hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
5e980755aede8846395099a7960ebfb4ac369707
12,677
py
Python
mycity/mycity/intents/trash_intent.py
EndyPremier/voiceapp311
168cf1665bd9a294823f82373e65c6c1d22b8831
[ "MIT" ]
null
null
null
mycity/mycity/intents/trash_intent.py
EndyPremier/voiceapp311
168cf1665bd9a294823f82373e65c6c1d22b8831
[ "MIT" ]
null
null
null
mycity/mycity/intents/trash_intent.py
EndyPremier/voiceapp311
168cf1665bd9a294823f82373e65c6c1d22b8831
[ "MIT" ]
null
null
null
""" Functions for Alexa responses related to trash day """ from mycity.intents.speech_constants.location_speech_constants import \ NOT_IN_BOSTON_SPEECH from mycity.utilities.location_services_utils import \ request_device_address_permission_response, \ get_address_from_user_device, \ is_address_in_city from mycity.intents import intent_constants from mycity.intents.custom_errors import \ InvalidAddressError, BadAPIResponse, MultipleAddressError from mycity.intents.user_address_intent import \ clear_address_from_mycity_object, request_user_address_response import mycity.intents.speech_constants.trash_intent as speech_constants from mycity.mycity_response_data_model import MyCityResponseDataModel import mycity.utilities.address_utils as address_utils import usaddress import re import requests import logging logger = logging.getLogger(__name__) DAY_CODE_REGEX = r'\d+A? - ' CARD_TITLE = "Trash Day" def get_trash_day_info(mycity_request): """ Generates response object for a trash day inquiry. :param mycity_request: MyCityRequestDataModel object :return: MyCityResponseDataModel object """ logger.debug('MyCityRequestDataModel received:' + mycity_request.get_logger_string()) mycity_response = MyCityResponseDataModel() # Determine if we have required address information. Request if we do not. if intent_constants.CURRENT_ADDRESS_KEY not in \ mycity_request.session_attributes: mycity_request, location_permissions = \ get_address_from_user_device(mycity_request) if not location_permissions: return request_device_address_permission_response() elif intent_constants.CURRENT_ADDRESS_KEY not in \ mycity_request.session_attributes: return request_user_address_response(mycity_request) current_address = \ mycity_request.session_attributes[intent_constants.CURRENT_ADDRESS_KEY] # grab relevant information from session address parsed_address, _ = usaddress.tag(current_address) # If we have more specific info then just the street # address, make sure we are in Boston if not is_address_in_city(current_address): mycity_response.output_speech = NOT_IN_BOSTON_SPEECH mycity_response.should_end_session = True mycity_response.card_title = CARD_TITLE return mycity_response if not address_utils.is_address_valid(parsed_address): mycity_response.output_speech = speech_constants.ADDRESS_NOT_UNDERSTOOD mycity_response.dialog_directive = "ElicitSlotTrash" mycity_response.reprompt_text = None mycity_response.session_attributes = mycity_request.session_attributes mycity_response.card_title = CARD_TITLE mycity_response.should_end_session = True return clear_address_from_mycity_object(mycity_response) # currently assumes that trash day is the same for all units at # the same street address address = " ".join([ parsed_address['AddressNumber'], parsed_address['StreetName'], parsed_address['StreetNamePostType']]) neighborhood = parsed_address["PlaceName"] \ if "PlaceName" in parsed_address \ and not parsed_address["PlaceName"].isdigit() \ else None if "Neighborhood" in mycity_request.intent_variables and \ "value" in mycity_request.intent_variables["Neighborhood"]: neighborhood = \ mycity_request.intent_variables["Neighborhood"]["value"] try: trash_days = get_trash_and_recycling_days(address, neighborhood) trash_days_speech = build_speech_from_list_of_days(trash_days) mycity_response.output_speech = speech_constants.PICK_UP_DAY.\ format(trash_days_speech) mycity_response.should_end_session = True except InvalidAddressError: address_string = address mycity_response.output_speech = speech_constants.ADDRESS_NOT_FOUND.\ format(address_string) mycity_response.dialog_directive = "ElicitSlotTrash" mycity_response.reprompt_text = None mycity_response.session_attributes = mycity_request.session_attributes mycity_response.card_title = CARD_TITLE mycity_response.should_end_session = False return clear_address_from_mycity_object(mycity_response) except BadAPIResponse: mycity_response.output_speech = speech_constants.BAD_API_RESPONSE mycity_response.should_end_session = True except MultipleAddressError as error: addresses = [re.sub(r' \d{5}', '', address) for address in error.addresses] address_list = ', '.join(addresses) mycity_response.output_speech = speech_constants.\ MULTIPLE_ADDRESS_ERROR.format(address_list) mycity_response.dialog_directive = "ElicitSlotNeighborhood" mycity_response.should_end_session = False # Setting reprompt_text to None signifies that we do not want to reprompt # the user. If the user does not respond or says something that is not # understood, the session will end. mycity_response.reprompt_text = None mycity_response.session_attributes = mycity_request.session_attributes mycity_response.card_title = CARD_TITLE return mycity_response def get_trash_and_recycling_days(address, neighborhood=None): """ Determines the trash and recycling days for the provided address. These are on the same day, so only one array of days will be returned. :param neighborhood: :param address: String of address to find trash day for :return: array containing next trash and recycling days :raises: InvalidAddressError, BadAPIResponse """ logger.debug('address: ' + str(address) + ', neighborhood: {}' + str(neighborhood)) api_params = get_address_api_info(address, neighborhood) if not api_params: raise InvalidAddressError if not validate_found_address(api_params["name"], address): logger.debug("InvalidAddressError") raise InvalidAddressError trash_data = get_trash_day_data(api_params) if not trash_data: raise BadAPIResponse trash_and_recycling_days = get_trash_days_from_trash_data(trash_data) return trash_and_recycling_days def find_unique_addresses(address_request_json): """ Finds unique addresses in a provided address request json returned from the ReCollect service :param address_request_json: json object returned from ReCollect address request service :return: list of unique addresses """ logger.debug('address_request_json: ' + str(address_request_json)) # Pre-extract the addresses from the payload and uniquify them strings_to_compare = sorted(set(address["name"] for address in address_request_json), key=len, reverse=True) return [ compare_a for i, compare_a in enumerate(strings_to_compare) if not any(compare_b in compare_a for compare_b in strings_to_compare[i + 1:]) ] def validate_found_address(found_address, user_provided_address): """ Validates that the street name and number found in trash collection database matches the provided values. We do not treat partial matches as valid. :param found_address: Full address found in trash collection database :param user_provided_address: Street number and name provided by user :return: boolean: True if addresses are considered a match, else False """ logger.debug('found_address: ' + str(found_address) + 'user_provided_address: ' + str(user_provided_address)) found_address, _ = usaddress.tag(found_address) user_provided_address, _ = usaddress.tag(user_provided_address) if found_address["AddressNumber"] != user_provided_address["AddressNumber"]: return False # Re-collect replaces South with S and North with N found_address["StreetName"] = re.sub(r'^S\.? ', "South ", found_address["StreetName"]) found_address["StreetName"] = re.sub(r'^N\.? ', "North ", found_address["StreetName"]) if found_address["StreetName"].lower() != \ user_provided_address["StreetName"].lower(): return False # Allow for mismatched Road street_type between user input and ReCollect API if "rd" in found_address["StreetNamePostType"].lower() and \ "road" in user_provided_address["StreetNamePostType"].lower(): return True # Allow fuzzy match on street type to allow "ave" to match "avenue" if "StreetNamePostType" in found_address and \ "StreetNamePostType" in user_provided_address: if found_address["StreetNamePostType"].lower() not in \ user_provided_address["StreetNamePostType"].lower() and \ user_provided_address["StreetNamePostType"].lower() not in \ found_address["StreetNamePostType"].lower(): return False return True def get_address_api_info(address, neighborhood): """ Gets the parameters required for the ReCollect API call :param address: Address to get parameters for :return: JSON object containing API parameters with format: { 'area_name': value, 'parcel_id': value, 'service_id': value, 'place_id': value, 'area_id': value, 'name': value } """ logger.debug('address: ' + address) base_url = "https://recollect.net/api/areas/" \ "Boston/services/310/address-suggest" full_address = address if neighborhood is None else ' '.join([address, neighborhood]) url_params = {'q': full_address, 'locale': 'en-US'} request_result = requests.get(base_url, url_params) if request_result.status_code != requests.codes.ok: logger.debug('Error getting ReCollect API info. Got response: {}' .format(request_result.status_code)) return {} result_json = request_result.json() if not result_json: return {} unique_addresses = find_unique_addresses(result_json) if len(unique_addresses) > 1: raise MultipleAddressError(unique_addresses) return result_json[0] def get_trash_day_data(api_parameters): """ Gets the trash day data from ReCollect using the provided API parameters :param api_parameters: Parameters for ReCollect API :return: JSON object containing all trash data """ logger.debug('api_parameters: ' + str(api_parameters)) # Rename the default API parameter "name" to "formatted_address" if "name" in api_parameters: api_parameters["formatted_address"] = api_parameters.pop("name") base_url = "https://recollect.net/api/places" request_result = requests.get(base_url, api_parameters) if request_result.status_code != requests.codes.ok: logger.debug("Error getting trash info from ReCollect API info. " \ "Got response: {}".format(request_result.status_code)) return {} return request_result.json() def get_trash_days_from_trash_data(trash_data): """ Parse trash data from ReCollect service and return the trash and recycling days. :param trash_data: Trash data provided from ReCollect API :return: An array containing days trash and recycling are picked up :raises: BadAPIResponse """ logger.debug('trash_data: ' + str(trash_data)) try: trash_days_string = trash_data["next_event"]["zone"]["title"] trash_days_string = re.sub(DAY_CODE_REGEX, '', trash_days_string) trash_days = trash_days_string.replace('&', '').split() except KeyError: # ReCollect API returned an unexpected JSON format raise BadAPIResponse return trash_days def build_speech_from_list_of_days(days): """ Converts a list of days into proper speech, such as adding the word 'and' before the last item. :param days: String array of days :return: Speech representing the provided days :raises: BadAPIResponse """ logger.debug('days: ' + str(days)) if len(days) == 0: raise BadAPIResponse if len(days) == 1: return days[0] elif len(days) == 2: output_speech = " and ".join(days) else: output_speech = ", ".join(days[0:-1]) output_speech += ", and {}".format(days[-1]) return output_speech
37.285294
80
0.698982
89d96e762fd798966eccddeea5cb056d83133077
702
py
Python
models.py
bwasilewski/cardbox
2eb47cc40d0230e35878be79793b3646a5dcb876
[ "MIT" ]
1
2015-11-07T04:51:27.000Z
2015-11-07T04:51:27.000Z
models.py
bwasilewski/cardbox
2eb47cc40d0230e35878be79793b3646a5dcb876
[ "MIT" ]
null
null
null
models.py
bwasilewski/cardbox
2eb47cc40d0230e35878be79793b3646a5dcb876
[ "MIT" ]
null
null
null
import datetime from flask import url_for from cardbox import db class Card(db.Document): created_at = db.DateTimeField(default=datetime.datetime.now, required=True) name = db.StringField() card_id = db.StringField() url = db.StringField() store_url = db.StringField() types = db.StringField() subtypes = db.StringField() colors = db.StringField() cmc = db.IntField() cost = db.StringField() text = db.StringField() power = db.IntField() toughness = db.IntField() formats = db.StringField() editions = db.StringField() loyalty = db.StringField() supertypes = db.StringField() def display(self): return '{} {}/{}'.format(self.name, self.power, self.toughness)
25.071429
77
0.69943
5799c79adcbf8b82e43f6fa282eb81841c679819
2,788
py
Python
abjhelp/users/forms.py
aleducode/help-abejorral
cd924bcef45ad45a4ed3d2950fb1002b170309a8
[ "MIT" ]
4
2020-08-18T23:41:34.000Z
2020-10-08T21:15:54.000Z
abjhelp/users/forms.py
aleducode/help-abejorral
cd924bcef45ad45a4ed3d2950fb1002b170309a8
[ "MIT" ]
3
2020-08-31T19:38:46.000Z
2020-08-31T19:39:18.000Z
abjhelp/users/forms.py
aleducode/help-abejorral
cd924bcef45ad45a4ed3d2950fb1002b170309a8
[ "MIT" ]
1
2020-08-25T18:29:14.000Z
2020-08-25T18:29:14.000Z
"""User forms.""" from django import forms from abjhelp.users.models import HelpRequest, DonorRequest class HelpRequestForm(forms.Form): name = forms.CharField( min_length=2, max_length=50, label='Nombre', error_messages={ 'required': 'Este campo es requerido', }, widget=forms.TextInput(attrs={ 'class': 'form-control', }), ) description = forms.CharField( label='Descripción del pedido', required=False, error_messages={ 'required': 'Este campo es requerido', }, widget=forms.Textarea( attrs={ "rows": 5, "cols": 20, 'class': 'form-control', }), ) phone_number = forms.CharField( label='Número del celular de contacto', widget=forms.TextInput( attrs={ 'class': 'form-control', }), error_messages={ 'required': 'Este campo es requerido', }, ) address = forms.CharField( min_length=2, max_length=50, label='¿Dónde estás ubicado?', required=False, widget=forms.TextInput(attrs={ 'class': 'form-control', }), ) def save(self): """Create help resquest.""" data = self.cleaned_data help_request = HelpRequest.objects.get_or_create(**data) return help_request class DonorRequestForm(forms.Form): name = forms.CharField( min_length=2, max_length=50, label='¿Cuál es tu nombre?', error_messages={ 'required': 'Este campo es requerido', }, widget=forms.TextInput(attrs={ 'class': 'form-control', }), ) phone_number = forms.CharField( label='Número de whatsapp', widget=forms.TextInput( attrs={ 'class': 'form-control', }), error_messages={ 'required': 'Este campo es requerido', }, ) email = forms.EmailField( min_length=2, max_length=50, required=False, label='¿Cuál es tu correo?', widget=forms.TextInput(attrs={ 'class': 'form-control', }), error_messages={ 'invalid': 'Porfavor ingrese un correo válido', }, ) address = forms.CharField( label='¿Dónde estás ubicado?', required=False, widget=forms.TextInput( attrs={ 'class': 'form-control', }), ) def save(self): """Create Donor resquest.""" data = self.cleaned_data donor_request = DonorRequest.objects.get_or_create(**data) return donor_request
25.345455
66
0.523314
d01c749c1f8a594431ebb8f9cb641e24a7a7343e
3,049
py
Python
api/base/authentication/drf.py
bdyetton/prettychart
e8b33a7dfdc8c33d15969586be7f68172795f76d
[ "Apache-2.0" ]
null
null
null
api/base/authentication/drf.py
bdyetton/prettychart
e8b33a7dfdc8c33d15969586be7f68172795f76d
[ "Apache-2.0" ]
null
null
null
api/base/authentication/drf.py
bdyetton/prettychart
e8b33a7dfdc8c33d15969586be7f68172795f76d
[ "Apache-2.0" ]
null
null
null
import itsdangerous from django.utils.translation import ugettext_lazy as _ from rest_framework import authentication from rest_framework.authentication import BasicAuthentication from rest_framework import exceptions from framework.auth import cas from framework.sessions.model import Session from framework.auth.core import User, get_user from website import settings def get_session_from_cookie(cookie_val): """Given a cookie value, return the `Session` object or `None`.""" session_id = itsdangerous.Signer(settings.SECRET_KEY).unsign(cookie_val) return Session.load(session_id) # http://www.django-rest-framework.org/api-guide/authentication/#custom-authentication class OSFSessionAuthentication(authentication.BaseAuthentication): """Custom DRF authentication class which works with the OSF's Session object. """ def authenticate(self, request): cookie_val = request.COOKIES.get(settings.COOKIE_NAME) if not cookie_val: return None session = get_session_from_cookie(cookie_val) if not session: return None user_id = session.data.get('auth_user_id') user = User.load(user_id) if user: return user, None return None class OSFBasicAuthentication(BasicAuthentication): # override BasicAuthentication def authenticate_credentials(self, userid, password): """ Authenticate the userid and password against username and password. """ user = get_user(email=userid, password=password) if userid and user is None: raise exceptions.AuthenticationFailed(_('Invalid username/password.')) elif userid is None and password is None: raise exceptions.NotAuthenticated() return (user, None) def authenticate_header(self, request): return "" class OSFCASAuthentication(authentication.BaseAuthentication): """Check whether the user provides a valid OAuth2 bearer token""" def authenticate(self, request): client = cas.get_client() # Returns a CAS server client try: auth_header_field = request.META["HTTP_AUTHORIZATION"] auth_token = cas.parse_auth_header(auth_header_field) except (cas.CasTokenError, KeyError): return None # If no token in header, then this method is not applicable # Found a token; query CAS for the associated user id try: resp = client.profile(auth_token) except cas.CasHTTPError: raise exceptions.NotAuthenticated('User provided an invalid OAuth2 access token') if resp.authenticated is False: raise exceptions.NotAuthenticated('CAS server failed to authenticate this token') user_id = resp.user user = User.load(user_id) if user is None: raise exceptions.AuthenticationFailed("Could not find the user associated with this token") return user, auth_token def authenticate_header(self, request): return ""
35.870588
103
0.700558
4daa0f7bc70902c3befb0f495203b8f472f1f9d9
377
py
Python
Camera/LineFollower/driverClient.py
maroneal/MircoITS
c83c2a0a4298698edaae181e15514d79ce59e7d0
[ "BSD-2-Clause" ]
null
null
null
Camera/LineFollower/driverClient.py
maroneal/MircoITS
c83c2a0a4298698edaae181e15514d79ce59e7d0
[ "BSD-2-Clause" ]
null
null
null
Camera/LineFollower/driverClient.py
maroneal/MircoITS
c83c2a0a4298698edaae181e15514d79ce59e7d0
[ "BSD-2-Clause" ]
null
null
null
import socket import time import xboxdrv TCP_IP = "127.0.0.1" TCP_PORT = 4200 print "TCP target IP:", TCP_IP print "TCP target port:", TCP_PORT sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) while True: if ord('a') == True: MESSAGE[0] = "1.0000" else: MESSAGE[0] = "0.0000" sock.sendto(MESSAGE, (TCP_IP, TCP_PORT)) time.sleep(5)
17.136364
56
0.644562
6821602d3d3fc8ceaa615b81bb4b620cf747213b
3,585
py
Python
art/estimators/keras.py
meghana-sesetti/adversarial-robustness-toolbox
6a5ce9e4142734ad9004e5c093ef8fa754ea6b39
[ "MIT" ]
1
2021-09-09T13:19:34.000Z
2021-09-09T13:19:34.000Z
art/estimators/keras.py
Tikquuss/adversarial-robustness-toolbox
62ffe7c951d8a60d49a9ea6ac7b04aa4432a3fb7
[ "MIT" ]
33
2021-01-18T08:30:34.000Z
2022-03-11T07:05:13.000Z
art/estimators/keras.py
Tikquuss/adversarial-robustness-toolbox
62ffe7c951d8a60d49a9ea6ac7b04aa4432a3fb7
[ "MIT" ]
1
2021-09-09T13:19:35.000Z
2021-09-09T13:19:35.000Z
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements the abstract estimator `KerasEstimator` for Keras models. """ from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np from art.estimators.estimator import ( BaseEstimator, NeuralNetworkMixin, LossGradientsMixin, ) logger = logging.getLogger(__name__) class KerasEstimator(NeuralNetworkMixin, LossGradientsMixin, BaseEstimator): """ Estimator class for Keras models. """ def __init__(self, **kwargs) -> None: """ Estimator class for Keras models. """ super().__init__(**kwargs) def predict(self, x: np.ndarray, batch_size: int = 128, **kwargs): """ Perform prediction of the neural network for samples `x`. :param x: Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2). :param batch_size: Batch size. :return: Predictions. :rtype: Format as expected by the `model` """ return NeuralNetworkMixin.predict(self, x, batch_size=128, **kwargs) def fit(self, x: np.ndarray, y, batch_size: int = 128, nb_epochs: int = 20, **kwargs) -> None: """ Fit the model of the estimator on the training data `x` and `y`. :param x: Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2). :param y: Target values. :type y: Format as expected by the `model` :param batch_size: Batch size. :param nb_epochs: Number of training epochs. """ NeuralNetworkMixin.fit(self, x, y, batch_size=128, nb_epochs=20, **kwargs) def loss(self, x: np.ndarray, y: np.ndarray, **kwargs) -> np.ndarray: """ Compute the loss of the neural network for samples `x`. :param x: Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2). :param y: Target values (class labels) one-hot-encoded of shape `(nb_samples, nb_classes)` or indices of shape `(nb_samples,)`. :return: Loss values. :rtype: Format as expected by the `model` """ raise NotImplementedError
42.678571
120
0.691771
1799ca6e02a15d00c49565f6e10fcf659f4d9a70
6,510
py
Python
assists/baremetallinker_xlnx.py
hakonfam/lopper
8aec5c7fbf5bff874c859f2289253db17160b6e0
[ "BSD-3-Clause" ]
null
null
null
assists/baremetallinker_xlnx.py
hakonfam/lopper
8aec5c7fbf5bff874c859f2289253db17160b6e0
[ "BSD-3-Clause" ]
null
null
null
assists/baremetallinker_xlnx.py
hakonfam/lopper
8aec5c7fbf5bff874c859f2289253db17160b6e0
[ "BSD-3-Clause" ]
null
null
null
#/* # * Copyright (c) 2020 Xilinx Inc. All rights reserved. # * # * Author: # * Appana Durga Kedareswara rao <appana.durga.rao@xilinx.com> # * # * SPDX-License-Identifier: BSD-3-Clause # */ import struct import sys import types import unittest import os import getopt import re import subprocess import shutil from pathlib import Path from pathlib import PurePath from io import StringIO import contextlib import importlib from lopper import Lopper from lopper import LopperFmt import lopper from lopper_tree import * from re import * sys.path.append(os.path.dirname(__file__)) from baremetalconfig_xlnx import scan_reg_size, get_cpu_node from bmcmake_metadata_xlnx import to_cmakelist def is_compat( node, compat_string_to_test ): if re.search( "module,baremetallinker_xlnx", compat_string_to_test): return xlnx_generate_bm_linker return "" # tgt_node: is the baremetal config top level domain node number # sdt: is the system device-tree # options: baremetal application source path def get_memranges(tgt_node, sdt, options): root_node = sdt.tree[tgt_node] root_sub_nodes = root_node.subnodes() mem_nodes = [] #Maintain a static memory IP list this is needed inorder to capture proper ip name in the linker script xlnx_memipname = {"axi_bram": 0, "ps7_ddr": 0, "psu_ddr": 0, "psv_ddr": 0, "mig": 0, "lmb_bram": 0, "axi_noc": 0, "psu_ocm": 0, "psv_ocm": 0, "ddr4": 0} for node in root_sub_nodes: try: device_type = node["device_type"].value if "memory" in device_type: mem_nodes.append(node) except: pass # Yocto Machine to CPU compat mapping match_cpunodes = get_cpu_node(sdt, options) address_map = match_cpunodes[0].parent["address-map"].value all_phandles = [] ns = match_cpunodes[0].parent["#ranges-size-cells"].value[0] na = match_cpunodes[0].parent["#ranges-address-cells"].value[0] cells = na + ns tmp = na while tmp < len(address_map): all_phandles.append(address_map[tmp]) tmp = tmp + cells + na + 1 mem_ranges = {} for node in mem_nodes: # Check whether the memory node is mapped to cpu cluster or not mem_phandles = [handle for handle in all_phandles if handle == node.phandle] addr_list = [] if mem_phandles: # Remove Duplicate phandle referenecs mem_phandles = list(dict.fromkeys(mem_phandles)) indx_list = [index for index,handle in enumerate(address_map) for val in mem_phandles if handle == val] for inx in indx_list: start = [address_map[inx+i+1] for i in range(na)] if na == 2 and start[0] != 0: val = str(start[1]) pad = 8 - len(val) val = val.ljust(pad + len(val), '0') reg = int((str(hex(start[0])) + val), base=16) addr_list.append(reg) elif na == 2: addr_list.append(start[1]) else: addr_list.append(start[0]) nac = node.parent["#address-cells"].value[0] nsc = node.parent["#size-cells"].value[0] val = node['reg'].value total_nodes = int(len(val)/(nac+nsc)) name_list = [name.replace("_", "-") for name in list(xlnx_memipname.keys())] try: compat = node['compatible'].value[0] match = [mem for mem in name_list if mem in compat] for i in range(total_nodes): reg, size = scan_reg_size(node, val, i) valid_range = [addr for addr in addr_list if reg == addr or addr > reg] if valid_range: key = match[0].replace("-", "_") linker_secname = key + str("_") + str(xlnx_memipname[key]) mem_ranges.update({linker_secname: [valid_range[0], size]}) xlnx_memipname[key] += 1 except KeyError: pass return mem_ranges # tgt_node: is the baremetal config top level domain node number # sdt: is the system device-tree # options: baremetal application source path def xlnx_generate_bm_linker(tgt_node, sdt, options): mem_ranges = get_memranges(tgt_node, sdt, options) default_ddr = None memtest_config = None machine = options['args'][0] try: memtest_config = options['args'][2] except IndexError: pass with open('memory.ld', 'w') as fd: fd.write("MEMORY\n") fd.write("{\n") if memtest_config: traverse = False else: traverse = True for key, value in sorted(mem_ranges.items(), key=lambda e: e[1][1], reverse=traverse): if default_ddr is None: default_ddr = key start,size = value[0], value[1] """ LMB BRAM initial 80 bytes being used by the linker vectors section Adjust the size and start address accordingly. """ if "lmb_bram" in key: start = 80 size -= start """ PS7 DDR initial 1MB is reserved memory Adjust the size and start address accordingly. """ if "ps7_ddr" in key: start = 1048576 size -= start """ For R5 PSU DDR initial 1MB is reserved for tcm Adjust the size and start address accordingly. """ if "psu_ddr" in key and machine == "cortexr5-zynqmp" and start == 0: start = 1048576 size -= start if "axi_noc" in key and machine == "cortexr5-versal" and start == 0: start = 1048576 size -= start fd.write("\t%s : ORIGIN = %s, LENGTH = %s\n" % (key, hex(start), hex(size))) fd.write("}\n") src_dir = os.path.dirname(options['args'][1]) src_dir = os.path.dirname(src_dir) appname = src_dir.rsplit('/', 1)[-1] cmake_file = appname.capitalize() + str("Example.cmake") with open(cmake_file, 'a') as fd: fd.write("set(DDR %s)\n" % default_ddr) memip_list = [] for key, value in sorted(mem_ranges.items(), key=lambda e: e[1][1], reverse=traverse): memip_list.append(key) fd.write("set(%s %s)\n" % (key, to_cmakelist([hex(value[0]), hex(value[1])]))) fd.write("set(TOTAL_MEM_CONTROLLERS %s)\n" % to_cmakelist(memip_list)) return True
36.779661
157
0.590783
7bcb5ad832c4d32592a8da0d6abf1106c38d9574
456
py
Python
day1/day1_pt2.py
jwhitex/AdventOfCode2018
e552185f7d6413ccdad824911c66a6590e8de9bb
[ "MIT" ]
null
null
null
day1/day1_pt2.py
jwhitex/AdventOfCode2018
e552185f7d6413ccdad824911c66a6590e8de9bb
[ "MIT" ]
null
null
null
day1/day1_pt2.py
jwhitex/AdventOfCode2018
e552185f7d6413ccdad824911c66a6590e8de9bb
[ "MIT" ]
null
null
null
#!/usr/bin/env python def runSim(fsum, series, fdict): for i in range(0,len(series)): fsum += series[i] if fsum in fdict: return (True, fsum) fdict[fsum] = None return (False, fsum) fin=[] with open("day1.input") as file: for line in file: fin+=[int(line.rstrip("\n\r"))] fdict=dict({ 0:None}) fsum = 0 while True: found,fsum = runSim(fsum, fin, fdict) if found: break print(fsum)
19.826087
41
0.567982
523f06fc63a0ee44a4d562447c0677170397f47b
4,847
py
Python
applications/EigenSolversApplication/tests/test_eigen_direct_solver.py
HubertBalcerzak/Kratos
c15689d53f06dabb36dc44c13eeac73d3e183916
[ "BSD-4-Clause" ]
null
null
null
applications/EigenSolversApplication/tests/test_eigen_direct_solver.py
HubertBalcerzak/Kratos
c15689d53f06dabb36dc44c13eeac73d3e183916
[ "BSD-4-Clause" ]
1
2019-10-15T13:11:37.000Z
2019-10-15T13:11:37.000Z
applications/EigenSolversApplication/tests/test_eigen_direct_solver.py
Gaoliu19910601/Kratos
0bac5e132d02061680fc90f1e52d4930b5ed7fa3
[ "BSD-4-Clause" ]
null
null
null
from __future__ import print_function, absolute_import, division import os import KratosMultiphysics import KratosMultiphysics.EigenSolversApplication as EigenSolversApplication import KratosMultiphysics.KratosUnittest as KratosUnittest from KratosMultiphysics.python_linear_solver_factory import ConstructSolver class TestEigenDirectSolver(KratosUnittest.TestCase): def _execute_eigen_direct_solver_test(self, class_name, solver_type): # check if solver is available if (not hasattr(EigenSolversApplication, class_name)): self.skipTest(class_name + " is not included in the compilation of the EigenSolversApplication") space = KratosMultiphysics.UblasSparseSpace() settings = KratosMultiphysics.Parameters('{ "solver_type" : "EigenSolversApplication.' + solver_type + '" }') solver = ConstructSolver(settings) a = KratosMultiphysics.CompressedMatrix() this_file_dir = os.path.dirname(os.path.realpath(__file__)) base_dir = os.path.dirname(os.path.dirname(os.path.dirname(this_file_dir))) matrix_file_path = os.path.join(base_dir, "kratos", "tests", "auxiliar_files_for_python_unittest", "sparse_matrix_files", "A.mm") file_read = KratosMultiphysics.ReadMatrixMarketMatrix(matrix_file_path, a) # symmetric test matrix self.assertTrue(file_read, msg="The MatrixFile could not be read") dimension = a.Size1() self.assertEqual(dimension, 900) b_exp = KratosMultiphysics.Vector(dimension) # [1, 2, ..., dimension-1, dimension] for i in range(dimension): b_exp[i] = i + 1 x = KratosMultiphysics.Vector(dimension) solver.Solve(a, x, b_exp) b_act = KratosMultiphysics.Vector(dimension) space.Mult(a, x, b_act) for i in range(dimension): self.assertAlmostEqual(b_act[i], b_exp[i], 7) def _execute_eigen_direct_complex_solver_test(self, class_name, solver_type): # check if solver is available if (not hasattr(EigenSolversApplication, class_name)): self.skipTest(class_name + " is not included in the compilation of the EigenSolversApplication") space = KratosMultiphysics.UblasComplexSparseSpace() settings = KratosMultiphysics.Parameters('{ "solver_type" : "EigenSolversApplication.' + solver_type + '" }') solver = ConstructSolver(settings) a = KratosMultiphysics.CompressedMatrix() this_file_dir = os.path.dirname(os.path.realpath(__file__)) base_dir = os.path.dirname(os.path.dirname(os.path.dirname(this_file_dir))) matrix_file_path = os.path.join(base_dir, "kratos", "tests", "auxiliar_files_for_python_unittest", "sparse_matrix_files", "A.mm") file_read = KratosMultiphysics.ReadMatrixMarketMatrix(matrix_file_path, a) # symmetric test matrix self.assertTrue(file_read, msg="The MatrixFile could not be read") a = KratosMultiphysics.ComplexCompressedMatrix(a) dimension = a.Size1() self.assertEqual(dimension, 900) b_exp = KratosMultiphysics.ComplexVector(dimension) for i in range(dimension): b_exp[i] = complex(i+1,i-1) x = KratosMultiphysics.ComplexVector(dimension) solver.Solve(a, x, b_exp) b_act = KratosMultiphysics.ComplexVector(dimension) space.Mult(a, x, b_act) for i in range(dimension): self.assertAlmostEqual(b_act[i], b_exp[i], 7) def test_eigen_sparse_lu(self): self._execute_eigen_direct_solver_test('SparseLUSolver', 'sparse_lu') def test_eigen_sparse_cg(self): self._execute_eigen_direct_solver_test('SparseCGSolver', 'sparse_cg') def test_eigen_sparse_qr(self): self._execute_eigen_direct_solver_test('SparseQRSolver', 'sparse_qr') def test_eigen_pardiso_lu(self): self._execute_eigen_direct_solver_test('PardisoLUSolver', 'pardiso_lu') def test_eigen_pardiso_ldlt(self): self._execute_eigen_direct_solver_test('PardisoLDLTSolver', 'pardiso_ldlt') def test_eigen_pardiso_llt(self): self._execute_eigen_direct_solver_test('PardisoLLTSolver', 'pardiso_llt') def test_eigen_complex_sparse_lu(self): self._execute_eigen_direct_complex_solver_test('ComplexSparseLUSolver', 'sparse_lu_complex') def test_eigen_complex_pardiso_lu(self): self._execute_eigen_direct_complex_solver_test('ComplexPardisoLUSolver', 'pardiso_lu_complex') def test_eigen_complex_pardiso_ldlt(self): self._execute_eigen_direct_complex_solver_test('ComplexPardisoLDLTSolver', 'pardiso_ldlt_complex') def test_eigen_complex_pardiso_llt(self): self._execute_eigen_direct_complex_solver_test('ComplexPardisoLLTSolver', 'pardiso_llt_complex') if __name__ == '__main__': KratosUnittest.main()
40.057851
137
0.727254
e2916551dfc60366cd8e1c49720d1dacfaa96b84
301
py
Python
setup.py
sukovanej/mplispstd
510fba5f3c95fec370665d736e5db5fb6248b3d7
[ "MIT" ]
null
null
null
setup.py
sukovanej/mplispstd
510fba5f3c95fec370665d736e5db5fb6248b3d7
[ "MIT" ]
null
null
null
setup.py
sukovanej/mplispstd
510fba5f3c95fec370665d736e5db5fb6248b3d7
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from distutils.core import setup setup( name='mplispstd', version='0.1', packages=[ 'mplispstd', 'mplispstd.io', 'mplispstd.math', 'mplispstd.string', 'mplispstd.env', ], install_requires=[ 'mplisp', ] )
15.842105
32
0.534884
b8adb9ddfde6f4b218b7019e18a354e064b74b38
14,977
py
Python
seqskip_train_seq2eH_in10.py
mimbres/SeqSkip
031add5ba22cad1665d76b2cb21e8f6c1e1357e5
[ "Apache-2.0" ]
7
2019-02-15T07:46:27.000Z
2021-09-16T06:31:43.000Z
seqskip_train_seq2eH_in10.py
mimbres/SeqSkip
031add5ba22cad1665d76b2cb21e8f6c1e1357e5
[ "Apache-2.0" ]
1
2021-09-16T03:06:16.000Z
2021-09-17T02:08:02.000Z
seqskip_train_seq2eH_in10.py
mimbres/SeqSkip
031add5ba22cad1665d76b2cb21e8f6c1e1357e5
[ "Apache-2.0" ]
1
2019-07-07T22:10:30.000Z
2019-07-07T22:10:30.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 11 00:45:08 2018 seq2eH: seqeunce learning model with separate encoder for support and query, 1stack each - non-autoregressive (not feeding predicted labels) - instance Norm. - G: GLU version - H: Highway-net version - applied more efficient dilated conv over seq1 @author: mimbres """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.optim.lr_scheduler import StepLR from torch.backends import cudnn import numpy as np import glob, os import argparse from tqdm import trange, tqdm from spotify_data_loader import SpotifyDataloader from utils.eval import evaluate from blocks.highway_glu_dil_conv_v2 import HighwayDCBlock cudnn.benchmark = True parser = argparse.ArgumentParser(description="Sequence Skip Prediction") parser.add_argument("-c","--config",type=str, default="./config_init_dataset.json") parser.add_argument("-s","--save_path",type=str, default="./save/exp_seq2eH_in10/") parser.add_argument("-l","--load_continue_latest",type=str, default=None) parser.add_argument("-spl","--use_suplog_as_feat", type=bool, default=True) parser.add_argument("-qf","--use_quelog_as_feat", type=bool, default=False) parser.add_argument("-pl","--use_predicted_label", type=bool, default=False) parser.add_argument("-glu","--use_glu", type=bool, default=False) parser.add_argument("-w","--class_num",type=int, default = 2) parser.add_argument("-e","--epochs",type=int, default= 10) parser.add_argument("-lr","--learning_rate", type=float, default = 0.001) parser.add_argument("-b","--train_batch_size", type=int, default = 2048) parser.add_argument("-tsb","--test_batch_size", type=int, default = 1024) parser.add_argument("-g","--gpu",type=int, default=0) args = parser.parse_args() # Hyper Parameters USE_SUPLOG = args.use_suplog_as_feat USE_QUELOG = args.use_quelog_as_feat USE_PRED_LABEL = args.use_predicted_label USE_GLU = args.use_glu INPUT_DIM_S = 71 if USE_SUPLOG else 30 # default: 72 INPUT_DIM_Q = 71 if USE_QUELOG else 29 # default: 31 CLASS_NUM = args.class_num EPOCHS = args.epochs LEARNING_RATE = args.learning_rate TR_BATCH_SZ = args.train_batch_size TS_BATCH_SZ = args.test_batch_size GPU = args.gpu # Model-save directory MODEL_SAVE_PATH = args.save_path os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True) hist_trloss = list() hist_tracc = list() hist_vloss = list() hist_vacc = list() np.set_printoptions(precision=3) class SeqEncoder(nn.Module): def __init__(self, input_ch, e_ch, h_k_szs=[2,2,3,1,1], #h_k_szs=[2,2,5,1,1], h_dils=[1,2,4,1,1], use_glu=False): super(SeqEncoder, self).__init__() h_io_chs = [e_ch]*len(h_k_szs) self.front_1x1 = nn.Conv1d(input_ch, e_ch,1) self.h_block = HighwayDCBlock(h_io_chs, h_k_szs, h_dils, causality=True, use_glu=use_glu) self.mid_1x1 = nn.Sequential(nn.Conv1d(e_ch,e_ch,1), nn.ReLU(), nn.Conv1d(e_ch,e_ch,1), nn.ReLU()) self.last_1x1 = nn.Sequential(nn.Conv1d(e_ch,e_ch,1)) def forward(self, x): # Input:bx(input_dim)*20 x = self.front_1x1(x) # bx128*20 x = self.h_block(x) # bx128*20 x = self.mid_1x1(x) # bx128*20 return self.last_1x1(x) # bx128*20 class SeqModel(nn.Module): def __init__(self, input_dim_s=INPUT_DIM_S, input_dim_q=INPUT_DIM_Q, e_ch=128, d_ch=256, use_glu=USE_GLU): super(SeqModel, self).__init__() self.e_ch = e_ch self.d_ch = d_ch self.sup_enc = SeqEncoder(input_ch=input_dim_s, e_ch=d_ch, use_glu=use_glu) # bx256*10 self.que_enc = SeqEncoder(input_ch=input_dim_q, e_ch=e_ch, use_glu=use_glu) # bx128*10 self.classifier = nn.Sequential(nn.Conv1d(d_ch,d_ch,1), nn.ReLU(), nn.Conv1d(d_ch,d_ch,1), nn.ReLU(), nn.Conv1d(d_ch,1,1)) def forward(self, x_sup, x_que): x_sup = self.sup_enc(x_sup) # bx256*10 x_que = self.que_enc(x_que) # bx128*10 # Attention: K,V from x_sup, Q from x_que x_sup = torch.split(x_sup, self.e_ch, dim=1) # K: x_sup[0], V: x_sup[1] att = F.softmax(torch.matmul(x_sup[0].transpose(1,2), x_que), dim=1) # K'*Q: bx10*10 x = torch.cat((torch.matmul(x_sup[1], att), x_que), 1) # {V*att, Q}: bx(128+128)*10 x = self.classifier(x).squeeze(1) # bx256*10 --> b*10 return x, att # bx10, bx10x10 #%% def validate(mval_loader, SM, eval_mode, GPU): tqdm.write("Validation...") submit = [] gt = [] total_vloss = 0 total_vcorrects = 0 total_vquery = 0 val_sessions_iter = iter(mval_loader) for val_session in trange(len(val_sessions_iter), desc='val-sessions', position=2, ascii=True): SM.eval() x, labels, y_mask, num_items, index = val_sessions_iter.next() # FIXED 13.Dec. SEPARATE LOGS. QUERY SHOULT NOT INCLUDE LOGS # Sample data for 'support' and 'query': ex) 15 items = 7 sup, 8 queries... num_support = num_items[:,0].detach().numpy().flatten() # If num_items was odd number, query has one more item. num_query = num_items[:,1].detach().numpy().flatten() batch_sz = num_items.shape[0] # x: the first 10 items out of 20 are support items left-padded with zeros. The last 10 are queries right-padded. x = x.permute(0,2,1) # bx70*20 x_sup = Variable(torch.cat((x[:,:,:10], labels[:,:10].unsqueeze(1)), 1)).cuda(GPU) # bx71(41+29+1)*10 x_que = Variable(x[:,41:,10:].clone()).cuda(GPU) # bx29*10 # y y_que = labels[:,10:].clone() # bx10 # y_mask y_mask_que = y_mask[:,10:].clone() # Forward & update y_hat_que, att = SM(x_sup, x_que) # y_hat_que: b*10, att: bx10*10 # if USE_PRED_LABEL is True: # # Predict # li = 70 if USE_SUPLOG is True else 29 # the label's dimension indice # _x = x[:,:,:11] # bx72*11 # for q in range(11,20): # y_hat = SM(Variable(_x, requires_grad=False)) # will be bx11 at the first round # # Append next features # _x = torch.cat((_x, x[:,:,q].unsqueeze(2)), 2) # now bx72*12 # _x[:,li,q] = torch.sigmoid(y_hat[:,-1]) # y_hat = SM(Variable(_x, requires_grad=False)) # y_hat(final): bx20 # del _x # else: # y_hat = SM(x) # Calcultate BCE loss loss = F.binary_cross_entropy_with_logits(input=y_hat_que*y_mask_que.cuda(GPU), target=y_que.cuda(GPU)*y_mask_que.cuda(GPU)) total_vloss += loss.item() # Decision y_prob = torch.sigmoid(y_hat_que*y_mask_que.cuda(GPU)).detach().cpu().numpy() # bx20 y_pred = (y_prob>=0.5).astype(np.int) # bx10 y_numpy = labels[:,10:].numpy() # bx10 # Acc total_vcorrects += np.sum((y_pred==y_numpy)*y_mask_que.numpy()) total_vquery += np.sum(num_query) # Eval, Submission if eval_mode is not 0: for b in np.arange(batch_sz): submit.append(y_pred[b,:num_query[b]].flatten()) gt.append(y_numpy[b,:num_query[b]].flatten()) if (val_session+1)%400 == 0: sample_sup = labels[0,(10-num_support[0]):10].long().numpy().flatten() sample_que = y_numpy[0,:num_query[0]].astype(int) sample_pred = y_pred[0,:num_query[0]] sample_prob = y_prob[0,:num_query[0]] tqdm.write("S:" + np.array2string(sample_sup) +'\n'+ "Q:" + np.array2string(sample_que) + '\n' + "P:" + np.array2string(sample_pred) + '\n' + "prob:" + np.array2string(sample_prob)) tqdm.write("val_session:{0:} vloss:{1:.6f} vacc:{2:.4f}".format(val_session,loss.item(), total_vcorrects/total_vquery)) del loss, y_hat_que, x # Restore GPU memory # Avg.Acc if eval_mode==1: aacc = evaluate(submit, gt) tqdm.write("AACC={0:.6f}, FirstAcc={1:.6f}".format(aacc[0], aacc[1])) hist_vloss.append(total_vloss/val_session) hist_vacc.append(total_vcorrects/total_vquery) return submit # Main def main(): # Trainset stats: 2072002577 items from 124950714 sessions print('Initializing dataloader...') mtrain_loader = SpotifyDataloader(config_fpath=args.config, mtrain_mode=True, data_sel=(0, 99965071), # 80% 트레인 batch_size=TR_BATCH_SZ, shuffle=True, seq_mode=True) # seq_mode implemented mval_loader = SpotifyDataloader(config_fpath=args.config, mtrain_mode=True, # True, because we use part of trainset as testset data_sel=(99965071, 104965071),#(99965071, 124950714), # 20%를 테스트 batch_size=TS_BATCH_SZ, shuffle=False, seq_mode=True) # Init neural net SM = SeqModel().cuda(GPU) SM_optim = torch.optim.Adam(SM.parameters(), lr=LEARNING_RATE) SM_scheduler = StepLR(SM_optim, step_size=1, gamma=0.8) # Load checkpoint if args.load_continue_latest is None: START_EPOCH = 0 else: latest_fpath = max(glob.iglob(MODEL_SAVE_PATH + "check*.pth"),key=os.path.getctime) checkpoint = torch.load(latest_fpath, map_location='cuda:{}'.format(GPU)) tqdm.write("Loading saved model from '{0:}'... loss: {1:.6f}".format(latest_fpath,checkpoint['loss'])) SM.load_state_dict(checkpoint['SM_state']) SM_optim.load_state_dict(checkpoint['SM_opt_state']) SM_scheduler.load_state_dict(checkpoint['SM_sch_state']) START_EPOCH = checkpoint['ep'] # Train for epoch in trange(START_EPOCH, EPOCHS, desc='epochs', position=0, ascii=True): tqdm.write('Train...') tr_sessions_iter = iter(mtrain_loader) total_corrects = 0 total_query = 0 total_trloss = 0 for session in trange(len(tr_sessions_iter), desc='sessions', position=1, ascii=True): SM.train(); x, labels, y_mask, num_items, index = tr_sessions_iter.next() # FIXED 13.Dec. SEPARATE LOGS. QUERY SHOULT NOT INCLUDE LOGS # Sample data for 'support' and 'query': ex) 15 items = 7 sup, 8 queries... num_support = num_items[:,0].detach().numpy().flatten() # If num_items was odd number, query has one more item. num_query = num_items[:,1].detach().numpy().flatten() #batch_sz = num_items.shape[0] # x: the first 10 items out of 20 are support items left-padded with zeros. The last 10 are queries right-padded. x = x.permute(0,2,1) # bx70*20 x_sup = Variable(torch.cat((x[:,:,:10], labels[:,:10].unsqueeze(1)), 1)).cuda(GPU) # bx71(41+29+1)*10 x_que = Variable(x[:,41:,10:].clone()).cuda(GPU) # bx29*10 # y y_que = labels[:,10:].clone() # bx10 # y_mask y_mask_que = y_mask[:,10:].clone() # Forward & update y_hat_que, att = SM(x_sup, x_que) # y_hat_que: b*10, att: bx10*10 # Calcultate BCE loss loss = F.binary_cross_entropy_with_logits(input=y_hat_que*y_mask_que.cuda(GPU), target=y_que.cuda(GPU)*y_mask_que.cuda(GPU)) total_trloss += loss.item() SM.zero_grad() loss.backward() # Gradient Clipping #torch.nn.utils.clip_grad_norm_(SM.parameters(), 0.5) SM_optim.step() # Decision y_prob = torch.sigmoid(y_hat_que*y_mask_que.cuda(GPU)).detach().cpu().numpy() # bx20 y_pred = (y_prob>=0.5).astype(np.int) # bx10 y_numpy = labels[:,10:].numpy() # bx10 # Acc total_corrects += np.sum((y_pred==y_numpy)*y_mask_que.numpy()) total_query += np.sum(num_query) # Restore GPU memory del loss, y_hat_que if (session+1)%500 == 0: hist_trloss.append(total_trloss/900) hist_tracc.append(total_corrects/total_query) # Prepare display sample_att = att[0,(10-num_support[0]):10,:num_query[0]].detach().cpu().numpy() sample_sup = labels[0,(10-num_support[0]):10].long().numpy().flatten() sample_que = y_numpy[0,:num_query[0]].astype(int) sample_pred = y_pred[0,:num_query[0]] sample_prob = y_prob[0,:num_query[0]] tqdm.write(np.array2string(sample_att, formatter={'float_kind':lambda sample_att: "%.2f" % sample_att}).replace('\n ','').replace('][',']\n[').replace('[[','[')) tqdm.write("S:" + np.array2string(sample_sup) +'\n'+ "Q:" + np.array2string(sample_que) + '\n' + "P:" + np.array2string(sample_pred) + '\n' + "prob:" + np.array2string(sample_prob)) tqdm.write("tr_session:{0:} tr_loss:{1:.6f} tr_acc:{2:.4f}".format(session, hist_trloss[-1], hist_tracc[-1])) total_corrects = 0 total_query = 0 total_trloss = 0 if (session+1)%25000 == 0: # Validation validate(mval_loader, SM, eval_mode=True, GPU=GPU) # Save torch.save({'ep': epoch, 'sess':session, 'SM_state': SM.state_dict(),'loss': hist_trloss[-1], 'hist_vacc': hist_vacc, 'hist_vloss': hist_vloss, 'hist_trloss': hist_trloss, 'SM_opt_state': SM_optim.state_dict(), 'SM_sch_state': SM_scheduler.state_dict()}, MODEL_SAVE_PATH + "check_{0:}_{1:}.pth".format(epoch, session)) # Validation validate(mval_loader, SM, eval_mode=True, GPU=GPU) # Save torch.save({'ep': epoch, 'sess':session, 'SM_state': SM.state_dict(),'loss': hist_trloss[-1], 'hist_vacc': hist_vacc, 'hist_vloss': hist_vloss, 'hist_trloss': hist_trloss, 'SM_opt_state': SM_optim.state_dict(), 'SM_sch_state': SM_scheduler.state_dict()}, MODEL_SAVE_PATH + "check_{0:}_{1:}.pth".format(epoch, session)) SM_scheduler.step() if __name__ == '__main__': main()
45.522796
165
0.584964
537f51557f500c63adfc167d393678bf972d3b56
9,326
py
Python
tick/hawkes/inference/hawkes_sumexpkern_fixeddecay.py
sumau/tick
1b56924a35463e12f7775bc0aec182364f26f2c6
[ "BSD-3-Clause" ]
411
2017-03-30T15:22:05.000Z
2022-03-27T01:58:34.000Z
tick/hawkes/inference/hawkes_sumexpkern_fixeddecay.py
saurabhdash/tick
bbc561804eb1fdcb4c71b9e3e2d83a66e7b13a48
[ "BSD-3-Clause" ]
345
2017-04-13T14:53:20.000Z
2022-03-26T00:46:22.000Z
tick/hawkes/inference/hawkes_sumexpkern_fixeddecay.py
saurabhdash/tick
bbc561804eb1fdcb4c71b9e3e2d83a66e7b13a48
[ "BSD-3-Clause" ]
102
2017-04-25T11:47:53.000Z
2022-02-15T11:45:49.000Z
# License: BSD 3 clause import numpy as np from tick.base import actual_kwargs from tick.hawkes import (ModelHawkesSumExpKernLeastSq, SimuHawkesSumExpKernels) from tick.hawkes.inference.base import LearnerHawkesParametric from tick.prox import ProxElasticNet, ProxL1, ProxL2Sq, ProxPositive class HawkesSumExpKern(LearnerHawkesParametric): """Hawkes process learner for sum-exponential kernels with fixed and given decays, with many choices of penalization and solvers. Hawkes processes are point processes defined by the intensity: .. math:: \\forall i \\in [1 \\dots D], \\quad \\lambda_i(t) = \\mu_i(t) + \\sum_{j=1}^D \\sum_{t_k^j < t} \\phi_{ij}(t - t_k^j) where * :math:`D` is the number of nodes * :math:`\mu_i(t)` are the baseline intensities * :math:`\phi_{ij}` are the kernels * :math:`t_k^j` are the timestamps of all events of node :math:`j` and with an sum-exponential parametrisation of the kernels .. math:: \phi_{ij}(t) = \sum_{u=1}^{U} \\alpha^u_{ij} \\beta^u \exp (- \\beta^u t) 1_{t > 0} In our implementation we denote: * Integer :math:`D` by the attribute `n_nodes` * Integer :math:`U` by the attribute `n_decays` * Vector :math:`\mu \in \mathbb{R}^{D}` by the attribute `baseline` * Matrix :math:`A = (\\alpha^u_{ij})_{ij} \in \mathbb{R}^{D \\times D \\times U}` by the attribute `adjacency` * Vector :math:`\\beta \in \mathbb{R}^{U}` by the parameter `decays`. This parameter is given to the model Parameters ---------- decays : `np.ndarray`, shape=(n_decays, ) The decays used in the exponential kernels. n_baselines : `int`, default=1 In this hawkes learner baseline is supposed to be either constant or piecewise constant. If `n_baseline > 1` then piecewise constant setting is enabled. In this case :math:`\\mu_i(t)` is piecewise constant on intervals of size `period_length / n_baselines` and periodic. period_length : `float`, default=None In piecewise constant setting this denotes the period of the piecewise constant baseline function. C : `float`, default=1e3 Level of penalization penalty : {'l1', 'l2', 'elasticnet', 'none'} default='l2' The penalization to use. Default is ridge penalization. solver : {'gd', 'agd', 'bfgs', 'svrg'}, default='agd' The name of the solver to use step : `float`, default=None Initial step size used for learning. Used in 'gd', 'agd', 'sgd' and 'svrg' solvers tol : `float`, default=1e-5 The tolerance of the solver (iterations stop when the stopping criterion is below it). If not reached the solver does ``max_iter`` iterations max_iter : `int`, default=100 Maximum number of iterations of the solver verbose : `bool`, default=False If `True`, we verbose things, otherwise the solver does not print anything (but records information in history anyway) print_every : `int`, default=10 Print history information when ``n_iter`` (iteration number) is a multiple of ``print_every`` record_every : `int`, default=10 Record history information when ``n_iter`` (iteration number) is a multiple of ``record_every`` elastic_net_ratio : `float`, default=0.95 Ratio of elastic net mixing parameter with 0 <= ratio <= 1. * For ratio = 0 this is ridge (L2 squared) regularization. * For ratio = 1 this is lasso (L1) regularization. * For 0 < ratio < 1, the regularization is a linear combination of L1 and L2. Used in 'elasticnet' penalty random_state : int seed, or None (default) The seed that will be used by stochastic solvers. If `None`, a random seed will be used (based on timestamp and other physical metrics). Used in 'sgd', and 'svrg' solvers Attributes ---------- n_nodes : `int` Number of nodes / components in the Hawkes model baseline : `np.array`, shape=(n_nodes,) Inferred baseline of each component's intensity adjacency : `np.ndarray`, shape=(n_nodes, n_nodes, n_decays) Inferred adjacency matrix coeffs : `np.array`, shape=(n_nodes + n_nodes * n_nodes * n_decays, ) Raw coefficients of the model. Row stack of `self.baseline` and `self.adjacency` """ _attrinfos = { "n_decays": { "writable": False }, "decays": { "writable": False }, "n_baselines": { "writable": False }, "period_length": { "writable": False }, } _penalties = { "none": ProxPositive, "l1": ProxL1, "l2": ProxL2Sq, "elasticnet": ProxElasticNet, } @actual_kwargs def __init__(self, decays, penalty="l2", C=1e3, n_baselines=1, period_length=None, solver="agd", step=None, tol=1e-5, max_iter=100, verbose=False, print_every=10, record_every=10, elastic_net_ratio=0.95, random_state=None): self._actual_kwargs = \ HawkesSumExpKern.__init__.actual_kwargs self.decays = decays self.n_baselines = n_baselines self.period_length = period_length LearnerHawkesParametric.__init__( self, penalty=penalty, C=C, solver=solver, step=step, tol=tol, max_iter=max_iter, verbose=verbose, print_every=print_every, record_every=record_every, elastic_net_ratio=elastic_net_ratio, random_state=random_state) def _construct_model_obj(self): model = ModelHawkesSumExpKernLeastSq(self.decays, n_baselines=self.n_baselines, period_length=self.period_length) return model @property def n_decays(self): return self._model_obj.n_decays @property def baseline(self): if not self._fitted: raise ValueError('You must fit data before getting estimated ' 'baseline') else: baseline = self.coeffs[:self.n_nodes * self._model_obj.n_baselines] if self._model_obj.n_baselines == 1: return baseline else: return baseline.reshape((self.n_nodes, self._model_obj.n_baselines)) @property def adjacency(self): if not self._fitted: raise ValueError('You must fit data before getting estimated ' 'adjacency') else: return self.coeffs[self.n_nodes * self._model_obj.n_baselines:] \ .reshape((self.n_nodes, self.n_nodes, self.n_decays)) def _corresponding_simu(self): return SimuHawkesSumExpKernels( adjacency=self.adjacency, decays=self.decays, baseline=self.baseline, period_length=self._model_obj.period_length) def get_baseline_values(self, i, abscissa_array): return self._corresponding_simu().get_baseline_values( i, abscissa_array) def score(self, events=None, end_times=None, baseline=None, adjacency=None): """Compute score metric Score metric is log likelihood (the higher the better) Parameters ---------- events : `list` of `list` of `np.ndarray`, default = None List of Hawkes processes realizations used to measure score. Each realization of the Hawkes process is a list of n_node for each component of the Hawkes. Namely `events[i][j]` contains a one-dimensional `numpy.array` of the events' timestamps of component j of realization i. If only one realization is given, it will be wrapped into a list If None, events given while fitting model will be used end_times : `np.ndarray` or `float`, default = None List of end time of all hawkes processes used to measure score. If None, it will be set to each realization's latest time. If only one realization is provided, then a float can be given. baseline : `np.ndarray`, shape=(n_nodes, ), default = None Baseline vector for which the score is measured If `None` baseline obtained during fitting is used adjacency : `np.ndarray`, shape=(n_nodes, n_nodes, n_decays), default = None Adjacency matrix for which the score is measured If `None` adjacency obtained during fitting is used Returns ------- likelihood : `double` Computed log likelihood value """ if baseline is not None or adjacency is not None: if baseline is None: baseline = self.baseline if adjacency is None: adjacency = self.adjacency coeffs = np.hstack((baseline, adjacency.ravel())) else: coeffs = None return LearnerHawkesParametric.score( self, events=events, end_times=end_times, coeffs=coeffs)
36.716535
84
0.611087
57dea3b6a9fcbefa44593b129ed848e6bbe893f3
406
py
Python
CTAtool/cache.py
guan27/NTU_NLP_2021Spring
a79451bf1d107a5d75dfa959ecc008b3829becc8
[ "MIT" ]
null
null
null
CTAtool/cache.py
guan27/NTU_NLP_2021Spring
a79451bf1d107a5d75dfa959ecc008b3829becc8
[ "MIT" ]
null
null
null
CTAtool/cache.py
guan27/NTU_NLP_2021Spring
a79451bf1d107a5d75dfa959ecc008b3829becc8
[ "MIT" ]
1
2021-09-29T10:47:14.000Z
2021-09-29T10:47:14.000Z
''' Cached words with lemmas that have been looked up before Use a dictionary lookup if the word is in cache_dict else find the word and add it into the cache_dict ''' import json def init(): global cache_dict cache_dict = {} def save_synonym_dict(): with open('./synonym_dict', 'w', encoding = 'utf-8') as f: f.write( json.dumps(cache_dict,ensure_ascii=False, indent = 2))
29
66
0.684729
a4be4402db5e8948e7572b20983b2d63d21cfd9c
11,313
py
Python
update.py
Hmaksu/Zoom-Duration-Calculator
118dbc17997b54f398914fb399ca2c882b0d0969
[ "MIT" ]
null
null
null
update.py
Hmaksu/Zoom-Duration-Calculator
118dbc17997b54f398914fb399ca2c882b0d0969
[ "MIT" ]
null
null
null
update.py
Hmaksu/Zoom-Duration-Calculator
118dbc17997b54f398914fb399ca2c882b0d0969
[ "MIT" ]
null
null
null
from tkinter import * from tkinter import filedialog from tkinter.ttk import * import os import xlrd import xlsxwriter root = Tk() root.title("CivilCon") root.iconbitmap("CC.ico") root.geometry("500x500") class CivilCon: def __init__(self, master): #First Page self.master = master Label(self.master, text = "Kaç oturum var?").grid(row = 0, column = 0) self.clicked = StringVar() OptionMenu(self.master, self.clicked, "1", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10").grid( row = 0, column = 1) Button(self.master, text = "Seç", command = self.session).grid(row = 0, column = 4) Button(self.master, text = "Excel Dosyası", command = self.Excel).grid(row = 0, column = 3) def Excel(self): self.attachment_file_directory = filedialog.askopenfilename(initialdir = os.path, title = "Excel") def session(self): try: if self.attachment_file_directory[-3:] == "xls": for widget in self.master.winfo_children(): widget.destroy() variables_for_dict = [] key_of_dict = [] for x in range(int(self.clicked.get())): variables_for_dict.append("self.clicked_version1"+str(x)) variables_for_dict.append("self.clicked_version2"+str(x)) variables_for_dict.append("self.clicked_version3"+str(x)) variables_for_dict.append("self.clicked_version4"+str(x)) key_of_dict.append(StringVar()) key_of_dict.append(StringVar()) key_of_dict.append(StringVar()) key_of_dict.append(StringVar()) self.variable_dictionary = dict(zip(variables_for_dict, key_of_dict)) Label(self.master, text = "Başlangıç").grid(row = 0, column = 1) Label(self.master, text = "|").grid(row = 0, column = 3) Label(self.master, text = "Bitiş").grid(row = 0, column = 4) Label(self.master, text = "Saat").grid(row = 1, column = 1) Label(self.master, text = "Dakika").grid(row = 1, column = 2) Label(self.master, text = "|").grid(row = 1, column = 3) Label(self.master, text = "Saat").grid(row = 1, column = 4) Label(self.master, text = "Dakika").grid(row = 1, column = 5) for x in range(int(self.clicked.get())): Label(self.master, text = str(x+1) + ". Oturum").grid(row = x+2, column = 0) OptionMenu(self.master, self.variable_dictionary["self.clicked_version1"+str(x)] , "01", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24").grid( row = x+2, column = 1) OptionMenu(self.master, self.variable_dictionary["self.clicked_version2"+str(x)], "00", "00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59").grid( row = x+2, column = 2) Label(self.master, text = "|").grid(row = x+2, column = 3) OptionMenu(self.master, self.variable_dictionary["self.clicked_version3"+str(x)], "01", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24").grid( row = x+2, column = 4) OptionMenu(self.master, self.variable_dictionary["self.clicked_version4"+str(x)], "00", "00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59").grid( row = x+2, column = 5) Button(self.master, text = "Başlat", command = self.start).grid(row = int(self.clicked.get())+10, column = 5) else: self.Excel() except: self.Excel() def start(self): sessions = [] for k, v in self.variable_dictionary.items(): sessions.append(v.get()) sessions_vol2 = [] for x in range(len(sessions)): if x%2 == 0: try: sessions_vol2.append(sessions[x]+":"+sessions[x+1]) except: sessions_vol2.append(sessions[-2]+":"+sessions[-1]) sessions = sessions_vol2 try: path = self.attachment_file_directory except: self.Excel() for widget in self.master.winfo_children(): widget.destroy() Label(self.master, text = "Kaç oturum var?").grid(row = 0, column = 0) self.clicked = StringVar() OptionMenu(self.master, self.clicked, "1", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10").grid( row = 0, column = 1) Button(self.master, text = "Seç", command = self.session).grid(row = 0, column = 4) Button(self.master, text = "Excel Dosyası", command = self.Excel).grid(row = 0, column = 3) attendees = [] inputWorkbook = xlrd.open_workbook(path) inputWorksheet = inputWorkbook.sheet_by_index(0) for x in range(inputWorksheet.nrows-4): x += 4 attendees.append(inputWorksheet.cell_value(x,0)) attendees.sort() attendees_list_form = [] for x in attendees: x = "CC | "+x attendees_list_form.append(x.split(",")) for x in attendees_list_form: for k in range(len(x)): if x[k] == "": x[k] = "info@hmaksu.com" attendees_vol2 = [] k = 0 for x in range(len(attendees_list_form)): attendees_list_form[x].pop() attendees_list_form[x].pop() try: if attendees_list_form[x][0] == attendees_list_form[x+1][0] or attendees_list_form[x][1] == attendees_list_form[x+1][1]: k += 1 continue else: if k == 0: attendee = attendees_list_form[x] attendee.sort() attendees_vol2.append(attendees_list_form[x]) else: attendee = attendees_list_form[x] for t in range(k): if k == t: continue else: t += 1 attendee.append(attendees_list_form[x-t][-1]) attendee.append(attendees_list_form[x-t][-2]) attendee.sort() attendees_vol2.append(attendee) k = 0 except: if k == 0: attendee = attendees_list_form[x] attendee.sort() attendees_vol2.append(attendees_list_form[x]) else: attendee = attendees_list_form[x] for t in range(k): if k == t: continue else: t += 1 attendee.append(attendees_list_form[x-t][-1]) attendee.append(attendees_list_form[x-t][-2]) attendee.sort() attendees_vol2.append(attendee) attendee = [] attendees = [] attendee_vol3 = [] attendees_vol3 = [] for x in attendees_vol2: attendee.append(x[-2]) attendee.append(x[-1]) attendee.append(x[0].split()[1]) attendee.append(x[-3].split()[1]) attendees.append(attendee) attendee = [] attendee_vol3.append(x[-2]) attendee_vol3.append(x[-1]) for t in x: if x[-2] == t or x[-1] == t: continue else: attendee_vol3.append(t.split()[1]) attendees_vol3.append(attendee_vol3) attendee_vol3 = [] outworkbook = xlsxwriter.Workbook("Sheet.xlsx") outworksheet = outworkbook.add_worksheet() outworksheet.write(0, 0, "İsim-Soyisim") outworksheet.write(0, 1, "E-Posta Adresi") sessions_vol2 = [] for x in range(len(sessions)): try: if x%2 == 0: sessions_vol2.append(sessions[x]+" - "+sessions[x+1]) except: sessions_vol2.append(sessions[-2]+" - "+sessions[-1]) sessions = sessions_vol2 for x in range(len(sessions)): outworksheet.write(0, x+2, str(x+1)+". Oturum "+sessions[x]) for x in range(len(attendees)): for k in range(len(attendees[x])): if k < 2: outworksheet.write(x+1, k, attendees[x][k]) for t in range(len(sessions)): #print("="*30) #print(attendees[x][3]) #print(attendees[x][2]) #print(sessions[t]) #print("="*30) if int(attendees[x][3].replace(":","")[:-2]) < int(sessions[t].replace(":","")[:-7]) or int(attendees[x][2].replace(":","")[:-2]) > int(sessions[t].replace(":","")[7:]): outworksheet.write(x+1, t+2, "Katılmadı") else: outworksheet.write(x+1, t+2, "Katıldı") outworksheet.write(0, len(sessions)+2, "Toplam Süre") for x in range(len(attendees_vol3)): total_time = 0 for t in range(len(attendees_vol3[x])): if t == 0 or t == 1: continue elif t%2 != 0: total_time += int(attendees_vol3[x][t].replace(":","")[:2])*60+int(attendees_vol3[x][t].replace(":","")[2:4])-int(attendees_vol3[x][t-1].replace(":","")[:2])*60-int(attendees_vol3[x][t-1].replace(":","")[2:4]) outworksheet.write(x+1, len(sessions)+2, str(total_time)) outworkbook.close() e = CivilCon(root) root.mainloop()
45.616935
497
0.455847
1cce0638b2241e788a43951c2ed4fa252db27334
3,554
py
Python
wagtail/admin/widgets/datetime.py
wgarlock/wagtail
1bfc13952f5ffc0e40a4435d15a5aefd70984430
[ "BSD-3-Clause" ]
2
2021-03-18T21:41:05.000Z
2021-03-18T21:41:08.000Z
wagtail/admin/widgets/datetime.py
wgarlock/wagtail
1bfc13952f5ffc0e40a4435d15a5aefd70984430
[ "BSD-3-Clause" ]
13
2015-05-08T12:27:10.000Z
2020-01-23T14:45:57.000Z
wagtail/admin/widgets/datetime.py
wgarlock/wagtail
1bfc13952f5ffc0e40a4435d15a5aefd70984430
[ "BSD-3-Clause" ]
1
2021-02-15T18:59:53.000Z
2021-02-15T18:59:53.000Z
import json from django import forms from django.conf import settings from django.forms import widgets from django.utils.formats import get_format from wagtail.admin.datetimepicker import to_datetimepicker_format from wagtail.admin.staticfiles import versioned_static DEFAULT_DATE_FORMAT = '%Y-%m-%d' DEFAULT_DATETIME_FORMAT = '%Y-%m-%d %H:%M' DEFAULT_TIME_FORMAT = '%H:%M' class AdminDateInput(widgets.DateInput): template_name = 'wagtailadmin/widgets/date_input.html' def __init__(self, attrs=None, format=None): default_attrs = {'autocomplete': 'off'} fmt = format if attrs: default_attrs.update(attrs) if fmt is None: fmt = getattr(settings, 'WAGTAIL_DATE_FORMAT', DEFAULT_DATE_FORMAT) self.js_format = to_datetimepicker_format(fmt) super().__init__(attrs=default_attrs, format=fmt) def get_context(self, name, value, attrs): context = super().get_context(name, value, attrs) config = { 'dayOfWeekStart': get_format('FIRST_DAY_OF_WEEK'), 'format': self.js_format, } context['widget']['config_json'] = json.dumps(config) return context @property def media(self): return forms.Media(js=[ versioned_static('wagtailadmin/js/date-time-chooser.js'), ]) class AdminTimeInput(widgets.TimeInput): template_name = 'wagtailadmin/widgets/time_input.html' def __init__(self, attrs=None, format=None): default_attrs = {'autocomplete': 'off'} if attrs: default_attrs.update(attrs) fmt = format if fmt is None: fmt = getattr(settings, 'WAGTAIL_TIME_FORMAT', DEFAULT_TIME_FORMAT) self.js_format = to_datetimepicker_format(fmt) super().__init__(attrs=default_attrs, format=fmt) def get_context(self, name, value, attrs): context = super().get_context(name, value, attrs) config = { 'format': self.js_format, 'formatTime': self.js_format } context['widget']['config_json'] = json.dumps(config) return context @property def media(self): return forms.Media(js=[ versioned_static('wagtailadmin/js/date-time-chooser.js'), ]) class AdminDateTimeInput(widgets.DateTimeInput): template_name = 'wagtailadmin/widgets/datetime_input.html' def __init__(self, attrs=None, format=None, time_format=None): default_attrs = {'autocomplete': 'off'} fmt = format if attrs: default_attrs.update(attrs) if fmt is None: fmt = getattr(settings, 'WAGTAIL_DATETIME_FORMAT', DEFAULT_DATETIME_FORMAT) time_fmt = time_format if time_fmt is None: time_fmt = getattr(settings, 'WAGTAIL_TIME_FORMAT', DEFAULT_TIME_FORMAT) self.js_format = to_datetimepicker_format(fmt) self.js_time_format = to_datetimepicker_format(time_fmt) super().__init__(attrs=default_attrs, format=fmt) def get_context(self, name, value, attrs): context = super().get_context(name, value, attrs) config = { 'dayOfWeekStart': get_format('FIRST_DAY_OF_WEEK'), 'format': self.js_format, 'formatTime': self.js_time_format } context['widget']['config_json'] = json.dumps(config) return context @property def media(self): return forms.Media(js=[ versioned_static('wagtailadmin/js/date-time-chooser.js'), ])
31.451327
87
0.647721
844754bd1e512eea8ba72baf256447ea1ef68a5f
7,863
py
Python
kubernetes/client/models/v1_config_map_node_config_source.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
2
2020-06-21T08:03:18.000Z
2020-06-21T09:53:29.000Z
kubernetes/client/models/v1_config_map_node_config_source.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_config_map_node_config_source.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
1
2020-06-21T08:03:17.000Z
