hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
4506aa49b0d0ef8fc0b5286ac4ac7e1abf6f84cf
23,526
py
Python
CIG96-HI-cal/cal.cig96_28jul13b.py
AMIGA-IAA/deep-obs
1526647f9949fbdfd437e68d037c8ea0ce5053fe
[ "MIT" ]
null
null
null
CIG96-HI-cal/cal.cig96_28jul13b.py
AMIGA-IAA/deep-obs
1526647f9949fbdfd437e68d037c8ea0ce5053fe
[ "MIT" ]
null
null
null
CIG96-HI-cal/cal.cig96_28jul13b.py
AMIGA-IAA/deep-obs
1526647f9949fbdfd437e68d037c8ea0ce5053fe
[ "MIT" ]
null
null
null
# -*- coding: iso-8859-1 -*- ### EVLA DATA REDUCTION ### Project: 13A-341 ### Dataset date: 28jul13b ### Original dataset name: 13A-341.sb24028522.eb24167262.56501.354832060184.ms ### Renamed as: cig96_11.ms ### ### Configuration: C (6/10) # =============================================================================== ### CALIBRATION ### # =============================================================================== ### Import of EVLA data from SDM format: ######################################## # importevla(asdm='cig96_11', vis='cig96_11.ms') # Original data file gets now CASA format and a new name: "cig96_11.ms" # =============================================================================== ### Listobs inspection: ####################### listobs(vis='cig96_11.ms') # Listobs output summary: 27 antennae, 9 spectral windows, 2 polarizations (RR, LL), 1 dummy scan, 3 sources (2 calibrators + 1 target), 2048 channels of 7.8 kHz each for spw=0 # Spectral Window 0 (line): # SpwID Name #Chans Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) BBC Num Corrs # 0 A0C0#0 2048 TOPO 1404.995 7.812 16000.0 12 RR LL # Sources: 3 # ID Code Name RA Decl Epoch SrcId nRows # 0 NONE 0137+331=3C48 01:37:41.299431 +33.09.35.13299 J2000 0 28431 # 1 K 0137+331=3C48 01:37:41.299431 +33.09.35.13299 J2000 1 338013 # 2 D J0238+1636 02:38:38.930108 +16.36.59.27470 J2000 2 202176 # 3 NONE CIG 96 02:15:27.600000 +06.00.09.00001 J2000 3 1658475 ### BANDPASS and FLUX calibrator: 1 0137+331 = 3C48 ### PHASE calibrator: 2 J0238+1636 ### TARGET: 3 CIG 96 # =============================================================================== ### Data inspection via plotms: ############################### # Prior to anything else, there is dummy scan, field=0, so we remove it: # flagdata(vis='cig96_11.ms', mode='manual', field='0') # We run plotms to inspect the general aspect of the data: #plotms(vis='cig96_11.ms',xaxis='channel',yaxis='amp',field='1',spw='0',coloraxis='field',avgtime='1e9') #plotms(vis='cig96_11.ms',xaxis='time',yaxis='amp',field='1',spw='0',coloraxis='field',avgchannel='1e9') # =============================================================================== # Antenna position correction: ############################## gencal(vis='cig96_11.ms', caltable='cig96_11.ms.antpos', caltype='antpos') # =============================================================================== ### Plot with the spatial distribution of the antennae: ####################################################### plotants(vis='cig96_11.ms',figfile='cig96_11.ms.plotants.png') # =============================================================================== ### Flagging: ############# # Log file provides with some insight of the antennae status, corruption, etc.: # Antenna(s) 19 (Data: Corrupted): # L-band visibility amplitudes below normal due to receiver LNA problem. # so we flag it. flagdata(vis='cig96_11.ms', mode='manual', field='', antenna='ea19', flagbackup=True) ### Shadowing correction over the whole .ms: flagdata(vis='cig96_11.ms', mode='shadow', flagbackup=True) # Percentage of data flagged in table selection: % ### Zero clipping correction over the whole .ms: flagdata(vis='cig96_11.ms', mode='clip', clipzeros=True, flagbackup=True) # Percentage of data flagged in table selection: 0.0145235% ### Field 1 (bandpass and flux calibrator): quacking of the first miuntes (all antennas showing low amplitudes): flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='3&5', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='3&13', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='3&15', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='5&15', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='5&13', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='13&15', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='11&22', correlation='LL', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='6&10', correlation='RR', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='5&6', correlation='RR', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='6&11', correlation='RR', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='6&19', correlation='RR', flagbackup=True) flagdata(vis='cig96_11.ms', mode='manual', scan='2', antenna='7&23', correlation='RR', flagbackup=True) # There are 2 points around 0.5 that could be clipped but the command does not do what we think it should: # flagdata(vis='cig96_11.ms', mode='clip', field='1', spw='0:354~355', clipminmax=[0.00, 0.40], clipoutside=True, clipzeros=False, flagbackup=True) # Decission: we let them be. ### Field 2 (phase calib.): needs quacking, and anteannae 3 and 5 in corr LL need removal, they show some high values: # We could remove the upper amplitude values: # flagdata(vis='cig96_11.ms', mode='manual', field='2', antenna='3&5', correlation='LL', flagbackup=True) # Decission: we let them be. # Quacking needed: flagdata(vis='cig96_11.ms', mode='quack', field='2', quackinterval=5.0, quackmode='beg') # it has the RFI in channel ~350: flagdata(vis='cig96_11.ms', mode='manual', field='2', spw = '0:330~380') # and a small one in ~1250: flagdata(vis='cig96_11.ms', mode='manual', field='2', antenna='4&8', spw = '0:1253') # and the MW HI emission in ~1960: flagdata(vis='cig96_11.ms', mode='manual', field='2', spw = '0:1940~1975') ### Field 3 (CIG96) flagging: # quacking of the first 10 seconds of the rest of the scans: flagdata(vis='cig96_11.ms', mode='quack', field='3', quackinterval=10.0, quackmode='beg') # same RFI in ~350 and MW emission as in field 2; no RFI in ~1250: flagdata(vis='cig96_11.ms', mode='manual', field='3', spw = '0:330~380') flagdata(vis='cig96_11.ms', mode='manual', field='3', spw = '0:1940~1975') # Enough flagging for now. # =============================================================================== ### Calibration: ### ============ ### Reference antenna selection: ################################ # After checking plotants, we select this one because it is quite central: refant='ea10' # =============================================================================== ### Opacity and gaincurve corrections: ###################################### # Should we do opacities correction? # myTau = plotweather(vis='cig96_11.ms', doPlot=T) # display cig96_11.ms.plotweather.png # gencal(vis='cig96_11.ms', caltype='opac', caltable='cig96_11.ms.opcac', parameter=myTau) # ANSWER: no, not needed for HI observations, the atmosphere barely has any influence with HI. Only ionosphere in very flat elevations and at dawn/sunset. # Should we do gaincurve correction? # Takes into account the elevations of each antenn, see elevations plot: CIG96 and the phase calibrator have a large elevation range. # gencal(vis='cig96_11.ms', caltype='gceff', caltable='cig96_11.ms.gaincurve') # ANSWER: no, it might even harm the observations due to the possible crosstalk at low elevations and the model it is based on. # =============================================================================== ### Delays correction: ###################### # Prior to the bandpass correction, we need to correct the phase variations with time (they are large). # We use the bandpass calibrator in field 1 with the antenna position correction table: gaincal(vis='cig96_11.ms', caltable='cig96_11.ms.delays', field='1', refant='ea10', gaintype='K', gaintable=['cig96_11.ms.antpos']) # =============================================================================== ### Flux density: ################# # Our flux calibrator is 3C48, in field = 1. # # First, we check the list of available models: setjy(vis='cig96_11.ms', listmodels=T) # Candidate modimages (*) at pepino (dae66) in path: # /Applications/CASA.app/Contents/data/nrao/VLA/CalModels/ # # Candidate modimages (*) at NRAO local workstations in path: # /home/casa/packages/RHEL5/release/casapy-42.1.29047-001-1-64b/data/nrao/VLA/CalModels/ # # The model chosen has to be in accordance with the calibrator and band selected: 3C48 in L band: setjy(vis='cig96_11.ms', field='1', modimage='/mnt/scops/data/data/paramimo/casapy-42.2.30986-1-64b/data/nrao/VLA/CalModels/3C48_L.im') # =============================================================================== ### Bandpass calibration: ######################### # For the bandpass and flux (field=1) and phase (field=2) calibrators we use solution interval # time of solint='5s': gaincal(vis='cig96_11.ms', caltable='cig96_11.ms.bpphase5s', field='1', refant='ea10', calmode='p', solint='5s', minsnr=5.0, gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays']) # The solution interval of 5 seconds has been calculated following with the VLA exp.time # calculator using the parameters: # # Freq. = 1.42 GHz # Medium elevation (summer time) # Bandwith freq. = 16 MHz (see listobs) # RMS noise = 1.5 mJy # # The calculator estimates less than one second (0.2s) is enough to get such SNR or even higher # so we set solint=5s since 5s is the shortest integration time of our data. This should mean that # there should be a solution for all the intervals. # We see the phase VS time figures to see that the phase is now waaayyy flatter: #plotcal(caltable='cig96_11.ms.bpphase5s', xaxis='time', yaxis='phase') # Apply phase solutions on the fly: bandpass(vis='cig96_11.ms', caltable='cig96_11.ms.bandpass5s', field='1', refant='ea10', solint='inf', solnorm=T, minsnr=3.0, minblperant=3, gaintable=['cig96_11.ms.bpphase5s', 'cig96_11.ms.antpos', 'cig96_11.ms.delays'], interp=['nearest']) # We check again the solutions: #plotcal(caltable='cig96_11.ms.bpphase5s', field='1', xaxis='time', yaxis='phase') # Difference in phase is less, phase shows a flatter behaviour now. # =============================================================================== ### Phase and amplitude calibration: #################################### # Phase calibration for the calibrators, fields 1 and 2 (spw 0, where the line is): gaincal(vis='cig96_11.ms',caltable='cig96_11.ms.intphase', field='1,2', refant='ea10', calmode='p', solint='5s', minsnr=5.0, gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s']) # We create another calibration table, using solint='inf', i.e., finding one solution over the whole scan, # to use FOR THE TARGET later on: # time.sleep(5) gaincal(vis='cig96_11.ms', caltable='cig96_11.ms.scanphase', field='1,2', refant='ea10', calmode='p', solint='inf', minsnr=5.0, gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s']) # Derive amplitude solutions: # time.sleep(5) gaincal(vis='cig96_11.ms', caltable='cig96_11.ms.amp', field='1', refant='ea10', calmode='ap', solint='inf', minsnr=5.0, gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s', 'cig96_11.ms.intphase'], gainfield=['','','','1'],append=True) gaincal(vis='cig96_11.ms', caltable='cig96_11.ms.amp', field='2', refant='ea10', calmode='ap', solint='inf', minsnr=5.0, gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s', 'cig96_11.ms.intphase'], gainfield=['','','','2'],append=True) # I check the tables with plotcal and some things do not look as expected: the first data show very # low intensity compares to the rest and some graphs show only one point: # #plotcal(caltable='cig96_11.ms.amp', xaxis='time', yaxis='amp', iteration='antenna', subplot=331) # #plotcal(caltable='cig96_11.ms.amp', xaxis='time', yaxis='amp', iteration='baseline', subplot=331) # Now I derive the flux for the rest of the sources. Note that the flux table REPLACES the amp.gcal # in terms of future application of the calibration to the data, (i.e., it's not an incremental table) # UNLESS we set incremental=T (as of CASA 4.0): myflux = fluxscale(vis='cig96_11.ms', caltable='cig96_11.ms.amp', fluxtable='cig96_11.ms.flux', reference='1', transfer='2', incremental=False) # Result: # Flux density for J0238+1636 in SpW=0 (freq=1.40523e+09 Hz) is: 0.736132 +/- 0.00357112 (SNR = 206.135, N = 52) # =============================================================================== ### Application of the calibration to the .ms file: ################################################### # Note: In all applycal steps we set calwt=F. It is very important to turn off this parameter which # determines if the weights are calibrated along with the data. Data from antennae with better receiver # performance and/or longer integration times should have higher weights, and it can be advantageous to # factor this information into the calibration. During the VLA era, meaningful weights were available for # each visibility. However, at the time of this observation, the VLA was not yet recording the information # necessary to calculate meaningful weights. Since these data weights are used at the imaging stage you # can get strange results from having calwt=T when the input weights are themselves not meaningful, # especially for self-calibration on resolved sources (your flux calibrator and target, for example). applycal(vis='cig96_11.ms', field='1', gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s', 'cig96_11.ms.intphase', 'cig96_11.ms.flux'], gainfield=['','','','1',''], calwt=F) # time.sleep(5) applycal(vis='cig96_11.ms', field='2', gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s', 'cig96_11.ms.intphase', 'cig96_11.ms.flux'], gainfield=['','','','2',''], calwt=F) # time.sleep(5) # For the target sources we use the scanphase.gcal table: applycal(vis='cig96_11.ms', field='3', gaintable=['cig96_11.ms.antpos', 'cig96_11.ms.delays', 'cig96_11.ms.bandpass5s', 'cig96_11.ms.scanphase', 'cig96_11.ms.flux'], gainfield=['','','','2',''], calwt=F) # =============================================================================== ### Regridding of the .ms to a new frame: ######################################### # cvel(vis='cig96_11.ms', outputvis='cig96_11.ms.cvel', mode='velocity', field='', spw='0', restfreq='1.42040575177GHz', outframe='LSRK', veltype='radio') # # # # =============================================================================== # # ### Splitting of CIG96: # ####################### # # # Splitting of field = 3 (CIG96) calibrated data, in the spw=0: # # split(vis='cig96_11.ms.cvel', datacolumn='corrected', outputvis='cig96_11.cvel.corr.ms', field='3', spw='0:400~1700') # # # Now, for the new corr.ms file: # # field = 3 is stored as: field = 0 # # spw = 0 keeps being spw = 0 # # # Split of the whole spw: # # # split(vis='cig96_11.ms', datacolumn='corrected', outputvis='cig96_11.corr.spw0.ms', field='3', spw='0') # # # Emission in the higher frequency: # # # # The emission line is seen in 1.4203 GHz. We split the fields in spw=0 from channel 780 to 1600: # # # split(vis='cig96_11.ms', datacolumn='corrected', outputvis='cig96_11.corr.emission.ms', field='3', spw='0:780~1600') # # # Splitting CIG96 fields in spw=0 with time binning of 20s and channel width of 10 channels: # # split(vis='cig96_11.ms.cvel', datacolumn='corrected', outputvis='cig96_11.corr.20s.10chan.ms', width=10, timebin='20s', field='3', spw='0:451~1700') # # # =============================================================================== # # ### UV continuum subtraction: # ############################# # # # Since we have chopped out the first 390 channels where the RFI region was (see spw definition in the # # split command) and the last 350 channels, the total number of channels has changed: from 2048 we # # now have ~1350. # # # # Now, we remove the continuum from source by subtracting the channels indicated: # # uvcontsub(vis='cig96_11.cvel.corr.ms', field='0', fitspw='0:50~350;900~1050', fitorder=1) # uvcontsub(vis='cig96_11.corr.20s.10chan.ms', field='0', fitspw='0:15~30;90~105', fitorder=1) # # # Also, for the second emission in 1.4203 GHz, the emission is in a very noisy region so the continuum # # subtraction won't be perfect, likely more noisy on higher frequencies since the continuum is # # selected in channels 780~1000: # # # uvcontsub(vis='cig96_11.corr.emission.ms', field='0', fitspw='0:0~510;710~1300') # # # For the time-channel binned file, we subtract as follows: # # # uvcontsub(vis='cig96_11.corr.20s.10chan.ms', field='0', fitspw='0:45~93;110~181') # # # For the whole spw 0 we use an as extended as possible continuum: # # # uvcontsub(vis='cig96_11.corr.spw0.ms', field='0', fitspw='0:300~365;396~460;490~920;1110~1520') # # # =============================================================================== # # ### Clean of the continuum subtracted data: # ########################################### # # # Weighting natural with the factor of 6.25064 for the channel smoothing that will be necessary to combine with VLA data: # # clean(vis='cig96_11.cvel.corr.ms.contsub', imagename='cig96_11.cvel.corr.contsub.natural.line', field='0', spw='0:450~800', mode='frequency', start=450, nchan=351, niter=10000, width='48.830kHz', threshold='1.5mJy', interactive=T, npercycle=100, imsize=[200,200], phasecenter='', cell='8.0arcsec', restfreq='1.42040575177GHz', weighting='natural', usescratch=T) # # # Beam size: # # # WARN MFCleanImageSkyModel Clean not converging # # Successfully deconvolved image # # Beam used in restoration: 99.5838 by 47.044 (arcsec) at pa -56.6383 (deg) # # # Weighting uniform: /usr/local/casapy-42.1.29047-001-1-64b/casapy # # clean(vis='cig96_11.corr.ms.contsub', imagename='cig96_11.corr.v3.contsub.uniform.line', field='0', spw='0:510~730', mode='channel', start=0, niter=10000, threshold='1.2mJy', interactive=T, npercycle=100, imsize=[200,200], phasecenter='', cell='15.0arcsec', restfreq='1.4204GHz', weighting='uniform', usescratch=T) # # # Beam size: # # # Weighting Briggs rob=0.0: # # clean(vis='cig96_11.corr.ms.contsub', imagename='cig96_11.corr.v3.contsub.rob0.0.line', field='0', spw='0:510~730', mode='channel', start=0, niter=10000, threshold='1.2mJy', interactive=T, npercycle=100, imsize=[200,200], phasecenter='', cell='15.0arcsec', restfreq='1.4204GHz', weighting='briggs', robust='0.0', usescratch=T) # # # Beam size: # # # # Collapse of cube (moments): # # immoments(imagename='cig96_11.cvel.corr.contsub.natural.line.image', axis='spectral', moments=[0,1], outfile='cig96_11.cvel.corr.contsub.natural.line.image.mom') # # # ### Noise level via viewer task: # ################################ # # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- # (cig96_11.corr.contsub.line.image) # Frequency Velocity Stokes BrightnessUnit BeamArea # 1.41305e+09Hz 1553.49km/s I Jy/beam 4.44663 # Npts Sum FluxDensity Mean Rms # 1155 2.966822e-02 6.672063e-03 2.568677e-05 4.262555e-04 # Std dev Minimum Maximum region count # 4.256651e-04 -1.101821e-03 1.550763e-03 1 # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- # # # For the time-channel binned file, we clean as follows: # # # Weighting natural: # # clean(vis='cig96_11.corr.20s.10chan.ms.contsub', imagename='cig96_11.corr.20s.10chan.ms.contsub.natural.line.image', field='0', spw='0:93~110', mode='channel', start=0, niter=1000, threshold='1.2mJy', interactive=T, npercycle=100, imsize=[200,200], phasecenter='', cell='15.0arcsec', restfreq='1.4204GHz', weighting='natural', usescratch=T) # # # For the spw 0 split dataset: # # clean(vis='cig96_11.corr.spw0.ms.contsub', imagename='cig96_11.corr.spw0.ms.contsub.natural.line', field='0', spw='0:920~1110', mode='channel', start=920, nchan=190, niter=10000, threshold='1.2mJy', interactive=T, npercycle=100, imsize=[200,200], phasecenter='', cell='10.0arcsec', restfreq='1.4204GHz', weighting='natural', usescratch=T) # # # =============================================================================== # # ### Corrected data inspection via msview: # ######################################### # # # We inspect the baselines that present solar interferences via msview # # # Field 1 shows interference patterns as well as some noisy baselines: # # # # 2-8, 5-26, 5-20, 8-13, 8-12, 2-12, 2-25, 2-20, 22-24, 0-26, 12-13, 0-1, 12-25, 6-8, 3-15, 1-7, 20-25, 7-14, # # 3-19, 2-24, 2-6, 2-5, 11-19, 0-5, 12-22, 9-25, 4-21, 11-16, 24-25, 5-25, 1-26, 5-8, 2-26, 2-9, 5-24, 5-6, # # 25-26, 1-5, 20-22, 0-2, 10-24, 5-9, 7-26, 0-14, 5-7, 1-2, 5-15, 1-25, 8-17, 17-22, 12-17, 13-17, 17-25, 6-17, # # 17-26, 18-24, 3-17, # # # # Antennas 0=ea01, 1=ea02, 4=ea05, 6=ea07 and 18=ea20 always shows very large amp differences, we flag it: # # flagdata(vis='cig96_11.ms', mode='manual', field='1', spw='0', antenna='ea07;ea01;ea02;ea05;ea20') # # # We flag the baselines that have shown interferences: # # flagdata(vis='cig96_11.ms', mode='manual', field='1', spw='0', antenna='2&8;5&26;5&20;8&13;8&12;2&12;2&25;2&20;22&24;0&26;12&13;0&1;12&25;6&8;3&15;1&7;20&25;7&14;3&19;2&24;2&6;2&5;11&19;0&5;12&22;9&25;4&21;11&16;24&25;5&25;1&26;5&8;2&26;2&9;5&24;5&6;25&26;1&5;20&22;0&2;10&24;5&9;7&26;0&14;5&7;1&2;5&15;1&25;8&17;17&22;12&17;13&17;17&25;6&17;17&26;18&24;3&17', flagbackup=True) # # # We now delete the calibration to perform it again with the new flagged data: # # # # To do so, we restart from the beginning, right after the flagging. # # # # New flux value: # # # # Flux density for J0238+1636 in SpW=0 (freq=1.40499e+09 Hz) is: 0.818094 +/- 0.0143805 (SNR = 56.8892, N = 44) # # # # After applying the whole calibration again, we split field = 3 (CIG96) re-calibrated data, in the spw=0: # # split(vis='cig96_11.ms', datacolumn='corrected', outputvis='cig96_11.corr.v2.ms', field='3', spw='0:399~2047') # split(vis='cig96_11.ms', datacolumn='corrected', outputvis='cig96_11.corr.allfields.ms', field='1~3', spw='0') # # # and redo uvcontsub: # # # Since we have chopped out the first 400 channels where the RFI region was (see spw definition in the # # split command) the total number of channels have changed now: from 2048 we now have 1648. # # Now, we remove the continuum from source by subtracting the channels from 500to910 and from 730to1300. # # uvcontsub(vis='cig96_11.corr.v2.ms', field='0', fitspw='0:0~510;730~1300') # # # Cleaning: weighting natural: # # clean(vis='cig96_11.corr.v2.ms.contsub', imagename='cig96_11.corr.v2.contsub.natural.line', field='0', spw='0:510~730', mode='channel', start=0, niter=10000, threshold='1.2mJy', interactive=T, npercycle=100, imsize=[300,300], phasecenter='', cell='15.0arcsec', restfreq='1.4204GHz', weighting='natural', usescratch=T) ################ END # # # IN CASE YOU WISH TO RESET THE WHOLE CALIBRATION, TAKE THE FOLLOWING STEPS: # # clearcal(vis='xxx') # # flagdata(vis='xxx',mode=unflag) # # Ready to redo calibration!
47.240964
379
0.622163
1ef4d50732db33b1f5c73636d5c289fd3df7916f
8,862
py
Python
rally_openstack/task/contexts/glance/images.py
jogeo/rally-openstack
83437e7c5925d5d647cd28f1821b6d51687b0123
[ "Apache-2.0" ]
null
null
null
rally_openstack/task/contexts/glance/images.py
jogeo/rally-openstack
83437e7c5925d5d647cd28f1821b6d51687b0123
[ "Apache-2.0" ]
null
null
null
rally_openstack/task/contexts/glance/images.py
jogeo/rally-openstack
83437e7c5925d5d647cd28f1821b6d51687b0123
[ "Apache-2.0" ]
1
2021-08-10T03:11:51.000Z
2021-08-10T03:11:51.000Z
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from rally.common import cfg from rally.common import logging from rally.common import utils as rutils from rally.common import validation from rally_openstack.common import consts from rally_openstack.common import osclients from rally_openstack.common.services.image import image from rally_openstack.task.cleanup import manager as resource_manager from rally_openstack.task import context CONF = cfg.CONF LOG = logging.getLogger(__name__) @validation.add("required_platform", platform="openstack", users=True) @context.configure(name="images", platform="openstack", order=410) class ImageGenerator(context.OpenStackContext): """Uploads specified Glance images to every tenant.""" CONFIG_SCHEMA = { "type": "object", "$schema": consts.JSON_SCHEMA, "properties": { "image_url": { "type": "string", "description": "Location of the source to create image from." }, "disk_format": { "description": "The format of the disk.", "enum": ["qcow2", "raw", "vhd", "vmdk", "vdi", "iso", "aki", "ari", "ami"] }, "container_format": { "description": "Format of the image container.", "enum": ["aki", "ami", "ari", "bare", "docker", "ova", "ovf"] }, "image_name": { "type": "string", "description": "The name of image to create. NOTE: it will be " "ignored in case when `images_per_tenant` is " "bigger then 1." }, "min_ram": { "description": "Amount of RAM in MB", "type": "integer", "minimum": 0 }, "min_disk": { "description": "Amount of disk space in GB", "type": "integer", "minimum": 0 }, "visibility": { "description": "Visibility for this image ('shared' and " "'community' are available only in case of " "Glance V2).", "enum": ["public", "private", "shared", "community"] }, "images_per_tenant": { "description": "The number of images to create per one single " "tenant.", "type": "integer", "minimum": 1 }, "image_args": { "description": "This param is deprecated since Rally-0.10.0, " "specify exact arguments in a root section of " "context instead.", "type": "object", "additionalProperties": True }, "image_container": { "description": "This param is deprecated since Rally-0.10.0, " "use `container_format` instead.", "type": "string", }, "image_type": { "description": "This param is deprecated since Rally-0.10.0, " "use `disk_format` instead.", "enum": ["qcow2", "raw", "vhd", "vmdk", "vdi", "iso", "aki", "ari", "ami"], }, }, "oneOf": [{"description": "It is been used since Rally 0.10.0", "required": ["image_url", "disk_format", "container_format"]}, {"description": "One of backward compatible way", "required": ["image_url", "image_type", "container_format"]}, {"description": "One of backward compatible way", "required": ["image_url", "disk_format", "image_container"]}, {"description": "One of backward compatible way", "required": ["image_url", "image_type", "image_container"]}], "additionalProperties": False } DEFAULT_CONFIG = {"images_per_tenant": 1} def setup(self): image_url = self.config.get("image_url") disk_format = self.config.get("disk_format") container_format = self.config.get("container_format") images_per_tenant = self.config.get("images_per_tenant") visibility = self.config.get("visibility", "private") min_disk = self.config.get("min_disk", 0) min_ram = self.config.get("min_ram", 0) image_args = self.config.get("image_args", {}) if "image_type" in self.config: LOG.warning("The 'image_type' argument is deprecated since " "Rally 0.10.0, use disk_format argument instead") if not disk_format: disk_format = self.config["image_type"] if "image_container" in self.config: LOG.warning("The 'image_container' argument is deprecated since " "Rally 0.10.0; use container_format argument instead") if not container_format: container_format = self.config["image_container"] if image_args: LOG.warning( "The 'image_args' argument is deprecated since Rally 0.10.0; " "specify arguments in a root section of context instead") if "is_public" in image_args: if "visibility" not in self.config: visibility = ("public" if image_args["is_public"] else "private") if "min_ram" in image_args: if "min_ram" not in self.config: min_ram = image_args["min_ram"] if "min_disk" in image_args: if "min_disk" not in self.config: min_disk = image_args["min_disk"] # None image_name means that image.Image will generate a random name image_name = None if "image_name" in self.config and images_per_tenant == 1: image_name = self.config["image_name"] for user, tenant_id in self._iterate_per_tenants(): current_images = [] clients = osclients.Clients(user["credential"]) image_service = image.Image( clients, name_generator=self.generate_random_name) for i in range(images_per_tenant): image_obj = image_service.create_image( image_name=image_name, container_format=container_format, image_location=image_url, disk_format=disk_format, visibility=visibility, min_disk=min_disk, min_ram=min_ram) current_images.append(image_obj.id) self.context["tenants"][tenant_id]["images"] = current_images def cleanup(self): if self.context.get("admin", {}): # NOTE(andreykurilin): Glance does not require the admin for # listing tenant images, but the admin is required for # discovering Cinder volumes which might be created for the # purpose of caching. Removing such volumes are optional step, # since Cinder should have own mechanism like garbage collector, # but if we can, let's remove everything and make the cloud as # close as possible to the original state. admin = self.context["admin"] admin_required = None else: admin = None admin_required = False if "image_name" in self.config: matcher = rutils.make_name_matcher(self.config["image_name"]) else: matcher = self.__class__ resource_manager.cleanup(names=["glance.images", "cinder.image_volumes_cache"], admin=admin, admin_required=admin_required, users=self.context.get("users", []), superclass=matcher, task_id=self.get_owner_id())
42.605769
79
0.534191
3dd2704de60d4e904792ef52785256ef5ef713b7
1,898
py
Python
setup.py
zen-juen/AutoCalendar
05cf9cec07dd0bceb2965970d9513faf8fec461c
[ "MIT" ]
3
2020-10-18T05:14:12.000Z
2021-12-05T10:22:53.000Z
setup.py
zen-juen/AutoCalendar
05cf9cec07dd0bceb2965970d9513faf8fec461c
[ "MIT" ]
null
null
null
setup.py
zen-juen/AutoCalendar
05cf9cec07dd0bceb2965970d9513faf8fec461c
[ "MIT" ]
1
2021-12-28T19:02:45.000Z
2021-12-28T19:02:45.000Z
# -*- coding: utf-8 -*- import re from setuptools import find_packages, setup # Utilities with open("README.md") as readme_file: readme = readme_file.read() # #with open("NEWS.rst") as history_file: # history = history_file.read() #history = history.replace("\n-------------------", "\n^^^^^^^^^^^^^^^^^^^").replace("\n=====", "\n-----") def find_version(): result = re.search(r'{}\s*=\s*[\'"]([^\'"]*)[\'"]'.format("__version__"), open("autocalendar/__init__.py").read()) return result.group(1) # Dependencies requirements = ["numpy", "pandas", "pickle-mixin", "google", "google_auth_oauthlib"] # Setup setup( # Info name="autocalendar", keywords="automation, calendar events, google calendar api, automatic scheduling, Python", url="https://github.com/zen-juen/AutoCalendar", download_url = 'https://github.com/zen-juen/AutoCalendar/tree/main/zipball', version=find_version(), description="A Python automation scheduling system based on the Google Calendar API.", long_description=readme + "\n\n", long_description_content_type="text/markdown", license="MIT license", # The name and contact of a maintainer author="Zen Juen Lau", author_email="lauzenjuen@gmail.com", # Dependencies install_requires=requirements, # setup_requires=setup_requirements, # extras_require={"test": test_requirements}, # test_suite="pytest", # tests_require=test_requirements, # Misc packages=find_packages(), include_package_data=True, zip_safe=False, classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ] )
30.612903
118
0.645416
3b3c3438ec7dcfdd2ede19e28b63ec2eec93dc55
1,811
py
Python
tests/integration/questionnaire/test_questionnaire_question_definition.py
ons-eq-team/eq-questionnaire-runner
8d029097faa2b9d53d9621064243620db60c62c7
[ "MIT" ]
null
null
null
tests/integration/questionnaire/test_questionnaire_question_definition.py
ons-eq-team/eq-questionnaire-runner
8d029097faa2b9d53d9621064243620db60c62c7
[ "MIT" ]
null
null
null
tests/integration/questionnaire/test_questionnaire_question_definition.py
ons-eq-team/eq-questionnaire-runner
8d029097faa2b9d53d9621064243620db60c62c7
[ "MIT" ]
null
null
null
from tests.integration.integration_test_case import IntegrationTestCase class TestQuestionnaireQuestionDefinition(IntegrationTestCase): def test_question_definition(self): # Given I launch a questionnaire with definitions self.launchSurvey("test_question_definition") # When I start the survey I am presented with the definitions title and content correctly self.assertInBody( "Do you connect a LiFePO4 battery to your <em>photovoltaic system</em> to store surplus energy?" ) self.assertInBody("What is a photovoltaic system?") self.assertInBody( "A typical photovoltaic system employs solar panels, each comprising a number of solar cells, " "which generate electrical power. PV installations may be ground-mounted, rooftop mounted or wall mounted. " "The mount may be fixed, or use a solar tracker to follow the sun across the sky." ) self.assertInBody("Why use LiFePO4 batteries?") self.assertInBody("3 Benefits of LifePO4 batteries.") self.assertInBody( "LifePO4 batteries have a life span 10 times longer than that of traditional lead acid batteries. " "This dramatically reduces the need for battery changes." ) self.assertInBody( "Lithium iron phosphate batteries operate with much lower resistance and consequently recharge at a faster rate." ) self.assertInBody( "LifeP04 lightweight batteries are lighter than lead acid batteries, usually weighing about 1/4 less." ) # When we continue we go to the summary page self.post() self.assertInUrl("summary") # And Submit my answers self.post() self.assertInUrl("thank-you")
44.170732
125
0.680839
25c012809813698c5d9942d60d4996edc71a5e93
17,086
py
Python
imagegen/gan.py
kostaleonard/mlops-image-generation-example
c5360be4361a9843466469a74b94dba997dbe778
[ "MIT" ]
1
2021-12-20T22:03:56.000Z
2021-12-20T22:03:56.000Z
imagegen/gan.py
kostaleonard/mlops-image-generation-example
c5360be4361a9843466469a74b94dba997dbe778
[ "MIT" ]
14
2021-12-22T15:52:39.000Z
2022-01-27T12:58:56.000Z
imagegen/gan.py
kostaleonard/mlops-image-generation-example
c5360be4361a9843466469a74b94dba997dbe778
[ "MIT" ]
null
null
null
"""Demonstrates a generative adversarial network architecture on the pokemon dataset. The model will generate images of never-before-seen pokemon. The positive class is used to denote real images. This model syncs with WandB. """ # pylint: disable=no-name-in-module from typing import Optional import time from tqdm import tqdm import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Model, load_model as tf_load_model from tensorflow.keras.losses import BinaryCrossentropy from tensorflow.keras.callbacks import History from mlops.dataset.versioned_dataset import VersionedDataset from mlops.model.training_config import TrainingConfig import wandb from imagegen.errors import GANShapeError, GANHasNoOptimizerError DEFAULT_EPOCHS = 5 DEFAULT_BATCH_SIZE = 32 DEFAULT_BATCHES_PER_EPOCH = 100 DEFAULT_CKPT_PREFIX = 'models/checkpoints/gan' CROSS_ENTROPY_LOSS = BinaryCrossentropy(from_logits=False) WANDB_PROJECT_TITLE = 'gan_pokemon' MAX_NUM_WANDB_IMAGES = 50 WANDB_IMAGE_ROWS = 4 WANDB_IMAGE_COLS = 4 ROTATION_RANGE_DEGREES = 15 WIDTH_SHIFT_RANGE = 0.1 HEIGHT_SHIFT_RANGE = 0.1 ZOOM_RANGE = 0.2 class GAN: """Represents a generative adversarial network model.""" def __init__(self, generator: Model, discriminator: Model) -> None: """Instantiates the GAN. :param generator: The compiled generator model. Generates new images. The input shape must be m x n, where m is the number of examples and n is the length of the noise vector that the generator uses as input. The output shape must be m x h x w x c, where m is the number of examples, h is the image height, w is the image width, and c is the image channels. The output must be in the range [0, 1]. :param discriminator: The compiled discriminator model. Classifies images as either real or fake. The input shape must be m x h x w x c, the same shape as the output of the generator. The output shape must be m x 1, where the output represents the probability that each example is real. This output must be in the range [0, 1]. """ if len(generator.input_shape) != 2: raise GANShapeError('Generator input must be of shape (m, n)') if len(generator.output_shape) != 4: raise GANShapeError('Generator output must be of shape ' '(m, h, w, c)') if generator.output_shape != discriminator.input_shape: raise GANShapeError('Generator output shape must match ' 'discriminator input shape') if discriminator.output_shape[1:] != (1,): raise GANShapeError('Discriminator output must be of shape (m, 1)') if not generator.optimizer: raise GANHasNoOptimizerError('Generator is missing optimizer') if not discriminator.optimizer: raise GANHasNoOptimizerError('Discriminator is missing optimizer') self.gen_output_shape = generator.output_shape[1:] self.gen_input_dim = generator.input_shape[1] self.model_hyperparams = { 'gen_input_dim': self.gen_input_dim, 'gen_output_shape': self.gen_output_shape } self.generator = generator self.discriminator = discriminator def save(self, generator_filename: str, discriminator_filename: str) -> None: """Saves the generator and discriminator networks to the given paths. :param generator_filename: The path to which to save the generator. :param discriminator_filename: The path to which to save the discriminator. """ self.generator.save(generator_filename) self.discriminator.save(discriminator_filename) @staticmethod def load(generator_filename: str, discriminator_filename: str) -> 'GAN': """Returns the GAN loaded from the generator and discriminator files. :param generator_filename: The path to the saved generator. :param discriminator_filename: The path to the saved discriminator. :return: The GAN loaded from the generator and discriminator files. """ generator = tf_load_model(generator_filename) discriminator = tf_load_model(discriminator_filename) return GAN(generator, discriminator) @staticmethod def _generator_loss(fake_output: np.ndarray) -> float: """Returns the generator's loss based on the discriminator's predictions on generated images. :param fake_output: The discriminator's predictions on fake images output by the generator. If the discriminator can spot the fakes, these predictions will be close to 0; if the generator can fool the discriminator, these predictions will be close to 1. The predictions are a tensor of shape m x 1, where m is the batch size. :return: The cross-entropy loss of fake_output against an array of ones; the generator loss is minimized when it completely fools the discriminator. """ return CROSS_ENTROPY_LOSS(tf.ones_like(fake_output), fake_output) @staticmethod def _discriminator_loss(real_output: np.ndarray, fake_output: np.ndarray) -> float: """Returns the discriminator's loss on batches of real and fake images. :param real_output: The discriminator's predictions on real images. If the discriminator can spot real images, these predictions will be close to 1. The predictions are a tensor of shape m x 1, where m is the batch size. :param fake_output: The discriminator's predictions on fake images output by the generator. If the discriminator can spot the fakes, these predictions will be close to 0; if the generator can fool the discriminator, these predictions will be close to 1. The predictions are a tensor of shape m x 1, where m is the batch size. :return: The cross-entropy loss of real_output against an array of ones and fake_output against an array of zeros; the discriminator loss is minimized when it correctly differentiates between real and fake images. """ real_loss = CROSS_ENTROPY_LOSS(tf.ones_like(real_output), real_output) fake_loss = CROSS_ENTROPY_LOSS(tf.zeros_like(fake_output), fake_output) return real_loss + fake_loss @tf.function def _train_step(self, X_batch: np.ndarray) -> tuple[float, float]: """Runs one batch of images through the model, computes the loss, and applies the gradients to the model; returns the generator and discriminator losses on the batch. :param X_batch: A batch of input images; a tensor of shape m x h x w x c, where m is the batch size, h is the image height, w is the image width, and c is the number of channels. :return: A 2-tuple of the generator and discriminator losses on the batch. """ noise = tf.random.normal((X_batch.shape[0], self.gen_input_dim)) with tf.GradientTape() as gen_tape, tf.GradientTape() as dis_tape: generated_images = self.generator(noise, training=True) real_output = self.discriminator(X_batch, training=True) fake_output = self.discriminator(generated_images, training=True) gen_loss = GAN._generator_loss(fake_output) dis_loss = GAN._discriminator_loss(real_output, fake_output) gen_gradients = gen_tape.gradient( gen_loss, self.generator.trainable_variables) dis_gradients = dis_tape.gradient( dis_loss, self.discriminator.trainable_variables) self.generator.optimizer.apply_gradients( zip(gen_gradients, self.generator.trainable_variables)) self.discriminator.optimizer.apply_gradients( zip(dis_gradients, self.discriminator.trainable_variables)) return gen_loss, dis_loss def train(self, dataset: VersionedDataset, epochs: int = DEFAULT_EPOCHS, batch_size: int = DEFAULT_BATCH_SIZE, batches_per_epoch: int = DEFAULT_BATCHES_PER_EPOCH, model_checkpoint_prefix: Optional[str] = DEFAULT_CKPT_PREFIX, use_wandb: bool = False) -> TrainingConfig: """Trains the model on the training data. :param dataset: The dataset on which to train the model. :param epochs: The number of complete passes over the dataset to run training. :param batch_size: The size of the batches used in mini-batch gradient descent. :param batches_per_epoch: The number of batches to use per epoch. :param model_checkpoint_prefix: If specified, the prefix of the path to which to save the generator and discriminator. The generator file will have the suffix '_generator.h5' and the discriminator will have the suffix '_discriminator.h5'. :param use_wandb: If True, sync the run with WandB. :return: The training History object. """ # pylint: disable=too-many-locals, too-many-statements # pylint: disable=too-many-arguments train_hyperparams = locals() train_hyperparams.pop('self') train_hyperparams.pop('dataset') # These files will only be created if a prefix was supplied. generator_checkpoint_filename = \ f'{model_checkpoint_prefix}_generator.h5' discriminator_checkpoint_filename = \ f'{model_checkpoint_prefix}_discriminator.h5' if use_wandb: all_hyperparams = {**self.model_hyperparams, **train_hyperparams} wandb_run = wandb.init(project=WANDB_PROJECT_TITLE, dir='.', config=all_hyperparams, reinit=True) wandb.run.summary['generator_graph'] = wandb.Graph.from_keras( self.generator) wandb.run.summary['discriminator_graph'] = wandb.Graph.from_keras( self.discriminator) image_generator = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=ROTATION_RANGE_DEGREES, width_shift_range=WIDTH_SHIFT_RANGE, height_shift_range=HEIGHT_SHIFT_RANGE, zoom_range=ZOOM_RANGE, horizontal_flip=True ) image_generator.fit(dataset.X_train) train_dataset = tf.data.Dataset.from_generator( lambda: image_generator.flow(dataset.X_train, shuffle=True, batch_size=batch_size), output_signature=tf.TensorSpec( shape=(None, *dataset.X_train[0].shape), dtype=tf.float32)).as_numpy_iterator() generate_images_epochs = { int(num * (epochs - 1) / MAX_NUM_WANDB_IMAGES) for num in range(1, MAX_NUM_WANDB_IMAGES + 1) } history = History() history.history['epoch'] = [] history.history['loss'] = [] history.history['gen_loss'] = [] history.history['dis_loss'] = [] for epoch in range(epochs): gen_loss = 0 dis_loss = 0 num_batches = 0 start_time = time.time() for _ in tqdm(range(batches_per_epoch)): train_batch = next(train_dataset) gen_loss_batch, dis_loss_batch = self._train_step(train_batch) gen_loss += gen_loss_batch dis_loss += dis_loss_batch num_batches += 1 end_time = time.time() gen_loss /= num_batches dis_loss /= num_batches loss = gen_loss + dis_loss print(f'Epoch {epoch}/{epochs} ({end_time - start_time:.1f}s): ' f'loss={loss:.3f}, gen_loss={gen_loss:.3f}') if model_checkpoint_prefix: self.save(generator_checkpoint_filename, discriminator_checkpoint_filename) print(f'Generator loss={gen_loss:.3f}; saving model.') if use_wandb: logged_items = { 'epoch': epoch, 'loss': loss, 'generator_loss': gen_loss, 'discriminator_loss': dis_loss } if epoch in generate_images_epochs: generated_batch = self.generate( WANDB_IMAGE_ROWS * WANDB_IMAGE_COLS) concatenated_images = GAN.concatenate_images( generated_batch, WANDB_IMAGE_ROWS, WANDB_IMAGE_COLS) images = wandb.Image( concatenated_images, caption=f'Generated images at epoch {epoch}') logged_items['generated_images'] = images wandb.log(logged_items) tmp_generator_filename = '/tmp/gan_generator.h5' tmp_discriminator_filename = '/tmp/gan_discriminator.h5' self.save(tmp_generator_filename, tmp_discriminator_filename) # pylint: disable=unexpected-keyword-arg wandb.save(tmp_generator_filename, base_path='/tmp') wandb.save(tmp_discriminator_filename, base_path='/tmp') history.history['epoch'].append(epoch) history.history['loss'].append(float(loss)) history.history['gen_loss'].append(float(gen_loss)) history.history['dis_loss'].append(float(dis_loss)) if use_wandb: best_gen_epoch = min( history.history['epoch'], key=lambda gen_epoch: history.history['gen_loss'][gen_epoch]) best_gen_loss = history.history['gen_loss'][best_gen_epoch] best_dis_epoch = min( history.history['epoch'], key=lambda dis_epoch: history.history['dis_loss'][dis_epoch]) best_dis_loss = history.history['dis_loss'][best_dis_epoch] wandb.run.summary['best_gen_epoch'] = best_gen_epoch wandb.run.summary['best_gen_loss'] = best_gen_loss wandb.run.summary['best_dis_epoch'] = best_dis_epoch wandb.run.summary['best_dis_loss'] = best_dis_loss wandb_run.finish() return TrainingConfig(history, train_hyperparams) def generate(self, num_samples: int) -> np.ndarray: """Returns a batch of images generated by the (trained) model. The batch is generated based on random noise vectors. :param num_samples: The number of images to generate. :return: A batch of generated images; a tensor of shape num_samples x h x w x c, where h is the image height, w is the image width, and c is the number of channels. All values are in the range [0, 1]. """ noise = tf.random.normal((num_samples, self.gen_input_dim)) return self.generator(noise).numpy() @staticmethod def concatenate_images(images: np.ndarray, rows: int, cols: int) -> np.ndarray: """Returns a single image that is the concatenation of the (rows * cols) images into the specified number of rows and columns; a tensor of shape (h * rows) x (w * cols) x c, where images is of shape (rows * cols) x h x w x c. :param images: An array of (rows * cols) images; a tensor of shape (rows * cols) x h x w x c, where h is the image height, w is the image width, and c is the number of channels. :param rows: The number of rows in which to display the images. :param cols: The number of cols in which to display the images. :return: A single image that is the concatenation of the (rows * cols) images into the specified number of rows and columns; a tensor of shape (h * rows) x (w * cols) x c, where images is of shape (rows * cols) x h x w x c. """ result = np.zeros((rows * images.shape[1], cols * images.shape[2], images.shape[3])) for row in range(rows): for col in range(cols): image_num = (row * cols) + col row_start = row * images.shape[1] row_end = (row + 1) * images.shape[1] col_start = col * images.shape[2] col_end = (col + 1) * images.shape[2] result[row_start:row_end, col_start:col_end, :] = images[image_num] return result
48.817143
80
0.62876
220f6d4221eef59174bf21ed23735ecd99898c56
2,390
py
Python
swcms_social/blog/migrations/0001_initial.py
ivanff/swcms
20d121003243abcc26e41409bc44f1c0ef3c6c2a
[ "MIT" ]
null
null
null
swcms_social/blog/migrations/0001_initial.py
ivanff/swcms
20d121003243abcc26e41409bc44f1c0ef3c6c2a
[ "MIT" ]
1
2019-06-25T11:17:35.000Z
2019-06-25T11:17:54.000Z
swcms_social/blog/migrations/0001_initial.py
ivanff/swcms-social
20d121003243abcc26e41409bc44f1c0ef3c6c2a
[ "MIT" ]
null
null
null
# Generated by Django 2.0.2 on 2018-02-14 14:01 import ckeditor_uploader.fields from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Posts', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('h1', models.CharField(blank=True, default='', max_length=250, verbose_name='H1')), ('text', ckeditor_uploader.fields.RichTextUploadingField(verbose_name='Текст')), ('is_active', models.BooleanField(default=True, verbose_name='Активен')), ('title', models.CharField(blank=True, default='', max_length=250, verbose_name='<title>')), ('description', models.TextField(blank=True, default='', verbose_name='<meta name="description">')), ('keywords', models.TextField(blank=True, default='', verbose_name='<meta name="keywords">')), ('created', models.DateTimeField(auto_now_add=True, verbose_name='создан')), ('changed', models.DateTimeField(auto_now=True, verbose_name='изменен')), ('slug', models.SlugField()), ('anons', models.TextField(blank=True, default='', verbose_name='Анонс')), ], options={ 'verbose_name': 'Пост', 'verbose_name_plural': 'Посты', }, ), migrations.CreateModel( name='Tags', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(blank=True, default='', max_length=250, verbose_name='Заголовок')), ('h1', models.CharField(blank=True, default='', max_length=250, verbose_name='H1')), ('name', models.CharField(blank=True, default='', max_length=250, verbose_name='Имя')), ], options={ 'verbose_name': 'Тег', 'verbose_name_plural': 'Теги', 'ordering': ('-id',), }, ), migrations.AddField( model_name='posts', name='tags', field=models.ManyToManyField(blank=True, to='blog.Tags'), ), ]
43.454545
116
0.562762
470664548485c444218b1d12222c6b393eec2dab
350
py
Python
tests/admin_scripts/management/commands/app_command.py
trught007/django
d55d21dbb8b307941c2d26b95be46bf83015d868
[ "BSD-3-Clause" ]
1
2021-11-11T04:13:11.000Z
2021-11-11T04:13:11.000Z
tests/admin_scripts/management/commands/app_command.py
trught007/django
d55d21dbb8b307941c2d26b95be46bf83015d868
[ "BSD-3-Clause" ]
null
null
null
tests/admin_scripts/management/commands/app_command.py
trught007/django
d55d21dbb8b307941c2d26b95be46bf83015d868
[ "BSD-3-Clause" ]
1
2020-10-01T08:23:34.000Z
2020-10-01T08:23:34.000Z
from django.core.management.base import AppCommand class Command(AppCommand): help = 'Test Application-based commands' requires_model_validation = False args = '[app_label ...]' def handle_app_config(self, app_config, **options): print('EXECUTE:AppCommand name=%s, options=%s' % (app_config.name, sorted(options.items())))
31.818182
100
0.711429
be66a5815fdd5f8f3e26277a239935c81b8efddc
3,959
py
Python
setup.py
jspenc72/hummingbot
8e9129a77b157eea4cee2c7e497b93a2704f1197
[ "Apache-2.0" ]
null
null
null
setup.py
jspenc72/hummingbot
8e9129a77b157eea4cee2c7e497b93a2704f1197
[ "Apache-2.0" ]
null
null
null
setup.py
jspenc72/hummingbot
8e9129a77b157eea4cee2c7e497b93a2704f1197
[ "Apache-2.0" ]
null
null
null
import numpy as np import os import subprocess import sys from setuptools import find_packages, setup from setuptools.command.build_ext import build_ext from Cython.Build import cythonize is_posix = (os.name == "posix") if is_posix: os_name = subprocess.check_output("uname").decode("utf8") if "Darwin" in os_name: os.environ["CFLAGS"] = "-stdlib=libc++ -std=c++11" else: os.environ["CFLAGS"] = "-std=c++11" if os.environ.get('WITHOUT_CYTHON_OPTIMIZATIONS'): os.environ["CFLAGS"] += " -O0" # Avoid a gcc warning below: # cc1plus: warning: command line option ???-Wstrict-prototypes??? is valid # for C/ObjC but not for C++ class BuildExt(build_ext): def build_extensions(self): if os.name != "nt" and '-Wstrict-prototypes' in self.compiler.compiler_so: self.compiler.compiler_so.remove('-Wstrict-prototypes') super().build_extensions() def main(): cpu_count = os.cpu_count() or 8 version = "20220210" packages = find_packages(include=["hummingbot", "hummingbot.*"]) package_data = { "hummingbot": [ "core/cpp/*", "VERSION", "templates/*TEMPLATE.yml" ], } install_requires = [ "0x-contract-addresses", "0x-contract-wrappers", "0x-order-utils", "aioconsole", "aiohttp", "aiokafka", "appdirs", "appnope", "bidict", "cachetools", "certifi", "cryptography", "cython", "cytoolz", "diff-cover", "dydx-python", "dydx-v3-python", "eth-abi", "eth-account", "eth-bloom", "eth-keyfile", "eth-typing", "eth-utils", "ethsnarks-loopring", "flake8", "hexbytes", "importlib-metadata", "mypy-extensions", "numpy", "pandas", "pip", "pre-commit", "prompt-toolkit", "psutil", "pyjwt", "pyperclip", "python-dateutil", "python-telegram-bot", "requests", "rsa", "ruamel-yaml", "scipy", "signalr-client-aio", "simplejson", "six", "sqlalchemy", "sync-timeout", "tzlocal", "ujson", "web3", "websockets", "yarl", "terra_sdk" ] cython_kwargs = { "language": "c++", "language_level": 3, } cython_sources = ["hummingbot/**/*.pyx"] if os.path.exists('test'): cython_sources.append("test/**/*.pyx") if os.environ.get('WITHOUT_CYTHON_OPTIMIZATIONS'): compiler_directives = { "optimize.use_switch": False, "optimize.unpack_method_calls": False, } else: compiler_directives = {} if is_posix: cython_kwargs["nthreads"] = cpu_count if "DEV_MODE" in os.environ: version += ".dev1" package_data[""] = [ "*.pxd", "*.pyx", "*.h" ] package_data["hummingbot"].append("core/cpp/*.cpp") if len(sys.argv) > 1 and sys.argv[1] == "build_ext" and is_posix: sys.argv.append(f"--parallel={cpu_count}") setup(name="hummingbot", version=version, description="Hummingbot", url="https://github.com/CoinAlpha/hummingbot", author="CoinAlpha, Inc.", author_email="dev@hummingbot.io", license="Apache 2.0", packages=packages, package_data=package_data, install_requires=install_requires, ext_modules=cythonize(cython_sources, compiler_directives=compiler_directives, **cython_kwargs), include_dirs=[ np.get_include() ], scripts=[ "bin/hummingbot.py", "bin/hummingbot_quickstart.py" ], cmdclass={'build_ext': BuildExt}, ) if __name__ == "__main__": main()
25.541935
106
0.543824
cb1b58205f666d779ab940ea5df54d58886f49c2
6,792
py
Python
PyDAQmx/Task.py
MMathisLab/PyDAQmx
0b6e3dbdac15882c8cc46575ce4e33bf1f090747
[ "BSD-3-Clause" ]
1
2017-12-28T19:17:40.000Z
2017-12-28T19:17:40.000Z
PyDAQmx/Task.py
automaticjack1/PyDAQmx
0b6e3dbdac15882c8cc46575ce4e33bf1f090747
[ "BSD-3-Clause" ]
null
null
null
PyDAQmx/Task.py
automaticjack1/PyDAQmx
0b6e3dbdac15882c8cc46575ce4e33bf1f090747
[ "BSD-3-Clause" ]
1
2020-01-30T20:59:48.000Z
2020-01-30T20:59:48.000Z
from DAQmxTypes import TaskHandle import DAQmxFunctions from DAQmxFunctions import * import ctypes # Create a list of the name of the function that uses TastHandle as the first argument # All the function of this list will be converted to method of the task object # The name of the method will be the same name as the name of the DAQmx function without the # the DAQmx in front of the name task_function_list = [name for name in function_dict.keys() if \ len(function_dict[name]['arg_type'])>0 and \ (function_dict[name]['arg_type'][0] is TaskHandle) and\ 'task' in function_dict[name]['arg_name'][0]] # Remove ClearTask in task_functon_list task_function_list = [name for name in task_function_list if name not in ['DAQmxClearTask']] try : from DAQmxCallBack import * _callback = True except NotImplementedError: _callback = False if _callback: class CallbackParent(object): _EveryNSamplesEvent_already_register = False def AutoRegisterEveryNSamplesEvent(self, everyNsamplesEventType,nSamples,options, name='EveryNCallback'): """Register the method named name as the callback function for EveryNSamplesEvent With this method you can register a method of the class Task as a callback function. The parameters everyNsamplesEventType, nSamples and options are the same as the DAQmxRegisterEveryNSamplesEvent parameters No parameters are passed to the method If an event was already registered, the UnregisterEveryNSamplesEvent is automatically called """ if self._EveryNSamplesEvent_already_register: self.UnregisterEveryNSamplesEvent() self_id = create_callbackdata_id(self) # Define the python function def EveryNCallback_py(taskHandle, everyNsamplesEventType, nSamples, self_id): self = get_callbackdata_from_id(self_id) getattr(self,name)() return 0 # Transform the python function to a CFunction self.EveryNCallback_C = DAQmxEveryNSamplesEventCallbackPtr(EveryNCallback_py) # Register the function self.RegisterEveryNSamplesEvent(everyNsamplesEventType,nSamples,options,self.EveryNCallback_C,self_id) self._EveryNSamplesEvent_already_register = True def UnregisterEveryNSamplesEvent(self): self.RegisterEveryNSamplesEvent(1,0,0,ctypes.cast(None, DAQmxEveryNSamplesEventCallbackPtr),0) self._EveryNSamplesEvent_already_register = False def AutoRegisterDoneEvent(self, options, name='DoneCallback'): """Register the method named name as the callback function for DoneEvent With this method you can register a method of the class Task as a callback function. The parameter options is the same as the DAQmxRegisterDoneEvent parameters The method registered has one parameter : status """ self_id = create_callbackdata_id(self) # Define the python function def DoneCallback_py(taskHandle, status, self_id): getattr(get_callbackdata_from_id(self_id),name)(status) return 0 # Transform the python function to a CFunction self.DoneCallback_C = DAQmxDoneEventCallbackPtr(DoneCallback_py) # Register the function self.RegisterDoneEvent(options,self.DoneCallback_C,self_id) def AutoRegisterSignalEvent(self, signalID, options, name='SignalCallback'): """Register the method named name as the callback function for RegisterSignalEvent With this method you can register a method of the class Task as a callback function. The parameters signalID, options are the same as the DAQmxRegisterSignalEvent parameters No parameter are passed to the method """ self_id = create_callbackdata_id(self) # Define the python function def SignalCallback_py(taskHandle, signalID, self_id): self = get_callbackdata_from_id(self_id) getattr(self,name)() return 0 # Transform the python function to a CFunction self.SignalCallback_C = DAQmxSignalEventCallbackPtr(SignalCallback_py) # Register the function self.RegisterSignalEvent(signalID, options, self.SignalCallback_C, self_id) else: class CallbackParent(object): def __getattr__(self, name): if name in ['AutoRegisterEveryNSamplesEvent', 'AutoRegisterDoneEvent', 'AutoRegisterSignalEvent']: raise NotImplementedError, 'Callback methods are not available' return super(CallbackParent, self).__getattr__(name) class Task(CallbackParent): def __init__(self, name=""): self.taskHandle = TaskHandle(0) DAQmxCreateTask(name,byref(self.taskHandle)) def __enter__(self): return self def __exit__(self, *exc_info): self.ClearTask() def __del__(self): """ Clear automatically the task to be able to reallocate resources """ # Clear the task before deleting the object # If the task as already been manually cleared, nothing is done # This prevent to clear a task that has a Handle attributed to a new task # See this example # a = Task(), ..., a.ClearTask(), b = Task(), del(a) # b has the same taskHandle as a, and deleting a will clear the task of b try: self.ClearTask() except Exception: pass def ClearTask(self): if self.taskHandle: try: DAQmxClearTask(self.taskHandle) finally: self.taskHandle.value = 0 def __repr__(self): if self.taskHandle: return "Task number %d"%self.taskHandle.value else: return "Invalid or cleared Task" # Dynamically creates the method from the task_function_list for function_name in task_function_list: name = function_name[5:] # remove the DAQmx in front of the name func = getattr(DAQmxFunctions, function_name) arg_names = function_dict[function_name]['arg_name'] doc = 'T.%s(%s) -> error.' %(name, ', '.join(arg_names[1:])) cmd = """def {0}(self, {1}): "{3}" {2}(self.taskHandle, {1})""" exec(cmd.format(name, ', '.join(arg_names[1:]), function_name, doc)) del function_name, name, func, arg_names, doc del task_function_list
44.392157
114
0.650766
9b4f15fa9df3a6c66d3fa58d980980ed7bce896e
18,579
py
Python
tests/unit/states/iptables_test.py
vamshi98/salt-formulas
30edeadafd5d173efe4e1f767a8d562547ad128a
[ "Apache-2.0" ]
1
2020-09-16T21:31:02.000Z
2020-09-16T21:31:02.000Z
tests/unit/states/iptables_test.py
vamshi98/salt-formulas
30edeadafd5d173efe4e1f767a8d562547ad128a
[ "Apache-2.0" ]
null
null
null
tests/unit/states/iptables_test.py
vamshi98/salt-formulas
30edeadafd5d173efe4e1f767a8d562547ad128a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' :codeauthor: :email:`Rahul Handay <rahulha@saltstack.com>` ''' # Import Python Libs from __future__ import absolute_import # Import Salt Testing Libs from salttesting import TestCase, skipIf from salttesting.helpers import ensure_in_syspath from salttesting.mock import ( MagicMock, patch, NO_MOCK, NO_MOCK_REASON ) ensure_in_syspath('../../') # Import Salt Libs from salt.states import iptables # Globals iptables.__salt__ = {} iptables.__opts__ = {} @skipIf(NO_MOCK, NO_MOCK_REASON) class IptablesTestCase(TestCase): ''' Validate the iptables state ''' def test_chain_present(self): ''' Test to verify the chain is exist. ''' ret = {'name': 'salt', 'changes': {}, 'result': True, 'comment': '' } mock = MagicMock(side_effect=[True, False, False, False]) with patch.dict(iptables.__salt__, {'iptables.check_chain': mock}): ret.update({'comment': 'iptables salt chain is already' ' exist in filter table for ipv4'}) self.assertDictEqual(iptables.chain_present("salt"), ret) with patch.dict(iptables.__opts__, {'test': True}): ret.update({'comment': 'iptables salt chain in filter' ' table needs to be set for ipv4', 'result': None}) self.assertDictEqual(iptables.chain_present("salt"), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[True, '']) with patch.dict(iptables.__salt__, {'iptables.new_chain': mock}): ret.update({'result': True, 'comment': 'iptables salt chain in filter' ' table create success for ipv4', 'changes': {'locale': 'salt'}}) self.assertDictEqual(iptables.chain_present('salt'), ret) ret.update({'changes': {}, 'result': False, 'comment': 'Failed to create salt chain' ' in filter table: for ipv4'}) self.assertDictEqual(iptables.chain_present('salt'), ret) def test_chain_absent(self): ''' Test to verify the chain is absent. ''' ret = {'name': 'salt', 'changes': {}, 'result': True, 'comment': '' } mock = MagicMock(side_effect=[False, True, True, True]) with patch.dict(iptables.__salt__, {'iptables.check_chain': mock}): ret.update({'comment': 'iptables salt chain is already' ' absent in filter table for ipv4'}) self.assertDictEqual(iptables.chain_absent("salt"), ret) with patch.dict(iptables.__opts__, {'test': True}): ret.update({'comment': 'iptables salt chain in filter' ' table needs to be removed ipv4', 'result': None}) self.assertDictEqual(iptables.chain_absent("salt"), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[False, 'a']) with patch.dict(iptables.__salt__, {'iptables.flush': mock}): mock = MagicMock(return_value=True) with patch.dict(iptables.__salt__, {'iptables.delete_chain': mock}): ret.update({'changes': {'locale': 'salt'}, 'comment': 'iptables salt chain in filter' ' table delete success for ipv4', 'result': True}) self.assertDictEqual(iptables.chain_absent("salt"), ret) ret.update({'changes': {}, 'result': False, 'comment': 'Failed to flush salt chain' ' in filter table: a for ipv4'}) self.assertDictEqual(iptables.chain_absent("salt"), ret) def test_append(self): ''' Test to append a rule to a chain ''' ret = {'name': 'salt', 'changes': {}, 'result': None, 'comment': '' } self.assertDictEqual(iptables.append('salt', rules=[]), ret) mock = MagicMock(return_value=[]) with patch.object(iptables, '_STATE_INTERNAL_KEYWORDS', mock): mock = MagicMock(return_value='a') with patch.dict(iptables.__salt__, {'iptables.build_rule': mock}): mock = MagicMock(side_effect=[True, False, False, False]) with patch.dict(iptables.__salt__, {'iptables.check': mock}): ret.update({'comment': 'iptables rule for salt' ' already set (a) for ipv4', 'result': True}) self.assertDictEqual(iptables.append('salt', table='', chain=''), ret) with patch.dict(iptables.__opts__, {'test': True}): ret.update({'result': None, 'comment': 'iptables rule for salt' ' needs to be set (a) for ipv4'}) self.assertDictEqual(iptables.append('salt', table='', chain=''), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[True, False]) with patch.dict(iptables.__salt__, {'iptables.append': mock}): ret.update({'changes': {'locale': 'salt'}, 'result': True, 'comment': 'Set iptables rule' ' for salt to: a for ipv4'}) self.assertDictEqual(iptables.append('salt', table='', chain=''), ret) ret.update({'changes': {}, 'result': False, 'comment': 'Failed to set iptables' ' rule for salt.\nAttempted rule was' ' a for ipv4'}) self.assertDictEqual(iptables.append('salt', table='', chain=''), ret) def test_insert(self): ''' Test to insert a rule into a chain ''' ret = {'name': 'salt', 'changes': {}, 'result': None, 'comment': ''} self.assertDictEqual(iptables.insert('salt', rules=[]), ret) mock = MagicMock(return_value=[]) with patch.object(iptables, '_STATE_INTERNAL_KEYWORDS', mock): mock = MagicMock(return_value='a') with patch.dict(iptables.__salt__, {'iptables.build_rule': mock}): mock = MagicMock(side_effect=[True, False, False, False]) with patch.dict(iptables.__salt__, {'iptables.check': mock}): ret.update({'comment': 'iptables rule for salt' ' already set for ipv4 (a)', 'result': True}) self.assertDictEqual(iptables.insert('salt', table='', chain=''), ret) with patch.dict(iptables.__opts__, {'test': True}): ret.update({'result': None, 'comment': 'iptables rule for salt' ' needs to be set for ipv4 (a)'}) self.assertDictEqual(iptables.insert('salt', table='', chain=''), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[False, True]) with patch.dict(iptables.__salt__, {'iptables.insert': mock}): ret.update({'changes': {'locale': 'salt'}, 'result': True, 'comment': 'Set iptables rule' ' for salt to: a for ipv4'}) self.assertDictEqual(iptables.insert('salt', table='', chain='', position=''), ret) ret.update({'changes': {}, 'result': False, 'comment': 'Failed to set iptables' ' rule for salt.\nAttempted rule was a' }) self.assertDictEqual(iptables.insert('salt', table='', chain='', position=''), ret) def test_delete(self): ''' Test to delete a rule to a chain ''' ret = {'name': 'salt', 'changes': {}, 'result': None, 'comment': ''} self.assertDictEqual(iptables.delete('salt', rules=[]), ret) mock = MagicMock(return_value=[]) with patch.object(iptables, '_STATE_INTERNAL_KEYWORDS', mock): mock = MagicMock(return_value='a') with patch.dict(iptables.__salt__, {'iptables.build_rule': mock}): mock = MagicMock(side_effect=[False, True, True, True]) with patch.dict(iptables.__salt__, {'iptables.check': mock}): ret.update({'comment': 'iptables rule for salt' ' already absent for ipv4 (a)', 'result': True}) self.assertDictEqual(iptables.delete('salt', table='', chain=''), ret) with patch.dict(iptables.__opts__, {'test': True}): ret.update({'result': None, 'comment': 'iptables rule for salt needs' ' to be deleted for ipv4 (a)'}) self.assertDictEqual(iptables.delete('salt', table='', chain=''), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[False, True]) with patch.dict(iptables.__salt__, {'iptables.delete': mock}): ret.update({'result': True, 'changes': {'locale': 'salt'}, 'comment': 'Delete iptables rule' ' for salt a'}) self.assertDictEqual(iptables.delete('salt', table='', chain='', position=''), ret) ret.update({'result': False, 'changes': {}, 'comment': 'Failed to delete iptables' ' rule for salt.\nAttempted rule was a' }) self.assertDictEqual(iptables.delete('salt', table='', chain='', position=''), ret) def test_set_policy(self): ''' Test to sets the default policy for iptables firewall tables ''' ret = {'name': 'salt', 'changes': {}, 'result': True, 'comment': ''} mock = MagicMock(return_value=[]) with patch.object(iptables, '_STATE_INTERNAL_KEYWORDS', mock): mock = MagicMock(return_value='stack') with patch.dict(iptables.__salt__, {'iptables.get_policy': mock}): ret.update({'comment': 'iptables default policy for chain' ' on table for ipv4 already set to stack'}) self.assertDictEqual(iptables.set_policy('salt', table='', chain='', policy='stack'), ret) with patch.dict(iptables.__opts__, {'test': True}): ret.update({'comment': 'iptables default policy for chain' ' on table for ipv4 needs to be set' ' to sal', 'result': None}) self.assertDictEqual(iptables.set_policy('salt', table='', chain='', policy='sal'), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[False, True]) with patch.dict(iptables.__salt__, {'iptables.set_policy': mock}): ret.update({'changes': {'locale': 'salt'}, 'comment': 'Set default policy for' ' to sal family ipv4', 'result': True}) self.assertDictEqual(iptables.set_policy('salt', table='', chain='', policy='sal'), ret) ret.update({'comment': 'Failed to set iptables' ' default policy', 'result': False, 'changes': {}}) self.assertDictEqual(iptables.set_policy('salt', table='', chain='', policy='sal'), ret) def test_flush(self): ''' Test to flush current iptables state ''' ret = {'name': 'salt', 'changes': {}, 'result': None, 'comment': ''} mock = MagicMock(return_value=[]) with patch.object(iptables, '_STATE_INTERNAL_KEYWORDS', mock): with patch.dict(iptables.__opts__, {'test': True}): ret.update({'comment': 'iptables rules in salt table filter' ' chain ipv4 family needs to be flushed'}) self.assertDictEqual(iptables.flush('salt'), ret) with patch.dict(iptables.__opts__, {'test': False}): mock = MagicMock(side_effect=[False, True]) with patch.dict(iptables.__salt__, {'iptables.flush': mock}): ret.update({'changes': {'locale': 'salt'}, 'comment': 'Flush iptables rules in' ' table chain ipv4 family', 'result': True}) self.assertDictEqual(iptables.flush('salt', table='', chain=''), ret) ret.update({'changes': {}, 'comment': 'Failed to flush iptables rules', 'result': False}) self.assertDictEqual(iptables.flush('salt', table='', chain=''), ret) def test_mod_aggregate(self): ''' Test to mod_aggregate function ''' self.assertDictEqual(iptables.mod_aggregate({'fun': 'salt'}, [], []), {'fun': 'salt'}) self.assertDictEqual(iptables.mod_aggregate({'fun': 'append'}, [], []), {'fun': 'append'}) if __name__ == '__main__': from integration import run_tests run_tests(IptablesTestCase, needs_daemon=False)
48.382813
79
0.385166
0f04261294a82edc634740208a6a5daaee673f82
1,911
py
Python
pynonymizer/strategy/database.py
DocLM/pynonymizer
1ab2b6323a2b7324fef3a4224231329936a2356f
[ "MIT" ]
40
2020-10-19T14:08:05.000Z
2021-11-19T10:44:52.000Z
pynonymizer/strategy/database.py
DocLM/pynonymizer
1ab2b6323a2b7324fef3a4224231329936a2356f
[ "MIT" ]
51
2020-09-21T19:59:03.000Z
2021-11-12T09:19:00.000Z
pynonymizer/strategy/database.py
DocLM/pynonymizer
1ab2b6323a2b7324fef3a4224231329936a2356f
[ "MIT" ]
19
2020-10-20T13:18:41.000Z
2021-11-11T13:22:00.000Z
from pynonymizer.strategy.table import TableStrategyTypes from pynonymizer.strategy.update_column import UpdateColumnStrategyTypes class DatabaseStrategy: def __init__(self, table_strategies=None, before_scripts=None, after_scripts=None): self.table_strategies = [] self.before_scripts = [] self.after_scripts = [] for table_strat in table_strategies: self.table_strategies.append(table_strat) if before_scripts: for script in before_scripts: self.before_scripts.append(script) if after_scripts: for script in after_scripts: self.after_scripts.append(script) @property def scripts(self): """ Deprecated - use before/after vars :return: """ return {"before": self.before_scripts, "after": self.after_scripts} @property def fake_update_qualifier_map(self): column_strategies = {} for table_strategy in self.table_strategies: if table_strategy.strategy_type == TableStrategyTypes.UPDATE_COLUMNS: for column_strategy in table_strategy.column_strategies: if ( column_strategy.strategy_type == UpdateColumnStrategyTypes.FAKE_UPDATE ): column_strategies[column_strategy.qualifier] = column_strategy return column_strategies @property def all_column_strategies(self): column_strategies = {} for table_strategy in self.table_strategies: if table_strategy.strategy_type == TableStrategyTypes.UPDATE_COLUMNS: column_strategies += table_strategy.column_strategies return column_strategies def get_all_column_strategies(self): """LEGACY: move to property""" return self.all_column_strategies
33.526316
87
0.649398
b05b1e97c84a5dcf934f3f1cd7019f221df8a019
5,067
py
Python
Examples/es_helpers.py
julian-risch/CHIIR2021-Resource
99d626a4aa7ef8ed1476dc5c0ee087ed1857bafc
[ "MIT" ]
11
2021-01-04T19:52:13.000Z
2022-03-22T17:34:54.000Z
Examples/es_helpers.py
julian-risch/CHIIR2021-Resource
99d626a4aa7ef8ed1476dc5c0ee087ed1857bafc
[ "MIT" ]
3
2021-07-02T18:38:34.000Z
2021-08-09T20:46:33.000Z
Examples/es_helpers.py
julian-risch/PatentMatch
99d626a4aa7ef8ed1476dc5c0ee087ed1857bafc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 28 13:45:09 2017 @author: Samuele Garda """ import json import glob import logging import argparse import requests import elasticsearch from elasticsearch import Elasticsearch,helpers from datetime import datetime logger = logging.getLogger(__name__) logging.basicConfig(format = '%(asctime)s : %(levelname)s : %(module)s: %(message)s', level = 'INFO') def parse_arguments(): """ Parse options for functions. """ parser = argparse.ArgumentParser(description='Tool for managing Elasticsearch indices') subparsers = parser.add_subparsers() create = subparsers.add_parser('create', help = 'Create Elasticsearch index') create.add_argument('-i','--index', required = True,help = 'Name of the new index') create.add_argument('-m','--mappings',type=argparse.FileType('r'),required = True,help = 'File where mappings configuration is store for the index') delete = subparsers.add_parser('delete', help = 'Delete one or more Elasticsearch indices') delete.add_argument('-e','--erase', nargs = '*', required = True,help = 'Name of index to delete') index = subparsers.add_parser('index', help = 'Index JSON files') index.add_argument('-d','--dir',required = True, help = 'Directory where the JSON files are stored. Be sure that in this path to the Spider folder!!!') index.add_argument('-l','--location',required = True, help = 'Name of the index where to index JSON files. If index do not exist it is created' ) index.add_argument('-t','--item-type',required = True, help = 'Name of type to be stored in ES index' ) index.add_argument('-c','--chunk-size', type = int, nargs='?', default = 500 , help ='Number of JSON line to load into memory before indexing') reindex = subparsers.add_parser('reindex', help='Reindex index') reindex.add_argument('-s','--source', required = True, help='Source index where documents are stored') reindex.add_argument('-t','--target',required = True, help = 'Target index where to move documents') args = parser.parse_args() return args def create_index(es,index_name, body): if not es.indices.exists(index_name): es.indices.create(index = index_name, body = body) def delete_indices(es,indices_name): for index in indices_name: if es.indices.exists(index): es.indices.delete(index = index) else: logger.info('Index `{}` not found'.format(index)) def reindex(es,source_index, target_index): helpers.reindex(es, source_index = source_index, target_index = target_index ) def lazy_indexing(es,path,chunck,index,item_type): def serialize_json(json_line): to_null = ['author', 'article_tag','list_of_tags','keywords','news_keywords'] for tag in to_null: if json_line[tag] == '---': json_line[tag] = None if json_line['publication_date'] == '---': json_line['publication_date'] = datetime.strptime('1900-01-01','%Y-%m-%d') else: try: json_line['publication_date'] = datetime.strptime(json_line['publication_date'], '%d %B %Y').date() except ValueError: try: json_line['publication_date'] = datetime.strptime(json_line['publication_date'].replace('T',' '), '%Y-%m-%d %H:%S') except ValueError: pass return json_line def lazy_json_load(filename): with open(filename) as infile: for line in infile: json_line = json.loads(line) formattd_json_line = serialize_json(json_line) index_action = { '_index': index, '_type': item_type, '_id' : formattd_json_line['url'], '_source': formattd_json_line } yield index_action files = [file for file in glob.glob(path + '/**/*.json', recursive=True) if not "active.json" in file.split('/')] logger.info("Fond {0} documents to index".format(len(files))) for filename in files: logger.info("Indexing : {}".format(filename)) helpers.bulk(client = es,chunk_size = chunck, actions=lazy_json_load(filename), index= index,doc_type='news_article', stats_only = True) if __name__ == "__main__": elasticsearch.connection.http_urllib3.warnings.filterwarnings('ignore') requests.packages.urllib3.disable_warnings() args = parse_arguments() # ES = Elasticsearch(hosts='localhost​',verify_certs=False,use_ssl = True, http_auth= "admin:admin") ES = Elasticsearch(['localhost']) try: if args.index: create_index(es = ES, index_name = args.index, body = args.mappings.read()) except AttributeError: pass try: if args.erase: delete_indices(es = ES, indices_name = args.erase) except AttributeError: pass try: if args.source: reindex(es = ES, source_index= args.source , target_index= args.target) except AttributeError: pass try: if args.dir: lazy_indexing(es = ES, path = args.dir, index = args.location, item_type= args.item_type, chunck = args.chunk_size) except AttributeError: pass
34.944828
153
0.674561
e1da1fd179eaf67063dd723d4f9a795ee13bffd8
551
py
Python
appengine/flexible/hello_world/responses.py
pgiteam/pythonteaching
04102879a05f5d98f4238525d4f2e224b40ce581
[ "Apache-2.0" ]
null
null
null
appengine/flexible/hello_world/responses.py
pgiteam/pythonteaching
04102879a05f5d98f4238525d4f2e224b40ce581
[ "Apache-2.0" ]
null
null
null
appengine/flexible/hello_world/responses.py
pgiteam/pythonteaching
04102879a05f5d98f4238525d4f2e224b40ce581
[ "Apache-2.0" ]
null
null
null
from pywebio import * from pywebio.output import * from pywebio.input import * def main(): ''' An interactive web app that takes user's name and output hello <username> on the webpage ''' name = input("Hello! We look forward to working with you. What’s your name?") print("Nice to meet you " + name + "!") appdescription = input("Please describe the nature of the mobile app you would like to have built? ") print("OK, thank you " + "!") appname = input("Have you thought about an app name? Respond Yes or No ")
36.733333
105
0.664247
5125f8685f077910c0ce563c8327692cb35387d4
4,980
py
Python
main.py
Heath123/switch-joycon-animation-linux
8dbc7240b9dd55b4a7c7796a2a919546f3a9f44b
[ "MIT" ]
1
2021-02-21T03:30:03.000Z
2021-02-21T03:30:03.000Z
main.py
Heath123/switch-joycon-animation-linux
8dbc7240b9dd55b4a7c7796a2a919546f3a9f44b
[ "MIT" ]
null
null
null
main.py
Heath123/switch-joycon-animation-linux
8dbc7240b9dd55b4a7c7796a2a919546f3a9f44b
[ "MIT" ]
null
null
null
import sys from PyQt5 import QtCore, QtWidgets from PyQt5.QtWidgets import QMainWindow, QApplication import simpleaudio as sa # https://stackoverflow.com/questions/25950049/creating-a-transparent-overlay-with-qt class MainWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) # https://stackoverflow.com/questions/17968267/how-to-make-click-through-windows-pyqt self.setAttribute(QtCore.Qt.WA_TransparentForMouseEvents, True) self.setAttribute(QtCore.Qt.WA_NoChildEventsForParent, True) self.setWindowFlags( QtCore.Qt.Window | QtCore.Qt.WindowStaysOnTopHint | # Puts the animation on top of everything QtCore.Qt.FramelessWindowHint | # Removes the frame QtCore.Qt.X11BypassWindowManagerHint # Make it fill the screen and not show up in the taskbar/dock ) # Transparent background to draw over screen self.setAttribute(QtCore.Qt.WA_TranslucentBackground) self.geometry = QtWidgets.qApp.desktop().availableGeometry() self.height = self.geometry.height() self.width = self.geometry.width() self.setGeometry( QtWidgets.QStyle.alignedRect( QtCore.Qt.LeftToRight, QtCore.Qt.AlignLeft, QtCore.QSize(self.width, self.height), # Fill screen QtWidgets.qApp.desktop().availableGeometry() )) # Move window to top left corner self.move(0, 0) # The width of the animation thing self.bar_width = 50 # How far it gets to the bottom self.offset_from_bottom = int(self.height * 0.03) # https://www.learnpyqt.com/tutorials/qpropertyanimation/ self.animationWidgets = {} self.animationWidgets["left"] = QtWidgets.QWidget(self) self.animationWidgets["right"] = QtWidgets.QWidget(self) self.animations = {} for anim_details in [{"name": "left_attach", "side": "left"}, {"name": "right_attach", "side": "right"}]: # Create a widget for each animation # TODO: Hide widgets when not in use instead of moving off screen widget = self.animationWidgets[anim_details["side"]] # Create animations # TODO: Add comments here first_part = QtCore.QPropertyAnimation(widget, b"pos") if anim_details["side"] == "left": first_part.setEndValue(QtCore.QPoint(self.bar_width - 100, -self.offset_from_bottom)) else: first_part.setEndValue(QtCore.QPoint(self.width - self.bar_width, -self.offset_from_bottom)) first_part.setDuration(233) first_part.setEasingCurve(QtCore.QEasingCurve.OutCubic) second_part = QtCore.QPropertyAnimation(widget, b"pos") if anim_details["side"] == "left": second_part.setEndValue(QtCore.QPoint(-100, -self.offset_from_bottom)) else: second_part.setEndValue(QtCore.QPoint(self.width, -self.offset_from_bottom)) second_part.setDuration(1000) second_part.setEasingCurve(QtCore.QEasingCurve.OutCubic) anim_group = QtCore.QSequentialAnimationGroup() anim_group.addAnimation(first_part) anim_group.addAnimation(second_part) self.animations[anim_details["name"]] = anim_group def playAnimation(self, side, anim_name, colour): # Set styles self.animationWidgets[side].setStyleSheet("background-color: rgba(255, 255, 255, 50); border: 15px solid " + colour + "; border-radius: 25px;") self.animationWidgets[side].resize(100, self.height) if side == "left": self.animationWidgets[side].move(self.bar_width - 100, -self.height) else: self.animationWidgets[side].move(self.width - self.bar_width, -self.height) # https://simpleaudio.readthedocs.io/en/latest/ wave_obj = sa.WaveObject.from_wave_file("sounds/" + anim_name + ".wav") wave_obj.play() self.animations[anim_name].start() # Just test functions, not that clean def afterOneSecond(self): self.playAnimation("right", "right_attach", "rgb(239, 43, 41)") def afterThreeSeconds(self): self.playAnimation("left", "left_attach", "rgb(27, 202, 226)") def afterFiveSeconds(self): self.playAnimation("left", "left_attach", "rgb(27, 202, 226)") self.playAnimation("right", "right_attach", "rgb(239, 43, 41)") if __name__ == '__main__': app = QApplication(sys.argv) mywindow = MainWindow() mywindow.show() # https://stackoverflow.com/questions/21897322/pyqt-application-load-complete-event t = QtCore.QTimer() t.singleShot(1000, mywindow.afterOneSecond) t.singleShot(3000, mywindow.afterThreeSeconds) t.singleShot(5000, mywindow.afterFiveSeconds) sys.exit(app.exec_())
40.16129
116
0.647791
7b409e1067ad8ca8aaf15e78341c7deedcb2e33b
1,818
py
Python
backend/app/api/endpoints/results.py
cloud-bulldozer/ocp_perf_dashboard
d050538e9431b724a1963d73ba63aa78e2428942
[ "Apache-2.0" ]
null
null
null
backend/app/api/endpoints/results.py
cloud-bulldozer/ocp_perf_dashboard
d050538e9431b724a1963d73ba63aa78e2428942
[ "Apache-2.0" ]
5
2020-12-14T14:42:41.000Z
2021-06-08T19:38:23.000Z
backend/app/api/endpoints/results.py
mfleader/ocp_perf_dashboard
d050538e9431b724a1963d73ba63aa78e2428942
[ "Apache-2.0" ]
3
2020-12-13T18:24:25.000Z
2020-12-15T15:52:30.000Z
import asyncio from typing import Dict, Iterable import httpx from fastapi import APIRouter, Request from app.services.airflow import AirflowService from app.services.search import ElasticService router = APIRouter() airflow_service = AirflowService() @router.get("/") def root(request: Request): return { "url" : str(request.url), "root_path": request.scope.get('root_path') } @router.get('/api/results/{pipeline_id}/{job_id}') async def results_for_job(pipeline_id: str, job_id: str): query = { "query": { "query_string": { "query": ( f'upstream_job: "{pipeline_id}" ' f'AND upstream_job_build: "{job_id}"') } } } es = ElasticService() response = await es.post(query) await es.close() tasks = [item['_source'] for item in response["hits"]["hits"]] tasks_states = await async_tasks_states(tasks) for task in tasks: task['job_status'] = tasks_states[task['build_tag']] return tasks async def async_tasks_states(tasks: Iterable) -> Dict[str, str]: async with airflow_service.httpx_client() as session: tasks_states = await asyncio.gather( *[call_url(session, task) for task in tasks] ) return { task: state for task_state in tasks_states for task, state in task_state.items() } async def call_url(session: httpx.AsyncClient, task) -> Dict[str, str]: path = ( f"{airflow_service.base_url}/api/v1" f"/dags/{task['upstream_job']}" f"/dagRuns/{task['upstream_job_build']}" f"/taskInstances/{task['build_tag']}" ) resp = await session.get(path) resp.raise_for_status() return { task['build_tag']: resp.json()['state'] }
25.971429
71
0.617162
8fcd2a1a4917ba534e5030c545a33a2b9097eb67
4,190
py
Python
indico/modules/rb/operations/admin.py
tobiashuste/indico
c1e6ec0c8c84745988e38c9b1768142a6feb9e0e
[ "MIT" ]
null
null
null
indico/modules/rb/operations/admin.py
tobiashuste/indico
c1e6ec0c8c84745988e38c9b1768142a6feb9e0e
[ "MIT" ]
null
null
null
indico/modules/rb/operations/admin.py
tobiashuste/indico
c1e6ec0c8c84745988e38c9b1768142a6feb9e0e
[ "MIT" ]
null
null
null
# This file is part of Indico. # Copyright (C) 2002 - 2020 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from __future__ import unicode_literals from datetime import datetime, time from indico.core.db import db from indico.core.db.sqlalchemy.util.session import no_autoflush from indico.core.permissions import get_unified_permissions, update_principals_permissions from indico.modules.rb.models.equipment import EquipmentType from indico.modules.rb.models.map_areas import MapArea from indico.modules.rb.models.room_bookable_hours import BookableHours from indico.modules.rb.models.room_nonbookable_periods import NonBookablePeriod @no_autoflush def _populate_room(room, properties): for prop, value in properties.items(): if prop not in ['available_equipment', 'bookable_hours', 'bookable_periods']: setattr(room, prop, value) def update_room_equipment(room, available_equipment_ids): available_equipment = EquipmentType.query.filter(EquipmentType.id.in_(available_equipment_ids)).all() room.available_equipment = available_equipment db.session.flush() def update_room_attributes(room, attributes): current_attributes = {x.attribute.name for x in room.attributes} new_attributes = {attribute['name'] for attribute in attributes} deleted_attributes = current_attributes - new_attributes for attribute in attributes: room.set_attribute_value(attribute['name'], attribute['value']) for deleted_attribute in deleted_attributes: room.set_attribute_value(deleted_attribute, None) db.session.flush() def update_room_availability(room, availability): if 'bookable_hours' in availability: room.bookable_hours.order_by(False).delete() unique_bh = set((hours['start_time'], hours['end_time']) for hours in availability['bookable_hours']) db.session.add_all( [BookableHours(room=room, start_time=hours[0], end_time=hours[1]) for hours in unique_bh]) if 'nonbookable_periods' in availability: room.nonbookable_periods.order_by(False).delete() unique_nbp = set((period['start_dt'], period['end_dt']) for period in availability['nonbookable_periods']) db.session.add_all( [NonBookablePeriod(room=room, start_dt=datetime.combine(period[0], time(0, 0)), end_dt=datetime.combine(period[1], time(23, 59))) for period in unique_nbp]) def update_room(room, args): acl_entries = args.pop('acl_entries', None) if acl_entries: current = {e.principal: get_unified_permissions(e) for e in room.acl_entries} update_principals_permissions(room, current, acl_entries) _populate_room(room, args) db.session.flush() def create_area(bounds, name, default=False): top, bottom = bounds['north_east'], bounds['south_west'] if default: MapArea.query.update({MapArea.is_default: False}, synchronize_session='fetch') new_area = MapArea() new_area.name = name new_area.is_default = default new_area.top_left_latitude = top['lat'] new_area.top_left_longitude = top['lng'] new_area.bottom_right_latitude = bottom['lat'] new_area.bottom_right_longitude = bottom['lng'] db.session.add(new_area) db.session.flush() return new_area def update_area(area_id, area_data): top = area_data['bounds']['north_east'] bottom = area_data['bounds']['south_west'] map_area = MapArea.get_one(area_id) if 'name' in area_data: map_area.name = area_data['name'] if 'default' in area_data: if area_data['default']: MapArea.query.update({MapArea.is_default: False}, synchronize_session='fetch') map_area.is_default = area_data['default'] map_area.top_left_latitude = top['lat'] map_area.top_left_longitude = top['lng'] map_area.bottom_right_latitude = bottom['lat'] map_area.bottom_right_longitude = bottom['lng'] db.session.flush() def delete_areas(area_ids): MapArea.query.filter(MapArea.id.in_(area_ids)).delete(synchronize_session='fetch') db.session.flush()
39.528302
114
0.730072
634e877667dde0868ce41a1bd212037392438cb1
1,552
py
Python
src/forest/git_tools/__init__.py
ADVRHumanoids/forest
22995b7bebf9809d49b0887dcb4a35c907fb3e13
[ "MIT" ]
null
null
null
src/forest/git_tools/__init__.py
ADVRHumanoids/forest
22995b7bebf9809d49b0887dcb4a35c907fb3e13
[ "MIT" ]
6
2022-02-24T14:00:39.000Z
2022-03-31T14:35:18.000Z
src/forest/git_tools/__init__.py
ADVRHumanoids/forest
22995b7bebf9809d49b0887dcb4a35c907fb3e13
[ "MIT" ]
null
null
null
import typing from forest.common import proc_utils import shutil class GitTools: def __init__(self, srcdir) -> None: self.srcdir = srcdir def clone(self, server: str, repository: str, tag: str, proto='ssh', recursive=False, depth=None, single_branch=False): if proto == 'ssh': addr = f'git@{server}:{repository}' elif proto == 'https': addr = f'https://{server}/{repository}' else: # TODO more specific exception raise ValueError(f'unsupported protocol "{proto}"') # create command cmd = ['git', 'clone', '--branch', tag] if single_branch: cmd.append('--single-branch') if recursive: cmd.append('--recursive') if depth is not None: cmd.extend(['--depth', depth]) cmd.extend([addr, self.srcdir]) # clone, and delete the source folder on failure # (either exception or git returns != 0) try: clone_ok = proc_utils.call_process(args=cmd) if not clone_ok: self.rm() except BaseException as e: # remove src and re-raise exception self.rm() raise e return clone_ok def checkout(self, tag): return proc_utils.call_process(['git', 'checkout', tag], cwd=self.srcdir) def rm(self): shutil.rmtree(self.srcdir, ignore_errors=True)
25.442623
81
0.528351
a1287b29f9b150a1a62cc043358f54b1a48871a8
3,595
py
Python
qsdsan/__init__.py
philthestone/QSDsan
50a9f7ba5f24aca653c999fe0a8c52f940287fa7
[ "Unlicense" ]
null
null
null
qsdsan/__init__.py
philthestone/QSDsan
50a9f7ba5f24aca653c999fe0a8c52f940287fa7
[ "Unlicense" ]
null
null
null
qsdsan/__init__.py
philthestone/QSDsan
50a9f7ba5f24aca653c999fe0a8c52f940287fa7
