hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
5c041cdbf282f4acdfb6599f8aefee37b9cdbc18
2,405
py
Python
allennlp-tutorial/venue/venue_reader.py
thomakl/BDSC
3c4f10126ff7dabe631839c47fc2362bf16e8588
[ "MIT" ]
null
null
null
allennlp-tutorial/venue/venue_reader.py
thomakl/BDSC
3c4f10126ff7dabe631839c47fc2362bf16e8588
[ "MIT" ]
null
null
null
allennlp-tutorial/venue/venue_reader.py
thomakl/BDSC
3c4f10126ff7dabe631839c47fc2362bf16e8588
[ "MIT" ]
null
null
null
import json from typing import Iterator, List, Dict, Optional from allennlp.data import Instance from allennlp.data.fields import TextField, SequenceLabelField, LabelField from allennlp.data.dataset_readers import DatasetReader from allennlp.common.file_utils import cached_path from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, WordTokenizer from allennlp.data.vocabulary import Vocabulary @DatasetReader.register("venue_reader") class PublicationDatasetReader(DatasetReader): """ DatasetReader for publication and venue dataaet """ def __init__(self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, lazy: bool = False) -> None: super().__init__(lazy) self._tokenizer = tokenizer or WordTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str) -> Iterator[Instance]: """ Read publication and venue dataset in JSON format Data is in the following format: {"title": ..., "paperAbstract": ..., "venue": ...} """ with open(cached_path(file_path), "r") as data_file: for line in data_file: line = line.strip("\n") if not line: continue paper_json = json.loads(line) title = paper_json['title'] abstract = paper_json['paperAbstract'] venue = paper_json['venue'] yield self.text_to_instance(title, abstract, venue) def text_to_instance(self, title: str, abstract: str, venue: str=None) -> Instance: """ Turn title, abstract, and venue to instance """ tokenized_title = self._tokenizer.tokenize(title) tokenized_abstract = self._tokenizer.tokenize(abstract) title_field = TextField(tokenized_title, self._token_indexers) abstract_field = TextField(tokenized_abstract, self._token_indexers) fields = {'title': title_field, 'abstract': abstract_field} if venue is not None: fields['label'] = LabelField(venue) return Instance(fields)
40.762712
83
0.622453
584b28c3f07f7802d95e59900f5148b8f733f722
2,932
py
Python
upvote/gae/modules/upvote_app/api/handlers/lookups.py
cclauss/upvote
9d526fec72690cde1575dbd32dacf68cbbab81d1
[ "Apache-2.0" ]
null
null
null
upvote/gae/modules/upvote_app/api/handlers/lookups.py
cclauss/upvote
9d526fec72690cde1575dbd32dacf68cbbab81d1
[ "Apache-2.0" ]
null
null
null
upvote/gae/modules/upvote_app/api/handlers/lookups.py
cclauss/upvote
9d526fec72690cde1575dbd32dacf68cbbab81d1
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handlers for looking up extra info on binaries.""" import httplib import logging from upvote.gae.datastore.models import base as base_db from upvote.gae.datastore.models import santa as santa_db from upvote.gae.modules.upvote_app.api import monitoring from upvote.gae.modules.upvote_app.api.handlers import base from upvote.gae.shared.binary_health import binary_health from upvote.gae.shared.binary_health.virustotal import constants as vt_constants from upvote.gae.shared.common import handlers class Lookup(base.BaseHandler): """Handler for looking up binary info.""" @property def RequestCounter(self): return monitoring.event_requests @handlers.RecordRequest def check_virus_total(self, blockable_id): blockable = base_db.Blockable.get_by_id(blockable_id) if not blockable: self.abort(httplib.NOT_FOUND, explanation='Blockable not found') if isinstance(blockable, santa_db.SantaBundle): keys = santa_db.SantaBundle.GetBundleBinaryKeys(blockable.key) all_results = { 'response_code': vt_constants.RESPONSE_CODE.UNKNOWN, 'positives': 0, 'reports': {}} for key in keys: try: results = binary_health.VirusTotalLookup(key.id()) except binary_health.LookupFailure as e: # pylint: disable=broad-except # NOTE: We suppress all errors here because an omitted entry will be # considered an error and prevent the response from being considered # fully analyzed. logging.warning(str(e)) else: if 'scans' in results: del results['scans'] all_results['positives'] += bool(results.get('positives')) all_results['reports'][key.id()] = results # If all binaries have reports, set response to ANALYZED. if (len(all_results['reports']) == len(keys) and all('total' in report for report in all_results['reports'].values())): all_results['response_code'] = vt_constants.RESPONSE_CODE.ANALYZED self.respond_json(all_results) else: try: results = binary_health.VirusTotalLookup(blockable_id) except binary_health.LookupFailure as e: # pylint: disable=broad-except logging.exception(str(e)) self.abort(httplib.NOT_FOUND) else: self.respond_json(results)
38.578947
80
0.713506
7a83585f06778ea221f4502215e52c2b2b52fce5
576
py
Python
tests/token/test_setIssuer.py
blockchain-jedi/erc20-contract-template
4364d131e5046d0534f6b92304e6f91b5e8adb23
[ "MIT" ]
null
null
null
tests/token/test_setIssuer.py
blockchain-jedi/erc20-contract-template
4364d131e5046d0534f6b92304e6f91b5e8adb23
[ "MIT" ]
null
null
null
tests/token/test_setIssuer.py
blockchain-jedi/erc20-contract-template
4364d131e5046d0534f6b92304e6f91b5e8adb23
[ "MIT" ]
null
null
null
import pytest from brownie import reverts from tests.fixtures.token import token from tests.fixtures.accounts import admin, issuer, non_holders def test_setIssuer_from_non_owner(token, non_holders): with reverts("dev: missing role"): token.setIssuer(non_holders[0], {'from': non_holders[0]}) def test_setIssuer_from_issuer(token, issuer, non_holders): with reverts("dev: missing role"): token.setIssuer(non_holders[0], {'from': issuer}) def test_setIssuer_from_owner(token, admin, non_holders): token.setIssuer(non_holders[0], {'from': admin})
33.882353
65
0.751736
49db783a5aa85d7bd85fef1e576c1214082745e4
537
py
Python
meiduo_mall/meiduo_mall/apps/goods/urls.py
tuhao1250/meiduo-mall
7f0e64de72a0ad5b883fd8eb568aca3befd6e120
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/goods/urls.py
tuhao1250/meiduo-mall
7f0e64de72a0ad5b883fd8eb568aca3befd6e120
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/goods/urls.py
tuhao1250/meiduo-mall
7f0e64de72a0ad5b883fd8eb568aca3befd6e120
[ "MIT" ]
null
null
null
from django.urls import path from rest_framework.routers import DefaultRouter from . import views app_name = 'goods' urlpatterns = [ path(r'categories/<int:category_id>/hotskus/', views.HotSKUListView.as_view()), # 返回商品SKU热销数据 path(r'categories/<int:category_id>/skus/', views.SKUListView.as_view()), # 获取商品列表 path(r'categories/<int:cat_id>/', views.CatView.as_view()), # 获取商品分类面包屑导航 ] router = DefaultRouter() router.register('skus/search', views.SKUSearchViewSet, base_name='skus_search') urlpatterns += router.urls
31.588235
98
0.746741
0998faa6975800bce7455b021367e3870c976389
535
py
Python
test/test_create_vendor.py
oostapenko84/My-project
eba54a6f6d58f486b650877417457404962483e0
[ "Apache-2.0" ]
null
null
null
test/test_create_vendor.py
oostapenko84/My-project
eba54a6f6d58f486b650877417457404962483e0
[ "Apache-2.0" ]
null
null
null
test/test_create_vendor.py
oostapenko84/My-project
eba54a6f6d58f486b650877417457404962483e0
[ "Apache-2.0" ]
null
null
null
__author__ = 'olga.ostapenko' from model.vendor import Vendor def test_create_vendor(app): app.session.login(username="admin@admin.com", password="12345678") app.vendor.create( Vendor(Company_Name="Test Company vv", Phone="12345678", Address="San Francisco", City="San Francisco", Zip_Code="12345", Web_Site="www.test.com", Description="test", VAD_First_Name="VAD First Name vv", VAD_Last_Name="VAD Last Name vv", Email="testvv@test.com", VAD_Phone="12345678")) app.session.logout()
44.583333
113
0.693458
c79aed851cbe87c5e43289b0130b14b817dcaa34
3,111
py
Python
MEng Portfolio Scripts/PyVISA/main_sweep_script.py
aidansmyth95/Masters-Project-Characterization-of-Reflectors-in-a-Wireless-Channel
66780e7d0be8b3929e657a3f30455cfa224655f6
[ "MIT" ]
null
null
null
MEng Portfolio Scripts/PyVISA/main_sweep_script.py
aidansmyth95/Masters-Project-Characterization-of-Reflectors-in-a-Wireless-Channel
66780e7d0be8b3929e657a3f30455cfa224655f6
[ "MIT" ]
null
null
null
MEng Portfolio Scripts/PyVISA/main_sweep_script.py
aidansmyth95/Masters-Project-Characterization-of-Reflectors-in-a-Wireless-Channel
66780e7d0be8b3929e657a3f30455cfa224655f6
[ "MIT" ]
3
2019-10-25T16:32:29.000Z
2021-02-28T06:48:40.000Z
import csv import visa import socket import vxi11 import time import sys import math import string from SA_CTRL_function import * from SG_CTRL_function import * # sig gen settings start_freq = 2.0000000 # GHz end_freq = 3.000000 # GHz delta_freq = 0.0005000 # GHz pwr = 14 # dBm # fsv settings fspan = '0.5' # scope peak range, MHz avnum = '128' # position setting pos = 61803 # room location # show GPIB device print('Resources: ', visa.ResourceManager().list_resources()) sg = SG_CTRL_function('GPIB0::13::INSTR', 0) print("Connecting to signal generator ...") sg.connect() # FSV network connectivity settings.... 'ipconfig /all' on remote host to show its IPV4 resourceString = 'TCPIP::10.198.138.37::INSTR' # Auditorium B, port 159D LAN = '10.198.138.37' print("Connecting to FSV ...") scope = SA_CTRL_function(LAN, resourceString) scope.fsa_set_fspan_MHz(fspan) scope.fsa_set_average(avnum) # why was this commented out? XXXXXXX # Clear CSV File f1 = open('fsa_markers_pos%s.csv' % pos, 'w') f1.truncate() f1.close() # Measuring peaks and record to CSV print("Starting measurements ...") SL = int((end_freq - start_freq) / delta_freq) # spectral lines loops = 1 # loops for repeated sweep averaging t_sleep = 2 # seconds results = [0] * SL * (loops+1) # zeros array initialization print("Estimated run time: ", SL * loops * t_sleep / 60, ' minutes.') with open('fsa_markers_pos%s.csv' % pos, 'a') as f1: writer = csv.writer(f1, delimiter='\t', lineterminator='\n', ) columnTitleRow = "Freq TX\tMagnitude\n" writer.writerow(columnTitleRow) # write headings for columns for i in range(1, loops + 1): # average of several sweeps print("Sweep number ", i) freq = start_freq for j in range(0, SL + 1): # perform single sweep on 80 channels scope.fsa_set_fc_GHz(str(freq)) # set scope centre frequency sg.set_sg(freq, pwr) # set signal generator time.sleep(t_sleep) # enough time to allow average to work better scope.fsa_measure_peak() # take measurement time.sleep(0.01) # wait before looping again print("Freq Tx: ", freq) print("Freq Rx: ", scope.res_x) print("Measurement: ", scope.res_y) results[j] += float(scope.res_y) # increment useful if loops > 1 freq += delta_freq # increment freq prior to next measurement results = [x / loops for x in results] # average of frequency sweep for i in range(0, SL + 1): # print results print(results[i]) writer.writerow([str(start_freq + i*delta_freq), '\t', str(results[i])]) print("Finished measurements!")
37.035714
98
0.575699
96ee38f9fcb432ded99fa0682078966d30627c56
1,868
py
Python
main.py
M-Faheem-Khan/Flickr-Image-Downloader
db3d3e98f2892d8f85b61a925f9848d1c0ae2e10
[ "MIT" ]
null
null
null
main.py
M-Faheem-Khan/Flickr-Image-Downloader
db3d3e98f2892d8f85b61a925f9848d1c0ae2e10
[ "MIT" ]
null
null
null
main.py
M-Faheem-Khan/Flickr-Image-Downloader
db3d3e98f2892d8f85b61a925f9848d1c0ae2e10
[ "MIT" ]
null
null
null
import urllib.request import requests from bs4 import BeautifulSoup def flickr_img(search, no_img): # gets page source url = "https://www.flickr.com/search/?text="+search html = urllib.request.urlopen(url) soup = BeautifulSoup(html, "html.parser") # gets the urls from the div tags ls = soup.find_all("div", {"class": "view photo-list-photo-view requiredToShowOnServer awake"}) k = [] for i in ls: i = str(i) i_o = i.index("/") i_p = i[::-1].index(")") i = i[i_o:-i_p-1] i = "https:"+i k.append(i) # downloads all the images for i in range(no_img): with open(str(i)+".jpg", "wb") as handle: response = requests.get(k[i], stream=True) if not response.ok: print (response) for block in response.iter_content(1024): if not block: break handle.write(block) # makes sure that user enters something def get_search(): flag = True while flag: ui = input("What do you want images of: ") if len(ui) == 0: print("Search cannot be empty") else: return ui # makes sure that the user enters a integer def get_images(): flag = True while flag: try: ui = int(input("Out of 22 how many images do you want to download: ")) if ui <= 22: return ui else: print("Pick a number between 0 and 22") except ValueError: print("Invalid Input \n Integers only!!") # Waning print("If you choose to download any pictures from the website please be sure to know that who they belong and the licenses that come with it. \n\n\nUSE AT YOUR OWN RISK") # Help print("HELP \nEnter what you are looking for \nEnter the number of images you want to download less than 22 because that is the default number of images that the website loads") # calling the necessary functions search = get_search() no_img = get_images() flickr_img(search, no_img)
27.880597
178
0.664347
7572dea154e64a43ca5d0ecca2d2efb4987f7b85
315
py
Python
terra_sdk/core/wasm/__init__.py
terra-money/terra.py
d66de6bb4d9d78f08ad8ffe05ae72d847fc5099d
[ "MIT" ]
66
2021-10-21T23:29:38.000Z
2022-03-30T15:58:13.000Z
terra_sdk/core/wasm/__init__.py
terra-money/terra.py
d66de6bb4d9d78f08ad8ffe05ae72d847fc5099d
[ "MIT" ]
50
2021-10-19T06:11:56.000Z
2022-03-31T17:06:57.000Z
terra_sdk/core/wasm/__init__.py
terra-money/terra.py
d66de6bb4d9d78f08ad8ffe05ae72d847fc5099d
[ "MIT" ]
39
2021-11-07T17:28:31.000Z
2022-03-31T15:03:57.000Z
from .msgs import ( MsgClearAdmin, MsgExecuteContract, MsgInstantiateContract, MsgMigrateContract, MsgStoreCode, MsgUpdateAdmin, ) __all__ = [ "MsgStoreCode", "MsgInstantiateContract", "MsgExecuteContract", "MsgMigrateContract", "MsgUpdateAdmin", "MsgClearAdmin", ]
17.5
29
0.68254
847f001692f213cbce96a8fc0a4df79fe2d7d963
9,071
py
Python
src/mca.py
jakub-stejskal/mca
7344f3b77f2a4d6c0440bc0aaa99945d108162b2
[ "BSD-3-Clause" ]
9
2015-01-31T08:22:34.000Z
2021-04-14T16:01:27.000Z
src/mca.py
dataculture/mca
7344f3b77f2a4d6c0440bc0aaa99945d108162b2
[ "BSD-3-Clause" ]
null
null
null
src/mca.py
dataculture/mca
7344f3b77f2a4d6c0440bc0aaa99945d108162b2
[ "BSD-3-Clause" ]
2
2017-07-19T18:36:06.000Z
2019-03-12T01:00:29.000Z
# -*- coding: utf-8 -*- from scipy.linalg import diagsvd import numpy as np import pandas as pd import functools def process_df(DF, cols, ncols): if cols: # if you want us to do the dummy coding K = len(cols) # the number of categories X = dummy(DF, cols) else: # if you want to dummy code it yourself or do all the cols K = ncols if ncols is None: # be sure to pass K if you didn't multi-index K = len(DF.columns) # ... it with mca.dummy() if not K: raise ValueError("Your DataFrame has no columns.") elif not isinstance(ncols, int) or ncols <= 0 or \ ncols > len(DF.columns): # if you dummy coded it yourself raise ValueError("You must pass a valid number of columns.") X = DF J = X.shape[1] return X, K, J def dummy(DF, cols=None): """Dummy code select columns of a DataFrame.""" return pd.concat((pd.get_dummies(DF[col]) for col in (DF.columns if cols is None else cols)), axis=1, keys=DF.columns) def _mul(*args): """An internal method to multiply matrices.""" return functools.reduce(np.dot, args) class MCA(object): """Run MCA on selected columns of a pd DataFrame. If the column are specified, assume that they hold categorical variables that need to be replaced with dummy indicators, otherwise process the DataFrame as is. 'cols': The columns of the DataFrame to process. 'ncols': The number of columns before dummy coding. To be passed if cols isn't. 'benzecri': Perform Benzécri correction (default: True) 'TOL': value below which to round eigenvalues to zero (default: 1e-4) """ def __init__(self, DF, cols=None, ncols=None, benzecri=True, TOL=1e-4): X, self.K, self.J = process_df(DF, cols, ncols) S = X.sum().sum() Z = X / S # correspondence matrix self.r = Z.sum(axis=1) self.c = Z.sum() self._numitems = len(DF) self.cor = benzecri self.D_r = np.diag(1/np.sqrt(self.r)) Z_c = Z - np.outer(self.r, self.c) # standardized residuals matrix self.D_c = np.diag(1/np.sqrt(self.c)) # another option, not pursued here, is sklearn.decomposition.TruncatedSVD self.P, self.s, self.Q = np.linalg.svd(_mul(self.D_r, Z_c, self.D_c)) self.E = None E = self._benzecri() if self.cor else self.s**2 self.inertia = sum(E) self.rank = np.argmax(E < TOL) self.L = E[:self.rank] def _benzecri(self): if self.E is None: self.E = np.array([(self.K/(self.K-1.)*(_ - 1./self.K))**2 if _ > 1./self.K else 0 for _ in self.s**2]) return self.E def fs_r(self, percent=0.9, N=None): """Get the row factor scores (dimensionality-reduced representation), choosing how many factors to retain, directly or based on the explained variance. 'percent': The minimum variance that the retained factors are required to explain (default: 90% = 0.9) 'N': The number of factors to retain. Overrides 'percent'. If the rank is less than N, N is ignored. """ if not 0 <= percent <= 1: raise ValueError("Percent should be a real number between 0 and 1.") if N: if not isinstance(N, (int, np.int64)) or N <= 0: raise ValueError("N should be a positive integer.") N = min(N, self.rank) # S = np.zeros((self._numitems, N)) # else: self.k = 1 + np.flatnonzero(np.cumsum(self.L) >= sum(self.L)*percent)[0] # S = np.zeros((self._numitems, self.k)) # the sign of the square root can be either way; singular value vs. eigenvalue # np.fill_diagonal(S, -np.sqrt(self.E) if self.cor else self.s) num2ret = N if N else self.k s = -np.sqrt(self.L) if self.cor else self.s S = diagsvd(s[:num2ret], self._numitems, num2ret) self.F = _mul(self.D_r, self.P, S) return self.F def fs_c(self, percent=0.9, N=None): """Get the column factor scores (dimensionality-reduced representation), choosing how many factors to retain, directly or based on the explained variance. 'percent': The minimum variance that the retained factors are required to explain (default: 90% = 0.9) 'N': The number of factors to retain. Overrides 'percent'. If the rank is less than N, N is ignored. """ if not 0 <= percent <= 1: raise ValueError("Percent should be a real number between 0 and 1.") if N: if not isinstance(N, (int, np.int64)) or N <= 0: raise ValueError("N should be a positive integer.") N = min(N, self.rank) # maybe we should notify the user? # S = np.zeros((self._numitems, N)) # else: self.k = 1 + np.flatnonzero(np.cumsum(self.L) >= sum(self.L)*percent)[0] # S = np.zeros((self._numitems, self.k)) # the sign of the square root can be either way; singular value vs. eigenvalue # np.fill_diagonal(S, -np.sqrt(self.E) if self.cor else self.s) num2ret = N if N else self.k s = -np.sqrt(self.L) if self.cor else self.s S = diagsvd(s[:num2ret], len(self.Q), num2ret) self.G = _mul(self.D_c, self.Q.T, S) # important! note the transpose on Q return self.G def cos_r(self, N=None): # percent=0.9 """Return the squared cosines for each row.""" if not hasattr(self, 'F') or self.F.shape[1] < self.rank: self.fs_r(N=self.rank) # generate F self.dr = np.linalg.norm(self.F, axis=1)**2 # cheaper than np.diag(self.F.dot(self.F.T))? return np.apply_along_axis(lambda _: _/self.dr, 0, self.F[:, :N]**2) def cos_c(self, N=None): # percent=0.9, """Return the squared cosines for each column.""" if not hasattr(self, 'G') or self.G.shape[1] < self.rank: self.fs_c(N=self.rank) # generate self.dc = np.linalg.norm(self.G, axis=1)**2 # cheaper than np.diag(self.G.dot(self.G.T))? return np.apply_along_axis(lambda _: _/self.dc, 0, self.G[:, :N]**2) def cont_r(self, percent=0.9, N=None): """Return the contribution of each row.""" if not hasattr(self, 'F'): self.fs_r(N=self.rank) # generate F return np.apply_along_axis(lambda _: _/self.L[:N], 1, np.apply_along_axis(lambda _: _*self.r, 0, self.F[:, :N]**2)) def cont_c(self, percent=0.9, N=None): # bug? check axis number 0 vs 1 here """Return the contribution of each column.""" if not hasattr(self, 'G'): self.fs_c(N=self.rank) # generate G return np.apply_along_axis(lambda _: _/self.L[:N], 1, np.apply_along_axis(lambda _: _*self.c, 0, self.G[:, :N]**2)) def expl_var(self, greenacre=True, N=None): """ Return proportion of explained inertia (variance) for each factor. :param greenacre: Perform Greenacre correction (default: True) """ if greenacre: greenacre_inertia = (self.K / (self.K - 1.) * (sum(self.s**4) - (self.J - self.K) / self.K**2.)) return (self._benzecri() / greenacre_inertia)[:N] else: E = self._benzecri() if self.cor else self.s**2 return (E / sum(E))[:N] def fs_r_sup(self, DF, N=None): """Find the supplementary row factor scores. ncols: The number of singular vectors to retain. If both are passed, cols is given preference. """ if not hasattr(self, 'G'): self.fs_c(N=self.rank) # generate G if N and (not isinstance(N, int) or N <= 0): raise ValueError("ncols should be a positive integer.") s = -np.sqrt(self.E) if self.cor else self.s N = min(N, self.rank) if N else self.rank S_inv = diagsvd(-1/s[:N], len(self.G.T), N) # S = scipy.linalg.diagsvd(s[:N], len(self.tau), N) return _mul(DF.div(DF.sum(axis=1), axis=0), self.G, S_inv)[:, :N] def fs_c_sup(self, DF, N=None): """Find the supplementary column factor scores. ncols: The number of singular vectors to retain. If both are passed, cols is given preference. """ if not hasattr(self, 'F'): self.fs_r(N=self.rank) # generate F if N and (not isinstance(N, int) or N <= 0): raise ValueError("ncols should be a positive integer.") s = -np.sqrt(self.E) if self.cor else self.s N = min(N, self.rank) if N else self.rank S_inv = diagsvd(-1/s[:N], len(self.F.T), N) # S = scipy.linalg.diagsvd(s[:N], len(self.tau), N) return _mul((DF/DF.sum()).T, self.F, S_inv)[:, :N]
41.420091
86
0.572373
3ce562331fb9b252dc47d035be921a9c455d692c
103,416
py
Python
core/domain/exp_domain_test.py
vibhor98/oppia
47aeba6879467ac53e8a9dc89bbf73a4fbb7ebaf
[ "Apache-2.0" ]
null
null
null
core/domain/exp_domain_test.py
vibhor98/oppia
47aeba6879467ac53e8a9dc89bbf73a4fbb7ebaf
[ "Apache-2.0" ]
null
null
null
core/domain/exp_domain_test.py
vibhor98/oppia
47aeba6879467ac53e8a9dc89bbf73a4fbb7ebaf
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for exploration domain objects and methods defined on them.""" import copy import os from core.domain import exp_domain from core.domain import exp_services from core.domain import param_domain from core.platform import models from core.tests import test_utils import feconf import utils (exp_models,) = models.Registry.import_models([models.NAMES.exploration]) # Dictionary-like data structures within sample YAML must be formatted # alphabetically to match string equivalence with the YAML generation # methods tested below. # # If evaluating differences in YAML, conversion to dict form via # utils.dict_from_yaml can isolate differences quickly. SAMPLE_YAML_CONTENT = ("""author_notes: '' auto_tts_enabled: true blurb: '' category: Category correctness_feedback_enabled: false init_state_name: %s language_code: en objective: '' param_changes: [] param_specs: {} schema_version: %d states: %s: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: {} default_outcome: dest: %s feedback: audio_translations: {} html: '' labelled_as_correct: false param_changes: [] refresher_exploration_id: null hints: [] id: null solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: {} default_outcome: dest: New state feedback: audio_translations: {} html: '' labelled_as_correct: false param_changes: [] refresher_exploration_id: null hints: [] id: null solution: null param_changes: [] states_schema_version: %d tags: [] title: Title """) % ( feconf.DEFAULT_INIT_STATE_NAME, exp_domain.Exploration.CURRENT_EXP_SCHEMA_VERSION, feconf.DEFAULT_INIT_STATE_NAME, feconf.DEFAULT_INIT_STATE_NAME, feconf.CURRENT_EXPLORATION_STATES_SCHEMA_VERSION) SAMPLE_UNTITLED_YAML_CONTENT = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: %s language_code: en objective: '' param_changes: [] param_specs: {} schema_version: %d states: %s: content: - type: text value: '' interaction: answer_groups: [] customization_args: {} default_outcome: dest: %s feedback: [] labelled_as_correct: false param_changes: [] refresher_exploration_id: null fallbacks: [] id: null param_changes: [] New state: content: - type: text value: '' interaction: answer_groups: [] customization_args: {} default_outcome: dest: New state feedback: [] labelled_as_correct: false param_changes: [] refresher_exploration_id: null fallbacks: [] id: null param_changes: [] states_schema_version: %d tags: [] """) % ( feconf.DEFAULT_INIT_STATE_NAME, exp_domain.Exploration.LAST_UNTITLED_SCHEMA_VERSION, feconf.DEFAULT_INIT_STATE_NAME, feconf.DEFAULT_INIT_STATE_NAME, feconf.CURRENT_EXPLORATION_STATES_SCHEMA_VERSION) class ExplorationDomainUnitTests(test_utils.GenericTestBase): """Test the exploration domain object.""" # TODO(bhenning): The validation tests below should be split into separate # unit tests. Also, all validation errors should be covered in the tests. def test_validation(self): """Test validation of explorations.""" exploration = exp_domain.Exploration.create_default_exploration('eid') exploration.init_state_name = '' exploration.states = {} exploration.title = 'Hello #' self._assert_validation_error(exploration, 'Invalid character #') exploration.title = 'Title' exploration.category = 'Category' # Note: If '/' ever becomes a valid state name, ensure that the rule # editor frontend tenplate is fixed -- it currently uses '/' as a # sentinel for an invalid state name. bad_state = exp_domain.State.create_default_state('/') exploration.states = {'/': bad_state} self._assert_validation_error( exploration, 'Invalid character / in a state name') new_state = exp_domain.State.create_default_state('ABC') new_state.update_interaction_id('TextInput') # The 'states' property must be a non-empty dict of states. exploration.states = {} self._assert_validation_error( exploration, 'exploration has no states') exploration.states = {'A string #': new_state} self._assert_validation_error( exploration, 'Invalid character # in a state name') exploration.states = {'A string _': new_state} self._assert_validation_error( exploration, 'Invalid character _ in a state name') exploration.states = {'ABC': new_state} self._assert_validation_error( exploration, 'has no initial state name') exploration.init_state_name = 'initname' self._assert_validation_error( exploration, r'There is no state in \[\'ABC\'\] corresponding to ' 'the exploration\'s initial state name initname.') # Test whether a default outcome to a non-existing state is invalid. exploration.states = {exploration.init_state_name: new_state} self._assert_validation_error( exploration, 'destination ABC is not a valid') # Restore a valid exploration. init_state = exploration.states[exploration.init_state_name] default_outcome = init_state.interaction.default_outcome default_outcome.dest = exploration.init_state_name exploration.validate() # Ensure an answer group with two classifier rules is invalid init_state.interaction.answer_groups.append( exp_domain.AnswerGroup.from_dict({ 'outcome': { 'dest': exploration.init_state_name, 'feedback': { 'html': 'Feedback', 'audio_translations': {} }, 'labelled_as_correct': False, 'param_changes': [], 'refresher_exploration_id': None, }, 'rule_specs': [{ 'inputs': { 'training_data': ['Test'] }, 'rule_type': 'FuzzyMatches' }, { 'inputs': { 'training_data': ['Test'] }, 'rule_type': 'FuzzyMatches' }], }) ) self._assert_validation_error( exploration, 'AnswerGroups can only have one classifier rule.') # Restore a valid exploration. init_state.interaction.answer_groups.pop() exploration.validate() # Ensure an invalid destination can also be detected for answer groups. # Note: The state must keep its default_outcome, otherwise it will # trigger a validation error for non-terminal states needing to have a # default outcome. To validate the outcome of the answer group, this # default outcome must point to a valid state. init_state = exploration.states[exploration.init_state_name] default_outcome = init_state.interaction.default_outcome default_outcome.dest = exploration.init_state_name init_state.interaction.answer_groups.append( exp_domain.AnswerGroup.from_dict({ 'outcome': { 'dest': exploration.init_state_name, 'feedback': { 'html': 'Feedback', 'audio_translations': {} }, 'labelled_as_correct': False, 'param_changes': [], 'refresher_exploration_id': None, }, 'rule_specs': [{ 'inputs': { 'x': 'Test' }, 'rule_type': 'Contains' }], }) ) exploration.validate() interaction = init_state.interaction answer_groups = interaction.answer_groups answer_group = answer_groups[0] answer_group.outcome.dest = 'DEF' self._assert_validation_error( exploration, 'destination DEF is not a valid') # Restore a valid exploration. exploration.states[exploration.init_state_name].update_interaction_id( 'TextInput') answer_group.outcome.dest = exploration.init_state_name exploration.validate() # Validate RuleSpec. rule_spec = answer_group.rule_specs[0] rule_spec.inputs = {} self._assert_validation_error( exploration, 'RuleSpec \'Contains\' is missing inputs') rule_spec.inputs = 'Inputs string' self._assert_validation_error( exploration, 'Expected inputs to be a dict') rule_spec.inputs = {'x': 'Test'} rule_spec.rule_type = 'FakeRuleType' self._assert_validation_error(exploration, 'Unrecognized rule type') rule_spec.inputs = {'x': 15} rule_spec.rule_type = 'Contains' with self.assertRaisesRegexp( Exception, 'Expected unicode string, received 15' ): exploration.validate() rule_spec.inputs = {'x': '{{ExampleParam}}'} self._assert_validation_error( exploration, 'RuleSpec \'Contains\' has an input with name \'x\' which refers ' 'to an unknown parameter within the exploration: ExampleParam') # Restore a valid exploration. exploration.param_specs['ExampleParam'] = param_domain.ParamSpec( 'UnicodeString') exploration.validate() # Validate Outcome. outcome = answer_group.outcome destination = exploration.init_state_name outcome.dest = None self._assert_validation_error( exploration, 'Every outcome should have a destination.') # Try setting the outcome destination to something other than a string. outcome.dest = 15 self._assert_validation_error( exploration, 'Expected outcome dest to be a string') outcome.dest = destination outcome.feedback = exp_domain.SubtitledHtml('Feedback', {}) exploration.validate() outcome.labelled_as_correct = 'hello' self._assert_validation_error( exploration, 'The "labelled_as_correct" field should be a boolean') # Test that labelled_as_correct must be False for self-loops, and that # this causes a strict validation failure but not a normal validation # failure. outcome.labelled_as_correct = True with self.assertRaisesRegexp( Exception, 'is labelled correct but is a self-loop.' ): exploration.validate(strict=True) exploration.validate() outcome.labelled_as_correct = False exploration.validate() outcome.param_changes = 'Changes' self._assert_validation_error( exploration, 'Expected outcome param_changes to be a list') outcome.param_changes = [] exploration.validate() outcome.refresher_exploration_id = 12345 self._assert_validation_error( exploration, 'Expected outcome refresher_exploration_id to be a string') outcome.refresher_exploration_id = None exploration.validate() outcome.refresher_exploration_id = 'valid_string' exploration.validate() # Test that refresher_exploration_id must be None for non-self-loops. new_state_name = 'New state' exploration.add_states([new_state_name]) outcome.dest = new_state_name outcome.refresher_exploration_id = 'another_string' self._assert_validation_error( exploration, 'has a refresher exploration ID, but is not a self-loop') outcome.refresher_exploration_id = None exploration.validate() exploration.delete_state(new_state_name) # Validate InteractionInstance. interaction.id = 15 self._assert_validation_error( exploration, 'Expected interaction id to be a string') interaction.id = 'SomeInteractionTypeThatDoesNotExist' self._assert_validation_error(exploration, 'Invalid interaction id') interaction.id = 'TextInput' exploration.validate() interaction.customization_args = [] self._assert_validation_error( exploration, 'Expected customization args to be a dict') interaction.customization_args = {15: ''} self._assert_validation_error( exploration, 'Invalid customization arg name') interaction.customization_args = {'placeholder': ''} exploration.validate() interaction.answer_groups = {} self._assert_validation_error( exploration, 'Expected answer groups to be a list') interaction.answer_groups = answer_groups interaction.id = 'EndExploration' self._assert_validation_error( exploration, 'Terminal interactions must not have a default outcome.') interaction.id = 'TextInput' interaction.default_outcome = None self._assert_validation_error( exploration, 'Non-terminal interactions must have a default outcome.') interaction.id = 'EndExploration' self._assert_validation_error( exploration, 'Terminal interactions must not have any answer groups.') # A terminal interaction without a default outcome or answer group is # valid. This resets the exploration back to a valid state. interaction.answer_groups = [] exploration.validate() # Restore a valid exploration. interaction.id = 'TextInput' interaction.answer_groups = answer_groups interaction.default_outcome = default_outcome exploration.validate() interaction.hints = {} self._assert_validation_error( exploration, 'Expected hints to be a list') # Validate AnswerGroup. answer_group.rule_specs = {} self._assert_validation_error( exploration, 'Expected answer group rules to be a list') answer_group.rule_specs = [] self._assert_validation_error( exploration, 'There must be at least one rule for each answer group.') exploration.states = { exploration.init_state_name: exp_domain.State.create_default_state( exploration.init_state_name) } exploration.states[exploration.init_state_name].update_interaction_id( 'TextInput') exploration.validate() exploration.language_code = 'fake_code' self._assert_validation_error(exploration, 'Invalid language_code') exploration.language_code = 'English' self._assert_validation_error(exploration, 'Invalid language_code') # TODO(sll): Remove the next two lines once the App Engine search # service supports 3-letter language codes. exploration.language_code = 'kab' self._assert_validation_error(exploration, 'Invalid language_code') exploration.language_code = 'en' exploration.validate() exploration.param_specs = 'A string' self._assert_validation_error(exploration, 'param_specs to be a dict') exploration.param_specs = { '@': param_domain.ParamSpec.from_dict({ 'obj_type': 'UnicodeString' }) } self._assert_validation_error( exploration, 'Only parameter names with characters') exploration.param_specs = { 'notAParamSpec': param_domain.ParamSpec.from_dict( {'obj_type': 'UnicodeString'}) } exploration.validate() def test_hints_validation(self): """Test validation of state hints.""" exploration = exp_domain.Exploration.create_default_exploration('eid') exploration.objective = 'Objective' init_state = exploration.states[exploration.init_state_name] init_state.update_interaction_id('TextInput') exploration.validate() init_state.update_interaction_hints([{ 'hint_content': { 'html': 'hint one', 'audio_translations': {} }, }]) solution = { 'answer_is_exclusive': False, 'correct_answer': 'helloworld!', 'explanation': { 'html': 'hello_world is a string', 'audio_translations': {} }, } init_state.interaction.solution = ( exp_domain.Solution.from_dict(init_state.interaction.id, solution)) exploration.validate() # Add hint and delete hint init_state.add_hint(exp_domain.SubtitledHtml('new hint', {})) self.assertEquals( init_state.interaction.hints[1].hint_content.html, 'new hint') init_state.add_hint(exp_domain.SubtitledHtml('hint three', {})) init_state.delete_hint(1) self.assertEquals( len(init_state.interaction.hints), 2) exploration.validate() def test_solution_validation(self): """Test validation of state solution.""" exploration = exp_domain.Exploration.create_default_exploration('eid') exploration.objective = 'Objective' init_state = exploration.states[exploration.init_state_name] init_state.update_interaction_id('TextInput') exploration.validate() # Solution should be set to None as default. self.assertEquals(init_state.interaction.solution, None) init_state.add_hint(exp_domain.SubtitledHtml('hint #1', {})) solution = { 'answer_is_exclusive': False, 'correct_answer': [0, 0], 'explanation': { 'html': 'hello_world is a string', 'audio_translations': {} } } # Object type of answer must match that of correct_answer with self.assertRaises(AssertionError): init_state.interaction.solution = ( exp_domain.Solution.from_dict( init_state.interaction.id, solution)) solution = { 'answer_is_exclusive': False, 'correct_answer': 'hello_world!', 'explanation': { 'html': 'hello_world is a string', 'audio_translations': {} } } init_state.interaction.solution = ( exp_domain.Solution.from_dict(init_state.interaction.id, solution)) exploration.validate() def test_tag_validation(self): """Test validation of exploration tags.""" exploration = exp_domain.Exploration.create_default_exploration('eid') exploration.objective = 'Objective' init_state = exploration.states[exploration.init_state_name] init_state.update_interaction_id('EndExploration') init_state.interaction.default_outcome = None exploration.validate() exploration.tags = 'this should be a list' self._assert_validation_error( exploration, 'Expected \'tags\' to be a list') exploration.tags = [123] self._assert_validation_error(exploration, 'to be a string') exploration.tags = ['abc', 123] self._assert_validation_error(exploration, 'to be a string') exploration.tags = [''] self._assert_validation_error(exploration, 'Tags should be non-empty') exploration.tags = ['123'] self._assert_validation_error( exploration, 'should only contain lowercase letters and spaces') exploration.tags = ['ABC'] self._assert_validation_error( exploration, 'should only contain lowercase letters and spaces') exploration.tags = [' a b'] self._assert_validation_error( exploration, 'Tags should not start or end with whitespace') exploration.tags = ['a b '] self._assert_validation_error( exploration, 'Tags should not start or end with whitespace') exploration.tags = ['a b'] self._assert_validation_error( exploration, 'Adjacent whitespace in tags should be collapsed') exploration.tags = ['abc', 'abc'] self._assert_validation_error( exploration, 'Some tags duplicate each other') exploration.tags = ['computer science', 'analysis', 'a b c'] exploration.validate() def test_title_category_and_objective_validation(self): """Test that titles, categories and objectives are validated only in 'strict' mode. """ self.save_new_valid_exploration( 'exp_id', 'user@example.com', title='', category='', objective='', end_state_name='End') exploration = exp_services.get_exploration_by_id('exp_id') exploration.validate() with self.assertRaisesRegexp( utils.ValidationError, 'title must be specified' ): exploration.validate(strict=True) exploration.title = 'A title' with self.assertRaisesRegexp( utils.ValidationError, 'category must be specified' ): exploration.validate(strict=True) exploration.category = 'A category' with self.assertRaisesRegexp( utils.ValidationError, 'objective must be specified' ): exploration.validate(strict=True) exploration.objective = 'An objective' exploration.validate(strict=True) def test_audio_translation_validation(self): """Test validation of audio translations.""" audio_translation = exp_domain.AudioTranslation('a.mp3', 20, True) audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Expected audio filename to be a string' ): with self.swap(audio_translation, 'filename', 20): audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Invalid audio filename' ): with self.swap(audio_translation, 'filename', '.invalidext'): audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Invalid audio filename' ): with self.swap(audio_translation, 'filename', 'justanextension'): audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Invalid audio filename' ): with self.swap(audio_translation, 'filename', 'a.invalidext'): audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Expected file size to be an int' ): with self.swap(audio_translation, 'file_size_bytes', 'abc'): audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Invalid file size' ): with self.swap(audio_translation, 'file_size_bytes', -3): audio_translation.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Expected needs_update to be a bool' ): with self.swap(audio_translation, 'needs_update', 'hello'): audio_translation.validate() def test_subtitled_html_validation(self): """Test validation of subtitled HTML.""" audio_translation = exp_domain.AudioTranslation( 'a.mp3', 20, True) subtitled_html = exp_domain.SubtitledHtml('some html', { 'hi-en': audio_translation, }) subtitled_html.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Invalid content HTML' ): with self.swap(subtitled_html, 'html', 20): subtitled_html.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Expected audio_translations to be a dict' ): with self.swap(subtitled_html, 'audio_translations', 'not_dict'): subtitled_html.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Expected language code to be a string' ): with self.swap(subtitled_html, 'audio_translations', {20: audio_translation}): subtitled_html.validate() with self.assertRaisesRegexp( utils.ValidationError, 'Unrecognized language code' ): with self.swap(subtitled_html, 'audio_translations', {'invalid-code': audio_translation}): subtitled_html.validate() def test_get_state_names_mapping(self): """Test the get_state_names_mapping() method.""" exp_id = 'exp_id1' test_exp_filepath = os.path.join( feconf.TESTS_DATA_DIR, 'string_classifier_test.yaml') yaml_content = utils.get_file_contents(test_exp_filepath) assets_list = [] exp_services.save_new_exploration_from_yaml_and_assets( feconf.SYSTEM_COMMITTER_ID, yaml_content, exp_id, assets_list) exploration = exp_services.get_exploration_by_id(exp_id) # Rename a state. exploration.rename_state('Home', 'Renamed state') change_list = [{ 'cmd': 'rename_state', 'old_state_name': 'Home', 'new_state_name': 'Renamed state' }] expected_dict = { 'Renamed state': 'Home', 'End': 'End' } actual_dict = exploration.get_state_names_mapping(change_list) self.assertEqual(actual_dict, expected_dict) # Add a state exploration.add_states(['New state']) exploration.states['New state'] = copy.deepcopy( exploration.states['Renamed state']) change_list = [{ 'cmd': 'add_state', 'state_name': 'New state', }] expected_dict = { 'New state': 'New state', 'Renamed state': 'Renamed state', 'End': 'End' } actual_dict = exploration.get_state_names_mapping(change_list) self.assertEqual(actual_dict, expected_dict) # Delete state. exploration.delete_state('New state') change_list = [{ 'cmd': 'delete_state', 'state_name': 'New state' }] expected_dict = { 'Renamed state': 'Renamed state', 'End': 'End' } actual_dict = exploration.get_state_names_mapping(change_list) self.assertEqual(actual_dict, expected_dict) # Test addition and multiple renames. exploration.add_states(['New state']) exploration.states['New state'] = copy.deepcopy( exploration.states['Renamed state']) exploration.rename_state('New state', 'New state2') exploration.rename_state('New state2', 'New state3') change_list = [{ 'cmd': 'add_state', 'state_name': 'New state', }, { 'cmd': 'rename_state', 'old_state_name': 'New state', 'new_state_name': 'New state2' }, { 'cmd': 'rename_state', 'old_state_name': 'New state2', 'new_state_name': 'New state3' }] expected_dict = { 'New state3': 'New state', 'Renamed state': 'Renamed state', 'End': 'End' } actual_dict = exploration.get_state_names_mapping(change_list) self.assertEqual(actual_dict, expected_dict) # Test addition, rename and deletion. exploration.add_states(['New state 2']) exploration.rename_state('New state 2', 'Renamed state 2') exploration.delete_state('Renamed state 2') change_list = [{ 'cmd': 'add_state', 'state_name': 'New state 2' }, { 'cmd': 'rename_state', 'old_state_name': 'New state 2', 'new_state_name': 'Renamed state 2' }, { 'cmd': 'delete_state', 'state_name': 'Renamed state 2' }] expected_dict = { 'New state3': 'New state3', 'Renamed state': 'Renamed state', 'End': 'End' } actual_dict = exploration.get_state_names_mapping(change_list) self.assertEqual(actual_dict, expected_dict) def test_get_trainable_states_dict(self): """Test the get_trainable_states_dict() method.""" exp_id = 'exp_id1' test_exp_filepath = os.path.join( feconf.TESTS_DATA_DIR, 'string_classifier_test.yaml') yaml_content = utils.get_file_contents(test_exp_filepath) assets_list = [] exp_services.save_new_exploration_from_yaml_and_assets( feconf.SYSTEM_COMMITTER_ID, yaml_content, exp_id, assets_list) exploration_model = exp_models.ExplorationModel.get( exp_id, strict=False) old_states = exp_services.get_exploration_from_model( exploration_model).states exploration = exp_services.get_exploration_by_id(exp_id) # Rename a state to add it in unchanged answer group. exploration.rename_state('Home', 'Renamed state') change_list = [{ 'cmd': 'rename_state', 'old_state_name': 'Home', 'new_state_name': 'Renamed state' }] expected_dict = { 'state_names_with_changed_answer_groups': [], 'state_names_with_unchanged_answer_groups': ['Renamed state'] } new_to_old_state_names = exploration.get_state_names_mapping( change_list) actual_dict = exploration.get_trainable_states_dict( old_states, new_to_old_state_names) self.assertEqual(actual_dict, expected_dict) # Modify answer groups to trigger change in answer groups. state = exploration.states['Renamed state'] exploration.states['Renamed state'].interaction.answer_groups.insert( 3, state.interaction.answer_groups[3]) answer_groups = [] for answer_group in state.interaction.answer_groups: answer_groups.append(answer_group.to_dict()) change_list = [{ 'cmd': 'edit_state_property', 'state_name': 'Renamed state', 'property_name': 'answer_groups', 'new_value': answer_groups }] expected_dict = { 'state_names_with_changed_answer_groups': ['Renamed state'], 'state_names_with_unchanged_answer_groups': [] } new_to_old_state_names = exploration.get_state_names_mapping( change_list) actual_dict = exploration.get_trainable_states_dict( old_states, new_to_old_state_names) self.assertEqual(actual_dict, expected_dict) # Add new state to trigger change in answer groups. exploration.add_states(['New state']) exploration.states['New state'] = copy.deepcopy( exploration.states['Renamed state']) change_list = [{ 'cmd': 'add_state', 'state_name': 'New state', }] expected_dict = { 'state_names_with_changed_answer_groups': [ 'New state', 'Renamed state'], 'state_names_with_unchanged_answer_groups': [] } new_to_old_state_names = exploration.get_state_names_mapping( change_list) actual_dict = exploration.get_trainable_states_dict( old_states, new_to_old_state_names) self.assertEqual(actual_dict, expected_dict) # Delete state. exploration.delete_state('New state') change_list = [{ 'cmd': 'delete_state', 'state_name': 'New state' }] expected_dict = { 'state_names_with_changed_answer_groups': ['Renamed state'], 'state_names_with_unchanged_answer_groups': [] } new_to_old_state_names = exploration.get_state_names_mapping( change_list) actual_dict = exploration.get_trainable_states_dict( old_states, new_to_old_state_names) self.assertEqual(actual_dict, expected_dict) # Test addition and multiple renames. exploration.add_states(['New state']) exploration.states['New state'] = copy.deepcopy( exploration.states['Renamed state']) exploration.rename_state('New state', 'New state2') exploration.rename_state('New state2', 'New state3') change_list = [{ 'cmd': 'add_state', 'state_name': 'New state', }, { 'cmd': 'rename_state', 'old_state_name': 'New state', 'new_state_name': 'New state2' }, { 'cmd': 'rename_state', 'old_state_name': 'New state2', 'new_state_name': 'New state3' }] expected_dict = { 'state_names_with_changed_answer_groups': [ 'Renamed state', 'New state3'], 'state_names_with_unchanged_answer_groups': [] } new_to_old_state_names = exploration.get_state_names_mapping( change_list) actual_dict = exploration.get_trainable_states_dict( old_states, new_to_old_state_names) self.assertEqual(actual_dict, expected_dict) def test_is_demo_property(self): """Test the is_demo property.""" demo = exp_domain.Exploration.create_default_exploration('0') self.assertEqual(demo.is_demo, True) notdemo1 = exp_domain.Exploration.create_default_exploration('a') self.assertEqual(notdemo1.is_demo, False) notdemo2 = exp_domain.Exploration.create_default_exploration('abcd') self.assertEqual(notdemo2.is_demo, False) def test_exploration_export_import(self): """Test that to_dict and from_dict preserve all data within an exploration. """ demo = exp_domain.Exploration.create_default_exploration('0') demo_dict = demo.to_dict() exp_from_dict = exp_domain.Exploration.from_dict(demo_dict) self.assertEqual(exp_from_dict.to_dict(), demo_dict) def test_interaction_with_none_id_is_not_terminal(self): """Test that an interaction with an id of None leads to is_terminal being false. """ # Default exploration has a default interaction with an ID of None. demo = exp_domain.Exploration.create_default_exploration('0') init_state = demo.states[feconf.DEFAULT_INIT_STATE_NAME] self.assertFalse(init_state.interaction.is_terminal) class StateExportUnitTests(test_utils.GenericTestBase): """Test export of states.""" def test_export_state_to_dict(self): """Test exporting a state to a dict.""" exploration = exp_domain.Exploration.create_default_exploration( 'exp_id') exploration.add_states(['New state']) state_dict = exploration.states['New state'].to_dict() expected_dict = { 'classifier_model_id': None, 'content': { 'html': '', 'audio_translations': {} }, 'interaction': { 'answer_groups': [], 'confirmed_unclassified_answers': [], 'customization_args': {}, 'default_outcome': { 'dest': 'New state', 'feedback': { 'html': '', 'audio_translations': {} }, 'labelled_as_correct': False, 'param_changes': [], 'refresher_exploration_id': None, }, 'hints': [], 'id': None, 'solution': None, }, 'param_changes': [], } self.assertEqual(expected_dict, state_dict) class YamlCreationUnitTests(test_utils.GenericTestBase): """Test creation of explorations from YAML files.""" EXP_ID = 'An exploration_id' def test_yaml_import_and_export(self): """Test the from_yaml() and to_yaml() methods.""" exploration = exp_domain.Exploration.create_default_exploration( self.EXP_ID, title='Title', category='Category') exploration.add_states(['New state']) self.assertEqual(len(exploration.states), 2) exploration.validate() yaml_content = exploration.to_yaml() self.assertEqual(yaml_content, SAMPLE_YAML_CONTENT) exploration2 = exp_domain.Exploration.from_yaml('exp2', yaml_content) self.assertEqual(len(exploration2.states), 2) yaml_content_2 = exploration2.to_yaml() self.assertEqual(yaml_content_2, yaml_content) with self.assertRaises(Exception): exp_domain.Exploration.from_yaml('exp3', 'No_initial_state_name') with self.assertRaises(Exception): exp_domain.Exploration.from_yaml( 'exp4', 'Invalid\ninit_state_name:\nMore stuff') with self.assertRaises(Exception): exp_domain.Exploration.from_yaml( 'exp4', 'State1:\n(\nInvalid yaml') with self.assertRaisesRegexp( Exception, 'Expected a YAML version >= 10, received: 9' ): exp_domain.Exploration.from_yaml( 'exp4', SAMPLE_UNTITLED_YAML_CONTENT) with self.assertRaisesRegexp( Exception, 'Expected a YAML version <= 9' ): exp_domain.Exploration.from_untitled_yaml( 'exp4', 'Title', 'Category', SAMPLE_YAML_CONTENT) class SchemaMigrationMethodsUnitTests(test_utils.GenericTestBase): """Tests the presence of appropriate schema migration methods in the Exploration domain object class. """ def test_correct_states_schema_conversion_methods_exist(self): """Test that the right states schema conversion methods exist.""" current_states_schema_version = ( feconf.CURRENT_EXPLORATION_STATES_SCHEMA_VERSION) for version_num in range(current_states_schema_version): self.assertTrue(hasattr( exp_domain.Exploration, '_convert_states_v%s_dict_to_v%s_dict' % ( version_num, version_num + 1))) self.assertFalse(hasattr( exp_domain.Exploration, '_convert_states_v%s_dict_to_v%s_dict' % ( current_states_schema_version, current_states_schema_version + 1))) def test_correct_exploration_schema_conversion_methods_exist(self): """Test that the right exploration schema conversion methods exist.""" current_exp_schema_version = ( exp_domain.Exploration.CURRENT_EXP_SCHEMA_VERSION) for version_num in range(1, current_exp_schema_version): self.assertTrue(hasattr( exp_domain.Exploration, '_convert_v%s_dict_to_v%s_dict' % ( version_num, version_num + 1))) self.assertFalse(hasattr( exp_domain.Exploration, '_convert_v%s_dict_to_v%s_dict' % ( current_exp_schema_version, current_exp_schema_version + 1))) class SchemaMigrationUnitTests(test_utils.GenericTestBase): """Test migration methods for yaml content.""" YAML_CONTENT_V1 = ("""default_skin: conversation_v1 param_changes: [] param_specs: {} schema_version: 1 states: - content: - type: text value: '' name: (untitled state) param_changes: [] widget: customization_args: {} handlers: - name: submit rule_specs: - definition: inputs: x: InputString name: Equals rule_type: atomic dest: END feedback: - Correct! param_changes: [] - definition: rule_type: default dest: (untitled state) feedback: [] param_changes: [] sticky: false widget_id: TextInput - content: - type: text value: '' name: New state param_changes: [] widget: customization_args: {} handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] sticky: false widget_id: TextInput """) YAML_CONTENT_V2 = ("""default_skin: conversation_v1 init_state_name: (untitled state) param_changes: [] param_specs: {} schema_version: 2 states: (untitled state): content: - type: text value: '' param_changes: [] widget: customization_args: {} handlers: - name: submit rule_specs: - definition: inputs: x: InputString name: Equals rule_type: atomic dest: END feedback: - Correct! param_changes: [] - definition: rule_type: default dest: (untitled state) feedback: [] param_changes: [] sticky: false widget_id: TextInput New state: content: - type: text value: '' param_changes: [] widget: customization_args: {} handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] sticky: false widget_id: TextInput """) YAML_CONTENT_V3 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 3 skill_tags: [] states: (untitled state): content: - type: text value: '' param_changes: [] widget: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: inputs: x: InputString name: Equals rule_type: atomic dest: END feedback: - Correct! param_changes: [] - definition: rule_type: default dest: (untitled state) feedback: [] param_changes: [] sticky: false widget_id: TextInput New state: content: - type: text value: '' param_changes: [] widget: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] sticky: false widget_id: TextInput """) YAML_CONTENT_V4 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 4 skill_tags: [] states: (untitled state): content: - type: text value: '' interaction: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: inputs: x: InputString name: Equals rule_type: atomic dest: END feedback: - Correct! param_changes: [] - definition: rule_type: default dest: (untitled state) feedback: [] param_changes: [] id: TextInput param_changes: [] New state: content: - type: text value: '' interaction: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] id: TextInput param_changes: [] """) YAML_CONTENT_V5 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 5 skin_customizations: panels_contents: {} states: (untitled state): content: - type: text value: '' interaction: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: inputs: x: InputString name: Equals rule_type: atomic dest: END feedback: - Correct! param_changes: [] - definition: rule_type: default dest: (untitled state) feedback: [] param_changes: [] id: TextInput param_changes: [] New state: content: - type: text value: '' interaction: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] id: TextInput param_changes: [] tags: [] """) YAML_CONTENT_V6 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 6 skin_customizations: panels_contents: {} states: (untitled state): content: - type: text value: '' interaction: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: inputs: x: InputString name: Equals rule_type: atomic dest: END feedback: - Correct! param_changes: [] - definition: rule_type: default dest: (untitled state) feedback: [] param_changes: [] id: TextInput triggers: [] param_changes: [] END: content: - type: text value: Congratulations, you have finished! interaction: customization_args: recommendedExplorationIds: value: [] handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] id: EndExploration triggers: [] param_changes: [] New state: content: - type: text value: '' interaction: customization_args: placeholder: value: '' rows: value: 1 handlers: - name: submit rule_specs: - definition: rule_type: default dest: END feedback: [] param_changes: [] id: TextInput triggers: [] param_changes: [] states_schema_version: 3 tags: [] """) YAML_CONTENT_V7 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 7 skin_customizations: panels_contents: {} states: (untitled state): content: - type: text value: '' interaction: answer_groups: - outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] id: TextInput triggers: [] param_changes: [] END: content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null id: EndExploration triggers: [] param_changes: [] New state: content: - type: text value: '' interaction: answer_groups: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] id: TextInput triggers: [] param_changes: [] states_schema_version: 4 tags: [] """) YAML_CONTENT_V8 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 8 skin_customizations: panels_contents: {} states: (untitled state): content: - type: text value: '' interaction: answer_groups: - outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] END: content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] id: EndExploration param_changes: [] New state: content: - type: text value: '' interaction: answer_groups: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] states_schema_version: 5 tags: [] """) YAML_CONTENT_V9 = ("""author_notes: '' blurb: '' default_skin: conversation_v1 init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 9 skin_customizations: panels_contents: {} states: (untitled state): content: - type: text value: '' interaction: answer_groups: - outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] END: content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] id: EndExploration param_changes: [] New state: content: - type: text value: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] states_schema_version: 6 tags: [] """) YAML_CONTENT_V10 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 10 skin_customizations: panels_contents: bottom: [] states: (untitled state): content: - type: text value: '' interaction: answer_groups: - outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] END: content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] id: EndExploration param_changes: [] New state: content: - type: text value: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] states_schema_version: 7 tags: [] title: Title """) YAML_CONTENT_V11 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 11 skin_customizations: panels_contents: bottom: [] states: (untitled state): classifier_model_id: null content: - type: text value: '' interaction: answer_groups: - outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] END: classifier_model_id: null content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] id: EndExploration param_changes: [] New state: classifier_model_id: null content: - type: text value: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] states_schema_version: 8 tags: [] title: Title """) YAML_CONTENT_V12 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 12 skin_customizations: panels_contents: bottom: [] states: (untitled state): classifier_model_id: null content: - type: text value: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] END: classifier_model_id: null content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] id: EndExploration param_changes: [] New state: classifier_model_id: null content: - type: text value: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] id: TextInput param_changes: [] states_schema_version: 9 tags: [] title: Title """) YAML_CONTENT_V13 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 13 skin_customizations: panels_contents: bottom: [] states: (untitled state): classifier_model_id: null content: - type: text value: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] hints: [] id: TextInput solution: {} param_changes: [] END: classifier_model_id: null content: - type: text value: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] hints: [] id: EndExploration solution: {} param_changes: [] New state: classifier_model_id: null content: - type: text value: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] hints: [] id: TextInput solution: {} param_changes: [] states_schema_version: 10 tags: [] title: Title """) YAML_CONTENT_V14 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 14 skin_customizations: panels_contents: bottom: [] states: (untitled state): classifier_model_id: null content: audio_translations: [] html: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] hints: [] id: TextInput solution: {} param_changes: [] END: classifier_model_id: null content: audio_translations: [] html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] hints: [] id: EndExploration solution: {} param_changes: [] New state: classifier_model_id: null content: audio_translations: [] html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] hints: [] id: TextInput solution: {} param_changes: [] states_schema_version: 11 tags: [] title: Title """) YAML_CONTENT_V15 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 15 skin_customizations: panels_contents: bottom: [] states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] fallbacks: [] hints: [] id: TextInput solution: {} param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null fallbacks: [] hints: [] id: EndExploration solution: {} param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] fallbacks: [] hints: [] id: TextInput solution: {} param_changes: [] states_schema_version: 12 tags: [] title: Title """) YAML_CONTENT_V16 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 16 skin_customizations: panels_contents: bottom: [] states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 13 tags: [] title: Title """) YAML_CONTENT_V17 = ("""author_notes: '' blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 17 states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 13 tags: [] title: Title """) YAML_CONTENT_V18 = ("""author_notes: '' auto_tts_enabled: true blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 18 states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: - Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: [] param_changes: [] hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: [] param_changes: [] hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 13 tags: [] title: Title """) YAML_CONTENT_V19 = ("""author_notes: '' auto_tts_enabled: true blurb: '' category: Category init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 19 states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - correct: false outcome: dest: END feedback: audio_translations: {} html: Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: audio_translations: {} html: '' param_changes: [] hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: audio_translations: {} html: '' param_changes: [] hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 14 tags: [] title: Title """) YAML_CONTENT_V20 = ("""author_notes: '' auto_tts_enabled: true blurb: '' category: Category correctness_feedback_enabled: false init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 20 states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - labelled_as_correct: false outcome: dest: END feedback: audio_translations: {} html: Correct! param_changes: [] rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: audio_translations: {} html: '' param_changes: [] hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: audio_translations: {} html: '' param_changes: [] hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 15 tags: [] title: Title """) YAML_CONTENT_V21 = ("""author_notes: '' auto_tts_enabled: true blurb: '' category: Category correctness_feedback_enabled: false init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 21 states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - labelled_as_correct: false outcome: dest: END feedback: audio_translations: {} html: Correct! param_changes: [] refresher_exploration_id: null rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: audio_translations: {} html: '' param_changes: [] refresher_exploration_id: null hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: audio_translations: {} html: '' param_changes: [] refresher_exploration_id: null hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 16 tags: [] title: Title """) YAML_CONTENT_V22 = ("""author_notes: '' auto_tts_enabled: true blurb: '' category: Category correctness_feedback_enabled: false init_state_name: (untitled state) language_code: en objective: '' param_changes: [] param_specs: {} schema_version: 22 states: (untitled state): classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: - outcome: dest: END feedback: audio_translations: {} html: Correct! labelled_as_correct: false param_changes: [] refresher_exploration_id: null rule_specs: - inputs: x: InputString rule_type: Equals confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: (untitled state) feedback: audio_translations: {} html: '' labelled_as_correct: false param_changes: [] refresher_exploration_id: null hints: [] id: TextInput solution: null param_changes: [] END: classifier_model_id: null content: audio_translations: {} html: Congratulations, you have finished! interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: recommendedExplorationIds: value: [] default_outcome: null hints: [] id: EndExploration solution: null param_changes: [] New state: classifier_model_id: null content: audio_translations: {} html: '' interaction: answer_groups: [] confirmed_unclassified_answers: [] customization_args: placeholder: value: '' rows: value: 1 default_outcome: dest: END feedback: audio_translations: {} html: '' labelled_as_correct: false param_changes: [] refresher_exploration_id: null hints: [] id: TextInput solution: null param_changes: [] states_schema_version: 17 tags: [] title: Title """) _LATEST_YAML_CONTENT = YAML_CONTENT_V22 def test_load_from_v1(self): """Test direct loading from a v1 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V1) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v2(self): """Test direct loading from a v2 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V2) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v3(self): """Test direct loading from a v3 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V3) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v4(self): """Test direct loading from a v4 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V4) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v5(self): """Test direct loading from a v5 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V5) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v6(self): """Test direct loading from a v6 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V6) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v7(self): """Test direct loading from a v7 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V7) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v8(self): """Test direct loading from a v8 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V8) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v9(self): """Test direct loading from a v9 yaml file.""" exploration = exp_domain.Exploration.from_untitled_yaml( 'eid', 'Title', 'Category', self.YAML_CONTENT_V9) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v10(self): """Test direct loading from a v10 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V10) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v11(self): """Test direct loading from a v11 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V11) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v12(self): """Test direct loading from a v12 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V12) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v13(self): """Test direct loading from a v13 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V13) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v14(self): """Test direct loading from a v14 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V14) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v15(self): """Test direct loading from a v15 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V15) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v16(self): """Test direct loading from a v16 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V16) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v17(self): """Test direct loading from a v17 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V17) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v18(self): """Test direct loading from a v18 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V18) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v19(self): """Test direct loading from a v19 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V19) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v20(self): """Test direct loading from a v20 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V20) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v21(self): """Test direct loading from a v21 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V21) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) def test_load_from_v22(self): """Test direct loading from a v22 yaml file.""" exploration = exp_domain.Exploration.from_yaml( 'eid', self.YAML_CONTENT_V22) self.assertEqual(exploration.to_yaml(), self._LATEST_YAML_CONTENT) class ConversionUnitTests(test_utils.GenericTestBase): """Test conversion methods.""" def test_convert_exploration_to_player_dict(self): exp_title = 'Title' second_state_name = 'first state' exploration = exp_domain.Exploration.create_default_exploration( 'eid', title=exp_title, category='Category') exploration.add_states([second_state_name]) def _get_default_state_dict(content_str, dest_name): return { 'classifier_model_id': None, 'content': { 'audio_translations': {}, 'html': content_str, }, 'interaction': { 'answer_groups': [], 'confirmed_unclassified_answers': [], 'customization_args': {}, 'default_outcome': { 'dest': dest_name, 'feedback': copy.deepcopy( exp_domain. SubtitledHtml.DEFAULT_SUBTITLED_HTML_DICT), 'labelled_as_correct': False, 'param_changes': [], 'refresher_exploration_id': None, }, 'hints': [], 'id': None, 'solution': None, }, 'param_changes': [], } self.assertEqual(exploration.to_player_dict(), { 'init_state_name': feconf.DEFAULT_INIT_STATE_NAME, 'title': exp_title, 'states': { feconf.DEFAULT_INIT_STATE_NAME: _get_default_state_dict( feconf.DEFAULT_INIT_STATE_CONTENT_STR, feconf.DEFAULT_INIT_STATE_NAME), second_state_name: _get_default_state_dict( '', second_state_name), }, 'param_changes': [], 'param_specs': {}, 'language_code': 'en', 'correctness_feedback_enabled': False, }) class StateOperationsUnitTests(test_utils.GenericTestBase): """Test methods operating on states.""" def test_can_undergo_classification(self): """Test the can_undergo_classification() function.""" exploration_id = 'eid' test_exp_filepath = os.path.join( feconf.TESTS_DATA_DIR, 'string_classifier_test.yaml') yaml_content = utils.get_file_contents(test_exp_filepath) assets_list = [] exp_services.save_new_exploration_from_yaml_and_assets( feconf.SYSTEM_COMMITTER_ID, yaml_content, exploration_id, assets_list) exploration = exp_services.get_exploration_by_id(exploration_id) state_with_training_data = exploration.states['Home'] state_without_training_data = exploration.states['End'] # A state with 786 training examples. self.assertTrue( state_with_training_data.can_undergo_classification()) # A state with no training examples. self.assertFalse( state_without_training_data.can_undergo_classification()) def test_get_training_data(self): """Test retrieval of training data.""" exploration_id = 'eid' test_exp_filepath = os.path.join( feconf.SAMPLE_EXPLORATIONS_DIR, 'classifier_demo_exploration.yaml') yaml_content = utils.get_file_contents(test_exp_filepath) assets_list = [] exp_services.save_new_exploration_from_yaml_and_assets( feconf.SYSTEM_COMMITTER_ID, yaml_content, exploration_id, assets_list) exploration = exp_services.get_exploration_by_id(exploration_id) state = exploration.states['text'] expected_training_data = [{ 'answer_group_index': 1, 'answers': [u'cheerful', u'merry', u'ecstatic', u'glad', u'overjoyed', u'pleased', u'thrilled', u'smile']}] observed_training_data = state.get_training_data() self.assertEqual(observed_training_data, expected_training_data) def test_delete_state(self): """Test deletion of states.""" exploration = exp_domain.Exploration.create_default_exploration('eid') exploration.add_states(['first state']) with self.assertRaisesRegexp( ValueError, 'Cannot delete initial state' ): exploration.delete_state(exploration.init_state_name) exploration.add_states(['second state']) exploration.delete_state('second state') with self.assertRaisesRegexp(ValueError, 'fake state does not exist'): exploration.delete_state('fake state') def test_state_operations(self): """Test adding, updating and checking existence of states.""" exploration = exp_domain.Exploration.create_default_exploration('eid') self.assertNotIn('invalid_state_name', exploration.states) self.assertEqual(len(exploration.states), 1) default_state_name = exploration.init_state_name exploration.rename_state(default_state_name, 'Renamed state') self.assertEqual(len(exploration.states), 1) self.assertEqual(exploration.init_state_name, 'Renamed state') # Add a new state. exploration.add_states(['State 2']) self.assertEqual(len(exploration.states), 2) # It is OK to rename a state to the same name. exploration.rename_state('State 2', 'State 2') # But it is not OK to add or rename a state using a name that already # exists. with self.assertRaisesRegexp(ValueError, 'Duplicate state name'): exploration.add_states(['State 2']) with self.assertRaisesRegexp(ValueError, 'Duplicate state name'): exploration.rename_state('State 2', 'Renamed state') # And it is OK to rename a state to 'END' (old terminal pseudostate). It # is tested throughout this test because a lot of old behavior used to # be specific to states named 'END'. These tests validate that is no # longer the situation. exploration.rename_state('State 2', 'END') # Should successfully be able to name it back. exploration.rename_state('END', 'State 2') # The exploration now has exactly two states. self.assertNotIn(default_state_name, exploration.states) self.assertIn('Renamed state', exploration.states) self.assertIn('State 2', exploration.states) # Can successfully add 'END' state exploration.add_states(['END']) # Should fail to rename like any other state with self.assertRaisesRegexp(ValueError, 'Duplicate state name'): exploration.rename_state('State 2', 'END') # Ensure the other states are connected to END exploration.states[ 'Renamed state'].interaction.default_outcome.dest = 'State 2' exploration.states['State 2'].interaction.default_outcome.dest = 'END' # Ensure the other states have interactions exploration.states['Renamed state'].update_interaction_id('TextInput') exploration.states['State 2'].update_interaction_id('TextInput') # Other miscellaneous requirements for validation exploration.title = 'Title' exploration.category = 'Category' exploration.objective = 'Objective' # The exploration should NOT be terminable even though it has a state # called 'END' and everything else is connected to it. with self.assertRaises(Exception): exploration.validate(strict=True) # Renaming the node to something other than 'END' and giving it an # EndExploration is enough to validate it, though it cannot have a # default outcome or answer groups. exploration.rename_state('END', 'AnotherEnd') another_end_state = exploration.states['AnotherEnd'] another_end_state.update_interaction_id('EndExploration') another_end_state.interaction.default_outcome = None exploration.validate(strict=True) # Name it back for final tests exploration.rename_state('AnotherEnd', 'END') # Should be able to successfully delete it exploration.delete_state('END') self.assertNotIn('END', exploration.states) class StateIdMappingTests(test_utils.GenericTestBase): """Tests for StateIdMapping domain class.""" EXP_ID = 'eid' def setUp(self): """Initialize owner and store default exploration before each test case. """ super(StateIdMappingTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) # Create a default exploration. with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): self.exploration = self.save_new_valid_exploration( self.EXP_ID, self.owner_id) self.mapping = exp_services.get_state_id_mapping( self.EXP_ID, self.exploration.version) def test_that_correct_mapping_is_stored_for_new_exp(self): """Test that initial state id mapping is correct.""" expected_mapping = { self.exploration.init_state_name: 0 } self.assertEqual(self.mapping.exploration_id, self.EXP_ID) self.assertEqual(self.mapping.exploration_version, 1) self.assertEqual( self.mapping.largest_state_id_used, 0) self.assertDictEqual(self.mapping.state_names_to_ids, expected_mapping) def test_that_mapping_remains_same_when_exp_params_changes(self): """Test that state id mapping is unchanged when exploration params are changed.""" with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': 'edit_exploration_property', 'property_name': 'title', 'new_value': 'New title' }], 'Changes.') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 0 } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 0) def test_that_mapping_is_correct_when_new_state_is_added(self): """Test that new state id is added in state id mapping when new state is added in exploration.""" with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'new state', }], 'Add state name') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 0, 'new state': 1 } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 1) def test_that_mapping_is_correct_when_old_state_is_deleted(self): """Test that state id is removed from state id mapping when the state is removed from exploration.""" with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'new state', }], 'Add state name') exp_services.update_exploration(self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_DELETE_STATE, 'state_name': 'new state', }], 'delete state') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 0 } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 1) def test_that_mapping_remains_when_state_is_renamed(self): """Test that state id mapping is changed accordingly when a state is renamed in exploration.""" with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'new state', }], 'Add state name') exp_services.update_exploration(self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_RENAME_STATE, 'old_state_name': 'new state', 'new_state_name': 'state', }], 'Change state name') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 0, 'state': 1 } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 1) def test_that_mapping_is_changed_when_interaction_id_is_changed(self): """Test that state id mapping is changed accordingly when interaction id of state is changed.""" with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'state_name': self.exploration.init_state_name, 'property_name': exp_domain.STATE_PROPERTY_INTERACTION_ID, 'new_value': 'MultipleChoiceInput' }], 'Update interaction.') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 1, } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 1) def test_that_mapping_is_correct_for_series_of_changes(self): """Test that state id mapping is changed accordingly for series of add, rename, remove and update state changes.""" with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'new state', }, { 'cmd': exp_domain.CMD_RENAME_STATE, 'old_state_name': 'new state', 'new_state_name': 'state' }, { 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'extra state' }, { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'state_name': 'state', 'property_name': exp_domain.STATE_PROPERTY_INTERACTION_ID, 'new_value': 'MultipleChoiceInput' }, { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'state_name': 'extra state', 'property_name': exp_domain.STATE_PROPERTY_INTERACTION_ID, 'new_value': 'TextInput' }, { 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'new state', }, { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'state_name': 'new state', 'property_name': exp_domain.STATE_PROPERTY_INTERACTION_ID, 'new_value': 'TextInput' }], 'Heavy changes') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 0, 'extra state': 1, 'new state': 2, 'state': 3, } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 3) with self.swap(feconf, 'ENABLE_STATE_ID_MAPPING', True): exp_services.update_exploration( self.owner_id, self.EXP_ID, [{ 'cmd': exp_domain.CMD_DELETE_STATE, 'state_name': 'state', }, { 'cmd': exp_domain.CMD_RENAME_STATE, 'old_state_name': 'extra state', 'new_state_name': 'state' }, { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'state_name': 'state', 'property_name': exp_domain.STATE_PROPERTY_INTERACTION_ID, 'new_value': 'MultipleChoiceInput' }, { 'cmd': exp_domain.CMD_ADD_STATE, 'state_name': 'extra state' }, { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'state_name': 'extra state', 'property_name': exp_domain.STATE_PROPERTY_INTERACTION_ID, 'new_value': 'TextInput' }, { 'cmd': exp_domain.CMD_RENAME_STATE, 'old_state_name': 'new state', 'new_state_name': 'other state' }], 'Heavy changes 2') new_exploration = exp_services.get_exploration_by_id(self.EXP_ID) new_mapping = exp_services.get_state_id_mapping( self.EXP_ID, new_exploration.version) expected_mapping = { new_exploration.init_state_name: 0, 'other state': 2, 'extra state': 4, 'state': 5 } self.assertEqual( new_mapping.exploration_version, new_exploration.version) self.assertEqual(new_mapping.state_names_to_ids, expected_mapping) self.assertEqual(new_mapping.largest_state_id_used, 5)
30.089031
80
0.602847
073a3a60d65039749141c86d3900c24c9d0654e6
15,316
py
Python
tensorflow/python/framework/sparse_tensor.py
Faagerholm/tensorflow
98e30b8748eb018f33836ac9269db67ab60483ab
[ "Apache-2.0" ]
4
2021-02-01T01:01:11.000Z
2021-07-21T15:22:20.000Z
tensorflow/python/framework/sparse_tensor.py
Faagerholm/tensorflow
98e30b8748eb018f33836ac9269db67ab60483ab
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/sparse_tensor.py
Faagerholm/tensorflow
98e30b8748eb018f33836ac9269db67ab60483ab
[ "Apache-2.0" ]
5
2020-12-22T10:17:47.000Z
2021-05-06T14:14:52.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sparse tensors.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from tensorflow.python import pywrap_tensorflow from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_like from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.framework import type_spec from tensorflow.python.ops import gen_sparse_ops from tensorflow.python.util.tf_export import tf_export # pylint: disable=protected-access _TensorLike = tensor_like._TensorLike _eval_using_default_session = ops._eval_using_default_session _override_helper = ops._override_helper # pylint: enable=protected-access @tf_export("sparse.SparseTensor", "SparseTensor") class SparseTensor(_TensorLike, composite_tensor.CompositeTensor): """Represents a sparse tensor. TensorFlow represents a sparse tensor as three separate dense tensors: `indices`, `values`, and `dense_shape`. In Python, the three tensors are collected into a `SparseTensor` class for ease of use. If you have separate `indices`, `values`, and `dense_shape` tensors, wrap them in a `SparseTensor` object before passing to the ops below. Concretely, the sparse tensor `SparseTensor(indices, values, dense_shape)` comprises the following components, where `N` and `ndims` are the number of values and number of dimensions in the `SparseTensor`, respectively: * `indices`: A 2-D int64 tensor of dense_shape `[N, ndims]`, which specifies the indices of the elements in the sparse tensor that contain nonzero values (elements are zero-indexed). For example, `indices=[[1,3], [2,4]]` specifies that the elements with indexes of [1,3] and [2,4] have nonzero values. * `values`: A 1-D tensor of any type and dense_shape `[N]`, which supplies the values for each element in `indices`. For example, given `indices=[[1,3], [2,4]]`, the parameter `values=[18, 3.6]` specifies that element [1,3] of the sparse tensor has a value of 18, and element [2,4] of the tensor has a value of 3.6. * `dense_shape`: A 1-D int64 tensor of dense_shape `[ndims]`, which specifies the dense_shape of the sparse tensor. Takes a list indicating the number of elements in each dimension. For example, `dense_shape=[3,6]` specifies a two-dimensional 3x6 tensor, `dense_shape=[2,3,4]` specifies a three-dimensional 2x3x4 tensor, and `dense_shape=[9]` specifies a one-dimensional tensor with 9 elements. The corresponding dense tensor satisfies: ```python dense.shape = dense_shape dense[tuple(indices[i])] = values[i] ``` By convention, `indices` should be sorted in row-major order (or equivalently lexicographic order on the tuples `indices[i]`). This is not enforced when `SparseTensor` objects are constructed, but most ops assume correct ordering. If the ordering of sparse tensor `st` is wrong, a fixed version can be obtained by calling `tf.sparse.reorder(st)`. Example: The sparse tensor ```python SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) ``` represents the dense tensor ```python [[1, 0, 0, 0] [0, 0, 2, 0] [0, 0, 0, 0]] ``` """ @classmethod def from_value(cls, sparse_tensor_value): if not is_sparse(sparse_tensor_value): raise TypeError("Neither a SparseTensor nor SparseTensorValue: %s." % sparse_tensor_value) return SparseTensor( indices=sparse_tensor_value.indices, values=sparse_tensor_value.values, dense_shape=sparse_tensor_value.dense_shape) def __init__(self, indices, values, dense_shape): """Creates a `SparseTensor`. Args: indices: A 2-D int64 tensor of shape `[N, ndims]`. values: A 1-D tensor of any type and shape `[N]`. dense_shape: A 1-D int64 tensor of shape `[ndims]`. """ with ops.name_scope(None, "SparseTensor", [indices, values, dense_shape]): indices = ops.convert_to_tensor( indices, name="indices", dtype=dtypes.int64) # TODO(touts): Consider adding mutable_values() when 'values' # is a VariableOp and updating users of SparseTensor. values = ops.internal_convert_to_tensor(values, name="values") dense_shape = ops.convert_to_tensor( dense_shape, name="dense_shape", dtype=dtypes.int64) self._indices = indices self._values = values self._dense_shape = dense_shape indices_shape = indices.shape.with_rank(2) values_shape = values.shape.with_rank(1) dense_shape_shape = dense_shape.shape.with_rank(1) # Assert number of rows in indices match the number of elements in values. indices_shape.dims[0].merge_with(values_shape.dims[0]) # Assert number of columns in indices matches the number of elements in # dense_shape. indices_shape.dims[1].merge_with(dense_shape_shape.dims[0]) def get_shape(self): """Get the `TensorShape` representing the shape of the dense tensor. Returns: A `TensorShape` object. """ return tensor_util.constant_value_as_shape(self._dense_shape) @property def indices(self): """The indices of non-zero values in the represented dense tensor. Returns: A 2-D Tensor of int64 with dense_shape `[N, ndims]`, where `N` is the number of non-zero values in the tensor, and `ndims` is the rank. """ return self._indices @property def values(self): """The non-zero values in the represented dense tensor. Returns: A 1-D Tensor of any data type. """ return self._values @property def op(self): """The `Operation` that produces `values` as an output.""" return self._values.op @property def dtype(self): """The `DType` of elements in this tensor.""" return self._values.dtype @property def dense_shape(self): """A 1-D Tensor of int64 representing the shape of the dense tensor.""" return self._dense_shape @property def shape(self): """Get the `TensorShape` representing the shape of the dense tensor. Returns: A `TensorShape` object. """ return tensor_util.constant_value_as_shape(self._dense_shape) @property def graph(self): """The `Graph` that contains the index, value, and dense_shape tensors.""" return self._indices.graph def __str__(self): return "SparseTensor(indices=%s, values=%s, dense_shape=%s)" % ( self._indices, self._values, self._dense_shape) def eval(self, feed_dict=None, session=None): """Evaluates this sparse tensor in a `Session`. Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor. *N.B.* Before invoking `SparseTensor.eval()`, its graph must have been launched in a session, and either a default session must be available, or `session` must be specified explicitly. Args: feed_dict: A dictionary that maps `Tensor` objects to feed values. See `tf.Session.run` for a description of the valid feed values. session: (Optional.) The `Session` to be used to evaluate this sparse tensor. If none, the default session will be used. Returns: A `SparseTensorValue` object. """ indices, values, dense_shape = _eval_using_default_session( [self.indices, self.values, self.dense_shape], feed_dict, self.graph, session) return SparseTensorValue(indices, values, dense_shape) @staticmethod def _override_operator(operator, func): _override_helper(SparseTensor, operator, func) @property def _type_spec(self): return SparseTensorSpec(self.shape, self.dtype) def _shape_invariant_to_type_spec(self, shape): # From the tf.while_loop docs: "If a loop variable is a SparseTensor, the # shape invariant must be TensorShape([r]) where r is the rank of the dense # tensor represented by the sparse tensor. It means the shapes of the three # tensors of the SparseTensor are ([None], [None, r], [r]). NOTE: The shape # invariant here is the shape of the SparseTensor.dense_shape property. It # must be the shape of a vector. if shape.ndims is not None and shape.ndims != 1: raise ValueError("Expected a shape with 1 dimension") rank = tensor_shape.dimension_value(shape[0]) return SparseTensorSpec(tensor_shape.unknown_shape(rank), self.dtype) def consumers(self): return self._consumers() SparseTensorValue = collections.namedtuple("SparseTensorValue", ["indices", "values", "dense_shape"]) tf_export(v1=["SparseTensorValue"])(SparseTensorValue) pywrap_tensorflow.RegisterType("SparseTensorValue", SparseTensorValue) # TODO(b/133606651) Export this as tf.SparseTensorSpec. class SparseTensorSpec(type_spec.BatchableTypeSpec): """Type specification for a `tf.SparseTensor`.""" __slots__ = ["_dense_shape", "_dtype"] value_type = property(lambda self: SparseTensor) def __init__(self, dense_shape=None, dtype=dtypes.float32): """Constructs a type specification for a `tf.SparseTensor`. Args: dense_shape: The dense shape of the `SparseTensor`, or `None` to allow any dense shape. dtype: `tf.DType` of values in the `SparseTensor`. """ self._dense_shape = tensor_shape.as_shape(dense_shape) self._dtype = dtypes.as_dtype(dtype) def _serialize(self): return (self._dense_shape, self._dtype) @property def _component_specs(self): rank = self._dense_shape.ndims num_values = None return [ tensor_spec.TensorSpec([num_values, rank], dtypes.int64), tensor_spec.TensorSpec([num_values], self._dtype), tensor_spec.TensorSpec([rank], dtypes.int64)] def _to_components(self, value): if isinstance(value, SparseTensorValue): value = SparseTensor.from_value(value) return [value.indices, value.values, value.dense_shape] def _from_components(self, tensor_list): return SparseTensor(*tensor_list) # The SparseTensorSpec tensor_list encoding uses (de)serialize_sparse ops # to (un)box the component tensors in a way that allows for batching & # unbatching. @property def _flat_tensor_specs(self): # NOTE(mrry): The default flat shape of a boxed `SparseTensor` is `(3,)`, # but a `SparseTensorSpec` can also represent a batch of boxed # `SparseTensor` objects with shape `(..., 3)` (and batches of batches, # etc.), so the flat shape must be unknown. return [tensor_spec.TensorSpec(None, dtypes.variant)] def _to_tensor_list(self, value): value = SparseTensor.from_value(value) return [gen_sparse_ops.serialize_sparse( value.indices, value.values, value.dense_shape, out_type=dtypes.variant)] def _to_batched_tensor_list(self, value): dense_shape = tensor_util.constant_value_as_shape(value.dense_shape) if self._dense_shape.merge_with(dense_shape).ndims == 0: raise ValueError( "Unbatching a sparse tensor is only supported for rank >= 1") return [gen_sparse_ops.serialize_many_sparse( value.indices, value.values, value.dense_shape, out_type=dtypes.variant)] def _from_compatible_tensor_list(self, tensor_list): tensor_list = gen_sparse_ops.deserialize_sparse(tensor_list[0], self._dtype) result = SparseTensor(*tensor_list) rank = self._dense_shape.ndims result.indices.set_shape([None, rank]) result.dense_shape.set_shape([rank]) return result def _batch(self, batch_size): return SparseTensorSpec( tensor_shape.TensorShape([batch_size]).concatenate(self._dense_shape), self._dtype) def _unbatch(self): if self._dense_shape.ndims == 0: raise ValueError("Unbatching a tensor is only supported for rank >= 1") return SparseTensorSpec(self._dense_shape[1:], self._dtype) def _to_legacy_output_types(self): return self._dtype def _to_legacy_output_shapes(self): return self._dense_shape def _to_legacy_output_classes(self): return SparseTensor @classmethod def from_value(cls, value): if isinstance(value, SparseTensor): return cls(value.shape, value.dtype) if isinstance(value, SparseTensorValue): if isinstance(value.values, np.ndarray): return cls(value.dense_shape, value.values.dtype) else: return cls.from_value(SparseTensor.from_value(value)) else: raise TypeError("Expected SparseTensor or SparseTensorValue") # TODO(b/133606651) Delete the SparseTensor registration when CompositeTensor # is updated to define a _type_spec field (since registration will be # automatic). Do *not* delete the SparseTensorValue registration. type_spec.register_type_spec_from_value_converter( SparseTensor, SparseTensorSpec.from_value) type_spec.register_type_spec_from_value_converter( SparseTensorValue, SparseTensorSpec.from_value) @tf_export(v1=["convert_to_tensor_or_sparse_tensor"]) def convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None): """Converts value to a `SparseTensor` or `Tensor`. Args: value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a registered `Tensor` conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. name: Optional name to use if a new `Tensor` is created. Returns: A `SparseTensor` or `Tensor` based on `value`. Raises: RuntimeError: If result type is incompatible with `dtype`. """ if dtype is not None: dtype = dtypes.as_dtype(dtype) if isinstance(value, SparseTensorValue): value = SparseTensor.from_value(value) if isinstance(value, SparseTensor): if dtype and not dtype.is_compatible_with(value.dtype): raise RuntimeError("Sparse dtype: requested = %s, actual = %s" % (dtype.name, value.dtype.name)) return value return ops.internal_convert_to_tensor(value, dtype=dtype, name=name) def is_sparse(x): """Check whether `x` is sparse. Check whether an object is a `tf.SparseTensor` or `tf.compat.v1.SparseTensorValue`. Args: x: A python object to check. Returns: `True` iff `x` is a `tf.SparseTensor` or `tf.compat.v1.SparseTensorValue`. """ return isinstance(x, (SparseTensor, SparseTensorValue))
36.906024
80
0.717159
9bf61f81628046eaa73b588c7fdb26e08998dadc
67,925
py
Python
Incident-Response/Tools/grr/grr/server/grr_response_server/databases/db_paths_test.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
1
2021-07-24T17:22:50.000Z
2021-07-24T17:22:50.000Z
Incident-Response/Tools/grr/grr/server/grr_response_server/databases/db_paths_test.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-28T03:40:31.000Z
2022-02-28T03:40:52.000Z
Incident-Response/Tools/grr/grr/server/grr_response_server/databases/db_paths_test.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-25T08:34:51.000Z
2022-03-16T17:29:44.000Z
