hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
934e01680c989249b519bc742c606a505e712464
813
py
Python
src/my_blog/autenticacao/migrations/0001_initial.py
luizsla/django-studies
8140428d2d64b86d7d5b44abcc79de59b2554846
[ "MIT" ]
null
null
null
src/my_blog/autenticacao/migrations/0001_initial.py
luizsla/django-studies
8140428d2d64b86d7d5b44abcc79de59b2554846
[ "MIT" ]
6
2021-03-30T13:53:29.000Z
2022-03-12T00:39:13.000Z
src/my_blog/autenticacao/migrations/0001_initial.py
luizsla/django-studies
8140428d2d64b86d7d5b44abcc79de59b2554846
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-07-01 20:11 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_pic', models.ImageField(upload_to='user/profile')), ('description', models.TextField()), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
30.111111
121
0.634686
d52ce0f0e95eca4851d8db8f945e3eb1d1ced8e1
1,526
py
Python
tests/basics/MainPrograms.py
RESP3CT88/Nuitka
0fcc25d9f00c4fc78c79a863c4b7987f573962e1
[ "Apache-2.0" ]
5,421
2018-09-24T08:04:06.000Z
2022-03-31T20:02:37.000Z
tests/basics/MainPrograms.py
ztessler/Nuitka
04c9a5471b702a0e5f28398f2661c93b83ab0d1a
[ "Apache-2.0" ]
1,348
2018-09-22T13:41:00.000Z
2022-03-31T22:33:40.000Z
tests/basics/MainPrograms.py
ztessler/Nuitka
04c9a5471b702a0e5f28398f2661c93b83ab0d1a
[ "Apache-2.0" ]
396
2018-09-28T15:37:03.000Z
2022-03-29T10:52:09.000Z
# Copyright 2021, Kay Hayen, mailto:kay.hayen@gmail.com # # Python tests originally created or extracted from other peoples work. The # parts were too small to be protected. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function print("Module name is", __name__) class SomeClass: pass print("Class inside main module names its module as", repr(SomeClass.__module__)) if __name__ == "__main__": print("Executed as __main__:") import sys, os # The sys.argv[0] might contain ".exe", ".py" or no suffix at all. # Remove it, so the "diff" output is more acceptable. args = sys.argv[:] args[0] = ( os.path.basename(args[0]) .replace(".exe", ".py") .replace(".bin", ".py") .replace(".py", "") ) print("Arguments were (stripped argv[0] suffix):", repr(args)) # Output the flags, so we can test if we are compatible with these too. print("The sys.flags are:", sys.flags)
31.791667
81
0.669069
908b904eaa061ac9f507952279425598cccbfa64
11,755
py
Python
src/experiment.py
RobbinBouwmeester/LIT
0516a69fbf1b8e9976524e0c243f82de041df544
[ "Apache-2.0" ]
null
null
null
src/experiment.py
RobbinBouwmeester/LIT
0516a69fbf1b8e9976524e0c243f82de041df544
[ "Apache-2.0" ]
null
null
null
src/experiment.py
RobbinBouwmeester/LIT
0516a69fbf1b8e9976524e0c243f82de041df544
[ "Apache-2.0" ]
null
null
null
from pyteomics import mzml,mgf import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt from search_engine import MS1_extracter import numpy as np import copy class Experiment(): def __init__(self,filename,delta_precursor=1,delta_rt=1,mgf=False): self.filename = filename self.ms1 = [] self.ms2 = [] self.scan_to_spectrum = {} self.ms2_to_ms1 = {} self.delta_precursor = delta_precursor self.delta_rt = delta_rt self.prec_ms2 = {} self.rt_ms2 = {} if not mgf: self.read_mzml(self.filename) if mgf: self.read_mgf(self.filename) def __str__(self): ret_str = "" ret_str += "Number of ms1: %s\n" % (len(self.ms1)) ret_str += "Number of ms2: %s\n" % (len(self.ms2)) return(ret_str) def read_mgf(self,filename): infile = mgf.read(filename) for scan in infile: spec_obj = Spectrum(scan["m/z array"], scan["intensity array"], 2, 1, float(scan["params"]["rtinseconds"]), float(scan["params"]["rtinseconds"]), 1, False, True) scan_id = scan["params"]["title"].split("_")[-2] self.scan_to_spectrum[scan_id] = spec_obj if 2 == 1: self.ms1.append(scan_id) if 2 == 2: self.ms2.append(scan_id) prec_scan_id = scan_id spec_obj.set_prec_mass(scan["params"]["pepmass"][0]) prec_mass_round = int(round(spec_obj.prec_mass / self.delta_precursor)) rt_time_round = int(round(spec_obj.scan_start_time / self.delta_rt)) if self.prec_ms2.has_key(prec_mass_round): self.prec_ms2[prec_mass_round].append(spec_obj) else: self.prec_ms2[prec_mass_round] = [spec_obj] if self.rt_ms2.has_key(rt_time_round): self.rt_ms2[rt_time_round].append(spec_obj) else: self.rt_ms2[rt_time_round] = [spec_obj] self.ms2_to_ms1[scan_id] = prec_scan_id def read_mzml(self,filename,use_prec_max_intens=False,isolation_window_bounds=0.49,filter_top=5,windowed_mode=True,window_size=50): infile = mzml.read(filename) for scan in infile: spec_obj = Spectrum(scan["m/z array"], scan["intensity array"], scan["ms level"], scan["total ion current"], scan["scanList"]["scan"][0]["scan start time"], scan["base peak intensity"], "positive scan" in scan.keys(), "negative scan" in scan.keys()) scan_id = scan["id"].split("scan=")[1].split(" ")[0] if scan["ms level"] == 1: #print(list(spec_obj.mz_array)) #print(len(spec_obj.mz_array)) #print(scan_id) #raw_input("ms1") self.scan_to_spectrum[scan_id] = spec_obj self.ms1.append(scan_id) infile = mzml.read(filename) for scan in infile: spec_obj = Spectrum(scan["m/z array"], scan["intensity array"], scan["ms level"], scan["total ion current"], scan["scanList"]["scan"][0]["scan start time"], scan["base peak intensity"], "positive scan" in scan.keys(), "negative scan" in scan.keys()) scan_id = scan["id"].split("scan=")[1].split(" ")[0] if scan["ms level"] == 2: if "function=" in scan["id"]: prec_scan_id = scan_id scan_id = scan_id+"_"+scan["id"].split("function=")[1].split(" ")[0] else: self.scan_to_spectrum[scan_id] = spec_obj prec_scan_id = scan["precursorList"]["precursor"][0]["spectrumRef"].split("scan=")[1] self.ms2_to_ms1[scan_id] = prec_scan_id #print(list(spec_obj.mz_array)) #print(len(spec_obj.mz_array)) #print(scan_id) #raw_input("ms2") self.scan_to_spectrum[scan_id] = spec_obj try: self.scan_to_spectrum[self.ms2_to_ms1[scan_id]] except KeyError: continue self.ms2.append(scan_id) spec_obj.filter_top_peaks(min_intensity=True) if use_prec_max_intens: spec_obj.set_prec_mass(scan["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]["selected ion m/z"]) prec_mz = self.scan_to_spectrum[scan_id].prec_mass lower_bound = prec_mz-isolation_window_bounds upper_bound = prec_mz+isolation_window_bounds retr_indexes = np.where(np.logical_and(self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].mz_array > lower_bound, self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].mz_array < upper_bound))[0] max_intensity_index = int(np.argmax(self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].intensity_array[retr_indexes])) isolated_precursor = self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].mz_array[retr_indexes][max_intensity_index] self.scan_to_spectrum[scan_id].set_prec_mass(float(isolated_precursor)) else: spec_obj.set_prec_mass(scan["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]["selected ion m/z"]) prec_mass_round = int(round(spec_obj.prec_mass / self.delta_precursor)) rt_time_round = int(round(spec_obj.scan_start_time / self.delta_rt)) if prec_mass_round in self.prec_ms2.keys(): self.prec_ms2[prec_mass_round].append(spec_obj) else: self.prec_ms2[prec_mass_round] = [spec_obj] if rt_time_round in self.rt_ms2.keys(): self.rt_ms2[rt_time_round].append(spec_obj) else: self.rt_ms2[rt_time_round] = [spec_obj] #if use_prec_max_intens: # for scan in self.ms2: # prec_mz = self.scan_to_spectrum[scan].prec_mass # lower_bound = prec_mz-isolation_window_bounds # upper_bound = prec_mz+isolation_window_bounds # retr_indexes = np.where(np.logical_and(self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].mz_array > lower_bound, self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].mz_array < upper_bound))[0] # max_intensity_index = int(np.argmax(self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].intensity_array[retr_indexes])) # isolated_precursor = self.scan_to_spectrum[self.ms2_to_ms1[scan_id]].mz_array[retr_indexes][max_intensity_index] # self.scan_to_spectrum[scan].set_prec_mass(isolated_precursor) def get_XIC(self,mass,ppm=20,search_engine=False,positive_mode=True,negative_mode=True): if not search_engine: search_engine = MS1_extracter(ppm=ppm) ret_list = [] for ms1_scan in self.ms1: ms1_spectrum = self.scan_to_spectrum[ms1_scan] if not ms1_spectrum.positive_scan == positive_mode: continue if not ms1_spectrum.negative_scan == negative_mode: continue ret_list.append([ms1_spectrum.scan_start_time,search_engine.retrieve_intensity(zip(ms1_spectrum.mz_array,ms1_spectrum.intensity_array),mass)[1]]) return(ret_list) class Spectrum(): def __init__(self, mz_array, intensity_array, ms_level, total_ion_current, scan_start_time, base_peak_intensity, positive_scan, negative_scan, prec_mass=0.0, ion_injection_time=0.0, top_peaks=100): self.mz_array = mz_array self.intensity_array = intensity_array self.ms_level = ms_level self.total_ion_current = total_ion_current self.scan_start_time = scan_start_time self.ion_injection_time = ion_injection_time self.prec_mass = prec_mass self.base_peak_intensity = base_peak_intensity self.positive_scan = positive_scan self.negative_scan = negative_scan # Test if list is sorted ... and sort if not the case. Needed later for binary search and stuff. if not all(a <= b for a, b in zip(self.mz_array[:-1],self.mz_array[1:])): self.intensity_array = [ia for ma,ia in sorted(zip(self.mz_array,self.intensity_array),key=itemgetter(0))] self.mz_array = sorted(self.mz_array) if not positive_scan and not negative_scan: positive_scan = True negative_scan = True def set_prec_mass(self,prec_mass): self.prec_mass = prec_mass # TODO add Minimal intensity! def filter_top_peaks(self,min_intensity=False,min_perc=False,windowed_mode=False,intensity_threshold=10.0,top=10,window_size=100,add_dummy_peak=False): """ Filter in multiple ways on the intensity of peaks. Parameters ---------- mz_list : list The m/z values of a spectrum in a list; equal length to the intensity list intensity_list : list The intensity values of a spectrum in a list; equal length to the m/z list min_perc : bool Flag to use a minimal percentage intensity to filter peaks windowed_mode : bool Flag to use windowed mode to return the top intensity peaks top : int The top intensity peaks to filter (in windowed mode it will return the top peaks within the window) window_size : int The size of the window in windowed mode add_dummy_peak : bool Flag to add a dummy peak at 0.0 m/z Returns ------- list the filtered m/z values from the spectrum list the filtered intensity values from the spectrum """ gr_intensity_list = [] gr_mz_list = [] #In the case of minimal percentage... calculate perc intensity and filter if min_perc: for i,mz in zip(self.intensity_array,self.mz_array): if i > min_perc: gr_intensity_list.append(i) gr_mz_list.append(mz) #In the case of windowed mode... iterate over the possible windows and intensity values; take the top per window if windowed_mode: start_index = 0 for w in range(window_size,int(max(self.mz_array)),window_size): temp_mz = [] temp_intens = [] temp_start_index = 0 #Iterate over all m/z values and see if they fall within the window for mz,intens in zip(self.mz_array[start_index:],self.intensity_array[start_index:]): if mz > w and mz <= w+window_size: temp_start_index += 1 temp_mz.append(mz) temp_intens.append(intens) if mz > w+window_size: break #Next window ignore all these lower values start_index = temp_start_index #Use all if there are less peaks than the top number of peaks it should select if len(temp_mz) <= top: gr_mz_list.extend(temp_mz) gr_intensity_list.extend(temp_intens) continue #Get the indexes of the top peaks idxs = np.sort(np.argpartition(np.array(temp_intens), -top)[-top:]) gr_mz_list.extend([temp_mz[idx] for idx in idxs]) gr_intensity_list.extend([temp_intens[idx] for idx in idxs]) if min_intensity: for i,mz in zip(self.intensity_array,self.mz_array): if i > intensity_threshold: gr_intensity_list.append(i) gr_mz_list.append(mz) #If not windowed, min perc or min intensity use a simple top peaks if not windowed_mode and not min_perc and not min_intensity: if len(self.intensity_array) > top: #Get the indexes of the top peaks idxs = np.sort(np.argpartition(np.array(intensity_list), -top)[-top:]) gr_mz_list = [self.mz_array[idx] for idx in idxs] gr_intensity_list = [self.intensity_array[idx] for idx in idxs] else: #If there are less peaks than top peaks; return all gr_mz_list = self.mz_array gr_intensity_list = self.intensity_array #If needed add a dummy peak; this is important later since I want to take into account immonium ions and small fragments if add_dummy_peak: gr_mz_list.insert(0,0.0) gr_intensity_list.insert(0,1.0) self.mz_array = gr_mz_list self.intensity_array = gr_intensity_list """ def filter_top_peaks(self,top=1000): if len(self.intensity_array) > top: #Get the indexes of the top peaks idxs = np.sort(np.argpartition(np.array(self.intensity_array), -top)[-top:]) gr_mz_list = [self.mz_array[idx] for idx in idxs] gr_intensity_list = [self.intensity_array[idx] for idx in idxs] else: #If there are less peaks than top peaks; return all gr_mz_list = self.mz_array gr_intensity_list = self.intensity_array self.mz_array = gr_mz_list self.intensity_array = gr_intensity_list """ if __name__ == "__main__": exp = Experiment("23Mar17_HaCaT_ox15h_1.mzML") for scan_num in exp.ms2: print(exp.scan_to_spectrum[scan_num].prec_mass)
35.194611
191
0.704977
6e5ecee2efce9062b3251b6995c3c11ea7a5ca28
11,158
py
Python
tests/test_mousebind.py
tiosgz/herbstluftwm
2f337ab3d73431b02f31e7d3cfee3a60fe77cdb9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
tests/test_mousebind.py
tiosgz/herbstluftwm
2f337ab3d73431b02f31e7d3cfee3a60fe77cdb9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
tests/test_mousebind.py
tiosgz/herbstluftwm
2f337ab3d73431b02f31e7d3cfee3a60fe77cdb9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
import pytest import re import math # Note: For unknown reasons, mouse buttons 4 and 5 (scroll wheel) do not work # in Xvfb when running tests in the CI. Therefore, we maintain two lists of # buttons: MOUSE_BUTTONS_THAT_EXIST = [1, 2, 3, 4, 5] MOUSE_BUTTONS_THAT_WORK = [1, 2, 3] @pytest.mark.parametrize('method', ['-F', '--all']) def test_mouseunbind_all(hlwm, method, mouse): hlwm.create_client() hlwm.call('mousebind Button1 call quit') unbind = hlwm.call(['mouseunbind', method]) assert unbind.stdout == '' # TODO: assert hlwm.call('list_mousebind').stdout == '' mouse.click('1') # verify that binding got ungrabbed def test_mousebind_empty_command(hlwm): call = hlwm.call_xfail('mousebind Button3 call') call.expect_stderr('mousebind: not enough arguments') def test_mousebind_unknown_button(hlwm): call = hlwm.call_xfail('mousebind Button42 call quit') call.expect_stderr('Unknown mouse button "Button42"') def test_mousebind_unknown_action(hlwm): call = hlwm.call_xfail('mousebind Button1 get schwifty') call.expect_stderr('Unknown mouse action "get"') @pytest.mark.parametrize('button', MOUSE_BUTTONS_THAT_WORK) def test_trigger_mouse_binding_without_modifier(hlwm, mouse, button): hlwm.call('new_attr string my_press') hlwm.call(f'mousebind Button{button} call set_attr my_press yup') client_id, _ = hlwm.create_client() mouse.click(str(button), client_id) assert hlwm.get_attr('my_press') == 'yup' @pytest.mark.parametrize('button', MOUSE_BUTTONS_THAT_WORK) def test_trigger_mouse_binding_with_modifier(hlwm, keyboard, mouse, button): hlwm.call('new_attr string my_press') hlwm.call(f'mousebind Mod1-Button{button} call set_attr my_press yup') hlwm.call(f'mousebind Button{button} call remove_attr my_press') # canary bind (should not trigger) client_id, _ = hlwm.create_client() keyboard.down('Alt') mouse.click(str(button), client_id) keyboard.up('Alt') assert hlwm.get_attr('my_press') == 'yup' def test_overlapping_bindings_most_recent_one_counts(hlwm, mouse): hlwm.call('new_attr string my_press') hlwm.call('mousebind Button2 call set_attr my_press firstbind') hlwm.call('mousebind Button2 call set_attr my_press secondbind') client_id, _ = hlwm.create_client() mouse.click('2', client_id) assert hlwm.get_attr('my_press') == 'secondbind' @pytest.mark.parametrize('prefix', ['', 'Mod1+']) def test_complete_mousebind_offers_all_mods_and_buttons(hlwm, prefix): complete = hlwm.complete(['mousebind', prefix], partial=True, position=1) buttons = sum(([f'Button{i}', f'B{i}'] for i in MOUSE_BUTTONS_THAT_EXIST), []) mods = ['Alt', 'Control', 'Ctrl', 'Mod1', 'Mod2', 'Mod3', 'Mod4', 'Mod5', 'Shift', 'Super'] if prefix == 'Mod1+': mods = [m for m in mods if m not in ['Mod1', 'Alt']] assert sorted(c[:-1] for c in complete) == sorted(prefix + i for i in mods + buttons) def test_complete_mousebind_after_button_offers_action(hlwm): complete = hlwm.complete('mousebind B3', partial=False, position=2) assert set(complete) == {'move', 'resize', 'zoom', 'call'} def test_complete_mousebind_with_call_action_offers_all_commands(hlwm): complete = hlwm.complete('mousebind B1 call', position=3) assert complete == hlwm.complete('', position=0) def test_complete_mousebind_validates_all_button(hlwm): # Note: This might seem like a stupid test, but previous implementations # ignored the invalid first modifier. complete = hlwm.complete('mousebind Moo+Mo', partial=True, position=1) assert complete == [] # we had a race condition here, so increase the likelyhood # that we really fixed it: @pytest.mark.parametrize('repeat', list(range(0, 100))) def test_drag_move(hlwm, x11, mouse, repeat): hlwm.call('set_attr tags.focus.floating on') client, winid = x11.create_client() x, y = x11.get_absolute_top_left(client) mouse.move_into(winid, wait=True) hlwm.call(['drag', winid, 'move']) mouse.move_relative(12, 15) hlwm.call('true') # sync assert x11.get_absolute_top_left(client) == (x + 12, y + 15) def test_drag_no_frame_splits(hlwm): winid, _ = hlwm.create_client() hlwm.call_xfail(['drag', winid, 'resize']) \ .expect_stderr('No neighbour frame') def test_mouse_drag_no_frame_splits(hlwm, hlwm_process, mouse): hlwm.call('mousebind B1 resize') winid, _ = hlwm.create_client() with hlwm_process.wait_stderr_match('No neighbour frame'): # we do not wait because it clashes with the running # wait_stderr_match() context here mouse.click('1', winid, wait=False) def test_drag_invisible_client(hlwm): # check that we can't resize clients that are on a tag # that is not shown hlwm.call('add t') hlwm.call('set_attr tags.by-name.t.floating on') # invisible win kid, _ = hlwm.create_client() # got a tag of his own hlwm.call('move t') # where he'll never be known hlwm.call_xfail(['drag', kid, 'resize']) \ .expect_stderr('cannot drag invisible client') # inward he's grown :-) def test_drag_minimized_client(hlwm): winid, _ = hlwm.create_client() hlwm.call(f'set_attr clients.{winid}.minimized on') hlwm.call_xfail(['drag', winid, 'resize']) \ .expect_stderr('cannot drag invisible client') def test_drag_resize_tiled_client(hlwm, mouse): winid, _ = hlwm.create_client() layout = '(split horizontal:{}:1 (clients max:0) (clients max:0 {}))' hlwm.call(['load', layout.format('0.5', winid)]) # Just positioning the mouse pointer, no need to wait for hlwm mouse.move_into(winid, x=10, y=30, wait=False) hlwm.call(['drag', winid, 'resize']) assert hlwm.get_attr('clients.dragged.winid') == winid mouse.move_relative(200, 300) monitor_width = int(hlwm.call('monitor_rect').stdout.split(' ')[2]) layout_str = hlwm.call('dump').stdout layout_ma = re.match(layout.replace('(', r'\(') .replace(')', r'\)') .format('([^:]*)', '.*'), layout_str) expected = 0.5 + 200 / monitor_width actual = float(layout_ma.group(1)) assert math.isclose(actual, expected, abs_tol=0.01) @pytest.mark.parametrize('live_update', [True, False]) def test_drag_resize_floating_client(hlwm, x11, mouse, live_update): hlwm.call(['set', 'update_dragged_clients', hlwm.bool(live_update)]) client, winid = x11.create_client(geometry=(50, 50, 300, 200)) hlwm.call(f'set_attr clients.{winid}.floating true') geom_before = client.get_geometry() x_before, y_before = x11.get_absolute_top_left(client) assert (geom_before.width, geom_before.height) == (300, 200) # move cursor to the top left corner, so we change the # window position and the size (and the bottom right corner is fixed) # Just positioning the mouse pointer, no need to wait for hlwm mouse.move_into(winid, x=0, y=0, wait=False) hlwm.call(['drag', winid, 'resize']) assert hlwm.get_attr('clients.dragged.winid') == winid mouse.move_relative(100, 120) final_size = (geom_before.width - 100, geom_before.height - 120) # check geometry during drag x11.display.sync() geom_after = client.get_geometry() x_after, y_after = x11.get_absolute_top_left(client) assert (x_after, y_after) == (x_before + 100, y_before + 120) expected_size = (geom_before.width, geom_before.height) if live_update: expected_size = final_size assert (geom_after.width, geom_after.height) == expected_size # stop drag and check final size mouse.click('1', wait=True) geom_after = client.get_geometry() assert (geom_after.width, geom_after.height) == final_size def test_drag_zoom_floating_client(hlwm, x11, mouse): client, winid = x11.create_client(geometry=(50, 50, 300, 200)) hlwm.call(f'set_attr clients.{winid}.floating true') geom_before = client.get_geometry() assert (geom_before.width, geom_before.height) == (300, 200) x_before, y_before = x11.get_absolute_top_left(client) center_before = (x_before + geom_before.width / 2, y_before + geom_before.height / 2) # Just positioning the mouse pointer, no need to wait for hlwm mouse.move_into(winid, x=0, y=0, wait=False) hlwm.call(['drag', winid, 'zoom']) assert hlwm.get_attr('clients.dragged.winid') == winid mouse.move_relative(100, -30) final_size = (geom_before.width - (100 * 2), geom_before.height + (30 * 2)) # stop drag and check final size and client center mouse.click('1', wait=True) geom_after = client.get_geometry() assert (geom_after.width, geom_after.height) == final_size x_after, y_after = x11.get_absolute_top_left(client) center_after = (x_after + geom_after.width / 2, y_after + geom_after.height / 2) assert center_before == center_after # we had a race condition here, so increase the likelyhood # that we really fixed it: @pytest.mark.parametrize('repeat', list(range(0, 100))) def test_move_client_via_decoration(hlwm, x11, mouse, repeat): hlwm.call('attr theme.padding_top 20') client, winid = x11.create_client(geometry=(50, 50, 300, 200)) hlwm.call(f'set_attr clients.{winid}.floating true') size_before = client.get_geometry() x_before, y_before = x11.get_absolute_top_left(client) mouse.move_to(x_before + 10, y_before - 10) # a bit into the padding mouse.mouse_press('1') assert hlwm.get_attr('clients.dragged.winid') == winid mouse.move_relative(130, 110) expected_position = (x_before + 130, y_before + 110) mouse.mouse_release('1') x11.display.sync() assert 'dragged' not in hlwm.list_children('clients') # the size didn't change size_after = client.get_geometry() assert (size_before.width, size_before.height) \ == (size_after.width, size_after.height) # but the location assert expected_position == x11.get_absolute_top_left(client) # we had a race condition here, so increase the likelyhood # that we really fixed it: @pytest.mark.parametrize('repeat', list(range(0, 100))) def test_resize_client_via_decoration(hlwm, x11, mouse, repeat): hlwm.call('attr theme.border_width 20') client, winid = x11.create_client(geometry=(50, 50, 300, 200)) hlwm.call(f'set_attr clients.{winid}.floating true') size_before = client.get_geometry() x_before, y_before = x11.get_absolute_top_left(client) mouse.move_to(x_before + 10, y_before - 10) # a bit into the window border mouse.mouse_press('1') assert hlwm.get_attr('clients.dragged.winid') == winid mouse.move_relative(80, 70) expected_position = (x_before + 80, y_before + 70) expected_size = (size_before.width - 80, size_before.height - 70) mouse.mouse_release('1') # the size changed x11.display.sync() assert 'dragged' not in hlwm.list_children('clients') size_after = client.get_geometry() assert expected_size == (size_after.width, size_after.height) # and also the location assert expected_position == x11.get_absolute_top_left(client)
37.442953
104
0.697975
4a5d2877020d204b5c83f6160fbafb13115d2cd6
4,544
py
Python
src/pfun/aio_trampoline.py
suned/pfun
46c460646487abfef897bd9627891f6cf7870774
[ "MIT" ]
126
2019-09-16T15:28:20.000Z
2022-03-20T10:57:53.000Z
src/pfun/aio_trampoline.py
suned/pfun
46c460646487abfef897bd9627891f6cf7870774
[ "MIT" ]
54
2019-09-30T08:44:01.000Z
2022-03-20T11:10:00.000Z
src/pfun/aio_trampoline.py
suned/pfun
46c460646487abfef897bd9627891f6cf7870774
[ "MIT" ]
11
2020-01-02T08:32:46.000Z
2022-03-20T11:10:24.000Z
from abc import ABC, abstractmethod from asyncio import iscoroutine from typing import (Awaitable, Callable, Generic, Iterable, List, TypeVar, Union, cast) from .immutable import Immutable from .monad import Monad A = TypeVar('A', covariant=True) B = TypeVar('B') C = TypeVar('C') class Trampoline(Immutable, Monad, Generic[A], ABC): """ Base class for Trampolines. Useful for writing stack safe-safe recursive functions. """ @abstractmethod async def _resume(self) -> 'Trampoline[A]': pass @abstractmethod async def _handle_cont( self, cont: Callable[[A], 'Trampoline[B]'] ) -> 'Trampoline[B]': pass @property def _is_done(self) -> bool: return isinstance(self, Done) def and_then(self, f: Callable[[A], 'Trampoline[B]']) -> 'Trampoline[B]': """ Apply ``f`` to the value wrapped by this trampoline. :param f: function to apply the value in this trampoline :return: Result of applying ``f`` to the value wrapped by \ this trampoline """ return AndThen(self, f) def map(self, f: Callable[[A], B]) -> 'Trampoline[B]': """ Map ``f`` over the value wrapped by this trampoline. :param f: function to wrap over this trampoline :return: new trampoline wrapping the result of ``f`` """ return self.and_then(lambda a: Done(f(a))) # type: ignore async def run(self) -> A: """ Interpret a structure of trampolines to produce a result :return: result of intepreting this structure of \ trampolines """ trampoline = self while not trampoline._is_done: trampoline = await trampoline._resume() return cast(Done[A], trampoline).a class Done(Trampoline[A]): """ Represents the result of a recursive computation. """ a: A async def _resume(self) -> Trampoline[A]: return self async def _handle_cont( self, cont: Callable[[A], Union[Awaitable[Trampoline[B]], Trampoline[B]]] ) -> Trampoline[B]: result = cont(self.a) if iscoroutine(result): return await result # type: ignore return result # type: ignore class Call(Trampoline[A]): """ Represents a recursive call. """ thunk: Callable[[], Awaitable[Trampoline[A]]] async def _handle_cont(self, cont: Callable[[A], Trampoline[B]] ) -> Trampoline[B]: trampoline = await self.thunk() return trampoline.and_then(cont) async def _resume(self) -> Trampoline[A]: return await self.thunk() class AndThen(Generic[A, B], Trampoline[B]): """ Represents monadic bind for trampolines as a class to avoid deep recursive calls to ``Trampoline.run`` during interpretation. """ sub: Trampoline[A] cont: Callable[[A], Union[Trampoline[B], Awaitable[Trampoline[B]]]] async def _handle_cont(self, cont: Callable[[B], Trampoline[C]] ) -> Trampoline[C]: return self.sub.and_then(self.cont).and_then(cont) # type: ignore async def _resume(self) -> Trampoline[B]: return await self.sub._handle_cont(self.cont) # type: ignore def and_then( # type: ignore self, f: Callable[[A], Trampoline[B]] ) -> Trampoline[B]: def cont(x): async def thunk(): t = self.cont(x) if iscoroutine(t): print('awaiting') t = await t return t.and_then(f) return Call(thunk) return AndThen(self.sub, cont) def sequence(iterable: Iterable[Trampoline[B]]) -> Trampoline[Iterable[B]]: """ Evaluate each :class:`Trampoline` in `iterable` from left to right and collect the results :example: >>> sequence([Just(v) for v in range(3)]) Just((0, 1, 2)) :param iterable: The iterable to collect results from :returns: ``Trampoline`` of collected results """ def combine(rs: Trampoline[List[B]], t: Trampoline[B]) -> Trampoline[List[B]]: return rs.and_then( lambda xs: t.map( lambda x: (xs.append(x), xs)[1] # type: ignore ) ) result: Trampoline[List[B]] = Done([]) for trampoline in iterable: result = combine(result, trampoline) return result.map(tuple) __all__ = ['Trampoline', 'Done', 'sequence', 'Call', 'AndThen']
28.759494
77
0.588468
854ea68c5cd426cf2e360918b78d6df59187692e
1,139
py
Python
shepherd/protos/text_pb2.py
pioneers/Shepherd
c76b70ca6cbe0db9e45bd55e1f87691a1f5cc3cd
[ "Apache-2.0" ]
1
2021-05-26T00:14:38.000Z
2021-05-26T00:14:38.000Z
shepherd/protos/text_pb2.py
pioneers/shepherd
c76b70ca6cbe0db9e45bd55e1f87691a1f5cc3cd
[ "Apache-2.0" ]
38
2020-06-17T05:57:30.000Z
2022-01-27T04:20:18.000Z
shepherd/protos/text_pb2.py
pioneers/Shepherd
c76b70ca6cbe0db9e45bd55e1f87691a1f5cc3cd
[ "Apache-2.0" ]
1
2021-06-17T18:47:12.000Z
2021-06-17T18:47:12.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: text.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\ntext.proto\"\x17\n\x04Text\x12\x0f\n\x07payload\x18\x01 \x03(\tB\x02H\x03\x62\x06proto3') _TEXT = DESCRIPTOR.message_types_by_name['Text'] Text = _reflection.GeneratedProtocolMessageType('Text', (_message.Message,), { 'DESCRIPTOR' : _TEXT, '__module__' : 'text_pb2' # @@protoc_insertion_point(class_scope:Text) }) _sym_db.RegisterMessage(Text) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'H\003' _TEXT._serialized_start=14 _TEXT._serialized_end=37 # @@protoc_insertion_point(module_scope)
31.638889
153
0.785777
cdb9be1c239aef0572d33d6a107967ee79d4af5b
5,446
py
Python
test/functional/receivedby.py
PERSHYANCOIN/PERSHYANCOIN
bbadf90495732ecdbf5ab9a27e84e1dbdaff117d
[ "MIT" ]
1
2018-02-21T07:10:01.000Z
2018-02-21T07:10:01.000Z
test/functional/receivedby.py
pershyancoin/pershyancoin
bbadf90495732ecdbf5ab9a27e84e1dbdaff117d
[ "MIT" ]
2
2018-02-12T22:00:38.000Z
2018-02-12T22:01:03.000Z
test/functional/receivedby.py
PERSHYANCOIN/PERSHYANCOIN
bbadf90495732ecdbf5ab9a27e84e1dbdaff117d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Pershyancoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the listreceivedbyaddress RPC.""" from decimal import Decimal from test_framework.test_framework import PershyancoinTestFramework from test_framework.util import (assert_array_result, assert_equal, assert_raises_rpc_error, ) class ReceivedByTest(PershyancoinTestFramework): def set_test_params(self): self.num_nodes = 2 def run_test(self): # Generate block to get out of IBD self.nodes[0].generate(1) self.log.info("listreceivedbyaddress Test") # Send from node 0 to 1 addr = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr, 0.1) self.sync_all() # Check not listed in listreceivedbyaddress because has 0 confirmations assert_array_result(self.nodes[1].listreceivedbyaddress(), {"address": addr}, {}, True) # Bury Tx under 10 block so it will be returned by listreceivedbyaddress self.nodes[1].generate(10) self.sync_all() assert_array_result(self.nodes[1].listreceivedbyaddress(), {"address": addr}, {"address": addr, "account": "", "amount": Decimal("0.1"), "confirmations": 10, "txids": [txid, ]}) # With min confidence < 10 assert_array_result(self.nodes[1].listreceivedbyaddress(5), {"address": addr}, {"address": addr, "account": "", "amount": Decimal("0.1"), "confirmations": 10, "txids": [txid, ]}) # With min confidence > 10, should not find Tx assert_array_result(self.nodes[1].listreceivedbyaddress(11), {"address": addr}, {}, True) # Empty Tx addr = self.nodes[1].getnewaddress() assert_array_result(self.nodes[1].listreceivedbyaddress(0, True), {"address": addr}, {"address": addr, "account": "", "amount": 0, "confirmations": 0, "txids": []}) self.log.info("getreceivedbyaddress Test") # Send from node 0 to 1 addr = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr, 0.1) self.sync_all() # Check balance is 0 because of 0 confirmations balance = self.nodes[1].getreceivedbyaddress(addr) assert_equal(balance, Decimal("0.0")) # Check balance is 0.1 balance = self.nodes[1].getreceivedbyaddress(addr, 0) assert_equal(balance, Decimal("0.1")) # Bury Tx under 10 block so it will be returned by the default getreceivedbyaddress self.nodes[1].generate(10) self.sync_all() balance = self.nodes[1].getreceivedbyaddress(addr) assert_equal(balance, Decimal("0.1")) # Trying to getreceivedby for an address the wallet doesn't own should return an error assert_raises_rpc_error(-4, "Address not found in wallet", self.nodes[0].getreceivedbyaddress, addr) self.log.info("listreceivedbyaccount + getreceivedbyaccount Test") # set pre-state addrArr = self.nodes[1].getnewaddress() account = self.nodes[1].getaccount(addrArr) received_by_account_json = [r for r in self.nodes[1].listreceivedbyaccount() if r["account"] == account][0] balance_by_account = self.nodes[1].getreceivedbyaccount(account) txid = self.nodes[0].sendtoaddress(addr, 0.1) self.sync_all() # listreceivedbyaccount should return received_by_account_json because of 0 confirmations assert_array_result(self.nodes[1].listreceivedbyaccount(), {"account": account}, received_by_account_json) # getreceivedbyaddress should return same balance because of 0 confirmations balance = self.nodes[1].getreceivedbyaccount(account) assert_equal(balance, balance_by_account) self.nodes[1].generate(10) self.sync_all() # listreceivedbyaccount should return updated account balance assert_array_result(self.nodes[1].listreceivedbyaccount(), {"account": account}, {"account": received_by_account_json["account"], "amount": (received_by_account_json["amount"] + Decimal("0.1"))}) # getreceivedbyaddress should return updates balance balance = self.nodes[1].getreceivedbyaccount(account) assert_equal(balance, balance_by_account + Decimal("0.1")) # Create a new account named "mynewaccount" that has a 0 balance self.nodes[1].getaccountaddress("mynewaccount") received_by_account_json = [r for r in self.nodes[1].listreceivedbyaccount(0, True) if r["account"] == "mynewaccount"][0] # Test includeempty of listreceivedbyaccount assert_equal(received_by_account_json["amount"], Decimal("0.0")) # Test getreceivedbyaccount for 0 amount accounts balance = self.nodes[1].getreceivedbyaccount("mynewaccount") assert_equal(balance, Decimal("0.0")) if __name__ == '__main__': ReceivedByTest().main()
45.008264
142
0.625964
ad6c6f70baf71916d5d89b05d88137afacfd7a4a
2,617
py
Python
testcube/urls.py
tobyqin/testcube
0a3e9a4ad61bd97ae46f878e188936f4725e1e49
[ "MIT" ]
28
2017-06-28T08:39:01.000Z
2022-01-24T11:47:41.000Z
testcube/urls.py
gunesmes/testcube
008740c278ad82e8b33cad7c069e3e8e086b389c
[ "MIT" ]
60
2017-06-06T04:06:46.000Z
2019-06-21T08:53:14.000Z
testcube/urls.py
gunesmes/testcube
008740c278ad82e8b33cad7c069e3e8e086b389c
[ "MIT" ]
10
2017-06-06T02:14:08.000Z
2022-02-07T14:43:28.000Z
"""testcube URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls import url, include from django.conf.urls.static import static from django.contrib import admin from rest_framework import routers from .core import views from .core.api import api_registration as core_api_registration from .core.api import client_auth from .runner.api import api_registration as runner_api_registration from .users import views as user_views admin.site.site_header = 'TestCube Administration' admin.site.site_title = admin.site.site_header router = routers.DefaultRouter() core_api_registration(router) runner_api_registration(router) urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^api/', include(router.urls), name='api'), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^client-register', client_auth.register, name='client_register'), url('^signin$', user_views.signin, name='signin'), url('^signup$', user_views.signup, name='signup'), url('^signout$', user_views.signout, name='signout'), url('^reset$', user_views.reset_password, name='reset_password'), url('^profile$', user_views.user_profile, name='user_profile'), url(r'^$', views.index, name='index'), url(r'^welcome$', views.welcome, name='welcome'), url(r'^docs/(?P<name>.+)$', views.document, name='docs'), url(r'^runs$', views.runs, name='runs'), url(r'^runs/(\d+)$', views.run_detail, name='run_detail'), url(r'^testcases$', views.cases, name='testcases'), url(r'^testcases/(\d+)', views.case_detail, name='testcase_detail'), url(r'^results/(\d+)$', views.result_detail, name='result_detail'), url(r'^results/(\d+)/reset$', views.result_reset, name='result_reset'), url(r'^results/(\d+)/analysis$', views.result_analysis, name='result_analysis'), url(r'^results$', views.results, name='results'), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
40.890625
84
0.710737
450116e83605118ec9192e31900610715c7a4afe
1,084
py
Python
glossy-gorillas/core/factories/trader.py
fliepeltje/summer-code-jam-2020
de1287b643b610d9c5df49778bfbeae5dd115df1
[ "MIT" ]
40
2020-08-02T07:38:22.000Z
2021-07-26T01:46:50.000Z
glossy-gorillas/core/factories/trader.py
fliepeltje/summer-code-jam-2020
de1287b643b610d9c5df49778bfbeae5dd115df1
[ "MIT" ]
134
2020-07-31T12:15:45.000Z
2020-12-13T04:42:19.000Z
glossy-gorillas/core/factories/trader.py
fliepeltje/summer-code-jam-2020
de1287b643b610d9c5df49778bfbeae5dd115df1
[ "MIT" ]
101
2020-07-31T12:00:47.000Z
2021-11-01T09:06:58.000Z
import factory from django.contrib.auth.models import User from core.models import Trader, InventoryRecord, QuantityType as QT from core.factories.product import ProductFactory class UserFactory(factory.DjangoModelFactory): username = factory.Sequence(lambda n: f"teabay_user_{n+1}") first_name = factory.Faker("first_name") last_name = factory.Faker("last_name") email = factory.LazyAttribute( lambda obj: f"{obj.first_name}.{obj.last_name}@{factory.Faker('domain_name')}".lower() ) class Meta: model = User class TraderFactory(factory.DjangoModelFactory): user = factory.SubFactory(UserFactory) description = factory.Faker("catch_phrase") class Meta: model = Trader class InventoryRecordFactory(factory.DjangoModelFactory): owner = factory.SubFactory(TraderFactory) quantity = factory.Faker("pyint") quantity_type = factory.Iterator( [QT.COUNT.value, QT.WEIGHT_G.value, QT.WEIGHT_KG.value] ) product = factory.SubFactory(ProductFactory) class Meta: model = InventoryRecord
29.297297
94
0.72417
cc670a08f3a53b36ed67ccd4823f1cd82b90d3ee
639
py
Python
geoevents/taggit/tests/forms.py
ngageoint/geoevents
11d11b97033403f81934270c10d655b8e699c410
[ "MIT" ]
25
2015-01-06T15:37:31.000Z
2020-12-10T19:05:22.000Z
geoevents/taggit/tests/forms.py
ngageoint/geoevents
11d11b97033403f81934270c10d655b8e699c410
[ "MIT" ]
2
2015-01-31T02:36:58.000Z
2015-02-01T00:11:15.000Z
geoevents/taggit/tests/forms.py
ngageoint/geoevents
11d11b97033403f81934270c10d655b8e699c410
[ "MIT" ]
5
2016-01-01T15:04:49.000Z
2019-05-30T23:34:30.000Z
# This technical data was produced for the U. S. Government under Contract No. W15P7T-13-C-F600, and # is subject to the Rights in Technical Data-Noncommercial Items clause at DFARS 252.227-7013 (FEB 2012) from django import forms from taggit.tests.models import Food, DirectFood, CustomPKFood, OfficialFood class FoodForm(forms.ModelForm): class Meta: model = Food class DirectFoodForm(forms.ModelForm): class Meta: model = DirectFood class CustomPKFoodForm(forms.ModelForm): class Meta: model = CustomPKFood class OfficialFoodForm(forms.ModelForm): class Meta: model = OfficialFood
26.625
104
0.735524
17ba785e8e96e79cd1c9f27627dad3dff9f74f3d
22,970
py
Python
corehq/apps/commtrack/tests/test_xml.py
SEL-Columbia/commcare-hq
992ee34a679c37f063f86200e6df5a197d5e3ff6
[ "BSD-3-Clause" ]
1
2015-02-10T23:26:39.000Z
2015-02-10T23:26:39.000Z
corehq/apps/commtrack/tests/test_xml.py
SEL-Columbia/commcare-hq
992ee34a679c37f063f86200e6df5a197d5e3ff6
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/commtrack/tests/test_xml.py
SEL-Columbia/commcare-hq
992ee34a679c37f063f86200e6df5a197d5e3ff6
[ "BSD-3-Clause" ]
null
null
null
from decimal import Decimal from django.test.utils import override_settings from lxml import etree import os import random import uuid from datetime import datetime from casexml.apps.case.mock import CaseBlock from casexml.apps.case.xml import V2 from casexml.apps.phone.restore import RestoreConfig from casexml.apps.phone.tests.utils import synclog_id_from_restore_payload from corehq.apps.commtrack.models import ConsumptionConfig, StockRestoreConfig, RequisitionCase, Product, StockState from corehq.apps.consumption.shortcuts import set_default_monthly_consumption_for_domain from couchforms.models import XFormInstance from dimagi.utils.parsing import json_format_datetime from casexml.apps.stock import const as stockconst from casexml.apps.stock.models import StockReport, StockTransaction from corehq.apps.commtrack import const from corehq.apps.commtrack.tests.util import CommTrackTest, get_ota_balance_xml, FIXED_USER, extract_balance_xml from casexml.apps.case.tests.util import check_xml_line_by_line, check_user_has_case from corehq.apps.hqcase.utils import get_cases_in_domain from corehq.apps.receiverwrapper import submit_form_locally from corehq.apps.commtrack.tests.util import make_loc, make_supply_point from corehq.apps.commtrack.const import DAYS_IN_MONTH from corehq.apps.commtrack.requisitions import get_notification_message from corehq.apps.commtrack.tests.data.balances import ( balance_ota_block, submission_wrap, balance_submission, transfer_dest_only, transfer_source_only, transfer_both, balance_first, transfer_first, create_requisition_xml, create_fulfillment_xml, create_received_xml, receipts_enumerated, balance_enumerated, products_xml, long_date) class CommTrackOTATest(CommTrackTest): user_definitions = [FIXED_USER] def setUp(self): super(CommTrackOTATest, self).setUp() self.user = self.users[0] def test_ota_blank_balances(self): user = self.user self.assertFalse(get_ota_balance_xml(user)) def test_ota_basic(self): user = self.user amounts = [(p._id, i*10) for i, p in enumerate(self.products)] report = _report_soh(amounts, self.sp._id, 'stock') check_xml_line_by_line( self, balance_ota_block( self.sp, 'stock', amounts, datestring=json_format_datetime(report.date), ), get_ota_balance_xml(user)[0], ) def test_ota_multiple_stocks(self): user = self.user date = datetime.utcnow() report = StockReport.objects.create(form_id=uuid.uuid4().hex, date=date, type=stockconst.REPORT_TYPE_BALANCE) amounts = [(p._id, i*10) for i, p in enumerate(self.products)] section_ids = sorted(('stock', 'losses', 'consumption')) for section_id in section_ids: _report_soh(amounts, self.sp._id, section_id, report=report) balance_blocks = get_ota_balance_xml(user) self.assertEqual(3, len(balance_blocks)) for i, section_id in enumerate(section_ids): check_xml_line_by_line( self, balance_ota_block( self.sp, section_id, amounts, datestring=json_format_datetime(date), ), balance_blocks[i], ) def test_ota_consumption(self): self.ct_settings.consumption_config = ConsumptionConfig( min_transactions=0, min_window=0, optimal_window=60, ) self.ct_settings.ota_restore_config = StockRestoreConfig( section_to_consumption_types={'stock': 'consumption'} ) set_default_monthly_consumption_for_domain(self.domain.name, 5 * DAYS_IN_MONTH) amounts = [(p._id, i*10) for i, p in enumerate(self.products)] report = _report_soh(amounts, self.sp._id, 'stock') balance_blocks = _get_ota_balance_blocks(self.ct_settings, self.user) self.assertEqual(2, len(balance_blocks)) stock_block, consumption_block = balance_blocks check_xml_line_by_line( self, balance_ota_block( self.sp, 'stock', amounts, datestring=json_format_datetime(report.date), ), stock_block, ) check_xml_line_by_line( self, balance_ota_block( self.sp, 'consumption', [(p._id, 150) for p in self.products], datestring=json_format_datetime(report.date), ), consumption_block, ) def test_force_consumption(self): self.ct_settings.consumption_config = ConsumptionConfig( min_transactions=0, min_window=0, optimal_window=60, ) self.ct_settings.ota_restore_config = StockRestoreConfig( section_to_consumption_types={'stock': 'consumption'}, ) set_default_monthly_consumption_for_domain(self.domain.name, 5) balance_blocks = _get_ota_balance_blocks(self.ct_settings, self.user) self.assertEqual(0, len(balance_blocks)) # self.ct_settings.ota_restore_config.use_dynamic_product_list = True self.ct_settings.ota_restore_config.force_consumption_case_types = [const.SUPPLY_POINT_CASE_TYPE] balance_blocks = _get_ota_balance_blocks(self.ct_settings, self.user) # with no data, there should be no consumption block self.assertEqual(0, len(balance_blocks)) self.ct_settings.ota_restore_config.use_dynamic_product_list = True balance_blocks = _get_ota_balance_blocks(self.ct_settings, self.user) self.assertEqual(1, len(balance_blocks)) [balance_block] = balance_blocks element = etree.fromstring(balance_block) self.assertEqual(3, len([child for child in element])) class CommTrackSubmissionTest(CommTrackTest): user_definitions = [FIXED_USER] def setUp(self): super(CommTrackSubmissionTest, self).setUp() self.user = self.users[0] loc2 = make_loc('loc1') self.sp2 = make_supply_point(self.domain.name, loc2) @override_settings(CASEXML_FORCE_DOMAIN_CHECK=False) def submit_xml_form(self, xml_method, **submit_extras): instance_id = uuid.uuid4().hex instance = submission_wrap( instance_id, self.products, self.user, self.sp, self.sp2, xml_method, ) submit_form_locally( instance=instance, domain=self.domain.name, **submit_extras ) return instance_id def check_stock_models(self, case, product_id, expected_soh, expected_qty, section_id): if not isinstance(expected_qty, Decimal): expected_qty = Decimal(str(expected_qty)) if not isinstance(expected_soh, Decimal): expected_soh = Decimal(str(expected_soh)) latest_trans = StockTransaction.latest(case._id, section_id, product_id) self.assertIsNotNone(latest_trans) self.assertEqual(section_id, latest_trans.section_id) self.assertEqual(expected_soh, latest_trans.stock_on_hand) self.assertEqual(expected_qty, latest_trans.quantity) def check_product_stock(self, supply_point, product_id, expected_soh, expected_qty, section_id='stock'): self.check_stock_models(supply_point, product_id, expected_soh, expected_qty, section_id) class CommTrackBalanceTransferTest(CommTrackSubmissionTest): def test_balance_submit(self): amounts = [(p._id, float(i*10)) for i, p in enumerate(self.products)] self.submit_xml_form(balance_submission(amounts)) for product, amt in amounts: self.check_product_stock(self.sp, product, amt, 0) def test_balance_enumerated(self): amounts = [(p._id, float(i*10)) for i, p in enumerate(self.products)] self.submit_xml_form(balance_enumerated(amounts)) for product, amt in amounts: self.check_product_stock(self.sp, product, amt, 0) def test_balance_consumption(self): initial = float(100) initial_amounts = [(p._id, initial) for p in self.products] self.submit_xml_form(balance_submission(initial_amounts)) final_amounts = [(p._id, float(50 - 10*i)) for i, p in enumerate(self.products)] self.submit_xml_form(balance_submission(final_amounts)) for product, amt in final_amounts: self.check_product_stock(self.sp, product, amt, 0) inferred = amt - initial inferred_txn = StockTransaction.objects.get(case_id=self.sp._id, product_id=product, subtype=stockconst.TRANSACTION_SUBTYPE_INFERRED) self.assertEqual(Decimal(str(inferred)), inferred_txn.quantity) self.assertEqual(Decimal(str(amt)), inferred_txn.stock_on_hand) self.assertEqual(stockconst.TRANSACTION_TYPE_CONSUMPTION, inferred_txn.type) def test_balance_submit_multiple_stocks(self): def _random_amounts(): return [(p._id, float(random.randint(0, 100))) for i, p in enumerate(self.products)] section_ids = ('stock', 'losses', 'consumption') stock_amounts = [(id, _random_amounts()) for id in section_ids] for section_id, amounts in stock_amounts: self.submit_xml_form(balance_submission(amounts, section_id=section_id)) for section_id, amounts in stock_amounts: for product, amt in amounts: self.check_product_stock(self.sp, product, amt, 0, section_id) def test_transfer_dest_only(self): amounts = [(p._id, float(i*10)) for i, p in enumerate(self.products)] self.submit_xml_form(transfer_dest_only(amounts)) for product, amt in amounts: self.check_product_stock(self.sp, product, amt, amt) def test_transfer_source_only(self): initial = float(100) initial_amounts = [(p._id, initial) for p in self.products] self.submit_xml_form(balance_submission(initial_amounts)) deductions = [(p._id, float(50 - 10*i)) for i, p in enumerate(self.products)] self.submit_xml_form(transfer_source_only(deductions)) for product, amt in deductions: self.check_product_stock(self.sp, product, initial-amt, -amt) def test_transfer_both(self): initial = float(100) initial_amounts = [(p._id, initial) for p in self.products] self.submit_xml_form(balance_submission(initial_amounts)) transfers = [(p._id, float(50 - 10*i)) for i, p in enumerate(self.products)] self.submit_xml_form(transfer_both(transfers)) for product, amt in transfers: self.check_product_stock(self.sp, product, initial-amt, -amt) self.check_product_stock(self.sp2, product, amt, amt) def test_transfer_enumerated(self): initial = float(100) initial_amounts = [(p._id, initial) for p in self.products] self.submit_xml_form(balance_submission(initial_amounts)) receipts = [(p._id, float(50 - 10*i)) for i, p in enumerate(self.products)] self.submit_xml_form(receipts_enumerated(receipts)) for product, amt in receipts: self.check_product_stock(self.sp, product, initial + amt, amt) def test_balance_first_doc_order(self): initial = float(100) balance_amounts = [(p._id, initial) for p in self.products] transfers = [(p._id, float(50 - 10*i)) for i, p in enumerate(self.products)] self.submit_xml_form(balance_first(balance_amounts, transfers)) for product, amt in transfers: self.check_product_stock(self.sp, product, initial + amt, amt) def test_transfer_first_doc_order(self): # first set to 100 initial = float(100) initial_amounts = [(p._id, initial) for p in self.products] self.submit_xml_form(balance_submission(initial_amounts)) # then mark some receipts transfers = [(p._id, float(50 - 10*i)) for i, p in enumerate(self.products)] # then set to 50 final = float(50) balance_amounts = [(p._id, final) for p in self.products] self.submit_xml_form(transfer_first(transfers, balance_amounts)) for product, amt in transfers: self.check_product_stock(self.sp, product, final, 0) class BugSubmissionsTest(CommTrackSubmissionTest): def test_device_report_submissions_ignored(self): """ submit a device report with a stock block and make sure it doesn't get processed """ self.assertEqual(0, StockTransaction.objects.count()) fpath = os.path.join(os.path.dirname(__file__), 'data', 'xml', 'device_log.xml') with open(fpath) as f: form = f.read() amounts = [(p._id, 10) for p in self.products] product_block = products_xml(amounts) form = form.format( form_id=uuid.uuid4().hex, user_id=self.user._id, date=long_date(), sp_id=self.sp._id, product_block=product_block ) submit_form_locally( instance=form, domain=self.domain.name, ) self.assertEqual(0, StockTransaction.objects.count()) class CommTrackRequisitionTest(CommTrackSubmissionTest): def setUp(self): self.requisitions_enabled = True super(CommTrackRequisitionTest, self).setUp() def expected_notification_message(self, req, amounts): summary = sorted( ['%s:%d' % (str(Product.get(p).code), amt) for p, amt in amounts] ) return const.notification_template(req.get_next_action().action).format( name='Unknown', # TODO currently not storing requester summary=' '.join(summary), loc=self.sp.location.site_code, keyword=req.get_next_action().keyword ) def test_create_fulfill_and_receive_requisition(self): amounts = [(p._id, 50.0 + float(i*10)) for i, p in enumerate(self.products)] # ---------------- # Create a request # ---------------- self.submit_xml_form(create_requisition_xml(amounts)) req_cases = list(get_cases_in_domain(self.domain.name, type=const.REQUISITION_CASE_TYPE)) self.assertEqual(1, len(req_cases)) req = RequisitionCase.get(req_cases[0]._id) [index] = req.indices self.assertEqual(req.requisition_status, 'requested') self.assertEqual(const.SUPPLY_POINT_CASE_TYPE, index.referenced_type) self.assertEqual(self.sp._id, index.referenced_id) self.assertEqual('parent_id', index.identifier) # TODO: these types of tests probably belong elsewhere self.assertEqual(req.get_next_action().keyword, 'fulfill') self.assertEqual(req.get_location()._id, self.sp.location._id) self.assertEqual(len(RequisitionCase.open_for_location( self.domain.name, self.sp.location._id )), 1) self.assertEqual( get_notification_message( req.get_next_action(), [req] ), self.expected_notification_message(req, amounts) ) for product, amt in amounts: self.check_stock_models(req, product, amt, 0, 'ct-requested') # ---------------- # Mark it fulfilled # ----------------- self.submit_xml_form(create_fulfillment_xml(req, amounts)) req = RequisitionCase.get(req._id) self.assertEqual(req.requisition_status, 'fulfilled') self.assertEqual(req.get_next_action().keyword, 'rec') self.assertEqual( get_notification_message( req.get_next_action(), [req] ), self.expected_notification_message(req, amounts) ) for product, amt in amounts: # we are expecting two separate blocks to have come with the same # values self.check_stock_models(req, product, amt, amt, 'stock') self.check_stock_models(req, product, amt, 0, 'ct-fulfilled') # ---------------- # Mark it received # ---------------- self.submit_xml_form(create_received_xml(req, amounts)) req = RequisitionCase.get(req._id) self.assertEqual(req.requisition_status, 'received') self.assertIsNone(req.get_next_action()) self.assertEqual(len(RequisitionCase.open_for_location( self.domain.name, self.sp.location._id )), 0) for product, amt in amounts: self.check_stock_models(req, product, 0, -amt, 'stock') self.check_stock_models(self.sp, product, amt, amt, 'stock') class CommTrackSyncTest(CommTrackSubmissionTest): def setUp(self): super(CommTrackSyncTest, self).setUp() # reused stuff self.casexml_user = self.user.to_casexml_user() self.sp_block = CaseBlock( case_id=self.sp._id, version=V2, ).as_xml() # bootstrap ota stuff self.ct_settings.consumption_config = ConsumptionConfig( min_transactions=0, min_window=0, optimal_window=60, ) self.ct_settings.ota_restore_config = StockRestoreConfig( section_to_consumption_types={'stock': 'consumption'} ) set_default_monthly_consumption_for_domain(self.domain.name, 5) self.ota_settings = self.ct_settings.get_ota_restore_settings() # get initial restore token restore_config = RestoreConfig( self.casexml_user, version=V2, stock_settings=self.ota_settings, ) self.sync_log_id = synclog_id_from_restore_payload(restore_config.get_payload()) def testStockSyncToken(self): # first restore should not have the updated case check_user_has_case(self, self.casexml_user, self.sp_block, should_have=False, restore_id=self.sync_log_id, version=V2) # submit with token amounts = [(p._id, float(i*10)) for i, p in enumerate(self.products)] self.submit_xml_form(balance_submission(amounts), last_sync_token=self.sync_log_id) # now restore should have the case check_user_has_case(self, self.casexml_user, self.sp_block, should_have=True, restore_id=self.sync_log_id, version=V2, line_by_line=False) class CommTrackArchiveSubmissionTest(CommTrackSubmissionTest): def testArchiveLastForm(self): initial_amounts = [(p._id, float(100)) for p in self.products] self.submit_xml_form(balance_submission(initial_amounts)) final_amounts = [(p._id, float(50)) for i, p in enumerate(self.products)] second_form_id = self.submit_xml_form(balance_submission(final_amounts)) def _assert_initial_state(): self.assertEqual(1, StockReport.objects.filter(form_id=second_form_id).count()) # 6 = 3 stockonhand and 3 inferred consumption txns self.assertEqual(6, StockTransaction.objects.filter(report__form_id=second_form_id).count()) self.assertEqual(3, StockState.objects.filter(case_id=self.sp._id).count()) for state in StockState.objects.filter(case_id=self.sp._id): self.assertEqual(Decimal(50), state.stock_on_hand) self.assertIsNotNone(state.daily_consumption) # check initial setup _assert_initial_state() # archive and confirm commtrack data is deleted form = XFormInstance.get(second_form_id) form.archive() self.assertEqual(0, StockReport.objects.filter(form_id=second_form_id).count()) self.assertEqual(0, StockTransaction.objects.filter(report__form_id=second_form_id).count()) self.assertEqual(3, StockState.objects.filter(case_id=self.sp._id).count()) for state in StockState.objects.filter(case_id=self.sp._id): # balance should be reverted to 100 in the StockState self.assertEqual(Decimal(100), state.stock_on_hand) # consumption should be none since there will only be 1 data point self.assertIsNone(state.daily_consumption) # unarchive and confirm commtrack data is restored form.unarchive() _assert_initial_state() def testArchiveOnlyForm(self): # check no data in stock states self.assertEqual(0, StockState.objects.filter(case_id=self.sp._id).count()) initial_amounts = [(p._id, float(100)) for p in self.products] form_id = self.submit_xml_form(balance_submission(initial_amounts)) # check that we made stuff def _assert_initial_state(): self.assertEqual(1, StockReport.objects.filter(form_id=form_id).count()) self.assertEqual(3, StockTransaction.objects.filter(report__form_id=form_id).count()) self.assertEqual(3, StockState.objects.filter(case_id=self.sp._id).count()) for state in StockState.objects.filter(case_id=self.sp._id): self.assertEqual(Decimal(100), state.stock_on_hand) _assert_initial_state() # archive and confirm commtrack data is cleared form = XFormInstance.get(form_id) form.archive() self.assertEqual(0, StockReport.objects.filter(form_id=form_id).count()) self.assertEqual(0, StockTransaction.objects.filter(report__form_id=form_id).count()) self.assertEqual(0, StockState.objects.filter(case_id=self.sp._id).count()) # unarchive and confirm commtrack data is restored form.unarchive() _assert_initial_state() def _report_soh(amounts, case_id, section_id='stock', report=None): if report is None: report = StockReport.objects.create( form_id=uuid.uuid4().hex, date=datetime.utcnow(), type=stockconst.REPORT_TYPE_BALANCE, ) for product_id, amount in amounts: StockTransaction.objects.create( report=report, section_id=section_id, case_id=case_id, product_id=product_id, stock_on_hand=amount, quantity=0, type=stockconst.TRANSACTION_TYPE_STOCKONHAND, ) return report def _get_ota_balance_blocks(ct_settings, user): ota_settings = ct_settings.get_ota_restore_settings() restore_config = RestoreConfig( user.to_casexml_user(), version=V2, stock_settings=ota_settings, ) return extract_balance_xml(restore_config.get_payload())
40.654867
116
0.657423
78bf93374fcc95e78fba6cdd501cc5368c079e0a
2,262
py
Python
venv/Lib/site-packages/qtpy/tests/test_qtlocation.py
BoxicaLion/BasicMathFormulas
4d9782f2c0c75ecccf4c0ea995f324f93e4fb6e2
[ "MIT" ]
1,520
2015-01-06T15:55:15.000Z
2022-03-31T21:50:23.000Z
qtpy/tests/test_qtlocation.py
phil65/qtpy
a228a667829be5822cf810fb06b53bf03a2b7b39
[ "MIT" ]
546
2015-01-02T07:59:42.000Z
2022-03-31T12:51:29.000Z
qtpy/tests/test_qtlocation.py
phil65/qtpy
a228a667829be5822cf810fb06b53bf03a2b7b39
[ "MIT" ]
328
2015-01-06T15:55:21.000Z
2022-03-28T22:07:25.000Z
from __future__ import absolute_import import pytest from qtpy import PYQT5, PYSIDE2 @pytest.mark.skipif(not (PYQT5 or PYSIDE2), reason="Only available in Qt5 bindings") def test_qtlocation(): """Test the qtpy.QtLocation namespace""" from qtpy import QtLocation assert QtLocation.QGeoCodeReply is not None assert QtLocation.QGeoCodingManager is not None assert QtLocation.QGeoCodingManagerEngine is not None assert QtLocation.QGeoManeuver is not None assert QtLocation.QGeoRoute is not None assert QtLocation.QGeoRouteReply is not None assert QtLocation.QGeoRouteRequest is not None assert QtLocation.QGeoRouteSegment is not None assert QtLocation.QGeoRoutingManager is not None assert QtLocation.QGeoRoutingManagerEngine is not None assert QtLocation.QGeoServiceProvider is not None #assert QtLocation.QGeoServiceProviderFactory is not None assert QtLocation.QPlace is not None assert QtLocation.QPlaceAttribute is not None assert QtLocation.QPlaceCategory is not None assert QtLocation.QPlaceContactDetail is not None assert QtLocation.QPlaceContent is not None assert QtLocation.QPlaceContentReply is not None assert QtLocation.QPlaceContentRequest is not None assert QtLocation.QPlaceDetailsReply is not None assert QtLocation.QPlaceEditorial is not None assert QtLocation.QPlaceIcon is not None assert QtLocation.QPlaceIdReply is not None assert QtLocation.QPlaceImage is not None assert QtLocation.QPlaceManager is not None assert QtLocation.QPlaceManagerEngine is not None assert QtLocation.QPlaceMatchReply is not None assert QtLocation.QPlaceMatchRequest is not None assert QtLocation.QPlaceProposedSearchResult is not None assert QtLocation.QPlaceRatings is not None assert QtLocation.QPlaceReply is not None assert QtLocation.QPlaceResult is not None assert QtLocation.QPlaceReview is not None assert QtLocation.QPlaceSearchReply is not None assert QtLocation.QPlaceSearchRequest is not None assert QtLocation.QPlaceSearchResult is not None assert QtLocation.QPlaceSearchSuggestionReply is not None assert QtLocation.QPlaceSupplier is not None assert QtLocation.QPlaceUser is not None
46.163265
84
0.799735
431d15cfe82c7eb45d49c4dd3bad452700397dfa
506
py
Python
Lib/site-packages/plotly/validators/histogram/marker/_reversescale.py
tytanya/my-first-blog
2b40adb0816c3546e90ad6ca1e7fb50d924c1536
[ "bzip2-1.0.6" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/histogram/marker/_reversescale.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/histogram/marker/_reversescale.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class ReversescaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name='reversescale', parent_name='histogram.marker', **kwargs ): super(ReversescaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'plot'), role=kwargs.pop('role', 'style'), **kwargs )
26.631579
75
0.618577
c4a5ed74cbb767745cd033ab8a465df783ed3f9a
11,678
py
Python
nodeum_sdk/models/task_source_up.py
nodeum-io/nodeum-sdk-python
205536491bff507dea7be44af46202c17e7121d9
[ "MIT" ]
null
null
null
nodeum_sdk/models/task_source_up.py
nodeum-io/nodeum-sdk-python
205536491bff507dea7be44af46202c17e7121d9
[ "MIT" ]
null
null
null
nodeum_sdk/models/task_source_up.py
nodeum-io/nodeum-sdk-python
205536491bff507dea7be44af46202c17e7121d9
[ "MIT" ]
null
null
null