2020-06-21T08:03:17.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: release-1.16 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class V1ConfigMapNodeConfigSource(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'kubelet_config_key': 'str', 'name': 'str', 'namespace': 'str', 'resource_version': 'str', 'uid': 'str' } attribute_map = { 'kubelet_config_key': 'kubeletConfigKey', 'name': 'name', 'namespace': 'namespace', 'resource_version': 'resourceVersion', 'uid': 'uid' } def __init__(self, kubelet_config_key=None, name=None, namespace=None, resource_version=None, uid=None): # noqa: E501 """V1ConfigMapNodeConfigSource - a model defined in OpenAPI""" # noqa: E501 self._kubelet_config_key = None self._name = None self._namespace = None self._resource_version = None self._uid = None self.discriminator = None self.kubelet_config_key = kubelet_config_key self.name = name self.namespace = namespace if resource_version is not None: self.resource_version = resource_version if uid is not None: self.uid = uid @property def kubelet_config_key(self): """Gets the kubelet_config_key of this V1ConfigMapNodeConfigSource. # noqa: E501 KubeletConfigKey declares which key of the referenced ConfigMap corresponds to the KubeletConfiguration structure This field is required in all cases. # noqa: E501 :return: The kubelet_config_key of this V1ConfigMapNodeConfigSource. # noqa: E501 :rtype: str """ return self._kubelet_config_key @kubelet_config_key.setter def kubelet_config_key(self, kubelet_config_key): """Sets the kubelet_config_key of this V1ConfigMapNodeConfigSource. KubeletConfigKey declares which key of the referenced ConfigMap corresponds to the KubeletConfiguration structure This field is required in all cases. # noqa: E501 :param kubelet_config_key: The kubelet_config_key of this V1ConfigMapNodeConfigSource. # noqa: E501 :type: str """ if kubelet_config_key is None: raise ValueError("Invalid value for `kubelet_config_key`, must not be `None`") # noqa: E501 self._kubelet_config_key = kubelet_config_key @property def name(self): """Gets the name of this V1ConfigMapNodeConfigSource. # noqa: E501 Name is the metadata.name of the referenced ConfigMap. This field is required in all cases. # noqa: E501 :return: The name of this V1ConfigMapNodeConfigSource. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1ConfigMapNodeConfigSource. Name is the metadata.name of the referenced ConfigMap. This field is required in all cases. # noqa: E501 :param name: The name of this V1ConfigMapNodeConfigSource. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def namespace(self): """Gets the namespace of this V1ConfigMapNodeConfigSource. # noqa: E501 Namespace is the metadata.namespace of the referenced ConfigMap. This field is required in all cases. # noqa: E501 :return: The namespace of this V1ConfigMapNodeConfigSource. # noqa: E501 :rtype: str """ return self._namespace @namespace.setter def namespace(self, namespace): """Sets the namespace of this V1ConfigMapNodeConfigSource. Namespace is the metadata.namespace of the referenced ConfigMap. This field is required in all cases. # noqa: E501 :param namespace: The namespace of this V1ConfigMapNodeConfigSource. # noqa: E501 :type: str """ if namespace is None: raise ValueError("Invalid value for `namespace`, must not be `None`") # noqa: E501 self._namespace = namespace @property def resource_version(self): """Gets the resource_version of this V1ConfigMapNodeConfigSource. # noqa: E501 ResourceVersion is the metadata.ResourceVersion of the referenced ConfigMap. This field is forbidden in Node.Spec, and required in Node.Status. # noqa: E501 :return: The resource_version of this V1ConfigMapNodeConfigSource. # noqa: E501 :rtype: str """ return self._resource_version @resource_version.setter def resource_version(self, resource_version): """Sets the resource_version of this V1ConfigMapNodeConfigSource. ResourceVersion is the metadata.ResourceVersion of the referenced ConfigMap. This field is forbidden in Node.Spec, and required in Node.Status. # noqa: E501 :param resource_version: The resource_version of this V1ConfigMapNodeConfigSource. # noqa: E501 :type: str """ self._resource_version = resource_version @property def uid(self): """Gets the uid of this V1ConfigMapNodeConfigSource. # noqa: E501 UID is the metadata.UID of the referenced ConfigMap. This field is forbidden in Node.Spec, and required in Node.Status. # noqa: E501 :return: The uid of this V1ConfigMapNodeConfigSource. # noqa: E501 :rtype: str """ return self._uid @uid.setter def uid(self, uid): """Sets the uid of this V1ConfigMapNodeConfigSource. UID is the metadata.UID of the referenced ConfigMap. This field is forbidden in Node.Spec, and required in Node.Status. # noqa: E501 :param uid: The uid of this V1ConfigMapNodeConfigSource. # noqa: E501 :type: str """ self._uid = uid def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1ConfigMapNodeConfigSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
34.186957
172
0.634109
a78e736afad421de8fdbbede8643e00ba7727de2
36,123
py
Python
saleor/graphql/product/tests/test_category.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
15,337
2015-01-12T02:11:52.000Z
2021-10-05T19:19:29.000Z
saleor/graphql/product/tests/test_category.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
7,486
2015-02-11T10:52:13.000Z
2021-10-06T09:37:15.000Z
saleor/graphql/product/tests/test_category.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
5,864
2015-01-16T14:52:54.000Z
2021-10-05T23:01:15.000Z
import os from unittest.mock import Mock, patch import graphene import pytest from django.utils.text import slugify from graphql_relay import to_global_id from ....product.error_codes import ProductErrorCode from ....product.models import Category, Product, ProductChannelListing from ....product.tests.utils import create_image, create_pdf_file_with_image_ext from ....tests.utils import dummy_editorjs from ...tests.utils import ( get_graphql_content, get_graphql_content_from_response, get_multipart_request_body, ) QUERY_CATEGORY = """ query ($id: ID, $slug: String, $channel: String){ category( id: $id, slug: $slug, ) { id name ancestors(first: 20) { edges { node { name } } } children(first: 20) { edges { node { name } } } products(first: 10, channel: $channel) { edges { node { id } } } } } """ def test_category_query_by_id(user_api_client, product, channel_USD): category = Category.objects.first() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "channel": channel_USD.slug, } response = user_api_client.post_graphql(QUERY_CATEGORY, variables=variables) content = get_graphql_content(response) category_data = content["data"]["category"] assert category_data is not None assert category_data["name"] == category.name assert len(category_data["ancestors"]["edges"]) == category.get_ancestors().count() assert len(category_data["children"]["edges"]) == category.get_children().count() def test_category_query_invalid_id(user_api_client, product, channel_USD): category_id = "'" variables = { "id": category_id, "channel": channel_USD.slug, } response = user_api_client.post_graphql(QUERY_CATEGORY, variables) content = get_graphql_content_from_response(response) assert len(content["errors"]) == 1 assert content["errors"][0]["message"] == f"Couldn't resolve id: {category_id}." assert content["data"]["category"] is None def test_category_query_object_with_given_id_does_not_exist( user_api_client, product, channel_USD ): category_id = graphene.Node.to_global_id("Category", -1) variables = { "id": category_id, "channel": channel_USD.slug, } response = user_api_client.post_graphql(QUERY_CATEGORY, variables) content = get_graphql_content(response) assert content["data"]["category"] is None def test_category_query_object_with_invalid_object_type( user_api_client, product, channel_USD ): category = Category.objects.first() category_id = graphene.Node.to_global_id("Product", category.pk) variables = { "id": category_id, "channel": channel_USD.slug, } response = user_api_client.post_graphql(QUERY_CATEGORY, variables) content = get_graphql_content(response) assert content["data"]["category"] is None def test_category_query_description(user_api_client, product, channel_USD): category = Category.objects.first() description = dummy_editorjs("Test description.", json_format=True) category.description = dummy_editorjs("Test description.") category.save() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "channel": channel_USD.slug, } query = """ query ($id: ID, $slug: String){ category( id: $id, slug: $slug, ) { id name description descriptionJson } } """ response = user_api_client.post_graphql(query, variables=variables) content = get_graphql_content(response) category_data = content["data"]["category"] assert category_data["description"] == description assert category_data["descriptionJson"] == description def test_category_query_without_description(user_api_client, product, channel_USD): category = Category.objects.first() category.save() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "channel": channel_USD.slug, } query = """ query ($id: ID, $slug: String){ category( id: $id, slug: $slug, ) { id name description descriptionJson } } """ response = user_api_client.post_graphql(query, variables=variables) content = get_graphql_content(response) category_data = content["data"]["category"] assert category_data["description"] is None assert category_data["descriptionJson"] == "{}" def test_category_query_by_slug(user_api_client, product, channel_USD): category = Category.objects.first() variables = {"slug": category.slug, "channel": channel_USD.slug} response = user_api_client.post_graphql(QUERY_CATEGORY, variables=variables) content = get_graphql_content(response) category_data = content["data"]["category"] assert category_data is not None assert category_data["name"] == category.name assert len(category_data["ancestors"]["edges"]) == category.get_ancestors().count() assert len(category_data["children"]["edges"]) == category.get_children().count() def test_category_query_error_when_id_and_slug_provided( user_api_client, product, graphql_log_handler, channel_USD ): category = Category.objects.first() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "slug": category.slug, "channel": channel_USD.slug, } response = user_api_client.post_graphql(QUERY_CATEGORY, variables=variables) assert graphql_log_handler.messages == [ "saleor.graphql.errors.handled[INFO].GraphQLError" ] content = get_graphql_content(response, ignore_errors=True) assert len(content["errors"]) == 1 def test_category_query_error_when_no_param( user_api_client, product, graphql_log_handler ): variables = {} response = user_api_client.post_graphql(QUERY_CATEGORY, variables=variables) assert graphql_log_handler.messages == [ "saleor.graphql.errors.handled[INFO].GraphQLError" ] content = get_graphql_content(response, ignore_errors=True) assert len(content["errors"]) == 1 def test_query_category_product_only_visible_in_listings_as_customer( user_api_client, product_list, channel_USD ): # given category = Category.objects.first() product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "channel": channel_USD.slug, } # when response = user_api_client.post_graphql(QUERY_CATEGORY, variables=variables) # then content = get_graphql_content(response, ignore_errors=True) assert len(content["data"]["category"]["products"]["edges"]) == product_count - 1 def test_query_category_product_visible_in_listings_as_staff_without_manage_products( staff_api_client, product_list, channel_USD ): # given category = Category.objects.first() product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "channel": channel_USD.slug, } # when response = staff_api_client.post_graphql(QUERY_CATEGORY, variables=variables) # then content = get_graphql_content(response, ignore_errors=True) assert ( len(content["data"]["category"]["products"]["edges"]) == product_count - 1 ) # invisible doesn't count def test_query_category_product_only_visible_in_listings_as_staff_with_perm( staff_api_client, product_list, permission_manage_products ): # given staff_api_client.user.user_permissions.add(permission_manage_products) category = Category.objects.first() product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() variables = {"id": graphene.Node.to_global_id("Category", category.pk)} # when response = staff_api_client.post_graphql(QUERY_CATEGORY, variables=variables) # then content = get_graphql_content(response, ignore_errors=True) assert len(content["data"]["category"]["products"]["edges"]) == product_count def test_query_category_product_only_visible_in_listings_as_app_without_manage_products( app_api_client, product_list, channel_USD ): # given category = Category.objects.first() product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() variables = { "id": graphene.Node.to_global_id("Category", category.pk), "channel": channel_USD.slug, } # when response = app_api_client.post_graphql(QUERY_CATEGORY, variables=variables) # then content = get_graphql_content(response, ignore_errors=True) assert ( len(content["data"]["category"]["products"]["edges"]) == product_count - 1 ) # invisible doesn't count def test_query_category_product_only_visible_in_listings_as_app_with_perm( app_api_client, product_list, permission_manage_products ): # given app_api_client.app.permissions.add(permission_manage_products) category = Category.objects.first() product_list[0].channel_listings.all().update(visible_in_listings=False) product_count = Product.objects.count() variables = {"id": graphene.Node.to_global_id("Category", category.pk)} # when response = app_api_client.post_graphql(QUERY_CATEGORY, variables=variables) # then content = get_graphql_content(response, ignore_errors=True) assert len(content["data"]["category"]["products"]["edges"]) == product_count CATEGORY_CREATE_MUTATION = """ mutation( $name: String, $slug: String, $description: JSONString, $backgroundImage: Upload, $backgroundImageAlt: String, $parentId: ID) { categoryCreate( input: { name: $name slug: $slug description: $description backgroundImage: $backgroundImage backgroundImageAlt: $backgroundImageAlt }, parent: $parentId ) { category { id name slug description parent { name id } backgroundImage{ alt } } errors { field code message } } } """ def test_category_create_mutation( monkeypatch, staff_api_client, permission_manage_products, media_root ): query = CATEGORY_CREATE_MUTATION mock_create_thumbnails = Mock(return_value=None) monkeypatch.setattr( ( "saleor.product.thumbnails." "create_category_background_image_thumbnails.delay" ), mock_create_thumbnails, ) category_name = "Test category" description = "description" category_slug = slugify(category_name) category_description = dummy_editorjs(description, True) image_file, image_name = create_image() image_alt = "Alt text for an image." # test creating root category variables = { "name": category_name, "description": category_description, "backgroundImage": image_name, "backgroundImageAlt": image_alt, "slug": category_slug, } body = get_multipart_request_body(query, variables, image_file, image_name) response = staff_api_client.post_multipart( body, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryCreate"] assert data["errors"] == [] assert data["category"]["name"] == category_name assert data["category"]["description"] == category_description assert not data["category"]["parent"] category = Category.objects.get(name=category_name) assert category.description_plaintext == description assert category.background_image.file img_name, format = os.path.splitext(image_file._name) file_name = category.background_image.name assert file_name != image_file._name assert file_name.startswith(f"category-backgrounds/{img_name}") assert file_name.endswith(format) mock_create_thumbnails.assert_called_once_with(category.pk) assert data["category"]["backgroundImage"]["alt"] == image_alt # test creating subcategory parent_id = data["category"]["id"] variables = { "name": category_name, "description": category_description, "parentId": parent_id, "slug": f"{category_slug}-2", } response = staff_api_client.post_graphql(query, variables) content = get_graphql_content(response) data = content["data"]["categoryCreate"] assert data["errors"] == [] assert data["category"]["parent"]["id"] == parent_id @pytest.mark.parametrize( "input_slug, expected_slug", ( ("test-slug", "test-slug"), (None, "test-category"), ("", "test-category"), ("わたし-わ-にっぽん-です", "わたし-わ-にっぽん-です"), ), ) def test_create_category_with_given_slug( staff_api_client, permission_manage_products, input_slug, expected_slug ): query = CATEGORY_CREATE_MUTATION name = "Test category" variables = {"name": name, "slug": input_slug} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryCreate"] assert not data["errors"] assert data["category"]["slug"] == expected_slug def test_create_category_name_with_unicode( staff_api_client, permission_manage_products ): query = CATEGORY_CREATE_MUTATION name = "わたし-わ にっぽん です" variables = {"name": name} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryCreate"] assert not data["errors"] assert data["category"]["name"] == name assert data["category"]["slug"] == "わたし-わ-にっぽん-です" def test_category_create_mutation_without_background_image( monkeypatch, staff_api_client, permission_manage_products ): query = CATEGORY_CREATE_MUTATION description = dummy_editorjs("description", True) mock_create_thumbnails = Mock(return_value=None) monkeypatch.setattr( ( "saleor.product.thumbnails." "create_category_background_image_thumbnails.delay" ), mock_create_thumbnails, ) # test creating root category category_name = "Test category" variables = { "name": category_name, "description": description, "slug": slugify(category_name), } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryCreate"] assert data["errors"] == [] assert mock_create_thumbnails.call_count == 0 MUTATION_CATEGORY_UPDATE_MUTATION = """ mutation($id: ID!, $name: String, $slug: String, $backgroundImage: Upload, $backgroundImageAlt: String, $description: JSONString) { categoryUpdate( id: $id input: { name: $name description: $description backgroundImage: $backgroundImage backgroundImageAlt: $backgroundImageAlt slug: $slug } ) { category { id name description parent { id } backgroundImage{ alt } } errors { field message } } } """ def test_category_update_mutation( monkeypatch, staff_api_client, category, permission_manage_products, media_root ): mock_create_thumbnails = Mock(return_value=None) monkeypatch.setattr( ( "saleor.product.thumbnails." "create_category_background_image_thumbnails.delay" ), mock_create_thumbnails, ) # create child category and test that the update mutation won't change # it's parent child_category = category.children.create(name="child") category_name = "Updated name" description = "description" category_slug = slugify(category_name) category_description = dummy_editorjs(description, True) image_file, image_name = create_image() image_alt = "Alt text for an image." category_id = graphene.Node.to_global_id("Category", child_category.pk) variables = { "name": category_name, "description": category_description, "backgroundImage": image_name, "backgroundImageAlt": image_alt, "id": category_id, "slug": category_slug, } body = get_multipart_request_body( MUTATION_CATEGORY_UPDATE_MUTATION, variables, image_file, image_name ) response = staff_api_client.post_multipart( body, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryUpdate"] assert data["errors"] == [] assert data["category"]["id"] == category_id assert data["category"]["name"] == category_name assert data["category"]["description"] == category_description parent_id = graphene.Node.to_global_id("Category", category.pk) assert data["category"]["parent"]["id"] == parent_id category = Category.objects.get(name=category_name) assert category.description_plaintext == description assert category.background_image.file mock_create_thumbnails.assert_called_once_with(category.pk) assert data["category"]["backgroundImage"]["alt"] == image_alt def test_category_update_mutation_invalid_background_image( staff_api_client, category, permission_manage_products ): image_file, image_name = create_pdf_file_with_image_ext() image_alt = "Alt text for an image." variables = { "name": "new-name", "slug": "new-slug", "id": to_global_id("Category", category.id), "backgroundImage": image_name, "backgroundImageAlt": image_alt, "isPublished": True, } body = get_multipart_request_body( MUTATION_CATEGORY_UPDATE_MUTATION, variables, image_file, image_name ) response = staff_api_client.post_multipart( body, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryUpdate"] assert data["errors"][0]["field"] == "backgroundImage" assert data["errors"][0]["message"] == "Invalid file type." def test_category_update_mutation_without_background_image( monkeypatch, staff_api_client, category, permission_manage_products ): query = """ mutation($id: ID!, $name: String, $slug: String, $description: JSONString) { categoryUpdate( id: $id input: { name: $name description: $description slug: $slug } ) { errors { field message } } } """ mock_create_thumbnails = Mock(return_value=None) monkeypatch.setattr( ( "saleor.product.thumbnails." "create_category_background_image_thumbnails.delay" ), mock_create_thumbnails, ) category_name = "Updated name" variables = { "id": graphene.Node.to_global_id( "Category", category.children.create(name="child").pk ), "name": category_name, "description": dummy_editorjs("description", True), "slug": slugify(category_name), } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryUpdate"] assert data["errors"] == [] assert mock_create_thumbnails.call_count == 0 UPDATE_CATEGORY_SLUG_MUTATION = """ mutation($id: ID!, $slug: String) { categoryUpdate( id: $id input: { slug: $slug } ) { category{ name slug } errors { field message code } } } """ @pytest.mark.parametrize( "input_slug, expected_slug, error_message", [ ("test-slug", "test-slug", None), ("", "", "Slug value cannot be blank."), (None, "", "Slug value cannot be blank."), ], ) def test_update_category_slug( staff_api_client, category, permission_manage_products, input_slug, expected_slug, error_message, ): query = UPDATE_CATEGORY_SLUG_MUTATION old_slug = category.slug assert old_slug != input_slug node_id = graphene.Node.to_global_id("Category", category.id) variables = {"slug": input_slug, "id": node_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryUpdate"] errors = data["errors"] if not error_message: assert not errors assert data["category"]["slug"] == expected_slug else: assert errors assert errors[0]["field"] == "slug" assert errors[0]["code"] == ProductErrorCode.REQUIRED.name def test_update_category_slug_exists( staff_api_client, category, permission_manage_products ): query = UPDATE_CATEGORY_SLUG_MUTATION input_slug = "test-slug" second_category = Category.objects.get(pk=category.pk) second_category.pk = None second_category.slug = input_slug second_category.save() assert input_slug != category.slug node_id = graphene.Node.to_global_id("Category", category.id) variables = {"slug": input_slug, "id": node_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryUpdate"] errors = data["errors"] assert errors assert errors[0]["field"] == "slug" assert errors[0]["code"] == ProductErrorCode.UNIQUE.name @pytest.mark.parametrize( "input_slug, expected_slug, input_name, error_message, error_field", [ ("test-slug", "test-slug", "New name", None, None), ("", "", "New name", "Slug value cannot be blank.", "slug"), (None, "", "New name", "Slug value cannot be blank.", "slug"), ("test-slug", "", None, "This field cannot be blank.", "name"), ("test-slug", "", "", "This field cannot be blank.", "name"), (None, None, None, "Slug value cannot be blank.", "slug"), ], ) def test_update_category_slug_and_name( staff_api_client, category, permission_manage_products, input_slug, expected_slug, input_name, error_message, error_field, ): query = """ mutation($id: ID!, $name: String, $slug: String) { categoryUpdate( id: $id input: { name: $name slug: $slug } ) { category{ name slug } errors { field message code } } } """ old_name = category.name old_slug = category.slug assert input_slug != old_slug assert input_name != old_name node_id = graphene.Node.to_global_id("Category", category.id) variables = {"slug": input_slug, "name": input_name, "id": node_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) category.refresh_from_db() data = content["data"]["categoryUpdate"] errors = data["errors"] if not error_message: assert data["category"]["name"] == input_name == category.name assert data["category"]["slug"] == input_slug == category.slug else: assert errors assert errors[0]["field"] == error_field assert errors[0]["code"] == ProductErrorCode.REQUIRED.name MUTATION_CATEGORY_DELETE = """ mutation($id: ID!) { categoryDelete(id: $id) { category { name } errors { field message } } } """ @patch("saleor.product.signals.delete_versatile_image") def test_category_delete_mutation( delete_versatile_image_mock, staff_api_client, category, permission_manage_products, ): variables = {"id": graphene.Node.to_global_id("Category", category.id)} response = staff_api_client.post_graphql( MUTATION_CATEGORY_DELETE, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryDelete"] assert data["category"]["name"] == category.name with pytest.raises(category._meta.model.DoesNotExist): category.refresh_from_db() delete_versatile_image_mock.assert_not_called() @patch("saleor.product.signals.delete_versatile_image") def test_delete_category_with_background_image( delete_versatile_image_mock, staff_api_client, category_with_image, permission_manage_products, media_root, ): """Ensure deleting category deletes background image from storage.""" category = category_with_image variables = {"id": graphene.Node.to_global_id("Category", category.id)} response = staff_api_client.post_graphql( MUTATION_CATEGORY_DELETE, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryDelete"] assert data["category"]["name"] == category.name with pytest.raises(category._meta.model.DoesNotExist): category.refresh_from_db() delete_versatile_image_mock.assert_called_once_with(category.background_image) @patch("saleor.product.utils.update_products_discounted_prices_task") def test_category_delete_mutation_for_categories_tree( mock_update_products_discounted_prices_task, staff_api_client, categories_tree_with_published_products, permission_manage_products, ): parent = categories_tree_with_published_products parent_product = parent.products.first() child_product = parent.children.first().products.first() product_list = [child_product, parent_product] variables = {"id": graphene.Node.to_global_id("Category", parent.id)} response = staff_api_client.post_graphql( MUTATION_CATEGORY_DELETE, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryDelete"] assert data["category"]["name"] == parent.name with pytest.raises(parent._meta.model.DoesNotExist): parent.refresh_from_db() mock_update_products_discounted_prices_task.delay.assert_called_once() ( _call_args, call_kwargs, ) = mock_update_products_discounted_prices_task.delay.call_args assert set(call_kwargs["product_ids"]) == set(p.pk for p in product_list) product_channel_listings = ProductChannelListing.objects.filter( product__in=product_list ) for product_channel_listing in product_channel_listings: assert product_channel_listing.is_published is False assert not product_channel_listing.publication_date assert product_channel_listings.count() == 4 @patch("saleor.product.utils.update_products_discounted_prices_task") def test_category_delete_mutation_for_children_from_categories_tree( mock_update_products_discounted_prices_task, staff_api_client, categories_tree_with_published_products, permission_manage_products, ): parent = categories_tree_with_published_products child = parent.children.first() parent_product = parent.products.first() child_product = child.products.first() variables = {"id": graphene.Node.to_global_id("Category", child.id)} response = staff_api_client.post_graphql( MUTATION_CATEGORY_DELETE, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryDelete"] assert data["category"]["name"] == child.name with pytest.raises(child._meta.model.DoesNotExist): child.refresh_from_db() mock_update_products_discounted_prices_task.delay.assert_called_once_with( product_ids=[child_product.pk] ) parent_product.refresh_from_db() assert parent_product.category product_channel_listings = ProductChannelListing.objects.filter( product=parent_product ) for product_channel_listing in product_channel_listings: assert product_channel_listing.is_published is True assert product_channel_listing.publication_date child_product.refresh_from_db() assert not child_product.category product_channel_listings = ProductChannelListing.objects.filter( product=child_product ) for product_channel_listing in product_channel_listings: assert product_channel_listing.is_published is False assert not product_channel_listing.publication_date LEVELED_CATEGORIES_QUERY = """ query leveled_categories($level: Int) { categories(level: $level, first: 20) { edges { node { name parent { name } } } } } """ def test_category_level(user_api_client, category): query = LEVELED_CATEGORIES_QUERY child = Category.objects.create(name="child", slug="chi-ld", parent=category) variables = {"level": 0} response = user_api_client.post_graphql(query, variables) content = get_graphql_content(response) category_data = content["data"]["categories"]["edges"][0]["node"] assert category_data["name"] == category.name assert category_data["parent"] is None variables = {"level": 1} response = user_api_client.post_graphql(query, variables) content = get_graphql_content(response) category_data = content["data"]["categories"]["edges"][0]["node"] assert category_data["name"] == child.name assert category_data["parent"]["name"] == category.name NOT_EXISTS_IDS_CATEGORIES_QUERY = """ query ($filter: CategoryFilterInput!) { categories(first: 5, filter: $filter) { edges { node { id name } } } } """ def test_categories_query_ids_not_exists(user_api_client, category): query = NOT_EXISTS_IDS_CATEGORIES_QUERY variables = {"filter": {"ids": ["W3KATGDn3fq3ZH4=", "zH9pYmz7yWD3Hy8="]}} response = user_api_client.post_graphql(query, variables) content = get_graphql_content(response, ignore_errors=True) message_error = '{"ids": [{"message": "Invalid ID specified.", "code": ""}]}' assert len(content["errors"]) == 1 assert content["errors"][0]["message"] == message_error assert content["data"]["categories"] is None FETCH_CATEGORY_QUERY = """ query fetchCategory($id: ID!){ category(id: $id) { name backgroundImage(size: 120) { url alt } } } """ def test_category_image_query(user_api_client, non_default_category, media_root): alt_text = "Alt text for an image." category = non_default_category image_file, image_name = create_image() category.background_image = image_file category.background_image_alt = alt_text category.save() category_id = graphene.Node.to_global_id("Category", category.pk) variables = {"id": category_id} response = user_api_client.post_graphql(FETCH_CATEGORY_QUERY, variables) content = get_graphql_content(response) data = content["data"]["category"] thumbnail_url = category.background_image.thumbnail["120x120"].url assert thumbnail_url in data["backgroundImage"]["url"] assert data["backgroundImage"]["alt"] == alt_text def test_category_image_query_without_associated_file( user_api_client, non_default_category ): category = non_default_category category_id = graphene.Node.to_global_id("Category", category.pk) variables = {"id": category_id} response = user_api_client.post_graphql(FETCH_CATEGORY_QUERY, variables) content = get_graphql_content(response) data = content["data"]["category"] assert data["name"] == category.name assert data["backgroundImage"] is None def test_update_category_mutation_remove_background_image( staff_api_client, category_with_image, permission_manage_products ): query = """ mutation updateCategory($id: ID!, $backgroundImage: Upload) { categoryUpdate( id: $id, input: { backgroundImage: $backgroundImage } ) { category { backgroundImage{ url } } errors { field message } } } """ assert category_with_image.background_image variables = { "id": to_global_id("Category", category_with_image.id), "backgroundImage": None, } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["categoryUpdate"]["category"] assert not data["backgroundImage"] category_with_image.refresh_from_db() assert not category_with_image.background_image def test_query_category_for_federation(api_client, non_default_category): category_id = graphene.Node.to_global_id("Category", non_default_category.pk) variables = { "representations": [ { "__typename": "Category", "id": category_id, }, ], } query = """ query GetCategoryInFederation($representations: [_Any]) { _entities(representations: $representations) { __typename ... on Category { id name } } } """ response = api_client.post_graphql(query, variables) content = get_graphql_content(response) assert content["data"]["_entities"] == [ { "__typename": "Category", "id": category_id, "name": non_default_category.name, } ]
32.080817
88
0.644575
d41bd3c2551994fa9d6dabe0ff04996d3e737368
14,675
py
Python
ddtrace/profiling/exporter/pprof.py
RobertTownley/dd-trace-py
f5a04c60ed0387268f024ab8cd6d2ac2a1f04eb9
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
ddtrace/profiling/exporter/pprof.py
RobertTownley/dd-trace-py
f5a04c60ed0387268f024ab8cd6d2ac2a1f04eb9
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
ddtrace/profiling/exporter/pprof.py
RobertTownley/dd-trace-py
f5a04c60ed0387268f024ab8cd6d2ac2a1f04eb9
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
import collections import itertools import operator import sys try: import tracemalloc except ImportError: tracemalloc = None from ddtrace.vendor import six from ddtrace.profiling import _line2def from ddtrace.profiling import exporter from ddtrace.vendor import attr from ddtrace.profiling.collector import exceptions from ddtrace.profiling.collector import memory from ddtrace.profiling.collector import stack from ddtrace.profiling.collector import threading from ddtrace.profiling.exporter import pprof_pb2 _ITEMGETTER_ZERO = operator.itemgetter(0) _ITEMGETTER_ONE = operator.itemgetter(1) _ATTRGETTER_ID = operator.attrgetter("id") @attr.s class _Sequence(object): start_at = attr.ib(default=1) next_id = attr.ib(init=False, default=None) def __attrs_post_init__(self): self.next_id = self.start_at def generate(self): """Generate a new unique id and return it.""" generated_id = self.next_id self.next_id += 1 return generated_id @attr.s class _StringTable(object): _strings = attr.ib(init=False, factory=lambda: {"": 0}) _seq_id = attr.ib(init=False, factory=_Sequence) def to_id(self, string): try: return self._strings[string] except KeyError: generated_id = self._strings[string] = self._seq_id.generate() return generated_id def __iter__(self): for string, _ in sorted(self._strings.items(), key=_ITEMGETTER_ONE): yield string def __len__(self): return len(self._strings) @attr.s class _PprofConverter(object): """Convert stacks generated by a Profiler to pprof format.""" # Those attributes will be serialize in a `pprof_pb2.Profile` _functions = attr.ib(init=False, factory=dict) _locations = attr.ib(init=False, factory=dict) _string_table = attr.ib(init=False, factory=_StringTable) _last_location_id = attr.ib(init=False, factory=_Sequence) _last_func_id = attr.ib(init=False, factory=_Sequence) # A dict where key is a (Location, [Labels]) and value is a a dict. # This dict has sample-type (e.g. "cpu-time") as key and the numeric value. _location_values = attr.ib(factory=lambda: collections.defaultdict(dict), init=False, repr=False) def _to_Function(self, filename, funcname): try: return self._functions[(filename, funcname)] except KeyError: func = pprof_pb2.Function( id=self._last_func_id.generate(), name=self._str(funcname), filename=self._str(filename), ) self._functions[(filename, funcname)] = func return func def _to_Location(self, filename, lineno, funcname=None): try: return self._locations[(filename, lineno, funcname)] except KeyError: if funcname is None: real_funcname = _line2def.filename_and_lineno_to_def(filename, lineno) else: real_funcname = funcname location = pprof_pb2.Location( id=self._last_location_id.generate(), line=[pprof_pb2.Line(function_id=self._to_Function(filename, real_funcname).id, line=lineno,),], ) self._locations[(filename, lineno, funcname)] = location return location def _str(self, string): """Convert a string to an id from the string table.""" return self._string_table.to_id(str(string)) def _to_locations(self, frames, nframes): locations = [self._to_Location(filename, lineno, funcname).id for filename, lineno, funcname in frames] omitted = nframes - len(frames) if omitted: locations.append( self._to_Location("", 0, "<%d frame%s omitted>" % (omitted, ("s" if omitted > 1 else ""))).id ) return tuple(locations) def convert_uncaught_exception_event(self, thread_id, thread_name, frames, nframes, exc_type_name, events): location_key = ( self._to_locations(frames, nframes), (("thread id", str(thread_id)), ("thread name", thread_name), ("exception type", exc_type_name)), ) self._location_values[location_key]["uncaught-exceptions"] = len(events) def convert_stack_event(self, thread_id, thread_name, frames, nframes, samples): location_key = ( self._to_locations(frames, nframes), (("thread id", str(thread_id)), ("thread name", thread_name),), ) self._location_values[location_key]["cpu-samples"] = len(samples) self._location_values[location_key]["cpu-time"] = sum(s.cpu_time_ns for s in samples) self._location_values[location_key]["wall-time"] = sum(s.wall_time_ns for s in samples) def convert_lock_acquire_event(self, lock_name, thread_id, thread_name, frames, nframes, events, sampling_ratio): location_key = ( self._to_locations(frames, nframes), (("thread id", str(thread_id)), ("thread name", thread_name), ("lock name", lock_name)), ) self._location_values[location_key]["lock-acquire"] = len(events) self._location_values[location_key]["lock-acquire-wait"] = int( sum(e.wait_time_ns for e in events) / sampling_ratio ) def convert_lock_release_event(self, lock_name, thread_id, thread_name, frames, nframes, events, sampling_ratio): location_key = ( self._to_locations(frames, nframes), (("thread id", str(thread_id)), ("thread name", thread_name), ("lock name", lock_name)), ) self._location_values[location_key]["lock-release"] = len(events) self._location_values[location_key]["lock-release-hold"] = int( sum(e.locked_for_ns for e in events) / sampling_ratio ) def convert_stack_exception_event(self, thread_id, thread_name, frames, nframes, exc_type_name, events): location_key = ( self._to_locations(frames, nframes), (("thread id", str(thread_id)), ("thread name", thread_name), ("exception type", exc_type_name),), ) self._location_values[location_key]["exception-samples"] = len(events) def convert_memory_event(self, stats, sampling_ratio): location = tuple(self._to_Location(frame.filename, frame.lineno).id for frame in reversed(stats.traceback)) location_key = (location, tuple()) self._location_values[location_key]["alloc-samples"] = int(stats.count / sampling_ratio) self._location_values[location_key]["alloc-space"] = int(stats.size / sampling_ratio) def _build_profile(self, start_time_ns, duration_ns, period, sample_types, program_name): pprof_sample_type = [ pprof_pb2.ValueType(type=self._str(type_), unit=self._str(unit)) for type_, unit in sample_types ] sample = [ pprof_pb2.Sample( location_id=locations, value=[values.get(sample_type_name, 0) for sample_type_name, unit in sample_types], label=[pprof_pb2.Label(key=self._str(key), str=self._str(s)) for key, s in labels], ) for (locations, labels), values in sorted(six.iteritems(self._location_values), key=_ITEMGETTER_ZERO) ] period_type = pprof_pb2.ValueType(type=self._str("time"), unit=self._str("nanoseconds")) # WARNING: no code should use _str() here as once the _string_table is serialized below, # it won't be updated if you call _str later in the code here return pprof_pb2.Profile( sample_type=pprof_sample_type, sample=sample, mapping=[pprof_pb2.Mapping(id=1, filename=self._str(program_name),),], # Sort location and function by id so the output is reproducible location=sorted(self._locations.values(), key=_ATTRGETTER_ID), function=sorted(self._functions.values(), key=_ATTRGETTER_ID), string_table=list(self._string_table), time_nanos=start_time_ns, duration_nanos=duration_ns, period=period, period_type=period_type, ) class PprofExporter(exporter.Exporter): """Export recorder events to pprof format.""" @staticmethod def _get_program_name(default="-"): try: import __main__ program_name = __main__.__file__ except (ImportError, AttributeError): try: program_name = sys.argv[0] except IndexError: program_name = None if program_name is None: return default return program_name @staticmethod def _stack_event_group_key(event): return (event.thread_id, str(event.thread_name), tuple(event.frames), event.nframes) def _group_stack_events(self, events): return itertools.groupby(sorted(events, key=self._stack_event_group_key), key=self._stack_event_group_key,) @staticmethod def _lock_event_group_key(event): return (event.lock_name, event.thread_id, str(event.thread_name), tuple(event.frames), event.nframes) def _group_lock_events(self, events): return itertools.groupby(sorted(events, key=self._lock_event_group_key), key=self._lock_event_group_key,) @staticmethod def _exception_group_key(event): exc_type = event.exc_type exc_type_name = exc_type.__module__ + "." + exc_type.__name__ return (event.thread_id, str(event.thread_name), tuple(event.frames), event.nframes, exc_type_name) def _group_exception_events(self, events): return itertools.groupby(sorted(events, key=self._exception_group_key), key=self._exception_group_key,) @staticmethod def min_none(a, b): """A min() version that discards None values.""" if a is None: return b if b is None: return a return min(a, b) @staticmethod def max_none(a, b): """A max() version that discards None values.""" if a is None: return b if b is None: return a return max(a, b) def export(self, events, start_time_ns, end_time_ns): """Convert events to pprof format. :param events: The event dictionary from a `ddtrace.profiling.recorder.Recorder`. :param start_time_ns: The start time of recording. :param end_time_ns: The end time of recording. :return: A protobuf Profile object. """ program_name = self._get_program_name() sum_period = 0 nb_event = 0 converter = _PprofConverter() # Handle StackSampleEvent stack_events = [] for event in events.get(stack.StackSampleEvent, []): stack_events.append(event) sum_period += event.sampling_period nb_event += 1 for (thread_id, thread_name, frames, nframes), stack_events in self._group_stack_events(stack_events): converter.convert_stack_event(thread_id, thread_name, frames, nframes, list(stack_events)) # Handle Lock events for event_class, convert_fn in ( (threading.LockAcquireEvent, converter.convert_lock_acquire_event), (threading.LockReleaseEvent, converter.convert_lock_release_event), ): lock_events = events.get(event_class, []) sampling_sum_pct = sum(event.sampling_pct for event in lock_events) if lock_events: sampling_ratio_avg = sampling_sum_pct / (len(lock_events) * 100.0) for (lock_name, thread_id, thread_name, frames, nframes), l_events in self._group_lock_events( lock_events ): convert_fn(lock_name, thread_id, thread_name, frames, nframes, list(l_events), sampling_ratio_avg) # Handle UncaughtExceptionEvent for ((thread_id, thread_name, frames, nframes, exc_type_name), ue_events,) in self._group_exception_events( events.get(exceptions.UncaughtExceptionEvent, []) ): converter.convert_uncaught_exception_event( thread_id, thread_name, frames, nframes, exc_type_name, list(ue_events) ) sample_types = ( ("cpu-samples", "count"), ("cpu-time", "nanoseconds"), ("wall-time", "nanoseconds"), ("uncaught-exceptions", "count"), ("lock-acquire", "count"), ("lock-acquire-wait", "nanoseconds"), ("lock-release", "count"), ("lock-release-hold", "nanoseconds"), ) # Handle StackExceptionSampleEvent if stack.FEATURES["stack-exceptions"]: sample_types += (("exception-samples", "count"),) for (thread_id, thread_name, frames, nframes, exc_type_name), se_events in self._group_exception_events( events.get(stack.StackExceptionSampleEvent, []) ): converter.convert_stack_exception_event( thread_id, thread_name, frames, nframes, exc_type_name, list(se_events) ) if tracemalloc: sample_types += ( ("alloc-samples", "count"), ("alloc-space", "bytes"), ) # Handle MemorySampleEvent # Merge all the memory snapshots traces = [] traceback_limit = None sampling_pct_sum = 0 nb_events = 0 for event in events.get(memory.MemorySampleEvent, []): sampling_pct_sum += event.sampling_pct nb_events += 1 traces.extend(event.snapshot.traces._traces) # Assume they are all the same traceback_limit = event.snapshot.traceback_limit # Ignore period for memory events are it's not a time-based sampling if nb_events: sampling_ratio_avg = sampling_pct_sum / (nb_events * 100.0) # convert percentage to ratio for stats in tracemalloc.Snapshot(traces, traceback_limit).statistics("traceback"): converter.convert_memory_event(stats, sampling_ratio_avg) # Compute some metadata if nb_event: period = int(sum_period / nb_event) else: period = None duration_ns = end_time_ns - start_time_ns return converter._build_profile( start_time_ns=start_time_ns, duration_ns=duration_ns, period=period, sample_types=sample_types, program_name=program_name, )
38.925729
118
0.638228
9f6c9d7cb4a629b64e20f2d4d2b437ed82ea8ff7
14,179
py
Python
portfolio/Asset.py
open-risk/equinox
0503e716b566ff7c776f04a611879f88d86e1cc6
[ "Apache-2.0" ]
10
2021-03-21T22:05:33.000Z
2022-03-15T18:26:58.000Z
portfolio/Asset.py
open-risk/equinox
0503e716b566ff7c776f04a611879f88d86e1cc6
[ "Apache-2.0" ]
2
2021-10-30T15:15:41.000Z
2021-11-11T12:35:02.000Z
portfolio/Asset.py
open-risk/equinox
0503e716b566ff7c776f04a611879f88d86e1cc6
[ "Apache-2.0" ]
1
2022-03-16T18:59:36.000Z
2022-03-16T18:59:36.000Z
# Copyright (c) 2021 Open Risk (https://www.openriskmanagement.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from django.db import models from portfolio.model_choices import * from django.contrib.gis.db.models import PointField, PolygonField from django.urls import reverse from datetime import datetime ASSET_CLASS_CHOICES = [(0, '(a) Residential'), (1, '(b) CRE'), (2, '(c) SME/Corporate'), (3, '(d) Unsecured'), (4, '(e) Auto'), (5, '(f) Leasing / ABF'), (6, '(g) Specialised')] class Asset(models.Model): """ The Asset model holds asset specific data for each real asset, facility (plant, infrastructure etc) that is part of a Portfolio or Inventory or a Project - which may or may not be financed. An asset will involve one more emissions sources. An Asset participates in only one Project at a time (if linked to a project object) """ # IDENTIFICATION & CATEGORIZATION asset_identifier = models.CharField(max_length=80, blank=True, null=True, help_text='Unique identifier of the asset for internal purposes') description = models.TextField(blank=True, null=True, help_text='Textual Description of the Asset') asset_class = models.IntegerField(blank=True, null=True, choices=ASSET_CLASS_CHOICES, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') business_description = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') registration_number = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') # LINKS / RELATIONS project = models.ForeignKey('Project', blank=True, null=True, on_delete=models.CASCADE) legal_owner = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') # # GHG Data # asset_ghg_emissions = models.FloatField(blank=True, null=True, help_text='This stores the aggregate current annualized emissions of an asset in GO2 equivalents') # # Geographic Information (Geometries stored separately) # # asset_basin_of_influence = PolygonField(blank=True, null=True, # help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') # # asset_perimeter = PolygonField(blank=True, null=True, # help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') city_of_registered_location = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') address_of_registered_location = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') country_of_registered_location = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') current_country_of_registration = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') geographic_region_classification = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') geographic_region_of_registered_location = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') original_country_of_registration = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') postcode_of_registered_location = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') # # Financial Data # activation_of_guarantee = models.BooleanField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') asset_purchase_obligation = models.BooleanField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') collateral_insurance = models.BooleanField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') collateral_insurance_coverage_amount = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') collateral_insurance_provider = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') collateral_type = models.IntegerField(blank=True, null=True, choices=COLLATERAL_TYPE_CHOICES, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') configuration = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') currency_of_collateral = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') current_opex_and_overheads = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') date_of_initial_valuation = models.DateField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') date_of_latest_valuation = models.DateField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') date_of_the_latest_residual_valuation = models.DateField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') engine_size = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') estimated_useful_life = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') industry_segment = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') initial_residual_valuation_date = models.DateField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') initial_residual_value = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') initial_valuation_amount = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') latest_residual_value = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') latest_valuation_amount = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') manufacturer_of_collateral = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') name_or_model_of_collateral = models.TextField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') new_or_used = models.IntegerField(blank=True, null=True, choices=NEW_OR_USED_CHOICES, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') option_to_buy_price = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') project_characteristics = models.FloatField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') type_of_initial_valuation = models.IntegerField(blank=True, null=True, choices=TYPE_OF_INITIAL_VALUATION_CHOICES, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') type_of_latest_valuation = models.IntegerField(blank=True, null=True, choices=TYPE_OF_LATEST_VALUATION_CHOICES, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') type_of_legal_owner = models.IntegerField(blank=True, null=True, choices=TYPE_OF_LEGAL_OWNER_CHOICES, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') year_of_manufacture = models.DateField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') year_of_registration = models.DateField(blank=True, null=True, help_text='Standard Description. <a class="risk_manual_url" href="https://www.openriskmanual.org/wiki">Documentation</a>') # # BOOKKEEPING FIELDS # creation_date = models.DateTimeField(auto_now_add=True) last_change_date = models.DateTimeField(auto_now=True) def __str__(self): return self.asset_identifier def get_absolute_url(self): return reverse('portfolio:Asset_edit', kwargs={'pk': self.pk}) class Meta: verbose_name = "Asset" verbose_name_plural = "Assets"
64.744292
243
0.640313
ac65babe72679aa6912795fc10f5973f7204c013
3,208
py
Python
artifacts/infodynamics-dist-1.3/demos/python/example4TeContinuousDataKraskov.py
kamir/WikiExplorer.NG
7b56e3d1e638d760fe238dfd66d3775404335ff4
[ "Apache-2.0" ]
null
null
null
artifacts/infodynamics-dist-1.3/demos/python/example4TeContinuousDataKraskov.py
kamir/WikiExplorer.NG
7b56e3d1e638d760fe238dfd66d3775404335ff4
[ "Apache-2.0" ]
7
2020-06-30T23:18:30.000Z
2022-02-01T01:02:32.000Z
artifacts/infodynamics-dist-1.3/demos/python/example4TeContinuousDataKraskov.py
kamir/WikiExplorer.NG
7b56e3d1e638d760fe238dfd66d3775404335ff4
[ "Apache-2.0" ]
null
null
null
## ## Java Information Dynamics Toolkit (JIDT) ## Copyright (C) 2012, Joseph T. Lizier ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## # = Example 4 - Transfer entropy on continuous data using Kraskov estimators = # Simple transfer entropy (TE) calculation on continuous-valued data using the Kraskov-estimator TE calculator. from jpype import * import random import math # Change location of jar to match yours: jarLocation = "../../infodynamics.jar" # Start the JVM (add the "-Xmx" option with say 1024M if you get crashes due to not enough memory space) startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path=" + jarLocation) # Generate some random normalised data. numObservations = 1000 covariance=0.4 # Source array of random normals: sourceArray = [random.normalvariate(0,1) for r in range(numObservations)] # Destination array of random normals with partial correlation to previous value of sourceArray destArray = [0] + [sum(pair) for pair in zip([covariance*y for y in sourceArray[0:numObservations-1]], \ [(1-covariance)*y for y in [random.normalvariate(0,1) for r in range(numObservations-1)]] ) ] # Uncorrelated source array: sourceArray2 = [random.normalvariate(0,1) for r in range(numObservations)] # Create a TE calculator and run it: teCalcClass = JPackage("infodynamics.measures.continuous.kraskov").TransferEntropyCalculatorKraskov teCalc = teCalcClass() teCalc.setProperty("NORMALISE", "true") # Normalise the individual variables teCalc.initialise(1) # Use history length 1 (Schreiber k=1) teCalc.setProperty("k", "4") # Use Kraskov parameter K=4 for 4 nearest points # Perform calculation with correlated source: teCalc.setObservations(JArray(JDouble, 1)(sourceArray), JArray(JDouble, 1)(destArray)) result = teCalc.computeAverageLocalOfObservations() # Note that the calculation is a random variable (because the generated # data is a set of random variables) - the result will be of the order # of what we expect, but not exactly equal to it; in fact, there will # be a large variance around it. print("TE result %.4f nats; expected to be close to %.4f nats for these correlated Gaussians" % \ (result, math.log(1/(1-math.pow(covariance,2))))) # Perform calculation with uncorrelated source: teCalc.initialise() # Initialise leaving the parameters the same teCalc.setObservations(JArray(JDouble, 1)(sourceArray2), JArray(JDouble, 1)(destArray)) result2 = teCalc.computeAverageLocalOfObservations() print("TE result %.4f nats; expected to be close to 0 nats for these uncorrelated Gaussians" % result2)
50.125
138
0.747506
2919c4d6de8fe4758418f7a8055fbf264f667117
307
py
Python
take_snapshot.py
prarthaana123/Project102
58273208e98e7d15183ed6375ac6682bcaeeab94
[ "MIT" ]
null
null
null
take_snapshot.py
prarthaana123/Project102
58273208e98e7d15183ed6375ac6682bcaeeab94
[ "MIT" ]
null
null
null
take_snapshot.py
prarthaana123/Project102
58273208e98e7d15183ed6375ac6682bcaeeab94
[ "MIT" ]
null
null
null
def take_snapshot(): videoCaptureObject = cv2.VideoCapture(0) result = True while(result): ret,frame = videoCaptureObject.read() cv2.imwrite("NewPicture.jpg",frame) result = False videoCaptureObject.release() cv2.destroyAllWindows() take_snapshot()
23.615385
46
0.644951
fa5368b76900762937ce9e6c1a44d4035984c0ed
38,619
py
Python
spearmint/acquisition_functions/PPESMOC_gradients.py
EduardoGarrido90/spearmint_ppesmoc
4c4da9b3858e52c15698f1b401f4a4a5b02517fa
[ "RSA-MD" ]
6
2021-06-29T11:26:49.000Z
2022-01-20T18:12:47.000Z
build/lib.linux-x86_64-2.7/spearmint/acquisition_functions/PPESMOC_gradients.py
EduardoGarrido90/spearmint_ppesmoc
4c4da9b3858e52c15698f1b401f4a4a5b02517fa
[ "RSA-MD" ]
null
null
null
build/lib.linux-x86_64-2.7/spearmint/acquisition_functions/PPESMOC_gradients.py
EduardoGarrido90/spearmint_ppesmoc
4c4da9b3858e52c15698f1b401f4a4a5b02517fa
[ "RSA-MD" ]
3
2021-06-29T14:48:44.000Z
2022-03-28T15:20:04.000Z
from collections import defaultdict import autograd.numpy as np #import numpy as np import autograd.misc.flatten as flatten import autograd.scipy.stats as sps #import scipy.stats as sps from autograd.numpy.linalg import solve #from numpy.linalg import solve from scipy.spatial.distance import cdist import numpy.linalg as npla def my_log(x): # The computation of the gradient sometimes fails as a consequence of evaluating log(0.0) # Uncomment the code below if that is the case. #if np.any(x == 0.0): # import pdb; pdb.set_trace() return np.log(x + 1e-10) SQRT_5 = np.sqrt(5) def two_by_two_matrix_inverse(a, b, c, d): det = a * d - c * b a_new = 1.0 / det * d b_new = 1.0 / det * -b c_new = 1.0 / det * - c d_new = 1.0 / det * a return a_new, b_new, c_new, d_new def log_1_minus_exp_x(x): #if not isinstance(x, np.ndarray) or x.size==1: if x.shape == () or x.size==1: return log_1_minus_exp_x_scalar(x) assert np.all(x <= 0) case1 = x < my_log(1e-6) # -13.8 case2 = x > -1e-6 case3 = np.logical_and(x >= my_log(1e-6), x <= -1e-6) assert np.all(case1+case2+case3 == 1) #These three operations has to be done using two np.where. #Test this. """ result = np.zeros(x.shape) result[case1] = -np.exp(x[case1]) with np.errstate(divide='ignore'): # if x is exactly 0, give -inf without complaining result[case2] = np.log(-x[case2]) result[case3] = np.log(1.0-np.exp(x[case3])) return result """ return np.where(x < my_log(1e-6), -np.exp(x), np.where(x > -1e-6, my_log(-x), my_log(1.0-np.exp(x)))) def logcdf_robust(x): #if isinstance(x, np.ndarray): if x.shape != (): ret = sps.norm.logcdf(x) #ret[x > 5] = -sps.norm.sf(x[x > 5]) ret = np.where(x <= 5, ret, -sps.norm.sf(x)) elif x > 5: ret = -sps.norm.sf(x) else: ret = sps.norm.logcdf(x) return ret def two_by_two_symmetric_matrix_product_vector(a, b, c, v_a, v_b): return a * v_a + c * v_b, c * v_a + b * v_b def two_by_two_symmetric_matrix_inverse(a, b, c): det = a * b - c * c a_new = 1.0 / det * b b_new = 1.0 / det * a c_new = 1.0 / det * - c return a_new, b_new, c_new def build_unconditioned_predictive_distributions(all_tasks, all_constraints, X): mPred = dict() Vpred = dict() VpredInv = dict() mPred_cons = dict() Vpred_cons = dict() VpredInv_cons = dict() for t in all_tasks: mPred[t], Vpred[t] = predict(all_tasks[t], X) VpredInv[t] = np.linalg.inv(Vpred[t]) for t in all_constraints: mPred_cons[t], Vpred_cons[t] = predict(all_constraints[t], X) VpredInv_cons[t] = np.linalg.inv(Vpred_cons[t]) return mPred, Vpred, VpredInv, mPred_cons, Vpred_cons, VpredInv_cons def build_set_of_points_that_conditions_GPs(obj_models, con_models, pareto_set, Xtest): #We first include the observations. X = np.array([np.array([])]) for t in obj_models: Xtask = obj_models[ t ].observed_inputs X = np.array([Xtask[ 0, ]]) for i in range(1, Xtask.shape[ 0 ]): if np.min(cdist(Xtask[ i : (i + 1), : ], X)) > 1e-8: X = np.vstack((X, Xtask[ i, ])) for t in con_models: Xtask = con_models[ t ].observed_inputs for i in range(Xtask.shape[ 0 ]): if np.min(cdist(Xtask[ i : (i + 1), : ], X)) > 1e-8: X = np.vstack((X, Xtask[ i, ])) #Then, we include the Pareto Set points. for i in range(pareto_set.shape[ 0 ]): #if np.min(cdist(pareto_set[ i : (i + 1), : ], X)) > 1e-8: X = np.vstack((X, pareto_set[ i, ])) n_obs = X.shape[ 0 ] - pareto_set.shape[ 0 ] #Finally, we include the candidate points, without comparing with the previous points. n_test = Xtest.shape[ 0 ] for i in range(Xtest.shape[ 0 ]): X = np.vstack((X, Xtest[ i, ])) n_total = X.shape[ 0 ] n_pset = pareto_set.shape[ 0 ] return X, n_obs, n_pset, n_test, n_total def original_autograd_cdist(xx1, xx2): txx1 = np.tile(xx1, xx2.shape[0]).reshape((xx1.shape[0], xx2.shape[0], xx1.shape[1])) txx2 = np.tile(flatten(xx2)[0], xx1.shape[0]).reshape((xx1.shape[0], xx2.shape[0], xx1.shape[1])) return np.sum(np.power(txx1-txx2, 2), axis=2) def autograd_cdist(xx1, xx2): return np.outer(np.sum(xx1**2, axis=1), np.ones(xx2.shape[0])) - 2.0 * np.dot(xx1, xx2.T) + \ np.outer(np.ones(xx1.shape[0]), np.sum(xx2**2, axis=1)) def original_dist2(ls, x1, x2=None): if x2 is None: # Find distance with self for x1. # Rescale. xx1 = x1 / ls xx2 = xx1 else: # Rescale. xx1 = x1 / ls xx2 = x2 / ls return original_autograd_cdist(xx1, xx2) def dist2(ls, x1, x2=None): if x2 is None: # Find distance with self for x1. # Rescale. xx1 = x1 / ls xx2 = xx1 else: # Rescale. xx1 = x1 / ls xx2 = x2 / ls return autograd_cdist(xx1, xx2) def original_cov(ls_values, inputs): return original_cross_cov(ls_values, inputs, inputs) def cov(ls_values, inputs): return cross_cov(ls_values, inputs, inputs, squared=True) def original_cross_cov(ls_values, inputs_1, inputs_2): r2 = np.abs(original_dist2(ls_values, inputs_1, inputs_2)) r = np.sqrt(r2) cov = (1.0 + SQRT_5*r + (5.0/3.0)*r2) * np.exp(-SQRT_5*r) return cov def cross_cov(ls_values, inputs_1, inputs_2, squared=False): r2 = np.abs(dist2(ls_values, inputs_1, inputs_2)) r2 = np.where(r2==0.0, r2 + 1e-10, r2) r = np.sqrt(r2) cov = (1.0 + SQRT_5*r + (5.0/3.0)*r2) * np.exp(-SQRT_5*r) return cov def predict(gp, xstar): x = gp.inputs y = gp.values mean = gp.mean.value scale = gp.params['amp2'].value #Se le anaden los noise_scale y el jitter para emular a la suma del matern+scale_kernel+noise_kernel de Spearmint. cov_f_f = cov(gp.params['ls'].value, xstar) * scale + np.eye(len(xstar)) * gp.stability_noise_kernel.noise.value #cov_f_f_o = original_cov(gp.params['ls'].value, xstar) * scale + np.eye(len(xstar)) * gp.stability_noise_kernel.noise.value #print(np.abs(cov_f_f-cov_f_f_o)) #assert np.all(np.abs(cov_f_f-cov_f_f_o)) < 1e-10) #if np.any(np.abs(cov_f_f-cov_f_f_o) > 1e-10): #import pdb; pdb.set_trace(); cov_y_f = cross_cov(gp.params['ls'].value, x, xstar) * scale #cov_y_f_o = original_cross_cov(gp.params['ls'].value, x, xstar) * scale #print(np.abs(cov_y_f-cov_y_f_o)) #assert np.all(np.abs(cov_y_f-cov_y_f_o)) < 1e-10) #if np.any(np.abs(cov_y_f-cov_y_f_o) > 1e-10): #import pdb; pdb.set_trace(); cov_y_y = cov(gp.params['ls'].value, x) * scale + np.eye(len(y)) * gp.stability_noise_kernel.noise.value #cov_y_y_o = original_cov(gp.params['ls'].value, x) * scale + np.eye(len(y)) * gp.stability_noise_kernel.noise.value #print(np.abs(cov_y_y-cov_y_y_o)) #assert np.all(np.abs(cov_y_y-cov_y_y_o)) < 1e-10) #if np.any(np.abs(cov_y_y-cov_y_y_o) > 1e-10): #import pdb; pdb.set_trace(); InvMat = solve(cov_y_y, cov_y_f).T pred_mean = mean + np.dot(InvMat, y - mean) #pred_mean = mean + np.matmul(cov_y_f ,np.matmul(np.linalg.inv(cov_y_y), y - mean)) pred_cov = cov_f_f - np.dot(InvMat, cov_y_f) #pred_cov = cov_f_f - np.matmul(cov_y_f.T, np.matmul(np.linalg.inv(cov_y_y), cov_y_f.T)) return pred_mean, pred_cov def compute_unconstrained_variances_and_init_acq_fun(obj_models_dict, cand, con_models): #, log, fun_log): unconstrainedVariances = dict() constrainedVariances = dict() acq = dict() for obj in obj_models_dict: unconstrainedVariances[ obj ] = predict(obj_models_dict[ obj ], cand)[ 1 ] #fun_log('predict', log, {'obj_models_dict[ obj ]': obj_models_dict[ obj ], \ # 'cand' : cand, 'unconstrainedVariances[ obj ]': unconstrainedVariances[ obj ]}) unconstrainedVariances[ obj ] = unconstrainedVariances[ obj ] + np.eye(unconstrainedVariances[ obj ].shape[0]) * obj_models_dict[ obj ].noise_value() for cons in con_models: unconstrainedVariances[ cons ] = predict(con_models[ cons ], cand)[ 1 ] #fun_log('predict', log, {'con_models[ cons ]': con_models[ cons ], \ # 'cand' : cand, 'unconstrainedVariances[ cons ]': unconstrainedVariances[ cons ]}) unconstrainedVariances[ cons ] = unconstrainedVariances[ cons ] + np.eye(unconstrainedVariances[ cons ].shape[0]) * con_models[ cons ].noise_value() for t in unconstrainedVariances: acq[t] = 0 return acq, unconstrainedVariances, constrainedVariances def update_full_marginals(a): n_obs = a['n_obs'] n_total = a['n_total'] n_pset = a['n_pset'] n_test = a['n_test'] objectives = a['objs'] constraints = a['cons'] all_tasks = objectives all_constraints = constraints n_objs = len(all_tasks) n_cons = len(all_constraints) ntask = 0 # Updating constraint distribution marginals. #vTilde_back = defaultdict(lambda: np.zeros((n_total, n_total))) #vTilde_cons_back = defaultdict(lambda: np.zeros((n_total, n_total))) for cons in all_constraints: # Summing all the factors into the diagonal. Reescribir. vTilde_cons = np.diag(np.append(np.append(np.sum(a['a_c_hfhat'][ :, : , ntask ], axis = 1), \ np.sum(a['c_c_hfhat'][ :, : , ntask ], axis = 1) + a['ehfhat'][ :, ntask ]), \ np.sum(a['g_c_hfhat'][ :, : , ntask ], axis = 1))) mTilde_cons = np.append(np.append(np.sum(a['b_c_hfhat'][ :, : , ntask ], axis = 1), \ np.sum(a['d_c_hfhat'][ :, : , ntask ], axis = 1) + a['fhfhat'][ :, ntask ]), \ np.sum(a['h_c_hfhat'][ :, : , ntask ], axis = 1)) # Natural parameter conversion and update of the marginal variance matrices. a['Vinv_cons'][cons] = a['VpredInv_cons'][cons] + vTilde_cons a['V_cons'][cons] = np.linalg.inv(a['VpredInv_cons'][cons] + vTilde_cons) # Natural parameter conversion and update of the marginal mean vector. a['m_nat_cons'][cons] = np.dot(a['VpredInv_cons'][cons], a['mPred_cons'][cons]) + mTilde_cons a['m_cons'][cons] = np.dot(a['V_cons'][cons], a['m_nat_cons'][ cons ]) ntask = ntask + 1 ntask = 0 for obj in all_tasks: vTilde = np.zeros((n_total,n_total)) vTilde = np.zeros((n_total,n_total)) diagVtilde = np.identity(n_total) * np.append(np.append(np.sum(a['ahfhat'][ :, : , ntask, 0, 0 ], axis = 1), \ np.sum(a['ahfhat'][ :, : , ntask, 1, 1 ], axis = 0) + \ np.sum(a['chfhat'][ :, : , ntask, 0, 0 ], axis = 1) + \ np.sum(a['chfhat'][ :, : , ntask, 1, 1 ], axis = 0) + \ np.sum(a['ghfhat'][ :, : , ntask, 1, 1 ], axis = 0)), \ np.sum(a['ghfhat'][ :, : , ntask, 0, 0 ], axis = 1)) #Building full matrices from blocks. block_2 = a['chfhat'][ :, : , ntask, 0, 1 ] + a['chfhat'][ :, : , ntask, 1, 0 ].T block_2 = np.hstack([np.zeros((n_pset, n_obs)), block_2]) block_2 = np.hstack([block_2, np.zeros((n_pset, n_test))]) block_2 = np.vstack([np.zeros((n_obs, n_total)), block_2]) block_2 = np.vstack([block_2, np.zeros((n_test, n_total))]) block_3 = a['ahfhat'][ :, :, ntask, 0, 1] block_3 = np.hstack([np.zeros((n_obs, n_obs)), block_3]) block_3 = np.hstack([block_3, np.zeros((n_obs, n_test))]) block_3 = np.vstack([block_3, np.zeros((n_pset + n_test, n_total))]) block_4 = a['ahfhat'][ :, :, ntask, 0, 1].transpose() block_4 = np.hstack([block_4, np.zeros((n_pset, n_pset+n_test))]) block_4 = np.vstack([np.zeros((n_obs, n_total)), block_4]) block_4 = np.vstack([block_4, np.zeros((n_test, n_total))]) block_5 = a['ghfhat'][ :, :, ntask, 0, 1] block_5 = np.hstack([np.zeros((n_test, n_obs)), block_5]) block_5 = np.hstack([block_5, np.zeros((n_test, n_test))]) block_5 = np.vstack([np.zeros((n_obs+n_pset, n_total)), block_5]) block_6 = a['ghfhat'][ :, :, ntask, 0, 1].transpose() block_6 = np.hstack([np.zeros((n_pset, n_obs + n_pset)), block_6]) block_6 = np.vstack([np.zeros((n_obs, n_total)), block_6]) block_6 = np.vstack([block_6, np.zeros((n_test, n_total))]) #Adding to final matrix all the blocks. vTilde += diagVtilde vTilde += block_2 vTilde += block_3 vTilde += block_4 vTilde += block_5 vTilde += block_6 a['Vinv'][obj] = a['VpredInv'][obj] + vTilde a['V'][obj] = np.linalg.inv(a['VpredInv'][obj] + vTilde) mTilde = np.append(np.append(np.sum(a['bhfhat'][ :, : , ntask, 0 ], axis = 1), np.sum(a['bhfhat'][ :, : , ntask, 1 ], axis = 0) + np.sum(a['hhfhat'][ :, : , ntask, 1 ], axis = 0) +\ np.sum(a['dhfhat'][ :, : , ntask, 0 ], axis = 1) + np.sum(a['dhfhat'][ :, : , ntask, 1 ], axis = 0)), \ np.sum(a['hhfhat'][ :, : , ntask, 0 ], axis = 1)) a['m_nat'][obj] = np.dot(a['VpredInv'][obj], a['mPred'][obj]) + mTilde a['m'][obj] = np.dot(a['V'][obj], a['m_nat'][ obj ]) ntask = ntask + 1 return a def get_test_predictive_distributions(a): n_obs = a['n_obs'] n_pset = a['n_pset'] n_test = a['n_test'] n_total = a['n_total'] q = len(a['objs']) c = len(a['cons']) predictive_distributions = { 'mf' : defaultdict(lambda: np.zeros(n_test)), 'vf' : defaultdict(lambda: np.zeros((n_test, n_test))), 'mc' : defaultdict(lambda: np.zeros(n_test)), 'vc' : defaultdict(lambda: np.zeros((n_test, n_test))), } for obj in a['objs'].keys(): predictive_distributions['mf'][ obj ] = a['m'][ obj ][ n_obs + n_pset : n_total ] predictive_distributions['vf'][ obj ] = a['V'][ obj ][ n_obs + n_pset : n_total , n_obs + n_pset : n_total ] for cons in a['cons'].keys(): predictive_distributions['mc'][ cons ] = a['m_cons'][ cons ][ n_obs + n_pset : n_total ] predictive_distributions['vc'][ cons ] = a['V_cons'][ cons ][ n_obs + n_pset : n_total , n_obs + n_pset : n_total ] return predictive_distributions, a def compute_PPESMOC_approximation(predictionEP, obj_models_dict, con_models, unconstrainedVariances, constrainedVariances, acq): predictionEP_obj = predictionEP[ 'vf' ] predictionEP_cons = predictionEP[ 'vc' ] # DHL changed fill_diag, because that was updating the a structure and screwing things up later on for obj in obj_models_dict: predictionEP_obj[ obj ] = predictionEP_obj[ obj ] + np.eye(predictionEP_obj[ obj ].shape[ 0 ]) * obj_models_dict[ obj ].noise_value() constrainedVariances[ obj ] = predictionEP_obj[ obj ] for cons in con_models: predictionEP_cons[ cons ] = predictionEP_cons[ cons ] + np.eye(predictionEP_cons[ obj ].shape[ 0 ]) * con_models[ cons ].noise_value() constrainedVariances[ cons ] = predictionEP_cons[ cons ] # We only care about the variances because the means do not affect the entropy # The summation of the acq of the tasks (t) is done in a higher method. Do no do it here. for t in unconstrainedVariances: # DHL replaced np.log(np.linalg.det()) to avoid precision errors value = 0.5 * np.linalg.slogdet(unconstrainedVariances[t])[ 1 ] - 0.5 * np.linalg.slogdet(constrainedVariances[t])[ 1 ] # We set negative values of the acquisition function to zero because the # entropy cannot be increased when conditioning value = np.max(value, 0) acq[t] += value return acq def update_full_Factors_only_test_factors(a, damping, minimize=True, no_negative_variances_nor_nands = False, no_negatives = True): # used to switch between minimizing and maximizing sgn = -1.0 