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems This module is developed by: Yalin Li <zoe.yalin.li@gmail.com> Joy Zhang <joycheung1994@gmail.com> This module is under the University of Illinois/NCSA Open Source License. Please refer to https://github.com/QSD-Group/QSDsan/blob/main/LICENSE.txt for license details. ''' # Check system environment, Python 3.7 and below will have issues unpickling saved results import sys py_version = sys.version.split('.') _PY_MAJOR, _PY_MINOR = int(py_version[0]), int(py_version[1]) if (_PY_MAJOR, _PY_MINOR) <= (3, 7): # pragma: no cover from warnings import warn if (_PY_MAJOR, _PY_MINOR) >= (3, 5): try: import pickle5 as _pk except ModuleNotFoundError: warn(f'Python version {_PY_MAJOR}.{_PY_MINOR} does not support Pickle Protocol 5, ' 'installing `pickle5` by running `pip install pickle5` in your ' 'command/Anaconda prompt or terminal can reduce the loading time.\n' 'For further information, check https://pypi.org/project/pickle5/.') _pk = None else: warn(f'Python version {_PY_MAJOR}.{_PY_MINOR} does not support Pickle Protocol 5, ' 'and will have slower speed in when loading the default processes.') _pk = None del warn else: import pickle as _pk import pkg_resources try: __version__ = pkg_resources.get_distribution('qsdsan').version except pkg_resources.DistributionNotFound: # pragma: no cover __version__ = None del sys, py_version, pkg_resources import thermosteam as tmo import biosteam as bst Chemical = tmo.Chemical Chemicals = tmo.Chemicals CompiledChemicals = tmo.CompiledChemicals Stream = tmo.Stream MultiStream = tmo.MultiStream set_thermo = tmo.settings.set_thermo get_components = tmo.settings.get_chemicals get_thermo = tmo.settings.get_thermo PowerUtility = bst.PowerUtility Unit = bst.Unit System = bst.System Scope = bst.utils.Scope Model = bst.Model Flowsheet = bst.Flowsheet main_flowsheet = bst.main_flowsheet CEPCI = bst.CE # Chemical Engineering Plant Cost Index CEPCI_by_year = bst.units.design_tools.CEPCI_by_year del tmo, bst currency = 'USD' from . import utils from ._component import * from ._components import * from ._sanstream import * from ._waste_stream import * from ._process import * from ._impact_indicator import * from ._impact_item import * from ._construction import * from ._equipment import * from ._transportation import * from ._sanunit import * from ._simple_tea import * from ._lca import * from . import ( _component, _components, _sanstream, _waste_stream, _process, _impact_indicator, _impact_item, _construction, _equipment, _transportation, _sanunit, _simple_tea, _lca, processes, equipments, sanunits, stats, ) utils._secondary_importing() for _slot in utils.doc_examples.__all__: setattr(utils, _slot, getattr(utils.doc_examples, _slot)) # Add the `pump` decorator to the util module from .sanunits import wwtpump utils.__all__ = (*utils.__all__, 'wwtpump') setattr(utils, 'wwtpump', wwtpump) __all__ = ( *_component.__all__, *_components.__all__, *_sanstream.__all__, *_waste_stream.__all__, *_process.__all__, *_impact_indicator.__all__, *_impact_item.__all__, *_construction.__all__, *_transportation.__all__, *_equipment.__all__, *_sanunit.__all__, *_simple_tea.__all__, *_lca.__all__, )
27.030075
95
0.719054
5bc168093bf440319c99ed135a699dd0608e8df4
1,758
py
Python
Tarea 9/src/rosembrock.py
EsauPR/CIMAT-Numerical-Optimization
d7e932d4f1a6fe275492c4bc28044ef101ee69cf
[ "MIT" ]
null
null
null
Tarea 9/src/rosembrock.py
EsauPR/CIMAT-Numerical-Optimization
d7e932d4f1a6fe275492c4bc28044ef101ee69cf
[ "MIT" ]
null
null
null
Tarea 9/src/rosembrock.py
EsauPR/CIMAT-Numerical-Optimization
d7e932d4f1a6fe275492c4bc28044ef101ee69cf
[ "MIT" ]
null
null
null
""" Rosembrock function """ import numpy as np def function(x: np.array, n: int = 100) -> float: """ Compute the evaluation for Extended Rosembrock function with n=100 Args: x: Array of length=n with x's parameters n: Rosembrock, n = 100 Returns: Evaluation of f(X) """ ans = 0.0 for i in range(n-1): ans += 100 * (x[i+1] - x[i]**2)**2 + (1 - x[i])**2 return ans def gradient(x: np.array, n: int = 100) -> np.array: """ Compute the gradient evaluation for Extended Rosembrock function with n=2 Args: x: Array of length=n with x's parameters n: Rosembrock, n = 100 Returns: Gradient of f(x1, ..., xn), array with lenght=n """ # grad = np.zeros(n, dtype=np.float64) # for i in range(n-1): # grad[i] = -400 * x[i+1] * x[i] + 400 * x[i]**3 + 2 * x[i] -2 # grad[n-1] = 200 * (x[n-1] - x[n-2]**2) # return grad grad = np.array([-400*(x[1]-x[0]**2)*x[0]-2*(1-x[0])]) for i in range(1, n-1): grad = np.append(grad, [200*(x[i]-x[i-1]**2)-400*(x[i+1]-x[i]**2)*x[i]-2*(1-x[i])]) grad = np.append(grad, [200*(x[99] - x[98]**2)]) return grad def hessian(x: np.array, n: int = 100) -> np.array: """ Compute the Hessian evaluation for Extended Rosembrock function with n=2 Args: x: Array of length=n with x's parameters Returns: Hessian of f(x1, ..., xn), Matrix with size=nxn """ hess = np.zeros((n, n), dtype=np.float64) for i in range(n-1): hess[i][i] = -400 * x[i+1] + 1200 * x[i]**2 + 2 hess[i][i] += 200 if i != 0 else 0 hess[i][i+1] = hess[i+1][i] = -400 * x[i] hess[n-1][n-1] = 200.0 return hess
29.3
91
0.517065
6d0bd05733ba5a87d322a1b123a37510b959f406
158
py
Python
contrib/wallettools/walletunlock.py
BowscoinBSC/Bowscoin
f7e1dc4f99ca996a8fbda596fe19fdb07ae7f1fa
[ "MIT" ]
1
2019-04-30T19:42:42.000Z
2019-04-30T19:42:42.000Z
contrib/wallettools/walletunlock.py
BowscoinBSC/Bowscoin
f7e1dc4f99ca996a8fbda596fe19fdb07ae7f1fa
[ "MIT" ]
null
null
null
contrib/wallettools/walletunlock.py
BowscoinBSC/Bowscoin
f7e1dc4f99ca996a8fbda596fe19fdb07ae7f1fa
[ "MIT" ]
1
2018-07-02T12:18:45.000Z
2018-07-02T12:18:45.000Z
from jsonrpc import ServiceProxy access = ServiceProxy("http://127.0.0.1:8145") pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60)
31.6
46
0.765823
e02b47a25c0d3e9918af721f047ccbff830126d5
5,985
py
Python
tools/db/replicateDbs.py
zachschultz/openwhisk
e9d5c505a391fe47585d706521ad991a9b65465d
[ "Apache-2.0" ]
null
null
null
tools/db/replicateDbs.py
zachschultz/openwhisk
e9d5c505a391fe47585d706521ad991a9b65465d
[ "Apache-2.0" ]
null
null
null
tools/db/replicateDbs.py
zachschultz/openwhisk
e9d5c505a391fe47585d706521ad991a9b65465d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Python script to replicate and replay databases. /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ """ import argparse import time import re import couchdb.client def retry(fn, retries): try: return fn except: if (retries > 0): time.sleep(1) return retry(fn, retries - 1) else: raise def replicateDatabases(args): """Replicate databases.""" sourceDb = couchdb.client.Server(args.sourceDbUrl) targetDb = couchdb.client.Server(args.targetDbUrl) excludedDatabases = args.exclude.split(",") # Create _replicator DB if it does not exist yet. if "_replicator" not in sourceDb: sourceDb.create("_replicator") replicator = sourceDb["_replicator"] now = int(time.time()) backupPrefix = "backup_%d_" % now def isExcluded(dbName): return dbName.replace(args.dbPrefix, "", 1) in excludedDatabases # Create backup of all databases with given prefix print("----- Create backups -----") for db in filter(lambda dbName: dbName.startswith(args.dbPrefix) and not isExcluded(dbName), sourceDb): backupDb = backupPrefix + db if not args.continuous else 'continuous_' + db replicateDesignDocument = { "_id": backupDb, "source": args.sourceDbUrl + "/" + db, "target": args.targetDbUrl + "/" + backupDb, "create_target": True, "continuous": args.continuous, } print("create backup: %s" % backupDb) filterName = "snapshotFilters" filterDesignDocument = sourceDb[db].get("_design/%s" % filterName) if not args.continuous and filterDesignDocument: replicateDesignDocument["filter"] = "%s/withoutDeletedAndDesignDocuments" % filterName replicator.save(replicateDesignDocument) def isBackupDb(dbName): return re.match("^backup_\d+_" + args.dbPrefix, dbName) def extractTimestamp(dbName): return int(dbName.split("_")[1]) def isExpired(timestamp): return now - args.expires > timestamp # Delete all documents in the _replicator-database of old backups to avoid that they continue after they are deprecated print("----- Delete backup-documents older than %d seconds -----" % args.expires) for doc in filter(lambda doc: isBackupDb(doc.id) and isExpired(extractTimestamp(doc.id)), replicator.view('_all_docs', include_docs=True)): print("deleting backup document: %s" % doc.id) # Get again the latest version of the document to delete the right revision and avoid Conflicts retry(lambda: replicator.delete(replicator[doc.id]), 5) # Delete all backup-databases, that are older than specified print("----- Delete backups older than %d seconds -----" % args.expires) for db in filter(lambda db: isBackupDb(db) and isExpired(extractTimestamp(db)), targetDb): print("deleting backup: %s" % db) targetDb.delete(db) def replayDatabases(args): """Replays databases.""" sourceDb = couchdb.client.Server(args.sourceDbUrl) # Create _replicator DB if it does not exist yet. if "_replicator" not in sourceDb: sourceDb.create("_replicator") for db in filter(lambda dbName: dbName.startswith(args.dbPrefix), sourceDb): plainDbName = db.replace(args.dbPrefix, "") (identifier, _) = sourceDb["_replicator"].save({ "source": args.sourceDbUrl + "/" + db, "target": args.targetDbUrl + "/" + plainDbName, "create_target": True }) print("replaying backup: %s -> %s (%s)" % (db, plainDbName, identifier)) parser = argparse.ArgumentParser(description="Utility to create a backup of all databases with the defined prefix.") parser.add_argument("--sourceDbUrl", required=True, help="Server URL of the source database, that has to be backed up. E.g. 'https://xxx:yyy@domain.couch.com:443'") parser.add_argument("--targetDbUrl", required=True, help="Server URL of the target database, where the backup is stored. Like sourceDbUrl.") subparsers = parser.add_subparsers(help='sub-command help') # Replicate replicateParser = subparsers.add_parser("replicate", help="Replicates source databases to the target database.") replicateParser.add_argument("--dbPrefix", required=True, help="Prefix of the databases, that should be backed up.") replicateParser.add_argument("--expires", required=True, type=int, help="Deletes all backups, that are older than the given value in seconds.") replicateParser.add_argument("--continuous", action="store_true", help="Wether or not the backup should be continuous") replicateParser.add_argument("--exclude", default="", help="Comma separated list of database names, that should not be backed up. (Without prefix).") replicateParser.set_defaults(func=replicateDatabases) # Replay replicateParser = subparsers.add_parser("replay", help="Replays source databases to the target database.") replicateParser.add_argument("--dbPrefix", required=True, help="Prefix of the databases, that should be replayed. Usually 'backup_{TIMESTAMP}_'") replicateParser.set_defaults(func=replayDatabases) arguments = parser.parse_args() arguments.func(arguments)
43.686131
164
0.700418
fd53ee81d5f0b1413d6666c6257d229c273d286f
4,611
py
Python
single_email_confirmation/models.py
ozldmezot/django-single-email-confirmation
2b9c771c6399350de7593283bb97004841133bee
[ "Unlicense" ]
null
null
null
single_email_confirmation/models.py
ozldmezot/django-single-email-confirmation
2b9c771c6399350de7593283bb97004841133bee
[ "Unlicense" ]
null
null
null
single_email_confirmation/models.py
ozldmezot/django-single-email-confirmation
2b9c771c6399350de7593283bb97004841133bee
[ "Unlicense" ]
null
null
null
from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from .signals import ( email_confirmed, confirmed_email_change_requested, unconfirmed_email_change_requested, ) from time import time from .exceptions import ConfirmationTokenDoesNotExistException from django.utils.crypto import get_random_string class EmailAddressManager(models.Manager): def generate_key(self): # ensuring its gonna be unique over time while True: allowed_chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' t = int( time() ) stamp = '' while t: stamp += allowed_chars[t % 62] t = int( t / 62 ) queryset = self.all() key = get_random_string(34) + str(stamp) email_address = queryset.filter(key=key).first() if not email_address: break return key def confirm(self, key): "Confirm an email address. Returns the address that was confirmed." queryset = self.all() email_address = queryset.filter(key=key).first() if not email_address: raise ConfirmationTokenDoesNotExistException(key) email_address.confirmed_at = timezone.now() email_address.key = None owner = email_address.owner owner.set_current_email(email_address.email) owner._single_email_confirmation_signal = email_confirmed owner.save() return owner class EmailAddress(models.Model): "An email address belonging to a User" email = models.EmailField(max_length=255) key = models.TextField(unique=True, blank=True, null=True) set_at = models.DateTimeField( default=timezone.now, help_text=_('When the confirmation key expiration was set'), ) confirmed_at = models.DateTimeField( blank=True, null=True, help_text=_('First time this email was confirmed'), ) objects = EmailAddressManager() @property def is_confirmed(self): return self.confirmed_at is not None def reset_confirmation(self, email=None): self.key = EmailAddress._default_manager.generate_key() self.set_at = timezone.now() if email: self.email=email class EmailConfirmationMixin(models.Model): """ Mixin to be used with your django 1.9+ custom User model. Provides python-level functionality only. """ """ Confirmed Email will always be primary email or None, therefore supplying get_unconfirmed_email, because this can differentiate from primary email """ _single_email_confirmation_signal = None email_field_name = 'email' email_address = models.OneToOneField(EmailAddress, related_name='owner', null=True, blank=True) class Meta: abstract = True @property def email_is_confirmed(self): email_address = self.email_address if not email_address: email_address = EmailAddress() return email_address.is_confirmed def get_current_email(self): return getattr(self, self.email_field_name) def set_current_email(self, email): setattr(self, self.email_field_name, email) def change_email(self, email, commit=True, force=False): # email was not changed if self.email == email: return email_address = self.email_address # no metadata available, mixin might have been added later if not email_address: email_address = EmailAddress() # this email is already requested for change if email == email_address.email and not force: return if self.email_is_confirmed: self._single_email_confirmation_signal = confirmed_email_change_requested else: self.email_address = email_address self.email = email self._single_email_confirmation_signal = unconfirmed_email_change_requested email_address.reset_confirmation(email) if commit: self.save() def save(self, *args, **kwargs): if self.email_address: self.email_address.save() self.email_address = self.email_address saved = super().save(*args, **kwargs) if self._single_email_confirmation_signal: self._single_email_confirmation_signal.send(sender=self, email_address=self.email_address) self._single_email_confirmation_signal = None return saved
29.941558
102
0.66298
7a39f19b4060c906607dc30d4414bf469cf5b226
2,032
py
Python
galaxy_utils/sequence/scripts/fastq_paired_end_interlacer.py
galaxyproject/sequence_utils
f7e8cd163d27cb6c16a86ae63e5912ffe32e92ba
[ "CC-BY-3.0" ]
5
2015-10-31T11:28:50.000Z
2020-09-08T20:13:48.000Z
galaxy_utils/sequence/scripts/fastq_paired_end_interlacer.py
galaxyproject/sequence_utils
f7e8cd163d27cb6c16a86ae63e5912ffe32e92ba
[ "CC-BY-3.0" ]
22
2015-12-09T00:13:48.000Z
2020-02-18T12:25:38.000Z
galaxy_utils/sequence/scripts/fastq_paired_end_interlacer.py
galaxyproject/sequence_utils
f7e8cd163d27cb6c16a86ae63e5912ffe32e92ba
[ "CC-BY-3.0" ]
8
2015-10-21T13:22:18.000Z
2020-02-07T09:54:00.000Z
# Florent Angly import sys from galaxy_utils.sequence.fastq import ( fastqJoiner, fastqNamedReader, fastqReader, fastqWriter, ) def main(): mate1_filename = sys.argv[1] mate1_type = sys.argv[2] or 'sanger' mate2_filename = sys.argv[3] mate2_type = sys.argv[4] or 'sanger' outfile_pairs = sys.argv[5] outfile_singles = sys.argv[6] if mate1_type != mate2_type: print(f"WARNING: You are trying to interlace files of two different types: {mate1_type} and {mate2_type}.") return type = mate1_type joiner = fastqJoiner(type) nof_singles = 0 nof_pairs = 0 i = None j = None out_pairs = fastqWriter(path=outfile_pairs, format=type) out_singles = fastqWriter(path=outfile_singles, format=type) mate2_input = fastqNamedReader(path=mate2_filename, format=type) mate1_input = fastqNamedReader(path=mate1_filename, format=type) reader1 = fastqReader(path=mate1_filename, format=type) reader2 = fastqReader(path=mate2_filename, format=type) with out_pairs, out_singles, mate2_input, mate1_input, reader1, reader2: # Pairs + singles present in mate1 for i, mate1 in enumerate(reader1): mate2 = mate2_input.get(joiner.get_paired_identifier(mate1)) if mate2: out_pairs.write(mate1) out_pairs.write(mate2) nof_pairs += 1 else: out_singles.write(mate1) nof_singles += 1 # Singles present in mate2 for j, mate2 in enumerate(reader2): mate1 = mate1_input.get(joiner.get_paired_identifier(mate2)) if not mate1: out_singles.write(mate2) nof_singles += 1 if (i is None) and (j is None): print("Your input files contained no valid FASTQ sequences.") else: print(f'There were {nof_singles} single reads.') print(f'Interlaced {nof_pairs} pairs of sequences.') if __name__ == "__main__": main()
29.882353
115
0.639764
392982a8b99e3c2d5397722e788f2413752e5a3c
2,644
py
Python
observations/r/o_brien_kaiser.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
199
2017-07-24T01:34:27.000Z
2022-01-29T00:50:55.000Z
observations/r/o_brien_kaiser.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
46
2017-09-05T19:27:20.000Z
2019-01-07T09:47:26.000Z
observations/r/o_brien_kaiser.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
45
2017-07-26T00:10:44.000Z
2022-03-16T20:44:59.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def o_brien_kaiser(path): """O'Brien and Kaiser's Repeated-Measures Data These contrived repeated-measures data are taken from O'Brien and Kaiser (1985). The data are from an imaginary study in which 16 female and male subjects, who are divided into three treatments, are measured at a pretest, postest, and a follow-up session; during each session, they are measured at five occasions at intervals of one hour. The design, therefore, has two between-subject and two within-subject factors. The contrasts for the `treatment` factor are set to *-2, 1, 1* and *0, -1, 1*. The contrasts for the `gender` factor are set to `contr.sum`. A data frame with 16 observations on the following 17 variables. `treatment` a factor with levels `control` `A` `B` `gender` a factor with levels `F` `M` `pre.1` pretest, hour 1 `pre.2` pretest, hour 2 `pre.3` pretest, hour 3 `pre.4` pretest, hour 4 `pre.5` pretest, hour 5 `post.1` posttest, hour 1 `post.2` posttest, hour 2 `post.3` posttest, hour 3 `post.4` posttest, hour 4 `post.5` posttest, hour 5 `fup.1` follow-up, hour 1 `fup.2` follow-up, hour 2 `fup.3` follow-up, hour 3 `fup.4` follow-up, hour 4 `fup.5` follow-up, hour 5 O'Brien, R. G., and Kaiser, M. K. (1985) MANOVA method for analyzing repeated measures designs: An extensive primer. *Psychological Bulletin* **97**, 316–333, Table 7. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `o_brien_kaiser.csv`. Returns: Tuple of np.ndarray `x_train` with 16 rows and 17 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'o_brien_kaiser.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/car/OBrienKaiser.csv' maybe_download_and_extract(path, url, save_file_name='o_brien_kaiser.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
23.81982
74
0.660741
4a63ac2f38cd14fdf0c9d66fba05c871e12d325c
972
py
Python
mtaani/urls.py
TonyKioko/NeighbourHood
617af13967f5dfbff70073475d69d9e7b82479ba
[ "MIT" ]
null
null
null
mtaani/urls.py
TonyKioko/NeighbourHood
617af13967f5dfbff70073475d69d9e7b82479ba
[ "MIT" ]
null
null
null
mtaani/urls.py
TonyKioko/NeighbourHood
617af13967f5dfbff70073475d69d9e7b82479ba
[ "MIT" ]
null
null
null
"""mtaani URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from django.contrib.auth import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'', include('app.urls')), url(r'^accounts/', include('registration.backends.simple.urls')), url(r'^logout/$', views.logout, {"next_page": '/'}), ]
36
79
0.692387
58e860899faff9f2918db19780a91d56203275cd
1,273
py
Python
tests/normalization_layers_test.py
dynastes-team/dynastes
931b6d9ac83862eb39c2f5144c95b952e9efcd8e
[ "MIT" ]
7
2020-01-18T14:28:04.000Z
2021-11-10T16:46:34.000Z
tests/normalization_layers_test.py
veqtor/dynastes
931b6d9ac83862eb39c2f5144c95b952e9efcd8e
[ "MIT" ]
null
null
null
tests/normalization_layers_test.py
veqtor/dynastes
931b6d9ac83862eb39c2f5144c95b952e9efcd8e
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf from tensorflow.python.framework import test_util from tensorflow_addons.layers.normalizations import GroupNormalization from dynastes.layers.normalization_layers import AdaptiveMultiNormalization, PoolNormalization2D def _test_grads(testCase: tf.test.TestCase, func, input): _, grads = tf.test.compute_gradient(func, input) for grad in grads: testCase.assertNotAllClose(grad, np.zeros_like(grad)) to_tensor = tf.convert_to_tensor normal = np.random.normal class AdaptiveMultiNormalizationTest(tf.test.TestCase): def test_simple(self): normalizers = [ GroupNormalization(groups=1, center=False, scale=False), GroupNormalization(groups=-1, center=False, scale=False), PoolNormalization2D(pool_size=(-1, 3)) ] layer = AdaptiveMultiNormalization(layers=normalizers) x = tf.convert_to_tensor(normal(size=(1, 8, 8, 8)).astype(np.float16)) y = tf.convert_to_tensor(normal(size=(1, 2, 3, 4)).astype(np.float16)) res = layer([x, y]) self.assertShapeEqual(x.numpy(), res) y = tf.convert_to_tensor(normal(size=(1, 4)).astype(np.float16)) res = layer([x, y]) self.assertShapeEqual(x.numpy(), res)
36.371429
96
0.701493
c8171b689ba40cd2d7c00610372ddc8a19475c60
23,603
py
Python
tensorflow/python/kernel_tests/relu_op_test.py
jnorwood/tensorflow
67ab6c9cebc4cbb2103246a1523d04261bef22d2
[ "Apache-2.0" ]
2
2020-03-15T12:18:42.000Z
2020-03-16T05:28:45.000Z
tensorflow/python/kernel_tests/relu_op_test.py
jnorwood/tensorflow
67ab6c9cebc4cbb2103246a1523d04261bef22d2
[ "Apache-2.0" ]
null
null
null
tensorflow/python/kernel_tests/relu_op_test.py
jnorwood/tensorflow
67ab6c9cebc4cbb2103246a1523d04261bef22d2
[ "Apache-2.0" ]
1
2020-01-09T19:28:49.000Z
2020-01-09T19:28:49.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Relu and ReluGrad.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python import tf2 from tensorflow.python.compat import compat from tensorflow.python.eager import backprop from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import gradient_checker_v2 from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent def _elu_grad_grad(activation): if activation < 0: return np.exp(activation) return 0 class ReluTest(test.TestCase): def _npRelu(self, np_features): return np.maximum(np_features, np.zeros(np_features.shape)) def testNpRelu(self): self.assertAllClose( np.array([[0.0, 0.7, 0.0, 0.3, 0.0], [0.1, 0.0, 0.5, 0.0, 0.9]]), self._npRelu( np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, 0.9]]))) def _testRelu(self, np_features): np_relu = self._npRelu(np_features) tf_relu = nn_ops.relu(np_features) self.assertAllClose(np_relu, tf_relu) self.assertShapeEqual(np_relu, tf_relu) def testNumbersCPU(self): for t in [np.int32, np.int64, np.float16, np.float32, np.float64]: # Force execution on CPU even if a GPU kernel is available for the type. with ops.device("/device:CPU:0"): self._testRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testNumbersGPU(self): if not test.is_gpu_available(): self.skipTest("No GPU available") for t in [np.float16, np.float32, np.float64]: self._testRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testReluInt8x4GoodShape(self): if not test.is_gpu_available(cuda_only=True): self.skipTest("No GPU available") inputs = np.array([[-50, 7, 23, 0], [-1, -5, 6, 11]]) np_relu = self._npRelu(inputs) tf_relu = nn_ops.relu(constant_op.constant(inputs, dtypes.qint8)) self.assertAllClose(np_relu, tf_relu) self.assertShapeEqual(np_relu, tf_relu) @test_util.disable_xla("b/123338077") # Passes with XLA def testReluInt8x4BadShape(self): if not test.is_gpu_available(cuda_only=True): self.skipTest("No GPU available") inputs = constant_op.constant( np.array([[-50, 7, 23], [0, 1, -5], [6, -2, 11]]), dtypes.qint8) with self.assertRaisesRegexp( errors.InvalidArgumentError, "Tensor size must be a multiple of 4 for Relu<qint8>. Got 9"): self.evaluate(nn_ops.relu(inputs)) inputs = constant_op.constant( np.array([1, -2, 3, -4, 5, -6, 7, -8, 9, -8, 7, -6, 5, -4, 3, -2, 1]), dtypes.qint8) with self.assertRaisesRegexp( errors.InvalidArgumentError, "Tensor size must be a multiple of 4 for Relu<qint8>. Got 17"): self.evaluate(nn_ops.relu(inputs)) def testNoElement(self): self._testRelu(np.array([[], []], dtype=np.float32)) # The gradient test for ReLU is a bit tricky as the derivative is not well # defined at around zero and we want to avoid that in terms of input values. def testGradientFloat32(self): with self.cached_session(): x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.relu, [x])) print("relu (float32) gradient err = ", err) self.assertLess(err, 1e-4) # The gradient for fp16 is inaccurate due to the low-precision. # We compare the fp16 analytical gradient against their fp32 counterpart. def testGradientFloat16(self): def grad(x): with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.l2_loss(nn_ops.relu(x)) return tape.gradient(y, x) def f(): with test_util.use_gpu(): # Randomly construct a 1D shape from [1, 40) shape = random_ops.random_uniform([1], minval=1, maxval=40, dtype=dtypes.int32) x32 = random_ops.random_uniform(shape, minval=-1, maxval=1) x16 = math_ops.cast(x32, dtype=dtypes.float16) return grad(x32), grad(x16) # We're going to ensure that the fp16 and fp32 gradients # are "close" to each other for ~100 random values. # # In TensorFlow 1.x, invoking f() (without eager execution enabled) # would construct a graph. Instead of construct a graph with O(100) nodes, # we construct a single graph to be executed ~100 times in a Session. if not tf2.enabled(): d32_tensor, d16_tensor = f() with self.cached_session() as sess: f = lambda: sess.run([d32_tensor, d16_tensor]) # Repeat the experiment for 100 times. All tensor shapes and its tensor # values are randomly generated for each run. for _ in xrange(100): d32, d16 = f() self.assertAllClose(d32, d16, atol=3e-4) def testGradientFloat64(self): with self.cached_session(): x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.relu, [x])) print("relu (float64) gradient err = ", err) self.assertLess(err, 1e-10) def testGradGradFloat32(self): with self.cached_session(): def f(x): assert x.dtype == dtypes.float32 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.relu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("relu (float32) gradient of gradient err = ", err) self.assertLess(err, 1e-4) def testGradGradFloat64(self): with self.cached_session(): def f(x): assert x.dtype == dtypes.float64 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.relu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("relu (float64) gradient of gradient err = ", err) self.assertLess(err, 1e-10) def testGradientScalar(self): x = variables.Variable(100.) def loss(): return nn_ops.relu(x)**2 optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=0.25) self.evaluate(variables.global_variables_initializer()) self.evaluate(optimizer.minimize(loss)) self.assertAllClose(x.read_value(), 50.0) def testGradientNoElement(self): with self.cached_session(): def f(x): with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.relu(x) return tape.gradient(y, x) x = np.asarray([[], []], dtype=np.float32) z = list(gradient_checker_v2.compute_gradient(f, [x]))[0][0] self.assertAllEqual(z, np.reshape(x, (0, 0))) class Relu6Test(test.TestCase): def _npRelu6(self, np_features): sixes = np.copy(np_features) sixes.fill(6.0) return np.minimum( np.maximum(np_features, np.zeros(np_features.shape)), sixes) def testNpRelu6(self): self.assertAllClose( np.array([[0.0, 0.7, 0.0, 0.3, 6.0], [0.1, 0.0, 6.0, 0.0, 0.9]]), self._npRelu6( np.array([[-0.9, 0.7, -0.5, 0.3, 6.0], [0.1, -0.3, 6.5, -0.7, 0.9]]))) def _testRelu6(self, np_features): np_relu6 = self._npRelu6(np_features) tf_relu6 = nn_ops.relu6(np_features) self.assertAllClose(np_relu6, tf_relu6) self.assertShapeEqual(np_relu6, tf_relu6) def testNumbersCPU(self): for t in [np.int32, np.int64, np.float16, np.float32, np.float64]: # Force execution on CPU even if a GPU kernel is available for the type. with ops.device("/device:CPU:0"): self._testRelu6( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testNumbersGPU(self): if not test.is_gpu_available(): self.skipTest("No GPU available") for t in [np.float16, np.float, np.double]: self._testRelu6( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) # The gradient test for ReLU6 is a bit tricky as the derivative is # not well defined at around zero and six and we want to avoid that # in terms of input values. def testGradientFloat32(self): with self.cached_session(): x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [6.1, 6.3, 6.5, 6.7, 6.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.relu6, [x])) print("relu6 (float32) gradient err = ", err) self.assertLess(err, 1e-4) def testGradientFloat64(self): with self.cached_session(): x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [6.1, 6.3, 6.5, 6.7, 6.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.relu6, [x])) print("relu6 (float64) gradient err = ", err) self.assertLess(err, 1e-10) class LeakyReluTest(test.TestCase): def _npLeakyRelu(self, np_features, alpha=0.1): return np.maximum(np_features, alpha * np_features) def testNpLeakyRelu(self): self.assertAllClose( np.array([[-0.09, 0.7, -0.05, 0.3, -0.01], [0.1, -0.03, 0.5, -0.07, 0.9]]), self._npLeakyRelu( np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, 0.9]]), alpha=0.1)) def _testLeakyRelu(self, np_features, alpha): np_leaky_relu = self._npLeakyRelu(np_features, alpha) tf_leaky_relu = nn_ops.leaky_relu(np_features, alpha) self.assertAllClose(np_leaky_relu, tf_leaky_relu) self.assertShapeEqual(np_leaky_relu, tf_leaky_relu) def testNumbersCPU(self): for t in [np.int32, np.int64, np.float16, np.float32, np.float64]: # Force execution on CPU even if a GPU kernel is available for the type. with ops.device("/device:CPU:0"): self._testLeakyRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), alpha=0.2) def testNumbersGPU(self): if not test.is_gpu_available(): self.skipTest("No GPU available") for t in [np.float16, np.float32, np.float64]: self._testLeakyRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), alpha=0.1) # The gradient test for Leaky ReLU is a bit tricky as the derivative is not # well defined at around zero and we want to avoid that in terms of input # values. def testGradientFloat32(self): with self.cached_session(): x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.leaky_relu, [x])) print("leaky_relu (float32) gradient err = ", err) self.assertLess(err, 1e-4) def testGradientFloat64(self): with self.cached_session(): x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.leaky_relu, [x])) print("leaky_relu (float64) gradient err = ", err) self.assertLess(err, 1e-10) def testGradGradFloat32(self): with compat.forward_compatibility_horizon(2018, 11, 2): with self.cached_session(): def f(x): assert x.dtype == dtypes.float32 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.leaky_relu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("leaky_relu (float32) gradient of gradient err = ", err) self.assertLess(err, 1e-4) def testGradGradFloat64(self): with compat.forward_compatibility_horizon(2018, 11, 2): with self.cached_session(): def f(x): assert x.dtype == dtypes.float64 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.leaky_relu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("leaky_relu (float64) gradient of gradient err = ", err) self.assertLess(err, 1e-10) def testGradientScalar(self): x = variables.Variable(-100.) def loss(): return nn_ops.leaky_relu(x, 0.05)**2 optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=0.2) self.evaluate(variables.global_variables_initializer()) self.evaluate(optimizer.minimize(loss)) self.assertAllClose(x.read_value(), -99.9) class EluTest(test.TestCase): def _npElu(self, np_features): return np.where(np_features < 0, np.exp(np_features) - 1, np_features) def testNpElu(self): self.assertAllClose( np.array([[-0.59343034025, 0.7, -0.39346934028, 0.3, -0.09516258196], [0.1, -0.25918177931, 0.5, -0.5034146962, 0.9]]), self._npElu( np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, 0.9]]))) def _testElu(self, np_features): np_elu = self._npElu(np_features) tf_elu = nn_ops.elu(np_features) self.assertAllClose(np_elu, tf_elu) self.assertShapeEqual(np_elu, tf_elu) def testNumbersCPU(self): for t in [np.float16, np.float32, np.float64]: # Force execution on CPU even if a GPU kernel is available for the type. with ops.device("/device:CPU:0"): self._testElu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testNumbersGPU(self): if not test.is_gpu_available(): self.skipTest("No GPU available") for t in [np.float16, np.float32, np.float64]: self._testElu(np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testGradientFloat32(self): with self.cached_session(): x_val = [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]] x = np.asarray(x_val, dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.elu, [x])) print("elu (float32) gradient err = ", err) self.assertLess(err, 1e-4) def testGradientFloat64(self): with self.cached_session(): x_val = [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]] x = np.asarray(x_val, dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.elu, [x])) print("elu (float64) gradient err = ", err) self.assertLess(err, 1e-6) def testGradGrad(self): with self.cached_session(): def f(x): with backprop.GradientTape(persistent=True) as tape: tape.watch(x) y = nn_ops.elu(x) dy = tape.gradient(y, x) return tape.gradient(dy, x) for x in [-1., -0.5, 0.5, 1.]: got = self.evaluate(f(constant_op.constant(x))) want = _elu_grad_grad(x) err = np.abs(got - want) self.assertLess(err, 1e-4) def testGradGradFloat32(self): with self.cached_session(): def f(x): assert x.dtype == dtypes.float32 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.elu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("elu (float32) gradient of gradient err = ", err) self.assertLess(err, 1e-4) def testGradGradFloat64(self): with self.cached_session(): def f(x): assert x.dtype == dtypes.float64 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.elu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("elu (float64) gradient of gradient err = ", err) self.assertLess(err, 1e-6) class SeluTest(test.TestCase): def _npSelu(self, np_features): scale = 1.0507009873554804934193349852946 scale_alpha = 1.7580993408473768599402175208123 return np.where(np_features < 0, scale_alpha * (np.exp(np_features) - 1), scale * np_features) def testNpSelu(self): self.assertAllClose( np.array([[-1.0433095, 0.73549069, -0.6917582, 0.3152103, -0.16730527], [0.1050701, -0.45566732, 0.5253505, -0.88505305, 0.9456309]]), self._npSelu( np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, 0.9]]))) def _testSelu(self, np_features): np_selu = self._npSelu(np_features) tf_selu = nn_ops.selu(np_features) self.assertAllClose(np_selu, tf_selu) self.assertShapeEqual(np_selu, tf_selu) def testNumbers(self): for t in [np.float16, np.float32, np.float64]: self._testSelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) # Force executed on CPU in case GPU kernels are available. with ops.device("/device:CPU:0"): self._testSelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testGradientFloat32(self): with self.cached_session(): x_val = [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]] x = np.asarray(x_val, dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.selu, [x])) print("selu (float32) gradient err = ", err) self.assertLess(err, 1e-4) def testGradientFloat64(self): with self.cached_session(): x_val = [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]] x = np.asarray(x_val, dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(nn_ops.selu, [x])) print("selu (float64) gradient err = ", err) self.assertLess(err, 1e-6) def testGradGradFloat32(self): with self.cached_session(): def f(x): assert x.dtype == dtypes.float32 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.selu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("selu (float32) gradient of gradient err = ", err) self.assertLess(err, 1e-4) def testGradGradFloat64(self): with self.cached_session(): def f(x): assert x.dtype == dtypes.float64 with backprop.GradientTape() as tape: tape.watch(x) y = nn_ops.selu(x) return tape.gradient(y, x) x = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float64, order="F") err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(f, [x])) print("selu (float64) gradient of gradient err = ", err) self.assertLess(err, 1e-6) class CreluTest(test.TestCase): def testCreluShape(self): f = random_ops.random_normal([50, 5, 7, 10]) t = nn_ops.crelu(f) self.assertEqual([50, 5, 7, 20], t.get_shape()) def _testCrelu(self, np_features): np_relu = np.maximum(np_features, np.zeros_like(np_features)) np_neg_relu = np.maximum(-np_features, np.zeros_like(np_features)) np_crelu = np.concatenate((np_relu, np_neg_relu), len(np_features.shape) - 1) tf_crelu = nn_ops.crelu(np_features) self.assertAllClose(np_crelu, tf_crelu) self.assertShapeEqual(np_crelu, tf_crelu) def testNumbersCPU(self): for t in [np.int32, np.int64, np.float16, np.float32, np.float64]: # Force execution on CPU even if a GPU kernel is available for the type. with ops.device("/device:CPU:0"): self._testCrelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testNumbersGPU(self): if not test.is_gpu_available(): self.skipTest("No GPU available") for t in [np.float16, np.float32, np.float64]: self._testCrelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t)) def testNumbersWithAxis0(self): tf_crelu = nn_ops.crelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]), axis=0) np_crelu = np.array([[0, 7, 0, 3, 0], [1, 0, 5, 0, 9], [9, 0, 5, 0, 1], [0, 3, 0, 7, 0]]) self.assertAllEqual(np_crelu, tf_crelu) def testNumbersWithAxis1(self): tf_crelu = nn_ops.crelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]), axis=1) np_crelu = np.array([[0, 7, 0, 3, 0, 9, 0, 5, 0, 1], [1, 0, 5, 0, 9, 0, 3, 0, 7, 0]]) self.assertAllEqual(np_crelu, tf_crelu) if __name__ == "__main__": test.main()
36.20092
80
0.600983
6b14a64c77e2bed8d04d68d8c414d6a5d7a5ffd9
1,830
py
Python
shop/admin/defaults/customer.py
taime/django-shop
19e2ebd5f7da584fbf2e8bab8984b41e11979fc2
[ "BSD-3-Clause" ]
39
2015-02-21T00:45:02.000Z
2020-05-18T14:46:09.000Z
shop/admin/defaults/customer.py
taime/django-shop
19e2ebd5f7da584fbf2e8bab8984b41e11979fc2
[ "BSD-3-Clause" ]
46
2015-02-03T19:51:37.000Z
2017-03-24T23:40:14.000Z
shop/admin/defaults/customer.py
taime/django-shop
19e2ebd5f7da584fbf2e8bab8984b41e11979fc2
[ "BSD-3-Clause" ]
23
2015-04-12T09:03:41.000Z
2020-04-14T16:38:35.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from django.utils.html import format_html_join from django.utils.translation import ugettext_lazy as _ from shop.admin.customer import CustomerProxy, CustomerInlineAdminBase, CustomerAdminBase class CustomerInlineAdmin(CustomerInlineAdminBase): fieldsets = ( (None, {'fields': ('get_number', 'salutation')}), (_("Addresses"), {'fields': ('get_shipping_addresses', 'get_billing_addresses')}) ) readonly_fields = ('get_number', 'get_shipping_addresses', 'get_billing_addresses') def get_number(self, customer): return customer.get_number() or '–' get_number.short_description = _("Customer Number") def get_shipping_addresses(self, customer): addresses = [(a.as_text(),) for a in customer.shippingaddress_set.all()] return format_html_join('', '<address>{0}</address>', addresses) get_shipping_addresses.short_description = _("Shipping") def get_billing_addresses(self, customer): addresses = [(a.as_text(),) for a in customer.billingaddress_set.all()] return format_html_join('', '<address>{0}</address>', addresses) get_billing_addresses.short_description = _("Billing") @admin.register(CustomerProxy) class CustomerAdmin(CustomerAdminBase): inlines = (CustomerInlineAdmin,) def get_list_display(self, request): list_display = list(super(CustomerAdmin, self).get_list_display(request)) list_display.insert(1, 'salutation') return list_display def salutation(self, user): if hasattr(user, 'customer'): return user.customer.get_salutation_display() return '' salutation.short_description = _("Salutation") salutation.admin_order_field = 'customer__salutation'
38.125
89
0.716393
0b4b4aeed0f5c123f17f68bbfedda6fa9e10b19a
4,228
py
Python
lambda/subscriber.py
yuya-mizuki771/bootcamp-2021-sample
70d8953723fda494ac309c347d3b05ae13b4164a
[ "Apache-2.0" ]
null
null
null
lambda/subscriber.py
yuya-mizuki771/bootcamp-2021-sample
70d8953723fda494ac309c347d3b05ae13b4164a
[ "Apache-2.0" ]
null
null
null
lambda/subscriber.py
yuya-mizuki771/bootcamp-2021-sample
70d8953723fda494ac309c347d3b05ae13b4164a
[ "Apache-2.0" ]
null
null
null
from typing import Dict, Union import uuid import boto3 import os import json DENIAL_MESSAGE_UPPER = """ご連絡ありがとうございます。 申し訳ないのですが、ご連絡頂いた商品({})の価格({}円)では、 当方の予算({}円)を超過しております。 できれば今後は当方の要件にあった情報をお渡しいただきたく思います。 """ DENIAL_MESSAGE_LOWER = """ご連絡ありがとうございます。 ご連絡頂いた商品({})の価格({}円)では、 当方の希望する価格({}円以上)よりも安価に過ぎます。 もっと付加価値の伴ったものを提案いただきたく考えています。 """ ALLOWANCE_MESSAGE = """ご連絡ありがとうございます。 ご連絡頂いた商品({})ですが、 当方の希望する価格とマッチしており、 より詳細な話をお聞きしたく考えています。 """ def lambda_handler(event: dict, context): s3 = boto3.resource('s3') feedback_upload_bucket = os.environ.get("FEEDBACK_UPLOAD_BUCKET") records = event.get('Records') for record in records: try: body = json.loads(record.get('body')) message = json.loads(body.get('Message')) except Exception as e: print(e) exit(1) try: result = generate_feedback_message(message) obj = s3.Object(feedback_upload_bucket, str(uuid.uuid4())) obj.put(Body=json.dumps(message, ensure_ascii=False)) except Exception as e: print(e) exit(1) return { 'statusCode': 200 } def generate_feedback_message(message: Dict[str, Union[int, str]]) -> str: v = os.environ.get("PRICE_UPPER_LIMIT") price_upper_limit = int(v) if v is not None else None v = os.environ.get("PRICE_LOWER_LIMIT") price_lower_limit = int(v) if v is not None else None price = int(message.get('price')) name = message.get('name') if price_upper_limit is not None and price > price_upper_limit: return DENIAL_MESSAGE_UPPER.format(name, price, price_upper_limit) if price_lower_limit is not None and price < price_lower_limit: return DENIAL_MESSAGE_LOWER.format(name, price, price_lower_limit) return ALLOWANCE_MESSAGE.format(name) if __name__ == '__main__': event = { 'Records': [ { 'messageId': '40886b30-b88d-496a-be40-be9417f9e9b6', 'receiptHandle': 'AQEBa0uGT1hacqAzfBrLKAUicFyIedg5xV5Z074uMpc4lsWfM0xSLhUteh3OvKbKk79tFHz1SjsErEyy5a8KVhpHEwnAJGJ4/B4zTIzsZr8ngFQu1QzrT0iVCWkkYIosGIQL+uk+KQ4hBceO8QXHvhy0wfWS1HeGCqqgmzcEDRfxBqxXL/5xwWjLVBN1z6/dmlVNc58VvPr5f+DtvRoPgPwo1KrwzGrmDHSB1jz5ElBpwd4QSfBPT8E+Rl7JGOk4uvPUKZpmcXoCnxwD1Sw5ZYyR8HCfA+cXPXL+2zwYbappruuTj5H9EYTawoR+4CAMti04spfAhBUOakgMOWC2NqIxVRYhkSvSJoRC/HZBx+Bspgbh3HKgqrVFJDDGyYlsVr8Cy4TQOqaWpExMwOV3CPKopCHroV8D62oAa+DCbuAB9b8=', 'body': '{\n "Type" : "Notification",\n "MessageId" : "198b74d7-8b7e-5d63-a232-2c6c64914c58",\n "TopicArn" : "arn:aws:sns:ap-northeast-1:354384904427:advertisement-destribution-topic",\n "Subject" : "sample-message",\n "Message" : "{\\n \\"price\\": 25000000,\\n \\"name\\": \\"シーガルズグランドガーデン(架空)\\",\\n \\t\\"message\\": \\"適切なマンションポエムをここに入れる\\" \\n}",\n "Timestamp" : "2021-03-05T08:37:03.334Z",\n "SignatureVersion" : "1",\n "Signature" : "kHR94W5bP6HT8N+hM72I4VEKgev0IvtbIJUJl26JBM7EqzhuTb0P8Ba5yrZ/Bo0oyLtjPH4fpiTJ44I3CJoCG3uAsLvx+UvfHwBC+bcG3yt5YjbTbOMxSDGB4g2xCSTKg+um21fzNmCJp46F12NT15oIQy8P7T4JhxhRN3lmed1KXex3Iw/uqnHSYtTTynoAnZsnkfwCKsYU4ho0UChP1gZ8h7QqLAQXwKfoFEUgd3Ruqq30PxDTviUCKJw9k2W/xfKZZCEhPPQDQfbMSLVAt07OZ9/jJzpe3HbYg/DI87cIPyZpLqCX7YD9j+5hM1Hs8lYAXv+Cb5f6nkKhXwa7fg==",\n "SigningCertURL" : "https://sns.ap-northeast-1.amazonaws.com/SimpleNotificationService-010a507c1833636cd94bdb98bd93083a.pem",\n "UnsubscribeURL" : "https://sns.ap-northeast-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:ap-northeast-1:354384904427:advertisement-destribution-topic:c38449ff-9a09-43cc-aa26-0dcc66f45e3d"\n}', 'attributes': { 'ApproximateReceiveCount': '2', 'SentTimestamp': '1614933423396', 'SenderId': 'AIDAIERWYNSNBY7YRB6SY', 'ApproximateFirstReceiveTimestamp': '1614933661442' }, 'messageAttributes': {}, 'md5OfBody': '0a1f3f8f25ec8cfc77d92fec505b2704', 'eventSource': 'aws:sqs', 'eventSourceARN': 'arn:aws:sqs:ap-northeast-1:354384904427:subscriber-a-queue', 'awsRegion': 'ap-northeast-1'} ] } lambda_handler(event, None)
46.461538
1,161
0.700095
93ac61e5eb75eed7a76eac6b48274011d13a502f
1,928
py
Python
mpikat/effelsberg/edd/pipeline/test/testHDFpipeline.py
TobiasWinchen/mpikat
46ea86d6861bcfd924daad7058de8a898ee6c6a1
[ "MIT" ]
null
null
null
mpikat/effelsberg/edd/pipeline/test/testHDFpipeline.py
TobiasWinchen/mpikat
46ea86d6861bcfd924daad7058de8a898ee6c6a1
[ "MIT" ]
null
null
null
mpikat/effelsberg/edd/pipeline/test/testHDFpipeline.py
TobiasWinchen/mpikat
46ea86d6861bcfd924daad7058de8a898ee6c6a1
[ "MIT" ]
null
null
null
from __future__ import print_function, division, unicode_literals from mpikat.effelsberg.edd.pipeline.edd_hdf_pipeline import EDDHDF5WriterPipeline from katcp import FailReply import unittest import tornado.testing import tornado.gen import tempfile import shutil import logging # #class TestHDFPipeline(tornado.testing.AsyncTestCase): # # #def setUp(self): # # super(TestHDFPipeline, self).setUp() # # print(self.datadir) # # # @tornado.testing.gen_test # def test_sequence(self): # pipeline = EDDHDF5WriterPipeline("localhost", 1234) # self.datadir = tempfile.mkdtemp() # # # self.assertEqual(pipeline.state, 'idle') # # #js = '{"output_directory":"' + self.datadir + '"}' # #print(js) # # yield pipeline.configure() # self.assertEqual(pipeline.state, 'configured') # # yield pipeline.capture_start() # self.assertEqual(pipeline.state, 'ready') # # yield pipeline.measurement_prepare() # self.assertEqual(pipeline.state, 'set') # # # Ignore mesaurement start, stop prepare # yield pipeline.measurement_start() # self.assertEqual(pipeline.state, 'measuring') # # yield pipeline.measurement_stop() # self.assertEqual(pipeline.state, 'ready') # # # This test needs to be available,as otherwise on successfull test # # pycoverage wont exit # yield pipeline.deconfigure() # self.assertEqual(pipeline.state, 'idle') # # ## @tornado.testing.gen_test(timeout=120) ## def test_measurement_prepare_prefix(self): ## super(TestHDFPipeline, self).setUp() ## pass ## #shutil.rmtree(self.datadir) # # # #if __name__ == '__main__': # logging.basicConfig(filename='debug.log', # format=("[ %(levelname)s - %(asctime)s - %(name)s " # "- %(filename)s:%(lineno)s] %(message)s"), # level=logging.DEBUG) # unittest.main()
29.661538
82
0.653008
6b042c3228cb2d5350cc5e32d4f2f3e348f381f0
1,204
py
Python
comp0037_planner_controller/scripts/map_getter.py
tharmee99/COMP0037_CW1_Path-Planning-in-a-known-world
6c7e56b865743f3250cddf9a7e1f19f9fdcb98e1
[ "BSD-3-Clause" ]
null
null
null
comp0037_planner_controller/scripts/map_getter.py
tharmee99/COMP0037_CW1_Path-Planning-in-a-known-world
6c7e56b865743f3250cddf9a7e1f19f9fdcb98e1
[ "BSD-3-Clause" ]
null
null
null
comp0037_planner_controller/scripts/map_getter.py
tharmee99/COMP0037_CW1_Path-Planning-in-a-known-world
6c7e56b865743f3250cddf9a7e1f19f9fdcb98e1
[ "BSD-3-Clause" ]
1
2020-02-16T22:56:25.000Z
2020-02-16T22:56:25.000Z
#!/usr/bin/env python import sys import rospy from nav_msgs.srv import GetMap from comp0037_planner_controller.occupancy_grid import OccupancyGrid from comp0037_planner_controller.search_grid import SearchGrid # This class pings the map server and gets the map. class MapGetter(object): def __init__(self): rospy.loginfo('Waiting for static_map to become available.') # print "Hello1" rospy.wait_for_service('static_map') # print "Hello2" self.mapServer = rospy.ServiceProxy('static_map', GetMap) # print "Hello3" def getMapFromServer(self): # print "starting" resp = self.mapServer() # rospy.logerr(resp) # print "got from server" occupancyGrid = OccupancyGrid(resp.map.info.width, resp.map.info.height, resp.map.info.resolution) occupancyGrid.setScale(rospy.get_param('plan_scale', 5)) # print "make grid" occupancyGrid.setFromDataArrayFromMapServer(resp.map.data) # occupancyGrid.expandObstaclesToAccountForCircularRobotOfRadius(0.2) return occupancyGrid if __name__ == '__main__': mapGetter = MapGetter() mapGetter.getMapFromServer()
30.871795
106
0.696013
8c3da3520adac1967cecb90c8de0fe72d4635869
8,064
py
Python
libqtile/ipc.py
armoutihansen/qtile
5bcb2afcd1f5b98b10987a796c4c7d7f36d97340
[ "MIT" ]
null
null
null
libqtile/ipc.py
armoutihansen/qtile
5bcb2afcd1f5b98b10987a796c4c7d7f36d97340
[ "MIT" ]
null
null
null
libqtile/ipc.py
armoutihansen/qtile
5bcb2afcd1f5b98b10987a796c4c7d7f36d97340
[ "MIT" ]
null
null
null
# Copyright (c) 2008, Aldo Cortesi. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ A simple IPC mechanism for communicating between two local processes. We use marshal to serialize data - this means that both client and server must run the same Python version, and that clients must be trusted (as un-marshalling untrusted data can result in arbitrary code execution). """ import asyncio import fcntl import json import marshal import os.path import socket import struct from typing import Any, Optional, Tuple from libqtile.log_utils import logger from libqtile.utils import get_cache_dir HDRFORMAT = "!L" HDRLEN = struct.calcsize(HDRFORMAT) SOCKBASE = "qtilesocket.%s" def find_sockfile(display: str = None): """Finds the appropriate socket file for the given display""" display = display or os.environ.get("DISPLAY") or ":0.0" if "." not in display: display += ".0" cache_directory = get_cache_dir() return os.path.join(cache_directory, SOCKBASE % display) class IPCError(Exception): pass class _IPC: """A helper class to handle properly packing and unpacking messages""" @staticmethod def unpack(data: bytes, *, is_json: Optional[bool] = None) -> Tuple[Any, bool]: """Unpack the incoming message Parameters ---------- data : bytes The incoming message to unpack is_json : Optional[bool] If the message should be unpacked as json. By default, try to unpack json and fallback gracefully to marshalled bytes. Returns ------- Tuple[Any, bool] A tuple of the unpacked object and a boolean denoting if the message was deserialized using json. If True, the return message should be packed as json. """ if is_json is None or is_json: try: return json.loads(data.decode()), True except ValueError as e: if is_json: raise IPCError("Unable to decode json data") from e try: assert len(data) >= HDRLEN size = struct.unpack(HDRFORMAT, data[:HDRLEN])[0] assert size >= len(data[HDRLEN:]) return marshal.loads(data[HDRLEN:HDRLEN + size]), False except AssertionError as e: raise IPCError( "error reading reply! (probably the socket was disconnected)" ) from e @staticmethod def pack(msg: Any, *, is_json: bool = False) -> bytes: """Pack the object into a message to pass""" if is_json: json_obj = json.dumps(msg) return json_obj.encode() msg_bytes = marshal.dumps(msg) size = struct.pack(HDRFORMAT, len(msg_bytes)) return size + msg_bytes class Client: def __init__(self, socket_path: str, is_json=False) -> None: """Create a new IPC client Parameters ---------- socket_path : str The file path to the file that is used to open the connection to the running IPC server. is_json : bool Pack and unpack messages as json """ self.socket_path = socket_path self.is_json = is_json def call(self, data: Any) -> Any: return self.send(data) def send(self, msg: Any) -> Any: """Send the message and return the response from the server If any exception is raised by the server, that will propogate out of this call. """ return asyncio.run(self.async_send(msg)) async def async_send(self, msg: Any) -> Any: """Send the message to the server Connect to the server, then pack and send the message to the server, then wait for and return the response from the server. """ try: reader, writer = await asyncio.wait_for( asyncio.open_unix_connection(path=self.socket_path), timeout=3 ) except (ConnectionRefusedError, FileNotFoundError): raise IPCError("Could not open {}".format(self.socket_path)) try: send_data = _IPC.pack(msg, is_json=self.is_json) writer.write(send_data) writer.write_eof() read_data = await asyncio.wait_for(reader.read(), timeout=10) except asyncio.TimeoutError: raise IPCError("Server not responding") finally: # see the note in Server._server_callback() writer.close() await writer.wait_closed() data, _ = _IPC.unpack(read_data, is_json=self.is_json) return data class Server: def __init__(self, socket_path: str, handler) -> None: self.socket_path = socket_path self.handler = handler self.server = None # type: Optional[asyncio.AbstractServer] if os.path.exists(socket_path): os.unlink(socket_path) self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM, 0) flags = fcntl.fcntl(self.sock.fileno(), fcntl.F_GETFD) fcntl.fcntl(self.sock.fileno(), fcntl.F_SETFD, flags | fcntl.FD_CLOEXEC) self.sock.bind(self.socket_path) async def _server_callback( self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter ) -> None: """Callback when a connection is made to the server Read the data sent from the client, execute the requested command, and send the reply back to the client. """ try: logger.debug("Connection made to server") data = await reader.read() logger.debug("EOF received by server") req, is_json = _IPC.unpack(data) except IPCError: logger.warn("Invalid data received, closing connection") else: rep = self.handler(req) result = _IPC.pack(rep, is_json=is_json) logger.debug("Sending result on receive EOF") writer.write(result) logger.debug("Closing connection on receive EOF") writer.write_eof() finally: writer.close() await writer.wait_closed() async def __aenter__(self) -> "Server": """Start and return the server""" await self.start() return self async def __aexit__(self, _exc_type, _exc_value, _tb) -> None: """Close and shutdown the server""" await self.close() async def start(self) -> None: """Start the server""" assert self.server is None logger.debug("Starting server") server_coroutine = asyncio.start_unix_server( self._server_callback, sock=self.sock ) self.server = await server_coroutine async def close(self) -> None: """Close and shutdown the server""" assert self.server is not None logger.debug("Stopping server on close") self.server.close() await self.server.wait_closed() self.server = None
34.025316
83
0.633929
b7e2847ccbd8bde6ee1e6ba9914e22184f735392
14,994
py
Python
test/test_basic.py
lutraconsulting/mergin-work-packages
87850b9ca5069fbaf973a9341dca6aee72912528
[ "MIT" ]
4
2021-03-03T09:39:00.000Z
2021-08-01T00:00:37.000Z
test/test_basic.py
lutraconsulting/mergin-workpackages
87850b9ca5069fbaf973a9341dca6aee72912528
[ "MIT" ]
33
2021-03-03T12:21:51.000Z
2022-02-17T10:24:20.000Z
test/test_basic.py
lutraconsulting/mergin-workpackages
87850b9ca5069fbaf973a9341dca6aee72912528
[ "MIT" ]
1
2021-04-16T18:28:34.000Z
2021-04-16T18:28:34.000Z
import glob import os import shutil from tempfile import TemporaryDirectory import sqlite3 from .init_test_data import ( create_farm_dataset, open_layer_and_create_feature, open_layer_and_update_feature, open_layer_and_delete_feature, ) from wp import load_config_from_yaml, make_work_packages from wp_utils import escape_double_quotes this_dir = os.path.dirname(os.path.realpath(__file__)) def _assert_row_counts(gpkg_filename, expected_farms, expected_trees): """Raises assertion errors if tables do not have the right number of rows""" db = sqlite3.connect(gpkg_filename) c = db.cursor() c.execute("SELECT COUNT(*) FROM farms") assert c.fetchone()[0] == expected_farms c.execute("SELECT COUNT(*) FROM trees") assert c.fetchone()[0] == expected_trees def _assert_value_equals(gpkg_filename, table_name, fid, field_name, expected_value): """Raises assertion error if value of a particular field of a given feature does not equal the expected value""" db = sqlite3.connect(gpkg_filename) c = db.cursor() field_name_escaped = escape_double_quotes(field_name) table_name_escaped = escape_double_quotes(table_name) c.execute(f"""SELECT {field_name_escaped} FROM {table_name_escaped} WHERE fid = ?""", (fid,)) row = c.fetchone() if row is None: assert False, f"Missing row for fid {fid}" assert row[0] == expected_value def _assert_row_missing(gpkg_filename, table_name, fid): """Raises assertion error if given feature is present in the table""" db = sqlite3.connect(gpkg_filename) c = db.cursor() table_name_escaped = escape_double_quotes(table_name) c.execute(f"""SELECT count(*) FROM {table_name_escaped} WHERE fid = ?""", (fid,)) row = c.fetchone() assert row[0] == 0, f"Row for fid {fid} is present but it should not be" def _assert_row_exists(gpkg_filename, table_name, fid): """Raises assertion error if given feature is NOT present in the table""" db = sqlite3.connect(gpkg_filename) c = db.cursor() table_name_escaped = escape_double_quotes(table_name) c.execute(f"""SELECT count(*) FROM {table_name_escaped} WHERE fid = ?""", (fid,)) row = c.fetchone() assert row[0] == 1, f"Row for fid {fid} is not present but it should be" def _make_initial_farm_work_packages(config_file): """ 1. create the initial "farms" dataset 2. run the WP algorithm with the initial dataset and given config file Returns temporary directory object. """ tmp_dir_obj = TemporaryDirectory(prefix="test-mergin-work-packages-") tmp_dir = tmp_dir_obj.name os.makedirs(os.path.join(tmp_dir, "input")) # get data create_farm_dataset(os.path.join(tmp_dir, "input", "master.gpkg")) # get config wp_config = load_config_from_yaml(config_file) # run alg make_work_packages(tmp_dir, wp_config) return tmp_dir_obj def _prepare_next_run_work_packages(tmp_dir_1): """Creates a new temp directory with base+input files being output from the first step. After this, work packaging can be run using the new temp directory, which is returned. """ tmp_dir_2 = TemporaryDirectory(prefix="test-mergin-work-packages-") os.makedirs(os.path.join(tmp_dir_2.name, "base")) os.makedirs(os.path.join(tmp_dir_2.name, "input")) shutil.copy(os.path.join(tmp_dir_1.name, "output", "remap.db"), os.path.join(tmp_dir_2.name, "base", "remap.db")) for file_path in glob.glob(os.path.join(tmp_dir_1.name, "output", "*.gpkg")): file_name = os.path.basename(file_path) shutil.copy(file_path, os.path.join(tmp_dir_2.name, "base", file_name)) shutil.copy(file_path, os.path.join(tmp_dir_2.name, "input", file_name)) return tmp_dir_2 def _keep_tmp_dir(tmp_dir, new_dir): """Makes a copy of a TemporaryDirectory. This is useful for debugging because TemporaryDirectory has no way to disable removal if needed""" if os.path.exists(new_dir): shutil.rmtree(new_dir) shutil.copytree(tmp_dir.name, new_dir) def test_farm_data(): """Check whether the test data init function returns what we expect""" tmp_dir_obj = TemporaryDirectory(prefix="test-mergin-work-packages-") farm_gpkg = os.path.join(tmp_dir_obj.name, "farms.gpkg") create_farm_dataset(farm_gpkg) _assert_row_counts(farm_gpkg, expected_farms=4, expected_trees=9) def test_first_run(): """Checks whether the first run correctly generates work package data with 'filter-column' method""" tmp_dir = _make_initial_farm_work_packages(os.path.join(this_dir, "config-farm-basic.yml")) # run checks output_dir = os.path.join(tmp_dir.name, "output") output_files = os.listdir(output_dir) assert "Emma.gpkg" in output_files assert "Kyle.gpkg" in output_files assert "master.gpkg" in output_files _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=9) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=2) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) def test_first_run_filtering_geom(): """Checks whether the first run correctly generates work package data with 'filter-geometry' method""" tmp_dir = _make_initial_farm_work_packages(os.path.join(this_dir, "config-farm-geom.yml")) # run checks output_dir = os.path.join(tmp_dir.name, "output") output_files = os.listdir(output_dir) assert "Emma.gpkg" in output_files assert "Kyle.gpkg" in output_files assert "master.gpkg" in output_files _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=9) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=2, expected_trees=3) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=3, expected_trees=1) def test_update_row_wp(): """One row has been updated in WP, no changes in master""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify a WP dataset - update a tree (master fid 8 mapped to 1000000 for Kyle) open_layer_and_update_feature( os.path.join(tmp_dir_2.name, "input", "Kyle.gpkg"), "trees", 1000000, {"age_years": 10} ) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be the same number of rows as initially # and updated age both in master + kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=9) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=2) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_value_equals(os.path.join(output_dir, "master.gpkg"), "trees", 8, "age_years", 10) _assert_value_equals(os.path.join(output_dir, "Kyle.gpkg"), "trees", 1000000, "age_years", 10) def test_update_row_master(): """One row has been updated in master, no changes in WP""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify master dataset - update a tree (master fid 9 mapped to 1000001 for Kyle) open_layer_and_update_feature(os.path.join(tmp_dir_2.name, "input", "master.gpkg"), "trees", 9, {"age_years": 20}) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be the same number of rows as initially # and updated age both in master + kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=9) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=2) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_value_equals(os.path.join(output_dir, "master.gpkg"), "trees", 9, "age_years", 20) _assert_value_equals(os.path.join(output_dir, "Kyle.gpkg"), "trees", 1000001, "age_years", 20) def test_update_row_master_and_wp(): """One row updated in master, another row in WP (no conflict)""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify a WP dataset - update a tree (master fid 8 mapped to 1000000 for Kyle) open_layer_and_update_feature( os.path.join(tmp_dir_2.name, "input", "Kyle.gpkg"), "trees", 1000000, {"age_years": 30} ) # modify master dataset - update a tree (master fid 9 mapped to 1000001 for Kyle) open_layer_and_update_feature(os.path.join(tmp_dir_2.name, "input", "master.gpkg"), "trees", 9, {"age_years": 40}) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be the same number of rows as initially # and updated age both in master + kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=9) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=2) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_value_equals(os.path.join(output_dir, "master.gpkg"), "trees", 8, "age_years", 30) _assert_value_equals(os.path.join(output_dir, "master.gpkg"), "trees", 9, "age_years", 40) _assert_value_equals(os.path.join(output_dir, "Kyle.gpkg"), "trees", 1000000, "age_years", 30) _assert_value_equals(os.path.join(output_dir, "Kyle.gpkg"), "trees", 1000001, "age_years", 40) def test_delete_row_wp(): """One row deleted in WP, no changes in master""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify a WP dataset - delete a tree (master fid 8 mapped to 1000000 for Kyle) open_layer_and_delete_feature(os.path.join(tmp_dir_2.name, "input", "Kyle.gpkg"), "trees", 1000000) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be one tree missing for master and for Kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=8) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=1) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_row_missing(os.path.join(output_dir, "master.gpkg"), "trees", 8) def test_delete_row_master(): """One row deleted in master, no changes in WP""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify a WP dataset - delete a tree (master fid 9 mapped to 1000001 for Kyle) open_layer_and_delete_feature(os.path.join(tmp_dir_2.name, "input", "master.gpkg"), "trees", 9) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be one tree missing for master and for Kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=8) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=1) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_row_missing(os.path.join(output_dir, "Kyle.gpkg"), "trees", 1000001) def test_insert_row_wp(): """One row has been added in WP, no changes in master""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify a WP dataset - add a row open_layer_and_create_feature( os.path.join(tmp_dir_2.name, "input", "Kyle.gpkg"), "trees", "POINT(6 16)", {"tree_species_id": 1, "farm_id": 4} ) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be one new tree in master and one new tree for Kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=10) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=3) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_row_exists(os.path.join(output_dir, "master.gpkg"), "trees", 10) def test_insert_row_master(): """One row has inserted in master, no changes in WP""" config_file = os.path.join(this_dir, "config-farm-basic.yml") tmp_dir_1 = _make_initial_farm_work_packages(config_file) tmp_dir_2 = _prepare_next_run_work_packages(tmp_dir_1) # modify master dataset - add a row open_layer_and_create_feature( os.path.join(tmp_dir_2.name, "input", "master.gpkg"), "trees", "POINT(9 19)", {"tree_species_id": 1, "farm_id": 4}, ) # run work packaging wp_config = load_config_from_yaml(config_file) make_work_packages(tmp_dir_2.name, wp_config) output_dir = os.path.join(tmp_dir_2.name, "output") # there should be one new tree in master and one new tree for Kyle _assert_row_counts(os.path.join(output_dir, "master.gpkg"), expected_farms=4, expected_trees=10) _assert_row_counts(os.path.join(output_dir, "Kyle.gpkg"), expected_farms=1, expected_trees=3) _assert_row_counts(os.path.join(output_dir, "Emma.gpkg"), expected_farms=2, expected_trees=6) _assert_row_exists(os.path.join(output_dir, "Kyle.gpkg"), "trees", 1000002) # TODO: more test cases # - delete_master_delete_wp # one row deleted in both master and WP # - delete_master_update_wp # one row deleted in master while it is updated in WP # - update_master_delete_wp # one row updated in master while it is deleted in WP # - insert_row_master_and_wp # one row has bee inserted in master, another row in WP # - update_master_update_wp # one row updated in master and the same row updated in WP
46.565217
120
0.73276
fca51bdc337eaab666c14f5beb312f00161152cc
31,246
py
Python
src/ircmsgs.py
atr000/Limnoria
1f60a9487ca4114f040135fb14cabc155a041918
[ "BSD-3-Clause" ]
null
null
null
src/ircmsgs.py
atr000/Limnoria
1f60a9487ca4114f040135fb14cabc155a041918
[ "BSD-3-Clause" ]
null
null
null
src/ircmsgs.py
atr000/Limnoria
1f60a9487ca4114f040135fb14cabc155a041918
[ "BSD-3-Clause" ]
1
2021-01-23T21:20:57.000Z
2021-01-23T21:20:57.000Z
### # Copyright (c) 2002-2005, Jeremiah Fincher # Copyright (c) 2010, James Vega # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### """ This module provides the basic IrcMsg object used throughout the bot to represent the actual messages. It also provides several helper functions to construct such messages in an easier way than the constructor for the IrcMsg object (which, as you'll read later, is quite...full-featured :)) """ import re import time import supybot.conf as conf import supybot.utils as utils from supybot.utils.iter import all import supybot.ircutils as ircutils ### # IrcMsg class -- used for representing IRC messages acquired from a network. ### class MalformedIrcMsg(ValueError): pass class IrcMsg(object): """Class to represent an IRC message. As usual, ignore attributes that begin with an underscore. They simply don't exist. Instances of this class are *not* to be modified, since they are hashable. Public attributes of this class are .prefix, .command, .args, .nick, .user, and .host. The constructor for this class is pretty intricate. It's designed to take any of three major (sets of) arguments. Called with no keyword arguments, it takes a single string that is a raw IRC message (such as one taken straight from the network). Called with keyword arguments, it *requires* a command parameter. Args is optional, but with most commands will be necessary. Prefix is obviously optional, since clients aren't allowed (well, technically, they are, but only in a completely useless way) to send prefixes to the server. Since this class isn't to be modified, the constructor also accepts a 'msg' keyword argument representing a message from which to take all the attributes not provided otherwise as keyword arguments. So, for instance, if a programmer wanted to take a PRIVMSG he'd gotten and simply redirect it to a different source, he could do this: IrcMsg(prefix='', args=(newSource, otherMsg.args[1]), msg=otherMsg) """ # It's too useful to be able to tag IrcMsg objects with extra, unforeseen # data. Goodbye, __slots__. # On second thought, let's use methods for tagging. __slots__ = ('args', 'command', 'host', 'nick', 'prefix', 'user', '_hash', '_str', '_repr', '_len', 'tags') def __init__(self, s='', command='', args=(), prefix='', msg=None): assert not (msg and s), 'IrcMsg.__init__ cannot accept both s and msg' if not s and not command and not msg: raise MalformedIrcMsg, 'IRC messages require a command.' self._str = None self._repr = None self._hash = None self._len = None self.tags = {} if s: originalString = s try: if not s.endswith('\n'): s += '\n' self._str = s if s[0] == ':': self.prefix, s = s[1:].split(None, 1) else: self.prefix = '' if ' :' in s: # Note the space: IPV6 addresses are bad w/o it. s, last = s.split(' :', 1) self.args = s.split() self.args.append(last.rstrip('\r\n')) else: self.args = s.split() self.command = self.args.pop(0) except (IndexError, ValueError): raise MalformedIrcMsg, repr(originalString) else: if msg is not None: if prefix: self.prefix = prefix else: self.prefix = msg.prefix if command: self.command = command else: self.command = msg.command if args: self.args = args else: self.args = msg.args self.tags = msg.tags.copy() else: self.prefix = prefix self.command = command assert all(ircutils.isValidArgument, args) self.args = args self.args = tuple(self.args) if isUserHostmask(self.prefix): (self.nick,self.user,self.host)=ircutils.splitHostmask(self.prefix) else: (self.nick, self.user, self.host) = (self.prefix,)*3 def __str__(self): if self._str is not None: return self._str if self.prefix: if len(self.args) > 1: self._str = ':%s %s %s :%s\r\n' % \ (self.prefix, self.command, ' '.join(self.args[:-1]), self.args[-1]) else: if self.args: self._str = ':%s %s :%s\r\n' % \ (self.prefix, self.command, self.args[0]) else: self._str = ':%s %s\r\n' % (self.prefix, self.command) else: if len(self.args) > 1: self._str = '%s %s :%s\r\n' % \ (self.command, ' '.join(self.args[:-1]), self.args[-1]) else: if self.args: self._str = '%s :%s\r\n' % (self.command, self.args[0]) else: self._str = '%s\r\n' % self.command return self._str def __len__(self): return len(str(self)) def __eq__(self, other): return isinstance(other, self.__class__) and \ hash(self) == hash(other) and \ self.command == other.command and \ self.prefix == other.prefix and \ self.args == other.args __req__ = __eq__ # I don't know exactly what this does, but it can't hurt. def __ne__(self, other): return not (self == other) __rne__ = __ne__ # Likewise as above. def __hash__(self): if self._hash is not None: return self._hash self._hash = hash(self.command) ^ \ hash(self.prefix) ^ \ hash(repr(self.args)) return self._hash def __repr__(self): if self._repr is not None: return self._repr self._repr = format('IrcMsg(prefix=%q, command=%q, args=%r)', self.prefix, self.command, self.args) return self._repr def __reduce__(self): return (self.__class__, (str(self),)) def tag(self, tag, value=True): self.tags[tag] = value def tagged(self, tag): return self.tags.get(tag) # Returns None if it's not there. def __getattr__(self, attr): return self.tagged(attr) def isCtcp(msg): """Returns whether or not msg is a CTCP message.""" return msg.command in ('PRIVMSG', 'NOTICE') and \ msg.args[1].startswith('\x01') and \ msg.args[1].endswith('\x01') and \ len(msg.args[1]) >= 2 def isAction(msg): """A predicate returning true if the PRIVMSG in question is an ACTION""" if isCtcp(msg): s = msg.args[1] payload = s[1:-1] # Chop off \x01. command = payload.split(None, 1)[0] return command == 'ACTION' else: return False def isSplit(msg): if msg.command == 'QUIT': # It's a quit. quitmsg = msg.args[0] if not quitmsg.startswith('"') and not quitmsg.endswith('"'): # It's not a user-generated quitmsg. servers = quitmsg.split() if len(servers) == 2: # We could check if domains match, or if the hostnames actually # resolve, but we're going to put that off for now. return True return False _unactionre = re.compile(r'^\x01ACTION\s+(.*)\x01$') def unAction(msg): """Returns the payload (i.e., non-ACTION text) of an ACTION msg.""" assert isAction(msg) return _unactionre.match(msg.args[1]).group(1) def _escape(s): s = s.replace('&', '&amp;') s = s.replace('"', '&quot;') s = s.replace('<', '&lt;') s = s.replace('>', '&gt;') return s def toXml(msg, pretty=True, includeTime=True): assert msg.command == _escape(msg.command) L = [] L.append('<msg command="%s" prefix="%s"'%(msg.command,_escape(msg.prefix))) if includeTime: L.append(' time="%s"' % time.time()) L.append('>') if pretty: L.append('\n') for arg in msg.args: if pretty: L.append(' ') L.append('<arg>%s</arg>' % _escape(arg)) if pretty: L.append('\n') L.append('</msg>\n') return ''.join(L) def prettyPrint(msg, addRecipients=False, timestampFormat=None, showNick=True): """Provides a client-friendly string form for messages. IIRC, I copied BitchX's (or was it XChat's?) format for messages. """ def nickorprefix(): return msg.nick or msg.prefix def nick(): if addRecipients: return '%s/%s' % (msg.nick, msg.args[0]) else: return msg.nick if msg.command == 'PRIVMSG': m = _unactionre.match(msg.args[1]) if m: s = '* %s %s' % (nick(), m.group(1)) else: if not showNick: s = '%s' % msg.args[1] else: s = '<%s> %s' % (nick(), msg.args[1]) elif msg.command == 'NOTICE': if not showNick: s = '%s' % msg.args[1] else: s = '-%s- %s' % (nick(), msg.args[1]) elif msg.command == 'JOIN': prefix = msg.prefix if msg.nick: prefix = '%s <%s>' % (msg.nick, prefix) s = '*** %s has joined %s' % (prefix, msg.args[0]) elif msg.command == 'PART': if len(msg.args) > 1: partmsg = ' (%s)' % msg.args[1] else: partmsg = '' s = '*** %s <%s> has parted %s%s' % (msg.nick, msg.prefix, msg.args[0], partmsg) elif msg.command == 'KICK': if len(msg.args) > 2: kickmsg = ' (%s)' % msg.args[1] else: kickmsg = '' s = '*** %s was kicked by %s%s' % (msg.args[1], msg.nick, kickmsg) elif msg.command == 'MODE': s = '*** %s sets mode: %s' % (nickorprefix(), ' '.join(msg.args)) elif msg.command == 'QUIT': if msg.args: quitmsg = ' (%s)' % msg.args[0] else: quitmsg = '' s = '*** %s <%s> has quit IRC%s' % (msg.nick, msg.prefix, quitmsg) elif msg.command == 'TOPIC': s = '*** %s changes topic to %s' % (nickorprefix(), msg.args[1]) elif msg.command == 'NICK': s = '*** %s is now known as %s' % (msg.nick, msg.args[0]) else: s = utils.str.format('--- Unknown command %q', ' '.join(msg.args)) at = getattr(msg, 'receivedAt', None) if timestampFormat and at: s = '%s %s' % (time.strftime(timestampFormat, time.localtime(at)), s) return s ### # Various IrcMsg functions ### isNick = ircutils.isNick isChannel = ircutils.isChannel isUserHostmask = ircutils.isUserHostmask def pong(payload, prefix='', msg=None): """Takes a payload and returns the proper PONG IrcMsg.""" if conf.supybot.protocols.irc.strictRfc(): assert payload, 'PONG requires a payload' if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='PONG', args=(payload,), msg=msg) def ping(payload, prefix='', msg=None): """Takes a payload and returns the proper PING IrcMsg.""" if conf.supybot.protocols.irc.strictRfc(): assert payload, 'PING requires a payload' if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='PING', args=(payload,), msg=msg) def op(channel, nick, prefix='', msg=None): """Returns a MODE to op nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '+o', nick), msg=msg) def ops(channel, nicks, prefix='', msg=None): """Returns a MODE to op each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert nicks, 'Nicks must not be empty.' assert all(isNick, nicks), nicks if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '+' + ('o'*len(nicks))) + tuple(nicks), msg=msg) def deop(channel, nick, prefix='', msg=None): """Returns a MODE to deop nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '-o', nick), msg=msg) def deops(channel, nicks, prefix='', msg=None): """Returns a MODE to deop each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert nicks, 'Nicks must not be empty.' assert all(isNick, nicks), nicks if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', msg=msg, args=(channel, '-' + ('o'*len(nicks))) + tuple(nicks)) def halfop(channel, nick, prefix='', msg=None): """Returns a MODE to halfop nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '+h', nick), msg=msg) def halfops(channel, nicks, prefix='', msg=None): """Returns a MODE to halfop each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert nicks, 'Nicks must not be empty.' assert all(isNick, nicks), nicks if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', msg=msg, args=(channel, '+' + ('h'*len(nicks))) + tuple(nicks)) def dehalfop(channel, nick, prefix='', msg=None): """Returns a MODE to dehalfop nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '-h', nick), msg=msg) def dehalfops(channel, nicks, prefix='', msg=None): """Returns a MODE to dehalfop each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert nicks, 'Nicks must not be empty.' assert all(isNick, nicks), nicks if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', msg=msg, args=(channel, '-' + ('h'*len(nicks))) + tuple(nicks)) def voice(channel, nick, prefix='', msg=None): """Returns a MODE to voice nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '+v', nick), msg=msg) def voices(channel, nicks, prefix='', msg=None): """Returns a MODE to voice each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert nicks, 'Nicks must not be empty.' assert all(isNick, nicks) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', msg=msg, args=(channel, '+' + ('v'*len(nicks))) + tuple(nicks)) def devoice(channel, nick, prefix='', msg=None): """Returns a MODE to devoice nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '-v', nick), msg=msg) def devoices(channel, nicks, prefix='', msg=None): """Returns a MODE to devoice each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert nicks, 'Nicks must not be empty.' assert all(isNick, nicks), nicks if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', msg=msg, args=(channel, '-' + ('v'*len(nicks))) + tuple(nicks)) def ban(channel, hostmask, exception='', prefix='', msg=None): """Returns a MODE to ban nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isUserHostmask(hostmask), repr(hostmask) modes = [('+b', hostmask)] if exception: modes.append(('+e', exception)) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=[channel] + ircutils.joinModes(modes), msg=msg) def bans(channel, hostmasks, exceptions=(), prefix='', msg=None): """Returns a MODE to ban each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert all(isUserHostmask, hostmasks), hostmasks modes = [('+b', s) for s in hostmasks] + [('+e', s) for s in exceptions] if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=[channel] + ircutils.joinModes(modes), msg=msg) def unban(channel, hostmask, prefix='', msg=None): """Returns a MODE to unban nick on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isUserHostmask(hostmask), repr(hostmask) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=(channel, '-b', hostmask), msg=msg) def unbans(channel, hostmasks, prefix='', msg=None): """Returns a MODE to unban each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert all(isUserHostmask, hostmasks), hostmasks modes = [('-b', s) for s in hostmasks] if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=[channel] + ircutils.joinModes(modes), msg=msg) def kick(channel, nick, s='', prefix='', msg=None): """Returns a KICK to kick nick from channel with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix if s: return IrcMsg(prefix=prefix, command='KICK', args=(channel, nick, s), msg=msg) else: return IrcMsg(prefix=prefix, command='KICK', args=(channel, nick), msg=msg) def kicks(channel, nicks, s='', prefix='', msg=None): """Returns a KICK to kick each of nicks from channel with the message msg. """ if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) assert all(isNick, nicks), nicks if msg and not prefix: prefix = msg.prefix if s: return IrcMsg(prefix=prefix, command='KICK', args=(channel, ','.join(nicks), s), msg=msg) else: return IrcMsg(prefix=prefix, command='KICK', args=(channel, ','.join(nicks)), msg=msg) def privmsg(recipient, s, prefix='', msg=None): """Returns a PRIVMSG to recipient with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert (isChannel(recipient) or isNick(recipient)), repr(recipient) assert s, 's must not be empty.' if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='PRIVMSG', args=(recipient, s), msg=msg) def dcc(recipient, kind, *args, **kwargs): # Stupid Python won't allow (recipient, kind, *args, prefix=''), so we have # to use the **kwargs form. Blech. assert isNick(recipient), 'Can\'t DCC a channel.' kind = kind.upper() assert kind in ('SEND', 'CHAT', 'RESUME', 'ACCEPT'), 'Invalid DCC command.' args = (kind,) + args return IrcMsg(prefix=kwargs.get('prefix', ''), command='PRIVMSG', args=(recipient, ' '.join(args))) def action(recipient, s, prefix='', msg=None): """Returns a PRIVMSG ACTION to recipient with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert (isChannel(recipient) or isNick(recipient)), repr(recipient) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='PRIVMSG', args=(recipient, '\x01ACTION %s\x01' % s), msg=msg) def notice(recipient, s, prefix='', msg=None): """Returns a NOTICE to recipient with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert (isChannel(recipient) or isNick(recipient)), repr(recipient) assert s, 'msg must not be empty.' if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='NOTICE', args=(recipient, s), msg=msg) def join(channel, key=None, prefix='', msg=None): """Returns a JOIN to a channel""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) if msg and not prefix: prefix = msg.prefix if key is None: return IrcMsg(prefix=prefix, command='JOIN', args=(channel,), msg=msg) else: if conf.supybot.protocols.irc.strictRfc(): assert key.translate(utils.str.chars, utils.str.chars[128:]) == key and \ '\x00' not in key and \ '\r' not in key and \ '\n' not in key and \ '\f' not in key and \ '\t' not in key and \ '\v' not in key and \ ' ' not in key return IrcMsg(prefix=prefix, command='JOIN', args=(channel, key), msg=msg) def joins(channels, keys=None, prefix='', msg=None): """Returns a JOIN to each of channels.""" if conf.supybot.protocols.irc.strictRfc(): assert all(isChannel, channels), channels if msg and not prefix: prefix = msg.prefix if keys is None: keys = [] assert len(keys) <= len(channels), 'Got more keys than channels.' if not keys: return IrcMsg(prefix=prefix, command='JOIN', args=(','.join(channels),), msg=msg) else: for key in keys: if conf.supybot.protocols.irc.strictRfc(): assert key.translate(utils.str.chars, utils.str.chars[128:])==key and \ '\x00' not in key and \ '\r' not in key and \ '\n' not in key and \ '\f' not in key and \ '\t' not in key and \ '\v' not in key and \ ' ' not in key return IrcMsg(prefix=prefix, command='JOIN', args=(','.join(channels), ','.join(keys)), msg=msg) def part(channel, s='', prefix='', msg=None): """Returns a PART from channel with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) if msg and not prefix: prefix = msg.prefix if s: return IrcMsg(prefix=prefix, command='PART', args=(channel, s), msg=msg) else: return IrcMsg(prefix=prefix, command='PART', args=(channel,), msg=msg) def parts(channels, s='', prefix='', msg=None): """Returns a PART from each of channels with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert all(isChannel, channels), channels if msg and not prefix: prefix = msg.prefix if s: return IrcMsg(prefix=prefix, command='PART', args=(','.join(channels), s), msg=msg) else: return IrcMsg(prefix=prefix, command='PART', args=(','.join(channels),), msg=msg) def quit(s='', prefix='', msg=None): """Returns a QUIT with the message msg.""" if msg and not prefix: prefix = msg.prefix if s: return IrcMsg(prefix=prefix, command='QUIT', args=(s,), msg=msg) else: return IrcMsg(prefix=prefix, command='QUIT', msg=msg) def topic(channel, topic=None, prefix='', msg=None): """Returns a TOPIC for channel with the topic topic.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) if msg and not prefix: prefix = msg.prefix if topic is None: return IrcMsg(prefix=prefix, command='TOPIC', args=(channel,), msg=msg) else: return IrcMsg(prefix=prefix, command='TOPIC', args=(channel, topic), msg=msg) def nick(nick, prefix='', msg=None): """Returns a NICK with nick nick.""" if conf.supybot.protocols.irc.strictRfc(): assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='NICK', args=(nick,), msg=msg) def user(ident, user, prefix='', msg=None): """Returns a USER with ident ident and user user.""" if conf.supybot.protocols.irc.strictRfc(): assert '\x00' not in ident and \ '\r' not in ident and \ '\n' not in ident and \ ' ' not in ident and \ '@' not in ident if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='USER', args=(ident, '0', '*', user), msg=msg) def who(hostmaskOrChannel, prefix='', msg=None): """Returns a WHO for the hostmask or channel hostmaskOrChannel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(hostmaskOrChannel) or \ isUserHostmask(hostmaskOrChannel), repr(hostmaskOrChannel) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='WHO', args=(hostmaskOrChannel,), msg=msg) def whois(nick, mask='', prefix='', msg=None): """Returns a WHOIS for nick.""" if conf.supybot.protocols.irc.strictRfc(): assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix args = (nick,) if mask: args = (nick, mask) return IrcMsg(prefix=prefix, command='WHOIS', args=args, msg=msg) def names(channel=None, prefix='', msg=None): if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel) if msg and not prefix: prefix = msg.prefix if channel is not None: return IrcMsg(prefix=prefix, command='NAMES', args=(channel,), msg=msg) else: return IrcMsg(prefix=prefix, command='NAMES', msg=msg) def mode(channel, args=(), prefix='', msg=None): if msg and not prefix: prefix = msg.prefix if isinstance(args, basestring): args = (args,) else: args = tuple(map(str, args)) return IrcMsg(prefix=prefix, command='MODE', args=(channel,)+args, msg=msg) def modes(channel, args=(), prefix='', msg=None): """Returns a MODE to quiet each of nicks on channel.""" if conf.supybot.protocols.irc.strictRfc(): assert isChannel(channel), repr(channel) modes = args if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='MODE', args=[channel] + ircutils.joinModes(modes), msg=msg) def limit(channel, limit, prefix='', msg=None): return mode(channel, ['+l', limit], prefix=prefix, msg=msg) def unlimit(channel, limit, prefix='', msg=None): return mode(channel, ['-l', limit], prefix=prefix, msg=msg) def invite(nick, channel, prefix='', msg=None): """Returns an INVITE for nick.""" if conf.supybot.protocols.irc.strictRfc(): assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='INVITE', args=(nick, channel), msg=msg) def password(password, prefix='', msg=None): """Returns a PASS command for accessing a server.""" if conf.supybot.protocols.irc.strictRfc(): assert password, 'password must not be empty.' if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='PASS', args=(password,), msg=msg) def ison(nick, prefix='', msg=None): if conf.supybot.protocols.irc.strictRfc(): assert isNick(nick), repr(nick) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='ISON', args=(nick,), msg=msg) def error(s, msg=None): return IrcMsg(command='ERROR', args=(s,), msg=msg) # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
39.106383
80
0.587659
84ef45d9593589dd69b869cebcf4ccca82eaf42c
2,239
py
Python
tensorflow/python/data/experimental/kernel_tests/optimization/noop_elimination_test.py
leike666666/tensorflow
a3fd0ddfcb716be124e95b51e96e6c1e4507ef64
[ "Apache-2.0" ]
56
2018-06-21T13:47:23.000Z
2020-05-13T09:31:47.000Z
tensorflow/python/data/experimental/kernel_tests/optimization/noop_elimination_test.py
sagol/tensorflow
04f2870814d2773e09dcfa00cbe76a66a2c4de88
[ "Apache-2.0" ]
58
2021-11-22T05:41:28.000Z
2022-01-19T01:33:40.000Z
tensorflow/python/data/experimental/kernel_tests/optimization/noop_elimination_test.py
sagol/tensorflow
04f2870814d2773e09dcfa00cbe76a66a2c4de88
[ "Apache-2.0" ]
15
2018-09-06T14:18:32.000Z
2020-05-14T06:35:30.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the `NoopElimination` optimization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.python.data.experimental.ops import testing from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import combinations from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class NoopEliminationTest(test_base.DatasetTestBase, parameterized.TestCase): @combinations.generate(test_base.default_test_combinations()) def testNoopElimination(self): a = constant_op.constant(1, dtype=dtypes.int64) b = constant_op.constant(2, dtype=dtypes.int64) some_tensor = math_ops.mul(a, b) dataset = dataset_ops.Dataset.range(5) dataset = dataset.apply( testing.assert_next( ["FiniteRepeat", "FiniteSkip", "Prefetch", "MemoryCacheImpl"])) dataset = dataset.repeat(some_tensor).skip(5).take(-1).skip(0).repeat( 1).prefetch(0).prefetch(1).cache() options = dataset_ops.Options() options.experimental_optimization.apply_default_optimizations = False options.experimental_optimization.noop_elimination = True dataset = dataset.with_options(options) self.assertDatasetProduces(dataset, expected_output=range(5)) if __name__ == "__main__": test.main()
40.709091
80
0.750335
9455e0e44cb5fce8f17cde02b11a0b46b3bdfdc1
8,921
py
Python
tensorflow_serving/apis/session_service_pb2.py
alexeygrigorev/tensorflow-protobuf
9863a9281eb6caa9be73128c03906d990639208c
[ "Apache-2.0" ]
7
2020-12-28T02:53:05.000Z
2022-03-23T05:45:03.000Z
tensorflow_serving/apis/session_service_pb2.py
alexeygrigorev/tensorflow-protobuf
9863a9281eb6caa9be73128c03906d990639208c
[ "Apache-2.0" ]
1
2021-01-27T16:06:16.000Z
2021-01-27T19:43:38.000Z
tensorflow_serving/apis/session_service_pb2.py
alexeygrigorev/tensorflow-protobuf
9863a9281eb6caa9be73128c03906d990639208c
[ "Apache-2.0" ]
1
2021-02-11T11:46:01.000Z