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import hashlib from grr_response_core.lib import rdfvalue from grr_response_core.lib.rdfvalues import client_fs as rdf_client_fs from grr_response_core.lib.rdfvalues import crypto as rdf_crypto from grr_response_core.lib.rdfvalues import paths as rdf_paths from grr_response_server.databases import db from grr_response_server.databases import db_test_utils from grr_response_server.rdfvalues import objects as rdf_objects class DatabaseTestPathsMixin(object): """An abstract class for testing db.Database implementations. This mixin adds methods to test the handling of GRR path data. """ def testWritePathInfosValidatesClientId(self): path = ["usr", "local"] with self.assertRaises(ValueError): self.db.WritePathInfos("", [rdf_objects.PathInfo.OS(components=path)]) def testWritePathInfosValidatesPathType(self): path = ["usr", "local"] client_id = db_test_utils.InitializeClient(self.db) with self.assertRaises(ValueError): self.db.WritePathInfos(client_id, [rdf_objects.PathInfo(components=path)]) def testWritePathInfosValidatesClient(self): client_id = "C.0123456789012345" with self.assertRaises(db.UnknownClientError) as context: self.db.WritePathInfos( client_id, [rdf_objects.PathInfo.OS(components=[], directory=True)]) self.assertEqual(context.exception.client_id, client_id) def testWritePathInfosValidateConflictingWrites(self): client_id = db_test_utils.InitializeClient(self.db) with self.assertRaises(ValueError): self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"], directory=False), rdf_objects.PathInfo.OS(components=["foo", "bar"], directory=True), ]) def testWritePathInfosMetadata(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos( client_id, [rdf_objects.PathInfo.TSK(components=["foo", "bar"], directory=True)]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.TSK, [("foo", "bar")]) result_path_info = results[("foo", "bar")] self.assertEqual(result_path_info.path_type, rdf_objects.PathInfo.PathType.TSK) self.assertEqual(result_path_info.components, ["foo", "bar"]) self.assertEqual(result_path_info.directory, True) def testWritePathInfosMetadataTimestampUpdate(self): now = self.db.Now client_id = db_test_utils.InitializeClient(self.db) timestamp_0 = now() self.db.WritePathInfos(client_id, [rdf_objects.PathInfo.OS(components=["foo"])]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(result.components, ["foo"]) self.assertGreater(result.timestamp, timestamp_0) self.assertLess(result.timestamp, now()) self.assertEqual(result.last_stat_entry_timestamp, None) self.assertEqual(result.last_hash_entry_timestamp, None) timestamp_1 = now() stat_entry = rdf_client_fs.StatEntry(st_mode=42) self.db.WritePathInfos( client_id, [rdf_objects.PathInfo.OS(components=["foo"], stat_entry=stat_entry)]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(result.components, ["foo"]) self.assertEqual(result.stat_entry.st_mode, 42) self.assertGreater(result.timestamp, timestamp_1) self.assertLess(result.timestamp, now()) self.assertGreater(result.last_stat_entry_timestamp, timestamp_1) self.assertLess(result.last_stat_entry_timestamp, now()) timestamp_2 = now() hash_entry = rdf_crypto.Hash(sha256=b"foo") self.db.WritePathInfos( client_id, [rdf_objects.PathInfo.OS(components=["foo"], hash_entry=hash_entry)]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(result.components, ["foo"]) self.assertEqual(result.hash_entry.sha256, b"foo") self.assertGreater(result.timestamp, timestamp_2) self.assertLess(result.timestamp, now()) self.assertGreater(result.last_hash_entry_timestamp, timestamp_2) self.assertLess(result.last_hash_entry_timestamp, now()) timestamp_3 = now() self.db.WritePathInfos( client_id, [rdf_objects.PathInfo.OS(components=["foo"], directory=True)]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(result.components, ["foo"]) self.assertEqual(result.stat_entry.st_mode, 42) self.assertEqual(result.hash_entry.sha256, b"foo") self.assertTrue(result.directory) self.assertGreater(result.timestamp, timestamp_3) self.assertLess(result.timestamp, now()) self.assertGreater(result.last_stat_entry_timestamp, timestamp_1) self.assertLess(result.last_stat_entry_timestamp, timestamp_2) self.assertGreater(result.last_hash_entry_timestamp, timestamp_2) self.assertLess(result.last_hash_entry_timestamp, timestamp_3) timestamp_4 = now() path_info = rdf_objects.PathInfo.OS(components=["foo"]) path_info.stat_entry.st_mode = 108 path_info.hash_entry.sha256 = b"norf" self.db.WritePathInfos(client_id, [path_info]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(result.components, ["foo"]) self.assertEqual(result.stat_entry.st_mode, 108) self.assertEqual(result.hash_entry.sha256, b"norf") self.assertGreater(result.timestamp, timestamp_4) self.assertGreater(result.last_stat_entry_timestamp, timestamp_4) self.assertGreater(result.last_hash_entry_timestamp, timestamp_4) self.assertLess(result.timestamp, now()) self.assertLess(result.last_stat_entry_timestamp, now()) self.assertLess(result.last_hash_entry_timestamp, now()) def testWritePathInfosStatEntry(self): client_id = db_test_utils.InitializeClient(self.db) stat_entry = rdf_client_fs.StatEntry() stat_entry.pathspec.path = "foo/bar" stat_entry.pathspec.pathtype = rdf_paths.PathSpec.PathType.OS stat_entry.st_mode = 1337 stat_entry.st_mtime = 108 stat_entry.st_atime = 4815162342 path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry) self.db.WritePathInfos(client_id, [path_info]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [ (), ("foo",), ("foo", "bar"), ]) root_path_info = results[()] self.assertFalse(root_path_info.HasField("stat_entry")) foo_path_info = results[("foo",)] self.assertFalse(foo_path_info.HasField("stat_entry")) foobar_path_info = results[("foo", "bar")] self.assertTrue(foobar_path_info.HasField("stat_entry")) self.assertFalse(foobar_path_info.HasField("hash_entry")) self.assertEqual(foobar_path_info.stat_entry.st_mode, 1337) self.assertEqual(foobar_path_info.stat_entry.st_mtime, 108) self.assertEqual(foobar_path_info.stat_entry.st_atime, 4815162342) def testWritePathInfosHashEntry(self): client_id = db_test_utils.InitializeClient(self.db) hash_entry = rdf_crypto.Hash() hash_entry.sha256 = hashlib.sha256(b"foo").digest() hash_entry.md5 = hashlib.md5(b"foo").digest() hash_entry.num_bytes = len(b"foo") path_info = rdf_objects.PathInfo.OS( components=["foo", "bar", "baz"], hash_entry=hash_entry) self.db.WritePathInfos(client_id, [path_info]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz")) self.assertEqual(result.components, ["foo", "bar", "baz"]) self.assertTrue(result.HasField("hash_entry")) self.assertFalse(result.HasField("stat_entry")) self.assertEqual(result.hash_entry.sha256, hashlib.sha256(b"foo").digest()) self.assertEqual(result.hash_entry.md5, hashlib.md5(b"foo").digest()) self.assertEqual(result.hash_entry.num_bytes, len(b"foo")) def testWritePathInfosValidatesHashEntry(self): client_id = db_test_utils.InitializeClient(self.db) hash_entry = rdf_crypto.Hash() hash_entry.md5 = hashlib.md5(b"foo").digest() hash_entry.sha1 = hashlib.sha1(b"bar").digest() path_info = rdf_objects.PathInfo.OS( components=("foo", "bar", "baz"), hash_entry=hash_entry) with self.assertRaises(ValueError): self.db.WritePathInfos(client_id, [path_info]) def testWriteMultiplePathInfosHashEntry(self): def SHA256(data: bytes) -> bytes: return hashlib.sha256(data).digest() def MD5(data: bytes) -> bytes: return hashlib.md5(data).digest() client_id = db_test_utils.InitializeClient(self.db) files = { "foo": b"4815162342", "BAR": b"\xff\x00\xff", "bAz": b"\x00" * 42, "żółć": "Wpłynąłem na suchego przestwór oceanu".encode("utf-8"), } path_infos = [] for name, content in files.items(): content = name.encode("utf-8") hash_entry = rdf_crypto.Hash() hash_entry.sha256 = SHA256(content) hash_entry.md5 = MD5(content) hash_entry.num_bytes = len(content) path_infos.append( rdf_objects.PathInfo.OS( components=["foo", "bar", "baz", name], hash_entry=hash_entry)) self.db.WritePathInfos(client_id, path_infos) for name, content in files.items(): content = name.encode("utf-8") result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz", name)) self.assertEqual(result.components, ["foo", "bar", "baz", name]) self.assertTrue(result.HasField("hash_entry")) self.assertFalse(result.HasField("stat_entry")) self.assertEqual(result.hash_entry.sha256, SHA256(content)) self.assertEqual(result.hash_entry.md5, MD5(content)) self.assertEqual(result.hash_entry.num_bytes, len(content)) def testWritePathInfosHashAndStatEntry(self): client_id = db_test_utils.InitializeClient(self.db) stat_entry = rdf_client_fs.StatEntry(st_mode=1337) hash_entry = rdf_crypto.Hash(sha256=hashlib.sha256(b"foo").digest()) path_info = rdf_objects.PathInfo.OS( components=["foo", "bar", "baz"], stat_entry=stat_entry, hash_entry=hash_entry) self.db.WritePathInfos(client_id, [path_info]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz")) self.assertEqual(result.components, ["foo", "bar", "baz"]) self.assertTrue(result.HasField("stat_entry")) self.assertTrue(result.HasField("hash_entry")) self.assertEqual(result.stat_entry, stat_entry) self.assertEqual(result.hash_entry, hash_entry) def testWritePathInfoHashAndStatEntrySeparateWrites(self): client_id = db_test_utils.InitializeClient(self.db) stat_entry = rdf_client_fs.StatEntry(st_mode=1337) stat_entry_path_info = rdf_objects.PathInfo.OS( components=["foo"], stat_entry=stat_entry) stat_entry_timestamp = self.db.Now() self.db.WritePathInfos(client_id, [stat_entry_path_info]) hash_entry = rdf_crypto.Hash(sha256=hashlib.sha256(b"foo").digest()) hash_entry_path_info = rdf_objects.PathInfo.OS( components=["foo"], hash_entry=hash_entry) hash_entry_timestamp = self.db.Now() self.db.WritePathInfos(client_id, [hash_entry_path_info]) result = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) now = self.db.Now() self.assertEqual(result.components, ["foo"]) self.assertTrue(result.HasField("stat_entry")) self.assertTrue(result.HasField("hash_entry")) self.assertEqual(result.stat_entry, stat_entry) self.assertEqual(result.hash_entry, hash_entry) self.assertGreater(result.last_stat_entry_timestamp, stat_entry_timestamp) self.assertLess(result.last_stat_entry_timestamp, hash_entry_timestamp) self.assertGreater(result.last_hash_entry_timestamp, hash_entry_timestamp) self.assertLess(result.last_hash_entry_timestamp, now) def testWritePathInfosExpansion(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar", "baz"]), ]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [ ("foo",), ("foo", "bar"), ("foo", "bar", "baz"), ]) self.assertLen(results, 3) foo = results[("foo",)] self.assertEqual(foo.components, ["foo"]) self.assertTrue(foo.directory) foobar = results[("foo", "bar")] self.assertEqual(foobar.components, ["foo", "bar"]) self.assertTrue(foobar.directory) foobarbaz = results[("foo", "bar", "baz")] self.assertEqual(foobarbaz.components, ["foo", "bar", "baz"]) self.assertFalse(foobarbaz.directory) def testWritePathInfosTypeSeparated(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo"], directory=True), rdf_objects.PathInfo.TSK(components=["foo"], directory=False), ]) os_results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [("foo",)]) self.assertLen(os_results, 1) self.assertTrue(os_results[("foo",)].directory) tsk_results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.TSK, [("foo",)]) self.assertLen(tsk_results, 1) self.assertFalse(tsk_results[("foo",)].directory) def testWritePathInfosUpdates(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS( components=["foo", "bar", "baz"], directory=False), ]) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS( components=["foo", "bar", "baz"], directory=True), ]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [("foo", "bar", "baz")]) result_path_info = results[("foo", "bar", "baz")] self.assertTrue(result_path_info.directory) def testWritePathInfosUpdatesAncestors(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo"], directory=False), ]) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), ]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [("foo",)]) self.assertLen(results, 1) self.assertTrue(results[("foo",)].directory) def testWritePathInfosDuplicatedData(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), ]) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), ]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [("foo", "bar")]) self.assertLen(results, 1) result_path_info = results[("foo", "bar")] self.assertEqual(result_path_info.components, ["foo", "bar"]) self.assertEqual(result_path_info.directory, False) def testWritePathInfosStoresCopy(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo", "bar"]) path_info.stat_entry.st_size = 1337 path_info.hash_entry.sha256 = b"foo" self.db.WritePathInfos(client_id, [path_info]) timestamp_1 = self.db.Now() path_info.stat_entry.st_size = 42 path_info.hash_entry.sha256 = b"bar" self.db.WritePathInfos(client_id, [path_info]) timestamp_2 = self.db.Now() result_1 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar"), timestamp=timestamp_1) self.assertEqual(result_1.stat_entry.st_size, 1337) self.assertEqual(result_1.hash_entry.sha256, b"foo") result_2 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar"), timestamp=timestamp_2) self.assertEqual(result_2.stat_entry.st_size, 42) self.assertEqual(result_2.hash_entry.sha256, b"bar") def testMultiWritePathInfos(self): client_a_id = db_test_utils.InitializeClient(self.db) client_b_id = db_test_utils.InitializeClient(self.db) path_info_a_1 = rdf_objects.PathInfo.OS(components=["foo", "bar"]) path_info_a_1.stat_entry.st_size = 42 path_info_a_2 = rdf_objects.PathInfo.OS(components=["foo", "baz"]) path_info_a_2.hash_entry.md5 = b"aaa" path_info_a_2.hash_entry.sha256 = b"ccc" path_info_b_1 = rdf_objects.PathInfo.TSK(components=["norf", "thud"]) path_info_b_1.hash_entry.sha1 = b"ddd" path_info_b_1.hash_entry.sha256 = b"bbb" path_info_b_2 = rdf_objects.PathInfo.TSK(components=["quux", "blargh"]) path_info_b_2.stat_entry.st_mode = 1337 path_infos = { client_a_id: [path_info_a_1, path_info_a_2], client_b_id: [path_info_b_1, path_info_b_2], } self.db.MultiWritePathInfos(path_infos) path_infos_a = self.db.ReadPathInfos(client_a_id, rdf_objects.PathInfo.PathType.OS, [ ("foo", "bar"), ("foo", "baz"), ]) self.assertEqual(path_infos_a[("foo", "bar")].stat_entry.st_size, 42) self.assertEqual(path_infos_a[("foo", "baz")].hash_entry.md5, b"aaa") self.assertEqual(path_infos_a[("foo", "baz")].hash_entry.sha256, b"ccc") path_infos_b = self.db.ReadPathInfos(client_b_id, rdf_objects.PathInfo.PathType.TSK, [ ("norf", "thud"), ("quux", "blargh"), ]) self.assertEqual(path_infos_b[("norf", "thud")].hash_entry.sha1, b"ddd") self.assertEqual(path_infos_b[("norf", "thud")].hash_entry.sha256, b"bbb") self.assertEqual(path_infos_b[("quux", "blargh")].stat_entry.st_mode, 1337) def testReadPathInfosEmptyComponentsList(self): client_id = db_test_utils.InitializeClient(self.db) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, []) self.assertEqual(results, {}) def testReadPathInfosNonExistent(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), ]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [ ("foo", "bar"), ("foo", "baz"), ("quux", "norf"), ]) self.assertLen(results, 3) self.assertIsNotNone(results[("foo", "bar")]) self.assertIsNone(results[("foo", "baz")]) self.assertIsNone(results[("quux", "norf")]) def testReadPathInfoValidatesTimestamp(self): client_id = db_test_utils.InitializeClient(self.db) with self.assertRaises(TypeError): self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.REGISTRY, components=("foo", "bar", "baz"), timestamp=rdfvalue.Duration.From(10, rdfvalue.SECONDS)) def testReadPathInfoNonExistent(self): client_id = db_test_utils.InitializeClient(self.db) with self.assertRaises(db.UnknownPathError) as ctx: self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz")) self.assertEqual(ctx.exception.client_id, client_id) self.assertEqual(ctx.exception.path_type, rdf_objects.PathInfo.PathType.OS) self.assertEqual(ctx.exception.components, ("foo", "bar", "baz")) def testReadPathInfoTimestampStatEntry(self): client_id = db_test_utils.InitializeClient(self.db) pathspec = rdf_paths.PathSpec( path="foo/bar/baz", pathtype=rdf_paths.PathSpec.PathType.OS) stat_entry = rdf_client_fs.StatEntry(pathspec=pathspec, st_size=42) self.db.WritePathInfos(client_id, [rdf_objects.PathInfo.FromStatEntry(stat_entry)]) timestamp_1 = self.db.Now() stat_entry = rdf_client_fs.StatEntry(pathspec=pathspec, st_size=101) self.db.WritePathInfos(client_id, [rdf_objects.PathInfo.FromStatEntry(stat_entry)]) timestamp_2 = self.db.Now() stat_entry = rdf_client_fs.StatEntry(pathspec=pathspec, st_size=1337) self.db.WritePathInfos(client_id, [rdf_objects.PathInfo.FromStatEntry(stat_entry)]) timestamp_3 = self.db.Now() path_info_last = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz")) self.assertEqual(path_info_last.stat_entry.st_size, 1337) self.assertEqual(path_info_last.components, ["foo", "bar", "baz"]) path_info_1 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz"), timestamp=timestamp_1) self.assertEqual(path_info_1.stat_entry.st_size, 42) self.assertEqual(path_info_last.components, ["foo", "bar", "baz"]) path_info_2 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz"), timestamp=timestamp_2) self.assertEqual(path_info_2.stat_entry.st_size, 101) self.assertEqual(path_info_last.components, ["foo", "bar", "baz"]) path_info_3 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz"), timestamp=timestamp_3) self.assertEqual(path_info_3.stat_entry.st_size, 1337) self.assertEqual(path_info_last.components, ["foo", "bar", "baz"]) def testReadPathInfoTimestampHashEntry(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo"]) path_info.hash_entry = rdf_crypto.Hash(sha256=b"bar") self.db.WritePathInfos(client_id, [path_info]) bar_timestamp = self.db.Now() path_info.hash_entry = rdf_crypto.Hash(sha256=b"baz") self.db.WritePathInfos(client_id, [path_info]) baz_timestamp = self.db.Now() path_info.hash_entry = rdf_crypto.Hash(sha256=b"quux") self.db.WritePathInfos(client_id, [path_info]) quux_timestamp = self.db.Now() bar_path_info = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=bar_timestamp) self.assertEqual(bar_path_info.hash_entry.sha256, b"bar") baz_path_info = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=baz_timestamp) self.assertEqual(baz_path_info.hash_entry.sha256, b"baz") quux_path_info = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=quux_timestamp) self.assertEqual(quux_path_info.hash_entry.sha256, b"quux") def testReadPathInfosMany(self): client_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=["foo", "bar"]) path_info_1.stat_entry.st_mode = 42 path_info_1.hash_entry.md5 = b"foo" path_info_1.hash_entry.sha256 = b"bar" path_info_2 = rdf_objects.PathInfo.OS(components=["baz", "quux", "norf"]) path_info_2.hash_entry.sha256 = b"bazquuxnorf" path_info_3 = rdf_objects.PathInfo.OS(components=["blargh"], directory=True) path_info_3.stat_entry.st_size = 1337 self.db.WritePathInfos(client_id, [path_info_1, path_info_2, path_info_3]) results = self.db.ReadPathInfos(client_id, rdf_objects.PathInfo.PathType.OS, [ ("foo", "bar"), ("baz", "quux", "norf"), ("blargh",), ]) result_path_info_1 = results[("foo", "bar")] self.assertEqual(result_path_info_1.components, ["foo", "bar"]) self.assertEqual(result_path_info_1.stat_entry.st_mode, 42) self.assertEqual(result_path_info_1.hash_entry.md5, b"foo") self.assertEqual(result_path_info_1.hash_entry.sha256, b"bar") result_path_info_2 = results[("baz", "quux", "norf")] self.assertEqual(result_path_info_2.components, ["baz", "quux", "norf"]) self.assertEqual(result_path_info_2.hash_entry.sha256, b"bazquuxnorf") result_path_info_3 = results[("blargh",)] self.assertEqual(result_path_info_3.components, ["blargh"]) self.assertEqual(result_path_info_3.stat_entry.st_size, 1337) self.assertEqual(result_path_info_3.directory, True) def testReadPathInfoTimestampStatAndHashEntry(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo"]) path_info.stat_entry = rdf_client_fs.StatEntry(st_mode=42) path_info.hash_entry = None self.db.WritePathInfos(client_id, [path_info]) timestamp_1 = self.db.Now() path_info.stat_entry = None path_info.hash_entry = rdf_crypto.Hash(sha256=b"quux") self.db.WritePathInfos(client_id, [path_info]) timestamp_2 = self.db.Now() path_info.stat_entry = rdf_client_fs.StatEntry(st_mode=1337) path_info.hash_entry = None self.db.WritePathInfos(client_id, [path_info]) timestamp_3 = self.db.Now() path_info.stat_entry = rdf_client_fs.StatEntry(st_mode=4815162342) path_info.hash_entry = rdf_crypto.Hash(sha256=b"norf") self.db.WritePathInfos(client_id, [path_info]) timestamp_4 = self.db.Now() path_info_1 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_1) self.assertEqual(path_info_1.stat_entry.st_mode, 42) self.assertFalse(path_info_1.HasField("hash_entry")) path_info_2 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_2) self.assertEqual(path_info_2.stat_entry.st_mode, 42) self.assertEqual(path_info_2.hash_entry.sha256, b"quux") path_info_3 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_3) self.assertEqual(path_info_3.stat_entry.st_mode, 1337) self.assertEqual(path_info_3.hash_entry.sha256, b"quux") path_info_4 = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_4) self.assertEqual(path_info_4.stat_entry.st_mode, 4815162342) self.assertEqual(path_info_4.hash_entry.sha256, b"norf") def testReadPathInfoOlder(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo"]) path_info.stat_entry.st_mode = 42 path_info.hash_entry.sha256 = b"foo" self.db.WritePathInfos(client_id, [path_info]) path_info = rdf_objects.PathInfo.OS(components=["bar"]) path_info.stat_entry.st_mode = 1337 path_info.hash_entry.sha256 = b"bar" self.db.WritePathInfos(client_id, [path_info]) path_info = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(path_info.stat_entry.st_mode, 42) self.assertEqual(path_info.hash_entry.sha256, b"foo") path_info = self.db.ReadPathInfo( client_id, rdf_objects.PathInfo.PathType.OS, components=("bar",)) self.assertEqual(path_info.stat_entry.st_mode, 1337) self.assertEqual(path_info.hash_entry.sha256, b"bar") def testListDescendantPathInfosAlwaysSucceedsOnRoot(self): client_id = db_test_utils.InitializeClient(self.db) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=()) self.assertEmpty(results) def testListDescendantPathInfosNonexistentDirectory(self): client_id = db_test_utils.InitializeClient(self.db) with self.assertRaises(db.UnknownPathError): self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) def testListDescendantPathInfosNotDirectory(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=("foo",), directory=False) self.db.WritePathInfos(client_id, [path_info]) with self.assertRaises(db.NotDirectoryPathError): self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) def testListDescendantPathInfosEmptyResult(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=("foo",), directory=True) self.db.WritePathInfos(client_id, [path_info]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEmpty(results) def testListDescendantPathInfosSingleResult(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), ]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertLen(results, 1) self.assertEqual(results[0].components, ("foo", "bar")) def testListDescendantPathInfosSingle(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar", "baz", "quux"]), ]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertLen(results, 3) self.assertEqual(results[0].components, ("foo", "bar")) self.assertEqual(results[1].components, ("foo", "bar", "baz")) self.assertEqual(results[2].components, ("foo", "bar", "baz", "quux")) def testListDescendantPathInfosBranching(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar", "quux"]), rdf_objects.PathInfo.OS(components=["foo", "baz"]), ]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertLen(results, 3) self.assertEqual(results[0].components, ("foo", "bar")) self.assertEqual(results[1].components, ("foo", "bar", "quux")) self.assertEqual(results[2].components, ("foo", "baz")) def testListDescendantPathInfosLimited(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar", "baz", "quux"]), rdf_objects.PathInfo.OS(components=["foo", "bar", "blargh"]), rdf_objects.PathInfo.OS(components=["foo", "norf", "thud", "plugh"]), ]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",), max_depth=2) components = [tuple(path_info.components) for path_info in results] self.assertIn(("foo", "bar"), components) self.assertIn(("foo", "bar", "baz"), components) self.assertIn(("foo", "bar", "blargh"), components) self.assertNotIn(("foo", "bar", "baz", "quux"), components) self.assertNotIn(("foo", "norf", "thud", "plugh"), components) def testListDescendantPathInfosTypeSeparated(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["usr", "bin", "javac"]), rdf_objects.PathInfo.TSK(components=["usr", "bin", "gdb"]), ]) os_results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("usr", "bin")) self.assertLen(os_results, 1) self.assertEqual(os_results[0].components, ("usr", "bin", "javac")) tsk_results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.TSK, components=("usr", "bin")) self.assertLen(tsk_results, 1) self.assertEqual(tsk_results[0].components, ("usr", "bin", "gdb")) def testListDescendantPathInfosAll(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), rdf_objects.PathInfo.OS(components=["baz", "quux"]), ]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=()) self.assertEqual(results[0].components, ("baz",)) self.assertEqual(results[1].components, ("baz", "quux")) self.assertEqual(results[2].components, ("foo",)) self.assertEqual(results[3].components, ("foo", "bar")) def testListDescendantPathInfosLimitedDirectory(self): client_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=["foo", "bar", "baz"]) path_info_1.stat_entry.st_mode = 108 path_info_2 = rdf_objects.PathInfo.OS(components=["foo", "bar"]) path_info_2.stat_entry.st_mode = 1337 path_info_3 = rdf_objects.PathInfo.OS(components=["foo", "norf", "quux"]) path_info_3.stat_entry.st_mode = 707 self.db.WritePathInfos(client_id, [path_info_1, path_info_2, path_info_3]) results = self.db.ListDescendantPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=(), max_depth=2) self.assertLen(results, 3) self.assertEqual(results[0].components, ("foo",)) self.assertEqual(results[1].components, ("foo", "bar")) self.assertEqual(results[2].components, ("foo", "norf")) self.assertEqual(results[1].stat_entry.st_mode, 1337) def testListDescendantPathInfosDepthZero(self): client_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=("foo",)) path_info_2 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_3 = rdf_objects.PathInfo.OS(components=("baz",)) self.db.WritePathInfos(client_id, [path_info_1, path_info_2, path_info_3]) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), max_depth=0) self.assertEmpty(results) def testListDescendantPathInfosTimestampNow(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo", "bar", "baz"]) path_info.stat_entry.st_size = 1337 self.db.WritePathInfos(client_id, [path_info]) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=self.db.Now()) self.assertLen(results, 3) self.assertEqual(results[0].components, ("foo",)) self.assertEqual(results[1].components, ("foo", "bar")) self.assertEqual(results[2].components, ("foo", "bar", "baz")) self.assertEqual(results[2].stat_entry.st_size, 1337) def testListDescendantPathInfosTimestampMultiple(self): client_id = db_test_utils.InitializeClient(self.db) timestamp_0 = self.db.Now() path_info_1 = rdf_objects.PathInfo.OS(components=["foo", "bar", "baz"]) path_info_1.stat_entry.st_size = 1 self.db.WritePathInfos(client_id, [path_info_1]) timestamp_1 = self.db.Now() path_info_2 = rdf_objects.PathInfo.OS(components=["foo", "quux", "norf"]) path_info_2.stat_entry.st_size = 2 self.db.WritePathInfos(client_id, [path_info_2]) timestamp_2 = self.db.Now() path_info_3 = rdf_objects.PathInfo.OS(components=["foo", "quux", "thud"]) path_info_3.stat_entry.st_size = 3 self.db.WritePathInfos(client_id, [path_info_3]) timestamp_3 = self.db.Now() results_0 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_0) self.assertEmpty(results_0) results_1 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_1) self.assertLen(results_1, 3) self.assertEqual(results_1[0].components, ("foo",)) self.assertEqual(results_1[1].components, ("foo", "bar")) self.assertEqual(results_1[2].components, ("foo", "bar", "baz")) results_2 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_2) self.assertLen(results_2, 5) self.assertEqual(results_2[0].components, ("foo",)) self.assertEqual(results_2[1].components, ("foo", "bar")) self.assertEqual(results_2[2].components, ("foo", "bar", "baz")) self.assertEqual(results_2[3].components, ("foo", "quux")) self.assertEqual(results_2[4].components, ("foo", "quux", "norf")) results_3 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_3) self.assertLen(results_3, 6) self.assertEqual(results_3[0].components, ("foo",)) self.assertEqual(results_3[1].components, ("foo", "bar")) self.assertEqual(results_3[2].components, ("foo", "bar", "baz")) self.assertEqual(results_3[3].components, ("foo", "quux")) self.assertEqual(results_3[4].components, ("foo", "quux", "norf")) self.assertEqual(results_3[5].components, ("foo", "quux", "thud")) def testListDescendantPathInfosTimestampStatValue(self): client_id = db_test_utils.InitializeClient(self.db) timestamp_0 = self.db.Now() path_info = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info.stat_entry.st_size = 1337 self.db.WritePathInfos(client_id, [path_info]) timestamp_1 = self.db.Now() path_info.stat_entry.st_size = 42 self.db.WritePathInfos(client_id, [path_info]) timestamp_2 = self.db.Now() results_0 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_0) self.assertEmpty(results_0) results_1 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_1) self.assertLen(results_1, 1) self.assertEqual(results_1[0].components, ("foo", "bar")) self.assertEqual(results_1[0].stat_entry.st_size, 1337) results_2 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_2) self.assertLen(results_2, 1) self.assertEqual(results_2[0].components, ("foo", "bar")) self.assertEqual(results_2[0].stat_entry.st_size, 42) def testListDescendantPathInfosTimestampHashValue(self): client_id = db_test_utils.InitializeClient(self.db) timestamp_0 = self.db.Now() path_info = rdf_objects.PathInfo.OS(components=("foo",)) path_info.hash_entry.md5 = b"quux" path_info.hash_entry.sha256 = b"thud" self.db.WritePathInfos(client_id, [path_info]) timestamp_1 = self.db.Now() path_info.hash_entry.md5 = b"norf" path_info.hash_entry.sha256 = b"blargh" self.db.WritePathInfos(client_id, [path_info]) timestamp_2 = self.db.Now() results_0 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_0) self.assertEmpty(results_0) results_1 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_1) self.assertLen(results_1, 1) self.assertEqual(results_1[0].components, ("foo",)) self.assertEqual(results_1[0].hash_entry.md5, b"quux") self.assertEqual(results_1[0].hash_entry.sha256, b"thud") results_2 = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=(), timestamp=timestamp_2) self.assertLen(results_2, 1) self.assertEqual(results_2[0].components, ("foo",)) self.assertEqual(results_2[0].hash_entry.md5, b"norf") self.assertEqual(results_2[0].hash_entry.sha256, b"blargh") def testListDescendantPathInfosWildcards(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=("foo", "quux")), rdf_objects.PathInfo.OS(components=("bar", "norf")), rdf_objects.PathInfo.OS(components=("___", "thud")), rdf_objects.PathInfo.OS(components=("%%%", "ztesch")), ]) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("___",)) self.assertLen(results, 1) self.assertEqual(results[0].components, ("___", "thud")) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("%%%",)) self.assertLen(results, 1) self.assertEqual(results[0].components, ("%%%", "ztesch")) def testListDescendantPathInfosManyWildcards(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=("%", "%%", "%%%")), rdf_objects.PathInfo.OS(components=("%", "%%%", "%")), rdf_objects.PathInfo.OS(components=("%%", "%", "%%%")), rdf_objects.PathInfo.OS(components=("%%", "%%%", "%")), rdf_objects.PathInfo.OS(components=("%%%", "%%", "%%")), rdf_objects.PathInfo.OS(components=("__", "%%", "__")), ]) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("%",)) self.assertLen(results, 4) self.assertEqual(results[0].components, ("%", "%%")) self.assertEqual(results[1].components, ("%", "%%", "%%%")) self.assertEqual(results[2].components, ("%", "%%%")) self.assertEqual(results[3].components, ("%", "%%%", "%")) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("%%",)) self.assertLen(results, 4) self.assertEqual(results[0].components, ("%%", "%")) self.assertEqual(results[1].components, ("%%", "%", "%%%")) self.assertEqual(results[2].components, ("%%", "%%%")) self.assertEqual(results[3].components, ("%%", "%%%", "%")) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("__",)) self.assertLen(results, 2) self.assertEqual(results[0].components, ("__", "%%")) self.assertEqual(results[1].components, ("__", "%%", "__")) def testListDescendantPathInfosWildcardsWithMaxDepth(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=("%", "%%foo", "%%%bar", "%%%%")), rdf_objects.PathInfo.OS(components=("%", "%%foo", "%%%baz", "%%%%")), rdf_objects.PathInfo.OS(components=("%", "%%quux", "%%%norf", "%%%%")), rdf_objects.PathInfo.OS(components=("%", "%%quux", "%%%thud", "%%%%")), rdf_objects.PathInfo.OS(components=("%%", "%%bar", "%%%quux")), rdf_objects.PathInfo.OS(components=("%%", "%%baz", "%%%norf")), rdf_objects.PathInfo.OS(components=("__", "__bar__", "__quux__")), rdf_objects.PathInfo.OS(components=("__", "__baz__", "__norf__")), rdf_objects.PathInfo.OS(components=("blargh",)), rdf_objects.PathInfo.OS(components=("ztesch",)), ]) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("%",), max_depth=2) self.assertLen(results, 6) self.assertEqual(results[0].components, ("%", "%%foo")) self.assertEqual(results[1].components, ("%", "%%foo", "%%%bar")) self.assertEqual(results[2].components, ("%", "%%foo", "%%%baz")) self.assertEqual(results[3].components, ("%", "%%quux")) self.assertEqual(results[4].components, ("%", "%%quux", "%%%norf")) self.assertEqual(results[5].components, ("%", "%%quux", "%%%thud")) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("%%",), max_depth=1) self.assertLen(results, 2) self.assertEqual(results[0].components, ("%%", "%%bar")) self.assertEqual(results[1].components, ("%%", "%%baz")) results = self.db.ListDescendantPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("__",), max_depth=1) self.assertLen(results, 2) self.assertEqual(results[0].components, ("__", "__bar__")) self.assertEqual(results[1].components, ("__", "__baz__")) def testListChildPathInfosRoot(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar"]), rdf_objects.PathInfo.OS(components=["foo", "baz"]), rdf_objects.PathInfo.OS(components=["quux", "norf"]), ]) results = self.db.ListChildPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=()) self.assertEqual(results[0].components, ("foo",)) self.assertTrue(results[0].directory) self.assertEqual(results[1].components, ("quux",)) self.assertTrue(results[1].directory) def testListChildPathInfosRootDeeper(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=("foo", "bar", "baz")), rdf_objects.PathInfo.OS(components=("foo", "bar", "quux")), rdf_objects.PathInfo.OS(components=("foo", "bar", "norf", "thud")), ]) results = self.db.ListChildPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=()) self.assertLen(results, 1) self.assertEqual(results[0].components, ("foo",)) self.assertTrue(results[0].directory) def testListChildPathInfosDetails(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo", "bar"]) path_info.stat_entry.st_size = 42 self.db.WritePathInfos(client_id, [path_info]) path_info = rdf_objects.PathInfo.OS(components=["foo", "baz"]) path_info.hash_entry.md5 = b"quux" path_info.hash_entry.sha256 = b"norf" self.db.WritePathInfos(client_id, [path_info]) results = self.db.ListChildPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo",)) self.assertEqual(results[0].components, ("foo", "bar")) self.assertEqual(results[0].stat_entry.st_size, 42) self.assertEqual(results[1].components, ("foo", "baz")) self.assertEqual(results[1].hash_entry.md5, b"quux") self.assertEqual(results[1].hash_entry.sha256, b"norf") def testListChildPathInfosDeepSorted(self): client_id = db_test_utils.InitializeClient(self.db) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=["foo", "bar", "baz", "quux"]), rdf_objects.PathInfo.OS(components=["foo", "bar", "baz", "norf"]), rdf_objects.PathInfo.OS(components=["foo", "bar", "baz", "thud"]), ]) results = self.db.ListChildPathInfos( client_id, rdf_objects.PathInfo.PathType.OS, components=("foo", "bar", "baz")) self.assertEqual(results[0].components, ("foo", "bar", "baz", "norf")) self.assertEqual(results[1].components, ("foo", "bar", "baz", "quux")) self.assertEqual(results[2].components, ("foo", "bar", "baz", "thud")) def testListChildPathInfosTimestamp(self): client_id = db_test_utils.InitializeClient(self.db) timestamp_0 = self.db.Now() path_info_1 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_1.stat_entry.st_size = 1 self.db.WritePathInfos(client_id, [path_info_1]) timestamp_1 = self.db.Now() path_info_2 = rdf_objects.PathInfo.OS(components=("foo", "baz")) path_info_2.stat_entry.st_size = 2 self.db.WritePathInfos(client_id, [path_info_2]) timestamp_2 = self.db.Now() results_0 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_0) self.assertEmpty(results_0) results_1 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_1) self.assertLen(results_1, 1) self.assertEqual(results_1[0].components, ("foo", "bar")) self.assertEqual(results_1[0].stat_entry.st_size, 1) results_2 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), timestamp=timestamp_2) self.assertLen(results_2, 2) self.assertEqual(results_2[0].components, ("foo", "bar")) self.assertEqual(results_2[0].stat_entry.st_size, 1) self.assertEqual(results_2[1].components, ("foo", "baz")) self.assertEqual(results_2[1].stat_entry.st_size, 2) def testListChildPathInfosTimestampStatAndHashValue(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=("foo", "bar", "baz")) path_info.stat_entry.st_size = 42 path_info.hash_entry.sha256 = b"quux" self.db.WritePathInfos(client_id, [path_info]) timestamp_1 = self.db.Now() path_info = rdf_objects.PathInfo.OS(components=("foo", "bar", "baz")) path_info.stat_entry.st_size = 108 path_info.hash_entry.sha256 = b"norf" self.db.WritePathInfos(client_id, [path_info]) timestamp_2 = self.db.Now() path_info = rdf_objects.PathInfo.OS(components=("foo", "bar", "baz")) path_info.stat_entry.st_size = 1337 path_info.hash_entry.sha256 = b"thud" self.db.WritePathInfos(client_id, [path_info]) timestamp_3 = self.db.Now() results_1 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo", "bar"), timestamp=timestamp_1) self.assertLen(results_1, 1) self.assertEqual(results_1[0].components, ("foo", "bar", "baz")) self.assertEqual(results_1[0].stat_entry.st_size, 42) self.assertEqual(results_1[0].hash_entry.sha256, b"quux") results_2 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo", "bar"), timestamp=timestamp_2) self.assertLen(results_2, 1) self.assertEqual(results_2[0].components, ("foo", "bar", "baz")) self.assertEqual(results_2[0].stat_entry.st_size, 108) self.assertEqual(results_2[0].hash_entry.sha256, b"norf") results_3 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo", "bar"), timestamp=timestamp_3) self.assertLen(results_3, 1) self.assertEqual(results_3[0].components, ("foo", "bar", "baz")) self.assertEqual(results_3[0].stat_entry.st_size, 1337) self.assertEqual(results_3[0].hash_entry.sha256, b"thud") def testListChildPathInfosBackslashes(self): client_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=("\\", "\\\\", "\\\\\\")) path_info_2 = rdf_objects.PathInfo.OS(components=("\\", "\\\\\\", "\\\\")) path_info_3 = rdf_objects.PathInfo.OS(components=("\\", "foo\\bar", "baz")) self.db.WritePathInfos(client_id, [path_info_1, path_info_2, path_info_3]) results_0 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("\\",)) self.assertLen(results_0, 3) self.assertEqual(results_0[0].components, ("\\", "\\\\")) self.assertEqual(results_0[1].components, ("\\", "\\\\\\")) self.assertEqual(results_0[2].components, ("\\", "foo\\bar")) results_1 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("\\", "\\\\")) self.assertLen(results_1, 1) self.assertEqual(results_1[0].components, ("\\", "\\\\", "\\\\\\")) results_2 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("\\", "\\\\\\")) self.assertLen(results_2, 1) self.assertEqual(results_2[0].components, ("\\", "\\\\\\", "\\\\")) results_3 = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("\\", "foo\\bar")) self.assertLen(results_3, 1) self.assertEqual(results_3[0].components, ("\\", "foo\\bar", "baz")) def testListChildPathInfosTSKRootVolume(self): client_id = db_test_utils.InitializeClient(self.db) volume = "\\\\?\\Volume{2d4fbbd3-0000-0000-0000-100000000000}" path_info = rdf_objects.PathInfo.TSK(components=(volume, "foobar.txt")) path_info.stat_entry.st_size = 42 self.db.WritePathInfos(client_id, [path_info]) results = self.db.ListChildPathInfos( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.TSK, components=(volume,)) self.assertLen(results, 1) self.assertEqual(results[0].components, (volume, "foobar.txt")) self.assertEqual(results[0].stat_entry.st_size, 42) def testReadPathInfosHistoriesEmpty(self): client_id = db_test_utils.InitializeClient(self.db) result = self.db.ReadPathInfosHistories(client_id, rdf_objects.PathInfo.PathType.OS, []) self.assertEqual(result, {}) def testReadPathInfosHistoriesDoesNotRaiseOnUnknownClient(self): results = self.db.ReadPathInfosHistories("C.FFFF111122223333", rdf_objects.PathInfo.PathType.OS, [("foo",)]) self.assertEqual(results[("foo",)], []) def testReadPathInfosHistoriesWithSingleFileWithSingleHistoryItem(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo"]) path_info.stat_entry.st_size = 42 path_info.hash_entry.sha256 = b"quux" then = self.db.Now() self.db.WritePathInfos(client_id, [path_info]) now = self.db.Now() path_infos = self.db.ReadPathInfosHistories( client_id, rdf_objects.PathInfo.PathType.OS, [("foo",)]) self.assertLen(path_infos, 1) pi = path_infos[("foo",)] self.assertLen(pi, 1) self.assertEqual(pi[0].stat_entry.st_size, 42) self.assertEqual(pi[0].hash_entry.sha256, b"quux") self.assertBetween(pi[0].timestamp, then, now) def testReadPathInfosHistoriesWithTwoFilesWithSingleHistoryItemEach(self): client_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=["foo"]) path_info_1.stat_entry.st_mode = 1337 path_info_2 = rdf_objects.PathInfo.OS(components=["bar"]) path_info_2.hash_entry.sha256 = b"quux" then = self.db.Now() self.db.WritePathInfos(client_id, [path_info_1, path_info_2]) now = self.db.Now() path_infos = self.db.ReadPathInfosHistories( client_id, rdf_objects.PathInfo.PathType.OS, [("foo",), ("bar",)]) self.assertLen(path_infos, 2) pi = path_infos[("bar",)] self.assertLen(pi, 1) self.assertEqual(pi[0].components, ("bar",)) self.assertEqual(pi[0].hash_entry.sha256, b"quux") self.assertBetween(pi[0].timestamp, then, now) pi = path_infos[("foo",)] self.assertLen(pi, 1) self.assertEqual(pi[0].components, ("foo",)) self.assertEqual(pi[0].stat_entry.st_mode, 1337) self.assertBetween(pi[0].timestamp, then, now) def testReadPathInfosHistoriesWithTwoFilesWithTwoHistoryItems(self): client_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=["foo"]) path_info_2 = rdf_objects.PathInfo.OS(components=["bar"]) timestamp_1 = self.db.Now() path_info_1.stat_entry.st_mode = 1337 self.db.WritePathInfos(client_id, [path_info_1]) timestamp_2 = self.db.Now() path_info_1.stat_entry.st_mode = 1338 self.db.WritePathInfos(client_id, [path_info_1]) timestamp_3 = self.db.Now() path_info_2.stat_entry.st_mode = 109 self.db.WritePathInfos(client_id, [path_info_2]) timestamp_4 = self.db.Now() path_info_2.stat_entry.st_mode = 110 self.db.WritePathInfos(client_id, [path_info_2]) timestamp_5 = self.db.Now() path_infos = self.db.ReadPathInfosHistories( client_id, rdf_objects.PathInfo.PathType.OS, [("foo",), ("bar",)]) self.assertLen(path_infos, 2) pi = path_infos[("bar",)] self.assertLen(pi, 2) self.assertEqual(pi[0].components, ("bar",)) self.assertEqual(pi[0].stat_entry.st_mode, 109) self.assertBetween(pi[0].timestamp, timestamp_3, timestamp_4) self.assertEqual(pi[1].components, ("bar",)) self.assertEqual(pi[1].stat_entry.st_mode, 110) self.assertBetween(pi[1].timestamp, timestamp_4, timestamp_5) pi = path_infos[("foo",)] self.assertLen(pi, 2) self.assertEqual(pi[0].components, ("foo",)) self.assertEqual(pi[0].stat_entry.st_mode, 1337) self.assertBetween(pi[0].timestamp, timestamp_1, timestamp_2) self.assertEqual(pi[1].components, ("foo",)) self.assertEqual(pi[1].stat_entry.st_mode, 1338) self.assertBetween(pi[1].timestamp, timestamp_2, timestamp_3) def testReadPathInfoHistoryTimestamp(self): client_id = db_test_utils.InitializeClient(self.db) path_info = rdf_objects.PathInfo.OS(components=["foo"]) path_info.stat_entry.st_size = 0 self.db.WritePathInfos(client_id, [path_info]) path_info.stat_entry.st_size = 1 self.db.WritePathInfos(client_id, [path_info]) path_info.stat_entry.st_size = 2 self.db.WritePathInfos(client_id, [path_info]) cutoff = self.db.Now() path_info.stat_entry.st_size = 1337 self.db.WritePathInfos(client_id, [path_info]) path_infos = self.db.ReadPathInfoHistory( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=("foo",), cutoff=cutoff) self.assertLen(path_infos, 3) self.assertEqual(path_infos[0].stat_entry.st_size, 0) self.assertEqual(path_infos[1].stat_entry.st_size, 1) self.assertEqual(path_infos[2].stat_entry.st_size, 2) def _WriteBlobReferences(self): blob_ref_1 = rdf_objects.BlobReference( offset=0, size=42, blob_id=rdf_objects.BlobID(b"01234567" * 4)) blob_ref_2 = rdf_objects.BlobReference( offset=42, size=42, blob_id=rdf_objects.BlobID(b"01234568" * 4)) hash_id_1 = rdf_objects.SHA256HashID(b"0a1b2c3d" * 4) hash_id_2 = rdf_objects.SHA256HashID(b"0a1b2c3e" * 4) data = { hash_id_1: [blob_ref_1], hash_id_2: [blob_ref_1, blob_ref_2], } self.db.WriteHashBlobReferences(data) return hash_id_1, hash_id_2 def testReadLatestPathInfosReturnsNothingForNonExistingPaths(self): client_a_id = db_test_utils.InitializeClient(self.db) client_b_id = db_test_utils.InitializeClient(self.db) path_1 = db.ClientPath.OS(client_a_id, components=("foo", "baz")) path_2 = db.ClientPath.TSK(client_b_id, components=("foo", "baz")) results = self.db.ReadLatestPathInfosWithHashBlobReferences( [path_1, path_2]) self.assertEqual(results, {path_1: None, path_2: None}) def testReadLatestPathInfosReturnsNothingWhenNoFilesCollected(self): client_a_id = db_test_utils.InitializeClient(self.db) client_b_id = db_test_utils.InitializeClient(self.db) path_info_1 = rdf_objects.PathInfo.OS(components=("foo", "bar")) self.db.WritePathInfos(client_a_id, [path_info_1]) path_info_2 = rdf_objects.PathInfo.TSK(components=("foo", "baz")) self.db.WritePathInfos(client_b_id, [path_info_2]) path_1 = db.ClientPath.OS(client_a_id, components=("foo", "bar")) path_2 = db.ClientPath.TSK(client_b_id, components=("foo", "baz")) results = self.db.ReadLatestPathInfosWithHashBlobReferences( [path_1, path_2]) self.assertEqual(results, {path_1: None, path_2: None}) def testReadLatestPathInfosFindsTwoCollectedFilesWhenTheyAreTheOnlyEntries( self): client_a_id = db_test_utils.InitializeClient(self.db) client_b_id = db_test_utils.InitializeClient(self.db) hash_id_1, hash_id_2 = self._WriteBlobReferences() path_info_1 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_1.hash_entry.sha256 = hash_id_1.AsBytes() self.db.WritePathInfos(client_a_id, [path_info_1]) path_info_2 = rdf_objects.PathInfo.TSK(components=("foo", "baz")) path_info_2.hash_entry.sha256 = hash_id_2.AsBytes() self.db.WritePathInfos(client_b_id, [path_info_2]) path_1 = db.ClientPath.OS(client_a_id, components=("foo", "bar")) path_2 = db.ClientPath.TSK(client_b_id, components=("foo", "baz")) results = self.db.ReadLatestPathInfosWithHashBlobReferences( [path_1, path_2]) self.assertCountEqual(results.keys(), [path_1, path_2]) self.assertEqual(results[path_1].hash_entry, path_info_1.hash_entry) self.assertEqual(results[path_2].hash_entry, path_info_2.hash_entry) self.assertTrue(results[path_1].timestamp) self.assertTrue(results[path_2].timestamp) def testReadLatestPathInfosCorrectlyFindsCollectedFileWithNonLatestEntry( self): client_id = db_test_utils.InitializeClient(self.db) hash_id, _ = self._WriteBlobReferences() path_info_1 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_1.hash_entry.sha256 = hash_id.AsBytes() self.db.WritePathInfos(client_id, [path_info_1]) path_info_2 = rdf_objects.PathInfo.OS(components=("foo", "bar")) self.db.WritePathInfos(client_id, [path_info_2]) path = db.ClientPath.OS(client_id, components=("foo", "bar")) results = self.db.ReadLatestPathInfosWithHashBlobReferences([path]) self.assertCountEqual(results.keys(), [path]) self.assertEqual(results[path].hash_entry, path_info_1.hash_entry) self.assertTrue(results[path].timestamp) def testReadLatestPathInfosCorrectlyFindsLatestOfTwoCollectedFiles(self): client_id = db_test_utils.InitializeClient(self.db) hash_id_1, hash_id_2 = self._WriteBlobReferences() path_info_1 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_1.hash_entry.sha256 = hash_id_1.AsBytes() self.db.WritePathInfos(client_id, [path_info_1]) path_info_2 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_2.hash_entry.sha256 = hash_id_2.AsBytes() self.db.WritePathInfos(client_id, [path_info_2]) path = db.ClientPath.OS(client_id, components=("foo", "bar")) results = self.db.ReadLatestPathInfosWithHashBlobReferences([path]) self.assertCountEqual(results.keys(), [path]) self.assertEqual(results[path].hash_entry, path_info_2.hash_entry) self.assertTrue(results[path].timestamp) def testReadLatestPathInfosCorrectlyFindsLatestCollectedFileBeforeTimestamp( self): client_id = db_test_utils.InitializeClient(self.db) hash_id_1, hash_id_2 = self._WriteBlobReferences() path_info_1 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_1.hash_entry.sha256 = hash_id_1.AsBytes() self.db.WritePathInfos(client_id, [path_info_1]) time_checkpoint = self.db.Now() path_info_2 = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info_2.hash_entry.sha256 = hash_id_2.AsBytes() self.db.WritePathInfos(client_id, [path_info_2]) path = db.ClientPath.OS(client_id, components=("foo", "bar")) results = self.db.ReadLatestPathInfosWithHashBlobReferences( [path], max_timestamp=time_checkpoint) self.assertCountEqual(results.keys(), [path]) self.assertEqual(results[path].hash_entry, path_info_1.hash_entry) self.assertTrue(results[path].timestamp) def testReadLatestPathInfosIncludesStatEntryIfThereIsOneWithSameTimestamp( self): client_id = db_test_utils.InitializeClient(self.db) hash_id, _ = self._WriteBlobReferences() path_info = rdf_objects.PathInfo.OS(components=("foo", "bar")) path_info.stat_entry = rdf_client_fs.StatEntry(st_mode=42) path_info.hash_entry.sha256 = hash_id.AsBytes() self.db.WritePathInfos(client_id, [path_info]) path = db.ClientPath.OS(client_id, components=("foo", "bar")) results = self.db.ReadLatestPathInfosWithHashBlobReferences([path]) self.assertCountEqual(results.keys(), [path]) self.assertEqual(results[path].stat_entry, path_info.stat_entry) self.assertEqual(results[path].hash_entry, path_info.hash_entry) self.assertTrue(results[path].timestamp) def testWriteLongPathInfosWithCommonPrefix(self): client_id = db_test_utils.InitializeClient(self.db) prefix = ("foobarbaz",) * 303 quux_components = prefix + ("quux",) norf_components = prefix + ("norf",) self.db.WritePathInfos(client_id, [ rdf_objects.PathInfo.OS(components=quux_components), rdf_objects.PathInfo.OS(components=norf_components), ]) quux_path_info = self.db.ReadPathInfo( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=quux_components) self.assertEqual(quux_path_info.components, quux_components) norf_path_info = self.db.ReadPathInfo( client_id=client_id, path_type=rdf_objects.PathInfo.PathType.OS, components=norf_components) self.assertEqual(norf_path_info.components, norf_components) # This file is a test library and thus does not require a __main__ block.
38.59375
80
0.681693
67e5f4d81ec655b27d240c9001979a3e6f1a44d0
3,453
py
Python
ajaxuploader/views/base.py
skoczen/django-ajax-uploader
90cbd93c3d80d047da596e2348edb9619dee3852
[ "BSD-3-Clause" ]
75
2015-02-09T22:49:57.000Z
2021-01-31T23:47:39.000Z
ajaxuploader/views/base.py
skoczen/django-ajax-uploader
90cbd93c3d80d047da596e2348edb9619dee3852
[ "BSD-3-Clause" ]
13
2015-02-27T03:01:30.000Z
2020-11-18T10:11:53.000Z
ajaxuploader/views/base.py
skoczen/django-ajax-uploader
90cbd93c3d80d047da596e2348edb9619dee3852
[ "BSD-3-Clause" ]
29
2015-02-09T22:50:16.000Z
2019-12-25T06:41:43.000Z
try: import json except ImportError: from django.utils import simplejson as json from django.core.files.base import File from django.core.serializers.json import DjangoJSONEncoder from django.http import HttpResponse, HttpResponseBadRequest, Http404, HttpResponseNotAllowed from ajaxuploader.backends.local import LocalUploadBackend from ajaxuploader.signals import file_uploaded class AjaxFileUploader(object): def __init__(self, backend=None, **kwargs): if backend is None: backend = LocalUploadBackend self.get_backend = lambda: backend(**kwargs) def __call__(self, request, *args, **kwargs): return self._ajax_upload(request, *args, **kwargs) def _ajax_upload(self, request, *args, **kwargs): if request.method == "POST": if request.is_ajax(): # the file is stored raw in the request upload = request is_raw = True # AJAX Upload will pass the filename in the querystring if it # is the "advanced" ajax upload try: if 'qqfile' in request.GET: filename = request.GET['qqfile'] else: filename = request.REQUEST['qqfilename'] except KeyError: return HttpResponseBadRequest("AJAX request not valid") # not an ajax upload, so it was the "basic" iframe version with # submission via form else: is_raw = False if len(request.FILES) == 1: # FILES is a dictionary in Django but Ajax Upload gives # the uploaded file an ID based on a random number, so it # cannot be guessed here in the code. Rather than editing # Ajax Upload to pass the ID in the querystring, observe # that each upload is a separate request, so FILES should # only have one entry. Thus, we can just grab the first # (and only) value in the dict. upload = request.FILES.values()[0] else: raise Http404("Bad Upload") filename = upload.name backend = self.get_backend() # custom filename handler filename = (backend.update_filename(request, filename, *args, **kwargs) or filename) # save the file backend.setup(filename, *args, **kwargs) success = backend.upload(upload, filename, is_raw, *args, **kwargs) if success: file_uploaded.send(sender=self.__class__, backend=backend, request=request) # callback extra_context = backend.upload_complete(request, filename, *args, **kwargs) # let Ajax Upload know whether we saved it or not ret_json = {'success': success, 'filename': filename} if extra_context is not None: ret_json.update(extra_context) # although "application/json" is the correct content type, IE throws a fit return HttpResponse(json.dumps(ret_json, cls=DjangoJSONEncoder), content_type='text/html; charset=utf-8') else: response = HttpResponseNotAllowed(['POST']) response.write("ERROR: Only POST allowed") return response
42.109756
117
0.584419
ef491a4dd2d23e78f303972dac0bb5b86f25ea5d
5,415
py
Python
inference/utils/common_utils.py
videetparekh/latentai-sdk-examples
2104c097045105957ef7403b09b5a2c114677147
[ "Apache-2.0" ]
null
null
null
inference/utils/common_utils.py
videetparekh/latentai-sdk-examples
2104c097045105957ef7403b09b5a2c114677147
[ "Apache-2.0" ]
null
null
null
inference/utils/common_utils.py
videetparekh/latentai-sdk-examples
2104c097045105957ef7403b09b5a2c114677147
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 by LatentAI Inc. # All rights reserved. # This file is part of the LEIP(tm) SDK, # and is released under the "LatentAI Commercial Software License". # Please see the LICENSE file that should have been included as part of # this package. # # @file common_utils.py # # @author Videet Parekh # # @date Wed, 16 Dec 20 from .preprocessors import ImagePreprocessor import json import glob import os from collections import OrderedDict import numpy as np from PIL import Image import logging import tvm from tvm import relay from tvm.contrib import graph_runtime os.environ['TF_CPP_MIN_LOG_LEVEL'] = '4' import tensorflow as tf # noqa: E402 def collect_image(test_path, data_type, preprocessor, shape): im = Image.open(test_path) rgb_im = im.convert('RGB') rgb_im = rgb_im.resize(shape[1:3]) data = np.array(rgb_im)[np.newaxis, :].astype(data_type) return preprocessor(data) def set_json_field(json_obj, field, value): if json_obj is None: json_obj = {} segments = field.split(".") assert(len(segments) > 0), \ "field cannot be empty: {}".format(field) field = segments.pop() ptr = json_obj for i in segments: if (not i) in ptr: ptr[i] = {} if type(ptr[i]).__name__ != "dict": ptr[i] = {} ptr = ptr[i] ptr[field] = value return json_obj def load_json(path, ordered=False): if os.path.exists(path): with open(path, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict) if ordered else json.load(f) else: return {} def write_json(path, data): with open(path, 'w') as f: return json.dump(data, f, indent=4) def collect_preprocessor(preprocessor): imgPreprocessor = ImagePreprocessor() return getattr(imgPreprocessor, preprocessor.lower()) def parse_input_shapes(shape_str, batch_size=1): shape = [part.strip() for part in shape_str.split(",")] shape[0] = batch_size return tuple(map(int, shape)) def load_index(path): """ Load a testset file with newline separated tests where each line is a input image path, followed by a space, followed by the class number. Return N random items from that set as a test subset. """ base = '/'.join(path.split("/")[0:-1]) parsed_index = [] with open(path, "r") as test_set_file: testset = test_set_file.read() testset = testset.strip() testset = testset.split("\n") for line in testset: line = line.split(" ") if len(line) == 2: line[0] = os.path.join(base, line[0]) line[1] = int(line[1]) parsed_index.append(line) return parsed_index def get_numeric_loglevel(loglevel): numeric_level = getattr(logging, loglevel.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % loglevel) return numeric_level def load_keras_model(path): return tf.keras.models.load_model(path) def create_leip_runtime_module(base, context): # Collect TVM Context Definitions for execution engine ctx = get_tvm_context(context) # Check for legacy runtime artifacts if os.path.isfile(os.path.join(base, "modelDescription.json")) and os.path.isfile(os.path.join(base, "modelParams.params")): # Load the graph, functions and weights of the function into memory return create_multi_artifact_runtime(base, ctx) return create_single_artifact_runtime(base, ctx) def create_multi_artifact_runtime(base, ctx): graph = load_json(os.path.join(base, "modelDescription.json")) lib = tvm.runtime.load_module(os.path.join(base, "modelLibrary.so")) params = read_binary_file(os.path.join(base, "modelParams.params")) # Reimann cast_params = get_cast_params(params, base, os.path.isfile(os.path.join(base, "quantParams.params"))) graph = json.dumps(graph) # Create TVM runtime module and load weights module = graph_runtime.create(graph, lib, ctx) module.load_params(cast_params) return module def create_single_artifact_runtime(base, ctx): lib = tvm.runtime.load_module(os.path.join(base, "modelLibrary.so")) return tvm.contrib.graph_runtime.GraphModule(lib['default'](ctx)) def get_tvm_context(context): return tvm.device(context) if context in ['cuda', 'cpu', 'gpu'] else tvm.cpu(0) def get_cast_params(loaded_params, base, quant_params_exist): if quant_params_exist: quantization_file = glob.glob(os.path.join(base, "quantParams.params"))[0] loaded_params_qparams = read_binary_file(quantization_file) return dequantize(loaded_params, loaded_params_qparams) return loaded_params def read_binary_file(path): with open(path, "rb") as f: bindata = bytearray(f.read()) return bindata def dequantize(params, q_params): dequantized_dict = {} q_params_dict = relay.load_param_dict(q_params) params_dict = relay.load_param_dict(params) for k, v in params_dict.items(): quant_arr = params_dict[k].asnumpy() q_params = q_params_dict[k].asnumpy() scale = q_params[3] zpoint = q_params[4] dequant_array = np.multiply(scale, (quant_arr - zpoint)).astype(np.float32) dequantized_dict[k] = tvm.runtime.ndarray.array(dequant_array) return relay.save_param_dict(dequantized_dict)
29.752747
128
0.682733
ca65a1d31a020f1618a22db5745636441be1d2dd
8,245
py
Python
vae_restore_seg.py
mevah/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
bbedc446cfe6b028e6e9f9d150931e1e1cccf367
[ "MIT" ]
null
null
null
vae_restore_seg.py
mevah/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
bbedc446cfe6b028e6e9f9d150931e1e1cccf367
[ "MIT" ]
null
null
null
vae_restore_seg.py
mevah/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
bbedc446cfe6b028e6e9f9d150931e1e1cccf367
[ "MIT" ]
1
2022-02-19T11:25:14.000Z
2022-02-19T11:25:14.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 30 16:03:45 2020 @author: himeva """ #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Dec 28 15:26:16 2018 Restoration on VAE @author: syou """ import numpy as np import tensorflow as tf import os import pandas as pd from vars_layers import input_set from vae_graph import q_zx, p_xz, loss from utils import num2str, path_make, data_load from datetime import datetime import h5py # Assign GPU no os.environ["CUDA_VISIBLE_DEVICES"]=os.environ['SGE_GPU'] #<GPU_NO> # Parameter Settings sequence_number = 1 mode = 'FsTVRestoration' model = 'VanillaVAESegloss' start_time = datetime.utcnow().isoformat() rho = np.array([2.2]) batchsize = 60 # restoration batch imageshape = [240,240] dim_z = 1 # latent variable z's channel dim_x = imageshape[0]*imageshape[1] # dimension of input clipstd = [0.0,1.0] interval = 500 # the interval to restore the output niter = 1 # number of intervals restore_steps = niter * interval stepa = 99 # step of changing alpha alphas = np.array([5e-3,2e-3]) # step size gradient_clip = True clipbound = 50 dataset_train = 'BraTS2018train' dataset_test = 'BraTS2018test' datapath = path_make('/scratch_net/biwidl201/himeva/MasterThesis-Meva/','data','') datapath = path_make('','data','') """ The same VAE graph """ # input tf.reset_default_graph() x, x_reshape = input_set(dim_x, imageshape[0], imageshape[1]) x_p, x_p_reshape = input_set(dim_x, imageshape[0], imageshape[1]) bmask_in = tf.placeholder(shape = [None]+ imageshape , dtype = tf.float32) bmask_reshape = tf.reshape(bmask_in, shape = [-1, dim_x]) rho_ = tf.placeholder(tf.float32, shape=()) # the same graph applied qzx_kernels = np.tile([3,3,3,3,3,3,1], [2,1]) # qzx_channels = [64,64,64,64,64,64] z_sampled, z_mean, z_std = q_zx(x_reshape,dim_z,qzx_kernels[0],qzx_kernels[1],qzx_channels) pxz_kernels = np.tile([1,3,3,3,3,3,3], [2,1]) pxz_channels = [64, 64, 64, 64, 64, 64, 1] xz_mean, xz_logvarinv = p_xz(z_sampled, pxz_kernels[0], pxz_kernels[1], pxz_channels, clipstd) _, z_loss, _ = loss(z_mean, z_std, xz_mean, xz_logvarinv, x_reshape) l2 = tf.reduce_sum(tf.squared_difference(tf.reshape(xz_mean, [-1, dim_x]), x), axis = 1) xz_std = tf.exp(- 0.5 * xz_logvarinv) # the loss for the restoration TV = tf.image.total_variation(tf.subtract(x_p_reshape, x_reshape)) loss1 = -1*(l2 + z_loss) loss2 = - rho_ * TV # Gradient dloss/dy grads = tf.gradients([loss1,loss2], [x])[0] upperbound = tf.cast(tf.fill(tf.shape(grads), clipbound), dtype = tf.float32) lowerbound = tf.cast( tf.fill(tf.shape(grads),-1*clipbound), dtype = tf.float32) clipgrads = tf.clip_by_value(grads, lowerbound , upperbound, name = 'cliped_updating_gradient') gradimage = tf.reshape(clipgrads,shape = tf.stack([-1] + imageshape)) gradsmasked = tf.multiply(clipgrads , bmask_reshape) # tensorflow saver setting saver = tf.train.Saver(tf.trainable_variables()) tvars = tf.trainable_variables() sess = tf.Session() # set trained model path modelpath = os.path.join(path_make(model,'CamCANT2','TrainModel'+ num2str(sequence_number)) , 'model','') # load trained model if os.path.exists(modelpath): file = open(modelpath+'model/checkpoint','r') # this will read the first line of the save models. change if one will checkpoint = file.readline() file.close() sess.run(tf.global_variables_initializer()) saver.restore(sess,checkpoint[24:-2]) ckpt = tf.train.get_checkpoint_state(modelpath) trained_step = int(os.path.basename(ckpt.model_checkpoint_path).split('-')[1]) else: raise ValueError('No Trained Model Imported') # setup tensorboard log merged = tf.summary.merge_all() # gathering information of parameter settings info = [['mode', 'slice' + mode], ['sequence number',sequence_number], ['batch size',batchsize], ['dimension of latent variable',dim_z], ['dimension of input image patch',dim_x], ['std lowerbound @ p_x_z output',clipstd], ['trained step of the model',trained_step], ['lambda(s)', rho], ['step size, alpha', alphas], ['restoration steps', restore_steps], ['gradient_clip', gradient_clip], ['simulation',True], ['clipbound for restoration gradient', clipbound], ['model path', modelpath], ['start_time(UTC)',start_time]] infodf = pd.DataFrame(info, columns = ['name','value']) # Restore BraTSLGG restoredata = 'BraTSLGG' MRtest, MRlabel = data_load(process = 'Test', dataset = 'BraTSLGG', datapath = datapath) bmasks = h5py.File( datapath + 'BraTSLGG_data.hdf5', 'r') for rho0 in rho: batchsize = 60 batch = bmasks['Mask'].shape[0]/batchsize indeces = np.arange(batch*batchsize) print 'restore for rho ', rho0 savepath = path_make(model,restoredata, 'Dataslicehe0.06' + mode + num2str(sequence_number)+ '/' + str(rho0)) if not os.path.exists(savepath): os.makedirs(savepath) infodf.to_csv(savepath + 'Parameter_settings.csv', index=False) np.save(os.path.join(savepath, 'index.npy'), indeces) for k in np.arange(batch+1): if k == batch: batchsize2 = bmasks['Label'].shape[0] - batch*batchsize +1 index = range(bmasks['Label'].shape[0]-batchsize2, bmasks['Label'].shape[0]) batchsize = batchsize2 else: index = list(indeces[k*batchsize:(k+1)*batchsize] ) bmask = bmasks['Mask'][list(index)][:,22:180,17:215] rawData = MRtest[list(index)][:,22:180,17:215] labels = MRlabel[list(index)][:,22:180,17:215] step_restore = np.zeros(list(rawData.shape) + [niter]) MC2restore = rawData.reshape(-1,dim_x) MC_paint = MC2restore.copy() print 'Start restoration of image batch ', k for step in range(restore_steps): if step > stepa: alpha = alphas[-1] else: alpha = alphas[0] MC2restore += alpha * sess.run(gradsmasked,feed_dict = {x: MC2restore, x_p: MC_paint, rho_: rho0, bmask_in: bmask}) if step == restore_steps - 1: step_restore[:,:,:,-1] = MC2restore.reshape(batchsize,imageshape[0],imageshape[1]) np.save(os.path.join(savepath, 'restored_images' + str(k) +'.npy'), step_restore) # Restore BraTSHGG restoredata = 'BraTSHGG' MRtest, MRlabel = data_load(process = 'Test', dataset = 'BraTSHGG', datapath = datapath) for rho0 in rho: batchsize = 60 batch = bmasks['Mask'].shape[0]/batchsize indeces = np.arange(batch*batchsize) print 'restore for rho ', rho0 savepath = path_make(model,restoredata, 'Dataslicehe0.06' + mode + num2str(sequence_number)+ '/' + str(rho0)) if not os.path.exists(savepath): os.makedirs(savepath) infodf.to_csv(savepath + 'Parameter_settings.csv', index=False) np.save(os.path.join(savepath, 'index.npy'), indeces) for k in np.arange(batch+1): if k == batch: batchsize2 = bmasks['Label'].shape[0] - batch*batchsize index = range(bmasks['Label'].shape[0]-batchsize2, bmasks['Label'].shape[0]) batchsize = batchsize2 else: index = list(indeces[k*batchsize:(k+1)*batchsize] ) bmask = bmasks['Mask'][list(index)][:,22:180,17:215] rawData = MRtest[list(index)][:,22:180,17:215] labels = MRlabel[list(index)][:,22:180,17:215] step_restore = np.zeros(list(rawData.shape) + [niter]) MC2restore = rawData.reshape(-1,dim_x) MC_paint = MC2restore.copy() print 'Start restoration of image batch ', k for step in range(restore_steps): if step > stepa: alpha = alphas[-1] else: alpha = alphas[0] MC2restore += alpha * sess.run(gradsmasked,feed_dict = {x: MC2restore, x_p: MC_paint, rho_: rho0, bmask_in: bmask}) if step == restore_steps - 1: step_restore[:,:,:,-1] = MC2restore.reshape(batchsize,imageshape[0],imageshape[1]) np.save(os.path.join(savepath, 'restored_images' + str(k) +'.npy'), step_restore) print 'Restoration Finished' sess.close()
38.348837
131
0.654821
87e00060c54c376d4c1793eca6a3c0a219a7ce92
15,312
py
Python
verto/tests/InteractiveTagTest.py
uccser/verto
d36aa88b208f1700fafc033679bd1e9775496d25
[ "MIT" ]
4
2017-04-10T06:09:54.000Z
2019-05-04T02:07:40.000Z
verto/tests/InteractiveTagTest.py
uccser/verto
d36aa88b208f1700fafc033679bd1e9775496d25
[ "MIT" ]
268
2017-04-03T20:40:46.000Z
2022-02-04T20:10:08.000Z
verto/tests/InteractiveTagTest.py
uccser/kordac
d36aa88b208f1700fafc033679bd1e9775496d25
[ "MIT" ]
1
2019-01-07T15:46:31.000Z
2019-01-07T15:46:31.000Z
import markdown from unittest.mock import Mock from collections import defaultdict from verto.VertoExtension import VertoExtension from verto.processors.InteractiveTagBlockProcessor import InteractiveTagBlockProcessor from verto.errors.ArgumentMissingError import ArgumentMissingError from verto.errors.ArgumentValueError import ArgumentValueError from verto.tests.ProcessorTest import ProcessorTest class InteractiveTagTest(ProcessorTest): '''The interactive processor is a simple tag with a complex output that relies on external systems. When writing tests whether or not the thumbnail is externally or internally linked will changed output. If the thumbnail is internal then the required files must be modified to include this image. ''' def __init__(self, *args, **kwargs): '''Set processor name in class for file names. ''' ProcessorTest.__init__(self, *args, **kwargs) self.processor_name = 'interactive-tag' self.tag_argument = 'interactive' self.ext = Mock() self.ext.jinja_templates = {'interactive': ProcessorTest.loadJinjaTemplate(self, 'interactive')} self.ext.processor_info = ProcessorTest.loadProcessorInfo(self) self.ext.required_files = defaultdict(set) def test_whole_page_text(self): '''Test whole page interactive with text is ignored. ''' test_string = self.read_test_file(self.processor_name, 'whole_page_text.md') blocks = self.to_blocks(test_string) self.assertListEqual([False, False, False], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[self.verto_extension]) expected_string = self.read_test_file(self.processor_name, 'whole_page_text_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) required_files = { 'interactives': set(), 'images': set(), 'page_scripts': set(), } self.assertEqual(self.verto_extension.required_files, required_files) def test_iframe_parameters(self): '''Test iframe interactive with parameters is correctly parsed. ''' test_string = self.read_test_file(self.processor_name, 'iframe_parameters.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[self.verto_extension]) expected_string = self.read_test_file(self.processor_name, 'iframe_parameters_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) required_files = { 'interactives': { "binary-cards" }, 'images': set(), 'page_scripts': set(), } self.assertEqual(self.verto_extension.required_files, required_files) def test_in_page_missing_name(self): '''Test ArgumentMissingError is raised when interactive name is not given. ''' test_string = self.read_test_file(self.processor_name, 'in_page_missing_name.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) self.assertRaises(ArgumentMissingError, lambda x: markdown.markdown(x, extensions=[self.verto_extension]), test_string) def test_missing_type(self): '''Test ArgumentMissingError is raised when interactive type is not given. ''' test_string = self.read_test_file(self.processor_name, 'missing_type.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) self.assertRaises(ArgumentMissingError, lambda x: markdown.markdown(x, extensions=[self.verto_extension]), test_string) def test_invalid_type(self): '''Test ArgumentValueError is raised when interactive type is not valid. ''' test_string = self.read_test_file(self.processor_name, 'invalid_type.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) self.assertRaises(ArgumentValueError, lambda x: markdown.markdown(x, extensions=[self.verto_extension]), test_string) def test_multiple_interactives(self): '''Test multiple interactives in one file are all correctly parsed. ''' test_string = self.read_test_file(self.processor_name, 'multiple_interactives.md') blocks = self.to_blocks(test_string) self.assertListEqual([False, True, False, True, False, True, False], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[self.verto_extension]) expected_string = self.read_test_file(self.processor_name, 'multiple_interactives_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) required_files = { 'interactives': { 'binary-cards', 'arrows', 'flying-boxes' }, 'images': { 'binarycards.png' }, 'page_scripts': { 'interactive/flying-boxes/scripts.html' }, } self.assertEqual(self.verto_extension.required_files, required_files) def test_default_thumbnail_in_required_files(self): '''Test the thumbnail for a whole page interactive is required.''' verto_extension_default = VertoExtension( processors=[self.processor_name], ) test_string = self.read_test_file(self.processor_name, 'whole_page_without_thumbnail_parameter.md') converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_default]) self.assertEqual( verto_extension_default.required_files['images'], set(['interactives/binary-cards/img/thumbnail.png']) ) def test_default_thumbnail_not_in_required_files_with_override(self): '''Test the thumbnail for a whole page interactive is not required when overriden.''' verto_extension_default_thumbnail_override = VertoExtension( processors=[self.processor_name], settings={'add_default_interactive_thumbnails_to_required_files': False} ) test_string = self.read_test_file(self.processor_name, 'whole_page_without_thumbnail_parameter.md') converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_default_thumbnail_override]) self.assertEqual( verto_extension_default_thumbnail_override.required_files['images'], set() ) def test_custom_thumbnail_in_required_files(self): '''Test the custom thumbnail for a whole page interactive is required.''' verto_extension_default = VertoExtension( processors=[self.processor_name], ) test_string = self.read_test_file(self.processor_name, 'whole_page_with_thumbnail_parameter.md') converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_default]) self.assertEqual( verto_extension_default.required_files['images'], set(['binarycards.png']) ) def test_custom_thumbnail_not_in_required_files_with_override(self): '''Test the custom thumbnail for a whole page interactive is not required when overriden.''' verto_extension_custom_thumbnail_override = VertoExtension( processors=[self.processor_name], settings={'add_custom_interactive_thumbnails_to_required_files': False} ) test_string = self.read_test_file(self.processor_name, 'whole_page_with_thumbnail_parameter.md') converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_custom_thumbnail_override]) self.assertEqual( verto_extension_custom_thumbnail_override.required_files['images'], set() ) def test_custom_arguments_parameters_true(self): '''Tests to ensure that interactive tag is rendered correctly when parameters argument is required. ''' settings = { 'processor_argument_overrides': { 'interactive-tag': { 'parameters': True } } } verto_extension_custom_rules = VertoExtension( processors=[self.processor_name], settings=settings ) test_string = self.read_test_file(self.processor_name, 'parameters_true.md') blocks = self.to_blocks(test_string) self.assertListEqual([False, True, False], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_custom_rules]) expected_string = self.read_test_file(self.processor_name, 'parameters_true_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) def test_custom_arguments_thumbnail_true(self): '''Tests to ensure that interactive tag is rendered correctly when thumbnail argument is required. ''' settings = { 'processor_argument_overrides': { 'interactive-tag': { 'thumbnail': True } } } verto_extension_custom_rules = VertoExtension( processors=[self.processor_name], settings=settings ) test_string = self.read_test_file(self.processor_name, 'thumbnail_true.md') blocks = self.to_blocks(test_string) self.assertListEqual([False, True, False], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_custom_rules]) expected_string = self.read_test_file(self.processor_name, 'thumbnail_true_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) def test_custom_arguments_parameters_and_thumbnail_true(self): '''Tests to ensure that interactive tag is rendered correctly when type argument is not required and parameters argument is required. ''' settings = { 'processor_argument_overrides': { 'interactive-tag': { 'parameters': True, 'thumbnail': True } } } verto_extension_custom_rules = VertoExtension( processors=[self.processor_name], settings=settings ) test_string = self.read_test_file(self.processor_name, 'parameters_and_thumbnail_true.md') blocks = self.to_blocks(test_string) self.assertListEqual([False, True, False], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[verto_extension_custom_rules]) expected_string = self.read_test_file(self.processor_name, 'parameters_and_thumbnail_true_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) # ~ # Doc Tests # ~ def test_doc_example_in_page(self): '''Example of an in-page interactive. ''' test_string = self.read_test_file(self.processor_name, 'doc_example_in_page_usage.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[self.verto_extension]) expected_string = self.read_test_file(self.processor_name, 'doc_example_in_page_usage_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) required_files = { 'interactives': { 'binary-cards' }, 'images': set(), 'page_scripts': { 'interactive/binary-cards/scripts.html' }, } self.assertEqual(self.verto_extension.required_files, required_files) def test_doc_example_iframe(self): '''Example of an iframe interactive. ''' test_string = self.read_test_file(self.processor_name, 'doc_example_iframe_usage.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) converted_test_string = markdown.markdown(test_string, extensions=[self.verto_extension]) expected_string = self.read_test_file(self.processor_name, 'doc_example_iframe_usage_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) required_files = { 'interactives': { 'binary-cards' }, 'images': set(), 'page_scripts': set(), } self.assertEqual(self.verto_extension.required_files, required_files) def test_doc_example_override_html(self): '''Example showing overriding the html-template. ''' test_string = self.read_test_file(self.processor_name, 'doc_example_override_html.md') blocks = self.to_blocks(test_string) self.assertListEqual([True], [InteractiveTagBlockProcessor(self.ext, self.md.parser).test(blocks, block) for block in blocks], msg='"{}"'.format(test_string)) html_template = self.read_test_file(self.processor_name, 'doc_example_override_html_template.html', strip=True) verto_extension = VertoExtension([self.processor_name], html_templates={self.tag_argument: html_template}) converted_test_string = markdown.markdown(test_string, extensions=[verto_extension]) expected_string = self.read_test_file(self.processor_name, 'doc_example_override_html_expected.html', strip=True) self.assertEqual(expected_string, converted_test_string) required_files = { 'interactives': { 'binary-cards' }, 'images': { 'binarycards.png' }, 'page_scripts': set(), } self.assertEqual(verto_extension.required_files, required_files)
46.969325
206
0.685867
50b46680f9e1bf708b16f8142498e38c2e805278
2,812
py
Python
covid-chestxray-dataset-master/scripts/browser.py
dhruv-varshney/dhrCOVID-19-Testing-Using-X-Ray-Images-Web-App-Development
4c37df7e47d32af255c26729d6c454759819b8c3
[ "MIT" ]
2
2021-10-06T15:17:33.000Z
2021-11-03T05:20:55.000Z
covid-chestxray-dataset-master/scripts/browser.py
dhruv-varshney/dhrCOVID-19-Testing-Using-X-Ray-Images-Web-App-Development
4c37df7e47d32af255c26729d6c454759819b8c3
[ "MIT" ]
null
null
null
covid-chestxray-dataset-master/scripts/browser.py
dhruv-varshney/dhrCOVID-19-Testing-Using-X-Ray-Images-Web-App-Development
4c37df7e47d32af255c26729d6c454759819b8c3
[ "MIT" ]
null
null
null
import os import shutil from selenium import webdriver import time import tempfile chromedriver_path = os.path.abspath( os.path.join( os.path.dirname(__file__), "../../chromedriver" ) ) class Browser(webdriver.Chrome): def __init__(self, downloads_dir=None): self.tempdir = None if downloads_dir is None: self.tempdir = tempfile.TemporaryDirectory() self.downloads_dir = self.tempdir.name print("Using temporary directory", self.downloads_dir) else: self.downloads_dir = downloads_dir options = webdriver.ChromeOptions() if self.downloads_dir is not None: options.add_experimental_option("prefs",{"download.default_directory":self.downloads_dir}) options.gpu = False options.headless = False options.add_extension('extension.crx') #print(chromedriver_path) desired = options.to_capabilities() desired['loggingPrefs'] = { 'performance': 'ALL'} super().__init__( desired_capabilities=desired, executable_path = chromedriver_path ) def get_local(self, path): self.get("file://"+ os.path.abspath(path)) def save_mhtml(self, filename): wait_time = 10 start_time = time.time() #https://stackoverflow.com/questions/39327032/how-to-get-the-latest-file-in-a-folder-using-python print("Saving from MHTML") files_before = os.listdir(self.downloads_dir) print("listed files before") self.execute_script(""" var data = { type: "FROM_PAGE", text: "page.mhtml" }; window.postMessage(data, "*"); """) print("executed script") while True: files_after = os.listdir(self.downloads_dir) new_files = list(set(files_after).difference(set(files_before))) if len(new_files) > 1: print("Too many files!") time.sleep(5) continue elif len(new_files) == 1: most_recent_download = os.path.join(self.downloads_dir, new_files[0]) if most_recent_download.endswith("crdownload"): #Still downloading continue else: print("waiting five seconds just in case") downloaded = True time.sleep(5) shutil.move(most_recent_download, filename) break else: if time.time() - start_time > wait_time: #Start over return self.save_mhtml(filename) def close(self): super().close() if self.tempdir is not None: self.tempdir.cleanup()
33.879518
105
0.575391
776d42043b5d8a85e12297cc6fba24583c7e873b
9,590
py
Python
VoiceAssistant.py
Lee-Kevin/VoiceAssistant
da37dc6b2bb57d7def5595d515502a37786ff853
[ "MIT" ]
null
null
null
VoiceAssistant.py
Lee-Kevin/VoiceAssistant
da37dc6b2bb57d7def5595d515502a37786ff853
[ "MIT" ]
null
null
null
VoiceAssistant.py
Lee-Kevin/VoiceAssistant
da37dc6b2bb57d7def5595d515502a37786ff853
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging from evernote.api.client import EvernoteClient from HTMLParser import HTMLParser import talkey from weather import weatherReport import threading import time # import library using grovepi from grovepi import * from grove_oled import * from Nettime import TimeUpdate logging.basicConfig(level='INFO') # define a global threading lock Global_Lock = threading.Lock() class MyHTMLParser(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.ToDo = [] self.Flag = None def handle_starttag(self, tag, attrs): logging.info("Encountered a start tag: %s, %s", tag,attrs) if tag == "en-todo": logging.info( "this is to do tag:") if len(attrs) == 0: # Here is the things that need to be done self.Flag = True logging.info("Here is need to be done") else: if (attrs[0][0] == "checked" and attrs[0][1] == "true"): logging.info("Here is already done") def handle_data(self, data): #print("Encountered some data :", data) if self.Flag == True: logging.info(data) self.Flag = False self.ToDo.append(data) else: pass def GetResult(self): result = self.ToDo self.ToDo = [] return result # 3bee4c0c-2caf-413c-9e49-d51da6fcdc8c dev_token = "S=s1:U=92b7b:E=15d39d06877:C=155e21f3928:P=1cd:A=en-devtoken:V=2:H=1304173954fbc76d7432cdf262f7b228" noteGuid = "1e77d88b-49e6-4410-aaf5-c85c3bb70a0d" tts = talkey.Talkey() tts.say("This is a test") # Sign in the Evernote client = None noteStore = None def SignInEvernote(): global client,noteStore result = False try: client = EvernoteClient(token=dev_token) userStore = client.get_user_store() user = userStore.getUser() # here will throw an error logging.info(user.username) noteStore = client.get_note_store() result = True except Exception, e: logging.warn(e) return result def GetNoteContent(noteGuid): global noteStore content = None try: content = noteStore.getNoteContent(noteGuid) except Exception,e: logging.warn(e) return content #parser = MyHTMLParser() #parser.feed(content) #This is the Time Out var. TimeOutIndex = 0 weatherSpeach = None city = "shenzhen" weather = weatherReport(city) def weatherInformation(weather): speach = None if weather.getWeather() == True: speach = ("The weather is %s. Temperature: %.1f. Humidity: %.1f%%. Wind speed: %.1f meters per second" % (weather.weather_desc,weather.temperature,weather.humidity,weather.wind_speed)) logging.info(speach) return speach # A new class that used to manage the thread class GetWeatherInfoThread(threading.Thread): def __init__(self,timeout = 1.0): threading.Thread.__init__(self) self.timeout = timeout self._running = True self.weatherSpeach = None self.subthread = None def terminate(self): self._running = False def runloop(self,TimeInterval): self._running = True def TargetFun(self, _TimeInterval): while self._running: global weather speach = weatherInformation(weather) if speach != None: global Global_Lock Global_Lock.acquire() self.weatherSpeach = speach Global_Lock.release() else: pass import time time.sleep(_TimeInterval) self.subthread = threading.Thread(target=TargetFun,args=(self, TimeInterval,)) self.subthread.start() def isRunning(self): if self.subthread.is_alive(): return True else: return False # A new class that used to manage the thread class GetEvernoteThread(threading.Thread): def __init__(self,timeout = 1.0): threading.Thread.__init__(self) self.timeout = timeout self._running = True self.content = None self.subthread = None def terminate(self): self._running = False def runloop(self,TimeInterval,noteGuid): self._running = True def TargetFun(self, _TimeInterval,_noteGuid): while self._running: content = GetNoteContent(_noteGuid) if content != None: global Global_Lock Global_Lock.acquire() self.content = content Global_Lock.release() else: pass import time time.sleep(_TimeInterval) self.subthread = threading.Thread(target=TargetFun,args=(self, TimeInterval,noteGuid)) self.subthread.start() def isRunning(self): if self.subthread.is_alive(): return True else: return False class OLEDUpdateThread(threading.Thread): def __init__(self,timeout = 1.0): threading.Thread.__init__(self) oled_init() oled_clearDisplay() oled_setNormalDisplay() oled_setVerticalMode() time.sleep(.1) oled_setTextXY(0,1) #Print "WEATHER" at line 1 oled_putString("Assistant") oled_setTextXY(1,0) #Print "WEATHER" at line 1 oled_putString("------------") oled_setTextXY(3,1) #Print "WEATHER" at line 1 oled_putString("----- --:--") oled_setTextXY(5,0) #Print "WEATHER" at line 1 oled_putString("------------") self.timeout = timeout self._running = True self.subthread = None def terminate(self): self._running = False def runloop(self,TimeInterval): self._running = True def TargetFun(self,_TimeInterval): while self._running: try: global weather oled_setTextXY(3,1) #Print "WEATHER" at line 1 oled_putString(TimeUpdate()) oled_setTextXY(6,1) #Print "WEATHER" at line 1 oled_putString(weather.weather_desc) oled_setTextXY(8,1) #Print "WEATHER" at line 1 oled_putString(str(weather.temperature)+"*C") oled_setTextXY(10,1) #Print "WEATHER" at line 1 oled_putString("Power@Seeed") import time time.sleep(_TimeInterval) logging.info("This is OLED threading") except Exception,e: logging.warn(e) self.subthread = threading.Thread(target=TargetFun,args=(self, TimeInterval)) self.subthread.start() def isRunning(self): if self.subthread.is_alive(): return True else: return False # The handle of door port HandlePort = 14 # A0 Port pinMode(HandlePort,"INPUT") def ifButtonPressed(): global HandlePort,Task1,Task2 try: sensor_value = analogRead(HandlePort) # logging.info("The Sensor Value: %s",str(sensor_value)) if sensor_value > 800: return True else: return False except Exception,e: logging.warn(e) if __name__ == "__main__": Task1Weather = GetWeatherInfoThread() Task1Weather.runloop(50) # The Time Interval is 5 second Task3OLED = OLEDUpdateThread() Task3OLED.runloop(55) SignResult = SignInEvernote() while False == SignResult: TimeOutIndex = TimeOutIndex + 1 logging.info(TimeOutIndex) if TimeOutIndex == 10: logging.warn("Still Can't Sign in the Evernote") TimeOutIndex = 0 break SignResult = SignInEvernote() time.sleep(5) logging.warn("Can't Sign in the Evernote") # At here we're successed sign in the evernote Task2Evernote = GetEvernoteThread() if True == SignResult: Task2Evernote.runloop(10,noteGuid) else: pass parser = MyHTMLParser() logging.info("Next we'll in loopever") while True: try: if True == ifButtonPressed(): logging.info("There is someone want to go out") logging.info(Task1Weather.weatherSpeach) if Task1Weather.weatherSpeach != None: tts.say(Task1Weather.weatherSpeach) else: pass if Task2Evernote.content != None: parser.feed(Task2Evernote.content) content = parser.GetResult() for result in content: logging.info("The result is :%s",result) tts.say(result) if not SignResult: tts.say("Don't forget take out the garbage") time.sleep(30) else : pass time.sleep(.1) except KeyboardInterrupt: Task1Weather.terminate() Task2Evernote.terminate() Task3OLED.terminate() exit() except Exception, e: logging.info(e)
31.136364
192
0.565589
a667fcd4135d13e37e601156e5153914d11cb4bb
1,599
py
Python
knowledge_repo/app/deploy/gunicorn.py
johri21/knowledge-repo
d22a459ed129bd2eebbfec32e180069bcaf83d9a
[ "Apache-2.0" ]
1
2019-04-09T20:11:15.000Z
2019-04-09T20:11:15.000Z
knowledge_repo/app/deploy/gunicorn.py
johri21/knowledge-repo
d22a459ed129bd2eebbfec32e180069bcaf83d9a
[ "Apache-2.0" ]
null
null
null
knowledge_repo/app/deploy/gunicorn.py
johri21/knowledge-repo
d22a459ed129bd2eebbfec32e180069bcaf83d9a
[ "Apache-2.0" ]
1
2019-05-06T13:22:14.000Z
2019-05-06T13:22:14.000Z
""" gunicorn.py Utilities for running the knowledge app via gunicorn. Adapted from example in http://docs.gunicorn.org/en/stable/custom.html. """ from __future__ import absolute_import from gunicorn.app.base import BaseApplication from .common import KnowledgeDeployer class GunicornDeployer(BaseApplication, KnowledgeDeployer): _registry_keys = ['gunicorn'] def __init__(self, *args, **kwargs): KnowledgeDeployer.__init__(self, *args, **kwargs) BaseApplication.__init__(self) def load_config(self): env_args = self.cfg.parser().parse_args(self.cfg.get_cmd_args_from_env()) # Load up environment configuration. for key, value in vars(env_args).items(): if key != 'args' and value is not None: self.cfg.set(key, value) # Update the configuration with the options specified via KnowledgeDeployer options = { 'bind': u'{}:{}'.format(self.host, self.port), 'workers': self.workers, 'timeout': self.timeout, } if self.app.config['DEPLOY_HTTPS']: options['certfile'] = self.app.config['SSL_CERT']['cert'] options['keyfile'] = self.app.config['SSL_CERT']['key'] for key, value in options.items(): self.cfg.set(key, value) def load(self): return self.builder_func() def run(self): if not self.app.check_thread_support(): raise RuntimeError("Database configuration is not suitable for deployment (not thread-safe).") return BaseApplication.run(self)
31.98
106
0.644153
3cda8396fd1d40f0796a5f2653bbd5d9e74679e8
895
py
Python
tlssecondopinion/urls.py
MiWCryptAnalytics/tlssecondopinion
f1eebf753cc898ba546bf1371f3ce1ea848d17d6
[ "BSD-2-Clause" ]
null
null
null
tlssecondopinion/urls.py
MiWCryptAnalytics/tlssecondopinion
f1eebf753cc898ba546bf1371f3ce1ea848d17d6
[ "BSD-2-Clause" ]
4
2017-04-13T02:51:42.000Z
2017-04-13T02:53:12.000Z
tlssecondopinion/urls.py
MiWCryptAnalytics/tlssecondopinion
f1eebf753cc898ba546bf1371f3ce1ea848d17d6
[ "BSD-2-Clause" ]
null
null
null
"""tlssecondopinion URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin from . import views import tlsscanner urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^admin/', include(admin.site.urls)), url(r'^scan/', include('tlsscanner.urls')), ]
34.423077
77
0.699441
0a0209ad5dbb303b1a095721bb81092d757703f0
399
py
Python
numba_compile.py
saturdays/hyperlearn
42b80c2b83c43d8bb84730efc3a9614e6affc01d
[ "BSD-3-Clause" ]
null
null
null
numba_compile.py
saturdays/hyperlearn
42b80c2b83c43d8bb84730efc3a9614e6affc01d
[ "BSD-3-Clause" ]
null
null
null
numba_compile.py
saturdays/hyperlearn
42b80c2b83c43d8bb84730efc3a9614e6affc01d
[ "BSD-3-Clause" ]
null
null
null
print("******* Now compiling Numba and LLVM code..... *******") print("******* This can be VERY SLOW. Please wait.... *******\n" "Progress: |||||||||||||||", end = "") from hyperlearn.numba.funcs import * print("|||||||||||||||", end = "") from hyperlearn.utils import * print("|||||||||||||||") from hyperlearn.stats import * print("******* Code has been successfully compiled!:) *******")
23.470588
64
0.516291
eef2d22aab0bd829ef7e53418473d6a91f19fa09
6,219
py
Python
uuv_control/uuv_control_utils/scripts/set_thruster_state.py
jpliquid/testActions2
6f314fa1430f654e5943e47ac278101b9c24f938
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
uuv_control/uuv_control_utils/scripts/set_thruster_state.py
jpliquid/testActions2
6f314fa1430f654e5943e47ac278101b9c24f938
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
uuv_control/uuv_control_utils/scripts/set_thruster_state.py
jpliquid/testActions2
6f314fa1430f654e5943e47ac278101b9c24f938
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2020 The Plankton Authors. # All rights reserved. # # This source code is derived from UUV Simulator # (https://github.com/uuvsimulator/uuv_simulator) # Copyright (c) 2016-2019 The UUV Simulator Authors # licensed under the Apache license, Version 2.0 # cf. 3rd-party-licenses.txt file in the root directory of this source tree. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rclpy from uuv_gazebo_ros_plugins_msgs.srv import SetThrusterState from plankton_utils.time import time_in_float_sec from plankton_utils.time import is_sim_time def build_service_name(ns, thruster_id, service_name) -> str : return '/%s/thrusters/id_%d/%s' % (ns, thruster_id, service_name) #============================================================================== def main(): rclpy.init() sim_time_param = is_sim_time() node = rclpy.create_node( 'set_thrusters_states', allow_undeclared_parameters=True, automatically_declare_parameters_from_overrides=True, parameter_overrides=[sim_time_param]) # sim_time = rclpy.parameter.Parameter('use_sim_time', rclpy.Parameter.Type.BOOL, True) # node.set_parameters([sim_time]) node.get_logger().info('Set the state of thrusters for vehicle, namespace=' + node.get_namespace()) starting_time = 0.0 if node.has_parameter('starting_time'): starting_time = node.get_parameter('starting_time').value node.get_logger().info('Starting time={} s'.format(starting_time)) duration = -1.0 if node.has_parameter('duration'): duration = node.get_parameter('duration').value if duration <= 0.0: raise RuntimeError('Duration not set or negative, leaving node...') node.get_logger().info('Duration [s]=', ('Inf.' if duration < 0 else str(duration))) if node.has_parameter('is_on'): is_on = bool(node.get_parameter('is_on').get_parameter_value().bool_value) else: raise RuntimeError('is_on state flag not provided') thruster_id = -1 if node.has_parameter('thruster_id'): if node.get_parameter('thruster_id').type_ == rclpy.Parameter.Type.INTEGER: thruster_id = node.get_parameter('thruster_id').get_parameter_value().integer_value() else: raise RuntimeError('Thruster ID not given') if thruster_id < 0: raise RuntimeError('Invalid thruster ID') node.get_logger().info('Setting state of thruster #{} as {}'.format(thruster_id, 'ON' if is_on else 'OFF')) vehicle_name = node.get_namespace().replace('/', '') srv_name = build_service_name(vehicle_name, thruster_id, 'set_thruster_state') try: set_state = node.create_client(SetThrusterState, srv_name) except Exception as e: raise RuntimeError('Service call failed, error=' + str(e)) if not set_state.wait_for_service(timeout_sec=2): raise RuntimeError('Service %s not available! Closing node...' %(srv_name)) FREQ = 100 rate = node.create_rate(FREQ) thread = threading.Thread(target=rclpy.spin, args=(node,), daemon=True) thread.start() while time_in_float_sec(node.get_clock().now()) < starting_time: #Just a guard for really short timeouts if 1.0 / FREQ < starting_time: rate.sleep() # rate = node.create_rate(100) # while time_in_float_sec(node.get_clock().now()) < starting_time: # rate.sleep() req = SetThrusterState.Request() req.on = is_on success = set_state.call(req) future = set_state.call_async(req) #NB : spining is done from another thread while not future.done(): try: response = future.result() except Exception as e: node.get_logger().error('Service call ' + srv_name + ' failed, error=' + str(e)): else: node.get_logger().info('Time={} s'.format(time_in_float_sec(node.get_clock().now().get_time()))) node.get_logger().info('Current state of thruster #{}={}'.format(thruster_id, 'ON' if is_on else 'OFF')) # if success: # print('Time={} s'.format(time_in_float_sec(node.get_clock().now().get_time()))) # print('Current state of thruster #{}={}'.format(thruster_id, 'ON' if is_on else 'OFF')) if duration > 0: while time_in_float_sec(node.get_clock().now()) < starting_time + duration: if 1.0 / FREQ < starting_time + duration: rate.sleep() # rate = node.create_rate(100) # while time_in_float_sec(node.get_clock().now()) < starting_time + duration: # rate.sleep() req.on = not is_on success = set_state.call(req) while not future.done(): try: response = future.result() except Exception as e: node.get_logger().error('Service call ' + srv_name + ' failed, error=' + str(e)): else: node.get_logger().info('Time={} s'.format(time_in_float_sec(node.get_clock().now().get_time()))) node.get_logger().info('Returning to previous state of thruster #{}={}'.format(thruster_id, 'ON' if not is_on else 'OFF')) # if success: # print('Time={} s'.format(time_in_float_sec(node.get_clock().now().get_time()))) # print('Returning to previous state of thruster #{}={}'.format(thruster_id, 'ON' if not is_on else 'OFF')) node.get_logger().info('Leaving node...') node.destroy_node() rclpy.shutdown() thread.join() #============================================================================== if __name__ == '__main__': try: main() except Exception as e: print('Something went wrong: ' + str(e))
38.153374
138
0.644798
992511a0d9d3aa34cdce51276881f3f775e4493f
439
py
Python
dice_prog/mult_diceroll.py
fededev01/programs-py
62c633d4958540f98c0914020ad123fda55504dc
[ "Apache-2.0" ]
null
null
null
dice_prog/mult_diceroll.py
fededev01/programs-py
62c633d4958540f98c0914020ad123fda55504dc
[ "Apache-2.0" ]
null
null
null
dice_prog/mult_diceroll.py
fededev01/programs-py
62c633d4958540f98c0914020ad123fda55504dc
[ "Apache-2.0" ]
null
null
null
import random import time roll_again = "yes" while roll_again == "yes" or roll_again == "y": print("Rolling the dices...") time.sleep(2) fir = random.randint(1,6) sec = random.randint(1,6) print("Your first number is: ") time.sleep(2) print(fir) print("Your second number is: ") time.sleep(2) print(sec) roll_again=input("Vuoi continuare a giocare? (yes/y)") print("You ended the game!")