if minimize else 1.0 # We update the h factors all_tasks = a['objs'] all_constraints = a['cons'] n_obs = a['n_obs'] n_pset = a['n_pset'] n_test = a['n_test'] n_total = a['n_total'] q = a['q'] c = a['c'] alpha = np.zeros(a['q']) s = np.zeros(a['q']) ratio_cons = np.zeros(c) # First we update the factors corresponding to the observed data # We compute an "old" distribution # Data structures for objective npset ntest cavities (a, b). m_pset = np.array([]) #m_pset = np.zeros((q, n_pset, n_test)) m_test = np.array([]) #m_test = np.zeros((q, n_pset, n_test)) v_pset = np.array([]) #v_pset = np.zeros((q, n_pset, n_test)) v_test = np.array([]) #v_test = np.zeros((q, n_pset, n_test)) v_cov = np.array([]) #v_cov = np.zeros((q, n_pset, n_test)) # Data structures for constraint npset nobs cavities (c_a, c_b). c_m = np.array([]) #c_m = np.zeros((c, n_pset, n_test)) c_v = np.array([]) #c_v = np.zeros((c, n_pset, n_test)) # Update marginals: a['m'] , a['V'] #n_task = 0 for obj in all_tasks: #OK m_test = np.append(m_test, np.tile(a['m'][ obj ][ n_obs + n_pset : n_total ], n_pset).reshape((n_pset, n_test))) #OK #m_test[ n_task, :, : ] = np.tile(a['m'][ obj ][ n_obs + n_pset : n_total ], n_pset).reshape((n_pset, n_test)) m_pset = np.append(m_pset, np.tile(a['m'][ obj ][ n_obs : n_obs + n_pset ], n_test).reshape((n_test, n_pset)).T) #OK #m_pset[ n_task, :, : ] = np.tile(a['m'][ obj ][ n_obs : n_obs + n_pset ], n_test).reshape((n_test, n_pset)).T v_cov = np.append(v_cov, a['V'][ obj ][ n_obs : n_obs + n_pset, n_obs + n_pset : n_total ]) #v_cov[ n_task, :, : ] = a['V'][ obj ][ n_obs : n_obs + n_pset, n_obs + n_pset : n_total ] v_test = np.append(v_test, np.tile(np.diag(a['V'][ obj ])[ n_obs + n_pset : n_total ], n_pset).reshape((n_pset, n_test))) #CASO 1: OK. #v_test[ n_task, :, : ] = np.tile(np.diag(a['V'][ obj ])[ n_obs + n_pset : n_total ], n_pset).reshape((n_pset, n_test)) v_pset = np.append(v_pset, np.tile(np.diag(a['V'][ obj ])[ n_obs : n_obs + n_pset ], n_test).reshape((n_test, n_pset)).T) #CASO 2: OK. #v_pset[ n_task, :, : ] = np.tile(np.diag(a['V'][ obj ])[ n_obs : n_obs + n_pset ], n_test).reshape((n_test, n_pset)).T #n_task += 1 m_test = m_test.reshape((q, n_pset, n_test)) m_pset = m_pset.reshape((q, n_pset, n_test)) v_cov = v_cov.reshape((q, n_pset, n_test)) v_test = v_test.reshape((q, n_pset, n_test)) v_pset = v_pset.reshape((q, n_pset, n_test)) #n_task = 0 for cons in all_constraints: #OK c_m = np.append(c_m, np.tile(a['m_cons'][ cons ][ n_obs + n_pset : n_total ], n_pset)) #c_m[ n_task, :, : ] = a['m_cons'][ cons ][ n_obs + n_pset : n_total ] c_v = np.append(c_v, np.tile(np.diag(a['V_cons'][ cons ])[ n_obs + n_pset : n_total ], n_pset)) #c_v[ n_task, :, : ] = np.diag(a['V_cons'][ cons ])[ n_obs + n_pset : n_total ] #n_task += 1 c_m = c_m.reshape((c, n_pset, n_test)) #OK c_v = c_v.reshape((c, n_pset, n_test)) #OK vTilde_test = a['ghfhat'][ :, :, :, 0, 0 ].T #OK vTilde_pset = a['ghfhat'][ :, :, :, 1, 1 ].T #OK vTilde_cov = a['ghfhat'][ :, :, :, 0, 1 ].T #OK mTilde_test = a['hhfhat'][ :, :, :, 0 ].T #OK mTilde_pset = a['hhfhat'][ :, :, :, 1 ].T #OK vTilde_test_cons = a['g_c_hfhat'][:, :, :].T #OK mTilde_test_cons = a['h_c_hfhat'][:, :, :].T #OK # Obtaining cavities. inv_v_test, inv_v_pset, inv_v_cov = two_by_two_symmetric_matrix_inverse(v_test, v_pset, v_cov) #OK inv_c_v = 1.0 / c_v #OK inv_vOld_test = inv_v_test - vTilde_test #OK inv_vOld_pset = inv_v_pset - vTilde_pset #OK inv_vOld_cov = inv_v_cov - vTilde_cov #OK inv_c_vOld = inv_c_v - vTilde_test_cons #OK vOld_test, vOld_pset, vOld_cov = two_by_two_symmetric_matrix_inverse(inv_vOld_test, inv_vOld_pset, inv_vOld_cov) #OK c_vOld = 1.0 / inv_c_vOld #OK mOld_test, mOld_pset = two_by_two_symmetric_matrix_product_vector(inv_v_test, inv_v_pset, inv_v_cov, m_test, m_pset) #OK mOld_test = mOld_test - mTilde_test #OK mOld_pset = mOld_pset - mTilde_pset #OK mOld_test, mOld_pset = two_by_two_symmetric_matrix_product_vector(vOld_test, vOld_pset, vOld_cov, mOld_test, mOld_pset) #OK c_mOld = c_vOld * (c_m / c_v - mTilde_test_cons) # Computing factors. s = vOld_pset + vOld_test - 2 * vOld_cov s_cons = c_vOld if np.any(vOld_pset < 0): #raise npla.linalg.LinAlgError("Negative variance in the sqrt!") vOld_pset = np.where(vOld_pset < 0, -vOld_pset, vOld_pset) print('Careful!!! Negative variances have appear before sqrt!') if np.any(vOld_test < 0): vOld_test = np.where(vOld_test < 0, -vOld_test, vOld_test) #raise npla.linalg.LinAlgError("Negative variance in the sqrt!") print('Careful!!! Negative variances have appear before sqrt!') if np.any(c_vOld < 0): c_vOld = np.where(c_vOld < 0, -c_vOld, c_vOld) #raise npla.linalg.LinAlgError("Negative value in the sqrt!") print('Careful!!! Negative variances have appear before sqrt!') alpha_cons = c_mOld / np.sqrt(c_vOld) #OK scale = 1.0 - 1e-4 while np.any(s / (vOld_pset + vOld_test) < 1e-6): #OK scale = scale**2 s = vOld_pset + vOld_test - 2 * vOld_cov * scale s = np.where(s==0.0, 1.0, s) ss = np.sqrt(s) ss = np.where(ss==1.0, 1e-15, ss) alpha = (mOld_test - mOld_pset) / ss * sgn #OK log_phi = logcdf_robust(alpha) log_phi_cons = logcdf_robust(alpha_cons) #OK logZ_orig = log_1_minus_exp_x(np.sum(log_phi, axis = 0)) #OK #Hay que sustituir este bloque de codigo por un np.where. logZ_orig = np.where(logZ_orig == -np.inf, logcdf_robust(-np.min(alpha, axis = 0)), logZ_orig) #OK logZ_term1 = np.sum(log_phi_cons, axis = 0) + logZ_orig #OK logZ_term2 = log_1_minus_exp_x(np.sum(log_phi_cons, axis = 0)) #OK logZ_term2 = np.where(logZ_term2 == -np.inf, logcdf_robust(-np.min(alpha_cons, axis = 0)), logZ_term2) #OK max_value = np.maximum(logZ_term1, logZ_term2) #OK logZ = my_log(np.exp(logZ_term1 - max_value) + np.exp(logZ_term2 - max_value)) + max_value for i in range(q-1): logZ = np.hstack((logZ, my_log(np.exp(logZ_term1 - max_value) + np.exp(logZ_term2 - max_value)) + max_value)) logZ = logZ.reshape((n_pset, q, n_test)).swapaxes(0, 1) #logZ = np.tile(np.log(np.exp(logZ_term1 - max_value) + np.exp(logZ_term2 - max_value)) + \ #max_value, q).reshape((n_pset, q, n_test)).swapaxes(0, 1) #SOSPECHOSO, SE PUEDE SIMULAR. logZ_cons = my_log(np.exp(logZ_term1 - max_value) + np.exp(logZ_term2 - max_value)) + max_value for i in range(c-1): logZ_cons = np.hstack((logZ_cons, my_log(np.exp(logZ_term1 - max_value) + np.exp(logZ_term2 - max_value)) + max_value)) logZ_cons = logZ_cons.reshape((n_pset, c, n_test)).swapaxes(0, 1) #logZ_cons = np.tile(np.log(np.exp(logZ_term1 - max_value) + np.exp(logZ_term2 - max_value)) + \ #max_value, c).reshape((n_pset, c, n_test)).swapaxes(0, 1) #OK log_phi_sum = np.sum(log_phi, axis = 0) for i in range(q-1): log_phi_sum = np.hstack((log_phi_sum, np.sum(log_phi, axis = 0))) log_phi_sum = log_phi_sum.reshape((n_pset, q, n_test)).swapaxes(0, 1) #log_phi_sum = np.tile(np.sum(log_phi, axis = 0), q).reshape((n_pset, q, n_test)).swapaxes(0, 1) #SOSPECHOSO, SE PUEDE SIMULAR. log_phi_sum_cons = np.sum(log_phi_cons, axis = 0) for i in range(q-1): log_phi_sum_cons = np.hstack((log_phi_sum_cons, np.sum(log_phi_cons, axis = 0))) log_phi_sum_cons = log_phi_sum_cons.reshape((n_pset, q, n_test)).swapaxes(0, 1) #log_phi_sum_cons = np.tile(np.sum(log_phi_cons, axis = 0), q).reshape((n_pset, q, n_test)).swapaxes(0, 1) #OK ratio = - np.exp(sps.norm.logpdf(alpha) - logZ + log_phi_sum - logcdf_robust(alpha) + log_phi_sum_cons) logZ_orig_cons = logZ_orig for i in range(c-1): logZ_orig_cons = np.hstack((logZ_orig_cons, logZ_orig)) logZ_orig_cons = logZ_orig_cons.reshape((n_pset, c, n_test)).swapaxes(0, 1) #logZ_orig_cons = np.tile(logZ_orig, c).reshape((n_pset, c, n_test)).swapaxes(0, 1) #OK? log_phi_sum_cons = np.sum(log_phi_cons, axis = 0) for i in range(c-1): log_phi_sum_cons = np.hstack((log_phi_sum_cons, np.sum(log_phi_cons, axis = 0))) log_phi_sum_cons = log_phi_sum_cons.reshape((n_pset, c, n_test)).swapaxes(0, 1) #log_phi_sum_cons = np.tile(np.sum(log_phi_cons, axis = 0), c).reshape((n_pset, c, n_test)).swapaxes(0, 1) #OK ratio_cons = np.exp(sps.norm.logpdf(alpha_cons) - logZ_cons + logZ_orig_cons + log_phi_sum_cons - logcdf_robust(alpha_cons)) - \ np.exp(sps.norm.logpdf(alpha_cons) - logZ_cons + log_phi_sum_cons - logcdf_robust(alpha_cons)) #OK s = np.where(s==0.0, 1.0, s) ss = np.sqrt(s) ss = np.where(ss==1.0, 1e-15, ss) dlogZdmfOld_test = ratio / ss * sgn dlogZdmfOld_pset = ratio / ss * -1.0 * sgn dlogZdmfOld_test2 = - ratio / s * (alpha + ratio) dlogZdmfOld_pset2 = - ratio / s * (alpha + ratio) dlogZdmfOld_cov2 = - ratio / s * (alpha + ratio) * -1.0 s_cons = np.where(s_cons==0.0, 1.0, s_cons) sc = np.sqrt(s_cons) sc = np.where(sc==1.0, 1e-15, sc) dlogZdmcOld = ratio_cons / sc #OK dlogZdmcOld2 = - ratio_cons / s_cons * (alpha_cons + ratio_cons) #OK a_VfOld_times_dlogZdmfOld2 = vOld_test * dlogZdmfOld_test2 + vOld_cov * dlogZdmfOld_cov2 + 1.0 b_VfOld_times_dlogZdmfOld2 = vOld_test * dlogZdmfOld_cov2 + vOld_cov * dlogZdmfOld_pset2 c_VfOld_times_dlogZdmfOld2 = vOld_cov * dlogZdmfOld_test2 + vOld_pset * dlogZdmfOld_cov2 d_VfOld_times_dlogZdmfOld2 = vOld_cov * dlogZdmfOld_cov2 + vOld_pset * dlogZdmfOld_pset2 + 1.0 a_inv, b_inv, c_inv, d_inv = two_by_two_matrix_inverse(a_VfOld_times_dlogZdmfOld2, b_VfOld_times_dlogZdmfOld2, \ c_VfOld_times_dlogZdmfOld2, d_VfOld_times_dlogZdmfOld2) vTilde_test_new = - (dlogZdmfOld_test2 * a_inv + dlogZdmfOld_cov2 * c_inv) vTilde_pset_new = - (dlogZdmfOld_cov2 * b_inv + dlogZdmfOld_pset2 * d_inv) vTilde_cov_new = - (dlogZdmfOld_test2 * b_inv + dlogZdmfOld_cov2 * d_inv) v_1, v_2 = two_by_two_symmetric_matrix_product_vector(dlogZdmfOld_test2, \ dlogZdmfOld_pset2, dlogZdmfOld_cov2, mOld_test, mOld_pset) #OK v_1 = dlogZdmfOld_test - v_1 #OK v_2 = dlogZdmfOld_pset - v_2 #OK mTilde_test_new = v_1 * a_inv + v_2 * c_inv #OK mTilde_pset_new = v_1 * b_inv + v_2 * d_inv #OK vTilde_cons = - dlogZdmcOld2 / (1.0 + dlogZdmcOld2 * c_vOld) #OK mTilde_cons = (dlogZdmcOld - c_mOld * dlogZdmcOld2) / (1.0 + dlogZdmcOld2 * c_vOld) #OK if no_negative_variances_nor_nands == True: #OK full. #finite = np.logical_and(np.logical_and(np.logical_and(np.logical_and(np.isfinite(vTilde_test_new), np.isfinite(vTilde_pset_new)), \ #np.isfinite(vTilde_cov_new)), np.isfinite(mTilde_test_new)), np.isfinite(mTilde_pset_new)) #c_finite = np.logical_and(np.isfinite(vTilde_cons), np.isfinite(mTilde_cons)) #neg1 = np.where(np.logical_or(np.logical_not(finite), vTilde_test_new < 0)) #neg2 = np.where(np.logical_or(np.logical_not(finite), vTilde_pset_new < 0)) #c_neg = np.where(np.logical_or(np.logical_not(c_finite), vTilde_cons < 0)) o_cond = np.logical_or(vTilde_test_new < 0, vTilde_pset_new < 0, \ np.logical_not(np.logical_and(np.logical_and(np.logical_and(np.logical_and( \ np.isfinite(vTilde_test_new), np.isfinite(vTilde_pset_new)), np.isfinite(vTilde_cov_new)), \ np.isfinite(mTilde_test_new)), np.isfinite(mTilde_pset_new)))) c_cond = np.logical_or(np.logical_not(np.logical_and(np.isfinite(vTilde_cons), np.isfinite(mTilde_cons))), vTilde_cons < 0) vTilde_test_new = np.where(o_cond, 0.0, vTilde_test_new) vTilde_pset_new = np.where(o_cond, 0.0, vTilde_pset_new) vTilde_cov_new = np.where(o_cond, 0.0, vTilde_cov_new) mTilde_test_new = np.where(o_cond, 0.0, mTilde_test_new) mTilde_pset_new = np.where(o_cond, 0.0, mTilde_pset_new) vTilde_cons = np.where(c_cond, 0.0, vTilde_cons) mTilde_cons = np.where(c_cond, 0.0, mTilde_cons) #vTilde_test_new[ neg1 ] = 0.0 #vTilde_test_new[ neg2 ] = 0.0 #vTilde_pset_new[ neg1 ] = 0.0 #vTilde_pset_new[ neg2 ] = 0.0 #vTilde_cov_new[ neg1 ] = 0.0 #vTilde_cov_new[ neg2 ] = 0.0 #mTilde_test_new[ neg1 ] = 0.0 #mTilde_test_new[ neg2 ] = 0.0 #mTilde_pset_new[ neg1 ] = 0.0 #mTilde_pset_new[ neg2 ] = 0.0 #vTilde_cons[ c_neg ] = 0.0 #mTilde_cons[ c_neg ] = 0.0 # We do the actual update g_c_hfHatNew = vTilde_cons #OK h_c_hfHatNew = mTilde_cons #OK ghfhat = np.array([]) ghfhata = np.array([]) hhfhat = np.array([]) g00 = vTilde_test_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 0, 0 ] g01 = vTilde_cov_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 0, 1 ] g10 = vTilde_cov_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 1, 0 ] g11 = vTilde_pset_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 1, 1 ] h0 = mTilde_test_new.T * damping + (1 - damping) * a['hhfhat'][ :, :, :, 0 ] #OK h1 = mTilde_pset_new.T * damping + (1 - damping) * a['hhfhat'][ :, :, :, 1 ] #OK #for tp in range(n_test): # for pp in range(n_pset): # for qp in range(q): # #ES UN TILE! Segun la traza de error de autograd parece que un TILE la esta liando seriamente, y esta relacionado con ghfhat. # ghfhat = np.append(ghfhat, g00[tp, pp, qp]) # ghfhat = np.append(ghfhat, g01[tp, pp, qp]) # ghfhat = np.append(ghfhat, g10[tp, pp, qp]) # ghfhat = np.append(ghfhat, g11[tp, pp, qp]) # hhfhat = np.append(hhfhat, np.array([h0[tp, pp, qp], h1[tp, pp, qp]])) #OK ghfhat_new = np.stack((np.stack((g00, g01), axis = 3), np.stack((g01, g11), axis = 3)), axis = 3) hhfhat_new = np.stack((h0, h1), axis = 3) #ghfhat = ghfhat.reshape((n_test, n_pset, q, 2, 2)) #ghfhat = ghfhat.reshape((n_test, n_pset, q, 2, 2)) #hhfhat = hhfhat.reshape((n_test, n_pset, q, 2)) #OK #a['ghfhat'] = ghfhat #a['hhfhat'] = hhfhat a['ghfhat'] = ghfhat_new a['hhfhat'] = hhfhat_new #a['ghfhat'][ :, :, :, 0, 0 ] = vTilde_test_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 0, 0 ] #a['ghfhat'][ :, :, :, 1, 1 ] = vTilde_pset_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 1, 1 ] #a['ghfhat'][ :, :, :, 0, 1 ] = vTilde_cov_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 0, 1 ] #a['ghfhat'][ :, :, :, 1, 0 ] = vTilde_cov_new.T * damping + (1 - damping) * a['ghfhat'][ :, :, :, 1, 0 ] #a['hhfhat'][ :, :, :, 0 ] = mTilde_test_new.T * damping + (1 - damping) * a['hhfhat'][ :, :, :, 0 ] #a['hhfhat'][ :, :, :, 1 ] = mTilde_pset_new.T * damping + (1 - damping) * a['hhfhat'][ :, :, :, 1 ] a['g_c_hfhat'] = g_c_hfHatNew.T * damping + (1 - damping) * a['g_c_hfhat'][ :, :, : ] #a['g_c_hfhat'][ :, :, : ] = g_c_hfHatNew.T * damping + (1 - damping) * a['g_c_hfhat'][ :, :, : ] a['h_c_hfhat'] = h_c_hfHatNew.T * damping + (1 - damping) * a['h_c_hfhat'][ :, :, : ] #a['h_c_hfhat'][ :, :, : ] = h_c_hfHatNew.T * damping + (1 - damping) * a['h_c_hfhat'][ :, :, : ] return a def compute_acq_fun_wrt_test_points(X_test, obj_model_dict, con_models_dict, pareto_set, info_gps, tasks):#, log, fun_log): #Execute necessary functionality for the test factors update and the recomputation of the marginals and PPESMOC. acq, unconstrainedVariances, constrainedVariances = compute_unconstrained_variances_and_init_acq_fun \ (obj_model_dict, X_test, con_models_dict)#, log, fun_log) #Pareto set samples loop. acqs = {} for ps in pareto_set.keys(): pareto_set_sample = pareto_set[ps] info_gps_ps = info_gps[ps] #Verificar que los factores con los que empezamos son los que termina la ejecucion normal. X, n_obs, n_pset, n_test, n_total = build_set_of_points_that_conditions_GPs(obj_model_dict, con_models_dict, \ pareto_set_sample, X_test) mPred, Vpred, VpredInv, mPred_cons, Vpred_cons, VpredInv_cons = \ build_unconditioned_predictive_distributions(obj_model_dict, con_models_dict, X) #Modify information of a according to previous computations. q = len(obj_model_dict) c = len(con_models_dict) info_gps_ps['ghfhat'] = np.zeros((n_test, n_pset, q, 2, 2)) info_gps_ps['hhfhat'] = np.zeros((n_test, n_pset, q, 2)) info_gps_ps['g_c_hfhat'] = np.zeros((n_test, n_pset, c)) info_gps_ps['h_c_hfhat'] = np.zeros((n_test, n_pset, c)) info_gps_ps['m'] = defaultdict(lambda: np.zeros(n_total)) info_gps_ps['m_nat'] = defaultdict(lambda: np.zeros(n_total)) info_gps_ps['V'] = defaultdict(lambda: np.zeros((n_total, n_total))) info_gps_ps['Vinv'] = defaultdict(lambda: np.zeros((n_total, n_total))) info_gps_ps['m_cons'] = defaultdict(lambda: np.zeros(n_total)) info_gps_ps['m_nat_cons'] = defaultdict(lambda: np.zeros(n_total)) info_gps_ps['V_cons'] = defaultdict(lambda: np.zeros((n_total, n_total))) info_gps_ps['Vinv_cons'] = defaultdict(lambda: np.zeros((n_total, n_total))) info_gps_ps['n_obs'] = n_obs info_gps_ps['n_pset'] = n_pset info_gps_ps['n_test'] = n_test info_gps_ps['n_total'] = n_total info_gps_ps['mPred'] = mPred info_gps_ps['VPred'] = Vpred info_gps_ps['VpredInv'] = VpredInv info_gps_ps['mPred_cons'] = mPred_cons info_gps_ps['Vpred_cons'] = Vpred_cons info_gps_ps['VpredInv_cons'] = VpredInv_cons info_gps_ps['X'] = X #Creo que hay que cambiar mas cosas en infogps, quiza como los factores de test? Pero no estoy seguro. #Por precaucion, dejar asi. #Execute EP modification of the test factors and the PPESMOC approximation. #First we have to do an EP update marginals. info_gps_ps = update_full_marginals(info_gps_ps) info_gps_ps = update_full_Factors_only_test_factors(info_gps_ps, 0.1, \ minimize = True, no_negative_variances_nor_nands = True) info_gps_ps = update_full_marginals(info_gps_ps) predictionEP = get_test_predictive_distributions(info_gps_ps)[0] #Hay que dar la suma de las adquisiciones tambien. acqs[ps] = compute_PPESMOC_approximation(predictionEP, obj_model_dict, con_models_dict, \ unconstrainedVariances, constrainedVariances, acq) #Sumar las adquisiciones de los puntos de pareto y dividirlas entre el numero de puntos de pareto. final_acqs_dict = dict.fromkeys(acqs[acqs.keys()[0]].keys()) num_samples = len(acqs) for ps_sample in acqs: ps_acq = acqs[ps_sample] for bb_acq in ps_acq: if final_acqs_dict[bb_acq] is None: final_acqs_dict[bb_acq] = ps_acq[bb_acq] else: final_acqs_dict[bb_acq] += ps_acq[bb_acq] final_acqs_dict.update((x, y / num_samples) for x, y in final_acqs_dict.items()) #fun_log('BB acqs Autograd', log, {'acq' : final_acqs_dict}) total_acq = 0.0 for task in tasks: total_acq += final_acqs_dict[ task ] #Sumar las adquisiciones de cada BB. #fun_log('total_acq Autograd', log, {'acq' : total_acq}) return total_acq
48.334168
165
0.575106
1f585fd19eccfea1eda7844562b17214f2448a0d
366
py
Python
setup.py
dbogdanov/beets-mpdadd
c6ca520714b0decffb66471188cfe260c89f4cd2
[ "MIT" ]
6
2015-04-02T01:46:24.000Z
2021-10-11T08:23:56.000Z
setup.py
dbogdanov/beets-mpdadd
c6ca520714b0decffb66471188cfe260c89f4cd2
[ "MIT" ]
null
null
null
setup.py
dbogdanov/beets-mpdadd
c6ca520714b0decffb66471188cfe260c89f4cd2
[ "MIT" ]
1
2021-10-09T02:07:23.000Z
2021-10-09T02:07:23.000Z
from setuptools import setup setup( name='beets-mpdadd', version='0.2', description='beets plugin that adds query results to the current MPD playlist', author='Daniel Greve', author_email='danielgreve@users.noreply.github.com', license='MIT', platforms='ALL', packages=['beetsplug'], install_requires=['beets', 'python-mpd2'], )
26.142857
83
0.68306
2827f813979752e4d8bf70c94402c779eabb7757
3,198
py
Python
jobs/models.py
MahmoudSafan/job-seeker
00c0fbbfd05c4ef7f78da87c254fedb51f018cb9
[ "MIT" ]
1
2021-05-22T09:07:44.000Z
2021-05-22T09:07:44.000Z
jobs/models.py
MahmoudSafan/job-seeker
00c0fbbfd05c4ef7f78da87c254fedb51f018cb9
[ "MIT" ]
null
null
null
jobs/models.py
MahmoudSafan/job-seeker
00c0fbbfd05c4ef7f78da87c254fedb51f018cb9
[ "MIT" ]
null
null
null
from django.db import models from django.utils.text import slugify # Create your models here. jobType = ( ("Architecture and Engineering Occupations","Architecture and Engineering Occupations"), ("Arts, Design, Entertainment, Sports, and Media Occupations","Arts, Design, Entertainment, Sports, and Media Occupations"), ("Building and Grounds Cleaning and Maintenance Occupations","Building and Grounds Cleaning and Maintenance Occupations"), ("Business and Financial Operations Occupations","Business and Financial Operations Occupations"), ("Community and Social Services Occupations","Community and Social Services Occupations"), ("Computer and Mathematical Occupations","Computer and Mathematical Occupations"), ("Construction and Extraction Occupations","Construction and Extraction Occupations"), ("Education, Training, and Library Occupations","Education, Training, and Library Occupations"), ("Farming, Fishing, and Forestry Occupations","Farming, Fishing, and Forestry Occupations"), ("Food Preparation and Serving Related Occupations","Food Preparation and Serving Related Occupations"), ("Healthcare Practitioners and Technical Occupations","Healthcare Practitioners and Technical Occupations"), ("Healthcare Support Occupations","Healthcare Support Occupations"), ("Installation, Maintenance, and Repair Occupations","Installation, Maintenance, and Repair Occupations"), ("Legal Occupations","Legal Occupations"), ("Life, Physical, and Social Science Occupations","Life, Physical, and Social Science Occupations"), ("Management Occupations","Management Occupations") ) time =( ("part-time","part-time"), ("full-time","full-time") ) def image_upload(instance,fileName): # image upload customize imageName, extention = fileName.split(".") return "jobImages/%s.%s"%(instance.id,extention) class job(models.Model): id = models.AutoField(primary_key= True,serialize=True) title = models.CharField(max_length= 50 ,null= False) gender = models.CharField(max_length=50, null = False) job_type = models.CharField(max_length = 200,choices=jobType,default="Other") description = models.TextField(max_length= 500, null = False) location = models.CharField(max_length= 70, null = False) vacancy = models.CharField(max_length = 200,choices=time,null=False) salary = models.FloatField(default=0.0, null = False) experiance = models.CharField(max_length = 50, null = False) publishedAt = models.DateTimeField(auto_now_add=True) slug = models.SlugField(blank= True, null= True) image = models.ImageField(upload_to =image_upload) def __str__(self): return self.title def save(self, *args, **kwargs): self.slug = slugify(self.title) super(job,self).save(*args,**kwargs) ''' class Apply(models.Model): name = models.CharField(max_length=50, blanck = True, null = True) email = models.CharField(max_length=50, blanck = True, null = True) website = models.URLField( max_length=200) cvs = models.FileField(upload_to="cvs/") description = models.TextField(max_length=500, null= True) '''
43.216216
128
0.726079
48510a469f93c17d433e421704706169a0fe4bc0
2,736
py
Python
utils/KTS/cpd_auto.py
Lorna-Liu/ultrasound_vsumm_RL
469214c6c9ef7fb8ecdeb29b831307b5be877d5a
[ "MIT" ]
17
2020-09-12T03:28:42.000Z
2021-11-15T12:10:31.000Z
utils/KTS/cpd_auto.py
Lorna-Liu/ultrasound_vsumm_RL
469214c6c9ef7fb8ecdeb29b831307b5be877d5a
[ "MIT" ]
3
2020-10-16T08:52:05.000Z
2022-03-22T02:59:55.000Z
utils/KTS/cpd_auto.py
Lorna-Liu/ultrasound_vsumm_RL
469214c6c9ef7fb8ecdeb29b831307b5be877d5a
[ "MIT" ]
1
2021-06-02T11:41:12.000Z
2021-06-02T11:41:12.000Z
import numpy as np from KTS.cpd_nonlin import cpd_nonlin def cpd_auto(K, ncp, vmax, desc_rate=1, **kwargs): """Main interface Detect change points automatically selecting their number K - kernel between each pair of frames in video ncp - maximum ncp vmax - special parameter Optional arguments: lmin - minimum segment length lmax - maximum segment length desc_rate - rate of descriptor sampling (vmax always corresponds to 1x) Note: - cps are always calculated in subsampled coordinates irrespective to desc_rate - lmin and m should be in agreement --- Returns: (cps, costs) cps - best selected change-points costs - costs for 0,1,2,...,m change-points Memory requirement: ~ (3*N*N + N*ncp)*4 bytes ~= 16 * N^2 bytes That is 1,6 Gb for the N=10000. """ m = ncp #maximum ncp (_, scores) = cpd_nonlin(K, m, backtrack=False, **kwargs) N = K.shape[0] N2 = N*desc_rate # length of the video before subsampling penalties = np.zeros(m+1) # Prevent division by zero (in case of 0 changes) ncp = np.arange(1, m+1) penalties[1:] = (vmax*ncp/(2.0*N2))*(np.log(float(N2)/ncp)+1) costs = scores/float(N) + penalties m_best = np.argmin(costs) (cps, scores2) = cpd_nonlin(K, m_best, **kwargs) return (cps, costs) # ------------------------------------------------------------------------------ # Extra functions (currently not used) def estimate_vmax(K_stable): """K_stable - kernel between all frames of a stable segment""" n = K_stable.shape[0] vmax = np.trace(centering(K_stable)/n) return vmax def centering(K): """Apply kernel centering""" mean_rows = np.mean(K, 1)[:, np.newaxis] return K - mean_rows - mean_rows.T + np.mean(mean_rows) def eval_score(K, cps): """ Evaluate unnormalized empirical score (sum of kernelized scatters) for the given change-points """ N = K.shape[0] cps = [0] + list(cps) + [N] V1 = 0 V2 = 0 for i in range(len(cps)-1): K_sub = K[cps[i]:cps[i+1], :][:, cps[i]:cps[i+1]] V1 += np.sum(np.diag(K_sub)) V2 += np.sum(K_sub) / float(cps[i+1] - cps[i]) return (V1 - V2) def eval_cost(K, cps, score, vmax): """ Evaluate cost function for automatic number of change points selection K - kernel between all frames cps - selected change-points score - unnormalized empirical score (sum of kernelized scatters) vmax - vmax parameter""" N = K.shape[0] penalty = (vmax*len(cps)/(2.0*N))*(np.log(float(N)/len(cps))+1) return score/float(N) + penalty
31.448276
80
0.592471
0eeab57c303b999e807e39f73e26981432a52bea
983
py
Python
setup.py
arnaudmiribel/st
85ba1902fe4ebc90662b16d3ef6ed1283781448b
[ "MIT" ]
9
2021-11-22T15:04:26.000Z
2022-01-04T19:57:17.000Z
setup.py
arnaudmiribel/st
85ba1902fe4ebc90662b16d3ef6ed1283781448b
[ "MIT" ]
1
2021-11-23T10:14:14.000Z
2021-12-13T21:52:50.000Z
setup.py
arnaudmiribel/st
85ba1902fe4ebc90662b16d3ef6ed1283781448b
[ "MIT" ]
1
2022-01-02T21:13:59.000Z
2022-01-02T21:13:59.000Z
from setuptools import setup, find_packages with open("requirements.txt") as f: requirements = f.readlines() long_description = "st is a CLI that helps you kick-off a new Streamlit \ project so you can start crafting the app as soon as possible!" setup( name="st-kickoff", version="0.2", author="Arnaud Miribel", author_email="arnaudmiribel@gmail.com", url="https://github.com/arnaudmiribel/st", description="st is a CLI that helps you kick-off a new Streamlit project \ so you can start crafting the app as soon as possible!", long_description=long_description, long_description_content_type="text/markdown", license="MIT", packages=find_packages(), entry_points={"console_scripts": ["st = source.main:go"]}, classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", ), keywords="streamlit cli", install_requires=requirements, zip_safe=False, )
33.896552
78
0.686673
afeffccb29bd40fdea8db2098b9cd49e1f36aaac
1,013
py
Python
tests/kyu_6_tests/test_prize_draw.py
the-zebulan/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
40
2016-03-09T12:26:20.000Z
2022-03-23T08:44:51.000Z
tests/kyu_6_tests/test_prize_draw.py
akalynych/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
null
null
null
tests/kyu_6_tests/test_prize_draw.py
akalynych/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
36
2016-11-07T19:59:58.000Z
2022-03-31T11:18:27.000Z
import unittest from katas.kyu_6.prize_draw import rank class PrizeDrawTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(rank('Elijah,Chloe,Elizabeth,Matthew,Natalie,Jayden', [1, 3, 5, 5, 3, 6], 2), 'Matthew') def test_equals_2(self): self.assertEqual(rank('COLIN,AMANDBA,AMANDAB,CAROL,PauL,JOSEPH', [1, 4, 4, 5, 2, 1], 4), 'PauL') def test_equals_3(self): self.assertEqual(rank( 'Addison,Jayden,Sofia,Michael,Andrew,Lily,Benjamin', [4, 2, 1, 4, 3, 1, 2], 4), 'Benjamin') def test_equals_4(self): self.assertEqual(rank('Lagon,Lily', [1, 5], 2), 'Lagon') def test_equals_5(self): self.assertEqual(rank( 'Addison,Jayden,Sofia,Michael,Andrew,Lily,Benjamin', [4, 2, 1, 4, 3, 1, 2], 8), 'Not enough participants') def test_equals_6(self): self.assertEqual(rank('', [4, 2, 1, 4, 3, 1, 2], 6), 'No participants')
33.766667
79
0.579467
7bfbb1147c2db6cd52afe4a69c365343276f5cf3
4,135
py
Python
selenium/src/py/lib/docutils/parsers/rst/languages/es.py
epall/selenium
273260522efb84116979da2a499f64510250249b
[ "Apache-2.0" ]
4
2015-10-26T01:43:04.000Z
2018-05-12T17:39:32.000Z
selenium/src/py/lib/docutils/parsers/rst/languages/es.py
hugs/selenium
9fa09c04294bd43099aa8461b027148ba81be7b7
[ "Apache-2.0" ]
1
2021-06-18T00:45:52.000Z
2021-06-18T00:45:52.000Z
selenium/src/py/lib/docutils/parsers/rst/languages/es.py
hugs/selenium
9fa09c04294bd43099aa8461b027148ba81be7b7
[ "Apache-2.0" ]
2
2016-07-11T20:19:31.000Z
2018-11-17T22:36:54.000Z
# -*- coding: utf-8 -*- # Author: Marcelo Huerta San Martín # Contact: richieadler@users.sourceforge.net # Revision: $Revision: 4231 $ # Date: $Date: 2005-12-23 03:10:41 +0100 (Fri, 23 Dec 2005) $ # Copyright: This module has been placed in the public domain. # New language mappings are welcome. Before doing a new translation, please # read <http://docutils.sf.net/docs/howto/i18n.html>. Two files must be # translated for each language: one in docutils/languages, the other in # docutils/parsers/rst/languages. """ Spanish-language mappings for language-dependent features of reStructuredText. """ __docformat__ = 'reStructuredText' directives = { u'atenci\u00f3n': 'attention', u'atencion': 'attention', u'precauci\u00f3n': 'caution', u'precaucion': 'caution', u'peligro': 'danger', u'error': 'error', u'sugerencia': 'hint', u'importante': 'important', u'nota': 'note', u'consejo': 'tip', u'advertencia': 'warning', u'exhortacion': 'admonition', u'exhortaci\u00f3n': 'admonition', u'nota-al-margen': 'sidebar', u'tema': 'topic', u'bloque-de-lineas': 'line-block', u'bloque-de-l\u00edneas': 'line-block', u'literal-evaluado': 'parsed-literal', u'firma': 'rubric', u'ep\u00edgrafe': 'epigraph', u'epigrafe': 'epigraph', u'destacado': 'highlights', u'cita-destacada': 'pull-quote', u'combinacion': 'compound', u'combinaci\u00f3n': 'compound', u'contenedor': 'container', #'questions': 'questions', #'qa': 'questions', #'faq': 'questions', u'tabla': 'table', u'tabla-vsc': 'csv-table', u'tabla-csv': 'csv-table', u'tabla-lista': 'list-table', u'meta': 'meta', #'imagemap': 'imagemap', u'imagen': 'image', u'figura': 'figure', u'incluir': 'include', u'sin-analisis': 'raw', u'sin-an\u00e1lisis': 'raw', u'reemplazar': 'replace', u'unicode': 'unicode', u'fecha': 'date', u'clase': 'class', u'rol': 'role', u'rol-por-omision': 'default-role', u'rol-por-omisi\u00f3n': 'default-role', u'titulo': 'title', u't\u00edtulo': 'title', u'contenido': 'contents', u'numseccion': 'sectnum', u'numsecci\u00f3n': 'sectnum', u'numeracion-seccion': 'sectnum', u'numeraci\u00f3n-secci\u00f3n': 'sectnum', u'notas-destino': 'target-notes', u'cabecera': 'header', u'pie': 'footer', #'footnotes': 'footnotes', #'citations': 'citations', u'restructuredtext-test-directive': 'restructuredtext-test-directive'} """Spanish name to registered (in directives/__init__.py) directive name mapping.""" roles = { u'abreviatura': 'abbreviation', u'ab': 'abbreviation', u'acronimo': 'acronym', u'acronimo': 'acronym', u'ac': 'acronym', u'indice': 'index', u'i': 'index', u'subindice': 'subscript', u'sub\u00edndice': 'subscript', u'superindice': 'superscript', u'super\u00edndice': 'superscript', u'referencia-titulo': 'title-reference', u'titulo': 'title-reference', u't': 'title-reference', u'referencia-pep': 'pep-reference', u'pep': 'pep-reference', u'referencia-rfc': 'rfc-reference', u'rfc': 'rfc-reference', u'enfasis': 'emphasis', u'\u00e9nfasis': 'emphasis', u'destacado': 'strong', u'literal': 'literal', # "literal" is also a word in Spanish :-) u'referencia-con-nombre': 'named-reference', u'referencia-anonima': 'anonymous-reference', u'referencia-an\u00f3nima': 'anonymous-reference', u'referencia-nota-al-pie': 'footnote-reference', u'referencia-cita': 'citation-reference', u'referencia-sustitucion': 'substitution-reference', u'referencia-sustituci\u00f3n': 'substitution-reference', u'destino': 'target', u'referencia-uri': 'uri-reference', u'uri': 'uri-reference', u'url': 'uri-reference', u'sin-analisis': 'raw', u'sin-an\u00e1lisis': 'raw', } """Mapping of Spanish role names to canonical role names for interpreted text. """
33.346774
81
0.613543
9f72193fc076927104fe0c024654ffc9fb3894a9
2,262
py
Python
flask_project/campaign_manager/data_providers/_abstract_osmcha_provider.py
russbiggs/MapCampaigner
05b6c6eb1bdefbe0b60313a9d3cd1a0d2df2a148
[ "BSD-3-Clause" ]
24
2018-10-05T06:39:11.000Z
2022-02-22T08:54:37.000Z
flask_project/campaign_manager/data_providers/_abstract_osmcha_provider.py
russbiggs/MapCampaigner
05b6c6eb1bdefbe0b60313a9d3cd1a0d2df2a148
[ "BSD-3-Clause" ]
384
2017-05-17T07:50:02.000Z
2018-09-20T08:18:56.000Z
flask_project/campaign_manager/data_providers/_abstract_osmcha_provider.py
russbiggs/MapCampaigner
05b6c6eb1bdefbe0b60313a9d3cd1a0d2df2a148
[ "BSD-3-Clause" ]
16
2017-05-11T08:52:19.000Z
2018-06-08T06:55:43.000Z
__author__ = 'Irwan Fathurrahman <irwan@kartoza.com>' __date__ = '12/06/17' import json import requests from app_config import Config from urllib.error import HTTPError from campaign_manager.utilities import multi_feature_to_polygon from campaign_manager.data_providers._abstract_data_provider import ( AbstractDataProvider ) class AbstractOsmchaProvider(AbstractDataProvider): """Data from osmcha""" limit_per_page = 15 def get_api_url(self): """ Return url of osmcha :return: url :rtype:str """ raise NotImplementedError() def get_data(self, geometry, page=1, start_date='', end_date='', max_page=None): """Get data from osmcha. :param geometry: geometry that used by osmcha :type geometry: dict :param page: page that used by osmcha :type page: int :param start_date: start_date that used by osmcha :type start_date: str :param end_date: end_date that used by osmcha :type end_date: str :returns: A data from osmcha :rtype: dict """ try: if max_page: self.limit_per_page = max_page single_geometry = multi_feature_to_polygon(geometry) payload_geometry = json.dumps( single_geometry['features'][0]['geometry']) payload = { 'page': page, 'page_size': self.limit_per_page, 'geometry': payload_geometry, 'date__gte': start_date, 'date__lte': end_date, 'area_lt': 2, 'is_suspect': True } request = requests.get( self.get_api_url(), params=payload, timeout=60, ) data = request.json() except HTTPError as e: raise e return { 'max_page': '%d' % (data['count'] / self.limit_per_page), 'previous_page': int(page) - 1, 'current_page': page, 'next_page': int(page) + 1, 'data': data, 'total': data['count'] }
27.925926
69
0.538904
de20fca174f936a3137ecbb225e01d4fb750597d
2,844
py
Python
openstack/network/v2/rule.py
wangrui1121/huaweicloud-sdk-python
240abe00288760115d1791012d4e3c4592d77ad1
[ "Apache-2.0" ]
43
2018-12-19T08:39:15.000Z
2021-07-21T02:45:43.000Z
openstack/network/v2/rule.py
wangrui1121/huaweicloud-sdk-python
240abe00288760115d1791012d4e3c4592d77ad1
[ "Apache-2.0" ]
11
2019-03-17T13:28:56.000Z
2020-09-23T23:57:50.000Z
openstack/network/v2/rule.py
wangrui1121/huaweicloud-sdk-python
240abe00288760115d1791012d4e3c4592d77ad1
[ "Apache-2.0" ]
47
2018-12-19T05:14:25.000Z
2022-03-19T15:28:30.000Z
# -*- coding:utf-8 -*- # Copyright 2018 Huawei Technologies Co.,Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy of the # License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. from openstack import resource2 from openstack.network import network_service class Rule(resource2.Resource): resource_key = 'rule' resources_key = 'rules' base_path = '/lbaas/l7policies/%(policy_id)s/rules' service = network_service.NetworkService() _query_mapping = resource2.QueryParameters("id", "tenant_id", "admin_state_up", "type", "compare_type", "invert", "key", "value" ) allow_create = True allow_get = True allow_update = True allow_delete = True allow_list = True # the rule id id = resource2.Body("id") # tenant id tenant_id = resource2.Body("tenant_id") # Management status: true/false. # Instructions for use: Fixed to true admin_state_up = resource2.Body("admin_state_up", type=bool, default=True) # Matching content: Can be HOST_NAME, PATH type = resource2.Body("type") # Matching method: # EQUAL_TO when type is HOST_NAME. # REGEX when the type is PATH, STARTS_WITH, EQUAL_TO compare_type = resource2.Body("compare_type") # Whether the match is reversed, true/false. # Instructions for use: Fixed to false. This field can be updated but will not take effect invert = resource2.Body("invert", type=bool, default=False) # Match the content key. # Usage note: When the current match is HOST_NAME and PATH, this field does not take effect. # This field can be updated but will not take effect key = resource2.Body("key") # The value of the matching content. Its value cannot contain spaces. # Usage note: When the type is HOST_NAME, the value range is String(100). # The string can only contain English letters, numbers, "-" or ".", # and must start with a letter or number. rule_value = resource2.Body("value") # policy id the rule belongs to policy_id = resource2.URI("policy_id")
43.090909
96
0.617089
347df4cd3812e8697c448eb87c32733ee6f8fb18
5,320
py
Python
Incident-Response/Tools/cyphon/cyphon/engines/elasticsearch/results.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
1
2021-07-24T17:22:50.000Z
2021-07-24T17:22:50.000Z
Incident-Response/Tools/cyphon/cyphon/engines/elasticsearch/results.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-28T03:40:31.000Z
2022-02-28T03:40:52.000Z
Incident-Response/Tools/cyphon/cyphon/engines/elasticsearch/results.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-25T08:34:51.000Z
2022-03-16T17:29:44.000Z
# -*- coding: utf-8 -*- # Copyright 2017-2019 ControlScan, Inc. # # This file is part of Cyphon Engine. # # Cyphon Engine is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # Cyphon Engine is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Cyphon Engine. If not, see <http://www.gnu.org/licenses/>. """ Defines helper fuctions for formatting Elasticsearch query results. ============================== ============================================= Function Description ============================== ============================================= :func:`~get_count` Get the number of matching docs. :func:`~get_doc_ids` Get the ids of matching docs. :func:`~get_doc_info` Get the index, doc_type, and id of a doc. :func:`~get_found_docs` Get docs from a multi-get request. :func:`~get_hits` Get docs from a search result. :func:`~get_results_and_count` Get docs and doc count from a search result. :func:`~get_source` Get `_source` fields with added `_id` fields. :func:`~get_source_with_id` Get a doc's `_source` field with its `_id`. ============================== ============================================= """ def get_count(results): """Get the number of documents in an Elasticsearch search result. Parameters ---------- results : dict An Elasticsearch search result. Returns ------- int The total number of documents matching the search criteria. """ return results['hits']['total'] def get_hits(results): """Return a list of documents from an Elasticsearch search result. Parameters ---------- results : dict An Elasticsearch search result. Returns ------- |list| of |dict| The list of documents in the search result. """ return results['hits']['hits'] def get_doc_info(result): """Get the index, doc_type, and id associated with a document. Parameters ---------- result : dict A document from an Elasticsearch search result. Returns ------- dict A dictionary with keys 'index', 'doc_type', and 'id', containing the name of the index in which the document resides, the doc_type of the document, and its id. """ return { 'index': result['_index'], 'doc_type': result['_type'], 'id': result['_id'] } def get_doc_ids(results): """Get the ids of documents contained in a search result. Parameters ---------- results : dict An Elasticsearch search result. Returns ------- |list| of |str| A list of ids of the documents contained in the search result. """ return [hit['_id'] for hit in get_hits(results)] def get_source_with_id(result): """Return a document's `_source` field with its `_id` added. Parameters ---------- result : dict A document from a set of Elasticsearch search results. Returns ------- dict The document's `_source` field updated with the doc's `_id`. """ result['_source'].update({'_id': result['_id']}) return result['_source'] def get_source(results): """Get the documents contained in a search result. Extracts documents from an Elasticsearch search result, adds the document id to each document, and returns the list of documents. Parameters ---------- results : dict An Elasticsearch search result. Returns ------- |list| of |dict| The documents from the search result, with the doc ids added. """ return [get_source_with_id(hit) for hit in get_hits(results)] def get_found_docs(results): """Get the documents found through a multi-get request. This method weeds out failed matches from an mget result set. Parameters ---------- results : dict An Elasticsearch mget (find by id) result. Returns ------- |list| of |dict| The documents found by the mget request, with the doc ids added. """ docs = results['docs'] matched_docs = [] for doc in docs: if doc.get('found'): formatted_doc = get_source_with_id(doc) matched_docs.append(formatted_doc) return matched_docs def get_results_and_count(data): """Get the documents and document count from a search result. Parameters ---------- data : dict An Elasticsearch search result. Returns ------- dict A dictionary with keys 'count' and 'results'. The 'count' value is the total number of documents matching the search criteria. The 'results' value is a list of documents from the search result, with the doc ids added to each document. """ count = get_count(data) results = get_source(data) return { 'count': count, 'results': results, }
27.142857
77
0.604135
9ace7246eb18ab3d18bfccb6112d2053e208e67b
31,008
py
Python
Cuba/covid19_processing.py
ypriverol/COVID19
7e8ab018f576ef7b67eee4a1a0114dd06c7a82ee
[ "CC0-1.0" ]
1
2020-03-31T00:23:01.000Z
2020-03-31T00:23:01.000Z
Cuba/covid19_processing.py
ypriverol/COVID19
7e8ab018f576ef7b67eee4a1a0114dd06c7a82ee
[ "CC0-1.0" ]
null
null
null
Cuba/covid19_processing.py
ypriverol/COVID19
7e8ab018f576ef7b67eee4a1a0114dd06c7a82ee
[ "CC0-1.0" ]
2
2020-03-31T01:21:10.000Z
2020-03-31T20:50:11.000Z
from covid19_util import * from matplotlib import dates as mdates import pandas as pd import requests import scipy.optimize import scipy.stats from io import StringIO import datetime import geonamescache class Covid19Processing: def __init__(self): self.dataframes = {} gc = geonamescache.GeonamesCache() gc_data = gc.get_countries() self.country_metadata = {} normalized_names = { "Timor Leste": "East Timor", "Vatican": "Vatican City", "Democratic Republic of the Congo": "Congo (Kinshasa)", "Republic of the Congo": "Congo (Brazzaville)", "Cabo Verde": "Cape Verde" } for country_code in gc_data: metadata = gc_data[country_code] name = metadata["name"] if name in normalized_names: name = normalized_names[name] population = metadata["population"] area = metadata["areakm2"] continent = continent_codes[metadata["continentcode"]] self.country_metadata[name] = { "population": population, "area": area, "continent": continent } for metric in data_urls.keys(): url = base_url + data_urls[metric] # Combine URL parts r = requests.get(url) # Retrieve from URL self.dataframes[metric] = pd.read_csv(StringIO(r.text), sep=",") # Convert into Pandas dataframe # Display the first lines display(Markdown("### Raw confirmed cases data, per region/state")) with pd.option_context("display.max_rows", 10, "display.max_columns", 14): display(self.dataframes["confirmed"]) def process(self, rows=20, debug=False): # Clean up for metric in data_urls.keys(): by_country = self.dataframes[metric].groupby("Country/Region").sum() # Group by country dates = by_country.columns[2:] # Drop Lat/Long # Convert to columns to matplotlib dates by_country = by_country.loc[:, dates] dates = pd.to_datetime(dates) by_country.columns = dates if metric == "confirmed": # Early China data points early_china_data = { "1/17/20": 45, "1/18/20": 62, "1/20/20": 218 } # Insert data points for d, n in early_china_data.items(): by_country.loc["China", pd.to_datetime(d)] = n # Retain chronological column order by_country = by_country.reindex(list(sorted(by_country.columns)), axis=1) by_country = by_country.fillna(0) # Correct an odd blip in the Japanese data. # From 2/5 to 2/7, the Johns Hopkins data for Japan goes 22, 45, 25. # I assume that the 45 is incorrect. Replace with 23.5, halfway between the values for 2/5 and 2/7 by_country.loc["Japan", pd.to_datetime("2/06/20")] = 23.5 # Change some weird formal names to more commonly used ones by_country = by_country.rename(index={"Republic of Korea": "South Korea", "Holy See": "Vatican City", "Iran (Islamic Republic of)": "Iran", "Viet Nam": "Vietnam", "Taipei and environs": "Taiwan", "Republic of Moldova": "Moldova", "Russian Federaration": "Russia", "Korea, South": "South Korea", "Taiwan*": "Taiwan", "occupied Palestinian territory": "Palestine", "West Bank and Gaza": "Palestine", "Bahamas, The": "Bahamas", "Cote d'Ivoire": "Ivory Coast", "Gambia, The": "Gambia", "US": "United States", "Cabo Verde": "Cape Verde", }) by_country.sort_index(inplace=True) # Store processed results for metric self.dataframes[metric + "_by_country"] = by_country.fillna(0).astype(int) # Add in recovered and active self.dataframes["recovered_by_country"] = pd.DataFrame(columns=self.dataframes["confirmed_by_country"].columns) self.dataframes["active_by_country"] = pd.DataFrame(columns=self.dataframes["confirmed_by_country"].columns) for country in self.dataframes["confirmed_by_country"].index: self.dataframes["recovered_by_country"].loc[country, :] =\ self.simulate_country_history(country).recovered self.dataframes["active_by_country"].loc[country, :] = \ self.dataframes["confirmed_by_country"].loc[country] - \ self.dataframes["deaths_by_country"].loc[country] - \ self.dataframes["recovered_by_country"].loc[country] # Add in continents for metric in list(data_urls.keys()) + ["recovered", "active"]: continent_data = {} by_country = self.dataframes[metric+"_by_country"] for country in by_country.index: if country in self.country_metadata: continent = self.country_metadata[country]["continent"] if continent in continent_data: continent_data[continent] += by_country.loc[country, :] else: continent_data[continent] = by_country.loc[country, :] elif metric == "confirmed" and debug: print(f"Missing metadata for {country}!") by_continent = pd.DataFrame(columns=by_country.columns) for continent in continent_data: by_continent.loc[continent, :] = continent_data[continent] # Add in special regions all_countries = by_country.sum() by_continent.loc["All except China", :] = all_countries - by_country.loc["China", dates] by_continent.loc["World", :] = all_countries by_continent = by_continent self.dataframes[metric + "_by_continent"] = by_continent.fillna(0).astype(int) with pd.option_context("display.max_rows", rows, "display.min_rows", rows, "display.max_columns", 10): display(Markdown("### Table of confirmed cases by country")) display(self.dataframes["confirmed_by_country"]) display(Markdown("### Table of confirmed cases by continent/region")) display(self.dataframes["confirmed_by_continent"]) def list_countries(self, columns=5): confirmed_by_country = self.dataframes["confirmed_by_country"] n_countries = len(confirmed_by_country) display(Markdown(f"### {n_countries} countries/territories affected:\n")) for i, k in enumerate(confirmed_by_country.index): if len(k) > 19: k = k[:18].strip() + "." print(f"{k:20}", end=" " if (i + 1) % columns else "\n") # Every 5 items, end with a newline def get_metric_data(self, metric): if metric+"_by_country" in self.dataframes: return pd.concat([self.dataframes[metric + "_by_country"], self.dataframes[metric + "_by_continent"]]) elif metric.startswith("new") and metric.split(" ")[1] in self.dataframes: metric = metric.split(" ")[1] return pd.concat([self.dataframes[metric + "_by_country"].diff(axis="columns"), self.dataframes[metric + "_by_continent"].diff(axis="columns")] ) else: return def get_country_data(self, country): data = {} for metric in self.dataframes.keys(): if not metric.endswith("by_country"): continue series = self.dataframes[metric].loc[country, :] series.name = metric data[metric] = series return pd.DataFrame(data) def get_new_cases_details(self, country, avg_n=5, median_n=3): confirmed = self.get_metric_data("confirmed").loc[country] deaths = self.get_metric_data("deaths").loc[country] df = pd.DataFrame(confirmed) df = df.rename(columns={country: "confirmed_cases"}) df.loc[:, "new_cases"] = np.maximum(0, confirmed.diff()) df.loc[:, "new_deaths"] = np.maximum(0, deaths.diff()) df = df.loc[df.new_cases > 1, :] df.loc[:, "growth_factor"] = df.new_cases.diff() / df.new_cases.shift(1) + 1 df[~np.isfinite(df)] = np.nan df.loc[:, "filtered_new_cases"] = \ scipy.ndimage.convolve(df.new_cases, np.ones(avg_n) / avg_n, origin=-avg_n // 2 + 1) df.loc[:, "filtered_growth_factor"] = \ df.filtered_new_cases.diff() / df.filtered_new_cases.shift(1) + 1 df.filtered_growth_factor = scipy.ndimage.median_filter(df.filtered_growth_factor, median_n, mode="nearest") return df def plot(self, x_metric, y_metric, countries_to_plot, colormap=cm, use_log_scale=True, min_cases=0, sigma=5, fixed_country_colors=False): # layout/style stuff markers = ["o", "^", "v", "<", ">", "s", "X", "D", "*", "$Y$", "$Z$"] short_metric_to_long = { "confirmed": "Confirmed cases", "deaths": "Deaths", "active": "Active cases", "growth_factor": f"{sigma}-day avg growth factor", "deaths/confirmed": "Case fatality", "new confirmed": "Daily new cases" } fills = ["none", "full"] # alternate between filled and empty markers length = None m = len(markers) cm = plt.cm.get_cmap(colormap) n_colors = min(len(markers), len(countries_to_plot)) c_norm = matplotlib.colors.Normalize(vmin=0, vmax=n_colors) scalar_map = matplotlib.cm.ScalarMappable(norm=c_norm, cmap=cm) y_max = 0 ratio_parts = y_metric.split("/") if self.get_metric_data(y_metric) is not None: by_country = self.get_metric_data(y_metric) elif y_metric == "growth_factor": by_country = self.get_metric_data("confirmed") elif y_metric == "active": by_country = self.get_metric_data("confirmed") - \ self.get_metric_data("deaths") - \ self.get_metric_data("recovered") by_country = by_country.dropna("columns").astype(int) elif len(ratio_parts) == 2 and self.get_metric_data(ratio_parts[0]) is not None\ and self.get_metric_data(ratio_parts[1]) is not None: denominator = self.get_metric_data(ratio_parts[1]) numerator = self.get_metric_data(ratio_parts[0]) numerator = numerator[denominator > min_cases] denominator = denominator[denominator > min_cases] by_country = numerator / denominator if use_log_scale: by_country += 0.0001 else: print(f"{y_metric}' is an invalid y_metric!") for i, country in enumerate(countries_to_plot): if country in by_country.index: country_data = by_country.loc[country].dropna() if country not in by_country.index: raise KeyError(f"Country '{country}' not found for {y_metric}!") return fill = fills[i % (2 * m) < m] if fixed_country_colors: color = string_to_color(country) else: color = scalar_map.to_rgba(i % n_colors) if y_metric == "growth_factor": df = self.get_new_cases_details(country, sigma) if x_metric == "day_number": df = df[df.iloc[:, 0] >= min_cases] country_data = df.filtered_growth_factor is_valid = sum(np.nan_to_num(country_data)) > 0 if x_metric == "calendar_date" and is_valid: dates = [datetime.datetime.strftime(x, '%m/%d') for x in country_data.index] plt.plot(country_data, marker=markers[i % m], label=country, markersize=6, color=color, alpha=1, fillstyle=fill) elif x_metric == "day_number": if y_metric != "growth_factor" and len(ratio_parts) < 2: country_data = country_data[country_data >= min_cases] if country == "Outside China": length = len(country_data) day_nr = list(range(len(country_data))) if is_valid: plt.plot(day_nr, country_data, marker=markers[i % m], label=country, markersize=6, color=color, alpha=1, fillstyle=fill) if country_data.max() is not np.nan: mx = country_data.max() if not np.isscalar(mx): m = m.max() y_max = max(y_max, mx) if y_metric in short_metric_to_long: long_y_metric = short_metric_to_long[y_metric] else: long_y_metric = y_metric plt.ylabel(long_y_metric, fontsize=14) if x_metric == "calendar_date": plt.xlabel("Date", fontsize=14) if countries_to_plot[0] in self.dataframes["confirmed_by_country"].index: title = f"COVID-19 {long_y_metric} over time" if len(countries_to_plot) > 1: title += " in selected countries" else: title += f" in {countries_to_plot[0]}" else: title = f"COVID-19 {long_y_metric} over time by continent" plt.title(title, fontsize=18) plt.ylim(0.9 * use_log_scale, by_country.loc[countries_to_plot].max().max() * (2 - 0.9 * (not use_log_scale))) firstweekday = pd.Timestamp(country_data.index[0]).dayofweek n_days = (country_data.index.max() - country_data.index.min()).days + 1 n_weeks = n_days//5 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%d/%Y')) plt.gca().xaxis.set_major_locator(mdates.WeekdayLocator(interval=n_weeks//7, byweekday=firstweekday)) elif x_metric == "day_number": if y_metric != "growth_factor" and len(ratio_parts) < 2: floor = 10 ** math.floor(math.log(min_cases) / math.log(10)) floor = floor * (1 - (not use_log_scale)) * .9 ceil = 10 ** math.ceil(math.log(by_country.loc[countries_to_plot].max().max()) / math.log(10)) ceil = ceil * 1.2 plt.ylim(floor, ceil) plt.xlim(0, length) plt.xlabel("Day Number", fontsize=14) if len(ratio_parts) < 2: title = f"COVID-19 {long_y_metric}, from the first day with ≥{min_cases} cases" else: title = f"COVID-19 {long_y_metric} ratio in selected countries" plt.title(title, fontsize=18) plt.legend(frameon=False) if y_metric == "growth_factor": plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: f"{x:,.2f}")) elif len(ratio_parts) > 1: plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: f"{x:.1%}")) if use_log_scale: plt.yscale("log") plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: f"{x:.3f}")) # plt.ylim((0.001, 0.12)) else: pass else: set_y_axis_format(y_max, use_log_scale) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.gca().tick_params(which="major", color=light_grey) set_plot_style() plt.show() def plot_pie(self, y_metrics, mode="country"): plt.figure(figsize=(8, 8*len(y_metrics))) for i, y_metric in enumerate(y_metrics): plt.subplot(len(y_metrics), 1, i+1) short_y = y_metric.split()[0] data_for_pie = self.dataframes[short_y + "_by_"+mode].iloc[:, -1] data_for_pie = data_for_pie[~data_for_pie.index.isin(["All except China", "World"])] data_for_pie = data_for_pie.sort_values(ascending=False).fillna(0) data_for_pie = np.maximum(0, data_for_pie) country_names = [x if data_for_pie[x] / data_for_pie.sum() > .015 else "" for x in data_for_pie.index] data_for_pie.plot.pie(startangle=270, autopct=get_pie_label, labels=country_names, counterclock=False, pctdistance=.75, colors=[string_to_color(x) for x in data_for_pie.index], textprops={'fontsize': 12}) plt.ylabel("") plt.title(f"{y_metric.capitalize()} as of {data_for_pie.name.date()}", fontsize=16) plt.show() def curve_fit(self, country="All except China", days=100, do_plot=True): country_data = self.get_metric_data("confirmed").loc[country, :] country_data = country_data[np.isfinite(country_data)] x = np.arange(days + len(country_data)) current_day = country_data.index[-1] if country in self.country_metadata: population = self.country_metadata[country]["population"] else: population = 1e8 [L, k, x0], pcov = scipy.optimize.curve_fit(logistic_func, np.arange(len(country_data)), country_data, maxfev=10000, p0=[population*0.75, 0.5, np.clip(len(country_data), 1, 200 )], bounds=([1, 0.1, 1], [population, 0.999, 600]), method="trf" ) # dates up to 100 days after start model_date_list = [country_data.index[0] + datetime.timedelta(days=n) for n in range(0, days + len(country_data))] model_date_list = [mdates.date2num(x) for x in model_date_list] n = len(model_date_list) logistic = logistic_func(x - 2, L, k, x0) if do_plot: plt.plot(country_data, label="Confirmed cases in " + country, markersize=3, zorder=1) plt.plot(model_date_list[-days+1:], np.round(logistic)[-days+1:], label=f"{L:.0f} / (1 + e^(-{k:.3f} * (x - {x0:.1f})))", zorder=1) plt.legend(loc="upper left") plt.title(f"Logistic curve fit and extrapolation for {country}", fontsize=18) plt.xlabel("Date", fontsize=14) plt.ylabel("Cases", fontsize=14) plt.scatter(mdates.date2num(current_day), country_data[-1], s=20, c="C00", zorder=2) plt.annotate( f"{datetime.datetime.strftime(current_day, '%m/%d')}: {kmb_number_format(country_data[-1], 3, 0)}", (mdates.date2num(current_day) - 1, country_data[-1]), fontsize=18, ha="right") plt.scatter(model_date_list[-1], logistic[-1], s=20, c="C01", zorder=2) plt.annotate( f"{mdates.num2date(model_date_list[-1]).strftime('%m/%d')}: {kmb_number_format(logistic[-1], 3, 0)}", (model_date_list[-1] - 1, logistic[-1] * 1.08), fontsize=18, ha="right") set_y_axis_format(logistic.max(), True) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.gca().tick_params(which="both", color=light_grey) for spine in plt.gca().spines.values(): spine.set_visible(False) bottom, top = plt.ylim() plt.ylim((bottom, max(bottom+1, top))) set_plot_style() plt.show() def simulate_country_history(self, country, history_length=40, show_result=False): if country in self.country_metadata: population = self.country_metadata[country]["population"] else: population = np.nan confirmed = self.dataframes["confirmed_by_country"].loc[country] deaths = self.dataframes["deaths_by_country"].loc[country] recovered = np.zeros(len(confirmed)) active = np.zeros(len(confirmed)) uninfected = (population - confirmed).fillna(population) simulation = pd.DataFrame(data=[confirmed, deaths, recovered, active, uninfected], index=["confirmed", "deaths", "recovered", "active", "uninfected"]).transpose() simulation = simulation.fillna(0) daily_death_distribution = death_chance_per_day(cfr=0.04, s=1.75, mu=0.5, sigma=10, length=history_length) # reconstruct recovered and active case durations using fatality by case duration stats for i, day in enumerate(confirmed.index): case_history = np.zeros(history_length) if i == 0: new_recovered = 0 else: new_cases = simulation.confirmed.diff()[i] new_deaths = simulation.deaths.diff()[i] new_deaths_by_case_duration = (new_deaths * daily_death_distribution) case_history[0] = new_cases case_history[1:] = simulation.iloc[i - 1, -history_length:-1] case_history = case_history[:history_length] case_history -= new_deaths_by_case_duration case_history = np.maximum(0, case_history) new_recovered = simulation.recovered.iloc[i - 1] + case_history[-1] for h in range(history_length): simulation.at[day.to_datetime64(), f"active_{h}"] = case_history[h] simulation.at[day.to_datetime64(), f"recovered"] = new_recovered simulation.at[day.to_datetime64(), f"active"] = sum(case_history) simulation = simulation.fillna(0).astype(int) if show_result: display(Markdown(f"<br>**Last 10 days in {country}, showing a 7-day case duration history:**")) display(simulation.iloc[-10:, :]) return simulation def simulate_country( self, country, # name of the country to simulate days=30, # how many days into the future to simulate cfr=0.03, # case fatality rate, 0 to 1 critical_rate=0.18, # https://jamanetwork.com/journals/jama/fullarticle/2763188, https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm cfr_without_icu=0.80, # unknown but high icu_beds_per_100k=30, # https://www.forbes.com/sites/niallmccarthy/2020/03/12/the-countries-with-the-most-critical-care-beds-per-capita-infographic icu_availability=0.2, # history_length=28, # Length of case history sigma_death_days=6, # Standard deviation in mortality over time distribution r0=2.5, mitigation_trend=(1.0, 0.5), # Mitigation factor development over time. This will be linearly # interpolated to a vector of length {days}, from_day=-1 ): population = self.country_metadata[country]["population"] country_history = self.simulate_country_history(country, history_length) if from_day != -1: country_history = country_history[country_history.confirmed > 0] country_history = country_history.iloc[:from_day+1, :] available_icu_beds = int(population/100000 * icu_beds_per_100k * icu_availability) daily_mitigation = np.interp(np.linspace(0, 1, days), np.linspace(0, 1, len(mitigation_trend)), mitigation_trend) daily_death_chance = death_chance_per_day(cfr, 1.75, 0.5, sigma_death_days, history_length, do_plot=False) # daily_death_chance_no_icu = death_chance_per_day(cfr_without_icu, 1.75, 0.5, # sigma_death_days, history_length, do_plot=False) # https://www.jwatch.org/na51083/2020/03/13/covid-19-incubation-period-update # https://www.medrxiv.org/content/10.1101/2020.03.05.20030502v1.full.pdf daily_transmission_chance = scipy.stats.norm.pdf(np.linspace(0, history_length, history_length+1), loc=4.5, scale=1.6) today = country_history.index[-1] for d in range(days): # column shortcuts confirmed = country_history.confirmed deaths = country_history.deaths recovered = country_history.recovered case_history = country_history.iloc[-1, -history_length:].copy() last_day = confirmed.index[-1] next_day = last_day + pd.DateOffset(1) current_alive = population - deaths.iloc[-1] current_uninfected = int(np.maximum(0, population - confirmed.iloc[-1])) current_uninfected_ratio = current_uninfected / current_alive current_mitigation = daily_mitigation[d] # Infect r_eff = r0 * current_mitigation * current_uninfected_ratio new_cases = 0 for case_duration in range(history_length): new_cases_for_case_duration = np.random.binomial(case_history[case_duration], r_eff*daily_transmission_chance[case_duration]) new_cases += int(round(new_cases_for_case_duration)) # Deaths new_deaths = 0 for case_duration in range(history_length): cases = case_history[case_duration] # TODO: assign patients to mild or critical only once # critical_patients = (critical_rate * cases).round() # critical_patients_in_icu = min(available_icu_beds, critical_patients) # critical_patients_no_icu = max(0, critical_patients - available_icu_beds) non_icu_patients = cases # - critical_patients deaths_for_case_duration = np.random.binomial(non_icu_patients, # + critical_patients_in_icu, daily_death_chance[case_duration]) # deaths_for_case_duration += np.random.binomial(critical_patients_no_icu, # daily_death_chance_no_icu[case_duration]) case_history[case_duration] -= deaths_for_case_duration new_deaths += deaths_for_case_duration # Recoveries new_recovered = case_history[-1] # Shift case history case_history[1:] = case_history[:-1] case_history.iloc[0] = new_cases country_history.at[next_day, "confirmed"] = confirmed.loc[last_day] + new_cases country_history.at[next_day, "deaths"] = deaths.loc[last_day] + new_deaths country_history.at[next_day, "recovered"] = recovered.loc[last_day] + new_recovered country_history.at[next_day, "active"] = case_history.sum() country_history.at[next_day, "uninfected"] = current_uninfected country_history.iloc[-1, -history_length:] = case_history return country_history, today def plot_simulation(self, country, days, mitigation_trend, cfr=0.02, r0=2.5, history_length=30, use_log_scale=True, scenario_name="", from_day=-1): simulation, today = self.simulate_country(country=country, days=days, cfr=cfr, mitigation_trend=mitigation_trend, r0=r0, history_length=history_length, from_day=from_day) plt.figure(figsize=(13, 8)) metrics = ["confirmed cases", "deaths", "active cases", "recovered cases"] c = ["tab:blue", "r", "tab:orange", "limegreen", "tab:purple"] for i, metric in enumerate(metrics): short_metric = metric.split()[0] plt.plot(simulation.loc[:today, short_metric], c=c[i], label=f"{metric.capitalize()}") plt.plot(simulation.loc[today:, short_metric], "-.", c=c[i], alpha=0.75) plt.plot(simulation.loc[today - pd.DateOffset(1):, "confirmed"].diff(), "-.", c=c[i + 1], alpha=0.75) plt.plot(simulation.loc[:today, "confirmed"].diff(), c=c[-1], label="Daily new cases") plt.legend(loc="upper left") set_y_axis_format(simulation.loc[:, "confirmed"].max().max(), log=use_log_scale) title = f"{days}-day Covid-19 simulation, {country}" if scenario_name: title += ": " + scenario_name plt.suptitle(title, fontsize=20, y=1.03) plt.tight_layout() set_plot_style() plt.show() simulation = simulation.astype(int) display(Markdown(f"### {scenario_name} final tally:")) peak_active = simulation.active.max() peak_active_date = simulation.active[simulation.active == simulation.active.max()].index[0].date() print(f"Confirmed: {kmb_number_format(simulation.confirmed[-1], 3 , False)},\n" f"Deaths: {kmb_number_format(simulation.deaths[-1], 3 , False)},\n" f"Recovered: {kmb_number_format(simulation.recovered[-1], 3 , False)},\n" f"Peak active: {kmb_number_format(peak_active, 3, False)} at {peak_active_date},\n" f"Uninfected: {kmb_number_format(simulation.uninfected[-1], 3 , False)}" ) return simulation def country_highlight(self, country): metrics = ["new_cases", "new_deaths"] country_data = self.get_new_cases_details(country).round(2)[metrics] display(country_data.tail(7)) for metric in metrics: data = country_data[metric] plt.plot(country_data.index, data, label=metric.capitalize().replace("_", " ")) plt.title(f"{country} daily changes as of {country_data.index[-1].date()}", fontsize=20) set_plot_style() plt.legend() set_y_axis_format(country_data[metrics].max().max(), log=True) plt.show()
51.08402
162
0.568982
f1344a2b3883e50b8e0dde0c7f57e264f2d2c2a5
75
py
Python
futurecashflow/__init__.py
maka89/FutureCashFlow
a240f8efd973854f02394338c390fb7c3432437b
[ "MIT" ]
1
2022-01-11T16:05:20.000Z
2022-01-11T16:05:20.000Z
futurecashflow/__init__.py
maka89/FutureCashFlow
a240f8efd973854f02394338c390fb7c3432437b
[ "MIT" ]
null
null
null
futurecashflow/__init__.py
maka89/FutureCashFlow
a240f8efd973854f02394338c390fb7c3432437b
[ "MIT" ]
null
null
null
from .core_layers import * from .meta_layers import * from .model import *
18.75
26
0.76
420e3996425093c8590924e2ef792dbab2cb2b13
3,848
py
Python
samples/deepbench/conv_overhead_caffe2.py
khoaideptrai/deep500
0953038f64bc73c8d41d01796e07d3a23ca97822
[ "BSD-3-Clause" ]
90
2019-01-02T22:49:08.000Z
2022-02-17T21:11:38.000Z
samples/deepbench/conv_overhead_caffe2.py
khoaideptrai/deep500
0953038f64bc73c8d41d01796e07d3a23ca97822
[ "BSD-3-Clause" ]
4
2019-02-14T16:19:06.000Z
2022-01-11T17:54:42.000Z
samples/deepbench/conv_overhead_caffe2.py
khoaideptrai/deep500
0953038f64bc73c8d41d01796e07d3a23ca97822
[ "BSD-3-Clause" ]
24
2019-01-09T18:09:44.000Z
2022-01-10T13:04:42.000Z
import time import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import workspace, core, model_helper, utils, brew import deepbench AVG_OVER = 100 RUNS = 30 device_option = core.DeviceOption(caffe2_pb2.CUDA) # device = core.DeviceOption(caffe2_pb2.CPU) print('############ Convolution ############') print('Vanilla Caffe2') # Native Caffe2 results with open('0_cf2_conv_deepbench.log', 'w') as fp: fp.write('n,c,h,w,k,r,s,h_stride,w_stride,time\n') for test in deepbench.conv_training_set: print(test) try: with core.DeviceScope(device_option): m = model_helper.ModelHelper(name="test_net") # Create Pytorch "model" X = np.random.rand(test.n, test.c, test.h, test.w).astype(np.float32) W = np.random.rand(test.k, test.c, test.r, test.s).astype(np.float32) B = np.random.rand(test.k).astype(np.float32) workspace.FeedBlob("X", X, device_option=device_option) workspace.FeedBlob("W", W, device_option=device_option) workspace.FeedBlob("B", B, device_option=device_option) order = "NCHW" m.net.Conv(["X", "W", "B"], ["Y"], kernels=[test.r,test.s], strides=[test.hstride, test.wstride], pads=[test.pad_h, test.pad_w] * 2) times = [] # Warmup run workspace.RunNetOnce(m.param_init_net) workspace.RunNetOnce(m.net) for i in range(RUNS): s = time.time() for j in range(AVG_OVER): workspace.RunNetOnce(m.net) e = time.time() times.append((e - s) / AVG_OVER) except Exception as ex: print('Exception:', ex) times = [-1.0] with open('0_cf2_conv_deepbench.log', 'a') as fp: fp.writelines([ '{test.n},{test.c},{test.h},{test.w},{test.k},{test.r},{test.s},{test.hstride},{test.wstride},{time:.15f}\n'.format( test=test, time=time) for time in times]) ############################################################################## print('Deep500 Caffe2 - test_nativeop_*') # Deep500 Caffe2 import deep500 as d5 from deep500.frameworks import caffe2 as d5cf2 with open('0_d5cf2_conv_deepbench.log', 'w') as fp: fp.write('n,c,h,w,k,r,s,h_stride,w_stride,time,l2_error,max_error\n') for test in deepbench.conv_training_set: print(test) try: with core.DeviceScope(device_option): m = model_helper.ModelHelper(name="test_net") # Create Pytorch "model" X = np.random.rand(test.n, test.c, test.h, test.w).astype(np.float32) W = np.random.rand(test.k, test.c, test.r, test.s).astype(np.float32) B = np.random.rand(test.k).astype(np.float32) workspace.FeedBlob("W", W, device_option=device_option) workspace.FeedBlob("B", B, device_option=device_option) m.net.Conv(["X", "W", "B"], ["Y"], kernels=[test.r, test.s], strides=[test.hstride, test.wstride], pads=[test.pad_h, test.pad_w] * 2) times, = d5cf2.test_nativeop_forward(m, [("X", X)], [("Y", None)], metrics=[d5.WallclockTime(RUNS * AVG_OVER, AVG_OVER)]) except Exception as ex: print('Exception:', ex) times = [-1.0] with open('0_d5cf2_conv_deepbench.log', 'a') as fp: fp.writelines(['{test.n},{test.c},{test.h},{test.w},' '{test.k},{test.r},{test.s},' '{test.hstride},{test.wstride},' '{time:.15f}\n'.format(test=test, time=time) for time in times])