2021-02-11T11:46:01.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow_serving/apis/session_service.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tensorflow_serving.apis import model_pb2 as tensorflow__serving_dot_apis_dot_model__pb2 from tensorflow.core.protobuf import config_pb2 as tensorflow_dot_core_dot_protobuf_dot_config__pb2 from tensorflow.core.protobuf import named_tensor_pb2 as tensorflow_dot_core_dot_protobuf_dot_named__tensor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow_serving/apis/session_service.proto', package='tensorflow.serving', syntax='proto3', serialized_options=b'\370\001\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n-tensorflow_serving/apis/session_service.proto\x12\x12tensorflow.serving\x1a#tensorflow_serving/apis/model.proto\x1a%tensorflow/core/protobuf/config.proto\x1a+tensorflow/core/protobuf/named_tensor.proto\"\xba\x01\n\x11SessionRunRequest\x12\x31\n\nmodel_spec\x18\x01 \x01(\x0b\x32\x1d.tensorflow.serving.ModelSpec\x12*\n\x04\x66\x65\x65\x64\x18\x02 \x03(\x0b\x32\x1c.tensorflow.NamedTensorProto\x12\r\n\x05\x66\x65tch\x18\x03 \x03(\t\x12\x0e\n\x06target\x18\x04 \x03(\t\x12\'\n\x07options\x18\x05 \x01(\x0b\x32\x16.tensorflow.RunOptions\"\xa0\x01\n\x12SessionRunResponse\x12\x31\n\nmodel_spec\x18\x03 \x01(\x0b\x32\x1d.tensorflow.serving.ModelSpec\x12,\n\x06tensor\x18\x01 \x03(\x0b\x32\x1c.tensorflow.NamedTensorProto\x12)\n\x08metadata\x18\x02 \x01(\x0b\x32\x17.tensorflow.RunMetadata2m\n\x0eSessionService\x12[\n\nSessionRun\x12%.tensorflow.serving.SessionRunRequest\x1a&.tensorflow.serving.SessionRunResponseB\x03\xf8\x01\x01\x62\x06proto3' , dependencies=[tensorflow__serving_dot_apis_dot_model__pb2.DESCRIPTOR,tensorflow_dot_core_dot_protobuf_dot_config__pb2.DESCRIPTOR,tensorflow_dot_core_dot_protobuf_dot_named__tensor__pb2.DESCRIPTOR,]) _SESSIONRUNREQUEST = _descriptor.Descriptor( name='SessionRunRequest', full_name='tensorflow.serving.SessionRunRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_spec', full_name='tensorflow.serving.SessionRunRequest.model_spec', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='feed', full_name='tensorflow.serving.SessionRunRequest.feed', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='fetch', full_name='tensorflow.serving.SessionRunRequest.fetch', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='target', full_name='tensorflow.serving.SessionRunRequest.target', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='options', full_name='tensorflow.serving.SessionRunRequest.options', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=191, serialized_end=377, ) _SESSIONRUNRESPONSE = _descriptor.Descriptor( name='SessionRunResponse', full_name='tensorflow.serving.SessionRunResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_spec', full_name='tensorflow.serving.SessionRunResponse.model_spec', index=0, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='tensor', full_name='tensorflow.serving.SessionRunResponse.tensor', index=1, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metadata', full_name='tensorflow.serving.SessionRunResponse.metadata', index=2, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=380, serialized_end=540, ) _SESSIONRUNREQUEST.fields_by_name['model_spec'].message_type = tensorflow__serving_dot_apis_dot_model__pb2._MODELSPEC _SESSIONRUNREQUEST.fields_by_name['feed'].message_type = tensorflow_dot_core_dot_protobuf_dot_named__tensor__pb2._NAMEDTENSORPROTO _SESSIONRUNREQUEST.fields_by_name['options'].message_type = tensorflow_dot_core_dot_protobuf_dot_config__pb2._RUNOPTIONS _SESSIONRUNRESPONSE.fields_by_name['model_spec'].message_type = tensorflow__serving_dot_apis_dot_model__pb2._MODELSPEC _SESSIONRUNRESPONSE.fields_by_name['tensor'].message_type = tensorflow_dot_core_dot_protobuf_dot_named__tensor__pb2._NAMEDTENSORPROTO _SESSIONRUNRESPONSE.fields_by_name['metadata'].message_type = tensorflow_dot_core_dot_protobuf_dot_config__pb2._RUNMETADATA DESCRIPTOR.message_types_by_name['SessionRunRequest'] = _SESSIONRUNREQUEST DESCRIPTOR.message_types_by_name['SessionRunResponse'] = _SESSIONRUNRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) SessionRunRequest = _reflection.GeneratedProtocolMessageType('SessionRunRequest', (_message.Message,), { 'DESCRIPTOR' : _SESSIONRUNREQUEST, '__module__' : 'tensorflow_serving.apis.session_service_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.SessionRunRequest) }) _sym_db.RegisterMessage(SessionRunRequest) SessionRunResponse = _reflection.GeneratedProtocolMessageType('SessionRunResponse', (_message.Message,), { 'DESCRIPTOR' : _SESSIONRUNRESPONSE, '__module__' : 'tensorflow_serving.apis.session_service_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.SessionRunResponse) }) _sym_db.RegisterMessage(SessionRunResponse) DESCRIPTOR._options = None _SESSIONSERVICE = _descriptor.ServiceDescriptor( name='SessionService', full_name='tensorflow.serving.SessionService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=542, serialized_end=651, methods=[ _descriptor.MethodDescriptor( name='SessionRun', full_name='tensorflow.serving.SessionService.SessionRun', index=0, containing_service=None, input_type=_SESSIONRUNREQUEST, output_type=_SESSIONRUNRESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_SESSIONSERVICE) DESCRIPTOR.services_by_name['SessionService'] = _SESSIONSERVICE # @@protoc_insertion_point(module_scope)
46.952632
963
0.794754
936620f7a6e11dc66e8cf1ba017c7193aa9ebe15
916
py
Python
pykgr/environment.py
DylanEHolland/pykgr
e66442790a29b0fa0d1e4586abf442cd927c8015
[ "BSD-3-Clause" ]
null
null
null
pykgr/environment.py
DylanEHolland/pykgr
e66442790a29b0fa0d1e4586abf442cd927c8015
[ "BSD-3-Clause" ]
null
null
null
pykgr/environment.py
DylanEHolland/pykgr
e66442790a29b0fa0d1e4586abf442cd927c8015
[ "BSD-3-Clause" ]
null
null
null
import os from pykgr import config from pykgr.builder import Builder class Environment(object): builder = None variables = None def __init__(self): self.variables = dict(os.environ) self.builder = Builder( directory=config.builder_directory ) def build_builder(self): pass def build_package(self, package_name): self.builder.build(package_name) def __str__(self): return "<Environment: %s>" % id(self) def build_directories(): if not os.path.exists(config.root_directory): os.mkdir(config.root_directory) for d in [ config.main_directory, config.source_directory, config.source_tarballs_directory, config.library_directory ]: if not os.path.exists(d): os.mkdir(d) def initialize(): build_directories() env = Environment() return env
21.302326
49
0.635371
fcc793fb7ae9e5682a1bdd01da453cea065eb2cd
7,221
py
Python
generate_vectors.py
Huge/python-shamir-mnemonic
f736c38078207b0729994730621bba95e8b79ebd
[ "MIT" ]
122
2018-10-23T13:02:49.000Z
2022-03-24T08:39:06.000Z
generate_vectors.py
precyx/python-shamir-mnemonic
be319758cf6bdb60b2dc3a3470d041f1ada25750
[ "MIT" ]
40
2019-03-07T03:18:07.000Z
2021-12-07T11:11:16.000Z
generate_vectors.py
precyx/python-shamir-mnemonic
be319758cf6bdb60b2dc3a3470d041f1ada25750
[ "MIT" ]
34
2018-11-07T13:59:36.000Z
2022-03-19T18:32:19.000Z
#!/usr/bin/env python3 import json import random import attr from shamir_mnemonic import constants, rs1024, shamir, wordlist from shamir_mnemonic.share import Share def random_bytes(n): return bytes(random.randrange(256) for _ in range(n)) def output(description, mnemonics, secret): output.i += 1 output.data.append((f"{output.i}. {description}", mnemonics, secret.hex())) def encode_mnemonic(*args): return Share(*args).mnemonic() def decode_mnemonic(mnemonic): return list(attr.astuple(Share.from_mnemonic(mnemonic))) def generate_mnemonics_random(group_threshold, groups): secret = random_bytes(16) return shamir.generate_mnemonics( group_threshold, groups, secret, iteration_exponent=0 ) output.i = 0 output.data = [] shamir.RANDOM_BYTES = random_bytes if __name__ == "__main__": random.seed(1337) for n in [16, 32]: description = "Valid mnemonic without sharing ({} bits)" secret = random_bytes(n) groups = shamir.generate_mnemonics( 1, [(1, 1)], secret, b"TREZOR", iteration_exponent=0 ) output(description.format(8 * n), groups[0], secret) description = "Mnemonic with invalid checksum ({} bits)" indices = wordlist.mnemonic_to_indices(groups[0][0]) indices[-1] ^= 1 mnemonic = wordlist.mnemonic_from_indices(indices) output(description.format(8 * n), [mnemonic], b"") description = "Mnemonic with invalid padding ({} bits)" overflowing_bits = (8 * n) % constants.RADIX_BITS if overflowing_bits: indices = wordlist.mnemonic_to_indices(groups[0][0]) indices[4] += 1 << overflowing_bits indices = indices[: -constants.CHECKSUM_LENGTH_WORDS] mnemonic = wordlist.mnemonic_from_indices( indices + rs1024.create_checksum(indices) ) output(description.format(8 * n), [mnemonic], b"") description = "Basic sharing 2-of-3 ({} bits)" secret = random_bytes(n) groups = shamir.generate_mnemonics(1, [(2, 3)], secret, b"TREZOR", 2) output(description.format(8 * n), random.sample(groups[0], 2), secret) output(description.format(8 * n), random.sample(groups[0], 1), b"") description = "Mnemonics with different identifiers ({} bits)" groups = generate_mnemonics_random(1, [(2, 2)]) data = decode_mnemonic(groups[0][0]) data[0] ^= 1 # modify the identifier mnemonics = [encode_mnemonic(*data), groups[0][1]] output(description.format(8 * n), mnemonics, b"") description = "Mnemonics with different iteration exponents ({} bits)" groups = generate_mnemonics_random(1, [(2, 2)]) data = decode_mnemonic(groups[0][0]) data[1] = 3 # change iteration exponent from 0 to 3 mnemonics = [encode_mnemonic(*data), groups[0][1]] output(description.format(8 * n), mnemonics, b"") description = "Mnemonics with mismatching group thresholds ({} bits)" groups = generate_mnemonics_random(2, [(1, 1), (2, 2)]) data = decode_mnemonic(groups[0][0]) data[3] = 1 # change group threshold from 2 to 1 mnemonics = groups[1] + [encode_mnemonic(*data)] output(description.format(8 * n), mnemonics, b"") description = "Mnemonics with mismatching group counts ({} bits)" groups = generate_mnemonics_random(1, [(2, 2)]) data = decode_mnemonic(groups[0][0]) data[4] = 3 # change group count from 1 to 3 mnemonics = [encode_mnemonic(*data), groups[0][1]] output(description.format(8 * n), mnemonics, b"") description = ( "Mnemonics with greater group threshold than group counts ({} bits)" ) groups = generate_mnemonics_random(2, [(2, 2), (1, 1)]) mnemonics = [] for group in groups: for mnemonic in group: data = decode_mnemonic(mnemonic) data[4] = 1 # change group count from 2 to 1 mnemonics.append(encode_mnemonic(*data)) output(description.format(8 * n), mnemonics, b"") description = "Mnemonics with duplicate member indices ({} bits)" groups = generate_mnemonics_random(1, [(2, 3)]) data = decode_mnemonic(groups[0][0]) data[5] = 2 # change member index from 0 to 2 mnemonics = [encode_mnemonic(*data), groups[0][2]] output(description.format(8 * n), mnemonics, b"") description = "Mnemonics with mismatching member thresholds ({} bits)" groups = generate_mnemonics_random(1, [(2, 2)]) data = decode_mnemonic(groups[0][0]) data[6] = 1 # change member threshold from 2 to 1 mnemonics = [encode_mnemonic(*data), groups[0][1]] output(description.format(8 * n), mnemonics, b"") description = "Mnemonics giving an invalid digest ({} bits)" groups = generate_mnemonics_random(1, [(2, 2)]) data = decode_mnemonic(groups[0][0]) data[7] = bytes((data[7][0] ^ 1,)) + data[7][1:] # modify the share value mnemonics = [encode_mnemonic(*data), groups[0][1]] output(description.format(8 * n), mnemonics, b"") # Group sharing. secret = random_bytes(n) groups = shamir.generate_mnemonics( 2, [(1, 1), (1, 1), (3, 5), (2, 6)], secret, b"TREZOR", iteration_exponent=0 ) description = "Insufficient number of groups ({} bits, case {})" output(description.format(8 * n, 1), [groups[1][0]], b"") output(description.format(8 * n, 2), random.sample(groups[3], 2), b"") description = "Threshold number of groups, but insufficient number of members in one group ({} bits)" output(description.format(8 * n), [groups[3][2], groups[1][0]], b"") description = ( "Threshold number of groups and members in each group ({} bits, case {})" ) mnemonics = random.sample(groups[2], 3) + random.sample(groups[3], 2) random.shuffle(mnemonics) output(description.format(8 * n, 1), mnemonics, secret) mnemonics = groups[1] + random.sample(groups[3], 2) random.shuffle(mnemonics) output(description.format(8 * n, 2), mnemonics, secret) output(description.format(8 * n, 3), [groups[1][0], groups[0][0]], secret) description = "Mnemonic with insufficient length" secret = random_bytes((shamir.MIN_STRENGTH_BITS // 8) - 2) identifier = random.randrange(1 << shamir.ID_LENGTH_BITS) mnemonic = encode_mnemonic(identifier, 0, 0, 1, 1, 0, 1, secret) output(description, [mnemonic], b"") description = "Mnemonic with invalid master secret length" secret = b"\xff" + random_bytes(shamir.MIN_STRENGTH_BITS // 8) identifier = random.randrange(1 << shamir.ID_LENGTH_BITS) mnemonic = encode_mnemonic(identifier, 0, 0, 1, 1, 0, 1, secret) output(description, [mnemonic], b"") with open("vectors.json", "w") as f: json.dump( output.data, f, sort_keys=True, indent=2, separators=(",", ": "), ensure_ascii=False, )
39.675824
109
0.61515
541d80816b80f4bda9f934a2a4b19c2820d0e022
1,285
py
Python
python/graphscope/framework/vineyard_object.py
wenyuanyu/GraphScope
a40ccaf70557e608d8b091eb25ab04477f99ce21
[ "Apache-2.0" ]
2
2020-12-15T08:42:10.000Z
2022-01-14T09:13:16.000Z
python/graphscope/framework/vineyard_object.py
wenyuanyu/GraphScope
a40ccaf70557e608d8b091eb25ab04477f99ce21
[ "Apache-2.0" ]
1
2020-12-22T13:15:40.000Z
2020-12-22T13:15:40.000Z
python/graphscope/framework/vineyard_object.py
wenyuanyu/GraphScope
a40ccaf70557e608d8b091eb25ab04477f99ce21
[ "Apache-2.0" ]
1
2021-11-23T03:40:43.000Z
2021-11-23T03:40:43.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # class VineyardObject: """A vineyard object may hold a id, or a name. Attributes: object_id object_name """ def __init__(self, object_id=None, object_name=None): self._object_id = object_id self._object_name = object_name @property def object_id(self): return self._object_id @object_id.setter def object_id(self, object_id): self._object_id = object_id @property def object_name(self): return self._object_name @object_name.setter def object_name(self, object_name): self._object_name = object_name
27.340426
74
0.700389
0c3f386612692b6ca0f74398b5d72bc4eb6481d8
1,237
tac
Python
docs/mail/tutorial/smtpserver/smtpserver-5.tac
hawkowl/twisted
c413aac3888dea2202c0dc26f978d7f88b4b837a
[ "Unlicense", "MIT" ]
1
2017-04-26T10:24:21.000Z
2017-04-26T10:24:21.000Z
docs/mail/tutorial/smtpserver/smtpserver-5.tac
hawkowl/twisted
c413aac3888dea2202c0dc26f978d7f88b4b837a
[ "Unlicense", "MIT" ]
5
2020-06-05T18:16:39.000Z
2022-01-13T00:45:49.000Z
docs/mail/tutorial/smtpserver/smtpserver-5.tac
hawkowl/twisted
c413aac3888dea2202c0dc26f978d7f88b4b837a
[ "Unlicense", "MIT" ]
1
2019-10-02T18:36:25.000Z
2019-10-02T18:36:25.000Z
import os from zope.interface import implementer from twisted.application import service application = service.Application("SMTP Server Tutorial") from twisted.application import internet from twisted.internet import protocol, defer smtpServerFactory = protocol.ServerFactory() from twisted.mail import smtp @implementer(smtp.IMessage) class FileMessage(object): def __init__(self, fileObj): self.fileObj = fileObj def lineReceived(self, line): self.fileObj.write(line + '\n') def eomReceived(self): self.fileObj.close() return defer.succeed(None) def connectionLost(self): self.fileObj.close() os.remove(self.fileObj.name) class TutorialESMTP(smtp.ESMTP): counter = 0 def validateTo(self, user): fileName = 'tutorial-smtp.' + str(self.counter) self.counter += 1 return lambda: FileMessage(open(fileName, 'w')) def validateFrom(self, helo, origin): return origin def receivedHeader(self, helo, origin, recipients): return 'Received: Tutorially.' smtpServerFactory.protocol = TutorialESMTP smtpServerService = internet.TCPServer(2025, smtpServerFactory) smtpServerService.setServiceParent(application)
24.74
63
0.717057
34d11e8ac422ba06d98f7d0105bdbf384f80f996
2,209
py
Python
tutorials/SAC/network/CriticNetwork.py
namjiwon1023/Code_With_RL
37beec975b1685e9f6cf991abed491b854b78173
[ "MIT" ]
3
2021-08-12T15:11:28.000Z
2021-09-27T16:04:16.000Z
tutorials/SAC/network/CriticNetwork.py
namjiwon1023/Code_With_RL
37beec975b1685e9f6cf991abed491b854b78173
[ "MIT" ]
null
null
null
tutorials/SAC/network/CriticNetwork.py
namjiwon1023/Code_With_RL
37beec975b1685e9f6cf991abed491b854b78173
[ "MIT" ]
1
2021-08-05T07:20:57.000Z
2021-08-05T07:20:57.000Z
# Copyright (c) 2021: Zhiyuan Nan (namjw@hanyang.ac.kr). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. import torch as T import torch.nn as nn import torch.optim as optim import os import random import torch.nn.functional as F import torch.optim as optim from torch.distributions import Normal import numpy as np class CriticNetwork(nn.Module): def __init__(self, n_states, n_actions, args): super(CriticNetwork, self).__init__() self.device = args.device self.checkpoint = os.path.join(args.save_dir + '/' + args.env_name, 'SAC_critic.pth') self.critic1 = nn.Sequential(nn.Linear(n_states + n_actions, args.hidden_size), nn.ReLU(), nn.Linear(args.hidden_size, args.hidden_size), nn.ReLU(), nn.Linear(args.hidden_size, 1) ) self.critic2 = nn.Sequential(nn.Linear(n_states + n_actions, args.hidden_size), nn.ReLU(), nn.Linear(args.hidden_size, args.hidden_size), nn.ReLU(), nn.Linear(args.hidden_size, 1) ) self.loss_func = nn.MSELoss() self.reset_parameters(self.critic1) self.reset_parameters(self.critic2) self.optimizer = optim.Adam(self.parameters(), lr=args.critic_lr) self.to(self.device) def forward(self, state, action): cat = T.cat((state, action), dim=1) Q1 = self.critic1(cat) Q2 = self.critic2(cat) return Q1, Q2 def reset_parameters(self, Sequential, std=1.0, bias_const=1e-6): for layer in Sequential: if isinstance(layer, nn.Linear): nn.init.orthogonal_(layer.weight, std) nn.init.constant_(layer.bias, bias_const) def save_model(self): T.save(self.state_dict(), self.checkpoint) def load_model(self): self.load_state_dict(T.load(self.checkpoint))
35.063492
93
0.56632
3b6f90a42fa02099f7c2d769d97ec359bd82733d
9,326
py
Python
timm/models/ghostnet.py
Robert-JunWang/pytorch-image-models
7c67d6aca992f039eece0af5f7c29a43d48c00e4
[ "Apache-2.0" ]
17,769
2019-05-02T08:08:25.000Z
2022-03-31T22:14:44.000Z
timm/models/ghostnet.py
Robert-JunWang/pytorch-image-models
7c67d6aca992f039eece0af5f7c29a43d48c00e4
[ "Apache-2.0" ]
556
2019-05-26T16:31:37.000Z
2022-03-30T04:21:07.000Z
timm/models/ghostnet.py
Robert-JunWang/pytorch-image-models
7c67d6aca992f039eece0af5f7c29a43d48c00e4
[ "Apache-2.0" ]
3,029
2019-05-14T01:18:28.000Z
2022-03-31T20:09:50.000Z
""" An implementation of GhostNet Model as defined in: GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 The train script of the model is similar to that of MobileNetV3 Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch """ import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .layers import SelectAdaptivePool2d, Linear, make_divisible from .efficientnet_blocks import SqueezeExcite, ConvBnAct from .helpers import build_model_with_cfg from .registry import register_model __all__ = ['GhostNet'] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = { 'ghostnet_050': _cfg(url=''), 'ghostnet_100': _cfg( url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'), 'ghostnet_130': _cfg(url=''), } _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class GhostModule(nn.Module): def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): super(GhostModule, self).__init__() self.oup = oup init_channels = math.ceil(oup / ratio) new_channels = init_channels * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), nn.BatchNorm2d(init_channels), nn.ReLU(inplace=True) if relu else nn.Sequential(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), nn.BatchNorm2d(new_channels), nn.ReLU(inplace=True) if relu else nn.Sequential(), ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.oup, :, :] class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class GhostNet(nn.Module): def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, in_chans=3, output_stride=32, global_pool='avg'): super(GhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.dropout = dropout self.feature_info = [] # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) block = GhostBottleneck stage_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio)) prev_chs = out_chs if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.pool_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) x = self.blocks(x) x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) return x def forward(self, x): x = self.forward_features(x) x = self.flatten(x) if self.dropout > 0.: x = F.dropout(x, p=self.dropout, training=self.training) x = self.classifier(x) return x def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): """ Constructs a GhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 16, 16, 0, 1]], # stage2 [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], # stage3 [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], # stage4 [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1] ], # stage5 [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( GhostNet, variant, pretrained, default_cfg=default_cfgs[variant], feature_cfg=dict(flatten_sequential=True), **model_kwargs) @register_model def ghostnet_050(pretrained=False, **kwargs): """ GhostNet-0.5x """ model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_100(pretrained=False, **kwargs): """ GhostNet-1.0x """ model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_130(pretrained=False, **kwargs): """ GhostNet-1.3x """ model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model
33.66787
120
0.599936
57cea09ee014705aaf1659c5cf32edc7339cbccd
181,101
py
Python
python/ccxt/async_support/zb.py
DoctorSlimm/ccxt
8f19512dfc5dac159eaeb465c98226c00252a9b6
[ "MIT" ]
1
2021-11-16T15:45:34.000Z
2021-11-16T15:45:34.000Z
python/ccxt/async_support/zb.py
DoctorSlimm/ccxt
8f19512dfc5dac159eaeb465c98226c00252a9b6
[ "MIT" ]
null
null
null
python/ccxt/async_support/zb.py
DoctorSlimm/ccxt
8f19512dfc5dac159eaeb465c98226c00252a9b6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import BadResponse from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import DuplicateOrderId from ccxt.base.errors import NotSupported from ccxt.base.errors import NetworkError from ccxt.base.errors import DDoSProtection from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import OnMaintenance from ccxt.base.errors import RequestTimeout from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class zb(Exchange): def describe(self): return self.deep_extend(super(zb, self).describe(), { 'id': 'zb', 'name': 'ZB', 'countries': ['CN'], # previously rateLimit = 100 # Trading and Margin 10 000 per minute(IP) => 10000 / 60 = 166.66666... per second => rateLimit = 1000/166.66666 = 6 # Trade and Margin 60 per second(apiKey) => weight = 166.666 / 60 = 2.778(2.7777777...) # Kline 1 per second => weight = 166.667 # v2 Futures API 100 per 2 seconds => 50 per second => weight = 3.334(3.3333333...) # for endpoints not mentioned in docs # previous rateLimit was 100 translating to 10 requests per second => weight = 166.666 / 10 = 16.667(16.666666...) 'rateLimit': 6, 'version': 'v1', 'certified': True, 'pro': True, 'has': { 'CORS': None, 'spot': True, 'margin': True, 'swap': True, 'future': None, 'option': None, 'addMargin': True, 'cancelAllOrders': True, 'cancelOrder': True, 'createMarketOrder': None, 'createOrder': True, 'createReduceOnlyOrder': False, 'createStopLimitOrder': True, 'createStopMarketOrder': True, 'createStopOrder': True, 'fetchBalance': True, 'fetchBorrowRate': True, 'fetchBorrowRateHistories': False, 'fetchBorrowRateHistory': False, 'fetchBorrowRates': True, 'fetchCanceledOrders': True, 'fetchClosedOrders': True, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchDepositAddresses': True, 'fetchDeposits': True, 'fetchFundingHistory': False, 'fetchFundingRate': True, 'fetchFundingRateHistory': True, 'fetchFundingRates': True, 'fetchIndexOHLCV': True, 'fetchLedger': True, 'fetchLeverage': False, 'fetchLeverageTiers': False, 'fetchMarketLeverageTiers': False, 'fetchMarkets': True, 'fetchMarkOHLCV': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': True, 'fetchPosition': True, 'fetchPositions': True, 'fetchPositionsRisk': False, 'fetchPremiumIndexOHLCV': False, 'fetchTicker': True, 'fetchTickers': True, 'fetchTrades': True, 'fetchTradingFee': False, 'fetchTradingFees': False, 'fetchWithdrawals': True, 'reduceMargin': True, 'setLeverage': True, 'setMarginMode': False, 'setPositionMode': False, 'transfer': True, 'withdraw': True, }, 'timeframes': { '1m': '1m', '3m': '3m', '5m': '5m', '15m': '15m', '30m': '30m', '1h': '1h', '2h': '2h', '4h': '4h', '6h': '6h', '12h': '12h', '1d': '1d', '3d': '3d', '5d': '5d', '1w': '1w', }, 'hostname': 'zb.com', # zb.cafe for users in China 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/32859187-cd5214f0-ca5e-11e7-967d-96568e2e2bd1.jpg', 'api': { 'spot': { 'v1': { 'public': 'https://api.{hostname}/data', 'private': 'https://trade.{hostname}/api', }, }, 'contract': { 'v1': { 'public': 'https://fapi.{hostname}/api/public', }, 'v2': { 'public': 'https://fapi.{hostname}/Server/api', 'private': 'https://fapi.{hostname}/Server/api', }, }, }, 'www': 'https://www.zb.com', 'doc': 'https://www.zb.com/i/developer', 'fees': 'https://www.zb.com/i/rate', 'referral': { 'url': 'https://www.zbex.club/en/register?ref=4301lera', 'discount': 0.16, }, }, 'api': { 'spot': { 'v1': { 'public': { 'get': { 'markets': 16.667, 'ticker': 16.667, 'allTicker': 16.667, 'depth': 16.667, 'trades': 16.667, 'kline': 166.667, # Kline 1 per second 'getGroupMarkets': 16.667, 'getFeeInfo': 16.667, }, }, 'private': { 'get': { # spot API 'order': 1, # Trade API 'orderMoreV2': 1, # Trade API 'cancelOrder': 1, # Trade API 'cancelAllOrdersAfter': 1, # Trade API TODO add cancelAllOrders 'getOrder': 1, # Trade API 'getOrders': 1, # Trade API 'getOrdersNew': 16.667, 'getOrdersIgnoreTradeType': 1, # Trade API 'getUnfinishedOrdersIgnoreTradeType': 1, # Trade API 'getFinishedAndPartialOrders': 1, # Trade API 'getAccountInfo': 16.667, 'getUserAddress': 16.667, 'getPayinAddress': 16.667, 'getWithdrawAddress': 16.667, 'getWithdrawRecord': 16.667, 'getChargeRecord': 16.667, 'getCnyWithdrawRecord': 16.667, 'getCnyChargeRecord': 16.667, 'withdraw': 16.667, # sub accounts 'addSubUser': 16.667, 'getSubUserList': 16.667, 'doTransferFunds': 16.667, 'createSubUserKey': 16.667, # removed on 2021-03-16 according to the update log in the API doc # leverage API 'getLeverAssetsInfo': 16.667, 'getLeverBills': 16.667, 'transferInLever': 16.667, 'transferOutLever': 16.667, 'loan': 16.667, 'cancelLoan': 16.667, 'getLoans': 16.667, 'getLoanRecords': 16.667, 'borrow': 16.667, 'autoBorrow': 16.667, 'repay': 16.667, 'doAllRepay': 16.667, 'getRepayments': 16.667, 'getFinanceRecords': 16.667, 'changeInvestMark': 16.667, 'changeLoop': 16.667, # cross API 'getCrossAssets': 16.667, 'getCrossBills': 16.667, 'transferInCross': 16.667, 'transferOutCross': 16.667, 'doCrossLoan': 16.667, 'doCrossRepay': 16.667, 'getCrossRepayRecords': 16.667, }, }, }, }, 'contract': { 'v1': { 'public': { 'get': { 'depth': 16.667, 'fundingRate': 16.667, 'indexKline': 16.667, 'indexPrice': 16.667, 'kline': 16.667, 'markKline': 16.667, 'markPrice': 16.667, 'ticker': 16.667, 'trade': 16.667, }, }, }, 'v2': { 'public': { 'get': { 'allForceOrders': 3.334, 'config/marketList': 3.334, 'topLongShortAccountRatio': 3.334, 'topLongShortPositionRatio': 3.334, 'fundingRate': 3.334, 'premiumIndex': 3.334, }, }, 'private': { 'get': { 'Fund/balance': 3.334, 'Fund/getAccount': 3.334, 'Fund/getBill': 3.334, 'Fund/getBillTypeList': 3.334, 'Fund/marginHistory': 3.334, 'Positions/getPositions': 3.334, 'Positions/getNominalValue': 3.334, 'Positions/marginInfo': 3.334, 'setting/get': 3.334, 'trade/getAllOrders': 3.334, 'trade/getOrder': 3.334, 'trade/getOrderAlgos': 3.334, 'trade/getTradeList': 3.334, 'trade/getUndoneOrders': 3.334, 'trade/tradeHistory': 3.334, }, 'post': { 'activity/buyTicket': 3.334, 'Fund/transferFund': 3.334, 'Positions/setMarginCoins': 3.334, 'Positions/updateAppendUSDValue': 3.334, 'Positions/updateMargin': 3.334, 'setting/setLeverage': 3.334, 'trade/batchOrder': 3.334, 'trade/batchCancelOrder': 3.334, 'trade/cancelAlgos': 3.334, 'trade/cancelAllOrders': 3.334, 'trade/cancelOrder': 3.334, 'trade/order': 3.334, 'trade/orderAlgo': 3.334, 'trade/updateOrderAlgo': 3.334, }, }, }, }, }, 'fees': { 'funding': { 'withdraw': {}, }, 'trading': { 'maker': self.parse_number('0.002'), 'taker': self.parse_number('0.002'), }, }, 'commonCurrencies': { 'ANG': 'Anagram', 'ENT': 'ENTCash', 'BCHABC': 'BCHABC', # conflict with BCH / BCHA 'BCHSV': 'BCHSV', # conflict with BCH / BSV }, 'options': { 'timeframes': { 'spot': { '1m': '1min', '3m': '3min', '5m': '5min', '15m': '15min', '30m': '30min', '1h': '1hour', '2h': '2hour', '4h': '4hour', '6h': '6hour', '12h': '12hour', '1d': '1day', '3d': '3day', '1w': '1week', }, 'swap': { '1m': '1M', '5m': '5M', '15m': '15M', '30m': '30M', '1h': '1H', '6h': '6H', '1d': '1D', '5d': '5D', }, }, }, 'precisionMode': TICK_SIZE, 'exceptions': { 'ws': { # '1000': ExchangeError, # The call is successful. '1001': ExchangeError, # General error prompt '1002': ExchangeError, # Internal Error '1003': AuthenticationError, # Fail to verify '1004': AuthenticationError, # The transaction password is locked '1005': AuthenticationError, # Wrong transaction password, please check it and re-enter。 '1006': PermissionDenied, # Real-name authentication is pending approval or unapproved '1007': ExchangeError, # Channel does not exist '1009': OnMaintenance, # This interface is under maintenance '1010': ExchangeNotAvailable, # Not available now '1012': PermissionDenied, # Insufficient permissions '1013': ExchangeError, # Cannot trade, please contact email: support@zb.cn for support. '1014': ExchangeError, # Cannot sell during the pre-sale period '2001': InsufficientFunds, # Insufficient CNY account balance '2002': InsufficientFunds, # Insufficient BTC account balance '2003': InsufficientFunds, # Insufficient LTC account balance '2005': InsufficientFunds, # Insufficient ETH account balance '2006': InsufficientFunds, # ETCInsufficient account balance '2007': InsufficientFunds, # BTSInsufficient account balance '2008': InsufficientFunds, # EOSInsufficient account balance '2009': InsufficientFunds, # BCCInsufficient account balance '3001': OrderNotFound, # Order not found or is completed '3002': InvalidOrder, # Invalid amount '3003': InvalidOrder, # Invalid quantity '3004': AuthenticationError, # User does not exist '3005': BadRequest, # Invalid parameter '3006': PermissionDenied, # Invalid IP or not consistent with the bound IP '3007': RequestTimeout, # The request time has expired '3008': ExchangeError, # Transaction not found '3009': InvalidOrder, # The price exceeds the limit '3010': PermissionDenied, # It fails to place an order, due to you have set up to prohibit trading of self market. '3011': InvalidOrder, # The entrusted price is abnormal, please modify it and place order again '3012': InvalidOrder, # Duplicate custom customerOrderId '4001': AccountSuspended, # APIThe interface is locked for one hour '4002': RateLimitExceeded, # Request too frequently }, 'exact': { # '1000': 'Successful operation', '10001': ExchangeError, # Operation failed '10002': PermissionDenied, # Operation is forbidden '10003': BadResponse, # Data existed '10004': BadResponse, # Date not exist '10005': PermissionDenied, # Forbidden to access the interface '10006': BadRequest, # Currency invalid or expired '10007': ExchangeError, # {0} '10008': ExchangeError, # Operation failed: {0} '10009': ExchangeError, # URL error '1001': ExchangeError, # 'General error message', '10010': AuthenticationError, # API KEY not exist '10011': AuthenticationError, # API KEY CLOSED '10012': AccountSuspended, # User API has been frozen, please contact customer service for processing '10013': AuthenticationError, # API verification failed '10014': AuthenticationError, # Invalid signature(1001) '10015': AuthenticationError, # Invalid signature(1002) '10016': AuthenticationError, # Invalid ip '10017': PermissionDenied, # Permission denied '10018': AccountSuspended, # User has been frozen, please contact customer service '10019': RequestTimeout, # Request time has expired '1002': ExchangeError, # 'Internal error', '10020': BadRequest, # {0}Parameter cannot be empty '10021': BadRequest, # {0}Invalid parameter '10022': BadRequest, # Request method error '10023': RateLimitExceeded, # Request frequency is too fast, exceeding the limit allowed by the interface '10024': AuthenticationError, # Login failed '10025': ExchangeError, # Non-personal operation '10026': NetworkError, # Failed to request interface, please try again '10027': RequestTimeout, # Timed out, please try again later '10028': ExchangeNotAvailable, # System busy, please try again later '10029': DDoSProtection, # Frequent operation, please try again later '1003': AuthenticationError, # 'Verification does not pass', '10030': BadRequest, # Currency already exist '10031': BadRequest, # Currency does not exist '10032': BadRequest, # Market existed '10033': BadRequest, # Market not exist '10034': BadRequest, # Currency error '10035': BadRequest, # Market not open '10036': BadRequest, # Ineffective market type '10037': ArgumentsRequired, # User id cannot be empty '10038': BadRequest, # Market id cannot be empty '10039': BadResponse, # Failed to get mark price '1004': AuthenticationError, # 'Funding security password lock', '10040': BadResponse, # Failed to obtain the opening margin configuration '10041': BadResponse, # Failed to obtain maintenance margin allocation '10042': ExchangeError, # Avg. price error '10043': ExchangeError, # Abnormal acquisition of liquidation price '10044': ExchangeError, # Unrealized profit and loss acquisition exception '10045': ExchangeError, # jdbcData source acquisition failed '10046': ExchangeError, # Invalid position opening direction '10047': ExchangeError, # The maximum position allowed by the current leverage multiple has been exceeded '10048': ExchangeError, # The maximum allowable order quantity has been exceeded '10049': NetworkError, # Failed to get the latest price '1005': AuthenticationError, # 'Funds security password is incorrect, please confirm and re-enter.', '1006': AuthenticationError, # 'Real-name certification pending approval or audit does not pass', '1009': ExchangeNotAvailable, # 'This interface is under maintenance', '1010': ExchangeNotAvailable, # Not available now '10100': OnMaintenance, # Sorry! System maintenance, stop operation '1012': PermissionDenied, # Insufficient permissions '1013': ExchangeError, # Cannot trade, please contact email: support@zb.cn for support. '1014': ExchangeError, # Cannot sell during the pre-sale period '11000': ExchangeError, # Funding change failed '11001': ExchangeError, # Position change failed '110011': ExchangeError, # Exceeds the maximum leverage allowed by the position '11002': ExchangeError, # Funding not exist '11003': ExchangeError, # Freeze records not exist '11004': InsufficientFunds, # Insufficient frozen funds '11005': InvalidOrder, # Insufficient positions '11006': InsufficientFunds, # Insufficient frozen positions '11007': OrderNotFound, # Position not exist '11008': ExchangeError, # The contract have positions, cannot be modified '11009': ExchangeError, # Failed to query data '110110': ExchangeError, # Exceed the market's maximum leverage '11012': InsufficientFunds, # Insufficient margin '11013': ExchangeError, # Exceeding accuracy limit '11014': ExchangeError, # Invalid bill type '11015': AuthenticationError, # Failed to add default account '11016': AuthenticationError, # Account not exist '11017': ExchangeError, # Funds are not frozen or unfrozen '11018': InsufficientFunds, # Insufficient funds '11019': ExchangeError, # Bill does not exist '11021': InsufficientFunds, # Inconsistent currency for funds transfer '11023': ExchangeError, # Same transaction currency '11030': PermissionDenied, # Position is locked, the operation is prohibited '11031': ExchangeError, # The number of bill changes is zero '11032': ExchangeError, # The same request is being processed, please do not submit it repeatedly '11033': ArgumentsRequired, # Position configuration data is empty '11034': ExchangeError, # Funding fee is being settled, please do not operate '12000': InvalidOrder, # Invalid order price '12001': InvalidOrder, # Invalid order amount '12002': InvalidOrder, # Invalid order type '12003': InvalidOrder, # Invalid price accuracy '12004': InvalidOrder, # Invalid quantity precision '12005': InvalidOrder, # order value less than the minimum or greater than the maximum '12006': InvalidOrder, # Customize's order number format is wrong '12007': InvalidOrder, # Direction error '12008': InvalidOrder, # Order type error '12009': InvalidOrder, # Commission type error '12010': InvalidOrder, # Failed to place the order, the loss of the order placed at self price will exceed margin '12011': InvalidOrder, # it's not a buz order '12012': OrderNotFound, # order not exist '12013': InvalidOrder, # Order user does not match '12014': InvalidOrder, # Order is still in transaction '12015': InvalidOrder, # Order preprocessing failed '12016': InvalidOrder, # Order cannot be canceled '12017': InvalidOrder, # Transaction Record not exist '12018': InvalidOrder, # Order failed '12019': ArgumentsRequired, # self.extend parameter cannot be empty '12020': ExchangeError, # self.extend Parameter error '12021': InvalidOrder, # The order price is not within the price limit rules! '12022': InvalidOrder, # Stop placing an order while the system is calculating the fund fee '12023': OrderNotFound, # There are no positions to close '12024': InvalidOrder, # Orders are prohibited, stay tuned! '12025': InvalidOrder, # Order cancellation is prohibited, so stay tuned! '12026': DuplicateOrderId, # Order failed, customize order number exists '12027': ExchangeNotAvailable, # System busy, please try again later '12028': InvalidOrder, # The market has banned trading '12029': InvalidOrder, # Forbidden place order, stay tuned '12201': InvalidOrder, # Delegation strategy does not exist or the status has changed '12202': InvalidOrder, # Delegation strategy has been changed, cannot be canceled '12203': InvalidOrder, # Wrong order type '12204': InvalidOrder, # Invalid trigger price '12205': InvalidOrder, # The trigger price must be greater than the market’s selling price or lower than the buying price. '12206': InvalidOrder, # Direction and order type do not match '12207': RateLimitExceeded, # Submission failed, exceeding the allowed limit '13001': AuthenticationError, # User not exist '13002': PermissionDenied, # User did not activate futures # '13003': AuthenticationError, # User is locked '13003': InvalidOrder, # Margin gear is not continuous '13004': InvalidOrder, # The margin quick calculation amount is less than 0 '13005': RateLimitExceeded, # You have exceeded the number of exports that day '13006': ExchangeError, # No markets are bookmarked '13007': ExchangeError, # Market not favorited '13008': ExchangeError, # Not in any market user whitelist '13009': ExchangeError, # Not in the whitelist of users in self market '14000': ExchangeError, # {0}not support '14001': AuthenticationError, # Already logged in, no need to log in multiple times '14002': AuthenticationError, # Not logged in yet, please log in before subscribing '14003': ExchangeError, # This is a channel for one-time queries, no need to unsubscribe '14100': ExchangeError, # Accuracy does not support '14101': RateLimitExceeded, # Request exceeded frequency limit '14200': ArgumentsRequired, # id empty '14300': ExchangeError, # activity not exist '14301': ExchangeError, # The event has been opened and cannot be admitted '14302': ExchangeError, # The purchase time has passed and cannot be admitted '14303': ExchangeError, # Not yet open for the purchase '14305': ExchangeError, # Cannot enter, the maximum number of returns has been exceeded '14306': ExchangeError, # Cannot repeat admission '14307': InvalidOrder, # Unable to cancel, status has been changed '14308': InvalidOrder, # Unable to cancel, the amount does not match '14309': ExchangeError, # Activity has not started '14310': NotSupported, # Activity is over '14311': NotSupported, # The activity does not support orders placed in self market '14312': ExchangeError, # You have not participated in self activity '14313': PermissionDenied, # Sorry! The purchase failed, the maximum number of participants has been reached '14314': ExchangeError, # Active period id error '2001': InsufficientFunds, # 'Insufficient CNY Balance', '2002': InsufficientFunds, # 'Insufficient BTC Balance', '2003': InsufficientFunds, # 'Insufficient LTC Balance', '2005': InsufficientFunds, # 'Insufficient ETH Balance', '2006': InsufficientFunds, # 'Insufficient ETC Balance', '2007': InsufficientFunds, # 'Insufficient BTS Balance', '2008': InsufficientFunds, # EOSInsufficient account balance '2009': InsufficientFunds, # 'Account balance is not enough', '3001': OrderNotFound, # 'Pending orders not found', '3002': InvalidOrder, # 'Invalid price', '3003': InvalidOrder, # 'Invalid amount', '3004': AuthenticationError, # 'User does not exist', '3005': BadRequest, # 'Invalid parameter', '3006': AuthenticationError, # 'Invalid IP or inconsistent with the bound IP', '3007': AuthenticationError, # 'The request time has expired', '3008': OrderNotFound, # 'Transaction records not found', '3009': InvalidOrder, # 'The price exceeds the limit', '3010': PermissionDenied, # It fails to place an order, due to you have set up to prohibit trading of self market. '3011': InvalidOrder, # 'The entrusted price is abnormal, please modify it and place order again', '3012': InvalidOrder, # Duplicate custom customerOrderId '4001': ExchangeNotAvailable, # 'API interface is locked or not enabled', '4002': RateLimitExceeded, # 'Request too often', '9999': ExchangeError, # Unknown error }, 'broad': { '提币地址有误, 请先添加提币地址。': InvalidAddress, # {"code":1001,"message":"提币地址有误,请先添加提币地址。"} '资金不足,无法划账': InsufficientFunds, # {"code":1001,"message":"资金不足,无法划账"} '响应超时': RequestTimeout, # {"code":1001,"message":"响应超时"} }, }, }) async def fetch_markets(self, params={}): """ retrieves data on all markets for zb :param dict params: extra parameters specific to the exchange api endpoint :returns [dict]: an array of objects representing market data """ markets = await self.spotV1PublicGetMarkets(params) # # { # "zb_qc":{ # "amountScale":2, # "minAmount":0.01, # "minSize":5, # "priceScale":4, # }, # } # contracts = None try: # https://github.com/ZBFuture/docs_en/blob/main/API%20V2%20_en.md#7-public-markethttp # https://fapi.zb.com/Server/api/v2/config/marketList 502 Bad Gateway contracts = await self.contractV2PublicGetConfigMarketList(params) except Exception as e: contracts = {} # # { # BTC_USDT: { # symbol: 'BTC_USDT', # buyerCurrencyId: '6', # contractType: '1', # defaultMarginMode: '1', # marketType: '2', # historyDBName: 'trade_history_readonly.dbc', # defaultLeverage: '20', # id: '100', # canCancelOrder: True, # area: '1', # mixMarginCoinName: 'usdt', # fundingRateRatio: '0.25', # marginCurrencyName: 'usdt', # minTradeMoney: '0.0001', # enableTime: '1638954000000', # maxTradeMoney: '10000000', # canTrade: True, # maxLeverage: '125', # defaultPositionsMode: '2', # onlyWhitelistVisible: False, # riskWarnRatio: '0.8', # marginDecimal: '8', # spot: False, # status: '1', # amountDecimal: '3', # leverage: False, # minAmount: '0.001', # canOrder: True, # duration: '1', # feeDecimal: '8', # sellerCurrencyId: '1', # maxAmount: '1000', # canOpenPosition: True, # isSupportMixMargin: False, # markPriceLimitRate: '0.05', # marginCurrencyId: '6', # stopFundingFee: False, # priceDecimal: '2', # lightenUpFeeRate: '0', # futures: True, # sellerCurrencyName: 'btc', # marketPriceLimitRate: '0.05', # canRebate: True, # marketName: 'BTC_USDT', # depth: [0.01, 0.1, 1], # createTime: '1607590430094', # mixMarginCoinIds: [6], # buyerCurrencyName: 'usdt', # stopService: False # }, # } # contractsData = self.safe_value(contracts, 'data', []) contractsById = self.index_by(contractsData, 'marketName') dataById = self.deep_extend(contractsById, markets) keys = list(dataById.keys()) result = [] for i in range(0, len(keys)): id = keys[i] market = dataById[id] baseId, quoteId = id.split('_') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) settleId = self.safe_value(market, 'marginCurrencyName') settle = self.safe_currency_code(settleId) spot = settle is None swap = self.safe_value(market, 'futures', False) linear = True if swap else None active = True symbol = base + '/' + quote amountPrecisionString = self.safe_string_2(market, 'amountScale', 'amountDecimal') pricePrecisionString = self.safe_string_2(market, 'priceScale', 'priceDecimal') if swap: status = self.safe_string(market, 'status') active = (status == '1') symbol = base + '/' + quote + ':' + settle result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': settle, 'baseId': baseId, 'quoteId': quoteId, 'settleId': settleId, 'type': 'swap' if swap else 'spot', 'spot': spot, 'margin': False, 'swap': swap, 'future': False, 'option': False, 'active': active, 'contract': swap, 'linear': linear, 'inverse': not linear if swap else None, 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'precision': { 'amount': self.parse_number(self.parse_precision(amountPrecisionString)), 'price': self.parse_number(self.parse_precision(pricePrecisionString)), }, 'limits': { 'leverage': { 'min': None, 'max': self.safe_number(market, 'maxLeverage'), }, 'amount': { 'min': self.safe_number(market, 'minAmount'), 'max': self.safe_number(market, 'maxAmount'), }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number_2(market, 'minSize', 'minTradeMoney'), 'max': self.safe_number(market, 'maxTradeMoney'), }, }, 'info': market, }) return result async def fetch_currencies(self, params={}): """ fetches all available currencies on an exchange :param dict params: extra parameters specific to the zb api endpoint :returns dict: an associative dictionary of currencies """ response = await self.spotV1PublicGetGetFeeInfo(params) # # { # "code":1000, # "message":"success", # "result":{ # "USDT":[ # { # "chainName":"TRC20", # "canWithdraw":true, # "fee":1.0, # "mainChainName":"TRX", # "canDeposit":true # }, # { # "chainName":"OMNI", # "canWithdraw":true, # "fee":5.0, # "mainChainName":"BTC", # "canDeposit":true # }, # { # "chainName":"ERC20", # "canWithdraw":true, # "fee":15.0, # "mainChainName":"ETH", # "canDeposit":true # } # ], # } # } # currencies = self.safe_value(response, 'result', {}) ids = list(currencies.keys()) result = {} for i in range(0, len(ids)): id = ids[i] currency = currencies[id] code = self.safe_currency_code(id) isWithdrawEnabled = True isDepositEnabled = True fees = {} for j in range(0, len(currency)): networkItem = currency[j] network = self.safe_string(networkItem, 'chainName') # name = self.safe_string(networkItem, 'name') withdrawFee = self.safe_number(networkItem, 'fee') depositEnable = self.safe_value(networkItem, 'canDeposit') withdrawEnable = self.safe_value(networkItem, 'canWithdraw') isDepositEnabled = isDepositEnabled or depositEnable isWithdrawEnabled = isWithdrawEnabled or withdrawEnable fees[network] = withdrawFee active = (isWithdrawEnabled and isDepositEnabled) result[code] = { 'id': id, 'name': None, 'code': code, 'precision': None, 'info': currency, 'active': active, 'deposit': isDepositEnabled, 'withdraw': isWithdrawEnabled, 'fee': None, 'fees': fees, 'limits': self.limits, } return result def parse_balance(self, response): balances = self.safe_value(response['result'], 'coins') result = { 'info': response, } for i in range(0, len(balances)): balance = balances[i] # { enName: "BTC", # freez: "0.00000000", # unitDecimal: 8, # always 8 # cnName: "BTC", # isCanRecharge: True, # TODO: should use self # unitTag: "฿", # isCanWithdraw: True, # TODO: should use self # available: "0.00000000", # key: "btc" } account = self.account() currencyId = self.safe_string(balance, 'key') code = self.safe_currency_code(currencyId) account['free'] = self.safe_string(balance, 'available') account['used'] = self.safe_string(balance, 'freez') result[code] = account return self.safe_balance(result) def parse_swap_balance(self, response): result = { 'info': response, } data = self.safe_value(response, 'data', {}) for i in range(0, len(data)): balance = data[i] # # { # "userId": "6896693805014120448", # "currencyId": "6", # "currencyName": "usdt", # "amount": "30.56585118", # "freezeAmount": "0", # "contractType": 1, # "id": "6899113714763638819", # "createTime": "1644876888934", # "modifyTime": "1645787446037", # "accountBalance": "30.56585118", # "allMargin": "0", # "allowTransferOutAmount": "30.56585118" # }, # code = self.safe_currency_code(self.safe_string(balance, 'currencyName')) account = self.account() account['total'] = self.safe_string(balance, 'accountBalance') account['free'] = self.safe_string(balance, 'allowTransferOutAmount') account['used'] = self.safe_string(balance, 'freezeAmount') result[code] = account return self.safe_balance(result) def parse_margin_balance(self, response, marginMode): result = { 'info': response, } levers = None if marginMode == 'isolated': message = self.safe_value(response, 'message', {}) data = self.safe_value(message, 'datas', {}) levers = self.safe_value(data, 'levers', []) else: crossResponse = self.safe_value(response, 'result', {}) levers = self.safe_value(crossResponse, 'list', []) for i in range(0, len(levers)): balance = levers[i] # # Isolated Margin # # { # "cNetUSD": "0.00", # "repayLeverShow": "-", # "cCanLoanIn": "0.002115400000000", # "fNetCNY": "147.76081161", # "fLoanIn": "0.00", # "repayLevel": 0, # "level": 1, # "netConvertCNY": "147.760811613032", # "cFreeze": "0.00", # "cUnitTag": "BTC", # "version": 1646783178609, # "cAvailableUSD": "0.00", # "cNetCNY": "0.00", # "riskRate": "-", # "fAvailableUSD": "20.49273433", # "fNetUSD": "20.49273432", # "cShowName": "BTC", # "leverMultiple": "5.00", # "couldTransferOutFiat": "20.49273433", # "noticeLine": "1.13", # "fFreeze": "0.00", # "cUnitDecimal": 8, # "fCanLoanIn": "81.970937320000000", # "cAvailable": "0.00", # "repayLock": False, # "status": 1, # "forbidType": 0, # "totalConvertCNY": "147.760811613032", # "cAvailableCNY": "0.00", # "unwindPrice": "0.00", # "fOverdraft": "0.00", # "fShowName": "USDT", # "statusShow": "%E6%AD%A3%E5%B8%B8", # "cOverdraft": "0.00", # "netConvertUSD": "20.49273433", # "cNetBtc": "0.00", # "loanInConvertCNY": "0.00", # "fAvailableCNY": "147.760811613032", # "key": "btcusdt", # "fNetBtc": "0.0005291", # "fUnitDecimal": 8, # "loanInConvertUSD": "0.00", # "showName": "BTC/USDT", # "startLine": "1.25", # "totalConvertUSD": "20.49273433", # "couldTransferOutCoin": "0.00", # "cEnName": "BTC", # "leverMultipleInterest": "3.00", # "fAvailable": "20.49273433", # "fEnName": "USDT", # "forceRepayLine": "1.08", # "cLoanIn": "0.00" # } # # Cross Margin # # [ # { # "fundType": 2, # "loanIn": 0, # "amount": 0, # "freeze": 0, # "overdraft": 0, # "key": "BTC", # "canTransferOut": 0 # }, # ], # account = self.account() if marginMode == 'isolated': code = self.safe_currency_code(self.safe_string(balance, 'fShowName')) account['total'] = self.safe_string(balance, 'fAvailableUSD') # total amount in USD account['free'] = self.safe_string(balance, 'couldTransferOutFiat') account['used'] = self.safe_string(balance, 'fFreeze') result[code] = account else: code = self.safe_currency_code(self.safe_string(balance, 'key')) account['total'] = self.safe_string(balance, 'amount') account['free'] = self.safe_string(balance, 'canTransferOut') account['used'] = self.safe_string(balance, 'freeze') result[code] = account return self.safe_balance(result) async def fetch_balance(self, params={}): """ query for balance and get the amount of funds available for trading or funds locked in orders :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `balance structure <https://docs.ccxt.com/en/latest/manual.html?#balance-structure>` """ await self.load_markets() marketType, query = self.handle_market_type_and_params('fetchBalance', None, params) margin = (marketType == 'margin') swap = (marketType == 'swap') marginMethod = None defaultMargin = 'isolated' if margin else 'cross' marginMode = self.safe_string_2(self.options, 'defaultMarginMode', 'marginMode', defaultMargin) if marginMode == 'isolated': marginMethod = 'spotV1PrivateGetGetLeverAssetsInfo' elif marginMode == 'cross': marginMethod = 'spotV1PrivateGetGetCrossAssets' method = self.get_supported_mapping(marketType, { 'spot': 'spotV1PrivateGetGetAccountInfo', 'swap': 'contractV2PrivateGetFundBalance', 'margin': marginMethod, }) request = { # 'futuresAccountType': 1, # SWAP # 'currencyId': currency['id'], # SWAP # 'currencyName': 'usdt', # SWAP } if swap: request['futuresAccountType'] = 1 response = await getattr(self, method)(self.extend(request, query)) # # Spot # # { # "result": { # "coins": [ # { # "isCanWithdraw": "true", # "canLoan": False, # "fundstype": 51, # "showName": "ZB", # "isCanRecharge": "true", # "cnName": "ZB", # "enName": "ZB", # "available": "0", # "freez": "0", # "unitTag": "ZB", # "key": "zb", # "unitDecimal": 8 # }, # ], # "version": 1645856691340, # "base": { # "auth_google_enabled": True, # "auth_mobile_enabled": False, # "trade_password_enabled": True, # "username": "blank@gmail.com" # } # }, # "leverPerm": True, # "otcPerm": False, # "assetPerm": True, # "moneyPerm": True, # "subUserPerm": True, # "entrustPerm": True # } # # Swap # # { # "code": 10000, # "data": [ # { # "userId": "6896693805014120448", # "currencyId": "6", # "currencyName": "usdt", # "amount": "30.56585118", # "freezeAmount": "0", # "contractType": 1, # "id": "6899113714763638819", # "createTime": "1644876888934", # "modifyTime": "1645787446037", # "accountBalance": "30.56585118", # "allMargin": "0", # "allowTransferOutAmount": "30.56585118" # }, # ], # "desc": "操作成功" # } # # Isolated Margin # # { # "code": 1000, # "message": { # "des": "success", # "isSuc": True, # "datas": { # "leverPerm": True, # "levers": [ # { # "cNetUSD": "0.00", # "repayLeverShow": "-", # "cCanLoanIn": "0.002115400000000", # "fNetCNY": "147.76081161", # "fLoanIn": "0.00", # "repayLevel": 0, # "level": 1, # "netConvertCNY": "147.760811613032", # "cFreeze": "0.00", # "cUnitTag": "BTC", # "version": 1646783178609, # "cAvailableUSD": "0.00", # "cNetCNY": "0.00", # "riskRate": "-", # "fAvailableUSD": "20.49273433", # "fNetUSD": "20.49273432", # "cShowName": "BTC", # "leverMultiple": "5.00", # "couldTransferOutFiat": "20.49273433", # "noticeLine": "1.13", # "fFreeze": "0.00", # "cUnitDecimal": 8, # "fCanLoanIn": "81.970937320000000", # "cAvailable": "0.00", # "repayLock": False, # "status": 1, # "forbidType": 0, # "totalConvertCNY": "147.760811613032", # "cAvailableCNY": "0.00", # "unwindPrice": "0.00", # "fOverdraft": "0.00", # "fShowName": "USDT", # "statusShow": "%E6%AD%A3%E5%B8%B8", # "cOverdraft": "0.00", # "netConvertUSD": "20.49273433", # "cNetBtc": "0.00", # "loanInConvertCNY": "0.00", # "fAvailableCNY": "147.760811613032", # "key": "btcusdt", # "fNetBtc": "0.0005291", # "fUnitDecimal": 8, # "loanInConvertUSD": "0.00", # "showName": "BTC/USDT", # "startLine": "1.25", # "totalConvertUSD": "20.49273433", # "couldTransferOutCoin": "0.00", # "cEnName": "BTC", # "leverMultipleInterest": "3.00", # "fAvailable": "20.49273433", # "fEnName": "USDT", # "forceRepayLine": "1.08", # "cLoanIn": "0.00" # } # ] # } # } # } # # Cross Margin # # { # "code": 1000, # "message": "操作成功", # "result": { # "loanIn": 0, # "total": 71.167, # "riskRate": "-", # "list" :[ # { # "fundType": 2, # "loanIn": 0, # "amount": 0, # "freeze": 0, # "overdraft": 0, # "key": "BTC", # "canTransferOut": 0 # }, # ], # "net": 71.167 # } # } # # todo: use self somehow # permissions = response['result']['base'] if swap: return self.parse_swap_balance(response) elif margin: return self.parse_margin_balance(response, marginMode) else: return self.parse_balance(response) def parse_deposit_address(self, depositAddress, currency=None): # # fetchDepositAddress # # { # "key": "0x0af7f36b8f09410f3df62c81e5846da673d4d9a9" # } # # fetchDepositAddresses # # { # "blockChain": "btc", # "isUseMemo": False, # "address": "1LL5ati6pXHZnTGzHSA3rWdqi4mGGXudwM", # "canWithdraw": True, # "canDeposit": True # } # { # "blockChain": "bts", # "isUseMemo": True, # "account": "btstest", # "memo": "123", # "canWithdraw": True, # "canDeposit": True # } # address = self.safe_string_2(depositAddress, 'key', 'address') tag = None memo = self.safe_string(depositAddress, 'memo') if memo is not None: tag = memo elif address.find('_') >= 0: parts = address.split('_') address = parts[0] # WARNING: MAY BE tag_address INSTEAD OF address_tag FOR SOME CURRENCIESnot ! tag = parts[1] self.check_address(address) currencyId = self.safe_string(depositAddress, 'blockChain') code = self.safe_currency_code(currencyId, currency) return { 'currency': code, 'address': address, 'tag': tag, 'network': None, 'info': depositAddress, } async def fetch_deposit_addresses(self, codes=None, params={}): await self.load_markets() response = await self.spotV1PrivateGetGetPayinAddress(params) # # { # "code": 1000, # "message": { # "des": "success", # "isSuc": True, # "datas": [ # { # "blockChain": "btc", # "isUseMemo": False, # "address": "1LL5ati6pXHZnTGzHSA3rWdqi4mGGXudwM", # "canWithdraw": True, # "canDeposit": True # }, # { # "blockChain": "bts", # "isUseMemo": True, # "account": "btstest", # "memo": "123", # "canWithdraw": True, # "canDeposit": True # }, # ] # } # } # message = self.safe_value(response, 'message', {}) datas = self.safe_value(message, 'datas', []) return self.parse_deposit_addresses(datas, codes) async def fetch_deposit_address(self, code, params={}): """ fetch the deposit address for a currency associated with self account :param str code: unified currency code :param dict params: extra parameters specific to the zb api endpoint :returns dict: an `address structure <https://docs.ccxt.com/en/latest/manual.html#address-structure>` """ await self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } response = await self.spotV1PrivateGetGetUserAddress(self.extend(request, params)) # # { # "code": 1000, # "message": { # "des": "success", # "isSuc": True, # "datas": { # "key": "0x0af7f36b8f09410f3df62c81e5846da673d4d9a9" # } # } # } # message = self.safe_value(response, 'message', {}) datas = self.safe_value(message, 'datas', {}) return self.parse_deposit_address(datas, currency) async def fetch_order_book(self, symbol, limit=None, params={}): """ fetches information on open orders with bid(buy) and ask(sell) prices, volumes and other data :param str symbol: unified symbol of the market to fetch the order book for :param int|None limit: the maximum amount of order book entries to return :param dict params: extra parameters specific to the zb api endpoint :returns dict: A dictionary of `order book structures <https://docs.ccxt.com/en/latest/manual.html#order-book-structure>` indexed by market symbols """ await self.load_markets() market = self.market(symbol) request = { # 'market': market['id'], # only applicable to SPOT # 'symbol': market['id'], # only applicable to SWAP # 'size': limit, # 1-50 applicable to SPOT and SWAP # 'merge': 5.0, # float default depth only applicable to SPOT # 'scale': 5, # int accuracy, only applicable to SWAP } marketIdField = 'symbol' if market['swap'] else 'market' request[marketIdField] = market['id'] method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PublicGetDepth', 'swap': 'contractV1PublicGetDepth', }) if limit is not None: request['size'] = limit response = await getattr(self, method)(self.extend(request, params)) # # Spot # # { # "asks":[ # [35000.0,0.2741], # [34949.0,0.0173], # [34900.0,0.5004], # ], # "bids":[ # [34119.32,0.0030], # [34107.83,0.1500], # [34104.42,0.1500], # ], # "timestamp":1624536510 # } # # Swap # # { # "code": 10000, # "desc": "操作成功", # "data": { # "asks": [ # [43416.6,0.02], # [43418.25,0.04], # [43425.82,0.02] # ], # "bids": [ # [43414.61,0.1], # [43414.18,0.04], # [43413.03,0.05] # ], # "time": 1645087743071 # } # } # result = None timestamp = None if market['type'] == 'swap': result = self.safe_value(response, 'data') timestamp = self.safe_integer(result, 'time') else: result = response timestamp = self.safe_timestamp(response, 'timestamp') return self.parse_order_book(result, symbol, timestamp) async def fetch_tickers(self, symbols=None, params={}): """ fetches price tickers for multiple markets, statistical calculations with the information calculated over the past 24 hours each market :param [str]|None symbols: unified symbols of the markets to fetch the ticker for, all market tickers are returned if not assigned :param dict params: extra parameters specific to the zb api endpoint :returns dict: an array of `ticker structures <https://docs.ccxt.com/en/latest/manual.html#ticker-structure>` """ await self.load_markets() response = await self.spotV1PublicGetAllTicker(params) result = {} marketsByIdWithoutUnderscore = {} marketIds = list(self.markets_by_id.keys()) for i in range(0, len(marketIds)): tickerId = marketIds[i].replace('_', '') marketsByIdWithoutUnderscore[tickerId] = self.markets_by_id[marketIds[i]] ids = list(response.keys()) for i in range(0, len(ids)): market = self.safe_value(marketsByIdWithoutUnderscore, ids[i]) if market is not None: symbol = market['symbol'] ticker = self.safe_value(response, ids[i]) if ticker is not None: result[symbol] = self.parse_ticker(ticker, market) return self.filter_by_array(result, 'symbol', symbols) async def fetch_ticker(self, symbol, params={}): """ fetches a price ticker, a statistical calculation with the information calculated over the past 24 hours for a specific market :param str symbol: unified symbol of the market to fetch the ticker for :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `ticker structure <https://docs.ccxt.com/en/latest/manual.html#ticker-structure>` """ await self.load_markets() market = self.market(symbol) request = { # 'market': market['id'], # only applicable to SPOT # 'symbol': market['id'], # only applicable to SWAP } marketIdField = 'symbol' if market['swap'] else 'market' request[marketIdField] = market['id'] method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PublicGetTicker', 'swap': 'contractV1PublicGetTicker', }) response = await getattr(self, method)(self.extend(request, params)) # # Spot # # { # "date":"1624399623587", # "ticker":{ # "high":"33298.38", # "vol":"56152.9012", # "last":"32578.55", # "low":"28808.19", # "buy":"32572.68", # "sell":"32615.37", # "turnover":"1764201303.6100", # "open":"31664.85", # "riseRate":"2.89" # } # } # # Swap # # { # "code": 10000, # "desc": "操作成功", # "data": { # "BTC_USDT": [44053.47,44357.77,42911.54,43297.79,53471.264,-1.72,1645093002,302201.255084] # } # } # ticker = None if market['type'] == 'swap': ticker = {} data = self.safe_value(response, 'data') values = self.safe_value(data, market['id'], []) for i in range(0, len(values)): ticker['open'] = self.safe_value(values, 0) ticker['high'] = self.safe_value(values, 1) ticker['low'] = self.safe_value(values, 2) ticker['last'] = self.safe_value(values, 3) ticker['vol'] = self.safe_value(values, 4) ticker['riseRate'] = self.safe_value(values, 5) else: ticker = self.safe_value(response, 'ticker', {}) ticker['date'] = self.safe_value(response, 'date') return self.parse_ticker(ticker, market) def parse_ticker(self, ticker, market=None): # # Spot # # { # "date":"1624399623587", # injected from outside # "high":"33298.38", # "vol":"56152.9012", # "last":"32578.55", # "low":"28808.19", # "buy":"32572.68", # "sell":"32615.37", # "turnover":"1764201303.6100", # "open":"31664.85", # "riseRate":"2.89" # } # # Swap # # { # open: 44083.82, # high: 44357.77, # low: 42911.54, # last: 43097.87, # vol: 53451.641, # riseRate: -2.24 # } # timestamp = self.safe_integer(ticker, 'date', self.milliseconds()) last = self.safe_string(ticker, 'last') return self.safe_ticker({ 'symbol': self.safe_symbol(None, market), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_string(ticker, 'high'), 'low': self.safe_string(ticker, 'low'), 'bid': self.safe_string(ticker, 'buy'), 'bidVolume': None, 'ask': self.safe_string(ticker, 'sell'), 'askVolume': None, 'vwap': None, 'open': self.safe_string(ticker, 'open'), 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_string(ticker, 'vol'), 'quoteVolume': None, 'info': ticker, }, market) def parse_ohlcv(self, ohlcv, market=None): if market['swap']: ohlcvLength = len(ohlcv) if ohlcvLength > 5: return [ self.safe_timestamp(ohlcv, 5), self.safe_number(ohlcv, 0), self.safe_number(ohlcv, 1), self.safe_number(ohlcv, 2), self.safe_number(ohlcv, 3), self.safe_number(ohlcv, 4), ] else: return [ self.safe_timestamp(ohlcv, 4), self.safe_number(ohlcv, 0), self.safe_number(ohlcv, 1), self.safe_number(ohlcv, 2), self.safe_number(ohlcv, 3), None, ] else: return [ self.safe_integer(ohlcv, 0), self.safe_number(ohlcv, 1), self.safe_number(ohlcv, 2), self.safe_number(ohlcv, 3), self.safe_number(ohlcv, 4), self.safe_number(ohlcv, 5), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): """ fetches historical candlestick data containing the open, high, low, and close price, and the volume of a market :param str symbol: unified symbol of the market to fetch OHLCV data for :param str timeframe: the length of time each candle represents :param int|None since: timestamp in ms of the earliest candle to fetch :param int|None limit: the maximum amount of candles to fetch :param dict params: extra parameters specific to the zb api endpoint :returns [[int]]: A list of candles ordered as timestamp, open, high, low, close, volume """ await self.load_markets() market = self.market(symbol) swap = market['swap'] spot = market['spot'] options = self.safe_value(self.options, 'timeframes', {}) timeframes = self.safe_value(options, market['type'], {}) timeframeValue = self.safe_string(timeframes, timeframe) if timeframeValue is None: raise NotSupported(self.id + ' fetchOHLCV() does not support ' + timeframe + ' timeframe for ' + market['type'] + ' markets') if limit is None: limit = 1000 request = { # 'market': market['id'], # spot only # 'symbol': market['id'], # swap only # 'type': timeframeValue, # spot only # 'period': timeframeValue, # swap only # 'since': since, # spot only # 'size': limit, # spot and swap } marketIdField = 'symbol' if swap else 'market' request[marketIdField] = market['id'] periodField = 'period' if swap else 'type' request[periodField] = timeframeValue price = self.safe_string(params, 'price') params = self.omit(params, 'price') method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PublicGetKline', 'swap': 'contractV1PublicGetKline', }) if swap: if price == 'mark': method = 'contractV1PublicGetMarkKline' elif price == 'index': method = 'contractV1PublicGetIndexKline' elif spot: if since is not None: request['since'] = since if limit is not None: request['size'] = limit response = await getattr(self, method)(self.extend(request, params)) # # Spot # # { # "symbol": "BTC", # "data": [ # [1645091400000,43183.24,43187.49,43145.92,43182.28,0.9110], # [1645091460000,43182.18,43183.15,43182.06,43183.15,1.4393], # [1645091520000,43182.11,43240.1,43182.11,43240.1,0.3802] # ], # "moneyType": "USDT" # } # # Swap # # { # "code": 10000, # "desc": "操作成功", # "data": [ # [41433.44,41433.44,41405.88,41408.75,21.368,1646366460], # [41409.25,41423.74,41408.8,41423.42,9.828,1646366520], # [41423.96,41429.39,41369.98,41370.31,123.104,1646366580] # ] # } # # Mark # # { # "code": 10000, # "desc": "操作成功", # "data": [ # [41603.39,41603.39,41591.59,41600.81,1646381760], # [41600.36,41605.75,41587.69,41601.97,1646381820], # [41601.97,41601.97,41562.62,41593.96,1646381880] # ] # } # # Index # # { # "code": 10000, # "desc": "操作成功", # "data": [ # [41697.53,41722.29,41689.16,41689.16,1646381640], # [41690.1,41691.73,41611.61,41611.61,1646381700], # [41611.61,41619.49,41594.87,41594.87,1646381760] # ] # } # data = self.safe_value(response, 'data', []) return self.parse_ohlcvs(data, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # Spot # # { # "date":1624537391, # "amount":"0.0142", # "price":"33936.42", # "trade_type":"ask", # "type":"sell", # "tid":1718869018 # } # # Swap # # { # "amount": "0.002", # "createTime": "1645787446034", # "feeAmount": "-0.05762699", # "feeCurrency": "USDT", # "id": "6902932868050395136", # "maker": False, # "orderId": "6902932868042006528", # "price": "38417.99", # "relizedPnl": "0.30402", # "side": 4, # "userId": "6896693805014120448" # }, # sideField = 'side' if market['swap'] else 'trade_type' side = self.safe_string(trade, sideField) takerOrMaker = None maker = self.safe_value(trade, 'maker') if maker is not None: takerOrMaker = 'maker' if maker else 'taker' if market['spot']: side = 'buy' if (side == 'bid') else 'sell' else: if side == '3': side = 'sell' # close long elif side == '4': side = 'buy' # close short elif side == '1': side = 'buy' # open long elif side == '2': side = 'sell' # open short timestamp = None if market['swap']: timestamp = self.safe_integer(trade, 'createTime') else: timestamp = self.safe_timestamp(trade, 'date') price = self.safe_string(trade, 'price') amount = self.safe_string(trade, 'amount') fee = None feeCostString = self.safe_string(trade, 'feeAmount') if feeCostString is not None: feeCurrencyId = self.safe_string(trade, 'feeCurrency') fee = { 'cost': feeCostString, 'currency': self.safe_currency_code(feeCurrencyId), } market = self.safe_market(None, market) return self.safe_trade({ 'info': trade, 'id': self.safe_string(trade, 'tid'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': market['symbol'], 'type': None, 'side': side, 'order': self.safe_string(trade, 'orderId'), 'takerOrMaker': takerOrMaker, 'price': price, 'amount': amount, 'cost': None, 'fee': fee, }, market) async def fetch_trades(self, symbol, since=None, limit=None, params={}): """ get the list of most recent trades for a particular symbol :param str symbol: unified symbol of the market to fetch trades for :param int|None since: timestamp in ms of the earliest trade to fetch :param int|None limit: the maximum amount of trades to fetch :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `trade structures <https://docs.ccxt.com/en/latest/manual.html?#public-trades>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchTrades() requires a symbol argument') await self.load_markets() market = self.market(symbol) swap = market['swap'] request = { # 'market': market['id'], # SPOT # 'symbol': market['id'], # SWAP # 'side': 1, # SWAP # 'dateRange': 0, # SWAP # 'startTime': since, # SWAP # 'endtime': self.milliseconds(), # SWAP # 'pageNum': 1, # SWAP # 'pageSize': limit, # SWAP default is 10 } if limit is not None: request['pageSize'] = limit if since is not None: request['startTime'] = since marketIdField = 'symbol' if swap else 'market' request[marketIdField] = market['id'] if swap and params['pageNum'] is None: request['pageNum'] = 1 method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PublicGetTrades', 'swap': 'contractV2PrivateGetTradeTradeHistory', }) response = await getattr(self, method)(self.extend(request, params)) # # Spot # # [ # {"date":1624537391,"amount":"0.0142","price":"33936.42","trade_type":"ask","type":"sell","tid":1718869018}, # {"date":1624537391,"amount":"0.0010","price":"33936.42","trade_type":"ask","type":"sell","tid":1718869020}, # {"date":1624537391,"amount":"0.0133","price":"33936.42","trade_type":"ask","type":"sell","tid":1718869021}, # ] # # Swap # # { # "code": 10000, # "data": { # "list": [ # { # "amount": "0.002", # "createTime": "1645787446034", # "feeAmount": "-0.05762699", # "feeCurrency": "USDT", # "id": "6902932868050395136", # "maker": False, # "orderId": "6902932868042006528", # "price": "38417.99", # "relizedPnl": "0.30402", # "side": 4, # "userId": "6896693805014120448" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # if swap: data = self.safe_value(response, 'data') response = self.safe_value(data, 'list') return self.parse_trades(response, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): """ create a trade order :param str symbol: unified symbol of the market to create an order in :param str type: 'market' or 'limit' :param str side: 'buy' or 'sell' :param float amount: how much of currency you want to trade in units of base currency :param float price: the price at which the order is to be fullfilled, in units of the quote currency, ignored in market orders :param dict params: extra parameters specific to the zb api endpoint :returns dict: an `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() market = self.market(symbol) swap = market['swap'] spot = market['spot'] timeInForce = self.safe_string(params, 'timeInForce') reduceOnly = self.safe_value(params, 'reduceOnly') stop = self.safe_value(params, 'stop') stopPrice = self.safe_number_2(params, 'triggerPrice', 'stopPrice') if type == 'market': raise InvalidOrder(self.id + ' createOrder() on ' + market['type'] + ' markets does not allow market orders') method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PrivateGetOrder', 'swap': 'contractV2PrivatePostTradeOrder', }) request = { 'amount': self.amount_to_precision(symbol, amount), # 'symbol': market['id'], # 'acctType': 0, # Spot, Margin 0/1/2 [Spot/Isolated/Cross] Optional, Default to: 0 Spot # 'customerOrderId': '1f2g', # Spot, Margin # 'orderType': 1, # Spot, Margin order type 1/2 [PostOnly/IOC] Optional # 'triggerPrice': 30000.0, # Stop trigger price # 'algoPrice': 29000.0, # Stop order price # 'priceType': 1, # Stop Loss Take Profit, 1: Mark price, 2: Last price # 'bizType': 1, # Stop Loss Take Profit, 1: TP, 2: SL } if stop or stopPrice: method = 'contractV2PrivatePostTradeOrderAlgo' orderType = self.safe_integer(params, 'orderType') priceType = self.safe_integer(params, 'priceType') bizType = self.safe_integer(params, 'bizType') algoPrice = self.safe_number(params, 'algoPrice') request['symbol'] = market['id'] if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short elif side == 5: request['side'] = 5 # one way position buy elif side == 6: request['side'] = 6 # one way position sell elif side == 0: request['side'] = 0 # one way position close only if type == 'trigger' or orderType == 1: request['orderType'] = 1 elif type == 'stop loss' or type == 'take profit' or orderType == 2 or priceType or bizType: request['orderType'] = 2 request['priceType'] = priceType request['bizType'] = bizType request['triggerPrice'] = self.price_to_precision(symbol, stopPrice) request['algoPrice'] = self.price_to_precision(symbol, algoPrice) else: if price: request['price'] = self.price_to_precision(symbol, price) if spot: request['tradeType'] = '1' if (side == 'buy') else '0' request['currency'] = market['id'] if timeInForce is not None: if timeInForce == 'PO': request['orderType'] = 1 elif timeInForce == 'IOC': request['orderType'] = 2 else: raise InvalidOrder(self.id + ' createOrder() on ' + market['type'] + ' markets does not allow ' + timeInForce + ' orders') elif swap: if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short if type == 'limit': request['action'] = 1 elif timeInForce == 'IOC': request['action'] = 3 elif timeInForce == 'PO': request['action'] = 4 elif timeInForce == 'FOK': request['action'] = 5 else: request['action'] = type request['symbol'] = market['id'] clientOrderId = self.safe_string(params, 'clientOrderId') # OPTIONAL '^[a-zA-Z0-9-_]{1,36}$', # The user-defined order number if clientOrderId is not None: request['clientOrderId'] = clientOrderId # using self.extend as name causes issues in python extendOrderAlgos = self.safe_value(params, 'extend', None) # OPTIONAL {"orderAlgos":[{"bizType":1,"priceType":1,"triggerPrice":"70000"},{"bizType":2,"priceType":1,"triggerPrice":"40000"}]} if extendOrderAlgos is not None: request['extend'] = extendOrderAlgos query = self.omit(params, ['reduceOnly', 'stop', 'stopPrice', 'orderType', 'triggerPrice', 'algoPrice', 'priceType', 'bizType', 'clientOrderId', 'extend']) response = await getattr(self, method)(self.extend(request, query)) # # Spot # # { # "code": 1000, # "message": "操作成功", # "id": "202202224851151555" # } # # Swap # # { # "code": 10000, # "desc": "操作成功", # "data": { # "orderId": "6901786759944937472", # "orderCode": null # } # } # # Algo order # # { # "code": 10000, # "data": "6919884551305242624", # "desc": "操作成功" # } # if (swap) and (not stop) and (stopPrice is None): response = self.safe_value(response, 'data') response['timeInForce'] = timeInForce tradeType = self.safe_string(response, 'tradeType') if tradeType is None: response['type'] = tradeType response['total_amount'] = amount response['price'] = price return self.parse_order(response, market) async def cancel_order(self, id, symbol=None, params={}): """ cancels an open order :param str id: order id :param str symbol: unified symbol of the market the order was made in :param dict params: extra parameters specific to the zb api endpoint :returns dict: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) swap = market['swap'] request = { # 'currency': self.market_id(symbol), # only applicable to SPOT # 'id': str(id), # only applicable to SPOT # 'symbol': self.market_id(symbol), # only applicable to SWAP # 'orderId': str(id), # only applicable to SWAP # 'clientOrderId': params['clientOrderId'], # only applicable to SWAP } marketIdField = 'symbol' if swap else 'currency' request[marketIdField] = self.market_id(symbol) orderIdField = 'orderId' if swap else 'id' request[orderIdField] = str(id) method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PrivateGetCancelOrder', 'swap': 'contractV2PrivatePostTradeCancelOrder', }) response = await getattr(self, method)(self.extend(request, params)) # # Spot # # { # "code": 1000, # "message": "Success。" # } # # Swap # # { # "code": 10007, # "desc": "orderId与clientOrderId选填1个" # } # return self.parse_order(response, market) async def cancel_all_orders(self, symbol=None, params={}): """ cancel all open orders in a market :param str symbol: unified market symbol of the market to cancel orders in :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' cancelAllOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) stop = self.safe_value(params, 'stop') if market['spot']: raise NotSupported(self.id + ' cancelAllOrders() is not supported on ' + market['type'] + ' markets') request = { 'symbol': market['id'], # 'ids': [6904603200733782016, 6819506476072247297], # STOP # 'side': params['side'], # STOP, for stop orders: 1 Open long(buy), 2 Open short(sell), 3 Close long(sell), 4 Close Short(Buy). One-Way Positions: 5 Buy, 6 Sell, 0 Close Only } method = 'contractV2PrivatePostTradeCancelAllOrders' if stop: method = 'contractV2PrivatePostTradeCancelAlgos' query = self.omit(params, 'stop') return await getattr(self, method)(self.extend(request, query)) async def fetch_order(self, id, symbol=None, params={}): """ fetches information on an order made by the user :param str symbol: unified symbol of the market the order was made in :param dict params: extra parameters specific to the zb api endpoint :returns dict: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) reduceOnly = self.safe_value(params, 'reduceOnly') stop = self.safe_value(params, 'stop') swap = market['swap'] request = { # 'currency': self.market_id(symbol), # only applicable to SPOT # 'id': str(id), # only applicable to SPOT # 'orderId': str(id), # only applicable to SWAP # 'clientOrderId': params['clientOrderId'], # only applicable to SWAP # 'symbol': market['id'], # STOP and SWAP # 'side': params['side'], # STOP and SWAP, for stop orders: 1 Open long(buy), 2 Open short(sell), 3 Close long(sell), 4 Close Short(Buy). One-Way Positions: 5 Buy, 6 Sell, 0 Close Only # 'orderType': 1, # STOP, 1: Plan order, 2: SP/SL # 'bizType': 1, # Plan order, 1: TP, 2: SL # 'status': 1, # STOP, 1: untriggered, 2: cancelled, 3:triggered, 4:failed, 5:completed # 'startTime': since, # STOP and SWAP # 'endTime': params['endTime'], # STOP and SWAP # 'pageNum': 1, # STOP and SWAP, default 1 # 'pageSize': limit, # STOP, default 10 } marketIdField = 'symbol' if swap else 'currency' request[marketIdField] = self.market_id(symbol) orderIdField = 'orderId' if swap else 'id' request[orderIdField] = str(id) method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PrivateGetGetOrder', 'swap': 'contractV2PrivateGetTradeGetOrder', }) if stop: method = 'contractV2PrivateGetTradeGetOrderAlgos' orderType = self.safe_integer(params, 'orderType') if orderType is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires an orderType parameter for stop orders') side = self.safe_integer(params, 'side') bizType = self.safe_integer(params, 'bizType') if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short elif side == 5: request['side'] = 5 # one way position buy elif side == 6: request['side'] = 6 # one way position sell elif side == 0: request['side'] = 0 # one way position close only if orderType == 1: request['orderType'] = 1 elif orderType == 2 or bizType: request['orderType'] = 2 request['bizType'] = bizType query = self.omit(params, ['reduceOnly', 'stop', 'side', 'orderType', 'bizType']) response = await getattr(self, method)(self.extend(request, query)) # # Spot # # { # 'total_amount': 0.01, # 'id': '20180910244276459', # 'price': 180.0, # 'trade_date': 1536576744960, # 'status': 2, # 'trade_money': '1.96742', # 'trade_amount': 0.01, # 'type': 0, # 'currency': 'eth_usdt' # } # # Swap # # { # "code": 10000, # "data": { # "action": 1, # "amount": "0.002", # "availableAmount": "0.002", # "availableValue": "60", # "avgPrice": "0", # "canCancel": True, # "cancelStatus": 20, # "createTime": "1646185684379", # "entrustType": 1, # "id": "6904603200733782016", # "leverage": 2, # "margin": "30", # "marketId": "100", # "modifyTime": "1646185684416", # "price": "30000", # "priority": 0, # "showStatus": 1, # "side": 1, # "sourceType": 4, # "status": 12, # "tradeAmount": "0", # "tradeValue": "0", # "type": 1, # "userId": "6896693805014120448", # "value": "60" # }, # "desc":"操作成功" # } # # Algo order # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "algoPrice": "30000", # "amount": "0.003", # "bizType": 0, # "canCancel": True, # "createTime": "1649913941109", # "errorCode": 0, # "id": "6920240642849449984", # "isLong": False, # "leverage": 10, # "marketId": "100", # "modifyTime": "1649913941109", # "orderType": 1, # "priceType": 2, # "side": 5, # "sourceType": 4, # "status": 1, # "submitPrice": "41270.53", # "symbol": "BTC_USDT", # "tradedAmount": "0", # "triggerCondition": "<=", # "triggerPrice": "31000", # "triggerTime": "0", # "userId": "6896693805014120448" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # if stop: data = self.safe_value(response, 'data', {}) response = self.safe_value(data, 'list', []) result = [] for i in range(0, len(response)): entry = response[i] algoId = self.safe_string(entry, 'id') if id == algoId: result.append(entry) response = result[0] if swap and not stop: response = self.safe_value(response, 'data', {}) return self.parse_order(response, market) async def fetch_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) reduceOnly = self.safe_value(params, 'reduceOnly') stop = self.safe_value(params, 'stop') swap = market['swap'] request = { 'pageSize': limit, # default pageSize is 50 for spot, 30 for swap # 'currency': market['id'], # only applicable to SPOT # 'pageIndex': 1, # only applicable to SPOT # 'type': params['type'], # only applicable to SWAP # 'dateRange': params['dateRange'], # only applicable to SWAP # 'action': params['action'], # only applicable to SWAP # 'symbol': market['id'], # STOP and SWAP # 'side': params['side'], # STOP and SWAP, for stop orders: 1 Open long(buy), 2 Open short(sell), 3 Close long(sell), 4 Close Short(Buy). One-Way Positions: 5 Buy, 6 Sell, 0 Close Only # 'orderType': 1, # STOP, 1: Plan order, 2: SP/SL # 'bizType': 1, # Plan order, 1: TP, 2: SL # 'status': 1, # STOP, 1: untriggered, 2: cancelled, 3:triggered, 4:failed, 5:completed # 'startTime': since, # STOP and SWAP # 'endTime': params['endTime'], # STOP and SWAP # 'pageNum': 1, # STOP and SWAP, default 1 # 'pageSize': limit, # STOP, default 10 } marketIdField = 'symbol' if market['swap'] else 'currency' request[marketIdField] = market['id'] pageNumField = 'pageNum' if market['swap'] else 'pageIndex' request[pageNumField] = 1 if swap: request['startTime'] = since method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PrivateGetGetOrdersIgnoreTradeType', 'swap': 'contractV2PrivateGetTradeGetAllOrders', }) # tradeType 交易类型1/0[buy/sell] if 'tradeType' in params: method = 'spotV1PrivateGetGetOrdersNew' if stop: method = 'contractV2PrivateGetTradeGetOrderAlgos' orderType = self.safe_integer(params, 'orderType') if orderType is None: raise ArgumentsRequired(self.id + ' fetchOrders() requires an orderType parameter for stop orders') side = self.safe_integer(params, 'side') bizType = self.safe_integer(params, 'bizType') if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short elif side == 5: request['side'] = 5 # one way position buy elif side == 6: request['side'] = 6 # one way position sell elif side == 0: request['side'] = 0 # one way position close only if orderType == 1: request['orderType'] = 1 elif orderType == 2 or bizType: request['orderType'] = 2 request['bizType'] = bizType query = self.omit(params, ['reduceOnly', 'stop', 'side', 'orderType', 'bizType']) response = None try: response = await getattr(self, method)(self.extend(request, query)) except Exception as e: if isinstance(e, OrderNotFound): return [] raise e # Spot # # [ # { # "acctType": 0, # "currency": "btc_usdt", # "fees": 0, # "id": "202202234857482656", # "price": 30000.0, # "status": 3, # "total_amount": 0.0006, # "trade_amount": 0.0000, # "trade_date": 1645610254524, # "trade_money": 0.000000, # "type": 1, # "useZbFee": False, # "webId": 0 # } # ] # # Swap # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "amount": "0.004", # "availableAmount": "0.004", # "availableValue": "120", # "avgPrice": "0", # "canCancel": True, # "cancelStatus": 20, # "createTime": "1645609643885", # "entrustType": 1, # "id": "6902187111785635850", # "leverage": 5, # "margin": "24", # "marketId": "100", # "marketName": "BTC_USDT", # "modifyTime": "1645609643889", # "price": "30000", # "showStatus": 1, # "side": 1, # "sourceType": 1, # "status": 12, # "tradeAmount": "0", # "tradeValue": "0", # "type": 1, # "userId": "6896693805014120448", # "value": "120" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # # Algo order # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "algoPrice": "30000", # "amount": "0.003", # "bizType": 0, # "canCancel": True, # "createTime": "1649913941109", # "errorCode": 0, # "id": "6920240642849449984", # "isLong": False, # "leverage": 10, # "marketId": "100", # "modifyTime": "1649913941109", # "orderType": 1, # "priceType": 2, # "side": 5, # "sourceType": 4, # "status": 1, # "submitPrice": "41270.53", # "symbol": "BTC_USDT", # "tradedAmount": "0", # "triggerCondition": "<=", # "triggerPrice": "31000", # "triggerTime": "0", # "userId": "6896693805014120448" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # if swap: data = self.safe_value(response, 'data', {}) response = self.safe_value(data, 'list', []) return self.parse_orders(response, market, since, limit) async def fetch_canceled_orders(self, symbol=None, since=None, limit=10, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchCanceledOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) reduceOnly = self.safe_value(params, 'reduceOnly') stop = self.safe_value(params, 'stop') request = { 'pageSize': limit, # SPOT and STOP, default pageSize is 10, doesn't work with other values now # 'currency': market['id'], # SPOT # 'pageIndex': 1, # SPOT, default pageIndex is 1 # 'symbol': market['id'], # STOP # 'side': params['side'], # STOP, for stop orders: 1 Open long(buy), 2 Open short(sell), 3 Close long(sell), 4 Close Short(Buy). One-Way Positions: 5 Buy, 6 Sell, 0 Close Only # 'orderType': 1, # STOP, 1: Plan order, 2: SP/SL # 'bizType': 1, # Plan order, 1: TP, 2: SL # 'status': 1, # STOP, 1: untriggered, 2: cancelled, 3:triggered, 4:failed, 5:completed # 'startTime': since, # STOP # 'endTime': params['endTime'], # STOP # 'pageNum': 1, # STOP, default 1 } marketIdField = 'currency' if market['spot'] else 'symbol' request[marketIdField] = market['id'] pageNumField = 'pageIndex' if market['spot'] else 'pageNum' request[pageNumField] = 1 method = 'spotV1PrivateGetGetOrdersIgnoreTradeType' if stop: method = 'contractV2PrivateGetTradeGetOrderAlgos' orderType = self.safe_integer(params, 'orderType') if orderType is None: raise ArgumentsRequired(self.id + ' fetchCanceledOrders() requires an orderType parameter for stop orders') side = self.safe_integer(params, 'side') bizType = self.safe_integer(params, 'bizType') if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short elif side == 5: request['side'] = 5 # one way position buy elif side == 6: request['side'] = 6 # one way position sell elif side == 0: request['side'] = 0 # one way position close only if orderType == 1: request['orderType'] = 1 elif orderType == 2 or bizType: request['orderType'] = 2 request['bizType'] = bizType request['status'] = 2 # tradeType 交易类型1/0[buy/sell] if 'tradeType' in params: method = 'spotV1PrivateGetGetOrdersNew' response = None try: response = await getattr(self, method)(self.extend(request, params)) except Exception as e: if isinstance(e, OrderNotFound): return [] raise e query = self.omit(params, ['reduceOnly', 'stop', 'side', 'orderType', 'bizType']) response = await getattr(self, method)(self.extend(request, query)) # # Spot # # [ # { # "acctType": 0, # "currency": "btc_usdt", # "fees": 0, # "id": "202202234857482656", # "price": 30000.0, # "status": 1, # "total_amount": 0.0006, # "trade_amount": 0.0000, # "trade_date": 1645610254524, # "trade_money": 0.000000, # "type": 1, # "useZbFee": False, # "webId": 0 # } # ] # # Algo order # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "algoPrice": "30000", # "amount": "0.003", # "bizType": 0, # "canCancel": True, # "createTime": "1649913941109", # "errorCode": 0, # "id": "6920240642849449984", # "isLong": False, # "leverage": 10, # "marketId": "100", # "modifyTime": "1649913941109", # "orderType": 1, # "priceType": 2, # "side": 5, # "sourceType": 4, # "status": 2, # "submitPrice": "41270.53", # "symbol": "BTC_USDT", # "tradedAmount": "0", # "triggerCondition": "<=", # "triggerPrice": "31000", # "triggerTime": "0", # "userId": "6896693805014120448" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # if stop: data = self.safe_value(response, 'data', {}) response = self.safe_value(data, 'list', []) result = [] if market['type'] == 'spot': for i in range(0, len(response)): entry = response[i] status = self.safe_string(entry, 'status') if status == '1': result.append(entry) response = result return self.parse_orders(response, market, since, limit) async def fetch_closed_orders(self, symbol=None, since=None, limit=10, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchClosedOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) reduceOnly = self.safe_value(params, 'reduceOnly') stop = self.safe_value(params, 'stop') request = { 'pageSize': limit, # SPOT and STOP, default pageSize is 10, doesn't work with other values now # 'currency': market['id'], # SPOT # 'pageIndex': 1, # SPOT, default pageIndex is 1 # 'symbol': market['id'], # STOP # 'side': params['side'], # STOP, for stop orders: 1 Open long(buy), 2 Open short(sell), 3 Close long(sell), 4 Close Short(Buy). One-Way Positions: 5 Buy, 6 Sell, 0 Close Only # 'orderType': 1, # STOP, 1: Plan order, 2: SP/SL # 'bizType': 1, # Plan order, 1: TP, 2: SL # 'status': 1, # STOP, 1: untriggered, 2: cancelled, 3:triggered, 4:failed, 5:completed # 'startTime': since, # STOP # 'endTime': params['endTime'], # STOP # 'pageNum': 1, # STOP, default 1 } marketIdField = 'currency' if market['spot'] else 'symbol' request[marketIdField] = market['id'] pageNumField = 'pageIndex' if market['spot'] else 'pageNum' request[pageNumField] = 1 method = 'spotV1PrivateGetGetFinishedAndPartialOrders' if stop: method = 'contractV2PrivateGetTradeGetOrderAlgos' orderType = self.safe_integer(params, 'orderType') if orderType is None: raise ArgumentsRequired(self.id + ' fetchClosedOrders() requires an orderType parameter for stop orders') side = self.safe_integer(params, 'side') bizType = self.safe_integer(params, 'bizType') if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short elif side == 5: request['side'] = 5 # one way position buy elif side == 6: request['side'] = 6 # one way position sell elif side == 0: request['side'] = 0 # one way position close only if orderType == 1: request['orderType'] = 1 elif orderType == 2 or bizType: request['orderType'] = 2 request['bizType'] = bizType request['status'] = 5 query = self.omit(params, ['reduceOnly', 'stop', 'side', 'orderType', 'bizType']) response = await getattr(self, method)(self.extend(request, query)) # # Spot # # [ # { # "acctType": 0, # "currency": "btc_usdt", # "fees": 0.00823354, # "id": "202204145086706337", # "price": 41167.7, # "status": 2, # "total_amount": 0.0001, # "trade_amount": 0.0001, # "trade_date": 1649917867370, # "trade_money": 4.116770, # "type": 0, # "useZbFee": False, # "webId": 0 # }, # ] # # Algo order # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "algoPrice": "30000", # "amount": "0.003", # "bizType": 0, # "canCancel": True, # "createTime": "1649913941109", # "errorCode": 0, # "id": "6920240642849449984", # "isLong": False, # "leverage": 10, # "marketId": "100", # "modifyTime": "1649913941109", # "orderType": 1, # "priceType": 2, # "side": 5, # "sourceType": 4, # "status": 1, # "submitPrice": "41270.53", # "symbol": "BTC_USDT", # "tradedAmount": "0", # "triggerCondition": "<=", # "triggerPrice": "31000", # "triggerTime": "0", # "userId": "6896693805014120448" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # if stop: data = self.safe_value(response, 'data', {}) response = self.safe_value(data, 'list', []) return self.parse_orders(response, market, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): """ fetch all unfilled currently open orders :param str symbol: unified market symbol :param int|None since: the earliest time in ms to fetch open orders for :param int|None limit: the maximum number of open orders structures to retrieve :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchOpenOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) reduceOnly = self.safe_value(params, 'reduceOnly') stop = self.safe_value(params, 'stop') swap = market['swap'] request = { # 'pageSize': limit, # default pageSize is 10 for spot, 30 for swap # 'currency': market['id'], # SPOT # 'pageIndex': 1, # SPOT # 'symbol': market['id'], # SWAP and STOP # 'pageNum': 1, # SWAP and STOP, default 1 # 'type': params['type'], # swap only # 'side': params['side'], # SWAP and STOP, for stop orders: 1 Open long(buy), 2 Open short(sell), 3 Close long(sell), 4 Close Short(Buy). One-Way Positions: 5 Buy, 6 Sell, 0 Close Only # 'action': params['action'], # SWAP # 'orderType': 1, # STOP, 1: Plan order, 2: SP/SL # 'bizType': 1, # Plan order, 1: TP, 2: SL # 'status': 1, # STOP, 1: untriggered, 2: cancelled, 3:triggered, 4:failed, 5:completed # 'startTime': since, # SWAP and STOP # 'endTime': params['endTime'], # STOP } if limit is not None: request['pageSize'] = limit # default pageSize is 10 for spot, 30 for swap marketIdField = 'symbol' if market['swap'] else 'currency' request[marketIdField] = market['id'] pageNumField = 'pageNum' if market['swap'] else 'pageIndex' request[pageNumField] = 1 if swap and (since is not None): request['startTime'] = since method = self.get_supported_mapping(market['type'], { 'spot': 'spotV1PrivateGetGetUnfinishedOrdersIgnoreTradeType', 'swap': 'contractV2PrivateGetTradeGetUndoneOrders', }) if stop: method = 'contractV2PrivateGetTradeGetOrderAlgos' orderType = self.safe_integer(params, 'orderType') if orderType is None: raise ArgumentsRequired(self.id + ' fetchOpenOrders() requires an orderType parameter for stop orders') side = self.safe_integer(params, 'side') bizType = self.safe_integer(params, 'bizType') if side == 'sell' and reduceOnly: request['side'] = 3 # close long elif side == 'buy' and reduceOnly: request['side'] = 4 # close short elif side == 'buy': request['side'] = 1 # open long elif side == 'sell': request['side'] = 2 # open short elif side == 5: request['side'] = 5 # one way position buy elif side == 6: request['side'] = 6 # one way position sell elif side == 0: request['side'] = 0 # one way position close only if orderType == 1: request['orderType'] = 1 elif orderType == 2 or bizType: request['orderType'] = 2 request['bizType'] = bizType request['status'] = 1 query = self.omit(params, ['reduceOnly', 'stop', 'side', 'orderType', 'bizType']) # tradeType 交易类型1/0[buy/sell] if 'tradeType' in params: method = 'spotV1PrivateGetGetOrdersNew' response = None try: response = await getattr(self, method)(self.extend(request, query)) except Exception as e: if isinstance(e, OrderNotFound): return [] raise e # # Spot # # [ # { # "currency": "btc_usdt", # "id": "20150928158614292", # "price": 1560, # "status": 3, # "total_amount": 0.1, # "trade_amount": 0, # "trade_date": 1443410396717, # "trade_money": 0, # "type": 0, # "fees": "0.03", # "useZbFee": True # }, # ] # # Swap # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "amount": "0.003", # "availableAmount": "0.003", # "availableValue": "90", # "avgPrice": "0", # "canCancel": True, # "cancelStatus": 20, # "createTime": "1645694610880", # "entrustType": 1, # "id": "6902543489192632320", # "leverage": 5, # "margin": "18", # "marketId": "100", # "modifyTime": "1645694610883", # "price": "30000", # "priority": 0, # "showStatus": 1, # "side": 1, # "sourceType": 1, # "status": 12, # "tradeAmount": "0", # "tradeValue": "0", # "type": 1, # "userId": "6896693805014120448", # "value": "90" # } # ], # "pageNum": 1, # "pageSize": 30 # }, # "desc": "操作成功" # } # # Algo order # # { # "code": 10000, # "data": { # "list": [ # { # "action": 1, # "algoPrice": "30000", # "amount": "0.003", # "bizType": 0, # "canCancel": True, # "createTime": "1649913941109", # "errorCode": 0, # "id": "6920240642849449984", # "isLong": False, # "leverage": 10, # "marketId": "100", # "modifyTime": "1649913941109", # "orderType": 1, # "priceType": 2, # "side": 5, # "sourceType": 4, # "status": 1, # "submitPrice": "41270.53", # "symbol": "BTC_USDT", # "tradedAmount": "0", # "triggerCondition": "<=", # "triggerPrice": "31000", # "triggerTime": "0", # "userId": "6896693805014120448" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # if swap: data = self.safe_value(response, 'data', {}) response = self.safe_value(data, 'list', []) return self.parse_orders(response, market, since, limit) def parse_order(self, order, market=None): # # Spot fetchOrder, fetchClosedOrders # # { # acctType: 0, # currency: 'btc_usdt', # fees: 3.6e-7, # id: '202102282829772463', # price: 45177.5, # status: 2, # total_amount: 0.0002, # trade_amount: 0.0002, # trade_date: 1614515104998, # trade_money: 8.983712, # type: 1, # useZbFee: False # }, # # Swap fetchOrder # # { # "action": 1, # "amount": "0.002", # "availableAmount": "0.002", # "availableValue": "60", # "avgPrice": "0", # "canCancel": True, # "cancelStatus": 20, # "createTime": "1646185684379", # "entrustType": 1, # "id": "6904603200733782016", # "leverage": 2, # "margin": "30", # "marketId": "100", # "modifyTime": "1646185684416", # "price": "30000", # "priority": 0, # "showStatus": 1, # "side": 1, # "sourceType": 4, # "status": 12, # "tradeAmount": "0", # "tradeValue": "0", # "type": 1, # "userId": "6896693805014120448", # "value": "60" # }, # # Algo fetchOrder, fetchOrders, fetchOpenOrders, fetchClosedOrders # # { # "action": 1, # "algoPrice": "30000", # "amount": "0.003", # "bizType": 0, # "canCancel": True, # "createTime": "1649913941109", # "errorCode": 0, # "id": "6920240642849449984", # "isLong": False, # "leverage": 10, # "marketId": "100", # "modifyTime": "1649913941109", # "orderType": 1, # "priceType": 2, # "side": 5, # "sourceType": 4, # "status": 1, # "submitPrice": "41270.53", # "symbol": "BTC_USDT", # "tradedAmount": "0", # "triggerCondition": "<=", # "triggerPrice": "31000", # "triggerTime": "0", # "userId": "6896693805014120448" # }, # # Spot createOrder # # { # code: '1000', # message: '操作成功', # id: '202202224851151555', # type: '1', # total_amount: 0.0002, # price: 30000 # } # # Swap createOrder # # { # orderId: '6901786759944937472', # orderCode: null, # timeInForce: 'IOC', # total_amount: 0.0002, # price: 30000 # } # # Algo createOrder # # { # "code": 10000, # "data": "6919884551305242624", # "desc": "操作成功" # } # orderId = self.safe_value(order, 'orderId') if market['swap'] else self.safe_value(order, 'id') if orderId is None: orderId = self.safe_value(order, 'id') side = self.safe_integer_2(order, 'type', 'side') if side is None: side = None else: if market['type'] == 'spot': side = 'buy' if (side == 1) else 'sell' timestamp = self.safe_integer(order, 'trade_date') if timestamp is None: timestamp = self.safe_integer(order, 'createTime') marketId = self.safe_string(order, 'currency') market = self.safe_market(marketId, market, '_') price = self.safe_string_2(order, 'price', 'algoPrice') filled = self.safe_string(order, 'tradeAmount') if market['swap'] else self.safe_string(order, 'trade_amount') amount = self.safe_string(order, 'total_amount') if amount is None: amount = self.safe_string(order, 'amount') cost = self.safe_string(order, 'trade_money') status = self.parse_order_status(self.safe_string(order, 'status'), market) timeInForce = self.safe_string(order, 'timeInForce') postOnly = (timeInForce == 'PO') feeCost = self.safe_number(order, 'fees') fee = None if feeCost is not None: feeCurrency = None zbFees = self.safe_value(order, 'useZbFee') if zbFees is True: feeCurrency = 'ZB' else: feeCurrency = market['quote'] if (side == 'sell') else market['base'] fee = { 'cost': feeCost, 'currency': feeCurrency, } return self.safe_order({ 'info': order, 'id': orderId, 'clientOrderId': self.safe_string(order, 'userId'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': market['symbol'], 'type': 'limit', # market order is not available on ZB 'timeInForce': timeInForce, 'postOnly': postOnly, 'side': side, 'price': price, 'stopPrice': self.safe_string(order, 'triggerPrice'), 'average': self.safe_string(order, 'avgPrice'), 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': None, 'status': status, 'fee': fee, 'trades': None, }, market) def parse_order_status(self, status, market=None): statuses = {} if market['type'] == 'spot': statuses = { '0': 'open', '1': 'canceled', '2': 'closed', '3': 'open', # partial } else: statuses = { '1': 'open', '2': 'canceled', '3': 'open', # stop order triggered '4': 'failed', '5': 'closed', } return self.safe_string(statuses, status, status) def parse_transaction_status(self, status): statuses = { '0': 'pending', # submitted, pending confirmation '1': 'failed', '2': 'ok', '3': 'canceled', '5': 'ok', # confirmed } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # withdraw # # { # "code": 1000, # "message": "success", # "id": "withdrawalId" # } # # fetchWithdrawals # # { # "amount": 0.01, # "fees": 0.001, # "id": 2016042556231, # "manageTime": 1461579340000, # "status": 3, # "submitTime": 1461579288000, # "toAddress": "14fxEPirL9fyfw1i9EF439Pq6gQ5xijUmp", # } # # fetchDeposits # # { # "address": "1FKN1DZqCm8HaTujDioRL2Aezdh7Qj7xxx", # "amount": "1.00000000", # "confirmTimes": 1, # "currency": "BTC", # "description": "Successfully Confirm", # "hash": "7ce842de187c379abafadd64a5fe66c5c61c8a21fb04edff9532234a1dae6xxx", # "id": 558, # "itransfer": 1, # "status": 2, # "submit_time": "2016-12-07 18:51:57", # } # id = self.safe_string(transaction, 'id') txid = self.safe_string(transaction, 'hash') amount = self.safe_number(transaction, 'amount') timestamp = self.parse8601(self.safe_string(transaction, 'submit_time')) timestamp = self.safe_integer(transaction, 'submitTime', timestamp) address = self.safe_string_2(transaction, 'toAddress', 'address') tag = None if address is not None: parts = address.split('_') address = self.safe_string(parts, 0) tag = self.safe_string(parts, 1) confirmTimes = self.safe_integer(transaction, 'confirmTimes') updated = self.safe_integer(transaction, 'manageTime') type = None currencyId = self.safe_string(transaction, 'currency') code = self.safe_currency_code(currencyId, currency) if address is not None: type = 'withdrawal' if (confirmTimes is None) else 'deposit' status = self.parse_transaction_status(self.safe_string(transaction, 'status')) fee = None feeCost = self.safe_number(transaction, 'fees') if feeCost is not None: fee = { 'cost': feeCost, 'currency': code, } return { 'info': transaction, 'id': id, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'network': None, 'addressFrom': None, 'address': address, 'addressTo': address, 'tagFrom': None, 'tag': tag, 'tagTo': tag, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': updated, 'fee': fee, } async def set_leverage(self, leverage, symbol=None, params={}): """ set the level of leverage for a market :param float leverage: the rate of leverage :param str symbol: unified market symbol :param dict params: extra parameters specific to the zb api endpoint :returns dict: response from the exchange """ await self.load_markets() if symbol is None: raise ArgumentsRequired(self.id + ' setLeverage() requires a symbol argument') if (leverage < 1) or (leverage > 125): raise BadRequest(self.id + ' setLeverage() leverage should be between 1 and 125') market = self.market(symbol) accountType = None if not market['swap']: raise BadSymbol(self.id + ' setLeverage() supports swap contracts only') else: accountType = 1 request = { 'symbol': market['id'], 'leverage': leverage, 'futuresAccountType': accountType, # 1: USDT perpetual swaps } return await self.contractV2PrivatePostSettingSetLeverage(self.extend(request, params)) async def fetch_funding_rate_history(self, symbol=None, since=None, limit=None, params={}): """ fetches historical funding rate prices :param str|None symbol: unified symbol of the market to fetch the funding rate history for :param int|None since: timestamp in ms of the earliest funding rate to fetch :param int|None limit: the maximum amount of `funding rate structures <https://docs.ccxt.com/en/latest/manual.html?