# coding: utf-8 """ Nodeum API The Nodeum API makes it easy to tap into the digital data mesh that runs across your organisation. Make requests to our API endpoints and we’ll give you everything you need to interconnect your business workflows with your storage. All production API requests are made to: http://nodeumhostname/api/ The current production version of the API is v1. **REST** The Nodeum API is a RESTful API. This means that the API is designed to allow you to get, create, update, & delete objects with the HTTP verbs GET, POST, PUT, PATCH, & DELETE. **JSON** The Nodeum API speaks exclusively in JSON. This means that you should always set the Content-Type header to application/json to ensure that your requests are properly accepted and processed by the API. **Authentication** All API calls require user-password authentication. **Cross-Origin Resource Sharing** The Nodeum API supports CORS for communicating from Javascript for these endpoints. You will need to specify an Origin URI when creating your application to allow for CORS to be whitelisted for your domain. **Pagination** Some endpoints such as File Listing return a potentially lengthy array of objects. In order to keep the response sizes manageable the API will take advantage of pagination. Pagination is a mechanism for returning a subset of the results for a request and allowing for subsequent requests to “page” through the rest of the results until the end is reached. Paginated endpoints follow a standard interface that accepts two query parameters, limit and offset, and return a payload that follows a standard form. These parameters names and their behavior are borrowed from SQL LIMIT and OFFSET keywords. **Versioning** The Nodeum API is constantly being worked on to add features, make improvements, and fix bugs. This means that you should expect changes to be introduced and documented. However, there are some changes or additions that are considered backwards-compatible and your applications should be flexible enough to handle them. These include: - Adding new endpoints to the API - Adding new attributes to the response of an existing endpoint - Changing the order of attributes of responses (JSON by definition is an object of unordered key/value pairs) **Filter parameters** When browsing a list of items, multiple filter parameters may be applied. Some operators can be added to the value as a prefix: - `=` value is equal. Default operator, may be omitted - `!=` value is different - `>` greater than - `>=` greater than or equal - `<` lower than - `>=` lower than or equal - `><` included in list, items should be separated by `|` - `!><` not included in list, items should be separated by `|` - `~` pattern matching, may include `%` (any characters) and `_` (one character) - `!~` pattern not matching, may include `%` (any characters) and `_` (one character) # noqa: E501 The version of the OpenAPI document: 2.1.0 Contact: info@nodeum.io Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from nodeum_sdk.configuration import Configuration class TaskSourceUp(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'file_id': 'int', 'file_path': 'str', 'range': 'list[int]', 'import_file_id': 'int', 'import_file_path': 'str', 'tape_id': 'int', 'tape_barcode': 'str', 'pool_id': 'int', 'pool_name': 'str' } attribute_map = { 'file_id': 'file_id', 'file_path': 'file_path', 'range': 'range', 'import_file_id': 'import_file_id', 'import_file_path': 'import_file_path', 'tape_id': 'tape_id', 'tape_barcode': 'tape_barcode', 'pool_id': 'pool_id', 'pool_name': 'pool_name' } def __init__(self, file_id=None, file_path=None, range=None, import_file_id=None, import_file_path=None, tape_id=None, tape_barcode=None, pool_id=None, pool_name=None, local_vars_configuration=None): # noqa: E501 """TaskSourceUp - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._file_id = None self._file_path = None self._range = None self._import_file_id = None self._import_file_path = None self._tape_id = None self._tape_barcode = None self._pool_id = None self._pool_name = None self.discriminator = None if file_id is not None: self.file_id = file_id if file_path is not None: self.file_path = file_path if range is not None: self.range = range if import_file_id is not None: self.import_file_id = import_file_id if import_file_path is not None: self.import_file_path = import_file_path if tape_id is not None: self.tape_id = tape_id if tape_barcode is not None: self.tape_barcode = tape_barcode if pool_id is not None: self.pool_id = pool_id if pool_name is not None: self.pool_name = pool_name @property def file_id(self): """Gets the file_id of this TaskSourceUp. # noqa: E501 :return: The file_id of this TaskSourceUp. # noqa: E501 :rtype: int """ return self._file_id @file_id.setter def file_id(self, file_id): """Sets the file_id of this TaskSourceUp. :param file_id: The file_id of this TaskSourceUp. # noqa: E501 :type: int """ self._file_id = file_id @property def file_path(self): """Gets the file_path of this TaskSourceUp. # noqa: E501 :return: The file_path of this TaskSourceUp. # noqa: E501 :rtype: str """ return self._file_path @file_path.setter def file_path(self, file_path): """Sets the file_path of this TaskSourceUp. :param file_path: The file_path of this TaskSourceUp. # noqa: E501 :type: str """ self._file_path = file_path @property def range(self): """Gets the range of this TaskSourceUp. # noqa: E501 :return: The range of this TaskSourceUp. # noqa: E501 :rtype: list[int] """ return self._range @range.setter def range(self, range): """Sets the range of this TaskSourceUp. :param range: The range of this TaskSourceUp. # noqa: E501 :type: list[int] """ self._range = range @property def import_file_id(self): """Gets the import_file_id of this TaskSourceUp. # noqa: E501 :return: The import_file_id of this TaskSourceUp. # noqa: E501 :rtype: int """ return self._import_file_id @import_file_id.setter def import_file_id(self, import_file_id): """Sets the import_file_id of this TaskSourceUp. :param import_file_id: The import_file_id of this TaskSourceUp. # noqa: E501 :type: int """ self._import_file_id = import_file_id @property def import_file_path(self): """Gets the import_file_path of this TaskSourceUp. # noqa: E501 :return: The import_file_path of this TaskSourceUp. # noqa: E501 :rtype: str """ return self._import_file_path @import_file_path.setter def import_file_path(self, import_file_path): """Sets the import_file_path of this TaskSourceUp. :param import_file_path: The import_file_path of this TaskSourceUp. # noqa: E501 :type: str """ self._import_file_path = import_file_path @property def tape_id(self): """Gets the tape_id of this TaskSourceUp. # noqa: E501 :return: The tape_id of this TaskSourceUp. # noqa: E501 :rtype: int """ return self._tape_id @tape_id.setter def tape_id(self, tape_id): """Sets the tape_id of this TaskSourceUp. :param tape_id: The tape_id of this TaskSourceUp. # noqa: E501 :type: int """ self._tape_id = tape_id @property def tape_barcode(self): """Gets the tape_barcode of this TaskSourceUp. # noqa: E501 :return: The tape_barcode of this TaskSourceUp. # noqa: E501 :rtype: str """ return self._tape_barcode @tape_barcode.setter def tape_barcode(self, tape_barcode): """Sets the tape_barcode of this TaskSourceUp. :param tape_barcode: The tape_barcode of this TaskSourceUp. # noqa: E501 :type: str """ self._tape_barcode = tape_barcode @property def pool_id(self): """Gets the pool_id of this TaskSourceUp. # noqa: E501 :return: The pool_id of this TaskSourceUp. # noqa: E501 :rtype: int """ return self._pool_id @pool_id.setter def pool_id(self, pool_id): """Sets the pool_id of this TaskSourceUp. :param pool_id: The pool_id of this TaskSourceUp. # noqa: E501 :type: int """ self._pool_id = pool_id @property def pool_name(self): """Gets the pool_name of this TaskSourceUp. # noqa: E501 :return: The pool_name of this TaskSourceUp. # noqa: E501 :rtype: str """ return self._pool_name @pool_name.setter def pool_name(self, pool_name): """Sets the pool_name of this TaskSourceUp. :param pool_name: The pool_name of this TaskSourceUp. # noqa: E501 :type: str """ self._pool_name = pool_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TaskSourceUp): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, TaskSourceUp): return True return self.to_dict() != other.to_dict()
35.387879
2,886
0.631615
dcce2b8ecfa02b997eb3e1edc98ba6c8f90deefc
727
py
Python
MachineLearning/hw2_q2/Step 1/hw2.py
SeanSyue/SklearnReferences
a2770a7108947877e772f3525bc915c5de4114bb
[ "MIT" ]
null
null
null
MachineLearning/hw2_q2/Step 1/hw2.py
SeanSyue/SklearnReferences
a2770a7108947877e772f3525bc915c5de4114bb
[ "MIT" ]
null
null
null
MachineLearning/hw2_q2/Step 1/hw2.py
SeanSyue/SklearnReferences
a2770a7108947877e772f3525bc915c5de4114bb
[ "MIT" ]
null
null
null
import pandas as pd from sklearn.tree import DecisionTreeClassifier ##Read csv file retreived from "https://www.kaggle.com/c/spooky-author-identification" csv = pd.read_csv("C:/Users/Sean/Downloads/sample_submission/sample_submission.csv") ##Train the decision tree tree = DecisionTreeClassifier(criterion='entropy', max_depth=5) tree_result = tree.fit(csv[['MWS', 'EAP', 'HPL']], csv[['id']]) print(tree_result) ##Compare feature importances between each colomn tree.feature_importances_.tolist() df = pd.DataFrame({'items': ['MWS', 'EAP', 'HPL'], 'feature_importances_': tree.feature_importances_.tolist()}) df = df.sort_values(by=['feature_importances_'], ascending=True).reset_index(drop=True) print(df)
42.764706
112
0.748281
c3c45ccb00c5af4e0c2ad0e8ce5ea2892d21c0ab
1,960
py
Python
examples/augmentations.py
simleo/pyecvl
c044dc2ddf9bb69e93ffe06113de9365dc84e168
[ "MIT" ]
2
2020-04-29T13:17:15.000Z
2021-01-07T19:13:14.000Z
examples/augmentations.py
simleo/pyecvl
c044dc2ddf9bb69e93ffe06113de9365dc84e168
[ "MIT" ]
19
2020-01-16T11:55:07.000Z
2022-02-28T11:27:40.000Z
examples/augmentations.py
deephealthproject/pyecvl
3fb256a77ab6d7ff62219044d54b51d84471db6e
[ "MIT" ]
2
2020-01-20T13:47:05.000Z
2020-02-27T11:13:32.000Z
# Copyright (c) 2019-2021 CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """\ Reads an image, applies augmentations and writes results. """ import argparse import os import sys import pyecvl.ecvl as ecvl def main(args): if not ecvl.ECVL_EDDL: print("No EDDL support - quitting") sys.exit(0) head, ext = os.path.splitext(os.path.basename(args.in_fn)) img = ecvl.ImRead(args.in_fn) c = ecvl.SequentialAugmentationContainer([ecvl.AugFlip(0.5)]) da = ecvl.DatasetAugmentations([c, None, None]) # some output images should be flipped for i in range(10): da.Apply(ecvl.SplitType.training, img) out_fn = "%s_flip_%d%s" % (head, i, ext) print("writing", out_fn) ecvl.ImWrite(out_fn, img) if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("in_fn", metavar="INPUT_PATH") main(parser.parse_args(sys.argv[1:]))
37.692308
79
0.729592
f8050d9c4283bfdf08f0c0a367086c6b43081de1
4,392
py
Python
networking_bgpvpn/tests/unit/extensions/test_bgpvpn_vni.py
sapcc/networking-bgpvpn
902f817dc49bb19dfbda51ba85b3d0702542e859
[ "Apache-2.0" ]
null
null
null
networking_bgpvpn/tests/unit/extensions/test_bgpvpn_vni.py
sapcc/networking-bgpvpn
902f817dc49bb19dfbda51ba85b3d0702542e859
[ "Apache-2.0" ]
null
null
null
networking_bgpvpn/tests/unit/extensions/test_bgpvpn_vni.py
sapcc/networking-bgpvpn
902f817dc49bb19dfbda51ba85b3d0702542e859
[ "Apache-2.0" ]
null
null
null
# # Copyright 2017 Ericsson India Global Services Pvt Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import copy import mock from oslo_utils import uuidutils from neutron.tests.unit.api.v2 import test_base from neutron.tests.unit.extensions import base as test_extensions_base from neutron_lib.api.definitions import bgpvpn as bgpvpn_def from neutron_lib.api.definitions import bgpvpn_vni as bgpvpn_vni_def from webob import exc from networking_bgpvpn.neutron.extensions import bgpvpn _uuid = uuidutils.generate_uuid _get_path = test_base._get_path BGPVPN_PREFIX = 'bgpvpn' BGPVPN_URI = BGPVPN_PREFIX + '/' + 'bgpvpns' BGPVPN_PLUGIN_BASE_NAME = ( bgpvpn.BGPVPNPluginBase.__module__ + '.' + bgpvpn.BGPVPNPluginBase.__name__) class BgpvpnVniTestExtensionManager(object): def get_resources(self): bgpvpn_def.RESOURCE_ATTRIBUTE_MAP[bgpvpn_def.COLLECTION_NAME].update( bgpvpn_vni_def.RESOURCE_ATTRIBUTE_MAP[bgpvpn_def.COLLECTION_NAME]) return bgpvpn.Bgpvpn.get_resources() def get_actions(self): return [] def get_request_extensions(self): return [] class BgpvpnVniExtensionTestCase(test_extensions_base.ExtensionTestCase): fmt = 'json' def setUp(self): super(BgpvpnVniExtensionTestCase, self).setUp() plural_mappings = {'bgpvpn': 'bgpvpns'} self.setup_extension( BGPVPN_PLUGIN_BASE_NAME, bgpvpn_def.ALIAS, BgpvpnVniTestExtensionManager(), BGPVPN_PREFIX, plural_mappings=plural_mappings, translate_resource_name=True) self.instance = self.plugin.return_value def test_bgpvpn_create(self): bgpvpn_id = _uuid() data = { 'bgpvpn': {'name': 'bgpvpn1', 'type': 'l3', 'route_targets': ['1234:56'], 'vni': 1000, 'tenant_id': _uuid()} } expected_ret_val = copy.copy(data['bgpvpn']) expected_ret_val['import_targets'] = [] expected_ret_val['export_targets'] = [] expected_ret_val['route_distinguishers'] = [] expected_ret_val['vni'] = 1000 expected_call_args = copy.copy(expected_ret_val) expected_ret_val.update({'id': bgpvpn_id}) self.instance.create_bgpvpn.return_value = expected_ret_val res = self.api.post(_get_path(BGPVPN_URI, fmt=self.fmt), self.serialize(data), content_type='application/%s' % self.fmt) self.assertTrue(self.instance.create_bgpvpn.called) self.assertDictSupersetOf( expected_call_args, self.instance.create_bgpvpn.call_args[1]['bgpvpn']['bgpvpn']) self.assertEqual(res.status_int, exc.HTTPCreated.code) res = self.deserialize(res) self.assertIn('bgpvpn', res) self.assertDictSupersetOf(expected_ret_val, res['bgpvpn']) def test_bgpvpn_get(self): bgpvpn_id = _uuid() return_value = {'name': 'bgpvpn1', 'type': 'l3', 'route_targets': ['1234:56'], 'tenant_id': _uuid(), 'vni': 1000, 'id': bgpvpn_id} self.instance.get_bgpvpn.return_value = return_value res = self.api.get(_get_path(BGPVPN_URI, id=bgpvpn_id, fmt=self.fmt)) self.instance.get_bgpvpn.assert_called_with( mock.ANY, bgpvpn_id, fields=mock.ANY ) self.assertEqual(res.status_int, exc.HTTPOk.code) res = self.deserialize(res) self.assertIn('bgpvpn', res) self.assertEqual(res['bgpvpn'], return_value) def test_bgpvpn_delete(self): self._test_entity_delete('bgpvpn')
35.707317
78
0.643215
b7754813fb4035c4bfd1d0f6e35d307f87785f66
20,563
py
Python
app.py
Architkapoor13/EZY-BUY-SELL-E-Commerce
835defcc668a397a8c384ddf05f04856137bb78b
[ "MIT" ]
3
2021-04-25T00:11:16.000Z
2022-03-07T16:05:32.000Z
app.py
Architkapoor13/EZY-BUY-SELL-E-Commerce
835defcc668a397a8c384ddf05f04856137bb78b
[ "MIT" ]
null
null
null
app.py
Architkapoor13/EZY-BUY-SELL-E-Commerce
835defcc668a397a8c384ddf05f04856137bb78b
[ "MIT" ]
null
null
null
import os from cs50 import SQL from flask import Flask, flash, jsonify, redirect, render_template, request, session, url_for from flask_session import Session from tempfile import mkdtemp from werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError from werkzeug.security import check_password_hash, generate_password_hash from werkzeug.utils import secure_filename from helpers import apology, login_required, lookup, usd from itsdangerous import URLSafeTimedSerializer, SignatureExpired from flask_mail import Mail, Message # Configure application app = Flask(__name__) app.config.update( DEBUG=True, #EMAIL SETTINGS MAIL_SERVER='smtp.gmail.com', MAIL_PORT=465, MAIL_USE_SSL=True, MAIL_USERNAME = 'anything@gmail.com', MAIL_PASSWORD = 'anything' ) mail = Mail(app) # mail.init_app(app) # Ensure templates are auto-reloaded app.config["TEMPLATES_AUTO_RELOAD"] = True # Ensure responses aren't cached @app.after_request def after_request(response): response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response # Custom filter # app.jinja_env.filters["usd"] = usd # Configure session to use filesystem (instead of signed cookies) app.config["SESSION_FILE_DIR"] = mkdtemp() app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) # Configure CS50 Library to use SQLite database db = SQL("sqlite:///buy&sell.db") # Make sure API key is set # if not os.environ.get("API_KEY"): # raise RuntimeError("API_KEY not set") @app.route("/") @login_required def index(): """Show Different Items on Sale""" user_id = session["user_id"] propic = db.execute("SELECT profilepicpath FROM profilepicture WHERE id=:id", id=user_id) username = db.execute("SELECT username FROM users WHERE id=:id", id=user_id) return render_template("index.html", propic=propic[0]["profilepicpath"], username=username[0]["username"]) @app.route("/buy", methods=["GET", "POST"]) @login_required def buy(): """buy items""" user_id = session["user_id"] if request.method == "GET": propic = db.execute("SELECT profilepicpath FROM profilepicture WHERE id=:id", id=user_id) username= db.execute("SELECT username FROM users WHERE id=:id", id=user_id) # saleitems = db.execute("SELECT imagename, name, discription, price FROM buydisplayimage JOIN sdetails ON buydisplayimage.code = sdetails.code") saleitems = db.execute( "SELECT buydisplayimage.bimagename, sdetails.name, sdetails.discription, sdetails.price, sdetails.code, udetails.fullname, udetails.mobilenumber, udetails.email FROM sdetails " "JOIN buydisplayimage ON sdetails.code=buydisplayimage.code " "JOIN users ON sdetails.id=users.id " "JOIN udetails ON users.username = udetails.username " # "JOIN images ON sdetails.code=images.code" ) images = db.execute("SELECT * FROM images") return render_template("buy.html", saleitems=saleitems, propic=propic[0]["profilepicpath"], username=username[0]["username"], images=images) else: itemtype = request.form.get("itemtype") itemname = request.form.get("itemname") propic = db.execute("SELECT profilepicpath FROM profilepicture WHERE id=:id", id=user_id) username = db.execute("SELECT username FROM users WHERE id=:id", id=user_id) saleitems = db.execute( "SELECT buydisplayimage.bimagename, sdetails.name, sdetails.discription, sdetails.price, sdetails.code, udetails.fullname, udetails.mobilenumber, udetails.email FROM sdetails " "JOIN buydisplayimage ON sdetails.code=buydisplayimage.code " "JOIN users ON sdetails.id=users.id " "JOIN udetails ON users.username = udetails.username " # "JOIN images ON sdetails.code=images.code " "WHERE sdetails.itemname=:itemname", itemname=itemname) images = db.execute("SELECT * FROM images") # images = db.execute("SELECT ") # saleitems = db.execute("SELECT buydisplayimage.imagename, sdetails.name, sdetails.discription, sdetails.price FROM buydisplayimage JOIN sdetails ON buydisplayimage.code = sdetails.code WHERE sdetails.itemname=:itemname", itemname=itemname) # saleitems = db.execute("SELECT * FROM sdetails WHERE itemname=:itemname AND type=:itemtype", itemname=itemname, # itemtype=itemtype) return render_template("buy.html", saleitems=saleitems, propic=propic[0]["profilepicpath"], images=images, username=username[0]["username"]) # return apology("TODO") @app.route("/sellingorders") @login_required def history(): """Show history of transactions""" if request.method == "GET": user_id = session["user_id"] details = db.execute("SELECT buydisplayimage.bimagename, sdetails.name, sdetails.itemname, sdetails.price, sdetails.code FROM sdetails " "JOIN buydisplayimage ON sdetails.code=buydisplayimage.code WHERE id = :user_id", user_id=user_id) return render_template("orders.html", details=details) @app.route("/login", methods=["GET", "POST"]) def login(): """Log user in""" # Forget any user_id session.clear() # User reached route via POST (as by submitting a form via POST) if request.method == "POST": # Ensure username was submitted if not request.form.get("username"): flash("must provide username") return render_template("login.html") # return apology("must provide username", 403) # Ensure password was submitted elif not request.form.get("password"): flash("Password not provided!") return render_template("login.html") username = request.form.get("username") # Query database for username rows = db.execute("SELECT * FROM users WHERE username = :username", username=request.form.get("username")) # Ensure username exists and password is correct if len(rows) != 1 or not check_password_hash(rows[0]["hash"], request.form.get("password")): flash("invalid username and/or password") return render_template("login.html") # return apology("invalid username and/or password", 403) username_c = db.execute("SELECT confirmed FROM udetails WHERE username=:username", username=username) if username_c[0]["confirmed"] == 1: # Remember which user has logged in session["user_id"] = rows[0]["id"] username = request.form.get("username") username_c = db.execute("SELECT confirmed FROM udetails WHERE username=:username", username=username) # Redirect user to home page flash("login Successfull") return render_template("index.html") if username_c[0]["confirmed"] == 0: flash("Your email has not yet verified, please verify your email to continue") return render_template("login.html") # User reached route via GET (as by clicking a link or via redirect) else: return render_template("login.html") @app.route("/logout") def logout(): """Log user out""" # Forget any user_id session.clear() # Redirect user to login form return redirect("/") @app.route("/quote", methods=["GET", "POST"]) @login_required def quote(): """Get stock quote.""" return apology("TODO") s = URLSafeTimedSerializer("thisisasecret") @app.route("/register", methods=["GET", "POST"]) def register(): if request.method == "GET": return render_template("register.html") else: fullname = request.form.get("fullname") if not fullname: flash("Please fill all the fields") return redirect("/register") phonenumber = request.form.get("phonenumber") email = request.form.get("mail") address = request.form.get("address") username = request.form.get("username") if not username: flash("Please fill all the fields") return redirect("/register") # return apology("please provide username") password = request.form.get("password") if not password: flash("Please fill all the fields") return redirect("/register") # return apology("Please provide a password") confirm = request.form.get("confirmation") if not confirm or not password == confirm: flash("Passwords do not match!") return redirect("/register") # return apology("Passwords do not match!") if len(password) < 8: flash("Password must be 8 chracters long!") return redirect("/register") rows = db.execute("SELECT * FROM users WHERE username = :username", username=username) coloumns = db.execute("SELECT * FROM udetails WHERE email = :email", email=email) if len(rows) != 1 and len(coloumns) != 1: hash_p = generate_password_hash(password) db.execute("INSERT INTO users (username, hash) VALUES (:username, :hash_p)", username=username, hash_p=hash_p) db.execute("INSERT INTO udetails (fullname, mobilenumber,email, address, username, password) VALUES (:fullname, :phonenumber, :email, :address, :username, :hash_p)", fullname=fullname, phonenumber=phonenumber , email=email, address=address, username=username, hash_p=hash_p) id = db.execute("SELECT id FROM users WHERE username=:username", username=username) db.execute("INSERT INTO profilepicture (id) VALUES (:id)", id=id[0]["id"]) token = s.dumps(email, salt="email-confirm") db.execute("UPDATE udetails SET token=:token WHERE username=:username", token=token, username=username) msg = Message("Account-Activation", sender="ezybuysell.noreply@gmail.com", recipients=[email]) link = url_for("confirm_email", token=token, _external=True) # msg.body = f"your link is {link}" msg.body = f"Welcome to EZY-BUY-SELL, we are delightful to have you on our website! \r\n\n To Activate your account click on the link below: \r\n\n {link}" mail.send(msg) print("mail sent!") flash("An email regarding the activation of your account has been sent on your registered email, activate your account to login your account. ") return render_template("login.html") else: flash("Username/email already exists") return render_template("register.html") # return apology("Username already exists") @app.route("/confirm/<token>") def confirm_email(token): if request.method == "GET": try: email = s.loads(token, salt="email-confirm", max_age=3600) except SignatureExpired: return "token expired!" db.execute("UPDATE udetails SET confirmed=1 WHERE token=:token", token=token) new_token="0" db.execute("UPDATE udetails SET token=:new_token WHERE token=:token", new_token=new_token, token=token) return redirect("/login") app.config["IMAGE_UPLOADS"] = "C:/Users/ARCHIT/Desktop/cs50final/static" app.config["ALLOWED_IMAGE_EXTENSIONS"] = ["PNG", "JPG", "JPEG", "GIF"] def allowed_ext(filename): if not "." in filename: return False ext = filename.rsplit(".", 1)[1] if ext.upper() in app.config["ALLOWED_IMAGE_EXTENSIONS"]: return True else: return False @app.route("/sell", methods=["GET", "POST"]) @login_required def sell(): """Sell an Item""" user_id = session["user_id"] if request.method == "GET": propic = db.execute("SELECT profilepicpath FROM profilepicture WHERE id=:id", id=user_id) username = db.execute("SELECT username FROM users WHERE id=:id", id=user_id) return render_template("sell.html", propic=propic[0]["profilepicpath"], username=username[0]["username"]) else: propic = db.execute("SELECT profilepicpath FROM profilepicture WHERE id=:id", id=user_id) iname = request.form.get("status") type = request.form.get("source") price = request.form.get("price") discription = request.form.get("discription") name = request.form.get("name") if not iname or not type or not price or not discription or not name: flash("Please fill all the fields!") return render_template("sell.html", propic=propic[0]["profilepicpath"]) # return apology("Please fill all the fields!") if 'files[]' not in request.files: flash("no files selected") return render_template("sell.html") # return apology("no files selected") db.execute("INSERT INTO sdetails (id, name, itemname, type, price, discription) VALUES (:user_id, :name, :itemname, :type, :price, :discription)", user_id=user_id, name=name, itemname=iname, type=type, price=price, discription=discription) files = request.files.getlist("files[]") code = db.execute("SELECT code FROM sdetails WHERE id=:id AND name=:name AND itemname=:itemname AND type=:type AND price=:price AND discription=:discription", id=user_id, name=name, itemname=iname, type=type, price=price, discription=discription) number = 1 for file in files: filename = secure_filename(file.filename) if filename == "": flash("No image selected") return render_template("sell.html", propic=propic[0]["profilepicpath"]) if number == 1: file.save(os.path.join(app.config['IMAGE_UPLOADS'], filename)) path = "../static/" + filename db.execute("INSERT INTO buydisplayimage VALUES (:code, :imagename)", code=code[0]["code"], imagename=path) db.execute("INSERT INTO images VALUES (:code, :imagename)", code=code[0]["code"], imagename=path) print("images uploaded successfully") number = number + 1 else: file.save(os.path.join(app.config['IMAGE_UPLOADS'], filename)) path= "../static/" + filename db.execute("INSERT INTO images VALUES (:code, :imagename)", code=code[0]["code"], imagename=path) print("images uploaded successfully") flash("Selling order placed!") return render_template("index.html") @app.route("/account", methods=["GET", "POST"]) def account(): user_id = session["user_id"] if request.method == "GET": details = db.execute("SELECT fullname, mobilenumber, email, address, username FROM udetails WHERE username = (SELECT username FROM users WHERE id = :user_id)", user_id= user_id) name = details[0]["fullname"] email = details[0]["email"] address = details[0]["address"] username = details[0]["username"] phonenumber = details[0]["mobilenumber"] propic = db.execute("SELECT profilepicpath FROM profilepicture WHERE id=:id", id=user_id) # filename = "noimage.png" return render_template("account.html", propic=propic[0]["profilepicpath"], name=name, email=email, username=username, address=address, phonenumber=phonenumber) if 'dp' not in request.files: flash("No image selected") return redirect("/account") # return apology("no image Selected") propic = request.files["dp"] if not propic: flash("No image selected") return redirect("/account") # return apology("No file selected") # flash("No file selected!") # return redirect('/account') filename = secure_filename(propic.filename) if filename == "": flash("No image selected") return render_template("/account") path = "../static/" + filename propic.save(os.path.join(app.config['IMAGE_UPLOADS'], filename)) db.execute("UPDATE profilepicture SET profilepicpath=:filename WHERE id=:user_id", filename=path, user_id=user_id) print("image uploaded") return redirect("/account") @app.route("/edit", methods=["GET", "POST"]) def edit(): if request.method == "POST": code = request.form.get("code") saleitems = db.execute( "SELECT buydisplayimage.bimagename, sdetails.name, sdetails.discription, sdetails.price, sdetails.code, udetails.username, udetails.mobilenumber, udetails.email FROM sdetails " "JOIN buydisplayimage ON sdetails.code=buydisplayimage.code " "JOIN users ON sdetails.id=users.id " "JOIN udetails ON users.username = udetails.username " # "JOIN images ON sdetails.code=images.code " "WHERE sdetails.code=:code", code=code) images = db.execute("SELECT imagename FROM images WHERE code=:code", code=code) return render_template("edit.html", saleitems=saleitems,code=code, images=images) @app.route("/editorders", methods=["GET", "POST"]) def editorders(): if request.method == "POST": name = request.form.get("name") discription = request.form.get("discription") price = request.form.get("price") code = request.form.get("code") if name: db.execute("UPDATE sdetails SET name=:name WHERE code=:code", name=name, code=code) if discription: db.execute("UPDATE sdetails SET discription=:discription WHERE code=:code", discription=discription, code=code) if price: db.execute("UPDATE sdetails SET price=:price WHERE code=:code", price=price, code=code) flash("Order updated!") return render_template("index.html") @app.route("/delete", methods=["GET", "POST"]) def delete(): if request.method == "POST": code = request.form.get("code") db.execute("DELETE FROM sdetails WHERE code=:code", code=code) db.execute("DELETE FROM images WHERE code=:code", code=code) db.execute("DELETE FROM buydisplayimage WHERE code=:code", code=code) flash("Deleted successfully!") return render_template("index.html") @app.route("/forgetp", methods=["GET", "POST"]) def forgetp(): if request.method == "GET": return render_template("forgetp.html") else: email = request.form.get("email") # token = s.dumps(email, salt="password-forget") msg = Message("Reset-Password", sender="ezybuysell.noreply@gmail.com", recipients=[email]) link = url_for("forget_password", email=email, _external=True) # msg.body = f"your link is {link}" msg.body = f"Welcome to EZY-BUY-SELL, Forgotten password? \r\n\n No worries! Click on the link below to reset your password: \r\n\n {link}" mail.send(msg) print("mail sent!") flash( "An email regarding the resetting your password has been sent on your registered email, you can change your password through that mail ") return render_template("login.html") # else: # flash("Username already exists") # return render_template("register.html") # # return apology("Username already exists") @app.route("/forgetp/<email>", methods=["GET", "POST"]) def forget_password(email): if request.method == "GET": return render_template("newpassword.html", email=email) else: new_password = request.form.get("newpassword") cnew_password = request.form.get("cnewpassword") hash_p = generate_password_hash(new_password) db.execute("UPDATE udetails SET password=:password WHERE email=:email", password=hash_p, email=email) db.execute("UPDATE users SET hash=:password WHERE username=(SELECT username FROM udetails WHERE email=:email)", password=hash_p, email=email) # db.execute("UPDATE udetails SET token=:new_token WHERE token=:token", new_token=new_token, token=token) flash("New password registered Successfully!") return redirect("/login") def errorhandler(e): """Handle error""" if not isinstance(e, HTTPException): e = InternalServerError() return apology(e.name, e.code) # Listen for errors for code in default_exceptions: app.errorhandler(code)(errorhandler)
43.938034
249
0.649808
e7bcf39a37a94fbcc1f06f478b46b28c60ba0c4b
2,363
py
Python
ptpython/entry_points/run_ptipython.py
vxgmichel/ptpython
89017ba158ed1d95319233fa5aedf3931c3b8b77
[ "BSD-3-Clause" ]
1
2020-03-12T06:46:32.000Z
2020-03-12T06:46:32.000Z
ptpython/entry_points/run_ptipython.py
vxgmichel/ptpython
89017ba158ed1d95319233fa5aedf3931c3b8b77
[ "BSD-3-Clause" ]
null
null
null
ptpython/entry_points/run_ptipython.py
vxgmichel/ptpython
89017ba158ed1d95319233fa5aedf3931c3b8b77
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os import sys from .run_ptpython import create_parser, get_config_and_history_file def run(user_ns=None): a = create_parser().parse_args() config_file, history_file = get_config_and_history_file(a) # If IPython is not available, show message and exit here with error status # code. try: import IPython except ImportError: print("IPython not found. Please install IPython (pip install ipython).") sys.exit(1) else: from ptpython.ipython import embed from ptpython.repl import run_config, enable_deprecation_warnings # Add the current directory to `sys.path`. if sys.path[0] != "": sys.path.insert(0, "") # When a file has been given, run that, otherwise start the shell. if a.args and not a.interactive: sys.argv = a.args path = a.args[0] with open(path, "rb") as f: code = compile(f.read(), path, "exec") exec(code, {}) else: enable_deprecation_warnings() # Create an empty namespace for this interactive shell. (If we don't do # that, all the variables from this function will become available in # the IPython shell.) if user_ns is None: user_ns = {} # Startup path startup_paths = [] if "PYTHONSTARTUP" in os.environ: startup_paths.append(os.environ["PYTHONSTARTUP"]) # --interactive if a.interactive: startup_paths.append(a.args[0]) sys.argv = a.args # exec scripts from startup paths for path in startup_paths: if os.path.exists(path): with open(path, "rb") as f: code = compile(f.read(), path, "exec") exec(code, user_ns, user_ns) else: print("File not found: {}\n\n".format(path)) sys.exit(1) # Apply config file def configure(repl): if os.path.exists(config_file): run_config(repl, config_file) # Run interactive shell. embed( vi_mode=a.vi, history_filename=history_file, configure=configure, user_ns=user_ns, title="IPython REPL (ptipython)", ) if __name__ == "__main__": run()
29.17284
81
0.578079
80ed5ee378535cc4ee77be814e666111fab97c25
444
py
Python
ecommerce/exceptions.py
mitodl/mit-xpro
981d6c87d963837f0b9ccdd996067fe81394dba4
[ "BSD-3-Clause" ]
32
2016-03-25T01:03:13.000Z
2022-01-15T19:35:42.000Z
ecommerce/exceptions.py
mitodl/mit-xpro
981d6c87d963837f0b9ccdd996067fe81394dba4
[ "BSD-3-Clause" ]
4,858
2016-03-03T13:48:30.000Z
2022-03-29T22:09:51.000Z
ecommerce/exceptions.py
umarmughal824/micromasters
ea92d3bcea9be4601150fc497302ddacc1161622
[ "BSD-3-Clause" ]
20
2016-08-18T22:07:44.000Z
2021-11-15T13:35:35.000Z
""" Exceptions for ecommerce """ class EcommerceException(Exception): """ General exception regarding ecommerce """ class EcommerceEdxApiException(Exception): """ Exception regarding edx_api_client """ class EcommerceModelException(Exception): """ Exception regarding ecommerce models """ class ParseException(Exception): """ Exception regarding parsing CyberSource reference numbers """
15.857143
61
0.693694
11d01787ef9b8d38605583892d2e3f3484a769c8
14,054
py
Python
python/pytagcloudLocal/__init__.py
jstraub/dpMM
538c432d5f98c040d5c1adb072e545e38f97fc69
[ "MIT-feh" ]
11
2015-04-27T15:14:01.000Z
2021-11-18T00:19:18.000Z
python/pytagcloudLocal/__init__.py
jstraub/dpMM
538c432d5f98c040d5c1adb072e545e38f97fc69
[ "MIT-feh" ]
null
null
null
python/pytagcloudLocal/__init__.py
jstraub/dpMM
538c432d5f98c040d5c1adb072e545e38f97fc69
[ "MIT-feh" ]
6
2015-07-02T12:46:20.000Z
2022-03-30T04:39:30.000Z
# -*- coding: utf-8 -*- from copy import copy from math import sin, cos, ceil from pygame import transform, font, mask, Surface, Rect, SRCALPHA, draw from pygame.sprite import Group, Sprite, collide_mask from random import randint, choice import colorsys import math import os import pygame import simplejson TAG_PADDING = 5 STEP_SIZE = 2 # relative to base step size of each spiral function RADIUS = 1 ECCENTRICITY = 1.5 LOWER_START = 0.45 UPPER_START = 0.55 FONT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'fonts') DEFAULT_FONT = 'Droid Sans' DEFAULT_PALETTE = 'default' FONT_CACHE = simplejson.load(open(os.path.join(FONT_DIR, 'fonts.json'), 'r')) pygame.init() convsurf = Surface((2 * TAG_PADDING, 2 * TAG_PADDING)) convsurf.fill((255, 0, 255)) convsurf.set_colorkey((255, 0, 255)) draw.circle(convsurf, (0, 0, 0), (TAG_PADDING, TAG_PADDING), TAG_PADDING) CONVMASK = mask.from_surface(convsurf) LAYOUT_HORIZONTAL = 0 LAYOUT_VERTICAL = 1 LAYOUT_MOST_HORIZONTAL = 2 LAYOUT_MOST_VERTICAL = 3 LAYOUT_MIX = 4 LAYOUTS = ( LAYOUT_HORIZONTAL, LAYOUT_VERTICAL, LAYOUT_MOST_HORIZONTAL, LAYOUT_MOST_VERTICAL, LAYOUT_MIX ) LAST_COLLISON_HIT = None class Tag(Sprite): """ Font tag sprite. Blit the font to a surface to correct the font padding """ def __init__(self, tag, initial_position, fontname=DEFAULT_FONT): Sprite.__init__(self) self.tag = copy(tag) self.rotation = 0 # print FONT_DIR,fontname self.font_spec = load_font(fontname) self.font = font.Font(os.path.join(FONT_DIR, self.font_spec['ttf']), self.tag['size']) fonter = self.font.render(tag['tag'], True, tag['color']) frect = fonter.get_bounding_rect() frect.x = -frect.x frect.y = -frect.y self.fontoffset = (-frect.x, -frect.y) font_sf = Surface((frect.width, frect.height), pygame.SRCALPHA, 32) font_sf.blit(fonter, frect) self.image = font_sf self.rect = font_sf.get_rect() self.rect.width += TAG_PADDING self.rect.height += TAG_PADDING self.rect.x = initial_position[0] self.rect.y = initial_position[1] self._update_mask() def _update_mask(self): self.mask = mask.from_surface(self.image) self.mask = self.mask.convolve(CONVMASK, None, (TAG_PADDING, TAG_PADDING)) def flip(self): angle = 90 if self.rotation == 0 else - 90 self.rotate(angle) def rotate(self, angle): pos = (self.rect.x, self.rect.y) self.image = transform.rotate(self.image, angle) self.rect = self.image.get_rect() self.rect.x, self.rect.y = pos self._update_mask() def update_fontsize(self): self.font = font.Font(os.path.join(FONT_DIR, self.font_spec['ttf']), self.tag['size']) def load_font(name): for font in FONT_CACHE: if font['name'] == name: return font raise AttributeError('Invalid font name. Should be one of %s' % ", ".join([f['name'] for f in FONT_CACHE])) def defscale(count, mincount, maxcount, minsize, maxsize): if maxcount == mincount: return int((maxsize - minsize) / 2.0 + minsize) return int(minsize + (maxsize - minsize) * (count * 1.0 / (maxcount - mincount)) ** 0.8) def make_tags(wordcounts, minsize=3, maxsize=36, colors=None, scalef=defscale): """ sizes and colors tags wordcounts is a list of tuples(tags, count). (e.g. how often the word appears in a text) the tags are assigned sizes between minsize and maxsize, the function used is determined by scalef (default: square root) color is either chosen from colors (list of rgb tuples) if provided or random """ counts = [tag[1] for tag in wordcounts] if not len(counts): return [] maxcount = max(counts) mincount = min(counts) tags = [] for word_count in wordcounts: color = choice(colors) if colors else (randint(10, 220), randint(10, 220), randint(10, 220)) tags.append({'color': color, 'size': scalef(word_count[1], mincount, maxcount, minsize, maxsize), 'tag': word_count[0]}) return tags def _do_collide(sprite, group): """ Use mask based collision detection """ global LAST_COLLISON_HIT # Test if we still collide with the last hit if LAST_COLLISON_HIT and collide_mask(sprite, LAST_COLLISON_HIT): return True for sp in group: if collide_mask(sprite, sp): LAST_COLLISON_HIT = sp return True return False def _get_tags_bounding(tag_store): if not len(tag_store): return Rect(0,0,0,0) rects = [tag.rect for tag in tag_store] return rects[0].unionall(rects[1:]) def _get_group_bounding(tag_store, sizeRect): if not isinstance(sizeRect, pygame.Rect): sizeRect = Rect(0, 0, sizeRect[0], sizeRect[1]) if tag_store: rects = [tag.rect for tag in tag_store] union = rects[0].unionall(rects[1:]) if sizeRect.contains(union): return union return sizeRect def _archimedean_spiral(reverse): DEFAULT_STEP = 0.05 # radians t = 0 r = 1 if reverse: r = -1 while True: t += DEFAULT_STEP * STEP_SIZE * r yield (ECCENTRICITY * RADIUS * t * cos(t), RADIUS * t * sin(t)) def _rectangular_spiral(reverse): DEFAULT_STEP = 3 # px directions = [(1, 0), (0, 1), (-1, 0), (0, -1)] if reverse: directions.reverse() direction = directions[0] spl = 1 dx = dy = 0 while True: for step in range(spl * 2): if step == spl: direction = directions[(spl - 1) % 4] dx += direction[0] * STEP_SIZE * DEFAULT_STEP dy += direction[1] * STEP_SIZE * DEFAULT_STEP yield dx, dy spl += 1 def _search_place(current_tag, tag_store, canvas, spiral, ratio): """ Start a spiral search with random direction. Resize the canvas if the spiral exceeds the bounding rectangle """ reverse = choice((0, 1)) start_x = current_tag.rect.x start_y = current_tag.rect.y min_dist = None opt_x = opt_y = 0 current_bounding = _get_tags_bounding(tag_store) cx = current_bounding.w / 2.0 cy = current_bounding.h / 2.0 for dx, dy in spiral(reverse): current_tag.rect.x = start_x + dx current_tag.rect.y = start_y + dy if not _do_collide(current_tag, tag_store): if canvas.contains(current_tag.rect): tag_store.add(current_tag) return else: # get the distance from center current_dist = (abs(cx - current_tag.rect.x) ** 2 + abs(cy - current_tag.rect.y) ** 2) ** 0.5 if not min_dist or current_dist < min_dist: opt_x = current_tag.rect.x opt_y = current_tag.rect.y min_dist = current_dist # only add tag if the spiral covered the canvas boundaries if abs(dx) > canvas.width / 2.0 and abs(dy) > canvas.height / 2.0: current_tag.rect.x = opt_x current_tag.rect.y = opt_y tag_store.add(current_tag) new_bounding = current_bounding.union(current_tag.rect) delta_x = delta_y = 0.0 if new_bounding.w > canvas.width: delta_x = new_bounding.w - canvas.width canvas.width = new_bounding.w delta_y = ratio * new_bounding.w - canvas.height canvas.height = ratio * new_bounding.w if new_bounding.h > canvas.height: delta_y = new_bounding.h - canvas.height canvas.height = new_bounding.h canvas.width = new_bounding.h / ratio delta_x = canvas.width - canvas.width # realign for tag in tag_store: tag.rect.x += delta_x / 2.0 tag.rect.y += delta_y / 2.0 canvas = _get_tags_bounding(tag_store) return def _draw_cloud( tag_list, layout=LAYOUT_MIX, size=(500,500), fontname=DEFAULT_FONT, rectangular=False): # sort the tags by size and word length tag_list.sort(key=lambda tag: len(tag['tag'])) tag_list.sort(key=lambda tag: tag['size']) tag_list.reverse() # create the tag space tag_sprites = [] area = 0 for tag in tag_list: # print tag, fontname tag_sprite = Tag(tag, (0, 0), fontname=fontname) area += tag_sprite.mask.count() tag_sprites.append(tag_sprite) canvas = Rect(0, 0, 0, 0) ratio = float(size[1]) / size[0] if rectangular: spiral = _rectangular_spiral else: spiral = _archimedean_spiral aligned_tags = Group() for tag_sprite in tag_sprites: angle = 0 if layout == LAYOUT_MIX and randint(0, 2) == 0: angle = 90 elif layout == LAYOUT_VERTICAL: angle = 90 tag_sprite.rotate(angle) xpos = canvas.width - tag_sprite.rect.width if xpos < 0: xpos = 0 xpos = randint(int(xpos * LOWER_START) , int(xpos * UPPER_START)) tag_sprite.rect.x = xpos ypos = canvas.height - tag_sprite.rect.height if ypos < 0: ypos = 0 ypos = randint(int(ypos * LOWER_START), int(ypos * UPPER_START)) tag_sprite.rect.y = ypos _search_place(tag_sprite, aligned_tags, canvas, spiral, ratio) canvas = _get_tags_bounding(aligned_tags) # resize cloud zoom = min(float(size[0]) / canvas.w, float(size[1]) / canvas.h) for tag in aligned_tags: tag.rect.x *= zoom tag.rect.y *= zoom tag.rect.width *= zoom tag.rect.height *= zoom tag.tag['size'] = int(tag.tag['size'] * zoom) tag.update_fontsize() canvas = _get_tags_bounding(aligned_tags) return canvas, aligned_tags def create_tag_image( tags, output, size=(500,500), background=(255, 255, 255), layout=LAYOUT_MIX, fontname=DEFAULT_FONT, rectangular=False): """ Create a png tag cloud image """ if not len(tags): return sizeRect, tag_store = _draw_cloud(tags, layout, size=size, fontname=fontname, rectangular=rectangular) image_surface = Surface((sizeRect.w, sizeRect.h), SRCALPHA, 32) image_surface.fill(background) for tag in tag_store: image_surface.blit(tag.image, tag.rect) pygame.image.save(image_surface, output) def create_html_data(tags, size=(500,500), layout=LAYOUT_MIX, fontname=DEFAULT_FONT, rectangular=False): """ Create data structures to be used for HTML tag clouds. """ if not len(tags): return sizeRect, tag_store = _draw_cloud(tags, layout, size=size, fontname=fontname, rectangular=rectangular) tag_store = sorted(tag_store, key=lambda tag: tag.tag['size']) tag_store.reverse() data = { 'css': {}, 'links': [] } color_map = {} for color_index, tag in enumerate(tags): if not color_map.has_key(tag['color']): color_name = "c%d" % color_index hslcolor = colorsys.rgb_to_hls(tag['color'][0] / 255.0, tag['color'][1] / 255.0, tag['color'][2] / 255.0) lighter = hslcolor[1] * 1.4 if lighter > 1: lighter = 1 light = colorsys.hls_to_rgb(hslcolor[0], lighter, hslcolor[2]) data['css'][color_name] = ('#%02x%02x%02x' % tag['color'], '#%02x%02x%02x' % (light[0] * 255, light[1] * 255, light[2] * 255)) color_map[tag['color']] = color_name for stag in tag_store: line_offset = 0 line_offset = stag.font.get_linesize() - (stag.font.get_ascent() + abs(stag.font.get_descent()) - stag.rect.height) - 4 tag = { 'tag': stag.tag['tag'], 'cls': color_map[stag.tag['color']], 'top': stag.rect.y - sizeRect.y, 'left': stag.rect.x - sizeRect.x, 'size': int(stag.tag['size'] * 0.85), 'height': int(stag.rect.height * 1.19) + 4, 'width': stag.rect.width, 'lh': line_offset } data['links'].append(tag) data['size'] = (sizeRect.w, sizeRect.h * 1.15) return data
33.86506
128
0.534866
bb07f9bab1819334214ddcaefcab3a4f097f81ca
199
py
Python
examples/another_sync_example.py
Bs0Dd/KunAPIPy
1e729b150ba787c84fb37b7351c2da2264977440
[ "Unlicense" ]
6
2020-04-21T11:15:52.000Z
2022-02-05T06:42:07.000Z
examples/another_sync_example.py
Bs0Dd/KunAPIPy
1e729b150ba787c84fb37b7351c2da2264977440
[ "Unlicense" ]
2
2022-02-02T16:28:27.000Z
2022-02-25T14:28:20.000Z
examples/another_sync_example.py
Bs0Dd/KunAPIPy
1e729b150ba787c84fb37b7351c2da2264977440
[ "Unlicense" ]
null
null
null
from kunapipy.kundelik import kundelik login = "login" password = "password" with kundelik.KunAPI(login=login, password=password) as dn: print(dn.get_classmates()) print(dn.get_context())
19.9
59
0.738693
dabd44e515abfdda403b5fb8cfb9c0415d08e385
32,277
py
Python
dafi/random_field/field.py
cmichelenstrofer/DAFI
926c1fc009fbb92294b9f4c565ef2fc91979a8fa
[ "Apache-2.0" ]
24
2020-03-03T14:33:09.000Z
2022-03-14T00:11:26.000Z
dafi/random_field/field.py
cmichelenstrofer/DAFI
926c1fc009fbb92294b9f4c565ef2fc91979a8fa
[ "Apache-2.0" ]
null
null
null
dafi/random_field/field.py
cmichelenstrofer/DAFI
926c1fc009fbb92294b9f4c565ef2fc91979a8fa
[ "Apache-2.0" ]
19
2020-03-03T14:33:42.000Z
2022-03-28T11:42:34.000Z
""" Random fields representation and manipulation. These functions can be called directly from ``dafi.random_field``, e.g. .. code-block:: python >>> dafi.random_field.calc_kl_modes(*args) """ # standard library imports import warnings # third party imports import numpy as np from scipy import sparse as sp from scipy.sparse import linalg as splinalg from scipy import interpolate from scipy import spatial # KL decomposition def calc_kl_modes(cov, nmodes=None, weight_field=None, eps=1e-8, normalize=True): """ Calculate the first N Karhunen-Loève modes for a covariance field. Converts the covariance to a sparse matrix if it is not one yet. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* nmodes : int Number of KL modes to obtain. weight_field : ndarray Weight (e.g. cell volume) associated with each state. Default ones (1). *dtype=float*, *ndim=1*, *shape=(nstate)* eps : float Small quantity to add to the diagonal of the covariance matrix for numerical stability. normalize : bool Whether to normalize (norm = 1) the KL modes. Returns ------- eig_vals : ndarray Eigenvalue associated with each mode. *dtype=float*, *ndim=1*, *shape=(nmodes)* kl_modes : ndarray KL modes (eigenvectors). *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* """ # convert to sparse matrix cov = sp.csc_matrix(cov) # default values nstate = cov.shape[0] if nmodes is None: nmodes = nstate-1 weight_field = _preprocess_field(weight_field, nstate, 1.0) # add small value to diagonal cov = cov + sp.eye(cov.shape[0], format='csc')*eps weight_field = np.squeeze(weight_field) weight_vec = np.atleast_2d(weight_field) weight_mat = np.sqrt(np.dot(weight_vec.T, weight_vec)) cov_weighted = cov.multiply(weight_mat) # perform the eig-decomposition eig_vals, eig_vecs = sp.linalg.eigsh(cov_weighted, k=nmodes) # sort the eig-value and eig-vectors in a descending order ascending_order = eig_vals.argsort() descending_order = ascending_order[::-1] eig_vals = eig_vals[descending_order] eig_vecs = eig_vecs[:, descending_order] # normalized KL modes weight_diag = np.diag(np.sqrt(weight_field)) kl_modes = np.dot(np.linalg.inv(weight_diag), eig_vecs) # normalized # check if negative eigenvalues for imode in np.arange(nmodes): neg_eigv = False if eig_vals[imode] < 0: neg_eigv = True warn_message = f'Negative eigenvalue for mode {imode}.' warnings.warn(warn_message) kl_modes[:, imode] *= 0. if neg_eigv: warn_message = 'Some modes have negative eigenvalues. ' + \ 'The number of KL modes might be too large. ' + \ "Alternatively, use a larger value for 'eps'." # weight by appropriate variance if not normalize: kl_modes = scale_kl_modes(eig_vals, kl_modes) return eig_vals, kl_modes def calc_kl_modes_coverage(cov, coverage, weight_field=None, eps=1e-8, max_modes=None, normalize=True): """ Calculate all KL modes and return only those required to achieve a certain coverage of the variance. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* coverage : float Desired percentage coverage of the variance. Value between 0-1. weight_field : ndarray Weight (e.g. cell volume) associated with each state. Default ones (1). *dtype=float*, *ndim=1*, *shape=(nstate)* eps : float Small quantity to add to the diagonal of the covariance matrix for numerical stability. normalize : bool Whether to normalize (norm = 1) the KL modes. Returns ------- eig_vals : ndarray Eigenvalue associated with each mode. For the first N modes such that the desired coverage of the variance is achieved. *dtype=float*, *ndim=1*, *shape=(N)* kl_modes : ndarray first N KL modes (eigenvectors) such that the desired coverage of the variance is achieved. *dtype=float*, *ndim=2*, *shape=(nstate, N)* """ # convert to sparse matrix cov = sp.csc_matrix(cov) # default values nstate = cov.shape[0] weight_field = _preprocess_field(weight_field, nstate, 1.0) if max_modes is None: max_modes = nstate - 1 # get the first max_modes KL modes eig_vals, kl_modes = calc_kl_modes( cov, max_modes, weight_field, eps, normalize) # return only those KL modes required for desired coverage cummalative_variance = kl_coverage(cov, eig_vals, weight_field) coverage_index = np.argmax(cummalative_variance >= coverage) if coverage_index == 0: coverage_index = max_modes return eig_vals[:coverage_index], kl_modes[:, :coverage_index] def scale_kl_modes(eig_vals, kl_modes_norm): """ Weight the KL modes by the appropriate variance. Parameters ---------- eig_vals : ndarray Eigenvalue associated with each mode. *dtype=float*, *ndim=1*, *shape=(nmodes)* kl_modes_norm : ndarray Normalized (norm = 1) KL modes (eigenvectors). *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* Returns ------- kl_modes_weighted : ndarray KL modes with correct magnitude. *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* """ nmodes = len(eig_vals) kl_modes_weighted = kl_modes_norm.copy() for imode in np.arange(nmodes): kl_modes_weighted[:, imode] *= np.sqrt(eig_vals[imode]) return kl_modes_weighted def kl_coverage(cov, eig_vals, weight_field=None): """ Calculate the percentage of the covariance covered by the the first N KL modes for N from 1-nmodes. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* eig_vals : ndarray Eigenvalues associated with each mode. *dtype=float*, *ndim=1*, *shape=(nmodes)* weight_field : ndarray Weight (e.g. cell volume) associated with each state. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- coverage: ndarray Cumulative variance coverage of the first N modes. Each value is 0-1 and increasing. *dtype=float*, *ndim=1*, *shape=(nmodes)* """ # make sparse if its not already cov = sp.csc_matrix(cov) # default values nstate = cov.shape[0] weight_field = _preprocess_field(weight_field, nstate, 1.0) # calculate coverage weight_vec = np.atleast_2d(weight_field) weight_mat = np.sqrt(np.dot(weight_vec.T, weight_vec)) cov_weighted = cov.multiply(weight_mat) cov_trace = np.sum(cov_weighted.diagonal()) return np.cumsum(eig_vals) / cov_trace def reconstruct_kl(modes, coeffs, mean=None): """ Reconstruct a field using KL modes and given coefficients. Can create multiple fields by providing two dimensional array of coefficients. Parameters ---------- modes : ndarray KL modes. *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* coeffs : ndarray Array of coefficients. *dtype=float*, *ndim=2*, *shape=(nmodes, nsamples)* mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- fields : ndarray Reconstructed fields. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ # number of modes, samples, and states if len(coeffs.shape) == 1: coeffs = np.expand_dims(coeffs, 1) nmodes, nsamps = coeffs.shape nstate = modes.shape[0] # mean vector mean = _preprocess_field(mean, nstate, 0.0) mean = np.expand_dims(np.squeeze(mean), axis=1) # create samples fields = np.tile(mean, [nsamps]) for imode in range(nmodes): vec1 = np.atleast_2d(coeffs[imode, :]) vec2 = np.atleast_2d(modes[:, imode]) fields += np.dot(vec1.T, vec2).T return fields def project_kl(field, modes, weight_field=None, mean=None): """ Project a field onto a set of modes. Parameters ---------- field : ndarray Scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* modes : ndarray KL modes. *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* weight_field : ndarray Weight (e.g. cell volume) associated with each state. *dtype=float*, *ndim=1*, *shape=(nstate)* mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- coeffs : ndarray Projection magnitude. *dtype=float*, *ndim=1*, *shape=(nmodes)* """ nstate, nmode = modes.shape mean = _preprocess_field(mean, nstate, 0.0) coeffs = [] for imode in range(nmode): mode = modes[:, imode] coeffs.append(projection_magnitude(field-mean, mode, weight_field)) return np.array(coeffs) def _preprocess_field(field, nstate, default): """Pre-process provided weight field. """ # default value if field is None: field = np.ones(nstate)*default # constant value if len(np.atleast_1d(np.squeeze(np.array(field)))) == 1: field = np.ones(nstate)*field return field # linear algebra on scalar fields def integral(field, weight_field): """ Calculate the integral of a field. Parameters ---------- field : ndarray Scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* weight_field : ndarray Cell volumes. *dtype=float*, *ndim=1*, *shape=(ncells)* Returns ------- field_integral : float The integral of the field over the domain. """ field = np.squeeze(field) assert field.ndim == 1 nstate = len(field) weight_field = _preprocess_field(weight_field, nstate, 1.0) return np.sum(field * weight_field) def inner_product(field_1, field_2, weight_field): """ Calculate the inner product between two fields. The two fields share the same weights. Parameters ---------- field_1 : ndarray One scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* field_2 : ndarray Another scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* weight_field : ndarray Cell volumes. *dtype=float*, *ndim=1*, *shape=(ncells)* Returns ------- product : float The inner product between the two fields. """ return integral(field_1 * field_2, weight_field) def norm(field, weight_field): """ Calculate the L2-norm of a field. Parameters ---------- field : ndarray Scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* weight_field : ndarray Cell volumes. *dtype=float*, *ndim=1*, *shape=(ncells)* Returns ------- field_norm : float The norm of the field. """ return np.sqrt(inner_product(field, field, weight_field)) def unit_field(field, weight_field): """ Calculate the unit field (norm = 1) in same direction. Parameters ---------- field : ndarray Scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* weight_field : ndarray Cell volumes. *dtype=float*, *ndim=1*, *shape=(ncells)* Returns ------- field_normed : ndarray Normalized (norm = 1) scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* """ return field / norm(field, weight_field) def projection_magnitude(field_1, field_2, weight_field): """ Get magnitude of projection of field_1 onto field_2. The two fields share the same weights. Parameters ---------- field_1 : ndarray Scalar field being projected. *dtype=float*, *ndim=1*, *shape=(ncells)* field_2 : ndarray Scalar field used for projection direction. *dtype=float*, *ndim=1*, *shape=(ncells)* weight_field : ndarray Cell volumes. *dtype=float*, *ndim=1*, *shape=(ncells)* Returns ------- magnitude : float magnitude of the projected field. """ magnitude = inner_product(field_1, field_2, weight_field) / \ (norm(field_2, weight_field)**2) return magnitude def projection(field_1, field_2, weight_field): """ Project field_1 onto field_2. The two fields share the same weights. Parameters ---------- field_1 : ndarray Scalar field being projected. *dtype=float*, *ndim=1*, *shape=(ncells)* field_2 : ndarray Scalar field used for projection direction. *dtype=float*, *ndim=1*, *shape=(ncells)* weight_field : ndarray Cell volumes. *dtype=float*, *ndim=1*, *shape=(ncells)* Returns ------- projected_field : ndarray Projected field. *dtype=float*, *ndim=1*, *shape=(ncells)* """ magnitude = projection_magnitude(field_1, field_2, weight_field) direction = unit_field(field_2, weight_field) return magnitude*direction # interpolation def interpolate_field_rbf(data, coords, kernel, length_scale): """ Interpolate data using a radial basis function (RBF) to create a field from sparse specifications. This is used for instance to specify a variance field based on expert knowledge. Parameters ---------- data : ndarray Sparse data to create interpolation from. For an NxM array, the number of data points is N, the number of dimensions (coordinates) is M-1, and the Mth column is the data value. *dtype=float*, *ndim=2*, *shape=(N, M)* coords : ndarray Coordinates of the cell centers of the full discretized field. The RBF will be evaluated at these points. *dtype=float*, *ndim=2*, *shape=(ncells, M-1)* kernel : str Kernel (function) of the RBF. See *'function'* input of `scipy.interpolate.Rbf`_ for list of options. length_scale : float Length scale parameter (epsilon in `scipy.interpolate.Rbf`_) in the RBF kernel. Returns ------- field : ndarray Full field. *dtype=float*, *ndim=1*, *shape=(ncells)* """ args1 = [] args2 = [] ncoord = coords.shape[1] for icoord in range(ncoord): args1.append(data[:, icoord]) args2.append(coords[:, icoord]) interp_func = interpolate.Rbf( *args1, function=kernel, epsilon=length_scale) return interp_func(*args2) def inverse_distance_weights(coords, connectivity, points, tol=1e-6): """ Create linear interpolation matrix (observation operatror H). """ # get host cell (cell centre closest to point) tree = spatial.cKDTree(coords) distances, indexes = tree.query(list(points)) npoints = points.shape[0] ncells = coords.shape[0] # calculate weights mat = sp.lil_matrix((npoints, ncells)) for i in range(npoints): id = indexes[i] if distances[i] < tol: # if location is cell centre mat[i, id] = 1.0 else: point = np.expand_dims(np.squeeze(points[i, :]), 0) neighbours = coords[connectivity[id], :] dist = spatial.distance.cdist(point, neighbours) weight = 1 / dist wsum = np.sum(weight) + 1 / distances[i] weight /= wsum # host cell mat[i, id] = (1 / distances[i]) / wsum # neighbour cells mat[i, connectivity[id]] = weight return sp.csc_matrix(mat) # Gaussian process: generate samples def gp_samples_cholesky(cov, nsamples, mean=None, eps=1e-8): """ Generate samples of a Gaussian Process using Cholesky decomposition. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* nsamples : int Number of samples to generate. mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* eps : float Small quantity to add to the diagonal of the covariance matrix for numerical stability. Returns ------- samples : ndarray Matrix of samples. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ # make sparse if its not already cov = sp.csc_matrix(cov) nstate = cov.shape[0] # add small value to diagonal cov = cov + sp.eye(nstate, format='csc')*eps # mean vector mean = _preprocess_field(mean, nstate, 0.0) mean = np.expand_dims(np.squeeze(mean), axis=1) # Create samples using Cholesky Decomposition L = sparse_cholesky(cov) a = np.random.normal(size=(nstate, nsamples)) perturb = L.dot(a) return mean + perturb def sparse_cholesky(cov): """ Compute the Cholesky decomposition for a sparse (scipy) matrix. Adapted from `gist.github.com/omitakahiro`_. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* Returns ------- lower: scipy.sparse.csc_matrix Lower triangular Cholesky factor of the covariance matrix. """ # convert to sparse matrix cov = sp.csc_matrix(cov) # LU decomposition LU = splinalg.splu(cov, diag_pivot_thresh=0) # check the matrix is positive definite. n = cov.shape[0] posd = (LU.perm_r == np.arange(n)).all() and (LU.U.diagonal() > 0).all() if not posd: raise ValueError('The matrix is not positive definite') return LU.L.dot(sp.diags(LU.U.diagonal()**0.5)) def gp_samples_kl(cov, nsamples, weight_field, nmodes=None, mean=None, eps=1e-8): """ Generate samples of a Gaussian Process using KL decomposition. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* nsamples : int Number of samples to generate. weight_field : ndarray Weight (e.g. cell volume) associated with each state. *dtype=float*, *ndim=1*, *shape=(nstate)* nmodes : int Number of modes to use when generating samples. *'None'* to use all modes. mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* eps : float Small quantity to add to the diagonal of the covariance matrix for numerical stability. Returns ------- samples : ndarray Matrix of samples. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ # KL decomposition eigv, modes = calc_kl_modes(cov, nmodes, weight_field, eps, False) if nmodes is None: nmodes = len(eigv) # create samples coeffs = np.random.normal(0, 1, [nmodes, nsamples]) return reconstruct_kl(modes, coeffs, mean) def gp_samples_klmodes(modes, nsamples, mean=None): """ Generate samples of a Gaussian Process using the given KL modes. Parameters ---------- modes : ndarray KL modes. *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* nsamples : int Number of samples to generate. mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- samples : ndarray Matrix of samples. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ # create samples nmodes = modes.shape[1] coeffs = np.random.normal(0, 1, [nmodes, nsamples]) return reconstruct_kl(modes, coeffs, mean) def gp_samples_kl_coverage(cov, nsamples, weight_field, coverage=0.99, max_modes=None, mean=None, eps=1e-8): """ Generate samples of a Gaussian Process using KL decomposition. Only the firs N modes required to get the desired variance coverage are used. Parameters ---------- cov : ndarray Covariance matrix. Can be ndarray, matrix, or scipy sparse matrix. *dtype=float*, *ndim=2*, *shape=(nstate, nstate)* nsamples : int Number of samples to generate. weight_field : ndarray Weight (e.g. cell volume) associated with each state. *dtype=float*, *ndim=1*, *shape=(nstate)* coverage : float Desired percentage coverage of the variance. Value between 0-1. max_modes : int Maximum number of modes used. This is the number of modes that is calculated. If less are needed to achieve the desired coverage the additional ones are discarded. mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* eps : float Small quantity to add to the diagonal of the covariance matrix for numerical stability. Returns ------- samples : ndarray Matrix of samples. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* nmodes : int Number of modes used to achieve the requested coverage. """ # KL decomposition eigv, klmodes = calc_kl_modes_coverage( cov, coverage, weight_field, eps, max_modes, False) nmodes = len(eigv) # create samples coeffs = np.random.normal(0, 1, [nmodes, nsamples]) return reconstruct_kl(klmodes, coeffs, mean), nmodes def gp_sqrexp_samples(nsamples, coords, stddev, length_scales, mean=None, weight_field=None, max_modes=None): """ Generate samples from a Gaussian Process with square exponential correlation kernel. This is a convinience function for new users or simple cases. It create the covariance matrix, does the KL decomposition, keeps the required modes for 99% coverage, and create the samples. Parameters ---------- nsamples : int Number of samples to generate. coords : ndarray Array of coordinates. Each row correspond to a different point and the number of columns is the number of physical dimensions (e.g. 3 for (x,y,z)). *dtype=float*, *ndim=2*, *shape=(npoints, ndims)* stddev : ndarray Standard deviation of each state. Alternatively, provide a float for a constant standard deviation. *dtype=float*, *ndim=1*, *shape=(nstate)* length_scales : list Length scale for each physical dimensions. List length is ndims. Each entry is either a one dimensional ndarray of length nstate (length scale field) or a float (constant length scale). mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* weight_field : ndarray Weight (e.g. cell volume) associated with each state. *dtype=float*, *ndim=1*, *shape=(nstate)* max_modes : int Maximum number of modes used. This is the number of modes that is calculated. If less are needed to achieve 99% coverage the additional ones are discarded. """ from dafi.random_field.covariance import generate_cov cov = generate_cov( 'sqrexp', stddev, coords=coords, length_scales=length_scales) samples, _ = gp_samples_kl_coverage( cov, nsamples, weight_field, 0.99, max_modes, mean) return samples # Random field class class GaussianProcess(object): """ Gaussian process class. Also allows for the creation of a function of a Gaussian process. E.g. see *'Lognormal'* class. """ def __init__(self, klmodes, mean=None, weights=None, func=None, funcinv=None): """ Initialize Gaussian process class. Parameters ---------- klmodes : ndarray KL modes (eigenvectors). *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* mean : ndarray Mean vector. Default zero (0). *dtype=float*, *ndim=1*, *shape=(nstate)* weights : ndarray Weight (e.g. cell volume) associated with each state. Default ones (1). *dtype=float*, *ndim=1*, *shape=(nstate)* func: function Function to create a random process that is a function of a Gaussian process. Default is identity function (GP). funcinv: function Inverse of func. """ nstate = klmodes.shape[0] self.klmodes = klmodes self.ncell, self.nmodes = self.klmodes.shape self.mean = _preprocess_field(mean, self.ncell, 0.0) self.weights = _preprocess_field(mean, nstate, 1.0) def func_identity(x): return x if func is None: func = func_identity if funcinv is None: funcinv = func_identity self.func = func self.funcinv = funcinv def sample_coeffs(self, nsamples): """ Create Karhunen-Loève (KL) coefficents for random samples. Parameters ---------- nsamples : int Number of samples for which to generate KL coefficients. Returns ------- coeffs : ndarray Matrix of samples KL coefficients for the Gaussian process. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ return np.random.normal(0, 1, [self.nmodes, nsamples]) def sample_gp(self, nsamples, mean=None): """ Generate samples of the Gaussian process. Parameters ---------- nsamples : int Number of samples to generate. mean : ndarray Mean vector. If *None*, self.mean is used. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- samples : ndarray Sample fields from Gaussian process. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* coeffs : ndarray Matrix of samples KL coefficients for the Gaussian process. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ if mean is None: mean = self.mean coeffs = self.sample_coeffs(nsamples) return reconstruct_kl(self.klmodes, coeffs, mean), coeffs def sample_func(self, nsamples, mean=None): """ Generate samples of the function of the Gaussian process. Parameters ---------- nsamples : int Number of samples to generate. mean : ndarray Mean vector. If *None*, self.mean is used. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- samples : ndarray Sample fields from the function of the Gaussian process. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ if mean is None: mean = self.mean coeffs = self.sample_coeffs(nsamples) samps_gp = reconstruct_kl(self.klmodes, coeffs, mean) return self.func(samps_gp), coeffs def reconstruct_gp(self, coeffs, mean=None): """ Reconstruct the Gaussian process field from given KL coefficients. Parameters ---------- coeffs : ndarray Array of KL coefficients. *dtype=float*, *ndim=2*, *shape=(nmodes, nsamples)* mean : ndarray Mean vector. If *None*, self.mean is used. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- fields : ndarray Reconstructed fields. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ if mean is None: mean = self.mean return reconstruct_kl(self.klmodes, coeffs, mean) def reconstruct_func(self, coeffs, mean=None): """ Reconstruct the function of the Gaussian process field from given KL coefficients. Parameters ---------- coeffs : ndarray Array of KL coefficients. *dtype=float*, *ndim=2*, *shape=(nmodes, nsamples)* mean : ndarray Mean vector. If *None*, self.mean is used. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- fields : ndarray Reconstructed fields. *dtype=float*, *ndim=2*, *shape=(nstate, nsamples)* """ if mean is None: mean = self.mean val_gp = reconstruct_kl(self.klmodes, coeffs, mean) return self.func(val_gp) def pdf(self, coeffs): """ Probaility density function (PDF). PDF(x) where x is a field (point in sample space) specified by KL coeffiecients. Parameters ---------- coeffs : ndarray Array of KL coefficients. *dtype=float*, *ndim=2*, *shape=(nmodes, nsamples)* Returns ------- pdf : ndarray Value of the PDF function for the given point in the sample space. """ return np.exp(logpdf(coeffs)) def logpdf(self, coeffs): """ Logarithm of the probability density function. log(PDF(x)) where x is a field (point in sample space) specified by KL coeffiecients. Parameters ---------- coeffs : ndarray Array of KL coefficients. *dtype=float*, *ndim=2*, *shape=(nmodes, nsamples)* Returns ------- logpdf : ndarray Logarithm of the value of the PDF function for the given point in the sample space. """ if len(coeffs.shape) == 1: coeffs = np.expand_dims(coeffs, 1) norm_coeff = np.linalg.norm(coeffs, axis=0) const = np.log((2*np.pi)**(-self.ncell/2)) return const + -0.5*norm_coeff**2 def project_gp_field(self, field, mean=None): """ Project a field onto the KL modes. Parameters ---------- field : ndarray Scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- coeffs : ndarray Projection magnitude. *dtype=float*, *ndim=1*, *shape=(nmodes)* """ return project_kl(field, self.klmodes, self.weights, mean) def project_func_field(self, field, mean=None): """ Project a field from the function of the Gaussian process onto the KL modes. Parameters ---------- field : ndarray Scalar field. *dtype=float*, *ndim=1*, *shape=(ncells)* mean : ndarray Mean vector. *dtype=float*, *ndim=1*, *shape=(nstate)* Returns ------- coeffs : ndarray Projection magnitude. *dtype=float*, *ndim=1*, *shape=(nmodes)* """ field = self.funcinv(field) mean = _preprocess_field(mean) mean = self.funcinv(mean) return project_kl(field, self.klmodes, self.weights, mean) class LogNormal(GaussianProcess): """ Log-normal process class. """ def __init__(self, klmodes_gp, median=1.0, weights=None): """ Initialize log-normal process class. Parameters ---------- klmodes_gp : ndarray KL modes (eigenvectors) of the underlying Gaussian process. *dtype=float*, *ndim=2*, *shape=(nstate, nmodes)* median : ndarray Median vector. Default one (1). *dtype=float*, *ndim=1*, *shape=(nstate)* weights : ndarray Weight (e.g. cell volume) associated with each state. Default ones (1). *dtype=float*, *ndim=1*, *shape=(nstate)* """ nstate = klmodes_gp.shape[0] median = _preprocess_field(median, nstate, 1.0) self.median_func = np.expand_dims(np.squeeze(median), 1) def func(x): return self.median_func * np.exp(x) def funcinv(y): return np.log(y / self.median_func) mean = 0.0 super(self.__class__, self).__init__( klmodes_gp, mean, weights, func, funcinv)