38.48
142
0.543139
6a26cd48a13e381dc99dfa88325324cdadd050da
1,346
py
Python
perceptron/save_load.py
KSpenko/perceptron
d02f6cb1e9d024156e6db2291a448ccfefaf8219
[ "MIT" ]
null
null
null
perceptron/save_load.py
KSpenko/perceptron
d02f6cb1e9d024156e6db2291a448ccfefaf8219
[ "MIT" ]
null
null
null
perceptron/save_load.py
KSpenko/perceptron
d02f6cb1e9d024156e6db2291a448ccfefaf8219
[ "MIT" ]
1
2021-02-25T22:29:25.000Z
2021-02-25T22:29:25.000Z
import xlsxwriter import openpyxl import numpy as np from perceptron import Perceptron def save_model(model, file_name): """ save model weights and biases in excel format """ workbook = xlsxwriter.Workbook(file_name) for i in range(model.nLayers-1): worksheet = workbook.add_worksheet("Weights "+str(i)) for j in range(len(model.weights[i])): for k in range(len(model.weights[i][j])): worksheet.write(j, k, model.weights[i][j][k]) worksheet = workbook.add_worksheet("Biases "+str(i)) for j in range(len(model.biases[i])): worksheet.write(j, 0, model.biases[i][j]) workbook.close() def load_xlsx(file_name, layout): """ import model weights and biases from excel file """ model = Perceptron(layout) wb = openpyxl.load_workbook(file_name) sheets = wb.sheetnames weights = [] biases = [] for i in range(model.nLayers-1): sheet = wb[sheets[i*2+1]] temp_bias = [] for j in range(layout[i+1]): temp_bias.append(np.float64(sheet.cell(row=j+1, column=1).value)) biases.append(np.array(temp_bias)) sheet = wb[sheets[i*2]] temp_weight = np.empty((layout[i+1], layout[i])) for j in range(layout[i+1]): for k in range(layout[i]): temp_weight[j, k] = np.float64(sheet.cell(row=j+1, column=k+1).value) weights.append(np.array(temp_weight)) model.weights=weights model.biases=biases return model
32.047619
73
0.700594
df91e15839d7cb5393f83e1989d3d022e989dea7
8,983
py
Python
scripts/filter/gather_filtering_stats.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
10
2015-04-28T14:15:04.000Z
2021-03-15T00:07:38.000Z
scripts/filter/gather_filtering_stats.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
null
null
null
scripts/filter/gather_filtering_stats.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
6
2017-03-16T22:38:41.000Z
2021-08-11T00:22:52.000Z
#!/usr/bin/env python __author__ = 'Sergei F. Kliver' import os import argparse import numpy as np from RouToolPa.GeneralRoutines import FileRoutines parser = argparse.ArgumentParser() parser.add_argument("-d", "--sample_directory", action="store", dest="samples_dir", required=True, type=lambda s: FileRoutines.check_path(os.path.abspath(s)), help="Directory with samples") parser.add_argument("-s", "--samples", action="store", dest="samples", help="Comma-separated list of subdirectories(one per sample) to handle. " "If not set all subdirectories will be considered as containing samples." "In sample directory should one(in case SE reads) or two(in case PE reads) files." "Filenames should should contain '_1.fq' or '_1.fastq' for forward(left) reads, " " '_2.fq' or '_2.fastq' for reverse(right) reads and '.fq' or '.fastq' for SE reads") parser.add_argument("-o", "--output_dir", action="store", dest="output_dir", type=lambda s: FileRoutines.check_path(os.path.abspath(s)), default="./", help="Directory to write output. Default: current directory") """ #parser.add_argument("-t", "--threads", action="store", dest="threads", default=1, type=int, # help="Number of threads to use in Trimmomatic. Default - 1.") parser.add_argument("-q", "--average_quality_threshold", action="store", dest="average_quality_threshold", default=15, type=int, help="Quality threshold for sliding window. Works only if -q/--average_quality_threshold is set" "Default - 15.") parser.add_argument("-u", "--score_type", action="store", dest="score_type", default="phred64", help="Phred quality score type. Allowed: phred33, phred64. Default: phred64") parser.add_argument("-n", "--name_type", action="store", dest="name_type", default="short", help="Type of read name. Required to gather per tile filtering statistics. Default: short") """ args = parser.parse_args() samples = args.samples.split(",") if args.samples else sorted(os.listdir(args.samples_dir)) FileRoutines.safe_mkdir(args.output_dir) overall_stat_file = "%s/overall_samples.stat" % args.output_dir overall_stat_fd = open(overall_stat_file, "w") overall_stat_fd.write("#Sample_id\tTotal_pairs\tRetained_pairs\tRetained_pairs_percent\tMin_pairs_retained_in_tiles\n") for sample in samples: print("Handling %s" % sample) sample_dir = "%s%s/" % (args.samples_dir, sample) sample_out_dir = "%s%s/" % (args.output_dir, sample) FileRoutines.safe_mkdir(sample_out_dir) files_from_sample_dir = sorted(os.listdir(sample_dir)) stat_files_from_sample_dir = [] prefix_list = [] for filename in files_from_sample_dir: if ".stat" == filename[-5:]: stat_files_from_sample_dir.append("%s%s" % (sample_dir, filename)) prefix_list.append("%s%s" % (sample_out_dir, filename[:-5])) number_of_stat_files = len(stat_files_from_sample_dir) percent_total_sample_stat_file = "%s/%s.sample.percent.stats" % (sample_out_dir, sample) sample_stat_fd = open(percent_total_sample_stat_file, "w") sample_stat_fd.write("Read_group\t" "Paires_retained\tForward_only_retained\tReverse_only_retained\tPairs_discarded\t" "Tile_min_pairs_retained\tTile_min_forward_only_retained\t" "Tile_min_reverse_only_retained\tTile_min_pairs_discarded\t" "Tile_max_pairs_retained\tTile_max_forward_only_retained\t" "Tile_max_reverse_only_retained\tTile_max_pairs_discarded\t" "Tile_mean_pairs_retained\tTile_mean_forward_only_retained\t" "Tile_mean_reverse_only_retained\tTile_mean_pairs_discarded\t" "Tile_median_pairs_retained\tTile_median_forward_only_retained\t" "Tile_median_reverse_only_retained\tTile_median_pairs_discarded\n") total_reads_sample_stats = [] min_percent_retained_pairs_in_tile_list = [] for stat_file_index in range(0, number_of_stat_files): percent_total_stat_file = "%s.total.percent.stats" % prefix_list[stat_file_index] percent_tile_stat_file = "%s.tile.percent.stats" % prefix_list[stat_file_index] tile_description_list = [] total_reads_list = [] tile_stats_list = [] with open(stat_files_from_sample_dir[stat_file_index], "r") as stat_fd: try: line = stat_fd.readline() while line[:13] != "instrument_id": if line[:15] == "Paires retained" or line[:14] == "Pairs retained": pairs_retained = float(line.strip().split("\t")[-1]) elif line[:21] == "Forward only retained": forward_only_retained = float(line.strip().split("\t")[-1]) elif line[:21] == "Reverse only retained": reverse_only_retained = float(line.strip().split("\t")[-1]) elif line[:15] == "Pairs discarded": pairs_discarded = float(line.strip().split("\t")[-1]) line = stat_fd.readline() line = stat_fd.readline() total_stats_list = np.array([pairs_retained, forward_only_retained, reverse_only_retained, pairs_discarded]) for line in stat_fd: line_list = line.strip().split("\t") tile_stats = map(float, line_list[-4:]) # skip absent tile if sum(tile_stats) == 0: print("\tTile %s is absent in input data for %s" % (line_list[4], prefix_list[stat_file_index])) continue tile_description_list.append(line_list[:-4]) tile_stats_list.append(tile_stats) total_reads_list.append(sum(tile_stats)) except StopIteration: print("\tEmpty .stat file for %s" % prefix_list[stat_file_index]) continue total_reads_sample_stats.append(total_stats_list) total_reads_list = np.array(total_reads_list) # tile_stats tile_stats_list = np.array(tile_stats_list) percent_stats_list = tile_stats_list / total_reads_list[:, None] #print(percent_stats_list) # total_stats total_percent_stats = total_stats_list / sum(total_stats_list) samples_mean_percent_stats = np.mean(percent_stats_list, axis=0) samples_median_percent_stats = np.median(percent_stats_list, axis=0) samples_max_percent_stats = np.max(percent_stats_list, axis=0) samples_min_percent_stats = np.min(percent_stats_list, axis=0) min_percent_retained_pairs_in_tile_list.append(samples_min_percent_stats[0]) with open(percent_total_stat_file, "w") as percent_stats_fd: percent_stats_fd.write("Paires retained\tForward only retained\tReverse only retained\tPairs discarded\n") percent_stats_fd.write("%s\n" % "\t".join(map(lambda f: "%.3f" % f, total_percent_stats))) sample_stat_fd.write("%s\t%s\t%s\t%s\t%s\t%s\n" % (prefix_list[stat_file_index].split("/")[-1], "\t".join(map(lambda f: "%.3f" % f, total_percent_stats)), "\t".join(map(lambda f: "%.3f" % f, samples_min_percent_stats)), "\t".join(map(lambda f: "%.3f" % f, samples_max_percent_stats)), "\t".join(map(lambda f: "%.3f" % f, samples_mean_percent_stats)), "\t".join(map(lambda f: "%.3f" % f, samples_median_percent_stats)))) total_reads_sample_stats = np.array(total_reads_sample_stats) # print(total_reads_sample_stats) summed_reads_sample_stats = np.sum(total_reads_sample_stats, axis=0) total_number_of_pairs = np.sum(summed_reads_sample_stats) percent_summed_reads_sample_stats = summed_reads_sample_stats/total_number_of_pairs sample_stat_fd.write("Total\t%s\n" % ("\t".join(map(lambda f: "%.3f" % f, percent_summed_reads_sample_stats)))) sample_stat_fd.close() overall_stat_fd.write("%s\t%.0f\t%.0f\t%.3f\t%.3f\n" % (sample, total_number_of_pairs, summed_reads_sample_stats[0], percent_summed_reads_sample_stats[0], min(min_percent_retained_pairs_in_tile_list))) overall_stat_fd.close()
52.841176
127
0.616275
66435ec65114e3ff5c04111d80b01674391bba8c
3,249
py
Python
bopt/test_problems/Exeter_CFD_Problems/pitzdaily.py
georgedeath/bomean
0dad35e0d584cf7c46c9a8cb0445f225875cfa86
[ "MIT" ]
2
2020-05-19T15:48:37.000Z
2021-08-16T10:41:49.000Z
bopt/test_problems/Exeter_CFD_Problems/pitzdaily.py
georgedeath/bomean
0dad35e0d584cf7c46c9a8cb0445f225875cfa86
[ "MIT" ]
null
null
null
bopt/test_problems/Exeter_CFD_Problems/pitzdaily.py
georgedeath/bomean
0dad35e0d584cf7c46c9a8cb0445f225875cfa86
[ "MIT" ]
null
null
null
try: from data.SnappyHexOptimise import BasicPitzDailyRun except: from .data.SnappyHexOptimise import BasicPitzDailyRun try: from interfaces import ControlPolygonInterface except: from .interfaces import ControlPolygonInterface try: from base_class import Problem except: from .base_class import Problem try: from data import support #import data.support as support except: from .data import support #as support import numpy as np class PitzDaily(Problem, ControlPolygonInterface): def __init__(self, settings): self.source_case = settings.get('source_case', 'data/PitzDaily/case_fine') self.case_path = settings.get('case_path', 'data/PitzDaily/case_single/') self.domain_files = settings.get('boundary_files', ['data/PitzDaily/boundary.csv']) self.fixed_points_files = settings.get('fixed_points_files', ['data/PitzDaily/fixed.csv']) self.n_control = settings.get('n_control', [5]) self.niter = settings.get('niter', 5) self.thickness = settings.get('thickness', np.array([0, 0, 0.1])) self.stl_dir = settings.get('stl_dir', 'constant/triSurface/') self.stl_file_name = settings.get('stl_file_name', 'ribbon.stl') #import pdb; pdb.set_trace() self.setup() def setup(self, verbose=False): pts = [np.loadtxt(filename, delimiter=',') for filename in self.domain_files] fixed_points = [list(np.loadtxt(filename, delimiter=',').astype(int))\ for filename in self.fixed_points_files] cpolys = [] for i in range(len(pts)): cpolys.append(support.ControlPolygon2D(pts[i], fixed_points[i], self.n_control[i])) ControlPolygonInterface.__init__(self, cpolys) problem = BasicPitzDailyRun(case_path=self.case_path) problem.prepare_case(self.source_case, verbose) self.problem = problem def info(self): raise NotImplementedError def get_configurable_settings(self): raise NotImplementedError def run(self, shape, verbose=False): curv_data = support.subdc_to_stl_mult(shape, self.niter,\ thickness=self.thickness,\ file_directory=self.case_path+self.stl_dir, \ file_name=self.stl_file_name,\ draw=False) p = self.problem.cost_function(verbose=verbose) if p == 0: raise Exception('Pressure difference is exactly zero. This is a bug related to OpenFoam.') return np.abs(p) def evaluate(self, decision_vector, verbose=False): if not self.constraint(decision_vector): raise ValueError('Constraint violated. Please supply a feasible decision vector.') shape = self.convert_decision_to_shape(decision_vector) return self.run(shape, verbose) if __name__=='__main__': import numpy as np seed = 1435 np.random.seed(seed) prob = PitzDaily({}) lb, ub = prob.get_decision_boundary() x = np.random.random((1000, lb.shape[0])) * (ub - lb) + lb rand_x = [] for i in range(x.shape[0]): if prob.constraint(x[i]): rand_x.append(x[i]) res = prob.evaluate(rand_x[0]) print(res)
39.144578
102
0.658972
5c8d4bfd561cff4b101ecad0b2bc21af1525c582
376
py
Python
server/api/services/__init__.py
NUS-CS-MComp/cs-cloud-computing-music-personality
35cc926bef83fb8be3c6af680862343a67cd6e1c
[ "Apache-2.0" ]
2
2021-07-13T07:57:48.000Z
2021-11-18T08:20:38.000Z
server/api/services/__init__.py
NUS-CS-MComp/cs-cloud-computing-music-personality
35cc926bef83fb8be3c6af680862343a67cd6e1c
[ "Apache-2.0" ]
null
null
null
server/api/services/__init__.py
NUS-CS-MComp/cs-cloud-computing-music-personality
35cc926bef83fb8be3c6af680862343a67cd6e1c
[ "Apache-2.0" ]
null
null
null
from .facebook import FacebookService from .reddit import RedditService from .spotify import SpotifyService from .twitter import TwitterService from .ibm_watson import IBMWatsonService from .sagemaker import SagamakerService __all__ = [ "FacebookService", "RedditService", "SpotifyService", "TwitterService", "IBMWatsonService", "SagamakerService", ]
23.5
40
0.771277
b6c2e076bc3e25b5b0ec3450fd55a4aed0095c6f
437
py
Python
example_project/example_project/urls.py
holgerd77/django-public-project
0d5684dee9567fe1650ecad6413dd9aef71a8ec2
[ "BSD-3-Clause" ]
13
2015-08-27T08:13:47.000Z
2021-11-08T11:20:29.000Z
example_project/example_project/urls.py
holgerd77/django-public-project
0d5684dee9567fe1650ecad6413dd9aef71a8ec2
[ "BSD-3-Clause" ]
null
null
null
example_project/example_project/urls.py
holgerd77/django-public-project
0d5684dee9567fe1650ecad6413dd9aef71a8ec2
[ "BSD-3-Clause" ]
null
null
null
from django.conf import settings from django.conf.urls import include, url from django.contrib import admin admin.autodiscover() import django.views from public_project.urls import urlpatterns urlpatterns += [ url(r'^admin/', include(admin.site.urls)), ] if settings.DEBUG: urlpatterns += [ url(r'^media/(?P<path>.*)$', django.views.static.serve, { 'document_root': settings.MEDIA_ROOT, }), ]
21.85
65
0.677346
3f7dd5e4e73dd0f6aaabfda26d0e716397343ac1
606
py
Python
tests/test_plot.py
resistics/resistics
cba60747803b6c582eaaf1a670a7f455f5724ebd
[ "MIT" ]
38
2019-03-18T09:06:02.000Z
2022-02-18T15:38:54.000Z
tests/test_plot.py
resistics/resistics
cba60747803b6c582eaaf1a670a7f455f5724ebd
[ "MIT" ]
19
2019-08-23T03:57:37.000Z
2022-03-12T01:07:09.000Z
tests/test_plot.py
resistics/resistics
cba60747803b6c582eaaf1a670a7f455f5724ebd
[ "MIT" ]
8
2019-09-26T00:31:57.000Z
2021-09-04T09:28:15.000Z
import pytest from typing import List import numpy as np @pytest.mark.parametrize( "y, max_pts, x_expected, y_expected", [ ([0, 1, 3, 4, 2, 3, 4, 3, 4, 5, 5, 5], 5, [0, 3, 4, 9, 11], [0, 4, 2, 5, 5]), ], ) def test_lttb_downsample( y: List, max_pts: int, x_expected: List, y_expected: List ) -> None: """Test lttb downsampling""" from resistics.plot import lttb_downsample x = np.arange(len(y)) y = np.array(y) nx, ny = lttb_downsample(x, y, max_pts=max_pts) np.testing.assert_array_equal(nx, x_expected) np.testing.assert_array_equal(ny, y_expected)
26.347826
85
0.632013
af7faf9d477a2a79f8072443ae2bd8fdd83da94a
20,407
py
Python
sympy/ntheory/tests/test_ntheory.py
Timeroot/sympy
f95bf4bbc548d326f4643d22faec32aca7880187
[ "BSD-3-Clause" ]
null
null
null
sympy/ntheory/tests/test_ntheory.py
Timeroot/sympy
f95bf4bbc548d326f4643d22faec32aca7880187
[ "BSD-3-Clause" ]
null
null
null
sympy/ntheory/tests/test_ntheory.py
Timeroot/sympy
f95bf4bbc548d326f4643d22faec32aca7880187
[ "BSD-3-Clause" ]
null
null
null
from sympy import Sieve, binomial_coefficients, binomial_coefficients_list, \ multinomial_coefficients, Mul, S, Pow from sympy import factorial as fac from sympy.ntheory import isprime, n_order, is_primitive_root, \ is_quad_residue, legendre_symbol, jacobi_symbol, npartitions, totient, \ factorint, primefactors, divisors, randprime, nextprime, prevprime, \ primerange, primepi, prime, pollard_rho, perfect_power, multiplicity, \ trailing, divisor_count, primorial, pollard_pm1 from sympy.ntheory.factor_ import smoothness, smoothness_p from sympy.ntheory.generate import cycle_length from sympy.ntheory.primetest import _mr_safe_helper, mr from sympy.ntheory.bbp_pi import pi_hex_digits from sympy.ntheory.modular import crt, crt1, crt2, solve_congruence from sympy.utilities.pytest import raises from sympy.utilities.iterables import capture def test_trailing(): assert trailing(0) == 0 assert trailing(1) == 0 assert trailing(-1) == 0 assert trailing(2) == 1 assert trailing(7) == 0 assert trailing(-7) == 0 for i in range(100): assert trailing((1<<i)) == i assert trailing((1<<i) * 31337) == i assert trailing((1<<1000001)) == 1000001 assert trailing((1<<273956)*7**37) == 273956 def test_multiplicity(): for b in range(2, 20): for i in range(100): assert multiplicity(b, b**i) == i assert multiplicity(b, (b**i) * 23) == i assert multiplicity(b, (b**i) * 1000249) == i # Should be fast assert multiplicity(10, 10**10023) == 10023 # Should exit quick assert multiplicity(1, 1) == 1 def test_perfect_power(): assert perfect_power(0) is False assert perfect_power(1) is False assert perfect_power(2) is False assert perfect_power(3) is False assert perfect_power(4) == (2, 2) assert perfect_power(14) is False assert perfect_power(25) == (5, 2) assert perfect_power(22) is False assert perfect_power(22, [2]) is False assert perfect_power(137**(3*5*13)) == (137, 3*5*13) assert perfect_power(137**(3*5*13) + 1) is False assert perfect_power(137**(3*5*13) - 1) is False assert perfect_power(103005006004**7) == (103005006004, 7) assert perfect_power(103005006004**7+1) is False assert perfect_power(103005006004**7-1) is False assert perfect_power(103005006004**12) == (103005006004, 12) assert perfect_power(103005006004**12+1) is False assert perfect_power(103005006004**12-1) is False assert perfect_power(2**10007) == (2, 10007) assert perfect_power(2**10007+1) is False assert perfect_power(2**10007-1) is False assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60) assert perfect_power((9**99 + 1)**60+1) is False assert perfect_power((9**99 + 1)**60-1) is False assert perfect_power((10**40000)**2, big=False) == (10**40000, 2) assert perfect_power(10**100000) == (10, 100000) assert perfect_power(10**100001) == (10, 100001) assert perfect_power(13**4, [3, 5]) is False assert perfect_power(3**4, [3, 10], factor=0) is False assert perfect_power(3**3*5**3) == (15, 3) assert perfect_power(2**3*5**5) is False assert perfect_power(2*13**4) is False assert perfect_power(2**5*3**3) is False def test_isprime(): s = Sieve() s.extend(100000) ps = set(s.primerange(2, 100001)) for n in range(100001): # if (n in ps) != isprime(n): print n assert (n in ps) == isprime(n) assert isprime(179424673) # Some Mersenne primes assert isprime(2**61 - 1) assert isprime(2**89 - 1) assert isprime(2**607 - 1) assert not isprime(2**601 - 1) #Arnault's number assert isprime(int(''' 803837457453639491257079614341942108138837688287558145837488917522297\ 427376533365218650233616396004545791504202360320876656996676098728404\ 396540823292873879185086916685732826776177102938969773947016708230428\ 687109997439976544144845341155872450633409279022275296229414984230688\ 1685404326457534018329786111298960644845216191652872597534901''')) # pseudoprime that passes the base set [2, 3, 7, 61, 24251] assert not isprime(9188353522314541) assert _mr_safe_helper( "if n < 170584961: return mr(n, [350, 3958281543])") == \ ' # [350, 3958281543] stot = 1 clear [2, 3, 5, 7, 29, 67, 679067]' assert _mr_safe_helper( "if n < 3474749660383: return mr(n, [2, 3, 5, 7, 11, 13])") == \ ' # [2, 3, 5, 7, 11, 13] stot = 7 clear == bases' def test_prime(): assert prime(1) == 2 assert prime(2) == 3 assert prime(5) == 11 assert prime(11) == 31 assert prime(57) == 269 assert prime(296) == 1949 assert prime(559) == 4051 assert prime(3000) == 27449 assert prime(4096) == 38873 assert prime(9096) == 94321 assert prime(25023) == 287341 def test_primepi(): assert primepi(1) == 0 assert primepi(2) == 1 assert primepi(5) == 3 assert primepi(11) == 5 assert primepi(57) == 16 assert primepi(296) == 62 assert primepi(559) == 102 assert primepi(3000) == 430 assert primepi(4096) == 564 assert primepi(9096) == 1128 assert primepi(25023) == 2763 def test_generate(): assert nextprime(-4) == 2 assert nextprime(2) == 3 assert nextprime(5) == 7 assert nextprime(12) == 13 assert nextprime(90) == 97 assert nextprime(10**40) == (10**40 + 121) assert prevprime(3) == 2 assert prevprime(7) == 5 assert prevprime(13) == 11 assert prevprime(97) == 89 assert prevprime(10**40) == (10**40 - 17) assert list(primerange(2, 7)) == [2, 3, 5] assert list(primerange(2, 10)) == [2, 3, 5, 7] assert list(primerange(1050, 1100)) == [1051, 1061, \ 1063, 1069, 1087, 1091, 1093, 1097] s = Sieve() for i in range(30, 2350, 376): for j in range(2, 5096, 1139): A = list(s.primerange(i, i+j)) B = list(primerange(i, i+j)) assert A == B s = Sieve() assert s[10] == 29 assert nextprime(2, 2) == 5 raises(ValueError, 'totient(0)') raises(ValueError, 'primorial(0)') assert mr(1, [2]) == False func = lambda i: (i**2 + 1) % 51 assert cycle_length(func, 4).next() == (6, 2) assert list(cycle_length(func, 4, values=True)) == \ [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14] assert cycle_length(func, 4, nmax=5).next() == (5, None) assert list(cycle_length(func, 4, nmax=5, values=True)) == \ [17, 35, 2, 5, 26] def test_randprime(): import random random.seed(1234) assert randprime(2, 3) == 2 assert randprime(1, 3) == 2 assert randprime(3, 5) == 3 raises(ValueError, 'randprime(20, 22)') for a in [100, 300, 500, 250000]: for b in [100, 300, 500, 250000]: p = randprime(a, a+b) assert a <= p < (a+b) and isprime(p) def fac_multiplicity(n, p): """Return the power of the prime number p in the factorization of n!""" if p > n: return 0 if p > n//2: return 1 q, m = n, 0 while q >= p: q //= p m += q return m def multiproduct(seq=(), start=1): """ Return the product of a sequence of factors with multiplicities, times the value of the parameter ``start``. The input may be a sequence of (factor, exponent) pairs or a dict of such pairs. >>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4 279936 """ if not seq: return start if isinstance(seq, dict): seq = seq.iteritems() units = start multi = [] for base, exp in seq: if not exp: continue elif exp == 1: units *= base else: if exp % 2: units *= base multi.append((base, exp//2)) return units * multiproduct(multi)**2 def test_factorint(): assert primefactors(123456) == [2, 3, 643] assert factorint(0) == {0:1} assert factorint(1) == {} assert factorint(-1) == {-1:1} assert factorint(-2) == {-1:1, 2:1} assert factorint(-16) == {-1:1, 2:4} assert factorint(2) == {2:1} assert factorint(126) == {2:1, 3:2, 7:1} assert factorint(123456) == {2:6, 3:1, 643:1} assert factorint(5951757) == {3:1, 7:1, 29:2, 337:1} assert factorint(64015937) == {7993:1, 8009:1} assert factorint(2**(2**6) + 1) == {274177:1, 67280421310721:1} assert multiproduct(factorint(fac(200))) == fac(200) for b, e in factorint(fac(150)).items(): assert e == fac_multiplicity(150, b) assert factorint(103005006059**7) == {103005006059:7} assert factorint(31337**191) == {31337:191} assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \ {2:1000, 3:500, 257:127, 383:60} assert len(factorint(fac(10000))) == 1229 assert factorint(12932983746293756928584532764589230) == \ {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1} assert factorint(727719592270351) == {727719592270351:1} assert factorint(2**64+1, use_trial=False) == factorint(2**64+1) for n in range(60000): assert multiproduct(factorint(n)) == n assert pollard_rho(2**64+1, seed=1) == 274177 assert pollard_rho(19, seed=1) is None assert factorint(3, limit=2) == {3: 1} assert factorint(12345) == {3: 1, 5: 1, 823: 1} assert factorint(12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit assert factorint(1, limit=1) == {} assert factorint(12, limit=1) == {12: 1} assert factorint(30, limit=2) == {2: 1, 15: 1} assert factorint(16, limit=2) == {2: 4} assert factorint(124, limit=3) == {2: 2, 31: 1} assert factorint(4*31**2, limit=3) == {2: 2, 31: 2} p1 = nextprime(2**32) p2 = nextprime(2**16) p3 = nextprime(p2) assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1} assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1} assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1} assert factorint(primorial(17)+1, use_pm1=0) == \ {19026377261L: 1, 3467: 1, 277: 1, 105229: 1} # when prime b is closer than approx sqrt(8*p) to prime p then they are # "close" and have a trivial factorization a=nextprime(2**2**8) # 78 digits b=nextprime(a + 2**2**4) assert 'Fermat' in capture(lambda : factorint(a*b, verbose=1)) raises(ValueError, 'pollard_rho(4)') raises(ValueError, 'pollard_pm1(3)') raises(ValueError, 'pollard_pm1(10, B=2)') # verbose coverage n = nextprime(2**16)*nextprime(2**17)*nextprime(1901) assert 'with primes' in capture(lambda: factorint(n, verbose=1)) capture(lambda: factorint(nextprime(2**16)*1012, verbose=1)) n=nextprime(2**17) capture(lambda: factorint(n**3, verbose=1)) # perfect power termination capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg # exceed 1st n=nextprime(2**17) n*=nextprime(n) assert '1000' in capture(lambda : factorint(n, limit=1000, verbose=1)) n*=nextprime(n) assert len(factorint(n)) == 3 assert len(factorint(n, limit=p1)) == 3 n*=nextprime(2*n) # exceed 2nd assert '2001' in capture(lambda : factorint(n, limit=2000, verbose=1)) assert capture(lambda : factorint(n, limit=4000, verbose=1)).count('Pollard') == 2 # non-prime pm1 result n=nextprime(8069) n*=nextprime(2*n)*nextprime(2*n, 2) capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result # factor fermat composite p1 = nextprime(2**17) p2 = nextprime(2*p1) assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6} def divisors_and_divisor_count(): assert divisors(-1) == [1] assert divisors(0) == [] assert divisors(1) == [1] assert divisors(2) == [1, 2] assert divisors(3) == [1, 3] assert divisors(17) == [1, 17] assert divisors(10) == [1, 2, 5, 10] assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100] assert divisors(101) == [1, 101] assert divisor_count(0) == 0 assert divisor_count(-1) == 1 assert divisor_count(1) == 1 assert divisor_count(6) == 4 assert divisor_count(12) == 6 assert divisor_count(180, 3) == divisor_count(180//3) assert divisor_count(2*3*5, 7) == 0 def test_totient(): assert [totient(k) for k in range(1, 12)] == \ [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10] assert totient(5005) == 2880 assert totient(5006) == 2502 assert totient(5009) == 5008 def test_partitions(): assert [npartitions(k) for k in range(13)] == \ [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77] assert npartitions(100) == 190569292 assert npartitions(200) == 3972999029388 assert npartitions(1000) == 24061467864032622473692149727991 assert npartitions(2000) == 4720819175619413888601432406799959512200344166 assert npartitions(10000) % 10**10 == 6916435144 assert npartitions(100000) % 10**10 == 9421098519 def test_residue(): assert n_order(2, 13) == 12 assert [n_order(a, 7) for a in range(1, 7)] == \ [1, 3, 6, 3, 6, 2] assert n_order(5, 17) == 16 assert n_order(17, 11) == n_order(6, 11) assert n_order(101, 119) == 6 assert is_primitive_root(2, 7) == False assert is_primitive_root(3, 8) == False assert is_primitive_root(11, 14) == False assert is_primitive_root(12, 17) == is_primitive_root(29, 17) assert is_quad_residue(3, 7) == False assert is_quad_residue(10, 13) == True assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139) assert is_quad_residue(207, 251) == True assert is_quad_residue(0, 1) == True assert is_quad_residue(1, 1) == True assert is_quad_residue(0, 2) == is_quad_residue(1, 2) == True assert is_quad_residue(1, 4) == True assert is_quad_residue(2, 27) == False assert [j for j in range(14) if is_quad_residue(j, 14)] == \ [0, 1, 2, 4, 7, 8, 9, 11] raises(ValueError, 'is_quad_residue(1.1, 2)') assert legendre_symbol(5, 11) == 1 assert legendre_symbol(25, 41) == 1 assert legendre_symbol(67, 101) == -1 assert legendre_symbol(0, 13) == 0 assert legendre_symbol(9, 3) == 0 raises(ValueError, 'legendre_symbol(2, 4)') assert jacobi_symbol(25, 41) == 1 assert jacobi_symbol(-23, 83) == -1 assert jacobi_symbol(3, 9) == 0 assert jacobi_symbol(42, 97) == -1 assert jacobi_symbol(3, 5) == -1 assert jacobi_symbol(7, 9) == 1 assert jacobi_symbol(0, 3) == 0 assert jacobi_symbol(0, 1) == 1 assert jacobi_symbol(2, 1) == 1 assert jacobi_symbol(1, 3) == 1 raises(ValueError, 'jacobi_symbol(3, 8)') def test_hex_pi_nth_digits(): assert pi_hex_digits(0) == '3243f6a8885a30' assert pi_hex_digits(1) == '243f6a8885a308' assert pi_hex_digits(10000) == '68ac8fcfb8016c' def test_crt(): def mcrt(m, v, r, symmetric=False): assert crt(m, v, symmetric)[0] == r mm, e, s = crt1(m) assert crt2(m, v, mm, e, s, symmetric) == (r, mm) mcrt([2, 3, 5], [0, 0, 0], 0) mcrt([2, 3, 5], [1, 1, 1], 1) mcrt([2, 3, 5], [-1, -1, -1], -1, True) mcrt([2, 3, 5], [-1, -1, -1], 2*3*5 - 1, False) assert crt([656, 350], [811, 133], symmetric=True) == (-56917, 114800) def test_binomial_coefficients_list(): assert binomial_coefficients_list(0) == [1] assert binomial_coefficients_list(1) == [1, 1] assert binomial_coefficients_list(2) == [1, 2, 1] assert binomial_coefficients_list(3) == [1, 3, 3, 1] assert binomial_coefficients_list(4) == [1, 4, 6, 4, 1] assert binomial_coefficients_list(5) == [1, 5, 10, 10, 5, 1] assert binomial_coefficients_list(6) == [1, 6, 15, 20, 15, 6, 1] def test_binomial_coefficients(): for n in range(15): c = binomial_coefficients(n) l = [c[k] for k in sorted(c)] assert l == binomial_coefficients_list(n) def test_multinomial_coefficients(): assert multinomial_coefficients(1, 1) == {(1,): 1} assert multinomial_coefficients(1, 2) == {(2,): 1} assert multinomial_coefficients(1, 3) == {(3,): 1} assert multinomial_coefficients(2, 1) == {(0, 1): 1, (1, 0): 1} assert multinomial_coefficients(2, 2) == {(2, 0): 1, (0, 2): 1, (1, 1): 2} assert multinomial_coefficients(2, 3) == {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} assert multinomial_coefficients(3, 1) == {(1, 0, 0): 1, (0, 1, 0): 1, (0, 0, 1): 1} assert multinomial_coefficients(3, 2) == {(0, 1, 1): 2, (0, 0, 2): 1, (1, 1, 0): 2, (0, 2, 0): 1, (1, 0, 1): 2, (2, 0, 0): 1} assert multinomial_coefficients(3, 3) == {(2, 1, 0): 3, (0, 3, 0): 1, (1, 0, 2): 3, (0, 2, 1): 3, (0, 1, 2): 3, (3, 0, 0): 1, (2, 0, 1): 3, (1, 2, 0): 3, (1, 1, 1): 6, (0, 0, 3): 1} def test_issue1257(): assert factorint(1030903) == {53: 2, 367: 1} def test_divisors(): assert divisors(28) == [1, 2, 4, 7, 14, 28] assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105] assert divisors(0) == [] def test_divisor_count(): assert divisor_count(0) == 0 assert divisor_count(6) == 4 def test_primorial(): assert primorial(1) == 2 assert primorial(1, nth=0) == 1 assert primorial(2) == 6 assert primorial(2, nth=0) == 2 assert primorial(4, nth=0) == 6 def test_smoothness_and_smoothness_p(): assert smoothness(1) == (1, 1) assert smoothness(2**4*3**2) == (3, 16) assert smoothness_p(10431, m=1) == \ (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) assert smoothness_p(10431) == \ (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) assert smoothness_p(10431, power=1) == \ (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) assert smoothness_p(21477639576571, visual=1) == \ 'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \ 'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931' def test_visual_factorint(): assert factorint(1, visual=1) == 1 forty2 = factorint(42, visual=True) assert type(forty2) == Mul assert str(forty2) == '2**1*3**1*7**1' assert factorint(1, visual=True) is S.One no = dict(evaluate=False) assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no), Pow(3, 2, **no), Pow(7, 2, **no), **no) assert Pow(-1, 1, **no) in factorint(-42, visual=True).args def test_visual_io(): sm = smoothness_p fi = factorint # with smoothness_p n = 124 d = fi(n) m = fi(d, visual=True) t = sm(n) s = sm(t) for th in [d, s, t, n, m]: assert sm(th, visual=True) == s assert sm(th, visual=1) == s for th in [d, s, t, n, m]: assert sm(th, visual=False) == t assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t] assert [sm(th, visual=0) for th in [d, s, t, n, m]] == [s, d, s, t, t] # with factorint for th in [d, m, n]: assert fi(th, visual=True) == m assert fi(th, visual=1) == m for th in [d, m, n]: assert fi(th, visual=False) == d assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d] assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d] # test reevaluation no = dict(evaluate=False) assert sm({4: 2}, visual=False) == sm(16) assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == sm(2**10) assert fi({4: 2}, visual=False) == fi(16) assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == fi(2**10) def test_modular(): assert solve_congruence(*zip([3, 4, 2], [12, 35, 17])) == (1719, 7140) assert solve_congruence(*zip([3, 4, 2], [12, 6, 17])) is None assert solve_congruence(*zip([3, 4, 2], [13, 7, 17])) == (172, 1547) assert solve_congruence(*zip([-10, -3, -15], [13, 7, 17])) == (172, 1547) assert solve_congruence(*zip([-10, -3, 1, -15], [13, 7, 7, 17])) is None assert solve_congruence(*zip([-10, -5, 2, -15], [13, 7, 7, 17])) == (835, 1547) assert solve_congruence(*zip([-10, -5, 2, -15], [13, 7, 14, 17])) == (2382, 3094) assert solve_congruence(*zip([-10, 2, 2, -15], [13, 7, 14, 17])) == (2382, 3094) assert solve_congruence(*zip((1, 1, 2),(3, 2, 4))) is None raises(ValueError, 'solve_congruence(*zip([3, 4, 2], [12.1, 35, 17]))')
38.287054
89
0.59803
a1610af0678557c58919054704ed03866fd3419a
2,465
py
Python
tests/basics/Importing.py
jayvdb/Nuitka
0ff702e065b1b53231ba0cae451385a3da0fe766
[ "Apache-2.0" ]
1
2019-03-31T09:56:11.000Z
2019-03-31T09:56:11.000Z
tests/basics/Importing.py
jayvdb/Nuitka
0ff702e065b1b53231ba0cae451385a3da0fe766
[ "Apache-2.0" ]
null
null
null
tests/basics/Importing.py
jayvdb/Nuitka
0ff702e065b1b53231ba0cae451385a3da0fe766
[ "Apache-2.0" ]
null
null
null
# Copyright 2019, Kay Hayen, mailto:kay.hayen@gmail.com # # Python tests originally created or extracted from other peoples work. The # parts were too small to be protected. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function def localImporter1(): import os return os def localImporter1a(): import os as my_os_name return my_os_name def localImporter2(): from os import path return path def localImporter2a(): from os import path as renamed return renamed print("Direct module import", localImporter1()) print("Direct module import using rename", localImporter1a()) print("From module import", localImporter2()) print("From module import using rename", localImporter2a()) from os import * # isort:skip print("Star import gave us", path) import os.path as myname # isort:skip print("As import gave", myname) def localImportFailure(): try: from os import path, lala, listdir except Exception as e: print("gives", type(e), repr(e)) try: print(listdir) except UnboundLocalError: print("and listdir was not imported", end=" ") print("but path was", path) print("From import that fails in the middle", end=" ") localImportFailure() def nonPackageImportFailure(): try: # Not allowed without being a package, should raise ValueError from . import whatever except Exception as e: print(type(e), repr(e)) print("Package import fails in non-package:", end=" ") nonPackageImportFailure() def importBuiltinTupleFailure(): try: value = ("something",) # Not allowed to not be constant string, optimization might be fooled # though. __import__(value) except Exception as e: print(type(e), repr(e)) print("The __import__ built-in optimization can handle tuples:", end=" ") importBuiltinTupleFailure()
23.932039
79
0.688844
3c3b1de536652435f887e53d20b7282f96c09e19
5,098
py
Python
four.py
gto76/n-in-the-row
18291a2a9fee1eb47153cbef9bd4764ed9615d59
[ "MIT" ]
1
2021-05-10T15:18:22.000Z
2021-05-10T15:18:22.000Z
four.py
gto76/n-in-the-row
18291a2a9fee1eb47153cbef9bd4764ed9615d59
[ "MIT" ]
null
null
null
four.py
gto76/n-in-the-row
18291a2a9fee1eb47153cbef9bd4764ed9615d59
[ "MIT" ]
2
2019-02-19T12:02:29.000Z
2019-02-21T10:50:53.000Z
#!/usr/bin/python3 # # Usage: four.py # from enum import Enum import copy SIZE = 6 GOAL = 4 SEARCH_DEPTH = 5 PRUNE_FACTOR = 0.1 class D(Enum): HOR = 0 VER = 1 DIA = 2 DIA2 = 3 class F(Enum): E = 0 X = 1 O = 2 class Board: def __init__(self, size): self.brd = [size*[F.E] for _ in range(size)] def __repr__(self): out = "" for row in self.brd: for cell in row: symbol = "." if cell == F.X: symbol = "X" elif cell == F.O: symbol = "O" out += " {}".format(symbol) out += '\n' return out def main(): board = Board(SIZE) sign = F.X scr = 0 print(scr) print(board) while -float("inf") < scr < float("inf") and \ len(get_coordinates_of(board, F.E)) > 0: cell = get_next_move(board, sign, SEARCH_DEPTH)[1] board.brd[cell[0]][cell[1]] = sign scr = score(board, F.X) print(scr) print(board) input() sign = get_oposite(sign) def get_next_move(board, sign, depth): empty_cells = get_coordinates_of(board, F.E) scores = [score_for_move(board, sign, cell) for cell in empty_cells] options = sorted([list(a) for a in zip(scores, empty_cells)], reverse=True) if options[0][0] in [-float("inf"), float("inf")]: return options[0] if depth == 0: return options [0] pruned_size = int(SIZE*SIZE*PRUNE_FACTOR) if pruned_size < 1: pruned_size = 1 options = options[:pruned_size] for option in options: next_board = copy.deepcopy(board) next_cell = option[1] next_board.brd[next_cell[0]][next_cell[1]] = sign option[0] = -get_next_move(next_board, get_oposite(sign), depth-1)[0] return sorted(options, reverse=True)[0] def score_for_move(board, sign, cell): next_board = copy.deepcopy(board) next_board.brd[cell[0]][cell[1]] = sign return score(next_board, sign) def score(board, sign): if sign == F.X: return score_for(board, F.X) - score_for(board, F.O) return score_for(board, F.O) - score_for(board, F.X) def score_for(board, sign): out = 0 for cell in get_coordinates_of(board, sign): for direction in D: out += get_score_for_cell(board, cell, sign, direction) return out def get_coordinates_of(board, sign): out = [] for i, row in enumerate(board.brd): for j, cell in enumerate(row): if cell == sign: out.append([i, j]) return out def get_score_for_cell(board, cell, sign, direction): out = 0 for delta in range(-(GOAL-1), 1): coordinates = get_coordinates(cell, delta, direction) if not coordinates: continue signs = get_window(board, coordinates) out += score_window(signs, sign) return out def score_window(signs, sign): oposite_sign = get_oposite(sign) if signs.count(sign) == 0: out = -signs.count(oposite_sign) if out == -GOAL: return -float("inf") return out elif signs.count(oposite_sign) == 0: out = signs.count(sign) if out == GOAL: return float("inf") return out return 0 def get_coordinates(cell, delta, direction): if direction == D.HOR: start = cell[0] + delta end = start + GOAL - 1 if start < 0: return if end >= SIZE: return return list(zip(list(range(start, end+1)), GOAL*[cell[1]])) elif direction == D.VER: start = cell[1] + delta end = start + GOAL - 1 if start < 0: return if end >= SIZE: return return list(zip(GOAL*[cell[0]], list(range(start, end+1)))) elif direction == D.DIA: start_x = cell[0] + delta start_y = cell[1] + delta end_x = start_x + GOAL - 1 end_y = start_y + GOAL - 1 if start_x < 0 or start_y < 0: return if end_x >= SIZE or end_y >= SIZE: return return list(zip(list(range(start_x, end_x+1)), list(range(start_y, end_y+1)))) else: start_x = cell[0] + delta start_y = cell[1] - delta end_x = start_x + GOAL - 1 end_y = start_y - GOAL + 1 extremes = [start_x, start_y, end_x, end_y] if any(extreme < 0 or extreme >= SIZE for extreme in extremes): return return list(zip(uni_range(start_x, end_x), uni_range(start_y, end_y))) ### ## UTIL # def uni_range(a, b): if b >= a: return list(range(a, b+1)) return list(reversed(range(b, a+1))) def get_window(board, cells): out = [] for cell in cells: out.append(board.brd[cell[0]][cell[1]]) return out def column(matrix, i): return [row[i] for row in matrix] def get_oposite(sign): if sign == F.X: return F.O return F.X if __name__ == '__main__': main()
23.934272
79
0.549235
bca481f94a931fb4fc4b00567b9402e7f78ad0d8
3,084
py
Python
simba/similarities/mcsg.py
babylonhealth/simba
b0124281c0efd59b088520e28add36d1038bce3b
[ "Apache-2.0" ]
18
2019-11-05T10:30:33.000Z
2021-06-04T00:57:38.000Z
simba/similarities/mcsg.py
babylonhealth/simba
b0124281c0efd59b088520e28add36d1038bce3b
[ "Apache-2.0" ]
null
null
null
simba/similarities/mcsg.py
babylonhealth/simba
b0124281c0efd59b088520e28add36d1038bce3b
[ "Apache-2.0" ]
2
2020-06-27T17:44:27.000Z
2021-01-19T00:32:18.000Z
import numpy as np from ..utils.gaussian import aic_spherical, tic, tic_spherical from ..utils.vmf import vmf_aic, vmf_tic def von_mises_correction_aic(Dnew, Dc): """ :param Dnew[nxd matrix]: set 1 :param Dc[mxd matrix]: set 2 :return [float]: semantic similarity measure (approximation of the bayes factors) """ D = np.concatenate((Dnew, Dc), axis=0) aic_x = -vmf_aic(Dnew) aic_y = -vmf_aic(Dc) aic_xy = -vmf_aic(D) similarity = aic_xy - (aic_x + aic_y) return similarity def von_mises_correction_tic(Dnew, Dc): """ :param Dnew[nxd matrix]: set 1 :param Dc[mxd matrix]: set 2 :return [float]: semantic similarity measure (approximation of the bayes factors) """ D = np.concatenate((Dnew, Dc), axis=0) tic_x = -vmf_tic(Dnew) tic_y = -vmf_tic(Dc) tic_xy = -vmf_tic(D) similarity = tic_xy - (tic_x + tic_y) return similarity def gaussian_correction_aic(Dnew, Dc): """ :param Dnew[nxd matrix]: set 1 :param Dc[mxd matrix]: set 2 :return [float]: semantic similarity measure (approximation of the bayes factors) """ Dnew = np.array(Dnew) Dc = np.array(Dc) K, D = Dnew.shape L, D = Dc.shape mu_1 = np.mean(Dnew, axis=0) mu_2 = np.mean(Dc, axis=0) mu_1_sq = np.mean(Dnew ** 2, axis=0) mu_2_sq = np.mean(Dc ** 2, axis=0) p1 = K * 1.0 / (K + L) mu_3 = p1 * mu_1 + (1 - p1) * mu_2 mu_3_sq = p1 * mu_1_sq + (1 - p1) * mu_2_sq reg = 1e-5 v_1 = mu_1_sq - mu_1 ** 2 + reg v_2 = mu_2_sq - mu_2 ** 2 + reg v_3 = mu_3_sq - mu_3 ** 2 + reg ll_fast_x = K * np.sum(np.log(v_1)) ll_fast_y = L * np.sum(np.log(v_2)) ll_fast_xy = (K + L) * np.sum(np.log(v_3)) similarity_fast = - ll_fast_xy + ll_fast_x + ll_fast_y return similarity_fast + 4 * D def spherical_gaussian_correction_aic(Dnew, Dc): """ :param Dnew[nxd matrix]: set 1 :param Dc[mxd matrix]: set 2 :return [float]: semantic similarity measure (approximation of the bayes factors) """ D = np.concatenate((Dnew, Dc), axis=0) aic_x = -aic_spherical(Dnew) aic_y = -aic_spherical(Dc) aic_xy = -aic_spherical(D) return aic_xy - (aic_x + aic_y) def gaussian_correction_tic(Dnew, Dc): """ :param Dnew[nxd matrix]: set 1 :param Dc[mxd matrix]: set 2 :return [float]: semantic similarity measure (approximation of the bayes factors) """ D = np.concatenate((Dnew, Dc), axis=0) tic_x = -tic(Dnew) tic_y = -tic(Dc) tic_xy = -tic(D) similarity = tic_xy - (tic_x + tic_y) return similarity def spherical_gaussian_correction_tic(Dnew, Dc): """ :param Dnew[nxd matrix]: set 1 :param Dc[mxd matrix]: set 2 :return [float]: semantic similarity measure (approximation of the bayes factors) """ D = np.concatenate((Dnew, Dc), axis=0) tic_x = -tic_spherical(Dnew) tic_y = -tic_spherical(Dc) tic_xy = -tic_spherical(D) similarity = tic_xy - (tic_x + tic_y) return similarity
24.870968
62
0.613813
222d8d2eb1e36538c12a7512b906fcdcb63a8436
2,293
py
Python
dummydf/sql/group.py
moriyoshi/dummydf
39d82f0022ea9d072ce56724f16bf363a37b1bbf
[ "MIT" ]
null
null
null
dummydf/sql/group.py
moriyoshi/dummydf
39d82f0022ea9d072ce56724f16bf363a37b1bbf
[ "MIT" ]
null
null
null
dummydf/sql/group.py
moriyoshi/dummydf
39d82f0022ea9d072ce56724f16bf363a37b1bbf
[ "MIT" ]
null
null
null
# coding: utf-8 # # Copyright 2018 Moriyoshi Koizumi # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .column import _Function, _AggregationStarColumn, infer_data_type from .types import StructType, StructField class GroupedData(object): def __init__(self, df, cols): self.df = df self.cols = cols def agg(self, *exprs): if len(exprs) == 1 and isinstance(exprs[0], dict): exprs = [ _Function( fn_name, [ _DataFrameColumn( self.df, self.df.schema[col_name] if col_name != '*' else _AggregationStarColumn(df) ) ] ) for col_name, fn_name in exprs[0].items() ] from .dataframe import _Aggregation, DataFrame return DataFrame( self.df.sql_ctx, schema=StructType([ StructField( name=str(expr), dataType=infer_data_type(expr) ) for expr in self.cols + exprs ]), modifier=_Aggregation( self, exprs ) )
38.216667
80
0.606629
d03de6e76e96ec69f66ea9325eea852d42d3d278
4,233
py
Python
master_thesis/generative_models/wgan/wgan_utils.py
HitLuca/Master-thesis
359d1af662af70c26d1c6babfddf266a75893043
[ "MIT" ]
9
2018-11-27T17:42:53.000Z
2021-04-22T08:29:52.000Z
master_thesis/generative_models/wgan/wgan_utils.py
HitLuca/Master-thesis
359d1af662af70c26d1c6babfddf266a75893043
[ "MIT" ]
2
2019-07-26T14:34:31.000Z
2019-07-26T14:37:32.000Z
master_thesis/generative_models/wgan/wgan_utils.py
jeykang/TimeSeries-WGAN-TF2
81a8d2b5b229530f3e39b1b1d9a2328ea7b819ef
[ "MIT" ]
5
2018-10-26T17:20:41.000Z
2021-01-15T05:09:46.000Z
import keras from keras import Model from keras.layers import * from keras.optimizers import RMSprop from generative_models import utils def build_generator(latent_dim, timesteps): generator_inputs = Input((latent_dim,)) generated = generator_inputs generated = Dense(15)(generated) generated = utils.BatchNormalization()(generated) generated = LeakyReLU(0.2)(generated) generated = Lambda(lambda x: K.expand_dims(x))(generated) generated = Conv1D(32, 3, padding='same')(generated) generated = utils.BatchNormalization()(generated) generated = LeakyReLU(0.2)(generated) generated = UpSampling1D(2)(generated) generated = Conv1D(32, 3, padding='same')(generated) generated = utils.BatchNormalization()(generated) generated = LeakyReLU(0.2)(generated) generated = UpSampling1D(2)(generated) generated = Conv1D(32, 3, padding='same')(generated) generated = utils.BatchNormalization()(generated) generated = LeakyReLU(0.2)(generated) generated = UpSampling1D(2)(generated) generated = Conv1D(1, 3, padding='same')(generated) generated = utils.BatchNormalization()(generated) generated = LeakyReLU(0.2)(generated) generated = Lambda(lambda x: K.squeeze(x, -1))(generated) generated = Dense(timesteps, activation='tanh')(generated) generator = Model(generator_inputs, generated, 'generator') return generator def build_critic(timesteps): kernel_initializer = keras.initializers.RandomNormal(0, 0.02) critic_inputs = Input((timesteps,)) criticized = Lambda(lambda x: K.expand_dims(x, -1))(critic_inputs) criticized = Conv1D(32, 3, padding='same', kernel_initializer=kernel_initializer)(criticized) criticized = LeakyReLU(0.2)(criticized) criticized = MaxPooling1D(2, padding='same')(criticized) criticized = Conv1D(32, 3, padding='same', kernel_initializer=kernel_initializer)(criticized) criticized = LeakyReLU(0.2)(criticized) criticized = MaxPooling1D(2, padding='same')(criticized) criticized = Conv1D(32, 3, padding='same', kernel_initializer=kernel_initializer)(criticized) criticized = LeakyReLU(0.2)(criticized) criticized = MaxPooling1D(2, padding='same')(criticized) criticized = Conv1D(32, 3, padding='same', kernel_initializer=kernel_initializer)(criticized) criticized = LeakyReLU(0.2)(criticized) criticized = Flatten()(criticized) criticized = Dense(50, kernel_initializer=kernel_initializer)(criticized) criticized = LeakyReLU(0.2)(criticized) criticized = Dense(15, kernel_initializer=kernel_initializer)(criticized) criticized = LeakyReLU(0.2)(criticized) criticized = Dense(1, kernel_initializer=kernel_initializer)(criticized) critic = Model(critic_inputs, criticized, 'critic') return critic def build_generator_model(generator, critic, generator_lr, latent_dim): utils.set_model_trainable(generator, True) utils.set_model_trainable(critic, False) noise_samples = Input((latent_dim,)) generated_samples = generator(noise_samples) generated_criticized = critic(generated_samples) generator_model = Model(noise_samples, generated_criticized, 'generator_model') generator_model.compile(loss=utils.wasserstein_loss, optimizer=RMSprop(generator_lr)) return generator_model def build_critic_model(generator, critic, critic_lr, latent_dim, timesteps): utils.set_model_trainable(generator, False) utils.set_model_trainable(critic, True) noise_samples = Input((latent_dim,)) real_samples = Input((timesteps,)) generated_samples = generator(noise_samples) generated_criticized = critic(generated_samples) real_criticized = critic(real_samples) critic_model = Model([real_samples, noise_samples], [real_criticized, generated_criticized], 'critic_model') critic_model.compile(loss=[utils.wasserstein_loss, utils.wasserstein_loss], optimizer=RMSprop(critic_lr), loss_weights=[1 / 2, 1 / 2]) return critic_model def clip_weights(model, clip_value): for l in model.layers: weights = [np.clip(w, -clip_value, clip_value) for w in l.get_weights()] l.set_weights(weights)
36.491379
109
0.733759
527064f97f4234b096bc6c6c6416cd1e406facf8
630
py
Python
manage.py
mohsenamoon1160417237/recipe-API
8eebb20b6b56cc76670985beb89de4556db94a28
[ "MIT" ]
null
null
null
manage.py
mohsenamoon1160417237/recipe-API
8eebb20b6b56cc76670985beb89de4556db94a28
[ "MIT" ]
9
2019-12-04T23:09:28.000Z
2022-02-10T09:27:36.000Z
manage.py
BuilderTron/recipe_app
5a06244d2677a08104df72624008aa8d2f296da8
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'recipe_app.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.636364
74
0.684127
8f72224ba525e2ff9036edcc67c6b5c70e3f4e72
1,745
py
Python
core/src/autogluon/core/features/types.py
songqiang/autogluon
529d7cc65fad411622072aa0349215a15e1e901c
[ "Apache-2.0" ]
8
2021-05-17T08:02:05.000Z
2022-03-05T13:03:17.000Z
core/src/autogluon/core/features/types.py
songqiang/autogluon
529d7cc65fad411622072aa0349215a15e1e901c
[ "Apache-2.0" ]
null
null
null
core/src/autogluon/core/features/types.py
songqiang/autogluon
529d7cc65fad411622072aa0349215a15e1e901c
[ "Apache-2.0" ]
2
2021-01-04T21:38:53.000Z
2021-12-10T06:29:54.000Z
# Raw types: Raw data type information grouped into families. # For example: uint8, int8, int16, int32, and int64 features all map to 'int' R_INT = 'int' R_FLOAT = 'float' R_OBJECT = 'object' R_CATEGORY = 'category' R_DATETIME = 'datetime' R_BOOL = 'bool' # TODO: R_BOOL/R_BOOLEAN? # TODO: R_FLOAT_SPARSE/R_INT_SPARSE/R_CATEGORY_SPARSE? # Special types: Meta information about the special meaning of a feature that is not present in the raw data. # feature has been binned into discrete integer values from its original representation S_BINNED = 'binned' # feature was originally a datetime type that was converted to numeric S_DATETIME_AS_INT = 'datetime_as_int' # feature is a datetime in object form (string dates), which can be converted to datetime via pd.to_datetime S_DATETIME_AS_OBJECT = 'datetime_as_object' # feature is an object type that contains text information that can be utilized in natural language processing S_TEXT = 'text' # feature is a categorical that was originally text information. It may or may not still contain the raw text in its data. S_TEXT_AS_CATEGORY = 'text_as_category' # feature is a generated feature based off of a text feature but is not an ngram. Examples include character count, word count, symbol count, etc. S_TEXT_SPECIAL = 'text_special' # feature is a generated feature based off of a text feature that is an ngram. S_TEXT_NGRAM = 'text_ngram' # feature is an object type that contains a string path to an image that can be utilized in computer vision S_IMAGE_PATH = 'image_path' # feature is a generated feature based off of a ML model's prediction probabilities of the label column for the row. # Any model which takes a stack feature as input is a stack ensemble. S_STACK = 'stack'
43.625
146
0.781662
b5bd00b37a33a29065853b426b08c21061df3775
1,235
py
Python
tests/utils.py
nkato/psd-tools2
58838cc0a0274ca11507906f0b39d5faf42f445b
[ "MIT" ]
null
null
null
tests/utils.py
nkato/psd-tools2
58838cc0a0274ca11507906f0b39d5faf42f445b
[ "MIT" ]
null
null
null
tests/utils.py
nkato/psd-tools2
58838cc0a0274ca11507906f0b39d5faf42f445b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import os import psd_tools.reader import psd_tools.decoder DATA_PATH = os.path.join( os.path.abspath(os.path.dirname(__file__)), 'psd_files') def full_name(filename): return os.path.join(DATA_PATH, filename) def load_psd(filename): with open(full_name(filename), 'rb') as f: return psd_tools.reader.parse(f) def decode_psd(filename): return psd_tools.decoder.parse(load_psd(filename)) # see http://lukeplant.me.uk/blog/posts/fuzzy-testing-with-assertnumqueries/ class FuzzyInt(int): def __new__(cls, lowest, highest): obj = super(FuzzyInt, cls).__new__(cls, highest) obj.lowest = lowest obj.highest = highest return obj def __eq__(self, other): return other >= self.lowest and other <= self.highest def __repr__(self): return str("[%d..%d]") % (self.lowest, self.highest) def with_psb(fixtures): psb_fixtures = [] for fixture in fixtures: psb_fixtures.append( type(fixture)([fixture[0].replace('.psd', '.psb')]) + fixture[1:]) print(fixtures + type(fixtures)(psb_fixtures)) return fixtures + type(fixtures)(psb_fixtures)
26.847826
78
0.676923
0858df061a0e808578a02cf05a80a3a237545502
3,849
py
Python
3DMatch/trainset_d3feat.py
dahliau/3D-PointCloud
863b8fa27f2c4f350ebcbbc7a44576d662e8bfe7
[ "IJG" ]
691
2020-09-17T04:47:31.000Z
2022-03-31T02:13:42.000Z
3DMatch/trainset_d3feat.py
zhulf0804/Segmentation-Papers
62248f9d1e820ad0a8d23a53e96d21028b6080c3
[ "IJG" ]
3
2021-12-18T07:58:02.000Z
2022-03-14T01:40:49.000Z
3DMatch/trainset_d3feat.py
zhulf0804/Segmentation-Papers
62248f9d1e820ad0a8d23a53e96d21028b6080c3
[ "IJG" ]
99
2020-09-24T07:06:53.000Z
2022-03-29T06:05:50.000Z
import os import numpy as np import open3d as o3d import pickle import random def vis_npys(npys): pcds = [] colors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] for i, npy in enumerate(npys): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(npy) if i < 3: color = colors[i] else: color = [random.random() for _ in range(3)] pcd.paint_uniform_color(color) pcds.append(pcd) o3d.visualization.draw_geometries(pcds) def decode_points(pts_filename): ''' # 3DMatch_train_0.030_points.pkl: dict # key: str, sun3d-brown_bm_1-brown_bm_1/seq-01/cloud_bin_0 # value: np.ndarray n x 3, n是变化的 # 3933个点云 # min: (850, 3), max: (197343, 3), mean: 13565 ''' with open(pts_filename, 'rb') as file: data = pickle.load(file) points = [*data.values()] ids_list = [*data.keys()] dims = [] for i in range(len(points)): dims.append(points[i].shape[0]) print('npts min: {}, npts max: {}, npts mean: {}'. format(min(dims), max(dims), np.mean(dims))) print('Total number of point cloud: {}'.format(len(dims))) return data def decode_overlap(overlap_filename): ''' # 3DMatch_train_0.030_overlap.pkl: dict # 35297 # key: str, '7-scenes-pumpkin/seq-07/cloud_bin_11@7-scenes-pumpkin/seq-08/cloud_bin_2' # val: float, 0.6015544397826535 # min: 0.30000815461143276, max: 0.9954887218045113, mean: 0.5150335449363996 ''' with open(overlap_filename, 'rb') as file: overlap = pickle.load(file) scores = [] for k, v in overlap.items(): scores.append(v) print('overlap min: {}, overlap max: {}, overlap mean: {}' .format(min(scores), max(scores), np.mean(scores))) print('Total pairs: {}'.format(len(scores))) return overlap def decode_keypts(keypts_filename): ''' # 3DMatch_train_0.030_keypts.pkl: dict # 35297 # key: str, analysis-by-synthesis-office2-5b/seq-01/cloud_bin_34@analysis-by-synthesis-office2-5b/seq-01/cloud_bin_35 # val: np.ndarray, m x 2; m是变化的 # min: 445, max: 76307, mean: 8487 ''' with open(keypts_filename, 'rb') as file: correspondences = pickle.load(file) pairs = [] for k, v in correspondences.items(): pairs.append(v.shape[0]) print('min: {}, max: {}, mean: {}'.format(min(pairs), max(pairs), np.mean(pairs))) print('Total pairs: {}'.format(len(pairs))) return correspondences if __name__ == '__main__': root = '/Users/zhulf/Downloads/data/backup' pts_filename = os.path.join(root, f'3DMatch_train_0.030_points.pkl') overlap_filename = os.path.join(root, f'3DMatch_train_0.030_overlap.pkl') keypts_filename = os.path.join(root, f'3DMatch_train_0.030_keypts.pkl') assert os.path.exists(pts_filename) print('='*20, '3DMatch_train_0.030_points.pkl', '='*20) data = decode_points(pts_filename) print('=' * 20, '3DMatch_train_0.030_points.pkl completed', '=' * 20, '\n') assert os.path.exists(keypts_filename) print('=' * 20, '3DMatch_train_0.030_overlap.pkl', '=' * 20) overlap = decode_overlap(overlap_filename) print('=' * 20, '3DMatch_train_0.030_overlap.pkl completed', '=' * 20, '\n') assert os.path.exists(overlap_filename) print('=' * 20, '3DMatch_train_0.030_keypts.pkl', '=' * 20) correspondences = decode_keypts(keypts_filename) print('=' * 20, '3DMatch_train_0.030_keypts.pkl completed', '=' * 20) f1f2 = list(correspondences.keys())[222] correspondence = correspondences[f1f2] path1, path2 = f1f2.split('@') npy1, npy2 = data[path1], data[path2] npy3, npy4 = npy1[correspondence[:, 0]], npy2[correspondence[:, 1]] vis_npys([npy1, npy2]) vis_npys([npy1, npy2, npy3]) vis_npys([npy1, npy2, npy3])
32.897436
121
0.633151
6a93a360c6d14d5678b8652336686c341a79c635
327
py
Python
test_area/write-a-function.py
umiphos/python-exercises
a834fb63d3e447e3df096543c0e1850ecc020ffe
[ "Apache-2.0" ]
null
null
null
test_area/write-a-function.py
umiphos/python-exercises
a834fb63d3e447e3df096543c0e1850ecc020ffe
[ "Apache-2.0" ]
null
null
null
test_area/write-a-function.py
umiphos/python-exercises
a834fb63d3e447e3df096543c0e1850ecc020ffe
[ "Apache-2.0" ]
null
null
null
# https://www.hackerrank.com/challenges/write-a-function def is_leap(year): #years=[2100,2400] #for i in range(len(years)): # leap = (years[i]%4==0) and (years[i]%400==0 or years[i]%100!=0) # print leap # Write your logic here leap = (year%4==0) and (year%400==0 or year%100!=0) return leap
27.25
72
0.599388
832d3155a910396c13881bf829f8f818ca2cbd55
7,050
py
Python
Ansible-AWS-Provisioning/collections/ansible_collections/community/aws/plugins/modules/ec2_ami_copy.py
ginigangadharan/ansible-real-life
897c2fc0d05babbb540768b336b6ad399dad5bfa
[ "MIT" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
Ansible-AWS-Provisioning/collections/ansible_collections/community/aws/plugins/modules/ec2_ami_copy.py
premsagar0228/ansible-real-life
1a51193b833ab6ad320100472333b9ffb0da39d4
[ "MIT" ]
null
null
null
Ansible-AWS-Provisioning/collections/ansible_collections/community/aws/plugins/modules/ec2_ami_copy.py
premsagar0228/ansible-real-life
1a51193b833ab6ad320100472333b9ffb0da39d4
[ "MIT" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # This file is part of Ansible # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: ec2_ami_copy short_description: copies AMI between AWS regions, return new image id description: - Copies AMI from a source region to a destination region. B(Since version 2.3 this module depends on boto3.) options: source_region: description: - The source region the AMI should be copied from. required: true type: str source_image_id: description: - The ID of the AMI in source region that should be copied. required: true type: str name: description: - The name of the new AMI to copy. (As of 2.3 the default is 'default', in prior versions it was 'null'.) default: "default" type: str description: description: - An optional human-readable string describing the contents and purpose of the new AMI. type: str encrypted: description: - Whether or not the destination snapshots of the copied AMI should be encrypted. type: bool kms_key_id: description: - KMS key id used to encrypt the image. If not specified, uses default EBS Customer Master Key (CMK) for your account. type: str wait: description: - Wait for the copied AMI to be in state 'available' before returning. type: bool default: 'no' wait_timeout: description: - How long before wait gives up, in seconds. Prior to 2.3 the default was 1200. - From 2.3-2.5 this option was deprecated in favor of boto3 waiter defaults. This was reenabled in 2.6 to allow timeouts greater than 10 minutes. default: 600 type: int tags: description: - 'A hash/dictionary of tags to add to the new copied AMI: C({"key":"value"}) and C({"key":"value","key":"value"})' type: dict tag_equality: description: - Whether to use tags if the source AMI already exists in the target region. If this is set, and all tags match in an existing AMI, the AMI will not be copied again. default: false type: bool author: - Amir Moulavi (@amir343) <amir.moulavi@gmail.com> - Tim C (@defunctio) <defunct@defunct.io> extends_documentation_fragment: - amazon.aws.aws - amazon.aws.ec2 requirements: - boto3 ''' EXAMPLES = ''' # Basic AMI Copy - ec2_ami_copy: source_region: us-east-1 region: eu-west-1 source_image_id: ami-xxxxxxx # AMI copy wait until available - ec2_ami_copy: source_region: us-east-1 region: eu-west-1 source_image_id: ami-xxxxxxx wait: yes wait_timeout: 1200 # Default timeout is 600 register: image_id # Named AMI copy - ec2_ami_copy: source_region: us-east-1 region: eu-west-1 source_image_id: ami-xxxxxxx name: My-Awesome-AMI description: latest patch # Tagged AMI copy (will not copy the same AMI twice) - ec2_ami_copy: source_region: us-east-1 region: eu-west-1 source_image_id: ami-xxxxxxx tags: Name: My-Super-AMI Patch: 1.2.3 tag_equality: yes # Encrypted AMI copy - ec2_ami_copy: source_region: us-east-1 region: eu-west-1 source_image_id: ami-xxxxxxx encrypted: yes # Encrypted AMI copy with specified key - ec2_ami_copy: source_region: us-east-1 region: eu-west-1 source_image_id: ami-xxxxxxx encrypted: yes kms_key_id: arn:aws:kms:us-east-1:XXXXXXXXXXXX:key/746de6ea-50a4-4bcb-8fbc-e3b29f2d367b ''' RETURN = ''' image_id: description: AMI ID of the copied AMI returned: always type: str sample: ami-e689729e ''' from ansible_collections.amazon.aws.plugins.module_utils.aws.core import AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.ec2 import camel_dict_to_snake_dict, ansible_dict_to_boto3_tag_list from ansible.module_utils._text import to_native try: from botocore.exceptions import ClientError, NoCredentialsError, WaiterError, BotoCoreError except ImportError: pass # caught by AnsibleAWSModule def copy_image(module, ec2): """ Copies an AMI module : AnsibleModule object ec2: ec2 connection object """ image = None changed = False tags = module.params.get('tags') params = {'SourceRegion': module.params.get('source_region'), 'SourceImageId': module.params.get('source_image_id'), 'Name': module.params.get('name'), 'Description': module.params.get('description'), 'Encrypted': module.params.get('encrypted'), } if module.params.get('kms_key_id'): params['KmsKeyId'] = module.params.get('kms_key_id') try: if module.params.get('tag_equality'): filters = [{'Name': 'tag:%s' % k, 'Values': [v]} for (k, v) in module.params.get('tags').items()] filters.append(dict(Name='state', Values=['available', 'pending'])) images = ec2.describe_images(Filters=filters) if len(images['Images']) > 0: image = images['Images'][0] if not image: image = ec2.copy_image(**params) image_id = image['ImageId'] if tags: ec2.create_tags(Resources=[image_id], Tags=ansible_dict_to_boto3_tag_list(tags)) changed = True if module.params.get('wait'): delay = 15 max_attempts = module.params.get('wait_timeout') // delay image_id = image.get('ImageId') ec2.get_waiter('image_available').wait( ImageIds=[image_id], WaiterConfig={'Delay': delay, 'MaxAttempts': max_attempts} ) module.exit_json(changed=changed, **camel_dict_to_snake_dict(image)) except WaiterError as e: module.fail_json_aws(e, msg='An error occurred waiting for the image to become available') except (ClientError, BotoCoreError) as e: module.fail_json_aws(e, msg="Could not copy AMI") except Exception as e: module.fail_json(msg='Unhandled exception. (%s)' % to_native(e)) def main(): argument_spec = dict( source_region=dict(required=True), source_image_id=dict(required=True), name=dict(default='default'), description=dict(default=''), encrypted=dict(type='bool', default=False, required=False), kms_key_id=dict(type='str', required=False), wait=dict(type='bool', default=False), wait_timeout=dict(type='int', default=600), tags=dict(type='dict'), tag_equality=dict(type='bool', default=False)) module = AnsibleAWSModule(argument_spec=argument_spec) # TODO: Check botocore version ec2 = module.client('ec2') copy_image(module, ec2) if __name__ == '__main__': main()
31.473214
124
0.65844
83bbc77cfd078076cbfd8c5747ba2b325a848b8a
7,488
py
Python
src/smirnoff_hack.py
bieniekmateusz/forcebalance
593791866e622ab4eae23ce29a0bed27499a118d
[ "BSD-3-Clause" ]
null
null
null
src/smirnoff_hack.py
bieniekmateusz/forcebalance
593791866e622ab4eae23ce29a0bed27499a118d
[ "BSD-3-Clause" ]
6
2021-07-20T00:07:12.000Z
2022-01-14T16:39:25.000Z
src/smirnoff_hack.py
bieniekmateusz/forcebalance
593791866e622ab4eae23ce29a0bed27499a118d
[ "BSD-3-Clause" ]
null
null
null