#funding-rate-history-structure>` to fetch :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `funding rate structures <https://docs.ccxt.com/en/latest/manual.html?#funding-rate-history-structure>` """ await self.load_markets() request = { # 'symbol': market['id'], # 'startTime': since, # 'endTime': endTime, # current time by default # 'limit': limit, # default 100, max 1000 } if symbol is not None: market = self.market(symbol) symbol = market['symbol'] request['symbol'] = market['id'] if since is not None: request['startTime'] = since till = self.safe_integer(params, 'till') endTime = self.safe_string(params, 'endTime') params = self.omit(params, ['endTime', 'till']) if till is not None: request['endTime'] = till elif endTime is not None: request['endTime'] = endTime if limit is not None: request['limit'] = limit response = await self.contractV2PublicGetFundingRate(self.extend(request, params)) # # { # "code": 10000, # "data": [ # { # "symbol": "BTC_USDT", # "fundingRate": "0.0001", # "fundingTime": "1645171200000" # }, # ], # "desc": "操作成功" # } # data = self.safe_value(response, 'data', []) rates = [] for i in range(0, len(data)): entry = data[i] marketId = self.safe_string(entry, 'symbol') symbol = self.safe_symbol(marketId) timestamp = self.safe_string(entry, 'fundingTime') rates.append({ 'info': entry, 'symbol': symbol, 'fundingRate': self.safe_number(entry, 'fundingRate'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), }) sorted = self.sort_by(rates, 'timestamp') return self.filter_by_symbol_since_limit(sorted, symbol, since, limit) async def fetch_funding_rate(self, symbol, params={}): """ fetch the current funding rate :param str symbol: unified market symbol :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `funding rate structure <https://docs.ccxt.com/en/latest/manual.html#funding-rate-structure>` """ await self.load_markets() market = self.market(symbol) if not market['swap']: raise BadSymbol(self.id + ' fetchFundingRate() does not supports contracts only') request = { 'symbol': market['id'], } response = await self.contractV1PublicGetFundingRate(self.extend(request, params)) # # { # "code": 10000, # "desc": "操作成功", # "data": { # "fundingRate": "0.0001", # "nextCalculateTime": "2022-02-19 00:00:00" # } # } # data = self.safe_value(response, 'data') return self.parse_funding_rate(data, market) def parse_funding_rate(self, contract, market=None): # # fetchFundingRate # # { # "fundingRate": "0.0001", # "nextCalculateTime": "2022-02-19 00:00:00" # } # # fetchFundingRates # # { # "symbol": "BTC_USDT", # "markPrice": "43254.42", # "indexPrice": "43278.61", # "lastFundingRate": "0.0001", # "nextFundingTime": "1646121600000" # } # marketId = self.safe_string(contract, 'symbol') symbol = self.safe_symbol(marketId, market) fundingRate = self.safe_number(contract, 'fundingRate') nextFundingDatetime = self.safe_string(contract, 'nextCalculateTime') return { 'info': contract, 'symbol': symbol, 'markPrice': self.safe_string(contract, 'markPrice'), 'indexPrice': self.safe_string(contract, 'indexPrice'), 'interestRate': None, 'estimatedSettlePrice': None, 'timestamp': None, 'datetime': None, 'fundingRate': fundingRate, 'fundingTimestamp': None, 'fundingDatetime': None, 'nextFundingRate': None, 'nextFundingTimestamp': self.parse8601(nextFundingDatetime), 'nextFundingDatetime': nextFundingDatetime, 'previousFundingRate': self.safe_string(contract, 'lastFundingRate'), 'previousFundingTimestamp': None, 'previousFundingDatetime': None, } async def fetch_funding_rates(self, symbols=None, params={}): """ fetch the funding rate for multiple markets :param [str]|None symbols: list of unified market symbols :param dict params: extra parameters specific to the zb api endpoint :returns dict: a dictionary of `funding rates structures <https://docs.ccxt.com/en/latest/manual.html#funding-rates-structure>`, indexe by market symbols """ await self.load_markets() response = await self.contractV2PublicGetPremiumIndex(params) # # { # "code": 10000, # "data": [ # { # "symbol": "BTC_USDT", # "markPrice": "43254.42", # "indexPrice": "43278.61", # "lastFundingRate": "0.0001", # "nextFundingTime": "1646121600000" # }, # ], # "desc":"操作成功" # } # data = self.safe_value(response, 'data', []) result = self.parse_funding_rates(data) return self.filter_by_array(result, 'symbol', symbols) async def withdraw(self, code, amount, address, tag=None, params={}): """ make a withdrawal :param str code: unified currency code :param float amount: the amount to withdraw :param str address: the address to withdraw to :param str|None tag: :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `transaction structure <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ tag, params = self.handle_withdraw_tag_and_params(tag, params) password = self.safe_string(params, 'safePwd', self.password) if password is None: raise ArgumentsRequired(self.id + ' withdraw() requires exchange.password or a safePwd parameter') fees = self.safe_number(params, 'fees') if fees is None: raise ArgumentsRequired(self.id + ' withdraw() requires a fees parameter') self.check_address(address) await self.load_markets() currency = self.currency(code) if tag is not None: address += '_' + tag request = { 'amount': self.currency_to_precision(code, amount), 'currency': currency['id'], 'fees': self.currency_to_precision(code, fees), # 'itransfer': 0, # agree for an internal transfer, 0 disagree, 1 agree, the default is to disagree 'method': 'withdraw', 'receiveAddr': address, 'safePwd': password, } response = await self.spotV1PrivateGetWithdraw(self.extend(request, params)) # # { # "code": 1000, # "message": "success", # "id": "withdrawalId" # } # transaction = self.parse_transaction(response, currency) return self.extend(transaction, { 'type': 'withdrawal', 'address': address, 'addressTo': address, 'amount': amount, }) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): """ fetch all withdrawals made from an account :param str|None code: unified currency code :param int|None since: the earliest time in ms to fetch withdrawals for :param int|None limit: the maximum number of withdrawals structures to retrieve :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `transaction structures <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ await self.load_markets() request = { # 'currency': currency['id'], # 'pageIndex': 1, # 'pageSize': limit, } currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] if limit is not None: request['pageSize'] = limit response = await self.spotV1PrivateGetGetWithdrawRecord(self.extend(request, params)) # # { # "code": 1000, # "message": { # "des": "success", # "isSuc": True, # "datas": { # "list": [ # { # "amount": 0.01, # "fees": 0.001, # "id": 2016042556231, # "manageTime": 1461579340000, # "status": 3, # "submitTime": 1461579288000, # "toAddress": "14fxEPirL9fyfw1i9EF439Pq6gQ5xijUmp", # }, # ], # "pageIndex": 1, # "pageSize": 10, # "totalCount": 4, # "totalPage": 1 # } # } # } # message = self.safe_value(response, 'message', {}) datas = self.safe_value(message, 'datas', {}) withdrawals = self.safe_value(datas, 'list', []) return self.parse_transactions(withdrawals, currency, since, limit) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): """ fetch all deposits made to an account :param str|None code: unified currency code :param int|None since: the earliest time in ms to fetch deposits for :param int|None limit: the maximum number of deposits structures to retrieve :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `transaction structures <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ await self.load_markets() request = { # 'currency': currency['id'], # 'pageIndex': 1, # 'pageSize': limit, } currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] if limit is not None: request['pageSize'] = limit response = await self.spotV1PrivateGetGetChargeRecord(self.extend(request, params)) # # { # "code": 1000, # "message": { # "des": "success", # "isSuc": True, # "datas": { # "list": [ # { # "address": "1FKN1DZqCm8HaTujDioRL2Aezdh7Qj7xxx", # "amount": "1.00000000", # "confirmTimes": 1, # "currency": "BTC", # "description": "Successfully Confirm", # "hash": "7ce842de187c379abafadd64a5fe66c5c61c8a21fb04edff9532234a1dae6xxx", # "id": 558, # "itransfer": 1, # "status": 2, # "submit_time": "2016-12-07 18:51:57", # }, # ], # "pageIndex": 1, # "pageSize": 10, # "total": 8 # } # } # } # message = self.safe_value(response, 'message', {}) datas = self.safe_value(message, 'datas', {}) deposits = self.safe_value(datas, 'list', []) return self.parse_transactions(deposits, currency, since, limit) async def fetch_position(self, symbol, params={}): """ fetch data on a single open contract trade position :param str symbol: unified market symbol of the market the position is held in, default is None :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `position structure <https://docs.ccxt.com/en/latest/manual.html#position-structure>` """ await self.load_markets() market = None if symbol is not None: market = self.market(symbol) request = { 'futuresAccountType': 1, # 1: USDT-M Perpetual Futures # 'symbol': market['id'], # 'marketId': market['id'], # 'side': params['side'], } response = await self.contractV2PrivateGetPositionsGetPositions(self.extend(request, params)) # # { # "code": 10000, # "data": [ # { # "amount": "0.002", # "appendAmount": "0", # "autoLightenRatio": "0", # "avgPrice": "38570", # "bankruptcyPrice": "46288.41", # "contractType": 1, # "createTime": "1645784751867", # "freezeAmount": "0", # "freezeList": [ # { # "amount": "15.436832", # "currencyId": "6", # "currencyName": "usdt", # "modifyTime": "1645784751867" # } # ], # "id": "6902921567894972486", # "lastAppendAmount": "0", # "leverage": 5, # "liquidateLevel": 1, # "liquidatePrice": "46104", # "maintainMargin": "0.30912384", # "margin": "15.436832", # "marginAppendCount": 0, # "marginBalance": "15.295872", # "marginMode": 1, # "marginRate": "0.020209", # "marketId": "100", # "marketName": "BTC_USDT", # "modifyTime": "1645784751867", # "nominalValue": "77.14736", # "originAppendAmount": "0", # "originId": "6902921567894972591", # "refreshType": "Timer", # "returnRate": "-0.0091", # "side": 0, # "status": 1, # "unrealizedPnl": "-0.14096", # "userId": "6896693805014120448" # } # ], # "desc": "操作成功" # } # data = self.safe_value(response, 'data', []) firstPosition = self.safe_value(data, 0) return self.parse_position(firstPosition, market) async def fetch_positions(self, symbols=None, params={}): """ fetch all open positions :param [str]|None symbols: list of unified market symbols :param dict params: extra parameters specific to the zb api endpoint :returns [dict]: a list of `position structure <https://docs.ccxt.com/en/latest/manual.html#position-structure>` """ await self.load_markets() request = { 'futuresAccountType': 1, # 1: USDT-M Perpetual Futures # 'symbol': market['id'], # 'marketId': market['id'], # 'side': params['side'], } response = await self.contractV2PrivateGetPositionsGetPositions(self.extend(request, params)) # # { # "code": 10000, # "data": [ # { # "amount": "0.002", # "appendAmount": "0", # "autoLightenRatio": "0", # "avgPrice": "38570", # "bankruptcyPrice": "46288.41", # "contractType": 1, # "createTime": "1645784751867", # "freezeAmount": "0", # "freezeList": [ # { # "amount": "15.436832", # "currencyId": "6", # "currencyName": "usdt", # "modifyTime": "1645784751867" # } # ], # "id": "6902921567894972486", # "lastAppendAmount": "0", # "leverage": 5, # "liquidateLevel": 1, # "liquidatePrice": "46104", # "maintainMargin": "0.30912384", # "margin": "15.436832", # "marginAppendCount": 0, # "marginBalance": "15.295872", # "marginMode": 1, # "marginRate": "0.020209", # "marketId": "100", # "marketName": "BTC_USDT", # "modifyTime": "1645784751867", # "nominalValue": "77.14736", # "originAppendAmount": "0", # "originId": "6902921567894972591", # "refreshType": "Timer", # "returnRate": "-0.0091", # "side": 0, # "status": 1, # "unrealizedPnl": "-0.14096", # "userId": "6896693805014120448" # }, # ], # "desc": "操作成功" # } # data = self.safe_value(response, 'data', []) return self.parse_positions(data, symbols) def parse_position(self, position, market=None): # # { # "amount": "0.002", # "appendAmount": "0", # "autoLightenRatio": "0", # "avgPrice": "38570", # "bankruptcyPrice": "46288.41", # "contractType": 1, # "createTime": "1645784751867", # "freezeAmount": "0", # "freezeList": [ # { # "amount": "15.436832", # "currencyId": "6", # "currencyName": "usdt", # "modifyTime": "1645784751867" # } # ], # "id": "6902921567894972486", # "lastAppendAmount": "0", # "leverage": 5, # "liquidateLevel": 1, # "liquidatePrice": "46104", # "maintainMargin": "0.30912384", # "margin": "15.436832", # "marginAppendCount": 0, # "marginBalance": "15.295872", # "marginMode": 1, # "marginRate": "0.020209", # "marketId": "100", # "marketName": "BTC_USDT", # "modifyTime": "1645784751867", # "nominalValue": "77.14736", # "originAppendAmount": "0", # "originId": "6902921567894972591", # "refreshType": "Timer", # "returnRate": "-0.0091", # "side": 0, # "status": 1, # "unrealizedPnl": "-0.14096", # "userId": "6896693805014120448" # } # marketId = self.safe_string(position, 'marketName') market = self.safe_market(marketId, market) symbol = market['symbol'] contracts = self.safe_string(position, 'amount') entryPrice = self.safe_number(position, 'avgPrice') initialMargin = self.safe_string(position, 'margin') rawSide = self.safe_string(position, 'side') side = 'long' if (rawSide == '1') else 'short' openType = self.safe_string(position, 'marginMode') marginMode = 'isolated' if (openType == '1') else 'cross' leverage = self.safe_string(position, 'leverage') liquidationPrice = self.safe_number(position, 'liquidatePrice') unrealizedProfit = self.safe_number(position, 'unrealizedPnl') maintenanceMargin = self.safe_number(position, 'maintainMargin') marginRatio = self.safe_number(position, 'marginRate') notional = self.safe_number(position, 'nominalValue') percentage = Precise.string_mul(self.safe_string(position, 'returnRate'), '100') timestamp = self.safe_number(position, 'createTime') return { 'info': position, 'symbol': symbol, 'contracts': self.parse_number(contracts), 'contractSize': None, 'entryPrice': entryPrice, 'collateral': None, 'side': side, 'unrealizedProfit': unrealizedProfit, 'leverage': self.parse_number(leverage), 'percentage': percentage, 'marginMode': marginMode, 'notional': notional, 'markPrice': None, 'liquidationPrice': liquidationPrice, 'initialMargin': self.parse_number(initialMargin), 'initialMarginPercentage': None, 'maintenanceMargin': maintenanceMargin, 'maintenanceMarginPercentage': None, 'marginRatio': marginRatio, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), } def parse_ledger_entry_type(self, type): types = { '1': 'realized pnl', '2': 'commission', '3': 'funding fee subtract', '4': 'funding fee addition', '5': 'insurance clear', '6': 'transfer in', '7': 'transfer out', '8': 'margin addition', '9': 'margin subtraction', '10': 'commission addition', '11': 'bill type freeze', '12': 'bill type unfreeze', '13': 'system take over margin', '14': 'transfer', '15': 'realized pnl collection', '16': 'funding fee collection', '17': 'recommender return commission', '18': 'by level subtract positions', '19': 'system add', '20': 'system subtract', '23': 'trading competition take over fund', '24': 'trading contest tickets', '25': 'return of trading contest tickets', '26': 'experience expired recall', '50': 'test register gift', '51': 'register gift', '52': 'deposit gift', '53': 'trading volume gift', '54': 'awards gift', '55': 'trading volume gift', '56': 'awards gift expire', '201': 'open positions', '202': 'close positions', '203': 'take over positions', '204': 'trading competition take over positions', '205': 'one way open long', '206': 'one way open short', '207': 'one way close long', '208': 'one way close short', '301': 'coupon deduction service charge', '302': 'experience deduction', '303': 'experience expired', } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # [ # { # "type": 3, # "changeAmount": "0.00434664", # "isIn": 0, # "beforeAmount": "30.53353135", # "beforeFreezeAmount": "21.547", # "createTime": "1646121604997", # "available": "30.52918471", # "unit": "usdt", # "symbol": "BTC_USDT" # }, # ], # timestamp = self.safe_string(item, 'createTime') direction = None changeDirection = self.safe_number(item, 'isIn') if changeDirection == 1: direction = 'increase' else: direction = 'reduce' fee = None feeCost = self.safe_number(item, 'fee') if feeCost is not None: fee = { 'cost': feeCost, 'currency': self.safe_currency_code(self.safe_string(item, 'unit')), } return { 'id': self.safe_string(item, 'id'), 'info': item, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'direction': direction, 'account': self.safe_string(item, 'userId'), 'referenceId': None, 'referenceAccount': None, 'type': self.parse_ledger_entry_type(self.safe_integer(item, 'type')), 'currency': self.safe_currency_code(self.safe_string(item, 'unit')), 'amount': self.safe_number(item, 'changeAmount'), 'before': self.safe_number(item, 'beforeAmount'), 'after': self.safe_number(item, 'available'), 'status': None, 'fee': fee, } async def fetch_ledger(self, code=None, since=None, limit=None, params={}): if code is None: raise ArgumentsRequired(self.id + ' fetchLedger() requires a code argument') await self.load_markets() currency = self.currency(code) request = { 'futuresAccountType': 1, # 'currencyId': '11', # 'type': 1, # 'endTime': self.milliseconds(), # 'pageNum': 1, } if code is not None: request['currencyName'] = currency['id'] if since is not None: request['startTime'] = since if limit is not None: request['pageSize'] = limit response = await self.contractV2PrivateGetFundGetBill(self.extend(request, params)) # # { # "code": 10000, # "data": { # "list": [ # { # "type": 3, # "changeAmount": "0.00434664", # "isIn": 0, # "beforeAmount": "30.53353135", # "beforeFreezeAmount": "21.547", # "createTime": "1646121604997", # "available": "30.52918471", # "unit": "usdt", # "symbol": "BTC_USDT" # }, # ], # "pageNum": 1, # "pageSize": 10 # }, # "desc": "操作成功" # } # data = self.safe_value(response, 'data', {}) list = self.safe_value(data, 'list', []) return self.parse_ledger(list, currency, since, limit) async def transfer(self, code, amount, fromAccount, toAccount, params={}): """ transfer currency internally between wallets on the same account :param str code: unified currency code :param float amount: amount to transfer :param str fromAccount: account to transfer from :param str toAccount: account to transfer to :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `transfer structure <https://docs.ccxt.com/en/latest/manual.html#transfer-structure>` """ await self.load_markets() marketType, query = self.handle_market_type_and_params('transfer', None, params) currency = self.currency(code) margin = (marketType == 'margin') swap = (marketType == 'swap') side = None marginMethod = None amountToPrecision = self.currency_to_precision(code, amount) request = { 'amount': amountToPrecision, # Swap, Cross Margin, Isolated Margin # 'coin': currency['id'], # Margin # 'currencyName': currency['id'], # Swap # 'clientId': self.safe_string(params, 'clientId'), # Swap "2sdfsdfsdf232342" # 'side': side, # Swap, 1:Deposit(zb account -> futures account),0:Withdrawal(futures account -> zb account) # 'marketName': self.safe_string(params, 'marketName'), # Isolated Margin } if swap: if fromAccount == 'spot' or toAccount == 'future': side = 1 else: side = 0 request['currencyName'] = currency['id'] request['clientId'] = self.safe_string(params, 'clientId') request['side'] = side else: defaultMargin = 'isolated' if margin else 'cross' marginMode = self.safe_string_2(self.options, 'defaultMarginMode', 'marginMode', defaultMargin) if marginMode == 'isolated': if fromAccount == 'spot' or toAccount == 'isolated': marginMethod = 'spotV1PrivateGetTransferInLever' else: marginMethod = 'spotV1PrivateGetTransferOutLever' request['marketName'] = self.safe_string(params, 'marketName') elif marginMode == 'cross': if fromAccount == 'spot' or toAccount == 'cross': marginMethod = 'spotV1PrivateGetTransferInCross' else: marginMethod = 'spotV1PrivateGetTransferOutCross' request['coin'] = currency['id'] method = self.get_supported_mapping(marketType, { 'swap': 'contractV2PrivatePostFundTransferFund', 'margin': marginMethod, }) response = await getattr(self, method)(self.extend(request, query)) # # Swap # # { # "code": 10000, # "data": "2sdfsdfsdf232342", # "desc": "Success" # } # # Margin # # { # "code": 1000, # "message": "Success" # } # return self.extend(self.parse_transfer(response, currency), { 'amount': self.parse_number(amountToPrecision), 'fromAccount': fromAccount, 'toAccount': toAccount, }) def parse_transfer(self, transfer, currency=None): # response samples in 'transfer' timestamp = self.milliseconds() return { 'id': self.safe_string(transfer, 'data'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'currency': self.safe_currency_code(None, 'currency'), 'amount': None, 'fromAccount': None, 'toAccount': None, 'status': None, } async def modify_margin_helper(self, symbol, amount, type, params={}): if params['positionsId'] is None: raise ArgumentsRequired(self.id + ' modifyMarginHelper() requires a positionsId argument in the params') await self.load_markets() market = self.market(symbol) amount = self.amount_to_precision(symbol, amount) position = self.safe_string(params, 'positionsId') request = { 'positionsId': position, 'amount': amount, 'type': type, # 1 increase, 0 reduce 'futuresAccountType': 1, # 1: USDT Perpetual Futures } response = await self.contractV2PrivatePostPositionsUpdateMargin(self.extend(request, params)) # # { # "code": 10000, # "data": { # "amount": "0.002", # "appendAmount": "0", # "avgPrice": "43927.23", # "bankruptcyPrice": "41730.86", # "createTime": "1646208695609", # "freezeAmount": "0", # "id": "6900781818669377576", # "keyMark": "6896693805014120448-100-1-", # "lastAppendAmount": "0", # "lastTime": "1646209235505", # "leverage": 20, # "liquidateLevel": 1, # "liquidatePrice": "41898.46", # "maintainMargin": "0", # "margin": "4.392723", # "marginAppendCount": 0, # "marginBalance": "0", # "marginMode": 1, # "marginRate": "0", # "marketId": "100", # "marketName": "BTC_USDT", # "modifyTime": "1646209235505", # "nominalValue": "87.88828", # "originAppendAmount": "0", # "originId": "6904699716827818029", # "positionsMode": 2, # "sellerCurrencyId": "1", # "side": 1, # "status": 1, # "unrealizedPnl": "0.03382", # "usable": True, # "userId": "6896693805014120448" # }, # "desc":"操作成功" # } # return self.extend(self.parse_margin_modification(response, market), { 'amount': self.parse_number(amount), }) def parse_margin_modification(self, data, market=None): innerData = self.safe_value(data, 'data', {}) sideRaw = self.safe_integer(innerData, 'side') side = 'add' if (sideRaw == 1) else 'reduce' statusCode = self.safe_integer(innerData, 'status') status = 'ok' if (statusCode == 1) else 'failed' return { 'info': data, 'type': side, 'amount': None, 'code': market['quote'], 'symbol': market['symbol'], 'status': status, } async def add_margin(self, symbol, amount, params={}): """ add margin :param str symbol: unified market symbol :param float amount: amount of margin to add :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `margin structure <https://docs.ccxt.com/en/latest/manual.html#add-margin-structure>` """ if params['positionsId'] is None: raise ArgumentsRequired(self.id + ' addMargin() requires a positionsId argument in the params') return await self.modify_margin_helper(symbol, amount, 1, params) async def reduce_margin(self, symbol, amount, params={}): """ remove margin from a position :param str symbol: unified market symbol :param float amount: the amount of margin to remove :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `margin structure <https://docs.ccxt.com/en/latest/manual.html#reduce-margin-structure>` """ if params['positionsId'] is None: raise ArgumentsRequired(self.id + ' reduceMargin() requires a positionsId argument in the params') return await self.modify_margin_helper(symbol, amount, 0, params) async def fetch_borrow_rate(self, code, params={}): """ fetch the rate of interest to borrow a currency for margin trading :param str code: unified currency code :param dict params: extra parameters specific to the zb api endpoint :returns dict: a `borrow rate structure <https://docs.ccxt.com/en/latest/manual.html#borrow-rate-structure>` """ await self.load_markets() currency = self.currency(code) request = { 'coin': currency['id'], } response = await self.spotV1PrivateGetGetLoans(self.extend(request, params)) # # { # code: '1000', # message: '操作成功', # result: [ # { # interestRateOfDay: '0.0005', # repaymentDay: '30', # amount: '148804.4841', # balance: '148804.4841', # rateOfDayShow: '0.05 %', # coinName: 'USDT', # lowestAmount: '0.01' # }, # ] # } # timestamp = self.milliseconds() data = self.safe_value(response, 'result', []) rate = self.safe_value(data, 0, {}) return { 'currency': self.safe_currency_code(self.safe_string(rate, 'coinName')), 'rate': self.safe_number(rate, 'interestRateOfDay'), 'period': self.safe_number(rate, 'repaymentDay'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'info': rate, } async def fetch_borrow_rates(self, params={}): """ fetch the borrow interest rates of all currencies :param dict params: extra parameters specific to the zb api endpoint :returns dict: a list of `borrow rate structures <https://docs.ccxt.com/en/latest/manual.html#borrow-rate-structure>` """ if params['coin'] is None: raise ArgumentsRequired(self.id + ' fetchBorrowRates() requires a coin argument in the params') await self.load_markets() currency = self.currency(self.safe_string(params, 'coin')) request = { 'coin': currency['id'], } response = await self.spotV1PrivateGetGetLoans(self.extend(request, params)) # # { # code: '1000', # message: '操作成功', # result: [ # { # interestRateOfDay: '0.0005', # repaymentDay: '30', # amount: '148804.4841', # balance: '148804.4841', # rateOfDayShow: '0.05 %', # coinName: 'USDT', # lowestAmount: '0.01' # }, # ] # } # timestamp = self.milliseconds() data = self.safe_value(response, 'result', []) rates = [] for i in range(0, len(data)): entry = data[i] rates.append({ 'currency': self.safe_currency_code(self.safe_string(entry, 'coinName')), 'rate': self.safe_number(entry, 'interestRateOfDay'), 'period': self.safe_number(entry, 'repaymentDay'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'info': entry, }) return rates def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): section, version, access = api url = self.implode_hostname(self.urls['api'][section][version][access]) if access == 'public': if path == 'getFeeInfo': url = self.implode_hostname(self.urls['api'][section][version]['private']) + '/' + path else: url += '/' + version + '/' + path if params: url += '?' + self.urlencode(params) elif section == 'contract': timestamp = self.milliseconds() iso8601 = self.iso8601(timestamp) signedString = iso8601 + method + '/Server/api/' + version + '/' + path params = self.keysort(params) headers = { 'ZB-APIKEY': self.apiKey, 'ZB-TIMESTAMP': iso8601, # 'ZB-LAN': 'cn', # cn, en, kr } url += '/' + version + '/' + path if method == 'POST': headers['Content-Type'] = 'application/json' body = self.json(params) signedString += self.urlencode(params) else: if params: query = self.urlencode(params) url += '?' + query signedString += query secret = self.hash(self.encode(self.secret), 'sha1') signature = self.hmac(self.encode(signedString), self.encode(secret), hashlib.sha256, 'base64') headers['ZB-SIGN'] = signature else: query = self.keysort(self.extend({ 'method': path, 'accesskey': self.apiKey, }, params)) nonce = self.nonce() query = self.keysort(query) auth = self.rawencode(query) secret = self.hash(self.encode(self.secret), 'sha1') signature = self.hmac(self.encode(auth), self.encode(secret), hashlib.md5) suffix = 'sign=' + signature + '&reqTime=' + str(nonce) url += '/' + path + '?' + auth + '&' + suffix return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if body[0] == '{': feedback = self.id + ' ' + body self.throw_broadly_matched_exception(self.exceptions['broad'], body, feedback) if 'code' in response: code = self.safe_string(response, 'code') self.throw_exactly_matched_exception(self.exceptions['exact'], code, feedback) if (code != '1000') and (code != '10000'): raise ExchangeError(feedback) # special case for {"result":false,"message":"服务端忙碌"}(a "Busy Server" reply) result = self.safe_value(response, 'result') if result is not None: if not result: message = self.safe_string(response, 'message') if message == u'服务端忙碌': raise ExchangeNotAvailable(feedback) else: raise ExchangeError(feedback)
44.376623
205
0.456546
065d5e8e6ae7539700198f02bf477b5a375ded17
976
py
Python
timi_robot/logger.py
lxl0928/wechat_work_logger_robot
a8e3e968e31c94a5ae8dee573a1bc4f7dccd7d95
[ "Apache-2.0" ]
1
2019-12-16T18:20:42.000Z
2019-12-16T18:20:42.000Z
timi_robot/logger.py
lxl0928/wechat_work_logger_robot
a8e3e968e31c94a5ae8dee573a1bc4f7dccd7d95
[ "Apache-2.0" ]
null
null
null
timi_robot/logger.py
lxl0928/wechat_work_logger_robot
a8e3e968e31c94a5ae8dee573a1bc4f7dccd7d95
[ "Apache-2.0" ]
1
2021-04-11T04:36:50.000Z
2021-04-11T04:36:50.000Z
# coding: utf-8 import traceback from timi_robot.hub import init_sdk, capture_message, async_capture_message class SensoroLogger(object): def __init__(self, url, phones): self.url = url self.phones = phones def log(self, err=None, common_msg=None): msg = f"{traceback.format_exc()}" if not err else f"traceback: {traceback.format_exc()}\n\n error: {err}" msg = msg if not common_msg else common_msg if self.url and self.phones: init_sdk(robot_url=self.url, mentioned_mobiles=self.phones) capture_message(text=msg) async def async_log(self, err=None, common_msg=None): msg = f"{traceback.format_exc()}" if not err else f"traceback: {traceback.format_exc()}\n\n error: {err}" msg = msg if not common_msg else common_msg if self.url and self.phones: init_sdk(robot_url=self.url, mentioned_mobiles=self.phones) await async_capture_message(text=msg)
36.148148
113
0.67418
3656a80e3bba340e525f387e325a9d0d9dfb1121
2,949
py
Python
shenjieting/Study/Study_collections.py
qsyPython/Python_play_now
278b6d5d30082f8f93b26902c854737c4919405a
[ "MIT" ]
2
2018-03-29T08:26:17.000Z
2019-06-17T10:56:19.000Z
shenjieting/Study/Study_collections.py
qsyPython/Python_play_now
278b6d5d30082f8f93b26902c854737c4919405a
[ "MIT" ]
1
2022-03-22T20:26:08.000Z
2022-03-22T20:26:08.000Z
shenjieting/Study/Study_collections.py
qsyPython/Python_play_now
278b6d5d30082f8f93b26902c854737c4919405a
[ "MIT" ]
1
2019-02-18T10:44:20.000Z
2019-02-18T10:44:20.000Z
#collections是Python内建的一个集合模块,提供了许多有用的集合类。 from collections import namedtuple from collections import deque from collections import defaultdict from collections import OrderedDict from collections import Counter #⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ ''' namedtuple 是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。 可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。 ''' # 一个点的二维坐标就可以表示成: Point = namedtuple('Point',['x','y']) p = Point(1,2) print("namedtuple-----点的坐标:",p.x,p.y) #验证Point 对象是tuple的一种子类 print("namedtuple-----p是否和Point类型一致",isinstance(p,Point)) print("namedtuple-----p是否和tuple类型一致",isinstance(p,tuple)) #如果要用坐标和半径表示一个圆,也可以用namedtuple定义: Circle = namedtuple('Circle',['x','y','r']) c = Circle(10,10,20) print("namedtuple-----圆的坐标X:{};Y:{};半径:{}".format(c.x,c.y,c.r)) #⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ ''' deque 使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了, 因为list是线性存储,数据量大的时候,插入和删除效率很低。 deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈: ''' q = deque(['a','b','c']) q.append("x") q.appendleft("y") print("deque-----",q) q.pop() print("deque-----",q) q.popleft() print("deque-----",q) #注:deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。 #⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ ''' defaultdict 使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict: ''' dd = defaultdict(lambda:'error') dd['key1'] = 'abc' print("defaultdict-----",dd['key1']) print("defaultdict-----",dd['key2']) #注:默认值是调用函数返回的,而函数在创建defaultdict对象时传入。除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。 #⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ ''' OrderedDict 使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。如果要保持Key的顺序,可以用OrderedDict: ''' oo = dict([('a',1),('b',2),('c',3)]) print("OrderedDict-----",oo) # OrderedDict的Key是有序的 od = OrderedDict([('a',1),('b',2),('c',3)]) print("OrderedDict-----",od) odd = OrderedDict() odd['z'] = 1 odd['y'] = 2 odd['x'] = 3 odd["z"] = 4 print(odd.keys())# 按照插入的Key的顺序返回 #OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key: class LastUpdataOrdereDict(OrderedDict): def __init__(self , capacity):#init方法在父类OrderedDict的__init__方法基础上,为LastUpdatedOrderedDict类添加了一个_capacity属性 super(LastUpdataOrdereDict,self).__init__() self._capacity = capacity def __setitem__(self, key, value): #setitem实现了在为LastUpdatedOrderedDict实例添加key的时候,先检查是否超出容量;三个顺序判断分别实现: if key in self : del self[key] print("OrderedDict-----set:", (key, value)) #如果已存在key,则取代 else: if len(self) == self._capacity: last =self.popitem(last=False) #如果超出容量,则pop出最早添加的Key print('OrderedDict-----remove:', last) else: print("OrderedDict-----add:", (key, value)) #如果不存在key,则添加 OrderedDict.__setitem__(self,key,value) print(odd) las = LastUpdataOrdereDict(odd) print(odd) ''' Counter Counter是一个简单的计数器,例如,统计字符出现的个数: Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次。 ''' c = Counter() for ch in 'programming': c[ch] = c[ch] + 1 print("Counter-----",c)
24.991525
110
0.675822
eac71c73e577c7d3ef78ff01c8d3ab07a351cebd
31,244
py
Python
alex/applications/Switchboard/sw_hub.py
beka-evature/alex
e8fdc6f2d908d7a1911b18f29c218ae58d19ed6f
[ "Apache-2.0" ]
1
2015-10-19T17:36:27.000Z
2015-10-19T17:36:27.000Z
alex/applications/Switchboard/sw_hub.py
beka-evature/alex
e8fdc6f2d908d7a1911b18f29c218ae58d19ed6f
[ "Apache-2.0" ]
null
null
null
alex/applications/Switchboard/sw_hub.py
beka-evature/alex
e8fdc6f2d908d7a1911b18f29c218ae58d19ed6f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import multiprocessing import time import cPickle as pickle import argparse import re from alex.components.hub.vio import VoipIO from alex.components.hub.vad import VAD from alex.components.hub.tts import TTS from alex.components.hub.messages import Command, Frame from alex.utils.config import Config def load_database(file_name): db = dict() try: f = open(file_name, 'r') db = pickle.load(f) f.close() except IOError: pass if 'calls_from_start_end_length' not in db: db['calls_from_start_end_length'] = dict() return db def save_database(file_name, db): f = open(file_name, 'w+') pickle.dump(db, f) f.close() def get_stats(db, remote_uri): num_all_calls = 0 total_time = 0 last24_num_calls = 0 last24_total_time = 0 try: for s, e, l in db['calls_from_start_end_length'][remote_uri]: if l > 0: num_all_calls += 1 total_time += l # do counts for last 24 hours if s > time.time() - 24 * 60 * 60: last24_num_calls += 1 last24_total_time += l except: pass return num_all_calls, total_time, last24_num_calls, last24_total_time def play_intro(cfg, tts_commands, intro_id, last_intro_id): cfg['Logging']['session_logger'].turn("system") for i in range(len(cfg['Switchboard']['introduction'])): last_intro_id = str(intro_id) intro_id += 1 tts_commands.send(Command('synthesize(user_id="%s",text="%s",log="true")' % (last_intro_id, cfg['Switchboard']['introduction'][i]), 'HUB', 'TTS')) return intro_id, last_intro_id def run(cfg1, cfg2): try: cfg1['Logging']['system_logger'].info("Switchboard system\n" + "=" * 120) vio1_commands, vio1_child_commands = multiprocessing.Pipe() # used to send commands to VoipIO vio1_record, vio1_child_record = multiprocessing.Pipe() # I read from this connection recorded audio vio1_play, vio1_child_play = multiprocessing.Pipe() # I write in audio to be played vad1_commands, vad1_child_commands = multiprocessing.Pipe() # used to send commands to VAD vad1_audio_in, vad1_child_audio_in = multiprocessing.Pipe() # used to read output audio from VAD vad1_audio_out, vad1_child_audio_out = multiprocessing.Pipe() # used to read output audio from VAD tts1_commands, tts1_child_commands = multiprocessing.Pipe() # used to send commands to TTS tts1_text_in, tts1_child_text_in = multiprocessing.Pipe() # used to send TTS text vio2_commands, vio2_child_commands = multiprocessing.Pipe() # used to send commands to VoipIO vio2_record, vio2_child_record = multiprocessing.Pipe() # I read from this connection recorded audio vio2_play, vio2_child_play = multiprocessing.Pipe() # I write in audio to be played vad2_commands, vad2_child_commands = multiprocessing.Pipe() # used to send commands to VAD vad2_audio_in, vad2_child_audio_in = multiprocessing.Pipe() # used to read output audio from VAD vad2_audio_out, vad2_child_audio_out = multiprocessing.Pipe() # used to read output audio from VAD tts2_commands, tts2_child_commands = multiprocessing.Pipe() # used to send commands to TTS tts2_text_in, tts2_child_text_in = multiprocessing.Pipe() # used to send TTS text command_connections = [vio1_commands, vad1_commands, tts1_commands, vio2_commands, vad2_commands, tts2_commands] non_command_connections = [vio1_record, vio1_child_record, vio1_play, vio1_child_play, vad1_audio_in, vad1_child_audio_in, vad1_audio_out, vad1_child_audio_out, tts1_text_in, tts1_child_text_in, vio2_record, vio2_child_record, vio2_play, vio2_child_play, vad2_audio_in, vad2_child_audio_in, vad2_audio_out, vad2_child_audio_out, tts2_text_in, tts2_child_text_in] close_event = multiprocessing.Event() vio1 = VoipIO(cfg1, vio1_child_commands, vio1_child_record, vio1_child_play, close_event) vad1 = VAD(cfg1, vad1_child_commands, vad1_child_audio_in, vad1_child_audio_out, close_event) tts1 = TTS(cfg1, tts1_child_commands, tts1_child_text_in, vio1_play, close_event) vio2 = VoipIO(cfg2, vio2_child_commands, vio2_child_record, vio2_child_play, close_event) vad2 = VAD(cfg2, vad2_child_commands, vad2_child_audio_in, vad2_child_audio_out, close_event) tts2 = TTS(cfg2, tts2_child_commands, tts2_child_text_in, vio2_play, close_event) vio1.start() vad1.start() tts1.start() vio2.start() vad2.start() tts2.start() cfg1['Logging']['session_logger'].set_close_event(close_event) cfg1['Logging']['session_logger'].set_cfg(cfg1) cfg1['Logging']['session_logger'].start() cfg1['Logging']['session_logger'].cancel_join_thread() cfg2['Logging']['session_logger'].set_close_event(close_event) cfg2['Logging']['session_logger'].set_cfg(cfg2) cfg2['Logging']['session_logger'].start() cfg2['Logging']['session_logger'].cancel_join_thread() # init the system call_start1 = 0 count_intro1 = 0 intro_played1 = False reject_played1 = False intro_id1 = 0 last_intro_id1 = -1 end_played1 = False s_voice_activity1 = False s_last_voice_activity_time1 = 0 u_voice_activity1 = False u_last_voice_activity_time1 = 0 vio_connect1 = False hangup1 = False u_start1 = False call_start2 = 0 count_intro2 = 0 intro_played2 = False reject_played2 = False intro_id2 = 0 last_intro_id2 = -1 end_played2 = False s_voice_activity2 = False s_last_voice_activity_time2 = 0 u_voice_activity2 = False u_last_voice_activity_time2 = 0 vio_connect2 = False hangup2 = False u_start2 = False callee_entered = False callee_uri = '' db = load_database(cfg1['Switchboard']['call_db']) for remote_uri in db['calls_from_start_end_length']: num_all_calls, total_time, last24_num_calls, last24_total_time = get_stats(db, remote_uri) m = [] m.append('') m.append('=' * 120) m.append('Remote SIP URI: %s' % remote_uri) m.append('-' * 120) m.append('Total calls: %d' % num_all_calls) m.append('Total time (s): %f' % total_time) m.append('Last 24h total calls: %d' % last24_num_calls) m.append('Last 24h total time (s): %f' % last24_total_time) m.append('-' * 120) current_time = time.time() if last24_num_calls > cfg1['Switchboard']['last24_max_num_calls'] or \ last24_total_time > cfg1['Switchboard']['last24_max_total_time']: # add the remote uri to the black list vio1_commands.send(Command('black_list(remote_uri="%s",expire="%d")' % (remote_uri, current_time + cfg1['Switchboard']['blacklist_for']), 'HUB', 'VoipIO')) m.append('BLACKLISTED') else: m.append('OK') m.append('-' * 120) m.append('') cfg1['Logging']['system_logger'].info('\n'.join(m)) call_back_time = -1 call_back_uri = None while 1: # Check the close event. if close_event.is_set(): print 'Received close event in: %s' % multiprocessing.current_process().name return time.sleep(cfg1['Hub']['main_loop_sleep_time']) if intro_played1 and intro_played2 and not u_start1: vio1_commands.send(Command('flush_out()', 'HUB', 'VoipIO1')) time.sleep(cfg1['Hub']['main_loop_sleep_time']) cfg1['Logging']['session_logger'].turn("system") vio1_play.send(Command('utterance_start(user_id="%s",text="%s",fname="%s",log="%s")' % ('system', '', 'vpl-1.wav', 'true'), 'HUB', 'VoipIO1')) u_start1 = True if intro_played1 and intro_played2 and not u_start2: vio2_commands.send(Command('flush_out()', 'HUB', 'VoipIO2')) time.sleep(cfg1['Hub']['main_loop_sleep_time']) cfg2['Logging']['session_logger'].turn("system") vio2_play.send(Command('utterance_start(user_id="%s",text="%s",fname="%s",log="%s")' % ('system', '', 'vpl-2.wav', 'true'), 'HUB', 'VoipIO2')) u_start2 = True while vio1_record.poll() or vio2_record.poll(): if vio1_record.poll(): data = vio1_record.recv() vad1_audio_in.send(data) if u_start2: vio2_play.send(data) if vio2_record.poll(): data = vio2_record.recv() vad2_audio_in.send(data) if u_start1: vio1_play.send(data) # empty vad pipes while vad1_audio_out.poll(): data = vad1_audio_out.recv() while vad2_audio_out.poll(): data = vad2_audio_out.recv() if call_back_time != -1 and call_back_time < time.time(): vio1_commands.send(Command('make_call(destination="%s")' % call_back_uri, 'HUB', 'VoipIO1')) call_back_time = -1 call_back_uri = None if callee_entered and callee_uri: s_voice_activity1 = True m = cfg1['Switchboard']['calling'] + ' '.join(callee_uri) cfg1['Logging']['session_logger'].turn("system") tts1_commands.send(Command('synthesize(text="%s",log="true")' % m, 'HUB', 'TTS1')) vio2_commands.send(Command('make_call(destination="%s")' % callee_uri, 'HUB', 'VoipIO2')) callee_uri = '' # read all messages if vio1_commands.poll(): command = vio1_commands.recv() if isinstance(command, Command): if command.parsed['__name__'] == "incoming_call" or command.parsed['__name__'] == "make_call": cfg1['Logging']['system_logger'].session_start(command.parsed['remote_uri']) cfg1['Logging']['session_logger'].session_start(cfg1['Logging']['system_logger'].get_session_dir_name()) cfg1['Logging']['system_logger'].session_system_log('config = ' + unicode(cfg1)) cfg1['Logging']['system_logger'].info(command) cfg1['Logging']['session_logger'].config('config = ' + unicode(cfg1)) cfg1['Logging']['session_logger'].header(cfg1['Logging']["system_name"], cfg1['Logging']["version"]) cfg1['Logging']['session_logger'].input_source("voip") if command.parsed['__name__'] == "rejected_call": cfg1['Logging']['system_logger'].info(command) call_back_time = time.time() + cfg1['Switchboard']['wait_time_before_calling_back'] # call back a default uri, if not defined call back the caller if ('call_back_uri_subs' in cfg1['Switchboard']) and cfg1['Switchboard']['call_back_uri_subs']: ru = command.parsed['remote_uri'] for pat, repl in cfg1['Switchboard']['call_back_uri_subs']: ru = re.sub(pat, repl, ru) call_back_uri = ru elif ('call_back_uri' in cfg1['Switchboard']) and cfg1['Switchboard']['call_back_uri']: call_back_uri = cfg1['Switchboard']['call_back_uri'] else: call_back_uri = command.parsed['remote_uri'] if command.parsed['__name__'] == "rejected_call_from_blacklisted_uri": cfg1['Logging']['system_logger'].info(command) remote_uri = command.parsed['remote_uri'] num_all_calls, total_time, last24_num_calls, last24_total_time = get_stats(db, remote_uri) m = [] m.append('') m.append('=' * 120) m.append('Rejected incoming call from blacklisted URI: %s' % remote_uri) m.append('-' * 120) m.append('Total calls: %d' % num_all_calls) m.append('Total time (s): %f' % total_time) m.append('Last 24h total calls: %d' % last24_num_calls) m.append('Last 24h total time (s): %f' % last24_total_time) m.append('=' * 120) m.append('') cfg1['Logging']['system_logger'].info('\n'.join(m)) if command.parsed['__name__'] == "call_connecting": cfg1['Logging']['system_logger'].info(command) if command.parsed['__name__'] == "call_confirmed": cfg1['Logging']['system_logger'].info(command) remote_uri = command.parsed['remote_uri'] num_all_calls, total_time, last24_num_calls, last24_total_time = get_stats(db, remote_uri) m = [] m.append('') m.append('=' * 120) m.append('Incoming call from : %s' % remote_uri) m.append('-' * 120) m.append('Total calls: %d' % num_all_calls) m.append('Total time (s): %f' % total_time) m.append('Last 24h total calls: %d' % last24_num_calls) m.append('Last 24h total time (s): %f' % last24_total_time) m.append('-' * 120) if last24_num_calls > cfg1['Switchboard']['last24_max_num_calls'] or \ last24_total_time > cfg1['Switchboard']['last24_max_total_time']: cfg1['Logging']['session_logger'].turn("system") tts1_commands.send(Command('synthesize(text="%s",log="true")' % cfg1['Switchboard']['rejected'], 'HUB', 'TTS1')) reject_played1 = True s_voice_activity1 = True vio1_commands.send(Command('black_list(remote_uri="%s",expire="%d")' % (remote_uri, time.time() + cfg1['Switchboard']['blacklist_for']), 'HUB', 'VoipIO1')) m.append('CALL REJECTED') else: # init the system call_start1 = time.time() count_intro1 = 0 intro_played1 = False reject_played1 = False end_played1 = False s_voice_activity1 = False s_last_voice_activity_time1 = 0 u_voice_activity1 = False u_last_voice_activity_time1 = 0 vio_connect1 = False hangup1 = False u_start1 = False callee_entered = False callee_uri = '' intro_id1, last_intro_id1 = play_intro(cfg1, tts1_commands, intro_id1, last_intro_id1) m.append('CALL ACCEPTED') m.append('=' * 120) m.append('') cfg1['Logging']['system_logger'].info('\n'.join(m)) try: db['calls_from_start_end_length'][remote_uri].append([time.time(), 0, 0]) except: db['calls_from_start_end_length'][remote_uri] = [[time.time(), 0, 0], ] save_database(cfg1['Switchboard']['call_db'], db) if command.parsed['__name__'] == "call_disconnected": cfg1['Logging']['system_logger'].info(command) remote_uri = command.parsed['remote_uri'] vio1_commands.send(Command('flush()', 'HUB', 'VoipIO1')) vad1_commands.send(Command('flush()', 'HUB', 'VAD1')) tts1_commands.send(Command('flush()', 'HUB', 'TTS1')) cfg1['Logging']['system_logger'].session_end() cfg1['Logging']['session_logger'].session_end() try: s, e, l = db['calls_from_start_end_length'][remote_uri][-1] if e == 0 and l == 0: # there is a record about last confirmed but not disconnected call db['calls_from_start_end_length'][remote_uri][-1] = [s, time.time(), time.time() - s] save_database('call_db.pckl', db) except KeyError: # disconnecting call which was not confirmed for URI calling for the first time pass intro_played1 = False u_start1 = False callee_entered = False callee_uri = '' vio2_commands.send(Command('hangup()', 'HUB', 'VoipIO1')) if command.parsed['__name__'] == "play_utterance_start": cfg1['Logging']['system_logger'].info(command) s_voice_activity1 = True if command.parsed['__name__'] == "play_utterance_end": cfg1['Logging']['system_logger'].info(command) s_voice_activity1 = False s_last_voice_activity_time1 = time.time() if command.parsed['user_id'] == last_intro_id1: intro_played1 = True if command.parsed['__name__'] == "dtmf_digit": cfg1['Logging']['system_logger'].info(command) digit = command.parsed['digit'] if digit in ['*', '#']: callee_entered = True if not callee_entered and digit in '0123456789': callee_uri += digit if vio2_commands.poll(): command = vio2_commands.recv() if isinstance(command, Command): if command.parsed['__name__'] == "make_call": cfg2['Logging']['system_logger'].session_start(command.parsed['remote_uri']) cfg2['Logging']['session_logger'].session_start(cfg2['Logging']['system_logger'].get_session_dir_name()) cfg2['Logging']['system_logger'].session_system_log('config = ' + unicode(cfg2)) cfg2['Logging']['system_logger'].info(command) cfg2['Logging']['session_logger'].config('config = ' + unicode(cfg2)) cfg2['Logging']['session_logger'].header(cfg2['Logging']["system_name"], cfg2['Logging']["version"]) cfg2['Logging']['session_logger'].input_source("voip") if command.parsed['__name__'] == "call_connecting": cfg2['Logging']['system_logger'].info(command) if command.parsed['__name__'] == "call_confirmed": cfg2['Logging']['system_logger'].info(command) remote_uri = command.parsed['remote_uri'] num_all_calls, total_time, last24_num_calls, last24_total_time = get_stats(db, remote_uri) m = [] m.append('') m.append('=' * 120) m.append('Incoming call from : %s' % remote_uri) m.append('-' * 120) m.append('Total calls: %d' % num_all_calls) m.append('Total time (s): %f' % total_time) m.append('Last 24h total calls: %d' % last24_num_calls) m.append('Last 24h total time (s): %f' % last24_total_time) m.append('-' * 120) m.append('CALL ACCEPTED') m.append('=' * 120) m.append('') cfg2['Logging']['system_logger'].info('\n'.join(m)) # init the system call_start2 = time.time() count_intro2 = 0 intro_played2 = False reject_played2 = False end_played2 = False s_voice_activity2 = False s_last_voice_activity_time2 = 0 u_voice_activity2 = False u_last_voice_activity_time2 = 0 vio_connect2 = False hangup2 = False u_start2 = False intro_id2, last_intro_id2 = play_intro(cfg2, tts2_commands, intro_id2, last_intro_id2) if command.parsed['__name__'] == "call_disconnected": cfg2['Logging']['system_logger'].info(command) remote_uri = command.parsed['remote_uri'] code = command.parsed['code'] vio2_commands.send(Command('flush()', 'HUB', 'VoipIO2')) vad2_commands.send(Command('flush()', 'HUB', 'VAD2')) tts2_commands.send(Command('flush()', 'HUB', 'TTS2')) cfg2['Logging']['system_logger'].session_end() cfg2['Logging']['session_logger'].session_end() if intro_played2 and code in set(['603',]): vio1_commands.send(Command('hangup()', 'HUB', 'VoipIO1')) elif code in set(['486', '600', '603', '604', '606',]): s_voice_activity1 = True m = cfg1['Switchboard']['noanswer'] cfg1['Logging']['session_logger'].turn("system") tts1_commands.send(Command('synthesize(text="%s",log="true")' % m, 'HUB', 'TTS1')) elif code in set(['480',]): s_voice_activity1 = True m = cfg1['Switchboard']['wrongnumber'] cfg1['Logging']['session_logger'].turn("system") tts1_commands.send(Command('synthesize(text="%s",log="true")' % m, 'HUB', 'TTS1')) else: vio1_commands.send(Command('hangup()', 'HUB', 'VoipIO1')) intro_played2 = False u_start2 = False hangup1 = True if command.parsed['__name__'] == "play_utterance_start": cfg2['Logging']['system_logger'].info(command) s_voice_activity2 = True if command.parsed['__name__'] == "play_utterance_end": cfg2['Logging']['system_logger'].info(command) s_voice_activity2 = False s_last_voice_activity_time2 = time.time() if command.parsed['user_id'] == last_intro_id2: intro_played2 = True if vad1_commands.poll(): command = vad1_commands.recv() cfg1['Logging']['system_logger'].info(command) if isinstance(command, Command): if command.parsed['__name__'] == "speech_start": u_voice_activity = True if command.parsed['__name__'] == "speech_end": u_voice_activity = False u_last_voice_activity_time = time.time() if vad2_commands.poll(): command = vad2_commands.recv() cfg2['Logging']['system_logger'].info(command) if isinstance(command, Command): if command.parsed['__name__'] == "speech_start": u_voice_activity = True if command.parsed['__name__'] == "speech_end": u_voice_activity = False u_last_voice_activity_time = time.time() if tts1_commands.poll(): command = tts1_commands.recv() cfg1['Logging']['system_logger'].info(command) if tts2_commands.poll(): command = tts2_commands.recv() cfg1['Logging']['system_logger'].info(command) current_time = time.time() # print # print intro_played, end_played # print s_voice_activity, u_voice_activity, # print call_start, current_time, u_last_voice_activity_time, s_last_voice_activity_time # print current_time - s_last_voice_activity_time > 5, u_last_voice_activity_time - s_last_voice_activity_time > 0 # print hangup1, s_voice_activity1, s_last_voice_activity_time1, current_time if hangup1 and s_voice_activity1 == False and s_last_voice_activity_time1 + 2.0 < current_time: # we are ready to hangup only when all voice activity is finished hangup1 = False vio1_commands.send(Command('hangup()', 'HUB', 'VoipIO1')) if hangup2 and s_voice_activity2 == False and s_last_voice_activity_time2 + 2.0 < current_time: # we are ready to hangup only when all voice activity is finished hangup2 = False vio2_commands.send(Command('hangup()', 'HUB', 'VoipIO2')) if reject_played1 == True and s_voice_activity1 == False: # be careful it does not hangup immediately reject_played1 = False vio1_commands.send(Command('hangup()', 'HUB', 'VoipIO1')) vio1_commands.send(Command('flush()', 'HUB', 'VoipIO1')) vad1_commands.send(Command('flush()', 'HUB', 'VAD1')) tts1_commands.send(Command('flush()', 'HUB', 'TTS1')) if intro_played1 and current_time - call_start1 > cfg1['Switchboard']['max_call_length']: intro_played1 = False # be careful it does not hangup immediately vio1_commands.send(Command('hangup()', 'HUB', 'VoipIO1')) vio1_commands.send(Command('flush()', 'HUB', 'VoipIO1')) vad1_commands.send(Command('flush()', 'HUB', 'VAD1')) tts1_commands.send(Command('flush()', 'HUB', 'TTS1')) if intro_played2 and current_time - call_start1 > cfg1['Switchboard']['max_call_length']: intro_played2 = False # be careful it does not hangup immediately vio2_commands.send(Command('hangup()', 'HUB', 'VoipIO2')) vio2_commands.send(Command('flush()', 'HUB', 'VoipIO2')) vad2_commands.send(Command('flush()', 'HUB', 'VAD2')) tts2_commands.send(Command('flush()', 'HUB', 'TTS2')) # stop processes vio1_commands.send(Command('stop()', 'HUB', 'VoipIO1')) vad1_commands.send(Command('stop()', 'HUB', 'VAD1')) tts1_commands.send(Command('stop()', 'HUB', 'TTS1')) vio2_commands.send(Command('stop()', 'HUB', 'VoipIO2')) vad2_commands.send(Command('stop()', 'HUB', 'VAD2')) tts2_commands.send(Command('stop()', 'HUB', 'TTS2')) # clean connections for c in command_connections: while c.poll(): c.recv() for c in non_command_connections: while c.poll(): c.recv() # wait for processes to stop # do not join, because in case of exception the join will not be successful # vio1.join() # vad1.join() # tts1.join() # vio2.join() # vad2.join() # tts2.join() except KeyboardInterrupt: print 'KeyboardInterrupt exception in: %s' % multiprocessing.current_process().name close_event.set() return except: cfg1['Logging']['system_logger'].exception('Uncaught exception in SW_HUB process.') close_event.set() raise print 'Exiting: %s. Setting close event' % multiprocessing.current_process().name close_event.set() ######################################################################### ######################################################################### if __name__ == '__main__': import autopath parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=""" Switchboard system records conversation between two users. When the first user calls the system, the systems rejects the call. Then in a few seconds, it calls back to the first user, informs about how to use the system and the recording data. Then, it asks the first user to enter a phone number of a second user. If the number is entered successfully, it calls the second user. The systems calls back to the user to prevent any call charges on the users' side. The program reads the default config in the resources directory ('../resources/default.cfg'). In addition, it reads all config file passed as an argument of a '-c'. The additional config files overwrites any default or previous values. """) parser.add_argument('-o', action="store", dest="caller", nargs='+', help='additional configure file') parser.add_argument('-d', action="store", dest="callee", nargs='+', help='additional configure file') args = parser.parse_args() cfg1 = Config.load_configs(args.caller) cfg2 = Config.load_configs(args.callee) run(cfg1, cfg2)
46.150665
183
0.530982
de14ce710cb616961d4631d8dea7e6152d2ef73d
7,431
py
Python
libqtile/widget/systray.py
himaaaatti/qtile
9a8326d751042c0b59cbc0aee4a5e20e8ff03a4d
[ "MIT" ]
null
null
null
libqtile/widget/systray.py
himaaaatti/qtile
9a8326d751042c0b59cbc0aee4a5e20e8ff03a4d
[ "MIT" ]
null
null
null
libqtile/widget/systray.py
himaaaatti/qtile
9a8326d751042c0b59cbc0aee4a5e20e8ff03a4d
[ "MIT" ]
null
null
null
# Copyright (c) 2010 Aldo Cortesi # Copyright (c) 2010-2011 dequis # Copyright (c) 2010, 2012 roger # Copyright (c) 2011 Mounier Florian # Copyright (c) 2011-2012, 2014 Tycho Andersen # Copyright (c) 2012 dmpayton # Copyright (c) 2012-2013 Craig Barnes # Copyright (c) 2013 hbc # Copyright (c) 2013 Tao Sauvage # Copyright (c) 2014 Sean Vig # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import division from .. import bar, xcbq, window from . import base import xcffib from xcffib.xproto import (ClientMessageEvent, ClientMessageData, EventMask, SetMode) XEMBED_PROTOCOL_VERSION = 0 class Icon(window._Window): _windowMask = EventMask.StructureNotify | \ EventMask.PropertyChange | \ EventMask.Exposure def __init__(self, win, qtile, systray): window._Window.__init__(self, win, qtile) self.systray = systray self.update_size() def update_size(self): icon_size = self.systray.icon_size self.updateHints() try: width = self.hints["min_width"] height = self.hints["min_height"] except KeyError: width = icon_size height = icon_size if height > icon_size: width = width * icon_size // height height = icon_size if height <= 0: width = icon_size height = icon_size self.width = width self.height = height return False def handle_PropertyNotify(self, e): name = self.qtile.conn.atoms.get_name(e.atom) if name == "_XEMBED_INFO": info = self.window.get_property('_XEMBED_INFO', unpack=int) if info and info[1]: self.systray.bar.draw() return False def handle_DestroyNotify(self, event): wid = event.window del(self.qtile.windowMap[wid]) del(self.systray.icons[wid]) self.systray.bar.draw() return False handle_UnmapNotify = handle_DestroyNotify class Systray(window._Window, base._Widget): """ A widget that manages system tray. """ _windowMask = EventMask.StructureNotify | \ EventMask.Exposure orientations = base.ORIENTATION_HORIZONTAL defaults = [ ('icon_size', 20, 'Icon width'), ('padding', 5, 'Padding between icons'), ] def __init__(self, **config): base._Widget.__init__(self, bar.CALCULATED, **config) self.add_defaults(Systray.defaults) self.icons = {} self.screen = 0 def calculate_length(self): width = sum([i.width for i in self.icons.values()]) width += self.padding * len(self.icons) return width def _configure(self, qtile, bar): base._Widget._configure(self, qtile, bar) win = qtile.conn.create_window(-1, -1, 1, 1) window._Window.__init__(self, xcbq.Window(qtile.conn, win.wid), qtile) qtile.windowMap[win.wid] = self # Even when we have multiple "Screen"s, we are setting up as the system # tray on a particular X display, that is the screen we need to # reference in the atom if qtile.currentScreen: self.screen = qtile.currentScreen.index self.bar = bar atoms = qtile.conn.atoms qtile.conn.conn.core.SetSelectionOwner( win.wid, atoms['_NET_SYSTEM_TRAY_S{:d}'.format(self.screen)], xcffib.CurrentTime ) data = [ xcffib.CurrentTime, atoms['_NET_SYSTEM_TRAY_S{:d}'.format(self.screen)], win.wid, 0, 0 ] union = ClientMessageData.synthetic(data, "I" * 5) event = ClientMessageEvent.synthetic( format=32, window=qtile.root.wid, type=atoms['MANAGER'], data=union ) qtile.root.send_event(event, mask=EventMask.StructureNotify) def handle_ClientMessage(self, event): atoms = self.qtile.conn.atoms opcode = event.type data = event.data.data32 message = data[1] wid = data[2] conn = self.qtile.conn.conn parent = self.bar.window.window if opcode == atoms['_NET_SYSTEM_TRAY_OPCODE'] and message == 0: w = xcbq.Window(self.qtile.conn, wid) icon = Icon(w, self.qtile, self) self.icons[wid] = icon self.qtile.windowMap[wid] = icon conn.core.ChangeSaveSet(SetMode.Insert, wid) conn.core.ReparentWindow(wid, parent.wid, 0, 0) conn.flush() info = icon.window.get_property('_XEMBED_INFO', unpack=int) if not info: self.bar.draw() return False if info[1]: self.bar.draw() return False def draw(self): xoffset = self.padding self.drawer.clear(self.background or self.bar.background) self.drawer.draw(offsetx=self.offset, width=self.length) for pos, icon in enumerate(self.icons.values()): icon.window.set_attribute(backpixmap=self.drawer.pixmap) icon.place( self.offset + xoffset, self.bar.height // 2 - self.icon_size // 2, icon.width, self.icon_size, 0, None ) if icon.hidden: icon.unhide() data = [ self.qtile.conn.atoms["_XEMBED_EMBEDDED_NOTIFY"], xcffib.xproto.Time.CurrentTime, 0, self.bar.window.window.wid, XEMBED_PROTOCOL_VERSION ] u = xcffib.xproto.ClientMessageData.synthetic(data, "I" * 5) event = xcffib.xproto.ClientMessageEvent.synthetic( format=32, window=icon.window.wid, type=self.qtile.conn.atoms["_XEMBED"], data=u ) self.window.send_event(event) xoffset += icon.width + self.padding def finalize(self): base._Widget.finalize(self) atoms = self.qtile.conn.atoms self.qtile.conn.conn.core.SetSelectionOwner( 0, atoms['_NET_SYSTEM_TRAY_S{:d}'.format(self.screen)], xcffib.CurrentTime, ) self.hide()
32.880531
79
0.60113
f50776277715fec1de62a22333aa3ad5bbc11e08
3,581
py
Python
egs/aspire/s5/local/multi_condition/create_uniform_segments.py
oplatek/idlak
02b24dc6f79b84779e423bfbb17bdf8e70c95aec
[ "Apache-2.0" ]
null
null
null
egs/aspire/s5/local/multi_condition/create_uniform_segments.py
oplatek/idlak
02b24dc6f79b84779e423bfbb17bdf8e70c95aec
[ "Apache-2.0" ]
null
null
null
egs/aspire/s5/local/multi_condition/create_uniform_segments.py
oplatek/idlak
02b24dc6f79b84779e423bfbb17bdf8e70c95aec
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Johns Hopkins University (Authors: Daniel Povey, Vijayaditya Peddinti). Apache 2.0. # creates a segments file in the provided data directory # into uniform segments with specified window and overlap import imp, sys, argparse, os, math, subprocess corruptor = imp.load_source('', 'local/multi_condition/corrupt.py') min_segment_length = 10 # in seconds def segment(total_length, window_length, overlap = 0): increment = window_length - overlap num_windows = int(math.ceil(float(total_length)/increment)) segments = map(lambda x: (x * increment, min( total_length, (x * increment) + window_length)), range(0, num_windows)) if segments[-1][1] - segments[-1][0] < min_segment_length: segments[-2] = (segments[-2][0], segments[-1][1]) segments.pop() return segments def get_wave_segments(wav_command, window_length, overlap): raw_output = subprocess.check_output(wav_command+" sox -t wav - -n stat 2>&1 | grep Length ", shell = True) parts = raw_output.split(":") if parts[0].strip() != "Length (seconds)": raise Exception("Failed while processing file ", wav_command) total_length = float(parts[1]) segments = segment(total_length, window_length, overlap) return segments def prepare_segments_file(kaldi_data_dir, window_length, overlap): if not os.path.exists(kaldi_data_dir+'/wav.scp'): raise Exception("Not a proper kaldi data directory") ids = [] files = [] for line in open(kaldi_data_dir+'/wav.scp').readlines(): parts = line.split() ids.append(parts[0]) files.append(" ".join(parts[1:])) segments_total = [] segments_per_recording = [] for i in range(0, len(ids)): segments = get_wave_segments(files[i], window_length, overlap) segments_current_recording = [] for segment in segments: segment_string = "{0}-{1:06}-{2:06} {0} {3} {4}".format(ids[i], int(segment[0] * 1000), int(segment[1]* 1000), segment[0], segment[1]) segments_total.append(segment_string) segments_current_recording.append(segment_string.split()[0]) segments_per_recording.append([ids[i], segments_current_recording]) return segments_total, segments_per_recording if __name__ == "__main__": usage = """ Python script to create segments file with uniform segment given the kaldi data directory.""" sys.stderr.write(str(" ".join(sys.argv))) main_parser = argparse.ArgumentParser(usage) parser = argparse.ArgumentParser() parser.add_argument('--window-length', type = float, default = 30.0, help = 'length of the window used to cut the segment') parser.add_argument('--overlap', type = float, default = 5.0, help = 'overlap of neighboring windows') parser.add_argument('data_dir', type=str, help='directory such as data/train') params = parser.parse_args() # write the segments file segments_file = open(params.data_dir+"/segments", "w") segments, segments_per_recording = prepare_segments_file(params.data_dir, params.window_length, params.overlap) segments_file.write("\n".join(segments)) segments_file.close() utt2spk_file = open(params.data_dir + "/utt2spk", "w") spk2utt_file = open(params.data_dir + "/spk2utt", "w") # write the utt2spk file # assumes the recording id is the speaker ir for i in range(len(segments_per_recording)): segments = segments_per_recording[i][1] recording = segments_per_recording[i][0] spk2utt_file.write("{0} {1}\n".format(recording, " ".join(segments))) for segment in segments: utt2spk_file.write("{0} {1}\n".format(segment, recording)) spk2utt_file.close() utt2spk_file.close()
44.7625
140
0.717118
a22b35cfbb6504b84c6d622913070b37994b51b7
236
py
Python
dogProject/dogs/admin.py
cs-fullstack-2019-spring/django-models-cw-bettyjware11
1cdd033b598a640a932db5aece91e3f8d2770d85
[ "Apache-2.0" ]
null
null
null
dogProject/dogs/admin.py
cs-fullstack-2019-spring/django-models-cw-bettyjware11
1cdd033b598a640a932db5aece91e3f8d2770d85
[ "Apache-2.0" ]
null
null
null
dogProject/dogs/admin.py
cs-fullstack-2019-spring/django-models-cw-bettyjware11
1cdd033b598a640a932db5aece91e3f8d2770d85
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin # Register your models here. # setting up admin so that I can add information and make changes from.models import Dog admin.site.register(Dog) from.models import Account admin.site.register(Account)
19.666667
65
0.79661
085a21bf18d650b5a4415c27e1f5d6bdc3daea62
199
py
Python
kirigami/__init__.py
marc-harary/kirigami
059256f7ebb083e6b21d633d8928f4144c2f02fb
[ "MIT" ]
null
null
null
kirigami/__init__.py
marc-harary/kirigami
059256f7ebb083e6b21d633d8928f4144c2f02fb
[ "MIT" ]
2
2021-01-18T03:53:35.000Z
2021-04-01T02:35:02.000Z
kirigami/__init__.py
marc-harary/kirigami
059256f7ebb083e6b21d633d8928f4144c2f02fb
[ "MIT" ]
null
null
null
import warnings warnings.filterwarnings("ignore") from kirigami import nn from kirigami import utils from kirigami._cpp_utils import * from kirigami.distance import * from kirigami.contact import *
22.111111
33
0.824121
f4f646fe5613b7ca826cceef106e05a862face1e
11,886
py
Python
test/integration/ggrc_workflows/converters/test_export_cycle_tasks.py
sfarbotka/ggrc-core
ef7aae6bc09ad2f53a2414f643572e07d689784a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc_workflows/converters/test_export_cycle_tasks.py
sfarbotka/ggrc-core
ef7aae6bc09ad2f53a2414f643572e07d689784a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc_workflows/converters/test_export_cycle_tasks.py
sfarbotka/ggrc-core
ef7aae6bc09ad2f53a2414f643572e07d689784a
[ "ECL-2.0", "Apache-2.0" ]
1
2020-02-13T12:32:45.000Z
2020-02-13T12:32:45.000Z
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Tests for task group task specific export.""" from collections import defaultdict import ddt from ggrc.models import all_models from integration import ggrc from integration.ggrc.models import factories as ggrc_factories from integration.ggrc_workflows.models import factories @ddt.ddt class TestExportTasks(ggrc.TestCase): """Test imports for basic workflow objects.""" CYCLES_TASKS_COUNT = ( # (Cycle count, tasks in cycle) (0, 0), (1, 2), (2, 1), ) def setUp(self): super(TestExportTasks, self).setUp() self.client.get("/login") self.headers = { 'Content-Type': 'application/json', "X-Requested-By": "GGRC", "X-export-view": "blocks", } @staticmethod def generate_tasks_for_cycle(cycle_count, task_count): """generate seceted number of cycles and tasks""" role_names = ("Task Assignees", "Task Secondary Assignees") statuses = ["Assigned", "In Progress", "Finished", "Verified"] results = {} with ggrc_factories.single_commit(): for _ in range(cycle_count): workflow = factories.WorkflowFactory() cycle = factories.CycleFactory( workflow=workflow, ) cycle.contact = ggrc_factories.PersonFactory( name="user for cycle {}".format(cycle.id) ) person = ggrc_factories.PersonFactory( name="user for cycle tasks {}".format(cycle.id) ) task_group = factories.TaskGroupFactory(workflow=workflow) for _ in range(task_count): task_group_task = factories.TaskGroupTaskFactory( task_group=task_group) for r_name in role_names: ggrc_factories.AccessControlPersonFactory( person=person, ac_list=task_group_task.acr_name_acl_map[r_name], ) cycle_task_group = factories.CycleTaskGroupFactory( cycle=cycle, contact=person) task = factories.CycleTaskGroupObjectTaskFactory( cycle=cycle, cycle_task_group=cycle_task_group, task_group_task=task_group_task, status=statuses.pop() ) for r_name in role_names: ggrc_factories.AccessControlPersonFactory( person=person, ac_list=task.acr_name_acl_map[r_name], ) results[task.id] = cycle.slug return results # pylint: disable=invalid-name def assertCycles(self, field, value, cycle_slugs): """assertion for search cycles for selected fields and values""" search_request = [{ "object_name": "Cycle", "filters": { "expression": { "left": field, "op": {"name": "="}, "right": value, }, }, "fields": ["slug"], }] parsed_data = self.export_parsed_csv(search_request)["Cycle"] self.assertEqual(sorted(cycle_slugs), sorted([i["Code*"] for i in parsed_data])) self.assertEqual(len(cycle_slugs), len(parsed_data)) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_title(self, cycle_count, task_count): """Test filter cycles by task slug and title""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() self.assertCycles("task title", task.title, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_status(self, cycle_count, task_count): """Test filter cycles by task status""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() self.assertCycles("task state", task.status, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_group_title(self, cycle_count, task_count): """Test filter cycles by group slug and title""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() self.assertCycles("group title", task.cycle_task_group.title, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_due_date(self, cycle_count, task_count): """Test filter cycles by task due date""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) due_date_dict = defaultdict(set) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() due_date_dict[str(task.end_date)].add(slug) for due_date, cycle_slugs in due_date_dict.iteritems(): self.assertCycles("task due date", due_date, list(cycle_slugs)) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_group_due_date(self, cycle_count, task_count): """Test filter cycles by group due date""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) due_date_dict = defaultdict(set) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() due_date_dict[str(task.cycle_task_group.next_due_date)].add(slug) for due_date, cycle_slugs in due_date_dict.iteritems(): self.assertCycles("group due date", due_date, list(cycle_slugs)) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_group_assignee(self, cycle_count, task_count): """Test filter cycles by group assignee name or email""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() self.assertCycles( "group assignee", task.cycle_task_group.contact.email, [slug]) self.assertCycles( "group assignee", task.cycle_task_group.contact.name, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_assignee(self, cycle_count, task_count): """Test filter cycles by task assignee name or email""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() assignees = list(self.get_persons_for_role_name( task, "Task Assignees")) self.assertEqual(1, len(assignees)) self.assertCycles("task assignees", assignees[0].email, [slug]) self.assertCycles("task assignees", assignees[0].name, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_secondary_assignee(self, cycle_count, task_count): """Test filter cycles by task secondary assignee name or email""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() s_assignees = list(self.get_persons_for_role_name( task, "Task Secondary Assignees")) self.assertEqual(1, len(s_assignees)) self.assertCycles("task secondary assignees", s_assignees[0].email, [slug]) self.assertCycles("task secondary assignees", s_assignees[0].name, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_due_date_year(self, cycle_count, task_count): """Test filter cycles by task due date year""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) due_date_dict = defaultdict(set) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() key = (task.end_date.year, task.end_date.month, task.end_date.day) due_date_dict[key].add(slug) for due_date, cycle_slugs in due_date_dict.iteritems(): self.assertCycles("task due date", "{}-{}-{}".format(*due_date), list(cycle_slugs)) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_due_date_year_month(self, cycle_count, task_count): """Test filter cycles by task due date year month""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) due_date_dict = defaultdict(set) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() due_date_dict[(task.end_date.year, task.end_date.month)].add(slug) for due_date, cycle_slugs in due_date_dict.iteritems(): self.assertCycles("task due date", "{}-{}".format(*due_date), list(cycle_slugs)) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_cycle_assignee(self, cycle_count, task_count): """Test filter cycles by cycle assignee name and email""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) self.assertEqual(bool(cycle_count), bool(task_cycle_filter)) for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() self.assertCycles("cycle assignee", task.cycle.contact.email, [slug]) self.assertCycles("cycle assignee", task.cycle.contact.name, [slug]) @ddt.data(*CYCLES_TASKS_COUNT) @ddt.unpack def test_filter_by_task_comment(self, cycle_count, task_count): """Test filter cycles by task comments.""" task_cycle_filter = self.generate_tasks_for_cycle(cycle_count, task_count) filter_params = {} for task_id, slug in task_cycle_filter.iteritems(): task = all_models.CycleTaskGroupObjectTask.query.filter( all_models.CycleTaskGroupObjectTask.id == task_id ).one() comment_text = "comment for task # {}".format(task_id) comment = ggrc_factories.CommentFactory(description=comment_text) ggrc_factories.RelationshipFactory(source=task, destination=comment) filter_params[comment_text] = slug for comment_text, slug in filter_params.iteritems(): self.assertCycles("task comment", comment_text, [slug])
41.852113
78
0.695777
a936df93abe12becab9ed304a472c6008539bfe4
1,057
py
Python
h/services/groupfinder.py
rickyhan/h
d13cbc3ec5cf92fbfb40ad360c7a5e0d937fbd14
[ "MIT" ]
2
2021-11-07T23:14:54.000Z
2021-11-17T10:11:55.000Z
h/services/groupfinder.py
0b01/h
d13cbc3ec5cf92fbfb40ad360c7a5e0d937fbd14
[ "MIT" ]
null
null
null
h/services/groupfinder.py
0b01/h
d13cbc3ec5cf92fbfb40ad360c7a5e0d937fbd14
[ "MIT" ]
1
2017-03-12T00:18:33.000Z
2017-03-12T00:18:33.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from zope.interface import implementer from h import models from h.interfaces import IGroupService from h.util.db import lru_cache_in_transaction from h.groups.util import WorldGroup # Ideally this would be called the GroupService to match nomenclature in memex. # FIXME: rename / split existing GroupService and rename this. @implementer(IGroupService) class GroupfinderService(object): def __init__(self, session, authority): self.session = session self.authority = authority self._cached_find = lru_cache_in_transaction(self.session)(self._find) def find(self, id_): return self._cached_find(id_) def _find(self, id_): if id_ == '__world__': return WorldGroup(self.authority) return (self.session.query(models.Group) .filter_by(pubid=id_) .one_or_none()) def groupfinder_service_factory(context, request): return GroupfinderService(request.db, request.authority)
28.567568
79
0.711447
160e669e725837bf4951e54f2bed350f66a11d68
30,316
py
Python
tests/tracking/test_tracking.py
tsterbak/mlflow
77bfd3eb6e130d6583ee6e91b3d88298bb6951c7
[ "Apache-2.0" ]
null
null
null
tests/tracking/test_tracking.py
tsterbak/mlflow
77bfd3eb6e130d6583ee6e91b3d88298bb6951c7
[ "Apache-2.0" ]
null
null
null
tests/tracking/test_tracking.py
tsterbak/mlflow
77bfd3eb6e130d6583ee6e91b3d88298bb6951c7
[ "Apache-2.0" ]
null
null
null
