sub_socket.recv_multipart.side_effect = [ [x.encode("utf-8") for x in ["MGS", "STOP_BDSS", "1"]] ] with mock.patch("zmq.Poller", return_value=DummyPoller()): with mock.patch(UI_MIXIN + "send_stop") as mock_stop, mock.patch( UI_MIXIN + "send_pause" ) as mock_pause, mock.patch( UI_MIXIN + "send_resume" ) as mock_resume: self.listener.set_stop_event(stop_event) self.listener.set_pause_event(pause_event) self.listener.run_poller(self.sub_socket) self.assertEqual(1, mock_stop.call_count) self.assertEqual(0, mock_pause.call_count) self.assertEqual(0, mock_resume.call_count) self.assertFalse(self.listener._poller_running) self.sub_socket.recv_multipart.side_effect = [ [x.encode("utf-8") for x in ["MGS", "STOP_BDSS"]], [x.encode("utf-8") for x in ["MGS", "STOP_BDSS", "1"]], ] with mock.patch( "zmq.Poller.poll", return_value={self.sub_socket: None} ): with LogCapture() as capture: self.listener.run_poller(self.sub_socket) capture.check( ( "force_wfmanager.notifications.ui_notification", "ERROR", "Incompatible data received: expected (msg, identifier, " "data), but got ['MGS', 'STOP_BDSS'] instead.", ) )
34.631579
77
0.571524
06e396964bf27809f5c2302cfacefd53a65561d0
4,755
py
Python
src/repobee_plug/_exthooks.py
Rickard-Martensson/repobee
5c460e3388bc5b0843789fea747c800f692689c7
[ "MIT" ]
null
null
null
src/repobee_plug/_exthooks.py
Rickard-Martensson/repobee
5c460e3388bc5b0843789fea747c800f692689c7
[ "MIT" ]
11
2021-07-26T02:09:47.000Z
2022-03-29T02:15:24.000Z
src/repobee_plug/_exthooks.py
orquestradigital-actions/repobee
8b7bd49932837148422e08a18e33e9f62cd8987f
[ "MIT" ]
null
null
null
"""Hookspecs for repobee extension hooks. Extension hooks add something to the functionality of repobee, but are not necessary for its operation. Currently, all extension hooks are related to cloning repos. .. module:: exthooks :synopsis: Hookspecs for repobee extension hooks. """ import argparse import configparser from typing import Optional from repobee_plug.cli.args import ConfigurableArguments from repobee_plug.platform import PlatformAPI from repobee_plug.hook import hookspec, Result from repobee_plug.deprecation import deprecate from repobee_plug.config import Config from repobee_plug.localreps import StudentRepo, TemplateRepo ######################### # Hooks for repos clone # ######################### @hookspec def post_clone(repo: StudentRepo, api: PlatformAPI) -> Optional[Result]: """Operate on a student repository after it has been cloned. Args: repo: A local representation of a student repo. The ``path`` attribute is always set to a valid directory containing the repo. api: An instance of the platform API. Returns: Optionally returns a Result for reporting the outcome of the hook. May also return None, in which case no reporting will be performed for the hook. """ @deprecate(remove_by_version="3.0.0", replacement="handle_parsed_args") @hookspec def clone_parser_hook(clone_parser: argparse.ArgumentParser) -> None: """Do something with the clone repos subparser before it is used used to parse CLI options. The typical task is to add options to it. .. danger:: This hook no longer has any effect, it is only kept for testing purposes. Args: clone_parser: The ``clone`` subparser. """ ######################### # Hooks for repos setup # ######################### @hookspec def pre_setup(repo: TemplateRepo, api: PlatformAPI) -> Optional[Result]: """Operate on a template repository before it is distributed to students. .. note:: Structural changes to the master repo are not currently supported. Changes to the repository during the callback will not be reflected in the generated repositories. Support for preprocessing is not planned as it is technically difficult to implement. Args: repo: Representation of a local template repo. api: An instance of the platform API. Returns: Optionally returns a Result for reporting the outcome of the hook. May also return None, in which case no reporting will be performed for the hook. """ @hookspec def post_setup( repo: StudentRepo, api: PlatformAPI, newly_created: bool ) -> Optional[Result]: """Operate on a student repo after the setup command has executed. Args: repo: A student repository. api: An instance of the platform API. newly_created: False if the student repo already existed. Returns: Optionally returns a Result for reporting the outcome of the hook. May also return None, in which case no reporting will be performed for the hook. """ ############################ # Hooks for config/parsing # ############################ @hookspec def get_configurable_args() -> ConfigurableArguments: """Get the configurable arguments for a plugin. .. danger:: This is not a public hook, don't implement this manually! Returns: The configurable arguments of a plugin. """ @deprecate(remove_by_version="3.8.0", replacement="handle_config") @hookspec def config_hook(config_parser: configparser.ConfigParser) -> None: """Hook into the config file parsing. .. deprecated:: 3.6.0 Use :py:func:`handle_config` instead. Args: config_parser: The config parser after config has been read. """ @hookspec def handle_config(config: Config) -> None: """Handle the config. This hook is allowed both to read the config, and to modify it before it's passed to the core RepoBee application. .. warning:: The :py:class:`Config` class is currently not stable and its behavior may change. Args: config: RepoBee's config. """ @hookspec def handle_parsed_args(args: argparse.Namespace) -> None: """Handle the parsed args from the parser, before any processing is applied. Args: args: The full namespace returned by :py:func:`argparse.ArgumentParser.parse_args` """ @hookspec def handle_processed_args(args: argparse.Namespace) -> None: """Handle the parsed command line arguments after RepoBee has applied processing. Args: args: A processed version of the parsed CLI arguments. """
27.485549
78
0.674869
8cec3edfa3bf148bb1e00c4d2309fa53a35e9c28
3,546
py
Python
packages/SwingSet/misc-tools/vat-map.py
danwt/agoric-sdk
e0f7ee8884648973c63bbcae587ea36e51f58a64
[ "Apache-2.0" ]
null
null
null
packages/SwingSet/misc-tools/vat-map.py
danwt/agoric-sdk
e0f7ee8884648973c63bbcae587ea36e51f58a64
[ "Apache-2.0" ]
null
null
null
packages/SwingSet/misc-tools/vat-map.py
danwt/agoric-sdk
e0f7ee8884648973c63bbcae587ea36e51f58a64
[ "Apache-2.0" ]
null
null
null
import sys, json, gzip, re, time from collections import defaultdict from pprint import pprint # python vat-map.py SLOGFILE[.gz] > vat-map.json # # Determines a name for each vatID, also the manager type and number of # deliveries. The resulting vat-map.json can be read by other tools to put a # description on each vat. Static vats get a name from their bundle, e.g. # "bank" or "mints" or "zoe". Dynamic contract vats find the agoric-sdk # -relative filename of the entry point of the contract, e.g. # "packages/treasury/src/stablecointMachine.js", and emit an abbreviation # (for known contracts) or the full string. unknown_vats = set() # vatID vats = {} # vatID -> { name, managerType, cranks } unnamed_zcf_vats = set() abbreviations = { "packages/treasury/src/stablecoinMachine.js": "treasury", "packages/pegasus/src/pegasus.js": "pegasus", "packages/zoe/src/contracts/multipoolAutoswap/multipoolAutoswap.js": "amm", "packages/treasury/src/liquidateMinimum.js": "liquidate", } EPRE = re.compile(r'const entrypoint = "([^"]+)"') def entrypoint_of_bundle(vatID, bundle): mf = bundle["moduleFormat"] if mf == "nestedEvaluate": source = bundle["source"] mo = EPRE.search(source) return mo.group(1) else: print("unknown moduleFormat='%s' in vat %s" % (mf, vatID)) return None fn = sys.argv[1] opener = gzip.open if fn.endswith(".gz") else open with opener(sys.argv[1]) as f: for line in f: if isinstance(line, bytes): line = line.decode("utf-8") if not line.strip(): continue data = json.loads(line.strip()) type = data["type"] if type == "create-vat": vatID = data["vatID"] if not data["dynamic"]: vats[vatID] = { "name": data["name"], "managerType": data["managerType"], "cranks": 0 } else: name = None bundle = data["vatSourceBundle"] entrypoint = entrypoint_of_bundle(vatID, bundle) if entrypoint == "packages/zoe/contractFacet.js": unnamed_zcf_vats.add(vatID) name = "<zcf>" else: name = abbreviations.get(entrypoint, entrypoint) vats[vatID] = { "name": name, "managerType": data["managerType"], "cranks": 0 } if type == "deliver": vatID = data["vatID"] if vatID in unnamed_zcf_vats: kd = data["kd"] if kd[0] == "message": method = kd[2]["method"] if method == "executeContract": bundle = json.loads(kd[2]["args"]["body"])[0] entrypoint = entrypoint_of_bundle(vatID, bundle) name = abbreviations.get(entrypoint, entrypoint) vats[vatID]["name"] = name unnamed_zcf_vats.remove(vatID) vats[vatID]["cranks"] += 1 print("{") for count,vatID in enumerate(sorted(vats, key=lambda vatID: int(vatID[1:]))): d = vats[vatID] name = d.get("name", "<unknown>") comma = "," if count < len(vats)-1 else "" print('%6s: {"mtype": %12s, "deliveries": %10d, "name": %-22s}%s' % ( '"%s"' % vatID, '"%s"' % d["managerType"], d["cranks"], '"%s"' % name, comma)) print("}") #for vatID in sorted(unknown_vats, key=lambda vatID: int(vatID[1:])): # print("%4s: unknown" % (vatID,))
38.543478
89
0.562606
75feee6b224cf948bb6f00521dc2ba60e310ecec
22,318
py
Python
mindmeld/converter/rasa.py
dyoshiha/mindmeld
95f0e8482594f00040766a2ee687e9c9338f5a74
[ "Apache-2.0" ]
null
null
null
mindmeld/converter/rasa.py
dyoshiha/mindmeld
95f0e8482594f00040766a2ee687e9c9338f5a74
[ "Apache-2.0" ]
null
null
null
mindmeld/converter/rasa.py
dyoshiha/mindmeld
95f0e8482594f00040766a2ee687e9c9338f5a74
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2015 Cisco Systems, Inc. and others. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains the Rasacoverter class used to convert Rasa projects into Mindmeld projects""" from keyword import iskeyword import re import os import copy import logging import yaml from mindmeld.converter.converter import Converter logger = logging.getLogger(__name__) class RasaConverter(Converter): """The class is a sub class of the abstract Converter class. This class contains the methods required to convert a Rasa project into a MindMeld project """ def __init__(self, rasa_project_directory, mindmeld_project_directory): if os.path.exists(os.path.dirname(rasa_project_directory)): self.rasa_project_directory = rasa_project_directory self.mindmeld_project_directory = mindmeld_project_directory else: msg = "`{rasa_project_directory}` does not exist. Please verify.".format( rasa_project_directory=rasa_project_directory) raise FileNotFoundError(msg) def _create_intents_directories(self, mindmeld_project_directory, intents): """Note: Because Rasa does not support multiple domains at this time. All intents are placed under a domain named 'general'.""" GENERAL_DOMAIN_LOCATION = '/domains/general/' for intent in intents: self.create_directory(mindmeld_project_directory + GENERAL_DOMAIN_LOCATION + intent) def _create_entities_directories(self, mindmeld_project_directory, entities): for entity in entities: entity_path = mindmeld_project_directory + "/entities/" + entity self.create_directory(entity_path) with open(entity_path + "/gazetteer.txt", "w") as f: f.close() with open(entity_path + "/mapping.json", "w") as f: # skeleton mapping file that a user must fill in f.write("{\n \"entities\":[]\n}") f.close() @staticmethod def _is_line_intent_definiton(line): return (line[0:10] == "## intent:") @staticmethod def _get_intent_from_line(line): return line.split(' ')[1].split(':')[1].rstrip() def _create_intent_training_file(self, intent_directory): self.create_directory(intent_directory) with open(intent_directory + "/train.txt", "w") as f: f.close() @staticmethod def _does_intent_ex_contain_entity(intent_example): return len(re.findall(r"\[.*\]\(.*\)", intent_example)) > 0 def _write_intent_with_extinty(self, intent_f, intent_example): mindmend_intent_example = intent_example pattern = re.compile(r'\[\w*\]\(\w*\)') for match in pattern.findall(intent_example): mindmeld_entity = match.replace("[", "{").replace("]", "|") \ .replace("(", "").replace(")", "}") mindmend_intent_example = mindmend_intent_example.replace(match, mindmeld_entity) # add this to the respective entity gazetteer file as well self.create_entity_files(mindmeld_entity) intent_f.write(mindmend_intent_example) @staticmethod def _remove_comments_from_line(line): start_of_comment = line.find("<!---") end_of_comment = line.find("-->") line_without_comment = line.replace(line[start_of_comment:end_of_comment+3], '') line_without_comment = line_without_comment.rstrip() return line_without_comment def _add_example_to_training_file(self, current_intent_path, line): with open(current_intent_path + "/train.txt", "a") as intent_f: intent_example = line[2:] intent_example = RasaConverter._remove_comments_from_line(intent_example) + "\n" if RasaConverter._does_intent_ex_contain_entity(intent_example): self._write_intent_with_extinty(intent_f, intent_example) else: intent_f.write(intent_example) def _read_domain_file(self): for file_ending in ["yaml", "yml"]: file_name = self.rasa_project_directory + "/domain." + file_ending if os.path.isfile(file_name): try: with open(file_name, "r") as stream: domain_data_loaded = yaml.safe_load(stream) return domain_data_loaded except IOError as e: logger.error("Can not open domain.yml file at %s", file_name) logger.error(e) logger.error("Could not find domain.yml file in project directory") raise FileNotFoundError def _read_entities(self): domain_file = self._read_domain_file() if 'entities' in domain_file: return domain_file['entities'] else: return [] def _read_slots(self): domain_file = self._read_domain_file() if 'slots' in domain_file: return domain_file['slots'] else: return [] def _read_intents(self): domain_file = self._read_domain_file() return domain_file['intents'] def _read_actions(self): domain_file = self._read_domain_file() return domain_file['actions'] def _read_templates(self): domain_file = self._read_domain_file() if 'templates' in domain_file: return domain_file['templates'] else: return [] def create_entity_files(self, mm_entry): entity = mm_entry.strip('{}').split("|") gazetteer_location = self.mindmeld_project_directory + "/entities/" + \ entity[1] + "/gazetteer.txt" try: with open(gazetteer_location, "a") as f: f.write(entity[0] + "\n") f.close() except FileNotFoundError as e: self._create_entities_directories(self.mindmeld_project_directory, [entity[1]]) with open(gazetteer_location, "a") as f: f.write(entity[0] + "\n") f.close() logger.error("Domain file may not contain entity %s", entity[1]) logger.error(e) @staticmethod def _is_valid_function_name(name): return name.isidentifier() and not iskeyword(name) @staticmethod def _is_story_name(stories_line): return stories_line[0:3] == '## ' def _get_story_name(self, stories_line): if "<!--" in stories_line: return self._remove_comments_from_line( stories_line.replace("## ", "")).rstrip() else: return stories_line.replace("## ", "").rstrip() @staticmethod def _is_intent(stories_line): return stories_line[0:2] == '* ' @staticmethod def _is_action(stories_line): return stories_line[0:3] == ' - ' @staticmethod def _does_intent_have_entity(stories_line): return len(re.findall(r"\{.*\}", stories_line)) > 0 @staticmethod def _clean_up_entities_list(entities_with_values): # trim off { } entities_with_values = entities_with_values[1:-1] # split data entities if there are multiples and clean white space entities_list = entities_with_values.split(",") for i, entity in enumerate(entities_list): entities_list[i] = entity.replace("\"", '') entities_list[i] = entities_list[i].lstrip() return entities_list def _get_intent_with_entity(self, stories_line): if RasaConverter._does_intent_have_entity(stories_line): entities_with_values = re.search(r"\{.*\}", stories_line) entities_with_values = entities_with_values.group(0) entities_list = self._clean_up_entities_list(entities_with_values) start_of_entity = stories_line.find(entities_with_values) intent = self._remove_comments_from_line( stories_line[2:start_of_entity]).rstrip() return intent, entities_list else: intent = self._remove_comments_from_line(stories_line[2:]).rstrip() entities_list = [] return intent, entities_list def _get_stories(self): if os.path.isfile(self.rasa_project_directory + "/data/stories.md"): try: with open(self.rasa_project_directory + "/data/stories.md", "r") as f: stories_dictionary = {} current_story_name = '' steps = [] current_step = {} current_intent = '' current_actions = [] stories_lines = f.readlines() max_lines = len(stories_lines) for line_num, line in enumerate(stories_lines): if self._is_story_name(line): current_story_name = self._get_story_name(line) continue if self._is_intent(line): current_intent, current_entities = self \ ._get_intent_with_entity(line) current_step["intent"] = copy.deepcopy(current_intent) current_step["entities"] = copy.deepcopy(current_entities) continue if self._is_action(line): current_actions.append( RasaConverter._remove_comments_from_line(line[3:]).rstrip()) if ((line_num + 1) < max_lines) and RasaConverter._is_action( stories_lines[line_num + 1]): continue current_step["actions"] = copy.deepcopy(current_actions) current_actions.clear() steps.append(copy.deepcopy(current_step)) current_step.clear() elif len(line.strip()) == 0: if current_story_name != '': stories_dictionary[current_story_name] = copy.deepcopy(steps) steps.clear() current_story_name = '' if line_num == (max_lines - 1): stories_dictionary[current_story_name] = copy.deepcopy(steps) steps.clear() current_story_name = '' f.close() return stories_dictionary except IOError as e: logger.error("Can not open stories.md file at %s", self.rasa_project_directory + "/data/stories.md") logger.error(e) else: logger.error("Could not find stories.md file in %s", self.rasa_project_directory + "/data/stories.md") raise FileNotFoundError def create_mindmeld_directory(self, mindmeld_project_path): self.create_directory(mindmeld_project_path) self.create_directory(mindmeld_project_path + "/data") self.create_directory(mindmeld_project_path + "/domains") self.create_directory(mindmeld_project_path + "/domains/general") self.create_directory(mindmeld_project_path + "/entities") def create_mindmeld_training_data(self): """Method to transfer and reformat the training data in a Rasa Project """ # read intents listed in domain.yml intents = self._read_intents() # create intents subdirectories self._create_intents_directories(self.mindmeld_project_directory, intents) # read entities in domain.yml entities = self._read_entities() # create entities subdirectories if entities is not empty if entities: self._create_entities_directories(self.mindmeld_project_directory, entities) # try and open data files from rasa project nlu_data_loc = self.rasa_project_directory + "/data/nlu_data.md" try: with open(nlu_data_loc, "r") as nlu_data_md_file: nlu_data_lines = nlu_data_md_file.readlines() except FileNotFoundError: logger.error("Cannot open nlu_data.md file at %s", nlu_data_loc) # iterate through each line current_intent = '' current_intent_path = '' for line in nlu_data_lines: if (self._is_line_intent_definiton(line)): current_intent = RasaConverter._get_intent_from_line(line) current_intent_path = self.mindmeld_project_directory \ + "/domains/general/" + current_intent # create data text file for intent examples` self._create_intent_training_file(current_intent_path) else: if (line[0] == '-'): self._add_example_to_training_file(current_intent_path, line) def _write_init_header(self): string = '''from mindmeld import Application from . import custom_features # noqa: F401 app = Application(__name__) __all__ = ['app'] ''' f = open(self.mindmeld_project_directory + "/__init__.py", "w+") f.write(string) return f @staticmethod def _get_app_handle(intent, entities): has_entity_string = ', has_entity=' has_entities_string = ', has_entities=[' entities_string = "" if len(entities) > 1: entities_string = has_entities_string for entity_value in entities: entity_string = entity_value.split(":")[0] if entity_value == entities[-1]: entities_string += "'" + entity_string + "']" else: entities_string += "'" + entity_string + "', " elif len(entities) == 1: for entity_value in entities: entity_string = entity_value.split(":")[0] entities_string += has_entity_string + "'" + entity_string + "'" handle_string = "@app.handle(intent='" + intent + "'" + entities_string + ")\n" return handle_string def _write_function_declaration(self, action, f): if self._is_valid_function_name(action): function_declartion_string = "def {}(request, responder):\n".format(action) f.write(function_declartion_string) else: logger.error("Action {action} is not a valid name for a python function") raise SyntaxError @staticmethod def _write_function_body_prompt(prompts, f): entities_list = [] prompts_list = [] # check if prompts contain any entities for prompt in prompts: entities = re.findall(r"\{.*\}", prompt) entities_list = [] newprompt = prompt for i, entity in enumerate(entities, start=0): newprompt = prompt.replace(entity, '{' + str(i) + '}') entities_list.append(entity.replace("{", "").replace("}", "")) entities_args = ', '.join(map(str, entities_list)) prompts_list.append('"' + newprompt + '".format({})'.format(entities_args)) for entity in entities_list: newentity = entity.replace("{", "").replace("}", "") entities_string = " {}_s = [e['text'] for e in ".format(newentity) + \ "request.entities if e['type'] == '{}']\n".format(newentity) entity_string = " {0} = {0}_s[0]\n".format(newentity) f.write(entities_string) f.write(entity_string) prompts_string = " prompts = [{}]\n".format(', '.join(prompts_list)) f.write(prompts_string) @staticmethod def _write_default_function(): pass @staticmethod def _get_text_prompts_list(action_templates): prompts = [] for template in action_templates: if 'text' in template: prompts.append(template['text']) return prompts @staticmethod def _write_responder_lines(f): responder_string = " responder.reply(prompts)\n responder.listen()\n" f.write(responder_string) def _read_file_lines(self): with open(self.mindmeld_project_directory + "/__init__.py", "r+") as f: return f.readlines() def _write_functions(self, actions, templates, f): for action in actions: self._write_function_declaration(action, f) if action in templates: # Get list of templates per action action_templates = templates[action] prompts_list = RasaConverter._get_text_prompts_list(action_templates) self._write_function_body_prompt(prompts_list, f) self._write_responder_lines(f) else: if (action[0:6] == 'action'): f.write(" # This is a custom action from rasa\n") f.write(" pass\n") else: # If no templates, write a blank function f.write(" # No templates were provided for action\n") f.write(" pass\n") if action != actions[-1]: f.write('\n') f.write('\n') @staticmethod def _attach_handle_to_function(handle, action, file_lines): for i, line in enumerate(file_lines): if (len(re.findall("def {}".format(action), line)) > 0): insert_line = i while (file_lines[i - 1].strip() != ''): if (file_lines[i - 1] == handle): return i = i - 1 file_lines.insert(insert_line, handle) @staticmethod def _attach_actions_to_function(actions, file_lines): current_line = 0 for i, line in enumerate(file_lines): if (len(re.findall("def {action}", line) > 0)): current_line = i break while (file_lines[current_line] != ""): current_line += 1 assert file_lines[current_line] == "" file_lines[current_line:current_line] = actions def create_mindmeld_init(self): f = self._write_init_header() actions = self._read_actions() templates = self._read_templates() # Write all functions for each action self._write_functions(actions, templates, f) f.close() # Read contents of current file file_lines = self._read_file_lines() stories_dictionary = self._get_stories() # Loop through all stories and create intent-action relationship for item in stories_dictionary.items(): # Loop through steps for each story for step in item[1]: # Get intent, any entities, and actions intent = step['intent'] entities = step['entities'] actions = step['actions'] # attach handle to correct function app_handle_string = RasaConverter._get_app_handle(intent, entities) self._attach_handle_to_function(app_handle_string, actions[0], file_lines) # check if more than 1 action per intent if len(actions) > 1: self._attach_actions_to_function(actions[1:], file_lines) # write all lines back to file with open(self.mindmeld_project_directory + "/__init__.py", "w") as f: f.writelines(file_lines) @staticmethod def create_custom_features(mindmeld_project_directory, main_file_loc): with open(main_file_loc + '/rasa_custom_features.txt', 'r') as f: string = f.read() with open(mindmeld_project_directory + "/custom_features.py", "w") as f: f.write(string) def convert_project(self): """Main function that will convert a Rasa project into a Mindmeld project. The Rasa project consists of three major files that contain much of data that is converted into the Mindmeld project: /domain.yml - Contains all of the intents, entities, actions, and templates used in the rasa project /data/stories.md - Contains the stories which are used to match intents and actions together /data/nlu_data.md - Contains the training data for each intent. Some of the training data may contain entities limitations: - Rasa has the ability to have custom actions, which is not supported by the converter. - Rasa has the ability to handle multiple intents per query, while Mindmeld does not. - Rasa training data may be json format, which is not currently supported. - Rasa has a feature called Rasa forms which is not currently supported. - Rasa's configuration files are not transfered, instead generic Mindmeld configuration files are copied over. """ # Create project directory with sub folders self.create_mindmeld_directory(self.mindmeld_project_directory) # Transfer over test data from Rasa project and reformat to Mindmeld project self.create_mindmeld_training_data() file_loc = os.path.dirname(os.path.realpath(__file__)) self.create_main(self.mindmeld_project_directory, file_loc) self.create_mindmeld_init() self.create_config(self.mindmeld_project_directory, file_loc) self.create_custom_features(self.mindmeld_project_directory, file_loc)
43.420233
97
0.60086
19e33eaabc8002583190512848d1b97981cece8b
2,557
py
Python
dizoo/multiagent_particle/envs/multiagent/multi_discrete.py
LuciusMos/DI-engine
b040b1c36afce038effec9eb483f625131573824
[ "Apache-2.0" ]
464
2021-07-08T07:26:33.000Z
2022-03-31T12:35:16.000Z
dizoo/multiagent_particle/envs/multiagent/multi_discrete.py
LuciusMos/DI-engine
b040b1c36afce038effec9eb483f625131573824
[ "Apache-2.0" ]
177
2021-07-09T08:22:55.000Z
2022-03-31T07:35:22.000Z
dizoo/multiagent_particle/envs/multiagent/multi_discrete.py
LuciusMos/DI-engine
b040b1c36afce038effec9eb483f625131573824
[ "Apache-2.0" ]
92
2021-07-08T12:16:37.000Z
2022-03-31T09:24:41.000Z
# An old version of OpenAI Gym's multi_discrete.py. (Was getting affected by Gym updates) # (https://github.com/openai/gym/blob/1fb81d4e3fb780ccf77fec731287ba07da35eb84/gym/spaces/multi_discrete.py) import numpy as np import gym #from gym.spaces import prng class MultiDiscrete(gym.Space): """ - The multi-discrete action space consists of a series of discrete action spaces with different parameters - It can be adapted to both a Discrete action space or a continuous (Box) action space - It is useful to represent game controllers or keyboards where each key can be represented as a discrete action space - It is parametrized by passing an array of arrays containing [min, max] for each discrete action space where the discrete action space can take any integers from `min` to `max` (both inclusive) Note: A value of 0 always need to represent the NOOP action. e.g. Nintendo Game Controller - Can be conceptualized as 3 discrete action spaces: 1) Arrow Keys: Discrete 5 - NOOP[0], UP[1], RIGHT[2], DOWN[3], LEFT[4] - params: min: 0, max: 4 2) Button A: Discrete 2 - NOOP[0], Pressed[1] - params: min: 0, max: 1 3) Button B: Discrete 2 - NOOP[0], Pressed[1] - params: min: 0, max: 1 - Can be initialized as MultiDiscrete([ [0,4], [0,1], [0,1] ]) """ def __init__(self, array_of_param_array): self.low = np.array([x[0] for x in array_of_param_array]) self.high = np.array([x[1] for x in array_of_param_array]) self.num_discrete_space = self.low.shape[0] def sample(self): """ Returns a array with one sample from each discrete action space """ # For each row: round(random .* (max - min) + min, 0) #random_array = prng.np_random.rand(self.num_discrete_space) np_random = np.random.RandomState() random_array = np_random.rand(self.num_discrete_space) return [int(x) for x in np.floor(np.multiply((self.high - self.low + 1.), random_array) + self.low)] def contains(self, x): return len(x) == self.num_discrete_space and (np.array(x) >= self.low).all() and (np.array(x) <= self.high).all() @property def shape(self): return self.num_discrete_space def __repr__(self): return "MultiDiscrete" + str(self.num_discrete_space) def __eq__(self, other): return np.array_equal(self.low, other.low) and np.array_equal(self.high, other.high)
47.351852
110
0.650763
c30fa4d213ccd71b1af04ff23006d7e4c6ff3605
199,221
py
Python
Packs/Base/Scripts/CommonServerPython/CommonServerPython_test.py
AdvancedThreatAnalytics/content
0ae9a9f8e94f227161c808341619044489484dae
[ "MIT" ]
null
null
null
Packs/Base/Scripts/CommonServerPython/CommonServerPython_test.py
AdvancedThreatAnalytics/content
0ae9a9f8e94f227161c808341619044489484dae
[ "MIT" ]
null
null
null
Packs/Base/Scripts/CommonServerPython/CommonServerPython_test.py
AdvancedThreatAnalytics/content
0ae9a9f8e94f227161c808341619044489484dae