## HACK: Improve the performance of the openff forcefield.create_openmm_system() from openff.toolkit.utils.toolkits import OpenEyeToolkitWrapper, RDKitToolkitWrapper, AmberToolsToolkitWrapper from openff.toolkit.topology.molecule import Molecule # time based on total 540s evaluation # cache for OE find_smarts_matches (save 300+ s) oe_original_find_smarts_matches = OpenEyeToolkitWrapper.find_smarts_matches OE_TOOLKIT_CACHE_find_smarts_matches = {} def oe_cached_find_smarts_matches(self, molecule, smarts, aromaticity_model='OEAroModel_MDL'): cache_key = hash((molecule, smarts, aromaticity_model)) if cache_key not in OE_TOOLKIT_CACHE_find_smarts_matches: OE_TOOLKIT_CACHE_find_smarts_matches[cache_key] = oe_original_find_smarts_matches(self, molecule, smarts, aromaticity_model=aromaticity_model) return OE_TOOLKIT_CACHE_find_smarts_matches[cache_key] # replace the original function with new one OpenEyeToolkitWrapper.find_smarts_matches = oe_cached_find_smarts_matches # cache for RDK find_smarts_matches rdk_original_find_smarts_matches = RDKitToolkitWrapper.find_smarts_matches RDK_TOOLKIT_CACHE_find_smarts_matches = {} def rdk_cached_find_smarts_matches(self, molecule, smarts, aromaticity_model='OEAroModel_MDL'): cache_key = hash((molecule, smarts, aromaticity_model)) if cache_key not in RDK_TOOLKIT_CACHE_find_smarts_matches: RDK_TOOLKIT_CACHE_find_smarts_matches[cache_key] = rdk_original_find_smarts_matches(self, molecule, smarts, aromaticity_model=aromaticity_model) return RDK_TOOLKIT_CACHE_find_smarts_matches[cache_key] # replace the original function with new one RDKitToolkitWrapper.find_smarts_matches = rdk_cached_find_smarts_matches # cache for the validate function (save 94s) from openff.toolkit.typing.chemistry.environment import ChemicalEnvironment original_validate = ChemicalEnvironment.validate TOOLKIT_CACHE_ChemicalEnvironment_validate = {} def cached_validate(smirks, validate_valence_type=True, toolkit_registry=OpenEyeToolkitWrapper): cache_key = hash((smirks, validate_valence_type, toolkit_registry)) if cache_key not in TOOLKIT_CACHE_ChemicalEnvironment_validate: TOOLKIT_CACHE_ChemicalEnvironment_validate[cache_key] = original_validate(smirks, validate_valence_type=validate_valence_type, toolkit_registry=toolkit_registry) return TOOLKIT_CACHE_ChemicalEnvironment_validate[cache_key] ChemicalEnvironment.validate = cached_validate # cache for compute_partial_charges_am1bcc (save 69s) # No longer needed as of 0.7.0 since all partial charge assignment is routed through ToolkitWrapper.assign_partial_charges # original_compute_partial_charges_am1bcc = OpenEyeToolkitWrapper.compute_partial_charges_am1bcc # TOOLKIT_CACHE_compute_partial_charges_am1bcc = {} # def cached_compute_partial_charges_am1bcc(self, molecule, use_conformers=None, strict_n_conformers=False): # cache_key = hash(molecule, use_conformers, strict_n_conformers) # if cache_key not in TOOLKIT_CACHE_compute_partial_charges_am1bcc: # TOOLKIT_CACHE_compute_partial_charges_am1bcc[cache_key] = original_compute_partial_charges_am1bcc(self, molecule, use_conformers=use_conformers, strict_n_conformers=strict_n_conformers) # return TOOLKIT_CACHE_compute_partial_charges_am1bcc[cache_key] # OpenEyeToolkitWrapper.compute_partial_charges_am1bcc = cached_compute_partial_charges_am1bcc # Cache for OETK assign_partial_charges oe_original_assign_partial_charges = OpenEyeToolkitWrapper.assign_partial_charges OE_TOOLKIT_CACHE_assign_partial_charges = {} def oe_cached_assign_partial_charges(self, molecule, partial_charge_method=None, use_conformers=None, strict_n_conformers=False, _cls=Molecule): cache_key = hash((molecule, partial_charge_method, str(use_conformers), strict_n_conformers)) if cache_key not in OE_TOOLKIT_CACHE_assign_partial_charges: oe_original_assign_partial_charges(self, molecule, partial_charge_method=partial_charge_method, use_conformers=use_conformers, strict_n_conformers=strict_n_conformers, _cls=_cls) OE_TOOLKIT_CACHE_assign_partial_charges[cache_key] = molecule.partial_charges else: molecule.partial_charges = OE_TOOLKIT_CACHE_assign_partial_charges[cache_key] return OpenEyeToolkitWrapper.assign_partial_charges = oe_cached_assign_partial_charges # Cache for AmberTools assign_partial_charges at_original_assign_partial_charges = AmberToolsToolkitWrapper.assign_partial_charges AT_TOOLKIT_CACHE_assign_partial_charges = {} def at_cached_assign_partial_charges(self, molecule, partial_charge_method=None, use_conformers=None, strict_n_conformers=False, _cls=Molecule): cache_key = hash((molecule, partial_charge_method, str(use_conformers), strict_n_conformers)) if cache_key not in AT_TOOLKIT_CACHE_assign_partial_charges: at_original_assign_partial_charges(self, molecule, partial_charge_method=partial_charge_method, use_conformers=use_conformers, strict_n_conformers=strict_n_conformers, _cls=_cls) AT_TOOLKIT_CACHE_assign_partial_charges[cache_key] = molecule.partial_charges else: molecule.partial_charges = AT_TOOLKIT_CACHE_assign_partial_charges[cache_key] return AmberToolsToolkitWrapper.assign_partial_charges = at_cached_assign_partial_charges # cache the OE generate_conformers function (save 15s) OE_TOOLKIT_CACHE_molecule_conformers = {} oe_original_generate_conformers = OpenEyeToolkitWrapper.generate_conformers def oe_cached_generate_conformers(self, molecule, n_conformers=1, rms_cutoff=None, clear_existing=True): cache_key = hash((molecule, n_conformers, str(rms_cutoff), clear_existing)) if cache_key not in OE_TOOLKIT_CACHE_molecule_conformers: oe_original_generate_conformers(self, molecule, n_conformers=n_conformers, rms_cutoff=rms_cutoff, clear_existing=clear_existing) OE_TOOLKIT_CACHE_molecule_conformers[cache_key] = molecule._conformers molecule._conformers = OE_TOOLKIT_CACHE_molecule_conformers[cache_key] OpenEyeToolkitWrapper.generate_conformers = oe_cached_generate_conformers # cache the RDKit generate_conformers function RDK_TOOLKIT_CACHE_molecule_conformers = {} rdk_original_generate_conformers = RDKitToolkitWrapper.generate_conformers def rdk_cached_generate_conformers(self, molecule, n_conformers=1, rms_cutoff=None, clear_existing=True): cache_key = hash((molecule, n_conformers, str(rms_cutoff), clear_existing)) if cache_key not in RDK_TOOLKIT_CACHE_molecule_conformers: rdk_original_generate_conformers(self, molecule, n_conformers=n_conformers, rms_cutoff=rms_cutoff, clear_existing=clear_existing) RDK_TOOLKIT_CACHE_molecule_conformers[cache_key] = molecule._conformers molecule._conformers = RDK_TOOLKIT_CACHE_molecule_conformers[cache_key] RDKitToolkitWrapper.generate_conformers = rdk_cached_generate_conformers # final timing: 56s # cache the ForceField creation (no longer needed since using OpenFF API for parameter modifications) # import hashlib # from openff.toolkit.typing.engines.smirnoff import ForceField # SMIRNOFF_FORCE_FIELD_CACHE = {} # def getForceField(*ffpaths): # hasher = hashlib.md5() # for path in ffpaths: # with open(path, 'rb') as f: # hasher.update(f.read()) # cache_key = hasher.hexdigest() # if cache_key not in SMIRNOFF_FORCE_FIELD_CACHE: # SMIRNOFF_FORCE_FIELD_CACHE[cache_key] = ForceField(*ffpaths, allow_cosmetic_attributes=True) # return SMIRNOFF_FORCE_FIELD_CACHE[cache_key]
61.884298
195
0.840812
b41c118beace63fb535b9fe2d17e4a6a3494d68d
10,804
py
Python
model/config.py
qkaren/converse_reading_cmr
d06d981be12930cff8458e2b1b81be4f5df3a329
[ "MIT" ]
87
2019-06-07T18:16:30.000Z
2021-11-27T08:18:45.000Z
model/config.py
qkaren/converse_reading_cmr
d06d981be12930cff8458e2b1b81be4f5df3a329
[ "MIT" ]
11
2019-06-19T20:53:27.000Z
2021-05-07T01:05:01.000Z
model/config.py
qkaren/converse_reading_cmr
d06d981be12930cff8458e2b1b81be4f5df3a329
[ "MIT" ]
17
2019-06-08T01:50:23.000Z
2022-02-16T07:12:15.000Z
# /usr/bin/env python3 import argparse import multiprocessing import torch """ Configuration file """ def model_config(parser): parser.add_argument('--vocab_size', type=int, default=0) parser.add_argument('--wemb_dim', type=int, default=300) parser.add_argument('--covec_on', action='store_false') parser.add_argument('--embedding_dim', type=int, default=300) # pos parser.add_argument('--no_pos', dest='pos_on', action='store_false') parser.add_argument('--pos_vocab_size', type=int, default=56) parser.add_argument('--pos_dim', type=int, default=12) parser.add_argument('--no_ner', dest='ner_on', action='store_false') parser.add_argument('--ner_vocab_size', type=int, default=19) parser.add_argument('--ner_dim', type=int, default=8) parser.add_argument('--no_feat', dest='feat_on', action='store_false') parser.add_argument('--num_features', type=int, default=4) # q->p parser.add_argument('--prealign_on', action='store_false') parser.add_argument('--prealign_head', type=int, default=1) parser.add_argument('--prealign_att_dropout', type=float, default=0) parser.add_argument('--prealign_norm_on', action='store_true') parser.add_argument('--prealign_proj_on', action='store_true') parser.add_argument('--prealign_bidi', action='store_true') parser.add_argument('--prealign_hidden_size', type=int, default=64) parser.add_argument('--prealign_share', action='store_false') parser.add_argument('--prealign_residual_on', action='store_true') parser.add_argument('--prealign_scale_on', action='store_false') parser.add_argument('--prealign_sim_func', type=str, default='dotproductproject') parser.add_argument('--prealign_activation', type=str, default='relu') parser.add_argument('--pwnn_on', action='store_false') parser.add_argument('--pwnn_hidden_size', type=int, default=64) ##contextual encoding parser.add_argument('--contextual_hidden_size', type=int, default=64) parser.add_argument('--contextual_cell_type', type=str, default='lstm') parser.add_argument('--contextual_weight_norm_on', action='store_true') parser.add_argument('--contextual_maxout_on', action='store_true') parser.add_argument('--contextual_residual_on', action='store_true') parser.add_argument('--contextual_encoder_share', action='store_true') parser.add_argument('--contextual_num_layers', type=int, default=2) ## mem setting parser.add_argument('--msum_hidden_size', type=int, default=64) parser.add_argument('--msum_cell_type', type=str, default='lstm') parser.add_argument('--msum_weight_norm_on', action='store_true') parser.add_argument('--msum_maxout_on', action='store_true') parser.add_argument('--msum_residual_on', action='store_true') parser.add_argument('--msum_lexicon_input_on', action='store_true') parser.add_argument('--msum_num_layers', type=int, default=1) # attention parser.add_argument('--deep_att_lexicon_input_on', action='store_false') parser.add_argument('--deep_att_hidden_size', type=int, default=64) parser.add_argument('--deep_att_sim_func', type=str, default='dotproductproject') parser.add_argument('--deep_att_activation', type=str, default='relu') parser.add_argument('--deep_att_norm_on', action='store_false') parser.add_argument('--deep_att_proj_on', action='store_true') parser.add_argument('--deep_att_residual_on', action='store_true') parser.add_argument('--deep_att_share', action='store_false') parser.add_argument('--deep_att_opt', type=int, default=0) # self attn parser.add_argument('--self_attention_on', action='store_false') parser.add_argument('--self_att_hidden_size', type=int, default=64) parser.add_argument('--self_att_sim_func', type=str, default='dotproductproject') parser.add_argument('--self_att_activation', type=str, default='relu') parser.add_argument('--self_att_norm_on', action='store_true') parser.add_argument('--self_att_proj_on', action='store_true') parser.add_argument('--self_att_residual_on', action='store_true') parser.add_argument('--self_att_dropout', type=float, default=0.1) parser.add_argument('--self_att_drop_diagonal', action='store_false') parser.add_argument('--self_att_share', action='store_false') # query summary parser.add_argument('--query_sum_att_type', type=str, default='linear', help='linear/mlp') parser.add_argument('--query_sum_norm_on', action='store_true') parser.add_argument('--san_on', action='store_true') parser.add_argument('--max_len', type=int, default=30) parser.add_argument('--decoder_hidden_size', type=int, default=512) parser.add_argument('--decoder_ptr_update_on', action='store_true') parser.add_argument('--decoder_num_turn', type=int, default=5) parser.add_argument('--decoder_mem_type', type=int, default=3) parser.add_argument('--decoder_mem_drop_p', type=float, default=0.2) parser.add_argument('--decoder_opt', type=int, default=0) parser.add_argument('--decoder_att_type', type=str, default='bilinear', help='bilinear/simple/default') parser.add_argument('--decoder_rnn_type', type=str, default='gru', help='rnn/gru/lstm') parser.add_argument('--decoder_sum_att_type', type=str, default='bilinear', help='bilinear/simple/default') parser.add_argument('--decoder_weight_norm_on', action='store_true') return parser def data_config(parser): parser.add_argument('--log_file', default='./log/reddit.log', help='path for log file.') parser.add_argument('--data_dir', default='data') parser.add_argument('--raw_data_dir', default='./raw_data') parser.add_argument('--meta', default='reddit_meta.pick', help='path to preprocessed meta file.') parser.add_argument('--train_data', default='train_100k.json', help='path to preprocessed training data file.') parser.add_argument('--dev_data', default='dev_100k.json', help='path to preprocessed validation data file.') parser.add_argument('--dev_gold', default='dev_seq_answer', help='path to preprocessed validation data file.') parser.add_argument('--covec_path', default='full_test/MT-LSTM.pt') parser.add_argument('--glove', default='data_processing/glove.840B.300d.txt', help='path to word vector file.') parser.add_argument('--glove_dim', type=int, default=300, help='word vector dimension.') parser.add_argument('--sort_all', action='store_true', help='sort the vocabulary by frequencies of all words.' 'Otherwise consider question words first.') parser.add_argument('--threads', type=int, default=multiprocessing.cpu_count(), help='number of threads for preprocessing.') parser.add_argument('--dev_full', default='dev.full') parser.add_argument('--test_full', default='test.full') parser.add_argument('--test_data', default='test.json') parser.add_argument('--test_output', default='test_output') return parser def train_config(parser): parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available(), help='whether to use GPU acceleration.') parser.add_argument('--log_per_updates', type=int, default=150) parser.add_argument('--epoches', type=int, default=400) parser.add_argument('--eval_step', type=int, default=3000) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--resume', type=str, default='') parser.add_argument('--optimizer', default='adam', help='supported optimizer: adamax, sgd, adadelta, adam') parser.add_argument('--grad_clipping', type=float, default=5) parser.add_argument('--weight_decay', type=float, default=0) parser.add_argument('--learning_rate', type=float, default=0.002) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--vb_dropout', action='store_false') parser.add_argument('--dropout_p', type=float, default=0.4) parser.add_argument('--dropout_emb', type=float, default=0.4) parser.add_argument('--dropout_w', type=float, default=0.05) parser.add_argument('--unk_id', type=int, default=1) parser.add_argument('--decoding', type=str, default='greedy', help='greedy/sample') parser.add_argument('--temperature', type=float, default=1.0) parser.add_argument('--top_k', type=int, default=1) parser.add_argument('--if_train', type=int, default=1) parser.add_argument('--curve_file', type=str, default='dev_curve.csv') parser.add_argument('--smooth', type=int, default=-1) parser.add_argument('--max_doc', type=int, default=100) parser.add_argument('--is_rep', type=float, default=0) parser.add_argument('--decoding_topk', type=int, default=8) parser.add_argument('--decoding_bleu_lambda', type=float, default=0.5) parser.add_argument('--decoding_bleu_normalize', action='store_true') parser.add_argument('--model_type', type=str, default='san', help='[san|seq2seq|memnet]') parser.add_argument('--weight_type', type=str, default='bleu', help='[bleu|nist]') parser.add_argument('--no_lr_scheduler', dest='have_lr_scheduler', action='store_true') parser.add_argument('--multi_step_lr', type=str, default='10,20,30') parser.add_argument('--lr_gamma', type=float, default=0.5) parser.add_argument('--scheduler_type', type=str, default='ms', help='ms/rop/exp') parser.add_argument('--fix_embeddings', action='store_true', help='if true, `tune_partial` will be ignored.') parser.add_argument('--tune_partial', type=int, default=1000, help='finetune top-x embeddings (including <PAD>, <UNK>).') parser.add_argument('--model_dir', default='checkpoint') parser.add_argument('--seed', type=int, default=2018, help='random seed for data shuffling, embedding init, etc.') return parser def decoding_config(parser): parser.add_argument('--skip_tokens_file', type=str, default="") parser.add_argument('--skip_tokens_first_file', type=str, default="") return parser def set_args(): parser = argparse.ArgumentParser() parser = data_config(parser) parser = model_config(parser) parser = train_config(parser) parser = decoding_config(parser) args = parser.parse_args() return args
55.405128
114
0.687153
c52c1009a629571bb04630939f016a8fea775010
2,405
py
Python
python/IECore/CapturingMessageHandler.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
386
2015-01-02T11:10:43.000Z
2022-03-10T15:12:20.000Z
python/IECore/CapturingMessageHandler.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
484
2015-01-09T18:28:06.000Z
2022-03-31T16:02:04.000Z
python/IECore/CapturingMessageHandler.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
99
2015-01-28T23:18:04.000Z
2022-03-27T00:59:39.000Z
########################################################################## # # Copyright (c) 2008, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from IECore import MessageHandler, Struct ## The CapturingMessageHandler simply stores all messages passed to it # in an attribute called messages. It's useful for verifying expected # message output during testing. Each message in the messages list is a Struct # with "level", "context" and "message" attributes. # \ingroup python class CapturingMessageHandler( MessageHandler ) : def __init__( self ) : MessageHandler.__init__( self ) self.messages = [] def handle( self, level, context, message ) : s = Struct() s.level = level s.context = context s.message = message self.messages.append( s )
40.762712
78
0.703534
9d637d0ca591a9cdae3ff1f5ab2445741b710389
874
py
Python
test/pytest/Service/test_services.py
michellab/BioSimSpaceCloud
456b146a2131565e354352872d3e75a08c3652d1
[ "Apache-2.0" ]
2
2019-02-15T16:04:19.000Z
2019-02-19T15:42:27.000Z
test/pytest/Service/test_services.py
michellab/BioSimSpaceCloud
456b146a2131565e354352872d3e75a08c3652d1
[ "Apache-2.0" ]
null
null
null
test/pytest/Service/test_services.py
michellab/BioSimSpaceCloud
456b146a2131565e354352872d3e75a08c3652d1
[ "Apache-2.0" ]
null
null
null
import pytest from Acquire.Service import get_remote_service_info skip_slow = True @pytest.mark.slow def test_login_to_service(): if skip_slow: return root_url = "http://130.61.60.88:8080/t" identity_service_url = "%s/identity" % root_url access_service_url = "%s/access" % root_url accounting_service_url = "%s/accounting" % root_url identity_service = get_remote_service_info(identity_service_url) # check whois username = "chryswoods" (get_username, uid) = identity_service.whois(username=username) assert(username == get_username) (get_username, get_uid) = identity_service.whois(user_uid=uid) assert(username == get_username) assert(uid == get_uid) access_service_url = get_remote_service_info(access_service_url) accounting_service_url = get_remote_service_info(accounting_service_url)
24.277778
76
0.741419
2bde139c294b4f2f55cb33466245f210a3e83645
17,271
py
Python
py2neo/admin/install.py
bwmetz/py2neo
93653a2428693cf29ff65647b703c60d763e1808
[ "Apache-2.0" ]
null
null
null
py2neo/admin/install.py
bwmetz/py2neo
93653a2428693cf29ff65647b703c60d763e1808
[ "Apache-2.0" ]
null
null
null
py2neo/admin/install.py
bwmetz/py2neo
93653a2428693cf29ff65647b703c60d763e1808
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # Copyright 2011-2018, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hashlib import sha256 from os import curdir, getenv, kill, listdir, makedirs, rename from os.path import abspath, dirname, expanduser, isdir, isfile, join as path_join from random import randint from re import compile as re_compile from shutil import rmtree from socket import create_connection from subprocess import check_call, check_output, CalledProcessError from tarfile import TarFile, ReadError from time import sleep, time from warnings import warn from py2neo.admin.dist import Distribution, archive_format from py2neo.internal.compat import bstr from py2neo.internal.util import hex_bytes, unhex_bytes class Warehouse(object): """ A local storage area for Neo4j installations. """ def __init__(self, home=None): self.home = home or getenv("PY2NEO_HOME") or expanduser("~/.py2neo") self.dist = path_join(self.home, "dist") self.run = path_join(self.home, "run") self.cc = path_join(self.home, "cc") def get(self, name, database=None, role=None, member=None): """ Obtain a Neo4j installation by name. :param name: :param database: :param role: :param member: :return: """ if database and role and member is not None: container = path_join(self.cc, name, database, role, str(member)) else: container = path_join(self.run, name) for dir_name in listdir(container): dir_path = path_join(container, dir_name) if isdir(dir_path): return Installation(dir_path) raise IOError("Could not locate installation directory") def install(self, name, edition=None, version=None, database=None, role=None, member=None): """ Install Neo4j. :param name: :param edition: :param version: :param database: :param role: :param member: :return: """ if database and role and member is not None: container = path_join(self.cc, name, database, role, str(member)) else: container = path_join(self.run, name) rmtree(container, ignore_errors=True) makedirs(container) archive_file = Distribution(edition, version).download(self.dist) try: with TarFile.open(archive_file, "r:{}".format(archive_format)) as archive: archive.extractall(container) except ReadError: # The tarfile module sometimes has trouble with certain tar # files for unknown reasons. This workaround falls back to # command line. check_call(["tar", "x", "-C", container, "-f", archive_file]) return self.get(name, database, role, member) def uninstall(self, name, database=None, role=None, member=None): """ Remove a Neo4j installation. :param name: :param database: :param role: :param member: :return: """ if database and role and member is not None: container = path_join(self.cc, name, database, role, str(member)) else: container = path_join(self.run, name) rmtree(container, ignore_errors=True) def directory(self): """ Fetch a dictionary of :class:`.Installation` objects, keyed by name, for all available Neo4j installations. """ try: return {name: self.get(name) for name in listdir(self.run) if not name.startswith(".")} except OSError: return {} def rename(self, name, new_name): """ Rename a Neo4j installation. :param name: :param new_name: :return: """ rename(path_join(self.run, name), path_join(self.run, new_name)) class Installation(object): """ A Neo4j 3.0+ server installation. """ config_file = "neo4j.conf" def __init__(self, home=None): self.home = home or abspath(curdir) self.server = Server(self) self.auth = AuthFile(path_join(self.home, "data", "dbms", "auth")) def __repr__(self): return "<%s home=%r>" % (self.__class__.__name__, self.home) @property def store_path(self): """ The location of the graph database store on disk. """ return path_join(self.home, "data", "databases", self.get_config("dbms.active_database", "graph.db")) def get_config(self, key, default=None): """ Retrieve the value of a configuration item. :param key: :param default: :return: """ config_file_path = path_join(self.home, "conf", self.config_file) with open(config_file_path, "r") as f_in: for line in f_in: if line.startswith(key + "="): return line.strip().partition("=")[-1] return default def set_config(self, key, value): """ Update a single configuration value. :param key: :param value: """ self.update_config({key: value}) def update_config(self, properties): """ Update multiple configuration values. :param properties: """ config_file_path = path_join(self.home, "conf", self.config_file) with open(config_file_path, "r") as f_in: lines = f_in.readlines() with open(config_file_path, "w") as f_out: properties2 = dict(properties) for line in lines: for key, value in properties2.items(): if line.startswith(key + "=") or \ (line.startswith("#") and line[1:].lstrip().startswith(key + "=")): if value is True: value = "true" if value is False: value = "false" f_out.write("%s=%s\n" % (key, value)) del properties2[key] break else: f_out.write(line) for key, value in properties2.items(): if value is True: value = "true" if value is False: value = "false" f_out.write("%s=%s\n" % (key, value)) @property def auth_enabled(self): """ Settable boolean property for enabling and disabling auth on this server. """ return self.get_config("dbms.security.auth_enabled", "true") == "true" @auth_enabled.setter def auth_enabled(self, value): self.set_config("dbms.security.auth_enabled", value) def _get_protocol_address(self, protocol, default_port): if self.get_config("dbms.connector.%s.enabled" % protocol, "true") != "true": raise ValueError("Protocol %r not enabled" % protocol) address = self.get_config("dbms.connector.%s.listen_address" % protocol) if address: host, _, port = address.partition(":") try: port = int(port) except (TypeError, ValueError): pass return host or "localhost", port return "localhost", default_port def _set_protocol_address(self, protocol, address): host, port = address self.set_config("dbms.connector.%s.listen_address" % protocol, "%s:%s" % (host, port)) @property def http_address(self): """ The host and port on which this server expects HTTP communication. :returns: 2-tuple of (host, port) """ return self._get_protocol_address("http", 7474) @http_address.setter def http_address(self, address): """ Set the host and port on which this server expects HTTP communication. """ self._set_protocol_address("http", address) @property def https_address(self): """ The host and port on which this server expects HTTPS communication. :returns: 2-tuple of (host, port) """ return self._get_protocol_address("https", 7473) @https_address.setter def https_address(self, address): """ Set the host and port on which this server expects HTTPS communication. """ self._set_protocol_address("https", address) @property def bolt_address(self): """ The host and port on which this server expects Bolt communication. :returns: 2-tuple of (host, port) """ return self._get_protocol_address("bolt", 7687) @bolt_address.setter def bolt_address(self, address): """ Set the host and port on which this server expects Bolt communication. """ self._set_protocol_address("bolt", address) @property def http_uri(self): """ The full HTTP URI for this server. """ host, port = self.http_address return "http://%s:%s" % (host, port) @property def https_uri(self): """ The full HTTPS URI for this server. """ host, port = self.https_address return "https://%s:%s" % (host, port) @property def bolt_uri(self): """ The full Bolt URI for this server. """ host, port = self.bolt_address return "bolt://%s:%s" % (host, port) @property def bolt_routing_uri(self): """ The full Bolt URI for this server. """ host, port = self.bolt_address return "bolt+routing://%s:%s" % (host, port) def delete_store(self, force=False): """ Delete the store directory for this server. :param force: """ if force or not self.server.running(): try: rmtree(self.store_path, ignore_errors=force) except FileNotFoundError: pass else: raise RuntimeError("Refusing to drop database store while server is running") class Server(object): """ Represents a Neo4j server process that can be started and stopped. """ def __init__(self, installation): self.installation = installation @property def control_script(self): return path_join(self.installation.home, "bin", "neo4j") def start(self, wait=120.0, verbose=False): """ Start the server. """ try: out = check_output("%s start" % self.control_script, shell=True) except CalledProcessError as error: if error.returncode == 2: raise OSError("Another process is listening on the server port") elif error.returncode == 512: raise OSError("Another server process is already running") else: raise OSError("An error occurred while trying to start " "the server [%s]" % error.returncode) else: pid = None for line in out.decode("utf-8").splitlines(False): if verbose: print(line) if line.startswith("process"): number_in_brackets = re_compile("\[(\d+)\]") numbers = number_in_brackets.search(line).groups() if numbers: pid = int(numbers[0]) elif "(pid " in line: pid = int(line.partition("(pid ")[-1].partition(")")[0]) running = False address = self.installation.bolt_address or self.installation.http_address t0 = time() while not running and (time() - t0) < wait: try: s = create_connection(address) except IOError: sleep(0.5) else: s.close() running = True if not running: warn("Timed out waiting for server to start") return pid def stop(self): """ Stop the server. """ pid = self.running() if not pid: return try: check_output(("%s stop" % self.control_script), shell=True) except CalledProcessError as error: raise OSError("An error occurred while trying to stop the server " "[%s]" % error.returncode) while pid: try: kill(pid, 0) except OSError: pid = 0 else: pass def restart(self): """ Restart the server. """ self.stop() return self.start() def running(self): """ The PID of the current executing process for this server. """ try: out = check_output(("%s status" % self.control_script), shell=True) except CalledProcessError as error: if error.returncode == 3: return None else: raise OSError("An error occurred while trying to query the " "server status [%s]" % error.returncode) else: p = None for line in out.decode("utf-8").splitlines(False): if "running" in line: p = int(line.rpartition(" ")[-1]) return p class AuthFile(object): """ A Neo4j auth file, generally located at data/dbms/auth. """ def __init__(self, name): self.name = name if not isfile(self.name): d = dirname(self.name) try: makedirs(d) except OSError: pass with open(self.name, "wb"): pass def __iter__(self): with open(self.name, "rb") as f: for line in f: yield AuthUser.load(line) def remove(self, user_name): """ Remove a user. """ user_name = bstr(user_name) with open(self.name, "rb") as f: lines = [line for line in f.readlines() if not AuthUser.match(line, user_name)] with open(self.name, "wb") as f: f.writelines(lines) def update(self, user_name, password): """ Add or update a user. """ user_name = bstr(user_name) password = bstr(password) updated = False with open(self.name, "rb") as f: lines = [] for line in f.readlines(): if AuthUser.match(line, user_name): lines.append(AuthUser.create(user_name, password).dump()) updated = True else: lines.append(line) if not updated: lines.append(AuthUser.create(user_name, password).dump()) with open(self.name, "wb") as f: f.writelines(lines) class AuthUser(object): #: Name of user name = None #: The hash algorithm mused to encode the user data hash_algorithm = None #: digest = None #: salt = None @classmethod def create(cls, user_name, password): user_name = bstr(user_name) password = bstr(password) inst = cls(user_name, b"SHA-256", None, None) inst.set_password(password) return inst @classmethod def load(cls, s): s = bstr(s) fields = s.rstrip().split(b":") name = fields[0] hash_algorithm, digest, salt = fields[1].split(b",") return cls(name, hash_algorithm, unhex_bytes(digest), unhex_bytes(salt)) @classmethod def match(cls, s, user_name): s = bstr(s) user_name = bstr(user_name) candidate_user_name, _, _ = s.partition(b":") return candidate_user_name == user_name def dump(self, eol=b"\r\n"): return self.name + b":" + self.hash_algorithm + b"," + hex_bytes(self.digest) + b"," + \ hex_bytes(self.salt) + b":" + bstr(eol) def __init__(self, name, hash_algorithm, digest, salt): assert hash_algorithm == b"SHA-256" self.name = bstr(name) self.hash_algorithm = bstr(hash_algorithm) self.digest = digest self.salt = salt def __repr__(self): return "<AuthUser name=%r>" % self.name def set_password(self, password): assert self.hash_algorithm == b"SHA-256" salt = bytearray(randint(0x00, 0xFF) for _ in range(16)) m = sha256() m.update(salt) m.update(bstr(password)) self.digest = m.digest() self.salt = salt def check_password(self, password): assert self.hash_algorithm == b"SHA-256" m = sha256() m.update(self.salt) m.update(bstr(password)) return m.digest() == self.digest
33.086207
99
0.566093
b5f9c9aca52d6b5f8329bf18df3bb3a0460b9b6f
3,584
py
Python
mylinebot/mylinebot/settings.py
tom-lin1128/stocklinebot
e2873e8d21fb4cb98b8776a0fc394b05f228ba04
[ "MIT" ]
null
null
null
mylinebot/mylinebot/settings.py
tom-lin1128/stocklinebot
e2873e8d21fb4cb98b8776a0fc394b05f228ba04
[ "MIT" ]
null
null
null
mylinebot/mylinebot/settings.py
tom-lin1128/stocklinebot
e2873e8d21fb4cb98b8776a0fc394b05f228ba04
[ "MIT" ]
null
null
null
""" Django settings for mylinebot project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-#aj)h^x(_i23ck+ix&31)g5=ose5_l6y1b*@4&5mh!&2qkl30+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ '78d6a9516f05.ngrok.io' ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'stocklinebot.apps.StocklinebotConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mylinebot.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mylinebot.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LINE_CHANNEL_ACCESS_TOKEN = 'VhdGQu8tSttV0efVvEY09UTcEqRh5XsBLcom/WezzBZncKu4gjOmzBzrwx7kNa+TkPX+RYT1EiAy+NeE6q5p5WkAYMLkVzlTe5lwKa1PeJcJFeJXb3ft1++sTOju2pdGN4DhzHUITZOWL2J8X7YvewdB04t89/1O/w1cDnyilFU=' LINE_CHANNEL_SECRET = '4eeed9db999545f557100c0de784bd71'
27.358779
202
0.717355
a33898b2e08b6ff1766e0bd884c475d52abc4998
28,490
py
Python
scripts/cascades/cluster_cascades/sensory_cascades_integration_clusters.py
mwinding/connectome_analysis
dbc747290891805863c9481921d8080dc2043d21
[ "MIT" ]
1
2021-06-10T05:48:16.000Z
2021-06-10T05:48:16.000Z
cascades/cluster_cascades/sensory_cascades_integration_clusters.py
mwinding/connectome_tools
0392f6b1e924194299ea7760d8386eb01f3371a3
[ "MIT" ]
2
2022-01-21T11:48:45.000Z
2022-01-21T11:48:45.000Z
scripts/cascades/cluster_cascades/sensory_cascades_integration_clusters.py
mwinding/connectome_analysis
dbc747290891805863c9481921d8080dc2043d21
[ "MIT" ]
1
2022-02-02T15:39:52.000Z
2022-02-02T15:39:52.000Z
#%% import os import sys try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass # %% import sys sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/maggot_models/') sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') from pymaid_creds import url, name, password, token import pymaid import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from graspy.plot import gridplot, heatmap from graspy.utils import binarize, pass_to_ranks from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams.update({'font.size': 6}) rm = pymaid.CatmaidInstance(url, token, name, password) mg = load_metagraph("Gad", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') mg.calculate_degrees(inplace=True) adj = mg.adj # adjacency matrix from the "mg" object clusters = pd.read_csv('cascades/data/meta-method=color_iso-d=8-bic_ratio=0.95-min_split=32.csv', index_col = 0, header = 0) order = pd.read_csv('cascades/data/signal_flow_order_lvl7.csv').values # make array from list of lists order_delisted = [] for sublist in order: order_delisted.append(sublist[0]) order = np.array(order_delisted) #%% # pull sensory annotations and then pull associated skids input_names = pymaid.get_annotated('mw brain inputs').name input_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain inputs').name)) input_skids = [val for sublist in input_skids_list for val in sublist] output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] # order names and skids in desired way for the rest of analysis sensory_order = [0, 3, 4, 1, 2, 6, 5] input_names_format = ['ORN', 'thermo', 'photo', 'AN', 'MN', 'vtd', 'A00c'] input_names_format_reordered = [input_names_format[i] for i in sensory_order] input_skids_list_reordered = [input_skids_list[i] for i in sensory_order] #%% # cascades from each sensory modality from src.traverse import Cascade, to_transmission_matrix from src.traverse import TraverseDispatcher # convert skids to indices input_indices_list = [] for input_skids in input_skids_list_reordered: indices = np.where([x in input_skids for x in mg.meta.index])[0] input_indices_list.append(indices) output_indices_list = [] for input_skids in output_skids_list: indices = np.where([x in input_skids for x in mg.meta.index])[0] output_indices_list.append(indices) all_input_indices = np.where([x in input_skids for x in mg.meta.index])[0] output_indices = np.where([x in output_skids for x in mg.meta.index])[0] p = 0.05 max_hops = 10 n_init = 100 simultaneous = True transition_probs = to_transmission_matrix(adj, p) cdispatch = TraverseDispatcher( Cascade, transition_probs, stop_nodes = output_indices, max_hops=max_hops, allow_loops = False, n_init=n_init, simultaneous=simultaneous, ) input_hit_hist_list = [] for input_indices in input_indices_list: hit_hist = cdispatch.multistart(start_nodes = input_indices) input_hit_hist_list.append(hit_hist) all_input_hit_hist = cdispatch.multistart(start_nodes = all_input_indices) # %% # identifying locations of intersecting signals in individual neurons # which clusters and which neurons? # tested a few different methods to define "integration neurons" # settled on summing all visits across hops and then 50% signal threshold # (majority of the time the signal goes through each particular neuron) # *** this is summed_sensory_hits_all threshold = n_init/2 # intersection between all sensory modalities, including hops sensory_hits_all_hops = [] for hop in range(0, len(input_hit_hist_list[0][0, :])): hops = [] for i in range(0, len(input_hit_hist_list[0])): sensory_hits = [] for input_hit_hist in input_hit_hist_list: sensory_hits.append(input_hit_hist[i, hop]>threshold) hops.append(sensory_hits) hops = pd.DataFrame(hops, columns = input_names_format_reordered, index = mg.meta.index) sensory_hits_all_hops.append(hops) # intersection between all sensory modalities, thresholding then ignoring hops sensory_hits_all = [] for i in range(0, len(input_hit_hist_list[0])): sensory_hits = [] for input_hit_hist in input_hit_hist_list: sensory_hits.append(sum(input_hit_hist[i]>threshold)>0) sensory_hits_all.append(sensory_hits) sensory_hits_all = pd.DataFrame(sensory_hits_all, columns = input_names_format_reordered, index = mg.meta.index) # intersection between all sensory modalities, summing hops then thresholding summed_sensory_hits_all = [] for i in range(0, len(input_hit_hist_list[0])): sensory_hits = [] for input_hit_hist in input_hit_hist_list: sensory_hits.append(sum(input_hit_hist[i][0:8])>threshold) summed_sensory_hits_all.append(sensory_hits) summed_sensory_hits_all = pd.DataFrame(summed_sensory_hits_all, columns = input_names_format_reordered, index = mg.meta.index) # intersection between all sensory modalities, summing hops (all 10 hops) then thresholding summed_sensory_hits_all2 = [] for i in range(0, len(input_hit_hist_list[0])): sensory_hits = [] for input_hit_hist in input_hit_hist_list: sensory_hits.append(sum(input_hit_hist[i][0:10])>threshold) summed_sensory_hits_all2.append(sensory_hits) summed_sensory_hits_all2 = pd.DataFrame(summed_sensory_hits_all2, columns = input_names_format_reordered, index = mg.meta.index) # intersection between all sensory modalities, sliding window sum hops then thresholding summed_window_sensory_hits_all = [] for i in range(0, len(input_hit_hist_list[0])): sensory_hits = [] for input_hit_hist in input_hit_hist_list: max_sum = max([sum(input_hit_hist[i][0:3]), sum(input_hit_hist[i][1:4]), sum(input_hit_hist[i][2:5]), sum(input_hit_hist[i][3:6]), sum(input_hit_hist[i][4:7]), sum(input_hit_hist[i][5:8])]) sensory_hits.append(max_sum>threshold) summed_window_sensory_hits_all.append(sensory_hits) summed_window_sensory_hits_all = pd.DataFrame(summed_window_sensory_hits_all, columns = input_names_format_reordered, index = mg.meta.index) summed_window_small_sensory_hits_all = [] for i in range(0, len(input_hit_hist_list[0])): sensory_hits = [] for input_hit_hist in input_hit_hist_list: max_sum = max([sum(input_hit_hist[i][0:2]), sum(input_hit_hist[i][1:3]), sum(input_hit_hist[i][2:4]), sum(input_hit_hist[i][3:5]), sum(input_hit_hist[i][4:6]), sum(input_hit_hist[i][5:7]), sum(input_hit_hist[i][6:8])]) sensory_hits.append(max_sum>threshold) summed_window_small_sensory_hits_all.append(sensory_hits) summed_window_small_sensory_hits_all = pd.DataFrame(summed_window_small_sensory_hits_all, columns = input_names_format_reordered, index = mg.meta.index) # %% # all permutations of sensory integration, ignoring hops from upsetplot import plot from upsetplot import from_contents from upsetplot import from_memberships mi = pd.MultiIndex.from_frame(sum(sensory_hits_all_hops)>0) data = pd.DataFrame(sensory_hits_all_hops[0].index, index = mi) plot(data, sort_by = 'cardinality', sort_categories_by = None) plt.savefig('cascades/cluster_plots/threshold_types_on-hops.pdf', format='pdf', bbox_inches='tight') mi = pd.MultiIndex.from_frame(summed_sensory_hits_all) data = pd.DataFrame(sensory_hits_all_hops[0].index, index = mi) sum_plot = plot(data, sort_by = 'cardinality', sort_categories_by = None) plt.savefig('cascades/cluster_plots/threshold_types_summed.pdf', format='pdf', bbox_inches='tight') mi = pd.MultiIndex.from_frame(summed_sensory_hits_all2) data = pd.DataFrame(sensory_hits_all_hops[0].index, index = mi) sum_plot = plot(data, sort_by = 'cardinality', sort_categories_by = None) plt.savefig('cascades/cluster_plots/threshold_types_summed2.pdf', format='pdf', bbox_inches='tight') mi = pd.MultiIndex.from_frame(summed_window_sensory_hits_all) data = pd.DataFrame(sensory_hits_all_hops[0].index, index = mi) plot(data, sort_by = 'cardinality', sort_categories_by = None) plt.savefig('cascades/cluster_plots/threshold_types_summed-window.pdf', format='pdf', bbox_inches='tight') mi = pd.MultiIndex.from_frame(summed_window_small_sensory_hits_all) data = pd.DataFrame(sensory_hits_all_hops[0].index, index = mi) plot(data, sort_by = 'cardinality', sort_categories_by = None) plt.savefig('cascades/cluster_plots/threshold_types_summed-small-window.pdf', format='pdf', bbox_inches='tight') # %% # identify skids in each category of sensory combination import itertools from tqdm import tqdm permut7 = list(itertools.product([True, False], repeat=7)) permut7 = [permut7[x] for x in range(len(permut7)-1)] # remove the all False scenario permut_members = [] for i, permut in enumerate(permut7): skids = [] for row in summed_sensory_hits_all.iterrows(): if((row[1][0]==permut[0]) & (row[1][1]==permut[1]) & (row[1][2]==permut[2]) & (row[1][3]==permut[3]) & (row[1][4]==permut[4]) & (row[1][5]==permut[5]) & (row[1][6]==permut[6])): skids.append(row[1].name) permut_members.append(skids) ''' permut_members2 = [] for i, permut in enumerate(permut7): skids = [] for row in summed_sensory_hits_all2.iterrows(): if((row[1][0]==permut[0]) & (row[1][1]==permut[1]) & (row[1][2]==permut[2]) & (row[1][3]==permut[3]) & (row[1][4]==permut[4]) & (row[1][5]==permut[5]) & (row[1][6]==permut[6])): skids.append(row[1].name) permut_members2.append(skids) ''' # where does sensory integration occur? for each type? def skid_to_index(skid, mg): index_match = np.where(mg.meta.index == skid)[0] if(len(index_match)==1): return(index_match[0]) if(len(index_match)!=1): print('Not one match for skid %i!' %skid) def index_to_skid(index, mg): return(mg.meta.iloc[index, :].name) def counts_to_list(count_list): expanded_counts = [] for i, count in enumerate(count_list): expanded = np.repeat(i, count) expanded_counts.append(expanded) return([x for sublist in expanded_counts for x in sublist]) # identify median hop number per skid hops_from_sens = [] for i, input_hit_hist in enumerate(input_hit_hist_list): for j, row in enumerate(input_hit_hist): median_hop = np.median(counts_to_list(row)) skid = index_to_skid(j, mg) if(summed_sensory_hits_all.loc[skid, input_names_format_reordered[i]] == True): hops_from_sens.append([skid, median_hop, input_names_format_reordered[i]]) hops_from_sens = pd.DataFrame(hops_from_sens, columns = ['skid', 'hops_from_sens', 'sensory_modality']) hops_from_sens_skid = hops_from_sens.groupby('skid') hops_keys = list(hops_from_sens_skid.groups.keys()) # %% # UpSet plot for figure length_permut_members = [len(x) for x in permut_members] sort = sorted(range(len(length_permut_members)), reverse = True, key = lambda k: length_permut_members[k]) #length_permut_members2 = [len(x) for x in permut_members2] #sort = sorted(range(len(length_permut_members2)), reverse = True, key = lambda k: length_permut_members2[k]) #subset = [permut_members[x] for x in [0, 1, 95, 111, 63, 15, 3, 123, 125, 126, 119]] # sort[0:8] + all sensory-specific subset = [permut_members[x] for x in sort[0:17]] subset = [item for sublist in subset for item in sublist] subset_upset = summed_sensory_hits_all.loc[subset] mi = pd.MultiIndex.from_frame(subset_upset) data = pd.DataFrame(subset, index = mi) sum_plot = plot(data, sort_categories_by = None) plt.savefig('cascades/cluster_plots/Integration_Upset_Plot.pdf', format='pdf', bbox_inches='tight') # %% # integrative vs nonintegrative indices_nonintegrative = [i for i, x in enumerate(permut7) if sum(x)==1] indices_integrative = [i for i, x in enumerate(permut7) if sum(x)>1] # no comment on brain vs non-brain neurons # ****change to brain neurons only? total_nonintegrative = sum([len(permut_members[x]) for x in indices_nonintegrative]) total_integrative = sum([len(permut_members[x]) for x in indices_integrative]) no_signal = len(summed_sensory_hits_all.iloc[:, 0]) - total_nonintegrative - total_integrative integrative_skids = [permut_members[x] for x in indices_integrative] integrative_skids = [item for sublist in integrative_skids for item in sublist] nonintegrative_skids = [permut_members[x] for x in indices_nonintegrative] nonintegrative_skids = [item for sublist in nonintegrative_skids for item in sublist] # how many hops from each sensory type mean_hops_integrative = [] for skid in integrative_skids: mean_hop = np.mean(hops_from_sens.iloc[hops_from_sens_skid.groups[skid], 1]) mean_hops_integrative.append([skid, mean_hop, 'Integrative']) #mean_hops = pd.DataFrame(np.concatenate([mean_hops_integrative, mean_hops_nonintegrative]), # columns = ['skid', 'mean_hops', 'integration']) #mean_hops['mean_hops'] = mean_hops['mean_hops'].astype('float64') all_hops_integrative = [] for skid in integrative_skids: hops = hops_from_sens.iloc[hops_from_sens_skid.groups[skid], 1] for hop in hops: all_hops_integrative.append([skid, hop, 'Integrative']) all_hops_nonintegrative = [] for skid in nonintegrative_skids: hop = hops_from_sens.iloc[hops_from_sens_skid.groups[skid], 1] all_hops_nonintegrative.append([skid, hop, 'Labelled Line']) all_hops = pd.DataFrame(np.concatenate([all_hops_integrative, all_hops_nonintegrative]), columns = ['skid', 'all_hops', 'integration']) all_hops['all_hops'] = all_hops['all_hops'].astype('float64') fig, axs = plt.subplots( 1, 1, figsize = (1.5,1.75) ) fig.tight_layout(pad = 2.0) ax = axs sns.violinplot(data = all_hops, x = 'integration', y = 'all_hops', ax = ax, linewidth = 0.5) ax.set_ylabel('Hops from Sensory', fontsize = 6) ax.set_xlabel('') ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8]) ax.set_xticklabels( ('Integrative\nN=%i' %len(mean_hops_integrative), 'Labelled Line\nN=%i' %len(all_hops_nonintegrative)) ) fig.savefig('cascades/cluster_plots/Integrative_LabelledLine_plot.pdf', format='pdf', bbox_inches='tight') plt.rcParams["font.family"] = "Arial" # %% # Where do integrations occur? all_hops_integrative_first_vs_other = [] for skid in integrative_skids: hops = hops_from_sens.iloc[hops_from_sens_skid.groups[skid], 1] gate = 0 for hop in hops: if((hop == min(hops)) & (gate == 0)): all_hops_integrative_first_vs_other.append([skid, hop, 'Integrative', 'First']) gate += 1 if((hop != min(hops)) | (gate != 0)): all_hops_integrative_first_vs_other.append([skid, hop, 'Integrative', 'Additional']) all_hops_integrative_first_vs_other = pd.DataFrame(all_hops_integrative_first_vs_other, columns = ['skid', 'all_hops', 'integration', 'step']) all_hops_integrative_first_vs_other.index = all_hops_integrative_first_vs_other.skid fig, axs = plt.subplots( 1, 1, figsize = (2,2) ) fig.tight_layout(pad = 2.0) ax = axs vplt = sns.violinplot(data = all_hops_integrative_first_vs_other, x = 'integration', y = 'all_hops', hue='step', split = True, ax = ax, linewidth = 0.5, legend_out=True, hue_order = ['First', 'Additional']) ax.set_ylabel('Hops from Sensory', fontsize = 6) ax.set_xlabel('') ax.set_xticklabels( ('Integrative\nN=%i' %len(mean_hops_integrative), 'Labelled Line\nN=%i' %len(all_hops_nonintegrative)) ) fig.savefig('cascades/cluster_plots/Integrative_detail_plot.pdf', format='pdf') plt.rcParams["font.family"] = "Arial" # %% # integration detail hop plots for each type in UpSet plot # permutations to sensory names # names for plot permut_names = [] for permut in permut7: names = [] for i in range(0, len(permut)): if(permut[i]==True): names.append(input_names_format_reordered[i]) sep = ' + ' permut_names.append(sep.join(names)) permut_names = np.array(permut_names) # identifying indices to be used in permut_members nonintegrative_indices = [i for i, x in enumerate(permut7) if sum(x)==1] integrative_indices = [x for x in sort[0:17] if (x not in nonintegrative_indices)] permut_col = [] for skid in all_hops_integrative_first_vs_other.skid: for i, permut in enumerate(permut_members): for permut_skid in permut: if(skid == permut_skid): permut_col.append([skid, i]) permut_col = pd.DataFrame(permut_col, columns = ['skid', 'permut_index']) all_hops_integrative_first_vs_other['permut_index'] = permut_col.permut_index.values all_hops_integrative_first_vs_other['permut_name'] = permut_names[permut_col.permut_index.values] all_hops_integrative_first_vs_other.index = permut_col.permut_index.values fig, axs = plt.subplots( 1, 1, figsize = (3.75,1.25) ) fig.tight_layout(pad = 2.0) ax = axs sns.violinplot(data = all_hops_integrative_first_vs_other.loc[integrative_indices], x = 'permut_name', y = 'all_hops', scale = 'width', hue = 'step', split=True, hue_order=['First','Additional'], ax = ax, linewidth = 0.5) ax.set_ylabel('Hops from Sensory', fontsize = 6) ax.set_xlabel('') plt.xticks(rotation=45, ha = 'right') ax.set(ylim = (0, 8)) ax.set_yticks(np.arange(0, 9, 1)) plt.savefig('cascades/cluster_plots/Integrative_hop_violinplots_labels.pdf', format='pdf', bbox_inches='tight') fig, axs = plt.subplots( 1, 1, figsize = (3.75,1.25) ) fig.tight_layout(pad = 2.0) ax = axs sns.violinplot(data = all_hops_integrative_first_vs_other.loc[integrative_indices], x = 'permut_name', y = 'all_hops', scale = 'width', hue = 'step', split=True, hue_order=['First','Additional'], ax = ax, linewidth = 0.5) ax.set_ylabel('Hops from Sensory', fontsize = 6) ax.set_xlabel('') plt.xticks([]) ax.set(ylim = (0, 8)) ax.set_yticks(np.arange(0, 9, 1)) plt.savefig('cascades/cluster_plots/Integrative_hop_violinplots_nolabels.pdf', format='pdf', bbox_inches='tight') #%% # same but with nonintegrative all_hops_nonintegrative = [] for skid in nonintegrative_skids: hops = hops_from_sens.iloc[hops_from_sens_skid.groups[skid], 1] gate = 0 for hop in hops: if((hop == min(hops)) & (gate == 0)): all_hops_nonintegrative.append([skid, hop, 'Labelled Line', 'First']) gate += 1 if((hop != min(hops)) | (gate != 0)): all_hops_nonintegrative.append([skid, hop, 'Labelled Line', 'Additional']) all_hops_nonintegrative = pd.DataFrame(all_hops_nonintegrative, columns = ['skid', 'all_hops', 'integration', 'step']) permut_col_nonintegrative = [] for skid in all_hops_nonintegrative.skid: for i, permut in enumerate(permut_members): for permut_skid in permut: if(skid == permut_skid): permut_col_nonintegrative.append([skid, i]) permut_col_nonintegrative = pd.DataFrame(permut_col_nonintegrative, columns = ['skid', 'permut_index']) all_hops_nonintegrative['permut_index'] = permut_col_nonintegrative.permut_index.values all_hops_nonintegrative['permut_name'] = permut_names[permut_col_nonintegrative.permut_index.values] all_hops_nonintegrative.index = permut_col_nonintegrative.permut_index.values fig, axs = plt.subplots( 1, 1, figsize = (3.75,1.25) ) fig.tight_layout(pad = 2.0) ax = axs sns.violinplot(data = all_hops_nonintegrative.loc[nonintegrative_indices], x = 'permut_name', y = 'all_hops', scale = 'width', ax = ax, linewidth = 0.5) ax.set_ylabel('Hops from Sensory', fontsize = 6) ax.set_xlabel('') ax.set(ylim = (0, 8)) ax.set_yticks(np.arange(0, 9, 1)) plt.savefig('cascades/cluster_plots/Labelled_line_hop_violinplots.pdf', format='pdf', bbox_inches='tight') # %% # how many outputs associated with each type? labelledline_descendings = [] for i in nonintegrative_indices: skids = np.unique(all_hops_nonintegrative.loc[i].skid) labelledline_descendings.append([i, sum(mg.meta.loc[skids].dVNC), sum(mg.meta.loc[skids].dSEZ), sum(mg.meta.loc[skids].RG)]) labelledline_descendings = pd.DataFrame(labelledline_descendings, columns = ['permut_number', 'dVNCs', 'dSEZs', 'RG']) labelledline_descendings.index = labelledline_descendings.permut_number labelledline_descendings['permut_name'] = permut_names[nonintegrative_indices] integrative_descendings = [] for i in integrative_indices: skids = np.unique(all_hops_integrative_first_vs_other.loc[i].skid) integrative_descendings.append([i, sum(mg.meta.loc[skids].dVNC), sum(mg.meta.loc[skids].dSEZ), sum(mg.meta.loc[skids].RG)]) integrative_descendings = pd.DataFrame(integrative_descendings, columns = ['permut_number', 'dVNCs', 'dSEZs', 'RG']) integrative_descendings.index = integrative_descendings.permut_number integrative_descendings['permut_name'] = permut_names[integrative_indices] fig, axs = plt.subplots( 1, 1, figsize=(3.75,.4) ) ax = axs sns.heatmap(labelledline_descendings.iloc[:, 1:4].T, ax = ax, annot=True, cmap = 'Blues') fig.savefig('cascades/cluster_plots/Labelled_line_hop_violinplots_bottom.pdf', format='pdf', bbox_inches='tight') fig, axs = plt.subplots( 1, 1, figsize=(3.75,.4) ) ax = axs #ax.set_xticklables(integrative_descendings.permut_name.values) sns.heatmap(integrative_descendings.iloc[:, 1:4].T, ax = ax, annot=True, cmap = 'Oranges') fig.savefig('cascades/cluster_plots/Integrative_hop_violinplots_bottom.pdf', format='pdf', bbox_inches='tight') # order in main figure # 31, 79, 15, 47, 13, 3, 7, 1, 0 fig, axs = plt.subplots( 1, 1, figsize=(3.75,.4) ) ax = axs sns.heatmap(integrative_descendings.loc[[31, 79, 15, 47, 13, 3, 7, 1, 0], ['dVNCs', 'dSEZs', 'RG']].T, ax = ax, annot=True, cmap = 'Oranges') fig.savefig('cascades/cluster_plots/Integrative_hop_violinplots_bottom_alt.pdf', format='pdf', bbox_inches='tight') # %% #Questions # which clusters contain these neuron types? # which clusters display which types of sensory input and how much? # %% # plotting sensory integration make-up per cluster # level 7 clusters lvl7 = clusters.groupby('lvl7_labels') # integration types per cluster cluster_lvl7 = [] for key in lvl7.groups.keys(): for i, permut in enumerate(permut_members): for permut_skid in permut: if((permut_skid in lvl7.groups[key].values) & (i in nonintegrative_indices)): cluster_lvl7.append([key, permut_skid, i, permut_names[i], 'labelled_line']) if((permut_skid in lvl7.groups[key].values) & (i not in nonintegrative_indices)): cluster_lvl7.append([key, permut_skid, i, permut_names[i], 'integrative']) cluster_lvl7 = pd.DataFrame(cluster_lvl7, columns = ['key', 'skid', 'permut_index', 'permut_name', 'integration']) cluster_lvl7_groups = cluster_lvl7.groupby('key') percent_integrative = [sum(x[1].integration == 'integrative')/len(x[1].integration) for x in list(cluster_lvl7_groups)] percent_labelled_line = [sum(x[1].integration == 'labelled_line')/len(x[1].integration) for x in list(cluster_lvl7_groups)] percent_labelled_line_subtypes = [] for index in nonintegrative_indices: percent_labelled_line_subtypes.append( [sum(x[1].permut_index == index)/len(x[1].permut_index) for x in list(cluster_lvl7_groups)] ) percent_integrative_subtypes = [] for index in integrative_indices: percent_integrative_subtypes.append( [sum(x[1].permut_index == index)/len(x[1].permut_index) for x in list(cluster_lvl7_groups)] ) cluster_character = pd.DataFrame([percent_integrative, percent_labelled_line], columns = lvl7.groups.keys(), index = ['integrative', 'labelled_line']).T cluster_character_sub_labelled_line = pd.DataFrame(percent_labelled_line_subtypes, columns = lvl7.groups.keys(), index = [permut_names[x] for x in nonintegrative_indices]).T cluster_character_sub_integrative = pd.DataFrame(percent_integrative_subtypes, columns = lvl7.groups.keys(), index = integrative_indices).T import cmasher as cmr fig, axs = plt.subplots( 1, 1, figsize = (1.5, 2) ) ax = axs ax.set_ylabel('Individual Clusters') ax.set_yticks([]); ax.set_xticks([]); sns.heatmap(cluster_character.loc[order, ['labelled_line', 'integrative']], cmap = 'Greens', rasterized = True) fig.savefig('cascades/cluster_plots/Clusters_ll_vs_integrative.pdf', format='pdf', bbox_inches='tight') ind = np.arange(0, len(cluster_character.index)) data1 = cluster_character.loc[order, ['labelled_line']].values data1 = [x for sublist in data1 for x in sublist] data2 = cluster_character.loc[order, ['integrative']].values data2 = [x for sublist in data2 for x in sublist] #data2 = np.array(data1) + np.array(data2) plt.bar(ind, data1, color = 'orange', alpha = 0.5) plt.bar(ind, data2, bottom = data1, color = 'blue', alpha = 0.5) fig, axs = plt.subplots( 1, 1, figsize = (5, 5) ) ax = axs ax.set_ylabel('Individual Clusters') ax.set_yticks([]); ax.set_xticks([]); sns.heatmap(cluster_character_sub_labelled_line.loc[order], cmap = 'Greens', rasterized = True, ax = ax) fig.savefig('cascades/cluster_plots/Clusters_labelled_line_character.pdf', format='pdf', bbox_inches='tight') fig, axs = plt.subplots( 1, 1, figsize = (5, 5) ) ax = axs ax.set_ylabel('Individual Clusters') ax.set_yticks([]); ax.set_xticks([]); sns.heatmap(cluster_character_sub_integrative.loc[order], cmap = 'Greens', rasterized = True, ax = ax) fig.savefig('cascades/cluster_plots/Clusters_integrative_character.pdf', format='pdf', bbox_inches='tight') # stacked bar plot for all types of integrative and non integrative ORN_frac = cluster_character_sub_labelled_line.loc[order,'ORN'].values AN_frac = cluster_character_sub_labelled_line.loc[order,'AN'].values MN_frac = cluster_character_sub_labelled_line.loc[order,'MN'].values thermo_frac = cluster_character_sub_labelled_line.loc[order,'thermo'].values photo_frac = cluster_character_sub_labelled_line.loc[order,'photo'].values A00c_frac = cluster_character_sub_labelled_line.loc[order,'A00c'].values vtd_frac = cluster_character_sub_labelled_line.loc[order,'vtd'].values labelledline_frac = ORN_frac + AN_frac + MN_frac + thermo_frac + photo_frac + A00c_frac + vtd_frac all_integrative_frac = cluster_character_sub_integrative.loc[order, 0].values most_integrative_frac = cluster_character_sub_integrative.loc[order, 1].values OR_AN_MN_integrative_frac = cluster_character_sub_integrative.loc[order, 15].values rest_integrative_frac = cluster_character_sub_integrative.loc[order, :].sum(axis = 1) - all_integrative_frac - most_integrative_frac - OR_AN_MN_integrative_frac plt.bar(ind, ORN_frac, color = 'blue') plt.bar(ind, AN_frac, bottom = ORN_frac, color = 'tab:blue') plt.bar(ind, MN_frac, bottom = ORN_frac + AN_frac, color = 'tab:cyan') plt.bar(ind, thermo_frac, bottom = ORN_frac + AN_frac + MN_frac, color = 'purple') plt.bar(ind, photo_frac, bottom = ORN_frac + AN_frac + MN_frac + thermo_frac, color = 'tab:purple') plt.bar(ind, A00c_frac, bottom = ORN_frac + AN_frac + MN_frac + thermo_frac + photo_frac, color = 'mediumorchid') plt.bar(ind, vtd_frac, bottom = ORN_frac + AN_frac + MN_frac + thermo_frac + photo_frac + A00c_frac, color = 'plum') plt.bar(ind, all_integrative_frac, bottom = labelledline_frac, color = 'maroon') plt.bar(ind, most_integrative_frac, bottom = labelledline_frac + all_integrative_frac, color = 'firebrick') plt.bar(ind, OR_AN_MN_integrative_frac, bottom = labelledline_frac + all_integrative_frac + most_integrative_frac, color = 'salmon') plt.bar(ind, rest_integrative_frac, bottom = labelledline_frac + all_integrative_frac + most_integrative_frac + OR_AN_MN_integrative_frac, color = 'lightsalmon') plt.savefig('cascades/cluster_plots/Clusters_multisensory_character.pdf', format='pdf', bbox_inches='tight') # %%
40.816619
161
0.726079
cffb3cc192da039cb574d4e5f9d4ed0d81b383b5
1,427
py
Python
app/recipe/serializers.py
demirtaserdem/django-rest-adv
a8259fa4308c71dcc80456d9f0266fd40c22480c
[ "MIT" ]
null
null
null
app/recipe/serializers.py
demirtaserdem/django-rest-adv
a8259fa4308c71dcc80456d9f0266fd40c22480c
[ "MIT" ]
null
null
null
app/recipe/serializers.py
demirtaserdem/django-rest-adv
a8259fa4308c71dcc80456d9f0266fd40c22480c
[ "MIT" ]
null
null
null
from rest_framework import serializers from core.models import Tag, Ingredient, Recipe class TagSerializer(serializers.ModelSerializer): """Serializer for tag objects""" class Meta: model = Tag fields = ('id', 'name') read_only_fields = ('id',) class IngredientSerializer(serializers.ModelSerializer): """Serializer for ingredient objects""" class Meta: model = Ingredient fields = ('id', 'name') read_only_fields = ('id',) class RecipeSerializer(serializers.ModelSerializer): """Serializer a recipe""" ingredients = serializers.PrimaryKeyRelatedField( many=True, queryset=Ingredient.objects.all() ) tags = serializers.PrimaryKeyRelatedField( many=True, queryset=Tag.objects.all() ) class Meta: model = Recipe fields = ( 'id', 'title', 'ingredients', 'tags', 'time_minutes', 'price', 'link' ) read_only_fields = ('id',) class RecipeDetailSerializer(RecipeSerializer): """Serialize a recipe detail""" ingredients = IngredientSerializer(many=True, read_only=True) tags = TagSerializer(many=True, read_only=True) class RecipeImageSerializer(serializers.ModelSerializer): """Serializer for uploading images to recipes""" class Meta: model = Recipe fields = ('id', 'image') read_only_fields = ('id',)
26.924528
65
0.641205
3f84670f98832589ea47852a7d369f54dc76c8ed
566
py
Python
rcsystem/migrations/0040_auto_20200831_2100.py
perought/recommender-web-site
ce62c71ca86756cc2810966cacd0e4597918c7dd
[ "MIT" ]
null
null
null
rcsystem/migrations/0040_auto_20200831_2100.py
perought/recommender-web-site
ce62c71ca86756cc2810966cacd0e4597918c7dd
[ "MIT" ]
null
null
null
rcsystem/migrations/0040_auto_20200831_2100.py
perought/recommender-web-site
ce62c71ca86756cc2810966cacd0e4597918c7dd
[ "MIT" ]
null
null
null
# Generated by Django 3.0.3 on 2020-08-31 18:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rcsystem', '0039_auto_20200831_2056'), ] operations = [ migrations.AlterField( model_name='moviedatabase', name='vote_average', field=models.CharField(max_length=250), ), migrations.AlterField( model_name='moviedatabase', name='vote_count', field=models.CharField(max_length=250), ), ]
23.583333
51
0.59364
cba1e2ab5d29278fc05617e07688fb57047860d0
196
py
Python
touch_time_test.py
goldang01/Python_Example
f0de3384278762d7935885ca0bc08303346ad5a1
[ "MIT" ]
null
null
null
touch_time_test.py
goldang01/Python_Example
f0de3384278762d7935885ca0bc08303346ad5a1
[ "MIT" ]
null
null
null
touch_time_test.py
goldang01/Python_Example
f0de3384278762d7935885ca0bc08303346ad5a1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: import datetime import pandas as pd now = datetime.datetime.now() df = pd.DataFrame({ "time":[now] }) df.to_csv("time_test.csv", mode = "a")
13.066667
38
0.637755
119f82b56d2ea87640cd03670ca01ed078091aff
367
py
Python
tests/test_reddit.py
bwlodarski277/reddit-async
c7a54c539eb1b71dc2160e08294ca7f18d66fe32
[ "MIT" ]
null
null
null
tests/test_reddit.py
bwlodarski277/reddit-async
c7a54c539eb1b71dc2160e08294ca7f18d66fe32
[ "MIT" ]
null
null
null
tests/test_reddit.py
bwlodarski277/reddit-async
c7a54c539eb1b71dc2160e08294ca7f18d66fe32
[ "MIT" ]
null
null
null
import pytest from core.reddit import Reddit class TestInit: @pytest.mark.asyncio async def test_invalid_input(self): with pytest.raises(ValueError): reddit = await Reddit.init('', '', '', '') @pytest.mark.asyncio async def test_valid_input(self): reddit = await Reddit.init() assert 'error' not in reddit.auth
22.9375
54
0.645777
468de0a71f818fd7009b36c60d3996346d2a5a68
1,717
py
Python
wap_mms_message/__init__.py
whardier/wap-mms-message
8c217d9e05ff0338f3cbd8ab910737ea9258a014
[ "MIT" ]
null
null
null
wap_mms_message/__init__.py
whardier/wap-mms-message
8c217d9e05ff0338f3cbd8ab910737ea9258a014
[ "MIT" ]
null
null
null
wap_mms_message/__init__.py
whardier/wap-mms-message
8c217d9e05ff0338f3cbd8ab910737ea9258a014
[ "MIT" ]
null
null
null
# The MIT License (MIT) # Copyright (c) 2020 Shane R. Spencer <spencersr@gmail.com> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # SPDX-License-Identifier: MIT # Author: Shane R. Spencer <spencersr@gmail.com> """Extremely simple encoder for application/vnd.wap.mms-message payloads""" # version is a human-readable version number. # version_info is a four-tuple for programmatic comparison. The first # three numbers are the components of the version number. The fourth # is zero for an official release, positive for a development branch, # or negative for a release candidate or beta (after the base version # number has been incremented) version = "2020.4.0a1" version_info = (2020, 4, 0, -200)
41.878049
79
0.771112
18e8d395a3da8868f071c5ed0749270bf3c5420b
5,712
py
Python
Agent/Agent.py
OctThe16th/BetterTrainingDataMnist_RL_GAN
fcc75c9ddf768d7c66c9fade3e86973a4c828624
[ "MIT" ]
null
null
null
Agent/Agent.py
OctThe16th/BetterTrainingDataMnist_RL_GAN
fcc75c9ddf768d7c66c9fade3e86973a4c828624
[ "MIT" ]
null
null
null
Agent/Agent.py
OctThe16th/BetterTrainingDataMnist_RL_GAN
fcc75c9ddf768d7c66c9fade3e86973a4c828624
[ "MIT" ]
null
null
null
import os import numba as nb import numpy as np import math import keras.backend as K from PriorityExperienceReplay.PriorityExperienceReplay import Experience import tensorflow as tf from Actor import ActorNetwork from Critic import CriticNetwork from Environnement.Environnement import Environnement os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' class Agent: def __init__(self, amount_per_class=10): self.environnement = Environnement(amount_per_class=amount_per_class) self.batch_size = amount_per_class * 10 # Bunch of placeholders values self.dummy_value = np.zeros((self.batch_size, 1)) self.dummy_predictions = np.zeros((self.batch_size, 784)) config = tf.ConfigProto() config.gpu_options.allow_growth = True self.sess = tf.Session(config=config) K.set_learning_phase(1) K.set_session(self.sess) self.atoms = 51 self.v_max = 2 self.v_min = -2 self.delta_z = (self.v_max - self.v_min) / float(self.atoms - 1) self.z_steps = np.array([self.v_min + i * self.delta_z for i in range(self.atoms)]).astype(np.float32) self.actor = ActorNetwork(self.sess, 28*28 + 10, 28*28, tau=0.001, lr=5*10e-5) self.critic = CriticNetwork(self.sess, 28*28 + 10, 28*28, tau=0.001, lr=5*10e-5) self.memory = Experience(memory_size=1000000, batch_size=self.batch_size*10, alpha=0.5) def train(self, epoch): e = 0 while e <= epoch: done = False print('Epoch :', e) batch_num = 0 while self.memory.tree.size < 10000: self.add_values_to_memory() while done is False: if batch_num % 4 == 0: self.add_values_to_memory() self.train_loop() batch_num += 1 if batch_num % (100000//self.batch_size) == 0: batch_x, batch_f1, batch_y = self.environnement.query_state() batch_y_prime = self.flatten_digit_class(batch_y) pred_x = np.reshape(batch_x, (self.batch_size, 28 * 28)) pred_x = np.concatenate([pred_x, batch_y_prime], axis=1) old_predictions = self.actor.model.predict([pred_x]) values, test_values = self.get_values(np.reshape(batch_x, old_predictions.shape) + 2 * old_predictions, batch_f1, batch_y) print('Batch num :', batch_num, '\tValues :', np.mean(values), '\tTest values :', np.mean(test_values)) e += 1 def train_loop(self): states, actions, reward, indices = self.make_dataset() loss = self.critic.model.train_on_batch([states, actions], reward) a_for_grad = self.actor.model.predict(states) grads = self.critic.gradients(states, a_for_grad) self.actor.train(states, grads) # self.actor.target_train() # self.critic.target_train() self.memory.priority_update(indices, [loss for _ in range(len(indices))]) def add_values_to_memory(self): batch_x, batch_f1, batch_y = self.environnement.query_state() batch_y_prime = self.flatten_digit_class(batch_y) pred_x = np.reshape(batch_x, (self.batch_size, 28 * 28)) pred_x = np.concatenate([pred_x, batch_y_prime], axis=1) old_predictions = self.actor.model.predict(pred_x) actions, new_predictions = self.get_actions(old_predictions, batch_x) values, test = self.get_values(new_predictions, batch_f1, batch_y) for i in range(pred_x.shape[0]): self.memory.add([pred_x[i], actions[i], values[i]], 5) @nb.jit def flatten_digit_class(self, batch_y): batch_y_prime = np.zeros(shape=(self.batch_size, 10)) for i in range(batch_y.shape[0]): batch_y_prime[batch_y[i]] = 1 return batch_y_prime @nb.jit def get_values(self, actions, batch_f1, batch_y): class_values, test = self.environnement.get_values(actions, batch_y) class_values -= batch_f1 values = np.zeros(batch_y.shape) test -= batch_f1 for i in range(values.shape[0]): values[i] = class_values[int(batch_y[i])] normalizing_factor = np.nanmean(batch_f1)/2 return values/normalizing_factor, test/normalizing_factor @nb.jit def get_actions(self, old_predictions, old_state): actions = old_predictions + np.random.normal(loc=0, scale=1, size=old_predictions.shape) new_predictions = np.reshape(old_state, (actions.shape)) + actions actions = np.clip(actions, -1, 1) new_predictions = np.clip(new_predictions, -1, 1) return actions, new_predictions def make_dataset(self): data, weights, indices = self.memory.select(0.6) states, reward, actions = [], [], [] for i in range(self.batch_size): states.append(data[i][0]) actions.append(data[i][1]) reward.append(data[i][2]) states = np.array(states) reward = np.array(reward) actions = np.array(actions) return states, actions, reward, indices @nb.jit def update_m_prob(self, reward, m_prob, z): for i in range(self.batch_size): for j in range(self.atoms): Tz = min(self.v_max, max(self.v_min, reward[i])) bj = (Tz - self.v_min) / self.delta_z m_l, m_u = math.floor(bj), math.ceil(bj) m_prob[i, int(m_l)] += z[i, j] * (m_u - bj) m_prob[i, int(m_u)] += z[i, j] * (bj - m_l) if __name__ == '__main__': agent = Agent(amount_per_class=1) agent.train(epoch=1)