31.55132
79
0.608886
36711536321b96febc7e357452abee76ddf967f2
2,872
py
Python
examples/01_plotting/plot_overlay.py
ctw/nilearn
932eee9c69cd8fbf40ee6af5cee77f8f93b25da3
[ "BSD-2-Clause" ]
827
2015-01-30T23:11:42.000Z
2022-03-29T21:21:05.000Z
examples/01_plotting/plot_overlay.py
ctw/nilearn
932eee9c69cd8fbf40ee6af5cee77f8f93b25da3
[ "BSD-2-Clause" ]
2,845
2015-01-04T22:14:41.000Z
2022-03-31T20:28:09.000Z
examples/01_plotting/plot_overlay.py
ctw/nilearn
932eee9c69cd8fbf40ee6af5cee77f8f93b25da3
[ "BSD-2-Clause" ]
484
2015-02-03T10:58:19.000Z
2022-03-29T21:57:16.000Z
""" Visualizing a probabilistic atlas: the default mode in the MSDL atlas ===================================================================== Visualizing a probabilistic atlas requires visualizing the different maps that compose it. Here we represent the nodes constituting the default mode network in the `MSDL atlas <https://team.inria.fr/parietal/18-2/spatial_patterns/spatial-patterns-in-resting-state/>`_. The tools that we need to leverage are: * :func:`nilearn.image.index_img` to retrieve the various maps composing the atlas * Adding overlays on an existing brain display, to plot each of these maps Alternatively, :func:`nilearn.plotting.plot_prob_atlas` allows to plot the maps in one step that with less control over the plot (see below) """ ############################################################################ # Fetching probabilistic atlas - MSDL atlas # ----------------------------------------- from nilearn import datasets atlas_data = datasets.fetch_atlas_msdl() atlas_filename = atlas_data.maps ############################################################################# # Visualizing a probabilistic atlas with plot_stat_map and add_overlay object # --------------------------------------------------------------------------- from nilearn import plotting, image # First plot the map for the PCC: index 4 in the atlas display = plotting.plot_stat_map(image.index_img(atlas_filename, 4), colorbar=False, title="DMN nodes in MSDL atlas") # Now add as an overlay the maps for the ACC and the left and right # parietal nodes display.add_overlay(image.index_img(atlas_filename, 5), cmap=plotting.cm.black_blue) display.add_overlay(image.index_img(atlas_filename, 6), cmap=plotting.cm.black_green) display.add_overlay(image.index_img(atlas_filename, 3), cmap=plotting.cm.black_pink) plotting.show() ############################################################################### # Visualizing a probabilistic atlas with plot_prob_atlas # ====================================================== # # Alternatively, we can create a new 4D-image by selecting the 3rd, 4th, 5th and 6th (zero-based) probabilistic map from atlas # via :func:`nilearn.image.index_img` and use :func:`nilearn.plotting.plot_prob_atlas` (added in version 0.2) # to plot the selected nodes in one step. # # Unlike :func:`nilearn.plotting.plot_stat_map` this works with 4D images dmn_nodes = image.index_img(atlas_filename, [3, 4, 5, 6]) # Note that dmn_node is now a 4D image print(dmn_nodes.shape) #################################### display = plotting.plot_prob_atlas(dmn_nodes, cut_coords=(0, -55, 29), title="DMN nodes in MSDL atlas") plotting.show()
39.342466
126
0.588788
3ed999f20ceaec0707c6bc0cbe46a3fc10b04d26
3,820
py
Python
src/aux.py
MartaLopesGomes/KEGGScraper
94f9b63b89f0b45c9e3bf39b6d2e825637b3ca00
[ "MIT" ]
null
null
null
src/aux.py
MartaLopesGomes/KEGGScraper
94f9b63b89f0b45c9e3bf39b6d2e825637b3ca00
[ "MIT" ]
null
null
null
src/aux.py
MartaLopesGomes/KEGGScraper
94f9b63b89f0b45c9e3bf39b6d2e825637b3ca00
[ "MIT" ]
1
2020-03-17T06:29:20.000Z
2020-03-17T06:29:20.000Z
# -*- coding: utf-8 -*- """ """ from bs4 import BeautifulSoup as bs def parser_ids(file): res = [] with open(file, 'r') as f: lines = f.readlines() for line in lines: kID = line.strip().upper() if len(kID) > 0: res.append(kID) return res def check_ec(ecs): ec_list = [x.lower() for x in ecs] if ec_list[0][0:2] == 'ec': ec_list = [x.replace('ec', '').strip() for x in ec_list] ec_list = [x.replace(' ', '') for x in ec_list] return ec_list def make_blocks(url_list): # How many url each chunk should have n = 100 res = [url_list[i * n:(i + 1) * n] for i in range((len(url_list) + n - 1) // n)] return res # API links def get_orthology_ids_url_from_map(pathway_id): URL = 'http://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+orthology+path:' return URL + FUN + pathway_id def get_gene_ids_url(orthology_id): URL = 'http://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+genes+ko:' return URL + FUN + orthology_id def get_orthology_url_from_ec(ec): URL = 'https://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+orthology+ec:' # ec:1.3.1.25' return URL + FUN + ec def get_orthology_url_from_rn(rn): URL = 'https://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+orthology+rn:' return URL + FUN + rn def get_ko_url(ko): URL = 'https://www.genome.jp' FUN = '/dbget-bin/www_bget?ko:' return URL + FUN + ko def get_ec_url(ec): URL = 'https://www.genome.jp' FUN = '/dbget-bin/www_bget?ec:' return URL + FUN + ec def get_fastaProt_url(prot_id): URL = 'http://www.genome.jp' FUN = '/dbget-bin/www_bget?-f+-n+a+' return URL + FUN + prot_id def get_fasta_url(gene_id): URL = 'http://www.genome.jp' FUN = '/dbget-bin/www_bget?-f+-n+n+' return URL + FUN + gene_id def get_ec_url_from_ko(ko): URL = 'https://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+enzyme+ko:' return URL + FUN + ko def get_rn_url_from_ko(ko): URL = 'https://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+rn+ko:' return URL + FUN + ko def get_ec_url_from_rn(rn): URL = 'https://www.genome.jp' FUN = '/dbget-bin/get_linkdb?-t+enzyme+rn:' return URL + FUN + rn def get_ids(response): try: html = response.text b = bs(html, features="html.parser") links = b.find_all('a') valid_link = lambda x: 'www_bget' in x.get('href') links = filter(valid_link, links) lista = [link.text for link in links] return lista except AttributeError: html = response.read() b = bs(html, features="html.parser") links = b.find_all('a') valid_link = lambda x: 'www_bget' in x.get('href') links = filter(valid_link, links) lista = [link.text for link in links] return lista else: return None def get_fastaProt(response): try: html = bs(response.text, features="html.parser") return html.pre.text except: return None def get_ko_name(response): html = response.read() b = bs(html, features="html.parser") rows = b.findAll("tr") for r in rows: lines = r.find("nobr") if lines: n = lines.text if n == 'Definition': definition = r.find("td").text return definition def get_ec_names(response): names = [] html = response.read() b = bs(html, features="html.parser") rows = b.findAll("tr") for r in rows: lines = r.find("nobr") if lines: n = lines.text if n == 'Name': cells = r.findAll("td") for cell in cells: names = [x.strip() for x in cell.text.split(';')] return names
24.025157
84
0.575916
ae8d2ac4c388f16af66f26814c4770f3ba5a8bcf
259
py
Python
old/pepper1/src/libpepper/vals/control_flow/__init__.py
andybalaam/pepper
f0d12379c7c6e2d82003c0c1d6130bfac685e1c3
[ "MIT" ]
2
2018-12-19T16:32:46.000Z
2019-01-10T09:00:33.000Z
old/pepper1/src/libpepper/vals/control_flow/__init__.py
andybalaam/pepper
f0d12379c7c6e2d82003c0c1d6130bfac685e1c3
[ "MIT" ]
null
null
null
old/pepper1/src/libpepper/vals/control_flow/__init__.py
andybalaam/pepper
f0d12379c7c6e2d82003c0c1d6130bfac685e1c3
[ "MIT" ]
null
null
null
# Copyright (C) 2012 Andy Balaam and The Pepper Developers # Released under the MIT License. See the file COPYING.txt for details. from pepfor import PepFor from peprange import PepRange from pepwhile import PepWhile from pepcodeblock import PepCodeBlock
25.9
72
0.810811
1fc0b9300e5455af40af83a938635562940d24aa
1,311
py
Python
interview/wepay/binary-tree-level-order-print.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
10
2019-09-15T00:23:57.000Z
2022-01-05T12:53:42.000Z
interview/wepay/binary-tree-level-order-print.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
3
2021-06-30T00:39:26.000Z
2021-08-01T07:13:59.000Z
interview/wepay/binary-tree-level-order-print.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
6
2020-02-08T02:55:22.000Z
2022-01-02T22:48:18.000Z
""" 1 2 3 4 5 print out should be 1 2 3 . 4 . 5 """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: queue = deque([root]) res = [] depth = self.get_depth(root) curr_depth = 0 while queue and curr_depth < depth: size = len(queue) level = [] for _ in range(size): node = queue.popleft() if node is not None: level.append(str(node.val)) queue.append(node.left) queue.append(node.right) else: level.append(".") curr_depth += 1 res.append(level) # for level in res: # print(level) return res def get_depth(self, root): if not root: return 0 left = self.get_depth(root.left) right = self.get_depth(root.right) return max(left, right) + 1
22.220339
60
0.45614
0f10290691c418f80ff42cdb7ca66a15b2def894
481
py
Python
backend/config/mirror.py
sartography/star-drive
c0f33378d42913c3e677e07f74eb46d7b2b82a0a
[ "MIT" ]
null
null
null
backend/config/mirror.py
sartography/star-drive
c0f33378d42913c3e677e07f74eb46d7b2b82a0a
[ "MIT" ]
368
2018-12-18T14:43:20.000Z
2022-03-02T02:54:18.000Z
backend/config/mirror.py
sartography/star-drive
c0f33378d42913c3e677e07f74eb46d7b2b82a0a
[ "MIT" ]
2
2019-10-02T03:06:06.000Z
2020-10-05T16:53:48.000Z
MIRRORING = True SERVER_NAME = "localhost:5001" MASTER_URL = "http://localhost:5000" MASTER_EMAIL = "daniel.h.funk@gmail.com" MASTER_PASS = "dfunk7" SQLALCHEMY_DATABASE_URI = "postgresql://ed_user:ed_pass@localhost/stardrive_mirror" # Elastic Search ELASTIC_SEARCH = { "index_prefix": "stardrive_mirror", "hosts": ["localhost"], "port": 9200, "timeout": 20, "verify_certs": False, "use_ssl": False, "http_auth_user": "", "http_auth_pass": "" }
20.913043
83
0.679834
0c36e7dcdb51e8a31b837592e6156e115cfbc5f8
4,941
py
Python
docs/conf.py
pyenergyplus/witheppy
ea9d21976fc018261aa5f8464125df4bf866171a
[ "MIT" ]
8
2018-12-12T23:00:44.000Z
2021-12-12T05:41:45.000Z
docs/conf.py
pyenergyplus/witheppy
ea9d21976fc018261aa5f8464125df4bf866171a
[ "MIT" ]
27
2018-10-18T10:31:27.000Z
2021-12-15T05:56:21.000Z
docs/conf.py
pyenergyplus/witheppy
ea9d21976fc018261aa5f8464125df4bf866171a
[ "MIT" ]
2
2018-10-15T15:36:02.000Z
2020-12-30T00:17:02.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # witheppy documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("..")) import witheppy # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "nbsphinx", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = u"witheppy" copyright = u"2018-2021, Santosh Philip" author = u"Santosh Philip" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = witheppy.__version__ # The full version, including alpha/beta/rc tags. release = witheppy.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "witheppydoc" # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ ( master_doc, "witheppy.tex", u"witheppy Documentation", u"Santosh Philip", "manual", ), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "witheppy", u"witheppy Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "witheppy", u"witheppy Documentation", author, "witheppy", "One line description of project.", "Miscellaneous", ), ]
29.586826
78
0.67456
388c11b0ac8cee5f8d5a9a41acd7a56fdf35ace4
2,081
py
Python
starboard/starboard_entry.py
glryanon/Trusty-cogs
1d5056ad166a7e7ee5039baa31748b1995ae81f6
[ "MIT" ]
1
2020-12-28T15:58:16.000Z
2020-12-28T15:58:16.000Z
starboard/starboard_entry.py
glryanon/Trusty-cogs
1d5056ad166a7e7ee5039baa31748b1995ae81f6
[ "MIT" ]
null
null
null
starboard/starboard_entry.py
glryanon/Trusty-cogs
1d5056ad166a7e7ee5039baa31748b1995ae81f6
[ "MIT" ]
1
2020-07-27T00:04:45.000Z
2020-07-27T00:04:45.000Z
class StarboardEntry: def __init__( self, name: str, channel: int, emoji: str, colour: str = "user", enabled: bool = True, selfstar: bool = False, blacklist_role: list = [], whitelist_role: list = [], messages: list = [], blacklist_channel: list = [], whitelist_channel: list = [], threshold: int = 1, ): super().__init__() self.name = name self.channel = channel self.emoji = emoji self.colour = colour self.enabled = enabled self.selfstar = selfstar self.blacklist_role = blacklist_role self.whitelist_role = whitelist_role self.messages = messages self.blacklist_channel = blacklist_channel self.whitelist_channel = whitelist_channel self.threshold = threshold def to_json(self) -> dict: return { "name": self.name, "enabled": self.enabled, "channel": self.channel, "emoji": self.emoji, "colour": self.colour, "selfstar": self.selfstar, "blacklist_role": self.blacklist_role, "whitelist_role": self.whitelist_role, "messages": self.messages, "blacklist_channel": self.blacklist_channel, "whitelist_channel": self.whitelist_channel, "threshold": self.threshold, } @classmethod def from_json(cls, data: dict): colour = "user" selfstar = False if "selfstar" in data: selfstar = data["selfstar"] if "colour" in data: colour = data["colour"] return cls( data["name"], data["channel"], data["emoji"], colour, data["enabled"], selfstar, data["blacklist_role"], data["whitelist_role"], data["messages"], data["blacklist_channel"], data["whitelist_channel"], data["threshold"], )
29.728571
56
0.524748
e2c307238258053dd5f23f0c8f7c7f3954207bac
18,061
py
Python
nevergrad/functions/base.py
mathuvu/nevergrad
8e116190a8a29c238e655d728fc4816f7b4e0415
[ "MIT" ]
null
null
null
nevergrad/functions/base.py
mathuvu/nevergrad
8e116190a8a29c238e655d728fc4816f7b4e0415
[ "MIT" ]
null
null
null
nevergrad/functions/base.py
mathuvu/nevergrad
8e116190a8a29c238e655d728fc4816f7b4e0415
[ "MIT" ]
null
null
null
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect from pathlib import Path import numbers import numpy as np import nevergrad.common.typing as tp from nevergrad.common import errors from nevergrad.common.errors import ( # pylint: disable=unused-import UnsupportedExperiment as UnsupportedExperiment, ) from nevergrad.parametrization import parameter as p from nevergrad.optimization import multiobjective as mobj EF = tp.TypeVar("EF", bound="ExperimentFunction") ME = tp.TypeVar("ME", bound="MultiExperiment") def _reset_copy(obj: p.Parameter) -> p.Parameter: """Copy a parameter and resets its random state to obtain variability""" out = obj.copy() out._set_random_state(None) # propagates None to sub-parameters return out # pylint: disable=too-many-instance-attributes class ExperimentFunction: """Combines a function and its parametrization for running experiments (see benchmark subpackage) Parameters ---------- function: callable the callable to convert parametrization: Parameter the parametrization of the function Notes ----- - you can redefine custom "evaluation_function" and "compute_pseudotime" for custom behaviors in experiments - the bool/int/str/float init arguments are added as descriptors for the experiment which will serve in definining test cases. You can add more through "add_descriptors". - Makes sure you the "copy()" methods works (provides a new copy of the function *and* its parametrization) if you subclass ExperimentFunction since it is intensively used in benchmarks. By default, this will create a new instance using the same init arguments as your current instance (they were recorded through "__new__"'s magic) and apply the additional descriptors you may have added, as well as propagate the new parametrization *if it has a different name as the current one*. """ def __new__(cls: tp.Type[EF], *args: tp.Any, **kwargs: tp.Any) -> EF: """Identifies initialization parameters during initialization and store them""" inst = object.__new__(cls) sig = inspect.signature(cls.__init__) callargs: tp.Dict[str, tp.Any] = {} try: boundargs = sig.bind(inst, *args, **kwargs) except TypeError: pass # either a problem which will be caught later or a unpickling else: boundargs.apply_defaults() # make sure we get the default non-provided arguments callargs = dict(boundargs.arguments) callargs.pop("self") inst._auto_init = callargs inst._descriptors = { x: y for x, y in callargs.items() if isinstance(y, (str, tuple, int, float, bool)) } inst._descriptors["function_class"] = cls.__name__ return inst # type: ignore def __init__( self: EF, function: tp.Callable[..., tp.Loss], parametrization: p.Parameter, ) -> None: assert callable(function) self._auto_init: tp.Dict[str, tp.Any] # filled by __new__ self._descriptors: tp.Dict[str, tp.Any] # filled by __new__ self._parametrization: p.Parameter self.parametrization = parametrization # force random state initialization self.multiobjective_upper_bounds: tp.Optional[np.ndarray] = None self.__function = function # __ to prevent overrides # if this is not a function bound to this very instance, add the function/callable name to the descriptors if not hasattr(function, "__self__") or function.__self__ != self: # type: ignore name = function.__name__ if hasattr(function, "__name__") else function.__class__.__name__ self._descriptors.update(name=name) if len(self.parametrization.name) > 24: raise RuntimeError( f"For the sake of benchmarking, please rename the current parametrization:\n{self.parametrization!r}\n" "to a shorter name. This way it will be more readable in the experiments.\n" 'Eg: parametrization.set_name("") to just ignore it\n' "CAUTION: Make sure you set different names for different parametrization configurations if you want it " "to be used in order to differentiate between benchmarks cases." ) @property def dimension(self) -> int: return self._parametrization.dimension @property def parametrization(self) -> p.Parameter: return self._parametrization @parametrization.setter def parametrization(self, parametrization: p.Parameter) -> None: self._parametrization = parametrization self._parametrization.freeze() # pylint: disable=pointless-statement self._parametrization.random_state # force initialization for synchronization of random state # # TODO investigate why this synchronization is needed @property def function(self) -> tp.Callable[..., tp.Loss]: return self.__function def __call__(self, *args: tp.Any, **kwargs: tp.Any) -> tp.Loss: """Call the function directly (equivalent to parametrized_function.function(*args, **kwargs))""" return self.function(*args, **kwargs) @property def descriptors(self) -> tp.Dict[str, tp.Any]: """Description of the function parameterization, as a dict. This base class implementation provides function_class, noise_level, transform and dimension """ desc = dict(self._descriptors) # Avoid external modification desc.update(parametrization=self.parametrization.name, dimension=self.dimension) return desc def add_descriptors(self, **kwargs: tp.Optional[tp.Hashable]) -> None: self._descriptors.update(kwargs) def __repr__(self) -> str: """Shows the function name and its summary""" params = [f"{x}={repr(y)}" for x, y in sorted(self._descriptors.items())] return "Instance of {}({})".format(self.__class__.__name__, ", ".join(params)) def equivalent_to(self, other: tp.Any) -> bool: """Check that two instances where initialized with same settings. This is not meant to be used to check if functions are exactly equal (initialization may hold some randomness) This is only useful for unit testing. (may need to be overloaded to make faster if tests are getting slow) """ if other.__class__ != self.__class__: return False return ( bool(self._descriptors == other._descriptors) and self.parametrization.name == other.parametrization.name ) def _internal_copy(self: EF) -> EF: """This is "black magic" which creates a new instance using the same init parameters that you provided and which were recorded through the __new__ method of ExperimentFunction """ # auto_init is automatically filled by __new__, aka when creating the instance output: EF = self.__class__( **{x: _reset_copy(y) if isinstance(y, p.Parameter) else y for x, y in self._auto_init.items()} ) return output def copy(self: EF) -> EF: """Provides a new equivalent instance of the class, possibly with different random initialization, to provide different equivalent test cases when using different seeds. This also checks that parametrization and descriptors are correct. You should preferably override _internal_copy """ # add descriptors present in self but not added by initialization # (they must have been added manually) output = self._internal_copy() keys = set(output.descriptors) output.add_descriptors(**{x: y for x, y in self.descriptors.items() if x not in keys}) # parametrization may have been overriden, so let's always update it # Caution: only if names differ! if output.parametrization.name != self.parametrization.name: output.parametrization = _reset_copy(self.parametrization) # then if there are still differences, something went wrong if not output.equivalent_to(self): raise errors.ExperimentFunctionCopyError( f"Copy of\n{self}\nwith descriptors:\n{self._descriptors}\nreturned non-equivalent\n" f"{output}\nwith descriptors\n{output._descriptors}.\n\n" "This means that the auto-copy behavior of ExperimentFunction does not work.\n" "You may want to implement your own copy method, or check implementation of " "ExperimentFunction.__new__ and copy to better understand what happens" ) # propagate other useful information # TODO a bit hacky output.parametrization._constraint_checkers = self.parametrization._constraint_checkers output.multiobjective_upper_bounds = ( self.multiobjective_upper_bounds ) # TODO not sure why this is needed return output def compute_pseudotime( # pylint: disable=unused-argument self, input_parameter: tp.Any, loss: tp.Loss ) -> float: """Computes a pseudotime used during benchmarks for mocking parallelization in a reproducible way. By default, each call takes 1 unit of pseudotime, but this can be modified by overriding this function and the pseudo time can be a function of the function inputs and output. Note: This replaces get_postponing_delay which has been aggressively deprecated Parameters ---------- input_parameter: Any the input that was provided to the actual function value: float the output of the actual function Returns ------- float the pseudo computation time of the call to the actual function """ return 1.0 def evaluation_function(self, *recommendations: p.Parameter) -> float: """Provides the evaluation crieterion for the experiment. In case of mono-objective, it defers to evaluation_function Otherwise, it uses the hypervolume. This function can be overriden to provide custom behaviors. Parameters ---------- *pareto: Parameter pareto front provided by the optimizer """ if self.multiobjective_upper_bounds is None: # singleobjective case assert len(recommendations) == 1 output = self.function(*recommendations[0].args, **recommendations[0].kwargs) assert isinstance( output, numbers.Number ), f"evaluation_function can only be called on singleobjective experiments (output={output}) function={self.function}." return output # type: ignore # multiobjective case hypervolume = mobj.HypervolumePareto( upper_bounds=self.multiobjective_upper_bounds, seed=self.parametrization.random_state ) for candidate in recommendations: hypervolume.add(candidate) return -hypervolume.best_volume def update_leaderboard(identifier: str, loss: float, array: np.ndarray, verbose: bool = True) -> None: """Handy function for storing best results for challenging functions (eg.: Photonics) The best results are kept in a file that is automatically updated with new data. This may require installing nevergrad in dev mode. Parameters ---------- identifier: str the identifier of the problem loss: float the new loss, if better than the one in the file, the file will be updated array: np.ndarray the array corresponding to the loss verbose: bool whether to also print a message if the leaderboard was updated """ # pylint: disable=import-outside-toplevel import pandas as pd # lazzy to avoid requiring pandas for using an ExperimentFunction loss = np.round(loss, decimals=12) # this is probably already too precise for the machine filepath = Path(__file__).with_name("leaderboard.csv") bests = pd.DataFrame(columns=["loss", "array"]) if filepath.exists(): bests = pd.read_csv(filepath, index_col=0) if identifier not in bests.index: bests.loc[identifier, :] = (float("inf"), "") try: if not bests.loc[identifier, "loss"] < loss: # works for nan bests.loc[identifier, "loss"] = loss string = "[" + ",".join(str(x) for x in array.ravel()) + "]" bests.loc[identifier, "array"] = string bests = bests.loc[sorted(x for x in bests.index), :] bests.to_csv(filepath) if verbose: print(f"New best value for {identifier}: {loss}\nwith: {string[:80]}") except Exception: # pylint: disable=broad-except pass # better avoir bugs for this class ArrayExperimentFunction(ExperimentFunction): """Combines a function and its parametrization for running experiments (see benchmark subpackage). Extends ExperimentFunction, in the special case of an array, by allowing the creation of symmetries of a single function. We can create ArrayExperimentFunction(callable, symmetry=i) for i in range(0, 2**d) when the callable works on R^d. Works only if there are no constraints. Parameters ---------- function: callable the callable to convert parametrization: Parameter the parametrization of the function symmetry: int number parametrizing how we symmetrize the function. """ def __init__( self, function: tp.Callable[..., tp.Loss], parametrization: p.Parameter, symmetry: int = 0 ) -> None: """Adds a "symmetry" parameter, which allows the creation of many symmetries of a given function. symmetry: an int, 0 by default. if not zero, a symmetrization is applied to the input; each of the 2^d possible values for symmetry % 2^d gives one different function. Makes sense if and only if (1) the input is a single ndarray (2) the domains are symmetric.""" self._inner_function = function super().__init__(self.symmetrized_function, parametrization) assert isinstance( parametrization, p.Array ), f"{type(parametrization)} is not p.Array; {parametrization}." assert (parametrization.bounds[0] is None) == (parametrization.bounds[1] is None) assert len(parametrization._constraint_checkers) == 0 assert symmetry >= 0 assert symmetry < 2**self.dimension # The number 11111111111111111111111 is prime (using a prime is an overkill but ok). symmetry = (symmetry * 11111111111111111111111) % (2**self.dimension) if symmetry != 0: self._function = self.symmetrized_function self.threshold_coefficients = np.zeros(self.dimension) self.slope_coefficients = np.ones(self.dimension) for i in range(self.dimension): # pylint: disable=consider-using-enumerate if symmetry % 2 == 1: if self.parametrization.bounds[0] is not None and self.parametrization.bounds[1] is not None: # type: ignore middle = (self.parametrization.bounds[0][0] + self.parametrization.bounds[1][0]) / 2.0 # type: ignore else: middle = 0.0 self.threshold_coefficients[i] = 2.0 * middle # Otherwise we keep 0. self.slope_coefficients[i] = -1.0 # Otherwise we keep 1. symmetry = symmetry // 2 else: self._function = function self.threshold_coefficients = np.zeros(self.dimension) self.slope_coefficients = np.ones(self.dimension) def symmetrized_function(self, x: np.ndarray) -> tp.Loss: assert isinstance(x, np.ndarray), "symmetry != 0 works only when the input is an array." assert len(x.shape) == 1, "only one-dimensional arrays for now." return self._inner_function(self.threshold_coefficients + self.slope_coefficients * x) # type: ignore class MultiExperiment(ExperimentFunction): """Pack several mono-objective experiments into a multiobjective experiment Parameters ---------- experiments: iterable of ExperimentFunction Notes ----- - packing of multiobjective experiments is not supported. - parametrization must match between all functions (only their name is checked as initialization) - there is no descriptor for the packed functions, except the name (concatenetion of packed function names). """ def __init__( self, experiments: tp.Iterable[ExperimentFunction], upper_bounds: tp.ArrayLike, ) -> None: xps = list(experiments) assert xps assert len(xps) == len({id(xp) for xp in xps}), "All experiments must be different instances" assert all( xp.multiobjective_upper_bounds is None for xp in xps ), "Packing multiobjective xps is not supported." assert all( xps[0].parametrization.name == xp.parametrization.name for xp in xps[1:] ), "Parametrization do not match" super().__init__(self._multi_func, xps[0].parametrization) self.multiobjective_upper_bounds = np.array(upper_bounds) self._descriptors.update(name=",".join(xp._descriptors.get("name", "#unknown#") for xp in xps)) self._experiments = xps def _multi_func(self, *args: tp.Any, **kwargs: tp.Any) -> np.ndarray: outputs = [f(*args, **kwargs) for f in self._experiments] return np.array(outputs) def _internal_copy(self) -> "MultiExperiment": assert self.multiobjective_upper_bounds is not None return MultiExperiment([f.copy() for f in self._experiments], self.multiobjective_upper_bounds)
46.790155
131
0.665633
bfde06c5cc36c0bb7e4ce523a7c5f573da81586c
4,482
py
Python
mitmproxy/protocol/http_replay.py
jvillacorta/mitmproxy
3aa2d59f627e0fc95167fb76ffbe84330e3a5cc5
[ "MIT" ]
1
2018-03-31T17:16:07.000Z
2018-03-31T17:16:07.000Z
mitmproxy/protocol/http_replay.py
jvillacorta/mitmproxy
3aa2d59f627e0fc95167fb76ffbe84330e3a5cc5
[ "MIT" ]
null
null
null
mitmproxy/protocol/http_replay.py
jvillacorta/mitmproxy
3aa2d59f627e0fc95167fb76ffbe84330e3a5cc5
[ "MIT" ]
4
2018-04-18T13:17:01.000Z
2021-02-21T17:08:33.000Z
from __future__ import absolute_import, print_function, division import traceback import netlib.exceptions from mitmproxy import controller from mitmproxy import exceptions from mitmproxy import models from netlib.http import http1 from netlib import basethread # TODO: Doesn't really belong into mitmproxy.protocol... class RequestReplayThread(basethread.BaseThread): name = "RequestReplayThread" def __init__(self, config, flow, event_queue, should_exit): """ event_queue can be a queue or None, if no scripthooks should be processed. """ self.config, self.flow = config, flow if event_queue: self.channel = controller.Channel(event_queue, should_exit) else: self.channel = None super(RequestReplayThread, self).__init__( "RequestReplay (%s)" % flow.request.url ) def run(self): r = self.flow.request first_line_format_backup = r.first_line_format try: self.flow.response = None # If we have a channel, run script hooks. if self.channel: request_reply = self.channel.ask("request", self.flow) if isinstance(request_reply, models.HTTPResponse): self.flow.response = request_reply if not self.flow.response: # In all modes, we directly connect to the server displayed if self.config.options.mode == "upstream": server_address = self.config.upstream_server.address server = models.ServerConnection(server_address, (self.config.options.listen_host, 0)) server.connect() if r.scheme == "https": connect_request = models.make_connect_request((r.data.host, r.port)) server.wfile.write(http1.assemble_request(connect_request)) server.wfile.flush() resp = http1.read_response( server.rfile, connect_request, body_size_limit=self.config.options.body_size_limit ) if resp.status_code != 200: raise exceptions.ReplayException("Upstream server refuses CONNECT request") server.establish_ssl( self.config.clientcerts, sni=self.flow.server_conn.sni ) r.first_line_format = "relative" else: r.first_line_format = "absolute" else: server_address = (r.host, r.port) server = models.ServerConnection(server_address, (self.config.options.listen_host, 0)) server.connect() if r.scheme == "https": server.establish_ssl( self.config.clientcerts, sni=self.flow.server_conn.sni ) r.first_line_format = "relative" server.wfile.write(http1.assemble_request(r)) server.wfile.flush() self.flow.server_conn = server self.flow.response = models.HTTPResponse.wrap(http1.read_response( server.rfile, r, body_size_limit=self.config.options.body_size_limit )) if self.channel: response_reply = self.channel.ask("response", self.flow) if response_reply == exceptions.Kill: raise exceptions.Kill() except (exceptions.ReplayException, netlib.exceptions.NetlibException) as e: self.flow.error = models.Error(str(e)) if self.channel: self.channel.ask("error", self.flow) except exceptions.Kill: # Kill should only be raised if there's a channel in the # first place. from ..proxy.root_context import Log self.channel.tell("log", Log("Connection killed", "info")) except Exception: from ..proxy.root_context import Log self.channel.tell("log", Log(traceback.format_exc(), "error")) finally: r.first_line_format = first_line_format_backup
42.283019
106
0.550424
4f219e99578270fa19c1394d075fae20ade11680
2,375
py
Python
aiven/service/postgres.py
abn/aiven-monitor-http
a519aa8b17ecd9f645243dda8f6e32690b93741e
[ "Apache-2.0" ]
1
2020-04-26T13:56:26.000Z
2020-04-26T13:56:26.000Z
aiven/service/postgres.py
abn/aiven-monitor-http
a519aa8b17ecd9f645243dda8f6e32690b93741e
[ "Apache-2.0" ]
null
null
null
aiven/service/postgres.py
abn/aiven-monitor-http
a519aa8b17ecd9f645243dda8f6e32690b93741e
[ "Apache-2.0" ]
2
2020-07-10T13:48:39.000Z
2021-05-24T10:09:24.000Z
import logging import os import ssl from contextlib import asynccontextmanager from dataclasses import dataclass, field from typing import AsyncGenerator, List, Optional import asyncpg import ujson logger = logging.getLogger(__name__) @dataclass class PostgresManager: url: str = field( default=os.environ.get( "POSTGRES_URL", "postgresql://aiven:aiven@127.0.0.1:5432/aiven" ) ) ssl_cafile: Optional[str] = field(default=os.environ.get("POSTGRES_CAFILE")) ssl_context: Optional[ssl.SSLContext] = field(default=None, init=False, repr=False) _pool: Optional[asyncpg.pool.Pool] = field(default=None, repr=False) def __post_init__(self): if self.ssl_cafile: self.ssl_context = ssl.create_default_context( purpose=ssl.Purpose.SERVER_AUTH, cafile=self.ssl_cafile ) async def close(self): if self._pool is not None: await self._pool.close() self._pool = None async def init(self) -> None: if self._pool is None: async def init_connection(conn): await conn.set_type_codec( "jsonb", encoder=ujson.dumps, decoder=ujson.loads, schema="pg_catalog", ) self._pool = await asyncpg.create_pool( dsn=self.url, ssl=self.ssl_context, min_size=1, max_size=3, init=init_connection, ) @asynccontextmanager async def connection(self, warning_msg: str = None) -> AsyncGenerator: await self.init() try: async with self._pool.acquire() as connection: yield connection except (ValueError, AttributeError, TypeError) as e: logger.warning(e) if warning_msg: logger.warning(warning_msg) except Exception as e: logger.exception(e) async def execute(self, *args, **kwargs) -> List[asyncpg.Record]: """ Helper method to execute an sql query and fetch results within a transaction. """ async with self.connection() as connection: # type: asyncpg.Connection async with connection.transaction(): return await connection.fetch(*args, **kwargs)
31.666667
87
0.596632
d4cb1bb632f63b7e6bd47776bdc7088cae09ef1c
430
py
Python
apps/accounts/migrations/0003_alter_profile_allow_nsfw.py
Visualway/Vitary
c7db9a25837fa7390b2177b9db48e73c6f1ab3c8
[ "BSD-3-Clause" ]
4
2021-12-24T16:07:44.000Z
2022-03-04T02:30:20.000Z
apps/accounts/migrations/0003_alter_profile_allow_nsfw.py
Visualway/Vitary
c7db9a25837fa7390b2177b9db48e73c6f1ab3c8
[ "BSD-3-Clause" ]
4
2021-12-30T13:32:56.000Z
2022-03-15T03:58:48.000Z
apps/accounts/migrations/0003_alter_profile_allow_nsfw.py
Visualway/Vitary
c7db9a25837fa7390b2177b9db48e73c6f1ab3c8
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 4.0.2 on 2022-05-04 06:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0002_profile_allow_nsfw'), ] operations = [ migrations.AlterField( model_name='profile', name='allow_nsfw', field=models.BooleanField(default=False, verbose_name='Allow NSFW Content'), ), ]
22.631579
88
0.623256
740864a7334ef28bda4562198f520548c049c6f8
5,872
py
Python
docs/conf.py
jbellevi/lumopt
c350a1a03b7e4e4df2af3435dadac4624258da29
[ "MIT" ]
101
2018-09-25T01:46:01.000Z
2022-03-22T23:15:13.000Z
docs/conf.py
irdiez/lumopt_04_04_2020
c350a1a03b7e4e4df2af3435dadac4624258da29
[ "MIT" ]
13
2018-10-16T00:04:57.000Z
2022-02-18T06:28:28.000Z
docs/conf.py
irdiez/lumopt_04_04_2020
c350a1a03b7e4e4df2af3435dadac4624258da29
[ "MIT" ]
62
2018-09-30T00:59:47.000Z
2022-03-08T16:27:31.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) print(os.path.abspath('..')) import matplotlib matplotlib.use('Agg') # -- Project information ----------------------------------------------------- project = u'LumOpt' copyright = u'2018, Christopher Lalau-Keraly' author = u'Christopher Lalau-Keraly' # The short X.Y version version = u'' # The full version, including alpha/beta/rc tags release = u'' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.7.2' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.mathjax', #'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'LumOptdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'LumOpt.tex', u'LumOpt Documentation', u'Christopher Lalau-Keraly', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'LumOpt', u' Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'LumOpt', u'LumOpt Documentation', author, 'LumOpt', 'Continuous adjoint optimization wrapper for Lumerical.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True autoclass_content = 'both' html_show_sourcelink = False # import sys from mock import Mock as MagicMock class Mock(MagicMock): @classmethod def __getattr__(cls, name): return MagicMock() MOCK_MODULES = ['lumapi']#,'matplotlib','matplotlib.pyplot','matplotlib.animation'] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)
30.42487
83
0.652759
0f86be2feb31a6a5eb3eceb86c70f94bc8511842
1,143
py
Python
tools/view_npy.py
rehohoho/coiltraine
c3ce77d13fdf8f96eed3de0dae4c01be65cb5656
[ "MIT" ]
204
2019-01-28T13:31:53.000Z
2022-03-23T23:57:18.000Z
tools/view_npy.py
rehohoho/coiltraine
c3ce77d13fdf8f96eed3de0dae4c01be65cb5656
[ "MIT" ]
39
2019-02-02T22:14:14.000Z
2022-01-30T08:21:51.000Z
tools/view_npy.py
rehohoho/coiltraine
c3ce77d13fdf8f96eed3de0dae4c01be65cb5656
[ "MIT" ]
64
2019-02-24T10:26:04.000Z
2022-03-04T12:49:59.000Z
import argparse from PIL import Image import numpy as np import os from shutil import copyfile if __name__ == "__main__": parser = argparse.ArgumentParser(description='NPY viewer') # parser.add_argument('model', type=str, help='Path to model definition json. Model weights should be on the same path.') parser.add_argument('-f', '--file', default="") test_images_write_path = 'tools/_test_images_' args = parser.parse_args() preload_name = args.file sensor_data_names, measurements = np.load(os.path.join('../_preloads', preload_name + '.npy')) if not os.path.exists(test_images_write_path + preload_name): os.mkdir(test_images_write_path + preload_name) for i in range(len(measurements)): img_path = os.path.join(os.environ["COIL_DATASET_PATH"], preload_name, # Make this preload name better sensor_data_names[i].split('/')[-2], sensor_data_names[i].split('/')[-1]) copyfile(img_path, os.path.join(test_images_write_path + preload_name, str(i) + '.png')) print (' imager ', i)
30.078947
125
0.649169
eff06a2e0b1e9e169a80801fdc11248190795b2a
1,992
py
Python
exercicios_python/Exercicio_068.py
GabsOrtega/logica-python
6f4e752d0796c9bf70be8f7108bc3bd49d877709
[ "MIT" ]
null
null
null
exercicios_python/Exercicio_068.py
GabsOrtega/logica-python
6f4e752d0796c9bf70be8f7108bc3bd49d877709
[ "MIT" ]
null
null
null
exercicios_python/Exercicio_068.py
GabsOrtega/logica-python
6f4e752d0796c9bf70be8f7108bc3bd49d877709
[ "MIT" ]
null
null
null
from random import randint from time import sleep num = soma = venceu = 0 cond = '' print('='*20) print('PAR OU ÍMPAR') print('='*20) while True: num = int(input('Digite o valor desejado: ')) cond = str(input('Você quer par ou impar? [P/I]').upper().strip()[0]) computador = randint(0, 10) soma = num + computador print('='*20) if cond == 'P': print(f'Você escolheu PAR e o valor {num}') print(f'Computador escolheu IMPAR e o valor {computador}') print('PROCESSANDO...') print('='*20) sleep(2) print(f'A soma é igual a {soma}') if soma % 2 == 0: print('-' * 20) print('DEU PAR') print('Você venceu!') print('Computador perdeu!') venceu += 1 print('-' * 20) else: print('-' * 20) print('DEU IMPAR') print('Computador venceu!') print('Você perdeu!') print('-' * 20) break if cond == 'I': print('=-'*20) print(f'Você escolheu Impar e o valor {num}') print(f'Computador escolheu par e o valor {computador}') print('PROCESSANDO...') print('=-' * 20) sleep(2) print(f'A soma é igual a {soma}') if soma % 2 == 0: print('-'*20) print('Deu PAR') print('Você perdeu!') print('Computador ganhou!') print('-' * 20) break else: print('-' * 20) print('Deu IMPAR') print('Você venceu!') print('Computador perdeu!') print('-' * 20) venceu += 1 elif cond != 'P' and 'I': print('=-' * 20) print('Apenas PAR/IMPAR [P/I] são aceitos!') print('=-' * 20) print('=-'*20) print(f'GAME OVER! Você venceu {venceu} vezes') print('Finalizando programa...') print('=-'*20)
29.731343
74
0.461847
38cf9ce3f7b0a16fcec9fe642139d032ad5ce3ab
5,617
py
Python
asim/models/MXGSEventReport.py
garethcmurphy/mysite
21a8247dbed3d3196ab22c5cdd10b0c79dccb991
[ "MIT" ]
null
null
null
asim/models/MXGSEventReport.py
garethcmurphy/mysite
21a8247dbed3d3196ab22c5cdd10b0c79dccb991
[ "MIT" ]
null
null
null
asim/models/MXGSEventReport.py
garethcmurphy/mysite
21a8247dbed3d3196ab22c5cdd10b0c79dccb991
[ "MIT" ]
null
null
null
from django.db import models from django.utils import timezone from django.contrib.postgres.fields import ArrayField import datetime from django.contrib import admin class MXGSEventReport (models.Model): packet_length = models.IntegerField('Packet length') INFORMATION = "INF" ADVISORY = "ADV" CAUTION = "CAU" WARNING = "WAR" EMERGENCY = "EME" EVENT_SEVERITY_CHOICES = ( (INFORMATION, "Information"), (ADVISORY, "Advisory"), (CAUTION, "Caution"), (WARNING, "Warning"), (EMERGENCY, "Emergency") ) event_severity = models.CharField(max_length=3, choices=EVENT_SEVERITY_CHOICES, default=INFORMATION) EVENT_30000 = "30000" EVENT_30010 = "30010" EVENT_30090 = "30090" EVENT_30100 = "30100" EVENT_30110 = "30110" EVENT_30120 = "30120" EVENT_30130 = "30130" EVENT_30140 = "30140" EVENT_30160 = "30160" EVENT_40000 = "40000" EVENT_40010 = "40010" EVENT_40020 = "40020" EVENT_40030 = "40030" EVENT_40040 = "40040" EVENT_40050 = "40050" EVENT_40090 = "40090" EVENT_40100 = "40100" EVENT_40110 = "40110" EVENT_40120 = "40120" EVENT_40150 = "40150" EVENT_40160 = "40160" EVENT_40170 = "40170" EVENT_40180 = "40180" EVENT_40190 = "40190" EVENT_40200 = "40200" EVENT_40210 = "40210" EVENT_40260 = "40260" EVENT_40270 = "40270" EVENT_40280 = "40280" EVENT_40290 = "40290" EVENT_ID_CHOICES = ( (EVENT_30000, "Software change, severity 0"), (EVENT_30010, "Submode change, severity 0"), (EVENT_30090, "Science observation with priority 3 discarded due to data collection buffer being full, severity 1"), (EVENT_30100, "Science observation with priority 2 discarded due to data collection buffer being full, severity 2"), (EVENT_30110, "Science observation with priority 1 discarded due to data collection buffer being full, severity 3"), (EVENT_30120, "Science observation transferred from data collection buffer to science downlink buffer, severity 0"), (EVENT_30130, "Science downlink buffer full, data transfer function is suspended, severity 1"), (EVENT_30140, "Science downlink buffer has free space after being full, data transfer function is resumed, severity 0"), (EVENT_30160, "Trigger occurred in TGF search window, trigger is sent to MMIA, severity 0"), (EVENT_40000, "Validation of parameters of a configuration table failed, severity 3"), (EVENT_40010, "LHP Startup heaters powered on, severity 0"), (EVENT_40020, "LHP Startup heaters powered off, severity 0"), (EVENT_40030, "Front-End Ring Buffer FIFO, implemented in the DPU FPGA for incoming Detector Event Data, becomes full, severity 3"), (EVENT_40040, "Front-End Ring Buffer FIFO, implemented in the DPU FPGA for incoming Detector Event Data, has free space available again immediately after being full, severity 2"), (EVENT_40050, "trigger occurs in one or more TGF search windows, or when a trigger is received from MMIA, severity 0"), (EVENT_40090, "successful transfer of a TGF Observation to the Data Collection Buffer, severity 1"), (EVENT_40100, "ratemeter readings of LED Accepted Counts and HED Accepted Counts are available for background rate calculations and adjustment of trigger thresholds, severity 0"), (EVENT_40110, "successful transfer of a Background Data Observation to the Data Collection Bufferi, severity 0"), (EVENT_40120, "successful transfer of a Sampled Detector Events Observation to the Data Collection Bufferi, severity 0"), (EVENT_40150, "successful transfer of a Pulse-Height Spectrum to the Data Collection Bufferi, severity 0"), (EVENT_40160, "background rate estimate for the next 1-second period has been successfully calculated for both detector planes, severity 0"), (EVENT_40170, "one or more of the TGF Trigger Thresholds is changed. Note that it is not transmitted at 1-second intervals, but only when there is a change in one or more thresholds, severity 1"), (EVENT_40180, "Data Reduction Factor (Q) commanded to the DAUs is changed, severity 1"), (EVENT_40190, "DPU starts to acquire high-time-resolution histograms directly from the DAUs in Auroral Capture Submode, severity 0"), (EVENT_40200, "DPU ends acquisition of high-time-resolution histograms in Auroral Capture Submode, severity 0"), (EVENT_40210, "successful transfer of an Auroral Capture Observation to the Data Collection Buffer, severity 0"), (EVENT_40260, "loading configuration data to the DAU and/or PSU has failed, severity 3"), (EVENT_40270, " loading configuration data to the DAU and/or PSU has been successful, severity 0"), (EVENT_40280, " accepted counts ratemeter acquired directly from the DAU is too high and would result in an algorithm overflow, severity 3"), (EVENT_40290, "one or more software task scheduling errors are detected, severity 3"), ) event_id = models.CharField(max_length=5, choices=EVENT_SEVERITY_CHOICES, default=EVENT_30000) event_id = models.IntegerField() utc_year = models.IntegerField('UTC year') utc_msec = models.IntegerField('UTC msec') utc_seconds = models.IntegerField('UTC seconds')
56.737374
204
0.680612
bc4ada34d6493d74e12bd34eb5f6e18dc0f48d47
1,788
py
Python
data_tools/text/binary_classification.py
lopez86/DataTools
573419f3a40ddeb5e9eaf5ced8ea8dbf41c8a65e
[ "MIT" ]
null
null
null
data_tools/text/binary_classification.py
lopez86/DataTools
573419f3a40ddeb5e9eaf5ced8ea8dbf41c8a65e
[ "MIT" ]
null
null
null
data_tools/text/binary_classification.py
lopez86/DataTools
573419f3a40ddeb5e9eaf5ced8ea8dbf41c8a65e
[ "MIT" ]
null
null
null
import tensorflow as tf from ..tf.model_layers import ( concatenate, dense_layer, dropout, global_max_pool, simple_text_inputs, text_conv_layer, text_embedding_layer, ) def binary_text_classification_cnn( sentence_length, vocab_size, embedding_size, convolutions, dense_size, do_keep_frac=0.7, optimizer=tf.train.AdamOptimizer() ): graph = tf.Graph() with graph.as_default(): x, y, is_train = simple_text_inputs(sentence_length, 1) embeddings = text_embedding_layer(x, vocab_size, embedding_size) max_pools = [] for conv_size, n_filters in convolutions.items(): scope = 'conv{}'.format(conv_size) activations = text_conv_layer( embeddings, conv_size, n_filters, name_scope=scope, var_scope=scope ) max_pools.append(global_max_pool(activations, scope)) concatenated = concatenate(max_pools, name_scope='concat') dropped_out = dropout( concatenated, is_train, name_scope='dropout', keep_prob=do_keep_frac ) activations = dense_layer( dropped_out, dense_size, name_scope='dense', variable_scope='dense' ) output = dense_layer( activations, 1, name_scope='out_dense', variable_scope='out_dense', activation=tf.nn.sigmoid ) with tf.name_scope('output'): predictions = tf.identity(output, name='predictions') loss = tf.identity( tf.losses.log_loss(y, predictions), name='loss' ) training_op = optimizer.minimize(loss, name='training') return graph
35.058824
81
0.599553
1f040de9d9be3fd82dbf02e98c96455aa8cda294
50
py
Python
app/web/views/__init__.py
saury2013/online_book
53cf56b6a8e088011224559e90be4d23b2f604f9
[ "MIT" ]
null
null
null
app/web/views/__init__.py
saury2013/online_book
53cf56b6a8e088011224559e90be4d23b2f604f9
[ "MIT" ]
5
2021-03-18T20:34:55.000Z
2022-03-11T23:24:30.000Z
app/web/views/__init__.py
saury2013/online_book
53cf56b6a8e088011224559e90be4d23b2f604f9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import app.web.views.home
16.666667
25
0.62
a3e4bf84475c2b99406b685f732ef21ad14b10a2
3,216
py
Python
TermTk/TTkWidgets/TTkModelView/tree.py
UltraStudioLTD/pyTermTk
a1e96b0e7f43906b9fda0b16f19f427919a055c2
[ "MIT" ]
1
2022-02-28T16:33:25.000Z
2022-02-28T16:33:25.000Z
TermTk/TTkWidgets/TTkModelView/tree.py
UltraStudioLTD/pyTermTk
a1e96b0e7f43906b9fda0b16f19f427919a055c2
[ "MIT" ]
null
null
null
TermTk/TTkWidgets/TTkModelView/tree.py
UltraStudioLTD/pyTermTk
a1e96b0e7f43906b9fda0b16f19f427919a055c2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2021 Eugenio Parodi <ceccopierangiolieugenio AT googlemail DOT com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from TermTk.TTkCore.constant import TTkK from TermTk.TTkCore.signal import pyTTkSlot, pyTTkSignal from TermTk.TTkWidgets.TTkModelView import treewidget from TermTk.TTkWidgets.TTkModelView.treewidget import TTkTreeWidget from TermTk.TTkAbstract.abstractscrollarea import TTkAbstractScrollArea class TTkTree(TTkAbstractScrollArea): __slots__ = ( "_treeView", # Forwarded Signals "itemActivated", "itemChanged", "itemClicked", "itemExpanded", "itemCollapsed", "itemDoubleClicked", # Forwarded Methods "setAlignment", "setHeader", "setHeaderLabels", "setColumnSize", "setColumnColors", "appendItem", "addTopLevelItem", "clear", ) def __init__(self, *args, **kwargs): TTkAbstractScrollArea.__init__(self, *args, **kwargs) self._name = kwargs.get("name", "TTkTree") if "parent" in kwargs: kwargs.pop("parent") self._treeView = kwargs.get("treeWidget", TTkTreeWidget(*args, **kwargs)) self.setViewport(self._treeView) self.setFocusPolicy(TTkK.ClickFocus) # Forward the signal self.itemActivated = self._treeView.itemActivated self.itemChanged = self._treeView.itemChanged self.itemClicked = self._treeView.itemClicked self.itemExpanded = self._treeView.itemExpanded self.itemCollapsed = self._treeView.itemCollapsed self.itemDoubleClicked = self._treeView.itemDoubleClicked # Forwarded Methods # self.setAlignment = self._treeView.setAlignment # self.setHeader = self._treeView.setHeader self.setHeaderLabels = self._treeView.setHeaderLabels # self.setColumnSize = self._treeView.setColumnSize # self.setColumnColors = self._treeView.setColumnColors # self.appendItem = self._treeView.appendItem self.addTopLevelItem = self._treeView.addTopLevelItem self.clear = self._treeView.clear
40.708861
83
0.711443
e3c45322b349ce7533e6ee1496b5825733595cf5
4,394
py
Python
20.py
xeno14/advent_of_code2018
87d0f4dc76ca9cd82d68618255709e446cf09b37
[ "MIT" ]
null
null
null
20.py
xeno14/advent_of_code2018
87d0f4dc76ca9cd82d68618255709e446cf09b37
[ "MIT" ]
null
null
null
20.py
xeno14/advent_of_code2018
87d0f4dc76ca9cd82d68618255709e446cf09b37
[ "MIT" ]
null
null
null
class Node: def __init__(self, val=""): self.parent = None self.children = [] self.val = val self.next = None def append(self, e): e.parent = self self.children.append(e) def print(self, level=0): print("{}{}".format(" "*(2*level), self.val)) for c in self.children: c.print(level + 1) if self.next is not None: self.next.print(level) def cleanup(self): """Remove empty nodes """ children = [c for c in self.children if c.val != ""] self.children = children for c in self.children: c.cleanup() return self def parse(s: str) -> Node: root = Node() node = Node() root.append(node) for i in range(len(s)): c = s[i] if c == "(": child = Node() node.append(child) node = child elif c == ")": nxt = Node() node = node.parent nxt.parent = node.parent node.next = nxt node = nxt elif c == "|": child = Node() node.parent.append(child) node = child else: node.val += c return root.cleanup() class DistanceMap: """map x,y -> distance """ INF = (1 << 20) def __init__(self): self.map = dict() self.set(0, 0, 0) def set(self, x, y, d): if x not in self.map: self.map[x] = dict() if y not in self.map[x]: self.map[x][y] = DistanceMap.INF self.map[x][y] = min(self.map[x][y], d) def get(self, x, y): if x not in self.map: return DistanceMap.INF if y not in self.map[x]: return DistanceMap.INF return self.map[x][y] def find_max(self): res = -1 for v in self.map.values(): res = max(res, max(v.values())) return res def as_grid(self): xs = list(self.map.keys()) ys = [y for x in xs for y in self.map[x]] xmin = min(xs) xmax = max(xs) ymin = min(ys) ymax = max(ys) nx = xmax - xmin + 1 ny = ymax - ymin + 1 import numpy as np grid = np.zeros((nx, ny), dtype=np.int) for x in xs: for y in ys: i = x - xmin j = y - ymin grid[i, j] = self.get(x, y) return grid def print(self): grid = self.as_grid() grid[grid == self.INF] = -1 print(grid.T[::-1]) DELTA_POS = dict(N=(0, 1), E=(1, 0), W=(-1, 0), S=(0, -1)) def build_maze(root: Node, pos: tuple, dist: DistanceMap): node = root for c in node.val: delta = DELTA_POS[c] x = pos[0] y = pos[1] nx = x + delta[0] ny = y + delta[1] d = dist.get(x, y) dist.set(nx, ny, d+1) pos = (nx, ny) for child in node.children: build_maze(child, pos, dist) if node.next is not None: build_maze(node.next, pos, dist) def solve(regex: str, verbose=False): """solve part1 """ if regex.startswith("^"): regex = regex[1:] if regex.endswith("$"): regex = regex[:-1] root = parse(regex) dist = DistanceMap() pos = (0,0) build_maze(root, pos, dist) if verbose: print(regex) root.print() dist.print() return dist.as_grid().max() def solve2(regex: str): """solve part2 """ if regex.startswith("^"): regex = regex[1:] if regex.endswith("$"): regex = regex[:-1] root = parse(regex) dist = DistanceMap() pos = (0,0) build_maze(root, pos, dist) grid = dist.as_grid() return sum(grid.flatten() >= 1000) def main(): assert solve("^WNE$", True) == 3 assert solve("^ENWWW(NEEE|SSE(EE|N))$", True) == 10 assert solve("^ENNWSWW(NEWS|)SSSEEN(WNSE|)EE(SWEN|)NNN$", True) == 18 assert solve("^ESSWWN(E|NNENN(EESS(WNSE|)SSS|WWWSSSSE(SW|NNNE)))$", True) == 23 assert solve("^WSSEESWWWNW(S|NENNEEEENN(ESSSSW(NWSW|SSEN)|WSWWN(E|WWS(E|SS))))$", True) == 31 with open("input/20.txt") as f: regex = f.read().strip() ans1 = solve(regex, verbose=False) ans2 = solve2(regex) print("part1 =", ans1) print("part2 =", ans2) if __name__ == '__main__': main()
23.623656
97
0.491807
2f8aed7f846bb03fea2da1dd51c95ba46bd4fc9b
2,331
py
Python
asdac/optimizer/copy_pasta.py
Akuli/asda
041719849cb488c3ad625a851705677a9c4a1553
[ "MIT" ]
5
2018-12-01T22:41:42.000Z
2019-07-27T19:18:59.000Z
asdac/optimizer/copy_pasta.py
Akuli/asda
041719849cb488c3ad625a851705677a9c4a1553
[ "MIT" ]
7
2019-03-03T20:33:29.000Z
2019-07-12T15:49:15.000Z
asdac/optimizer/copy_pasta.py
Akuli/asda
041719849cb488c3ad625a851705677a9c4a1553
[ "MIT" ]
1
2019-07-07T22:54:51.000Z
2019-07-07T22:54:51.000Z
# if nodes c and d are "similar", this optimizes e.g. this... # # ... ... # | | # a b # | | # c d # \ / # e # # ...to this: # # ... ... # | | # a b # \ / # c # | # e # # currently this doesn't work without an 'e' node, but i think that's actually # good, because then the "optimization" would add jumps to the opcode import itertools from asdac import decision_tree def _nodes_are_similar(a: decision_tree.Node, b: decision_tree.Node): def they_are(klass): return isinstance(a, klass) and isinstance(b, klass) if they_are(decision_tree.GetBuiltinVar): return a.varname == b.varname if ( they_are(decision_tree.SetLocalVar) or they_are(decision_tree.GetLocalVar)): return a.var == b.var if they_are(decision_tree.PopOne): return a.is_popping_a_dummy == b.is_popping_a_dummy if ( they_are(decision_tree.Plus) or they_are(decision_tree.Times) or they_are(decision_tree.StoreReturnValue) or they_are(decision_tree.CreateBox) or they_are(decision_tree.SetToBox) or they_are(decision_tree.UnBox)): return True if they_are(decision_tree.GetAttr): return a.tybe is b.tybe and a.attrname is b.attrname if they_are(decision_tree.StrConstant): return a.python_string == b.python_string if they_are(decision_tree.IntConstant): return a.python_int == b.python_int if they_are(decision_tree.CallFunction): return (a.how_many_args == b.how_many_args and a.is_returning == b.is_returning) if they_are(decision_tree.StrJoin): return a.how_many_strings == b.how_many_strings return False def optimize_similar_nodes(start_node, all_nodes, createfunc_node): for node in all_nodes: jumped_from = ( ref.objekt for ref in node.jumped_from if isinstance(ref.objekt, decision_tree.PassThroughNode) ) for a, b in itertools.combinations(jumped_from, 2): assert a.next_node is node assert b.next_node is node if _nodes_are_similar(a, b): decision_tree.replace_node(a, b) # TODO: is it safe to optimize more than one a,b pair at once? return True return False
29.1375
78
0.635779
c7ed25d809aa42dc84d4c3d80b4d519ef4d80d48
1,338
py
Python
examples/experiments/version_checking_.py
drammock/expyfun
b92bf5291318ee4cb1692e7bcb9757a422f48304
[ "BSD-3-Clause" ]
7
2015-09-27T23:54:07.000Z
2022-01-17T01:12:12.000Z
examples/experiments/version_checking_.py
drammock/expyfun
b92bf5291318ee4cb1692e7bcb9757a422f48304
[ "BSD-3-Clause" ]
218
2015-02-17T20:29:31.000Z
2022-02-28T20:55:24.000Z
examples/experiments/version_checking_.py
drammock/expyfun
b92bf5291318ee4cb1692e7bcb9757a422f48304
[ "BSD-3-Clause" ]
19
2015-02-19T18:43:43.000Z
2021-11-12T23:13:12.000Z
""" ========================== Version checking functions ========================== This demonstrates how the version checking functions work. """ # Author: Eric Larson <larson.eric.d@gmail.com> # # License: BSD (3-clause) import tempfile from expyfun import download_version, run_subprocess print(__doc__) # Let's say we want to fix our experiment to use a specific version of # expyfun. First we'd want to install that version (referenced by the # commit number) to the proper directory. Here we'll use a temporary # directory so we don't break any other code examples, but usually you'd # want to do it in the experiment directory: temp_dir = tempfile.mkdtemp() download_version('c18133c', temp_dir) # Now we would normally need to restart Python so the next ``import expyfun`` # call imported the proper version. We'd want to add an ``assert_version`` # call to the top of our script We can simulate that here just by # launching a new Python instance in the ``temp_dir`` and using our assertion # function: cmd = """ from expyfun import assert_version assert_version('c18133c') """ try: run_subprocess(['python', '-c', cmd], cwd=temp_dir) except Exception as exp: print('Failure: {0}'.format(exp)) else: print('Success!') # Try modifying the commit number to something invalid, and you should # see a failure.