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import demistomock as demisto import copy import json import re import os import sys import requests from pytest import raises, mark import pytest import warnings from CommonServerPython import xml2json, json2xml, entryTypes, formats, tableToMarkdown, underscoreToCamelCase, \ flattenCell, date_to_timestamp, datetime, camelize, pascalToSpace, argToList, \ remove_nulls_from_dictionary, is_error, get_error, hash_djb2, fileResult, is_ip_valid, get_demisto_version, \ IntegrationLogger, parse_date_string, IS_PY3, DebugLogger, b64_encode, parse_date_range, return_outputs, \ argToBoolean, ipv4Regex, ipv4cidrRegex, ipv6cidrRegex, ipv6Regex, batch, FeedIndicatorType, \ encode_string_results, safe_load_json, remove_empty_elements, aws_table_to_markdown, is_demisto_version_ge, \ appendContext, auto_detect_indicator_type, handle_proxy, get_demisto_version_as_str, get_x_content_info_headers, \ url_to_clickable_markdown, WarningsHandler, DemistoException, SmartGetDict import CommonServerPython try: from StringIO import StringIO except ImportError: # Python 3 from io import StringIO # noqa INFO = {'b': 1, 'a': { 'safd': 3, 'b': [ {'c': {'d': 432}, 'd': 2}, {'c': {'f': 1}}, {'b': 1234}, {'c': {'d': 4567}}, {'c': {'d': 11}}, {'c': {'d': u'asdf'}}], 'c': {'d': 10}, } } @pytest.fixture() def clear_version_cache(): """ Clear the version cache at end of the test (in case we mocked demisto.serverVersion) """ yield get_demisto_version._version = None @pytest.fixture(autouse=True) def handle_calling_context(mocker): mocker.patch.object(CommonServerPython, 'get_integration_name', return_value='Test') def test_xml(): import json xml = b"<work><employee><id>100</id><name>foo</name></employee><employee><id>200</id><name>goo</name>" \ b"</employee></work>" jsonExpected = '{"work": {"employee": [{"id": "100", "name": "foo"}, {"id": "200", "name": "goo"}]}}' jsonActual = xml2json(xml) assert jsonActual == jsonExpected, "expected\n" + jsonExpected + "\n to equal \n" + jsonActual jsonDict = json.loads(jsonActual) assert jsonDict['work']['employee'][0]['id'] == "100", 'id of first employee must be 100' assert jsonDict['work']['employee'][1]['name'] == "goo", 'name of second employee must be goo' xmlActual = json2xml(jsonActual) assert xmlActual == xml, "expected:\n{}\nto equal:\n{}".format(xml, xmlActual) def toEntry(table): return { 'Type': entryTypes['note'], 'Contents': table, 'ContentsFormat': formats['table'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': table } DATA = [ { 'header_1': 'a1', 'header_2': 'b1', 'header_3': 'c1' }, { 'header_1': 'a2', 'header_2': 'b2', 'header_3': 'c2' }, { 'header_1': 'a3', 'header_2': 'b3', 'header_3': 'c3' } ] TABLE_TO_MARKDOWN_ONLY_DATA_PACK = [ ( DATA, '''### tableToMarkdown test |header_1|header_2|header_3| |---|---|---| | a1 | b1 | c1 | | a2 | b2 | c2 | | a3 | b3 | c3 | ''' ), ( [ { 'header_1|with_pipe': 'a1', 'header_2': 'b1', }, { 'header_1|with_pipe': 'a2', 'header_2': 'b2', } ], '''### tableToMarkdown test |header_1\\|with_pipe|header_2| |---|---| | a1 | b1 | | a2 | b2 | ''' ) ] DATA_WITH_URLS = [( [ { 'header_1': 'a1', 'url1': 'b1', 'url2': 'c1' }, { 'header_1': 'a2', 'url1': 'b2', 'url2': 'c2' }, { 'header_1': 'a3', 'url1': 'b3', 'url2': 'c3' } ], '''### tableToMarkdown test |header_1|url1|url2| |---|---|---| | a1 | [b1](b1) | [c1](c1) | | a2 | [b2](b2) | [c2](c2) | | a3 | [b3](b3) | [c3](c3) | ''' )] COMPLEX_DATA_WITH_URLS = [( [ {'data': {'id': '1', 'result': {'files': [ { 'filename': 'name', 'size': 0, 'url': 'url' } ] }, 'links': ['link'] } }, {'data': {'id': '2', 'result': {'files': [ { 'filename': 'name', 'size': 0, 'url': 'url' } ] }, 'links': ['link'] } } ], [ {'data': {'id': '1', 'result': {'files': [ { 'filename': 'name', 'size': 0, 'url': '[url](url)' } ] }, 'links': ['[link](link)'] } }, {'data': {'id': '2', 'result': {'files': [ { 'filename': 'name', 'size': 0, 'url': '[url](url)' } ] }, 'links': ['[link](link)'] } } ])] @pytest.mark.parametrize('data, expected_table', TABLE_TO_MARKDOWN_ONLY_DATA_PACK) def test_tbl_to_md_only_data(data, expected_table): # sanity table = tableToMarkdown('tableToMarkdown test', data) assert table == expected_table def test_tbl_to_md_header_transform_underscoreToCamelCase(): # header transform table = tableToMarkdown('tableToMarkdown test with headerTransform', DATA, headerTransform=underscoreToCamelCase) expected_table = '''### tableToMarkdown test with headerTransform |Header1|Header2|Header3| |---|---|---| | a1 | b1 | c1 | | a2 | b2 | c2 | | a3 | b3 | c3 | ''' assert table == expected_table def test_tbl_to_md_multiline(): # escaping characters: multiline + md-chars data = copy.deepcopy(DATA) for i, d in enumerate(data): d['header_2'] = 'b%d.1\nb%d.2' % (i + 1, i + 1,) d['header_3'] = 'c%d|1' % (i + 1,) table = tableToMarkdown('tableToMarkdown test with multiline', data) expected_table = '''### tableToMarkdown test with multiline |header_1|header_2|header_3| |---|---|---| | a1 | b1.1<br>b1.2 | c1\\|1 | | a2 | b2.1<br>b2.2 | c2\\|1 | | a3 | b3.1<br>b3.2 | c3\\|1 | ''' assert table == expected_table def test_tbl_to_md_url(): # url + empty data data = copy.deepcopy(DATA) for i, d in enumerate(data): d['header_3'] = '[url](https:\\demisto.com)' d['header_2'] = None table_url_missing_info = tableToMarkdown('tableToMarkdown test with url and missing info', data) expected_table_url_missing_info = '''### tableToMarkdown test with url and missing info |header_1|header_2|header_3| |---|---|---| | a1 | | [url](https:\\demisto.com) | | a2 | | [url](https:\\demisto.com) | | a3 | | [url](https:\\demisto.com) | ''' assert table_url_missing_info == expected_table_url_missing_info def test_tbl_to_md_single_column(): # single column table table_single_column = tableToMarkdown('tableToMarkdown test with single column', DATA, ['header_1']) expected_table_single_column = '''### tableToMarkdown test with single column |header_1| |---| | a1 | | a2 | | a3 | ''' assert table_single_column == expected_table_single_column def test_is_ip_valid(): valid_ip_v6 = "FE80:0000:0000:0000:0202:B3FF:FE1E:8329" valid_ip_v6_b = "FE80::0202:B3FF:FE1E:8329" invalid_ip_v6 = "KKKK:0000:0000:0000:0202:B3FF:FE1E:8329" valid_ip_v4 = "10.10.10.10" invalid_ip_v4 = "10.10.10.9999" invalid_not_ip_with_ip_structure = "1.1.1.1.1.1.1.1.1.1.1.1.1.1.1" not_ip = "Demisto" assert not is_ip_valid(valid_ip_v6) assert is_ip_valid(valid_ip_v6, True) assert is_ip_valid(valid_ip_v6_b, True) assert not is_ip_valid(invalid_ip_v6, True) assert not is_ip_valid(not_ip, True) assert is_ip_valid(valid_ip_v4) assert not is_ip_valid(invalid_ip_v4) assert not is_ip_valid(invalid_not_ip_with_ip_structure) def test_tbl_to_md_list_values(): # list values data = copy.deepcopy(DATA) for i, d in enumerate(data): d['header_3'] = [i + 1, 'second item'] d['header_2'] = 'hi' table_list_field = tableToMarkdown('tableToMarkdown test with list field', data) expected_table_list_field = '''### tableToMarkdown test with list field |header_1|header_2|header_3| |---|---|---| | a1 | hi | 1,<br>second item | | a2 | hi | 2,<br>second item | | a3 | hi | 3,<br>second item | ''' assert table_list_field == expected_table_list_field def test_tbl_to_md_empty_fields(): # all fields are empty data = [ { 'a': None, 'b': None, 'c': None, } for _ in range(3) ] table_all_none = tableToMarkdown('tableToMarkdown test with all none fields', data) expected_table_all_none = '''### tableToMarkdown test with all none fields |a|b|c| |---|---|---| | | | | | | | | | | | | ''' assert table_all_none == expected_table_all_none # all fields are empty - removed table_all_none2 = tableToMarkdown('tableToMarkdown test with all none fields2', data, removeNull=True) expected_table_all_none2 = '''### tableToMarkdown test with all none fields2 **No entries.** ''' assert table_all_none2 == expected_table_all_none2 def test_tbl_to_md_header_not_on_first_object(): # header not on first object data = copy.deepcopy(DATA) data[1]['extra_header'] = 'sample' table_extra_header = tableToMarkdown('tableToMarkdown test with extra header', data, headers=['header_1', 'header_2', 'extra_header']) expected_table_extra_header = '''### tableToMarkdown test with extra header |header_1|header_2|extra_header| |---|---|---| | a1 | b1 | | | a2 | b2 | sample | | a3 | b3 | | ''' assert table_extra_header == expected_table_extra_header def test_tbl_to_md_no_header(): # no header table_no_headers = tableToMarkdown('tableToMarkdown test with no headers', DATA, headers=['no', 'header', 'found'], removeNull=True) expected_table_no_headers = '''### tableToMarkdown test with no headers **No entries.** ''' assert table_no_headers == expected_table_no_headers def test_tbl_to_md_dict_value(): # dict value data = copy.deepcopy(DATA) data[1]['extra_header'] = {'sample': 'qwerty', 'sample2': 'asdf'} table_dict_record = tableToMarkdown('tableToMarkdown test with dict record', data, headers=['header_1', 'header_2', 'extra_header']) expected_dict_record = '''### tableToMarkdown test with dict record |header_1|header_2|extra_header| |---|---|---| | a1 | b1 | | | a2 | b2 | sample: qwerty<br>sample2: asdf | | a3 | b3 | | ''' assert table_dict_record == expected_dict_record def test_tbl_to_md_string_header(): # string header (instead of list) table_string_header = tableToMarkdown('tableToMarkdown string header', DATA, 'header_1') expected_string_header_tbl = '''### tableToMarkdown string header |header_1| |---| | a1 | | a2 | | a3 | ''' assert table_string_header == expected_string_header_tbl def test_tbl_to_md_list_of_strings_instead_of_dict(): # list of string values instead of list of dict objects table_string_array = tableToMarkdown('tableToMarkdown test with string array', ['foo', 'bar', 'katz'], ['header_1']) expected_string_array_tbl = '''### tableToMarkdown test with string array |header_1| |---| | foo | | bar | | katz | ''' assert table_string_array == expected_string_array_tbl def test_tbl_to_md_list_of_strings_instead_of_dict_and_string_header(): # combination: string header + string values list table_string_array_string_header = tableToMarkdown('tableToMarkdown test with string array and string header', ['foo', 'bar', 'katz'], 'header_1') expected_string_array_string_header_tbl = '''### tableToMarkdown test with string array and string header |header_1| |---| | foo | | bar | | katz | ''' assert table_string_array_string_header == expected_string_array_string_header_tbl def test_tbl_to_md_dict_with_special_character(): data = { 'header_1': u'foo', 'header_2': [u'\xe2.rtf'] } table_with_character = tableToMarkdown('tableToMarkdown test with special character', data) expected_string_with_special_character = '''### tableToMarkdown test with special character |header_1|header_2| |---|---| | foo | â.rtf | ''' assert table_with_character == expected_string_with_special_character def test_tbl_to_md_header_with_special_character(): data = { 'header_1': u'foo' } table_with_character = tableToMarkdown('tableToMarkdown test with special character Ù', data) expected_string_with_special_character = '''### tableToMarkdown test with special character Ù |header_1| |---| | foo | ''' assert table_with_character == expected_string_with_special_character @pytest.mark.parametrize('data, expected_table', DATA_WITH_URLS) def test_tbl_to_md_clickable_url(data, expected_table): table = tableToMarkdown('tableToMarkdown test', data, url_keys=['url1', 'url2']) assert table == expected_table def test_tbl_keep_headers_list(): headers = ['header_1', 'header_2'] data = { 'header_1': 'foo' } table = tableToMarkdown('tableToMarkdown test', data, removeNull=True, headers=headers) assert 'header_2' not in table assert headers == ['header_1', 'header_2'] @pytest.mark.parametrize('data, expected_data', COMPLEX_DATA_WITH_URLS) def test_url_to_clickable_markdown(data, expected_data): table = url_to_clickable_markdown(data, url_keys=['url', 'links']) assert table == expected_data def test_flatten_cell(): # sanity utf8_to_flatten = b'abcdefghijklmnopqrstuvwxyz1234567890!'.decode('utf8') flatten_text = flattenCell(utf8_to_flatten) expected_string = 'abcdefghijklmnopqrstuvwxyz1234567890!' assert flatten_text == expected_string # list of uft8 and string to flatten str_a = b'abcdefghijklmnopqrstuvwxyz1234567890!' utf8_b = str_a.decode('utf8') list_to_flatten = [str_a, utf8_b] flatten_text2 = flattenCell(list_to_flatten) expected_flatten_string = 'abcdefghijklmnopqrstuvwxyz1234567890!,\nabcdefghijklmnopqrstuvwxyz1234567890!' assert flatten_text2 == expected_flatten_string # special character test special_char = u'会' list_of_special = [special_char, special_char] flattenCell(list_of_special) flattenCell(special_char) # dictionary test dict_to_flatten = {'first': u'会'} expected_flatten_dict = u'{\n "first": "\u4f1a"\n}' assert flattenCell(dict_to_flatten) == expected_flatten_dict def test_hash_djb2(): assert hash_djb2("test") == 2090756197, "Invalid value of hash_djb2" def test_camelize(): non_camalized = [{'chookity_bop': 'asdasd'}, {'ab_c': 'd e', 'fgh_ijk': 'lm', 'nop': 'qr_st'}] expected_output_upper_camel = [{'ChookityBop': 'asdasd'}, {'AbC': 'd e', 'Nop': 'qr_st', 'FghIjk': 'lm'}] expected_output_lower_camel = [{'chookityBop': 'asdasd'}, {'abC': 'd e', 'nop': 'qr_st', 'fghIjk': 'lm'}] assert camelize(non_camalized, '_') == expected_output_upper_camel assert camelize(non_camalized, '_', upper_camel=True) == expected_output_upper_camel assert camelize(non_camalized, '_', upper_camel=False) == expected_output_lower_camel non_camalized2 = {'ab_c': 'd e', 'fgh_ijk': 'lm', 'nop': 'qr_st'} expected_output2_upper_camel = {'AbC': 'd e', 'Nop': 'qr_st', 'FghIjk': 'lm'} expected_output2_lower_camel = {'abC': 'd e', 'nop': 'qr_st', 'fghIjk': 'lm'} assert camelize(non_camalized2, '_') == expected_output2_upper_camel assert camelize(non_camalized2, '_', upper_camel=True) == expected_output2_upper_camel assert camelize(non_camalized2, '_', upper_camel=False) == expected_output2_lower_camel def test_camelize_string(): from CommonServerPython import camelize_string non_camalized = ['chookity_bop', 'ab_c', 'fgh_ijk', 'nop'] expected_output_upper_camel = ['ChookityBop', 'AbC', 'FghIjk', 'Nop'] expected_output_lower_camel = ['chookityBop', 'abC', 'fghIjk', 'nop'] for i in range(len(non_camalized)): assert camelize_string(non_camalized[i], '_') == expected_output_upper_camel[i] assert camelize_string(non_camalized[i], '_', upper_camel=True) == expected_output_upper_camel[i] assert camelize_string(non_camalized[i], '_', upper_camel=False) == expected_output_lower_camel[i] def test_underscoreToCamelCase(): from CommonServerPython import underscoreToCamelCase non_camalized = ['chookity_bop', 'ab_c', 'fgh_ijk', 'nop'] expected_output_upper_camel = ['ChookityBop', 'AbC', 'FghIjk', 'Nop'] expected_output_lower_camel = ['chookityBop', 'abC', 'fghIjk', 'nop'] for i in range(len(non_camalized)): assert underscoreToCamelCase(non_camalized[i]) == expected_output_upper_camel[i] assert underscoreToCamelCase(non_camalized[i], upper_camel=True) == expected_output_upper_camel[i] assert underscoreToCamelCase(non_camalized[i], upper_camel=False) == expected_output_lower_camel[i] # Note this test will fail when run locally (in pycharm/vscode) as it assumes the machine (docker image) has UTC timezone set def test_date_to_timestamp(): assert date_to_timestamp('2018-11-06T08:56:41') == 1541494601000 assert date_to_timestamp(datetime.strptime('2018-11-06T08:56:41', "%Y-%m-%dT%H:%M:%S")) == 1541494601000 def test_pascalToSpace(): use_cases = [ ('Validate', 'Validate'), ('validate', 'Validate'), ('TCP', 'TCP'), ('eventType', 'Event Type'), ('eventID', 'Event ID'), ('eventId', 'Event Id'), ('IPAddress', 'IP Address'), ] for s, expected in use_cases: assert pascalToSpace(s) == expected, 'Error on {} != {}'.format(pascalToSpace(s), expected) def test_safe_load_json(): valid_json_str = '{"foo": "bar"}' expected_valid_json_result = {u'foo': u'bar'} assert expected_valid_json_result == safe_load_json(valid_json_str) def test_remove_empty_elements(): test_dict = { "foo": "bar", "baz": {}, "empty": [], "nested_dict": { "empty_list": [], "hummus": "pita" }, "nested_list": { "more_empty_list": [] } } expected_result = { "foo": "bar", "nested_dict": { "hummus": "pita" } } assert expected_result == remove_empty_elements(test_dict) @pytest.mark.parametrize('header,raw_input,expected_output', [ ('AWS DynamoDB DescribeBackup', { 'BackupDescription': { "Foo": "Bar", "Baz": "Bang", "TestKey": "TestValue" } }, '''### AWS DynamoDB DescribeBackup\n|Baz|Foo|TestKey|\n|---|---|---|\n| Bang | Bar | TestValue |\n'''), ('Empty Results', {'key': []}, '### Empty Results\n**No entries.**\n') ]) def test_aws_table_to_markdown(header, raw_input, expected_output): """ Given - A header and a dict with two levels - A header and a dict with one key pointing to an empty list When - Creating a markdown table using the aws_table_to_markdown function Ensure - The header appears as a markdown header and the dictionary is translated to a markdown table - The header appears as a markdown header and "No entries" text appears instead of a markdown table" """ assert aws_table_to_markdown(raw_input, header) == expected_output def test_argToList(): expected = ['a', 'b', 'c'] test1 = ['a', 'b', 'c'] test2 = 'a,b,c' test3 = '["a","b","c"]' test4 = 'a;b;c' test5 = 1 test6 = '1' test7 = True results = [argToList(test1), argToList(test2), argToList(test2, ','), argToList(test3), argToList(test4, ';')] for result in results: assert expected == result, 'argToList test failed, {} is not equal to {}'.format(str(result), str(expected)) assert argToList(test5) == [1] assert argToList(test6) == ['1'] assert argToList(test7) == [True] def test_remove_nulls(): temp_dictionary = {"a": "b", "c": 4, "e": [], "f": {}, "g": None, "h": "", "i": [1], "k": ()} expected_dictionary = {"a": "b", "c": 4, "i": [1]} remove_nulls_from_dictionary(temp_dictionary) assert expected_dictionary == temp_dictionary, \ "remove_nulls_from_dictionary test failed, {} is not equal to {}".format(str(temp_dictionary), str(expected_dictionary)) def test_is_error_true(): execute_command_results = [ { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } ] assert is_error(execute_command_results) def test_is_error_none(): assert not is_error(None) def test_is_error_single_entry(): execute_command_results = { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } assert is_error(execute_command_results) def test_is_error_false(): execute_command_results = [ { "Type": entryTypes["note"], "ContentsFormat": formats["text"], "Contents": "this is regular note" } ] assert not is_error(execute_command_results) def test_not_error_entry(): execute_command_results = "invalid command results as string" assert not is_error(execute_command_results) def test_get_error(): execute_command_results = [ { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } ] error = get_error(execute_command_results) assert error == "this is error message" def test_get_error_single_entry(): execute_command_results = { "Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": "this is error message" } error = get_error(execute_command_results) assert error == "this is error message" def test_get_error_need_raise_error_on_non_error_input(): execute_command_results = [ { "Type": entryTypes["note"], "ContentsFormat": formats["text"], "Contents": "this is not an error" } ] try: get_error(execute_command_results) except ValueError as exception: assert "execute_command_result has no error entry. before using get_error use is_error" in str(exception) return assert False @mark.parametrize('data,data_expected', [ ("this is a test", b"this is a test"), (u"עברית", u"עברית".encode('utf-8')), (b"binary data\x15\x00", b"binary data\x15\x00"), ]) # noqa: E124 def test_fileResult(mocker, request, data, data_expected): mocker.patch.object(demisto, 'uniqueFile', return_value="test_file_result") mocker.patch.object(demisto, 'investigation', return_value={'id': '1'}) file_name = "1_test_file_result" def cleanup(): try: os.remove(file_name) except OSError: pass request.addfinalizer(cleanup) res = fileResult("test.txt", data) assert res['File'] == "test.txt" with open(file_name, 'rb') as f: assert f.read() == data_expected # Error that always returns a unicode string to it's str representation class SpecialErr(Exception): def __str__(self): return u"מיוחד" def test_logger(): from CommonServerPython import LOG LOG(u'€') LOG(Exception(u'€')) LOG(SpecialErr(12)) def test_logger_write(mocker): mocker.patch.object(demisto, 'params', return_value={ 'credentials': {'password': 'my_password'}, }) mocker.patch.object(demisto, 'info') ilog = IntegrationLogger() ilog.write("This is a test with my_password") ilog.print_log() # assert that the print doesn't contain my_password # call_args is tuple (args list, kwargs). we only need the args args = demisto.info.call_args[0] assert 'This is a test' in args[0] assert 'my_password' not in args[0] assert '<XX_REPLACED>' in args[0] def test_logger_init_key_name(mocker): mocker.patch.object(demisto, 'params', return_value={ 'key': {'password': 'my_password'}, 'secret': 'my_secret' }) mocker.patch.object(demisto, 'info') ilog = IntegrationLogger() ilog.write("This is a test with my_password and my_secret") ilog.print_log() # assert that the print doesn't contain my_password # call_args is tuple (args list, kwargs). we only need the args args = demisto.info.call_args[0] assert 'This is a test' in args[0] assert 'my_password' not in args[0] assert 'my_secret' not in args[0] assert '<XX_REPLACED>' in args[0] def test_logger_replace_strs(mocker): mocker.patch.object(demisto, 'params', return_value={ 'apikey': 'my_apikey', }) ilog = IntegrationLogger() ilog.add_replace_strs('special_str', '') # also check that empty string is not added by mistake ilog('my_apikey is special_str and b64: ' + b64_encode('my_apikey')) assert ('' not in ilog.replace_strs) assert ilog.messages[0] == '<XX_REPLACED> is <XX_REPLACED> and b64: <XX_REPLACED>' TEST_SSH_KEY_ESC = '-----BEGIN OPENSSH PRIVATE KEY-----\\nb3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAACFw' \ 'AAAAdzc2gtcn\\n-----END OPENSSH PRIVATE KEY-----' TEST_SSH_KEY = '-----BEGIN OPENSSH PRIVATE KEY-----\nb3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAACFw' \ 'AAAAdzc2gtcn\n-----END OPENSSH PRIVATE KEY-----' TEST_PASS_JSON_CHARS = 'json_chars' SENSITIVE_PARAM = { 'app': None, 'authentication': { 'credential': '', 'credentials': { 'id': '', 'locked': False, 'modified': '0001-01-01T00: 00: 00Z', 'name': '', 'password': 'cred_pass', 'sortValues': None, 'sshkey': TEST_SSH_KEY, 'sshkeyEsc': TEST_SSH_KEY_ESC, 'sshkeyPass': 'ssh_key_secret_pass', 'user': '', 'vaultInstanceId': '', 'version': 0, 'workgroup': '' }, 'identifier': 'admin', 'password': 'ident_pass', 'passwordChanged': False }, 'password': TEST_PASS_JSON_CHARS + '\\"', } def test_logger_replace_strs_credentials(mocker): mocker.patch.object(demisto, 'params', return_value=SENSITIVE_PARAM) basic_auth = b64_encode('{}:{}'.format(SENSITIVE_PARAM['authentication']['identifier'], SENSITIVE_PARAM['authentication']['password'])) ilog = IntegrationLogger() # log some secrets ilog('my cred pass: cred_pass. my ssh key: ssh_key_secret. my ssh key: {}.' 'my ssh key: {}. my ssh pass: ssh_key_secret_pass. ident: ident_pass.' ' basic auth: {}'.format(TEST_SSH_KEY, TEST_SSH_KEY_ESC, basic_auth)) for s in ('cred_pass', TEST_SSH_KEY, TEST_SSH_KEY_ESC, 'ssh_key_secret_pass', 'ident_pass', basic_auth): assert s not in ilog.messages[0] def test_debug_logger_replace_strs(mocker): mocker.patch.object(demisto, 'params', return_value=SENSITIVE_PARAM) debug_logger = DebugLogger() debug_logger.int_logger.set_buffering(True) debug_logger.log_start_debug() msg = debug_logger.int_logger.messages[0] assert 'debug-mode started' in msg assert 'Params:' in msg for s in ('cred_pass', 'ssh_key_secret', 'ssh_key_secret_pass', 'ident_pass', TEST_SSH_KEY, TEST_SSH_KEY_ESC, TEST_PASS_JSON_CHARS): assert s not in msg def test_build_curl_post_noproxy(): """ Given: - HTTP client log messages of POST query - Proxy is not used and insecure is not checked When - Building curl query Then - Ensure curl is generated as expected """ ilog = IntegrationLogger() ilog.build_curl("send: b'POST /api HTTP/1.1\\r\\n" "Host: demisto.com\\r\\n" "User-Agent: python-requests/2.25.0\\r\\n" "Accept-Encoding: gzip, deflate\r\n" "Accept: */*\\r\\n" "Connection: keep-alive\\r\\n" "Authorization: TOKEN\\r\\n" "Content-Length: 57\\r\\n" "Content-Type: application/json\\r\\n\\r\\n'") ilog.build_curl("send: b'{\"data\": \"value\"}'") assert ilog.curl == [ 'curl -X POST https://demisto.com/api -H "Authorization: TOKEN" -H "Content-Type: application/json" ' '--noproxy "*" -d \'{"data": "value"}\'' ] def test_build_curl_post_xml(): """ Given: - HTTP client log messages of POST query with XML body - Proxy is not used and insecure is not checked When - Building curl query Then - Ensure curl is generated as expected """ ilog = IntegrationLogger() ilog.build_curl("send: b'POST /api HTTP/1.1\\r\\n" "Host: demisto.com\\r\\n" "User-Agent: python-requests/2.25.0\\r\\n" "Accept-Encoding: gzip, deflate\r\n" "Accept: */*\\r\\n" "Connection: keep-alive\\r\\n" "Authorization: TOKEN\\r\\n" "Content-Length: 57\\r\\n" "Content-Type: application/json\\r\\n\\r\\n'") ilog.build_curl("send: b'<?xml version=\"1.0\" encoding=\"utf-8\"?>'") assert ilog.curl == [ 'curl -X POST https://demisto.com/api -H "Authorization: TOKEN" -H "Content-Type: application/json" ' '--noproxy "*" -d \'<?xml version="1.0" encoding="utf-8"?>\'' ] def test_build_curl_get_withproxy(mocker): """ Given: - HTTP client log messages of GET query - Proxy used and insecure checked When - Building curl query Then - Ensure curl is generated as expected """ mocker.patch.object(demisto, 'params', return_value={ 'proxy': True, 'insecure': True }) os.environ['https_proxy'] = 'http://proxy' ilog = IntegrationLogger() ilog.build_curl("send: b'GET /api HTTP/1.1\\r\\n" "Host: demisto.com\\r\\n" "User-Agent: python-requests/2.25.0\\r\\n" "Accept-Encoding: gzip, deflate\r\n" "Accept: */*\\r\\n" "Connection: keep-alive\\r\\n" "Authorization: TOKEN\\r\\n" "Content-Length: 57\\r\\n" "Content-Type: application/json\\r\\n\\r\\n'") ilog.build_curl("send: b'{\"data\": \"value\"}'") assert ilog.curl == [ 'curl -X GET https://demisto.com/api -H "Authorization: TOKEN" -H "Content-Type: application/json" ' '--proxy http://proxy -k -d \'{"data": "value"}\'' ] def test_build_curl_multiple_queries(): """ Given: - HTTP client log messages of POST and GET queries - Proxy is not used and insecure is not checked When - Building curl query Then - Ensure two curl queries are generated as expected """ ilog = IntegrationLogger() ilog.build_curl("send: b'POST /api/post HTTP/1.1\\r\\n" "Host: demisto.com\\r\\n" "User-Agent: python-requests/2.25.0\\r\\n" "Accept-Encoding: gzip, deflate\r\n" "Accept: */*\\r\\n" "Connection: keep-alive\\r\\n" "Authorization: TOKEN\\r\\n" "Content-Length: 57\\r\\n" "Content-Type: application/json\\r\\n\\r\\n'") ilog.build_curl("send: b'{\"postdata\": \"value\"}'") ilog.build_curl("send: b'GET /api/get HTTP/1.1\\r\\n" "Host: demisto.com\\r\\n" "User-Agent: python-requests/2.25.0\\r\\n" "Accept-Encoding: gzip, deflate\r\n" "Accept: */*\\r\\n" "Connection: keep-alive\\r\\n" "Authorization: TOKEN\\r\\n" "Content-Length: 57\\r\\n" "Content-Type: application/json\\r\\n\\r\\n'") ilog.build_curl("send: b'{\"getdata\": \"value\"}'") assert ilog.curl == [ 'curl -X POST https://demisto.com/api/post -H "Authorization: TOKEN" -H "Content-Type: application/json" ' '--noproxy "*" -d \'{"postdata": "value"}\'', 'curl -X GET https://demisto.com/api/get -H "Authorization: TOKEN" -H "Content-Type: application/json" ' '--noproxy "*" -d \'{"getdata": "value"}\'' ] def test_is_mac_address(): from CommonServerPython import is_mac_address mac_address_false = 'AA:BB:CC:00:11' mac_address_true = 'AA:BB:CC:00:11:22' assert (is_mac_address(mac_address_false) is False) assert (is_mac_address(mac_address_true)) def test_return_error_command(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" outputs = {'output': 'error'} expected_error = { 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': err_msg, "EntryContext": outputs } # Test command that is not fetch-incidents mocker.patch.object(demisto, 'command', return_value="test-command") mocker.patch.object(sys, 'exit') mocker.spy(demisto, 'results') return_error(err_msg, '', outputs) assert str(demisto.results.call_args) == "call({})".format(expected_error) def test_return_error_fetch_incidents(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test fetch-incidents mocker.patch.object(demisto, 'command', return_value="fetch-incidents") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_fetch_credentials(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test fetch-credentials mocker.patch.object(demisto, 'command', return_value="fetch-credentials") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_fetch_indicators(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test fetch-indicators mocker.patch.object(demisto, 'command', return_value="fetch-indicators") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_long_running_execution(mocker): from CommonServerPython import return_error err_msg = "Testing unicode Ё" # Test long-running-execution mocker.patch.object(demisto, 'command', return_value="long-running-execution") returned_error = False try: return_error(err_msg) except Exception as e: returned_error = True assert str(e) == err_msg assert returned_error def test_return_error_script(mocker, monkeypatch): from CommonServerPython import return_error mocker.patch.object(sys, 'exit') mocker.spy(demisto, 'results') monkeypatch.delattr(demisto, 'command') err_msg = "Testing unicode Ё" outputs = {'output': 'error'} expected_error = { 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': err_msg, "EntryContext": outputs } assert not hasattr(demisto, 'command') return_error(err_msg, '', outputs) assert str(demisto.results.call_args) == "call({})".format(expected_error) def test_exception_in_return_error(mocker): from CommonServerPython import return_error, IntegrationLogger expected = {'EntryContext': None, 'Type': 4, 'ContentsFormat': 'text', 'Contents': 'Message'} mocker.patch.object(demisto, 'results') mocker.patch.object(IntegrationLogger, '__call__', return_value='Message') with raises(SystemExit, match='0'): return_error("Message", error=ValueError("Error!")) results = demisto.results.call_args[0][0] assert expected == results # IntegrationLogger = LOG (2 times if exception supplied) assert IntegrationLogger.