from collections import namedtuple import filecmp import json import os import posixpath import random import tempfile import time import yaml import pytest from unittest import mock import mlflow from mlflow import tracking from mlflow.entities import RunStatus, LifecycleStage, Metric, Param, RunTag, ViewType from mlflow.exceptions import MlflowException from mlflow.store.tracking.file_store import FileStore from mlflow.protos.databricks_pb2 import ErrorCode, INVALID_PARAMETER_VALUE from mlflow.tracking.client import MlflowClient from mlflow.tracking.fluent import start_run from mlflow.utils.file_utils import local_file_uri_to_path from mlflow.utils.mlflow_tags import ( MLFLOW_PARENT_RUN_ID, MLFLOW_USER, MLFLOW_SOURCE_NAME, MLFLOW_SOURCE_TYPE, ) from mlflow.tracking.fluent import _RUN_ID_ENV_VAR MockExperiment = namedtuple("MockExperiment", ["experiment_id", "lifecycle_stage"]) def test_create_experiment(): with pytest.raises(TypeError): mlflow.create_experiment() # pylint: disable=no-value-for-parameter with pytest.raises(Exception): mlflow.create_experiment(None) with pytest.raises(Exception): mlflow.create_experiment("") exp_id = mlflow.create_experiment("Some random experiment name %d" % random.randint(1, 1e6)) assert exp_id is not None def test_create_experiment_with_duplicate_name(): name = "popular_name" exp_id = mlflow.create_experiment(name) with pytest.raises(MlflowException): mlflow.create_experiment(name) tracking.MlflowClient().delete_experiment(exp_id) with pytest.raises(MlflowException): mlflow.create_experiment(name) def test_create_experiments_with_bad_names(): # None for name with pytest.raises(MlflowException) as e: mlflow.create_experiment(None) assert e.message.contains("Invalid experiment name: 'None'") # empty string name with pytest.raises(MlflowException) as e: mlflow.create_experiment("") assert e.message.contains("Invalid experiment name: ''") @pytest.mark.parametrize("name", [123, 0, -1.2, [], ["A"], {1: 2}]) def test_create_experiments_with_bad_name_types(name): with pytest.raises(MlflowException) as e: mlflow.create_experiment(name) assert e.message.contains("Invalid experiment name: %s. Expects a string." % name) @pytest.mark.usefixtures("reset_active_experiment") def test_set_experiment(): with pytest.raises(TypeError): mlflow.set_experiment() # pylint: disable=no-value-for-parameter with pytest.raises(Exception): mlflow.set_experiment(None) with pytest.raises(Exception): mlflow.set_experiment("") name = "random_exp" exp_id = mlflow.create_experiment(name) mlflow.set_experiment(name) with start_run() as run: assert run.info.experiment_id == exp_id another_name = "another_experiment" mlflow.set_experiment(another_name) exp_id2 = mlflow.tracking.MlflowClient().get_experiment_by_name(another_name) with start_run() as another_run: assert another_run.info.experiment_id == exp_id2.experiment_id def test_set_experiment_with_deleted_experiment_name(): name = "dead_exp" mlflow.set_experiment(name) with start_run() as run: exp_id = run.info.experiment_id tracking.MlflowClient().delete_experiment(exp_id) with pytest.raises(MlflowException): mlflow.set_experiment(name) def test_list_experiments(): def _assert_exps(ids_to_lifecycle_stage, view_type_arg): result = set( [ (exp.experiment_id, exp.lifecycle_stage) for exp in client.list_experiments(view_type=view_type_arg) ] ) assert result == set([(exp_id, stage) for exp_id, stage in ids_to_lifecycle_stage.items()]) experiment_id = mlflow.create_experiment("exp_1") assert experiment_id == "1" client = tracking.MlflowClient() _assert_exps({"0": LifecycleStage.ACTIVE, "1": LifecycleStage.ACTIVE}, ViewType.ACTIVE_ONLY) _assert_exps({"0": LifecycleStage.ACTIVE, "1": LifecycleStage.ACTIVE}, ViewType.ALL) _assert_exps({}, ViewType.DELETED_ONLY) client.delete_experiment(experiment_id) _assert_exps({"0": LifecycleStage.ACTIVE}, ViewType.ACTIVE_ONLY) _assert_exps({"0": LifecycleStage.ACTIVE, "1": LifecycleStage.DELETED}, ViewType.ALL) _assert_exps({"1": LifecycleStage.DELETED}, ViewType.DELETED_ONLY) @pytest.mark.usefixtures("reset_active_experiment") def test_set_experiment_with_zero_id(reset_mock): reset_mock( MlflowClient, "get_experiment_by_name", mock.Mock( return_value=MockExperiment(experiment_id=0, lifecycle_stage=LifecycleStage.ACTIVE) ), ) reset_mock(MlflowClient, "create_experiment", mock.Mock()) mlflow.set_experiment("my_exp") MlflowClient.get_experiment_by_name.assert_called_once() MlflowClient.create_experiment.assert_not_called() def test_start_run_context_manager(): with start_run() as first_run: first_uuid = first_run.info.run_id # Check that start_run() causes the run information to be persisted in the store persisted_run = tracking.MlflowClient().get_run(first_uuid) assert persisted_run is not None assert persisted_run.info == first_run.info finished_run = tracking.MlflowClient().get_run(first_uuid) assert finished_run.info.status == RunStatus.to_string(RunStatus.FINISHED) # Launch a separate run that fails, verify the run status is FAILED and the run UUID is # different with pytest.raises(Exception): with start_run() as second_run: second_run_id = second_run.info.run_id raise Exception("Failing run!") assert second_run_id != first_uuid finished_run2 = tracking.MlflowClient().get_run(second_run_id) assert finished_run2.info.status == RunStatus.to_string(RunStatus.FAILED) def test_start_and_end_run(): # Use the start_run() and end_run() APIs without a `with` block, verify they work. with start_run() as active_run: mlflow.log_metric("name_1", 25) finished_run = tracking.MlflowClient().get_run(active_run.info.run_id) # Validate metrics assert len(finished_run.data.metrics) == 1 assert finished_run.data.metrics["name_1"] == 25 def test_metric_timestamp(): with mlflow.start_run() as active_run: mlflow.log_metric("name_1", 25) mlflow.log_metric("name_1", 30) run_id = active_run.info.run_uuid # Check that metric timestamps are between run start and finish client = mlflow.tracking.MlflowClient() history = client.get_metric_history(run_id, "name_1") finished_run = client.get_run(run_id) assert len(history) == 2 assert all( [ m.timestamp >= finished_run.info.start_time and m.timestamp <= finished_run.info.end_time for m in history ] ) @pytest.mark.usefixtures("tmpdir") def test_log_batch(): expected_metrics = {"metric-key0": 1.0, "metric-key1": 4.0} expected_params = {"param-key0": "param-val0", "param-key1": "param-val1"} exact_expected_tags = {"tag-key0": "tag-val0", "tag-key1": "tag-val1"} approx_expected_tags = set([MLFLOW_USER, MLFLOW_SOURCE_NAME, MLFLOW_SOURCE_TYPE]) t = int(time.time()) sorted_expected_metrics = sorted(expected_metrics.items(), key=lambda kv: kv[0]) metrics = [ Metric(key=key, value=value, timestamp=t, step=i) for i, (key, value) in enumerate(sorted_expected_metrics) ] params = [Param(key=key, value=value) for key, value in expected_params.items()] tags = [RunTag(key=key, value=value) for key, value in exact_expected_tags.items()] with start_run() as active_run: run_id = active_run.info.run_id mlflow.tracking.MlflowClient().log_batch( run_id=run_id, metrics=metrics, params=params, tags=tags ) client = tracking.MlflowClient() finished_run = client.get_run(run_id) # Validate metrics assert len(finished_run.data.metrics) == 2 for key, value in finished_run.data.metrics.items(): assert expected_metrics[key] == value metric_history0 = client.get_metric_history(run_id, "metric-key0") assert set([(m.value, m.timestamp, m.step) for m in metric_history0]) == set([(1.0, t, 0)]) metric_history1 = client.get_metric_history(run_id, "metric-key1") assert set([(m.value, m.timestamp, m.step) for m in metric_history1]) == set([(4.0, t, 1)]) # Validate tags (for automatically-set tags) assert len(finished_run.data.tags) == len(exact_expected_tags) + len(approx_expected_tags) for tag_key, tag_value in finished_run.data.tags.items(): if tag_key in approx_expected_tags: pass else: assert exact_expected_tags[tag_key] == tag_value # Validate params assert finished_run.data.params == expected_params # test that log_batch works with fewer params new_tags = {"1": "2", "3": "4", "5": "6"} tags = [RunTag(key=key, value=value) for key, value in new_tags.items()] client.log_batch(run_id=run_id, tags=tags) finished_run_2 = client.get_run(run_id) # Validate tags (for automatically-set tags) assert len(finished_run_2.data.tags) == len(finished_run.data.tags) + 3 for tag_key, tag_value in finished_run_2.data.tags.items(): if tag_key in new_tags: assert new_tags[tag_key] == tag_value def test_log_metric(): with start_run() as active_run, mock.patch("time.time") as time_mock: time_mock.side_effect = [123 for _ in range(100)] run_id = active_run.info.run_id mlflow.log_metric("name_1", 25) mlflow.log_metric("name_2", -3) mlflow.log_metric("name_1", 30, 5) mlflow.log_metric("name_1", 40, -2) mlflow.log_metric("nested/nested/name", 40) finished_run = tracking.MlflowClient().get_run(run_id) # Validate metrics assert len(finished_run.data.metrics) == 3 expected_pairs = {"name_1": 30, "name_2": -3, "nested/nested/name": 40} for key, value in finished_run.data.metrics.items(): assert expected_pairs[key] == value client = tracking.MlflowClient() metric_history_name1 = client.get_metric_history(run_id, "name_1") assert set([(m.value, m.timestamp, m.step) for m in metric_history_name1]) == set( [(25, 123 * 1000, 0), (30, 123 * 1000, 5), (40, 123 * 1000, -2)] ) metric_history_name2 = client.get_metric_history(run_id, "name_2") assert set([(m.value, m.timestamp, m.step) for m in metric_history_name2]) == set( [(-3, 123 * 1000, 0)] ) def test_log_metrics_uses_millisecond_timestamp_resolution_fluent(): with start_run() as active_run, mock.patch("time.time") as time_mock: time_mock.side_effect = lambda: 123 mlflow.log_metrics({"name_1": 25, "name_2": -3}) mlflow.log_metrics({"name_1": 30}) mlflow.log_metrics({"name_1": 40}) run_id = active_run.info.run_id client = tracking.MlflowClient() metric_history_name1 = client.get_metric_history(run_id, "name_1") assert set([(m.value, m.timestamp) for m in metric_history_name1]) == set( [(25, 123 * 1000), (30, 123 * 1000), (40, 123 * 1000)] ) metric_history_name2 = client.get_metric_history(run_id, "name_2") assert set([(m.value, m.timestamp) for m in metric_history_name2]) == set([(-3, 123 * 1000)]) def test_log_metrics_uses_millisecond_timestamp_resolution_client(): with start_run() as active_run, mock.patch("time.time") as time_mock: time_mock.side_effect = lambda: 123 mlflow_client = tracking.MlflowClient() run_id = active_run.info.run_id mlflow_client.log_metric(run_id=run_id, key="name_1", value=25) mlflow_client.log_metric(run_id=run_id, key="name_2", value=-3) mlflow_client.log_metric(run_id=run_id, key="name_1", value=30) mlflow_client.log_metric(run_id=run_id, key="name_1", value=40) metric_history_name1 = mlflow_client.get_metric_history(run_id, "name_1") assert set([(m.value, m.timestamp) for m in metric_history_name1]) == set( [(25, 123 * 1000), (30, 123 * 1000), (40, 123 * 1000)] ) metric_history_name2 = mlflow_client.get_metric_history(run_id, "name_2") assert set([(m.value, m.timestamp) for m in metric_history_name2]) == set([(-3, 123 * 1000)]) @pytest.mark.parametrize("step_kwarg", [None, -10, 5]) def test_log_metrics_uses_common_timestamp_and_step_per_invocation(step_kwarg): expected_metrics = {"name_1": 30, "name_2": -3, "nested/nested/name": 40} with start_run() as active_run: run_id = active_run.info.run_id mlflow.log_metrics(expected_metrics, step=step_kwarg) finished_run = tracking.MlflowClient().get_run(run_id) # Validate metric key/values match what we expect, and that all metrics have the same timestamp assert len(finished_run.data.metrics) == len(expected_metrics) for key, value in finished_run.data.metrics.items(): assert expected_metrics[key] == value common_timestamp = finished_run.data._metric_objs[0].timestamp expected_step = step_kwarg if step_kwarg is not None else 0 for metric_obj in finished_run.data._metric_objs: assert metric_obj.timestamp == common_timestamp assert metric_obj.step == expected_step @pytest.fixture @pytest.mark.usefixtures("tmpdir") def get_store_mock(): with mock.patch("mlflow.store.file_store.FileStore.log_batch") as _get_store_mock: yield _get_store_mock def test_set_tags(): exact_expected_tags = {"name_1": "c", "name_2": "b", "nested/nested/name": 5} approx_expected_tags = set([MLFLOW_USER, MLFLOW_SOURCE_NAME, MLFLOW_SOURCE_TYPE]) with start_run() as active_run: run_id = active_run.info.run_id mlflow.set_tags(exact_expected_tags) finished_run = tracking.MlflowClient().get_run(run_id) # Validate tags assert len(finished_run.data.tags) == len(exact_expected_tags) + len(approx_expected_tags) for tag_key, tag_val in finished_run.data.tags.items(): if tag_key in approx_expected_tags: pass else: assert str(exact_expected_tags[tag_key]) == tag_val def test_log_metric_validation(): with start_run() as active_run: run_id = active_run.info.run_id with pytest.raises(MlflowException) as e: mlflow.log_metric("name_1", "apple") assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) finished_run = tracking.MlflowClient().get_run(run_id) assert len(finished_run.data.metrics) == 0 def test_log_param(): with start_run() as active_run: run_id = active_run.info.run_id mlflow.log_param("name_1", "a") mlflow.log_param("name_2", "b") mlflow.log_param("nested/nested/name", 5) finished_run = tracking.MlflowClient().get_run(run_id) # Validate params assert finished_run.data.params == {"name_1": "a", "name_2": "b", "nested/nested/name": "5"} def test_log_params(): expected_params = {"name_1": "c", "name_2": "b", "nested/nested/name": 5} with start_run() as active_run: run_id = active_run.info.run_id mlflow.log_params(expected_params) finished_run = tracking.MlflowClient().get_run(run_id) # Validate params assert finished_run.data.params == {"name_1": "c", "name_2": "b", "nested/nested/name": "5"} def test_log_batch_validates_entity_names_and_values(): bad_kwargs = { "metrics": [ [Metric(key="../bad/metric/name", value=0.3, timestamp=3, step=0)], [Metric(key="ok-name", value="non-numerical-value", timestamp=3, step=0)], [Metric(key="ok-name", value=0.3, timestamp="non-numerical-timestamp", step=0)], ], "params": [[Param(key="../bad/param/name", value="my-val")]], "tags": [[Param(key="../bad/tag/name", value="my-val")]], } with start_run() as active_run: for kwarg, bad_values in bad_kwargs.items(): for bad_kwarg_value in bad_values: final_kwargs = { "run_id": active_run.info.run_id, "metrics": [], "params": [], "tags": [], } final_kwargs[kwarg] = bad_kwarg_value with pytest.raises(MlflowException) as e: tracking.MlflowClient().log_batch(**final_kwargs) assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) def test_log_artifact_with_dirs(tmpdir): # Test log artifact with a directory art_dir = tmpdir.mkdir("parent") file0 = art_dir.join("file0") file0.write("something") file1 = art_dir.join("file1") file1.write("something") sub_dir = art_dir.mkdir("child") with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(str(art_dir)) base = os.path.basename(str(art_dir)) assert os.listdir(run_artifact_dir) == [base] assert set(os.listdir(os.path.join(run_artifact_dir, base))) == {"child", "file0", "file1"} with open(os.path.join(run_artifact_dir, base, "file0")) as f: assert f.read() == "something" # Test log artifact with directory and specified parent folder art_dir = tmpdir.mkdir("dir") with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(str(art_dir), "some_parent") assert os.listdir(run_artifact_dir) == [os.path.basename("some_parent")] assert os.listdir(os.path.join(run_artifact_dir, "some_parent")) == [ os.path.basename(str(art_dir)) ] sub_dir = art_dir.mkdir("another_dir") with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(str(art_dir), "parent/and_child") assert os.listdir(os.path.join(run_artifact_dir, "parent", "and_child")) == [ os.path.basename(str(art_dir)) ] assert os.listdir( os.path.join(run_artifact_dir, "parent", "and_child", os.path.basename(str(art_dir))) ) == [os.path.basename(str(sub_dir))] def test_log_artifact(): artifact_src_dir = tempfile.mkdtemp() # Create artifacts _, path0 = tempfile.mkstemp(dir=artifact_src_dir) _, path1 = tempfile.mkstemp(dir=artifact_src_dir) for i, path in enumerate([path0, path1]): with open(path, "w") as handle: handle.write("%s" % str(i)) # Log an artifact, verify it exists in the directory returned by get_artifact_uri # after the run finishes artifact_parent_dirs = ["some_parent_dir", None] for parent_dir in artifact_parent_dirs: with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(path0, parent_dir) expected_dir = ( os.path.join(run_artifact_dir, parent_dir) if parent_dir is not None else run_artifact_dir ) assert os.listdir(expected_dir) == [os.path.basename(path0)] logged_artifact_path = os.path.join(expected_dir, path0) assert filecmp.cmp(logged_artifact_path, path0, shallow=False) # Log multiple artifacts, verify they exist in the directory returned by get_artifact_uri for parent_dir in artifact_parent_dirs: with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifacts(artifact_src_dir, parent_dir) # Check that the logged artifacts match expected_artifact_output_dir = ( os.path.join(run_artifact_dir, parent_dir) if parent_dir is not None else run_artifact_dir ) dir_comparison = filecmp.dircmp(artifact_src_dir, expected_artifact_output_dir) assert len(dir_comparison.left_only) == 0 assert len(dir_comparison.right_only) == 0 assert len(dir_comparison.diff_files) == 0 assert len(dir_comparison.funny_files) == 0 @pytest.mark.parametrize("subdir", [None, ".", "dir", "dir1/dir2", "dir/.."]) def test_log_text(subdir): filename = "file.txt" text = "a" artifact_file = filename if subdir is None else posixpath.join(subdir, filename) with mlflow.start_run(): mlflow.log_text(text, artifact_file) artifact_path = None if subdir is None else posixpath.normpath(subdir) artifact_uri = mlflow.get_artifact_uri(artifact_path) run_artifact_dir = local_file_uri_to_path(artifact_uri) assert os.listdir(run_artifact_dir) == [filename] filepath = os.path.join(run_artifact_dir, filename) with open(filepath) as f: assert f.read() == text @pytest.mark.parametrize("subdir", [None, ".", "dir", "dir1/dir2", "dir/.."]) @pytest.mark.parametrize("extension", [".json", ".yml", ".yaml", ".txt", ""]) def test_log_dict(subdir, extension): dictionary = {"k": "v"} filename = "data" + extension artifact_file = filename if subdir is None else posixpath.join(subdir, filename) with mlflow.start_run(): mlflow.log_dict(dictionary, artifact_file) artifact_path = None if subdir is None else posixpath.normpath(subdir) artifact_uri = mlflow.get_artifact_uri(artifact_path) run_artifact_dir = local_file_uri_to_path(artifact_uri) assert os.listdir(run_artifact_dir) == [filename] filepath = os.path.join(run_artifact_dir, filename) extension = os.path.splitext(filename)[1] with open(filepath) as f: loaded = yaml.load(f) if (extension in [".yml", ".yaml"]) else json.load(f) assert loaded == dictionary def test_with_startrun(): run_id = None t0 = int(time.time() * 1000) with mlflow.start_run() as active_run: assert mlflow.active_run() == active_run run_id = active_run.info.run_id t1 = int(time.time() * 1000) run_info = mlflow.tracking._get_store().get_run(run_id).info assert run_info.status == "FINISHED" assert t0 <= run_info.end_time and run_info.end_time <= t1 assert mlflow.active_run() is None def test_parent_create_run(): with mlflow.start_run() as parent_run: parent_run_id = parent_run.info.run_id os.environ[_RUN_ID_ENV_VAR] = parent_run_id with mlflow.start_run() as parent_run: assert parent_run.info.run_id == parent_run_id with pytest.raises(Exception, match="To start a nested run"): mlflow.start_run() with mlflow.start_run(nested=True) as child_run: assert child_run.info.run_id != parent_run_id with mlflow.start_run(nested=True) as grand_child_run: pass def verify_has_parent_id_tag(child_id, expected_parent_id): tags = tracking.MlflowClient().get_run(child_id).data.tags assert tags[MLFLOW_PARENT_RUN_ID] == expected_parent_id verify_has_parent_id_tag(child_run.info.run_id, parent_run.info.run_id) verify_has_parent_id_tag(grand_child_run.info.run_id, child_run.info.run_id) assert mlflow.active_run() is None def test_start_deleted_run(): run_id = None with mlflow.start_run() as active_run: run_id = active_run.info.run_id tracking.MlflowClient().delete_run(run_id) with pytest.raises(MlflowException, matches="because it is in the deleted state."): with mlflow.start_run(run_id=run_id): pass assert mlflow.active_run() is None @pytest.mark.usefixtures("reset_active_experiment") def test_start_run_exp_id_0(): mlflow.set_experiment("some-experiment") # Create a run and verify that the current active experiment is the one we just set with mlflow.start_run() as active_run: exp_id = active_run.info.experiment_id assert exp_id != FileStore.DEFAULT_EXPERIMENT_ID assert MlflowClient().get_experiment(exp_id).name == "some-experiment" # Set experiment ID to 0 when creating a run, verify that the specified experiment ID is honored with mlflow.start_run(experiment_id=0) as active_run: assert active_run.info.experiment_id == FileStore.DEFAULT_EXPERIMENT_ID def test_get_artifact_uri_with_artifact_path_unspecified_returns_artifact_root_dir(): with mlflow.start_run() as active_run: assert mlflow.get_artifact_uri(artifact_path=None) == active_run.info.artifact_uri def test_get_artifact_uri_uses_currently_active_run_id(): artifact_path = "artifact" with mlflow.start_run() as active_run: assert mlflow.get_artifact_uri( artifact_path=artifact_path ) == tracking.artifact_utils.get_artifact_uri( run_id=active_run.info.run_id, artifact_path=artifact_path ) @pytest.mark.parametrize( "artifact_location, expected_uri_format", [ ( "mysql://user:password@host:port/dbname?driver=mydriver", "mysql://user:password@host:port/dbname/{run_id}/artifacts/{path}?driver=mydriver", ), ( "mysql+driver://user:password@host:port/dbname/subpath/#fragment", "mysql+driver://user:password@host:port/dbname/subpath/{run_id}/artifacts/{path}#fragment", # noqa ), ("s3://bucketname/rootpath", "s3://bucketname/rootpath/{run_id}/artifacts/{path}",), ("/dirname/rootpa#th?", "/dirname/rootpa#th?/{run_id}/artifacts/{path}",), ], ) def test_get_artifact_uri_appends_to_uri_path_component_correctly( artifact_location, expected_uri_format ): client = MlflowClient() client.create_experiment("get-artifact-uri-test", artifact_location=artifact_location) mlflow.set_experiment("get-artifact-uri-test") with mlflow.start_run(): run_id = mlflow.active_run().info.run_id for artifact_path in ["path/to/artifact", "/artifact/path", "arty.txt"]: artifact_uri = mlflow.get_artifact_uri(artifact_path) assert artifact_uri == tracking.artifact_utils.get_artifact_uri(run_id, artifact_path) assert artifact_uri == expected_uri_format.format( run_id=run_id, path=artifact_path.lstrip("/") ) @pytest.mark.usefixtures("reset_active_experiment") def test_search_runs(): mlflow.set_experiment("exp-for-search") # Create a run and verify that the current active experiment is the one we just set logged_runs = {} with mlflow.start_run() as active_run: logged_runs["first"] = active_run.info.run_id mlflow.log_metric("m1", 0.001) mlflow.log_metric("m2", 0.002) mlflow.log_metric("m1", 0.002) mlflow.log_param("p1", "a") mlflow.set_tag("t1", "first-tag-val") with mlflow.start_run() as active_run: logged_runs["second"] = active_run.info.run_id mlflow.log_metric("m1", 0.008) mlflow.log_param("p2", "aa") mlflow.set_tag("t2", "second-tag-val") def verify_runs(runs, expected_set): assert set([r.info.run_id for r in runs]) == set([logged_runs[r] for r in expected_set]) experiment_id = MlflowClient().get_experiment_by_name("exp-for-search").experiment_id # 2 runs in this experiment assert len(MlflowClient().list_run_infos(experiment_id, ViewType.ACTIVE_ONLY)) == 2 # 2 runs that have metric "m1" > 0.001 runs = MlflowClient().search_runs([experiment_id], "metrics.m1 > 0.0001") verify_runs(runs, ["first", "second"]) # 1 run with has metric "m1" > 0.002 runs = MlflowClient().search_runs([experiment_id], "metrics.m1 > 0.002") verify_runs(runs, ["second"]) # no runs with metric "m1" > 0.1 runs = MlflowClient().search_runs([experiment_id], "metrics.m1 > 0.1") verify_runs(runs, []) # 1 run with metric "m2" > 0 runs = MlflowClient().search_runs([experiment_id], "metrics.m2 > 0") verify_runs(runs, ["first"]) # 1 run each with param "p1" and "p2" runs = MlflowClient().search_runs([experiment_id], "params.p1 = 'a'", ViewType.ALL) verify_runs(runs, ["first"]) runs = MlflowClient().search_runs([experiment_id], "params.p2 != 'a'", ViewType.ALL) verify_runs(runs, ["second"]) runs = MlflowClient().search_runs([experiment_id], "params.p2 = 'aa'", ViewType.ALL) verify_runs(runs, ["second"]) # 1 run each with tag "t1" and "t2" runs = MlflowClient().search_runs([experiment_id], "tags.t1 = 'first-tag-val'", ViewType.ALL) verify_runs(runs, ["first"]) runs = MlflowClient().search_runs([experiment_id], "tags.t2 != 'qwerty'", ViewType.ALL) verify_runs(runs, ["second"]) runs = MlflowClient().search_runs([experiment_id], "tags.t2 = 'second-tag-val'", ViewType.ALL) verify_runs(runs, ["second"]) # delete "first" run MlflowClient().delete_run(logged_runs["first"]) runs = MlflowClient().search_runs([experiment_id], "params.p1 = 'a'", ViewType.ALL) verify_runs(runs, ["first"]) runs = MlflowClient().search_runs([experiment_id], "params.p1 = 'a'", ViewType.DELETED_ONLY) verify_runs(runs, ["first"]) runs = MlflowClient().search_runs([experiment_id], "params.p1 = 'a'", ViewType.ACTIVE_ONLY) verify_runs(runs, []) @pytest.mark.usefixtures("reset_active_experiment") def test_search_runs_multiple_experiments(): experiment_ids = [mlflow.create_experiment("exp__{}".format(exp_id)) for exp_id in range(1, 4)] for eid in experiment_ids: with mlflow.start_run(experiment_id=eid): mlflow.log_metric("m0", 1) mlflow.log_metric("m_{}".format(eid), 2) assert len(MlflowClient().search_runs(experiment_ids, "metrics.m0 > 0", ViewType.ALL)) == 3 assert len(MlflowClient().search_runs(experiment_ids, "metrics.m_1 > 0", ViewType.ALL)) == 1 assert len(MlflowClient().search_runs(experiment_ids, "metrics.m_2 = 2", ViewType.ALL)) == 1 assert len(MlflowClient().search_runs(experiment_ids, "metrics.m_3 < 4", ViewType.ALL)) == 1
41.585734
111
0.686271
b04e93595e8335001b59e2ad8890c85d239ddfb3
2,265
py
Python
plugin.video.hellokoko/tests/kokolib_test.py
jabiel/kodi
f1fc8b74e4313705c2b928914ca6a6bcd56df0a3
[ "MIT" ]
null
null
null
plugin.video.hellokoko/tests/kokolib_test.py
jabiel/kodi
f1fc8b74e4313705c2b928914ca6a6bcd56df0a3
[ "MIT" ]
null
null
null
plugin.video.hellokoko/tests/kokolib_test.py
jabiel/kodi
f1fc8b74e4313705c2b928914ca6a6bcd56df0a3
[ "MIT" ]
null
null
null
import unittest from resources.lib import kokolib class Test_kokolib_test(unittest.TestCase): def test_decryptDefalc13(self): zz = kokolib.decryptDefalc13('Vidto^$2^$0^$%@%ivqgb.zr/rzorq-r4ldnpru45d9-640k360.ugzy^%^Vidto^$2^$1^$%@%ivqgb.zr/rzorq-u65w347cbm3k-640k360.ugzy^%^Vidto^$0^$0^$%@%ivqgb.zr/rzorq-oqvycqder6sk-640k360.ugzy^%^Vidto^$0^$0^$^%^Fileone^$2^$0^$%@%svyrbar.gi/i/59dc690317a2a^%^Fileone^$2^$1^$%@%svyrbar.gi/i/59dcad5c9a3f3^%^Fileone^$0^$0^$%@%svyrbar.gi/i/59e36f3a17120^%^Fileone^$0^$0^$^%^Videowood^$2^$0^$%@%ivqrbjbbq.gi/rzorq/1nb4h^%^Videowood^$2^$1^$^%^Videowood^$0^$0^$^%^Videowood^$0^$0^$^%^Speedvid VIP^$0^$0^$^%^Speedvid VIP^$0^$0^$^%^Speedvid VIP^$0^$0^$^%^Speedvid VIP^$0^$0^$^%^Uptobox VIP^$0^$0^$^%^Uptobox VIP^$0^$0^$^%^Uptobox VIP^$0^$0^$^%^Uptobox VIP^$0^$0^$^%^Stormo VIP^$2^$1^$f%@%jjj.fgbezb.gi/rzorq/194690/^%^Stormo VIP^$2^$2^$f%@%jjj.fgbezb.gi/rzorq/194658/^%^Stormo VIP^$2^$3^$f%@%jjj.fgbezb.gi/rzorq/194670/^%^Stormo VIP^$0^$0^$^%^Stormo VIP^$0^$0^$^%^Stormo VIP^$0^$0^$^%^Streamango VIP^$2^$0^$f%@%fgernznatb.pbz/rzorq/xfoyyezycrbadaqb^%^Streamango VIP^$2^$1^$f%@%fgernznatb.pbz/rzorq/sgrqoobgagefexqg^%^Streamango VIP^$2^$2^$f%@%fgernznatb.pbz/rzorq/scsfnnfsbxerpgzq^%^Streamango VIP^$2^$3^$f%@%fgernznatb.pbz/rzorq/cbxdzonqyeqrrxap^%^Streamango VIP^$0^$0^$f%@%fgernznatb.pbz/rzorq/yfpcnnznsyrdaxbc/Jne_sbe_gur_Cynarg_bs_gur_Ncrf_2017_CY_OQEvc_KivQ-XvG_1_niv^%^Streamango VIP^$0^$0^$^%^Streamango VIP^$0^$0^$^%^Streamango VIP^$0^$0^$^%^Openload VIP^$2^$0^$f%@%bcraybnq.pb/rzorq/3FNTTj6IusV^%^Openload VIP^$2^$1^$f%@%bcraybnq.pb/rzorq/G8F2VGPmrBZ^%^Openload VIP^$2^$2^$f%@%bcraybnq.pb/rzorq/OWz8PqwGUhH^%^Openload VIP^$2^$3^$f%@%bcraybnq.pb/rzorq/8HubkwO3EHf^%^Openload VIP^$0^$0^$f%@%bcraybnq.pb/rzorq/aEJqe4wl4Kt/Jne.sbe.gur.Cynarg.bs.gur.Ncrf.2017.CY.OQEvc.KivQ-XvG_%281%29.niv^%^Openload VIP^$0^$0^$^%^Openload VIP^$0^$2^$f%@%bcraybnq.pb/rzorq/oVvdV2QyqHt/Jne.sbe.gur.Cynarg.bs.gur.Ncrf.2017.CY.720c.OyhEnl.k264.NP3-XvG.zxi^%^Openload [3D] VIP^$7^$3^$f%@%bcraybnq.pb/rzorq/SSzv9Ghcy_R/fxbcvhw_yvax_m_bcraybnq.gkg^%^'); self.assertTrue(isinstance(zz, list)) # is list self.assertEqual(22, len(zz)) self.assertEqual('Vidto', zz[0][0]) if __name__ == '__main__': unittest.main()
161.785714
1,946
0.688742
a3fd58cca965e84de1056d11dd9e05676711d3cc
161
py
Python
send.py
dyike/CTEmail
d94416401198393df01f143047acb1fb7c227492
[ "MIT" ]
47
2017-10-15T08:23:55.000Z
2021-03-21T04:05:25.000Z
send.py
bobo18801737494/CTEmail
d94416401198393df01f143047acb1fb7c227492
[ "MIT" ]
null
null
null
send.py
bobo18801737494/CTEmail
d94416401198393df01f143047acb1fb7c227492
[ "MIT" ]
7
2017-10-16T02:23:12.000Z
2020-07-08T13:32:28.000Z
from ctemail import CTEmail e = CTEmail('Your email acount', 'Your password') # " ./content/ 邮件文件的路径 " e.send_email('Test Email', './content/', ['i@ityike.com'])
40.25
58
0.68323
d78a6d74af88e0eea959ab35722d7c8d807c00a2
3,091
py
Python
nosferatu/views.py
DanCardin/nosferatu
7a81cfb0871e5a50649cde1a9585140e8b88d442
[ "Apache-2.0" ]
null
null
null
nosferatu/views.py
DanCardin/nosferatu
7a81cfb0871e5a50649cde1a9585140e8b88d442
[ "Apache-2.0" ]
null
null
null
nosferatu/views.py
DanCardin/nosferatu
7a81cfb0871e5a50649cde1a9585140e8b88d442
[ "Apache-2.0" ]
null
null
null
import logging from flask import render_template, jsonify, request from flask_user import login_required, current_user from flask_user.signals import user_sent_invitation, user_registered from . import app, cache, db from .models import Node from .tasks import * log = logging.getLogger('debug') @user_registered.connect_via(app) def after_registered_hook(sender, user, user_invite): log.info('USER REGISTERED') @user_sent_invitation.connect_via(app) def after_invitation_hook(sender, **kwargs): log.info('USER SENT INVITATION') @app.route('/', methods=['GET', 'POST']) @login_required def index(): return render_template('index.html') @app.route('/nodes/get', methods=['GET']) @login_required def get_nodes(): return jsonify(get_nodes_task()) @app.route('/nodes/add', methods=['POST']) @login_required def add_node(): print('Beginning add node', request.json) node = request.json result = add_node_task(node, current_user.id) return jsonify(id=result['id']) @app.route('/nodes/find', methods=['POST']) @login_required def search_for_nodes(): return jsonify(find_nodes_task()) @app.route('/nodes/<int:node_id>', methods=['GET', 'DELETE']) @login_required def get_node(node_id): if request.method == 'GET': print('Getting the node', node_id) return jsonify(get_node_task(node_id)) elif request.method == 'DELETE': print('Deleting the node') return jsonify(delete_node_task(node_id)) @app.route('/nodes/test', methods=['POST']) @login_required def test_start(): test_node_task(request.json) return 'SUCCESS', 200 @app.route('/nodes/<node_id>/motion', methods=['POST']) @login_required def change_node_motion(node_id): change_motion_task(node_id, request.json) return 'SUCCESS', 200 @app.route('/nodes/<node_id>/toggle', methods=['POST']) @login_required def toggle_node(node_id): toggle_node_task(node_id) return 'SUCCESS', 200 @app.route('/nodes/<int:node_id>/status', methods=['GET']) @login_required def get_node_status(node_id): return jsonify(get_node_status_task(node_id)) @app.route('/nodes/<node_id>/rules', methods=['GET', 'POST']) @login_required def add_rule(node_id): if request.method == 'GET': print('Beginning get all rules', node_id) result = get_all_rules_task(node_id) print(' - all the rules', result) return jsonify(result) elif request.method == 'POST': print('Beginning add rule', node_id, request.json) rule = request.json return jsonify(add_rule_task(node_id, rule)) @app.route('/nodes/<int:node_id>/rules/<int:rule_id>', methods=['GET', 'DELETE']) @login_required def get_single_rule(node_id, rule_id): if request.method == 'GET': print('Beginning get rule', node_id) result = get_rule_task(node_id, rule_id) print(' - this singluar gotten node', result) return jsonify(result) elif request.method == 'DELETE': print('Deleting rule', node_id, request.args) return jsonify(delete_rule_task(node_id, rule_id))
26.878261
81
0.697185
16ef6e44413a8ecbaac274b3ca1579e4f4b528ac
1,491
py
Python
setup.py
jugmac00/flask-wtf
c25fdf0efabbf367a67b60706ef254e5c5dbd5b7
[ "BSD-3-Clause" ]
1
2015-02-28T18:48:37.000Z
2015-02-28T18:48:37.000Z
setup.py
jugmac00/flask-wtf
c25fdf0efabbf367a67b60706ef254e5c5dbd5b7
[ "BSD-3-Clause" ]
null
null
null
setup.py
jugmac00/flask-wtf
c25fdf0efabbf367a67b60706ef254e5c5dbd5b7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from setuptools import find_packages, setup with open('README.rst') as f: readme = f.read() setup( name='Flask-WTF', version='0.14.3', url='https://github.com/lepture/flask-wtf', license='BSD', author='Dan Jacob', author_email='danjac354@gmail.com', maintainer='Hsiaoming Yang', maintainer_email='me@lepture.com', description='Simple integration of Flask and WTForms.', long_description=readme, packages=find_packages(exclude=('tests',)), zip_safe=False, platforms='any', install_requires=[ 'Flask', 'WTForms', 'itsdangerous', ], extras_require={'email': ['email-validator']}, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Flask', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
33.133333
70
0.612341
4ead118d321e2b6eddc74f2f91f7cadde9ba6699
785
py
Python
hhlevents/apps/hhlregistrations/migrations/0008_auto_20150412_2257.py
HelsinkiHacklab/hhlevents
94e7092963670d7689bb975e238a0ed2b35a4692
[ "BSD-3-Clause" ]
1
2021-02-14T13:16:36.000Z
2021-02-14T13:16:36.000Z
hhlevents/apps/hhlregistrations/migrations/0008_auto_20150412_2257.py
HelsinkiHacklab/hhlevents
94e7092963670d7689bb975e238a0ed2b35a4692
[ "BSD-3-Clause" ]
7
2015-12-02T11:43:49.000Z
2019-01-05T20:41:35.000Z
hhlevents/apps/hhlregistrations/migrations/0008_auto_20150412_2257.py
hacklab-fi/hhlevents
94e7092963670d7689bb975e238a0ed2b35a4692
[ "BSD-3-Clause" ]
2
2015-11-27T20:20:46.000Z
2015-11-28T16:34:42.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import uuid class Migration(migrations.Migration): dependencies = [ ('hhlregistrations', '0007_auto_20150412_2220'), ] operations = [ migrations.AddField( model_name='event', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False), ), migrations.AddField( model_name='person', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False), ), migrations.AddField( model_name='registration', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False), ), ]
25.322581
71
0.588535
86604625f2bc1a227b767f781365c0e542589abc
2,519
py
Python
imagededup/utils/image_utils.py
backwardn/imagededup
81d383ec0774d62439eb34ca1fab21b23d83bacd
[ "Apache-2.0" ]
2
2020-06-12T11:20:46.000Z
2020-06-18T15:54:28.000Z
imagededup/utils/image_utils.py
ndcuong91/imagededup
b6c62eb0f7b49c4f484963efb54c0a118288dc44
[ "Apache-2.0" ]
null
null
null
imagededup/utils/image_utils.py
ndcuong91/imagededup
b6c62eb0f7b49c4f484963efb54c0a118288dc44
[ "Apache-2.0" ]
1
2020-10-07T12:33:16.000Z
2020-10-07T12:33:16.000Z
from pathlib import PurePath from typing import List, Union, Tuple import numpy as np from PIL import Image from imagededup.utils.logger import return_logger IMG_FORMATS = ['JPEG', 'PNG', 'BMP', 'MPO', 'PPM', 'TIFF', 'GIF'] logger = return_logger(__name__) def preprocess_image( image, target_size: Tuple[int, int] = None, grayscale: bool = False ) -> np.ndarray: """ Take as input an image as numpy array or Pillow format. Returns an array version of optionally resized and grayed image. Args: image: numpy array or a pillow image. target_size: Size to resize the input image to. grayscale: A boolean indicating whether to grayscale the image. Returns: A numpy array of the processed image. """ if isinstance(image, np.ndarray): image = image.astype('uint8') image_pil = Image.fromarray(image) elif isinstance(image, Image.Image): image_pil = image else: raise ValueError('Input is expected to be a numpy array or a pillow object!') if target_size: image_pil = image_pil.resize(target_size, Image.ANTIALIAS) if grayscale: image_pil = image_pil.convert('L') return np.array(image_pil).astype('uint8') def load_image( image_file: Union[PurePath, str], target_size: Tuple[int, int] = None, grayscale: bool = False, img_formats: List[str] = IMG_FORMATS, ) -> np.ndarray: """ Load an image given its path. Returns an array version of optionally resized and grayed image. Only allows images of types described by img_formats argument. Args: image_file: Path to the image file. target_size: Size to resize the input image to. grayscale: A boolean indicating whether to grayscale the image. img_formats: List of allowed image formats that can be loaded. """ try: img = Image.open(image_file) # validate image format if img.format not in img_formats: logger.warning(f'Invalid image format {img.format}!') return None else: if img.mode != 'RGB': # convert to RGBA first to avoid warning # we ignore alpha channel if available img = img.convert('RGBA').convert('RGB') img = preprocess_image(img, target_size=target_size, grayscale=grayscale) return img except Exception as e: logger.warning(f'Invalid image file {image_file}:\n{e}') return None
29.988095
117
0.649861
b8f1c83e4340e4fde78398ec4382df8029a880db
1,048
py
Python
script/run_CSO.py
cyy111/metaheuristics
9d885e4c9e9f39ad22baa9ea5d263d5daa276f88
[ "Apache-2.0" ]
104
2020-09-07T01:24:19.000Z
2022-03-30T13:11:21.000Z
script/run_CSO.py
luanedge/metaheuristics
9d885e4c9e9f39ad22baa9ea5d263d5daa276f88
[ "Apache-2.0" ]
3
2020-05-12T03:54:16.000Z
2020-06-06T01:12:31.000Z
script/run_CSO.py
luanedge/metaheuristics
9d885e4c9e9f39ad22baa9ea5d263d5daa276f88
[ "Apache-2.0" ]
40
2020-08-30T14:29:37.000Z
2022-03-30T17:33:26.000Z
from models.multiple_solution.swarm_based.CSO import BaseCSO from utils.FunctionUtil import square_function ## Setting parameters root_paras = { "problem_size": 30, "domain_range": [-1, 1], "print_train": True, "objective_func": square_function } cso_paras = { "epoch": 100, "pop_size": 250, "mixture_ratio": 0.15, # MR - joining seeking mode with tracing mode "smp": 50, # seeking memory pool, 50 clones (larger is better, but need more time) "spc": True, # self-position considering "cdc": 0.8, # counts of dimension to change (larger is better) "srd": 0.15, # seeking range of the selected dimension (lower is better, but need more time) "c1": 0.4, "w_minmax": [0.4, 0.9], # [0-1] -> [0.4-0.9] Weight of bird "selected_strategy": 0 # 0: roulette wheel, 1: random, 2: best fitness, 3: tournament } ## Run model md = BaseCSO(root_algo_paras=root_paras, cso_paras=cso_paras) md._train__()
34.933333
114
0.611641
d6d744ebe1b2efbf7246b78c9f99375198d6201b
171
py
Python
src/secml/testing/__init__.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
63
2020-04-20T16:31:16.000Z
2022-03-29T01:05:35.000Z
src/secml/testing/__init__.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
5
2020-04-21T11:31:39.000Z
2022-03-24T13:42:56.000Z
src/secml/testing/__init__.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
8
2020-04-21T09:16:42.000Z
2022-02-23T16:28:43.000Z
try: import pytest except ImportError: raise ImportError( "Install extra component `unittests` to use `secml.testing`") from .c_unittest import CUnitTest
21.375
69
0.725146
3345a94c4dce308e390100fadbb1befb55a71f0e
4,824
py
Python
utils/center.py
qychen13/ClusterAlignReID
9dca1a39b7f1035c9579d80bbb73aa45480a616c
[ "MIT" ]
15
2020-08-24T22:47:39.000Z
2021-04-19T07:51:32.000Z
utils/center.py
qychen13/ClusterAlignReID
9dca1a39b7f1035c9579d80bbb73aa45480a616c
[ "MIT" ]
1
2021-10-14T03:07:12.000Z
2021-11-05T13:59:55.000Z
utils/center.py
qychen13/ClusterAlignReID
9dca1a39b7f1035c9579d80bbb73aa45480a616c
[ "MIT" ]
1
2020-08-26T02:48:40.000Z
2020-08-26T02:48:40.000Z
import torch import torch.nn as nn import torch.nn.functional as F from collections import defaultdict from tqdm import tqdm from .evaluation import fliplr def calculate_id_features(feature_extractor, training_iterator, gpu_ids, method='avg', flips=True): print('==> extracting training features...') with torch.no_grad(): fets, targets, probs = extract_features_for_id( feature_extractor, training_iterator, gpu_ids, is_test=False, flips=flips) id_features = defaultdict(list) prob_dict = defaultdict(list) for i in range(fets.shape[0]): id_features[targets['pid'][i].item()].append(fets[i]) prob_dict[targets['pid'][i].item()].append(probs[i]) id_features = [torch.stack(id_features[i], dim=0) for i in range(len(id_features))] prob_dict = [torch.stack(prob_dict[i], dim=0) for i in range(len(prob_dict))] if method == 'avg': id_features = [id_fet.mean(dim=0) for id_fet in id_features] elif method == 'weight-prob': id_features = [(id_fet*weight.unsqueeze(1)).sum(dim=0)/weight.sum() for id_fet, weight in zip(id_features, prob_dict)] else: raise NotImplementedError id_features = torch.stack(id_features, dim=0) print('==> calculate ID features done...') return id_features def update_id_features(fet, target, moumentum=0.9): if isinstance(fet, dict): fet = fet['features'] with torch.no_grad(): id_features = target['id_feature_dict'] id_set = set(target['pid'][i] for i in range(target['pid'].shape[0])) for pid in id_set: id_feature_update = fet[target['pid']==pid] id_feature_update = fet[target['pid']==pid].mean(0) id_features[pid] = moumentum * id_features[pid] + (1 - moumentum) * id_feature_update return id_features def extract_features_for_id(feature_extractor, data_iterator, gpu_ids, is_test, flips=False): feature_extractor.eval() fets = [] probs = [] targets = defaultdict(list) if gpu_ids is not None: feature_extractor.cuda(gpu_ids[0]) with torch.no_grad(): one_hot_class = None for ipt, target in tqdm(data_iterator): if gpu_ids is not None: if len(gpu_ids) == 1: ipt = ipt.cuda(gpu_ids[0], non_blocking=True) for key in target: if isinstance(target[key], list): continue target[key] = target[key].cuda( gpu_ids[0], non_blocking=True) if gpu_ids is not None: opt = nn.parallel.data_parallel( feature_extractor, ipt, gpu_ids) opt1 = nn.parallel.data_parallel( feature_extractor, fliplr(ipt), gpu_ids) else: opt = feature_extractor(ipt) opt1 = feature_extractor(fliplr(ipt)) if 'features_test' in opt and is_test: #print('==> use features_test') key = 'features_test' else: key = 'features' if one_hot_class is None: if isinstance(opt['logits'], list): logits = opt['logits'][0] else: logits = opt['logits'] num_classes = logits.shape[1] one_hot_class = torch.eye(num_classes, device=logits.device) fet = opt[key] fet1 = opt1[key] labels = target['pid'] pos_mask = one_hot_class[labels].type(torch.bool) if isinstance(opt['logits'], list): prob = [F.softmax(opt['logits'][i], dim=1).masked_select(pos_mask) for i in range(len(opt['logits']))] prob = torch.stack(prob, 1) prob1 = [F.softmax(opt1['logits'][i], dim=1).masked_select(pos_mask) for i in range(len(opt['logits']))] prob1 = torch.stack(prob1, 1) else: prob = F.softmax(opt['logits'], dim=1).masked_select(pos_mask) prob1 = F.softmax(opt1['logits'], dim=1).masked_select(pos_mask) if flips: fet += fet1 fet /= 2 prob += prob1 prob /=2 fets.append(fet) probs.append(prob) for key in target: targets[key].append(target[key]) fets = torch.cat(fets, 0) probs = torch.cat(probs) for key in targets: if isinstance(targets[key][0], list): temp = [] for t in targets[key]: temp += t targets[key] = temp else: targets[key] = torch.cat(targets[key], 0) return fets, targets, probs
39.219512
130
0.560945
e0fa8df2847b2754005b438eb96965db9cc8aa1f
12,088
py
Python
cpas_toolbox/asmnet/asm_pcd/asm.py
roym899/pose_and_shape_evaluation
a55c9452b54b64715f817d9dd80d098472ab56bf
[ "MIT" ]
5
2022-02-22T09:48:01.000Z
2022-03-28T12:41:44.000Z
cpas_toolbox/asmnet/asm_pcd/asm.py
roym899/pose_and_shape_evaluation
a55c9452b54b64715f817d9dd80d098472ab56bf
[ "MIT" ]
2
2022-02-23T07:31:00.000Z
2022-03-10T09:11:54.000Z
cpas_toolbox/asmnet/asm_pcd/asm.py
roym899/pose_and_shape_evaluation
a55c9452b54b64715f817d9dd80d098472ab56bf
[ "MIT" ]
1
2021-11-29T03:45:31.000Z
2021-11-29T03:45:31.000Z
""" Active Shape Model for point cloud deformation Shuichi Akizuki, Chukyo Univ. Email: s-akizuki@sist.chukyo-u.ac.jp """ import numpy as np from sklearn.decomposition import PCA import copy import os.path as osp from math import * import open3d as o3 import cv2 class ActiveShapeModel(): """ Required packages: import numpy as np from sklearn.decomposition import PCA import copy """ def __init__( self, clouds ): """ clouds: a list of open3d point cloud """ self.clouds = clouds self.mean_size = 0.0 flag, n_points = self.check_n_points() if flag == False: print("Error!! Number of points in the training set are not same.") print( n_points ) exit() # M: number of models M = self.get_n_pcd() self.X = np.zeros([M,len(self.clouds[0].points)*3]) for i, c in enumerate(self.clouds): self.X[i] = self.to_vec(c) # Standardization self.mean_size = self.X.mean() self.std = self.X.std() self.X2 = (self.X - self.mean_size)/self.std self.pca = self.PCA(self.X2) def get_X(self): """ Return features (Nx3, M) """ return self.X def check_n_points( self ): """ Check number of points in the training set. Assume same Return: flag: True(same) or False (not same) list: a list that stored points """ n_points = [] for c in self.clouds: n_points.append(len(c.points)) n_points = np.array(n_points) return n_points.all(), n_points def get_n_pcd( self ): """ Return: # point clouds in the training set """ return len(self.clouds) def get_mean_size( self ): """ Calc the mean size of shapes """ # Normalize by mean size M = self.get_n_pcd() norms = np.zeros(M) for i, x in enumerate(self.X): norms[i] = np.linalg.norm(x,ord=2) return np.mean(norms) def to_pcd( self, vec ): """ Convert (Nx3,) vector to open3d pcd """ vec3d = vec.reshape((-1,3)) vec3d = (vec3d * self.std )+self.mean_size pcd = o3.geometry.PointCloud() pcd.points = o3.utility.Vector3dVector(vec3d) return pcd def to_vec( self, pcd ): """ Convert open3d pcd to (Nx3,) vector """ tmp = np.asarray(pcd.points) vec = tmp.reshape(tmp.shape[0]*3) return vec def PCA( self, X ): """ Apply PCA """ pca = PCA() x_pca = pca.fit(X) return pca def get_components(self): return self.pca.components_ def get_mean(self): return self.pca.mean_ def get_explained_variance_ratio(self): return self.pca.explained_variance_ratio_ def deformation( self, param, n_dim=10 ): """ Shape defomation by deformation parameter Input: param: deformation param (ndim,) n_dim: # dimension """ weight = self.get_components() deformed = copy.deepcopy(self.get_mean()) cnt = 0 for w,p in zip(weight, param): if n_dim == cnt: break deformed += w*p cnt+=1 cloud_deformed = self.to_pcd(deformed) return cloud_deformed def projection(self,data): """ Projection data which is converted by to_vec() to the latent space. """ # Standardization data2 = (data - self.mean_size)/self.std return self.pca.transform([data2]) def get_all_projection(self): """ Get all projection at a time each row indicates a projection of data """ projections = np.zeros((self.X.shape[0],self.X.shape[0])) for i, x in enumerate(self.X): p = self.projection(x) projections[i] = p return projections def get_asm_info( self ): """ Get a dictionary data consist of the mean shape, components, and size info. """ asm_info = {} asm_info["mean_shape"] = self.get_mean() asm_info["components"] = self.get_components() asm_info["size_mean"] = self.mean_size asm_info["size_std"] = self.std return asm_info def save_asm_info( self, name ): info = self.get_asm_info() np.savez( name, mean_shape=info["mean_shape"], components=info["components"], size_mean=info["size_mean"], size_std=info["size_std"] ) def load_asmds( root, synset_names ): """ 複数のSSMの読み込み Args: root(str): データセットのルートディレクトリ synset_names(str): クラスのリスト.冒頭はBGなので無視する. Return: dict:SSMDeformationの辞書変数 """ print("Root dir:", root ) asmds = {} for s in range(len(synset_names)-1): paths = set_paths( root, synset_names[s+1] ) trainset_path = paths["trainset_path"] info = np.load( osp.join(trainset_path,"info.npz")) asmd = ASMdeformation( info ) asmds[synset_names[s+1]] = asmd return asmds # 変形パラメータの平均と標準偏差に基づく確率でパラメータをサンプリング # 入力 #   params: 変形パラメータが1行ずつ積み重なった行列 def generate_parameter( params ): param_mean = np.mean(params,axis=0) param_std = np.std(params,axis=0) b = np.random.normal(param_mean, param_std) return b # 変形パラメータのMIN-MAXの範囲を超えないようなサンプリング # 入力 #   params: 変形パラメータが1行ずつ積み重なった行列 def generate_parameter_minmax( params ): param_min = np.min(params,axis=0) param_max = np.max(params,axis=0) b = np.random.uniform(param_min, param_max) return b class ASMdeformation(): def __init__( self, asm_info ): self.mean_shape = asm_info['mean_shape'] # load mean shape self.component = asm_info['components' ] # load components self.mean = asm_info['size_mean'] # size mean self.std = asm_info['size_std'] # size std def get_dp_dim( self ): return self.component.shape[0] def to_pcd( self, vec ): """ Convert (Nx3,) vector to open3d pcd """ vec3d = vec.reshape((-1,3)) vec3d = (vec3d * self.std )+self.mean pcd = o3.geometry.PointCloud() pcd.points = o3.utility.Vector3dVector(vec3d) return pcd def deformation( self, dp ): """ Deformation """ deformed = copy.deepcopy( self.mean_shape ) for c,p in zip( self.component, dp): deformed += c*p cloud_deformed = self.to_pcd( deformed ) return cloud_deformed ##################### # Visualization tool ##################### def generate_latent_space_image( ap, im_size=200 ): """ Visualization function for latent spase as image. (use top 2 dimensions) Args: ap(ndarray): Eigen vectors generated by ASM.get_all_projection() im_size(int): image size Return: ndarray(uint8,3ch): image of latent space """ im_size = im_size im_latent = np.zeros([im_size,im_size,3]).astype(np.uint8) offset = np.array([im_size/2, im_size/2]) cv2.line( im_latent, (int(im_size/2),0),(int(im_size/2),im_size), (100,100,100),1 ) cv2.line( im_latent, (0,int(im_size/2)),(im_size,int(im_size/2)), (100,100,100),1 ) for i in range(ap.shape[0]): pix = ap[i,0:2] + offset cv2.circle( im_latent, (int(pix[0]),int(im_size-pix[1])), 2, (0,255,0), -1, cv2.LINE_AA ) return im_latent def continuous_shape_deformation( asm, pcd ): param = asm.projection(asm.get_mean()) d_param = [] d_param = copy.deepcopy(param) direction = np.zeros(d_param.shape) direction[0:2] = 1.0 print("copy") d_param_id = 0 d_param_id2 = 1 cnt = 0 def deformation( vis, param ): deformed = asm.deformation( param, asm.get_n_pcd() ) pcd.points = deformed.points vis.update_geometry( pcd ) def shape_edit( vis ): nonlocal param nonlocal direction nonlocal d_param nonlocal d_param_id nonlocal cnt upper = 0.10 lower = -0.10 dim = 0 if upper < d_param[d_param_id]: direction[d_param_id] = -1.0 elif d_param[d_param_id] < lower: direction[d_param_id] = 1.0 if upper < d_param[d_param_id2]: direction[d_param_id2] = -1.0 elif d_param[d_param_id2] < lower: direction[d_param_id2] = 1.0 """ if cnt == 300: d_param_id +=1 if d_param_id == 5: d_param_id = 0 cnt=0 cnt+=1 """ step = 0.001*direction d_param += step print(cnt, d_param_id, " step", step ) print(d_param) deformation( vis, d_param ) return False o3.visualization.draw_geometries_with_animation_callback([pcd], shape_edit, width=640, height=500) def deformation_with_key_callback( asm, pcd,p): param = copy.deepcopy(p) cv2.namedWindow("Result", cv2.WINDOW_NORMAL) def show_image( img_, param_ ): param = str(param_) img = np.array( 255.0*img_, np.uint8 ) img = cv2.putText( img, param, (10, 30), cv2.FONT_HERSHEY_DUPLEX, 0.5, (20,0,0), 1, cv2.LINE_AA ) #cv2.imwrite( "hoge.png", img ) cv2.imshow( "Result", img ) cv2.waitKey(5) # def deformation( vis, param ): deformed = asm.deformation( param, param.shape[0] ) pcd.points = deformed.points vis.update_geometry( pcd ) buf = vis.capture_screen_float_buffer(do_render=False) np_buf = np.asarray( buf ) show_image( np_buf, param ) def pc1p(vis): nonlocal param step = np.zeros(param.shape[0]) step[0] = 1.0 param += step deformation( vis, param ) return False def pc1m(vis): nonlocal param step = np.zeros(param.shape[0]) step[0] = 1.0 param -= step deformation( vis, param ) def pc2p(vis): nonlocal param step = np.zeros(param.shape[0]) step[1] = 1.0 param += step deformation( vis, param ) return False def pc2m(vis): nonlocal param step = np.zeros(param.shape[0]) step[1] = 1.0 param -= step deformation( vis, param ) def pc3p(vis): nonlocal param step = np.zeros(param.shape[0]) step[2] = 1.0 param += step deformation( vis, param ) return False def pc3m(vis): nonlocal param step = np.zeros(param.shape[0]) step[2] = 1.0 param -= step deformation( vis, param ) return False def reset(vis): nonlocal param param = np.zeros(param.shape[0]) deformation( vis, param ) return False key_to_callback = {} key_to_callback[ord("K")] = pc1p key_to_callback[ord("L")] = pc1m key_to_callback[ord(",")] = pc2p key_to_callback[ord(".")] = pc2m key_to_callback[ord("N")] = pc3p key_to_callback[ord("M")] = pc3m key_to_callback[ord("R")] = reset o3.visualization.draw_geometries_with_key_callbacks([pcd], key_to_callback, width=640, height=500 ) cv2.destroyAllWindows()
26.743363
105
0.54004
88b8b957f94666a3db0bc12595f38e14fed83bbc
7,578
py
Python
bot.py
0xCN/MailBot
a6f9b94d6aca158f583369f55561806c50236c1c
[ "MIT" ]
1
2022-02-07T20:05:34.000Z
2022-02-07T20:05:34.000Z
bot.py
0xCN/MailBot
a6f9b94d6aca158f583369f55561806c50236c1c
[ "MIT" ]
null
null
null
bot.py
0xCN/MailBot
a6f9b94d6aca158f583369f55561806c50236c1c
[ "MIT" ]
1
2022-01-12T04:49:50.000Z
2022-01-12T04:49:50.000Z
import os import email import discord import asyncio import aiosmtplib from aioimaplib import aioimaplib from selectolax.parser import HTMLParser from config import ( imap_host, smtp_host, user, passwd, mail_channel_id, send_channel_id, from_mail, token, pre ) client = discord.Client() imap_host = imap_host.split(':') smtp_host = smtp_host.split(':') def get_text_selectolax(html): """ parsing HTML from email and returning crucial parts as TEXT """ tree = HTMLParser(html) if tree.body is None: return None for tag in tree.css('script'): tag.decompose() for tag in tree.css('style'): tag.decompose() text = tree.body.text(separator='\n') return text async def send_mail(from_, to, subject, content, reply_to=None): message = email.message.EmailMessage() message["From"] = from_ message["To"] = to message["Subject"] = subject message.set_content(content) if reply_to: message['reply-to'] = reply_to await aiosmtplib.send( message, hostname=smtp_host[0], port=smtp_host[1], username=user, password=passwd, use_tls=True ) @asyncio.coroutine async def idle_loop(host, port, user, password): """ This will loop to get new emails and send them to "mail_channel_id" """ imap_client = aioimaplib.IMAP4_SSL(host=host, port=port, timeout=30) await imap_client.wait_hello_from_server() await imap_client.login(user, password) await imap_client.select() while True: # only get emails which we haven't read status, data = await imap_client.search('(UNSEEN)') for i in data[0].split(): typ, mail = await imap_client.fetch(i, '(RFC822)') mail_msg = email.message_from_bytes( mail[1], policy=email.policy.SMTP ) mail_channel = client.get_channel(mail_channel_id) # sending the email as a discord message await mail_channel.send( "```\n------------START-OF-MAIL-----------```" f"```ini\n[From]: {mail_msg['from']}\n" f"[Subject]: {mail_msg['subject']}\n" f"[To]: {mail_msg['to']}\n" f"[Date]: {mail_msg['date']}\n```" ) for part in mail_msg.walk(): if part.get_content_type() == "text/plain": message = '' for line in part.get_content().splitlines(): message += line + '\n' message = get_text_selectolax(message.rstrip('\n')) # removing unicode character representations # not best practice, but works. message = ''.join(i for i in message if ord(i) < 128) d_msg_len = 1992 # cutting the email content so it- # doesn't reach discords message char limit for i in range(0, len(message), d_msg_len): msg_ = message[i:i+d_msg_len]+'-' await mail_channel.send(f'```\n{msg_}```') if part.get_content_maintype() == 'multipart': continue if part.get('Content-Disposition') is None: continue file_name = part.get_filename() file_raw = part.get_payload(decode=True) if bool(file_name): file_path = os.path.join( f'{os.getcwd()}/attachments/', file_name) if not os.path.isfile(file_path): with open(file_path, 'wb') as fp: fp.write(file_raw) # won't send files that's bigger than 8mb if len(file_raw) <= 8000000: await mail_channel.send( f'`{file_name}`', file=discord.File(file_path)) else: await mail_channel.send(f'{file_name} file too big') os.system('rm -r attachments/*') await mail_channel.send( "```\n-------------END-OF-MAIL------------```" ) idle = await imap_client.idle_start(timeout=60) print((await imap_client.wait_server_push())) imap_client.idle_done() await asyncio.wait_for(idle, 30) @client.event async def on_ready(): print('We have logged in as {0.user}'.format(client)) @client.event async def on_message(message): if message.author == client.user: return if message.content.startswith(f'{pre}ping'): await message.channel.send('pong') if message.channel.id == send_channel_id: # all the commands below will only be available- # in the "send_channel_id" discord channel if message.content.startswith(f'{pre}help'): await message.channel.send( "```ini\n[MailBot] - v1.0.0```" f"`{pre}help` - `show this help message`\n" f'`{pre}send` example@email.com "subject" \\`\\`\\`content' '\\`\\`\\` - `send an email`\n' f'`{pre}reply` 740042707807895642 \\`\\`\\`content\\`\\`\\` -' ' `reply to an email`\n' f'[note]: `{pre}reply message_id` of a message in the ' '`mail_text_channel`\n' '```ini\n[commands only work in send_text_channel]```' ) if message.content.startswith(f'{pre}send'): params = message.content.split(' ') try: to = message.content.split(' ')[1] subject = message.content.split('"')[1] content = message.content.split('```')[1] await send_mail(from_mail, to, subject, content) await message.channel.send( f"```ini\n[From]: {from_mail}\n" f"[Subject]: {subject}\n" f"[To]: {to}\n```" f'```\nsent email```' ) except Exception as e: print(e) await message.channel.send('```\nError```') if message.content.startswith(f'{pre}reply'): mail_channel = client.get_channel(mail_channel_id) params = message.content.split(' ') try: # parsing info from the discord message id- # and replying to the email msg = await mail_channel.fetch_message(int(params[1])) msg = msg.content.split('\n') content = ' '.join(params[2:])[3:-3] to = msg[2][8:] subject = msg[3][11:] if 'Sent-To' in msg[4]: to = msg[4][11:] if 'Re: ' not in msg[3][11:]: subject = 'Re: ' + subject await send_mail(from_mail, to, subject, content, to) await message.channel.send( f"```ini\n[From]: {from_mail}\n" f"[Subject]: {subject}\n" f"[To]: {to}\n```" f'```\nreplied to email```' ) except Exception as e: print(e) await message.channel.send('```\nError```') client.loop.create_task(idle_loop( imap_host[0], int(imap_host[1]), user, passwd) ) client.run(token)
34.445455
78
0.510161
6252eeaabe90d4aeb7929c26927226d14187bb70
115,278
py
Python
saleor/graphql/product/tests/test_variant.py
sjkim-com/saleor
097592305f9340e1e72d4987b355932d335436ef
[ "CC-BY-4.0" ]
1
2021-01-13T15:55:33.000Z
2021-01-13T15:55:33.000Z
saleor/graphql/product/tests/test_variant.py
Chemax911/saleor
4e060c03bb2457f3cd36beaffefcad0188abb2ab
[ "CC-BY-4.0" ]
null
null
null
saleor/graphql/product/tests/test_variant.py
Chemax911/saleor
4e060c03bb2457f3cd36beaffefcad0188abb2ab
[ "CC-BY-4.0" ]
null
null
null
from unittest.mock import ANY, patch from uuid import uuid4 import graphene import pytest from django.utils.text import slugify from measurement.measures import Weight from prices import Money, TaxedMoney from ....attribute import AttributeInputType from ....attribute.utils import associate_attribute_values_to_instance from ....core.weight import WeightUnits from ....order import OrderStatus from ....order.models import OrderLine from ....product.error_codes import ProductErrorCode from ....product.models import Product, ProductChannelListing, ProductVariant from ....warehouse.error_codes import StockErrorCode from ....warehouse.models import Stock, Warehouse from ...core.enums import WeightUnitsEnum from ...tests.utils import assert_no_permission, get_graphql_content def test_fetch_variant( staff_api_client, product, permission_manage_products, site_settings, channel_USD, ): query = """ query ProductVariantDetails($id: ID!, $countyCode: CountryCode, $channel: String) { productVariant(id: $id, channel: $channel) { id stocks(countryCode: $countyCode) { id } attributes { attribute { id name slug values { id name slug } } values { id name slug } } costPrice { currency amount } images { id } name channelListings { channel { slug } price { currency amount } costPrice { currency amount } } product { id } weight { unit value } } } """ # given variant = product.variants.first() variant.weight = Weight(kg=10) variant.save(update_fields=["weight"]) site_settings.default_weight_unit = WeightUnits.GRAM site_settings.save(update_fields=["default_weight_unit"]) variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id, "countyCode": "EU", "channel": channel_USD.slug} staff_api_client.user.user_permissions.add(permission_manage_products) # when response = staff_api_client.post_graphql(query, variables) # then content = get_graphql_content(response) data = content["data"]["productVariant"] assert data["name"] == variant.name assert len(data["stocks"]) == variant.stocks.count() assert data["weight"]["value"] == 10000 assert data["weight"]["unit"] == WeightUnitsEnum.G.name channel_listing_data = data["channelListings"][0] channel_listing = variant.channel_listings.get() assert channel_listing_data["channel"]["slug"] == channel_listing.channel.slug assert channel_listing_data["price"]["currency"] == channel_listing.currency assert channel_listing_data["price"]["amount"] == channel_listing.price_amount assert channel_listing_data["costPrice"]["currency"] == channel_listing.currency assert ( channel_listing_data["costPrice"]["amount"] == channel_listing.cost_price_amount ) QUERY_PRODUCT_VARIANT_CHANNEL_LISTING = """ query ProductVariantDetails($id: ID!, $channel: String) { productVariant(id: $id, channel: $channel) { id channelListings { channel { slug } price { currency amount } costPrice { currency amount } } } } """ def test_get_product_variant_channel_listing_as_staff_user( staff_api_client, product_available_in_many_channels, channel_USD, ): # given variant = product_available_in_many_channels.variants.get() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id, "channel": channel_USD.slug} # when response = staff_api_client.post_graphql( QUERY_PRODUCT_VARIANT_CHANNEL_LISTING, variables, ) content = get_graphql_content(response) # then data = content["data"]["productVariant"] channel_listings = variant.channel_listings.all() for channel_listing in channel_listings: assert { "channel": {"slug": channel_listing.channel.slug}, "price": { "currency": channel_listing.currency, "amount": channel_listing.price_amount, }, "costPrice": { "currency": channel_listing.currency, "amount": channel_listing.cost_price_amount, }, } in data["channelListings"] assert len(data["channelListings"]) == variant.channel_listings.count() def test_get_product_variant_channel_listing_as_app( app_api_client, product_available_in_many_channels, channel_USD, ): # given variant = product_available_in_many_channels.variants.get() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id, "channel": channel_USD.slug} # when response = app_api_client.post_graphql( QUERY_PRODUCT_VARIANT_CHANNEL_LISTING, variables, ) content = get_graphql_content(response) # then data = content["data"]["productVariant"] channel_listings = variant.channel_listings.all() for channel_listing in channel_listings: assert { "channel": {"slug": channel_listing.channel.slug}, "price": { "currency": channel_listing.currency, "amount": channel_listing.price_amount, }, "costPrice": { "currency": channel_listing.currency, "amount": channel_listing.cost_price_amount, }, } in data["channelListings"] assert len(data["channelListings"]) == variant.channel_listings.count() def test_get_product_variant_channel_listing_as_customer( user_api_client, product_available_in_many_channels, channel_USD, ): # given variant = product_available_in_many_channels.variants.get() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id, "channel": channel_USD.slug} # when response = user_api_client.post_graphql( QUERY_PRODUCT_VARIANT_CHANNEL_LISTING, variables, ) # then assert_no_permission(response) def test_get_product_variant_channel_listing_as_anonymous( api_client, product_available_in_many_channels, channel_USD, ): # given variant = product_available_in_many_channels.variants.get() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id, "channel": channel_USD.slug} # when response = api_client.post_graphql( QUERY_PRODUCT_VARIANT_CHANNEL_LISTING, variables, ) # then assert_no_permission(response) CREATE_VARIANT_MUTATION = """ mutation createVariant ( $productId: ID!, $sku: String, $stocks: [StockInput!], $attributes: [AttributeValueInput]!, $weight: WeightScalar, $trackInventory: Boolean) { productVariantCreate( input: { product: $productId, sku: $sku, stocks: $stocks, attributes: $attributes, trackInventory: $trackInventory, weight: $weight }) { productErrors { field message attributes code } productVariant { id name sku attributes { attribute { slug } values { name slug reference file { url contentType } } } costPrice { currency amount localized } weight { value unit } stocks { quantity warehouse { slug } } } } } """ @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant( updated_webhook_mock, staff_api_client, product, product_type, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" weight = 10.22 variant_slug = product_type.variant_attributes.first().slug variant_id = graphene.Node.to_global_id( "Attribute", product_type.variant_attributes.first().pk ) variant_value = "test-value" stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "weight": weight, "attributes": [{"id": variant_id, "values": [variant_value]}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] assert not content["productErrors"] data = content["productVariant"] assert data["name"] == variant_value assert data["sku"] == sku assert data["attributes"][0]["attribute"]["slug"] == variant_slug assert data["attributes"][0]["values"][0]["slug"] == variant_value assert data["weight"]["unit"] == WeightUnitsEnum.KG.name assert data["weight"]["value"] == weight assert len(data["stocks"]) == 1 assert data["stocks"][0]["quantity"] == stocks[0]["quantity"] assert data["stocks"][0]["warehouse"]["slug"] == warehouse.slug updated_webhook_mock.assert_called_once_with(product) @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_file_attribute( updated_webhook_mock, staff_api_client, product, product_type, file_attribute, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" weight = 10.22 product_type.variant_attributes.clear() product_type.variant_attributes.add(file_attribute) file_attr_id = graphene.Node.to_global_id("Attribute", file_attribute.id) existing_value = file_attribute.values.first() values_count = file_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "weight": weight, "attributes": [{"id": file_attr_id, "file": existing_value.file_url}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] assert not content["productErrors"] data = content["productVariant"] assert data["name"] == sku assert data["sku"] == sku assert data["attributes"][0]["attribute"]["slug"] == file_attribute.slug assert data["attributes"][0]["values"][0]["slug"] == f"{existing_value.slug}-2" assert data["attributes"][0]["values"][0]["name"] == existing_value.name assert data["weight"]["unit"] == WeightUnitsEnum.KG.name assert data["weight"]["value"] == weight assert len(data["stocks"]) == 1 assert data["stocks"][0]["quantity"] == stocks[0]["quantity"] assert data["stocks"][0]["warehouse"]["slug"] == warehouse.slug file_attribute.refresh_from_db() assert file_attribute.values.count() == values_count + 1 updated_webhook_mock.assert_called_once_with(product) @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_file_attribute_new_value( updated_webhook_mock, staff_api_client, product, product_type, file_attribute, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" price = 1.32 cost_price = 3.22 weight = 10.22 product_type.variant_attributes.clear() product_type.variant_attributes.add(file_attribute) file_attr_id = graphene.Node.to_global_id("Attribute", file_attribute.id) new_value = "new_value.txt" values_count = file_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "costPrice": cost_price, "price": price, "weight": weight, "attributes": [{"id": file_attr_id, "file": new_value}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] assert not content["productErrors"] data = content["productVariant"] assert data["name"] == sku assert data["sku"] == sku assert data["attributes"][0]["attribute"]["slug"] == file_attribute.slug assert data["attributes"][0]["values"][0]["slug"] == slugify(new_value) assert data["weight"]["unit"] == WeightUnitsEnum.KG.name assert data["weight"]["value"] == weight assert len(data["stocks"]) == 1 assert data["stocks"][0]["quantity"] == stocks[0]["quantity"] assert data["stocks"][0]["warehouse"]["slug"] == warehouse.slug file_attribute.refresh_from_db() assert file_attribute.values.count() == values_count + 1 updated_webhook_mock.assert_called_once_with(product) @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_file_attribute_no_file_url_given( updated_webhook_mock, staff_api_client, product, product_type, file_attribute, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" price = 1.32 cost_price = 3.22 weight = 10.22 product_type.variant_attributes.clear() product_type.variant_attributes.add(file_attribute) file_attr_id = graphene.Node.to_global_id("Attribute", file_attribute.id) values_count = file_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "costPrice": cost_price, "price": price, "weight": weight, "attributes": [{"id": file_attr_id}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] errors = content["productErrors"] data = content["productVariant"] assert not errors assert data["name"] == sku assert data["sku"] == sku assert data["attributes"][0]["attribute"]["slug"] == file_attribute.slug assert len(data["attributes"][0]["values"]) == 0 assert data["weight"]["unit"] == WeightUnitsEnum.KG.name assert data["weight"]["value"] == weight assert len(data["stocks"]) == 1 assert data["stocks"][0]["quantity"] == stocks[0]["quantity"] assert data["stocks"][0]["warehouse"]["slug"] == warehouse.slug file_attribute.refresh_from_db() assert file_attribute.values.count() == values_count updated_webhook_mock.assert_called_once_with(product) @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_page_reference_attribute( updated_webhook_mock, staff_api_client, product, product_type, product_type_page_reference_attribute, page_list, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" product_type.variant_attributes.clear() product_type.variant_attributes.add(product_type_page_reference_attribute) ref_attr_id = graphene.Node.to_global_id( "Attribute", product_type_page_reference_attribute.id ) page_ref_1 = graphene.Node.to_global_id("Page", page_list[0].pk) page_ref_2 = graphene.Node.to_global_id("Page", page_list[1].pk) values_count = product_type_page_reference_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "attributes": [{"id": ref_attr_id, "references": [page_ref_1, page_ref_2]}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] assert not content["productErrors"] data = content["productVariant"] assert data["sku"] == sku variant_id = data["id"] _, variant_pk = graphene.Node.from_global_id(variant_id) assert ( data["attributes"][0]["attribute"]["slug"] == product_type_page_reference_attribute.slug ) expected_values = [ { "slug": f"{variant_pk}_{page_list[0].pk}", "file": None, "reference": page_ref_1, "name": page_list[0].title, }, { "slug": f"{variant_pk}_{page_list[1].pk}", "file": None, "reference": page_ref_2, "name": page_list[1].title, }, ] for value in expected_values: assert value in data["attributes"][0]["values"] assert len(data["stocks"]) == 1 assert data["stocks"][0]["quantity"] == stocks[0]["quantity"] assert data["stocks"][0]["warehouse"]["slug"] == warehouse.slug product_type_page_reference_attribute.refresh_from_db() assert product_type_page_reference_attribute.values.count() == values_count + 2 updated_webhook_mock.assert_called_once_with(product) @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_page_reference_attribute_no_references_given( updated_webhook_mock, staff_api_client, product, product_type, product_type_page_reference_attribute, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" product_type.variant_attributes.clear() product_type.variant_attributes.add(product_type_page_reference_attribute) ref_attr_id = graphene.Node.to_global_id( "Attribute", product_type_page_reference_attribute.id ) values_count = product_type_page_reference_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "attributes": [{"id": ref_attr_id, "file": "test.jpg"}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] errors = content["productErrors"] data = content["productVariant"] assert not data assert len(errors) == 1 assert errors[0]["code"] == ProductErrorCode.REQUIRED.name assert errors[0]["field"] == "attributes" assert errors[0]["attributes"] == [ref_attr_id] product_type_page_reference_attribute.refresh_from_db() assert product_type_page_reference_attribute.values.count() == values_count updated_webhook_mock.assert_not_called() @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_product_reference_attribute( updated_webhook_mock, staff_api_client, product, product_type, product_type_product_reference_attribute, product_list, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" product_type.variant_attributes.clear() product_type.variant_attributes.add(product_type_product_reference_attribute) ref_attr_id = graphene.Node.to_global_id( "Attribute", product_type_product_reference_attribute.id ) product_ref_1 = graphene.Node.to_global_id("Product", product_list[0].pk) product_ref_2 = graphene.Node.to_global_id("Product", product_list[1].pk) values_count = product_type_product_reference_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "attributes": [ {"id": ref_attr_id, "references": [product_ref_1, product_ref_2]} ], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] assert not content["productErrors"] data = content["productVariant"] assert data["sku"] == sku variant_id = data["id"] _, variant_pk = graphene.Node.from_global_id(variant_id) assert ( data["attributes"][0]["attribute"]["slug"] == product_type_product_reference_attribute.slug ) expected_values = [ { "slug": f"{variant_pk}_{product_list[0].pk}", "file": None, "reference": product_ref_1, "name": product_list[0].name, }, { "slug": f"{variant_pk}_{product_list[1].pk}", "file": None, "reference": product_ref_2, "name": product_list[1].name, }, ] for value in expected_values: assert value in data["attributes"][0]["values"] assert len(data["stocks"]) == 1 assert data["stocks"][0]["quantity"] == stocks[0]["quantity"] assert data["stocks"][0]["warehouse"]["slug"] == warehouse.slug product_type_product_reference_attribute.refresh_from_db() assert product_type_product_reference_attribute.values.count() == values_count + 2 updated_webhook_mock.assert_called_once_with(product) @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_create_variant_with_product_reference_attribute_no_references_given( updated_webhook_mock, staff_api_client, product, product_type, product_type_product_reference_attribute, permission_manage_products, warehouse, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" product_type.variant_attributes.clear() product_type.variant_attributes.add(product_type_product_reference_attribute) ref_attr_id = graphene.Node.to_global_id( "Attribute", product_type_product_reference_attribute.id ) values_count = product_type_product_reference_attribute.values.count() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "attributes": [{"id": ref_attr_id, "file": "test.jpg"}], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response)["data"]["productVariantCreate"] errors = content["productErrors"] data = content["productVariant"] assert not data assert len(errors) == 1 assert errors[0]["code"] == ProductErrorCode.REQUIRED.name assert errors[0]["field"] == "attributes" assert errors[0]["attributes"] == [ref_attr_id] product_type_product_reference_attribute.refresh_from_db() assert product_type_product_reference_attribute.values.count() == values_count updated_webhook_mock.assert_not_called() def test_create_product_variant_with_negative_weight( staff_api_client, product, product_type, permission_manage_products ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) variant_id = graphene.Node.to_global_id( "Attribute", product_type.variant_attributes.first().pk ) variant_value = "test-value" variables = { "productId": product_id, "weight": -1, "attributes": [{"id": variant_id, "values": [variant_value]}], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["productVariantCreate"] error = data["productErrors"][0] assert error["field"] == "weight" assert error["code"] == ProductErrorCode.INVALID.name def test_create_product_variant_without_attributes( staff_api_client, product, permission_manage_products ): # given query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) variables = { "productId": product_id, "sku": "test-sku", "price": 0, "attributes": [], } # when response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) # then content = get_graphql_content(response) data = content["data"]["productVariantCreate"] error = data["productErrors"][0] assert error["field"] == "attributes" assert error["code"] == ProductErrorCode.REQUIRED.name def test_create_product_variant_not_all_attributes( staff_api_client, product, product_type, color_attribute, permission_manage_products ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" variant_id = graphene.Node.to_global_id( "Attribute", product_type.variant_attributes.first().pk ) variant_value = "test-value" product_type.variant_attributes.add(color_attribute) variables = { "productId": product_id, "sku": sku, "attributes": [{"id": variant_id, "values": [variant_value]}], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) assert content["data"]["productVariantCreate"]["productErrors"] assert content["data"]["productVariantCreate"]["productErrors"][0] == { "field": "attributes", "code": ProductErrorCode.REQUIRED.name, "message": ANY, "attributes": None, } assert not product.variants.filter(sku=sku).exists() def test_create_product_variant_duplicated_attributes( staff_api_client, product_with_variant_with_two_attributes, color_attribute, size_attribute, permission_manage_products, ): query = CREATE_VARIANT_MUTATION product = product_with_variant_with_two_attributes product_id = graphene.Node.to_global_id("Product", product.pk) color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.id) sku = str(uuid4())[:12] variables = { "productId": product_id, "sku": sku, "attributes": [ {"id": color_attribute_id, "values": ["red"]}, {"id": size_attribute_id, "values": ["small"]}, ], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) assert content["data"]["productVariantCreate"]["productErrors"] assert content["data"]["productVariantCreate"]["productErrors"][0] == { "field": "attributes", "code": ProductErrorCode.DUPLICATED_INPUT_ITEM.name, "message": ANY, "attributes": None, } assert not product.variants.filter(sku=sku).exists() def test_create_variant_invalid_variant_attributes( staff_api_client, product, product_type, permission_manage_products, warehouse, color_attribute, weight_attribute, ): query = CREATE_VARIANT_MUTATION product_id = graphene.Node.to_global_id("Product", product.pk) sku = "1" price = 1.32 cost_price = 3.22 weight = 10.22 # Default attribute defined in product_type fixture size_attribute = product_type.variant_attributes.get(name="Size") size_value_slug = size_attribute.values.first().slug size_attr_id = graphene.Node.to_global_id("Attribute", size_attribute.id) # Add second attribute product_type.variant_attributes.add(color_attribute) color_attr_id = graphene.Node.to_global_id("Attribute", color_attribute.id) non_existent_attr_value = "The cake is a lie" # Add third attribute product_type.variant_attributes.add(weight_attribute) weight_attr_id = graphene.Node.to_global_id("Attribute", weight_attribute.id) stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, } ] variables = { "productId": product_id, "sku": sku, "stocks": stocks, "costPrice": cost_price, "price": price, "weight": weight, "attributes": [ {"id": color_attr_id, "values": [" "]}, {"id": weight_attr_id, "values": [None]}, {"id": size_attr_id, "values": [non_existent_attr_value, size_value_slug]}, ], "trackInventory": True, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["productVariantCreate"] errors = data["productErrors"] assert not data["productVariant"] assert len(errors) == 2 expected_errors = [ { "attributes": [color_attr_id, weight_attr_id], "code": ProductErrorCode.REQUIRED.name, "field": "attributes", "message": ANY, }, { "attributes": [size_attr_id], "code": ProductErrorCode.INVALID.name, "field": "attributes", "message": ANY, }, ] for error in expected_errors: assert error in errors def test_create_product_variant_update_with_new_attributes( staff_api_client, permission_manage_products, product, size_attribute ): query = """ mutation VariantUpdate( $id: ID! $attributes: [AttributeValueInput] $sku: String $trackInventory: Boolean! ) { productVariantUpdate( id: $id input: { attributes: $attributes sku: $sku trackInventory: $trackInventory } ) { errors { field message } productVariant { id attributes { attribute { id name slug values { id name slug __typename } __typename } __typename } } } } """ size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) variant_id = graphene.Node.to_global_id( "ProductVariant", product.variants.first().pk ) variables = { "attributes": [{"id": size_attribute_id, "values": ["XXXL"]}], "id": variant_id, "sku": "21599567", "trackInventory": True, } data = get_graphql_content( staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) )["data"]["productVariantUpdate"] assert not data["errors"] assert data["productVariant"]["id"] == variant_id attributes = data["productVariant"]["attributes"] assert len(attributes) == 1 assert attributes[0]["attribute"]["id"] == size_attribute_id @patch("saleor.plugins.manager.PluginsManager.product_updated") def test_update_product_variant( updated_webhook_mock, staff_api_client, product, size_attribute, permission_manage_products, ): query = """ mutation updateVariant ( $id: ID!, $sku: String!, $trackInventory: Boolean!, $attributes: [AttributeValueInput]) { productVariantUpdate( id: $id, input: { sku: $sku, trackInventory: $trackInventory, attributes: $attributes, }) { productVariant { name sku channelListings { channel { slug } } costPrice { currency amount localized } } } } """ variant = product.variants.first() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) sku = "test sku" variables = { "id": variant_id, "sku": sku, "trackInventory": True, "attributes": [{"id": attribute_id, "values": ["S"]}], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) variant.refresh_from_db() content = get_graphql_content(response) data = content["data"]["productVariantUpdate"]["productVariant"] assert data["name"] == variant.name assert data["sku"] == sku updated_webhook_mock.assert_called_once_with(product) def test_update_product_variant_with_negative_weight( staff_api_client, product, permission_manage_products ): query = """ mutation updateVariant ( $id: ID!, $weight: WeightScalar ) { productVariantUpdate( id: $id, input: { weight: $weight, } ){ productVariant { name } productErrors { field message code } } } """ variant = product.variants.first() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id, "weight": -1} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) variant.refresh_from_db() content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] error = data["productErrors"][0] assert error["field"] == "weight" assert error["code"] == ProductErrorCode.INVALID.name QUERY_UPDATE_VARIANT_ATTRIBUTES = """ mutation updateVariant ( $id: ID!, $sku: String, $attributes: [AttributeValueInput]!) { productVariantUpdate( id: $id, input: { sku: $sku, attributes: $attributes }) { productVariant { sku attributes { attribute { slug } values { slug name file { url contentType } reference } } } errors { field message } productErrors { field code } } } """ def test_update_product_variant_not_all_attributes( staff_api_client, product, product_type, color_attribute, permission_manage_products ): """Ensures updating a variant with missing attributes (all attributes must be provided) raises an error. We expect the color attribute to be flagged as missing.""" query = QUERY_UPDATE_VARIANT_ATTRIBUTES variant = product.variants.first() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) sku = "test sku" attr_id = graphene.Node.to_global_id( "Attribute", product_type.variant_attributes.first().id ) variant_value = "test-value" product_type.variant_attributes.add(color_attribute) variables = { "id": variant_id, "sku": sku, "attributes": [{"id": attr_id, "values": [variant_value]}], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) variant.refresh_from_db() content = get_graphql_content(response) assert len(content["data"]["productVariantUpdate"]["errors"]) == 1 assert content["data"]["productVariantUpdate"]["errors"][0] == { "field": "attributes", "message": "All variant selection attributes must take a value.", } assert not product.variants.filter(sku=sku).exists() def test_update_product_variant_with_current_attribute( staff_api_client, product_with_variant_with_two_attributes, color_attribute, size_attribute, permission_manage_products, ): product = product_with_variant_with_two_attributes variant = product.variants.first() sku = str(uuid4())[:12] assert not variant.sku == sku assert variant.attributes.first().values.first().slug == "red" assert variant.attributes.last().values.first().slug == "small" variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) variables = { "id": variant_id, "sku": sku, "attributes": [ {"id": color_attribute_id, "values": ["red"]}, {"id": size_attribute_id, "values": ["small"]}, ], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert not data["errors"] variant.refresh_from_db() assert variant.sku == sku assert variant.attributes.first().values.first().slug == "red" assert variant.attributes.last().values.first().slug == "small" def test_update_product_variant_with_new_attribute( staff_api_client, product_with_variant_with_two_attributes, color_attribute, size_attribute, permission_manage_products, ): product = product_with_variant_with_two_attributes variant = product.variants.first() sku = str(uuid4())[:12] assert not variant.sku == sku assert variant.attributes.first().values.first().slug == "red" assert variant.attributes.last().values.first().slug == "small" variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) variables = { "id": variant_id, "sku": sku, "attributes": [ {"id": color_attribute_id, "values": ["red"]}, {"id": size_attribute_id, "values": ["big"]}, ], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert not data["errors"] variant.refresh_from_db() assert variant.sku == sku assert variant.attributes.first().values.first().slug == "red" assert variant.attributes.last().values.first().slug == "big" def test_update_product_variant_with_duplicated_attribute( staff_api_client, product_with_variant_with_two_attributes, color_attribute, size_attribute, permission_manage_products, ): product = product_with_variant_with_two_attributes variant = product.variants.first() variant2 = product.variants.first() variant2.pk = None variant2.sku = str(uuid4())[:12] variant2.save() associate_attribute_values_to_instance( variant2, color_attribute, color_attribute.values.last() ) associate_attribute_values_to_instance( variant2, size_attribute, size_attribute.values.last() ) assert variant.attributes.first().values.first().slug == "red" assert variant.attributes.last().values.first().slug == "small" assert variant2.attributes.first().values.first().slug == "blue" assert variant2.attributes.last().values.first().slug == "big" variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) variables = { "id": variant_id, "attributes": [ {"id": color_attribute_id, "values": ["blue"]}, {"id": size_attribute_id, "values": ["big"]}, ], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert data["productErrors"][0] == { "field": "attributes", "code": ProductErrorCode.DUPLICATED_INPUT_ITEM.name, } def test_update_product_variant_with_current_file_attribute( staff_api_client, product_with_variant_with_file_attribute, file_attribute, permission_manage_products, ): product = product_with_variant_with_file_attribute variant = product.variants.first() sku = str(uuid4())[:12] assert not variant.sku == sku assert set(variant.attributes.first().values.values_list("slug", flat=True)) == { "test_filetxt" } second_value = file_attribute.values.last() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) file_attribute_id = graphene.Node.to_global_id("Attribute", file_attribute.pk) variables = { "id": variant_id, "sku": sku, "price": 15, "attributes": [{"id": file_attribute_id, "file": second_value.file_url}], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert not data["errors"] variant_data = data["productVariant"] assert variant_data assert variant_data["sku"] == sku assert len(variant_data["attributes"]) == 1 assert variant_data["attributes"][0]["attribute"]["slug"] == file_attribute.slug assert len(variant_data["attributes"][0]["values"]) == 1 assert ( variant_data["attributes"][0]["values"][0]["slug"] == f"{slugify(second_value)}-2" ) def test_update_product_variant_with_duplicated_file_attribute( staff_api_client, product_with_variant_with_file_attribute, file_attribute, permission_manage_products, ): product = product_with_variant_with_file_attribute variant = product.variants.first() variant2 = product.variants.first() variant2.pk = None variant2.sku = str(uuid4())[:12] variant2.save() file_attr_value = file_attribute.values.last() associate_attribute_values_to_instance(variant2, file_attribute, file_attr_value) sku = str(uuid4())[:12] assert not variant.sku == sku assert set(variant.attributes.first().values.values_list("slug", flat=True)) == { "test_filetxt" } assert set(variant2.attributes.first().values.values_list("slug", flat=True)) == { "test_filejpeg" } variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) file_attribute_id = graphene.Node.to_global_id("Attribute", file_attribute.pk) variables = { "id": variant_id, "price": 15, "attributes": [{"id": file_attribute_id, "file": file_attr_value.file_url}], "sku": sku, } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert data["productErrors"][0] == { "field": "attributes", "code": ProductErrorCode.DUPLICATED_INPUT_ITEM.name, } def test_update_product_variant_with_file_attribute_new_value_is_not_created( staff_api_client, product_with_variant_with_file_attribute, file_attribute, permission_manage_products, ): product = product_with_variant_with_file_attribute variant = product.variants.first() sku = str(uuid4())[:12] assert not variant.sku == sku existing_value = file_attribute.values.first() assert variant.attributes.filter( assignment__attribute=file_attribute, values=existing_value ).exists() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) file_attribute_id = graphene.Node.to_global_id("Attribute", file_attribute.pk) variables = { "id": variant_id, "sku": sku, "price": 15, "attributes": [{"id": file_attribute_id, "file": existing_value.file_url}], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert not data["errors"] variant_data = data["productVariant"] assert variant_data assert variant_data["sku"] == sku assert len(variant_data["attributes"]) == 1 assert variant_data["attributes"][0]["attribute"]["slug"] == file_attribute.slug assert len(variant_data["attributes"][0]["values"]) == 1 value_data = variant_data["attributes"][0]["values"][0] assert value_data["slug"] == existing_value.slug assert value_data["name"] == existing_value.name assert value_data["file"]["url"] == existing_value.file_url assert value_data["file"]["contentType"] == existing_value.content_type def test_update_product_variant_with_page_reference_attribute( staff_api_client, product, page, product_type_page_reference_attribute, permission_manage_products, ): variant = product.variants.first() sku = str(uuid4())[:12] assert not variant.sku == sku product_type = product.product_type product_type.variant_attributes.clear() product_type.variant_attributes.add(product_type_page_reference_attribute) variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) ref_attribute_id = graphene.Node.to_global_id( "Attribute", product_type_page_reference_attribute.pk ) reference = graphene.Node.to_global_id("Page", page.pk) variables = { "id": variant_id, "sku": sku, "attributes": [{"id": ref_attribute_id, "references": [reference]}], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert not data["errors"] variant_data = data["productVariant"] assert variant_data assert variant_data["sku"] == sku assert len(variant_data["attributes"]) == 1 assert ( variant_data["attributes"][0]["attribute"]["slug"] == product_type_page_reference_attribute.slug ) assert len(variant_data["attributes"][0]["values"]) == 1 assert ( variant_data["attributes"][0]["values"][0]["slug"] == f"{variant.pk}_{page.pk}" ) assert variant_data["attributes"][0]["values"][0]["reference"] == reference def test_update_product_variant_with_product_reference_attribute( staff_api_client, product_list, product_type_product_reference_attribute, permission_manage_products, ): product = product_list[0] product_ref = product_list[1] variant = product.variants.first() sku = str(uuid4())[:12] assert not variant.sku == sku product_type = product.product_type product_type.variant_attributes.clear() product_type.variant_attributes.add(product_type_product_reference_attribute) variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) ref_attribute_id = graphene.Node.to_global_id( "Attribute", product_type_product_reference_attribute.pk ) reference = graphene.Node.to_global_id("Product", product_ref.pk) variables = { "id": variant_id, "sku": sku, "attributes": [{"id": ref_attribute_id, "references": [reference]}], } response = staff_api_client.post_graphql( QUERY_UPDATE_VARIANT_ATTRIBUTES, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantUpdate"] assert not data["errors"] variant_data = data["productVariant"] assert variant_data assert variant_data["sku"] == sku assert len(variant_data["attributes"]) == 1 assert ( variant_data["attributes"][0]["attribute"]["slug"] == product_type_product_reference_attribute.slug ) assert len(variant_data["attributes"][0]["values"]) == 1 assert ( variant_data["attributes"][0]["values"][0]["slug"] == f"{variant.pk}_{product_ref.pk}" ) assert variant_data["attributes"][0]["values"][0]["reference"] == reference @pytest.mark.parametrize( "values, message", ( ([], "Attribute expects a value but none were given"), (["one", "two"], "Attribute must take only one value"), ([" "], "Attribute values cannot be blank"), ([None], "Attribute values cannot be blank"), ), ) def test_update_product_variant_requires_values( staff_api_client, variant, product_type, permission_manage_products, values, message ): """Ensures updating a variant with invalid values raise an error. - No values - Blank value - None as value - More than one value """ sku = "updated" query = QUERY_UPDATE_VARIANT_ATTRIBUTES variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) attr_id = graphene.Node.to_global_id( "Attribute", product_type.variant_attributes.first().id ) variables = { "id": variant_id, "attributes": [{"id": attr_id, "values": values}], "sku": sku, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) variant.refresh_from_db() content = get_graphql_content(response) assert ( len(content["data"]["productVariantUpdate"]["errors"]) == 1 ), f"expected: {message}" assert content["data"]["productVariantUpdate"]["errors"][0] == { "field": "attributes", "message": message, } assert not variant.product.variants.filter(sku=sku).exists() def test_update_product_variant_with_price_does_not_raise_price_validation_error( staff_api_client, variant, size_attribute, permission_manage_products ): mutation = """ mutation updateVariant ($id: ID!, $attributes: [AttributeValueInput]) { productVariantUpdate( id: $id, input: { attributes: $attributes, }) { productVariant { id } productErrors { field code } } } """ # given a product variant and an attribute variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) # when running the updateVariant mutation without price input field variables = { "id": variant_id, "attributes": [{"id": attribute_id, "values": ["S"]}], } response = staff_api_client.post_graphql( mutation, variables, permissions=[permission_manage_products] ) # then mutation passes without validation errors content = get_graphql_content(response) assert not content["data"]["productVariantUpdate"]["productErrors"] DELETE_VARIANT_MUTATION = """ mutation variantDelete($id: ID!) { productVariantDelete(id: $id) { productVariant { sku id } } } """ def test_delete_variant(staff_api_client, product, permission_manage_products): query = DELETE_VARIANT_MUTATION variant = product.variants.first() variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["productVariantDelete"] assert data["productVariant"]["sku"] == variant.sku with pytest.raises(variant._meta.model.DoesNotExist): variant.refresh_from_db() def test_delete_variant_in_draft_order( staff_api_client, order_line, permission_manage_products, order_list, channel_USD, ): query = DELETE_VARIANT_MUTATION draft_order = order_line.order draft_order.status = OrderStatus.DRAFT draft_order.save(update_fields=["status"]) variant = order_line.variant variant_channel_listing = variant.channel_listings.get(channel=channel_USD) variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"id": variant_id} product = variant.product net = variant.get_price(product, [], channel_USD, variant_channel_listing, None) gross = Money(amount=net.amount, currency=net.currency) order_not_draft = order_list[-1] unit_price = TaxedMoney(net=net, gross=gross) quantity = 3 order_line_not_in_draft = OrderLine.objects.create( variant=variant, order=order_not_draft, product_name=str(product), variant_name=str(variant), product_sku=variant.sku, is_shipping_required=variant.is_shipping_required(), unit_price=unit_price, total_price=unit_price * quantity, quantity=quantity, ) order_line_not_in_draft_pk = order_line_not_in_draft.pk response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["productVariantDelete"] assert data["productVariant"]["sku"] == variant.sku with pytest.raises(order_line._meta.model.DoesNotExist): order_line.refresh_from_db() assert OrderLine.objects.filter(pk=order_line_not_in_draft_pk).exists() def test_delete_default_variant( staff_api_client, product_with_two_variants, permission_manage_products ): # given query = DELETE_VARIANT_MUTATION product = product_with_two_variants default_variant = product.variants.first() second_variant = product.variants.last() product.default_variant = default_variant product.save(update_fields=["default_variant"]) assert second_variant.pk != default_variant.pk variant_id = graphene.Node.to_global_id("ProductVariant", default_variant.pk) variables = {"id": variant_id} # when response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) # then content = get_graphql_content(response) data = content["data"]["productVariantDelete"] assert data["productVariant"]["sku"] == default_variant.sku with pytest.raises(default_variant._meta.model.DoesNotExist): default_variant.refresh_from_db() product.refresh_from_db() assert product.default_variant.pk == second_variant.pk def test_delete_not_default_variant_left_default_variant_unchanged( staff_api_client, product_with_two_variants, permission_manage_products ): # given query = DELETE_VARIANT_MUTATION product = product_with_two_variants default_variant = product.variants.first() second_variant = product.variants.last() product.default_variant = default_variant product.save(update_fields=["default_variant"]) assert second_variant.pk != default_variant.pk variant_id = graphene.Node.to_global_id("ProductVariant", second_variant.pk) variables = {"id": variant_id} # when response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) # then content = get_graphql_content(response) data = content["data"]["productVariantDelete"] assert data["productVariant"]["sku"] == second_variant.sku with pytest.raises(second_variant._meta.model.DoesNotExist): second_variant.refresh_from_db() product.refresh_from_db() assert product.default_variant.pk == default_variant.pk def test_delete_default_all_product_variant_left_product_default_variant_unset( staff_api_client, product, permission_manage_products ): # given query = DELETE_VARIANT_MUTATION default_variant = product.variants.first() product.default_variant = default_variant product.save(update_fields=["default_variant"]) assert product.variants.count() == 1 variant_id = graphene.Node.to_global_id("ProductVariant", default_variant.pk) variables = {"id": variant_id} # when response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) # then content = get_graphql_content(response) data = content["data"]["productVariantDelete"] assert data["productVariant"]["sku"] == default_variant.sku with pytest.raises(default_variant._meta.model.DoesNotExist): default_variant.refresh_from_db() product.refresh_from_db() assert not product.default_variant def _fetch_all_variants(client, variables={}, permissions=None): query = """ query fetchAllVariants($channel: String) { productVariants(first: 10, channel: $channel) { totalCount edges { node { id } } } } """ response = client.post_graphql( query, variables, permissions=permissions, check_no_permissions=False ) content = get_graphql_content(response) return content["data"]["productVariants"] def test_fetch_all_variants_staff_user( staff_api_client, unavailable_product_with_variant, permission_manage_products ): variant = unavailable_product_with_variant.variants.first() data = _fetch_all_variants( staff_api_client, permissions=[permission_manage_products] ) variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) assert data["totalCount"] == 1 assert data["edges"][0]["node"]["id"] == variant_id def test_fetch_all_variants_staff_user_with_channel( staff_api_client, product_list_with_variants_many_channel, permission_manage_products, channel_PLN, ): variables = {"channel": channel_PLN.slug} data = _fetch_all_variants( staff_api_client, variables, permissions=[permission_manage_products] ) assert data["totalCount"] == 2 def test_fetch_all_variants_staff_user_without_channel( staff_api_client, product_list_with_variants_many_channel, permission_manage_products, ): data = _fetch_all_variants( staff_api_client, permissions=[permission_manage_products] ) assert data["totalCount"] == 3 def test_fetch_all_variants_customer( user_api_client, unavailable_product_with_variant, channel_USD ): data = _fetch_all_variants(user_api_client, variables={"channel": channel_USD.slug}) assert data["totalCount"] == 0 def test_fetch_all_variants_anonymous_user( api_client, unavailable_product_with_variant, channel_USD ): data = _fetch_all_variants(api_client, variables={"channel": channel_USD.slug}) assert data["totalCount"] == 0 def test_product_variants_by_ids(user_api_client, variant, channel_USD): query = """ query getProduct($ids: [ID!], $channel: String) { productVariants(ids: $ids, first: 1, channel: $channel) { edges { node { id } } } } """ variant_id = graphene.Node.to_global_id("ProductVariant", variant.id) variables = {"ids": [variant_id], "channel": channel_USD.slug} response = user_api_client.post_graphql(query, variables) content = get_graphql_content(response) data = content["data"]["productVariants"] assert data["edges"][0]["node"]["id"] == variant_id assert len(data["edges"]) == 1 def test_product_variants_visible_in_listings_by_customer( user_api_client, product_list, channel_USD ): # given product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() # when data = _fetch_all_variants(user_api_client, variables={"channel": channel_USD.slug}) assert data["totalCount"] == product_count - 1 def test_product_variants_visible_in_listings_by_staff_without_manage_products( staff_api_client, product_list, channel_USD ): # given product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() # when data = _fetch_all_variants( staff_api_client, variables={"channel": channel_USD.slug} ) assert data["totalCount"] == product_count def test_product_variants_visible_in_listings_by_staff_with_perm( staff_api_client, product_list, permission_manage_products, channel_USD ): # given product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() # when data = _fetch_all_variants( staff_api_client, variables={"channel": channel_USD.slug}, permissions=[permission_manage_products], ) assert data["totalCount"] == product_count def test_product_variants_visible_in_listings_by_app_without_manage_products( app_api_client, product_list, channel_USD ): # given product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() # when data = _fetch_all_variants(app_api_client, variables={"channel": channel_USD.slug}) assert data["totalCount"] == product_count def test_product_variants_visible_in_listings_by_app_with_perm( app_api_client, product_list, permission_manage_products, channel_USD ): # given product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() # when data = _fetch_all_variants( app_api_client, variables={"channel": channel_USD.slug}, permissions=[permission_manage_products], ) assert data["totalCount"] == product_count def _fetch_variant(client, variant, channel_slug=None, permissions=None): query = """ query ProductVariantDetails($variantId: ID!, $channel: String) { productVariant(id: $variantId, channel: $channel) { id product { id } } } """ variables = {"variantId": graphene.Node.to_global_id("ProductVariant", variant.id)} if channel_slug: variables["channel"] = channel_slug response = client.post_graphql( query, variables, permissions=permissions, check_no_permissions=False ) content = get_graphql_content(response) return content["data"]["productVariant"] def test_fetch_unpublished_variant_staff_user( staff_api_client, unavailable_product_with_variant, permission_manage_products ): variant = unavailable_product_with_variant.variants.first() data = _fetch_variant( staff_api_client, variant, permissions=[permission_manage_products], ) variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) product_id = graphene.Node.to_global_id( "Product", unavailable_product_with_variant.pk ) assert data["id"] == variant_id assert data["product"]["id"] == product_id def test_fetch_unpublished_variant_customer( user_api_client, unavailable_product_with_variant, channel_USD ): variant = unavailable_product_with_variant.variants.first() data = _fetch_variant(user_api_client, variant, channel_slug=channel_USD.slug) assert data is None def test_fetch_unpublished_variant_anonymous_user( api_client, unavailable_product_with_variant, channel_USD ): variant = unavailable_product_with_variant.variants.first() data = _fetch_variant(api_client, variant, channel_slug=channel_USD.slug) assert data is None PRODUCT_VARIANT_BULK_CREATE_MUTATION = """ mutation ProductVariantBulkCreate( $variants: [ProductVariantBulkCreateInput]!, $productId: ID! ) { productVariantBulkCreate(variants: $variants, product: $productId) { bulkProductErrors { field message code index warehouses channels } productVariants{ id name sku stocks { warehouse { slug } quantity } channelListings { channel { slug } price { currency amount } costPrice { currency amount } } } count } } """ def test_product_variant_bulk_create_by_attribute_id( staff_api_client, product, size_attribute, permission_manage_products ): product_variant_count = ProductVariant.objects.count() attribute_value_count = size_attribute.values.count() product_id = graphene.Node.to_global_id("Product", product.pk) attribut_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() sku = str(uuid4())[:12] variants = [ { "sku": sku, "weight": 2.5, "trackInventory": True, "attributes": [{"id": attribut_id, "values": [attribute_value.name]}], } ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 1 assert data["productVariants"][0]["name"] == attribute_value.name assert product_variant_count + 1 == ProductVariant.objects.count() assert attribute_value_count == size_attribute.values.count() product_variant = ProductVariant.objects.get(sku=sku) product.refresh_from_db() assert product.default_variant == product_variant def test_product_variant_bulk_create_only_not_variant_selection_attributes( staff_api_client, product, size_attribute, permission_manage_products ): """Ensure that sku is set as variant name when only variant selection attributes are assigned. """ product_variant_count = ProductVariant.objects.count() attribute_value_count = size_attribute.values.count() size_attribute.input_type = AttributeInputType.MULTISELECT size_attribute.save(update_fields=["input_type"]) product_id = graphene.Node.to_global_id("Product", product.pk) attribut_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() sku = str(uuid4())[:12] variants = [ { "sku": sku, "weight": 2.5, "trackInventory": True, "attributes": [{"id": attribut_id, "values": [attribute_value.name]}], } ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 1 assert data["productVariants"][0]["name"] == sku assert product_variant_count + 1 == ProductVariant.objects.count() assert attribute_value_count == size_attribute.values.count() product_variant = ProductVariant.objects.get(sku=sku) product.refresh_from_db() assert product.default_variant == product_variant def test_product_variant_bulk_create_empty_attribute( staff_api_client, product, size_attribute, permission_manage_products ): product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) variants = [{"sku": str(uuid4())[:12], "attributes": []}] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 1 assert product_variant_count + 1 == ProductVariant.objects.count() def test_product_variant_bulk_create_with_new_attribute_value( staff_api_client, product, size_attribute, permission_manage_products ): product_variant_count = ProductVariant.objects.count() attribute_value_count = size_attribute.values.count() size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) product_id = graphene.Node.to_global_id("Product", product.pk) attribute_value = size_attribute.values.last() variants = [ { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": ["Test-attribute"]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 2 assert product_variant_count + 2 == ProductVariant.objects.count() assert attribute_value_count + 1 == size_attribute.values.count() def test_product_variant_bulk_create_variant_selection_and_other_attributes( staff_api_client, product, size_attribute, file_attribute, permission_manage_products, ): """Ensure that only values for variant selection attributes are required.""" product_type = product.product_type product_type.variant_attributes.add(file_attribute) product_variant_count = ProductVariant.objects.count() attribute_value_count = size_attribute.values.count() product_id = graphene.Node.to_global_id("Product", product.pk) attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() sku = str(uuid4())[:12] variants = [ { "sku": sku, "weight": 2.5, "trackInventory": True, "attributes": [{"id": attribute_id, "values": [attribute_value.name]}], } ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 1 assert product_variant_count + 1 == ProductVariant.objects.count() assert attribute_value_count == size_attribute.values.count() product_variant = ProductVariant.objects.get(sku=sku) product.refresh_from_db() assert product.default_variant == product_variant def test_product_variant_bulk_create_stocks_input( staff_api_client, product, permission_manage_products, warehouses, size_attribute ): product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) attribute_value_count = size_attribute.values.count() size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() variants = [ { "sku": str(uuid4())[:12], "stocks": [ { "quantity": 10, "warehouse": graphene.Node.to_global_id( "Warehouse", warehouses[0].pk ), } ], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": ["Test-attribute"]}], "stocks": [ { "quantity": 15, "warehouse": graphene.Node.to_global_id( "Warehouse", warehouses[0].pk ), }, { "quantity": 15, "warehouse": graphene.Node.to_global_id( "Warehouse", warehouses[1].pk ), }, ], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 2 assert product_variant_count + 2 == ProductVariant.objects.count() assert attribute_value_count + 1 == size_attribute.values.count() expected_result = { variants[0]["sku"]: { "sku": variants[0]["sku"], "stocks": [ { "warehouse": {"slug": warehouses[0].slug}, "quantity": variants[0]["stocks"][0]["quantity"], } ], }, variants[1]["sku"]: { "sku": variants[1]["sku"], "stocks": [ { "warehouse": {"slug": warehouses[0].slug}, "quantity": variants[1]["stocks"][0]["quantity"], }, { "warehouse": {"slug": warehouses[1].slug}, "quantity": variants[1]["stocks"][1]["quantity"], }, ], }, } for variant_data in data["productVariants"]: variant_data.pop("id") assert variant_data["sku"] in expected_result expected_variant = expected_result[variant_data["sku"]] expected_stocks = expected_variant["stocks"] assert all([stock in expected_stocks for stock in variant_data["stocks"]]) def test_product_variant_bulk_create_duplicated_warehouses( staff_api_client, product, permission_manage_products, warehouses, size_attribute ): product_id = graphene.Node.to_global_id("Product", product.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() warehouse1_id = graphene.Node.to_global_id("Warehouse", warehouses[0].pk) variants = [ { "sku": str(uuid4())[:12], "stocks": [ { "quantity": 10, "warehouse": graphene.Node.to_global_id( "Warehouse", warehouses[1].pk ), } ], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": ["Test-attribute"]}], "stocks": [ {"quantity": 15, "warehouse": warehouse1_id}, {"quantity": 15, "warehouse": warehouse1_id}, ], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] errors = data["bulkProductErrors"] assert not data["productVariants"] assert len(errors) == 1 error = errors[0] assert error["field"] == "stocks" assert error["index"] == 1 assert error["code"] == ProductErrorCode.DUPLICATED_INPUT_ITEM.name assert error["warehouses"] == [warehouse1_id] def test_product_variant_bulk_create_channel_listings_input( staff_api_client, product_available_in_many_channels, permission_manage_products, warehouses, size_attribute, channel_USD, channel_PLN, ): product = product_available_in_many_channels ProductChannelListing.objects.filter(product=product, channel=channel_PLN).update( is_published=False ) product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) attribute_value_count = size_attribute.values.count() size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() variants = [ { "sku": str(uuid4())[:12], "channelListings": [ { "price": 10.0, "costPrice": 11.0, "channelId": graphene.Node.to_global_id("Channel", channel_USD.pk), } ], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": ["Test-attribute"]}], "channelListings": [ { "price": 15.0, "costPrice": 16.0, "channelId": graphene.Node.to_global_id("Channel", channel_USD.pk), }, { "price": 12.0, "costPrice": 13.0, "channelId": graphene.Node.to_global_id("Channel", channel_PLN.pk), }, ], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 2 assert product_variant_count + 2 == ProductVariant.objects.count() assert attribute_value_count + 1 == size_attribute.values.count() expected_result = { variants[0]["sku"]: { "sku": variants[0]["sku"], "channelListings": [ { "channel": {"slug": channel_USD.slug}, "price": { "amount": variants[0]["channelListings"][0]["price"], "currency": channel_USD.currency_code, }, "costPrice": { "amount": variants[0]["channelListings"][0]["costPrice"], "currency": channel_USD.currency_code, }, } ], }, variants[1]["sku"]: { "sku": variants[1]["sku"], "channelListings": [ { "channel": {"slug": channel_USD.slug}, "price": { "amount": variants[1]["channelListings"][0]["price"], "currency": channel_USD.currency_code, }, "costPrice": { "amount": variants[1]["channelListings"][0]["costPrice"], "currency": channel_USD.currency_code, }, }, { "channel": {"slug": channel_PLN.slug}, "price": { "amount": variants[1]["channelListings"][1]["price"], "currency": channel_PLN.currency_code, }, "costPrice": { "amount": variants[1]["channelListings"][1]["costPrice"], "currency": channel_PLN.currency_code, }, }, ], }, } for variant_data in data["productVariants"]: variant_data.pop("id") assert variant_data["sku"] in expected_result expected_variant = expected_result[variant_data["sku"]] expected_channel_listing = expected_variant["channelListings"] assert all( [ channelListing in expected_channel_listing for channelListing in variant_data["channelListings"] ] ) def test_product_variant_bulk_create_duplicated_channels( staff_api_client, product_available_in_many_channels, permission_manage_products, warehouses, size_attribute, channel_USD, ): product = product_available_in_many_channels product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() channel_id = graphene.Node.to_global_id("Channel", channel_USD.pk) variants = [ { "sku": str(uuid4())[:12], "channelListings": [ {"price": 10.0, "channelId": channel_id}, {"price": 10.0, "channelId": channel_id}, ], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 1 error = data["bulkProductErrors"][0] assert error["field"] == "channelListings" assert error["code"] == ProductErrorCode.DUPLICATED_INPUT_ITEM.name assert error["index"] == 0 assert error["channels"] == [channel_id] assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_too_many_decimal_places_in_price( staff_api_client, product_available_in_many_channels, permission_manage_products, size_attribute, channel_USD, channel_PLN, ): product = product_available_in_many_channels product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() channel_id = graphene.Node.to_global_id("Channel", channel_USD.pk) channel_pln_id = graphene.Node.to_global_id("Channel", channel_PLN.pk) variants = [ { "sku": str(uuid4())[:12], "channelListings": [ {"price": 10.1234, "costPrice": 10.1234, "channelId": channel_id}, {"price": 10.12345, "costPrice": 10.12345, "channelId": channel_pln_id}, ], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 4 errors = data["bulkProductErrors"] assert errors[0]["field"] == "price" assert errors[0]["code"] == ProductErrorCode.INVALID.name assert errors[0]["index"] == 0 assert errors[0]["channels"] == [channel_id] assert errors[1]["field"] == "price" assert errors[1]["code"] == ProductErrorCode.INVALID.name assert errors[1]["index"] == 0 assert errors[1]["channels"] == [channel_pln_id] assert errors[2]["field"] == "costPrice" assert errors[2]["code"] == ProductErrorCode.INVALID.name assert errors[2]["index"] == 0 assert errors[2]["channels"] == [channel_id] assert errors[3]["field"] == "costPrice" assert errors[3]["code"] == ProductErrorCode.INVALID.name assert errors[3]["index"] == 0 assert errors[3]["channels"] == [channel_pln_id] assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_product_not_assigned_to_channel( staff_api_client, product, permission_manage_products, warehouses, size_attribute, channel_PLN, ): product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) assert not ProductChannelListing.objects.filter( product=product, channel=channel_PLN ).exists() size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) attribute_value = size_attribute.values.last() channel_id = graphene.Node.to_global_id("Channel", channel_PLN.pk) variants = [ { "sku": str(uuid4())[:12], "channelListings": [{"price": 10.0, "channelId": channel_id}], "attributes": [{"id": size_attribute_id, "values": [attribute_value.name]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 1 error = data["bulkProductErrors"][0] assert error["field"] == "channelId" assert error["code"] == ProductErrorCode.PRODUCT_NOT_ASSIGNED_TO_CHANNEL.name assert error["index"] == 0 assert error["channels"] == [channel_id] assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_duplicated_sku( staff_api_client, product, product_with_default_variant, size_attribute, permission_manage_products, ): product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) sku = product.variants.first().sku sku2 = product_with_default_variant.variants.first().sku assert not sku == sku2 variants = [ { "sku": sku, "attributes": [{"id": size_attribute_id, "values": ["Test-value"]}], }, { "sku": sku2, "attributes": [{"id": size_attribute_id, "values": ["Test-valuee"]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 2 errors = data["bulkProductErrors"] for index, error in enumerate(errors): assert error["field"] == "sku" assert error["code"] == ProductErrorCode.UNIQUE.name assert error["index"] == index assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_duplicated_sku_in_input( staff_api_client, product, size_attribute, permission_manage_products ): product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) sku = str(uuid4())[:12] variants = [ { "sku": sku, "attributes": [{"id": size_attribute_id, "values": ["Test-value"]}], }, { "sku": sku, "attributes": [{"id": size_attribute_id, "values": ["Test-value2"]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 1 error = data["bulkProductErrors"][0] assert error["field"] == "sku" assert error["code"] == ProductErrorCode.UNIQUE.name assert error["index"] == 1 assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_many_errors( staff_api_client, product, size_attribute, permission_manage_products ): product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.pk) non_existent_attribute_pk = 0 invalid_attribute_id = graphene.Node.to_global_id( "Attribute", non_existent_attribute_pk ) sku = product.variants.first().sku variants = [ { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": ["Test-value1"]}], }, { "sku": str(uuid4())[:12], "attributes": [{"id": size_attribute_id, "values": ["Test-value4"]}], }, { "sku": sku, "attributes": [{"id": size_attribute_id, "values": ["Test-value2"]}], }, { "sku": str(uuid4())[:12], "attributes": [{"id": invalid_attribute_id, "values": ["Test-value3"]}], }, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 2 errors = data["bulkProductErrors"] expected_errors = [ { "field": "sku", "index": 2, "code": ProductErrorCode.UNIQUE.name, "message": ANY, "warehouses": None, "channels": None, }, { "field": "attributes", "index": 3, "code": ProductErrorCode.NOT_FOUND.name, "message": ANY, "warehouses": None, "channels": None, }, ] for expected_error in expected_errors: assert expected_error in errors assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_two_variants_duplicated_attribute_value( staff_api_client, product_with_variant_with_two_attributes, color_attribute, size_attribute, permission_manage_products, ): product = product_with_variant_with_two_attributes product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.id) variants = [ { "sku": str(uuid4())[:12], "attributes": [ {"id": color_attribute_id, "values": ["red"]}, {"id": size_attribute_id, "values": ["small"]}, ], } ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 1 error = data["bulkProductErrors"][0] assert error["field"] == "attributes" assert error["code"] == ProductErrorCode.DUPLICATED_INPUT_ITEM.name assert error["index"] == 0 assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_two_variants_duplicated_attribute_value_in_input( staff_api_client, product_with_variant_with_two_attributes, permission_manage_products, color_attribute, size_attribute, ): product = product_with_variant_with_two_attributes product_id = graphene.Node.to_global_id("Product", product.pk) product_variant_count = ProductVariant.objects.count() color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.id) attributes = [ {"id": color_attribute_id, "values": [color_attribute.values.last().slug]}, {"id": size_attribute_id, "values": [size_attribute.values.last().slug]}, ] variants = [ {"sku": str(uuid4())[:12], "attributes": attributes}, {"sku": str(uuid4())[:12], "attributes": attributes}, ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert len(data["bulkProductErrors"]) == 1 error = data["bulkProductErrors"][0] assert error["field"] == "attributes" assert error["code"] == ProductErrorCode.DUPLICATED_INPUT_ITEM.name assert error["index"] == 1 assert product_variant_count == ProductVariant.objects.count() def test_product_variant_bulk_create_two_variants_duplicated_one_attribute_value( staff_api_client, product_with_variant_with_two_attributes, color_attribute, size_attribute, permission_manage_products, ): product = product_with_variant_with_two_attributes product_variant_count = ProductVariant.objects.count() product_id = graphene.Node.to_global_id("Product", product.pk) color_attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id) size_attribute_id = graphene.Node.to_global_id("Attribute", size_attribute.id) variants = [ { "sku": str(uuid4())[:12], "attributes": [ {"id": color_attribute_id, "values": ["red"]}, {"id": size_attribute_id, "values": ["big"]}, ], } ] variables = {"productId": product_id, "variants": variants} staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql( PRODUCT_VARIANT_BULK_CREATE_MUTATION, variables ) content = get_graphql_content(response) data = content["data"]["productVariantBulkCreate"] assert not data["bulkProductErrors"] assert data["count"] == 1 assert product_variant_count + 1 == ProductVariant.objects.count() VARIANT_STOCKS_CREATE_MUTATION = """ mutation ProductVariantStocksCreate($variantId: ID!, $stocks: [StockInput!]!){ productVariantStocksCreate(variantId: $variantId, stocks: $stocks){ productVariant{ id stocks { quantity quantityAllocated id warehouse{ slug } } } bulkStockErrors{ code field message index } } } """ def test_variant_stocks_create( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.id), "quantity": 20, }, { "warehouse": graphene.Node.to_global_id("Warehouse", second_warehouse.id), "quantity": 100, }, ] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_CREATE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksCreate"] expected_result = [ { "quantity": stocks[0]["quantity"], "quantityAllocated": 0, "warehouse": {"slug": warehouse.slug}, }, { "quantity": stocks[1]["quantity"], "quantityAllocated": 0, "warehouse": {"slug": second_warehouse.slug}, }, ] assert not data["bulkStockErrors"] assert len(data["productVariant"]["stocks"]) == len(stocks) result = [] for stock in data["productVariant"]["stocks"]: stock.pop("id") result.append(stock) for res in result: assert res in expected_result def test_variant_stocks_create_empty_stock_input( staff_api_client, variant, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) variables = {"variantId": variant_id, "stocks": []} response = staff_api_client.post_graphql( VARIANT_STOCKS_CREATE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksCreate"] assert not data["bulkStockErrors"] assert len(data["productVariant"]["stocks"]) == variant.stocks.count() assert data["productVariant"]["id"] == variant_id def test_variant_stocks_create_stock_already_exists( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() Stock.objects.create(product_variant=variant, warehouse=warehouse, quantity=10) stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.id), "quantity": 20, }, { "warehouse": graphene.Node.to_global_id("Warehouse", second_warehouse.id), "quantity": 100, }, ] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_CREATE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksCreate"] errors = data["bulkStockErrors"] assert errors assert errors[0]["code"] == StockErrorCode.UNIQUE.name assert errors[0]["field"] == "warehouse" assert errors[0]["index"] == 0 def test_variant_stocks_create_stock_duplicated_warehouse( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() second_warehouse_id = graphene.Node.to_global_id("Warehouse", second_warehouse.id) stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.id), "quantity": 20, }, {"warehouse": second_warehouse_id, "quantity": 100}, {"warehouse": second_warehouse_id, "quantity": 120}, ] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_CREATE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksCreate"] errors = data["bulkStockErrors"] assert errors assert errors[0]["code"] == StockErrorCode.UNIQUE.name assert errors[0]["field"] == "warehouse" assert errors[0]["index"] == 2 def test_variant_stocks_create_stock_duplicated_warehouse_and_warehouse_already_exists( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() second_warehouse_id = graphene.Node.to_global_id("Warehouse", second_warehouse.id) Stock.objects.create( product_variant=variant, warehouse=second_warehouse, quantity=10 ) stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.id), "quantity": 20, }, {"warehouse": second_warehouse_id, "quantity": 100}, {"warehouse": second_warehouse_id, "quantity": 120}, ] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_CREATE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksCreate"] errors = data["bulkStockErrors"] assert len(errors) == 3 assert {error["code"] for error in errors} == { StockErrorCode.UNIQUE.name, } assert {error["field"] for error in errors} == { "warehouse", } assert {error["index"] for error in errors} == {1, 2} VARIANT_STOCKS_UPDATE_MUTATIONS = """ mutation ProductVariantStocksUpdate($variantId: ID!, $stocks: [StockInput!]!){ productVariantStocksUpdate(variantId: $variantId, stocks: $stocks){ productVariant{ stocks{ quantity quantityAllocated id warehouse{ slug } } } bulkStockErrors{ code field message index } } } """ def test_product_variant_stocks_update( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() Stock.objects.create(product_variant=variant, warehouse=warehouse, quantity=10) stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.id), "quantity": 20, }, { "warehouse": graphene.Node.to_global_id("Warehouse", second_warehouse.id), "quantity": 100, }, ] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_UPDATE_MUTATIONS, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksUpdate"] expected_result = [ { "quantity": stocks[0]["quantity"], "quantityAllocated": 0, "warehouse": {"slug": warehouse.slug}, }, { "quantity": stocks[1]["quantity"], "quantityAllocated": 0, "warehouse": {"slug": second_warehouse.slug}, }, ] assert not data["bulkStockErrors"] assert len(data["productVariant"]["stocks"]) == len(stocks) result = [] for stock in data["productVariant"]["stocks"]: stock.pop("id") result.append(stock) for res in result: assert res in expected_result def test_product_variant_stocks_update_with_empty_stock_list( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) stocks = [] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_UPDATE_MUTATIONS, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksUpdate"] assert not data["bulkStockErrors"] assert len(data["productVariant"]["stocks"]) == len(stocks) def test_variant_stocks_update_stock_duplicated_warehouse( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() Stock.objects.create(product_variant=variant, warehouse=warehouse, quantity=10) stocks = [ { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 20, }, { "warehouse": graphene.Node.to_global_id("Warehouse", second_warehouse.pk), "quantity": 100, }, { "warehouse": graphene.Node.to_global_id("Warehouse", warehouse.pk), "quantity": 150, }, ] variables = {"variantId": variant_id, "stocks": stocks} response = staff_api_client.post_graphql( VARIANT_STOCKS_UPDATE_MUTATIONS, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksUpdate"] errors = data["bulkStockErrors"] assert errors assert errors[0]["code"] == StockErrorCode.UNIQUE.name assert errors[0]["field"] == "warehouse" assert errors[0]["index"] == 2 VARIANT_STOCKS_DELETE_MUTATION = """ mutation ProductVariantStocksDelete($variantId: ID!, $warehouseIds: [ID!]!){ productVariantStocksDelete( variantId: $variantId, warehouseIds: $warehouseIds ){ productVariant{ stocks{ id quantity warehouse{ slug } } } stockErrors{ field code message } } } """ def test_product_variant_stocks_delete_mutation( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() Stock.objects.bulk_create( [ Stock(product_variant=variant, warehouse=warehouse, quantity=10), Stock(product_variant=variant, warehouse=second_warehouse, quantity=140), ] ) stocks_count = variant.stocks.count() warehouse_ids = [graphene.Node.to_global_id("Warehouse", second_warehouse.id)] variables = {"variantId": variant_id, "warehouseIds": warehouse_ids} response = staff_api_client.post_graphql( VARIANT_STOCKS_DELETE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksDelete"] variant.refresh_from_db() assert not data["stockErrors"] assert ( len(data["productVariant"]["stocks"]) == variant.stocks.count() == stocks_count - 1 ) assert data["productVariant"]["stocks"][0]["quantity"] == 10 assert data["productVariant"]["stocks"][0]["warehouse"]["slug"] == warehouse.slug def test_product_variant_stocks_delete_mutation_invalid_warehouse_id( staff_api_client, variant, warehouse, permission_manage_products ): variant_id = graphene.Node.to_global_id("ProductVariant", variant.pk) second_warehouse = Warehouse.objects.get(pk=warehouse.pk) second_warehouse.slug = "second warehouse" second_warehouse.pk = None second_warehouse.save() Stock.objects.bulk_create( [Stock(product_variant=variant, warehouse=warehouse, quantity=10)] ) stocks_count = variant.stocks.count() warehouse_ids = [graphene.Node.to_global_id("Warehouse", second_warehouse.id)] variables = {"variantId": variant_id, "warehouseIds": warehouse_ids} response = staff_api_client.post_graphql( VARIANT_STOCKS_DELETE_MUTATION, variables, permissions=[permission_manage_products], ) content = get_graphql_content(response) data = content["data"]["productVariantStocksDelete"] variant.refresh_from_db() assert not data["stockErrors"] assert ( len(data["productVariant"]["stocks"]) == variant.stocks.count() == stocks_count ) assert data["productVariant"]["stocks"][0]["quantity"] == 10 assert data["productVariant"]["stocks"][0]["warehouse"]["slug"] == warehouse.slug
33.697165
88
0.636609
8ca24806898a75ed633e54bd29a7c6011d3d66ee
6,745
py
Python
django_pypayzen/tests/data.py
SamambaMan/django-payzen
88b2df368bb7afe32a33ae398a8c858531647068
[ "MIT" ]
null
null
null
django_pypayzen/tests/data.py
SamambaMan/django-payzen
88b2df368bb7afe32a33ae398a8c858531647068
[ "MIT" ]
null
null
null
django_pypayzen/tests/data.py
SamambaMan/django-payzen
88b2df368bb7afe32a33ae398a8c858531647068
[ "MIT" ]
null
null
null
import collections url_exemple = "http://www.google.com/" cards = [ { 'type': 'CB', 'card_number': '4970100000000000', 'behaviour': '3D-Secure', 'result': 'accepted' }, { 'type': 'MasterCard', 'card_number': '5970100300000000', 'behaviour': '3D-Secure', 'result': 'accepted' }, { 'type': 'Maestro', 'card_number': '5000550000000000', 'behaviour': '3D-Secure', 'result': 'accepted' }, { 'type': 'CB', 'card_number': '4970100000000009', 'behaviour': '3D-Secure interactive', 'result': 'accepted' }, { 'type': 'MasterCard', 'card_number': '5970100300000009', 'behaviour': '3D-Secure interactive', 'result': 'accepted' }, { 'type': 'Maestro', 'card_number': '5000550000000009', 'behaviour': '3D-Secure interactive', 'result': 'accepted' }, { 'type': 'CB', 'card_number': '4970100000000003', 'behaviour': 'Merchant without 3D-secure', 'result': 'accepted' }, { 'type': 'MasterCard', 'card_number': '5970100300000003', 'behaviour': 'Merchant without 3D-secure', 'result': 'accepted' }, { 'type': 'Maestro', 'card_number': '5000550000000003', 'behaviour': 'Merchant without 3D-secure', 'result': 'accepted' }, { 'type': 'CB', 'card_number': '4970100000000001', 'behaviour': 'Buyer without 3D-secure', 'result': 'accepted' }, { 'type': 'MasterCard', 'card_number': '5970100300000001', 'behaviour': 'Buyer without 3D-secure', 'result': 'accepted' }, { 'type': 'Maestro', 'card_number': '5000550000000001', 'behaviour': 'Buyer without 3D-secure', 'result': 'accepted' }, { 'type': 'CB', 'card_number': '4970100000000002', 'behaviour': 'Transaction to force', 'result': 'rejected' }, { 'type': 'MasterCard', 'card_number': '5970100300000002', 'behaviour': 'Transaction to force', 'result': 'rejected' }, { 'type': 'Maestro', 'card_number': '5000550000000002', 'behaviour': 'Transaction to force', 'result': 'rejected' }, { 'type': 'CB', 'card_number': '4970100000000007', 'behaviour': 'Warranty = NO', 'result': 'accepted' }, { 'type': 'MasterCard', 'card_number': '5970100300023006', 'behaviour': 'Warranty = NO', 'result': 'accepted' }, { 'type': 'Maestro', 'card_number': '5000550000023006', 'behaviour': 'Warranty = NO', 'result': 'accepted' }, { 'type': 'CB', 'card_number': '4970100000000097', 'behaviour': '3-D Secure authentication failed', 'result': 'rejected' }, { 'type': 'MasterCard', 'card_number': '5970100300000097', 'behaviour': '3-D Secure authentication failed', 'result': 'rejected' }, { 'type': 'Maestro', 'card_number': '5000550000000097', 'behaviour': '3-D Secure authentication failed', 'result': 'rejected' }, { 'type': 'CB', 'card_number': '4970100000000098', 'behaviour': 'Card payment limit exceeded', 'result': 'rejected' }, { 'type': 'MasterCard', 'card_number': '5970100300000098', 'behaviour': 'Card payment limit exceeded', 'result': 'rejected' }, { 'type': 'Maestro', 'card_number': '5000550000000098', 'behaviour': 'Card payment limit exceeded', 'result': 'rejected' }, { 'type': 'CB', 'card_number': '4970100000000099', 'behaviour': 'Wrong cryptogram', 'result': 'rejected' }, { 'type': 'MasterCard', 'card_number': '5970100300000099', 'behaviour': 'Wrong cryptogram', 'result': 'rejected' }, { 'type': 'Maestro', 'card_number': '5000550000000099', 'behaviour': 'Wrong cryptogram', 'result': 'rejected' }, ] theme_args = collections.OrderedDict([ ("success_footer_msg_return", "Success footer msg test"), ("cancel_footer_msg_return", "Cancel footer msg test"), ("secure_message", "Secure message test"), ("secure_message_register", "Secure message register test"), ("site_id_label", "Site ID label test"), ("css_for_payment", url_exemple+"payment.css"), ("css_for_payment_mobile", url_exemple+"mobile_payment.css"), ("header_for_mail", url_exemple+"mail_header.html"), ("footer_for_mail", url_exemple+"footer_mail.html"), ("shop_logo", url_exemple+"logo.png"), ]) payment_config_args = { "first": 5000, "count": 2, "period": 5 } payment_args = { # Base fields "vads_amount": "10000", "vads_capture_delay": "2", "vads_payment_cards": "CB;Visa", "vads_return_mode": "NONE", "vads_validation_mode": "1", "vads_url_success": url_exemple, "vads_url_referral": url_exemple, "vads_url_refused": url_exemple, "vads_url_cancel": url_exemple, "vads_url_error": url_exemple, "vads_url_return": url_exemple, "vads_user_info": "Abbath Doom Occulta", "vads_shop_name": "Immortal", "vads_redirect_success_timeout": "1", "vads_redirect_success_message": "Tragedies Blows At Horizon", "vads_redirect_error_timeout": "1", "vads_redirect_error_message": "At The Heart Of Winter", # customer fields "vads_cust_address": "Oeschstr.", "vads_cust_address_number": "9", "vads_cust_country": "GE", "vads_cust_email": "test@nuclearblast.de", "vads_cust_id": "1", "vads_cust_name": "NUCLEAR BLAST", "vads_cust_cell_phone": "+49 7162 9280-0", "vads_cust_phone": "+49 7162 9280 26", "vads_cust_title": "Guitarist", "vads_cust_city": "Donzdorf", "vads_cust_state": "Donzdorf", "vads_cust_zip": "73072", "vads_language": "fr", # order fields "vads_order_id": "1234567890", "vads_order_info": "Order test info 1", "vads_order_info2": "Order test info 2", "vads_order_info3": "Order test info 3", # shipping fields "vads_ship_to_name": "NUCLEAR BLAST", "vads_ship_to_street_number": "9", "vads_ship_to_street": "Oeschstr. 9", "vads_ship_to_street2": "...", "vads_ship_to_zip": "73072", "vads_ship_to_city": "Donzdorf", "vads_ship_to_country": "GE", "vads_ship_to_phone_num": "+49 7162 9280-0", "vads_ship_to_state": "Donzdorf" }
28.340336
66
0.564566
49636c152799df9bc543f985a35be57a327cd8d8
3,062
py
Python
atomate/vasp/builders/file_materials.py
Zhuoying/atomate
067023f0f740d3abac47b7ae7743c1c31eff8a06
[ "BSD-3-Clause-LBNL" ]
null
null
null
atomate/vasp/builders/file_materials.py
Zhuoying/atomate
067023f0f740d3abac47b7ae7743c1c31eff8a06
[ "BSD-3-Clause-LBNL" ]
null
null
null
atomate/vasp/builders/file_materials.py
Zhuoying/atomate
067023f0f740d3abac47b7ae7743c1c31eff8a06
[ "BSD-3-Clause-LBNL" ]
null
null
null
from pymatgen.core import Composition from tqdm import tqdm from atomate.utils.utils import get_database, get_logger from atomate.vasp.builders.base import AbstractBuilder logger = get_logger(__name__) __author__ = "Anubhav Jain <ajain@lbl.gov>" class FileMaterialsBuilder(AbstractBuilder): def __init__(self, materials_write, data_file, delimiter=",", header_lines=0): """ Updates the database using a data file. Format of file must be: <material_id or formula>, <property>, <value> Comment lines should *start* with '#'. Args: materials_write: mongodb collection for materials (write access needed) data_file (str): path to data file delimiter (str): delimiter for file parsing header_lines (int): number of header lines to skip in data file """ self._materials = materials_write self._data_file = data_file self._delimiter = delimiter self.header_lines = header_lines def run(self): logger.info("Starting FileMaterials Builder.") with open(self._data_file) as f: line_no = 0 lines = [line for line in f] # only good for smaller files pbar = tqdm(lines) for line in pbar: line = line.strip() if line and not line.startswith("#"): line_no += 1 if line_no > self.header_lines: line = line.split(self._delimiter) if "-" in line[0]: search_val = line[0] search_key = "material_id" else: search_key = "formula_reduced_abc" search_val = Composition( line[0] ).reduced_composition.alphabetical_formula key = line[1] val = line[2] try: val = float(val) except Exception: pass self._materials.update( {search_key: search_val}, {"$set": {key: val}} ) logger.info("FileMaterials Builder finished processing") def reset(self): logger.warning("Cannot reset FileMaterials Builder!") @classmethod def from_file(cls, db_file, data_file=None, m="materials", **kwargs): """ Get a FileMaterialsBuilder using only a db file. Args: db_file (str): path to db file data_file (str): path to data file m (str): name of "materials" collection **kwargs: other parameters to feed into the builder, e.g. mapi_key """ db_write = get_database(db_file, admin=True) if data_file: return cls(db_write[m], data_file, **kwargs) else: raise ValueError("data_file must be provided")
36.452381
83
0.536577
14c018900b7ce5ce1932e16127e786f2e297b8fc
13,975
py
Python
napari/utils/events/evented_model.py
chili-chiu/napari
eb6e672975ce105ac0125f71da3d0970d17cefb9
[ "BSD-3-Clause" ]
7
2018-07-03T17:35:46.000Z
2018-11-07T15:48:58.000Z
napari/utils/events/evented_model.py
chili-chiu/napari
eb6e672975ce105ac0125f71da3d0970d17cefb9
[ "BSD-3-Clause" ]
120
2018-09-04T22:05:13.000Z
2019-03-02T01:13:57.000Z
napari/utils/events/evented_model.py
chili-chiu/napari
eb6e672975ce105ac0125f71da3d0970d17cefb9
[ "BSD-3-Clause" ]
8
2018-09-04T21:48:26.000Z
2019-01-29T04:48:30.000Z
import operator import sys import warnings from contextlib import contextmanager from typing import Any, Callable, ClassVar, Dict, Set, Union import numpy as np from pydantic import BaseModel, PrivateAttr, main, utils from ...utils.misc import pick_equality_operator from ..translations import trans from .event import EmitterGroup, Event # encoders for non-napari specific field types. To declare a custom encoder # for a napari type, add a `_json_encode` method to the class itself. # it will be added to the model json_encoders in :func:`EventedMetaclass.__new__` _BASE_JSON_ENCODERS = {np.ndarray: lambda arr: arr.tolist()} @contextmanager def no_class_attributes(): """Context in which pydantic.main.ClassAttribute just passes value 2. Due to a very annoying decision by PySide2, all class ``__signature__`` attributes may only be assigned **once**. (This seems to be regardless of whether the class has anything to do with PySide2 or not). Furthermore, the PySide2 ``__signature__`` attribute seems to break the python descriptor protocol, which means that class attributes that have a ``__get__`` method will not be able to successfully retrieve their value (instead, the descriptor object itself will be accessed). This plays terribly with Pydantic, which assigns a ``ClassAttribute`` object to the value of ``cls.__signature__`` in ``ModelMetaclass.__new__`` in order to avoid masking the call signature of object instances that have a ``__call__`` method (https://github.com/samuelcolvin/pydantic/pull/1466). So, because we only get to set the ``__signature__`` once, this context manager basically "opts-out" of pydantic's ``ClassAttribute`` strategy, thereby directly setting the ``cls.__signature__`` to an instance of ``inspect.Signature``. For additional context, see: - https://github.com/napari/napari/issues/2264 - https://github.com/napari/napari/pull/2265 - https://bugreports.qt.io/browse/PYSIDE-1004 - https://codereview.qt-project.org/c/pyside/pyside-setup/+/261411 """ if "PySide2" not in sys.modules: yield return # monkey patch the pydantic ClassAttribute object # the second argument to ClassAttribute is the inspect.Signature object def _return2(x, y): return y main.ClassAttribute = _return2 try: yield finally: # undo our monkey patch main.ClassAttribute = utils.ClassAttribute class EventedMetaclass(main.ModelMetaclass): """pydantic ModelMetaclass that preps "equality checking" operations. A metaclass is the thing that "constructs" a class, and ``ModelMetaclass`` is where pydantic puts a lot of it's type introspection and ``ModelField`` creation logic. Here, we simply tack on one more function, that builds a ``cls.__eq_operators__`` dict which is mapping of field name to a function that can be called to check equality of the value of that field with some other object. (used in ``EventedModel.__eq__``) This happens only once, when an ``EventedModel`` class is created (and not when each instance of an ``EventedModel`` is instantiated). """ def __new__(mcs, name, bases, namespace, **kwargs): with no_class_attributes(): cls = super().__new__(mcs, name, bases, namespace, **kwargs) cls.__eq_operators__ = {} for n, f in cls.__fields__.items(): cls.__eq_operators__[n] = pick_equality_operator(f.type_) # If a field type has a _json_encode method, add it to the json # encoders for this model. # NOTE: a _json_encode field must return an object that can be # passed to json.dumps ... but it needn't return a string. if hasattr(f.type_, '_json_encode'): encoder = f.type_._json_encode cls.__config__.json_encoders[f.type_] = encoder # also add it to the base config # required for pydantic>=1.8.0 due to: # https://github.com/samuelcolvin/pydantic/pull/2064 EventedModel.__config__.json_encoders[f.type_] = encoder # check for @_.setters defined on the class, so we can allow them # in EventedModel.__setattr__ cls.__property_setters__ = {} for name, attr in namespace.items(): if isinstance(attr, property) and attr.fset is not None: cls.__property_setters__[name] = attr cls.__field_dependents__ = _get_field_dependents(cls) return cls def _get_field_dependents(cls: 'EventedModel') -> Dict[str, Set[str]]: """Return mapping of field name -> dependent set of property names. Dependencies may be declared in the Model Config to emit an event for a computed property when a model field that it depends on changes e.g. (@property 'c' depends on model fields 'a' and 'b') Examples -------- class MyModel(EventedModel): a: int = 1 b: int = 1 @property def c(self) -> List[int]: return [self.a, self.b] @c.setter def c(self, val: Sequence[int]): self.a, self.b = val class Config: dependencies={'c': ['a', 'b']} """ if not cls.__property_setters__: return {} deps: Dict[str, Set[str]] = {} _deps = getattr(cls.__config__, 'dependencies', None) if _deps: for prop, fields in _deps.items(): if prop not in cls.__property_setters__: raise ValueError( 'Fields with dependencies must be property.setters. ' f'{prop!r} is not.' ) for field in fields: if field not in cls.__fields__: warnings.warn(f"Unrecognized field dependency: {field}") deps.setdefault(field, set()).add(prop) else: # if dependencies haven't been explicitly defined, we can glean # them from the property.fget code object: for prop, setter in cls.__property_setters__.items(): for name in setter.fget.__code__.co_names: if name in cls.__fields__: deps.setdefault(name, set()).add(prop) return deps class EventedModel(BaseModel, metaclass=EventedMetaclass): """A Model subclass that emits an event whenever a field value is changed. Note: As per the standard pydantic behavior, default Field values are not validated (#4138) and should be correctly typed. """ # add private attributes for event emission _events: EmitterGroup = PrivateAttr(default_factory=EmitterGroup) # mapping of name -> property obj for methods that are property setters __property_setters__: ClassVar[Dict[str, property]] # mapping of field name -> dependent set of property names # when field is changed, an event for dependent properties will be emitted. __field_dependents__: ClassVar[Dict[str, Set[str]]] __eq_operators__: ClassVar[Dict[str, Callable[[Any, Any], bool]]] __slots__: ClassVar[Set[str]] = {"__weakref__"} # type: ignore # pydantic BaseModel configuration. see: # https://pydantic-docs.helpmanual.io/usage/model_config/ class Config: # whether to allow arbitrary user types for fields (they are validated # simply by checking if the value is an instance of the type). If # False, RuntimeError will be raised on model declaration arbitrary_types_allowed = True # whether to perform validation on assignment to attributes validate_assignment = True # whether to treat any underscore non-class var attrs as private # https://pydantic-docs.helpmanual.io/usage/models/#private-model-attributes underscore_attrs_are_private = True # whether to validate field defaults (default: False) # see https://github.com/napari/napari/pull/4138 before changing. validate_all = False # https://pydantic-docs.helpmanual.io/usage/exporting_models/#modeljson # NOTE: json_encoders are also added EventedMetaclass.__new__ if the # field declares a _json_encode method. json_encoders = _BASE_JSON_ENCODERS def __init__(self, **kwargs): super().__init__(**kwargs) self._events.source = self # add event emitters for each field which is mutable event_names = [ name for name, field in self.__fields__.items() if field.field_info.allow_mutation ] event_names.extend(self.__property_setters__) self._events.add(**dict.fromkeys(event_names)) def _super_setattr_(self, name: str, value: Any) -> None: # pydantic will raise a ValueError if extra fields are not allowed # so we first check to see if this field has a property.setter. # if so, we use it instead. if name in self.__property_setters__: self.__property_setters__[name].fset(self, value) else: super().__setattr__(name, value) def __setattr__(self, name: str, value: Any) -> None: if name not in getattr(self, 'events', {}): # fallback to default behavior self._super_setattr_(name, value) return # grab current value before = getattr(self, name, object()) # set value using original setter self._super_setattr_(name, value) # if different we emit the event with new value after = getattr(self, name) are_equal = self.__eq_operators__.get(name, operator.eq) if not are_equal(after, before): getattr(self.events, name)(value=after) # emit event # emit events for any dependent computed property setters as well for dep in self.__field_dependents__.get(name, {}): getattr(self.events, dep)(value=getattr(self, dep)) # expose the private EmitterGroup publically @property def events(self) -> EmitterGroup: return self._events @property def _defaults(self): return get_defaults(self) def reset(self): """Reset the state of the model to default values.""" for name, value in self._defaults.items(): if isinstance(value, EventedModel): getattr(self, name).reset() elif ( self.__config__.allow_mutation and self.__fields__[name].field_info.allow_mutation ): setattr(self, name, value) def update( self, values: Union['EventedModel', dict], recurse: bool = True ) -> None: """Update a model in place. Parameters ---------- values : dict, napari.utils.events.EventedModel Values to update the model with. If an EventedModel is passed it is first converted to a dictionary. The keys of this dictionary must be found as attributes on the current model. recurse : bool If True, recursively update fields that are EventedModels. Otherwise, just update the immediate fields of this EventedModel, which is useful when the declared field type (e.g. ``Union``) can have different realized types with different fields. """ if isinstance(values, self.__class__): values = values.dict() if not isinstance(values, dict): raise ValueError( trans._( "Unsupported update from {values}", deferred=True, values=type(values), ) ) with self.events.blocker() as block: for key, value in values.items(): field = getattr(self, key) if isinstance(field, EventedModel) and recurse: field.update(value, recurse=recurse) else: setattr(self, key, value) if block.count: self.events(Event(self)) def __eq__(self, other) -> bool: """Check equality with another object. We override the pydantic approach (which just checks ``self.dict() == other.dict()``) to accommodate more complicated types like arrays, whose truth value is often ambiguous. ``__eq_operators__`` is constructed in ``EqualityMetaclass.__new__`` """ if not isinstance(other, EventedModel): return self.dict() == other for f_name, eq in self.__eq_operators__.items(): if f_name not in other.__eq_operators__: return False if ( hasattr(self, f_name) and hasattr(other, f_name) and not eq(getattr(self, f_name), getattr(other, f_name)) ): return False return True @contextmanager def enums_as_values(self, as_values: bool = True): """Temporarily override how enums are retrieved. Parameters ---------- as_values : bool, optional Whether enums should be shown as values (or as enum objects), by default `True` """ null = object() before = getattr(self.Config, 'use_enum_values', null) self.Config.use_enum_values = as_values try: yield finally: if before is not null: self.Config.use_enum_values = before else: delattr(self.Config, 'use_enum_values') def get_defaults(obj: BaseModel): """Get possibly nested default values for a Model object.""" dflt = {} for k, v in obj.__fields__.items(): d = v.get_default() if d is None and isinstance(v.type_, main.ModelMetaclass): d = get_defaults(v.type_) dflt[k] = d return dflt
39.701705
84
0.632558
c4640e711161c9c853adfba25701bfdeffebbf13
170
py
Python
docs/api-examples-source/widget.selectbox.py
Camilo-Mendoza/streamlit-ML
be8aafdf9f334b92a6e056e6c4f994da82587f80
[ "Apache-2.0" ]
null
null
null
docs/api-examples-source/widget.selectbox.py
Camilo-Mendoza/streamlit-ML
be8aafdf9f334b92a6e056e6c4f994da82587f80
[ "Apache-2.0" ]
9
2021-03-01T20:47:52.000Z
2022-02-12T20:49:50.000Z
docs/api-examples-source/widget.selectbox.py
Camilo-Mendoza/streamlit-ML
be8aafdf9f334b92a6e056e6c4f994da82587f80
[ "Apache-2.0" ]
null
null
null
import streamlit as st option = st.selectbox( 'How would you like to be contacted?', ('Email', 'Home phone', 'Mobile phone')) st.write('You selected:', option)
21.25
44
0.664706
313c5625129b7c2fa4bf487115157cc796a548bd
2,401
py
Python
ensemble.py
JobQiu/kaggle_bowl18
cc62b5d406b0accbdbcf2357b70ee377e0344b3b
[ "MIT" ]
null
null
null
ensemble.py
JobQiu/kaggle_bowl18
cc62b5d406b0accbdbcf2357b70ee377e0344b3b
[ "MIT" ]
null
null
null
ensemble.py
JobQiu/kaggle_bowl18
cc62b5d406b0accbdbcf2357b70ee377e0344b3b
[ "MIT" ]
null
null
null
import model as modellib import pandas as pd import cv2 import os import numpy as np from tqdm import tqdm from inference_config import inference_config,inference_config101 from bowl_dataset import BowlDataset from utils import rle_encode, rle_decode, rle_to_string import functions as f from u_net import * ROOT_DIR = os.getcwd() MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Recreate the model in inference mode model = modellib.MaskRCNN(mode="inference", config=inference_config, model_dir=MODEL_DIR) model_path = 'weights/mask_rcnn_1.h5' # Load trained weights (fill in path to trained weights here) assert model_path != "", "Provide path to trained weights" print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) model2 = modellib.MaskRCNN(mode="inference", config=inference_config, model_dir=MODEL_DIR) model2_path = 'weights/mask_rcnn_2.h5' model2.load_weights(model2_path, by_name=True) model_res101 = modellib.MaskRCNN(mode="inference", config=inference_config101, model_dir=MODEL_DIR) model101_path = 'weights/mask_rcnn_101.h5' model_res101.load_weights(model101_path, by_name=True) u_net = get_unet() u_net.load_weights('u-net/u-net.h5') dataset_test = BowlDataset() dataset_test.load_bowl('stage2_test_final') dataset_test.prepare() output = [] sample_submission = pd.read_csv('stage2_sample_submission_final.csv') ImageId = [] EncodedPixels = [] print('start predicting') for image_id in tqdm(sample_submission.ImageId): image_path = os.path.join('stage2_test_final', image_id, 'images', image_id + '.png') original_image = cv2.imread(image_path) results = model.detect([original_image], verbose=0, probablymask=True) results2 = model2.detect([original_image], verbose=0, probablymask=True) results101 = model_res101.detect([original_image], verbose=0, probablymask=True) temp = [] temp.append(original_image) u_net.predict(np.array(temp)) r = results[0] masks = r['masks'] probablymasks = r['probablymasks'] ImageId_batch, EncodedPixels_batch = f.numpy2encoding_no_overlap2(masks, image_id, r['scores']) ImageId += ImageId_batch EncodedPixels += EncodedPixels_batch f.write2csv('submission_v2.csv', ImageId, EncodedPixels)
30.392405
99
0.723032
38ccbf34a904a78b83d817bedc56491d3114b009
1,467
py
Python
neurolang/probabilistic/cplogic/tests/test_problog.py
hndgzkn/NeuroLang
a3178d47f80bc0941440d9bb09e06c2f217b9566
[ "BSD-3-Clause" ]
1
2021-01-07T02:00:22.000Z
2021-01-07T02:00:22.000Z
neurolang/probabilistic/cplogic/tests/test_problog.py
hndgzkn/NeuroLang
a3178d47f80bc0941440d9bb09e06c2f217b9566
[ "BSD-3-Clause" ]
207
2020-11-04T12:51:10.000Z
2022-03-30T13:42:26.000Z
neurolang/probabilistic/cplogic/tests/test_problog.py
hndgzkn/NeuroLang
a3178d47f80bc0941440d9bb09e06c2f217b9566
[ "BSD-3-Clause" ]
6
2020-11-04T13:59:35.000Z
2021-03-19T05:28:10.000Z
import problog.core import problog.logic import problog.sdd_formula from ....datalog.expressions import Fact from ....expressions import Constant, Symbol from ....logic import Implication from ..problog_solver import cplogic_to_problog from ..program import CPLogicProgram P = Symbol("P") a = Constant("a") def test_convert_cpl_to_pl(): cpl_program = CPLogicProgram() cpl_program.add_probabilistic_facts_from_tuples( P, {(0.2, "a"), (1.0, "b")} ) pl = cplogic_to_problog(cpl_program) query = problog.logic.Term("query") query_pred = problog.logic.Term("P", problog.logic.Var("v")) pl += query(query_pred) res = problog.core.ProbLog.convert(pl, problog.sdd_formula.SDD).evaluate() expected = { problog.logic.Term("P")(problog.logic.Constant("a")): 0.2, problog.logic.Term("P")(problog.logic.Constant("b")): 1.0, } assert res == expected def test_zero_arity(): cpl_program = CPLogicProgram() cpl_program.walk(Fact(P())) cplogic_to_problog(cpl_program) cpl_program = CPLogicProgram() cpl_program.walk(Fact(P(a))) cpl_program.walk(Implication(Symbol("yes")(), P(a))) pl = cplogic_to_problog(cpl_program) query = problog.logic.Term("query") query_pred = problog.logic.Term("yes") pl += query(query_pred) res = problog.core.ProbLog.convert(pl, problog.sdd_formula.SDD).evaluate() expected = {problog.logic.Term("yes"): 1.0} assert res == expected
31.891304
78
0.68848
517fbbef43f7d5a5f1a855971dfa18ed564385d7
3,771
py
Python
fastparquet/test/test_pd_optional_types.py
lithomas1/fastparquet
089a592ebf9eca72b7ef16134d89749ff5454936
[ "Apache-2.0" ]
null
null
null
fastparquet/test/test_pd_optional_types.py
lithomas1/fastparquet
089a592ebf9eca72b7ef16134d89749ff5454936
[ "Apache-2.0" ]
null
null
null
fastparquet/test/test_pd_optional_types.py
lithomas1/fastparquet
089a592ebf9eca72b7ef16134d89749ff5454936
[ "Apache-2.0" ]
null
null
null
import os import pytest import numpy as np import pandas as pd from pandas.testing import assert_frame_equal import fastparquet as fp from fastparquet.test.util import tempdir from fastparquet import write, parquet_thrift from fastparquet.parquet_thrift.parquet import ttypes as tt import numpy.random as random EXPECTED_SERIES_INT8 = pd.Series(random.uniform(low=-128, high=127,size=100)).round() EXPECTED_SERIES_INT16 = pd.Series(random.uniform(low=-32768, high=32767,size=100)).round() EXPECTED_SERIES_INT32 = pd.Series(random.uniform(low=-2147483648, high=2147483647,size=100)).round() EXPECTED_SERIES_INT64 = pd.Series(random.uniform(low=-9223372036854775808, high=9223372036854775807,size=100)).round() EXPECTED_SERIES_UINT8 = pd.Series(random.uniform(low=0, high=255,size=100)).round() EXPECTED_SERIES_UINT16 = pd.Series(random.uniform(low=0, high=65535,size=100)).round() EXPECTED_SERIES_UINT32 = pd.Series(random.uniform(low=0, high=4294967295,size=100)).round() EXPECTED_SERIES_UINT64 = pd.Series(random.uniform(low=0, high=18446744073709551615,size=100)).round() EXPECTED_SERIES_BOOL = pd.Series(random.choice([False, True], 100)) EXPECTED_SERIES_STRING = pd.Series(random.choice([ 'You', 'are', 'my', 'fire', 'The', 'one', 'desire', 'Believe', 'when', 'I', 'say', 'I', 'want', 'it', 'that', 'way' ], 100)) EXPECTED_SERIES_INT8.loc[20:30] = np.nan EXPECTED_SERIES_INT16.loc[20:30] = np.nan EXPECTED_SERIES_INT32.loc[20:30] = np.nan EXPECTED_SERIES_INT64.loc[20:30] = np.nan EXPECTED_SERIES_UINT8.loc[20:30] = np.nan EXPECTED_SERIES_UINT16.loc[20:30] = np.nan EXPECTED_SERIES_UINT32.loc[20:30] = np.nan EXPECTED_SERIES_UINT64.loc[20:30] = np.nan EXPECTED_SERIES_BOOL.loc[20:30] = np.nan EXPECTED_SERIES_STRING.loc[20:30] = np.nan TEST = pd.DataFrame({ 'int8': EXPECTED_SERIES_INT8.astype('Int8'), 'int16': EXPECTED_SERIES_INT16.astype('Int16'), 'int32': EXPECTED_SERIES_INT32.astype('Int32'), 'int64': EXPECTED_SERIES_INT64.astype('Int64'), 'uint8': EXPECTED_SERIES_UINT8.astype('UInt8'), 'uint16': EXPECTED_SERIES_UINT16.astype('UInt16'), 'uint32': EXPECTED_SERIES_UINT32.astype('UInt32'), 'uint64': EXPECTED_SERIES_UINT64.astype('UInt64'), 'bool': EXPECTED_SERIES_BOOL.astype('boolean'), 'string': EXPECTED_SERIES_STRING.astype('string') }) EXPECTED = pd.DataFrame({ 'int8': EXPECTED_SERIES_INT8.astype('float16'), 'int16': EXPECTED_SERIES_INT16.astype('float32'), 'int32': EXPECTED_SERIES_INT32.astype('float64'), 'int64': EXPECTED_SERIES_INT64.astype('float64'), 'uint8': EXPECTED_SERIES_UINT8.astype('float16'), 'uint16': EXPECTED_SERIES_UINT16.astype('float32'), 'uint32': EXPECTED_SERIES_UINT32.astype('float64'), 'uint64': EXPECTED_SERIES_UINT64.astype('float64'), 'bool': EXPECTED_SERIES_BOOL.astype('float16'), 'string': EXPECTED_SERIES_STRING }) EXPECTED_PARQUET_TYPES = { 'int8': 'INT32', 'int16': 'INT32', 'int32': 'INT32', 'int64': 'INT64', 'uint8': 'INT32', 'uint16': 'INT32', 'uint32': 'INT32', 'uint64': 'INT64', 'bool': 'BOOLEAN', 'string': 'BYTE_ARRAY' } @pytest.mark.parametrize('comp', (None,'snappy', 'gzip')) @pytest.mark.parametrize('scheme', ('simple', 'hive')) def test_write_nullable_columns(tempdir, scheme, comp): fname = os.path.join(tempdir, 'test_write_nullable_columns.parquet') write(fname, TEST, file_scheme=scheme, compression=comp) pf = fp.ParquetFile(fname) df = pf.to_pandas() pq_types = { se.name: tt.Type._VALUES_TO_NAMES[se.type] for se in pf.schema.schema_elements if se.type is not None } assert_frame_equal(EXPECTED, df, check_index_type=False, check_dtype=False) assert pq_types == EXPECTED_PARQUET_TYPES
38.876289
118
0.72315
5396740e2baba123b54f1cec8f2f28868c4fcffb
5,042
py
Python
utility/db.py
Andinoriel/diploma
a17060b1f0d54e03ba915e8c483bdb3df9e8787d
[ "MIT" ]
3
2021-05-01T10:57:01.000Z
2021-05-06T16:36:35.000Z
utility/db.py
andinoriel/diploma
a17060b1f0d54e03ba915e8c483bdb3df9e8787d
[ "MIT" ]
null
null
null
utility/db.py
andinoriel/diploma
a17060b1f0d54e03ba915e8c483bdb3df9e8787d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # ================================================================= # # MODULE: utility:db # LOCAL ENTRY POINT: . # # utility # |-- common.sh # |-- db.py *CURRENT* # |-- utility.sh # # COMMENT: python DB log accessor # # ================================================================= import argparse import datetime import sqlite3 class DB: conn = None @staticmethod def connect(path): DB.conn = sqlite3.connect(path) @staticmethod def cursor(): return DB.conn.cursor() @staticmethod def close(): DB.conn.close() @staticmethod def init_db(): query = f''' CREATE TABLE IF NOT EXISTS diploma_module ( id INTEGER PRIMARY KEY, name TEXT, description TEXT, UNIQUE(name) ) ''' DB.cursor().execute(query) query = f''' CREATE TABLE IF NOT EXISTS diploma_log ( id INTEGER PRIMARY KEY, datetime DATETIME, message TEXT, status TEXT, module_id INTEGER, FOREIGN KEY(module_id) REFERENCES diploma_module(id) ) ''' DB.cursor().execute(query) DB.conn.commit() @staticmethod def log(module, datetime, message, status): query = f''' INSERT OR IGNORE INTO diploma_module(name) VALUES('{module}') ''' DB.cursor().execute(query) query = f''' INSERT INTO diploma_log (module_id,datetime,message,status) SELECT id,'{datetime}','{message}','{status}' FROM diploma_module WHERE name='{module}' ''' DB.cursor().execute(query) DB.conn.commit() @staticmethod def get_all(): cursor = DB.cursor() query = f''' SELECT * FROM diploma_log ORDER BY datetime DESC ''' cursor.execute(query) return cursor.fetchall() @staticmethod def get_by_date_range(date_start, date_end): cursor = DB.cursor() query = f''' SELECT * FROM diploma_log WHERE datetime BETWEEN '{date_start}' AND '{date_end}' ORDER BY datetime DESC ''' cursor.execute(query) return cursor.fetchall() @staticmethod def get_by_module(module): cursor = DB.cursor() query = f''' SELECT * FROM diploma_log WHERE module='{module}' ORDER BY datetime DESC ''' cursor.execute(query) return cursor.fetchall() if __name__ == '__main__': parser = argparse.ArgumentParser( description="DBMS sqlite wrapper for diploma") parser.add_argument('-f', '--file', help='path to database', type=str) parser.add_argument('-l', '--log', help='save log to database', nargs='+') parser.add_argument('-a', '--all', help='select all', action='store_true') parser.add_argument('-d', '--by-date-range', help='select by datetime range', nargs='+') parser.add_argument('-m', '--by-module', help='select by module', nargs='+') args = parser.parse_args() DB.connect(args.file) DB.init_db() if args.log: module = args.log[0] datetime = datetime.datetime.now().isoformat() message = args.log[1] status = args.log[2] DB.log(module, datetime, message, status) if args.by_date_range: date_start = args.by_date_range[0] date_end = args.by_date_range[1] print('%-10s | %-30s | %-40s | %-10s' % ('id', 'module', 'datetime', 'status')) print('-'*120) for elem in DB.get_by_date_range(date_start, date_end): print('-'*120) print('%-10s | %-30s | %-40s | %-10s' % (elem[0], elem[1], elem[2], elem[4])) print('-'*120) print(elem[3]) print('='*120) print() if args.by_module: module = args.by_module[0] print('\n' + '-'*120) print(f'\n{module} - SUMMARY') print('\n' + '-'*120) print('%-10s | %-40s | %-10s' % ('id', 'datetime', 'status')) print('-'*120) for elem in DB.get_by_module(module): print('-'*120) print('%-10s | %-40s | %-10s' % (elem[0], elem[2], elem[4])) print('-'*120) print('\n' + elem[3] + '\n') print('='*120) print() if args.all: print('\n' + '-'*120) print(f'\nSUMMARY') print('\n' + '-'*120) print('%-10s | %-30s | %-40s | %-10s' % ('id', 'module', 'datetime', 'status')) print('-'*120) for elem in DB.get_all(): print('-'*120) print('%-10s | %-30s | %-40s | %-10s' % (elem[0], elem[1], elem[2], elem[4])) print('-'*120) print('\n' + elem[3] + '\n') print('='*120) print() else: pass
26.536842
78
0.493257
59e89aba12dc2fbd739e7aa010d5d86c99a4f976
8,649
py
Python
tests/test_graph.py
altdeep/y0
3e9e8d47b08b51f64216000db31d8f4c0fd388a3
[ "BSD-3-Clause" ]
1
2021-09-14T01:36:50.000Z
2021-09-14T01:36:50.000Z
tests/test_graph.py
altdeep/y0
3e9e8d47b08b51f64216000db31d8f4c0fd388a3
[ "BSD-3-Clause" ]
null
null
null
tests/test_graph.py
altdeep/y0
3e9e8d47b08b51f64216000db31d8f4c0fd388a3
[ "BSD-3-Clause" ]
1
2021-09-14T01:36:57.000Z
2021-09-14T01:36:57.000Z
# -*- coding: utf-8 -*- """Test graph construction and conversion.""" import unittest from textwrap import dedent from typing import Set, Tuple import networkx as nx from ananke.graphs import ADMG from y0.examples import verma_1 from y0.graph import DEFAULT_TAG, DEFULT_PREFIX, NxMixedGraph from y0.resources import VIRAL_PATHOGENESIS_PATH class TestGraph(unittest.TestCase): """Test graph construction and conversion.""" def setUp(self) -> None: """Set up the test case.""" self.addTypeEqualityFunc(NxMixedGraph, self.assert_graph_equal) def assert_graph_equal(self, a: NxMixedGraph, b: NxMixedGraph, msg=None) -> None: """Check the graphs are equal (more nice than the builtin :meth:`NxMixedGraph.__eq__` for testing).""" self.assertEqual(set(a.directed.nodes()), set(b.directed.nodes()), msg=msg) self.assertEqual(set(a.undirected.nodes()), set(b.undirected.nodes()), msg=msg) self.assertEqual(set(a.directed.edges()), set(b.directed.edges()), msg=msg) self.assertEqual( set(map(frozenset, a.undirected.edges())), set(map(frozenset, b.undirected.edges())), msg=msg, ) def test_causaleffect_str_verma_1(self): """Test generating R code for the figure 1A graph for causaleffect.""" expected = dedent( """ g <- graph.formula(V1 -+ V2, V2 -+ V3, V3 -+ V4, V2 -+ V4, V4 -+ V2, simplify = FALSE) g <- set.edge.attribute(graph = g, name = "description", index = c(4, 5), value = "U") """ ).strip() self.assertEqual(expected, verma_1.to_causaleffect_str()) def assert_labeled_convertable( self, graph: NxMixedGraph, labeled_edges: Set[Tuple[str, str]] ) -> None: """Test that the graph can be converted to a DAG, then back to an ADMG.""" prefix = DEFULT_PREFIX tag = DEFAULT_TAG labeled_dag = graph.to_latent_variable_dag(prefix=prefix, tag=tag) for node in labeled_dag: self.assertIn(tag, labeled_dag.nodes[node], msg=f"Node: {node}") self.assertEqual(node.startswith(prefix), labeled_dag.nodes[node][tag]) self.assertEqual(labeled_edges, set(labeled_dag.edges())) reconstituted = NxMixedGraph.from_latent_variable_dag(labeled_dag, tag=tag) self.assertEqual(graph, reconstituted) def test_convertable(self): """Test graphs are convertable.""" for graph, labeled_edges in [ ( verma_1, { ("V1", "V2"), ("V2", "V3"), ("V3", "V4"), (f"{DEFULT_PREFIX}0", "V2"), (f"{DEFULT_PREFIX}0", "V4"), }, ), ]: with self.subTest(): self.assert_labeled_convertable(graph, labeled_edges) def test_from_causalfusion(self): """Test importing a CausalFusion graph.""" graph = NxMixedGraph.from_causalfusion_path(VIRAL_PATHOGENESIS_PATH) self.assertIsInstance(graph, NxMixedGraph) def test_from_admg(self): """Test that all ADMGs can be converted to NxMixedGraph.""" expected = NxMixedGraph.from_adj( directed={"W": [], "X": ["Y"], "Y": ["Z"], "Z": []}, undirected={"W": [], "X": ["Z"], "Y": [], "Z": []}, ) admg = ADMG( vertices=["W", "X", "Y", "Z"], di_edges=[["X", "Y"], ["Y", "Z"]], bi_edges=[["X", "Z"]], ) self.assertEqual(expected, NxMixedGraph.from_admg(admg)) def test_from_adj(self): """Test the adjacency graph is not a multigraph.""" directed = dict([("a", ["b", "c"]), ("b", ["a"]), ("c", [])]) expected = NxMixedGraph.from_edges(directed=[("a", "b"), ("a", "c"), ("b", "a")]) self.assertEqual(expected, NxMixedGraph.from_adj(directed=directed)) def test_is_acyclic(self): """Test the directed edges are acyclic.""" example = NxMixedGraph.from_edges(directed=[("a", "b"), ("a", "c"), ("b", "a")]) self.assertFalse(nx.algorithms.dag.is_directed_acyclic_graph(example.directed)) def test_is_not_multigraph(self): """Test the undirected edges are not inverses of each other.""" redundant_edges = [("a", "b"), ("b", "a")] directed_edges = [("a", "b")] expected = NxMixedGraph.from_edges(directed=[("a", "b")], undirected=[("a", "b")]) actual = NxMixedGraph.from_edges(directed=directed_edges, undirected=redundant_edges) self.assertEqual(expected, actual) def test_subgraph(self): """Test generating a subgraph from a set of vertices.""" graph = NxMixedGraph() graph.add_directed_edge("X", "Y") graph.add_directed_edge("Y", "Z") graph.add_undirected_edge("X", "Z") self.assertEqual(graph, graph.subgraph({"X", "Y", "Z"})) subgraph = NxMixedGraph() subgraph.add_directed_edge("X", "Y") self.assertEqual(subgraph, graph.subgraph({"X", "Y"})) def test_intervention(self): """Test generating a subgraph based on an intervention.""" graph = NxMixedGraph() graph.add_directed_edge("X", "Y") graph.add_directed_edge("Z", "X") graph.add_undirected_edge("X", "Z") graph.add_undirected_edge("X", "Y") graph.add_undirected_edge("Y", "Z") self.assertEqual(graph, graph.intervene(set())) intervened_graph = NxMixedGraph() intervened_graph.add_directed_edge("X", "Y") intervened_graph.add_undirected_edge("Z", "Y") self.assertEqual(intervened_graph, graph.intervene({"X"})) def test_remove_nodes_from(self): """Test generating a new graph without the given nodes.""" graph = NxMixedGraph() graph.add_directed_edge("X", "Y") graph.add_directed_edge("Z", "X") graph.add_undirected_edge("X", "Z") graph.add_undirected_edge("X", "Y") graph.add_undirected_edge("Y", "Z") self.assertEqual(graph, graph.remove_nodes_from(set())) subgraph = NxMixedGraph() subgraph.add_undirected_edge("Z", "Y") self.assertEqual(subgraph, graph.remove_nodes_from({"X"})) def test_remove_outgoing_edges_from(self): """Test generating a new graph without the outgoing edgs from the given nodes.""" graph = NxMixedGraph() graph.add_directed_edge("X", "Y") self.assertEqual(graph, graph.remove_outgoing_edges_from(set())) graph = NxMixedGraph() graph.add_undirected_edge("X", "Y") self.assertEqual(graph, graph.remove_outgoing_edges_from(set())) graph = NxMixedGraph() graph.add_directed_edge("W", "X") graph.add_directed_edge("X", "Y") graph.add_directed_edge("Y", "Z") expected = NxMixedGraph() expected.add_node("X") expected.add_directed_edge("W", "X") expected.add_directed_edge("Y", "Z") self.assertEqual(expected, graph.remove_outgoing_edges_from({"X"})) def test_ancestors_inclusive(self): """Test getting ancestors, inclusive.""" graph = NxMixedGraph() graph.add_directed_edge("C", "A") graph.add_directed_edge("C", "B") graph.add_directed_edge("D", "C") graph.add_directed_edge("A", "X") graph.add_directed_edge("A", "Y") graph.add_directed_edge("B", "Z") self.assertEqual({"A", "B", "C", "D"}, graph.ancestors_inclusive({"A", "B"})) graph = NxMixedGraph() graph.add_directed_edge("X", "Z") graph.add_directed_edge("Z", "Y") graph.add_undirected_edge("X", "Y") self.assertEqual({"X", "Y", "Z"}, graph.ancestors_inclusive({"Y"})) self.assertEqual({"X", "Z"}, graph.ancestors_inclusive({"Z"})) self.assertEqual({"X"}, graph.ancestors_inclusive({"X"})) def test_get_c_components(self): """Test that get_c_components works correctly.""" g1 = NxMixedGraph().from_edges(directed=[("X", "Y"), ("Z", "X"), ("Z", "Y")]) c1 = [frozenset(["X"]), frozenset(["Y"]), frozenset(["Z"])] g2 = NxMixedGraph().from_edges(directed=[("X", "Y")], undirected=[("X", "Y")]) c2 = [frozenset(["X", "Y"])] g3 = NxMixedGraph().from_edges(directed=[("X", "M"), ("M", "Y")], undirected=[("X", "Y")]) c3 = [frozenset(["X", "Y"]), frozenset(["M"])] for graph, components in [(g1, c1), (g2, c2), (g3, c3)]: self.assertIsInstance(graph, NxMixedGraph) self.assertEqual(components, graph.get_c_components())
41.782609
110
0.594866
a598cd637c458da80382d89e9c24d4c6b567dd29
22,391
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_08_01/aio/operations/_load_balancers_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_08_01/aio/operations/_load_balancers_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_08_01/aio/operations/_load_balancers_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class LoadBalancersOperations: """LoadBalancersOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2017_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, load_balancer_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} # type: ignore async def begin_delete( self, resource_group_name: str, load_balancer_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, load_balancer_name=load_balancer_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} # type: ignore async def get( self, resource_group_name: str, load_balancer_name: str, expand: Optional[str] = None, **kwargs ) -> "models.LoadBalancer": """Gets the specified load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: LoadBalancer, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_08_01.models.LoadBalancer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LoadBalancer"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LoadBalancer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, load_balancer_name: str, parameters: "models.LoadBalancer", **kwargs ) -> "models.LoadBalancer": cls = kwargs.pop('cls', None) # type: ClsType["models.LoadBalancer"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'LoadBalancer') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('LoadBalancer', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('LoadBalancer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, load_balancer_name: str, parameters: "models.LoadBalancer", **kwargs ) -> AsyncLROPoller["models.LoadBalancer"]: """Creates or updates a load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param parameters: Parameters supplied to the create or update load balancer operation. :type parameters: ~azure.mgmt.network.v2017_08_01.models.LoadBalancer :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either LoadBalancer or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2017_08_01.models.LoadBalancer] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.LoadBalancer"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, load_balancer_name=load_balancer_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('LoadBalancer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["models.LoadBalancerListResult"]: """Gets all the load balancers in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LoadBalancerListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_08_01.models.LoadBalancerListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LoadBalancerListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('LoadBalancerListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/loadBalancers'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.LoadBalancerListResult"]: """Gets all the load balancers in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LoadBalancerListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_08_01.models.LoadBalancerListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LoadBalancerListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('LoadBalancerListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers'} # type: ignore
48.049356
195
0.662811
30cacbdd070dfc6921a7d853332f74425cca7c62
1,470
py
Python
aliyun-python-sdk-cr/aliyunsdkcr/request/v20160607/GetRepoListRequest.py
LittleJober/aliyun-openapi-python-sdk
f45cfa2248a5c8c47b2cebc1d4d1c2516b94df76
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-cr/aliyunsdkcr/request/v20160607/GetRepoListRequest.py
LittleJober/aliyun-openapi-python-sdk
f45cfa2248a5c8c47b2cebc1d4d1c2516b94df76
[ "Apache-2.0" ]
1
2020-05-31T14:51:47.000Z
2020-05-31T14:51:47.000Z
aliyun-python-sdk-cr/aliyunsdkcr/request/v20160607/GetRepoListRequest.py
LittleJober/aliyun-openapi-python-sdk
f45cfa2248a5c8c47b2cebc1d4d1c2516b94df76
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest class GetRepoListRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'cr', '2016-06-07', 'GetRepoList','acr') self.set_uri_pattern('/repos') self.set_method('GET') def get_PageSize(self): return self.get_query_params().get('PageSize') def set_PageSize(self,PageSize): self.add_query_param('PageSize',PageSize) def get_Page(self): return self.get_query_params().get('Page') def set_Page(self,Page): self.add_query_param('Page',Page) def get_Status(self): return self.get_query_params().get('Status') def set_Status(self,Status): self.add_query_param('Status',Status)
32.666667
69
0.748299
b681fd955cb1f63d675b56b1590efb544ca05038
28,205
py
Python
Providers/Scripts/3.x/Scripts/nxFirewall.py
amitsara/PowerShell-DSC-for-Linux
22694d09f1fe61228210aae9bdd53b6f3da4c2d1
[ "MIT" ]
2
2020-05-19T20:07:32.000Z
2020-08-08T00:58:15.000Z
Providers/Scripts/3.x/Scripts/nxFirewall.py
amitsara/PowerShell-DSC-for-Linux
22694d09f1fe61228210aae9bdd53b6f3da4c2d1
[ "MIT" ]
null
null
null
Providers/Scripts/3.x/Scripts/nxFirewall.py
amitsara/PowerShell-DSC-for-Linux
22694d09f1fe61228210aae9bdd53b6f3da4c2d1
[ "MIT" ]
4
2019-10-31T19:10:42.000Z
2022-03-15T07:42:03.000Z