28.468085
77
0.714499
881efd49efe4b3a3f842571475e5d49d9fd943eb
9,864
py
Python
pan_cnc/lib/db_utils.py
PaloAltoNetworks/pan-cnc
610d1aa8366d30314e3475cc3dd23449ce3bca00
[ "Apache-2.0" ]
3
2019-03-13T14:59:59.000Z
2020-04-26T06:30:16.000Z
pan_cnc/lib/db_utils.py
PaloAltoNetworks/pan-cnc
610d1aa8366d30314e3475cc3dd23449ce3bca00
[ "Apache-2.0" ]
29
2019-02-05T00:01:32.000Z
2021-03-22T14:10:07.000Z
pan_cnc/lib/db_utils.py
PaloAltoNetworks/pan-cnc
610d1aa8366d30314e3475cc3dd23449ce3bca00
[ "Apache-2.0" ]
2
2019-08-31T13:54:53.000Z
2020-11-18T16:27:11.000Z
import json import os from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from skilletlib import SkilletLoader from cnc.models import RepositoryDetails from cnc.models import Skillet from pan_cnc.lib import cnc_utils from pan_cnc.lib.exceptions import DuplicateSkilletException def initialize_default_repositories(app_name) -> None: """ Find any configured repositories in the application configuration and build db records for their respective skillets. Called from the WelcomeView to ensure all default skillets are found and indexed :return: None """ app_config = cnc_utils.get_app_config(app_name) if not app_config: return if 'repositories' not in app_config or not isinstance(app_config['repositories'], list): return for r in app_config.get('repositories', []): repo_details = dict() repo_details.update(r) initialize_repo(repo_details) def initialize_repo(repo_detail: dict) -> list: """ Initialize a git repository object using the supplied repositories details dictionary object :param repo_detail: :return: list of Skillets found in that repository """ repo_name = repo_detail.get('name', '') (repository_object, created) = RepositoryDetails.objects.get_or_create( name=repo_name, defaults={'url': repo_detail.get('url', ''), 'details_json': json.dumps(repo_detail) } ) if created: print(f'Indexing new repository object: {repository_object.name}') return refresh_skillets_from_repo(repo_name) return load_skillets_from_repo(repo_name) def load_skillets_from_repo(repo_name: str) -> list: """ returns a list of skillets from the repository as found in the db :param repo_name: name of the repository to search :return: list of skillet dictionary objects """ all_skillets = list() try: repo_object = RepositoryDetails.objects.get(name=repo_name) repo_skillet_qs = repo_object.skillet_set.all() for skillet in repo_skillet_qs: all_skillets.append(json.loads(skillet.skillet_json)) return all_skillets except ObjectDoesNotExist: return all_skillets except ValueError: return all_skillets def update_skillet_cache() -> None: """ Updates the 'all_snippets' key in the cnc cache. This gets called whenever a repository is initialized or updated to ensure the legacy cache is always kept up to date :return: None """ all_skillets = load_all_skillets(refresh=True) # FIXME - this can and will break if every more than one app tries to do this... app_name = get_default_app_name() # ensure everything gets removed! cnc_utils.clear_long_term_cache(app_name) cnc_utils.set_long_term_cached_value(app_name, 'all_snippets', all_skillets, -1) # db_utils.load_add_skillets saves all_skillets under 'cnc' app name, ensure this is updated here as well... cnc_utils.set_long_term_cached_value('cnc', 'all_snippets', all_skillets, -1) # remove it all! def get_repository_details(repository_name: str) -> (dict, None): """ returns the details dict as loaded from the database record for this db :param repository_name: name of the repository to find and return :return: loaded dict or None if not found """ if RepositoryDetails.objects.filter(name=repository_name).exists(): try: repo_db_record = RepositoryDetails.objects.get(name=repository_name) return json.loads(repo_db_record.details_json) except ValueError as ve: print(ve) return None else: return None def update_repository_details(repo_name: str, repo_detail: dict) -> None: """ Update the repository details json object on the db record :param repo_name: name of the repository object to update :param repo_detail: dictionary of repository details includes branches, url, name, commits, etc :return: None """ try: repo_db_record = RepositoryDetails.objects.get(name=repo_name) except ObjectDoesNotExist as odne: print(r'Could not update non-existent db record for {repo_name}') print(odne) return None try: repo_db_record.details_json = json.dumps(repo_detail) except ValueError as ve: print(f'Could not update db record with malformed json: {ve}') return None repo_db_record.save() def refresh_skillets_from_repo(repo_name: str) -> list: all_skillets = list() user_dir = os.path.expanduser('~/.pan_cnc') app_name = get_default_app_name() snippets_dir = os.path.join(user_dir, app_name, 'repositories') repo_dir = os.path.join(snippets_dir, repo_name) if not os.path.exists(repo_dir): print(f'Repository {repo_dir} does not exist!') return all_skillets try: repo_object = RepositoryDetails.objects.get(name=repo_name) sl = SkilletLoader() found_skillets = sl.load_all_skillets_from_dir(repo_dir) for skillet_object in found_skillets: skillet_name = skillet_object.name (skillet_record, created) = Skillet.objects.get_or_create( name=skillet_name, defaults={ 'skillet_json': json.dumps(skillet_object.skillet_dict), 'repository_id': repo_object.id, } ) if not created: if skillet_record.repository_id == repo_object.id: # check if skillet contents have been updated found_skillet_json = json.dumps(skillet_object.skillet_dict) if skillet_record.skillet_json != found_skillet_json: skillet_record.skillet_json = found_skillet_json skillet_record.save() else: print(f'Found existing skillet from another repository: {skillet_name}!!') raise DuplicateSkilletException( f'Refusing to import duplicate Skillet: {skillet_name}' ) for db_skillet in repo_object.skillet_set.all(): found = False for found_skillet in found_skillets: if db_skillet.name == found_skillet.name: found = True continue if not found: db_skillet.delete() update_skillet_cache() return load_skillets_from_repo(repo_name) except ObjectDoesNotExist: return all_skillets def refresh_skillets_from_all_repos() -> None: """ Finds all previously indexed repositories and re-indexes all skillets found there-in This gets call from the /clear_context menu item to ensure all local changes are found and up to date :return: None """ all_repos = RepositoryDetails.objects.all() for repository in all_repos: refresh_skillets_from_repo(repository.name) def load_skillet_by_name(skillet_name: str) -> (dict, None): try: skillet = Skillet.objects.get(name=skillet_name) return json.loads(skillet.skillet_json) except ObjectDoesNotExist: return None except ValueError: print('Could not parse Skillet metadata in load_skillet_by_name') return None def load_all_skillet_label_values(label_name): labels_list = list() skillets = load_all_skillets() for skillet in skillets: if 'labels' not in skillet: continue labels = skillet.get('labels', []) for label_key in labels: if label_key == label_name: if type(labels[label_name]) is str: label_value = labels[label_name] if label_value not in labels_list: labels_list.append(label_value) elif type(labels[label_name]) is list: for label_list_value in labels[label_name]: if label_list_value not in labels_list: labels_list.append(label_list_value) return labels_list def load_all_skillets(refresh=False) -> list: """ Returns a list of skillet dictionaries :param refresh: Boolean flag whether to use the cache or force a cache refresh :return: skillet dictionaries """ if refresh is False: cached_skillets = cnc_utils.get_long_term_cached_value('cnc', 'all_snippets') if cached_skillets is not None: return cached_skillets skillet_dicts = list() skillets = Skillet.objects.all() for skillet in skillets: skillet_dicts.append(json.loads(skillet.skillet_json)) cnc_utils.set_long_term_cached_value('cnc', 'all_snippets', skillet_dicts, -1) return skillet_dicts def load_skillets_with_label(label_name, label_value): filtered_skillets = list() all_skillets = load_all_skillets() for skillet in all_skillets: if 'labels' in skillet and label_name in skillet['labels']: if type(skillet['labels'][label_name]) is str: if skillet['labels'][label_name] == label_value: filtered_skillets.append(skillet) elif type(skillet['labels'][label_name]) is list: for label_list_value in skillet['labels'][label_name]: if label_list_value == label_value: filtered_skillets.append(skillet) return filtered_skillets def get_default_app_name(): if len(settings.INSTALLED_APPS_CONFIG) != 1: raise Exception('Cannot get default app configuration, please specify the app you need') for k, v in settings.INSTALLED_APPS_CONFIG.items(): return k
32.662252
117
0.66322
70feca84ba5828dc64c0a3e2ad429bc825224d58
929
py
Python
manage.py
blowUA/mezz
caf909ad6dd48a61e735bbff7203573f0a61c0d7
[ "MIT" ]
209
2015-02-06T02:24:22.000Z
2022-03-07T23:39:28.000Z
manage.py
blowUA/mezz
caf909ad6dd48a61e735bbff7203573f0a61c0d7
[ "MIT" ]
193
2015-01-01T13:41:44.000Z
2020-10-02T18:41:06.000Z
manage.py
blowUA/mezz
caf909ad6dd48a61e735bbff7203573f0a61c0d7
[ "MIT" ]
92
2015-03-04T11:13:55.000Z
2020-10-23T06:46:42.000Z
#!/usr/bin/env python from __future__ import absolute_import, unicode_literals import os import sys # Corrects some pathing issues in various contexts, such as cron jobs, # and the project layout still being in Django 1.3 format. from settings import PROJECT_ROOT, PROJECT_DIRNAME sys.path.append(os.path.abspath(os.path.join(PROJECT_ROOT, ".."))) # Add the site ID CLI arg to the environment, which allows for the site # used in any site related queries to be manually set for management # commands. for i, arg in enumerate(sys.argv): if arg.startswith("--site"): os.environ["MEZZANINE_SITE_ID"] = arg.split("=")[1] sys.argv.pop(i) # Run Django. if __name__ == "__main__": settings_module = "%s.settings" % PROJECT_DIRNAME os.environ.setdefault("DJANGO_SETTINGS_MODULE", settings_module) from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
32.034483
71
0.74704
5e2e612d8f7d17695653a4ebd0713f8992acd6d2
2,567
py
Python
hw/ip/rom_ctrl/util/gen_vivado_mem_image.py
asb/opentitan
af68ff5041b10c81e97adc075a4d042f8ac7ab20
[ "Apache-2.0" ]
2
2019-11-21T14:05:14.000Z
2020-07-10T12:40:54.000Z
hw/ip/rom_ctrl/util/gen_vivado_mem_image.py
asb/opentitan
af68ff5041b10c81e97adc075a4d042f8ac7ab20
[ "Apache-2.0" ]
9
2019-11-08T00:20:21.000Z
2021-09-25T03:56:33.000Z
hw/ip/rom_ctrl/util/gen_vivado_mem_image.py
asb/opentitan
af68ff5041b10c81e97adc075a4d042f8ac7ab20
[ "Apache-2.0" ]
1
2019-11-19T05:28:23.000Z
2019-11-19T05:28:23.000Z
#!/usr/bin/env python3 # Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 '''Script for generating a splicable Vivado ROM image This script takes a .vmem file as input and converts that into a format usable by Vivado for splicing FPGA bitstreams via updatemem. For details on the required file format, refer to UG898 (Chapter 7, "Using UpdateMEM to Update BIT files with MMI and ELF Data"): https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug898-vivado-embedded-design.pdf#page=165 Typical usage: >>> ./gen_vivado_mem_image.py boot_rom.scr.32.vmem boot_rom.updatemem.mem ''' import argparse import sys import math import re from mem import MemFile def swap_bytes(width: int, orig: int, swap_nibbles: bool) -> int: num_bytes = math.ceil(width / 8) swapped = 0 for i in range(num_bytes): byte_value = ((orig >> (i * 8)) & 0xFF) if swap_nibbles: byte_value = ((byte_value << 4) | (byte_value >> 4)) & 0xFF swapped |= (byte_value << ((num_bytes - i - 1) * 8)) return swapped def main() -> int: parser = argparse.ArgumentParser() parser.add_argument('infile', type=argparse.FileType('rb')) parser.add_argument('outfile', type=argparse.FileType('w')) parser.add_argument('--swap-nibbles', dest='swap_nibbles', action='store_true') args = parser.parse_args() # Extract width from ROM file name. match = re.search(r'([0-9]+).vmem', args.infile.name) if not match: raise ValueError('Cannot extract ROM word width from file name ' + args.infile.name) else: width = int(match.group(1)) # Load the input vmem file. vmem = MemFile.load_vmem(width, args.infile) # OpenTitan vmem files should always contain one single contiguous chunk. assert len(vmem.chunks) == 1 # Loop over all words, and: # 1) Generate the address, # 2) convert the endianness, and # 3) write this to the output file. addr_chars = 8 word_chars = math.ceil(width / 4) for idx, word in enumerate(vmem.chunks[0].words): # Generate the address. addr = idx * math.ceil(width / 8) # Convert endianness. data = swap_bytes(width, word, args.swap_nibbles) # Write to file. toks = [f'@{addr:0{addr_chars}X}'] toks.append(f'{data:0{word_chars}X}') args.outfile.write(' '.join(toks) + '\n') return 0 if __name__ == '__main__': sys.exit(main())
32.0875
110
0.661862
fe8b9714b2463db9fa34d02994fdcbfb35eb1cf4
13,066
py
Python
cirq/interop/quirk/cells/arithmetic_cells.py
BillGatesNephew/Cirq
fda14a5f6c65356dfabf8a5bcd599bf57e542041
[ "Apache-2.0" ]
null
null
null
cirq/interop/quirk/cells/arithmetic_cells.py
BillGatesNephew/Cirq
fda14a5f6c65356dfabf8a5bcd599bf57e542041
[ "Apache-2.0" ]
null
null
null
cirq/interop/quirk/cells/arithmetic_cells.py
BillGatesNephew/Cirq
fda14a5f6c65356dfabf8a5bcd599bf57e542041
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import ( Callable, Optional, Union, Iterable, Sequence, Iterator, Tuple, Any, cast, List, Dict, TYPE_CHECKING, ) from cirq import ops, value from cirq.interop.quirk.cells.cell import Cell, CellMaker, CELL_SIZES if TYPE_CHECKING: import cirq @value.value_equality class QuirkArithmeticOperation(ops.ArithmeticOperation): """Applies arithmetic to a target and some inputs. Implements Quirk-specific implicit effects like assuming that the presence of an 'r' input implies modular arithmetic. In Quirk, modular operations have no effect on values larger than the modulus. This convention is used because unitarity forces *some* convention on out-of-range values (they cannot simply disappear or raise exceptions), and the simplest is to do nothing. This call handles ensuring that happens, and ensuring the new target register value is normalized modulo the modulus. """ def __init__( self, identifier: str, target: Sequence['cirq.Qid'], inputs: Sequence[Union[Sequence['cirq.Qid'], int]], ): """ Args: identifier: The quirk identifier string for this operation. target: The target qubit register. inputs: Qubit registers (or classical constants) that determine what happens to the target. """ self.identifier = identifier self.target: Tuple['cirq.Qid', ...] = tuple(target) self.inputs: Tuple[Union[Sequence['cirq.Qid'], int], ...] = tuple( e if isinstance(e, int) else tuple(e) for e in inputs ) for input_register in self.inputs: if isinstance(input_register, int): continue if set(self.target) & set(input_register): raise ValueError(f'Overlapping registers: ' f'{self.target} {self.inputs}') if self.operation.is_modular: r = inputs[-1] if isinstance(r, int): over = r > 1 << len(target) else: over = len(cast(Sequence, r)) > len(target) if over: raise ValueError( 'Target too small for modulus.\n' f'Target: {target}\n' f'Modulus: {r}' ) @property def operation(self) -> '_QuirkArithmeticCallable': return ARITHMETIC_OP_TABLE[self.identifier] def _value_equality_values_(self) -> Any: return self.identifier, self.target, self.inputs def registers(self) -> Sequence[Union[int, Sequence['cirq.Qid']]]: return [self.target, *self.inputs] def with_registers( self, *new_registers: Union[int, Sequence['cirq.Qid']] ) -> 'QuirkArithmeticOperation': if len(new_registers) != len(self.inputs) + 1: raise ValueError( 'Wrong number of registers.\n' f'New registers: {repr(new_registers)}\n' f'Operation: {repr(self)}' ) if isinstance(new_registers[0], int): raise ValueError( 'The first register is the mutable target. ' 'It must be a list of qubits, not the constant ' f'{new_registers[0]}.' ) return QuirkArithmeticOperation(self.identifier, new_registers[0], new_registers[1:]) def apply(self, *registers: int) -> Union[int, Iterable[int]]: return self.operation(*registers) def _circuit_diagram_info_(self, args: 'cirq.CircuitDiagramInfoArgs') -> List[str]: lettered_args = list(zip(self.operation.letters, self.inputs)) result: List[str] = [] # Target register labels. consts = ''.join( f',{letter}={reg}' for letter, reg in lettered_args if isinstance(reg, int) ) result.append(f'Quirk({self.identifier}{consts})') result.extend(f'#{i}' for i in range(2, len(self.target) + 1)) # Input register labels. for letter, reg in lettered_args: if not isinstance(reg, int): result.extend(f'{letter.upper()}{i}' for i in range(len(cast(Sequence, reg)))) return result def __repr__(self) -> str: return ( 'cirq.interop.quirk.QuirkArithmeticOperation(\n' f' {repr(self.identifier)},\n' f' target={repr(self.target)},\n' f' inputs={_indented_list_lines_repr(self.inputs)},\n' ')' ) _IntsToIntCallable = Union[ Callable[[int], int], Callable[[int, int], int], Callable[[int, int, int], int], Callable[[int, int, int, int], int], ] class _QuirkArithmeticCallable: """A callable with parameter-name-dependent behavior.""" def __init__(self, func: _IntsToIntCallable): """ Args: func: Maps target int to its output value based on other input ints. """ self.func = func # The lambda parameter names indicate the input letter to match. letters: List[str] = list(inspect.signature(self.func).parameters) # The target is always first, and should be ignored. assert letters and letters[0] == 'x' self.letters = tuple(letters[1:]) # The last argument is the modulus r for modular arithmetic. self.is_modular = letters[-1] == 'r' def __call__(self, *args, **kwargs): assert not kwargs if self.is_modular: if args[0] >= args[-1]: return args[0] result = self.func(*args) if self.is_modular: result %= args[-1] return result @value.value_equality class ArithmeticCell(Cell): def __init__( self, identifier: str, target: Sequence['cirq.Qid'], inputs: Sequence[Union[None, Sequence['cirq.Qid'], int]], ): self.identifier = identifier self.target = tuple(target) self.inputs = tuple(inputs) def gate_count(self) -> int: return 1 def _value_equality_values_(self) -> Any: return self.identifier, self.target, self.inputs def __repr__(self) -> str: return ( f'cirq.interop.quirk.cells.arithmetic_cells.ArithmeticCell(' f'\n {self.identifier!r},' f'\n {self.target!r},' f'\n {self.inputs!r})' ) def with_line_qubits_mapped_to(self, qubits: List['cirq.Qid']) -> 'Cell': return ArithmeticCell( identifier=self.identifier, target=Cell._replace_qubits(self.target, qubits), inputs=[ e if e is None or isinstance(e, int) else Cell._replace_qubits(e, qubits) for e in self.inputs ], ) @property def operation(self): return ARITHMETIC_OP_TABLE[self.identifier] def with_input( self, letter: str, register: Union[Sequence['cirq.Qid'], int] ) -> 'ArithmeticCell': new_inputs = [ reg if letter != reg_letter else register for reg, reg_letter in zip(self.inputs, self.operation.letters) ] return ArithmeticCell(self.identifier, self.target, new_inputs) def operations(self) -> 'cirq.OP_TREE': missing_inputs = [ letter for reg, letter in zip(self.inputs, self.operation.letters) if reg is None ] if missing_inputs: raise ValueError(f'Missing input: {sorted(missing_inputs)}') return QuirkArithmeticOperation( self.identifier, self.target, cast(Sequence[Union[Sequence['cirq.Qid'], int]], self.inputs), ) def _indented_list_lines_repr(items: Sequence[Any]) -> str: block = '\n'.join([repr(op) + ',' for op in items]) indented = ' ' + '\n '.join(block.split('\n')) return '[\n{}\n ]'.format(indented) def _generate_helper() -> Iterator[CellMaker]: # Comparisons. yield _arithmetic_gate("^A<B", 1, lambda x, a, b: x ^ int(a < b)) yield _arithmetic_gate("^A>B", 1, lambda x, a, b: x ^ int(a > b)) yield _arithmetic_gate("^A<=B", 1, lambda x, a, b: x ^ int(a <= b)) yield _arithmetic_gate("^A>=B", 1, lambda x, a, b: x ^ int(a >= b)) yield _arithmetic_gate("^A=B", 1, lambda x, a, b: x ^ int(a == b)) yield _arithmetic_gate("^A!=B", 1, lambda x, a, b: x ^ int(a != b)) # Addition. yield from _arithmetic_family("inc", lambda x: x + 1) yield from _arithmetic_family("dec", lambda x: x - 1) yield from _arithmetic_family("+=A", lambda x, a: x + a) yield from _arithmetic_family("-=A", lambda x, a: x - a) # Multiply-accumulate. yield from _arithmetic_family("+=AA", lambda x, a: x + a * a) yield from _arithmetic_family("-=AA", lambda x, a: x - a * a) yield from _arithmetic_family("+=AB", lambda x, a, b: x + a * b) yield from _arithmetic_family("-=AB", lambda x, a, b: x - a * b) # Misc. yield from _arithmetic_family("+cntA", lambda x, a: x + _popcnt(a)) yield from _arithmetic_family("-cntA", lambda x, a: x - _popcnt(a)) yield from _arithmetic_family("^=A", lambda x, a: x ^ a) yield from _arithmetic_family("Flip<A", lambda x, a: a - x - 1 if x < a else x) # Multiplication. yield from _arithmetic_family("*A", lambda x, a: x * a if a & 1 else x) yield from _size_dependent_arithmetic_family( "/A", lambda n: lambda x, a: x * _mod_inv_else_1(a, 1 << n) ) # Modular addition. yield from _arithmetic_family("incmodR", lambda x, r: x + 1) yield from _arithmetic_family("decmodR", lambda x, r: x - 1) yield from _arithmetic_family("+AmodR", lambda x, a, r: x + a) yield from _arithmetic_family("-AmodR", lambda x, a, r: x - a) # Modular multiply-accumulate. yield from _arithmetic_family("+ABmodR", lambda x, a, b, r: x + a * b) yield from _arithmetic_family("-ABmodR", lambda x, a, b, r: x - a * b) # Modular multiply. yield from _arithmetic_family("*AmodR", lambda x, a, r: x * _invertible_else_1(a, r)) yield from _arithmetic_family("/AmodR", lambda x, a, r: x * _mod_inv_else_1(a, r)) yield from _arithmetic_family( "*BToAmodR", lambda x, a, b, r: x * pow(_invertible_else_1(b, r), a, r) ) yield from _arithmetic_family( "/BToAmodR", lambda x, a, b, r: x * pow(_mod_inv_else_1(b, r), a, r) ) def _extended_gcd(a: int, b: int) -> Tuple[int, int, int]: if a == 0: return b, 0, 1 gcd, y, x = _extended_gcd(b % a, a) return gcd, x - (b // a) * y, y def _invertible_else_1(a: int, m: int) -> int: """Returns `a` if `a` has a multiplicative inverse, else 1.""" i = _mod_inv_else_1(a, m) return a if i != 1 else i def _mod_inv_else_1(a: int, m: int) -> int: """Returns `a**-1` if `a` has a multiplicative inverse, else 1.""" if m == 0: return 1 gcd, x, _ = _extended_gcd(a % m, m) if gcd != 1: return 1 return x % m def _popcnt(a: int) -> int: """Returns the Hamming weight of the given non-negative integer.""" t = 0 while a > 0: a &= a - 1 t += 1 return t def _arithmetic_family(identifier_prefix: str, func: _IntsToIntCallable) -> Iterator[CellMaker]: yield from _size_dependent_arithmetic_family(identifier_prefix, size_to_func=lambda _: func) def _size_dependent_arithmetic_family( identifier_prefix: str, size_to_func: Callable[[int], _IntsToIntCallable], ) -> Iterator[CellMaker]: for i in CELL_SIZES: yield _arithmetic_gate(identifier_prefix + str(i), size=i, func=size_to_func(i)) def _arithmetic_gate(identifier: str, size: int, func: _IntsToIntCallable) -> CellMaker: operation = _QuirkArithmeticCallable(func) assert identifier not in ARITHMETIC_OP_TABLE ARITHMETIC_OP_TABLE[identifier] = operation return CellMaker( identifier=identifier, size=size, maker=lambda args: ArithmeticCell( identifier=identifier, target=args.qubits, inputs=[None] * len(operation.letters) ), ) ARITHMETIC_OP_TABLE: Dict[str, _QuirkArithmeticCallable] = {} # Caching is necessary in order to avoid overwriting entries in the table. _cached_cells: Optional[Tuple[CellMaker, ...]] = None def generate_all_arithmetic_cell_makers() -> Iterable[CellMaker]: global _cached_cells if _cached_cells is None: _cached_cells = tuple(_generate_helper()) return _cached_cells
34.657825
96
0.61595
6a5b45a8d88cf31d625465e56eeef77bf441964b
423
py
Python
care/facility/migrations/0278_asset_not_working_reason.py
arpancodes/care
e4f295c29f70c7a356c0ef25f7326579992ef0cb
[ "MIT" ]
189
2020-03-17T17:18:58.000Z
2022-02-22T09:49:45.000Z
care/facility/migrations/0278_asset_not_working_reason.py
arpancodes/care
e4f295c29f70c7a356c0ef25f7326579992ef0cb
[ "MIT" ]
598
2020-03-19T21:22:09.000Z
2022-03-30T05:08:37.000Z
care/facility/migrations/0278_asset_not_working_reason.py
arpancodes/care
e4f295c29f70c7a356c0ef25f7326579992ef0cb
[ "MIT" ]
159
2020-03-19T18:45:56.000Z
2022-03-17T13:23:12.000Z
# Generated by Django 2.2.11 on 2021-10-12 08:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('facility', '0277_merge_20211011_2103'), ] operations = [ migrations.AddField( model_name='asset', name='not_working_reason', field=models.CharField(blank=True, max_length=1024, null=True), ), ]
22.263158
75
0.619385
3587575503d33a355081b85b32d67cceb6335b66
13,605
py
Python
pandas/core/arrays/integer.py
dycloud-chan/pandas
39ccb352b53e9b5b694c4f7f044774f9c3677e98
[ "BSD-3-Clause" ]
3
2018-04-24T13:31:51.000Z
2019-07-09T07:31:43.000Z
pandas/core/arrays/integer.py
dycloud-chan/pandas
39ccb352b53e9b5b694c4f7f044774f9c3677e98
[ "BSD-3-Clause" ]
4
2019-12-14T16:32:46.000Z
2022-02-12T00:32:28.000Z
pandas/core/arrays/integer.py
dycloud-chan/pandas
39ccb352b53e9b5b694c4f7f044774f9c3677e98
[ "BSD-3-Clause" ]
5
2018-04-24T13:31:56.000Z
2021-10-21T05:06:23.000Z
from __future__ import annotations from typing import overload import numpy as np from pandas._libs import ( lib, missing as libmissing, ) from pandas._typing import ( ArrayLike, AstypeArg, Dtype, DtypeObj, npt, ) from pandas.util._decorators import cache_readonly from pandas.core.dtypes.base import ( ExtensionDtype, register_extension_dtype, ) from pandas.core.dtypes.common import ( is_bool_dtype, is_datetime64_dtype, is_float_dtype, is_integer_dtype, is_object_dtype, is_string_dtype, pandas_dtype, ) from pandas.core.arrays import ExtensionArray from pandas.core.arrays.masked import BaseMaskedDtype from pandas.core.arrays.numeric import ( NumericArray, NumericDtype, ) from pandas.core.tools.numeric import to_numeric class _IntegerDtype(NumericDtype): """ An ExtensionDtype to hold a single size & kind of integer dtype. These specific implementations are subclasses of the non-public _IntegerDtype. For example we have Int8Dtype to represent signed int 8s. The attributes name & type are set when these subclasses are created. """ def __repr__(self) -> str: sign = "U" if self.is_unsigned_integer else "" return f"{sign}Int{8 * self.itemsize}Dtype()" @cache_readonly def is_signed_integer(self) -> bool: return self.kind == "i" @cache_readonly def is_unsigned_integer(self) -> bool: return self.kind == "u" @property def _is_numeric(self) -> bool: return True @classmethod def construct_array_type(cls) -> type[IntegerArray]: """ Return the array type associated with this dtype. Returns ------- type """ return IntegerArray def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None: # we only handle nullable EA dtypes and numeric numpy dtypes if not all( isinstance(t, BaseMaskedDtype) or ( isinstance(t, np.dtype) and (np.issubdtype(t, np.number) or np.issubdtype(t, np.bool_)) ) for t in dtypes ): return None np_dtype = np.find_common_type( # error: List comprehension has incompatible type List[Union[Any, # dtype, ExtensionDtype]]; expected List[Union[dtype, None, type, # _SupportsDtype, str, Tuple[Any, Union[int, Sequence[int]]], # List[Any], _DtypeDict, Tuple[Any, Any]]] [ t.numpy_dtype # type: ignore[misc] if isinstance(t, BaseMaskedDtype) else t for t in dtypes ], [], ) if np.issubdtype(np_dtype, np.integer): return INT_STR_TO_DTYPE[str(np_dtype)] elif np.issubdtype(np_dtype, np.floating): from pandas.core.arrays.floating import FLOAT_STR_TO_DTYPE return FLOAT_STR_TO_DTYPE[str(np_dtype)] return None def safe_cast(values, dtype, copy: bool): """ Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints. """ try: return values.astype(dtype, casting="safe", copy=copy) except TypeError as err: casted = values.astype(dtype, copy=copy) if (casted == values).all(): return casted raise TypeError( f"cannot safely cast non-equivalent {values.dtype} to {np.dtype(dtype)}" ) from err def coerce_to_array( values, dtype, mask=None, copy: bool = False ) -> tuple[np.ndarray, np.ndarray]: """ Coerce the input values array to numpy arrays with a mask. Parameters ---------- values : 1D list-like dtype : integer dtype mask : bool 1D array, optional copy : bool, default False if True, copy the input Returns ------- tuple of (values, mask) """ # if values is integer numpy array, preserve its dtype if dtype is None and hasattr(values, "dtype"): if is_integer_dtype(values.dtype): dtype = values.dtype if dtype is not None: if isinstance(dtype, str) and ( dtype.startswith("Int") or dtype.startswith("UInt") ): # Avoid DeprecationWarning from NumPy about np.dtype("Int64") # https://github.com/numpy/numpy/pull/7476 dtype = dtype.lower() if not issubclass(type(dtype), _IntegerDtype): try: dtype = INT_STR_TO_DTYPE[str(np.dtype(dtype))] except KeyError as err: raise ValueError(f"invalid dtype specified {dtype}") from err if isinstance(values, IntegerArray): values, mask = values._data, values._mask if dtype is not None: values = values.astype(dtype.numpy_dtype, copy=False) if copy: values = values.copy() mask = mask.copy() return values, mask values = np.array(values, copy=copy) inferred_type = None if is_object_dtype(values) or is_string_dtype(values): inferred_type = lib.infer_dtype(values, skipna=True) if inferred_type == "empty": pass elif inferred_type not in [ "floating", "integer", "mixed-integer", "integer-na", "mixed-integer-float", "string", "unicode", ]: raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") elif is_bool_dtype(values) and is_integer_dtype(dtype): values = np.array(values, dtype=int, copy=copy) elif not (is_integer_dtype(values) or is_float_dtype(values)): raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") if values.ndim != 1: raise TypeError("values must be a 1D list-like") if mask is None: mask = libmissing.is_numeric_na(values) else: assert len(mask) == len(values) if mask.ndim != 1: raise TypeError("mask must be a 1D list-like") # infer dtype if needed if dtype is None: dtype = np.dtype("int64") else: dtype = dtype.type # if we are float, let's make sure that we can # safely cast # we copy as need to coerce here if mask.any(): values = values.copy() values[mask] = 1 if inferred_type in ("string", "unicode"): # casts from str are always safe since they raise # a ValueError if the str cannot be parsed into an int values = values.astype(dtype, copy=copy) else: values = safe_cast(values, dtype, copy=False) return values, mask class IntegerArray(NumericArray): """ Array of integer (optional missing) values. .. versionchanged:: 1.0.0 Now uses :attr:`pandas.NA` as the missing value rather than :attr:`numpy.nan`. .. warning:: IntegerArray is currently experimental, and its API or internal implementation may change without warning. We represent an IntegerArray with 2 numpy arrays: - data: contains a numpy integer array of the appropriate dtype - mask: a boolean array holding a mask on the data, True is missing To construct an IntegerArray from generic array-like input, use :func:`pandas.array` with one of the integer dtypes (see examples). See :ref:`integer_na` for more. Parameters ---------- values : numpy.ndarray A 1-d integer-dtype array. mask : numpy.ndarray A 1-d boolean-dtype array indicating missing values. copy : bool, default False Whether to copy the `values` and `mask`. Attributes ---------- None Methods ------- None Returns ------- IntegerArray Examples -------- Create an IntegerArray with :func:`pandas.array`. >>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 String aliases for the dtypes are also available. They are capitalized. >>> pd.array([1, None, 3], dtype='Int32') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 >>> pd.array([1, None, 3], dtype='UInt16') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16 """ # The value used to fill '_data' to avoid upcasting _internal_fill_value = 1 # Fill values used for any/all _truthy_value = 1 _falsey_value = 0 @cache_readonly def dtype(self) -> _IntegerDtype: return INT_STR_TO_DTYPE[str(self._data.dtype)] def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False): if not (isinstance(values, np.ndarray) and values.dtype.kind in ["i", "u"]): raise TypeError( "values should be integer numpy array. Use " "the 'pd.array' function instead" ) super().__init__(values, mask, copy=copy) @classmethod def _from_sequence( cls, scalars, *, dtype: Dtype | None = None, copy: bool = False ) -> IntegerArray: values, mask = coerce_to_array(scalars, dtype=dtype, copy=copy) return IntegerArray(values, mask) @classmethod def _from_sequence_of_strings( cls, strings, *, dtype: Dtype | None = None, copy: bool = False ) -> IntegerArray: scalars = to_numeric(strings, errors="raise") return cls._from_sequence(scalars, dtype=dtype, copy=copy) def _coerce_to_array(self, value) -> tuple[np.ndarray, np.ndarray]: return coerce_to_array(value, dtype=self.dtype) @overload def astype(self, dtype: npt.DTypeLike, copy: bool = ...) -> np.ndarray: ... @overload def astype(self, dtype: ExtensionDtype, copy: bool = ...) -> ExtensionArray: ... @overload def astype(self, dtype: AstypeArg, copy: bool = ...) -> ArrayLike: ... def astype(self, dtype: AstypeArg, copy: bool = True) -> ArrayLike: """ Cast to a NumPy array or ExtensionArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- ndarray or ExtensionArray NumPy ndarray, BooleanArray or IntegerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an IntegerDtype, equivalent of same_kind casting """ dtype = pandas_dtype(dtype) if isinstance(dtype, ExtensionDtype): return super().astype(dtype, copy=copy) na_value: float | np.datetime64 | lib.NoDefault # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan na_value = np.nan elif is_datetime64_dtype(dtype): na_value = np.datetime64("NaT") else: na_value = lib.no_default return self.to_numpy(dtype=dtype, na_value=na_value, copy=False) def _values_for_argsort(self) -> np.ndarray: """ Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort : Return the indices that would sort this array. """ data = self._data.copy() if self._mask.any(): data[self._mask] = data.min() - 1 return data _dtype_docstring = """ An ExtensionDtype for {dtype} integer data. .. versionchanged:: 1.0.0 Now uses :attr:`pandas.NA` as its missing value, rather than :attr:`numpy.nan`. Attributes ---------- None Methods ------- None """ # create the Dtype @register_extension_dtype class Int8Dtype(_IntegerDtype): type = np.int8 name = "Int8" __doc__ = _dtype_docstring.format(dtype="int8") @register_extension_dtype class Int16Dtype(_IntegerDtype): type = np.int16 name = "Int16" __doc__ = _dtype_docstring.format(dtype="int16") @register_extension_dtype class Int32Dtype(_IntegerDtype): type = np.int32 name = "Int32" __doc__ = _dtype_docstring.format(dtype="int32") @register_extension_dtype class Int64Dtype(_IntegerDtype): type = np.int64 name = "Int64" __doc__ = _dtype_docstring.format(dtype="int64") @register_extension_dtype class UInt8Dtype(_IntegerDtype): type = np.uint8 name = "UInt8" __doc__ = _dtype_docstring.format(dtype="uint8") @register_extension_dtype class UInt16Dtype(_IntegerDtype): type = np.uint16 name = "UInt16" __doc__ = _dtype_docstring.format(dtype="uint16") @register_extension_dtype class UInt32Dtype(_IntegerDtype): type = np.uint32 name = "UInt32" __doc__ = _dtype_docstring.format(dtype="uint32") @register_extension_dtype class UInt64Dtype(_IntegerDtype): type = np.uint64 name = "UInt64" __doc__ = _dtype_docstring.format(dtype="uint64") INT_STR_TO_DTYPE: dict[str, _IntegerDtype] = { "int8": Int8Dtype(), "int16": Int16Dtype(), "int32": Int32Dtype(), "int64": Int64Dtype(), "uint8": UInt8Dtype(), "uint16": UInt16Dtype(), "uint32": UInt32Dtype(), "uint64": UInt64Dtype(), }
27.319277
85
0.616538
5643dcbf19a216b5183595dc75eb51b7aa440352
19,753
py
Python
ca_timers.py
wadeguthrie/combat-accountant
e6a2140baafe71191cf68e01390b1f91446e17aa
[ "Apache-2.0" ]
null
null
null
ca_timers.py
wadeguthrie/combat-accountant
e6a2140baafe71191cf68e01390b1f91446e17aa
[ "Apache-2.0" ]
58
2019-10-16T21:48:37.000Z
2021-09-08T22:33:22.000Z
ca_timers.py
wadeguthrie/combat-accountant
e6a2140baafe71191cf68e01390b1f91446e17aa
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/python import copy import curses class Timer(object): ''' Embodies a timer that counts down with fight rounds. There's optional text associated with it (that's shown while the timer is counting down) and there's optional actions when the timer actually reaches zero. This is an object built around data that is intended to be kept in the Game File data file but that's not strictly required for this object to work. ''' round_count_string = '%d Rnds: ' # assume rounds takes same space as '%d' len_timer_leader = len(round_count_string) # time removed from an announcement timer so that it'll go off at the # beginning of a round rather than the end announcement_margin = 0.1 def __init__(self, details # dict from the Game File, contains timer's info ): self.details = details # This needs to actually be from the Game File self.__complete_me() def decrement(self): self.details['rounds'] -= 1 def fire(self, owner, # ThingsInFight object to receive timer action window_manager # GmWindowManager object -- for display ): ''' Fires the timer. ''' # If there's a timer to be added back into the list, this will be # used to return it result = None if 'state' in self.details['actions']: owner.details['state'] = self.details['actions']['state'] if 'announcement' in self.details['actions']: window_manager.display_window( ('Timer Fired for %s' % self.details['parent-name']), [[{'text': self.details['actions']['announcement'], 'mode': curses.A_NORMAL}]]) if 'timer' in self.details['actions']: result = self.details['actions']['timer'] # TODO (eventually): implement this (haven't yet figured out where # |ruleset| is coming from) #if 'action' in self.details['actions']: # ruleset.do_action(owner, # self.details['actions']['action'], # None #fight_handler # ) return result def from_pieces(self, pieces, # { 'parent-name': <text>, string describing the # thing calling the timer # 'rounds': <number>, rounds until timer # fires (3.0 rounds # fires at end of 3 # rounds; 2.9 rounds # fires at beginning of # 3 rounds). # 'string': <text> or [<text>, <text>, ...], # string to display (in # fighter's notes) while # timer is running # 'actions': {'state': <text>, # string describing new # state of fighter (see # Fighter.conscious_map) # 'announcement': <text>}, # string to display (in # its own window) when # timer fires # } ): ''' Creates a new timer from scratch (rather than from data that's already in the Game File). ''' self.details = copy.deepcopy(pieces) self.__complete_me() def get_description(self): ''' Returns a long description of the timer to show the user. ''' result = [] # List of strings, one per line of output this_line = [] rounds = self.details['rounds'] if ('announcement' in self.details['actions'] and self.details['actions']['announcement'] is not None): # Add back in the little bit we shave off of an announcement so # that the timer will announce as the creature's round starts # rather than at the end. rounds += Timer.announcement_margin round_count_string = Timer.round_count_string % ( rounds + Timer.announcement_margin) this_line.append(round_count_string) if 'announcement' in self.details['actions']: this_line.append('[%s]' % self.details['actions']['announcement']) result.append(''.join(this_line)) this_line = [] if ('state' in self.details['actions'] and self.details['actions']['state'] is not None): this_line.append('<%s>' % self.details['actions']['state']) result.append(''.join(this_line)) this_line = [] if ('string' in self.details and self.details['string'] is not None and len(self.details['string']) > 0): if type(self.details['string']) is list: for substring in self.details['string']: this_line.append('%s' % (substring)) result.append(''.join(this_line)) this_line = [] else: this_line.append('%s' % (self.details['string'])) result.append(''.join(this_line)) this_line = [] if len(this_line) > 0: this_line.append('<<UNNAMED TIMER>>') result.append(''.join(this_line)) return result def get_one_line_description(self): ''' Returns a short desctiption of the timer to show the user. ''' this_line = [] rounds = self.details['rounds'] if ('announcement' in self.details['actions'] and self.details['actions']['announcement'] is not None): # Add back in the little bit we shave off of an announcement so # that the timer will announce as the creature's round starts # rather than at the end. rounds += Timer.announcement_margin round_count_string = Timer.round_count_string % ( rounds + Timer.announcement_margin) this_line.append(round_count_string) needs_headline = True if 'announcement' in self.details['actions']: this_line.append('[%s]' % self.details['actions']['announcement'][0]) needs_headline = False if ('string' in self.details and self.details['string'] is not None and len(self.details['string']) > 0): if type(self.details['string']) is list: this_line.append('%s' % (self.details['string'][0])) else: this_line.append('%s' % (self.details['string'])) needs_headline = False if needs_headline: this_line.append('<<UNNAMED TIMER>>') return ' '.join(this_line) def mark_owner_as_busy(self, is_busy=True): self.details['busy'] = is_busy def __complete_me(self): ''' Fills-in any missing parts of the timer. ''' if self.details is None: self.details = {} if 'parent-name' not in self.details: self.details['parent-name'] = '<< Unknown Parent >>' if 'busy' not in self.details: self.mark_owner_as_busy(is_busy=False) if 'rounds' not in self.details: self.details['rounds'] = 1 if 'actions' not in self.details: self.details['actions'] = {} class TimersWidget(object): ''' Consolodated GUI widget for creating timers. ''' def __init__(self, timers, # Timers object window_manager # GmWindowManager object for menus and error # reporting ): self.__timers = timers self.__window_manager = window_manager def make_timer(self, timer_recipient_name # string ): ''' Makes a timer object and adds it to the Timers list. Returns: nothing ''' timer_dict = self.make_timer_dict(timer_recipient_name) if timer_dict is not None: timer_obj = Timer(None) timer_obj.from_pieces(timer_dict) self.__timers.add(timer_obj) def make_timer_dict(self, timer_recipient_name, # string ): ''' Builds the data dictionary describing a new timer. Asks all the questions necessary to provide the dict with the data it needs. Returns: the dict for the new timer. ''' # How long is the timer? title = 'Rounds To Wait...' height = 1 width = len(title) adj = self.__window_manager.input_box_number(height, width, title) if adj is None: return None rounds = adj if rounds <= 0: return None # What does the timer do? keep_asking_menu = [('yes', True), ('no', False)] param = {'announcement': None, 'continuous_message': None, 'busy': None, 'state': None} actions_menu = [('message (continuous)', {'doit': self.__continuous_message_action, 'param': param}), ('announcement', {'doit': self.__announcement_action, 'param': param}), ('mark busy', {'doit': self.__mark_busy_action, 'param': param}), # ('state change', # {'doit': self.__new_state_action, # 'param': param}) ] keep_asking = True which_action = 0 while keep_asking: result, which_action = self.__window_manager.menu('Timer Action', actions_menu, which_action) if result is None: return None keep_asking, ignore = self.__window_manager.menu( 'Pick More Actions', keep_asking_menu) if keep_asking is None: keep_asking = True # Install the timer. if 'announcement' in param and param['announcement'] is not None: # Shave a little off the time so that the timer will announce # as his round starts rather than at the end. rounds -= Timer.announcement_margin timer_dict = {'parent-name': timer_recipient_name, 'rounds': rounds, 'string': param['continuous_message'], 'actions': {}} if param['announcement'] is not None: timer_dict['actions']['announcement'] = param['announcement'] if param['state'] is not None: timer_dict['actions']['state'] = param['state'] if param['busy'] is not None: timer_dict['busy'] = param['busy'] return timer_dict # Private and Protected Methods def __announcement_action(self, param # dict passed by the menu handler -- # contains the announcement text # associated with the timer ): ''' Handler for the timer's 'what do I do with this timer' entry. Sets the timer up to display a window containing text when the timer fires. Returns: True -- just so it's not None ''' title = 'Enter the Announcement' height = 1 width = (curses.COLS - 4) - Timer.len_timer_leader announcement = self.__window_manager.input_box(height, width, title) if announcement is not None and len(announcement) <= 0: announcement = None param['announcement'] = announcement return True def __continuous_message_action(self, param # dict passed by the menu # handler -- contains the text # associated with the timer ): ''' Handler for the timer's 'what do I do with this timer' entry. Sets the timer up to display the provided text when the timer is displayed. Returns: True -- just so it's not None ''' title = 'Enter the Continuous Message' height = 1 width = (curses.COLS - 4) - Timer.len_timer_leader string = self.__window_manager.input_box(height, width, title) if string is not None and len(string) <= 0: string = None param['continuous_message'] = string return True def __mark_busy_action(self, param # dict passed by the menu handler -- # contains the announcement text # associated with the timer ): ''' Handler for the timer's 'what do I do with this timer' entry. Sets the timer up to mark the player as busy. Returns: True -- just so it's not None ''' param['busy'] = True return True # def __new_state_action(self, # param # dict passed by the menu handler -- # # contains the destination state of the # # Fighter associated with the timer # ): # ''' # Handler for the timer's 'what do I do with this timer' entry. # Sets the timer up to change the consciousness state of it's associated # object when the timer fires. # Returns: True -- just so it's not None # ''' # state_menu = [(x, x) for x in Fighter.conscious_map.keys() # if x != 'fight'] # state_menu = sorted(state_menu, key=lambda x: x[0].upper()) # state, ignore = self.__window_manager.menu('Which State', state_menu) # if state is not None: # param['state'] = state # return True class Timers(object): ''' Keeps a list of timers. There are two parallel lists: 'data' keeps the actual data (it's a pointer to the spot in the Game File where the ultimate data is stored) while 'obj' keeps Timer objects. ''' def __init__(self, timer_details, # List from Game File containing timers owner, # ThingsInFight object to receive timer # actions. window_manager # For displaying error messages ): # data and obj are parallel arrays. 'data' is just like it is in the # Game File (and, in fact, should point to the Game File data) and # 'obj' is the Timer object from that data. self.__timers = {'data': timer_details, 'obj': []} self.__owner = owner for timer_data in timer_details: timer_obj = Timer(timer_data) self.__timers['obj'].append(timer_obj) self.__window_manager = window_manager def add(self, timer # Timer object ): ''' Adds a timer to this list's timers. Returns the timer right back, again. ''' self.__timers['data'].append(timer.details) self.__timers['obj'].append(timer) return timer def clear_all(self): ''' Removes all of this list's timers. ''' # I think I have to pop the timer data, individually, because setting # ['data'] to [] would just remove our pointer to the Game File data # without modifying the Game File data. while len(self.__timers['data']) > 0: self.__timers['data'].pop() self.__timers['obj'] = [] def decrement_all(self): ''' Decrements all timers. ''' for timer_obj in self.__timers['obj']: timer_obj.decrement() def get_all(self): ''' Returns a complete list of this list's Timer objects. ''' return self.__timers['obj'] def is_busy(self): '''Returns 'True' if a current timer has the owner marked as busy.''' for timer_obj in self.__timers['obj']: if timer_obj.details['busy']: return True return False def found_timer_string(self, string ): '''Returns 'True' if a current timer has string matching parameter.''' for timer_obj in self.__timers['obj']: if ('string' in timer_obj.details and timer_obj.details['string' ] == string): return True return False def remove_expired_keep_dying(self): ''' Removes expired timers BUT KEEPS the timers that are dying this round. Call this at the beginning of the round. Standard timers that die this round are kept so that they're shown. Returns nothing. ''' remove_these = [] for index, timer in enumerate(self.__timers['obj']): if timer.details['rounds'] < 0: # keeps timers dying this round remove_these.insert(0, index) # largest indexes last for index in remove_these: self.__fire_timer(self.__timers['obj'][index]) self.remove_timer_by_index(index) def remove_expired_kill_dying(self): ''' Removes expired timers AND REMOVES the timers that are dying this round. Call this at the end of the round to scrape off the timers that expire this round. Returns nothing. ''' remove_these = [] for index, timer in enumerate(self.__timers['obj']): if timer.details['rounds'] <= 0: # kills timers dying this round remove_these.insert(0, index) # largest indexes last for index in remove_these: self.__fire_timer(self.__timers['obj'][index]) self.remove_timer_by_index(index) def remove_timer_by_index(self, index # Index of the timer to be removed ): ''' Removes a timer from the timer list. Returns nothing. ''' del self.__timers['data'][index] del self.__timers['obj'][index] # # Private methods # def __fire_timer(self, timer # Timer object ): ''' Has the timer do whatever it does when it fires (i.e., when its time runs out). Returns nothing. ''' new_timer = timer.fire(self.__owner, self.__window_manager) if new_timer is not None: self.add(Timer(new_timer))
37.840996
79
0.512023
d815f2c7ca91ab3e6124c889fe39b6fc81676b64
4,919
py
Python
asposeimagingcloud/models/requests/get_image_features_request.py
aspose-imaging-cloud/aspose-imaging-cloud-python
9280a4a1aa415cb569ec26a05792b33186d31a85
[ "MIT" ]
1
2022-01-14T10:06:26.000Z
2022-01-14T10:06:26.000Z
asposeimagingcloud/models/requests/get_image_features_request.py
aspose-imaging-cloud/aspose-imaging-cloud-python
9280a4a1aa415cb569ec26a05792b33186d31a85
[ "MIT" ]
3
2019-07-17T15:01:31.000Z
2020-12-29T09:16:10.000Z
asposeimagingcloud/models/requests/get_image_features_request.py
aspose-imaging-cloud/aspose-imaging-cloud-python
9280a4a1aa415cb569ec26a05792b33186d31a85
[ "MIT" ]
null
null
null
# coding: utf-8 # ---------------------------------------------------------------------------- # <copyright company="Aspose" file="get_image_features_request.py"> # Copyright (c) 2018-2020 Aspose Pty Ltd. All rights reserved. # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # </summary> # ---------------------------------------------------------------------------- from asposeimagingcloud.models.requests.imaging_request import ImagingRequest from asposeimagingcloud.models.requests.http_request import HttpRequest class GetImageFeaturesRequest(ImagingRequest): """ Request model for get_image_features operation. Initializes a new instance. :param search_context_id The search context identifier. :param image_id The image identifier. :param folder The folder. :param storage The storage. """ def __init__(self, search_context_id, image_id, folder=None, storage=None): ImagingRequest.__init__(self) self.search_context_id = search_context_id self.image_id = image_id self.folder = folder self.storage = storage def to_http_info(self, config): """ Prepares initial info for HTTP request :param config: Imaging API configuration :type: asposeimagingcloud.Configuration :return: http_request configured http request :rtype: Configuration.models.requests.HttpRequest """ # verify the required parameter 'search_context_id' is set if self.search_context_id is None: raise ValueError("Missing the required parameter `search_context_id` when calling `get_image_features`") # verify the required parameter 'image_id' is set if self.image_id is None: raise ValueError("Missing the required parameter `image_id` when calling `get_image_features`") collection_formats = {} path = '/imaging/ai/imageSearch/{searchContextId}/features' path_params = {} if self.search_context_id is not None: path_params[self._lowercase_first_letter('searchContextId')] = self.search_context_id query_params = [] if self._lowercase_first_letter('imageId') in path: path = path.replace('{' + self._lowercase_first_letter('imageId' + '}'), self.image_id if self.image_id is not None else '') else: if self.image_id is not None: query_params.append((self._lowercase_first_letter('imageId'), self.image_id)) if self._lowercase_first_letter('folder') in path: path = path.replace('{' + self._lowercase_first_letter('folder' + '}'), self.folder if self.folder is not None else '') else: if self.folder is not None: query_params.append((self._lowercase_first_letter('folder'), self.folder)) if self._lowercase_first_letter('storage') in path: path = path.replace('{' + self._lowercase_first_letter('storage' + '}'), self.storage if self.storage is not None else '') else: if self.storage is not None: query_params.append((self._lowercase_first_letter('storage'), self.storage)) header_params = {} form_params = [] local_var_files = [] body_params = None # HTTP header `Accept` header_params['Accept'] = self._select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = 'multipart/form-data' if form_params else self._select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['JWT'] return HttpRequest(path, path_params, query_params, header_params, form_params, body_params, local_var_files, collection_formats, auth_settings)
45.546296
136
0.665379
fde5051fafa2e5cf1c382214f2bae13adffa4bb5
813
py
Python
src/deepfaceannotator/mappers/gender_2_mappers.py
StefanieStoppel/DeepfaceAnnotator
ef09c2bd6be3eb158f83f3c28973088b10244ac3
[ "MIT" ]
null
null
null
src/deepfaceannotator/mappers/gender_2_mappers.py
StefanieStoppel/DeepfaceAnnotator
ef09c2bd6be3eb158f83f3c28973088b10244ac3
[ "MIT" ]
null
null
null
src/deepfaceannotator/mappers/gender_2_mappers.py
StefanieStoppel/DeepfaceAnnotator
ef09c2bd6be3eb158f83f3c28973088b10244ac3
[ "MIT" ]
null
null
null
class Gender2Mapper: GENDER_LABELS_DEEPFACE = ['Woman', 'Man'] def __init__(self, analysis_dict: dict): self._genders = analysis_dict["gender"] self._most_likely_gender = analysis_dict["dominant_gender"] @property def probability_female(self): return self._genders[self.GENDER_LABELS_DEEPFACE[0]] @property def probability_male(self): return self._genders[self.GENDER_LABELS_DEEPFACE[1]] @property def values(self): return self._genders.values() @property def keys(self): return self._genders.keys() @property def items(self): return self._genders.items() @property def most_likely_gender(self): return 'Female' if self._most_likely_gender == self.GENDER_LABELS_DEEPFACE[0] else 'Male'
26.225806
97
0.676507
04f818e6a064feb5328b9623732ee846dc0f1267
1,315
py
Python
examples/computer_vision/mmdetection_pytorch/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py
RAbraham/determined
1161b667ed6d0242f70f9f15d58600f910c8d7f9
[ "Apache-2.0" ]
1
2021-03-29T13:39:45.000Z
2021-03-29T13:39:45.000Z
examples/computer_vision/mmdetection_pytorch/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py
RAbraham/determined
1161b667ed6d0242f70f9f15d58600f910c8d7f9
[ "Apache-2.0" ]
null
null
null
examples/computer_vision/mmdetection_pytorch/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py
RAbraham/determined
1161b667ed6d0242f70f9f15d58600f910c8d7f9
[ "Apache-2.0" ]
null
null
null
_base_ = "./cascade_rcnn_r50_fpn_1x_coco.py" model = dict( pretrained="open-mmlab://detectron2/resnet50_caffe", backbone=dict(norm_cfg=dict(requires_grad=False), style="caffe"), ) # use caffe img_norm img_norm_cfg = dict(mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type="LoadImageFromFile"), dict(type="LoadAnnotations", with_bbox=True), dict(type="Resize", img_scale=(1333, 800), keep_ratio=True), dict(type="RandomFlip", flip_ratio=0.5), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size_divisor=32), dict(type="DefaultFormatBundle"), dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels"]), ] test_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(1333, 800), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size_divisor=32), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline), )
32.073171
88
0.629658
637e3f3ce052f74bca339bb26b434b3f98e6a67f
509
py
Python
solutions/python3/945.py
sm2774us/amazon_interview_prep_2021
f580080e4a6b712b0b295bb429bf676eb15668de
[ "MIT" ]
42
2020-08-02T07:03:49.000Z
2022-03-26T07:50:15.000Z
solutions/python3/945.py
ajayv13/leetcode
de02576a9503be6054816b7444ccadcc0c31c59d
[ "MIT" ]
null
null
null
solutions/python3/945.py
ajayv13/leetcode
de02576a9503be6054816b7444ccadcc0c31c59d
[ "MIT" ]
40
2020-02-08T02:50:24.000Z
2022-03-26T15:38:10.000Z
class Solution: def minIncrementForUnique(self, A): st, used, move = set(A), set(), 0 heapq.heapify(A) empty = [i for i in range(80000) if i not in st][::-1] if A else [] while A: num = heapq.heappop(A) if num not in used: used.add(num) else: while empty[-1] < num: empty.pop() move += empty[-1] - num heapq.heappush(A, empty.pop()) return move
33.933333
76
0.451866
74d4795327c05d008aef2e600e08a900f640bd62
1,443
py
Python
442burn.py
SteveMacenski/Orbital-Mechanics-Tools
4110ab3514654af830dadd1804cf002ebe6a8ac8
[ "MIT" ]
null
null
null
442burn.py
SteveMacenski/Orbital-Mechanics-Tools
4110ab3514654af830dadd1804cf002ebe6a8ac8
[ "MIT" ]
null
null
null
442burn.py
SteveMacenski/Orbital-Mechanics-Tools
4110ab3514654af830dadd1804cf002ebe6a8ac8
[ "MIT" ]
null
null
null
# Senior design, finds delta V from Trans-Mars Injection Orbit to Mars Orbital R import math def brake_dv(r_mars_orbit,delta_i1,delta_i2): #inputs r of mars orbit, and 2 inclination changes mu_sun = 1.327235e20; #m^2/s^2 mu_earth = 3.986e14; mu_mars = 4.2828e13; r_mars =227.94e9; #m r_earth = 149.6e9; #m delta_i1 = math.radians(delta_i1); delta_i2 = math.radians(delta_i2); aMTO = 0.5*(r_earth + r_mars); r_SOIm = 0.576e9; #m #V at mars for mars transfer orbit v_SOIm = -math.sqrt(mu_sun*(2/r_mars - 1/aMTO)) + math.sqrt(mu_sun/r_mars); a_MTOm = 1/(2/r_SOIm - v_SOIm*v_SOIm/mu_mars); #V mars transfer at mars v_rend = math.sqrt(mu_mars*(2/r_mars_orbit - 1/a_MTOm)); #V at final orbit v_LMO = math.sqrt(mu_mars/r_mars_orbit); #V mars low orbit #DV for inclination change delta_v_inclination1 = 2*v_LMO*math.sin(delta_i1/2); delta_v_inclination2 = 2*v_LMO*math.sin(delta_i2/2); print "[delta v tot for incline 1 km/s, delta v tot for incline 2 km/s]" return [(v_rend-v_LMO)/1000+delta_v_inclination1/1000, \ (v_rend-v_LMO)/1000+delta_v_inclination2/1000]; #delta V total if __name__=="__main__"(): Isp = 318; delta_V = brake_dv(11000e3,0,20); mass_ratio1 = math.exp(delta_V[0]*1000/9.81/Isp); mass_ratio2 = math.exp(delta_V[1]*1000/9.81/Isp); print delta_V, 1-1./mass_ratio1, 1-1./mass_ratio2;
31.369565
80
0.663895
5ba26c65921e521fb6b0feaae0c219db9e18fd9d
3,210
py
Python
scripts/prod_to_local.py
ephes/python-podcast
af08970b6de318984ff1f46a19692775c8aa2d71
[ "BSD-3-Clause" ]
1
2018-11-16T08:35:44.000Z
2018-11-16T08:35:44.000Z
scripts/prod_to_local.py
ephes/python-podcast
af08970b6de318984ff1f46a19692775c8aa2d71
[ "BSD-3-Clause" ]
null
null
null
scripts/prod_to_local.py
ephes/python-podcast
af08970b6de318984ff1f46a19692775c8aa2d71
[ "BSD-3-Clause" ]
1
2018-11-17T14:56:18.000Z
2018-11-17T14:56:18.000Z
import os from subprocess import check_output import paramiko from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) # get backup dump from production host = os.environ.get("PRODUCTION_HOST") username = os.environ.get("PRODUCTION_USERNAME") db_name = os.environ.get("DATABASE_NAME") db_user = os.environ.get("POSTGRES_USER") client = paramiko.SSHClient() client.load_system_host_keys() client.connect(host, username=username) ssh_stdin, ssh_stdout, ssh_stderr = client.exec_command("cd site;python3 scripts/prod_backup.py") stdout_lines = ssh_stdout.read().decode("utf-8").split("\n") print(stdout_lines) remote_path = None for line in stdout_lines: if "scp" in line: remote_path = line.split()[1].split(":")[-1] print(remote_path) file_name = os.path.basename(remote_path) local_path = os.path.join("backups", file_name) if not os.path.exists("backups"): os.mkdir("backups") sftp = client.open_sftp() sftp.get(remote_path, "backups/{}".format(file_name)) # recreate local docker environment from production docker_postgres_cmd = "docker-compose -f local.yml up -d postgres" detach_postgres_out = check_output(docker_postgres_cmd, shell=True) print(detach_postgres_out) # restore backup dump to database docker_id_cmd = 'docker ps | grep postgres | cut -d " " -f 1' postgres_id = (check_output(docker_id_cmd, shell=True) .decode('utf-8') .replace("\n", "")) print(postgres_id) backup_copy_cmd = "docker cp {} {}:/backups".format(local_path, postgres_id) print(backup_copy_cmd) result = check_output(backup_copy_cmd, shell=True) print(result) docker_down = "docker-compose -f local.yml down" result = check_output(docker_down, shell=True) print(result) start_postgres_cmd = "docker-compose -f local.yml run --rm django ./manage.py" result = check_output(start_postgres_cmd, shell=True) print(result) restore_cmd = "docker-compose -f local.yml run --rm postgres restore {}".format(file_name) print(restore_cmd) result = check_output(restore_cmd, shell=True) print(result) # remove stale media files #delete_stale_cmd = "docker-compose -f local.yml run --rm django ./manage.py s3_stale --delete" #delete_stale_cmd = "docker-compose -f local.yml run --rm django ./manage.py s3_stale" #print(delete_stale_cmd) #result = check_output(delete_stale_cmd, shell=True) #print(result) # get new media files from s3 #backup_s3_cmd = "docker-compose -f local.yml run --rm django ./manage.py s3_backup" #print(backup_s3_cmd) #result = check_output(backup_s3_cmd, shell=True) #print(result) # recreate local db from production #dropdb_cmd = f"dropdb {db_name}" #print(dropdb_cmd) #result = check_output(dropdb_cmd, shell=True) #print(result) try: createdb_cmd = f"createuser {db_user}" print(createdb_cmd) result = check_output(createdb_cmd, shell=True) print(result) except Exception: pass try: createdb_cmd = f"createdb {db_name}" print(createdb_cmd) result = check_output(createdb_cmd, shell=True) print(result) except Exception: pass local_restore_cmd = f"gunzip -c {local_path} | psql {db_name} -U {db_name}" print(local_restore_cmd) result = check_output(local_restore_cmd, shell=True) print(result)
30.865385
97
0.75109
b17aacf2968d4c0695d8302dff9573c76e58fe44
5,501
py
Python
doc/conf.py
RamonPujol/OTSun
0a587980b8465bcc886811de246718e08e6dab06
[ "MIT" ]
5
2019-02-28T10:29:51.000Z
2022-02-09T10:31:20.000Z
doc/conf.py
RamonPujol/OTSun
0a587980b8465bcc886811de246718e08e6dab06
[ "MIT" ]
4
2017-02-07T11:10:24.000Z
2018-06-21T15:33:23.000Z
doc/conf.py
RamonPujol/OTSun
0a587980b8465bcc886811de246718e08e6dab06
[ "MIT" ]
6
2019-02-28T10:29:56.000Z
2022-03-28T16:58:40.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('.')) # sys.path.insert(0, os.path.abspath('/usr/lib/freecad-0.16/lib')) # -- Project information ----------------------------------------------------- project = u'OTSun' copyright = u'2019, Gabriel Cardona & Ramon Pujol' author = u'Gabriel Cardona & Ramon Pujol' # The short X.Y version version = u'' # The full version, including alpha/beta/rc tags release = u'' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'classic' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'otsundoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'otsun.tex', u'otsun Documentation', u'BC', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'otsun', u'otsun Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'otsun', u'otsun Documentation', author, 'otsun', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- autodoc_default_options = { 'member-order': 'bysource', } autodoc_mock_imports = ["autologging", "FreeCAD", "Part"]
29.575269
79
0.6477
06f5a41f7fcd40952ef1ebf3859fff01572ae66f
7,419
py
Python
setup.py
squarefk/test_actions
dd3b0305c49b577102786eb1c24c590ef160bc30
[ "MIT" ]
null
null
null
setup.py
squarefk/test_actions
dd3b0305c49b577102786eb1c24c590ef160bc30
[ "MIT" ]
null
null
null
setup.py
squarefk/test_actions
dd3b0305c49b577102786eb1c24c590ef160bc30
[ "MIT" ]
null
null
null
import glob import multiprocessing import os import platform import shutil import subprocess import sys from setuptools import Extension, find_packages, setup from setuptools.command.build_ext import build_ext from setuptools.command.build_py import build_py from setuptools.command.egg_info import egg_info classifiers = [ 'Development Status :: 2 - Pre-Alpha', 'Topic :: Software Development :: Compilers', 'Topic :: Multimedia :: Graphics', 'Topic :: Games/Entertainment :: Simulation', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ] project_name = os.getenv('PROJECT_NAME', 'taichi') TI_VERSION_MAJOR = 0 TI_VERSION_MINOR = 7 TI_VERSION_PATCH = 27 version = f'{TI_VERSION_MAJOR}.{TI_VERSION_MINOR}.{TI_VERSION_PATCH}' data_files = glob.glob('python/lib/*') print(data_files) packages = find_packages('python') print(packages) # Our python package root dir is python/ package_dir = 'python' def get_python_executable(): return sys.executable.replace('\\', '/') def get_os_name(): name = platform.platform() # in python 3.8, platform.platform() uses mac_ver() on macOS # it will return 'macOS-XXXX' instead of 'Darwin-XXXX' if name.lower().startswith('darwin') or name.lower().startswith('macos'): return 'osx' elif name.lower().startswith('windows'): return 'win' elif name.lower().startswith('linux'): return 'linux' assert False, "Unknown platform name %s" % name def remove_tmp(taichi_dir): shutil.rmtree(os.path.join(taichi_dir, 'assets'), ignore_errors=True) shutil.rmtree(os.path.join(taichi_dir, 'examples'), ignore_errors=True) shutil.rmtree(os.path.join(taichi_dir, 'tests'), ignore_errors=True) class CMakeExtension(Extension): def __init__(self, name): Extension.__init__(self, name, sources=[]) class EggInfo(egg_info): def run(self): taichi_dir = os.path.join(package_dir, 'taichi') remove_tmp(taichi_dir) shutil.rmtree('build', ignore_errors=True) shutil.copytree('tests/python', os.path.join(taichi_dir, 'tests')) shutil.copytree('examples', os.path.join(taichi_dir, 'examples')) shutil.copytree('external/assets', os.path.join(taichi_dir, 'assets')) egg_info.run(self) # python setup.py build runs the following commands in order: # python setup.py build_py # python setup.py build_ext class BuildPy(build_py): def run(self): build_py.run(self) taichi_dir = os.path.join(package_dir, 'taichi') remove_tmp(taichi_dir) class CMakeBuild(build_ext): def parse_cmake_args_from_env(self): # Source: TAICHI_CMAKE_ARGS=... python setup.py ... cmake_args = os.getenv('TAICHI_CMAKE_ARGS', '') return cmake_args.strip().split() def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError( "CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) # CMakeLists.txt is in the same directory as this setup.py file cmake_list_dir = os.path.abspath(os.path.dirname(__file__)) self.build_temp = os.path.join(cmake_list_dir, 'build') build_directory = os.path.abspath(self.build_temp) cmake_args = self.parse_cmake_args_from_env() cmake_args += [ f'-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={build_directory}', f'-DPYTHON_EXECUTABLE={get_python_executable()}', f'-DTI_VERSION_MAJOR={TI_VERSION_MAJOR}', f'-DTI_VERSION_MINOR={TI_VERSION_MINOR}', f'-DTI_VERSION_PATCH={TI_VERSION_PATCH}', ] cfg = 'Debug' if self.debug else 'Release' build_args = ['--config', cfg] cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] # Assuming Makefiles build_args += ['--', f'-j{multiprocessing.cpu_count()}'] self.build_args = build_args env = os.environ.copy() os.makedirs(self.build_temp, exist_ok=True) print('-' * 10, 'Running CMake prepare', '-' * 40) subprocess.check_call(['cmake', cmake_list_dir] + cmake_args, cwd=self.build_temp, env=env) print('-' * 10, 'Building extensions', '-' * 40) cmake_cmd = ['cmake', '--build', '.'] + self.build_args subprocess.check_call(cmake_cmd, cwd=self.build_temp) self.prepare_package() def prepare_package(self): # We need to make sure these additional files are ready for # - develop mode: must exist in local python/taichi/lib/ folder # - install mode: must exist in self.build_lib/taichi/lib taichi_lib_dir = 'taichi/lib' for target in ( os.path.join(package_dir, taichi_lib_dir), os.path.join(self.build_lib, taichi_lib_dir), ): shutil.rmtree(target, ignore_errors=True) os.makedirs(target) if get_os_name() == 'linux': shutil.copy(os.path.join(self.build_temp, 'libtaichi_core.so'), os.path.join(target, 'taichi_core.so')) elif get_os_name() == 'osx': shutil.copy( os.path.join(self.build_temp, 'libtaichi_core.dylib'), os.path.join(target, 'taichi_core.so')) else: shutil.copy('../runtimes/RelWithDebInfo/taichi_core.dll', os.path.join(target, 'taichi_core.pyd')) if get_os_name() != 'osx': libdevice_path = 'external/cuda_libdevice/slim_libdevice.10.bc' print("copying libdevice:", libdevice_path) assert os.path.exists(libdevice_path) shutil.copy(libdevice_path, os.path.join(target, 'slim_libdevice.10.bc')) llvm_runtime_dir = 'taichi/runtime/llvm' for f in os.listdir(llvm_runtime_dir): if f.startswith('runtime_') and f.endswith('.bc'): print(f"Fetching runtime file {f} to {target} folder") shutil.copy(os.path.join(llvm_runtime_dir, f), target) setup(name=project_name, packages=packages, package_dir={"": package_dir}, version=version, description='The Taichi Programming Language', author='Taichi developers', author_email='yuanmhu@gmail.com', url='https://github.com/taichi-dev/taichi', install_requires=[ 'numpy', 'pybind11>=2.5.0', 'sourceinspect>=0.0.4', 'colorama', 'astor', ], data_files=[('lib', data_files)], keywords=['graphics', 'simulation'], license='MIT', include_package_data=True, entry_points={ 'console_scripts': [ 'ti=taichi.main:main', ], }, classifiers=classifiers, ext_modules=[CMakeExtension('taichi_core')], cmdclass=dict(egg_info=EggInfo, build_py=BuildPy, build_ext=CMakeBuild), has_ext_modules=lambda: True)