38.33557
142
0.619398
370db6095ef8c70f32ea1c65e37c09fba4546d28
1,701
py
Python
tests/base.py
vtrbtf/http-prompt
b814f6a36a0c724ce60a21f52ef5c71708d39395
[ "MIT" ]
null
null
null
tests/base.py
vtrbtf/http-prompt
b814f6a36a0c724ce60a21f52ef5c71708d39395
[ "MIT" ]
null
null
null
tests/base.py
vtrbtf/http-prompt
b814f6a36a0c724ce60a21f52ef5c71708d39395
[ "MIT" ]
1
2018-05-03T18:14:01.000Z
2018-05-03T18:14:01.000Z
import os import shutil import sys import tempfile import unittest import six class TempAppDirTestCase(unittest.TestCase): """Set up temporary app data and config directories before every test method, and delete them afterwards. """ def setUp(self): # Create a temp dir that will contain data and config directories self.temp_dir = tempfile.mkdtemp() if sys.platform == 'win32': self.homes = { # subdir_name: envvar_name 'data': 'LOCALAPPDATA', 'config': 'LOCALAPPDATA' } else: self.homes = { # subdir_name: envvar_name 'data': 'XDG_DATA_HOME', 'config': 'XDG_CONFIG_HOME' } # Used to restore self.orig_envvars = {} for subdir_name, envvar_name in self.homes.items(): if envvar_name in os.environ: self.orig_envvars[envvar_name] = os.environ[envvar_name] os.environ[envvar_name] = os.path.join(self.temp_dir, subdir_name) def tearDown(self): # Restore envvar values for name in self.homes.values(): if name in self.orig_envvars: os.environ[name] = self.orig_envvars[name] else: del os.environ[name] shutil.rmtree(self.temp_dir) def make_tempfile(self, data=''): """Create a file under self.temp_dir and return the path.""" if isinstance(data, six.text_type): data = data.encode('utf-8') with tempfile.NamedTemporaryFile(dir=self.temp_dir, delete=False) as f: f.write(data) return f.name
29.842105
79
0.579071
cfd7f5a623a3f00ebf0656522e04773827883c1c
9,500
py
Python
utils/utils_bbox.py
bubbliiiing/faster-rcnn-tf2
c3982016c7c209a3fa71a30facbe53396e6340ee
[ "MIT" ]
133
2020-11-23T05:43:08.000Z
2022-03-30T08:10:50.000Z
utils/utils_bbox.py
Whale1024/faster-rcnn-tf2
6343860e5d44e8441fa736620762e4c256b27083
[ "MIT" ]
15
2020-12-01T12:07:14.000Z
2021-09-30T02:27:37.000Z
utils/utils_bbox.py
Whale1024/faster-rcnn-tf2
6343860e5d44e8441fa736620762e4c256b27083
[ "MIT" ]
40
2020-11-24T13:01:41.000Z
2022-03-30T08:10:53.000Z
import math import numpy as np import tensorflow as tf import tensorflow.keras.backend as K class BBoxUtility(object): def __init__(self, num_classes, rpn_pre_boxes = 12000, rpn_nms = 0.7, nms_iou = 0.3, min_k = 300): #---------------------------------------------------# # 种类数量 #---------------------------------------------------# self.num_classes = num_classes #---------------------------------------------------# # 建议框非极大抑制前的框的数量 #---------------------------------------------------# self.rpn_pre_boxes = rpn_pre_boxes #---------------------------------------------------# # 非极大抑制的iou #---------------------------------------------------# self.rpn_nms = rpn_nms self.nms_iou = nms_iou #---------------------------------------------------# # 建议框非极大抑制后的框的数量 #---------------------------------------------------# self._min_k = min_k def decode_boxes(self, mbox_loc, anchors, variances): # 获得先验框的宽与高 anchor_width = anchors[:, 2] - anchors[:, 0] anchor_height = anchors[:, 3] - anchors[:, 1] # 获得先验框的中心点 anchor_center_x = 0.5 * (anchors[:, 2] + anchors[:, 0]) anchor_center_y = 0.5 * (anchors[:, 3] + anchors[:, 1]) # 真实框距离先验框中心的xy轴偏移情况 detections_center_x = mbox_loc[:, 0] * anchor_width * variances[0] detections_center_x += anchor_center_x detections_center_y = mbox_loc[:, 1] * anchor_height * variances[1] detections_center_y += anchor_center_y # 真实框的宽与高的求取 detections_width = np.exp(mbox_loc[:, 2] * variances[2]) detections_width *= anchor_width detections_height = np.exp(mbox_loc[:, 3] * variances[3]) detections_height *= anchor_height # 获取真实框的左上角与右下角 detections_xmin = detections_center_x - 0.5 * detections_width detections_ymin = detections_center_y - 0.5 * detections_height detections_xmax = detections_center_x + 0.5 * detections_width detections_ymax = detections_center_y + 0.5 * detections_height # 真实框的左上角与右下角进行堆叠 detections = np.concatenate((detections_xmin[:, None], detections_ymin[:, None], detections_xmax[:, None], detections_ymax[:, None]), axis=-1) # 防止超出0与1 detections = np.minimum(np.maximum(detections, 0.0), 1.0) return detections def detection_out_rpn(self, predictions, anchors, variances = [0.25, 0.25, 0.25, 0.25]): #---------------------------------------------------# # 获得种类的置信度 #---------------------------------------------------# mbox_conf = predictions[0] #---------------------------------------------------# # mbox_loc是回归预测结果 #---------------------------------------------------# mbox_loc = predictions[1] results = [] # 对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次 for i in range(len(mbox_loc)): #--------------------------------# # 利用回归结果对先验框进行解码 #--------------------------------# detections = self.decode_boxes(mbox_loc[i], anchors, variances) #--------------------------------# # 取出先验框内包含物体的概率 #--------------------------------# c_confs = mbox_conf[i, :, 0] c_confs_argsort = np.argsort(c_confs)[::-1][:self.rpn_pre_boxes] #------------------------------------# # 原始的预测框较多,先选一些高分框 #------------------------------------# confs_to_process = c_confs[c_confs_argsort] boxes_to_process = detections[c_confs_argsort, :] #--------------------------------# # 进行iou的非极大抑制 #--------------------------------# idx = tf.image.non_max_suppression(boxes_to_process, confs_to_process, self._min_k, iou_threshold = self.rpn_nms).numpy() #--------------------------------# # 取出在非极大抑制中效果较好的内容 #--------------------------------# good_boxes = boxes_to_process[idx] results.append(good_boxes) return np.array(results) def frcnn_correct_boxes(self, box_xy, box_wh, input_shape, image_shape): #-----------------------------------------------------------------# # 把y轴放前面是因为方便预测框和图像的宽高进行相乘 #-----------------------------------------------------------------# box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] input_shape = np.array(input_shape) image_shape = np.array(image_shape) box_mins = box_yx - (box_hw / 2.) box_maxes = box_yx + (box_hw / 2.) boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]], axis=-1) boxes *= np.concatenate([image_shape, image_shape], axis=-1) return boxes def detection_out_classifier(self, predictions, rpn_results, image_shape, input_shape, confidence = 0.5, variances = [0.125, 0.125, 0.25, 0.25]): #---------------------------------------------------# # proposal_conf是种类的置信度 #---------------------------------------------------# proposal_conf = predictions[0] #---------------------------------------------------# # proposal_loc是回归预测结果 #---------------------------------------------------# proposal_loc = predictions[1] results = [] #------------------------------------------------------------------------------------------------------------------# # 对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次 #------------------------------------------------------------------------------------------------------------------# for i in range(len(proposal_conf)): results.append([]) #------------------------------------------# # 利用classifier预测结果 # 对建议框进行解码,并且判断物品种类 #------------------------------------------# detections = [] #---------------------------------------------------# # 计算建议框中心和宽高 #---------------------------------------------------# rpn_results[i, :, 2] = rpn_results[i, :, 2] - rpn_results[i, :, 0] rpn_results[i, :, 3] = rpn_results[i, :, 3] - rpn_results[i, :, 1] rpn_results[i, :, 0] = rpn_results[i, :, 0] + rpn_results[i, :, 2] / 2 rpn_results[i, :, 1] = rpn_results[i, :, 1] + rpn_results[i, :, 3] / 2 for j in range(proposal_conf[i].shape[0]): #---------------------------------------------------# # 计算建议框的种类 #---------------------------------------------------# score = np.max(proposal_conf[i][j, :-1]) label = np.argmax(proposal_conf[i][j, :-1]) if score < confidence: continue #---------------------------------------------------# # 对建议框中心宽高进行调整获得预测框 #---------------------------------------------------# x, y, w, h = rpn_results[i, j, :] tx, ty, tw, th = proposal_loc[i][j, 4 * label: 4 * (label + 1)] x1 = tx * variances[0] * w + x y1 = ty * variances[1] * h + y w1 = math.exp(tw * variances[2]) * w h1 = math.exp(th * variances[3]) * h xmin = x1 - w1/2. ymin = y1 - h1/2. xmax = x1 + w1/2 ymax = y1 + h1/2 detections.append([xmin, ymin, xmax, ymax, score, label]) detections = np.array(detections) if len(detections) > 0: for c in range(self.num_classes): c_confs_m = detections[:, -1] == c if len(detections[c_confs_m]) > 0: boxes_to_process = detections[:, :4][c_confs_m] confs_to_process = detections[:, 4][c_confs_m] #-----------------------------------------# # 进行iou的非极大抑制 #-----------------------------------------# idx = tf.image.non_max_suppression(boxes_to_process, confs_to_process, self._min_k, iou_threshold = self.nms_iou).numpy() #-----------------------------------------# # 取出在非极大抑制中效果较好的内容 #-----------------------------------------# results[-1].extend(detections[c_confs_m][idx]) if len(results[-1]) > 0: results[-1] = np.array(results[-1]) box_xy, box_wh = (results[-1][:, 0:2] + results[-1][:, 2:4])/2, results[-1][:, 2:4] - results[-1][:, 0:2] results[-1][:, :4] = self.frcnn_correct_boxes(box_xy, box_wh, input_shape, image_shape) return results
48.969072
150
0.380105
dda6d852e5b6190979d444e0ea78a2263892ef33
20,605
py
Python
tb/test_axis_switch_4x4_64.py
wufubao/verilog-axis
7c6da337b05e5eea675159798aa979f459d89095
[ "MIT" ]
2
2018-08-25T03:10:41.000Z
2018-08-25T22:52:30.000Z
tb/test_axis_switch_4x4_64.py
nqHITSZ/verilog-axis
7c6da337b05e5eea675159798aa979f459d89095
[ "MIT" ]
null
null
null
tb/test_axis_switch_4x4_64.py
nqHITSZ/verilog-axis
7c6da337b05e5eea675159798aa979f459d89095
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Copyright (c) 2016-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from myhdl import * import os import axis_ep module = 'axis_switch_4x4' testbench = 'test_%s_64' % module srcs = [] srcs.append("../rtl/%s.v" % module) srcs.append("../rtl/arbiter.v") srcs.append("../rtl/priority_encoder.v") srcs.append("%s.v" % testbench) src = ' '.join(srcs) build_cmd = "iverilog -o %s.vvp %s" % (testbench, src) def bench(): # Parameters DATA_WIDTH = 64 KEEP_ENABLE = (DATA_WIDTH>8) KEEP_WIDTH = (DATA_WIDTH/8) ID_ENABLE = 1 ID_WIDTH = 8 DEST_WIDTH = 3 USER_ENABLE = 1 USER_WIDTH = 1 OUT_0_BASE = 0 OUT_0_TOP = 0 OUT_0_CONNECT = 0xf OUT_1_BASE = 1 OUT_1_TOP = 1 OUT_1_CONNECT = 0xf OUT_2_BASE = 2 OUT_2_TOP = 2 OUT_2_CONNECT = 0xf OUT_3_BASE = 3 OUT_3_TOP = 3 OUT_3_CONNECT = 0xf ARB_TYPE = "ROUND_ROBIN" LSB_PRIORITY = "HIGH" # Inputs clk = Signal(bool(0)) rst = Signal(bool(0)) current_test = Signal(intbv(0)[8:]) input_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) input_0_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) input_0_axis_tvalid = Signal(bool(0)) input_0_axis_tlast = Signal(bool(0)) input_0_axis_tid = Signal(intbv(0)[ID_WIDTH:]) input_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) input_0_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) input_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) input_1_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) input_1_axis_tvalid = Signal(bool(0)) input_1_axis_tlast = Signal(bool(0)) input_1_axis_tid = Signal(intbv(0)[ID_WIDTH:]) input_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) input_1_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) input_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) input_2_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) input_2_axis_tvalid = Signal(bool(0)) input_2_axis_tlast = Signal(bool(0)) input_2_axis_tid = Signal(intbv(0)[ID_WIDTH:]) input_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) input_2_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) input_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) input_3_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) input_3_axis_tvalid = Signal(bool(0)) input_3_axis_tlast = Signal(bool(0)) input_3_axis_tid = Signal(intbv(0)[ID_WIDTH:]) input_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) input_3_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) output_0_axis_tready = Signal(bool(0)) output_1_axis_tready = Signal(bool(0)) output_2_axis_tready = Signal(bool(0)) output_3_axis_tready = Signal(bool(0)) # Outputs input_0_axis_tready = Signal(bool(0)) input_1_axis_tready = Signal(bool(0)) input_2_axis_tready = Signal(bool(0)) input_3_axis_tready = Signal(bool(0)) output_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) output_0_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) output_0_axis_tvalid = Signal(bool(0)) output_0_axis_tlast = Signal(bool(0)) output_0_axis_tid = Signal(intbv(0)[ID_WIDTH:]) output_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) output_0_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) output_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) output_1_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) output_1_axis_tvalid = Signal(bool(0)) output_1_axis_tlast = Signal(bool(0)) output_1_axis_tid = Signal(intbv(0)[ID_WIDTH:]) output_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) output_1_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) output_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) output_2_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) output_2_axis_tvalid = Signal(bool(0)) output_2_axis_tlast = Signal(bool(0)) output_2_axis_tid = Signal(intbv(0)[ID_WIDTH:]) output_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) output_2_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) output_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:]) output_3_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:]) output_3_axis_tvalid = Signal(bool(0)) output_3_axis_tlast = Signal(bool(0)) output_3_axis_tid = Signal(intbv(0)[ID_WIDTH:]) output_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:]) output_3_axis_tuser = Signal(intbv(0)[USER_WIDTH:]) # sources and sinks source_0_pause = Signal(bool(0)) source_1_pause = Signal(bool(0)) source_2_pause = Signal(bool(0)) source_3_pause = Signal(bool(0)) sink_0_pause = Signal(bool(0)) sink_1_pause = Signal(bool(0)) sink_2_pause = Signal(bool(0)) sink_3_pause = Signal(bool(0)) source_0 = axis_ep.AXIStreamSource() source_0_logic = source_0.create_logic( clk, rst, tdata=input_0_axis_tdata, tkeep=input_0_axis_tkeep, tvalid=input_0_axis_tvalid, tready=input_0_axis_tready, tlast=input_0_axis_tlast, tid=input_0_axis_tid, tdest=input_0_axis_tdest, tuser=input_0_axis_tuser, pause=source_0_pause, name='source_0' ) source_1 = axis_ep.AXIStreamSource() source_1_logic = source_1.create_logic( clk, rst, tdata=input_1_axis_tdata, tkeep=input_1_axis_tkeep, tvalid=input_1_axis_tvalid, tready=input_1_axis_tready, tlast=input_1_axis_tlast, tid=input_1_axis_tid, tdest=input_1_axis_tdest, tuser=input_1_axis_tuser, pause=source_1_pause, name='source_1' ) source_2 = axis_ep.AXIStreamSource() source_2_logic = source_2.create_logic( clk, rst, tdata=input_2_axis_tdata, tkeep=input_2_axis_tkeep, tvalid=input_2_axis_tvalid, tready=input_2_axis_tready, tlast=input_2_axis_tlast, tid=input_2_axis_tid, tdest=input_2_axis_tdest, tuser=input_2_axis_tuser, pause=source_2_pause, name='source_2' ) source_3 = axis_ep.AXIStreamSource() source_3_logic = source_3.create_logic( clk, rst, tdata=input_3_axis_tdata, tkeep=input_3_axis_tkeep, tvalid=input_3_axis_tvalid, tready=input_3_axis_tready, tlast=input_3_axis_tlast, tid=input_3_axis_tid, tdest=input_3_axis_tdest, tuser=input_3_axis_tuser, pause=source_3_pause, name='source_3' ) sink_0 = axis_ep.AXIStreamSink() sink_0_logic = sink_0.create_logic( clk, rst, tdata=output_0_axis_tdata, tkeep=output_0_axis_tkeep, tvalid=output_0_axis_tvalid, tready=output_0_axis_tready, tlast=output_0_axis_tlast, tid=output_0_axis_tid, tdest=output_0_axis_tdest, tuser=output_0_axis_tuser, pause=sink_0_pause, name='sink_0' ) sink_1 = axis_ep.AXIStreamSink() sink_1_logic = sink_1.create_logic( clk, rst, tdata=output_1_axis_tdata, tkeep=output_1_axis_tkeep, tvalid=output_1_axis_tvalid, tready=output_1_axis_tready, tlast=output_1_axis_tlast, tid=output_1_axis_tid, tdest=output_1_axis_tdest, tuser=output_1_axis_tuser, pause=sink_1_pause, name='sink_1' ) sink_2 = axis_ep.AXIStreamSink() sink_2_logic = sink_2.create_logic( clk, rst, tdata=output_2_axis_tdata, tkeep=output_2_axis_tkeep, tvalid=output_2_axis_tvalid, tready=output_2_axis_tready, tlast=output_2_axis_tlast, tid=output_2_axis_tid, tdest=output_2_axis_tdest, tuser=output_2_axis_tuser, pause=sink_2_pause, name='sink_2' ) sink_3 = axis_ep.AXIStreamSink() sink_3_logic = sink_3.create_logic( clk, rst, tdata=output_3_axis_tdata, tkeep=output_3_axis_tkeep, tvalid=output_3_axis_tvalid, tready=output_3_axis_tready, tlast=output_3_axis_tlast, tid=output_3_axis_tid, tdest=output_3_axis_tdest, tuser=output_3_axis_tuser, pause=sink_3_pause, name='sink_3' ) # DUT if os.system(build_cmd): raise Exception("Error running build command") dut = Cosimulation( "vvp -m myhdl %s.vvp -lxt2" % testbench, clk=clk, rst=rst, current_test=current_test, input_0_axis_tdata=input_0_axis_tdata, input_0_axis_tkeep=input_0_axis_tkeep, input_0_axis_tvalid=input_0_axis_tvalid, input_0_axis_tready=input_0_axis_tready, input_0_axis_tlast=input_0_axis_tlast, input_0_axis_tid=input_0_axis_tid, input_0_axis_tdest=input_0_axis_tdest, input_0_axis_tuser=input_0_axis_tuser, input_1_axis_tdata=input_1_axis_tdata, input_1_axis_tkeep=input_1_axis_tkeep, input_1_axis_tvalid=input_1_axis_tvalid, input_1_axis_tready=input_1_axis_tready, input_1_axis_tlast=input_1_axis_tlast, input_1_axis_tid=input_1_axis_tid, input_1_axis_tdest=input_1_axis_tdest, input_1_axis_tuser=input_1_axis_tuser, input_2_axis_tdata=input_2_axis_tdata, input_2_axis_tkeep=input_2_axis_tkeep, input_2_axis_tvalid=input_2_axis_tvalid, input_2_axis_tready=input_2_axis_tready, input_2_axis_tlast=input_2_axis_tlast, input_2_axis_tid=input_2_axis_tid, input_2_axis_tdest=input_2_axis_tdest, input_2_axis_tuser=input_2_axis_tuser, input_3_axis_tdata=input_3_axis_tdata, input_3_axis_tkeep=input_3_axis_tkeep, input_3_axis_tvalid=input_3_axis_tvalid, input_3_axis_tready=input_3_axis_tready, input_3_axis_tlast=input_3_axis_tlast, input_3_axis_tid=input_3_axis_tid, input_3_axis_tdest=input_3_axis_tdest, input_3_axis_tuser=input_3_axis_tuser, output_0_axis_tdata=output_0_axis_tdata, output_0_axis_tkeep=output_0_axis_tkeep, output_0_axis_tvalid=output_0_axis_tvalid, output_0_axis_tready=output_0_axis_tready, output_0_axis_tlast=output_0_axis_tlast, output_0_axis_tid=output_0_axis_tid, output_0_axis_tdest=output_0_axis_tdest, output_0_axis_tuser=output_0_axis_tuser, output_1_axis_tdata=output_1_axis_tdata, output_1_axis_tkeep=output_1_axis_tkeep, output_1_axis_tvalid=output_1_axis_tvalid, output_1_axis_tready=output_1_axis_tready, output_1_axis_tlast=output_1_axis_tlast, output_1_axis_tid=output_1_axis_tid, output_1_axis_tdest=output_1_axis_tdest, output_1_axis_tuser=output_1_axis_tuser, output_2_axis_tdata=output_2_axis_tdata, output_2_axis_tkeep=output_2_axis_tkeep, output_2_axis_tvalid=output_2_axis_tvalid, output_2_axis_tready=output_2_axis_tready, output_2_axis_tlast=output_2_axis_tlast, output_2_axis_tid=output_2_axis_tid, output_2_axis_tdest=output_2_axis_tdest, output_2_axis_tuser=output_2_axis_tuser, output_3_axis_tdata=output_3_axis_tdata, output_3_axis_tkeep=output_3_axis_tkeep, output_3_axis_tvalid=output_3_axis_tvalid, output_3_axis_tready=output_3_axis_tready, output_3_axis_tlast=output_3_axis_tlast, output_3_axis_tid=output_3_axis_tid, output_3_axis_tdest=output_3_axis_tdest, output_3_axis_tuser=output_3_axis_tuser ) @always(delay(4)) def clkgen(): clk.next = not clk def wait_normal(): while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid: yield clk.posedge def wait_pause_source(): while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid: source_0_pause.next = True source_1_pause.next = True source_2_pause.next = True source_3_pause.next = True yield clk.posedge yield clk.posedge yield clk.posedge source_0_pause.next = False source_1_pause.next = False source_2_pause.next = False source_3_pause.next = False yield clk.posedge def wait_pause_sink(): while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid: sink_0_pause.next = True sink_1_pause.next = True sink_2_pause.next = True sink_3_pause.next = True yield clk.posedge yield clk.posedge yield clk.posedge sink_0_pause.next = False sink_1_pause.next = False sink_2_pause.next = False sink_3_pause.next = False yield clk.posedge @instance def check(): yield delay(100) yield clk.posedge rst.next = 1 yield clk.posedge rst.next = 0 yield clk.posedge yield delay(100) yield clk.posedge # testbench stimulus yield clk.posedge print("test 1: 0123 -> 0123") current_test.next = 1 test_frame0 = axis_ep.AXIStreamFrame(b'\x01\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x01\x01\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=1, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x01\x02\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=2, dest=2) test_frame3 = axis_ep.AXIStreamFrame(b'\x01\x03\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=3, dest=3) for wait in wait_normal, wait_pause_source, wait_pause_sink: source_0.send(test_frame0) source_1.send(test_frame1) source_2.send(test_frame2) source_3.send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield clk.posedge yield clk.posedge rx_frame0 = sink_0.recv() assert rx_frame0 == test_frame0 rx_frame1 = sink_1.recv() assert rx_frame1 == test_frame1 rx_frame2 = sink_2.recv() assert rx_frame2 == test_frame2 rx_frame3 = sink_3.recv() assert rx_frame3 == test_frame3 yield delay(100) yield clk.posedge print("test 2: 0123 -> 3210") current_test.next = 2 test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=3) test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x01\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=1, dest=2) test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x02\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=2, dest=1) test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x03\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=3, dest=0) for wait in wait_normal, wait_pause_source, wait_pause_sink: source_0.send(test_frame0) source_1.send(test_frame1) source_2.send(test_frame2) source_3.send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield clk.posedge yield clk.posedge rx_frame0 = sink_0.recv() assert rx_frame0 == test_frame3 rx_frame1 = sink_1.recv() assert rx_frame1 == test_frame2 rx_frame2 = sink_2.recv() assert rx_frame2 == test_frame1 rx_frame3 = sink_3.recv() assert rx_frame3 == test_frame0 yield delay(100) yield clk.posedge print("test 3: 0000 -> 0123") current_test.next = 3 test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x00\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x00\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=2) test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=3) for wait in wait_normal, wait_pause_source, wait_pause_sink: source_0.send(test_frame0) source_0.send(test_frame1) source_0.send(test_frame2) source_0.send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield clk.posedge yield clk.posedge rx_frame0 = sink_0.recv() assert rx_frame0 == test_frame0 rx_frame1 = sink_1.recv() assert rx_frame1 == test_frame1 rx_frame2 = sink_2.recv() assert rx_frame2 == test_frame2 rx_frame3 = sink_3.recv() assert rx_frame3 == test_frame3 yield delay(100) yield clk.posedge print("test 4: 0123 -> 0000") current_test.next = 4 test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x01\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=1, dest=0) test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x02\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=2, dest=0) test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x03\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=3, dest=0) for wait in wait_normal, wait_pause_source, wait_pause_sink: source_0.send(test_frame0) yield clk.posedge source_1.send(test_frame1) source_2.send(test_frame2) source_3.send(test_frame3) yield clk.posedge yield wait() yield clk.posedge yield clk.posedge rx_frame0 = sink_0.recv() assert rx_frame0 == test_frame0 rx_frame1 = sink_0.recv() assert rx_frame1 == test_frame1 rx_frame2 = sink_0.recv() assert rx_frame2 == test_frame2 rx_frame3 = sink_0.recv() assert rx_frame3 == test_frame3 yield delay(100) yield clk.posedge print("test 1: bad decoding") current_test.next = 1 test_frame0 = axis_ep.AXIStreamFrame(b'\x01\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x01\x01\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=1, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x01\x02\x04\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=2, dest=4) test_frame3 = axis_ep.AXIStreamFrame(b'\x01\x03\x05\xFF\x01\x02\x03\x04\x05\x06\x07\x08', id=3, dest=5) for wait in wait_normal, wait_pause_source, wait_pause_sink: source_0.send(test_frame0) source_1.send(test_frame1) source_2.send(test_frame2) source_3.send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield clk.posedge yield clk.posedge rx_frame0 = sink_0.recv() assert rx_frame0 == test_frame0 rx_frame1 = sink_1.recv() assert rx_frame1 == test_frame1 yield delay(100) raise StopSimulation return dut, source_0_logic, source_1_logic, source_2_logic, source_3_logic, sink_0_logic, sink_1_logic, sink_2_logic, sink_3_logic, clkgen, check def test_bench(): sim = Simulation(bench()) sim.run() if __name__ == '__main__': print("Running test...") test_bench()
33.504065
149
0.663771
77a700343b7a547884d858e3ecd1e416636b7bd3
2,012
py
Python
pyisis/tests/test_parser.py
rodsenra/pyisis
f5815fd096a463902893f87f309f8117b5705621
[ "MIT" ]
null
null
null
pyisis/tests/test_parser.py
rodsenra/pyisis
f5815fd096a463902893f87f309f8117b5705621
[ "MIT" ]
null
null
null
pyisis/tests/test_parser.py
rodsenra/pyisis
f5815fd096a463902893f87f309f8117b5705621
[ "MIT" ]
2
2019-11-08T20:51:54.000Z
2021-08-17T23:49:48.000Z
# -*- coding: utf-8 -*- """ File to test Formatting Language Parser """ __created__ = "2008-05-27" __updated__ = "2008-05-26" __author__ = "Rodrigo Senra <rsenra@acm.org>" import tempfile from pyisis.records import MasterRecord from pyisis.lexer import PftLexer from pyisis.parser import PftParser from pyisis.ast import * from pyisis.tests.config_tests import test_data, Lyer, initialize, run_list config = initialize() tmpdir = tempfile.gettempdir() lexer = PftLexer() parser = PftParser(lexer=lexer.lexer, debug=False, outputdir=tmpdir) compiler = PftCompiler() def setup(): "Fixture: Called before every test to reset the lexer" pass def test_empty(): """Parse empty expression""" try: pft_ast = parser.parse("") except RuntimeError: assert False, "Incorrect handling of empty expression" else: pass def test_field(): """Parse field access""" ast = parser.parse("V70") assert type(ast)==Field, "AST has no FieldAccess node as first node" def test_compile_code(): """Compile a simple ast into Python executable code""" rec = MasterRecord() data = "Paper on: <plant physiology><plant transpiration><measurement and instruments>" rec.v69 = data ast = parser.parse("V69") chain = flatten(ast) pft = compiler.compile_code(chain) result = pft(rec=rec, mst=None) #print "result=", repr(result), "\ndata=", repr(data) # remove line braks prior to comparison with original data assert result.replace("\n","")==data def test_ilit(): """Test Inconditional literal""" rec = MasterRecord() rec.v26 = "^aParis^bUnesco^c-1965" rec.v30 = "^ap. 211-224^billus." ast = parser.parse("'Pais:'v26^a,v30^a") def debug_format(fmt): lexer.input(fmt) print "Lexer\n" for tok in lexer: print tok print "Parser\n" ast = parser.parse(fmt) print ast if __name__ == "__main__": #test_empty() #test_field() #test_ilit() #test_compile_code() pass
24.839506
91
0.668489
5d23324bebbb96bcd86062de4dbb3f8f58d2f232
40
py
Python
bot_facebook/views/__init__.py
lariodiniz/BootPlayGame
1ba40611eb085e2deaff63a36bdb669b594c7c02
[ "MIT" ]
null
null
null
bot_facebook/views/__init__.py
lariodiniz/BootPlayGame
1ba40611eb085e2deaff63a36bdb669b594c7c02
[ "MIT" ]
null
null
null
bot_facebook/views/__init__.py
lariodiniz/BootPlayGame
1ba40611eb085e2deaff63a36bdb669b594c7c02
[ "MIT" ]
null
null
null
from .ativa_bot_view import ativaBotView
40
40
0.9
d6087e3e49d300f1770548713421b41f7906d0a8
5,713
py
Python
arcade/examples/sprite_collect_coins_diff_levels.py
KommentatorForAll/arcade
88343fe87efc1bd619412261a725a8f04de08fc7
[ "MIT" ]
null
null
null
arcade/examples/sprite_collect_coins_diff_levels.py
KommentatorForAll/arcade
88343fe87efc1bd619412261a725a8f04de08fc7
[ "MIT" ]
null
null
null
arcade/examples/sprite_collect_coins_diff_levels.py
KommentatorForAll/arcade
88343fe87efc1bd619412261a725a8f04de08fc7
[ "MIT" ]
null
null
null
""" Sprite Collect Coins with Different Levels Simple program to show basic sprite usage. Artwork from https://kenney.nl If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.sprite_collect_coins_diff_levels """ import random import arcade import os SPRITE_SCALING = 0.5 SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 SCREEN_TITLE = "Sprite Collect Coins with Different Levels Example" class FallingCoin(arcade.Sprite): """ Simple sprite that falls down """ def update(self): """ Move the coin """ # Fall down self.center_y -= 2 # Did we go off the screen? If so, pop back to the top. if self.top < 0: self.bottom = SCREEN_HEIGHT class RisingCoin(arcade.Sprite): """ Simple sprite that falls up """ def update(self): """ Move the coin """ # Move up self.center_y += 2 # Did we go off the screen? If so, pop back to the bottom. if self.bottom > SCREEN_HEIGHT: self.top = 0 class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initialize """ # Call the parent class initializer super().__init__(width, height, title) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Variables that will hold sprite lists self.player_list = None self.coin_list = None # Set up the player info self.player_sprite = None self.score = 0 self.level = 1 # Don't show the mouse cursor self.set_mouse_visible(False) # Set the background color arcade.set_background_color(arcade.color.AMAZON) def level_1(self): for i in range(20): # Create the coin instance coin = arcade.Sprite(":resources:images/items/coinGold.png", SPRITE_SCALING / 3) # Position the coin coin.center_x = random.randrange(SCREEN_WIDTH) coin.center_y = random.randrange(SCREEN_HEIGHT) # Add the coin to the lists self.coin_list.append(coin) def level_2(self): for i in range(30): # Create the coin instance coin = FallingCoin(":resources:images/items/coinBronze.png" , SPRITE_SCALING / 2) # Position the coin coin.center_x = random.randrange(SCREEN_WIDTH) coin.center_y = random.randrange(SCREEN_HEIGHT, SCREEN_HEIGHT * 2) # Add the coin to the lists self.coin_list.append(coin) def level_3(self): for i in range(30): # Create the coin instance coin = RisingCoin(":resources:images/items/coinSilver.png" , SPRITE_SCALING / 2) # Position the coin coin.center_x = random.randrange(SCREEN_WIDTH) coin.center_y = random.randrange(-SCREEN_HEIGHT, 0) # Add the coin to the lists self.coin_list.append(coin) def setup(self): """ Set up the game and initialize the variables. """ self.score = 0 self.level = 1 # Sprite lists self.player_list = arcade.SpriteList() self.coin_list = arcade.SpriteList() # Set up the player self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/femalePerson_idle.png", SPRITE_SCALING) self.player_sprite.center_x = 50 self.player_sprite.center_y = 50 self.player_list.append(self.player_sprite) self.level_1() def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Draw all the sprites. self.player_sprite.draw() self.coin_list.draw() # Put the text on the screen. output = f"Score: {self.score}" arcade.draw_text(output, 10, 20, arcade.color.WHITE, 15) output = f"Level: {self.level}" arcade.draw_text(output, 10, 35, arcade.color.WHITE, 15) def on_mouse_motion(self, x, y, dx, dy): """ Called whenever the mouse moves. """ self.player_sprite.center_x = x self.player_sprite.center_y = y def on_update(self, delta_time): """ Movement and game logic """ # Call update on all sprites (The sprites don't do much in this # example though.) self.coin_list.update() # Generate a list of all sprites that collided with the player. hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.coin_list) # Loop through each colliding sprite, remove it, and add to the score. for coin in hit_list: coin.remove_from_sprite_lists() self.score += 1 # See if we should go to level 2 if len(self.coin_list) == 0 and self.level == 1: self.level += 1 self.level_2() # See if we should go to level 3 elif len(self.coin_list) == 0 and self.level == 2: self.level += 1 self.level_3() def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == "__main__": main()
28.142857
119
0.605986
135e63503762daca2c8b5e855e2ffd35ebaefde4
809
py
Python
website/cloud_site/twitter_app/urls.py
arshmankhalid/twitter_sentiment_analysis
b67dd3b1dd81b2efd67e1de2d4de289b9987dc28
[ "MIT" ]
null
null
null
website/cloud_site/twitter_app/urls.py
arshmankhalid/twitter_sentiment_analysis
b67dd3b1dd81b2efd67e1de2d4de289b9987dc28
[ "MIT" ]
null
null
null
website/cloud_site/twitter_app/urls.py
arshmankhalid/twitter_sentiment_analysis
b67dd3b1dd81b2efd67e1de2d4de289b9987dc28
[ "MIT" ]
3
2020-05-25T13:38:12.000Z
2020-05-26T01:30:35.000Z
from django.conf.urls import url from . import views app_name = 'twitter_app' urlpatterns = [ url(r'^$', views.HomeTemplateView.as_view(), name='home_page'), url(r'^map/$', views.MapTemplateView.as_view(), name='map_page'), url(r'^team/$', views.TeamTemplateView.as_view(), name='team_page'), url(r'^day_sum_table/$', views.DaySumTableTemplateView.as_view(), name='day_sum_table'), url(r'^hour_sum_table/$', views.HourSumTableTemplateView.as_view(), name='hour_sum_table'), url(r'^map/$', views.MapTemplateView.as_view(), name='map'), url(r'^hash_tag/$', views.HashTagTemplateView.as_view(), name='hash_tag'), url(r'^region/$', views.LocationTemplateView.as_view(), name='region'), url(r'^avg_length/$', views.LengthTemplateView.as_view(), name='avg_length'), ]
31.115385
95
0.690977
b1b3ba6737fd921cbef7489aa07d0b5c6891f332
2,725
py
Python
mtp_api/apps/credit/management/commands/send_prisoner_credit_notices.py
ministryofjustice/money-to-prisoners-api
7d86791c24f2cea19dd9ca3f69fad7693c841949
[ "MIT" ]
5
2016-01-05T12:21:35.000Z
2020-10-28T17:06:02.000Z
mtp_api/apps/credit/management/commands/send_prisoner_credit_notices.py
ministryofjustice/money-to-prisoners-api
7d86791c24f2cea19dd9ca3f69fad7693c841949
[ "MIT" ]
209
2015-06-12T09:39:41.000Z
2022-03-21T16:01:19.000Z
mtp_api/apps/credit/management/commands/send_prisoner_credit_notices.py
ministryofjustice/money-to-prisoners-api
7d86791c24f2cea19dd9ca3f69fad7693c841949
[ "MIT" ]
1
2021-04-11T06:19:23.000Z
2021-04-11T06:19:23.000Z
import pathlib import shutil import tempfile from django.core.management import BaseCommand, call_command from mtp_common.tasks import send_email from credit.management.commands.create_prisoner_credit_notices import parsed_date_or_yesterday from prison.models import PrisonerCreditNoticeEmail class Command(BaseCommand): """ Emails a PDF bundle of credit notices to prisons """ help = __doc__.strip().splitlines()[0] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.verbosity = 1 def add_arguments(self, parser): super().add_arguments(parser) parser.add_argument('--prison', help='NOMIS id of prison, defaults to all prisons.') parser.add_argument('--date', help='Credited date, defaults to yesterday.') def handle(self, prison=None, date=None, **options): self.verbosity = options.get('verbosity', self.verbosity) if not prison: credit_notice_emails = PrisonerCreditNoticeEmail.objects.all() else: credit_notice_emails = PrisonerCreditNoticeEmail.objects.filter(prison=prison) if not credit_notice_emails.exists(): if prison: self.stderr.write('No email address found for %s' % prison) else: self.stderr.write('No known email addresses') return bundle_dir = pathlib.Path(tempfile.mkdtemp()) try: for credit_notice_email in credit_notice_emails: path = bundle_dir / ('prison-credits-%s.pdf' % credit_notice_email.prison.nomis_id) self.handle_prison(credit_notice_email, path, date, **options) finally: if bundle_dir.exists(): shutil.rmtree(str(bundle_dir)) def handle_prison(self, credit_notice_email, path, date, **options): call_command( 'create_prisoner_credit_notices', path, credit_notice_email.prison.nomis_id, date=date, **options ) date_reference = parsed_date_or_yesterday(date).strftime('%Y-%m-%d') if not path.exists(): if self.verbosity: self.stdout.write('Nothing to send to %s' % credit_notice_email) return if self.verbosity: self.stdout.write('Sending prisoner notice email to %s' % credit_notice_email) send_email( template_name='api-prisoner-notice-email', to=credit_notice_email.email, personalisation={ 'attachment': path.read_bytes(), }, reference=f'credit-notices-{date_reference}-{credit_notice_email.prison.nomis_id}', staff_email=True, )
37.328767
99
0.64
718a082d3ed2e87592944ecbf791edcdfbedd4c7
1,551
py
Python
backend/tasks/utils.py
dbauducco/DistributedReplays
07e6f4c2bf104e98102b092d8a1a3ce2ac7ab291
[ "Apache-2.0" ]
69
2018-07-17T19:40:21.000Z
2022-02-25T14:23:53.000Z
backend/tasks/utils.py
dbauducco/DistributedReplays
07e6f4c2bf104e98102b092d8a1a3ce2ac7ab291
[ "Apache-2.0" ]
335
2018-07-25T19:34:55.000Z
2022-02-26T06:04:32.000Z
backend/tasks/utils.py
dbauducco/DistributedReplays
07e6f4c2bf104e98102b092d8a1a3ce2ac7ab291
[ "Apache-2.0" ]
42
2018-07-21T00:04:23.000Z
2022-02-25T14:23:42.000Z
from backend.database.startup import get_strict_redis PRIORITY_SEP = '\x06\x16' DEFAULT_PRIORITY_STEPS = [0, 3, 6, 9] def make_queue_name_for_pri(queue, pri): """Make a queue name for redis Celery uses PRIORITY_SEP to separate different priorities of tasks into different queues in Redis. Each queue-priority combination becomes a key in redis with names like: - batch1\x06\x163 <-- P3 queue named batch1 There's more information about this in Github, but it doesn't look like it will change any time soon: - https://github.com/celery/kombu/issues/422 In that ticket the code below, from the Flower project, is referenced: - https://github.com/mher/flower/blob/master/flower/utils/broker.py#L135 :param queue: The name of the queue to make a name for. :param pri: The priority to make a name with. :return: A name for the queue-priority pair. """ if pri not in DEFAULT_PRIORITY_STEPS: raise ValueError('Priority not in priority steps') return '{0}{1}{2}'.format(*((queue, PRIORITY_SEP, pri) if pri else (queue, '', ''))) def get_queue_length(queue_name='celery'): """Get the number of tasks in a celery queue. :param queue_name: The name of the queue you want to inspect. :return: the number of items in the queue. """ priority_names = [make_queue_name_for_pri(queue_name, pri) for pri in DEFAULT_PRIORITY_STEPS] r = get_strict_redis() return [r.llen(x) for x in priority_names]
34.466667
79
0.681496
b81df8793b206a4a3f1ef1db8d3506c983974c4f
3,485
py
Python
nussl/separation/factorization/ica.py
ZhaoJY1/nussl
57aabeabca3b2e75849e1659a522e3c2f77e9172
[ "MIT" ]
259
2016-10-04T19:21:25.000Z
2020-04-15T14:39:54.000Z
nussl/separation/factorization/ica.py
titocaco/nussl
af7d0c50e01d107f4ef3305b89eb130d95d0a7cd
[ "MIT" ]
115
2016-10-26T01:58:04.000Z
2020-04-15T07:53:00.000Z
nussl/separation/factorization/ica.py
titocaco/nussl
af7d0c50e01d107f4ef3305b89eb130d95d0a7cd
[ "MIT" ]
64
2017-04-11T04:10:35.000Z
2020-04-08T11:23:48.000Z
import copy import numpy as np import sklearn from .. import SeparationBase from ... import AudioSignal from ...core import utils class ICA(SeparationBase): """ Separate sources using the Independent Component Analysis, given observations of the audio scene. nussl's ICA is a wrapper for sci-kit learn's implementation of FastICA, and provides a way to interop between nussl's :ref:`AudioSignal` objects and FastICA. References: `sci-kit learn FastICA <http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.fastica.html>`_ Args: audio_signals: list of AudioSignal objects containing the observations of the mixture. Will be converted into a single multichannel AudioSignal. max_iterations (int): Max number of iterations to run ICA for. Defaults to 200. **kwargs: Additional keyword arguments that will be passed to `sklearn.decomposition.FastICA` """ def __init__(self, audio_signals, max_iterations=200, **kwargs): super().__init__(input_audio_signal=audio_signals) # FastICA setup attributes self.num_components = self.audio_signal.num_channels self.kwargs = kwargs self.max_iterations = max_iterations # Results attributes self.estimated_sources = None self.estimated_mixing_params = None self.mean = None self.ica_output = None @property def audio_signal(self): """ Copy of AudioSignal that is made on initialization. """ return self._audio_signal @audio_signal.setter def audio_signal(self, audio_signals): """ Takes a list of audio signals and constructs a single multichannel audio signal object. Args: audio_signal (list or AudioSignal): Either a multichannel audio signal, or a list of AudioSignals containing the observations. """ if isinstance(audio_signals, list): audio_signals = utils.verify_audio_signal_list_strict(audio_signals) audio_data = np.vstack([s.audio_data for s in audio_signals]) audio_signal = audio_signals[0].make_copy_with_audio_data(audio_data) self._audio_signal = audio_signal elif isinstance(audio_signals, AudioSignal): self._audio_signal = copy.deepcopy(audio_signals) def run(self): ica = sklearn.decomposition.FastICA( n_components=self.num_components, max_iter=self.max_iterations, **self.kwargs) # save for normalizing the estimated signals max_input_amplitude = np.max(np.abs(self.audio_signal.audio_data)) # run ICA ica_output = ica.fit_transform(self.audio_signal.audio_data.T).T # now normalize the estimated signals max_output_amplitude = np.max(np.abs(ica_output)) ica_output /= max_output_amplitude ica_output *= max_input_amplitude # store the resultant computations self.estimated_mixing_params = ica.mixing_ self.mean = ica.mean_ self.ica_output = ica_output return self.ica_output def make_audio_signals(self): estimated_sources = [ AudioSignal( audio_data_array=self.ica_output[i, :], sample_rate=self.audio_signal.sample_rate) for i in range(self.ica_output.shape[0]) ] return estimated_sources
34.166667
118
0.670301
f162f3c0ca3235cf11da6f3280fa78a64d00294d
98
py
Python
theme_kit/models/__init__.py
agenterpgmbh/misc-addons
27e36d119b1e73089a2ebfcd8d4cfc706c8f1f41
[ "MIT" ]
null
null
null
theme_kit/models/__init__.py
agenterpgmbh/misc-addons
27e36d119b1e73089a2ebfcd8d4cfc706c8f1f41
[ "MIT" ]
1
2020-05-03T04:27:29.000Z
2020-05-03T04:27:29.000Z
theme_kit/models/__init__.py
eneldoserrata/misc-addons
6f3b94d8a71d603d9ad449f96edfc66385e78080
[ "MIT" ]
1
2022-02-04T11:27:12.000Z
2022-02-04T11:27:12.000Z
# License MIT (https://opensource.org/licenses/MIT). from . import theme from . import res_config
24.5
52
0.755102
f5481bedd0e79aa891329306b3c259a798e235cc
843
py
Python
user/emails.py
Ilmanfordinner/registration
d729f9a990d6f63dc29e14c1657dba87c3233971
[ "MIT" ]
null
null
null
user/emails.py
Ilmanfordinner/registration
d729f9a990d6f63dc29e14c1657dba87c3233971
[ "MIT" ]
null
null
null
user/emails.py
Ilmanfordinner/registration
d729f9a990d6f63dc29e14c1657dba87c3233971
[ "MIT" ]
null
null
null
from app import emails def create_verify_email(user, activate_url): c = { 'user': user, 'activate_url': activate_url } return emails.render_mail('mails/verify_email', user.email, c) def create_password_reset_email(user, reset_url): c = { 'user': user, 'reset_url': reset_url } return emails.render_mail('mails/password_reset', user.email, c) def create_sponsor_link_email(user, user_sponsor_url, app_sponsor_url, sponsor_name): c = { 'user': user, 'user_sponsor_url': user_sponsor_url, 'app_sponsor_url': app_sponsor_url, 'sponsor_name': sponsor_name, } return emails.render_mail('mails/sponsor_link', user.email, c)
27.193548
86
0.571767
c7cc50d2ba6c162b8d8546cd6263ae75f3c991f2
23,246
py
Python
Lib/site-packages/tensorflow_estimator/python/estimator/keras.py
caiyongji/py36-tf2.0rc
c5b4b364ba14214534228570e58ef96b1a8bb6dc
[ "CNRI-Python-GPL-Compatible" ]
2
2019-08-04T20:28:14.000Z
2019-10-27T23:26:42.000Z
Lib/site-packages/tensorflow_estimator/python/estimator/keras.py
caiyongji/py36-tf2.0rc
c5b4b364ba14214534228570e58ef96b1a8bb6dc
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
Lib/site-packages/tensorflow_estimator/python/estimator/keras.py
caiyongji/py36-tf2.0rc
c5b4b364ba14214534228570e58ef96b1a8bb6dc
[ "CNRI-Python-GPL-Compatible" ]
1
2020-11-04T03:16:29.000Z
2020-11-04T03:16:29.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Home of estimator related functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re from tensorflow.python.client import session from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend as K from tensorflow.python.keras import models from tensorflow.python.keras.engine import training_utils from tensorflow.python.ops import math_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import checkpoint_management from tensorflow.python.training import monitored_session from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import training_util from tensorflow.python.training.tracking import graph_view from tensorflow.python.training.tracking import util as trackable_util from tensorflow_estimator.python.estimator import estimator as estimator_lib from tensorflow_estimator.python.estimator import model_fn as model_fn_lib from tensorflow_estimator.python.estimator.export import export_lib from tensorflow_estimator.python.estimator.mode_keys import ModeKeys _DEFAULT_SERVING_KEY = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY def _cast_tensor_to_floatx(x): """Cast tensor to keras's floatx dtype if it is not already the same dtype.""" if x.dtype == K.floatx(): return x else: return math_ops.cast(x, K.floatx()) def _convert_tensor(x): """Create or cast tensor if needed.""" if not tensor_util.is_tensor(x): # x is a numpy array x = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(x) return x def _any_weight_initialized(keras_model): """Check if any weights has been initialized in the Keras model. Args: keras_model: An instance of compiled keras model. Returns: boolean, True if at least one weight has been initialized, else False. Currently keras initialize all weights at get_session(). """ if keras_model is None: return False if ops.executing_eagerly_outside_functions(): return True for layer in keras_model.layers: for weight in layer.weights: if hasattr(weight, '_keras_initialized'): return True return False def _convert_estimator_io_to_keras(keras_model, features, labels): """Converts estimator features and labels to keras input and target tensors. Args: keras_model: a compiled `tf.keras.Model` instance, used to determine the order of the returned lists. features: Dict of tensors or `None`. labels: Dict of tensors, a single tensor, or `None`. Returns: Tuple of ( list of input tensors or `None`, list of target tensors or `None`, list of sample weight tensors or `None`) The order of tensors is determined by the order set in the keras model. """ def _to_ordered_tensor_list(obj, key_order, obj_name, order_name): """Convert obj to an ordered list of tensors. Args: obj: List, dict, or single tensor. May be `None`. key_order: List of strings with the order to return (used if obj is a dict). obj_name: String name of object (e.g. "features" or "labels") order_name: String name of the key order (e.g. "inputs" or "outputs") Returns: List of tensors, or `None` Raises: KeyError: If obj has invalid keys. """ if obj is None: return None elif isinstance(obj, (list, tuple)): return [_convert_tensor(x) for x in obj] elif isinstance(obj, dict): # Ensure that the obj keys and keys in key_order are exactly the same. different_keys = set(obj.keys()) ^ set(key_order) if different_keys: raise KeyError( 'The dictionary passed into {obj_name} does not have the expected ' '{order_name} keys defined in the keras model.' '\n\tExpected keys: {order_keys}' '\n\t{obj_name} keys: {obj_keys}' '\n\tDifference: {different_keys}'.format( order_name=order_name, order_keys=set(key_order), obj_name=obj_name, obj_keys=set(obj.keys()), different_keys=different_keys)) return [_convert_tensor(obj[key]) for key in key_order] else: # Assume obj is a tensor. return [_convert_tensor(obj)] features, sample_weight_tensors = _extract_sample_weight_tensors(features) input_names = None output_names = None if isinstance(features, dict): input_names = ( keras_model.input_names if keras_model._is_graph_network else ['input_%d' % i for i in range(1, len(features) + 1)]) if isinstance(labels, dict): output_names = ( keras_model.output_names if keras_model._is_graph_network else ['output_%d' % i for i in range(1, len(labels) + 1)]) input_tensors = _to_ordered_tensor_list( features, input_names, 'features', 'inputs') target_tensors = _to_ordered_tensor_list( labels, output_names, 'labels', 'outputs') return input_tensors, target_tensors, sample_weight_tensors def _extract_sample_weight_tensors(features): if isinstance(features, dict) and set(features.keys()) == { 'features', 'sample_weights'}: feature_tensor = features['features'] sample_weight_tensors = features['sample_weights'] else: feature_tensor = features sample_weight_tensors = None return feature_tensor, sample_weight_tensors def _clone_and_build_model(mode, keras_model, custom_objects, features=None, labels=None, optimizer_config=None): """Clone and build the given keras_model. Args: mode: training mode. keras_model: an instance of compiled keras model. custom_objects: Dictionary for custom objects. features: Dict of tensors. labels: Dict of tensors, or single tensor instance. optimizer_config: Optimizer config dictionary, returned by `optimizer.get_config()`. This is used when cloning a model with an optimizer. Since `_clone_and_build_model` is called in a different graph and session from the model, `optimizer.get_config()` may raise an error during the attempt to serialize the optimizer hyperparameter values. Returns: The newly built model. """ # Set to True during training, False for inference or testing. K.set_learning_phase(mode == ModeKeys.TRAIN) input_tensors, target_tensors, sample_weight_tensors = ( _convert_estimator_io_to_keras(keras_model, features, labels)) compile_clone = (mode != ModeKeys.PREDICT) global_step = None if compile_clone: # Set iterations to the global step created by tf.train.create_global_step() # which is automatically run in the estimator framework. global_step = training_util.get_or_create_global_step() K.track_variable(global_step) clone = models.clone_and_build_model( keras_model, input_tensors, target_tensors, custom_objects, compile_clone=compile_clone, in_place_reset=(not keras_model._is_graph_network), optimizer_iterations=global_step, optimizer_config=optimizer_config) if sample_weight_tensors is not None: sample_weight_tensors = training_utils.standardize_sample_weights( sample_weight_tensors, clone.output_names) # Update calculated loss (model.total_loss) to include sample weights. clone._compile_weights_loss_and_weighted_metrics(sample_weight_tensors) return clone def _convert_keras_metrics_to_estimator(model): """Convert metrics from a Keras model to ops used by the Estimator framework. Args: model: A `tf.keras.Model` object. Returns: Dictionary mapping metric names to tuples of (value, update) ops. May return `None` if the model does not contain any metrics. """ if not getattr(model, '_compile_metrics', None): return None # We are not using model.metrics here because we want to exclude the metrics # added using `add_metric` API. # TODO(psv): Remove this condition here after # _compile_stateful_metric_functions becomes obsolete with the Estimator repo. if hasattr(model, '_compile_stateful_metric_functions'): return {m.name: m for m in model._compile_stateful_metric_functions} return {m.name: m for m in model._compile_metric_functions} def _create_keras_model_fn(keras_model, custom_objects=None, save_object_ckpt=False): """Creates model_fn for keras Estimator. Args: keras_model: an instance of compiled keras model. custom_objects: Dictionary for custom objects. save_object_ckpt: Whether to save an object-based checkpoint. Returns: The model_fn for a keras Estimator. """ # Get optimizer config in the current context (since model_fn is called in the # estimator graph and session). OptimizerV2 objects serialize variable/tensor # hyperparameters in their configs, resulting to wrong-session errors during # model cloning. try: optimizer_config = keras_model.optimizer.get_config() except (NotImplementedError, AttributeError): # TFOptimizers and other custom optimizers do not have a config. optimizer_config = None def model_fn(features, labels, mode): """model_fn for keras Estimator.""" model = _clone_and_build_model( mode=mode, keras_model=keras_model, custom_objects=custom_objects, features=features, labels=labels, optimizer_config=optimizer_config) model_output_names = [] # We need to make sure that the output names of the last layer in the model # is the same for each of the cloned models. This is required for mirrored # strategy when we call regroup. if distribution_strategy_context.has_strategy(): for name in model.output_names: name = re.compile(r'_\d$').sub('', name) model_output_names.append(name) else: model_output_names = model.output_names # Get inputs to EstimatorSpec predictions = dict(zip(model_output_names, model.outputs)) loss = None train_op = None eval_metric_ops = None # Set loss and metric only during train and evaluate. if mode is not ModeKeys.PREDICT: if mode is ModeKeys.TRAIN: model._make_train_function() # pylint: disable=protected-access else: model._make_test_function() # pylint: disable=protected-access loss = model.total_loss eval_metric_ops = _convert_keras_metrics_to_estimator(model) # Set train_op only during train. if mode is ModeKeys.TRAIN: train_op = model.train_function.updates_op if not model._is_graph_network: # Reset model state to original state, # to avoid `model_fn` being destructive for the initial model argument. models.in_place_subclassed_model_state_restoration(keras_model) scaffold = None if save_object_ckpt: model._track_trackable(training_util.get_global_step(), 'estimator_global_step') # Create saver that maps variable names to object-checkpoint keys. object_graph = graph_view.ObjectGraphView(model) var_list = object_graph.frozen_saveable_objects() saver = saver_lib.Saver(var_list=var_list, sharded=True) saver._object_restore_saver = trackable_util.frozen_saver(model) scaffold = monitored_session.Scaffold(saver=saver) return model_fn_lib.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs={ _DEFAULT_SERVING_KEY: export_lib.PredictOutput(predictions) }, scaffold=scaffold ) return model_fn def _save_first_checkpoint(keras_model, custom_objects, config, save_object_ckpt): """Save first checkpoint for the keras Estimator. Args: keras_model: an instance of compiled keras model. custom_objects: Dictionary for custom objects. config: Estimator config. save_object_ckpt: Whether to save an object-based checkpoint. Returns: The path where keras model checkpoint is saved. """ # save checkpoint into subdirectory to allow warm start keras_model_dir = os.path.join(config.model_dir, 'keras') # Load weights and save to checkpoint if there is no checkpoint latest_path = checkpoint_management.latest_checkpoint(keras_model_dir) if not latest_path: keras_weights = None if _any_weight_initialized(keras_model): keras_weights = keras_model.get_weights() if not gfile.IsDirectory(keras_model_dir): gfile.MakeDirs(keras_model_dir) with ops.Graph().as_default(): random_seed.set_random_seed(config.tf_random_seed) training_util.create_global_step() model = _clone_and_build_model(ModeKeys.TRAIN, keras_model, custom_objects) # Init the train_function outside of the context of session. This is due # to the fact that train function will update the graph by adding backprop # parts. This will potentially trying to update the node in forward graph # which will fail if it is done within same session. # Always create the train_function here since the model is just cloned. # See https://github.com/tensorflow/tensorflow/issues/27750 for details. model._make_train_function() # pylint: disable=protected-access # save to checkpoint with session.Session(config=config.session_config) as sess: if keras_weights: model.set_weights(keras_weights) # model._make_train_function() will potentially create the optimizer # variable, which will require another variable initialization. K._initialize_variables(sess) # pylint: disable=protected-access if save_object_ckpt: model._track_trackable( # pylint: disable=protected-access training_util.get_global_step(), 'estimator_global_step') latest_path = os.path.join(keras_model_dir, 'keras_model.ckpt') model.save_weights(latest_path) else: saver = saver_lib.Saver() latest_path = os.path.join(keras_model_dir, 'keras_model.ckpt') saver.save(sess, latest_path) return latest_path def _get_file_from_google_storage(keras_model_path, model_dir): """Get file from google storage and download to local file. Args: keras_model_path: a google storage path for compiled keras model. model_dir: the directory from estimator config. Returns: The path where keras model is saved. Raises: ValueError: if storage object name does not end with .h5. """ try: from google.cloud import storage # pylint:disable=g-import-not-at-top except ImportError: raise TypeError('Could not save model to Google cloud storage; please ' 'install `google-cloud-storage` via ' '`pip install google-cloud-storage`.') storage_client = storage.Client() path, blob_name = os.path.split(keras_model_path) _, bucket_name = os.path.split(path) keras_model_dir = os.path.join(model_dir, 'keras') if not gfile.Exists(keras_model_dir): gfile.MakeDirs(keras_model_dir) file_name = os.path.join(keras_model_dir, 'keras_model.h5') try: blob = storage_client.get_bucket(bucket_name).blob(blob_name) blob.download_to_filename(file_name) except: raise ValueError('Failed to download keras model, please check ' 'environment variable GOOGLE_APPLICATION_CREDENTIALS ' 'and model path storage.googleapis.com/{bucket}/{object}.') logging.info('Saving model to {}'.format(file_name)) del storage_client return file_name # LINT.IfChange def model_to_estimator(keras_model=None, keras_model_path=None, custom_objects=None, model_dir=None, config=None, checkpoint_format=None, use_v2_estimator=False): # LINT.ThenChange(//tensorflow/python/keras/estimator/__init__.py) """Constructs an `Estimator` instance from given keras model. For usage example, please see: [Creating estimators from Keras Models](https://tensorflow.org/guide/estimators#model_to_estimator). __Sample Weights__ Estimators returned by `model_to_estimator` are configured to handle sample weights (similar to `keras_model.fit(x, y, sample_weights)`). To pass sample weights when training or evaluating the Estimator, the first item returned by the input function should be a dictionary with keys `features` and `sample_weights`. Example below: ``` keras_model = tf.keras.Model(...) keras_model.compile(...) estimator = tf.keras.estimator.model_to_estimator(keras_model) def input_fn(): return dataset_ops.Dataset.from_tensors( ({'features': features, 'sample_weights': sample_weights}, targets)) estimator.train(input_fn, steps=1) ``` Args: keras_model: A compiled Keras model object. This argument is mutually exclusive with `keras_model_path`. keras_model_path: Path to a compiled Keras model saved on disk, in HDF5 format, which can be generated with the `save()` method of a Keras model. This argument is mutually exclusive with `keras_model`. custom_objects: Dictionary for custom objects. model_dir: Directory to save `Estimator` model parameters, graph, summary files for TensorBoard, etc. config: `RunConfig` to config `Estimator`. checkpoint_format: Sets the format of the checkpoint saved by the estimator when training. May be `saver` or `checkpoint`, depending on whether to save checkpoints from `tf.compat.v1.train.Saver` or `tf.train.Checkpoint`. The default is `checkpoint`. Estimators use name-based `tf.train.Saver` checkpoints, while Keras models use object-based checkpoints from `tf.train.Checkpoint`. Currently, saving object-based checkpoints from `model_to_estimator` is only supported by Functional and Sequential models. use_v2_estimator: Whether to convert the model to a V2 Estimator or V1 Estimator. Returns: An Estimator from given keras model. Raises: ValueError: if neither keras_model nor keras_model_path was given. ValueError: if both keras_model and keras_model_path was given. ValueError: if the keras_model_path is a GCS URI. ValueError: if keras_model has not been compiled. ValueError: if an invalid checkpoint_format was given. """ if not (keras_model or keras_model_path): raise ValueError( 'Either `keras_model` or `keras_model_path` needs to be provided.') if keras_model and keras_model_path: raise ValueError( 'Please specity either `keras_model` or `keras_model_path`, ' 'but not both.') config = estimator_lib.maybe_overwrite_model_dir_and_session_config( config, model_dir) if not keras_model: if keras_model_path.startswith( 'gs://') or 'storage.googleapis.com' in keras_model_path: keras_model_path = _get_file_from_google_storage(keras_model_path, config.model_dir) logging.info('Loading models from %s', keras_model_path) keras_model = models.load_model(keras_model_path) else: logging.info('Using the Keras model provided.') keras_model = keras_model if checkpoint_format is None or checkpoint_format == 'checkpoint': if not (keras_model._is_graph_network or isinstance(keras_model, models.Sequential)): raise ValueError('Object-based checkpoints are currently not supported ' 'with subclassed models.') save_object_ckpt = True elif checkpoint_format == 'saver': save_object_ckpt = False else: raise ValueError( 'Checkpoint format must be one of "checkpoint" or "saver". Got {}' .format(checkpoint_format)) if not hasattr(keras_model, 'optimizer') or not keras_model.optimizer: raise ValueError( 'The given keras model has not been compiled yet. ' 'Please compile the model with `model.compile()` ' 'before calling `model_to_estimator()`.') keras_model_fn = _create_keras_model_fn(keras_model, custom_objects, save_object_ckpt) if _any_weight_initialized(keras_model): # Warn if config passed to estimator tries to update GPUOptions. If a # session has already been created, the GPUOptions passed to the first # session sticks. if config.session_config.HasField('gpu_options'): logging.warning( 'The Keras backend session has already been set. ' 'The _session_config passed to model_to_estimator will not be used.') else: # Pass the config into keras backend's default session. sess = session.Session(config=config.session_config) K.set_session(sess) warm_start_path = None if keras_model._is_graph_network: warm_start_path = _save_first_checkpoint(keras_model, custom_objects, config, save_object_ckpt) elif keras_model.built: logging.warning('You are creating an Estimator from a Keras model manually ' 'subclassed from `Model`, that was already called on some ' 'inputs (and thus already had weights). We are currently ' 'unable to preserve the model\'s state (its weights) as ' 'part of the estimator in this case. Be warned that the ' 'estimator has been created using a freshly initialized ' 'version of your model.\n' 'Note that this doesn\'t affect the state of the model ' 'instance you passed as `keras_model` argument.') if use_v2_estimator: estimator_cls = estimator_lib.EstimatorV2 else: estimator_cls = estimator_lib.Estimator estimator = estimator_cls( keras_model_fn, config=config, warm_start_from=warm_start_path) return estimator
39.601363
80
0.711004
4f9a96e90e4645ad96c1b598be4e64678c847ff0
3,577
py
Python
chb/x86/opcodes/X86PushRegisters.py
kestreltechnology/CodeHawk-Binary
aa0b2534e0318e5fb3770ec7b4d78feb0feb2394
[ "MIT" ]
null
null
null
chb/x86/opcodes/X86PushRegisters.py
kestreltechnology/CodeHawk-Binary
aa0b2534e0318e5fb3770ec7b4d78feb0feb2394
[ "MIT" ]
null
null
null
chb/x86/opcodes/X86PushRegisters.py
kestreltechnology/CodeHawk-Binary
aa0b2534e0318e5fb3770ec7b4d78feb0feb2394
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # CodeHawk Binary Analyzer # Author: Henny Sipma # ------------------------------------------------------------------------------ # The MIT License (MIT) # # Copyright (c) 2016-2020 Kestrel Technology LLC # Copyright (c) 2020 Henny Sipma # Copyright (c) 2021 Aarno Labs LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ------------------------------------------------------------------------------ from typing import List, TYPE_CHECKING from chb.app.InstrXData import InstrXData import chb.simulation.SimUtil as SU import chb.simulation.SimValue as SV import chb.util.fileutil as UF from chb.util.IndexedTable import IndexedTableValue from chb.x86.X86DictionaryRecord import x86registry from chb.x86.X86Opcode import X86Opcode if TYPE_CHECKING: from chb.x86.X86Dictionary import X86Dictionary from chb.x86.simulation.X86SimulationState import X86SimulationState @x86registry.register_tag("pusha", X86Opcode) class X86PushRegisters(X86Opcode): """PUSHA. """ def __init__( self, x86d: "X86Dictionary", ixval: IndexedTableValue) -> None: X86Opcode.__init__(self, x86d, ixval) def get_annotation(self, xdata: InstrXData) -> str: return 'push eax,ecx,edx,ebx,esp,ebp,esi,edi' # -------------------------------------------------------------------------- # Pushes the contents of the general-purpose registers onto the stack. The # registers are stored on the stack in the following order: EAX, ECX, EDX, # EBX, ESP (original value), EBP, ESI, and EDI (if the current operand-size # attribute is 32) and AX, CX, DX, BX, SP (original value), BP, SI, and DI # (if the operand-size attribute is 16). # # Flags affected: None # -------------------------------------------------------------------------- def simulate(self, iaddr: str, simstate: "X86SimulationState") -> None: espval = simstate.get_regval(iaddr, 'esp') simstate.push_value(iaddr, simstate.get_regval(iaddr, 'eax')) simstate.push_value(iaddr, simstate.get_regval(iaddr, 'ecx')) simstate.push_value(iaddr, simstate.get_regval(iaddr, 'edx')) simstate.push_value(iaddr, simstate.get_regval(iaddr, 'ebx')) simstate.push_value(iaddr, espval) simstate.push_value(iaddr, simstate.get_regval(iaddr, 'ebp')) simstate.push_value(iaddr, simstate.get_regval(iaddr, 'esi')) simstate.push_value(iaddr, simstate.get_regval(iaddr, 'edi'))
44.160494
80
0.649147
a4a661d0b8ca0871df53e909b8f2f1490ebd600d
5,487
py
Python
khan/pipeline/tests/test_images.py
zachariahmilby/keck-hires-aurora-pipeline
51aae65cc6be396b0ef3de12f76220576248fea9
[ "MIT" ]
null
null
null
khan/pipeline/tests/test_images.py
zachariahmilby/keck-hires-aurora-pipeline
51aae65cc6be396b0ef3de12f76220576248fea9
[ "MIT" ]
null
null
null
khan/pipeline/tests/test_images.py
zachariahmilby/keck-hires-aurora-pipeline
51aae65cc6be396b0ef3de12f76220576248fea9
[ "MIT" ]
null
null
null