#!/bin/env python # ======================= # Copyright (c) Microsoft Corporation. # All rights reserved. # See license.txt for license information. # ======================= import subprocess import imp import os import sys import socket import re from functools import reduce protocol = imp.load_source('protocol', '../protocol.py') nxDSCLog = imp.load_source('nxDSCLog', '../nxDSCLog.py') LG = nxDSCLog.DSCLog # [ClassVersion("1.0.0"), FriendlyName("nxFirewallResource")] # class MSFT_nxFirewallResource:OMI_BaseResource # { # [Key] string Name; # [Write] string InterfaceName; # [Write] string FirewallType; # Iptables, Ip6tables, yast, \ # ufw, susefirewall2 # [Write ValueMap{"tcp", "udp", "icmp"}] string Protocol; # [Write, {"Present", "Absent"},Values{"Present", "Absent"}] \ # string Ensure; # [Write, ValueMap{"IPv4", "IPv6"},Values{"IPv4", "IPv6}] \ # string AddressFamily; # [Write, ValueMap{"allow, block"},Values{"allow, block}] \ # string Access; # [Write, ValueMap{"new, related, established"}] string State; # [Write, ValueMap{"input, output, forward"},Values{"input, \ # output, forward}] string Direction; # [Write, ValueMap{"top", "after-top", "before-end", "end"},\ # Values{"top", \ # "after-top", "before-end", "end"} string Position; # [Write] string SourceHost; # [Write] string SourcePort; # [Write] string DestinationHost; # [Write] string DestinationPort; # }; def init_vars(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort): if Name is None or Name == '': print('Error: "Name" must be specified.', file=sys.stderr) LG().Log('ERROR', 'Error: "Name" must be specified.') raise Exception('Name must be specified.') Name = Name if InterfaceName is None or InterfaceName == '': InterfaceName = 'eth0' else: InterfaceName = InterfaceName if FirewallType is None or FirewallType == '': print('Error: "FirewallType" must be specified.', file=sys.stderr) LG().Log('ERROR', 'Error: "FirewallType" must be specified.') raise Exception('FirewallType must be specified.') FirewallType = FirewallType.lower() if Protocol is None or Protocol == '': Protocol = 'tcp' Protocol = Protocol if Ensure is None or Ensure == '': Ensure = 'present' Ensure = Ensure.lower() if AddressFamily is None or AddressFamily == '': AddressFamily = 'ipv4' AddressFamily = AddressFamily.lower() if Access is None or Access == '': print( 'Error: "Access" must be specified.', \ file=sys.stderr) LG().Log( 'ERROR', 'Error: "Access" must be specified.') raise Exception('Access must be specified.') Access = Access.lower() if State is None: State = '' if Position is None or Position == '': Position = 'top' Position = Position if SourceHost is None: SourceHost = '' else : SourceHost = SourceHost if ValidateAddress(SourceHost, AddressFamily) is False: print( 'Error: Invalid address for "SourceHost".', file=sys.stderr) LG().Log('ERROR', 'Error: Invalid address for "SourceHost".') raise Exception('Error: Invalid address for "SourceHost".') if AddressFamily == 'ipv6': # ip6tables only looks upto the first ':' if '/' in SourceHost: pfx=SourceHost.split('/')[1] SourceHost = SourceHost.split(':')[0]+'::/'+pfx else: SourceHost = SourceHost.split(':')[0]+'::' if SourcePort is None: SourcePort = '' else : SourcePort = SourcePort if ValidatePort(SourcePort) is False: print( 'Error: Invalid address for "SourcePort".', file=sys.stderr) LG().Log('ERROR', 'Error: Invalid address for "SourcePort".') raise Exception('Error: Invalid address for "SourcePort".') if DestinationHost is None: DestinationHost = '' else : DestinationHost = DestinationHost if ValidateAddress(DestinationHost, AddressFamily) is False: print( 'Error: Invalid address for "DestinationHost".', file=sys.stderr) LG().Log('ERROR', 'Error: Invalid address for "DestinationHost".') raise Exception('Error: Invalid address for "DestinationHost".') if AddressFamily == 'ipv6': # ip6tables only looks upto the first ':' if '/' in DestinationHost: pfx=DestinationHost.split('/')[1] DestinationHost = DestinationHost.split(':')[0]+'::/'+pfx else: DestinationHost = DestinationHost.split(':')[0]+'::' if DestinationPort is None: DestinationPort = '' else : DestinationPort = DestinationPort if ValidatePort(DestinationPort) is False: print( 'Error: Invalid address for "DestinationPort".', file=sys.stderr) LG().Log('ERROR', 'Error: Invalid address for "DestinationPort".') raise Exception('Error: Invalid address for "DestinationPort".') if Direction is None or Direction == '': Direction = 'input' Direction = Direction return Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, \ Access, State, Direction, Position, SourceHost, SourcePort, \ DestinationHost, DestinationPort def Set_Marshall(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort): (Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) = init_vars(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) Rule = RuleBag(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) retval = Set(Rule) return retval def Test_Marshall(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort): (Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) = init_vars(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) Rule = RuleBag(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) if Ensure == 'present': if Test(Rule) == 0: return [0] else: return [-1] else: if Test(Rule) == 0: return [-1] else: return [0] def Get_Marshall(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort): arg_names = list(locals().keys()) (Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) = init_vars(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) Rule = RuleBag(Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) (Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort) = Get(Rule) Name = protocol.MI_String(Name) InterfaceName = protocol.MI_String(InterfaceName) FirewallType = protocol.MI_String(FirewallType) Protocol = protocol.MI_String(Protocol) Ensure = protocol.MI_String(Ensure) AddressFamily = protocol.MI_String(AddressFamily) Access = protocol.MI_String(Access) State = protocol.MI_StringA(State) Direction = protocol.MI_String(Direction) Position = protocol.MI_String(Position) SourceHost = protocol.MI_String(SourceHost) SourcePort = protocol.MI_String(SourcePort) DestinationHost = protocol.MI_String(DestinationHost) DestinationPort = protocol.MI_String(DestinationPort) retd = {} ld = locals() for k in arg_names: retd[k] = ld[k] return 0, retd # ############################ # ## Begin user defined DSC functions # ############################ def RunGetOutput(cmd, no_output, chk_err=True): """ Wrapper for subprocess.check_output. Execute 'cmd'. Returns return code and STDOUT, trapping expected exceptions. Reports exceptions to Error if chk_err parameter is True """ def check_output(no_output, *popenargs, **kwargs): r"""Backport from subprocess module from python 2.7""" if 'stdout' in kwargs: raise ValueError( 'stdout argument not allowed, it will be overridden.') if no_output: out_file = None else: out_file = subprocess.PIPE process = subprocess.Popen(stdout=out_file, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output # Exception classes used by this module. class CalledProcessError(Exception): def __init__(self, returncode, cmd, output=None): self.returncode = returncode self.cmd = cmd self.output = output def __str__(self): return "Command '%s' returned non-zero exit status %d" \ % (self.cmd, self.returncode) subprocess.check_output = check_output subprocess.CalledProcessError = CalledProcessError output = '' try: output = subprocess.check_output( no_output, cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: if chk_err: print('CalledProcessError. Error Code is ' + str(e.returncode), file=sys.stdout) LG().Log('ERROR', 'CalledProcessError. Error Code is ' + str(e.returncode)) print( 'CalledProcessError. Command string was ' + e.cmd, \ file=sys.stdout) LG().Log('ERROR', 'CalledProcessError. Command string was ' + e.cmd, \ ) print('CalledProcessError. Command result was ' + (e.output[:-1]).decode('ascii', 'ignore'), \ file=sys.stdout) LG().Log('ERROR', 'CalledProcessError. Command result was ' + (e.output[:-1]).decode('ascii', 'ignore')) if no_output: return e.returncode, None else: return e.returncode, e.output.decode('ascii', 'ignore') if no_output: return 0, None else: return 0, output.decode('ascii', 'ignore') def ValidateAddress(IPAddress, AddressFamily): if IPAddress == None or len(IPAddress) == 0: # allow empty or None. return True if ':' not in IPAddress and IPAddress[1].isalpha() == True: # dont try to validate a hostname. return True if '/' in IPAddress: IPAddress=IPAddress.split('/')[0] if 'ipv4' in AddressFamily: ptype = socket.AF_INET elif 'ipv6' in AddressFamily: ptype = socket.AF_INET6 else: return False try: socket.inet_pton(ptype, IPAddress) except: return False return True def ValidatePort(Port): try: socket.getaddrinfo(None, Port, 0, 0, socket.IPPROTO_TCP) except: return False return True def IsFirewallRunning(rule): if rule.FirewallType == 'iptables': code, out = RunGetOutput('iptables -L',False) if code == 0: return True if rule.FirewallType == 'ip6tables': code, out = RunGetOutput('ip6tables -L',False) if code == 0: return True elif rule.FirewallType == 'firewalld': code, out = RunGetOutput('ps -ef | grep -v grep | grep firewalld',False) if code == 0: return True elif rule.FirewallType == 'ufw': code, out = RunGetOutput( 'iptables -L | grep -v grep | grep ufw-before-input',False) if code == 0: return True elif rule.FirewallType == 'yast' or rule.FirewallType == 'susefirewall2': code, out = RunGetOutput('iptables -L | grep -v grep | grep SFW2',False) if code == 0: return True return False def RuleExists(rule): if 'instancemethod' in repr(type(rule.cmds[rule.FirewallType]['check'])) : return rule.cmds[rule.FirewallType]['check']() if 'method' in repr(type(rule.cmds[rule.FirewallType]['check'])) : return rule.cmds[rule.FirewallType]['check']() print('REPR IS '+ repr(type(rule.cmds[rule.FirewallType]['check']))) cmd = rule.fmt(rule.cmds[rule.FirewallType]['check']) code, out = RunGetOutput(cmd,False) print('Check rule exists: ' + cmd + ' result code is: ' + str(code)) LG().Log('INFO', 'Check rule exists: ' + cmd + ' result code is: ' + str(code)) return code def GetRuleCountInChain(rule): rule.cmds[rule.FirewallType]['chain']() cmd = rule.iptbls+' -L ' + rule.Direction code, out = RunGetOutput(cmd,False) if code != 0: return 0 if out is not None and len(out) > 0: Val = None try: Val = len(out.splitlines())-2 except: print('ERROR: Rule count is not numeric in Check rule exists: ' + cmd + ' result code is: ' + str(code)) LG().Log('ERROR', 'Rule count is not numeric in Check rule exists: ' + cmd + ' result code is: ' + str(code)) print('Count Rules in chain: ' + cmd + ' result code is: ' + str(code)) LG().Log('INFO', 'Count Rules in chain: ' + cmd + ' result code is: ' + str(code)) if Val is not None: return Val else: return 0 def DoAddRemove(rule): count = GetRuleCountInChain(rule) rule.Index = 0 p = rule.Position if p != 'end': p = 'ind' if rule.Position == 'top': rule.Index = 1 elif rule.Position == 'after-top': if count > 1: rule.Index = 2 else: rule.Index = 1 elif rule.Position == 'before-end': if count > 1: rule.Index = count else: p = 'end' cmd = rule.fmt(rule.cmds[rule.FirewallType][rule.Ensure][p]) code, out = RunGetOutput(cmd,False) print('Set rule ' + rule.Ensure + ': ' + cmd + ' result code is: ' + str(code)) LG().Log('INFO', 'Set rule ' + rule.Ensure + ': ' + cmd + ' result code is: ' + str(code)) if code == 0: rule.cmds[rule.FirewallType]['post']() return code def Test(rule): if IsFirewallRunning(rule) is False: print('Error ' + rule.FirewallType + ' is not running.') LG().Log('ERROR','Error ' + rule.FirewallType + ' is not running.') return -1 if RuleExists(rule) == 0: return 0 return -1 def Set(rule): if IsFirewallRunning(rule) is False: print('Error ' + rule.FirewallType + ' is not running.') LG().Log('ERROR','Error ' + rule.FirewallType + ' is not running.') return [-1] ret = DoAddRemove(rule) if ret == 0: return [0] return [-1] def Get(rule): if Test(rule) == 0: Ensure = 'Present' else: Ensure = 'Absent' return rule.Name, rule.OrigInterfaceName, rule.FirewallType, rule.Protocol, Ensure, \ rule.AddressFamily, rule.Access, rule.OrigDirection, \ rule.Position, rule.SourceHost, rule.SourcePort, \ rule.DestinationHost, rule.DestinationPort iptables_regex=r""" ^-A[ ]+(?P<Direction>.*?)[ ]+ ((?:-s[ ]+)(?P<SourceHost>.*?) (((?:/)(?P<Spfx>.*?)(?:[ ]+))|(?:[ ]+)))? ((?:-d[ ]+)(?P<DestinationHost>.*?) (((?:/)(?P<Dpfx>.*?)(?:[ ]+))|(?:[ ]+)))? ((?:-i[ ]+)(?P<InterfaceName>.*?)(?:[ ]+))? ((?:-p[ ]+)(?P<proto>.*?)(?:[ ]+))? ((?:-m[ ]+)(?P<matchport>.*?)(?:[ ]+))? ((?:--sport[ ]+)(?P<SourcePort>.*?)(?:[ ]+))? ((?:--dport[ ]+)(?P<DestinationPort>.*?)(?:[ ]+))? ((?:-m[ ]+)(?P<matchstate>.*?)(?:[ ]+))? ((?:--state[ ]+)(?P<State>.*?)(?:[ ]+))? ((?:-j[ ]+)(?P<Access>.*?)((?:[ ]+)|(?:$)))? """ class RuleBag(object): def __init__(self, Name, InterfaceName, FirewallType, Protocol, Ensure, AddressFamily, Access, State, Direction, Position, SourceHost, SourcePort, DestinationHost, DestinationPort): self.Name = Name self.FirewallType = FirewallType self.Protocol = Protocol self.Ensure = Ensure self.AddressFamily = AddressFamily self.iptbls='iptables' if self.AddressFamily == 'ipv6' : self.iptbls = 'ip6tables' if 'allow' == Access : self.Access = 'ACCEPT' else: self.Access = 'DROP' if len(State)>0: self.State=reduce(lambda x, y: x + ',' + y, State) else: self.State='' self.Direction = Direction self.Position = Position self.SourceHost = SourceHost self.SourcePort = SourcePort self.DestinationHost = DestinationHost self.DestinationPort = DestinationPort self.Index = 0 self.InterfaceName = InterfaceName self.OrigInterfaceName = InterfaceName if self.Direction.lower() == 'output': self.InterfaceName = '' self.OrigDirection = Direction self.cmds = {} # iptables self.cmds['iptables'] = {} self.cmds['iptables']['present'] = {} self.cmds['iptables']['present']['end'] = self.iptbls + ' -A {Direction} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['iptables']['present']['ind'] = self.iptbls + ' -I {Direction} {Index} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['iptables']['absent'] = {} self.cmds['iptables']['absent']['end'] = self.iptbls + ' -D {Direction} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['iptables']['absent']['ind'] = self.iptbls + ' -D {Direction} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['iptables']['check'] = self.iptables_check self.cmds['iptables']['post'] = self.iptables_post self.cmds['iptables']['chain'] = self.iptables_chain_translate # ip6tables self.cmds['ip6tables'] = self.cmds['iptables'] # firewalld firewall-cmd [--permanent] --direct --add-rule { ipv4 | ipv6 | eb } <table> <chain> <priority> <args> self.cmds['firewalld'] = {} self.cmds['firewalld']['present'] = {} self.cmds['firewalld']['present']['ind'] = 'firewall-cmd --direct --add-rule ' + ' {AddressFamily} filter {Direction} {Index} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['firewalld']['present']['end'] = 'firewall-cmd --direct --add-rule ' + ' {AddressFamily} filter {Direction} {Index} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['firewalld']['absent'] = {} self.cmds['firewalld']['absent']['ind'] = 'firewall-cmd --direct --remove-rule ' + ' {AddressFamily} filter {Direction} {Index} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['firewalld']['absent']['end'] = 'firewall-cmd --direct --remove-rule ' + ' {AddressFamily} filter {Direction} {Index} -i {InterfaceName} -p {Protocol} -s {SourceHost} --sport {SourcePort} -d {DestinationHost} --dport {DestinationPort} -m state --state {State} -j {Access}' self.cmds['firewalld']['check'] = self.iptables_check self.cmds['firewalld']['post'] = self.firewalld_post self.cmds['firewalld']['chain'] = self.firewalld_chain_translate # SuSEfirewall2 self.cmds['susefirewall2'] = {} self.cmds['susefirewall2']['present'] = self.cmds['iptables']['present'] self.cmds['susefirewall2']['absent'] = self.cmds['iptables']['absent'] self.cmds['susefirewall2']['check'] = self.cmds['iptables']['check'] self.cmds['susefirewall2']['post'] = self.susefirewall2_post self.cmds['susefirewall2']['chain'] = self.susefirewall2_chain_translate # SuSEfirewall2 - yast self.cmds['yast']=self.cmds['susefirewall2'] # ufw self.cmds['ufw'] = {} self.cmds['ufw']['present'] = self.cmds['iptables']['present'] self.cmds['ufw']['absent'] = self.cmds['iptables']['absent'] self.cmds['ufw']['check'] = self.iptables_check self.cmds['ufw']['post'] = self.ufw_post self.cmds['ufw']['chain'] = self.ufw_chain_translate def iptables_check(self): self.cmds[self.FirewallType]['chain']() r=re.compile(iptables_regex,re.VERBOSE) code,out = RunGetOutput(self.iptbls + '-save ', False) mykeys=self.__dict__.keys() for line in out.splitlines(): m=r.search(line) if m == None: continue found=True groupd=dict(m.groupdict()) for k in groupd.keys(): if k in mykeys: if groupd[k] == None : groupd[k] = '' if k[-4:] == 'Host': if self.__dict__[k] != None and '/' in self.__dict__[k]: groupd[k]+= '/' + m.group(k[0:1]+'pfx') if groupd[k] == '::': groupd[k] = '' if groupd[k] != self.__dict__[k]: found=False break if found == True: return 0 return 1 def iptables_chain_translate(self): self.Direction = self.OrigDirection.upper() def iptables_post(self): self.update_iptables_rules() def update_iptables_rules(self): rules_file = '/etc/sysconfig/' + self.iptbls code = os.system(self.iptbls + '-save > ' + rules_file) if code != 0 : print('Error: '+ self.iptbls +'-save > ' + rules_file + ' failed.', file=sys.stderr) LG().Log('ERROR', 'Error: '+ self.iptbls +'-save > ' + rules_file + ' failed.') return def firewalld_chain_translate(self): self.Direction = self.OrigDirection.upper() + '_direct' def firewalld_post(self): self.update_firewalld_rules() def update_firewalld_rules(self): p = self.Position if p != 'end': p = 'ind' rule = self.fmt(self.cmds[self.FirewallType][self.Ensure][p]) cmd = rule.replace( 'firewall-cmd', 'firewall-cmd --permanent ') code, out = RunGetOutput(cmd,False) print('Set permanent rule ' + self.Ensure + ': ' + cmd + ' result code is: ' + str(code)) LG().Log('INFO', 'Set permanent rule ' + self.Ensure + ': ' + cmd + ' result code is: ' + str(code)) return def ufw_chain_translate(self): if self.Position == 'top': p = 'before' elif self.Position == 'after-top' or self.Position == 'before-end': p = 'user' else: p = 'after' ufw = 'ufw-' if self.AddressFamily == 'ipv6': ufw = 'ufw6-' self.Direction = ufw + p + '-' + self.OrigDirection.lower() def ufw_post(self): self.update_ufw_rules() def update_ufw_rules(self): rules_file = {} p='' if self.iptbls == 'ip6tables': p='6' rules_file['top'] = '/etc/ufw/before'+p+'.rules' rules_file['after-top'] = '/lib/ufw/user'+p+'.rules' rules_file['before-end'] = '/lib/ufw/user'+p+'.rules' rules_file['end'] = '/etc/ufw/after'+p+'.rules' p='end' if self.Position != 'end': p = 'ind' search_str = \ r'^(.filter)(.*)((:.*?\n\n)|(:.*?\n#.*?\n\n))' rule = self.fmt(self.cmds[self.FirewallType]['present'][p]) rule=re.sub(self.iptbls+r'.*? ','',rule) rplace_str = r'\1\2\3' + rule + '\n\n' text = '' with open(rules_file[self.Position], 'r') as F: text = F.read() text=text.replace(rule+'\n','') # remove rule if self.Ensure == 'present': srch = re.compile(search_str, re.M | re.S) text = srch.sub(rplace_str, text) with open(rules_file[self.Position], 'w') as F: F.write(text) def susefirewall2_chain_translate(self): self.Direction = self.OrigDirection.upper() def susefirewall2_post(self): self.update_susefirewall2_rules() def update_susefirewall2_rules(self): rules_file = '/etc/sysconfig/scripts/SuSEfirewall2-custom' pos = {} pos['top'] = 'fw_custom_before_antispoofing' pos['after-top'] = 'fw_custom_after_antispoofing' pos['before-end'] = 'fw_custom_before_masq' pos['end'] = 'fw_custom_before_denyall' pos['anchor'] = 'true\n' search_str = r'^.*(fw_custom_before_antispoofing)(.*?[{].*?)(\n[ ]+true\n}\n)' rule = self.fmt(self.cmds[self.FirewallType]['present']['end']) rplace_str = r'\1\2' + rule + r'\n\3' text = '' with open(rules_file, 'r') as F: text = F.read() text=text.replace(rule+'\n','') # remove rule if self.Ensure == 'present': srch = re.compile(search_str, re.M| re.S) text = srch.sub(rplace_str, text) with open(rules_file, 'w') as F: F.write(text) def fmt(self, st): for k in self.__dict__.keys(): if 'cmds' in k: continue if k == 'Direction': self.cmds[self.FirewallType]['chain']() if type(self.__dict__[k]) == int : st = st.replace('{' + k + '}', str(self.__dict__[k])) elif self.__dict__[k]==None or (type(self.__dict__[k]) == str and len(self.__dict__[k]) == 0) : st = re.sub(r'}'+k[::-1]+'{.*?[-]+', '', st[::-1])[::-1] if k == 'State': st = st.replace('-m state ','') else : st = st.replace('{' + k + '}', self.__dict__[k]) return st
40.350501
290
0.583159
b26e115ce9f2358cca2523a9f605cb5aa50a072e
2,272
py
Python
tools/fuchsia/gather_flutter_runner_artifacts.py
adazh/engine
1f3013163d48f46cc967b31aac193691ef28f7d9
[ "BSD-3-Clause" ]
null
null
null
tools/fuchsia/gather_flutter_runner_artifacts.py
adazh/engine
1f3013163d48f46cc967b31aac193691ef28f7d9
[ "BSD-3-Clause" ]
null
null
null
tools/fuchsia/gather_flutter_runner_artifacts.py
adazh/engine
1f3013163d48f46cc967b31aac193691ef28f7d9
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright 2013 The Flutter Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Gather all the fuchsia artifacts to a destination directory. """ import argparse import errno import json import os import platform import shutil import subprocess import sys _ARTIFACT_PATH_TO_DST = { 'flutter_runner': 'flutter_runner', 'icudtl.dat': 'data/icudtl.dat', 'dart_runner': 'dart_runner', 'flutter_patched_sdk': 'flutter_patched_sdk' } def EnsureParentExists(path): dir_name, _ = os.path.split(path) if not os.path.exists(dir_name): os.makedirs(dir_name) def CopyPath(src, dst): try: EnsureParentExists(dst) shutil.copytree(src, dst) except OSError as exc: if exc.errno == errno.ENOTDIR: shutil.copy(src, dst) else: raise def CreateMetaPackage(dst_root): meta = os.path.join(dst_root, 'meta') if not os.path.isdir(meta): os.makedirs(meta) content = {} content['name'] = 'flutter_runner' content['version'] = '0.0.1' package = os.path.join(meta, 'package') with open(package, 'w') as out_file: json.dump(content, out_file) def GatherArtifacts(src_root, dst_root, create_meta_package=True): if not os.path.exists(dst_root): os.makedirs(dst_root) else: shutil.rmtree(dst_root) for src_rel, dst_rel in _ARTIFACT_PATH_TO_DST.iteritems(): src_full = os.path.join(src_root, src_rel) dst_full = os.path.join(dst_root, dst_rel) if not os.path.exists(src_full): print 'Unable to find artifact: ', str(src_full) sys.exit(1) CopyPath(src_full, dst_full) if create_meta_package: CreateMetaPackage(dst_root) def main(): parser = argparse.ArgumentParser() parser.add_argument( '--artifacts-root', dest='artifacts_root', action='store', required=True) parser.add_argument( '--dest-dir', dest='dst_dir', action='store', required=True) args = parser.parse_args() assert os.path.exists(args.artifacts_root) dst_parent = os.path.abspath(os.path.join(args.dst_dir, os.pardir)) assert os.path.exists(dst_parent) GatherArtifacts(args.artifacts_root, args.dst_dir) return 0 if __name__ == '__main__': sys.exit(main())
24.430108
79
0.707306
562c69f25298f5645b5b0fb7f451780b59ae5b3e
8,103
py
Python
binance-spot/impl/websocketconnection.py
AbdeenM/binance-spot
f48ab28dd837dd66bb8373e5e4b1bf24379e46ad
[ "MIT" ]
2
2021-05-05T00:25:11.000Z
2021-08-07T23:26:55.000Z
binance-spot/impl/websocketconnection.py
AbdeenM/binance-spot
f48ab28dd837dd66bb8373e5e4b1bf24379e46ad
[ "MIT" ]
null
null
null
binance-spot/impl/websocketconnection.py
AbdeenM/binance-spot
f48ab28dd837dd66bb8373e5e4b1bf24379e46ad
[ "MIT" ]
null
null
null
import threading import websocket import gzip import ssl import logging from urllib import parse import urllib.parse from common.scripts.binance_spot.impl.utils.timeservice import get_current_timestamp from common.scripts.binance_spot.impl.utils.urlparamsbuilder import UrlParamsBuilder from common.scripts.binance_spot.impl.utils.apisignature import create_signature from common.scripts.binance_spot.exception.binanceapiexception import BinanceApiException from common.scripts.binance_spot.impl.utils import * from common.scripts.binance_spot.base.printobject import * from common.scripts.binance_spot.model.constant import * # Key: ws, Value: connection websocket_connection_handler = dict() def on_message(ws, message): websocket_connection = websocket_connection_handler[ws] websocket_connection.on_message(message) return def on_error(ws, error): websocket_connection = websocket_connection_handler[ws] websocket_connection.on_failure(error) def on_close(ws): websocket_connection = websocket_connection_handler[ws] websocket_connection.on_close() def on_open(ws): websocket_connection = websocket_connection_handler[ws] websocket_connection.on_open(ws) connection_id = 0 class ConnectionState: IDLE = 0 CONNECTED = 1 CLOSED_ON_ERROR = 2 def websocket_func(*args): connection_instance = args[0] connection_instance.ws = websocket.WebSocketApp(connection_instance.url, on_message=on_message, on_error=on_error, on_close=on_close) global websocket_connection_handler websocket_connection_handler[connection_instance.ws] = connection_instance connection_instance.logger.info( '[Sub][' + str(connection_instance.id) + '] Connecting...') connection_instance.delay_in_second = -1 connection_instance.ws.on_open = on_open connection_instance.ws.run_forever(sslopt={'cert_reqs': ssl.CERT_NONE}) connection_instance.logger.info( '[Sub][' + str(connection_instance.id) + '] Connection event loop down') if connection_instance.state == ConnectionState.CONNECTED: connection_instance.state = ConnectionState.IDLE class WebsocketConnection: def __init__(self, api_key, secret_key, uri, watch_dog, request): self.__thread = None self.url = uri self.__api_key = api_key self.__secret_key = secret_key self.request = request self.__watch_dog = watch_dog self.delay_in_second = -1 self.ws = None self.last_receive_time = 0 self.logger = logging.getLogger('algo-trading') self.state = ConnectionState.IDLE global connection_id connection_id += 1 self.id = connection_id def in_delay_connection(self): return self.delay_in_second != -1 def re_connect_in_delay(self, delay_in_second): if self.ws is not None: self.ws.close() self.ws = None self.delay_in_second = delay_in_second self.logger.warning('[Sub][' + str(self.id) + '] Reconnecting after ' + str(self.delay_in_second) + ' seconds later') def re_connect(self): if self.delay_in_second != 0: self.delay_in_second -= 1 self.logger.warning('In delay connection: ' + str(self.delay_in_second)) else: self.connect() def connect(self): if self.state == ConnectionState.CONNECTED: self.logger.info('[Sub][' + str(self.id) + '] Already connected') else: self.__thread = threading.Thread( target=websocket_func, args=[self]) self.__thread.start() def send(self, data): self.ws.send(data) def close(self): self.ws.close() del websocket_connection_handler[self.ws] self.__watch_dog.on_connection_closed(self) self.logger.error('[Sub][' + str(self.id) + '] Closing normally') def on_open(self, ws): self.logger.info('[Sub][' + str(self.id) + '] Connected to server') self.ws = ws self.last_receive_time = get_current_timestamp() self.state = ConnectionState.CONNECTED self.__watch_dog.on_connection_created(self) if self.request.subscription_handler is not None: self.request.subscription_handler(self) return def on_error(self, error_message): if self.request.error_handler is not None: print('error') exception = BinanceApiException( BinanceApiException.SUBSCRIPTION_ERROR, error_message) self.request.error_handler(exception) self.logger.error('[Sub][' + str(self.id) + '] ' + str(error_message)) def on_failure(self, error): print('on_failure') self.on_error('Unexpected error: ' + str(error)) self.close_on_error() def on_message(self, message): self.last_receive_time = get_current_timestamp() json_wrapper = parse_json_from_string(message) if json_wrapper.contain_key('status') and json_wrapper.get_string('status') != 'ok': error_code = json_wrapper.get_string_or_default( 'err-code', 'Unknown error') error_msg = json_wrapper.get_string_or_default( 'err-msg', 'Unknown error') self.on_error(error_code + ': ' + error_msg) elif json_wrapper.contain_key('err-code') and json_wrapper.get_int('err-code') != 0: error_code = json_wrapper.get_string_or_default( 'err-code', 'Unknown error') error_msg = json_wrapper.get_string_or_default( 'err-msg', 'Unknown error') self.on_error(error_code + ': ' + error_msg) elif json_wrapper.contain_key('result') and json_wrapper.contain_key('id'): self.__on_receive_response(json_wrapper) else: self.__on_receive_payload(json_wrapper) def __on_receive_response(self, json_wrapper): res = None try: res = json_wrapper.get_int('id') except Exception as e: self.on_error('Failed to parse servers response: ' + str(e)) try: if self.request.update_callback is not None: self.request.update_callback( SubscribeMessageType.RESPONSE, res) except Exception as e: self.on_error('Process error: ' + str(e) + ' You should capture the exception in your error handler') def __on_receive_payload(self, json_wrapper): res = None try: if self.request.json_parser is not None: res = self.request.json_parser(json_wrapper) except Exception as e: self.on_error('Failed to parse servers response: ' + str(e)) try: if self.request.update_callback is not None: self.request.update_callback(SubscribeMessageType.PAYLOAD, res) except Exception as e: self.on_error('Process error: ' + str(e) + ' You should capture the exception in your error handler') if self.request.auto_close: self.close() def __process_ping_on_trading_line(self, ping_ts): self.send('{\'op\':\'pong\',\'ts\':' + str(ping_ts) + '}') return def __process_ping_on_market_line(self, ping_ts): self.send('{\'pong\':' + str(ping_ts) + '}') return def close_on_error(self): if self.ws is not None: self.ws.close() self.state = ConnectionState.CLOSED_ON_ERROR self.logger.error( '[Sub][' + str(self.id) + '] Connection is closing due to error')
37.864486
93
0.622362
bdf2811a1e637f7c7453e0a14fee15df3d055d03
7,392
py
Python
google/ads/google_ads/v3/proto/resources/group_placement_view_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v3/proto/resources/group_placement_view_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v3/proto/resources/group_placement_view_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
1
2020-03-13T00:14:31.000Z
2020-03-13T00:14:31.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v3/proto/resources/group_placement_view.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v3.proto.enums import placement_type_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_placement__type__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v3/proto/resources/group_placement_view.proto', package='google.ads.googleads.v3.resources', syntax='proto3', serialized_options=_b('\n%com.google.ads.googleads.v3.resourcesB\027GroupPlacementViewProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v3/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V3.Resources\312\002!Google\\Ads\\GoogleAds\\V3\\Resources\352\002%Google::Ads::GoogleAds::V3::Resources'), serialized_pb=_b('\nBgoogle/ads/googleads_v3/proto/resources/group_placement_view.proto\x12!google.ads.googleads.v3.resources\x1a\x38google/ads/googleads_v3/proto/enums/placement_type.proto\x1a\x19google/api/resource.proto\x1a\x1egoogle/protobuf/wrappers.proto\x1a\x1cgoogle/api/annotations.proto\"\x8d\x03\n\x12GroupPlacementView\x12\x15\n\rresource_name\x18\x01 \x01(\t\x12/\n\tplacement\x18\x02 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0c\x64isplay_name\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\ntarget_url\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12V\n\x0eplacement_type\x18\x05 \x01(\x0e\x32>.google.ads.googleads.v3.enums.PlacementTypeEnum.PlacementType:q\xea\x41n\n+googleads.googleapis.com/GroupPlacementView\x12?customers/{customer}/groupPlacementViews/{group_placement_view}B\x84\x02\n%com.google.ads.googleads.v3.resourcesB\x17GroupPlacementViewProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v3/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V3.Resources\xca\x02!Google\\Ads\\GoogleAds\\V3\\Resources\xea\x02%Google::Ads::GoogleAds::V3::Resourcesb\x06proto3') , dependencies=[google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_placement__type__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _GROUPPLACEMENTVIEW = _descriptor.Descriptor( name='GroupPlacementView', full_name='google.ads.googleads.v3.resources.GroupPlacementView', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v3.resources.GroupPlacementView.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='placement', full_name='google.ads.googleads.v3.resources.GroupPlacementView.placement', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='display_name', full_name='google.ads.googleads.v3.resources.GroupPlacementView.display_name', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_url', full_name='google.ads.googleads.v3.resources.GroupPlacementView.target_url', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='placement_type', full_name='google.ads.googleads.v3.resources.GroupPlacementView.placement_type', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('\352An\n+googleads.googleapis.com/GroupPlacementView\022?customers/{customer}/groupPlacementViews/{group_placement_view}'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=253, serialized_end=650, ) _GROUPPLACEMENTVIEW.fields_by_name['placement'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _GROUPPLACEMENTVIEW.fields_by_name['display_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _GROUPPLACEMENTVIEW.fields_by_name['target_url'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _GROUPPLACEMENTVIEW.fields_by_name['placement_type'].enum_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_placement__type__pb2._PLACEMENTTYPEENUM_PLACEMENTTYPE DESCRIPTOR.message_types_by_name['GroupPlacementView'] = _GROUPPLACEMENTVIEW _sym_db.RegisterFileDescriptor(DESCRIPTOR) GroupPlacementView = _reflection.GeneratedProtocolMessageType('GroupPlacementView', (_message.Message,), dict( DESCRIPTOR = _GROUPPLACEMENTVIEW, __module__ = 'google.ads.googleads_v3.proto.resources.group_placement_view_pb2' , __doc__ = """A group placement view. Attributes: resource_name: The resource name of the group placement view. Group placement view resource names have the form: ``customers/{customer_id}/ groupPlacementViews/{ad_group_id}~{base64_placement}`` placement: The automatic placement string at group level, e. g. web domain, mobile app ID, or a YouTube channel ID. display_name: Domain name for websites and YouTube channel name for YouTube channels. target_url: URL of the group placement, e.g. domain, link to the mobile application in app store, or a YouTube channel URL. placement_type: Type of the placement, e.g. Website, YouTube Channel, Mobile Application. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v3.resources.GroupPlacementView) )) _sym_db.RegisterMessage(GroupPlacementView) DESCRIPTOR._options = None _GROUPPLACEMENTVIEW._options = None # @@protoc_insertion_point(module_scope)
56
1,159
0.789502
68e865b3e056ad03b6f05bf5cc0a7de987f6cfd7
34,915
py
Python
pype/plugins/maya/publish/collect_render.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
pype/plugins/maya/publish/collect_render.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
pype/plugins/maya/publish/collect_render.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
""" This collector will go through render layers in maya and prepare all data needed to create instances and their representations for submition and publishing on farm. Requires: instance -> families instance -> setMembers context -> currentFile context -> workspaceDir context -> user session -> AVALON_ASSET Optional: Provides: instance -> label instance -> subset instance -> attachTo instance -> setMembers instance -> publish instance -> frameStart instance -> frameEnd instance -> byFrameStep instance -> renderer instance -> family instance -> families instance -> asset instance -> time instance -> author instance -> source instance -> expectedFiles instance -> resolutionWidth instance -> resolutionHeight instance -> pixelAspect """ import re import os import types import six import json from abc import ABCMeta, abstractmethod from maya import cmds import maya.app.renderSetup.model.renderSetup as renderSetup import pyblish.api from avalon import maya, api import pype.maya.lib as lib R_SINGLE_FRAME = re.compile(r"^(-?)\d+$") R_FRAME_RANGE = re.compile(r"^(?P<sf>(-?)\d+)-(?P<ef>(-?)\d+)$") R_FRAME_NUMBER = re.compile(r".+\.(?P<frame>[0-9]+)\..+") R_LAYER_TOKEN = re.compile( r".*%l.*|.*<layer>.*|.*<renderlayer>.*", re.IGNORECASE ) R_AOV_TOKEN = re.compile(r".*%a.*|.*<aov>.*|.*<renderpass>.*", re.IGNORECASE) R_SUBSTITUTE_AOV_TOKEN = re.compile(r"%a|<aov>|<renderpass>", re.IGNORECASE) R_REMOVE_AOV_TOKEN = re.compile(r"_%a|_<aov>|_<renderpass>", re.IGNORECASE) # to remove unused renderman tokens R_CLEAN_FRAME_TOKEN = re.compile(r"\.?<f\d>\.?", re.IGNORECASE) R_CLEAN_EXT_TOKEN = re.compile(r"\.?<ext>\.?", re.IGNORECASE) R_SUBSTITUTE_LAYER_TOKEN = re.compile( r"%l|<layer>|<renderlayer>", re.IGNORECASE ) R_SUBSTITUTE_CAMERA_TOKEN = re.compile(r"%c|<camera>", re.IGNORECASE) R_SUBSTITUTE_SCENE_TOKEN = re.compile(r"%s|<scene>", re.IGNORECASE) RENDERER_NAMES = { "mentalray": "MentalRay", "vray": "V-Ray", "arnold": "Arnold", "renderman": "Renderman", "redshift": "Redshift", } # not sure about the renderman image prefix ImagePrefixes = { "mentalray": "defaultRenderGlobals.imageFilePrefix", "vray": "vraySettings.fileNamePrefix", "arnold": "defaultRenderGlobals.imageFilePrefix", "renderman": "rmanGlobals.imageFileFormat", "redshift": "defaultRenderGlobals.imageFilePrefix", } class CollectMayaRender(pyblish.api.ContextPlugin): """Gather all publishable render layers from renderSetup""" order = pyblish.api.CollectorOrder + 0.01 hosts = ["maya"] label = "Collect Render Layers" def process(self, context): render_instance = None for instance in context: if "rendering" in instance.data["families"]: render_instance = instance render_instance.data["remove"] = True # make sure workfile instance publishing is enabled if "workfile" in instance.data["families"]: instance.data["publish"] = True if not render_instance: self.log.info( "No render instance found, skipping render " "layer collection." ) return render_globals = render_instance collected_render_layers = render_instance.data["setMembers"] filepath = context.data["currentFile"].replace("\\", "/") asset = api.Session["AVALON_ASSET"] workspace = context.data["workspaceDir"] self._rs = renderSetup.instance() maya_render_layers = {l.name(): l for l in self._rs.getRenderLayers()} self.maya_layers = maya_render_layers for layer in collected_render_layers: # every layer in set should start with `LAYER_` prefix try: expected_layer_name = re.search(r"^LAYER_(.*)", layer).group(1) except IndexError: msg = "Invalid layer name in set [ {} ]".format(layer) self.log.warnig(msg) continue self.log.info("processing %s" % layer) # check if layer is part of renderSetup if expected_layer_name not in maya_render_layers: msg = "Render layer [ {} ] is not in " "Render Setup".format( expected_layer_name ) self.log.warning(msg) continue # check if layer is renderable if not maya_render_layers[expected_layer_name].isRenderable(): msg = "Render layer [ {} ] is not " "renderable".format( expected_layer_name ) self.log.warning(msg) continue # test if there are sets (subsets) to attach render to sets = cmds.sets(layer, query=True) or [] attachTo = [] if sets: for s in sets: attachTo.append( { "version": None, # we need integrator for that "subset": s, "family": cmds.getAttr("{}.family".format(s)), } ) self.log.info(" -> attach render to: {}".format(s)) layer_name = "rs_{}".format(expected_layer_name) # collect all frames we are expecting to be rendered renderer = cmds.getAttr( "defaultRenderGlobals.currentRenderer" ).lower() # handle various renderman names if renderer.startswith("renderman"): renderer = "renderman" # return all expected files for all cameras and aovs in given # frame range exf = ExpectedFiles() exp_files = exf.get(renderer, layer_name) self.log.info("multipart: {}".format(exf.multipart)) assert exp_files, "no file names were generated, this is bug" # if we want to attach render to subset, check if we have AOV's # in expectedFiles. If so, raise error as we cannot attach AOV # (considered to be subset on its own) to another subset if attachTo: assert len(exp_files[0].keys()) == 1, ( "attaching multiple AOVs or renderable cameras to " "subset is not supported" ) # append full path full_exp_files = [] aov_dict = {} # we either get AOVs or just list of files. List of files can # mean two things - there are no AOVs enabled or multipass EXR # is produced. In either case we treat those as `beauty`. if isinstance(exp_files[0], dict): for aov, files in exp_files[0].items(): full_paths = [] for ef in files: full_path = os.path.join(workspace, "renders", ef) full_path = full_path.replace("\\", "/") full_paths.append(full_path) aov_dict[aov] = full_paths else: full_paths = [] for ef in exp_files: full_path = os.path.join(workspace, "renders", ef) full_path = full_path.replace("\\", "/") full_paths.append(full_path) aov_dict["beauty"] = full_paths frame_start_render = int(self.get_render_attribute( "startFrame", layer=layer_name)) frame_end_render = int(self.get_render_attribute( "endFrame", layer=layer_name)) if (int(context.data['frameStartHandle']) == frame_start_render and int(context.data['frameEndHandle']) == frame_end_render): # noqa: W503, E501 handle_start = context.data['handleStart'] handle_end = context.data['handleEnd'] frame_start = context.data['frameStart'] frame_end = context.data['frameEnd'] frame_start_handle = context.data['frameStartHandle'] frame_end_handle = context.data['frameEndHandle'] else: handle_start = 0 handle_end = 0 frame_start = frame_start_render frame_end = frame_end_render frame_start_handle = frame_start_render frame_end_handle = frame_end_render full_exp_files.append(aov_dict) self.log.info(full_exp_files) self.log.info("collecting layer: {}".format(layer_name)) # Get layer specific settings, might be overrides data = { "subset": expected_layer_name, "attachTo": attachTo, "setMembers": layer_name, "multipartExr": exf.multipart, "publish": True, "handleStart": handle_start, "handleEnd": handle_end, "frameStart": frame_start, "frameEnd": frame_end, "frameStartHandle": frame_start_handle, "frameEndHandle": frame_end_handle, "byFrameStep": int( self.get_render_attribute("byFrameStep", layer=layer_name)), "renderer": self.get_render_attribute("currentRenderer", layer=layer_name), # instance subset "family": "renderlayer", "families": ["renderlayer"], "asset": asset, "time": api.time(), "author": context.data["user"], # Add source to allow tracing back to the scene from # which was submitted originally "source": filepath, "expectedFiles": full_exp_files, "resolutionWidth": cmds.getAttr("defaultResolution.width"), "resolutionHeight": cmds.getAttr("defaultResolution.height"), "pixelAspect": cmds.getAttr("defaultResolution.pixelAspect"), } # Apply each user defined attribute as data for attr in cmds.listAttr(layer, userDefined=True) or list(): try: value = cmds.getAttr("{}.{}".format(layer, attr)) except Exception: # Some attributes cannot be read directly, # such as mesh and color attributes. These # are considered non-essential to this # particular publishing pipeline. value = None data[attr] = value # Include (optional) global settings # Get global overrides and translate to Deadline values overrides = self.parse_options(str(render_globals)) data.update(**overrides) # Define nice label label = "{0} ({1})".format(expected_layer_name, data["asset"]) label += " [{0}-{1}]".format( int(data["frameStartHandle"]), int(data["frameEndHandle"]) ) instance = context.create_instance(expected_layer_name) instance.data["label"] = label instance.data.update(data) self.log.debug("data: {}".format(json.dumps(data, indent=4))) def parse_options(self, render_globals): """Get all overrides with a value, skip those without Here's the kicker. These globals override defaults in the submission integrator, but an empty value means no overriding is made. Otherwise, Frames would override the default frames set under globals. Args: render_globals (str): collection of render globals Returns: dict: only overrides with values """ attributes = maya.read(render_globals) options = {"renderGlobals": {}} options["renderGlobals"]["Priority"] = attributes["priority"] # Check for specific pools pool_a, pool_b = self._discover_pools(attributes) options["renderGlobals"].update({"Pool": pool_a}) if pool_b: options["renderGlobals"].update({"SecondaryPool": pool_b}) # Machine list machine_list = attributes["machineList"] if machine_list: key = "Whitelist" if attributes["whitelist"] else "Blacklist" options["renderGlobals"][key] = machine_list # Suspend publish job state = "Suspended" if attributes["suspendPublishJob"] else "Active" options["publishJobState"] = state chunksize = attributes.get("framesPerTask", 1) options["renderGlobals"]["ChunkSize"] = chunksize # Override frames should be False if extendFrames is False. This is # to ensure it doesn't go off doing crazy unpredictable things override_frames = False extend_frames = attributes.get("extendFrames", False) if extend_frames: override_frames = attributes.get("overrideExistingFrame", False) options["extendFrames"] = extend_frames options["overrideExistingFrame"] = override_frames maya_render_plugin = "MayaBatch" if not attributes.get("useMayaBatch", True): maya_render_plugin = "MayaCmd" options["mayaRenderPlugin"] = maya_render_plugin return options def _discover_pools(self, attributes): pool_a = None pool_b = None # Check for specific pools pool_b = [] if "primaryPool" in attributes: pool_a = attributes["primaryPool"] if "secondaryPool" in attributes: pool_b = attributes["secondaryPool"] else: # Backwards compatibility pool_str = attributes.get("pools", None) if pool_str: pool_a, pool_b = pool_str.split(";") # Ensure empty entry token is caught if pool_b == "-": pool_b = None return pool_a, pool_b def _get_overrides(self, layer): rset = self.maya_layers[layer].renderSettingsCollectionInstance() return rset.getOverrides() def get_render_attribute(self, attr, layer): return lib.get_attr_in_layer( "defaultRenderGlobals.{}".format(attr), layer=layer ) class ExpectedFiles: multipart = False def get(self, renderer, layer): if renderer.lower() == "arnold": return self._get_files(ExpectedFilesArnold(layer)) elif renderer.lower() == "vray": return self._get_files(ExpectedFilesVray(layer)) elif renderer.lower() == "redshift": return self._get_files(ExpectedFilesRedshift(layer)) elif renderer.lower() == "mentalray": return self._get_files(ExpectedFilesMentalray(layer)) elif renderer.lower() == "renderman": return self._get_files(ExpectedFilesRenderman(layer)) else: raise UnsupportedRendererException( "unsupported {}".format(renderer) ) def _get_files(self, renderer): files = renderer.get_files() self.multipart = renderer.multipart return files @six.add_metaclass(ABCMeta) class AExpectedFiles: renderer = None layer = None multipart = False def __init__(self, layer): self.layer = layer @abstractmethod def get_aovs(self): pass def get_renderer_prefix(self): try: file_prefix = cmds.getAttr(ImagePrefixes[self.renderer]) except KeyError: raise UnsupportedRendererException( "Unsupported renderer {}".format(self.renderer) ) return file_prefix def _get_layer_data(self): # ______________________________________________ # ____________________/ ____________________________________________/ # 1 - get scene name /__________________/ # ____________________/ scene_dir, scene_basename = os.path.split(cmds.file(q=True, loc=True)) scene_name, _ = os.path.splitext(scene_basename) # ______________________________________________ # ____________________/ ____________________________________________/ # 2 - detect renderer /__________________/ # ____________________/ renderer = self.renderer # ________________________________________________ # __________________/ ______________________________________________/ # 3 - image prefix /__________________/ # __________________/ file_prefix = self.get_renderer_prefix() if not file_prefix: raise RuntimeError("Image prefix not set") default_ext = cmds.getAttr("defaultRenderGlobals.imfPluginKey") # ________________________________________________ # __________________/ ______________________________________________/ # 4 - get renderable cameras_____________/ # __________________/ # if we have <camera> token in prefix path we'll expect output for # every renderable camera in layer. renderable_cameras = self.get_renderable_cameras() # ________________________________________________ # __________________/ ______________________________________________/ # 5 - get AOVs /____________________/ # __________________/ enabled_aovs = self.get_aovs() layer_name = self.layer if self.layer.startswith("rs_"): layer_name = self.layer[3:] start_frame = int(self.get_render_attribute("startFrame")) end_frame = int(self.get_render_attribute("endFrame")) frame_step = int(self.get_render_attribute("byFrameStep")) padding = int(self.get_render_attribute("extensionPadding")) scene_data = { "frameStart": start_frame, "frameEnd": end_frame, "frameStep": frame_step, "padding": padding, "cameras": renderable_cameras, "sceneName": scene_name, "layerName": layer_name, "renderer": renderer, "defaultExt": default_ext, "filePrefix": file_prefix, "enabledAOVs": enabled_aovs, } return scene_data def _generate_single_file_sequence(self, layer_data): expected_files = [] file_prefix = layer_data["filePrefix"] for cam in layer_data["cameras"]: mappings = ( (R_SUBSTITUTE_SCENE_TOKEN, layer_data["sceneName"]), (R_SUBSTITUTE_LAYER_TOKEN, layer_data["layerName"]), (R_SUBSTITUTE_CAMERA_TOKEN, cam), # this is required to remove unfilled aov token, for example # in Redshift (R_REMOVE_AOV_TOKEN, ""), (R_CLEAN_FRAME_TOKEN, ""), (R_CLEAN_EXT_TOKEN, ""), ) for regex, value in mappings: file_prefix = re.sub(regex, value, file_prefix) for frame in range( int(layer_data["frameStart"]), int(layer_data["frameEnd"]) + 1, int(layer_data["frameStep"]), ): expected_files.append( "{}.{}.{}".format( file_prefix, str(frame).rjust(layer_data["padding"], "0"), layer_data["defaultExt"], ) ) return expected_files def _generate_aov_file_sequences(self, layer_data): expected_files = [] aov_file_list = {} file_prefix = layer_data["filePrefix"] for aov in layer_data["enabledAOVs"]: for cam in layer_data["cameras"]: mappings = ( (R_SUBSTITUTE_SCENE_TOKEN, layer_data["sceneName"]), (R_SUBSTITUTE_LAYER_TOKEN, layer_data["layerName"]), (R_SUBSTITUTE_CAMERA_TOKEN, cam), (R_SUBSTITUTE_AOV_TOKEN, aov[0]), (R_CLEAN_FRAME_TOKEN, ""), (R_CLEAN_EXT_TOKEN, ""), ) for regex, value in mappings: file_prefix = re.sub(regex, value, file_prefix) aov_files = [] for frame in range( int(layer_data["frameStart"]), int(layer_data["frameEnd"]) + 1, int(layer_data["frameStep"]), ): aov_files.append( "{}.{}.{}".format( file_prefix, str(frame).rjust(layer_data["padding"], "0"), aov[1], ) ) # if we have more then one renderable camera, append # camera name to AOV to allow per camera AOVs. aov_name = aov[0] if len(layer_data["cameras"]) > 1: aov_name = "{}_{}".format(aov[0], cam) aov_file_list[aov_name] = aov_files file_prefix = layer_data["filePrefix"] expected_files.append(aov_file_list) return expected_files def get_files(self): """ This method will return list of expected files. It will translate render token strings ('<RenderPass>', etc.) to their values. This task is tricky as every renderer deals with this differently. It depends on `get_aovs()` abstract method implemented for every supported renderer. """ layer_data = self._get_layer_data() expected_files = [] if layer_data.get("enabledAOVs"): expected_files = self._generate_aov_file_sequences(layer_data) else: expected_files = self._generate_single_file_sequence(layer_data) return expected_files def get_renderable_cameras(self): cam_parents = [ cmds.listRelatives(x, ap=True)[-1] for x in cmds.ls(cameras=True) ] renderable_cameras = [] for cam in cam_parents: renderable = False if self.maya_is_true(cmds.getAttr("{}.renderable".format(cam))): renderable = True for override in self.get_layer_overrides( "{}.renderable".format(cam), self.layer ): renderable = self.maya_is_true(override) if renderable: renderable_cameras.append(cam) return renderable_cameras def maya_is_true(self, attr_val): """ Whether a Maya attr evaluates to True. When querying an attribute value from an ambiguous object the Maya API will return a list of values, which need to be properly handled to evaluate properly. """ if isinstance(attr_val, types.BooleanType): return attr_val elif isinstance(attr_val, (types.ListType, types.GeneratorType)): return any(attr_val) else: return bool(attr_val) def get_layer_overrides(self, attr, layer): connections = cmds.listConnections(attr, plugs=True) if connections: for connection in connections: if connection: node_name = connection.split(".")[0] if cmds.nodeType(node_name) == "renderLayer": attr_name = "%s.value" % ".".join( connection.split(".")[:-1] ) if node_name == layer: yield cmds.getAttr(attr_name) def get_render_attribute(self, attr): return lib.get_attr_in_layer( "defaultRenderGlobals.{}".format(attr), layer=self.layer ) class ExpectedFilesArnold(AExpectedFiles): # Arnold AOV driver extension mapping # Is there a better way? aiDriverExtension = { "jpeg": "jpg", "exr": "exr", "deepexr": "exr", "png": "png", "tiff": "tif", "mtoa_shaders": "ass", # TODO: research what those last two should be "maya": "", } def __init__(self, layer): super(ExpectedFilesArnold, self).__init__(layer) self.renderer = "arnold" def get_aovs(self): enabled_aovs = [] try: if not ( cmds.getAttr("defaultArnoldRenderOptions.aovMode") and not cmds.getAttr("defaultArnoldDriver.mergeAOVs") # noqa: W503, E501 ): # AOVs are merged in mutli-channel file self.multipart = True return enabled_aovs except ValueError: # this occurs when Render Setting windows was not opened yet. In # such case there are no Arnold options created so query for AOVs # will fail. We terminate here as there are no AOVs specified then. # This state will most probably fail later on some Validator # anyway. return enabled_aovs # AOVs are set to be rendered separately. We should expect # <RenderPass> token in path. ai_aovs = [n for n in cmds.ls(type="aiAOV")] for aov in ai_aovs: enabled = self.maya_is_true(cmds.getAttr("{}.enabled".format(aov))) ai_driver = cmds.listConnections("{}.outputs".format(aov))[0] ai_translator = cmds.getAttr("{}.aiTranslator".format(ai_driver)) try: aov_ext = self.aiDriverExtension[ai_translator] except KeyError: msg = ( "Unrecognized arnold " "driver format for AOV - {}" ).format(cmds.getAttr("{}.name".format(aov))) raise AOVError(msg) for override in self.get_layer_overrides( "{}.enabled".format(aov), self.layer ): enabled = self.maya_is_true(override) if enabled: # If aov RGBA is selected, arnold will translate it to `beauty` aov_name = cmds.getAttr("%s.name" % aov) if aov_name == "RGBA": aov_name = "beauty" enabled_aovs.append((aov_name, aov_ext)) # Append 'beauty' as this is arnolds # default. If <RenderPass> token is specified and no AOVs are # defined, this will be used. enabled_aovs.append( (u"beauty", cmds.getAttr("defaultRenderGlobals.imfPluginKey")) ) return enabled_aovs class ExpectedFilesVray(AExpectedFiles): # V-ray file extension mapping # 5 - exr # 6 - multichannel exr # 13 - deep exr def __init__(self, layer): super(ExpectedFilesVray, self).__init__(layer) self.renderer = "vray" def get_renderer_prefix(self): prefix = super(ExpectedFilesVray, self).get_renderer_prefix() prefix = "{}_<aov>".format(prefix) return prefix def get_files(self): expected_files = super(ExpectedFilesVray, self).get_files() # we need to add one sequence for plain beauty if AOVs are enabled. # as vray output beauty without 'beauty' in filename. layer_data = self._get_layer_data() if layer_data.get("enabledAOVs"): expected_files[0][u"beauty"] = self._generate_single_file_sequence( layer_data ) # noqa: E501 return expected_files def get_aovs(self): enabled_aovs = [] try: # really? do we set it in vray just by selecting multichannel exr? if ( cmds.getAttr("vraySettings.imageFormatStr") == "exr (multichannel)" # noqa: W503 ): # AOVs are merged in mutli-channel file self.multipart = True return enabled_aovs except ValueError: # this occurs when Render Setting windows was not opened yet. In # such case there are no Arnold options created so query for AOVs # will fail. We terminate here as there are no AOVs specified then. # This state will most probably fail later on some Validator # anyway. return enabled_aovs default_ext = cmds.getAttr("vraySettings.imageFormatStr") if default_ext == "exr (multichannel)" or default_ext == "exr (deep)": default_ext = "exr" vr_aovs = [ n for n in cmds.ls( type=["VRayRenderElement", "VRayRenderElementSet"] ) ] # todo: find out how to detect multichannel exr for vray for aov in vr_aovs: enabled = self.maya_is_true(cmds.getAttr("{}.enabled".format(aov))) for override in self.get_layer_overrides( "{}.enabled".format(aov), "rs_{}".format(self.layer) ): enabled = self.maya_is_true(override) if enabled: # todo: find how vray set format for AOVs enabled_aovs.append( (self._get_vray_aov_name(aov), default_ext)) return enabled_aovs def _get_vray_aov_name(self, node): # Get render element pass type vray_node_attr = next( attr for attr in cmds.listAttr(node) if attr.startswith("vray_name") ) pass_type = vray_node_attr.rsplit("_", 1)[-1] # Support V-Ray extratex explicit name (if set by user) if pass_type == "extratex": explicit_attr = "{}.vray_explicit_name_extratex".format(node) explicit_name = cmds.getAttr(explicit_attr) if explicit_name: return explicit_name # Node type is in the attribute name but we need to check if value # of the attribute as it can be changed return cmds.getAttr("{}.{}".format(node, vray_node_attr)) class ExpectedFilesRedshift(AExpectedFiles): # mapping redshift extension dropdown values to strings ext_mapping = ["iff", "exr", "tif", "png", "tga", "jpg"] def __init__(self, layer): super(ExpectedFilesRedshift, self).__init__(layer) self.renderer = "redshift" def get_renderer_prefix(self): prefix = super(ExpectedFilesRedshift, self).get_renderer_prefix() prefix = "{}_<aov>".format(prefix) return prefix def get_files(self): expected_files = super(ExpectedFilesRedshift, self).get_files() # we need to add one sequence for plain beauty if AOVs are enabled. # as redshift output beauty without 'beauty' in filename. layer_data = self._get_layer_data() if layer_data.get("enabledAOVs"): expected_files[0][u"beauty"] = self._generate_single_file_sequence( layer_data ) # noqa: E501 return expected_files def get_aovs(self): enabled_aovs = [] try: if self.maya_is_true( cmds.getAttr("redshiftOptions.exrForceMultilayer") ): # AOVs are merged in mutli-channel file self.multipart = True return enabled_aovs except ValueError: # this occurs when Render Setting windows was not opened yet. In # such case there are no Arnold options created so query for AOVs # will fail. We terminate here as there are no AOVs specified then. # This state will most probably fail later on some Validator # anyway. return enabled_aovs default_ext = self.ext_mapping[ cmds.getAttr("redshiftOptions.imageFormat") ] rs_aovs = [n for n in cmds.ls(type="RedshiftAOV")] # todo: find out how to detect multichannel exr for redshift for aov in rs_aovs: enabled = self.maya_is_true(cmds.getAttr("{}.enabled".format(aov))) for override in self.get_layer_overrides( "{}.enabled".format(aov), self.layer ): enabled = self.maya_is_true(override) if enabled: enabled_aovs.append( (cmds.getAttr("%s.name" % aov), default_ext) ) return enabled_aovs class ExpectedFilesRenderman(AExpectedFiles): def __init__(self, layer): super(ExpectedFilesRenderman, self).__init__(layer) self.renderer = "renderman" def get_aovs(self): enabled_aovs = [] default_ext = "exr" displays = cmds.listConnections("rmanGlobals.displays") for aov in displays: aov_name = str(aov) if aov_name == "rmanDefaultDisplay": aov_name = "beauty" enabled = self.maya_is_true(cmds.getAttr("{}.enable".format(aov))) for override in self.get_layer_overrides( "{}.enable".format(aov), self.layer ): enabled = self.maya_is_true(override) if enabled: enabled_aovs.append((aov_name, default_ext)) return enabled_aovs def get_files(self): """ In renderman we hack it with prepending path. This path would normally be translated from `rmanGlobals.imageOutputDir`. We skip this and harcode prepend path we expect. There is no place for user to mess around with this settings anyway and it is enforced in render settings validator. """ layer_data = self._get_layer_data() new_aovs = {} expected_files = super(ExpectedFilesRenderman, self).get_files() # we always get beauty for aov, files in expected_files[0].items(): new_files = [] for file in files: new_file = "{}/{}/{}".format( layer_data["sceneName"], layer_data["layerName"], file ) new_files.append(new_file) new_aovs[aov] = new_files return [new_aovs] class ExpectedFilesMentalray(AExpectedFiles): def __init__(self, layer): raise UnimplementedRendererException("Mentalray not implemented") def get_aovs(self): return [] class AOVError(Exception): pass class UnsupportedRendererException(Exception): pass class UnimplementedRendererException(Exception): pass
36.331946
101
0.574882
5c7acf00d4b56f7d990ed6160e824fbd92f1a51e
2,202
py
Python
src/camera/test_run.py
jphacks/TK_1804
b71e5ee95ea60476758979845f3ebfd5a4355d41
[ "MIT" ]
1
2018-11-19T14:46:38.000Z
2018-11-19T14:46:38.000Z
src/camera/test_run.py
jphacks/TK_1804
b71e5ee95ea60476758979845f3ebfd5a4355d41
[ "MIT" ]
11
2018-10-27T09:31:41.000Z
2018-11-13T07:05:11.000Z
src/camera/test_run.py
jphacks/TK_1804
b71e5ee95ea60476758979845f3ebfd5a4355d41
[ "MIT" ]
1
2021-08-10T04:41:55.000Z
2021-08-10T04:41:55.000Z
import numpy as np from head_vector import HeadVector from select_speakers import SelectSpeakers if __name__ == '__main__': face_landmark_path = './src/camera/shape_predictor_68_face_landmarks.dat' K = [6.523417721418979909e+02, 0.0, 3.240992613348381610e+02, 0.0, 6.314784883620466189e+02, 2.369864861289960629e+02, 0.0, 0.0, 1.0] D = [-4.425469845416301617e-01,4.114960065684757362e-01,5.860505097580077059e-03,3.197849383691316570e-03,-3.379210829526543836e-01] cam_matrix = np.array(K).reshape(3, 3).astype(np.float32) dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32) object_pts = np.float32([[6.825897, 6.760612, 4.402142], [1.330353, 7.122144, 6.903745], [-1.330353, 7.122144, 6.903745], [-6.825897, 6.760612, 4.402142], [5.311432, 5.485328, 3.987654], [1.789930, 5.393625, 4.413414], [-1.789930, 5.393625, 4.413414], [-5.311432, 5.485328, 3.987654], [2.005628, 1.409845, 6.165652], [-2.005628, 1.409845, 6.165652], [2.774015, -2.080775, 5.048531], [-2.774015, -2.080775, 5.048531], [0.000000, -3.116408, 6.097667], [0.000000, -7.415691, 4.070434]]) reprojectsrc = np.float32([[10.0, 10.0, 10.0], [10.0, 10.0, -10.0], [10.0, -10.0, -10.0], [10.0, -10.0, 10.0], [-10.0, 10.0, 10.0], [-10.0, 10.0, -10.0], [-10.0, -10.0, -10.0], [-10.0, -10.0, 10.0]]) line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]] select_speaker = SelectSpeakers(K, D, object_pts, reprojectsrc, line_pairs, face_landmark_path) while(True): print(select_speaker.estimate_head_orientation(1))
44.04
136
0.470027
8e01f22d15dc38990736170d05f1bb4cb40ac4fe
3,432
py
Python
venv/lib/python3.8/site-packages/cairosvg/shapes.py
sakthipriya-07/BuildingConstructionMaterialsSupply
e4b32d97eb6e574e78b955a03a0717bc7b5d13d4
[ "MIT" ]
1
2021-06-22T18:52:15.000Z
2021-06-22T18:52:15.000Z
venv/lib/python3.8/site-packages/cairosvg/shapes.py
sakthipriya-07/BuildingConstructionMaterialsSupply
e4b32d97eb6e574e78b955a03a0717bc7b5d13d4
[ "MIT" ]
7
2021-03-05T23:08:02.000Z
2022-03-12T00:47:19.000Z
venv/lib/python3.8/site-packages/cairosvg/shapes.py
sakthipriya-07/BuildingConstructionMaterialsSupply
e4b32d97eb6e574e78b955a03a0717bc7b5d13d4
[ "MIT" ]
null
null
null
""" Shapes drawers. """ from math import pi from .helpers import normalize, point, point_angle, size def circle(surface, node): """Draw a circle ``node`` on ``surface``.""" r = size(surface, node.get('r')) if not r: return cx = size(surface, node.get('cx'), 'x') cy = size(surface, node.get('cy'), 'y') surface.context.new_sub_path() surface.context.arc(cx, cy, r, 0, 2 * pi) def ellipse(surface, node): """Draw an ellipse ``node`` on ``surface``.""" rx = size(surface, node.get('rx'), 'x') ry = size(surface, node.get('ry'), 'y') if not rx or not ry: return cx = size(surface, node.get('cx'), 'x') cy = size(surface, node.get('cy'), 'y') ratio = ry / rx surface.context.new_sub_path() surface.context.save() surface.context.scale(1, ratio) surface.context.arc(cx, cy / ratio, rx, 0, 2 * pi) surface.context.restore() def line(surface, node): """Draw a line ``node``.""" x1, y1, x2, y2 = tuple( size(surface, node.get(position), position[0]) for position in ('x1', 'y1', 'x2', 'y2')) surface.context.move_to(x1, y1) surface.context.line_to(x2, y2) angle = point_angle(x1, y1, x2, y2) node.vertices = [(x1, y1), (pi - angle, angle), (x2, y2)] def polygon(surface, node): """Draw a polygon ``node`` on ``surface``.""" polyline(surface, node) surface.context.close_path() def polyline(surface, node): """Draw a polyline ``node``.""" points = normalize(node.get('points', '')) if points: x, y, points = point(surface, points) surface.context.move_to(x, y) node.vertices = [(x, y)] while points: x_old, y_old = x, y x, y, points = point(surface, points) angle = point_angle(x_old, y_old, x, y) node.vertices.append((pi - angle, angle)) surface.context.line_to(x, y) node.vertices.append((x, y)) def rect(surface, node): """Draw a rect ``node`` on ``surface``.""" x, y = size(surface, node.get('x'), 'x'), size(surface, node.get('y'), 'y') width = size(surface, node.get('width'), 'x') height = size(surface, node.get('height'), 'y') rx = node.get('rx') ry = node.get('ry') if rx and ry is None: ry = rx elif ry and rx is None: rx = ry rx = size(surface, rx, 'x') ry = size(surface, ry, 'y') if rx == 0 or ry == 0: surface.context.rectangle(x, y, width, height) else: if rx > width / 2: rx = width / 2 if ry > height / 2: ry = height / 2 # Inspired by Cairo Cookbook # http://cairographics.org/cookbook/roundedrectangles/ ARC_TO_BEZIER = 4 * (2 ** .5 - 1) / 3 c1 = ARC_TO_BEZIER * rx c2 = ARC_TO_BEZIER * ry surface.context.new_path() surface.context.move_to(x + rx, y) surface.context.rel_line_to(width - 2 * rx, 0) surface.context.rel_curve_to(c1, 0, rx, c2, rx, ry) surface.context.rel_line_to(0, height - 2 * ry) surface.context.rel_curve_to(0, c2, c1 - rx, ry, -rx, ry) surface.context.rel_line_to(-width + 2 * rx, 0) surface.context.rel_curve_to(-c1, 0, -rx, -c2, -rx, -ry) surface.context.rel_line_to(0, -height + 2 * ry) surface.context.rel_curve_to(0, -c2, rx - c1, -ry, rx, -ry) surface.context.close_path()
30.642857
79
0.56148
4bd75cd3193f2dbc5fe51cf26004e965daf3b368
10,893
py
Python
lib-python/2.7/ctypes/test/test_byteswap.py
jeff5/jython-whinchat
65d8e5268189f8197295ff2d91be3decb1ee0081
[ "CNRI-Jython" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
BitmessageKit/Vendor/static-python/Lib/ctypes/test/test_byteswap.py
VoluntaryLabs/BitmessageKit
dd634977a629ab4dec184e12bb6324cc01149ba3
[ "MIT" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
BitmessageKit/Vendor/static-python/Lib/ctypes/test/test_byteswap.py
VoluntaryLabs/BitmessageKit
dd634977a629ab4dec184e12bb6324cc01149ba3
[ "MIT" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
import sys, unittest, struct, math, ctypes from binascii import hexlify from ctypes import * def bin(s): return hexlify(memoryview(s)).upper() # Each *simple* type that supports different byte orders has an # __ctype_be__ attribute that specifies the same type in BIG ENDIAN # byte order, and a __ctype_le__ attribute that is the same type in # LITTLE ENDIAN byte order. # # For Structures and Unions, these types are created on demand. class Test(unittest.TestCase): def X_test(self): print >> sys.stderr, sys.byteorder for i in range(32): bits = BITS() setattr(bits, "i%s" % i, 1) dump(bits) def test_endian_short(self): if sys.byteorder == "little": self.assertTrue(c_short.__ctype_le__ is c_short) self.assertTrue(c_short.__ctype_be__.__ctype_le__ is c_short) else: self.assertTrue(c_short.__ctype_be__ is c_short) self.assertTrue(c_short.__ctype_le__.__ctype_be__ is c_short) s = c_short.__ctype_be__(0x1234) self.assertEqual(bin(struct.pack(">h", 0x1234)), "1234") self.assertEqual(bin(s), "1234") self.assertEqual(s.value, 0x1234) s = c_short.__ctype_le__(0x1234) self.assertEqual(bin(struct.pack("<h", 0x1234)), "3412") self.assertEqual(bin(s), "3412") self.assertEqual(s.value, 0x1234) s = c_ushort.__ctype_be__(0x1234) self.assertEqual(bin(struct.pack(">h", 0x1234)), "1234") self.assertEqual(bin(s), "1234") self.assertEqual(s.value, 0x1234) s = c_ushort.__ctype_le__(0x1234) self.assertEqual(bin(struct.pack("<h", 0x1234)), "3412") self.assertEqual(bin(s), "3412") self.assertEqual(s.value, 0x1234) def test_endian_int(self): if sys.byteorder == "little": self.assertTrue(c_int.__ctype_le__ is c_int) self.assertTrue(c_int.__ctype_be__.__ctype_le__ is c_int) else: self.assertTrue(c_int.__ctype_be__ is c_int) self.assertTrue(c_int.__ctype_le__.__ctype_be__ is c_int) s = c_int.__ctype_be__(0x12345678) self.assertEqual(bin(struct.pack(">i", 0x12345678)), "12345678") self.assertEqual(bin(s), "12345678") self.assertEqual(s.value, 0x12345678) s = c_int.__ctype_le__(0x12345678) self.assertEqual(bin(struct.pack("<i", 0x12345678)), "78563412") self.assertEqual(bin(s), "78563412") self.assertEqual(s.value, 0x12345678) s = c_uint.__ctype_be__(0x12345678) self.assertEqual(bin(struct.pack(">I", 0x12345678)), "12345678") self.assertEqual(bin(s), "12345678") self.assertEqual(s.value, 0x12345678) s = c_uint.__ctype_le__(0x12345678) self.assertEqual(bin(struct.pack("<I", 0x12345678)), "78563412") self.assertEqual(bin(s), "78563412") self.assertEqual(s.value, 0x12345678) def test_endian_longlong(self): if sys.byteorder == "little": self.assertTrue(c_longlong.__ctype_le__ is c_longlong) self.assertTrue(c_longlong.__ctype_be__.__ctype_le__ is c_longlong) else: self.assertTrue(c_longlong.__ctype_be__ is c_longlong) self.assertTrue(c_longlong.__ctype_le__.__ctype_be__ is c_longlong) s = c_longlong.__ctype_be__(0x1234567890ABCDEF) self.assertEqual(bin(struct.pack(">q", 0x1234567890ABCDEF)), "1234567890ABCDEF") self.assertEqual(bin(s), "1234567890ABCDEF") self.assertEqual(s.value, 0x1234567890ABCDEF) s = c_longlong.__ctype_le__(0x1234567890ABCDEF) self.assertEqual(bin(struct.pack("<q", 0x1234567890ABCDEF)), "EFCDAB9078563412") self.assertEqual(bin(s), "EFCDAB9078563412") self.assertEqual(s.value, 0x1234567890ABCDEF) s = c_ulonglong.__ctype_be__(0x1234567890ABCDEF) self.assertEqual(bin(struct.pack(">Q", 0x1234567890ABCDEF)), "1234567890ABCDEF") self.assertEqual(bin(s), "1234567890ABCDEF") self.assertEqual(s.value, 0x1234567890ABCDEF) s = c_ulonglong.__ctype_le__(0x1234567890ABCDEF) self.assertEqual(bin(struct.pack("<Q", 0x1234567890ABCDEF)), "EFCDAB9078563412") self.assertEqual(bin(s), "EFCDAB9078563412") self.assertEqual(s.value, 0x1234567890ABCDEF) def test_endian_float(self): if sys.byteorder == "little": self.assertTrue(c_float.__ctype_le__ is c_float) self.assertTrue(c_float.__ctype_be__.__ctype_le__ is c_float) else: self.assertTrue(c_float.__ctype_be__ is c_float) self.assertTrue(c_float.__ctype_le__.__ctype_be__ is c_float) s = c_float(math.pi) self.assertEqual(bin(struct.pack("f", math.pi)), bin(s)) # Hm, what's the precision of a float compared to a double? self.assertAlmostEqual(s.value, math.pi, 6) s = c_float.__ctype_le__(math.pi) self.assertAlmostEqual(s.value, math.pi, 6) self.assertEqual(bin(struct.pack("<f", math.pi)), bin(s)) s = c_float.__ctype_be__(math.pi) self.assertAlmostEqual(s.value, math.pi, 6) self.assertEqual(bin(struct.pack(">f", math.pi)), bin(s)) def test_endian_double(self): if sys.byteorder == "little": self.assertTrue(c_double.__ctype_le__ is c_double) self.assertTrue(c_double.__ctype_be__.__ctype_le__ is c_double) else: self.assertTrue(c_double.__ctype_be__ is c_double) self.assertTrue(c_double.__ctype_le__.__ctype_be__ is c_double) s = c_double(math.pi) self.assertEqual(s.value, math.pi) self.assertEqual(bin(struct.pack("d", math.pi)), bin(s)) s = c_double.__ctype_le__(math.pi) self.assertEqual(s.value, math.pi) self.assertEqual(bin(struct.pack("<d", math.pi)), bin(s)) s = c_double.__ctype_be__(math.pi) self.assertEqual(s.value, math.pi) self.assertEqual(bin(struct.pack(">d", math.pi)), bin(s)) def test_endian_other(self): self.assertTrue(c_byte.__ctype_le__ is c_byte) self.assertTrue(c_byte.__ctype_be__ is c_byte) self.assertTrue(c_ubyte.__ctype_le__ is c_ubyte) self.assertTrue(c_ubyte.__ctype_be__ is c_ubyte) self.assertTrue(c_char.__ctype_le__ is c_char) self.assertTrue(c_char.__ctype_be__ is c_char) def test_struct_fields_1(self): if sys.byteorder == "little": base = BigEndianStructure else: base = LittleEndianStructure class T(base): pass _fields_ = [("a", c_ubyte), ("b", c_byte), ("c", c_short), ("d", c_ushort), ("e", c_int), ("f", c_uint), ("g", c_long), ("h", c_ulong), ("i", c_longlong), ("k", c_ulonglong), ("l", c_float), ("m", c_double), ("n", c_char), ("b1", c_byte, 3), ("b2", c_byte, 3), ("b3", c_byte, 2), ("a", c_int * 3 * 3 * 3)] T._fields_ = _fields_ # these fields do not support different byte order: for typ in c_wchar, c_void_p, POINTER(c_int): _fields_.append(("x", typ)) class T(base): pass self.assertRaises(TypeError, setattr, T, "_fields_", [("x", typ)]) def test_struct_struct(self): # nested structures with different byteorders # create nested structures with given byteorders and set memory to data for nested, data in ( (BigEndianStructure, b'\0\0\0\1\0\0\0\2'), (LittleEndianStructure, b'\1\0\0\0\2\0\0\0'), ): for parent in ( BigEndianStructure, LittleEndianStructure, Structure, ): class NestedStructure(nested): _fields_ = [("x", c_uint32), ("y", c_uint32)] class TestStructure(parent): _fields_ = [("point", NestedStructure)] self.assertEqual(len(data), sizeof(TestStructure)) ptr = POINTER(TestStructure) s = cast(data, ptr)[0] del ctypes._pointer_type_cache[TestStructure] self.assertEqual(s.point.x, 1) self.assertEqual(s.point.y, 2) def test_struct_fields_2(self): # standard packing in struct uses no alignment. # So, we have to align using pad bytes. # # Unaligned accesses will crash Python (on those platforms that # don't allow it, like sparc solaris). if sys.byteorder == "little": base = BigEndianStructure fmt = ">bxhid" else: base = LittleEndianStructure fmt = "<bxhid" class S(base): _fields_ = [("b", c_byte), ("h", c_short), ("i", c_int), ("d", c_double)] s1 = S(0x12, 0x1234, 0x12345678, 3.14) s2 = struct.pack(fmt, 0x12, 0x1234, 0x12345678, 3.14) self.assertEqual(bin(s1), bin(s2)) def test_unaligned_nonnative_struct_fields(self): if sys.byteorder == "little": base = BigEndianStructure fmt = ">b h xi xd" else: base = LittleEndianStructure fmt = "<b h xi xd" class S(base): _pack_ = 1 _fields_ = [("b", c_byte), ("h", c_short), ("_1", c_byte), ("i", c_int), ("_2", c_byte), ("d", c_double)] s1 = S() s1.b = 0x12 s1.h = 0x1234 s1.i = 0x12345678 s1.d = 3.14 s2 = struct.pack(fmt, 0x12, 0x1234, 0x12345678, 3.14) self.assertEqual(bin(s1), bin(s2)) def test_unaligned_native_struct_fields(self): if sys.byteorder == "little": fmt = "<b h xi xd" else: base = LittleEndianStructure fmt = ">b h xi xd" class S(Structure): _pack_ = 1 _fields_ = [("b", c_byte), ("h", c_short), ("_1", c_byte), ("i", c_int), ("_2", c_byte), ("d", c_double)] s1 = S() s1.b = 0x12 s1.h = 0x1234 s1.i = 0x12345678 s1.d = 3.14 s2 = struct.pack(fmt, 0x12, 0x1234, 0x12345678, 3.14) self.assertEqual(bin(s1), bin(s2)) if __name__ == "__main__": unittest.main()
36.925424
88
0.570366
0ed9dd4406bfd784de808ec47d03d5c38021601b
1,249
py
Python
experiment_scripts/2-2-mujoco/2-2b.py
alexlioralexli/pytorch-a2c-ppo-acktr-gail
99ec24575ccfc53cd2f1942cf798ca0322a83539
[ "MIT" ]
null
null
null
experiment_scripts/2-2-mujoco/2-2b.py
alexlioralexli/pytorch-a2c-ppo-acktr-gail
99ec24575ccfc53cd2f1942cf798ca0322a83539
[ "MIT" ]
null
null
null
experiment_scripts/2-2-mujoco/2-2b.py
alexlioralexli/pytorch-a2c-ppo-acktr-gail
99ec24575ccfc53cd2f1942cf798ca0322a83539
[ "MIT" ]
null
null
null
total = 0 envs = ['Ant-v2', 'Humanoid-v2', 'HalfCheetah-v2', 'Hopper-v2', 'Walker2d-v2'] for env in envs: commands = [] base_command = f'python main.py --env-name {env} --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits --hidden_dim 256' for n_hidden in [1,2]: commands.append(f'{base_command} --network_class MLP --n_hidden {n_hidden}') for type in ['--train_B', '--concatenate_fourier --train_B']: for n_hidden in [1]: for fourier_dim in [256]: for sigma in [0.03, 0.01, 0.003]: commands.append(f'{base_command} --network_class FourierMLP --n_hidden {n_hidden} --sigma {sigma} --fourier_dim {fourier_dim} {type}') count = 0 for command in commands: # gpus = list(range(8,10)) gpus = list(range(10)) for seed in [10]: if total % 8 == 0: print(total) total += 1 print(f'CUDA_VISIBLE_DEVICES={gpus[count]} {command} --seed {seed} &') count = (count + 1) % len(gpus)
54.304348
329
0.588471
8c6db0af4734fde9b38ff154757b37beafa7543c
17,013
py
Python
asreview/data/base.py
asrodwin/asreview
28f2a4f93eed5b5ab1759a461650032c9dd471c9
[ "Apache-2.0" ]
null
null
null
asreview/data/base.py
asrodwin/asreview
28f2a4f93eed5b5ab1759a461650032c9dd471c9
[ "Apache-2.0" ]
null
null
null
asreview/data/base.py
asrodwin/asreview
28f2a4f93eed5b5ab1759a461650032c9dd471c9
[ "Apache-2.0" ]
null
null
null
# Copyright 2019-2020 The ASReview Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import pkg_resources from pathlib import Path from urllib.parse import urlparse import numpy as np import pandas as pd from asreview.config import COLUMN_DEFINITIONS from asreview.config import LABEL_NA from asreview.exceptions import BadFileFormatError from asreview.io.paper_record import PaperRecord from asreview.io.ris_reader import write_ris from asreview.io.utils import type_from_column from asreview.io.utils import convert_keywords from asreview.utils import is_iterable from asreview.utils import is_url class ASReviewData(): """Data object to the dataset with texts, labels, DOIs etc. Arguments --------- df: pandas.DataFrame Dataframe containing the data for the ASReview data object. data_name: str Give a name to the data object. data_type: str What kind of data the dataframe contains. column_spec: dict Specification for which column corresponds to which standard specification. Key is the standard specification, key is which column it is actually in. """ def __init__(self, df=None, data_name="empty", data_type="standard", column_spec=None): self.df = df self.data_name = data_name self.prior_idx = np.array([], dtype=int) if df is None: self.column_spec = {} return self.max_idx = max(df.index.values) + 1 # Infer column specifications if it is not given. if column_spec is None: self.column_spec = {} for col_name in list(df): data_type = type_from_column(col_name, COLUMN_DEFINITIONS) if data_type is not None: self.column_spec[data_type] = col_name else: self.column_spec = column_spec if "included" not in self.column_spec: self.column_spec["included"] = "included" if data_type == "included": self.labels = np.ones(len(self), dtype=int) if data_type == "excluded": self.labels = np.zeros(len(self), dtype=int) if data_type == "prior": self.prior_idx = df.index.values def __len__(self): if self.df is None: return 0 return len(self.df.index) def hash(self): """Compute a hash from the dataset. Returns ------- str: SHA1 hash, computed from the titles/abstracts of the dataframe. """ if ((len(self.df.index) < 1000 and self.bodies is not None) or self.texts is None): texts = " ".join(self.bodies) else: texts = " ".join(self.texts) return hashlib.sha1(" ".join(texts).encode( encoding='UTF-8', errors='ignore')).hexdigest() def slice(self, idx, by_index=True): """Create a slice from itself. Useful if some parts should be kept/thrown away. Arguments --------- idx: list, numpy.ndarray Record ids that should be kept. Returns ------- ASReviewData Slice of itself. """ if self.df is None: raise ValueError("Cannot slice empty ASReviewData object.") if by_index: return ASReviewData(self.df.iloc[idx], data_name="sliced") return ASReviewData(self.df.loc[idx, :], data_name="sliced") def append(self, as_data): """Append another ASReviewData object. It puts the training data at the end. Arguments --------- as_data: ASReviewData Dataset to append. """ if as_data.df is None: return if len(self) == 0: self.df = as_data.df self.data_name = as_data.data_name self.prior_idx = as_data.prior_idx self.max_idx = as_data.max_idx self.column_spec = as_data.column_spec return reindex_val = max(self.max_idx - min(as_data.df.index.values), 0) new_index = np.append(self.df.index.values, as_data.df.index.values + reindex_val) new_priors = np.append(self.prior_idx, as_data.prior_idx + reindex_val) new_df = self.df.append(as_data.df, sort=False) new_df.index = new_index new_labels = None if self.labels is None and as_data.labels is not None: new_labels = np.append(np.full(len(self), LABEL_NA, dtype=int), as_data.labels) elif self.labels is not None and as_data.labels is None: new_labels = np.append(self.labels, np.full(len(as_data), LABEL_NA, dtype=int)) self.max_idx = max(self.max_idx, as_data.max_idx, max(new_index)) self.df = new_df if new_labels is not None: self.labels = new_labels self.prior_idx = new_priors self.data_name += "_" + as_data.data_name for data_type, col in as_data.column_spec.items(): if data_type in self.column_spec: if self.column_spec[data_type] != col: raise ValueError( "Error merging dataframes: column specifications " f"differ: {self.column_spec} vs {as_data.column_spec}") else: self.column_spec[data_type] = col @classmethod def from_file(cls, fp, read_fn=None, data_name=None, data_type=None): """Create instance from csv/ris/excel file. It works in two ways; either manual control where the conversion functions are supplied or automatic, where it searches in the entry points for the right conversion functions. Arguments --------- fp: str, pathlib.Path Read the data from this file. read_fn: callable Function to read the file. It should return a standardized dataframe. data_name: str Name of the data. data_type: str What kind of data it is. Special names: 'included', 'excluded', 'prior'. """ if is_url(fp): path = urlparse(fp).path new_data_name = Path(path.split("/")[-1]).stem else: path = str(Path(fp).resolve()) new_data_name = Path(fp).stem if data_name is None: data_name = new_data_name if read_fn is not None: return cls(read_fn(fp), data_name=data_name, data_type=data_type) entry_points = { entry.name: entry for entry in pkg_resources.iter_entry_points('asreview.readers') } best_suffix = None for suffix, entry in entry_points.items(): if path.endswith(suffix): if best_suffix is None or len(suffix) > len(best_suffix): best_suffix = suffix if best_suffix is None: raise ValueError(f"Error reading file {fp}, no capabilities for " "reading such a file.") read_fn = entry_points[best_suffix].load() df, column_spec = read_fn(fp) return cls(df, column_spec=column_spec, data_name=data_name, data_type=data_type) def record(self, i, by_index=True): """Create a record from an index. Arguments --------- i: int, iterable Index of the record, or list of indices. by_index: bool If True, take the i-th value as used internally by the review. If False, take the record with record_id==i. Returns ------- PaperRecord The corresponding record if i was an integer, or a list of records if i was an iterable. """ if not is_iterable(i): index_list = [i] else: index_list = i if not by_index: records = [ PaperRecord(**self.df.loc[j, :], record_id=j, column_spec=self.column_spec) for j in index_list ] else: records = [ PaperRecord(**self.df.iloc[j], column_spec=self.column_spec, record_id=self.df.index.values[j]) for j in index_list ] if is_iterable(i): return records return records[0] @property def record_ids(self): return self.df.index.values @property def texts(self): if self.headings is None: return self.bodies if self.bodies is None: return self.headings cur_texts = np.array([ self.headings[i] + " " + self.bodies[i] for i in range(len(self)) ], dtype=object) return cur_texts @property def headings(self): return self.title @property def title(self): try: return self.df[self.column_spec["title"]].values except KeyError: return None @property def bodies(self): return self.abstract @property def abstract(self): try: return self.df[self.column_spec["abstract"]].values except KeyError: return None @property def keywords(self): try: return self.df[self.column_spec["keywords"]].apply( convert_keywords).values except KeyError: return None @property def authors(self): try: return self.df[self.column_spec["authors"]].values except KeyError: return None def get(self, name): "Get column with name." try: return self.df[self.column_spec[name]].values except KeyError: return self.df[name].values @property def prior_data_idx(self): "Get prior_included, prior_excluded from dataset." convert_array = np.full(self.max_idx, 999999999) convert_array[self.df.index.values] = np.arange(len(self.df.index)) return convert_array[self.prior_idx] @property def included(self): return self.labels @included.setter def included(self, labels): self.labels = labels @property # pending deprecation def final_included(self): return self.labels @final_included.setter # pending deprecation def final_included(self, labels): self.labels = labels @property def labels(self): try: column = self.column_spec["included"] return self.df[column].values except KeyError: return None @labels.setter def labels(self, labels): try: column = self.column_spec["included"] self.df[column] = labels except KeyError: self.df["included"] = labels @property def abstract_included(self): return self.get("abstract_included") @abstract_included.setter def abstract_included(self, abstract_included): try: column = self.column_spec["abstract_included"] self.df[column] = abstract_included except KeyError: self.df["abstract_included"] = abstract_included def prior_labels(self, state, by_index=True): """Get the labels that are marked as 'initial'. state: BaseState Open state that contains the label information. by_index: bool If True, return internal indexing. If False, return record_ids for indexing. Returns ------- numpy.ndarray Array of indices that have the 'initial' property. """ query_src = state.startup_vals()["query_src"] if "initial" not in query_src: return np.array([], dtype=int) if by_index: return np.array(query_src["initial"], dtype=int) return self.df.index.values[query_src["initial"]] def to_file(self, fp, labels=None, ranking=None): """Export data object to file. RIS, CSV and Excel are supported file formats at the moment. Arguments --------- fp: str Filepath to export to. labels: list, numpy.ndarray Labels to be inserted into the dataframe before export. ranking: list, numpy.ndarray Optionally, dataframe rows can be reordered. """ if Path(fp).suffix in [".csv", ".CSV"]: self.to_csv(fp, labels=labels, ranking=ranking) elif Path(fp).suffix in [".ris", ".RIS"]: self.to_ris(fp, labels=labels, ranking=ranking) elif Path(fp).suffix in [".xlsx", ".XLSX"]: self.to_excel(fp, labels=labels, ranking=ranking) else: raise BadFileFormatError( f"Unknown file extension: {Path(fp).suffix}.\n" f"from file {fp}") def to_dataframe(self, labels=None, ranking=None): """Create new dataframe with updated label (order). Arguments --------- labels: list, numpy.ndarray Current labels will be overwritten by these labels (including unlabelled). No effect if labels is None. ranking: list Reorder the dataframe according to these record_ids. Default ordering if ranking is None. Returns ------- pandas.DataFrame Dataframe of all available record data. """ result_df = pd.DataFrame.copy(self.df) col_label = self.column_spec["included"] # if there are labels, add them to the frame if labels is not None: # unnest the nested (record_id, label) tuples labeled_record_ids = [x[0] for x in labels] labeled_values = [x[1] for x in labels] # remove the old results and write the values result_df[col_label] = LABEL_NA result_df.loc[labeled_record_ids, col_label] = labeled_values # if there is a ranking, apply this ranking as order if ranking is not None: # sort the datasets based on the ranking result_df = result_df.loc[ranking] # append a column with 1 to n result_df["asreview_ranking"] = np.arange(1, len(result_df) + 1) # replace labeled NA values by np.nan if col_label in list(result_df): result_df[col_label] = result_df[col_label].astype(object) result_df.loc[result_df[col_label] == LABEL_NA, col_label] = np.nan return result_df def to_csv(self, fp, labels=None, ranking=None): """Export to csv. Arguments --------- fp: str, NoneType Filepath or None for buffer. labels: list, numpy.ndarray Current labels will be overwritten by these labels (including unlabelled). No effect if labels is None. ranking: list Reorder the dataframe according to these (internal) indices. Default ordering if ranking is None. Returns ------- pandas.DataFrame Dataframe of all available record data. """ df = self.to_dataframe(labels=labels, ranking=ranking) return df.to_csv(fp, index=True) def to_excel(self, fp, labels=None, ranking=None): """Export to Excel xlsx file. Arguments --------- fp: str, NoneType Filepath or None for buffer. labels: list, numpy.ndarray Current labels will be overwritten by these labels (including unlabelled). No effect if labels is None. ranking: list Reorder the dataframe according to these (internal) indices. Default ordering if ranking is None. Returns ------- pandas.DataFrame Dataframe of all available record data. """ df = self.to_dataframe(labels=labels, ranking=ranking) return df.to_excel(fp, index=True) def to_ris(self, ris_fp, labels=None, ranking=None): df = self.to_dataframe(labels=labels, ranking=ranking) write_ris(df, ris_fp)
32.654511
79
0.582848
bb23e05aa56d7be2a1adc8b9eb12bf9c07bf8c32
1,955
py
Python
addons14/hr_timesheet_task_stage/tests/test_hr_timesheet_task_stage.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-06-10T14:59:13.000Z
2021-06-10T14:59:13.000Z
addons14/hr_timesheet_task_stage/tests/test_hr_timesheet_task_stage.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
null
null
null
addons14/hr_timesheet_task_stage/tests/test_hr_timesheet_task_stage.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-04-09T09:44:44.000Z
2021-04-09T09:44:44.000Z
# Copyright 2016-2018 Tecnativa - Pedro M. Baeza # Copyright 2019 Brainbean Apps (https://brainbeanapps.com) # Copyright 2020 Tecnativa - Manuel Calero # License AGPL-3.0 or later (https://www.gnu.org/licenses/agpl.html). from odoo.tests import common class TestHrTimesheetTaskStage(common.TransactionCase): def setUp(self): super().setUp() self.project = self.env["project.project"].create({"name": "Test project"}) self.analytic_account = self.project.analytic_account_id self.task = self.env["project.task"].create( {"name": "Test task", "project_id": self.project.id} ) task_type_obj = self.env["project.task.type"] self.stage_open = task_type_obj.create( { "name": "New", "is_closed": False, "project_ids": [(6, 0, self.project.ids)], } ) self.stage_close = task_type_obj.create( { "name": "Done", "is_closed": True, "project_ids": [(6, 0, self.project.ids)], } ) self.line = self.env["account.analytic.line"].create( { "task_id": self.task.id, "account_id": self.analytic_account.id, "name": "Test line", } ) def test_open_close_task(self): self.line.action_close_task() self.assertEqual(self.line.task_id.stage_id, self.stage_close) self.line.action_open_task() self.assertEqual(self.line.task_id.stage_id, self.stage_open) def test_toggle_task_stage(self): self.line.action_toggle_task_stage() self.assertTrue(self.line.task_id.stage_id.is_closed) self.assertTrue(self.line.is_task_closed) self.line.action_toggle_task_stage() self.assertFalse(self.line.task_id.stage_id.is_closed) self.assertFalse(self.line.is_task_closed)
36.203704
83
0.600512
7337d11312aef143f6f5d3c769898325e79c56cd
166
py
Python
app/urls.py
abdukhashimov/great-rest-api
a57455d22b7ba7d06945889aed5dd89550292dae
[ "MIT" ]
null
null
null
app/urls.py
abdukhashimov/great-rest-api
a57455d22b7ba7d06945889aed5dd89550292dae
[ "MIT" ]
null
null
null
app/urls.py
abdukhashimov/great-rest-api
a57455d22b7ba7d06945889aed5dd89550292dae
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('info.urls')) ]
20.75
38
0.686747
980a17b5c06197a22cdc362296da136e65394aa3
833
py
Python
ws2122-lspm/Lib/site-packages/pm4py/objects/conversion/process_tree/variants/__init__.py
Malekhy/ws2122-lspm
e4dc8b801d12f862b8ef536a0f125f346f085a00
[ "MIT" ]
1
2022-01-19T04:02:46.000Z
2022-01-19T04:02:46.000Z
ws2122-lspm/Lib/site-packages/pm4py/objects/conversion/process_tree/variants/__init__.py
Malekhy/ws2122-lspm
e4dc8b801d12f862b8ef536a0f125f346f085a00
[ "MIT" ]
1
2021-11-19T07:21:48.000Z
2021-11-19T07:21:48.000Z
ws2122-lspm/Lib/site-packages/pm4py/objects/conversion/process_tree/variants/__init__.py
Malekhy/ws2122-lspm
e4dc8b801d12f862b8ef536a0f125f346f085a00
[ "MIT" ]
1
2022-01-14T17:15:38.000Z
2022-01-14T17:15:38.000Z
''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see <https://www.gnu.org/licenses/>. ''' from pm4py.objects.conversion.process_tree.variants import to_petri_net, to_petri_net_transition_bordered, to_bpmn
46.277778
114
0.751501
d5929a22a0c7002168aeaa195878ebf4570e53be
663
py
Python
rstream/amqp.py
qweeze/rstream
5ae747af11275285fde1aa48e8823890fae4dd1b
[ "MIT" ]
16
2021-08-16T10:42:53.000Z
2022-03-30T18:35:41.000Z
rstream/amqp.py
qweeze/rstream
5ae747af11275285fde1aa48e8823890fae4dd1b
[ "MIT" ]
20
2021-09-22T08:12:52.000Z
2022-03-28T07:11:37.000Z
rstream/amqp.py
qweeze/rstream
5ae747af11275285fde1aa48e8823890fae4dd1b
[ "MIT" ]
4
2021-08-16T07:34:05.000Z
2022-03-21T13:42:24.000Z
from __future__ import annotations from typing import Any, Optional, Protocol, cast import proton class _MessageProtocol(Protocol): publishing_id: Optional[int] = None def __bytes__(self) -> bytes: ... class AMQPMessage(proton.Message, _MessageProtocol): # type:ignore def __init__(self, *args: Any, publishing_id: Optional[int] = None, **kwargs: Any): self.publishing_id = publishing_id super().__init__(*args, **kwargs) def __bytes__(self) -> bytes: return cast(bytes, self.encode()) def amqp_decoder(data: bytes) -> AMQPMessage: message = AMQPMessage() message.decode(data) return message