34.995283
79
0.622591
d4e658cbd17a6728fa98cc52688f77fdc0dc3993
20,120
py
Python
NEMbox/api.py
wangjianyuan10/musicbox
f182053b07badc5d34190aeea85ff38d364a164e
[ "MIT" ]
2
2020-03-21T15:20:28.000Z
2020-04-16T07:22:46.000Z
NEMbox/api.py
e71828/musicbox
f182053b07badc5d34190aeea85ff38d364a164e
[ "MIT" ]
null
null
null
NEMbox/api.py
e71828/musicbox
f182053b07badc5d34190aeea85ff38d364a164e
[ "MIT" ]
1
2020-06-10T09:22:38.000Z
2020-06-10T09:22:38.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: omi # @Date: 2014-08-24 21:51:57 ''' 网易云音乐 Api ''' from __future__ import ( print_function, unicode_literals, division, absolute_import ) import json from collections import OrderedDict from http.cookiejar import LWPCookieJar from http.cookiejar import Cookie import platform import time import requests import requests_cache from .config import Config from .const import Constant from .storage import Storage from .encrypt import encrypted_request from . import logger requests_cache.install_cache(Constant.cache_path, expire_after=3600) log = logger.getLogger(__name__) # 歌曲榜单地址 TOP_LIST_ALL = { 0: ['云音乐新歌榜', '3779629'], 1: ['云音乐热歌榜', '3778678'], 2: ['网易原创歌曲榜', '2884035'], 3: ['云音乐飙升榜', '19723756'], 4: ['云音乐电音榜', '10520166'], 5: ['UK排行榜周榜', '180106'], 6: ['美国Billboard周榜', '60198'], 7: ['KTV嗨榜', '21845217'], 8: ['iTunes榜', '11641012'], 9: ['Hit FM Top榜', '120001'], 10: ['日本Oricon周榜', '60131'], 11: ['韩国Melon排行榜周榜', '3733003'], 12: ['韩国Mnet排行榜周榜', '60255'], 13: ['韩国Melon原声周榜', '46772709'], 14: ['中国TOP排行榜(港台榜)', '112504'], 15: ['中国TOP排行榜(内地榜)', '64016'], 16: ['香港电台中文歌曲龙虎榜', '10169002'], 17: ['华语金曲榜', '4395559'], 18: ['中国嘻哈榜', '1899724'], 19: ['法国 NRJ EuroHot 30周榜', '27135204'], 20: ['台湾Hito排行榜', '112463'], 21: ['Beatport全球电子舞曲榜', '3812895'], 22: ['云音乐ACG音乐榜', '71385702'], 23: ['云音乐嘻哈榜', '991319590'] } PLAYLIST_CLASSES = OrderedDict([ ('语种', ['华语', '欧美', '日语', '韩语', '粤语', '小语种']), ('风格', ['流行', '摇滚', '民谣', '电子', '舞曲', '说唱', '轻音乐', '爵士', '乡村', 'R&B/Soul', '古典', '民族', '英伦', '金属', '朋克', '蓝调', '雷鬼', '世界音乐', '拉丁', '另类/独立', 'New Age', '古风', '后摇', 'Bossa Nova']), ('场景', ['清晨', '夜晚', '学习', '工作', '午休', '下午茶', '地铁', '驾车', '运动', '旅行', '散步', '酒吧']), ('情感', ['怀旧', '清新', '浪漫', '性感', '伤感', '治愈', '放松', '孤独', '感动', '兴奋', '快乐', '安静', '思念']), ('主题', ['影视原声', 'ACG', '儿童', '校园', '游戏', '70后', '80后', '90后', '网络歌曲', 'KTV', '经典', '翻唱', '吉他', '钢琴', '器乐', '榜单', '00后']) ]) DEFAULT_TIMEOUT = 10 BASE_URL = 'http://music.163.com' class Parse(object): @classmethod def _song_url_by_id(cls, sid): # 128k url = 'http://music.163.com/song/media/outer/url?id={}.mp3'.format(sid) quality = 'LD 128k' return url, quality @classmethod def song_url(cls, song): if 'url' in song: # songs_url resp url = song['url'] if url is None: return Parse._song_url_by_id(song['id']) br = song['br'] if br >= 320000: quality = 'HD' elif br >= 192000: quality = 'MD' else: quality = 'LD' return url, '{} {}k'.format(quality, br // 1000) else: # songs_detail resp return Parse._song_url_by_id(song['id']) @classmethod def song_album(cls, song): # 对新老接口进行处理 if 'al' in song: if song['al'] is not None: album_name = song['al']['name'] album_id = song['al']['id'] else: album_name = '未知专辑' album_id = '' elif 'album' in song: if song['album'] is not None: album_name = song['album']['name'] album_id = song['album']['id'] else: album_name = '未知专辑' album_id = '' else: raise ValueError return album_name, album_id @classmethod def song_artist(cls, song): artist = '' # 对新老接口进行处理 if 'ar' in song: artist = ', '.join([a['name'] for a in song['ar'] if a['name'] is not None]) # 某些云盘的音乐会出现 'ar' 的 'name' 为 None 的情况 # 不过会多个 ’pc' 的字段 # {'name': '简单爱', 'id': 31393663, 'pst': 0, 't': 1, 'ar': [{'id': 0, 'name': None, 'tns': [], 'alias': []}], # 'alia': [], 'pop': 0.0, 'st': 0, 'rt': None, 'fee': 0, 'v': 5, 'crbt': None, 'cf': None, # 'al': {'id': 0, 'name': None, 'picUrl': None, 'tns': [], 'pic': 0}, 'dt': 273000, 'h': None, 'm': None, # 'l': {'br': 193000, 'fid': 0, 'size': 6559659, 'vd': 0.0}, 'a': None, 'cd': None, 'no': 0, 'rtUrl': None, # 'ftype': 0, 'rtUrls': [], 'djId': 0, 'copyright': 0, 's_id': 0, 'rtype': 0, 'rurl': None, 'mst': 9, # 'cp': 0, 'mv': 0, 'publishTime': 0, # 'pc': {'nickname': '', 'br': 192, 'fn': '简单爱.mp3', 'cid': '', 'uid': 41533322, 'alb': 'The One 演唱会', # 'sn': '简单爱', 'version': 2, 'ar': '周杰伦'}, 'url': None, 'br': 0} if artist == '' and 'pc' in song: artist = '未知艺术家' if song['pc']['ar'] is None else song['pc']['ar'] elif 'artists' in song: artist = ', '.join([a['name'] for a in song['artists']]) else: artist = '未知艺术家' return artist @classmethod def songs(cls, songs): song_info_list = [] for song in songs: url, quality = Parse.song_url(song) if not url: continue album_name, album_id = Parse.song_album(song) song_info = { 'song_id': song['id'], 'artist': Parse.song_artist(song), 'song_name': song['name'], 'album_name': album_name, 'album_id': album_id, 'mp3_url': url, 'quality': quality, 'expires': song['expires'], 'get_time': song['get_time'] } song_info_list.append(song_info) return song_info_list @classmethod def artists(cls, artists): return [{ 'artist_id': artist['id'], 'artists_name': artist['name'], 'alias': ''.join(artist['alias']) } for artist in artists] @classmethod def albums(cls, albums): return [{ 'album_id': album['id'], 'albums_name': album['name'], 'artists_name': album['artist']['name'] } for album in albums] @classmethod def playlists(cls, playlists): return [{ 'playlist_id': pl['id'], 'playlist_name': pl['name'], 'creator_name': pl['creator']['nickname'] } for pl in playlists] class NetEase(object): def __init__(self): self.header = { 'Accept': '*/*', 'Accept-Encoding': 'gzip,deflate,sdch', 'Accept-Language': 'zh-CN,zh;q=0.8,gl;q=0.6,zh-TW;q=0.4', 'Connection': 'keep-alive', 'Content-Type': 'application/x-www-form-urlencoded', 'Host': 'music.163.com', 'Referer': 'http://music.163.com', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36', } self.storage = Storage() cookie_jar = LWPCookieJar(self.storage.cookie_path) cookie_jar.load() self.session = requests.Session() self.session.cookies = cookie_jar for cookie in cookie_jar: if cookie.is_expired(): cookie_jar.clear() self.storage.database['user'] = { 'username': '', 'password': '', 'user_id': '', 'nickname': '', } self.storage.save() break @property def toplists(self): return [l[0] for l in TOP_LIST_ALL.values()] def logout(self): self.session.cookies.clear() self.storage.database['user'] = { 'username': '', 'password': '', 'user_id': '', 'nickname': '', } self.session.cookies.save() self.storage.save() def _raw_request(self, method, endpoint, data=None): if method == 'GET': resp = self.session.get( endpoint, params=data, headers=self.header, timeout=DEFAULT_TIMEOUT ) elif method == 'POST': resp = self.session.post( endpoint, data=data, headers=self.header, timeout=DEFAULT_TIMEOUT ) return resp # 生成Cookie对象 def make_cookie(self, name, value): return Cookie( version=0, name=name, value=value, port=None, port_specified=False, domain="music.163.com", domain_specified=True, domain_initial_dot=False, path="/", path_specified=True, secure=False, expires=None, discard=False, comment=None, comment_url=None, rest=None ) def request(self, method, path, params={}, default={'code': -1}, custom_cookies={}): endpoint = '{}{}'.format(BASE_URL, path) csrf_token = '' for cookie in self.session.cookies: if cookie.name == '__csrf': csrf_token = cookie.value break params.update({'csrf_token': csrf_token}) data = default for key, value in custom_cookies.items(): cookie = self.make_cookie(key, value) self.session.cookies.set_cookie(cookie) params = encrypted_request(params) try: resp = self._raw_request(method, endpoint, params) data = resp.json() except requests.exceptions.RequestException as e: log.error(e) except ValueError as e: log.error('Path: {}, response: {}'.format(path, resp.text[:200])) finally: return data def login(self, username, password): self.session.cookies.load() if username.isdigit(): path = '/weapi/login/cellphone' params = dict( phone=username, password=password, rememberLogin='true', ) else: # magic token for login # see https://github.com/Binaryify/NeteaseCloudMusicApi/blob/master/router/login.js#L15 client_token = '1_jVUMqWEPke0/1/Vu56xCmJpo5vP1grjn_SOVVDzOc78w8OKLVZ2JH7IfkjSXqgfmh' path = '/weapi/login' params = dict( username=username, password=password, rememberLogin='true', clientToken=client_token ) data = self.request('POST', path, params) self.session.cookies.save() return data # 每日签到 def daily_task(self, is_mobile=True): path = '/weapi/point/dailyTask' params = dict(type=0 if is_mobile else 1) return self.request('POST', path, params) # 用户歌单 def user_playlist(self, uid, offset=0, limit=50): path = '/weapi/user/playlist' params = dict( uid=uid, offset=offset, limit=limit, csrf_token='' ) return self.request('POST', path, params).get('playlist', []) # 每日推荐歌单 def recommend_resource(self): path = '/weapi/v1/discovery/recommend/resource' return self.request('POST', path).get('recommend', []) # 每日推荐歌曲 def recommend_playlist(self, total=True, offset=0, limit=20): path = '/weapi/v1/discovery/recommend/songs' # NOQA params = dict( total=total, offset=offset, limit=limit, csrf_token='' ) return self.request('POST', path, params).get('recommend', []) # 私人FM def personal_fm(self): path = '/weapi/v1/radio/get' return self.request('POST', path).get('data', []) # like def fm_like(self, songid, like=True, time=25, alg='itembased'): path = '/weapi/radio/like' params = dict( alg=alg, trackId=songid, like='true' if like else 'false', time=time ) return self.request('POST', path, params)['code'] == 200 # FM trash def fm_trash(self, songid, time=25, alg='RT'): path = '/weapi/radio/trash/add' params = dict( songId=songid, alg=alg, time=time, ) return self.request('POST', path, params)['code'] == 200 # 搜索单曲(1),歌手(100),专辑(10),歌单(1000),用户(1002) *(type)* def search(self, keywords, stype=1, offset=0, total='true', limit=50): path = '/weapi/search/get' params = dict( s=keywords, type=stype, offset=offset, total=total, limit=limit ) return self.request('POST', path, params).get('result', {}) # 新碟上架 def new_albums(self, offset=0, limit=50): path = '/weapi/album/new' params = dict( area='ALL', offset=offset, total=True, limit=limit, ) return self.request('POST', path, params).get('albums', []) # 歌单(网友精选碟) hot||new http://music.163.com/#/discover/playlist/ def top_playlists(self, category='全部', order='hot', offset=0, limit=50): path = '/weapi/playlist/list' params = dict( cat=category, order=order, offset=offset, total='true', limit=limit ) return self.request('POST', path, params).get('playlists', []) def playlist_catelogs(self): path = '/weapi/playlist/catalogue' return self.request('POST', path) # 歌单详情 def playlist_detail(self, playlist_id): path = '/weapi/v3/playlist/detail' params = dict( id=playlist_id, total='true', limit=1000, n=1000, offest=0 ) # cookie添加os字段 custom_cookies = dict( os=platform.system() ) return self.request('POST', path, params, {'code': -1}, custom_cookies).get('playlist', {}).get('tracks', []) # 热门歌手 http://music.163.com/#/discover/artist/ def top_artists(self, offset=0, limit=100): path = '/weapi/artist/top' params = dict( offset=offset, total=True, limit=limit ) return self.request('POST', path, params).get('artists', []) # 热门单曲 http://music.163.com/discover/toplist?id= def top_songlist(self, idx=0, offset=0, limit=100): playlist_id = TOP_LIST_ALL[idx][1] return self.playlist_detail(playlist_id) # 歌手单曲 def artists(self, artist_id): path = '/weapi/v1/artist/{}'.format(artist_id) return self.request('POST', path).get('hotSongs', []) def get_artist_album(self, artist_id, offset=0, limit=50): path = '/weapi/artist/albums/{}'.format(artist_id) params = dict( offset=offset, total=True, limit=limit ) return self.request('POST', path, params).get('hotAlbums', []) # album id --> song id set def album(self, album_id): path = '/weapi/v1/album/{}'.format(album_id) return self.request('POST', path).get('songs', []) def song_comments(self, music_id, offset=0, total='false', limit=100): path = '/weapi/v1/resource/comments/R_SO_4_{}/'.format(music_id) params = dict( rid=music_id, offset=offset, total=total, limit=limit ) return self.request('POST', path, params) # song ids --> song urls ( details ) def songs_detail(self, ids): path = '/weapi/v3/song/detail' params = dict( c=json.dumps([{'id': _id} for _id in ids]), ids=json.dumps(ids), ) return self.request('POST', path, params).get('songs', []) def songs_url(self, ids): quality = Config().get('music_quality') rate_map = { 0: 320000, 1: 192000, 2: 128000 } path = '/weapi/song/enhance/player/url' params = dict( ids=ids, br=rate_map[quality] ) return self.request('POST', path, params).get('data', []) # lyric http://music.163.com/api/song/lyric?os=osx&id= &lv=-1&kv=-1&tv=-1 def song_lyric(self, music_id): path = '/weapi/song/lyric' params = dict( os='osx', id=music_id, lv=-1, kv=-1, tv=-1 ) lyric = self.request('POST', path, params).get( 'lrc', {}).get('lyric', []) if not lyric: return [] else: return lyric.split('\n') def song_tlyric(self, music_id): path = '/weapi/song/lyric' params = dict( os='osx', id=music_id, lv=-1, kv=-1, tv=-1 ) lyric = self.request('POST', path, params).get( 'tlyric', {}).get('lyric', []) if not lyric: return [] else: return lyric.split('\n') # 今日最热(0), 本周最热(10),历史最热(20),最新节目(30) def djchannels(self, offset=0, limit=50): path = '/weapi/djradio/hot/v1' params = dict( limit=limit, offset=offset ) channels = self.request('POST', path, params).get('djRadios', []) return channels def djprograms(self, radio_id, asc=False, offset=0, limit=50): path = '/weapi/dj/program/byradio' params = dict( asc=asc, radioId=radio_id, offset=offset, limit=limit ) programs = self.request('POST', path, params).get('programs', []) return [p['mainSong'] for p in programs] # 获取版本 def get_version(self): action = 'https://pypi.org/pypi/macmusicbox/json' try: return requests.get(action).json() except requests.exceptions.RequestException as e: log.error(e) return {} def dig_info(self, data, dig_type): if not data: return [] if dig_type == 'songs' or dig_type == 'fmsongs': urls = self.songs_url([s['id'] for s in data]) timestamp = time.time() # api 返回的 urls 的 id 顺序和 data 的 id 顺序不一致 # 为了获取到对应 id 的 url,对返回的 urls 做一个 id2index 的缓存 # 同时保证 data 的 id 顺序不变 url_id_index = {} for index, url in enumerate(urls): url_id_index[url['id']] = index for s in data: url_index = url_id_index.get(s['id']) if url_index is None: log.error("can't get song url, id: %s", s['id']) continue s['url'] = urls[url_index]['url'] s['br'] = urls[url_index]['br'] s['expires'] = urls[url_index]['expi'] s['get_time'] = timestamp return Parse.songs(data) elif dig_type == 'refresh_urls': urls_info = self.songs_url(data) timestamp = time.time() songs = [] for url_info in urls_info: song = {} song['song_id'] = url_info['id'] song['mp3_url'] = url_info['url'] song['expires'] = url_info['expi'] song['get_time'] = timestamp songs.append(song) return songs elif dig_type == 'artists': return Parse.artists(data) elif dig_type == 'albums': return Parse.albums(data) elif dig_type == 'playlists' or dig_type == 'top_playlists': return Parse.playlists(data) elif dig_type == 'playlist_classes': return list(PLAYLIST_CLASSES.keys()) elif dig_type == 'playlist_class_detail': return PLAYLIST_CLASSES[data] else: raise ValueError('Invalid dig type')
32.140575
150
0.505716
d65c3318009b39e8f9f4e8fee874e2eb9c6c8dfc
4,371
py
Python
sigal/utils.py
fidergo-stephane-gourichon/sigal
b1f2e947700e618425e170e8758b1fbb82c91acb
[ "MIT" ]
null
null
null
sigal/utils.py
fidergo-stephane-gourichon/sigal
b1f2e947700e618425e170e8758b1fbb82c91acb
[ "MIT" ]
null
null
null
sigal/utils.py
fidergo-stephane-gourichon/sigal
b1f2e947700e618425e170e8758b1fbb82c91acb
[ "MIT" ]
null
null
null
# Copyright (c) 2011-2020 - Simon Conseil # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import os import shutil from urllib.parse import quote from markdown import Markdown from markupsafe import Markup VIDEO_MIMES = {'.mp4': 'video/mp4', '.webm': 'video/webm', '.ogv': 'video/ogg'} MD = None class Devnull: """'Black hole' for output that should not be printed""" def write(self, *_): pass def flush(self, *_): pass def copy(src, dst, symlink=False, rellink=False): """Copy or symlink the file.""" func = os.symlink if symlink else shutil.copy2 if symlink and os.path.lexists(dst): os.remove(dst) if rellink: # relative symlink from dst func(os.path.relpath(src, os.path.dirname(dst)), dst) else: try: func(src, dst) except PermissionError: # this can happen if the file is not writable, so we try to remove # it first os.remove(dst) func(src, dst) def check_or_create_dir(path): "Create the directory if it does not exist" if not os.path.isdir(path): os.makedirs(path) def url_from_path(path): """Transform path to url, converting backslashes to slashes if needed.""" if os.sep != '/': path = '/'.join(path.split(os.sep)) return quote(path) def read_markdown(filename): """Reads markdown file, converts output and fetches title and meta-data for further processing. """ global MD # Use utf-8-sig codec to remove BOM if it is present. This is only possible # this way prior to feeding the text to the markdown parser (which would # also default to pure utf-8) with open(filename, encoding='utf-8-sig') as f: text = f.read() if MD is None: MD = Markdown(extensions=['markdown.extensions.meta', 'markdown.extensions.tables'], output_format='html5') else: MD.reset() # When https://github.com/Python-Markdown/markdown/pull/672 # will be available, this can be removed. MD.Meta = {} # Mark HTML with Markup to prevent jinja2 autoescaping output = {'description': Markup(MD.convert(text))} try: meta = MD.Meta.copy() except AttributeError: pass else: output['meta'] = meta try: output['title'] = MD.Meta['title'][0] except KeyError: pass return output def is_valid_html5_video(ext): """Checks if ext is a supported HTML5 video.""" return ext in VIDEO_MIMES.keys() def get_mime(ext): """Returns mime type for extension.""" return VIDEO_MIMES[ext] class cached_property: """ A property that is only computed once per instance and then replaces itself with an ordinary attribute. Deleting the attribute resets the property. Source: https://github.com/pydanny/cached-property (BSD Licensed) https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76 """ def __init__(self, func): self.__doc__ = getattr(func, '__doc__') self.func = func def __get__(self, obj, cls): if obj is None: return self value = obj.__dict__[self.func.__name__] = self.func(obj) return value
30.354167
90
0.655914
52486be89738795f95cf21160c2e62f61cb1a1a0
4,542
py
Python
setup.py
th2-net/th2-grpc-codec
dd6d67b4bfc165589569b3924e54ea77ad4dc64c
[ "Apache-2.0" ]
null
null
null
setup.py
th2-net/th2-grpc-codec
dd6d67b4bfc165589569b3924e54ea77ad4dc64c
[ "Apache-2.0" ]
null
null
null
setup.py
th2-net/th2-grpc-codec
dd6d67b4bfc165589569b3924e54ea77ad4dc64c
[ "Apache-2.0" ]
null
null
null
# Copyright 2020-2020 Exactpro (Exactpro Systems Limited) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from distutils.cmd import Command from distutils.dir_util import copy_tree from distutils.sysconfig import get_python_lib from pathlib import Path from shutil import rmtree from pkg_resources import resource_filename from setuptools import setup, find_packages from setuptools.command.sdist import sdist class ProtoGenerator(Command): description = 'build protobuf modules' user_options = [('strict-mode', 's', 'exit with non-zero value if the proto compiling fails')] def initialize_options(self): self.strict_mode = False def finalize_options(self): pass def run(self): proto_path = os.path.abspath('src/main/proto') gen_path = os.path.abspath('src/gen/main/python') if not os.path.exists(gen_path): os.makedirs(gen_path) proto_files = [] for root, _, files in os.walk(proto_path): for filename in files: if filename.endswith('.proto'): proto_files.append(os.path.abspath(os.path.join(root, filename))) protos = [('grpc_tools', '_proto')] protos_include = [f'--proto_path={proto_path}'] + \ [f'--proto_path={resource_filename(x[0], x[1])}' for x in protos] + \ [f'--proto_path={get_python_lib()}'] from grpc_tools import protoc for proto_file in proto_files: command = ['grpc_tools.protoc'] + \ protos_include + \ [f'--python_out={gen_path}', f'--grpc_python_out={gen_path}'] + \ [f'--mypy_out={gen_path}'] + \ [proto_file] if protoc.main(command) != 0: if self.strict_mode: raise Exception(f'error: {command} failed') class CustomDist(sdist): def run(self): copy_tree(f'src/main/proto/{package_name}', package_name) copy_tree(f'src/gen/main/python/{package_name}', package_name) copy_tree(f'src/gen/main/services/python/{package_name}', package_name) Path(f'{package_name}/__init__.py').touch() Path(f'{package_name}/py.typed').touch() def make_packages(root_dir): for path in Path(root_dir).iterdir(): if path.is_dir(): path.joinpath('__init__.py').touch() make_packages(path) make_packages(package_name) self.distribution.packages = [''] + find_packages(include=[package_name, f'{package_name}.*']) self.distribution.package_data = {'': ['package_info.json'], **dict.fromkeys(self.distribution.packages[1:], ['*.proto', 'py.typed', '*.pyi'])} sdist.run(self) rmtree(package_name, ignore_errors=True) with open('package_info.json', 'r') as file: package_info = json.load(file) package_name = package_info['package_name'].replace('-', '_') package_version = package_info['package_version'] with open('README.md', 'r') as file: long_description = file.read() packages = [''] + find_packages(include=[package_name, f'{package_name}.*']) package_data = {'': ['package_info.json'], **dict.fromkeys(packages[1:], ['*.proto', 'py.typed', '*.pyi'])} setup( name=package_name, version=package_version, description=package_name, long_description=long_description, long_description_content_type='text/markdown', author='TH2-devs', author_email='th2-devs@exactprosystems.com', url='https://github.com/th2-net/th2-grpc-codec', license='Apache License 2.0', python_requires='>=3.7', install_requires=[ 'th2-grpc-common~=3.9.0' ], packages=packages, package_data=package_data, cmdclass={ 'generate': ProtoGenerator, 'sdist': CustomDist } )
34.150376
102
0.623514
5d4864ce0459ae34c162523f8bc60c58ed9716b2
1,755
py
Python
training_dataset/vid/visual.py
Anonymous502/siamfda-for-eccv
72dff5c174b7ebe30c59a6e21bb6f06fdb06c3fb
[ "Apache-2.0" ]
216
2020-03-17T03:29:15.000Z
2022-03-25T13:51:37.000Z
training_dataset/vid/visual.py
Anonymous502/siamfda-for-eccv
72dff5c174b7ebe30c59a6e21bb6f06fdb06c3fb
[ "Apache-2.0" ]
64
2020-04-20T01:17:06.000Z
2022-01-05T07:08:33.000Z
training_dataset/vid/visual.py
Anonymous502/siamfda-for-eccv
72dff5c174b7ebe30c59a6e21bb6f06fdb06c3fb
[ "Apache-2.0" ]
52
2020-05-09T12:43:33.000Z
2022-03-23T11:38:38.000Z
from os.path import join from os import listdir import cv2 import numpy as np import glob import xml.etree.ElementTree as ET visual = True color_bar = np.random.randint(0, 255, (90, 3)) VID_base_path = './ILSVRC2015' ann_base_path = join(VID_base_path, 'Annotations/VID/train/') img_base_path = join(VID_base_path, 'Data/VID/train/') sub_sets = sorted({'a', 'b', 'c', 'd', 'e'}) for sub_set in sub_sets: sub_set_base_path = join(ann_base_path, sub_set) videos = sorted(listdir(sub_set_base_path)) for vi, video in enumerate(videos): print('subset: {} video id: {:04d} / {:04d}'.format(sub_set, vi, len(videos))) video_base_path = join(sub_set_base_path, video) xmls = sorted(glob.glob(join(video_base_path, '*.xml'))) for xml in xmls: f = dict() xmltree = ET.parse(xml) size = xmltree.findall('size')[0] frame_sz = [int(it.text) for it in size] objects = xmltree.findall('object') if visual: im = cv2.imread(xml.replace('xml', 'JPEG').replace('Annotations', 'Data')) for object_iter in objects: trackid = int(object_iter.find('trackid').text) bndbox = object_iter.find('bndbox') bbox = [int(bndbox.find('xmin').text), int(bndbox.find('ymin').text), int(bndbox.find('xmax').text), int(bndbox.find('ymax').text)] if visual: pt1 = (int(bbox[0]), int(bbox[1])) pt2 = (int(bbox[2]), int(bbox[3])) cv2.rectangle(im, pt1, pt2, color_bar[trackid].tolist(), 3) if visual: cv2.imshow('img', im) cv2.waitKey(1) print('done!')
39
90
0.57208
162936782968539bedef75865beddd3aaadb4ab3
24,699
py
Python
mmhuman3d/core/visualization/visualize_keypoints2d.py
ttxskk/mmhuman3d
f6d39e24a2d5cc216448fc3bd82832ff45eee436
[ "Apache-2.0" ]
null
null
null
mmhuman3d/core/visualization/visualize_keypoints2d.py
ttxskk/mmhuman3d
f6d39e24a2d5cc216448fc3bd82832ff45eee436
[ "Apache-2.0" ]
null
null
null
mmhuman3d/core/visualization/visualize_keypoints2d.py
ttxskk/mmhuman3d
f6d39e24a2d5cc216448fc3bd82832ff45eee436
[ "Apache-2.0" ]
null
null
null
import glob import os import os.path as osp import shutil import warnings from pathlib import Path from typing import Iterable, List, Optional, Tuple, Union import cv2 import numpy as np from tqdm import tqdm from mmhuman3d.core.conventions.keypoints_mapping import KEYPOINTS_FACTORY from mmhuman3d.core.conventions.keypoints_mapping.human_data import ( HUMAN_DATA_LIMBS_INDEX, HUMAN_DATA_PALETTE, ) from mmhuman3d.utils.ffmpeg_utils import images_to_video, video_to_images from mmhuman3d.utils.keypoint_utils import get_different_colors, search_limbs from mmhuman3d.utils.path_utils import ( Existence, check_input_path, check_path_existence, check_path_suffix, prepare_output_path, ) def _plot_kp2d_frame(kp2d_person: np.ndarray, canvas: np.ndarray, limbs: Union[list, dict, np.ndarray] = HUMAN_DATA_LIMBS_INDEX, palette: Optional[Union[dict, np.ndarray]] = None, draw_bbox: bool = False, with_number: bool = False, font_size: Union[float, int] = 0.5, disable_limbs: bool = False) -> np.ndarray: """Plot a single frame(array) with keypoints, limbs, bbox, index. Args: kp2d_person (np.ndarray): `np.ndarray` shape of (J * 2). canvas (np.ndarray): cv2 image, (H * W * 3) array. limbs (Union[list, dict, np.ndarray], optional): limbs in form of `dict` or 2-dimensional `list` or `np.ndarray` of shape (num_limb, 2). `dict` is used mainly for function `visualize_kp2d`, you can also get the limbs by function `search_limbs`. Defaults to `HUMAN_DATA_LIMBS_INDEX`. palette (Optional[Union[dict, np.ndarray, list]], optional): Pass an (1, 3) `np.ndarray` or `list` [B, G, R] if want the whole limbs and keypoints will be in same color. Pass `None` to use our colorful palette. Pass an (num_limb, 3) `np.ndarray` to get each limb your specific color. `dict` is used mainly for function `visualize_kp2d`, you can also get the palette by function `search_limbs`. Defaults to `HUMAN_DATA_PALETTE`. draw_bbox (bool, optional): whether need to draw bounding boxes. Defaults to False. with_number (bool, optional): whether need to draw index numbers. Defaults to False. font_size (Union[float, int], optional): the font size of the index. Defaults to 0.5. disable_limbs (bool, optional): whether need to disable drawing limbs. Defaults to False. Returns: np.ndarray: opencv image of shape (H * W * 3). """ # slice the kp2d array kp2d_person = kp2d_person.copy() if kp2d_person.shape[-1] >= 3: kp2d_person = kp2d_person[..., :-1] warnings.warn( 'The input array has more than 2-Dimensional coordinates, will' 'keep only the first 2-Dimensions of the last axis. The new' f'array shape: {kp2d_person.shape}') if kp2d_person.ndim == 3 and kp2d_person.shape[0] == 1: kp2d_person = kp2d_person[0] assert kp2d_person.ndim == 2 and kp2d_person.shape[ -1] == 2, f'Wrong input array shape {kp2d_person.shape}, \ should be (num_kp, 2)' if draw_bbox: bbox = _get_bbox(kp2d_person, canvas, expand=True) else: bbox = None # determine the limb connections and palette if not disable_limbs: if isinstance(limbs, list): limbs = {'body': limbs} elif isinstance(limbs, np.ndarray): limbs = {'body': limbs.reshape(-1, 2).astype(np.int32).tolist()} else: assert set(limbs.keys()).issubset(HUMAN_DATA_LIMBS_INDEX) if palette is None: palette = {'body': None} elif isinstance(palette, dict): assert set(palette.keys()) == set(limbs.keys()) else: limbs = {'body': None} # draw by part to specify the thickness and color for part_name, part_limbs in limbs.items(): # scatter_points_index means the limb end points if not disable_limbs: scatter_points_index = list( set(np.array([part_limbs]).reshape(-1).tolist())) else: scatter_points_index = list(range(len(kp2d_person))) if isinstance(palette, dict) and part_name == 'body': thickness = 2 radius = 3 color = get_different_colors(len(scatter_points_index)) elif disable_limbs and palette is None: radius = 2 color = get_different_colors(len(scatter_points_index)) else: thickness = 2 radius = 2 if isinstance(palette, np.ndarray): color = palette.astype(np.int32) elif isinstance(palette, dict): color = np.array(palette[part_name]).astype(np.int32) elif isinstance(palette, list): color = np.array(palette).reshape(-1, 3).astype(np.int32) if not disable_limbs: for limb_index, limb in enumerate(part_limbs): limb_index = min(limb_index, len(color) - 1) cv2.line( canvas, tuple(kp2d_person[limb[0]].astype(np.int32)), tuple(kp2d_person[limb[1]].astype(np.int32)), color=tuple(color[limb_index].tolist()), thickness=thickness) # draw the points inside the image region for index in scatter_points_index: x, y = kp2d_person[index, :2] if np.isnan(x) or np.isnan(y): continue if 0 <= x < canvas.shape[1] and 0 <= y < canvas.shape[0]: if disable_limbs: point_color = color[index].tolist() else: point_color = color[min(color.shape[0] - 1, len(scatter_points_index) - 1)].tolist() cv2.circle( canvas, (int(x), int(y)), radius, point_color, thickness=-1) if with_number: cv2.putText( canvas, str(index), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, font_size, np.array([255, 255, 255]).astype(np.int32).tolist(), 2) # draw the bboxes if bbox is not None: bbox = bbox.astype(np.int32) cv2.rectangle(canvas, (bbox[0], bbox[2]), (bbox[1], bbox[3]), (0, 255, 255), 1) return canvas def _get_bbox(keypoint_np: np.ndarray, img_mat: Optional[np.ndarray] = None, expand: bool = False): """get bbox of kp2d.""" x_max = np.max(keypoint_np[:, 0]) x_min = np.min(keypoint_np[:, 0]) y_max = np.max(keypoint_np[:, 1]) y_min = np.min(keypoint_np[:, 1]) if expand and img_mat is not None: x_expand = (x_max - x_min) * 0.1 y_expand = (y_max - y_min) * 0.1 x_min = max(0, x_min - x_expand) x_max = min(img_mat.shape[1], x_max + x_expand) y_min = max(0, y_min - y_expand) y_max = min(img_mat.shape[0], y_max + y_expand) return np.asarray([x_min, x_max, y_min, y_max]) def _prepare_limb_palette(limbs, palette, pop_parts, data_source, mask, search_limbs_func=search_limbs): """Prepare limbs and their palette for plotting. Args: limbs (Union[np.ndarray, List[int]]): The preset limbs. This option is for free skeletons like BVH file. In most cases, it's set to None, this function will search a result for limbs automatically. palette (Iterable): The preset palette for limbs. Specified palette, three int represents (B, G, R). Should be tuple or list. In most cases, it's set to None, a palette will be generated with the result of search_limbs. pop_parts (Iterable[str]): The body part names you do not want to visualize. When it's none, nothing will be removed. data_source (str): Data source type. mask (Union[list, np.ndarray): A mask to mask out the incorrect points. Returns: Tuple[dict, dict]: (limbs_target, limbs_palette). """ if limbs is not None: limbs_target, limbs_palette = { 'body': limbs.tolist() if isinstance(limbs, np.ndarray) else limbs }, get_different_colors(len(limbs)) else: limbs_target, limbs_palette = search_limbs_func( data_source=data_source, mask=mask) if palette: limbs_palette = np.array(palette, dtype=np.uint8)[None] # check and pop the pop_parts assert set(pop_parts).issubset( HUMAN_DATA_PALETTE ), f'wrong part_names in pop_parts, supported parts are\ {set(HUMAN_DATA_PALETTE.keys())}' for part_name in pop_parts: if part_name in limbs_target: limbs_target.pop(part_name) limbs_palette.pop(part_name) return limbs_target, limbs_palette def _prepare_output_path(output_path, overwrite): """Prepare output path.""" prepare_output_path( output_path, allowed_suffix=['.mp4', ''], tag='output video', path_type='auto', overwrite=overwrite) # output_path is a directory if check_path_suffix(output_path, ['']): temp_folder = output_path os.makedirs(temp_folder, exist_ok=True) else: temp_folder = output_path + '_temp_images' if check_path_existence(temp_folder, 'dir') in [ Existence.DirectoryExistNotEmpty, Existence.DirectoryExistEmpty ]: shutil.rmtree(temp_folder) os.makedirs(temp_folder, exist_ok=True) return temp_folder def _check_frame_path(frame_list): """Check frame path.""" for frame_path in frame_list: if check_path_existence(frame_path, 'file') != Existence.FileExist or \ not check_path_suffix(frame_path, ['.png', '.jpg', '.jpeg']): raise FileNotFoundError( f'The frame should be .png or .jp(e)g: {frame_path}') def _check_temp_path(temp_folder, frame_list, overwrite): """Check temp frame folder path.""" if not overwrite and frame_list is not None and len(frame_list) > 0: if Path(temp_folder).absolute() == \ Path(frame_list[0]).parent.absolute(): raise FileExistsError( f'{temp_folder} exists (set --overwrite to overwrite).') class _CavasProducer: """Prepare background canvas, pure white if not set.""" def __init__(self, frame_list, resolution, kp2d, image_array=None, default_scale=1.5): """Initialize a canvas writer.""" # check the origin background frames if frame_list is not None: _check_frame_path(frame_list) self.frame_list = frame_list else: self.frame_list = [] self.resolution = resolution self.kp2d = kp2d # with numpy array frames self.image_array = image_array if self.image_array is not None: self.auto_resolution = self.image_array.shape[1:3] elif len(self.frame_list) > 1 and \ check_path_existence( self.frame_list[0], 'file') == Existence.FileExist: tmp_image_array = cv2.imread(self.frame_list[0]) self.auto_resolution = tmp_image_array.shape[:2] else: self.auto_resolution = [ int(np.max(kp2d) * default_scale), int(np.max(kp2d) * default_scale) ] if self.image_array is None: self.len = len(self.frame_list) else: self.len = self.image_array.shape[0] def get_data(self, frame_index): """Get frame data from frame_list of image_array.""" # frame file exists, resolution not set if frame_index < self.len and self.resolution is None: if self.image_array is not None: canvas = self.image_array[frame_index] else: canvas = cv2.imread(self.frame_list[frame_index]) kp2d_frame = self.kp2d[frame_index] # no frame file, resolution has been set elif frame_index >= self.len and self.resolution is not None: canvas = np.ones((self.resolution[0], self.resolution[1], 3), dtype=np.uint8) * 255 kp2d_frame = self.kp2d[frame_index] # frame file exists, resolution has been set elif frame_index < self.len and self.resolution is not None: if self.image_array is not None: canvas = self.image_array[frame_index] else: canvas = cv2.imread(self.frame_list[frame_index]) w_scale = self.resolution[1] / canvas.shape[1] h_scale = self.resolution[0] / canvas.shape[0] canvas = cv2.resize(canvas, (self.resolution[1], self.resolution[0]), cv2.INTER_CUBIC) kp2d_frame = np.array([[w_scale, h_scale] ]) * self.kp2d[frame_index] # no frame file, no resolution else: canvas = np.ones( (self.auto_resolution[0], self.auto_resolution[1], 3), dtype=np.uint8) * 255 kp2d_frame = self.kp2d[frame_index] return canvas, kp2d_frame def update_frame_list(frame_list, origin_frames, img_format, start, end): """Update frame list if have origin_frames.""" input_temp_folder = None # choose in frame_list or origin_frames if frame_list is None and origin_frames is None: print('No background provided, will use pure white background.') elif frame_list is not None and origin_frames is not None: warnings.warn('Redundant input, will only use frame_list.') origin_frames = None if origin_frames is not None: check_input_path( input_path=origin_frames, allowed_suffix=['.mp4', '.gif', ''], tag='origin frames', path_type='auto') if Path(origin_frames).is_file(): input_temp_folder = origin_frames + '_temp_images/' video_to_images( origin_frames, input_temp_folder, start=start, end=end) frame_list = glob.glob(osp.join(input_temp_folder, '*.png')) frame_list.sort() else: if img_format is None: frame_list = [] for im_name in os.listdir(origin_frames): if Path(im_name).suffix.lower() in [ '.png', '.jpg', '.jpeg' ]: frame_list.append(osp.join(origin_frames, im_name)) else: frame_list = [] for index in range(start, end): frame_path = osp.join(origin_frames, img_format % index) if osp.exists(frame_path): frame_list.append(frame_path) frame_list.sort() return frame_list, input_temp_folder def visualize_kp2d( kp2d: np.ndarray, output_path: Optional[str] = None, frame_list: Optional[List[str]] = None, origin_frames: Optional[str] = None, image_array: Optional[np.ndarray] = None, limbs: Optional[Union[np.ndarray, List[int]]] = None, palette: Optional[Iterable[int]] = None, data_source: str = 'coco', mask: Optional[Union[list, np.ndarray]] = None, img_format: str = '%06d.png', start: int = 0, end: Optional[int] = None, overwrite: bool = False, with_file_name: bool = True, resolution: Optional[Union[Tuple[int, int], list]] = None, fps: Union[float, int] = 30, draw_bbox: bool = False, with_number: bool = False, pop_parts: Iterable[str] = None, disable_tqdm: bool = False, disable_limbs: bool = False, return_array: Optional[bool] = False, keypoints_factory: dict = KEYPOINTS_FACTORY ) -> Union[None, np.ndarray]: """Visualize 2d keypoints to a video or into a folder of frames. Args: kp2d (np.ndarray): should be array of shape (f * J * 2) or (f * n * J * 2)] output_path (str): output video path or image folder. frame_list (Optional[List[str]], optional): list of origin background frame paths, element in list each should be a image path like `*.jpg` or `*.png`. Higher priority than `origin_frames`. Use this when your file names is hard to sort or you only want to render a small number frames. Defaults to None. origin_frames (Optional[str], optional): origin background frame path, could be `.mp4`, `.gif`(will be sliced into a folder) or an image folder. Lower priority than `frame_list`. Defaults to None. limbs (Optional[Union[np.ndarray, List[int]]], optional): if not specified, the limbs will be searched by search_limbs, this option is for free skeletons like BVH file. Defaults to None. palette (Iterable, optional): specified palette, three int represents (B, G, R). Should be tuple or list. Defaults to None. data_source (str, optional): data source type. Defaults to 'coco'. mask (Optional[Union[list, np.ndarray]], optional): mask to mask out the incorrect point. Pass a `np.ndarray` of shape (J,) or `list` of length J. Defaults to None. img_format (str, optional): input image format. Default to '%06d.png', start (int, optional): start frame index. Defaults to 0. end (int, optional): end frame index. Exclusive. Could be positive int or negative int or None. None represents include all the frames. overwrite (bool, optional): whether replace the origin frames. Defaults to False. with_file_name (bool, optional): whether write origin frame name on the images. Defaults to True. resolution (Optional[Union[Tuple[int, int], list]], optional): (height, width) of the output video will be the same size as the original images if not specified. Defaults to None. fps (Union[float, int], optional): fps. Defaults to 30. draw_bbox (bool, optional): whether need to draw bounding boxes. Defaults to False. with_number (bool, optional): whether draw index number. Defaults to False. pop_parts (Iterable[str], optional): The body part names you do not want to visualize. Supported parts are ['left_eye','right_eye' ,'nose', 'mouth', 'face', 'left_hand', 'right_hand']. Defaults to [].frame_list disable_tqdm (bool, optional): Whether to disable the entire progressbar wrapper. Defaults to False. disable_limbs (bool, optional): whether need to disable drawing limbs. Defaults to False. return_array (bool, optional): Whether to return images as a opencv array. Defaults to None. keypoints_factory (dict, optional): Dict of all the conventions. Defaults to KEYPOINTS_FACTORY. Raises: FileNotFoundError: check output video path. FileNotFoundError: check input frame paths. Returns: Union[None, np.ndarray]. """ # check the input array shape, reshape to (num_frames, num_person, J, 2) kp2d = kp2d[..., :2].copy() if kp2d.ndim == 3: kp2d = kp2d[:, np.newaxis] assert kp2d.ndim == 4 num_frames, num_person = kp2d.shape[0], kp2d.shape[1] # slice the input array temporally end = (min(num_frames - 1, end) + num_frames) % num_frames if end is not None else num_frames kp2d = kp2d[start:end] if image_array is not None: origin_frames = None frame_list = None return_array = True input_temp_folder = None else: frame_list, input_temp_folder = update_frame_list( frame_list, origin_frames, img_format, start, end) if frame_list is not None: num_frames = min(len(frame_list), num_frames) kp2d = kp2d[:num_frames] # check output path if output_path is not None: output_temp_folder = _prepare_output_path(output_path, overwrite) # check whether temp_folder will overwrite frame_list by accident _check_temp_path(output_temp_folder, frame_list, overwrite) else: output_temp_folder = None # check data_source & mask if data_source not in keypoints_factory: raise ValueError('Wrong data_source. Should choose in' f'{list(keypoints_factory.keys())}') if mask is not None: if isinstance(mask, list): mask = np.array(mask).reshape(-1) assert mask.shape == ( len(keypoints_factory[data_source]), ), f'mask length should fit with keypoints number \ {len(keypoints_factory[data_source])}' # search the limb connections and palettes from superset smplx # check and pop the pop_parts if pop_parts is None: pop_parts = [] if disable_limbs: limbs_target, limbs_palette = None, None else: limbs_target, limbs_palette = _prepare_limb_palette( limbs, palette, pop_parts, data_source, mask) canvas_producer = _CavasProducer(frame_list, resolution, kp2d, image_array) out_image_array = [] # start plotting by frame for frame_index in tqdm(range(kp2d.shape[0]), disable=disable_tqdm): canvas, kp2d_frame = canvas_producer.get_data(frame_index) # start plotting by person for person_index in range(num_person): if num_person >= 2 and not disable_limbs: limbs_palette = get_different_colors( num_person)[person_index].reshape(1, 3) canvas = _plot_kp2d_frame( kp2d_person=kp2d_frame[person_index], canvas=canvas, limbs=limbs_target, palette=limbs_palette, draw_bbox=draw_bbox, with_number=with_number, font_size=0.5, disable_limbs=disable_limbs) if with_file_name and frame_list is not None: h, w, _ = canvas.shape if frame_index <= len(frame_list) - 1: cv2.putText( canvas, str(Path(frame_list[frame_index]).name), (w // 2, h // 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * h / 500, np.array([255, 255, 255]).astype(np.int32).tolist(), 2) if output_path is not None: # write the frame with opencv if frame_list is not None and check_path_suffix(output_path, ['']): frame_path = os.path.join(output_temp_folder, Path(frame_list[frame_index]).name) img_format = None else: frame_path = \ os.path.join(output_temp_folder, f'{frame_index:06d}.png') img_format = '%06d.png' cv2.imwrite(frame_path, canvas) if return_array: out_image_array.append(canvas[None]) if input_temp_folder is not None: shutil.rmtree(input_temp_folder) # convert frames to video if output_path is not None: if check_path_suffix(output_path, ['.mp4']): images_to_video( input_folder=output_temp_folder, output_path=output_path, remove_raw_file=True, img_format=img_format, fps=fps) if return_array: out_image_array = np.concatenate(out_image_array) return out_image_array
41.441275
79
0.585449
68711423708dd17744a7e8cd2e1a176b7f6f24e4
2,567
py
Python
netgrasp/utils/exclusive_lock.py
jeremyandrews/netgrasp
4ebc86c7023bc80415211925f972a1a78000bc54
[ "BSD-2-Clause-FreeBSD" ]
34
2017-05-01T09:55:03.000Z
2021-02-21T19:40:22.000Z
netgrasp/utils/exclusive_lock.py
jeremyandrews/netgrasp
4ebc86c7023bc80415211925f972a1a78000bc54
[ "BSD-2-Clause-FreeBSD" ]
23
2017-05-29T18:12:09.000Z
2017-08-13T10:20:12.000Z
netgrasp/utils/exclusive_lock.py
jeremyandrews/netgrasp
4ebc86c7023bc80415211925f972a1a78000bc54
[ "BSD-2-Clause-FreeBSD" ]
2
2017-07-13T22:05:38.000Z
2019-05-15T15:57:54.000Z
import fcntl import os import errno import time from netgrasp.utils import debug from netgrasp.utils import simple_timer class ExclusiveFileLock: def __init__(self, ng, timeout, name): self.ng = ng self._lockfile = ng.database["lock"] self._timeout = timeout self._name = name self._timer = None self._fd = None def __enter__(self): try: self._fd = os.open(self._lockfile, os.O_CREAT) started = time.time() while True: self.ng.debugger.debug("grabbing lock: %s", (self._name,)) self._timer = simple_timer.Timer() try: fcntl.flock(self._fd, fcntl.LOCK_EX | fcntl.LOCK_NB) # We got the lock. self.ng.debugger.debug("grabbed lock (took %.5f seconds): %s", (round(self._timer.elapsed(), 5), self._name)) self._timer = simple_timer.Timer() return except (OSError, IOError) as ex: if ex.errno != errno.EAGAIN: # Resource temporarily unavailable. self.ng.debugger.warning("LOCK UNAVAILABLE: %s", (self._name,)) raise elif self._timeout is not None and time.time() > (started + self._timeout): # Exceeded timeout. self.ng.debugger.warning("LOCK TIMEOUT: %s", (self._name,)) raise # Briefly wait before trying the lock again. time.sleep(0.05) except Exception as e: self.ng.debugger.dump_exception("ExclusiveFileLock.__enter__()", False) def __exit__(self, *args): try: fcntl.flock(self._fd, fcntl.LOCK_UN) held_lock = round(self._timer.elapsed(), 5) if held_lock > 1: # Holding the lock this long suggests a possible problem. self.ng.debugger.warning("released lock (held %.5f seconds): %s", (held_lock, self._name)) else: self.ng.debugger.debug("released lock (held %.5f seconds): %s", (held_lock, self._name)) os.close(self._fd) self._timer = None self._fd = None try: # Remove the lockfile if we can. os.unlink(self._path) except: pass except Exception as e: self.ng.debugger.dump_exception("ExclusiveFileLock.__exit__()", False)
38.893939
129
0.53136
9aa7760a987eb6b9b656773e1f89ddbfa5caf11f
4,803
py
Python
examples/mnist-cnn.py
YesDrX/streamlit
1305566934152dfc5a086184d3854f1c4313a93a
[ "Apache-2.0" ]
1
2020-09-20T11:18:09.000Z
2020-09-20T11:18:09.000Z
examples/mnist-cnn.py
YesDrX/streamlit
1305566934152dfc5a086184d3854f1c4313a93a
[ "Apache-2.0" ]
1
2021-09-13T06:08:13.000Z
2021-09-13T06:08:13.000Z
examples/mnist-cnn.py
YesDrX/streamlit
1305566934152dfc5a086184d3854f1c4313a93a
[ "Apache-2.0" ]
1
2020-03-29T11:54:31.000Z
2020-03-29T11:54:31.000Z
# Copyright 2018-2020 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An example of monitoring a simple neural net as it trains.""" import streamlit as st from streamlit import config from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import SGD from keras.utils import np_utils from tensorflow import keras import math import numpy as np import pandas as pd import time import tensorflow as tf # dynamically grow the memory used on the GPU # this option is fine on non gpus as well. tf_config = tf.compat.v1.ConfigProto() tf_config.gpu_options.allow_growth = True tf_config.log_device_placement = True # https://kobkrit.com/using-allow-growth-memory-option-in-tensorflow-and-keras-dc8c8081bc96 tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=tf_config)) class MyCallback(keras.callbacks.Callback): def __init__(self, x_test): self._x_test = x_test def on_train_begin(self, logs=None): st.header("Summary") self._summary_chart = st.area_chart() self._summary_stats = st.text("%8s : 0" % "epoch") st.header("Training Log") def on_epoch_begin(self, epoch, logs=None): self._ts = time.time() self._epoch = epoch st.subheader("Epoch %s" % epoch) self._epoch_chart = st.line_chart() self._epoch_progress = st.info("No stats yet.") self._epoch_summary = st.empty() def on_batch_end(self, batch, logs=None): if batch % 10 == 0: rows = {"loss": [logs["loss"]], "accuracy": [logs["accuracy"]]} self._epoch_chart.add_rows(rows) if batch % 100 == 99: rows = {"loss": [logs["loss"]], "accuracy": [logs["accuracy"]]} self._summary_chart.add_rows(rows) percent_complete = batch / self.params["steps"] self._epoch_progress.progress(math.ceil(percent_complete * 100)) ts = time.time() - self._ts self._epoch_summary.text( "loss: %(loss)7.5f | accuracy: %(accuracy)7.5f | ts: %(ts)d" % {"loss": logs["loss"], "accuracy": logs["accuracy"], "ts": ts} ) def on_epoch_end(self, epoch, logs=None): # st.write('**Summary**') indices = np.random.choice(len(self._x_test), 36) test_data = self._x_test[indices] prediction = np.argmax(self.model.predict(test_data), axis=1) st.image(1.0 - test_data, caption=prediction) summary = "\n".join( "%(k)8s : %(v)8.5f" % {"k": k, "v": v} for (k, v) in logs.items() ) st.text(summary) self._summary_stats.text( "%(epoch)8s : %(epoch)s\n%(summary)s" % {"epoch": epoch, "summary": summary} ) st.title("MNIST CNN") (x_train, y_train), (x_test, y_test) = mnist.load_data() img_width = 28 img_height = 28 x_train = x_train.astype("float32") x_train /= 255.0 x_test = x_test.astype("float32") x_test /= 255.0 # reshape input data x_train = x_train.reshape(x_train.shape[0], img_width, img_height, 1) x_test = x_test.reshape(x_test.shape[0], img_width, img_height, 1) # one hot encode outputs y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # build model model = Sequential() layer_1_size = 10 epochs = 3 model.add(Conv2D(10, (5, 5), input_shape=(img_width, img_height, 1), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Conv2D(config.layer_2_size, (5, 5), input_shape=(img_width, img_height,1), activation='relu')) # model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(8, activation="relu")) model.add(Dense(num_classes, activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["accuracy"]) show_terminal_output = not config.get_option("server.liveSave") model.fit( x_train, y_train, validation_data=(x_test, y_test), epochs=epochs, verbose=show_terminal_output, callbacks=[MyCallback(x_test)], ) st.success("Finished training!") # model.save("convnet.h5")
33.124138
106
0.681657
a8a3095306912b2e66edbe779bb236acc4dd2efb
12,211
py
Python
src/biome/text/helpers.py
ignacioct/biome-text
e4eab5fd4ea9115bd600f61e97429977053da2a5
[ "Apache-2.0" ]
null
null
null
src/biome/text/helpers.py
ignacioct/biome-text
e4eab5fd4ea9115bd600f61e97429977053da2a5
[ "Apache-2.0" ]
null
null
null
src/biome/text/helpers.py
ignacioct/biome-text
e4eab5fd4ea9115bd600f61e97429977053da2a5
[ "Apache-2.0" ]
null
null
null
import copy import functools import inspect import os import os.path import re from inspect import Parameter from typing import Any from typing import Callable from typing import Dict from typing import Iterable from typing import List from typing import Optional from typing import Tuple from typing import Type import spacy import spacy.gold import yaml from allennlp.common import util from allennlp.data import Token as AllenNLPToken from allennlp.data.dataset_readers.dataset_utils import to_bioul from spacy.tokens import Token as SpacyToken from spacy.tokens.doc import Doc from biome.text import environment _INVALID_TAG_CHARACTERS = re.compile(r"[^-/\w\.]") def yaml_to_dict(filepath: str) -> Dict[str, Any]: """Loads a yaml file into a data dictionary Parameters ---------- filepath Path to the yaml file Returns ------- dict """ with open(filepath) as yaml_content: config = yaml.safe_load(yaml_content) return config def get_env_cuda_device() -> int: """Gets the cuda device from an environment variable. This is necessary to activate a GPU if available Returns ------- cuda_device The integer number of the CUDA device """ cuda_device = int(os.getenv(environment.CUDA_DEVICE, "-1")) return cuda_device def update_method_signature( signature: inspect.Signature, to_method: Callable ) -> Callable: """Updates the signature of a method Parameters ---------- signature The signature with which to update the method to_method The method whose signature will be updated Returns ------- updated_method """ def wrapper(*args, **kwargs): return to_method(*args, **kwargs) wrapper.__signature__ = signature wrapper.__doc__ = to_method.__doc__ return wrapper def isgeneric(class_type: Type) -> bool: """Checks if a class type is a generic type (List[str] or Union[str, int]""" return hasattr(class_type, "__origin__") def is_running_on_notebook() -> bool: """Checks if code is running inside a jupyter notebook""" try: import IPython return IPython.get_ipython().has_trait("kernel") except (AttributeError, NameError, ModuleNotFoundError): return False def split_signature_params_by_predicate( signature_function: Callable, predicate: Callable ) -> Tuple[List[Parameter], List[Parameter]]: """Splits parameters signature by defined boolean predicate function""" signature = inspect.signature(signature_function) parameters = list( filter( lambda p: p.name != "self" and p.kind not in [Parameter.VAR_KEYWORD, Parameter.VAR_POSITIONAL], signature.parameters.values(), ) ) matches_group = list(filter(lambda p: predicate(p), parameters)) non_matches_group = list(filter(lambda p: not predicate(p), parameters)) return matches_group, non_matches_group def sanitize_metric_name(name: str) -> str: """Sanitizes the name to comply with tensorboardX conventions when logging. Parameter --------- name Name of the metric Returns ------- sanitized_name """ if not name: return name new_name = _INVALID_TAG_CHARACTERS.sub("_", name) new_name = new_name.lstrip("/") return new_name def save_dict_as_yaml(dictionary: dict, path: str) -> str: """Save a cfg dict to path as yaml Parameters ---------- dictionary Dictionary to be saved path Filesystem location where the yaml file will be saved Returns ------- path Location of the yaml file """ dir_name = os.path.dirname(path) # Prevent current workdir relative routes # `save_dict_as_yaml("just_here.yml") if dir_name: os.makedirs(dir_name, exist_ok=True) with open(path, "w") as yml_file: yaml.dump(dictionary, yml_file, default_flow_style=False, allow_unicode=True) return path def get_full_class_name(the_class: Type) -> str: """Given a type class return the full qualified class name """ # o.__module__ + "." + o.__class__.__qualname__ is an example in # this context of H.L. Mencken's "neat, plausible, and wrong." # Python makes no guarantees as to whether the __module__ special # attribute is defined, so we take a more circumspect approach. # Alas, the module name is explicitly excluded from __qualname__ # in Python 3. module = the_class.__module__ if module is None or module == str.__class__.__module__: return the_class.__name__ # Avoid reporting __builtin__ else: return module + "." + the_class.__name__ def stringify(value: Any) -> Any: """Creates an equivalent data structure representing data values as string Parameters ---------- value Value to be stringified Returns ------- stringified_value """ if value is None or isinstance(value, str): return value if isinstance(value, dict): return {key: stringify(value) for key, value in value.items()} if isinstance(value, Iterable): return [stringify(v) for v in value] return str(value) def sanitize_for_params(x: Any) -> Any: """Sanitizes the input for a more flexible usage with AllenNLP's `.from_params()` machinery. For now it is mainly used to transform numpy numbers to python types Parameters ---------- x The parameter passed on to `allennlp.common.FromParams.from_params()` Returns ------- sanitized_x """ # AllenNLP has a similar function (allennlp.common.util.sanitize) but it does not work for my purpose, since # numpy types are checked only after the float type check, and: # isinstance(numpy.float64(1), float) == True !!! if isinstance(x, util.numpy.number): return x.item() elif isinstance(x, util.numpy.bool_): # Numpy bool_ need to be converted to python bool. return bool(x) if isinstance(x, (str, float, int, bool)): return x elif isinstance(x, dict): # Dicts need their values sanitized return {key: sanitize_for_params(value) for key, value in x.items()} # Lists and Tuples need their values sanitized elif isinstance(x, list): return [sanitize_for_params(x_i) for x_i in x] elif isinstance(x, tuple): return tuple(sanitize_for_params(x_i) for x_i in x) # We include `to_json` function customize sanitization for user defined classes elif hasattr(x, "to_json"): return x.to_json() return x def sanitize_for_yaml(value: Any): """Sanitizes the value for a simple yaml output, that is classes only built-in types""" if isinstance(value, list): return [sanitize_for_yaml(v) for v in value] if isinstance(value, tuple): return tuple(sanitize_for_yaml(v) for v in value) if isinstance(value, dict): return {k: sanitize_for_yaml(v) for k, v in value.items()} try: yaml.dump(value) # we try a string representation except Exception: return str(value) else: return value def span_labels_to_tag_labels( labels: List[str], label_encoding: str = "BIO" ) -> List[str]: """Converts a list of span labels to tag labels following `spacy.gold.biluo_tags_from_offsets` Parameters ---------- labels Span labels to convert label_encoding The label format used for the tag labels Returns ------- tag_labels """ if label_encoding == "BIOUL": converted_labels = [ f"{char}-{label}" for char in ["B", "I", "U", "L"] for label in labels ] + ["O"] elif label_encoding == "BIO": converted_labels = [ f"{char}-{label}" for char in ["B", "I"] for label in labels ] + ["O"] else: raise ValueError( f"'{label_encoding}' is not a supported label encoding scheme." ) return converted_labels def bioul_tags_to_bio_tags(tags: List[str]) -> List[str]: """Converts BIOUL tags to BIO tags Parameters ---------- tags BIOUL tags to convert Returns ------- bio_tags """ return [tag.replace("L-", "I-", 1).replace("U-", "B-", 1) for tag in tags] def tags_from_offsets( doc: Doc, offsets: List[Dict], label_encoding: Optional[str] = "BIOUL", ) -> List[str]: """Converts offsets to BIOUL or BIO tags using spacy's `gold.biluo_tags_from_offsets`. Parameters ---------- doc A spaCy Doc created with `text` and the backbone tokenizer offsets A list of dicts with start and end character index with respect to the doc, and the span label: `{"start": int, "end": int, "label": str}` label_encoding The label encoding to be used: BIOUL or BIO Returns ------- tags (BIOUL or BIO) """ tags = spacy.gold.biluo_tags_from_offsets( doc, [(offset["start"], offset["end"], offset["label"]) for offset in offsets] ) if label_encoding == "BIO": tags = bioul_tags_to_bio_tags(tags) return tags def offsets_from_tags( doc: Doc, tags: List[str], label_encoding: Optional[str] = "BIOUL", only_token_spans: bool = False, ) -> List[Dict]: """Converts BIOUL or BIO tags to offsets Parameters ---------- doc A spaCy Doc created with `text` and the backbone tokenizer tags A list of BIOUL or BIO tags label_encoding The label encoding of the tags: BIOUL or BIO only_token_spans If True, offsets contains only token index references. Default is False Returns ------- offsets A list of dicts with start and end character/token index with respect to the doc and the span label: `{"start": int, "end": int, "start_token": int, "end_token": int, "label": str}` """ # spacy.gold.offsets_from_biluo_tags surprisingly does not check this ... if len(doc) != len(tags): raise ValueError( f"Number of tokens and tags must be the same, " f"but 'len({list(doc)}) != len({tags})" ) if label_encoding == "BIO": tags = to_bioul(tags, encoding="BIO") offsets = [] for start, end, label in spacy.gold.offsets_from_biluo_tags(doc, tags): span = doc.char_span(start, end) data = { "start_token": span.start, "end_token": span.end, "label": label, } if not only_token_spans: data.update({"start": start, "end": end}) offsets.append(data) return offsets def merge_dicts(source: Dict[str, Any], destination: Dict[str, Any]) -> Dict[str, Any]: """ Merge two dictionaries recursivelly Examples -------- >>> a = { 'first' : { 'all_rows' : { 'pass' : 'dog', 'number' : '1' } } } >>> b = { 'first' : { 'all_rows' : { 'fail' : 'cat', 'number' : '5' } } } >>> merge_dicts(b, a) {'first': {'all_rows': {'pass': 'dog', 'number': '5', 'fail': 'cat'}}} """ if not isinstance(destination, dict): return source result = copy.deepcopy(destination) for key, value in source.items(): if isinstance(value, dict): # get node or create one node = result.setdefault(key, {}) value = merge_dicts(value, node) result[key] = value return result def copy_sign_and_docs(org_func): """Decorator to copy the signature and the docstring from the org_func""" def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) wrapper.__signature__ = inspect.signature(org_func) wrapper.__doc__ = org_func.__doc__ return wrapper return decorator def spacy_to_allennlp_token(token: SpacyToken) -> AllenNLPToken: return AllenNLPToken( text=token.text, idx=token.idx, idx_end=token.idx + len(token), lemma_=token.lemma_, pos_=token.pos_, tag_=token.tag_, dep_=token.dep_, ent_type_=token.ent_type_, )
27.81549
112
0.635656
0b70ad9d9706c3000ec056e0b6d48cd4d9e697da
89
py
Python
leasing/apps.py
hkotkanen/mvj
a22d40869ef1b13924da428f3026d248acef81a7
[ "MIT" ]
null
null
null
leasing/apps.py
hkotkanen/mvj
a22d40869ef1b13924da428f3026d248acef81a7
[ "MIT" ]
null
null
null
leasing/apps.py
hkotkanen/mvj
a22d40869ef1b13924da428f3026d248acef81a7
[ "MIT" ]
null
null
null
from django.apps import AppConfig class LeasingConfig(AppConfig): name = 'leasing'
14.833333
33
0.752809
4f673cdd0d672e36f63764c06ffac78f0529bcf6
50,694
py
Python
tensorflow/python/distribute/client/client.py
rishabhBudhouliya/tensorflow
071c0532fb6f0cb793001700e158677695d06717
[ "Apache-2.0" ]
null
null
null
tensorflow/python/distribute/client/client.py
rishabhBudhouliya/tensorflow
071c0532fb6f0cb793001700e158677695d06717
[ "Apache-2.0" ]
null
null
null
tensorflow/python/distribute/client/client.py
rishabhBudhouliya/tensorflow
071c0532fb6f0cb793001700e158677695d06717