23.105263
58
0.624146
0713dfcc7991ceaf2417e066944d9c380f603416
953
py
Python
security_monkey/watchers/iam/iam_user.py
cncoder/security_monkey
7d14c00e6c18a0edf87830ff4191007b6296b945
[ "Apache-2.0" ]
null
null
null
security_monkey/watchers/iam/iam_user.py
cncoder/security_monkey
7d14c00e6c18a0edf87830ff4191007b6296b945
[ "Apache-2.0" ]
null
null
null
security_monkey/watchers/iam/iam_user.py
cncoder/security_monkey
7d14c00e6c18a0edf87830ff4191007b6296b945
[ "Apache-2.0" ]
1
2019-06-15T14:03:34.000Z
2019-06-15T14:03:34.000Z
from security_monkey.cloudaux_watcher import CloudAuxWatcher from cloudaux.aws.iam import list_users from cloudaux.orchestration.aws.iam.user import get_user class IAMUser(CloudAuxWatcher): index = 'iamuser' i_am_singular = 'IAM User' i_am_plural = 'IAM Users' def __init__(self, *args, **kwargs): super(IAMUser, self).__init__(*args, **kwargs) self.honor_ephemerals = True self.ephemeral_paths = [ "PasswordLastUsed", "AccessKeys$*$LastUsedDate", "AccessKeys$*$Region", "AccessKeys$*$ServiceName", "_version"] self.override_region = 'universal' def get_name_from_list_output(self, item): return item['UserName'] def _get_regions(self): return ['cn-north-1'] def list_method(self, **kwargs): return list_users(**kwargs) def get_method(self, item, **kwargs): return get_user(item, **kwargs)
28.878788
60
0.644281
cd4a875e9eb95fab65008f88e3afc6bf01fc7cd4
3,553
py
Python
test/test_heartbeat_monitoring.py
Namyalg/mongo-python-driver
fc85a24888e3c1fe556eb8f755aeecb053b5815e
[ "Apache-2.0" ]
null
null
null
test/test_heartbeat_monitoring.py
Namyalg/mongo-python-driver
fc85a24888e3c1fe556eb8f755aeecb053b5815e
[ "Apache-2.0" ]
null
null
null
test/test_heartbeat_monitoring.py
Namyalg/mongo-python-driver
fc85a24888e3c1fe556eb8f755aeecb053b5815e
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test the monitoring of the server heartbeats.""" import sys import threading sys.path[0:0] = [""] from test import IntegrationTest, client_knobs, unittest from test.utils import HeartbeatEventListener, MockPool, single_client, wait_until from pymongo.errors import ConnectionFailure from pymongo.hello import Hello, HelloCompat from pymongo.monitor import Monitor class TestHeartbeatMonitoring(IntegrationTest): def create_mock_monitor(self, responses, uri, expected_results): listener = HeartbeatEventListener() with client_knobs( heartbeat_frequency=0.1, min_heartbeat_interval=0.1, events_queue_frequency=0.1 ): class MockMonitor(Monitor): def _check_with_socket(self, *args, **kwargs): if isinstance(responses[1], Exception): raise responses[1] return Hello(responses[1]), 99 m = single_client( h=uri, event_listeners=(listener,), _monitor_class=MockMonitor, _pool_class=MockPool ) expected_len = len(expected_results) # Wait for *at least* expected_len number of results. The # monitor thread may run multiple times during the execution # of this test. wait_until(lambda: len(listener.events) >= expected_len, "publish all events") try: # zip gives us len(expected_results) pairs. for expected, actual in zip(expected_results, listener.events): self.assertEqual(expected, actual.__class__.__name__) self.assertEqual(actual.connection_id, responses[0]) if expected != "ServerHeartbeatStartedEvent": if isinstance(actual.reply, Hello): self.assertEqual(actual.duration, 99) self.assertEqual(actual.reply._doc, responses[1]) else: self.assertEqual(actual.reply, responses[1]) finally: m.close() def test_standalone(self): responses = ( ("a", 27017), {HelloCompat.LEGACY_CMD: True, "maxWireVersion": 4, "minWireVersion": 0, "ok": 1}, ) uri = "mongodb://a:27017" expected_results = ["ServerHeartbeatStartedEvent", "ServerHeartbeatSucceededEvent"] self.create_mock_monitor(responses, uri, expected_results) def test_standalone_error(self): responses = (("a", 27017), ConnectionFailure("SPECIAL MESSAGE")) uri = "mongodb://a:27017" # _check_with_socket failing results in a second attempt. expected_results = [ "ServerHeartbeatStartedEvent", "ServerHeartbeatFailedEvent", "ServerHeartbeatStartedEvent", "ServerHeartbeatFailedEvent", ] self.create_mock_monitor(responses, uri, expected_results) if __name__ == "__main__": unittest.main()
37.797872
100
0.650155
ff0a6249fe000bcd8206c203319547d893f8d93d
8,559
py
Python
YOLO/Stronger-yolo-pytorch/dataset/augment/image.py
ForrestPi/ObjectDetection
54e0821e73f67be5360c36f01229a123c34ab3b3
[ "MIT" ]
12
2020-03-25T01:24:22.000Z
2021-09-18T06:40:16.000Z
YOLO/Stronger-yolo-pytorch/dataset/augment/image.py
ForrestPi/ObjectDetection
54e0821e73f67be5360c36f01229a123c34ab3b3
[ "MIT" ]
1
2020-04-22T07:52:36.000Z
2020-04-22T07:52:36.000Z
YOLO/Stronger-yolo-pytorch/dataset/augment/image.py
ForrestPi/ObjectDetection
54e0821e73f67be5360c36f01229a123c34ab3b3
[ "MIT" ]
4
2020-03-25T01:24:26.000Z
2020-09-20T11:29:09.000Z
import cv2 import numpy as np import random from PIL import Image import matplotlib.pyplot as plt def fixed_crop(src, x0, y0, w, h, size=None, interp=2): """Crop src at fixed location, and (optionally) resize it to size. Parameters ---------- src : NDArray Input image x0 : int Left boundary of the cropping area y0 : int Top boundary of the cropping area w : int Width of the cropping area h : int Height of the cropping area size : tuple of (w, h) Optional, resize to new size after cropping interp : int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray An `NDArray` containing the cropped image. """ img = src[y0:y0+h,x0:x0+w,:] img=cv2.resize(img,(w,h)) return img def random_flip(src, px=0, py=0, copy=False): """Randomly flip image along horizontal and vertical with probabilities. Parameters ---------- src : mxnet.nd.NDArray Input image with HWC format. px : float Horizontal flip probability [0, 1]. py : float Vertical flip probability [0, 1]. copy : bool If `True`, return a copy of input Returns ------- mxnet.nd.NDArray Augmented image. tuple Tuple of (flip_x, flip_y), records of whether flips are applied. """ flip_y = np.random.choice([False, True], p=[1 - py, py]) flip_x = np.random.choice([False, True], p=[1 - px, px]) if flip_y: src = np.flipud(src) if flip_x: src = np.fliplr(src) if copy: src = src.copy() return src, (flip_x, flip_y) def random_color_distort(src, brightness_delta=32, contrast_low=0.5, contrast_high=1.5, saturation_low=0.5, saturation_high=1.5, hue_delta=18): """Randomly distort image color space. Note that input image should in original range [0, 255]. Parameters ---------- src : mxnet.nd.NDArray Input image as HWC format. brightness_delta : int Maximum brightness delta. Defaults to 32. contrast_low : float Lowest contrast. Defaults to 0.5. contrast_high : float Highest contrast. Defaults to 1.5. saturation_low : float Lowest saturation. Defaults to 0.5. saturation_high : float Highest saturation. Defaults to 1.5. hue_delta : int Maximum hue delta. Defaults to 18. Returns ------- mxnet.nd.NDArray Distorted image in HWC format. """ def brightness(src, delta, p=0.5): """Brightness distortion.""" if np.random.uniform(0, 1) > p: delta = np.random.uniform(-delta, delta) src += delta return src return src def contrast(src, low, high, p=0.5): """Contrast distortion""" if np.random.uniform(0, 1) > p: alpha = np.random.uniform(low, high) src *= alpha return src return src def saturation(src, low, high, p=0.5): """Saturation distortion.""" if np.random.uniform(0, 1) > p: alpha = np.random.uniform(low, high) gray = src * np.array([[[0.299, 0.587, 0.114]]]) gray = np.sum(gray, axis=2, keepdims=True) gray *= (1.0 - alpha) src *= alpha src += gray return src return src def hue(src, delta, p=0.5): """Hue distortion""" if np.random.uniform(0, 1) > p: alpha = random.uniform(-delta, delta) u = np.cos(alpha * np.pi) w = np.sin(alpha * np.pi) bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]]) tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321], [0.211, -0.523, 0.311]]) ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647], [1.0, -1.107, 1.705]]) t = np.dot(np.dot(ityiq, bt), tyiq).T src = np.dot(src, np.array(t)) return src return src src = src.astype('float32') # brightness src = brightness(src, brightness_delta) # color jitter if np.random.randint(0, 2): src = contrast(src, contrast_low, contrast_high) src = saturation(src, saturation_low, saturation_high) src = hue(src, hue_delta) else: src = saturation(src, saturation_low, saturation_high) src = hue(src, hue_delta) src = contrast(src, contrast_low, contrast_high) return src def impad_to_square(img, pad_size): '''Pad an image to ensure each edge to equal to pad_size. Args --- img: [height, width, channels]. Image to be padded pad_size: Int. Returns --- ndarray: The padded image with shape of [pad_size, pad_size, channels]. ''' shape = (pad_size, pad_size, img.shape[-1]) pad = np.zeros(shape, dtype=img.dtype) pad[:img.shape[0], :img.shape[1], ...] = img return pad def impad_to_multiple(img, divisor): '''Pad an image to ensure each edge to be multiple to some number. Args --- img: [height, width, channels]. Image to be padded. divisor: Int. Padded image edges will be multiple to divisor. Returns --- ndarray: The padded image. ''' pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor shape = (pad_h, pad_w, img.shape[-1]) pad = np.zeros(shape, dtype=img.dtype) pad[:img.shape[0], :img.shape[1], ...] = img return pad def img_resize(img, out_size): '''Resize image while keeping the aspect ratio. Args --- img: [height, width, channels]. The input image. out_size: Tuple of 2 integers. the image will be rescaled as large as possible within the scale,(w,h) Returns --- np.ndarray: the scaled image. ''' # h, w = img.shape[:2] # max_long_edge = max(out_size) # max_short_edge = min(out_size) # scale_factor = min(max_long_edge / max(h, w), # max_short_edge / min(h, w)) # # new_size = (int(w * float(scale_factor) + 0.5), # int(h * float(scale_factor) + 0.5)) rescaled_img = cv2.resize( img, out_size, interpolation=cv2.INTER_LINEAR) return rescaled_img def imnormalize(img, mean, std): '''Normalize the image. Args --- img: [height, width, channel] mean: Tuple or np.ndarray. [3] std: Tuple or np.ndarray. [3] Returns --- np.ndarray: the normalized image. ''' img=img/255.0 img = (img - mean) / std return img.astype(np.float32) def imdenormalize(norm_img, mean, std): '''Denormalize the image. Args --- norm_img: [height, width, channel] mean: Tuple or np.ndarray. [3] std: Tuple or np.ndarray. [3] Returns --- np.ndarray: the denormalized image. ''' img = norm_img * std + mean return img.astype(np.float32) def random_expand(src, max_ratio=2, keep_ratio=True): """Random expand original image with borders, this is identical to placing the original image on a larger canvas. Parameters ---------- src : mxnet.nd.NDArray The original image with HWC format. max_ratio : int or float Maximum ratio of the output image on both direction(vertical and horizontal) fill : int or float or array-like The value(s) for padded borders. If `fill` is numerical type, RGB channels will be padded with single value. Otherwise `fill` must have same length as image channels, which resulted in padding with per-channel values. keep_ratio : bool If `True`, will keep output image the same aspect ratio as input. Returns ------- mxnet.nd.NDArray Augmented image. tuple Tuple of (offset_x, offset_y, new_width, new_height) """ if max_ratio <= 1: return src, (0, 0, src.shape[1], src.shape[0]) h, w, c = src.shape ratio_x = random.uniform(1, max_ratio) if keep_ratio: ratio_y = ratio_x else: ratio_y = random.uniform(1, max_ratio) oh, ow = int(h * ratio_y), int(w * ratio_x) off_y = random.randint(0, oh - h) off_x = random.randint(0, ow - w) dst=np.zeros(shape=(oh,ow,c)) dst[off_y:off_y + h, off_x:off_x + w, :] = src return dst, (off_x, off_y, ow, oh) def makeImgPyramids(imgs,scales,flip=False): rescaled_imgs=[] for scale in scales: rescaled_img=[] for img in imgs: scaled_img=cv2.resize(img,dsize=(scale,scale)) rescaled_img.append(scaled_img) rescaled_imgs.append(np.array(rescaled_img)) if not flip: return rescaled_imgs else: fliped_imgs=[] for pyramid in rescaled_imgs: fliped_img=[np.fliplr(img) for img in pyramid] fliped_imgs.append(np.array(fliped_img)) return rescaled_imgs+fliped_imgs
26.416667
87
0.621217
7c03113b5d02d4bd5598e8556d08e3de523476de
15,215
py
Python
CurrUncertEllipses_ChiSqProb.py
hadjt/CurrUncertEllipses
d64dca9f4d18e2526748bb5980bf793c74fbe3cc
[ "CC0-1.0" ]
null
null
null
CurrUncertEllipses_ChiSqProb.py
hadjt/CurrUncertEllipses
d64dca9f4d18e2526748bb5980bf793c74fbe3cc
[ "CC0-1.0" ]
null
null
null
CurrUncertEllipses_ChiSqProb.py
hadjt/CurrUncertEllipses
d64dca9f4d18e2526748bb5980bf793c74fbe3cc
[ "CC0-1.0" ]
null
null
null
from netCDF4 import Dataset,num2date import pdb import numpy as np import matplotlib.pyplot as plt from datetime import datetime#,timedelta #import xarray #lon = np.arange(-19.888889,12.99967+1/9.,1/9.) #lat = np.arange(40.066669,65+1/15.,1/15.) #import os from scipy.stats import chi2 from CurrUncertEllipses import * def main(): curr_uncert_prob_threshold_perc_data_in_xsd_table() fig = curr_uncert_prob_threshold_perc_data_in_xsd_figure() def curr_uncert_prob_threshold_perc_data_in_xsd_figure(): # Calculate and plot the percentage of data within an uncertainty ellipse # of a given size (in terms of standard deviations). # # As well deriving these values for the chi-squared distribution table, two # numerical methods are used (See Tinker et al. (2022) for details). # # Produces Appendix Figure 7 in Tinker et al. 2022 #Array of Standard deviations n_std_mat = np.arange(0,3.2,0.1) # precentage of data within ellipse of a given standard deviation size, using the: #Statistical theoretical method (using chi squared probabilty tables) stat_sd_plev_mat = data_within_xsd_chi_sq(n_std_mat = n_std_mat) #Gaussian distribution method (Integrating a bivariate Gaussian distribution within the ellipse) gauss_sd_plev_mat = data_within_xsd_gauss_integ(n_std_mat = n_std_mat) #Random data method (asking the proprotion of a random bivariate gaussian data set is within an ellipse). rand_sd_plev_mat = data_within_xsd_random_cnt(n_std_mat = n_std_mat,npnts = 10000)# 100 = 1min, 1000 = 1 min # 10000 = 2 mins print('Start plotting',datetime.now()) fig = plt.figure() fig.set_figheight(4) fig.set_figwidth(6.0) plt.subplots_adjust(top=0.95,bottom=0.15,left=0.15,right=0.95,hspace=0.2,wspace=0.2) plt.plot([0,nstd_cutoff(90),nstd_cutoff(90)],[90,90,0],'0.75') plt.plot([0,nstd_cutoff(95),nstd_cutoff(95)],[95,95,0],'0.75') plt.text(0.1,95,'95%', ha = 'left', va = 'center') plt.text(0.1,90,'90%', ha = 'left', va = 'center') plt.text(nstd_cutoff(90),5,'%.2f'%nstd_cutoff(90), ha = 'center', va = 'center') plt.text(nstd_cutoff(95),5,'%.2f'%nstd_cutoff(95), ha = 'center', va = 'center') plt.plot(n_std_mat, 100.*rand_sd_plev_mat.mean(axis = 1),'r', lw = 2, label = 'Random') plt.plot(n_std_mat, 100.*rand_sd_plev_mat.mean(axis = 1) + 2*rand_sd_plev_mat.std(axis = 1),'r-', lw = 1) plt.plot(n_std_mat, 100.*rand_sd_plev_mat.mean(axis = 1) - 2*rand_sd_plev_mat.std(axis = 1),'r-', lw = 1) plt.plot(n_std_mat, 100.*gauss_sd_plev_mat.mean(axis = 1),'b', lw = 2, label = 'Distr Integ') plt.plot(n_std_mat, 100.*gauss_sd_plev_mat.mean(axis = 1) + 2*gauss_sd_plev_mat.std(axis = 1),'b-', lw = 1) plt.plot(n_std_mat, 100.*gauss_sd_plev_mat.mean(axis = 1) - 2*gauss_sd_plev_mat.std(axis = 1),'b-', lw = 1) plt.plot(n_std_mat, 100.*stat_sd_plev_mat,'k--', lw = 2, label = 'Chi Sq') plt.xlabel('Size of uncertainty ellipse\n(number of standard deviation)') plt.ylabel('% Data within uncertainty ellipse') plt.ylim([0,100]) plt.xlim([0,3]) plt.legend() print('Return handle',datetime.now()) return fig def curr_uncert_prob_threshold_perc_data_in_xsd_table(): # Produce a table of probabilty thresholds for ellipse size. # Produces Appendix Table 1 in Tinker et al. 2022 perc_lev_mat = np.array([50, 75,90, 95, 97.5, 99,99.5 ]) p_lev = 1-(perc_lev_mat/100.) chi_sq_table_vals_mat = nstd_cutoff(perc_lev_mat)**2 nstd_thresh_size_mat = nstd_cutoff(perc_lev_mat) print('') print('------------------------------------------------------------------------------------') print('') print('Uncertainty Ellipse size (in standard deviations) and data coverage (%),,Chi Squared Distribution Table (with 2 degrees of freedom),,') print('Percentage of data within Uncertainty Ellipse,Size of uncertainty ellipse (# standard deviations),Critical value,Probability of exceeding the critical value') for ii,jj,kk,ll in zip(perc_lev_mat,nstd_thresh_size_mat,p_lev,chi_sq_table_vals_mat,):print('%.1f%%,%.4f,%.3f,%.3f'%(ii,jj,kk,ll)) print('') print('------------------------------------------------------------------------------------') print('') def nstd_cutoff(percent_val): #For a given percentage value, how big (in standard deviations) #must the ellipse be to capture that precengate of data # # Based on the Chi-squared inverse survival function nstd = np.sqrt(chi2.isf(1-percent_val/100, 2)) return nstd def data_within_xsd_chi_sq(n_std_mat = np.arange(0,3,0.1)): # following: #https://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix # To calculate the amount of data within an ellipse of size x std devs, # we can use the chi squared probabilty table. #chi squared probability table: #https://people.richland.edu/james/lecture/m170/tbl-chi.html #c&p 2df row and headers: chi2_prob_2df = np.array([0.010,0.020,0.051,0.103,0.211,4.605,5.991,7.378,9.210,10.597]) chi2_prob_plev = np.array([0.995, 0.99, 0.975, 0.95, 0.90, 0.10, 0.05, 0.025, 0.01, 0.005]) # this can be created with python scipy.stats chi2: # https://stackoverflow.com/questions/32301698/how-to-build-a-chi-square-distribution-table chi_sq_prob_2df_table = chi2.isf(chi2_prob_plev, 2) # plotting 1-chi2_prob_plev against np.sqrt(chi2_prob_plev) gives you the # required number of std devs (sqrt(chi2_prob_plev)) to encapsulate x % of # data (1-chi2_prob_plev). # for a given array of standard deviations, we can use this approach to # calculate the percentage data within the corresponding ellipse. # rather than using the inverse survival function, we now use the # survival function chi2_pval_mat = 1-chi2.sf(n_std_mat**2, 2) return chi2_pval_mat #, chi2_prob_plev, chi_sq_prob_2df_table def data_within_xsd_gauss_integ_val(U_mean = 0.,U_var = 1.,V_mean = 0.,V_var = 1.,UV_corr = 0.5, n_std = 1.96, plotting = False, verbose = True, npnt_counting = 151, n_std_limits = 2): # To calculate the amount of data within an ellipse of size x std devs, # we can integrate a bivariate gaussian distribution surface within the ellipse. # We do this numerically, so this is a semi-numerical semi-analytical method. # # We created a decretised bivariate gaussian distribution surface # (for a given means, variaences and covariance (actually correlation). # We find the (near constant) value of the surface around the ellipse, and # then (numerically) integrate the values of the surface that are greater # than this value. #Covariance from Pearsons Correlation. UV_cov = UV_corr*np.sqrt(U_var)*np.sqrt(V_var) #details of the ellipse X_elip_amp,Y_elip_amp,X_elip_phi,Y_elip_phi,X_elip_phi_cos,Y_elip_phi_cos = confidence_ellipse_uv_stats_parametric_equation(U_mean,V_mean,U_var, V_var, UV_cov) twoaltone = np.array(([-1,1])) ang = np.linspace(-np.pi,np.pi, 100) #limits of the Gaussian surface Xlim_val = n_std_limits*n_std*(X_elip_amp) Ylim_val = n_std_limits*n_std*(Y_elip_amp) if Xlim_val <(4*(X_elip_amp)):Xlim_val = (4*(X_elip_amp)) if Ylim_val <(4*(Y_elip_amp)):Ylim_val = (4*(Y_elip_amp)) Xlim = Xlim_val*twoaltone+U_mean Ylim = Ylim_val*twoaltone+V_mean # x and y mesh for the surface tmpx_test = np.linspace(np.min((Xlim)),np.max((Xlim)),npnt_counting) tmpy_test = np.linspace(np.min((Ylim)),np.max((Ylim)),npnt_counting) tmpx_test_mat,tmpy_test_mat = np.meshgrid(tmpx_test,tmpy_test) tmpdx = np.diff(tmpx_test).mean() tmpdy = np.diff(tmpy_test).mean() # the uncertainty ellipse Xo = n_std*(X_elip_amp*np.sin(ang + X_elip_phi))+U_mean Yo = n_std*(Y_elip_amp*np.sin(ang + Y_elip_phi))+V_mean #Calcuate the Gaussian Surface over the x and y mesh, and around the ellipse gauss = gauss_func_2d(tmpx_test_mat,tmpy_test_mat,U_mean,V_mean,U_var,V_var,UV_cov)[0] gauss_ell = gauss_func_2d(Xo,Yo,U_mean,V_mean,U_var,V_var,UV_cov)[0] # find the values that distribution values that are greater than the (mean) # ellipse distribution value ind_inside_ell = gauss>=gauss_ell.mean() # The infinite bivariate distrbution surface should integrate to 1. # By integrating the full decretised distribution, we get an idea of the # error term p_val_full_decrete_dist = gauss.sum()*tmpdx*tmpdy # Integrating the values greater than the ellipse values is equivalent to # integrating the values within the ellipse. p_val = gauss[ind_inside_ell].sum()*tmpdx*tmpdy if plotting: ax = [] ax.append(plt.subplot(2,2,1)) plt.pcolormesh(tmpx_test_mat,tmpy_test_mat,gauss) plt.contour(tmpx_test_mat,tmpy_test_mat,gauss, [gauss_ell.mean()], colors = 'y') plt.plot(Xo,Yo,'r--') ax.append(plt.subplot(2,2,2)) plt.pcolormesh(tmpx_test_mat,tmpy_test_mat,ind_inside_ell) plt.contour(tmpx_test_mat,tmpy_test_mat,gauss, [gauss_ell.mean()], colors = 'y') plt.plot(Xo,Yo,'r--') ax.append(plt.subplot(2,2,3)) plt.pcolormesh(tmpx_test_mat,tmpy_test_mat,) plt.contour(tmpx_test_mat,tmpy_test_mat,gauss, [gauss_ell.mean()], colors = 'y') plt.plot(Xo,Yo,'r--') if verbose: print(n_std, p_val) return p_val, p_val_full_decrete_dist #plt.show() def data_within_xsd_random_cnt_val(U_mean = 0,U_var = 1,V_mean = 0,V_var = 1,UV_corr=0., npnts = 100000,n_std_mat = np.arange(0,3,0.01)): # To calculate the amount of data within an ellipse of size x std devs, # we can create a random data with a bivariate normal distribution for a # given set of means, variance and covariance (actually correlation). # We can then fit an ellipse to these data (for a given number of standard # deviations), and calucate the precentage of points within the ellipse. # We then cycle through a range of standard deviations (n_std_mat) #Covariance from Pearsons Correlation. UV_cov = UV_corr*np.sqrt(U_var)*np.sqrt(V_var) #Create a random data with a bivariate normal distribution U_mat,V_mat = np.random.multivariate_normal([U_mean,V_mean], [[U_var,UV_cov],[UV_cov,V_var]], npnts).T #cycle through a range of elipses sizes of varying standard deviations n_perc_joint_mat = n_std_mat.copy()*0. for ni,n_std in enumerate(n_std_mat): #for a given standard deviation: #find the uncertainty ellipse, a details of it: X_elip_amp,Y_elip_amp,X_elip_phi,Y_elip_phi,X_elip_phi_cos,Y_elip_phi_cos = confidence_ellipse_uv_mat_parametric_equation(U_mat.reshape(-1,1,1),V_mat.reshape(-1,1,1), n_std = n_std) qmax,qmin, ecc, theta_max, zero_ang = ellipse_parameters_from_parametric_equation(X_elip_amp,Y_elip_amp,X_elip_phi,Y_elip_phi,U_mean,V_mean) # find the ellipse foci (important for asking whether a point is within an ellipse or not) foci_max,foci_x_1,foci_y_1,foci_x_2,foci_y_2 = find_parameteric_ellipse_foci(qmax, qmin,theta_max,U_mean,V_mean,n_std) # Ask which of our random data set are within the ellipse pnt_inside_ell_sig_1,foci_pnt_foci_dist_sig = point_inside_parameteric_ellipse(U_mat.reshape(-1,1,1),V_mat.reshape(-1,1,1),n_std, foci_x_1,foci_y_1,foci_x_2,foci_y_2,qmax) # Record the percentage of data within our ellipse. n_perc_joint_mat[ni] = pnt_inside_ell_sig_1.sum()/pnt_inside_ell_sig_1.size # Repeat of a univariate normal discribution. # ask which points are within x standard deviation of the mean n_perc_single_mat = n_std_mat.copy()*0. U_std = U_mat.std() for ni,n_std in enumerate(n_std_mat):n_perc_single_mat[ni] = (np.abs((U_mat[:]-U_mean)/U_std)<=n_std).sum()/U_mat.size#((np.abs(U_mat)/U_std)<n_std).sum()/U_mat.size return n_perc_joint_mat, n_perc_single_mat ################################################################################ def data_within_xsd_gauss_integ(n_std_mat = np.arange(0,3,0.1), U_mean_mat = np.arange(-1.5,1.,0.5), V_mean_mat = np.arange(-1.5,2,0.5), U_var_mat = np.arange(0.25,1.5,0.25), V_var_mat = np.arange(0.25,1.5,0.25), UV_corr_mat = np.arange(-0.75,1.00,0.25)): # To calculate the amount of data within an ellipse of size x std devs, # we can integrate a bivariate gaussian distribution surface within the ellipse. # # Here we cycle through a range of values mean, variance and covarinace # (actually correlations) and apply data_within_xsd_gauss_integ_val to # create an ensemble of results, to show that there is very little dependence # on the shape and location of the ellipse. uv_ms_c_lst = [(U_mean,U_var,V_mean,V_var,UV_corr) for U_mean in U_mean_mat for V_mean in V_mean_mat for U_var in U_var_mat for V_var in V_var_mat for UV_corr in UV_corr_mat] uv_ms_c_mat =np.array(uv_ms_c_lst) print('Start Gaussian method',datetime.now()) # 2min run time gauss_sd_plev_lst = [] for (U_mean,U_var,V_mean,V_var,UV_corr) in uv_ms_c_lst[:]: gauss_sd_plev_lst_curr_it = [] for n_std in n_std_mat: gauss_sd_plev_lst_curr_it.append(data_within_xsd_gauss_integ_val(U_mean = U_mean,U_var = U_var,V_mean = V_mean,V_var = V_var,UV_corr=UV_corr,n_std = n_std, plotting = False, verbose = False)[0]) gauss_sd_plev_lst.append(gauss_sd_plev_lst_curr_it) gauss_sd_plev_mat = np.array(gauss_sd_plev_lst) print('Stop Gaussian method',datetime.now()) return gauss_sd_plev_mat.T def data_within_xsd_random_cnt(n_std_mat = np.arange(0,3,0.1),npnts = 1000, U_mean_mat = np.arange(-1.5,1.,0.5), V_mean_mat = np.arange(-1.5,2,0.5), U_var_mat = np.arange(0.25,1.5,0.25), V_var_mat = np.arange(0.25,1.5,0.25), UV_corr_mat = np.arange(-0.75,1.00,0.25)): # 1e4 = 10 mins, 1e3 = 2 mins # To calculate the amount of data within an ellipse of size x std devs, # we can create a random data with a bivariate normal distribution for a # given set of means, variance and covariance (actually correlation). # # Here we cycle through a range of values mean, variance and covarinace # (actually correlations) and apply data_within_xsd_gauss_integ_val to # create an ensemble of results, to show that there is very little dependence # on the shape and location of the ellipse. uv_ms_c_lst = [(U_mean,U_var,V_mean,V_var,UV_corr) for U_mean in U_mean_mat for V_mean in V_mean_mat for U_var in U_var_mat for V_var in V_var_mat for UV_corr in UV_corr_mat] uv_ms_c_mat =np.array(uv_ms_c_lst) print('Start random method',datetime.now()) # 2min run time rand_sd_plev_lst = [] for (U_mean,U_var,V_mean,V_var,UV_corr) in uv_ms_c_lst[:]: rand_sd_plev_lst.append(data_within_xsd_random_cnt_val(U_mean = U_mean,U_var = U_var,V_mean = V_mean,V_var = V_var,UV_corr=UV_corr,npnts = npnts,n_std_mat = n_std_mat)[0]) rand_sd_plev_mat = np.array(rand_sd_plev_lst) print('Stop random method',datetime.now()) # 2min run time return rand_sd_plev_mat.T ################################################################### if __name__ == "__main__": main()
45.553892
297
0.700559
b1ab1e18a0d320ad1c67938a99877338a8f1515e
3,680
py
Python
tests/platonpm/_utils/test_registry_utils.py
shinnng/platon.py
3197fac3839896290210da04dd0d45f0bdc731ce
[ "MIT" ]
null
null
null
tests/platonpm/_utils/test_registry_utils.py
shinnng/platon.py
3197fac3839896290210da04dd0d45f0bdc731ce
[ "MIT" ]
null
null
null
tests/platonpm/_utils/test_registry_utils.py
shinnng/platon.py
3197fac3839896290210da04dd0d45f0bdc731ce
[ "MIT" ]
null
null
null
import pytest from platonpm.exceptions import ( PlatonPMValidationError, ) from platonpm.validation.uri import ( validate_registry_uri, ) @pytest.mark.parametrize( "uri", ( # no package id in uri ("erc1319://zeppelinos.platon"), ("erc1319://zeppelinos.platon:1"), ("erc1319://zeppelinos.platon:1/"), ("erc1319://packages.zeppelinos.platon"), ("erc1319://packages.zeppelinos.platon:1"), ("erc1319://packages.zeppelinos.platon:1/"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601:1"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601:1/"), # with package id in uri ("erc1319://zeppelinos.platon/erc20/"), ("erc1319://zeppelinos.platon:1/erc20/"), ("erc1319://zeppelinos.platon:1/erc20//"), ("erc1319://zeppelinos.platon/erc20@1.0.0"), ("erc1319://zeppelinos.platon:1/erc20@1.0.0"), ("erc1319://zeppelinos.platon:1/erc20@1.0.0/"), ("erc1319://packages.zeppelinos.platon/erc20@"), ("erc1319://packages.zeppelinos.platon:1/erc20@"), ("erc1319://packages.zeppelinos.platon:1/erc20@/"), ("erc1319://packages.zeppelinos.platon/erc20@1.0.0"), ("erc1319://packages.zeppelinos.platon:1/erc20@1.0.0"), ("erc1319://packages.zeppelinos.platon:1/erc20@1.0.0/"), ("erc1319://packages.platon.platon/greeter@%3E%3D1.0.2%2C%3C2"), ("erc1319://packages.platon.platon:1/greeter@%3E%3D1.0.2%2C%3C2"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601/erc20@1.0.0"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601:1/erc20@1.0.0"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601:1/erc20@1.0.0/"), ("erc1319://0xd3CdA913deB6f67967B99D67aCDFa1712C293601:1/erc20@1.0.0/deployments/ERC139") ), ) def test_is_registry_uri_validates(uri): assert validate_registry_uri(uri) is None @pytest.mark.parametrize( "uri", ( # invalid authority ("erc1319://zeppelinos.platon:333/erc20@1.0.0"), ("erc1319://packages.zeppelinos.com:1/erc20@1.0.0"), ("erc1319://package.manager.zeppelinos.platon:1/erc20@1.0.0"), ("erc1319://packageszeppelinoseth:1/erc20@1.0.0"), ("erc1319://0xd3cda913deb6f67967b99d67acdfa1712c293601:1/erc20@1.0.0"), # invalid package name ("erc1319://packages.zeppelinos.platon/@1.0.0"), ("erc1319://packages.zeppelinos.platon:1/@1.0.0"), ("erc1319://packages.zeppelinos.platon:1/@1.0.0/"), ("erc1319://packages.zeppelinos.platon/!rc20?@1.0.0"), ("erc1319://packages.zeppelinos.platon:1/!rc20?@1.0.0"), ("erc1319://packages.zeppelinos.platon:1/!rc20?@1.0.0/"), # malformed ("erc1319packageszeppelinosetherc20@1.0.0"), ("erc1319:packages.zeppelinos.platon:1/erc20@1.0.0"), ("erc1319:packages.zeppelinos.platon:1/erc20@1.0.0/"), ("erc1319:/packages.zeppelinos.platon:1/erc20@1.0.0"), ("erc1319:/packages.zeppelinos.platon:1/erc20@1.0.0/"), ("erc1319/packages.zeppelinos.platon:1/erc20@1.0.0"), ("erc1319//packages.zeppelinos.platon:1/erc20@1.0.0"), ("erc1319packages.zeppelinos.platon:1/erc20@1.0.0"), # wrong scheme ("http://packages.zeppelinos.platon:1/erc20@1.0.0"), ("ercXX://packages.zeppelinos.platon:1/erc20@1.0.0"), # no path ("erc1319://"), ("1234"), ), ) def test_is_registry_uri_raises_exception_for_invalid_uris(uri): with pytest.raises(PlatonPMValidationError): validate_registry_uri(uri)
43.294118
97
0.63913
8fc1fca748815b002b23b5bed79698a778a5feac
15,554
py
Python
core/language_core.py
macwinlin-studio/GithuT
fc00080f9d65f585a78cebca936fb53a7441f718
[ "Apache-2.0" ]
null
null
null
core/language_core.py
macwinlin-studio/GithuT
fc00080f9d65f585a78cebca936fb53a7441f718
[ "Apache-2.0" ]
null
null
null
core/language_core.py
macwinlin-studio/GithuT
fc00080f9d65f585a78cebca936fb53a7441f718
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import sqlite3 from os.path import isfile as os_path_isfile from os.path import isdir as os_path_isdir from os import rmdir as os_rmdir from locale import getdefaultlocale as getlanguage from platform import platform from os import popen as os_popen # project: GitHub Tools Language Core # file: language_core.py # author: MacWinLin Studio CGK Team # email: githut@macwinlin.ml # version: 22w24a # Publish only on GitHub and MacWinLin Studio's GitLab. # Copyright 2022 MacWinLin Studio.All rights reserved. # Code # Define Read Language def readLanguage(): con = sqlite3.connect('.mwl-githut-data.db') cur = con.cursor() cur.execute('select * from data') cache = cur.fetchone() cur.close() con.close() return cache[1] # Define Create Databese def cdatabase(): con = sqlite3.connect('.mwl-githut-data.db') cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS data(id INTEGER PRIMARY KEY,language TEXT NOT NULL DEFAULT 'en-us',htoken INTEGER NOT NULL DEFAULT 0,token TEXT,alogin INTEGER NOT NULL DEFAULT 0,developM INTEGER NOT NULL DEFAULT 0,version TEXT NOT NULL DEFAULT 'a0.2-22w23a',updateT INTEGER NOT NULL DEFAULT 1,feedback INTEGER NOT NULL DEFAULT 0,feedback_admin TEXT,feedback_link TEXT NOT NULL DEFAULT 'https://githut.macwinlin.ml/feedback.json',clearToken INTEGER NOT NULL DEFAULT 0,ups TEXT NOT NULL DEFAULT 'https://githut.macwinlin.ml/update',debug INTEGER NOT NULL DEFAULT 0)") cur.execute("INSERT INTO data values (1,'en-us',0,'123456',0,0,'a0.2-22w24a',1,0,'123456','https://githut.macwinlin.ml',0,'https://githut.macwinlin.ml/update',0)") con.commit() # Change Default Language,Only Support Simplified Chinese,Can Add if 'zh' in getlanguage()[0]: cur.execute("UPDATE data SET language='zh-cn' WHERE id=1") con.commit() cur.close() con.close() if 'Windows' in platform(): os_popen('attrib +H .mwl-githut-data.db') # Define Read Database def rdatabase(): return ['id','language','htoken','token','alogin','developM','version','updateT','feedback','feedback_admin'] # Create Database if not os_path_isfile('.mwl-githut-data.db'): if os_path_isdir('.mwl-githut-data.db'): os_rmdir('.mwl-githut-data.db') cdatabase() # Language Function class languageC(): def __init__(self): # Add Language Please Change This List # Language Module Won't Load Language,Please Use Reload Function To Load Language self.lList = ['zh-cn','en-us'] def reload(self): if readLanguage() == 'zh-cn': self.aboutPMT = '关于程序' self.aboutPMTgtv = '版本:alpha 0.2' self.aboutPMTpgv = 'PyGithub版本:1.55' self.aboutPMTpyv = '上次测试Python版本:3.9.1' self.aboutPMTgithub = '打开GitHub仓库,请使用githut -po' self.aboutAMT = '关于作者' self.aboutAMTauthor = '作者:MacWinLin工作室' self.aboutAMTmainD = '主开发者:Xinxin2021' self.aboutAMTverN = '版本更新时间:2022年5月21日' self.aboutAMTblog = '打开MWL工作室博客,请使用githut -ao' self.githutH = '''您可以使用这些命令: -a | --author 关于作者 -ao | --author-open 打开MacWinLin工作室博客 -p | --program 关于程序 -po | --program-open 打开GitHub仓库 -l | --license 查看开源协议 -c | --copyright 查看版权信息''' self.help = '''你可以使用这些命令: help 帮助 githut 关于 config 配置信息 login 登录 redata 重新生成数据库 backup 备份数据库 create 创建任何 import 导入备份 feedback 反馈至CGK团队''' self.peToken = '请输入Token!' self.hToken = '请先删除Token。' self.nhToken = '请先添加Token。' self.configH = '''您可以使用这些命令: language <language> 更改GithuT语言 token [add | remove] <github-token> 更改GitHub Token autologin [-y/--yes | -n/--no] 启用/禁用自动登录 develop [-y/--yes | -n/--no] 启用/禁用开发模式 feedback <link> 更改反馈服务器链接 ct [-y/--yes | -n/--no] 退出前清除Token update [-y/--yes | -n/--no] 启用/禁用自动检查更新 UPS <link> 更改更新服务器链接''' self.licenseE = '无法加载协议,请确认您连接到网络。' self.accountH = '''您可以使用这些命令: -u | --user 设置账号类型为个人 -o | --organization 设置账号类型为组织''' self.iso = '账号类型已设置为组织。' self.isu = '账号类型已设置为个人。' self.terror = '无法登陆,请确认您的Token正确!' self.loginS = '登录成功!' self.loginSU = '用户名:' self.Lname = '。名称:' self.alY = '自动登录已启用!' self.alN = '自动登录已禁用!' self.NalY = '请先禁用自动登录!' self.NalN = '请先启用自动登录!' self.alogin = '开始自动登录!' self.rdata = '已删除数据库文件!' self.adata = '已重新生成数据库!' self.errorInfo = '错误信息:' self.ploginT = '请先登录!' self.cerror = '命令错误。' self.notc = '不是命令。' self.createH = '''您可以使用以下命令: repo <RepoName> 创建GitHub仓库''' self.crepoE = '无法新建仓库!' self.crepoS = '仓库新建成功!' self.drepoE = '无法删除仓库!' self.drepoS = '仓库删除成功!' self.dmY = '开发模式已启用!' self.dmN = '开发模式已禁用!' self.NdmY = '请先禁用开发模式!' self.NdmN = '请先启用开发模式!' self.deleteH = '''您可以使用以下命令: repo <RepoName> 删除GitHub仓库''' self.couldtGetFeedbackServerInfo = '无法获取反馈服务器信息。' self.feedbackServerClose = '反馈服务器已关闭。' self.notSupportIPv6 = '您的电脑不支持IPv6。' self.feedbackGetAdmin = '请输入您的反馈用户名:' self.feedbackGetPassword = '请输入您的反馈密码:' self.couldtLogin = '无法登录。' self.loginSuccess = '登录成功。' self.passwordError = '密码错误,请输入正确的密码。' self.userNotFound = '此用户不存在。' self.serverError = '反馈服务器错误。' self.unknownError = '未知错误。' self.feedbackType = '请选择反馈类型(bug/warn/debug):' self.feedbackInfo = '请输入反馈信息(单独输入":w"以退出):\n' self.couldtFeedback = '无法反馈至"' self.feedbackSuccess = '反馈成功。' self.blocked = '您的反馈账号已被封禁。' self.ctY = '清除Token已启用!' self.ctN = '清除Token已禁用!' self.NctY = '请先禁用清除Token!' self.NctN = '请先启用清除Token!' self.acuY = '自动检查更新已启用!' self.acuN = '自动检查更新已禁用!' self.NacuY = '请先禁用自动检查更新!' self.NacuN = '请先启用自动检查更新!' else: # About Program Part self.aboutPMT = 'About Program' self.aboutPMTgtv = 'Version:alpha 0.2' self.aboutPMTpgv = 'PyGithub Version:1.55' self.aboutPMTpyv = 'Last Test Python Version:3.9.1' self.aboutPMTgithub = 'Open GitHub Repository,Please Use githut -po' # About Author Part self.aboutAMT = 'About Author' self.aboutAMTauthor = 'Author:MacWinLin Studio' self.aboutAMTmainD = 'Main Developer:Xinxin2021' self.aboutAMTverN = 'Version Updated Time:May 21, 2022' self.aboutAMTblog = 'Open MWL Studio\'s Blog,Please Use githut -am' # Githut Helper Text self.githutH = '''You can use these command: -a | --author About Author -ao | --author-open Open MacWinLin Studio's Blog -p | --program About Program -po | --program-open Open GitHub Repository -l | --license See This Project's License -c | --copyright See This Project's Copyright''' # Global Helper Text self.help = '''You can use these command: help Helper githut About config Config Information login Login GitHub Account redata Rebuild Database backup Backup Database create Create Any import Import Backup feedback Feedback to MWL CGK Team''' # About Token Text self.peToken = 'Please enter token!' self.hToken = 'Please delete the token first.' self.nhToken = 'Please add the token first.' self.configH = '''You can use these command: language <language> Change GithuT Language token [add | remove] <github-token> Change GitHub Token autologin [-y/--yes | -n/--no] Enable/Disable Autologin develop [-y/--yes | -n/--no] Enable/Disable Develop Mode feedback <link> Change Feedback Server Link ct [-y/--yes | -n/--no] Clear Token In Exit Program update [-y/--yes | -n/--no] Enable/Disable Auto Check Update UPS <link> Change Update Server debug [-y/--yes | -n/--no] Enable/Disable Debug Mode''' self.licenseE = 'Could\'t load license,please confirm you connect the network.' self.accountH = '''You can use these command: -u | --user Set The Account Type To Individual -o | --organization Set The Account Type To Organization''' # Set Account Type self.iso = 'The Account Type Is Set To Organization.' self.isu = 'The Account Type Is Set To Individual.' # Login self.terror = 'Could\'t login,please confirm your token is right!' self.loginS = 'Login successful!' self.loginSU = 'Username:' self.Lname = '.Name:' # Autologin self.alY = 'Autologin is enable now!' self.alN = 'Autologin is disable now!' self.NalY = 'Please disable autologin first!' self.NalN = 'Please enable autologin first!' self.alogin = 'Autologin started!' # Rebuild Database self.rdata = 'Removed database file!' self.adata = 'Rebuilded database!' # All self.errorInfo = 'Error Info:' self.ploginT = 'Please login first!' self.cerror = 'Command error.' self.notc = ' is not a command.' # Create self.createH = '''You can use these command: repo <RepoName> Create GitHub Repository''' # =Repo self.crepoE = 'Could\'t create repository.' self.crepoS = 'The repository was created successfully!' # Develop Mode self.dmY = 'Develop mode is enable now!' self.dmN = 'Develop mode is disable now!' self.NdmY = 'Please disable develop mode first!' self.NdmN = 'Please enable develop mode first!' # Delete self.deleteH = '''You can use these command: repo <RepoName> Delete GitHub Repository''' # =Repo self.drepoE = 'Could\'t delete repository.' self.drepoS = 'The repository was deleted successfully!' # Feedback self.couldtGetFeedbackServerInfo = 'Could\'t get feedback server information.' self.feedbackServerClose = 'Feedback server is closed.' self.notSupportIPv6 = 'Your computer not support IPv6.' self.feedbackGetAdmin = 'Please enter your feedback username:' self.feedbackGetPassword = 'Please enter your feedback passowrd:' self.couldtLogin = 'Could\'t login.' self.loginSuccess = 'Login successful.' self.passwordError = 'Password error,please enter right password.' self.userNotFound = 'This user is not exist.' self.serverError = 'Feedback server error.' self.unknownError = 'Unknown error.' self.feedbackType = 'Please select feedback type(bug/warn/debug):' self.feedbackInfo = 'Please enter feedback info(alone enter ":w" to exit):\n' self.couldtFeedback = 'Could\'t feedback to "' self.feedbackSuccess = 'Feedback successful.' self.blocked = 'Your feedback account was blocked.' # Clear Token self.ctY = 'Clear token is enable now!' self.ctN = 'Clear token is disable now!' self.NctY = 'Please disable clear token first!' self.NctN = 'Please enable clear token first!' # Auto Check Update self.acuY = 'Auto check update is enable now!' self.acuN = 'Auto check update is disable now!' self.NacuY = 'Please disable auto check update first!' self.NacuN = 'Please enable auto check update first!' # Debug Mode self.debugY = 'Debug mode is enable now!' self.debugN = 'Debug mode is disable now!' self.NdebugY = 'Please disable debug mode first!' self.NdebugN = 'Please enable debug mode first!' class BackupLanguage(): def __init__(self): self.lList = ['zh-cn','en-us'] def reload(self): if readLanguage() == 'zh-cn': self.replace = '你想覆盖原来的文件吗?(y/n)' self.replaceE = '请输入正确的选项!' self.filename = '保存成功。文件:' self.errorInfo = '错误信息:' self.openE = '打开备份文件错误!' self.path = '请输入备份文件路径:(示例:/home/githut/GithuT/backup-2022-4-23-305931.backup)' self.pathE = '路径错误,请输入正确的路径!' self.isBackup = '√ 它是一个备份文件。' self.structrue = '√ 备份文件结构正确。' self.itCanUse = '√ 它有备份数据。' self.backupC = '备份已取消。' self.canOpen = '√ 备份文件已打开。' self.cantOpen = '× 备份文件无法打开。' self.numberE = '× 它的文件数量不为2。' self.structrueE = '× 备份文件结构错误。' self.sha256E = '× 无法验证备份文件。' self.jsonE = '× 无法加载备份数据。' self.json = '√ 加载备份数据。' self.readE = '× 无法读取数据。' self.read = '√ 读取备份数据。' self.verE = '× 备份文件版本低。' self.ver = '√ 支持这个备份文件版本。' self.importS = '√ 导入备份文件至数据库。' self.importE = '× 无法导入备份文件至数据库。' self.lenE = '× 备份文件数据过大/过小。' else: self.replace = 'Do you want to replace the previous?(y/n)' self.replaceE = 'Please enter right option!' self.filename = 'Save successfully.File:' self.errorInfo = 'Error Info:' self.openE = 'Open backup file error!' self.path = 'Please enter backup file path:(e.g. /home/githut/GithuT/backup-2022-4-23-305931.backup)' self.pathE = 'Path error,please enter right path!' self.backupC = 'Backup was cancelled.' self.canOpen = '√ The backup file can open.' self.cantOpen = '× The backup file could\'t open.' self.isBackup = '√ It\'s a backup file.' self.structrue = '√ The backup file structure is correct.' self.itCanUse = '√ It have backup datas.' self.numberE = '× Its file number not is two.' self.structrueE = '× The backup file structrue error.' self.sha256E = '× Could\'t verify backup file.' self.jsonE = '× Could\'t load backup datas.' self.json = '√ Loaded backup datas.' self.readE = '× Could\'t read datas.' self.read = '√ Read backup datas.' self.verE = '× Backup file version is low.' self.ver = '√ Support this backup file version.' self.importS = '√ Imported backup file to database.' self.importE = '× Could\'t import backup file to database.' self.lenE = '× Backup file data number is big/small.' class UpdateLanguage(): def __init__(self): self.lList = ['zh-cn','en-us'] def reload(self): if readLanguage() == 'zh-cn': self.haveNew = '有新版本,是否安装?(y/n)' self.downloadE = '无法获取更新。' else: self.haveNew = 'Have new version,is it install?(y/n)' self.downloadE = 'Could\'t get update.'
45.479532
577
0.577986
0ac49721987d44c1e81cab0aae66fe6470c2d844
1,692
py
Python
adminmgr/media/code/A3/task3/BD_114_345_411_727_XQgmU0b.py
IamMayankThakur/test-bigdata
cef633eb394419b955bdce479699d0115d8f99c3
[ "Apache-2.0" ]
9
2019-11-08T02:05:27.000Z
2021-12-13T12:06:35.000Z
adminmgr/media/code/A3/task3/BD_114_345_411_727_XQgmU0b.py
IamMayankThakur/test-bigdata
cef633eb394419b955bdce479699d0115d8f99c3
[ "Apache-2.0" ]
6
2019-11-27T03:23:16.000Z
2021-06-10T19:15:13.000Z
adminmgr/media/code/A3/task3/BD_114_345_411_727_XQgmU0b.py
IamMayankThakur/test-bigdata
cef633eb394419b955bdce479699d0115d8f99c3
[ "Apache-2.0" ]
4
2019-11-26T17:04:27.000Z
2021-12-13T11:57:03.000Z
import findspark findspark.init() from pyspark import SparkConf,SparkContext from pyspark.streaming import StreamingContext from pyspark.sql import Row,SQLContext import sys import requests def splitHashtags(hashtags): for i in hashtags: yield (i,1) def sprint(p): if not p.isEmpty(): out=p.collect() j=0 top5="" for i in out: if(j<5): top5=top5+str(i[0])+","#+str(i[1])+" " j=j+1 else: break top5=top5[:-1] print(top5) conf=SparkConf() conf.setAppName("BigData") sc=SparkContext(conf=conf) ssc=StreamingContext(sc,1) ssc.checkpoint("~/Downloads/checkpoint_BIGDATA") dataStream=ssc.socketTextStream("localhost",9009) hashTags=dataStream.flatMap(lambda x: splitHashtags(x.split(';')[7].split(','))).\ filter(lambda y: len(y[0])>=1) hashTagsCount=hashTags.\ reduceByKeyAndWindow(lambda agg,obj:agg+obj,None,int(sys.argv[1]),int(sys.argv[2])) commonHashTags=hashTagsCount.\ transform(lambda rdd: rdd.sortBy(lambda x: x[0]))\ .map(lambda x: (x[1],x[0]))\ .transform(lambda rdd: rdd.sortByKey(False))\ .map(lambda y:(y[1],y[0])) ''' commonHashTags=hashTagsCount.\ transform(lambda rdd: rdd.sortBy(lambda x:x[0].swapcase()))\ .map(lambda x: (x[1],x[0]))\ .transform(lambda rdd: rdd.sortByKey(False))\ .map(lambda y:(y[1],y[0])) ''' commonHashTags.foreachRDD(sprint) ssc.start() ssc.awaitTermination(25) ssc.stop()
29.172414
91
0.565603
42ba5c247744521660ea54e804287b7a1b7b72ab
287
py
Python
torch_tools/models/util/lambda_fn.py
gregunz/TorchTools
19a33f2e4cd38f86b74bd732949516df66f9e24f
[ "MIT" ]
null
null
null
torch_tools/models/util/lambda_fn.py
gregunz/TorchTools
19a33f2e4cd38f86b74bd732949516df66f9e24f
[ "MIT" ]
null
null
null
torch_tools/models/util/lambda_fn.py
gregunz/TorchTools
19a33f2e4cd38f86b74bd732949516df66f9e24f
[ "MIT" ]
null
null
null
from torch import nn, Tensor class Lambda(nn.Module): def __init__(self, lambda_fn, *modules): super().__init__() self.lambda_fn = lambda_fn self.modules = nn.ModuleList(modules) def forward(self, x: Tensor) -> Tensor: return self.lambda_fn(x)
23.916667
45
0.644599
517ac628d27ce111b6dee99a810dabab81af6b0d
1,174
py
Python
third_party/gpus/compress_find_cuda_config.py
storypku/tensorflow
71fdb8266f5c0b099993b09e616a8eddeb664f04
[ "Apache-2.0" ]
null
null
null
third_party/gpus/compress_find_cuda_config.py
storypku/tensorflow
71fdb8266f5c0b099993b09e616a8eddeb664f04
[ "Apache-2.0" ]
null
null
null
third_party/gpus/compress_find_cuda_config.py
storypku/tensorflow
71fdb8266f5c0b099993b09e616a8eddeb664f04
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Compresses the contents of find_cuda_config.py.oss. The compressed file is what is actually being used. It works around remote config not being able to upload files yet. """ import base64 import zlib def main(): with open('find_cuda_config.py', 'rb') as f: data = f.read() compressed = zlib.compress(data) b64encoded = base64.b64encode(compressed) with open('find_cuda_config.py.gz.base64', 'wb') as f: f.write(b64encoded) if __name__ == '__main__': main()
31.72973
80
0.691652
ef9bbded2a4a7a5c4f6824e261e2d8ef26909b96
48,359
py
Python
tensorflow/contrib/lite/python/lite_test.py
caszkgui/tensorflow
2db20be49c660a0c475cb57fe0935791d66433ed
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/lite/python/lite_test.py
caszkgui/tensorflow
2db20be49c660a0c475cb57fe0935791d66433ed
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/lite/python/lite_test.py
caszkgui/tensorflow
2db20be49c660a0c475cb57fe0935791d66433ed
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lite.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import numpy as np from tensorflow.contrib.lite.python import lite from tensorflow.contrib.lite.python import lite_constants from tensorflow.contrib.lite.python.interpreter import Interpreter from tensorflow.python import keras from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops.variables import global_variables_initializer as _global_variables_initializer from tensorflow.python.platform import gfile from tensorflow.python.platform import resource_loader from tensorflow.python.platform import test from tensorflow.python.saved_model import saved_model from tensorflow.python.training.training_util import write_graph class FromConstructor(test_util.TensorFlowTestCase): # Tests invalid constructors using a dummy value for the GraphDef. def testInvalidConstructor(self): message = ('If input_tensors and output_tensors are None, both ' 'input_arrays_with_shape and output_arrays must be defined.') # `output_arrays` is not defined. with self.assertRaises(ValueError) as error: lite.TFLiteConverter( None, None, [], input_arrays_with_shape=[('input', [3, 9])]) self.assertEqual(message, str(error.exception)) # `input_arrays_with_shape` is not defined. with self.assertRaises(ValueError) as error: lite.TFLiteConverter(None, [], None, output_arrays=['output']) self.assertEqual(message, str(error.exception)) # Tests valid constructors using a dummy value for the GraphDef. def testValidConstructor(self): converter = lite.TFLiteConverter( None, None, None, input_arrays_with_shape=[('input', [3, 9])], output_arrays=['output']) self.assertFalse(converter._has_valid_tensors()) self.assertEqual(converter.get_input_arrays(), ['input']) with self.assertRaises(ValueError) as error: converter._set_batch_size(1) self.assertEqual( 'The batch size cannot be set for this model. Please use ' 'input_shapes parameter.', str(error.exception)) converter = lite.TFLiteConverter(None, ['input_tensor'], ['output_tensor']) self.assertTrue(converter._has_valid_tensors()) class FromSessionTest(test_util.TensorFlowTestCase): def testFloat(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testQuantization(self): in_tensor_1 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA') in_tensor_2 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputB') out_tensor = array_ops.fake_quant_with_min_max_args( in_tensor_1 + in_tensor_2, min=0., max=1., name='output') sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1, in_tensor_2], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = { 'inputA': (0., 1.), 'inputB': (0., 1.) } # mean, std_dev tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((1., 0.), input_details[0]['quantization']) # scale, zero_point self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.uint8, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((1., 0.), input_details[1]['quantization']) # scale, zero_point output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertTrue(output_details[0]['quantization'][0] > 0) # scale def testQuantizationInvalid(self): in_tensor_1 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA') in_tensor_2 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputB') out_tensor = array_ops.fake_quant_with_min_max_args( in_tensor_1 + in_tensor_2, min=0., max=1., name='output') sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1, in_tensor_2], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'inputA': (0., 1.)} # mean, std_dev with self.assertRaises(ValueError) as error: converter.convert() self.assertEqual( 'Quantization input stats are not available for input tensors ' '\'inputB\'.', str(error.exception)) def testSizeNoneInvalid(self): in_tensor = array_ops.placeholder(dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Test invalid shape. None after 1st dimension. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) with self.assertRaises(ValueError) as error: converter.convert() self.assertEqual('Provide an input shape for input array \'Placeholder\'.', str(error.exception)) def testBatchSizeInvalid(self): in_tensor = array_ops.placeholder( shape=[1, None, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Test invalid shape. None after 1st dimension. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) with self.assertRaises(ValueError) as error: converter.convert() self.assertEqual( 'None is only supported in the 1st dimension. Tensor ' '\'Placeholder\' has invalid shape \'[1, None, 16, 3]\'.', str(error.exception)) def testBatchSizeValid(self): in_tensor = array_ops.placeholder( shape=[None, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testFreezeGraph(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) var = variable_scope.get_variable( 'weights', shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + var sess = session.Session() sess.run(_global_variables_initializer()) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # TODO(nupurgarg): Verify value of contents in GraphViz. def testGraphviz(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.output_format = lite_constants.GRAPHVIZ_DOT graphviz_output = converter.convert() self.assertTrue(graphviz_output) # TODO(nupurgarg): Verify value of contents in GraphViz. def testDumpGraphviz(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) graphviz_dir = self.get_temp_dir() converter.dump_graphviz_dir = graphviz_dir tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure interpreter is able to allocate and check graphviz data. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() num_items_graphviz = len(os.listdir(graphviz_dir)) self.assertTrue(num_items_graphviz) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) graphviz_dir = self.get_temp_dir() converter.dump_graphviz_dir = graphviz_dir converter.dump_graphviz_video = True tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure graphviz folder has more data after using video flag. num_items_graphviz_video = len(os.listdir(graphviz_dir)) self.assertTrue(num_items_graphviz_video > num_items_graphviz) def testInferenceInputType(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.inference_input_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'Placeholder': (0., 1.)} # mean, std_dev tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((1., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) def testDefaultRangesStats(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'Placeholder': (0., 1.)} # mean, std_dev converter.default_ranges_stats = (0, 6) # min, max tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((1., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertTrue(output_details[0]['quantization'][0] > 0) # scale def testPostTrainingQuantize(self): np.random.seed(0) # We need the tensor to have more than 1024 elements for quantize_weights # to kick in. Thus, the [33, 33] shape. in_tensor_1 = array_ops.placeholder( shape=[33, 33], dtype=dtypes.float32, name='inputA') in_tensor_2 = constant_op.constant( np.random.uniform(low=-10., high=10., size=(33, 33)), shape=[33, 33], dtype=dtypes.float32, name='inputB') out_tensor = math_ops.matmul(in_tensor_1, in_tensor_2, name='output') sess = session.Session() # Convert float model. float_converter = lite.TFLiteConverter.from_session(sess, [in_tensor_1], [out_tensor]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert quantized weights model. quantized_converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1], [out_tensor]) quantized_converter.post_training_quantize = True quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # Ensure that the quantized weights tflite model is smaller. self.assertTrue(len(quantized_tflite) < len(float_tflite)) def testFlexMode(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.converter_mode = lite.ConverterMode.TOCO_FLEX_ALL tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensures the model contains TensorFlow ops. # TODO(nupurgarg): Check values once there is a Python delegate interface. interpreter = Interpreter(model_content=tflite_model) with self.assertRaises(RuntimeError) as error: interpreter.allocate_tensors() self.assertIn( 'Regular TensorFlow ops are not supported by this interpreter. Make ' 'sure you invoke the Flex delegate before inference.', str(error.exception)) def testFloatTocoConverter(self): """Tests deprecated test TocoConverter.""" in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TocoConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the interpreter is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() class FromFrozenGraphFile(test_util.TensorFlowTestCase): def testFloat(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testFloatWithShapesArray(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_frozen_graph( graph_def_file, ['Placeholder'], ['add'], input_shapes={'Placeholder': [1, 16, 16, 3]}) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) def testFreezeGraph(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) var = variable_scope.get_variable( 'weights', shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + var sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Ensure the graph with variables cannot be converted. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) self.assertEqual('Please freeze the graph using freeze_graph.py.', str(error.exception)) def testPbtxt(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pbtxt') write_graph(sess.graph_def, '', graph_def_file, True) sess.close() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testInvalidFileNotFound(self): with self.assertRaises(IOError) as error: lite.TFLiteConverter.from_frozen_graph('invalid_file', ['Placeholder'], ['add']) self.assertEqual('File \'invalid_file\' does not exist.', str(error.exception)) def testInvalidFileBadData(self): graph_def_file = os.path.join(self.get_temp_dir(), 'invalid_file') with gfile.Open(graph_def_file, 'wb') as temp_file: temp_file.write('bad data') temp_file.flush() # Attempts to convert the invalid model. with self.assertRaises(IOError) as error: lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) self.assertEqual( 'Unable to parse input file \'{}\'.'.format(graph_def_file), str(error.exception)) def _initObjectDetectionArgs(self): # Initializes the arguments required for the object detection model. # Looks for the model file which is saved in a different location interally # and externally. filename = resource_loader.get_path_to_datafile('testdata/tflite_graph.pb') if not os.path.exists(filename): filename = os.path.join( resource_loader.get_root_dir_with_all_resources(), '../tflite_mobilenet_ssd_quant_protobuf/tflite_graph.pb') if not os.path.exists(filename): raise IOError("File '{0}' does not exist.".format(filename)) self._graph_def_file = filename self._input_arrays = ['normalized_input_image_tensor'] self._output_arrays = [ 'TFLite_Detection_PostProcess', 'TFLite_Detection_PostProcess:1', 'TFLite_Detection_PostProcess:2', 'TFLite_Detection_PostProcess:3' ] self._input_shapes = {'normalized_input_image_tensor': [1, 300, 300, 3]} def testTFLiteGraphDef(self): # Tests the object detection model that cannot be loaded in TensorFlow. self._initObjectDetectionArgs() converter = lite.TFLiteConverter.from_frozen_graph( self._graph_def_file, self._input_arrays, self._output_arrays, self._input_shapes) converter.allow_custom_ops = True tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('normalized_input_image_tensor', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 300, 300, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(4, len(output_details)) self.assertEqual('TFLite_Detection_PostProcess', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 10, 4] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) self.assertEqual('TFLite_Detection_PostProcess:1', output_details[1]['name']) self.assertTrue(([1, 10] == output_details[1]['shape']).all()) self.assertEqual('TFLite_Detection_PostProcess:2', output_details[2]['name']) self.assertTrue(([1, 10] == output_details[2]['shape']).all()) self.assertEqual('TFLite_Detection_PostProcess:3', output_details[3]['name']) self.assertTrue(([1] == output_details[3]['shape']).all()) def testTFLiteGraphDefMissingShape(self): # Tests invalid cases for the model that cannot be loaded in TensorFlow. self._initObjectDetectionArgs() # Missing `input_shapes`. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_frozen_graph( self._graph_def_file, self._input_arrays, self._output_arrays) self.assertEqual('input_shapes must be defined for this model.', str(error.exception)) def testTFLiteGraphDefInvalidShape(self): # Tests invalid cases for the model that cannot be loaded in TensorFlow. self._initObjectDetectionArgs() # `input_shapes` does not contain the names in `input_arrays`. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_frozen_graph( self._graph_def_file, self._input_arrays, self._output_arrays, input_shapes={'invalid-value': [1, 19]}) self.assertEqual( 'input_shapes must contain a value for each item in input_array.', str(error.exception)) def testFloatTocoConverter(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Convert model and ensure model is not None. converter = lite.TocoConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the model is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() class FromSavedModelTest(test_util.TensorFlowTestCase): def _createSavedModel(self, shape): """Create a simple SavedModel.""" saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel') with session.Session() as sess: in_tensor_1 = array_ops.placeholder( shape=shape, dtype=dtypes.float32, name='inputB') in_tensor_2 = array_ops.placeholder( shape=shape, dtype=dtypes.float32, name='inputA') out_tensor = in_tensor_1 + in_tensor_2 inputs = {'x': in_tensor_1, 'y': in_tensor_2} outputs = {'z': out_tensor} saved_model.simple_save(sess, saved_model_dir, inputs, outputs) return saved_model_dir def testSimpleModel(self): """Test a SavedModel.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() self.assertTrue(tflite_model) interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testNoneBatchSize(self): """Test a SavedModel, with None in input tensor's shape.""" saved_model_dir = self._createSavedModel(shape=[None, 16, 16, 3]) converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testOrderInputArrays(self): """Test a SavedModel ordering of input arrays.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) converter = lite.TFLiteConverter.from_saved_model( saved_model_dir, input_arrays=['inputB', 'inputA']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testSubsetInputArrays(self): """Test a SavedModel with a subset of the input array names of the model.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) # Check case where input shape is given. converter = lite.TFLiteConverter.from_saved_model( saved_model_dir, input_arrays=['inputA'], input_shapes={'inputA': [1, 16, 16, 3]}) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check case where input shape is None. converter = lite.TFLiteConverter.from_saved_model( saved_model_dir, input_arrays=['inputA'], input_shapes={'inputA': None}) tflite_model = converter.convert() self.assertTrue(tflite_model) def testSimpleModelTocoConverter(self): """Test a SavedModel with deprecated TocoConverter.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) # Convert model and ensure model is not None. converter = lite.TocoConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the model is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() class FromKerasFile(test_util.TensorFlowTestCase): def setUp(self): keras.backend.clear_session() def _getSequentialModel(self): with session.Session().as_default(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) model.compile( loss=keras.losses.MSE, optimizer=keras.optimizers.RMSprop(), metrics=[keras.metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) model.predict(x) try: fd, keras_file = tempfile.mkstemp('.h5') keras.models.save_model(model, keras_file) finally: os.close(fd) return keras_file def testSequentialModel(self): """Test a Sequential tf.keras model with default inputs.""" keras_file = self._getSequentialModel() converter = lite.TFLiteConverter.from_keras_model_file(keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('dense_input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('time_distributed/Reshape_1', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model(keras_file) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) os.remove(keras_file) def testSequentialModelInputArray(self): """Test a Sequential tf.keras model testing input arrays argument.""" keras_file = self._getSequentialModel() # Invalid input array raises error. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_keras_model_file( keras_file, input_arrays=['invalid-input']) self.assertEqual("Invalid tensors 'invalid-input' were found.", str(error.exception)) # Valid input array. converter = lite.TFLiteConverter.from_keras_model_file( keras_file, input_arrays=['dense_input']) tflite_model = converter.convert() os.remove(keras_file) self.assertTrue(tflite_model) def testSequentialModelInputShape(self): """Test a Sequential tf.keras model testing input shapes argument.""" keras_file = self._getSequentialModel() # Passing in shape of invalid input array has no impact as long as all input # arrays have a shape. converter = lite.TFLiteConverter.from_keras_model_file( keras_file, input_shapes={'invalid-input': [2, 3]}) tflite_model = converter.convert() self.assertTrue(tflite_model) # Passing in shape of valid input array. converter = lite.TFLiteConverter.from_keras_model_file( keras_file, input_shapes={'dense_input': [2, 3]}) tflite_model = converter.convert() os.remove(keras_file) self.assertTrue(tflite_model) # Check input shape from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('dense_input', input_details[0]['name']) self.assertTrue(([2, 3] == input_details[0]['shape']).all()) def testSequentialModelOutputArray(self): """Test a Sequential tf.keras model testing output arrays argument.""" keras_file = self._getSequentialModel() # Invalid output array raises error. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_keras_model_file( keras_file, output_arrays=['invalid-output']) self.assertEqual("Invalid tensors 'invalid-output' were found.", str(error.exception)) # Valid output array. converter = lite.TFLiteConverter.from_keras_model_file( keras_file, output_arrays=['time_distributed/Reshape_1']) tflite_model = converter.convert() os.remove(keras_file) self.assertTrue(tflite_model) def testFunctionalModel(self): """Test a Functional tf.keras model with default inputs.""" with session.Session().as_default(): inputs = keras.layers.Input(shape=(3,), name='input') x = keras.layers.Dense(2)(inputs) output = keras.layers.Dense(3)(x) model = keras.models.Model(inputs, output) model.compile( loss=keras.losses.MSE, optimizer=keras.optimizers.RMSprop(), metrics=[keras.metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) model.predict(x) fd, keras_file = tempfile.mkstemp('.h5') try: keras.models.save_model(model, keras_file) finally: os.close(fd) # Convert to TFLite model. converter = lite.TFLiteConverter.from_keras_model_file(keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('dense_1/BiasAdd', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model(keras_file) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) os.remove(keras_file) def testFunctionalModelMultipleInputs(self): """Test a Functional tf.keras model with multiple inputs and outputs.""" with session.Session().as_default(): a = keras.layers.Input(shape=(3,), name='input_a') b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(4, name='dense') c = dense(a) d = dense(b) e = keras.layers.Dropout(0.5, name='dropout')(c) model = keras.models.Model([a, b], [d, e]) model.compile( loss=keras.losses.MSE, optimizer=keras.optimizers.RMSprop(), metrics=[keras.metrics.mae], loss_weights=[1., 0.5]) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 4)) output_e_np = np.random.random((10, 4)) model.train_on_batch([input_a_np, input_b_np], [output_d_np, output_e_np]) model.predict([input_a_np, input_b_np], batch_size=5) fd, keras_file = tempfile.mkstemp('.h5') try: keras.models.save_model(model, keras_file) finally: os.close(fd) # Convert to TFLite model. converter = lite.TFLiteConverter.from_keras_model_file(keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) os.remove(keras_file) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('input_a', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('input_b', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(2, len(output_details)) self.assertEqual('dense_1/BiasAdd', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 4] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) self.assertEqual('dropout/Identity', output_details[1]['name']) self.assertEqual(np.float32, output_details[1]['dtype']) self.assertTrue(([1, 4] == output_details[1]['shape']).all()) self.assertEqual((0., 0.), output_details[1]['quantization']) def testFunctionalSequentialModel(self): """Test a Functional tf.keras model containing a Sequential model.""" with session.Session().as_default(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) model = keras.models.Model(model.input, model.output) model.compile( loss=keras.losses.MSE, optimizer=keras.optimizers.RMSprop(), metrics=[keras.metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) model.predict(x) model.predict(x) fd, keras_file = tempfile.mkstemp('.h5') try: keras.models.save_model(model, keras_file) finally: os.close(fd) # Convert to TFLite model. converter = lite.TFLiteConverter.from_keras_model_file(keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('dense_input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('time_distributed/Reshape_1', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model(keras_file) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) os.remove(keras_file) def testSequentialModelTocoConverter(self): """Test a Sequential tf.keras model with deprecated TocoConverter.""" keras_file = self._getSequentialModel() converter = lite.TocoConverter.from_keras_model_file(keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the model is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() if __name__ == '__main__': test.main()
41.226769
105
0.687876
d4e1f9d735a4cdce9505227516f57a581ec32e6e
24,092
py
Python
python/mnrl.py
Agnishom/mnrl
11c94ab3c984971a87fce5fc3fb0274dc007e5ff
[ "BSD-3-Clause" ]
8
2017-06-06T19:55:20.000Z
2021-11-14T16:55:43.000Z
python/mnrl.py
Agnishom/mnrl
11c94ab3c984971a87fce5fc3fb0274dc007e5ff
[ "BSD-3-Clause" ]
null
null
null
python/mnrl.py
Agnishom/mnrl
11c94ab3c984971a87fce5fc3fb0274dc007e5ff
[ "BSD-3-Clause" ]
4
2017-08-03T18:06:18.000Z
2021-06-23T18:22:23.000Z
# Kevin Angstadt # angstadt {at} umich.edu # University of Virginia # # Python objects for manipulating MNRL files import json import mnrlerror import jsonschema import os def loadMNRL(filename): with open(os.path.dirname(os.path.abspath(__file__))+"/mnrl-schema.json", "r") as s: schema = json.load(s) with open(filename, "r") as f: json_string = f.read() try: jsonschema.validate(json.loads(json_string),schema) except jsonschema.exceptions.ValidationError as e: print "ERROR:", e return None # parse into MNRL d = MNRLDecoder() return d.decode(json_string) class MNRLDefs(object): (ENABLE_ON_ACTIVATE_IN, ENABLE_ON_START_AND_ACTIVATE_IN, ENABLE_ALWAYS, ENABLE_ON_LAST, TRIGGER_ON_THRESHOLD, HIGH_ON_THRESHOLD, ROLLOVER_ON_THRESHOLD) = range(7) H_STATE_INPUT = STATE_INPUT = "i" H_STATE_OUTPUT = UP_COUNTER_OUTPUT = BOOLEAN_OUTPUT = "o" UP_COUNTER_COUNT = "cnt" UP_COUNTER_RESET = "rst" BOOLEAN_TYPES = { 'and': 1, 'or': 1, 'nor': 1, 'not': 1, 'nand': 1 } @staticmethod def fromMNRLEnable(en): if en == "onActivateIn": return MNRLDefs.ENABLE_ON_ACTIVATE_IN elif en == "onStartAndActivateIn": return MNRLDefs.ENABLE_ON_START_AND_ACTIVATE_IN elif en == "onLast": return MNRLDefs.ENABLE_ON_LAST elif en == "always": return MNRLDefs.ENABLE_ALWAYS else: raise mnrlerror.EnableError(en) @staticmethod def fromMNRLReportEnable(en): if en == "always": return MNRLDefs.ENABLE_ALWAYS elif en == "onLast": return MNRLDefs.ENABLE_ON_LAST else: raise mnrlerror.ReportEnableError(en) @staticmethod def toMNRLEnable(en): if en == MNRLDefs.ENABLE_ON_ACTIVATE_IN: return "onActivateIn" elif en == MNRLDefs.ENABLE_ON_START_AND_ACTIVATE_IN: return "onStartAndActivateIn" elif en == MNRLDefs.ENABLE_ALWAYS: return "always" elif en == MNRLDefs.ENABLE_ON_LAST: return "onLast" else: raise mnrlerror.EnableError(en) @staticmethod def toMNRLReportEnable(en): if en == MNRLDefs.ENABLE_ALWAYS: return "always" elif en == MNRLDefs.ENABLE_ON_LAST: return "onLast" else: raise mnrlerror.ReportEnableError(en) @staticmethod def fromMNRLCounterMode(m): if m == "trigger": return MNRLDefs.TRIGGER_ON_THRESHOLD elif m == "high": return MNRLDefs.HIGH_ON_THRESHOLD elif m == "rollover": return MNRLDefs.ROLLOVER_ON_THRESHOLD else: raise mnrlerror.UpCounterModeError(m) @staticmethod def toMNRLCounterMode(m): if m == MNRLDefs.TRIGGER_ON_THRESHOLD: return "trigger" elif m == MNRLDefs.HIGH_ON_THRESHOLD: return "high" elif m == MNRLDefs.ROLLOVER_ON_THRESHOLD: return "rollover" else: raise mnrlerror.UpCounterModeError(m) class MNRLNetwork(object): """Represents the top level of a MNRL file.""" def __init__(self, id): """Create a MNRL Network with an id set to 'id'""" self.id = id self.nodes = dict() self._nodes_added = 0 def toJSON(self): return json.dumps({ 'id' : self.id, 'nodes' : [json.loads(e.toJSON()) for _,e in self.nodes.iteritems()] }) def exportToFile(self, filename): """Save the MNRL Network to filename""" with open(filename,"w") as f: json.dump(json.loads(self.toJSON()), f, indent=2) def getNodeById(self, id): """Return the element from the MNRL network with the given ID""" try: return self.nodes[id] except KeyError: raise mnrlerror.UnknownNode(id) def addNode(self,theNode): """Add a MNRL Node object to the Network. Note that this may assign an ID to the node if none exists.""" theNode.id = self._getUniqueNodeId(theNode.id) self.nodes[theNode.id] = theNode return theNode def addState(self, outputSymbols, enable = MNRLDefs.ENABLE_ON_ACTIVATE_IN, id = None, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, reportId = None, latched = False, attributes = {} ): """Create a state, add it to the network, and return it""" id = self._getUniqueNodeId(id) state = State(outputSymbols, enable=enable, id=id, report=report, reportEnable=reportEnable, reportId=reportId, latched=latched, attributes=attributes) self.nodes[id] = state return state def addHState(self, symbols, enable = MNRLDefs.ENABLE_ON_ACTIVATE_IN, id = None, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, reportId = None, latched = False, attributes = {} ): """Create a homogenous state, add it to the network, and return it""" id = self._getUniqueNodeId(id) hState = HState(symbols,enable=enable,id=id,report=report,reportEnable=reportEnable,reportId=reportId,latched=latched,attributes=attributes) self.nodes[id] = hState return hState def addUpCounter(self, threshold, mode = MNRLDefs.HIGH_ON_THRESHOLD, id = None, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, reportId = None, attributes = {} ): """Create an up counter, add it to the network, and return it""" id = self._getUniqueNodeId(id) new_counter = UpCounter(threshold, mode=mode, id=id, report=report,reportEnable=reportEnable, reportId=reportId, attributes=attributes) self.nodes[id] = new_counter return new_counter def addBoolean(self, booleanType, id = None, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, enable = MNRLDefs.ENABLE_ON_START_AND_ACTIVATE_IN, reportId = None, attributes = {} ): """Create a Boolean node, add it to the network, and return it""" id = self._getUniqueNodeId(id) try: number_of_ports = MNRLDefs.BOOLEAN_TYPES[booleanType] except KeyError: raise mnrlerror.InvalidGateType(booleanType) boolean = Boolean(booleanType,portCount=number_of_ports,id=id,enable=enable,report=report,reportEnable=reportEnable,reportId=reportId,attributes=attributes) self.nodes[id] = boolean return boolean def addConnection(self, source, destination): """Add a connection between node 'source' (id,port) and 'destination' (id,port)""" (s_id, s_port, s_node, s_output_width, s_output, d_id, d_port, d_node, d_input_width, d_input) = self.__getConnectionNodeInformation(source, destination) if s_output_width != d_input_width: raise mnrlerror.PortWidthMismatch(s_output_width, d_input_width) s_output.append({ 'id': d_id, 'portId': d_port }) d_input.append({ 'id': s_id, 'portId': s_port }) def removeConnection(self, source, destination): """Remove a connection between 'source' (id,port) and 'destination' (id,port). If no connection exists, do nothing.""" (s_id, s_port, s_node, s_output_width, s_output, d_id, d_port, d_node, d_input_width, d_input) = self.__getConnectionNodeInformation(source, destination) # remove the connection try: s_output.remove({ 'id': d_id, 'portId': d_port }) except ValueError: pass # don't care try: d_input.remove({ 'id': s_id, 'portId': s_port }) except ValueError: pass # don't care def _getUniqueNodeId(self,id): """return a unique ID for the MNRL network. If an ID is passed in and is unique, it will be returned.""" if id is None: id = "_" + str(self._nodes_added) self._nodes_added += 1 if id in self.nodes: raise mnrlerror.MNRLDuplicateIdError('This MNRL id already exists: ' + id) return id def __getConnectionNodeInformation(self, source, destination): try: s_id, s_port = source d_id, d_port = destination except ValueError: raise mnrlerror.InvalidConnection() s_node = self.getNodeById(s_id) d_node = self.getNodeById(d_id) try: s_output_width, s_output = s_node.outputDefs[s_port] except KeyError: raise mnrlerror.UnknownPort(s_id,s_port) try: d_input_width, d_input = d_node.inputDefs[d_port] except KeyError: raise mnrlerror.UnknownPort(d_id,d_port) return (s_id, s_port, s_node, s_output_width, s_output, d_id, d_port, d_node, d_input_width, d_input) class MNRLNode(object): def __init__(self, id = None, enable = MNRLDefs.ENABLE_ON_ACTIVATE_IN, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, inputDefs = [], outputDefs = [], attributes = {} ): self.id = id if enable not in [ MNRLDefs.ENABLE_ALWAYS, MNRLDefs.ENABLE_ON_ACTIVATE_IN, MNRLDefs.ENABLE_ON_START_AND_ACTIVATE_IN, MNRLDefs.ENABLE_ON_LAST ]: raise mnrlerror.EnableError(enable) self.enable = enable self.report = report if reportEnable not in [ MNRLDefs.ENABLE_ALWAYS, MNRLDefs.ENABLE_ON_LAST ]: raise mnrlerror.ReportEnableError(reportEnable) self.reportEnable = reportEnable #validate input ports self.inputDefs = self.__validate_ports(inputDefs,"input") #validate output ports self.outputDefs = self.__validate_ports(outputDefs,"output") self.attributes = attributes def toJSON(self): # define the enable string enable_string = MNRLDefs.toMNRLEnable(self.enable) # properly define input ports (drop the connections) inputDefs = list() for port_id,(width,_) in self.inputDefs.iteritems(): inputDefs.append({ 'portId': port_id, 'width': width }) # properly define output ports outputDefs = list() for port_id,(width,connection_list) in self.outputDefs.iteritems(): outputDefs.append({ 'portId': port_id, 'width': width, 'activate': connection_list }) dump_obj = { 'id' : self.id, 'report' : self.report, 'enable' : enable_string, 'inputDefs' : inputDefs, 'outputDefs' : outputDefs, 'attributes' : self.attributes } if self.reportEnable != MNRLDefs.ENABLE_ALWAYS: dump_obj['reportEnable'] = MNRLDefs.toMNRLReportEnable(self.reportEnable) return json.dumps(dump_obj) def getOutputConnections(self): """Returns the output connections dict of portid => (width, conn_list)""" return self.outputDefs def getInputConnections(self): """Returns the input connections dict of portid => (width, conn_list)""" return self.inputDefs def __validate_ports(self,port_def,inout): '''Returns a dictionary of ports. Keys are the port id's; each maps to a width and list of connections tuple.''' portDefs = dict() try: for port_id,width in port_def: # check that the port_id is a string if isinstance(port_id, basestring): if port_id in portDefs: raise mnrlerror.DuplicatePortId(port_id) else: if isinstance(width, int): portDefs[port_id] = (width, []) else: raise mnrlerror.InvalidPortWidth(width) else: raise mnrlerror.PortIdError(port_id, "the ID is not a string") except ValueError: raise mnrlerror.PortDefError(inout) return portDefs class State(MNRLNode): """A state has one input port and multiple output ports. Output ports are enabled by seaparate symbol sets""" def __init__(self, outputSymbols, enable = MNRLDefs.ENABLE_ON_ACTIVATE_IN, id = None, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, latched = False, reportId = None, attributes = {} ): symbolSet = dict() # outputSymbols is a tuple: # ("outputId","symbolSet") outputDefs = [] try: for output_id, symbol_set in outputSymbols: if isinstance(output_id, basestring): symbolSet[output_id] = symbol_set outputDefs.append((output_id,1)) else: raise mnrlerror.PortDefError("output") except ValueError: raise mnrlerror.InvalidStateOutputSymbols() super(State,self).__init__( id = id, enable = enable, report = report, reportEnable = reportEnable, inputDefs = [(MNRLDefs.H_STATE_INPUT,1)], outputDefs = outputDefs, attributes = attributes ) self.reportId = reportId self.latched = latched self.outputSymbols = symbolSet def toJSON(self): j = json.loads(super(State, self).toJSON()) j.update({'type' : 'state'}) if self.reportId is not None: j['attributes'].update({'reportId':self.reportId}) j['attributes'].update({ 'latched' : self.latched, 'symbolSet' : self.outputSymbols }) return json.dumps(j) class HState(MNRLNode): """Object representation of a homogeneous state. A homogenous state only has one input port and one output port.""" def __init__(self, symbols, enable = MNRLDefs.ENABLE_ON_ACTIVATE_IN, id = None, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, latched = False, reportId = None, attributes = {} ): super(HState, self).__init__( id = id, enable = enable, report = report, reportEnable = reportEnable, inputDefs = [(MNRLDefs.H_STATE_INPUT,1)], outputDefs = [(MNRLDefs.H_STATE_OUTPUT,1)], attributes = attributes ) self.latched = latched self.reportId = reportId self.symbols = symbols def toJSON(self): j = json.loads(super(HState, self).toJSON()) j.update({'type' : 'hState'}) if self.reportId is not None: j['attributes'].update({'reportId':self.reportId}) j['attributes'].update({ 'latched' : self.latched, 'symbolSet' : self.symbols }) return json.dumps(j) class UpCounter(MNRLNode): def __init__(self, threshold, mode = MNRLDefs.HIGH_ON_THRESHOLD, id = None, report = False, reportId = None, attributes = {} ): #validate that the threshold is a non-negative int if not (isinstance(threshold, int) and threshold >= 0): raise mnrlerror.UpCounterThresholdError(threshold) #validate mode if mode not in [ MNRLDefs.TRIGGER_ON_THRESHOLD, MNRLDefs.HIGH_ON_THRESHOLD, MNRLDefs.ROLLOVER_ON_THRESHOLD ]: raise mnrlerror.UpCounterModeError(mode) super(UpCounter,self).__init__( id = id, enable = MNRLDefs.ENABLE_ON_START_AND_ACTIVATE_IN, #a counter is always active report = report, reportEnable = reportEnable, inputDefs = [ (MNRLDefs.UP_COUNTER_COUNT, 1), (MNRLDefs.UP_COUNTER_RESET, 1) ], outputDefs = [ (MNRLDefs.UP_COUNTER_OUTPUT, 1) ], attributes = attributes ) self.reportId = reportId self.threshold = threshold self.mode = mode def toJSON(self): j = json.loads(super(UpCounter, self).toJSON()) j.update({'type' : 'upCounter'}) if self.reportId is not None: j['attributes'].update({'reportId':self.reportId}) j['attributes'].update({ 'mode' : MNRLDefs.toMNRLCounterMode(self.mode), 'threshold' : self.threshold, }) return json.dumps(j) class Boolean(MNRLNode): def __init__(self, gateType, portCount = 1, id = None, enable = MNRLDefs.ENABLE_ON_START_AND_ACTIVATE_IN, report = False, reportEnable = MNRLDefs.ENABLE_ALWAYS, reportId = None, attributes = {} ): if isinstance(gateType, basestring): if not (isinstance(portCount, int) and portCount > 0): raise mnrlerror.InvalidGatePortCount(portCount) # seems semi-valid, let's create it inputDefs = [] for i in range(portCount): inputDefs.append(("b" + str(i),1)) super(Boolean, self).__init__( id = id, enable = enable, report = report, reportEnable = reportEnable, inputDefs = inputDefs, outputDefs = [(MNRLDefs.BOOLEAN_OUTPUT, 1)], attributes = attributes ) self.gateType = gateType self.reportId = reportId else: raise mnrlerror.InvalidGateFormat() def toJSON(self): j = json.loads(super(Boolean, self).toJSON()) j.update({'type' : 'boolean'}) if self.reportId is not None: j['attributes'].update({'reportId':self.reportId}) j['attributes'].update({ 'gateType' : self.gateType, }) return json.dumps(j) class MNRLDecoder(json.JSONDecoder): def decode(self, json_string): default_obj = super(MNRLDecoder,self).decode(json_string) # build up a proper MNRL representation mnrl_obj = MNRLNetwork(default_obj['id']) # build up the mnrl network in two passes # 1. add all the nodes # 2. add all the connections for n in default_obj['nodes']: # for each node in the network, add it to the network if n['type'] == "state": node = State( n['attributes']['symbolSet'], enable = MNRLDefs.fromMNRLEnable(n['enable']), id = n['id'], report = n['report'], reportEnable = MNRLDefs.fromMNRLReportEnable(n.get('reportEnable', "always")), latched = n['attributes']['latched'] if 'latched' in n['attributes'] else False, reportId = n['attributes']['reportId'] if 'reportId' in n['attributes'] else None, attributes = n['attributes'] ) elif n['type'] == "hState": node = HState( n['attributes']['symbolSet'], enable = MNRLDefs.fromMNRLEnable(n['enable']), id = n['id'], report = n['report'], reportEnable = MNRLDefs.fromMNRLReportEnable(n.get('reportEnable', "always")), latched = n['attributes']['latched'] if 'latched' in n['attributes'] else False, reportId = n['attributes']['reportId'] if 'reportId' in n['attributes'] else None, attributes = n['attributes'] ) elif n['type'] == "upCounter": node = UpCounter( n['attributes']['threshold'], mode = MNRLDefs.fromMNRLCounterMode(n['attributes']['mode']), id = n['id'], report = n['report'], reportEnable = MNRLDefs.fromMNRLReportEnable(n.get('reportEnable', "always")), reportId = n['attributes']['reportId'] if 'reportId' in n['attributes'] else None, attributes = n['attributes'] ) elif n['type'] == "Boolean": if n['attributes']['gateType'] not in MNRLDefs.BOOLEAN_TYPES: raise mnrlerror.InvalidGateType(n['attributes']['gateType']) node = Boolean( n['attributes']['gateType'], portCounte=MNRLDefs.BOOLEAN_TYPES[n['attributes']['gateType']], id = n['id'], enable = MNRLDefs.fromMNRLEnable(n['enable']), report = n['report'], reportEnable = MNRLDefs.fromMNRLReportEnable(n.get('reportEnable', "always")), reportId = n['attributes']['reportId'] if 'reportId' in n['attributes'] else None, attributes = n['attributes'] ) else: # convert input defs into format needed for constructor ins = list() for k in n['inputDefs']: ins.append((k['portId'],k['width'])) # convert output defs into format needed for constructor outs = list() for k in n['outputDefs']: outs.append((k['portId'], k['width'])) node = MNRLNode( id = n['id'], enable = MNRLDefs.fromMNRLEnable(n['enable']), report = n['report'], reportEnable = MNRLDefs.fromMNRLReportEnable(n.get('reportEnable', "always")), inputDefs = ins, outputDefs = outs, attributes = n['attributes'] ) # add the node to the network mnrl_obj.addNode(node) for n in default_obj['nodes']: # for each node, add all the connections for k in n['outputDefs']: # for each output port for c in k['activate']: mnrl_obj.addConnection( (n['id'],k['portId']), (c['id'],c['portId']) ) return mnrl_obj
33.461111
164
0.53358
3ff8778f3ad263a88a6ad0fbf5059949d9c7d727
855
py
Python
build/piman.app/pysnmp/proto/secmod/rfc3414/auth/base.py
jackgisel/team-athens
91e2aa810c0064f8b6b39ee53c3b05f037e0aeb0
[ "Apache-2.0" ]
null
null
null
build/piman.app/pysnmp/proto/secmod/rfc3414/auth/base.py
jackgisel/team-athens
91e2aa810c0064f8b6b39ee53c3b05f037e0aeb0
[ "Apache-2.0" ]
null
null
null
build/piman.app/pysnmp/proto/secmod/rfc3414/auth/base.py
jackgisel/team-athens
91e2aa810c0064f8b6b39ee53c3b05f037e0aeb0
[ "Apache-2.0" ]
null
null
null
# # This file is part of pysnmp software. # # Copyright (c) 2005-2019, Ilya Etingof <etingof@gmail.com> # License: http://snmplabs.com/pysnmp/license.html # from pysnmp.proto import errind, error class AbstractAuthenticationService(object): serviceID = None def hashPassphrase(self, authKey): raise error.ProtocolError(errind.noAuthentication) def localizeKey(self, authKey, snmpEngineID): raise error.ProtocolError(errind.noAuthentication) @property def digestLength(self): raise error.ProtocolError(errind.noAuthentication) # 7.2.4.1 def authenticateOutgoingMsg(self, authKey, wholeMsg): raise error.ProtocolError(errind.noAuthentication) # 7.2.4.2 def authenticateIncomingMsg(self, authKey, authParameters, wholeMsg): raise error.ProtocolError(errind.noAuthentication)
28.5
73
0.733333
2b339cf605facc99f1e0af6e3dd9b7481aac3a42
844
py
Python
bot/persist.py
dronesoc/dronebot
ed4bb8a8f774eb59ac0d9a3a7e7e3a4d8ded7264
[ "MIT" ]
null
null
null
bot/persist.py
dronesoc/dronebot
ed4bb8a8f774eb59ac0d9a3a7e7e3a4d8ded7264
[ "MIT" ]
null
null
null
bot/persist.py
dronesoc/dronebot
ed4bb8a8f774eb59ac0d9a3a7e7e3a4d8ded7264
[ "MIT" ]
null
null
null
import requests import os import json """ Defines a connection to a Persist Key/Value Store """ class PersistStore: def __init__(self): self.base_url = 'https://beepboophq.com/api/v1/persist/kv' self.token = os.getenv("BEEPBOOP_TOKEN", "") def list_keys(self): r = requests.get(self.base_url, headers={'Authorization': 'Bearer {}'.format(self.token)}) return r.json() def set_value(self, key, value): r = requests.put(self.base_url + '/{}'.format(key), headers={'Authorization': 'Bearer {}'.format(self.token)}, data=json.dumps({'value': value})) if r.status_code != 200: print r.text def get_value(self, key): r = requests.get(self.base_url + '/{}'.format(key), headers={'Authorization': 'Bearer {}'.format(self.token)}) return r.json()['value']
32.461538
153
0.626777
65752e430072e99d3cb3aaad99b6af5d0e83dd7e
1,025
py
Python
cyborg/accelerator/drivers/nic/intel/driver.py
NeCTAR-RC/cyborg
e0fab29181467c0c72667ea26a8b04c53b238ddb
[ "Apache-2.0" ]
37
2017-03-23T02:10:35.000Z
2021-11-25T07:57:36.000Z
cyborg/accelerator/drivers/nic/intel/driver.py
openstack/nomad
8cd846a16c2da04c2f204b02b90db814e32acd63
[ "Apache-2.0" ]
null
null
null
cyborg/accelerator/drivers/nic/intel/driver.py
openstack/nomad
8cd846a16c2da04c2f204b02b90db814e32acd63
[ "Apache-2.0" ]
27
2017-07-14T02:26:24.000Z
2022-01-19T07:55:10.000Z
# Copyright 2020 Intel, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Cyborg Intel NIC driver implementation. """ from cyborg.accelerator.drivers.nic.base import NICDriver from cyborg.accelerator.drivers.nic.intel import sysinfo class IntelNICDriver(NICDriver): """Class for Intel NIC drivers. Vendor should implement their specific drivers in this class. """ VENDOR = "intel" def __init__(self, *args, **kwargs): pass def discover(self): return sysinfo.nic_tree()
29.285714
75
0.730732
67a0e3d96e072d7671b47efd1217891ad09dd9b8
4,866
py
Python
python/Client.py
Taren-Ko/Taren-Ko.github.io
7e5890e96113236577087145d96035c68d3cb265
[ "MIT" ]
null
null
null
python/Client.py
Taren-Ko/Taren-Ko.github.io
7e5890e96113236577087145d96035c68d3cb265
[ "MIT" ]
null
null
null
python/Client.py
Taren-Ko/Taren-Ko.github.io
7e5890e96113236577087145d96035c68d3cb265
[ "MIT" ]
null
null
null
import sys from socket import * def mail_reader(): # Tests for proper number of arguments passed # Then passes arguments to hostname and port for Socket if len(sys.argv) != 3: sys.stderr.write("Error: Too many or too few arguments.\n") sys.stderr.write("QUIT\n") sys.exit(0) else: hostname = sys.argv[1] port = int(sys.argv[2]) # Asks for From Address and stores it if properly formatted print("Enter From") while True: from_piece = raw_input() if mail_addr_test(from_piece) == False: print("Invalid Address, try again.") else: break # Same as the last one but asks for Recipients. # A comma separated list will be split up and placed into an array # If any address is invalid we start over from the top of Enter Recipients print("Enter recipients") while True: to_piece = raw_input() to_set = to_piece.split(',') to_total = len(to_set) i = 0 to_bool = False while i < to_total: if mail_addr_test(to_set[i]) == False: print("Invalid Address, try again.") break elif i == to_total-1: to_bool = True i = i+1 else: i = i+1 if to_bool == True: break # Same as the last two but can not be invalid print("Enter subject") subject_piece = raw_input() # Takes in the message until a <CRLF>.<CRLF> # Stores these into data[] print("Enter message. Terminate with a period on an empty line.") i = 0 data = [None] * 1024 dataLen = 0 while True: dataset = raw_input() if dataset == ".": dataLen = i break else: data[i] = dataset i = i+1 msglines = i # From here the user has finished input so we start the socket to the Server clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((hostname, port)) # confirming response from server then sending a friendly HELO response = clientSocket.recv(1024).decode() # print(response) if response == None: clientSocket.close() print("Error: Invalid hostname or port.") sys.exit(0) else: clientSocket.send("HELO <cs.unc.edu>".encode()) response = clientSocket.recv(1024) # Package the from response into a valid SMTP command and send to server fromMsg = "MAIL FROM: <" + from_piece + ">" clientSocket.send(fromMsg.encode()) response = clientSocket.recv(1024) response = clientSocket.recv(1024).decode() # print(response) if response != "250 OK": clientSocket.close() print("Connection encountered SMTP Error: MAIL FROM") sys.exit(0) # Ditto for the recipients i=0 while i<to_total: toMsg = "RCPT TO: <" + to_set[i] + ">" clientSocket.send(toMsg.encode()) response = clientSocket.recv(1024) response = clientSocket.recv(1024).decode() # print(response) if response != "250 OK": clientSocket.close() print("Connection encountered SMTP Error: RCPT TO") sys.exit(0) else: i= i+1 # DATA transmission begins. Start by formatting properly with From: To: Subject: \n # After this send a part of data[], receive it back, # repeat until finished then send the terminating character. # response = clientSocket.recv(1024).decode() clientSocket.send("DATA".encode()) response = clientSocket.recv(1024) response = clientSocket.recv(1024).decode() # print(response) if response[0:3] != "354": clientSocket.close() print("Connection encountered SMTP Error: DATA") sys.exit(0) fromMsg = "From: " + from_piece clientSocket.send(fromMsg.encode()) response = clientSocket.recv(1024) # print(response) toMsg = "To: " + to_piece clientSocket.send(toMsg.encode()) response = clientSocket.recv(1024) # print(response) subMsg = "Subject: " + subject_piece clientSocket.send(subMsg.encode()) response = clientSocket.recv(1024) # print(response) clientSocket.send(" ".encode()) response = clientSocket.recv(1024) # print(response) i=0 while i<dataLen: # print(data[i]) clientSocket.send(data[i].encode()) response = clientSocket.recv(1024) # print(response) i= i+1 clientSocket.send(".".encode()) response = clientSocket.recv(1024) response = clientSocket.recv(1024).decode() # print(response) # Final response received, if it's a 250 OK then we are done and exit if response != "250 OK": clientSocket.close() print("Connection encountered SMTP Error: Data Termination") sys.exit(0) clientSocket.send("QUIT".encode()) clientSocket.close() sys.exit(0) def mail_addr_test(str): """Tests for a mailing address with a singular @ symbol""" testcase = str if testcase.find('<') != -1 or testcase.find('>') != -1: return False if testcase.find(' ') != -1: return False if testcase.find('@') == -1: return False else: endpt = testcase.find('@') if testcase[endpt+1:].find('@') != -1: return False else: return True while True: try: mail_reader() except EOFError: break
25.746032
84
0.672626
12a850a8564bdc3c0e7b934e6b4093f9a8fdcde4
509
py
Python
app_sirene/migrations/0029_auto_20191228_1401.py
cavaliba/sirene
ccbf67ba169fb65f7d51550bd86b6fe5a217ef63
[ "BSD-3-Clause" ]
null
null
null
app_sirene/migrations/0029_auto_20191228_1401.py
cavaliba/sirene
ccbf67ba169fb65f7d51550bd86b6fe5a217ef63
[ "BSD-3-Clause" ]
null
null
null
app_sirene/migrations/0029_auto_20191228_1401.py
cavaliba/sirene
ccbf67ba169fb65f7d51550bd86b6fe5a217ef63
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 3.0 on 2019-12-28 13:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app_sirene', '0028_auto_20191228_1400'), ] operations = [ migrations.RemoveField( model_name='info', name='hide', ), migrations.AddField( model_name='info', name='visible', field=models.BooleanField(default=True, verbose_name='Masquer'), ), ]
22.130435
76
0.577603
9f2ff455945bd337b35f3d27f0e6c6818d84c45f
42
py
Python
openmdao/__init__.py
garobed1/OpenMDAO
6b93aca2ce235a8ebdf2ba65a9b798f2a807c1a5
[ "Apache-2.0" ]
null
null
null
openmdao/__init__.py
garobed1/OpenMDAO
6b93aca2ce235a8ebdf2ba65a9b798f2a807c1a5
[ "Apache-2.0" ]
null
null
null
openmdao/__init__.py
garobed1/OpenMDAO
6b93aca2ce235a8ebdf2ba65a9b798f2a807c1a5
[ "Apache-2.0" ]
null
null
null
__version__ = '2.7.1' INF_BOUND = 1.0E30
10.5
21
0.666667
8c4394e29ef3476e4d50a87586c9076e6253a2ab
499
py
Python
Books/GodOfPython/P00_OriginalSource/ch14/gui_07_2.py
Tim232/Python-Things
05f0f373a4cf298e70d9668c88a6e3a9d1cd8146
[ "MIT" ]
2
2020-12-05T07:42:55.000Z
2021-01-06T23:23:18.000Z
Books/GodOfPython/P00_OriginalSource/ch14/gui_07_2.py
Tim232/Python-Things
05f0f373a4cf298e70d9668c88a6e3a9d1cd8146
[ "MIT" ]
null
null
null
Books/GodOfPython/P00_OriginalSource/ch14/gui_07_2.py
Tim232/Python-Things
05f0f373a4cf298e70d9668c88a6e3a9d1cd8146
[ "MIT" ]
null
null
null
# gui_07_2.py import tkinter SMILE = """ #define smileywe_width 16 #define smiley_height 16 static unsigned char smiley_bits[] = { 0xc0, 0x07, 0x30, 0x18, 0x08, 0x20, 0x04, 0x40, 0x44, 0x44, 0x02, 0x80, 0x02, 0x80, 0x02, 0x80, 0x22, 0x88, 0x62, 0x8c, 0xc4, 0x47, 0x04, 0x40, 0x08, 0x20, 0x30, 0x18, 0xc0, 0x07, 0x00, 0x00}; """ root = tkinter.Tk() cvs = tkinter.Canvas(root, width=50, height=30) cvs.pack() img = tkinter.BitmapImage(data=SMILE) cvs.create_image(25, 15, image=img) root.mainloop()
26.263158
71
0.705411
5847f68d5c5a8bdb335ca8b1e11cba3bac26388e
4,369
py
Python
tools/cfgparser.py
dp92987/nginx-amplify-agent
1b2eed6eab52a82f35974928d75044451b4bedaf
[ "BSD-2-Clause" ]
308
2015-11-17T13:15:33.000Z
2022-03-24T12:03:40.000Z
tools/cfgparser.py
dp92987/nginx-amplify-agent
1b2eed6eab52a82f35974928d75044451b4bedaf
[ "BSD-2-Clause" ]
211
2015-11-16T15:27:41.000Z
2022-03-28T16:20:15.000Z
tools/cfgparser.py
dp92987/nginx-amplify-agent
1b2eed6eab52a82f35974928d75044451b4bedaf
[ "BSD-2-Clause" ]
80
2015-11-16T18:20:30.000Z
2022-03-02T12:47:56.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import json import os import sys import time # make amplify libs available script_location = os.path.abspath(os.path.expanduser(__file__)) agent_repo_path = os.path.dirname(os.path.dirname(script_location)) agent_config_file = os.path.join(agent_repo_path, 'etc', 'agent.conf.development') sys.path.append(agent_repo_path) # setup agent config from amplify.agent.common.context import context context.setup(app='agent', config_file=agent_config_file) context.app_config['daemon']['cpu_sleep'] = 0.0 from amplify.agent.objects.nginx.config.config import NginxConfig __author__ = "Mike Belov" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __license__ = "" __maintainer__ = "Mike Belov" __email__ = "dedm@nginx.com" def parse_args(): from argparse import ArgumentParser parser = ArgumentParser(description='A tool for using the NGINX Amplify config parser') parser.add_argument('-c', '--config', metavar='file', required=True, help='path to nginx config file') group = parser.add_mutually_exclusive_group() group.add_argument('--light', action='store_true', help='light parse (find all files)') group.add_argument('--simple', action='store_true', help='print the simplified config') group.add_argument('--dirmap', action='store_true', help='print directory and file map') group.add_argument('--payload', action='store_true', help='print entire config payload') group = parser.add_mutually_exclusive_group() group.add_argument('--pretty', action='store_true', help='pretty print json payloads') group.add_argument('-q', '--quiet', action='store_true', help='print only elapsed time') args = parser.parse_args() args.config = os.path.abspath(os.path.expanduser(args.config)) if not os.path.exists(args.config): parser.error('config: No such file or directory') return args def main(): args = parse_args() def dump(heading, *payloads): if heading: print '\033[32m{} for {}\033[0m'.format(heading, args.config) for x in payloads: if isinstance(x, dict) and args.pretty: print json.dumps(x, indent=4, sort_keys=True) elif isinstance(x, dict): print json.dumps(x, separators=(',', ':'), sort_keys=True) else: print json.dumps(x) # never prettify print lists print start = time.time() cfg = NginxConfig(filename=args.config) if args.light: structure = cfg.collect_structure(include_ssl_certs=True) else: cfg.full_parse() runtime = time.time() - start if args.quiet: print 'Parsed in %s seconds' % runtime return if args.light: dump(None, *structure) elif args.simple: dump(None, cfg.subtree) elif args.dirmap: dump('Config files', cfg.files) dump('Config directories', cfg.directories) dump('Config directory map', cfg.directory_map) dump('Config errors', cfg.parser_errors) elif args.payload: cfg.run_ssl_analysis() payload = { 'tree': cfg.tree, 'directory_map': cfg.directory_map, 'files': cfg.files, 'directories': cfg.directories, 'ssl_certificates': cfg.ssl_certificates, 'access_logs': cfg.access_logs, 'error_logs': cfg.error_logs, 'errors': { 'parser': len(cfg.parser_errors), 'test': len(cfg.test_errors) } } dump(None, payload) else: cfg.run_ssl_analysis() dump('Config tree', cfg.tree) dump('Config files', cfg.files) dump('Config directory map', cfg.directory_map) dump('SSL certificates', cfg.ssl_certificates) dump( 'Stub status/plus status/api urls', cfg.stub_status_urls, cfg.plus_status_external_urls, cfg.plus_status_internal_urls, cfg.api_external_urls, cfg.api_internal_urls ) dump('Access logs', cfg.access_logs) dump('Error logs', cfg.error_logs) dump('Log formats', cfg.log_formats) dump('Config errors', cfg.parser_errors) print '\033[32mParsed in %s seconds\033[0m' % runtime if __name__ == '__main__': main()
33.607692
106
0.642939
8eca3f84be810b3a58fff4a148b13b05b368ced3
3,030
py
Python
omok/gui/gui.py
NohGod/BMT_Projects
c8bb9dc06a1693db7f9e9eeb524f5ef307fac2b8
[ "MIT" ]
null
null
null
omok/gui/gui.py
NohGod/BMT_Projects
c8bb9dc06a1693db7f9e9eeb524f5ef307fac2b8
[ "MIT" ]
null
null
null
omok/gui/gui.py
NohGod/BMT_Projects
c8bb9dc06a1693db7f9e9eeb524f5ef307fac2b8
[ "MIT" ]
1
2021-08-28T04:16:48.000Z
2021-08-28T04:16:48.000Z
from tkinter import Tk, Frame, Label, Button, PhotoImage from omok.core.board import Board from omok.gui.omokslot import OmokSlot class GUI: """Omok GUI created with tkinter""" status_text = {Board.BLACK_TURN: "Black's turn", Board.BLACK_WIN: 'Black wins!', Board.WHITE_TURN: "White's turn", Board.WHITE_WIN: 'White wins!', Board.DRAW: 'Draw!'} res_path = 'omok/res/' img_name = {Board.EMPTY_SLOT: 'empty.gif', Board.BLACK_SLOT: 'black.gif', Board.WHITE_SLOT: 'white.gif'} def __init__(self, board, windowtitle='Omok'): self.board = board self.board.lock.acquire() self.window = Tk() self.window.title(windowtitle) self.img = {} for key, name in GUI.img_name.items(): self.img[key] = PhotoImage(file=GUI.res_path + name) self.windowheight = self.board.height * self.img[Board.EMPTY_SLOT].height() self.windowwidth = self.board.width * self.img[Board.EMPTY_SLOT].width() self.window.geometry(str(self.windowwidth+1) + 'x' + str(self.windowheight+68) + '+100+100') self.window.resizable(True, True) self.labelframe = Frame(self.window, height=20, bd=0) self.labelframe.pack(side='top', fill='x') self.resetbutton = Button(self.labelframe, text='Reset', font=("Arial", 25), command=self.board.reset) self.resetbutton.pack(side='left', fill='y') self.statuslabel = Label(self.labelframe, text=GUI.status_text[self.board.status], font=("Arial", 25), height=0, width=0) self.statuslabel.pack(side='right', fill='y') self.gameframe = Frame(self.window, bd=0) self.gameframe.pack(expand=True, fill='both') self.board_gui = [] for i in range(self.board.height): self.board_gui.append([]) for j in range(self.board.width): self.board_gui[i].append(OmokSlot(self.gameframe, i=i, j=j, bd=0, padx=0, pady=0, image=self.img[self.board.board[i][j]], height=self.img[self.board.board[i][j]].height(), width=self.img[self.board.board[i][j]].width())) self.board_gui[i][j].bind('<Button-1>', lambda x: self.board.place(x.widget.i, x.widget.j)) self.board_gui[i][j].grid(row=i, column=j) self.board.load_gui(self) self.board.lock.release() self.window.mainloop() def update(self, i=None, j=None): self.statuslabel['text'] = GUI.status_text[self.board.status] if i == None or j == None: for i in range(self.board.height): for j in range(self.board.width): self.board_gui[i][j]['image'] = self.img[self.board.board[i][j]] else: self.board_gui[i][j]['image'] = self.img[self.board.board[i][j]]
44.558824
129
0.568317
7cf7888816e4558607b47a718b63fd3a1e6d39a8
14,133
py
Python
contrib/dummy_tv.py
Tigger2014/async_upnp_client
fa10aac4a98290559b4c258e23ba31d7b1177d5f
[ "Apache-2.0" ]
null
null
null
contrib/dummy_tv.py
Tigger2014/async_upnp_client
fa10aac4a98290559b4c258e23ba31d7b1177d5f
[ "Apache-2.0" ]
null
null
null
contrib/dummy_tv.py
Tigger2014/async_upnp_client