23.678571
87
0.687783
1a75449b1d2ad8496090fb3edd69a0b238a235c3
6,503
py
Python
recon.py
wate123/face-recognition
22c2ac6074f459d9448d0c08ea59171cb5487325
[ "Apache-2.0" ]
null
null
null
recon.py
wate123/face-recognition
22c2ac6074f459d9448d0c08ea59171cb5487325
[ "Apache-2.0" ]
null
null
null
recon.py
wate123/face-recognition
22c2ac6074f459d9448d0c08ea59171cb5487325
[ "Apache-2.0" ]
null
null
null
import os from keras import backend as K from keras.models import Model from keras.layers import Input, Layer from model import create_model, TripletLossLayer import numpy as np import os.path import matplotlib.pyplot as plt import matplotlib.patches as patches from align import AlignDlib from train import train_model from data import triplet_generator from sklearn.metrics import f1_score, accuracy_score from utils import load_metadata, load_image, download_landmarks from sklearn.preprocessing import LabelEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import LinearSVC import warnings dst_dir = 'models' dst_file = os.path.join(dst_dir, 'landmarks.dat') if not os.path.exists(dst_file): os.makedirs(dst_dir) download_landmarks(dst_file) nn4_small2_train = create_model() nn4_small2_train.load_weights('weights/nn4.small2.v1.h5') # try: # open('weights/nn4.small2.myTrain.h5', 'r') # nn4_small2_train.load_weights('weights/nn4.small2.myTrain.h5') # except FileNotFoundError: # # nn4_small2_train = train_model() metadata = load_metadata('images') # Initialize the OpenFace face alignment utility alignment = AlignDlib('models/landmarks.dat') # Load an image of Schwarzenegger jc_orig = load_image(metadata[92].image_path()) # Detect face and return bounding box bb = alignment.getLargestFaceBoundingBox(jc_orig) # Transform image using specified face landmark indices and crop image to 96x96 jc_aligned = alignment.align(96, jc_orig, bb, landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE) # Show original image plt.subplot(131) plt.imshow(jc_orig) # Show original image with bounding box plt.subplot(132) plt.imshow(jc_orig) plt.gca().add_patch(patches.Rectangle((bb.left(), bb.top()), bb.width(), bb.height(), fill=False, color='red')) # Show aligned image plt.subplot(133) plt.imshow(jc_aligned) plt.show() def align_image(img): return alignment.align(96, img, alignment.getLargestFaceBoundingBox(img), landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE) embedded = np.zeros((metadata.shape[0], 128)) for i, m in enumerate(metadata): img = load_image(m.image_path()) img = align_image(img) # scale RGB values to interval [0,1] img = (img / 255.).astype(np.float32) # obtain embedding vector for image embedded[i] = nn4_small2_train.predict(np.expand_dims(img, axis=0))[0] # Verify def distance(emb1, emb2): return np.sum(np.square(emb1 - emb2)) def show_pair(idx1, idx2): plt.figure(figsize=(8,3)) plt.suptitle(f'Distance = {distance(embedded[idx1], embedded[idx2]):.2f}') plt.subplot(121) plt.imshow(load_image(metadata[idx1].image_path())) plt.subplot(122) plt.imshow(load_image(metadata[idx2].image_path())); show_pair(94, 95) show_pair(94, 89) plt.show() distances = [] # squared L2 distance between pairs identical = [] # 1 if same identity, 0 otherwise num = len(metadata) for i in range(num - 1): for j in range(1, num): distances.append(distance(embedded[i], embedded[j])) identical.append(1 if metadata[i].name == metadata[j].name else 0) distances = np.array(distances) identical = np.array(identical) thresholds = np.arange(0.3, 1.0, 0.01) f1_scores = [f1_score(identical, distances < t) for t in thresholds] acc_scores = [accuracy_score(identical, distances < t) for t in thresholds] opt_idx = np.argmax(f1_scores) # Threshold at maximal F1 score opt_tau = thresholds[opt_idx] # Accuracy at maximal F1 score opt_acc = accuracy_score(identical, distances < opt_tau) # Plot F1 score and accuracy as function of distance threshold plt.plot(thresholds, f1_scores, label='F1 score') plt.plot(thresholds, acc_scores, label='Accuracy') plt.axvline(x=opt_tau, linestyle='--', lw=1, c='lightgrey', label='Threshold') plt.title(f'Accuracy at threshold {opt_tau:.2f} = {opt_acc:.3f}'); plt.xlabel('Distance threshold') plt.legend() dist_pos = distances[identical == 1] dist_neg = distances[identical == 0] plt.figure(figsize=(12,4)) plt.subplot(121) plt.hist(dist_pos) plt.axvline(x=opt_tau, linestyle='--', lw=1, c='lightgrey', label='Threshold') plt.title('Distances (pos. pairs)') plt.legend() plt.subplot(122) plt.hist(dist_neg) plt.axvline(x=opt_tau, linestyle='--', lw=1, c='lightgrey', label='Threshold') plt.title('Distances (neg. pairs)') plt.legend() dist_pos = distances[identical == 1] dist_neg = distances[identical == 0] plt.figure(figsize=(12,4)) plt.subplot(121) plt.hist(dist_pos) plt.axvline(x=opt_tau, linestyle='--', lw=1, c='lightgrey', label='Threshold') plt.title('Distances (pos. pairs)') plt.legend() plt.subplot(122) plt.hist(dist_neg) plt.axvline(x=opt_tau, linestyle='--', lw=1, c='lightgrey', label='Threshold') plt.title('Distances (neg. pairs)') plt.legend() plt.show() targets = np.array([m.name for m in metadata]) encoder = LabelEncoder() encoder.fit(targets) # Numerical encoding of identities y = encoder.transform(targets) train_idx = np.arange(metadata.shape[0]) % 2 != 0 test_idx = np.arange(metadata.shape[0]) % 2 == 0 # 50 train examples of 10 identities (5 examples each) X_train = embedded[train_idx] # 50 test examples of 10 identities (5 examples each) X_test = embedded[test_idx] y_train = y[train_idx] y_test = y[test_idx] knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean') svc = LinearSVC() knn.fit(X_train, y_train) svc.fit(X_train, y_train) acc_knn = accuracy_score(y_test, knn.predict(X_test)) acc_svc = accuracy_score(y_test, svc.predict(X_test)) print(f'KNN accuracy = {acc_knn}, SVM accuracy = {acc_svc}') # Suppress LabelEncoder warning warnings.filterwarnings('ignore') example_idx = 23 # example_image = load_image('test/220px-Arnold_Schwarzenegger_September_2017.jpg') example_image = load_image(metadata[test_idx][example_idx].image_path()) bb = alignment.getLargestFaceBoundingBox(example_image) example_prediction = svc.predict([embedded[test_idx][example_idx]]) example_identity = encoder.inverse_transform(example_prediction)[0] print(example_identity) plt.imshow(example_image) plt.title(f'Recognized as {example_identity} using SVM') plt.gca().add_patch(patches.Rectangle((bb.left(), bb.top()), bb.width(), bb.height(), fill=False, color='red')) plt.show() from sklearn.manifold import TSNE X_embedded = TSNE(n_components=2).fit_transform(embedded) for i, t in enumerate(set(targets)): idx = targets == t plt.scatter(X_embedded[idx, 0], X_embedded[idx, 1], label=t) plt.legend(bbox_to_anchor=(1, 1)) plt.show()
28.52193
111
0.743657
00d5cd58f57e0cc22d7a4aa97cdf5d655386a6dc
629
py
Python
foody/__init__.py
AdrienW97/foody
1393f79ef06ee8c50470adb8aa2ab9fe49be4399
[ "WTFPL" ]
null
null
null
foody/__init__.py
AdrienW97/foody
1393f79ef06ee8c50470adb8aa2ab9fe49be4399
[ "WTFPL" ]
null
null
null
foody/__init__.py
AdrienW97/foody
1393f79ef06ee8c50470adb8aa2ab9fe49be4399
[ "WTFPL" ]
null
null
null
import os from flask import Flask from flask_bcrypt import Bcrypt from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager, UserMixin, login_user, current_user from flask_login import logout_user, login_required app = Flask(__name__) app.config['SECRET_KEY'] = "hard-to-guess-string" app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db' #setup database db = SQLAlchemy(app) #LoginManager + Bcrypt for hashing passwords bcrypt = Bcrypt(app) login_manager = LoginManager(app) login_manager.login_view = "login" login_manager.login_message_category = 'info' #add better style from foody import routes
29.952381
73
0.807631
c9a41777bdabb747c89d1960c7a992f934c9a46c
69,507
py
Python
qiskit/dagcircuit/dagcircuit.py
TakahitoMotoki/qiskit-terra
531e62f3a3c218fee6db116f54ed41ce4e88d9a9
[ "Apache-2.0" ]
null
null
null
qiskit/dagcircuit/dagcircuit.py
TakahitoMotoki/qiskit-terra
531e62f3a3c218fee6db116f54ed41ce4e88d9a9
[ "Apache-2.0" ]
null
null
null
qiskit/dagcircuit/dagcircuit.py
TakahitoMotoki/qiskit-terra
531e62f3a3c218fee6db116f54ed41ce4e88d9a9
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Object to represent a quantum circuit as a directed acyclic graph (DAG). The nodes in the graph are either input/output nodes or operation nodes. The edges correspond to qubits or bits in the circuit. A directed edge from node A to node B means that the (qu)bit passes from the output of A to the input of B. The object's methods allow circuits to be constructed, composed, and modified. Some natural properties like depth can be computed directly from the graph. """ from collections import OrderedDict, defaultdict import copy import itertools import math import numpy as np import retworkx as rx from qiskit.circuit.exceptions import CircuitError from qiskit.circuit.quantumregister import QuantumRegister, Qubit from qiskit.circuit.classicalregister import ClassicalRegister, Clbit from qiskit.circuit.gate import Gate from qiskit.circuit.parameterexpression import ParameterExpression from qiskit.dagcircuit.exceptions import DAGCircuitError from qiskit.dagcircuit.dagnode import DAGNode, DAGOpNode, DAGInNode, DAGOutNode from qiskit.utils import optionals as _optionals class DAGCircuit: """ Quantum circuit as a directed acyclic graph. There are 3 types of nodes in the graph: inputs, outputs, and operations. The nodes are connected by directed edges that correspond to qubits and bits. """ # pylint: disable=invalid-name def __init__(self): """Create an empty circuit.""" # Circuit name. Generally, this corresponds to the name # of the QuantumCircuit from which the DAG was generated. self.name = None # Circuit metadata self.metadata = None # Set of wires (Register,idx) in the dag self._wires = set() # Map from wire (Register,idx) to input nodes of the graph self.input_map = OrderedDict() # Map from wire (Register,idx) to output nodes of the graph self.output_map = OrderedDict() # Directed multigraph whose nodes are inputs, outputs, or operations. # Operation nodes have equal in- and out-degrees and carry # additional data about the operation, including the argument order # and parameter values. # Input nodes have out-degree 1 and output nodes have in-degree 1. # Edges carry wire labels (reg,idx) and each operation has # corresponding in- and out-edges with the same wire labels. self._multi_graph = rx.PyDAG() # Map of qreg/creg name to Register object. self.qregs = OrderedDict() self.cregs = OrderedDict() # List of Qubit/Clbit wires that the DAG acts on. self.qubits = [] self.clbits = [] self._global_phase = 0 self._calibrations = defaultdict(dict) self._op_names = {} self.duration = None self.unit = "dt" @_optionals.HAS_NETWORKX.require_in_call def to_networkx(self): """Returns a copy of the DAGCircuit in networkx format.""" import networkx as nx G = nx.MultiDiGraph() for node in self._multi_graph.nodes(): G.add_node(node) for node_id in rx.topological_sort(self._multi_graph): for source_id, dest_id, edge in self._multi_graph.in_edges(node_id): G.add_edge(self._multi_graph[source_id], self._multi_graph[dest_id], wire=edge) return G @classmethod @_optionals.HAS_NETWORKX.require_in_call def from_networkx(cls, graph): """Take a networkx MultiDigraph and create a new DAGCircuit. Args: graph (networkx.MultiDiGraph): The graph to create a DAGCircuit object from. The format of this MultiDiGraph format must be in the same format as returned by to_networkx. Returns: DAGCircuit: The dagcircuit object created from the networkx MultiDiGraph. Raises: MissingOptionalLibraryError: If networkx is not installed DAGCircuitError: If input networkx graph is malformed """ import networkx as nx dag = DAGCircuit() for node in nx.topological_sort(graph): if isinstance(node, DAGOutNode): continue if isinstance(node, DAGInNode): if isinstance(node.wire, Qubit): dag.add_qubits([node.wire]) elif isinstance(node.wire, Clbit): dag.add_clbits([node.wire]) else: raise DAGCircuitError(f"unknown node wire type: {node.wire}") elif isinstance(node, DAGOpNode): dag.apply_operation_back(node.op.copy(), node.qargs, node.cargs) return dag @property def wires(self): """Return a list of the wires in order.""" return self.qubits + self.clbits @property def node_counter(self): """ Returns the number of nodes in the dag. """ return len(self._multi_graph) @property def global_phase(self): """Return the global phase of the circuit.""" return self._global_phase @global_phase.setter def global_phase(self, angle): """Set the global phase of the circuit. Args: angle (float, ParameterExpression) """ if isinstance(angle, ParameterExpression): self._global_phase = angle else: # Set the phase to the [0, 2π) interval angle = float(angle) if not angle: self._global_phase = 0 else: self._global_phase = angle % (2 * math.pi) @property def calibrations(self): """Return calibration dictionary. The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}} """ return dict(self._calibrations) @calibrations.setter def calibrations(self, calibrations): """Set the circuit calibration data from a dictionary of calibration definition. Args: calibrations (dict): A dictionary of input in the format {'gate_name': {(qubits, gate_params): schedule}} """ self._calibrations = defaultdict(dict, calibrations) def add_calibration(self, gate, qubits, schedule, params=None): """Register a low-level, custom pulse definition for the given gate. Args: gate (Union[Gate, str]): Gate information. qubits (Union[int, Tuple[int]]): List of qubits to be measured. schedule (Schedule): Schedule information. params (Optional[List[Union[float, Parameter]]]): A list of parameters. Raises: Exception: if the gate is of type string and params is None. """ if isinstance(gate, Gate): self._calibrations[gate.name][ (tuple(qubits), tuple(float(p) for p in gate.params)) ] = schedule else: self._calibrations[gate][(tuple(qubits), tuple(params or []))] = schedule def has_calibration_for(self, node): """Return True if the dag has a calibration defined for the node operation. In this case, the operation does not need to be translated to the device basis. """ if not self.calibrations or node.op.name not in self.calibrations: return False qubits = tuple(self.qubits.index(qubit) for qubit in node.qargs) params = [] for p in node.op.params: if isinstance(p, ParameterExpression) and not p.parameters: params.append(float(p)) else: params.append(p) params = tuple(params) return (qubits, params) in self.calibrations[node.op.name] def remove_all_ops_named(self, opname): """Remove all operation nodes with the given name.""" for n in self.named_nodes(opname): self.remove_op_node(n) def add_qubits(self, qubits): """Add individual qubit wires.""" if any(not isinstance(qubit, Qubit) for qubit in qubits): raise DAGCircuitError("not a Qubit instance.") duplicate_qubits = set(self.qubits).intersection(qubits) if duplicate_qubits: raise DAGCircuitError("duplicate qubits %s" % duplicate_qubits) self.qubits.extend(qubits) for qubit in qubits: self._add_wire(qubit) def add_clbits(self, clbits): """Add individual clbit wires.""" if any(not isinstance(clbit, Clbit) for clbit in clbits): raise DAGCircuitError("not a Clbit instance.") duplicate_clbits = set(self.clbits).intersection(clbits) if duplicate_clbits: raise DAGCircuitError("duplicate clbits %s" % duplicate_clbits) self.clbits.extend(clbits) for clbit in clbits: self._add_wire(clbit) def add_qreg(self, qreg): """Add all wires in a quantum register.""" if not isinstance(qreg, QuantumRegister): raise DAGCircuitError("not a QuantumRegister instance.") if qreg.name in self.qregs: raise DAGCircuitError("duplicate register %s" % qreg.name) self.qregs[qreg.name] = qreg existing_qubits = set(self.qubits) for j in range(qreg.size): if qreg[j] not in existing_qubits: self.qubits.append(qreg[j]) self._add_wire(qreg[j]) def add_creg(self, creg): """Add all wires in a classical register.""" if not isinstance(creg, ClassicalRegister): raise DAGCircuitError("not a ClassicalRegister instance.") if creg.name in self.cregs: raise DAGCircuitError("duplicate register %s" % creg.name) self.cregs[creg.name] = creg existing_clbits = set(self.clbits) for j in range(creg.size): if creg[j] not in existing_clbits: self.clbits.append(creg[j]) self._add_wire(creg[j]) def _add_wire(self, wire): """Add a qubit or bit to the circuit. Args: wire (Bit): the wire to be added This adds a pair of in and out nodes connected by an edge. Raises: DAGCircuitError: if trying to add duplicate wire """ if wire not in self._wires: self._wires.add(wire) inp_node = DAGInNode(wire=wire) outp_node = DAGOutNode(wire=wire) input_map_id, output_map_id = self._multi_graph.add_nodes_from([inp_node, outp_node]) inp_node._node_id = input_map_id outp_node._node_id = output_map_id self.input_map[wire] = inp_node self.output_map[wire] = outp_node self._multi_graph.add_edge(inp_node._node_id, outp_node._node_id, wire) else: raise DAGCircuitError(f"duplicate wire {wire}") def remove_clbits(self, *clbits): """ Remove classical bits from the circuit. All bits MUST be idle. Any registers with references to at least one of the specified bits will also be removed. Args: clbits (List[Clbit]): The bits to remove. Raises: DAGCircuitError: a clbit is not a :obj:`.Clbit`, is not in the circuit, or is not idle. """ if any(not isinstance(clbit, Clbit) for clbit in clbits): raise DAGCircuitError( "clbits not of type Clbit: %s" % [b for b in clbits if not isinstance(b, Clbit)] ) clbits = set(clbits) unknown_clbits = clbits.difference(self.clbits) if unknown_clbits: raise DAGCircuitError("clbits not in circuit: %s" % unknown_clbits) busy_clbits = {bit for bit in clbits if not self._is_wire_idle(bit)} if busy_clbits: raise DAGCircuitError("clbits not idle: %s" % busy_clbits) # remove any references to bits cregs_to_remove = {creg for creg in self.cregs.values() if not clbits.isdisjoint(creg)} self.remove_cregs(*cregs_to_remove) for clbit in clbits: self._remove_idle_wire(clbit) self.clbits.remove(clbit) def remove_cregs(self, *cregs): """ Remove classical registers from the circuit, leaving underlying bits in place. Raises: DAGCircuitError: a creg is not a ClassicalRegister, or is not in the circuit. """ if any(not isinstance(creg, ClassicalRegister) for creg in cregs): raise DAGCircuitError( "cregs not of type ClassicalRegister: %s" % [r for r in cregs if not isinstance(r, ClassicalRegister)] ) unknown_cregs = set(cregs).difference(self.cregs.values()) if unknown_cregs: raise DAGCircuitError("cregs not in circuit: %s" % unknown_cregs) for creg in cregs: del self.cregs[creg.name] def _is_wire_idle(self, wire): """Check if a wire is idle. Args: wire (Bit): a wire in the circuit. Returns: bool: true if the wire is idle, false otherwise. Raises: DAGCircuitError: the wire is not in the circuit. """ if wire not in self._wires: raise DAGCircuitError("wire %s not in circuit" % wire) try: child = next(self.successors(self.input_map[wire])) except StopIteration as e: raise DAGCircuitError( "Invalid dagcircuit input node %s has no output" % self.input_map[wire] ) from e return child is self.output_map[wire] def _remove_idle_wire(self, wire): """Remove an idle qubit or bit from the circuit. Args: wire (Bit): the wire to be removed, which MUST be idle. """ inp_node = self.input_map[wire] oup_node = self.output_map[wire] self._multi_graph.remove_node(inp_node._node_id) self._multi_graph.remove_node(oup_node._node_id) self._wires.remove(wire) del self.input_map[wire] del self.output_map[wire] def _check_condition(self, name, condition): """Verify that the condition is valid. Args: name (string): used for error reporting condition (tuple or None): a condition tuple (ClassicalRegister, int) or (Clbit, bool) Raises: DAGCircuitError: if conditioning on an invalid register """ if ( condition is not None and condition[0] not in self.clbits and condition[0].name not in self.cregs ): raise DAGCircuitError("invalid creg in condition for %s" % name) def _check_bits(self, args, amap): """Check the values of a list of (qu)bit arguments. For each element of args, check that amap contains it. Args: args (list[Bit]): the elements to be checked amap (dict): a dictionary keyed on Qubits/Clbits Raises: DAGCircuitError: if a qubit is not contained in amap """ # Check for each wire for wire in args: if wire not in amap: raise DAGCircuitError(f"(qu)bit {wire} not found in {amap}") def _bits_in_condition(self, cond): """Return a list of bits in the given condition. Args: cond (tuple or None): optional condition (ClassicalRegister, int) or (Clbit, bool) Returns: list[Clbit]: list of classical bits Raises: CircuitError: if cond[0] is not ClassicalRegister or Clbit """ if cond is None: return [] elif isinstance(cond[0], ClassicalRegister): # Returns a list of all the cbits in the given creg cond[0]. return cond[0][:] elif isinstance(cond[0], Clbit): # Returns a singleton list of the conditional cbit. return [cond[0]] else: raise CircuitError("Condition must be used with ClassicalRegister or Clbit.") def _increment_op(self, op): if op.name in self._op_names: self._op_names[op.name] += 1 else: self._op_names[op.name] = 1 def _decrement_op(self, op): if self._op_names[op.name] == 1: del self._op_names[op.name] else: self._op_names[op.name] -= 1 def _add_op_node(self, op, qargs, cargs): """Add a new operation node to the graph and assign properties. Args: op (qiskit.circuit.Instruction): the operation associated with the DAG node qargs (list[Qubit]): list of quantum wires to attach to. cargs (list[Clbit]): list of classical wires to attach to. Returns: int: The integer node index for the new op node on the DAG """ # Add a new operation node to the graph new_node = DAGOpNode(op=op, qargs=qargs, cargs=cargs) node_index = self._multi_graph.add_node(new_node) new_node._node_id = node_index self._increment_op(op) return node_index def _copy_circuit_metadata(self): """Return a copy of source_dag with metadata but empty.""" target_dag = DAGCircuit() target_dag.name = self.name target_dag._global_phase = self._global_phase target_dag.duration = self.duration target_dag.unit = self.unit target_dag.metadata = self.metadata target_dag.add_qubits(self.qubits) target_dag.add_clbits(self.clbits) for qreg in self.qregs.values(): target_dag.add_qreg(qreg) for creg in self.cregs.values(): target_dag.add_creg(creg) return target_dag def apply_operation_back(self, op, qargs=None, cargs=None): """Apply an operation to the output of the circuit. Args: op (qiskit.circuit.Instruction): the operation associated with the DAG node qargs (list[Qubit]): qubits that op will be applied to cargs (list[Clbit]): cbits that op will be applied to Returns: DAGOpNode: the node for the op that was added to the dag Raises: DAGCircuitError: if a leaf node is connected to multiple outputs """ qargs = qargs or [] cargs = cargs or [] all_cbits = self._bits_in_condition(op.condition) all_cbits = set(all_cbits).union(cargs) self._check_condition(op.name, op.condition) self._check_bits(qargs, self.output_map) self._check_bits(all_cbits, self.output_map) node_index = self._add_op_node(op, qargs, cargs) # Add new in-edges from predecessors of the output nodes to the # operation node while deleting the old in-edges of the output nodes # and adding new edges from the operation node to each output node al = [qargs, all_cbits] self._multi_graph.insert_node_on_in_edges_multiple( node_index, [self.output_map[q]._node_id for q in itertools.chain(*al)] ) return self._multi_graph[node_index] def apply_operation_front(self, op, qargs, cargs): """Apply an operation to the input of the circuit. Args: op (qiskit.circuit.Instruction): the operation associated with the DAG node qargs (list[Qubit]): qubits that op will be applied to cargs (list[Clbit]): cbits that op will be applied to Returns: DAGOpNode: the node for the op that was added to the dag Raises: DAGCircuitError: if initial nodes connected to multiple out edges """ all_cbits = self._bits_in_condition(op.condition) all_cbits.extend(cargs) self._check_condition(op.name, op.condition) self._check_bits(qargs, self.input_map) self._check_bits(all_cbits, self.input_map) node_index = self._add_op_node(op, qargs, cargs) # Add new out-edges to successors of the input nodes from the # operation node while deleting the old out-edges of the input nodes # and adding new edges to the operation node from each input node al = [qargs, all_cbits] self._multi_graph.insert_node_on_out_edges_multiple( node_index, [self.input_map[q]._node_id for q in itertools.chain(*al)] ) return self._multi_graph[node_index] def _check_edgemap_registers(self, inbound_wires, inbound_regs): """Check that wiremap neither fragments nor leaves duplicate registers. 1. There are no fragmented registers. A register in keyregs is fragmented if not all of its (qu)bits are renamed by edge_map. 2. There are no duplicate registers. A register is duplicate if it appears in both self and keyregs but not in edge_map. Args: inbound_wires (list): a list of wires being mapped from the inbound dag inbound_regs (list): a list from registers from the inbound dag Returns: set(Register): the set of regs to add to self Raises: DAGCircuitError: if the wiremap fragments, or duplicates exist """ add_regs = set() reg_frag_chk = {} for inbound_reg in inbound_regs: reg_frag_chk[inbound_reg] = {reg_bit: False for reg_bit in inbound_reg} for inbound_bit in inbound_wires: for inbound_reg in inbound_regs: if inbound_bit in inbound_reg: reg_frag_chk[inbound_reg][inbound_bit] = True break for inbound_reg, v in reg_frag_chk.items(): s = set(v.values()) if len(s) == 2: raise DAGCircuitError("inbound_wires fragments reg %s" % inbound_reg) if s == {False}: if inbound_reg.name in self.qregs or inbound_reg.name in self.cregs: raise DAGCircuitError("unmapped duplicate reg %s" % inbound_reg) # Add registers that appear only in inbound_regs add_regs.add(inbound_reg) return add_regs def _check_wiremap_validity(self, wire_map, keymap, valmap): """Check that the wiremap is consistent. Check that the wiremap refers to valid wires and that those wires have consistent types. Args: wire_map (dict): map from Bit in keymap to Bit in valmap keymap (list): a list of wire_map keys valmap (dict): a map whose keys are wire_map values Raises: DAGCircuitError: if wire_map not valid """ for k, v in wire_map.items(): if k not in keymap: raise DAGCircuitError("invalid wire mapping key %s" % k) if v not in valmap: raise DAGCircuitError("invalid wire mapping value %s" % v) # TODO Support mapping from AncillaQubit to Qubit, since AncillaQubits are mapped to # Qubits upon being converted to an Instruction. Until this translation is fixed # and Instructions have a concept of ancilla qubits, this fix is required. if not (isinstance(k, type(v)) or isinstance(v, type(k))): raise DAGCircuitError(f"inconsistent wire_map at ({k},{v})") @staticmethod def _map_condition(wire_map, condition, target_cregs): """Use the wire_map dict to change the condition tuple's creg name. Args: wire_map (dict): a map from source wires to destination wires condition (tuple or None): (ClassicalRegister,int) target_cregs (list[ClassicalRegister]): List of all cregs in the target circuit onto which the condition might possibly be mapped. Returns: tuple(ClassicalRegister,int): new condition Raises: DAGCircuitError: if condition register not in wire_map, or if wire_map maps condition onto more than one creg, or if the specified condition is not present in a classical register. """ if condition is None: new_condition = None else: # if there is a condition, map the condition bits to the # composed cregs based on the wire_map is_reg = False if isinstance(condition[0], Clbit): cond_creg = [condition[0]] else: cond_creg = condition[0] is_reg = True cond_val = condition[1] new_cond_val = 0 new_creg = None bits_in_condcreg = [bit for bit in wire_map if bit in cond_creg] for bit in bits_in_condcreg: if is_reg: try: candidate_creg = next( creg for creg in target_cregs if wire_map[bit] in creg ) except StopIteration as ex: raise DAGCircuitError( "Did not find creg containing mapped clbit in conditional." ) from ex else: # If cond is on a single Clbit then the candidate_creg is # the target Clbit to which 'bit' is mapped to. candidate_creg = wire_map[bit] if new_creg is None: new_creg = candidate_creg elif new_creg != candidate_creg: # Raise if wire_map maps condition creg on to more than one # creg in target DAG. raise DAGCircuitError( "wire_map maps conditional register onto more than one creg." ) if not is_reg: # If the cond is on a single Clbit then the new_cond_val is the # same as the cond_val since the new_creg is also a single Clbit. new_cond_val = cond_val elif 2 ** (cond_creg[:].index(bit)) & cond_val: # If the conditional values of the Clbit 'bit' is 1 then the new_cond_val # is updated such that the conditional value of the Clbit to which 'bit' # is mapped to in new_creg is 1. new_cond_val += 2 ** (new_creg[:].index(wire_map[bit])) if new_creg is None: raise DAGCircuitError("Condition registers not found in wire_map.") new_condition = (new_creg, new_cond_val) return new_condition def compose(self, other, qubits=None, clbits=None, front=False, inplace=True): """Compose the ``other`` circuit onto the output of this circuit. A subset of input wires of ``other`` are mapped to a subset of output wires of this circuit. ``other`` can be narrower or of equal width to ``self``. Args: other (DAGCircuit): circuit to compose with self qubits (list[Qubit|int]): qubits of self to compose onto. clbits (list[Clbit|int]): clbits of self to compose onto. front (bool): If True, front composition will be performed (not implemented yet) inplace (bool): If True, modify the object. Otherwise return composed circuit. Returns: DAGCircuit: the composed dag (returns None if inplace==True). Raises: DAGCircuitError: if ``other`` is wider or there are duplicate edge mappings. """ if front: raise DAGCircuitError("Front composition not supported yet.") if len(other.qubits) > len(self.qubits) or len(other.clbits) > len(self.clbits): raise DAGCircuitError( "Trying to compose with another DAGCircuit which has more 'in' edges." ) # number of qubits and clbits must match number in circuit or None identity_qubit_map = dict(zip(other.qubits, self.qubits)) identity_clbit_map = dict(zip(other.clbits, self.clbits)) if qubits is None: qubit_map = identity_qubit_map elif len(qubits) != len(other.qubits): raise DAGCircuitError( "Number of items in qubits parameter does not" " match number of qubits in the circuit." ) else: qubit_map = { other.qubits[i]: (self.qubits[q] if isinstance(q, int) else q) for i, q in enumerate(qubits) } if clbits is None: clbit_map = identity_clbit_map elif len(clbits) != len(other.clbits): raise DAGCircuitError( "Number of items in clbits parameter does not" " match number of clbits in the circuit." ) else: clbit_map = { other.clbits[i]: (self.clbits[c] if isinstance(c, int) else c) for i, c in enumerate(clbits) } edge_map = {**qubit_map, **clbit_map} or None # if no edge_map, try to do a 1-1 mapping in order if edge_map is None: edge_map = {**identity_qubit_map, **identity_clbit_map} # Check the edge_map for duplicate values if len(set(edge_map.values())) != len(edge_map): raise DAGCircuitError("duplicates in wire_map") # Compose if inplace: dag = self else: dag = copy.deepcopy(self) dag.global_phase += other.global_phase for gate, cals in other.calibrations.items(): dag._calibrations[gate].update(cals) for nd in other.topological_nodes(): if isinstance(nd, DAGInNode): # if in edge_map, get new name, else use existing name m_wire = edge_map.get(nd.wire, nd.wire) # the mapped wire should already exist if m_wire not in dag.output_map: raise DAGCircuitError( "wire %s[%d] not in self" % (m_wire.register.name, m_wire.index) ) if nd.wire not in other._wires: raise DAGCircuitError( "inconsistent wire type for %s[%d] in other" % (nd.register.name, nd.wire.index) ) elif isinstance(nd, DAGOutNode): # ignore output nodes pass elif isinstance(nd, DAGOpNode): condition = dag._map_condition(edge_map, nd.op.condition, dag.cregs.values()) dag._check_condition(nd.op.name, condition) m_qargs = list(map(lambda x: edge_map.get(x, x), nd.qargs)) m_cargs = list(map(lambda x: edge_map.get(x, x), nd.cargs)) op = nd.op.copy() op.condition = condition dag.apply_operation_back(op, m_qargs, m_cargs) else: raise DAGCircuitError("bad node type %s" % type(nd)) if not inplace: return dag else: return None def reverse_ops(self): """Reverse the operations in the ``self`` circuit. Returns: DAGCircuit: the reversed dag. """ # TODO: speed up # pylint: disable=cyclic-import from qiskit.converters import dag_to_circuit, circuit_to_dag qc = dag_to_circuit(self) reversed_qc = qc.reverse_ops() reversed_dag = circuit_to_dag(reversed_qc) return reversed_dag def idle_wires(self, ignore=None): """Return idle wires. Args: ignore (list(str)): List of node names to ignore. Default: [] Yields: Bit: Bit in idle wire. Raises: DAGCircuitError: If the DAG is invalid """ if ignore is None: ignore = set() ignore_set = set(ignore) for wire in self._wires: if not ignore: if self._is_wire_idle(wire): yield wire else: for node in self.nodes_on_wire(wire, only_ops=True): if node.op.name not in ignore_set: # If we found an op node outside of ignore we can stop iterating over the wire break else: yield wire def size(self): """Return the number of operations.""" return len(self._multi_graph) - 2 * len(self._wires) def depth(self): """Return the circuit depth. Returns: int: the circuit depth Raises: DAGCircuitError: if not a directed acyclic graph """ try: depth = rx.dag_longest_path_length(self._multi_graph) - 1 except rx.DAGHasCycle as ex: raise DAGCircuitError("not a DAG") from ex return depth if depth >= 0 else 0 def width(self): """Return the total number of qubits + clbits used by the circuit. This function formerly returned the number of qubits by the calculation return len(self._wires) - self.num_clbits() but was changed by issue #2564 to return number of qubits + clbits with the new function DAGCircuit.num_qubits replacing the former semantic of DAGCircuit.width(). """ return len(self._wires) def num_qubits(self): """Return the total number of qubits used by the circuit. num_qubits() replaces former use of width(). DAGCircuit.width() now returns qubits + clbits for consistency with Circuit.width() [qiskit-terra #2564]. """ return len(self.qubits) def num_clbits(self): """Return the total number of classical bits used by the circuit.""" return len(self.clbits) def num_tensor_factors(self): """Compute how many components the circuit can decompose into.""" return rx.number_weakly_connected_components(self._multi_graph) def _check_wires_list(self, wires, node): """Check that a list of wires is compatible with a node to be replaced. - no duplicate names - correct length for operation Raise an exception otherwise. Args: wires (list[Bit]): gives an order for (qu)bits in the input circuit that is replacing the node. node (DAGOpNode): a node in the dag Raises: DAGCircuitError: if check doesn't pass. """ if len(set(wires)) != len(wires): raise DAGCircuitError("duplicate wires") wire_tot = len(node.qargs) + len(node.cargs) if node.op.condition is not None: wire_tot += node.op.condition[0].size if len(wires) != wire_tot: raise DAGCircuitError("expected %d wires, got %d" % (wire_tot, len(wires))) def __eq__(self, other): # Try to convert to float, but in case of unbound ParameterExpressions # a TypeError will be raise, fallback to normal equality in those # cases try: self_phase = float(self.global_phase) other_phase = float(other.global_phase) if ( abs((self_phase - other_phase + np.pi) % (2 * np.pi) - np.pi) > 1.0e-10 ): # TODO: atol? return False except TypeError: if self.global_phase != other.global_phase: return False if self.calibrations != other.calibrations: return False self_bit_indices = {bit: idx for idx, bit in enumerate(self.qubits + self.clbits)} other_bit_indices = {bit: idx for idx, bit in enumerate(other.qubits + other.clbits)} self_qreg_indices = [ (regname, [self_bit_indices[bit] for bit in reg]) for regname, reg in self.qregs.items() ] self_creg_indices = [ (regname, [self_bit_indices[bit] for bit in reg]) for regname, reg in self.cregs.items() ] other_qreg_indices = [ (regname, [other_bit_indices[bit] for bit in reg]) for regname, reg in other.qregs.items() ] other_creg_indices = [ (regname, [other_bit_indices[bit] for bit in reg]) for regname, reg in other.cregs.items() ] if self_qreg_indices != other_qreg_indices or self_creg_indices != other_creg_indices: return False def node_eq(node_self, node_other): return DAGNode.semantic_eq(node_self, node_other, self_bit_indices, other_bit_indices) return rx.is_isomorphic_node_match(self._multi_graph, other._multi_graph, node_eq) def topological_nodes(self, key=None): """ Yield nodes in topological order. Args: key (Callable): A callable which will take a DAGNode object and return a string sort key. If not specified the :attr:`~qiskit.dagcircuit.DAGNode.sort_key` attribute will be used as the sort key for each node. Returns: generator(DAGOpNode, DAGInNode, or DAGOutNode): node in topological order """ def _key(x): return x.sort_key if key is None: key = _key return iter(rx.lexicographical_topological_sort(self._multi_graph, key=key)) def topological_op_nodes(self, key=None): """ Yield op nodes in topological order. Allowed to pass in specific key to break ties in top order Args: key (Callable): A callable which will take a DAGNode object and return a string sort key. If not specified the :attr:`~qiskit.dagcircuit.DAGNode.sort_key` attribute will be used as the sort key for each node. Returns: generator(DAGOpNode): op node in topological order """ return (nd for nd in self.topological_nodes(key) if isinstance(nd, DAGOpNode)) def replace_block_with_op(self, node_block, op, wire_pos_map, cycle_check=True): """Replace a block of nodes with a single. This is used to consolidate a block of DAGOpNodes into a single operation. A typical example is a block of gates being consolidated into a single ``UnitaryGate`` representing the unitary matrix of the block. Args: node_block (List[DAGNode]): A list of dag nodes that represents the node block to be replaced op (qiskit.circuit.Instruction): The instruction to replace the block with wire_pos_map (Dict[Qubit, int]): The dictionary mapping the qarg to the position. This is necessary to reconstruct the qarg order over multiple gates in the combined singe op node. cycle_check (bool): When set to True this method will check that replacing the provided ``node_block`` with a single node would introduce a a cycle (which would invalidate the ``DAGCircuit``) and will raise a ``DAGCircuitError`` if a cycle would be introduced. This checking comes with a run time penalty, if you can guarantee that your input ``node_block`` is a contiguous block and won't introduce a cycle when it's contracted to a single node, this can be set to ``False`` to improve the runtime performance of this method. Raises: DAGCircuitError: if ``cycle_check`` is set to ``True`` and replacing the specified block introduces a cycle or if ``node_block`` is empty. """ # TODO: Replace this with a function in retworkx to do this operation in # the graph block_preds = defaultdict(set) block_succs = defaultdict(set) block_qargs = set() block_cargs = set() block_ids = {x._node_id for x in node_block} # If node block is empty return early if not node_block: raise DAGCircuitError("Can't replace an empty node_block") for nd in node_block: for parent_id, _, edge in self._multi_graph.in_edges(nd._node_id): if parent_id not in block_ids: block_preds[parent_id].add(edge) for _, child_id, edge in self._multi_graph.out_edges(nd._node_id): if child_id not in block_ids: block_succs[child_id].add(edge) block_qargs |= set(nd.qargs) if isinstance(nd, DAGOpNode) and nd.op.condition: block_cargs |= set(nd.cargs) if cycle_check: # If we're cycle checking copy the graph to ensure we don't create # invalid DAG when we encounter a cycle backup_graph = self._multi_graph.copy() # Add node and wire it into graph new_index = self._add_op_node( op, sorted(block_qargs, key=lambda x: wire_pos_map[x]), sorted(block_cargs, key=lambda x: wire_pos_map[x]), ) for node_id, edges in block_preds.items(): for edge in edges: self._multi_graph.add_edge(node_id, new_index, edge) for node_id, edges in block_succs.items(): for edge in edges: self._multi_graph.add_edge(new_index, node_id, edge) for nd in node_block: self._multi_graph.remove_node(nd._node_id) # If enabled ensure block won't introduce a cycle when node_block is # contracted if cycle_check: # If a cycle was introduced remove new op node and raise error if not rx.is_directed_acyclic_graph(self._multi_graph): # If a cycle was encountered restore the graph to the # original valid state self._multi_graph = backup_graph self._decrement_op(op) raise DAGCircuitError("Replacing the specified node block would introduce a cycle") for nd in node_block: self._decrement_op(nd.op) def substitute_node_with_dag(self, node, input_dag, wires=None): """Replace one node with dag. Args: node (DAGOpNode): node to substitute input_dag (DAGCircuit): circuit that will substitute the node wires (list[Bit]): gives an order for (qu)bits in the input circuit. This order gets matched to the node wires by qargs first, then cargs, then conditions. Returns: dict: maps node IDs from `input_dag` to their new node incarnations in `self`. Raises: DAGCircuitError: if met with unexpected predecessor/successors """ in_dag = input_dag # the dag must be amended if used in a # conditional context. delete the op nodes and replay # them with the condition. if node.op.condition: in_dag = copy.deepcopy(input_dag) in_dag.add_creg(node.op.condition[0]) to_replay = [] for sorted_node in in_dag.topological_nodes(): if isinstance(sorted_node, DAGOpNode): sorted_node.op.condition = node.op.condition to_replay.append(sorted_node) for input_node in in_dag.op_nodes(): in_dag.remove_op_node(input_node) for replay_node in to_replay: in_dag.apply_operation_back(replay_node.op, replay_node.qargs, replay_node.cargs) if in_dag.global_phase: self.global_phase += in_dag.global_phase if wires is None: wires = in_dag.wires wire_set = set(wires) self._check_wires_list(wires, node) # Create a proxy wire_map to identify fragments and duplicates # and determine what registers need to be added to self add_qregs = self._check_edgemap_registers(wires, in_dag.qregs.values()) for qreg in add_qregs: self.add_qreg(qreg) add_cregs = self._check_edgemap_registers(wires, in_dag.cregs.values()) for creg in add_cregs: self.add_creg(creg) # Replace the node by iterating through the input_circuit. # Constructing and checking the validity of the wire_map. # If a gate is conditioned, we expect the replacement subcircuit # to depend on those condition bits as well. if not isinstance(node, DAGOpNode): raise DAGCircuitError("expected node DAGOpNode, got %s" % type(node)) condition_bit_list = self._bits_in_condition(node.op.condition) new_wires = list(node.qargs) + list(node.cargs) + list(condition_bit_list) wire_map = {} reverse_wire_map = {} for wire, new_wire in zip(wires, new_wires): wire_map[wire] = new_wire reverse_wire_map[new_wire] = wire self._check_wiremap_validity(wire_map, wires, self.input_map) if condition_bit_list: # If we are replacing a conditional node, map input dag through # wire_map to verify that it will not modify any of the conditioning # bits. condition_bits = set(condition_bit_list) for op_node in in_dag.op_nodes(): mapped_cargs = {wire_map[carg] for carg in op_node.cargs} if condition_bits & mapped_cargs: raise DAGCircuitError( "Mapped DAG would alter clbits on which it would be conditioned." ) # Add wire from pred to succ if no ops on mapped wire on ``in_dag`` # retworkx's substitute_node_with_subgraph lacks the DAGCircuit # context to know what to do in this case (the method won't even see # these nodes because they're filtered) so we manually retain the # edges prior to calling substitute_node_with_subgraph and set the # edge_map_fn callback kwarg to skip these edges when they're # encountered. for wire in wires: input_node = in_dag.input_map[wire] output_node = in_dag.output_map[wire] if in_dag._multi_graph.has_edge(input_node._node_id, output_node._node_id): self_wire = wire_map[wire] pred = self._multi_graph.find_predecessors_by_edge( node._node_id, lambda edge, wire=self_wire: edge == wire )[0] succ = self._multi_graph.find_successors_by_edge( node._node_id, lambda edge, wire=self_wire: edge == wire )[0] self._multi_graph.add_edge(pred._node_id, succ._node_id, self_wire) # Exlude any nodes from in_dag that are not a DAGOpNode or are on # bits outside the set specified by the wires kwarg def filter_fn(node): if not isinstance(node, DAGOpNode): return False for qarg in node.qargs: if qarg not in wire_set: return False return True # Map edges into and out of node to the appropriate node from in_dag def edge_map_fn(source, _target, self_wire): wire = reverse_wire_map[self_wire] # successor edge if source == node._node_id: wire_output_id = in_dag.output_map[wire]._node_id out_index = in_dag._multi_graph.predecessor_indices(wire_output_id)[0] # Edge directly from from input nodes to output nodes in in_dag are # already handled prior to calling retworkx. Don't map these edges # in retworkx. if not isinstance(in_dag._multi_graph[out_index], DAGOpNode): return None # predecessor edge else: wire_input_id = in_dag.input_map[wire]._node_id out_index = in_dag._multi_graph.successor_indices(wire_input_id)[0] # Edge directly from from input nodes to output nodes in in_dag are # already handled prior to calling retworkx. Don't map these edges # in retworkx. if not isinstance(in_dag._multi_graph[out_index], DAGOpNode): return None return out_index # Adjust edge weights from in_dag def edge_weight_map(wire): return wire_map[wire] node_map = self._multi_graph.substitute_node_with_subgraph( node._node_id, in_dag._multi_graph, edge_map_fn, filter_fn, edge_weight_map ) self._decrement_op(node.op) # Iterate over nodes of input_circuit and update wires in node objects migrated # from in_dag for old_node_index, new_node_index in node_map.items(): # update node attributes old_node = in_dag._multi_graph[old_node_index] condition = self._map_condition(wire_map, old_node.op.condition, self.cregs.values()) m_qargs = [wire_map.get(x, x) for x in old_node.qargs] m_cargs = [wire_map.get(x, x) for x in old_node.cargs] new_node = DAGOpNode(old_node.op, qargs=m_qargs, cargs=m_cargs) new_node._node_id = new_node_index new_node.op.condition = condition self._multi_graph[new_node_index] = new_node self._increment_op(new_node.op) return {k: self._multi_graph[v] for k, v in node_map.items()} def substitute_node(self, node, op, inplace=False): """Replace an DAGOpNode with a single instruction. qargs, cargs and conditions for the new instruction will be inferred from the node to be replaced. The new instruction will be checked to match the shape of the replaced instruction. Args: node (DAGOpNode): Node to be replaced op (qiskit.circuit.Instruction): The :class:`qiskit.circuit.Instruction` instance to be added to the DAG inplace (bool): Optional, default False. If True, existing DAG node will be modified to include op. Otherwise, a new DAG node will be used. Returns: DAGOpNode: the new node containing the added instruction. Raises: DAGCircuitError: If replacement instruction was incompatible with location of target node. """ if not isinstance(node, DAGOpNode): raise DAGCircuitError("Only DAGOpNodes can be replaced.") if node.op.num_qubits != op.num_qubits or node.op.num_clbits != op.num_clbits: raise DAGCircuitError( "Cannot replace node of width ({} qubits, {} clbits) with " "instruction of mismatched width ({} qubits, {} clbits).".format( node.op.num_qubits, node.op.num_clbits, op.num_qubits, op.num_clbits ) ) if inplace: if op.name != node.op.name: self._increment_op(op) self._decrement_op(node.op) save_condition = node.op.condition node.op = op node.op.condition = save_condition return node new_node = copy.copy(node) save_condition = new_node.op.condition new_node.op = op new_node.op.condition = save_condition self._multi_graph[node._node_id] = new_node if op.name != node.op.name: self._increment_op(op) self._decrement_op(node.op) return new_node def node(self, node_id): """Get the node in the dag. Args: node_id(int): Node identifier. Returns: node: the node. """ return self._multi_graph[node_id] def nodes(self): """Iterator for node values. Yield: node: the node. """ yield from self._multi_graph.nodes() def edges(self, nodes=None): """Iterator for edge values and source and dest node This works by returning the output edges from the specified nodes. If no nodes are specified all edges from the graph are returned. Args: nodes(DAGOpNode, DAGInNode, or DAGOutNode|list(DAGOpNode, DAGInNode, or DAGOutNode): Either a list of nodes or a single input node. If none is specified, all edges are returned from the graph. Yield: edge: the edge in the same format as out_edges the tuple (source node, destination node, edge data) """ if nodes is None: nodes = self._multi_graph.nodes() elif isinstance(nodes, (DAGOpNode, DAGInNode, DAGOutNode)): nodes = [nodes] for node in nodes: raw_nodes = self._multi_graph.out_edges(node._node_id) for source, dest, edge in raw_nodes: yield (self._multi_graph[source], self._multi_graph[dest], edge) def op_nodes(self, op=None, include_directives=True): """Get the list of "op" nodes in the dag. Args: op (Type): :class:`qiskit.circuit.Instruction` subclass op nodes to return. If None, return all op nodes. include_directives (bool): include `barrier`, `snapshot` etc. Returns: list[DAGOpNode]: the list of node ids containing the given op. """ nodes = [] for node in self._multi_graph.nodes(): if isinstance(node, DAGOpNode): if not include_directives and node.op._directive: continue if op is None or isinstance(node.op, op): nodes.append(node) return nodes def gate_nodes(self): """Get the list of gate nodes in the dag. Returns: list[DAGOpNode]: the list of DAGOpNodes that represent gates. """ nodes = [] for node in self.op_nodes(): if isinstance(node.op, Gate): nodes.append(node) return nodes def named_nodes(self, *names): """Get the set of "op" nodes with the given name.""" named_nodes = [] for node in self._multi_graph.nodes(): if isinstance(node, DAGOpNode) and node.op.name in names: named_nodes.append(node) return named_nodes def two_qubit_ops(self): """Get list of 2 qubit operations. Ignore directives like snapshot and barrier.""" ops = [] for node in self.op_nodes(include_directives=False): if len(node.qargs) == 2: ops.append(node) return ops def multi_qubit_ops(self): """Get list of 3+ qubit operations. Ignore directives like snapshot and barrier.""" ops = [] for node in self.op_nodes(include_directives=False): if len(node.qargs) >= 3: ops.append(node) return ops def longest_path(self): """Returns the longest path in the dag as a list of DAGOpNodes, DAGInNodes, and DAGOutNodes.""" return [self._multi_graph[x] for x in rx.dag_longest_path(self._multi_graph)] def successors(self, node): """Returns iterator of the successors of a node as DAGOpNodes and DAGOutNodes.""" return iter(self._multi_graph.successors(node._node_id)) def predecessors(self, node): """Returns iterator of the predecessors of a node as DAGOpNodes and DAGInNodes.""" return iter(self._multi_graph.predecessors(node._node_id)) def is_successor(self, node, node_succ): """Checks if a second node is in the successors of node.""" return self._multi_graph.has_edge(node._node_id, node_succ._node_id) def is_predecessor(self, node, node_pred): """Checks if a second node is in the predecessors of node.""" return self._multi_graph.has_edge(node_pred._node_id, node._node_id) def quantum_predecessors(self, node): """Returns iterator of the predecessors of a node that are connected by a quantum edge as DAGOpNodes and DAGInNodes.""" return iter( self._multi_graph.find_predecessors_by_edge( node._node_id, lambda edge_data: isinstance(edge_data, Qubit) ) ) def ancestors(self, node): """Returns set of the ancestors of a node as DAGOpNodes and DAGInNodes.""" return {self._multi_graph[x] for x in rx.ancestors(self._multi_graph, node._node_id)} def descendants(self, node): """Returns set of the descendants of a node as DAGOpNodes and DAGOutNodes.""" return {self._multi_graph[x] for x in rx.descendants(self._multi_graph, node._node_id)} def bfs_successors(self, node): """ Returns an iterator of tuples of (DAGNode, [DAGNodes]) where the DAGNode is the current node and [DAGNode] is its successors in BFS order. """ return iter(rx.bfs_successors(self._multi_graph, node._node_id)) def quantum_successors(self, node): """Returns iterator of the successors of a node that are connected by a quantum edge as Opnodes and DAGOutNodes.""" return iter( self._multi_graph.find_successors_by_edge( node._node_id, lambda edge_data: isinstance(edge_data, Qubit) ) ) def remove_op_node(self, node): """Remove an operation node n. Add edges from predecessors to successors. """ if not isinstance(node, DAGOpNode): raise DAGCircuitError( 'The method remove_op_node only works on DAGOpNodes. A "%s" ' "node type was wrongly provided." % type(node) ) self._multi_graph.remove_node_retain_edges( node._node_id, use_outgoing=False, condition=lambda edge1, edge2: edge1 == edge2 ) self._decrement_op(node.op) def remove_ancestors_of(self, node): """Remove all of the ancestor operation nodes of node.""" anc = rx.ancestors(self._multi_graph, node) # TODO: probably better to do all at once using # multi_graph.remove_nodes_from; same for related functions ... for anc_node in anc: if isinstance(anc_node, DAGOpNode): self.remove_op_node(anc_node) def remove_descendants_of(self, node): """Remove all of the descendant operation nodes of node.""" desc = rx.descendants(self._multi_graph, node) for desc_node in desc: if isinstance(desc_node, DAGOpNode): self.remove_op_node(desc_node) def remove_nonancestors_of(self, node): """Remove all of the non-ancestors operation nodes of node.""" anc = rx.ancestors(self._multi_graph, node) comp = list(set(self._multi_graph.nodes()) - set(anc)) for n in comp: if isinstance(n, DAGOpNode): self.remove_op_node(n) def remove_nondescendants_of(self, node): """Remove all of the non-descendants operation nodes of node.""" dec = rx.descendants(self._multi_graph, node) comp = list(set(self._multi_graph.nodes()) - set(dec)) for n in comp: if isinstance(n, DAGOpNode): self.remove_op_node(n) def front_layer(self): """Return a list of op nodes in the first layer of this dag.""" graph_layers = self.multigraph_layers() try: next(graph_layers) # Remove input nodes except StopIteration: return [] op_nodes = [node for node in next(graph_layers) if isinstance(node, DAGOpNode)] return op_nodes def layers(self): """Yield a shallow view on a layer of this DAGCircuit for all d layers of this circuit. A layer is a circuit whose gates act on disjoint qubits, i.e., a layer has depth 1. The total number of layers equals the circuit depth d. The layers are indexed from 0 to d-1 with the earliest layer at index 0. The layers are constructed using a greedy algorithm. Each returned layer is a dict containing {"graph": circuit graph, "partition": list of qubit lists}. The returned layer contains new (but semantically equivalent) DAGOpNodes, DAGInNodes, and DAGOutNodes. These are not the same as nodes of the original dag, but are equivalent via DAGNode.semantic_eq(node1, node2). TODO: Gates that use the same cbits will end up in different layers as this is currently implemented. This may not be the desired behavior. """ graph_layers = self.multigraph_layers() try: next(graph_layers) # Remove input nodes except StopIteration: return for graph_layer in graph_layers: # Get the op nodes from the layer, removing any input and output nodes. op_nodes = [node for node in graph_layer if isinstance(node, DAGOpNode)] # Sort to make sure they are in the order they were added to the original DAG # It has to be done by node_id as graph_layer is just a list of nodes # with no implied topology # Drawing tools rely on _node_id to infer order of node creation # so we need this to be preserved by layers() op_nodes.sort(key=lambda nd: nd._node_id) # Stop yielding once there are no more op_nodes in a layer. if not op_nodes: return # Construct a shallow copy of self new_layer = self._copy_circuit_metadata() for node in op_nodes: # this creates new DAGOpNodes in the new_layer new_layer.apply_operation_back(node.op, node.qargs, node.cargs) # The quantum registers that have an operation in this layer. support_list = [ op_node.qargs for op_node in new_layer.op_nodes() if not op_node.op._directive ] yield {"graph": new_layer, "partition": support_list} def serial_layers(self): """Yield a layer for all gates of this circuit. A serial layer is a circuit with one gate. The layers have the same structure as in layers(). """ for next_node in self.topological_op_nodes(): new_layer = self._copy_circuit_metadata() # Save the support of the operation we add to the layer support_list = [] # Operation data op = copy.copy(next_node.op) qargs = copy.copy(next_node.qargs) cargs = copy.copy(next_node.cargs) condition = copy.copy(next_node.op.condition) _ = self._bits_in_condition(condition) # Add node to new_layer new_layer.apply_operation_back(op, qargs, cargs) # Add operation to partition if not next_node.op._directive: support_list.append(list(qargs)) l_dict = {"graph": new_layer, "partition": support_list} yield l_dict def multigraph_layers(self): """Yield layers of the multigraph.""" first_layer = [x._node_id for x in self.input_map.values()] return iter(rx.layers(self._multi_graph, first_layer)) def collect_runs(self, namelist): """Return a set of non-conditional runs of "op" nodes with the given names. For example, "... h q[0]; cx q[0],q[1]; cx q[0],q[1]; h q[1]; .." would produce the tuple of cx nodes as an element of the set returned from a call to collect_runs(["cx"]). If instead the cx nodes were "cx q[0],q[1]; cx q[1],q[0];", the method would still return the pair in a tuple. The namelist can contain names that are not in the circuit's basis. Nodes must have only one successor to continue the run. """ def filter_fn(node): return ( isinstance(node, DAGOpNode) and node.op.name in namelist and node.op.condition is None ) group_list = rx.collect_runs(self._multi_graph, filter_fn) return {tuple(x) for x in group_list} def collect_1q_runs(self): """Return a set of non-conditional runs of 1q "op" nodes.""" def filter_fn(node): return ( isinstance(node, DAGOpNode) and len(node.qargs) == 1 and len(node.cargs) == 0 and node.op.condition is None and not node.op.is_parameterized() and isinstance(node.op, Gate) and hasattr(node.op, "__array__") ) return rx.collect_runs(self._multi_graph, filter_fn) def collect_2q_runs(self): """Return a set of non-conditional runs of 2q "op" nodes.""" to_qid = {} for i, qubit in enumerate(self.qubits): to_qid[qubit] = i def filter_fn(node): if isinstance(node, DAGOpNode): return ( isinstance(node.op, Gate) and len(node.qargs) <= 2 and not node.op.condition and not node.op.is_parameterized() ) else: return None def color_fn(edge): if isinstance(edge, Qubit): return to_qid[edge] else: return None return rx.collect_bicolor_runs(self._multi_graph, filter_fn, color_fn) def nodes_on_wire(self, wire, only_ops=False): """ Iterator for nodes that affect a given wire. Args: wire (Bit): the wire to be looked at. only_ops (bool): True if only the ops nodes are wanted; otherwise, all nodes are returned. Yield: Iterator: the successive nodes on the given wire Raises: DAGCircuitError: if the given wire doesn't exist in the DAG """ current_node = self.input_map.get(wire, None) if not current_node: raise DAGCircuitError("The given wire %s is not present in the circuit" % str(wire)) more_nodes = True while more_nodes: more_nodes = False # allow user to just get ops on the wire - not the input/output nodes if isinstance(current_node, DAGOpNode) or not only_ops: yield current_node try: current_node = self._multi_graph.find_adjacent_node_by_edge( current_node._node_id, lambda x: wire == x ) more_nodes = True except rx.NoSuitableNeighbors: pass def count_ops(self): """Count the occurrences of operation names. Returns a dictionary of counts keyed on the operation name. """ return self._op_names.copy() def count_ops_longest_path(self): """Count the occurrences of operation names on the longest path. Returns a dictionary of counts keyed on the operation name. """ op_dict = {} path = self.longest_path() path = path[1:-1] # remove qubits at beginning and end of path for node in path: name = node.op.name if name not in op_dict: op_dict[name] = 1 else: op_dict[name] += 1 return op_dict def properties(self): """Return a dictionary of circuit properties.""" summary = { "size": self.size(), "depth": self.depth(), "width": self.width(), "qubits": self.num_qubits(), "bits": self.num_clbits(), "factors": self.num_tensor_factors(), "operations": self.count_ops(), } return summary def draw(self, scale=0.7, filename=None, style="color"): """ Draws the dag circuit. This function needs `pydot <https://github.com/erocarrera/pydot>`_, which in turn needs `Graphviz <https://www.graphviz.org/>`_ to be installed. Args: scale (float): scaling factor filename (str): file path to save image to (format inferred from name) style (str): 'plain': B&W graph; 'color' (default): color input/output/op nodes Returns: Ipython.display.Image: if in Jupyter notebook and not saving to file, otherwise None. """ from qiskit.visualization.dag_visualization import dag_drawer return dag_drawer(dag=self, scale=scale, filename=filename, style=style)
39.225169
103
0.603148
b89481cb119288cb905b90d466236208f60eb5c4
1,421
py
Python
pipoh/concrete_factories/bayesian_folder/bayesian_strategies/EW.py
faprieto96/pyInvestment
a5c1bdb7823df0df215c3ac55dc8427fd18b2e15
[ "MIT" ]
null
null
null
pipoh/concrete_factories/bayesian_folder/bayesian_strategies/EW.py
faprieto96/pyInvestment
a5c1bdb7823df0df215c3ac55dc8427fd18b2e15
[ "MIT" ]
1
2022-02-19T20:06:17.000Z
2022-02-19T20:06:25.000Z
pipoh/concrete_factories/bayesian_folder/bayesian_strategies/EW.py
faprieto96/pyInvestment
a5c1bdb7823df0df215c3ac55dc8427fd18b2e15
[ "MIT" ]
null
null
null
from numpy import array, dot from qpsolvers import solve_qp import bayes_opt from bayes_opt import BayesianOptimization #from Strategy import errorLoss, rollingWindowsValidation #Funcion para Trasposición conjugada compleja en Python from numpy import ndarray class myarray(ndarray): @property def H(self): return self.conj().T from Strategy import getWeights, rollingWindowsValidation import numpy as np from sklearn.covariance import EmpiricalCovariance from sklearn.datasets import make_gaussian_quantiles class EW: def __init__(self, data): self.data = [] pass #The Equally Weighted Minimum Variance approach # This class derives from the Strategy Class and implements the # optimization problem associated to the Markowitz's theory with # explicit diversification in the cost function #Description: Relative importance of the variance. class obj: name = 'Equally Weighted Strategy' pass # Description: This function runs the corresponding strategy, fitting the model weights. def solveOptimizationProblem(obj, data, vars): # Type: It returns the optimized weights # Compute numbers of data points and assets (numElements, N) = data.shape # mean and covariance W = np.ones((N,1))*(1/N) return W def config(obj,data,vars, varsCV): return obj
25.375
92
0.711471
a287956988381b496c7b4b58d316c8bda96772ee
2,405
py
Python
qiskit_ibm_runtime/runtime_options.py
rathishcholarajan/qiskit-ibm-runtime
315a088a844dc8aa4452bde6136b53694dfb3220
[ "Apache-2.0" ]
20
2021-11-24T07:38:45.000Z
2022-03-27T06:54:30.000Z
qiskit_ibm_runtime/runtime_options.py
rathishcholarajan/qiskit-ibm-runtime
315a088a844dc8aa4452bde6136b53694dfb3220
[ "Apache-2.0" ]
188
2021-11-18T18:59:38.000Z
2022-03-31T23:35:29.000Z
qiskit_ibm_runtime/runtime_options.py
rathishcholarajan/qiskit-ibm-runtime
315a088a844dc8aa4452bde6136b53694dfb3220
[ "Apache-2.0" ]
20
2021-11-18T21:28:59.000Z
2022-03-24T13:46:06.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Runtime options that control the execution environment.""" import re import logging from dataclasses import dataclass from typing import Optional from .exceptions import IBMInputValueError @dataclass class RuntimeOptions: """Class for representing runtime execution options. Args: backend_name: target backend to run on. This is required for ``ibm_quantum`` runtime. image: the runtime image used to execute the program, specified in the form of ``image_name:tag``. Not all accounts are authorized to select a different image. log_level: logging level to set in the execution environment. The valid log levels are: ``DEBUG``, ``INFO``, ``WARNING``, ``ERROR``, and ``CRITICAL``. The default level is ``WARNING``. """ backend_name: Optional[str] = None image: Optional[str] = None log_level: Optional[str] = None def validate(self, channel: str) -> None: """Validate options. Args: channel: channel type. Raises: IBMInputValueError: If one or more option is invalid. """ if self.image and not re.match( "[a-zA-Z0-9]+([/.\\-_][a-zA-Z0-9]+)*:[a-zA-Z0-9]+([.\\-_][a-zA-Z0-9]+)*$", self.image, ): raise IBMInputValueError('"image" needs to be in form of image_name:tag') if channel == "ibm_quantum" and not self.backend_name: raise IBMInputValueError( '"backend_name" is required field in "options" for ``ibm_quantum`` runtime.' ) if self.log_level and not isinstance( logging.getLevelName(self.log_level.upper()), int ): raise IBMInputValueError( f"{self.log_level} is not a valid log level. The valid log levels are: `DEBUG`, " f"`INFO`, `WARNING`, `ERROR`, and `CRITICAL`." )
35.367647
97
0.63368
e21a5c78b56de3fbd70750eea0156339c01e2e2f
2,524
py
Python
neutron/plugins/ml2/drivers/openvswitch/agent/openflow/native/ovs_ryuapp.py
banhr/neutron
4b3e73648327ce9f4d3437986a8663372f577f1b
[ "Apache-2.0" ]
4
2018-08-05T00:43:03.000Z
2021-10-13T00:45:45.000Z
neutron/plugins/ml2/drivers/openvswitch/agent/openflow/native/ovs_ryuapp.py
weiqiLee/neutron
ddc72ebd41a0e7804b33a21583d3add008191229
[ "Apache-2.0" ]
8
2018-06-14T14:50:16.000Z
2018-11-13T16:30:42.000Z
neutron/plugins/ml2/drivers/openvswitch/agent/openflow/native/ovs_ryuapp.py
weiqiLee/neutron
ddc72ebd41a0e7804b33a21583d3add008191229
[ "Apache-2.0" ]
7
2018-06-12T18:57:04.000Z
2019-05-09T15:42:30.000Z
# Copyright (C) 2015 VA Linux Systems Japan K.K. # Copyright (C) 2015 YAMAMOTO Takashi <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools from oslo_log import log as logging from oslo_utils import excutils import ryu.app.ofctl.api # noqa from ryu.base import app_manager from ryu.lib import hub from ryu.ofproto import ofproto_v1_3 from neutron.plugins.ml2.drivers.openvswitch.agent.openflow.native \ import br_int from neutron.plugins.ml2.drivers.openvswitch.agent.openflow.native \ import br_phys from neutron.plugins.ml2.drivers.openvswitch.agent.openflow.native \ import br_tun from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_neutron_agent as ovs_agent LOG = logging.getLogger(__name__) def agent_main_wrapper(bridge_classes): try: ovs_agent.main(bridge_classes) except Exception: with excutils.save_and_reraise_exception(): LOG.exception("Agent main thread died of an exception") finally: # The following call terminates Ryu's AppManager.run_apps(), # which is needed for clean shutdown of an agent process. # The close() call must be called in another thread, otherwise # it suicides and ends prematurely. hub.spawn(app_manager.AppManager.get_instance().close) class OVSNeutronAgentRyuApp(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def start(self): # Start Ryu event loop thread super(OVSNeutronAgentRyuApp, self).start() def _make_br_cls(br_cls): return functools.partial(br_cls, ryu_app=self) # Start agent main loop thread bridge_classes = { 'br_int': _make_br_cls(br_int.OVSIntegrationBridge), 'br_phys': _make_br_cls(br_phys.OVSPhysicalBridge), 'br_tun': _make_br_cls(br_tun.OVSTunnelBridge), } return hub.spawn(agent_main_wrapper, bridge_classes, raise_error=True)
36.57971
78
0.723851
4239fc575824d838c1f9e2e35b23420292b23ae8
11,017
py
Python
pyro/infer/util.py
jrmcornish/pyro
38914d5eb596dc140e226031534ff4ea7903dc35
[ "MIT" ]
2
2020-04-11T04:30:55.000Z
2021-07-29T18:45:08.000Z
pyro/infer/util.py
jrmcornish/pyro
38914d5eb596dc140e226031534ff4ea7903dc35
[ "MIT" ]
null
null
null
pyro/infer/util.py
jrmcornish/pyro
38914d5eb596dc140e226031534ff4ea7903dc35
[ "MIT" ]
null
null
null
import math import numbers from collections import Counter, defaultdict import torch from opt_einsum import shared_intermediates from opt_einsum.sharing import count_cached_ops from pyro.distributions.util import is_identically_zero from pyro.ops import packed from pyro.ops.einsum.adjoint import require_backward from pyro.ops.rings import MarginalRing from pyro.poutine.util import site_is_subsample _VALIDATION_ENABLED = False LAST_CACHE_SIZE = [Counter()] # for profiling def enable_validation(is_validate): global _VALIDATION_ENABLED _VALIDATION_ENABLED = is_validate def is_validation_enabled(): return _VALIDATION_ENABLED def torch_item(x): """ Like ``x.item()`` for a :class:`~torch.Tensor`, but also works with numbers. """ return x if isinstance(x, numbers.Number) else x.item() def torch_backward(x, retain_graph=None): """ Like ``x.backward()`` for a :class:`~torch.Tensor`, but also accepts numbers and tensors without grad_fn (resulting in a no-op) """ if torch.is_tensor(x) and x.grad_fn: x.backward(retain_graph=retain_graph) def torch_exp(x): """ Like ``x.exp()`` for a :class:`~torch.Tensor`, but also accepts numbers. """ if torch.is_tensor(x): return torch.exp(x) else: return math.exp(x) def detach_iterable(iterable): if torch.is_tensor(iterable): return iterable.detach() else: return [var.detach() for var in iterable] def zero_grads(tensors): """ Sets gradients of list of Tensors to zero in place """ for p in tensors: if p.grad is not None: p.grad = torch.zeros_like(p.grad) def get_plate_stacks(trace): """ This builds a dict mapping site name to a set of plate stacks. Each plate stack is a list of :class:`CondIndepStackFrame`s corresponding to an :class:`plate`. This information is used by :class:`Trace_ELBO` and :class:`TraceGraph_ELBO`. """ return {name: [f for f in node["cond_indep_stack"] if f.vectorized] for name, node in trace.nodes.items() if node["type"] == "sample" and not site_is_subsample(node)} class MultiFrameTensor(dict): """ A container for sums of Tensors among different :class:`plate` contexts. Used in :class:`~pyro.infer.tracegraph_elbo.TraceGraph_ELBO` to simplify downstream cost computation logic. Example:: downstream_cost = MultiFrameTensor() for site in downstream_nodes: downstream_cost.add((site["cond_indep_stack"], site["log_prob"])) downstream_cost.add(*other_costs.items()) # add in bulk summed = downstream_cost.sum_to(target_site["cond_indep_stack"]) """ def __init__(self, *items): super(MultiFrameTensor, self).__init__() self.add(*items) def add(self, *items): """ Add a collection of (cond_indep_stack, tensor) pairs. Keys are ``cond_indep_stack``s, i.e. tuples of :class:`CondIndepStackFrame`s. Values are :class:`torch.Tensor`s. """ for cond_indep_stack, value in items: frames = frozenset(f for f in cond_indep_stack if f.vectorized) assert all(f.dim < 0 and -value.dim() <= f.dim for f in frames) if frames in self: self[frames] = self[frames] + value else: self[frames] = value def sum_to(self, target_frames): total = None for frames, value in self.items(): for f in frames: if f not in target_frames and value.shape[f.dim] != 1: value = value.sum(f.dim, True) while value.shape and value.shape[0] == 1: value = value.squeeze(0) total = value if total is None else total + value return total def __repr__(self): return '%s(%s)' % (type(self).__name__, ",\n\t".join([ '({}, ...)'.format(frames) for frames in self])) class Dice(object): """ An implementation of the DiCE operator compatible with Pyro features. This implementation correctly handles: - scaled log-probability due to subsampling - independence in different ordinals due to plate - weights due to parallel and sequential enumeration - weights due to local multiple sampling This assumes restricted dependency structure on the model and guide: variables outside of an :class:`~pyro.plate` can never depend on variables inside that :class:`~pyro.plate`. References: [1] Jakob Foerster, Greg Farquhar, Maruan Al-Shedivat, Tim Rocktaeschel, Eric P. Xing, Shimon Whiteson (2018) "DiCE: The Infinitely Differentiable Monte-Carlo Estimator" https://arxiv.org/abs/1802.05098 [2] Laurence Aitchison (2018) "Tensor Monte Carlo: particle methods for the GPU era" https://arxiv.org/abs/1806.08593 :param pyro.poutine.trace.Trace guide_trace: A guide trace. :param ordering: A dictionary mapping model site names to ordinal values. Ordinal values may be any type that is (1) ``<=`` comparable and (2) hashable; the canonical ordinal is a ``frozenset`` of site names. """ def __init__(self, guide_trace, ordering): log_denom = defaultdict(float) # avoids double-counting when sequentially enumerating log_probs = defaultdict(list) # accounts for upstream probabilties for name, site in guide_trace.nodes.items(): if site["type"] != "sample": continue log_prob = site["packed"]["score_parts"].score_function # not scaled by subsampling dims = getattr(log_prob, "_pyro_dims", "") ordinal = ordering[name] if site["infer"].get("enumerate"): num_samples = site["infer"].get("num_samples") if num_samples is not None: # site was multiply sampled if not is_identically_zero(log_prob): log_prob = log_prob - log_prob.detach() log_prob = log_prob - math.log(num_samples) if not isinstance(log_prob, torch.Tensor): log_prob = torch.tensor(float(log_prob), device=site["value"].device) log_prob._pyro_dims = dims # I don't know why the following broadcast is needed, but it makes tests pass: log_prob, _ = packed.broadcast_all(log_prob, site["packed"]["log_prob"]) elif site["infer"]["enumerate"] == "sequential": log_denom[ordinal] += math.log(site["infer"]["_enum_total"]) else: # site was monte carlo sampled if is_identically_zero(log_prob): continue log_prob = log_prob - log_prob.detach() log_prob._pyro_dims = dims log_probs[ordinal].append(log_prob) self.log_denom = log_denom self.log_probs = log_probs def _get_log_factors(self, target_ordinal): """ Returns a list of DiCE factors at a given ordinal. """ log_denom = 0 for ordinal, term in self.log_denom.items(): if not ordinal <= target_ordinal: # not downstream log_denom += term # term = log(# times this ordinal is counted) log_factors = [] if is_identically_zero(log_denom) else [-log_denom] for ordinal, terms in self.log_probs.items(): if ordinal <= target_ordinal: # upstream log_factors.extend(terms) # terms = [log(dice weight of this ordinal)] return log_factors def compute_expectation(self, costs): """ Returns a differentiable expected cost, summing over costs at given ordinals. :param dict costs: A dict mapping ordinals to lists of cost tensors :returns: a scalar expected cost :rtype: torch.Tensor or float """ # Share computation across all cost terms. with shared_intermediates() as cache: ring = MarginalRing(cache=cache) expected_cost = 0. for ordinal, cost_terms in costs.items(): log_factors = self._get_log_factors(ordinal) scale = math.exp(sum(x for x in log_factors if not isinstance(x, torch.Tensor))) log_factors = [x for x in log_factors if isinstance(x, torch.Tensor)] # Collect log_prob terms to query for marginal probability. queries = {frozenset(cost._pyro_dims): None for cost in cost_terms} for log_factor in log_factors: key = frozenset(log_factor._pyro_dims) if queries.get(key, False) is None: queries[key] = log_factor # Ensure a query exists for each cost term. for cost in cost_terms: key = frozenset(cost._pyro_dims) if queries[key] is None: query = torch.zeros_like(cost) query._pyro_dims = cost._pyro_dims log_factors.append(query) queries[key] = query # Perform sum-product contraction. Note that plates never need to be # product-contracted due to our plate-based dependency ordering. sum_dims = set().union(*(x._pyro_dims for x in log_factors)) - ordinal for query in queries.values(): require_backward(query) root = ring.sumproduct(log_factors, sum_dims) root._pyro_backward() probs = {key: query._pyro_backward_result.exp() for key, query in queries.items()} # Aggregate prob * cost terms. for cost in cost_terms: key = frozenset(cost._pyro_dims) prob = probs[key] prob._pyro_dims = queries[key]._pyro_dims mask = prob > 0 if torch._C._get_tracing_state() or not mask.all(): mask._pyro_dims = prob._pyro_dims cost, prob, mask = packed.broadcast_all(cost, prob, mask) prob = prob[mask] cost = cost[mask] else: cost, prob = packed.broadcast_all(cost, prob) expected_cost = expected_cost + scale * torch.tensordot(prob, cost, prob.dim()) LAST_CACHE_SIZE[0] = count_cached_ops(cache) return expected_cost def check_fully_reparametrized(guide_site): log_prob, score_function_term, entropy_term = guide_site["score_parts"] fully_rep = (guide_site["fn"].has_rsample and not is_identically_zero(entropy_term) and is_identically_zero(score_function_term)) if not fully_rep: raise NotImplementedError("All distributions in the guide must be fully reparameterized.")
39.916667
99
0.613869
059a89e17dd615424b3e6e68756a004de575873a
1,845
py
Python
pipeline/utf8_utils.py
riyachanduka/termite
62cfb58d29354915db2c3f9c726e2ef2a976d4c0
[ "BSD-3-Clause" ]
73
2015-01-31T22:03:20.000Z
2022-03-15T11:39:00.000Z
pipeline/utf8_utils.py
riyachanduka/termite
62cfb58d29354915db2c3f9c726e2ef2a976d4c0
[ "BSD-3-Clause" ]
3
2016-04-24T20:01:14.000Z
2017-05-18T15:55:28.000Z
pipeline/utf8_utils.py
riyachanduka/termite
62cfb58d29354915db2c3f9c726e2ef2a976d4c0
[ "BSD-3-Clause" ]
27
2015-01-13T06:31:04.000Z
2020-05-14T09:27:00.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Modified from 'The Python Standard Library' 13.1. csv — CSV File Reading and Writing http://docs.python.org/2/library/csv.html """ import csv, codecs, cStringIO class UTF8Recoder: """ Iterator that reads an encoded stream and reencodes the input to UTF-8 """ def __init__(self, f, encoding): self.reader = codecs.getreader(encoding)(f) def __iter__(self): return self def next(self): return self.reader.next().encode("utf-8") class UnicodeReader: """ A CSV reader which will iterate over lines in the CSV file "f", which is encoded in the given encoding. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", delimiter="\t", **kwds): f = UTF8Recoder(f, encoding) self.reader = csv.reader(f, dialect=dialect, delimiter=delimiter, **kwds) def next(self): row = self.reader.next() return [unicode(s, "utf-8") for s in row] def __iter__(self): return self class UnicodeWriter: """ A CSV writer which will write rows to CSV file "f", which is encoded in the given encoding. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", delimiter="\t", **kwds): # Redirect output to a queue self.queue = cStringIO.StringIO() self.writer = csv.writer(self.queue, dialect=dialect, delimiter=delimiter, **kwds) self.stream = f self.encoder = codecs.getincrementalencoder(encoding)() def writerow(self, row): self.writer.writerow([s.encode("utf-8") for s in row]) # Fetch UTF-8 output from the queue ... data = self.queue.getvalue() data = data.decode("utf-8", "ignore") # ... and reencode it into the target encoding data = self.encoder.encode(data) # write to the target stream self.stream.write(data) # empty queue self.queue.truncate(0) def writerows(self, rows): for row in rows: self.writerow(row)
26.73913
84
0.690515
b0c7176c5633a42f5f35b7a81ead126d6a27df61
12,537
py
Python
tensorflow_probability/python/distributions/kumaraswamy_test.py
nagachika/probability
2a5609ceec01a388ec03b583b4f8e813cfbad981
[ "Apache-2.0" ]
1
2020-07-12T22:40:42.000Z
2020-07-12T22:40:42.000Z
tensorflow_probability/python/distributions/kumaraswamy_test.py
nagachika/probability
2a5609ceec01a388ec03b583b4f8e813cfbad981
[ "Apache-2.0" ]
2
2019-08-01T18:31:41.000Z
2019-08-01T19:42:15.000Z
tensorflow_probability/python/distributions/kumaraswamy_test.py
nagachika/probability
2a5609ceec01a388ec03b583b4f8e813cfbad981
[ "Apache-2.0" ]
1
2020-04-17T18:01:47.000Z
2020-04-17T18:01:47.000Z
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib # Dependency imports import numpy as np import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_util as tfp_test_util from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top def try_import(name): # pylint: disable=invalid-name module = None try: module = importlib.import_module(name) except ImportError as e: tf.compat.v1.logging.warning("Could not import %s: %s" % (name, str(e))) return module special = try_import("scipy.special") stats = try_import("scipy.stats") tfd = tfp.distributions def _kumaraswamy_mode(a, b): a = np.asarray(a) b = np.asarray(b) return ((a - 1) / (a * b - 1))**(1 / a) def _kumaraswamy_moment(a, b, n): a = np.asarray(a) b = np.asarray(b) return b * special.beta(1.0 + n / a, b) def _harmonic_number(b): b = np.asarray(b) return special.psi(b + 1) - special.psi(1) def _kumaraswamy_cdf(a, b, x): a = np.asarray(a) b = np.asarray(b) x = np.asarray(x) return 1 - (1 - x**a)**b def _kumaraswamy_pdf(a, b, x): a = np.asarray(a) b = np.asarray(b) x = np.asarray(x) return a * b * x ** (a - 1) * (1 - x ** a) ** (b - 1) @test_util.run_all_in_graph_and_eager_modes class KumaraswamyTest(tf.test.TestCase): def testSimpleShapes(self): a = np.random.rand(3) b = np.random.rand(3) dist = tfd.Kumaraswamy(a, b) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([3], self.evaluate(dist.batch_shape_tensor())) self.assertEqual(tf.TensorShape([]), dist.event_shape) self.assertEqual(tf.TensorShape([3]), dist.batch_shape) def testComplexShapes(self): a = np.random.rand(3, 2, 2) b = np.random.rand(3, 2, 2) dist = tfd.Kumaraswamy(a, b) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([3, 2, 2], self.evaluate(dist.batch_shape_tensor())) self.assertEqual(tf.TensorShape([]), dist.event_shape) self.assertEqual(tf.TensorShape([3, 2, 2]), dist.batch_shape) def testComplexShapesBroadcast(self): a = np.random.rand(3, 2, 2) b = np.random.rand(2, 2) dist = tfd.Kumaraswamy(a, b) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([3, 2, 2], self.evaluate(dist.batch_shape_tensor())) self.assertEqual(tf.TensorShape([]), dist.event_shape) self.assertEqual(tf.TensorShape([3, 2, 2]), dist.batch_shape) def testAProperty(self): a = [[1., 2, 3]] b = [[2., 4, 3]] dist = tfd.Kumaraswamy(a, b) self.assertEqual([1, 3], dist.concentration1.shape) self.assertAllClose(a, self.evaluate(dist.concentration1)) def testBProperty(self): a = [[1., 2, 3]] b = [[2., 4, 3]] dist = tfd.Kumaraswamy(a, b) self.assertEqual([1, 3], dist.concentration0.shape) self.assertAllClose(b, self.evaluate(dist.concentration0)) def testPdfXProper(self): a = [[1., 2, 3]] b = [[2., 4, 3]] dist = tfd.Kumaraswamy(a, b, validate_args=True) self.evaluate(dist.prob([.1, .3, .6])) self.evaluate(dist.prob([.2, .3, .5])) # Either condition can trigger. with self.assertRaisesOpError("sample must be non-negative"): self.evaluate(dist.prob([-1., 0.1, 0.5])) with self.assertRaisesOpError("sample must be no larger than `1`"): self.evaluate(dist.prob([.1, .2, 1.2])) def testPdfTwoBatches(self): a = [1., 2] b = [1., 2] x = [.5, .5] dist = tfd.Kumaraswamy(a, b) pdf = dist.prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((2,), pdf.shape) def testPdfTwoBatchesNontrivialX(self): a = [1., 2] b = [1., 2] x = [.3, .7] dist = tfd.Kumaraswamy(a, b) pdf = dist.prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((2,), pdf.shape) def testPdfUniformZeroBatch(self): # This is equivalent to a uniform distribution a = 1. b = 1. x = np.array([.1, .2, .3, .5, .8], dtype=np.float32) dist = tfd.Kumaraswamy(a, b) pdf = dist.prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((5,), pdf.shape) def testPdfAStretchedInBroadcastWhenSameRank(self): a = [[1., 2]] b = [[1., 2]] x = [[.5, .5], [.3, .7]] dist = tfd.Kumaraswamy(a, b) pdf = dist.prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((2, 2), pdf.shape) def testPdfAStretchedInBroadcastWhenLowerRank(self): a = [1., 2] b = [1., 2] x = [[.5, .5], [.2, .8]] pdf = tfd.Kumaraswamy(a, b).prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((2, 2), pdf.shape) def testPdfXStretchedInBroadcastWhenSameRank(self): a = [[1., 2], [2., 3]] b = [[1., 2], [2., 3]] x = [[.5, .5]] pdf = tfd.Kumaraswamy(a, b).prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((2, 2), pdf.shape) def testPdfXStretchedInBroadcastWhenLowerRank(self): a = [[1., 2], [2., 3]] b = [[1., 2], [2., 3]] x = [.5, .5] pdf = tfd.Kumaraswamy(a, b).prob(x) expected_pdf = _kumaraswamy_pdf(a, b, x) self.assertAllClose(expected_pdf, self.evaluate(pdf)) self.assertEqual((2, 2), pdf.shape) def testKumaraswamyMean(self): with tf.compat.v1.Session(): a = [1., 2, 3] b = [2., 4, 1.2] dist = tfd.Kumaraswamy(a, b) self.assertEqual(dist.mean().shape, (3,)) if not stats: return expected_mean = _kumaraswamy_moment(a, b, 1) self.assertAllClose(expected_mean, self.evaluate(dist.mean())) def testKumaraswamyVariance(self): with tf.compat.v1.Session(): a = [1., 2, 3] b = [2., 4, 1.2] dist = tfd.Kumaraswamy(a, b) self.assertEqual(dist.variance().shape, (3,)) if not stats: return expected_variance = _kumaraswamy_moment(a, b, 2) - _kumaraswamy_moment( a, b, 1)**2 self.assertAllClose(expected_variance, self.evaluate(dist.variance())) def testKumaraswamyMode(self): with tf.compat.v1.Session(): a = np.array([1.1, 2, 3]) b = np.array([2., 4, 1.2]) expected_mode = _kumaraswamy_mode(a, b) dist = tfd.Kumaraswamy(a, b) self.assertEqual(dist.mode().shape, (3,)) self.assertAllClose(expected_mode, self.evaluate(dist.mode())) def testKumaraswamyModeInvalid(self): with tf.compat.v1.Session(): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = tfd.Kumaraswamy(a, b, allow_nan_stats=False) with self.assertRaisesOpError("Mode undefined for concentration1 <= 1."): self.evaluate(dist.mode()) a = np.array([2., 2, 3]) b = np.array([1., 4, 1.2]) dist = tfd.Kumaraswamy(a, b, allow_nan_stats=False) with self.assertRaisesOpError("Mode undefined for concentration0 <= 1."): self.evaluate(dist.mode()) def testKumaraswamyModeEnableAllowNanStats(self): with tf.compat.v1.Session(): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = tfd.Kumaraswamy(a, b, allow_nan_stats=True) expected_mode = _kumaraswamy_mode(a, b) expected_mode[0] = np.nan self.assertEqual((3,), dist.mode().shape) self.assertAllClose(expected_mode, self.evaluate(dist.mode())) a = np.array([2., 2, 3]) b = np.array([1., 4, 1.2]) dist = tfd.Kumaraswamy(a, b, allow_nan_stats=True) expected_mode = _kumaraswamy_mode(a, b) expected_mode[0] = np.nan self.assertEqual((3,), dist.mode().shape) self.assertAllClose(expected_mode, self.evaluate(dist.mode())) def testKumaraswamyEntropy(self): with tf.compat.v1.Session(): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = tfd.Kumaraswamy(a, b) self.assertEqual(dist.entropy().shape, (3,)) if not stats: return expected_entropy = (1 - 1. / b) + ( 1 - 1. / a) * _harmonic_number(b) - np.log(a * b) self.assertAllClose(expected_entropy, self.evaluate(dist.entropy())) def testKumaraswamySample(self): a = 1. b = 2. kumaraswamy = tfd.Kumaraswamy(a, b) n = tf.constant(100000) samples = kumaraswamy.sample(n) sample_values = self.evaluate(samples) self.assertEqual(sample_values.shape, (100000,)) self.assertFalse(np.any(sample_values < 0.0)) if not stats: return self.assertLess( stats.kstest( # Kumaraswamy is a univariate distribution. sample_values, lambda x: _kumaraswamy_cdf(1., 2., x))[0], 0.01) # The standard error of the sample mean is 1 / (sqrt(18 * n)) expected_mean = _kumaraswamy_moment(a, b, 1) self.assertAllClose(sample_values.mean(axis=0), expected_mean, atol=1e-2) expected_variance = _kumaraswamy_moment(a, b, 2) - _kumaraswamy_moment( a, b, 1)**2 self.assertAllClose( np.cov(sample_values, rowvar=0), expected_variance, atol=1e-1) # Test that sampling with the same seed twice gives the same results. def testKumaraswamySampleMultipleTimes(self): a_val = 1. b_val = 2. n_val = 100 seed = tfp_test_util.test_seed() tf.compat.v1.set_random_seed(seed) kumaraswamy1 = tfd.Kumaraswamy( concentration1=a_val, concentration0=b_val, name="kumaraswamy1") samples1 = self.evaluate(kumaraswamy1.sample(n_val, seed=seed)) tf.compat.v1.set_random_seed(seed) kumaraswamy2 = tfd.Kumaraswamy( concentration1=a_val, concentration0=b_val, name="kumaraswamy2") samples2 = self.evaluate(kumaraswamy2.sample(n_val, seed=seed)) self.assertAllClose(samples1, samples2) def testKumaraswamySampleMultidimensional(self): a = np.random.rand(3, 2, 2).astype(np.float32) b = np.random.rand(3, 2, 2).astype(np.float32) kumaraswamy = tfd.Kumaraswamy(a, b) n = tf.constant(100000) samples = kumaraswamy.sample(n) sample_values = self.evaluate(samples) self.assertEqual(sample_values.shape, (100000, 3, 2, 2)) self.assertFalse(np.any(sample_values < 0.0)) if not stats: return self.assertAllClose( sample_values[:, 1, :].mean(axis=0), _kumaraswamy_moment(a, b, 1)[1, :], atol=1e-1) def testKumaraswamyCdf(self): shape = (30, 40, 50) for dt in (np.float32, np.float64): a = 10. * np.random.random(shape).astype(dt) b = 10. * np.random.random(shape).astype(dt) x = np.random.random(shape).astype(dt) actual = self.evaluate(tfd.Kumaraswamy(a, b).cdf(x)) self.assertAllEqual(np.ones(shape, dtype=np.bool), 0. <= x) self.assertAllEqual(np.ones(shape, dtype=np.bool), 1. >= x) if not stats: return self.assertAllClose(_kumaraswamy_cdf(a, b, x), actual, rtol=1e-4, atol=0) def testKumaraswamyLogCdf(self): shape = (30, 40, 50) for dt in (np.float32, np.float64): a = 10. * np.random.random(shape).astype(dt) b = 10. * np.random.random(shape).astype(dt) x = np.random.random(shape).astype(dt) actual = self.evaluate(tf.exp(tfd.Kumaraswamy(a, b).log_cdf(x))) self.assertAllEqual(np.ones(shape, dtype=np.bool), 0. <= x) self.assertAllEqual(np.ones(shape, dtype=np.bool), 1. >= x) if not stats: return self.assertAllClose(_kumaraswamy_cdf(a, b, x), actual, rtol=1e-4, atol=0) if __name__ == "__main__": tf.test.main()
34.067935
115
0.640504
270abc42818e6a01798930069bec359aed4785f5
1,345
py
Python
tviserrys/urls.py
DeWaster/Tviserrys
c177387ad145b649fed3365d139bf6274ce89db1
[ "MIT" ]
null
null
null
tviserrys/urls.py
DeWaster/Tviserrys
c177387ad145b649fed3365d139bf6274ce89db1
[ "MIT" ]
null
null
null
tviserrys/urls.py
DeWaster/Tviserrys
c177387ad145b649fed3365d139bf6274ce89db1
[ "MIT" ]
null
null
null
from django.contrib.auth import views as auth_views from django.conf.urls import patterns, include, url from django.conf.urls import url from django.contrib import admin from . import views from tviserrys.settings import MEDIA_ROOT urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), url(r'^register/', views.RegisterView.as_view(), name='register'), url(r'^tviit/', include('tviit.urls', namespace='tviit')), url(r'^admin/', admin.site.urls), url(r'^login/$', auth_views.login), url(r'^logout/$', auth_views.logout), url(r'^password_change/$', auth_views.password_change), url(r'^password_change/done/$', auth_views.password_change_done), url(r'^password_reset/$', auth_views.password_reset), url(r'^password_reset/done/$', auth_views.password_reset_done), url(r'^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', auth_views.password_reset_confirm), url(r'^reset/done/$', auth_views.password_reset_complete), url(r'^profile/', include('user_profile.urls', namespace='profile')), url(r'^search/', include('haystack.urls')), url(r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': MEDIA_ROOT, 'show_indexes': False}), ] urlpatterns += patterns('', url(r'^i18n/', include('django.conf.urls.i18n')), )
44.833333
131
0.683271