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module for `Client` and relevant cluster-worker related library. This is currently under development and the API is subject to change. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import enum import functools import os import re import sys import threading import weakref from absl import logging from six.moves import queue from tensorflow.python.distribute import input_lib from tensorflow.python.distribute import parameter_server_strategy_v2 from tensorflow.python.distribute.client import metric_utils from tensorflow.python.eager import cancellation from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import executor from tensorflow.python.eager import function as tf_function from tensorflow.python.eager import remote from tensorflow.python.framework import errors from tensorflow.python.framework import func_graph from tensorflow.python.framework import ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.training import server_lib from tensorflow.python.util import nest # Maximum time for failed worker to come back is 1 hour _WORKER_MAXIMUM_RECOVERY_SEC = 3600 # Maximum size for queued closures, "infinite" if set to 0. # When the maximum queue size is reached, further schedule calls will become # blocking until some previously queued closures are executed on workers. # Note that using an "infinite" queue size can take a non-trivial portion of # memory, and even lead to client OOM. Modify the size to a smaller value for # client with constrained memory resource (only recommended for advanced users). # Also used in unit tests to ensure the correctness when the queue is full. _CLOSURE_QUEUE_MAX_SIZE = 256 * 1024 # RPC error message from PS _RPC_ERROR_FROM_PS = "GRPC error information from remote target /job:ps" # InvalidArgumentError (unknown device) will not have "GRPC error..." string. _JOB_WORKER_STRING_IDENTIFIER = "/job:worker" class _RemoteValueStatus(enum.Enum): """The status of a `RemoteValue` object. A `RemoteValue` object can have three states: 1) not ready: no value, no non-retryable error and not aborted; 2) aborted: i.e. the execution of function was aborted because of task failure, but can be retried; 3) ready: i.e. has value or has non-tryable error; The initial state of a `RemoteValue` is "not ready". When its corresponding closure has been executed at least once, it will become aborted or ready. The state transitions are: 1) not ready -> 2) aborted: when the corresponding closure is aborted due to worker failure, and the worker failure is not immediately handled. 1) not ready -> 3) ready: when the corresponding closure has been executed successfully. 2) aborted -> 3) ready: when the `RemoteValue` is rebuilt by rerunning the corresponding closure and the closure has been executed successfully. 3) ready -> 2) aborted: when the corresponding closure had been executed successfully but later the corresponding remote worker failed. This is currently only implemented for resource `RemoteValue` like iterators. """ NOT_READY = "NOT_READY" ABORTED = "ABORTED" READY = "READY" class RemoteValue(object): """An asynchronously available value of a remotely executed function. `RemoteValue` class is used as the return value of `Client.schedule()` where the underlying concrete value comes at a later time once the function has been remotely executed. `RemoteValue` can be used as an input to a subsequent function scheduled with `Client.schedule()`. Note: this class is not thread-safe. """ def __init__(self, closure, type_spec): self._closure = closure # The type spec for this `RemoteValue` which is used to trace functions that # take this `RemoteValue` as input. self._type_spec = func_graph.convert_structure_to_signature(type_spec) self._value = None self._error = None self._status_available_event = threading.Event() self._status = _RemoteValueStatus.NOT_READY def _set_aborted(self): self._status = _RemoteValueStatus.ABORTED self._value = None self._error = None # Wake up any waiting thread and clear the event. self._status_available_event.set() def _rebuild_on(self, worker): self._status_available_event.clear() # TODO(yuefengz): we may need to rebuild its inputs as well. self._closure.execute_on(worker) def _set_value(self, value): self._status = _RemoteValueStatus.READY self._value = value self._error = None self._status_available_event.set() def _set_error(self, exception): self._status = _RemoteValueStatus.READY self._value = None self._error = exception self._status_available_event.set() def _get_value(self): self._status_available_event.wait() return self._value def _get_error(self): self._status_available_event.wait() return self._error def _set_type_spec(self, type_spec): self._type_spec = func_graph.convert_structure_to_signature(type_spec) def fetch(self): """Wait for the result of RemoteValue to be ready and return the result. Returns: The remote value, as a numpy data type (if scalar) or ndarray. Raises: FunctionRetryableError: If the function that produces this `RemoteValue` is aborted or cancelled due to failure, and the user should handle and reschedule. """ self._status_available_event.wait() if self._status is _RemoteValueStatus.ABORTED: raise FunctionRetryableError( "The corresponding function is aborted. Please reschedule the " "function.") if self._error is not None: raise self._error # pylint: disable=raising-bad-type else: if isinstance(self._value, (ops.Tensor, resource_variable_ops.BaseResourceVariable)): return self._value.numpy() else: return self._value class InputError(Exception): def __init__(self, original_exception): message = ("Input has an error, the original exception is %r, " "error message is %s." % (original_exception, str(original_exception))) super().__init__(message) class FunctionRetryableError(Exception): """An error that represents the closure was aborted and should be retried.""" pass def _maybe_get_error_and_rebuild_remote_values(worker, structure): """Attempts to return errors from `RemoteValue`s. Rebuilds them if needed.""" errors_in_structure = [] def _get_error(val): if isinstance(val, RemoteValue): if val._status is _RemoteValueStatus.ABORTED: # pylint: disable=protected-access with worker.failure_handler.wait_on_failure( on_recovery_fn=functools.partial(val._rebuild_on, worker), # pylint: disable=protected-access worker_device_name=worker.device_name): val._rebuild_on(worker) # pylint: disable=protected-access error = val._get_error() # pylint: disable=protected-access if error: errors_in_structure.append(error) nest.map_structure(_get_error, structure) if errors_in_structure: return errors_in_structure[0] else: return None def _maybe_get_remote_value(val): """Gets the value of `val` if it is a `RemoteValue`.""" if isinstance(val, RemoteValue): error = val._get_error() # pylint: disable=protected-access if error: raise AssertionError( "RemoteValue doesn't have a value because it has errors.") else: return val._get_value() # pylint: disable=protected-access else: return val def _maybe_as_type_spec(val): if isinstance(val, RemoteValue): if val._type_spec is None: # pylint: disable=protected-access raise ValueError("Output of a scheduled function that is not " "tf.function cannot be the input of another function.") return val._type_spec # pylint: disable=protected-access else: return val class PerWorkerValues(object): """Holds a list of per worker values.""" def __init__(self, values): self._values = tuple(values) def _select_worker_slice(worker_id, structured): """Selects the worker slice of each of the items in `structured`.""" def _get(x): return x._values[worker_id] if isinstance(x, PerWorkerValues) else x # pylint: disable=protected-access return nest.map_structure(_get, structured) class Closure(object): """Hold a function to be scheduled and its arguments.""" def __init__(self, function, cancellation_mgr, args=None, kwargs=None): if not callable(function): raise ValueError("Function passed to `Client.schedule` must be a " "callable object.") self._args = args or () self._kwargs = kwargs or {} if isinstance(function, def_function.Function): replica_args = _select_worker_slice(0, self._args) replica_kwargs = _select_worker_slice(0, self._kwargs) # Note: no need to handle function registration failure since this kind of # failure will not raise exceptions as designed in the runtime. The client # has to rely on subsequent operations that raise to catch function # registration failure. # Record the function tracing overhead. Note that we pass in the tracing # count of the def_function.Function as a state tracker, so that metrics # will only record the time for actual function tracing (i.e., excluding # function cache lookups). with metric_utils.monitored_timer( "function_tracing", state_tracker=function._get_tracing_count): # pylint: disable=protected-access concrete_function = function.get_concrete_function( *nest.map_structure(_maybe_as_type_spec, replica_args), **nest.map_structure(_maybe_as_type_spec, replica_kwargs)) self._function = cancellation_mgr.get_cancelable_function( concrete_function) self._output_remote_values = nest.map_structure( lambda x: RemoteValue(self, x), concrete_function.structured_outputs) elif isinstance(function, tf_function.ConcreteFunction): self._function = cancellation_mgr.get_cancelable_function(function) self._output_remote_values = nest.map_structure( lambda x: RemoteValue(self, x), function.structured_outputs) else: # Regular python functions. self._function = function # TODO(yuefengz): maybe we should trace python functions if their inputs # are Python primitives, tensors and composite tensors. self._output_remote_values = RemoteValue(self, None) def _fetch_output_remote_values(self): """Temporary method used to sync the scheduler.""" # It will do nothing if there is no return value. nest.map_structure(lambda x: x.fetch(), self._output_remote_values) # pylint: disable=protected-access def _set_output_remote_values_aborted(self): """Set output remote_value aborted.""" # It will do nothing if there is no return value. nest.map_structure(lambda x: x._set_aborted(), self._output_remote_values) # pylint: disable=protected-access def _set_output_remote_values_cancelled(self): nest.map_structure( lambda x: x._set_error( # pylint: disable=protected-access,g-long-lambda FunctionRetryableError("The corresponding function is " "cancelled. Please reschedule the " "function.")), self._output_remote_values) # pylint: disable=protected-access def execute_on(self, worker): """Executes the closure on the given worker. Args: worker: a `Worker` object. """ replica_args = _select_worker_slice(worker.worker_index, self._args) replica_kwargs = _select_worker_slice(worker.worker_index, self._kwargs) e = ( _maybe_get_error_and_rebuild_remote_values(worker, replica_args) or _maybe_get_error_and_rebuild_remote_values(worker, replica_kwargs)) if e: if not isinstance(e, InputError): e = InputError(e) for remote_value in nest.flatten(self._output_remote_values): remote_value._set_error(e) # pylint: disable=protected-access return with ops.device(worker.device_name): with context.executor_scope(worker.executor): with metric_utils.monitored_timer("closure_execution"): output_value = self._function( *nest.map_structure(_maybe_get_remote_value, replica_args), **nest.map_structure(_maybe_get_remote_value, replica_kwargs)) for remote_value, value in zip( nest.flatten(self._output_remote_values), nest.flatten(output_value)): remote_value._set_value(value) # pylint: disable=protected-access class _CoordinatedClosureQueue(object): """Manage a queue of closures, inflight count and errors from execution. This class is thread-safe. """ def __init__(self): # `self._inflight_closure_count` only tracks the number of inflight closures # that are "in generation". Once an error occurs, error generation is # incremented and all subsequent arriving closures (from inflight) are # considered "out of generation". self._inflight_closure_count = 0 self._queue_lock = threading.Lock() # Condition indicating that all pending closures (either queued or inflight) # have been processed, failed, or cancelled. self._stop_waiting_condition = threading.Condition(self._queue_lock) # Condition indicating that an item becomes available in queue (not empty). self._closures_queued_condition = threading.Condition(self._queue_lock) # Condition indicating that a queue slot becomes available (not full). # Note that even with "infinite" queue size, there is still a "practical" # size limit for the queue depending on host memory capacity, and thus the # queue will eventually become full with a lot of enqueued closures. self._queue_free_slot_condition = threading.Condition(self._queue_lock) # Condition indicating there is no inflight closures. self._no_inflight_closure_condition = threading.Condition(self._queue_lock) # Use to cancel in-flight closures. self._cancellation_mgr = cancellation.CancellationManager() if _CLOSURE_QUEUE_MAX_SIZE <= 0: logging.warning( "In ParameterServerClient, creating an infinite closure queue can " "consume a significant amount of memory and even lead to OOM.") self._queue = queue.Queue(maxsize=_CLOSURE_QUEUE_MAX_SIZE) self._error = None # The following is a lock to make sure when `wait` is called and before it # returns no `put` can be executed during this period. It is because `wait` # won't know what to do with newly put closures. This lock adds an cutoff # for `wait` so that closures put into the queue while waiting would not be # taken responsible by this `wait`. # # We cannot reuse the `self._queue_lock` since when `wait` waits for a # condition, the `self._queue_lock` will be released. # # We don't use a reader/writer's lock on purpose to reduce the complexity # of the code. self._put_wait_lock = threading.Lock() def _cancel_all_closures(self): """Clears the queue and sets remaining closures cancelled error. This method expects self._queue_lock to be held prior to entry. """ self._cancellation_mgr.start_cancel() while self._inflight_closure_count > 0: self._no_inflight_closure_condition.wait() while True: try: closure = self._queue.get(block=False) self._queue_free_slot_condition.notify() closure._set_output_remote_values_cancelled() # pylint: disable=protected-access except queue.Empty: break # The cancellation manager cannot be reused once cancelled. After all # closures (queued or inflight) are cleaned up, recreate the cancellation # manager with clean state. # Note on thread-safety: this is triggered when one of theses client APIs # are called: `schedule`, `wait`, and `done`. At the same time, no new # closures can be constructed (which reads the _cancellation_mgr to get # cancellable functions). self._cancellation_mgr = cancellation.CancellationManager() def _raise_if_error(self): """Raises the error if one exists. If an error exists, cancel the closures in queue, raises it, and clear the error. This method expects self._queue_lock to be held prior to entry. """ if self._error: logging.error("Start cancelling closures due to error %r: %s", self._error, self._error) self._cancel_all_closures() try: raise self._error # pylint: disable=raising-bad-type finally: self._error = None def put(self, closure): """Put a closure into the queue for later execution. If `mark_failed` was called before `put`, the error from the first invocation of `mark_failed` will be raised. Args: closure: The `Closure` to put into the queue. """ with self._put_wait_lock, self._queue_lock: self._queue_free_slot_condition.wait_for(lambda: not self._queue.full()) self._queue.put(closure, block=False) self._raise_if_error() self._closures_queued_condition.notify() def get(self, timeout=None): """Return a closure from the queue to be executed.""" with self._queue_lock: while self._queue.empty(): if not self._closures_queued_condition.wait(timeout=timeout): return None closure = self._queue.get(block=False) self._queue_free_slot_condition.notify() self._inflight_closure_count += 1 return closure def mark_finished(self): """Let the queue know that a closure has been successfully executed.""" with self._queue_lock: if self._inflight_closure_count < 1: raise AssertionError("There is no inflight closures to mark_finished.") self._inflight_closure_count -= 1 if self._inflight_closure_count == 0: self._no_inflight_closure_condition.notifyAll() if self._queue.empty() and self._inflight_closure_count == 0: self._stop_waiting_condition.notifyAll() def put_back(self, closure): """Put the closure back into the queue as it was not properly executed.""" with self._queue_lock: if self._inflight_closure_count < 1: raise AssertionError("There is no inflight closures to put_back.") if self._error: closure._set_output_remote_values_cancelled() # pylint: disable=protected-access else: self._queue_free_slot_condition.wait_for(lambda: not self._queue.full()) self._queue.put(closure, block=False) self._closures_queued_condition.notify() self._inflight_closure_count -= 1 if self._inflight_closure_count == 0: self._no_inflight_closure_condition.notifyAll() def wait(self, timeout=None): """Wait for all closures to be finished before returning. If `mark_failed` was called before or during `wait`, the error from the first invocation of `mark_failed` will be raised. Args: timeout: A float specifying a timeout for the wait in seconds. Returns: True unless the given timeout expired, in which case it returns False. """ with self._put_wait_lock, self._queue_lock: while (not self._error and (not self._queue.empty() or self._inflight_closure_count > 0)): if not self._stop_waiting_condition.wait(timeout=timeout): return False self._raise_if_error() return True def mark_failed(self, e): """Sets error and unblocks any wait() call.""" with self._queue_lock: # TODO(yuefengz): maybe record all failure and give users more # information? if self._inflight_closure_count < 1: raise AssertionError("There is no inflight closures to mark_failed.") if self._error is None: self._error = e self._inflight_closure_count -= 1 if self._inflight_closure_count == 0: self._no_inflight_closure_condition.notifyAll() self._stop_waiting_condition.notifyAll() def done(self): """Returns true if the queue is empty and there is no inflight closure. If `mark_failed` was called before `done`, the error from the first invocation of `mark_failed` will be raised. """ with self._queue_lock: self._raise_if_error() return self._queue.empty() and self._inflight_closure_count == 0 class WorkerPreemptionHandler(object): """Handles worker preemptions.""" def __init__(self, server_def, cluster): self._server_def = server_def self._cluster = cluster self._cluster_update_lock = threading.Lock() self._cluster_due_for_update = threading.Event() self._worker_up_cond = threading.Condition(self._cluster_update_lock) threading.Thread(target=self._preemption_handler, name="WorkerPreemptionHandler", daemon=True).start() def _validate_preemption_failure(self, e): """Validates that the given exception represents worker preemption.""" if _is_worker_failure(e): return raise e @contextlib.contextmanager def wait_on_failure(self, on_failure_fn=None, on_recovery_fn=None, worker_device_name="(unknown)"): """Catches worker preemption error and wait until failed workers are back. Args: on_failure_fn: an optional function to run if preemption happens. on_recovery_fn: an optional function to run when a worker is recovered from preemption. worker_device_name: the device name of the worker instance that is passing through the failure. Yields: None. """ try: yield except errors.OpError as e: # If the error is due to temporary connectivity issues between worker and # ps, put back closure, ignore error and do not mark worker as failure. if self._cluster._record_and_ignore_transient_ps_failure(e): # pylint: disable=protected-access if on_failure_fn: on_failure_fn() return self._validate_preemption_failure(e) logging.error("Worker %s failed with error: %s", worker_device_name, e) if on_failure_fn: on_failure_fn() with self._cluster_update_lock: self._cluster_due_for_update.set() self._worker_up_cond.wait(_WORKER_MAXIMUM_RECOVERY_SEC) logging.info("Worker %s has been recovered.", worker_device_name) if on_recovery_fn: with self.wait_on_failure( on_recovery_fn=on_recovery_fn, worker_device_name=worker_device_name): on_recovery_fn() def _preemption_handler(self): """A loop that handles preemption. This loop waits for signal of worker preemption and upon worker preemption, it waits until all workers are back and updates the cluster about the restarted workers. """ while True: self._cluster_due_for_update.wait() with self._cluster_update_lock: try: # TODO(haoyuzhang): support partial cluster recovery logging.info("Cluster now being recovered.") context.context().update_server_def(self._server_def) # Cluster updated successfully, clear the update signal, and notify # all workers that they are recovered from failure. logging.info("Cluster successfully recovered.") self._worker_up_cond.notify_all() self._cluster_due_for_update.clear() except Exception as e: # pylint: disable=broad-except self._validate_preemption_failure(e) # NOTE: Since the first RPC (GetStatus) of update_server_def is # currently blocking by default, error should only happen if: # (1) More workers failed while waiting for the previous workers to # come back; # (2) Worker failed when exchanging subsequent RPCs after the first # RPC returns. # Consider adding backoff retry logic if we see the error logged # too frequently. logging.error("Cluster update failed with error: %s. Retrying...", e) class Worker(object): """A worker in a cluster. Attributes: worker_index: The index of the worker in the cluster. device_name: The device string of the worker, e.g. "/job:worker/task:1". executor: The worker's executor for remote function execution. failure_handler: The failure handler used to handler worker preemption failure. """ def __init__(self, worker_index, device_name, cluster): self.worker_index = worker_index self.device_name = device_name self.executor = executor.new_executor(enable_async=False) self.failure_handler = cluster.failure_handler self._cluster = cluster self._resource_remote_value_refs = [] # Worker threads need to start after `Worker`'s initialization. threading.Thread(target=self._process_queue, name="WorkerClosureProcessingLoop-%d" % self.worker_index, daemon=True).start() def _set_resources_aborted(self): # TODO(yuefengz): maybe we can query whether a tensor is valid or not # instead of marking a tensor aborted? for weakref_resource in self._resource_remote_value_refs: resource = weakref_resource() if resource: resource._set_aborted() # pylint: disable=protected-access def _set_dead(self): raise NotImplementedError("_set_dead is not implemented.") def _process_closure(self, closure): """Runs a closure with preemption handling.""" try: with self._cluster.failure_handler.wait_on_failure( on_failure_fn=lambda: self._cluster._closure_queue.put_back(closure), # pylint: disable=protected-access on_recovery_fn=self._set_resources_aborted, worker_device_name=self.device_name): closure.execute_on(self) # TODO(yuefengz): we don't have to materialize results every step. with metric_utils.monitored_timer("remote_value_fetch"): closure._fetch_output_remote_values() # pylint: disable=protected-access self._cluster._closure_queue.mark_finished() # pylint: disable=protected-access except Exception as e: # pylint: disable=broad-except # Avoid logging the derived cancellation error if not isinstance(e, errors.CancelledError): logging.error( "/job:worker/task:%d encountered the following error when " "processing closure: %r:%s", self.worker_index, e, e) nest.map_structure( lambda x: x._set_error(e), # pylint: disable=protected-access closure._output_remote_values) # pylint: disable=protected-access self._cluster._closure_queue.mark_failed(e) # pylint: disable=protected-access def _process_queue(self): while True: closure = self._cluster._closure_queue.get() # pylint: disable=protected-access self._process_closure(closure) def _create_resource(self, function, args=None, kwargs=None): """Synchronously creates a per-worker resource represented by a `RemoteValue`. Args: function: the resource function to be run remotely. It should be a `tf.function`, a concrete function or a Python function. args: positional arguments to be passed to the function. kwargs: keyword arguments to be passed to the function. Returns: one or several RemoteValue objects depending on the function return values. """ # Some notes about the concurrency: currently all the activities related to # the same worker such as creating resources, setting resources' aborted # status, and executing closures happen on the same thread. This allows us # to have simpler logic of concurrency. closure = Closure( function, self._cluster._closure_queue._cancellation_mgr, # pylint: disable=protected-access args=args, kwargs=kwargs) resource_remote_value = closure._output_remote_values # pylint: disable=protected-access self._register_resource(resource_remote_value) # The following is a short-term solution to lazily create resources in # parallel. # TODO(b/160343165): we should create resources eagerly, i.e. schedule the # resource creation function as soon as users call this method. resource_remote_value._set_aborted() # pylint: disable=protected-access return resource_remote_value def _register_resource(self, resource_remote_value): if not isinstance(resource_remote_value, RemoteValue): raise ValueError( "Resource being registered is not of type `RemoteValue`.") self._resource_remote_value_refs.append(weakref.ref(resource_remote_value)) class Cluster(object): """A cluster with workers. We assume all function errors are fatal and based on this assumption our error reporting logic is: 1) Both `schedule` and `join` can raise a non-retryable error which is the first error seen by the client from any previously scheduled functions. 2) When an error is raised, there is no guarantee on how many previously scheduled functions have been executed; functions that have not been executed will be thrown away and marked as cancelled. 3) After an error is raised, the internal state of error will be cleared. I.e. functions can continue to be scheduled and subsequent calls of `schedule` or `join` will not raise the same error again. Attributes: failure_handler: The failure handler used to handler worker preemption failure. workers: a list of `Worker` objects in the cluster. """ def __init__(self, cluster_resolver, client_name="chief"): """Initializes the cluster instance and connect to the remote cluster.""" if client_name in ["worker", "ps"]: raise ValueError("Client name should not be 'worker' or 'ps'.") cluster_spec = cluster_resolver.cluster_spec() self._num_workers = len(cluster_spec.as_dict().get("worker", ())) self._num_ps = len(cluster_spec.as_dict().get("ps", ())) device_filters = server_lib.ClusterDeviceFilters() # For any worker, only the devices on PS and chief nodes are visible for i in range(self._num_workers): device_filters.set_device_filters( "worker", i, ["/job:ps", "/job:%s" % client_name]) # Similarly for any ps, only the devices on workers and chief are visible for i in range(self._num_ps): device_filters.set_device_filters( "ps", i, ["/job:worker", "/job:%s" % client_name]) context.context().mirroring_policy = context.MIRRORING_ALL # Allow at most one outstanding RPC for each worker at a certain time. This # is to simplify worker failure handling in the runtime os.environ["TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE"] = "False" remote.connect_to_cluster(cluster_spec, job_name=client_name, protocol=cluster_resolver.rpc_layer, cluster_device_filters=device_filters) # Ignore PS failures reported by workers due to transient connection errors. # Transient connectivity issues between workers and PS are relayed by the # workers to the client, leading the client to believe that there are PS # failures. The difference between transient vs. permanent PS failure is the # number of reports from the workers. When this env var is set to a positive # integer K, the client ignores up to K reports of a failed PS task. I.e., # only when there are more than K trials of executing closures fail due to # errors from the same PS instance do we consider the PS instance encounters # a failure. # TODO(b/164279603): Remove this workaround when the underlying connectivity # issue in gRPC server is resolved. self._transient_ps_failures_threshold = int(os.environ.get( "TF_CLIENT_IGNORE_TRANSIENT_PS_FAILURES", 3)) self._potential_ps_failures_lock = threading.Lock() self._potential_ps_failures_count = [0] * self._num_ps self._closure_queue = _CoordinatedClosureQueue() self.failure_handler = WorkerPreemptionHandler(context.get_server_def(), self) worker_device_strings = [ "/job:worker/replica:0/task:%d" % i for i in range(self._num_workers) ] self.workers = [ Worker(i, w, self) for i, w in enumerate(worker_device_strings) ] def _record_and_ignore_transient_ps_failure(self, e): """Records potential PS failures and return if failure should be ignored.""" if self._transient_ps_failures_threshold <= 0 or not _is_ps_failure(e): return False ps_tasks = _extract_failed_ps_instances(str(e)) with self._potential_ps_failures_lock: for t in ps_tasks: self._potential_ps_failures_count[t] += 1 # The number of UnavailableError encountered on this PS task exceeds the # maximum number of ignored error if (self._potential_ps_failures_count[t] >= self._transient_ps_failures_threshold): return False return True def schedule(self, function, args, kwargs): """Schedules `function` to be dispatched to a worker for execution. Args: function: The function to be dispatched to a worker for execution asynchronously. args: Positional arguments for `fn`. kwargs: Keyword arguments for `fn`. Returns: A structure of `RemoteValue` object. """ closure = Closure( function, self._closure_queue._cancellation_mgr, # pylint: disable=protected-access args=args, kwargs=kwargs) self._closure_queue.put(closure) return closure._output_remote_values # pylint: disable=protected-access def join(self): """Blocks until all scheduled functions are executed.""" self._closure_queue.wait() def done(self): """Returns true if all scheduled functions are executed.""" return self._closure_queue.done() class ParameterServerFailureError(Exception): """An error representing at least one parameter server is interrupted.""" pass class Client(object): """An object to schedule and orchestrate remote function execution. A `Client` object represents a program used to create dataset, schedule functions to be executed, and fetch the results of the functions. Currently, `Client` is not supported to be used in a standalone manner. It should be used in conjunction with `ParameterServerStrategyV2`. The recommended way of using the combination is through a `ParameterServerClient` object. Please see `ParameterServerClient` for more information. This is currently under development, and the API as well as implementation is subject to changes. """ def __init__(self, strategy): """Initialization of a `Client` instance. This connects the client to remote workers and parameter servers, through a `tf.config.experimental_connect_to_cluster` call. Args: strategy: a `tf.distribute.Strategy` object. Currently, only `ParameterServerStrategyV2` is supported. Raises: ValueError: if the strategy being used is not supported. """ if not isinstance(strategy, parameter_server_strategy_v2.ParameterServerStrategyV2): raise ValueError("Only `ParameterServerStrategyV2` is supported in " "`Client` currently.") self._strategy = strategy self.cluster = Cluster(strategy._cluster_resolver) @property def strategy(self): return self._strategy def schedule(self, fn, args=None, kwargs=None): """Schedules `fn` to be dispatched to a worker for execution asynchronously. When calling `schedule` with a function `fn`, `fn` will be executed on a remote worker at some later time. The process is asynchronous, meaning `schedule` returns immediately, possibly without having the result ready yet. `schedule` returns a structure of `RemoteValue` object, which wraps the output of the function. Call `fetch()` on `RemoteValue` to wait for the function execution to finish and retrieve its output from the remote worker. `schedule` guarantees that `fn` will be executed on a worker at least once; it could be more than once if its corresponding worker fails in the middle of its execution. Note that since worker can fail at any point when executing the function, it is possible that the function is partially executed, but `Client` guarantees that in those events, the function will eventually be fully executed, possibly on a different worker that is available. If any previously scheduled function raises an error, `schedule` will fail by raising any one of those errors, and clear the errors collected so far. There are two implications when this happens: 1) user should call `schedule` with `fn` again to re-schedule, and 2) some of the previously scheduled functions may have not been executed. User can call `fetch` on the returned `RemoteValue` to inspect if they have executed, failed, or cancelled, and reschedule the corresponding function if needed. When `schedule` raises, it guarantees that there is no function that is still being executed. At this time, there is no support of worker assignment for function execution, or priority of the workers. `args` and `kwargs` are the arguments passed into `fn`, when `fn` is executed on a worker. They can be `PerWorkerValues`, which is a collection of values, each of which represents a component specific to a worker; in this case, the argument will be substituted with the corresponding component on the target worker. Arguments that are not `PerWorkerValues` will be passed into `fn` as-is. Args: fn: A `tf.function`; the function to be dispatched to a worker for execution asynchronously. args: Positional arguments for `fn`. kwargs: Keyword arguments for `fn`. Returns: A structure of `RemoteValue` object. Raises: Exception: one of the exceptions caught by the client by any previously scheduled function since the last time an error was thrown or since the beginning of the program. """ # Slot variables are usually created during function tracing time; thus # `schedule` needs to be called within the `strategy.scope()`. with self.strategy.scope(), _translate_parameter_server_failure(): return self.cluster.schedule(fn, args=args, kwargs=kwargs) def join(self): """Blocks until all the scheduled functions have finished execution. If any previously scheduled function raises an error, `join` will fail by raising any one of those errors, and clear the errors collected so far. If this happens, some of the previously scheduled functions may have not been executed. Users can call `fetch` on the returned `RemoteValue` to inspect if they have executed, failed, or cancelled. If some that have been cancelled need to be rescheduled, users should call `schedule` with the function again. When `join` returns or raises, it guarantees that there is no function that is still being executed. Raises: Exception: one of the exceptions caught by the client by any previously scheduled function since the last time an error was thrown or since the beginning of the program. """ with _translate_parameter_server_failure(): self.cluster.join() def done(self): """Returns whether all the scheduled functions have finished execution. If any previously scheduled function raises an error, `done` will fail by raising any one of those errors. When `done` returns True or raises, it guarantees that there is no function that is still being executed. """ return self.cluster.done() def create_per_worker_dataset(self, dataset_fn): """Create dataset on workers by calling `dataset_fn` on worker devices. This creates the given dataset generated by dataset_fn on the workers and returns an object that represents the collection of those individual datasets. Calling `iter` on such collection of dataset returns a `PerWorkerValues`, which is a collection of iterators, where the iterators have been placed on respective workers. Calling `next` on this `PerWorkerValues` of iterators is currently unsupported; it is meant to be passed as an argument into `Client.schedule`. When the scheduled function is picked up and being executed by a worker, the function will receive the individual iterator that corresponds to the worker, and now `next` can be called on iterator to get the next (batch or example) of data. Dataset shuffling and repeating are usually needed in `dataset_fn`; however, sharding is not recommended: some worker may not be available and those examples may be skipped and not covered by other workers, if the dataset is sharded. Args: dataset_fn: The dataset function that returns a dataset. This is to be executed on the workers. Returns: An object that represents the collection of those individual datasets. `iter` is expected to be called on this object that returns a `PerWorkerValues` of the iterators (that are on the workers). """ input_workers = input_lib.InputWorkers([ (w.device_name, [w.device_name]) for w in self.cluster.workers ]) return _PerWorkerDistributedDataset(dataset_fn, input_workers, self) def _create_per_worker_resources(self, fn, args=None, kwargs=None): """Synchronously create resources on the workers. The resources are represented by `RemoteValue`s. Args: fn: The function to be dispatched to all workers for execution asynchronously. args: Positional arguments for `fn`. kwargs: Keyword arguments for `fn`. Returns: A `PerWorkerValues` object, which wraps a tuple of `RemoteValue` objects. """ results = [] for w in self.cluster.workers: results.append(w._create_resource(fn, args=args, kwargs=kwargs)) # pylint: disable=protected-access return PerWorkerValues(tuple(results)) def fetch(self, val): """Blocking call to fetch results from `RemoteValue`s. This returns the execution result of `RemoteValue`s; if not ready, waiting for it while blocking the caller. Args: val: The value to fetch the results from. If this is structure of `RemoteValue`, `fetch()` will be called on the individual `RemoteValue` to get the result. Returns: If `val` is a `RemoteValue` or a structure of `RemoteValue`s, returns the fetched `RemoteValue` value immediately if it's available, or blocks the call until it's available, and returns the fetched `RemoteValue` values with the same structure. If `val` is other types, return (`val`,). """ def _maybe_fetch(val): if isinstance(val, RemoteValue): return val.fetch() else: return val # TODO(yuefengz): we should fetch values in a batch. result = nest.map_structure(_maybe_fetch, val) if not isinstance(result, tuple): return (result,) return result # pylint: disable=missing-function-docstring @contextlib.contextmanager def _translate_parameter_server_failure(): try: yield except Exception as e: # pylint: disable=broad-except if _is_ps_failure(e): raise ParameterServerFailureError(e) else: raise # pylint: disable=missing-function-docstring @contextlib.contextmanager def handle_parameter_server_failure(): try: with _translate_parameter_server_failure(): yield except ParameterServerFailureError as e: # pylint: disable=broad-except restart_exit_code = os.environ.get("TF_CLIENT_NON_FATAL_RESTART_EXIT_CODE", None) if restart_exit_code is not None: sys.exit(int(restart_exit_code)) else: raise class _PerWorkerDistributedDataset(object): """Represents worker-distributed datasets created from dataset function.""" def __init__(self, dataset_fn, input_workers, client): """Makes an iterable from datasets created by the given function. Args: dataset_fn: A function that returns a `Dataset`. input_workers: an `InputWorkers` object. client: a `Client` object, used to create dataset resources. """ def disallow_variable_creation(next_creator, **kwargs): raise ValueError("Creating variables in `dataset_fn` is not allowed.") if isinstance(dataset_fn, def_function.Function): with variable_scope.variable_creator_scope(disallow_variable_creation): dataset_fn = dataset_fn.get_concrete_function() elif not isinstance(dataset_fn, tf_function.ConcreteFunction): with variable_scope.variable_creator_scope(disallow_variable_creation): dataset_fn = def_function.function(dataset_fn).get_concrete_function() self._dataset_fn = dataset_fn self._input_workers = input_workers self._client = client self._element_spec = None def __iter__(self): # We would like users to create iterators outside `tf.function`s so that we # can track them. if (not context.executing_eagerly() or ops.get_default_graph().building_function): raise RuntimeError( "__iter__() is not supported inside of tf.function or in graph mode.") def _create_per_worker_iterator(): dataset = self._dataset_fn() return iter(dataset) # If _PerWorkerDistributedDataset.__iter__ is called multiple # times, for the same object it should only create and register resource # once. Using object id to distinguish different iterator resources. per_worker_iterator = self._client._create_per_worker_resources( _create_per_worker_iterator) # Create an iterator, so the consumer function of this iterator can start # tracing using this iterator without needing to wait for the completion of # the iterater creation. Note: the iterator shouldn't use memory until it is # consumed. # TODO(b/154675763): get rid of this workaround once we can make input_fn a # tf.function. iterator = _create_per_worker_iterator() for iterator_remote_value in per_worker_iterator._values: iterator_remote_value._set_type_spec(iterator._type_spec) return _PerWorkerDistributedIterator(per_worker_iterator._values) @property def element_spec(self): """The type specification of an element of this dataset.""" raise NotImplementedError("Passing `AsyncDistributedDataset` to a " "tf.function is not supported.") class _PerWorkerDistributedIterator(PerWorkerValues): """Distributed iterator for `Client`.""" def __next__(self): return self.get_next() def get_next(self, name=None): """Returns the next input from the iterator for all replicas.""" raise NotImplementedError("Iterating over an `AsyncDistributedIterator` " "is not supported right now.") def _extract_failed_ps_instances(err_msg): """Return a set of potentially failing ps instances from error message.""" tasks = re.findall("/job:ps/replica:0/task:[0-9]+", err_msg) return set(int(t.split(":")[-1]) for t in tasks) def _is_ps_failure(error): """Whether the error is considered a parameter server failure.""" if (_RPC_ERROR_FROM_PS in str(error) or (isinstance(error, errors.InvalidArgumentError) and "/job:ps" in str(error))): return True def _is_worker_failure(error): """Whether the error is considered a worker failure.""" if _JOB_WORKER_STRING_IDENTIFIER not in str(error): return False if _RPC_ERROR_FROM_PS in str(error): return False # TODO(haoyuzhang): Consider using special status code if error from a # remote is derived from RPC errors originated from other hosts. if isinstance(error, (errors.UnavailableError, errors.AbortedError)): return True # The following error could happen when the remote task fails and restarts # in a very short interval during which no RPCs were exchanged to detect the # failure. In that case, gRPC allows channel (which is different from a # connection) to be reused for a replaced server listening to same address. if isinstance(error, errors.InvalidArgumentError): if ("Unable to find a context_id" in str(error) or "unknown device" in str(error) or "Unable to find the relevant tensor remote_handle" in str(error)): # TODO(b/159961667): Fix "Unable to find the relevant tensor # remote_handle" part. return True # TODO(b/162541228): The following 3 types of errors are very rare and only # observed in large-scale testing. The types of errors should be reduced. # This error could show up when copying function inputs from remote tasks. if isinstance(error, errors.InternalError): if ("Failed copying input tensor" in str(error) or "Unable to find a context_id" in str(error)): return True # This could happen when the function registration fails. In the observed # cases this only happens to the dataset related functions. if isinstance(error, errors.NotFoundError): if ("is neither a type of a primitive operation nor a name of a function " "registered" in str(error)): return True # This could happen when the iterator is no longer valid on the remote worker # "Resource input tensor contains an invalid device" if isinstance(error, errors.CancelledError): return True return False
40.948304
115
0.715548
ad63b9b0c94148e0a08f1bcc9e238b15e90b04fd
23,327
py
Python
meu_grafo_matriz_adjacencia_nao_dir.py
RafaelMunizz/Teoria-dos-Grafos
1502219c629a3081a815cbcc9d0d3353eb471872
[ "MIT" ]
null
null
null
meu_grafo_matriz_adjacencia_nao_dir.py
RafaelMunizz/Teoria-dos-Grafos
1502219c629a3081a815cbcc9d0d3353eb471872
[ "MIT" ]
null
null
null
meu_grafo_matriz_adjacencia_nao_dir.py
RafaelMunizz/Teoria-dos-Grafos
1502219c629a3081a815cbcc9d0d3353eb471872
[ "MIT" ]
null
null
null
from bibgrafo.grafo_matriz_adj_nao_dir import GrafoMatrizAdjacenciaNaoDirecionado from bibgrafo.grafo_exceptions import * from copy import deepcopy class MeuGrafo(GrafoMatrizAdjacenciaNaoDirecionado): def vertices_nao_adjacentes(self): ''' Provê uma lista de vértices não adjacentes no grafo. A lista terá o seguinte formato: [X-Z, X-W, ...] Onde X, Z e W são vértices no grafo que não tem uma aresta entre eles. :return: Uma lista com os pares de vértices não adjacentes ''' lista = [] for i in range(len(self.M)): for j in range(len(self.M)): if self.M[i][j] != '-': if not self.M[i][j] and i != j: lista.append(self.N[i] + '-' + self.N[j]) return lista def verticesAdjacentes(self, V=''): ''' Provê uma lista de todas os vertices adjacentes a determinado vertice. :return: Uma lista com os vértices adjacentes possiveis. ''' matriz = self.matrizModificada() verticesAdjacentes = [] for i in matriz: if i[1] == V: verticesAdjacentes.append(i[2]) return verticesAdjacentes def ha_laco(self): ''' Verifica se existe algum laço no grafo. :return: Um valor booleano que indica se existe algum laço. ''' for i in range(len(self.M)): if self.M[i][i]: return True return False def grau(self, V=''): ''' Provê o grau do vértice passado como parâmetro :param V: O rótulo do vértice a ser analisado :return: Um valor inteiro que indica o grau do vértice :raises: VerticeInvalidoException se o vértice não existe no grafo ''' if V not in self.N: raise VerticeInvalidoException("Vértice não existe") indiceVertice = self.N.index(V) grau = 0 for i in range(len(self.N)): if self.M[indiceVertice][i] and self.M[i][indiceVertice]: if len(self.M[indiceVertice][i]) > 0 and self.M[indiceVertice][i] != '-': # LINHA grau += len(self.M[indiceVertice][i]) if len(self.M[i][indiceVertice]) > 0 and self.M[i][indiceVertice] != '-': # COLUNA grau += len(self.M[i][indiceVertice]) return grau def ha_paralelas(self): ''' Verifica se há arestas paralelas no grafo :return: Um valor booleano que indica se existem arestas paralelas no grafo. ''' for i in range(len(self.M)): for j in range(len(self.M[i])): if len(self.M[i][j]) > 1: return True return False def arestas_sobre_vertice(self, V): ''' Provê uma lista que contém os rótulos das arestas que incidem sobre o vértice passado como parâmetro :param V: O vértice a ser analisado :return: Uma lista os rótulos das arestas que incidem sobre o vértice :raises: VerticeInvalidoException se o vértice não existe no grafo ''' if V not in self.N: raise VerticeInvalidoException("Vértice não existe") indiceVertice = self.N.index(V) matrizArestas = [] for i in range(len(self.N)): if self.M[indiceVertice][i] and self.M[i][indiceVertice]: if self.M[indiceVertice][i] != '-': # LINHA matrizArestas.append(list(self.M[indiceVertice][i].keys())) if self.M[i][indiceVertice] != '-': # COLUNA matrizArestas.append(list(self.M[i][indiceVertice].keys())) arestasVertice = [] for arestas in matrizArestas: for aresta in arestas: arestasVertice.append(aresta) return arestasVertice def eh_completo(self): ''' Verifica se o grafo é completo. :return: Um valor booleano que indica se o grafo é completo ''' for i in self.N: if len(self.arestas_sobre_vertice(i)) != (len(self.N) - 1): return False return True def conexo(self): ''' Verifica se o grafo é conexo :return: Bool representando se o grafo é conexo ''' listadfs = list() dfs = self.dfs(self.N[0]) l = list() for linha in self.M: for coluna in linha: if coluna != "-" and coluna != {}: for aresta in coluna: l.append(coluna[aresta].getV1()) l.append(coluna[aresta].getV2()) listadfs.append(l) for dfs in listadfs: for vertice in self.N: if not (vertice in dfs): return False return True def ponte(self, N): ''' Verifica se determinado vertice é uma ponte dentro do grafo. :return: bool representando se é ponte ''' l = list() for linha in self._matriz: for coluna in linha: if coluna != "-" and coluna != {}: l.append(coluna[1]) l.append(coluna[2]) for vertice in N: if not (vertice in l): return True return False def listaRotulos(self): ''' Prove uma lista com as arestas do grafo. Lista do tipo [A0,A1,...,An] :return: lista. ''' la = list() for lin in range(len(self.M)): for col in range(len(self.M)): if self.M[lin][col] != "-" and self.M[lin][col] != {}: for aresta in self.M[lin][col]: la.append(aresta) return la def colocarArestas(self, listaVertices): ''' Provê uma lista com as arestas adicionadas a uma lista anteriormente com vértices apenas. :param V: Uma lista com vértices. Ex: ['A', 'J', 'K', 'G', 'H'] :return: Uma lista com vértices e arestas. Ex: ['A', 'a3', 'J', 'a5', 'K', 'a4', 'G', 'a9', 'H'] ''' pares = [] # Formando pares com a lista de vértices passados for i in range(1, len(listaVertices)): pares.append(listaVertices[i - 1] + '-' + listaVertices[i]) rotulos = [] # Lista com os rótulos dos pares for j in pares: rotulos.append(self.pegarRotulo(j[0], j[2])) listaFinal = [] # Lista com vértices e arestas (Um por índice) for k in range(len(listaVertices)): # Colocando um vértice e uma aresta por vez listaFinal.append(listaVertices[k]) if len(listaVertices) - 1 != k: listaFinal.append(rotulos[k]) return listaFinal ############### DFS ############### def dfs(self, V='', **kwargs): ''' Provê uma árvore (um grafo) que contém apenas as arestas do dfs :param V: O vértice a de onde se inicia o caminho :return: Um grafo do tipo árvore :raises: VerticeInvalidoException se o vértice não existe no grafo ''' if V not in self.N: raise VerticeInvalidoException try: self.acdfs = kwargs["dfs"] except: self.acdfs = True if self.acdfs == True: self._arvoredfs = MeuGrafo(self.N) self.arestas_dfs = [] self.acdfs = False for coluna in self.M[self.N.index(V)]: if coluna != "-" and coluna != {}: for aresta in coluna: if ((coluna[aresta].getV1() not in self.arestas_dfs) or ( coluna[aresta].getV2() not in self.arestas_dfs)) \ and (coluna[aresta].getV1() != coluna[aresta].getV2()): self._arvoredfs.adicionaAresta(aresta, coluna[aresta].getV1(), coluna[aresta].getV2()) self.arestas_dfs.append(coluna[aresta].getV1()) self.arestas_dfs.append(coluna[aresta].getV2()) self.dfs(coluna[aresta].getV2() if coluna[aresta].getV2() != V else coluna[aresta].getV1(), **{"dfs": False}) return self._arvoredfs ############### CAMINHO EULERIANO ############### def caminhoEuleriano(self): ''' Verifica se o grafo possui um caminho euleriano. Caso possua, prove uma lista do tipo [V0,A0 .. Vn,An]. :return: False ou lista com caminho. ''' impar, lvi = self.ehEuleriano() if (not impar) or (not self.conexo()): return False self._caminho = list() self._matriz = self.matrizArestas() self._arestas = self.listaRotulos() # Escolhe o vertice de inicio do caminho if lvi != []: Vi = lvi[0] elif lvi == []: Vi = 0 self._caminho.append(self.N[Vi]) Eh_caminho = self.buscarCaminho(Vi) return self._caminho def ehEuleriano(self): ''' Verifica se cada vertice é de grau impar e a quantidade de vertices impares no grafo :return: True, lista de vertices impar se verdadeiro False, None se falso ''' total = 0 i = 0 lvi = list() while (total <= 2) and (i <= len(self.N) - 1): grau = 0 grau += self.grau(self.N[i]) if grau % 2 == 1: total += 1 lvi.append(i) i += 1 if total == 0 or total == 2: return True, lvi else: return False, None def buscarCaminho(self, v): ''' Gera o caminho eureliano. :return: bool referente a existencia do caminho. ''' grau = self.grauMatriz(self.N[v], self._matriz) if grau == 0: return True elif grau == 1: for c in range(len(self.M[v])): if v < c: linha, coluna = v, c else: linha, coluna = c, v if self._arestas != [] and self._matriz[linha][coluna] != "-" and self._matriz[linha][coluna] != {}: aresta = self._matriz[linha][coluna] self._arestas.remove(aresta[0]) self._caminho.append(aresta[0]) self._caminho.append(aresta[1] if aresta[1] != self.N[v] else aresta[2]) self._matriz[linha][coluna] = "-" self.buscarCaminho(self.N.index(aresta[1] if aresta[1] != self.N[v] else aresta[2])) else: __N = self.N.copy() for c in range(len(self.M[v])): if v < c: linha, coluna = v, c else: linha, coluna = c, v if self._arestas != [] and self._matriz[linha][coluna] != "-" and self._matriz[linha][coluna] != {}: aresta = self._matriz[linha][coluna] self._matriz[linha][coluna] = "-" if self.grauMatriz(self.N[v], self._matriz) == 0: __N.remove(self.N[v]) if not self.ponte(__N): self._arestas.remove(aresta[0]) self._caminho.append(aresta[0]) self._caminho.append(aresta[1] if aresta[1] != self.N[v] else aresta[2]) self.buscarCaminho(self.N.index(aresta[1] if aresta[1] != self.N[v] else aresta[2])) elif self.grauMatriz(aresta[1] if aresta[1] != self.N[v] else aresta[2], self._matriz) != 0: self._arestas.remove(aresta[0]) self._caminho.append(aresta[0]) self._caminho.append(aresta[1] if aresta[1] != self.N[v] else aresta[2]) self.buscarCaminho(self.N.index(aresta[1] if aresta[1] != self.N[v] else aresta[2])) else: self._matriz[linha][coluna] = aresta self._arestas.append(aresta[0]) __N.append(self.N[v]) return False def grauMatriz(self, V, M): ''' Provê o grau do vértice passado como parâmetro :param V: O rótulo do vértice a ser analisado :param M: Matriz a analisada a partir de V :return: Um valor inteiro que indica o grau do vértice :raises: VerticeInvalidoException se o vértice não existe no grafo ''' if V not in self.N: raise VerticeInvalidoException cont = 0 for l in range(len(M)): for c in range(len(M)): if M[l][c] != "-" and V in M[l][c]: cont += 1 return cont def matrizArestas(self): ''' Prove uma matriz com as arestas do grafo. :return: Matriz com as arestas do grafo ''' matriz = [] for l in range(len(self.M)): matriz.append([]) for c in range(len(self.M)): if self.M[l][c] != "-" and self.M[l][c] != {}: for aresta in self.M[l][c]: matriz[l].append([aresta, self.M[l][c][aresta].getV1(), self.M[l][c][aresta].getV2()]) else: matriz[l].append("-") return matriz ############### MAIS FUNÇÕES ÚTEIS ############### def imprimirMatriz(self, matriz): ''' imprime o grafo de uma forma mais visível para o usuário. :param matriz: Uma matriz formada por 0 e 1. Ex: :entrada: [[1, 1, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1], [0, 1, 0, 1]]. :saída: |A|B|C|D| A|1 1 0 1 B|0 1 0 1 C|1 1 0 1 D|0 1 0 1 ''' print(" ",end='|') for k in range(len(self.N)): print(self.N[k], end='|') print() for i in range(len(matriz)): print(self.N[i], end='|') for j in range(len(matriz[0])): print(matriz[i][j], end=' ') print() def arcoNaPosicao(self, pos1, pos2): '''Retorna o arco da matriz na posição passada por parâmetro''' arco = [] for i in range(len(self.N)): if i == pos1: arco.append(self.N[i]) for j in range(len(self.N)): if j == pos2: arco.append(self.N[j]) if len(arco) != 2: return False return arco def matrizModificada(self): ''' :param: grafo. :return: Uma matriz que representa o grafo de outra forma, com rótulo, v1, v2 e peso. Ex: [['a1', 'A', 'B', 3], ['a2', 'A', 'C', 4], ['a3', 'A', 'D', 5], ['a4', 'B', 'G', 5], ... ''' # Listas que servirão para criação da matriz final. rotulos = [] pesos = [] v1 = [] v2 = [] matrizModificada = [] # Matriz final for i in range(len(self.N)): for j in range(len(self.N)): if self.M[i][j]: if '-' not in (list((self.M[i][j]))[0]): if len(list((self.M[i][j]).keys())) == 1: rotulo = list((self.M[i][j]).keys())[0] # Extraindo rótulo da posição matriz[i][j] rotulos.append(rotulo) # Rótulo pesos.append(self.M[i][j][rotulo].getPeso()) # Peso do rótulo v1.append(self.N[i]) # Vértice 1 v2.append(self.N[j]) # Vértice 2 else: for k in (list((self.M[i][j]).keys())): rotulo = k # Extraindo rótulo da posição matriz[i][j] rotulos.append(rotulo) # Rótulo pesos.append(self.M[i][j][rotulo].getPeso()) # Peso do rótulo v1.append(self.N[i]) # Vértice 1 v2.append(self.N[j]) # Vértice 2 # Adicionando as informações recolhidas numa só matriz for k in range(len(rotulos)): aux = [] # Identificador da ordem da aresta. Será utilizado # para organizar os arcos na posição correta, pois eles # aparecem em ordens aleatórias. Ex: a1, a2, a13, a15, a7 ... aux.append(int(rotulos[k][1:])) aux.append(rotulos[k]) aux.append(v1[k]) aux.append(v2[k]) aux.append(pesos[k]) matrizModificada.append(aux) # Colocando arcos na ordem correta com ajuda # do primeiro elemento, que é o identificador matrizModificada.sort() # Removendo o identificador for l in matrizModificada: del l[0] return matrizModificada def pesoArco(self, v1, v2): ''' :param: Vértices 1 e 2. :return: Peso do arco formado por V1-V2, caso ele exista. ''' matriz = self.matrizModificada() # Ex: i = [['a1', 'A', 'B', 1] for i in matriz: if i[1] == v1 and i[2] == v2: return i[3] # Peso return False def pegarRotulo(self, v1, v2): ''' :param: Vértices 1 e 2. :return: Rótulo do arco formado por V1-V2, caso ele exista. ''' matriz = self.matrizModificada() # Ex: i = [['a1', 'A', 'B', 1] for i in matriz: if i[1] == v1 and i[2] == v2: return i[0] # Rotulo return False def matrizAdjacenciaComPesos(self): ''' Modifica o grafo para que ele se transforme em uma matriz composta pelo peso do arco e 0. :param grafo: O grafo que será transformado. :return: Uma matriz. Ex: [[3, 0, 0, 5], [0, 4, 0, 7], [2, 0, 0, 4], [0, 3, 3, 0]] ''' grafo = self.matrizAdjacenciaBinaria() novaMatriz = [] for i in range(len(grafo)): aux = [] for j in range(len(grafo[0])): if grafo[i][j] != 0: arco = self.arcoNaPosicao(i, j) aux.append(self.pesoArco(arco[0], arco[1])) else: aux.append(0) novaMatriz.append(aux) return novaMatriz def matrizAdjacenciaBinaria(self): ''' Modifica o grafo para que ele se transforme em uma matriz composta apenas de 1 e 0. :param grafo: Uma cópia do grafo que será transformado. :return: Uma matriz. Ex: [[1, 0, 0, 1], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]] ''' matriz = deepcopy(self.M) for i in range(len(self.M)): for j in range(len(self.M[0])): if self.M[i][j] != 'o' and self.M[i][j] != '-' and self.M[i][j]: matriz[i][j] = 1 else: matriz[i][j] = 0 return matriz ############### ALGORITMO DE PRIM ############### def menorPeso(self, pesos, visitados, quantVertices): '''Menor peso entre vértices''' minimo = 9**9 for v in range(quantVertices): if pesos[v] < minimo and visitados[v] == False: minimo = pesos[v] menorIndice = v return menorIndice def primAlgoritmo(self): ''' Utiliza o algoritmo de Prim para criar uma matriz formada pelo arco mais o peso do arco. Ex: [['A-B', 3], ['A-C', 4], ... :param : O grafo. :return: Uma nova matriz gerada a partir do algoritmo de Prim. ''' vertices = deepcopy(self.N) grafo = self.matrizAdjacenciaComPesos() quantVertices = len(grafo) pesos = [9**9] * quantVertices # Menores peso do arco noPais = [None] * quantVertices # Guardar Minimum Spanning Tree pesos[0] = 0 # Distancia até nó raiz é 0 visitados = [False] * quantVertices noPais[0] = -1 for n in range(quantVertices): # Escolha o vértice de distância mínima ainda não processado. vMenorDist = self.menorPeso(pesos, visitados, quantVertices) visitados[vMenorDist] = True for v in range(quantVertices): if grafo[vMenorDist][v] > 0 and visitados[v] == False and pesos[v] > grafo[vMenorDist][v]: pesos[v] = grafo[vMenorDist][v] noPais[v] = vMenorDist caminhoPrim = [] for i in range(1, quantVertices): aux = [] aux.append(vertices[noPais[i]] + '-' + vertices[i]) aux.append(self.pesoArco(vertices[noPais[i]], vertices[i])) caminhoPrim.append(aux) return caminhoPrim ############### ALGORITMO DE KRUSKAL ############### def posicaoDoVertice(self, V): '''Retorna a posição do vértice(V) em self.N''' for i in range(len(self.N)): if self.N[i] == V: return i def utilKruskal(self): grafo = self.matrizModificada() novaLista = [] for j in range(len(grafo)): aux = [] for k in range(1, 3): aux.append(self.posicaoDoVertice(grafo[j][k])) aux.append(grafo[j][3]) novaLista.append(aux) return novaLista def buscaKruskal(self, pai, i): '''Função de utilidade para encontrar o conjunto de um elemento i''' if pai[i] == i: return i return self.buscaKruskal(pai, pai[i]) def kruskalAlgoritmo(self): ''' Utiliza o algoritmo de Kruskal para criar uma matriz formada pelo arco mais o peso do arco. Ex: [['A-B', 3], ['A-C', 4], ... :param : O grafo. :return: Uma nova matriz gerada a partir do algoritmo de Kruskal. ''' grafo = self.utilKruskal() V = len(self.N) i = soma = 0 # Ordendando listas por ordem de peso graph = sorted(grafo, key=lambda item: item[2]) pai, rank, resultado = [], [], [] for node in range(V): pai.append(node) rank.append(0) while soma < V - 1: v1, v2, peso = graph[i] i += 1 aux1 = self.buscaKruskal(pai, v1) aux2 = self.buscaKruskal(pai, v2) # Se incluir esta borda não causar um ciclo inclua no resultado # E incrementa o índice do resultado para a próxima borda if aux1 != aux2: soma += 1 resultado.append([v1, v2, peso]) # União de dois conjuntos de aux1 e aux2 xRaiz = self.buscaKruskal(pai, aux1) yRaiz = self.buscaKruskal(pai, aux2) if rank[xRaiz] < rank[yRaiz]: pai[xRaiz] = yRaiz elif rank[xRaiz] > rank[yRaiz]: pai[yRaiz] = xRaiz else: pai[yRaiz] = xRaiz rank[xRaiz] += 1 resultadoFinal = [] for i in range(len(resultado)): aux = [] aux.append(self.N[resultado[i][0]] + '-' + self.N[resultado[i][1]]) aux.append(resultado[i][2]) resultadoFinal.append(aux) return resultadoFinal
34.456425
116
0.502808
a20ac1c8b87554cc8072aacd12300b90a8ba91b2
10,098
py
Python
model/single_frame_worker.py
idiap/DepthInSpace
fe759807f82df4c48c16b97f061718175ea0e6e9
[ "MIT" ]
1
2022-02-05T09:50:24.000Z
2022-02-05T09:50:24.000Z
model/single_frame_worker.py
idiap/DepthInSpace
fe759807f82df4c48c16b97f061718175ea0e6e9
[ "MIT" ]
null
null
null
model/single_frame_worker.py
idiap/DepthInSpace
fe759807f82df4c48c16b97f061718175ea0e6e9
[ "MIT" ]
null
null
null
# DepthInSpace is a PyTorch-based program which estimates 3D depth maps # from active structured-light sensor's multiple video frames. # # MIT License # # Copyright, 2021 ams International AG # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import numpy as np import logging import itertools import matplotlib.pyplot as plt import co from data import base_dataset from data import dataset from model import networks from . import worker class Worker(worker.Worker): def __init__(self, args, **kwargs): super().__init__(args, **kwargs) self.disparity_loss = networks.DisparitySmoothLoss() def get_train_set(self): train_set = dataset.TrackSynDataset(self.settings_path, self.train_paths, train=True, data_aug=True, track_length=self.track_length, load_flow_data = True, load_primary_data = False, load_pseudo_gt = self.use_pseudo_gt, data_type = self.data_type) return train_set def get_test_sets(self): test_sets = base_dataset.TestSets() test_set = dataset.TrackSynDataset(self.settings_path, self.test_paths, train=False, data_aug=False, track_length=self.track_length, load_flow_data = True, load_primary_data = False, load_pseudo_gt = self.use_pseudo_gt, data_type = self.data_type) test_sets.append('simple', test_set, test_frequency=1) self.patterns = [] self.ph_losses = [] self.ge_losses = [] self.d2ds = [] self.lcn_in = self.lcn_in.to('cuda') for sidx in range(len(test_set.imsizes)): imsize = test_set.imsizes[sidx] pat = test_set.patterns[sidx] pat = pat.mean(axis=2) pat = torch.from_numpy(pat[None][None].astype(np.float32)).to('cuda') pat,_ = self.lcn_in(pat) self.patterns.append(pat) pat = torch.cat([pat for idx in range(3)], dim=1) ph_loss = networks.RectifiedPatternSimilarityLoss(imsize[0],imsize[1], pattern=pat) K = test_set.getK(sidx) Ki = np.linalg.inv(K) K = torch.from_numpy(K) Ki = torch.from_numpy(Ki) ge_loss = networks.Single_Frame_Flow_Consistency_Loss(K, Ki, imsize[0], imsize[1], clamp=0.1) self.ph_losses.append( ph_loss ) self.ge_losses.append( ge_loss ) d2d = networks.DispToDepth(float(test_set.focal_lengths[sidx]), float(test_set.baseline)) self.d2ds.append( d2d ) return test_sets def net_forward(self, net, flow = None): im0 = self.data['im0'] tl = im0.shape[0] bs = im0.shape[1] im0 = im0.view(-1, *im0.shape[2:]) out = net(im0) if not(isinstance(out, tuple) or isinstance(out, list)): out = out.view(tl, bs, *out.shape[1:]) else: out = [o.view(tl, bs, *o.shape[1:]) for o in out] return out def loss_forward(self, out, train, flow_out = None): if not(isinstance(out, tuple) or isinstance(out, list)): out = [out] vals = [] # apply photometric loss for s,o in zip(itertools.count(), out): im = self.data[f'im0'] im = im.view(-1, *im.shape[2:]) o = o.view(-1, *o.shape[2:]) std = self.data[f'std0'] std = std.view(-1, *std.shape[2:]) val, pattern_proj = self.ph_losses[0](o, im[:,0:1,...], std) vals.append(val / (2 ** s)) # apply disparity loss for s, o in zip(itertools.count(), out): if s == 0: amb0 = self.data[f'ambient0'] amb0 = amb0.contiguous().view(-1, *amb0.shape[2:]) o = o.view(-1, *o.shape[2:]) val = self.disparity_loss(o, amb0) vals.append(val * 0.4 / (2 ** s)) # apply geometric loss R = self.data['R'] t = self.data['t'] amb = self.data['ambient0'] ge_num = self.track_length * (self.track_length-1) / 2 for sidx in range(1): d2d = self.d2ds[0] depth = d2d(out[sidx]) ge_loss = self.ge_losses[0] for tidx0 in range(depth.shape[0]): for tidx1 in range(tidx0+1, depth.shape[0]): depth0 = depth[tidx0] R0 = R[tidx0] t0 = t[tidx0] amb0 = amb[tidx0] flow0 = flow_out[f'flow_{tidx0}{tidx1}'] depth1 = depth[tidx1] R1 = R[tidx1] t1 = t[tidx1] amb1 = amb[tidx1] flow1 = flow_out[f'flow_{tidx1}{tidx0}'] val, flow_mask0, flow_mask1, orig_mask = ge_loss(depth0, depth1, R0, t0, R1, t1, flow0, flow1, amb0, amb1) vals.append(val * 0.2 / ge_num / (2 ** sidx)) # using pseudo-ground truth if self.use_pseudo_gt: for s, o in zip(itertools.count(), out): val = torch.mean(torch.abs(o - self.data['pseudo_gt'])) vals.append(val * 0.1 / (2 ** s)) # warming up the network for a few epochs if train and self.data_type == 'real': if self.current_epoch < self.warmup_epochs: for s, o in zip(itertools.count(), out): valid_mask = (self.data['sgm_disp'] > 30).float() val = torch.sum(torch.abs(o - self.data['sgm_disp'] + 1.5 * torch.randn(o.size()).cuda()) * valid_mask) / torch.sum(valid_mask) vals.append(val * 0.1) return vals def numpy_in_out(self, output): if not(isinstance(output, tuple) or isinstance(output, list)): output = [output] es = output[0].detach().to('cpu').numpy() gt = self.data['disp0'].detach().to('cpu').numpy().astype(np.float32) im = self.data['im0'][:,:,0:1,...].detach().to('cpu').numpy() amb = self.data['ambient0'].detach().to('cpu').numpy() pat = self.patterns[0].detach().to('cpu').numpy() es = es * (gt > 0) return es, gt, im, amb, pat def write_img(self, out_path, es, gt, im, amb, pat): logging.info(f'write img {out_path}') diff = np.abs(es - gt) vmin, vmax = np.nanmin(gt), np.nanmax(gt) vmin = vmin - 0.2*(vmax-vmin) vmax = vmax + 0.2*(vmax-vmin) vmax = np.max([vmax, 16]) fig = plt.figure(figsize=(16,16)) es0 = co.cmap.color_depth_map(es[0], scale=vmax) gt0 = co.cmap.color_depth_map(gt[0], scale=vmax) diff0 = co.cmap.color_error_image(diff[0], BGR=True) # plot pattern and input images ax = plt.subplot(3,3,1); plt.imshow(pat, vmin=pat.min(), vmax=pat.max(), cmap='gray'); plt.xticks([]); plt.yticks([]); ax.set_title(f'Projector Pattern') ax = plt.subplot(3,3,2); plt.imshow(im[0], vmin=im.min(), vmax=im.max(), cmap='gray'); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 IR Input') ax = plt.subplot(3,3,3); plt.imshow(amb[0], vmin=amb.min(), vmax=amb.max(), cmap='gray'); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Ambient Input') # plot disparities, ground truth disparity is shown only for reference ax = plt.subplot(3,3,4); plt.imshow(gt0[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Disparity GT {np.nanmin(gt[0]):.4f}/{np.nanmax(gt[0]):.4f}') ax = plt.subplot(3,3,5); plt.imshow(es0[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Disparity Est. {es[0].min():.4f}/{es[0].max():.4f}') ax = plt.subplot(3,3,6); plt.imshow(diff0[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Disparity Err. {diff[0].mean():.5f}') es1 = co.cmap.color_depth_map(es[1], scale=vmax) gt1 = co.cmap.color_depth_map(gt[1], scale=vmax) diff1 = co.cmap.color_error_image(diff[1], BGR=True) ax = plt.subplot(3,3,7); plt.imshow(gt1[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 Disparity GT {np.nanmin(gt[1]):.4f}/{np.nanmax(gt[1]):.4f}') ax = plt.subplot(3,3,8); plt.imshow(es1[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 Disparity Est. {es[1].min():.4f}/{es[1].max():.4f}') ax = plt.subplot(3,3,9); plt.imshow(diff1[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 Disparity Err. {diff[1].mean():.5f}') plt.tight_layout() plt.savefig(str(out_path)) plt.close(fig) def callback_train_post_backward(self, net, errs, output, epoch, batch_idx, masks): if batch_idx % 256 == 0: out_path = self.exp_output_dir / f'train_{epoch:03d}_{batch_idx:04d}.png' es, gt, im, amb, pat = self.numpy_in_out(output) self.write_img(out_path, es[:, 0, 0], gt[:, 0, 0], im[:, 0, 0], amb[:, 0, 0], pat[0, 0]) torch.cuda.empty_cache() def callback_test_start(self, epoch, set_idx): self.metric = co.metric.MultipleMetric( co.metric.DistanceMetric(vec_length=1), co.metric.OutlierFractionMetric(vec_length=1, thresholds=[0.1, 0.5, 1, 2, 5]) ) def callback_test_add(self, epoch, set_idx, batch_idx, n_batches, output, masks): es, gt, im, amb, pat = self.numpy_in_out(output) if batch_idx % 8 == 0: out_path = self.exp_output_dir / f'test_{epoch:03d}_{batch_idx:04d}.png' self.write_img(out_path, es[:, 0, 0], gt[:, 0, 0], im[:, 0, 0], amb[:, 0, 0], pat[0, 0]) es = self.crop_reshape(es) gt = self.crop_reshape(gt) self.metric.add(es, gt) def crop_reshape(self, input): output = input.reshape(-1, 1) return output def callback_test_stop(self, epoch, set_idx, loss): logging.info(f'{self.metric}') for k, v in self.metric.items(): self.metric_add_test(epoch, set_idx, k, v) if __name__ == '__main__': pass
40.071429
251
0.639929
843e7a7d4fa974de9ef2d8b7f52859047941a677
692
py
Python
getpinyin.py
wangjksjtu/multi-embedding-cws
f272a7586bc0ad6f65e900c7f29fc9a89a0c95b4
[ "MIT" ]
16
2018-09-18T13:59:59.000Z
2022-03-21T08:05:31.000Z
getpinyin.py
wangjksjtu/multi-embedding-cws
f272a7586bc0ad6f65e900c7f29fc9a89a0c95b4
[ "MIT" ]
null
null
null
getpinyin.py
wangjksjtu/multi-embedding-cws
f272a7586bc0ad6f65e900c7f29fc9a89a0c95b4
[ "MIT" ]
6
2020-01-05T13:03:45.000Z
2022-03-21T08:05:33.000Z
from pypinyin import lazy_pinyin import sys,time fo1 = open("pre_chars_for_w2v.txt", "r") fo2 = open("pre_pinyin_for_w2v.txt", "a") total_lines = len(fo1.readlines()) print("Total lines: %d" % (total_lines)) fo1.close() lines = 0 fo1 = open("pre_chars_for_w2v.txt", "r") while 1: line = fo1.readline() line = line.decode("utf8") pinyinset = lazy_pinyin(line) lines = lines + 1 progress = (float(lines) / total_lines) * 100.00 sys.stdout.write("Process progress: %.2f%% \r" % (progress)) sys.stdout.flush() for pinyin in pinyinset: pinyin = pinyin.encode("utf8") fo2.write(pinyin) if not line: break fo1.close() fo2.close()
22.322581
67
0.638728
a51cab49d8c2b6b39f96f0f6eb82f3d37c76739d
3,833
py
Python
sdk/python/pulumi_aws_native/sagemaker/get_device_fleet.py
pulumi/pulumi-aws-native
1ae4a4d9c2256b2a79ca536f8d8497b28d10e4c3
[ "Apache-2.0" ]
29
2021-09-30T19:32:07.000Z
2022-03-22T21:06:08.000Z
sdk/python/pulumi_aws_native/sagemaker/get_device_fleet.py
pulumi/pulumi-aws-native
1ae4a4d9c2256b2a79ca536f8d8497b28d10e4c3
[ "Apache-2.0" ]
232
2021-09-30T19:26:26.000Z
2022-03-31T23:22:06.000Z
sdk/python/pulumi_aws_native/sagemaker/get_device_fleet.py
pulumi/pulumi-aws-native
1ae4a4d9c2256b2a79ca536f8d8497b28d10e4c3
[ "Apache-2.0" ]
4
2021-11-10T19:42:01.000Z
2022-02-05T10:15:49.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetDeviceFleetResult', 'AwaitableGetDeviceFleetResult', 'get_device_fleet', 'get_device_fleet_output', ] @pulumi.output_type class GetDeviceFleetResult: def __init__(__self__, description=None, output_config=None, role_arn=None, tags=None): if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if output_config and not isinstance(output_config, dict): raise TypeError("Expected argument 'output_config' to be a dict") pulumi.set(__self__, "output_config", output_config) if role_arn and not isinstance(role_arn, str): raise TypeError("Expected argument 'role_arn' to be a str") pulumi.set(__self__, "role_arn", role_arn) if tags and not isinstance(tags, list): raise TypeError("Expected argument 'tags' to be a list") pulumi.set(__self__, "tags", tags) @property @pulumi.getter def description(self) -> Optional[str]: """ Description for the edge device fleet """ return pulumi.get(self, "description") @property @pulumi.getter(name="outputConfig") def output_config(self) -> Optional['outputs.DeviceFleetEdgeOutputConfig']: """ S3 bucket and an ecryption key id (if available) to store outputs for the fleet """ return pulumi.get(self, "output_config") @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[str]: """ Role associated with the device fleet """ return pulumi.get(self, "role_arn") @property @pulumi.getter def tags(self) -> Optional[Sequence['outputs.DeviceFleetTag']]: """ Associate tags with the resource """ return pulumi.get(self, "tags") class AwaitableGetDeviceFleetResult(GetDeviceFleetResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDeviceFleetResult( description=self.description, output_config=self.output_config, role_arn=self.role_arn, tags=self.tags) def get_device_fleet(device_fleet_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDeviceFleetResult: """ Resource schema for AWS::SageMaker::DeviceFleet :param str device_fleet_name: The name of the edge device fleet """ __args__ = dict() __args__['deviceFleetName'] = device_fleet_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:sagemaker:getDeviceFleet', __args__, opts=opts, typ=GetDeviceFleetResult).value return AwaitableGetDeviceFleetResult( description=__ret__.description, output_config=__ret__.output_config, role_arn=__ret__.role_arn, tags=__ret__.tags) @_utilities.lift_output_func(get_device_fleet) def get_device_fleet_output(device_fleet_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetDeviceFleetResult]: """ Resource schema for AWS::SageMaker::DeviceFleet :param str device_fleet_name: The name of the edge device fleet """ ...