import pytest from astropy.io import fits import numpy as np from numpy.testing import assert_array_equal from khan.pipeline.images import parse_mosaic_detector_slice, \ determine_detector_layout, get_mosaic_detector_corner_coordinates, \ reformat_observers, CCDImage np.random.seed(1701) class TestParseMosaicDetectorSlice: @pytest.fixture def good_slice_string(self): yield '[5:683,1:4096]' def test_correct_slice_returns_correct_slice(self, good_slice_string): assert parse_mosaic_detector_slice(good_slice_string) == \ (slice(4, 683, 1), slice(0, 4096, 1)) class TestDetermineDetectorLayout: @pytest.fixture def legacy_hdul(self): yield fits.HDUList([fits.PrimaryHDU()]) @pytest.fixture def mosaic_hdul(self): yield fits.HDUList([fits.PrimaryHDU(), fits.ImageHDU(), fits.ImageHDU(), fits.ImageHDU()]) @pytest.fixture def one_detector_mosaic_hdul(self): yield fits.HDUList([fits.PrimaryHDU(), fits.ImageHDU()]) @pytest.fixture def two_detector_mosaic_hdul(self): yield fits.HDUList([fits.PrimaryHDU(), fits.ImageHDU(), fits.ImageHDU()]) @pytest.fixture def four_detector_mosaic_hdul(self): yield fits.HDUList([fits.PrimaryHDU(), fits.ImageHDU(), fits.ImageHDU(), fits.ImageHDU(), fits.ImageHDU()]) def test_if_legacy_identified(self, legacy_hdul): assert determine_detector_layout(legacy_hdul) == 'legacy' def test_if_mosaic_identified(self, mosaic_hdul): assert determine_detector_layout(mosaic_hdul) == 'mosaic' def test_if_one_detector_mosaic_raises_exception(self, one_detector_mosaic_hdul): with pytest.raises(Exception): determine_detector_layout(one_detector_mosaic_hdul) def test_if_two_detector_mosaic_raises_exception(self, two_detector_mosaic_hdul): with pytest.raises(Exception): determine_detector_layout(two_detector_mosaic_hdul) def test_if_four_detector_mosaic_raises_exception( self, four_detector_mosaic_hdul): with pytest.raises(Exception): determine_detector_layout(four_detector_mosaic_hdul) class TestGetMosaicDetectorCornerCoordinates: @pytest.fixture def image_header_whole_pixel(self): yield fits.Header({'CRVAL1G': 4141.0, 'CRVAL2G': 1.0}) @pytest.fixture def image_header_half_pixel(self): yield fits.Header({'CRVAL1G': 4141.5, 'CRVAL2G': 0.5}) def test_correct_position_with_2x_spatial_binning( self, image_header_whole_pixel): assert assert_array_equal( get_mosaic_detector_corner_coordinates( image_header_whole_pixel, binning=np.array([2, 1])), np.array([1047, 0])) is None def test_correct_position_with_2x_spatial_binning_and_decimal_coordinate( self, image_header_half_pixel): assert assert_array_equal( get_mosaic_detector_corner_coordinates( image_header_half_pixel, binning=np.array([2, 1])), np.array([1047, 0])) is None def test_correct_position_with_3x_spatial_binning( self, image_header_whole_pixel): assert assert_array_equal( get_mosaic_detector_corner_coordinates( image_header_whole_pixel, binning=np.array([3, 1])), np.array([698, 0])) is None def test_correct_position_with_3x_spatial_binning_and_decimal_coordinate( self, image_header_half_pixel): assert assert_array_equal( get_mosaic_detector_corner_coordinates( image_header_half_pixel, binning=np.array([3, 1])), np.array([698, 0])) is None class TestReformatObservers: @pytest.fixture def observers_with_commas_no_spaces(self): yield 'de Kleer,Milby,Camarca,Schmidt,Brown' @pytest.fixture def observers_with_commas_and_spaces(self): yield 'de Kleer, Milby, Camarca, Schmidt, Brown' def test_observers_with_commas_no_spaces_returns_with_spaces( self, observers_with_commas_no_spaces): assert reformat_observers(observers_with_commas_no_spaces) == \ 'de Kleer, Milby, Camarca, Schmidt, Brown' def test_observers_with_commas_and_spaces_returns_unchanged( self, observers_with_commas_and_spaces): assert reformat_observers(observers_with_commas_and_spaces) == \ observers_with_commas_and_spaces class TestCCDImage: @pytest.fixture def sample_data(self): yield np.random.rand(2, 3) @pytest.fixture def sample_anc(self): yield {'test': 0.0} def test_if_data_type_is_array(self, sample_data, sample_anc): assert type(CCDImage(sample_data, sample_anc).data) is np.ndarray def test_if_data_matches_expected_array(self, sample_data, sample_anc): assert assert_array_equal(CCDImage(sample_data, sample_anc).data, sample_data) is None def test_if_ancillary_type_is_dict(self, sample_data, sample_anc): assert type(CCDImage(sample_data, sample_anc).anc) is dict def test_if_ancillary_information_accessible( self, sample_data, sample_anc): assert CCDImage(sample_data, sample_anc).anc['test'] == 0.0
35.62987
79
0.684892
80ee6d47654abf9c9d5b373f0491dade87360bda
430
py
Python
Corona World Map/Goodle Maps.py
CoderAryanAnand/fun_projects
6891320a373bad539b6e7926ca868d56c560bc20
[ "MIT" ]
null
null
null
Corona World Map/Goodle Maps.py
CoderAryanAnand/fun_projects
6891320a373bad539b6e7926ca868d56c560bc20
[ "MIT" ]
null
null
null
Corona World Map/Goodle Maps.py
CoderAryanAnand/fun_projects
6891320a373bad539b6e7926ca868d56c560bc20
[ "MIT" ]
null
null
null
import pandas as pd import gmaps from IPython.display import display data = pd.read_csv("data.csv") df = pd.DataFrame(data) df.head() print(df.shape) mylist = ["5/27/20"] df2 = df[df[mylist].ne(0).all(1)] print(df2) gmaps.configure(api_key="") locations = df2[['Lat', 'Long']] weights = df2["5/27/20"] fig = gmaps.figure() fig.add_layer(gmaps.heatmap_layer(locations, weights=weights, max_intensity=100, point_radius=20.0)) fig
22.631579
100
0.718605
56fb58c8e59e3e99af1cb33271fb1afe2510ec1a
17,309
py
Python
redash/tasks/queries.py
pkuyangchao/redash
1640b1e927a4d10ce9ae5c24b2d015734c696b08
[ "BSD-2-Clause" ]
null
null
null
redash/tasks/queries.py
pkuyangchao/redash
1640b1e927a4d10ce9ae5c24b2d015734c696b08
[ "BSD-2-Clause" ]
4
2020-06-18T15:31:02.000Z
2021-03-25T23:31:41.000Z
redash/tasks/queries.py
pkuyangchao/redash
1640b1e927a4d10ce9ae5c24b2d015734c696b08
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import signal import time import redis from celery.exceptions import SoftTimeLimitExceeded, TimeLimitExceeded from celery.result import AsyncResult from celery.utils.log import get_task_logger from six import text_type from redash import models, redis_connection, settings, statsd_client from redash.models.parameterized_query import InvalidParameterError, QueryDetachedFromDataSourceError from redash.query_runner import InterruptException from redash.tasks.alerts import check_alerts_for_query from redash.tasks.failure_report import notify_of_failure from redash.utils import gen_query_hash, json_dumps, utcnow, mustache_render from redash.worker import celery logger = get_task_logger(__name__) TIMEOUT_MESSAGE = "Query exceeded Redash query execution time limit." def _job_lock_id(query_hash, data_source_id): return "query_hash_job:%s:%s" % (data_source_id, query_hash) def _unlock(query_hash, data_source_id): redis_connection.delete(_job_lock_id(query_hash, data_source_id)) class QueryTask(object): # TODO: this is mapping to the old Job class statuses. Need to update the client side and remove this STATUSES = { 'PENDING': 1, 'STARTED': 2, 'SUCCESS': 3, 'FAILURE': 4, 'REVOKED': 4 } def __init__(self, job_id=None, async_result=None): if async_result: self._async_result = async_result else: self._async_result = AsyncResult(job_id, app=celery) @property def id(self): return self._async_result.id def to_dict(self): task_info = self._async_result._get_task_meta() result, task_status = task_info['result'], task_info['status'] if task_status == 'STARTED': updated_at = result.get('start_time', 0) else: updated_at = 0 status = self.STATUSES[task_status] if isinstance(result, (TimeLimitExceeded, SoftTimeLimitExceeded)): error = TIMEOUT_MESSAGE status = 4 elif isinstance(result, Exception): error = result.message status = 4 elif task_status == 'REVOKED': error = 'Query execution cancelled.' else: error = '' if task_status == 'SUCCESS' and not error: query_result_id = result else: query_result_id = None return { 'id': self._async_result.id, 'updated_at': updated_at, 'status': status, 'error': error, 'query_result_id': query_result_id, } @property def is_cancelled(self): return self._async_result.status == 'REVOKED' @property def celery_status(self): return self._async_result.status def ready(self): return self._async_result.ready() def cancel(self): return self._async_result.revoke(terminate=True, signal='SIGINT') def enqueue_query(query, data_source, user_id, is_api_key=False, scheduled_query=None, metadata={}): query_hash = gen_query_hash(query) logging.info("Inserting job for %s with metadata=%s", query_hash, metadata) try_count = 0 job = None while try_count < 5: try_count += 1 pipe = redis_connection.pipeline() try: pipe.watch(_job_lock_id(query_hash, data_source.id)) job_id = pipe.get(_job_lock_id(query_hash, data_source.id)) if job_id: logging.info("[%s] Found existing job: %s", query_hash, job_id) job = QueryTask(job_id=job_id) if job.ready(): logging.info("[%s] job found is ready (%s), removing lock", query_hash, job.celery_status) redis_connection.delete(_job_lock_id(query_hash, data_source.id)) job = None if not job: pipe.multi() if scheduled_query: queue_name = data_source.scheduled_queue_name scheduled_query_id = scheduled_query.id else: queue_name = data_source.queue_name scheduled_query_id = None args = (query, data_source.id, metadata, user_id, scheduled_query_id, is_api_key) argsrepr = json_dumps({ 'org_id': data_source.org_id, 'data_source_id': data_source.id, 'enqueue_time': time.time(), 'scheduled': scheduled_query_id is not None, 'query_id': metadata.get('Query ID'), 'user_id': user_id }) time_limit = settings.dynamic_settings.query_time_limit(scheduled_query, user_id, data_source.org_id) result = execute_query.apply_async(args=args, argsrepr=argsrepr, queue=queue_name, soft_time_limit=time_limit) job = QueryTask(async_result=result) logging.info("[%s] Created new job: %s", query_hash, job.id) pipe.set(_job_lock_id(query_hash, data_source.id), job.id, settings.JOB_EXPIRY_TIME) pipe.execute() break except redis.WatchError: continue if not job: logging.error("[Manager][%s] Failed adding job for query.", query_hash) return job @celery.task(name="redash.tasks.empty_schedules") def empty_schedules(): logger.info("Deleting schedules of past scheduled queries...") queries = models.Query.past_scheduled_queries() for query in queries: query.schedule = None models.db.session.commit() logger.info("Deleted %d schedules.", len(queries)) @celery.task(name="redash.tasks.refresh_queries") def refresh_queries(): logger.info("Refreshing queries...") outdated_queries_count = 0 query_ids = [] with statsd_client.timer('manager.outdated_queries_lookup'): for query in models.Query.outdated_queries(): if settings.FEATURE_DISABLE_REFRESH_QUERIES: logging.info("Disabled refresh queries.") elif query.org.is_disabled: logging.debug("Skipping refresh of %s because org is disabled.", query.id) elif query.data_source is None: logging.debug("Skipping refresh of %s because the datasource is none.", query.id) elif query.data_source.paused: logging.debug("Skipping refresh of %s because datasource - %s is paused (%s).", query.id, query.data_source.name, query.data_source.pause_reason) else: query_text = query.query_text parameters = {p['name']: p.get('value') for p in query.parameters} if any(parameters): try: query_text = query.parameterized.apply(parameters).query except InvalidParameterError as e: error = u"Skipping refresh of {} because of invalid parameters: {}".format(query.id, e.message) track_failure(query, error) continue except QueryDetachedFromDataSourceError as e: error = ("Skipping refresh of {} because a related dropdown " "query ({}) is unattached to any datasource.").format(query.id, e.query_id) track_failure(query, error) continue enqueue_query(query_text, query.data_source, query.user_id, scheduled_query=query, metadata={'Query ID': query.id, 'Username': 'Scheduled'}) query_ids.append(query.id) outdated_queries_count += 1 statsd_client.gauge('manager.outdated_queries', outdated_queries_count) logger.info("Done refreshing queries. Found %d outdated queries: %s" % (outdated_queries_count, query_ids)) status = redis_connection.hgetall('redash:status') now = time.time() redis_connection.hmset('redash:status', { 'outdated_queries_count': outdated_queries_count, 'last_refresh_at': now, 'query_ids': json_dumps(query_ids) }) statsd_client.gauge('manager.seconds_since_refresh', now - float(status.get('last_refresh_at', now))) @celery.task(name="redash.tasks.cleanup_query_results") def cleanup_query_results(): """ Job to cleanup unused query results -- such that no query links to them anymore, and older than settings.QUERY_RESULTS_MAX_AGE (a week by default, so it's less likely to be open in someone's browser and be used). Each time the job deletes only settings.QUERY_RESULTS_CLEANUP_COUNT (100 by default) query results so it won't choke the database in case of many such results. """ logging.info("Running query results clean up (removing maximum of %d unused results, that are %d days old or more)", settings.QUERY_RESULTS_CLEANUP_COUNT, settings.QUERY_RESULTS_CLEANUP_MAX_AGE) unused_query_results = models.QueryResult.unused(settings.QUERY_RESULTS_CLEANUP_MAX_AGE).limit(settings.QUERY_RESULTS_CLEANUP_COUNT) deleted_count = models.QueryResult.query.filter( models.QueryResult.id.in_(unused_query_results.subquery()) ).delete(synchronize_session=False) models.db.session.commit() logger.info("Deleted %d unused query results.", deleted_count) @celery.task(name="redash.tasks.refresh_schema", time_limit=90, soft_time_limit=60) def refresh_schema(data_source_id): ds = models.DataSource.get_by_id(data_source_id) logger.info(u"task=refresh_schema state=start ds_id=%s", ds.id) start_time = time.time() try: ds.get_schema(refresh=True) logger.info(u"task=refresh_schema state=finished ds_id=%s runtime=%.2f", ds.id, time.time() - start_time) statsd_client.incr('refresh_schema.success') except SoftTimeLimitExceeded: logger.info(u"task=refresh_schema state=timeout ds_id=%s runtime=%.2f", ds.id, time.time() - start_time) statsd_client.incr('refresh_schema.timeout') except Exception: logger.warning(u"Failed refreshing schema for the data source: %s", ds.name, exc_info=1) statsd_client.incr('refresh_schema.error') logger.info(u"task=refresh_schema state=failed ds_id=%s runtime=%.2f", ds.id, time.time() - start_time) @celery.task(name="redash.tasks.refresh_schemas") def refresh_schemas(): """ Refreshes the data sources schemas. """ blacklist = [int(ds_id) for ds_id in redis_connection.smembers('data_sources:schema:blacklist') if ds_id] global_start_time = time.time() logger.info(u"task=refresh_schemas state=start") for ds in models.DataSource.query: if ds.paused: logger.info(u"task=refresh_schema state=skip ds_id=%s reason=paused(%s)", ds.id, ds.pause_reason) elif ds.id in blacklist: logger.info(u"task=refresh_schema state=skip ds_id=%s reason=blacklist", ds.id) elif ds.org.is_disabled: logger.info(u"task=refresh_schema state=skip ds_id=%s reason=org_disabled", ds.id) else: refresh_schema.apply_async(args=(ds.id,), queue=settings.SCHEMAS_REFRESH_QUEUE) logger.info(u"task=refresh_schemas state=finish total_runtime=%.2f", time.time() - global_start_time) def signal_handler(*args): raise InterruptException class QueryExecutionError(Exception): pass def _resolve_user(user_id, is_api_key, query_id): if user_id is not None: if is_api_key: api_key = user_id if query_id is not None: q = models.Query.get_by_id(query_id) else: q = models.Query.by_api_key(api_key) return models.ApiUser(api_key, q.org, q.groups) else: return models.User.get_by_id(user_id) else: return None def track_failure(query, error): logging.debug(error) query.schedule_failures += 1 models.db.session.add(query) models.db.session.commit() notify_of_failure(error, query) # We could have created this as a celery.Task derived class, and act as the task itself. But this might result in weird # issues as the task class created once per process, so decided to have a plain object instead. class QueryExecutor(object): def __init__(self, task, query, data_source_id, user_id, is_api_key, metadata, scheduled_query): self.task = task self.query = query self.data_source_id = data_source_id self.metadata = metadata self.data_source = self._load_data_source() self.user = _resolve_user(user_id, is_api_key, metadata.get('Query ID')) # Close DB connection to prevent holding a connection for a long time while the query is executing. models.db.session.close() self.query_hash = gen_query_hash(self.query) self.scheduled_query = scheduled_query # Load existing tracker or create a new one if the job was created before code update: if scheduled_query: models.scheduled_queries_executions.update(scheduled_query.id) def run(self): signal.signal(signal.SIGINT, signal_handler) started_at = time.time() logger.debug("Executing query:\n%s", self.query) self._log_progress('executing_query') query_runner = self.data_source.query_runner annotated_query = self._annotate_query(query_runner) try: data, error = query_runner.run_query(annotated_query, self.user) except Exception as e: if isinstance(e, SoftTimeLimitExceeded): error = TIMEOUT_MESSAGE else: error = text_type(e) data = None logging.warning('Unexpected error while running query:', exc_info=1) run_time = time.time() - started_at logger.info(u"task=execute_query query_hash=%s data_length=%s error=[%s]", self.query_hash, data and len(data), error) _unlock(self.query_hash, self.data_source.id) if error is not None and data is None: result = QueryExecutionError(error) if self.scheduled_query is not None: self.scheduled_query = models.db.session.merge(self.scheduled_query, load=False) track_failure(self.scheduled_query, error) raise result else: if (self.scheduled_query and self.scheduled_query.schedule_failures > 0): self.scheduled_query = models.db.session.merge(self.scheduled_query, load=False) self.scheduled_query.schedule_failures = 0 models.db.session.add(self.scheduled_query) query_result, updated_query_ids = models.QueryResult.store_result( self.data_source.org_id, self.data_source, self.query_hash, self.query, data, run_time, utcnow()) models.db.session.commit() # make sure that alert sees the latest query result self._log_progress('checking_alerts') for query_id in updated_query_ids: check_alerts_for_query.delay(query_id) self._log_progress('finished') result = query_result.id models.db.session.commit() return result def _annotate_query(self, query_runner): self.metadata['Task ID'] = self.task.request.id self.metadata['Query Hash'] = self.query_hash self.metadata['Queue'] = self.task.request.delivery_info['routing_key'] self.metadata['Scheduled'] = self.scheduled_query is not None return query_runner.annotate_query(self.query, self.metadata) def _log_progress(self, state): logger.info( u"task=execute_query state=%s query_hash=%s type=%s ds_id=%d " "task_id=%s queue=%s query_id=%s username=%s", state, self.query_hash, self.data_source.type, self.data_source.id, self.task.request.id, self.task.request.delivery_info['routing_key'], self.metadata.get('Query ID', 'unknown'), self.metadata.get('Username', 'unknown')) def _load_data_source(self): logger.info("task=execute_query state=load_ds ds_id=%d", self.data_source_id) return models.DataSource.query.get(self.data_source_id) # user_id is added last as a keyword argument for backward compatability -- to support executing previously submitted # jobs before the upgrade to this version. @celery.task(name="redash.tasks.execute_query", bind=True, track_started=True) def execute_query(self, query, data_source_id, metadata, user_id=None, scheduled_query_id=None, is_api_key=False): if scheduled_query_id is not None: scheduled_query = models.Query.query.get(scheduled_query_id) else: scheduled_query = None return QueryExecutor(self, query, data_source_id, user_id, is_api_key, metadata, scheduled_query).run()
39.428246
136
0.644462
1e92dc4caef3d76b13ec9a6dc22d1eadbb34d6db
57
py
Python
geochemistrypy/utils/__init__.py
WenyuMolly/geochemistrypy
7127d98eb4b1610769a859dfbfb21457ae8de37c
[ "MIT" ]
13
2021-11-03T05:44:06.000Z
2022-03-27T02:50:45.000Z
geochemistrypy/utils/__init__.py
WenyuMolly/geochemistrypy
7127d98eb4b1610769a859dfbfb21457ae8de37c
[ "MIT" ]
20
2022-02-19T14:06:08.000Z
2022-03-28T10:25:48.000Z
geochemistrypy/utils/__init__.py
WenyuMolly/geochemistrypy
7127d98eb4b1610769a859dfbfb21457ae8de37c
[ "MIT" ]
4
2021-11-03T05:44:12.000Z
2022-03-12T15:14:22.000Z
# -*- coding: utf-8 -*- import sys sys.path.append('..')
14.25
23
0.561404
35419e763cdd6878d443d2421030d1d31eda8330
1,157
py
Python
kubernetes/test/test_v1beta1_custom_resource_definition_condition.py
kevingessner/python
3f4d09d260cf0839fae8173852c69e0419188454
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1beta1_custom_resource_definition_condition.py
kevingessner/python
3f4d09d260cf0839fae8173852c69e0419188454
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1beta1_custom_resource_definition_condition.py
kevingessner/python
3f4d09d260cf0839fae8173852c69e0419188454
[ "Apache-2.0" ]
1
2018-07-19T16:37:20.000Z
2018-07-19T16:37:20.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.9.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1beta1_custom_resource_definition_condition import V1beta1CustomResourceDefinitionCondition class TestV1beta1CustomResourceDefinitionCondition(unittest.TestCase): """ V1beta1CustomResourceDefinitionCondition unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1beta1CustomResourceDefinitionCondition(self): """ Test V1beta1CustomResourceDefinitionCondition """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1beta1_custom_resource_definition_condition.V1beta1CustomResourceDefinitionCondition() pass if __name__ == '__main__': unittest.main()
25.711111
129
0.757995
a9bf1272492e1110917b8864bddcfa05dcec8baa
285
py
Python
database/restclientfactory.py
tomdoel/pyxnatbrowser
573701e34538d6bae488d0a2d2a8864e974e5a8a
[ "BSD-2-Clause" ]
null
null
null
database/restclientfactory.py
tomdoel/pyxnatbrowser
573701e34538d6bae488d0a2d2a8864e974e5a8a
[ "BSD-2-Clause" ]
null
null
null
database/restclientfactory.py
tomdoel/pyxnatbrowser
573701e34538d6bae488d0a2d2a8864e974e5a8a
[ "BSD-2-Clause" ]
null
null
null
# https://github.com/tomdoel/pyxnatbrowser # Author: Tom Doel www.tomdoel.com # Distributed under the Simplified BSD License. from database.restclient import RestClient class RestClientFactory: @staticmethod def create_rest_client(config): return RestClient(config)
23.75
47
0.77193
8c349faa049ad9811cf692eb9d539e322c40efd4
920
py
Python
tools/mo/openvino/tools/mo/front/tf/topk_ext.py
ryanloney/openvino-1
4e0a740eb3ee31062ba0df88fcf438564f67edb7
[ "Apache-2.0" ]
1,127
2018-10-15T14:36:58.000Z
2020-04-20T09:29:44.000Z
tools/mo/openvino/tools/mo/front/tf/topk_ext.py
ryanloney/openvino-1
4e0a740eb3ee31062ba0df88fcf438564f67edb7
[ "Apache-2.0" ]
439
2018-10-20T04:40:35.000Z
2020-04-19T05:56:25.000Z
tools/mo/openvino/tools/mo/front/tf/topk_ext.py
ryanloney/openvino-1
4e0a740eb3ee31062ba0df88fcf438564f67edb7
[ "Apache-2.0" ]
414
2018-10-17T05:53:46.000Z
2020-04-16T17:29:53.000Z
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.ops.topk import TopK from openvino.tools.mo.front.extractor import FrontExtractorOp class TopKExtractor(FrontExtractorOp): op = 'TopK' enabled = True @classmethod def extract(cls, node): sort = 'value' if node.pb.attr['sorted'] else 'none' TopK.update_node_stat(node, {'mode': 'max', 'axis': -1, 'sort': sort, 'k': node.pb.attr['k'].i, 'index_element_type': np.int32}) return cls.enabled class TopKV2Extractor(FrontExtractorOp): op = 'TopKV2' enabled = True @classmethod def extract(cls, node): sort = 'value' if node.pb.attr['sorted'] else 'none' TopK.update_node_stat(node, {'mode': 'max', 'axis': -1, 'sort': sort, 'index_element_type': np.int32}) return cls.enabled
28.75
110
0.634783
8e4a741186b9be252c5e00b12492c5484497df50
1,082
py
Python
blibs/timestamps.py
theleftsock/blibs
a4a1b2eacf5bed9ed42e0e7f651f17e9549b34e6
[ "MIT" ]
null
null
null
blibs/timestamps.py
theleftsock/blibs
a4a1b2eacf5bed9ed42e0e7f651f17e9549b34e6
[ "MIT" ]
null
null
null
blibs/timestamps.py
theleftsock/blibs
a4a1b2eacf5bed9ed42e0e7f651f17e9549b34e6
[ "MIT" ]
null
null
null
__author__ = 'biagio' import datetime import time from time import gmtime, strftime def get_ts(mode = 0): date_list = datetime.datetime.now().time() # print "date_list: ", date_list if (mode == 0): # 2015-06-02 09:52 ts = strftime("%Y-%m-%d %H:%M") if (mode == 4): # 2015-06-02 09:52:30 ts = strftime("%Y-%m-%d %H:%M:%S") if (mode == 1): # 2015-06-02 13:52:41 ts = strftime("%Y-%m-%d %H:%M:%S", gmtime()) if (mode == 2): # 201506020952 ts = strftime("%Y%m%d%H%M") if (mode == 3): # 20150602095306 ts = strftime("%Y%m%d%H%M%S") #print "ts: ", ts return ts def seconds_to_time(secs): # takes number of seconds and returns a tuple up to days of time if secs > 60: mins = int(secs) / 60 secs = int(secs) % 60 else: mins = 0 if mins > 60: hours = int(mins) / 60 mins = int(mins) % 60 else: hours = 0 if hours > 24: days = int(hours) / 24 hours = int(hours) % 24 else: days = 0 return(secs, mins, hours, days)
28.473684
92
0.525878
f8f3000de868711e2b03c21f66f0b4d8b848299c
458
py
Python
Python/pico/utils.py
DSeeLP/LXBot9800
a53524b49fedffb3bd7e01d510b0318a602729e4
[ "MIT" ]
null
null
null
Python/pico/utils.py
DSeeLP/LXBot9800
a53524b49fedffb3bd7e01d510b0318a602729e4
[ "MIT" ]
null
null
null
Python/pico/utils.py
DSeeLP/LXBot9800
a53524b49fedffb3bd7e01d510b0318a602729e4
[ "MIT" ]
null
null
null
from machine import Pin, SPI from lib.ST7735 import TFT import utime buzzer = Pin(4, Pin.OUT) def buzz(time_ms: int = 250): buzzer.value(1) utime.sleep_ms(time_ms) buzzer.value(0) spi = SPI(1, baudrate=20000000, polarity=0, phase=0, sck=Pin(10), mosi=Pin(11), miso=None) # def __init__( self, spi, aDC, aReset, aCS) : tft = TFT(spi, 14, 15, 13) offset = 25 led1 = Pin(18, Pin.OUT) led2 = Pin(19, Pin.OUT) led3 = Pin(20, Pin.OUT)
19.083333
52
0.648472
3b5b683f9bd896753ed6835e8df39b02d123cd96
10,260
py
Python
deli/manager/cli/commands/run.py
sandwichcloud/deli
a08bf3da59e435493326ff3c8b435a7a9e762c00
[ "MIT" ]
5
2018-02-07T05:49:09.000Z
2020-03-02T20:33:13.000Z
deli/manager/cli/commands/run.py
sandwichcloud/deli
a08bf3da59e435493326ff3c8b435a7a9e762c00
[ "MIT" ]
2
2018-02-07T01:50:49.000Z
2020-10-27T21:18:04.000Z
deli/manager/cli/commands/run.py
sandwichcloud/deli
a08bf3da59e435493326ff3c8b435a7a9e762c00
[ "MIT" ]
null
null
null
import argparse import datetime import enum import ipaddress import json import os import time import uuid from threading import RLock import arrow import urllib3 from clify.daemon import Daemon from dotenv import load_dotenv from go_defer import with_defer, defer from k8scontroller.election.elector import LeaderElector from kubernetes import config, client from kubernetes.client import Configuration from deli.cache import cache_client from deli.kubernetes.resources.v1alpha1.flavor.controller import FlavorController from deli.kubernetes.resources.v1alpha1.flavor.model import Flavor from deli.kubernetes.resources.v1alpha1.iam_policy.controller import IAMPolicyController from deli.kubernetes.resources.v1alpha1.iam_policy.model import IAMPolicy from deli.kubernetes.resources.v1alpha1.iam_role.controller import IAMSystemRoleController, IAMProjectRoleController from deli.kubernetes.resources.v1alpha1.iam_role.model import IAMSystemRole, IAMProjectRole from deli.kubernetes.resources.v1alpha1.iam_service_account.controller import SystemServiceAccountController, \ ProjectServiceAccountController from deli.kubernetes.resources.v1alpha1.iam_service_account.model import SystemServiceAccount, ProjectServiceAccount from deli.kubernetes.resources.v1alpha1.image.controller import ImageController from deli.kubernetes.resources.v1alpha1.image.model import Image from deli.kubernetes.resources.v1alpha1.instance.controller import InstanceController from deli.kubernetes.resources.v1alpha1.instance.model import Instance from deli.kubernetes.resources.v1alpha1.keypair.controller import KeypairController from deli.kubernetes.resources.v1alpha1.keypair.keypair import Keypair from deli.kubernetes.resources.v1alpha1.network.controller import NetworkController, NetworkPortController from deli.kubernetes.resources.v1alpha1.network.model import Network, NetworkPort from deli.kubernetes.resources.v1alpha1.project_quota.controller import ProjectQuotaController from deli.kubernetes.resources.v1alpha1.project_quota.model import ProjectQuota from deli.kubernetes.resources.v1alpha1.region.controller import RegionController from deli.kubernetes.resources.v1alpha1.region.model import Region from deli.kubernetes.resources.v1alpha1.volume.controller import VolumeController from deli.kubernetes.resources.v1alpha1.volume.model import Volume from deli.kubernetes.resources.v1alpha1.zone.controller import ZoneController from deli.kubernetes.resources.v1alpha1.zone.model import Zone from deli.manager.vmware import VMWare class EnvDefault(argparse.Action): def __init__(self, envvar, required=True, default=None, help=None, **kwargs): if envvar in os.environ: default = os.environ.get(envvar, default) if required and default: required = False if help is not None: help += " [Environment Variable: $" + envvar + "]" if default is None: default = argparse.SUPPRESS super(EnvDefault, self).__init__(default=default, required=required, help=help, **kwargs) def __call__(self, parser, namespace, values, option_string=None): # pragma: no cover setattr(namespace, self.dest, values) class RunManager(Daemon): def __init__(self): super().__init__('run', 'Run the Sandwich Cloud Manager') self.menu_url = None self.vmware = None self.leader_elector = None self.controllers = [] self.lock = RLock() def setup_arguments(self, parser): load_dotenv(os.path.join(os.getcwd(), '.env')) parser.add_argument("--kube-config", action=EnvDefault, envvar="KUBECONFIG", required=False, default="", help="Path to a kubeconfig. Only required if out-of-cluster.") parser.add_argument('--kube-master', action=EnvDefault, envvar="KUBEMASTER", required=False, default="", help="The address of the Kubernetes API server (overrides any value in kubeconfig)") required_group = parser.add_argument_group("required named arguments") required_group.add_argument("--vcenter-host", action=EnvDefault, envvar="VCENTER_HOST", required=True, help="The address to use to connect to VCenter") required_group.add_argument("--vcenter-port", action=EnvDefault, envvar="VCENTER_PORT", default="443", help="The port to use to connect to VCenter") required_group.add_argument("--vcenter-username", action=EnvDefault, envvar="VCENTER_USERNAME", required=True, help="The username to use to connect to VCenter") required_group.add_argument("--vcenter-password", action=EnvDefault, envvar="VCENTER_PASSWORD", required=True, help="The password to use to connect to VCenter") required_group.add_argument("--menu-url", action=EnvDefault, envvar="MENU_URL", required=True, help="Telnet URL to the menu server") required_group.add_argument("--redis-url", action=EnvDefault, envvar="REDIS_URL", required=True, help="URL to the redis server for caching") def run(self, args) -> int: cache_client.connect(url=args.redis_url) if args.kube_config != "" or args.kube_master != "": self.logger.info("Using kube-config configuration") Configuration.set_default(Configuration()) if args.kube_config != "": config.load_kube_config(config_file=args.kube_config) if args.kube_master != "": Configuration._default.host = args.kube_master else: self.logger.info("Using in-cluster configuration") config.load_incluster_config() while True: try: client.CoreV1Api().list_namespace() break except urllib3.exceptions.HTTPError as e: self.logger.error("Error connecting to the Kubernetes API. Trying again in 5 seconds. Error: " + str(e)) time.sleep(5) old_json_encoder = json.JSONEncoder.default def json_encoder(self, o): # pragma: no cover if isinstance(o, uuid.UUID): return str(o) if isinstance(o, arrow.Arrow): return o.isoformat() if isinstance(o, ipaddress.IPv4Network): return str(o) if isinstance(o, ipaddress.IPv4Address): return str(o) if isinstance(o, enum.Enum): return o.value if isinstance(o, datetime.datetime): return str(o.isoformat()) return old_json_encoder(self, o) json.JSONEncoder.default = json_encoder self.logger.info("Creating CRDs") IAMSystemRole.create_crd() IAMSystemRole.wait_for_crd() IAMProjectRole.create_crd() IAMProjectRole.wait_for_crd() IAMPolicy.create_crd() IAMPolicy.wait_for_crd() IAMPolicy.create_system_policy() SystemServiceAccount.create_crd() SystemServiceAccount.wait_for_crd() ProjectServiceAccount.create_crd() ProjectServiceAccount.wait_for_crd() IAMSystemRole.create_default_roles() SystemServiceAccount.create_admin_sa() ProjectQuota.create_crd() ProjectQuota.wait_for_crd() Region.create_crd() Region.wait_for_crd() Zone.create_crd() Zone.wait_for_crd() Network.create_crd() Network.wait_for_crd() NetworkPort.create_crd() NetworkPort.wait_for_crd() Image.create_crd() Image.wait_for_crd() Flavor.create_crd() Flavor.wait_for_crd() Volume.create_crd() Volume.wait_for_crd() Instance.create_crd() Instance.wait_for_crd() Keypair.create_crd() Keypair.wait_for_crd() self.logger.info("CRDs have been created") self.menu_url = args.menu_url self.vmware = VMWare(args.vcenter_host, args.vcenter_port, args.vcenter_username, args.vcenter_password) self.leader_elector = LeaderElector("sandwich-controller", "kube-system", self.on_started_leading, self.on_stopped_leading) self.leader_elector.start() return 0 def launch_controller(self, controller): self.controllers.append(controller) controller.start() @with_defer def on_started_leading(self): if self.leader_elector.shutting_down: return self.lock.acquire() defer(self.lock.release) self.logger.info("Started leading... starting controllers") self.launch_controller(RegionController(1, 30, self.vmware)) self.launch_controller(ZoneController(1, 30, self.vmware)) self.launch_controller(IAMSystemRoleController(1, 30)) self.launch_controller(IAMProjectRoleController(1, 30)) self.launch_controller(IAMPolicyController(1, 30)) self.launch_controller(ProjectQuotaController(1, 30)) self.launch_controller(NetworkController(1, 30, self.vmware)) self.launch_controller(NetworkPortController(1, 30)) self.launch_controller(ImageController(4, 30, self.vmware)) self.launch_controller(SystemServiceAccountController(1, 30)) self.launch_controller(ProjectServiceAccountController(1, 30)) self.launch_controller(FlavorController(1, 30)) self.launch_controller(VolumeController(4, 30, self.vmware)) self.launch_controller(InstanceController(4, 30, self.vmware, self.menu_url)) self.launch_controller(KeypairController(4, 30)) @with_defer def on_stopped_leading(self): self.logger.info("Stopped leading... stopping controllers") self.lock.acquire() defer(self.lock.release) for controller in self.controllers: controller.stop() self.controllers = [] def on_shutdown(self, signum=None, frame=None): self.logger.info("Shutting down the Manager") if self.leader_elector is not None: self.leader_elector.shutdown()
44.034335
120
0.69191
e21c12b439b117cae017d8a3ac1d634ca8690518
616
py
Python
config/celery.py
juusokor/osmcha-django
5daafa015d5e341aa8ad6f847be2b7cc1a204e2b
[ "BSD-2-Clause" ]
27
2015-09-06T00:39:39.000Z
2021-12-09T10:30:52.000Z
config/celery.py
juusokor/osmcha-django
5daafa015d5e341aa8ad6f847be2b7cc1a204e2b
[ "BSD-2-Clause" ]
494
2015-09-10T19:39:38.000Z
2022-03-29T08:07:37.000Z
config/celery.py
juusokor/osmcha-django
5daafa015d5e341aa8ad6f847be2b7cc1a204e2b
[ "BSD-2-Clause" ]
17
2015-08-10T22:58:56.000Z
2021-09-24T17:03:16.000Z
#-*- coding: utf-8 -*- from __future__ import absolute_import import os from django.conf import settings from celery import Celery # set the default Django settings module for the 'celery' program. os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings.local') app = Celery('config', backend='rpc://', broker=settings.BROKER_URL ) app.conf.update( CELERY_TASK_RESULT_EXPIRES=10000, ) # Using a string here means the worker will not have to # pickle the object when using Windows. app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)
23.692308
72
0.762987
258bce67d8def13a16778a93d09e9a2f1d76bb7a
628
py
Python
examples/titanic/assets/algo_constant/algo.py
cupcicm/substra
19eeec1dda02cce0e10ef6ed285636e974a6e77a
[ "Apache-2.0" ]
null
null
null
examples/titanic/assets/algo_constant/algo.py
cupcicm/substra
19eeec1dda02cce0e10ef6ed285636e974a6e77a
[ "Apache-2.0" ]
null
null
null
examples/titanic/assets/algo_constant/algo.py
cupcicm/substra
19eeec1dda02cce0e10ef6ed285636e974a6e77a
[ "Apache-2.0" ]
null
null
null
import pandas as pd import numpy as np import pickle import substratools as tools def constant_clf(X): return pd.DataFrame(columns=['Survived'], data=np.zeros(len(X)), dtype=np.int64) class TitanicAlgo(tools.algo.Algo): def train(self, X, y, models, rank): return (constant_clf(X), constant_clf) def predict(self, X, models): return constant_clf(X) def load_model(self, path): return constant_clf def save_model(self, model, path): with open(path, 'wb') as f: pickle.dump(constant_clf, f) if __name__ == '__main__': tools.algo.execute(TitanicAlgo())
21.655172
84
0.664013
d42b8ae8b23ffd56028125948fe72c3fc526082a
82
py
Python
utility/GeneralUtility5.py
hkuadithya/general-dynamics-data-analytics
d3bb2fa8abdc0a8d654941794f65abddc5e85cf1
[ "Apache-2.0" ]
1
2017-12-23T20:11:19.000Z
2017-12-23T20:11:19.000Z
utility/GeneralUtility5.py
hkuadithya/general-dynamics-data-analytics
d3bb2fa8abdc0a8d654941794f65abddc5e85cf1
[ "Apache-2.0" ]
null
null
null
utility/GeneralUtility5.py
hkuadithya/general-dynamics-data-analytics
d3bb2fa8abdc0a8d654941794f65abddc5e85cf1
[ "Apache-2.0" ]
null
null
null
# Analysis of First Dataset... import pandas as pd emp_df = pd.read_pickle(../)
13.666667
30
0.695122
628a01ae3a3195e0cbe02733e0432ac7ab2f45c4
406
py
Python
src/supplier/migrations/0002_auto_20190915_2139.py
vandana0608/Pharmacy-Managament
f99bdec11c24027a432858daa19247a21cecc092
[ "bzip2-1.0.6" ]
null
null
null
src/supplier/migrations/0002_auto_20190915_2139.py
vandana0608/Pharmacy-Managament
f99bdec11c24027a432858daa19247a21cecc092
[ "bzip2-1.0.6" ]
null
null
null
src/supplier/migrations/0002_auto_20190915_2139.py
vandana0608/Pharmacy-Managament
f99bdec11c24027a432858daa19247a21cecc092
[ "bzip2-1.0.6" ]
null
null
null
# Generated by Django 2.0.7 on 2019-09-15 16:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('supplier', '0001_initial'), ] operations = [ migrations.AlterField( model_name='supplier', name='supplierphonenumber', field=models.CharField(default='+91', max_length=12), ), ]
21.368421
65
0.603448
c434264d41de2823c4e5d1cbdc7a7a374c2e5ab1
1,340
py
Python
web/model/aclImdb.py
java-lang-programming/web_and_machine_learning
e76109b63f1c6b3a380bb7d4ce6ed132c0cddd1e
[ "Apache-2.0" ]
null
null
null
web/model/aclImdb.py
java-lang-programming/web_and_machine_learning
e76109b63f1c6b3a380bb7d4ce6ed132c0cddd1e
[ "Apache-2.0" ]
null
null
null
web/model/aclImdb.py
java-lang-programming/web_and_machine_learning
e76109b63f1c6b3a380bb7d4ce6ed132c0cddd1e
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import pickle import os import numpy as np import pandas as pd import sys class Model(): def save_classifier(self, clf, clf_filename): parenr_dir_path = os.path.abspath(os.path.dirname(os.path.abspath(__file__)) + '/../') # parent_path = os.path.abspath(os.path.join(os.getcwd(), os.path.pardir)) print(parenr_dir_path) model_dir_path = parenr_dir_path + '/models/' dest = os.path.join(model_dir_path, 'movieclassifier', 'pkl_objects') print(dest) if not os.path.exists(dest): os.makedirs(dest) pickle.dump(clf, open(os.path.join(dest, clf_filename + '.pkl'),'wb'), protocol=4) def save_stopwords(self, object, filename, clf, clf_filename): parenr_dir_path = os.path.abspath(os.path.dirname(os.path.abspath(__file__)) + '/../') # parent_path = os.path.abspath(os.path.join(os.getcwd(), os.path.pardir)) print(parenr_dir_path) model_dir_path = parenr_dir_path + '/models/' dest = os.path.join(model_dir_path, 'stopwords', 'pkl_objects') print(dest) if not os.path.exists(dest): os.makedirs(dest) pickle.dump(object, open(os.path.join(dest, filename + '.pkl'),'wb'), protocol=4)
34.358974
94
0.60597
785a48ad516ec31c41816ed6aa51e585e5498825
1,947
py
Python
label_passages_pkl.py
Louis-udm/Adapting-regulations-for-an-automated-reading-system
4e0ee08397dfed95a1fb4fc4429390291fdb0331
[ "Apache-2.0" ]
2
2019-08-22T19:52:40.000Z
2019-08-22T19:54:11.000Z
label_passages_pkl.py
Louis-udm/Adapting-regulations-for-an-automated-reading-system
4e0ee08397dfed95a1fb4fc4429390291fdb0331
[ "Apache-2.0" ]
null
null
null
label_passages_pkl.py
Louis-udm/Adapting-regulations-for-an-automated-reading-system
4e0ee08397dfed95a1fb4fc4429390291fdb0331
[ "Apache-2.0" ]
null
null
null
#%% import os, pickle from glob import glob from document import Document, Paragraph, Table from utils import * #%% import spacy nlp = spacy.load("en_core_web_lg") from spacy.matcher import Matcher matcher = Matcher(nlp.vocab) #%% roles=['insurance representative', 'representative in insurance of person', 'group insurance representative', 'damage insurance agent', 'damage insurance broker', 'claims adjuster', 'financial planner', 'firm','independent representative','independent partnership'] patterns = [ [{"LEMMA": "insurance"}, {"LEMMA": "representative"}], [{"LEMMA": "representative"}, {"LEMMA": "in"}, {"LEMMA": "insurance"}, {"LEMMA": "of"}, {"LEMMA": "person"}], [{"LEMMA": "group"}, {"LEMMA": "insurance"}, {"LEMMA": "representative"}], [{"LEMMA": "damage"}, {"LEMMA": "insurance"}, {"LEMMA": "agent"}], [{"LEMMA": "damage"}, {"LEMMA": "insurance"}, {"LEMMA": "broker"}], [{"LEMMA": "claim"}, {"LEMMA": "adjuster"}], [{"LEMMA": "financial"}, {"LEMMA": "planner"}], [{"LEMMA": "firm"}], [{"LEMMA": "independent"}, {"LEMMA": "representative"}], [{"LEMMA": "independent"}, {"LEMMA": "partnership"}] ] if len(matcher)==0: for r,p in zip(roles,patterns): matcher.add(r, None, p) def get_matched_roles(matcher, text): matches = matcher(nlp(text.lower())) return list(set([nlp.vocab.strings[match_id] for match_id, start, end in matches])) print('Start label passages.pkl...') # opening the pickle with open('passages.pkl', 'rb') as fp: passages = pickle.load(fp) for k in passages.keys(): text=passages[k]['text'] roles_matched=', '.join(get_matched_roles(matcher,text)) print(k,':',roles_matched) passages[k]['label']=roles_matched # if roles_matched is None or roles_matched.strip()=='': # print('\n------------------\n',k,':\n',text) with open('passages_labeled.pkl', 'wb') as fp: pickle.dump(passages,fp)
34.157895
113
0.625064
7c3edc2f7eb19dee3499d38f3b99731d9d5830f0
43,610
py
Python
client/Clients.py
MarianFr/Split_ECG_Classification
b6ef77a2512ae6119974e20232ce602d17d0c892
[ "MIT" ]
null
null
null
client/Clients.py
MarianFr/Split_ECG_Classification
b6ef77a2512ae6119974e20232ce602d17d0c892
[ "MIT" ]
null
null
null
client/Clients.py
MarianFr/Split_ECG_Classification
b6ef77a2512ae6119974e20232ce602d17d0c892
[ "MIT" ]
1
2022-03-23T11:53:16.000Z
2022-03-23T11:53:16.000Z
import struct import socket import pickle import json from torch.optim import SGD, Adam, AdamW import sys import time import random import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt #import seaborn as sns import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import accuracy_score, auc, f1_score, precision_score, recall_score, roc_auc_score from sklearn.preprocessing import MinMaxScaler import Metrics import wfdb import ast import math import os.path import utils import Models #np.set_printoptions(threshold=np.inf) cwd = os.path.dirname(os.path.abspath(__file__)) mlb_path = os.path.join(cwd, "..","Benchmark", "output", "mlb.pkl") scaler_path = os.path.join(cwd, "..","Benchmark", "output", "standard_scaler.pkl") ptb_path = os.path.join(cwd, "..", "server", "../server/PTB-XL", "ptb-xl/") import wandb wandb.init(project="non-IID,clean", entity="split-learning-medical") client_num = 1 num_classes = 2 pretrain_this_client = 0 simultrain_this_client = 0 pretrain_epochs = 50 IID = 0 f = open('parameter_client.json', ) data = json.load(f) # set parameters fron json file #epoch = data["training_epochs"] lr = data["learningrate"] batchsize = data["batchsize"] batch_concat = data["batch_concat"] host = data["host"] port = data["port"] max_recv = data["max_recv"] autoencoder = data["autoencoder"] detailed_output = data["detailed_output"] count_flops = data["count_flops"] plots = data["plots"] autoencoder_train = data["autoencoder_train"] deactivate_train_after_num_epochs = data["deactivate_train_after_num_epochs"] grad_encode = data["grad_encode"] train_gradAE_active = data["train_gradAE_active"] deactivate_grad_train_after_num_epochs = data["deactivate_grad_train_after_num_epochs"] wandb.init(config={ "learning_rate": lr, #"epochs": epoch, "batch_size": batchsize, "autoencoder": autoencoder }) wandb.config.update({"learning_rate": lr, "PC: ": 2}) def print_json(): print("learningrate: ", lr) print("grad_encode: ", grad_encode) print("gradAE_train: ", train_gradAE_active) print("deactivate_grad_train_after_num_epochs: ", deactivate_grad_train_after_num_epochs) #print("Getting the metadata epoch: ", epoch) print("Getting the metadata host: ", host) print("Getting the metadata port: ", port) print("Getting the metadata batchsize: ", batchsize) print("Autoencoder: ", autoencoder) print("detailed_output: ", detailed_output) print("count_flops: ", count_flops) print("plots: ", plots) print("autoencoder_train: ", autoencoder_train) print("deactivate_train_after_num_epochs: ", deactivate_train_after_num_epochs) # load data from json file class PTB_XL(Dataset): def __init__(self, stage=None): self.stage = stage if self.stage == 'train': global X_train global y_train self.y_train = y_train self.X_train = X_train if self.stage == 'val': global y_val global X_val self.y_val = y_val self.X_val = X_val if self.stage == 'test': global y_test global X_test self.y_test = y_test self.X_test = X_test if self.stage == 'raw': global y_raw global X_raw self.y_raw = y_raw self.X_raw = X_raw def __len__(self): if self.stage == 'train': return len(self.y_train) if self.stage == 'val': return len(self.y_val) if self.stage == 'test': return len(self.y_test) if self.stage == 'raw': return len(self.y_raw) def __getitem__(self, idx): if self.stage == 'train': sample = self.X_train[idx].transpose((1, 0)), self.y_train[idx] if self.stage == 'val': sample = self.X_val[idx].transpose((1, 0)), self.y_val[idx] if self.stage == 'test': sample = self.X_test[idx].transpose((1, 0)), self.y_test[idx] if self.stage == 'raw': sample = self.X_raw[idx].transpose((1, 0)), self.y_raw[idx] return sample def init(): train_dataset = PTB_XL('train') val_dataset = PTB_XL('val') if IID: train_1, rest1 = torch.utils.data.random_split(train_dataset, [3853, 15414], generator=torch.Generator().manual_seed(42)) train_2, rest2 = torch.utils.data.random_split(rest1, [3853, 11561], generator=torch.Generator().manual_seed(42)) train_3, rest3 = torch.utils.data.random_split(rest2, [3853, 7708], generator=torch.Generator().manual_seed(42)) train_4, train_5 = torch.utils.data.random_split(rest3, [3853, 3855], generator=torch.Generator().manual_seed(42)) if client_num == 1: train_dataset = train_1 if client_num == 2: train_dataset = train_2 if client_num == 3: train_dataset = train_3 if client_num == 4: train_dataset = train_4 if client_num == 5: train_dataset = train_5 if pretrain_this_client: raw_dataset = PTB_XL('raw') print("len raw dataset", len(raw_dataset)) pretrain_dataset, no_dataset = torch.utils.data.random_split(raw_dataset, [963, 18304], generator=torch.Generator().manual_seed(42)) print("pretrain_dataset length: ", len(pretrain_dataset)) global pretrain_loader pretrain_loader = torch.utils.data.DataLoader(pretrain_dataset, batch_size=batchsize, shuffle=True) if simultrain_this_client: raw_dataset = PTB_XL('raw') print("len raw dataset", len(raw_dataset)) pretrain_dataset, no_dataset = torch.utils.data.random_split(raw_dataset, [963, 18304], generator=torch.Generator().manual_seed(42)) print("len train dataset", len(train_dataset)) train_dataset = torch.utils.data.ConcatDataset((pretrain_dataset, train_dataset)) print("len mixed-train dataset", len(train_dataset)) print("train_dataset length: ", len(train_dataset)) print("val_dataset length: ", len(train_dataset)) global train_loader global val_loader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchsize, shuffle=True) """ def new_split(): global train_loader global val_loader train_dataset, val_dataset = torch.utils.data.random_split(training_dataset, [size_train_dataset, len(training_dataset) - size_train_dataset]) print("train_dataset size: ", size_train_dataset) print("val_dataset size: ", len(training_dataset) - size_train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchsize, shuffle=True) """ if count_flops: #Does not work on the Jetson Nano yet. The amount of FLOPs doesn't depend on the architecture. Measuring FLOPs on the PC and JetsonNano would result in the same outcome. # The paranoid switch prevents the FLOPs count # Solution: sudo sh -c 'echo 1 >/proc/sys/kernel/perf_event_paranoid' # Needs to be done after every restart of the PC from ptflops import get_model_complexity_info from pypapi import events, papi_high as high def str_to_number(label): a = np.zeros(5) if not label: return a for i in label: if i == 'NORM': a[0] = 1 if i == 'MI': a[1] = 1 if i == 'STTC': a[2] = 1 if i == 'HYP': a[3] = 1 if i == 'CD': a[4] = 1 return a #send/recieve system: def send_msg(sock, getid, content): """ pickles the content (creates bitstream), adds header and send message via tcp port :param sock: socket :param content: content to send via tcp port """ msg = [getid, content] # add getid msg = pickle.dumps(msg) msg = struct.pack('>I', len(msg)) + msg # add 4-byte length in network byte order #print("communication overhead send: ", sys.getsizeof(msg), " bytes") global data_send_per_epoch data_send_per_epoch += sys.getsizeof(msg) sock.sendall(msg) def recieve_msg(sock): """ recieves the meassage with helper function, umpickles the message and separates the getid from the actual massage content :param sock: socket """ msg = recv_msg(sock) # receive client message from socket msg = pickle.loads(msg) return msg def recieve_request(sock): """ recieves the meassage with helper function, umpickles the message and separates the getid from the actual massage content :param sock: socket """ msg = recv_msg(sock) # receive client message from socket msg = pickle.loads(msg) getid = msg[0] content = msg[1] handle_request(sock, getid, content) def recv_msg(sock): """ gets the message length (which corresponds to the first 4 bytes of the recieved bytestream) with the recvall function :param sock: socket :return: returns the data retrieved from the recvall function """ # read message length and unpack it into an integer raw_msglen = recvall(sock, 4) if not raw_msglen: return None msglen = struct.unpack('>I', raw_msglen)[0] #print("Message length:", msglen) global data_recieved_per_epoch data_recieved_per_epoch += msglen # read the message data return recvall(sock, msglen) def recvall(sock, n): """ returns the data from a recieved bytestream, helper function to receive n bytes or return None if EOF is hit :param sock: socket :param n: length in bytes (number of bytes) :return: message """ # data = b'' while len(data) < n: if detailed_output: print("Start function sock.recv") packet = sock.recv(n - len(data)) if not packet: return None data += packet # print("Daten: ", data) return data def handle_request(sock, getid, content): """ executes the requested function, depending on the get id, and passes the recieved message :param sock: socket :param getid: id of the function, that should be executed if the message is recieved :param content: message content """ #print("request mit id:", getid) switcher = { 0: initialize_model, 1: train_epoch, 2: val_stage, 3: test_stage, } switcher.get(getid, "invalid request recieved")(sock, content) def serverHandler(conn): while True: recieve_request(conn) def grad_postprocessing(grad): grad_new = grad.numpy() for a in range(64): #scaler.fit(grad[a]) grad_new[a] = scaler.inverse_transform(grad[a]) grad_new = torch.DoubleTensor(grad_new).to(device) return grad_new def train_epoch(s, pretraining): #new_split() #new random dist between train and val loss_grad_total = 0 global epoch epoch += 1 flops_forward_epoch, flops_encoder_epoch, flops_backprop_epoch, flops_rest, flops_send = 0,0,0,0,0 #Specify AE configuration train_active = 0 #default: AE is pretrained train_grad_active = 0 if epoch < deactivate_train_after_num_epochs: if autoencoder_train: train_active = 1 if epoch < deactivate_grad_train_after_num_epochs: if train_gradAE_active: train_grad_active = 1 global data_send_per_epoch, data_recieved_per_epoch, data_send_per_epoch_total, data_recieved_per_epoch_total data_send_per_epoch, data_recieved_per_epoch = 0, 0 correct_train, total_train, train_loss = 0, 0, 0 batches_aborted, total_train_nr, total_val_nr, total_test_nr = 0, 0, 0, 0 hamming_epoch, precision_epoch, recall_epoch, f1_epoch, auc_train = 0, 0, 0, 0, 0 #encoder_grad_server = 0 epoch_start_time = time.time() loader = pretrain_loader if pretraining else train_loader for b, batch in enumerate(loader): if count_flops: x = high.read_counters() #print("batch: ", b) # print("FLOPs dataloader: ", x) # if b % 100 == 0: # print("batch ", b, " / ", total_batch) forward_time = time.time() active_training_time_batch_client = 0 start_time_batch_forward = time.time() # define labels and data per batch x_train, label_train = batch x_train = x_train.to(device) # x_train = x_train.to(device) label_train = label_train.double().to(device) if len(x_train) != 64: break if count_flops: x = high.read_counters() flops_rest += x[0] # reset Flop Counter optimizer.zero_grad() # sets gradients to 0 - start for backprop later client_output_backprop = client(x_train) client_output_train = client_output_backprop.detach().clone() if count_flops: x = high.read_counters() #print("FLOPs forward: ", x) flops_forward_epoch += x[0] client_output_train_without_ae_send = 0 if autoencoder: if train_active: optimizerencode.zero_grad() # client_output_train_without_ae = client_output_train.clone().detach().requires_grad_(False) client_encoded = encode(client_output_train) client_output_send = client_encoded.detach().clone() if train_active: client_output_train_without_ae_send = client_output_train.detach().clone() else: client_output_send = client_output_train.detach().clone() # client_output_send = encode(client_output_train) if count_flops: x = high.read_counters() flops_encoder_epoch += x[0] global encoder_grad_server msg = { 'client_output_train': client_output_send, 'client_output_train_without_ae': client_output_train_without_ae_send, 'label_train': label_train, # concat_labels, 'batch_concat': batch_concat, 'batchsize': batchsize, 'train_active': train_active, 'encoder_grad_server': encoder_grad_server, 'train_grad_active': train_grad_active, 'grad_encode': grad_encode } active_training_time_batch_client += time.time() - start_time_batch_forward if detailed_output: print("Send the message to server") send_msg(s, 0, msg) # while concat_counter_recv < concat_counter_send: msg = recieve_msg(s) # print("msg: ", msg) if pretraining == 0: wandb.log({"dropout_threshold": msg["dropout_threshold"]}, commit=False) # decode grad: client_grad_without_encode = msg["client_grad_without_encode"] client_grad = msg["grad_client"] global scaler scaler = msg["scaler"] if msg["grad_encode"]: if train_grad_active: # print("train_active") optimizer_grad_decoder.zero_grad() client_grad = Variable(client_grad, requires_grad=True) client_grad_decode = grad_decoder(client_grad) if train_grad_active: loss_grad_autoencoder = error_grad_autoencoder(client_grad_without_encode, client_grad_decode) loss_grad_total += loss_grad_autoencoder.item() loss_grad_autoencoder.backward() encoder_grad_server = client_grad.grad.detach().clone()# optimizer_grad_decoder.step() # print("loss_grad_autoencoder: ", loss_grad_autoencoder) else: encoder_grad_server = 0 client_grad_decode = grad_postprocessing(client_grad_decode.detach().clone().cpu()) else: if msg["client_grad_abort"] == 0: client_grad_decode = client_grad.detach().clone() #else: # client_grad = "abort" encoder_grad_server = 0 start_time_batch_backward = time.time() encoder_grad = msg["encoder_grad"] if client_grad == "abort": # print("client_grad: ", client_grad) train_loss_add, add_correct_train, add_total_train = msg["train_loss"], msg["add_correct_train"], \ msg["add_total_train"] correct_train += add_correct_train total_train_nr += 1 total_train += add_total_train train_loss += train_loss_add batches_aborted += 1 output_train = msg["output_train"] # print("train_loss: ", train_loss/total_train_nr) # meter.update(output_train, label_train, train_loss/total_train_nr) pass else: if train_active: client_encoded.backward(encoder_grad) optimizerencode.step() # concat_tensors[concat_counter_recv].to(device) # concat_tensors[concat_counter_recv].backward(client_grad) # client_output_backprob.to(device) # if b % 1000 == 999: # print("Backprop with: ", client_grad) if count_flops: x = high.read_counters() # reset counter flops_rest += x[0] flops_send += x[0] client_output_backprop.backward(client_grad_decode) optimizer.step() if count_flops: x = high.read_counters() # print("FLOPs backprob: ", x) flops_backprop_epoch += x[0] train_loss_add, add_correct_train, add_total_train = msg["train_loss"], msg["add_correct_train"], \ msg["add_total_train"] correct_train += add_correct_train total_train_nr += 1 total_train += add_total_train train_loss += train_loss_add output_train = msg["output_train"] # print("train_loss: ", train_loss/total_train_nr) # meter.update(output_train, label_train, train_loss/total_train_nr) # wandb.watch(client, log_freq=100) output = torch.round(output_train) # if np.sum(label.cpu().detach().numpy()[0]) > 1: # if np.sum(output.cpu().detach().numpy()[0] > 1): # print("output[0]: ", output.cpu().detach().numpy()[0]) # print("label [0]: ", label.cpu().detach().numpy()[0]) #if (total_train_nr % 100 == 0): # print("output[0]: ", output.cpu().detach().numpy()[0]) # print("label [0]: ", label_train.cpu().detach().numpy()[0]) #global batches_abort_rate_total #batches_abort_rate_total.append(batches_aborted / total_train_nr) active_training_time_batch_client += time.time() - start_time_batch_backward #active_training_time_batch_server = msg["active_trtime_batch_server"] #active_training_time_epoch_client += active_training_time_batch_client #active_training_time_epoch_server += active_training_time_batch_server # try: roc_auc = roc_auc_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(),average='micro') auc_train += roc_auc except: # print("auc_train_exception: ") # print("label: ", label) # print("output: ", output) pass hamming_epoch += Metrics.Accuracy(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu()) # accuracy_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu()) precision_epoch += precision_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) epoch_endtime = time.time() - epoch_start_time if pretraining: status_epoch_train = "epoch: {}, AUC_train: {:.4f}, Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, trainingtime for epoch: {:.6f}s, batches abortrate:{:.2f}, train_loss: {:.4f} ".format( epoch, auc_train / total_train_nr, hamming_epoch / total_train_nr, precision_epoch / total_train_nr, recall_epoch / total_train_nr, f1_epoch / total_train_nr, epoch_endtime, batches_aborted / total_train_nr, train_loss / total_train_nr) print("status_epoch_pretrain: ", status_epoch_train) else: flops_client_forward_total.append(flops_forward_epoch) flops_client_encoder_total.append(flops_encoder_epoch) flops_client_backprop_total.append(flops_backprop_epoch) print("data_send_per_epoch: ", data_send_per_epoch / 1000000, " MegaBytes") print("data_recieved_per_epoch: ", data_recieved_per_epoch / 1000000, "MegaBytes") data_send_per_epoch_total.append(data_send_per_epoch) data_recieved_per_epoch_total.append(data_recieved_per_epoch) status_epoch_train = "epoch: {}, AUC_train: {:.4f}, Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, trainingtime for epoch: {:.6f}s, batches abortrate:{:.2f}, train_loss: {:.4f} ".format( epoch, auc_train / total_train_nr, hamming_epoch / total_train_nr, precision_epoch / total_train_nr, recall_epoch / total_train_nr, f1_epoch / total_train_nr, epoch_endtime, batches_aborted / total_train_nr, train_loss / total_train_nr) print("status_epoch_train: ", status_epoch_train) if count_flops: print("MegaFLOPS_forward_epoch", flops_forward_epoch / 1000000) print("MegaFLOPS_encoder_epoch", flops_encoder_epoch / 1000000) print("MegaFLOPS_backprop_epoch", flops_backprop_epoch / 1000000) print("MegaFLOPS_rest", flops_rest / 1000000) print("MegaFLOPS_send", flops_send / 1000000) wandb.log({"Batches Abortrate": batches_aborted / total_train_nr, "MegaFLOPS Client Encoder": flops_encoder_epoch / 1000000, "MegaFLOPS Client Forward": flops_forward_epoch / 1000000, "MegaFLOPS Client Backprop": flops_backprop_epoch / 1000000}, commit=False) global auc_train_log auc_train_log = auc_train / total_train_nr global accuracy_train_log accuracy_train_log = hamming_epoch / total_train_nr global batches_abort_rate_total batches_abort_rate_total.append(batches_aborted / total_train_nr) initial_weights = client.state_dict() send_msg(s, 2, initial_weights) msg = 0 send_msg(s, 3, msg) def val_stage(s, pretraining=0): total_val_nr, val_loss_total, correct_val, total_val = 0, 0, 0, 0 val_losses, val_accs = [], [] hamming_epoch, precision_epoch, recall_epoch, f1_epoch, accuracy, auc_val = 0, 0, 0, 0, 0, 0 val_time = time.time() with torch.no_grad(): for b_t, batch_t in enumerate(val_loader): x_val, label_val = batch_t x_val, label_val = x_val.to(device), label_val.double().to(device) optimizer.zero_grad() output_val = client(x_val, drop=False) client_output_val = output_val.clone().detach().requires_grad_(True) if autoencoder: client_output_val = encode(client_output_val) msg = {'client_output_val/test': client_output_val, 'label_val/test': label_val, } if detailed_output: print("The msg is:", msg) send_msg(s, 1, msg) if detailed_output: print("294: send_msg success!") msg = recieve_msg(s) if detailed_output: print("296: recieve_msg success!") correct_val_add = msg["correct_val/test"] val_loss = msg["val/test_loss"] output_val_server = msg["output_val/test_server"] val_loss_total += val_loss correct_val += correct_val_add total_val_add = len(label_val) total_val += total_val_add total_val_nr += 1 try: roc_auc = roc_auc_score(label_val.detach().clone().cpu(), torch.round(output_val_server).detach().clone().cpu(), average='micro') auc_val += roc_auc except: # print("auc_train_exception: ") # print("label: ", label) # print("output: ", output) pass output_val_server = torch.round(output_val_server) hamming_epoch += Metrics.Accuracy(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu()) #accuracy_score(label_val.detach().clone().cpu(), # torch.round(output_val_server).detach().clone().cpu()) precision_epoch += precision_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) status_epoch_val = "epoch: {},AUC_val: {:.4f} ,Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, val_loss: {:.4f}".format( epoch, auc_val / total_val_nr, hamming_epoch / total_val_nr, precision_epoch / total_val_nr, recall_epoch / total_val_nr, f1_epoch / total_val_nr, val_loss_total / total_val_nr) print("status_epoch_val: ", status_epoch_val) if pretraining == 0: wandb.log({"Loss_val": val_loss_total / total_val_nr, "Accuracy_val_micro": hamming_epoch / total_val_nr, "F1_val": f1_epoch / total_val_nr, "AUC_val": auc_val / total_val_nr, "AUC_train": auc_train_log, "Accuracy_train_micro": accuracy_train_log}) send_msg(s, 3, 0) def test_stage(s, epoch): loss_test = 0.0 correct_test, total_test = 0, 0 hamming_epoch = 0 precision_epoch = 0 recall_epoch = 0 f1_epoch = 0 total_test_nr = 0 with torch.no_grad(): for b_t, batch_t in enumerate(val_loader): x_test, label_test = batch_t x_test, label_test = x_test.to(device), label_test.double().to(device) optimizer.zero_grad() output_test = client(x_test, drop=False) client_output_test = output_test.clone().detach().requires_grad_(True) if autoencoder: client_output_test = encode(client_output_test) msg = {'client_output_val/test': client_output_test, 'label_val/test': label_test, } if detailed_output: print("The msg is:", msg) send_msg(s, 1, msg) if detailed_output: print("294: send_msg success!") msg = recieve_msg(s) if detailed_output: print("296: recieve_msg success!") correct_test_add = msg["correct_val/test"] test_loss = msg["val/test_loss"] output_test_server = msg["output_val/test_server"] loss_test += test_loss correct_test += correct_test_add total_test_add = len(label_test) total_test += total_test_add total_test_nr += 1 output_test_server = torch.round(output_test_server) hamming_epoch += Metrics.Accuracy(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu()) #accuracy_score(label_test.detach().clone().cpu(), #torch.round(output_test_server).detach().clone().cpu()) precision_epoch += precision_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') status_test = "test: hamming_epoch: {:.4f}, precision_epoch: {:.4f}, recall_epoch: {:.4f}, f1_epoch: {:.4f}".format( hamming_epoch / total_test_nr, precision_epoch / total_test_nr, recall_epoch / total_test_nr, f1_epoch / total_test_nr) print("status_test: ", status_test) global data_send_per_epoch_total global data_recieved_per_epoch_total global batches_abort_rate_total data_transfer_per_epoch = 0 average_dismissal_rate = 0 total_flops_forward = 0 total_flops_encoder = 0 total_flops_backprob = 0 for data in data_send_per_epoch_total: data_transfer_per_epoch += data for data in data_recieved_per_epoch_total: data_transfer_per_epoch += data for data in batches_abort_rate_total: average_dismissal_rate += data for flop in flops_client_forward_total: total_flops_forward += flop for flop in flops_client_encoder_total: total_flops_encoder += flop for flop in flops_client_backprop_total: total_flops_backprob += flop total_flops = total_flops_backprob + total_flops_encoder + total_flops_forward print("total FLOPs forward: ", total_flops_forward) print("total FLOPs encoder: ", total_flops_encoder) print("total FLOPs backprob: ", total_flops_backprob) print("total FLOPs client: ", total_flops) print("Average data transfer/epoch: ", data_transfer_per_epoch / epoch / 1000000, " MB") print("Average dismissal rate: ", average_dismissal_rate / epoch) wandb.config.update({"Average data transfer/epoch (MB): ": data_transfer_per_epoch / epoch / 1000000, "Average dismissal rate: ": average_dismissal_rate / epoch, "total_MegaFLOPS_forward": total_flops_forward/1000000, "total_MegaFLOPS_encoder": total_flops_encoder/1000000, "total_MegaFLOPS_backprob": total_flops_backprob/1000000, "total_MegaFLOPS": total_flops/1000000}) msg = 0 send_msg(s, 3, msg) def initialize_model(s, msg): """ if new connected client is not the first connected client, the initial weights are fetched from the server :param conn: """ #msg = recieve_msg(s) if msg == 0: #print("msg == 0") pass else: print("msg != 0") client.load_state_dict(msg, strict=False) print("model successfully initialized") #print("start_training") # start_training(s) #train_epoch(s) def initIID(): global X_train, X_val, y_val, y_train, y_test, X_test sampling_frequency = 100 datafolder = ptb_path task = 'superdiagnostic' outputfolder = mlb_path # Load PTB-XL data data, raw_labels = utils.load_dataset(datafolder, sampling_frequency) # Preprocess label data labels = utils.compute_label_aggregations(raw_labels, datafolder, task) # Select relevant data and convert to one-hot data, labels, Y, _ = utils.select_data(data, labels, task, min_samples=0, outputfolder=outputfolder) input_shape = data[0].shape print(input_shape) # 1-9 for training X_train = data[labels.strat_fold < 10] y_train = Y[labels.strat_fold < 10] # 10 for validation X_val = data[labels.strat_fold == 10] y_val = Y[labels.strat_fold == 10] # X_test = data[labels.strat_fold == 10] # y_test = Y[labels.strat_fold == 10] num_classes = 5 # <=== number of classes in the finetuning dataset input_shape = [1000, 12] # <=== shape of samples, [None, 12] in case of different lengths print(X_train.shape, y_train.shape, X_val.shape, y_val.shape) # , X_test.shape, y_test.shape) import pickle standard_scaler = pickle.load(open(scaler_path, "rb")) X_train = utils.apply_standardizer(X_train, standard_scaler) X_val = utils.apply_standardizer(X_val, standard_scaler) global X_raw, y_raw X_raw = X_train y_raw = y_train def init_nonIID(): global X_train, X_val, y_val, y_train, y_test, X_test norm, mi, sttc, hyp, cd = [],[],[],[],[] for a in range(len(y_train)): if label_class(y_train[a], 0): sttc.append(X_train[a]) if label_class(y_train[a], 1): hyp.append(X_train[a]) if label_class(y_train[a], 2): mi.append(X_train[a]) if label_class(y_train[a], 3): norm.append(X_train[a]) if label_class(y_train[a], 4): cd.append(X_train[a]) """ print("norm shape: ", len(norm)) print("mi shape: ", len(mi)) print("sttc shape: ", len(sttc)) print("hyp shape: ", len(hyp)) print("cd shape: ", len(cd)) print("norm label: ", label_norm[0]) print("mi label: ", label_mi[0]) print("sttc label: ", label_sttc[0]) print("hyp label: ", label_hyp[0]) print("cd label: ", label_cd[0]) print("norm label: ", len(label_norm)) print("mi label: ", len(label_mi)) print("sttc label: ", len(label_sttc)) print("hyp label: ", len(label_hyp)) print("cd label: ", len(label_cd)) """ if client_num == 1: if num_classes == 1: print("Client number: ", client_num, " Class norm") X_train = norm y_train = label_norm if num_classes == 2: print("Client number: ", client_num, " Class norm, mi") X_train = np.concatenate((norm, mi), axis=0) y_train = np.concatenate((label_norm, label_mi), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class norm, mi, sttc") X_train = np.concatenate((norm, mi), axis=0) X_train = np.concatenate((X_train, sttc), axis=0) y_train = np.concatenate((label_norm, label_mi), axis=0) y_train = np.concatenate((y_train, label_sttc), axis=0) if client_num == 2: if num_classes == 1: print("Client number: ", client_num, " Class mi") X_train = mi y_train = label_mi if num_classes == 2: print("Client number: ", client_num, " Class mi, sttc") X_train = np.concatenate((mi, sttc), axis=0) y_train = np.concatenate((label_mi, label_sttc), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class mi, sttc, hyp") X_train = np.concatenate((mi, sttc), axis=0) X_train = np.concatenate((X_train, hyp), axis=0) y_train = np.concatenate((label_mi, label_sttc), axis=0) y_train = np.concatenate((y_train, label_hyp), axis=0) if client_num == 3: if num_classes == 1: print("Client number: ", client_num, " Class sttc") X_train = sttc y_train = label_sttc if num_classes == 2: print("Client number: ", client_num, " Class sttc, hyp") X_train = np.concatenate((sttc, hyp), axis=0) y_train = np.concatenate((label_sttc, label_hyp), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class sttc, hyp, cd") X_train = np.concatenate((sttc, hyp), axis=0) X_train = np.concatenate((X_train, cd), axis=0) y_train = np.concatenate((label_sttc, label_hyp), axis=0) y_train = np.concatenate((y_train, label_cd), axis=0) if client_num == 4: if num_classes == 1: print("Client number: ", client_num, " Class hyp") X_train = hyp y_train = label_hyp if num_classes == 2: print("Client number: ", client_num, " Class hyp, cd") X_train = np.concatenate((hyp, cd), axis=0) y_train = np.concatenate((label_hyp, label_cd), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class hyp, cd, norm") X_train = np.concatenate((hyp, cd), axis=0) X_train = np.concatenate((X_train, norm), axis=0) y_train = np.concatenate((label_hyp, label_cd), axis=0) y_train = np.concatenate((y_train, label_norm), axis=0) if client_num == 5: if num_classes == 1: print("Client number: ", client_num, " Class cd") X_train = cd y_train = label_cd if num_classes == 2: print("Client number: ", client_num, " Class cd, norm") X_train = np.concatenate((cd, norm), axis=0) y_train = np.concatenate((label_cd, label_norm), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class cd, norm, mi") X_train = np.concatenate((cd, norm), axis=0) X_train = np.concatenate((X_train, mi), axis=0) y_train = np.concatenate((label_cd, label_norm), axis=0) y_train = np.concatenate((y_train, label_mi), axis=0) def label_class(label, clas): if clas == 0: if label[0] == 1: label_sttc.append(label) return True if clas == 1: if label[1] == 1: label_hyp.append(label) return True if clas == 2: if label[2] == 1: label_mi.append(label) return True if clas == 3: if label[3] == 1: label_norm.append(label) return True if clas == 4: if label[4] == 1: label_cd.append(label) return True def main(): """ initialize device, client model, optimizer, loss and decoder and starts the training process """ global label_sttc, label_hyp, label_mi, label_norm, label_cd label_sttc, label_hyp, label_mi, label_norm, label_cd = [],[],[],[],[] global X_train, X_val, y_val, y_train, y_test, X_test initIID() init_nonIID() print_json() if count_flops: # Starts internal FLOPs counter | If there is an Error: See "from pypapi import events" high.start_counters([events.PAPI_FP_OPS,]) global flops_client_forward_total, flops_client_encoder_total, flops_client_backprop_total flops_client_forward_total, flops_client_encoder_total, flops_client_backprop_total = [], [], [] #X_test = utils.apply_standardizer(X_test, standard_scaler) init() if plots: #visualize data Metrics.load_dataset() Metrics.plotten() Metrics.ecg_signals() global epoch epoch = 0 global encoder_grad_server encoder_grad_server = 0 global data_send_per_epoch_total data_send_per_epoch_total = [] global data_recieved_per_epoch_total data_recieved_per_epoch_total = [] global batches_abort_rate_total batches_abort_rate_total = [] global device device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if (torch.cuda.is_available()): print("training on gpu") print("training on,", device) seed = 0 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True global client client = Models.Client() print("Start Client") client.double().to(device) global optimizer #optimizer = SGD(client.parameters(), lr=lr, momentum=0.9) optimizer = AdamW(client.parameters(), lr=lr) print("Start Optimizer") global error #error = nn.CrossEntropyLoss() error = nn.BCELoss() print("Start loss calcu") global data_send_per_epoch global data_recieved_per_epoch data_send_per_epoch = 0 data_recieved_per_epoch = 0 #global scaler #scaler = MinMaxScaler() if autoencoder: global encode encode = Models.Encode() print("Start Encoder") if autoencoder_train == 0: encode.load_state_dict(torch.load("./convencoder_medical.pth")) # CPU print("Encoder model loaded") encode.eval() print("Start eval") encode.double().to(device) global optimizerencode optimizerencode = Adam(encode.parameters(), lr=lr) ### if grad_encode: global grad_decoder grad_decoder = Models.Grad_Decoder() #grad_decoder.load_state_dict(torch.load("./grad_decoder_medical.pth")) grad_decoder.double().to(device) print("Grad decoder model loaded") global optimizer_grad_decoder optimizer_grad_decoder = Adam(grad_decoder.parameters(), lr=0.0001) global error_grad_autoencoder error_grad_autoencoder = nn.MSELoss() s = socket.socket() print("Start socket connect") s.connect((host, port)) print("Socket connect success, to.", host, port) if pretrain_this_client: print("Pretrain active") for a in range(pretrain_epochs): train_epoch(s, pretraining=1) val_stage(s, pretraining=1) initial_weights = client.state_dict() send_msg(s, 2, initial_weights) send_msg(s, 3, 0) epoch = 0 #initialize_model(s) serverHandler(s) if __name__ == '__main__': main()