__call__.call_count == 2 def test_return_error_get_modified_remote_data(mocker): from CommonServerPython import return_error mocker.patch.object(demisto, 'command', return_value='get-modified-remote-data') mocker.patch.object(demisto, 'results') err_msg = 'Test Error' with raises(SystemExit): return_error(err_msg) assert demisto.results.call_args[0][0]['Contents'] == 'skip update. error: ' + err_msg def test_return_error_get_modified_remote_data_not_implemented(mocker): from CommonServerPython import return_error mocker.patch.object(demisto, 'command', return_value='get-modified-remote-data') mocker.patch.object(demisto, 'results') err_msg = 'Test Error' with raises(SystemExit): try: raise NotImplementedError('Command not implemented') except: return_error(err_msg) assert demisto.results.call_args[0][0]['Contents'] == err_msg def test_indicator_type_by_server_version_under_6_1(mocker, clear_version_cache): """ Given - demisto version mock under 6.2 When - demisto version mock under 6.2 Then - Do not remove the STIX indicator type prefix. """ mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '6.1.0', } ) assert FeedIndicatorType.indicator_type_by_server_version("STIX Attack Pattern") == "STIX Attack Pattern" def test_indicator_type_by_server_version_6_2(mocker, clear_version_cache): """ Given - demisto version mock set to 6.2 When - demisto version mock set to 6.2 Then - Return the STIX indicator type with the STIX prefix """ mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '6.2.0', } ) assert FeedIndicatorType.indicator_type_by_server_version("STIX Attack Pattern") == "Attack Pattern" def test_assign_params(): from CommonServerPython import assign_params res = assign_params(a='1', b=True, c=None, d='') assert res == {'a': '1', 'b': True} class TestBuildDBotEntry(object): def test_build_dbot_entry(self): from CommonServerPython import build_dbot_entry res = build_dbot_entry('user@example.com', 'Email', 'Vendor', 1) assert res == {'DBotScore': {'Indicator': 'user@example.com', 'Type': 'email', 'Vendor': 'Vendor', 'Score': 1}} def test_build_dbot_entry_no_malicious(self): from CommonServerPython import build_dbot_entry res = build_dbot_entry('user@example.com', 'Email', 'Vendor', 3, build_malicious=False) assert res == {'DBotScore': {'Indicator': 'user@example.com', 'Type': 'email', 'Vendor': 'Vendor', 'Score': 3}} def test_build_dbot_entry_malicious(self): from CommonServerPython import build_dbot_entry, outputPaths res = build_dbot_entry('user@example.com', 'Email', 'Vendor', 3, 'Malicious email') assert res == { "DBotScore": { "Vendor": "Vendor", "Indicator": "user@example.com", "Score": 3, "Type": "email" }, outputPaths['email']: { "Malicious": { "Vendor": "Vendor", "Description": "Malicious email" }, "Address": "user@example.com" } } def test_build_malicious_dbot_entry_file(self): from CommonServerPython import build_malicious_dbot_entry, outputPaths res = build_malicious_dbot_entry('md5hash', 'MD5', 'Vendor', 'Google DNS') assert res == { outputPaths['file']: {"Malicious": {"Vendor": "Vendor", "Description": "Google DNS"}, "MD5": "md5hash"}} def test_build_malicious_dbot_entry(self): from CommonServerPython import build_malicious_dbot_entry, outputPaths res = build_malicious_dbot_entry('8.8.8.8', 'ip', 'Vendor', 'Google DNS') assert res == {outputPaths['ip']: { 'Address': '8.8.8.8', 'Malicious': {'Vendor': 'Vendor', 'Description': 'Google DNS'}}} def test_build_malicious_dbot_entry_wrong_indicator_type(self): from CommonServerPython import build_malicious_dbot_entry, DemistoException with raises(DemistoException, match='Wrong indicator type'): build_malicious_dbot_entry('8.8.8.8', 'notindicator', 'Vendor', 'Google DNS') def test_illegal_dbot_score(self): from CommonServerPython import build_dbot_entry, DemistoException with raises(DemistoException, match='illegal DBot score'): build_dbot_entry('1', 'ip', 'Vendor', 8) def test_illegal_indicator_type(self): from CommonServerPython import build_dbot_entry, DemistoException with raises(DemistoException, match='illegal indicator type'): build_dbot_entry('1', 'NOTHING', 'Vendor', 2) def test_file_indicators(self): from CommonServerPython import build_dbot_entry, outputPaths res = build_dbot_entry('md5hash', 'md5', 'Vendor', 3) assert res == { "DBotScore": { "Indicator": "md5hash", "Type": "file", "Vendor": "Vendor", "Score": 3 }, outputPaths['file']: { "MD5": "md5hash", "Malicious": { "Vendor": "Vendor", "Description": None } } } class TestCommandResults: def test_outputs_without_outputs_prefix(self): """ Given - outputs as a list without output_prefix When - Returins results Then - Validate a ValueError is raised. """ from CommonServerPython import CommandResults with pytest.raises(ValueError, match='outputs_prefix'): CommandResults(outputs=[]) def test_dbot_score_is_in_to_context_ip(self): """ Given - IP indicator When - Creating a reputation Then - Validate the DBOT Score and IP output exists in entry context. """ from CommonServerPython import Common, DBotScoreType, CommandResults indicator_id = '1.1.1.1' raw_response = {'id': indicator_id} indicator = Common.IP( indicator_id, dbot_score=Common.DBotScore( indicator_id, DBotScoreType.IP, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) ) entry_context = CommandResults( indicator=indicator, readable_output='Indicator!', outputs={'Indicator': raw_response}, raw_response=raw_response ).to_context()['EntryContext'] assert Common.DBotScore.CONTEXT_PATH in entry_context assert Common.IP.CONTEXT_PATH in entry_context def test_dbot_score_is_in_to_context_file(self): """ Given - File indicator When - Creating a reputation Then - Validate the DBOT Score and File output exists in entry context. """ from CommonServerPython import Common, DBotScoreType, CommandResults indicator_id = '63347f5d946164a23faca26b78a91e1c' raw_response = {'id': indicator_id} indicator = Common.File( md5=indicator_id, dbot_score=Common.DBotScore( indicator_id, DBotScoreType.FILE, 'Indicator', score=Common.DBotScore.BAD, malicious_description='malicious!' ) ) entry_context = CommandResults( indicator=indicator, readable_output='output!', outputs={'Indicator': raw_response}, raw_response=raw_response ).to_context()['EntryContext'] assert Common.DBotScore.CONTEXT_PATH in entry_context assert Common.File.CONTEXT_PATH in entry_context def test_dbot_score_is_in_to_context_domain(self): """ Given - domain indicator When - Creating a reputation Then - Validate the DBOT Score and File output exists in entry context. """ from CommonServerPython import Common, DBotScoreType, CommandResults indicator_id = 'example.com' raw_response = {'id': indicator_id} indicator = Common.Domain( indicator_id, dbot_score=Common.DBotScore( indicator_id, DBotScoreType.DOMAIN, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) ) entry_context = CommandResults( indicator=indicator, readable_output='output!', outputs={'Indicator': raw_response}, raw_response=raw_response ).to_context()['EntryContext'] assert Common.DBotScore.CONTEXT_PATH in entry_context assert Common.Domain.CONTEXT_PATH in entry_context def test_dbot_score_is_in_to_context_url(self): """ Given - domain indicator When - Creating a reputation Then - Validate the DBOT Score and File output exists in entry context. """ from CommonServerPython import Common, DBotScoreType, CommandResults indicator_id = 'https://example.com' raw_response = {'id': indicator_id} indicator = Common.URL( indicator_id, dbot_score=Common.DBotScore( indicator_id, DBotScoreType.URL, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) ) entry_context = CommandResults( indicator=indicator, readable_output='output!', outputs={'Indicator': raw_response}, raw_response=raw_response ).to_context()['EntryContext'] assert Common.DBotScore.CONTEXT_PATH in entry_context assert Common.URL.CONTEXT_PATH in entry_context def test_multiple_outputs_keys(self): """ Given - File has 3 unique keys. sha256, md5 and sha1 When - creating CommandResults with outputs_key_field=[sha1, sha256, md5] Then - entrycontext DT expression contains all 3 unique fields """ from CommonServerPython import CommandResults files = [ { 'sha256': '111', 'sha1': '111', 'md5': '111' }, { 'sha256': '222', 'sha1': '222', 'md5': '222' } ] results = CommandResults(outputs_prefix='File', outputs_key_field=['sha1', 'sha256', 'md5'], outputs=files) assert list(results.to_context()['EntryContext'].keys())[0] == \ 'File(val.sha1 && val.sha1 == obj.sha1 && val.sha256 && val.sha256 == obj.sha256 && val.md5 && val.md5 == obj.md5)' def test_output_prefix_includes_dt(self): """ Given - Returning File with only outputs_prefix which includes DT in it - outputs key fields are not provided When - creating CommandResults Then - EntryContext key should contain only the outputs_prefix """ from CommonServerPython import CommandResults files = [{"key": "value"}] # if outputs is empty list, no results are returned results = CommandResults(outputs_prefix='File(val.sha1 == obj.sha1 && val.md5 == obj.md5)', outputs_key_field='', outputs=files) assert list(results.to_context()['EntryContext'].keys())[0] == \ 'File(val.sha1 == obj.sha1 && val.md5 == obj.md5)' def test_readable_only_context(self): """ Given: - Markdown entry to CommandResults When: - Returning results Then: - Validate HumanReadable exists """ from CommonServerPython import CommandResults markdown = '## Something' context = CommandResults(readable_output=markdown).to_context() assert context.get('HumanReadable') == markdown def test_empty_outputs(self): """ Given: - Outputs as None When: - Returning results Then: - Validate EntryContext key value """ from CommonServerPython import CommandResults res = CommandResults( outputs_prefix='FoundIndicators', outputs_key_field='value', outputs=None ) context = res.to_context() assert {} == context.get('EntryContext') def test_empty_list_outputs(self): """ Given: - Outputs with empty list When: - Returning results Then: - Validate EntryContext key value """ from CommonServerPython import CommandResults res = CommandResults( outputs_prefix='FoundIndicators', outputs_key_field='value', outputs=[] ) context = res.to_context() assert {} == context.get('EntryContext') def test_return_command_results(self, clear_version_cache): from CommonServerPython import Common, CommandResults, EntryFormat, EntryType, DBotScoreType dbot_score = Common.DBotScore( indicator='8.8.8.8', integration_name='Test', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip = Common.IP( ip='8.8.8.8', dbot_score=dbot_score, asn='some asn', hostname='test.com', geo_country=None, geo_description=None, geo_latitude=None, geo_longitude=None, positive_engines=None, detection_engines=None ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[ip] ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': None, 'HumanReadable': None, 'EntryContext': { 'IP(val.Address && val.Address == obj.Address)': [ { 'Address': '8.8.8.8', 'ASN': 'some asn', 'Hostname': 'test.com' } ], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': '8.8.8.8', 'Vendor': 'Test', 'Score': 1, 'Type': 'ip' } ] }, 'IndicatorTimeline': [], 'Relationships': [], 'IgnoreAutoExtract': False, 'Note': False } def test_multiple_indicators(self, clear_version_cache): from CommonServerPython import Common, CommandResults, EntryFormat, EntryType, DBotScoreType dbot_score1 = Common.DBotScore( indicator='8.8.8.8', integration_name='Test', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip1 = Common.IP( ip='8.8.8.8', dbot_score=dbot_score1, asn='some asn', hostname='test.com', geo_country=None, geo_description=None, geo_latitude=None, geo_longitude=None, positive_engines=None, detection_engines=None ) dbot_score2 = Common.DBotScore( indicator='5.5.5.5', integration_name='Test', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip2 = Common.IP( ip='5.5.5.5', dbot_score=dbot_score2, asn='some asn', hostname='test.com', geo_country=None, geo_description=None, geo_latitude=None, geo_longitude=None, positive_engines=None, detection_engines=None ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[ip1, ip2] ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': None, 'HumanReadable': None, 'EntryContext': { 'IP(val.Address && val.Address == obj.Address)': [ { 'Address': '8.8.8.8', 'ASN': 'some asn', 'Hostname': 'test.com' }, { 'Address': '5.5.5.5', 'ASN': 'some asn', 'Hostname': 'test.com' } ], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': '8.8.8.8', 'Vendor': 'Test', 'Score': 1, 'Type': 'ip' }, { 'Indicator': '5.5.5.5', 'Vendor': 'Test', 'Score': 1, 'Type': 'ip' } ] }, 'IndicatorTimeline': [], 'Relationships': [], 'IgnoreAutoExtract': False, 'Note': False } def test_return_list_of_items(self, clear_version_cache): from CommonServerPython import CommandResults, EntryFormat, EntryType tickets = [ { 'ticket_id': 1, 'title': 'foo' }, { 'ticket_id': 2, 'title': 'goo' } ] results = CommandResults( outputs_prefix='Jira.Ticket', outputs_key_field='ticket_id', outputs=tickets ) assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': tickets, 'HumanReadable': tableToMarkdown('Results', tickets), 'EntryContext': { 'Jira.Ticket(val.ticket_id && val.ticket_id == obj.ticket_id)': tickets }, 'IndicatorTimeline': [], 'Relationships': [], 'IgnoreAutoExtract': False, 'Note': False } def test_return_list_of_items_the_old_way(self): from CommonServerPython import CommandResults, EntryFormat, EntryType tickets = [ { 'ticket_id': 1, 'title': 'foo' }, { 'ticket_id': 2, 'title': 'goo' } ] results = CommandResults( outputs_prefix=None, outputs_key_field=None, outputs={ 'Jira.Ticket(val.ticket_id == obj.ticket_id)': tickets }, raw_response=tickets ) assert sorted(results.to_context()) == sorted({ 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': tickets, 'HumanReadable': None, 'EntryContext': { 'Jira.Ticket(val.ticket_id == obj.ticket_id)': tickets }, 'IndicatorTimeline': [], 'Relationships': [], 'IgnoreAutoExtract': False, 'Note': False }) def test_create_dbot_score_with_invalid_score(self): from CommonServerPython import Common, DBotScoreType try: Common.DBotScore( indicator='8.8.8.8', integration_name='Virus Total', score=100, indicator_type=DBotScoreType.IP ) assert False except TypeError: assert True def test_create_dbot_score_with_invalid_reliability(self): """ Given: - an invalid reliability value. When - creating a DBotScore entry Then - an error should be raised """ from CommonServerPython import Common, DBotScoreType try: Common.DBotScore( indicator='8.8.8.8', integration_name='Virus Total', score=0, indicator_type=DBotScoreType.IP, reliability='Not a reliability' ) assert False except TypeError: assert True def test_create_dbot_score_with_valid_reliability(self): """ Given: - a valid reliability value When - creating a DBotScore entry Then - the proper entry is created """ from CommonServerPython import Common, DBotScoreType, DBotScoreReliability, CommandResults dbot_score = Common.DBotScore( indicator='8.8.8.8', integration_name='Test', score=Common.DBotScore.GOOD, indicator_type=DBotScoreType.IP, reliability=DBotScoreReliability.B, ) ip = Common.IP( ip='8.8.8.8', dbot_score=dbot_score, ) results = CommandResults( indicator=ip, ) assert results.to_context()['EntryContext'] == { 'IP(val.Address && val.Address == obj.Address)': [ { 'Address': '8.8.8.8' } ], 'DBotScore(val.Indicator && val.Indicator == ' 'obj.Indicator && val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': '8.8.8.8', 'Type': 'ip', 'Vendor': 'Test', 'Score': 1, 'Reliability': 'B - Usually reliable' } ] } def test_indicator_timeline_with_list_of_indicators(self): """ Given: - a list of an indicator When - creating an IndicatorTimeline object - creating a CommandResults objects using the IndicatorTimeline object Then - the IndicatorTimeline receives the appropriate category and message """ from CommonServerPython import CommandResults, IndicatorsTimeline indicators = ['8.8.8.8'] timeline = IndicatorsTimeline(indicators=indicators, category='test', message='message') results = CommandResults( outputs_prefix=None, outputs_key_field=None, outputs=None, raw_response=indicators, indicators_timeline=timeline ) assert sorted(results.to_context().get('IndicatorTimeline')) == sorted([ {'Value': '8.8.8.8', 'Category': 'test', 'Message': 'message'} ]) def test_indicator_timeline_running_from_an_integration(self, mocker): """ Given: - a list of an indicator When - mocking the demisto.params() - creating an IndicatorTimeline object - creating a CommandResults objects using the IndicatorTimeline object Then - the IndicatorTimeline receives the appropriate category and message """ from CommonServerPython import CommandResults, IndicatorsTimeline mocker.patch.object(demisto, 'params', return_value={'insecure': True}) indicators = ['8.8.8.8'] timeline = IndicatorsTimeline(indicators=indicators) results = CommandResults( outputs_prefix=None, outputs_key_field=None, outputs=None, raw_response=indicators, indicators_timeline=timeline ) assert sorted(results.to_context().get('IndicatorTimeline')) == sorted([ {'Value': '8.8.8.8', 'Category': 'Integration Update'} ]) def test_single_indicator(self, mocker): """ Given: - a single indicator When - mocking the demisto.params() - creating an Common.IP object - creating a CommandResults objects using the indicator member Then - The CommandResults.to_context() returns single result of standard output IP and DBotScore """ from CommonServerPython import CommandResults, Common, DBotScoreType mocker.patch.object(demisto, 'params', return_value={'insecure': True}) dbot_score = Common.DBotScore( indicator='8.8.8.8', integration_name='Test', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip = Common.IP( ip='8.8.8.8', dbot_score=dbot_score ) results = CommandResults( indicator=ip ) assert results.to_context()['EntryContext'] == { 'IP(val.Address && val.Address == obj.Address)': [ { 'Address': '8.8.8.8' } ], 'DBotScore(val.Indicator && val.Indicator == ' 'obj.Indicator && val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': '8.8.8.8', 'Type': 'ip', 'Vendor': 'Test', 'Score': 1 } ] } def test_single_indicator_with_indicators(self, mocker): """ Given: - a single indicator and a list of indicators When - mocking the demisto.params() - creating an Common.IP object - creating a CommandResults objects using the indicator member AND indicators member Then - The CommandResults.__init__() should raise an ValueError with appropriate error """ from CommonServerPython import CommandResults, Common, DBotScoreType mocker.patch.object(demisto, 'params', return_value={'insecure': True}) dbot_score = Common.DBotScore( indicator='8.8.8.8', integration_name='Virus Total', indicator_type=DBotScoreType.IP, score=Common.DBotScore.GOOD ) ip = Common.IP( ip='8.8.8.8', dbot_score=dbot_score ) with pytest.raises(ValueError) as e: CommandResults( indicator=ip, indicators=[ip] ) assert e.value.args[0] == 'indicators is DEPRECATED, use only indicator' def test_indicator_with_no_auto_extract(self): """ Given: - a list of an indicator - ignore_auto_extract set to True When - creating a CommandResults object with an indicator - using Ignore Auto Extract Then - the IgnoreAutoExtract field is set to True """ from CommonServerPython import CommandResults indicators = ['8.8.8.8'] results = CommandResults( outputs_prefix=None, outputs_key_field=None, outputs=None, raw_response=indicators, indicators_timeline=None, ignore_auto_extract=True ) assert results.to_context().get('IgnoreAutoExtract') is True def test_entry_as_note(self): """ Given: - mark_as_note set to True When: - creating a CommandResults object Then: - the Note field is set to True """ from CommonServerPython import CommandResults results = CommandResults( outputs_prefix='Test', outputs_key_field='value', outputs=None, mark_as_note=True ) assert results.to_context().get('Note') is True class TestBaseClient: from CommonServerPython import BaseClient text = {"status": "ok"} client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201)) RETRIES_POSITIVE_TEST = [ 'get', 'put', 'post' ] @pytest.mark.skip(reason="Test - too long, only manual") @pytest.mark.parametrize('method', RETRIES_POSITIVE_TEST) def test_http_requests_with_retry_sanity(self, method): """ Given - A base client When - Making http request call with retries configured to a number higher then 0 Then - Ensure a successful request return response as expected """ url = 'http://httpbin.org/{}'.format(method) res = self.client._http_request(method, '', full_url=url, retries=1, status_list_to_retry=[401]) assert res['url'] == url RETRIES_NEGATIVE_TESTS_INPUT = [ ('get', 400), ('get', 401), ('get', 500), ('put', 400), ('put', 401), ('put', 500), ('post', 400), ('post', 401), ('post', 500), ] @pytest.mark.skip(reason="Test - too long, only manual") @pytest.mark.parametrize('method, status', RETRIES_NEGATIVE_TESTS_INPUT) def test_http_requests_with_retry_negative_sanity(self, method, status): """ Given - A base client When - Making http request call with retries configured to a number higher then 0 Then - An unsuccessful request returns a DemistoException regardless the bad status code. """ from CommonServerPython import DemistoException with raises(DemistoException, match='{}'.format(status)): self.client._http_request(method, '', full_url='http://httpbin.org/status/{}'.format(status), retries=3, status_list_to_retry=[400, 401, 500]) def test_http_request_json(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', text=json.dumps(self.text)) res = self.client._http_request('get', 'event') assert res == self.text def test_http_request_json_negative(self, requests_mock): from CommonServerPython import DemistoException text = 'notjson' requests_mock.get('http://example.com/api/v2/event', text=text) with raises(DemistoException, match="Failed to parse json") as exception: self.client._http_request('get', 'event') assert exception.value.res assert exception.value.res.text == text def test_http_request_text(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', text=json.dumps(self.text)) res = self.client._http_request('get', 'event', resp_type='text') assert res == json.dumps(self.text) def test_http_request_content(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', content=str.encode(json.dumps(self.text))) res = self.client._http_request('get', 'event', resp_type='content') assert json.loads(res) == self.text def test_http_request_response(self, requests_mock): requests_mock.get('http://example.com/api/v2/event') res = self.client._http_request('get', 'event', resp_type='response') assert isinstance(res, requests.Response) def test_http_request_proxy_false(self): from CommonServerPython import BaseClient import requests_mock os.environ['http_proxy'] = 'http://testproxy:8899' os.environ['https_proxy'] = 'https://testproxy:8899' os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201), proxy=False, verify=True) with requests_mock.mock() as m: m.get('http://example.com/api/v2/event') res = client._http_request('get', 'event', resp_type='response') assert m.last_request.verify == '/test1.pem' assert not m.last_request.proxies assert m.called is True def test_http_request_proxy_true(self): from CommonServerPython import BaseClient import requests_mock os.environ['http_proxy'] = 'http://testproxy:8899' os.environ['https_proxy'] = 'https://testproxy:8899' os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201), proxy=True, verify=True) with requests_mock.mock() as m: m.get('http://example.com/api/v2/event') res = client._http_request('get', 'event', resp_type='response') assert m.last_request.verify == '/test1.pem' assert m.last_request.proxies == { 'http': 'http://testproxy:8899', 'https': 'https://testproxy:8899' } assert m.called is True def test_http_request_proxy_without_http_prefix(self): """ Given - proxy param is set to true - proxy configs are without http/https prefix When - run an http get request Then - the request will run and will use proxy configs that will include http:// prefix. """ from CommonServerPython import BaseClient import requests_mock os.environ['http_proxy'] = 'testproxy:8899' os.environ['https_proxy'] = 'testproxy:8899' os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201), proxy=True, verify=True) with requests_mock.mock() as m: m.get('http://example.com/api/v2/event') res = client._http_request('get', 'event', resp_type='response') assert m.last_request.verify == '/test1.pem' assert m.last_request.proxies == { 'http': 'http://testproxy:8899', 'https': 'http://testproxy:8899' } assert m.called is True def test_http_request_proxy_empty_proxy(self): """ Given - proxy param is set to true - proxy configs are empty When - run an http get request Then - the request will run and will use empty proxy configs and will not add https prefixes """ from CommonServerPython import BaseClient import requests_mock os.environ['http_proxy'] = '' os.environ['https_proxy'] = '' os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201), proxy=True, verify=True) with requests_mock.mock() as m: m.get('http://example.com/api/v2/event') res = client._http_request('get', 'event', resp_type='response') assert m.last_request.verify == '/test1.pem' assert m.last_request.proxies == {} assert m.called is True def test_http_request_verify_false(self): from CommonServerPython import BaseClient import requests_mock os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' client = BaseClient('http://example.com/api/v2/', ok_codes=(200, 201), proxy=True, verify=False) with requests_mock.mock() as m: m.get('http://example.com/api/v2/event') res = client._http_request('get', 'event', resp_type='response') assert m.last_request.verify is False assert m.called is True def test_http_request_not_ok(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=500) with raises(DemistoException, match="[500]"): self.client._http_request('get', 'event') def test_http_request_not_ok_but_ok(self, requests_mock): requests_mock.get('http://example.com/api/v2/event', status_code=500) res = self.client._http_request('get', 'event', resp_type='response', ok_codes=(500,)) assert res.status_code == 500 def test_http_request_not_ok_with_json(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=500, content=str.encode(json.dumps(self.text))) with raises(DemistoException, match="Error in API call"): self.client._http_request('get', 'event') def test_http_request_not_ok_with_json_parsing(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=500, content=str.encode(json.dumps(self.text))) with raises(DemistoException) as exception: self.client._http_request('get', 'event') message = str(exception.value) response_json_error = json.loads(message.split('\n')[1]) assert response_json_error == self.text def test_http_request_timeout(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.ConnectTimeout) with raises(DemistoException, match="Connection Timeout Error"): self.client._http_request('get', 'event') def test_http_request_ssl_error(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.SSLError) with raises(DemistoException, match="SSL Certificate Verification Failed"): self.client._http_request('get', 'event', resp_type='response') def test_http_request_ssl_error_insecure(cls, requests_mock): requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.SSLError('test ssl')) client = cls.BaseClient('http://example.com/api/v2/', ok_codes=(200, 201), verify=False) with raises(requests.exceptions.SSLError, match="^test ssl$"): client._http_request('get', 'event', resp_type='response') def test_http_request_proxy_error(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.ProxyError) with raises(DemistoException, match="Proxy Error"): self.client._http_request('get', 'event', resp_type='response') def test_http_request_connection_error(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', exc=requests.exceptions.ConnectionError) with raises(DemistoException, match="Verify that the server URL parameter"): self.client._http_request('get', 'event', resp_type='response') def test_text_exception_parsing(self, requests_mock): from CommonServerPython import DemistoException reason = 'Bad Request' text = 'additional text' requests_mock.get('http://example.com/api/v2/event', status_code=400, reason=reason, text=text) with raises(DemistoException, match='- {}\n{}'.format(reason, text)): self.client._http_request('get', 'event', resp_type='text') def test_json_exception_parsing(self, requests_mock): from CommonServerPython import DemistoException reason = 'Bad Request' json_response = {'error': 'additional text'} requests_mock.get('http://example.com/api/v2/event', status_code=400, reason=reason, json=json_response) with raises(DemistoException, match='- {}\n.*{}'.format(reason, json_response["error"])): self.client._http_request('get', 'event', resp_type='text') def test_exception_response_json_parsing_when_ok_code_is_invalid(self, requests_mock): from CommonServerPython import DemistoException json_response = {'error': 'additional text'} requests_mock.get('http://example.com/api/v2/event', status_code=400, json=json_response) try: self.client._http_request('get', 'event', ok_codes=(200,)) except DemistoException as e: resp_json = e.res.json() assert e.res.status_code == 400 assert resp_json.get('error') == 'additional text' def test_exception_response_text_parsing_when_ok_code_is_invalid(self, requests_mock): from CommonServerPython import DemistoException requests_mock.get('http://example.com/api/v2/event', status_code=400, text='{"error": "additional text"}') try: self.client._http_request('get', 'event', ok_codes=(200,)) except DemistoException as e: resp_json = json.loads(e.res.text) assert e.res.status_code == 400 assert resp_json.get('error') == 'additional text' def test_is_valid_ok_codes_empty(self): from requests import Response from CommonServerPython import BaseClient new_client = BaseClient('http://example.com/api/v2/') response = Response() response.status_code = 200 assert new_client._is_status_code_valid(response, None) def test_is_valid_ok_codes_from_function(self): from requests import Response response = Response() response.status_code = 200 assert self.client._is_status_code_valid(response, (200, 201)) def test_is_valid_ok_codes_from_self(self): from requests import Response response = Response() response.status_code = 200 assert self.client._is_status_code_valid(response, None) def test_is_valid_ok_codes_empty_false(self): from requests import Response response = Response() response.status_code = 400 assert not self.client._is_status_code_valid(response, None) def test_is_valid_ok_codes_from_function_false(self): from requests import Response response = Response() response.status_code = 400 assert not self.client._is_status_code_valid(response, (200, 201)) def test_is_valid_ok_codes_from_self_false(self): from requests import Response response = Response() response.status_code = 400 assert not self.client._is_status_code_valid(response) def test_parse_date_string(): # test unconverted data remains: Z assert parse_date_string('2019-09-17T06:16:39Z') == datetime(2019, 9, 17, 6, 16, 39) # test unconverted data remains: .22Z assert parse_date_string('2019-09-17T06:16:39.22Z') == datetime(2019, 9, 17, 6, 16, 39, 220000) # test time data without ms does not match format with ms assert parse_date_string('2019-09-17T06:16:39Z', '%Y-%m-%dT%H:%M:%S.%f') == datetime(2019, 9, 17, 6, 16, 39) # test time data with timezone Z does not match format with timezone +05:00 assert parse_date_string('2019-09-17T06:16:39Z', '%Y-%m-%dT%H:%M:%S+05:00') == datetime(2019, 9, 17, 6, 16, 39) # test time data with timezone +05:00 does not match format with timezone Z assert parse_date_string('2019-09-17T06:16:39+05:00', '%Y-%m-%dT%H:%M:%SZ') == datetime(2019, 9, 17, 6, 16, 39) # test time data with timezone -05:00 and with ms does not match format with timezone +02:00 without ms assert parse_date_string( '2019-09-17T06:16:39.4040+05:00', '%Y-%m-%dT%H:%M:%S+02:00' ) == datetime(2019, 9, 17, 6, 16, 39, 404000) def test_override_print(mocker): mocker.patch.object(demisto, 'info') int_logger = IntegrationLogger() int_logger.set_buffering(False) int_logger.print_override("test", "this") assert demisto.info.call_count == 1 assert demisto.info.call_args[0][0] == "test this" demisto.info.reset_mock() int_logger.print_override("test", "this", file=sys.stderr) assert demisto.info.call_count == 1 assert demisto.info.call_args[0][0] == "test this" buf = StringIO() # test writing to custom file (not stdout/stderr) int_logger.print_override("test", "this", file=buf) assert buf.getvalue() == 'test this\n' def test_http_client_debug(mocker): if not IS_PY3: pytest.skip("test not supported in py2") return mocker.patch.object(demisto, 'info') debug_log = DebugLogger() from http.client import HTTPConnection HTTPConnection.debuglevel = 1 # not using 'with' because its not compatible with all python versions con = HTTPConnection("google.com") con.request('GET', '/') with con.getresponse() as r: r.read() con.close() assert demisto.info.call_count > 5 assert debug_log is not None def test_http_client_debug_int_logger_sensitive_query_params(mocker): if not IS_PY3: pytest.skip("test not supported in py2") return mocker.patch.object(demisto, 'params', return_value={'APIKey': 'dummy'}) mocker.patch.object(demisto, 'info') debug_log = DebugLogger() from http.client import HTTPConnection HTTPConnection.debuglevel = 1 con = HTTPConnection("google.com") con.request('GET', '?apikey=dummy') # not using 'with' because its not compatible with all python versions with con.getresponse() as r: r.read() con.close() assert debug_log for arg in demisto.info.call_args_list: assert 'dummy' not in arg[0][0] if 'apikey' in arg[0][0]: assert 'apikey=<XX_REPLACED>' in arg[0][0] class TestParseDateRange: @staticmethod def test_utc_time_sanity(): utc_now = datetime.utcnow() utc_start_time, utc_end_time = parse_date_range('2 days', utc=True) # testing UTC date time and range of 2 days assert utc_now.replace(microsecond=0) == utc_end_time.replace(microsecond=0) assert abs(utc_start_time - utc_end_time).days == 2 @staticmethod def test_local_time_sanity(): local_now = datetime.now() local_start_time, local_end_time = parse_date_range('73 minutes', utc=False) # testing local datetime and range of 73 minutes assert local_now.replace(microsecond=0) == local_end_time.replace(microsecond=0) assert abs(local_start_time - local_end_time).seconds / 60 == 73 @staticmethod def test_with_trailing_spaces(): utc_now = datetime.utcnow() utc_start_time, utc_end_time = parse_date_range('2 days ', utc=True) # testing UTC date time and range of 2 days assert utc_now.replace(microsecond=0) == utc_end_time.replace(microsecond=0) assert abs(utc_start_time - utc_end_time).days == 2 @staticmethod def test_case_insensitive(): utc_now = datetime.utcnow() utc_start_time, utc_end_time = parse_date_range('2 Days', utc=True) # testing UTC date time and range of 2 days assert utc_now.replace(microsecond=0) == utc_end_time.replace(microsecond=0) assert abs(utc_start_time - utc_end_time).days == 2 @staticmethod def test_error__invalid_input_format(mocker): mocker.patch.object(sys, 'exit', side_effect=Exception('mock exit')) demisto_results = mocker.spy(demisto, 'results') try: parse_date_range('2 Days ago', utc=True) except Exception as exp: assert str(exp) == 'mock exit' results = demisto.results.call_args[0][0] assert 'date_range must be "number date_range_unit"' in results['Contents'] @staticmethod def test_error__invalid_time_value_not_a_number(mocker): mocker.patch.object(sys, 'exit', side_effect=Exception('mock exit')) demisto_results = mocker.spy(demisto, 'results') try: parse_date_range('ten Days', utc=True) except Exception as exp: assert str(exp) == 'mock exit' results = demisto.results.call_args[0][0] assert 'The time value is invalid' in results['Contents'] @staticmethod def test_error__invalid_time_value_not_an_integer(mocker): mocker.patch.object(sys, 'exit', side_effect=Exception('mock exit')) demisto_results = mocker.spy(demisto, 'results') try: parse_date_range('1.5 Days', utc=True) except Exception as exp: assert str(exp) == 'mock exit' results = demisto.results.call_args[0][0] assert 'The time value is invalid' in results['Contents'] @staticmethod def test_error__invalid_time_unit(mocker): mocker.patch.object(sys, 'exit', side_effect=Exception('mock exit')) demisto_results = mocker.spy(demisto, 'results') try: parse_date_range('2 nights', utc=True) except Exception as exp: assert str(exp) == 'mock exit' results = demisto.results.call_args[0][0] assert 'The unit of date_range is invalid' in results['Contents'] def test_encode_string_results(): s = "test" assert s == encode_string_results(s) s2 = u"בדיקה" if IS_PY3: res = str(s2) else: res = s2.encode("utf8") assert encode_string_results(s2) == res not_string = [1, 2, 3] assert not_string == encode_string_results(not_string) class TestReturnOutputs: def