fa10aac4a98290559b4c258e23ba31d7b1177d5f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Dummy TV supporting DLNA/DMR.""" # Instructions: # - Change `SOURCE``. When using IPv6, be sure to set the scope_id, the last value in the tuple. # - Run this module. # - Run upnp-client (change IP to your own IP): # upnp-client call-action 'http://0.0.0.0:8000/device.xml' \ # RC/GetVolume InstanceID=0 Channel=Master import asyncio import logging import xml.etree.ElementTree as ET from typing import Dict from async_upnp_client.client import UpnpRequester, UpnpStateVariable from async_upnp_client.const import ( STATE_VARIABLE_TYPE_MAPPING, DeviceInfo, ServiceInfo, StateVariableTypeInfo, ) from .server import ( UpnpServerDevice, UpnpServerService, callable_action, run_server, ) logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger("dummy_tv") LOGGER_SSDP_TRAFFIC = logging.getLogger("async_upnp_client.traffic") LOGGER_SSDP_TRAFFIC.setLevel(logging.WARNING) SOURCE = ("0.0.0.0", 0) # Your IP here! HTTP_PORT = 8000 class MediaRendererDevice(UpnpServerDevice): """Media Renderer device.""" DEVICE_DEFINITION = DeviceInfo( device_type="urn:schemas-upnp-org:device:MediaRenderer:1", friendly_name="Dummy TV", manufacturer="Steven", model_name="DummyTV v1", udn="uuid:ea2181c0-c677-4a09-80e6-f9e69a951284", model_description="Dummy TV DMR", model_number="v0.0.1", serial_number="0000001", url="/device.xml", icons=[], xml=ET.Element("server_device"), ) def __init__(self, requester: UpnpRequester, base_uri: str) -> None: """Initialize.""" services = [ RenderingControlService(requester=requester), AVTransportService(requester=requester), ConnectionManagerService(requester=requester), ] super().__init__( requester=requester, base_uri=base_uri, services=services, embedded_devices=[], ) class RenderingControlService(UpnpServerService): """Rendering Control service.""" SERVICE_DEFINITION = ServiceInfo( service_id="urn:upnp-org:serviceId:RenderingControl", service_type="urn:schemas-upnp-org:service:RenderingControl:1", control_url="/upnp/control/RenderingControl1", event_sub_url="/upnp/event/RenderingControl1", scpd_url="/RenderingControl_1.xml", xml=ET.Element("server_service"), ) STATE_VARIABLE_DEFINITIONS = { "Volume": StateVariableTypeInfo( data_type="ui2", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui2"], default_value="0", allowed_value_range={ "min": "0", "max": "100", }, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "Mute": StateVariableTypeInfo( data_type="boolean", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["boolean"], default_value="0", allowed_value_range={}, allowed_values=["0", "1", ], xml=ET.Element("server_stateVariable"), ), "A_ARG_TYPE_InstanceID": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value=None, allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "A_ARG_TYPE_Channel": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value=None, allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), } @callable_action( name="GetVolume", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", "Channel": "A_ARG_TYPE_Channel", }, out_args={ "CurrentVolume": "Volume", }, ) async def get_volume( self, InstanceID: int, Channel: str ) -> Dict[str, UpnpStateVariable]: """Get Volume.""" # pylint: disable=invalid-name, unused-argument return { "CurrentVolume": self.state_variable("Volume"), } @callable_action( name="SetVolume", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", "Channel": "A_ARG_TYPE_Channel", "DesiredVolume": "Volume", }, out_args={}, ) async def set_volume( self, InstanceID: int, Channel: str, DesiredVolume: int ) -> Dict[str, UpnpStateVariable]: """Set Volume.""" # pylint: disable=invalid-name, unused-argument volume = self.state_variable("Volume") volume.value = DesiredVolume return {} @callable_action( name="GetMute", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", "Channel": "A_ARG_TYPE_Channel", }, out_args={ "CurrentMute": "Mute", }, ) async def get_mute( self, InstanceID: int, Channel: str ) -> Dict[str, UpnpStateVariable]: """Get Mute.""" # pylint: disable=invalid-name, unused-argument return { "CurrentMute": self.state_variable("Mute"), } @callable_action( name="SetMute", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", "Channel": "A_ARG_TYPE_Channel", "DesiredMute": "Mute", }, out_args={}, ) async def set_mute( self, InstanceID: int, Channel: str, DesiredMute: bool ) -> Dict[str, UpnpStateVariable]: """Set Volume.""" # pylint: disable=invalid-name, unused-argument volume = self.state_variable("Mute") volume.value = DesiredMute return {} class AVTransportService(UpnpServerService): """AVTransport service.""" SERVICE_DEFINITION = ServiceInfo( service_id="urn:upnp-org:serviceId:AVTransport", service_type="urn:schemas-upnp-org:service:AVTransport:1", control_url="/upnp/control/AVTransport1", event_sub_url="/upnp/event/AVTransport1", scpd_url="/AVTransport_1.xml", xml=ET.Element("server_service"), ) STATE_VARIABLE_DEFINITIONS = { "A_ARG_TYPE_InstanceID": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value=None, allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "CurrentTrackURI": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "CurrentTrack": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value=None, allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "AVTransportURI": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "TransportState": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="STOPPED", allowed_value_range={}, allowed_values=["STOPPED", "PLAYING", "PAUSED_PLAYBACK", "TRANSITIONING", ], xml=ET.Element("server_stateVariable"), ), "TransportStatus": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "TransportPlaySpeed": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="1", allowed_value_range={}, allowed_values=["1"], xml=ET.Element("server_stateVariable"), ), "PossiblePlaybackStorageMedia": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="NOT_IMPLEMENTED", allowed_value_range={}, allowed_values=["NOT_IMPLEMENTED"], xml=ET.Element("server_stateVariable"), ), "PossibleRecordStorageMedia": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="NOT_IMPLEMENTED", allowed_value_range={}, allowed_values=["NOT_IMPLEMENTED"], xml=ET.Element("server_stateVariable"), ), "PossibleRecordQualityModes": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="NOT_IMPLEMENTED", allowed_value_range={}, allowed_values=["NOT_IMPLEMENTED"], xml=ET.Element("server_stateVariable"), ), "CurrentPlayMode": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="NORMAL", allowed_value_range={}, allowed_values=["NORMAL"], xml=ET.Element("server_stateVariable"), ), "CurrentRecordQualityMode": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="NOT_IMPLEMENTED", allowed_value_range={}, allowed_values=["NOT_IMPLEMENTED"], xml=ET.Element("server_stateVariable"), ), } @callable_action( name="GetTransportInfo", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", }, out_args={ "CurrentTransportState": "TransportState", "CurrentTransportStatus": "TransportStatus", "CurrentSpeed": "TransportPlaySpeed", }, ) async def get_transport_info(self, InstanceID: int) -> Dict[str, UpnpStateVariable]: """Get Transport Info.""" # pylint: disable=invalid-name, unused-argument return { "CurrentTransportState": self.state_variable("TransportState"), "CurrentTransportStatus": self.state_variable("TransportStatus"), "CurrentSpeed": self.state_variable("TransportPlaySpeed"), } @callable_action( name="GetMediaInfo", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", }, out_args={ "CurrentURI": "AVTransportURI", }, ) async def get_media_info(self, InstanceID: int) -> Dict[str, UpnpStateVariable]: """Get Media Info.""" # pylint: disable=invalid-name, unused-argument return { "CurrentURI": self.state_variable("AVTransportURI"), } @callable_action( name="GetDeviceCapabilities", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", }, out_args={ "PlayMedia": "PossiblePlaybackStorageMedia", "RecMedia": "PossibleRecordStorageMedia", "RecQualityModes": "PossibleRecordQualityModes", }, ) async def get_device_capabilities(self, InstanceID: int) -> Dict[str, UpnpStateVariable]: """Get Device Capabilities.""" # pylint: disable=invalid-name, unused-argument return { "PlayMedia": self.state_variable("PossiblePlaybackStorageMedia"), "RecMedia": self.state_variable("PossibleRecordStorageMedia"), "RecQualityModes": self.state_variable("PossibleRecordQualityModes"), } @callable_action( name="GetTransportSettings", in_args={ "InstanceID": "A_ARG_TYPE_InstanceID", }, out_args={ "PlayMode": "CurrentPlayMode", "RecQualityMode": "CurrentRecordQualityMode", }, ) async def get_transport_settings(self, InstanceID: int) -> Dict[str, UpnpStateVariable]: """Get Transport Settings.""" # pylint: disable=invalid-name, unused-argument return { "PlayMode": self.state_variable("CurrentPlayMode"), "RecQualityMode": self.state_variable("CurrentRecordQualityMode"), } class ConnectionManagerService(UpnpServerService): """ConnectionManager service.""" SERVICE_DEFINITION = ServiceInfo( service_id="urn:upnp-org:serviceId:ConnectionManager", service_type="urn:schemas-upnp-org:service:ConnectionManager:1", control_url="/upnp/control/ConnectionManager1", event_sub_url="/upnp/event/ConnectionManager1", scpd_url="/ConnectionManager_1.xml", xml=ET.Element("server_service"), ) STATE_VARIABLE_DEFINITIONS = { "A_ARG_TYPE_InstanceID": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value=None, allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), } async def async_main() -> None: """Main.""" await run_server(SOURCE, HTTP_PORT, MediaRendererDevice) if __name__ == "__main__": asyncio.run(async_main())
34.220339
96
0.607019
81e0e1e3dbe7461e03fd3e29c7df2fca41cecc91
12,922
py
Python
diffimg/diffimg.py
exoplanetvetting/DAVE
aea19a30d987b214fb4c0cf01aa733f127c411b9
[ "MIT" ]
7
2019-05-07T02:01:51.000Z
2022-03-16T08:09:39.000Z
diffimg/diffimg.py
barentsen/dave
45ba97b7b535ad26dd555c33c963c6224a9af23c
[ "MIT" ]
18
2015-12-09T22:18:59.000Z
2017-04-26T13:11:44.000Z
diffimg/diffimg.py
barentsen/dave
45ba97b7b535ad26dd555c33c963c6224a9af23c
[ "MIT" ]
5
2017-03-08T11:42:53.000Z
2020-05-07T00:10:37.000Z
# -*- coding: utf-8 -*- """ Created on Tue Aug 18 21:08:35 2015 @author: fergal $Id$ $URL$ """ from __future__ import division, print_function, absolute_import import matplotlib.pyplot as mp import numpy as np import dave.fileio.kplrfits as kplrfits def constructK2DifferenceImage(cube, indexOfCadenceInTransit, rollPhase, flags): """Construct a difference image for a single K2 cadence K2's roll motion makes constructing difference images harder than it was in Classic Kepler. The star can not be assumed to be in a similar location on the focal plane in any other cadence. To construct difference images, this function interpolates between cadences of similar roll angles to construct an "out-of-transit" image Inputs: ------------- cube (3d np array) A data cube created from a TPF file. See fileio.tpf.getTargetPixelArrayFromFits() indexOfCadenceInTransit (int) Specify which row of cube to construct a difference image for rollPhase (1d np array) An array of roll phases for each row of cube. len(rollPhase) == len(cube). Units of this array don't matter, so long as cadences with similar roll angles have similar values of rollPhase flags (1d array) flag values indicating bad cadences. Currently a non-zero value of flags indicates a bad cadence. Returns: ------------ A 3 element list, [diff, oot, diagnostics] diff is a 2d np array corresponding to the difference image oot is a 2d np array corresponds to the reconstructed image subtracted from cube[indexOfCadence] in transit. diff = cube[indexOfCadenceInTransit] - oot diagnostics is a dictionary of details of how the image was constructed. Notes: --------- In keeping with the Classic Kepler convention, a flux decrement in a cadence (e.g a transit) appears as a positive feature in the difference image. Todo: --------- I should do a better job picking which cadences are bad. Not all flags indicate a cadence is untrustworthy. """ assert(cube.shape[0] == len(rollPhase)) i0 = indexOfCadenceInTransit try: oot, diagnostics = getInterpolatedOotImage(cube, rollPhase, flags, i0) except ValueError, e: msg = "WARN: While creating Diff Img for %i: %s" \ %(i0, e) raise ValueError(msg) diff = oot - cube[i0] return diff, oot, diagnostics def plotRollPhaseDiagnosticPlot(x, rollPhase, flags, indexOfEvent): if x is None: x = np.arange(len(rollPhase)) if flags.dtype == bool: raise ValueError("Boolean flag array not accepted") i0 = indexOfEvent idx = flags == 0 mp.plot(x[idx], rollPhase[idx], 'ko-') mp.axvline(i0, color='b') mp.axhline(rollPhase[i0], color='grey') dtFlag =kplrfits.SapQuality['PossibleRollTweak'] thrusterFiringIndices = np.where( flags & dtFlag )[0] tfi = thrusterFiringIndices tfiBefore = tfi[tfi < i0] tfiAfter = tfi[tfi > i0] lwr = max(0, i0-100) upr = min(len(x)-1, i0+100) plotLwr = x[lwr] plotUpr = x[upr] mp.xlim(plotLwr, plotUpr) mp.ylim(-1,1) for w in tfi: if x[w] < plotLwr or x[w] > plotUpr: continue mp.axvline(x[w], color='r') lwr, upr = getThrusterFiringIntervalBefore(tfiBefore) i1, sgn, d1, d2 = getBracketingCadence(rollPhase, lwr, upr, rollPhase[i0]) mp.plot(x[i1], rollPhase[i1], 'ro') mp.plot(x[i1+sgn], rollPhase[i1+sgn], 'ro') lwr, upr = getThrusterFiringIntervalAfter(tfiAfter) i1, sgn, d1, d2 = getBracketingCadence(rollPhase, lwr, upr, rollPhase[i0]) mp.plot(x[i1], rollPhase[i1], 'ro') mp.plot(x[i1+sgn], rollPhase[i1+sgn], 'ro') def getInterpolatedOotImage(cube, rollPhase, flags, i0): """Construct an out-of-transit image for a given cadence Inputs: ------------- cube (3d np array) A data cube created from a TPF file. See io.tpf.getTargetPixelArrayFromFits() rollPhase (1d np array) An array of roll phases for each row of cube. len(rollPhase) == len(cube). Units of this array don't matter, so long as cadences with similar roll angles have similar values of rollPhase flags (1d array) flag values indicating bad cadences. Currently a non-zero value of flags indicates a bad cadence. i0 (int) Specify which row of cube to construct a difference image for Returns: ------------- A two element tuple: * A np 2d array representing an interpolated image. * A dictionary containing the indices of the cadences used for interpolation. The keys of that dictionary are: rangeBefore (2 element tuple) The index range of between the two previous thruster firings rangeAfter (2 element tuple) The index range of between the two succeeding thruster firings rinBefore (2 element tuple) The bracking cadences interpolated to produce the OOT image before the event rinAfter (2 element tuple) The bracking cadences interpolated to produce the OOT image after the event """ rollPhase0 = rollPhase[i0] oot = np.zeros_like(cube[0]) diagnostics = dict() diagnostics['errorMsg'] = "None" dtFlag =kplrfits.SapQuality['DefiniteRollTweak'] thrusterFiringIndices = np.where( flags & dtFlag )[0] tfi = thrusterFiringIndices tfiBefore = tfi[tfi < i0] tfiAfter = tfi[tfi > i0] # import pdb; pdb.set_trace() lwrBefore, uprBefore = getThrusterFiringIntervalBefore(tfiBefore) lwrAfter, uprAfter = getThrusterFiringIntervalAfter(tfiAfter) diagnostics['rangeBefore'] = (lwrBefore, uprBefore) diagnostics['rangeAfter'] = (lwrAfter, uprAfter) if lwrAfter is None: diagnostics['errorMsg'] = "No suitable range found before cadence of interest" return oot, diagnostics if lwrBefore is None: diagnostics['errorMsg'] = "No suitable range found after cadence of interest" return oot, diagnostics try: ootBefore, rinBefore = \ getDiffFromRange(cube, lwrBefore, uprBefore, rollPhase, rollPhase0) diagnostics['rinBefore'] = rinBefore except ValueError, e: diagnostics['errorMsg'] = "Early diff img: %s" %(e) return oot, diagnostics #@TODO: Should I just return OOT before here? try: ootAfter, rinAfter = getDiffFromRange(cube, lwrAfter, uprAfter, \ rollPhase, rollPhase0) diagnostics['rinAfter'] = rinAfter except ValueError, e: diagnostics['errorMsg'] = "Later diff img: %s" %(e) return oot, diagnostics oot = .5 * (ootBefore + ootAfter) return oot, diagnostics def getDiffFromRange(cube, lwr, upr, rollPhase, rollPhase0): """ Construct an interpolated difference image. Construct an interpolated difference image from the data in cube[lwr:upr] to match what would be expected if a cadence was observed centred on rollPhase0. Inputs: ------------- cube (3d np array) A data cube created from a TPF file. See io.tpf.getTargetPixelArrayFromFits() lwr, upr (int) Range of cube to interpolate within. rollPhase (1d np array) An array of roll phases for each row of cube. len(rollPhase) == len(cube). Units of this array don't matter, so long as cadences with similar roll angles have similar values of rollPhase rollPhase0 (float) the value of rollPhase to interpolate to. An exception is raised if rollPhase[lwr:upr] does not bracket rollPhase0 Returns: -------------- A two element tuple * A np 2d array representing an interpolated image. * A tuple containing the indices of the cadences used for interpolation TODO: ------------ Don't use cadences that are flagged in some bad way. """ maxDiffBetweenAdjacentPoints = .15 i0, sgn, d1, d2 = getBracketingCadence(rollPhase, lwr, upr, rollPhase0) #d1 and d2 must bracket rollPhase0. They should also #have similar values if d1*d2 < 0 and np.fabs(d2-d1) < maxDiffBetweenAdjacentPoints: diff = interpolateImages(rollPhase[i0], rollPhase[i0+sgn], \ cube[i0], cube[i0+sgn], rollPhase0 ) return diff, (i0, i0+sgn) raise ValueError("Can't produce difference image") def getBracketingCadence(rollPhase, lwr, upr, rollPhase0): """Get bracketing cadence for a given rollphase. Computes i0 and sgn such that: * i0 is in the range [lwr, upr] * sgn is either +1 or -1 * rollPhase[i0] and rollPhase[i0+sgn] bracket rollPhase0, i.e one value is larger than rollPhase0 and the other is lower. Inputs: ------------ rollPhase (1d numpy array) Values for rollphase lwr, upr (integers), range of values in rollphase to search rollPhase0 The roll phase to bracket Returns: ----------- i0 (int) First bracketing cadence sgn (int) Either +1 or -1. The second bracketing cadence is i0+sgn d1, d2 (int) Rollphase difference between rp[i0], rp[i0+sng] and rollPhase0 Can be used to assess the quality of the bracket chosen. """ i0 = np.argmin( np.fabs(rollPhase[lwr:upr] - rollPhase0)) + lwr d1 = rollPhase0 - rollPhase[i0] slope = rollPhase[i0+1] - rollPhase[i0-1] #Should I interpolate with previous or next cadence #If the slope is positive, and rp0 is larger than rp[i0] #I want to use the next cadence. sgn = 2*int(d1*slope > 0) - 1 d2 = rollPhase0 - rollPhase[i0 + sgn] return i0, sgn, d1, d2 def interpolateImages(x0, x1, img0, img1, x): """Private function used by getDiffFromRange()""" f = (x-x0)/(x1-x0) return img0 + f*(img1-img0) def getThrusterFiringIntervalBefore(tfIndices, minDuration = 10): """Returns range of points between last two thruster firings in input See getThrusterFiringIntervalAfter() for more details. This function does the same job, but returns the last two indices in the array meeting the criteria. """ nTfi = len(tfIndices) if nTfi == 0: return None, None if nTfi == 1: return 0, tfIndices[0] i = len(tfIndices)-1 while i > 1: if tfIndices[i-1] + minDuration < tfIndices[i]: return tfIndices[i-1], tfIndices[i] i -= 1 return None, None def getThrusterFiringIntervalAfter(tfIndices, minDuration=10): """Get range of points between first two thruster firings in input Thruster firings tend to cluster, so we don't just want the first pair of firings in the array. Better is the first pair of firings that are separated by a minimum number of cadecnces, minDuration Input: -------- tfIndices (1d np array) A list of numbers, each number represents the index where a thruster firing occurs. This is not a boolean array Optional Input: --------------- minDuration A pair of cadences must be separated by at least this many cadences to be returned. Returns: ---------- Values for first two numbers separated by more than minDuration. Example: --------- ``getThrusterFiringIntervalAfter( [1,3,15,29], 10)`` returns ``[3,15]`` """ numTf= len(tfIndices) if numTf == 0: return None, None if numTf == 1: return tfIndices[0], -1 i = 0 while i < numTf: if tfIndices[i] + minDuration < tfIndices[i+1]: return tfIndices[i], tfIndices[i+1] i += 1 return None, None def plotDiffDiagnostic(diff, oot): """Only works on my machine""" mp.subplot(121) # img = np.log10(1+diff - np.min(diff[np.isfinite(diff)])) plotTpf.plotCadence(diff, axis="relative") mp.colorbar() mp.subplot(122) plotTpf.plotCadence(diff/np.sqrt(2*oot), axis="relative") mp.colorbar() mp.clim(-3.0, 3.0) import dave.diffimg.arclen as arclen import dave.fileio.mastio as mastio import dave.fileio.tpf as tpf def example(): ar = mastio.K2Archive() kepid = 206103150 #A wasp planet fits = ar.getLongCadence(kepid, 3) flags = fits['SAP_QUALITY'] cent1 = fits['MOM_CENTR1'] cent2 = fits['MOM_CENTR2'] fits, hdr = ar.getLongTpf(kepid, 3, header=True) cube = tpf.getTargetPixelArrayFromFits(fits, hdr) # cube *= gain #Compute roll phase centColRow = np.vstack((cent1, cent2)).transpose() rot = arclen.computeArcLength(centColRow, flags>0) rollPhase = rot[:,0] rollPhase[flags>0] = -9999 #A bad value cadenceInTransit = 490 diff, oot = constructK2DifferenceImage(cube, cadenceInTransit, rollPhase, flags) return diff, oot
29.1693
86
0.650209
daf91a40f7ad7935d355a287819ad1dbcdd84eb8
11,462
py
Python
python/paddle/fluid/layers/learning_rate_scheduler.py
skylarch/Paddle
d58d8df6f5f7aa6fd2f0780f87475055db57a80d
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/learning_rate_scheduler.py
skylarch/Paddle
d58d8df6f5f7aa6fd2f0780f87475055db57a80d
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/learning_rate_scheduler.py
skylarch/Paddle
d58d8df6f5f7aa6fd2f0780f87475055db57a80d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ When training a model, it's often useful to decay the learning rate during training process, this is called learning_rate_decay. There are many strategies to do this, this module will provide some classical method. User can also implement their own learning_rate_decay strategy according to this module. """ from . import control_flow from . import nn from . import ops from . import tensor from ..initializer import init_on_cpu from ..framework import default_main_program, Parameter __all__ = [ 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', 'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS' ] def _decay_step_counter(begin=0): # the first global step is zero in learning rate decay global_step = nn.autoincreased_step_counter( counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1) global_step = tensor.cast(global_step, 'float32') return global_step def noam_decay(d_model, warmup_steps): """ Noam decay method. The numpy implementation of noam decay as follows. >>> import numpy as np >>> lr_value = np.power(d_model, -0.5) * np.min([ >>> np.power(current_steps, -0.5), >>> np.power(warmup_steps, -1.5) * current_steps]) Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_. Args: d_model(Variable): The dimensionality of input and output of model. warmup_steps(Variable): A super parameter. Returns: The decayed learning rate. """ global_step = _decay_step_counter(1) a = global_step**-0.5 b = (warmup_steps**-1.5) * global_step lr_value = (d_model**-0.5) * ops.elementwise_min(a, b) return lr_value def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): """ Applies exponential decay to the learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by 'decay_rate' every 'decay_steps' steps. >>> if staircase == True: >>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps) >>> else: >>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False Returns: Variable: The decayed learning rate Examples: .. code-block:: python base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.exponential_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) sgd_optimizer.minimize(avg_cost) """ global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate * (decay_rate**div_res) return decayed_lr def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): """Applies natural exponential decay to the initial learning rate. >>> if not staircase: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) >>> else: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate """ global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res) return decayed_lr def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): """ Applies inverse time decay to the initial learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, an inverse decay function will be applied to the initial learning rate. >>> if staircase == True: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> else: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False Returns: Variable: The decayed learning rate Examples: .. code-block:: python base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.inverse_time_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) sgd_optimizer.minimize(avg_cost) """ global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate / (1 + decay_rate * div_res) return decayed_lr def polynomial_decay(learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False): """ Applies polynomial decay to the initial learning rate. .. code-block:: python if cycle: decay_steps = decay_steps * ceil(global_step / decay_steps) else: global_step = min(global_step, decay_steps) decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps) ^ power + end_learning_rate Args: learning_rate(Variable|float32): A scalar float32 value or a Variable. This will be the initial learning rate during training. decay_steps(int32): A Python `int32` number. end_learning_rate(float): A Python `float` number. power(float): A Python `float` number. cycle(bool): If set true, decay the learning rate every decay_steps. Returns: Variable: The decayed learning rate """ global_step = _decay_step_counter() if cycle: div_res = ops.ceil(global_step / decay_steps) zero_var = tensor.fill_constant(shape=[1], dtype='float32', value=0.0) one_var = tensor.fill_constant(shape=[1], dtype='float32', value=1.0) with control_flow.Switch() as switch: with switch.case(global_step == zero_var): tensor.assign(input=one_var, output=div_res) decay_steps = decay_steps * div_res else: decay_steps_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(decay_steps)) global_step = ops.elementwise_min(x=global_step, y=decay_steps_var) decayed_lr = (learning_rate - end_learning_rate) * \ ((1 - global_step / decay_steps) ** power) + end_learning_rate return decayed_lr def piecewise_decay(boundaries, values): """Applies piecewise decay to the initial learning rate. The algorithm can be described as the code below. .. code-block:: python boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] if step < 10000: learning_rate = 1.0 elif 10000 <= step < 20000: learning_rate = 0.5 else: learning_rate = 0.1 Args: boundaries: A list of steps numbers. values: A list of learning rate values that will be picked during different step boundaries. Returns: The decayed learning rate. """ if len(values) - len(boundaries) != 1: raise ValueError("len(values) - len(boundaries) should be 1") global_step = _decay_step_counter() lr = tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") with control_flow.Switch() as switch: for i in range(len(boundaries)): boundary_val = tensor.fill_constant( shape=[1], dtype='float32', value=float(boundaries[i]), force_cpu=True) value_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(values[i])) with switch.case(global_step < boundary_val): tensor.assign(value_var, lr) last_value_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(values[len(values) - 1])) with switch.default(): tensor.assign(last_value_var, lr) return lr def append_LARS(params_grads, learning_rate, weight_decay): """Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for each layer. ```python learning_rate *= local_gw_ratio * sqrt(sumsq(param)) / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param))) ``` Args: learning_rate: A learning rate Variable. This is the global learning rate for LARS. weight_decay: A Python `float` number. Returns: The decayed learning rate """ def _balanced_weight(param_norm, grad_norm): if weight_decay == 1.0: return grad_norm + param_norm else: return grad_norm + weight_decay * param_norm for param, grad in params_grads: param_lr = param.optimize_attr['learning_rate'] param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param))) grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad))) if type(param_lr) == float and param_lr == 1.0: decayed_lr = learning_rate * param_norm \ / _balanced_weight(param_norm, grad_norm) else: decayed_lr = learning_rate * param_lr * param_norm \ / _balanced_weight(param_norm, grad_norm) # set back param local learning rate param.optimize_attr['learning_rate'] = decayed_lr
34.214925
102
0.646222
8b19c6c99034dddd70e781640ca56664a60d18e9
55,415
py
Python
active_projects/diffyq/part1/pendulum.py
thevivekpandey/manim
483dbfc232fa684e7722969221bd416fde8bd55a
[ "MIT" ]
null
null
null
active_projects/diffyq/part1/pendulum.py
thevivekpandey/manim
483dbfc232fa684e7722969221bd416fde8bd55a
[ "MIT" ]
null
null
null
active_projects/diffyq/part1/pendulum.py
thevivekpandey/manim
483dbfc232fa684e7722969221bd416fde8bd55a
[ "MIT" ]
null
null
null
from manimlib.imports import * from active_projects.diffyq.part1.shared_constructs import * class Pendulum(VGroup): CONFIG = { "length": 3, "gravity": 9.8, "weight_diameter": 0.5, "initial_theta": 0.3, "omega": 0, "damping": 0.1, "top_point": 2 * UP, "rod_style": { "stroke_width": 3, "stroke_color": LIGHT_GREY, "sheen_direction": UP, "sheen_factor": 1, }, "weight_style": { "stroke_width": 0, "fill_opacity": 1, "fill_color": GREY_BROWN, "sheen_direction": UL, "sheen_factor": 0.5, "background_stroke_color": BLACK, "background_stroke_width": 3, "background_stroke_opacity": 0.5, }, "dashed_line_config": { "num_dashes": 25, "stroke_color": WHITE, "stroke_width": 2, }, "angle_arc_config": { "radius": 1, "stroke_color": WHITE, "stroke_width": 2, }, "velocity_vector_config": { "color": RED, }, "theta_label_height": 0.25, "set_theta_label_height_cap": False, "n_steps_per_frame": 100, "include_theta_label": True, "include_velocity_vector": False, "velocity_vector_multiple": 0.5, "max_velocity_vector_length_to_length_ratio": 0.5, } def __init__(self, **kwargs): super().__init__(**kwargs) self.create_fixed_point() self.create_rod() self.create_weight() self.rotating_group = VGroup(self.rod, self.weight) self.create_dashed_line() self.create_angle_arc() if self.include_theta_label: self.add_theta_label() if self.include_velocity_vector: self.add_velocity_vector() self.set_theta(self.initial_theta) self.update() def create_fixed_point(self): self.fixed_point_tracker = VectorizedPoint(self.top_point) self.add(self.fixed_point_tracker) return self def create_rod(self): rod = self.rod = Line(UP, DOWN) rod.set_height(self.length) rod.set_style(**self.rod_style) rod.move_to(self.get_fixed_point(), UP) self.add(rod) def create_weight(self): weight = self.weight = Circle() weight.set_width(self.weight_diameter) weight.set_style(**self.weight_style) weight.move_to(self.rod.get_end()) self.add(weight) def create_dashed_line(self): line = self.dashed_line = DashedLine( self.get_fixed_point(), self.get_fixed_point() + self.length * DOWN, **self.dashed_line_config ) line.add_updater( lambda l: l.move_to(self.get_fixed_point(), UP) ) self.add_to_back(line) def create_angle_arc(self): self.angle_arc = always_redraw(lambda: Arc( arc_center=self.get_fixed_point(), start_angle=-90 * DEGREES, angle=self.get_arc_angle_theta(), **self.angle_arc_config, )) self.add(self.angle_arc) def get_arc_angle_theta(self): # Might be changed in certain scenes return self.get_theta() def add_velocity_vector(self): def make_vector(): omega = self.get_omega() theta = self.get_theta() mvlr = self.max_velocity_vector_length_to_length_ratio max_len = mvlr * self.rod.get_length() vvm = self.velocity_vector_multiple multiple = np.clip( vvm * omega, -max_len, max_len ) vector = Vector( multiple * RIGHT, **self.velocity_vector_config, ) vector.rotate(theta, about_point=ORIGIN) vector.shift(self.rod.get_end()) return vector self.velocity_vector = always_redraw(make_vector) self.add(self.velocity_vector) return self def add_theta_label(self): self.theta_label = always_redraw(self.get_label) self.add(self.theta_label) def get_label(self): label = TexMobject("\\theta") label.set_height(self.theta_label_height) if self.set_theta_label_height_cap: max_height = self.angle_arc.get_width() if label.get_height() > max_height: label.set_height(max_height) top = self.get_fixed_point() arc_center = self.angle_arc.point_from_proportion(0.5) vect = arc_center - top norm = get_norm(vect) vect = normalize(vect) * (norm + self.theta_label_height) label.move_to(top + vect) return label # def get_theta(self): theta = self.rod.get_angle() - self.dashed_line.get_angle() theta = (theta + PI) % TAU - PI return theta def set_theta(self, theta): self.rotating_group.rotate( theta - self.get_theta() ) self.rotating_group.shift( self.get_fixed_point() - self.rod.get_start(), ) return self def get_omega(self): return self.omega def set_omega(self, omega): self.omega = omega return self def get_fixed_point(self): return self.fixed_point_tracker.get_location() # def start_swinging(self): self.add_updater(Pendulum.update_by_gravity) def end_swinging(self): self.remove_updater(Pendulum.update_by_gravity) def update_by_gravity(self, dt): theta = self.get_theta() omega = self.get_omega() nspf = self.n_steps_per_frame for x in range(nspf): d_theta = omega * dt / nspf d_omega = op.add( -self.damping * omega, -(self.gravity / self.length) * np.sin(theta), ) * dt / nspf theta += d_theta omega += d_omega self.set_theta(theta) self.set_omega(omega) return self class GravityVector(Vector): CONFIG = { "color": YELLOW, "length_multiple": 1 / 9.8, # TODO, continually update the length based # on the pendulum's gravity? } def __init__(self, pendulum, **kwargs): super().__init__(DOWN, **kwargs) self.pendulum = pendulum self.scale(self.length_multiple * pendulum.gravity) self.attach_to_pendulum(pendulum) def attach_to_pendulum(self, pendulum): self.add_updater(lambda m: m.shift( pendulum.weight.get_center() - self.get_start(), )) def add_component_lines(self): self.component_lines = always_redraw(self.create_component_lines) self.add(self.component_lines) def create_component_lines(self): theta = self.pendulum.get_theta() x_new = rotate(RIGHT, theta) base = self.get_start() tip = self.get_end() vect = tip - base corner = base + x_new * np.dot(vect, x_new) kw = {"dash_length": 0.025} return VGroup( DashedLine(base, corner, **kw), DashedLine(corner, tip, **kw), ) class ThetaValueDisplay(VGroup): CONFIG = { } def __init__(self, **kwargs): super().__init__(**kwargs) class ThetaVsTAxes(Axes): CONFIG = { "x_min": 0, "x_max": 8, "y_min": -PI / 2, "y_max": PI / 2, "y_axis_config": { "tick_frequency": PI / 8, "unit_size": 1.5, }, "number_line_config": { "color": "#EEEEEE", "stroke_width": 2, "include_tip": False, }, "graph_style": { "stroke_color": GREEN, "stroke_width": 3, "fill_opacity": 0, }, } def __init__(self, **kwargs): super().__init__(**kwargs) self.add_labels() def add_axes(self): self.axes = Axes(**self.axes_config) self.add(self.axes) def add_labels(self): x_axis = self.get_x_axis() y_axis = self.get_y_axis() t_label = self.t_label = TexMobject("t") t_label.next_to(x_axis.get_right(), UP, MED_SMALL_BUFF) x_axis.label = t_label x_axis.add(t_label) theta_label = self.theta_label = TexMobject("\\theta(t)") theta_label.next_to(y_axis.get_top(), UP, SMALL_BUFF) y_axis.label = theta_label y_axis.add(theta_label) self.y_axis_label = theta_label self.x_axis_label = t_label x_axis.add_numbers() y_axis.add(self.get_y_axis_coordinates(y_axis)) def get_y_axis_coordinates(self, y_axis): texs = [ # "\\pi \\over 4", # "\\pi \\over 2", # "3 \\pi \\over 4", # "\\pi", "\\pi / 4", "\\pi / 2", "3 \\pi / 4", "\\pi", ] values = np.arange(1, 5) * PI / 4 labels = VGroup() for pos_tex, pos_value in zip(texs, values): neg_tex = "-" + pos_tex neg_value = -1 * pos_value for tex, value in (pos_tex, pos_value), (neg_tex, neg_value): if value > self.y_max or value < self.y_min: continue symbol = TexMobject(tex) symbol.scale(0.5) point = y_axis.number_to_point(value) symbol.next_to(point, LEFT, MED_SMALL_BUFF) labels.add(symbol) return labels def get_live_drawn_graph(self, pendulum, t_max=None, t_step=1.0 / 60, **style): style = merge_dicts_recursively(self.graph_style, style) if t_max is None: t_max = self.x_max graph = VMobject() graph.set_style(**style) graph.all_coords = [(0, pendulum.get_theta())] graph.time = 0 graph.time_of_last_addition = 0 def update_graph(graph, dt): graph.time += dt if graph.time > t_max: graph.remove_updater(update_graph) return new_coords = (graph.time, pendulum.get_theta()) if graph.time - graph.time_of_last_addition >= t_step: graph.all_coords.append(new_coords) graph.time_of_last_addition = graph.time print(new_coords) points = [ self.coords_to_point(*coords) for coords in [*graph.all_coords, new_coords] ] graph.set_points_smoothly(points) graph.add_updater(update_graph) return graph # Scenes class IntroducePendulum(PiCreatureScene, MovingCameraScene): CONFIG = { "pendulum_config": { "length": 3, "top_point": 4 * RIGHT, "weight_diameter": 0.35, "gravity": 20, }, "theta_vs_t_axes_config": { "y_max": PI / 4, "y_min": -PI / 4, "y_axis_config": { "tick_frequency": PI / 16, "unit_size": 2, "tip_length": 0.3, }, "x_max": 12, "number_line_config": { "stroke_width": 2, } }, } def setup(self): MovingCameraScene.setup(self) PiCreatureScene.setup(self) def construct(self): self.add_pendulum() # self.label_pi_creatures() self.label_pendulum() self.add_graph() self.label_function() self.show_graph_period() self.show_length_and_gravity() # self.tweak_length_and_gravity() def create_pi_creatures(self): randy = Randolph(color=BLUE_C) morty = Mortimer(color=MAROON_E) creatures = VGroup(randy, morty) creatures.scale(0.5) creatures.arrange(RIGHT, buff=2.5) creatures.to_corner(DR) return creatures def add_pendulum(self): pendulum = self.pendulum = Pendulum(**self.pendulum_config) pendulum.start_swinging() frame = self.camera_frame frame.save_state() frame.scale(0.5) frame.move_to(pendulum.dashed_line) self.add(pendulum, frame) def label_pi_creatures(self): randy, morty = self.pi_creatures randy_label = TextMobject("Physics\\\\", "student") morty_label = TextMobject("Physics\\\\", "teacher") labels = VGroup(randy_label, morty_label) labels.scale(0.5) randy_label.next_to(randy, UP, LARGE_BUFF) morty_label.next_to(morty, UP, LARGE_BUFF) for label, pi in zip(labels, self.pi_creatures): label.arrow = Arrow( label.get_bottom(), pi.eyes.get_top() ) label.arrow.set_color(WHITE) label.arrow.set_stroke(width=5) morty.labels = VGroup( morty_label, morty_label.arrow, ) self.play( FadeInFromDown(randy_label), GrowArrow(randy_label.arrow), randy.change, "hooray", ) self.play( Animation(self.pendulum.fixed_point_tracker), TransformFromCopy(randy_label[0], morty_label[0]), FadeIn(morty_label[1]), GrowArrow(morty_label.arrow), morty.change, "raise_right_hand", ) self.wait(2) def label_pendulum(self): pendulum = self.pendulum randy, morty = self.pi_creatures label = pendulum.theta_label rect = SurroundingRectangle(label, buff=0.5 * SMALL_BUFF) rect.add_updater(lambda r: r.move_to(label)) for pi in randy, morty: pi.add_updater( lambda m: m.look_at(pendulum.weight) ) self.play(randy.change, "pondering") self.play(morty.change, "pondering") self.wait(3) randy.clear_updaters() morty.clear_updaters() self.play( ShowCreationThenFadeOut(rect), ) self.wait() def add_graph(self): axes = self.axes = ThetaVsTAxes(**self.theta_vs_t_axes_config) axes.y_axis.label.next_to(axes.y_axis, UP, buff=0) axes.to_corner(UL) self.play( Restore( self.camera_frame, rate_func=squish_rate_func(smooth, 0, 0.9), ), DrawBorderThenFill( axes, rate_func=squish_rate_func(smooth, 0.5, 1), lag_ratio=0.9, ), Transform( self.pendulum.theta_label.copy().clear_updaters(), axes.y_axis.label.copy(), remover=True, rate_func=squish_rate_func(smooth, 0, 0.8), ), run_time=3, ) self.wait(1.5) self.graph = axes.get_live_drawn_graph(self.pendulum) self.add(self.graph) def label_function(self): hm_word = TextMobject("Simple harmonic motion") hm_word.scale(1.25) hm_word.to_edge(UP) formula = TexMobject( "=\\theta_0 \\cos(\\sqrt{g / L} t)" ) formula.next_to( self.axes.y_axis_label, RIGHT, SMALL_BUFF ) formula.set_stroke(width=0, background=True) self.play(FadeInFrom(hm_word, DOWN)) self.wait() self.play( Write(formula), hm_word.to_corner, UR ) self.wait(4) def show_graph_period(self): pendulum = self.pendulum axes = self.axes period = self.period = TAU * np.sqrt( pendulum.length / pendulum.gravity ) amplitude = pendulum.initial_theta line = Line( axes.coords_to_point(0, amplitude), axes.coords_to_point(period, amplitude), ) line.shift(SMALL_BUFF * RIGHT) brace = Brace(line, UP, buff=SMALL_BUFF) brace.add_to_back(brace.copy().set_style(BLACK, 10)) formula = get_period_formula() formula.next_to(brace, UP, SMALL_BUFF) self.period_formula = formula self.period_brace = brace self.play( GrowFromCenter(brace), FadeInFromDown(formula), ) self.wait(2) def show_length_and_gravity(self): formula = self.period_formula L = formula.get_part_by_tex("L") g = formula.get_part_by_tex("g") rod = self.pendulum.rod new_rod = rod.copy() new_rod.set_stroke(BLUE, 7) new_rod.add_updater(lambda r: r.put_start_and_end_on( *rod.get_start_and_end() )) g_vect = GravityVector( self.pendulum, length_multiple=0.5 / 9.8, ) down_vectors = self.get_down_vectors() down_vectors.set_color(YELLOW) down_vectors.set_opacity(0.5) self.play( ShowCreationThenDestructionAround(L), ShowCreation(new_rod), ) self.play(FadeOut(new_rod)) self.play( ShowCreationThenDestructionAround(g), GrowArrow(g_vect), ) self.play(self.get_down_vectors_animation(down_vectors)) self.wait(6) self.gravity_vector = g_vect def tweak_length_and_gravity(self): pendulum = self.pendulum axes = self.axes graph = self.graph brace = self.period_brace formula = self.period_formula g_vect = self.gravity_vector randy, morty = self.pi_creatures graph.clear_updaters() period2 = self.period * np.sqrt(2) period3 = self.period / np.sqrt(2) amplitude = pendulum.initial_theta graph2, graph3 = [ axes.get_graph( lambda t: amplitude * np.cos(TAU * t / p), color=RED, ) for p in (period2, period3) ] formula.add_updater(lambda m: m.next_to( brace, UP, SMALL_BUFF )) new_pendulum_config = dict(self.pendulum_config) new_pendulum_config["length"] *= 2 new_pendulum_config["top_point"] += 3.5 * UP # new_pendulum_config["initial_theta"] = pendulum.get_theta() new_pendulum = Pendulum(**new_pendulum_config) down_vectors = self.get_down_vectors() self.play(randy.change, "happy") self.play( ReplacementTransform(pendulum, new_pendulum), morty.change, "horrified", morty.shift, 3 * RIGHT, morty.labels.shift, 3 * RIGHT, ) self.remove(morty, morty.labels) g_vect.attach_to_pendulum(new_pendulum) new_pendulum.start_swinging() self.play( ReplacementTransform(graph, graph2), brace.stretch, np.sqrt(2), 0, {"about_edge": LEFT}, ) self.add(g_vect) self.wait(3) new_pendulum.gravity *= 4 g_vect.scale(2) self.play( FadeOut(graph2), self.get_down_vectors_animation(down_vectors) ) self.play( FadeIn(graph3), brace.stretch, 0.5, 0, {"about_edge": LEFT}, ) self.wait(6) # def get_down_vectors(self): down_vectors = VGroup(*[ Vector(0.5 * DOWN) for x in range(10 * 150) ]) down_vectors.arrange_in_grid(10, 150, buff=MED_SMALL_BUFF) down_vectors.set_color_by_gradient(BLUE, RED) # for vect in down_vectors: # vect.shift(0.1 * np.random.random(3)) down_vectors.to_edge(RIGHT) return down_vectors def get_down_vectors_animation(self, down_vectors): return LaggedStart( *[ GrowArrow(v, rate_func=there_and_back) for v in down_vectors ], lag_ratio=0.0005, run_time=2, remover=True ) class MultiplePendulumsOverlayed(Scene): CONFIG = { "initial_thetas": [ 150 * DEGREES, 90 * DEGREES, 60 * DEGREES, 30 * DEGREES, 10 * DEGREES, ], "weight_colors": [ PINK, RED, GREEN, BLUE, GREY, ], "pendulum_config": { "top_point": ORIGIN, "length": 3, }, } def construct(self): pendulums = VGroup(*[ Pendulum( initial_theta=theta, weight_style={ "fill_color": wc, "fill_opacity": 0.5, }, **self.pendulum_config, ) for theta, wc in zip( self.initial_thetas, self.weight_colors, ) ]) for pendulum in pendulums: pendulum.start_swinging() pendulum.remove(pendulum.theta_label) randy = Randolph(color=BLUE_C) randy.to_corner(DL) randy.add_updater(lambda r: r.look_at(pendulums[0].weight)) axes = ThetaVsTAxes( x_max=20, y_axis_config={ "unit_size": 0.5, "tip_length": 0.3, }, ) axes.to_corner(UL) graphs = VGroup(*[ axes.get_live_drawn_graph( pendulum, stroke_color=pendulum.weight.get_color(), stroke_width=1, ) for pendulum in pendulums ]) self.add(pendulums) self.add(axes, *graphs) self.play(randy.change, "sassy") self.wait(2) self.play(Blink(randy)) self.wait(5) self.play(randy.change, "angry") self.play(Blink(randy)) self.wait(10) class LowAnglePendulum(Scene): CONFIG = { "pendulum_config": { "initial_theta": 20 * DEGREES, "length": 2.0, "damping": 0, "top_point": ORIGIN, }, "axes_config": { "y_axis_config": {"unit_size": 0.75}, "x_axis_config": { "unit_size": 0.5, "numbers_to_show": range(2, 25, 2), "number_scale_val": 0.5, }, "x_max": 25, "number_line_config": { "tip_length": 0.3, "stroke_width": 2, } }, "axes_corner": UL, } def construct(self): pendulum = Pendulum(**self.pendulum_config) axes = ThetaVsTAxes(**self.axes_config) axes.center() axes.to_corner(self.axes_corner, buff=LARGE_BUFF) graph = axes.get_live_drawn_graph(pendulum) L = pendulum.length g = pendulum.gravity theta0 = pendulum.initial_theta prediction = axes.get_graph( lambda t: theta0 * np.cos(t * np.sqrt(g / L)) ) dashed_prediction = DashedVMobject(prediction, num_dashes=300) dashed_prediction.set_stroke(WHITE, 1) prediction_formula = TexMobject( "\\theta_0", "\\cos(\\sqrt{g / L} \\cdot t)" ) prediction_formula.scale(0.75) prediction_formula.next_to( dashed_prediction, UP, SMALL_BUFF, ) theta0 = prediction_formula.get_part_by_tex("\\theta_0") theta0_brace = Brace(theta0, UP, buff=SMALL_BUFF) theta0_brace.stretch(0.5, 1, about_edge=DOWN) theta0_label = Integer( pendulum.initial_theta * 180 / PI, unit="^\\circ" ) theta0_label.scale(0.75) theta0_label.next_to(theta0_brace, UP, SMALL_BUFF) group = VGroup(theta0_brace, theta0_label, prediction_formula) group.shift_onto_screen(buff=MED_SMALL_BUFF) self.add(axes, dashed_prediction, pendulum) self.play( ShowCreation(dashed_prediction, run_time=2), FadeInFromDown(prediction_formula), FadeInFromDown(theta0_brace), FadeInFromDown(theta0_label), ) self.play( ShowCreationThenFadeAround(theta0_label), ShowCreationThenFadeAround(pendulum.theta_label), ) self.wait() pendulum.start_swinging() self.add(graph) self.wait(30) class ApproxWordsLowAnglePendulum(Scene): def construct(self): period = TexMobject( "\\text{Period}", "\\approx", "2\\pi \\sqrt{\\,{L} / {g}}", **Lg_formula_config ) checkmark = TexMobject("\\checkmark") checkmark.set_color(GREEN) checkmark.scale(2) checkmark.next_to(period, RIGHT, MED_LARGE_BUFF) self.add(period, checkmark) class MediumAnglePendulum(LowAnglePendulum): CONFIG = { "pendulum_config": { "initial_theta": 50 * DEGREES, "n_steps_per_frame": 1000, }, "axes_config": { "y_axis_config": {"unit_size": 0.75}, "y_max": PI / 2, "y_min": -PI / 2, "number_line_config": { "tip_length": 0.3, "stroke_width": 2, } }, "pendulum_shift_vect": 1 * RIGHT, } class MediumHighAnglePendulum(MediumAnglePendulum): CONFIG = { "pendulum_config": { "initial_theta": 90 * DEGREES, "n_steps_per_frame": 1000, }, } class HighAnglePendulum(LowAnglePendulum): CONFIG = { "pendulum_config": { "initial_theta": 175 * DEGREES, "n_steps_per_frame": 1000, "top_point": 1.5 * DOWN, "length": 2, }, "axes_config": { "y_axis_config": {"unit_size": 0.5}, "y_max": PI, "y_min": -PI, "number_line_config": { "tip_length": 0.3, "stroke_width": 2, } }, "pendulum_shift_vect": 1 * RIGHT, } class VeryLowAnglePendulum(LowAnglePendulum): CONFIG = { "pendulum_config": { "initial_theta": 10 * DEGREES, "n_steps_per_frame": 1000, "top_point": ORIGIN, "length": 3, }, "axes_config": { "y_axis_config": {"unit_size": 2}, "y_max": PI / 4, "y_min": -PI / 4, "number_line_config": { "tip_length": 0.3, "stroke_width": 2, } }, "pendulum_shift_vect": 1 * RIGHT, } class WherePendulumLeads(PiCreatureScene): def construct(self): pendulum = Pendulum( top_point=UP, length=3, gravity=20, ) pendulum.start_swinging() l_title = TextMobject("Linearization") l_title.scale(1.5) l_title.to_corner(UL) c_title = TextMobject("Chaos") c_title.scale(1.5) c_title.move_to(l_title) c_title.move_to( c_title.get_center() * np.array([-1, 1, 1]) ) get_theta = pendulum.get_theta spring = always_redraw( lambda: ParametricFunction( lambda t: np.array([ np.cos(TAU * t) + (1.4 + get_theta()) * t, np.sin(TAU * t) - 0.5, 0, ]), t_min=-0.5, t_max=7, color=GREY, sheen_factor=1, sheen_direction=UL, ).scale(0.2).to_edge(LEFT, buff=0) ) spring_rect = SurroundingRectangle( spring, buff=MED_LARGE_BUFF, stroke_width=0, fill_color=BLACK, fill_opacity=0, ) weight = Dot(radius=0.25) weight.add_updater(lambda m: m.move_to( spring.points[-1] )) weight.set_color(BLUE) weight.set_sheen(1, UL) spring_system = VGroup(spring, weight) linear_formula = TexMobject( "\\frac{d \\vec{\\textbf{x}}}{dt}=" "A\\vec{\\textbf{x}}" ) linear_formula.next_to(spring, UP, LARGE_BUFF) linear_formula.match_x(l_title) randy = self.pi_creature randy.set_height(2) randy.center() randy.to_edge(DOWN) randy.shift(3 * LEFT) q_marks = TexMobject("???") q_marks.next_to(randy, UP) self.add(pendulum, randy) self.play( randy.change, "pondering", pendulum, FadeInFromDown(q_marks, lag_ratio=0.3) ) self.play(randy.look_at, pendulum) self.wait(5) self.play( Animation(VectorizedPoint(pendulum.get_top())), FadeOutAndShift(q_marks, UP, lag_ratio=0.3), ) self.add(spring_system) self.play( FadeOut(spring_rect), FadeInFrom(linear_formula, UP), FadeInFromDown(l_title), ) self.play(FadeInFromDown(c_title)) self.wait(8) class LongDoublePendulum(ExternallyAnimatedScene): pass class AnalyzePendulumForce(MovingCameraScene): CONFIG = { "pendulum_config": { "length": 5, "top_point": 3.5 * UP, "initial_theta": 60 * DEGREES, "set_theta_label_height_cap": True, }, "g_vect_config": { "length_multiple": 0.25, }, "tan_line_color": BLUE, "perp_line_color": PINK, } def construct(self): self.add_pendulum() self.show_arc_length() self.add_g_vect() self.show_constraint() self.break_g_vect_into_components() self.show_angle_geometry() self.show_gsin_formula() self.show_sign() self.show_acceleration_formula() # self.ask_about_what_to_do() # self.emphasize_theta() # self.show_angular_velocity() # self.show_angular_acceleration() # self.circle_g_sin_formula() def add_pendulum(self): pendulum = Pendulum(**self.pendulum_config) theta_tracker = ValueTracker(pendulum.get_theta()) pendulum.add_updater(lambda p: p.set_theta( theta_tracker.get_value() )) self.add(pendulum) self.pendulum = pendulum self.theta_tracker = theta_tracker def show_arc_length(self): pendulum = self.pendulum angle = pendulum.get_theta() height = pendulum.length top = pendulum.get_fixed_point() line = Line(UP, DOWN) line.set_height(height) line.move_to(top, UP) arc = always_redraw(lambda: Arc( start_angle=-90 * DEGREES, angle=pendulum.get_theta(), arc_center=pendulum.get_fixed_point(), radius=pendulum.length, stroke_color=GREEN, )) brace = Brace(Line(ORIGIN, 5 * UP), RIGHT) brace.point = VectorizedPoint(brace.get_right()) brace.add(brace.point) brace.set_height(angle) brace.move_to(ORIGIN, DL) brace.apply_complex_function(np.exp) brace.scale(height) brace.rotate(-90 * DEGREES) brace.move_to(arc) brace.shift(MED_SMALL_BUFF * normalize( arc.point_from_proportion(0.5) - top )) x_sym = TexMobject("x") x_sym.set_color(GREEN) x_sym.next_to(brace.point, DR, buff=SMALL_BUFF) rhs = TexMobject("=", "L", "\\theta") rhs.set_color_by_tex("\\theta", BLUE) rhs.next_to(x_sym, RIGHT) rhs.shift(0.7 * SMALL_BUFF * UP) line_L = TexMobject("L") line_L.next_to( pendulum.rod.get_center(), UR, SMALL_BUFF, ) self.play( ShowCreation(arc), Rotate(line, angle, about_point=top), UpdateFromAlphaFunc( line, lambda m, a: m.set_stroke( width=2 * there_and_back(a) ) ), GrowFromPoint( brace, line.get_bottom(), path_arc=angle ), ) self.play(FadeInFrom(x_sym, UP)) self.wait() # Show equation line.set_stroke(BLUE, 5) self.play( ShowCreationThenFadeOut(line), FadeInFromDown(line_L) ) self.play( TransformFromCopy( line_L, rhs.get_part_by_tex("L") ), Write(rhs.get_part_by_tex("=")) ) self.play( TransformFromCopy( pendulum.theta_label, rhs.get_parts_by_tex("\\theta"), ) ) self.add(rhs) x_eq = VGroup(x_sym, rhs) self.play( FadeOut(brace), x_eq.rotate, angle / 2, x_eq.next_to, arc.point_from_proportion(0.5), UL, {"buff": -MED_SMALL_BUFF} ) self.x_eq = x_eq self.arc = arc self.line_L = line_L def add_g_vect(self): pendulum = self.pendulum g_vect = self.g_vect = GravityVector( pendulum, **self.g_vect_config, ) g_word = self.g_word = TextMobject("Gravity") g_word.rotate(-90 * DEGREES) g_word.scale(0.75) g_word.add_updater(lambda m: m.next_to( g_vect, RIGHT, buff=-SMALL_BUFF, )) self.play( GrowArrow(g_vect), FadeInFrom(g_word, UP, lag_ratio=0.1), ) self.wait() def show_constraint(self): pendulum = self.pendulum arcs = VGroup() for u in [-1, 2, -1]: d_theta = 40 * DEGREES * u arc = Arc( start_angle=pendulum.get_theta() - 90 * DEGREES, angle=d_theta, radius=pendulum.length, arc_center=pendulum.get_fixed_point(), stroke_width=2, stroke_color=YELLOW, stroke_opacity=0.5, ) self.play( self.theta_tracker.increment_value, d_theta, ShowCreation(arc) ) arcs.add(arc) self.play(FadeOut(arcs)) def break_g_vect_into_components(self): g_vect = self.g_vect g_vect.component_lines = always_redraw( g_vect.create_component_lines ) tan_line, perp_line = g_vect.component_lines g_vect.tangent = always_redraw(lambda: Arrow( tan_line.get_start(), tan_line.get_end(), buff=0, color=self.tan_line_color, )) g_vect.perp = always_redraw(lambda: Arrow( perp_line.get_start(), perp_line.get_end(), buff=0, color=self.perp_line_color, )) self.play(ShowCreation(g_vect.component_lines)) self.play(GrowArrow(g_vect.tangent)) self.wait() self.play(GrowArrow(g_vect.perp)) self.wait() def show_angle_geometry(self): g_vect = self.g_vect arc = Arc( start_angle=90 * DEGREES, angle=self.pendulum.get_theta(), radius=0.5, arc_center=g_vect.get_end(), ) q_mark = TexMobject("?") q_mark.next_to(arc.get_center(), UL, SMALL_BUFF) theta_label = TexMobject("\\theta") theta_label.move_to(q_mark) self.add(g_vect) self.play( ShowCreation(arc), Write(q_mark) ) self.play(ShowCreationThenFadeAround(q_mark)) self.wait() self.play(ShowCreationThenFadeAround( self.pendulum.theta_label )) self.play( TransformFromCopy( self.pendulum.theta_label, theta_label, ), FadeOut(q_mark) ) self.wait() self.play(WiggleOutThenIn(g_vect.tangent)) self.play(WiggleOutThenIn( Line( *g_vect.get_start_and_end(), buff=0, ).add_tip().match_style(g_vect), remover=True )) self.wait() self.play( FadeOut(arc), FadeOut(theta_label), ) def show_gsin_formula(self): g_vect = self.g_vect g_word = self.g_word g_word.clear_updaters() g_term = self.g_term = TexMobject("-g") g_term.add_updater(lambda m: m.next_to( g_vect, RIGHT if self.pendulum.get_theta() >= 0 else LEFT, SMALL_BUFF )) def create_vect_label(vect, tex, direction): label = TexMobject(tex) label.set_stroke(width=0, background=True) label.add_background_rectangle() label.scale(0.7) max_width = 0.9 * vect.get_length() if label.get_width() > max_width: label.set_width(max_width) angle = vect.get_angle() angle = (angle + PI / 2) % PI - PI / 2 label.next_to(ORIGIN, direction, SMALL_BUFF) label.rotate(angle, about_point=ORIGIN) label.shift(vect.get_center()) return label g_sin_label = always_redraw(lambda: create_vect_label( g_vect.tangent, "-g\\sin(\\theta)", UP, )) g_cos_label = always_redraw(lambda: create_vect_label( g_vect.perp, "-g\\cos(\\theta)", DOWN, )) self.play( ReplacementTransform(g_word[0][0], g_term[0][1]), FadeOut(g_word[0][1:]), Write(g_term[0][0]), ) self.add(g_term) self.wait() for label in g_sin_label, g_cos_label: self.play( GrowFromPoint(label[0], g_term.get_center()), TransformFromCopy(g_term, label[1][:2]), GrowFromPoint(label[1][2:], g_term.get_center()), remover=True ) self.add(label) self.wait() self.g_sin_label = g_sin_label self.g_cos_label = g_cos_label def show_sign(self): get_theta = self.pendulum.get_theta theta_decimal = DecimalNumber(include_sign=True) theta_decimal.add_updater(lambda d: d.set_value( get_theta() )) theta_decimal.add_updater(lambda m: m.next_to( self.pendulum.theta_label, DOWN )) theta_decimal.add_updater(lambda m: m.set_color( GREEN if get_theta() > 0 else RED )) self.play( FadeInFrom(theta_decimal, UP), FadeOut(self.x_eq), FadeOut(self.line_L), ) self.set_theta(-60 * DEGREES, run_time=4) self.set_theta(60 * DEGREES, run_time=4) self.play( FadeOut(theta_decimal), FadeIn(self.x_eq), ) def show_acceleration_formula(self): x_eq = self.x_eq g_sin_theta = self.g_sin_label equation = TexMobject( "a", "=", "\\ddot", "x", "=", "-", "g", "\\sin\\big(", "\\theta", "\\big)", ) equation.to_edge(LEFT) second_deriv = equation[2:4] x_part = equation.get_part_by_tex("x") x_part.set_color(GREEN) a_eq = equation[:2] eq2 = equation.get_parts_by_tex("=")[1] rhs = equation[5:] second_deriv_L_form = TexMobject( "L", "\\ddot", "\\theta" ) second_deriv_L_form.move_to(second_deriv, DOWN) eq3 = TexMobject("=") eq3.rotate(90 * DEGREES) eq3.next_to(second_deriv_L_form, UP) g_L_frac = TexMobject( "-", "{g", "\\over", "L}" ) g_L_frac.move_to(rhs[:2], LEFT) g_L_frac.shift(SMALL_BUFF * UP / 2) mu_term = TexMobject( "-\\mu", "\\dot", "\\theta", ) mu_term.next_to(g_L_frac, LEFT) mu_term.shift(SMALL_BUFF * UP / 2) mu_brace = Brace(mu_term, UP) mu_word = mu_brace.get_text("Air resistance") for mob in equation, second_deriv_L_form, mu_term: mob.set_color_by_tex("\\theta", BLUE) self.play( TransformFromCopy(x_eq[0], x_part), Write(equation[:3]), ) self.wait() self.play( Write(eq2), TransformFromCopy(g_sin_theta, rhs) ) self.wait() # self.show_acceleration_at_different_angles() # self.play( FadeInFromDown(second_deriv_L_form), Write(eq3), second_deriv.next_to, eq3, UP, a_eq.shift, SMALL_BUFF * LEFT, eq2.shift, SMALL_BUFF * RIGHT, rhs.shift, SMALL_BUFF * RIGHT, ) self.wait() self.wait() self.play( FadeOut(a_eq), FadeOut(second_deriv), FadeOut(eq3), ReplacementTransform( second_deriv_L_form.get_part_by_tex("L"), g_L_frac.get_part_by_tex("L"), ), ReplacementTransform( equation.get_part_by_tex("-"), g_L_frac.get_part_by_tex("-"), ), ReplacementTransform( equation.get_part_by_tex("g"), g_L_frac.get_part_by_tex("g"), ), Write(g_L_frac.get_part_by_tex("\\over")), rhs[2:].next_to, g_L_frac, RIGHT, {"buff": SMALL_BUFF}, ) self.wait() self.play( GrowFromCenter(mu_term), VGroup(eq2, second_deriv_L_form[1:]).next_to, mu_term, LEFT, ) self.play( GrowFromCenter(mu_brace), FadeInFromDown(mu_word), ) def show_acceleration_at_different_angles(self): to_fade = VGroup( self.g_cos_label, self.g_vect.perp, ) new_comp_line_sytle = { "stroke_width": 0.5, "stroke_opacity": 0.25, } self.play( FadeOut(self.x_eq), to_fade.set_opacity, 0.25, self.g_vect.component_lines.set_style, new_comp_line_sytle ) self.g_vect.component_lines.add_updater( lambda m: m.set_style(**new_comp_line_sytle) ) for mob in to_fade: mob.add_updater(lambda m: m.set_opacity(0.25)) self.set_theta(0) self.wait(2) self.set_theta(89.9 * DEGREES, run_time=3) self.wait(2) self.set_theta( 60 * DEGREES, FadeIn(self.x_eq), run_time=2, ) self.wait() def ask_about_what_to_do(self): g_vect = self.g_vect g_sin_label = self.g_sin_label angle = g_vect.tangent.get_angle() angle = (angle - PI) % TAU randy = You() randy.to_corner(DL) bubble = randy.get_bubble( height=2, width=3.5, ) g_sin_copy = g_sin_label.copy() g_sin_copy.remove(g_sin_copy[0]) g_sin_copy.generate_target() g_sin_copy.target.scale(1 / 0.75) g_sin_copy.target.rotate(-angle) a_eq = TexMobject("a=") thought_term = VGroup(a_eq, g_sin_copy.target) thought_term.arrange(RIGHT, buff=SMALL_BUFF) thought_term.move_to(bubble.get_bubble_center()) rect = SurroundingRectangle(g_sin_copy.target) rect.rotate(angle) rect.move_to(g_sin_label) randy.save_state() randy.fade(1) self.play(randy.restore, randy.change, "pondering") self.play(ShowCreationThenFadeOut(rect)) self.play( ShowCreation(bubble), Write(a_eq), MoveToTarget(g_sin_copy), randy.look_at, bubble, ) thought_term.remove(g_sin_copy.target) thought_term.add(g_sin_copy) self.play(Blink(randy)) self.wait() self.play( ShowCreationThenDestruction( thought_term.copy().set_style( stroke_color=YELLOW, stroke_width=2, fill_opacity=0, ), run_time=2, lag_ratio=0.2, ), randy.change, "confused", thought_term, ) self.play(Blink(randy)) self.play( FadeOut(randy), FadeOut(bubble), thought_term.next_to, self.pendulum, DOWN, LARGE_BUFF ) self.accleration_equation = thought_term def emphasize_theta(self): pendulum = self.pendulum self.play(FocusOn(pendulum.theta_label)) self.play(Indicate(pendulum.theta_label)) pendulum_copy = pendulum.deepcopy() pendulum_copy.clear_updaters() pendulum_copy.fade(1) pendulum_copy.start_swinging() def new_updater(p): p.set_theta(pendulum_copy.get_theta()) pendulum.add_updater(new_updater) self.add(pendulum_copy) self.wait(5) pendulum_copy.end_swinging() self.remove(pendulum_copy) pendulum.remove_updater(new_updater) self.update_mobjects(0) def show_angular_velocity(self): pass def show_angular_acceleration(self): pass def circle_g_sin_formula(self): self.play( ShowCreationThenFadeAround( self.accleration_equation ) ) # def set_theta(self, value, *added_anims, **kwargs): kwargs["run_time"] = kwargs.get("run_time", 2) self.play( self.theta_tracker.set_value, value, *added_anims, **kwargs, ) class BuildUpEquation(Scene): CONFIG = { "tex_config": { "tex_to_color_map": { "{a}": YELLOW, "{v}": RED, "{x}": GREEN, "\\theta": BLUE, "{L}": WHITE, } } } def construct(self): # self.add_center_line() self.show_derivatives() self.show_theta_double_dot_equation() self.talk_about_sine_component() self.add_air_resistance() def add_center_line(self): line = Line(UP, DOWN) line.set_height(FRAME_HEIGHT) line.set_stroke(WHITE, 1) self.add(line) def show_derivatives(self): a_eq = TexMobject( "{a}", "=", "{d{v} \\over dt}", **self.tex_config, ) v_eq = TexMobject( "{v}", "=", "{d{x} \\over dt}", **self.tex_config, ) x_eq = TexMobject( "{x} = {L} \\theta", **self.tex_config, ) eqs = VGroup(a_eq, v_eq, x_eq) eqs.arrange(DOWN, buff=LARGE_BUFF) eqs.to_corner(UL) v_rhs = TexMobject( "={L}{d\\theta \\over dt}", "=", "{L}\\dot{\\theta}", **self.tex_config, ) v_rhs.next_to(v_eq, RIGHT, SMALL_BUFF) v_rhs.shift( UP * (v_eq[1].get_bottom()[1] - v_rhs[0].get_bottom()[1]) ) a_rhs = TexMobject( "={L}{d", "\\dot{\\theta}", "\\over dt}", "=", "{L}\\ddot{\\theta}", **self.tex_config, ) a_rhs.next_to(a_eq, RIGHT, SMALL_BUFF) a_rhs.shift( UP * (a_eq[1].get_bottom()[1] - a_rhs[0].get_bottom()[1]) ) # a_eq self.play(Write(a_eq)) self.wait() # v_eq self.play( TransformFromCopy( a_eq.get_part_by_tex("{v}"), v_eq.get_part_by_tex("{v}"), ) ) self.play(TransformFromCopy(v_eq[:1], v_eq[1:])) self.wait() # x_eq self.play( TransformFromCopy( v_eq.get_part_by_tex("{x}"), x_eq.get_part_by_tex("{x}"), ) ) self.play(Write(x_eq[1:])) self.wait() for tex in "L", "\\theta": self.play(ShowCreationThenFadeAround( x_eq.get_part_by_tex(tex) )) self.wait() # v_rhs self.play(*[ TransformFromCopy( x_eq.get_part_by_tex(tex), v_rhs.get_part_by_tex(tex), ) for tex in ("=", "{L}", "\\theta") ]) self.play( TransformFromCopy(v_eq[-3], v_rhs[2]), TransformFromCopy(v_eq[-1], v_rhs[4]), ) self.wait() self.play( Write(v_rhs[-5]), TransformFromCopy(*v_rhs.get_parts_by_tex("{L}")), TransformFromCopy(v_rhs[3:4], v_rhs[-3:]) ) self.wait() self.play(ShowCreationThenFadeAround(v_rhs[2:4])) self.play(ShowCreationThenFadeAround(v_rhs[4])) self.wait() # a_rhs self.play(*[ TransformFromCopy( v_rhs.get_parts_by_tex(tex)[-1], a_rhs.get_part_by_tex(tex), ) for tex in ("=", "{L}", "\\theta", "\\dot") ]) self.play( TransformFromCopy(a_eq[-3], a_rhs[2]), TransformFromCopy(a_eq[-1], a_rhs[6]), ) self.wait() self.play( Write(a_rhs[-5]), TransformFromCopy(*a_rhs.get_parts_by_tex("{L}")), TransformFromCopy(a_rhs[3:4], a_rhs[-3:]), ) self.wait() self.equations = VGroup( a_eq, v_eq, x_eq, v_rhs, a_rhs, ) def show_theta_double_dot_equation(self): equations = self.equations a_deriv = equations[0] a_rhs = equations[-1][-5:].copy() shift_vect = 1.5 * DOWN equals = TexMobject("=") equals.rotate(90 * DEGREES) equals.next_to(a_deriv[0], UP, MED_LARGE_BUFF) g_sin_eq = TexMobject( "-", "g", "\\sin", "(", "\\theta", ")", **self.tex_config, ) g_sin_eq.next_to( equals, UP, buff=MED_LARGE_BUFF, aligned_edge=LEFT, ) g_sin_eq.to_edge(LEFT) g_sin_eq.shift(shift_vect) shift_vect += ( g_sin_eq[1].get_center() - a_deriv[0].get_center() )[0] * RIGHT equals.shift(shift_vect) a_rhs.shift(shift_vect) self.play( equations.shift, shift_vect, Write(equals), GrowFromPoint( g_sin_eq, 2 * RIGHT + 3 * DOWN ) ) self.wait() self.play( a_rhs.next_to, g_sin_eq, RIGHT, a_rhs.shift, SMALL_BUFF * UP, ) self.wait() # Fade equations self.play( FadeOut(equals), equations.shift, DOWN, equations.fade, 0.5, ) # Rotate sides equals, L, ddot, theta, junk = a_rhs L_dd_theta = VGroup(L, ddot, theta) minus, g, sin, lp, theta2, rp = g_sin_eq m2, g2, over, L2 = frac = TexMobject("-", "{g", "\\over", "L}") frac.next_to(equals, RIGHT) self.play( L_dd_theta.next_to, equals, LEFT, L_dd_theta.shift, SMALL_BUFF * UP, g_sin_eq.next_to, equals, RIGHT, path_arc=PI / 2, ) self.play( ReplacementTransform(g, g2), ReplacementTransform(minus, m2), ReplacementTransform(L, L2), Write(over), g_sin_eq[2:].next_to, over, RIGHT, SMALL_BUFF, ) self.wait() # Surround rect = SurroundingRectangle(VGroup(g_sin_eq, frac, ddot)) rect.stretch(1.1, 0) dashed_rect = DashedVMobject( rect, num_dashes=50, positive_space_ratio=1, ) dashed_rect.shuffle() dashed_rect.save_state() dashed_rect.space_out_submobjects(1.1) for piece in dashed_rect: piece.rotate(90 * DEGREES) dashed_rect.fade(1) self.play(Restore(dashed_rect, lag_ratio=0.05)) dashed_rect.generate_target() dashed_rect.target.space_out_submobjects(0.9) dashed_rect.target.fade(1) for piece in dashed_rect.target: piece.rotate(90 * DEGREES) self.play(MoveToTarget( dashed_rect, lag_ratio=0.05, remover=True )) self.wait() self.main_equation = VGroup( ddot, theta, equals, m2, L2, over, g2, sin, lp, theta2, rp, ) def talk_about_sine_component(self): main_equation = self.main_equation gL_part = main_equation[4:7] sin_part = main_equation[7:] sin = sin_part[0] morty = Mortimer(height=1.5) morty.next_to(sin, DR, buff=LARGE_BUFF) morty.add_updater(lambda m: m.look_at(sin)) self.play(ShowCreationThenFadeAround(gL_part)) self.wait() self.play(ShowCreationThenFadeAround(sin_part)) self.wait() self.play(FadeIn(morty)) sin.save_state() self.play( morty.change, "angry", sin.next_to, morty, LEFT, {"aligned_edge": UP}, ) self.play(Blink(morty)) morty.clear_updaters() self.play( morty.change, "concerned_musician", morty.look, DR, ) self.play(Restore(sin)) self.play(FadeOut(morty)) self.wait() # Emphasize theta as input theta = sin_part[2] arrow = Vector(0.5 * UP, color=WHITE) arrow.next_to(theta, DOWN, SMALL_BUFF) word = TextMobject("Input") word.next_to(arrow, DOWN) self.play( FadeInFrom(word, UP), GrowArrow(arrow) ) self.play( ShowCreationThenDestruction( theta.copy().set_style( fill_opacity=0, stroke_width=2, stroke_color=YELLOW, ), lag_ratio=0.1, ) ) self.play(FadeOut(arrow), FadeOut(word)) def add_air_resistance(self): main_equation = self.main_equation tdd_eq = main_equation[:3] rhs = main_equation[3:] new_term = TexMobject( "-", "\\mu", "\\dot{", "\\theta}", ) new_term.set_color_by_tex("\\theta", BLUE) new_term.move_to(main_equation) new_term.shift(0.5 * SMALL_BUFF * UP) new_term[0].align_to(rhs[0], UP) brace = Brace(new_term, DOWN) words = brace.get_text("Air resistance") self.play( FadeInFromDown(new_term), tdd_eq.next_to, new_term, LEFT, tdd_eq.align_to, tdd_eq, UP, rhs.next_to, new_term, RIGHT, rhs.align_to, rhs, UP, ) self.play( GrowFromCenter(brace), Write(words) ) self.wait() class SimpleDampenedPendulum(Scene): def construct(self): pendulum = Pendulum( top_point=ORIGIN, initial_theta=150 * DEGREES, mu=0.5, ) self.add(pendulum) pendulum.start_swinging() self.wait(20) class NewSceneName(Scene): def construct(self): pass
29.242744
73
0.531625
a56e2c67e428411ddde467b6e6ea0c3c8e69d1e3
2,580
py
Python
(35)Search_Insert_Position.py
ElnuraMusaoglu/LeetCodeQuestions
ce13a2a790d77d1f17f7874beebe3c78d6064cc2
[ "MIT" ]
null
null
null
(35)Search_Insert_Position.py
ElnuraMusaoglu/LeetCodeQuestions
ce13a2a790d77d1f17f7874beebe3c78d6064cc2
[ "MIT" ]
null
null
null
(35)Search_Insert_Position.py
ElnuraMusaoglu/LeetCodeQuestions
ce13a2a790d77d1f17f7874beebe3c78d6064cc2
[ "MIT" ]
null
null
null
''' Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You must write an algorithm with O(log n) runtime complexity. Example 1: Input: nums = [1,3,5,6], target = 5 Output: 2 Example 2: Input: nums = [1,3,5,6], target = 2 Output: 1 Example 3: Input: nums = [1,3,5,6], target = 7 Output: 4 Example 4: Input: nums = [1,3,5,6], target = 0 Output: 0 Example 5: Input: nums = [1], target = 0 Output: 0 Constraints: 1 <= nums.length <= 104 -104 <= nums[i] <= 104 nums contains distinct values sorted in ascending order. -104 <= target <= 104 Runtime: 52 ms, faster than 46.38% of Python3 online submissions for Search Insert Position. Memory Usage: 15.1 MB, less than 52.45% of Python3 online submissions for Search Insert Position. ''' from typing import List class Solution: def searchInsert(self, nums, target): left = 0 right = int(len(nums)) - 1 while left <= right: middle = (left + right) // 2 if target == nums[middle]: return middle elif target < nums[middle]: # Search in left side right = middle - 1 else: # Search in right side left = middle + 1 return left def searchInsert2(self, nums: List[int], target: int) -> int: # check for constraint first and last situation if len(nums) == 0: return 0 if target > nums[int(len(nums))-1]: return int(len(nums)) if len(nums) == 1: return 0 if target <= nums[0] else 1 mid = int(len(nums) / 2) if target >= nums[mid]: start = mid finish = int(len(nums)) else: start = 0 finish = mid for i in range(start, finish): if nums[i] >= target: return i else: result = finish return result print(Solution().searchInsert([1, 3], 2)) # 1 print(Solution().searchInsert([1, 3], 1)) # 0 print(Solution().searchInsert([1, 3, 5, 6], 5)) # 2 print(Solution().searchInsert([1, 3, 5, 6], 2)) # 1 print(Solution().searchInsert([1, 3, 5], 4)) # 2 print(Solution().searchInsert([1, 3, 5, 6], 7)) # 4 print(Solution().searchInsert([1, 3, 5, 6], 0)) # 0 print(Solution().searchInsert([1], 0)) # 0 print(Solution().searchInsert([1], 2)) # 1
28.351648
175
0.551163
5ea10a37e7917087a99abf9e1efa44eb9332fbaf
3,095
py
Python
tests/test_client.py
BruceNUAA/mqttools
b3c4bb9db4a42eea74f90f343ee4ee7f6f932d12
[ "MIT" ]
null
null
null
tests/test_client.py
BruceNUAA/mqttools
b3c4bb9db4a42eea74f90f343ee4ee7f6f932d12
[ "MIT" ]
null
null
null
tests/test_client.py
BruceNUAA/mqttools
b3c4bb9db4a42eea74f90f343ee4ee7f6f932d12
[ "MIT" ]
null
null
null
import logging import asyncio import unittest import mqttools async def broker_main(listener): async with listener: try: await listener.serve_forever() except asyncio.CancelledError: pass class ClientTest(unittest.TestCase): def test_connack_timeout(self): asyncio.run(self.connack_timeout()) async def connack_timeout(self): def on_client_connected(reader, writer): pass listener = await asyncio.start_server(on_client_connected, 'localhost', 0) async def client_main(): client = mqttools.Client(*listener.sockets[0].getsockname(), 'connack', response_timeout=0.1, connect_delays=[], topic_alias_maximum=0) with self.assertRaises(mqttools.TimeoutError): await client.start() listener.close() await asyncio.wait_for( asyncio.gather(broker_main(listener), client_main()), 1) def test_subscribe_timeout(self): asyncio.run(self.subscribe_timeout()) async def subscribe_timeout(self): def on_client_connected(reader, writer): # CONNACK writer.write(b'\x20\x03\x00\x00\x00') listener = await asyncio.start_server(on_client_connected, 'localhost', 0) async def client_main(): client = mqttools.Client(*listener.sockets[0].getsockname(), 'suback', response_timeout=0.1, topic_alias_maximum=0) await client.start() with self.assertRaises(mqttools.TimeoutError): await client.subscribe('/foo') listener.close() await asyncio.wait_for( asyncio.gather(broker_main(listener), client_main()), 1) def test_unsubscribe_timeout(self): asyncio.run(self.unsubscribe_timeout()) async def unsubscribe_timeout(self): def on_client_connected(reader, writer): # CONNACK writer.write(b'\x20\x03\x00\x00\x00') listener = await asyncio.start_server(on_client_connected, 'localhost', 0) async def client_main(): client = mqttools.Client(*listener.sockets[0].getsockname(), 'unsuback', response_timeout=0.1, topic_alias_maximum=0) await client.start() with self.assertRaises(mqttools.TimeoutError): await client.unsubscribe('/foo') listener.close() await asyncio.wait_for( asyncio.gather(broker_main(listener), client_main()), 1) def test_client_id(self): client = mqttools.Client('localhost', 0) self.assertEqual(client.client_id[:9], 'mqttools-') logging.basicConfig(level=logging.DEBUG) if __name__ == '__main__': unittest.main()
30.048544
82
0.569305
fe0299a57ca97e2898525ea9c5fc1192719a183d
965
py
Python
web/prepare/dump_kv.py
Ahacad/YYeTsBot
423d7d29f248e9f181378028dafd23903816c887
[ "MIT" ]
5
2021-03-04T03:44:50.000Z
2021-08-09T01:19:09.000Z
web/prepare/dump_kv.py
sekkit/YYeTsBot
bc7096f5c2371f0654c20188c6b0ecfb662b2e22
[ "MIT" ]
17
2021-03-07T03:08:18.000Z
2021-05-31T09:14:34.000Z
web/prepare/dump_kv.py
sekkit/YYeTsBot
bc7096f5c2371f0654c20188c6b0ecfb662b2e22
[ "MIT" ]
3
2021-06-19T11:03:14.000Z
2021-09-07T16:15:06.000Z
#!/usr/local/bin/python3 # coding: utf-8 # YYeTsBot - dump_kv.py # 2/6/21 18:12 # __author__ = "Benny <benny.think@gmail.com>" import threading import requests import json from concurrent.futures.thread import ThreadPoolExecutor s = requests.Session() with open("index.json", ) as f: ids = json.load(f) chunk = [ids[x:x + 3000] for x in range(0, len(ids), 3000)] def download(c): print("running batch ", c[0]) for i in c: data = s.get("https://yyets.dmesg.app/id={}".format(i)).json() with open(f"{i}.json", "w") as f: json.dump(data, f) if __name__ == '__main__': threads = [] for part in chunk: # Create 9 threads counting 10-19, 20-29, ... 90-99. thread = threading.Thread(target=download, args=(part,)) threads.append(thread) # Start them all for thread in threads: thread.start() # Wait for all to complete for thread in threads: thread.join()
21.444444
70
0.613472
7db267904f8a5da0de76922c73db45bfdca60b1d
572
py
Python
setup.py
LairdCP/weblcm-python
ccaa554391ad4f993e3c01929bff252ca48991fb
[ "0BSD" ]
null
null
null
setup.py
LairdCP/weblcm-python
ccaa554391ad4f993e3c01929bff252ca48991fb
[ "0BSD" ]
null
null
null
setup.py
LairdCP/weblcm-python
ccaa554391ad4f993e3c01929bff252ca48991fb
[ "0BSD" ]
null
null
null
#!/usr/bin/python from setuptools import setup import os environment_variable_value = os.environ.get('WEBLCM_PYTHON_EXTRA_MODULES', '') if len(environment_variable_value) > 0: extra_modules = [s.strip() for s in environment_variable_value.split()] else: extra_modules = [] setup( name='weblcm-python', version='1.0', py_modules=[ '__main__', 'weblcm_network', 'weblcm_log', 'weblcm_def', 'weblcm_swupdate', 'weblcm_users', 'weblcm_files', 'weblcm_advanced', 'weblcm_network_status', 'weblcm_settings', 'weblcm_datetime', 'weblcm_modem' ] + extra_modules )
26
78
0.746503
5dbe4bb26e1e79f3dbab3aee373b09c484981c8e
3,624
py
Python
aii/components/design.py
Tranquangdai/Auto-Image-Improvements
a5e5b5a57f76b1c95c83fbf7650e2eb40325e6cc
[ "MIT" ]
2
2020-08-03T02:36:14.000Z
2020-08-03T03:09:48.000Z
aii/components/design.py
Tranquangdai/Auto-Image-Improvements
a5e5b5a57f76b1c95c83fbf7650e2eb40325e6cc
[ "MIT" ]
null
null
null
aii/components/design.py
Tranquangdai/Auto-Image-Improvements
a5e5b5a57f76b1c95c83fbf7650e2eb40325e6cc
[ "MIT" ]
null
null
null
import json import os import uuid from os.path import exists import numpy as np from PIL import Image from tqdm import trange from aii.utils import array_to_PIL from .background import BackGround from .collect import PatchCollect, SignCollect from .segment import Segment class Designer: def __init__(self, cfg): self.pac = PatchCollect(cfg['patch']) self.sc = SignCollect(cfg['sign']) self.lgc = SignCollect(cfg['logo']) self.pl = BackGround(cfg['background']) self.sg = Segment(cfg['product']) self._init_container() def _init_container(self): self.images = [] self.annotations = [] self.dataset = { 'images': self.images, 'categories': [ { "supercategory": "product", "id": 1, "name": "product" } ], 'annotations': self.annotations, } @staticmethod def convert_xyxy_to_xywh(box): x_min, y_min, x_max, y_max = box return [x_min, y_min, x_max - x_min, y_max - y_min] def from_polygon(self, polygons): tmp = dict() tmp['segmentation'] = [(p.flatten() + 0.5).tolist() for p in polygons.points] tmp['iscrowd'] = 0 tmp['category_id'] = 1 tmp['id'] = 1 tmp['area'] = self.compute_area(polygons) tmp['bbox'] = self.convert_xyxy_to_xywh( [float(i) for i in polygons.bbox()]) tmp['bbox_mode'] = 0 return tmp def draw(self): try: self.pl.place_banner(self.pac.sample_collect()) self.pl.place_sign(self.sc.sample_collect()) self.pl.place_sign(self.lgc.sample_collect()) bg = np.array(self.pl.bg) img, polygons = self.sg.sample_collect(bg) return img, polygons except: return None, None def generate(self, dirname, steps=10): if not exists(dirname): os.makedirs(dirname) counter = 0 for _ in trange(steps): img, polygon = self.draw() if img is not None: polygon_info = self.from_polygon(polygon) image_info = self.gen_image_info(dirname) polygon_info['image_id'] = image_info['id'] polygon_info['id'] = counter counter += 1 array_to_PIL(img).convert('RGB').save( '{}/{}'.format(dirname, image_info['file_name'])) self.images.append(image_info) self.annotations.append(polygon_info) @staticmethod def gen_image_info(dirname): id_ = str(uuid.uuid4().int)[:20] path = '{}.jpg'.format(id_) return { 'height': 1000, 'width': 1000, 'id': id_, 'file_name': path, } def save(self, dirname): if not exists(dirname): os.makedirs(dirname) rand_id = str(uuid.uuid4().int)[:20] path = '{}/{}.jpg'.format(dirname, rand_id) self.pl.bg.convert('RGB').save(path) self.annot.append((path, [self.pl.bbox])) @staticmethod def compute_area(polygons): contour = np.array(polygons.points[0]) x = contour[:, 0] y = contour[:, 1] area = 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) return area def dump_annotations(self, filename): with open(filename, 'w') as f: json.dump(self.dataset, f)
29.950413
69
0.533113
9124f80a8559562f017e96a59233249fcb32c253
13,976
py
Python
packages/pytea/pytest/benchmarks/transformers/missing_idx/src/transformers/commands/user.py
lego0901/pytea
8ede650def2e68f4610ba816451d8b9e28f09f76
[ "MIT" ]
96
2021-06-16T09:06:52.000Z
2022-03-26T09:56:32.000Z
packages/pytea/pytest/benchmarks/transformers/missing_idx/src/transformers/commands/user.py
lego0901/pytea
8ede650def2e68f4610ba816451d8b9e28f09f76
[ "MIT" ]
16
2021-07-01T05:34:48.000Z
2022-03-28T09:40:15.000Z
packages/pytea/pytest/benchmarks/transformers/missing_idx/src/transformers/commands/user.py
lego0901/pytea
8ede650def2e68f4610ba816451d8b9e28f09f76
[ "MIT" ]
24
2021-06-19T15:58:31.000Z
2022-03-14T09:17:19.000Z
import os import subprocess import sys from argparse import ArgumentParser from getpass import getpass from typing import List, Union from requests.exceptions import HTTPError from transformers.commands import BaseTransformersCLICommand from transformers.hf_api import HfApi, HfFolder UPLOAD_MAX_FILES = 15 class UserCommands(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): login_parser = parser.add_parser("login", help="Log in using the same credentials as on huggingface.co") login_parser.set_defaults(func=lambda args: LoginCommand(args)) whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.") whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args)) logout_parser = parser.add_parser("logout", help="Log out") logout_parser.set_defaults(func=lambda args: LogoutCommand(args)) # s3_datasets (s3-based system) s3_parser = parser.add_parser( "s3_datasets", help="{ls, rm} Commands to interact with the files you upload on S3." ) s3_subparsers = s3_parser.add_subparsers(help="s3 related commands") ls_parser = s3_subparsers.add_parser("ls") ls_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") ls_parser.set_defaults(func=lambda args: ListObjsCommand(args)) rm_parser = s3_subparsers.add_parser("rm") rm_parser.add_argument("filename", type=str, help="individual object filename to delete from S3.") rm_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") rm_parser.set_defaults(func=lambda args: DeleteObjCommand(args)) upload_parser = s3_subparsers.add_parser("upload", help="Upload a file to S3.") upload_parser.add_argument("path", type=str, help="Local path of the folder or individual file to upload.") upload_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") upload_parser.add_argument( "--filename", type=str, default=None, help="Optional: override individual object filename on S3." ) upload_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt") upload_parser.set_defaults(func=lambda args: UploadCommand(args)) # deprecated model upload upload_parser = parser.add_parser( "upload", help=( "Deprecated: used to be the way to upload a model to S3." " We now use a git-based system for storing models and other artifacts." " Use the `repo create` command instead." ), ) upload_parser.set_defaults(func=lambda args: DeprecatedUploadCommand(args)) # new system: git-based repo system repo_parser = parser.add_parser( "repo", help="{create, ls-files} Commands to interact with your huggingface.co repos." ) repo_subparsers = repo_parser.add_subparsers(help="huggingface.co repos related commands") ls_parser = repo_subparsers.add_parser("ls-files", help="List all your files on huggingface.co") ls_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") ls_parser.set_defaults(func=lambda args: ListReposObjsCommand(args)) repo_create_parser = repo_subparsers.add_parser("create", help="Create a new repo on huggingface.co") repo_create_parser.add_argument( "name", type=str, help="Name for your model's repo. Will be namespaced under your username to build the model id.", ) repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") repo_create_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt") repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args)) class ANSI: """ Helper for en.wikipedia.org/wiki/ANSI_escape_code """ _bold = "\u001b[1m" _red = "\u001b[31m" _gray = "\u001b[90m" _reset = "\u001b[0m" @classmethod def bold(cls, s): return "{}{}{}".format(cls._bold, s, cls._reset) @classmethod def red(cls, s): return "{}{}{}".format(cls._bold + cls._red, s, cls._reset) @classmethod def gray(cls, s): return "{}{}{}".format(cls._gray, s, cls._reset) def tabulate(rows: List[List[Union[str, int]]], headers: List[str]) -> str: """ Inspired by: - stackoverflow.com/a/8356620/593036 - stackoverflow.com/questions/9535954/printing-lists-as-tabular-data """ col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)] row_format = ("{{:{}}} " * len(headers)).format(*col_widths) lines = [] lines.append(row_format.format(*headers)) lines.append(row_format.format(*["-" * w for w in col_widths])) for row in rows: lines.append(row_format.format(*row)) return "\n".join(lines) class BaseUserCommand: def __init__(self, args): self.args = args self._api = HfApi() class LoginCommand(BaseUserCommand): def run(self): print( # docstyle-ignore """ _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_| _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_| """ ) username = input("Username: ") password = getpass() try: token = self._api.login(username, password) except HTTPError as e: # probably invalid credentials, display error message. print(e) print(ANSI.red(e.response.text)) exit(1) HfFolder.save_token(token) print("Login successful") print("Your token:", token, "\n") print("Your token has been saved to", HfFolder.path_token) class WhoamiCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit() try: user, orgs = self._api.whoami(token) print(user) if orgs: print(ANSI.bold("orgs: "), ",".join(orgs)) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) class LogoutCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit() HfFolder.delete_token() self._api.logout(token) print("Successfully logged out.") class ListObjsCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: objs = self._api.list_objs(token, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) if len(objs) == 0: print("No shared file yet") exit() rows = [[obj.filename, obj.LastModified, obj.ETag, obj.Size] for obj in objs] print(tabulate(rows, headers=["Filename", "LastModified", "ETag", "Size"])) class DeleteObjCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: self._api.delete_obj(token, filename=self.args.filename, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) print("Done") class ListReposObjsCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: objs = self._api.list_repos_objs(token, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) if len(objs) == 0: print("No shared file yet") exit() rows = [[obj.filename, obj.lastModified, obj.commit, obj.size] for obj in objs] print(tabulate(rows, headers=["Filename", "LastModified", "Commit-Sha", "Size"])) class RepoCreateCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: stdout = subprocess.check_output(["git", "--version"]).decode("utf-8") print(ANSI.gray(stdout.strip())) except FileNotFoundError: print("Looks like you do not have git installed, please install.") try: stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8") print(ANSI.gray(stdout.strip())) except FileNotFoundError: print( ANSI.red( "Looks like you do not have git-lfs installed, please install." " You can install from https://git-lfs.github.com/." " Then run `git lfs install` (you only have to do this once)." ) ) print("") user, _ = self._api.whoami(token) namespace = self.args.organization if self.args.organization is not None else user print("You are about to create {}".format(ANSI.bold(namespace + "/" + self.args.name))) if not self.args.yes: choice = input("Proceed? [Y/n] ").lower() if not (choice == "" or choice == "y" or choice == "yes"): print("Abort") exit() try: url = self._api.create_repo(token, name=self.args.name, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) print("\nYour repo now lives at:") print(" {}".format(ANSI.bold(url))) print("\nYou can clone it locally with the command below," " and commit/push as usual.") print(f"\n git clone {url}") print("") class DeprecatedUploadCommand(BaseUserCommand): def run(self): print( ANSI.red( "Deprecated: used to be the way to upload a model to S3." " We now use a git-based system for storing models and other artifacts." " Use the `repo create` command instead." ) ) exit(1) class UploadCommand(BaseUserCommand): def walk_dir(self, rel_path): """ Recursively list all files in a folder. """ entries: List[os.DirEntry] = list(os.scandir(rel_path)) files = [(os.path.join(os.getcwd(), f.path), f.path) for f in entries if f.is_file()] # (filepath, filename) for f in entries: if f.is_dir(): files += self.walk_dir(f.path) return files def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) local_path = os.path.abspath(self.args.path) if os.path.isdir(local_path): if self.args.filename is not None: raise ValueError("Cannot specify a filename override when uploading a folder.") rel_path = os.path.basename(local_path) files = self.walk_dir(rel_path) elif os.path.isfile(local_path): filename = self.args.filename if self.args.filename is not None else os.path.basename(local_path) files = [(local_path, filename)] else: raise ValueError("Not a valid file or directory: {}".format(local_path)) if sys.platform == "win32": files = [(filepath, filename.replace(os.sep, "/")) for filepath, filename in files] if len(files) > UPLOAD_MAX_FILES: print( "About to upload {} files to S3. This is probably wrong. Please filter files before uploading.".format( ANSI.bold(len(files)) ) ) exit(1) user, _ = self._api.whoami(token) namespace = self.args.organization if self.args.organization is not None else user for filepath, filename in files: print( "About to upload file {} to S3 under filename {} and namespace {}".format( ANSI.bold(filepath), ANSI.bold(filename), ANSI.bold(namespace) ) ) if not self.args.yes: choice = input("Proceed? [Y/n] ").lower() if not (choice == "" or choice == "y" or choice == "yes"): print("Abort") exit() print(ANSI.bold("Uploading... This might take a while if files are large")) for filepath, filename in files: try: access_url = self._api.presign_and_upload( token=token, filename=filename, filepath=filepath, organization=self.args.organization ) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) print("Your file now lives at:") print(access_url)
39.258427
120
0.58028
5806442cfbe53423fba65e091345627971617fb5
42
py
Python
je_auto_control/utils/image/__init__.py
JE-Chen/Python_JEAutoControl
477bf9612e28e9ab6d0a8e269db2f699e50a3744
[ "MIT" ]
9
2020-10-12T06:33:36.000Z
2021-09-13T07:07:36.000Z
je_auto_control/utils/image/__init__.py
JE-Chen/Python_JEAutoControl
477bf9612e28e9ab6d0a8e269db2f699e50a3744
[ "MIT" ]
null
null
null
je_auto_control/utils/image/__init__.py
JE-Chen/Python_JEAutoControl
477bf9612e28e9ab6d0a8e269db2f699e50a3744
[ "MIT" ]
null
null
null
from je_auto_control.utils.image import *
21
41
0.833333
e3509efd6eb45f4fd020c24bc56279513b6f8865
5,563
py
Python
configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_retrograde.py
vampireacen/NonMotor
8a144793ffc0211494b86aefe6201a7466a5c03f
[ "Apache-2.0" ]
null
null
null
configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_retrograde.py
vampireacen/NonMotor
8a144793ffc0211494b86aefe6201a7466a5c03f
[ "Apache-2.0" ]
null
null
null
configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_retrograde.py
vampireacen/NonMotor
8a144793ffc0211494b86aefe6201a7466a5c03f
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/models/cascade_mask_rcnn_swin_fpn_retrograde.py', '../_base_/datasets/coco_detection_retrograde.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime_3.py' ] model = dict( backbone=dict( embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, ape=False, drop_path_rate=0.2, patch_norm=True, use_checkpoint=False ), neck=dict(in_channels=[96, 192, 384, 768]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=3, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=3, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=3, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), # , 'gt_masks' ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
39.453901
101
0.495236
560c9cfd4156364d3b939f914567ea0a6c8eda31
4,819
py
Python
gmocoin/public/api.py
makotookamura/GmoCoin
025d3e68364bf52418dbc3445987ff21528db732
[ "Apache-2.0" ]
1
2021-05-20T01:34:28.000Z
2021-05-20T01:34:28.000Z
gmocoin/public/api.py
makotookamura/GmoCoin
025d3e68364bf52418dbc3445987ff21528db732
[ "Apache-2.0" ]
44
2020-11-15T01:17:38.000Z
2021-07-20T13:45:12.000Z
gmocoin/public/api.py
makotookamura/GmoCoin
025d3e68364bf52418dbc3445987ff21528db732
[ "Apache-2.0" ]
1
2021-04-27T12:12:47.000Z
2021-04-27T12:12:47.000Z
#!python3 import requests import json from datetime import datetime, date, timedelta import pandas as pd from ..common.annotation import post_request from ..common.const import GMOConst from ..common.logging import get_logger, log from ..common.dto import Status from .dto import GetStatusResSchema, GetStatusRes, \ GetTickerResSchema, GetTickerRes, Symbol , \ GetOrderBooksResSchema, GetOrderBooksRes, \ GetTradesResSchema, GetTradesRes logger = get_logger() class Client: ''' GMOCoinのパブリックAPIクライアントクラスです。 ''' @log(logger) @post_request(GetStatusResSchema) def get_status(self) -> GetStatusRes: """ 取引所の稼動状態を取得します。 Args: なし Returns: GetStatusRes """ ret = requests.get(GMOConst.END_POINT_PUBLIC + 'status') res_json = ret.json() if res_json['status'] == 5 and res_json['messages'][0]['message_code'] == 'ERR-5201': # メンテナンス中の場合、メンテナンスレスポンスを返却 # {'status': 5, 'messages': [{'message_code': 'ERR-5201', 'message_string': 'MAINTENANCE. Please wait for a while'}]} return GetStatusRes(status=0, responsetime=datetime.now(), data=GetStatusData(status=Status.MAINTENANCE)) return ret @log(logger) @post_request(GetTickerResSchema) def get_ticker(self, symbol:Symbol = None) -> GetTickerRes: """ 指定した銘柄の最新レートを取得します。 全銘柄分の最新レートを取得する場合はsymbolパラメータ指定無しでの実行をおすすめします。 Args: symbol: 指定しない場合は全銘柄分の最新レートを返す。 BTC ETH BCH LTC XRP BTC_JPY ETH_JPY BCH_JPY LTC_JPY XRP_JPY Returns: GetTickerRes """ if symbol is None: return requests.get(GMOConst.END_POINT_PUBLIC + f'ticker') else: return requests.get(GMOConst.END_POINT_PUBLIC + f'ticker?symbol={symbol.value}') @log(logger) @post_request(GetOrderBooksResSchema) def get_orderbooks(self, symbol:Symbol) -> GetOrderBooksRes: """ 指定した銘柄の板情報(snapshot)を取得します。 Args: symbol: BTC ETH BCH LTC XRP BTC_JPY ETH_JPY BCH_JPY LTC_JPY XRP_JPY Returns: GetOrderBooksRes """ return requests.get(GMOConst.END_POINT_PUBLIC + f'orderbooks?symbol={symbol.value}') @log(logger) @post_request(GetTradesResSchema) def get_trades(self, symbol:Symbol, page:int=1, count:int=100) -> GetTradesRes: """ 指定した銘柄の板情報(snapshot)を取得します。 Args: symbol: BTC ETH BCH LTC XRP BTC_JPY ETH_JPY BCH_JPY LTC_JPY XRP_JPY page: 取得対象ページ 指定しない場合は1を指定したとして動作する。 count: 1ページ当りの取得件数 指定しない場合は100(最大値)を指定したとして動作する。 Returns: GetTradesRes """ return requests.get(GMOConst.END_POINT_PUBLIC + f'trades?symbol={symbol.value}&page={page}&count={count}') @log(logger) def get_historical_data(self, symbol:Symbol, page:int=1, count:int=100) -> GetTradesRes: """ 指定した銘柄の板情報(snapshot)を取得します。 Args: symbol: BTC ETH BCH LTC XRP BTC_JPY ETH_JPY BCH_JPY LTC_JPY XRP_JPY page: 取得対象ページ 指定しない場合は1を指定したとして動作する。 count: 1ページ当りの取得件数 指定しない場合は100(最大値)を指定したとして動作する。 Returns: GetTradesRes """ return requests.get(GMOConst.END_POINT_PUBLIC + f'trades?symbol={symbol.value}&page={page}&count={count}') @log(logger) def get_historical_data(self, symbol:Symbol, past_days: int, base_date:date = None) -> pd.DataFrame: """ 指定した銘柄の過去取引情報を取得します。 Args: symbol: BTC ETH BCH LTC XRP BTC_JPY ETH_JPY BCH_JPY LTC_JPY XRP_JPY past_days: 過去期間日 base_date-past_days ~ base_dateのデータを取得する。 base_date: 過去基準日 指定しない場合は現在日を指定したとして動作する。 Returns: DataFrame """ if base_date == None: base_date = date.today() start_date = base_date - timedelta(days=past_days) #差分を使って、スタートの日から現在まで一日ずつ足していく url_list = [] for d in range(past_days): day=start_date + timedelta(days=d) # print(day) url = f'https://api.coin.z.com/data/trades/{symbol.value}/{day.year}/{day.month:02}/{day.year}{day.month:02}{day.day:02}_{symbol.value}.csv.gz' # MEMO: 土日は更新されないようなので、存在する日付だけlistに追加する if requests.get(url).status_code == 200: url_list.append(url) return pd.concat([pd.read_csv(url) for url in url_list], axis=0, sort=True)
30.5
155
0.591409
9c039e3aad80f998fb7bf057071263ff29ad236a
43,902
py
Python
backend/venv/Lib/site-packages/sphinx/builders/html.py
analurandis/Tur
b4b5d1230d70659be0c3f477f0baea68fc46ba39
[ "MIT" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
backend/venv/Lib/site-packages/sphinx/builders/html.py
analurandis/Tur
b4b5d1230d70659be0c3f477f0baea68fc46ba39
[ "MIT" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
backend/venv/Lib/site-packages/sphinx/builders/html.py
analurandis/Tur
b4b5d1230d70659be0c3f477f0baea68fc46ba39
[ "MIT" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