39.359206
213
0.621555
97b9a1329057768c4fde768d1a3502f73041fd46
192
py
Python
Chapter 8/hail2.py
PacktPublishing/Mastering-IPython-4
d752f7ba38e0c9399a83d57da406fe26152f272b
[ "MIT" ]
22
2016-06-07T07:52:35.000Z
2021-11-08T13:12:21.000Z
Chapter 8/hail2.py
PacktPublishing/Mastering-IPython-4
d752f7ba38e0c9399a83d57da406fe26152f272b
[ "MIT" ]
2
2016-05-23T08:20:54.000Z
2018-07-02T08:21:32.000Z
Chapter 8/hail2.py
PacktPublishing/Mastering-IPython-4
d752f7ba38e0c9399a83d57da406fe26152f272b
[ "MIT" ]
27
2016-05-23T08:19:51.000Z
2021-08-31T02:46:00.000Z
def f(n): curr = n tmp = 0 while curr != 1: tmp = tmp + 1 if curr % 2 == 1: curr = 3 * curr + 1 else: curr = curr/2 return tmp
16
31
0.369792
32e324c82d84bc04e7a8035bc2b11e130e7ffb8a
343
py
Python
SRC/Chapter_07-Using-A-Database/02_DB_conn.py
archeranimesh/HeadFirstPython
8e0c84871328a6bf3a8d723341be56298440f29b
[ "MIT" ]
1
2020-12-26T19:37:14.000Z
2020-12-26T19:37:14.000Z
SRC/Chapter_07-Using-A-Database/02_DB_conn.py
archeranimesh/HeadFirstPython
8e0c84871328a6bf3a8d723341be56298440f29b
[ "MIT" ]
null
null
null
SRC/Chapter_07-Using-A-Database/02_DB_conn.py
archeranimesh/HeadFirstPython
8e0c84871328a6bf3a8d723341be56298440f29b
[ "MIT" ]
null
null
null
import mysql.connector dbconfig = { "host": "127.0.0.1", "user": "vsearch", "password": "hello", "database": "vsearchlogDB", } conn = mysql.connector.connect(**dbconfig) cursor = conn.cursor() _SQL = """describe log""" cursor.execute(_SQL) res = cursor.fetchall() for row in res: print(row) cursor.close() conn.close()
16.333333
42
0.638484
7c65f161dff86f5a66f0ccf7802dc3af6662b40d
70,148
py
Python
tests/test_connector.py
fcomuniz/aiohttp
5f03869652a02b373b9078dcc6e00be60ffa9101
[ "Apache-2.0" ]
null
null
null
tests/test_connector.py
fcomuniz/aiohttp
5f03869652a02b373b9078dcc6e00be60ffa9101
[ "Apache-2.0" ]
null
null
null
tests/test_connector.py
fcomuniz/aiohttp
5f03869652a02b373b9078dcc6e00be60ffa9101
[ "Apache-2.0" ]
null
null
null
# type: ignore # Tests of http client with custom Connector import asyncio import gc import hashlib import platform import socket import ssl import sys import uuid from collections import deque from typing import Any, Optional from unittest import mock import pytest from conftest import needs_unix from yarl import URL import aiohttp from aiohttp import client, web from aiohttp.client import ClientRequest, ClientTimeout from aiohttp.client_reqrep import ConnectionKey from aiohttp.connector import Connection, DNSCacheTable, TCPConnector from aiohttp.locks import EventResultOrError from aiohttp.test_utils import make_mocked_coro, unused_port from aiohttp.tracing import Trace @pytest.fixture() def key(): # Connection key return ConnectionKey("localhost", 80, False, None, None, None, None) @pytest.fixture def key2(): # Connection key return ConnectionKey("localhost", 80, False, None, None, None, None) @pytest.fixture def ssl_key(): # Connection key return ConnectionKey("localhost", 80, True, None, None, None, None) @pytest.fixture def unix_server(loop: Any, unix_sockname: Any) -> None: runners = [] async def go(app): runner = web.AppRunner(app) runners.append(runner) await runner.setup() site = web.UnixSite(runner, unix_sockname) await site.start() yield go for runner in runners: loop.run_until_complete(runner.cleanup()) @pytest.fixture def named_pipe_server(proactor_loop: Any, pipe_name: Any) -> None: runners = [] async def go(app): runner = web.AppRunner(app) runners.append(runner) await runner.setup() site = web.NamedPipeSite(runner, pipe_name) await site.start() yield go for runner in runners: proactor_loop.run_until_complete(runner.cleanup()) def create_mocked_conn(conn_closing_result: Optional[Any] = None, **kwargs: Any): assert "loop" not in kwargs loop = asyncio.get_event_loop() proto = mock.Mock(**kwargs) proto.closed = loop.create_future() proto.closed.set_result(conn_closing_result) return proto def test_connection_del(loop: Any) -> None: connector = mock.Mock() key = mock.Mock() protocol = mock.Mock() loop.set_debug(0) conn = Connection(connector, key, protocol, loop=loop) exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) with pytest.warns(ResourceWarning): del conn gc.collect() connector._release.assert_called_with(key, protocol, should_close=True) msg = { "message": mock.ANY, "client_connection": mock.ANY, } exc_handler.assert_called_with(loop, msg) def test_connection_del_loop_debug(loop: Any) -> None: connector = mock.Mock() key = mock.Mock() protocol = mock.Mock() loop.set_debug(1) conn = Connection(connector, key, protocol, loop=loop) exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) with pytest.warns(ResourceWarning): del conn gc.collect() msg = { "message": mock.ANY, "client_connection": mock.ANY, "source_traceback": mock.ANY, } exc_handler.assert_called_with(loop, msg) def test_connection_del_loop_closed(loop: Any) -> None: connector = mock.Mock() key = mock.Mock() protocol = mock.Mock() loop.set_debug(1) conn = Connection(connector, key, protocol, loop=loop) exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) loop.close() with pytest.warns(ResourceWarning): del conn gc.collect() assert not connector._release.called assert not exc_handler.called async def test_del(loop: Any) -> None: conn = aiohttp.BaseConnector() proto = create_mocked_conn(loop, should_close=False) conn._release("a", proto) conns_impl = conn._conns exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) with pytest.warns(ResourceWarning): del conn gc.collect() assert not conns_impl proto.close.assert_called_with() msg = { "connector": mock.ANY, # conn was deleted "connections": mock.ANY, "message": "Unclosed connector", } if loop.get_debug(): msg["source_traceback"] = mock.ANY exc_handler.assert_called_with(loop, msg) @pytest.mark.xfail async def test_del_with_scheduled_cleanup(loop: Any) -> None: loop.set_debug(True) conn = aiohttp.BaseConnector(keepalive_timeout=0.01) transp = create_mocked_conn(loop) conn._conns["a"] = [(transp, 123)] conns_impl = conn._conns exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) with pytest.warns(ResourceWarning): # obviously doesn't deletion because loop has a strong # reference to connector's instance method, isn't it? del conn await asyncio.sleep(0.01) gc.collect() assert not conns_impl transp.close.assert_called_with() msg = {"connector": mock.ANY, "message": "Unclosed connector"} # conn was deleted if loop.get_debug(): msg["source_traceback"] = mock.ANY exc_handler.assert_called_with(loop, msg) @pytest.mark.skipif( sys.implementation.name != "cpython", reason="CPython GC is required for the test" ) def test_del_with_closed_loop(loop: Any) -> None: async def make_conn(): return aiohttp.BaseConnector() conn = loop.run_until_complete(make_conn()) transp = create_mocked_conn(loop) conn._conns["a"] = [(transp, 123)] conns_impl = conn._conns exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) loop.close() with pytest.warns(ResourceWarning): del conn gc.collect() assert not conns_impl assert not transp.close.called assert exc_handler.called async def test_del_empty_connector(loop: Any) -> None: conn = aiohttp.BaseConnector() exc_handler = mock.Mock() loop.set_exception_handler(exc_handler) del conn assert not exc_handler.called async def test_create_conn() -> None: conn = aiohttp.BaseConnector() with pytest.raises(NotImplementedError): await conn._create_connection(object(), [], object()) async def test_async_context_manager(loop: Any) -> None: conn = aiohttp.BaseConnector() async with conn as c: assert conn is c assert conn.closed async def test_close() -> None: proto = create_mocked_conn() conn = aiohttp.BaseConnector() assert not conn.closed conn._conns[("host", 8080, False)] = [(proto, object())] await conn.close() assert not conn._conns assert proto.close.called assert conn.closed async def test_get(loop: Any) -> None: conn = aiohttp.BaseConnector() assert conn._get(1) is None proto = create_mocked_conn(loop) conn._conns[1] = [(proto, loop.time())] assert conn._get(1) == proto await conn.close() async def test_get_unconnected_proto(loop: Any) -> None: conn = aiohttp.BaseConnector() key = ConnectionKey("localhost", 80, False, None, None, None, None) assert conn._get(key) is None proto = create_mocked_conn(loop) conn._conns[key] = [(proto, loop.time())] assert conn._get(key) == proto assert conn._get(key) is None conn._conns[key] = [(proto, loop.time())] proto.is_connected = lambda *args: False assert conn._get(key) is None await conn.close() async def test_get_unconnected_proto_ssl(loop: Any) -> None: conn = aiohttp.BaseConnector() key = ConnectionKey("localhost", 80, True, None, None, None, None) assert conn._get(key) is None proto = create_mocked_conn(loop) conn._conns[key] = [(proto, loop.time())] assert conn._get(key) == proto assert conn._get(key) is None conn._conns[key] = [(proto, loop.time())] proto.is_connected = lambda *args: False assert conn._get(key) is None await conn.close() async def test_get_expired(loop: Any) -> None: conn = aiohttp.BaseConnector() key = ConnectionKey("localhost", 80, False, None, None, None, None) assert conn._get(key) is None proto = create_mocked_conn(loop) conn._conns[key] = [(proto, loop.time() - 1000)] assert conn._get(key) is None assert not conn._conns await conn.close() async def test_get_expired_ssl(loop: Any) -> None: conn = aiohttp.BaseConnector(enable_cleanup_closed=True) key = ConnectionKey("localhost", 80, True, None, None, None, None) assert conn._get(key) is None proto = create_mocked_conn(loop) transport = proto.transport conn._conns[key] = [(proto, loop.time() - 1000)] assert conn._get(key) is None assert not conn._conns assert conn._cleanup_closed_transports == [transport] await conn.close() async def test_release_acquired(key: Any) -> None: proto = create_mocked_conn() conn = aiohttp.BaseConnector(limit=5) conn._release_waiter = mock.Mock() conn._acquired.add(proto) conn._acquired_per_host[key].add(proto) conn._release_acquired(key, proto) assert 0 == len(conn._acquired) assert 0 == len(conn._acquired_per_host) assert conn._release_waiter.called conn._release_acquired(key, proto) assert 0 == len(conn._acquired) assert 0 == len(conn._acquired_per_host) await conn.close() async def test_release_acquired_closed(key: Any) -> None: proto = create_mocked_conn() conn = aiohttp.BaseConnector(limit=5) conn._release_waiter = mock.Mock() conn._acquired.add(proto) conn._acquired_per_host[key].add(proto) conn._closed = True conn._release_acquired(key, proto) assert 1 == len(conn._acquired) assert 1 == len(conn._acquired_per_host[key]) assert not conn._release_waiter.called await conn.close() async def test_release(loop: Any, key: Any) -> None: conn = aiohttp.BaseConnector() conn._release_waiter = mock.Mock() proto = create_mocked_conn(loop, should_close=False) conn._acquired.add(proto) conn._acquired_per_host[key].add(proto) conn._release(key, proto) assert conn._release_waiter.called assert conn._cleanup_handle is not None assert conn._conns[key][0][0] == proto assert conn._conns[key][0][1] == pytest.approx(loop.time(), abs=0.1) assert not conn._cleanup_closed_transports await conn.close() async def test_release_ssl_transport(loop: Any, ssl_key: Any) -> None: conn = aiohttp.BaseConnector(enable_cleanup_closed=True) conn._release_waiter = mock.Mock() proto = create_mocked_conn(loop) transport = proto.transport conn._acquired.add(proto) conn._acquired_per_host[ssl_key].add(proto) conn._release(ssl_key, proto, should_close=True) assert conn._cleanup_closed_transports == [transport] await conn.close() async def test_release_already_closed() -> None: conn = aiohttp.BaseConnector() proto = create_mocked_conn() key = 1 conn._acquired.add(proto) await conn.close() conn._release_waiters = mock.Mock() conn._release_acquired = mock.Mock() conn._release(key, proto) assert not conn._release_waiters.called assert not conn._release_acquired.called async def test_release_waiter_no_limit(loop: Any, key: Any, key2: Any) -> None: # limit is 0 conn = aiohttp.BaseConnector(limit=0) w = mock.Mock() w.done.return_value = False conn._waiters[key].append(w) conn._release_waiter() assert len(conn._waiters[key]) == 0 assert w.done.called await conn.close() async def test_release_waiter_first_available(loop: Any, key: Any, key2: Any) -> None: conn = aiohttp.BaseConnector() w1, w2 = mock.Mock(), mock.Mock() w1.done.return_value = False w2.done.return_value = False conn._waiters[key].append(w2) conn._waiters[key2].append(w1) conn._release_waiter() assert ( w1.set_result.called and not w2.set_result.called or not w1.set_result.called and w2.set_result.called ) await conn.close() async def test_release_waiter_release_first(loop: Any, key: Any, key2: Any) -> None: conn = aiohttp.BaseConnector(limit=1) w1, w2 = mock.Mock(), mock.Mock() w1.done.return_value = False w2.done.return_value = False conn._waiters[key] = deque([w1, w2]) conn._release_waiter() assert w1.set_result.called assert not w2.set_result.called await conn.close() async def test_release_waiter_skip_done_waiter(loop: Any, key: Any, key2: Any) -> None: conn = aiohttp.BaseConnector(limit=1) w1, w2 = mock.Mock(), mock.Mock() w1.done.return_value = True w2.done.return_value = False conn._waiters[key] = deque([w1, w2]) conn._release_waiter() assert not w1.set_result.called assert w2.set_result.called await conn.close() async def test_release_waiter_per_host(loop: Any, key: Any, key2: Any) -> None: # no limit conn = aiohttp.BaseConnector(limit=0, limit_per_host=2) w1, w2 = mock.Mock(), mock.Mock() w1.done.return_value = False w2.done.return_value = False conn._waiters[key] = deque([w1]) conn._waiters[key2] = deque([w2]) conn._release_waiter() assert (w1.set_result.called and not w2.set_result.called) or ( not w1.set_result.called and w2.set_result.called ) await conn.close() async def test_release_waiter_no_available(loop: Any, key: Any, key2: Any) -> None: # limit is 0 conn = aiohttp.BaseConnector(limit=0) w = mock.Mock() w.done.return_value = False conn._waiters[key].append(w) conn._available_connections = mock.Mock(return_value=0) conn._release_waiter() assert len(conn._waiters) == 1 assert not w.done.called await conn.close() async def test_release_close(key: Any) -> None: conn = aiohttp.BaseConnector() proto = create_mocked_conn(should_close=True) conn._acquired.add(proto) conn._release(key, proto) assert not conn._conns assert proto.close.called async def test__drop_acquire_per_host1(loop: Any) -> None: conn = aiohttp.BaseConnector() conn._drop_acquired_per_host(123, 456) assert len(conn._acquired_per_host) == 0 async def test__drop_acquire_per_host2(loop: Any) -> None: conn = aiohttp.BaseConnector() conn._acquired_per_host[123].add(456) conn._drop_acquired_per_host(123, 456) assert len(conn._acquired_per_host) == 0 async def test__drop_acquire_per_host3(loop: Any) -> None: conn = aiohttp.BaseConnector() conn._acquired_per_host[123].add(456) conn._acquired_per_host[123].add(789) conn._drop_acquired_per_host(123, 456) assert len(conn._acquired_per_host) == 1 assert conn._acquired_per_host[123] == {789} async def test_tcp_connector_certificate_error(loop: Any) -> None: req = ClientRequest("GET", URL("https://127.0.0.1:443"), loop=loop) async def certificate_error(*args, **kwargs): raise ssl.CertificateError conn = aiohttp.TCPConnector() conn._loop.create_connection = certificate_error with pytest.raises(aiohttp.ClientConnectorCertificateError) as ctx: await conn.connect(req, [], ClientTimeout()) assert isinstance(ctx.value, ssl.CertificateError) assert isinstance(ctx.value.certificate_error, ssl.CertificateError) assert isinstance(ctx.value, aiohttp.ClientSSLError) async def test_tcp_connector_multiple_hosts_errors(loop: Any) -> None: conn = aiohttp.TCPConnector() ip1 = "192.168.1.1" ip2 = "192.168.1.2" ip3 = "192.168.1.3" ip4 = "192.168.1.4" ip5 = "192.168.1.5" ips = [ip1, ip2, ip3, ip4, ip5] ips_tried = [] fingerprint = hashlib.sha256(b"foo").digest() req = ClientRequest( "GET", URL("https://mocked.host"), ssl=aiohttp.Fingerprint(fingerprint), loop=loop, ) async def _resolve_host(host, port, traces=None): return [ { "hostname": host, "host": ip, "port": port, "family": socket.AF_INET, "proto": 0, "flags": socket.AI_NUMERICHOST, } for ip in ips ] conn._resolve_host = _resolve_host os_error = certificate_error = ssl_error = fingerprint_error = False connected = False async def create_connection(*args, **kwargs): nonlocal os_error, certificate_error, ssl_error, fingerprint_error nonlocal connected ip = args[1] ips_tried.append(ip) if ip == ip1: os_error = True raise OSError if ip == ip2: certificate_error = True raise ssl.CertificateError if ip == ip3: ssl_error = True raise ssl.SSLError if ip == ip4: fingerprint_error = True tr = create_mocked_conn(loop) pr = create_mocked_conn(loop) def get_extra_info(param): if param == "sslcontext": return True if param == "ssl_object": s = create_mocked_conn(loop) s.getpeercert.return_value = b"not foo" return s if param == "peername": return ("192.168.1.5", 12345) assert False, param tr.get_extra_info = get_extra_info return tr, pr if ip == ip5: connected = True tr = create_mocked_conn(loop) pr = create_mocked_conn(loop) def get_extra_info(param): if param == "sslcontext": return True if param == "ssl_object": s = create_mocked_conn(loop) s.getpeercert.return_value = b"foo" return s assert False tr.get_extra_info = get_extra_info return tr, pr assert False conn._loop.create_connection = create_connection established_connection = await conn.connect(req, [], ClientTimeout()) assert ips == ips_tried assert os_error assert certificate_error assert ssl_error assert fingerprint_error assert connected established_connection.close() async def test_tcp_connector_resolve_host(loop: Any) -> None: conn = aiohttp.TCPConnector(use_dns_cache=True) res = await conn._resolve_host("localhost", 8080) assert res for rec in res: if rec["family"] == socket.AF_INET: assert rec["host"] == "127.0.0.1" assert rec["hostname"] == "localhost" assert rec["port"] == 8080 elif rec["family"] == socket.AF_INET6: assert rec["hostname"] == "localhost" assert rec["port"] == 8080 if platform.system() == "Darwin": assert rec["host"] in ("::1", "fe80::1", "fe80::1%lo0") else: assert rec["host"] == "::1" @pytest.fixture def dns_response(loop: Any): async def coro(): # simulates a network operation await asyncio.sleep(0) return ["127.0.0.1"] return coro async def test_tcp_connector_dns_cache_not_expired( loop: Any, dns_response: Any ) -> None: with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) m_resolver().resolve.return_value = dns_response() await conn._resolve_host("localhost", 8080) await conn._resolve_host("localhost", 8080) m_resolver().resolve.assert_called_once_with("localhost", 8080, family=0) async def test_tcp_connector_dns_cache_forever(loop: Any, dns_response: Any) -> None: with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) m_resolver().resolve.return_value = dns_response() await conn._resolve_host("localhost", 8080) await conn._resolve_host("localhost", 8080) m_resolver().resolve.assert_called_once_with("localhost", 8080, family=0) async def test_tcp_connector_use_dns_cache_disabled( loop: Any, dns_response: Any ) -> None: with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=False) m_resolver().resolve.side_effect = [dns_response(), dns_response()] await conn._resolve_host("localhost", 8080) await conn._resolve_host("localhost", 8080) m_resolver().resolve.assert_has_calls( [ mock.call("localhost", 8080, family=0), mock.call("localhost", 8080, family=0), ] ) async def test_tcp_connector_dns_throttle_requests( loop: Any, dns_response: Any ) -> None: with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) m_resolver().resolve.return_value = dns_response() loop.create_task(conn._resolve_host("localhost", 8080)) loop.create_task(conn._resolve_host("localhost", 8080)) await asyncio.sleep(0) m_resolver().resolve.assert_called_once_with("localhost", 8080, family=0) async def test_tcp_connector_dns_throttle_requests_exception_spread(loop: Any) -> None: with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) e = Exception() m_resolver().resolve.side_effect = e r1 = loop.create_task(conn._resolve_host("localhost", 8080)) r2 = loop.create_task(conn._resolve_host("localhost", 8080)) await asyncio.sleep(0) assert r1.exception() == e assert r2.exception() == e async def test_tcp_connector_dns_throttle_requests_cancelled_when_close( loop: Any, dns_response: Any ) -> None: with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) m_resolver().resolve.return_value = dns_response() loop.create_task(conn._resolve_host("localhost", 8080)) f = loop.create_task(conn._resolve_host("localhost", 8080)) await asyncio.sleep(0) await conn.close() with pytest.raises(asyncio.CancelledError): await f @pytest.fixture def dns_response_error(loop: Any): async def coro(): # simulates a network operation await asyncio.sleep(0) raise socket.gaierror(-3, "Temporary failure in name resolution") return coro async def test_tcp_connector_cancel_dns_error_captured( loop: Any, dns_response_error: Any ) -> None: exception_handler_called = False def exception_handler(loop, context): nonlocal exception_handler_called exception_handler_called = True loop.set_exception_handler(mock.Mock(side_effect=exception_handler)) with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: req = ClientRequest( method="GET", url=URL("http://temporary-failure:80"), loop=loop ) conn = aiohttp.TCPConnector( use_dns_cache=False, ) m_resolver().resolve.return_value = dns_response_error() f = loop.create_task(conn._create_direct_connection(req, [], ClientTimeout(0))) await asyncio.sleep(0) f.cancel() with pytest.raises(asyncio.CancelledError): await f gc.collect() assert exception_handler_called is False async def test_tcp_connector_dns_tracing(loop: Any, dns_response: Any) -> None: session = mock.Mock() trace_config_ctx = mock.Mock() on_dns_resolvehost_start = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_dns_resolvehost_end = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_dns_cache_hit = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_dns_cache_miss = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) trace_config = aiohttp.TraceConfig( trace_config_ctx_factory=mock.Mock(return_value=trace_config_ctx) ) trace_config.on_dns_resolvehost_start.append(on_dns_resolvehost_start) trace_config.on_dns_resolvehost_end.append(on_dns_resolvehost_end) trace_config.on_dns_cache_hit.append(on_dns_cache_hit) trace_config.on_dns_cache_miss.append(on_dns_cache_miss) trace_config.freeze() traces = [Trace(session, trace_config, trace_config.trace_config_ctx())] with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) m_resolver().resolve.return_value = dns_response() await conn._resolve_host("localhost", 8080, traces=traces) on_dns_resolvehost_start.assert_called_once_with( session, trace_config_ctx, aiohttp.TraceDnsResolveHostStartParams("localhost"), ) on_dns_resolvehost_end.assert_called_once_with( session, trace_config_ctx, aiohttp.TraceDnsResolveHostEndParams("localhost") ) on_dns_cache_miss.assert_called_once_with( session, trace_config_ctx, aiohttp.TraceDnsCacheMissParams("localhost") ) assert not on_dns_cache_hit.called await conn._resolve_host("localhost", 8080, traces=traces) on_dns_cache_hit.assert_called_once_with( session, trace_config_ctx, aiohttp.TraceDnsCacheHitParams("localhost") ) async def test_tcp_connector_dns_tracing_cache_disabled( loop: Any, dns_response: Any ) -> None: session = mock.Mock() trace_config_ctx = mock.Mock() on_dns_resolvehost_start = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_dns_resolvehost_end = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) trace_config = aiohttp.TraceConfig( trace_config_ctx_factory=mock.Mock(return_value=trace_config_ctx) ) trace_config.on_dns_resolvehost_start.append(on_dns_resolvehost_start) trace_config.on_dns_resolvehost_end.append(on_dns_resolvehost_end) trace_config.freeze() traces = [Trace(session, trace_config, trace_config.trace_config_ctx())] with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=False) m_resolver().resolve.side_effect = [dns_response(), dns_response()] await conn._resolve_host("localhost", 8080, traces=traces) await conn._resolve_host("localhost", 8080, traces=traces) on_dns_resolvehost_start.assert_has_calls( [ mock.call( session, trace_config_ctx, aiohttp.TraceDnsResolveHostStartParams("localhost"), ), mock.call( session, trace_config_ctx, aiohttp.TraceDnsResolveHostStartParams("localhost"), ), ] ) on_dns_resolvehost_end.assert_has_calls( [ mock.call( session, trace_config_ctx, aiohttp.TraceDnsResolveHostEndParams("localhost"), ), mock.call( session, trace_config_ctx, aiohttp.TraceDnsResolveHostEndParams("localhost"), ), ] ) async def test_tcp_connector_dns_tracing_throttle_requests( loop: Any, dns_response: Any ) -> None: session = mock.Mock() trace_config_ctx = mock.Mock() on_dns_cache_hit = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_dns_cache_miss = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) trace_config = aiohttp.TraceConfig( trace_config_ctx_factory=mock.Mock(return_value=trace_config_ctx) ) trace_config.on_dns_cache_hit.append(on_dns_cache_hit) trace_config.on_dns_cache_miss.append(on_dns_cache_miss) trace_config.freeze() traces = [Trace(session, trace_config, trace_config.trace_config_ctx())] with mock.patch("aiohttp.connector.DefaultResolver") as m_resolver: conn = aiohttp.TCPConnector(use_dns_cache=True, ttl_dns_cache=10) m_resolver().resolve.return_value = dns_response() loop.create_task(conn._resolve_host("localhost", 8080, traces=traces)) loop.create_task(conn._resolve_host("localhost", 8080, traces=traces)) await asyncio.sleep(0) on_dns_cache_hit.assert_called_once_with( session, trace_config_ctx, aiohttp.TraceDnsCacheHitParams("localhost") ) on_dns_cache_miss.assert_called_once_with( session, trace_config_ctx, aiohttp.TraceDnsCacheMissParams("localhost") ) async def test_dns_error(loop: Any) -> None: connector = aiohttp.TCPConnector() connector._resolve_host = make_mocked_coro( raise_exception=OSError("dont take it serious") ) req = ClientRequest("GET", URL("http://www.python.org"), loop=loop) with pytest.raises(aiohttp.ClientConnectorError): await connector.connect(req, [], ClientTimeout()) async def test_get_pop_empty_conns(loop: Any) -> None: # see issue #473 conn = aiohttp.BaseConnector() key = ("127.0.0.1", 80, False) conn._conns[key] = [] proto = conn._get(key) assert proto is None assert not conn._conns async def test_release_close_do_not_add_to_pool(loop: Any, key: Any) -> None: # see issue #473 conn = aiohttp.BaseConnector() proto = create_mocked_conn(loop, should_close=True) conn._acquired.add(proto) conn._release(key, proto) assert not conn._conns async def test_release_close_do_not_delete_existing_connections( loop: Any, key: Any ) -> None: proto1 = create_mocked_conn(loop) conn = aiohttp.BaseConnector() conn._conns[key] = [(proto1, 1)] proto = create_mocked_conn(loop, should_close=True) conn._acquired.add(proto) conn._release(key, proto) assert conn._conns[key] == [(proto1, 1)] assert proto.close.called await conn.close() async def test_release_not_started(loop: Any) -> None: conn = aiohttp.BaseConnector() proto = create_mocked_conn(should_close=False) key = 1 conn._acquired.add(proto) conn._release(key, proto) # assert conn._conns == {1: [(proto, 10)]} rec = conn._conns[1] assert rec[0][0] == proto assert rec[0][1] == pytest.approx(loop.time(), abs=0.05) assert not proto.close.called await conn.close() async def test_release_not_opened(loop: Any, key: Any) -> None: conn = aiohttp.BaseConnector() proto = create_mocked_conn(loop) conn._acquired.add(proto) conn._release(key, proto) assert proto.close.called async def test_connect(loop: Any, key: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://localhost:80"), loop=loop) conn = aiohttp.BaseConnector() conn._conns[key] = [(proto, loop.time())] conn._create_connection = create_mocked_conn(loop) conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) connection = await conn.connect(req, [], ClientTimeout()) assert not conn._create_connection.called assert connection._protocol is proto assert connection.transport is proto.transport assert isinstance(connection, Connection) connection.close() async def test_connect_tracing(loop: Any) -> None: session = mock.Mock() trace_config_ctx = mock.Mock() on_connection_create_start = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_connection_create_end = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) trace_config = aiohttp.TraceConfig( trace_config_ctx_factory=mock.Mock(return_value=trace_config_ctx) ) trace_config.on_connection_create_start.append(on_connection_create_start) trace_config.on_connection_create_end.append(on_connection_create_end) trace_config.freeze() traces = [Trace(session, trace_config, trace_config.trace_config_ctx())] proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://host:80"), loop=loop) conn = aiohttp.BaseConnector() conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) conn2 = await conn.connect(req, traces, ClientTimeout()) conn2.release() on_connection_create_start.assert_called_with( session, trace_config_ctx, aiohttp.TraceConnectionCreateStartParams() ) on_connection_create_end.assert_called_with( session, trace_config_ctx, aiohttp.TraceConnectionCreateEndParams() ) async def test_close_during_connect(loop: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True fut = loop.create_future() req = ClientRequest("GET", URL("http://host:80"), loop=loop) conn = aiohttp.BaseConnector() conn._create_connection = mock.Mock() conn._create_connection.return_value = fut task = loop.create_task(conn.connect(req, None, ClientTimeout())) await asyncio.sleep(0) await conn.close() fut.set_result(proto) with pytest.raises(aiohttp.ClientConnectionError): await task assert proto.close.called async def test_ctor_cleanup() -> None: loop = mock.Mock() loop.time.return_value = 1.5 conn = aiohttp.BaseConnector(keepalive_timeout=10, enable_cleanup_closed=True) assert conn._cleanup_handle is None assert conn._cleanup_closed_handle is not None async def test_cleanup(key: Any) -> None: testset = { key: [(mock.Mock(), 10), (mock.Mock(), 300)], } testset[key][0][0].is_connected.return_value = True testset[key][1][0].is_connected.return_value = False loop = mock.Mock() loop.time.return_value = 300 conn = aiohttp.BaseConnector() conn._conns = testset existing_handle = conn._cleanup_handle = mock.Mock() conn._cleanup() assert existing_handle.cancel.called assert conn._conns == {} assert conn._cleanup_handle is None async def test_cleanup_close_ssl_transport(loop: Any, ssl_key: Any) -> None: proto = create_mocked_conn(loop) transport = proto.transport testset = {ssl_key: [(proto, 10)]} loop = mock.Mock() loop.time.return_value = asyncio.get_event_loop().time() + 300 conn = aiohttp.BaseConnector(enable_cleanup_closed=True) conn._loop = loop conn._conns = testset existing_handle = conn._cleanup_handle = mock.Mock() conn._cleanup() assert existing_handle.cancel.called assert conn._conns == {} assert conn._cleanup_closed_transports == [transport] async def test_cleanup2(loop: Any) -> None: testset = {1: [(create_mocked_conn(), 300)]} testset[1][0][0].is_connected.return_value = True conn = aiohttp.BaseConnector(keepalive_timeout=10) conn._loop = mock.Mock() conn._loop.time.return_value = 300 conn._conns = testset conn._cleanup() assert conn._conns == testset assert conn._cleanup_handle is not None conn._loop.call_at.assert_called_with(310, mock.ANY, mock.ANY) await conn.close() async def test_cleanup3(loop: Any, key: Any) -> None: testset = { key: [(create_mocked_conn(loop), 290.1), (create_mocked_conn(loop), 305.1)] } testset[key][0][0].is_connected.return_value = True conn = aiohttp.BaseConnector(keepalive_timeout=10) conn._loop = mock.Mock() conn._loop.time.return_value = 308.5 conn._conns = testset conn._cleanup() assert conn._conns == {key: [testset[key][1]]} assert conn._cleanup_handle is not None conn._loop.call_at.assert_called_with(319, mock.ANY, mock.ANY) await conn.close() async def test_cleanup_closed(loop: Any, mocker: Any) -> None: if not hasattr(loop, "__dict__"): pytest.skip("can not override loop attributes") mocker.spy(loop, "call_at") conn = aiohttp.BaseConnector(enable_cleanup_closed=True) tr = mock.Mock() conn._cleanup_closed_handle = cleanup_closed_handle = mock.Mock() conn._cleanup_closed_transports = [tr] conn._cleanup_closed() assert tr.abort.called assert not conn._cleanup_closed_transports assert loop.call_at.called assert cleanup_closed_handle.cancel.called async def test_cleanup_closed_disabled(loop: Any, mocker: Any) -> None: conn = aiohttp.BaseConnector(enable_cleanup_closed=False) tr = mock.Mock() conn._cleanup_closed_transports = [tr] conn._cleanup_closed() assert tr.abort.called assert not conn._cleanup_closed_transports async def test_tcp_connector_ctor(loop: Any) -> None: conn = aiohttp.TCPConnector() assert conn._ssl is None assert conn.use_dns_cache assert conn.family == 0 async def test_invalid_ssl_param() -> None: with pytest.raises(TypeError): aiohttp.TCPConnector(ssl=object()) async def test_tcp_connector_ctor_fingerprint_valid(loop: Any) -> None: valid = aiohttp.Fingerprint(hashlib.sha256(b"foo").digest()) conn = aiohttp.TCPConnector(ssl=valid) assert conn._ssl is valid async def test_insecure_fingerprint_md5(loop: Any) -> None: with pytest.raises(ValueError): aiohttp.TCPConnector(ssl=aiohttp.Fingerprint(hashlib.md5(b"foo").digest())) async def test_insecure_fingerprint_sha1(loop: Any) -> None: with pytest.raises(ValueError): aiohttp.TCPConnector(ssl=aiohttp.Fingerprint(hashlib.sha1(b"foo").digest())) async def test_tcp_connector_clear_dns_cache(loop: Any) -> None: conn = aiohttp.TCPConnector() hosts = ["a", "b"] conn._cached_hosts.add(("localhost", 123), hosts) conn._cached_hosts.add(("localhost", 124), hosts) conn.clear_dns_cache("localhost", 123) with pytest.raises(KeyError): conn._cached_hosts.next_addrs(("localhost", 123)) assert conn._cached_hosts.next_addrs(("localhost", 124)) == hosts # Remove removed element is OK conn.clear_dns_cache("localhost", 123) with pytest.raises(KeyError): conn._cached_hosts.next_addrs(("localhost", 123)) conn.clear_dns_cache() with pytest.raises(KeyError): conn._cached_hosts.next_addrs(("localhost", 124)) async def test_tcp_connector_clear_dns_cache_bad_args(loop: Any) -> None: conn = aiohttp.TCPConnector() with pytest.raises(ValueError): conn.clear_dns_cache("localhost") async def test_dont_recreate_ssl_context(loop: Any) -> None: conn = aiohttp.TCPConnector() ctx = conn._make_ssl_context(True) assert ctx is conn._make_ssl_context(True) async def test_dont_recreate_ssl_context2(loop: Any) -> None: conn = aiohttp.TCPConnector() ctx = conn._make_ssl_context(False) assert ctx is conn._make_ssl_context(False) async def test___get_ssl_context1(loop: Any) -> None: conn = aiohttp.TCPConnector() req = mock.Mock() req.is_ssl.return_value = False assert conn._get_ssl_context(req) is None async def test___get_ssl_context2(loop: Any) -> None: ctx = ssl.SSLContext() conn = aiohttp.TCPConnector() req = mock.Mock() req.is_ssl.return_value = True req.ssl = ctx assert conn._get_ssl_context(req) is ctx async def test___get_ssl_context3(loop: Any) -> None: ctx = ssl.SSLContext() conn = aiohttp.TCPConnector(ssl=ctx) req = mock.Mock() req.is_ssl.return_value = True req.ssl = None assert conn._get_ssl_context(req) is ctx async def test___get_ssl_context4(loop: Any) -> None: ctx = ssl.SSLContext() conn = aiohttp.TCPConnector(ssl=ctx) req = mock.Mock() req.is_ssl.return_value = True req.ssl = False assert conn._get_ssl_context(req) is conn._make_ssl_context(False) async def test___get_ssl_context5(loop: Any) -> None: ctx = ssl.SSLContext() conn = aiohttp.TCPConnector(ssl=ctx) req = mock.Mock() req.is_ssl.return_value = True req.ssl = aiohttp.Fingerprint(hashlib.sha256(b"1").digest()) assert conn._get_ssl_context(req) is conn._make_ssl_context(False) async def test___get_ssl_context6(loop: Any) -> None: conn = aiohttp.TCPConnector() req = mock.Mock() req.is_ssl.return_value = True req.ssl = None assert conn._get_ssl_context(req) is conn._make_ssl_context(True) async def test_close_twice(loop: Any) -> None: proto = create_mocked_conn(loop) conn = aiohttp.BaseConnector() conn._conns[1] = [(proto, object())] await conn.close() assert not conn._conns assert proto.close.called assert conn.closed conn._conns = "Invalid" # fill with garbage await conn.close() assert conn.closed async def test_close_cancels_cleanup_handle(loop: Any) -> None: conn = aiohttp.BaseConnector() conn._release(1, create_mocked_conn(should_close=False)) assert conn._cleanup_handle is not None await conn.close() assert conn._cleanup_handle is None async def test_close_abort_closed_transports(loop: Any) -> None: tr = mock.Mock() conn = aiohttp.BaseConnector() conn._cleanup_closed_transports.append(tr) await conn.close() assert not conn._cleanup_closed_transports assert tr.abort.called assert conn.closed async def test_close_cancels_cleanup_closed_handle(loop: Any) -> None: conn = aiohttp.BaseConnector(enable_cleanup_closed=True) assert conn._cleanup_closed_handle is not None await conn.close() assert conn._cleanup_closed_handle is None async def test_ctor_with_default_loop(loop: Any) -> None: conn = aiohttp.BaseConnector() assert loop is conn._loop async def test_connect_with_limit(loop: Any, key: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest( "GET", URL("http://localhost:80"), loop=loop, response_class=mock.Mock() ) conn = aiohttp.BaseConnector(limit=1) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) connection1 = await conn.connect(req, None, ClientTimeout()) assert connection1._protocol == proto assert 1 == len(conn._acquired) assert proto in conn._acquired assert key in conn._acquired_per_host assert proto in conn._acquired_per_host[key] acquired = False async def f(): nonlocal acquired connection2 = await conn.connect(req, None, ClientTimeout()) acquired = True assert 1 == len(conn._acquired) assert 1 == len(conn._acquired_per_host[key]) connection2.release() task = loop.create_task(f()) await asyncio.sleep(0.01) assert not acquired connection1.release() await asyncio.sleep(0) assert acquired await task await conn.close() async def test_connect_queued_operation_tracing(loop: Any, key: Any) -> None: session = mock.Mock() trace_config_ctx = mock.Mock() on_connection_queued_start = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) on_connection_queued_end = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) trace_config = aiohttp.TraceConfig( trace_config_ctx_factory=mock.Mock(return_value=trace_config_ctx) ) trace_config.on_connection_queued_start.append(on_connection_queued_start) trace_config.on_connection_queued_end.append(on_connection_queued_end) trace_config.freeze() traces = [Trace(session, trace_config, trace_config.trace_config_ctx())] proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest( "GET", URL("http://localhost1:80"), loop=loop, response_class=mock.Mock() ) conn = aiohttp.BaseConnector(limit=1) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) connection1 = await conn.connect(req, traces, ClientTimeout()) async def f(): connection2 = await conn.connect(req, traces, ClientTimeout()) on_connection_queued_start.assert_called_with( session, trace_config_ctx, aiohttp.TraceConnectionQueuedStartParams() ) on_connection_queued_end.assert_called_with( session, trace_config_ctx, aiohttp.TraceConnectionQueuedEndParams() ) connection2.release() task = asyncio.ensure_future(f()) await asyncio.sleep(0.01) connection1.release() await task await conn.close() async def test_connect_reuseconn_tracing(loop: Any, key: Any) -> None: session = mock.Mock() trace_config_ctx = mock.Mock() on_connection_reuseconn = mock.Mock(side_effect=make_mocked_coro(mock.Mock())) trace_config = aiohttp.TraceConfig( trace_config_ctx_factory=mock.Mock(return_value=trace_config_ctx) ) trace_config.on_connection_reuseconn.append(on_connection_reuseconn) trace_config.freeze() traces = [Trace(session, trace_config, trace_config.trace_config_ctx())] proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest( "GET", URL("http://localhost:80"), loop=loop, response_class=mock.Mock() ) conn = aiohttp.BaseConnector(limit=1) conn._conns[key] = [(proto, loop.time())] conn2 = await conn.connect(req, traces, ClientTimeout()) conn2.release() on_connection_reuseconn.assert_called_with( session, trace_config_ctx, aiohttp.TraceConnectionReuseconnParams() ) await conn.close() async def test_connect_with_limit_and_limit_per_host(loop: Any, key: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://localhost:80"), loop=loop) conn = aiohttp.BaseConnector(limit=1000, limit_per_host=1) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) acquired = False connection1 = await conn.connect(req, None, ClientTimeout()) async def f(): nonlocal acquired connection2 = await conn.connect(req, None, ClientTimeout()) acquired = True assert 1 == len(conn._acquired) assert 1 == len(conn._acquired_per_host[key]) connection2.release() task = loop.create_task(f()) await asyncio.sleep(0.01) assert not acquired connection1.release() await asyncio.sleep(0) assert acquired await task await conn.close() async def test_connect_with_no_limit_and_limit_per_host(loop: Any, key: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://localhost1:80"), loop=loop) conn = aiohttp.BaseConnector(limit=0, limit_per_host=1) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) acquired = False connection1 = await conn.connect(req, None, ClientTimeout()) async def f(): nonlocal acquired connection2 = await conn.connect(req, None, ClientTimeout()) acquired = True connection2.release() task = loop.create_task(f()) await asyncio.sleep(0.01) assert not acquired connection1.release() await asyncio.sleep(0) assert acquired await task await conn.close() async def test_connect_with_no_limits(loop: Any, key: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://localhost:80"), loop=loop) conn = aiohttp.BaseConnector(limit=0, limit_per_host=0) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) acquired = False connection1 = await conn.connect(req, None, ClientTimeout()) async def f(): nonlocal acquired connection2 = await conn.connect(req, None, ClientTimeout()) acquired = True assert 1 == len(conn._acquired) assert 1 == len(conn._acquired_per_host[key]) connection2.release() task = loop.create_task(f()) await asyncio.sleep(0.01) assert acquired connection1.release() await task await conn.close() async def test_connect_with_limit_cancelled(loop: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://host:80"), loop=loop) conn = aiohttp.BaseConnector(limit=1) key = ("host", 80, False) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) connection = await conn.connect(req, None, ClientTimeout()) assert connection._protocol == proto assert connection.transport == proto.transport assert 1 == len(conn._acquired) with pytest.raises(asyncio.TimeoutError): # limit exhausted await asyncio.wait_for(conn.connect(req, None, ClientTimeout()), 0.01) connection.close() await conn.close() async def test_connect_with_capacity_release_waiters(loop: Any) -> None: def check_with_exc(err): conn = aiohttp.BaseConnector(limit=1) conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_exception(err) with pytest.raises(Exception): req = mock.Mock() yield from conn.connect(req, None, ClientTimeout()) assert not conn._waiters check_with_exc(OSError(1, "permission error")) check_with_exc(RuntimeError()) check_with_exc(asyncio.TimeoutError()) async def test_connect_with_limit_concurrent(loop: Any) -> None: proto = create_mocked_conn(loop) proto.should_close = False proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://host:80"), loop=loop) max_connections = 2 num_connections = 0 conn = aiohttp.BaseConnector(limit=max_connections) # Use a real coroutine for _create_connection; a mock would mask # problems that only happen when the method yields. async def create_connection(req, traces, timeout): nonlocal num_connections num_connections += 1 await asyncio.sleep(0) # Make a new transport mock each time because acquired # transports are stored in a set. Reusing the same object # messes with the count. proto = create_mocked_conn(loop, should_close=False) proto.is_connected.return_value = True return proto conn._create_connection = create_connection # Simulate something like a crawler. It opens a connection, does # something with it, closes it, then creates tasks that make more # connections and waits for them to finish. The crawler is started # with multiple concurrent requests and stops when it hits a # predefined maximum number of requests. max_requests = 50 num_requests = 0 start_requests = max_connections + 1 async def f(start=True): nonlocal num_requests if num_requests == max_requests: return num_requests += 1 if not start: connection = await conn.connect(req, None, ClientTimeout()) await asyncio.sleep(0) connection.release() await asyncio.sleep(0) tasks = [loop.create_task(f(start=False)) for i in range(start_requests)] await asyncio.wait(tasks) await f() await conn.close() assert max_connections == num_connections async def test_connect_waiters_cleanup(loop: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://host:80"), loop=loop) conn = aiohttp.BaseConnector(limit=1) conn._available_connections = mock.Mock(return_value=0) t = loop.create_task(conn.connect(req, None, ClientTimeout())) await asyncio.sleep(0) assert conn._waiters.keys() t.cancel() await asyncio.sleep(0) assert not conn._waiters.keys() async def test_connect_waiters_cleanup_key_error(loop: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://host:80"), loop=loop) conn = aiohttp.BaseConnector(limit=1) conn._available_connections = mock.Mock(return_value=0) t = loop.create_task(conn.connect(req, None, ClientTimeout())) await asyncio.sleep(0) assert conn._waiters.keys() # we delete the entry explicitly before the # canceled connection grabs the loop again, we # must expect a none failure termination conn._waiters.clear() t.cancel() await asyncio.sleep(0) assert not conn._waiters.keys() == [] async def test_close_with_acquired_connection(loop: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("http://host:80"), loop=loop) conn = aiohttp.BaseConnector(limit=1) key = ("host", 80, False) conn._conns[key] = [(proto, loop.time())] conn._create_connection = mock.Mock() conn._create_connection.return_value = loop.create_future() conn._create_connection.return_value.set_result(proto) connection = await conn.connect(req, None, ClientTimeout()) assert 1 == len(conn._acquired) await conn.close() assert 0 == len(conn._acquired) assert conn.closed proto.close.assert_called_with() assert not connection.closed connection.close() assert connection.closed async def test_default_force_close(loop: Any) -> None: connector = aiohttp.BaseConnector() assert not connector.force_close async def test_limit_property(loop: Any) -> None: conn = aiohttp.BaseConnector(limit=15) assert 15 == conn.limit await conn.close() async def test_limit_per_host_property(loop: Any) -> None: conn = aiohttp.BaseConnector(limit_per_host=15) assert 15 == conn.limit_per_host await conn.close() async def test_limit_property_default(loop: Any) -> None: conn = aiohttp.BaseConnector() assert conn.limit == 100 await conn.close() async def test_limit_per_host_property_default(loop: Any) -> None: conn = aiohttp.BaseConnector() assert conn.limit_per_host == 0 await conn.close() async def test_force_close_and_explicit_keep_alive(loop: Any) -> None: with pytest.raises(ValueError): aiohttp.BaseConnector(keepalive_timeout=30, force_close=True) conn = aiohttp.BaseConnector(force_close=True, keepalive_timeout=None) assert conn conn = aiohttp.BaseConnector(force_close=True) assert conn async def test_error_on_connection(loop: Any, key: Any) -> None: conn = aiohttp.BaseConnector(limit=1) req = mock.Mock() req.connection_key = key proto = create_mocked_conn(loop) i = 0 fut = loop.create_future() exc = OSError() async def create_connection(req, traces, timeout): nonlocal i i += 1 if i == 1: await fut raise exc elif i == 2: return proto conn._create_connection = create_connection t1 = loop.create_task(conn.connect(req, None, ClientTimeout())) t2 = loop.create_task(conn.connect(req, None, ClientTimeout())) await asyncio.sleep(0) assert not t1.done() assert not t2.done() assert len(conn._acquired_per_host[key]) == 1 fut.set_result(None) with pytest.raises(OSError): await t1 ret = await t2 assert len(conn._acquired_per_host[key]) == 1 assert ret._key == key assert ret.protocol == proto assert proto in conn._acquired ret.release() async def test_cancelled_waiter(loop: Any) -> None: conn = aiohttp.BaseConnector(limit=1) req = mock.Mock() req.connection_key = "key" proto = create_mocked_conn(loop) async def create_connection(req, traces=None): await asyncio.sleep(1) return proto conn._create_connection = create_connection conn._acquired.add(proto) conn2 = loop.create_task(conn.connect(req, None, ClientTimeout())) await asyncio.sleep(0) conn2.cancel() with pytest.raises(asyncio.CancelledError): await conn2 async def test_error_on_connection_with_cancelled_waiter(loop: Any, key: Any) -> None: conn = aiohttp.BaseConnector(limit=1) req = mock.Mock() req.connection_key = key proto = create_mocked_conn() i = 0 fut1 = loop.create_future() fut2 = loop.create_future() exc = OSError() async def create_connection(req, traces, timeout): nonlocal i i += 1 if i == 1: await fut1 raise exc if i == 2: await fut2 elif i == 3: return proto conn._create_connection = create_connection t1 = loop.create_task(conn.connect(req, None, ClientTimeout())) t2 = loop.create_task(conn.connect(req, None, ClientTimeout())) t3 = loop.create_task(conn.connect(req, None, ClientTimeout())) await asyncio.sleep(0) assert not t1.done() assert not t2.done() assert len(conn._acquired_per_host[key]) == 1 fut1.set_result(None) fut2.cancel() with pytest.raises(OSError): await t1 with pytest.raises(asyncio.CancelledError): await t2 ret = await t3 assert len(conn._acquired_per_host[key]) == 1 assert ret._key == key assert ret.protocol == proto assert proto in conn._acquired ret.release() async def test_tcp_connector(aiohttp_client: Any, loop: Any) -> None: async def handler(request): return web.Response() app = web.Application() app.router.add_get("/", handler) client = await aiohttp_client(app) r = await client.get("/") assert r.status == 200 @needs_unix async def test_unix_connector_not_found(loop: Any) -> None: connector = aiohttp.UnixConnector("/" + uuid.uuid4().hex) req = ClientRequest("GET", URL("http://www.python.org"), loop=loop) with pytest.raises(aiohttp.ClientConnectorError): await connector.connect(req, None, ClientTimeout()) @needs_unix async def test_unix_connector_permission(loop: Any) -> None: loop.create_unix_connection = make_mocked_coro(raise_exception=PermissionError()) connector = aiohttp.UnixConnector("/" + uuid.uuid4().hex) req = ClientRequest("GET", URL("http://www.python.org"), loop=loop) with pytest.raises(aiohttp.ClientConnectorError): await connector.connect(req, None, ClientTimeout()) @pytest.mark.skipif( platform.system() != "Windows", reason="Proactor Event loop present only in Windows" ) async def test_named_pipe_connector_wrong_loop( selector_loop: Any, pipe_name: Any ) -> None: with pytest.raises(RuntimeError): aiohttp.NamedPipeConnector(pipe_name) @pytest.mark.skipif( platform.system() != "Windows", reason="Proactor Event loop present only in Windows" ) async def test_named_pipe_connector_not_found( proactor_loop: Any, pipe_name: Any ) -> None: asyncio.set_event_loop(proactor_loop) connector = aiohttp.NamedPipeConnector(pipe_name) req = ClientRequest("GET", URL("http://www.python.org"), loop=proactor_loop) with pytest.raises(aiohttp.ClientConnectorError): await connector.connect(req, None, ClientTimeout()) @pytest.mark.skipif( platform.system() != "Windows", reason="Proactor Event loop present only in Windows" ) async def test_named_pipe_connector_permission( proactor_loop: Any, pipe_name: Any ) -> None: proactor_loop.create_pipe_connection = make_mocked_coro( raise_exception=PermissionError() ) asyncio.set_event_loop(proactor_loop) connector = aiohttp.NamedPipeConnector(pipe_name) req = ClientRequest("GET", URL("http://www.python.org"), loop=proactor_loop) with pytest.raises(aiohttp.ClientConnectorError): await connector.connect(req, None, ClientTimeout()) async def test_default_use_dns_cache() -> None: conn = aiohttp.TCPConnector() assert conn.use_dns_cache async def test_resolver_not_called_with_address_is_ip(loop: Any) -> None: resolver = mock.MagicMock() connector = aiohttp.TCPConnector(resolver=resolver) req = ClientRequest( "GET", URL(f"http://127.0.0.1:{unused_port()}"), loop=loop, response_class=mock.Mock(), ) with pytest.raises(OSError): await connector.connect(req, None, ClientTimeout()) resolver.resolve.assert_not_called() async def test_tcp_connector_raise_connector_ssl_error( aiohttp_server: Any, ssl_ctx: Any ) -> None: async def handler(request): return web.Response() app = web.Application() app.router.add_get("/", handler) srv = await aiohttp_server(app, ssl=ssl_ctx) port = unused_port() conn = aiohttp.TCPConnector(local_addr=("127.0.0.1", port)) session = aiohttp.ClientSession(connector=conn) url = srv.make_url("/") err = aiohttp.ClientConnectorCertificateError with pytest.raises(err) as ctx: await session.get(url) assert isinstance(ctx.value, aiohttp.ClientConnectorCertificateError) assert isinstance(ctx.value.certificate_error, ssl.SSLError) await session.close() async def test_tcp_connector_do_not_raise_connector_ssl_error( aiohttp_server: Any, ssl_ctx: Any, client_ssl_ctx: Any ) -> None: async def handler(request): return web.Response() app = web.Application() app.router.add_get("/", handler) srv = await aiohttp_server(app, ssl=ssl_ctx) port = unused_port() conn = aiohttp.TCPConnector(local_addr=("127.0.0.1", port)) session = aiohttp.ClientSession(connector=conn) url = srv.make_url("/") r = await session.get(url, ssl=client_ssl_ctx) r.release() first_conn = next(iter(conn._conns.values()))[0][0] try: _sslcontext = first_conn.transport._ssl_protocol._sslcontext except AttributeError: _sslcontext = first_conn.transport._sslcontext assert _sslcontext is client_ssl_ctx r.close() await session.close() await conn.close() async def test_tcp_connector_uses_provided_local_addr(aiohttp_server: Any) -> None: async def handler(request): return web.Response() app = web.Application() app.router.add_get("/", handler) srv = await aiohttp_server(app) port = unused_port() conn = aiohttp.TCPConnector(local_addr=("127.0.0.1", port)) session = aiohttp.ClientSession(connector=conn) url = srv.make_url("/") r = await session.get(url) r.release() first_conn = next(iter(conn._conns.values()))[0][0] assert first_conn.transport.get_extra_info("sockname") == ("127.0.0.1", port) r.close() await session.close() await conn.close() async def test_unix_connector(unix_server: Any, unix_sockname: Any) -> None: async def handler(request): return web.Response() app = web.Application() app.router.add_get("/", handler) await unix_server(app) url = "http://127.0.0.1/" connector = aiohttp.UnixConnector(unix_sockname) assert unix_sockname == connector.path session = client.ClientSession(connector=connector) r = await session.get(url) assert r.status == 200 r.close() await session.close() @pytest.mark.skipif( platform.system() != "Windows", reason="Proactor Event loop present only in Windows" ) async def test_named_pipe_connector( proactor_loop: Any, named_pipe_server: Any, pipe_name: Any ) -> None: async def handler(request): return web.Response() app = web.Application() app.router.add_get("/", handler) await named_pipe_server(app) url = "http://this-does-not-matter.com" connector = aiohttp.NamedPipeConnector(pipe_name) assert pipe_name == connector.path session = client.ClientSession(connector=connector) r = await session.get(url) assert r.status == 200 r.close() await session.close() class TestDNSCacheTable: @pytest.fixture def dns_cache_table(self): return DNSCacheTable() def test_next_addrs_basic(self, dns_cache_table: Any) -> None: dns_cache_table.add("localhost", ["127.0.0.1"]) dns_cache_table.add("foo", ["127.0.0.2"]) addrs = dns_cache_table.next_addrs("localhost") assert addrs == ["127.0.0.1"] addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.2"] with pytest.raises(KeyError): dns_cache_table.next_addrs("no-such-host") def test_remove(self, dns_cache_table: Any) -> None: dns_cache_table.add("localhost", ["127.0.0.1"]) dns_cache_table.remove("localhost") with pytest.raises(KeyError): dns_cache_table.next_addrs("localhost") def test_clear(self, dns_cache_table: Any) -> None: dns_cache_table.add("localhost", ["127.0.0.1"]) dns_cache_table.clear() with pytest.raises(KeyError): dns_cache_table.next_addrs("localhost") def test_not_expired_ttl_None(self, dns_cache_table: Any) -> None: dns_cache_table.add("localhost", ["127.0.0.1"]) assert not dns_cache_table.expired("localhost") def test_not_expired_ttl(self) -> None: dns_cache_table = DNSCacheTable(ttl=0.1) dns_cache_table.add("localhost", ["127.0.0.1"]) assert not dns_cache_table.expired("localhost") async def test_expired_ttl(self, loop: Any) -> None: dns_cache_table = DNSCacheTable(ttl=0.01) dns_cache_table.add("localhost", ["127.0.0.1"]) await asyncio.sleep(0.02) assert dns_cache_table.expired("localhost") def test_next_addrs(self, dns_cache_table: Any) -> None: dns_cache_table.add("foo", ["127.0.0.1", "127.0.0.2", "127.0.0.3"]) # Each calls to next_addrs return the hosts using # a round robin strategy. addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.1", "127.0.0.2", "127.0.0.3"] addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.2", "127.0.0.3", "127.0.0.1"] addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.3", "127.0.0.1", "127.0.0.2"] addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.1", "127.0.0.2", "127.0.0.3"] def test_next_addrs_single(self, dns_cache_table: Any) -> None: dns_cache_table.add("foo", ["127.0.0.1"]) addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.1"] addrs = dns_cache_table.next_addrs("foo") assert addrs == ["127.0.0.1"] async def test_connector_cache_trace_race() -> None: class DummyTracer: async def send_dns_cache_hit(self, *args, **kwargs): connector._cached_hosts.remove(("", 0)) token = object() connector = TCPConnector() connector._cached_hosts.add(("", 0), [token]) traces = [DummyTracer()] assert await connector._resolve_host("", 0, traces) == [token] async def test_connector_throttle_trace_race(loop: Any) -> None: key = ("", 0) token = object() class DummyTracer: async def send_dns_cache_hit(self, *args, **kwargs): event = connector._throttle_dns_events.pop(key) event.set() connector._cached_hosts.add(key, [token]) connector = TCPConnector() connector._throttle_dns_events[key] = EventResultOrError(loop) traces = [DummyTracer()] assert await connector._resolve_host("", 0, traces) == [token] async def test_connector_does_not_remove_needed_waiters(loop: Any, key: Any) -> None: proto = create_mocked_conn(loop) proto.is_connected.return_value = True req = ClientRequest("GET", URL("https://localhost:80"), loop=loop) connection_key = req.connection_key connector = aiohttp.BaseConnector() connector._available_connections = mock.Mock(return_value=0) connector._conns[key] = [(proto, loop.time())] connector._create_connection = create_mocked_conn(loop) connector._create_connection.return_value = loop.create_future() connector._create_connection.return_value.set_result(proto) dummy_waiter = loop.create_future() async def await_connection_and_check_waiters() -> None: connection = await connector.connect(req, [], ClientTimeout()) try: assert connection_key in connector._waiters assert dummy_waiter in connector._waiters[connection_key] finally: connection.close() async def allow_connection_and_add_dummy_waiter() -> None: # `asyncio.gather` may execute coroutines not in order. # Skip one event loop run cycle in such a case. if connection_key not in connector._waiters: await asyncio.sleep(0) connector._waiters[connection_key].popleft().set_result(None) del connector._waiters[connection_key] connector._waiters[connection_key].append(dummy_waiter) await asyncio.gather( await_connection_and_check_waiters(), allow_connection_and_add_dummy_waiter(), ) await connector.close()
30.888595
88
0.682728
0f7086441fe4a2382b92f7346c8ec1d001bf2dd8
1,483
py
Python
veros/diagnostics/io_tools/hdf5.py
madsbk/veros
00d2c33e28f0bd098a81bd6ac48436067e7eb8f5
[ "MIT" ]
null
null
null
veros/diagnostics/io_tools/hdf5.py
madsbk/veros
00d2c33e28f0bd098a81bd6ac48436067e7eb8f5
[ "MIT" ]
null
null
null
veros/diagnostics/io_tools/hdf5.py
madsbk/veros
00d2c33e28f0bd098a81bd6ac48436067e7eb8f5
[ "MIT" ]
null
null
null
import threading import contextlib import logging @contextlib.contextmanager def threaded_io(vs, filepath, mode): """ If using IO threads, start a new thread to write the netCDF data to disk. """ import h5py if vs.use_io_threads: _wait_for_disk(vs, filepath) _io_locks[filepath].clear() h5file = h5py.File(filepath, mode) try: yield h5file finally: if vs.use_io_threads: io_thread = threading.Thread(target=_write_to_disk, args=(vs, h5file, filepath)) io_thread.start() else: _write_to_disk(vs, h5file, filepath) _io_locks = {} def _add_to_locks(file_id): """ If there is no lock for file_id, create one """ if file_id not in _io_locks: _io_locks[file_id] = threading.Event() _io_locks[file_id].set() def _wait_for_disk(vs, file_id): """ Wait for the lock of file_id to be released """ logging.debug("Waiting for lock {} to be released".format(file_id)) _add_to_locks(file_id) lock_released = _io_locks[file_id].wait(vs.io_timeout) if not lock_released: raise RuntimeError("Timeout while waiting for disk IO to finish") def _write_to_disk(vs, h5file, file_id): """ Sync HDF5 data to disk, close file handle, and release lock. May run in a separate thread. """ h5file.flush() h5file.close() if vs.use_io_threads and file_id is not None: _io_locks[file_id].set()
25.568966
92
0.65408