33.920354
127
0.670232
d580186a2ef50f82f77c4dab1e53e8879f7b966f
2,368
py
Python
addons14/document_page/models/document_page_history.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-06-10T14:59:13.000Z
2021-06-10T14:59:13.000Z
addons14/document_page/models/document_page_history.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
null
null
null
addons14/document_page/models/document_page_history.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-04-09T09:44:44.000Z
2021-04-09T09:44:44.000Z
# Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). import difflib from odoo import _, api, fields, models class DocumentPageHistory(models.Model): """This model is necessary to manage a document history.""" _name = "document.page.history" _description = "Document Page History" _order = "id DESC" page_id = fields.Many2one("document.page", "Page", ondelete="cascade") name = fields.Char(index=True) summary = fields.Char(index=True) content = fields.Text() diff = fields.Text(compute="_compute_diff") company_id = fields.Many2one( "res.company", "Company", help="If set, page is accessible only from this company", related="page_id.company_id", store=True, index=True, readonly=True, ) def _compute_diff(self): """Shows a diff between this version and the previous version""" history = self.env["document.page.history"] for rec in self: prev = history.search( [ ("page_id", "=", rec.page_id.id), ("create_date", "<", rec.create_date), ], limit=1, order="create_date DESC", ) rec.diff = self._get_diff(prev.id, rec.id) @api.model def _get_diff(self, v1, v2): """Return the difference between two version of document version.""" text1 = v1 and self.browse(v1).content or "" text2 = v2 and self.browse(v2).content or "" # Include line breaks to make it more readable # TODO: consider using a beautify library directly on the content text1 = text1.replace("</p><p>", "</p>\r\n<p>") text2 = text2.replace("</p><p>", "</p>\r\n<p>") line1 = text1.splitlines(True) line2 = text2.splitlines(True) if line1 == line2: return _("There are no changes in revisions.") else: diff = difflib.HtmlDiff() return diff.make_table( line1, line2, "Revision-{}".format(v1), "Revision-{}".format(v2), context=True, ) def name_get(self): return [(rec.id, "%s #%i" % (rec.page_id.name, rec.id)) for rec in self]
33.352113
80
0.558277
92317eb2b76c303f4cad2c2e96348225c61e66ba
2,795
py
Python
model/u-net/config.py
CoolPhilChen/cil-road-segmentation-2019
0becfe97d77012b3abbaa181a5c52e6edd1a39f1
[ "MIT" ]
null
null
null
model/u-net/config.py
CoolPhilChen/cil-road-segmentation-2019
0becfe97d77012b3abbaa181a5c52e6edd1a39f1
[ "MIT" ]
null
null
null
model/u-net/config.py
CoolPhilChen/cil-road-segmentation-2019
0becfe97d77012b3abbaa181a5c52e6edd1a39f1
[ "MIT" ]
1
2020-06-08T02:09:18.000Z
2020-06-08T02:09:18.000Z
# encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import sys import time import numpy as np from easydict import EasyDict as edict import argparse C = edict() config = C cfg = C C.seed = 12345 """please config ROOT_dir and user when u first using""" C.repo_name = 'cil-road-segmentation-2019' C.abs_dir = osp.realpath(".") C.this_dir = C.abs_dir.split(osp.sep)[-1] C.root_dir = C.abs_dir[:C.abs_dir.index(C.repo_name) + len(C.repo_name)] C.log_dir = osp.abspath(osp.join(C.root_dir, 'log', C.this_dir)) C.log_dir_link = osp.join(C.abs_dir, 'log') C.snapshot_dir = osp.abspath(osp.join(C.log_dir, "snapshot")) exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) C.log_file = C.log_dir + '/log_' + exp_time + '.log' C.link_log_file = C.log_file + '/log_last.log' C.val_log_file = C.log_dir + '/val_' + exp_time + '.log' C.link_val_log_file = C.log_dir + '/val_last.log' """Data Dir and Weight Dir""" C.dataset_path = "/local/home/lixxue/cil/cil-road-segmentation-2019/cil-road-segmentation-2019/" C.img_root_folder = C.dataset_path C.gt_root_folder = C.dataset_path C.train_source = osp.join(C.dataset_path, "train.txt") C.eval_source = osp.join(C.dataset_path, "val.txt") C.test_source = osp.join(C.dataset_path, "test.txt") C.is_test = False """Path Config""" def add_path(path): if path not in sys.path: sys.path.insert(0, path) add_path(osp.join(C.root_dir, 'furnace')) """Image Config""" C.num_classes = 2 C.image_mean = np.array([0.485, 0.456, 0.406]) # 0.485, 0.456, 0.406 C.image_std = np.array([0.229, 0.224, 0.225]) C.target_size = 1024 C.image_height = 400 C.image_width = 400 C.test_image_height = 608 C.test_image_width = 608 C.gt_down_sampling = 1 C.num_train_imgs = 90 C.num_eval_imgs = 10 """ Settings for network, this would be different for each kind of model""" C.fix_bias = True C.fix_bn = False C.sync_bn = True C.bn_eps = 1e-5 C.bn_momentum = 0.1 C.pretrained_model = None """Train Config""" C.lr = 1e-3 C.lr_power = 0.9 C.momentum = 0.9 C.weight_decay = 5e-4 C.batch_size = 16 C.nepochs = 80 C.niters_per_epoch = 1000 C.num_workers = 4 C.train_scale_array = [0.75, 1, 1.25, 1.5, 1.75, 2.0] """Eval Config""" C.eval_iter = 30 C.eval_stride_rate = 2 / 3 C.eval_scale_array = [1, ] C.eval_flip = False C.eval_height = 400 C.eval_width = 400 """Display Config""" C.snapshot_iter = 50 C.record_info_iter = 20 C.display_iter = 50 def open_tensorboard(): pass if __name__ == '__main__': print(config.epoch_num) parser = argparse.ArgumentParser() parser.add_argument( '-tb', '--tensorboard', default=False, action='store_true') args = parser.parse_args() if args.tensorboard: open_tensorboard()
24.517544
96
0.706619
f1c180478a7d3c7fdfe031e7e0aa350b1700fc0e
326
py
Python
sgcc-client/config/project_conf.py
zhanwei33/baai-federated-learning
838507f2344139e66385e1ef475a148fdeaf5c62
[ "Apache-2.0" ]
19
2020-11-30T09:42:08.000Z
2020-12-09T02:08:11.000Z
sgcc-client/config/project_conf.py
AIOpenData/baai-federated-learning-crane-baseline
838507f2344139e66385e1ef475a148fdeaf5c62
[ "Apache-2.0" ]
null
null
null
sgcc-client/config/project_conf.py
AIOpenData/baai-federated-learning-crane-baseline
838507f2344139e66385e1ef475a148fdeaf5c62
[ "Apache-2.0" ]
5
2020-12-01T01:57:19.000Z
2021-11-20T14:38:44.000Z
class ProjectConf: # development environment dev = { "host": "0.0.0.0", "port": 5016, "config": { "ENV": "dev", "DEBUG": True } } # product environment pro = { "config": { "ENV": "pro", "DEBUG": False } }
17.157895
29
0.371166
f5f8ba264744ff477dd4de332ee3750d24cb9bc4
702
py
Python
genia/utils/download.py
m-stoeckel/pyramid-nested-ner
ee169d3d84b4beeeecb3d5aeb5caa826166cce78
[ "MIT" ]
6
2020-11-15T09:17:36.000Z
2021-12-10T18:30:58.000Z
genia/utils/download.py
m-stoeckel/pyramid-nested-ner
ee169d3d84b4beeeecb3d5aeb5caa826166cce78
[ "MIT" ]
2
2021-03-31T01:06:43.000Z
2021-07-01T12:44:33.000Z
genia/utils/download.py
m-stoeckel/pyramid-nested-ner
ee169d3d84b4beeeecb3d5aeb5caa826166cce78
[ "MIT" ]
3
2021-04-05T18:58:01.000Z
2021-10-11T03:57:17.000Z
from oauth2client.client import GoogleCredentials from pydrive.drive import GoogleDrive from pydrive.auth import GoogleAuth from google.colab import auth if __name__ == "__main__": auth.authenticate_user() gauth = GoogleAuth() gauth.credentials = GoogleCredentials.get_application_default() drive = GoogleDrive(gauth) bio_bert = ("1GJpGjQj6aZPV-EfbiQELpBkvlGtoKiyA", 'biobert_large_v1.1_pubmed.tar.gz') bio_nlp_vec = ("0BzMCqpcgEJgiUWs0ZnU0NlFTam8", 'bio_nlp_vec.tar.gz') for file_id, file_name in [bio_nlp_vec, bio_bert]: print(f'downloading {file_name}...') downloaded = drive.CreateFile({'id': file_id}) downloaded.GetContentFile(file_name)
31.909091
88
0.74359
72271162c71f6b514b7ac064452d20ab4782cf17
110
py
Python
core/urls.py
ghalonso94/wswallet
8f1f13a0d646166adad45b3872c2db6558d48f38
[ "MIT" ]
null
null
null
core/urls.py
ghalonso94/wswallet
8f1f13a0d646166adad45b3872c2db6558d48f38
[ "MIT" ]
null
null
null
core/urls.py
ghalonso94/wswallet
8f1f13a0d646166adad45b3872c2db6558d48f38
[ "MIT" ]
null
null
null
from django.urls import path from core import views urlpatterns = [ path('', views.index, name='index') ]
18.333333
39
0.7
d113c2f53d3b67e10d16ed2f334a14ba6decd748
3,341
py
Python
api/src/application/socrata/client.py
iliaskaras/housing-units
2b0d78fcb42629ce7530b2da556ebd550cc7bec8
[ "MIT" ]
null
null
null
api/src/application/socrata/client.py
iliaskaras/housing-units
2b0d78fcb42629ce7530b2da556ebd550cc7bec8
[ "MIT" ]
null
null
null
api/src/application/socrata/client.py
iliaskaras/housing-units
2b0d78fcb42629ce7530b2da556ebd550cc7bec8
[ "MIT" ]
null
null
null
from typing import Dict from pandas import DataFrame from sodapy import Socrata from application.infrastructure.configurations.models import Configuration from application.infrastructure.error.errors import NoneArgumentError import pandas as pd class SocrataClient: DTYPES: Dict[str, str] = { 'project_id': 'object', 'project_name': 'object', 'project_start_date': 'datetime64', 'project_completion_date': 'datetime64', 'building_id': 'Int64', 'house_number': 'object', 'street_name': 'object', 'borough': 'object', 'postcode': 'Int64', 'bbl': 'Int64', 'bin': 'Int64', 'community_board': 'object', 'council_district': 'Int64', 'census_tract': 'object', 'neighborhood_tabulation_area': 'object', 'latitude': 'Int64', 'longitude': 'Int64', 'latitude_internal': 'Int64', 'longitude_internal': 'Int64', 'building_completion_date': 'datetime64', 'reporting_construction_type': 'object', 'extended_affordability_status': 'object', 'prevailing_wage_status': 'object', 'extremely_low_income_units': 'Int64', 'very_low_income_units': 'Int64', 'low_income_units': 'Int64', 'moderate_income_units': 'Int64', 'middle_income_units': 'Int64', 'other_income_units': 'Int64', 'studio_units': 'Int64', '_1_br_units': 'Int64', '_2_br_units': 'Int64', '_3_br_units': 'Int64', '_4_br_units': 'Int64', '_5_br_units': 'Int64', '_6_br_units': 'Int64', 'unknown_br_units': 'Int64', 'counted_rental_units': 'Int64', 'counted_homeownership_units': 'Int64', 'all_counted_units': 'Int64', 'total_units': 'Int64', } CHUNK_SIZE = 500 def __init__(self, hbd_dataset_id: str = 'hg8x-zxpr'): if not hbd_dataset_id: raise NoneArgumentError("HBD Dataset ID is not provided.") self._dataset_id: str = hbd_dataset_id self._client = Socrata("data.cityofnewyork.us", None) self._client = Socrata( "data.cityofnewyork.us", app_token=Configuration.get().socrata_app_token ) self._dataset_size = 10000 def download_housing_units_dataset(self) -> DataFrame: """ Downloads the Housing Units dataset by providing the dataset id from the Socrata api. :return: The dataframe containing the downloaded results. """ results = self._client.get(self._dataset_id, limit=self._dataset_size) # Convert to pandas DataFrame and change the column types. dataframe: DataFrame = pd.DataFrame.from_records(results) for col, col_type in self.DTYPES.items(): if col_type == 'Int64': dataframe[col] = pd.to_numeric(dataframe[col]) return dataframe @classmethod def housing_unit_dataset_generator(cls, housing_unit_dataset: DataFrame) -> DataFrame: """ Breaks the Housing Unit dataset into chunks and create a generator out of them. :return: The yielded chunked dataframe. """ for pos in range(0, len(housing_unit_dataset), cls.CHUNK_SIZE): yield housing_unit_dataset.iloc[pos:pos + cls.CHUNK_SIZE]
34.802083
93
0.628854
e5e7b6808b858f1a90c96b65d6898a8660b61a3b
1,671
py
Python
Search_based_Planning/Search_2D/Dijkstra.py
CodesHub/PathPlanning
8271d9a0e30d7d9d0f20d61a2f85b8fe199209fa
[ "MIT" ]
3,693
2020-07-15T15:41:07.000Z
2022-03-31T17:26:46.000Z
Search_based_Planning/Search_2D/Dijkstra.py
Alanaab/PathPlanning
8c12192d6952fcd2c3f8ba3c98e3593b27049a40
[ "MIT" ]
26
2020-08-27T04:56:59.000Z
2022-03-14T02:17:05.000Z
Search_based_Planning/Search_2D/Dijkstra.py
Alanaab/PathPlanning
8c12192d6952fcd2c3f8ba3c98e3593b27049a40
[ "MIT" ]
799
2020-07-17T04:02:05.000Z
2022-03-31T12:56:29.000Z
""" Dijkstra 2D @author: huiming zhou """ import os import sys import math import heapq sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../Search_based_Planning/") from Search_2D import plotting, env from Search_2D.Astar import AStar class Dijkstra(AStar): """Dijkstra set the cost as the priority """ def searching(self): """ Breadth-first Searching. :return: path, visited order """ self.PARENT[self.s_start] = self.s_start self.g[self.s_start] = 0 self.g[self.s_goal] = math.inf heapq.heappush(self.OPEN, (0, self.s_start)) while self.OPEN: _, s = heapq.heappop(self.OPEN) self.CLOSED.append(s) if s == self.s_goal: break for s_n in self.get_neighbor(s): new_cost = self.g[s] + self.cost(s, s_n) if s_n not in self.g: self.g[s_n] = math.inf if new_cost < self.g[s_n]: # conditions for updating Cost self.g[s_n] = new_cost self.PARENT[s_n] = s # best first set the heuristics as the priority heapq.heappush(self.OPEN, (new_cost, s_n)) return self.extract_path(self.PARENT), self.CLOSED def main(): s_start = (5, 5) s_goal = (45, 25) dijkstra = Dijkstra(s_start, s_goal, 'None') plot = plotting.Plotting(s_start, s_goal) path, visited = dijkstra.searching() plot.animation(path, visited, "Dijkstra's") # animation generate if __name__ == '__main__': main()
23.871429
74
0.55775
99f56d284569ebeaebc3764c0a1a23f61681bfbf
14,765
py
Python
fastybird_shelly_connector/clients/coap.py
FastyBird/shelly-connector
afbd75da091f96854fa09d3750d9f75406c5bf39
[ "Apache-2.0" ]
null
null
null
fastybird_shelly_connector/clients/coap.py
FastyBird/shelly-connector
afbd75da091f96854fa09d3750d9f75406c5bf39
[ "Apache-2.0" ]
null
null
null
fastybird_shelly_connector/clients/coap.py
FastyBird/shelly-connector
afbd75da091f96854fa09d3750d9f75406c5bf39
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # Copyright 2021. FastyBird s.r.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Shelly connector clients module CoAP client """ # Python base dependencies import logging import select import struct import time from socket import ( # pylint: disable=no-name-in-module AF_INET, INADDR_ANY, IP_ADD_MEMBERSHIP, IPPROTO_IP, IPPROTO_UDP, SHUT_RDWR, SO_REUSEADDR, SOCK_DGRAM, SOL_SOCKET, error, inet_aton, socket, ) from threading import Thread from typing import Optional, Union # Library libs from fastybird_shelly_connector.api.gen1parser import Gen1Parser from fastybird_shelly_connector.api.gen1validator import Gen1Validator from fastybird_shelly_connector.clients.client import IClient from fastybird_shelly_connector.consumers.consumer import Consumer from fastybird_shelly_connector.exceptions import ( FileNotFoundException, LogicException, ParsePayloadException, ) from fastybird_shelly_connector.logger import Logger from fastybird_shelly_connector.registry.model import DevicesRegistry from fastybird_shelly_connector.registry.records import ( BlockRecord, DeviceRecord, SensorRecord, ) from fastybird_shelly_connector.types import ClientMessageType, ClientType class CoapClient(IClient, Thread): # pylint: disable=too-many-instance-attributes """ CoAP client @package FastyBird:ShellyConnector! @module clients/coap @author Adam Kadlec <adam.kadlec@fastybird.com> """ __stopped: bool = True __socket: Optional[socket] = None __validator: Gen1Validator __parser: Gen1Parser __consumer: Consumer __devices_registry: DevicesRegistry __logger: Union[Logger, logging.Logger] # __timer: Optional[Timer] = None __BIND_IP: str = "0.0.0.0" __COAP_IP: str = "224.0.1.187" __COAP_PORT: int = 5683 __DISCOVERY_INTERVAL: int = 60 # ----------------------------------------------------------------------------- def __init__( # pylint: disable=too-many-arguments self, validator: Gen1Validator, parser: Gen1Parser, consumer: Consumer, devices_registry: DevicesRegistry, logger: Union[Logger, logging.Logger] = logging.getLogger("dummy"), ) -> None: Thread.__init__(self, name="CoAP server thread", daemon=True) self.__consumer = consumer self.__validator = validator self.__parser = parser self.__devices_registry = devices_registry self.__logger = logger # ----------------------------------------------------------------------------- @property def type(self) -> ClientType: """Client type""" return ClientType.COAP # ----------------------------------------------------------------------------- def start(self) -> None: """Start communication""" self.__create_client() # self.__timer = Timer(interval=self.__DISCOVERY_INTERVAL) self.__stopped = False if not Thread.is_alive(self): Thread.start(self) # ----------------------------------------------------------------------------- def stop(self) -> None: """Stop communication""" # self.__timer = None self.__stopped = True if self.__socket is not None: try: self.__socket.shutdown(SHUT_RDWR) self.__socket = None except error: pass # ----------------------------------------------------------------------------- def is_connected(self) -> bool: """Check if client is connected""" return self.__socket is not None # ----------------------------------------------------------------------------- def discover(self) -> None: """Send discover command""" if self.__socket is not None: self.__logger.debug( "Sending CoAP discover UDP", extra={ "client": { "type": ClientType.COAP.value, }, }, ) msg = bytes(b"\x50\x01\x00\x0A\xb3cit\x01d\xFF") self.__socket.sendto(msg, (self.__COAP_IP, self.__COAP_PORT)) # ----------------------------------------------------------------------------- def handle(self) -> None: """Process CoAP requests""" # ----------------------------------------------------------------------------- def write_sensor( self, device_record: DeviceRecord, block_record: BlockRecord, sensor_record: SensorRecord, write_value: Union[str, int, float, bool, None], ) -> None: """Write value to device sensor""" # ----------------------------------------------------------------------------- def run(self) -> None: """Process CoAP requests""" if self.__socket is None: return while not self.__stopped: # if self.__timer is not None and self.__timer.check(): # self.discover() try: self.__handle_request() except Exception as ex: # pylint: disable=broad-except self.__logger.error( "Error receiving CoAP UDP", extra={ "client": { "type": ClientType.COAP.value, }, "exception": { "message": str(ex), "code": type(ex).__name__, }, }, ) # ----------------------------------------------------------------------------- def __create_client(self) -> None: """Create CoAP socket client""" if self.__socket is None: try: self.__socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP) self.__socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) self.__socket.bind((self.__BIND_IP, self.__COAP_PORT)) mreq = struct.pack("=4sl", inet_aton(self.__COAP_IP), INADDR_ANY) # pylint: disable=no-member self.__socket.setsockopt(IPPROTO_IP, IP_ADD_MEMBERSHIP, mreq) except Exception as ex: # pylint: disable=broad-except self.__logger.error( "CoAP client can't be created", extra={ "client": { "type": ClientType.COAP.value, }, "exception": { "message": str(ex), "code": type(ex).__name__, }, }, ) # ----------------------------------------------------------------------------- def __handle_request( # pylint: disable=too-many-statements,too-many-branches,too-many-locals self, ) -> None: r_list, _, __ = select.select( # pylint: disable=c-extension-no-member [self.__socket], [], [], 0.1, ) for ready in r_list: if isinstance(ready, socket): data_tmp, address = ready.recvfrom(1024) data = bytearray(data_tmp) if len(data) < 10: return ip_address = address[0] pos = 0 # Receive messages with ip from proxy if data[0] == 112 and data[1] == 114 and data[2] == 120 and data[3] == 121: pos = 8 byte = data[pos] tkl = byte & 0x0F # ver = byte >> 6 # typex = (byte >> 4) & 0x3 # token_length = byte & 0xF code = data[pos + 1] # message_id = 256 * data[2] + data[3] pos = pos + 4 + tkl if code in (30, 69): byte = data[pos] tot_delta = 0 device_type = "" device_identifier = "" while byte != 0xFF: delta = byte >> 4 length = byte & 0x0F if delta == 13: pos = pos + 1 delta = data[pos] + 13 elif delta == 14: pos = pos + 2 delta = data[pos - 1] * 256 + data[pos] + 269 tot_delta = tot_delta + delta if length == 13: pos = pos + 1 length = data[pos] + 13 elif length == 14: pos = pos + 2 length = data[pos - 1] * 256 + data[pos] + 269 value = data[pos + 1 : pos + length] pos = pos + length + 1 if tot_delta == 3332: device_type, device_identifier, _ = str(value, "cp1252").split("#", 2) byte = data[pos] try: payload = str(data[pos + 1 :], "cp1252") except Exception as ex: # pylint: disable=broad-except self.__logger.error( "Can't convert received payload", extra={ "client": { "type": ClientType.COAP.value, }, "exception": { "message": str(ex), "code": type(ex).__name__, }, }, ) return if payload: # Fix for DW2 payload error payload = payload.replace(",,", ",").replace("][", "],[") self.__logger.debug( "CoAP Code: %d, Type: %s, Id: %s, Payload: %s", code, device_type, device_identifier, payload.replace(" ", ""), extra={ "client": { "type": ClientType.COAP.value, }, "device": { "identifier": device_identifier, "ip_address": ip_address, "type": device_type, }, }, ) if code == 30: self.__handle_message( device_identifier=device_identifier.lower(), device_type=device_type.lower(), device_ip_address=ip_address, message_payload=payload, message_type=ClientMessageType.COAP_STATUS, ) elif code == 69: self.__handle_message( device_identifier=device_identifier.lower(), device_type=device_type.lower(), device_ip_address=ip_address, message_payload=payload, message_type=ClientMessageType.COAP_DESCRIPTION, ) # ----------------------------------------------------------------------------- def __handle_message( # pylint: disable=too-many-arguments self, device_identifier: str, device_type: str, device_ip_address: str, message_payload: str, message_type: ClientMessageType, ) -> None: device_record = self.__devices_registry.get_by_identifier( device_identifier=device_identifier, ) if device_record is not None: self.__devices_registry.set_last_communication_timestamp( device=device_record, last_communication_timestamp=time.time(), ) try: if ( self.__validator.validate_coap_message( message_payload=message_payload, message_type=message_type, ) is False ): return except (LogicException, FileNotFoundException) as ex: self.__logger.error( "Received message validation against schema failed", extra={ "device": { "identifier": device_identifier, "type": device_type, }, "exception": { "message": str(ex), "code": type(ex).__name__, }, }, ) return try: entity = self.__parser.parse_coap_message( device_identifier=device_identifier, device_type=device_type, device_ip_address=device_ip_address, message_payload=message_payload, message_type=message_type, ) except (FileNotFoundException, LogicException, ParsePayloadException) as ex: self.__logger.error( "Received message could not be successfully parsed to entity", extra={ "device": { "identifier": device_identifier, "type": device_type, }, "exception": { "message": str(ex), "code": type(ex).__name__, }, }, ) return self.__consumer.append(entity=entity)
32.379386
110
0.44829
b9898877b3e9bf89a7c311953673917ff7b5a7c1
99
py
Python
ibolc/wsgi.py
jschaf/ibolcdb
e890fcf6bdc6219b3464899a99ac0464f6d329fc
[ "BSD-3-Clause" ]
null
null
null
ibolc/wsgi.py
jschaf/ibolcdb
e890fcf6bdc6219b3464899a99ac0464f6d329fc
[ "BSD-3-Clause" ]
null
null
null
ibolc/wsgi.py
jschaf/ibolcdb
e890fcf6bdc6219b3464899a99ac0464f6d329fc
[ "BSD-3-Clause" ]
null
null
null
from .app import create_app from .settings import ProdConfig application = create_app(ProdConfig)
19.8
36
0.828283
f795542d3d01d55b554ee078f22b86f50f3b7588
3,547
py
Python
lipo/psv/models.py
Mik3y-F/Lipo
d9d748b8565bc75c7022cb5b06781dba46181f63
[ "MIT" ]
null
null
null
lipo/psv/models.py
Mik3y-F/Lipo
d9d748b8565bc75c7022cb5b06781dba46181f63
[ "MIT" ]
1
2020-06-24T11:08:18.000Z
2020-06-24T11:08:18.000Z
lipo/psv/models.py
Mik3y-F/Lipo
d9d748b8565bc75c7022cb5b06781dba46181f63
[ "MIT" ]
null
null
null
import uuid from django.db import models from django.utils.translation import ugettext_lazy as _ class Psv(models.Model): id = models.UUIDField(_("PSV Id"), primary_key=True, default=uuid.uuid4, editable=False) type = models.ManyToManyField("users.UserType", verbose_name=_("P.S.V types"),) name = models.CharField(_("Name of PSV"), blank=True, max_length=255) sacco = models.ForeignKey("saccos.Sacco", verbose_name=_("Saccos"), on_delete=models.CASCADE, null=True,) plate_registration_no = models.CharField(_("Plate Registration Number of PSV"), max_length=255) route = models.ManyToManyField("psv_routes.Route", verbose_name=_("Psv Routes Plied by PSV.")) attribute = models.ManyToManyField("psv.Attribute", verbose_name=_("Psv Attributes")) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: verbose_name = _("PSV") verbose_name_plural = _("PSVs") def __str__(self): return self.plate_registration_no def get_absolute_url(self): return reverse("psv:detail", kwargs={"pk": self.pk}) class PsvType(models.Model): TAXI = 'taxi' MOTOR_BIKE = 'motor_bike' MATATU_MINIBUS = 'matatu_minibus' MATATU_BUS = 'matatu_bus' BICYCLE = 'bicycle' PSV_TYPE = [ (TAXI, _('Psv is a Taxi')), (MOTOR_BIKE, _('Psv is a motorbike')), (BICYCLE, _('Psv is a bicycle')), (MATATU_MINIBUS, _('Psv is a Matatu Minibus')), (MATATU_BUS, _('Psv is a Matatu Bus')), ] name = models.CharField(_("Name of PSV Type"), blank=True, max_length=255) class Meta: verbose_name = _("Psv Type") verbose_name_plural = _("Psv Types") def __str__(self): return self.name def get_absolute_url(self): return reverse("psv_type:detail", kwargs={"pk": self.pk}) class PsvLike(models.Model): id = models.UUIDField(_("PSV Like Id"), primary_key=True, default=uuid.uuid4, editable=False) user = models.ForeignKey("users.User", verbose_name=_("user who liked P.S.V"), on_delete=models.CASCADE) psv = models.ForeignKey("psv.Psv", verbose_name=_("P.S.V. liked by user"), on_delete=models.CASCADE) class Meta: verbose_name = _("Psv Like") verbose_name_plural = _("Psv Likes") def __str__(self): return self.id def get_absolute_url(self): return reverse("psv_like:detail", kwargs={"pk": self.pk}) class PsvFavourite(models.Model): id = models.UUIDField(_("PSV Favourite Id"), primary_key=True, default=uuid.uuid4, editable=False) user = models.ForeignKey("users.User", verbose_name=_("user who favourited P.S.V"), on_delete=models.CASCADE) psv = models.ForeignKey("psv.Psv", verbose_name=_("P.S.V. favourited by user"), on_delete=models.CASCADE) class Meta: verbose_name = _("Psv Like") verbose_name_plural = _("Psv Likes") def __str__(self): return self.id def get_absolute_url(self): return reverse("psv_favourite:detail", kwargs={"pk": self.pk}) class Attribute(models.Model): name = models.CharField(_("Psv Attribute"), max_length=50) class Meta: verbose_name = _("Attribute") verbose_name_plural = _("Attributes") def __str__(self): return self.name def get_absolute_url(self): return reverse("attribute:detail", kwargs={"pk": self.pk})
31.114035
102
0.648435
078a990c270cba46ac245aadfc157f6e81aa91e5
107
py
Python
tests/unit/test_modulegraph/testpkg-regr5/script.py
hawkhai/pyinstaller
016a24479b34de161792c72dde455a81ad4c78ae
[ "Apache-2.0" ]
9,267
2015-01-01T04:08:45.000Z
2022-03-31T11:42:38.000Z
tests/unit/test_modulegraph/testpkg-regr5/script.py
jeremysanders/pyinstaller
321b24f9a9a5978337735816b36ca6b4a90a2fb4
[ "Apache-2.0" ]
5,150
2015-01-01T12:09:56.000Z
2022-03-31T18:06:12.000Z
tests/unit/test_modulegraph/testpkg-regr5/script.py
jeremysanders/pyinstaller
321b24f9a9a5978337735816b36ca6b4a90a2fb4
[ "Apache-2.0" ]
2,101
2015-01-03T10:25:27.000Z
2022-03-30T11:04:42.000Z
import __init__ from PyInstaller.lib.modulegraph.find_modules import find_needed_modules import distutils
21.4
72
0.88785
245c125717630c513475cc49d1dbea1afa2e2183
323
py
Python
src/restapi/permissions.py
gavin-anders/callback-catcher
77d18a983fc5a9e53b33189d4202868210b5d7e3
[ "Apache-2.0" ]
2
2019-06-27T21:08:23.000Z
2020-10-16T12:07:19.000Z
src/restapi/permissions.py
gavin-anders/callback-catcher
77d18a983fc5a9e53b33189d4202868210b5d7e3
[ "Apache-2.0" ]
null
null
null
src/restapi/permissions.py
gavin-anders/callback-catcher
77d18a983fc5a9e53b33189d4202868210b5d7e3
[ "Apache-2.0" ]
null
null
null
from rest_framework.permissions import DjangoModelPermissions, BasePermission from catcher.models import Client from catcher.settings import USERNAME class ClientUserPermissions(DjangoModelPermissions): def __init__(self): self.perms_map['GET'] = ['%(app_label)s.view_%(model_name)s']
35.888889
77
0.736842
0f76222be0db1618ee1b63218f3497e1e8890225
4,438
py
Python
skbot/ignition/sdformat/generic_sdf/__init__.py
FirefoxMetzger/ropy
c1bcebda223f3af0b6d35e3f4c26d8fd9d26577a
[ "Apache-2.0" ]
6
2021-03-24T05:54:45.000Z
2021-07-20T21:03:21.000Z
skbot/ignition/sdformat/generic_sdf/__init__.py
FirefoxMetzger/scikit-bot
ee6f1d3451a3c61a6fa122cc42efc4dd67afc9c9
[ "Apache-2.0" ]
31
2021-08-12T08:12:58.000Z
2022-03-21T23:16:36.000Z
skbot/ignition/sdformat/generic_sdf/__init__.py
FirefoxMetzger/scikit-bot
ee6f1d3451a3c61a6fa122cc42efc4dd67afc9c9
[ "Apache-2.0" ]
1
2021-07-20T20:13:49.000Z
2021-07-20T20:13:49.000Z
""" Version-Agnostic SDF Bindings .. currentmodule:: skbot.ignition.sdformat.generic_sdf .. warning:: This module is experimental and not all SDFormat elements are currently supported. If an element is not supported, it will raise a warning. To suppress this warning use:: skbot.ignition.sdformat.generic_sdf.base.WARN_UNSUPPORTED = False This module contains version-agnostic bindings for `SDFormat <http://sdformat.org/spec>`_. The idea of these bindings is that they can parse SDF in any one version, and allow you to consume the SDF as if it were any other SDF version. This, of course, comes with the limitation of compatibility between versions. For example, you can load a SDF v1.6 file and access elements introduced in SDF v1.8 if they have a default value or can be computed from the values available. However, if an element is now required in SDF v1.8 but wasn't available in SDF v1.6 then it will not be set. Further, if an element is no longer available in the most recent SDF version, it will raise a depreciation warning. Such cases will be documented as such. In addition to unavoidable version incompatibilities listed above, the bindings make the following oppinionated decisions: - Some variable names differ from SDFormat - If an element may have multiple children of the same kind, they corresponding attribute uses plural instead of singular, e.g. ``models`` instead of ``model``. - If different SDF versions use different names for the same variable, they are converted into the name used in the most recent SDFormat version. Old names are still available via a @property and will raise a depreciation warning. - vectors are converted to numpy arrays - includes are resolved, removes, and the included element is inserted instead - __model__ is appended to frame references where necessary, e.g., a reference of the form ``model_A::model_B`` will become ``model_A::model_b:__model__``. Supported Elements ------------------ .. autosummary:: :toctree: generic_sdf sdf.Sdf camera.Camera frame.Frame joint.Joint link.Link model.Model sensor.Sensor world.World include.Include origin.Origin Unsupported Elements -------------------- The following elements are currently recognized, but not implemented. When encountered, they will raise a warning. .. autosummary:: :toctree: generic_sdf state.State light_state.Light link_state.Link model_state.Model collision.Collision inertial.Inertial material.Material geometry.Geometry visual.Visual actor.Actor audio_sink.AudioSink audio_source.AudioSource collision_engine.CollisionEngine gripper.Gripper particle_emitter.ParticleEmitter physics.Physics scene.Scene surface.Surface urdf.URDF .. rubric:: Sensors .. autosummary:: :toctree: generic_sdf sensors.Lidar sensors.Ray sensors.AirPressure sensors.Altimeter sensors.Contact sensors.ForceTorque sensors.Gps sensors.Imu sensors.LogicalCamera sensors.Magnetometer sensors.Navsat sensors.RfidTag sensors.Rfid sensors.Sonar sensors.Transceiver light.Light .. rubric:: Shapes .. autosummary:: :toctree: generic_sdf shapes.Box shapes.Capsule shapes.Cylinder shapes.Ellipsoid shapes.Heightmap shapes.Image shapes.Mesh shapes.Plane .. rubric:: Misc .. autosummary:: :toctree: generic_sdf gui.Gui atmosphere.Atmosphere battery.Battery noise.Noise population.Population projector.Projector """ # currently imported for coverage x) from . import base, sensors, shapes # import top-level elements as mentioned in the # SDFormat spec. from .actor import Actor from .collision import Collision from .geometry import Geometry from .joint import Joint from .light import Light from .link import Link from .material import Material from .model import Model from .physics import Physics from .scene import Scene from .sensor import Sensor from .state import State from .visual import Visual from .world import World __all__ = [ "World", "Scene", "State", "Physics", "Light", "Actor", "Model", "Link", "Sensor", "Joint", "Collision", "Visual", "Material", "Geometry", ]
24.519337
87
0.710455
7ffd6daa15a6e8a46f799b43fc40164b29a16125
23,106
py
Python
scripts/gridengine/paramsearch/runScript.py
helloric/pydial3
34988f4592c4e28388b2818de8768d841696efbb
[ "Apache-2.0" ]
null
null
null
scripts/gridengine/paramsearch/runScript.py
helloric/pydial3
34988f4592c4e28388b2818de8768d841696efbb
[ "Apache-2.0" ]
null
null
null
scripts/gridengine/paramsearch/runScript.py
helloric/pydial3
34988f4592c4e28388b2818de8768d841696efbb
[ "Apache-2.0" ]
null
null
null
import os import sys import argparse """ DETAILS: # THIS FILE EXPLORES GP/REGR/FF/LSTM MODELS -- Try varying AT LEAST the following network parameters: a) network structures: n_hideen, L1, L2, acitivation b) learning rate, decay, and regularisation """ ################################################ ### repository path ################################################ repository_path = os.path.abspath(os.path.join(os.getcwd(),'../../../')) def config_text(domains, root, seed, screen_level, maxturns, belieftype, useconfreq, policytype, startwithhello, inpolicyfile, outpolicyfile, learning, maxiter, gamma, learning_rate, tau, replay_type, minibatch_size, capacity, exploration_type, epsilon_start, epsilon_end, n_in, features, max_k, \ learning_algorithm, architecture, h1_size, h2_size, kernel, random, scale, usenewgoalscenarios, nbestsize, patience, penaliseallturns, wrongvenuepenalty, notmentionedvaluepenalty, sampledialogueprobs, save_step, confscorer, oldstylepatience, forcenullpositive, file_level, maxinformslots, informmask, informcountaccepted, requestmask, confusionmodel, byemask, n_samples, alpha_divergence, alpha, sigma_eps, sigma_prior, stddev_var_mu, stddev_var_logsigma, mean_log_sigma, nbestgeneratormodel, delta, beta, is_threshold, train_iters_per_episode, training_frequency, no_head, keep_prob, dropout_start, old_style_parameter_sampling): text = '[GENERAL]' + '\n' text += 'domains = ' + domains + '\n' text += 'singledomain = True' + '\n' text += 'root = ' + root + '\n' text += 'seed = ' + seed + '\n' text += '\n' text += '[conditional]' + '\n' text += 'conditionalsimuser = True\n' text += 'conditionalbeliefs = True\n' text += '\n' text += '[agent]' + '\n' text += 'maxturns = ' + maxturns + '\n' text += '\n' text += '[logging]' + '\n' text += 'screen_level = ' + screen_level + '\n' text += 'file_level = ' + file_level + '\n' text += '\n' text += '[simulate]' + '\n' text += 'mindomainsperdialog = 1\n' text += 'maxdomainsperdialog = 1\n' text += 'forcenullpositive = ' + forcenullpositive + '\n' text += '\n' text += '[policy]' + '\n' text += 'maxinformslots = ' + maxinformslots + '\n' text += 'informmask = ' + informmask + '\n' text += 'informcountaccepted = ' + informcountaccepted + '\n' text += 'requestmask = ' + requestmask + '\n' text += 'byemask = ' + byemask + '\n' text += '\n' text += '[policy_' + domains + ']' + '\n' text += 'belieftype = ' + belieftype + '\n' text += 'useconfreq = ' + useconfreq + '\n' text += 'policytype = ' + policytype + '\n' text += 'startwithhello = ' + startwithhello + '\n' text += 'inpolicyfile = ' + inpolicyfile + '\n' text += 'outpolicyfile = ' + outpolicyfile + '\n' text += 'learning = ' + learning + '\n' text += 'save_step = ' + save_step + '\n' text += '\n' text += '[dqnpolicy_' + domains + ']' + '\n' text += 'maxiter = ' + maxiter + '\n' text += 'gamma = ' + gamma + '\n' text += 'learning_rate = ' + learning_rate + '\n' text += 'tau = ' + tau + '\n' text += 'replay_type = ' + replay_type + '\n' text += 'minibatch_size = ' + minibatch_size + '\n' text += 'capacity = ' + capacity + '\n' text += 'exploration_type = ' + exploration_type + '\n' text += 'epsilon_start = ' + epsilon_start + '\n' text += 'epsilon_end = ' + epsilon_end + '\n' text += 'n_in = ' + n_in + '\n' text += 'features = ' + features + '\n' text += 'max_k = ' + max_k + '\n' text += 'learning_algorithm = ' + learning_algorithm + '\n' text += 'architecture = ' + architecture + '\n' text += 'h1_size = ' + h1_size + '\n' text += 'h2_size = ' + h2_size + '\n' text += 'training_frequency = ' + training_frequency + '\n' # Bayesian parameters text += 'n_samples = ' + n_samples + '\n' text += 'stddev_var_mu = ' + stddev_var_mu + '\n' text += 'stddev_var_logsigma = ' + stddev_var_logsigma + '\n' text += 'mean_log_sigma = ' + mean_log_sigma + '\n' text += 'sigma_prior = ' + sigma_prior + '\n' text += 'alpha =' + alpha + '\n' text += 'alpha_divergence =' + alpha_divergence + '\n' text += 'sigma_eps = ' + sigma_eps + '\n' text += 'no_head = ' + no_head + '\n' text += 'keep_prob = ' + keep_prob + '\n' text += 'dropout_start = ' + dropout_start + '\n' text += '\n' # ACER text += 'delta = ' + delta + '\n' text += 'beta = ' + beta + '\n' text += 'is_threshold = ' + is_threshold + '\n' text += 'train_iters_per_episode = ' + train_iters_per_episode + '\n' text += '\n' text += '[gppolicy_' + domains + ']' + '\n' text += 'kernel = ' + kernel + '\n' text += '\n' text += '[gpsarsa_' + domains + ']' + '\n' text += 'random = ' + random + '\n' text += 'scale = ' + scale + '\n' text += '\n' text += '[usermodel]' + '\n' text += 'usenewgoalscenarios = ' + usenewgoalscenarios + '\n' text += 'sampledialogueprobs = ' + sampledialogueprobs + '\n' text += 'oldstylepatience = ' + oldstylepatience + '\n' text += 'oldstylesampling = ' + old_style_parameter_sampling + '\n' text += '\n' text += '[errormodel]' + '\n' text += 'nbestsize = ' + nbestsize + '\n' text += 'confusionmodel = ' + confusionmodel + '\n' text += 'nbestgeneratormodel = ' + nbestgeneratormodel + '\n' text += 'confscorer = ' + confscorer + '\n' text += '\n' text += '[goalgenerator]' + '\n' text += 'patience = ' + patience + '\n' text += '\n' text += '[eval]' + '\n' text += 'rewardvenuerecommended = 0' + '\n' text += 'penaliseallturns = ' + penaliseallturns + '\n' text += 'wrongvenuepenalty = ' + wrongvenuepenalty + '\n' text += 'notmentionedvaluepenalty = ' + notmentionedvaluepenalty + '\n' text += '\n' text += '[eval_' + domains + ']' + '\n' text += 'successmeasure = objective' + '\n' text += 'successreward = 20' + '\n' text += '\n' return text def run_on_grid(targetDir, step, iter_in_step, test_iter_in_step, parallel, execDir, configName, text, mode, error): ################################################ ### config file config = repository_path + configName + '.cfg' # if directory not exist, then creat one config_dir = repository_path + 'configures/' if not os.path.exists(config_dir): os.makedirs(config_dir) with open(config, 'w') as f: f.write(text) runStr = 'running ' + config print('{0:*^60}'.format(runStr)) # command = 'python run_grid_pyGPtraining_rpg.py ' + targetDir + ' 3 10000 1 ' + execDir + ' 15 1 ' + config if mode == ('train', 'grid'): command = 'python run_grid_pyGPtraining_rpg.py ' + targetDir + ' ' + step + ' ' + \ iter_in_step + ' ' + parallel + ' ' + execDir + ' ' + error + ' 1 ' + config elif mode == ('test', 'grid'): command = 'python run_grid_pyGPtraining_rpg_test.py ' + targetDir + ' TEST ' + step + ' ' + \ test_iter_in_step + ' ' + parallel + ' ' + execDir + ' ' + error + ' 1 ' + config elif mode == ('train', 'own'): command = 'python run_own_pyGPtraining_rpg.py ' + targetDir + ' ' + step + ' ' + \ iter_in_step + ' ' + parallel + ' ' + execDir + ' ' + error + ' 1 ' + config elif mode == ('test', 'own'): command = 'python run_own_pyGPtraining_rpg_test.py ' + targetDir + ' TEST ' + step + ' ' + \ test_iter_in_step + ' ' + parallel + ' ' + execDir + ' ' + error + ' 1 ' + config print(command) os.system(command) def main(argv): step = '10' iter_in_step = '100' test_iter_in_step = '100' save_step = '100' parallel = '1' maxiter = str(int(step) * int(iter_in_step)) ################################################ ### Domain information ################################################ domains = 'CamRestaurants' # SF restaurants if len(argv) > 4: repository_path = argv[4] root = repository_path seed = argv[3] screen_level = 'warning' file_level = 'warning' maxturns = '25' ################################################ ### General policy information ################################################ belieftype = 'focus' useconfreq = 'False' policytype_vary = ['BBQN']#dropout', 'concrete', 'bootstrapped'] #'dqn', 'BBQN', 'BBQN'] # 'dropout', 'concrete' startwithhello = 'False' inpolicyfile = 'policyFile' outpolicyfile = 'policyFile' learning = 'True' maxinformslots = '5' # Maximum number of slot values that are presented in the inform summary action informmask = 'True' # Decides if the mask over inform type actions is used or not (having the mask active speeds up learning) informcountaccepted = '4' # number of accepted slots needed to unmask the inform_byconstraints action requestmask = 'True' # Decides if the mask over inform type actions is used or not byemask = 'True' ################################################ ### DNN architecture options ################################################ gamma = '0.99' # discount factor learning_rate = '0.001' # learning rate tau_vary = ['0.02'] # target policy network update frequency 0.02 is equal to update policy after 50 epochs replay_type_vary = ['vanilla'] # ['vanilla'] experience replay minibatch_size_vary = ['64'] # how many turns are in the batch capacity_vary = ['1000'] # how many turns/dialogues are in ER exploration_type_vary = ['e-greedy'] # 'e-greedy', 'Boltzman' epsilon_s_e_vary = [('0.9', '0.0')] # , ('0.3', '0.0')]#, ('0.5', '0.1')] training_frequency = '2' # how often train the model, episode_count % frequency == 0 features = '["discourseAct", "method", "requested", "full", "lastActionInformNone", "offerHappened", "inform_info"]' max_k = '5' learning_algorithm = 'dqn' architecture = 'vanilla' h1_size = ['130']#, '200', '300'] h2_size = ['50']#, '75', '100'] ################################################ ### Bayesian estimation parameters ################################################ n_samples = '1' # number of samples for action choice alpha_divergence = 'False' # use alpha divergence? alpha = '0.85' sigma_eps = '0.01' # variance size for sampling epsilon sigma_prior = '1.5' # prior for variance in KL term stddev_var_mu = '0.01' # stdv for weights stddev_var_logsigma = '0.01' # stdv of variance for variance mean_log_sigma = '0.000001' # prior mean for variance no_head = '3' # number of heads used for keep_prob = '0.9' # dropout level dropout_start = '0.2' # concrete dropout level ################################################ ### ACER parameters ################################################ beta = '0.95' delta = '1.0' is_threshold = '5.0' train_iters_per_episode = '1' ################################################ ### User model and environment model info. ################################################ usenewgoalscenarios = 'True' sampledialogueprobs = 'True' old_style_parameter_sampling = 'True' # for BBQN True confusionmodel = 'RandomConfusions' confscorer = 'additive' # 'additive' nbestgeneratormodel = 'SampledNBestGenerator' nbestsize = '3' patience = '3' penaliseallturns = 'True' wrongvenuepenalty = '0' notmentionedvaluepenalty = '0' oldstylepatience = 'True' forcenullpositive = 'False' runError_vary = ['0'] if domains is 'CamRestaurants': n_in = '268' elif domains is 'CamHotels': n_in = '111' elif domains is 'SFRestaurants': n_in = '636' elif domains is 'SFHotels': n_in = '438' elif domains is 'Laptops11': n_in = '257' elif domains is 'TV': n_in = '188' elif domains is 'Booking': n_in = '188' ################################################ ### GP policy training options ################################################ kernel = 'polysort' random = 'False' scale = '3' ConfigCounter = 0 listFile = open(argv[0], 'w') runMode = ('train', 'grid') if argv[1] not in ('train', 'test') or argv[2] not in ('grid', 'own'): print('\n!!!!! WRONG COMMAND !!!!!\n') print('EXAMPLE: python runScript.py list [train|test] [grid|own]\n') exit(1) elif argv[1] == 'train': if argv[2] == 'grid': runMode = ('train', 'grid') elif argv[2] == 'own': runMode = ('train', 'own') elif argv[1] == 'test': if argv[2] == 'grid': runMode = ('test', 'grid') elif argv[2] == 'own': runMode = ('test', 'own') listOutput = '{0: <6}'.format('PARAM') + '\t' listOutput += '{0: <10}'.format('type') + '\t' listOutput += '{0: <10}'.format('actor_lr') + '\t' listOutput += '{0: <10}'.format('critic_lr') + '\t' listOutput += '{0: <10}'.format('replaytype') + '\t' listOutput += '{0: <10}'.format('nMini') + '\t' listOutput += '{0: <10}'.format('capacity') + '\t' listOutput += '{0: <10}'.format('runError') + '\t' listFile.write(listOutput + '\n') for policytype in policytype_vary: for tau in tau_vary: for replay_type in replay_type_vary: for minibatch_size in minibatch_size_vary: for exploration_type in exploration_type_vary: for capacity in capacity_vary: for epsilon_s_e in epsilon_s_e_vary: epsilon_start, epsilon_end = epsilon_s_e for h1 in h1_size: for h2 in h2_size: for runError in runError_vary: execDir = repository_path if policytype == 'gp': targetDir = 'CamRestaurants_gp_' elif policytype == 'dqn' or policytype == 'dqn_vanilla': targetDir = 'CamRestaurants_dqn_' elif policytype == 'a2c': targetDir = 'CamRestaurants_a2c_' elif policytype == 'enac': targetDir = 'CamRestaurants_enac_' elif policytype == 'BBQN': targetDir = 'CamRestaurants_BBQN_' elif policytype == 'BBQN': targetDir = 'CamRestaurants_BBQN_' elif policytype == 'concrete': targetDir = 'CamRestaurants_concrete_' elif policytype == 'bootstrapped': targetDir = 'CamRestaurants_bootstrapped_' elif policytype == 'dropout': targetDir = 'CamRestaurants_dropout_' elif policytype == 'acer': targetDir = 'CamRestaurants_acer_' elif policytype == 'a2cis': targetDir = 'CamRestaurants_a2cis_' elif policytype == 'tracer': targetDir = 'CamRestaurants_tracer_' listOutput = '{0: <10}'.format(targetDir) + '\t' listOutput += '{0: <10}'.format(policytype) + '\t' listOutput += '{0: <10}'.format(learning_rate) + '\t' listOutput += '{0: <10}'.format(replay_type) + '\t' listOutput += '{0: <10}'.format(minibatch_size) + '\t' listOutput += '{0: <10}'.format(capacity) + '\t' listOutput += '{0: <10}'.format(runError) + '\t' targetDir += 'learning_rate' + learning_rate + '_replay_type' + replay_type + \ '_minibatch_size' + minibatch_size + '_capacity' + capacity + '_runError' + runError text = config_text(domains, root, seed, screen_level, maxturns, belieftype, useconfreq, policytype, startwithhello, inpolicyfile, outpolicyfile, learning, maxiter, gamma, learning_rate, tau, replay_type, minibatch_size, capacity, exploration_type, epsilon_start, epsilon_end, n_in, features, max_k, learning_algorithm, architecture, h1, h2, kernel, random, scale, usenewgoalscenarios, nbestsize, patience, penaliseallturns, wrongvenuepenalty, notmentionedvaluepenalty, sampledialogueprobs, save_step, confscorer, oldstylepatience, forcenullpositive, file_level, maxinformslots, informmask,informcountaccepted,requestmask, confusionmodel, byemask, n_samples, alpha_divergence, alpha, sigma_eps, sigma_prior, stddev_var_mu, stddev_var_logsigma, mean_log_sigma, nbestgeneratormodel, delta, beta, is_threshold, train_iters_per_episode, training_frequency, no_head, keep_prob, dropout_start, old_style_parameter_sampling) # run_on_grid(targetDir, execDir, configName, text) tmpName = 'gRun' + str(ConfigCounter) run_on_grid(tmpName, step, iter_in_step, test_iter_in_step, parallel, execDir, tmpName, text, runMode, runError) listFile.write(tmpName + '\t' + listOutput + '\n') ConfigCounter += 1 if __name__ == "__main__": argv = sys.argv[1:] parser = argparse.ArgumentParser(description='DeepRL parameter search') parser.add_argument('-s', '--seed', help='set the random seed', required=False, type=str, default="123") parser.add_argument('-tn', '--train', help='script is set to train policies (default)', action='store_true') parser.add_argument('-tt', '--test', help='script is set to test/evaluate policies', action='store_true') parser.add_argument('--own', help='run on local machine (default)', action='store_true') parser.add_argument('--grid', help='run on grid', action='store_true') parser.add_argument('-f', '--file', help='the list file', required=False, type=str, default='list') parser.add_argument('-p', '--pydial', help='the path to pydial', required=False, type=str, default='../../../') if len(argv) > 0 and not argv[0][0] == '-': if len(sys.argv) != 5: parser.print_help() # print '\n!!!!! WRONG COMMAND !!!!!\n' # print 'EXAMPLE: python runScript.py list [train|test] [grid|own]\n' exit(1) # main(argv) else: # parser = argparse.ArgumentParser(description='DeepRL parameter search') # parser.add_argument('-s', '--seed', help='set the random seed', required=False, type=str, default="123") # parser.add_argument('-tn', '--train', help='script is set to train policies (default)', action='store_true') # parser.add_argument('-tt', '--test', help='script is set to test/evaluate policies', action='store_true') # parser.add_argument('--own', help='run on local machine (default)', action='store_true') # parser.add_argument('--grid', help='run on grid', action='store_true') # parser.add_argument('-f', '--file', help='the list file', required=False, type=str, default='list') # parser.add_argument('-p', '--pydial', help='the path to pydial', required=False, type=str, default='../../../') args = parser.parse_args() own = not args.grid grid = not args.own and args.grid if own == grid: pass # issue error with parameter help train = not args.test test = not args.train and args.test if train == test: pass # issue error with parameter help pydialpath = os.path.abspath(os.path.join(os.getcwd(),args.pydial)) argv = [args.file, 'test' if test else 'train', 'grid' if grid else 'own', args.seed, pydialpath] # print argv main(argv) # END OF FILE
44.606178
141
0.483165
28a42fdc854cb7972d64a944eb2bba262f7b2094
96
py
Python
preferences/__init__.py
uisautomation/lecture-capture-preferences-webapp
bf54bc9b37241a5a7a6c0df7b1e2c0f8dd16bed6
[ "MIT" ]
1
2019-02-17T08:17:59.000Z
2019-02-17T08:17:59.000Z
preferences/__init__.py
rjw57/lecture-capture-preferences-webapp
f6b4572b06cf1bc2f45e635148cd7e2b3ea283f6
[ "MIT" ]
5
2019-01-08T07:43:40.000Z
2019-02-04T16:32:03.000Z
preferences/__init__.py
rjw57/lecture-capture-preferences-webapp
f6b4572b06cf1bc2f45e635148cd7e2b3ea283f6
[ "MIT" ]
null
null
null
""" Lecture Capture Preferences Application """ default_app_config = 'preferences.apps.Config'
16
46
0.78125
74e2100a2a1ef105b7c8d5a319516db785ab86e9
6,728
py
Python
contrib/devtools/symbol-check.py
dogxteam/dogxwallet-master
346189354bdec9a80c20bdc429ddec15c3b17b73
[ "MIT" ]
5
2019-03-18T02:14:20.000Z
2019-03-21T17:08:27.000Z
contrib/devtools/symbol-check.py
dogxteam/dogxwallet-master
346189354bdec9a80c20bdc429ddec15c3b17b73
[ "MIT" ]
null
null
null
contrib/devtools/symbol-check.py
dogxteam/dogxwallet-master
346189354bdec9a80c20bdc429ddec15c3b17b73