# -*- coding: utf-8 -*- """ sphinx.builders.html ~~~~~~~~~~~~~~~~~~~~ Several HTML builders. :copyright: Copyright 2007-2014 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os import sys import zlib import codecs import posixpath import cPickle as pickle from os import path try: from hashlib import md5 except ImportError: # 2.4 compatibility from md5 import md5 from docutils import nodes from docutils.io import DocTreeInput, StringOutput from docutils.core import Publisher from docutils.utils import new_document from docutils.frontend import OptionParser from docutils.readers.doctree import Reader as DoctreeReader from sphinx import package_dir, __version__ from sphinx.util import jsonimpl, copy_static_entry from sphinx.util.osutil import SEP, os_path, relative_uri, ensuredir, \ movefile, ustrftime, copyfile from sphinx.util.nodes import inline_all_toctrees from sphinx.util.matching import patmatch, compile_matchers from sphinx.util.pycompat import any, b from sphinx.errors import SphinxError from sphinx.locale import _ from sphinx.search import js_index from sphinx.theming import Theme from sphinx.builders import Builder from sphinx.application import ENV_PICKLE_FILENAME from sphinx.highlighting import PygmentsBridge from sphinx.util.console import bold, darkgreen, brown from sphinx.writers.html import HTMLWriter, HTMLTranslator, \ SmartyPantsHTMLTranslator #: the filename for the inventory of objects INVENTORY_FILENAME = 'objects.inv' #: the filename for the "last build" file (for serializing builders) LAST_BUILD_FILENAME = 'last_build' def get_stable_hash(obj): """ Return a stable hash for a Python data structure. We can't just use the md5 of str(obj) since for example dictionary items are enumerated in unpredictable order due to hash randomization in newer Pythons. """ if isinstance(obj, dict): return get_stable_hash(list(obj.items())) elif isinstance(obj, (list, tuple)): obj = sorted(get_stable_hash(o) for o in obj) return md5(unicode(obj).encode('utf8')).hexdigest() class StandaloneHTMLBuilder(Builder): """ Builds standalone HTML docs. """ name = 'html' format = 'html' copysource = True allow_parallel = True out_suffix = '.html' link_suffix = '.html' # defaults to matching out_suffix indexer_format = js_index indexer_dumps_unicode = True supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg'] searchindex_filename = 'searchindex.js' add_permalinks = True embedded = False # for things like HTML help or Qt help: suppresses sidebar # This is a class attribute because it is mutated by Sphinx.add_javascript. script_files = ['_static/jquery.js', '_static/underscore.js', '_static/doctools.js'] # Dito for this one. css_files = [] default_sidebars = ['localtoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'] # cached publisher object for snippets _publisher = None def init(self): # a hash of all config values that, if changed, cause a full rebuild self.config_hash = '' self.tags_hash = '' # section numbers for headings in the currently visited document self.secnumbers = {} # currently written docname self.current_docname = None self.init_templates() self.init_highlighter() self.init_translator_class() if self.config.html_file_suffix is not None: self.out_suffix = self.config.html_file_suffix if self.config.html_link_suffix is not None: self.link_suffix = self.config.html_link_suffix else: self.link_suffix = self.out_suffix if self.config.language is not None: if self._get_translations_js(): self.script_files.append('_static/translations.js') def _get_translations_js(self): candidates = [path.join(package_dir, 'locale', self.config.language, 'LC_MESSAGES', 'sphinx.js'), path.join(sys.prefix, 'share/sphinx/locale', self.config.language, 'sphinx.js')] + \ [path.join(dir, self.config.language, 'LC_MESSAGES', 'sphinx.js') for dir in self.config.locale_dirs] for jsfile in candidates: if path.isfile(jsfile): return jsfile return None def get_theme_config(self): return self.config.html_theme, self.config.html_theme_options def init_templates(self): Theme.init_themes(self.confdir, self.config.html_theme_path, warn=self.warn) themename, themeoptions = self.get_theme_config() self.theme = Theme(themename) self.theme_options = themeoptions.copy() self.create_template_bridge() self.templates.init(self, self.theme) def init_highlighter(self): # determine Pygments style and create the highlighter if self.config.pygments_style is not None: style = self.config.pygments_style elif self.theme: style = self.theme.get_confstr('theme', 'pygments_style', 'none') else: style = 'sphinx' self.highlighter = PygmentsBridge('html', style, self.config.trim_doctest_flags) def init_translator_class(self): if self.config.html_translator_class: self.translator_class = self.app.import_object( self.config.html_translator_class, 'html_translator_class setting') elif self.config.html_use_smartypants: self.translator_class = SmartyPantsHTMLTranslator else: self.translator_class = HTMLTranslator def get_outdated_docs(self): cfgdict = dict((name, self.config[name]) for (name, desc) in self.config.values.iteritems() if desc[1] == 'html') self.config_hash = get_stable_hash(cfgdict) self.tags_hash = get_stable_hash(sorted(self.tags)) old_config_hash = old_tags_hash = '' try: fp = open(path.join(self.outdir, '.buildinfo')) try: version = fp.readline() if version.rstrip() != '# Sphinx build info version 1': raise ValueError fp.readline() # skip commentary cfg, old_config_hash = fp.readline().strip().split(': ') if cfg != 'config': raise ValueError tag, old_tags_hash = fp.readline().strip().split(': ') if tag != 'tags': raise ValueError finally: fp.close() except ValueError: self.warn('unsupported build info format in %r, building all' % path.join(self.outdir, '.buildinfo')) except Exception: pass if old_config_hash != self.config_hash or \ old_tags_hash != self.tags_hash: for docname in self.env.found_docs: yield docname return if self.templates: template_mtime = self.templates.newest_template_mtime() else: template_mtime = 0 for docname in self.env.found_docs: if docname not in self.env.all_docs: yield docname continue targetname = self.get_outfilename(docname) try: targetmtime = path.getmtime(targetname) except Exception: targetmtime = 0 try: srcmtime = max(path.getmtime(self.env.doc2path(docname)), template_mtime) if srcmtime > targetmtime: yield docname except EnvironmentError: # source doesn't exist anymore pass def render_partial(self, node): """Utility: Render a lone doctree node.""" if node is None: return {'fragment': ''} doc = new_document(b('<partial node>')) doc.append(node) if self._publisher is None: self._publisher = Publisher( source_class = DocTreeInput, destination_class=StringOutput) self._publisher.set_components('standalone', 'restructuredtext', 'pseudoxml') pub = self._publisher pub.reader = DoctreeReader() pub.writer = HTMLWriter(self) pub.process_programmatic_settings( None, {'output_encoding': 'unicode'}, None) pub.set_source(doc, None) pub.set_destination(None, None) pub.publish() return pub.writer.parts def prepare_writing(self, docnames): # create the search indexer from sphinx.search import IndexBuilder, languages lang = self.config.html_search_language or self.config.language if not lang or lang not in languages: lang = 'en' self.indexer = IndexBuilder(self.env, lang, self.config.html_search_options, self.config.html_search_scorer) self.load_indexer(docnames) self.docwriter = HTMLWriter(self) self.docsettings = OptionParser( defaults=self.env.settings, components=(self.docwriter,), read_config_files=True).get_default_values() self.docsettings.compact_lists = bool(self.config.html_compact_lists) # determine the additional indices to include self.domain_indices = [] # html_domain_indices can be False/True or a list of index names indices_config = self.config.html_domain_indices if indices_config: for domain in self.env.domains.itervalues(): for indexcls in domain.indices: indexname = '%s-%s' % (domain.name, indexcls.name) if isinstance(indices_config, list): if indexname not in indices_config: continue # deprecated config value if indexname == 'py-modindex' and \ not self.config.html_use_modindex: continue content, collapse = indexcls(domain).generate() if content: self.domain_indices.append( (indexname, indexcls, content, collapse)) # format the "last updated on" string, only once is enough since it # typically doesn't include the time of day lufmt = self.config.html_last_updated_fmt if lufmt is not None: self.last_updated = ustrftime(lufmt or _('%b %d, %Y')) else: self.last_updated = None logo = self.config.html_logo and \ path.basename(self.config.html_logo) or '' favicon = self.config.html_favicon and \ path.basename(self.config.html_favicon) or '' if favicon and os.path.splitext(favicon)[1] != '.ico': self.warn('html_favicon is not an .ico file') if not isinstance(self.config.html_use_opensearch, basestring): self.warn('html_use_opensearch config value must now be a string') self.relations = self.env.collect_relations() rellinks = [] if self.get_builder_config('use_index', 'html'): rellinks.append(('genindex', _('General Index'), 'I', _('index'))) for indexname, indexcls, content, collapse in self.domain_indices: # if it has a short name if indexcls.shortname: rellinks.append((indexname, indexcls.localname, '', indexcls.shortname)) if self.config.html_style is not None: stylename = self.config.html_style elif self.theme: stylename = self.theme.get_confstr('theme', 'stylesheet') else: stylename = 'default.css' self.globalcontext = dict( embedded = self.embedded, project = self.config.project, release = self.config.release, version = self.config.version, last_updated = self.last_updated, copyright = self.config.copyright, master_doc = self.config.master_doc, use_opensearch = self.config.html_use_opensearch, docstitle = self.config.html_title, shorttitle = self.config.html_short_title, show_copyright = self.config.html_show_copyright, show_sphinx = self.config.html_show_sphinx, has_source = self.config.html_copy_source, show_source = self.config.html_show_sourcelink, file_suffix = self.out_suffix, script_files = self.script_files, css_files = self.css_files, sphinx_version = __version__, style = stylename, rellinks = rellinks, builder = self.name, parents = [], logo = logo, favicon = favicon, ) if self.theme: self.globalcontext.update( ('theme_' + key, val) for (key, val) in self.theme.get_options(self.theme_options).iteritems()) self.globalcontext.update(self.config.html_context) def get_doc_context(self, docname, body, metatags): """Collect items for the template context of a page.""" # find out relations prev = next = None parents = [] rellinks = self.globalcontext['rellinks'][:] related = self.relations.get(docname) titles = self.env.titles if related and related[2]: try: next = { 'link': self.get_relative_uri(docname, related[2]), 'title': self.render_partial(titles[related[2]])['title'] } rellinks.append((related[2], next['title'], 'N', _('next'))) except KeyError: next = None if related and related[1]: try: prev = { 'link': self.get_relative_uri(docname, related[1]), 'title': self.render_partial(titles[related[1]])['title'] } rellinks.append((related[1], prev['title'], 'P', _('previous'))) except KeyError: # the relation is (somehow) not in the TOC tree, handle # that gracefully prev = None while related and related[0]: try: parents.append( {'link': self.get_relative_uri(docname, related[0]), 'title': self.render_partial(titles[related[0]])['title']}) except KeyError: pass related = self.relations.get(related[0]) if parents: parents.pop() # remove link to the master file; we have a generic # "back to index" link already parents.reverse() # title rendered as HTML title = self.env.longtitles.get(docname) title = title and self.render_partial(title)['title'] or '' # the name for the copied source sourcename = self.config.html_copy_source and docname + '.txt' or '' # metadata for the document meta = self.env.metadata.get(docname) # local TOC and global TOC tree self_toc = self.env.get_toc_for(docname, self) toc = self.render_partial(self_toc)['fragment'] return dict( parents = parents, prev = prev, next = next, title = title, meta = meta, body = body, metatags = metatags, rellinks = rellinks, sourcename = sourcename, toc = toc, # only display a TOC if there's more than one item to show display_toc = (self.env.toc_num_entries[docname] > 1), ) def write_doc(self, docname, doctree): destination = StringOutput(encoding='utf-8') doctree.settings = self.docsettings self.secnumbers = self.env.toc_secnumbers.get(docname, {}) self.imgpath = relative_uri(self.get_target_uri(docname), '_images') self.dlpath = relative_uri(self.get_target_uri(docname), '_downloads') self.current_docname = docname self.docwriter.write(doctree, destination) self.docwriter.assemble_parts() body = self.docwriter.parts['fragment'] metatags = self.docwriter.clean_meta ctx = self.get_doc_context(docname, body, metatags) self.handle_page(docname, ctx, event_arg=doctree) def write_doc_serialized(self, docname, doctree): self.imgpath = relative_uri(self.get_target_uri(docname), '_images') self.post_process_images(doctree) title = self.env.longtitles.get(docname) title = title and self.render_partial(title)['title'] or '' self.index_page(docname, doctree, title) def finish(self): self.info(bold('writing additional files...'), nonl=1) # pages from extensions for pagelist in self.app.emit('html-collect-pages'): for pagename, context, template in pagelist: self.handle_page(pagename, context, template) # the global general index if self.get_builder_config('use_index', 'html'): self.write_genindex() # the global domain-specific indices self.write_domain_indices() # the search page if self.name != 'htmlhelp': self.info(' search', nonl=1) self.handle_page('search', {}, 'search.html') # additional pages from conf.py for pagename, template in self.config.html_additional_pages.items(): self.info(' '+pagename, nonl=1) self.handle_page(pagename, {}, template) if self.config.html_use_opensearch and self.name != 'htmlhelp': self.info(' opensearch', nonl=1) fn = path.join(self.outdir, '_static', 'opensearch.xml') self.handle_page('opensearch', {}, 'opensearch.xml', outfilename=fn) self.info() self.copy_image_files() self.copy_download_files() self.copy_static_files() self.copy_extra_files() self.write_buildinfo() # dump the search index self.handle_finish() def write_genindex(self): # the total count of lines for each index letter, used to distribute # the entries into two columns genindex = self.env.create_index(self) indexcounts = [] for _, entries in genindex: indexcounts.append(sum(1 + len(subitems) for _, (_, subitems) in entries)) genindexcontext = dict( genindexentries = genindex, genindexcounts = indexcounts, split_index = self.config.html_split_index, ) self.info(' genindex', nonl=1) if self.config.html_split_index: self.handle_page('genindex', genindexcontext, 'genindex-split.html') self.handle_page('genindex-all', genindexcontext, 'genindex.html') for (key, entries), count in zip(genindex, indexcounts): ctx = {'key': key, 'entries': entries, 'count': count, 'genindexentries': genindex} self.handle_page('genindex-' + key, ctx, 'genindex-single.html') else: self.handle_page('genindex', genindexcontext, 'genindex.html') def write_domain_indices(self): for indexname, indexcls, content, collapse in self.domain_indices: indexcontext = dict( indextitle = indexcls.localname, content = content, collapse_index = collapse, ) self.info(' ' + indexname, nonl=1) self.handle_page(indexname, indexcontext, 'domainindex.html') def copy_image_files(self): # copy image files if self.images: ensuredir(path.join(self.outdir, '_images')) for src in self.status_iterator(self.images, 'copying images... ', brown, len(self.images)): dest = self.images[src] try: copyfile(path.join(self.srcdir, src), path.join(self.outdir, '_images', dest)) except Exception, err: self.warn('cannot copy image file %r: %s' % (path.join(self.srcdir, src), err)) def copy_download_files(self): # copy downloadable files if self.env.dlfiles: ensuredir(path.join(self.outdir, '_downloads')) for src in self.status_iterator(self.env.dlfiles, 'copying downloadable files... ', brown, len(self.env.dlfiles)): dest = self.env.dlfiles[src][1] try: copyfile(path.join(self.srcdir, src), path.join(self.outdir, '_downloads', dest)) except Exception, err: self.warn('cannot copy downloadable file %r: %s' % (path.join(self.srcdir, src), err)) def copy_static_files(self): # copy static files self.info(bold('copying static files... '), nonl=True) ensuredir(path.join(self.outdir, '_static')) # first, create pygments style file f = open(path.join(self.outdir, '_static', 'pygments.css'), 'w') f.write(self.highlighter.get_stylesheet()) f.close() # then, copy translations JavaScript file if self.config.language is not None: jsfile = self._get_translations_js() if jsfile: copyfile(jsfile, path.join(self.outdir, '_static', 'translations.js')) # add context items for search function used in searchtools.js_t ctx = self.globalcontext.copy() ctx.update(self.indexer.context_for_searchtool()) # then, copy over theme-supplied static files if self.theme: themeentries = [path.join(themepath, 'static') for themepath in self.theme.get_dirchain()[::-1]] for entry in themeentries: copy_static_entry(entry, path.join(self.outdir, '_static'), self, ctx) # then, copy over all user-supplied static files staticentries = [path.join(self.confdir, spath) for spath in self.config.html_static_path] matchers = compile_matchers( self.config.exclude_patterns + ['**/' + d for d in self.config.exclude_dirnames] ) for entry in staticentries: if not path.exists(entry): self.warn('html_static_path entry %r does not exist' % entry) continue copy_static_entry(entry, path.join(self.outdir, '_static'), self, ctx, exclude_matchers=matchers) # copy logo and favicon files if not already in static path if self.config.html_logo: logobase = path.basename(self.config.html_logo) logotarget = path.join(self.outdir, '_static', logobase) if not path.isfile(path.join(self.confdir, self.config.html_logo)): self.warn('logo file %r does not exist' % self.config.html_logo) elif not path.isfile(logotarget): copyfile(path.join(self.confdir, self.config.html_logo), logotarget) if self.config.html_favicon: iconbase = path.basename(self.config.html_favicon) icontarget = path.join(self.outdir, '_static', iconbase) if not path.isfile(path.join(self.confdir, self.config.html_favicon)): self.warn('favicon file %r does not exist' % self.config.html_favicon) elif not path.isfile(icontarget): copyfile(path.join(self.confdir, self.config.html_favicon), icontarget) self.info('done') def copy_extra_files(self): # copy html_extra_path files self.info(bold('copying extra files... '), nonl=True) extraentries = [path.join(self.confdir, epath) for epath in self.config.html_extra_path] for entry in extraentries: if not path.exists(entry): self.warn('html_extra_path entry %r does not exist' % entry) continue copy_static_entry(entry, self.outdir, self) self.info('done') def write_buildinfo(self): # write build info file fp = open(path.join(self.outdir, '.buildinfo'), 'w') try: fp.write('# Sphinx build info version 1\n' '# This file hashes the configuration used when building' ' these files. When it is not found, a full rebuild will' ' be done.\nconfig: %s\ntags: %s\n' % (self.config_hash, self.tags_hash)) finally: fp.close() def cleanup(self): # clean up theme stuff if self.theme: self.theme.cleanup() def post_process_images(self, doctree): """Pick the best candidate for an image and link down-scaled images to their high res version. """ Builder.post_process_images(self, doctree) for node in doctree.traverse(nodes.image): scale_keys = ('scale', 'width', 'height') if not any((key in node) for key in scale_keys) or \ isinstance(node.parent, nodes.reference): # docutils does unfortunately not preserve the # ``target`` attribute on images, so we need to check # the parent node here. continue uri = node['uri'] reference = nodes.reference('', '', internal=True) if uri in self.images: reference['refuri'] = posixpath.join(self.imgpath, self.images[uri]) else: reference['refuri'] = uri node.replace_self(reference) reference.append(node) def load_indexer(self, docnames): keep = set(self.env.all_docs) - set(docnames) try: searchindexfn = path.join(self.outdir, self.searchindex_filename) if self.indexer_dumps_unicode: f = codecs.open(searchindexfn, 'r', encoding='utf-8') else: f = open(searchindexfn, 'rb') try: self.indexer.load(f, self.indexer_format) finally: f.close() except (IOError, OSError, ValueError): if keep: self.warn('search index couldn\'t be loaded, but not all ' 'documents will be built: the index will be ' 'incomplete.') # delete all entries for files that will be rebuilt self.indexer.prune(keep) def index_page(self, pagename, doctree, title): # only index pages with title if self.indexer is not None and title: self.indexer.feed(pagename, title, doctree) def _get_local_toctree(self, docname, collapse=True, **kwds): if 'includehidden' not in kwds: kwds['includehidden'] = False return self.render_partial(self.env.get_toctree_for( docname, self, collapse, **kwds))['fragment'] def get_outfilename(self, pagename): return path.join(self.outdir, os_path(pagename) + self.out_suffix) def add_sidebars(self, pagename, ctx): def has_wildcard(pattern): return any(char in pattern for char in '*?[') sidebars = None matched = None customsidebar = None for pattern, patsidebars in self.config.html_sidebars.iteritems(): if patmatch(pagename, pattern): if matched: if has_wildcard(pattern): # warn if both patterns contain wildcards if has_wildcard(matched): self.warn('page %s matches two patterns in ' 'html_sidebars: %r and %r' % (pagename, matched, pattern)) # else the already matched pattern is more specific # than the present one, because it contains no wildcard continue matched = pattern sidebars = patsidebars if sidebars is None: # keep defaults pass elif isinstance(sidebars, basestring): # 0.x compatible mode: insert custom sidebar before searchbox customsidebar = sidebars sidebars = None ctx['sidebars'] = sidebars ctx['customsidebar'] = customsidebar # --------- these are overwritten by the serialization builder def get_target_uri(self, docname, typ=None): return docname + self.link_suffix def handle_page(self, pagename, addctx, templatename='page.html', outfilename=None, event_arg=None): ctx = self.globalcontext.copy() # current_page_name is backwards compatibility ctx['pagename'] = ctx['current_page_name'] = pagename default_baseuri = self.get_target_uri(pagename) # in the singlehtml builder, default_baseuri still contains an #anchor # part, which relative_uri doesn't really like... default_baseuri = default_baseuri.rsplit('#', 1)[0] def pathto(otheruri, resource=False, baseuri=default_baseuri): if resource and '://' in otheruri: # allow non-local resources given by scheme return otheruri elif not resource: otheruri = self.get_target_uri(otheruri) uri = relative_uri(baseuri, otheruri) or '#' return uri ctx['pathto'] = pathto ctx['hasdoc'] = lambda name: name in self.env.all_docs if self.name != 'htmlhelp': ctx['encoding'] = encoding = self.config.html_output_encoding else: ctx['encoding'] = encoding = self.encoding ctx['toctree'] = lambda **kw: self._get_local_toctree(pagename, **kw) self.add_sidebars(pagename, ctx) ctx.update(addctx) self.app.emit('html-page-context', pagename, templatename, ctx, event_arg) try: output = self.templates.render(templatename, ctx) except UnicodeError: self.warn("a Unicode error occurred when rendering the page %s. " "Please make sure all config values that contain " "non-ASCII content are Unicode strings." % pagename) return if not outfilename: outfilename = self.get_outfilename(pagename) # outfilename's path is in general different from self.outdir ensuredir(path.dirname(outfilename)) try: f = codecs.open(outfilename, 'w', encoding, 'xmlcharrefreplace') try: f.write(output) finally: f.close() except (IOError, OSError), err: self.warn("error writing file %s: %s" % (outfilename, err)) if self.copysource and ctx.get('sourcename'): # copy the source file for the "show source" link source_name = path.join(self.outdir, '_sources', os_path(ctx['sourcename'])) ensuredir(path.dirname(source_name)) copyfile(self.env.doc2path(pagename), source_name) def handle_finish(self): self.dump_search_index() self.dump_inventory() def dump_inventory(self): self.info(bold('dumping object inventory... '), nonl=True) f = open(path.join(self.outdir, INVENTORY_FILENAME), 'wb') try: f.write((u'# Sphinx inventory version 2\n' u'# Project: %s\n' u'# Version: %s\n' u'# The remainder of this file is compressed using zlib.\n' % (self.config.project, self.config.version) ).encode('utf-8')) compressor = zlib.compressobj(9) for domainname, domain in self.env.domains.iteritems(): for name, dispname, type, docname, anchor, prio in \ domain.get_objects(): if anchor.endswith(name): # this can shorten the inventory by as much as 25% anchor = anchor[:-len(name)] + '$' uri = self.get_target_uri(docname) + '#' + anchor if dispname == name: dispname = u'-' f.write(compressor.compress( (u'%s %s:%s %s %s %s\n' % (name, domainname, type, prio, uri, dispname) ).encode('utf-8'))) f.write(compressor.flush()) finally: f.close() self.info('done') def dump_search_index(self): self.info(bold('dumping search index... '), nonl=True) self.indexer.prune(self.env.all_docs) searchindexfn = path.join(self.outdir, self.searchindex_filename) # first write to a temporary file, so that if dumping fails, # the existing index won't be overwritten if self.indexer_dumps_unicode: f = codecs.open(searchindexfn + '.tmp', 'w', encoding='utf-8') else: f = open(searchindexfn + '.tmp', 'wb') try: self.indexer.dump(f, self.indexer_format) finally: f.close() movefile(searchindexfn + '.tmp', searchindexfn) self.info('done') class DirectoryHTMLBuilder(StandaloneHTMLBuilder): """ A StandaloneHTMLBuilder that creates all HTML pages as "index.html" in a directory given by their pagename, so that generated URLs don't have ``.html`` in them. """ name = 'dirhtml' def get_target_uri(self, docname, typ=None): if docname == 'index': return '' if docname.endswith(SEP + 'index'): return docname[:-5] # up to sep return docname + SEP def get_outfilename(self, pagename): if pagename == 'index' or pagename.endswith(SEP + 'index'): outfilename = path.join(self.outdir, os_path(pagename) + self.out_suffix) else: outfilename = path.join(self.outdir, os_path(pagename), 'index' + self.out_suffix) return outfilename def prepare_writing(self, docnames): StandaloneHTMLBuilder.prepare_writing(self, docnames) self.globalcontext['no_search_suffix'] = True class SingleFileHTMLBuilder(StandaloneHTMLBuilder): """ A StandaloneHTMLBuilder subclass that puts the whole document tree on one HTML page. """ name = 'singlehtml' copysource = False def get_outdated_docs(self): return 'all documents' def get_target_uri(self, docname, typ=None): if docname in self.env.all_docs: # all references are on the same page... return self.config.master_doc + self.out_suffix + \ '#document-' + docname else: # chances are this is a html_additional_page return docname + self.out_suffix def get_relative_uri(self, from_, to, typ=None): # ignore source return self.get_target_uri(to, typ) def fix_refuris(self, tree): # fix refuris with double anchor fname = self.config.master_doc + self.out_suffix for refnode in tree.traverse(nodes.reference): if 'refuri' not in refnode: continue refuri = refnode['refuri'] hashindex = refuri.find('#') if hashindex < 0: continue hashindex = refuri.find('#', hashindex+1) if hashindex >= 0: refnode['refuri'] = fname + refuri[hashindex:] def assemble_doctree(self): master = self.config.master_doc tree = self.env.get_doctree(master) tree = inline_all_toctrees(self, set(), master, tree, darkgreen) tree['docname'] = master self.env.resolve_references(tree, master, self) self.fix_refuris(tree) return tree def get_doc_context(self, docname, body, metatags): # no relation links... toc = self.env.get_toctree_for(self.config.master_doc, self, False) # if there is no toctree, toc is None if toc: self.fix_refuris(toc) toc = self.render_partial(toc)['fragment'] display_toc = True else: toc = '' display_toc = False return dict( parents = [], prev = None, next = None, docstitle = None, title = self.config.html_title, meta = None, body = body, metatags = metatags, rellinks = [], sourcename = '', toc = toc, display_toc = display_toc, ) def write(self, *ignored): docnames = self.env.all_docs self.info(bold('preparing documents... '), nonl=True) self.prepare_writing(docnames) self.info('done') self.info(bold('assembling single document... '), nonl=True) doctree = self.assemble_doctree() self.info() self.info(bold('writing... '), nonl=True) self.write_doc_serialized(self.config.master_doc, doctree) self.write_doc(self.config.master_doc, doctree) self.info('done') def finish(self): # no indices or search pages are supported self.info(bold('writing additional files...'), nonl=1) # additional pages from conf.py for pagename, template in self.config.html_additional_pages.items(): self.info(' '+pagename, nonl=1) self.handle_page(pagename, {}, template) if self.config.html_use_opensearch: self.info(' opensearch', nonl=1) fn = path.join(self.outdir, '_static', 'opensearch.xml') self.handle_page('opensearch', {}, 'opensearch.xml', outfilename=fn) self.info() self.copy_image_files() self.copy_download_files() self.copy_static_files() self.copy_extra_files() self.write_buildinfo() self.dump_inventory() class SerializingHTMLBuilder(StandaloneHTMLBuilder): """ An abstract builder that serializes the generated HTML. """ #: the serializing implementation to use. Set this to a module that #: implements a `dump`, `load`, `dumps` and `loads` functions #: (pickle, simplejson etc.) implementation = None implementation_dumps_unicode = False #: additional arguments for dump() additional_dump_args = () #: the filename for the global context file globalcontext_filename = None supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg'] def init(self): self.config_hash = '' self.tags_hash = '' self.theme = None # no theme necessary self.templates = None # no template bridge necessary self.init_translator_class() self.init_highlighter() def get_target_uri(self, docname, typ=None): if docname == 'index': return '' if docname.endswith(SEP + 'index'): return docname[:-5] # up to sep return docname + SEP def dump_context(self, context, filename): if self.implementation_dumps_unicode: f = codecs.open(filename, 'w', encoding='utf-8') else: f = open(filename, 'wb') try: self.implementation.dump(context, f, *self.additional_dump_args) finally: f.close() def handle_page(self, pagename, ctx, templatename='page.html', outfilename=None, event_arg=None): ctx['current_page_name'] = pagename self.add_sidebars(pagename, ctx) if not outfilename: outfilename = path.join(self.outdir, os_path(pagename) + self.out_suffix) self.app.emit('html-page-context', pagename, templatename, ctx, event_arg) ensuredir(path.dirname(outfilename)) self.dump_context(ctx, outfilename) # if there is a source file, copy the source file for the # "show source" link if ctx.get('sourcename'): source_name = path.join(self.outdir, '_sources', os_path(ctx['sourcename'])) ensuredir(path.dirname(source_name)) copyfile(self.env.doc2path(pagename), source_name) def handle_finish(self): # dump the global context outfilename = path.join(self.outdir, self.globalcontext_filename) self.dump_context(self.globalcontext, outfilename) # super here to dump the search index StandaloneHTMLBuilder.handle_finish(self) # copy the environment file from the doctree dir to the output dir # as needed by the web app copyfile(path.join(self.doctreedir, ENV_PICKLE_FILENAME), path.join(self.outdir, ENV_PICKLE_FILENAME)) # touch 'last build' file, used by the web application to determine # when to reload its environment and clear the cache open(path.join(self.outdir, LAST_BUILD_FILENAME), 'w').close() class PickleHTMLBuilder(SerializingHTMLBuilder): """ A Builder that dumps the generated HTML into pickle files. """ implementation = pickle implementation_dumps_unicode = False additional_dump_args = (pickle.HIGHEST_PROTOCOL,) indexer_format = pickle indexer_dumps_unicode = False name = 'pickle' out_suffix = '.fpickle' globalcontext_filename = 'globalcontext.pickle' searchindex_filename = 'searchindex.pickle' # compatibility alias WebHTMLBuilder = PickleHTMLBuilder class JSONHTMLBuilder(SerializingHTMLBuilder): """ A builder that dumps the generated HTML into JSON files. """ implementation = jsonimpl implementation_dumps_unicode = True indexer_format = jsonimpl indexer_dumps_unicode = True name = 'json' out_suffix = '.fjson' globalcontext_filename = 'globalcontext.json' searchindex_filename = 'searchindex.json' def init(self): if jsonimpl.json is None: raise SphinxError( 'The module simplejson (or json in Python >= 2.6) ' 'is not available. The JSONHTMLBuilder builder will not work.') SerializingHTMLBuilder.init(self)
39.622744
86
0.580976
6fb110d24c968e30dd0108e4b896483f301cef61
273
py
Python
src/genres/models.py
kostinbrodorg/open-library
bbceb953b2d78d7eb0f2c64b81c6deac13d73531
[ "MIT" ]
null
null
null
src/genres/models.py
kostinbrodorg/open-library
bbceb953b2d78d7eb0f2c64b81c6deac13d73531
[ "MIT" ]
null
null
null
src/genres/models.py
kostinbrodorg/open-library
bbceb953b2d78d7eb0f2c64b81c6deac13d73531
[ "MIT" ]
null
null
null
from django.db import models from django.utils.translation import ugettext as _ class Genres(models.Model): name = models.CharField(verbose_name=_('Name'), max_length=255) class Meta: verbose_name = _('Genre') verbose_name_plural = _('Genres')
21
67
0.699634
beef5008f5219ff8f5cf4cfc934318a4ad5eada6
118
py
Python
src/abstract_http_client/exceptions.py
QualiSystemsLab/abstract-requests-client
eb8281082cdfbd54b78451e907b9e7eef21b718a
[ "MIT" ]
1
2021-12-08T20:54:40.000Z
2021-12-08T20:54:40.000Z
src/abstract_http_client/exceptions.py
QualiSystemsLab/abstract-requests-client
eb8281082cdfbd54b78451e907b9e7eef21b718a
[ "MIT" ]
null
null
null
src/abstract_http_client/exceptions.py
QualiSystemsLab/abstract-requests-client
eb8281082cdfbd54b78451e907b9e7eef21b718a
[ "MIT" ]
null
null
null
class RestClientException(Exception): pass class RestClientUnauthorizedException(RestClientException): pass
16.857143
59
0.813559
8904413206eff09ceb53107fe086e38d6ee069d7
740
py
Python
newton_interpolasyonu.py
berfinsari/numerical-methods
72ce37da1df44d5ed4b7bf32263e38db55b3a532
[ "Unlicense" ]
null
null
null
newton_interpolasyonu.py
berfinsari/numerical-methods
72ce37da1df44d5ed4b7bf32263e38db55b3a532
[ "Unlicense" ]
null
null
null
newton_interpolasyonu.py
berfinsari/numerical-methods
72ce37da1df44d5ed4b7bf32263e38db55b3a532
[ "Unlicense" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- dosya=open("newton.txt") d = [] for line in dosya.readlines(): line = line.rstrip('\n').split(' ') d.append(line) dosya.close() x = float(input("hangi değerin hesaplanmasını istiyorsunuz: ")) boyut = len(line) boyut2= len(d) for m in range(boyut2): for i in range(boyut): d[m][i] = float(d[m][i]) def b_f(xi, yi): return ((d[1][yi] - d[1][xi]) / (d[0][yi] - d[0][xi])) a = b_f(0, 1) b = (x-d[0][1]) * (b_f(2, 1) - b_f(1, 0)) / (d[0][2] - d[0][0]) c = (x-d[0][1]) * (x-d[0][2]) * ((((b_f(3, 2) - b_f(2, 1)) / (d[0][3]-d[0][1])) - ((b_f(2, 0)-b_f(1, 0)) / (d[0][2]-d[0][0]))) / (d[0][3] - d[0][0])) genelsonuc = d[1][0] + (x-d[0][0]) * (a + b + c) print(genelsonuc)
23.870968
149
0.489189
eea5674ded8feb83b8abbde72f72fcbffd11e0ed
10,175
py
Python
aioquant/utils/web.py
liiklin/aioquant
254238a031b6a1312ae6a7890fa17b3c01f89741
[ "MIT" ]
1
2022-01-06T01:54:35.000Z
2022-01-06T01:54:35.000Z
aioquant/utils/web.py
PopMa/aioquant
8e1f6a802dc1487348b5f540a1c44220d70715ba
[ "MIT" ]
null
null
null
aioquant/utils/web.py
PopMa/aioquant
8e1f6a802dc1487348b5f540a1c44220d70715ba
[ "MIT" ]
2
2020-11-29T17:13:09.000Z
2022-01-07T01:34:02.000Z
# -*- coding:utf-8 -*- """ Web module. Author: HuangTao Date: 2018/08/26 Email: huangtao@ifclover.com """ import json import aiohttp from urllib.parse import urlparse from aioquant.utils import logger from aioquant.configure import config from aioquant.tasks import LoopRunTask, SingleTask from aioquant.utils.decorator import async_method_locker __all__ = ("Websocket", "AsyncHttpRequests", ) class Websocket: """Websocket connection. Attributes: url: Websocket connection url. connected_callback: Asynchronous callback function will be called after connected to Websocket server successfully. process_callback: Asynchronous callback function will be called if any stream data receive from Websocket connection, this function only callback `text/json` message. e.g. async def process_callback(json_message): pass process_binary_callback: Asynchronous callback function will be called if any stream data receive from Websocket connection, this function only callback `binary` message. e.g. async def process_binary_callback(binary_message): pass check_conn_interval: Check Websocket connection interval time(seconds), default is 10s. """ def __init__(self, url, connected_callback=None, process_callback=None, process_binary_callback=None, check_conn_interval=10): """Initialize.""" self._url = url self._connected_callback = connected_callback self._process_callback = process_callback self._process_binary_callback = process_binary_callback self._check_conn_interval = check_conn_interval self._ws = None # Websocket connection object. LoopRunTask.register(self._check_connection, self._check_conn_interval) SingleTask.run(self._connect) @property def ws(self): return self._ws async def close(self): await self._ws.close() async def ping(self, message: bytes = b"") -> None: await self._ws.ping(message) async def pong(self, message: bytes = b"") -> None: await self._ws.pong(message) async def _connect(self) -> None: logger.info("url:", self._url, caller=self) proxy = config.proxy session = aiohttp.ClientSession() try: self._ws = await session.ws_connect(self._url, proxy=proxy) except aiohttp.ClientConnectorError: logger.error("connect to Websocket server error! url:", self._url, caller=self) return if self._connected_callback: SingleTask.run(self._connected_callback) SingleTask.run(self._receive) @async_method_locker("Websocket.reconnect.locker", False, 30) async def reconnect(self) -> None: """Re-connect to Websocket server.""" logger.warn("reconnecting to Websocket server right now!", caller=self) await self.close() await self._connect() async def _receive(self): """Receive stream message from Websocket connection.""" async for msg in self.ws: if msg.type == aiohttp.WSMsgType.TEXT: if self._process_callback: try: data = json.loads(msg.data) except: data = msg.data SingleTask.run(self._process_callback, data) elif msg.type == aiohttp.WSMsgType.BINARY: if self._process_binary_callback: SingleTask.run(self._process_binary_callback, msg.data) elif msg.type == aiohttp.WSMsgType.CLOSED: logger.warn("receive event CLOSED:", msg, caller=self) SingleTask.run(self.reconnect) elif msg.type == aiohttp.WSMsgType.ERROR: logger.error("receive event ERROR:", msg, caller=self) else: logger.warn("unhandled msg:", msg, caller=self) async def _check_connection(self, *args, **kwargs) -> None: """Check Websocket connection, if connection closed, re-connect immediately.""" if not self.ws: logger.warn("Websocket connection not connected yet!", caller=self) return if self.ws.closed: SingleTask.run(self.reconnect) async def send(self, data) -> bool: """ Send message to Websocket server. Args: data: Message content, must be dict or string. Returns: If send successfully, return True, otherwise return False. """ if not self.ws: logger.warn("Websocket connection not connected yet!", caller=self) return False if isinstance(data, dict): await self.ws.send_json(data) elif isinstance(data, str): await self.ws.send_str(data) else: logger.error("send message failed:", data, caller=self) return False logger.debug("send message:", data, caller=self) return True class AsyncHttpRequests(object): """ Asynchronous HTTP Request Client. """ # Every domain name holds a connection session, for less system resource utilization and faster request speed. _SESSIONS = {} # {"domain-name": session, ... } @classmethod async def fetch(cls, method, url, params=None, body=None, data=None, headers=None, timeout=30, **kwargs): """ Create a HTTP request. Args: method: HTTP request method. `GET` / `POST` / `PUT` / `DELETE` url: Request url. params: HTTP query params. body: HTTP request body, string or bytes format. data: HTTP request body, dict format. headers: HTTP request header. timeout: HTTP request timeout(seconds), default is 30s. kwargs: proxy: HTTP proxy. Return: code: HTTP response code. success: HTTP response data. If something wrong, this field is None. error: If something wrong, this field will holding a Error information, otherwise it's None. Raises: HTTP request exceptions or response data parse exceptions. All the exceptions will be captured and return Error information. """ session = cls._get_session(url) if not kwargs.get("proxy"): kwargs["proxy"] = config.proxy # If there is a `HTTP PROXY` Configuration in config file? try: if method == "GET": response = await session.get(url, params=params, headers=headers, timeout=timeout, **kwargs) elif method == "POST": response = await session.post(url, params=params, data=body, json=data, headers=headers, timeout=timeout, **kwargs) elif method == "PUT": response = await session.put(url, params=params, data=body, json=data, headers=headers, timeout=timeout, **kwargs) elif method == "DELETE": response = await session.delete(url, params=params, data=body, json=data, headers=headers, timeout=timeout, **kwargs) else: error = "http method error!" return None, None, error except Exception as e: logger.error("method:", method, "url:", url, "headers:", headers, "params:", params, "body:", body, "data:", data, "Error:", e, caller=cls) return None, None, e code = response.status if code not in (200, 201, 202, 203, 204, 205, 206): text = await response.text() logger.error("method:", method, "url:", url, "headers:", headers, "params:", params, "body:", body, "data:", data, "code:", code, "result:", text, caller=cls) return code, None, text try: result = await response.json() except: result = await response.text() logger.debug("response data is not json format!", "method:", method, "url:", url, "headers:", headers, "params:", params, "body:", body, "data:", data, "code:", code, "result:", result, caller=cls) logger.debug("method:", method, "url:", url, "headers:", headers, "params:", params, "body:", body, "data:", data, "code:", code, "result:", json.dumps(result), caller=cls) return code, result, None @classmethod async def get(cls, url, params=None, body=None, data=None, headers=None, timeout=30, **kwargs): """ HTTP GET """ result = await cls.fetch("GET", url, params, body, data, headers, timeout, **kwargs) return result @classmethod async def post(cls, url, params=None, body=None, data=None, headers=None, timeout=30, **kwargs): """ HTTP POST """ result = await cls.fetch("POST", url, params, body, data, headers, timeout, **kwargs) return result @classmethod async def delete(cls, url, params=None, body=None, data=None, headers=None, timeout=30, **kwargs): """ HTTP DELETE """ result = await cls.fetch("DELETE", url, params, body, data, headers, timeout, **kwargs) return result @classmethod async def put(cls, url, params=None, body=None, data=None, headers=None, timeout=30, **kwargs): """ HTTP PUT """ result = await cls.fetch("PUT", url, params, body, data, headers, timeout, **kwargs) return result @classmethod def _get_session(cls, url): """ Get the connection session for url's domain, if no session, create a new. Args: url: HTTP request url. Returns: session: HTTP request session. """ parsed_url = urlparse(url) key = parsed_url.netloc or parsed_url.hostname if key not in cls._SESSIONS: session = aiohttp.ClientSession() cls._SESSIONS[key] = session return cls._SESSIONS[key]
40.376984
123
0.599902
6ee1d92dd0786d02cbbdf576d2c5710d733a04a6
29,513
py
Python
rllib/evaluation/sampler.py
maximsmol/ray
9f3e9e7e9fd19fffe5ff647965ace2a0b022f899
[ "Apache-2.0" ]
null
null
null
rllib/evaluation/sampler.py
maximsmol/ray
9f3e9e7e9fd19fffe5ff647965ace2a0b022f899
[ "Apache-2.0" ]
null
null
null
rllib/evaluation/sampler.py
maximsmol/ray
9f3e9e7e9fd19fffe5ff647965ace2a0b022f899
[ "Apache-2.0" ]
null
null
null
from collections import defaultdict, namedtuple import logging import numpy as np import queue import threading import time from ray.util.debug import log_once from ray.rllib.evaluation.episode import MultiAgentEpisode, _flatten_action from ray.rllib.evaluation.rollout_metrics import RolloutMetrics from ray.rllib.evaluation.sample_batch_builder import \ MultiAgentSampleBatchBuilder from ray.rllib.policy.policy import clip_action from ray.rllib.policy.tf_policy import TFPolicy from ray.rllib.env.base_env import BaseEnv, ASYNC_RESET_RETURN from ray.rllib.env.atari_wrappers import get_wrapper_by_cls, MonitorEnv from ray.rllib.offline import InputReader from ray.rllib.utils.annotations import override from ray.rllib.utils.debug import summarize from ray.rllib.utils.tuple_actions import TupleActions from ray.rllib.utils.tf_run_builder import TFRunBuilder logger = logging.getLogger(__name__) PolicyEvalData = namedtuple("PolicyEvalData", [ "env_id", "agent_id", "obs", "info", "rnn_state", "prev_action", "prev_reward" ]) class PerfStats: """Sampler perf stats that will be included in rollout metrics.""" def __init__(self): self.iters = 0 self.env_wait_time = 0.0 self.processing_time = 0.0 self.inference_time = 0.0 def get(self): return { "mean_env_wait_ms": self.env_wait_time * 1000 / self.iters, "mean_processing_ms": self.processing_time * 1000 / self.iters, "mean_inference_ms": self.inference_time * 1000 / self.iters } class SamplerInput(InputReader): """Reads input experiences from an existing sampler.""" @override(InputReader) def next(self): batches = [self.get_data()] batches.extend(self.get_extra_batches()) if len(batches) > 1: return batches[0].concat_samples(batches) else: return batches[0] class SyncSampler(SamplerInput): def __init__(self, worker, env, policies, policy_mapping_fn, preprocessors, obs_filters, clip_rewards, rollout_fragment_length, callbacks, horizon=None, pack=False, tf_sess=None, clip_actions=True, soft_horizon=False, no_done_at_end=False): self.base_env = BaseEnv.to_base_env(env) self.rollout_fragment_length = rollout_fragment_length self.horizon = horizon self.policies = policies self.policy_mapping_fn = policy_mapping_fn self.preprocessors = preprocessors self.obs_filters = obs_filters self.extra_batches = queue.Queue() self.perf_stats = PerfStats() self.rollout_provider = _env_runner( worker, self.base_env, self.extra_batches.put, self.policies, self.policy_mapping_fn, self.rollout_fragment_length, self.horizon, self.preprocessors, self.obs_filters, clip_rewards, clip_actions, pack, callbacks, tf_sess, self.perf_stats, soft_horizon, no_done_at_end) self.metrics_queue = queue.Queue() def get_data(self): while True: item = next(self.rollout_provider) if isinstance(item, RolloutMetrics): self.metrics_queue.put(item) else: return item def get_metrics(self): completed = [] while True: try: completed.append(self.metrics_queue.get_nowait()._replace( perf_stats=self.perf_stats.get())) except queue.Empty: break return completed def get_extra_batches(self): extra = [] while True: try: extra.append(self.extra_batches.get_nowait()) except queue.Empty: break return extra class AsyncSampler(threading.Thread, SamplerInput): def __init__(self, worker, env, policies, policy_mapping_fn, preprocessors, obs_filters, clip_rewards, rollout_fragment_length, callbacks, horizon=None, pack=False, tf_sess=None, clip_actions=True, blackhole_outputs=False, soft_horizon=False, no_done_at_end=False): for _, f in obs_filters.items(): assert getattr(f, "is_concurrent", False), \ "Observation Filter must support concurrent updates." self.worker = worker self.base_env = BaseEnv.to_base_env(env) threading.Thread.__init__(self) self.queue = queue.Queue(5) self.extra_batches = queue.Queue() self.metrics_queue = queue.Queue() self.rollout_fragment_length = rollout_fragment_length self.horizon = horizon self.policies = policies self.policy_mapping_fn = policy_mapping_fn self.preprocessors = preprocessors self.obs_filters = obs_filters self.clip_rewards = clip_rewards self.daemon = True self.pack = pack self.tf_sess = tf_sess self.callbacks = callbacks self.clip_actions = clip_actions self.blackhole_outputs = blackhole_outputs self.soft_horizon = soft_horizon self.no_done_at_end = no_done_at_end self.perf_stats = PerfStats() self.shutdown = False def run(self): try: self._run() except BaseException as e: self.queue.put(e) raise e def _run(self): if self.blackhole_outputs: queue_putter = (lambda x: None) extra_batches_putter = (lambda x: None) else: queue_putter = self.queue.put extra_batches_putter = ( lambda x: self.extra_batches.put(x, timeout=600.0)) rollout_provider = _env_runner( self.worker, self.base_env, extra_batches_putter, self.policies, self.policy_mapping_fn, self.rollout_fragment_length, self.horizon, self.preprocessors, self.obs_filters, self.clip_rewards, self.clip_actions, self.pack, self.callbacks, self.tf_sess, self.perf_stats, self.soft_horizon, self.no_done_at_end) while not self.shutdown: # The timeout variable exists because apparently, if one worker # dies, the other workers won't die with it, unless the timeout is # set to some large number. This is an empirical observation. item = next(rollout_provider) if isinstance(item, RolloutMetrics): self.metrics_queue.put(item) else: queue_putter(item) def get_data(self): if not self.is_alive(): raise RuntimeError("Sampling thread has died") rollout = self.queue.get(timeout=600.0) # Propagate errors if isinstance(rollout, BaseException): raise rollout return rollout def get_metrics(self): completed = [] while True: try: completed.append(self.metrics_queue.get_nowait()._replace( perf_stats=self.perf_stats.get())) except queue.Empty: break return completed def get_extra_batches(self): extra = [] while True: try: extra.append(self.extra_batches.get_nowait()) except queue.Empty: break return extra def _env_runner(worker, base_env, extra_batch_callback, policies, policy_mapping_fn, rollout_fragment_length, horizon, preprocessors, obs_filters, clip_rewards, clip_actions, pack, callbacks, tf_sess, perf_stats, soft_horizon, no_done_at_end): """This implements the common experience collection logic. Args: worker (RolloutWorker): reference to the current rollout worker. base_env (BaseEnv): env implementing BaseEnv. extra_batch_callback (fn): function to send extra batch data to. policies (dict): Map of policy ids to Policy instances. policy_mapping_fn (func): Function that maps agent ids to policy ids. This is called when an agent first enters the environment. The agent is then "bound" to the returned policy for the episode. rollout_fragment_length (int): Number of episode steps before `SampleBatch` is yielded. Set to infinity to yield complete episodes. horizon (int): Horizon of the episode. preprocessors (dict): Map of policy id to preprocessor for the observations prior to filtering. obs_filters (dict): Map of policy id to filter used to process observations for the policy. clip_rewards (bool): Whether to clip rewards before postprocessing. pack (bool): Whether to pack multiple episodes into each batch. This guarantees batches will be exactly `rollout_fragment_length` in size. clip_actions (bool): Whether to clip actions to the space range. callbacks (DefaultCallbacks): User callbacks to run on episode events. tf_sess (Session|None): Optional tensorflow session to use for batching TF policy evaluations. perf_stats (PerfStats): Record perf stats into this object. soft_horizon (bool): Calculate rewards but don't reset the environment when the horizon is hit. no_done_at_end (bool): Ignore the done=True at the end of the episode and instead record done=False. Yields: rollout (SampleBatch): Object containing state, action, reward, terminal condition, and other fields as dictated by `policy`. """ # Try to get Env's max_episode_steps prop. If it doesn't exist, catch # error and continue. max_episode_steps = None try: max_episode_steps = base_env.get_unwrapped()[0].spec.max_episode_steps except Exception: pass # Trainer has a given `horizon` setting. if horizon: # `horizon` is larger than env's limit -> Error and explain how # to increase Env's own episode limit. if max_episode_steps and horizon > max_episode_steps: raise ValueError( "Your `horizon` setting ({}) is larger than the Env's own " "timestep limit ({})! Try to increase the Env's limit via " "setting its `spec.max_episode_steps` property.".format( horizon, max_episode_steps)) # Otherwise, set Trainer's horizon to env's max-steps. elif max_episode_steps: horizon = max_episode_steps logger.debug( "No episode horizon specified, setting it to Env's limit ({}).". format(max_episode_steps)) else: horizon = float("inf") logger.debug("No episode horizon specified, assuming inf.") # Pool of batch builders, which can be shared across episodes to pack # trajectory data. batch_builder_pool = [] def get_batch_builder(): if batch_builder_pool: return batch_builder_pool.pop() else: return MultiAgentSampleBatchBuilder(policies, clip_rewards, callbacks) def new_episode(): episode = MultiAgentEpisode(policies, policy_mapping_fn, get_batch_builder, extra_batch_callback) # Call each policy's Exploration.on_episode_start method. for p in policies.values(): p.exploration.on_episode_start( policy=p, environment=base_env, episode=episode, tf_sess=getattr(p, "_sess", None)) callbacks.on_episode_start( worker=worker, base_env=base_env, policies=policies, episode=episode) return episode active_episodes = defaultdict(new_episode) while True: perf_stats.iters += 1 t0 = time.time() # Get observations from all ready agents unfiltered_obs, rewards, dones, infos, off_policy_actions = \ base_env.poll() perf_stats.env_wait_time += time.time() - t0 if log_once("env_returns"): logger.info("Raw obs from env: {}".format( summarize(unfiltered_obs))) logger.info("Info return from env: {}".format(summarize(infos))) # Process observations and prepare for policy evaluation t1 = time.time() active_envs, to_eval, outputs = _process_observations( worker, base_env, policies, batch_builder_pool, active_episodes, unfiltered_obs, rewards, dones, infos, off_policy_actions, horizon, preprocessors, obs_filters, rollout_fragment_length, pack, callbacks, soft_horizon, no_done_at_end) perf_stats.processing_time += time.time() - t1 for o in outputs: yield o # Do batched policy eval t2 = time.time() eval_results = _do_policy_eval(tf_sess, to_eval, policies, active_episodes) perf_stats.inference_time += time.time() - t2 # Process results and update episode state t3 = time.time() actions_to_send = _process_policy_eval_results( to_eval, eval_results, active_episodes, active_envs, off_policy_actions, policies, clip_actions) perf_stats.processing_time += time.time() - t3 # Return computed actions to ready envs. We also send to envs that have # taken off-policy actions; those envs are free to ignore the action. t4 = time.time() base_env.send_actions(actions_to_send) perf_stats.env_wait_time += time.time() - t4 def _process_observations(worker, base_env, policies, batch_builder_pool, active_episodes, unfiltered_obs, rewards, dones, infos, off_policy_actions, horizon, preprocessors, obs_filters, rollout_fragment_length, pack, callbacks, soft_horizon, no_done_at_end): """Record new data from the environment and prepare for policy evaluation. Returns: active_envs: set of non-terminated env ids to_eval: map of policy_id to list of agent PolicyEvalData outputs: list of metrics and samples to return from the sampler """ active_envs = set() to_eval = defaultdict(list) outputs = [] large_batch_threshold = max(1000, rollout_fragment_length * 10) if \ rollout_fragment_length != float("inf") else 5000 # For each environment for env_id, agent_obs in unfiltered_obs.items(): new_episode = env_id not in active_episodes episode = active_episodes[env_id] if not new_episode: episode.length += 1 episode.batch_builder.count += 1 episode._add_agent_rewards(rewards[env_id]) if (episode.batch_builder.total() > large_batch_threshold and log_once("large_batch_warning")): logger.warning( "More than {} observations for {} env steps ".format( episode.batch_builder.total(), episode.batch_builder.count) + "are buffered in " "the sampler. If this is more than you expected, check that " "that you set a horizon on your environment correctly and that" " it terminates at some point. " "Note: In multi-agent environments, `rollout_fragment_length` " "sets the batch size based on environment steps, not the " "steps of " "individual agents, which can result in unexpectedly large " "batches. Also, you may be in evaluation waiting for your Env " "to terminate (batch_mode=`complete_episodes`). Make sure it " "does at some point.") # Check episode termination conditions if dones[env_id]["__all__"] or episode.length >= horizon: hit_horizon = (episode.length >= horizon and not dones[env_id]["__all__"]) all_done = True atari_metrics = _fetch_atari_metrics(base_env) if atari_metrics is not None: for m in atari_metrics: outputs.append( m._replace(custom_metrics=episode.custom_metrics)) else: outputs.append( RolloutMetrics(episode.length, episode.total_reward, dict(episode.agent_rewards), episode.custom_metrics, {}, episode.hist_data)) else: hit_horizon = False all_done = False active_envs.add(env_id) # For each agent in the environment. for agent_id, raw_obs in agent_obs.items(): policy_id = episode.policy_for(agent_id) prep_obs = _get_or_raise(preprocessors, policy_id).transform(raw_obs) if log_once("prep_obs"): logger.info("Preprocessed obs: {}".format(summarize(prep_obs))) filtered_obs = _get_or_raise(obs_filters, policy_id)(prep_obs) if log_once("filtered_obs"): logger.info("Filtered obs: {}".format(summarize(filtered_obs))) agent_done = bool(all_done or dones[env_id].get(agent_id)) if not agent_done: to_eval[policy_id].append( PolicyEvalData(env_id, agent_id, filtered_obs, infos[env_id].get(agent_id, {}), episode.rnn_state_for(agent_id), episode.last_action_for(agent_id), rewards[env_id][agent_id] or 0.0)) last_observation = episode.last_observation_for(agent_id) episode._set_last_observation(agent_id, filtered_obs) episode._set_last_raw_obs(agent_id, raw_obs) episode._set_last_info(agent_id, infos[env_id].get(agent_id, {})) # Record transition info if applicable if (last_observation is not None and infos[env_id].get( agent_id, {}).get("training_enabled", True)): episode.batch_builder.add_values( agent_id, policy_id, t=episode.length - 1, eps_id=episode.episode_id, agent_index=episode._agent_index(agent_id), obs=last_observation, actions=episode.last_action_for(agent_id), rewards=rewards[env_id][agent_id], prev_actions=episode.prev_action_for(agent_id), prev_rewards=episode.prev_reward_for(agent_id), dones=(False if (no_done_at_end or (hit_horizon and soft_horizon)) else agent_done), infos=infos[env_id].get(agent_id, {}), new_obs=filtered_obs, **episode.last_pi_info_for(agent_id)) # Invoke the step callback after the step is logged to the episode callbacks.on_episode_step( worker=worker, base_env=base_env, episode=episode) # Cut the batch if we're not packing multiple episodes into one, # or if we've exceeded the requested batch size. if episode.batch_builder.has_pending_agent_data(): if dones[env_id]["__all__"] and not no_done_at_end: episode.batch_builder.check_missing_dones() if (all_done and not pack) or \ episode.batch_builder.count >= rollout_fragment_length: outputs.append(episode.batch_builder.build_and_reset(episode)) elif all_done: # Make sure postprocessor stays within one episode episode.batch_builder.postprocess_batch_so_far(episode) if all_done: # Handle episode termination batch_builder_pool.append(episode.batch_builder) # Call each policy's Exploration.on_episode_end method. for p in policies.values(): p.exploration.on_episode_end( policy=p, environment=base_env, episode=episode, tf_sess=getattr(p, "_sess", None)) # Call custom on_episode_end callback. callbacks.on_episode_end( worker=worker, base_env=base_env, policies=policies, episode=episode) if hit_horizon and soft_horizon: episode.soft_reset() resetted_obs = agent_obs else: del active_episodes[env_id] resetted_obs = base_env.try_reset(env_id) if resetted_obs is None: # Reset not supported, drop this env from the ready list if horizon != float("inf"): raise ValueError( "Setting episode horizon requires reset() support " "from the environment.") elif resetted_obs != ASYNC_RESET_RETURN: # Creates a new episode if this is not async return # If reset is async, we will get its result in some future poll episode = active_episodes[env_id] for agent_id, raw_obs in resetted_obs.items(): policy_id = episode.policy_for(agent_id) policy = _get_or_raise(policies, policy_id) prep_obs = _get_or_raise(preprocessors, policy_id).transform(raw_obs) filtered_obs = _get_or_raise(obs_filters, policy_id)(prep_obs) episode._set_last_observation(agent_id, filtered_obs) to_eval[policy_id].append( PolicyEvalData( env_id, agent_id, filtered_obs, episode.last_info_for(agent_id) or {}, episode.rnn_state_for(agent_id), np.zeros_like( _flatten_action(policy.action_space.sample())), 0.0)) return active_envs, to_eval, outputs def _do_policy_eval(tf_sess, to_eval, policies, active_episodes): """Call compute actions on observation batches to get next actions. Returns: eval_results: dict of policy to compute_action() outputs. """ eval_results = {} if tf_sess: builder = TFRunBuilder(tf_sess, "policy_eval") pending_fetches = {} else: builder = None if log_once("compute_actions_input"): logger.info("Inputs to compute_actions():\n\n{}\n".format( summarize(to_eval))) for policy_id, eval_data in to_eval.items(): rnn_in = [t.rnn_state for t in eval_data] policy = _get_or_raise(policies, policy_id) if builder and (policy.compute_actions.__code__ is TFPolicy.compute_actions.__code__): obs_batch = [t.obs for t in eval_data] state_batches = _to_column_format(rnn_in) # TODO(ekl): how can we make info batch available to TF code? obs_batch = [t.obs for t in eval_data] prev_action_batch = [t.prev_action for t in eval_data] prev_reward_batch = [t.prev_reward for t in eval_data] pending_fetches[policy_id] = policy._build_compute_actions( builder, obs_batch=obs_batch, state_batches=state_batches, prev_action_batch=prev_action_batch, prev_reward_batch=prev_reward_batch, timestep=policy.global_timestep) else: # TODO(sven): Does this work for LSTM torch? rnn_in_cols = [ np.stack([row[i] for row in rnn_in]) for i in range(len(rnn_in[0])) ] eval_results[policy_id] = policy.compute_actions( [t.obs for t in eval_data], state_batches=rnn_in_cols, prev_action_batch=[t.prev_action for t in eval_data], prev_reward_batch=[t.prev_reward for t in eval_data], info_batch=[t.info for t in eval_data], episodes=[active_episodes[t.env_id] for t in eval_data], timestep=policy.global_timestep) if builder: for pid, v in pending_fetches.items(): eval_results[pid] = builder.get(v) if log_once("compute_actions_result"): logger.info("Outputs of compute_actions():\n\n{}\n".format( summarize(eval_results))) return eval_results def _process_policy_eval_results(to_eval, eval_results, active_episodes, active_envs, off_policy_actions, policies, clip_actions): """Process the output of policy neural network evaluation. Records policy evaluation results into the given episode objects and returns replies to send back to agents in the env. Returns: actions_to_send: nested dict of env id -> agent id -> agent replies. """ actions_to_send = defaultdict(dict) for env_id in active_envs: actions_to_send[env_id] = {} # at minimum send empty dict for policy_id, eval_data in to_eval.items(): rnn_in_cols = _to_column_format([t.rnn_state for t in eval_data]) actions = eval_results[policy_id][0] rnn_out_cols = eval_results[policy_id][1] pi_info_cols = eval_results[policy_id][2] if len(rnn_in_cols) != len(rnn_out_cols): raise ValueError("Length of RNN in did not match RNN out, got: " "{} vs {}".format(rnn_in_cols, rnn_out_cols)) # Add RNN state info for f_i, column in enumerate(rnn_in_cols): pi_info_cols["state_in_{}".format(f_i)] = column for f_i, column in enumerate(rnn_out_cols): pi_info_cols["state_out_{}".format(f_i)] = column # Save output rows actions = _unbatch_tuple_actions(actions) policy = _get_or_raise(policies, policy_id) for i, action in enumerate(actions): env_id = eval_data[i].env_id agent_id = eval_data[i].agent_id if clip_actions: actions_to_send[env_id][agent_id] = clip_action( action, policy.action_space) else: actions_to_send[env_id][agent_id] = action episode = active_episodes[env_id] episode._set_rnn_state(agent_id, [c[i] for c in rnn_out_cols]) episode._set_last_pi_info( agent_id, {k: v[i] for k, v in pi_info_cols.items()}) if env_id in off_policy_actions and \ agent_id in off_policy_actions[env_id]: episode._set_last_action(agent_id, off_policy_actions[env_id][agent_id]) else: episode._set_last_action(agent_id, action) return actions_to_send def _fetch_atari_metrics(base_env): """Atari games have multiple logical episodes, one per life. However for metrics reporting we count full episodes all lives included. """ unwrapped = base_env.get_unwrapped() if not unwrapped: return None atari_out = [] for u in unwrapped: monitor = get_wrapper_by_cls(u, MonitorEnv) if not monitor: return None for eps_rew, eps_len in monitor.next_episode_results(): atari_out.append(RolloutMetrics(eps_len, eps_rew)) return atari_out def _unbatch_tuple_actions(action_batch): # convert list of batches -> batch of lists if isinstance(action_batch, TupleActions): out = [] for j in range(len(action_batch.batches[0])): out.append([ action_batch.batches[i][j] for i in range(len(action_batch.batches)) ]) return out return action_batch def _to_column_format(rnn_state_rows): num_cols = len(rnn_state_rows[0]) return [[row[i] for row in rnn_state_rows] for i in range(num_cols)] def _get_or_raise(mapping, policy_id): """Returns a Policy object under key `policy_id` in `mapping`. Throws an error if `policy_id` cannot be found. Returns: Policy: The found Policy object. """ if policy_id not in mapping: raise ValueError( "Could not find policy for agent: agent policy id `{}` not " "in policy map keys {}.".format(policy_id, mapping.keys())) return mapping[policy_id]
40.707586
79
0.599295
eb163fdcbdfb434ed6e9a4981ca9b7448a4af170
29,429
py
Python
tests/components/device_tracker/test_owntracks.py
jamescurtin/home-assistant
6a9968ccb9b0082f5629e50955549d432aba7d90
[ "Apache-2.0" ]
1
2017-09-26T06:13:10.000Z
2017-09-26T06:13:10.000Z
tests/components/device_tracker/test_owntracks.py
moose51789/home-assistant
63c9d59d5455850fd4b37c2475fe6f10effb5245
[ "Apache-2.0" ]
null
null
null
tests/components/device_tracker/test_owntracks.py
moose51789/home-assistant
63c9d59d5455850fd4b37c2475fe6f10effb5245
[ "Apache-2.0" ]
null
null
null
"""The tests for the Owntracks device tracker.""" import asyncio import json import unittest from unittest.mock import patch from tests.common import ( assert_setup_component, fire_mqtt_message, mock_coro, mock_component, get_test_home_assistant, mock_mqtt_component) import homeassistant.components.device_tracker.owntracks as owntracks from homeassistant.setup import setup_component from homeassistant.components import device_tracker from homeassistant.const import CONF_PLATFORM, STATE_NOT_HOME from homeassistant.util.async import run_coroutine_threadsafe USER = 'greg' DEVICE = 'phone' LOCATION_TOPIC = 'owntracks/{}/{}'.format(USER, DEVICE) EVENT_TOPIC = 'owntracks/{}/{}/event'.format(USER, DEVICE) WAYPOINT_TOPIC = 'owntracks/{}/{}/waypoints'.format(USER, DEVICE) USER_BLACKLIST = 'ram' WAYPOINT_TOPIC_BLOCKED = 'owntracks/{}/{}/waypoints'.format( USER_BLACKLIST, DEVICE) DEVICE_TRACKER_STATE = 'device_tracker.{}_{}'.format(USER, DEVICE) IBEACON_DEVICE = 'keys' REGION_TRACKER_STATE = 'device_tracker.beacon_{}'.format(IBEACON_DEVICE) CONF_MAX_GPS_ACCURACY = 'max_gps_accuracy' CONF_WAYPOINT_IMPORT = owntracks.CONF_WAYPOINT_IMPORT CONF_WAYPOINT_WHITELIST = owntracks.CONF_WAYPOINT_WHITELIST CONF_SECRET = owntracks.CONF_SECRET LOCATION_MESSAGE = { 'batt': 92, 'cog': 248, 'tid': 'user', 'lon': 1.0, 't': 'u', 'alt': 27, 'acc': 60, 'p': 101.3977584838867, 'vac': 4, 'lat': 2.0, '_type': 'location', 'tst': 1, 'vel': 0} LOCATION_MESSAGE_INACCURATE = { 'batt': 92, 'cog': 248, 'tid': 'user', 'lon': 2.0, 't': 'u', 'alt': 27, 'acc': 2000, 'p': 101.3977584838867, 'vac': 4, 'lat': 6.0, '_type': 'location', 'tst': 1, 'vel': 0} LOCATION_MESSAGE_ZERO_ACCURACY = { 'batt': 92, 'cog': 248, 'tid': 'user', 'lon': 2.0, 't': 'u', 'alt': 27, 'acc': 0, 'p': 101.3977584838867, 'vac': 4, 'lat': 6.0, '_type': 'location', 'tst': 1, 'vel': 0} REGION_ENTER_MESSAGE = { 'lon': 1.0, 'event': 'enter', 'tid': 'user', 'desc': 'inner', 'wtst': 1, 't': 'b', 'acc': 60, 'tst': 2, 'lat': 2.0, '_type': 'transition'} REGION_LEAVE_MESSAGE = { 'lon': 1.0, 'event': 'leave', 'tid': 'user', 'desc': 'inner', 'wtst': 1, 't': 'b', 'acc': 60, 'tst': 2, 'lat': 2.0, '_type': 'transition'} REGION_LEAVE_INACCURATE_MESSAGE = { 'lon': 10.0, 'event': 'leave', 'tid': 'user', 'desc': 'inner', 'wtst': 1, 't': 'b', 'acc': 2000, 'tst': 2, 'lat': 20.0, '_type': 'transition'} WAYPOINTS_EXPORTED_MESSAGE = { "_type": "waypoints", "_creator": "test", "waypoints": [ { "_type": "waypoint", "tst": 3, "lat": 47, "lon": 9, "rad": 10, "desc": "exp_wayp1" }, { "_type": "waypoint", "tst": 4, "lat": 3, "lon": 9, "rad": 500, "desc": "exp_wayp2" } ] } WAYPOINTS_UPDATED_MESSAGE = { "_type": "waypoints", "_creator": "test", "waypoints": [ { "_type": "waypoint", "tst": 4, "lat": 9, "lon": 47, "rad": 50, "desc": "exp_wayp1" }, ] } WAYPOINT_ENTITY_NAMES = [ 'zone.greg_phone__exp_wayp1', 'zone.greg_phone__exp_wayp2', 'zone.ram_phone__exp_wayp1', 'zone.ram_phone__exp_wayp2', ] REGION_ENTER_ZERO_MESSAGE = { 'lon': 1.0, 'event': 'enter', 'tid': 'user', 'desc': 'inner', 'wtst': 1, 't': 'b', 'acc': 0, 'tst': 2, 'lat': 2.0, '_type': 'transition'} REGION_LEAVE_ZERO_MESSAGE = { 'lon': 10.0, 'event': 'leave', 'tid': 'user', 'desc': 'inner', 'wtst': 1, 't': 'b', 'acc': 0, 'tst': 2, 'lat': 20.0, '_type': 'transition'} BAD_JSON_PREFIX = '--$this is bad json#--' BAD_JSON_SUFFIX = '** and it ends here ^^' TEST_SECRET_KEY = 's3cretkey' ENCRYPTED_LOCATION_MESSAGE = { # Encrypted version of LOCATION_MESSAGE using libsodium and TEST_SECRET_KEY '_type': 'encrypted', 'data': ('qm1A83I6TVFRmH5343xy+cbex8jBBxDFkHRuJhELVKVRA/DgXcyKtghw' '9pOw75Lo4gHcyy2wV5CmkjrpKEBR7Qhye4AR0y7hOvlx6U/a3GuY1+W8' 'I4smrLkwMvGgBOzXSNdVTzbFTHDvG3gRRaNHFkt2+5MsbH2Dd6CXmpzq' 'DIfSN7QzwOevuvNIElii5MlFxI6ZnYIDYA/ZdnAXHEVsNIbyT2N0CXt3' 'fTPzgGtFzsufx40EEUkC06J7QTJl7lLG6qaLW1cCWp86Vp0eL3vtZ6xq') } MOCK_ENCRYPTED_LOCATION_MESSAGE = { # Mock-encrypted version of LOCATION_MESSAGE using pickle '_type': 'encrypted', 'data': ('gANDCXMzY3JldGtleXEAQ6p7ImxvbiI6IDEuMCwgInQiOiAidSIsICJi' 'YXR0IjogOTIsICJhY2MiOiA2MCwgInZlbCI6IDAsICJfdHlwZSI6ICJs' 'b2NhdGlvbiIsICJ2YWMiOiA0LCAicCI6IDEwMS4zOTc3NTg0ODM4ODY3' 'LCAidHN0IjogMSwgImxhdCI6IDIuMCwgImFsdCI6IDI3LCAiY29nIjog' 'MjQ4LCAidGlkIjogInVzZXIifXEBhnECLg==') } class BaseMQTT(unittest.TestCase): """Base MQTT assert functions.""" hass = None def send_message(self, topic, message, corrupt=False): """Test the sending of a message.""" str_message = json.dumps(message) if corrupt: mod_message = BAD_JSON_PREFIX + str_message + BAD_JSON_SUFFIX else: mod_message = str_message fire_mqtt_message(self.hass, topic, mod_message) self.hass.block_till_done() def assert_location_state(self, location): """Test the assertion of a location state.""" state = self.hass.states.get(DEVICE_TRACKER_STATE) self.assertEqual(state.state, location) def assert_location_latitude(self, latitude): """Test the assertion of a location latitude.""" state = self.hass.states.get(DEVICE_TRACKER_STATE) self.assertEqual(state.attributes.get('latitude'), latitude) def assert_location_longitude(self, longitude): """Test the assertion of a location longitude.""" state = self.hass.states.get(DEVICE_TRACKER_STATE) self.assertEqual(state.attributes.get('longitude'), longitude) def assert_location_accuracy(self, accuracy): """Test the assertion of a location accuracy.""" state = self.hass.states.get(DEVICE_TRACKER_STATE) self.assertEqual(state.attributes.get('gps_accuracy'), accuracy) class TestDeviceTrackerOwnTracks(BaseMQTT): """Test the OwnTrack sensor.""" # pylint: disable=invalid-name def setup_method(self, _): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() mock_mqtt_component(self.hass) mock_component(self.hass, 'group') mock_component(self.hass, 'zone') patcher = patch('homeassistant.components.device_tracker.' 'DeviceTracker.async_update_config') patcher.start() self.addCleanup(patcher.stop) orig_context = owntracks.OwnTracksContext def store_context(*args): self.context = orig_context(*args) return self.context with patch('homeassistant.components.device_tracker.async_load_config', return_value=mock_coro([])), \ patch('homeassistant.components.device_tracker.' 'load_yaml_config_file', return_value=mock_coro({})), \ patch.object(owntracks, 'OwnTracksContext', store_context), \ assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_MAX_GPS_ACCURACY: 200, CONF_WAYPOINT_IMPORT: True, CONF_WAYPOINT_WHITELIST: ['jon', 'greg'] }}) self.hass.states.set( 'zone.inner', 'zoning', { 'name': 'zone', 'latitude': 2.1, 'longitude': 1.1, 'radius': 10 }) self.hass.states.set( 'zone.inner_2', 'zoning', { 'name': 'zone', 'latitude': 2.1, 'longitude': 1.1, 'radius': 10 }) self.hass.states.set( 'zone.outer', 'zoning', { 'name': 'zone', 'latitude': 2.0, 'longitude': 1.0, 'radius': 100000 }) # Clear state between teste self.hass.states.set(DEVICE_TRACKER_STATE, None) def teardown_method(self, _): """Stop everything that was started.""" self.hass.stop() def assert_tracker_state(self, location): """Test the assertion of a tracker state.""" state = self.hass.states.get(REGION_TRACKER_STATE) self.assertEqual(state.state, location) def assert_tracker_latitude(self, latitude): """Test the assertion of a tracker latitude.""" state = self.hass.states.get(REGION_TRACKER_STATE) self.assertEqual(state.attributes.get('latitude'), latitude) def assert_tracker_accuracy(self, accuracy): """Test the assertion of a tracker accuracy.""" state = self.hass.states.get(REGION_TRACKER_STATE) self.assertEqual(state.attributes.get('gps_accuracy'), accuracy) def test_location_invalid_devid(self): # pylint: disable=invalid-name """Test the update of a location.""" self.send_message('owntracks/paulus/nexus-5x', LOCATION_MESSAGE) state = self.hass.states.get('device_tracker.paulus_nexus5x') assert state.state == 'outer' def test_location_update(self): """Test the update of a location.""" self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE) self.assert_location_latitude(2.0) self.assert_location_accuracy(60.0) self.assert_location_state('outer') def test_location_inaccurate_gps(self): """Test the location for inaccurate GPS information.""" self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE) self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE_INACCURATE) self.assert_location_latitude(2.0) self.assert_location_longitude(1.0) def test_location_zero_accuracy_gps(self): """Ignore the location for zero accuracy GPS information.""" self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE) self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE_ZERO_ACCURACY) self.assert_location_latitude(2.0) self.assert_location_longitude(1.0) def test_event_entry_exit(self): """Test the entry event.""" self.send_message(EVENT_TOPIC, REGION_ENTER_MESSAGE) # Enter uses the zone's gps co-ords self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) self.assert_location_state('inner') self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE) # Updates ignored when in a zone self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) self.assert_location_state('inner') self.send_message(EVENT_TOPIC, REGION_LEAVE_MESSAGE) # Exit switches back to GPS self.assert_location_latitude(2.0) self.assert_location_accuracy(60.0) self.assert_location_state('outer') # Left clean zone state self.assertFalse(self.context.regions_entered[USER]) def test_event_with_spaces(self): """Test the entry event.""" message = REGION_ENTER_MESSAGE.copy() message['desc'] = "inner 2" self.send_message(EVENT_TOPIC, message) self.assert_location_state('inner 2') message = REGION_LEAVE_MESSAGE.copy() message['desc'] = "inner 2" self.send_message(EVENT_TOPIC, message) # Left clean zone state self.assertFalse(self.context.regions_entered[USER]) def test_event_entry_exit_inaccurate(self): """Test the event for inaccurate exit.""" self.send_message(EVENT_TOPIC, REGION_ENTER_MESSAGE) # Enter uses the zone's gps co-ords self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) self.assert_location_state('inner') self.send_message(EVENT_TOPIC, REGION_LEAVE_INACCURATE_MESSAGE) # Exit doesn't use inaccurate gps self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) self.assert_location_state('inner') # But does exit region correctly self.assertFalse(self.context.regions_entered[USER]) def test_event_entry_exit_zero_accuracy(self): """Test entry/exit events with accuracy zero.""" self.send_message(EVENT_TOPIC, REGION_ENTER_ZERO_MESSAGE) # Enter uses the zone's gps co-ords self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) self.assert_location_state('inner') self.send_message(EVENT_TOPIC, REGION_LEAVE_ZERO_MESSAGE) # Exit doesn't use zero gps self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) self.assert_location_state('inner') # But does exit region correctly self.assertFalse(self.context.regions_entered[USER]) def test_event_exit_outside_zone_sets_away(self): """Test the event for exit zone.""" self.send_message(EVENT_TOPIC, REGION_ENTER_MESSAGE) self.assert_location_state('inner') # Exit message far away GPS location message = REGION_LEAVE_MESSAGE.copy() message['lon'] = 90.1 message['lat'] = 90.1 self.send_message(EVENT_TOPIC, message) # Exit forces zone change to away self.assert_location_state(STATE_NOT_HOME) def test_event_entry_exit_right_order(self): """Test the event for ordering.""" # Enter inner zone self.send_message(EVENT_TOPIC, REGION_ENTER_MESSAGE) self.assert_location_state('inner') self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) # Enter inner2 zone message = REGION_ENTER_MESSAGE.copy() message['desc'] = "inner_2" self.send_message(EVENT_TOPIC, message) self.assert_location_state('inner_2') self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) # Exit inner_2 - should be in 'inner' message = REGION_LEAVE_MESSAGE.copy() message['desc'] = "inner_2" self.send_message(EVENT_TOPIC, message) self.assert_location_state('inner') self.assert_location_latitude(2.1) self.assert_location_accuracy(10.0) # Exit inner - should be in 'outer' self.send_message(EVENT_TOPIC, REGION_LEAVE_MESSAGE) self.assert_location_state('outer') self.assert_location_latitude(2.0) self.assert_location_accuracy(60.0) def test_event_entry_exit_wrong_order(self): """Test the event for wrong order.""" # Enter inner zone self.send_message(EVENT_TOPIC, REGION_ENTER_MESSAGE) self.assert_location_state('inner') # Enter inner2 zone message = REGION_ENTER_MESSAGE.copy() message['desc'] = "inner_2" self.send_message(EVENT_TOPIC, message) self.assert_location_state('inner_2') # Exit inner - should still be in 'inner_2' self.send_message(EVENT_TOPIC, REGION_LEAVE_MESSAGE) self.assert_location_state('inner_2') # Exit inner_2 - should be in 'outer' message = REGION_LEAVE_MESSAGE.copy() message['desc'] = "inner_2" self.send_message(EVENT_TOPIC, message) self.assert_location_state('outer') def test_event_entry_unknown_zone(self): """Test the event for unknown zone.""" # Just treat as location update message = REGION_ENTER_MESSAGE.copy() message['desc'] = "unknown" self.send_message(EVENT_TOPIC, message) self.assert_location_latitude(2.0) self.assert_location_state('outer') def test_event_exit_unknown_zone(self): """Test the event for unknown zone.""" # Just treat as location update message = REGION_LEAVE_MESSAGE.copy() message['desc'] = "unknown" self.send_message(EVENT_TOPIC, message) self.assert_location_latitude(2.0) self.assert_location_state('outer') def test_event_entry_zone_loading_dash(self): """Test the event for zone landing.""" # Make sure the leading - is ignored # Ownracks uses this to switch on hold message = REGION_ENTER_MESSAGE.copy() message['desc'] = "-inner" self.send_message(EVENT_TOPIC, REGION_ENTER_MESSAGE) self.assert_location_state('inner') def test_mobile_enter_move_beacon(self): """Test the movement of a beacon.""" # Enter mobile beacon, should set location message = REGION_ENTER_MESSAGE.copy() message['desc'] = IBEACON_DEVICE self.send_message(EVENT_TOPIC, message) self.assert_tracker_latitude(2.0) self.assert_tracker_state('outer') # Move should move beacon message = LOCATION_MESSAGE.copy() message['lat'] = "3.0" self.send_message(LOCATION_TOPIC, message) self.assert_tracker_latitude(3.0) self.assert_tracker_state(STATE_NOT_HOME) def test_mobile_enter_exit_region_beacon(self): """Test the enter and the exit of a region beacon.""" # Start tracking beacon message = REGION_ENTER_MESSAGE.copy() message['desc'] = IBEACON_DEVICE self.send_message(EVENT_TOPIC, message) self.assert_tracker_latitude(2.0) self.assert_tracker_state('outer') # Enter location should move beacon message = REGION_ENTER_MESSAGE.copy() message['desc'] = "inner_2" self.send_message(EVENT_TOPIC, message) self.assert_tracker_latitude(2.1) self.assert_tracker_state('inner_2') # Exit location should switch to gps message = REGION_LEAVE_MESSAGE.copy() message['desc'] = "inner_2" self.send_message(EVENT_TOPIC, message) self.assert_tracker_latitude(2.0) def test_mobile_exit_move_beacon(self): """Test the exit move of a beacon.""" # Start tracking beacon message = REGION_ENTER_MESSAGE.copy() message['desc'] = IBEACON_DEVICE self.send_message(EVENT_TOPIC, message) self.assert_tracker_latitude(2.0) self.assert_tracker_state('outer') # Exit mobile beacon, should set location message = REGION_LEAVE_MESSAGE.copy() message['desc'] = IBEACON_DEVICE message['lat'] = "3.0" self.send_message(EVENT_TOPIC, message) self.assert_tracker_latitude(3.0) # Move after exit should do nothing message = LOCATION_MESSAGE.copy() message['lat'] = "4.0" self.send_message(LOCATION_TOPIC, LOCATION_MESSAGE) self.assert_tracker_latitude(3.0) def test_mobile_multiple_async_enter_exit(self): """Test the multiple entering.""" # Test race condition enter_message = REGION_ENTER_MESSAGE.copy() enter_message['desc'] = IBEACON_DEVICE exit_message = REGION_LEAVE_MESSAGE.copy() exit_message['desc'] = IBEACON_DEVICE for _ in range(0, 20): fire_mqtt_message( self.hass, EVENT_TOPIC, json.dumps(enter_message)) fire_mqtt_message( self.hass, EVENT_TOPIC, json.dumps(exit_message)) fire_mqtt_message( self.hass, EVENT_TOPIC, json.dumps(enter_message)) self.hass.block_till_done() self.send_message(EVENT_TOPIC, exit_message) self.assertEqual(self.context.mobile_beacons_active['greg_phone'], []) def test_mobile_multiple_enter_exit(self): """Test the multiple entering.""" # Should only happen if the iphone dies enter_message = REGION_ENTER_MESSAGE.copy() enter_message['desc'] = IBEACON_DEVICE exit_message = REGION_LEAVE_MESSAGE.copy() exit_message['desc'] = IBEACON_DEVICE self.send_message(EVENT_TOPIC, enter_message) self.send_message(EVENT_TOPIC, enter_message) self.send_message(EVENT_TOPIC, exit_message) self.assertEqual(self.context.mobile_beacons_active['greg_phone'], []) def test_waypoint_import_simple(self): """Test a simple import of list of waypoints.""" waypoints_message = WAYPOINTS_EXPORTED_MESSAGE.copy() self.send_message(WAYPOINT_TOPIC, waypoints_message) # Check if it made it into states wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[0]) self.assertTrue(wayp is not None) wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[1]) self.assertTrue(wayp is not None) def test_waypoint_import_blacklist(self): """Test import of list of waypoints for blacklisted user.""" waypoints_message = WAYPOINTS_EXPORTED_MESSAGE.copy() self.send_message(WAYPOINT_TOPIC_BLOCKED, waypoints_message) # Check if it made it into states wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[2]) self.assertTrue(wayp is None) wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[3]) self.assertTrue(wayp is None) def test_waypoint_import_no_whitelist(self): """Test import of list of waypoints with no whitelist set.""" @asyncio.coroutine def mock_see(**kwargs): """Fake see method for owntracks.""" return test_config = { CONF_PLATFORM: 'owntracks', CONF_MAX_GPS_ACCURACY: 200, CONF_WAYPOINT_IMPORT: True } run_coroutine_threadsafe(owntracks.async_setup_scanner( self.hass, test_config, mock_see), self.hass.loop).result() waypoints_message = WAYPOINTS_EXPORTED_MESSAGE.copy() self.send_message(WAYPOINT_TOPIC_BLOCKED, waypoints_message) # Check if it made it into states wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[2]) self.assertTrue(wayp is not None) wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[3]) self.assertTrue(wayp is not None) def test_waypoint_import_bad_json(self): """Test importing a bad JSON payload.""" waypoints_message = WAYPOINTS_EXPORTED_MESSAGE.copy() self.send_message(WAYPOINT_TOPIC, waypoints_message, True) # Check if it made it into states wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[2]) self.assertTrue(wayp is None) wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[3]) self.assertTrue(wayp is None) def test_waypoint_import_existing(self): """Test importing a zone that exists.""" waypoints_message = WAYPOINTS_EXPORTED_MESSAGE.copy() self.send_message(WAYPOINT_TOPIC, waypoints_message) # Get the first waypoint exported wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[0]) # Send an update waypoints_message = WAYPOINTS_UPDATED_MESSAGE.copy() self.send_message(WAYPOINT_TOPIC, waypoints_message) new_wayp = self.hass.states.get(WAYPOINT_ENTITY_NAMES[0]) self.assertTrue(wayp == new_wayp) def mock_cipher(): """Return a dummy pickle-based cipher.""" def mock_decrypt(ciphertext, key): """Decrypt/unpickle.""" import pickle (mkey, plaintext) = pickle.loads(ciphertext) if key != mkey: raise ValueError() return plaintext return (len(TEST_SECRET_KEY), mock_decrypt) class TestDeviceTrackerOwnTrackConfigs(BaseMQTT): """Test the OwnTrack sensor.""" # pylint: disable=invalid-name def setup_method(self, method): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() mock_mqtt_component(self.hass) mock_component(self.hass, 'group') mock_component(self.hass, 'zone') patch_load = patch( 'homeassistant.components.device_tracker.async_load_config', return_value=mock_coro([])) patch_load.start() self.addCleanup(patch_load.stop) patch_save = patch('homeassistant.components.device_tracker.' 'DeviceTracker.async_update_config') patch_save.start() self.addCleanup(patch_save.stop) def teardown_method(self, method): """Tear down resources.""" self.hass.stop() @patch('homeassistant.components.device_tracker.owntracks.get_cipher', mock_cipher) def test_encrypted_payload(self): """Test encrypted payload.""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_SECRET: TEST_SECRET_KEY, }}) self.send_message(LOCATION_TOPIC, MOCK_ENCRYPTED_LOCATION_MESSAGE) self.assert_location_latitude(2.0) @patch('homeassistant.components.device_tracker.owntracks.get_cipher', mock_cipher) def test_encrypted_payload_topic_key(self): """Test encrypted payload with a topic key.""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_SECRET: { LOCATION_TOPIC: TEST_SECRET_KEY, }}}) self.send_message(LOCATION_TOPIC, MOCK_ENCRYPTED_LOCATION_MESSAGE) self.assert_location_latitude(2.0) @patch('homeassistant.components.device_tracker.owntracks.get_cipher', mock_cipher) def test_encrypted_payload_no_key(self): """Test encrypted payload with no key, .""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', # key missing }}) self.send_message(LOCATION_TOPIC, MOCK_ENCRYPTED_LOCATION_MESSAGE) assert self.hass.states.get(DEVICE_TRACKER_STATE) is None @patch('homeassistant.components.device_tracker.owntracks.get_cipher', mock_cipher) def test_encrypted_payload_wrong_key(self): """Test encrypted payload with wrong key.""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_SECRET: 'wrong key', }}) self.send_message(LOCATION_TOPIC, MOCK_ENCRYPTED_LOCATION_MESSAGE) assert self.hass.states.get(DEVICE_TRACKER_STATE) is None @patch('homeassistant.components.device_tracker.owntracks.get_cipher', mock_cipher) def test_encrypted_payload_wrong_topic_key(self): """Test encrypted payload with wrong topic key.""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_SECRET: { LOCATION_TOPIC: 'wrong key' }}}) self.send_message(LOCATION_TOPIC, MOCK_ENCRYPTED_LOCATION_MESSAGE) assert self.hass.states.get(DEVICE_TRACKER_STATE) is None @patch('homeassistant.components.device_tracker.owntracks.get_cipher', mock_cipher) def test_encrypted_payload_no_topic_key(self): """Test encrypted payload with no topic key.""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_SECRET: { 'owntracks/{}/{}'.format(USER, 'otherdevice'): 'foobar' }}}) self.send_message(LOCATION_TOPIC, MOCK_ENCRYPTED_LOCATION_MESSAGE) assert self.hass.states.get(DEVICE_TRACKER_STATE) is None try: import libnacl except (ImportError, OSError): libnacl = None @unittest.skipUnless(libnacl, "libnacl/libsodium is not installed") def test_encrypted_payload_libsodium(self): """Test sending encrypted message payload.""" with assert_setup_component(1, device_tracker.DOMAIN): assert setup_component(self.hass, device_tracker.DOMAIN, { device_tracker.DOMAIN: { CONF_PLATFORM: 'owntracks', CONF_SECRET: TEST_SECRET_KEY, }}) self.send_message(LOCATION_TOPIC, ENCRYPTED_LOCATION_MESSAGE) self.assert_location_latitude(2.0)
35.118138
79
0.640253
41072594cc550039e7dd24bfc41f900046691dbb
2,793
py
Python
Studenti/hash_generator.py
romeorizzi/exams_in_remote
5d037ecbab1998fd2eeca00cbe999872ba9031ab
[ "MIT" ]
null
null
null
Studenti/hash_generator.py
romeorizzi/exams_in_remote
5d037ecbab1998fd2eeca00cbe999872ba9031ab
[ "MIT" ]
null
null
null
Studenti/hash_generator.py
romeorizzi/exams_in_remote
5d037ecbab1998fd2eeca00cbe999872ba9031ab
[ "MIT" ]
null
null
null
import hashlib import os import xml.etree.cElementTree as ET import time from watchdog.events import FileSystemEventHandler from watchdog.observers import Observer BLOCKSIZE = 65536 def fn_hash(input_path): hasher = hashlib.sha1() with open(str(input_path), "rb") as file: buf = file.read(BLOCKSIZE) while len(buf) > 0: hasher.update(buf) buf = file.read(BLOCKSIZE) return str(hasher.hexdigest()) def settings(): try: tree = ET.ElementTree(file="settings.xml") root = tree.getroot() input_path = None output_path = None matricola = None for child in root: if child.tag == "input-files-path": input_path = child.text elif child.tag == "output-files-path": output_path = child.text elif child.tag == "matricola": matricola = child.text if input_path is not None and output_path is not None: return [input_path, output_path, matricola] else: return None except FileNotFoundError: print("File settings not found!") except Exception as exc: print("Problem parsing settings file! " + str(exc)) class MyEventHandler(FileSystemEventHandler): def __init__(self, observer, created): self.observer = observer self.created = created def on_created(self, event): for key in self.created.keys(): if self.created[key] == "": self.created[key] = fn_hash(key) + ";\n" self.created[str(event.src_path)] = "" print("Created: " + str(event.src_path)) def main(): settings_vect = settings() if settings_vect is None: print("Problem parsing settings file! ") exit(1) PATH = settings_vect[0] OUTPUT_PATH = settings_vect[1] matricola = settings_vect[2] observer = Observer() files = {} event_handler = MyEventHandler(observer, files) observer.schedule(event_handler, PATH, recursive=False) observer.start() try: while True: # Set the thread sleep time time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() hash_list = [] for file_name in files.keys(): head, tail = os.path.split(file_name) if files[file_name] == "": files[file_name] = fn_hash(file_name) + ";\n" hash_list.append(str(tail) + ";" + files[file_name]) else: hash_list.append(str(tail) + ";" + files[file_name]) with open(os.path.join(OUTPUT_PATH, matricola + "_output.csv"), "w") as output_file: for line in hash_list: output_file.write(line) return if __name__ == "__main__": main()
29.712766
88
0.601862
3cd8c0c90d98e6fd217a3606ac0aaeccb1d6fb4c
751
py
Python
LanguageModel/anna/predict.py
STHSF/DeepNaturallanguageprocessing
1fe79a961abf3e55fb3ce2b0266b26f56ade2483
[ "Apache-2.0" ]
15
2016-09-13T05:41:53.000Z
2019-12-30T13:01:33.000Z
LanguageModel/anna/predict.py
STHSF/DeepNaturallanguageprocessing
1fe79a961abf3e55fb3ce2b0266b26f56ade2483
[ "Apache-2.0" ]
20
2020-01-28T21:42:25.000Z
2022-02-10T00:44:02.000Z
LanguageModel/anna/predict.py
STHSF/DeepNaturallanguageprocessing
1fe79a961abf3e55fb3ce2b0266b26f56ade2483
[ "Apache-2.0" ]
10
2016-09-28T02:56:11.000Z
2022-03-12T16:41:20.000Z
#!/usr/bin/env python # coding=utf-8 """ @function: @version: ?? @author: Li Yu @license: Apache Licence @file: predict.py @time: 2017/7/3 下午2:26 """ import time from collections import namedtuple import numpy as np import tensorflow as tf import time from collections import namedtuple import numpy as np import tensorflow as tf file_path = './data/anna.txt' with open(file_path, 'r') as f: text = f.read() vocab = set(text) print(vocab) # # 字符数字映射 # vocab_to_int = {c: i for i, c in enumerate(vocab)} # # # print(vocab_to_int) # # 数字字符映射 # int_to_vocab = dict(enumerate(vocab)) # # print(int_to_vocab) # # # 对文本进行编码 # encode = np.array([vocab_to_int[c] for c in text], dtype=np.int32) # print(text[:100]) # print('encode\n', encode[:100])
18.317073
68
0.693742
8acb53bc8cda258e6a4d9cc736746060af28e826
15,068
py
Python
tensorflow_asr/models/encoders/conformer.py
Thumb-Technologies/TensorFlowASR
37ea12af04a8f2c13f75a617f4aa4331f95ce945
[ "Apache-2.0" ]
null
null
null
tensorflow_asr/models/encoders/conformer.py
Thumb-Technologies/TensorFlowASR
37ea12af04a8f2c13f75a617f4aa4331f95ce945
[ "Apache-2.0" ]
null
null
null
tensorflow_asr/models/encoders/conformer.py
Thumb-Technologies/TensorFlowASR
37ea12af04a8f2c13f75a617f4aa4331f95ce945
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huy Le Nguyen (@usimarit) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from ...utils import shape_util from ..activations.glu import GLU from ..layers.multihead_attention import MultiHeadAttention, RelPositionMultiHeadAttention from ..layers.positional_encoding import PositionalEncoding, PositionalEncodingConcat from ..layers.subsampling import Conv2dSubsampling, VggSubsampling L2 = tf.keras.regularizers.l2(1e-6) class FFModule(tf.keras.layers.Layer): def __init__( self, input_dim, dropout=0.0, fc_factor=0.5, kernel_regularizer=L2, bias_regularizer=L2, name="ff_module", **kwargs, ): super(FFModule, self).__init__(name=name, **kwargs) self.fc_factor = fc_factor self.ln = tf.keras.layers.LayerNormalization( name=f"{name}_ln", gamma_regularizer=kernel_regularizer, beta_regularizer=bias_regularizer, ) self.ffn1 = tf.keras.layers.Dense( 4 * input_dim, name=f"{name}_dense_1", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.swish = tf.keras.layers.Activation(tf.nn.swish, name=f"{name}_swish_activation") self.do1 = tf.keras.layers.Dropout(dropout, name=f"{name}_dropout_1") self.ffn2 = tf.keras.layers.Dense( input_dim, name=f"{name}_dense_2", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.do2 = tf.keras.layers.Dropout(dropout, name=f"{name}_dropout_2") self.res_add = tf.keras.layers.Add(name=f"{name}_add") def call( self, inputs, training=False, **kwargs, ): outputs = self.ln(inputs, training=training) outputs = self.ffn1(outputs, training=training) outputs = self.swish(outputs) outputs = self.do1(outputs, training=training) outputs = self.ffn2(outputs, training=training) outputs = self.do2(outputs, training=training) outputs = self.res_add([inputs, self.fc_factor * outputs]) return outputs def get_config(self): conf = super(FFModule, self).get_config() conf.update({"fc_factor": self.fc_factor}) conf.update(self.ln.get_config()) conf.update(self.ffn1.get_config()) conf.update(self.swish.get_config()) conf.update(self.do1.get_config()) conf.update(self.ffn2.get_config()) conf.update(self.do2.get_config()) conf.update(self.res_add.get_config()) return conf class MHSAModule(tf.keras.layers.Layer): def __init__( self, head_size, num_heads, dropout=0.0, mha_type="relmha", kernel_regularizer=L2, bias_regularizer=L2, name="mhsa_module", **kwargs, ): super(MHSAModule, self).__init__(name=name, **kwargs) self.ln = tf.keras.layers.LayerNormalization( name=f"{name}_ln", gamma_regularizer=kernel_regularizer, beta_regularizer=bias_regularizer, ) if mha_type == "relmha": self.mha = RelPositionMultiHeadAttention( name=f"{name}_mhsa", head_size=head_size, num_heads=num_heads, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) elif mha_type == "mha": self.mha = MultiHeadAttention( name=f"{name}_mhsa", head_size=head_size, num_heads=num_heads, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) else: raise ValueError("mha_type must be either 'mha' or 'relmha'") self.do = tf.keras.layers.Dropout(dropout, name=f"{name}_dropout") self.res_add = tf.keras.layers.Add(name=f"{name}_add") self.mha_type = mha_type def call( self, inputs, training=False, mask=None, **kwargs, ): inputs, pos = inputs # pos is positional encoding outputs = self.ln(inputs, training=training) if self.mha_type == "relmha": outputs = self.mha([outputs, outputs, outputs, pos], training=training, mask=mask) else: outputs = outputs + pos outputs = self.mha([outputs, outputs, outputs], training=training, mask=mask) outputs = self.do(outputs, training=training) outputs = self.res_add([inputs, outputs]) return outputs def get_config(self): conf = super(MHSAModule, self).get_config() conf.update({"mha_type": self.mha_type}) conf.update(self.ln.get_config()) conf.update(self.mha.get_config()) conf.update(self.do.get_config()) conf.update(self.res_add.get_config()) return conf class ConvModule(tf.keras.layers.Layer): def __init__( self, input_dim, kernel_size=32, dropout=0.0, depth_multiplier=1, kernel_regularizer=L2, bias_regularizer=L2, name="conv_module", **kwargs, ): super(ConvModule, self).__init__(name=name, **kwargs) self.ln = tf.keras.layers.LayerNormalization() self.pw_conv_1 = tf.keras.layers.Conv2D( filters=2 * input_dim, kernel_size=1, strides=1, padding="valid", name=f"{name}_pw_conv_1", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.glu = GLU(name=f"{name}_glu") self.dw_conv = tf.keras.layers.DepthwiseConv2D( kernel_size=(kernel_size, 1), strides=1, padding="same", name=f"{name}_dw_conv", depth_multiplier=depth_multiplier, depthwise_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.bn = tf.keras.layers.BatchNormalization( name=f"{name}_bn", gamma_regularizer=kernel_regularizer, beta_regularizer=bias_regularizer, ) self.swish = tf.keras.layers.Activation( tf.nn.swish, name=f"{name}_swish_activation", ) self.pw_conv_2 = tf.keras.layers.Conv2D( filters=input_dim, kernel_size=1, strides=1, padding="valid", name=f"{name}_pw_conv_2", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.do = tf.keras.layers.Dropout(dropout, name=f"{name}_dropout") self.res_add = tf.keras.layers.Add(name=f"{name}_add") def call( self, inputs, training=False, **kwargs, ): outputs = self.ln(inputs, training=training) B, T, E = shape_util.shape_list(outputs) outputs = tf.reshape(outputs, [B, T, 1, E]) outputs = self.pw_conv_1(outputs, training=training) outputs = self.glu(outputs) outputs = self.dw_conv(outputs, training=training) outputs = self.bn(outputs, training=training) outputs = self.swish(outputs) outputs = self.pw_conv_2(outputs, training=training) outputs = tf.reshape(outputs, [B, T, E]) outputs = self.do(outputs, training=training) outputs = self.res_add([inputs, outputs]) return outputs def get_config(self): conf = super(ConvModule, self).get_config() conf.update(self.ln.get_config()) conf.update(self.pw_conv_1.get_config()) conf.update(self.glu.get_config()) conf.update(self.dw_conv.get_config()) conf.update(self.bn.get_config()) conf.update(self.swish.get_config()) conf.update(self.pw_conv_2.get_config()) conf.update(self.do.get_config()) conf.update(self.res_add.get_config()) return conf class ConformerBlock(tf.keras.layers.Layer): def __init__( self, input_dim, dropout=0.0, fc_factor=0.5, head_size=36, num_heads=4, mha_type="relmha", kernel_size=32, depth_multiplier=1, kernel_regularizer=L2, bias_regularizer=L2, name="conformer_block", **kwargs, ): super(ConformerBlock, self).__init__(name=name, **kwargs) self.ffm1 = FFModule( input_dim=input_dim, dropout=dropout, fc_factor=fc_factor, name=f"{name}_ff_module_1", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.mhsam = MHSAModule( mha_type=mha_type, head_size=head_size, num_heads=num_heads, dropout=dropout, name=f"{name}_mhsa_module", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.convm = ConvModule( input_dim=input_dim, kernel_size=kernel_size, dropout=dropout, name=f"{name}_conv_module", depth_multiplier=depth_multiplier, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.ffm2 = FFModule( input_dim=input_dim, dropout=dropout, fc_factor=fc_factor, name=f"{name}_ff_module_2", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.ln = tf.keras.layers.LayerNormalization( name=f"{name}_ln", gamma_regularizer=kernel_regularizer, beta_regularizer=kernel_regularizer, ) def call( self, inputs, training=False, mask=None, **kwargs, ): inputs, pos = inputs # pos is positional encoding outputs = self.ffm1(inputs, training=training, **kwargs) outputs = self.mhsam([outputs, pos], training=training, mask=mask, **kwargs) outputs = self.convm(outputs, training=training, **kwargs) outputs = self.ffm2(outputs, training=training, **kwargs) outputs = self.ln(outputs, training=training) return outputs def get_config(self): conf = super(ConformerBlock, self).get_config() conf.update(self.ffm1.get_config()) conf.update(self.mhsam.get_config()) conf.update(self.convm.get_config()) conf.update(self.ffm2.get_config()) conf.update(self.ln.get_config()) return conf class ConformerEncoder(tf.keras.Model): def __init__( self, subsampling, positional_encoding="sinusoid", dmodel=144, num_blocks=16, mha_type="relmha", head_size=36, num_heads=4, kernel_size=32, depth_multiplier=1, fc_factor=0.5, dropout=0.0, kernel_regularizer=L2, bias_regularizer=L2, name="conformer_encoder", **kwargs, ): super(ConformerEncoder, self).__init__(name=name, **kwargs) subsampling_name = subsampling.pop("type", "conv2d") if subsampling_name == "vgg": subsampling_class = VggSubsampling elif subsampling_name == "conv2d": subsampling_class = Conv2dSubsampling else: raise ValueError("subsampling must be either 'conv2d' or 'vgg'") self.conv_subsampling = subsampling_class( **subsampling, name=f"{name}_subsampling", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) if positional_encoding == "sinusoid": self.pe = PositionalEncoding(name=f"{name}_pe") elif positional_encoding == "sinusoid_v2": self.pe = PositionalEncoding(alpha=2, beta=0, name=f"{name}_pe") elif positional_encoding == "sinusoid_concat": self.pe = PositionalEncodingConcat(name=f"{name}_pe") elif positional_encoding == "sinusoid_concat_v2": self.pe = PositionalEncodingConcat(alpha=2, beta=-1, name=f"{name}_pe") elif positional_encoding == "subsampling": self.pe = tf.keras.layers.Activation("linear", name=f"{name}_pe") else: raise ValueError( "positional_encoding must be either 'sinusoid', \ 'sinusoid_concat', 'sinusoid_v2', 'sinusoid_concat_v2' or 'subsampling'" ) self.linear = tf.keras.layers.Dense( dmodel, name=f"{name}_linear", kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.do = tf.keras.layers.Dropout(dropout, name=f"{name}_dropout") self.conformer_blocks = [] for i in range(num_blocks): conformer_block = ConformerBlock( input_dim=dmodel, dropout=dropout, fc_factor=fc_factor, head_size=head_size, num_heads=num_heads, mha_type=mha_type, kernel_size=kernel_size, depth_multiplier=depth_multiplier, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, name=f"{name}_block_{i}", ) self.conformer_blocks.append(conformer_block) def call( self, inputs, training=False, mask=None, **kwargs, ): # input with shape [B, T, V1, V2] outputs = self.conv_subsampling(inputs, training=training) outputs = self.linear(outputs, training=training) pe = self.pe(outputs) outputs = self.do(outputs, training=training) for cblock in self.conformer_blocks: outputs = cblock([outputs, pe], training=training, mask=mask, **kwargs) return outputs def get_config(self): conf = super(ConformerEncoder, self).get_config() conf.update(self.conv_subsampling.get_config()) conf.update(self.linear.get_config()) conf.update(self.do.get_config()) conf.update(self.pe.get_config()) for cblock in self.conformer_blocks: conf.update(cblock.get_config()) return conf
35.123543
94
0.603265
a75329d9d9f01c358efa767b3e9f3e2167416ea0
2,171
py
Python
lists/tests/test_forms.py
elyak123/obeying-the-testing-goat
8359febf7d28215133c5933512f8e737aacdff8f
[ "MIT" ]
null
null
null
lists/tests/test_forms.py
elyak123/obeying-the-testing-goat
8359febf7d28215133c5933512f8e737aacdff8f
[ "MIT" ]
null
null
null
lists/tests/test_forms.py
elyak123/obeying-the-testing-goat
8359febf7d28215133c5933512f8e737aacdff8f
[ "MIT" ]
null
null
null
from django.test import TestCase from lists.models import Item, List from lists.forms import (ItemForm, EMPTY_ITEM_ERROR, DUPLICATE_ITEM_ERROR, ExistingListItemForm ) class ItemFormTest(TestCase): def test_form_item_input_has_placeholder_and_css_classes(self): form = ItemForm() self.assertIn('placeholder="Enter a to-do item"', form.as_p()) def test_validation_form_for_blank_items(self): list_ = List.objects.create() form = ItemForm(data={'text': ''}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors['text'], [EMPTY_ITEM_ERROR] ) with self.assertRaises(ValueError): form.save(for_list= list_) def test_form_save_handles_saving_to_a_list(self): list_ = List.objects.create() form = ItemForm(data={'text': 'do me'}) new_item = form.save(for_list=list_) self.assertEqual(new_item, Item.objects.first()) self.assertEqual(new_item.text, 'do me') self.assertEqual(new_item.list,list_) class ExistingListItemFormTest(TestCase): def test_form_renders_item_text_input(self): list_ = List.objects.create() form = ExistingListItemForm(for_list=list_) self.assertIn('placeholder="Enter a to-do item"', form.as_p()) def test_form_validation_for_blank_items(self): list_ = List.objects.create() form = ExistingListItemForm(for_list=list_, data={'data': ''}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR]) def test_validation_for_duplicate_items(self): list_ = List.objects.create() Item.objects.create(list=list_, text='no twins!') form = ExistingListItemForm(for_list=list_, data={'text': 'no twins!'}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['text'], [DUPLICATE_ITEM_ERROR]) def test_form_save(self): list_ = List.objects.create() form = ExistingListItemForm(for_list=list_, data={'text': 'hi'}) new_item = form.save() self.assertEqual(new_item, Item.objects.first())
38.767857
79
0.667895
019902fd823def4e117ea65ffc273ad7678112be
7,817
py
Python
mergejs.py
tmcw/OpenLayerer
44212b0f9a8aae71f6f96f6357671e89f6ea6cc5
[ "Apache-2.0", "BSD-2-Clause" ]
1
2015-07-17T19:01:07.000Z
2015-07-17T19:01:07.000Z
mergejs.py
tmcw/OpenLayerer
44212b0f9a8aae71f6f96f6357671e89f6ea6cc5
[ "Apache-2.0", "BSD-2-Clause" ]
null
null
null
mergejs.py
tmcw/OpenLayerer
44212b0f9a8aae71f6f96f6357671e89f6ea6cc5
[ "Apache-2.0", "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # # Merge multiple JavaScript source code files into one. # # Usage: # This script requires source files to have dependencies specified in them. # # Dependencies are specified with a comment of the form: # # // @requires <file path> # # e.g. # # // @requires Geo/DataSource.js # # This script should be executed like so: # # mergejs.py <output.js> <directory> [...] # # e.g. # # mergejs.py openlayers.js Geo/ CrossBrowser/ # # This example will cause the script to walk the `Geo` and # `CrossBrowser` directories--and subdirectories thereof--and import # all `*.js` files encountered. The dependency declarations will be extracted # and then the source code from imported files will be output to # a file named `openlayers.js` in an order which fulfils the dependencies # specified. # # # Note: This is a very rough initial version of this code. # # -- Copyright 2005-2008 MetaCarta, Inc. / OpenLayers project -- # # TODO: Allow files to be excluded. e.g. `Crossbrowser/DebugMode.js`? # TODO: Report error when dependency can not be found rather than KeyError. import re, os, sys SUFFIX_JAVASCRIPT = ".js" RE_REQUIRE = "@requires:? (.*)\n" # TODO: Ensure in comment? class SourceFile: """ Represents a Javascript source code file. """ def __init__(self, filepath, source): """ """ self.filepath = filepath self.source = source self.requiredBy = [] def _getRequirements(self): """ Extracts the dependencies specified in the source code and returns a list of them. """ # TODO: Cache? return re.findall(RE_REQUIRE, self.source) requires = property(fget=_getRequirements, doc="") class Config: """ Represents a parsed configuration file. A configuration file should be of the following form: [first] 3rd/prototype.js core/application.js core/params.js # A comment [last] core/api.js # Another comment [exclude] 3rd/logger.js All headings are required. The files listed in the `first` section will be forced to load *before* all other files (in the order listed). The files in `last` section will be forced to load *after* all the other files (in the order listed). The files list in the `exclude` section will not be imported. Any text appearing after a # symbol indicates a comment. """ def __init__(self, **kwargs): self.forceFirst = kwargs.get('forceFirst', []) self.forceLast = kwargs.get('forceLast', []) self.include = kwargs.get('include', []) self.exclude = kwargs.get('exclude', []) def read(self, filename): """ Parses the content of the named file and stores the values. :param filename: the path to a configuration file :return none """ lines = [re.sub("#.*?$", "", line).strip() # Assumes end-of-line character is present for line in open(filename) if line.strip() and not line.strip().startswith("#")] # Skip blank lines and comments self.forceFirst = lines[lines.index("[first]") + 1:lines.index("[last]")] self.forceLast = lines[lines.index("[last]") + 1:lines.index("[include]")] self.include = lines[lines.index("[include]") + 1:lines.index("[exclude]")] self.exclude = lines[lines.index("[exclude]") + 1:] def scanjs(sourceDirectory, config = None): """ scans scanDirectory recursively and returns a list of paths to javascript files :param sourceDirectory: the directory root :return list object of all file paths """ allFiles = [] ## Find all the Javascript source files for root, dirs, files in os.walk(sourceDirectory): for filename in files: if filename.endswith(SUFFIX_JAVASCRIPT) and not filename.startswith("."): filepath = os.path.join(root, filename)[len(sourceDirectory)+1:] filepath = filepath.replace("\\", "/") if config and config.include: if filepath in config.include or filepath in config.forceFirst: allFiles.append(filepath) elif (not config) or (filepath not in config.exclude): allFiles.append(filepath) return allFiles def merge (sourceDirectory, config = None): """ Merges source files within a given directory according to a configuration :param sourceDirectory: a string designating the path of the OpenLayers source :param config: a mergejs.Config object """ from toposort import toposort allFiles = scanjs(sourceDirectory, config) ## Header inserted at the start of each file in the output HEADER = "/* " + "=" * 70 + "\n %s\n" + " " + "=" * 70 + " */\n\n" files = {} ## Import file source code ## TODO: Do import when we walk the directories above? for filepath in allFiles: fullpath = os.path.join(sourceDirectory, filepath).strip() content = open(fullpath, "U").read() # TODO: Ensure end of line @ EOF? files[filepath] = SourceFile(filepath, content) # TODO: Chop path? complete = False resolution_pass = 1 while not complete: order = [] # List of filepaths to output, in a dependency satisfying order nodes = [] routes = [] ## Resolve the dependencies resolution_pass += 1 for filepath, info in files.items(): nodes.append(filepath) for neededFilePath in info.requires: routes.append((neededFilePath, filepath)) for dependencyLevel in toposort(nodes, routes): for filepath in dependencyLevel: order.append(filepath) if not files.has_key(filepath): fullpath = os.path.join(sourceDirectory, filepath).strip() content = open(fullpath, "U").read() # TODO: Ensure end of line @ EOF? files[filepath] = SourceFile(filepath, content) # TODO: Chop path? # Double check all dependencies have been met complete = True try: for fp in order: if max([order.index(rfp) for rfp in files[fp].requires] + [order.index(fp)]) != order.index(fp): complete = False except: complete = False ## Move forced first and last files to the required position if config: order = config.forceFirst + [item for item in order if ((item not in config.forceFirst) and (item not in config.forceLast))] + config.forceLast ## Output the files in the determined order result = [] for fp in order: f = files[fp] result.append(HEADER % f.filepath) source = f.source result.append(source) if not source.endswith("\n"): result.append("\n") return "".join(result) if __name__ == "__main__": from optparse import OptionParser usage = "usage: mergejs.py <output.js> <source directory> [--config config filename]" parser = OptionParser(usage=usage) parser.add_option('-c', '--config', dest="config_filename", action="store", help="Config file name") (options, args) = parser.parse_args() try: outputFilename = sys.argv[0] sourceDirectory = sys.argv[1] except IndexError: parser.print_help() sys.exit() if options.config_filename: config = Config() config.read(options.config_filename) else: config = None output = merge(sourceDirectory, config) file(outputFilename, "w").write(output)
32.707113
102
0.612639
0c2e9cca1ca218441828f9e1b709c00c7ac13a3d
98
py
Python
output/models/ms_data/attribute/att_j004_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/ms_data/attribute/att_j004_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/ms_data/attribute/att_j004_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.ms_data.attribute.att_j004_xsd.att_j004 import Test __all__ = [ "Test", ]
16.333333
70
0.744898
7fc788421d5f34f4379493ea2bd07d336465209f
716
py
Python
change_png_color.py
prasertcbs/HueIconPackPng
269476ce74c05ed26e4213fb1d3492b99c7b8ef9
[ "MIT" ]
6
2020-06-07T14:10:54.000Z
2021-07-16T06:20:33.000Z
change_png_color.py
prasertcbs/HueIconPackPng
269476ce74c05ed26e4213fb1d3492b99c7b8ef9
[ "MIT" ]
null
null
null
change_png_color.py
prasertcbs/HueIconPackPng
269476ce74c05ed26e4213fb1d3492b99c7b8ef9
[ "MIT" ]
5
2020-10-02T14:44:16.000Z
2022-01-21T21:21:16.000Z
# source: https://stackoverflow.com/questions/3752476/python-pil-replace-a-single-rgba-color from PIL import Image import numpy as np def x(): im = Image.open('test.png') im = im.convert('RGBA') data = np.array(im) # "data" is a height x width x 4 numpy array red, green, blue, alpha = data.T # Temporarily unpack the bands for readability # Replace white with red... (leaves alpha values alone...) # Hue icon use RGB(16, 16, 16) black_areas = (red == 16) & (blue == 16) & (green == 16) data[..., :-1][black_areas.T] = (200, 200, 200) # Transpose back needed im2 = Image.fromarray(data) im2.save('test_white.png') im2.show() if __name__ == "__main__": x()
29.833333
92
0.629888
d9b4ef912739d9a4c8ff489f8a38535394aedc3d
1,193
bzl
Python
dotnet/private/actions/resx_net.bzl
Perilynn/rules_dotnet
0c80abcfe023fe32f8908d6cac6dbab5c4455ee6
[ "Apache-2.0" ]
null
null
null
dotnet/private/actions/resx_net.bzl
Perilynn/rules_dotnet
0c80abcfe023fe32f8908d6cac6dbab5c4455ee6
[ "Apache-2.0" ]
null
null
null
dotnet/private/actions/resx_net.bzl
Perilynn/rules_dotnet
0c80abcfe023fe32f8908d6cac6dbab5c4455ee6
[ "Apache-2.0" ]
null
null
null
load( "@io_bazel_rules_dotnet//dotnet/private:common.bzl", "as_iterable", "sets" ) load( "@io_bazel_rules_dotnet//dotnet/private:providers.bzl", "DotnetLibrary", ) load( "@io_bazel_rules_dotnet//dotnet/private:common.bzl", "paths", ) def _make_runner_arglist(dotnet, source, output): args = dotnet.actions.args() args.add(source.files, format = "%s") args.add(output) return args def emit_resx_net(dotnet, name = "", src = None, identifier = None, out = None): if name == "" and out == None: fail("either name or out must be set") if not out: result = dotnet.declare_file(dotnet, path=name+".resources") else: result = dotnet.declare_file(dotnet, path=out) args = _make_runner_arglist(dotnet, src, result) dotnet.actions.run( inputs = src.files, outputs = [result], executable = dotnet.resgen, arguments = [args], mnemonic = "NetResxCompile", progress_message = ( "Compiling resoources" + dotnet.label.package + ":" + dotnet.label.name)) return dotnet.new_resource( dotnet = dotnet, name = name, result = result, identifier = identifier)
20.929825
83
0.640402
e26c0f8864ddfcc75f2b4862f1ee5b59414a29ee
2,969
py
Python
lp2jira/user.py
pawelzny/launchpad2jira
b3724275837ae2968172d51676d01c2636489419
[ "MIT" ]
null
null
null
lp2jira/user.py
pawelzny/launchpad2jira
b3724275837ae2968172d51676d01c2636489419
[ "MIT" ]
null
null
null
lp2jira/user.py
pawelzny/launchpad2jira
b3724275837ae2968172d51676d01c2636489419
[ "MIT" ]
2
2018-08-30T12:34:19.000Z
2018-12-14T10:55:30.000Z