test_return_outputs(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} return_outputs(md, outputs, raw_response) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert 'json' == results['ContentsFormat'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] def test_return_outputs_only_md(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' return_outputs(md) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert md == results['HumanReadable'] assert 'text' == results['ContentsFormat'] def test_return_outputs_raw_none(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} return_outputs(md, outputs, None) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert outputs == results['Contents'] assert 'json' == results['ContentsFormat'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] def test_return_outputs_timeline(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} timeline = [{'Value': 'blah', 'Message': 'test', 'Category': 'test'}] return_outputs(md, outputs, raw_response, timeline) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert 'json' == results['ContentsFormat'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] assert timeline == results['IndicatorTimeline'] def test_return_outputs_timeline_without_category(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} timeline = [{'Value': 'blah', 'Message': 'test'}] return_outputs(md, outputs, raw_response, timeline) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert 'json' == results['ContentsFormat'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] assert 'Category' in results['IndicatorTimeline'][0].keys() assert results['IndicatorTimeline'][0]['Category'] == 'Integration Update' def test_return_outputs_ignore_auto_extract(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' outputs = {'Event': 1} raw_response = {'event': 1} ignore_auto_extract = True return_outputs(md, outputs, raw_response, ignore_auto_extract=ignore_auto_extract) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert 'json' == results['ContentsFormat'] assert outputs == results['EntryContext'] assert md == results['HumanReadable'] assert ignore_auto_extract == results['IgnoreAutoExtract'] def test_return_outputs_text_raw_response(self, mocker): mocker.patch.object(demisto, 'results') md = 'md' raw_response = 'string' return_outputs(md, raw_response=raw_response) results = demisto.results.call_args[0][0] assert len(demisto.results.call_args[0]) == 1 assert demisto.results.call_count == 1 assert raw_response == results['Contents'] assert 'text' == results['ContentsFormat'] def test_argToBoolean(): assert argToBoolean('true') is True assert argToBoolean('yes') is True assert argToBoolean('TrUe') is True assert argToBoolean(True) is True assert argToBoolean('false') is False assert argToBoolean('no') is False assert argToBoolean(False) is False batch_params = [ # full batch case ([1, 2, 3], 1, [[1], [2], [3]]), # empty case ([], 1, []), # out of index case ([1, 2, 3], 5, [[1, 2, 3]]), # out of index in end with batches ([1, 2, 3, 4, 5], 2, [[1, 2], [3, 4], [5]]), ([1] * 100, 2, [[1, 1]] * 50) ] @pytest.mark.parametrize('iterable, sz, expected', batch_params) def test_batch(iterable, sz, expected): for i, item in enumerate(batch(iterable, sz)): assert expected[i] == item regexes_test = [ (ipv4Regex, '192.168.1.1', True), (ipv4Regex, '192.168.1.1/24', False), (ipv4Regex, '192.168.a.1', False), (ipv4Regex, '192.168..1.1', False), (ipv4Regex, '192.256.1.1', False), (ipv4Regex, '192.256.1.1.1', False), (ipv4cidrRegex, '192.168.1.1/32', True), (ipv4cidrRegex, '192.168.1.1.1/30', False), (ipv4cidrRegex, '192.168.1.b/30', False), (ipv4cidrRegex, '192.168.1.12/381', False), (ipv6Regex, '2001:db8:a0b:12f0::1', True), (ipv6Regex, '2001:db8:a0b:12f0::1/11', False), (ipv6Regex, '2001:db8:a0b:12f0::1::1', False), (ipv6Regex, '2001:db8:a0b:12f0::98aa5', False), (ipv6cidrRegex, '2001:db8:a0b:12f0::1/64', True), (ipv6cidrRegex, '2001:db8:a0b:12f0::1/256', False), (ipv6cidrRegex, '2001:db8:a0b:12f0::1::1/25', False), (ipv6cidrRegex, '2001:db8:a0b:12f0::1aaasds::1/1', False) ] @pytest.mark.parametrize('pattern, string, expected', regexes_test) def test_regexes(pattern, string, expected): # (str, str, bool) -> None # emulates re.fullmatch from py3.4 assert expected is bool(re.match("(?:" + pattern + r")\Z", string)) IP_TO_INDICATOR_TYPE_PACK = [ ('192.168.1.1', FeedIndicatorType.IP), ('192.168.1.1/32', FeedIndicatorType.CIDR), ('2001:db8:a0b:12f0::1', FeedIndicatorType.IPv6), ('2001:db8:a0b:12f0::1/64', FeedIndicatorType.IPv6CIDR), ] @pytest.mark.parametrize('ip, indicator_type', IP_TO_INDICATOR_TYPE_PACK) def test_ip_to_indicator(ip, indicator_type): assert FeedIndicatorType.ip_to_indicator_type(ip) is indicator_type data_test_b64_encode = [ (u'test', 'dGVzdA=='), ('test', 'dGVzdA=='), (b'test', 'dGVzdA=='), ('', ''), ('%', 'JQ=='), (u'§', 'wqc='), (u'§t`e§s`t§', 'wqd0YGXCp3NgdMKn'), ] @pytest.mark.parametrize('_input, expected_output', data_test_b64_encode) def test_b64_encode(_input, expected_output): output = b64_encode(_input) assert output == expected_output, 'b64_encode({}) returns: {} instead: {}'.format(_input, output, expected_output) def test_traceback_in_return_error_debug_mode_on(mocker): mocker.patch.object(demisto, 'command', return_value="test-command") mocker.spy(demisto, 'results') mocker.patch('CommonServerPython.is_debug_mode', return_value=True) from CommonServerPython import return_error try: raise Exception("This is a test string") except Exception: with pytest.raises(SystemExit): return_error("some text") assert "This is a test string" in str(demisto.results.call_args) assert "Traceback" in str(demisto.results.call_args) assert "some text" in str(demisto.results.call_args) def test_traceback_in_return_error_debug_mode_off(mocker): mocker.patch.object(demisto, 'command', return_value="test-command") mocker.spy(demisto, 'results') mocker.patch('CommonServerPython.is_debug_mode', return_value=False) from CommonServerPython import return_error try: raise Exception("This is a test string") except Exception: with pytest.raises(SystemExit): return_error("some text") assert "This is a test string" not in str(demisto.results.call_args) assert "Traceback" not in str(demisto.results.call_args) assert "some text" in str(demisto.results.call_args) # append_context unit test CONTEXT_MOCK = { 'str_key': 'str_value', 'dict_key': { 'key1': 'val1', 'key2': 'val2' }, 'int_key': 1, 'list_key_str': ['val1', 'val2'], 'list_key_list': ['val1', 'val2'], 'list_key_dict': ['val1', 'val2'] } UPDATED_CONTEXT = { 'str_key': 'str_data,str_value', 'dict_key': { 'key1': 'val1', 'key2': 'val2', 'data_key': 'data_val' }, 'int_key': [1, 2], 'list_key_str': ['val1', 'val2', 'str_data'], 'list_key_list': ['val1', 'val2', 'val1', 'val2'], 'list_key_dict': ['val1', 'val2', {'data_key': 'data_val'}] } DATA_MOCK_STRING = "str_data" DATA_MOCK_LIST = ['val1', 'val2'] DATA_MOCK_DICT = { 'data_key': 'data_val' } DATA_MOCK_INT = 2 STR_KEY = "str_key" DICT_KEY = "dict_key" APPEND_CONTEXT_INPUT = [ (CONTEXT_MOCK, DATA_MOCK_STRING, STR_KEY, "key = {}, val = {}".format(STR_KEY, UPDATED_CONTEXT[STR_KEY])), (CONTEXT_MOCK, DATA_MOCK_LIST, STR_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_DICT, STR_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_STRING, DICT_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_LIST, DICT_KEY, "TypeError"), (CONTEXT_MOCK, DATA_MOCK_DICT, DICT_KEY, "key = {}, val = {}".format(DICT_KEY, UPDATED_CONTEXT[DICT_KEY])), (CONTEXT_MOCK, DATA_MOCK_STRING, 'list_key_str', "key = {}, val = {}".format('list_key_str', UPDATED_CONTEXT['list_key_str'])), (CONTEXT_MOCK, DATA_MOCK_LIST, 'list_key_list', "key = {}, val = {}".format('list_key_list', UPDATED_CONTEXT['list_key_list'])), (CONTEXT_MOCK, DATA_MOCK_DICT, 'list_key_dict', "key = {}, val = {}".format('list_key_dict', UPDATED_CONTEXT['list_key_dict'])), (CONTEXT_MOCK, DATA_MOCK_INT, 'int_key', "key = {}, val = {}".format('int_key', UPDATED_CONTEXT['int_key'])), ] def get_set_context(key, val): from CommonServerPython import return_error return_error("key = {}, val = {}".format(key, val)) @pytest.mark.parametrize('context_mock, data_mock, key, expected_answer', APPEND_CONTEXT_INPUT) def test_append_context(mocker, context_mock, data_mock, key, expected_answer): from CommonServerPython import demisto mocker.patch.object(demisto, 'get', return_value=context_mock.get(key)) mocker.patch.object(demisto, 'setContext', side_effect=get_set_context) mocker.patch.object(demisto, 'results') if "TypeError" not in expected_answer: with raises(SystemExit, match='0'): appendContext(key, data_mock) assert expected_answer in demisto.results.call_args[0][0]['Contents'] else: with raises(TypeError) as e: appendContext(key, data_mock) assert expected_answer in e.value INDICATOR_VALUE_AND_TYPE = [ ('3fec1b14cea32bbcd97fad4507b06888', "File"), ('1c8893f75089a27ca6a8d49801d7aa6b64ea0c6167fe8b1becfe9bc13f47bdc1', 'File'), ('castaneda-thornton.com', 'Domain'), ('192.0.0.1', 'IP'), ('test@gmail.com', 'Email'), ('e775eb1250137c0b83d4e7c4549c71d6f10cae4e708ebf0b5c4613cbd1e91087', 'File'), ('test@yahoo.com', 'Email'), ('http://test.com', 'URL'), ('11.111.11.11/11', 'CIDR'), ('CVE-0000-0000', 'CVE'), ('dbot@demisto.works', 'Email'), ('37b6d02m-63e0-495e-kk92-7c21511adc7a@SB2APC01FT091.outlook.com', 'Email'), ('dummy@recipient.com', 'Email'), ('image003.gif@01CF4D7F.1DF62650', 'Email'), ('bruce.wayne@pharmtech.zz', 'Email'), ('joe@gmail.com', 'Email'), ('koko@demisto.com', 'Email'), ('42a5e275559a1651b3df8e15d3f5912499f0f2d3d1523959c56fc5aea6371e59', 'File'), ('10676cf66244cfa91567fbc1a937f4cb19438338b35b69d4bcc2cf0d3a44af5e', 'File'), ('52483514f07eb14570142f6927b77deb7b4da99f', 'File'), ('c8092abd8d581750c0530fa1fc8d8318', 'File'), ('fe80:0000:0000:0000:91ba:7558:26d3:acde', 'IPv6'), ('fd60:e22:f1b9::2', 'IPv6'), ('2001:db8:0000:0000:0000:0000:0000:0000', 'IPv6'), ('112.126.94.107', 'IP'), ('a', None), ('*castaneda-thornton.com', 'DomainGlob'), ( '53e6baa124f54462786f1122e98e38ff1be3de82fe2a96b1849a8637043fd847eec7e0f53307bddf7a066565292d500c36c941f1f3bb9dcac807b2f4a0bfce1b', 'File') ] @pytest.mark.parametrize('indicator_value, indicatory_type', INDICATOR_VALUE_AND_TYPE) def test_auto_detect_indicator_type(indicator_value, indicatory_type): """ Given - Indicator value - Indicator type When - Trying to detect the type of an indicator. Then - Run the auto_detect_indicator_type and validate that the indicator type the function returns is as expected. """ if sys.version_info.major == 3 and sys.version_info.minor == 8: assert auto_detect_indicator_type(indicator_value) == indicatory_type else: try: auto_detect_indicator_type(indicator_value) except Exception as e: assert str(e) == "Missing tldextract module, In order to use the auto detect function please" \ " use a docker image with it installed such as: demisto/jmespath" def test_auto_detect_indicator_type_tldextract(mocker): """ Given tldextract version is lower than 3.0.0 When Trying to detect the type of an indicator. Then Run the auto_detect_indicator_type and validate that tldextract using `cache_file` arg and not `cache_dir` """ if sys.version_info.major == 3 and sys.version_info.minor >= 8: import tldextract as tlde tlde.__version__ = '2.2.7' mocker.patch.object(tlde, 'TLDExtract') auto_detect_indicator_type('8') res = tlde.TLDExtract.call_args assert 'cache_file' in res[1].keys() def test_handle_proxy(mocker): os.environ['REQUESTS_CA_BUNDLE'] = '/test1.pem' mocker.patch.object(demisto, 'params', return_value={'insecure': True}) handle_proxy() assert os.getenv('REQUESTS_CA_BUNDLE') is None os.environ['REQUESTS_CA_BUNDLE'] = '/test2.pem' mocker.patch.object(demisto, 'params', return_value={}) handle_proxy() assert os.environ['REQUESTS_CA_BUNDLE'] == '/test2.pem' # make sure no change mocker.patch.object(demisto, 'params', return_value={'unsecure': True}) handle_proxy() assert os.getenv('REQUESTS_CA_BUNDLE') is None def test_handle_proxy_without_http_prefix(): """ Given proxy is configured in environment vars without http/https prefixes When run handle_proxy() Then the function will return proxies with http:// prefix """ os.environ['HTTP_PROXY'] = 'testproxy:8899' os.environ['HTTPS_PROXY'] = 'testproxy:8899' proxies = handle_proxy(checkbox_default_value=True) assert proxies['http'] == 'http://testproxy:8899' assert proxies['https'] == 'http://testproxy:8899' def test_handle_proxy_with_http_prefix(): """ Given proxy is configured in environment vars with http/https prefixes When run handle_proxy() Then the function will return proxies unchanged """ os.environ['HTTP_PROXY'] = 'http://testproxy:8899' os.environ['HTTPS_PROXY'] = 'https://testproxy:8899' proxies = handle_proxy(checkbox_default_value=True) assert proxies['http'] == 'http://testproxy:8899' assert proxies['https'] == 'https://testproxy:8899' def test_handle_proxy_with_socks5_prefix(): """ Given proxy is configured in environment vars with socks5 (socks proxy) prefixes When run handle_proxy() Then the function will return proxies unchanged """ os.environ['HTTP_PROXY'] = 'socks5://testproxy:8899' os.environ['HTTPS_PROXY'] = 'socks5://testproxy:8899' proxies = handle_proxy(checkbox_default_value=True) assert proxies['http'] == 'socks5://testproxy:8899' assert proxies['https'] == 'socks5://testproxy:8899' @pytest.mark.parametrize(argnames="dict_obj, keys, expected, default_return_value", argvalues=[ ({'a': '1'}, ['a'], '1', None), ({'a': {'b': '2'}}, ['a', 'b'], '2', None), ({'a': {'b': '2'}}, ['a', 'c'], 'test', 'test'), ]) def test_safe_get(dict_obj, keys, expected, default_return_value): from CommonServerPython import dict_safe_get assert expected == dict_safe_get(dict_object=dict_obj, keys=keys, default_return_value=default_return_value) MIRRORS = ''' [{ "channel_id":"GKQ86DVPH", "channel_name": "incident-681", "channel_topic": "incident-681", "investigation_id":"681", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GKB19PA3V", "channel_name": "group2", "channel_topic": "cooltopic", "investigation_id":"684", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GKB19PA3V", "channel_name": "group2", "channel_topic": "cooltopic", "investigation_id":"692", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GKNEJU4P9", "channel_name": "group3", "channel_topic": "incident-713", "investigation_id":"713", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }, { "channel_id":"GL8GHC0LV", "channel_name": "group5", "channel_topic": "incident-734", "investigation_id":"734", "mirror_type":"all", "mirror_direction":"both", "mirror_to":"group", "auto_close":true, "mirrored":true }] ''' CONVERSATIONS = '''[{ "id": "C012AB3CD", "name": "general", "is_channel": true, "is_group": false, "is_im": false, "created": 1449252889, "creator": "U012A3CDE", "is_archived": false, "is_general": true, "unlinked": 0, "name_normalized": "general", "is_shared": false, "is_ext_shared": false, "is_org_shared": false, "pending_shared": [], "is_pending_ext_shared": false, "is_member": true, "is_private": false, "is_mpim": false, "topic": { "value": "Company-wide announcements and work-based matters", "creator": "", "last_set": 0 }, "purpose": { "value": "This channel is for team-wide communication and announcements. All team members are in this channel.", "creator": "", "last_set": 0 }, "previous_names": [], "num_members": 4 }, { "id": "C061EG9T2", "name": "random", "is_channel": true, "is_group": false, "is_im": false, "created": 1449252889, "creator": "U061F7AUR", "is_archived": false, "is_general": false, "unlinked": 0, "name_normalized": "random", "is_shared": false, "is_ext_shared": false, "is_org_shared": false, "pending_shared": [], "is_pending_ext_shared": false, "is_member": true, "is_private": false, "is_mpim": false, "topic": { "value": "Non-work banter and water cooler conversation", "creator": "", "last_set": 0 }, "purpose": { "value": "A place for non-work-related flimflam.", "creator": "", "last_set": 0 }, "previous_names": [], "num_members": 4 }]''' OBJECTS_TO_KEYS = { 'mirrors': 'investigation_id', 'questions': 'entitlement', 'users': 'id' } def set_integration_context_versioned(integration_context, version=-1, sync=False): global INTEGRATION_CONTEXT_VERSIONED try: if not INTEGRATION_CONTEXT_VERSIONED: INTEGRATION_CONTEXT_VERSIONED = {'context': '{}', 'version': 0} except NameError: INTEGRATION_CONTEXT_VERSIONED = {'context': '{}', 'version': 0} current_version = INTEGRATION_CONTEXT_VERSIONED['version'] if version != -1 and version <= current_version: raise ValueError('DB Insert version {} does not match version {}'.format(current_version, version)) INTEGRATION_CONTEXT_VERSIONED = {'context': integration_context, 'version': current_version + 1} def get_integration_context_versioned(refresh=False): return INTEGRATION_CONTEXT_VERSIONED def test_merge_lists(): from CommonServerPython import merge_lists # Set original = [{'id': '1', 'updated': 'n'}, {'id': '2', 'updated': 'n'}, {'id': '11', 'updated': 'n'}] updated = [{'id': '1', 'updated': 'y'}, {'id': '3', 'updated': 'y'}, {'id': '11', 'updated': 'n', 'remove': True}] expected = [{'id': '1', 'updated': 'y'}, {'id': '2', 'updated': 'n'}, {'id': '3', 'updated': 'y'}] # Arrange result = merge_lists(original, updated, 'id') # Assert assert len(result) == len(expected) for obj in result: assert obj in expected @pytest.mark.parametrize('version, expected', [ ({'version': '5.5.0'}, False), ({'version': '6.0.0'}, True), ] ) def test_is_versioned_context_available(mocker, version, expected): from CommonServerPython import is_versioned_context_available # Set mocker.patch.object(demisto, 'demistoVersion', return_value=version) # Arrange result = is_versioned_context_available() get_demisto_version._version = None # Assert assert expected == result def test_update_context_merge(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) mocker.patch.object(CommonServerPython, 'is_versioned_context_available', return_value=True) new_mirror = { 'channel_id': 'new_group', 'channel_name': 'incident-999', 'channel_topic': 'incident-999', 'investigation_id': '999', 'mirror_type': 'all', 'mirror_direction': 'both', 'mirror_to': 'group', 'auto_close': True, 'mirrored': False } mirrors = json.loads(MIRRORS) mirrors.extend([new_mirror]) # Arrange context, version = CommonServerPython.update_integration_context({'mirrors': [new_mirror]}, OBJECTS_TO_KEYS, True) new_mirrors = json.loads(context['mirrors']) # Assert assert len(mirrors) == len(new_mirrors) for mirror in mirrors: assert mirror in new_mirrors assert version == get_integration_context_versioned()['version'] def test_update_context_no_merge(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) mocker.patch.object(CommonServerPython, 'is_versioned_context_available', return_value=True) new_conversation = { 'id': 'A0123456', 'name': 'general' } conversations = json.loads(CONVERSATIONS) conversations.extend([new_conversation]) # Arrange context, version = CommonServerPython.update_integration_context({'conversations': conversations}, OBJECTS_TO_KEYS, True) new_conversations = json.loads(context['conversations']) # Assert assert conversations == new_conversations assert version == get_integration_context_versioned()['version'] @pytest.mark.parametrize('versioned_available', [True, False]) def test_get_latest_integration_context(mocker, versioned_available): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) mocker.patch.object(CommonServerPython, 'is_versioned_context_available', return_value=versioned_available) mocker.patch.object(demisto, 'getIntegrationContext', return_value={'mirrors': MIRRORS, 'conversations': CONVERSATIONS}) # Arrange context, ver = CommonServerPython.get_integration_context_with_version(True) # Assert assert context == get_integration_context_versioned()['context'] assert ver == get_integration_context_versioned()['version'] if versioned_available else -1 def test_set_latest_integration_context(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS, }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) int_context = get_integration_context_versioned() mocker.patch.object(CommonServerPython, 'update_integration_context', side_effect=[(int_context['context'], int_context['version']), (int_context['context'], int_context['version'] + 1)]) mocker.patch.object(CommonServerPython, 'set_integration_context', side_effect=[ValueError, int_context['context']]) # Arrange CommonServerPython.set_to_integration_context_with_retries({}, OBJECTS_TO_KEYS) int_context_calls = CommonServerPython.set_integration_context.call_count int_context_args_1 = CommonServerPython.set_integration_context.call_args_list[0][0] int_context_args_2 = CommonServerPython.set_integration_context.call_args_list[1][0] # Assert assert int_context_calls == 2 assert int_context_args_1 == (int_context['context'], True, int_context['version']) assert int_context_args_2 == (int_context['context'], True, int_context['version'] + 1) def test_set_latest_integration_context_es(mocker): import CommonServerPython # Set mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) es_inv_context_version_first = {'version': 5, 'sequenceNumber': 807, 'primaryTerm': 1} es_inv_context_version_second = {'version': 7, 'sequenceNumber': 831, 'primaryTerm': 1} mocker.patch.object(CommonServerPython, 'update_integration_context', side_effect=[({}, es_inv_context_version_first), ({}, es_inv_context_version_second)]) mocker.patch.object(CommonServerPython, 'set_integration_context', side_effect=[ValueError, {}]) # Arrange CommonServerPython.set_to_integration_context_with_retries({}) int_context_calls = CommonServerPython.set_integration_context.call_count int_context_args_1 = CommonServerPython.set_integration_context.call_args_list[0][0] int_context_args_2 = CommonServerPython.set_integration_context.call_args_list[1][0] # Assert assert int_context_calls == 2 assert int_context_args_1[1:] == (True, es_inv_context_version_first) assert int_context_args_2[1:] == (True, es_inv_context_version_second) def test_set_latest_integration_context_fail(mocker): import CommonServerPython # Set set_integration_context_versioned({ 'mirrors': MIRRORS, 'conversations': CONVERSATIONS, }) mocker.patch.object(demisto, 'getIntegrationContextVersioned', return_value=get_integration_context_versioned()) mocker.patch.object(demisto, 'setIntegrationContextVersioned', side_effecet=set_integration_context_versioned) int_context = get_integration_context_versioned() mocker.patch.object(CommonServerPython, 'update_integration_context', return_value=( int_context['context'], int_context['version'] )) mocker.patch.object(CommonServerPython, 'set_integration_context', side_effect=ValueError) # Arrange with pytest.raises(Exception): CommonServerPython.set_to_integration_context_with_retries({}, OBJECTS_TO_KEYS) int_context_calls = CommonServerPython.set_integration_context.call_count # Assert assert int_context_calls == CommonServerPython.CONTEXT_UPDATE_RETRY_TIMES def test_get_x_content_info_headers(mocker): test_license = 'TEST_LICENSE_ID' test_brand = 'TEST_BRAND' mocker.patch.object( demisto, 'getLicenseID', return_value=test_license ) mocker.patch.object( demisto, 'callingContext', new_callable=mocker.PropertyMock(return_value={'context': { 'IntegrationBrand': test_brand, 'IntegrationInstance': 'TEST_INSTANCE', }}) ) headers = get_x_content_info_headers() assert headers['X-Content-LicenseID'] == test_license assert headers['X-Content-Name'] == test_brand def test_return_results_multiple_command_results(mocker): """ Given: - List of 2 CommandResult When: - Calling return_results() Then: - demisto.results() is called 2 times (with the list items) """ from CommonServerPython import CommandResults, return_results demisto_results_mock = mocker.patch.object(demisto, 'results') mock_command_results = [] for i in range(2): mock_output = {'MockContext': i} mock_command_results.append(CommandResults(outputs_prefix='Mock', outputs=mock_output)) return_results(mock_command_results) assert demisto_results_mock.call_count == 2 def test_return_results_multiple_dict_results(mocker): """ Given: - List of 2 dictionaries When: - Calling return_results() Then: - demisto.results() is called 1 time (with the list as an argument) """ from CommonServerPython import return_results demisto_results_mock = mocker.patch.object(demisto, 'results') mock_command_results = [{'MockContext': 0}, {'MockContext': 1}] return_results(mock_command_results) args, _ = demisto_results_mock.call_args_list[0] assert demisto_results_mock.call_count == 1 assert [{'MockContext': 0}, {'MockContext': 1}] in args def test_return_results_mixed_results(mocker): """ Given: - List containing a CommandResult object and two dictionaries (representing a demisto result entries) When: - Calling return_results() Then: - Assert that demisto.results() is called 2 times . - Assert that the first call was with the CommandResult object. - Assert that the second call was with the two demisto results dicts. """ from CommonServerPython import CommandResults, return_results demisto_results_mock = mocker.patch.object(demisto, 'results') mock_command_results_object = CommandResults(outputs_prefix='Mock', outputs={'MockContext': 0}) mock_demisto_results_entry = [{'MockContext': 1}, {'MockContext': 2}] return_results([mock_command_results_object] + mock_demisto_results_entry) assert demisto_results_mock.call_count == 2 assert demisto_results_mock.call_args_list[0][0][0] == mock_command_results_object.to_context() assert demisto_results_mock.call_args_list[1][0][0] == mock_demisto_results_entry class TestExecuteCommand: @staticmethod def test_sanity(mocker): """ Given: - A successful command with a single entry as output. When: - Calling execute_command. Then: - Assert that only the Contents value is returned. """ from CommonServerPython import execute_command, EntryType demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=[{'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}}]) res = execute_command('command', {'arg1': 'value'}) execute_command_args = demisto_execute_mock.call_args_list[0][0] assert demisto_execute_mock.call_count == 1 assert execute_command_args[0] == 'command' assert execute_command_args[1] == {'arg1': 'value'} assert res == {'hello': 'world'} @staticmethod def test_multiple_results(mocker): """ Given: - A successful command with several entries as output. When: - Calling execute_command. Then: - Assert that the "Contents" values of all entries are returned. """ from CommonServerPython import execute_command, EntryType entries = [ {'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}}, {'Type': EntryType.NOTE, 'Context': 'no contents here'}, {'Type': EntryType.NOTE, 'Contents': {'entry': '2'}}, ] demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=entries) res = execute_command('command', {'arg1': 'value'}) assert demisto_execute_mock.call_count == 1 assert isinstance(res, list) assert len(res) == 3 assert res[0] == {'hello': 'world'} assert res[1] == {} assert res[2] == {'entry': '2'} @staticmethod def test_raw_results(mocker): """ Given: - A successful command with several entries as output. When: - Calling execute_command. Then: - Assert that the entire entries are returned. """ from CommonServerPython import execute_command, EntryType entries = [ {'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}}, {'Type': EntryType.NOTE, 'Context': 'no contents here'}, 'text', 1337, ] demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=entries) res = execute_command('command', {'arg1': 'value'}, extract_contents=False) assert demisto_execute_mock.call_count == 1 assert isinstance(res, list) assert len(res) == 4 assert res[0] == {'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}} assert res[1] == {'Type': EntryType.NOTE, 'Context': 'no contents here'} assert res[2] == 'text' assert res[3] == 1337 @staticmethod def test_failure(mocker): """ Given: - A command that fails. When: - Calling execute_command. Then: - Assert that the original error is returned to War-Room (using demisto.results). - Assert an error is returned to the War-Room. - Function ends the run using SystemExit. """ from CommonServerPython import execute_command, EntryType error_entries = [ {'Type': EntryType.ERROR, 'Contents': 'error number 1'}, {'Type': EntryType.NOTE, 'Contents': 'not an error'}, {'Type': EntryType.ERROR, 'Contents': 'error number 2'}, ] demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=error_entries) demisto_results_mock = mocker.patch.object(demisto, 'results') with raises(SystemExit, match='0'): execute_command('bad', {'arg1': 'value'}) assert demisto_execute_mock.call_count == 1 assert demisto_results_mock.call_count == 1 # first call, args (not kwargs), first argument error_text = demisto_results_mock.call_args_list[0][0][0]['Contents'] assert 'Failed to execute bad.' in error_text assert 'error number 1' in error_text assert 'error number 2' in error_text assert 'not an error' not in error_text @staticmethod def test_failure_integration(monkeypatch): from CommonServerPython import execute_command, EntryType monkeypatch.delattr(demisto, 'executeCommand') with raises(DemistoException, match=r'Cannot run demisto.executeCommand\(\) from integrations.'): execute_command('bad', {'arg1': 'value'}) @staticmethod def test_multiple_results_fail_on_error_false(mocker): """ Given: - A successful command with several entries as output. - fail_on_error set to False. When: - Calling execute_command. Then: - Assert that the status of the execution is True for successful run. - Assert that the "Contents" values of all entries are returned. """ from CommonServerPython import execute_command, EntryType entries = [ {'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}}, {'Type': EntryType.NOTE, 'Context': 'no contents here'}, {'Type': EntryType.NOTE, 'Contents': {'entry': '2'}}, ] demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=entries) status, res = execute_command('command', {'arg1': 'value'}, fail_on_error=False) assert demisto_execute_mock.call_count == 1 assert isinstance(res, list) assert len(res) == 3 assert status assert res[0] == {'hello': 'world'} assert res[1] == {} assert res[2] == {'entry': '2'} @staticmethod def test_raw_results_fail_on_error_false(mocker): """ Given: - A successful command with several entries as output. - fail_on_error set to False. When: - Calling execute_command. Then: - Assert that the status of the execution is True for successful run. - Assert that the entire entries are returned. """ from CommonServerPython import execute_command, EntryType entries = [ {'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}}, {'Type': EntryType.NOTE, 'Context': 'no contents here'}, 'text', 1337, ] demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=entries) status, res = execute_command('command', {'arg1': 'value'}, extract_contents=False, fail_on_error=False) assert demisto_execute_mock.call_count == 1 assert isinstance(res, list) assert len(res) == 4 assert status assert res[0] == {'Type': EntryType.NOTE, 'Contents': {'hello': 'world'}} assert res[1] == {'Type': EntryType.NOTE, 'Context': 'no contents here'} assert res[2] == 'text' assert res[3] == 1337 @staticmethod def test_failure_fail_on_error_false(mocker): """ Given: - A command that fails. - fail_on_error set to False. When: - Calling execute_command. Then: - Assert that the status of the execution is False for failed run. - Assert that the original errors are returned as a value, and not to the war-room. """ from CommonServerPython import execute_command, EntryType error_entries = [ {'Type': EntryType.ERROR, 'Contents': 'error number 1'}, {'Type': EntryType.NOTE, 'Contents': 'not an error'}, {'Type': EntryType.ERROR, 'Contents': 'error number 2'}, ] demisto_execute_mock = mocker.patch.object(demisto, 'executeCommand', return_value=error_entries) demisto_results_mock = mocker.patch.object(demisto, 'results') status, error_text = execute_command('bad', {'arg1': 'value'}, fail_on_error=False) assert demisto_execute_mock.call_count == 1 assert demisto_results_mock.call_count == 0 assert not status assert 'error number 1' in error_text assert 'error number 2' in error_text assert 'not an error' not in error_text def test_arg_to_int__valid_numbers(): """ Given valid numbers When converting them to int Then ensure proper int returned """ from CommonServerPython import arg_to_number result = arg_to_number( arg='5', arg_name='foo') assert