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' A script to check that the (Linux) executables produced by gitian only contain allowed gcc, glibc and libstdc++ version symbols. This makes sure they are still compatible with the minimum supported Linux distribution versions. Example usage: find ../gitian-builder/build -type f -executable | xargs python3 contrib/devtools/symbol-check.py ''' import subprocess import re import sys import os # Debian 6.0.9 (Squeeze) has: # # - g++ version 4.4.5 (https://packages.debian.org/search?suite=default&section=all&arch=any&searchon=names&keywords=g%2B%2B) # - libc version 2.11.3 (https://packages.debian.org/search?suite=default&section=all&arch=any&searchon=names&keywords=libc6) # - libstdc++ version 4.4.5 (https://packages.debian.org/search?suite=default&section=all&arch=any&searchon=names&keywords=libstdc%2B%2B6) # # Ubuntu 10.04.4 (Lucid Lynx) has: # # - g++ version 4.4.3 (http://packages.ubuntu.com/search?keywords=g%2B%2B&searchon=names&suite=lucid&section=all) # - libc version 2.11.1 (http://packages.ubuntu.com/search?keywords=libc6&searchon=names&suite=lucid&section=all) # - libstdc++ version 4.4.3 (http://packages.ubuntu.com/search?suite=lucid&section=all&arch=any&keywords=libstdc%2B%2B&searchon=names) # # Taking the minimum of these as our target. # # According to GNU ABI document (http://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html) this corresponds to: # GCC 4.4.0: GCC_4.4.0 # GCC 4.4.2: GLIBCXX_3.4.13, CXXABI_1.3.3 # (glibc) GLIBC_2_11 # MAX_VERSIONS = { 'GCC': (4,4,0), 'CXXABI': (1,3,3), 'GLIBCXX': (3,4,13), 'GLIBC': (2,11), 'LIBATOMIC': (1,0) } # See here for a description of _IO_stdin_used: # https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=634261#109 # Ignore symbols that are exported as part of every executable IGNORE_EXPORTS = { '_edata', '_end', '__end__', '_init', '__bss_start', '__bss_start__', '_bss_end__', '__bss_end__', '_fini', '_IO_stdin_used', 'stdin', 'stdout', 'stderr' } READELF_CMD = os.getenv('READELF', '/usr/bin/readelf') CPPFILT_CMD = os.getenv('CPPFILT', '/usr/bin/c++filt') # Allowed NEEDED libraries ALLOWED_LIBRARIES = { # dogxcoind and dogxcoin-qt 'libgcc_s.so.1', # GCC base support 'libc.so.6', # C library 'libpthread.so.0', # threading 'libanl.so.1', # DNS resolve 'libm.so.6', # math library 'librt.so.1', # real-time (clock) 'libatomic.so.1', 'ld-linux-x86-64.so.2', # 64-dogx dynamic linker 'ld-linux.so.2', # 32-dogx dynamic linker 'ld-linux-aarch64.so.1', # 64-dogx ARM dynamic linker 'ld-linux-armhf.so.3', # 32-dogx ARM dynamic linker 'ld-linux-riscv64-lp64d.so.1', # 64-dogx RISC-V dynamic linker # dogxcoin-qt only 'libX11-xcb.so.1', # part of X11 'libX11.so.6', # part of X11 'libxcb.so.1', # part of X11 'libfontconfig.so.1', # font support 'libfreetype.so.6', # font parsing 'libdl.so.2' # programming interface to dynamic linker } ARCH_MIN_GLIBC_VER = { '80386': (2,1), 'X86-64': (2,2,5), 'ARM': (2,4), 'AArch64':(2,17), 'RISC-V': (2,27) } class CPPFilt(object): ''' Demangle C++ symbol names. Use a pipe to the 'c++filt' command. ''' def __init__(self): self.proc = subprocess.Popen(CPPFILT_CMD, stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True) def __call__(self, mangled): self.proc.stdin.write(mangled + '\n') self.proc.stdin.flush() return self.proc.stdout.readline().rstrip() def close(self): self.proc.stdin.close() self.proc.stdout.close() self.proc.wait() def read_symbols(executable, imports=True): ''' Parse an ELF executable and return a list of (symbol,version) tuples for dynamic, imported symbols. ''' p = subprocess.Popen([READELF_CMD, '--dyn-syms', '-W', '-h', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Could not read symbols for %s: %s' % (executable, stderr.strip())) syms = [] for line in stdout.splitlines(): line = line.split() if 'Machine:' in line: arch = line[-1] if len(line)>7 and re.match('[0-9]+:$', line[0]): (sym, _, version) = line[7].partition('@') is_import = line[6] == 'UND' if version.startswith('@'): version = version[1:] if is_import == imports: syms.append((sym, version, arch)) return syms def check_version(max_versions, version, arch): if '_' in version: (lib, _, ver) = version.rpartition('_') else: lib = version ver = '0' ver = tuple([int(x) for x in ver.split('.')]) if not lib in max_versions: return False return ver <= max_versions[lib] or lib == 'GLIBC' and ver <= ARCH_MIN_GLIBC_VER[arch] def read_libraries(filename): p = subprocess.Popen([READELF_CMD, '-d', '-W', filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') libraries = [] for line in stdout.splitlines(): tokens = line.split() if len(tokens)>2 and tokens[1] == '(NEEDED)': match = re.match('^Shared library: \[(.*)\]$', ' '.join(tokens[2:])) if match: libraries.append(match.group(1)) else: raise ValueError('Unparseable (NEEDED) specification') return libraries if __name__ == '__main__': cppfilt = CPPFilt() retval = 0 for filename in sys.argv[1:]: # Check imported symbols for sym,version,arch in read_symbols(filename, True): if version and not check_version(MAX_VERSIONS, version, arch): print('%s: symbol %s from unsupported version %s' % (filename, cppfilt(sym), version)) retval = 1 # Check exported symbols if arch != 'RISC-V': for sym,version,arch in read_symbols(filename, False): if sym in IGNORE_EXPORTS: continue print('%s: export of symbol %s not allowed' % (filename, cppfilt(sym))) retval = 1 # Check dependency libraries for library_name in read_libraries(filename): if library_name not in ALLOWED_LIBRARIES: print('%s: NEEDED library %s is not allowed' % (filename, library_name)) retval = 1 sys.exit(retval)
37.797753
173
0.646552
7a7002de094f35c3a08ef43bbe47c04b98dce464
10,896
py
Python
tests/components/switch_as_x/test_init.py
camditt/core
862d8b54146a9b21c307a841ca5dca7cb2f5359f
[ "Apache-2.0" ]
null
null
null
tests/components/switch_as_x/test_init.py
camditt/core
862d8b54146a9b21c307a841ca5dca7cb2f5359f
[ "Apache-2.0" ]
null
null
null
tests/components/switch_as_x/test_init.py
camditt/core
862d8b54146a9b21c307a841ca5dca7cb2f5359f
[ "Apache-2.0" ]
null
null
null
"""Tests for the Switch as X.""" from unittest.mock import patch import pytest from homeassistant.components.switch_as_x.const import CONF_TARGET_DOMAIN, DOMAIN from homeassistant.const import CONF_ENTITY_ID, STATE_OFF, STATE_ON, Platform from homeassistant.core import HomeAssistant from homeassistant.helpers import device_registry as dr, entity_registry as er from tests.common import MockConfigEntry @pytest.mark.parametrize( "target_domain", ( Platform.COVER, Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_config_entry_unregistered_uuid( hass: HomeAssistant, target_domain: str ) -> None: """Test light switch setup from config entry with unknown entity registry id.""" fake_uuid = "a266a680b608c32770e6c45bfe6b8411" config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: fake_uuid, CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) config_entry.add_to_hass(hass) assert not await hass.config_entries.async_setup(config_entry.entry_id) await hass.async_block_till_done() assert len(hass.states.async_all()) == 0 @pytest.mark.parametrize( "target_domain", ( Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_entity_registry_events(hass: HomeAssistant, target_domain: str) -> None: """Test entity registry events are tracked.""" registry = er.async_get(hass) registry_entry = registry.async_get_or_create("switch", "test", "unique") switch_entity_id = registry_entry.entity_id hass.states.async_set(switch_entity_id, "on") config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: registry_entry.id, CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) config_entry.add_to_hass(hass) assert await hass.config_entries.async_setup(config_entry.entry_id) await hass.async_block_till_done() assert hass.states.get(f"{target_domain}.abc").state == STATE_ON # Change entity_id new_switch_entity_id = f"{switch_entity_id}_new" registry.async_update_entity(switch_entity_id, new_entity_id=new_switch_entity_id) hass.states.async_set(new_switch_entity_id, STATE_OFF) await hass.async_block_till_done() # Check tracking the new entity_id await hass.async_block_till_done() assert hass.states.get(f"{target_domain}.abc").state == STATE_OFF # The old entity_id should no longer be tracked hass.states.async_set(switch_entity_id, STATE_ON) await hass.async_block_till_done() assert hass.states.get(f"{target_domain}.abc").state == STATE_OFF # Check changing name does not reload the config entry with patch( "homeassistant.components.switch_as_x.async_unload_entry", ) as mock_setup_entry: registry.async_update_entity(new_switch_entity_id, name="New name") await hass.async_block_till_done() mock_setup_entry.assert_not_called() # Check removing the entity removes the config entry registry.async_remove(new_switch_entity_id) await hass.async_block_till_done() assert hass.states.get(f"{target_domain}.abc") is None assert registry.async_get(f"{target_domain}.abc") is None assert len(hass.config_entries.async_entries("switch_as_x")) == 0 @pytest.mark.parametrize( "target_domain", ( Platform.COVER, Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_device_registry_config_entry_1( hass: HomeAssistant, target_domain: str ) -> None: """Test we add our config entry to the tracked switch's device.""" device_registry = dr.async_get(hass) entity_registry = er.async_get(hass) switch_config_entry = MockConfigEntry() device_entry = device_registry.async_get_or_create( config_entry_id=switch_config_entry.entry_id, connections={(dr.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")}, ) switch_entity_entry = entity_registry.async_get_or_create( "switch", "test", "unique", config_entry=switch_config_entry, device_id=device_entry.id, ) # Add another config entry to the same device device_registry.async_update_device( device_entry.id, add_config_entry_id=MockConfigEntry().entry_id ) switch_as_x_config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: switch_entity_entry.id, CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) switch_as_x_config_entry.add_to_hass(hass) assert await hass.config_entries.async_setup(switch_as_x_config_entry.entry_id) await hass.async_block_till_done() entity_entry = entity_registry.async_get(f"{target_domain}.abc") assert entity_entry.device_id == switch_entity_entry.device_id device_entry = device_registry.async_get(device_entry.id) assert switch_as_x_config_entry.entry_id in device_entry.config_entries # Remove the wrapped switch's config entry from the device device_registry.async_update_device( device_entry.id, remove_config_entry_id=switch_config_entry.entry_id ) await hass.async_block_till_done() await hass.async_block_till_done() # Check that the switch_as_x config entry is removed from the device device_entry = device_registry.async_get(device_entry.id) assert switch_as_x_config_entry.entry_id not in device_entry.config_entries @pytest.mark.parametrize( "target_domain", ( Platform.COVER, Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_device_registry_config_entry_2( hass: HomeAssistant, target_domain: str ) -> None: """Test we add our config entry to the tracked switch's device.""" device_registry = dr.async_get(hass) entity_registry = er.async_get(hass) switch_config_entry = MockConfigEntry() device_entry = device_registry.async_get_or_create( config_entry_id=switch_config_entry.entry_id, connections={(dr.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")}, ) switch_entity_entry = entity_registry.async_get_or_create( "switch", "test", "unique", config_entry=switch_config_entry, device_id=device_entry.id, ) switch_as_x_config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: switch_entity_entry.id, CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) switch_as_x_config_entry.add_to_hass(hass) assert await hass.config_entries.async_setup(switch_as_x_config_entry.entry_id) await hass.async_block_till_done() entity_entry = entity_registry.async_get(f"{target_domain}.abc") assert entity_entry.device_id == switch_entity_entry.device_id device_entry = device_registry.async_get(device_entry.id) assert switch_as_x_config_entry.entry_id in device_entry.config_entries # Remove the wrapped switch from the device entity_registry.async_update_entity(switch_entity_entry.entity_id, device_id=None) await hass.async_block_till_done() # Check that the switch_as_x config entry is removed from the device device_entry = device_registry.async_get(device_entry.id) assert switch_as_x_config_entry.entry_id not in device_entry.config_entries @pytest.mark.parametrize( "target_domain", ( Platform.COVER, Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_config_entry_entity_id( hass: HomeAssistant, target_domain: Platform ) -> None: """Test light switch setup from config entry with entity id.""" config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: "switch.abc", CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) config_entry.add_to_hass(hass) assert await hass.config_entries.async_setup(config_entry.entry_id) await hass.async_block_till_done() assert DOMAIN in hass.config.components state = hass.states.get(f"{target_domain}.abc") assert state assert state.state == "unavailable" # Name copied from config entry title assert state.name == "ABC" # Check the light is added to the entity registry registry = er.async_get(hass) entity_entry = registry.async_get(f"{target_domain}.abc") assert entity_entry assert entity_entry.unique_id == config_entry.entry_id @pytest.mark.parametrize( "target_domain", ( Platform.COVER, Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_config_entry_uuid(hass: HomeAssistant, target_domain: Platform) -> None: """Test light switch setup from config entry with entity registry id.""" registry = er.async_get(hass) registry_entry = registry.async_get_or_create("switch", "test", "unique") config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: registry_entry.id, CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) config_entry.add_to_hass(hass) assert await hass.config_entries.async_setup(config_entry.entry_id) await hass.async_block_till_done() assert hass.states.get(f"{target_domain}.abc") @pytest.mark.parametrize( "target_domain", ( Platform.COVER, Platform.FAN, Platform.LIGHT, Platform.SIREN, ), ) async def test_device(hass: HomeAssistant, target_domain: Platform) -> None: """Test the entity is added to the wrapped entity's device.""" device_registry = dr.async_get(hass) entity_registry = er.async_get(hass) test_config_entry = MockConfigEntry() device_entry = device_registry.async_get_or_create( config_entry_id=test_config_entry.entry_id, connections={(dr.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")}, ) switch_entity_entry = entity_registry.async_get_or_create( "switch", "test", "unique", device_id=device_entry.id ) switch_as_x_config_entry = MockConfigEntry( data={}, domain=DOMAIN, options={ CONF_ENTITY_ID: switch_entity_entry.id, CONF_TARGET_DOMAIN: target_domain, }, title="ABC", ) switch_as_x_config_entry.add_to_hass(hass) assert await hass.config_entries.async_setup(switch_as_x_config_entry.entry_id) await hass.async_block_till_done() entity_entry = entity_registry.async_get(f"{target_domain}.abc") assert entity_entry assert entity_entry.device_id == switch_entity_entry.device_id
30.866856
87
0.702368
6a3bc378777ae81712935cf3a2e37b6f1487489a
677
py
Python
apps/notifications/migrations/0001_initial.py
Nelson-Morais/HA-OOAD
82bd00ba7ab5f11f43bc90b505ee8afd0b86c7b5
[ "Apache-2.0" ]
null
null
null
apps/notifications/migrations/0001_initial.py
Nelson-Morais/HA-OOAD
82bd00ba7ab5f11f43bc90b505ee8afd0b86c7b5
[ "Apache-2.0" ]
null
null
null
apps/notifications/migrations/0001_initial.py
Nelson-Morais/HA-OOAD
82bd00ba7ab5f11f43bc90b505ee8afd0b86c7b5
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.1.6 on 2021-02-15 16:55 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_owner_id', models.IntegerField()), ('created_at', models.DateField(auto_now_add=True)), ('title', models.CharField(max_length=64)), ('content', models.CharField(max_length=512)), ], ), ]
27.08
114
0.57164
a32d2cf20eb58fba6764696e149457d343628431
24,694
py
Python
spacy/_ml.py
mhham/spaCy
cce1bff3e1b27e841632e0b1ef358949b5fd0d24
[ "MIT" ]
null
null
null
spacy/_ml.py
mhham/spaCy
cce1bff3e1b27e841632e0b1ef358949b5fd0d24
[ "MIT" ]
null
null
null
spacy/_ml.py
mhham/spaCy
cce1bff3e1b27e841632e0b1ef358949b5fd0d24
[ "MIT" ]
null
null
null
# coding: utf8 from __future__ import unicode_literals import numpy from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu from thinc.i2v import HashEmbed, StaticVectors from thinc.t2t import ExtractWindow, ParametricAttention from thinc.t2v import Pooling, sum_pool, mean_pool from thinc.misc import Residual from thinc.misc import LayerNorm as LN from thinc.misc import FeatureExtracter from thinc.api import add, layerize, chain, clone, concatenate, with_flatten from thinc.api import with_getitem, flatten_add_lengths from thinc.api import uniqued, wrap, noop from thinc.api import with_square_sequences from thinc.linear.linear import LinearModel from thinc.neural.ops import NumpyOps, CupyOps from thinc.neural.util import get_array_module from thinc.neural.optimizers import Adam from thinc import describe from thinc.describe import Dimension, Synapses, Biases, Gradient from thinc.neural._classes.affine import _set_dimensions_if_needed import thinc.extra.load_nlp from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE from .errors import Errors from . import util try: import torch.nn from thinc.extra.wrappers import PyTorchWrapperRNN except ImportError: torch = None VECTORS_KEY = "spacy_pretrained_vectors" def cosine(vec1, vec2): xp = get_array_module(vec1) norm1 = xp.linalg.norm(vec1) norm2 = xp.linalg.norm(vec2) if norm1 == 0.0 or norm2 == 0.0: return 0 else: return vec1.dot(vec2) / (norm1 * norm2) def create_default_optimizer(ops, **cfg): learn_rate = util.env_opt("learn_rate", 0.001) beta1 = util.env_opt("optimizer_B1", 0.9) beta2 = util.env_opt("optimizer_B2", 0.999) eps = util.env_opt("optimizer_eps", 1e-8) L2 = util.env_opt("L2_penalty", 1e-6) max_grad_norm = util.env_opt("grad_norm_clip", 1.0) optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps) optimizer.max_grad_norm = max_grad_norm optimizer.device = ops.device return optimizer @layerize def _flatten_add_lengths(seqs, pad=0, drop=0.0): ops = Model.ops lengths = ops.asarray([len(seq) for seq in seqs], dtype="i") def finish_update(d_X, sgd=None): return ops.unflatten(d_X, lengths, pad=pad) X = ops.flatten(seqs, pad=pad) return (X, lengths), finish_update def _zero_init(model): def _zero_init_impl(self, *args, **kwargs): self.W.fill(0) model.on_init_hooks.append(_zero_init_impl) if model.W is not None: model.W.fill(0.0) return model @layerize def _preprocess_doc(docs, drop=0.0): keys = [doc.to_array(LOWER) for doc in docs] # The dtype here matches what thinc is expecting -- which differs per # platform (by int definition). This should be fixed once the problem # is fixed on Thinc's side. lengths = numpy.array([arr.shape[0] for arr in keys], dtype=numpy.int_) keys = numpy.concatenate(keys) vals = numpy.zeros(keys.shape, dtype='f') return (keys, vals, lengths), None def with_cpu(ops, model): """Wrap a model that should run on CPU, transferring inputs and outputs as necessary.""" model.to_cpu() def with_cpu_forward(inputs, drop=0.): cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop) gpu_outputs = _to_device(ops, cpu_outputs) def with_cpu_backprop(d_outputs, sgd=None): cpu_d_outputs = _to_cpu(d_outputs) return backprop(cpu_d_outputs, sgd=sgd) return gpu_outputs, with_cpu_backprop return wrap(with_cpu_forward, model) def _to_cpu(X): if isinstance(X, numpy.ndarray): return X elif isinstance(X, tuple): return tuple([_to_cpu(x) for x in X]) elif isinstance(X, list): return [_to_cpu(x) for x in X] elif hasattr(X, 'get'): return X.get() else: return X def _to_device(ops, X): if isinstance(X, tuple): return tuple([_to_device(ops, x) for x in X]) elif isinstance(X, list): return [_to_device(ops, x) for x in X] else: return ops.asarray(X) @layerize def _preprocess_doc_bigrams(docs, drop=0.0): unigrams = [doc.to_array(LOWER) for doc in docs] ops = Model.ops bigrams = [ops.ngrams(2, doc_unis) for doc_unis in unigrams] keys = [ops.xp.concatenate(feats) for feats in zip(unigrams, bigrams)] keys, vals = zip(*[ops.xp.unique(k, return_counts=True) for k in keys]) # The dtype here matches what thinc is expecting -- which differs per # platform (by int definition). This should be fixed once the problem # is fixed on Thinc's side. lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_) keys = ops.xp.concatenate(keys) vals = ops.asarray(ops.xp.concatenate(vals), dtype="f") return (keys, vals, lengths), None @describe.on_data( _set_dimensions_if_needed, lambda model, X, y: model.init_weights(model) ) @describe.attributes( nI=Dimension("Input size"), nF=Dimension("Number of features"), nO=Dimension("Output size"), nP=Dimension("Maxout pieces"), W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)), b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)), pad=Synapses( "Pad", lambda obj: (1, obj.nF, obj.nO, obj.nP), lambda M, ops: ops.normal_init(M, 1.0), ), d_W=Gradient("W"), d_pad=Gradient("pad"), d_b=Gradient("b"), ) class PrecomputableAffine(Model): def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs): Model.__init__(self, **kwargs) self.nO = nO self.nP = nP self.nI = nI self.nF = nF def begin_update(self, X, drop=0.0): Yf = self.ops.gemm( X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True ) Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP)) Yf = self._add_padding(Yf) def backward(dY_ids, sgd=None): dY, ids = dY_ids dY, ids = self._backprop_padding(dY, ids) Xf = X[ids] Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI)) self.d_b += dY.sum(axis=0) dY = dY.reshape((dY.shape[0], self.nO * self.nP)) Wopfi = self.W.transpose((1, 2, 0, 3)) Wopfi = self.ops.xp.ascontiguousarray(Wopfi) Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI)) dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi) # Reuse the buffer dWopfi = Wopfi dWopfi.fill(0.0) self.ops.gemm(dY, Xf, out=dWopfi, trans1=True) dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI)) # (o, p, f, i) --> (f, o, p, i) self.d_W += dWopfi.transpose((2, 0, 1, 3)) if sgd is not None: sgd(self._mem.weights, self._mem.gradient, key=self.id) return dXf.reshape((dXf.shape[0], self.nF, self.nI)) return Yf, backward def _add_padding(self, Yf): Yf_padded = self.ops.xp.vstack((self.pad, Yf)) return Yf_padded def _backprop_padding(self, dY, ids): # (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0 mask = ids < 0.0 mask = mask.sum(axis=1) d_pad = dY * mask.reshape((ids.shape[0], 1, 1)) self.d_pad += d_pad.sum(axis=0) return dY, ids @staticmethod def init_weights(model): """This is like the 'layer sequential unit variance', but instead of taking the actual inputs, we randomly generate whitened data. Why's this all so complicated? We have a huge number of inputs, and the maxout unit makes guessing the dynamics tricky. Instead we set the maxout weights to values that empirically result in whitened outputs given whitened inputs. """ if (model.W ** 2).sum() != 0.0: return ops = model.ops xp = ops.xp ops.normal_init(model.W, model.nF * model.nI, inplace=True) ids = ops.allocate((5000, model.nF), dtype="f") ids += xp.random.uniform(0, 1000, ids.shape) ids = ops.asarray(ids, dtype="i") tokvecs = ops.allocate((5000, model.nI), dtype="f") tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape( tokvecs.shape ) def predict(ids, tokvecs): # nS ids. nW tokvecs. Exclude the padding array. hiddens = model(tokvecs[:-1]) # (nW, f, o, p) vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f") # need nS vectors hiddens = hiddens.reshape( (hiddens.shape[0] * model.nF, model.nO * model.nP) ) model.ops.scatter_add(vectors, ids.flatten(), hiddens) vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP)) vectors += model.b vectors = model.ops.asarray(vectors) if model.nP >= 2: return model.ops.maxout(vectors)[0] else: return vectors * (vectors >= 0) tol_var = 0.01 tol_mean = 0.01 t_max = 10 t_i = 0 for t_i in range(t_max): acts1 = predict(ids, tokvecs) var = model.ops.xp.var(acts1) mean = model.ops.xp.mean(acts1) if abs(var - 1.0) >= tol_var: model.W /= model.ops.xp.sqrt(var) elif abs(mean) >= tol_mean: model.b -= mean else: break def link_vectors_to_models(vocab): vectors = vocab.vectors if vectors.name is None: vectors.name = VECTORS_KEY if vectors.data.size != 0: print( "Warning: Unnamed vectors -- this won't allow multiple vectors " "models to be loaded. (Shape: (%d, %d))" % vectors.data.shape ) ops = Model.ops for word in vocab: if word.orth in vectors.key2row: word.rank = vectors.key2row[word.orth] else: word.rank = 0 data = ops.asarray(vectors.data) # Set an entry here, so that vectors are accessed by StaticVectors # (unideal, I know) thinc.extra.load_nlp.VECTORS[(ops.device, vectors.name)] = data def PyTorchBiLSTM(nO, nI, depth, dropout=0.2): if depth == 0: return layerize(noop()) model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout) return with_square_sequences(PyTorchWrapperRNN(model)) def Tok2Vec(width, embed_size, **kwargs): pretrained_vectors = kwargs.get("pretrained_vectors", None) cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3) subword_features = kwargs.get("subword_features", True) conv_depth = kwargs.get("conv_depth", 4) bilstm_depth = kwargs.get("bilstm_depth", 0) cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] with Model.define_operators( {">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply} ): norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm") if subword_features: prefix = HashEmbed( width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix" ) suffix = HashEmbed( width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix" ) shape = HashEmbed( width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape" ) else: prefix, suffix, shape = (None, None, None) if pretrained_vectors is not None: glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID)) if subword_features: embed = uniqued( (glove | norm | prefix | suffix | shape) >> LN(Maxout(width, width * 5, pieces=3)), column=cols.index(ORTH), ) else: embed = uniqued( (glove | norm) >> LN(Maxout(width, width * 2, pieces=3)), column=cols.index(ORTH), ) elif subword_features: embed = uniqued( (norm | prefix | suffix | shape) >> LN(Maxout(width, width * 4, pieces=3)), column=cols.index(ORTH), ) else: embed = norm convolution = Residual( ExtractWindow(nW=1) >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces)) ) tok2vec = FeatureExtracter(cols) >> with_flatten( embed >> convolution ** conv_depth, pad=conv_depth ) if bilstm_depth >= 1: tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth) # Work around thinc API limitations :(. TODO: Revise in Thinc 7 tok2vec.nO = width tok2vec.embed = embed return tok2vec def reapply(layer, n_times): def reapply_fwd(X, drop=0.0): backprops = [] for i in range(n_times): Y, backprop = layer.begin_update(X, drop=drop) X = Y backprops.append(backprop) def reapply_bwd(dY, sgd=None): dX = None for backprop in reversed(backprops): dY = backprop(dY, sgd=sgd) if dX is None: dX = dY else: dX += dY return dX return Y, reapply_bwd return wrap(reapply_fwd, layer) def asarray(ops, dtype): def forward(X, drop=0.0): return ops.asarray(X, dtype=dtype), None return layerize(forward) def _divide_array(X, size): parts = [] index = 0 while index < len(X): parts.append(X[index : index + size]) index += size return parts def get_col(idx): if idx < 0: raise IndexError(Errors.E066.format(value=idx)) def forward(X, drop=0.0): if isinstance(X, numpy.ndarray): ops = NumpyOps() else: ops = CupyOps() output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype) def backward(y, sgd=None): dX = ops.allocate(X.shape) dX[:, idx] += y return dX return output, backward return layerize(forward) def doc2feats(cols=None): if cols is None: cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] def forward(docs, drop=0.0): feats = [] for doc in docs: feats.append(doc.to_array(cols)) return feats, None model = layerize(forward) model.cols = cols return model def print_shape(prefix): def forward(X, drop=0.0): return X, lambda dX, **kwargs: dX return layerize(forward) @layerize def get_token_vectors(tokens_attrs_vectors, drop=0.0): tokens, attrs, vectors = tokens_attrs_vectors def backward(d_output, sgd=None): return (tokens, d_output) return vectors, backward @layerize def logistic(X, drop=0.0): xp = get_array_module(X) if not isinstance(X, xp.ndarray): X = xp.asarray(X) # Clip to range (-10, 10) X = xp.minimum(X, 10.0, X) X = xp.maximum(X, -10.0, X) Y = 1.0 / (1.0 + xp.exp(-X)) def logistic_bwd(dY, sgd=None): dX = dY * (Y * (1 - Y)) return dX return Y, logistic_bwd def zero_init(model): def _zero_init_impl(self, X, y): self.W.fill(0) model.on_data_hooks.append(_zero_init_impl) return model @layerize def preprocess_doc(docs, drop=0.0): keys = [doc.to_array([LOWER]) for doc in docs] ops = Model.ops lengths = ops.asarray([arr.shape[0] for arr in keys]) keys = ops.xp.concatenate(keys) vals = ops.allocate(keys.shape[0]) + 1 return (keys, vals, lengths), None def getitem(i): def getitem_fwd(X, drop=0.0): return X[i], None return layerize(getitem_fwd) def build_tagger_model(nr_class, **cfg): embed_size = util.env_opt("embed_size", 2000) if "token_vector_width" in cfg: token_vector_width = cfg["token_vector_width"] else: token_vector_width = util.env_opt("token_vector_width", 96) pretrained_vectors = cfg.get("pretrained_vectors") subword_features = cfg.get("subword_features", True) with Model.define_operators({">>": chain, "+": add}): if "tok2vec" in cfg: tok2vec = cfg["tok2vec"] else: tok2vec = Tok2Vec( token_vector_width, embed_size, subword_features=subword_features, pretrained_vectors=pretrained_vectors, ) softmax = with_flatten(Softmax(nr_class, token_vector_width)) model = tok2vec >> softmax model.nI = None model.tok2vec = tok2vec model.softmax = softmax return model @layerize def SpacyVectors(docs, drop=0.0): batch = [] for doc in docs: indices = numpy.zeros((len(doc),), dtype="i") for i, word in enumerate(doc): if word.orth in doc.vocab.vectors.key2row: indices[i] = doc.vocab.vectors.key2row[word.orth] else: indices[i] = 0 vectors = doc.vocab.vectors.data[indices] batch.append(vectors) return batch, None def build_text_classifier(nr_class, width=64, **cfg): depth = cfg.get("depth", 2) nr_vector = cfg.get("nr_vector", 5000) pretrained_dims = cfg.get("pretrained_dims", 0) with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}): if cfg.get("low_data") and pretrained_dims: model = ( SpacyVectors >> flatten_add_lengths >> with_getitem(0, Affine(width, pretrained_dims)) >> ParametricAttention(width) >> Pooling(sum_pool) >> Residual(ReLu(width, width)) ** 2 >> zero_init(Affine(nr_class, width, drop_factor=0.0)) >> logistic ) return model lower = HashEmbed(width, nr_vector, column=1) prefix = HashEmbed(width // 2, nr_vector, column=2) suffix = HashEmbed(width // 2, nr_vector, column=3) shape = HashEmbed(width // 2, nr_vector, column=4) trained_vectors = FeatureExtracter( [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID] ) >> with_flatten( uniqued( (lower | prefix | suffix | shape) >> LN(Maxout(width, width + (width // 2) * 3)), column=0, ) ) if pretrained_dims: static_vectors = SpacyVectors >> with_flatten( Affine(width, pretrained_dims) ) # TODO Make concatenate support lists vectors = concatenate_lists(trained_vectors, static_vectors) vectors_width = width * 2 else: vectors = trained_vectors vectors_width = width static_vectors = None tok2vec = vectors >> with_flatten( LN(Maxout(width, vectors_width)) >> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth, pad=depth, ) cnn_model = ( tok2vec >> flatten_add_lengths >> ParametricAttention(width) >> Pooling(sum_pool) >> Residual(zero_init(Maxout(width, width))) >> zero_init(Affine(nr_class, width, drop_factor=0.0)) ) linear_model = ( _preprocess_doc >> with_cpu(Model.ops, LinearModel(nr_class)) ) if cfg.get('exclusive_classes'): output_layer = Softmax(nr_class, nr_class * 2) else: output_layer = ( zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic ) model = ( (linear_model | cnn_model) >> output_layer ) model.tok2vec = chain(tok2vec, flatten) model.nO = nr_class model.lsuv = False return model def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg): """ Build a simple CNN text classifier, given a token-to-vector model as inputs. If exclusive_classes=True, a softmax non-linearity is applied, so that the outputs sum to 1. If exclusive_classes=False, a logistic non-linearity is applied instead, so that outputs are in the range [0, 1]. """ with Model.define_operators({">>": chain}): if exclusive_classes: output_layer = Softmax(nr_class, tok2vec.nO) else: output_layer = zero_init(Affine(nr_class, tok2vec.nO, drop_factor=0.0)) >> logistic model = tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> output_layer model.tok2vec = chain(tok2vec, flatten) model.nO = nr_class return model @layerize def flatten(seqs, drop=0.0): ops = Model.ops lengths = ops.asarray([len(seq) for seq in seqs], dtype="i") def finish_update(d_X, sgd=None): return ops.unflatten(d_X, lengths, pad=0) X = ops.flatten(seqs, pad=0) return X, finish_update def concatenate_lists(*layers, **kwargs): # pragma: no cover """Compose two or more models `f`, `g`, etc, such that their outputs are concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))` """ if not layers: return noop() drop_factor = kwargs.get("drop_factor", 1.0) ops = layers[0].ops layers = [chain(layer, flatten) for layer in layers] concat = concatenate(*layers) def concatenate_lists_fwd(Xs, drop=0.0): drop *= drop_factor lengths = ops.asarray([len(X) for X in Xs], dtype="i") flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop) ys = ops.unflatten(flat_y, lengths) def concatenate_lists_bwd(d_ys, sgd=None): return bp_flat_y(ops.flatten(d_ys), sgd=sgd) return ys, concatenate_lists_bwd model = wrap(concatenate_lists_fwd, concat) return model def masked_language_model(vocab, model, mask_prob=0.15): """Convert a model into a BERT-style masked language model""" random_words = _RandomWords(vocab) def mlm_forward(docs, drop=0.0): mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob) mask = model.ops.asarray(mask).reshape((mask.shape[0], 1)) output, backprop = model.begin_update(docs, drop=drop) def mlm_backward(d_output, sgd=None): d_output *= 1 - mask return backprop(d_output, sgd=sgd) return output, mlm_backward return wrap(mlm_forward, model) class _RandomWords(object): def __init__(self, vocab): self.words = [lex.text for lex in vocab if lex.prob != 0.0] self.probs = [lex.prob for lex in vocab if lex.prob != 0.0] self.words = self.words[:10000] self.probs = self.probs[:10000] self.probs = numpy.exp(numpy.array(self.probs, dtype="f")) self.probs /= self.probs.sum() self._cache = [] def next(self): if not self._cache: self._cache.extend( numpy.random.choice(len(self.words), 10000, p=self.probs) ) index = self._cache.pop() return self.words[index] def _apply_mask(docs, random_words, mask_prob=0.15): # This needs to be here to avoid circular imports from .tokens.doc import Doc N = sum(len(doc) for doc in docs) mask = numpy.random.uniform(0.0, 1.0, (N,)) mask = mask >= mask_prob i = 0 masked_docs = [] for doc in docs: words = [] for token in doc: if not mask[i]: word = _replace_word(token.text, random_words) else: word = token.text words.append(word) i += 1 spaces = [bool(w.whitespace_) for w in doc] # NB: If you change this implementation to instead modify # the docs in place, take care that the IDs reflect the original # words. Currently we use the original docs to make the vectors # for the target, so we don't lose the original tokens. But if # you modified the docs in place here, you would. masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces)) return mask, masked_docs def _replace_word(word, random_words, mask="[MASK]"): roll = numpy.random.random() if roll < 0.8: return mask elif roll < 0.9: return random_words.next() else: return word
32.664021
95
0.597068
3aff9b937003ede708026bb44e8f51b4ba682f45
7,628
py
Python
algorithms/embdi/EmbDI/schema_matching.py
Soton-Song/valentine
9a47859f912540cdbe961ed3585201d3accd07be
[ "Apache-2.0" ]
null
null
null
algorithms/embdi/EmbDI/schema_matching.py
Soton-Song/valentine
9a47859f912540cdbe961ed3585201d3accd07be
[ "Apache-2.0" ]
null
null
null
algorithms/embdi/EmbDI/schema_matching.py
Soton-Song/valentine
9a47859f912540cdbe961ed3585201d3accd07be
[ "Apache-2.0" ]
null
null
null
import argparse import warnings from operator import itemgetter import gensim.models as models import mlflow def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_file', action='store', required=True, type=str, help='Input embeddings file.') parser.add_argument('-d', '--dataset_file', action='store', required=True, type=str, help='Input dataset.') parser.add_argument('-m', '--match_file', action='store', required=True, type=str) return parser.parse_args() def read_matches(match_file): with open(match_file, 'r', encoding='utf-8') as fp: md = {} for idx, line in enumerate(fp): t = line.strip().split(',') if t[0] not in md: md[t[0]] = {t[1]} else: md[t[0]].add(t[1]) # matches.append(t) return md def _clean_embeddings(emb_file, matches): gt = set() for k, v in matches.items(): gt.add(k) for _ in v: gt.add(_) with open(emb_file, 'r') as fp: s = fp.readline() _, dimensions = s.strip().split(' ') viable_idx = [] for idx, row in enumerate(fp): r = row.split(' ', maxsplit=1)[0] rr = r.split('__', maxsplit=1)[1] if rr in gt: viable_idx.append(row) # viable_idx = [row for idx, row in enumerate(fp) if (row.split(' ', maxsplit=1)[0] in gt)] # viable_idx = [_ for _ in viable_idx if len(_.split(' ')) > 1] f = 'pipeline/dump/sm_dump.emb' with open(f, 'w', encoding='utf-8') as fp: fp.write('{} {}\n'.format(len(viable_idx), dimensions)) for _ in viable_idx: fp.write(_) return f def _infer_prefix(df): columns = df.columns prefixes = tuple([_.split('_') for _ in columns]) if len(prefixes) > 2: return None else: return list(prefixes) def _match(candidates, maxrank=3): to_be_matched = list(candidates.keys()) misses = {k: 0 for k in candidates} mm = [] while len(to_be_matched) > 0: tbm = to_be_matched.copy() for item in tbm: if item not in to_be_matched: continue else: if misses[item] > maxrank: to_be_matched.remove(item) continue else: closest_list = candidates[item] if len(closest_list) > 0: for idx in range(len(closest_list)): closest_to_item = closest_list[idx] reciprocal_closest_list = candidates[closest_to_item] reciprocal_closest = reciprocal_closest_list[0] if closest_to_item in to_be_matched and reciprocal_closest == item: to_be_matched.remove(item) to_be_matched.remove(closest_to_item) mm.append((item, closest_to_item)) for k in candidates: if item in candidates[k]: candidates[k].remove(item) if closest_to_item in candidates[k]: candidates[k].remove(closest_to_item) break else: misses[item] += 1 else: to_be_matched.remove(item) return mm def _extract_candidates(wv, dataset): candidates = [] for _1 in range(len(dataset.columns)): for _2 in range(0, len(dataset.columns)): if _1 == _2: continue c1 = dataset.columns[_1] c2 = dataset.columns[_2] try: rank = wv.distance('cid__'+c1, 'cid__'+c2) tup = (c1, c2, rank) candidates.append(tup) except KeyError: continue cleaned = [] for k in candidates: prefix = k[0].split('_')[0] if not k[1].startswith(prefix): cleaned.append(k) sorted_cand = sorted(cleaned, key=itemgetter(2), reverse=False) cands = [] flag = True for value in sorted_cand: if flag: cands.append(value) v1, v2, rank = value print(str(v1) + " <--> " + str(v2)+ ": " + str(rank)) flag = False else: flag = True cleaned_sorted = sorted(cleaned, key=itemgetter(0, 2), reverse=False) candidates = {} for value in cleaned_sorted: v1, v2, rank = value if v1 not in candidates: candidates[v1] = [v2] else: candidates[v1].append(v2) return (candidates,cands) def _produce_match_results(candidates): match_results = _match(candidates) match_results = [sorted(_) for _ in match_results] # refactored_match_results = [(int(_[0].split('_')[1]), int(_[1].split('_')[1])) for _ in match_results] refactored_match_results = match_results return refactored_match_results def match_columns(dataset, embeddings_file): emb_file = _clean_embeddings(embeddings_file) if emb_file is None: return [] wv = models.KeyedVectors.load_word2vec_format(emb_file, unicode_errors='ignore') # print('Model built from file {}'.format(embeddings_file)) candidates = _extract_candidates(wv, dataset) match_results = _produce_match_results(candidates) return match_results def schema_matching(dataset, embeddings_file, configuration): print('# Executing SM tests.') match_file = configuration['match_file'] ground_truth = read_matches(match_file) emb_file = _clean_embeddings(embeddings_file, ground_truth) wv = models.KeyedVectors.load_word2vec_format(emb_file, unicode_errors='ignore') # print('Model built from file {}'.format(embeddings_file)) candidates, scand = _extract_candidates(wv, dataset) match_results = _produce_match_results(candidates) count_hits = 0 gt = 0 count_rk = 0.0 for i in range(len(ground_truth)): left,right,rank = scand[i] dicgt = ground_truth[left] if right in dicgt: count_rk += 1.0 recall_at_k = count_rk/len(ground_truth) print('RECALL AT GT IS {:.4f}\t'.format(recall_at_k*100), end='') for item in match_results: # gt += 1 left = item[0] right = item[1] if left in ground_truth: gt+=1 if right in ground_truth[left]: count_hits += 1 if len(match_results) > 0: precision = count_hits/len(match_results) else: precision = 0 if gt > 0: recall = count_hits/gt else: warnings.warn('No hits found. Are you sure the SM ground truth file {} is correct?'.format(match_file)) recall = 0 try: f1_score = 2 * (precision * recall) / (precision + recall) except ZeroDivisionError: f1_score = 0 # for tup in match_results: # print(tup) # result_dict = { 'P': precision, 'R': recall, 'F': f1_score, } print('P\tR\tF') for _ in result_dict.values(): print('{:.4f}\t'.format(_*100), end='') print('') if configuration['mlflow']: with mlflow.active_run(): mlflow.log_metric('P', precision) mlflow.log_metric('R', recall) mlflow.log_metric('F', f1_score) return result_dict
30.882591
117
0.552832
643ee993553d30f77db07c33695434bbc8621ca3
814
py
Python
examples/fips_mip_demo.py
J08nY/sec-certs
d25a4a7c830c587a45eb8e37d99f8794dec1a5eb
[ "MIT" ]
2
2021-03-24T11:56:15.000Z
2021-04-12T12:22:16.000Z
examples/fips_mip_demo.py
J08nY/sec-certs
d25a4a7c830c587a45eb8e37d99f8794dec1a5eb
[ "MIT" ]
73
2021-04-12T14:04:04.000Z
2022-03-31T15:40:26.000Z
examples/fips_mip_demo.py
J08nY/sec-certs
d25a4a7c830c587a45eb8e37d99f8794dec1a5eb
[ "MIT" ]
3
2021-03-26T16:15:49.000Z
2021-05-10T07:26:23.000Z
#!/usr/bin/env python3 import click from sec_certs.dataset.fips_mip import MIPDataset @click.command() @click.argument("directory", type=click.Path(exists=True, file_okay=False)) @click.argument("output", type=click.Path(dir_okay=False, writable=True)) def main(directory, output): """ Parse FIPS 'Modules In Process' pages. \b To use, download pages from the URL: https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/Modules-In-Process-List into a directory `d` and name them `fips_mip_<iso-timestamp>.html`. \b Then run: in_process.py fips-mip d output.json to obtain the parsed output in `output.json`. """ dataset = MIPDataset.from_dumps(directory) dataset.to_json(output) if __name__ == "__main__": main()
26.258065
117
0.710074
d86d6b207670723c7007c769471de73e4571efdb
2,150
py
Python
install/core/hooks/get_current_login.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
null
null
null
install/core/hooks/get_current_login.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
null
null
null
install/core/hooks/get_current_login.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
1
2020-02-15T10:42:56.000Z
2020-02-15T10:42:56.000Z
# Copyright (c) 2013 Shotgun Software Inc. # # CONFIDENTIAL AND PROPRIETARY # # This work is provided "AS IS" and subject to the Shotgun Pipeline Toolkit # Source Code License included in this distribution package. See LICENSE. # By accessing, using, copying or modifying this work you indicate your # agreement to the Shotgun Pipeline Toolkit Source Code License. All rights # not expressly granted therein are reserved by Shotgun Software Inc. """ Hook that gets executed when the current user is being retrieved. Please note that this hook will only be called whenever Toolkit doesn't have an authenticated user present. In releases prior to v0.16, this was the case for all users and projects, however as of Core v0.16 and above, projects are set up to require users to log in by default, meaning that there already is a well established notion of who the current user is. But even in such projects, there are environments (render farms for example), where a user cannot easily log in, and a Shotgun script user typically is being used for "headless" operation of Toolkit. In these cases, Toolkit doesn't know which Shotgun user is associated with the operation and this hook will be called. The return value from this hook will then be compared with the availalble logins for all users in Shotgun and if a match is found, this is deemed to be the current user. """ from tank import Hook import os, sys class GetCurrentLogin(Hook): def execute(self, **kwargs): """ Return the login name for the user currently logged in. This is typically used by Toolkit to resolve against the 'login' field in the Shotgun users table in order to extract further metadata. """ if sys.platform == "win32": # http://stackoverflow.com/questions/117014/how-to-retrieve-name-of-current-windows-user-ad-or-local-using-python return os.environ.get("USERNAME", None) else: try: import pwd pwd_entry = pwd.getpwuid(os.geteuid()) return pwd_entry[0] except: return None
41.346154
125
0.711163
828e8224e2894ac1b46f7475b5b69df4c7744c89
1,358
py
Python
h2o-py/tests/testdir_algos/glm/pyunit_covtype_get_future_model.py
huamichaelchen/h2o-3
2b52f2240652a1c73c1708762248c0773d0c073e
[ "Apache-2.0" ]
null
null
null
h2o-py/tests/testdir_algos/glm/pyunit_covtype_get_future_model.py
huamichaelchen/h2o-3
2b52f2240652a1c73c1708762248c0773d0c073e
[ "Apache-2.0" ]
null
null
null
h2o-py/tests/testdir_algos/glm/pyunit_covtype_get_future_model.py
huamichaelchen/h2o-3
2b52f2240652a1c73c1708762248c0773d0c073e
[ "Apache-2.0" ]
null
null
null
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils import random from h2o.estimators.glm import H2OGeneralizedLinearEstimator def test_get_future_model(): covtype=h2o.upload_file(pyunit_utils.locate("smalldata/covtype/covtype.altered.gz")) myY=54 myX=list(set(range(54)) - set([20,28])) # Cols 21 and 29 are constant, so must be explicitly ignored # Set response to be indicator of a particular class res_class=random.sample(range(1,5), 1)[0] covtype[myY] = covtype[myY] == res_class covtype[myY] = covtype[myY].asfactor() # L2: alpha=0, lambda=0 covtype_h2o1 = H2OGeneralizedLinearEstimator(family="binomial", alpha=0, Lambda=0) covtype_h2o1.start(x=myX, y=myY, training_frame=covtype) # Elastic: alpha=0.5, lambda=1e-4 covtype_h2o2 = H2OGeneralizedLinearEstimator(family="binomial", alpha=0.5, Lambda=1e-4) covtype_h2o2.start(x=myX, y=myY, training_frame=covtype) # L1: alpha=1, lambda=1e-4 covtype_h2o3 = H2OGeneralizedLinearEstimator(family="binomial", alpha=1, Lambda=1e-4) covtype_h2o3.start(x=myX, y=myY, training_frame=covtype) covtype_h2o1.join() print(covtype_h2o1) covtype_h2o2.join() print(covtype_h2o2) covtype_h2o3.join() print(covtype_h2o3) if __name__ == "__main__": pyunit_utils.standalone_test(test_get_future_model) else: test_get_future_model()
30.863636
104
0.749632
cf269e95218c576ff5625d4a7743a9e0e5fac111
4,843
py
Python
annotator_supreme/plugins/export_to_logo_detection.py
meerkat-cv/annotator-supreme
36f32834078b3c8b0ae5e59985848248265ac802
[ "MIT" ]
5
2017-06-26T21:30:32.000Z
2017-09-20T16:12:57.000Z
annotator_supreme/plugins/export_to_logo_detection.py
meerkat-cv/annotator-supreme
36f32834078b3c8b0ae5e59985848248265ac802
[ "MIT" ]
17
2017-12-01T14:21:33.000Z
2018-01-18T21:09:50.000Z
annotator_supreme/plugins/export_to_logo_detection.py
meerkat-cv/annotator-supreme
36f32834078b3c8b0ae5e59985848248265ac802
[ "MIT" ]
1
2017-11-28T17:56:41.000Z
2017-11-28T17:56:41.000Z
import os import cv2 import numpy as np class AnnotatorPlugin: _VERSION = '0.0.1' def __init__(self, dataset, partition = None, additional_params = {}): self.dataset_name = dataset["name"] self.dataset_dir = '/tmp/logo_detection_' + dataset["name"] self.tags = dataset["annotation_labels"] self.images_list_training = [] self.images_list_testing = [] self.partition = partition try: os.system('rm -rf ' + self.dataset_dir) except: pass os.system('mkdir ' + self.dataset_dir) os.system('mkdir ' + self.dataset_dir+"/data/") for t in self.tags: os.system('mkdir ' + self.dataset_dir+'/'+t) os.system('mkdir ' + self.dataset_dir + '/Distractors') def process(self, image_matrix, image_object): im_name = self.dataset_dir + '/' + image_object['phash'] width = float(image_matrix.shape[1]) height = float(image_matrix.shape[0]) curr_tag = '' print('processing', image_object['phash']) (image_matrix, image_object) = self.blur_img(image_matrix, image_object) annotations = [] for bb in image_object['anno']: if bb['ignore']: continue x = ((bb['left']+bb['right'])/2.0) / width y = ((bb['top']+bb['bottom'])/2.0) / height w = (bb['right']-bb['left']) / width h = (bb['bottom']-bb['top']) / height curr_tag = bb['labels'][0] curr_anno = self.tags.index(curr_tag)+' '+str(x)+' '+str(y)+' '+str(w)+' '+str(h) annotations.append(curr_anno) has_annotation = True if curr_tag == '': curr_tag = 'Distractors' has_annotation = False if has_annotation: with open(self.dataset_dir+'/'+curr_tag+'/'+image_object['phash']+'.txt', 'w') as f: for a in annotations: f.write(a+'\n') cv2.imwrite(self.dataset_dir+'/'+curr_tag+'/'+image_object['phash']+'.png', image_matrix) if image_object["partition"] == 0: self.images_list_training.append(self.dataset_dir+'/'+curr_tag+'/'+image_object['phash']+'.png') elif image_object["partition"] == 1: self.images_list_testing.append(self.dataset_dir+'/'+curr_tag+'/'+image_object['phash']+'.png') return (image_matrix, image_object) def end(self): with open(self.dataset_dir+'/train.txt', 'w') as f: for im in self.images_list_training: f.write(im+'\n') with open(self.dataset_dir+'/test.txt', 'w') as f: for im in self.images_list_testing: f.write(im+'\n') # create .names file names_content = "\n".join(self.tags) with open(self.dataset_dir+"/"+self.dataset_name+".names", 'w') as f: f.write(names_content) # create config file cfg = "classes = {n_classes}\n"+\ "train = {train_path}\n"+\ "valid = {valid_path}\n"+\ "thresh = 0.5\n"+\ "names = {names_path}\n"+\ "backup = /tmp/data/" cfg = cfg.format(n_classes = len(self.tags), train_path = self.dataset_dir+"/train.txt", valid_path = self.dataset_dir+"/text.txt", names_path = self.dataset_dir+"/"+self.dataset_name+".names") with open(self.dataset_dir+"/"+self.dataset_name+".cfg", 'w') as f: f.write(cfg) return {"out_folder": self.dataset_dir} def get_parameters(self): return {'parameters': []} def get_version(self): return _VERSION def blur_img(self, im, anno): im_blur = im new_anno = [] if anno is not None: for bb in anno['anno']: if not bb['ignore'] and bb['labels'][0] != 'ignore': new_anno.append(bb) continue (l,t,r,b) = (int(bb['left']), int(bb['top']), int(bb['right']), int(bb['bottom'])) (l,t,r,b) = self.fix_bb(l,t,r,b,im.shape) if (r-l)*(b-t) <= 0: continue biggest_dim = r-l if (b-t) > biggest_dim: biggest_dim = b-t kernel_size = int(biggest_dim/5.0) + (1-int(biggest_dim/5.0)%2) im_blur[t:b,l:r] = cv2.GaussianBlur(im_blur[t:b,l:r], (kernel_size, kernel_size), biggest_dim/5.0) anno['anno'] = new_anno return (im_blur, anno) def fix_bb(self, l, t, r, b, shape): if l<0: l=0 if t<0: t=0 if b>=shape[0]: b=shape[0]-1 if r>=shape[1]: r=shape[1]-1 return (l,t,r,b)
33.4
114
0.520752
8faa8e914914ac0deb48002f2cf1ba84f256ef60
144
py
Python
chillpill_examples/__init__.py
kevinbache/chillpill_examples
d9c5fac9972f1afbf7bb4e6b6e5388b9f52c73c3
[ "MIT" ]
null
null
null
chillpill_examples/__init__.py
kevinbache/chillpill_examples
d9c5fac9972f1afbf7bb4e6b6e5388b9f52c73c3
[ "MIT" ]
null
null
null
chillpill_examples/__init__.py
kevinbache/chillpill_examples
d9c5fac9972f1afbf7bb4e6b6e5388b9f52c73c3
[ "MIT" ]
null
null
null
"""chillpill_examples - Brown, paper, tied up with string.""" __version__ = '0.0.1' __author__ = 'My Name <kevin.bache@gmail.com>' __all__ = []
28.8
61
0.6875
b349068faa2f8eb954a92432cdc035c310ee1bf0
1,478
py
Python
bspump/declarative/expression/utility/castexpr.py
thatch/BitSwanPump
98a5b8d09f9b59d5361611cee0bd45e7b4c69e3f
[ "BSD-3-Clause" ]
null
null
null
bspump/declarative/expression/utility/castexpr.py
thatch/BitSwanPump
98a5b8d09f9b59d5361611cee0bd45e7b4c69e3f
[ "BSD-3-Clause" ]
null
null
null
bspump/declarative/expression/utility/castexpr.py
thatch/BitSwanPump
98a5b8d09f9b59d5361611cee0bd45e7b4c69e3f
[ "BSD-3-Clause" ]
null
null
null
from bspump.declarative.abc import Expression from ..value.eventexpr import ARG class CAST(Expression): """ Casts "value" to "type" """ def __init__(self, app, *, arg_what=None, arg_type=None, arg_default=None, value=None): super().__init__(app) if value is not None: # Scalar variant self.Value = ARG(app, value='') # Detect type cast function if value == "int": self.Conversion = int elif value == "float": self.Conversion = float elif value == "str": self.Conversion = str elif value == "dict": self.Conversion = dict elif value == "list": self.Conversion = list else: raise RuntimeError("Unsupported type '{}' found in CAST expression.".format(arg_type)) else: self.Value = arg_what # Detect type cast function if arg_type == "int": self.Conversion = int elif arg_type == "float": self.Conversion = float elif arg_type == "str": self.Conversion = str elif arg_type == "dict": self.Conversion = dict elif arg_type == "list": self.Conversion = list else: raise RuntimeError("Unsupported type '{}' found in CAST expression.".format(arg_type)) self.Default = arg_default def __call__(self, context, event, *args, **kwargs): try: return self.Conversion(self.evaluate(self.Value, context, event, *args, **kwargs)) except ValueError: if self.Default is None: return None return self.evaluate(self.Default, context, event, *args, **kwargs)
24.229508
90
0.661705
5b565a48cc0ba1e265fdd460311cb71c7ab83abe
3,285
py
Python
options/train_options.py
kagudkovArt/instagan
5805bf26526e7bdbad02fca7c23c85f385fde02c
[ "BSD-3-Clause" ]
null
null
null
options/train_options.py
kagudkovArt/instagan
5805bf26526e7bdbad02fca7c23c85f385fde02c
[ "BSD-3-Clause" ]
null
null
null
options/train_options.py
kagudkovArt/instagan
5805bf26526e7bdbad02fca7c23c85f385fde02c
[ "BSD-3-Clause" ]
null
null
null
from .base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self, parser): parser = BaseOptions.initialize(self, parser) parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen') # Use ncols = 6 for better visualization parser.add_argument('--display_ncols', type=int, default=6, help='if positive, display all images in a single visdom web panel with certain number of images per row.') parser.add_argument('--display_id', type=int, default=1, help='window id of the web display') parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display') parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")') parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html') parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs') parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration') parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...') parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate') parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero') parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') parser.add_argument('--no_lsgan', action='store_true', help='do *not* use least square GAN, if false, use vanilla GAN') parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') parser.add_argument('--lr_policy', type=str, default='lambda', help='learning rate policy: lambda|step|plateau|cosine') parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations') parser.add_argument('--add_color_aug', action='store_true', help='if specified, create color augmentation the images for data augmentation') self.isTrain = True return parser
93.857143
175
0.714155