# -*- coding: utf-8 -*- import logging import os from tqdm import tqdm from lp2jira.config import config, lp from lp2jira.export import Export from lp2jira.utils import clean_id, get_user_groups, json_dump, generate_mail class User: def __init__(self, name, display_name, email=None, user_groups=None, active=True): self.name = name self.display_name = display_name self.active = active self.user_groups = user_groups self.email = email @classmethod def create(cls, username): try: lp_user = lp.people[username] display_name = lp_user.display_name if not lp_user.hide_email_addresses and lp_user.preferred_email_address: email = lp_user.preferred_email_address.email else: email = generate_mail(display_name) logging.warning(f"No access to mail for {username}. Auto-generated email: {email}") except Exception as exc: logging.warning(f"Failed to get user data for {username}") logging.warning(exc, exc_info=True) display_name = username email = generate_mail(display_name) return cls(name=username, display_name=display_name, email=email, user_groups=get_user_groups()) @staticmethod def filename(username): return os.path.normpath(os.path.join(config["local"]["users"], f'{username}.json')) @staticmethod def exists(username): return os.path.exists(User.filename(username)) def export(self): filename = self.filename(self.name) if self.exists(filename): logging.debug(f'User {self.display_name} already exists, skipping: "{filename}"') return True with open(filename, 'w') as f: json_dump(self._dump(), f) logging.debug(f'User User {self.display_name} export success') return True def _dump(self): dmp = { 'name': self.name, 'fullname': self.display_name, 'active': self.active } if self.user_groups: dmp['groups'] = self.user_groups if self.email: dmp['email'] = self.email return dmp class ExportUser(Export): def __init__(self): super().__init__(entity=User) class ExportSubscribers(ExportUser): def run(self): logging.info('===== Export: Subscribers =====') project = lp.projects[config['launchpad']['project']] subscriptions = project.getSubscriptions() counter = 0 for sub in tqdm(subscriptions, desc='Export subscribers'): username = clean_id(sub.subscriber_link) if User.exists(username): counter += 1 continue if super().run(username): counter += 1 logging.info(f'Exported subscribers: {counter}/{len(subscriptions)}')
29.989899
99
0.607275
75cc237bd6a8664e50af164f4724f5008013d381
369
py
Python
lib/external/setup.py
shachargluska/centerpose
01c2c8bfa9d3ee91807f2ffdcc48728d104265bd
[ "MIT" ]
245
2019-11-29T02:55:25.000Z
2022-03-30T07:30:18.000Z
lib/external/setup.py
shachargluska/centerpose
01c2c8bfa9d3ee91807f2ffdcc48728d104265bd
[ "MIT" ]
24
2019-11-29T10:05:00.000Z
2022-03-30T07:16:06.000Z
lib/external/setup.py
FishLiuabc/centerpose
555d753cd82693476f91f78c53aa4147f5a83015
[ "MIT" ]
45
2019-11-29T05:12:02.000Z
2022-03-21T02:20:36.000Z
from distutils.core import setup from distutils.extension import Extension import numpy from Cython.Build import cythonize extensions = [ Extension( "nms", ["nms.pyx"], extra_compile_args=["-Wno-cpp", "-Wno-unused-function"] ) ] setup( name="coco", ext_modules=cythonize(extensions), include_dirs=[numpy.get_include()] )
18.45
63
0.666667
43762d4a93a68a87619a65a64d8427722aaef450
58,947
py
Python
pyNastran/bdf/bdf_interface/write_mesh.py
numenic/pyNastran
fd5d3f0bf18db6595d85b9ac152f611e23122a68
[ "BSD-3-Clause" ]
null
null
null
pyNastran/bdf/bdf_interface/write_mesh.py
numenic/pyNastran
fd5d3f0bf18db6595d85b9ac152f611e23122a68
[ "BSD-3-Clause" ]
null
null
null
pyNastran/bdf/bdf_interface/write_mesh.py
numenic/pyNastran
fd5d3f0bf18db6595d85b9ac152f611e23122a68
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 """ This file defines: - WriteMesh """ import sys from io import StringIO, IOBase from typing import List, Dict, Union, Optional, Tuple, Any, cast from pyNastran.bdf.field_writer_8 import print_card_8 from pyNastran.bdf.field_writer_16 import print_card_16 from pyNastran.bdf.bdf_interface.attributes import BDFAttributes from pyNastran.bdf.cards.nodes import write_xpoints class WriteMesh(BDFAttributes): """ Defines methods for writing cards Major methods: - model.write_bdf(...) - model.echo_bdf(...) - model.auto_reject_bdf(...) """ def __init__(self): """creates methods for writing cards""" BDFAttributes.__init__(self) self._auto_reject = True self.cards_to_read = set() def get_encoding(self, encoding: Optional[str]=None) -> str: """gets the file encoding""" if encoding is not None: pass else: encoding = self._encoding if encoding is None: encoding = sys.getdefaultencoding() encoding = cast(str, encoding) return encoding def _output_helper(self, out_filename: Optional[str], interspersed: bool, size: int, is_double: bool) -> str: """ Performs type checking on the write_bdf inputs """ if out_filename is None: from pyNastran.utils.gui_io import save_file_dialog wildcard_wx = "Nastran BDF (*.bdf; *.dat; *.nas; *.pch)|" \ "*.bdf;*.dat;*.nas;*.pch|" \ "All files (*.*)|*.*" wildcard_qt = "Nastran BDF (*.bdf *.dat *.nas *.pch);;All files (*)" title = 'Save BDF/DAT/PCH' out_filename = save_file_dialog(title, wildcard_wx, wildcard_qt) assert out_filename is not None, out_filename has_read_write = hasattr(out_filename, 'read') and hasattr(out_filename, 'write') if has_read_write or isinstance(out_filename, IOBase): return out_filename elif not isinstance(out_filename, str): msg = 'out_filename=%r must be a string; type=%s' % ( out_filename, type(out_filename)) raise TypeError(msg) if size == 8: assert is_double is False, 'is_double=%r' % is_double elif size == 16: assert is_double in [True, False], 'is_double=%r' % is_double else: assert size in [8, 16], size assert isinstance(interspersed, bool) #fname = print_filename(out_filename) #self.log.debug("***writing %s" % fname) return out_filename def write_bdf(self, out_filename=None, encoding=None, size=8, is_double=False, interspersed=False, enddata=None, write_header=True, close=True): # type: (Optional[Union[str, StringIO]], Optional[str], int, bool, bool, Optional[bool], bool, bool) -> None """ Writes the BDF. Parameters ---------- out_filename : varies; default=None str - the name to call the output bdf file - a file object StringIO() - a StringIO object None - pops a dialog encoding : str; default=None -> system specified encoding the unicode encoding latin1, and utf8 are generally good options size : int; {8, 16} the field size is_double : bool; default=False False : small field True : large field interspersed : bool; default=True Writes a bdf with properties & elements interspersed like how Patran writes the bdf. This takes slightly longer than if interspersed=False, but makes it much easier to compare to a Patran-formatted bdf and is more clear. enddata : bool; default=None bool - enable/disable writing ENDDATA None - depends on input BDF write_header : bool; default=True flag for writing the pyNastran header close : bool; default=True should the output file be closed """ is_long_ids = False if self.is_bdf_vectorized: pass else: # required for MasterModelTaxi is_long_ids = ( self.nodes and max(self.nodes) > 100000000 or self.coords and max(self.coords) > 100000000 or self.elements and max(self.elements) > 100000000 or self.properties and max(self.properties) > 100000000 or self.materials and max(self.materials) > 100000000 or self.thermal_materials and max(self.thermal_materials) > 100000000 or self.nsms and max(self.nsms) > 100000000 or self.nsmadds and max(self.nsmadds) > 100000000) if is_long_ids: size = 16 out_filename = self._output_helper(out_filename, interspersed, size, is_double) encoding = self.get_encoding(encoding) #assert encoding.lower() in ['ascii', 'latin1', 'utf8'], encoding has_read_write = hasattr(out_filename, 'read') and hasattr(out_filename, 'write') if has_read_write: bdf_file = out_filename else: self.log.debug('---starting BDF.write_bdf of %s---' % out_filename) bdf_file = open(out_filename, 'w', encoding=encoding) self._write_header(bdf_file, encoding, write_header=write_header) if self.superelement_models: bdf_file.write('$' + '*'*80+'\n') for superelement_id, superelement in sorted(self.superelement_models.items()): bdf_file.write('BEGIN SUPER=%s\n' % superelement_id) superelement.write_bdf(out_filename=bdf_file, encoding=encoding, size=size, is_double=is_double, interspersed=interspersed, enddata=False, write_header=False, close=False) bdf_file.write('$' + '*'*80+'\n') bdf_file.write('BEGIN BULK\n') self._write_params(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_nodes(bdf_file, size, is_double, is_long_ids=is_long_ids) if interspersed: self._write_elements_interspersed(bdf_file, size, is_double, is_long_ids=is_long_ids) else: self._write_elements(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_properties(bdf_file, size, is_double, is_long_ids=is_long_ids) #self._write_properties_by_element_type(bdf_file, size, is_double, is_long_ids) self._write_materials(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_masses(bdf_file, size, is_double, is_long_ids=is_long_ids) # split out for write_bdf_symmetric self._write_rigid_elements(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_aero(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_common(bdf_file, size, is_double, is_long_ids=is_long_ids) if (enddata is None and 'ENDDATA' in self.card_count) or enddata: bdf_file.write('ENDDATA\n') if close: bdf_file.close() def _write_header(self, bdf_file: Any, encoding: str, write_header: bool=True) -> None: """Writes the executive and case control decks.""" if self.punch is None: # writing a mesh without using read_bdf if self.system_command_lines or self.executive_control_lines or self.case_control_deck: self.punch = False else: self.punch = True if self.nastran_format and write_header: bdf_file.write('$pyNastran: version=%s\n' % self.nastran_format) bdf_file.write('$pyNastran: punch=%s\n' % self.punch) bdf_file.write('$pyNastran: encoding=%s\n' % encoding) bdf_file.write('$pyNastran: nnodes=%s\n' % len(self.nodes)) bdf_file.write('$pyNastran: nelements=%s\n' % len(self.elements)) if not self.punch: self._write_executive_control_deck(bdf_file) self._write_case_control_deck(bdf_file) def _write_executive_control_deck(self, bdf_file: Any) -> None: """ Writes the executive control deck. """ msg = '' for line in self.system_command_lines: msg += line + '\n' if self.executive_control_lines: msg += '$EXECUTIVE CONTROL DECK\n' if self.sol == 600: new_sol = 'SOL 600,%s' % self.sol_method else: new_sol = 'SOL %s' % self.sol if self.sol_iline is not None: self.executive_control_lines[self.sol_iline] = new_sol for line in self.executive_control_lines: msg += line + '\n' bdf_file.write(msg) def _write_case_control_deck(self, bdf_file: Any) -> None: """Writes the Case Control Deck.""" if self.case_control_deck: msg = '$CASE CONTROL DECK\n' if self.superelement_models: msg += self.case_control_deck.write(write_begin_bulk=False) else: msg += str(self.case_control_deck) assert 'BEGIN BULK' in msg, msg bdf_file.write(''.join(msg)) def _write_elements(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the elements in a sorted order""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.elements: bdf_file.write('$ELEMENTS\n') if is_long_ids: for (eid, element) in sorted(self.elements.items()): bdf_file.write(element.write_card_16(is_double)) else: for (eid, element) in sorted(self.elements.items()): try: bdf_file.write(element.write_card(size, is_double)) except: print('failed printing element...' 'type=%s eid=%s' % (element.type, eid)) raise if self.ao_element_flags: for (eid, element) in sorted(self.ao_element_flags.items()): bdf_file.write(element.write_card(size, is_double)) if self.normals: for (unused_nid, snorm) in sorted(self.normals.items()): bdf_file.write(snorm.write_card(size, is_double)) self._write_nsm(bdf_file, size, is_double) def _write_nsm(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the nsm in a sorted order""" if self.nsms or self.nsmadds: bdf_file.write('$NSM\n') for (unused_id, nsmadds) in sorted(self.nsmadds.items()): for nsmadd in nsmadds: bdf_file.write(str(nsmadd)) for (key, nsms) in sorted(self.nsms.items()): for nsm in nsms: try: bdf_file.write(nsm.write_card(size, is_double)) except: print('failed printing nsm...type=%s key=%r' % (nsm.type, key)) raise def _write_elements_interspersed(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the elements and properties in and interspersed order""" missing_properties = [] if self.properties: bdf_file.write('$ELEMENTS_WITH_PROPERTIES\n') eids_written = [] # type: List[int] pids = sorted(self.properties.keys()) pid_eids = self.get_element_ids_dict_with_pids(pids, stop_if_no_eids=False) #failed_element_types = set() for (pid, eids) in sorted(pid_eids.items()): prop = self.properties[pid] if eids: bdf_file.write(prop.write_card(size, is_double)) eids.sort() for eid in eids: element = self.elements[eid] try: bdf_file.write(element.write_card(size, is_double)) except: print('failed printing element...' 'type=%r eid=%s' % (element.type, eid)) raise eids_written += eids else: missing_properties.append(prop.write_card(size, is_double)) eids_missing = set(self.elements.keys()).difference(set(eids_written)) if eids_missing: bdf_file.write('$ELEMENTS_WITH_NO_PROPERTIES ' '(PID=0 and unanalyzed properties)\n') for eid in sorted(eids_missing): element = self.elements[eid] try: bdf_file.write(element.write_card(size, is_double)) except: print('failed printing element...' 'type=%s eid=%s' % (element.type, eid)) raise if missing_properties or self.pdampt or self.pbusht or self.pelast: bdf_file.write('$UNASSOCIATED_PROPERTIES\n') for card in sorted(self.pbusht.values()): bdf_file.write(card.write_card(size, is_double)) for card in sorted(self.pdampt.values()): bdf_file.write(card.write_card(size, is_double)) for card in sorted(self.pelast.values()): bdf_file.write(card.write_card(size, is_double)) for card in missing_properties: # this is a string... #print("missing_property = ", card bdf_file.write(card) if self.ao_element_flags: for (eid, element) in sorted(self.ao_element_flags.items()): bdf_file.write(element.write_card(size, is_double)) if self.normals: for (unused_nid, snorm) in sorted(self.normals.items()): bdf_file.write(snorm.write_card(size, is_double)) self._write_nsm(bdf_file, size, is_double) def _write_aero(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the aero cards""" if self.caeros or self.paeros or self.monitor_points or self.splines: bdf_file.write('$AERO\n') for (unused_id, caero) in sorted(self.caeros.items()): bdf_file.write(caero.write_card(size, is_double)) for (unused_id, paero) in sorted(self.paeros.items()): bdf_file.write(paero.write_card(size, is_double)) for (unused_id, spline) in sorted(self.splines.items()): bdf_file.write(spline.write_card(size, is_double)) for monitor_point in self.monitor_points: bdf_file.write(monitor_point.write_card(size, is_double)) self.zona.write_bdf(bdf_file, size=8, is_double=False) def _write_aero_control(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the aero control surface cards""" if(self.aecomps or self.aefacts or self.aeparams or self.aelinks or self.aelists or self.aestats or self.aesurf or self.aesurfs): bdf_file.write('$AERO CONTROL SURFACES\n') for (unused_id, aelinks) in sorted(self.aelinks.items()): for aelink in aelinks: bdf_file.write(aelink.write_card(size, is_double)) for (unused_id, aecomp) in sorted(self.aecomps.items()): bdf_file.write(aecomp.write_card(size, is_double)) for (unused_id, aeparam) in sorted(self.aeparams.items()): bdf_file.write(aeparam.write_card(size, is_double)) for (unused_id, aestat) in sorted(self.aestats.items()): bdf_file.write(aestat.write_card(size, is_double)) for (unused_id, aelist) in sorted(self.aelists.items()): bdf_file.write(aelist.write_card(size, is_double)) for (unused_id, aesurf) in sorted(self.aesurf.items()): bdf_file.write(aesurf.write_card(size, is_double)) for (unused_id, aesurfs) in sorted(self.aesurfs.items()): bdf_file.write(aesurfs.write_card(size, is_double)) for (unused_id, aefact) in sorted(self.aefacts.items()): bdf_file.write(aefact.write_card(size, is_double)) def _write_static_aero(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the static aero cards""" if self.aeros or self.trims or self.divergs: bdf_file.write('$STATIC AERO\n') # static aero if self.aeros: bdf_file.write(self.aeros.write_card(size, is_double)) for (unused_id, trim) in sorted(self.trims.items()): bdf_file.write(trim.write_card(size, is_double)) for (unused_id, diverg) in sorted(self.divergs.items()): bdf_file.write(diverg.write_card(size, is_double)) def _find_aero_location(self) -> Tuple[bool, bool]: """Determines where the AERO card should be written""" write_aero_in_flutter = False write_aero_in_gust = False if self.aero: if self.flfacts or self.flutters or self.mkaeros: write_aero_in_flutter = True elif self.gusts: write_aero_in_gust = True else: # an AERO card exists, but no FLUTTER, FLFACT, MKAEROx or GUST card write_aero_in_flutter = True return write_aero_in_flutter, write_aero_in_gust def _write_flutter(self, bdf_file: Any, size: int=8, is_double: bool=False, write_aero_in_flutter: bool=True, is_long_ids: Optional[bool]=None) -> None: """Writes the flutter cards""" if (write_aero_in_flutter and self.aero) or self.flfacts or self.flutters or self.mkaeros: bdf_file.write('$FLUTTER\n') if write_aero_in_flutter: bdf_file.write(self.aero.write_card(size, is_double)) for (unused_id, flutter) in sorted(self.flutters.items()): bdf_file.write(flutter.write_card(size, is_double)) for (unused_id, flfact) in sorted(self.flfacts.items()): bdf_file.write(flfact.write_card(size, is_double)) for mkaero in self.mkaeros: bdf_file.write(mkaero.write_card(size, is_double)) def _write_gust(self, bdf_file: Any, size: int=8, is_double: bool=False, write_aero_in_gust: bool=True, is_long_ids: Optional[bool]=None) -> None: """Writes the gust cards""" if (write_aero_in_gust and self.aero) or self.gusts: bdf_file.write('$GUST\n') if write_aero_in_gust: for (unused_id, aero) in sorted(self.aero.items()): bdf_file.write(aero.write_card(size, is_double)) for (unused_id, gust) in sorted(self.gusts.items()): bdf_file.write(gust.write_card(size, is_double)) def _write_common(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """ Write the common outputs so none get missed... Parameters ---------- bdf_file : file the file object size : int (default=8) the field width is_double : bool (default=False) is this double precision """ self._write_dmigs(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_loads(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_dynamic(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_aero_control(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_static_aero(bdf_file, size, is_double, is_long_ids=is_long_ids) write_aero_in_flutter, write_aero_in_gust = self._find_aero_location() self._write_flutter(bdf_file, size, is_double, write_aero_in_flutter, is_long_ids=is_long_ids) self._write_gust(bdf_file, size, is_double, write_aero_in_gust, is_long_ids=is_long_ids) self._write_thermal(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_thermal_materials(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_constraints(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_optimization(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_tables(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_sets(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_superelements(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_contact(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_parametric(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_rejects(bdf_file, size, is_double, is_long_ids=is_long_ids) self._write_coords(bdf_file, size, is_double, is_long_ids=is_long_ids) def _write_constraints(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the constraint cards sorted by ID""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.suport or self.suport1: bdf_file.write('$CONSTRAINTS\n') for suport in self.suport: bdf_file.write(suport.write_card(size, is_double)) for unused_suport_id, suport in sorted(self.suport1.items()): bdf_file.write(suport.write_card(size, is_double)) if self.spcs or self.spcadds or self.spcoffs: #bdf_file.write('$SPCs\n') #str_spc = str(self.spcObject) # old #if str_spc: #bdf_file.write(str_spc) #else: bdf_file.write('$SPCs\n') for (unused_id, spcadds) in sorted(self.spcadds.items()): for spcadd in spcadds: bdf_file.write(str(spcadd)) for (unused_id, spcs) in sorted(self.spcs.items()): for spc in spcs: bdf_file.write(str(spc)) for (unused_id, spcoffs) in sorted(self.spcoffs.items()): for spc in spcoffs: bdf_file.write(str(spc)) if self.mpcs or self.mpcadds: bdf_file.write('$MPCs\n') for (unused_id, mpcadds) in sorted(self.mpcadds.items()): for mpcadd in mpcadds: bdf_file.write(str(mpcadd)) for (unused_id, mpcs) in sorted(self.mpcs.items()): for mpc in mpcs: bdf_file.write(mpc.write_card(size, is_double)) def _write_contact(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the contact cards sorted by ID""" is_contact = (self.bcrparas or self.bctadds or self.bctparas or self.bctsets or self.bsurf or self.bsurfs or self.bconp or self.blseg) if is_contact: bdf_file.write('$CONTACT\n') for (unused_id, bcrpara) in sorted(self.bcrparas.items()): bdf_file.write(bcrpara.write_card(size, is_double)) for (unused_id, bctadds) in sorted(self.bctadds.items()): bdf_file.write(bctadds.write_card(size, is_double)) for (unused_id, bctpara) in sorted(self.bctparas.items()): bdf_file.write(bctpara.write_card(size, is_double)) for (unused_id, bctset) in sorted(self.bctsets.items()): bdf_file.write(bctset.write_card(size, is_double)) for (unused_id, bsurfi) in sorted(self.bsurf.items()): bdf_file.write(bsurfi.write_card(size, is_double)) for (unused_id, bsurfsi) in sorted(self.bsurfs.items()): bdf_file.write(bsurfsi.write_card(size, is_double)) for (unused_id, bconp) in sorted(self.bconp.items()): bdf_file.write(bconp.write_card(size, is_double)) for (unused_id, blseg) in sorted(self.blseg.items()): bdf_file.write(blseg.write_card(size, is_double)) def _write_coords(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the coordinate cards in a sorted order""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if len(self.coords) > 1: bdf_file.write('$COORDS\n') for (unused_id, coord) in sorted(self.coords.items()): if unused_id != 0: try: bdf_file.write(coord.write_card(size, is_double)) except RuntimeError: bdf_file.write(coord.write_card(16, is_double)) def _write_dmigs(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """ Writes the DMIG cards Parameters ---------- size : int large field (16) or small field (8) """ for (unused_name, dmig) in sorted(self.dmigs.items()): bdf_file.write(dmig.write_card(size, is_double)) for (unused_name, dmi) in sorted(self.dmis.items()): bdf_file.write(dmi.write_card(size, is_double)) for (unused_name, dmij) in sorted(self.dmijs.items()): bdf_file.write(dmij.write_card(size, is_double)) for (unused_name, dmiji) in sorted(self.dmijis.items()): bdf_file.write(dmiji.write_card(size, is_double)) for (unused_name, dmik) in sorted(self.dmiks.items()): bdf_file.write(dmik.write_card(size, is_double)) for (unused_name, dmiax) in sorted(self.dmiax.items()): bdf_file.write(dmiax.write_card(size, is_double)) def _write_dynamic(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the dynamic cards sorted by ID""" is_dynamic = (self.dareas or self.dphases or self.nlparms or self.frequencies or self.methods or self.cMethods or self.tsteps or self.tstepnls or self.transfer_functions or self.delays or self.rotors or self.tics or self.nlpcis) if is_dynamic: bdf_file.write('$DYNAMIC\n') for (unused_id, method) in sorted(self.methods.items()): bdf_file.write(method.write_card(size, is_double)) for (unused_id, cmethod) in sorted(self.cMethods.items()): bdf_file.write(cmethod.write_card(size, is_double)) for (unused_id, darea) in sorted(self.dareas.items()): bdf_file.write(darea.write_card(size, is_double)) for (unused_id, dphase) in sorted(self.dphases.items()): bdf_file.write(dphase.write_card(size, is_double)) for (unused_id, nlparm) in sorted(self.nlparms.items()): bdf_file.write(nlparm.write_card(size, is_double)) for (unused_id, nlpci) in sorted(self.nlpcis.items()): bdf_file.write(nlpci.write_card(size, is_double)) for (unused_id, tstep) in sorted(self.tsteps.items()): bdf_file.write(tstep.write_card(size, is_double)) for (unused_id, tstepnl) in sorted(self.tstepnls.items()): bdf_file.write(tstepnl.write_card(size, is_double)) for (unused_id, freqs) in sorted(self.frequencies.items()): for freq in freqs: bdf_file.write(freq.write_card(size, is_double)) for (unused_id, delay) in sorted(self.delays.items()): bdf_file.write(delay.write_card(size, is_double)) for (unused_id, rotor) in sorted(self.rotors.items()): bdf_file.write(rotor.write_card(size, is_double)) for (unused_id, tic) in sorted(self.tics.items()): bdf_file.write(tic.write_card(size, is_double)) for (unused_id, tfs) in sorted(self.transfer_functions.items()): for transfer_function in tfs: bdf_file.write(transfer_function.write_card(size, is_double)) def _write_mesh_long_ids_size(self, size: bool, is_long_ids: bool) -> Tuple[int, bool]: """helper method""" if is_long_ids and size == 16 or is_long_ids is False: return size, is_long_ids if size == 16 and is_long_ids is None or self.is_long_ids: size = 16 is_long_ids = True else: is_long_ids = False return size, is_long_ids def _write_loads(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the load cards sorted by ID""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.load_combinations or self.loads or self.tempds: bdf_file.write('$LOADS\n') for (key, load_combinations) in sorted(self.load_combinations.items()): for load_combination in load_combinations: try: bdf_file.write(load_combination.write_card(size, is_double)) except: print('failed printing load...type=%s key=%r' % (load_combination.type, key)) raise for (key, loadcase) in sorted(self.loads.items()): for load in loadcase: try: bdf_file.write(load.write_card(size, is_double)) except: print('failed printing load...type=%s key=%r' % (load.type, key)) raise for unused_key, tempd in sorted(self.tempds.items()): bdf_file.write(tempd.write_card(size, is_double)) self._write_dloads(bdf_file, size=size, is_double=is_double, is_long_ids=is_long_ids) def _write_dloads(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the dload cards sorted by ID""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.dloads or self.dload_entries: bdf_file.write('$DLOADS\n') for (key, loadcase) in sorted(self.dloads.items()): for load in loadcase: try: bdf_file.write(load.write_card(size, is_double)) except: print('failed printing load...type=%s key=%r' % (load.type, key)) raise for (key, loadcase) in sorted(self.dload_entries.items()): for load in loadcase: try: bdf_file.write(load.write_card(size, is_double)) except: print('failed printing load...type=%s key=%r' % (load.type, key)) raise def _write_masses(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the mass cards sorted by ID""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.properties_mass: bdf_file.write('$PROPERTIES_MASS\n') for (pid, mass) in sorted(self.properties_mass.items()): try: bdf_file.write(mass.write_card(size, is_double)) except: print('failed printing mass property...' 'type=%s eid=%s' % (mass.type, pid)) raise if self.masses: bdf_file.write('$MASSES\n') for (eid, mass) in sorted(self.masses.items()): try: bdf_file.write(mass.write_card(size, is_double)) except: print('failed printing masses...' 'type=%s eid=%s' % (mass.type, eid)) raise def _write_materials(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the materials in a sorted order""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) is_big_materials = hasattr(self, 'big_materials') and self.big_materials is_materials = (self.materials or self.hyperelastic_materials or self.creep_materials or self.MATS1 or self.MATS3 or self.MATS8 or self.MATT1 or self.MATT2 or self.MATT3 or self.MATT4 or self.MATT5 or self.MATT8 or self.MATT9 or self.nxstrats or is_big_materials) if is_materials: bdf_file.write('$MATERIALS\n') for (unused_mid, material) in sorted(self.materials.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.hyperelastic_materials.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.creep_materials.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATS1.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATS3.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATS8.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT1.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT2.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT3.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT4.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT5.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT8.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_mid, material) in sorted(self.MATT9.items()): bdf_file.write(material.write_card(size, is_double)) for (unused_sid, nxstrat) in sorted(self.nxstrats.items()): bdf_file.write(nxstrat.write_card(size, is_double)) if is_big_materials: for unused_mid, mat in sorted(self.big_materials.items()): bdf_file.write(mat.write_card_16(is_double)) def _write_nodes(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the NODE-type cards""" if self.spoints: bdf_file.write('$SPOINTS\n') bdf_file.write(write_xpoints('SPOINT', self.spoints)) if self.epoints: bdf_file.write('$EPOINTS\n') bdf_file.write(write_xpoints('EPOINT', self.epoints)) if self.points: bdf_file.write('$POINTS\n') for unused_point_id, point in sorted(self.points.items()): bdf_file.write(point.write_card(size, is_double)) if self._is_axis_symmetric: if self.axic: bdf_file.write(self.axic.write_card(size, is_double)) if self.axif: bdf_file.write(self.axif.write_card(size, is_double)) for unused_nid, ringax_pointax in sorted(self.ringaxs.items()): bdf_file.write(ringax_pointax.write_card(size, is_double)) for unused_ringfl, ringfl in sorted(self.ringfl.items()): bdf_file.write(ringfl.write_card(size, is_double)) for unused_nid, gridb in sorted(self.gridb.items()): bdf_file.write(gridb.write_card(size, is_double)) self._write_grids(bdf_file, size=size, is_double=is_double) if self.seqgp: bdf_file.write(self.seqgp.write_card(size, is_double)) #if 0: # not finished #self._write_nodes_associated(bdf_file, size, is_double) def _write_grids(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the GRID-type cards""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.nodes: bdf_file.write('$NODES\n') if self.grdset: bdf_file.write(self.grdset.write_card(size)) if is_long_ids: for (unused_nid, node) in sorted(self.nodes.items()): bdf_file.write(node.write_card_16(is_double)) else: for (unused_nid, node) in sorted(self.nodes.items()): bdf_file.write(node.write_card(size, is_double)) #def _write_nodes_associated(self, bdf_file, size=8, is_double=False): #""" #Writes the NODE-type in associated and unassociated groups. #.. warning:: Sometimes crashes, probably on invalid BDFs. #""" #associated_nodes = set() #for (eid, element) in self.elements.items(): #associated_nodes = associated_nodes.union(set(element.node_ids)) #all_nodes = set(self.nodes.keys()) #unassociated_nodes = list(all_nodes.difference(associated_nodes)) ##missing_nodes = all_nodes.difference( ## TODO: this really shouldn't be a list...??? #associated_nodes = list(associated_nodes) #if associated_nodes: #bdf_file.write('$ASSOCIATED NODES\n') #if self.grdset: #bdf_file.write(self.grdset.write_card(size, is_double)) ## TODO: this really shouldn't be a dictionary...??? #for key, node in sorted(associated_nodes.items()): #bdf_file.write(node.write_card(size, is_double)) #if unassociated_nodes: #bdf_file.write('$UNASSOCIATED NODES\n') #if self.grdset and not associated_nodes: #v(self.grdset.write_card(size, is_double)) #for key, node in sorted(unassociated_nodes.items()): #if key in self.nodes: #bdf_file.write(node.write_card(size, is_double)) #else: #bdf_file.write('$ Missing NodeID=%s' % key) def _write_optimization(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the optimization cards sorted by ID""" is_optimization = (self.dconadds or self.dconstrs or self.desvars or self.ddvals or self.dresps or self.dvprels or self.dvmrels or self.dvcrels or self.doptprm or self.dlinks or self.dequations or self.dtable is not None or self.dvgrids or self.dscreen) if is_optimization: bdf_file.write('$OPTIMIZATION\n') for (unused_id, dconadd) in sorted(self.dconadds.items()): bdf_file.write(dconadd.write_card(size, is_double)) for (unused_id, dconstrs) in sorted(self.dconstrs.items()): for dconstr in dconstrs: bdf_file.write(dconstr.write_card(size, is_double)) for (unused_id, desvar) in sorted(self.desvars.items()): bdf_file.write(desvar.write_card(size, is_double)) for (unused_id, ddval) in sorted(self.ddvals.items()): bdf_file.write(ddval.write_card(size, is_double)) for (unused_id, dlink) in sorted(self.dlinks.items()): bdf_file.write(dlink.write_card(size, is_double)) for (unused_id, dresp) in sorted(self.dresps.items()): bdf_file.write(dresp.write_card(size, is_double)) for (unused_id, dvcrel) in sorted(self.dvcrels.items()): bdf_file.write(dvcrel.write_card(size, is_double)) for (unused_id, dvmrel) in sorted(self.dvmrels.items()): bdf_file.write(dvmrel.write_card(size, is_double)) for (unused_id, dvprel) in sorted(self.dvprels.items()): bdf_file.write(dvprel.write_card(size, is_double)) for (unused_id, dvgrids) in sorted(self.dvgrids.items()): for dvgrid in dvgrids: bdf_file.write(dvgrid.write_card(size, is_double)) for (unused_id, dscreen) in sorted(self.dscreen.items()): bdf_file.write(str(dscreen)) for (unused_id, equation) in sorted(self.dequations.items()): bdf_file.write(str(equation)) if self.dtable is not None: bdf_file.write(self.dtable.write_card(size, is_double)) if self.doptprm is not None: bdf_file.write(self.doptprm.write_card(size, is_double)) def _write_parametric(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the optimization cards sorted by ID""" is_parametric = self.pset or self.pval or self.gmcurv or self.feedge or self.feface if is_parametric: for (unused_id, pset) in sorted(self.pset.items()): bdf_file.write(pset.write_card(size, is_double)) for (unused_adapt_id, pvals) in sorted(self.pval.items()): for pval in pvals: bdf_file.write(pval.write_card(size, is_double)) for (unused_id, gmcurv) in sorted(self.gmcurv.items()): bdf_file.write(gmcurv.write_card(size, is_double)) for (unused_id, gmsurf) in sorted(self.gmsurf.items()): bdf_file.write(gmsurf.write_card(size, is_double)) for (unused_id, feedge) in sorted(self.feedge.items()): bdf_file.write(feedge.write_card(size, is_double)) for (unused_id, feface) in sorted(self.feface.items()): bdf_file.write(feface.write_card(size, is_double)) def _write_params(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the PARAM cards""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.params or self.dti: bdf_file.write('$PARAMS\n') # type: List[str] for unused_name, dti in sorted(self.dti.items()): bdf_file.write(dti.write_card(size=size, is_double=is_double)) for (unused_key, param) in sorted(self.params.items()): bdf_file.write(param.write_card(size, is_double)) def _write_properties(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the properties in a sorted order""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) is_big_properties = hasattr(self, 'big_properties') and self.big_properties is_properties = (self.properties or self.pelast or self.pdampt or self.pbusht or is_big_properties) if is_properties: bdf_file.write('$PROPERTIES\n') prop_groups = (self.properties, self.pelast, self.pdampt, self.pbusht) if is_long_ids: for prop_group in prop_groups: for unused_pid, prop in sorted(prop_group.items()): bdf_file.write(prop.write_card_16(is_double)) #except: #print('failed printing property type=%s' % prop.type) #raise else: for prop_group in prop_groups: for unused_pid, prop in sorted(prop_group.items()): bdf_file.write(prop.write_card(size, is_double)) if is_big_properties: for unused_pid, prop in sorted(self.big_properties.items()): bdf_file.write(prop.write_card_16(is_double)) def _write_properties_by_element_type(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """ Writes the properties in a sorted order by property type grouping TODO: Missing some property types. """ size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) is_properties = self.properties or self.pelast or self.pdampt or self.pbusht if not is_properties: return from collections import defaultdict, OrderedDict propertys_class_to_property_types = OrderedDict() # prop_class -> property types propertys_class_to_property_types['spring'] = ['PELAS', 'PELAST'] propertys_class_to_property_types['damper'] = ['PDAMP', 'PDAMPT'] propertys_class_to_property_types['rod'] = ['PROD', 'PTUBE'] propertys_class_to_property_types['bar'] = ['PBAR', 'PBARL', 'PBRSECT'] propertys_class_to_property_types['beam'] = ['PBEAM', 'PBEAML', 'PBMSECT'] propertys_class_to_property_types['bush'] = ['PBUSH', 'PBUSH1D', 'PBUSH2D'] propertys_class_to_property_types['shell'] = ['PSHEAR', 'PSHELL', 'PCOMP', 'PCOMPG'] propertys_class_to_property_types['solid'] = ['PSOLID'] property_type_to_property_class = { #'other' : [], } # the inverse of propertys_class_to_property_types for prop_class, prop_types in propertys_class_to_property_types.items(): for prop_type in prop_types: property_type_to_property_class[prop_type] = prop_class #if is_properties: # put each property object into a class (e.g., CQUAD4 -> PCOMP) properties_by_class = defaultdict(list) prop_groups = (self.properties, self.pelast, self.pdampt, self.pbusht) for properties in prop_groups: for unused_pid, prop in properties.items(): prop_class = property_type_to_property_class[prop.type] print(prop.type, '->', prop_class) properties_by_class[prop_class].append(prop) bdf_file.write('$PROPERTIES\n') for prop_class, prop_types in propertys_class_to_property_types.items(): print(prop_class, prop_types) #for prop_type in prop_types: #if prop_type not in properties_by_class: #continue #print(' ', prop_type) props = properties_by_class[prop_class] if not props: continue bdf_file.write('$' + '-' * 80 + '\n') bdf_file.write('$ %s\n' % prop_class) for prop in props: bdf_file.write(prop.write_card(size, is_double)) bdf_file.write('$' + '-' * 80 + '\n') def _write_rejects(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """ Writes the rejected (processed) cards and the rejected unprocessed cardlines """ if size == 8: print_func = print_card_8 else: print_func = print_card_16 if self.reject_cards: bdf_file.write('$REJECT_CARDS\n') for reject_card in self.reject_cards: try: bdf_file.write(print_func(reject_card)) except RuntimeError: for field in reject_card: if field is not None and '=' in field: raise SyntaxError('cannot reject equal signed ' 'cards\ncard=%s\n' % reject_card) raise if self.reject_lines: bdf_file.write('$REJECT_LINES\n') for reject_lines in self.reject_lines: if isinstance(reject_lines, (list, tuple)): for reject in reject_lines: reject2 = reject.rstrip() if reject2: bdf_file.write('%s\n' % reject2) elif isinstance(reject_lines, str): reject2 = reject_lines.rstrip() if reject2: bdf_file.write('%s\n' % reject2) else: raise TypeError(reject_lines) def _write_rigid_elements(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the rigid elements in a sorted order""" size, is_long_ids = self._write_mesh_long_ids_size(size, is_long_ids) if self.rigid_elements: bdf_file.write('$RIGID ELEMENTS\n') if is_long_ids: for (eid, element) in sorted(self.rigid_elements.items()): try: bdf_file.write(element.write_card_16(is_double)) except: print('failed printing element...' 'type=%s eid=%s' % (element.type, eid)) raise else: for (eid, element) in sorted(self.rigid_elements.items()): try: bdf_file.write(element.write_card(size, is_double)) except: print('failed printing element...' 'type=%s eid=%s' % (element.type, eid)) raise if self.plotels: bdf_file.write('$PLOT ELEMENTS\n') for (eid, element) in sorted(self.plotels.items()): bdf_file.write(element.write_card(size, is_double)) def _write_sets(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the SETx cards sorted by ID""" is_sets = (self.sets or self.asets or self.omits or self.bsets or self.csets or self.qsets or self.usets) if is_sets: bdf_file.write('$SETS\n') # type: List[str] for (unused_id, set_obj) in sorted(self.sets.items()): # dict bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.asets: # list bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.omits: # list bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.bsets: # list bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.csets: # list bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.qsets: # list bdf_file.write(set_obj.write_card(size, is_double)) for unused_name, usets in sorted(self.usets.items()): # dict for set_obj in usets: # list bdf_file.write(set_obj.write_card(size, is_double)) def _write_superelements(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """ Writes the Superelement cards Parameters ---------- size : int large field (16) or small field (8) """ is_sets = (self.se_sets or self.se_bsets or self.se_csets or self.se_qsets or self.se_usets) if is_sets: bdf_file.write('$SUPERELEMENTS\n') # type: List[str] for set_obj in self.se_bsets: # list bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.se_csets: # list bdf_file.write(set_obj.write_card(size, is_double)) for set_obj in self.se_qsets: # list bdf_file.write(set_obj.write_card(size, is_double)) for (unused_set_id, set_obj) in sorted(self.se_sets.items()): # dict bdf_file.write(set_obj.write_card(size, is_double)) for unused_name, usets in sorted(self.se_usets.items()): # dict for set_obj in usets: # list bdf_file.write(set_obj.write_card(size, is_double)) for suport in self.se_suport: # list bdf_file.write(suport.write_card(size, is_double)) for unused_seid, csuper in sorted(self.csuper.items()): bdf_file.write(csuper.write_card(size, is_double)) for unused_seid, csupext in sorted(self.csupext.items()): bdf_file.write(csupext.write_card(size, is_double)) for unused_seid, sebulk in sorted(self.sebulk.items()): bdf_file.write(sebulk.write_card(size, is_double)) for unused_seid, seconct in sorted(self.seconct.items()): bdf_file.write(seconct.write_card(size, is_double)) for unused_seid, sebndry in sorted(self.sebndry.items()): bdf_file.write(sebndry.write_card(size, is_double)) for unused_seid, seelt in sorted(self.seelt.items()): bdf_file.write(seelt.write_card(size, is_double)) for unused_seid, seexcld in sorted(self.seexcld.items()): bdf_file.write(seexcld.write_card(size, is_double)) for unused_seid, selabel in sorted(self.selabel.items()): bdf_file.write(selabel.write_card(size, is_double)) for unused_seid, seloc in sorted(self.seloc.items()): bdf_file.write(seloc.write_card(size, is_double)) for unused_seid, seload in sorted(self.seload.items()): bdf_file.write(seload.write_card(size, is_double)) for unused_seid, sempln in sorted(self.sempln.items()): bdf_file.write(sempln.write_card(size, is_double)) for unused_setid, senqset in sorted(self.senqset.items()): bdf_file.write(senqset.write_card(size, is_double)) for unused_seid, setree in sorted(self.setree.items()): bdf_file.write(setree.write_card(size, is_double)) def _write_tables(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the TABLEx cards sorted by ID""" if self.tables or self.tables_d or self.tables_m or self.tables_sdamping: bdf_file.write('$TABLES\n') # type: List[str] for (unused_id, table) in sorted(self.tables.items()): bdf_file.write(table.write_card(size, is_double)) for (unused_id, table) in sorted(self.tables_d.items()): bdf_file.write(table.write_card(size, is_double)) for (unused_id, table) in sorted(self.tables_m.items()): bdf_file.write(table.write_card(size, is_double)) for (unused_id, table) in sorted(self.tables_sdamping.items()): bdf_file.write(table.write_card(size, is_double)) if self.random_tables: bdf_file.write('$RANDOM TABLES\n') for (unused_id, table) in sorted(self.random_tables.items()): bdf_file.write(table.write_card(size, is_double)) def _write_thermal(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the thermal cards""" # PHBDY is_thermal = (self.phbdys or self.convection_properties or self.bcs or self.views or self.view3ds or self.radset or self.radcavs) if is_thermal: bdf_file.write('$THERMAL\n') for (unused_key, phbdy) in sorted(self.phbdys.items()): bdf_file.write(phbdy.write_card(size, is_double)) #for unused_key, prop in sorted(self.thermal_properties.items()): # bdf_file.write(str(prop)) for (unused_key, prop) in sorted(self.convection_properties.items()): bdf_file.write(prop.write_card(size, is_double)) # BCs for (unused_key, bcs) in sorted(self.bcs.items()): for boundary_condition in bcs: # list bdf_file.write(boundary_condition.write_card(size, is_double)) for (unused_key, view) in sorted(self.views.items()): bdf_file.write(view.write_card(size, is_double)) for (unused_key, view3d) in sorted(self.view3ds.items()): bdf_file.write(view3d.write_card(size, is_double)) if self.radset: bdf_file.write(self.radset.write_card(size, is_double)) for unused_icavity, radcav in self.radcavs.items(): bdf_file.write(radcav.write_card(size, is_double)) def _write_thermal_materials(self, bdf_file: Any, size: int=8, is_double: bool=False, is_long_ids: Optional[bool]=None) -> None: """Writes the thermal materials in a sorted order""" if self.thermal_materials: bdf_file.write('$THERMAL MATERIALS\n') for (unused_mid, material) in sorted(self.thermal_materials.items()): bdf_file.write(material.write_card(size, is_double))
49.081599
116
0.590055
4c0d3fa49e5ece2ecf9e464bb9bad46ebf95c4ac
11,355
py
Python
sunpy/net/dataretriever/client.py
drewleonard42/sunpy
79ca90a032213d82d42a3657a693b20b99b22464
[ "BSD-2-Clause" ]
null
null
null
sunpy/net/dataretriever/client.py
drewleonard42/sunpy
79ca90a032213d82d42a3657a693b20b99b22464
[ "BSD-2-Clause" ]
null
null
null
sunpy/net/dataretriever/client.py
drewleonard42/sunpy
79ca90a032213d82d42a3657a693b20b99b22464
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import copy import os from collections import OrderedDict, namedtuple from functools import partial import pathlib import numpy as np import astropy.table import astropy.units as u import sunpy from sunpy.time import TimeRange from sunpy.util import replacement_filename from sunpy import config from sunpy.net.base_client import BaseClient from sunpy.net.download import Downloader, Results from sunpy.net.vso.attrs import Time, Wavelength, _Range TIME_FORMAT = config.get("general", "time_format") __all__ = ['QueryResponse', 'GenericClient'] def simple_path(path, sock, url): return path class QueryResponseBlock(object): """ Represents url, source along with other information """ def __init__(self, map0, url, time=None): """ Parameters ---------- map0 : Dict with relevant information url : Uniform Resource Locator """ self._map = map0 self.source = map0.get('source', "Data not Available") self.provider = map0.get('provider', "Data not Available") self.physobs = map0.get('physobs', "Data not Available") self.instrument = map0.get('instrument', "Data not Available") self.url = url self.time = TimeRange(map0.get('Time_start'), map0.get('Time_end')) if time is None else time self.wave = map0.get('wavelength', np.NaN) def iter_urls(amap, url_list, time): """Helper Function""" for aurl, t in zip(url_list, time): tmp = QueryResponseBlock(amap, aurl, t) yield tmp class QueryResponse(list): """ Container of QueryResponseBlocks """ def __init__(self, lst): super(QueryResponse, self).__init__(lst) @classmethod def create(cls, amap, lst, time=None): if time is None: time = [None] * len(lst) return cls(iter_urls(amap, lst, time)) def time_range(self): """ Returns the time-span for which records are available """ return TimeRange(min(qrblock.time.start for qrblock in self), max(qrblock.time.end for qrblock in self)) def response_block_properties(self): """ Returns a set of class attributes on all the response blocks. """ s = {a if not a.startswith('_') else None for a in dir(self[0])} for resp in self[1:]: s = s.intersection({a if not a.startswith('_') else None for a in dir(resp)}) s.remove(None) return s def __repr__(self): return repr(type(self)) + repr(self._build_table()) def __str__(self): return str(self._build_table()) def _repr_html_(self): return self._build_table()._repr_html_() def _build_table(self): columns = OrderedDict((('Start Time', []), ('End Time', []), ('Source', []), ('Instrument', []), ('Wavelength', []))) for i, qrblock in enumerate(self): columns['Start Time'].append( (qrblock.time.start).strftime(TIME_FORMAT)) columns['End Time'].append( (qrblock.time.end).strftime(TIME_FORMAT)) columns['Source'].append(qrblock.source) columns['Instrument'].append(qrblock.instrument) columns['Wavelength'].append(str(u.Quantity(qrblock.wave))) return astropy.table.Table(columns) class GenericClient(BaseClient): """ Base class for simple web clients for the data retriever module. This class is mainly designed for downloading data from FTP and HTTP type data sources, although should in theory be general enough to get data from any web service. This class has two user facing methods `~sunpy.net.dataretriever.client.GenericClient.search` and `~sunpy.net.dataretriever.client.GenericClient.fetch` the former generates a set of results for files available through the service the client is querying and the latter downloads that data. The `~sunpy.net.dataretriever.client.GenericClient.search` method takes a set of `sunpy.net.attrs` objects and then converts these into a call to `~sunpy.net.dataretriever.client.GenericClient._get_url_for_timerange`. It does this through the `map\\_` dictionary which represents the `~sunpy.net.attrs` objects as a dictionary. """ def __init__(self): self.map_ = {} def _makeargs(self, *args): """ Construct the `map\\_` internal representation of the query. This `map\\_` dictionary is passed through to the `_get_url_for_timerange` method to get the URL results. Parameters ---------- \\*args: `tuple` The query attributes. """ for elem in args: if isinstance(elem, Time): self.map_['TimeRange'] = TimeRange(elem.start, elem.end) self.map_['Time_start'] = elem.start self.map_['Time_end'] = elem.end elif isinstance(elem, _Range): a_min = elem.min a_max = elem.max if a_min == a_max: self.map_[elem.__class__.__name__.lower()] = a_min else: if isinstance(elem, Wavelength): prefix = 'wave' else: prefix = '' minmax = namedtuple("minmax", "{0}min {0}max".format(prefix)) self.map_[elem.__class__.__name__.lower()] = minmax(a_min, a_max) else: if hasattr(elem, 'value'): self.map_[elem.__class__.__name__.lower()] = elem.value else: # This will only get hit if the attr is something like # Extent, which is a unique subclass of Attr. Currently no # unidown Clients support this, so we skip this line. # Anything that hits this will require special code to # convert it into the map_ dict. raise ValueError( "GenericClient can not add {} to the map_ dictionary to pass " "to the Client.".format(elem.__class__.__name__)) # pragma: no cover self._makeimap() @classmethod def _get_url_for_timerange(cls, timerange, **kwargs): """ Method which generates URL results from a timerange and the `map\\_` dictionary. Parameters ---------- timerange: `sunpy.time.TimeRange` The timerange to extract the URLs for. \\*\\*kwargs: `dict` Any extra keywords to refine the search. Generated from the attributes passed to `~sunpy.net.dataretriever.client.GenericClient.search`. """ raise NotImplementedError def _makeimap(self): """ Add client specific information to the _map dict. Normally this is extra metadata which is not downloaded, but known a priori. """ raise NotImplementedError @classmethod def _can_handle_query(cls, *query): """ Method the `sunpy.net.fido_factory.UnifiedDownloaderFactory` class uses to dispatch queries to this Client. """ raise NotImplementedError def _get_full_filenames(self, qres, filenames, path): """ Download a set of results. Parameters ---------- qres : `~sunpy.net.dataretriever.QueryResponse` Results to download. filenames : list List of base filenames (ex - "xyz.txt") path : str Path to download files to Returns ------- List of full pathnames for each file (download_directory + filename) """ # Create function to compute the filepath to download to if not set default_dir = sunpy.config.get("downloads", "download_dir") paths = [] for i, filename in enumerate(filenames): if path is None: fname = os.path.join(default_dir, '{file}') elif isinstance(path, str) and '{file}' not in path: fname = os.path.join(path, '{file}') temp_dict = qres[i]._map.copy() temp_dict['file'] = filename fname = fname.format(**temp_dict) fname = os.path.expanduser(fname) if os.path.exists(fname): fname = replacement_filename(fname) fname = partial(simple_path, fname) paths.append(fname) return paths def _get_time_for_url(self, urls): """ This method allows clients to customise the timerange displayed for each URL. It should return a sunpy.time.TimeRange object per URL. """ return NotImplemented def search(self, *args, **kwargs): """ Query this client for a list of results. Parameters ---------- \\*args: `tuple` `sunpy.net.attrs` objects representing the query. """ GenericClient._makeargs(self, *args, **kwargs) kwergs = copy.copy(self.map_) kwergs.update(kwargs) urls = self._get_url_for_timerange( self.map_.get('TimeRange'), **kwergs) if urls: times = self._get_time_for_url(urls) if times and times is not NotImplemented: return QueryResponse.create(self.map_, urls, times) return QueryResponse.create(self.map_, urls) def fetch(self, qres, path=None, error_callback=None, **kwargs): """ Download a set of results. Parameters ---------- qres : `~sunpy.net.dataretriever.QueryResponse` Results to download. path : string or pathlib.Path Path to the download directory error_callback : Function Callback function for error during downloads Returns ------- Results Object """ # Check for type of path if path is not None: if isinstance(path, pathlib.Path): path = str(path.absolute()) elif not isinstance(path, str): err = "path should be either 'pathlib.Path' or 'str'. "\ "Got '{}'.".format(type(path)) raise TypeError(err) urls = [qrblock.url for qrblock in qres] filenames = [url.split('/')[-1] for url in urls] paths = self._get_full_filenames(qres, filenames, path) res = Results(lambda x: None, 0, lambda map_: self._link(map_)) dobj = Downloader(max_conn=len(urls), max_total=len(urls)) # We cast to list here in list(zip... to force execution of # res.require([x]) at the start of the loop. for aurl, ncall, fname in list(zip(urls, map(lambda x: res.require([x]), urls), paths)): dobj.download(aurl, fname, ncall, error_callback) return res def _link(self, map_): """Helper Function""" paths = [] for k, v in map_.items(): paths.append(map_[k]['path']) return paths
32.913043
93
0.579568
985684c0b72bed6996bbe60c27150d194a82a223
4,321
py
Python
reinforcement/valueIterationAgents.py
yuhang-lin/Reinforcement-Learning-Pacman
c178ce5f06f4132992c254c75c1e43e97348da47
[ "MIT" ]
null
null
null
reinforcement/valueIterationAgents.py
yuhang-lin/Reinforcement-Learning-Pacman
c178ce5f06f4132992c254c75c1e43e97348da47
[ "MIT" ]
null
null
null
reinforcement/valueIterationAgents.py
yuhang-lin/Reinforcement-Learning-Pacman
c178ce5f06f4132992c254c75c1e43e97348da47
[ "MIT" ]
null
null
null
# valueIterationAgents.py # ----------------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). import mdp, util from learningAgents import ValueEstimationAgent class ValueIterationAgent(ValueEstimationAgent): """ * Please read learningAgents.py before reading this.* A ValueIterationAgent takes a Markov decision process (see mdp.py) on initialization and runs value iteration for a given number of iterations using the supplied discount factor. """ def __init__(self, mdp, discount = 0.9, iterations = 100): """ Your value iteration agent should take an mdp on construction, run the indicated number of iterations and then act according to the resulting policy. Some useful mdp methods you will use: mdp.getStates() mdp.getPossibleActions(state) mdp.getTransitionStatesAndProbs(state, action) mdp.getReward(state, action, nextState) mdp.isTerminal(state) """ self.mdp = mdp self.discount = discount self.iterations = iterations self.values = util.Counter() # A Counter is a dict with default 0 # Write value iteration code here "*** YOUR CODE HERE ***" for i in range(self.iterations): new_values = util.Counter() for state in self.mdp.getStates(): if self.mdp.isTerminal(state): continue action_values = [] for action in self.mdp.getPossibleActions(state): sum = 0 for next_state, prob in self.mdp.getTransitionStatesAndProbs(state, action): sum += prob * (self.mdp.getReward(state, action, next_state) + self.discount * self.values[next_state]) action_values.append(sum) new_values[state] = max(action_values) self.values = new_values # Update values in batch def getValue(self, state): """ Return the value of the state (computed in __init__). """ return self.values[state] def computeQValueFromValues(self, state, action): """ Compute the Q-value of action in state from the value function stored in self.values. """ "*** YOUR CODE HERE ***" sum = 0 for next_state, prob in self.mdp.getTransitionStatesAndProbs(state, action): sum += prob * (self.mdp.getReward(state, action, next_state) + self.discount * self.values[next_state]) return sum def computeActionFromValues(self, state): """ The policy is the best action in the given state according to the values currently stored in self.values. You may break ties any way you see fit. Note that if there are no legal actions, which is the case at the terminal state, you should return None. """ "*** YOUR CODE HERE ***" actions = self.mdp.getPossibleActions(state) best_action = None action_values = util.Counter() if len(actions) > 0: for action in self.mdp.getPossibleActions(state): action_values[action] = self.computeQValueFromValues(state, action) best_action = action_values.argMax() return best_action def getPolicy(self, state): return self.computeActionFromValues(state) def getAction(self, state): "Returns the policy at the state (no exploration)." return self.computeActionFromValues(state) def getQValue(self, state, action): return self.computeQValueFromValues(state, action)
39.642202
127
0.629715
472fb9cb14aac89eea64bcbddca688d1afe7ecca
1,803
py
Python
ipproxytool/spiders/proxy/usproxy.py
Victorchi/proxy
caabc2bfc6ee7fd2eaed76f5630028e4e3117de3
[ "MIT" ]
null
null
null
ipproxytool/spiders/proxy/usproxy.py
Victorchi/proxy
caabc2bfc6ee7fd2eaed76f5630028e4e3117de3
[ "MIT" ]
1
2022-03-02T14:53:50.000Z
2022-03-02T14:53:50.000Z
ipproxytool/spiders/proxy/usproxy.py
Victorchi/proxy
caabc2bfc6ee7fd2eaed76f5630028e4e3117de3
[ "MIT" ]
1
2017-12-05T06:00:09.000Z
2017-12-05T06:00:09.000Z
# coding=utf-8 import re from proxy import Proxy from .basespider import BaseSpider class UsProxySpider(BaseSpider): name = 'usproxy' def __init__(self, *a, **kwargs): super(UsProxySpider, self).__init__(*a, **kwargs) self.urls = [ 'http://www.us-proxy.org/', 'http://free-proxy-list.net/uk-proxy.html', 'http://www.socks-proxy.net/', ] self.headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'en-US,en;q=0.5', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'Host': 'www.us-proxy.org', 'If-Modified-Since': 'Tue, 24 Jan 2017 03:32:01 GMT', 'Referer': 'http://www.sslproxies.org/', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:50.0) Gecko/20100101 Firefox/50.0', } self.init() def parse_page(self, response): datas = response.xpath('//tbody/tr') for data in datas: ip = data.xpath('td[1]/text()').extract_first() port = data.xpath('td[2]/text()').extract_first() country = data.xpath('td[3]/text()').extract_first() anonymity = data.xpath('td[5]/text()').extract_first() https = data.xpath('td[7]/text()').extract_first() proxy = Proxy() proxy.set_value( ip = ip, port = port, country = country, anonymity = anonymity, https = https, source = self.name, ) self.add_proxy(proxy)
33.388889
111
0.510261
6a34afd951e5ffae5cab2768911cbe3fe66af99d
28,995
py
Python
flexx/app/_component2.py
tbnorth/flexx
458823ccd554e57b1db709e97dce287db6b06c80
[ "BSD-2-Clause" ]
null
null
null
flexx/app/_component2.py
tbnorth/flexx
458823ccd554e57b1db709e97dce287db6b06c80
[ "BSD-2-Clause" ]
null
null
null
flexx/app/_component2.py
tbnorth/flexx
458823ccd554e57b1db709e97dce287db6b06c80
[ "BSD-2-Clause" ]
null
null
null
""" Implementation of the app Component classes (LocalComponent, ProxyComponent, StubComponent), which form the basis for the PyComponent and JsComponent classes (and their proxies). """ import sys from pscript import window, JSString, this_is_js from .. import event from ..event import Component, loop, Dict from ..event._component import (with_metaclass, ComponentMeta) from ..event._property import Property from ..event._emitter import EmitterDescriptor from ..event._action import ActionDescriptor from ..event._js import create_js_component_class from ._asset import get_mod_name from . import logger # The clientcore module is a PScript module that forms the core of the # client-side of Flexx. We import the serializer instance, and can use # that name in both Python and JS. Of course, in JS it's just the # corresponding instance from the module that's being used. # By using something from clientcore in JS here, we make clientcore a # dependency of the the current module. from ._clientcore import serializer, bsdf manager = None # Set by __init__ to prevent circular dependencies def make_proxy_action(action): # Note: the flx_prefixes are picked up by the code in flexx.event that # compiles component classes, so it can fix /insert the name for JS. flx_name = action._name def flx_proxy_action(self, *args): self._proxy_action(flx_name, *args) return self flx_proxy_action.__doc__ = action.__doc__ flx_proxy_action.__qualname__ = 'flx_proxy_action' return flx_proxy_action # ActionDescriptor(flx_proxy_action, flx_name, '') def make_proxy_emitter(emitter): # Note: the flx_prefixes are picked up by the code in flexx.event that # compiles component classes, so it can fix /insert the name for JS. flx_name = emitter._name def flx_proxy_emitter(self, *args): self._proxy_emitter(flx_name, *args) flx_proxy_emitter.__doc__ = emitter.__doc__ flx_proxy_emitter.__qualname__ = 'flx_proxy_emitter' return flx_proxy_emitter # EmitterDescriptor(flx_proxy_emitter, flx_name, '') def get_component_classes(): """ Get a list of all known PyComponent and JsComponent subclasses. """ return [c for c in AppComponentMeta.CLASSES] def meta_repr(cls): """ A repr function to provide some context on the purpose of a class. """ if issubclass(cls, PyComponent): prefix = 'PyComponent class' elif issubclass(cls, PyComponent.JS): prefix = 'proxy PyComponent class for JS ' elif issubclass(cls, JsComponent): prefix = 'proxy JsComponent class' elif issubclass(cls, JsComponent.JS): prefix = 'JsComponent class for JS' else: prefix = 'class' return "<%s '%s.%s'>" % (prefix, cls.__module__, cls.__name__) class LocalProperty(Property): """ A generic property that is only present at the local side of the component, i.e. not at the proxy. Intended for properties that the other side should not care about, and/or for wich syncing would be problematic, e.g. for performance or because it contains components that we want to keep local. """ class ComponentMetaJS(ComponentMeta): """ Meta class for autogenerated classes intended for JavaScript: Proxy PyComponent and local JsComponents. """ __repr__ = meta_repr def __init__(cls, name, *args): name = name.encode() if sys.version_info[0] == 2 else name return super().__init__(name, *args) class AppComponentMeta(ComponentMeta): """ Meta class for PyComponent and JsComponent that generate a matching class for JS. """ # Keep track of all subclasses CLASSES = [] __repr__ = meta_repr def _init_hook1(cls, cls_name, bases, dct): # cls is the class to be # cls.__dict__ is its current dict, which may contain inherited items # dct is the dict represented by exactly this class (no inheritance) # Get CSS from the class now CSS = dct.get('CSS', '') # Create corresponding class for JS if issubclass(cls, LocalComponent): cls._make_js_proxy_class(cls_name, bases, dct) elif issubclass(cls, ProxyComponent): cls._make_js_local_class(cls_name, bases, dct) else: # pragma: no cover raise TypeError('Expected class to inherit from ' 'LocalComponent or ProxyComponent.') # Write __jsmodule__; an optimization for our module/asset system cls.__jsmodule__ = get_mod_name(sys.modules[cls.__module__]) cls.JS.__jsmodule__ = cls.__jsmodule__ # need it in JS too cls.JS.__module__ = cls.__module__ # Set CSS cls.CSS = CSS try: delattr(cls.JS, 'CSS') except AttributeError: pass def _init_hook2(cls, cls_name, bases, dct): # Set __proxy_properties__ and __emitters__ if issubclass(cls, LocalComponent): cls.__proxy_properties__ = cls.JS.__properties__ cls.JS.__emitters__ = cls.__emitters__ else: cls.JS.__proxy_properties__ = cls.__properties__ cls.__emitters__ = cls.JS.__emitters__ # Set JS on the JS class cls.JS.CODE = cls._get_js() # Register this class. The classes in this list will be automatically # "pushed to JS" in a JIT fashion. We have to make sure that we include # the code for base classes not in this list, which we do in _get_js(). AppComponentMeta.CLASSES.append(cls) def _make_js_proxy_class(cls, cls_name, bases, dct): for c in bases: assert not issubclass(cls, ProxyComponent) # Fix inheritance for JS variant jsbases = [getattr(b, 'JS') for b in cls.__bases__ if hasattr(b, 'JS')] if not jsbases: jsbases.append(ProxyComponent) jsdict = {} # Copy properties from this class to the JS proxy class. # in Python 3.6 we iterate in the order in which the items are defined, for name, val in dct.items(): if name.startswith('__') and name.endswith('__'): continue elif isinstance(val, LocalProperty): pass # do not copy over elif isinstance(val, Property): jsdict[name] = val # properties are the same elif isinstance(val, EmitterDescriptor): jsdict[name] = make_proxy_emitter(val) # proxy emitter elif isinstance(val, ActionDescriptor): jsdict[name] = make_proxy_action(val) # proxy actions else: pass # no reactions/functions/class attributes on the proxy side # Create JS class cls.JS = ComponentMetaJS(cls_name, tuple(jsbases), jsdict) def _make_js_local_class(cls, cls_name, bases, dct): for c in bases: assert not issubclass(cls, LocalComponent) # Fix inheritance for JS variant jsbases = [getattr(b, 'JS') for b in cls.__bases__ if hasattr(b, 'JS')] if not jsbases: jsbases.append(LocalComponent) jsdict = {} # Names that should stay in Python in addition to magic methods py_only = ['_repr_html_'] # Copy properties from this class to the JS proxy class. # in Python 3.6 we iterate in the order in which the items are defined, for name, val in list(dct.items()): # Skip? if isinstance(val, classmethod): continue elif name in py_only or name.startswith('__') and name.endswith('__'): if name not in ('__init__', '__linenr__'): continue # Move over to JS if (isinstance(val, Property) or (callable(val) and name.endswith('_validate'))): jsdict[name] = val # properties are the same if isinstance(val, LocalProperty): delattr(cls, name) dct.pop(name, None) elif isinstance(val, EmitterDescriptor): # JS part gets the proper emitter, Py side gets a proxy jsdict[name] = val setattr(cls, name, make_proxy_emitter(val)) elif isinstance(val, ActionDescriptor): # JS part gets the proper action, Py side gets a proxy jsdict[name] = val setattr(cls, name, make_proxy_action(val)) else: # Move attribute from the Py class to the JS class jsdict[name] = val delattr(cls, name) dct.pop(name, None) # is this necessary? # Create JS class cls.JS = ComponentMetaJS(cls_name, tuple(jsbases), jsdict) def _get_js(cls): """ Get source code for this class plus the meta info about the code. """ # Since classes are defined in a module, we can safely name the classes # by their plain name. cls_name = cls.__name__ base_class = cls.JS.mro()[1] base_class_name = '%s.prototype' % base_class.__name__ code = [] # Add this class c = create_js_component_class(cls.JS, cls_name, base_class_name) meta = c.meta code.append(c) # code.append(c.replace('var %s =' % cls_name, # 'var %s = flexx.classes.%s =' % (cls_name, cls_name), 1)) # Add JS version of the base classes - but only once if cls.__name__ == 'JsComponent': c = cls._get_js_of_base_classes() for k in ['vars_unknown', 'vars_global', 'std_functions', 'std_methods']: meta[k].update(c.meta[k]) code.insert(0, c) # Return with meta info js = JSString('\n'.join(code)) js.meta = meta return js def _get_js_of_base_classes(cls): """ Get JS for BaseAppComponent, LocalComponent, and ProxyComponent. """ c1 = create_js_component_class(BaseAppComponent, 'BaseAppComponent', 'Component.prototype') c2 = create_js_component_class(LocalComponent, 'LocalComponent', 'BaseAppComponent.prototype') c3 = create_js_component_class(ProxyComponent, 'ProxyComponent', 'BaseAppComponent.prototype') c4 = create_js_component_class(StubComponent, 'StubComponent', 'BaseAppComponent.prototype') meta = c1.meta for k in ['vars_unknown', 'vars_global', 'std_functions', 'std_methods']: for c in (c2, c3, c4): meta[k].update(c.meta[k]) js = JSString('\n'.join([c1, c2, c3, c4])) js.meta = meta return js class BaseAppComponent(Component): """ Abstract class for Component classes that can be "shared" between Python and JavaScript. The concrete implementations are: * The ``PyComponent`` class, which operates in Python, but has a proxy object in JavaSript to which properties are synced and from which actions can be invoked. * The ``JsComponent`` class, which operates in JavaScript, but can have a proxy object in Python to which properties are synced and from which actions can be invoked. * The ``StubComponent`` class, which represents a component class that is somewhere else, perhaps in another session. It does not have any properties, nor actions. But it can be "moved around". """ session = event.Attribute(doc=""" The session to which this component belongs. The component id is unique within its session. """) root = event.Attribute(doc=""" The component that represents the root of the application. Alias for session.app. """) uid = event.Attribute(doc=""" A unique identifier for this component; a combination of the session and component id's. """) def _comp_init_app_component(self, property_values): # Pop special attribute property_values.pop('flx_is_app', None) # Pop and apply id if given custom_id = property_values.pop('flx_id', None) # Pop session or derive from active component self._session = None session = property_values.pop('flx_session', None) if session is not None: self._session = session else: active = loop.get_active_components() # Note that self is active too active = active[-2] if len(active) > 1 else None if active is not None: self._session = active._session else: if not this_is_js(): self._session = manager.get_default_session() # Register this component with the session (sets _id and _uid) if self._session is None: raise RuntimeError('%s needs a session!' % (custom_id or self._id)) self._session._register_component(self, custom_id) self._root = self._session.app # Return whether this instance was instantiated locally return custom_id is None class LocalComponent(BaseAppComponent): """ Base class for PyComponent in Python and JsComponent in JavaScript. """ def _comp_init_property_values(self, property_values): # This is a good time to register with the session, and # instantiate the proxy class. Property values have been set at this # point, but init() has not yet been called. # Keep track of what events are registered at the proxy self.__event_types_at_proxy = [] # Init more self._comp_init_app_component(property_values) # pops items # Pop whether this local instance has a proxy at the other side self._has_proxy = property_values.pop('flx_has_proxy', False) # Call original method super()._comp_init_property_values(property_values) if this_is_js(): # This is a local JsComponent in JavaScript self._event_listeners = [] else: # This is a local PyComponent in Python # A PyComponent always has a corresponding proxy in JS self._ensure_proxy_instance(False) def _ensure_proxy_instance(self, include_props=True): """ Make the other end instantiate a proxy if necessary. This is e.g. called by the BSDF serializer when a LocalComponent gets serialized. A PyComponent always has a Proxy component, and we should not dispose or delete it until the local component is disposed. A JsComponent may be instantiated (as its proxy) from Python, in which case we receive the flx_has_proxy kwarg. Still, Python can "loose" the proxy class. To ensure that it exists in Python when needed, the BSDF serializer will ensure it (by calling this method) when it gets serialized. In certain cases, it might be that the other end *does* have a proxy while this end's _has_proxy is False. In that case the INSTANTIATE command is send, but when handled, will be a no-op. In certain cases, it might be that the other end just lost its reference; this end's _has_proxy is True, and a new reference to this component will fail to resolve. This is countered by keeping hold of JsComponent proxy classes for at least one roundtrip (upon initialization as well as disposal). """ if self._has_proxy is False and self._disposed is False: if self._session.status > 0: props = {} if include_props: for name in self.__proxy_properties__: props[name] = getattr(self, name) self._session.send_command('INSTANTIATE', self.__jsmodule__, self.__class__.__name__, self._id, [], props) self._has_proxy = True def emit(self, type, info=None): # Overload emit() to send events to the proxy object at the other end ev = super().emit(type, info) isprop = type in self.__proxy_properties__ if self._has_proxy is True and self._session.status > 0: # implicit: and self._disposed is False: if isprop or type in self.__event_types_at_proxy: self._session.send_command('INVOKE', self._id, '_emit_at_proxy', [ev]) def _dispose(self): # Let proxy side know that we no longer exist, and that it should # dispose too. Send regardless of whether we have a proxy! was_disposed = self._disposed super()._dispose() self._has_proxy = False # because we will tell it to dispose if was_disposed is False and self._session is not None: self._session._unregister_component(self) if self._session.status > 0: self._session.send_command('DISPOSE', self._id) def _flx_set_has_proxy(self, has_proxy): self._has_proxy = has_proxy def _flx_set_event_types_at_proxy(self, event_types): self.__event_types_at_proxy = event_types class ProxyComponent(BaseAppComponent): """ Base class for JSComponent in Python and PyComponent in JavaScript. """ def __init__(self, *init_args, **kwargs): # Need to overload this to handle init_args if this_is_js(): # This is a proxy PyComponent in JavaScript. # Always instantiated via an INSTANTIATE command from Python. assert len(init_args) == 0 if 'flx_id' not in kwargs: raise RuntimeError('Cannot instantiate a PyComponent from JS.') super().__init__(**kwargs) else: # This is a proxy JsComponent in Python. # Can be instantiated in Python, self._flx_init_args = init_args super().__init__(**kwargs) def _comp_init_property_values(self, property_values): # Init more local_inst = self._comp_init_app_component(property_values) # pops items # Call original method, only set props if this is instantiated "by the local" props2set = {} if local_inst else property_values super()._comp_init_property_values(props2set) if this_is_js(): # This is a proxy PyComponent in JavaScript assert len(property_values.keys()) == 0 else: # This is a proxy JsComponent in Python # Instantiate JavaScript version of this class if local_inst is True: # i.e. only if Python "instantiated" it property_values['flx_has_proxy'] = True active_components = [c for c in loop.get_active_components()[:-1] if isinstance(c, (PyComponent, JsComponent))] self._session.send_command('INSTANTIATE', self.__jsmodule__, self.__class__.__name__, self._id, self._flx_init_args, property_values, active_components) del self._flx_init_args def _comp_apply_property_values(self, values): # Apply props in silence for name, value in values: setattr(self, '_' + name + '_value', value) def _proxy_action(self, name, *args, **kwargs): """ To invoke actions on the real object. """ assert not kwargs # if self._session.status > 0, mmm, or rather error? self._session.send_command('INVOKE', self._id, name, args) def _proxy_emitter(self, name, *args, **kwargs): """ To handle use of placeholder emitters. """ # todo: I am not sure yet whether to allow or disallow it. We disallow now; # we can always INVOKE the emitter at the other side if that proves needed if this_is_js(): logger.error('Cannot use emitters of a PyComponent in JS.') else: logger.error('Cannot use emitters of a JsComponent in Py.') def _mutate(self, *args, **kwargs): # pragma: no cover """ Disable mutations on the proxy class. """ raise RuntimeError('Cannot mutate properties from a proxy class.') # Reference objects to get them collected into the JS variant of this # module. Do it here, in a place where it wont hurt. serializer # to bring in _clientcore as a way of bootstrapping BsdfComponentExtension def _registered_reactions_hook(self): """ Keep the local component informed about what event types this proxy is interested in. This way, the trafic can be minimized, e.g. not send mouse move events if they're not used anyway. """ event_types = super()._registered_reactions_hook() try: if self._disposed is False and self._session.status > 0: self._session.send_command('INVOKE', self._id, '_flx_set_event_types_at_proxy', [event_types]) finally: return event_types @event.action def _emit_at_proxy(self, ev): """ Action used by the local component to push an event to the proxy component. If the event represents a property-update, the mutation is applied, otherwise the event is emitted here. """ if not this_is_js(): ev = Dict(ev) if ev.type in self.__properties__ and hasattr(ev, 'mutation'): # Mutate the property - this will cause an emit if ev.mutation == 'set': super()._mutate(ev.type, ev.new_value) else: super()._mutate(ev.type, ev.objects, ev.mutation, ev.index) else: self.emit(ev.type, ev) def dispose(self): if this_is_js(): # The server is leading ... raise RuntimeError('Cannot dispose a PyComponent from JS.') else: # Disposing a JsComponent from JS is like invoking an action; # we don't actually dispose ourselves just yet. if self._session.status > 0: self._session.send_command('INVOKE', self._id, 'dispose', []) else: super().dispose() def _dispose(self): # This gets called by the session upon a DISPOSE command, # or on Python from __delete__ (via call_soon). was_disposed = self._disposed super()._dispose() if was_disposed is False and self._session is not None: self._session._unregister_component(self) if self._session.status > 0: # Let other side know that we no longer exist. self._session.send_command('INVOKE', self._id, '_flx_set_has_proxy', [False]) class StubComponent(BaseAppComponent): """ Class to represent stub proxy components to take the place of components that do not belong to the current session, or that do not exist for whatever reason. These objects cannot really be used, but they can be moved around. """ def __init__(self, session, id): super().__init__() self._session = session self._id = id self._uid = session.id + '_' + id def __repr__(self): return ("<StubComponent for '%s' in session '%s' at 0x%x>" % (self._id, self._session.id, id(self))) # LocalComponent and ProxyComponent need __jsmodule__, but they do not # participate in the AppComponentMeta class, so we add it here. LocalComponent.__jsmodule__ = __name__ ProxyComponent.__jsmodule__ = __name__ StubComponent.__jsmodule__ = __name__ class JsComponent(with_metaclass(AppComponentMeta, ProxyComponent)): """ Base component class that operates in JavaScript, but is accessible in Python, where its properties and events can be observed, and actions can be invoked. JsComponents can be instantiated from both JavaScript and Python. A corresponding proxy component is not necessarily present in Python. It is created automatically when needed (e.g. when referenced by a property). A JsComponent can be explicitly disposed from both Python and JavaScript. When the Python garbage collector collects a JsComponent (or really, the proxy thereof), only the Python side proxy is disposed; the JsComponent in JS itself will be unaffected. Make sure to call ``dispose()`` when needed! """ # The meta class will generate a JsComponent local class for JS # and move all props, actions, etc. to it. def __repr__(self): d = ' (disposed)' if self._disposed else '' return "<JsComponent '%s'%s at 0x%x>" % (self._id, d, id(self)) def _addEventListener(self, node, type, callback, capture=False): """ Register events with DOM nodes, to be automatically cleaned up when this object is disposed. """ node.addEventListener(type, callback, capture) self._event_listeners.append((node, type, callback, capture)) def _dispose(self): super()._dispose() while len(self._event_listeners) > 0: try: node, type, callback, capture = self._event_listeners.pop() node.removeEventListener(type, callback, capture) except Exception as err: print(err) # Note: positioned below JSComponent, because linenr is used to sort JS defs, # and the JS for the base component classes is attached to JSComponent. class PyComponent(with_metaclass(AppComponentMeta, LocalComponent)): """ Base component class that operates in Python, but is accessible in JavaScript, where its properties and events can be observed, and actions can be invoked. PyComponents can only be instantiated in Python, and always have a corresponding proxy object in JS. PyComponents can be disposed only from Python. Disposal also happens if the Python garbage collector collects a PyComponent. """ # The meta class generates a PyComponent proxy class for JS. def __repr__(self): d = ' (disposed)' if self._disposed else '' return "<PyComponent '%s'%s at 0x%x>" % (self._id, d, id(self)) class BsdfComponentExtension(bsdf.Extension): """ A BSDF extension to encode flexx.app Component objects based on their session id and component id. """ name = 'flexx.app.component' cls = BaseAppComponent # PyComponent, JsComponent, StubComponent def match(self, s, c): # This is actually the default behavior, but added for completenes return isinstance(c, self.cls) def encode(self, s, c): if isinstance(c, PyComponent): # i.e. LocalComponent in Python c._ensure_proxy_instance() return dict(session_id=c._session.id, id=c._id) def decode(self, s, d): c = None session = manager.get_session_by_id(d['session_id']) if session is None: # object from other session session = object() session.id = d['session_id'] c = StubComponent(session, d['id']) else: c = session.get_component_instance(d['id']) if c is None: # This should probably not happen logger.warn('Using stub component for %s.' % d['id']) c = StubComponent(session, d['id']) else: # Keep it alive for a bit session.keep_alive(c) return c # The name and below methods get collected to produce a JS BSDF extension def match_js(self, s, c): # pragma: no cover return isinstance(c, BaseAppComponent) def encode_js(self, s, c): # pragma: no cover if isinstance(c, JsComponent): # i.e. LocalComponent in JS c._ensure_proxy_instance() return dict(session_id=c._session.id, id=c._id) def decode_js(self, s, d): # pragma: no cover c = None session = window.flexx.sessions.get(d['session_id'], None) if session is None: session = dict(id=d['session_id']) c = StubComponent(session, d['id']) else: c = session.get_component_instance(d['id']) if c is None: logger.warn('Using stub component for %s.' % d['id']) c = StubComponent(session, d['id']) return c # todo: can the mechanism for defining BSDF extensions be simplified? (issue #429) # Add BSDF extension for serializing components. The JS variant of the # serializer is added by referencing the extension is JS code. serializer.add_extension(BsdfComponentExtension)
40.214979
85
0.62866
abf27d180991fc068917f476f9f25200f7461429
8,086
py
Python
6-VGG16-CIFAR10-xavier_init.py
SunnyHaze/CIFAR10-VGG-Pytorch
c2794f7c709b85059ee06779ac2b8e1cc672e2c5
[ "Apache-2.0" ]
null
null
null
6-VGG16-CIFAR10-xavier_init.py
SunnyHaze/CIFAR10-VGG-Pytorch
c2794f7c709b85059ee06779ac2b8e1cc672e2c5
[ "Apache-2.0" ]
null
null
null
6-VGG16-CIFAR10-xavier_init.py
SunnyHaze/CIFAR10-VGG-Pytorch
c2794f7c709b85059ee06779ac2b8e1cc672e2c5
[ "Apache-2.0" ]
null
null
null
import os from matplotlib.pyplot import imshow import torch from torch.utils.data import Dataset, DataLoader, TensorDataset from torch import conv2d, dropout, nn, sigmoid, tensor import numpy as np from imports.ParametersManager import * from imports.utlis import * from matplotlib import pyplot as plt import torchvision.transforms as transforms # 超参数 MODELNAME='VGG16-xavier_init' MODELFILEDIR = 'PretrainedModels' # 模型参数存储路径 BatchSize = 128 LEARNINGRATE = 0.0005 epochNums = 0 SaveModelEveryNEpoch = 2 # 每执行多少次保存一个模型 device = 'cuda' if torch.cuda.is_available() else 'cpu' # 构建模型参数文件存取路径 if not os.path.exists(MODELFILEDIR): os.mkdir(MODELFILEDIR) MODELFILEPATH = os.path.join(MODELFILEDIR, MODELNAME+'_model.pt') # 可以将数据线包装为Dataset,然后传入DataLoader中取样 class MyDataset(Dataset): def __init__(self,SetType) -> None: with open(SetType + 'Images.npy','rb') as f: self.images =torch.tensor(np.load(f), dtype=torch.float32) self.images = (self.images - 0.5) / 0.5 with open(SetType + 'Labels.npy','rb') as f: tmp = np.load(f) print(tmp) self.labels=[] for num in tmp: self.labels.append([1 if x == num else 0 for x in range(10)]) self.labels = torch.tensor(self.labels, dtype=torch.float32) def __getitem__(self, index): return self.images[index], self.labels[index] def __len__(self): return len(self.labels) def blockVGG(covLayerNum,inputChannel, outputChannel, kernelSize, withFinalCov1:bool): layer = nn.Sequential() layer.add_module('conv2D-1',nn.Conv2d(inputChannel, outputChannel,kernelSize,padding=1)) layer.add_module('relu-1',nn.ReLU()) for i in range(covLayerNum - 1): layer.add_module('conv2D{}'.format(i),nn.Conv2d(outputChannel, outputChannel,kernelSize,padding=1)) layer.add_module('relu{}'.format(i),nn.ReLU()) if withFinalCov1: layer.add_module('Conv2dOne',nn.Conv2d(outputChannel,outputChannel, 1)) layer.add_module('FinalRelu',nn.ReLU()) layer.add_module('max-pool',nn.MaxPool2d(2,2)) return layer # 定义网络结构 class VGG11(nn.Module): def __init__(self): super().__init__() self.layer1 = blockVGG(2,3,64,3,False) self.layer2 = blockVGG(2,64,128,3,False) self.layer3 = blockVGG(2,128,256,3,True) self.layer4 = blockVGG(2,256,512,3,True) self.layer5 = blockVGG(2,512,512,3,True) self.layer6 = nn.Sequential( nn.Linear(512, 512), nn.ReLU(), nn.Dropout(0.5), nn.Linear(512,100), nn.ReLU(), nn.Dropout(0.5), nn.Linear(100,10), # nn.ReLU(), # nn.Softmax(1) ) for m in self.modules(): if isinstance(m, nn.Linear): pass # 也可以判断是否为conv2d,使用相应的初始化方式 elif isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight) print('init_xavier') def forward(self,x:torch.Tensor): x = self.layer1(x) # 执行卷积神经网络部分 x = self.layer2(x) # 执行全连接部分 x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = x.view(x.shape[0], -1) x = self.layer6(x) return x # 定义准确率函数 def accuracy(output , label): rightNum = torch.sum(torch.max(label,1)[1].eq(torch.max(output,1)[1])) return rightNum / len(label) if __name__ == "__main__": # 模型实例化 model = VGG11() print(model) # # 如果有“半成品”则导入参数 parManager = ParametersManager(device) if os.path.exists(MODELFILEPATH): parManager.loadFromFile(MODELFILEPATH) parManager.setModelParameters(model) else: print('===No pre-trained model found!===') model.cuda() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=LEARNINGRATE) dirOfDataset = 'Cifar-10_Unpacked/' # 构建训练集 TrainDataset = MyDataset(dirOfDataset + 'Train') # 构建测试集 TestDataset = MyDataset(dirOfDataset + 'Test') # 构建训练集读取器 TrainLoader = DataLoader(TrainDataset,num_workers=8, pin_memory=True, batch_size=BatchSize, sampler= torch.utils.data.sampler.SubsetRandomSampler(range(len(TrainDataset)))) # 构建测试集读取器: TestLoader = DataLoader(TestDataset,num_workers=8, pin_memory=True, batch_size=BatchSize, sampler= torch.utils.data.sampler.SubsetRandomSampler(range(len(TestDataset)))) # print('len(TrainLoader):{}'.format(len(TrainLoader))) # 检查分割是否正确的函数,分为两行,以行为顺序排列和输出结果一一对应 def testLoader(): inputs, classes = next(iter(TrainLoader)) inputs = inputs[:10] classes = classes[:10] print(inputs.shape) print(classes.shape) print(classes) # 查看标签 for i in range(len(inputs)): plt.subplot(2,5,i+1) img = torch.transpose(inputs[i], 0,2) img = torch.transpose(img,1,0) plt.imshow(img) plt.title(label2name(oneHot2label(classes[i]))) plt.show() # testLoader() TrainACC = [] TestACC = [] GlobalLoss = [] for epoch in range(epochNums): print("===开始本轮的Epoch {} == 总计是Epoch {}===".format(epoch, parManager.EpochDone)) # 收集训练参数 epochAccuracy = [] epochLoss = [] model.train() #=============实际训练流程================= for batch_id, (inputs,label) in enumerate(TrainLoader): # torch.train() # 先初始化梯度0 optimizer.zero_grad() output = model(inputs.cuda()) loss = criterion(output,label.cuda()) loss.backward() optimizer.step() epochAccuracy.append(accuracy(output,label.cuda()).cpu()) epochLoss.append(loss.item()) # 需要获取数值来转换 if batch_id % (int(len(TrainLoader) / 20)) == 0: print(" 当前运行到[{}/{}], 目前Epoch准确率为:{:.2f}%,Loss:{:.6f}".format(batch_id,len(TrainLoader), np.mean(epochAccuracy) * 100, loss)) #==============本轮训练结束============== # 收集训练集准确率 TrainACC.append(np.mean(epochAccuracy)) GlobalLoss.append(np.mean(epochLoss)) # ==========进行一次验证集测试============ localTestACC = [] model.eval() # 进入评估模式,节约开销 for inputs, label in TestLoader: torch.no_grad() # 上下文管理器,此部分内不会追踪梯度/ output = model(inputs.cuda()) localTestACC.append(accuracy(output,label.cuda()).cpu()) # ==========验证集测试结束================ # 收集验证集准确率 TestACC.append(np.mean(localTestACC)) print("当前Epoch结束,训练集准确率为:{:3f}%,测试集准确率为:{:3f}%".format(TrainACC[-1] * 100, TestACC[-1] * 100)) # 暂存结果到参数管理器 parManager.oneEpochDone(LEARNINGRATE,TrainACC[-1],TestACC[-1],GlobalLoss[-1]) # 周期性保存结果到文件 if epoch == epochNums - 1 or epoch % SaveModelEveryNEpoch == 0: parManager.loadModelParameters(model) parManager.saveToFile(MODELFILEPATH) # 查看此次训练之后结果 parManager.show() # 绘图 plt.figure(figsize=(10,7)) plt.subplots_adjust(left=0.1,bottom=0.1,top=0.9,right=0.9,wspace=0.1,hspace=0.3) plt.subplot(2,1,1) plt.plot(range(parManager.EpochDone),parManager.TrainACC,marker='*' ,color='r',label='Train') plt.plot(range(parManager.EpochDone),parManager.TestACC,marker='*' ,color='b',label='Test') plt.xlabel('Epochs') plt.ylabel('ACC') plt.legend() plt.title("{} on Cifar-10".format(MODELNAME)) plt.text(int(parManager.EpochDone *0.8),0.5,'Train ACC: {:.6f}\nTest ACC: {:.6f}\nEpoch:{}'.format(parManager.TrainACC[-1],parManager.TestACC[-1], parManager.EpochDone)) plt.subplot(2,1,2) plt.title('Learning Rates') plt.xlabel('Epoch') plt.ylabel('$log_{10}$(Learning Rates)') plt.ylim(0,-5) plt.plot([x for x in range(parManager.EpochDone)], np.log(parManager.LearningRate) / np.log(10)) plt.savefig('Train-{}-{}Epoch.jpg'.format(MODELNAME,parManager.EpochDone)) plt.show()
37.262673
176
0.607593
5751013ff187b2d2d07594aff3ecb037faa7e656
81,210
py
Python
elf/src/python/elf.py
kaitai-io/formats-kaitai-io.github.io
2700514a2a8f67c5351fe93962c70abea02fd3d3
[ "0BSD" ]
4
2018-12-10T09:21:19.000Z
2021-11-03T16:43:22.000Z
elf/src/python/elf.py
kaitai-io/formats-kaitai-io.github.io
2700514a2a8f67c5351fe93962c70abea02fd3d3
[ "0BSD" ]
null
null
null
elf/src/python/elf.py
kaitai-io/formats-kaitai-io.github.io
2700514a2a8f67c5351fe93962c70abea02fd3d3
[ "0BSD" ]
3
2019-04-08T08:22:22.000Z
2021-10-10T19:11:51.000Z