result == 5 result = arg_to_number( arg='2.0', arg_name='foo') assert result == 2 result = arg_to_number( arg=3, arg_name='foo') assert result == 3 result = arg_to_number( arg=4, arg_name='foo', required=True) assert result == 4 result = arg_to_number( arg=5, required=True) assert result == 5 def test_arg_to_int__invalid_numbers(): """ Given invalid numbers When converting them to int Then raise ValueError """ from CommonServerPython import arg_to_number try: arg_to_number( arg='aa', arg_name='foo') assert False except ValueError as e: assert 'Invalid number' in str(e) def test_arg_to_int_required(): """ Given argument foo which with value None When converting the arg to number via required flag as True Then ensure ValueError raised """ from CommonServerPython import arg_to_number # required set to false result = arg_to_number( arg=None, arg_name='foo', required=False) assert result is None try: arg_to_number( arg=None, arg_name='foo', required=True) assert False except ValueError as e: assert 'Missing' in str(e) try: arg_to_number( arg='', arg_name='foo', required=True) assert False except ValueError as e: assert 'Missing' in str(e) try: arg_to_number(arg='goo') assert False except ValueError as e: assert '"goo" is not a valid number' in str(e) def test_arg_to_timestamp_valid_inputs(): """ Given valid dates provided When converting dates into timestamp Then ensure returned int which represents timestamp in milliseconds """ if sys.version_info.major == 2: # skip for python 2 - date assert True return from CommonServerPython import arg_to_datetime from datetime import datetime, timezone # hard coded date result = arg_to_datetime( arg='2020-11-10T21:43:43Z', arg_name='foo' ) assert result == datetime(2020, 11, 10, 21, 43, 43, tzinfo=timezone.utc) # relative dates also work result = arg_to_datetime( arg='2 hours ago', arg_name='foo' ) assert result > datetime(2020, 11, 10, 21, 43, 43) # relative dates also work result = arg_to_datetime( arg=1581982463, arg_name='foo' ) assert int(result.timestamp()) == 1581982463 result = arg_to_datetime( arg='2 hours ago' ) assert result > datetime(2020, 11, 10, 21, 43, 43) def test_arg_to_timestamp_invalid_inputs(): """ Given invalid date like 'aaaa' or '2010-32-01' When when converting date to timestamp Then ensure ValueError is raised """ from CommonServerPython import arg_to_datetime if sys.version_info.major == 2: # skip for python 2 - date assert True return try: arg_to_datetime( arg=None, arg_name='foo', required=True) assert False except ValueError as e: assert 'Missing' in str(e) try: arg_to_datetime( arg='aaaa', arg_name='foo') assert False except ValueError as e: assert 'Invalid date' in str(e) try: arg_to_datetime( arg='2010-32-01', arg_name='foo') assert False except ValueError as e: assert 'Invalid date' in str(e) try: arg_to_datetime( arg='2010-32-01') assert False except ValueError as e: assert '"2010-32-01" is not a valid date' in str(e) def test_warnings_handler(mocker): mocker.patch.object(demisto, 'info') # need to initialize WarningsHandler as pytest over-rides the handler with pytest.warns(RuntimeWarning) as r: warnings.warn("without handler", RuntimeWarning) handler = WarningsHandler() # noqa warnings.warn("This is a test", RuntimeWarning) assert len(r) == 1 assert str(r[0].message) == "without handler" # call_args is tuple (args list, kwargs). we only need the args msg = demisto.info.call_args[0][0] assert 'This is a test' in msg assert 'python warning' in msg def test_get_schedule_metadata(): """ Given - case 1: no parent entry - case 2: parent entry with schedule metadata - case 3: parent entry without schedule metadata When querying the schedule metadata Then ensure scheduled_metadata is returned correctly - case 1: no data (empty dict) - case 2: schedule metadata with all details - case 3: empty schedule metadata (dict with polling: false) """ from CommonServerPython import get_schedule_metadata # case 1 context = {'ParentEntry': None} actual_scheduled_metadata = get_schedule_metadata(context=context) assert actual_scheduled_metadata == {} # case 2 parent_entry = { 'polling': True, 'pollingCommand': 'foo', 'pollingArgs': {'name': 'foo'}, 'timesRan': 5, 'startDate': '2021-04-28T14:20:56.03728+03:00', 'endingDate': '2021-04-28T14:25:35.976244+03:00' } context = { 'ParentEntry': parent_entry } actual_scheduled_metadata = get_schedule_metadata(context=context) assert actual_scheduled_metadata.get('is_polling') is True assert actual_scheduled_metadata.get('polling_command') == parent_entry.get('pollingCommand') assert actual_scheduled_metadata.get('polling_args') == parent_entry.get('pollingArgs') assert actual_scheduled_metadata.get('times_ran') == (parent_entry.get('timesRan') + 1) assert actual_scheduled_metadata.get('startDate') == parent_entry.get('start_date') assert actual_scheduled_metadata.get('startDate') == parent_entry.get('start_date') # case 3 parent_entry = { 'polling': False } context = { 'ParentEntry': parent_entry } actual_scheduled_metadata = get_schedule_metadata(context=context) assert actual_scheduled_metadata == {'is_polling': False, 'times_ran': 1} class TestCommonTypes: def test_create_domain(self): from CommonServerPython import CommandResults, Common, EntryType, EntryFormat, DBotScoreType dbot_score = Common.DBotScore( indicator='somedomain.com', integration_name='Test', indicator_type=DBotScoreType.DOMAIN, score=Common.DBotScore.GOOD ) domain = Common.Domain( domain='somedomain.com', dbot_score=dbot_score, dns='dns.somedomain', detection_engines=10, positive_detections=5, organization='Some Organization', admin_phone='18000000', admin_email='admin@test.com', registrant_name='Mr Registrant', registrar_name='Mr Registrar', registrar_abuse_email='registrar@test.com', creation_date='2019-01-01T00:00:00', updated_date='2019-01-02T00:00:00', expiration_date=None, domain_status='ACTIVE', name_servers=[ 'PNS31.CLOUDNS.NET', 'PNS32.CLOUDNS.NET' ], sub_domains=[ 'sub-domain1.somedomain.com', 'sub-domain2.somedomain.com', 'sub-domain3.somedomain.com' ], tags=['tag1', 'tag2'], malware_family=['malware_family1', 'malware_family2'], feed_related_indicators=[Common.FeedRelatedIndicators( value='8.8.8.8', indicator_type="IP", description='test' )], domain_idn_name='domain_idn_name', port='port', internal="False", category='category', campaign='campaign', traffic_light_protocol='traffic_light_protocol', threat_types=[Common.ThreatTypes(threat_category='threat_category', threat_category_confidence='threat_category_confidence')], community_notes=[Common.CommunityNotes(note='note', timestamp='2019-01-01T00:00:00')], publications=[Common.Publications(title='title', source='source', timestamp='2019-01-01T00:00:00', link='link')], geo_location='geo_location', geo_country='geo_country', geo_description='geo_description', tech_country='tech_country', tech_name='tech_name', tech_organization='tech_organization', tech_email='tech_email', billing='billing' ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[domain] ) assert results.to_context() == { 'Type': 1, 'ContentsFormat': 'json', 'Contents': None, 'HumanReadable': None, 'EntryContext': { 'Domain(val.Name && val.Name == obj.Name)': [ { "Name": "somedomain.com", "DNS": "dns.somedomain", "DetectionEngines": 10, "PositiveDetections": 5, "Registrar": { "Name": "Mr Registrar", "AbuseEmail": "registrar@test.com", "AbusePhone": None }, "Registrant": { "Name": "Mr Registrant", "Email": None, "Phone": None, "Country": None }, "Admin": { "Name": None, "Email": "admin@test.com", "Phone": "18000000", "Country": None }, "Organization": "Some Organization", "Subdomains": [ "sub-domain1.somedomain.com", "sub-domain2.somedomain.com", "sub-domain3.somedomain.com" ], "DomainStatus": "ACTIVE", "CreationDate": "2019-01-01T00:00:00", "UpdatedDate": "2019-01-02T00:00:00", "NameServers": [ "PNS31.CLOUDNS.NET", "PNS32.CLOUDNS.NET" ], "Tags": ["tag1", "tag2"], "FeedRelatedIndicators": [{"value": "8.8.8.8", "type": "IP", "description": "test"}], "MalwareFamily": ["malware_family1", "malware_family2"], "DomainIDNName": "domain_idn_name", "Port": "port", "Internal": "False", "Category": "category", "Campaign": "campaign", "TrafficLightProtocol": "traffic_light_protocol", "ThreatTypes": [{ "threatcategory": "threat_category", "threatcategoryconfidence": "threat_category_confidence" }], "CommunityNotes": [{ "note": "note", "timestamp": "2019-01-01T00:00:00" }], "Publications": [{ "source": "source", "title": "title", "link": "link", "timestamp": "2019-01-01T00:00:00" }], "Geo": { "Location": "geo_location", "Country": "geo_country", "Description": "geo_description" }, "Tech": { "Country": "tech_country", "Name": "tech_name", "Organization": "tech_organization", "Email": "tech_email" }, "Billing": "billing", "WHOIS": { "Registrar": { "Name": "Mr Registrar", "AbuseEmail": "registrar@test.com", "AbusePhone": None }, "Registrant": { "Name": "Mr Registrant", "Email": None, "Phone": None, "Country": None }, "Admin": { "Name": None, "Email": "admin@test.com", "Phone": "18000000", "Country": None }, "DomainStatus": "ACTIVE", "CreationDate": "2019-01-01T00:00:00", "UpdatedDate": "2019-01-02T00:00:00", "NameServers": [ "PNS31.CLOUDNS.NET", "PNS32.CLOUDNS.NET" ] } } ], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [ { 'Indicator': 'somedomain.com', 'Type': 'domain', 'Vendor': 'Test', 'Score': 1 } ] }, 'IndicatorTimeline': [], 'IgnoreAutoExtract': False, 'Note': False, 'Relationships': [] } def test_create_certificate(self): """ Given: - an X509 Certificate with its properties When - creating a CommandResults with the Certificate Standard Context Then - the proper output Context is created """ from CommonServerPython import CommandResults, Common, EntryType, EntryFormat, DBotScoreType dbot_score = Common.DBotScore( indicator='bc33cf76519f1ec5ae7f287f321df33a7afd4fd553f364cf3c753f91ba689f8d', integration_name='Test', indicator_type=DBotScoreType.CERTIFICATE, score=Common.DBotScore.NONE ) cert_extensions = [ Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.AUTHORITYKEYIDENTIFIER, authority_key_identifier=Common.CertificateExtension.AuthorityKeyIdentifier( key_identifier="0f80611c823161d52f28e78d4638b42ce1c6d9e2" ), critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.SUBJECTKEYIDENTIFIER, digest="b34972bb12121b8851cd5564ff9656dcbca3f288", critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.SUBJECTALTERNATIVENAME, subject_alternative_names=[ Common.GeneralName( gn_type="dNSName", gn_value="*.paloaltonetworks.com" ), Common.GeneralName( gn_type="dNSName", gn_value="paloaltonetworks.com" ) ], critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.KEYUSAGE, digital_signature=True, key_encipherment=True, critical=True ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.EXTENDEDKEYUSAGE, usages=[ "serverAuth", "clientAuth" ], critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.CRLDISTRIBUTIONPOINTS, distribution_points=[ Common.CertificateExtension.DistributionPoint( full_name=[ Common.GeneralName( gn_type="uniformResourceIdentifier", gn_value="http://crl3.digicert.com/ssca-sha2-g7.crl" ) ] ), Common.CertificateExtension.DistributionPoint( full_name=[ Common.GeneralName( gn_type="uniformResourceIdentifier", gn_value="http://crl4.digicert.com/ssca-sha2-g7.crl" ) ] ) ], critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.CERTIFICATEPOLICIES, certificate_policies=[ Common.CertificateExtension.CertificatePolicy( policy_identifier="2.16.840.1.114412.1.1", policy_qualifiers=["https://www.digicert.com/CPS"] ), Common.CertificateExtension.CertificatePolicy( policy_identifier="2.23.140.1.2.2" ) ], critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.AUTHORITYINFORMATIONACCESS, authority_information_access=[ Common.CertificateExtension.AuthorityInformationAccess( access_method="OCSP", access_location=Common.GeneralName( gn_type="uniformResourceIdentifier", gn_value="http://ocsp.digicert.com" ) ), Common.CertificateExtension.AuthorityInformationAccess( access_method="caIssuers", access_location=Common.GeneralName( gn_type="uniformResourceIdentifier", gn_value="http://cacerts.digicert.com/DigiCertSHA2SecureServerCA.crt" ) ) ], critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.BASICCONSTRAINTS, basic_constraints=Common.CertificateExtension.BasicConstraints( ca=False ), critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.PRESIGNEDCERTIFICATETIMESTAMPS, signed_certificate_timestamps=[ Common.CertificateExtension.SignedCertificateTimestamp( version=0, log_id="f65c942fd1773022145418083094568ee34d131933bfdf0c2f200bcc4ef164e3", timestamp="2020-10-23T19:31:49.000Z", entry_type="PreCertificate" ), Common.CertificateExtension.SignedCertificateTimestamp( version=0, log_id="5cdc4392fee6ab4544b15e9ad456e61037fbd5fa47dca17394b25ee6f6c70eca", timestamp="2020-10-23T19:31:49.000Z", entry_type="PreCertificate" ) ], critical=False ), Common.CertificateExtension( extension_type=Common.CertificateExtension.ExtensionType.SIGNEDCERTIFICATETIMESTAMPS, signed_certificate_timestamps=[ Common.CertificateExtension.SignedCertificateTimestamp( version=0, log_id="f65c942fd1773022145418083094568ee34d131933bfdf0c2f200bcc4ef164e3", timestamp="2020-10-23T19:31:49.000Z", entry_type="X509Certificate" ), Common.CertificateExtension.SignedCertificateTimestamp( version=0, log_id="5cdc4392fee6ab4544b15e9ad456e61037fbd5fa47dca17394b25ee6f6c70eca", timestamp="2020-10-23T19:31:49.000Z", entry_type="X509Certificate" ) ], critical=False ) ] certificate = Common.Certificate( subject_dn='CN=*.paloaltonetworks.com,O=Palo Alto Networks\\, Inc.,L=Santa Clara,ST=California,C=US', dbot_score=dbot_score, serial_number='19290688218337824112020565039390569720', issuer_dn='CN=DigiCert SHA2 Secure Server CA,O=DigiCert Inc,C=US', validity_not_before='2020-10-23T00:00:00.000Z', validity_not_after='2021-11-21T23:59:59.000Z', sha256='bc33cf76519f1ec5ae7f287f321df33a7afd4fd553f364cf3c753f91ba689f8d', sha1='2392ea5cd4c2a61e51547570634ef887ab1942e9', md5='22769ae413997b86da4a0934072d9ed0', publickey=Common.CertificatePublicKey( algorithm=Common.CertificatePublicKey.Algorithm.RSA, length=2048, modulus='00:00:00:00', exponent=65537 ), spki_sha256='94b716aeda21cd661949cfbf3f55457a277da712cdce0ab31989a4f288fad9b9', signature_algorithm='sha256', signature='SIGNATURE', extensions=cert_extensions ) results = CommandResults( outputs_key_field=None, outputs_prefix=None, outputs=None, indicators=[certificate] ) CONTEXT_PATH = "Certificate(val.MD5 && val.MD5 == obj.MD5 || val.SHA1 && val.SHA1 == obj.SHA1 || " \ "val.SHA256 && val.SHA256 == obj.SHA256 || val.SHA512 && val.SHA512 == obj.SHA512)" assert results.to_context() == { 'Type': EntryType.NOTE, 'ContentsFormat': EntryFormat.JSON, 'Contents': None, 'HumanReadable': None, 'EntryContext': { CONTEXT_PATH: [{ "SubjectDN": "CN=*.paloaltonetworks.com,O=Palo Alto Networks\\, Inc.,L=Santa Clara,ST=California,C=US", "SubjectAlternativeName": [ { "Type": "dNSName", "Value": "*.paloaltonetworks.com" }, { "Type": "dNSName", "Value": "paloaltonetworks.com" } ], "Name": [ "*.paloaltonetworks.com", "paloaltonetworks.com" ], "IssuerDN": "CN=DigiCert SHA2 Secure Server CA,O=DigiCert Inc,C=US", "SerialNumber": "19290688218337824112020565039390569720", "ValidityNotBefore": "2020-10-23T00:00:00.000Z", "ValidityNotAfter": "2021-11-21T23:59:59.000Z", "SHA256": "bc33cf76519f1ec5ae7f287f321df33a7afd4fd553f364cf3c753f91ba689f8d", "SHA1": "2392ea5cd4c2a61e51547570634ef887ab1942e9", "MD5": "22769ae413997b86da4a0934072d9ed0", "PublicKey": { "Algorithm": "RSA", "Length": 2048, "Modulus": "00:00:00:00", "Exponent": 65537 }, "SPKISHA256": "94b716aeda21cd661949cfbf3f55457a277da712cdce0ab31989a4f288fad9b9", "Signature": { "Algorithm": "sha256", "Signature": "SIGNATURE" }, "Extension": [ { "OID": "2.5.29.35", "Name": "authorityKeyIdentifier", "Critical": False, "Value": { "KeyIdentifier": "0f80611c823161d52f28e78d4638b42ce1c6d9e2" } }, { "OID": "2.5.29.14", "Name": "subjectKeyIdentifier", "Critical": False, "Value": { "Digest": "b34972bb12121b8851cd5564ff9656dcbca3f288" } }, { "OID": "2.5.29.17", "Name": "subjectAltName", "Critical": False, "Value": [ { "Type": "dNSName", "Value": "*.paloaltonetworks.com" }, { "Type": "dNSName", "Value": "paloaltonetworks.com" } ] }, { "OID": "2.5.29.15", "Name": "keyUsage", "Critical": True, "Value": { "DigitalSignature": True, "KeyEncipherment": True } }, { "OID": "2.5.29.37", "Name": "extendedKeyUsage", "Critical": False, "Value": { "Usages": [ "serverAuth", "clientAuth" ] } }, { "OID": "2.5.29.31", "Name": "cRLDistributionPoints", "Critical": False, "Value": [ { "FullName": [ { "Type": "uniformResourceIdentifier", "Value": "http://crl3.digicert.com/ssca-sha2-g7.crl" } ] }, { "FullName": [ { "Type": "uniformResourceIdentifier", "Value": "http://crl4.digicert.com/ssca-sha2-g7.crl" } ] } ] }, { "OID": "2.5.29.32", "Name": "certificatePolicies", "Critical": False, "Value": [ { "PolicyIdentifier": "2.16.840.1.114412.1.1", "PolicyQualifiers": [ "https://www.digicert.com/CPS" ] }, { "PolicyIdentifier": "2.23.140.1.2.2" } ] }, { "OID": "1.3.6.1.5.5.7.1.1", "Name": "authorityInfoAccess", "Critical": False, "Value": [ { "AccessMethod": "OCSP", "AccessLocation": { "Type": "uniformResourceIdentifier", "Value": "http://ocsp.digicert.com" } }, { "AccessMethod": "caIssuers", "AccessLocation": { "Type": "uniformResourceIdentifier", "Value": "http://cacerts.digicert.com/DigiCertSHA2SecureServerCA.crt" } } ] }, { "OID": "2.5.29.19", "Name": "basicConstraints", "Critical": False, "Value": { "CA": False } }, { "OID": "1.3.6.1.4.1.11129.2.4.2", "Name": "signedCertificateTimestampList", "Critical": False, "Value": [ { "Version": 0, "LogId": "f65c942fd1773022145418083094568ee34d131933bfdf0c2f200bcc4ef164e3", "Timestamp": "2020-10-23T19:31:49.000Z", "EntryType": "PreCertificate" }, { "Version": 0, "LogId": "5cdc4392fee6ab4544b15e9ad456e61037fbd5fa47dca17394b25ee6f6c70eca", "Timestamp": "2020-10-23T19:31:49.000Z", "EntryType": "PreCertificate" } ] }, { "OID": "1.3.6.1.4.1.11129.2.4.5", "Name": "signedCertificateTimestampList", "Critical": False, "Value": [ { "Version": 0, "LogId": "f65c942fd1773022145418083094568ee34d131933bfdf0c2f200bcc4ef164e3", "Timestamp": "2020-10-23T19:31:49.000Z", "EntryType": "X509Certificate" }, { "Version": 0, "LogId": "5cdc4392fee6ab4544b15e9ad456e61037fbd5fa47dca17394b25ee6f6c70eca", "Timestamp": "2020-10-23T19:31:49.000Z", "EntryType": "X509Certificate" } ] } ] }], 'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': [{ "Indicator": "bc33cf76519f1ec5ae7f287f321df33a7afd4fd553f364cf3c753f91ba689f8d", "Type": "certificate", "Vendor": "Test", "Score": 0 }] }, 'IndicatorTimeline': [], 'Relationships': [], 'IgnoreAutoExtract': False, 'Note': False } def test_email_indicator_type(self, mocker): """ Given: - a single email indicator entry When - creating an Common.EMAIL object Then - The context created matches the data entry """ from CommonServerPython import Common, DBotScoreType mocker.patch.object(demisto, 'params', return_value={'insecure': True}) dbot_score = Common.DBotScore( indicator='user@example.com', integration_name='Test', indicator_type=DBotScoreType.EMAIL, score=Common.DBotScore.GOOD ) dbot_context = {'DBotScore(val.Indicator && val.Indicator == obj.Indicator && ' 'val.Vendor == obj.Vendor && val.Type == obj.Type)': {'Indicator': 'user@example.com', 'Type': 'email', 'Vendor': 'Test', 'Score': 1}} assert dbot_context == dbot_score.to_context() email_context = Common.EMAIL( domain='example.com', address='user@example.com', dbot_score=dbot_score ) assert email_context.to_context()[email_context.CONTEXT_PATH] == {'Address': 'user@example.com', 'Domain': 'example.com'} class TestIndicatorsSearcher: def mock_search_after_output(self, fromDate='', toDate='', query='', size=0, value='', page=0, searchAfter='', populateFields=None): if not searchAfter: searchAfter = 0 iocs = [{'value': 'mock{}'.format(searchAfter)}] if searchAfter < 6: searchAfter += 1 else: # mock the end of indicators searchAfter = None if page >= 17: # checking a unique case when trying to reach a certain page and not all the indicators iocs = [] searchAfter = None return {'searchAfter': searchAfter, 'iocs': iocs, 'total': 7} def test_search_indicators_by_page(self, mocker): """ Given: - Searching indicators couple of times - Server version in less than 6.1.0 When: - Mocking search indicators using paging Then: - The page number is rising """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators_obj_paging = IndicatorsSearcher() search_indicators_obj_paging._can_use_search_after = False for n in range(5): search_indicators_obj_paging.search_indicators_by_version() assert search_indicators_obj_paging._page == 5 def test_search_indicators_by_search_after(self, mocker): """ Given: - Searching indicators couple of times - Server version in equal or higher than 6.1.0 When: - Mocking search indicators using the searchAfter parameter Then: - The search after param is rising - The page param is rising """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators_obj_search_after = IndicatorsSearcher() search_indicators_obj_search_after._can_use_search_after = True try: for n in range(5): search_indicators_obj_search_after.search_indicators_by_version() except Exception as e: print(e) assert search_indicators_obj_search_after._search_after_param == 5 assert search_indicators_obj_search_after._page == 5 def test_search_all_indicators_by_search_after(self, mocker): """ Given: - Searching indicators couple of times - Server version in equal or higher than 6.1.0 When: - Mocking search indicators using the searchAfter parameter until there are no more indicators so search_after is None Then: - The search after param is None - The page param is rising """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators_obj_search_after = IndicatorsSearcher() search_indicators_obj_search_after._can_use_search_after = True for n in range(7): search_indicators_obj_search_after.search_indicators_by_version() assert search_indicators_obj_search_after._search_after_param is None assert search_indicators_obj_search_after._page == 7 def test_search_indicators_in_certain_page(self, mocker): """ Given: - Searching indicators in a specific page that is not 0 - Server version in equal or higher than 6.1.0 When: - Mocking search indicators in this specific page so search_after is None Then: - The search after param is not None - The page param is 17 """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators_obj_search_after = IndicatorsSearcher(page=17) search_indicators_obj_search_after._can_use_search_after = True search_indicators_obj_search_after.search_indicators_by_version() assert search_indicators_obj_search_after._search_after_param is None assert search_indicators_obj_search_after._page == 17 def test_iterator(self, mocker): """ Given: - Searching indicators from page 10 - Total available indicators == 7 When: - Searching indicators using iterator (whether search_after is supported or not) - Searching indicators a 2nd time using the same search object Then: - Get 7 indicators - Advance page to 17 - _is_search_done returns True when search_after is supported - _is_search_done returns False when search_after is not supported """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators = IndicatorsSearcher(page=10) search_indicators._can_use_search_after = True results = [] for res in search_indicators: results.append(res) assert len(results) == 7 assert search_indicators.page == 17 assert search_indicators._is_search_done() is True search_indicators._can_use_search_after = False results = [] for res in search_indicators: results.append(res) assert len(results) == 7 assert search_indicators.page == 17 assert search_indicators._is_search_done() is True def test_iterator__empty_page(self, mocker): """ Given: - Searching indicators from page 18 - Total available indicators from page 10-16 == 7 - No available indicators from page 17 When: - Searching indicators using iterator (search_after is not supported) Then: - Get 0 indicators - page doesn't advance (set to 18) """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators = IndicatorsSearcher(page=18) results = [] for res in search_indicators: results.append(res) assert len(results) == 0 assert search_indicators.page == 18 def test_iterator__limit(self, mocker): """ Given: - Searching indicators from page 10 - Total available indicators == 7 - Limit is set to 5 When: - Searching indicators using iterator (whether search_after is supported or not) - Searching indicators a 2nd time using the same search object Then: - Get 5 indicators - Advance page to 15 when search_after is supported (is_search_done is supported) - Advance page to 15 when search_after is not supported (is_search done is not supported) """ from CommonServerPython import IndicatorsSearcher mocker.patch.object(demisto, 'searchIndicators', side_effect=self.mock_search_after_output) search_indicators = IndicatorsSearcher(page=10, limit=5) search_indicators._can_use_search_after = True results = [] for res in search_indicators: results.append(res) assert len(results) == 5 assert search_indicators.page == 15 search_indicators._can_use_search_after = False results = [] for res in search_indicators: results.append(res) assert len(results) == 5 assert search_indicators.page == 15 class TestAutoFocusKeyRetriever: def test_instantiate_class_with_param_key(self, mocker, clear_version_cache): """ Given: - giving the api_key parameter When: - Mocking getAutoFocusApiKey - Mocking server version to be 6.2.0 Then: - The Auto Focus API Key is the one given to the class """ from CommonServerPython import AutoFocusKeyRetriever mocker.patch.object(demisto, 'getAutoFocusApiKey', return_value='test') mocker.patch.object(demisto, 'demistoVersion', return_value={'version': '6.2.0', 'buildNumber': '62000'}) auto_focus_key_retriever = AutoFocusKeyRetriever(api_key='1234') assert auto_focus_key_retriever.key == '1234' def test_instantiate_class_pre_6_2_failed(self, mocker, clear_version_cache): """ Given: - not giving the api_key parameter When: - Mocking getAutoFocusApiKey - Mocking server version to be 6.1.0 Then: - Validate an exception with appropriate error message is raised. """ from CommonServerPython import AutoFocusKeyRetriever mocker.patch.object(demisto, 'getAutoFocusApiKey', return_value='test') mocker.patch.object(demisto, 'demistoVersion', return_value={'version': '6.1.0', 'buildNumber': '61000'}) with raises(DemistoException, match='For versions earlier than 6.2.0, configure an API Key.'): AutoFocusKeyRetriever(api_key='') def test_instantiate_class_without_param_key(self, mocker, clear_version_cache): """ Given: - not giving the api_key parameter When: - Mocking getAutoFocusApiKey - Mocking server version to be 6.2.0 Then: - The Auto Focus API Key is the one given by the getAutoFocusApiKey method """ from CommonServerPython import AutoFocusKeyRetriever mocker.patch.object(demisto, 'getAutoFocusApiKey', return_value='test') mocker.patch.object(demisto, 'demistoVersion', return_value={'version': '6.2.0', 'buildNumber': '62000'}) auto_focus_key_retriever = AutoFocusKeyRetriever(api_key='') assert auto_focus_key_retriever.key == 'test' class TestEntityRelationship: """Global vars for all of the tests""" name = 'related-to' reverse_name = 'related-to' relationship_type = 'IndicatorToIndicator' entity_a = 'test1' entity_a_family = 'Indicator' entity_a_type = 'Domain' entity_b = 'test2' entity_b_family = 'Indicator' entity_b_type = 'Domain' source_reliability = 'F - Reliability cannot be judged' def test_entity_relations_context(self): """ Given - an EntityRelationship object. When - running to_context function of the object Then - Validate that the expected context is created """ from CommonServerPython import EntityRelationship relationship = EntityRelationship(name='related-to', relationship_type='IndicatorToIndicator', entity_a='test1', entity_a_family='Indicator', entity_a_type='Domain', entity_b='test2', entity_b_family='Indicator', entity_b_type='Domain', source_reliability='F - Reliability cannot be judged', brand='test') expected_context = { "Relationship": 'related-to', "EntityA": 'test1', "EntityAType": 'Domain', "EntityB": 'test2', "EntityBType": 'Domain', } assert relationship.to_context() == expected_context def test_entity_relations_to_entry(self): """ Given - an EntityRelationship object. When - running to_entry function of the object Then - Validate that the expected context is created """ from CommonServerPython import EntityRelationship relationship = EntityRelationship(name=TestEntityRelationship.name, relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type=TestEntityRelationship.entity_b_type, source_reliability=TestEntityRelationship.source_reliability ) expected_entry = { "name": TestEntityRelationship.name, "reverseName": TestEntityRelationship.reverse_name, "type": TestEntityRelationship.relationship_type, "entityA": TestEntityRelationship.entity_a, "entityAFamily": TestEntityRelationship.entity_a_family, "entityAType": TestEntityRelationship.entity_a_type, "entityB": TestEntityRelationship.entity_b, "entityBFamily": TestEntityRelationship.entity_b_family, "entityBType": TestEntityRelationship.entity_b_type, "fields": {}, "reliability": TestEntityRelationship.source_reliability } assert relationship.to_entry() == expected_entry def test_entity_relations_to_indicator(self): """ Given - an EntityRelationship object. When - running to_indicator function of the object Then - Validate that the expected context is created """ from CommonServerPython import EntityRelationship relationship = EntityRelationship(name=TestEntityRelationship.name, relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type=TestEntityRelationship.entity_b_type, ) expected_to_indicator = { "name": TestEntityRelationship.name, "reverseName": TestEntityRelationship.reverse_name, "type": TestEntityRelationship.relationship_type, "entityA": TestEntityRelationship.entity_a, "entityAFamily": TestEntityRelationship.entity_a_family, "entityAType": TestEntityRelationship.entity_a_type, "entityB": TestEntityRelationship.entity_b, "entityBFamily": TestEntityRelationship.entity_b_family, "entityBType": TestEntityRelationship.entity_b_type, "fields": {}, } assert relationship.to_indicator() == expected_to_indicator def test_invalid_name_init(self): """ Given - an EntityRelation object which has a invalid relation name. When - Creating the EntityRelation object. Then - Validate a ValueError is raised. """ from CommonServerPython import EntityRelationship try: EntityRelationship(name='ilegal', relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type=TestEntityRelationship.entity_b_type ) except ValueError as exception: assert "Invalid relationship: ilegal" in str(exception) def test_invalid_relation_type_init(self): """ Given - an EntityRelation object which has a invalid relation type. When - Creating the EntityRelation object. Then - Validate a ValueError is raised. """ from CommonServerPython import EntityRelationship try: EntityRelationship(name=TestEntityRelationship.name, relationship_type='TestRelationshipType', entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type=TestEntityRelationship.entity_b_type ) except ValueError as exception: assert "Invalid relationship type: TestRelationshipType" in str(exception) def test_invalid_a_family_init(self): """ Given - an EntityRelation object which has a invalid family type of the source. When - Creating the EntityRelation object. Then - Validate a ValueError is raised. """ from CommonServerPython import EntityRelationship try: EntityRelationship(name=TestEntityRelationship.name, relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family='IndicatorIlegal', entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type=TestEntityRelationship.entity_b_type ) except ValueError as exception: assert "Invalid entity A Family type: IndicatorIlegal" in str(exception) def test_invalid_a_type_init(self): """ Given - an EntityRelation object which has a invalid type of the source. When - Creating the EntityRelation object. Then - Validate a ValueError is raised. """ from CommonServerPython import EntityRelationship try: EntityRelationship(name=TestEntityRelationship.name, relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type='DomainTest', entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type=TestEntityRelationship.entity_b_type ) except ValueError as exception: assert "Invalid entity A type: DomainTest" in str(exception) def test_invalid_b_family_init(self): """ Given - an EntityRelation object which has a invalid family type of the destination. When - Creating the EntityRelation object. Then - Validate a ValueError is raised. """ from CommonServerPython import EntityRelationship try: EntityRelationship(name=TestEntityRelationship.name, relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family='IndicatorIlegal', entity_b_type=TestEntityRelationship.entity_b_type ) except ValueError as exception: assert "Invalid entity B Family type: IndicatorIlegal" in str(exception) def test_invalid_b_type_init(self): """ Given - an EntityRelation object which has a invalid type of the destination. When - Creating the EntityRelation object. Then - Validate a ValueError is raised. """ from CommonServerPython import EntityRelationship try: EntityRelationship(name=TestEntityRelationship.name, relationship_type=TestEntityRelationship.relationship_type, entity_a=TestEntityRelationship.entity_a, entity_a_family=TestEntityRelationship.entity_a_family, entity_a_type=TestEntityRelationship.entity_a_type, entity_b=TestEntityRelationship.entity_b, entity_b_family=TestEntityRelationship.entity_b_family, entity_b_type='DomainTest' ) except ValueError as exception: assert "Invalid entity B type: DomainTest" in str(exception) class TestSetAndGetLastRun: def test_get_last_run_in_6_2_when_get_last_run_has_results(self, mocker): """ Given: 6.2.0 environment and getLastRun returns results When: Fetch indicators Then: Returning all indicators from demisto.getLastRun object """ import demistomock as demisto from CommonServerPython import get_feed_last_run mocker.patch('CommonServerPython.get_demisto_version', return_value={"version": "6.2.0"}) mocker.patch.object(demisto, 'getLastRun', return_value={1: "first indicator"}) result = get_feed_last_run() assert result == {1: "first indicator"} def test_get_last_run_in_6_1_when_get_integration_context_has_results(self, mocker): """ Given: 6.1.0 environment and getIntegrationContext return results When: Fetch indicators This can happen when updating XSOAR version to 6.2.0 while a feed instance is already set. Then: Returning all indicators from demisto.getIntegrationContext object """ import demistomock as demisto from CommonServerPython import get_feed_last_run mocker.patch('CommonServerPython.get_demisto_version', return_value={"version": "6.1.0"}) mocker.patch.object(demisto, 'getIntegrationContext', return_value={1: "first indicator"}) result = get_feed_last_run() assert result == {1: "first indicator"} def test_get_last_run_in_6_2_when_get_last_run_has_no_results(self, mocker): """ Given: 6.2.0 environment and getLastRun and getIntegrationContext are empty When: Fetch indicators Then: function will return empty dict """ import demistomock as demisto from CommonServerPython import get_feed_last_run mocker.patch('CommonServerPython.get_demisto_version', return_value={"version": "6.2.0"}) mocker.patch.object(demisto, 'getIntegrationContext', return_value={}) mocker.patch.object(demisto, 'getLastRun', return_value={}) result = get_feed_last_run() assert result == {} def test_get_last_run_in_6_2_when_get_last_is_empty_and_get_integration_is_not(self, mocker): """ Given: 6.2.0 environment and getLastRun is empty and getIntegrationContext has results. When: Fetch indicators Then: function will return empty dict """ import demistomock as demisto from CommonServerPython import get_feed_last_run mocker.patch('CommonServerPython.get_demisto_version', return_value={"version": "6.2.0"}) mocker.patch.object(demisto, 'getIntegrationContext', return_value={1: "first indicator"}) mocker.patch.object(demisto, 'getLastRun', return_value={}) set_last_run = mocker.patch.object(demisto, 'setLastRun', return_value={}) set_integration_context = mocker.patch.object(demisto, 'setIntegrationContext', return_value={}) result = get_feed_last_run() assert result == {1: "first indicator"} set_last_run.assert_called_with({1: "first indicator"}) set_integration_context.assert_called_with({}) def test_set_last_run_in_6_2(self, mocker): """ Given: 6.2.0 environment When: Fetch indicators Then: Using demisto.setLastRun to save results """ import demistomock as demisto from CommonServerPython import set_feed_last_run mocker.patch('CommonServerPython.get_demisto_version', return_value={"version": "6.2.0"}) set_last_run = mocker.patch.object(demisto, 'setLastRun', return_value={}) set_integration_context = mocker.patch.object(demisto, 'setIntegrationContext', return_value={}) set_feed_last_run({1: "first indicator"}) assert set_integration_context.called is False set_last_run.assert_called_with({1: "first indicator"}) def test_set_last_run_in_6_1(self, mocker): """ Given: 6.1.0 environment When: Fetch indicators Then: Using demisto.setIntegrationContext to save results """ import demistomock as demisto from CommonServerPython import set_feed_last_run mocker.patch('CommonServerPython.get_demisto_version', return_value={"version": "6.1.0"}) set_last_run = mocker.patch.object(demisto, 'setLastRun', return_value={}) set_integration_context = mocker.patch.object(demisto, 'setIntegrationContext', return_value={}) set_feed_last_run({1: "first indicator"}) set_integration_context.assert_called_with({1: "first indicator"}) assert set_last_run.called is False class TestIsDemistoServerGE: @classmethod @pytest.fixture(scope='function', autouse=True) def clear_cache(cls): get_demisto_version._version = None def test_get_demisto_version(self, mocker): # verify expected server version and build returned in case Demisto class has attribute demistoVersion mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '5.0.0', 'buildNumber': '50000' } ) assert get_demisto_version() == { 'version': '5.0.0', 'buildNumber': '50000' } # call again to check cache assert get_demisto_version() == { 'version': '5.0.0', 'buildNumber': '50000' } # call count should be 1 as we cached assert demisto.demistoVersion.call_count == 1 # test is_demisto_version_ge assert is_demisto_version_ge('5.0.0') assert is_demisto_version_ge('4.5.0') assert not is_demisto_version_ge('5.5.0') assert get_demisto_version_as_str() == '5.0.0-50000' def test_is_demisto_version_ge_4_5(self, mocker): get_version_patch = mocker.patch('CommonServerPython.get_demisto_version') get_version_patch.side_effect = AttributeError('simulate missing demistoVersion') assert not is_demisto_version_ge('5.0.0') assert not is_demisto_version_ge('6.0.0') with raises(AttributeError, match='simulate missing demistoVersion'): is_demisto_version_ge('4.5.0') def test_is_demisto_version_ge_dev_version(self, mocker): mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '6.0.0', 'buildNumber': '50000' } ) assert is_demisto_version_ge('6.0.0', '1-dev') @pytest.mark.parametrize('version, build', [ ('6.0.0', '49999'), ('6.0.0', '50000'), ('6.0.0', '6'), # Added with the fix of https://github.com/demisto/etc/issues/36876 ('5.5.0', '50001') ]) def test_is_demisto_version_build_ge(self, mocker, version, build): mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '6.0.0', 'buildNumber': '50000' } ) assert is_demisto_version_ge(version, build) @pytest.mark.parametrize('version, build', [ ('6.0.0', '50001'), ('6.1.0', '49999') ]) def test_is_demisto_version_build_ge_negative(self, mocker, version, build): mocker.patch.object( demisto, 'demistoVersion', return_value={ 'version': '6.0.0', 'buildNumber': '50000' } ) assert not is_demisto_version_ge(version, build) def test_smart_get_dict(): d = {'t1': None, "t2": 1} # before we remove the dict will return null which is unexpected by a lot of users assert d.get('t1', 2) is None s = SmartGetDict(d) assert s.get('t1', 2) == 2 assert s.get('t2') == 1 assert s.get('t3') is None class TestCustomIndicator: def test_custom_indicator_init_success(self): """ Given: Data needed for creating a custom indicator When: Data is valid Then: Create a valid custom indicator """ from CommonServerPython import Common, DBotScoreType dbot_score = Common.DBotScore( 'test', DBotScoreType.CUSTOM, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) indicator = Common.CustomIndicator('test', 'test_value', dbot_score, {'param': 'value'}, 'prefix') assert indicator.CONTEXT_PATH == 'prefix(val.value && val.value == obj.value)' assert indicator.param == 'value' assert indicator.value == 'test_value' def test_custom_indicator_init_existing_type(self): """ Given: Data needed for creating a custom indicator When: Type already exists Then: raise a Value Error """ with pytest.raises(ValueError): from CommonServerPython import Common, DBotScoreType dbot_score = Common.DBotScore( 'test', DBotScoreType.CUSTOM, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) Common.CustomIndicator('ip', 'test_value', dbot_score, {'param': 'value'}, 'prefix') def test_custom_indicator_init_no_prefix(self): """ Given: Data needed for Custom indicator When: Prefix provided is None Then: Raise ValueError """ with pytest.raises(ValueError): from CommonServerPython import Common, DBotScoreType dbot_score = Common.DBotScore( 'test', DBotScoreType.CUSTOM, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) Common.CustomIndicator('test', 'test_value', dbot_score, {'param': 'value'}, None) def test_custom_indicator_init_no_dbot_score(self): """ Given: Data needed for Custom indicator When: Dbotscore is not a DBotScore object Then: Raise ValueError """ with pytest.raises(ValueError): from CommonServerPython import Common dbot_score = '' Common.CustomIndicator('test', 'test_value', dbot_score, {'param': 'value'}, 'prefix') def test_custom_indicator_to_context(self): """ Given: Data needed for Custom indicator When: there's a call to to_context Then: create a valid context """ from CommonServerPython import Common, DBotScoreType dbot_score = Common.DBotScore( 'test', DBotScoreType.CUSTOM, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) indicator = Common.CustomIndicator('test', 'test_value', dbot_score, {'param': 'value'}, 'prefix') context = indicator.to_context() assert context['DBotScore(val.Indicator &&' ' val.Indicator == obj.Indicator &&' ' val.Vendor == obj.Vendor && val.Type == obj.Type)']['Indicator'] == 'test' assert context['prefix(val.value && val.value == obj.value)']['Value'] == 'test_value' assert context['prefix(val.value && val.value == obj.value)']['param'] == 'value' def test_custom_indicator_no_params(self): """ Given: Data needed for creating a custom indicator When: params are None Then: Raise an error """ with pytest.raises(TypeError): from CommonServerPython import Common, DBotScoreType dbot_score = Common.DBotScore( 'test', DBotScoreType.CUSTOM, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) Common.CustomIndicator('test', 'test_value', dbot_score, None, 'prefix') def test_custom_indicator_no_value(self): """ Given: Data needed for creating a custom indicator When: value is None Then: Raise an error """ with pytest.raises(ValueError): from CommonServerPython import Common, DBotScoreType dbot_score = Common.DBotScore( 'test', DBotScoreType.CUSTOM, 'VirusTotal', score=Common.DBotScore.BAD, malicious_description='malicious!' ) Common.CustomIndicator('test', None, dbot_score, {'param': 'value'}, 'prefix')
36.77021
139
0.581851
dd3433c0903ab701ff475e35d88a96a291420282
3,706
py
Python
IO/summationPub.py
storage4grid/PROFESS-PROFEV
adf4e26488225206c249938c9eecc394a06f9677
[ "Apache-2.0" ]
null
null
null
IO/summationPub.py
storage4grid/PROFESS-PROFEV
adf4e26488225206c249938c9eecc394a06f9677
[ "Apache-2.0" ]
null
null
null
IO/summationPub.py
storage4grid/PROFESS-PROFEV
adf4e26488225206c249938c9eecc394a06f9677
[ "Apache-2.0" ]
null
null
null
""" Created on Sep 19 15:45 2019 @author: nishit """ import configparser import threading from abc import abstractmethod from queue import Queue from random import randrange import time from IO.MQTTClient import MQTTClient from IO.dataReceiver import DataReceiver from utils_intern.messageLogger import MessageLogger logger = MessageLogger.get_logger_parent() class SummationPub(): def Stop(self): self.rec.exit() self.pub.exit() @abstractmethod def data_formater(self, data): pass @abstractmethod def sum_data(self): pass def __init__(self, receiver_params, config): self.q = Queue(maxsize=0) self.pub = Publisher(config, self.q) self.rec = Receiver(True, receiver_params, config, self.data_formater, id="none") class Receiver(DataReceiver): def __init__(self, internal, topic_params, config, data_formater, id): self.data_formater = data_formater super().__init__(internal, topic_params, config, id=id, prepare_topic_qos=False, sub_pub=True) def on_msg_received(self, payload): try: logger.info("msg rec : " + str(payload)) data = self.data_formater(payload) if len(data) == 0: logger.info("No keys found in received data") self.data.update(data) self.data_update = True self.last_time = time.time() except Exception as e: logger.error(e) class Publisher(): def __init__(self, config, q): self.stopRequest = threading.Event() self.config = config self.q = q self.mqtt_client = self.init_mqtt() self.consumer_thread = threading.Thread(target=self.consumer) self.consumer_thread.start() def init_mqtt(self): try: if "pub.mqtt.host" in dict(self.config.items("IO")): host = self.config.get("IO", "pub.mqtt.host") else: host = self.config.get("IO", "mqtt.host") port = self.config.get("IO", "mqtt.port") client_id = "client_publish" + str(randrange(100000)) + str(time.time()).replace(".", "") mqtt = MQTTClient(str(host), port, client_id, username=self.config.get("IO", "mqtt.username", fallback=None), password=self.config.get("IO", "mqtt.password", fallback=None), ca_cert_path=self.config.get("IO", "mqtt.ca.cert.path", fallback=None), set_insecure=bool(self.config.get("IO", "mqtt.insecure.flag", fallback=False))) return mqtt except Exception as e: logger.error(e) raise e def consumer(self): while True and not self.stopRequest.is_set(): if not self.q.empty(): try: logger.debug("Queue size: " + str(self.q.qsize())) data = self.q.get() if data is not None: self.publish_data(data) except Exception as e: logger.error("Error in consuming queue " + str(e)) else: time.sleep(2) def publish_data(self, data): try: topic = data["topic"] data = data["data"] self.mqtt_client.publish(topic=topic, message=data, waitForAck=True, qos=1) logger.debug("Results published on this topic: " + topic) except Exception as e: logger.error("Error pub data " + str(e)) def exit(self): self.stopRequest.set() self.mqtt_client.MQTTExit() self.consumer_thread.join()
33.089286
109
0.57987
2598bc676520755448378dc0b5ba76d4e9886e1c
67,095
py
Python
Lib/tkinter/test/test_ttk/test_widgets.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
1,886
2021-05-03T23:58:43.000Z
2022-03-31T19:15:58.000Z
Lib/tkinter/test/test_ttk/test_widgets.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
70
2021-05-04T23:25:35.000Z
2022-03-31T18:42:08.000Z
Lib/tkinter/test/test_ttk/test_widgets.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
52
2021-05-04T21:26:03.000Z
2022-03-08T18:02:56.000Z
import unittest import tkinter from tkinter import ttk, TclError from test.support import requires import sys from tkinter.test.test_ttk.test_functions import MockTclObj from tkinter.test.support import (AbstractTkTest, tcl_version, get_tk_patchlevel, simulate_mouse_click) from tkinter.test.widget_tests import (add_standard_options, noconv, AbstractWidgetTest, StandardOptionsTests, IntegerSizeTests, PixelSizeTests, setUpModule) requires('gui') class StandardTtkOptionsTests(StandardOptionsTests): def test_class(self): widget = self.create() self.assertEqual(widget['class'], '') errmsg='attempt to change read-only option' if get_tk_patchlevel() < (8, 6, 0, 'beta', 3): errmsg='Attempt to change read-only option' self.checkInvalidParam(widget, 'class', 'Foo', errmsg=errmsg) widget2 = self.create(class_='Foo') self.assertEqual(widget2['class'], 'Foo') def test_padding(self): widget = self.create() self.checkParam(widget, 'padding', 0, expected=('0',)) self.checkParam(widget, 'padding', 5, expected=('5',)) self.checkParam(widget, 'padding', (5, 6), expected=('5', '6')) self.checkParam(widget, 'padding', (5, 6, 7), expected=('5', '6', '7')) self.checkParam(widget, 'padding', (5, 6, 7, 8), expected=('5', '6', '7', '8')) self.checkParam(widget, 'padding', ('5p', '6p', '7p', '8p')) self.checkParam(widget, 'padding', (), expected='') def test_style(self): widget = self.create() self.assertEqual(widget['style'], '') errmsg = 'Layout Foo not found' if hasattr(self, 'default_orient'): errmsg = ('Layout %s.Foo not found' % getattr(self, 'default_orient').title()) self.checkInvalidParam(widget, 'style', 'Foo', errmsg=errmsg) widget2 = self.create(class_='Foo') self.assertEqual(widget2['class'], 'Foo') # XXX pass class WidgetTest(AbstractTkTest, unittest.TestCase): """Tests methods available in every ttk widget.""" def setUp(self): super().setUp() self.widget = ttk.Button(self.root, width=0, text="Text") self.widget.pack() self.widget.wait_visibility() def test_identify(self): self.widget.update_idletasks() self.assertEqual(self.widget.identify( int(self.widget.winfo_width() / 2), int(self.widget.winfo_height() / 2) ), "label") self.assertEqual(self.widget.identify(-1, -1), "") self.assertRaises(tkinter.TclError, self.widget.identify, None, 5) self.assertRaises(tkinter.TclError, self.widget.identify, 5, None) self.assertRaises(tkinter.TclError, self.widget.identify, 5, '') def test_widget_state(self): # XXX not sure about the portability of all these tests self.assertEqual(self.widget.state(), ()) self.assertEqual(self.widget.instate(['!disabled']), True) # changing from !disabled to disabled self.assertEqual(self.widget.state(['disabled']), ('!disabled', )) # no state change self.assertEqual(self.widget.state(['disabled']), ()) # change back to !disable but also active self.assertEqual(self.widget.state(['!disabled', 'active']), ('!active', 'disabled')) # no state changes, again self.assertEqual(self.widget.state(['!disabled', 'active']), ()) self.assertEqual(self.widget.state(['active', '!disabled']), ()) def test_cb(arg1, **kw): return arg1, kw self.assertEqual(self.widget.instate(['!disabled'], test_cb, "hi", **{"msg": "there"}), ('hi', {'msg': 'there'})) # attempt to set invalid statespec currstate = self.widget.state() self.assertRaises(tkinter.TclError, self.widget.instate, ['badstate']) self.assertRaises(tkinter.TclError, self.widget.instate, ['disabled', 'badstate']) # verify that widget didn't change its state self.assertEqual(currstate, self.widget.state()) # ensuring that passing None as state doesn't modify current state self.widget.state(['active', '!disabled']) self.assertEqual(self.widget.state(), ('active', )) class AbstractToplevelTest(AbstractWidgetTest, PixelSizeTests): _conv_pixels = noconv @add_standard_options(StandardTtkOptionsTests) class FrameTest(AbstractToplevelTest, unittest.TestCase): OPTIONS = ( 'borderwidth', 'class', 'cursor', 'height', 'padding', 'relief', 'style', 'takefocus', 'width', ) def create(self, **kwargs): return ttk.Frame(self.root, **kwargs) @add_standard_options(StandardTtkOptionsTests) class LabelFrameTest(AbstractToplevelTest, unittest.TestCase): OPTIONS = ( 'borderwidth', 'class', 'cursor', 'height', 'labelanchor', 'labelwidget', 'padding', 'relief', 'style', 'takefocus', 'text', 'underline', 'width', ) def create(self, **kwargs): return ttk.LabelFrame(self.root, **kwargs) def test_labelanchor(self): widget = self.create() self.checkEnumParam(widget, 'labelanchor', 'e', 'en', 'es', 'n', 'ne', 'nw', 's', 'se', 'sw', 'w', 'wn', 'ws', errmsg='Bad label anchor specification {}') self.checkInvalidParam(widget, 'labelanchor', 'center') def test_labelwidget(self): widget = self.create() label = ttk.Label(self.root, text='Mupp', name='foo') self.checkParam(widget, 'labelwidget', label, expected='.foo') label.destroy() class AbstractLabelTest(AbstractWidgetTest): def checkImageParam(self, widget, name): image = tkinter.PhotoImage(master=self.root, name='image1') image2 = tkinter.PhotoImage(master=self.root, name='image2') self.checkParam(widget, name, image, expected=('image1',)) self.checkParam(widget, name, 'image1', expected=('image1',)) self.checkParam(widget, name, (image,), expected=('image1',)) self.checkParam(widget, name, (image, 'active', image2), expected=('image1', 'active', 'image2')) self.checkParam(widget, name, 'image1 active image2', expected=('image1', 'active', 'image2')) self.checkInvalidParam(widget, name, 'spam', errmsg='image "spam" doesn\'t exist') def test_compound(self): widget = self.create() self.checkEnumParam(widget, 'compound', 'none', 'text', 'image', 'center', 'top', 'bottom', 'left', 'right') def test_state(self): widget = self.create() self.checkParams(widget, 'state', 'active', 'disabled', 'normal') def test_width(self): widget = self.create() self.checkParams(widget, 'width', 402, -402, 0) @add_standard_options(StandardTtkOptionsTests) class LabelTest(AbstractLabelTest, unittest.TestCase): OPTIONS = ( 'anchor', 'background', 'borderwidth', 'class', 'compound', 'cursor', 'font', 'foreground', 'image', 'justify', 'padding', 'relief', 'state', 'style', 'takefocus', 'text', 'textvariable', 'underline', 'width', 'wraplength', ) _conv_pixels = noconv def create(self, **kwargs): return ttk.Label(self.root, **kwargs) def test_font(self): widget = self.create() self.checkParam(widget, 'font', '-Adobe-Helvetica-Medium-R-Normal--*-120-*-*-*-*-*-*') @add_standard_options(StandardTtkOptionsTests) class ButtonTest(AbstractLabelTest, unittest.TestCase): OPTIONS = ( 'class', 'command', 'compound', 'cursor', 'default', 'image', 'padding', 'state', 'style', 'takefocus', 'text', 'textvariable', 'underline', 'width', ) def create(self, **kwargs): return ttk.Button(self.root, **kwargs) def test_default(self): widget = self.create() self.checkEnumParam(widget, 'default', 'normal', 'active', 'disabled') def test_invoke(self): success = [] btn = ttk.Button(self.root, command=lambda: success.append(1)) btn.invoke() self.assertTrue(success) @add_standard_options(StandardTtkOptionsTests) class CheckbuttonTest(AbstractLabelTest, unittest.TestCase): OPTIONS = ( 'class', 'command', 'compound', 'cursor', 'image', 'offvalue', 'onvalue', 'padding', 'state', 'style', 'takefocus', 'text', 'textvariable', 'underline', 'variable', 'width', ) def create(self, **kwargs): return ttk.Checkbutton(self.root, **kwargs) def test_offvalue(self): widget = self.create() self.checkParams(widget, 'offvalue', 1, 2.3, '', 'any string') def test_onvalue(self): widget = self.create() self.checkParams(widget, 'onvalue', 1, 2.3, '', 'any string') def test_invoke(self): success = [] def cb_test(): success.append(1) return "cb test called" cbtn = ttk.Checkbutton(self.root, command=cb_test) # the variable automatically created by ttk.Checkbutton is actually # undefined till we invoke the Checkbutton self.assertEqual(cbtn.state(), ('alternate', )) self.assertRaises(tkinter.TclError, cbtn.tk.globalgetvar, cbtn['variable']) res = cbtn.invoke() self.assertEqual(res, "cb test called") self.assertEqual(cbtn['onvalue'], cbtn.tk.globalgetvar(cbtn['variable'])) self.assertTrue(success) cbtn['command'] = '' res = cbtn.invoke() self.assertFalse(str(res)) self.assertLessEqual(len(success), 1) self.assertEqual(cbtn['offvalue'], cbtn.tk.globalgetvar(cbtn['variable'])) @add_standard_options(IntegerSizeTests, StandardTtkOptionsTests) class EntryTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'background', 'class', 'cursor', 'exportselection', 'font', 'foreground', 'invalidcommand', 'justify', 'show', 'state', 'style', 'takefocus', 'textvariable', 'validate', 'validatecommand', 'width', 'xscrollcommand', ) def setUp(self): super().setUp() self.entry = self.create() def create(self, **kwargs): return ttk.Entry(self.root, **kwargs) def test_invalidcommand(self): widget = self.create() self.checkCommandParam(widget, 'invalidcommand') def test_show(self): widget = self.create() self.checkParam(widget, 'show', '*') self.checkParam(widget, 'show', '') self.checkParam(widget, 'show', ' ') def test_state(self): widget = self.create() self.checkParams(widget, 'state', 'disabled', 'normal', 'readonly') def test_validate(self): widget = self.create() self.checkEnumParam(widget, 'validate', 'all', 'key', 'focus', 'focusin', 'focusout', 'none') def test_validatecommand(self): widget = self.create() self.checkCommandParam(widget, 'validatecommand') def test_bbox(self): self.assertIsBoundingBox(self.entry.bbox(0)) self.assertRaises(tkinter.TclError, self.entry.bbox, 'noindex') self.assertRaises(tkinter.TclError, self.entry.bbox, None) def test_identify(self): self.entry.pack() self.entry.wait_visibility() self.entry.update_idletasks() # bpo-27313: macOS Cocoa widget differs from X, allow either if sys.platform == 'darwin': self.assertIn(self.entry.identify(5, 5), ("textarea", "Combobox.button") ) else: self.assertEqual(self.entry.identify(5, 5), "textarea") self.assertEqual(self.entry.identify(-1, -1), "") self.assertRaises(tkinter.TclError, self.entry.identify, None, 5) self.assertRaises(tkinter.TclError, self.entry.identify, 5, None) self.assertRaises(tkinter.TclError, self.entry.identify, 5, '') def test_validation_options(self): success = [] test_invalid = lambda: success.append(True) self.entry['validate'] = 'none' self.entry['validatecommand'] = lambda: False self.entry['invalidcommand'] = test_invalid self.entry.validate() self.assertTrue(success) self.entry['invalidcommand'] = '' self.entry.validate() self.assertEqual(len(success), 1) self.entry['invalidcommand'] = test_invalid self.entry['validatecommand'] = lambda: True self.entry.validate() self.assertEqual(len(success), 1) self.entry['validatecommand'] = '' self.entry.validate() self.assertEqual(len(success), 1) self.entry['validatecommand'] = True self.assertRaises(tkinter.TclError, self.entry.validate) def test_validation(self): validation = [] def validate(to_insert): if not 'a' <= to_insert.lower() <= 'z': validation.append(False) return False validation.append(True) return True self.entry['validate'] = 'key' self.entry['validatecommand'] = self.entry.register(validate), '%S' self.entry.insert('end', 1) self.entry.insert('end', 'a') self.assertEqual(validation, [False, True]) self.assertEqual(self.entry.get(), 'a') def test_revalidation(self): def validate(content): for letter in content: if not 'a' <= letter.lower() <= 'z': return False return True self.entry['validatecommand'] = self.entry.register(validate), '%P' self.entry.insert('end', 'avocado') self.assertEqual(self.entry.validate(), True) self.assertEqual(self.entry.state(), ()) self.entry.delete(0, 'end') self.assertEqual(self.entry.get(), '') self.entry.insert('end', 'a1b') self.assertEqual(self.entry.validate(), False) self.assertEqual(self.entry.state(), ('invalid', )) self.entry.delete(1) self.assertEqual(self.entry.validate(), True) self.assertEqual(self.entry.state(), ()) @add_standard_options(IntegerSizeTests, StandardTtkOptionsTests) class ComboboxTest(EntryTest, unittest.TestCase): OPTIONS = ( 'background', 'class', 'cursor', 'exportselection', 'font', 'foreground', 'height', 'invalidcommand', 'justify', 'postcommand', 'show', 'state', 'style', 'takefocus', 'textvariable', 'validate', 'validatecommand', 'values', 'width', 'xscrollcommand', ) def setUp(self): super().setUp() self.combo = self.create() def create(self, **kwargs): return ttk.Combobox(self.root, **kwargs) def test_height(self): widget = self.create() self.checkParams(widget, 'height', 100, 101.2, 102.6, -100, 0, '1i') def _show_drop_down_listbox(self): width = self.combo.winfo_width() self.combo.event_generate('<ButtonPress-1>', x=width - 5, y=5) self.combo.event_generate('<ButtonRelease-1>', x=width - 5, y=5) self.combo.update_idletasks() def test_virtual_event(self): success = [] self.combo['values'] = [1] self.combo.bind('<<ComboboxSelected>>', lambda evt: success.append(True)) self.combo.pack() self.combo.wait_visibility() height = self.combo.winfo_height() self._show_drop_down_listbox() self.combo.update() self.combo.event_generate('<Return>') self.combo.update() self.assertTrue(success) def test_postcommand(self): success = [] self.combo['postcommand'] = lambda: success.append(True) self.combo.pack() self.combo.wait_visibility() self._show_drop_down_listbox() self.assertTrue(success) # testing postcommand removal self.combo['postcommand'] = '' self._show_drop_down_listbox() self.assertEqual(len(success), 1) def test_values(self): def check_get_current(getval, currval): self.assertEqual(self.combo.get(), getval) self.assertEqual(self.combo.current(), currval) self.assertEqual(self.combo['values'], () if tcl_version < (8, 5) else '') check_get_current('', -1) self.checkParam(self.combo, 'values', 'mon tue wed thur', expected=('mon', 'tue', 'wed', 'thur')) self.checkParam(self.combo, 'values', ('mon', 'tue', 'wed', 'thur')) self.checkParam(self.combo, 'values', (42, 3.14, '', 'any string')) self.checkParam(self.combo, 'values', '') self.combo['values'] = ['a', 1, 'c'] self.combo.set('c') check_get_current('c', 2) self.combo.current(0) check_get_current('a', 0) self.combo.set('d') check_get_current('d', -1) # testing values with empty string self.combo.set('') self.combo['values'] = (1, 2, '', 3) check_get_current('', 2) # testing values with empty string set through configure self.combo.configure(values=[1, '', 2]) self.assertEqual(self.combo['values'], ('1', '', '2') if self.wantobjects else '1 {} 2') # testing values with spaces self.combo['values'] = ['a b', 'a\tb', 'a\nb'] self.assertEqual(self.combo['values'], ('a b', 'a\tb', 'a\nb') if self.wantobjects else '{a b} {a\tb} {a\nb}') # testing values with special characters self.combo['values'] = [r'a\tb', '"a"', '} {'] self.assertEqual(self.combo['values'], (r'a\tb', '"a"', '} {') if self.wantobjects else r'a\\tb {"a"} \}\ \{') # out of range self.assertRaises(tkinter.TclError, self.combo.current, len(self.combo['values'])) # it expects an integer (or something that can be converted to int) self.assertRaises(tkinter.TclError, self.combo.current, '') # testing creating combobox with empty string in values combo2 = ttk.Combobox(self.root, values=[1, 2, '']) self.assertEqual(combo2['values'], ('1', '2', '') if self.wantobjects else '1 2 {}') combo2.destroy() @add_standard_options(IntegerSizeTests, StandardTtkOptionsTests) class PanedWindowTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'cursor', 'height', 'orient', 'style', 'takefocus', 'width', ) def setUp(self): super().setUp() self.paned = self.create() def create(self, **kwargs): return ttk.PanedWindow(self.root, **kwargs) def test_orient(self): widget = self.create() self.assertEqual(str(widget['orient']), 'vertical') errmsg='attempt to change read-only option' if get_tk_patchlevel() < (8, 6, 0, 'beta', 3): errmsg='Attempt to change read-only option' self.checkInvalidParam(widget, 'orient', 'horizontal', errmsg=errmsg) widget2 = self.create(orient='horizontal') self.assertEqual(str(widget2['orient']), 'horizontal') def test_add(self): # attempt to add a child that is not a direct child of the paned window label = ttk.Label(self.paned) child = ttk.Label(label) self.assertRaises(tkinter.TclError, self.paned.add, child) label.destroy() child.destroy() # another attempt label = ttk.Label(self.root) child = ttk.Label(label) self.assertRaises(tkinter.TclError, self.paned.add, child) child.destroy() label.destroy() good_child = ttk.Label(self.root) self.paned.add(good_child) # re-adding a child is not accepted self.assertRaises(tkinter.TclError, self.paned.add, good_child) other_child = ttk.Label(self.paned) self.paned.add(other_child) self.assertEqual(self.paned.pane(0), self.paned.pane(1)) self.assertRaises(tkinter.TclError, self.paned.pane, 2) good_child.destroy() other_child.destroy() self.assertRaises(tkinter.TclError, self.paned.pane, 0) def test_forget(self): self.assertRaises(tkinter.TclError, self.paned.forget, None) self.assertRaises(tkinter.TclError, self.paned.forget, 0) self.paned.add(ttk.Label(self.root)) self.paned.forget(0) self.assertRaises(tkinter.TclError, self.paned.forget, 0) def test_insert(self): self.assertRaises(tkinter.TclError, self.paned.insert, None, 0) self.assertRaises(tkinter.TclError, self.paned.insert, 0, None) self.assertRaises(tkinter.TclError, self.paned.insert, 0, 0) child = ttk.Label(self.root) child2 = ttk.Label(self.root) child3 = ttk.Label(self.root) self.assertRaises(tkinter.TclError, self.paned.insert, 0, child) self.paned.insert('end', child2) self.paned.insert(0, child) self.assertEqual(self.paned.panes(), (str(child), str(child2))) self.paned.insert(0, child2) self.assertEqual(self.paned.panes(), (str(child2), str(child))) self.paned.insert('end', child3) self.assertEqual(self.paned.panes(), (str(child2), str(child), str(child3))) # reinserting a child should move it to its current position panes = self.paned.panes() self.paned.insert('end', child3) self.assertEqual(panes, self.paned.panes()) # moving child3 to child2 position should result in child2 ending up # in previous child position and child ending up in previous child3 # position self.paned.insert(child2, child3) self.assertEqual(self.paned.panes(), (str(child3), str(child2), str(child))) def test_pane(self): self.assertRaises(tkinter.TclError, self.paned.pane, 0) child = ttk.Label(self.root) self.paned.add(child) self.assertIsInstance(self.paned.pane(0), dict) self.assertEqual(self.paned.pane(0, weight=None), 0 if self.wantobjects else '0') # newer form for querying a single option self.assertEqual(self.paned.pane(0, 'weight'), 0 if self.wantobjects else '0') self.assertEqual(self.paned.pane(0), self.paned.pane(str(child))) self.assertRaises(tkinter.TclError, self.paned.pane, 0, badoption='somevalue') def test_sashpos(self): self.assertRaises(tkinter.TclError, self.paned.sashpos, None) self.assertRaises(tkinter.TclError, self.paned.sashpos, '') self.assertRaises(tkinter.TclError, self.paned.sashpos, 0) child = ttk.Label(self.paned, text='a') self.paned.add(child, weight=1) self.assertRaises(tkinter.TclError, self.paned.sashpos, 0) child2 = ttk.Label(self.paned, text='b') self.paned.add(child2) self.assertRaises(tkinter.TclError, self.paned.sashpos, 1) self.paned.pack(expand=True, fill='both') self.paned.wait_visibility() curr_pos = self.paned.sashpos(0) self.paned.sashpos(0, 1000) self.assertNotEqual(curr_pos, self.paned.sashpos(0)) self.assertIsInstance(self.paned.sashpos(0), int) @add_standard_options(StandardTtkOptionsTests) class RadiobuttonTest(AbstractLabelTest, unittest.TestCase): OPTIONS = ( 'class', 'command', 'compound', 'cursor', 'image', 'padding', 'state', 'style', 'takefocus', 'text', 'textvariable', 'underline', 'value', 'variable', 'width', ) def create(self, **kwargs): return ttk.Radiobutton(self.root, **kwargs) def test_value(self): widget = self.create() self.checkParams(widget, 'value', 1, 2.3, '', 'any string') def test_invoke(self): success = [] def cb_test(): success.append(1) return "cb test called" myvar = tkinter.IntVar(self.root) cbtn = ttk.Radiobutton(self.root, command=cb_test, variable=myvar, value=0) cbtn2 = ttk.Radiobutton(self.root, command=cb_test, variable=myvar, value=1) if self.wantobjects: conv = lambda x: x else: conv = int res = cbtn.invoke() self.assertEqual(res, "cb test called") self.assertEqual(conv(cbtn['value']), myvar.get()) self.assertEqual(myvar.get(), conv(cbtn.tk.globalgetvar(cbtn['variable']))) self.assertTrue(success) cbtn2['command'] = '' res = cbtn2.invoke() self.assertEqual(str(res), '') self.assertLessEqual(len(success), 1) self.assertEqual(conv(cbtn2['value']), myvar.get()) self.assertEqual(myvar.get(), conv(cbtn.tk.globalgetvar(cbtn['variable']))) self.assertEqual(str(cbtn['variable']), str(cbtn2['variable'])) class MenubuttonTest(AbstractLabelTest, unittest.TestCase): OPTIONS = ( 'class', 'compound', 'cursor', 'direction', 'image', 'menu', 'padding', 'state', 'style', 'takefocus', 'text', 'textvariable', 'underline', 'width', ) def create(self, **kwargs): return ttk.Menubutton(self.root, **kwargs) def test_direction(self): widget = self.create() self.checkEnumParam(widget, 'direction', 'above', 'below', 'left', 'right', 'flush') def test_menu(self): widget = self.create() menu = tkinter.Menu(widget, name='menu') self.checkParam(widget, 'menu', menu, conv=str) menu.destroy() @add_standard_options(StandardTtkOptionsTests) class ScaleTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'command', 'cursor', 'from', 'length', 'orient', 'style', 'takefocus', 'to', 'value', 'variable', ) _conv_pixels = noconv default_orient = 'horizontal' def setUp(self): super().setUp() self.scale = self.create() self.scale.pack() self.scale.update() def create(self, **kwargs): return ttk.Scale(self.root, **kwargs) def test_from(self): widget = self.create() self.checkFloatParam(widget, 'from', 100, 14.9, 15.1, conv=False) def test_length(self): widget = self.create() self.checkPixelsParam(widget, 'length', 130, 131.2, 135.6, '5i') def test_to(self): widget = self.create() self.checkFloatParam(widget, 'to', 300, 14.9, 15.1, -10, conv=False) def test_value(self): widget = self.create() self.checkFloatParam(widget, 'value', 300, 14.9, 15.1, -10, conv=False) def test_custom_event(self): failure = [1, 1, 1] # will need to be empty funcid = self.scale.bind('<<RangeChanged>>', lambda evt: failure.pop()) self.scale['from'] = 10 self.scale['from_'] = 10 self.scale['to'] = 3 self.assertFalse(failure) failure = [1, 1, 1] self.scale.configure(from_=2, to=5) self.scale.configure(from_=0, to=-2) self.scale.configure(to=10) self.assertFalse(failure) def test_get(self): if self.wantobjects: conv = lambda x: x else: conv = float scale_width = self.scale.winfo_width() self.assertEqual(self.scale.get(scale_width, 0), self.scale['to']) self.assertEqual(conv(self.scale.get(0, 0)), conv(self.scale['from'])) self.assertEqual(self.scale.get(), self.scale['value']) self.scale['value'] = 30 self.assertEqual(self.scale.get(), self.scale['value']) self.assertRaises(tkinter.TclError, self.scale.get, '', 0) self.assertRaises(tkinter.TclError, self.scale.get, 0, '') def test_set(self): if self.wantobjects: conv = lambda x: x else: conv = float # set restricts the max/min values according to the current range max = conv(self.scale['to']) new_max = max + 10 self.scale.set(new_max) self.assertEqual(conv(self.scale.get()), max) min = conv(self.scale['from']) self.scale.set(min - 1) self.assertEqual(conv(self.scale.get()), min) # changing directly the variable doesn't impose this limitation tho var = tkinter.DoubleVar(self.root) self.scale['variable'] = var var.set(max + 5) self.assertEqual(conv(self.scale.get()), var.get()) self.assertEqual(conv(self.scale.get()), max + 5) del var # the same happens with the value option self.scale['value'] = max + 10 self.assertEqual(conv(self.scale.get()), max + 10) self.assertEqual(conv(self.scale.get()), conv(self.scale['value'])) # nevertheless, note that the max/min values we can get specifying # x, y coords are the ones according to the current range self.assertEqual(conv(self.scale.get(0, 0)), min) self.assertEqual(conv(self.scale.get(self.scale.winfo_width(), 0)), max) self.assertRaises(tkinter.TclError, self.scale.set, None) @add_standard_options(StandardTtkOptionsTests) class ProgressbarTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'cursor', 'orient', 'length', 'mode', 'maximum', 'phase', 'style', 'takefocus', 'value', 'variable', ) _conv_pixels = noconv default_orient = 'horizontal' def create(self, **kwargs): return ttk.Progressbar(self.root, **kwargs) def test_length(self): widget = self.create() self.checkPixelsParam(widget, 'length', 100.1, 56.7, '2i') def test_maximum(self): widget = self.create() self.checkFloatParam(widget, 'maximum', 150.2, 77.7, 0, -10, conv=False) def test_mode(self): widget = self.create() self.checkEnumParam(widget, 'mode', 'determinate', 'indeterminate') def test_phase(self): # XXX pass def test_value(self): widget = self.create() self.checkFloatParam(widget, 'value', 150.2, 77.7, 0, -10, conv=False) @unittest.skipIf(sys.platform == 'darwin', 'ttk.Scrollbar is special on MacOSX') @add_standard_options(StandardTtkOptionsTests) class ScrollbarTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'command', 'cursor', 'orient', 'style', 'takefocus', ) default_orient = 'vertical' def create(self, **kwargs): return ttk.Scrollbar(self.root, **kwargs) @add_standard_options(IntegerSizeTests, StandardTtkOptionsTests) class NotebookTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'cursor', 'height', 'padding', 'style', 'takefocus', 'width', ) def setUp(self): super().setUp() self.nb = self.create(padding=0) self.child1 = ttk.Label(self.root) self.child2 = ttk.Label(self.root) self.nb.add(self.child1, text='a') self.nb.add(self.child2, text='b') def create(self, **kwargs): return ttk.Notebook(self.root, **kwargs) def test_tab_identifiers(self): self.nb.forget(0) self.nb.hide(self.child2) self.assertRaises(tkinter.TclError, self.nb.tab, self.child1) self.assertEqual(self.nb.index('end'), 1) self.nb.add(self.child2) self.assertEqual(self.nb.index('end'), 1) self.nb.select(self.child2) self.assertTrue(self.nb.tab('current')) self.nb.add(self.child1, text='a') self.nb.pack() self.nb.wait_visibility() if sys.platform == 'darwin': tb_idx = "@20,5" else: tb_idx = "@5,5" self.assertEqual(self.nb.tab(tb_idx), self.nb.tab('current')) for i in range(5, 100, 5): try: if self.nb.tab('@%d, 5' % i, text=None) == 'a': break except tkinter.TclError: pass else: self.fail("Tab with text 'a' not found") def test_add_and_hidden(self): self.assertRaises(tkinter.TclError, self.nb.hide, -1) self.assertRaises(tkinter.TclError, self.nb.hide, 'hi') self.assertRaises(tkinter.TclError, self.nb.hide, None) self.assertRaises(tkinter.TclError, self.nb.add, None) self.assertRaises(tkinter.TclError, self.nb.add, ttk.Label(self.root), unknown='option') tabs = self.nb.tabs() self.nb.hide(self.child1) self.nb.add(self.child1) self.assertEqual(self.nb.tabs(), tabs) child = ttk.Label(self.root) self.nb.add(child, text='c') tabs = self.nb.tabs() curr = self.nb.index('current') # verify that the tab gets readded at its previous position child2_index = self.nb.index(self.child2) self.nb.hide(self.child2) self.nb.add(self.child2) self.assertEqual(self.nb.tabs(), tabs) self.assertEqual(self.nb.index(self.child2), child2_index) self.assertEqual(str(self.child2), self.nb.tabs()[child2_index]) # but the tab next to it (not hidden) is the one selected now self.assertEqual(self.nb.index('current'), curr + 1) def test_forget(self): self.assertRaises(tkinter.TclError, self.nb.forget, -1) self.assertRaises(tkinter.TclError, self.nb.forget, 'hi') self.assertRaises(tkinter.TclError, self.nb.forget, None) tabs = self.nb.tabs() child1_index = self.nb.index(self.child1) self.nb.forget(self.child1) self.assertNotIn(str(self.child1), self.nb.tabs()) self.assertEqual(len(tabs) - 1, len(self.nb.tabs())) self.nb.add(self.child1) self.assertEqual(self.nb.index(self.child1), 1) self.assertNotEqual(child1_index, self.nb.index(self.child1)) def test_index(self): self.assertRaises(tkinter.TclError, self.nb.index, -1) self.assertRaises(tkinter.TclError, self.nb.index, None) self.assertIsInstance(self.nb.index('end'), int) self.assertEqual(self.nb.index(self.child1), 0) self.assertEqual(self.nb.index(self.child2), 1) self.assertEqual(self.nb.index('end'), 2) def test_insert(self): # moving tabs tabs = self.nb.tabs() self.nb.insert(1, tabs[0]) self.assertEqual(self.nb.tabs(), (tabs[1], tabs[0])) self.nb.insert(self.child1, self.child2) self.assertEqual(self.nb.tabs(), tabs) self.nb.insert('end', self.child1) self.assertEqual(self.nb.tabs(), (tabs[1], tabs[0])) self.nb.insert('end', 0) self.assertEqual(self.nb.tabs(), tabs) # bad moves self.assertRaises(tkinter.TclError, self.nb.insert, 2, tabs[0]) self.assertRaises(tkinter.TclError, self.nb.insert, -1, tabs[0]) # new tab child3 = ttk.Label(self.root) self.nb.insert(1, child3) self.assertEqual(self.nb.tabs(), (tabs[0], str(child3), tabs[1])) self.nb.forget(child3) self.assertEqual(self.nb.tabs(), tabs) self.nb.insert(self.child1, child3) self.assertEqual(self.nb.tabs(), (str(child3), ) + tabs) self.nb.forget(child3) self.assertRaises(tkinter.TclError, self.nb.insert, 2, child3) self.assertRaises(tkinter.TclError, self.nb.insert, -1, child3) # bad inserts self.assertRaises(tkinter.TclError, self.nb.insert, 'end', None) self.assertRaises(tkinter.TclError, self.nb.insert, None, 0) self.assertRaises(tkinter.TclError, self.nb.insert, None, None) def test_select(self): self.nb.pack() self.nb.wait_visibility() success = [] tab_changed = [] self.child1.bind('<Unmap>', lambda evt: success.append(True)) self.nb.bind('<<NotebookTabChanged>>', lambda evt: tab_changed.append(True)) self.assertEqual(self.nb.select(), str(self.child1)) self.nb.select(self.child2) self.assertTrue(success) self.assertEqual(self.nb.select(), str(self.child2)) self.nb.update() self.assertTrue(tab_changed) def test_tab(self): self.assertRaises(tkinter.TclError, self.nb.tab, -1) self.assertRaises(tkinter.TclError, self.nb.tab, 'notab') self.assertRaises(tkinter.TclError, self.nb.tab, None) self.assertIsInstance(self.nb.tab(self.child1), dict) self.assertEqual(self.nb.tab(self.child1, text=None), 'a') # newer form for querying a single option self.assertEqual(self.nb.tab(self.child1, 'text'), 'a') self.nb.tab(self.child1, text='abc') self.assertEqual(self.nb.tab(self.child1, text=None), 'abc') self.assertEqual(self.nb.tab(self.child1, 'text'), 'abc') def test_tabs(self): self.assertEqual(len(self.nb.tabs()), 2) self.nb.forget(self.child1) self.nb.forget(self.child2) self.assertEqual(self.nb.tabs(), ()) def test_traversal(self): self.nb.pack() self.nb.wait_visibility() self.nb.select(0) simulate_mouse_click(self.nb, 5, 5) self.nb.focus_force() self.nb.event_generate('<Control-Tab>') self.assertEqual(self.nb.select(), str(self.child2)) self.nb.focus_force() self.nb.event_generate('<Shift-Control-Tab>') self.assertEqual(self.nb.select(), str(self.child1)) self.nb.focus_force() self.nb.event_generate('<Shift-Control-Tab>') self.assertEqual(self.nb.select(), str(self.child2)) self.nb.tab(self.child1, text='a', underline=0) self.nb.enable_traversal() self.nb.focus_force() simulate_mouse_click(self.nb, 5, 5) if sys.platform == 'darwin': self.nb.event_generate('<Option-a>') else: self.nb.event_generate('<Alt-a>') self.assertEqual(self.nb.select(), str(self.child1)) @add_standard_options(IntegerSizeTests, StandardTtkOptionsTests) class SpinboxTest(EntryTest, unittest.TestCase): OPTIONS = ( 'background', 'class', 'command', 'cursor', 'exportselection', 'font', 'foreground', 'format', 'from', 'increment', 'invalidcommand', 'justify', 'show', 'state', 'style', 'takefocus', 'textvariable', 'to', 'validate', 'validatecommand', 'values', 'width', 'wrap', 'xscrollcommand', ) def setUp(self): super().setUp() self.spin = self.create() self.spin.pack() def create(self, **kwargs): return ttk.Spinbox(self.root, **kwargs) def _click_increment_arrow(self): width = self.spin.winfo_width() height = self.spin.winfo_height() x = width - 5 y = height//2 - 5 self.spin.event_generate('<ButtonPress-1>', x=x, y=y) self.spin.event_generate('<ButtonRelease-1>', x=x, y=y) self.spin.update_idletasks() def _click_decrement_arrow(self): width = self.spin.winfo_width() height = self.spin.winfo_height() x = width - 5 y = height//2 + 4 self.spin.event_generate('<ButtonPress-1>', x=x, y=y) self.spin.event_generate('<ButtonRelease-1>', x=x, y=y) self.spin.update_idletasks() def test_command(self): success = [] self.spin['command'] = lambda: success.append(True) self.spin.update() self._click_increment_arrow() self.spin.update() self.assertTrue(success) self._click_decrement_arrow() self.assertEqual(len(success), 2) # testing postcommand removal self.spin['command'] = '' self.spin.update_idletasks() self._click_increment_arrow() self._click_decrement_arrow() self.spin.update() self.assertEqual(len(success), 2) def test_to(self): self.spin['from'] = 0 self.spin['to'] = 5 self.spin.set(4) self.spin.update() self._click_increment_arrow() # 5 self.assertEqual(self.spin.get(), '5') self._click_increment_arrow() # 5 self.assertEqual(self.spin.get(), '5') def test_from(self): self.spin['from'] = 1 self.spin['to'] = 10 self.spin.set(2) self.spin.update() self._click_decrement_arrow() # 1 self.assertEqual(self.spin.get(), '1') self._click_decrement_arrow() # 1 self.assertEqual(self.spin.get(), '1') def test_increment(self): self.spin['from'] = 0 self.spin['to'] = 10 self.spin['increment'] = 4 self.spin.set(1) self.spin.update() self._click_increment_arrow() # 5 self.assertEqual(self.spin.get(), '5') self.spin['increment'] = 2 self.spin.update() self._click_decrement_arrow() # 3 self.assertEqual(self.spin.get(), '3') def test_format(self): self.spin.set(1) self.spin['format'] = '%10.3f' self.spin.update() self._click_increment_arrow() value = self.spin.get() self.assertEqual(len(value), 10) self.assertEqual(value.index('.'), 6) self.spin['format'] = '' self.spin.update() self._click_increment_arrow() value = self.spin.get() self.assertTrue('.' not in value) self.assertEqual(len(value), 1) def test_wrap(self): self.spin['to'] = 10 self.spin['from'] = 1 self.spin.set(1) self.spin['wrap'] = True self.spin.update() self._click_decrement_arrow() self.assertEqual(self.spin.get(), '10') self._click_increment_arrow() self.assertEqual(self.spin.get(), '1') self.spin['wrap'] = False self.spin.update() self._click_decrement_arrow() self.assertEqual(self.spin.get(), '1') def test_values(self): self.assertEqual(self.spin['values'], () if tcl_version < (8, 5) else '') self.checkParam(self.spin, 'values', 'mon tue wed thur', expected=('mon', 'tue', 'wed', 'thur')) self.checkParam(self.spin, 'values', ('mon', 'tue', 'wed', 'thur')) self.checkParam(self.spin, 'values', (42, 3.14, '', 'any string')) self.checkParam(self.spin, 'values', '') self.spin['values'] = ['a', 1, 'c'] # test incrementing / decrementing values self.spin.set('a') self.spin.update() self._click_increment_arrow() self.assertEqual(self.spin.get(), '1') self._click_decrement_arrow() self.assertEqual(self.spin.get(), 'a') # testing values with empty string set through configure self.spin.configure(values=[1, '', 2]) self.assertEqual(self.spin['values'], ('1', '', '2') if self.wantobjects else '1 {} 2') # testing values with spaces self.spin['values'] = ['a b', 'a\tb', 'a\nb'] self.assertEqual(self.spin['values'], ('a b', 'a\tb', 'a\nb') if self.wantobjects else '{a b} {a\tb} {a\nb}') # testing values with special characters self.spin['values'] = [r'a\tb', '"a"', '} {'] self.assertEqual(self.spin['values'], (r'a\tb', '"a"', '} {') if self.wantobjects else r'a\\tb {"a"} \}\ \{') # testing creating spinbox with empty string in values spin2 = ttk.Spinbox(self.root, values=[1, 2, '']) self.assertEqual(spin2['values'], ('1', '2', '') if self.wantobjects else '1 2 {}') spin2.destroy() @add_standard_options(StandardTtkOptionsTests) class TreeviewTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'columns', 'cursor', 'displaycolumns', 'height', 'padding', 'selectmode', 'show', 'style', 'takefocus', 'xscrollcommand', 'yscrollcommand', ) def setUp(self): super().setUp() self.tv = self.create(padding=0) def create(self, **kwargs): return ttk.Treeview(self.root, **kwargs) def test_columns(self): widget = self.create() self.checkParam(widget, 'columns', 'a b c', expected=('a', 'b', 'c')) self.checkParam(widget, 'columns', ('a', 'b', 'c')) self.checkParam(widget, 'columns', '') def test_displaycolumns(self): widget = self.create() widget['columns'] = ('a', 'b', 'c') self.checkParam(widget, 'displaycolumns', 'b a c', expected=('b', 'a', 'c')) self.checkParam(widget, 'displaycolumns', ('b', 'a', 'c')) self.checkParam(widget, 'displaycolumns', '#all', expected=('#all',)) self.checkParam(widget, 'displaycolumns', (2, 1, 0)) self.checkInvalidParam(widget, 'displaycolumns', ('a', 'b', 'd'), errmsg='Invalid column index d') self.checkInvalidParam(widget, 'displaycolumns', (1, 2, 3), errmsg='Column index 3 out of bounds') self.checkInvalidParam(widget, 'displaycolumns', (1, -2), errmsg='Column index -2 out of bounds') def test_height(self): widget = self.create() self.checkPixelsParam(widget, 'height', 100, -100, 0, '3c', conv=False) self.checkPixelsParam(widget, 'height', 101.2, 102.6, conv=noconv) def test_selectmode(self): widget = self.create() self.checkEnumParam(widget, 'selectmode', 'none', 'browse', 'extended') def test_show(self): widget = self.create() self.checkParam(widget, 'show', 'tree headings', expected=('tree', 'headings')) self.checkParam(widget, 'show', ('tree', 'headings')) self.checkParam(widget, 'show', ('headings', 'tree')) self.checkParam(widget, 'show', 'tree', expected=('tree',)) self.checkParam(widget, 'show', 'headings', expected=('headings',)) def test_bbox(self): self.tv.pack() self.assertEqual(self.tv.bbox(''), '') self.tv.wait_visibility() self.tv.update() item_id = self.tv.insert('', 'end') children = self.tv.get_children() self.assertTrue(children) bbox = self.tv.bbox(children[0]) self.assertIsBoundingBox(bbox) # compare width in bboxes self.tv['columns'] = ['test'] self.tv.column('test', width=50) bbox_column0 = self.tv.bbox(children[0], 0) root_width = self.tv.column('#0', width=None) if not self.wantobjects: root_width = int(root_width) self.assertEqual(bbox_column0[0], bbox[0] + root_width) # verify that bbox of a closed item is the empty string child1 = self.tv.insert(item_id, 'end') self.assertEqual(self.tv.bbox(child1), '') def test_children(self): # no children yet, should get an empty tuple self.assertEqual(self.tv.get_children(), ()) item_id = self.tv.insert('', 'end') self.assertIsInstance(self.tv.get_children(), tuple) self.assertEqual(self.tv.get_children()[0], item_id) # add item_id and child3 as children of child2 child2 = self.tv.insert('', 'end') child3 = self.tv.insert('', 'end') self.tv.set_children(child2, item_id, child3) self.assertEqual(self.tv.get_children(child2), (item_id, child3)) # child3 has child2 as parent, thus trying to set child2 as a children # of child3 should result in an error self.assertRaises(tkinter.TclError, self.tv.set_children, child3, child2) # remove child2 children self.tv.set_children(child2) self.assertEqual(self.tv.get_children(child2), ()) # remove root's children self.tv.set_children('') self.assertEqual(self.tv.get_children(), ()) def test_column(self): # return a dict with all options/values self.assertIsInstance(self.tv.column('#0'), dict) # return a single value of the given option if self.wantobjects: self.assertIsInstance(self.tv.column('#0', width=None), int) # set a new value for an option self.tv.column('#0', width=10) # testing new way to get option value self.assertEqual(self.tv.column('#0', 'width'), 10 if self.wantobjects else '10') self.assertEqual(self.tv.column('#0', width=None), 10 if self.wantobjects else '10') # check read-only option self.assertRaises(tkinter.TclError, self.tv.column, '#0', id='X') self.assertRaises(tkinter.TclError, self.tv.column, 'invalid') invalid_kws = [ {'unknown_option': 'some value'}, {'stretch': 'wrong'}, {'anchor': 'wrong'}, {'width': 'wrong'}, {'minwidth': 'wrong'} ] for kw in invalid_kws: self.assertRaises(tkinter.TclError, self.tv.column, '#0', **kw) def test_delete(self): self.assertRaises(tkinter.TclError, self.tv.delete, '#0') item_id = self.tv.insert('', 'end') item2 = self.tv.insert(item_id, 'end') self.assertEqual(self.tv.get_children(), (item_id, )) self.assertEqual(self.tv.get_children(item_id), (item2, )) self.tv.delete(item_id) self.assertFalse(self.tv.get_children()) # reattach should fail self.assertRaises(tkinter.TclError, self.tv.reattach, item_id, '', 'end') # test multiple item delete item1 = self.tv.insert('', 'end') item2 = self.tv.insert('', 'end') self.assertEqual(self.tv.get_children(), (item1, item2)) self.tv.delete(item1, item2) self.assertFalse(self.tv.get_children()) def test_detach_reattach(self): item_id = self.tv.insert('', 'end') item2 = self.tv.insert(item_id, 'end') # calling detach without items is valid, although it does nothing prev = self.tv.get_children() self.tv.detach() # this should do nothing self.assertEqual(prev, self.tv.get_children()) self.assertEqual(self.tv.get_children(), (item_id, )) self.assertEqual(self.tv.get_children(item_id), (item2, )) # detach item with children self.tv.detach(item_id) self.assertFalse(self.tv.get_children()) # reattach item with children self.tv.reattach(item_id, '', 'end') self.assertEqual(self.tv.get_children(), (item_id, )) self.assertEqual(self.tv.get_children(item_id), (item2, )) # move a children to the root self.tv.move(item2, '', 'end') self.assertEqual(self.tv.get_children(), (item_id, item2)) self.assertEqual(self.tv.get_children(item_id), ()) # bad values self.assertRaises(tkinter.TclError, self.tv.reattach, 'nonexistent', '', 'end') self.assertRaises(tkinter.TclError, self.tv.detach, 'nonexistent') self.assertRaises(tkinter.TclError, self.tv.reattach, item2, 'otherparent', 'end') self.assertRaises(tkinter.TclError, self.tv.reattach, item2, '', 'invalid') # multiple detach self.tv.detach(item_id, item2) self.assertEqual(self.tv.get_children(), ()) self.assertEqual(self.tv.get_children(item_id), ()) def test_exists(self): self.assertEqual(self.tv.exists('something'), False) self.assertEqual(self.tv.exists(''), True) self.assertEqual(self.tv.exists({}), False) # the following will make a tk.call equivalent to # tk.call(treeview, "exists") which should result in an error # in the tcl interpreter since tk requires an item. self.assertRaises(tkinter.TclError, self.tv.exists, None) def test_focus(self): # nothing is focused right now self.assertEqual(self.tv.focus(), '') item1 = self.tv.insert('', 'end') self.tv.focus(item1) self.assertEqual(self.tv.focus(), item1) self.tv.delete(item1) self.assertEqual(self.tv.focus(), '') # try focusing inexistent item self.assertRaises(tkinter.TclError, self.tv.focus, 'hi') def test_heading(self): # check a dict is returned self.assertIsInstance(self.tv.heading('#0'), dict) # check a value is returned self.tv.heading('#0', text='hi') self.assertEqual(self.tv.heading('#0', 'text'), 'hi') self.assertEqual(self.tv.heading('#0', text=None), 'hi') # invalid option self.assertRaises(tkinter.TclError, self.tv.heading, '#0', background=None) # invalid value self.assertRaises(tkinter.TclError, self.tv.heading, '#0', anchor=1) def test_heading_callback(self): def simulate_heading_click(x, y): simulate_mouse_click(self.tv, x, y) self.tv.update() success = [] # no success for now self.tv.pack() self.tv.wait_visibility() self.tv.heading('#0', command=lambda: success.append(True)) self.tv.column('#0', width=100) self.tv.update() # assuming that the coords (5, 5) fall into heading #0 simulate_heading_click(5, 5) if not success: self.fail("The command associated to the treeview heading wasn't " "invoked.") success = [] commands = self.tv.master._tclCommands self.tv.heading('#0', command=str(self.tv.heading('#0', command=None))) self.assertEqual(commands, self.tv.master._tclCommands) simulate_heading_click(5, 5) if not success: self.fail("The command associated to the treeview heading wasn't " "invoked.") # XXX The following raises an error in a tcl interpreter, but not in # Python #self.tv.heading('#0', command='I dont exist') #simulate_heading_click(5, 5) def test_index(self): # item 'what' doesn't exist self.assertRaises(tkinter.TclError, self.tv.index, 'what') self.assertEqual(self.tv.index(''), 0) item1 = self.tv.insert('', 'end') item2 = self.tv.insert('', 'end') c1 = self.tv.insert(item1, 'end') c2 = self.tv.insert(item1, 'end') self.assertEqual(self.tv.index(item1), 0) self.assertEqual(self.tv.index(c1), 0) self.assertEqual(self.tv.index(c2), 1) self.assertEqual(self.tv.index(item2), 1) self.tv.move(item2, '', 0) self.assertEqual(self.tv.index(item2), 0) self.assertEqual(self.tv.index(item1), 1) # check that index still works even after its parent and siblings # have been detached self.tv.detach(item1) self.assertEqual(self.tv.index(c2), 1) self.tv.detach(c1) self.assertEqual(self.tv.index(c2), 0) # but it fails after item has been deleted self.tv.delete(item1) self.assertRaises(tkinter.TclError, self.tv.index, c2) def test_insert_item(self): # parent 'none' doesn't exist self.assertRaises(tkinter.TclError, self.tv.insert, 'none', 'end') # open values self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', open='') self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', open='please') self.assertFalse(self.tv.delete(self.tv.insert('', 'end', open=True))) self.assertFalse(self.tv.delete(self.tv.insert('', 'end', open=False))) # invalid index self.assertRaises(tkinter.TclError, self.tv.insert, '', 'middle') # trying to duplicate item id is invalid itemid = self.tv.insert('', 'end', 'first-item') self.assertEqual(itemid, 'first-item') self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', 'first-item') self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', MockTclObj('first-item')) # unicode values value = '\xe1ba' item = self.tv.insert('', 'end', values=(value, )) self.assertEqual(self.tv.item(item, 'values'), (value,) if self.wantobjects else value) self.assertEqual(self.tv.item(item, values=None), (value,) if self.wantobjects else value) self.tv.item(item, values=self.root.splitlist(self.tv.item(item, values=None))) self.assertEqual(self.tv.item(item, values=None), (value,) if self.wantobjects else value) self.assertIsInstance(self.tv.item(item), dict) # erase item values self.tv.item(item, values='') self.assertFalse(self.tv.item(item, values=None)) # item tags item = self.tv.insert('', 'end', tags=[1, 2, value]) self.assertEqual(self.tv.item(item, tags=None), ('1', '2', value) if self.wantobjects else '1 2 %s' % value) self.tv.item(item, tags=[]) self.assertFalse(self.tv.item(item, tags=None)) self.tv.item(item, tags=(1, 2)) self.assertEqual(self.tv.item(item, tags=None), ('1', '2') if self.wantobjects else '1 2') # values with spaces item = self.tv.insert('', 'end', values=('a b c', '%s %s' % (value, value))) self.assertEqual(self.tv.item(item, values=None), ('a b c', '%s %s' % (value, value)) if self.wantobjects else '{a b c} {%s %s}' % (value, value)) # text self.assertEqual(self.tv.item( self.tv.insert('', 'end', text="Label here"), text=None), "Label here") self.assertEqual(self.tv.item( self.tv.insert('', 'end', text=value), text=None), value) # test for values which are not None itemid = self.tv.insert('', 'end', 0) self.assertEqual(itemid, '0') itemid = self.tv.insert('', 'end', 0.0) self.assertEqual(itemid, '0.0') # this is because False resolves to 0 and element with 0 iid is already present self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', False) self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', '') def test_selection(self): self.assertRaises(TypeError, self.tv.selection, 'spam') # item 'none' doesn't exist self.assertRaises(tkinter.TclError, self.tv.selection_set, 'none') self.assertRaises(tkinter.TclError, self.tv.selection_add, 'none') self.assertRaises(tkinter.TclError, self.tv.selection_remove, 'none') self.assertRaises(tkinter.TclError, self.tv.selection_toggle, 'none') item1 = self.tv.insert('', 'end') item2 = self.tv.insert('', 'end') c1 = self.tv.insert(item1, 'end') c2 = self.tv.insert(item1, 'end') c3 = self.tv.insert(item1, 'end') self.assertEqual(self.tv.selection(), ()) self.tv.selection_set(c1, item2) self.assertEqual(self.tv.selection(), (c1, item2)) self.tv.selection_set(c2) self.assertEqual(self.tv.selection(), (c2,)) self.tv.selection_add(c1, item2) self.assertEqual(self.tv.selection(), (c1, c2, item2)) self.tv.selection_add(item1) self.assertEqual(self.tv.selection(), (item1, c1, c2, item2)) self.tv.selection_add() self.assertEqual(self.tv.selection(), (item1, c1, c2, item2)) self.tv.selection_remove(item1, c3) self.assertEqual(self.tv.selection(), (c1, c2, item2)) self.tv.selection_remove(c2) self.assertEqual(self.tv.selection(), (c1, item2)) self.tv.selection_remove() self.assertEqual(self.tv.selection(), (c1, item2)) self.tv.selection_toggle(c1, c3) self.assertEqual(self.tv.selection(), (c3, item2)) self.tv.selection_toggle(item2) self.assertEqual(self.tv.selection(), (c3,)) self.tv.selection_toggle() self.assertEqual(self.tv.selection(), (c3,)) self.tv.insert('', 'end', id='with spaces') self.tv.selection_set('with spaces') self.assertEqual(self.tv.selection(), ('with spaces',)) self.tv.insert('', 'end', id='{brace') self.tv.selection_set('{brace') self.assertEqual(self.tv.selection(), ('{brace',)) self.tv.insert('', 'end', id='unicode\u20ac') self.tv.selection_set('unicode\u20ac') self.assertEqual(self.tv.selection(), ('unicode\u20ac',)) self.tv.insert('', 'end', id=b'bytes\xe2\x82\xac') self.tv.selection_set(b'bytes\xe2\x82\xac') self.assertEqual(self.tv.selection(), ('bytes\xe2\x82\xac',)) self.tv.selection_set() self.assertEqual(self.tv.selection(), ()) # Old interface self.tv.selection_set((c1, item2)) self.assertEqual(self.tv.selection(), (c1, item2)) self.tv.selection_add((c1, item1)) self.assertEqual(self.tv.selection(), (item1, c1, item2)) self.tv.selection_remove((item1, c3)) self.assertEqual(self.tv.selection(), (c1, item2)) self.tv.selection_toggle((c1, c3)) self.assertEqual(self.tv.selection(), (c3, item2)) def test_set(self): self.tv['columns'] = ['A', 'B'] item = self.tv.insert('', 'end', values=['a', 'b']) self.assertEqual(self.tv.set(item), {'A': 'a', 'B': 'b'}) self.tv.set(item, 'B', 'a') self.assertEqual(self.tv.item(item, values=None), ('a', 'a') if self.wantobjects else 'a a') self.tv['columns'] = ['B'] self.assertEqual(self.tv.set(item), {'B': 'a'}) self.tv.set(item, 'B', 'b') self.assertEqual(self.tv.set(item, column='B'), 'b') self.assertEqual(self.tv.item(item, values=None), ('b', 'a') if self.wantobjects else 'b a') self.tv.set(item, 'B', 123) self.assertEqual(self.tv.set(item, 'B'), 123 if self.wantobjects else '123') self.assertEqual(self.tv.item(item, values=None), (123, 'a') if self.wantobjects else '123 a') self.assertEqual(self.tv.set(item), {'B': 123} if self.wantobjects else {'B': '123'}) # inexistent column self.assertRaises(tkinter.TclError, self.tv.set, item, 'A') self.assertRaises(tkinter.TclError, self.tv.set, item, 'A', 'b') # inexistent item self.assertRaises(tkinter.TclError, self.tv.set, 'notme') def test_tag_bind(self): events = [] item1 = self.tv.insert('', 'end', tags=['call']) item2 = self.tv.insert('', 'end', tags=['call']) self.tv.tag_bind('call', '<ButtonPress-1>', lambda evt: events.append(1)) self.tv.tag_bind('call', '<ButtonRelease-1>', lambda evt: events.append(2)) self.tv.pack() self.tv.wait_visibility() self.tv.update() pos_y = set() found = set() for i in range(0, 100, 10): if len(found) == 2: # item1 and item2 already found break item_id = self.tv.identify_row(i) if item_id and item_id not in found: pos_y.add(i) found.add(item_id) self.assertEqual(len(pos_y), 2) # item1 and item2 y pos for y in pos_y: simulate_mouse_click(self.tv, 0, y) # by now there should be 4 things in the events list, since each # item had a bind for two events that were simulated above self.assertEqual(len(events), 4) for evt in zip(events[::2], events[1::2]): self.assertEqual(evt, (1, 2)) def test_tag_configure(self): # Just testing parameter passing for now self.assertRaises(TypeError, self.tv.tag_configure) self.assertRaises(tkinter.TclError, self.tv.tag_configure, 'test', sky='blue') self.tv.tag_configure('test', foreground='blue') self.assertEqual(str(self.tv.tag_configure('test', 'foreground')), 'blue') self.assertEqual(str(self.tv.tag_configure('test', foreground=None)), 'blue') self.assertIsInstance(self.tv.tag_configure('test'), dict) def test_tag_has(self): item1 = self.tv.insert('', 'end', text='Item 1', tags=['tag1']) item2 = self.tv.insert('', 'end', text='Item 2', tags=['tag2']) self.assertRaises(TypeError, self.tv.tag_has) self.assertRaises(TclError, self.tv.tag_has, 'tag1', 'non-existing') self.assertTrue(self.tv.tag_has('tag1', item1)) self.assertFalse(self.tv.tag_has('tag1', item2)) self.assertFalse(self.tv.tag_has('tag2', item1)) self.assertTrue(self.tv.tag_has('tag2', item2)) self.assertFalse(self.tv.tag_has('tag3', item1)) self.assertFalse(self.tv.tag_has('tag3', item2)) self.assertEqual(self.tv.tag_has('tag1'), (item1,)) self.assertEqual(self.tv.tag_has('tag2'), (item2,)) self.assertEqual(self.tv.tag_has('tag3'), ()) @add_standard_options(StandardTtkOptionsTests) class SeparatorTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'cursor', 'orient', 'style', 'takefocus', # 'state'? ) default_orient = 'horizontal' def create(self, **kwargs): return ttk.Separator(self.root, **kwargs) @add_standard_options(StandardTtkOptionsTests) class SizegripTest(AbstractWidgetTest, unittest.TestCase): OPTIONS = ( 'class', 'cursor', 'style', 'takefocus', # 'state'? ) def create(self, **kwargs): return ttk.Sizegrip(self.root, **kwargs) tests_gui = ( ButtonTest, CheckbuttonTest, ComboboxTest, EntryTest, FrameTest, LabelFrameTest, LabelTest, MenubuttonTest, NotebookTest, PanedWindowTest, ProgressbarTest, RadiobuttonTest, ScaleTest, ScrollbarTest, SeparatorTest, SizegripTest, SpinboxTest, TreeviewTest, WidgetTest, ) if __name__ == "__main__": unittest.main()