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild from pkg_resources import parse_version import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO from enum import Enum if parse_version(kaitaistruct.__version__) < parse_version('0.9'): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class Elf(KaitaiStruct): """ .. seealso:: Source - https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/elf.h;hb=0f62fe0532 .. seealso:: Source - https://refspecs.linuxfoundation.org/elf/gabi4+/contents.html .. seealso:: Source - https://docs.oracle.com/cd/E37838_01/html/E36783/glcfv.html """ class SymbolVisibility(Enum): default = 0 internal = 1 hidden = 2 protected = 3 exported = 4 singleton = 5 eliminate = 6 class SymbolBinding(Enum): local = 0 global_symbol = 1 weak = 2 os10 = 10 os11 = 11 os12 = 12 proc13 = 13 proc14 = 14 proc15 = 15 class Endian(Enum): le = 1 be = 2 class ShType(Enum): null_type = 0 progbits = 1 symtab = 2 strtab = 3 rela = 4 hash = 5 dynamic = 6 note = 7 nobits = 8 rel = 9 shlib = 10 dynsym = 11 init_array = 14 fini_array = 15 preinit_array = 16 group = 17 symtab_shndx = 18 sunw_symnsort = 1879048172 sunw_phname = 1879048173 sunw_ancillary = 1879048174 sunw_capchain = 1879048175 sunw_capinfo = 1879048176 sunw_symsort = 1879048177 sunw_tlssort = 1879048178 sunw_ldynsym = 1879048179 sunw_dof = 1879048180 sunw_cap = 1879048181 sunw_signature = 1879048182 sunw_annotate = 1879048183 sunw_debugstr = 1879048184 sunw_debug = 1879048185 sunw_move = 1879048186 sunw_comdat = 1879048187 sunw_syminfo = 1879048188 sunw_verdef = 1879048189 sunw_verneed = 1879048190 sunw_versym = 1879048191 sparc_gotdata = 1879048192 amd64_unwind = 1879048193 arm_preemptmap = 1879048194 arm_attributes = 1879048195 arm_debugoverlay = 1879048196 arm_overlaysection = 1879048197 class OsAbi(Enum): system_v = 0 hp_ux = 1 netbsd = 2 gnu = 3 solaris = 6 aix = 7 irix = 8 freebsd = 9 tru64 = 10 modesto = 11 openbsd = 12 openvms = 13 nsk = 14 aros = 15 fenixos = 16 cloudabi = 17 openvos = 18 class Machine(Enum): no_machine = 0 m32 = 1 sparc = 2 x86 = 3 m68k = 4 m88k = 5 iamcu = 6 i860 = 7 mips = 8 s370 = 9 mips_rs3_le = 10 parisc = 15 vpp500 = 17 sparc32plus = 18 i960 = 19 powerpc = 20 powerpc64 = 21 s390 = 22 spu = 23 v800 = 36 fr20 = 37 rh32 = 38 rce = 39 arm = 40 alpha = 41 superh = 42 sparc_v9 = 43 tricore = 44 arc = 45 h8_300 = 46 h8_300h = 47 h8s = 48 h8_500 = 49 ia_64 = 50 mips_x = 51 coldfire = 52 m68hc12 = 53 mma = 54 pcp = 55 ncpu = 56 ndr1 = 57 starcore = 58 me16 = 59 st100 = 60 tinyj = 61 x86_64 = 62 pdsp = 63 pdp10 = 64 pdp11 = 65 fx66 = 66 st9plus = 67 st7 = 68 mc68hc16 = 69 mc68hc11 = 70 mc68hc08 = 71 mc68hc05 = 72 svx = 73 st19 = 74 vax = 75 cris = 76 javelin = 77 firepath = 78 zsp = 79 mmix = 80 huany = 81 prism = 82 avr = 83 fr30 = 84 d10v = 85 d30v = 86 v850 = 87 m32r = 88 mn10300 = 89 mn10200 = 90 picojava = 91 openrisc = 92 arc_compact = 93 xtensa = 94 videocore = 95 tmm_gpp = 96 ns32k = 97 tpc = 98 snp1k = 99 st200 = 100 ip2k = 101 max = 102 compact_risc = 103 f2mc16 = 104 msp430 = 105 blackfin = 106 se_c33 = 107 sep = 108 arca = 109 unicore = 110 excess = 111 dxp = 112 altera_nios2 = 113 crx = 114 xgate = 115 c166 = 116 m16c = 117 dspic30f = 118 freescale_ce = 119 m32c = 120 tsk3000 = 131 rs08 = 132 sharc = 133 ecog2 = 134 score7 = 135 dsp24 = 136 videocore3 = 137 latticemico32 = 138 se_c17 = 139 ti_c6000 = 140 ti_c2000 = 141 ti_c5500 = 142 ti_arp32 = 143 ti_pru = 144 mmdsp_plus = 160 cypress_m8c = 161 r32c = 162 trimedia = 163 qdsp6 = 164 i8051 = 165 stxp7x = 166 nds32 = 167 ecog1x = 168 maxq30 = 169 ximo16 = 170 manik = 171 craynv2 = 172 rx = 173 metag = 174 mcst_elbrus = 175 ecog16 = 176 cr16 = 177 etpu = 178 sle9x = 179 l10m = 180 k10m = 181 aarch64 = 183 avr32 = 185 stm8 = 186 tile64 = 187 tilepro = 188 microblaze = 189 cuda = 190 tilegx = 191 cloudshield = 192 corea_1st = 193 corea_2nd = 194 arcv2 = 195 open8 = 196 rl78 = 197 videocore5 = 198 renesas_78kor = 199 freescale_56800ex = 200 ba1 = 201 ba2 = 202 xcore = 203 mchp_pic = 204 intelgt = 205 intel206 = 206 intel207 = 207 intel208 = 208 intel209 = 209 km32 = 210 kmx32 = 211 kmx16 = 212 kmx8 = 213 kvarc = 214 cdp = 215 coge = 216 cool = 217 norc = 218 csr_kalimba = 219 z80 = 220 visium = 221 ft32 = 222 moxie = 223 amd_gpu = 224 riscv = 243 lanai = 244 ceva = 245 ceva_x2 = 246 bpf = 247 graphcore_ipu = 248 img1 = 249 nfp = 250 ve = 251 csky = 252 arc_compact3_64 = 253 mcs6502 = 254 arc_compact3 = 255 kvx = 256 wdc65816 = 257 loongarch = 258 kf32 = 259 class SymbolType(Enum): no_type = 0 object = 1 func = 2 section = 3 file = 4 common = 5 tls = 6 relc = 8 srelc = 9 gnu_ifunc = 10 os11 = 11 os12 = 12 proc13 = 13 proc14 = 14 proc15 = 15 class DynamicArrayTags(Enum): null = 0 needed = 1 pltrelsz = 2 pltgot = 3 hash = 4 strtab = 5 symtab = 6 rela = 7 relasz = 8 relaent = 9 strsz = 10 syment = 11 init = 12 fini = 13 soname = 14 rpath = 15 symbolic = 16 rel = 17 relsz = 18 relent = 19 pltrel = 20 debug = 21 textrel = 22 jmprel = 23 bind_now = 24 init_array = 25 fini_array = 26 init_arraysz = 27 fini_arraysz = 28 runpath = 29 flags = 30 preinit_array = 32 preinit_arraysz = 33 symtab_shndx = 34 deprecated_sparc_register = 117440513 sunw_auxiliary = 1610612749 sunw_rtldinf = 1610612750 sunw_filter = 1610612751 sunw_cap = 1610612752 sunw_symtab = 1610612753 sunw_symsz = 1610612754 sunw_sortent = 1610612755 sunw_symsort = 1610612756 sunw_symsortsz = 1610612757 sunw_tlssort = 1610612758 sunw_tlssortsz = 1610612759 sunw_capinfo = 1610612760 sunw_strpad = 1610612761 sunw_capchain = 1610612762 sunw_ldmach = 1610612763 sunw_symtab_shndx = 1610612764 sunw_capchainent = 1610612765 sunw_deferred = 1610612766 sunw_capchainsz = 1610612767 sunw_phname = 1610612768 sunw_parent = 1610612769 sunw_sx_aslr = 1610612771 sunw_relax = 1610612773 sunw_kmod = 1610612775 sunw_sx_nxheap = 1610612777 sunw_sx_nxstack = 1610612779 sunw_sx_adiheap = 1610612781 sunw_sx_adistack = 1610612783 sunw_sx_ssbd = 1610612785 sunw_symnsort = 1610612786 sunw_symnsortsz = 1610612787 gnu_flags_1 = 1879047668 gnu_prelinked = 1879047669 gnu_conflictsz = 1879047670 gnu_liblistsz = 1879047671 checksum = 1879047672 pltpadsz = 1879047673 moveent = 1879047674 movesz = 1879047675 feature_1 = 1879047676 posflag_1 = 1879047677 syminsz = 1879047678 syminent = 1879047679 gnu_hash = 1879047925 tlsdesc_plt = 1879047926 tlsdesc_got = 1879047927 gnu_conflict = 1879047928 gnu_liblist = 1879047929 config = 1879047930 depaudit = 1879047931 audit = 1879047932 pltpad = 1879047933 movetab = 1879047934 syminfo = 1879047935 versym = 1879048176 relacount = 1879048185 relcount = 1879048186 flags_1 = 1879048187 verdef = 1879048188 verdefnum = 1879048189 verneed = 1879048190 verneednum = 1879048191 sparc_register = 1879048193 auxiliary = 2147483645 used = 2147483646 filter = 2147483647 class Bits(Enum): b32 = 1 b64 = 2 class PhType(Enum): null_type = 0 load = 1 dynamic = 2 interp = 3 note = 4 shlib = 5 phdr = 6 tls = 7 gnu_eh_frame = 1685382480 gnu_stack = 1685382481 gnu_relro = 1685382482 gnu_property = 1685382483 pax_flags = 1694766464 arm_exidx = 1879048193 class ObjType(Enum): no_file_type = 0 relocatable = 1 executable = 2 shared = 3 core = 4 class SectionHeaderIdxSpecial(Enum): undefined = 0 before = 65280 after = 65281 amd64_lcommon = 65282 sunw_ignore = 65343 abs = 65521 common = 65522 xindex = 65535 def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.magic = self._io.read_bytes(4) if not self.magic == b"\x7F\x45\x4C\x46": raise kaitaistruct.ValidationNotEqualError(b"\x7F\x45\x4C\x46", self.magic, self._io, u"/seq/0") self.bits = KaitaiStream.resolve_enum(Elf.Bits, self._io.read_u1()) self.endian = KaitaiStream.resolve_enum(Elf.Endian, self._io.read_u1()) self.ei_version = self._io.read_u1() if not self.ei_version == 1: raise kaitaistruct.ValidationNotEqualError(1, self.ei_version, self._io, u"/seq/3") self.abi = KaitaiStream.resolve_enum(Elf.OsAbi, self._io.read_u1()) self.abi_version = self._io.read_u1() self.pad = self._io.read_bytes(7) self.header = Elf.EndianElf(self._io, self, self._root) class EndianElf(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): _on = self._root.endian if _on == Elf.Endian.le: self._is_le = True elif _on == Elf.Endian.be: self._is_le = False if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.e_type = KaitaiStream.resolve_enum(Elf.ObjType, self._io.read_u2le()) self.machine = KaitaiStream.resolve_enum(Elf.Machine, self._io.read_u2le()) self.e_version = self._io.read_u4le() _on = self._root.bits if _on == Elf.Bits.b32: self.entry_point = self._io.read_u4le() elif _on == Elf.Bits.b64: self.entry_point = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.program_header_offset = self._io.read_u4le() elif _on == Elf.Bits.b64: self.program_header_offset = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.section_header_offset = self._io.read_u4le() elif _on == Elf.Bits.b64: self.section_header_offset = self._io.read_u8le() self.flags = self._io.read_bytes(4) self.e_ehsize = self._io.read_u2le() self.program_header_entry_size = self._io.read_u2le() self.qty_program_header = self._io.read_u2le() self.section_header_entry_size = self._io.read_u2le() self.qty_section_header = self._io.read_u2le() self.section_names_idx = self._io.read_u2le() def _read_be(self): self.e_type = KaitaiStream.resolve_enum(Elf.ObjType, self._io.read_u2be()) self.machine = KaitaiStream.resolve_enum(Elf.Machine, self._io.read_u2be()) self.e_version = self._io.read_u4be() _on = self._root.bits if _on == Elf.Bits.b32: self.entry_point = self._io.read_u4be() elif _on == Elf.Bits.b64: self.entry_point = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.program_header_offset = self._io.read_u4be() elif _on == Elf.Bits.b64: self.program_header_offset = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.section_header_offset = self._io.read_u4be() elif _on == Elf.Bits.b64: self.section_header_offset = self._io.read_u8be() self.flags = self._io.read_bytes(4) self.e_ehsize = self._io.read_u2be() self.program_header_entry_size = self._io.read_u2be() self.qty_program_header = self._io.read_u2be() self.section_header_entry_size = self._io.read_u2be() self.qty_section_header = self._io.read_u2be() self.section_names_idx = self._io.read_u2be() class NoteSection(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/note_section") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.NoteSectionEntry(self._io, self, self._root, self._is_le)) i += 1 def _read_be(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.NoteSectionEntry(self._io, self, self._root, self._is_le)) i += 1 class ProgramHeader(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/program_header") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.type = KaitaiStream.resolve_enum(Elf.PhType, self._io.read_u4le()) if self._root.bits == Elf.Bits.b64: self.flags64 = self._io.read_u4le() _on = self._root.bits if _on == Elf.Bits.b32: self.offset = self._io.read_u4le() elif _on == Elf.Bits.b64: self.offset = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.vaddr = self._io.read_u4le() elif _on == Elf.Bits.b64: self.vaddr = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.paddr = self._io.read_u4le() elif _on == Elf.Bits.b64: self.paddr = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.filesz = self._io.read_u4le() elif _on == Elf.Bits.b64: self.filesz = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.memsz = self._io.read_u4le() elif _on == Elf.Bits.b64: self.memsz = self._io.read_u8le() if self._root.bits == Elf.Bits.b32: self.flags32 = self._io.read_u4le() _on = self._root.bits if _on == Elf.Bits.b32: self.align = self._io.read_u4le() elif _on == Elf.Bits.b64: self.align = self._io.read_u8le() def _read_be(self): self.type = KaitaiStream.resolve_enum(Elf.PhType, self._io.read_u4be()) if self._root.bits == Elf.Bits.b64: self.flags64 = self._io.read_u4be() _on = self._root.bits if _on == Elf.Bits.b32: self.offset = self._io.read_u4be() elif _on == Elf.Bits.b64: self.offset = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.vaddr = self._io.read_u4be() elif _on == Elf.Bits.b64: self.vaddr = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.paddr = self._io.read_u4be() elif _on == Elf.Bits.b64: self.paddr = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.filesz = self._io.read_u4be() elif _on == Elf.Bits.b64: self.filesz = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.memsz = self._io.read_u4be() elif _on == Elf.Bits.b64: self.memsz = self._io.read_u8be() if self._root.bits == Elf.Bits.b32: self.flags32 = self._io.read_u4be() _on = self._root.bits if _on == Elf.Bits.b32: self.align = self._io.read_u4be() elif _on == Elf.Bits.b64: self.align = self._io.read_u8be() @property def flags_obj(self): if hasattr(self, '_m_flags_obj'): return self._m_flags_obj if hasattr(self, '_m_flags_obj') else None if self._is_le: _on = self._root.bits if _on == Elf.Bits.b32: self._m_flags_obj = Elf.PhdrTypeFlags(self.flags32, self._io, self, self._root) elif _on == Elf.Bits.b64: self._m_flags_obj = Elf.PhdrTypeFlags(self.flags64, self._io, self, self._root) else: _on = self._root.bits if _on == Elf.Bits.b32: self._m_flags_obj = Elf.PhdrTypeFlags(self.flags32, self._io, self, self._root) elif _on == Elf.Bits.b64: self._m_flags_obj = Elf.PhdrTypeFlags(self.flags64, self._io, self, self._root) return self._m_flags_obj if hasattr(self, '_m_flags_obj') else None class DynamicSectionEntry(KaitaiStruct): """ .. seealso:: Source - https://docs.oracle.com/cd/E37838_01/html/E36783/chapter6-42444.html .. seealso:: Source - https://refspecs.linuxfoundation.org/elf/gabi4+/ch5.dynamic.html#dynamic_section """ def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/dynamic_section_entry") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): _on = self._root.bits if _on == Elf.Bits.b32: self.tag = self._io.read_u4le() elif _on == Elf.Bits.b64: self.tag = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.value_or_ptr = self._io.read_u4le() elif _on == Elf.Bits.b64: self.value_or_ptr = self._io.read_u8le() def _read_be(self): _on = self._root.bits if _on == Elf.Bits.b32: self.tag = self._io.read_u4be() elif _on == Elf.Bits.b64: self.tag = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.value_or_ptr = self._io.read_u4be() elif _on == Elf.Bits.b64: self.value_or_ptr = self._io.read_u8be() @property def flag_1_values(self): if hasattr(self, '_m_flag_1_values'): return self._m_flag_1_values if hasattr(self, '_m_flag_1_values') else None if self.tag_enum == Elf.DynamicArrayTags.flags_1: if self._is_le: self._m_flag_1_values = Elf.DtFlag1Values(self.value_or_ptr, self._io, self, self._root) else: self._m_flag_1_values = Elf.DtFlag1Values(self.value_or_ptr, self._io, self, self._root) return self._m_flag_1_values if hasattr(self, '_m_flag_1_values') else None @property def value_str(self): if hasattr(self, '_m_value_str'): return self._m_value_str if hasattr(self, '_m_value_str') else None if ((self.is_value_str) and (self._parent.is_string_table_linked)) : io = self._parent._parent.linked_section.body._io _pos = io.pos() io.seek(self.value_or_ptr) if self._is_le: self._m_value_str = (io.read_bytes_term(0, False, True, True)).decode(u"ASCII") else: self._m_value_str = (io.read_bytes_term(0, False, True, True)).decode(u"ASCII") io.seek(_pos) return self._m_value_str if hasattr(self, '_m_value_str') else None @property def tag_enum(self): if hasattr(self, '_m_tag_enum'): return self._m_tag_enum if hasattr(self, '_m_tag_enum') else None self._m_tag_enum = KaitaiStream.resolve_enum(Elf.DynamicArrayTags, self.tag) return self._m_tag_enum if hasattr(self, '_m_tag_enum') else None @property def flag_values(self): if hasattr(self, '_m_flag_values'): return self._m_flag_values if hasattr(self, '_m_flag_values') else None if self.tag_enum == Elf.DynamicArrayTags.flags: if self._is_le: self._m_flag_values = Elf.DtFlagValues(self.value_or_ptr, self._io, self, self._root) else: self._m_flag_values = Elf.DtFlagValues(self.value_or_ptr, self._io, self, self._root) return self._m_flag_values if hasattr(self, '_m_flag_values') else None @property def is_value_str(self): if hasattr(self, '_m_is_value_str'): return self._m_is_value_str if hasattr(self, '_m_is_value_str') else None self._m_is_value_str = ((self.value_or_ptr != 0) and ( ((self.tag_enum == Elf.DynamicArrayTags.needed) or (self.tag_enum == Elf.DynamicArrayTags.soname) or (self.tag_enum == Elf.DynamicArrayTags.rpath) or (self.tag_enum == Elf.DynamicArrayTags.runpath) or (self.tag_enum == Elf.DynamicArrayTags.sunw_auxiliary) or (self.tag_enum == Elf.DynamicArrayTags.sunw_filter) or (self.tag_enum == Elf.DynamicArrayTags.auxiliary) or (self.tag_enum == Elf.DynamicArrayTags.filter) or (self.tag_enum == Elf.DynamicArrayTags.config) or (self.tag_enum == Elf.DynamicArrayTags.depaudit) or (self.tag_enum == Elf.DynamicArrayTags.audit)) )) return self._m_is_value_str if hasattr(self, '_m_is_value_str') else None class SectionHeader(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/section_header") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.ofs_name = self._io.read_u4le() self.type = KaitaiStream.resolve_enum(Elf.ShType, self._io.read_u4le()) _on = self._root.bits if _on == Elf.Bits.b32: self.flags = self._io.read_u4le() elif _on == Elf.Bits.b64: self.flags = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.addr = self._io.read_u4le() elif _on == Elf.Bits.b64: self.addr = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.ofs_body = self._io.read_u4le() elif _on == Elf.Bits.b64: self.ofs_body = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.len_body = self._io.read_u4le() elif _on == Elf.Bits.b64: self.len_body = self._io.read_u8le() self.linked_section_idx = self._io.read_u4le() self.info = self._io.read_bytes(4) _on = self._root.bits if _on == Elf.Bits.b32: self.align = self._io.read_u4le() elif _on == Elf.Bits.b64: self.align = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.entry_size = self._io.read_u4le() elif _on == Elf.Bits.b64: self.entry_size = self._io.read_u8le() def _read_be(self): self.ofs_name = self._io.read_u4be() self.type = KaitaiStream.resolve_enum(Elf.ShType, self._io.read_u4be()) _on = self._root.bits if _on == Elf.Bits.b32: self.flags = self._io.read_u4be() elif _on == Elf.Bits.b64: self.flags = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.addr = self._io.read_u4be() elif _on == Elf.Bits.b64: self.addr = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.ofs_body = self._io.read_u4be() elif _on == Elf.Bits.b64: self.ofs_body = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.len_body = self._io.read_u4be() elif _on == Elf.Bits.b64: self.len_body = self._io.read_u8be() self.linked_section_idx = self._io.read_u4be() self.info = self._io.read_bytes(4) _on = self._root.bits if _on == Elf.Bits.b32: self.align = self._io.read_u4be() elif _on == Elf.Bits.b64: self.align = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.entry_size = self._io.read_u4be() elif _on == Elf.Bits.b64: self.entry_size = self._io.read_u8be() @property def body(self): if hasattr(self, '_m_body'): return self._m_body if hasattr(self, '_m_body') else None if self.type != Elf.ShType.nobits: io = self._root._io _pos = io.pos() io.seek(self.ofs_body) if self._is_le: _on = self.type if _on == Elf.ShType.rel: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.RelocationSection(False, _io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.note: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.NoteSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.symtab: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.DynsymSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.strtab: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.StringsStruct(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.dynamic: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.DynamicSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.dynsym: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.DynsymSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.rela: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.RelocationSection(True, _io__raw__m_body, self, self._root, self._is_le) else: self._m_body = io.read_bytes(self.len_body) else: _on = self.type if _on == Elf.ShType.rel: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.RelocationSection(False, _io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.note: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.NoteSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.symtab: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.DynsymSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.strtab: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.StringsStruct(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.dynamic: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.DynamicSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.dynsym: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.DynsymSection(_io__raw__m_body, self, self._root, self._is_le) elif _on == Elf.ShType.rela: self._raw__m_body = io.read_bytes(self.len_body) _io__raw__m_body = KaitaiStream(BytesIO(self._raw__m_body)) self._m_body = Elf.EndianElf.RelocationSection(True, _io__raw__m_body, self, self._root, self._is_le) else: self._m_body = io.read_bytes(self.len_body) io.seek(_pos) return self._m_body if hasattr(self, '_m_body') else None @property def linked_section(self): """may reference a later section header, so don't try to access too early (use only lazy `instances`). .. seealso:: Source - https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.sheader.html#sh_link """ if hasattr(self, '_m_linked_section'): return self._m_linked_section if hasattr(self, '_m_linked_section') else None if ((self.linked_section_idx != Elf.SectionHeaderIdxSpecial.undefined.value) and (self.linked_section_idx < self._root.header.qty_section_header)) : self._m_linked_section = self._root.header.section_headers[self.linked_section_idx] return self._m_linked_section if hasattr(self, '_m_linked_section') else None @property def name(self): if hasattr(self, '_m_name'): return self._m_name if hasattr(self, '_m_name') else None io = self._root.header.section_names._io _pos = io.pos() io.seek(self.ofs_name) if self._is_le: self._m_name = (io.read_bytes_term(0, False, True, True)).decode(u"ASCII") else: self._m_name = (io.read_bytes_term(0, False, True, True)).decode(u"ASCII") io.seek(_pos) return self._m_name if hasattr(self, '_m_name') else None @property def flags_obj(self): if hasattr(self, '_m_flags_obj'): return self._m_flags_obj if hasattr(self, '_m_flags_obj') else None if self._is_le: self._m_flags_obj = Elf.SectionHeaderFlags(self.flags, self._io, self, self._root) else: self._m_flags_obj = Elf.SectionHeaderFlags(self.flags, self._io, self, self._root) return self._m_flags_obj if hasattr(self, '_m_flags_obj') else None class RelocationSection(KaitaiStruct): """ .. seealso:: Source - https://docs.oracle.com/cd/E37838_01/html/E36783/chapter6-54839.html .. seealso:: Source - https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.reloc.html """ def __init__(self, has_addend, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self.has_addend = has_addend self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/relocation_section") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.RelocationSectionEntry(self._io, self, self._root, self._is_le)) i += 1 def _read_be(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.RelocationSectionEntry(self._io, self, self._root, self._is_le)) i += 1 class DynamicSection(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/dynamic_section") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.DynamicSectionEntry(self._io, self, self._root, self._is_le)) i += 1 def _read_be(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.DynamicSectionEntry(self._io, self, self._root, self._is_le)) i += 1 @property def is_string_table_linked(self): if hasattr(self, '_m_is_string_table_linked'): return self._m_is_string_table_linked if hasattr(self, '_m_is_string_table_linked') else None self._m_is_string_table_linked = self._parent.linked_section.type == Elf.ShType.strtab return self._m_is_string_table_linked if hasattr(self, '_m_is_string_table_linked') else None class DynsymSection(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/dynsym_section") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.DynsymSectionEntry(self._io, self, self._root, self._is_le)) i += 1 def _read_be(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append(Elf.EndianElf.DynsymSectionEntry(self._io, self, self._root, self._is_le)) i += 1 @property def is_string_table_linked(self): if hasattr(self, '_m_is_string_table_linked'): return self._m_is_string_table_linked if hasattr(self, '_m_is_string_table_linked') else None self._m_is_string_table_linked = self._parent.linked_section.type == Elf.ShType.strtab return self._m_is_string_table_linked if hasattr(self, '_m_is_string_table_linked') else None class RelocationSectionEntry(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/relocation_section_entry") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): _on = self._root.bits if _on == Elf.Bits.b32: self.offset = self._io.read_u4le() elif _on == Elf.Bits.b64: self.offset = self._io.read_u8le() _on = self._root.bits if _on == Elf.Bits.b32: self.info = self._io.read_u4le() elif _on == Elf.Bits.b64: self.info = self._io.read_u8le() if self._parent.has_addend: _on = self._root.bits if _on == Elf.Bits.b32: self.addend = self._io.read_s4le() elif _on == Elf.Bits.b64: self.addend = self._io.read_s8le() def _read_be(self): _on = self._root.bits if _on == Elf.Bits.b32: self.offset = self._io.read_u4be() elif _on == Elf.Bits.b64: self.offset = self._io.read_u8be() _on = self._root.bits if _on == Elf.Bits.b32: self.info = self._io.read_u4be() elif _on == Elf.Bits.b64: self.info = self._io.read_u8be() if self._parent.has_addend: _on = self._root.bits if _on == Elf.Bits.b32: self.addend = self._io.read_s4be() elif _on == Elf.Bits.b64: self.addend = self._io.read_s8be() class DynsymSectionEntry(KaitaiStruct): """ .. seealso:: Source - https://docs.oracle.com/cd/E37838_01/html/E36783/man-sts.html .. seealso:: Source - https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.symtab.html """ def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/dynsym_section_entry") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.ofs_name = self._io.read_u4le() if self._root.bits == Elf.Bits.b32: self.value_b32 = self._io.read_u4le() if self._root.bits == Elf.Bits.b32: self.size_b32 = self._io.read_u4le() self.bind = KaitaiStream.resolve_enum(Elf.SymbolBinding, self._io.read_bits_int_be(4)) self.type = KaitaiStream.resolve_enum(Elf.SymbolType, self._io.read_bits_int_be(4)) self._io.align_to_byte() self.other = self._io.read_u1() self.sh_idx = self._io.read_u2le() if self._root.bits == Elf.Bits.b64: self.value_b64 = self._io.read_u8le() if self._root.bits == Elf.Bits.b64: self.size_b64 = self._io.read_u8le() def _read_be(self): self.ofs_name = self._io.read_u4be() if self._root.bits == Elf.Bits.b32: self.value_b32 = self._io.read_u4be() if self._root.bits == Elf.Bits.b32: self.size_b32 = self._io.read_u4be() self.bind = KaitaiStream.resolve_enum(Elf.SymbolBinding, self._io.read_bits_int_be(4)) self.type = KaitaiStream.resolve_enum(Elf.SymbolType, self._io.read_bits_int_be(4)) self._io.align_to_byte() self.other = self._io.read_u1() self.sh_idx = self._io.read_u2be() if self._root.bits == Elf.Bits.b64: self.value_b64 = self._io.read_u8be() if self._root.bits == Elf.Bits.b64: self.size_b64 = self._io.read_u8be() @property def is_sh_idx_reserved(self): if hasattr(self, '_m_is_sh_idx_reserved'): return self._m_is_sh_idx_reserved if hasattr(self, '_m_is_sh_idx_reserved') else None self._m_is_sh_idx_reserved = ((self.sh_idx >= self._root.sh_idx_lo_reserved) and (self.sh_idx <= self._root.sh_idx_hi_reserved)) return self._m_is_sh_idx_reserved if hasattr(self, '_m_is_sh_idx_reserved') else None @property def is_sh_idx_os(self): if hasattr(self, '_m_is_sh_idx_os'): return self._m_is_sh_idx_os if hasattr(self, '_m_is_sh_idx_os') else None self._m_is_sh_idx_os = ((self.sh_idx >= self._root.sh_idx_lo_os) and (self.sh_idx <= self._root.sh_idx_hi_os)) return self._m_is_sh_idx_os if hasattr(self, '_m_is_sh_idx_os') else None @property def is_sh_idx_proc(self): if hasattr(self, '_m_is_sh_idx_proc'): return self._m_is_sh_idx_proc if hasattr(self, '_m_is_sh_idx_proc') else None self._m_is_sh_idx_proc = ((self.sh_idx >= self._root.sh_idx_lo_proc) and (self.sh_idx <= self._root.sh_idx_hi_proc)) return self._m_is_sh_idx_proc if hasattr(self, '_m_is_sh_idx_proc') else None @property def size(self): if hasattr(self, '_m_size'): return self._m_size if hasattr(self, '_m_size') else None self._m_size = (self.size_b32 if self._root.bits == Elf.Bits.b32 else (self.size_b64 if self._root.bits == Elf.Bits.b64 else 0)) return self._m_size if hasattr(self, '_m_size') else None @property def visibility(self): if hasattr(self, '_m_visibility'): return self._m_visibility if hasattr(self, '_m_visibility') else None self._m_visibility = KaitaiStream.resolve_enum(Elf.SymbolVisibility, (self.other & 3)) return self._m_visibility if hasattr(self, '_m_visibility') else None @property def value(self): if hasattr(self, '_m_value'): return self._m_value if hasattr(self, '_m_value') else None self._m_value = (self.value_b32 if self._root.bits == Elf.Bits.b32 else (self.value_b64 if self._root.bits == Elf.Bits.b64 else 0)) return self._m_value if hasattr(self, '_m_value') else None @property def name(self): if hasattr(self, '_m_name'): return self._m_name if hasattr(self, '_m_name') else None if ((self.ofs_name != 0) and (self._parent.is_string_table_linked)) : io = self._parent._parent.linked_section.body._io _pos = io.pos() io.seek(self.ofs_name) if self._is_le: self._m_name = (io.read_bytes_term(0, False, True, True)).decode(u"ASCII") else: self._m_name = (io.read_bytes_term(0, False, True, True)).decode(u"ASCII") io.seek(_pos) return self._m_name if hasattr(self, '_m_name') else None @property def sh_idx_special(self): if hasattr(self, '_m_sh_idx_special'): return self._m_sh_idx_special if hasattr(self, '_m_sh_idx_special') else None self._m_sh_idx_special = KaitaiStream.resolve_enum(Elf.SectionHeaderIdxSpecial, self.sh_idx) return self._m_sh_idx_special if hasattr(self, '_m_sh_idx_special') else None class NoteSectionEntry(KaitaiStruct): """ .. seealso:: Source - https://docs.oracle.com/cd/E37838_01/html/E36783/chapter6-18048.html .. seealso:: Source - https://refspecs.linuxfoundation.org/elf/gabi4+/ch5.pheader.html#note_section """ def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/note_section_entry") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.len_name = self._io.read_u4le() self.len_descriptor = self._io.read_u4le() self.type = self._io.read_u4le() self.name = KaitaiStream.bytes_terminate(self._io.read_bytes(self.len_name), 0, False) self.name_padding = self._io.read_bytes((-(self.len_name) % 4)) self.descriptor = self._io.read_bytes(self.len_descriptor) self.descriptor_padding = self._io.read_bytes((-(self.len_descriptor) % 4)) def _read_be(self): self.len_name = self._io.read_u4be() self.len_descriptor = self._io.read_u4be() self.type = self._io.read_u4be() self.name = KaitaiStream.bytes_terminate(self._io.read_bytes(self.len_name), 0, False) self.name_padding = self._io.read_bytes((-(self.len_name) % 4)) self.descriptor = self._io.read_bytes(self.len_descriptor) self.descriptor_padding = self._io.read_bytes((-(self.len_descriptor) % 4)) class StringsStruct(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None, _is_le=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._is_le = _is_le self._read() def _read(self): if not hasattr(self, '_is_le'): raise kaitaistruct.UndecidedEndiannessError("/types/endian_elf/types/strings_struct") elif self._is_le == True: self._read_le() elif self._is_le == False: self._read_be() def _read_le(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append((self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII")) i += 1 def _read_be(self): self.entries = [] i = 0 while not self._io.is_eof(): self.entries.append((self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII")) i += 1 @property def program_headers(self): if hasattr(self, '_m_program_headers'): return self._m_program_headers if hasattr(self, '_m_program_headers') else None _pos = self._io.pos() self._io.seek(self.program_header_offset) if self._is_le: self._raw__m_program_headers = [None] * (self.qty_program_header) self._m_program_headers = [None] * (self.qty_program_header) for i in range(self.qty_program_header): self._raw__m_program_headers[i] = self._io.read_bytes(self.program_header_entry_size) _io__raw__m_program_headers = KaitaiStream(BytesIO(self._raw__m_program_headers[i])) self._m_program_headers[i] = Elf.EndianElf.ProgramHeader(_io__raw__m_program_headers, self, self._root, self._is_le) else: self._raw__m_program_headers = [None] * (self.qty_program_header) self._m_program_headers = [None] * (self.qty_program_header) for i in range(self.qty_program_header): self._raw__m_program_headers[i] = self._io.read_bytes(self.program_header_entry_size) _io__raw__m_program_headers = KaitaiStream(BytesIO(self._raw__m_program_headers[i])) self._m_program_headers[i] = Elf.EndianElf.ProgramHeader(_io__raw__m_program_headers, self, self._root, self._is_le) self._io.seek(_pos) return self._m_program_headers if hasattr(self, '_m_program_headers') else None @property def section_headers(self): if hasattr(self, '_m_section_headers'): return self._m_section_headers if hasattr(self, '_m_section_headers') else None _pos = self._io.pos() self._io.seek(self.section_header_offset) if self._is_le: self._raw__m_section_headers = [None] * (self.qty_section_header) self._m_section_headers = [None] * (self.qty_section_header) for i in range(self.qty_section_header): self._raw__m_section_headers[i] = self._io.read_bytes(self.section_header_entry_size) _io__raw__m_section_headers = KaitaiStream(BytesIO(self._raw__m_section_headers[i])) self._m_section_headers[i] = Elf.EndianElf.SectionHeader(_io__raw__m_section_headers, self, self._root, self._is_le) else: self._raw__m_section_headers = [None] * (self.qty_section_header) self._m_section_headers = [None] * (self.qty_section_header) for i in range(self.qty_section_header): self._raw__m_section_headers[i] = self._io.read_bytes(self.section_header_entry_size) _io__raw__m_section_headers = KaitaiStream(BytesIO(self._raw__m_section_headers[i])) self._m_section_headers[i] = Elf.EndianElf.SectionHeader(_io__raw__m_section_headers, self, self._root, self._is_le) self._io.seek(_pos) return self._m_section_headers if hasattr(self, '_m_section_headers') else None @property def section_names(self): if hasattr(self, '_m_section_names'): return self._m_section_names if hasattr(self, '_m_section_names') else None if ((self.section_names_idx != Elf.SectionHeaderIdxSpecial.undefined.value) and (self.section_names_idx < self._root.header.qty_section_header)) : _pos = self._io.pos() self._io.seek(self.section_headers[self.section_names_idx].ofs_body) if self._is_le: self._raw__m_section_names = self._io.read_bytes(self.section_headers[self.section_names_idx].len_body) _io__raw__m_section_names = KaitaiStream(BytesIO(self._raw__m_section_names)) self._m_section_names = Elf.EndianElf.StringsStruct(_io__raw__m_section_names, self, self._root, self._is_le) else: self._raw__m_section_names = self._io.read_bytes(self.section_headers[self.section_names_idx].len_body) _io__raw__m_section_names = KaitaiStream(BytesIO(self._raw__m_section_names)) self._m_section_names = Elf.EndianElf.StringsStruct(_io__raw__m_section_names, self, self._root, self._is_le) self._io.seek(_pos) return self._m_section_names if hasattr(self, '_m_section_names') else None class DtFlag1Values(KaitaiStruct): def __init__(self, value, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.value = value self._read() def _read(self): pass @property def singleton(self): """Singleton symbols are used.""" if hasattr(self, '_m_singleton'): return self._m_singleton if hasattr(self, '_m_singleton') else None self._m_singleton = (self.value & 33554432) != 0 return self._m_singleton if hasattr(self, '_m_singleton') else None @property def ignmuldef(self): if hasattr(self, '_m_ignmuldef'): return self._m_ignmuldef if hasattr(self, '_m_ignmuldef') else None self._m_ignmuldef = (self.value & 262144) != 0 return self._m_ignmuldef if hasattr(self, '_m_ignmuldef') else None @property def loadfltr(self): """Trigger filtee loading at runtime.""" if hasattr(self, '_m_loadfltr'): return self._m_loadfltr if hasattr(self, '_m_loadfltr') else None self._m_loadfltr = (self.value & 16) != 0 return self._m_loadfltr if hasattr(self, '_m_loadfltr') else None @property def initfirst(self): """Set RTLD_INITFIRST for this object.""" if hasattr(self, '_m_initfirst'): return self._m_initfirst if hasattr(self, '_m_initfirst') else None self._m_initfirst = (self.value & 32) != 0 return self._m_initfirst if hasattr(self, '_m_initfirst') else None @property def symintpose(self): """Object has individual interposers.""" if hasattr(self, '_m_symintpose'): return self._m_symintpose if hasattr(self, '_m_symintpose') else None self._m_symintpose = (self.value & 8388608) != 0 return self._m_symintpose if hasattr(self, '_m_symintpose') else None @property def noreloc(self): if hasattr(self, '_m_noreloc'): return self._m_noreloc if hasattr(self, '_m_noreloc') else None self._m_noreloc = (self.value & 4194304) != 0 return self._m_noreloc if hasattr(self, '_m_noreloc') else None @property def confalt(self): """Configuration alternative created.""" if hasattr(self, '_m_confalt'): return self._m_confalt if hasattr(self, '_m_confalt') else None self._m_confalt = (self.value & 8192) != 0 return self._m_confalt if hasattr(self, '_m_confalt') else None @property def dispreldne(self): """Disp reloc applied at build time.""" if hasattr(self, '_m_dispreldne'): return self._m_dispreldne if hasattr(self, '_m_dispreldne') else None self._m_dispreldne = (self.value & 32768) != 0 return self._m_dispreldne if hasattr(self, '_m_dispreldne') else None @property def rtld_global(self): """Set RTLD_GLOBAL for this object.""" if hasattr(self, '_m_rtld_global'): return self._m_rtld_global if hasattr(self, '_m_rtld_global') else None self._m_rtld_global = (self.value & 2) != 0 return self._m_rtld_global if hasattr(self, '_m_rtld_global') else None @property def nodelete(self): """Set RTLD_NODELETE for this object.""" if hasattr(self, '_m_nodelete'): return self._m_nodelete if hasattr(self, '_m_nodelete') else None self._m_nodelete = (self.value & 8) != 0 return self._m_nodelete if hasattr(self, '_m_nodelete') else None @property def trans(self): if hasattr(self, '_m_trans'): return self._m_trans if hasattr(self, '_m_trans') else None self._m_trans = (self.value & 512) != 0 return self._m_trans if hasattr(self, '_m_trans') else None @property def origin(self): """$ORIGIN must be handled.""" if hasattr(self, '_m_origin'): return self._m_origin if hasattr(self, '_m_origin') else None self._m_origin = (self.value & 128) != 0 return self._m_origin if hasattr(self, '_m_origin') else None @property def now(self): """Set RTLD_NOW for this object.""" if hasattr(self, '_m_now'): return self._m_now if hasattr(self, '_m_now') else None self._m_now = (self.value & 1) != 0 return self._m_now if hasattr(self, '_m_now') else None @property def nohdr(self): if hasattr(self, '_m_nohdr'): return self._m_nohdr if hasattr(self, '_m_nohdr') else None self._m_nohdr = (self.value & 1048576) != 0 return self._m_nohdr if hasattr(self, '_m_nohdr') else None @property def endfiltee(self): """Filtee terminates filters search.""" if hasattr(self, '_m_endfiltee'): return self._m_endfiltee if hasattr(self, '_m_endfiltee') else None self._m_endfiltee = (self.value & 16384) != 0 return self._m_endfiltee if hasattr(self, '_m_endfiltee') else None @property def nodirect(self): """Object has no-direct binding.""" if hasattr(self, '_m_nodirect'): return self._m_nodirect if hasattr(self, '_m_nodirect') else None self._m_nodirect = (self.value & 131072) != 0 return self._m_nodirect if hasattr(self, '_m_nodirect') else None @property def globaudit(self): """Global auditing required.""" if hasattr(self, '_m_globaudit'): return self._m_globaudit if hasattr(self, '_m_globaudit') else None self._m_globaudit = (self.value & 16777216) != 0 return self._m_globaudit if hasattr(self, '_m_globaudit') else None @property def noksyms(self): if hasattr(self, '_m_noksyms'): return self._m_noksyms if hasattr(self, '_m_noksyms') else None self._m_noksyms = (self.value & 524288) != 0 return self._m_noksyms if hasattr(self, '_m_noksyms') else None @property def interpose(self): """Object is used to interpose.""" if hasattr(self, '_m_interpose'): return self._m_interpose if hasattr(self, '_m_interpose') else None self._m_interpose = (self.value & 1024) != 0 return self._m_interpose if hasattr(self, '_m_interpose') else None @property def nodump(self): """Object can't be dldump'ed.""" if hasattr(self, '_m_nodump'): return self._m_nodump if hasattr(self, '_m_nodump') else None self._m_nodump = (self.value & 4096) != 0 return self._m_nodump if hasattr(self, '_m_nodump') else None @property def disprelpnd(self): """Disp reloc applied at run-time.""" if hasattr(self, '_m_disprelpnd'): return self._m_disprelpnd if hasattr(self, '_m_disprelpnd') else None self._m_disprelpnd = (self.value & 65536) != 0 return self._m_disprelpnd if hasattr(self, '_m_disprelpnd') else None @property def noopen(self): """Set RTLD_NOOPEN for this object.""" if hasattr(self, '_m_noopen'): return self._m_noopen if hasattr(self, '_m_noopen') else None self._m_noopen = (self.value & 64) != 0 return self._m_noopen if hasattr(self, '_m_noopen') else None @property def stub(self): if hasattr(self, '_m_stub'): return self._m_stub if hasattr(self, '_m_stub') else None self._m_stub = (self.value & 67108864) != 0 return self._m_stub if hasattr(self, '_m_stub') else None @property def direct(self): """Direct binding enabled.""" if hasattr(self, '_m_direct'): return self._m_direct if hasattr(self, '_m_direct') else None self._m_direct = (self.value & 256) != 0 return self._m_direct if hasattr(self, '_m_direct') else None @property def edited(self): """Object is modified after built.""" if hasattr(self, '_m_edited'): return self._m_edited if hasattr(self, '_m_edited') else None self._m_edited = (self.value & 2097152) != 0 return self._m_edited if hasattr(self, '_m_edited') else None @property def group(self): """Set RTLD_GROUP for this object.""" if hasattr(self, '_m_group'): return self._m_group if hasattr(self, '_m_group') else None self._m_group = (self.value & 4) != 0 return self._m_group if hasattr(self, '_m_group') else None @property def pie(self): if hasattr(self, '_m_pie'): return self._m_pie if hasattr(self, '_m_pie') else None self._m_pie = (self.value & 134217728) != 0 return self._m_pie if hasattr(self, '_m_pie') else None @property def nodeflib(self): """Ignore default lib search path.""" if hasattr(self, '_m_nodeflib'): return self._m_nodeflib if hasattr(self, '_m_nodeflib') else None self._m_nodeflib = (self.value & 2048) != 0 return self._m_nodeflib if hasattr(self, '_m_nodeflib') else None class SectionHeaderFlags(KaitaiStruct): def __init__(self, value, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.value = value self._read() def _read(self): pass @property def merge(self): """might be merged.""" if hasattr(self, '_m_merge'): return self._m_merge if hasattr(self, '_m_merge') else None self._m_merge = (self.value & 16) != 0 return self._m_merge if hasattr(self, '_m_merge') else None @property def mask_os(self): """OS-specific.""" if hasattr(self, '_m_mask_os'): return self._m_mask_os if hasattr(self, '_m_mask_os') else None self._m_mask_os = (self.value & 267386880) != 0 return self._m_mask_os if hasattr(self, '_m_mask_os') else None @property def exclude(self): """section is excluded unless referenced or allocated (Solaris).""" if hasattr(self, '_m_exclude'): return self._m_exclude if hasattr(self, '_m_exclude') else None self._m_exclude = (self.value & 134217728) != 0 return self._m_exclude if hasattr(self, '_m_exclude') else None @property def mask_proc(self): """Processor-specific.""" if hasattr(self, '_m_mask_proc'): return self._m_mask_proc if hasattr(self, '_m_mask_proc') else None self._m_mask_proc = (self.value & 4026531840) != 0 return self._m_mask_proc if hasattr(self, '_m_mask_proc') else None @property def strings(self): """contains nul-terminated strings.""" if hasattr(self, '_m_strings'): return self._m_strings if hasattr(self, '_m_strings') else None self._m_strings = (self.value & 32) != 0 return self._m_strings if hasattr(self, '_m_strings') else None @property def os_non_conforming(self): """non-standard OS specific handling required.""" if hasattr(self, '_m_os_non_conforming'): return self._m_os_non_conforming if hasattr(self, '_m_os_non_conforming') else None self._m_os_non_conforming = (self.value & 256) != 0 return self._m_os_non_conforming if hasattr(self, '_m_os_non_conforming') else None @property def alloc(self): """occupies memory during execution.""" if hasattr(self, '_m_alloc'): return self._m_alloc if hasattr(self, '_m_alloc') else None self._m_alloc = (self.value & 2) != 0 return self._m_alloc if hasattr(self, '_m_alloc') else None @property def exec_instr(self): """executable.""" if hasattr(self, '_m_exec_instr'): return self._m_exec_instr if hasattr(self, '_m_exec_instr') else None self._m_exec_instr = (self.value & 4) != 0 return self._m_exec_instr if hasattr(self, '_m_exec_instr') else None @property def info_link(self): """'sh_info' contains SHT index.""" if hasattr(self, '_m_info_link'): return self._m_info_link if hasattr(self, '_m_info_link') else None self._m_info_link = (self.value & 64) != 0 return self._m_info_link if hasattr(self, '_m_info_link') else None @property def write(self): """writable.""" if hasattr(self, '_m_write'): return self._m_write if hasattr(self, '_m_write') else None self._m_write = (self.value & 1) != 0 return self._m_write if hasattr(self, '_m_write') else None @property def link_order(self): """preserve order after combining.""" if hasattr(self, '_m_link_order'): return self._m_link_order if hasattr(self, '_m_link_order') else None self._m_link_order = (self.value & 128) != 0 return self._m_link_order if hasattr(self, '_m_link_order') else None @property def ordered(self): """special ordering requirement (Solaris).""" if hasattr(self, '_m_ordered'): return self._m_ordered if hasattr(self, '_m_ordered') else None self._m_ordered = (self.value & 67108864) != 0 return self._m_ordered if hasattr(self, '_m_ordered') else None @property def tls(self): """section hold thread-local data.""" if hasattr(self, '_m_tls'): return self._m_tls if hasattr(self, '_m_tls') else None self._m_tls = (self.value & 1024) != 0 return self._m_tls if hasattr(self, '_m_tls') else None @property def group(self): """section is member of a group.""" if hasattr(self, '_m_group'): return self._m_group if hasattr(self, '_m_group') else None self._m_group = (self.value & 512) != 0 return self._m_group if hasattr(self, '_m_group') else None class PhdrTypeFlags(KaitaiStruct): def __init__(self, value, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.value = value self._read() def _read(self): pass @property def read(self): if hasattr(self, '_m_read'): return self._m_read if hasattr(self, '_m_read') else None self._m_read = (self.value & 4) != 0 return self._m_read if hasattr(self, '_m_read') else None @property def write(self): if hasattr(self, '_m_write'): return self._m_write if hasattr(self, '_m_write') else None self._m_write = (self.value & 2) != 0 return self._m_write if hasattr(self, '_m_write') else None @property def execute(self): if hasattr(self, '_m_execute'): return self._m_execute if hasattr(self, '_m_execute') else None self._m_execute = (self.value & 1) != 0 return self._m_execute if hasattr(self, '_m_execute') else None @property def mask_proc(self): if hasattr(self, '_m_mask_proc'): return self._m_mask_proc if hasattr(self, '_m_mask_proc') else None self._m_mask_proc = (self.value & 4026531840) != 0 return self._m_mask_proc if hasattr(self, '_m_mask_proc') else None class DtFlagValues(KaitaiStruct): """ .. seealso:: Figure 5-11: DT_FLAGS values - https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html .. seealso:: Source - https://github.com/golang/go/blob/48dfddbab3/src/debug/elf/elf.go#L1079-L1095 .. seealso:: Source - https://docs.oracle.com/cd/E37838_01/html/E36783/chapter6-42444.html#OSLLGchapter7-tbl-5 """ def __init__(self, value, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.value = value self._read() def _read(self): pass @property def bind_now(self): """all relocations for this object must be processed before returning control to the program """ if hasattr(self, '_m_bind_now'): return self._m_bind_now if hasattr(self, '_m_bind_now') else None self._m_bind_now = (self.value & 8) != 0 return self._m_bind_now if hasattr(self, '_m_bind_now') else None @property def origin(self): """object may reference the $ORIGIN substitution string.""" if hasattr(self, '_m_origin'): return self._m_origin if hasattr(self, '_m_origin') else None self._m_origin = (self.value & 1) != 0 return self._m_origin if hasattr(self, '_m_origin') else None @property def textrel(self): """relocation entries might request modifications to a non-writable segment.""" if hasattr(self, '_m_textrel'): return self._m_textrel if hasattr(self, '_m_textrel') else None self._m_textrel = (self.value & 4) != 0 return self._m_textrel if hasattr(self, '_m_textrel') else None @property def static_tls(self): """object uses static thread-local storage scheme.""" if hasattr(self, '_m_static_tls'): return self._m_static_tls if hasattr(self, '_m_static_tls') else None self._m_static_tls = (self.value & 16) != 0 return self._m_static_tls if hasattr(self, '_m_static_tls') else None @property def symbolic(self): """symbolic linking.""" if hasattr(self, '_m_symbolic'): return self._m_symbolic if hasattr(self, '_m_symbolic') else None self._m_symbolic = (self.value & 2) != 0 return self._m_symbolic if hasattr(self, '_m_symbolic') else None @property def sh_idx_lo_os(self): if hasattr(self, '_m_sh_idx_lo_os'): return self._m_sh_idx_lo_os if hasattr(self, '_m_sh_idx_lo_os') else None self._m_sh_idx_lo_os = 65312 return self._m_sh_idx_lo_os if hasattr(self, '_m_sh_idx_lo_os') else None @property def sh_idx_lo_reserved(self): if hasattr(self, '_m_sh_idx_lo_reserved'): return self._m_sh_idx_lo_reserved if hasattr(self, '_m_sh_idx_lo_reserved') else None self._m_sh_idx_lo_reserved = 65280 return self._m_sh_idx_lo_reserved if hasattr(self, '_m_sh_idx_lo_reserved') else None @property def sh_idx_hi_proc(self): if hasattr(self, '_m_sh_idx_hi_proc'): return self._m_sh_idx_hi_proc if hasattr(self, '_m_sh_idx_hi_proc') else None self._m_sh_idx_hi_proc = 65311 return self._m_sh_idx_hi_proc if hasattr(self, '_m_sh_idx_hi_proc') else None @property def sh_idx_lo_proc(self): if hasattr(self, '_m_sh_idx_lo_proc'): return self._m_sh_idx_lo_proc if hasattr(self, '_m_sh_idx_lo_proc') else None self._m_sh_idx_lo_proc = 65280 return self._m_sh_idx_lo_proc if hasattr(self, '_m_sh_idx_lo_proc') else None @property def sh_idx_hi_os(self): if hasattr(self, '_m_sh_idx_hi_os'): return self._m_sh_idx_hi_os if hasattr(self, '_m_sh_idx_hi_os') else None self._m_sh_idx_hi_os = 65343 return self._m_sh_idx_hi_os if hasattr(self, '_m_sh_idx_hi_os') else None @property def sh_idx_hi_reserved(self): if hasattr(self, '_m_sh_idx_hi_reserved'): return self._m_sh_idx_hi_reserved if hasattr(self, '_m_sh_idx_hi_reserved') else None self._m_sh_idx_hi_reserved = 65535 return self._m_sh_idx_hi_reserved if hasattr(self, '_m_sh_idx_hi_reserved') else None
39.595319
641
0.545807
2c9bb8d1b8173c07629008dc36e41b77154f4a7d
120
py
Python
lg_activity/src/lg_activity/__init__.py
FuriousJulius/lg_ros_nodes
15a84c5022ab2f5b038d11a5589cd4a34010b1d6
[ "Apache-2.0" ]
16
2015-10-10T11:55:37.000Z
2022-02-24T22:47:48.000Z
lg_activity/src/lg_activity/__init__.py
FuriousJulius/lg_ros_nodes
15a84c5022ab2f5b038d11a5589cd4a34010b1d6
[ "Apache-2.0" ]
292
2015-09-29T21:59:53.000Z
2022-03-31T15:59:31.000Z
lg_activity/src/lg_activity/__init__.py
constantegonzalez/lg_ros_nodes
1c7b08c42e90205922602c86805285508d1b7971
[ "Apache-2.0" ]
5
2017-05-03T06:22:43.000Z
2021-08-19T16:54:14.000Z
from .activity import ActivitySource from .activity import ActivityTracker from .activity import ActivitySourceDetector
30
44
0.875
ff5dd41c4e64a2eebf1e3235d404e18b243d67cf
14,598
py
Python
arelle/DialogOpenArchive.py
theredpea/Arelle
e53097f142a69b2fefc18298a72f1f1b219b973d
[ "Apache-2.0" ]
null
null
null
arelle/DialogOpenArchive.py
theredpea/Arelle
e53097f142a69b2fefc18298a72f1f1b219b973d
[ "Apache-2.0" ]
null
null
null
arelle/DialogOpenArchive.py
theredpea/Arelle
e53097f142a69b2fefc18298a72f1f1b219b973d
[ "Apache-2.0" ]
null
null
null
''' Created on Oct 20, 2010 @author: Mark V Systems Limited (c) Copyright 2010 Mark V Systems Limited, All rights reserved. ''' from tkinter import Toplevel, StringVar, VERTICAL, HORIZONTAL, N, S, E, W, messagebox try: from tkinter.ttk import Frame, Button, Treeview, Scrollbar except ImportError: from ttk import Frame, Button, Treeview, Scrollbar import os, sys try: import regex as re except ImportError: import re from arelle.CntlrWinTooltip import ToolTip from arelle.UrlUtil import isHttpUrl from arelle.PackageManager import parsePackage ''' caller checks accepted, if True, caller retrieves url ''' ARCHIVE = 1 ENTRY_POINTS = 2 DISCLOSURE_SYSTEM = 3 def askArchiveFile(mainWin, filesource): filenames = filesource.dir if filenames is not None: # an IO or other error can return None if filesource.isTaxonomyPackage: dialog = DialogOpenArchive(mainWin, ENTRY_POINTS, filesource, filenames, _("Select Entry Point"), _("File"), showAltViewButton=True) else: dialog = DialogOpenArchive(mainWin, ARCHIVE, filesource, filenames, _("Select Archive File"), _("File")) if dialog.accepted: return filesource.url return None def selectDisclosureSystem(mainWin, disclosureSystem): dialog = DialogOpenArchive(mainWin, DISCLOSURE_SYSTEM, disclosureSystem, disclosureSystem.dir, _("Select Disclosure System"), _("Disclosure System")) if dialog and dialog.accepted: return disclosureSystem.selection return None class DialogOpenArchive(Toplevel): def __init__(self, mainWin, openType, filesource, filenames, title, colHeader, showAltViewButton=False): parent = mainWin.parent super(DialogOpenArchive, self).__init__(parent) self.parent = parent self.showAltViewButton = showAltViewButton parentGeometry = re.match("(\d+)x(\d+)[+]?([-]?\d+)[+]?([-]?\d+)", parent.geometry()) dialogX = int(parentGeometry.group(3)) dialogY = int(parentGeometry.group(4)) self.accepted = False self.transient(self.parent) frame = Frame(self) treeFrame = Frame(frame, width=500) vScrollbar = Scrollbar(treeFrame, orient=VERTICAL) hScrollbar = Scrollbar(treeFrame, orient=HORIZONTAL) self.treeView = Treeview(treeFrame, xscrollcommand=hScrollbar.set, yscrollcommand=vScrollbar.set) self.treeView.grid(row=0, column=0, sticky=(N, S, E, W)) hScrollbar["command"] = self.treeView.xview hScrollbar.grid(row=1, column=0, sticky=(E,W)) vScrollbar["command"] = self.treeView.yview vScrollbar.grid(row=0, column=1, sticky=(N,S)) treeFrame.columnconfigure(0, weight=1) treeFrame.rowconfigure(0, weight=1) treeFrame.grid(row=0, column=0, columnspan=4, sticky=(N, S, E, W), padx=3, pady=3) self.treeView.focus_set() mainWin.showStatus(_("loading archive {0}").format(filesource.url)) self.filesource = filesource self.filenames = filenames self.selection = filesource.selection self.hasToolTip = False selectedNode = None if openType == ENTRY_POINTS: try: metadataFiles = filesource.taxonomyPackageMetadataFiles ''' take first for now if len(metadataFiles) != 1: raise IOError(_("Taxonomy package contained more than one metadata file: {0}.") .format(', '.join(metadataFiles))) ''' metadataFile = metadataFiles[0] metadata = filesource.url + os.sep + metadataFile self.metadataFilePrefix = os.sep.join(os.path.split(metadataFile)[:-1]) if self.metadataFilePrefix: self.metadataFilePrefix += "/" # zip contents have /, never \ file seps self.taxonomyPkgMetaInf = '{}/META-INF/'.format( os.path.splitext(os.path.basename(filesource.url))[0]) self.taxonomyPackage = parsePackage(mainWin, filesource, metadata, os.sep.join(os.path.split(metadata)[:-1]) + os.sep) # may be a catalog file with no entry oint names if not self.taxonomyPackage["nameToUrls"]: openType = ARCHIVE # no entry points to show, just archive self.showAltViewButton = False except Exception as e: self.close() err = _("Failed to parse metadata; the underlying error was: {0}").format(e) messagebox.showerror(_("Malformed taxonomy package"), err) mainWin.addToLog(err) return mainWin.showStatus(None) if openType == DISCLOSURE_SYSTEM: y = 3 else: y = 1 okButton = Button(frame, text=_("OK"), command=self.ok) cancelButton = Button(frame, text=_("Cancel"), command=self.close) okButton.grid(row=y, column=2, sticky=(S,E,W), pady=3) cancelButton.grid(row=y, column=3, sticky=(S,E,W), pady=3, padx=3) if self.showAltViewButton: self.altViewButton = Button(frame, command=self.showAltView) self.altViewButton.grid(row=y, column=0, sticky=(S,W), pady=3, padx=3) self.loadTreeView(openType, colHeader, title) self.geometry("+{0}+{1}".format(dialogX+50,dialogY+100)) frame.grid(row=0, column=0, sticky=(N,S,E,W)) frame.columnconfigure(0, weight=1) frame.rowconfigure(0, weight=1) window = self.winfo_toplevel() window.columnconfigure(0, weight=1) window.rowconfigure(0, weight=1) self.bind("<Return>", self.ok) self.bind("<Escape>", self.close) self.toolTipText = StringVar() if self.hasToolTip: self.treeView.bind("<Motion>", self.motion, '+') self.treeView.bind("<Leave>", self.leave, '+') self.toolTipText = StringVar() self.toolTip = ToolTip(self.treeView, textvariable=self.toolTipText, wraplength=640, follow_mouse=True, state="disabled") self.toolTipRowId = None self.protocol("WM_DELETE_WINDOW", self.close) self.grab_set() self.wait_window(self) def loadTreeView(self, openType, title, colHeader): self.title(title) self.openType = openType selectedNode = None # clear previous treeview entries for previousNode in self.treeView.get_children(""): self.treeView.delete(previousNode) # set up treeView widget and tabbed pane if openType in (ARCHIVE, DISCLOSURE_SYSTEM): self.treeView.column("#0", width=500, anchor="w") self.treeView.heading("#0", text=colHeader) try: self.isRss = self.filesource.isRss if self.isRss: self.treeView.column("#0", width=350, anchor="w") self.treeView["columns"] = ("descr", "date", "instDoc") self.treeView.column("descr", width=50, anchor="center", stretch=False) self.treeView.heading("descr", text="Form") self.treeView.column("date", width=170, anchor="w", stretch=False) self.treeView.heading("date", text="Pub Date") self.treeView.column("instDoc", width=200, anchor="w", stretch=False) self.treeView.heading("instDoc", text="Instance Document") except AttributeError: self.isRss = False self.treeView["columns"] = tuple() loadedPaths = [] for i, filename in enumerate(self.filenames): if isinstance(filename,tuple): if self.isRss: form, date, instDoc = filename[2:5] filename = filename[0] # ignore tooltip self.hasToolTip = True if filename.endswith("/"): filename = filename[:-1] path = filename.split("/") if not self.isRss and len(path) > 1 and path[:-1] in loadedPaths: parent = "file{0}".format(loadedPaths.index(path[:-1])) else: parent = "" node = self.treeView.insert(parent, "end", "file{0}".format(i), text=path[-1]) if self.isRss: self.treeView.set(node, "descr", form) self.treeView.set(node, "date", date) self.treeView.set(node, "instDoc", os.path.basename(instDoc)) if self.selection == filename: selectedNode = node loadedPaths.append(path) elif openType == ENTRY_POINTS: self.treeView.column("#0", width=150, anchor="w") self.treeView.heading("#0", text="Name") self.treeView["columns"] = ("url",) self.treeView.column("url", width=350, anchor="w") self.treeView.heading("url", text="URL") for name, urls in self.taxonomyPackage["nameToUrls"].items(): displayUrl = urls[1] # display the canonical URL self.treeView.insert("", "end", name, values=[displayUrl], text=name) self.hasToolTip = True else: # unknown openType return None if selectedNode: self.treeView.see(selectedNode) self.treeView.selection_set(selectedNode) if self.showAltViewButton: self.altViewButton.config(text=_("Show Files") if openType == ENTRY_POINTS else _("Show Entries")) def ok(self, event=None): selection = self.treeView.selection() if len(selection) > 0: if hasattr(self, "taxonomyPackage"): # load file source remappings self.filesource.mappedPaths = self.taxonomyPackage["remappings"] filename = None if self.openType in (ARCHIVE, DISCLOSURE_SYSTEM): filename = self.filenames[int(selection[0][4:])] if isinstance(filename,tuple): if self.isRss: filename = filename[4] else: filename = filename[0] elif self.openType == ENTRY_POINTS: epName = selection[0] #index 0 is the remapped Url, as opposed to the canonical one used for display # Greg Acsone reports [0] does not work for Corep 1.6 pkgs, need [1], old style packages filename = self.taxonomyPackage["nameToUrls"][epName][0] if not filename.endswith("/"): # check if it's an absolute URL rather than a path into the archive if not isHttpUrl(filename) and self.metadataFilePrefix != self.taxonomyPkgMetaInf: # assume it's a path inside the archive: filename = self.metadataFilePrefix + filename if filename is not None and not filename.endswith("/"): if hasattr(self, "taxonomyPackage"): # attempt to unmap the filename to original file # will be mapped again in loading, but this allows schemaLocation to be unmapped for prefix, remapping in self.taxonomyPackage["remappings"].items(): if isHttpUrl(remapping): remapStart = remapping else: remapStart = self.metadataFilePrefix + remapping if filename.startswith(remapStart): # set unmmapped file filename = prefix + filename[len(remapStart):] break self.filesource.select(filename) self.accepted = True self.close() def close(self, event=None): self.parent.focus_set() self.destroy() def showAltView(self, event=None): if self.openType == ENTRY_POINTS: self.loadTreeView(ARCHIVE, _("Select Entry Point"), _("File")) else: self.loadTreeView(ENTRY_POINTS, _("Select Archive File"), _("File")) def leave(self, *args): self.toolTipRowId = None def motion(self, *args): tvRowId = self.treeView.identify_row(args[0].y) if tvRowId != self.toolTipRowId: text = None if self.openType in (ARCHIVE, DISCLOSURE_SYSTEM): self.toolTipRowId = tvRowId if tvRowId and len(tvRowId) > 4: try: text = self.filenames[ int(tvRowId[4:]) ] if isinstance(text, tuple): text = text[1].replace("\\n","\n") except (KeyError, ValueError): pass elif self.openType == ENTRY_POINTS: try: epUrl = self.taxonomyPackage["nameToUrls"][tvRowId][1] text = "{0}\n{1}".format(tvRowId, epUrl) except KeyError: pass self.setToolTip(text) def setToolTip(self, text): self.toolTip._hide() if text: self.toolTipText.set(text) self.toolTip.configure(state="normal") self.toolTip._schedule() else: self.toolTipText.set("") self.toolTip.configure(state="disabled")
43.446429
110
0.534388
d4fb15afd9f2101ee993194855c7399b2ce1e7a9
1,477
py
Python
setup.py
webji/pyops
df3403c8900ea76bf62d68610ae9d024fa046fc3
[ "Apache-2.0" ]
1
2018-01-11T06:27:19.000Z
2018-01-11T06:27:19.000Z
setup.py
webji/pyops
df3403c8900ea76bf62d68610ae9d024fa046fc3
[ "Apache-2.0" ]
3
2018-01-10T05:51:18.000Z
2018-01-11T06:34:37.000Z
setup.py
webji/pyops
df3403c8900ea76bf62d68610ae9d024fa046fc3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Author: Will<willji@outlook.com> # Created on 2018-01-10 12:45:12 import sys from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf8') as f: long_description = f.read() import pyops install_requires = [ 'click>=3.3', 'unittest2>=0.5.1' ] setup( name='pyops', version=pyops.__version__, description='IT maintenance and operation libs in Python.', long_description=long_description, url='https://github.com/webji/pyops', author='Will Ji', author_email='willji@outlook.com', license='Apache License, Version 2.0', classifiers=[ 'Programming Language :: Python :: 2.7', 'License :: OSI Approved :: Apache Software License', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Environment :: Web Environment', 'Topic :: Software Development :: Libraries :: Python Modules', ], keywords='maintencance operations it', packages=find_packages(exclude=['data', 'tests*']), install_requires=install_requires, extras_require={}, package_data={ 'pyops': [ 'logging.conf', ], }, entry_points={ 'console_scripts': [ 'pyops=pyops.run:main' ] }, test_suite='tests.all_suite', )
20.802817
71
0.628978
372c8aca962b9fab23f7a5c1aea1a66332581d24
3,340
py
Python
lib/surface/compute/routers/add_bgp_peer.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/routers/add_bgp_peer.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/routers/add_bgp_peer.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
2
2020-11-04T03:08:21.000Z
2020-11-05T08:14:41.000Z
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for adding a BGP peer to a router.""" from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.command_lib.compute import flags from googlecloudsdk.third_party.py27 import py27_copy as copy class AddBgpPeer(base_classes.ReadWriteCommand): """Add a BGP peer to a router.""" @staticmethod def Args(parser): parser.add_argument( '--peer-name', required=True, help='The name of the peer being added.') parser.add_argument( '--interface', required=True, help='The interface of the peer being added.') parser.add_argument( '--peer-asn', required=True, type=int, help='The asn of the peer being added.') parser.add_argument( '--peer-ip-address', help='The link local address of the peer.') parser.add_argument( # TODO(user): document the default priority if any '--advertised-route-priority', type=int, help='The priority of routes advertised to this BGP peer. In the case ' 'where there is more than one matching route of maximum length, ' 'the routes with lowest priority value win. 0 <= priority <= ' '65535.') flags.AddRegionFlag( parser, resource_type='router', operation_type='update') parser.add_argument( 'name', help='The name of the router.') @property def service(self): return self.compute.routers @property def resource_type(self): return 'routers' def CreateReference(self, args): return self.CreateRegionalReference(args.name, args.region) def GetGetRequest(self, args): return (self.service, 'Get', self.messages.ComputeRoutersGetRequest( router=self.ref.Name(), region=self.ref.region, project=self.project)) def GetSetRequest(self, args, replacement, existing): return (self.service, 'Update', self.messages.ComputeRoutersUpdateRequest( router=self.ref.Name(), routerResource=replacement, region=self.ref.region, project=self.project)) def Modify(self, args, existing): replacement = copy.deepcopy(existing) peer = self.messages.RouterBgpPeer( name=args.peer_name, interfaceName=args.interface, peerIpAddress=args.peer_ip_address, peerAsn=args.peer_asn, advertisedRoutePriority=args.advertised_route_priority) replacement.bgpPeers.append(peer) return replacement AddBgpPeer.detailed_help = { 'DESCRIPTION': """ *{command}* is used to add a BGP peer to a router. """, }
29.557522
79
0.653293
cb9ed7cb6cf673b479d2a7c9960e04b277d9123f
11,350
py
Python
sdk/python/pulumi_azure_nextgen/network/express_route_port.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/express_route_port.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/express_route_port.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['ExpressRoutePort'] class ExpressRoutePort(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, bandwidth_in_gbps: Optional[pulumi.Input[int]] = None, encapsulation: Optional[pulumi.Input[Union[str, 'ExpressRoutePortsEncapsulation']]] = None, express_route_port_name: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']]] = None, links: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ExpressRouteLinkArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, peering_location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ ExpressRoutePort resource definition. API Version: 2020-08-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] bandwidth_in_gbps: Bandwidth of procured ports in Gbps. :param pulumi.Input[Union[str, 'ExpressRoutePortsEncapsulation']] encapsulation: Encapsulation method on physical ports. :param pulumi.Input[str] express_route_port_name: The name of the ExpressRoutePort resource. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']] identity: The identity of ExpressRoutePort, if configured. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ExpressRouteLinkArgs']]]] links: The set of physical links of the ExpressRoutePort resource. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] peering_location: The name of the peering location that the ExpressRoutePort is mapped to physically. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['bandwidth_in_gbps'] = bandwidth_in_gbps __props__['encapsulation'] = encapsulation __props__['express_route_port_name'] = express_route_port_name __props__['id'] = id __props__['identity'] = identity __props__['links'] = links __props__['location'] = location __props__['peering_location'] = peering_location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['allocation_date'] = None __props__['circuits'] = None __props__['etag'] = None __props__['ether_type'] = None __props__['mtu'] = None __props__['name'] = None __props__['provisioned_bandwidth_in_gbps'] = None __props__['provisioning_state'] = None __props__['resource_guid'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/latest:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20180801:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20181001:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20181101:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20181201:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20190201:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20190401:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20190601:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20190701:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20190801:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20190901:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20191101:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20191201:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20200301:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20200401:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20200501:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20200601:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20200701:ExpressRoutePort"), pulumi.Alias(type_="azure-nextgen:network/v20200801:ExpressRoutePort")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ExpressRoutePort, __self__).__init__( 'azure-nextgen:network:ExpressRoutePort', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ExpressRoutePort': """ Get an existing ExpressRoutePort resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return ExpressRoutePort(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="allocationDate") def allocation_date(self) -> pulumi.Output[str]: """ Date of the physical port allocation to be used in Letter of Authorization. """ return pulumi.get(self, "allocation_date") @property @pulumi.getter(name="bandwidthInGbps") def bandwidth_in_gbps(self) -> pulumi.Output[Optional[int]]: """ Bandwidth of procured ports in Gbps. """ return pulumi.get(self, "bandwidth_in_gbps") @property @pulumi.getter def circuits(self) -> pulumi.Output[Sequence['outputs.SubResourceResponse']]: """ Reference the ExpressRoute circuit(s) that are provisioned on this ExpressRoutePort resource. """ return pulumi.get(self, "circuits") @property @pulumi.getter def encapsulation(self) -> pulumi.Output[Optional[str]]: """ Encapsulation method on physical ports. """ return pulumi.get(self, "encapsulation") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="etherType") def ether_type(self) -> pulumi.Output[str]: """ Ether type of the physical port. """ return pulumi.get(self, "ether_type") @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.ManagedServiceIdentityResponse']]: """ The identity of ExpressRoutePort, if configured. """ return pulumi.get(self, "identity") @property @pulumi.getter def links(self) -> pulumi.Output[Optional[Sequence['outputs.ExpressRouteLinkResponse']]]: """ The set of physical links of the ExpressRoutePort resource. """ return pulumi.get(self, "links") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def mtu(self) -> pulumi.Output[str]: """ Maximum transmission unit of the physical port pair(s). """ return pulumi.get(self, "mtu") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="peeringLocation") def peering_location(self) -> pulumi.Output[Optional[str]]: """ The name of the peering location that the ExpressRoutePort is mapped to physically. """ return pulumi.get(self, "peering_location") @property @pulumi.getter(name="provisionedBandwidthInGbps") def provisioned_bandwidth_in_gbps(self) -> pulumi.Output[float]: """ Aggregate Gbps of associated circuit bandwidths. """ return pulumi.get(self, "provisioned_bandwidth_in_gbps") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the express route port resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[str]: """ The resource GUID property of the express route port resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
43.992248
1,418
0.660088
a53bc4555ea6052f05f65f5bde9d03cb452d7896
426
py
Python
Parte 2/classificando-atletas.py
ohniluap/python-exercises
7a7af8eced2811791bc4dfebcfab84100b46224c
[ "MIT" ]
null
null
null
Parte 2/classificando-atletas.py
ohniluap/python-exercises
7a7af8eced2811791bc4dfebcfab84100b46224c
[ "MIT" ]
null
null
null
Parte 2/classificando-atletas.py
ohniluap/python-exercises
7a7af8eced2811791bc4dfebcfab84100b46224c
[ "MIT" ]
null
null
null
from datetime import date atual = date.today().year nascimento = int(input('Ano de nascimento: ')) idade = atual - nascimento print('O atleta tem {} anos.'.format(idade)) if idade <= 9: print('CLASSIFICAÇÃO: MIRIM') elif idade <= 14: print('CLASSIFICAÇÃO: INFANTIL') elif idade <= 19: print('CLASSIFICAÇÃO: JUNIOR') elif idade <= 25: print('CLASSIFICAÇÃO: SÊNIOR') else: print('CLASSIFICAÇÃO: MASTER')
26.625
46
0.678404
27264a8c6440aa048dea24d80482f2feb070a924
132,608
py
Python
neutron/tests/unit/agent/l3/test_agent.py
prap4source/Neutron
bd7c3a7708de2aaeaa374a9ee563da1e1a0955c8
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/agent/l3/test_agent.py
prap4source/Neutron
bd7c3a7708de2aaeaa374a9ee563da1e1a0955c8
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/agent/l3/test_agent.py
prap4source/Neutron
bd7c3a7708de2aaeaa374a9ee563da1e1a0955c8
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 VMware, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from itertools import chain as iter_chain from itertools import combinations as iter_combinations import eventlet import mock import netaddr from oslo_log import log import oslo_messaging from oslo_utils import timeutils from oslo_utils import uuidutils import six from testtools import matchers from neutron.agent.common import config as agent_config from neutron.agent.l3 import agent as l3_agent from neutron.agent.l3 import config as l3_config from neutron.agent.l3 import dvr_edge_router as dvr_router from neutron.agent.l3 import dvr_snat_ns from neutron.agent.l3 import ha from neutron.agent.l3 import legacy_router from neutron.agent.l3 import link_local_allocator as lla from neutron.agent.l3 import namespaces from neutron.agent.l3 import router_info as l3router from neutron.agent.l3 import router_processing_queue from neutron.agent.linux import dibbler from neutron.agent.linux import external_process from neutron.agent.linux import interface from neutron.agent.linux import iptables_manager from neutron.agent.linux import pd from neutron.agent.linux import ra from neutron.agent.metadata import driver as metadata_driver from neutron.agent import rpc as agent_rpc from neutron.common import config as base_config from neutron.common import constants as l3_constants from neutron.common import exceptions as n_exc from neutron.extensions import portbindings from neutron.plugins.common import constants as p_const from neutron.tests import base from neutron.tests.common import l3_test_common _uuid = uuidutils.generate_uuid HOSTNAME = 'myhost' FAKE_ID = _uuid() FAKE_ID_2 = _uuid() FIP_PRI = 32768 class BasicRouterOperationsFramework(base.BaseTestCase): def setUp(self): super(BasicRouterOperationsFramework, self).setUp() mock.patch('eventlet.spawn').start() self.conf = agent_config.setup_conf() self.conf.register_opts(base_config.core_opts) log.register_options(self.conf) self.conf.register_opts(agent_config.AGENT_STATE_OPTS, 'AGENT') self.conf.register_opts(l3_config.OPTS) self.conf.register_opts(ha.OPTS) agent_config.register_interface_driver_opts_helper(self.conf) agent_config.register_process_monitor_opts(self.conf) agent_config.register_availability_zone_opts_helper(self.conf) self.conf.register_opts(interface.OPTS) self.conf.register_opts(external_process.OPTS) self.conf.register_opts(pd.OPTS) self.conf.register_opts(ra.OPTS) self.conf.set_override('interface_driver', 'neutron.agent.linux.interface.NullDriver') self.conf.set_override('send_arp_for_ha', 1) self.conf.set_override('state_path', '/tmp') self.conf.set_override('ra_confs', '/tmp') self.conf.set_override('pd_dhcp_driver', '') self.device_exists_p = mock.patch( 'neutron.agent.linux.ip_lib.device_exists') self.device_exists = self.device_exists_p.start() self.ensure_dir = mock.patch('neutron.common.utils.ensure_dir').start() mock.patch('neutron.agent.linux.keepalived.KeepalivedManager' '.get_full_config_file_path').start() self.utils_exec_p = mock.patch( 'neutron.agent.linux.utils.execute') self.utils_exec = self.utils_exec_p.start() self.utils_replace_file_p = mock.patch( 'neutron.common.utils.replace_file') self.utils_replace_file = self.utils_replace_file_p.start() self.external_process_p = mock.patch( 'neutron.agent.linux.external_process.ProcessManager') self.external_process = self.external_process_p.start() self.process_monitor = mock.patch( 'neutron.agent.linux.external_process.ProcessMonitor').start() self.send_adv_notif_p = mock.patch( 'neutron.agent.linux.ip_lib.send_ip_addr_adv_notif') self.send_adv_notif = self.send_adv_notif_p.start() self.dvr_cls_p = mock.patch('neutron.agent.linux.interface.NullDriver') driver_cls = self.dvr_cls_p.start() self.mock_driver = mock.MagicMock() self.mock_driver.DEV_NAME_LEN = ( interface.LinuxInterfaceDriver.DEV_NAME_LEN) driver_cls.return_value = self.mock_driver self.ip_cls_p = mock.patch('neutron.agent.linux.ip_lib.IPWrapper') ip_cls = self.ip_cls_p.start() self.mock_ip = mock.MagicMock() ip_cls.return_value = self.mock_ip ip_rule = mock.patch('neutron.agent.linux.ip_lib.IPRule').start() self.mock_rule = mock.MagicMock() ip_rule.return_value = self.mock_rule ip_dev = mock.patch('neutron.agent.linux.ip_lib.IPDevice').start() self.mock_ip_dev = mock.MagicMock() ip_dev.return_value = self.mock_ip_dev self.l3pluginApi_cls_p = mock.patch( 'neutron.agent.l3.agent.L3PluginApi') l3pluginApi_cls = self.l3pluginApi_cls_p.start() self.plugin_api = mock.MagicMock() l3pluginApi_cls.return_value = self.plugin_api self.looping_call_p = mock.patch( 'oslo_service.loopingcall.FixedIntervalLoopingCall') self.looping_call_p.start() subnet_id_1 = _uuid() subnet_id_2 = _uuid() self.snat_ports = [{'subnets': [{'cidr': '152.2.0.0/16', 'gateway_ip': '152.2.0.1', 'id': subnet_id_1}], 'network_id': _uuid(), 'device_owner': l3_constants.DEVICE_OWNER_ROUTER_SNAT, 'mac_address': 'fa:16:3e:80:8d:80', 'fixed_ips': [{'subnet_id': subnet_id_1, 'ip_address': '152.2.0.13', 'prefixlen': 16}], 'id': _uuid(), 'device_id': _uuid()}, {'subnets': [{'cidr': '152.10.0.0/16', 'gateway_ip': '152.10.0.1', 'id': subnet_id_2}], 'network_id': _uuid(), 'device_owner': l3_constants.DEVICE_OWNER_ROUTER_SNAT, 'mac_address': 'fa:16:3e:80:8d:80', 'fixed_ips': [{'subnet_id': subnet_id_2, 'ip_address': '152.10.0.13', 'prefixlen': 16}], 'id': _uuid(), 'device_id': _uuid()}] self.ri_kwargs = {'agent_conf': self.conf, 'interface_driver': self.mock_driver} def _process_router_instance_for_agent(self, agent, ri, router): ri.router = router if not ri.radvd: ri.radvd = ra.DaemonMonitor(router['id'], ri.ns_name, agent.process_monitor, ri.get_internal_device_name, self.conf) ri.process(agent) class TestBasicRouterOperations(BasicRouterOperationsFramework): def test_init_ha_conf(self): with mock.patch('os.path.dirname', return_value='/etc/ha/'): l3_agent.L3NATAgent(HOSTNAME, self.conf) self.ensure_dir.assert_called_once_with('/etc/ha/') def test_enqueue_state_change_router_not_found(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) non_existent_router = 42 # Make sure the exceptional code path has coverage agent.enqueue_state_change(non_existent_router, 'master') def test_enqueue_state_change_metadata_disable(self): self.conf.set_override('enable_metadata_proxy', False) agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = mock.Mock() router_info = mock.MagicMock() agent.router_info[router.id] = router_info agent._update_metadata_proxy = mock.Mock() agent.enqueue_state_change(router.id, 'master') self.assertFalse(agent._update_metadata_proxy.call_count) def test_check_ha_state_for_router_master_standby(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = mock.Mock() router.id = '1234' router_info = mock.MagicMock() agent.router_info[router.id] = router_info router_info.ha_state = 'master' with mock.patch.object(agent.state_change_notifier, 'queue_event') as queue_event: agent.check_ha_state_for_router( router.id, l3_constants.HA_ROUTER_STATE_STANDBY) queue_event.assert_called_once_with((router.id, 'master')) def test_check_ha_state_for_router_standby_standby(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = mock.Mock() router.id = '1234' router_info = mock.MagicMock() agent.router_info[router.id] = router_info router_info.ha_state = 'backup' with mock.patch.object(agent.state_change_notifier, 'queue_event') as queue_event: agent.check_ha_state_for_router( router.id, l3_constants.HA_ROUTER_STATE_STANDBY) queue_event.assert_not_called() def test_periodic_sync_routers_task_call_check_ha_state_for_router(self): agent = l3_agent.L3NATAgentWithStateReport(HOSTNAME, self.conf) ha_id = _uuid() active_routers = [ {'id': ha_id, l3_constants.HA_ROUTER_STATE_KEY: l3_constants.HA_ROUTER_STATE_STANDBY, 'ha': True}, {'id': _uuid()}] self.plugin_api.get_router_ids.return_value = [r['id'] for r in active_routers] self.plugin_api.get_routers.return_value = active_routers with mock.patch.object(agent, 'check_ha_state_for_router') as check: agent.periodic_sync_routers_task(agent.context) check.assert_called_once_with(ha_id, l3_constants.HA_ROUTER_STATE_STANDBY) def test_periodic_sync_routers_task_raise_exception(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_router_ids.return_value = ['fake_id'] self.plugin_api.get_routers.side_effect = ValueError self.assertRaises(ValueError, agent.periodic_sync_routers_task, agent.context) self.assertTrue(agent.fullsync) def test_l3_initial_report_state_done(self): with mock.patch.object(l3_agent.L3NATAgentWithStateReport, 'periodic_sync_routers_task'),\ mock.patch.object(agent_rpc.PluginReportStateAPI, 'report_state') as report_state,\ mock.patch.object(eventlet, 'spawn_n'): agent = l3_agent.L3NATAgentWithStateReport(host=HOSTNAME, conf=self.conf) self.assertTrue(agent.agent_state['start_flag']) agent.after_start() report_state.assert_called_once_with(agent.context, agent.agent_state, True) self.assertIsNone(agent.agent_state.get('start_flag')) def test_report_state_revival_logic(self): with mock.patch.object(agent_rpc.PluginReportStateAPI, 'report_state') as report_state: agent = l3_agent.L3NATAgentWithStateReport(host=HOSTNAME, conf=self.conf) report_state.return_value = l3_constants.AGENT_REVIVED agent._report_state() self.assertTrue(agent.fullsync) agent.fullsync = False report_state.return_value = l3_constants.AGENT_ALIVE agent._report_state() self.assertFalse(agent.fullsync) def test_periodic_sync_routers_task_call_clean_stale_namespaces(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_routers.return_value = [] agent.periodic_sync_routers_task(agent.context) self.assertFalse(agent.namespaces_manager._clean_stale) def test_periodic_sync_routers_task_call_clean_stale_meta_proxies(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) stale_router_ids = [_uuid(), _uuid()] active_routers = [{'id': _uuid()}, {'id': _uuid()}] self.plugin_api.get_router_ids.return_value = [r['id'] for r in active_routers] self.plugin_api.get_routers.return_value = active_routers namespace_list = [namespaces.NS_PREFIX + r_id for r_id in stale_router_ids] namespace_list += [namespaces.NS_PREFIX + r['id'] for r in active_routers] self.mock_ip.get_namespaces.return_value = namespace_list driver = metadata_driver.MetadataDriver with mock.patch.object( driver, 'destroy_monitored_metadata_proxy') as destroy_proxy: agent.periodic_sync_routers_task(agent.context) expected_calls = [mock.call(mock.ANY, r_id, agent.conf) for r_id in stale_router_ids] self.assertEqual(len(stale_router_ids), destroy_proxy.call_count) destroy_proxy.assert_has_calls(expected_calls, any_order=True) def test_router_info_create(self): id = _uuid() ri = l3router.RouterInfo(id, {}, **self.ri_kwargs) self.assertTrue(ri.ns_name.endswith(id)) def test_router_info_create_with_router(self): ns_id = _uuid() subnet_id = _uuid() ex_gw_port = {'id': _uuid(), 'network_id': _uuid(), 'fixed_ips': [{'ip_address': '19.4.4.4', 'prefixlen': 24, 'subnet_id': subnet_id}], 'subnets': [{'id': subnet_id, 'cidr': '19.4.4.0/24', 'gateway_ip': '19.4.4.1'}]} router = { 'id': _uuid(), 'enable_snat': True, 'routes': [], 'gw_port': ex_gw_port} ri = l3router.RouterInfo(ns_id, router, **self.ri_kwargs) self.assertTrue(ri.ns_name.endswith(ns_id)) self.assertEqual(router, ri.router) def test_agent_create(self): l3_agent.L3NATAgent(HOSTNAME, self.conf) def _test_internal_network_action(self, action): router = l3_test_common.prepare_router_data(num_internal_ports=2) router_id = router['id'] ri = l3router.RouterInfo(router_id, router, **self.ri_kwargs) port = {'network_id': _uuid(), 'id': _uuid(), 'mac_address': 'ca:fe:de:ad:be:ef', 'fixed_ips': [{'subnet_id': _uuid(), 'ip_address': '99.0.1.9', 'prefixlen': 24}]} interface_name = ri.get_internal_device_name(port['id']) if action == 'add': self.device_exists.return_value = False ri.internal_network_added(port) self.assertEqual(1, self.mock_driver.plug.call_count) self.assertEqual(1, self.mock_driver.init_router_port.call_count) self.send_adv_notif.assert_called_once_with(ri.ns_name, interface_name, '99.0.1.9', mock.ANY) elif action == 'remove': self.device_exists.return_value = True ri.internal_network_removed(port) self.assertEqual(1, self.mock_driver.unplug.call_count) else: raise Exception("Invalid action %s" % action) @staticmethod def _fixed_ip_cidr(fixed_ip): return '%s/%s' % (fixed_ip['ip_address'], fixed_ip['prefixlen']) def _test_internal_network_action_dist(self, action): router = l3_test_common.prepare_router_data(num_internal_ports=2) router_id = router['id'] agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, router_id, router, **self.ri_kwargs) subnet_id = _uuid() port = {'network_id': _uuid(), 'id': _uuid(), 'mac_address': 'ca:fe:de:ad:be:ef', 'fixed_ips': [{'subnet_id': subnet_id, 'ip_address': '99.0.1.9', 'prefixlen': 24}], 'subnets': [{'id': subnet_id}]} ri.router['gw_port_host'] = HOSTNAME agent.host = HOSTNAME agent.conf.agent_mode = 'dvr_snat' sn_port = {'fixed_ips': [{'ip_address': '20.0.0.31', 'subnet_id': _uuid()}], 'subnets': [{'gateway_ip': '20.0.0.1'}], 'extra_subnets': [{'cidr': '172.16.0.0/24'}], 'id': _uuid(), 'network_id': _uuid(), 'mac_address': 'ca:fe:de:ad:be:ef'} ex_gw_port = {'fixed_ips': [{'ip_address': '20.0.0.30', 'prefixlen': 24, 'subnet_id': _uuid()}], 'subnets': [{'gateway_ip': '20.0.0.1'}], 'extra_subnets': [{'cidr': '172.16.0.0/24'}], 'id': _uuid(), portbindings.HOST_ID: HOSTNAME, 'network_id': _uuid(), 'mac_address': 'ca:fe:de:ad:be:ef'} ri.snat_ports = sn_port ri.ex_gw_port = ex_gw_port ri.snat_namespace = mock.Mock() if action == 'add': self.device_exists.return_value = False ri.get_snat_port_for_internal_port = mock.Mock( return_value=sn_port) ri._snat_redirect_add = mock.Mock() ri._set_subnet_arp_info = mock.Mock() ri._internal_network_added = mock.Mock() ri._set_subnet_arp_info = mock.Mock() ri.internal_network_added(port) self.assertEqual(1, ri._snat_redirect_add.call_count) self.assertEqual(2, ri._internal_network_added.call_count) ri._set_subnet_arp_info.assert_called_once_with(subnet_id) ri._internal_network_added.assert_called_with( dvr_snat_ns.SnatNamespace.get_snat_ns_name(ri.router['id']), sn_port['network_id'], sn_port['id'], sn_port['fixed_ips'], sn_port['mac_address'], ri._get_snat_int_device_name(sn_port['id']), dvr_snat_ns.SNAT_INT_DEV_PREFIX, mtu=None) elif action == 'remove': self.device_exists.return_value = False ri.get_snat_port_for_internal_port = mock.Mock( return_value=sn_port) ri._delete_arp_cache_for_internal_port = mock.Mock() ri._snat_redirect_modify = mock.Mock() ri.internal_network_removed(port) self.assertEqual( 1, ri._delete_arp_cache_for_internal_port.call_count) ri._snat_redirect_modify.assert_called_with( sn_port, port, ri.get_internal_device_name(port['id']), is_add=False) def test_agent_add_internal_network(self): self._test_internal_network_action('add') def test_agent_add_internal_network_dist(self): self._test_internal_network_action_dist('add') def test_agent_remove_internal_network(self): self._test_internal_network_action('remove') def test_agent_remove_internal_network_dist(self): self._test_internal_network_action_dist('remove') def _add_external_gateway(self, ri, router, ex_gw_port, interface_name, use_fake_fip=False, no_subnet=False, no_sub_gw=None, dual_stack=False): self.device_exists.return_value = False if no_sub_gw is None: no_sub_gw = [] if use_fake_fip: fake_fip = {'floatingips': [{'id': _uuid(), 'floating_ip_address': '192.168.1.34', 'fixed_ip_address': '192.168.0.1', 'port_id': _uuid()}]} router[l3_constants.FLOATINGIP_KEY] = fake_fip['floatingips'] ri.external_gateway_added(ex_gw_port, interface_name) if not router.get('distributed'): self.assertEqual(1, self.mock_driver.plug.call_count) self.assertEqual(1, self.mock_driver.init_router_port.call_count) if no_subnet and not dual_stack: self.assertEqual(0, self.send_adv_notif.call_count) ip_cidrs = [] kwargs = {'preserve_ips': [], 'namespace': 'qrouter-' + router['id'], 'extra_subnets': [], 'clean_connections': True} else: exp_arp_calls = [mock.call(ri.ns_name, interface_name, '20.0.0.30', mock.ANY)] if dual_stack and not no_sub_gw: exp_arp_calls += [mock.call(ri.ns_name, interface_name, '2001:192:168:100::2', mock.ANY)] self.send_adv_notif.assert_has_calls(exp_arp_calls) ip_cidrs = ['20.0.0.30/24'] if dual_stack: if not no_sub_gw: ip_cidrs.append('2001:192:168:100::2/64') kwargs = {'preserve_ips': ['192.168.1.34/32'], 'namespace': 'qrouter-' + router['id'], 'extra_subnets': [{'cidr': '172.16.0.0/24'}], 'clean_connections': True} self.mock_driver.init_router_port.assert_called_with( interface_name, ip_cidrs, **kwargs) else: ri._create_dvr_gateway.assert_called_once_with( ex_gw_port, interface_name) def _test_external_gateway_action(self, action, router, dual_stack=False): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ex_net_id = _uuid() sn_port = self.snat_ports[1] # Special setup for dvr routers if router.get('distributed'): agent.conf.agent_mode = 'dvr_snat' agent.host = HOSTNAME ri = dvr_router.DvrEdgeRouter(agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ri._create_dvr_gateway = mock.Mock() ri.get_snat_interfaces = mock.Mock(return_value=self.snat_ports) ri.snat_ports = self.snat_ports ri._create_snat_namespace() ri.fip_ns = agent.get_fip_ns(ex_net_id) ri.internal_ports = self.snat_ports else: ri = l3router.RouterInfo( router['id'], router, **self.ri_kwargs) ri.use_ipv6 = False subnet_id = _uuid() fixed_ips = [{'subnet_id': subnet_id, 'ip_address': '20.0.0.30', 'prefixlen': 24}] subnets = [{'id': subnet_id, 'cidr': '20.0.0.0/24', 'gateway_ip': '20.0.0.1'}] if dual_stack: ri.use_ipv6 = True subnet_id_v6 = _uuid() fixed_ips.append({'subnet_id': subnet_id_v6, 'ip_address': '2001:192:168:100::2', 'prefixlen': 64}) subnets.append({'id': subnet_id_v6, 'cidr': '2001:192:168:100::/64', 'gateway_ip': '2001:192:168:100::1'}) ex_gw_port = {'fixed_ips': fixed_ips, 'subnets': subnets, 'extra_subnets': [{'cidr': '172.16.0.0/24'}], 'id': _uuid(), 'network_id': ex_net_id, 'mac_address': 'ca:fe:de:ad:be:ef'} ex_gw_port_no_sub = {'fixed_ips': [], 'id': _uuid(), 'network_id': ex_net_id, 'mac_address': 'ca:fe:de:ad:be:ef'} interface_name = ri.get_external_device_name(ex_gw_port['id']) if action == 'add': self._add_external_gateway(ri, router, ex_gw_port, interface_name, use_fake_fip=True, dual_stack=dual_stack) elif action == 'add_no_sub': ri.use_ipv6 = True self._add_external_gateway(ri, router, ex_gw_port_no_sub, interface_name, no_subnet=True) elif action == 'add_no_sub_v6_gw': ri.use_ipv6 = True self.conf.set_override('ipv6_gateway', 'fe80::f816:3eff:fe2e:1') if dual_stack: use_fake_fip = True # Remove v6 entries del ex_gw_port['fixed_ips'][-1] del ex_gw_port['subnets'][-1] else: use_fake_fip = False ex_gw_port = ex_gw_port_no_sub self._add_external_gateway(ri, router, ex_gw_port, interface_name, no_subnet=True, no_sub_gw='fe80::f816:3eff:fe2e:1', use_fake_fip=use_fake_fip, dual_stack=dual_stack) elif action == 'remove': self.device_exists.return_value = True ri.get_snat_port_for_internal_port = mock.Mock( return_value=sn_port) ri._snat_redirect_remove = mock.Mock() ri.router['gw_port'] = "" ri.external_gateway_removed(ex_gw_port, interface_name) if not router.get('distributed'): self.mock_driver.unplug.assert_called_once_with( interface_name, bridge=agent.conf.external_network_bridge, namespace=mock.ANY, prefix=mock.ANY) else: ri._snat_redirect_remove.assert_called_with( sn_port, sn_port, ri.get_internal_device_name(sn_port['id'])) ri.get_snat_port_for_internal_port.assert_called_with( mock.ANY, ri.snat_ports) else: raise Exception("Invalid action %s" % action) def _test_external_gateway_updated(self, dual_stack=False): router = l3_test_common.prepare_router_data(num_internal_ports=2) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.use_ipv6 = False interface_name, ex_gw_port = l3_test_common.prepare_ext_gw_test( self, ri, dual_stack=dual_stack) fake_fip = {'floatingips': [{'id': _uuid(), 'floating_ip_address': '192.168.1.34', 'fixed_ip_address': '192.168.0.1', 'port_id': _uuid()}]} router[l3_constants.FLOATINGIP_KEY] = fake_fip['floatingips'] ri.external_gateway_updated(ex_gw_port, interface_name) self.assertEqual(1, self.mock_driver.plug.call_count) self.assertEqual(1, self.mock_driver.init_router_port.call_count) exp_arp_calls = [mock.call(ri.ns_name, interface_name, '20.0.0.30', mock.ANY)] if dual_stack: ri.use_ipv6 = True exp_arp_calls += [mock.call(ri.ns_name, interface_name, '2001:192:168:100::2', mock.ANY)] self.send_adv_notif.assert_has_calls(exp_arp_calls) ip_cidrs = ['20.0.0.30/24'] gateway_ips = ['20.0.0.1'] if dual_stack: ip_cidrs.append('2001:192:168:100::2/64') gateway_ips.append('2001:192:168:100::1') kwargs = {'preserve_ips': ['192.168.1.34/32'], 'namespace': 'qrouter-' + router['id'], 'extra_subnets': [{'cidr': '172.16.0.0/24'}], 'clean_connections': True} self.mock_driver.init_router_port.assert_called_with(interface_name, ip_cidrs, **kwargs) def test_external_gateway_updated(self): self._test_external_gateway_updated() def test_external_gateway_updated_dual_stack(self): self._test_external_gateway_updated(dual_stack=True) def test_dvr_edge_router_init_for_snat_namespace_object(self): router = {'id': _uuid()} ri = dvr_router.DvrEdgeRouter(mock.Mock(), HOSTNAME, router['id'], router, **self.ri_kwargs) # Make sure that ri.snat_namespace object is created when the # router is initialized self.assertIsNotNone(ri.snat_namespace) def test_ext_gw_updated_calling_snat_ns_delete_if_gw_port_host_none( self): """Test to check the impact of snat_namespace object. This function specifically checks the impact of the snat namespace object value on external_gateway_removed for deleting snat_namespace when the gw_port_host mismatches or none. """ router = l3_test_common.prepare_router_data(num_internal_ports=2) ri = dvr_router.DvrEdgeRouter(mock.Mock(), HOSTNAME, router['id'], router, **self.ri_kwargs) with mock.patch.object(dvr_snat_ns.SnatNamespace, 'delete') as snat_ns_delete: interface_name, ex_gw_port = l3_test_common.prepare_ext_gw_test( self, ri) router['gw_port_host'] = '' ri._snat_redirect_remove = mock.Mock() ri.external_gateway_updated(ex_gw_port, interface_name) if router['gw_port_host'] != ri.host: self.assertFalse(ri._snat_redirect_remove.called) self.assertEqual(1, snat_ns_delete.call_count) @mock.patch.object(namespaces.Namespace, 'delete') def test_snat_ns_delete_not_called_when_snat_namespace_does_not_exist( self, mock_ns_del): """Test to check the impact of snat_namespace object. This function specifically checks the impact of the snat namespace object initialization without the actual creation of snat_namespace. When deletes are issued to the snat namespace based on the snat namespace object existence, it should be checking for the valid namespace existence before it tries to delete. """ router = l3_test_common.prepare_router_data(num_internal_ports=2) ri = dvr_router.DvrEdgeRouter(mock.Mock(), HOSTNAME, router['id'], router, **self.ri_kwargs) # Make sure we set a return value to emulate the non existence # of the namespace. self.mock_ip.netns.exists.return_value = False self.assertIsNotNone(ri.snat_namespace) interface_name, ex_gw_port = l3_test_common.prepare_ext_gw_test(self, ri) ri._external_gateway_removed = mock.Mock() ri.external_gateway_removed(ex_gw_port, interface_name) self.assertFalse(mock_ns_del.called) def _test_ext_gw_updated_dvr_edge_router(self, host_match, snat_hosted_before=True): """ Helper to test external gw update for edge router on dvr_snat agent :param host_match: True if new gw host should be the same as agent host :param snat_hosted_before: True if agent has already been hosting snat for the router """ router = l3_test_common.prepare_router_data(num_internal_ports=2) ri = dvr_router.DvrEdgeRouter(mock.Mock(), HOSTNAME, router['id'], router, **self.ri_kwargs) if snat_hosted_before: ri._create_snat_namespace() snat_ns_name = ri.snat_namespace.name interface_name, ex_gw_port = l3_test_common.prepare_ext_gw_test(self, ri) ri._external_gateway_added = mock.Mock() router['gw_port_host'] = ri.host if host_match else (ri.host + 'foo') ri.external_gateway_updated(ex_gw_port, interface_name) if not host_match: self.assertFalse(ri._external_gateway_added.called) if snat_hosted_before: # host mismatch means that snat was rescheduled to another # agent, hence need to verify that gw port was unplugged and # snat namespace was deleted self.mock_driver.unplug.assert_called_with( interface_name, bridge=self.conf.external_network_bridge, namespace=snat_ns_name, prefix=l3_agent.EXTERNAL_DEV_PREFIX) else: if not snat_hosted_before: self.assertIsNotNone(ri.snat_namespace) self.assertTrue(ri._external_gateway_added.called) def test_ext_gw_updated_dvr_edge_router(self): self._test_ext_gw_updated_dvr_edge_router(host_match=True) def test_ext_gw_updated_dvr_edge_router_host_mismatch(self): self._test_ext_gw_updated_dvr_edge_router(host_match=False) def test_ext_gw_updated_dvr_dvr_edge_router_snat_rescheduled(self): self._test_ext_gw_updated_dvr_edge_router(host_match=True, snat_hosted_before=False) def test_agent_add_external_gateway(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) self._test_external_gateway_action('add', router) def test_agent_add_external_gateway_dual_stack(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) self._test_external_gateway_action('add', router, dual_stack=True) def test_agent_add_external_gateway_dist(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) router['distributed'] = True router['gw_port_host'] = HOSTNAME self._test_external_gateway_action('add', router) def test_agent_add_external_gateway_dist_dual_stack(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) router['distributed'] = True router['gw_port_host'] = HOSTNAME self._test_external_gateway_action('add', router, dual_stack=True) def test_agent_add_external_gateway_no_subnet(self): router = l3_test_common.prepare_router_data(num_internal_ports=2, v6_ext_gw_with_sub=False) self._test_external_gateway_action('add_no_sub', router) def test_agent_add_external_gateway_no_subnet_with_ipv6_gw(self): router = l3_test_common.prepare_router_data(num_internal_ports=2, v6_ext_gw_with_sub=False) self._test_external_gateway_action('add_no_sub_v6_gw', router) def test_agent_add_external_gateway_dual_stack_no_subnet_w_ipv6_gw(self): router = l3_test_common.prepare_router_data(num_internal_ports=2, v6_ext_gw_with_sub=False) self._test_external_gateway_action('add_no_sub_v6_gw', router, dual_stack=True) def test_agent_remove_external_gateway(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) self._test_external_gateway_action('remove', router) def test_agent_remove_external_gateway_dual_stack(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) self._test_external_gateway_action('remove', router, dual_stack=True) def test_agent_remove_external_gateway_dist(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) router['distributed'] = True router['gw_port_host'] = HOSTNAME self._test_external_gateway_action('remove', router) def test_agent_remove_external_gateway_dist_dual_stack(self): router = l3_test_common.prepare_router_data(num_internal_ports=2) router['distributed'] = True router['gw_port_host'] = HOSTNAME self._test_external_gateway_action('remove', router, dual_stack=True) def _verify_snat_mangle_rules(self, nat_rules, mangle_rules, router, negate=False): interfaces = router[l3_constants.INTERFACE_KEY] source_cidrs = [] for iface in interfaces: for subnet in iface['subnets']: prefix = subnet['cidr'].split('/')[1] source_cidr = "%s/%s" % (iface['fixed_ips'][0]['ip_address'], prefix) source_cidrs.append(source_cidr) source_nat_ip = router['gw_port']['fixed_ips'][0]['ip_address'] interface_name = ('qg-%s' % router['gw_port']['id'])[:14] expected_rules = [ '! -i %s ! -o %s -m conntrack ! --ctstate DNAT -j ACCEPT' % (interface_name, interface_name), '-o %s -j SNAT --to-source %s' % (interface_name, source_nat_ip), '-m mark ! --mark 0x2/%s -m conntrack --ctstate DNAT ' '-j SNAT --to-source %s' % (l3_constants.ROUTER_MARK_MASK, source_nat_ip)] for r in nat_rules: if negate: self.assertNotIn(r.rule, expected_rules) else: self.assertIn(r.rule, expected_rules) expected_rules = [ '-i %s -j MARK --set-xmark 0x2/%s' % (interface_name, l3_constants.ROUTER_MARK_MASK), '-o %s -m connmark --mark 0x0/%s -j CONNMARK ' '--save-mark --nfmask %s --ctmask %s' % (interface_name, l3router.ADDRESS_SCOPE_MARK_MASK, l3router.ADDRESS_SCOPE_MARK_MASK, l3router.ADDRESS_SCOPE_MARK_MASK)] for r in mangle_rules: if negate: self.assertNotIn(r.rule, expected_rules) else: self.assertIn(r.rule, expected_rules) def test_get_snat_port_for_internal_port(self): router = l3_test_common.prepare_router_data(num_internal_ports=4) ri = dvr_router.DvrEdgeRouter(mock.sentinel.agent, HOSTNAME, router['id'], router, **self.ri_kwargs) test_port = { 'mac_address': '00:12:23:34:45:56', 'fixed_ips': [{'subnet_id': l3_test_common.get_subnet_id( router[l3_constants.INTERFACE_KEY][0]), 'ip_address': '101.12.13.14'}]} internal_ports = ri.router.get(l3_constants.INTERFACE_KEY, []) # test valid case with mock.patch.object(ri, 'get_snat_interfaces') as get_interfaces: get_interfaces.return_value = [test_port] res_port = ri.get_snat_port_for_internal_port(internal_ports[0]) self.assertEqual(test_port, res_port) # test invalid case test_port['fixed_ips'][0]['subnet_id'] = 1234 res_ip = ri.get_snat_port_for_internal_port(internal_ports[0]) self.assertNotEqual(test_port, res_ip) self.assertIsNone(res_ip) def test_process_cent_router(self): router = l3_test_common.prepare_router_data() agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) self._test_process_router(ri, agent) def test_process_dist_router(self): router = l3_test_common.prepare_router_data() agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter(agent, HOSTNAME, router['id'], router, **self.ri_kwargs) subnet_id = l3_test_common.get_subnet_id( router[l3_constants.INTERFACE_KEY][0]) ri.router['distributed'] = True ri.router['_snat_router_interfaces'] = [{ 'fixed_ips': [{'subnet_id': subnet_id, 'ip_address': '1.2.3.4'}]}] ri.router['gw_port_host'] = None self._test_process_router(ri, agent) def _test_process_router(self, ri, agent): router = ri.router agent.host = HOSTNAME fake_fip_id = 'fake_fip_id' ri.create_dvr_fip_interfaces = mock.Mock() ri.process_floating_ip_addresses = mock.Mock() ri.process_floating_ip_nat_rules = mock.Mock() ri.process_floating_ip_addresses.return_value = { fake_fip_id: 'ACTIVE'} ri.external_gateway_added = mock.Mock() ri.external_gateway_updated = mock.Mock() ri.process_address_scope = mock.Mock() fake_floatingips1 = {'floatingips': [ {'id': fake_fip_id, 'floating_ip_address': '8.8.8.8', 'fixed_ip_address': '7.7.7.7', 'port_id': _uuid(), 'host': HOSTNAME}]} ri.process(agent) ri.process_floating_ip_addresses.assert_called_with(mock.ANY) ri.process_floating_ip_addresses.reset_mock() ri.process_floating_ip_nat_rules.assert_called_with() ri.process_floating_ip_nat_rules.reset_mock() ri.external_gateway_added.reset_mock() # remap floating IP to a new fixed ip fake_floatingips2 = copy.deepcopy(fake_floatingips1) fake_floatingips2['floatingips'][0]['fixed_ip_address'] = '7.7.7.8' router[l3_constants.FLOATINGIP_KEY] = fake_floatingips2['floatingips'] ri.process(agent) ri.process_floating_ip_addresses.assert_called_with(mock.ANY) ri.process_floating_ip_addresses.reset_mock() ri.process_floating_ip_nat_rules.assert_called_with() ri.process_floating_ip_nat_rules.reset_mock() self.assertEqual(0, ri.external_gateway_added.call_count) self.assertEqual(0, ri.external_gateway_updated.call_count) ri.external_gateway_added.reset_mock() ri.external_gateway_updated.reset_mock() # change the ex_gw_port a bit to test gateway update new_gw_port = copy.deepcopy(ri.router['gw_port']) ri.router['gw_port'] = new_gw_port old_ip = (netaddr.IPAddress(ri.router['gw_port'] ['fixed_ips'][0]['ip_address'])) ri.router['gw_port']['fixed_ips'][0]['ip_address'] = str(old_ip + 1) ri.process(agent) ri.process_floating_ip_addresses.reset_mock() ri.process_floating_ip_nat_rules.reset_mock() self.assertEqual(0, ri.external_gateway_added.call_count) self.assertEqual(1, ri.external_gateway_updated.call_count) # remove just the floating ips del router[l3_constants.FLOATINGIP_KEY] ri.process(agent) ri.process_floating_ip_addresses.assert_called_with(mock.ANY) ri.process_floating_ip_addresses.reset_mock() ri.process_floating_ip_nat_rules.assert_called_with() ri.process_floating_ip_nat_rules.reset_mock() # now no ports so state is torn down del router[l3_constants.INTERFACE_KEY] del router['gw_port'] ri.process(agent) self.assertEqual(1, self.send_adv_notif.call_count) distributed = ri.router.get('distributed', False) self.assertEqual(distributed, ri.process_floating_ip_addresses.called) self.assertEqual(distributed, ri.process_floating_ip_nat_rules.called) @mock.patch('neutron.agent.linux.ip_lib.IPDevice') def _test_process_floating_ip_addresses_add(self, ri, agent, IPDevice): floating_ips = ri.get_floating_ips() fip_id = floating_ips[0]['id'] IPDevice.return_value = device = mock.Mock() device.addr.list.return_value = [] ri.iptables_manager.ipv4['nat'] = mock.MagicMock() ex_gw_port = {'id': _uuid(), 'network_id': mock.sentinel.ext_net_id} ri.add_floating_ip = mock.Mock( return_value=l3_constants.FLOATINGIP_STATUS_ACTIVE) with mock.patch.object(lla.LinkLocalAllocator, '_write'): if ri.router['distributed']: ri.fip_ns = agent.get_fip_ns(ex_gw_port['network_id']) ri.create_dvr_fip_interfaces(ex_gw_port) fip_statuses = ri.process_floating_ip_addresses( mock.sentinel.interface_name) self.assertEqual({fip_id: l3_constants.FLOATINGIP_STATUS_ACTIVE}, fip_statuses) ri.add_floating_ip.assert_called_once_with( floating_ips[0], mock.sentinel.interface_name, device) @mock.patch.object(lla.LinkLocalAllocator, '_write') def test_create_dvr_fip_interfaces_if_fipnamespace_exist(self, lla_write): fake_network_id = _uuid() subnet_id = _uuid() fake_floatingips = {'floatingips': [ {'id': _uuid(), 'floating_ip_address': '20.0.0.3', 'fixed_ip_address': '192.168.0.1', 'floating_network_id': _uuid(), 'port_id': _uuid(), 'host': HOSTNAME}]} agent_gateway_port = ( [{'fixed_ips': [ {'ip_address': '20.0.0.30', 'prefixlen': 24, 'subnet_id': subnet_id}], 'subnets': [ {'id': subnet_id, 'cidr': '20.0.0.0/24', 'gateway_ip': '20.0.0.1'}], 'id': _uuid(), 'network_id': fake_network_id, 'mac_address': 'ca:fe:de:ad:be:ef'}] ) router = l3_test_common.prepare_router_data(enable_snat=True) router[l3_constants.FLOATINGIP_KEY] = fake_floatingips['floatingips'] router[l3_constants.FLOATINGIP_AGENT_INTF_KEY] = agent_gateway_port router['distributed'] = True agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ext_gw_port = ri.router.get('gw_port') ri.fip_ns = agent.get_fip_ns(ext_gw_port['network_id']) ri.dist_fip_count = 0 agent.process_router_add = mock.Mock() ri.fip_ns.create_rtr_2_fip_link = mock.Mock() with mock.patch.object(ri, 'get_floating_ips') as fips, \ mock.patch.object(ri.fip_ns, 'create') as create_fip, \ mock.patch.object(ri, 'get_floating_agent_gw_interface' ) as fip_gw_port: fips.return_value = fake_floatingips fip_gw_port.return_value = agent_gateway_port[0] ri.create_dvr_fip_interfaces(ext_gw_port) self.assertTrue(fip_gw_port.called) self.assertTrue(fips.called) self.assertTrue(create_fip.called) self.assertEqual(agent_gateway_port[0], ri.fip_ns.agent_gateway_port) # Now let us associate the fip to the router ri.floating_ip_added_dist(fips, "192.168.0.1/32") self.assertEqual(1, ri.dist_fip_count) # Now let us disassociate the fip from the router ri.floating_ip_removed_dist("192.168.0.1/32") self.assertEqual(0, ri.dist_fip_count) # Calling create_dvr_fip_interfaces again to make sure # that the fip namespace create is not called again. # If the create is not called again, that would contain # the duplicate rules configuration in the fip namespace. ri.create_dvr_fip_interfaces(ext_gw_port) self.assertTrue(fip_gw_port.called) self.assertTrue(fips.called) create_fip.assert_called_once_with() self.assertEqual(2, agent.process_router_add.call_count) self.assertEqual(2, ri.fip_ns.create_rtr_2_fip_link.call_count) @mock.patch.object(lla.LinkLocalAllocator, '_write') def test_create_dvr_fip_interfaces_for_late_binding(self, lla_write): fake_network_id = _uuid() fake_subnet_id = _uuid() fake_floatingips = {'floatingips': [ {'id': _uuid(), 'floating_ip_address': '20.0.0.3', 'fixed_ip_address': '192.168.0.1', 'floating_network_id': _uuid(), 'port_id': _uuid(), 'host': HOSTNAME}]} agent_gateway_port = ( {'fixed_ips': [ {'ip_address': '20.0.0.30', 'prefixlen': 24, 'subnet_id': fake_subnet_id}], 'subnets': [ {'id': fake_subnet_id, 'cidr': '20.0.0.0/24', 'gateway_ip': '20.0.0.1'}], 'id': _uuid(), 'network_id': fake_network_id, 'mac_address': 'ca:fe:de:ad:be:ef'} ) router = l3_test_common.prepare_router_data(enable_snat=True) router[l3_constants.FLOATINGIP_KEY] = fake_floatingips['floatingips'] router[l3_constants.FLOATINGIP_AGENT_INTF_KEY] = [] router['distributed'] = True agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ext_gw_port = ri.router.get('gw_port') ri.fip_ns = agent.get_fip_ns(ext_gw_port['network_id']) ri.dist_fip_count = 0 ri.fip_ns.subscribe = mock.Mock() with mock.patch.object(agent.plugin_rpc, 'get_agent_gateway_port') as fip_gw_port: fip_gw_port.return_value = agent_gateway_port ri.create_dvr_fip_interfaces(ext_gw_port) self.assertTrue(fip_gw_port.called) self.assertEqual(agent_gateway_port, ri.fip_ns.agent_gateway_port) @mock.patch.object(lla.LinkLocalAllocator, '_write') def test_create_dvr_fip_interfaces(self, lla_write): fake_network_id = _uuid() subnet_id = _uuid() fake_floatingips = {'floatingips': [ {'id': _uuid(), 'floating_ip_address': '20.0.0.3', 'fixed_ip_address': '192.168.0.1', 'floating_network_id': _uuid(), 'port_id': _uuid(), 'host': HOSTNAME}]} agent_gateway_port = ( [{'fixed_ips': [ {'ip_address': '20.0.0.30', 'prefixlen': 24, 'subnet_id': subnet_id}], 'subnets': [ {'id': subnet_id, 'cidr': '20.0.0.0/24', 'gateway_ip': '20.0.0.1'}], 'id': _uuid(), 'network_id': fake_network_id, 'mac_address': 'ca:fe:de:ad:be:ef'}] ) router = l3_test_common.prepare_router_data(enable_snat=True) router[l3_constants.FLOATINGIP_KEY] = fake_floatingips['floatingips'] router[l3_constants.FLOATINGIP_AGENT_INTF_KEY] = agent_gateway_port router['distributed'] = True agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ext_gw_port = ri.router.get('gw_port') ri.fip_ns = agent.get_fip_ns(ext_gw_port['network_id']) ri.dist_fip_count = 0 ri.fip_ns.subscribe = mock.Mock() ri.fip_ns.agent_router_gateway = mock.Mock() agent.process_router_add = mock.Mock() with mock.patch.object(ri, 'get_floating_ips') as fips, \ mock.patch.object(ri, 'get_floating_agent_gw_interface' ) as fip_gw_port: fips.return_value = fake_floatingips fip_gw_port.return_value = agent_gateway_port[0] ri.create_dvr_fip_interfaces(ext_gw_port) self.assertTrue(fip_gw_port.called) self.assertTrue(fips.called) self.assertEqual(agent_gateway_port[0], ri.fip_ns.agent_gateway_port) self.assertTrue(ri.rtr_fip_subnet) self.assertEqual(1, agent.process_router_add.call_count) @mock.patch.object(lla.LinkLocalAllocator, '_write') def test_create_dvr_fip_interfaces_for_restart_l3agent_case(self, lla_write): fake_floatingips = {'floatingips': [ {'id': _uuid(), 'floating_ip_address': '20.0.0.3', 'fixed_ip_address': '192.168.0.1', 'floating_network_id': _uuid(), 'port_id': _uuid(), 'host': HOSTNAME}]} agent_gateway_port = ( [{'fixed_ips': [ {'ip_address': '20.0.0.30', 'prefixlen': 24, 'subnet_id': 'subnet_id'}], 'subnets': [ {'id': 'subnet_id', 'cidr': '20.0.0.0/24', 'gateway_ip': '20.0.0.1'}], 'id': _uuid(), 'network_id': 'fake_network_id', 'mac_address': 'ca:fe:de:ad:be:ef'}] ) router = l3_test_common.prepare_router_data(enable_snat=True) router[l3_constants.FLOATINGIP_KEY] = fake_floatingips['floatingips'] router[l3_constants.FLOATINGIP_AGENT_INTF_KEY] = agent_gateway_port router['distributed'] = True agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ext_gw_port = ri.router.get('gw_port') ri.fip_ns = agent.get_fip_ns(ext_gw_port['network_id']) ri.fip_ns.subscribe = mock.Mock(return_value=True) ri.fip_ns.agent_router_gateway = mock.Mock() ri.rtr_fip_subnet = None ri.dist_fip_count = 0 with mock.patch.object(ri, 'get_floating_ips') as fips,\ mock.patch.object(ri, 'get_floating_agent_gw_interface' ) as fip_gw_port: fips.return_value = fake_floatingips fip_gw_port.return_value = agent_gateway_port[0] ri.create_dvr_fip_interfaces(ext_gw_port) self.assertTrue(fip_gw_port.called) self.assertTrue(fips.called) self.assertEqual(agent_gateway_port[0], ri.fip_ns.agent_gateway_port) self.assertTrue(ri.rtr_fip_subnet) def test_process_router_cent_floating_ip_add(self): fake_floatingips = {'floatingips': [ {'id': _uuid(), 'floating_ip_address': '15.1.2.3', 'fixed_ip_address': '192.168.0.1', 'status': 'DOWN', 'floating_network_id': _uuid(), 'port_id': _uuid(), 'host': HOSTNAME}]} router = l3_test_common.prepare_router_data(enable_snat=True) router[l3_constants.FLOATINGIP_KEY] = fake_floatingips['floatingips'] agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.iptables_manager.ipv4['nat'] = mock.MagicMock() ri.get_external_device_name = mock.Mock(return_value='exgw') self._test_process_floating_ip_addresses_add(ri, agent) def test_process_router_snat_disabled(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data(enable_snat=True) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # Process with NAT ri.process(agent) orig_nat_rules = ri.iptables_manager.ipv4['nat'].rules[:] orig_mangle_rules = ri.iptables_manager.ipv4['mangle'].rules[:] # Reprocess without NAT router['enable_snat'] = False # Reassign the router object to RouterInfo ri.router = router ri.process(agent) # For some reason set logic does not work well with # IpTablesRule instances nat_rules_delta = [r for r in orig_nat_rules if r not in ri.iptables_manager.ipv4['nat'].rules] self.assertEqual(1, len(nat_rules_delta)) mangle_rules_delta = [ r for r in orig_mangle_rules if r not in ri.iptables_manager.ipv4['mangle'].rules] self.assertEqual(1, len(mangle_rules_delta)) self._verify_snat_mangle_rules(nat_rules_delta, mangle_rules_delta, router) self.assertEqual(1, self.send_adv_notif.call_count) def test_process_router_snat_enabled(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data(enable_snat=False) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # Process without NAT ri.process(agent) orig_nat_rules = ri.iptables_manager.ipv4['nat'].rules[:] orig_mangle_rules = ri.iptables_manager.ipv4['mangle'].rules[:] # Reprocess with NAT router['enable_snat'] = True # Reassign the router object to RouterInfo ri.router = router ri.process(agent) # For some reason set logic does not work well with # IpTablesRule instances nat_rules_delta = [r for r in ri.iptables_manager.ipv4['nat'].rules if r not in orig_nat_rules] self.assertEqual(1, len(nat_rules_delta)) mangle_rules_delta = [ r for r in ri.iptables_manager.ipv4['mangle'].rules if r not in orig_mangle_rules] self.assertEqual(1, len(mangle_rules_delta)) self._verify_snat_mangle_rules(nat_rules_delta, mangle_rules_delta, router) self.assertEqual(1, self.send_adv_notif.call_count) def _test_update_routing_table(self, is_snat_host=True): router = l3_test_common.prepare_router_data() uuid = router['id'] s_netns = 'snat-' + uuid q_netns = 'qrouter-' + uuid fake_route1 = {'destination': '135.207.0.0/16', 'nexthop': '19.4.4.200'} calls = [mock.call('replace', fake_route1, q_netns)] agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, uuid, router, **self.ri_kwargs) ri._update_routing_table = mock.Mock() with mock.patch.object(ri, '_is_this_snat_host') as snat_host: snat_host.return_value = is_snat_host ri.update_routing_table('replace', fake_route1) if is_snat_host: ri._update_routing_table('replace', fake_route1, s_netns) calls += [mock.call('replace', fake_route1, s_netns)] ri._update_routing_table.assert_has_calls(calls, any_order=True) def test_process_update_snat_routing_table(self): self._test_update_routing_table() def test_process_not_update_snat_routing_table(self): self._test_update_routing_table(is_snat_host=False) def test_process_router_interface_added(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # Process with NAT ri.process(agent) # Add an interface and reprocess l3_test_common.router_append_interface(router) # Reassign the router object to RouterInfo ri.router = router ri.process(agent) # send_ip_addr_adv_notif is called both times process is called self.assertEqual(2, self.send_adv_notif.call_count) def _test_process_ipv6_only_or_dual_stack_gw(self, dual_stack=False): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data(ip_version=6, dual_stack=dual_stack) # Get NAT rules without the gw_port gw_port = router['gw_port'] router['gw_port'] = None ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() self._process_router_instance_for_agent(agent, ri, router) orig_nat_rules = ri.iptables_manager.ipv4['nat'].rules[:] # Get NAT rules with the gw_port router['gw_port'] = gw_port ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) p = ri.external_gateway_nat_fip_rules s = ri.external_gateway_nat_snat_rules attrs_to_mock = dict( [(a, mock.DEFAULT) for a in ['external_gateway_nat_fip_rules', 'external_gateway_nat_snat_rules']] ) with mock.patch.multiple(ri, **attrs_to_mock) as mocks: mocks['external_gateway_nat_fip_rules'].side_effect = p mocks['external_gateway_nat_snat_rules'].side_effect = s self._process_router_instance_for_agent(agent, ri, router) new_nat_rules = ri.iptables_manager.ipv4['nat'].rules[:] # NAT rules should only change for dual_stack operation if dual_stack: self.assertTrue( mocks['external_gateway_nat_fip_rules'].called) self.assertTrue( mocks['external_gateway_nat_snat_rules'].called) self.assertNotEqual(orig_nat_rules, new_nat_rules) else: self.assertFalse( mocks['external_gateway_nat_fip_rules'].called) self.assertFalse( mocks['external_gateway_nat_snat_rules'].called) self.assertEqual(orig_nat_rules, new_nat_rules) def test_process_ipv6_only_gw(self): self._test_process_ipv6_only_or_dual_stack_gw() def test_process_dual_stack_gw(self): self._test_process_ipv6_only_or_dual_stack_gw(dual_stack=True) def _process_router_ipv6_interface_added( self, router, ra_mode=None, addr_mode=None): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # Process with NAT ri.process(agent) orig_nat_rules = ri.iptables_manager.ipv4['nat'].rules[:] # Add an IPv6 interface and reprocess l3_test_common.router_append_interface(router, count=1, ip_version=6, ra_mode=ra_mode, addr_mode=addr_mode) # Reassign the router object to RouterInfo self._process_router_instance_for_agent(agent, ri, router) # IPv4 NAT rules should not be changed by adding an IPv6 interface nat_rules_delta = [r for r in ri.iptables_manager.ipv4['nat'].rules if r not in orig_nat_rules] self.assertFalse(nat_rules_delta) return ri def _radvd_expected_call_external_process(self, ri, enable=True): expected_calls = [mock.call(uuid=ri.router['id'], service='radvd', default_cmd_callback=mock.ANY, namespace=ri.ns_name, conf=mock.ANY, run_as_root=True)] if enable: expected_calls.append(mock.call().enable(reload_cfg=True)) else: expected_calls.append(mock.call().disable()) return expected_calls def _process_router_ipv6_subnet_added(self, router, ipv6_subnet_modes=None, dns_nameservers=None, network_mtu=0): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) agent.external_gateway_added = mock.Mock() self._process_router_instance_for_agent(agent, ri, router) # Add an IPv6 interface with len(ipv6_subnet_modes) subnets # and reprocess l3_test_common.router_append_subnet( router, count=len(ipv6_subnet_modes), ip_version=6, ipv6_subnet_modes=ipv6_subnet_modes, dns_nameservers=dns_nameservers, network_mtu=network_mtu) # Reassign the router object to RouterInfo self._process_router_instance_for_agent(agent, ri, router) return ri def _assert_ri_process_enabled(self, ri): """Verify that process was enabled for a router instance.""" expected_calls = self._radvd_expected_call_external_process(ri) self.assertEqual(expected_calls, self.external_process.mock_calls) def _assert_ri_process_disabled(self, ri): """Verify that process was disabled for a router instance.""" expected_calls = self._radvd_expected_call_external_process(ri, False) self.assertEqual(expected_calls, self.external_process.mock_calls) def test_process_router_ipv6_interface_added(self): router = l3_test_common.prepare_router_data() ri = self._process_router_ipv6_interface_added(router) self._assert_ri_process_enabled(ri) # Expect radvd configured without prefix self.assertNotIn('prefix', self.utils_replace_file.call_args[0][1]) def test_process_router_ipv6_slaac_interface_added(self): router = l3_test_common.prepare_router_data() ri = self._process_router_ipv6_interface_added( router, ra_mode=l3_constants.IPV6_SLAAC) self._assert_ri_process_enabled(ri) # Expect radvd configured with prefix radvd_config_str = self.utils_replace_file.call_args[0][1] self.assertIn('prefix', radvd_config_str) self.assertIn('AdvAutonomous on', radvd_config_str) def test_process_router_ipv6_dhcpv6_stateful_interface_added(self): router = l3_test_common.prepare_router_data() ri = self._process_router_ipv6_interface_added( router, ra_mode=l3_constants.DHCPV6_STATEFUL) self._assert_ri_process_enabled(ri) # Expect radvd configured with prefix radvd_config_str = self.utils_replace_file.call_args[0][1] self.assertIn('prefix', radvd_config_str) self.assertIn('AdvAutonomous off', radvd_config_str) def test_process_router_ipv6_subnets_added(self): router = l3_test_common.prepare_router_data() ri = self._process_router_ipv6_subnet_added(router, ipv6_subnet_modes=[ {'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}, {'ra_mode': l3_constants.DHCPV6_STATELESS, 'address_mode': l3_constants.DHCPV6_STATELESS}, {'ra_mode': l3_constants.DHCPV6_STATEFUL, 'address_mode': l3_constants.DHCPV6_STATEFUL}]) self._assert_ri_process_enabled(ri) radvd_config_str = self.utils_replace_file.call_args[0][1] # Assert we have a prefix from IPV6_SLAAC and a prefix from # DHCPV6_STATELESS on one interface self.assertEqual(3, radvd_config_str.count("prefix")) self.assertEqual(1, radvd_config_str.count("interface")) self.assertEqual(2, radvd_config_str.count("AdvAutonomous on")) self.assertEqual(1, radvd_config_str.count("AdvAutonomous off")) def test_process_router_ipv6_subnets_added_to_existing_port(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) agent.external_gateway_added = mock.Mock() self._process_router_instance_for_agent(agent, ri, router) # Add the first subnet on a new interface l3_test_common.router_append_subnet( router, count=1, ip_version=6, ipv6_subnet_modes=[ {'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}]) self._process_router_instance_for_agent(agent, ri, router) self._assert_ri_process_enabled(ri) radvd_config = self.utils_replace_file.call_args[0][1].split() self.assertEqual(1, len(ri.internal_ports[1]['subnets'])) self.assertEqual(1, len(ri.internal_ports[1]['fixed_ips'])) self.assertEqual(1, radvd_config.count("prefix")) self.assertEqual(1, radvd_config.count("interface")) # Reset mocks to verify radvd enabled and configured correctly # after second subnet added to interface self.external_process.reset_mock() self.utils_replace_file.reset_mock() # Add the second subnet on the same interface interface_id = router[l3_constants.INTERFACE_KEY][1]['id'] l3_test_common.router_append_subnet( router, count=1, ip_version=6, ipv6_subnet_modes=[ {'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}], interface_id=interface_id) self._process_router_instance_for_agent(agent, ri, router) # radvd should have been enabled again and the interface # should have two prefixes self._assert_ri_process_enabled(ri) radvd_config = self.utils_replace_file.call_args[0][1].split() self.assertEqual(2, len(ri.internal_ports[1]['subnets'])) self.assertEqual(2, len(ri.internal_ports[1]['fixed_ips'])) self.assertEqual(2, radvd_config.count("prefix")) self.assertEqual(1, radvd_config.count("interface")) def test_process_router_ipv6v4_interface_added(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # Process with NAT ri.process(agent) # Add an IPv4 and IPv6 interface and reprocess l3_test_common.router_append_interface(router, count=1, ip_version=4) l3_test_common.router_append_interface(router, count=1, ip_version=6) # Reassign the router object to RouterInfo self._process_router_instance_for_agent(agent, ri, router) self._assert_ri_process_enabled(ri) def test_process_router_interface_removed(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data(num_internal_ports=2) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # Process with NAT ri.process(agent) # Add an interface and reprocess del router[l3_constants.INTERFACE_KEY][1] # Reassign the router object to RouterInfo ri.router = router ri.process(agent) # send_ip_addr_adv_notif is called both times process is called self.assertEqual(2, self.send_adv_notif.call_count) def test_process_router_ipv6_interface_removed(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() self._process_router_instance_for_agent(agent, ri, router) # Add an IPv6 interface and reprocess l3_test_common.router_append_interface(router, count=1, ip_version=6) self._process_router_instance_for_agent(agent, ri, router) self._assert_ri_process_enabled(ri) # Reset the calls so we can check for disable radvd self.external_process.reset_mock() self.process_monitor.reset_mock() # Remove the IPv6 interface and reprocess del router[l3_constants.INTERFACE_KEY][1] self._process_router_instance_for_agent(agent, ri, router) self._assert_ri_process_disabled(ri) def test_process_router_ipv6_subnet_removed(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) agent.external_gateway_added = mock.Mock() self._process_router_instance_for_agent(agent, ri, router) # Add an IPv6 interface with two subnets and reprocess l3_test_common.router_append_subnet( router, count=2, ip_version=6, ipv6_subnet_modes=([{'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}] * 2)) self._process_router_instance_for_agent(agent, ri, router) self._assert_ri_process_enabled(ri) # Reset mocks to check for modified radvd config self.utils_replace_file.reset_mock() self.external_process.reset_mock() # Remove one subnet from the interface and reprocess interfaces = copy.deepcopy(router[l3_constants.INTERFACE_KEY]) del interfaces[1]['subnets'][0] del interfaces[1]['fixed_ips'][0] router[l3_constants.INTERFACE_KEY] = interfaces self._process_router_instance_for_agent(agent, ri, router) # Assert radvd was enabled again and that we only have one # prefix on the interface self._assert_ri_process_enabled(ri) radvd_config = self.utils_replace_file.call_args[0][1].split() self.assertEqual(1, len(ri.internal_ports[1]['subnets'])) self.assertEqual(1, len(ri.internal_ports[1]['fixed_ips'])) self.assertEqual(1, radvd_config.count("interface")) self.assertEqual(1, radvd_config.count("prefix")) def test_process_router_internal_network_added_unexpected_error(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() with mock.patch.object( ri, 'internal_network_added') as internal_network_added: # raise RuntimeError to simulate that an unexpected exception # occurs internal_network_added.side_effect = RuntimeError self.assertRaises(RuntimeError, ri.process, agent) self.assertNotIn( router[l3_constants.INTERFACE_KEY][0], ri.internal_ports) # The unexpected exception has been fixed manually internal_network_added.side_effect = None # periodic_sync_routers_task finds out that _rpc_loop failed to # process the router last time, it will retry in the next run. ri.process(agent) # We were able to add the port to ri.internal_ports self.assertIn( router[l3_constants.INTERFACE_KEY][0], ri.internal_ports) def test_process_router_internal_network_removed_unexpected_error(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() # add an internal port ri.process(agent) with mock.patch.object( ri, 'internal_network_removed') as internal_net_removed: # raise RuntimeError to simulate that an unexpected exception # occurs internal_net_removed.side_effect = RuntimeError ri.internal_ports[0]['admin_state_up'] = False # The above port is set to down state, remove it. self.assertRaises(RuntimeError, ri.process, agent) self.assertIn( router[l3_constants.INTERFACE_KEY][0], ri.internal_ports) # The unexpected exception has been fixed manually internal_net_removed.side_effect = None # periodic_sync_routers_task finds out that _rpc_loop failed to # process the router last time, it will retry in the next run. ri.process(agent) # We were able to remove the port from ri.internal_ports self.assertNotIn( router[l3_constants.INTERFACE_KEY][0], ri.internal_ports) def test_process_router_floatingip_nochange(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data(num_internal_ports=1) fip1 = {'id': _uuid(), 'floating_ip_address': '8.8.8.8', 'fixed_ip_address': '7.7.7.7', 'status': 'ACTIVE', 'port_id': router[l3_constants.INTERFACE_KEY][0]['id']} fip2 = copy.copy(fip1) fip2.update({'id': _uuid(), 'status': 'DOWN', 'floating_ip_address': '9.9.9.9'}) router[l3_constants.FLOATINGIP_KEY] = [fip1, fip2] ri = legacy_router.LegacyRouter(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() with mock.patch.object( agent.plugin_rpc, 'update_floatingip_statuses' ) as mock_update_fip_status,\ mock.patch.object(ri, 'get_router_cidrs') as mock_get_cidrs: mock_get_cidrs.return_value = set( [fip1['floating_ip_address'] + '/32']) ri.process(agent) # make sure only the one that wasn't in existing cidrs was sent mock_update_fip_status.assert_called_once_with( mock.ANY, ri.router_id, {fip2['id']: 'ACTIVE'}) def test_process_router_floatingip_status_update_if_processed(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data(num_internal_ports=1) fip1 = {'id': _uuid(), 'floating_ip_address': '8.8.8.8', 'fixed_ip_address': '7.7.7.7', 'status': 'ACTIVE', 'port_id': router[l3_constants.INTERFACE_KEY][0]['id']} fip2 = copy.copy(fip1) fip2.update({'id': _uuid(), 'status': 'DOWN', }) router[l3_constants.FLOATINGIP_KEY] = [fip1, fip2] ri = legacy_router.LegacyRouter(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() with mock.patch.object( agent.plugin_rpc, 'update_floatingip_statuses' ) as mock_update_fip_status,\ mock.patch.object(ri, 'get_router_cidrs') as mock_get_cidrs: mock_get_cidrs.return_value = set() ri.process(agent) # make sure both was sent since not existed in existing cidrs mock_update_fip_status.assert_called_once_with( mock.ANY, ri.router_id, {fip1['id']: 'ACTIVE', fip2['id']: 'ACTIVE'}) def test_process_router_floatingip_disabled(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) with mock.patch.object( agent.plugin_rpc, 'update_floatingip_statuses') as mock_update_fip_status: fip_id = _uuid() router = l3_test_common.prepare_router_data(num_internal_ports=1) router[l3_constants.FLOATINGIP_KEY] = [ {'id': fip_id, 'floating_ip_address': '8.8.8.8', 'fixed_ip_address': '7.7.7.7', 'status': 'DOWN', 'port_id': router[l3_constants.INTERFACE_KEY][0]['id']}] ri = legacy_router.LegacyRouter(router['id'], router, **self.ri_kwargs) ri.external_gateway_added = mock.Mock() ri.process(agent) # Assess the call for putting the floating IP up was performed mock_update_fip_status.assert_called_once_with( mock.ANY, ri.router_id, {fip_id: l3_constants.FLOATINGIP_STATUS_ACTIVE}) mock_update_fip_status.reset_mock() # Process the router again, this time without floating IPs router[l3_constants.FLOATINGIP_KEY] = [] ri.router = router ri.process(agent) # Assess the call for putting the floating IP up was performed mock_update_fip_status.assert_called_once_with( mock.ANY, ri.router_id, {fip_id: l3_constants.FLOATINGIP_STATUS_DOWN}) def test_process_router_floatingip_exception(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) with mock.patch.object( agent.plugin_rpc, 'update_floatingip_statuses') as mock_update_fip_status: fip_id = _uuid() router = l3_test_common.prepare_router_data(num_internal_ports=1) router[l3_constants.FLOATINGIP_KEY] = [ {'id': fip_id, 'floating_ip_address': '8.8.8.8', 'fixed_ip_address': '7.7.7.7', 'port_id': router[l3_constants.INTERFACE_KEY][0]['id']}] ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.process_floating_ip_addresses = mock.Mock( side_effect=RuntimeError) ri.external_gateway_added = mock.Mock() ri.process(agent) # Assess the call for putting the floating IP into Error # was performed mock_update_fip_status.assert_called_once_with( mock.ANY, ri.router_id, {fip_id: l3_constants.FLOATINGIP_STATUS_ERROR}) def test_process_external_iptables_exception(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) with mock.patch.object( agent.plugin_rpc, 'update_floatingip_statuses') as mock_update_fip_status: fip_id = _uuid() router = l3_test_common.prepare_router_data(num_internal_ports=1) router[l3_constants.FLOATINGIP_KEY] = [ {'id': fip_id, 'floating_ip_address': '8.8.8.8', 'fixed_ip_address': '7.7.7.7', 'port_id': router[l3_constants.INTERFACE_KEY][0]['id']}] ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) ri.iptables_manager._apply = mock.Mock(side_effect=Exception) ri.process_external(agent) # Assess the call for putting the floating IP into Error # was performed mock_update_fip_status.assert_called_once_with( mock.ANY, ri.router_id, {fip_id: l3_constants.FLOATINGIP_STATUS_ERROR}) self.assertEqual(1, ri.iptables_manager._apply.call_count) def test_handle_router_snat_rules_distributed_without_snat_manager(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, 'foo_router_id', {}, **self.ri_kwargs) ri.iptables_manager = mock.MagicMock() ri._is_this_snat_host = mock.Mock(return_value=True) ri.get_ex_gw_port = mock.Mock(return_value=None) ri._handle_router_snat_rules(None, mock.ANY) self.assertIsNone(ri.snat_iptables_manager) self.assertFalse(ri.iptables_manager.called) def test_handle_router_snat_rules_add_back_jump(self): ri = l3router.RouterInfo(_uuid(), {}, **self.ri_kwargs) ri.iptables_manager = mock.MagicMock() port = {'fixed_ips': [{'ip_address': '192.168.1.4'}]} ri._handle_router_snat_rules(port, "iface") nat = ri.iptables_manager.ipv4['nat'] nat.empty_chain.assert_any_call('snat') nat.add_rule.assert_any_call('snat', '-j $float-snat') for call in nat.mock_calls: name, args, kwargs = call if name == 'add_rule': self.assertEqual(('snat', '-j $float-snat'), args) self.assertEqual({}, kwargs) break def test_handle_router_snat_rules_add_rules(self): ri = l3router.RouterInfo(_uuid(), {}, **self.ri_kwargs) ex_gw_port = {'fixed_ips': [{'ip_address': '192.168.1.4'}]} ri.router = {'distributed': False} ri._handle_router_snat_rules(ex_gw_port, "iface") nat_rules = list(map(str, ri.iptables_manager.ipv4['nat'].rules)) wrap_name = ri.iptables_manager.wrap_name jump_float_rule = "-A %s-snat -j %s-float-snat" % (wrap_name, wrap_name) snat_rule1 = ("-A %s-snat -o iface -j SNAT --to-source %s") % ( wrap_name, ex_gw_port['fixed_ips'][0]['ip_address']) snat_rule2 = ("-A %s-snat -m mark ! --mark 0x2/%s " "-m conntrack --ctstate DNAT " "-j SNAT --to-source %s") % ( wrap_name, l3_constants.ROUTER_MARK_MASK, ex_gw_port['fixed_ips'][0]['ip_address']) self.assertIn(jump_float_rule, nat_rules) self.assertIn(snat_rule1, nat_rules) self.assertIn(snat_rule2, nat_rules) self.assertThat(nat_rules.index(jump_float_rule), matchers.LessThan(nat_rules.index(snat_rule1))) mangle_rules = list(map(str, ri.iptables_manager.ipv4['mangle'].rules)) mangle_rule = ("-A %s-mark -i iface " "-j MARK --set-xmark 0x2/%s" % (wrap_name, l3_constants.ROUTER_MARK_MASK)) self.assertIn(mangle_rule, mangle_rules) def test_process_router_delete_stale_internal_devices(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) stale_devlist = [l3_test_common.FakeDev('qr-a1b2c3d4-e5'), l3_test_common.FakeDev('qr-b2c3d4e5-f6')] stale_devnames = [dev.name for dev in stale_devlist] get_devices_return = [] get_devices_return.extend(stale_devlist) self.mock_ip.get_devices.return_value = get_devices_return router = l3_test_common.prepare_router_data(enable_snat=True, num_internal_ports=1) ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) internal_ports = ri.router.get(l3_constants.INTERFACE_KEY, []) self.assertEqual(1, len(internal_ports)) internal_port = internal_ports[0] with mock.patch.object(ri, 'internal_network_removed' ) as internal_network_removed,\ mock.patch.object(ri, 'internal_network_added' ) as internal_network_added,\ mock.patch.object(ri, 'external_gateway_removed' ) as external_gateway_removed,\ mock.patch.object(ri, 'external_gateway_added' ) as external_gateway_added: ri.process(agent) self.assertEqual(1, external_gateway_added.call_count) self.assertFalse(external_gateway_removed.called) self.assertFalse(internal_network_removed.called) internal_network_added.assert_called_once_with(internal_port) self.assertEqual(len(stale_devnames), self.mock_driver.unplug.call_count) calls = [mock.call(stale_devname, namespace=ri.ns_name, prefix=l3_agent.INTERNAL_DEV_PREFIX) for stale_devname in stale_devnames] self.mock_driver.unplug.assert_has_calls(calls, any_order=True) def test_process_router_delete_stale_external_devices(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) stale_devlist = [l3_test_common.FakeDev('qg-a1b2c3d4-e5')] stale_devnames = [dev.name for dev in stale_devlist] router = l3_test_common.prepare_router_data(enable_snat=True, num_internal_ports=1) del router['gw_port'] ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) self.mock_ip.get_devices.return_value = stale_devlist ri.process(agent) self.mock_driver.unplug.assert_called_with( stale_devnames[0], bridge="br-ex", namespace=ri.ns_name, prefix=l3_agent.EXTERNAL_DEV_PREFIX) def test_router_deleted(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent._queue = mock.Mock() agent.router_deleted(None, FAKE_ID) self.assertEqual(1, agent._queue.add.call_count) def test_routers_updated(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent._queue = mock.Mock() agent.routers_updated(None, [FAKE_ID]) self.assertEqual(1, agent._queue.add.call_count) def test_removed_from_agent(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent._queue = mock.Mock() agent.router_removed_from_agent(None, {'router_id': FAKE_ID}) self.assertEqual(1, agent._queue.add.call_count) def test_added_to_agent(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent._queue = mock.Mock() agent.router_added_to_agent(None, [FAKE_ID]) self.assertEqual(1, agent._queue.add.call_count) def test_destroy_namespace(self): namespace = 'qrouter-bar' self.mock_ip.get_namespaces.return_value = [namespace] self.mock_ip.get_devices.return_value = [ l3_test_common.FakeDev('qr-aaaa'), l3_test_common.FakeDev('rfp-aaaa')] agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ns = namespaces.RouterNamespace( 'bar', self.conf, agent.driver, agent.use_ipv6) ns.create() ns.delete() self.mock_driver.unplug.assert_called_once_with('qr-aaaa', prefix='qr-', namespace='qrouter' '-bar') self.mock_ip.del_veth.assert_called_once_with('rfp-aaaa') def test_destroy_router_namespace(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ns = namespaces.Namespace( 'qrouter-bar', self.conf, agent.driver, agent.use_ipv6) ns.create() ns.delete() self.mock_ip.netns.delete.assert_called_once_with("qrouter-bar") def test_destroy_snat_namespace(self): namespace = 'snat-bar' self.mock_ip.get_namespaces.return_value = [namespace] self.mock_ip.get_devices.return_value = [ l3_test_common.FakeDev('qg-aaaa'), l3_test_common.FakeDev('sg-aaaa')] agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ns = dvr_snat_ns.SnatNamespace( 'bar', self.conf, agent.driver, agent.use_ipv6) ns.create() ns.delete() calls = [mock.call('qg-aaaa', bridge=agent.conf.external_network_bridge, namespace=namespace, prefix=l3_agent.EXTERNAL_DEV_PREFIX), mock.call('sg-aaaa', namespace=namespace, prefix=dvr_snat_ns.SNAT_INT_DEV_PREFIX)] self.mock_driver.unplug.assert_has_calls(calls, any_order=True) def _configure_metadata_proxy(self, enableflag=True): if not enableflag: self.conf.set_override('enable_metadata_proxy', False) agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router_id = _uuid() router = {'id': router_id, 'external_gateway_info': {}, 'routes': [], 'distributed': False} driver = metadata_driver.MetadataDriver with mock.patch.object( driver, 'destroy_monitored_metadata_proxy') as destroy_proxy: with mock.patch.object( driver, 'spawn_monitored_metadata_proxy') as spawn_proxy: agent._process_added_router(router) if enableflag: spawn_proxy.assert_called_with( mock.ANY, mock.ANY, self.conf.metadata_port, mock.ANY, router_id=router_id ) else: self.assertFalse(spawn_proxy.call_count) agent._router_removed(router_id) if enableflag: destroy_proxy.assert_called_with(mock.ANY, router_id, mock.ANY) else: self.assertFalse(destroy_proxy.call_count) def test_enable_metadata_proxy(self): self._configure_metadata_proxy() def test_disable_metadata_proxy_spawn(self): self._configure_metadata_proxy(enableflag=False) def test_router_id_specified_in_conf(self): self.conf.set_override('router_id', '1234') self._configure_metadata_proxy() def _test_process_routers_update_rpc_timeout(self, ext_net_call=False, ext_net_call_failed=False): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent.fullsync = False agent._process_router_if_compatible = mock.Mock() if ext_net_call_failed: agent._process_router_if_compatible.side_effect = ( oslo_messaging.MessagingTimeout) agent._queue = mock.Mock() agent._resync_router = mock.Mock() update = mock.Mock() update.router = None agent._queue.each_update_to_next_router.side_effect = [ [(None, update)]] agent._process_router_update() self.assertFalse(agent.fullsync) self.assertEqual(ext_net_call, agent._process_router_if_compatible.called) agent._resync_router.assert_called_with(update) def test_process_routers_update_rpc_timeout_on_get_routers(self): self.plugin_api.get_routers.side_effect = ( oslo_messaging.MessagingTimeout) self._test_process_routers_update_rpc_timeout() def test_process_routers_update_resyncs_failed_router(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) # Attempting to configure the router will fail agent._process_router_if_compatible = mock.MagicMock() agent._process_router_if_compatible.side_effect = RuntimeError() # Queue an update from a full sync update = router_processing_queue.RouterUpdate( 42, router_processing_queue.PRIORITY_SYNC_ROUTERS_TASK, router=mock.Mock(), timestamp=timeutils.utcnow()) agent._queue.add(update) agent._process_router_update() # The update contained the router object, get_routers won't be called self.assertFalse(agent.plugin_rpc.get_routers.called) # The update failed, assert that get_routers was called agent._process_router_update() self.assertTrue(agent.plugin_rpc.get_routers.called) def test_process_routers_update_rpc_timeout_on_get_ext_net(self): self._test_process_routers_update_rpc_timeout(ext_net_call=True, ext_net_call_failed=True) def _test_process_routers_update_router_deleted(self, error=False): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent._queue = mock.Mock() update = mock.Mock() update.router = None update.action = 1 # ROUTER_DELETED router_info = mock.MagicMock() agent.router_info[update.id] = router_info router_processor = mock.Mock() agent._queue.each_update_to_next_router.side_effect = [ [(router_processor, update)]] agent._resync_router = mock.Mock() if error: agent._safe_router_removed = mock.Mock() agent._safe_router_removed.return_value = False agent._process_router_update() if error: self.assertFalse(router_processor.fetched_and_processed.called) agent._resync_router.assert_called_with(update) else: router_info.delete.assert_called_once_with(agent) self.assertFalse(agent.router_info) self.assertFalse(agent._resync_router.called) router_processor.fetched_and_processed.assert_called_once_with( update.timestamp) def test_process_routers_update_router_deleted_success(self): self._test_process_routers_update_router_deleted() def test_process_routers_update_router_deleted_error(self): self._test_process_routers_update_router_deleted(True) def test_process_router_if_compatible_with_no_ext_net_in_conf(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_external_network_id.return_value = 'aaa' router = {'id': _uuid(), 'routes': [], 'admin_state_up': True, 'external_gateway_info': {'network_id': 'aaa'}} agent._process_router_if_compatible(router) self.assertIn(router['id'], agent.router_info) self.plugin_api.get_external_network_id.assert_called_with( agent.context) def test_process_router_if_compatible_with_cached_ext_net(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_external_network_id.return_value = 'aaa' agent.target_ex_net_id = 'aaa' router = {'id': _uuid(), 'routes': [], 'admin_state_up': True, 'external_gateway_info': {'network_id': 'aaa'}} agent._process_router_if_compatible(router) self.assertIn(router['id'], agent.router_info) self.assertFalse(self.plugin_api.get_external_network_id.called) def test_process_router_if_compatible_with_stale_cached_ext_net(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_external_network_id.return_value = 'aaa' agent.target_ex_net_id = 'bbb' router = {'id': _uuid(), 'routes': [], 'admin_state_up': True, 'external_gateway_info': {'network_id': 'aaa'}} agent._process_router_if_compatible(router) self.assertIn(router['id'], agent.router_info) self.plugin_api.get_external_network_id.assert_called_with( agent.context) def test_process_router_if_compatible_w_no_ext_net_and_2_net_plugin(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = {'id': _uuid(), 'routes': [], 'admin_state_up': True, 'external_gateway_info': {'network_id': 'aaa'}} agent.router_info = {} self.plugin_api.get_external_network_id.side_effect = ( n_exc.TooManyExternalNetworks()) self.assertRaises(n_exc.TooManyExternalNetworks, agent._process_router_if_compatible, router) self.assertNotIn(router['id'], agent.router_info) def test_process_router_if_compatible_with_ext_net_in_conf(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_external_network_id.return_value = 'aaa' router = {'id': _uuid(), 'routes': [], 'admin_state_up': True, 'external_gateway_info': {'network_id': 'bbb'}} agent.router_info = {} self.conf.set_override('gateway_external_network_id', 'aaa') self.assertRaises(n_exc.RouterNotCompatibleWithAgent, agent._process_router_if_compatible, router) self.assertNotIn(router['id'], agent.router_info) def test_process_router_if_compatible_with_no_bridge_no_ext_net(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.plugin_api.get_external_network_id.return_value = 'aaa' router = {'id': _uuid(), 'routes': [], 'admin_state_up': True, 'external_gateway_info': {'network_id': 'aaa'}} agent.router_info = {} self.conf.set_override('external_network_bridge', '') agent._process_router_if_compatible(router) self.assertIn(router['id'], agent.router_info) def test_nonexistent_interface_driver(self): self.conf.set_override('interface_driver', None) self.assertRaises(SystemExit, l3_agent.L3NATAgent, HOSTNAME, self.conf) self.conf.set_override('interface_driver', 'wrong.driver') self.assertRaises(SystemExit, l3_agent.L3NATAgent, HOSTNAME, self.conf) @mock.patch.object(namespaces.RouterNamespace, 'delete') @mock.patch.object(dvr_snat_ns.SnatNamespace, 'delete') def _cleanup_namespace_test(self, stale_namespace_list, router_list, other_namespaces, mock_snat_ns, mock_router_ns): good_namespace_list = [namespaces.NS_PREFIX + r['id'] for r in router_list] good_namespace_list += [dvr_snat_ns.SNAT_NS_PREFIX + r['id'] for r in router_list] self.mock_ip.get_namespaces.return_value = (stale_namespace_list + good_namespace_list + other_namespaces) agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.assertTrue(agent.namespaces_manager._clean_stale) pm = self.external_process.return_value pm.reset_mock() with agent.namespaces_manager as ns_manager: for r in router_list: ns_manager.keep_router(r['id']) qrouters = [n for n in stale_namespace_list if n.startswith(namespaces.NS_PREFIX)] self.assertEqual(len(qrouters), mock_router_ns.call_count) self.assertEqual( len(stale_namespace_list) - len(qrouters), mock_snat_ns.call_count) self.assertFalse(agent.namespaces_manager._clean_stale) def test_cleanup_namespace(self): self.conf.set_override('router_id', None) stale_namespaces = [namespaces.NS_PREFIX + 'foo', namespaces.NS_PREFIX + 'bar', dvr_snat_ns.SNAT_NS_PREFIX + 'foo'] other_namespaces = ['unknown'] self._cleanup_namespace_test(stale_namespaces, [], other_namespaces) def test_cleanup_namespace_with_registered_router_ids(self): self.conf.set_override('router_id', None) stale_namespaces = [namespaces.NS_PREFIX + 'cccc', namespaces.NS_PREFIX + 'eeeee', dvr_snat_ns.SNAT_NS_PREFIX + 'fffff'] router_list = [{'id': 'foo', 'distributed': False}, {'id': 'aaaa', 'distributed': False}] other_namespaces = ['qdhcp-aabbcc', 'unknown'] self._cleanup_namespace_test(stale_namespaces, router_list, other_namespaces) def test_cleanup_namespace_with_conf_router_id(self): self.conf.set_override('router_id', 'bbbbb') stale_namespaces = [namespaces.NS_PREFIX + 'cccc', namespaces.NS_PREFIX + 'eeeee', namespaces.NS_PREFIX + self.conf.router_id] router_list = [{'id': 'foo', 'distributed': False}, {'id': 'aaaa', 'distributed': False}] other_namespaces = ['qdhcp-aabbcc', 'unknown'] self._cleanup_namespace_test(stale_namespaces, router_list, other_namespaces) def test_create_dvr_gateway(self): agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) router = l3_test_common.prepare_router_data() ri = dvr_router.DvrEdgeRouter(agent, HOSTNAME, router['id'], router, **self.ri_kwargs) port_id = _uuid() subnet_id = _uuid() dvr_gw_port = {'fixed_ips': [{'ip_address': '20.0.0.30', 'prefixlen': 24, 'subnet_id': subnet_id}], 'subnets': [{'id': subnet_id, 'cidr': '20.0.0.0/24', 'gateway_ip': '20.0.0.1'}], 'id': port_id, 'network_id': _uuid(), 'mac_address': 'ca:fe:de:ad:be:ef'} interface_name = ri._get_snat_int_device_name(port_id) self.device_exists.return_value = False with mock.patch.object(ri, 'get_snat_interfaces') as get_interfaces: get_interfaces.return_value = self.snat_ports ri._create_dvr_gateway(dvr_gw_port, interface_name) # check 2 internal ports are plugged # check 1 ext-gw-port is plugged self.assertEqual(3, self.mock_driver.plug.call_count) self.assertEqual(3, self.mock_driver.init_router_port.call_count) def test_process_address_scope(self): router = l3_test_common.prepare_router_data() router['distributed'] = True router['gw_port_host'] = HOSTNAME agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) ri = dvr_router.DvrEdgeRouter(agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ri.get_ex_gw_port = mock.Mock(return_value=None) # Make sure the code doesn't crash if ri.snat_iptables_manager is None. ri.process_address_scope() with mock.patch.object(ri, '_add_address_scope_mark') as mocked_func: ri.snat_iptables_manager = iptables_manager.IptablesManager( namespace=mock.ANY, use_ipv6=False) ri.snat_iptables_manager.defer_apply_off = mock.Mock() ri.process_address_scope() self.assertEqual(2, mocked_func.call_count) def test_get_service_plugin_list(self): service_plugins = [p_const.L3_ROUTER_NAT] self.plugin_api.get_service_plugin_list.return_value = service_plugins agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.assertEqual(service_plugins, agent.neutron_service_plugins) self.assertTrue(self.plugin_api.get_service_plugin_list.called) def test_get_service_plugin_list_failed(self): raise_rpc = oslo_messaging.RemoteError() self.plugin_api.get_service_plugin_list.side_effect = raise_rpc agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.assertIsNone(agent.neutron_service_plugins) self.assertTrue(self.plugin_api.get_service_plugin_list.called) def test_get_service_plugin_list_retried(self): raise_timeout = oslo_messaging.MessagingTimeout() # Raise a timeout the first 2 times it calls # get_service_plugin_list then return a empty tuple self.plugin_api.get_service_plugin_list.side_effect = ( raise_timeout, tuple() ) agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.assertEqual(tuple(), agent.neutron_service_plugins) def test_external_gateway_removed_ext_gw_port_no_fip_ns(self): self.conf.set_override('state_path', '/tmp') agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent.conf.agent_mode = 'dvr_snat' router = l3_test_common.prepare_router_data(num_internal_ports=2) router['gw_port_host'] = HOSTNAME self.mock_driver.unplug.reset_mock() external_net_id = router['gw_port']['network_id'] ri = dvr_router.DvrEdgeRouter( agent, HOSTNAME, router['id'], router, **self.ri_kwargs) ri.remove_floating_ip = mock.Mock() agent._fetch_external_net_id = mock.Mock(return_value=external_net_id) ri.ex_gw_port = ri.router['gw_port'] del ri.router['gw_port'] ri.fip_ns = None nat = ri.iptables_manager.ipv4['nat'] nat.clear_rules_by_tag = mock.Mock() nat.add_rule = mock.Mock() ri.snat_namespace = mock.Mock() ri.external_gateway_removed( ri.ex_gw_port, ri.get_external_device_name(ri.ex_gw_port['id'])) self.assertFalse(ri.remove_floating_ip.called) def test_spawn_radvd(self): router = l3_test_common.prepare_router_data(ip_version=6) conffile = '/fake/radvd.conf' pidfile = '/fake/radvd.pid' agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) # we don't want the whole process manager to be mocked to be # able to catch execute() calls self.external_process_p.stop() self.ip_cls_p.stop() get_conf_file_name = 'neutron.agent.linux.utils.get_conf_file_name' get_pid_file_name = ('neutron.agent.linux.external_process.' 'ProcessManager.get_pid_file_name') utils_execute = 'neutron.agent.common.utils.execute' mock.patch(get_conf_file_name).start().return_value = conffile mock.patch(get_pid_file_name).start().return_value = pidfile execute = mock.patch(utils_execute).start() radvd = ra.DaemonMonitor( router['id'], namespaces.RouterNamespace._get_ns_name(router['id']), agent.process_monitor, l3_test_common.FakeDev, self.conf) radvd.enable(router['_interfaces']) cmd = execute.call_args[0][0] self.assertIn('radvd', cmd) _join = lambda *args: ' '.join(args) cmd = _join(*cmd) self.assertIn(_join('-C', conffile), cmd) self.assertIn(_join('-p', pidfile), cmd) self.assertIn(_join('-m', 'syslog'), cmd) def test_generate_radvd_mtu_conf(self): router = l3_test_common.prepare_router_data() ipv6_subnet_modes = [{'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}] network_mtu = '1446' ri = self._process_router_ipv6_subnet_added(router, ipv6_subnet_modes, None, network_mtu) expected = "AdvLinkMTU 1446" ri.agent_conf.set_override('advertise_mtu', False) ri.radvd._generate_radvd_conf(router[l3_constants.INTERFACE_KEY]) self.assertNotIn(expected, self.utils_replace_file.call_args[0][1]) # Verify that MTU is advertised when advertise_mtu is True ri.agent_conf.set_override('advertise_mtu', True) ri.radvd._generate_radvd_conf(router[l3_constants.INTERFACE_KEY]) self.assertIn(expected, self.utils_replace_file.call_args[0][1]) def test_generate_radvd_conf_other_and_managed_flag(self): # expected = {ra_mode: (AdvOtherConfigFlag, AdvManagedFlag), ...} expected = {l3_constants.IPV6_SLAAC: (False, False), l3_constants.DHCPV6_STATELESS: (True, False), l3_constants.DHCPV6_STATEFUL: (False, True)} modes = [l3_constants.IPV6_SLAAC, l3_constants.DHCPV6_STATELESS, l3_constants.DHCPV6_STATEFUL] mode_combos = list(iter_chain(*[[list(combo) for combo in iter_combinations(modes, i)] for i in range(1, len(modes) + 1)])) for mode_list in mode_combos: ipv6_subnet_modes = [{'ra_mode': mode, 'address_mode': mode} for mode in mode_list] router = l3_test_common.prepare_router_data() ri = self._process_router_ipv6_subnet_added(router, ipv6_subnet_modes) ri.radvd._generate_radvd_conf(router[l3_constants.INTERFACE_KEY]) def assertFlag(flag): return (self.assertIn if flag else self.assertNotIn) other_flag, managed_flag = ( any(expected[mode][0] for mode in mode_list), any(expected[mode][1] for mode in mode_list)) assertFlag(other_flag)('AdvOtherConfigFlag on;', self.utils_replace_file.call_args[0][1]) assertFlag(managed_flag)('AdvManagedFlag on;', self.utils_replace_file.call_args[0][1]) def test_generate_radvd_intervals(self): self.conf.set_override('min_rtr_adv_interval', 22) self.conf.set_override('max_rtr_adv_interval', 66) router = l3_test_common.prepare_router_data() ipv6_subnet_modes = [{'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}] ri = self._process_router_ipv6_subnet_added(router, ipv6_subnet_modes) ri.radvd._generate_radvd_conf(router[l3_constants.INTERFACE_KEY]) self.assertIn("MinRtrAdvInterval 22", self.utils_replace_file.call_args[0][1]) self.assertIn("MaxRtrAdvInterval 66", self.utils_replace_file.call_args[0][1]) def test_generate_radvd_rdnss_conf(self): router = l3_test_common.prepare_router_data() ipv6_subnet_modes = [{'ra_mode': l3_constants.IPV6_SLAAC, 'address_mode': l3_constants.IPV6_SLAAC}] dns_list = ['fd01:1::100', 'fd01:1::200', 'fd01::300', 'fd01::400'] ri = self._process_router_ipv6_subnet_added(router, ipv6_subnet_modes, dns_nameservers=dns_list) ri.radvd._generate_radvd_conf(router[l3_constants.INTERFACE_KEY]) # Verify that radvd configuration file includes RDNSS entries expected = "RDNSS " for dns in dns_list[0:ra.MAX_RDNSS_ENTRIES]: expected += "%s " % dns self.assertIn(expected, self.utils_replace_file.call_args[0][1]) def _pd_expected_call_external_process(self, requestor, ri, enable=True): expected_calls = [] if enable: expected_calls.append(mock.call(uuid=requestor, service='dibbler', default_cmd_callback=mock.ANY, namespace=ri.ns_name, conf=mock.ANY, pid_file=mock.ANY)) expected_calls.append(mock.call().enable(reload_cfg=False)) else: expected_calls.append(mock.call(uuid=requestor, service='dibbler', namespace=ri.ns_name, conf=mock.ANY, pid_file=mock.ANY)) expected_calls.append(mock.call().disable( get_stop_command=mock.ANY)) return expected_calls def _pd_setup_agent_router(self): router = l3_test_common.prepare_router_data() ri = l3router.RouterInfo(router['id'], router, **self.ri_kwargs) agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) agent.external_gateway_added = mock.Mock() ri.process(agent) agent._router_added(router['id'], router) # Make sure radvd monitor is created if not ri.radvd: ri.radvd = ra.DaemonMonitor(router['id'], ri.ns_name, agent.process_monitor, ri.get_internal_device_name, self.conf) return agent, router, ri def _pd_remove_gw_interface(self, intfs, agent, router, ri): expected_pd_update = {} expected_calls = [] for intf in intfs: requestor_id = self._pd_get_requestor_id(intf, router, ri) expected_calls += (self._pd_expected_call_external_process( requestor_id, ri, False)) for subnet in intf['subnets']: expected_pd_update[subnet['id']] = ( l3_constants.PROVISIONAL_IPV6_PD_PREFIX) # Implement the prefix update notifier # Keep track of the updated prefix self.pd_update = {} def pd_notifier(context, prefix_update): self.pd_update = prefix_update for subnet_id, prefix in six.iteritems(prefix_update): for intf in intfs: for subnet in intf['subnets']: if subnet['id'] == subnet_id: # Update the prefix subnet['cidr'] = prefix break # Remove the gateway interface agent.pd.notifier = pd_notifier agent.pd.remove_gw_interface(router['id']) self._pd_assert_dibbler_calls(expected_calls, self.external_process.mock_calls[-len(expected_calls):]) self.assertEqual(expected_pd_update, self.pd_update) def _pd_remove_interfaces(self, intfs, agent, router, ri): expected_pd_update = [] expected_calls = [] for intf in intfs: # Remove the router interface router[l3_constants.INTERFACE_KEY].remove(intf) requestor_id = self._pd_get_requestor_id(intf, router, ri) expected_calls += (self._pd_expected_call_external_process( requestor_id, ri, False)) for subnet in intf['subnets']: expected_pd_update += [{subnet['id']: l3_constants.PROVISIONAL_IPV6_PD_PREFIX}] # Implement the prefix update notifier # Keep track of the updated prefix self.pd_update = [] def pd_notifier(context, prefix_update): self.pd_update.append(prefix_update) for intf in intfs: for subnet in intf['subnets']: if subnet['id'] in prefix_update: # Update the prefix subnet['cidr'] = prefix_update[subnet['id']] # Process the router for removed interfaces agent.pd.notifier = pd_notifier ri.process(agent) # The number of external process calls takes radvd into account. # This is because there is no ipv6 interface any more after removing # the interfaces, and radvd will be killed because of that self._pd_assert_dibbler_calls(expected_calls, self.external_process.mock_calls[-len(expected_calls) - 2:]) self._pd_assert_radvd_calls(ri, False) self.assertEqual(expected_pd_update, self.pd_update) def _pd_get_requestor_id(self, intf, router, ri): ifname = ri.get_internal_device_name(intf['id']) for subnet in intf['subnets']: return dibbler.PDDibbler(router['id'], subnet['id'], ifname).requestor_id def _pd_assert_dibbler_calls(self, expected, actual): '''Check the external process calls for dibbler are expected in the case of multiple pd-enabled router ports, the exact sequence of these calls are not deterministic. It's known, though, that each external_process call is followed with either an enable() or disable() ''' num_ext_calls = len(expected) // 2 expected_ext_calls = [] actual_ext_calls = [] expected_action_calls = [] actual_action_calls = [] for c in range(num_ext_calls): expected_ext_calls.append(expected[c * 2]) actual_ext_calls.append(actual[c * 2]) expected_action_calls.append(expected[c * 2 + 1]) actual_action_calls.append(actual[c * 2 + 1]) self.assertEqual(expected_action_calls, actual_action_calls) for exp in expected_ext_calls: for act in actual_ext_calls: if exp == act: break else: msg = "Unexpected dibbler external process call." self.fail(msg) def _pd_assert_radvd_calls(self, ri, enable=True): exp_calls = self._radvd_expected_call_external_process(ri, enable) self.assertEqual(exp_calls, self.external_process.mock_calls[-len(exp_calls):]) def _pd_get_prefixes(self, agent, router, ri, existing_intfs, new_intfs, mock_get_prefix): # First generate the prefixes that will be used for each interface prefixes = {} expected_pd_update = {} expected_calls = [] for ifno, intf in enumerate(existing_intfs + new_intfs): requestor_id = self._pd_get_requestor_id(intf, router, ri) prefixes[requestor_id] = "2001:cafe:cafe:%d::/64" % ifno if intf in new_intfs: subnet_id = (intf['subnets'][0]['id'] if intf['subnets'] else None) expected_pd_update[subnet_id] = prefixes[requestor_id] expected_calls += ( self._pd_expected_call_external_process(requestor_id, ri)) # Implement the prefix update notifier # Keep track of the updated prefix self.pd_update = {} def pd_notifier(context, prefix_update): self.pd_update = prefix_update for subnet_id, prefix in six.iteritems(prefix_update): for intf in new_intfs: for subnet in intf['subnets']: if subnet['id'] == subnet_id: # Update the prefix subnet['cidr'] = prefix break # Start the dibbler client agent.pd.notifier = pd_notifier agent.pd.process_prefix_update() # Get the prefix and check that the neutron server is notified def get_prefix(pdo): key = '%s:%s:%s' % (pdo.router_id, pdo.subnet_id, pdo.ri_ifname) return prefixes[key] mock_get_prefix.side_effect = get_prefix agent.pd.process_prefix_update() # Make sure that the updated prefixes are expected self._pd_assert_dibbler_calls(expected_calls, self.external_process.mock_calls[-len(expected_calls):]) self.assertEqual(expected_pd_update, self.pd_update) def _pd_add_gw_interface(self, agent, router, ri): gw_ifname = ri.get_external_device_name(router['gw_port']['id']) agent.pd.add_gw_interface(router['id'], gw_ifname) @mock.patch.object(dibbler.PDDibbler, 'get_prefix', autospec=True) @mock.patch.object(dibbler.os, 'getpid', return_value=1234) @mock.patch.object(pd.PrefixDelegation, '_is_lla_active', return_value=True) @mock.patch.object(dibbler.os, 'chmod') @mock.patch.object(dibbler.shutil, 'rmtree') @mock.patch.object(pd.PrefixDelegation, '_get_sync_data') def test_pd_add_remove_subnet(self, mock1, mock2, mock3, mock4, mock_getpid, mock_get_prefix): '''Add and remove one pd-enabled subnet Remove the interface by deleting it from the router ''' # Initial setup agent, router, ri = self._pd_setup_agent_router() # Create one pd-enabled subnet and add router interface intfs = l3_test_common.router_append_pd_enabled_subnet(router) ri.process(agent) # No client should be started since there is no gateway port self.assertFalse(self.external_process.call_count) self.assertFalse(mock_get_prefix.call_count) # Add the gateway interface self._pd_add_gw_interface(agent, router, ri) # Get one prefix self._pd_get_prefixes(agent, router, ri, [], intfs, mock_get_prefix) # Update the router with the new prefix ri.process(agent) # Check that radvd is started and the router port is configured # with the new prefix self._pd_assert_radvd_calls(ri) # Now remove the interface self._pd_remove_interfaces(intfs, agent, router, ri) @mock.patch.object(dibbler.PDDibbler, 'get_prefix', autospec=True) @mock.patch.object(dibbler.os, 'getpid', return_value=1234) @mock.patch.object(pd.PrefixDelegation, '_is_lla_active', return_value=True) @mock.patch.object(dibbler.os, 'chmod') @mock.patch.object(dibbler.shutil, 'rmtree') @mock.patch.object(pd.PrefixDelegation, '_get_sync_data') def test_pd_remove_gateway(self, mock1, mock2, mock3, mock4, mock_getpid, mock_get_prefix): '''Add one pd-enabled subnet and remove the gateway port Remove the gateway port and check the prefix is removed ''' # Initial setup agent, router, ri = self._pd_setup_agent_router() # Create one pd-enabled subnet and add router interface intfs = l3_test_common.router_append_pd_enabled_subnet(router) ri.process(agent) # Add the gateway interface self._pd_add_gw_interface(agent, router, ri) # Get one prefix self._pd_get_prefixes(agent, router, ri, [], intfs, mock_get_prefix) # Update the router with the new prefix ri.process(agent) # Check that radvd is started self._pd_assert_radvd_calls(ri) # Now remove the gw interface self._pd_remove_gw_interface(intfs, agent, router, ri) # There will be a router update ri.process(agent) @mock.patch.object(dibbler.PDDibbler, 'get_prefix', autospec=True) @mock.patch.object(dibbler.os, 'getpid', return_value=1234) @mock.patch.object(pd.PrefixDelegation, '_is_lla_active', return_value=True) @mock.patch.object(dibbler.os, 'chmod') @mock.patch.object(dibbler.shutil, 'rmtree') @mock.patch.object(pd.PrefixDelegation, '_get_sync_data') def test_pd_add_remove_2_subnets(self, mock1, mock2, mock3, mock4, mock_getpid, mock_get_prefix): '''Add and remove two pd-enabled subnets Remove the interfaces by deleting them from the router ''' # Initial setup agent, router, ri = self._pd_setup_agent_router() # Create 2 pd-enabled subnets and add router interfaces intfs = l3_test_common.router_append_pd_enabled_subnet(router, count=2) ri.process(agent) # No client should be started self.assertFalse(self.external_process.call_count) self.assertFalse(mock_get_prefix.call_count) # Add the gateway interface self._pd_add_gw_interface(agent, router, ri) # Get prefixes self._pd_get_prefixes(agent, router, ri, [], intfs, mock_get_prefix) # Update the router with the new prefix ri.process(agent) # Check that radvd is started and the router port is configured # with the new prefix self._pd_assert_radvd_calls(ri) # Now remove the interface self._pd_remove_interfaces(intfs, agent, router, ri) @mock.patch.object(dibbler.PDDibbler, 'get_prefix', autospec=True) @mock.patch.object(dibbler.os, 'getpid', return_value=1234) @mock.patch.object(pd.PrefixDelegation, '_is_lla_active', return_value=True) @mock.patch.object(dibbler.os, 'chmod') @mock.patch.object(dibbler.shutil, 'rmtree') @mock.patch.object(pd.PrefixDelegation, '_get_sync_data') def test_pd_remove_gateway_2_subnets(self, mock1, mock2, mock3, mock4, mock_getpid, mock_get_prefix): '''Add one pd-enabled subnet, followed by adding another one Remove the gateway port and check the prefix is removed ''' # Initial setup agent, router, ri = self._pd_setup_agent_router() # Add the gateway interface self._pd_add_gw_interface(agent, router, ri) # Create 1 pd-enabled subnet and add router interface intfs = l3_test_common.router_append_pd_enabled_subnet(router, count=1) ri.process(agent) # Get prefixes self._pd_get_prefixes(agent, router, ri, [], intfs, mock_get_prefix) # Update the router with the new prefix ri.process(agent) # Check that radvd is started self._pd_assert_radvd_calls(ri) # Now add another interface # Create one pd-enabled subnet and add router interface intfs1 = l3_test_common.router_append_pd_enabled_subnet(router, count=1) ri.process(agent) # Get prefixes self._pd_get_prefixes(agent, router, ri, intfs, intfs1, mock_get_prefix) # Update the router with the new prefix ri.process(agent) # Check that radvd is notified for the new prefix self._pd_assert_radvd_calls(ri) # Now remove the gw interface self._pd_remove_gw_interface(intfs + intfs1, agent, router, ri) ri.process(agent)
45.853389
79
0.605831
435099dae2522df08fca20c0261dbbf5e79db279
4,063
py
Python
huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/list_conversions_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/list_conversions_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/list_conversions_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ListConversionsRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'x_language': 'str', 'measure_type': 'int' } attribute_map = { 'x_language': 'X-Language', 'measure_type': 'measure_type' } def __init__(self, x_language=None, measure_type=None): """ListConversionsRequest - a model defined in huaweicloud sdk""" self._x_language = None self._measure_type = None self.discriminator = None if x_language is not None: self.x_language = x_language if measure_type is not None: self.measure_type = measure_type @property def x_language(self): """Gets the x_language of this ListConversionsRequest. |忽略大小写,默认 zh_CN:中文 en_US:英文| :return: The x_language of this ListConversionsRequest. :rtype: str """ return self._x_language @x_language.setter def x_language(self, x_language): """Sets the x_language of this ListConversionsRequest. |忽略大小写,默认 zh_CN:中文 en_US:英文| :param x_language: The x_language of this ListConversionsRequest. :type: str """ self._x_language = x_language @property def measure_type(self): """Gets the measure_type of this ListConversionsRequest. 度量类型。1:货币2:时长3:流量4:数量7:容量9:行数10:周期11:频率12:个数16:带宽速率17:容量时长18:查询速率19:带宽速率(1000进制)20:性能测试用量21:面积22:视频23:吞吐量25:测试类型 :return: The measure_type of this ListConversionsRequest. :rtype: int """ return self._measure_type @measure_type.setter def measure_type(self, measure_type): """Sets the measure_type of this ListConversionsRequest. 度量类型。1:货币2:时长3:流量4:数量7:容量9:行数10:周期11:频率12:个数16:带宽速率17:容量时长18:查询速率19:带宽速率(1000进制)20:性能测试用量21:面积22:视频23:吞吐量25:测试类型 :param measure_type: The measure_type of this ListConversionsRequest. :type: int """ self._measure_type = measure_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListConversionsRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.612676
120
0.582821
6ba079819c4c68750132637ad758d8e392efba83
10,953
py
Python
conans/client/conf/detect.py
ssaavedra/conan
e15dc7902fbbeaf469798a3b9948ead1ecfc8e3c
[ "MIT" ]
1
2021-08-05T15:33:08.000Z
2021-08-05T15:33:08.000Z
conans/client/conf/detect.py
ssaavedra/conan
e15dc7902fbbeaf469798a3b9948ead1ecfc8e3c
[ "MIT" ]
9
2017-10-07T06:23:10.000Z
2021-06-29T15:22:27.000Z
conans/client/conf/detect.py
ssaavedra/conan
e15dc7902fbbeaf469798a3b9948ead1ecfc8e3c
[ "MIT" ]
1
2022-03-23T18:07:31.000Z
2022-03-23T18:07:31.000Z
import os import platform import re import tempfile import textwrap from conans.client.conf.compiler_id import UNKNOWN_COMPILER, LLVM_GCC, detect_compiler_id from conans.client.output import Color from conans.client.tools import detected_os, OSInfo from conans.client.tools.win import latest_visual_studio_version_installed from conans.model.version import Version from conans.util.conan_v2_mode import CONAN_V2_MODE_ENVVAR from conans.util.env_reader import get_env from conans.util.files import save from conans.util.runners import detect_runner def _get_compiler_and_version(output, compiler_exe): compiler_id = detect_compiler_id(compiler_exe) if compiler_id.name == LLVM_GCC: output.error("%s detected as a frontend using apple-clang. " "Compiler not supported" % compiler_exe) return None if compiler_id != UNKNOWN_COMPILER: output.success("Found %s %s" % (compiler_id.name, compiler_id.major_minor)) return compiler_id.name, compiler_id.major_minor return None def _gcc_compiler(output, compiler_exe="gcc"): try: if platform.system() == "Darwin": # In Mac OS X check if gcc is a fronted using apple-clang _, out = detect_runner("%s --version" % compiler_exe) out = out.lower() if "clang" in out: return None ret, out = detect_runner('%s -dumpversion' % compiler_exe) if ret != 0: return None compiler = "gcc" installed_version = re.search("([0-9]+(\.[0-9])?)", out).group() # Since GCC 7.1, -dumpversion return the major version number # only ("7"). We must use -dumpfullversion to get the full version # number ("7.1.1"). if installed_version: output.success("Found %s %s" % (compiler, installed_version)) return compiler, installed_version except Exception: return None def _clang_compiler(output, compiler_exe="clang"): try: ret, out = detect_runner('%s --version' % compiler_exe) if ret != 0: return None if "Apple" in out: compiler = "apple-clang" elif "clang version" in out: compiler = "clang" installed_version = re.search("([0-9]+\.[0-9])", out).group() if installed_version: output.success("Found %s %s" % (compiler, installed_version)) return compiler, installed_version except Exception: return None def _sun_cc_compiler(output, compiler_exe="cc"): try: _, out = detect_runner('%s -V' % compiler_exe) compiler = "sun-cc" installed_version = re.search("Sun C.*([0-9]+\.[0-9]+)", out) if installed_version: installed_version = installed_version.group(1) else: installed_version = re.search("([0-9]+\.[0-9]+)", out).group() if installed_version: output.success("Found %s %s" % (compiler, installed_version)) return compiler, installed_version except Exception: return None def _get_default_compiler(output): """ find the default compiler on the build machine search order and priority: 1. CC and CXX environment variables are always top priority 2. Visual Studio detection (Windows only) via vswhere or registry or environment variables 3. Apple Clang (Mac only) 4. cc executable 5. gcc executable 6. clang executable """ v2_mode = get_env(CONAN_V2_MODE_ENVVAR, False) cc = os.environ.get("CC", "") cxx = os.environ.get("CXX", "") if cc or cxx: # Env defined, use them output.info("CC and CXX: %s, %s " % (cc or "None", cxx or "None")) command = cc or cxx if v2_mode: compiler = _get_compiler_and_version(output, command) if compiler: return compiler else: if "gcc" in command: gcc = _gcc_compiler(output, command) if platform.system() == "Darwin" and gcc is None: output.error("%s detected as a frontend using apple-clang. " "Compiler not supported" % command) return gcc if "clang" in command.lower(): return _clang_compiler(output, command) if platform.system() == "SunOS" and command.lower() == "cc": return _sun_cc_compiler(output, command) # I am not able to find its version output.error("Not able to automatically detect '%s' version" % command) return None vs = cc = sun_cc = None if detected_os() == "Windows": version = latest_visual_studio_version_installed(output) vs = ('Visual Studio', version) if version else None if v2_mode: cc = _get_compiler_and_version(output, "cc") gcc = _get_compiler_and_version(output, "gcc") clang = _get_compiler_and_version(output, "clang") else: gcc = _gcc_compiler(output) clang = _clang_compiler(output) if platform.system() == "SunOS": sun_cc = _sun_cc_compiler(output) if detected_os() == "Windows": return vs or cc or gcc or clang elif platform.system() == "Darwin": return clang or cc or gcc elif platform.system() == "SunOS": return sun_cc or cc or gcc or clang else: return cc or gcc or clang def _get_profile_compiler_version(compiler, version, output): tokens = version.split(".") major = tokens[0] minor = tokens[1] if len(tokens) > 1 else 0 if compiler == "clang" and int(major) >= 8: output.info("clang>=8, using the major as version") return major elif compiler == "gcc" and int(major) >= 5: output.info("gcc>=5, using the major as version") return major elif compiler == "Visual Studio": return major elif compiler == "intel" and (int(major) < 19 or (int(major) == 19 and int(minor) == 0)): return major return version def _detect_gcc_libcxx(executable, version, output, profile_name, profile_path): # Assumes a working g++ executable new_abi_available = Version(version) >= Version("5.1") if not new_abi_available: return "libstdc++" if not get_env(CONAN_V2_MODE_ENVVAR, False): msg = textwrap.dedent(""" Conan detected a GCC version > 5 but has adjusted the 'compiler.libcxx' setting to 'libstdc++' for backwards compatibility. Your compiler is likely using the new CXX11 ABI by default (libstdc++11). If you want Conan to use the new ABI for the {profile} profile, run: $ conan profile update settings.compiler.libcxx=libstdc++11 {profile} Or edit '{profile_path}' and set compiler.libcxx=libstdc++11 """.format(profile=profile_name, profile_path=profile_path)) output.writeln("\n************************* WARNING: GCC OLD ABI COMPATIBILITY " "***********************\n %s\n************************************" "************************************************\n\n\n" % msg, Color.BRIGHT_RED) return "libstdc++" main = textwrap.dedent(""" #include <string> using namespace std; static_assert(sizeof(std::string) != sizeof(void*), "using libstdc++"); int main(){} """) t = tempfile.mkdtemp() filename = os.path.join(t, "main.cpp") save(filename, main) old_path = os.getcwd() os.chdir(t) try: error, out_str = detect_runner("%s main.cpp -std=c++11" % executable) if error: if "using libstdc++" in out_str: output.info("gcc C++ standard library: libstdc++") return "libstdc++" # Other error, but can't know, lets keep libstdc++11 output.warn("compiler.libcxx check error: %s" % out_str) output.warn("Couldn't deduce compiler.libcxx for gcc>=5.1, assuming libstdc++11") else: output.info("gcc C++ standard library: libstdc++11") return "libstdc++11" finally: os.chdir(old_path) def _detect_compiler_version(result, output, profile_path): try: compiler, version = _get_default_compiler(output) except Exception: compiler, version = None, None if not compiler or not version: output.error("Unable to find a working compiler") return result.append(("compiler", compiler)) result.append(("compiler.version", _get_profile_compiler_version(compiler, version, output))) # Get compiler C++ stdlib if compiler == "apple-clang": result.append(("compiler.libcxx", "libc++")) elif compiler == "gcc": profile_name = os.path.basename(profile_path) libcxx = _detect_gcc_libcxx("g++", version, output, profile_name, profile_path) result.append(("compiler.libcxx", libcxx)) elif compiler == "cc": if platform.system() == "SunOS": result.append(("compiler.libstdcxx", "libstdcxx4")) elif compiler == "clang": if platform.system() == "FreeBSD": result.append(("compiler.libcxx", "libc++")) else: result.append(("compiler.libcxx", "libstdc++")) elif compiler == "sun-cc": result.append(("compiler.libcxx", "libCstd")) def _detect_os_arch(result, output): architectures = {'i386': 'x86', 'i686': 'x86', 'i86pc': 'x86', 'amd64': 'x86_64', 'aarch64': 'armv8', 'sun4v': 'sparc'} the_os = detected_os() result.append(("os", the_os)) result.append(("os_build", the_os)) platform_machine = platform.machine().lower() if platform_machine: arch = architectures.get(platform_machine, platform_machine) if arch.startswith('arm'): for a in ("armv6", "armv7hf", "armv7", "armv8"): if arch.startswith(a): arch = a break else: output.error("Your ARM '%s' architecture is probably not defined in settings.yml\n" "Please check your conan.conf and settings.yml files" % arch) elif OSInfo().is_aix: arch = OSInfo.get_aix_architecture() or arch result.append(("arch", arch)) result.append(("arch_build", arch)) def detect_defaults_settings(output, profile_path): """ try to deduce current machine values without any constraints at all :param output: Conan Output instance :param profile_path: Conan profile file path :return: A list with default settings """ result = [] _detect_os_arch(result, output) _detect_compiler_version(result, output, profile_path) result.append(("build_type", "Release")) return result
37.768966
99
0.601114
4130d22e601be1fb94d742cff8a711f420447948
20,213
py
Python
model-optimizer/mo/ops/convolution_test.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
3
2020-02-09T23:25:37.000Z
2021-01-19T09:44:12.000Z
model-optimizer/mo/ops/convolution_test.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
null
null
null
model-optimizer/mo/ops/convolution_test.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
2
2020-04-18T16:24:39.000Z
2021-01-19T09:42:19.000Z
""" Copyright (c) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from mo.front.common.partial_infer.utils import int64_array from mo.graph.graph import Node from mo.ops.convolution import Convolution from mo.utils.unittest.extractors import FakeValue from mo.utils.unittest.graph import build_graph nodes_attributes = {'conv_input': {'value': None, 'kind': 'data'}, 'conv_node': {'type': 'Convolution', 'kind': 'op'}, 'conv_weights': {'value': FakeValue(None), 'kind': 'data'}, 'conv_output': {'value': None, 'kind': 'data'}, 'op_output': {'kind': 'op', 'op': 'Result'} } class TestConvolutionPartialInfer(unittest.TestCase): def test_caffe_conv2d_infer(self): graph = build_graph(nodes_attributes, [('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], {'conv_output': {'shape': None}, 'conv_input': {'shape': np.array([1, 3, 227, 227])}, 'conv_weights': {'shape': np.array([64, 3, 3, 3]), 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_node': {'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'conv_pad': np.array([[0, 0], [0, 0], [0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'bias_addable': True, 'bias_term': False, 'output_spatial_shape': None, 'output_shape': None, 'stride': np.array([1, 1, 1, 1]), 'group': 1, 'kernel_spatial_idx': np.array([2, 3]), 'input_feature_channel': 1, 'output_feature_channel': 0, 'output': 64, 'kernel_spatial': np.array([3, 3]), 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'batch_dims': np.array([0])} }) conv_node = Node(graph, 'conv_node') Convolution.infer(conv_node) exp_shape = np.array([1, 64, 225, 225]) res_shape = graph.node['conv_output']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) def test_caffe_conv2d_infer_no_shape(self): graph = build_graph(nodes_attributes, [('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], {'conv_output': {'shape': None}, 'conv_input': {'shape': None}, 'conv_weights': {'shape': None, 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_node': {'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'conv_pad': np.array([[0, 0], [0, 0], [0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'bias_addable': True, 'bias_term': False, 'output_spatial_shape': None, 'output_shape': None, 'stride': np.array([1, 1, 1, 1]), 'group': 1, 'output': 64, 'kernel_spatial': np.array([3, 3]), 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'batch_dims': np.array([0])} }) conv_node = Node(graph, 'conv_node') Convolution.infer(conv_node) res_shape = graph.node['conv_output']['shape'] self.assertIsNone(res_shape) def test_deconv_infer_ideal(self): graph = build_graph(nodes_attributes, [('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], {'conv_output': {'shape': None}, 'conv_input': {'shape': np.array([1, 21, 16, 16])}, 'conv_weights': {'shape': np.array([1, 21, 4, 4]), 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_node': {#'spatial_dims': np.array([2, 3]), 'batch_dims': np.array([0]), 'channel_dims': np.array([1]), 'bias_addable': True, 'bias_term': False, 'batch_dims': np.array([0]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'kernel_spatial': np.array([4, 4]), 'output_spatial_shape': None, 'kernel_spatial_idx': np.array([2, 3]), 'input_feature_channel': 1, 'output_feature_channel': 0, 'output_padding': np.array([0, 0, 1, 1]), 'type': 'Deconvolution', 'output': 21, 'dilation': np.array([1, 1, 1, 1]), 'group': 1, 'stride': np.array([1, 1, 2, 2]), 'output_shape': None} }) deconv_node = Node(graph, 'conv_node') Convolution.infer(deconv_node) res_shape = deconv_node['output_shape'] exp_shape = np.array([1, 21, 35, 35]) for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) # Check that after double infer shape and pad attrs do not changes Convolution.infer(deconv_node) for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) def test_deconv_infer_no_shape(self): graph = build_graph(nodes_attributes, [('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], {'conv_output': {'shape': None}, 'conv_input': {'shape': None}, 'conv_weights': {'shape': np.array([1, 21, 16, 16]), 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_node': {'spatial_dims': np.array([2, 3]), 'batch_dims': np.array([0]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'kernel_spatial': np.array([4, 4]), 'output_spatial_shape': None, 'kernel_spatial_idx': np.array([2, 3]), 'input_feature_channel': 1, 'output_feature_channel': 0, 'type': 'Deconvolution', 'output': 21, 'dilation': np.array([1, 1, 1, 1]), 'group': 1, 'stride': np.array([1, 1, 2, 2]), 'output_shape': None} }) deconv_node = Node(graph, 'conv_node') Convolution.infer(deconv_node) res_shape = deconv_node['output_shape'] self.assertIsNone(res_shape) def test_conv_infer_set_default_attrs_nchw(self): graph = build_graph(nodes_attributes, [ ('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], { 'conv_output': { 'shape': None }, 'conv_input': { 'shape': int64_array([1, 3, 224, 224]) }, 'conv_weights': { 'shape': int64_array([3, 64, 7, 7]), 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis'] }, 'conv_node': { 'type': 'Convolution', 'bias_term': None, 'stride': None, 'dilation': None, 'batch_dims': int64_array([0]), 'channel_dims': int64_array([1]), 'output_spatial_shape': None, 'input_feature_channel': 0, 'output_feature_channel': 1, 'group': 1, 'output_shape': None, 'layout': 'NCHW' } }) conv_node = Node(graph, 'conv_node') conv_output = Node(graph, 'conv_output') Convolution.infer(conv_node) # Check bias_term attribute self.assertTrue(conv_node.has_valid('bias_term')) self.assertTrue(not conv_node.bias_term) # Check kernel_spatial_idx attr detection self.assertTrue(conv_node.has_valid('kernel_spatial_idx')) self.assertTrue(np.array_equal(int64_array([2, 3]), conv_node.kernel_spatial_idx)) # Check spatial_dims attr detection self.assertTrue(conv_node.has_valid('spatial_dims')) self.assertTrue(np.array_equal(int64_array([2, 3]), conv_node.spatial_dims)) # Check kernel_spatial attr detection self.assertTrue(conv_node.has_valid('kernel_spatial')) self.assertTrue(np.array_equal(int64_array([7, 7]), conv_node.kernel_spatial)) # Check output attribute self.assertTrue(conv_node.has_valid('output')) self.assertEqual(64, conv_node.output) # Check dilation value. Should be set to default self.assertTrue(conv_node.has_valid('dilation')) self.assertTrue(np.array_equal(int64_array([1, 1, 1, 1]), conv_node.dilation)) # Check stride value. Should be set to default self.assertTrue(conv_node.has_valid('stride')) self.assertTrue(np.array_equal(int64_array([1, 1, 1, 1]), conv_node.stride)) # Check pad value. Should be set to default self.assertTrue(conv_node.has_valid('pad')) self.assertTrue(np.array_equal(int64_array([[0, 0], [0, 0], [0, 0], [0, 0]]), conv_node.pad)) # Check pad_spatial_shape self.assertTrue(conv_node.has_valid('pad_spatial_shape')) self.assertTrue(np.array_equal(int64_array([[0, 0], [0, 0]]), conv_node.pad_spatial_shape)) # Check resulting output shape self.assertTrue(np.array_equal(int64_array([1, 64, 218, 218]), conv_output.shape)) def test_conv_infer_set_default_attrs_nhwc(self): graph = build_graph(nodes_attributes, [ ('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], { 'conv_output': { 'shape': None }, 'conv_input': { 'shape': int64_array([1, 224, 224, 3]) }, 'conv_weights': { 'shape': int64_array([3, 64, 7, 7]), 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis'] }, 'conv_node': { 'type': 'Convolution', 'bias_term': None, 'stride': None, 'dilation': None, 'batch_dims': int64_array([0]), 'channel_dims': int64_array([3]), 'output_spatial_shape': None, 'input_feature_channel': 0, 'output_feature_channel': 1, 'group': 1, 'output_shape': None, 'layout': 'NHWC' } }) conv_node = Node(graph, 'conv_node') conv_output = Node(graph, 'conv_output') Convolution.infer(conv_node) # Check bias_term attribute self.assertTrue(conv_node.has_valid('bias_term')) self.assertTrue(not conv_node.bias_term) # Check kernel_spatial_idx attr detection self.assertTrue(conv_node.has_valid('kernel_spatial_idx')) self.assertTrue(np.array_equal(int64_array([2, 3]), conv_node.kernel_spatial_idx)) # Check spatial_dims attr detection self.assertTrue(conv_node.has_valid('spatial_dims')) self.assertTrue(np.array_equal(int64_array([1, 2]), conv_node.spatial_dims)) # Check kernel_spatial attr detection self.assertTrue(conv_node.has_valid('kernel_spatial')) self.assertTrue(np.array_equal(int64_array([7, 7]), conv_node.kernel_spatial)) # Check output attribute self.assertTrue(conv_node.has_valid('output')) self.assertEqual(64, conv_node.output) # Check dilation value. Should be set to default self.assertTrue(conv_node.has_valid('dilation')) self.assertTrue(np.array_equal(int64_array([1, 1, 1, 1]), conv_node.dilation)) # Check stride value. Should be set to default self.assertTrue(conv_node.has_valid('stride')) self.assertTrue(np.array_equal(int64_array([1, 1, 1, 1]), conv_node.stride)) # Check pad value. Should be set to default self.assertTrue(conv_node.has_valid('pad')) self.assertTrue(np.array_equal(int64_array([[0, 0], [0, 0], [0, 0], [0, 0]]), conv_node.pad)) # Check pad_spatial_shape self.assertTrue(conv_node.has_valid('pad_spatial_shape')) self.assertTrue(np.array_equal(int64_array([[0, 0], [0, 0]]), conv_node.pad_spatial_shape)) # Check resulting output shape self.assertTrue(np.array_equal(int64_array([1, 218, 218, 64]), conv_output.shape)) def test_conv_infer_3D_convolution(self): graph = build_graph(nodes_attributes, [ ('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], { 'conv_output': { 'shape': None }, 'conv_input': { 'shape': int64_array([1, 3, 16, 224, 224]) }, 'conv_weights': { 'shape': int64_array([3, 64, 1, 7, 7]), 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis'] }, 'conv_node': { 'type': 'Convolution', 'bias_term': None, 'stride': None, 'dilation': None, 'batch_dims': int64_array([0]), 'channel_dims': int64_array([1]), 'output_spatial_shape': None, 'input_feature_channel': 0, 'output_feature_channel': 1, 'group': 1, 'output_shape': None, 'layout': 'NCHW' } }) conv_node = Node(graph, 'conv_node') conv_output = Node(graph, 'conv_output') Convolution.infer(conv_node) # Check bias_term attribute self.assertTrue(conv_node.has_valid('bias_term')) self.assertTrue(not conv_node.bias_term) # Check kernel_spatial_idx attr detection self.assertTrue(conv_node.has_valid('kernel_spatial_idx')) self.assertTrue(np.array_equal(int64_array([2, 3, 4]), conv_node.kernel_spatial_idx)) # Check spatial_dims attr detection self.assertTrue(conv_node.has_valid('spatial_dims')) self.assertTrue(np.array_equal(int64_array([2, 3, 4]), conv_node.spatial_dims)) # Check kernel_spatial attr detection self.assertTrue(conv_node.has_valid('kernel_spatial')) self.assertTrue(np.array_equal(int64_array([1, 7, 7]), conv_node.kernel_spatial)) # Check output attribute self.assertTrue(conv_node.has_valid('output')) self.assertEqual(64, conv_node.output) # Check dilation value. Should be set to default self.assertTrue(conv_node.has_valid('dilation')) self.assertTrue(np.array_equal(int64_array([1, 1, 1, 1, 1]), conv_node.dilation)) # Check stride value. Should be set to default self.assertTrue(conv_node.has_valid('stride')) self.assertTrue(np.array_equal(int64_array([1, 1, 1, 1, 1]), conv_node.stride)) # Check pad value. Should be set to default self.assertTrue(conv_node.has_valid('pad')) self.assertTrue(np.array_equal(int64_array([[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]), conv_node.pad)) # Check pad_spatial_shape self.assertTrue(conv_node.has_valid('pad_spatial_shape')) self.assertTrue(np.array_equal(int64_array([[0, 0], [0, 0], [0, 0]]), conv_node.pad_spatial_shape)) # Check resulting output shape self.assertTrue(np.array_equal(int64_array([1, 64, 16, 218, 218]), conv_output.shape))
53.052493
120
0.46381
106734a7c8f4de3ba29409b6682e3662f296d54c
9,070
py
Python
Algorithms/General/MergeStates.py
icsa-caps/HieraGen
4026c1718878d2ef69dd13d3e6e10cab69174fda
[ "MIT" ]
6
2020-07-07T15:45:13.000Z
2021-08-29T06:44:29.000Z
Algorithms/General/MergeStates.py
icsa-caps/HieraGen
4026c1718878d2ef69dd13d3e6e10cab69174fda
[ "MIT" ]
null
null
null
Algorithms/General/MergeStates.py
icsa-caps/HieraGen
4026c1718878d2ef69dd13d3e6e10cab69174fda
[ "MIT" ]
null
null
null
from typing import List from DataObjects.ClassState import State ######################################################################################################################## # 8) STATE MERGING ######################################################################################################################## class MergeStates: def __init__(self, max_merging_iterations: int, access: List[str], evict: List[str]): self.maxMergingIter = max_merging_iterations self.access = access self.evict = evict def merge_states(self, statesets): found = 1 itercnt = 0 while found and itercnt < self.maxMergingIter: itercnt += 1 found = 0 setkeys = self._GetSetSeq(statesets) for stateset in setkeys: defercluster = self._ClusterStatesDeferred(statesets[stateset].getstates()) for deferkey in sorted(defercluster.keys()): contextcluster = self._ClusterTransitionContext(defercluster[deferkey]) for contextkey in sorted(contextcluster.keys()): accesscluster = self._ClusterAccessMerge(contextcluster[contextkey]) for accesskey in sorted(accesscluster.keys()): dependencemap = self._ClusterIndependent(accesscluster[accesskey]) if len(dependencemap) > 1: transitionmap = self._ClusterTransitions(dependencemap) if (len(transition) > 1 for transition in transitionmap.values()) \ and len(transitionmap): # To test if states that shall be merged still exist is important # Greedy algorithm, a state might be mergeable with multiple different states # After it was merged one, it dissappears and is dead afterwards, therefore any # possible remaining merging must be deleted if self._TestStateExistInSet(dependencemap, statesets[stateset]): self._MergeGivenStates(dependencemap, transitionmap, statesets) found = 1 def _GetSetSeq(self, statesets): statesetlist = [] for stateset in statesets.values(): statesetlist.append(stateset.getstablestate()) statesetlist.sort(key=lambda x: (len(x.getaccesshit()), x.getstatename())) return [state.getstatename() for state in statesetlist] def _MergeGivenStates(self, mergestates, transitionmap, statesets): mergestates.sort(key=lambda x: len(x.getstatename())) # mergestates.sort(key=lambda x: len(x.getstatename())) # Make new state newstate = State(mergestates[0].getstatename(), self.access, self.evict) for transition in transitionmap.values(): newstate.addtransitions(transition[0]) # Explore context startstatesets = [] endstatesets = [] for state in mergestates: startstatesets += state.getstartstatesets() endstatesets += state.getendstatesets() startstatesets = list(set(startstatesets)) endstatesets = list(set(endstatesets)) # Remove old states from all state sets for stateset in statesets.values(): stateset.removestates(mergestates) # Now add new state to sets for stateset in startstatesets: stateset.addstartstate(newstate) for stateset in endstatesets: stateset.addendstate(newstate) # Update links for stateset in statesets.values(): for state in stateset.getstates(): for replacestate in mergestates: state.replaceremotestate(replacestate, newstate) @staticmethod def _TestStateExistInSet(states, stateset): for state in states: if not stateset.teststateexist(state): return 0 return 1 #################################################################################################################### # CLUSTER STATES #################################################################################################################### def _ClusterStatesDeferred(self, states): ordereddeferred = 1 msgmap = {} for state in states: defermsgs = state.getdefermessages() detectset = [] for defermsg in defermsgs: detectset.append(defermsg.getmsgtype()) detectkey = '$' + ''.join(detectset if ordereddeferred else detectset.sort()) entry = msgmap.get(detectkey, 0) if entry: if state not in entry: entry.append(state) else: msgmap.update({detectkey: [state]}) return self._RemoveSingleEntries(msgmap) def _ClusterTransitionContext(self, defercluster): msgcontextmap = {} for state in defercluster: for transition in state.getdataack(): cond = transition.getcond()[0] if transition.getcond() else "_" inmsg = transition.getinmsg() if isinstance(transition.getinmsg(), str) else \ transition.getinmsg().getmsgtype() identkey = inmsg + cond + transition.getfinalstate().getstatename() entry = msgcontextmap.get(identkey, 0) if entry: entry.append(state) else: msgcontextmap.update({identkey: [state]}) return self._RemoveSingleEntries(msgcontextmap) def _ClusterAccessMerge(self, contextcluster): accessmap = {} for state in contextcluster: accesskey = "$" for access in state.getaccesshit(): accesskey += access.getguard() entry = accessmap.get(accesskey, 0) if entry: entry.append(state) else: accessmap.update({accesskey: [state]}) return self._RemoveSingleEntries(accessmap) def _ClusterIndependent(self, accesscluster): dependencemap = {} for state in accesscluster: for transition in state.gettransitions(): dependencemap.update({state: []}) finalstate = transition.getfinalstate() if finalstate in accesscluster and finalstate != transition.getstartstate(): dependencemap[state].append(finalstate) independentlist = [] keys = list(dependencemap.keys()) keys.sort(key=lambda x: x.getstatename()) for entry in keys: if not len(dependencemap[entry]): independentlist.append(entry) return independentlist def _ClusterTransitions(self, accesscluster): transitionmap = {} for state in accesscluster: for transition in state.getremote() + state.getdataack(): cond = transition.getcond()[0] if transition.getcond() else "_" inmsg = transition.getinmsg() if isinstance(transition.getinmsg(), str) else \ transition.getinmsg().getmsgtype() self._AppendTransitionMap(transitionmap, transition, inmsg + cond) for transition in state.getaccess() + state.getevict(): identkey = transition.getaccess() if transition.getstartstate() == transition.getfinalstate(): identkey += "_l" self._AppendTransitionMap(transitionmap, transition, identkey) transitionmap = self._ClusterNonAmbigousTrans(transitionmap) return transitionmap @staticmethod def _AppendTransitionMap(transitionmap, transition, identkey): entry = transitionmap.get(identkey, 0) if entry: entry.append(transition) else: transitionmap.update({identkey: [transition]}) @staticmethod def _ClusterNonAmbigousTrans(transitionmap): match = 1 for transitionkey in sorted(transitionmap.keys()): finalstates = [] for transition in transitionmap[transitionkey]: finalstate = transition.getfinalstate() if transition.getstartstate() != finalstate: finalstates.append(finalstate) if len(list(set(finalstates))) > 1: match = 0 break if match == 0: return {} return transitionmap @staticmethod def _RemoveSingleEntries(statedict): removeguards = [] for guard in statedict: if len(statedict[guard]) == 1: removeguards.append(guard) for guard in removeguards: del statedict[guard] return statedict
36.572581
120
0.553032
a3bf0574f3e683591dfd6ab052a76784ab5a69b4
904
py
Python
microcosm_flask/tests/swagger/parameters/test_default.py
Sinon/microcosm-flask
c1404ebc94459c8156b04f5e04490a330117524c
[ "Apache-2.0" ]
11
2017-01-30T21:53:20.000Z
2020-05-29T22:39:19.000Z
microcosm_flask/tests/swagger/parameters/test_default.py
Sinon/microcosm-flask
c1404ebc94459c8156b04f5e04490a330117524c
[ "Apache-2.0" ]
139
2016-03-09T19:09:59.000Z
2021-09-03T17:14:00.000Z
microcosm_flask/tests/swagger/parameters/test_default.py
Sinon/microcosm-flask
c1404ebc94459c8156b04f5e04490a330117524c
[ "Apache-2.0" ]
10
2016-12-19T22:39:42.000Z
2021-03-09T19:23:15.000Z
from hamcrest import assert_that, equal_to, is_ from marshmallow import Schema, fields from microcosm_flask.swagger.api import build_parameter class TestSchema(Schema): id = fields.UUID() foo = fields.String(description="Foo", default="bar") payload = fields.Dict() datetime = fields.DateTime() def test_field_description_and_default(): parameter = build_parameter(TestSchema().fields["foo"]) assert_that(parameter, is_(equal_to({ "type": "string", "description": "Foo", "default": "bar", }))) def test_field_uuid(): parameter = build_parameter(TestSchema().fields["id"]) assert_that(parameter, is_(equal_to({ "type": "string", "format": "uuid", }))) def test_field_dict(): parameter = build_parameter(TestSchema().fields["payload"]) assert_that(parameter, is_(equal_to({ "type": "object", })))
25.111111
63
0.659292
f34a6ae451e182d06ec6217aa282c77cd96c4737
288
py
Python
cms/admin.py
opendream/asip
20583aca6393102d425401d55ea32ac6b78be048
[ "MIT" ]
null
null
null
cms/admin.py
opendream/asip
20583aca6393102d425401d55ea32ac6b78be048
[ "MIT" ]
8
2020-03-24T17:11:49.000Z
2022-01-13T01:18:11.000Z
cms/admin.py
opendream/asip
20583aca6393102d425401d55ea32ac6b78be048
[ "MIT" ]
null
null
null
from django.contrib import admin # Register your models here. from cms.models import News from cms.models import Event class NewsAdmin(admin.ModelAdmin): pass class EventAdmin(admin.ModelAdmin): pass admin.site.register(News, NewsAdmin) admin.site.register(Event, EventAdmin)
19.2
38
0.784722
1ad216932a4659e29b033611bdc81bfb7d71a330
2,109
py
Python
gurobi-test/test.py
jontev/postnord-optimization
38dd1738dd4a930531d70bd914ae34918ad7f1d2
[ "MIT" ]
null
null
null
gurobi-test/test.py
jontev/postnord-optimization
38dd1738dd4a930531d70bd914ae34918ad7f1d2
[ "MIT" ]
null
null
null
gurobi-test/test.py
jontev/postnord-optimization
38dd1738dd4a930531d70bd914ae34918ad7f1d2
[ "MIT" ]
null
null
null
import gurobipy as gp from gurobipy import GRB import pandas as pd import os S = pd.read_csv('Sj.csv') L = pd.read_csv('Lj.csv') m = pd.read_csv('mj.csv') dij = pd.read_csv('dij.csv') aip = pd.read_csv('aip.csv') S = S.to_numpy() L = L.to_numpy() m = m.to_numpy() dij = dij.to_numpy() aip = aip.to_numpy() P = list(range(40)) I = list(range(9)) J = list(range(dij.shape[1])) T = list(range(2)) aip = aip.T Kl = 18 Ks = 30 m = [m[j][0] + 1 for j in J] S = [S[j][0] for j in J] L = [L[j][0] for j in J] # create model instance model = gp.Model() # define variables in optimization problem x = model.addVars(I, P, J, vtype=GRB.INTEGER, name="x", lb = 0) yl = model.addVars(P, J, T, vtype=GRB.BINARY, name="yl") ys = model.addVars(P, J, T, vtype=GRB.BINARY, name="ys") u = model.addVars(J, T, vtype=GRB.BINARY, name="u") w = model.addVars(P, J, vtype=GRB.BINARY, name="w") # Objective function obj = sum(aip[i,p]*x[i,p,j] for p in P for i in I for j in J) # Constraints A = model.addConstrs(sum( yl[p,j,t] + ys[p,j,t] for j in J) <= 1 for p in P for t in T ) B = model.addConstrs(sum( x[i,p,j] for p in P) == dij[i,j] for i in I for j in J ) C = model.addConstrs(sum( yl[p,j,t] for p in P) <= u[j,t]*L[j] for j in J for t in T) D = model.addConstrs(sum( ys[p,j,t] for p in P) <= u[j,t]*S[j] for j in J for t in T) E = model.addConstrs(sum( x[i,p,j] for i in I) <= sum(Kl*yl[p,j,t] + Ks*ys[p,j,t] for t in T) for p in P for j in J ) F = model.addConstrs(sum( u[j,t] for t in T) == 1 for j in J ) G = model.addConstrs(sum( (t+1)*u[j,t] for t in T) <= m[j] for j in J ) H = model.addConstrs(sum( w[p,j] for p in P ) <= 1 for j in J ) Q = model.addConstrs(w[p,j]*dij[0,j] == x[0,p,j] for p in P for j in J ) R = model.addConstrs(sum( x[friplock,p,j] for p in P[20:] ) == 0 for j in J) AA = model.addConstrs(sum( x[helpall, p, j] for p in P[0:19]) == 0 for j in J ) # Min-problem model.setObjective(obj, GRB.MINIMIZE) # time limit #model.Params.TimeLimit = 300 model.update() # call for solver model.optimize() # optimal objective value model.objVal # optimal solution (variables) model.printAttr('x')
29.704225
117
0.626363
5d87ef8f3887cbc92ad9250cf847974199e0a850
6,801
py
Python
hubspot/crm/deals/models/error_category.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
null
null
null
hubspot/crm/deals/models/error_category.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
null
null
null
hubspot/crm/deals/models/error_category.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Deals No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.deals.configuration import Configuration class ErrorCategory(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"http_status": "str", "name": "str"} attribute_map = {"http_status": "httpStatus", "name": "name"} def __init__( self, http_status=None, name=None, local_vars_configuration=None ): # noqa: E501 """ErrorCategory - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._http_status = None self._name = None self.discriminator = None self.http_status = http_status self.name = name @property def http_status(self): """Gets the http_status of this ErrorCategory. # noqa: E501 :return: The http_status of this ErrorCategory. # noqa: E501 :rtype: str """ return self._http_status @http_status.setter def http_status(self, http_status): """Sets the http_status of this ErrorCategory. :param http_status: The http_status of this ErrorCategory. # noqa: E501 :type: str """ if ( self.local_vars_configuration.client_side_validation and http_status is None ): # noqa: E501 raise ValueError( "Invalid value for `http_status`, must not be `None`" ) # noqa: E501 allowed_values = [ "CONTINUE", "SWITCHING_PROTOCOLS", "PROCESSING", "OK", "CREATED", "ACCEPTED", "NON_AUTHORITATIVE_INFORMATION", "NO_CONTENT", "RESET_CONTENT", "PARTIAL_CONTENT", "MULTI_STATUS", "ALREADY_REPORTED", "IM_USED", "MULTIPLE_CHOICES", "MOVED_PERMANENTLY", "FOUND", "SEE_OTHER", "NOT_MODIFIED", "USE_PROXY", "TEMPORARY_REDIRECT", "PERMANENT_REDIRECT", "BAD_REQUEST", "UNAUTHORIZED", "PAYMENT_REQUIRED", "FORBIDDEN", "NOT_FOUND", "METHOD_NOT_ALLOWED", "NOT_ACCEPTABLE", "PROXY_AUTHENTICATION_REQUIRED", "REQUEST_TIMEOUT", "CONFLICT", "GONE", "LENGTH_REQUIRED", "PRECONDITION_FAILED", "REQUEST_ENTITY_TOO_LARGE", "REQUEST_URI_TOO_LONG", "UNSUPPORTED_MEDIA_TYPE", "REQUESTED_RANGE_NOT_SATISFIABLE", "EXPECTATION_FAILED", "IM_A_TEAPOT", "MISDIRECTED_REQUEST", "UNPROCESSABLE_ENTITY", "LOCKED", "FAILED_DEPENDENCY", "UPGRADE_REQUIRED", "PRECONDITION_REQUIRED", "TOO_MANY_REQUESTS", "REQUEST_HEADERS_FIELDS_TOO_LARGE", "INTERNAL_STALE_SERVICE_DISCOVERY", "UNAVAILABLE_FOR_LEGAL_REASONS", "INTERNAL_SERVER_ERROR", "NOT_IMPLEMENTED", "BAD_GATEWAY", "SERVICE_UNAVAILABLE", "GATEWAY_TIMEOUT", "HTTP_VERSION_NOT_SUPPORTED", "VARIANT_ALSO_NEGOTIATES", "INSUFFICIENT_STORAGE", "LOOP_DETECTED", "NOT_EXTENDED", "NETWORK_AUTHENTICATION_REQUIRED", ] # noqa: E501 if ( self.local_vars_configuration.client_side_validation and http_status not in allowed_values ): # noqa: E501 raise ValueError( "Invalid value for `http_status` ({0}), must be one of {1}".format( # noqa: E501 http_status, allowed_values ) ) self._http_status = http_status @property def name(self): """Gets the name of this ErrorCategory. # noqa: E501 :return: The name of this ErrorCategory. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ErrorCategory. :param name: The name of this ErrorCategory. # noqa: E501 :type: str """ if ( self.local_vars_configuration.client_side_validation and name is None ): # noqa: E501 raise ValueError( "Invalid value for `name`, must not be `None`" ) # noqa: E501 self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ErrorCategory): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ErrorCategory): return True return self.to_dict() != other.to_dict()
29.960352
124
0.545802
2e744bdbea3ef1528e5cc99fad0837fc41280333
2,774
py
Python
python/shopping_store_v2/main.py
matheuskiser/pdx_code_guild
49a5c62fb468253eb4d9a1fb11166df79bb10873
[ "MIT" ]
null
null
null
python/shopping_store_v2/main.py
matheuskiser/pdx_code_guild
49a5c62fb468253eb4d9a1fb11166df79bb10873
[ "MIT" ]
null
null
null
python/shopping_store_v2/main.py
matheuskiser/pdx_code_guild
49a5c62fb468253eb4d9a1fb11166df79bb10873
[ "MIT" ]
null
null
null
from store import Store from login import Login import os # Starts store and sets up all items store = Store("Fred Meyer", "Portland, OR") # Temporary code to load or not load items load = raw_input("Load items? ") if load == "y": store.load_items_store() # Starts user's login user = Login() # Global user ID USER_ID = user.user.get_user_id(user.user.username) def clear(): os.system('clear') def user_menu(): clear() option = 0 while option != 5: print "===================================" print "Menu" print "===================================" print "1. Browse all items" print "2. Search" print "3. User account" print "4. Checkout" print "5. Exit" option = int(raw_input("Pick an option: ")) user_pick_menu_option(option) def user_pick_menu_option(option): if option == 1: """Show Items""" show_items() elif option == 2: """Search item""" search_item() elif option == 3: """Show account info""" display_user_account() elif option == 4: """Checkout""" checkout() elif option == 5: """Exit Program""" clear() print "Thanks for shopping!" # Outputs all items from store def show_items(): clear() store.print_all_items() # Searches item in store and asks user to buy item def search_item(): clear() print "Search item:" item_name = raw_input("What is the item's name? ") # Shows item searched store.print_single_item(item_name) # Asks user to buy item choice = raw_input("Buy item? (y/n): ") if choice.lower() == "y" or choice.lower() == "yes": user_qty = raw_input("How many? ") item_qty = store.get_item_qty(item_name) item_cost = store.get_item_cost(item_name) if int(item_qty) > 0: # If user is trying to buy more qty than store has while int(user_qty) > int(item_qty): print "Sorry, quantity entered is too high. Try again" user_qty = int(raw_input("How many? ")) # Gets item amount after adding to cart qty_left = int(item_qty) - int(user_qty) # Adds item to cart user.user.add_to_cart(USER_ID, item_name, user_qty, item_cost) # Remove item qty from item in store store.remove_item_qty(item_name, qty_left) print "Item added to cart." else: print "Item not in stock." def display_user_account(): clear() user.user.display_user_account_info() def checkout(): clear() user.user.checkout_cart(USER_ID) # RUNS PROGRAM # Checks if user is logged in if user.is_logged_in: user_menu()
24.333333
74
0.582913
c63da9c501d44ecf97a3883c4b9f6e890b7acacc
5,786
py
Python
costar_task_plan/python/costar_task_plan/mcts/node.py
cpaxton/costar_plan
be5c12f9d0e9d7078e6a5c283d3be059e7f3d040
[ "Apache-2.0" ]
66
2018-10-31T04:58:53.000Z
2022-03-17T02:32:25.000Z
costar_task_plan/python/costar_task_plan/mcts/node.py
cpaxton/costar_plan
be5c12f9d0e9d7078e6a5c283d3be059e7f3d040
[ "Apache-2.0" ]
8
2018-10-23T21:19:25.000Z
2018-12-03T02:08:41.000Z
costar_task_plan/python/costar_task_plan/mcts/node.py
cpaxton/costar_plan
be5c12f9d0e9d7078e6a5c283d3be059e7f3d040
[ "Apache-2.0" ]
25
2018-10-19T00:54:17.000Z
2021-10-10T08:28:15.000Z
from costar_task_plan.abstract import * ''' An MCTS node is a TYPE of state, but contains a different type of state. Why? So that we can do interesting learning over MCTS states. ''' class Node(AbstractState): next_idx = 0 def __init__(self, world=None, action=None, prior=1., root=False): ''' You only need one of world or action. Ways to use this: - provide a world and set root to true: ROOT node - provide no world, but an action: non-instantiated child node Parameters: ----------- world: world state including all current actors action: the current MCTS action (wraps a policy) prior: weight for how good this is going to be root: is this the root of a tree? ''' if world is None and action is None: raise RuntimeError('must provide either a world or an action!') self.parent = None self.n_visits = 0 self.n_rollouts = 0 self.world = world self.action = action self.children = [] self.max_reward = -float('inf') self.total_reward = 0 self.avg_reward = 0 self.prev_reward = 0 self.max_final_reward = -float('inf') self.prior = prior self.initialized = self.world is not None self.terminal = self.world is not None and self.world.done if self.action is not None and self.action.tag is not None: self.tag = self.action.tag elif root: self.tag = 'ROOT()' if self.world.done: raise RuntimeError('cannot create tree from terminal node') else: self.tag = 'NODE' if self.world is not None: self.state = self.world.actors[0].state else: self.state = None self.traj = [] self.rewards = [] self.reward = 0 ''' MCTS update step ''' def update(self, reward, final_reward, steps): self.total_reward += reward self.max_reward = max(reward, self.max_reward) self.max_final_reward = max(reward, self.max_final_reward) self.avg_reward = self.total_reward / self.n_visits self.reward = 0 # reset counter for this trace ''' expand() creates a new child world from a particular environment. We can then tick() this world forward however long we want to follow a particular policy. ''' def expand(self, action): if action is None: raise RuntimeError('Cannot expand with an empty action!') if not isinstance(action, AbstractAction): raise TypeError( 'node.expand() takes an Environment action, not an MCTS action.') new_world = self.world.fork(action) n = Node(world=new_world) n.prev_reward = self.prev_reward + self.reward n.parent = self return n ''' Alternate version: - if all of our children have been created ahead of time, we may want to ''' def instantiate(self, child): if child.parent is None: child.parent = self elif child.parent is not self: raise RuntimeError( 'Cannot instantiate node with a node other than its parent!') if child.world is None: if not isinstance(child, Node): raise RuntimeError( 'Cannot instantiate someting that is not an MCTS node.') if child.action is None: raise RuntimeError( 'Cannot instantiate a node with an empty action!') action = child.action.getAction(self) if action is None: failed = True else: failed = False new_world = self.world.fork(action) child.world = new_world child.state = child.world.actors[0].state child.initialized = True child.terminal = child.world.done or failed child.rewards = [new_world.initial_reward] child.reward += new_world.initial_reward child.parent = self child.prev_reward = self.prev_reward + self.reward child.traj.append((self.world.actors[0].state, action)) child.action.update(child) else: raise RuntimeError( 'Cannot instantiate a node that already has been instantiated!') @property def ticks(self): return self.world.ticks ''' tick() to advance the state of the world associated with a particular action or policy. ''' def tick(self, action): if len(self.children) is not 0: raise RuntimeError( 'Cannot tick a node that has already been expanded!') elif self.terminal: raise RuntimeError('Tried to advance from a terminal state!') else: if action is None: failed = True else: failed = False # advance the current state of the world (res, S0, A0, S1, F1, r) = self.world.tick(action) self.traj.append((S0, A0)) self.rewards.append(r) self.reward += r self.terminal = self.world.done or failed self.state = S1 return res and not failed, S0, A0, S1, F1, r ''' ----------------------------------------------------------------------- NOTE: these are helper functions for accessing and updating the world state ----------------------------------------------------------------------- ''' def features(self): if self.world is None: raise RuntimeError('node.instantiate() not called yet!') return self.world.initial_features
33.252874
81
0.566367
2cbac16d3c0517f00cfe53f177d6717a71a2d97e
1,635
py
Python
module_factions.py
invisiblebob395/awefawe
42daf9d3ae06bcdb3b91973d94eed8bed1303e2b
[ "BSD-3-Clause" ]
17
2015-01-19T07:53:57.000Z
2021-07-10T02:26:51.000Z
module_factions.py
qt911025/pw_module_system
dbd257e5231d16c47f17091a3ab18972be7687e5
[ "BSD-3-Clause" ]
1
2017-08-31T03:55:09.000Z
2017-08-31T03:55:09.000Z
module_factions.py
qt911025/pw_module_system
dbd257e5231d16c47f17091a3ab18972be7687e5
[ "BSD-3-Clause" ]
14
2015-05-03T05:20:01.000Z
2021-12-29T17:10:50.000Z
from header_factions import * #################################################################################################################### # Each faction record contains the following fields: # 1) Faction id: used for referencing factions in other files. # The prefix fac_ is automatically added before each faction id. # 2) Faction name. # 3) Faction flags. See header_factions.py for a list of available flags # 4) Faction coherence. Relation between members of this faction. # 5) Relations. This is a list of relation records. # Each relation record is a tuple that contains the following fields: # 5.1) Faction. Which other faction this relation is referring to # 5.2) Value: Relation value between the two factions. # Values range between -1 and 1. # 6) Ranks # 7) Faction color (default is gray) #################################################################################################################### # Adding more factions to this list will not work: many scripts are limited to 10 factions by the scene file format. factions = [ ("commoners","Commoners", 0, 0, [], [], 0x990099), ("outlaws","Outlaws", 0, 0, [], [], 0x775500), ("1","Red Faction", 0, 0, [], [], 0xDD0000), ("2","White Faction", 0, 0, [], [], 0xFFFFFF), ("3","Blue Faction", 0, 0, [], [], 0x3333FF), ("4","Green Faction", 0, 0, [], [], 0x00DD00), ("5","Yellow Faction", 0, 0, [], [], 0xCCAA44), ("6","Purple Faction", 0, 0, [], [], 0x663333), ("7","Orange Faction", 0, 0, [], [], 0x884411), ("8","Black Faction", 0, 0, [], [], 0x000000), ("factions_end","factions_end", 0, 0, [], []), ]
48.088235
116
0.545566
aa4c074f87300d5bfab6688794b519d2b8710174
241
py
Python
backend/urls.py
sauravsharmaz/Quote_app_DRF
3a634a7be95d1c812d69c98590963cec946d24bc
[ "MIT" ]
1
2021-09-03T15:44:27.000Z
2021-09-03T15:44:27.000Z
backend/urls.py
sauravsharmaz/Quote_app_DRF
3a634a7be95d1c812d69c98590963cec946d24bc
[ "MIT" ]
null
null
null
backend/urls.py
sauravsharmaz/Quote_app_DRF
3a634a7be95d1c812d69c98590963cec946d24bc
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path from django.urls.conf import include urlpatterns = [ path('admin/', admin.site.urls), path('api/',include('API.urls')), path('scrapper/',include('scrapper.urls')), ]
24.1
47
0.697095
b749aba6260cd374342434aa517543a36b619616
9,452
py
Python
nova/virt/hyperv/volumeops.py
bopopescu/nova-40
d8d5e4c4e30d0e605001ebab9f19005d2ea96f99
[ "Apache-2.0" ]
null
null
null
nova/virt/hyperv/volumeops.py
bopopescu/nova-40
d8d5e4c4e30d0e605001ebab9f19005d2ea96f99
[ "Apache-2.0" ]
null
null
null
nova/virt/hyperv/volumeops.py
bopopescu/nova-40
d8d5e4c4e30d0e605001ebab9f19005d2ea96f99
[ "Apache-2.0" ]
1
2020-07-24T09:44:17.000Z
2020-07-24T09:44:17.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Pedro Navarro Perez # Copyright 2013 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Management class for Storage-related functions (attach, detach, etc). """ import time from oslo.config import cfg from nova import exception from nova.openstack.common.gettextutils import _ from nova.openstack.common import log as logging from nova.virt import driver from nova.virt.hyperv import utilsfactory from nova.virt.hyperv import vmutils LOG = logging.getLogger(__name__) hyper_volumeops_opts = [ cfg.IntOpt('volume_attach_retry_count', default=10, help='The number of times to retry to attach a volume'), cfg.IntOpt('volume_attach_retry_interval', default=5, help='Interval between volume attachment attempts, in seconds'), ] CONF = cfg.CONF CONF.register_opts(hyper_volumeops_opts, 'hyperv') CONF.import_opt('host', 'nova.netconf') CONF.import_opt('my_ip', 'nova.netconf') class VolumeOps(object): """ Management class for Volume-related tasks """ def __init__(self): self._hostutils = utilsfactory.get_hostutils() self._vmutils = utilsfactory.get_vmutils() self._volutils = utilsfactory.get_volumeutils() self._initiator = None self._default_root_device = 'vda' def ebs_root_in_block_devices(self, block_device_info): return self._volutils.volume_in_mapping(self._default_root_device, block_device_info) def attach_volumes(self, block_device_info, instance_name, ebs_root): mapping = driver.block_device_info_get_mapping(block_device_info) if ebs_root: self.attach_volume(mapping[0]['connection_info'], instance_name, True) mapping = mapping[1:] for vol in mapping: self.attach_volume(vol['connection_info'], instance_name) def login_storage_targets(self, block_device_info): mapping = driver.block_device_info_get_mapping(block_device_info) for vol in mapping: self._login_storage_target(vol['connection_info']) def _login_storage_target(self, connection_info): data = connection_info['data'] target_lun = data['target_lun'] target_iqn = data['target_iqn'] target_portal = data['target_portal'] # Check if we already logged in if self._volutils.get_device_number_for_target(target_iqn, target_lun): LOG.debug(_("Already logged in on storage target. No need to " "login. Portal: %(target_portal)s, " "IQN: %(target_iqn)s, LUN: %(target_lun)s"), {'target_portal': target_portal, 'target_iqn': target_iqn, 'target_lun': target_lun}) else: LOG.debug(_("Logging in on storage target. Portal: " "%(target_portal)s, IQN: %(target_iqn)s, " "LUN: %(target_lun)s"), {'target_portal': target_portal, 'target_iqn': target_iqn, 'target_lun': target_lun}) self._volutils.login_storage_target(target_lun, target_iqn, target_portal) # Wait for the target to be mounted self._get_mounted_disk_from_lun(target_iqn, target_lun, True) def attach_volume(self, connection_info, instance_name, ebs_root=False): """ Attach a volume to the SCSI controller or to the IDE controller if ebs_root is True """ LOG.debug(_("Attach_volume: %(connection_info)s to %(instance_name)s"), {'connection_info': connection_info, 'instance_name': instance_name}) try: self._login_storage_target(connection_info) data = connection_info['data'] target_lun = data['target_lun'] target_iqn = data['target_iqn'] #Getting the mounted disk mounted_disk_path = self._get_mounted_disk_from_lun(target_iqn, target_lun) if ebs_root: #Find the IDE controller for the vm. ctrller_path = self._vmutils.get_vm_ide_controller( instance_name, 0) #Attaching to the first slot slot = 0 else: #Find the SCSI controller for the vm ctrller_path = self._vmutils.get_vm_scsi_controller( instance_name) slot = self._get_free_controller_slot(ctrller_path) self._vmutils.attach_volume_to_controller(instance_name, ctrller_path, slot, mounted_disk_path) except Exception as exn: LOG.exception(_('Attach volume failed: %s'), exn) self._volutils.logout_storage_target(target_iqn) raise vmutils.HyperVException(_('Unable to attach volume ' 'to instance %s') % instance_name) def _get_free_controller_slot(self, scsi_controller_path): #Slots starts from 0, so the length of the disks gives us the free slot return self._vmutils.get_attached_disks_count(scsi_controller_path) def detach_volumes(self, block_device_info, instance_name): mapping = driver.block_device_info_get_mapping(block_device_info) for vol in mapping: self.detach_volume(vol['connection_info'], instance_name) def logout_storage_target(self, target_iqn): LOG.debug(_("Logging off storage target %s"), target_iqn) self._volutils.logout_storage_target(target_iqn) def detach_volume(self, connection_info, instance_name): """Detach a volume to the SCSI controller.""" LOG.debug(_("Detach_volume: %(connection_info)s " "from %(instance_name)s"), {'connection_info': connection_info, 'instance_name': instance_name}) data = connection_info['data'] target_lun = data['target_lun'] target_iqn = data['target_iqn'] #Getting the mounted disk mounted_disk_path = self._get_mounted_disk_from_lun(target_iqn, target_lun) LOG.debug(_("Detaching physical disk from instance: %s"), mounted_disk_path) self._vmutils.detach_vm_disk(instance_name, mounted_disk_path) self.logout_storage_target(target_iqn) def get_volume_connector(self, instance): if not self._initiator: self._initiator = self._volutils.get_iscsi_initiator() if not self._initiator: LOG.warn(_('Could not determine iscsi initiator name'), instance=instance) return { 'ip': CONF.my_ip, 'host': CONF.host, 'initiator': self._initiator, } def _get_mounted_disk_from_lun(self, target_iqn, target_lun, wait_for_device=False): device_number = self._volutils.get_device_number_for_target(target_iqn, target_lun) if device_number is None: raise exception.NotFound(_('Unable to find a mounted disk for ' 'target_iqn: %s') % target_iqn) LOG.debug(_('Device number: %(device_number)s, ' 'target lun: %(target_lun)s'), {'device_number': device_number, 'target_lun': target_lun}) #Finding Mounted disk drive for i in range(0, CONF.hyperv.volume_attach_retry_count): mounted_disk_path = self._vmutils.get_mounted_disk_by_drive_number( device_number) if mounted_disk_path or not wait_for_device: break time.sleep(CONF.hyperv.volume_attach_retry_interval) if not mounted_disk_path: raise exception.NotFound(_('Unable to find a mounted disk ' 'for target_iqn: %s') % target_iqn) return mounted_disk_path def disconnect_volume(self, physical_drive_path): #Get the session_id of the ISCSI connection session_id = self._volutils.get_session_id_from_mounted_disk( physical_drive_path) #Logging out the target self._volutils.execute_log_out(session_id) def get_target_from_disk_path(self, physical_drive_path): return self._volutils.get_target_from_disk_path(physical_drive_path)
42.38565
79
0.614473