35.860502
87
0.592414
dd29b750f19b1ed740fe1b21974595b1d6080a37
8,366
py
Python
reverse/A7105/a7105.py
guillaume-rico/HUBSAN-X4-H107D
cb291d53e4f68a27db834aea7e651f053cd64112
[ "MIT" ]
4
2016-10-11T01:09:33.000Z
2020-12-31T12:48:25.000Z
reverse/A7105/a7105.py
guillaume-rico/HUBSAN-X4-H107D
cb291d53e4f68a27db834aea7e651f053cd64112
[ "MIT" ]
null
null
null
reverse/A7105/a7105.py
guillaume-rico/HUBSAN-X4-H107D
cb291d53e4f68a27db834aea7e651f053cd64112
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys import array # Original work of Avalrop : https://github.com/alvarop/protox # The protox module allows for the decoding of A7105 SPI packets # # Strobe packets are marked with an S. Register read/writes are marked R/W # # Sample output: # R RSSI = 0.886V # R RSSI = 0.872V # W PLL Register I [82] # S PLL Mode # S Standby Mode # S FIFO Write pointer reset # W FIFO DATA Register [01 82 C0 AC D8 41 00 00 00 00 00 00 00 00 00 F8] # S TX Mode # # # Constants # STROBE_BIT = 0x80 READ_BIT = 0x40 fXTAL = 16000000.0 # # Strobe string definitions # strobes = {} strobes[0x80] = 'Sleep Mode' strobes[0x90] = 'Idle Mode' strobes[0xA0] = 'Standby Mode' strobes[0xB0] = 'PLL Mode' strobes[0xC0] = 'RX Mode' strobes[0xD0] = 'TX Mode' strobes[0xE0] = 'FIFO Write pointer reset' strobes[0xF0] = 'FIFO Read pointer reset' # # Register string definitons # Can be overwritten by function to do further processing # regs = {} regs[0x00] = 'Mode Register' regs[0x01] = 'Mode Control Register' regs[0x02] = 'Calibration Control Register' regs[0x03] = 'FIFO Register I' regs[0x04] = 'FIFO Register II' regs[0x05] = 'FIFO DATA Register' regs[0x06] = 'ID DATA Register' regs[0x07] = 'RC OSC Register I' regs[0x08] = 'RC OSC Register II' regs[0x09] = 'RC OSC Register III' regs[0x0A] = 'CKO Pin Control Register' regs[0x0B] = 'GIO1 Pin Control Register I' regs[0x0C] = 'GIO2 Pin Control Register II' regs[0x0D] = 'Clock Register' regs[0x0E] = 'Data Rate Register' regs[0x0F] = 'PLL Register I' regs[0x10] = 'PLL Register II' regs[0x11] = 'PLL Register III' regs[0x12] = 'PLL Register IV' regs[0x13] = 'PLL Register V' regs[0x14] = 'TX Register I' regs[0x15] = 'TX Register II' regs[0x16] = 'Delay Register I' regs[0x17] = 'Delay Register II' regs[0x18] = 'RX Register' regs[0x19] = 'RX Gain Register I' regs[0x1A] = 'RX Gain Register II' regs[0x1B] = 'RX Gain Register III' regs[0x1C] = 'RX Gain Register IV' regs[0x1D] = 'RSSI Threshold Register' regs[0x1E] = 'ADC Control Register' regs[0x1F] = 'Code Register I' regs[0x20] = 'Code Register II' regs[0x21] = 'Code Register III' regs[0x22] = 'IF Calibration Register I' regs[0x23] = 'IF Calibration Register II' regs[0x24] = 'VCO current Calibration Register' regs[0x25] = 'VCO Single band Calibration Register I' regs[0x26] = 'VCO Single band Calibration Register II' regs[0x27] = 'Battery detect Register' regs[0x28] = 'TX test Register' regs[0x29] = 'Rx DEM test Register I' regs[0x2A] = 'Rx DEM test Register II' regs[0x2B] = 'Charge Pump Current Register' regs[0x2C] = 'Crystal test Register' regs[0x2D] = 'PLL test Register' regs[0x2E] = 'VCO test Register I' regs[0x2F] = 'VCO test Register II' regs[0x30] = 'IFAT Register' regs[0x31] = 'RScale Register' regs[0x32] = 'Filter test Register' # # Keep last value written to register here (for better context) # FIFO and ID register won't work well since they are multi-byte, but that's ok # tmpRegs = array.array('B', [0]* 0x32) # # Custom packet processing functions # def processRSSI(packet): rString = '' if (packet[0] & READ_BIT) != 0: rString += 'RSSI = ' + format((1.2 * packet[1]) / 256.0, "0.3f") + 'V' else: rString += 'RSSI Thershld Register [' + format(packet[1], '02X') + ']' return rString def processMode(packet): rString = '' if (packet[0] & READ_BIT) != 0: rString = 'MODE: ' # FEC Flag if ((packet[1] >> 6) & 0x1) == 1: rString += 'FECERR ' else: rString += 'FECOK ' # CRC Flag if ((packet[1] >> 5) & 0x1) == 1: rString += 'CRCERR ' else: rString += 'CRCOK ' # RF Chip Enable Status if ((packet[1] >> 4) & 0x1) == 1: rString += 'RFEN ' else: rString += 'RFDIS ' # Internal Crystal Oscillator status if ((packet[1] >> 3) & 0x1) == 1: rString += 'XEN ' else: rString += 'XDIS ' # PLL Enabled if ((packet[1] >> 2) & 0x1) == 1: rString += 'PLLEN ' else: rString += 'PLLDIS ' # TRX State Enabled if ((packet[1] >> 1) & 0x1) == 1: rString += 'TRXEN ' else: rString += 'TRXDIS ' # TRX Status if ((packet[1] >> 0) & 0x1) == 1: rString += 'TX ' else: rString += 'RX ' else: rString += 'Device Reset' return rString; # # Use the previously stored PLL1-PLL5 values to compute the actual # radio frequency and return channel number plus frequency in MHz # def processPLL1(packet): rString = '' if (packet[0] & READ_BIT) != 0: rString += 'PLL Register I = ' + format(packet[1], '02x') else: DBL = (tmpRegs[0x10] >> 7) & 0x01 RRC = (tmpRegs[0x10] >> 5) & 0x03 BIP = ((tmpRegs[0x10] & 0x01) << 8) + tmpRegs[0x11] BFP = (tmpRegs[0x12] << 8) + tmpRegs[0x13] CHR = (tmpRegs[0x10] >> 1) & 0x0F CHN = tmpRegs[0x0F] fLO_BASE = (DBL + 1) * (fXTAL/(RRC + 1)) * (BIP + BFP/pow(2,16)) fCHSP = fXTAL * (DBL + 1) / 4.0 / (CHR + 1) fOFFSET = CHN * fCHSP fLO = fLO_BASE + fOFFSET rString += 'CH ' + str(CHN) + ' (' + str(fLO/1000000) + 'MHz)' return rString # # Decode protoX packets # Only decoding 0x20 (control) packets right now # def processFIFO(packet): rString = '' if(packet[1] == 0x20): # Throttle rString += 'T: ' + format(packet[3]/255.0 * 100, '2.0f') + ' ' # Rudder (Yaw left/right) rString += 'R: ' + format((packet[5] - 128)/127.0 * 100, '2.0f') + ' ' # Elevator (Pitch forward/back) rString += 'E: ' + format(-(packet[7] - 128)/127.0 * 100, '2.0f') + ' ' # Aileron (Roll left/right) rString += 'A: ' + format(-(packet[9] - 128)/127.0 * 100, '2.0f') + ' ' if((packet[10] & 0x08)): rString += 'Flips Enabled' else : rString += 'Flips Disabled' # Wole string rString = rString + ' ' + " | ".join(format(x, '#04x') for x in packet) else: rString += 'FIFO ' rString = rString + " | ".join(format(x, '#04x') for x in packet) rString = rString.strip() return rString # Overwrite register functions regs[0x00] = processMode regs[0x05] = processFIFO regs[0x0F] = processPLL1 regs[0x1D] = processRSSI # # Generic packet processing functions # def processPacket(packetString): packet = array.array('B') rString = '' # Make byte array instead of strings for actual processing for byte in packetString.split(): packet.append(int(byte,16)) # Strip read bit so we can use the regs[] array reg = packet[0] & ~READ_BIT if (packet[0] & READ_BIT) != 0: rString += 'R ' else: rString += 'W ' # Store register value for later use tmpRegs[reg] = packet[1] if reg in regs: # # Check if we have a special packet processing function for this register # otherwise just print the name/description and values # if hasattr(regs[reg], '__call__'): rString += regs[reg](packet) else: rString += regs[reg] + ' [' for byteIndex in range(1, len(packet)): rString += format(packet[byteIndex], '02X') + ' ' rString = rString.strip() rString += ']' else: rString += '- unknown register! ' + format(reg, '02X') return rString def processStrobe(strobe): return ('S ' + strobes[strobe]) # # 'public' functions # # # decodeSPIPacket # # packetString should be a string of space separated bytes # Examples: # '26 3b' # '05 01 82 96 d5 18 f6 00 00 00 00 00 00 00 00 00 04 ' # # The return value is a string with the decoded packet # def decodeSPIPacket(packetString): if len(packetString) == 0: return '' firstByte = int(packetString.split()[0], 16) if (firstByte & STROBE_BIT) != 0: return processStrobe(firstByte) else: return processPacket(packetString) if __name__ == '__main__': # TODO - process lines from a previously processed file? print('Standalone operation not yet implemented...')
26.308176
81
0.584031
f1f3b1f89ecf72014da867141d7efdcec433972b
241
py
Python
straal/__init__.py
piotr-szpetkowski/straal-python
f72fe0aed734bf5439c4ddee9bc9bad12f619c33
[ "Apache-2.0" ]
null
null
null
straal/__init__.py
piotr-szpetkowski/straal-python
f72fe0aed734bf5439c4ddee9bc9bad12f619c33
[ "Apache-2.0" ]
null
null
null
straal/__init__.py
piotr-szpetkowski/straal-python
f72fe0aed734bf5439c4ddee9bc9bad12f619c33
[ "Apache-2.0" ]
null
null
null
from straal.base import get_api_key, get_base_url, init from straal.cards import Card from straal.customers import Customer from straal.filters import filters __all__ = ["get_api_key", "get_base_url", "init", "Card", "Customer", "filters"]
34.428571
80
0.780083
ae954749a1e3ef3477e0530c4d433610d05be343
2,361
py
Python
pymc3_ext/tests/test_updates.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
pymc3_ext/tests/test_updates.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
pymc3_ext/tests/test_updates.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
import pytest import numpy as np import theano from theano.configparser import change_flags from pymc3_ext.variational.updates import ( sgd, momentum, nesterov_momentum, adagrad, rmsprop, adadelta, adam, adamax, adagrad_window ) _a = theano.shared(1.) _b = _a*2 _m = theano.shared(np.empty((10, ), theano.config.floatX)) _n = _m.sum() _m2 = theano.shared(np.empty((10, 10, 10), theano.config.floatX)) _n2 = _b + _n + _m2.sum() @pytest.mark.parametrize( 'opt', [sgd, momentum, nesterov_momentum, adagrad, rmsprop, adadelta, adam, adamax, adagrad_window], ids=['sgd', 'momentum', 'nesterov_momentum', 'adagrad', 'rmsprop', 'adadelta', 'adam', 'adamax', 'adagrad_window'] ) @pytest.mark.parametrize( 'getter', [lambda t: t, # all params -> ok lambda t: (None, t[1]), # missing loss -> fail lambda t: (t[0], None), # missing params -> fail lambda t: (None, None)], # all missing -> partial ids=['all_params', 'missing_loss', 'missing_params', 'all_missing'] ) @pytest.mark.parametrize( 'kwargs', [dict(), dict(learning_rate=1e-2)], ids=['without_args', 'with_args'] ) @pytest.mark.parametrize( 'loss_and_params', [(_b, [_a]), (_n, [_m]), (_n2, [_a, _m, _m2])], ids=['scalar', 'matrix', 'mixed'] ) def test_updates_fast(opt, loss_and_params, kwargs, getter): with change_flags(compute_test_value='ignore'): loss, param = getter(loss_and_params) args = dict() args.update(**kwargs) args.update(dict(loss_or_grads=loss, params=param)) if loss is None and param is None: updates = opt(**args) # Here we should get new callable assert callable(updates) # And be able to get updates updates = opt(_b, [_a]) assert isinstance(updates, dict) # case when both are None is above elif loss is None or param is None: # Here something goes wrong and user provides not full set of [params + loss_or_grads] # We raise Value error with pytest.raises(ValueError): opt(**args) else: # Usual call to optimizer, old behaviour updates = opt(**args) assert isinstance(updates, dict)
29.886076
98
0.597205
29c7172609ed4f24032a25aaf60f35878cd61506
15,778
py
Python
tests/python/pants_test/engine/legacy/test_changed_integration.py
mateor/pants
e01cee8959da269c0b526138760847901e4d4a48
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/engine/legacy/test_changed_integration.py
mateor/pants
e01cee8959da269c0b526138760847901e4d4a48
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/engine/legacy/test_changed_integration.py
mateor/pants
e01cee8959da269c0b526138760847901e4d4a48
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import shutil import subprocess import unittest from contextlib import contextmanager from textwrap import dedent from pants.base.build_environment import get_buildroot from pants.util.contextutil import environment_as, temporary_dir from pants.util.dirutil import safe_mkdir, safe_open, touch from pants_test.base_test import TestGenerator from pants_test.pants_run_integration_test import PantsRunIntegrationTest, ensure_engine from pants_test.testutils.git_util import initialize_repo def lines_to_set(str_or_list): if isinstance(str_or_list, list): return set(str_or_list) else: return set(x for x in str(str_or_list).split('\n') if x) @contextmanager def mutated_working_copy(files_to_mutate, to_append='\n '): """Given a list of files, append whitespace to each of them to trigger a git diff - then reset.""" assert to_append, 'to_append may not be empty' for f in files_to_mutate: with open(f, 'ab') as fh: fh.write(to_append) try: yield finally: seek_point = len(to_append) * -1 for f in files_to_mutate: with open(f, 'ab') as fh: fh.seek(seek_point, os.SEEK_END) fh.truncate() @contextmanager def create_isolated_git_repo(): # Isolated Git Repo Structure: # worktree # |--README # |--pants.ini # |--3rdparty # |--BUILD # |--src # |--resources # |--org/pantsbuild/resourceonly # |--BUILD # |--README.md # |--java # |--org/pantsbuild/helloworld # |--BUILD # |--helloworld.java # |--python # |--python_targets # |--BUILD # |--test_binary.py # |--test_library.py # |--test_unclaimed_src.py # |--sources # |--BUILD # |--sources.py # |--sources.txt # |--tests # |--scala # |--org/pantsbuild/cp-directories # |--BUILD # |--ClasspathDirectoriesSpec.scala with temporary_dir(root_dir=get_buildroot()) as worktree: with safe_open(os.path.join(worktree, 'README'), 'w') as fp: fp.write('Just a test tree.') # Create an empty pants config file. touch(os.path.join(worktree, 'pants.ini')) # Copy .gitignore to new repo. shutil.copyfile('.gitignore', os.path.join(worktree, '.gitignore')) with initialize_repo(worktree=worktree, gitdir=os.path.join(worktree, '.git')) as git: # Resource File resource_file = os.path.join(worktree, 'src/resources/org/pantsbuild/resourceonly/README.md') with safe_open(resource_file, 'w') as fp: fp.write('Just resource.') resource_build_file = os.path.join(worktree, 'src/resources/org/pantsbuild/resourceonly/BUILD') with safe_open(resource_build_file, 'w') as fp: fp.write(dedent(""" resources( name='resource', sources=['README.md'], ) """)) git.add(resource_file, resource_build_file) git.commit('Check in a resource target.') # Java Program src_file = os.path.join(worktree, 'src/java/org/pantsbuild/helloworld/helloworld.java') with safe_open(src_file, 'w') as fp: fp.write(dedent(""" package org.pantsbuild.helloworld; class HelloWorld { public static void main(String[] args) { System.out.println("Hello, World!\n"); } } """)) src_build_file = os.path.join(worktree, 'src/java/org/pantsbuild/helloworld/BUILD') with safe_open(src_build_file, 'w') as fp: fp.write(dedent(""" jvm_binary( dependencies=[ '{}', ], source='helloworld.java', main='org.pantsbuild.helloworld.HelloWorld', ) """.format('src/resources/org/pantsbuild/resourceonly:resource'))) git.add(src_file, src_build_file) git.commit('hello world java program with a dependency on a resource file.') # Scala Program scala_src_dir = os.path.join(worktree, 'tests/scala/org/pantsbuild/cp-directories') safe_mkdir(os.path.dirname(scala_src_dir)) shutil.copytree('testprojects/tests/scala/org/pantsbuild/testproject/cp-directories', scala_src_dir) git.add(scala_src_dir) git.commit('Check in a scala test target.') # Python library and binary python_src_dir = os.path.join(worktree, 'src/python/python_targets') safe_mkdir(os.path.dirname(python_src_dir)) shutil.copytree('testprojects/src/python/python_targets', python_src_dir) git.add(python_src_dir) git.commit('Check in python targets.') # A `python_library` with `resources=['file.name']`. python_src_dir = os.path.join(worktree, 'src/python/sources') safe_mkdir(os.path.dirname(python_src_dir)) shutil.copytree('testprojects/src/python/sources', python_src_dir) git.add(python_src_dir) git.commit('Check in a python library with resource dependency.') # Copy 3rdparty/BUILD. _3rdparty_build = os.path.join(worktree, '3rdparty/BUILD') safe_mkdir(os.path.dirname(_3rdparty_build)) shutil.copyfile('3rdparty/BUILD', _3rdparty_build) git.add(_3rdparty_build) git.commit('Check in 3rdparty/BUILD.') with environment_as(PANTS_BUILDROOT_OVERRIDE=worktree): yield worktree class ChangedIntegrationTest(PantsRunIntegrationTest, TestGenerator): TEST_MAPPING = { # A `jvm_binary` with `source='file.name'`. 'src/java/org/pantsbuild/helloworld/helloworld.java': dict( none=['src/java/org/pantsbuild/helloworld:helloworld'], direct=['src/java/org/pantsbuild/helloworld:helloworld'], transitive=['src/java/org/pantsbuild/helloworld:helloworld'] ), # A `python_binary` with `source='file.name'`. 'src/python/python_targets/test_binary.py': dict( none=['src/python/python_targets:test'], direct=['src/python/python_targets:test'], transitive=['src/python/python_targets:test'] ), # A `python_library` with `sources=['file.name']`. 'src/python/python_targets/test_library.py': dict( none=['src/python/python_targets:test_library'], direct=['src/python/python_targets:test', 'src/python/python_targets:test_library', 'src/python/python_targets:test_library_direct_dependee'], transitive=['src/python/python_targets:test', 'src/python/python_targets:test_library', 'src/python/python_targets:test_library_direct_dependee', 'src/python/python_targets:test_library_transitive_dependee', 'src/python/python_targets:test_library_transitive_dependee_2', 'src/python/python_targets:test_library_transitive_dependee_3', 'src/python/python_targets:test_library_transitive_dependee_4'] ), # A `resources` target with `sources=['file.name']` referenced by a `java_library` target. 'src/resources/org/pantsbuild/resourceonly/README.md': dict( none=['src/resources/org/pantsbuild/resourceonly:resource'], direct=['src/java/org/pantsbuild/helloworld:helloworld', 'src/resources/org/pantsbuild/resourceonly:resource'], transitive=['src/java/org/pantsbuild/helloworld:helloworld', 'src/resources/org/pantsbuild/resourceonly:resource'], ), # A `python_library` with `resources=['file.name']`. 'src/python/sources/sources.txt': dict( none=['src/python/sources:sources'], direct=['src/python/sources:sources'], transitive=['src/python/sources:sources'] ), # A `scala_library` with `sources=['file.name']`. 'tests/scala/org/pantsbuild/cp-directories/ClasspathDirectoriesSpec.scala': dict( none=['tests/scala/org/pantsbuild/cp-directories:cp-directories'], direct=['tests/scala/org/pantsbuild/cp-directories:cp-directories'], transitive=['tests/scala/org/pantsbuild/cp-directories:cp-directories'] ), # An unclaimed source file. 'src/python/python_targets/test_unclaimed_src.py': dict( none=[], direct=[], transitive=[] ) } @classmethod def generate_tests(cls): """Generates tests on the class for better reporting granularity than an opaque for loop test.""" def safe_filename(f): return f.replace('/', '_').replace('.', '_') for filename, dependee_mapping in cls.TEST_MAPPING.items(): for dependee_type in dependee_mapping.keys(): # N.B. The parameters here are used purely to close over the respective loop variables. def inner_integration_coverage_test(self, filename=filename, dependee_type=dependee_type): with create_isolated_git_repo() as worktree: # Mutate the working copy so we can do `--changed-parent=HEAD` deterministically. with mutated_working_copy([os.path.join(worktree, filename)]): stdout = self.assert_changed_new_equals_old( ['--changed-include-dependees={}'.format(dependee_type), '--changed-parent=HEAD'], test_list=True ) self.assertEqual( lines_to_set(self.TEST_MAPPING[filename][dependee_type]), lines_to_set(stdout) ) cls.add_test( 'test_changed_coverage_{}_{}'.format(dependee_type, safe_filename(filename)), inner_integration_coverage_test ) def assert_changed_new_equals_old(self, extra_args, success=True, test_list=False): args = ['-q', 'changed'] + extra_args changed_run = self.do_command(*args, success=success, enable_v2_engine=False) engine_changed_run = self.do_command(*args, success=success, enable_v2_engine=True) self.assertEqual( lines_to_set(changed_run.stdout_data), lines_to_set(engine_changed_run.stdout_data) ) if test_list: # In the v2 engine, `--changed-*` options can alter the specs of any goal - test with `list`. list_args = ['-q', 'list'] + extra_args engine_list_run = self.do_command(*list_args, success=success, enable_v2_engine=True) self.assertEqual( lines_to_set(changed_run.stdout_data), lines_to_set(engine_list_run.stdout_data) ) # If we get to here without asserting, we know all copies of stdout are identical - return one. return changed_run.stdout_data @ensure_engine def test_changed_options_scope_shadowing(self): """Tests that the `test-changed` scope overrides `changed` scope.""" changed_src = 'src/python/python_targets/test_library.py' expected_target = self.TEST_MAPPING[changed_src]['none'][0] expected_set = {expected_target} not_expected_set = set(self.TEST_MAPPING[changed_src]['transitive']).difference(expected_set) with create_isolated_git_repo() as worktree: with mutated_working_copy([os.path.join(worktree, changed_src)]): pants_run = self.run_pants([ '-ldebug', # This ensures the changed target name shows up in the pants output. 'test-changed', '--test-changed-changes-since=HEAD', '--test-changed-include-dependees=none', # This option should be used. '--changed-include-dependees=transitive' # This option should be stomped on. ]) self.assert_success(pants_run) for expected_item in expected_set: self.assertIn(expected_item, pants_run.stdout_data) for not_expected_item in not_expected_set: if expected_target.startswith(not_expected_item): continue # Ignore subset matches. self.assertNotIn(not_expected_item, pants_run.stdout_data) @ensure_engine def test_changed_options_scope_positional(self): changed_src = 'src/python/python_targets/test_library.py' expected_set = set(self.TEST_MAPPING[changed_src]['transitive']) with create_isolated_git_repo() as worktree: with mutated_working_copy([os.path.join(worktree, changed_src)]): pants_run = self.run_pants([ '-ldebug', # This ensures the changed target names show up in the pants output. 'test-changed', '--changes-since=HEAD', '--include-dependees=transitive' ]) self.assert_success(pants_run) for expected_item in expected_set: self.assertIn(expected_item, pants_run.stdout_data) @ensure_engine def test_test_changed_exclude_target(self): changed_src = 'src/python/python_targets/test_library.py' exclude_target_regexp = r'_[0-9]' excluded_set = {'src/python/python_targets:test_library_transitive_dependee_2', 'src/python/python_targets:test_library_transitive_dependee_3', 'src/python/python_targets:test_library_transitive_dependee_4'} expected_set = set(self.TEST_MAPPING[changed_src]['transitive']) - excluded_set with create_isolated_git_repo() as worktree: with mutated_working_copy([os.path.join(worktree, changed_src)]): pants_run = self.run_pants([ '-ldebug', # This ensures the changed target names show up in the pants output. '--exclude-target-regexp={}'.format(exclude_target_regexp), 'test-changed', '--changes-since=HEAD', '--include-dependees=transitive' ]) self.assert_success(pants_run) for expected_item in expected_set: self.assertIn(expected_item, pants_run.stdout_data) for excluded_item in excluded_set: self.assertNotIn(excluded_item, pants_run.stdout_data) @ensure_engine def test_changed_changed_since_and_files(self): with create_isolated_git_repo(): stdout = self.assert_changed_new_equals_old(['--changed-since=HEAD^^', '--files']) # The output should be the files added in the last 2 commits. self.assertEqual( lines_to_set(stdout), {'src/python/sources/BUILD', 'src/python/sources/sources.py', 'src/python/sources/sources.txt', '3rdparty/BUILD'} ) @ensure_engine def test_changed_diffspec_and_files(self): with create_isolated_git_repo(): git_sha = subprocess.check_output(['git', 'rev-parse', 'HEAD^^']).strip() stdout = self.assert_changed_new_equals_old(['--changed-diffspec={}'.format(git_sha), '--files']) # The output should be the files added in the last 2 commits. self.assertEqual( lines_to_set(stdout), {'src/python/python_targets/BUILD', 'src/python/python_targets/test_binary.py', 'src/python/python_targets/test_library.py', 'src/python/python_targets/test_unclaimed_src.py'} ) # Following 4 tests do not run in isolated repo because they don't mutate working copy. def test_changed(self): self.assert_changed_new_equals_old([]) @unittest.skip("Pending fix for https://github.com/pantsbuild/pants/issues/4010") def test_changed_with_changes_since(self): self.assert_changed_new_equals_old(['--changes-since=HEAD^^']) @unittest.skip("Pending fix for https://github.com/pantsbuild/pants/issues/4010") def test_changed_with_changes_since_direct(self): self.assert_changed_new_equals_old(['--changes-since=HEAD^^', '--include-dependees=direct']) @unittest.skip("Pending fix for https://github.com/pantsbuild/pants/issues/4010") def test_changed_with_changes_since_transitive(self): self.assert_changed_new_equals_old(['--changes-since=HEAD^^', '--include-dependees=transitive']) ChangedIntegrationTest.generate_tests()
40.352941
106
0.67949
7fdf0f90f7d73d2f4eea3c057ff0a56276356bed
3,075
py
Python
examples/src/main/python/forwarding.py
observernet/obsrj
8a9f630115d1df1055b68d97951ee35e9d841acc
[ "Apache-2.0" ]
null
null
null
examples/src/main/python/forwarding.py
observernet/obsrj
8a9f630115d1df1055b68d97951ee35e9d841acc
[ "Apache-2.0" ]
null
null
null
examples/src/main/python/forwarding.py
observernet/obsrj
8a9f630115d1df1055b68d97951ee35e9d841acc
[ "Apache-2.0" ]
1
2021-05-23T09:23:27.000Z
2021-05-23T09:23:27.000Z
# An example of how to use Jython to implement the "Getting Started" tutorial app, which receives coins and simply # sends them on (minus a fee). __author__ = "richard 'ragmondo' green" import sys # Change this to point to where you have a copy of the bitcoinj.jar sys.path.append(r"/path/to/bitcoinj-core-0.12-bundled.jar") # This is the address to forward all payments to. Change this (unless you want to send me some testnet coins) my_address_text = "mzEjmna15T7DXj4HC9MBEG2UJzgFfEYtFo" # 0 for instant send, 1 for a more realistic example # if the wallet has no btc in it, then set to 1. # if it has a confirmed balance in it, then you can set it to 0. confirm_wait = 1 from org.obsrj.core import * import org.obsrj.crypto.KeyCrypterException import org.obsrj.params.MainNetParams from org.obsrj.kits import WalletAppKit from com.google.common.util.concurrent import FutureCallback from com.google.common.util.concurrent import Futures import java.io.File import sys def loud_exceptions(*args): def _trace(func): def wrapper(*args, **kwargs): try: func(*args, **kwargs) except Exception, e: print "** python exception ",e raise except java.lang.Exception,e: print "** java exception",e raise return wrapper if len(args) == 1 and callable(args[0]): return _trace(args[0]) else: return _trace @loud_exceptions def forwardCoins(tx,w,pg,addr): v = tx.getValueSentToMe(w) amountToSend = v.subtract(Transaction.REFERENCE_DEFAULT_MIN_TX_FEE) sr = w.sendCoins(pg, addr, amountToSend) class SenderListener(AbstractWalletEventListener): def __init__(self,pg,address): super(SenderListener,self). __init__() self.peerGroup = pg self.address = address @loud_exceptions def onCoinsReceived(self, w, tx, pb, nb): print "tx received", tx v = tx.getValueSentToMe(w) class myFutureCallback(FutureCallback): @loud_exceptions def onSuccess(selfx, txn): forwardCoins(tx,w,self.peerGroup, self.address) print "creating %s confirm callback..." % (confirm_wait) Futures.addCallback(tx.getConfidence().getDepthFuture(confirm_wait), myFutureCallback()) if __name__ == "__main__": params = org.obsrj.params.TestNet3Params.get() my_address = Address(params,my_address_text) filePrefix = "forwarding-service-testnet" f = java.io.File(".") kit = WalletAppKit(params, f, filePrefix); print "starting and initialising (please wait).." kit.startAsync() kit.awaitRunning() pg = kit.peerGroup() wallet = kit.wallet() sendToAddress = kit.wallet().currentReceiveKey().toAddress(params) print "send test coins to ", sendToAddress, "qrcode - http://qrickit.com/api/qr?d=%s" % (sendToAddress) # no affiliation with qrickit.. sl = SenderListener(pg,my_address) wallet.addEventListener(sl) print "finished initialising .. now in main event loop"
33.791209
139
0.682602